

TECHNOLOGY - VIDEO - STEREO - COMPUTERS - SERVICE

INTERACTIVE TV

Technology lets viewers join in the action

RADIO DATA SYSTEM

Digital data on the FM dial

Computervilgesi

Universal speech synthesizer lets your computer do the talking

BUILD A VIDEO EDITING
CONTROLLER
For clean edits of your home video movies PLUS:
„Hardware Hacker *Video News *Shortwave Radi „Audio Update for your DMM OP-AMP

FடபKE

How to beat the high cost of cheap meters.

December 1988 首位erronics

BUIT1 THis

49 GATED－SYNC DECODER
How the gated－sync pulses of scrambled TV signals are restored．
Steve Pence

57 VIDEO－EDIT CONTROLLER
 Do professional－quality editing with this inexpensive device．
 Thomas A．Nery
 61 TRUE RMS CONVERTER FOR YOUR DMM Add this top－of－the－line feature to your VOM or DMM． Steven A．Brown

TEEATNONGY

45 INTERACTIVE TV
Compete against game－show contestants，and other viewers，with this exciting new technology！
Brian C．Fenton
\section*{65 RADIO DATA SYSTEM}
Get a wide range of services from your FM car radio． Herb Friedman

CIREUHS

69 WORKING WITH A NORTON OP－AMP
Learn about the LM3900 current－differencing op－amp．
Ray Marston

Drphinnimits

6 VIDEO NEWS

What＇s new in this fast－
changing field．
David Lachenbruch
24 EQUIPMENT REPORTS
Amdek Laserdek 1000.
33 HARDWARE HACKER
A solid－state digital compass． Don Lancaster

38 SHORTWAVE RADIO
Radio station WWV． Stanley Leinwoll
91 AUDIO UPDATE
The Audio Engineering Society．
Larry Klein
93 DRAWING BOARD
Seven－segment displays． Robert Grossblatt

BUILD A SPEECH SYNTHESIZER

RSSEMBLY LRNGURGE
PROGRAMMING

PAGE 79

Annual Index
January Thru December 1988
Begins on page 96

> SE:ASON'S

GREETINGS
－The edilors and staff
of＇Radio＇＇Electronics join in sending
holiday grectings and
our best wistris for
a happy new vear
CTD MORE

122 Advertising and Sales Offices

122 Advertising Index
12 Ask R－E
123 Free Information Card
14 Letters
101 Market Center
26 New Products
77 PC Service
4 What＇s News

If you've ever watched a TV game show, you know how difficult it is not to play along-especially when you know the answer that is stumping all the contestants! By this time next year, you may be able to do something other than pounding the coffee table. A proposal by the Interactive Game Network would let you play along with your favorite show, and even win prizes.
The interactive home terminals could also be used for public-opinion polling on a scale that simply cannot be done today. For a complete overview of interactive TV technology. turn to page 45.

COMIITG Diaty mojuri

THE JANUARY ISSUE IS ON SALE DECEMBER 1

CARRIER-CURRENT SPEAKERS

Use your home's power lines to transmit audio.

PROBES

All about oscilloscope probes, how they can affect your measurements, and how to build a low-capacitance scope probe.

Ravie
 Electronies ADVANCED CONTROL SYSTEM
 REACTS returns with a backup power supply.

CompuierDigest

Inside Intel's 80386.

[^0]Hugo Gernsback (1884 -1967) founder
M. Harvey Gernsback. editor-in-chief, emeritus

Larry Stecklor, EHF, CET.
editor-in-chief and publisher
EDITORIAL DEPARTMENT
Art Klelman, editorial director
Brian C. Fenton, editor
Cant Laron, WB2SLR.
editorial associate
Mare Spiwak, associate editor
Jonathan A. Gordon,
assistant technical editor
Teri Scaduto, assistant editor
Jeffrey K. Holtzman. computer editor
Robert A. Young, assistant editor
Byron G. Wels, editorial associate
Jack Darr, CET, service editor
Robert F. Scott, semiconductor editor
Herb Friedman. communications editor
Robert Grossblatt, circuits editor
Larry Klein, audio editor
David Lachenbruch. contributing editor
Don Lancaster, contributing editor
Richard D. Fitch, contributing editor
Kathy Campbell, editorial assistant
Andre Duzant, technical illustrator
Injae Lee, assistant illustrator
PRODUCTION DEPARTMENT
Ruby M. Yee, production director
Robert A. W. Lowndes, editorial production
Karen Tucker, advertising production
Marcella Amoroso, production traffic
CIRCULATION DEPARTMENT
Jacqueline P. Cheeseboro. circulation director
Wendy Alanko, circulation analyst
Theresa Lombardo. circulation assistant
Nancy Estrada, manager, R-E Bookstore

Typography by Mates Graphics
Cover art by Annette M. Zygarowicz
Radio-Electronics is indexed in Applied Science \& Technology Index and Readers Guide to Periodical Literature.
Microfilm \& Microfiche editions are available. Contact circulation department for details.

Advertising Sales OHfices listed on page 122.

Heathkit

Anyone Can Buy Top Notch Audio. Now You Can Build It.

With Heath's new build-them-yourself stereo components, you create your own sound system.

Specially designed for Heath by industry leader Harman Kardon, our new stereo line exceeds the standards of even the most discerning audiophile. And because most of the components come in kit form, you experience first hand how electronic craftmanship results in premium hi-fi performance.

Build the power amplifier, preamplifier and stereo tuner. Prewired and pretested circuit boards and minimal soldering mean each component takes only a few evenings to build.

And, your success is guaranteed. Our precise, step-by-step manuals are industry-recognized, and our technical assistance team is just a phone call away.

To complete your sound system, add the remote control compact disk player, cassette deck and any of our fine speakers and headphones.

See Heath Company's wide assortment of innovative electronic products in our 108-page Heathkit Catalog. For your FREE copy, mail the coupon below or call 24 hours a day TOLL-FREE:

1-800-44-HEATH

(1-800-444-3284)
\qquad

``` Apt.
\(\qquad\)
```

Yes, send me a FREE Heathkit Catalog.

```
Yes, send me a FREE Heathkit Catalog.
Send to: Heath Company, Dept.020-724
Send to: Heath Company, Dept.020-724
            Benton Harbor, Michigan 49022
            Benton Harbor, Michigan 49022
Name
Name
Address
Address
City
City
State___Z________________
State___Z________________
State_______________
State_______________
                                    Apt.
                                    Apt.
City
City
    _______
```

    ```

\title{
What's News
}

\section*{Better superconductors from aerosol process}


WESTINGHOUUSE S̄CIENTIST DR. ALFRED PEBLER with the equipment used to produce super-high quality yttrium, barium, or copper powders.

Westinghouse scientists have developed a new technology for producing raw materials for the new high-temperature superconductors. The materials are produced in a highly pure powder form that can make superconductor manufacture cheaper while improving the product. "Our particles are so pure and fine that the samples we make from them give us the sharpest transistion to the superconductor state that we have seen," states Dr. Alfred Pebler, head of the team working on the new technology. "It occurs at \(94^{\circ}\)

Kelvin, over a temperature range of at most 3 degrees."
The process starts by dissolving the powders in nitric acid to form a homogeneous solution. Aerosol droplets are then formed from a water solution of the dissolved nitrates and passed through a tubular furnace at temperatures of up to \(1,000^{\circ} \mathrm{C}\). In the short time while the solution is at that extremely high temperature, the water evaporates, leaving only a metal-oxide compound in the form of a very fine, pure crystalline powder.

\section*{News from NPEC ' 88}

At the 1988 National Professional Electronics Convention (NPEC), Larry Steckler CET/EHF was presented with the National Electronics Sales \& Service Dealers Association's (NESDA) prestigious "Friend of Service Award," honoring the most significant contribution by a person or company to the advancement of the independent sales and service industry in 1988.
Mr. Steckler, a heavy promoter of the industry's trade associations' causes, owns Gernsback Publications and is the publisher and editor-in-chief of Radio-Electronics, Popular Electronics, and Electronics Experimenters' Handbook. He is a member and chairman of the board of the Electronics Industry Hall of Fame, and also happens to be a participating member of both NESDA and ISCET (International Society of Certified Electronics Technicians).
A recurrent theme at NPEC '88which was held in St. Charles, IL from August 1-6, and included a wide array of management and technical seminars along with a 2 day trade show-was the need to improve service profitability. Discussions focused on how improved communications between servicers and manufacturers can increase profitability for manufacturers, servicers, and dealers. Also emphasized was the need for dealers to become more familiar with each manufacturer's warranty policies, and for a hard line in negotiating rates with manufacturers annually.

Management seminars covered negotiation techniques and liability traps as well as basic management skills. A variety of technical seminars provided professional instruction in the intricate workings of CD players, digital VCR's, super-VHS VCR's, and camcorders.

R-E

\section*{FIHJDR INSTRUMENTS quality merchandise.... providing the best valuesin leading edge technology.}

\section*{\(\stackrel{\square}{\square}\)}


A remarkable value \(4499^{95}\)
Wide bandwith and exceplional 1 mV VIV sensitivity make the Wodel 3500 a powerful diagnostic fool for englneers or technicuans at a remarkable price. Delayed triggering allows any portion of a wavetorm to be isolated and expanded for closer inspection.
Variable Holdotl allows stable viewing of complex wavetorms.


\section*{MODEL 2000 \$389.95}

20 MHz DUAL TRACE
OSCILLOSCOPE
Model 2000 makes liequency calculation and phase measurement quick and easy. The component fester aids in fast troubleshooting. Service lechnicians appreciale the TV Sync circuils for viewing TV.V and TV.H the video signal, Elanking, VITS, and V/H sync pulses.
- Exceptionally bright 5" CRT
- Buill-in component lester
- X-Y operation ' \(110 / 220\) volls

\section*{DMM-200}
\(\$ 49.95\)
3.5 DIGIT FULL FUNCTION DMM

Get highly accurate performance at a very attordable price. Rugged construction, 20 amp current capability and 22 ranges make it a perfect choice for serious field or bench work. Low battery indicator and tilt-stand. Probes and 2000 hour battery included.
- Basic DC accuracy: plus or minus \(0.25 \%\)
- DC voltage: \(200 \mathrm{mv}-1000 \mathrm{~V}, 5\) ranges
- AC voltage: \(200 \mathrm{mv}-750 \mathrm{~V}, 5\) ranges
- ACADC current: \(200 \mu \mathrm{~A}-20 \mathrm{~A}, 6\) ranges
- input impedance: 10 Mohm
- Fully overload protected
- Approx. \(7^{7} \times 3^{1 / 2} \times 2^{1 / 2 m}\). Wi. 11 ozs

Custom 80 pin LSI chup provides accuracy and reilability in such a compaci size. Autoranging, audible cominuity and data hold feature help you pinpoint the problem quickly. Case and batteries included.
- Basic DC accuracy: plus/minus \(1 \%\)
- DC voltage: \(2 \mathrm{v}-500 \mathrm{v}\), auloranging
- AC voltage: \(2 \mathrm{v}-500 \mathrm{v}\), autoranging
- Resistance: 2 k ohms-2M ohms, autoranging
- Fully overioad protected
- Approx \(612^{\prime \prime} \times 1^{\prime \prime} \times 1 / 4^{\prime \prime}\). Under 3 ozs
* 2 YEAR REPLACEMIENT WARRANTY
* 30 DAY MONEY BACK GUARANTEE
* TOLL FREE TECHNICAL SUPPORT
* NEXT DAY AIR SHIP AVAILABLE

\title{
Video News
}


\title{
DAVID IACHENBRUCE, CONTRIBUTING EDITOR
}
- Battle of the Midgets. The fight between the 8 mm -video and VHS-C formats is heating up. Last month I reported that Sony has further miniaturized the 8 mm recorder's mechanical transport. While there has been no reported move to further miniaturize VHS-C, Matsushita is working to increase the recording and playing time of that format. One report indicates that there may soon be 30 - and 40 -minute VHS-C tapes, in addition to the current 20 -minute types-presumably through the use of a thinner film base. Since most recent VHS-C camcorders also offer a one-third speed switch, the extended play mode will provide 90 - and 120 -minutes recording time. The 8 mm format provides up to two hours recording time on a cassette in the standard play mode and four hours at half speed.

Japanese manufacturers are beginning to introduce Super VHS-C format camcorders with high-fidelity stereo sound. While the 8 mm sound is hi-fi, the camcorder models don't provide stereo. Sony is expected to offer a model with digital stereo sound, and some other 8 mm adherents are planning analog stereo. To compete with Super VHS, you can expect to see the first models in the new 8 mm Hi -Band subformat early in 1989. Hi-Band provides a picture with resolution comparable to S-VHS (Radio-Electronics, June 1988).
Sony has already introduced its Video Walkman ("New Products," September 1988), combining a 3 -inch LCD color TV set and an 8 mm VCR in a \(21 / 2\) -pound package-ideal for watching movies while riding the bus or waiting for the dentist. Not to be outdone, Matsushita has introduced a similar, slightly heavier package using the S-VHS-C format. It's on sale in Japan; there's no word yet on American marketing plans from Panasonic, a subsidiary of Matsushita. Sony's Video Walkman is due on the American market by the time you read this, for approximately \(\$ 1,300\).
- Stereo TV All Over. There are now more than 500 TV stations in North America broadcasting in stereo Multichannel-TV Sound (MTS), according to a survey by Television Digest, that turned up 514 MTS-equipped stations. Those
stations are in all of the top market areas, and bring a stereo signal within the tuning range of more than \(99 \%\) of American TV homes. While the total is still only about \(35 \%\) of the 1,392 TV stations on the air in the U.S., it contains many of the major outlets. In addition, some 7,362 cableTV channels carry MTS, according to a survey by the Recoton Corp. Those are all special satellitedelivered channels, and are in addition to those broadcast channels with MTS that the cable systems may be relaying. The 7,362 cable-TV channels constitute only \(7.5 \%\) of the 97,600 satellite-program channels on the nation's 8,800 cable systems, but most of the stereo-sound channels are believed to be on the larger cable systems. In addition to MTS stereo, many cable systems also use FM signals to relay stereo sound for satellite-TV programs to subscribers. Some systems use both stereo-sound systems on the same channels to cover subscribers who have MTS-stereo TV sets as well as those who don't.
- Airvision. You take your seat in the airliner and instead of listening to music or reading a magazine, you flip the switch in the armrest to the TV news, a choice of several movies, language instruction, or a live picture of the plare's takeoff-and watch the small bright color screen embedded in the back of the seat in front of you (or in the between-seats console if you're traveling first class). You might even choose to play an exciting video game or two to while away your travel time.

How far in the future is all of that? Would you believe this year? Philips of the Netherlands and Warner Brothers pictures say the first aircraft equipped with Airvision will have taken off by the time you read this. The viewing screens initially will be three-inch active-matrix back-lighted LCD's; at least five VHS videocassette players in the aircraft will be used as signal sources, with other sources possible. They're proposing the system for buses, taxicabs, trains, and ships, too. And a competing system, ACES (Airborne Cabin services and Entertainment System), with fourinch flat color CRT's has been developed by Sony and Sundstrand Data Control.

\section*{ELECTRONICS ENGINEERS \& DESIGNERS BOOK CLUB®}

\section*{Take any 3 books for only \$1.95 \(\binom{\) Values to }{ s198.40 }}

SHARPEN YOUR SKILLS-With Quality, Affordable Professional Books

\(1938 \quad \$ 60.00\)
Counts as 2

\(9785 \quad \$ 79.95\)

\(2785 \quad \$ 39.95\) Counts as 2

\(2937 \$ 29.95\)

\(2888 \quad \$ 28.95\)

\begin{tabular}{ll} 
& 9781 \\
\hline
\end{tabular}


9794 \$35.95

\(2890 \quad \$ 32.95\)

\(9820 \quad \$ 46.95\)

\(9773 \quad \$ 44.95\)

\(9825 \quad \$ 49.95\)

\(9799 \quad \$ 49.95\)

\(\mathbf{9 0 8 3} \mathbf{\$ 2 9 . 9 5}\)


2958 \$34.95

\(2920 \quad \$ 28.95\)

\(9808 \quad \$ 34.95\)

\(2672 \quad \$ 49.50\)

\(9788 \quad \$ 49.50\)

\(9832 \quad \$ 36.95\)

\(3019 \quad \$ 39.95\) Counts as 2

\(2720 \quad \$ 32.50\)

\(1962 \quad \$ 22.95\)


2697 \$19.95

\section*{How the Club Works}
 keep on saving with discoments from 20 to \(50{ }^{\mathrm{r}}\); as member.
 the IFl:*.D) Book ( Inh News descrihing the Main selection and Alternates, as well as homm offers and special sales, with handreds of titles to chomese from.
AUTOMATIC: ORDHER: If you want the Main selection, do mothing and it will be sent to :on automatically. If ? on prefer amother selection. or movelection at all, simply indicate your choice on the repls form provided. As a member, you agree to purchase at least 3 books within the nevt 2 years and may resign at an! time thereafter.
BONLIS BOOKS: Starting inmediatels :ou will be eligible for onr Boneas Book Plan with savings of up to \(80{ }^{r}\); off publishers prices.
IRONCI.AD NO.RISK (;UARAN'IEFE: If not satisfied with your beoks, return them within 10 days without obligation!
HOCFPTIONAL, Q(AIITY: All books are quality puhlishers editions especially selected by our Viditorial Board.

EE\&DBC Blue Rıdge Summit, PA 17294-0860

\section*{SEND NO MONEY NOW!}

INTRODUCTORY 10-DAY FRIEE EXAMINATION


\section*{ELECTRONICS ENGINEERS \& DESIGNERS BOOK CLUB \({ }^{\circ}\)} Blue Kidge Summit, Pa 17294-0860)

YISS! Ilease accept my membership in the Electronics Engineers \& Designers Beok Chub \({ }^{\infty}\) and send me the volumes I have listed below. billing me only \(\$ 1.95\) plus shipping and handling charges. 1 understand that the beoks are sent on a 10 -Day Free Examination basis. If dissatisfied in any way, 1 may return the books within 10 days and incur mof further obligation. Otherwise. I agree to pay the enclosed invoice promptly and to receive regular club bulletins as described in "How the Club Works." To complete my membership obligation I need only purchase 3 additional books at regular menters prices during the nex 2 years, and may resign at any time thereafter.


\section*{name}

Valid for new members only. Foreign applicants will receive special ordering instructions. Canada must remit in U.S. Funds. This order is subject to acceptance by the Electronics Engineers \&


\title{
Learn to troubleshoot and service today's computer systems as you build a fully XT-compatible micro, complete with 512 K RAM and
} powerful 20 meg hard drive

\section*{Train the NRI Way- and Earn Good Money Servicing Any Brand of Computer}

Jobs for computer service technicians will almost double in the next 10 years according to Department of Labor statistics, making computer service one of the top 10 growth fields in the nation.

Now you can cash in on this exciting opportunityeither as a full-time industry technician or in a computer service business of your own-once you've mastered electronics and computers the NRI way.

NRI's practical combination of "reasonwhy" theory and hands-on building skills starts you with the fundamentals of electronics, then guides you through more sophisticated circuitry all the way up to the latest advances in computer technology. You even learn to program in BASIC and machine language, the essential language for troubleshooting and repair.

\footnotetext{
Train With a Powerful XT-CompatibleNow With 20 Meg Hard Drive!
} hard disk drive－Bundled software including MS－DOS， GW－BASIC，word processing，

the data storage capacity of your computer while giving you lightning－ quick data access．Plus you work with exclusive word processing，database， and spreadsheet software，yours to use for your own professional and personal applications．

As you build your computer， performing key demonstrations and experiments at each stage of assembly，you get the confidence－ building，real－world experience you need to work with，troubleshoot， and service today＇s most widely used computer systems．

\section*{No Experience Needed， NRI Builds It In}

This is the kind of practical，hands－on experience that makes you uniquely prepared to take advantage of today＇s opportunities in computer
service．You learn at your own convenience in your own home．

No classroom pressures，no night school，no need to quit your present job until you＇re ready to make your move．And all
throughout your training，you＇ve got the full support of your personal NRI instruc－ tor and the NRI technical staff，always ready to answer your questions and help you whenever you need it．

\section*{FREE 100－Page Catalog Tells More}

Send today for NRI＇s big，100－page， full－color catalog that describes every aspect of NRI＇s innovative computer training，as well as hands－on training in robotics， video／audio servicing，electronic music technology，security electronics，data communications， and other growing high－tech career fields．If the coupon is missing， write to：NRI School of Electronics， McGraw－Hill Continuing Education Center， 3939 Wisconsin Avenue，Washington，DC 20016.


School of Electronics

McGraw－Hill Continuing Education Center
3939 Wisconsin Avenue． Washington D．C． 20016
lam is a rewistered trisdemark of
Machines Corperation

SEND TODAY FOR FRDE CATALOG！

\section*{CTE}

McGraw－Hill Continuing Education Center 3939 Wisconsin Avenue．NW．Washington，DC 2001
－CHECK ONE FREECATAIAM；ONLY
Computer Flectronics
TV／Video／Audio Servicing
\(\square\) Robotics
Electronic Music Technology
\(\square\) Security Electronics
\(\square\) Digital Eletroniss Servicing
Name
For Career courses approved under Gl Bill
1 check for details．
Electronic Design Technology Indusirial Electronics Communications Electronics Basic Electronics Bookkeeping and Accounting Building Construction 4 Aulomotive Servicing

\section*{影的}

Air Conditioning，Heating \＆Refrigeration Small Engine Repair
Small Eng
Elecrician
Locksmilhing \＆Electronic Security Travel Carecrs
Telephone Servicing
Paralegal
```

Name (Please print)
Stree!
City/State/Zip
We'll glve sou tomorran.
Aceredited by the National Home Study Council
3.128

Ask R-E

WRITE TO:

ASK R-E
Radio-Electronics 500-B Bi-County Blvd.
Farmingdale, NY 11735

FIG. 1

Automatic editing

 I've heard that commercial television sends "station break" signals and other information during the vertical interval. Is there some way that I could take advantage of that to automatically edit commercials when I'm recording off the air?-H. W., Santa Maria, CAIt is with the greatest sorrow and deepest sympathy that I tell you there is absolutely nothing you can be sure of finding in the ver-
tical interval other than equalizing pulses and the vertical-sync pulse. And however bad that sounds, that's only part of it. The complete story is even worse.
Here's the deal: There are actually two vertical intervals, one for each of the two fields of video that make up a full video frame. There are broadcast conventions defining what's on a particular line in each of the fields but they're only conventions-not law.

Figure 1 is the ideal vertical blanking interval as defined by the NTSC. Both fields are very similar in appearance and content but the timing difference between them lets television equipment know which field they're associated with. That information is important because it's used in maintaining sync for interlacing the two fields of standard video.
The vertical interval is defined to be $20-1 / 2$ horizontal lines of video.

The first three lines contain six pre－equalizing pulses and their job is to maintain interlace．The next three lines are the actual ver－ tical－sync signal．There are six ver－ tical－sync pulses that most televi－ sion equipment combines into one long negative pulse．The last three lines have six post－equaliza－ tion pulses，identical to the pre－ equalization pulses on the first three lines．

Some of the remaining $11-1 / 2$ lines in the vertical interval are used by broadcasters for other purposes． For example，lines 17 and 18 are where you＇ll find the VITS（Vertical Interval Test Signal），line 19 is the location for the VIRS，（Vertical Interval Reference Signal），and line 21 is for Closed Caption data．But， sometimes those signals don＇t ex－ ist，so don＇t count on finding them there．The important thing to re－ member is that none of those sig－ nals will help you eliminate commercials．

But wait．There＇s even less．
Once upon a time you could build hardware that would auto－ matically edit commercials from black and white broadcasts．The basic idea was that commercials were in color so you could detect the colorburst and use it to put your VCR in pause．After all，the broadcaster would turn off the col－ orburst during black and white video to keep things like false color and fringing from messing up the picture－but that is not true any more．

WHAT＇S A LOCAL－DISTANCE SWITCH？

While watching a＂Shoppers Channel＂on TV，a radio was men－ tioned that had a local／distance switch to help pull in distant sta－ tions．How does that work？Is it an added amplifier or a stronger anten－ na？－L．R．G．，Franklinville，NC

When designing a high－perfor－ mance receiver，engineers often have to compromise between high sensitivity，high selectivity，or sig－ nal－handling capability．A set de－ signed for high sensitivity may be easily overloaded by strong sig－ nals．Radio－frequency amplifiers designed to handle a wide range of signals can greatly increase the cost of the set．So，some designers
include a way to provide high sen－ sitivity when needed，and a way to reduce the sensitivity to prevent circuit overload in the presence of stronger－than－average signals．

Radios that have local／distance switches are especially sensitive， and are easily overloaded by strong signals．When the switch is in the local position，it desensi－ tizes the set by increasing the AGC （Automatic Gain Control）voltage to the RF amplifier or any stage that is ahead of the stage likely to
be overloaded．To receive distant stations，the listener puts the switch in the distance position． That reduces the AGC voltage so that the RF and IF amplifiers will run with maximum gain．Also，in electronically tuned radios，the lo－ cal／distance switch determines what stations scanning will stop at． For instance，if you were to press the scan button while the radio is set in the local mode，the radio would stop at only the strongest of the received stations．

R－E

－Il＿ORDER FROM THESE DISTRIBUTORS
Or Phone Toll Free for the Distributor Nearest You

| n | contact east | Metermaster |
| :---: | :---: | :---: |
| | | $1-800-962-8128$ （213）685－4340 CA |

Allied electronics．．．
－susconar ar mil hese fiftratirs com
$1-800-433-5700,(817) 336-5401 \mathrm{TX}$
（503）283－0132 OR，（206）223．1133 WA

LeTTERS


```
,32;4.75-5
```

LETTERS
RADIO-ELECTRONICS
500-B A/-COUNTY BOLLEVARD
FARMINGQ4LE,NY $/ 1735$

FROM RUSSIA...

I read G.O.P.'s letter regarding vacuum tubes that appear to be manufactured in the USSR ("Ask R-E," Radio-Electronics, October 1988), and your reply. It is quite possible that those tubes are, in fact, made in the USSR; U.S. Customs regulations require the country of origin to be marked on any imported item.

I, too, have been an electronics technician for over ten years; for most of that time, I was with a government agency. I regularly see tubes that are definitely manufactured in the USSR and Hungary-1 get them through the Federal supply system! I haven't seen any quality problems with those tubes; the ones that I have tested are right in line with the specifications in my old RCA Receiving Tube Manual. Those of us who still work with vacuum-tube equipment are going to see more imported ones in the future, for one simple reason: There are many types of tubes that are no longer manufactured in the U.S. Once existing stocks are depleted, they

For those of you who were confused on how to calibrate the Breath Alert blood-alcohol monitor (Radio-Electronics, October 1988), here's the missing Fig. 9 so you can obtain the correct calibration voltages. We're sorry about the inconveniences.
-Editor
will all be imported from some-where-including the Soviet Union.

In my opinion, G.O.P. should have nothing to worry about from "the authorities" by using those tubes. If they are good enough for Uncle Sam, they should be OK for everyone else. Electrons, fortunately, are not political-they don't care who pushes them. Think of it as doing your bit to bring capitalism to the Soviet empire, and to give perestroika and glasnost a little help.
GRAEME C. PAYNE Summerville, SC
...WITH...
I hate to burst your bubble, but you didn't do your homework before you answered the inquiry on "Red Star" 6L6's. Without a doubt, the tubes in question were made in Russia.

Because the U.S. and most, if not all, other foreign sources decided to abandon that section of the electronics market, the "Evil Empire" has moved in to fill the void.

Get used to it-in the future, when you need a 6L6, KT66, 6CA7, or whatever to keep your treasured Ultra-Linear Williamson alive, that's where it's likely to come from. And hold your breath when you ask the price!
AL YEAGER
Portsmouth, NH
...TUBES
I'm afraid you really missed the mark with your answer to G.O.P. regarding his question about Russian tubes: The part in question was almost certainly a Commie!

The giveaway on that 6L6 is the overly large plastic base, coupled
with a large glass projection (about 1-inch tall) at the bottom of the envelope. That device is notorious in the musical-instrument tech industry-for poor quality. Another problem one can encounter when installing those Russian 6L6's in guitar amps is that most musical-instrument amps operate the tubes in an upsidedown position, using a springsteel clamp to keep the tube in the socket. The Russian tube's base is too large to fit through the tube clamp, so the tech has to squash the clamp down against the chassis, or remove it. Either way, if the tube doesn't fry itself first, it will certainly commit suicide by jumping out of the hole when the amp is transported to jobs. Believe me; I learned that the hard way!

High-power audio-output tubes are getting hard to come by these days, and the importers are turning in droves to the few remaining tube producers. Most of the manufacturers currently producing the 6 L 6 are in the communist bloc. I've seen that particular tube marked with such brands as RCA, GE, United, Radio Shack, Mullard, and Penta Labs, and it stamped with such countries of origin as USSR, Poland, East Germany, West Germany, Hungary, Yugoslavia, England, France, and even U.S.A.! My contacts in the tube industry tell me that all of them, regardless of what's marked on the box or the glass, come out of a shoddy little factory in Yugoslavia.

There are some good tubes to be had from Russia. There is an outfit that imports certain types, screens them extensively, and markets them under the brand name "Virgin Commies" (no kidding). You can find their ads in

POCKET SIZE

SIZE：4＂H x 3．5＂Wx1＂D MADE IN USA
\＃TA－100S

8 LED DIGITS • 2 GATE TIMES ALUMINUM CABINET INTERNAL NI－CAD BATTERIES INCLUDED AC ADAPTER／CHARGER INCLUDED

EXCELLENT SENSITIVITY \＆ACCURACY

AC－DC • PORTABLE OPERATION

Small enough to fit into a shirt pocket，our new 1.3 GHz and $2.4 \mathrm{GHz}, 8$ digit frequency counters are not toysI They can actually out perform units many times their size and pricel Included are rechargeable Ni－Cad batteries installed inside the unit for hours of portable，cordless operation．The batteries are easily recharged using the AC adapter／charger supplied with the unit．

The excellent sensitivity of the $1300 \mathrm{H} / \mathrm{A}$ makes it ideal for use with the telescoping RF pick－up antenna； accurately and easily measure transmit frequencies from handheld，fixed，or mobile radios such as：Police， firefighters，Ham，taxi，car telephone，aircraft，marine，etc．May be used for counter surveillance，locating hidden ＂bug＂transmitters．Use with grid dip oscillator when designing and tuning antennas．May be used with a probe for measuring clock frequencies in computers，various digital circuitry or oscillators．Can be built into transmitters， signal generators and other devices to accurately monitor frequency．

The size，price and performance of these new instruments make them indispensible for technicians，engineers， schools，Hams，CBers，electronic hobbyists，short wave listeners，law enforcement personnel and many others．

STOCK NO：

| \＃1300H／A | Model $1300 \mathrm{H} / \mathrm{A}$ I－ 1300 MHz counter with preamp，sensitivity，$<1 \mathrm{mV}$ ． 27MHz to 450 MHz includes Ni －Cad batterles and AC adapter ．．．．．．．．$\$ 169.95$ |
| :---: | :---: |
| \＃2400H | Model 2400 H 10－2400 MHz microwave counter includes Ni －Cad batteries and AC adapter |
| \＃CCA | Model CCA counter／counter，for debugging，ultra sensitive，＜ 50 micro volts at 150 MHz 1 $1-600 \mathrm{MHz}$ with adjustable threshold，RF indicator LED．Includes Ni－Cad batteries and AC adapter |
| ACCESSORIES： | |
| \＃TA－100S | Telescoping RF pick－up antenna with BNC connector ．．．．．．．．．．．．．．． $\mathbf{5 1 2 . 0 0}$ |
| \＃P－100 | Probe，direct connection $\mathbf{5 0}$ ohm，BNC connector ．．．．．．．．．．．．．．．．． $\mathbf{5 2 0 . 0 0}$ |
| \＃CC－12 | Carrying case，gray vinyl with zipper opening．Will hold a counter and \＃TA－1000S antenna． |

AVAILABLE NOWI

OPTOELECTRONIGS INC．

high-end audio-specialty magazines. Word has it that they reject about 90% of everything they get, though; that might explain their outrageous prices.
W.A. "FAT WILLIE" WHITTAKER, JR.
Denver, CO

PATENTLY MISLEADING
 I was dismayed to see Don Lancaster's extremely negative statements about patents ("Hardware Hacker", Radio-Electronics Oc-

tober 1988), especially since most of them are untrue. Perhaps he is making a gross overgeneralization because of one unprofitable experience he's had with patents.
His admonition not to even think about patenting is absurd. As a patent attorney, I have several independent-inventor clients who have made handsome profitsover $\$ 1,000,000$ in one case-from patents. Consider Polaroid's recent award of over $\$ 10,000,000$ from Kodak, for infringement of

CABLE TV SPECIALS

CONVERTERS

JRX-3 DIC- 36 Channel Corded Remote. ${ }^{\mathbf{5} 129.95}$

 RCA 58-3 58 channel set top withJerrold Decode sg9. 95
SB-3 - 'The Real Thing' s109.95
SB-3-Taiwan Copy 589.95
DRZ-3D1C-68 Channel Wireless with Decoder s199.95
ZENITH: Z-TAC Cable Add-On \$169.95
VIEW STAR: MXC 2001-65 Channel Wireless- with Parental Lockout 589.95
MXC 2001 A-B-Same as above with A-B Switch s109.95
MXC 2501-65 Channel Wireless with Volume $\$ 119.95$
Universal V7472-72 Channel Wireless Remote MTS Stereo Converter-Full Feature Decoder Compatible s129.95
MISCELLANEOUS
OAK: ECONO-3V Mini-Code 589.95
ECONO-3V Mini-Code Vari-Sync s89.95
ECONO-3V Mini-Code Vari-Sync PlusAuto On-Off\$119.95
OAK: Sine-wave Anti-Jammer Kit 539.95
OAK M35B 36 Channel Converter-
Decoder \$109. ${ }^{95}$
JERROLD: $400 \& 450$ Handheld Transmitters s29.95
HAMLIN: MLD-1200 Channels 2 or 3 s99.95
NEW ITEMS: Scientific Atlanta SA-3 \$129.95
GENERALINSTRUMENTS: VCU Amplified Video SwitchSignal Amplifier\$59. 95
all units guaranteed. quanttry prices availlable.

Polaroid's instant-camera patents. And don't forget the major drug companies: As soon as a patent on a drug expires, the clones come in and sell what was formerly a $75-$ cent pill for 20 cents. Does Mr. Lancaster think that any of those patent holders would agree with him?

His statement that three helpline callers are trying to get patents on old ideas may be true. But is it fair to blame the patent system for the patent applicants' failure to make adequate searches before filing?

The Patent and Trademark Office (PTO) does not offer poorer odds than a state lottery-the PTO doesn't offer any odds at all. It simply grants a 17 -year monopoly on any invention presented to it (no matter how harebrained) that it finds to be substantially different from the prior art. It has no responsibility for, authority over, or interest in the commercial success of the inventions that it patents. That is totally the responsibility of the inventor. A patent should never be construed as any indication of commercial value-only that the invention is "unobvious" over the "prior art."

Mr. Lancaster's statement that "Not one single patent in one hundred will ever show any positive cash flow" is a gross exaggeration, but has some truth. Probably only one in twenty patents is profitable or covers a commercial product. The low success rate of patented inventions is, again, not due to the patent system, but to the failure of most inventors to adequately investigate their brainchild's commercial prospects before filing, and inadequate promotion thereafter. I have devoted a whole chapter in my book (Patent It Yourself, Nolo Press) to the need for stringent commercial evaluation before filing and another chapter to urge vigorous exploitation after filing. However, I admit that many inventors still don't get that important message.

Mr. Lancaster's statement that not one patent in a thousand will stand up if challenged is another wild exaggeration. At present over 60% of all litigated patents are upheld. That doesn't count those that never make it to court be-
cause the infringer saw the hand－ writing on the wall and agreed to pay the patent owner royalties．
His claim that the side with the most resources wins in patent liti－ gation has been changed by the reexamination procedure，where the validity of most challenged patents can be decided－econom－ ically－by the PTO instead of in an expensive court proceeding．In lit－ igation，the individual inventor has a tremendous advantage：In cases where an individual inventor sues a big company，juries love to find in favor of you－know－who．
It is true that many valuable and successful products，like the Ap－ ple and IBM computers，weren＇t covered by any major patents．But thousands of great products－Dol－ by noise reduction，floppy disks， and videocassette tapes，to name a few electronic ones－are patented and earn handsome royalties．
It is not true that many large companies won＇t look at outside ideas for fear of getting sued．Al－ most every company in the U．S． will be glad to look at an outsider＇s ideas．They will protect them－ selves by first having the inventor sign their＂waiver＂form，that re－ quires the inventor to rely only on his or her patent rights．But they will look．Big companies have one major drawback：the Not－Inven－ ted－Here syndrome．That＇s why I recommend in my book that in－ ventors try only smaller compa－ nies，which are more receptive to outside ideas．
Finally，it might surprise Mr．Lan－ caster to learn that each year the PTO issues about 75,000 patents， and that tens of billions of dollars change hands in the U．S．for the licensing and sale of patent rights－hardly something a hacker can ignore！
DAVID PRESSMAN，
San Francisco，CA

biOfeedback feedback

As a subscriber to Radio－Elec－ tronics for about five years，I＇ve en－ joyed each and every issue，and I＇ve even built a few of the projects detailed．The＂Biofeedback Monitor＂（ComputerDigest，Oc－ tober 1988）sounded simple and interesting－like something l＇d want to tackle．
Most of the parts needed could
easily be scrounged from my junk－ boxes；the rest were readily avail－ able locally．It went together very easily in one evening－after which，unfortunately，I spent a good deal of time troubleshooting its improper operation．

I set out to use a CMOS NE555C to minimize the draw on my bat－ teries，as I intended to use Ni－Cad rechargeables and wanted them to last as long as possible between charges．Building it with that in mind，I fell victim to a minor
point－missed in the article－that can probably be safely ignored if using a non－CMOS 555．But it really caused me a headache．

The functional block diagram for a 555 shows that pin 4 is called RESET，an active low－input signal． Typically，in non－CMOS applica－ tions that input probably floats high．With the indeterminate nature of CMOS inputs，I was get－ ting erratic operation；RESET was preventing the circuit from func－ tioning as intended．That was re－

Get your hands on the standard：POMONA．

Since 1951 POMONA has grown to become the standard of the industry．And for good reason．Our test products assure honest test results because they are the best you can buy．Specify POMONA and get unsurpassed quality，the broadest product line，the greatest selection，the industry standard．

For your FREE 1988 General Catalog，circle reader service number printed below

Digital scopes with a

Give up real-time capability for storage? Not with Tek!

That's because analog capability is integral to low-cost Tek digital storage oscilloscopes. So you need only one instrument to make all your measurements efficiently. With no trade-offs.

It's another Tek advantage: analog and digital in one familiar, affordable package.

Single-shot events. Elusive glitches.
Low-speed phenomena.

Any waveform can be viewed for as long as you like. Or stored in 4 K of memory for later analysis or comparison to other waveforms. And if there's a question about a digital measurement, just push a button for real-time display analysis.

real-time advantage.

The affordable portables.
These are the world's best-selling digital storage oscilloscopes. And with the new 20 MHz Tek 2201 joining the family, there's now an even better selection-in bandwidth, performance and price.

Select for advanced features such as 100 ns glitch capture at any sweep speed, CRT readout, measurement cursors, multiple acquisition modes and hardcopy output, plus optional GPIB or RS-232-C interfaces and software.

These scopes are perfect for first-time digital users. And seasoned operators will appreciate even more their versatility, convenience and value. All backed

by Tek quality and a 3-year warranty. Discover the potential. Let Tek show you what you're missing . . without making you give up analog to see it. That's the real-time advantage of Tek digital storage

For easy ordering or more information call Tek Direct:

1-800-426-2200

ELECTRONIC COMPONENTS CATALOG yours FREE by dialing

 1-800-992-9943 IN TEXAS, call; 1-800-346-6873 Call Today for your FREE subscription to the latest Mouser Electronics Catalog. Contains 192 pages featuring over 17,000 in-stock, quality electronic components. .PLUS..Mouser's proven service and prompt delivery. Outside U.S.A., Send \$2.

DIGITAL VIDEO STABILIZER ELIMINATES ALL VIDEO COPY PROTECTIONS

While watching rental movies, you will notice an noying periodic color darkening, color shift, un wanted lines, flashing or lagged edges. This is caused by the copy protection jamming signals em bedded in the video tape such as Macrovision copy protection. Digital Video Stabilizer: RXII completely eliminates all copy protections and jamming signals and brings you crystal clear plctures.

FEATURES:

- Easy to use and a snap to Install
- State-of-1he-art in-
tegrated circuit technol-
- 100\% automatic - no need for any
troublesome adjust-
- Compatible to all types
of VCRs and TVs
- The best and most excit.

Ing Video Stabilizer in
the market

- Light weight (8 ounces) and Compact ($\left.1 \times 3.5 \times 5^{\text {² }}\right)$ - Beautiful delure gift box - Uses a slandard 9 Volt
battery which will last 1 2 years.

WARNING : SCO Electronics and RXII dealers do not encourage people to use the Digital Video Stabilizer to duplicate rental movies or copyrighted video tapes. RXII is intended to stabilize and restore crystal clear picture quality for private home use only.
(Dealers Welcome)

ToOrder: $\$ 49$ ea $+\$ 3$ for FAST UPS SHIPPING 1-800-445-9285 or 516-694-1240 Visa, M/C, COD M-F: 9-6 (battery not included) SCO ELECTRONICS INC.
Dept. C11 62 Marine St. Farmingdale NY 11735 Unconditional 30 days Money Back Guarantee
CIRCLE 200 ON FREE INFORMATION CARD
medied by adding a pullup here to the supply.

After that small addition, all worked as advertised. My box is a resounding success at the office, where the challenge is to see who can relax the quickest.
MARK J. CULROSS
Fort Worth, TX

ANTIQUE CAR-RADIO REPAIR

"Antique Radios" (Radio-Electronics, July 1988) referred to electronic replacements available for vibrators, but gave the impression that they all required external mounting, gave inferior performance, and would detract from the value of the radio.

We have been manufacturing a direct, electronic plug-in replacement for 6 - and 12 -volt units for two years. They perform very well and do not require any mounting. They are also economically priced. We repair original vibrators, too. TERRENCE CHURCHMAN

Radio Resurrection

110 North El Nido Ave.
Monrovia, CA 91016

CIRCLE 117 ON FREE INFORMATION CARD

For SUCCESS in your Vocation or Profession LEARNING is Where It＇s At！

You＇ll need a＂Learning Environment＂in your home（or office） to work on your degree with＂the college that comes to you，＂ GRANTHAM COLLEGE OF ENGINEERING

Grantham makes your understanding of electronics and compu－ ters its most important teaching objective．You are never rushed or held back；you study at your own pace．Learn more by self－paced home study，with Grantham instructors standing by to help you．

Accredited
 A．S．and B．S．Degrees Awarded

Phone or write for our Home Study Degree Catalog： Phone 213－493－4421（no collect calls） or write

Grantham College of Engineering 10570 Humbolt Street Los Alamitos，California 90720

Crantham College of Engineering is accredited by the Accrediting Com－ mission of the National Home Study Council in Washington，D．C．

Now in Our 38th Year

EQUIPMENT REPORTS

Amdek's Laserdek 1000

550 megabytes in the space of a floppy!

CIRCLE 45 ON FREE INFORMATION CARD

if the idea of havingi 550 migabytles of optical storage at your fingertips intrigues you, but the thought of having to buy a high-priced external CD-ROM drive for that privilege turns you off, then you haven't heard about Amdek's halfheight CD-ROM for the IBM PC and its clones.

Called the Laserdek 1000, this $\$ 895$ CD-ROM drive fits into a single floppy-disk-drive bay. A halflength adapter board controls all CD-ROM functions and an assortment of software utilities put the drive through its paces-including a program that lets you use your CD-ROM drive as if it were an audio CD player.

An obvious advantage of an optical disk is the amount of data that it can store. Because the holes are microscopic in size, much more data can be placed on an optical disk than can be put on a floppy disk. In fact, it takes over 1500 floppy disks to equal the $550-\mathrm{MB}$ ca-

A compact compact

The Laserdek 1000 is the first CD drive to install inside a PC. Previous CD-ROM's, like Amdek's Laserdek 2000, have been fullheight external units that must
compete with the PC and other peripherals for desk space.

The Laserdek 1000 can be installed in any IBM PC, XT, AT, or compatible. Installation is equivalent to installing an internal hard disk. The half-length card is inserted into any empty 8-bit expansion slot and the drive is fitted into one of the drive bays; slide rails are available for AT installation. Power is obtained from the PC's power supply via a standard power connector. The drive contains four DIP switches that you don't have to adjust unless you are installing more than one CD-ROM in the system.

The software drivers automatically install themselves onto your hard disk using an installation utility. During the software-installation process, your CONFIG.SYS and AUTOEXEC.BAT files are modified to recognize the presence of the CD-ROM. When the system is rebooted, the Laserdek 1000 appears as a D: drive (or E: drive, if you have two hard disks). You can then access the CD-ROM as you would any other disk drive, which means that you can display a directory of the disk's contents.

[^1]been a generous offering of gener-al-purpose CD's-including the very popular Microsoft Bookshelf (see the January 1988 issue of "Computer Digest" for a review). There is always the venerable Grolier Electronic Encyclopedia, and Lotus has announced that it will publish a trillion and a half pages of financial data that interfaces with 1-2-3.

The sounds of music

When you're not running Microsoft Bookshelf or some other CD application, you can use your Laserdek 1000 to play Tchaikovsky or Hank Williams. To use the Laserdek 1000 as an audio CD player, simply plug a set of headphones into the front of the drive and run the audio software that comes with the drive. Headphone volume is adjusted by a control that is also located on the front of the drive.
The audio software requires 10 K and becomes RAM resident when installed, which means that you can go about your normal PC business while the music plays in the background. An Amdek utility allows you to select specific tunes from the disk, skip around tracks, or program the drive to play a sequence of songs.

If the rather thin sound of the earphones is objectionable, you can run the music through your stereo system by plugging into the jacks provided at the back of the drive. In its current configuration you will need a special connector (available from Amdek) to plug into the drive, but Amdek claims it will soon have standard RCA jacks on the Laserdek 1000 for the audio interface.

Conclusion

While the Laserdek 1000 isn't going to set the world afire at $\$ 895$, it continued on page 105

JANUARY 1989

WATCH ${ }^{\text {Purill }}$ I FEATURING:

ROCKET STROBE

Find that model rocket easily, even in tall weeds or at night!

PERSONAL POCKET PAGER

Our build-it-yourself pager lets you stay in touch at home, work, or play!

BUILD THE SPEEDI-WATT

It's a motor controller, a light dimmer, and more!

10-MHz FREQUENCY COUNTER

Build this valuable addition to any hobbyist's workbench!

ON SALE NOVEMBER 22, 1988

 ADDITIONALLY:GIZMO
Our monthly look at what's hot in consumer electronics!

CIRCUIT CIRCUS
COMPUTER BITS
ANTIQUE RADIO

E-Z MATH

An easy-to-understand primer on the numbers of electronics!
HAM RADIO
DX LISTENING

New Products

CIRCLE 10 ON FREE INFORMATION CARD

HOME-THEATER SOUND. Pre-recorded video tapes are hot items: American households devote an average of 7.1 hours to watching them every week-spending almost twice as much money on tapes than on going out to the movies. And an increasing percentage of those tapes are encoded for surround sound, as are some current made-for-TV movies.

Shure Brother's HTS Theater Reference System, aimed at the top end of that viewing market, is the first complete audio system for home theater.

The system centers around an exceptionally accurate surroundsound decoder, the HTS5300 Acra Vector Decoder, with wireless remote.
Three HTS50SPA Signal Processing Amplifiers-the direct links between decoder and speakersbalance the entire system. With switchable outputs, the appropriate amount of compensation can
be added to each speaker, greatly reducing distortion.

The system's array of six loudspeakers was designed to provide the best possible sound from the smallest possible speakers. It includes one model HTS50CF cen-ter-front speaker, four model HTS50LRS left-right-surround speakers, and the model HTS50SW subwoofer speaker.

The multiple sound sources permit flexible seating arrangements anywhere within the perimeter of the speakers; a large room isn't required for good performance.

The HTS Theater Reference Sys-tem-one decoder, three amplifiers, one center-front speaker system, four left-right-surround speaker systems, and one sub-woofer-speaker system-has a suggested retail price of \$9600.00.-Shure Brothers, Inc., Home Theater Sound Division, 222 Hartrey Avenue, Evanston, IL 60202-3696.

SCANNING CABLE TESTER. This microprocessor-based tester automatically tests from one point to all other points of a data-interface cable. It can program itself from a good sample, making it easy to test RS-232 cable prior to installation.

The unit features two rows of 26 LED's and twin 2-digit displays; the scanning sequence for shorts, opens, continuity, and miswiring is quickly identified. The user can choose the SCAN mode to test each cable lead automatically, or the STEP mode for one-step-at-atime testing.

A loop-back receiver module is included for remote testing of installed cables. The tester "learns" from a good reference cable by storing the complete wiring configuration in memory. Then it sequences a "comparison test" between the cable being tested and the stored memory. A PASS or FAIL determination appears in less than one second, and then the final wiring information appears as LED indications for the user's reference.

The unit comes equipped to test any RS-232 cable using male or female DB-25 connectors; optional adaptor cables for testing DB-9 cables and DB-25 varieties are available. The tester operates from a 115 -volt AC source. With the optional purchase of six rechargeable pen cells and battery holder, portable use is possible.

CIRCLE 11 ON FREE INFORMATION CARD

The cable tester，with padded－ vinyl carrying case，is priced at \＄359．00．－L－COM Data Products， 1755 Osgood Street，North An－ dover，MA 01845.

AM／FM STEREO TUNER．Audio Dy－ namics＇T－2000E programmable，re－ mote－controllable AM／FM tuner combines Schotz noise reduction， efficient interference rejection， and wide separation with attrac－ tive，low－profile styling．It allows up to 10 AM and 10 FM stations to be programmed for instant access．

Audiophile－quality features in－ clude a $1.5-\mathrm{dB}$ capture ratio over the entire signal－strength range of 25 to 65 dB ，providing effective in－ terference control even for weak stations．Separation is well over 30 dB across the entire radio band， and Schotz noise reduction af－ fords quieter stereo reception．

The tuner＇s high performance and clean Euro－style design match Audio Dynamics＇CD－2000e CD

CIRCLE 12 ON FREE INFORMATION CARD
player and CA－2000E integrated amplifier．Armchair operation of the tuner is possible with the wire－ less remote control that is sup－ plied with that amplifier．

The $T-2000 E$ has a suggested list price of $\$ 349.00$ ．－Audio Dynamics Corporation， 851 Traeger Avenue， San Bruno．CA 94066.

SOLDER DISPENSER．A product that simplifies a frequently per－ formed task is always welcome． The SOLDERSTAT wrist－strap dis－ penser falls into that category，by slashing soldering time by as much as 40% ．

The spool dispenser is attached to an elastic or Velcro static－con－ trol strap，so that up to $1 / 4$－pound of solder can be fed out directly from the wrist．The unit unsnaps for easy reloading．

CIRCLE 13 ON FREE INFORMATION CARD
The SOLDERSTAT，with an elas－
tic strap for one－time adjustment， costs $\$ 8.00$ ．With a Velcro strap，it costs $\$ 9.50$ ．Options include an adjustable static－control elastic strap for $\$ 7.00$ ，and a six－foot coiled grounding cord for $\$ 9.50$ ． （Please add $\$ 2.00$ for postage and handling to each order．）－SGW Co．， 6414 Hallee Road，Joshua Tree， CA 92252；phone 1－800－537－1535．

SCANNER－RECORDING．Electron Processing＇s TAPE－SAVER TS－1 pro－ vides a way for scanner owners to

Model 2125 Oscilloscope
Same great fealures as 2120 ．
except with delayed
Sweep
Reg．$\$ 620$ saru ammenany paice
 Sensilivity
Reg $\$ 845$ 739.40

Model 2180 oscilloseope DC－ 60MH2．dual trace．delay sweep． 6° CRT，imy sensitity

 6 ＂CRT．Imv．sensitivity Reg． 5995${ }^{2} 839.40$
Madal 2520 Digital Sterage 20Mhz．Dual Trace， 2 mv Sens Reg $\$ 1990$ \＄1795．40

We are celebrating our 40th Anniversary by offering you huge savings on B\＆K Test Equipment．

Modal 1801 DC Pownt Supply isolated 0－50V．0－2A in ranges． ully automatic shutdown．Ad current limit ＇389．40
heg． 5463
40 tru a movereteany muce
Model 650 Triple Output Power
Supply two 0－25 VDC＠．5A and
SVDC © 5A，fully automatic
$\begin{array}{ll}\text { shutdown } \\ \text { Rag } \$ 489 & \$ 49.40\end{array}$
datu ammenemany mace
Model 1853 ac Powar Supply varable isolated 0－150 VAC © 2A．built－in isolation transformer Reg $\$ 200$

ath ammentiany mace

NEW！Model 388－HD

Hand－held 31／2 Digit LCD TEST BENCH
41 voltage ranges，frequency counter，capacitance meter． logic probe．transistor and diode tester．All packed into a drop－ resistant case．SPECIAL PRICE！
Reg．$\$ 139$
${ }^{8} 119.40$

JOSEPH ELECTRONICS，INC．Dept．R
8830 N．Milwoukee Ave．Niles，IL 60648
\square Rush merchandise per arrached order \square Rush merchandise per aftached order
I understand rated accounts are shipped open I understand rated accounts are shipped open include $\$ 5.00$ per tiem for shipping and handling． \square Visa a Master Card aDiscover \square Check \square Money Order a Rush Catalog Card No Exp．Date

CIRCLE 190 ON FREE INFORMATION CARD

"MADE IN U.S.A."
 IRN camas SINCE 1965

We've been supplying quality crystals since 1965...long before the flood of cheap imports.

We're still supplying quality crystals with:

- QUICK TURNAROUND
- LOW PRICE

JAN CRYSTALS
P.O. BOX 06017 FORT MYERS, FL 33906 (813) 936 -2397

TOLL-FREE: 1-800-237-3063
IN FLORIDA: $1.800 \cdot 226 \times$ XTAL FAX ORDERS: 1 1-813.936.3750

CIRCLE 104 ON FREE INFORMATION CARD

CIRCLE 108 ON FREE INFORMATION CARD

CIRCLE 14 ON FREE INFORMATION CARD
avoid wasting recording tape during periods of scanner inactivity. The unit connects the tape recorder to the scanner and automatically switches the tape recorder on and off via its remote-control jack. With the "dead time" removed by the $T S-7$, an entire evening's monitoring can be listened to in less than an hour.
Standard mini-plugs are used to connect the scanner and the recorder. A sub-mini plug connects to the recorder for on/off control. The recorder is controlled by a high-quality isolated-reed relay that will accommodate control currents up to 1 amp. An internal speaker is provided so that the unit can be left plugged in during normal use, yet switched off when silent recording is desired. Speak-er-mode is controlled from the front panel, which also provides indicators for power and recording. The unit requires 115 -volts $A C$ at 4 watts maximum.

The TAPE-SAVER TS-1 interface costs $\$ 49.95$.-Electron Processing, Inc., Sales Dept., P.O. Box 708, Medford, NY 11763.

POWER-LINE MONITORS. HMC's Model WD121 and WV120C powerline monitors can save their users' time and money by revealing fluctuations in the line voltage that is

CIRCLE 15 ON FREE INFORMATION CARD

EXPAND YOUR CAREER HORIZONS...

START WITH CIE.

Microprocessor Technology. Satellite Communications. Robotics. Wherever you want to go in ョlectronics.. start first with CIE.

Why CIE? Because we're the leader in teaching electronics through independent study. Consider this. We teach over 25,000 students from all over the United States and in over 70 foreign countries. And we've been doing it for over 50 years, helping thousands of men and women get started in electronics careers.

We offer flexible training to meet your needs. You can start at the beginner level or, if you already know something about electronics, you may want to start at a higher level. But wherever you start, you can go as far as you like. You can even earn your Associate in Applied Science Degree in Electronics.

Let us get you started today. Just call toll-free 1-800-321-2155 (in Ohio, 1-800-362-2105) or mail in CIRCLE 60 ON FREE INFORMATION CARD
the handy reply coupon or card below to:
Cleveland Institute of Electronics,
1776 East 17th Street, Cleveland, Ohio 44114.

No costly School. No commuting to class. The Original Home-Study course prepares you for the "FCC Comimercial Radiotelephone License". This valuable license is your "ticket" to thousands of exciting jobs in Communications. Radio-TV. Microwave. Computers. Radar. Avionies and more! You don't need a college degree to qualify. but you do need an FCC License. No Need to Quit Your Job or Go To School This proven course is easy. fast and low cost! GUARANTEED PASS - You get your FCC License or money refunded. Send for FREE facts now. MAIL COUPON TODAY!

COMmAND PRODUCTIONS

FCC LICENSE TRAINING, Dept. 90
P.O. Box 2824, San Francisco, CA 94126

Please rush FREE details immediately!
NAME
ADDRESS
CITY
STATE
supplied to expensive electronic equipment and by warning of situations that could potentially cause damage.

Digital Model WD121 features a high-accuracy, 3 -digit, .8 -inch LCD display. Analog Mode/ WV120C features easy-to-read scales. The monitors can be used to monitor the power line only, or they can be installed between the AC line and equipment. Both models measure true-RMS AC voltage. The compact units weigh only 1.5 pounds, with its outside dimensions of $4 \times 5 \times$ 3 inches.

The digital unit, Model WD121, costs $\$ 138.21$; the analog Model WV120C costs \$95.36.-HMC, P.O. Box 526, Canton, MA 02021.

DESOLDERING BRAID. Kwik-Wik is a line of flux-impregnated copper braid for rapidly desoldering plated-through holes and DIP's. It quickly absorbs solder by capillary action, and eliminates the need for any kind of desoldering tools in many assembly and field-service applications.

The copper braid is easy to use, by simply placing it on the joint being desoldered and holding the tip of a soldering iron against it. When the braid absorbs the solder

CIRCLE 16 ON FREE INFORMATION CARD
and turns silver it is then snipped off and thrown away.
Kwik-Wik is available in four sizes: Thin (. 03 inch), small (. 06 inch), medium (. 08 inch), and wide (. 10 inch), all on 5 -foot spools. It is list priced from $\$ 1.35$ per spool in quantities of 11 to 99.-M.M. Newman Corporation, 24 Tioga Way, P.O. Box 615, Marblehead, MA 01945.

Cut Your Video Servicing Time By 54\%

With the Market Proven VA62 Universal Video Analyzing System.

Today s VCRs, TVs, and MTS Stereo TVs require a proven has made simple problem solving a time-consuming and expensive procedure.

A survey of over 1500 Video Analyzer owners has shown that the VA62's unique signal substitution method has reduced their video servicing time by an average of 54%, and increased their servicing profits.

You can join the successiful service centers that have cut their video servicing time and increased their profits with the VA62 Universal Video Analyzing System. Call for a brochure on the VA62. Call 1-800-843-3338, and increase your profits. In Canada Call 1-800-851-8866.

Hardware Hacker

A solid-state digital compass

DO YOU REMEMBER THE SANTA CLAUS machinie that we looked at a few columns back? Well, it turns out that you can now buy them off the shelf from the 3-D Systems folks.

The price (a house and two cars) may seem a tad on the steep side at first glance, until you allow for the obvious "Uh - compared to what?" factor. And then you see that it becomes a rather astounding bargain.

What it does is create a plastic prototype from a software data base by the selective laser hardening of a liquid plastic photopolymer. It is particularly good at machining the unmachinable, and can often do so in minutes rather than months.

There are quite a few new hacker opportunities here. One is to start up a prototype "service bureau," similar to the laser-printer rentals at quick-copy centers. Another is to come up with a supercheap low-end Santa-Claus system that can, in fact, be built on a hacker budget.

Meanwhile, bunches of your helpline callers have been asking for "low-end" PostScript graphics and typesetting routines that will work on dot-matrix printers. Well, to do that would be the equivalent of trying to install a Porsche engine on a skateboard

Nonetheless, Lasergo has freshly announced its brand new Geoscript software that does give you some PostScript abilities for the cheaper and older printers. Cost is in the $\$ 200$ range, and the software is primarily intended for IBM and its many clones.

Our feature distraction this
month involves a new solid-state digital compass. But first, let's take a quick look at . . .

Computer modeling

I must get a dozen calls a week from people that want to build some "simple" custom circuit that usually will involve a keyboard, a display, some I/O, and perhaps some storage. What I will usually do is tell them that the product already exists, that it costs around $\$ 30$, and that it is scunging away in their neighbor's driveway.

If you haven't guessed, it is called a Commodore 64, and thirty bucks is the typical yard-sale price.

In this day and age, if you are designing any circuit that involves more than four chips total, you will save an incredible amount of time, money, and frustration by modeling what it is that you think you want on a personal computer, doing as much as possible with the computer, and as little as possible with external custom hardware.
Even if your ultimate goal is to build and sell a brand new product, starting the project off with a computer model will nearly always get you a better product out the door much faster.

Why bother with a model? First

NEED HELP?

Phone or write your Hardware Hacker questions directly to: Don Lancaster

Synergetics

Box 809
Thatcher, AZ 85552
(602) 428-4073

> Digital compass circuits The Earth's magnetic field Measuring magnetic fields
> A low-end PostScript driver Computer model prototypes
easterly. In Kansas, the declination is nearly zero, while on the East Coast, the declination is a few degrees westerly.

You can find the declination for your region from any USGS topographic map. To do that, you take the declination at the time the map was published and add the yearly drift rate to it, and multiply by the map's age. The drift rate is usually negligible, except possibly for the oldest of maps.

It is obviously very important to know whether you are using "true" or "magnetic" north, or very serious errors will result. Many better-grade compasses and survey instruments have adjustment screws that let you preset your declination.

It is also very important to keep your compass or whatever completely and totally level at all times. The magnetic field is also three dimensional. It points "straight up" at the far north, "horizontal" near the equator, and "straight down" near the south pole.

The vertical component of Ear-

CIRCLE 83 ON FREE INFORMATION CARD
but it will not give you an ampli－ tude．It is also a mechanical device subject to both settling and vibra－ tion．Worst of all，it has damping problems，as does any other mov－ ing mechanism．
The Hall Effect is one solid－state way of measuring magnetic fields． That effect will cause a transverse voltage output to be generated in response to an input current in certain solid－state materials．While Hall－Effect devices are low in cost and readily available，most of them are not nearly sensitive enough to use as a solid－state compass．
The F．W．Bell people do have some very large and very expen－ sive Hall－Effect devices that do seem to have enough sensitivity， but something better is clearly needed．

Another candidate is known as a proton precession magnetometer．

What you do is take a baby bot－ tle full of water and then wind a zillion turns of wire around it．You apply a strong current for a frac－ tion of a second．The current aligns all of the deuterium atoms present in ordinary water into a fixed orientation．

When the current is released， Earth＇s weaker magnetic field will cause the deuterium atoms to precess like miniature gyroscopes．

The precession in turn induces an audio signal of a microvolt or so into the winding．The frequency of that fairly brief resultant signal is proportional to the strength of Ear－ th＇s field．

One very big limitation to pro－ ton－precession magnetometers is that they only measure the total strength of the field，and not its direction．Another drawback is that you are working with ex－ tremely small，quite noisy，and rather brief signals．

It sure would be interesting to combine a modern digital signal－ processing chip with some better－ grade analog integrated circuits and see what could result．

The most practical way of solid－ state sensing Earth＇s magnetic field is with a beastie called a flux－gate magnetometer．

Most magnetic materials have what is called a B－H magnetization curve．Up to a certain level，they behave linearly．Above a certain point，they will saturate and lose

NAMES AND NUMBERS

Assoc．of Energy Engineers

4025 Pleasantdale Rd，Suite 420
Atlanta，GA 30340
（404）447－5083

Autohelm／Nautech

Anchorage Park，Eastern Road
Portsmouth，Hants PO3 5TD
ENGLAND
F．W．Bell
6120 Hanging Moss Rd
Orlando，FL 32807
（407）678－6900
Crystal Semiconductor
Box 17847
Austin，TX 78760
（512）445－7222
Edmund Scientific
101 E．Glouchester Pike
Barrington，NJ 08007
（609）573－6250
Electronic Research
P．O．Box 913
Shawnee，KS 66202
（913）631－6700
Doug Garner
NASA Langley，MS 471
Hampton，VA 23665
（804）865－3506
KVH Industries
850 Aquidneck Avenue
Middletown，RI 02840
（401）847－3327
all of their magnetic properties． What you have done is＂filled＂ them with all the magnetic energy that they can possibly hold．

As Fig． 1 shows us，an ordinary magnetic material in its linear re－ gion will＂pull in＂magnetic lines of force，since the permeability of the material is greater than air．

Thus，a local distortion in Earth＇s magnetic field is created as the lines of force get＂sucked in．＂

On the other hand，if you cause the magnetic material to saturate， there is no attraction or con－ centration of additional field lines， and Earth＇s field will ignore the ma－ terial completely．

So，if you do switch，or gate a magnetic material into and out of saturation，you will also alternately concentrate and later ignore Ear－ th＇s field．Should you now add a

Lasergo Inc
9235 Trade Place，Suite A
San Diego，CA 92126
（619）530－2400

NASA

Langley Research Center Hampton，VA 23665
（804）865－3281
Precision Winding
109 South Knight
Wichita，KS 67213
（316）942－2811
Silicon Systems
14351 Mytord Road
Tustin，CA 92680
（714）731－7110

Siliconix

2201 Laurelwood Road
Santa Clara，CA 95054
（408）988－8000
Speleonics
P．O．Box 5283
Bloomington，IN 47407
（812）339－7305

3 D Systems

12847 Arroyo Street
Sylmar，CA 91342
（818）898－1533

USGS Cartographic Info

Box 25046，MS 510
Denver，CO 80225
（303）236－5829
new sense winding，current pulses will be induced into that winding every time Earth＇s field enters or leaves the material．

The strength of the pulses will be proportional to Earth＇s magnet－ ic－field strength along the sensing axis．
The trick is to saturate and then unsaturate the fluxgate core with－ out getting any of the drive current into the sense winding．Figure 2 shows us one possibility．A toroid of special magnetic material with a ＂square＂B－H curve is used，along with a toroidal drive winding．

The sense winding is a linear overwrap of the toroid，going in one direction only．
With proper circuit design and a reasonable amount of luck，most of the drive current and its resul－ tant saturating field will stay inside
the toroid and thus not be picked up by the sense winding.
Figure 3 shows us how a second quadrature sense winding can be added, giving us a sine and cosine output of the horizontal field component. We can now work with the ratio of those two signals and can often be more accurate.

Solid-state compasses

A fluxgate magnetometer seems to be the best approach today to building your own solid-state digital compass. Options include working direct or at the second harmonic of the drive frequency,

FIG. 2-A FLUXGATE magnetomometer is built by using a control winding to alternately saturate and unsaturate a toroidal core. As Earth's magnetic field gets sucked into and out of the core, it induces pulses in the sense winding. All of the introduced pulses are proportional to the strength and the direction of Earth's magnetic field.

> CORE: Magnetics $50086-2 F$ CONTROL: 143 turns \#30 SENSE: 1000 furns \#35

FIG. 3-ADDING A NEW quadrature sense winding will give you both the sine and cosine of the field strength. When one is weak, the other will be strong. The final magnetic bearing is found by dividing the sine output by the cosine output. A list of possible winding details are also shown.

FIG. 4-A SIMPLIFIED SCHEMATIC of a solid-state digital compass. The outputs are ADDconverted and then routed to a microprocessor that handles the bearing calculations and a suitable digital display.
or of using a single or double quadrature sense winding, and of either working with nulls (by rotating the sensor) or by using absolute amplitudes.

In aircraft or radio-control model applications, one single fluxgate magnetometer can replace both the traditional compass and its backup gyro. At the same time, a compensation winding can be added so as to minimize any northerly turning-error problems.

That new approach to navigation is ridiculously cheaper and simpler than others. Figure 4 shows you the circuitry that is involved. What you have here on the driver is a $60-\mathrm{kHz}$ square-wave generator that drives both the magnetometer and a pair of output-sensing gated half-wave demodulators and amplifying integrators.

The two quadrature DC-output signals are proportional to the sine and cosine of the amplitude of Earth's magnetic field. They can be routed through an AD converter and sent to a microprocessor for further processing. Surprisingly, only a few hundred bytes of very simple code are needed to produce a complete digital compass.

One source of prewound and ready-to-use flux gate cores is Precision Windings. Circuit boards and complete kits are available from Electronics Research. Further info on licensing for resale or commercial use is available through Doug Garner.

For more details on building your own digital compass, see the NASA Tech Brief LAR-13560 on An Improved Flux-Gate Magnetometer, and A Magnetic heading Reference for the Electro/Fludic Autopilot from the December 1981 and January 1982 issues of Sport Aviation. Updates to that earlier design are once again available through Doug Garner. Ask for the "Oshkosh 1987" and "Sensors Expo 1987" reprints.
Solid-state compasses are also becoming commercially available from other sources at reasonable prices. Do check out your boatingsupply store for more details.

Those that I have looked at so far are British made and cost around $\$ 90$. Unfortunately, they are not quite accurate enough for cave surveying and they lack a built-in level and inclinometer.
continued on page 96

WITH CIE, THE WORLD OF ELECTRONICS CAN BE YOUR WORLD, TOO.

Look at the world as it was 20 years ago and as it is today. Now, try to name another field that's grown faster in those 20 years than electronics. Everywhere you look you'll find electronics in action In industry, aerospace. business, medicine, science, government, communicationsyou name it And as high technology grows, electronics will grow. Which means few other fields, if any, offer more career opportunities more job security, more room for advancement-if you hove the right skills.

SPECIALISTS NEED SPECIALIZED TRAINING.

It stands to reason that you learn anything best from a specialist, and CIE is the largest independent home study school specializing exclusively in electronics, with a record that speaks for itself. According to a recent survey. 92% of CIE graduates are employed in electronics or a closely related field. When you're investing your time and money, you deserve results like that.

INDEPENDENT STUDY BACKED BY PERSONAL ATTENTION.

We believe in independent study because it puts you in a classroom of one So you can study where and when you want. At your pace, no somebody else's. And with over 50 years of experience. we've developed proven programs to give you the support
such study demands. Programs that give you the theory you need backed with practical experience using some of the most sophisticated electronics tools available anywhere including our Microprocessor Training Laboratory with 4 K of random access memory. Ot course. If you ever have a question or prablem. our instructors are only a phone call away.

START WHERE YOU WANT, GO AS FAR AS YOU WANT.

CIE's broad range of entry. intermediate, and advanced level courses in a variety of career areas gives you many options. Start with the Career Course that best suits your talents and interests and go as far as you want-all the way, if you wish, to your Associate in Applied Science Degree in Electronics Engineering Technology But wherever you start, the time to start is now Simply use the coupon. below to send for your FREE CIE catalog and complete package of career information. Or phone us, toll-free, at 1-800-321-2155 (in Ohio, 1-800-523-9109). Don't wait ask for your free catalog now. Atter all, there's a whole world of electronics out there waiting for you.

CIE

Cleveland Institute of Electronics, Inc. 1776 East 17th Street. Cleveland. Onio 44114

Member NHSC
Acctedited Member National Home Srudy Councl

CIE
 Cleveland Institute of Electronics, Inc.
 1776 East 17th Street, Cleveland, Ohio 44114

YES... I want to leam from the specialists in electronics-CIE Please send me my FREE CIE school catalog, including details about CIE's Associate Degree program, plus my FREE package of home study information.
Name (print):
Address: \qquad

| City: \quad Area Code/Phone No.: |
| :--- |
| Age: \quad State: |
| Check box for Gil. Bill bulletin on educational benefits:
 \square Veteran \square Active Duty |

Shortwave RADIO

Radio Station WWV

OBSERVED AND ONE-YEAR-AHEAD PREDICTED SUNSPOT NUMBERS

FIG. 1

THE FIRST MAJOR IONOSPHERIC STORM of the current sunspot cycle occurred last May, when a massive flare erupted on the sun, causing a virtual radio blackout throughout the world for several days.

During the early days of radio, before things like solar flares and geomagnetic storms were understood, many radio hobbyists took
their receivers apart during such radio storms looking for bugs that didn't exist, because they thought their receivers weren't working properly.
With increasing sunspot activity there will be more blackout-producing storms, caused by a growing number of solar flares. Before you dismantle your receiver, we
suggest you listen to WWV, the National Bureau of Standards time and frequency station, which broadcasts continuously on $2.5,5$, 10,15 , and 20 MHz . In addition to giving the correct time every minute, WWV also broadcasts hourly geophysical alerts that describe radio conditions during the previous 24 hours and give a forecast

Discover－Explore－Experience Today＇s Electronics With ．．．

MaGraw－Hills

 Contemporary ElectronicsSerics

Now you can meet the challenges of today＇s electronics quickly and easily．This professional level learning series is as innovative as the circuitry it explains and as fascinating as the experiments you build and explore！And it＇s for anyone who has an interest in electronics．． from the hobbyist to the professional．

Thousands Have Already Experienced the Excitement！

Today＇s high－tech world demands an entirely new and innovative approach to understanding elec－ tronics．That＇s why McGraw－Hill has developed this unique＂handson＂learning method that brings to life the dynamics of the new electronics． It＇s a unique combination of interactive materials that gets you involved as you build and exper－ iment with today＇s latest electronic circuitry．

Just how well this innovative learning approach meets the challenge of the new electronics is confirmed by those who have already completed the Series．．＂You have put me right into the middle of an extraordinary learning experience．With each lab exercise I have gained a new understanding of the intricacies of today＇s electronics＂Or ．．
＂For me，the Series was just the answer．I felt confident within my specialty，but my grasp of other areas of electronics was slipping away． Your Series helped me upgrade my knowledge of the latest electronics concepts．＂Or this from a company director of training．．．＂We manu－ facture sophisticated electronic products，with a lot of people in sales，assembly and purchasing． McGraw－Hill has answered a real need in helping our employees see the total picture． They now communicate with customers and each other more effectively．＂

Your Involvement in the New Electronics Begins Immediately．
You master one subject at a time with 15 McGraw－Hill Concept Modules，sent to you one
every 4 to 6 weeks．You waste no time on extraneous materials or outdated history．It＇s an entertaining，lively，nontraditional approach to the most modern of subject matter．

Your very first module takes you right to the heart of basic circuit concepts and gets you ready to use integrated circuits to build a digital oscillator．Then，you＇ll verify the operation of different electronic circuits using a light emitting diode（LED）．

And each successive module brings you up to speed quickly，clarifying the latest advances in today＇s electronics from digital logic and micro－ processors to data communica－ tions，robotics， lasers，fiber optics， and more．

Unique
 Combination of

 Interactive Instruction Materials Makes Learning Easy． Laboratory experiments， vividly illustrated text and interactive cassette tapes all blend together to give you a clear，simplified understanding of contemporary electronics．With each module，you receive a McGraw－ Hill Action－Audio Cassette that brings to life the facts and makes you feel as if you＇re partici－ pating in a lively dialogue with experts．

Your ability to quickly make this knowledge your own is further aided by strikingly illustrated texts that use diagrams，explanations，illustra－ tions，and schematics to drive home and rein－
force the meaning of each important point． Carefully indexed binders conveniently house all this material，as well as the instruc－ tions that will guide you through your ＂hands－on＂lab experiments．

Throughout your Series，laboratory experiments reinforce every significant concept． With this essential＂handson＂experience using actual electronic components，you master prin－ ciples that apply all the way up to tomorrow＇s VLSI（Very Large Scale Integrated）circuitry．

Discover，Explore，

 Experience for Yourself－ 15－Day Trial．In all ways，the Contem－ porary Electronics Series is an exciting learning experience that offers you the quickest and least expen－ sive method available to master today＇s electronics． and the only one with＂hands－on＂ experience．
To order your first module for a 15－day trial examination，simply complete the card and send today！If the card is missing，write to us for ordering information．

McGraw－Hill Continuing
Education Center
3939 Wisconsin Avenue，NW
Washington，DC 20016

THROUGH HOME STUDY
Our New and Highly Effective Advanced-Placement Program for experienced Electronic Technictans grants credit for previous Schooling and Professional Experience. and can greatly reduce the time required to complete Program and reach graduation. No residence schooling required for qualified Electronic Technicians. Through this Special Program you can pull all of the loose ends of your electronics background together and earn your B.S.E.E. Degree. Upgrade your status and pay to the Engineering Level. Advance Rapidly! Many finish in 12 months or less. Students and graduates in all 50 States and throughout the World. Established Over 40 Years! Write for free Descriptive Literature.

 JACKSON, MISSISSIPPI 39212

CIRCLE 58 ON FREE INFORMATION CARD
for the following 24 hours. The messages are broadcast at $18-\mathrm{min}$ utes past the hour, every hour, and are updated every three hours.

WWV and its sister stations, WWVB and WWVH, provide numerous other services, including standard time and frequency information, and marine storm warnings. National Bureau of Standards publication 432, entitled Time and Frequency Dissemination Services, can be obtained free of charge by writing Diana Gibson, Time and Frequency Division, National Bureau of Standards, Boulder, Colorado 80303.

General Conditions

With sunspot activity relatively high and increasing, daytime DX will be good to excellent, with the $15-, 17-$, and $21-\mathrm{MHz}$ bands providing numerous opportunities. The amateur $10-$ meter band will also open regularly. In addition, DX Citizens Band openings will become more frequent.
At night, conditions will be better than they were last winter,

when only the $6-\mathrm{MHz}$ band was reliable for long periods. This year, the $9-\mathrm{MHz}$ band will be useful for DX; even the $11-$ and $15-\mathrm{MHz}$ bands will open over long circuits from southerly locations, such as Africa and Latin America.

Because noise levels due to thunderstorm activity are at a minimum in the northern hemisphere during the winter, broadcast-band DX will improve significantly during the hours of darkness.
We are currently in the 22nd recorded sunspot cycle. Based on the average of the first twenty-one sunspot cycles, the following is a general summary of sunspot cycle behavior:

- The average period of a sunspot cycle, from minimum to maximum and back to minimum is 10.7 years. - The average period from the beginning of a cycle (minimum) to the maximum is about 4 years.
- The average period from the maximum to the minimum of a cycle is approximately 6.7 years.

Figure 1 is a composite drawing, courtesy of the Institute for Telecommunications Sciences, that shows the average of cycles 8-20 (the period during which accurate records have been kept). Superimposed on that, is the complete cycle 21, the last complete cycle we have had. It can be seen that cycle 21 was considerably above average. Its maximum, observed in December 1979, was the second highest ever observed, with a smoothed number of 165 .

Sunspot numbers are smoothed because month-to-month averages can vary widely, and scientists have found that by smoothing sunspot numbers, a more accurate assessment of trends can be made. A smoothed number for a given month (R7) can be obtained using the following equation:
$R 7=(N 1+N 2 \ldots+N 7 \ldots+N 13) / 13$ where N1-N13 are sunspot numbers for 13 consecutive months and R7 is the smoothed number centered on the seventh month of the sequence. It can be observed that a smoothed sunspot number can't be obtained until monthly numbers for six months afterward are available. Monthly numbers are obtained by averaging daily values during each month.
continued on page 95

2645T－117 PRACTICAL IC PROJECTS YOU CAN BUILD．．．．．S10．95．Dozens of fully－ tested，ready－to－build circuits you can put to－ gether from readily－available，low cost IC＇s！ There are a total of 117 IC circuits ranging from an audio mixer and a signal splitter to a tape－deck amplifier and a top－octave gener－ ator organ！From TAB Books．To order your copy send $\$ 10.95$ plus $\$ 2.75$ shipping to Electronic Technology Today Inc．，P．O． Box 240，Massapequa Park，NY 11762－ 0240

－ $6 \times$ rate $\$ 890.00$ per each insertion．
－Fast reader service cycle．
－Short lead time for the placement of ads．
－We typeset and layout the ad at no additional charge．

Call 516－293－3000 to reserve space．Ask for Arline Fishman．Limited number of pages available．Mail materials to： mini－ADS，RADIO－ELECTRONICS， 500 － B Bi－County Blvd．，Farmingdale，NY 11735.

ZENITH SSAVI UHF input from \＄169，ch． 3 input $\$ 229$ ，reconditioned．UHF SSAVI hand－ book $\$ 6.50 \mathrm{ppd}$ ．Used Sylvania 4040 w／re－ mote $\$ 169$ ．New $\mathrm{N}-12$－VS $\$ 99$ ，ch 2 or 3. MLD－1200s ch 2 or 3 ．Converters \＆accesso－ ries．Satellite systems．New Panasonic 2，3，6 or 12 line／8 to 32 extension telephone sys－ tems．Systems with key phones：two lines from $\$ 675$ ；three lines from $\$ 1149$ ．catalog \＄1．AIS SATELLITE，INC．， 106 N．7th St．／D， Perkasie，PA 18944．215－453－1400．
CIRCLE 192 ON FREE INFORMATION CARD

PANASONIC CABLE CONVERTERS， Wholesale and Retail．Scientific Atlanta and Pioneer Cable Converters in stock．Pan－ asonic model 140 N 68 channel converter \＄79．95，Panasonic Amplified Video Control Switch Model VCS－1 \＄59．95．Scientific Atlan－ ta Brand new Model \＃8528 550MHZ 80 Channels Converter \＄89．95．Video Corrector （MACRO，COPYGUARD，DIGITAL）EN－ HANCER \＄89．95．We ship to Puerto Rico， Caribbean countries．\＆So．Amer．Write or call BLUE STAR IND．， 4712 AVE．N，Dept 105， Brooklyn，NY 11234．Phone（718）258－9495． CIRCLE 85 ON FREE INFORMATION CARD

SIMPLY SNAP THE WAT－50 MINIATURE FM TRANSMITTER on top of a 9 v battery and hear every sound in an entire house up to 1 mile away！Adjustable from $70-130 \mathrm{MHZ}$ ．Use with any FM radio．Complete kit $\$ 29.95+$ $\$ 1.50 \mathrm{~S}+\mathrm{H}$ ．Free shipping on 2 or more！COD add $\$ 4$ ．Call or send VISA，MC，MO．DECO INDUSTRIES，Box 607，Bedford Hills，NY 10507．（914）232－3878．
CIRCLE 127 ON FREE INFORMATION CARD

THE MODEL WTT－20 IS ONLY THE SIZE OF A DIME，yet transmits both sides of a tele－ phone conversation to any FM radio with crystal clarity．Telephone line powered－never needs a battery！Up to $1 / 4$ mile range．Adjusta－ ble from 70－130 MHZ．Complete kit \＄29．95 $+\$ 1.50 \mathrm{~S}+\mathrm{H}$ ．Free Shipping on 2 or more！ COD add \＄4．Call or send VISA，MC，MO． DECO INDUSTRIES，Box 607，Bedford Hills，NY 10507．（914）232－3878．

CIRCLE 127 ON FREE INFORMATION CARD

RADAR SPEED SYSTEMS \＆GUNS．Pro－ fessional X and K band police models for clocking speeds in car \＆boat racing，skiing， baseball，etc．Starting at \＄269 used，\＄350 reconditioned．Moving and stationary units available with dual displays．All units are road tested and have a 30 －day warranty．We carry a complete line of TV accessories and Pan－ asonic multi－line business telephone sys－ tems．Catalog \＄1．AIS SATELLITE，INC．， 106 N．7th St．／C，Perkasie，PA 18944. 215－453－1400．
CIRCLE 81 ON FREE INFORMATION CARD

PROFESSIONAL VIDEO new exclusive color video correlater with unique super comb filter．Allows you to reposition color back in－ side its boundaries due to poor quality broad－ casts and tapes．Restores edge sharpness to near rgb look with reduction of background noise．Black pedestal level set a must for big screens．S－VHS and ED－BETA supported． PR／4 \＄299．95 others from $\$ 139.95$
DX－TELE－LABS 6601 E．Clinton St．Scotts－ dale AZ． 85254 （602）998－3966
CIRCLE 194 ON FREE INFORMATION CARD

ENJOY CABLE TV MORE THAN EVER
 SNOOPER STOPPER/DATA BLOCKER

\author{

- Prevent cable companies from spying on you to see how many cable converters you have
}
- Removes beeping sound from your FM when radio is connected to cable TV
- Cable TV descramblers are being sold by the thousands, but few peoale know descramblers can be detected on most addressable systems

Maintain your privacy with a Snooper Stopper For more detailed information, send $\$ 2.00$ for our "Cable TV Snooper Stopper" article.

SIGNAL ELIMINATOR

- Works on cable or broadcast TV
- External adjustments allow precise tuning to any frequency
- Model 26 - Tuneable to channels 2-6 (54-108 Mhz)
- Model 713 - Tuneable to channels 7-13 (174-216 Mhz)
- Model 1422 - Tuneable to channels 14-22 (120-174 Mhz)

ELIMINATE a Channel that you find unsuitable for family viewing, but is poorly scrambled by your cable company. OR
CLEAR UP a Channel
that presently contains severe interference by ELIMINATING whatever signal is causing this. Note: If picture and sound are equally affected, this IS interference and CAN be removed by our product If only picture is affected, this usually IS NOT interference and CANNOT be removed by our product.

- No adjustments; crystal controlled
- Compatible with all VCR
- Uses automatic vertical blanking level
- Assembles in less than three hours
$\$ 14^{95}$
Original box as shown in ad with two feet and four holes to mount pc board.

BEFORE

BEFORE

AFTER

FAVORITE CHANNEL

AFTER

ORDER TOLL FREE ANYTIME 1-800-227-8529

Inside MA: 508-695-8699 Fax: 508-695-9694
Ask for additional free information
Add $\$ 3.00$ shipping \& handling on all orders unless otherwise noted. \$6.00 Canadian orders. Visa, MasterCard, or C.O.D.

$\mathrm{J}_{6} \mathrm{~W}$ ELECTROCIICS,IIC.

$\neg \square \square(C \square \square) ~$ C

television has changed quite a bit since its invention. Compatible color and stereo audio were hailed as major advances that changed the way we look at and listen to TV. Some claim that HDTV will be the next breakthrough. We're looking forward to HDTV, too; but nothing promises to be as exciting-and have as much of a sociological impact-as a practical interactive TV system.

We've all had the experience of watching a TV game show and knowing the answer long before any of the contestants-and, we think, before anyone else in the viewing audience. Other than pounding the coffee table, there's not much you can do in such a situation. But next year, if the people at the Interactive Game Network (IGN) have their way, that may change drastically.

Imagine being able to play your favorite game against the contestants, and all other viewers, in real time. The system proposed by IGN would let you prove to the nation that you knew the answer first. And it would open up a whole world of other possibilities, too, including electronic opinion polling, lottery playing, TV auctions, and more.

What is interactive TV?

The idea of interactive TV is not new. Two-way TV that lets the viewer play an active role has been talked about for years, and it's even been tried before. One of the better known two-way systems was QUBE, an interactive cable system developed by Warner-Amex Cable for distribution in Columbus, Ohio. QUBE was successful in securing more than 300,000 subscribers, but in a 1984 cost-cutting move Warner Communications canceled QUBE's operation.

QUBE failed because the revenues generated did not justify its development costs, or the expenses incurred in laying the two-way cable and obtaining the head-end equipment. IGN's proposed system is significantly different from two-way cable systems. It promises to bring interactivity to everyone because its required infrastructure is already in place. IGN's system does not involve any

INTERACTIVETV

Interactive TV turns armchair spectators into active participants.

new technology nor does it require the development of new equipment. Instead, it is a new combination of the existing technology of computers, FM subcarriers, and TV. It doesn't even require any change in FCC regulations! We're confident that the only things standing in the way of your having interactive TV in your living room are contracts with program suppliers and a massive advertising campaign.

Before we get into the technical details of the system, we should take a realistic look at where the system will go. As of press time (mid September), the system's introduction is planned
for August 1989.
NBC is participating with IGN in a joint development agreement to devise interactive sports and game shows. Since NBC owns the rights to the daytime version of Wheel of Fortune, we would expect an interactive version of that most popular game show to be among the first.

The major sports leagues have also expressed an interest in working with IGN to develop interactive contests around their televised sports. An "armchair quarterback" game, where viewers try to predict the next play would likely be the first game of that genre.

FIG. 1-INTERACTIVE GAME NETWORK'S system consists of a standard TV broadcast coupled with an FM SCA subcarrier transmission. The game consoles recelve the questions from the subcarrier, along with the correct answers and a difficulty multiplier. After the game is over, the home player calls the central computer to upload his score. Winners are notified by the subcarrier transmissions.

Figure 1 shows the basic idea of how IGN's interactive TV system works. An event, such as a quiz game, is televised as it is normally. Viewers who are not interactive players enjoy TV normally. However, those who are equipped with an interactive game console receive-via an FM SCA subcarrier-instructions on their displays on how to play the game interactively.

When quiz questions are asked, the home game players have an oppor-
tunity to answer the question. In a fast-moving game such as Jeopardy, the home game player sees multiplechoice answers on the screen that require only a single keystroke to answer. A slower-moving game, such as Wheel of Fortune, requires the player to type in the full answer.

In either case, once the question is answered correctly on TV, a lockout signal is sent via the FM SCA subcarrier to prevent the console from accepting any more answers.

The use of an SCA subcarrier is essential to IGN's system. It's no coincidence that IGN's president, who holds the patent for the interactive system, is David Lockton, the founder of Dataspeed. That company pioneered the use of FM subcarriers to transmit stock quotes around the country.

Of course, not everyone in the U.S. lives within the range of an FM station that will carry IGN's data on a subcarrier. At the outset, FM stations in the top 25 markets will carry IGN's data subcarrier, leaving about 35 percent of the population out of range. Those people have no reason to de-
spair，however．The same information as is transmitted on the subcarrier will be carried on the VBI（Vertical Blank－ ing Interval）of PBS TV stations．An adapter box，tuned to the local PBS station，will translate the data from the VBI to an FM signal，and send it to the game console using a low－ power FCC type－approved transmit－ ter．

The game console

As far as the home game player is concerned，the game console is the most important part of the system． Although the console＇s exact design hasn＇t been chosen，it will probably look much like a lap－top computer， with a full－size keyboard and a multi－ line LCD display．As we mentioned previously，not all games require a full keyboard．Many games can make use of soft keys，which are placed along the display and take on the meaning assigned by the display．

The game console features a built－ in SCA receiver and a telephone modem．Its block diagram is shown in Fig．2．We＇ll continue with our game－ show scenario as we discuss its opera－ tion．

The heart of the game console is a microprocessor that accepts data from an FM SCA subcarrier and also from keyboard inputs．It presents appropri－ ate information on its display．Say，for example，a game－show question asks for the proper capital of the United States．Assuming that the game show receives rapid－fire answers from its contestants，the display would show four choices alongside four soft keys．

The interactive game judge assigns a degree of difficulty multiplier to the question that allows for more difficult question to be worth more．For exam－ ple，a question that asks for the capital of the republic of Lithuania might be worth three times as much as the pre－ vious one．The game console re－ ceives，along with the question，the correct answer on the FM subcarrier． If your answer matches，your score is increased，and added to the score stored in your console＇s memory．

Along with questions，answers． and lock－out signals，the game judge （or，to be more precise，the central computer）also sends random coun－ ter－start signals．When those signals are received by the microprocessor， the current time from the micro－ processor＇s real－time clock is trans－ ferred to one of ten counters，and a

FIG．2－THE GAME CONSOLE＇S HEART is a microprocessor that receives data and time stamps from digital data in an FM subcarrier，and inputs from the keyboard．The time stamps are stored in incrementing counters that are used for verification purposes．

FIG．3－THE CENTRAL COMPUTER controls the subcarrier transmissions based on inputs received from the game judge．It also generates random time stamps to start the game consoles＇counters．Finally，it receives scores from game players，computes their standings，and transmits the results over an FM SCA subcarrier．
count－up operation begins in that counter．That time－stamping opera－ tion is very important－it is the main anti－cheating safeguard．

Once the game ends，you can up－
load your score to the central comput－ er，where it is compared against all other players＇．The upload process is nothing like what you may be used
continued on page 106

ELENCO PRODUCTS AT DISCOUNT PRICES

35MHz Dual Trace Oscilloscope

$\$ 498$

M0-1252

- High Iuminance 6"CRT
- 1 mV Sensitivity
- 6KV Acceleration Voltage
- 10ns Rise Time
- X-Y Operation - Z Axis
- Delayed Triggering Sweep
- Delayed Triggering Sw
x, $10 x$ probes, diagrams and manual

| Digital LCR Meter | |
| :---: | :---: |
| | LC-1800 |
| | \$13 |
| | |
| Low Cost Multimeter | |
| m | |
| | \$25 |
| 1\% DC Accy | |
| | $\underset{\substack{\text { aut zero } \\ \text { Polarity }}}{ }$ |

| Digital Capacitance Moter | |
| :---: | :---: |
| CM | |

Fully Regulated, Short circuit protected with 2 Limit Cont., 3 Separate supplies
XP-660 with Analog Meters \$175 Variable RF output and 150 MHz built•in Freq Cir $\mathbf{\$ 2 4 9}$

31/2 Digit Probe Type DMM

- 119 $100 \mathrm{~K} \cdot 450 \mathrm{MHz}$
$\$ 249$
0.20 V at 1 A $0-20 \mathrm{~V}$ at 1A 5 V at 5 A

M-1900

Convenient one hand operation
Measures DCV, ACV, Ohms
Measures DCV, ACV, Onms
Audible continuity check, Data nold
 short circuit protected XP-575 without meters $\$ 44.95$

"GREAT IDEA' FUNCTION BLOX FOR EASY BREADBOARDING

 Ali blox interlock to make your design work a snap. You can change the configuration

GF-8016 Function Generator with Froq. Counter $\$ 239$

Sine, Square, Triangle Pulse, Ramp, 2 to 2 MHz Freq Cou רter. $1 \cdot 10 \mathrm{MHz}$ GF-8015 without Froq. Meter $\$ 179$

Four-Functlon Frequency Counters

Frequency, Period, Totalize,

Self Check with High Stabilized Crystal Oven Self Check with High Stablized
Osclliator, 8 digit LED display

NEW!

$9600 \quad 28.95 \quad 9810$

FUNCTION GENERATOR RESISTOR DECADE BLOX CAPACITOR DECADE BLOX DIGITAL CLOCK BLOX LOGIC PROBE BLOX 5 V at 1 A .5 zt .4 A
. 1 to 1 MHz sine. sq wave 20 resistors 47.1 M ohm 20 capacitors $47 \mathrm{pf} \cdot 10 \mathrm{mfd}$ pulses from 1 Hz to 50 MHz
C \& S SALES INC.
1245 Rosewood, Deerficid, IL 60015 (800) 292-7711 (312) 541-0710

CIRCLE 109 ON FREE INFORMATION CARD

OF THE MANY METHODS USED TO SCRAM－ ble a video signal for secure transmis－ sion，one of the more popular ones is called Gated Pulse or Gated Svnc． The scrambling is accomplished by applying 6－dB suppression to the vid－ eo signal＇s horizontal sync pulses thereby making it impossible for a television set to maintain a syn－ chronized picture on the screen．

Figure I shows how gated sync works．Figure 1－a shows a con－ ventional video signal with normal horizontal sync pulses．Notice the colorburst riding on the back porch of

FIG．1－A CONVENTIONAL TV signal is shown in a ．With suppressed sync the sig－ nal resembles b ．

YOU MUST PAY

Please note that the gated－pulse decoder is intended only for those who presently subscribe to a scrambled cable service and are dis－ satisfied with the picture quality at－ tained from the supplied decoder，or who want to experiment with various decoding devices．If you are not pres－ ently a subscriber but want to view scrambled programs using our de－ coder，you must make subscriber ar－ rangements with the originating program service．

The subscriber arrangement is necessary because the unauthorized reception of cable services is illegal under Federal and State laws．

Federal law renders illegal both the interception and reception of any communications service offered over a cable system，unless those actions have been specifically authorized by the cable operator or by law．Federal law imposes both civil and criminal penalties for violation of the applica－ ble statutes．In addition，states have enacted＂theft of cable services＂stat－ utes that impose penalties for viola－ tions thereof．

The foregoing is not intended to constitute legal advice．Readers are advised to obtain independent ad－ vice based upon their individual cir－ cumstances and jurisdictions．
the horizontal blanking pulse．Figure l－b shows the same signal with the horizontal sync pulse suppressed 6 dB ．Notice that in Fig．I－b the hori－ zontal sync pulse and its blanking pulse，and the colorburst are all with－ in the video－signal level．

Although the gated－sync scram－ bling technique is basic and straight－ forward，its exact implementation can vary greatly from one equipment manufacturer to another：which means that each system needs its own particular kind of decoder to regain
the original programming. As a general rule. the variations used to customize gated-sync scrambling usually involve a reference signal of some kind that is either multiplexed onto the audio carrier in some fashion, or onto some kind of outband carrier on an empty channel.

But if we can get around the "misplaced" reference signal, a simple gated-sync decoder is all that's necessary to decode nearly any single-level gated-pulse signal. And that's exactly what our decoder does. It eliminates the need for a reference signal, so it doesn't matter where the scrambling system hides the reference.

As you'll see, our decoder requires no special set-up equipment, although a scope does simplify setting up. Best of all. there's no intricate RF alignment because no RF tuned circuits are used in the decoder.

Pluses and minuses

As with any other decoder. ours has both advantages and disadvantages. Its advantages include: versatility-it
will work on nearly any single-level sync-suppression system and does not need a reference signal to operate; no demodulation of any kind; a simplified circuit design that uses lowcost, readily available parts.

The disadvantages are that the device must be used with a television set-a VCR by itself will not do. The television set must be tuned to the channel that is being decoded, and phase-lock is not automatic-it must be done manually each time the decoder is turned on or when the channel is changed. Also, the decoder will not work on tri-mode systems or any other system that uses more than one level of sync suppression, or on any system that suppresses the vertical sync pulse. Also, the decoder will operate only in the low VHF band; hence it must be used with a cable downconverter that outputs on channels 2,3 , or 4 .

How it works

As shown in Fig. 2-a functional block diagram of the decoder and
some of a TV set's circuits- the basic principle used in the gated-sync decoder is that of a phase-locked loop. The loop, which is indicated by the bold lines. is formed by the TV set's sync separator, horizontal AFC circuit, horizontal oscillator and output, and the high-voltage flyback transformer. When all of that circuitry is being fed normal video (containing sync pulses), the loop is closed by taking a pulse from a winding on the flyback transformer and feeding it back to the AFC circuit, where the flyback's pulses and the sync pulses are compared. If they are not in phase, an error voltage is generated that forces the horizontal oscillator to change frequency until the two signals are finally in phase and the picture locks.

If the sync pulses are suppressed, as they are in a gated-sync system, the AFC loop has been opened because the pulses from the flyback transformer have nothing to be compared with; so the horizontal oscillator runs free (unsynchronized).

FIG. 2-THE DECODER WORKS by using sync samples from the TV's deflection yoke to control a signal attenuator.

FIG．3－THE DECODER＇S CIRCUIT．The attenuator is built as a separate subassembly．

Closing the loop

Our decoder closes the loop by tak－ ing samples of the pulses produced by the horizontal oscillator and feeding them back around to the antenna input to increase the amplitude of the RF envelope during the signal＇s sync－ pulse period．The samples of the TV set＇s vertical and horizontal sync pulses are obtained by induction from the TV＇s vertical and horizontal de－ flection coils．

The sync－pulse reinsertion is ac－ complished with a voltage－controlled attenuator．The attenuator reduces the amplitude of the RF signal feeding the TV set．Pulses from the decoder cause the attenuator to＂unattenuate，＂thus increasing the signal level during the ＂unattenuate time＂－which is effec－ tively the same thing as re－inserting the sync pulse．Sync pulses are inser－ ted pretty much randomly until the
right combination of horizontal os－ cillator，decoder oneshot phase delay， and re－insertion level occur．When ev－ erything is correct，so that a few sync pulses are inserted at the proper time， the whole system locks up and sta－ bility is restored to the picture．

The circuit

The decoder，which is shown in Fig．3，requires that no direct elec－ trical connection，nor any modifica－ tion，be made to the TV set．The TV signals are obtained by pickup coils L1 and L2 through inductive coup－ ling；hence，there is no shock hazard during set up as long as the television set is unplugged from the powerline and you touch nothing but the deflec－ tion yoke during the installation of the coils．The purpose of the coils－ which are taped to the deflection yoke－is to pick up the horizontal and vertical scanning pulses．

FIG．4－THE ATTENUATOR is built in a gutted splitter．The assembly will be sim－ plified if you follow this parts layout．
L 1 and L 2 are identical air－core coils．The vertical coil，L1，is taped to the side of the yoke（either right or left，it doesn＇t matter）．Coil L2 is the horizontal coil，and it is taped to the top of the yoke．

FIG. 5-THE PARTS LAYOUT. The attenuator subassembly is installed directly on the component side of the PC board.

A $15.734-\mathrm{kHz}$ resonant circuit is formed by L2 and C6/C7. The waveform displayed on an oscilloscope that is connected across $\mathrm{L} 2 / \mathrm{C} 6 / \mathrm{C} 7$ will be a pure sine wave whose amplitude depends on the size of the picture tube. That's because as the screen gets larger, the yoke scanning current must become larger to deflect the beam.
IC3 is a zero-crossing detector that squares up the sine wave induced in L2 and converts it to single-ended drive for IC4-a CMOS oneshotthat follows. Because the input to IC3 is a sine wave that goes both above and below ground potential, IC3 must

FIG. 6-THE COMPLETED DECODER. The three operating controls are mounted on the cabinet's cover.
have both a positive and negative supply voltage. The positive voltage is supplied by voltage regulator IC5. IC3's negative voltage is provided by D7 and C11.

IC4-a is used as a phase delay and sync pulse restorer pair. Phase Adjust control, R17, can vary the period of IC4 over the range of $9-56 \mu \mathrm{~s}$. R17 is installed on the front panel because it is used to phase-lock the decoder when the unit is first powered up, or when the user selects a different television channel.

IC4-b is used as a sync restorer that provides a pulse of $1-11 \mu \mathrm{~s}$ (set by trimmer-potentiometer R19). The output pulse at pin 9 is normally high; it goes low during the sync pulse. Transistor Q1 is a low-impedance driver for attenuator-diode D5. Diodes D2, D3, and D4 limit the amplitude of the pulse so that D5 (in the attenuator) cannot be overdriven.

A simple shunt attenuator is made up of R25, R26, and D5. The RF signal that is applied to Jl is attenuated at J 2 when D 5 is forward biased. When the voltage across D5 drops to zero, the RF signal is unattenuated.

Basic circuit

In many instances, only the previously described circuit that is associated with L2 is all that's needed. With some judicious knob twisting, the circuit can be aligned by simply observing the picture to see the effect

PARTS LIST

All resistors $1 / 4$ watt, 5%, unless otherwise specified.
R1, R12, R18- 1000 ohms
R2-4700 ohms
R3, R4, R7, R13-10,000 ohms
R5, R14-1 megohm
R6, R10, R15, R16, R20-2000 ohms
R8, R19-10,000 ohms, trimmer
R9-3300 ohms
R11-20,000 ohms, trimmer
R17, R21-10,000 ohms, potentiometer
R22-75 ohms
R23-220 ohms
R24-not used
R25-100 ohms, trimmer
R26-68 ohms
All capacitors polystyrene, 25 volts, unless otherwise noted
C1, C2- $1 \mu \mathrm{~F}, 25$ volts, tantalum
C3, C6, C9, C12-0.1 $\mu \mathrm{F}$
C4, C8- $0.001 \mu \mathrm{~F}$
C5- $0.0047 \mu \mathrm{~F}$
C7- $0.047 \mu \mathrm{~F}$
C10, C11-330 μ F, 25 volts, electrolytic
C13-220 pF
Semiconductors
IC1, IC3-LM311 voltage comparator
IC2, IC4-MC14538 dual monostable multivibrator
IC5-7808, 8-volt regulator
D1, D2, D3, D4-1N4148 silicon rectifier
D5-MBD-101 or 1N5817 silicon rectifier
D6, D7-1N4001 silicon rectifier
LED1-red light-emitting diode
Q1-2N2222, NPN transistor

Other components

Attenuator-see text
J1, J2, J3-part of attenuator
PS1-wall transformer, 12 volt, 50 mA
S1-SPST switch
PL1-Mating DIN connectors
Miscellaneous: Printed-circuit materials, wires, solder, soldering iron, hardware, tools, etc.
Note: The following items are available from Steve Pence, P.O. Box 41850, Phoenix, AZ 85080. The printed-circuit board: \$15.00. A partial kit that includes the PC board, IC's, and colls: $\$ 25.00$. The PC board for the April '85 Sync Separator project is available for $\$ 15.00$ (the complete kit has been discontinued). Allow 4 to 6 weeks for delivery. We cannot accept orders from Arizona residents. Canadian orders please use postal money orders in U.S. funds and add $\$ 2.00$ handling.

FIG．7－STRETCH THE COIL into an oval， as shown in a．Then cover the coil with tape，as shown in b ．
of each control．The decoder is con－ nected between the output of a cable box and the antenna input of the tele－ vision set．If desired，a VCR can be placed between the decoder and the television set，and the effect on the signal can then be observed with a scope by looking at the VCR＇s video output．

The vertical circuit，composed of LI．ICI，and IC2，locks out IC4 dur－ ing the vertical interval．The pickup coil，LI，must be taped to the defiec－ tion yoke in order to pick up enough of a signal to drive ICI．Capacitor CI， which is connected across LI，serves only as a filter to remove the horizon－ tal hash that is picked up along with the vertical pulse by LI．

The signal across LI will be polar－ ized．and must be of the correct polar－ ity to drive ICI；hence it may be necessary to reverse the coil＇s connec－ tions．LEDI will light when LI＇s po－ larity is correct．

The two sections of IC 2 operate the same as they do for IC4，except that they are used for the vertical，rather than the horizontal，sync pulses．IC2 is adjusted by R8 and RII until the output pulses at pin 9 go low during the time you want the horizontal pulses locked out，which usually oc－ curs during vertical blanking．

Construction

Except for the RF attenuator，con－ struction is non－critical．The author＇s prototype was first built on a Radio Shack breadboard，and the circuit worked perfectly the first time．For those of you who prefer printed－cir－ cuit assembly，we provide a full－scale
template in PC Service．Take note that space and a ground plane are provided on the PC board for the RF altenuator， which．as shown in Fig．3．is a sepa－ rate unit．

Figure + shows the assembly of the attenuator，which is built inside a gut－ ted two－set coupler．Most couplers are made of aluminum and cannot be sol－ dered to；and most，but not all，will have a solderable ground stud inside． If yours does not，you will have to drill a hole for a machine serew with which you can bolt down your own ground lug．Solder a bare bus wire to the ground lug in the attenuator the cut－off lead of a resistor or capacitor will do）．The wire should exit out the bottom of the attenuator and be snaked through a hole in the PC board that you must drill specifically for the
ground wire．After the module is mounted to the board，solder the wire to the PC boards ground plane．

The reason for the ground wire is because the attenuator module＇s mounting screws often do not make a good ground connection to its case and the PC board．The ground wire is simply ensurance against possible grounding problems．

You should also drill a $3 / 1$－inch hole in the top of the attenuator module directly over where trimmer－potenti－ ometer R25 will be mounted．The hole will allow you io adjust the trim－ mer without dismounting the module．

Figure 5 shows the parts placement on the PC board．Secure the at－ tenuator case to the PC board with two screws．If the case has a separate external grounding tab．simply cut it

FIG．8－TAPE THE COILS on the CRT＇s yoke as shown．

FIG．9－THE ELECTRICAL COIL connections are shown in a．The way they are connected to printed－circuit board is shown in b ．
off if it gets in the way of anything. Notice that IC1-IC4 are not mounted with the same orientation; that is, all No. I pins and/or notches do not face the same direction. Instead, all pin I's and/or notches face the center of the PC board, as does IC5's metal tab.

Figure 5 also shows color-coding for the wires connected to the vertical and horizontal PC-board connections. The exact colors are unimpor-tant-they will depend on the particular multi-conductor wire that's used. (The colors shown are those of conventional telephone quad.) We only show color-coding to help you integrate the parts placement with the wiring of L1 and L2, which we'll get to in a short while.

At this point the circuit board can be installed in a cabinet, as shown in Fig. 6. The phase (R17) and level (R21) controls, and the power switch (SI), are mounted on the cover.

Making the coils

Coils L1 and L2 are made by scramble-winding 100 turns of No. 28 or No. 30 solid, insulated, magnet wire around a $1 / 1 / 4$-inch form. (The author used an empty $35-\mathrm{mm}$ film canister for the form.) As shown in Fig. 7-a, after each coil is wound, slide it off the form and elongate the coil to form an oval. To prevent the coils from becoming unwound or deformed, dip them in hot candle wax or paraffin (available in most hardware stores.)

Make two coils, then attach leads to each coil that are long enough to reach from the inside of the TV set to the decoder. You can use either individual wires, pairs for each coil, or quad (four wires: two for each coil). Sandwich the coil assemblies in white adhesive tape for insulation, making certain that the tape covers the coils and the ends of the heavier hook-up wires. (The tape provides stress relief for the thinner coil wires).

Mount the coils to the yoke of the television set as shown in Fig. 8. The easiest way to do it is to simply hold the coils in place with a strip of adhesive or electrical tape. Snake the wires out of the TV set and connect them to a 5 -pin DIN connector as shown in Fig 9. Figure 9-a shows the actual wiring and the DIN-connector numbers. Figure $9-b$ shows how the coils connect to the PC board.

Tweaking

Due to the differences in inductance that are possible when coils are wound by hand with whatever size wire is readily available, it may be necessary to select the value of C 6 / C7. The value needed to resonate with L 2 will be near $0.15 \mu \mathrm{~F}$. After the coils are taped to the yoke, turn on the TV set and use a high-impedance voltmeter or scope to measure the induced voltage across $\mathrm{C} 6 / \mathrm{C} 7$. Try different values of capacitance until you attain the maximum peak-voltage reading.

FIG. 10-THIS IS HOW TO CONNECT the equipment when making your checks and adjustments. The VCR is not necessarily required (see text).

USING A SCOPE

Whenever you work with video, and in particular when working with decoders, you must often correlate the video signal with another signal, such as a sync re-insertion pulse. That is impossible to do if the scope you are using is not set-up to be triggered properly.

The secret is in a setup that allows you to look at only one line of video at a time; each time the scope sweeps, it displays the same line. In other words, if you want to look at scanning line number 32 (that is, the $32 n d$ line of video that occurs after the first field begins), you must make the scope sweep only during the time that line 32 is present.

Most scopes do not easily allow you to trigger that way. Those that can be triggered that way have an extra feature called "delayed sweep." Delayed sweep allows you to trigger on a relatively slow repetitive event like vertical sync, delay out to a specific line of video, then begin a very fast sweep that is set by a second timebase. The delayed sweep allows you zero in on any part of a waveform that occurs after the trigger, and then expand that portion.

A project that provides scope delay was described in the April 1985 issue of Radio-Electronics.

Alignment

Ideally, alignment should be done with a scope, using the equipment arrangement shown in Fig. 10. The best scope to use is a dual-trace model having delayed sweep. For those of you without access to such a scope, begin by interconnecting the decoder with your television as shown in Fig. 11 (the VCR is optional). Turn on the TV set and tune the cable box to a non-scrambled station. Adjust the set's vertical-hold control until you can see the vertical-blanking bar: Try to get it to sit still long enough so you can measure the vertical height of the bar with a ruler or a tape measure. Make a note of the height.

Set R8, R11, R17, R19, and R25 to the center of their rotation, and set R21 fully counterclockwise. When you apply power to the circuit the vertical-polarity LED should come on. If it does not, reverse the leads from L1 or physically flip the coil 180°

Slowly adjust R2I clockwise-the picture becomes lighter as the control

FIG．11－IF YOU USE A SCOPE for checks and adjustments，this is how the important waveforms will be displayed．
is advanced．You may see a bar near the center of the picture that will be slightly darker than the picture itself． If you do not see the bar，adjust R17 to bring the bar in from either side of the screen．If you cannot make the bar appear from either side，reverse the connections to L2 or flip it over．

Adjust R17 until you can see the full width of the bar；then adjust R8 until you see a clear spot in the ver－ tical bar．Then adjust RIl until the clear spot is just a little wider than the vertical blanking bar was that you measured previously．As R8 is ad－ justed through its full range，you should be able to make the clear spot appear from either the top or the bot－ tom of the picture．Note where in R8＇s rotation the spot appears at the top， and where it appears at the bottom of the screen．Set R8 midway between those two points．

Set R17 midway between where the bar disappears on the left and right hand side of the screen．Tune in a scrambled channel and set R2l to about $3 / 4$ of its clockwise rotation． （That ensures that the attenuator di－ ode is being driven hard．）Adjust R25 until the picture corrects；which will be easiest to do on a brightly lit pic－ ture，and nearly impossible to do on a dark picture．R25 should be set so that the picture is somewhat over－cor－ rected and washed out；then adjust R21 for normal brightness and con－ trast．The three controls－R21 （phase），R19（pulse width），and R21 （level）－all interact with one another and may require considerable experi－ mentation and knob twisting to get them all correctly adjusted．

Keep in mind that D5 is being used as a switch and not as a diode．That means that it must be driven hard
enough（controlled by R21）to keep it off the sharp knee of its forward－bias curve．If it is allowed to act as a diode， it will also rectify the incoming sig－ nals and produce a varying voltage that will also modulate its own for－ ward－bias voltage．That action will produce an interference pattern in the picture．

Once everything is properly op－ timized，all you should have to do will be to adjust R17 and R21 whenever you turn the decoder on，or after you change channels．In most，but not all， instances，picture－lock will occur au－ tomatically when a scrambled chan－ nel is selected and a fairly bright scene is available．

If the signal level of your cable system is too low，the $6-\mathrm{dB}$ signal loss caused by the attenuator module will often cause snow in the picture．One solution to the problem is to place a

The Philips ECG DT-205 Digital Thermometer: better value in a more convenient size.

The pocket-sized, easy to use DT-205 has features usually found in more costly instruments. See for yourself:
\square built-in retractable $31 / 2^{\prime \prime}$ thermocouple probe
\square measures in Centigrade or Fahrenheit
$\square \pm 1^{\circ} \mathrm{C}, \pm 2^{\circ} \mathrm{F}$ accuracy
\square built-in pocket clip
\square zippered carrying case
Make the smart choice. Contact one of our more than 900 distributors, or call 1-800225.8326 for the name of the distributor nearest you. It just might be the smartest call you make all week.
CIRCLE 250 ON FREE INFORMATION CARD

The ECG pocket-sized DM-51 Multimeter is packed full of features!

The ECG DM-51 Multimeter is part of our new line of compact multimeters that combine small size with big features. The DM-51 can easily be carried in a repair kit, bag, or even your shirt pocket!
\square measures up to $200 \mathrm{M} \Omega$up to 10 amps DCtest batteries $-9 \mathrm{~V}, 1.5 \mathrm{~V}$
\square transistor hFE testdiode test
continuity beeper
Contact one of our more than 900 distributors, or call 1-800-225-8326 for the name of the distributor nearest you. It just might be the smartest call you make all week.

The Smart Choice.

Keep equipment in top shape with Philips ECG's top of the line Audio/Video products.

The best performance from any piece of equipment. The line-up that delivers it looks like this:

To measure and adjust frequency response of audio tape decks, the AR20 frequency response cassette
\square To accurately adjust audio tape running speed and record/playback head alignment, the AR30 speed and adjustment cassette \square To observe tape travel path in the VCR, the Video tape path view cassette
\square To measure torque in play or fast forward/rewind modes, the Video torque meter cassettes
Contact your Philips ECG distributor or call 1-800-225-8326. It just might be the smartest call you make all week.

CIRCLE 68 ON FREE INFORMATION CARD

The Smart Choice. PhilipsECG
A North American Philips Company

THOMAS A. NERY

exciting home videos usualiy require heavy editing-leaving the deadly-dull stuff "on the cuttingroom floor." Unfortunately, the commercial video-edit controllers needed for pro-quality editing are usually priced beyond the budget of most video hobbyists, which means that most videos usually end up looking like just another home movie-or worse.

But there is a low-cost alternative to commercial video editing. It's our video-edit controller; a relatively simple device that requires the use of only two VCR's, or a VCR and camcorder, to edit video tapes electronically like a professional.

Home videos are usually edited by pausing the recording VCR at the point where recording is to begin, and pausing the source (player) VCR at the point where the new video starts. Once satisfied with the edit points, both pause buttons are released simultaneously to allow the playback and recording to start.

Although the procedure for "pause-cditing" is theoretically correct, real life proves that theory and practice are not one and the same, because machines-particularly when dealing with precise timingdon't necessarily function the way we would like then to. The variations in the pause-timing characteristics of VCR's and camcorders usually result in several seconds of lost picture at the edit.

Editing controller

But use our video-edit controller and you will eliminate the lost snatches of picture when editing. That's because our controller allows video editing by frames, rather than by time periods.

To understand the operation of the video-edit controller, it's necessary to understand why several seconds of video are lost when using the simulta-neous-pause-release method of videotape editing.

When the source (player) VCR's pause is released, the machine starts playing slightly after the point where the tape is positioned. The "slightly
after" is a function of the tape getting up to speed before the video is output. The recorder, on the other hand, must synchronize itself to the source. To accomplish that, most newer VCR's-as well as camcorders-use a feature known as preroll.

Preroll

Preroll means that the recorder is rewound a predetermined number of frames, put into the play mode, and then shifted into record at the point where the recording is actually to start. When editing by dual-pause control, the additive "true start" delays of the source and record machines usually result in several seconds of missed video from the source.

There is also a synchronization problem associated with the dualpause method of editing. Specifically, the recorder is being asked to synchronize itself to two different sources: the video prior to the sourceVCR's getting up to speed, and then the video once speed is attained. That complicates the recorder's operation, and can result in video-breakup at the edit point.

Pro-quality editing

On the other hand, our video-edit controller does not depend on pause
controls: It edits in a way similar to some professional editors. First, it rewinds the source-VCR for a fixed amount of time and then switches the VCR to the play mode. At the appropriate time, while the source-VCR is playing, the controller starts the recording VCR. The recording VCR uses up its preroll, comes up to speed, and then switches to the record mode. If all the timings are correct, the source-VCR is feeding the selected edit frame at the precise instant that the-recording VCR switches to the record mode.

Overall editing accuracy is dependent on the ability of the source- and recording-VCR's to consistently repeat their operations in exactly the same time periods. Since the record-ing- VCR's preroll is designed by the manufacturer to always start the recording after a fixed time interval, it is the source-VCR that's the main synchronizing problem.

Review to time

But we can make the source-VCR's rewind timing more or less consistent if we use the machine's review func-tion-rather than the rewind func-tion-to back up the tape. That is due to the fact that review' is a capstandriven function that always operates at a predetermined multiple of the nor-

VIDEO-EDIT CONTROLLER

VIDEO EDIT COMTROLER
DECEMBER 1988

FIG. 1-THE VIDEO-EDIT CONTROLLER basically consists of four similar timer circuits. Both the option a and Option b circuits for relay RY2 are built into the PC board. Simply plug the relay into the appropriate socket.
mal play speed. During review, the tape is always backed up the same length per period of time; whereas, during rewind, the actual amount of tape backed up per unit of time depends on how much tape is left on the supply reel.
In addition to the edit function, the controller also provides a switching circuit for a special-effects generator, such as you might use to cause a fade from, or to, black at the correct time.

How it works

The edit-controller, shown in Fig. 1, consists of four monostable timers. Each timer has the capability to drive a relay, although only three relays are used to interface to the controlled devices. To accommodate different re-
mote-control circuits, relay RY2 can be installed at the locations labeled option a, or option b-more on that later.

The edit operation is started by closing switch SI , which causes a rapid drop to ground of the voltage across capacitor Cl . Cl's discharge causes a negative-going spike through C2, which triggers timer IC1. The triggering of ICl causes RY1's contacts to close, and they remain closed during ICI timing period. The timing period is determined from the equation:

$$
\text { time }=1.1(\mathrm{R} 4 \times \mathrm{C} 3)
$$

The source-VCR's remote-control review jack is connected to RYI's contacts through PLI. The VCR will be
held in the review mode during ICl 's timing period. At the end of the timing period, RYI is released, its contacts open, and the VCR automatically switches from the review to the play mode. Also at the end of the timing period, ICl triggers timer IC2.

Timers IC2-IC4 operate in a similar manner as ICl , the major difference being that IC2 and IC3 have coarse and fine adjustments for tweaking the time-period. Also, RY2 can be driven either by IC2 or IC3, depending on the requirements of the recording-VCR. If the recorder is started by opening its remote control, RY2 is installed at the option a location. If the recorder is started by closing its remote control, then RY2 is installed at the option b location.

The editor's timing constants are a function of both the type and the speed of the VCR's. While the principles can be applied to any combination of VCR's and speeds, the prototype assumes VHS machines operating at the SP speed. Should a different combination be desired, it will be necessary to adjust the timing components for the selected speed.

Construction

Before building anything, you must make certain that your sourceVCR is compatible with the controller. Place a tape in the VCR and start the play. After about 30 seconds, depress the pause button. Once the VCR has come to a complete stop-as indicated by a frozen frame on the screen-press and hold the review (or dual-function review/rewind) button for about five seconds and then release it. The VCR is compatible with the video-edit controller if it rewinds and then automatically enters the play state when the review button is released. If releasing the button did not cause the VCR to switch automatically into the play mode, then it can't be used with the controller.

If the VCR passes the compatibility test, you must make a review-switch modification. Disconnect the VCR from the powerline, open the VCR's case, and locate the review switch's contacts. Use a VOM to verify that you have selected the correct contacts. (In some VCR's the review switch has DPST contacts that are wired in parallel.) Solder a pair of thin, insulated, stranded wires (i.e. 22 gauge) to the switch's contacts. Then route the wire to an accessible
blank portion of the VCR＇s rear ap－ ron．Carefully drill a hole in the apron for a miniature phone jack that will mate with PLI．If the cabinet is metal， use two contacts of a 3－circuit jach and change PLl to a 3 －circuit mini－ ature phone jack．（The plug＇s sleeve connection－which is connected to the VCR＇s grounded cabinet－should not be used．）

Complete the modification by sol－ dering the wire pair to the phone jack． Then，replace the VCR＇s cover．At that point，the VCR should be tested for normal operation．Check the mod－ ification for a short－circuit if the VCR doesn＇t operate correctly．

The controller is assembled on a PC board，for which a full－scale tem－ plate is provided in PC service．

FIG．2－THE CONTROLLER＇S PARTS LAYOUT．Select only one location for RY2；the other remains empty．

＇FIG．3－THE PRINTED－CIRCUIT BOARD is mounted in the cabinet using spacers at each mounting screw．Make certain that there is some kind of wire between the PC board＇s ground trace and the metal cabinet．

PARTS LIST

All resistors $1 / 4$－watt， 10% ，unless specified otherwise．
R1－ 1000 ohms
R2－1 megohm
R3－10 megohms
R4－470．000 ohms
R5，R9，R13－10，000 ohms
R6－200，000 ohms
R7，R11－250，000 ohms，multiturn potentiometer
R8，R12－10，000 ohm，multiturn po－ tentiometer
R10－47，000 ohms
R14－100，000 ohms
All capacitors rated 10 volts，un－ less specified otherwise．
C1，C2，C5，C8 ，C11－0．001 $\mu \mathrm{F}$ ，disc
C3，C9－ $10 \mu \mathrm{~F}$ ，tantalum
C4，C7，C10，C13－ $0.01 \mu \mathrm{~F}$ ，disc
C6－100 $\mu \mathrm{F}$ ，tantalum
$\mathrm{C} 12-1 \mu \mathrm{~F}$ tantalum
C14，C15－0． $0.1 \mu \mathrm{~F}$
C16－1000 $\mu \mathrm{F}, 35$ volts，electolytic

Semiconductors

IC1－IC4－555，timer
IC5－7808，8－volt regulator
D1，D3，D6－1N4002，silicon rectifier
D2，D4，D5－1N914，rectifier

Other components

J1－male power－supply mini－jack to match SO1
PL1，PL2，PL3－miniature phone plugs to match VCR equipment
RY1，RY2，RY3－SPDT DIP relay， GORDOS 831A－4
S1－N．O．momentary switch
S2，S3－SPST switch
SO1－power socket，part of 9 －volt wall adapter

Miscellaneous

Printed－circuit materials，WA1－9－ volt DC wall adapter，DIP sockets， cabinet，wire，solder，etc．

The parts layout is shown in Fig． 2. Notice that there are two locations－ labeled A and B－for RY2．If you use DIP sockets for mounting the relay， you will then be able to switch RY2＇s location easily to conform with the remote－control circuit of the associ－ ated VCR．

Figure 3 shows how the prototype＇s fully assembled PC board looks when it＇s finished，and also how it is in－ stalled in its cabinet．

VCR modification

The controller requires a special， though quite simple，modification to the source－VCR＇s review switch．But be aware that opening the case of the VCR and installing the modification will void the warranty（if it is still in effect）．

Remote jack

The recording-VCR or camcorder should have a camera-controlled remote jack. Also, for best results the recorder should also perform a preroll operation prior to initiating the recording action. That feature can often be verified by the recorder's user's manuat.

The recording-VCR will run-record when the camera-controlled remote jack is switched by RY2's contacts. The location of RY2 is determined by the requirements of the remote jack. If recording is started by opening a contact, RY2 should be installed in the ortiona location, which is controlled by IC2. If recording is started by closing a contact, RY2 should be installed in the option b location, which is controlled by IC3

Calibration

The only items required for calibration are two prerecorded tapes. One is a source tape, which contains a clean transition of scenes. The tape can easily be made by making an off-theair recording of about five minute of program up to a commercial, the
commercial, and then tive minutes of program. The commercial is only needed so that you can easily recognize a scene transition-from program to commercial and vice versa
The other tape is the recording tape. It should be pre-recorded with about five minutes of programming.
Connect PLI to the review jack that was added to the source-VCR. Connect PL2 to the recording VCR's cam-era-controlled remote jack.
Roll the source tape, locate the start of the commercial as closely as possible, and place the source recorder into the pause mode.

Then play the second tape in the recording VCR. Locate the end of the recording, set the recorder to pause, then activate the record function.
Set the coarse adjustment associated with RY2 (R7 or R11) to its smallest value and the fine adjustment (R8 or R12) to the center of its adjustment. Press SI. Each of the recorders will do its thing-controlled by the video-edit controller.
After the recording VCR runs for about 30 seconds, stop and rewind its tape to the point where the recording
was inserted and press the pause button. Then release the pause button and time the playing time from the source-tape's entry point until the source-tape's commercial appears.

Using the equation given earlier, calculate the combined resistance valwe of R7 and R8 (or R11 and R12) that is needed to eliminate the pre-commercial timing. Set the coarse adjustment to that value.

Repeat the procedure until the editing controtler correctly locates the edit point within about one-half second. At that point, the procedure should be repeated once more, using the fine adjustment, until the edit point is "on the nose."

That completes the calibration. A similar method is used to calibrate the switch-in of a special-effects generator via PL3.

Now you're ready to edit some vidco tapes, and it may take a few tries to become familiar with the system. However, in no time at all, you'll be getting rid of unwanted commercials, splicing together your favorite movie scenes, or removing scenes that you don't want your kids to see. R-E

HOLD IT ANYWHERE YOU WANT IT!

PanaVise electronic work holding systems allow you to position, tilt and rotate your projects withoul removing them from their holding devices! With over 30) years experience and made-in-USA quality, PanaVise ensures reliable longtasting service.

MULTI-PURPOSE WORK CENTER:
Self-Centering Extra Wide Opening Head (opens to $9^{\prime \prime}$), famous "split ball" Standard base (moves in three planes), and convenient Tray Base Mount (with parts wells) handle difficult to hold items with ease! Model \#350. $\$ 52.95$.

STANDARD PANAVISE: Our most popular vise, the Standard PanaVise is an extremely versatile, useful workbench tool Jaws open a full 2.25 " and the patented "split ball" base tilts, turns and rotates through three planes. One convenient control knob locks work into any position! This durable, all-purpose mini-vise stands about $6^{\prime \prime}$ tall and will deliver vears of rugged service. Model \#301. $\$ 33.95$.

STEVEN A．BROWN

JUST ABOUT ANY VOM OR DMM CAN ACCU－ rately measure the RMS voltage of pure sine－wave AC．But true－RMS ca－ pability is a feature that is usually found only on top－of－the－line meters．

In the AC mode，the average multi－ meter（one that does not have true－ RMS capability）simply measures the peak rectified value and scales it by a factor of 0.707 ．Otherwise，they mea－ sure the average rectified value and scale it by the factor 1．11，which is the ratio of RMS－to－average，or $0.707 / 0.636$ ．Introduce some distor－ tion to the sine wave，however，and the reading＇s accuracy becomes question－ able．Try measuring a non－sinusoidal waveform，such as sawtooth or square wave，and the reading can become utterly meaningless．

For example，when measuring a 10%－duty－cycle square wave，the reading on an average meter can be off by more than 100% ！For such wave－ forms，the only reliable measurement of voltage can be made using a volt－ meter or multimeter with true RMS capability．That feature is usually found on only the most expensive dig－ ital multimeters－until now．In this article，we＇ll show you how to build
an accurate，low－cost converter that will give true RMS measurement ca－ pability to any VOM or DMM．Before getting into the details of the circuit though，let＇s briefly take a look at what RMS means，and why its value is important to know when talking about $A C$ waveforms．

RMS defined

RMS stands for Root Mean Square （the square root of the average of the squared values），a mathematically de－ rived quantity that is taken to be the value of an equivalent $D C$ voltage－ one that would produce an equal amount of heat in a resistor or light from a light bulb．In an AC waveform， the instantaneous voltage varies as a function of time．Therefore，the equa－ tion that defines the RMS voltage must take into account the functional relationship between those two varia－ bles，and it can only be applied if an exact mathematical expression for that relationship is known，which can be＂plugged into＂the equation．An example of such an expression is the one that gives us the instantaneous voltage（ v ）at any time（ t ）for a sine wave is：

$$
v=V_{\text {MAX }} \sin \omega t
$$

where $V_{\text {MAX }}$ is the peak amplitude，ω is the angular frequency in radians－ per－second，and t is the elapsed time from the beginning of the cycle．The equation for the RMS voltage of any periodic waveform，where＂V＂is a function of t ，is given by：

$$
V_{\text {RMS }}=\sqrt{\frac{1}{T} \int_{t_{0}}^{t_{0}+T} v^{2}(t) d t}
$$

where T is the total period of time under consideration．For those who are not familiar with calculus，the def－ inite integral under the radical sign， whose symbol resembles a tall thin S ， represents the＂area under the curve＂ if v^{2} were plotted against t ．That quan－ tity，multiplied by $1 / T$ ，is equal to the average value of v^{2} during the time period T．The square root of the aver－ age value is the RMS voltage．

Though it would be possible to construct a circuit to perform the op－ eration of the second equation，a sim－ pler approach－the one that is used by DMM＇s that can measure true RMS－ is to square the instantaneous input voltage，average that square with a

FIG. 1-RMS CONVERTER BLOCK DIAGRAM. This shows how an RMS measurement is obtained.
long time-constant RC network, and take the square root of their average. That sequence of operations is shown in the block diagram of Fig. I. and can be represented mathematically by the simpler equation:

$$
V_{\text {RMS }}=\sqrt{\text { Avg. } \cdot\left(V^{2}\right)}
$$

where r is the instantaneous voltage. The basic difference between that sequence of operations and that of the previous equation lies in the meth-od-but the result is the same. While the previous equation gives the precise net effect of r over a definite time period, the simpler method makes use of the property of a low-pass RC network (Fig. I) that causes capacitor CI to drift slowly to, and finally settle at, the long-term average of the instantancous voltage applied to resistor RI. The time for the CI to reach that final value, once a steady-state AC voltage has been applied to the network, is approximately equal to five times the RC time constant. By selecting a suitably long time constant, so Cl s voltage does not vary significantly during the period of one cycle. a precise average can be obtained.

Stated simply, the RMS voltage of an AC waveform is equal to the square root of the long-term average of the square of the instantaneous voltage. At this point, the reader might ask why the effective value of an AC voltage is not equal to its average value. The answer to that question becomes apparent if one bears in mind that the power delivered to a load is proportional to the square of the applied voltage, in accordance with the familiar equation:

$$
\mathrm{P}=\frac{\mathrm{V}^{2}}{\mathrm{R}}
$$

Therefore, in determining the RMS value of an $A C$ voltage, the square of the instantancous voltage is proportional to the instantaneous power that would be produced in a load. Since the average of the instantaneous power would be equal to the power produced by an equivalent DC voltage. the RMS voltage is found by
averaging the square of the instantaneous voltage over a period of at least one cycle, and taking the square root of that average.

Applications of RMS

Now that we ve examined what RMS means, let's take a look at some applications where an accurate RMS measurement becomes an important thing to know.

- To measure the output of motorspeed and light-dimmer controls. where the $60-\mathrm{Hz} \mathrm{AC}$ waveform is chopped by SCR or Triac switches. - To measure pulse-width-modulated waveforms in switching power supplies.
- To measure and adjust the output of a battery charger for optimal rate of charge, where the output is rectified but unfiltered DC.
- To measure the power applied to an audio-speaker system by speech or music. A good approximation of audio power can be found by:

$$
P=\frac{V^{2}}{Z}
$$

where V is the $R M S$ voltage measured across the speaker terminals, and Z is the nominal system impedance.

- To measure the effective value of any $A C$ or variable $D C$ waveform.

About the circuit

A complete schematic diagram of the True RMS Converter is shown in Fig. 2. and its specifications can be seen in Table I. The heart of the circuit is Analog Devices' AD736 true-RMS-to-DC converter IC. Its low power consumption of I mW makes it ideal for portable, battery-powered operation. The device can measure inputs of I-volt RMS or less, but it is most accurate with a $200-\mathrm{mV}$ RMS input. To measure higher voltages, an input attenuator is required.

The input at pin 2 of the $A D 736$ is internally connected to the non-inverting input of an FET buffer which has an impedance of 1012 ohms. That makes it well-suited for use with the high-resistance input attenuator, RI. Pin I is internally connected to the inverting input of the FET buffer which has an impedance of 8.000 ohms, and it is used to reference pin 2 to ground. When switch S2 is closed (DC mode), pin I is connected directly to ground. That makes the converter responsive to both DC and AC components of the input signal. When measuring signals having a very small amplitude, S 2 can be opened (AC

TABLE 1-SPECIFICATIONS

Transfer Function: RMS-to-DC voltage Accuracy: $\pm 0.5 \mathrm{mV}, \pm 0.5 \%$ (1 kHz sinewave, AC-coupled, 0-to-200 $\mathrm{mV}, 200 \mathrm{mV}$ range)
Input impedance: 10 megohms
Maximum Input Voltage: 1200 VRMS Bandwidth: 33 kHz (1% additional error) 190 kHz ($\pm 3 \mathrm{db}$)

FIG. 2-SCHEMATIC DIAGRAM. The heart of the circuit is the AD736 true-RMS-to-DC converter IC.

PARTS LIST

Resistors
R1－Caddock 1776－C742 5－decade voltage divider
R2－1 megohm， $1 / 2$－watt， 5%
R3，R4－10，000 ohms， $1 / 4$－watt， 5%

Capacitors

C1，C2－10 $\mu \mathrm{F}, 16$ volts，radial electrolytic
C3－47 $\mu \mathrm{F}$ ， 16 volts，radial electrolytic
C4，C5－ $0.1 \mu \mathrm{~F}, 50$ volts， 10% ， polyester film
Semiconductors
DI，D2－1N4148 diode
IC1－AD736JN RMS－to－DC convert－ er（Analog Devices）
Other components
J1－J4－Insulated binding posts
S1－5－position rotary switch， （Mouser 10YQ025 or equivalent）
S2，S3－SPST subminiature toggle switch
B1－9－volt alkaline battery
Miscellaneous： 9 －volt battery con－ nector， 9 －volt－battery mounting clip， plastic project case，plastic knob for rotary switch，wire，etc．
Note：A complete kit containing an etched and drilled PC board and all components that mount on it （SPST switches，binding posts， etc．，not included）is available for $\$ 19.95$ plus $\$ 2.50$ for shipping and handling from Andromeda Elec－ tronics， 125 N．Prospect St．，Wash－ ington，N．J．07882．New Jersey residents must include 6% sales tax．Allow three weeks for delivery．

FIG．3－MOUNT THE COMPONENTS as shown．All other parts mount on the cover of the plastic project case．
mode）and the input thereby becomes AC－coupled．In that mode，signals as small as 100 microvolts RMS can be measured．

Capacitor C3 is the averaging ca－ pacitor： C 2 removes any residual rip－

FIG．4－THIS IS HOW YOUR CONVERTER should look when it＇s completed．You can see how the common terminal from both the input and the output are wired together．
ple that might be present at the output．The attenuator is a Caddock 1776－C742 precision 5 －decade volt－ age divider with a ratio tolerance of $\pm 0.25 \%$ ．Switch SI is used to select the tap on the voltage divider that corresponds to the range of voltages to be measured．

The network made up of R2．D1． and D2 prevents overvoltage damage to ICI by limiting the peak input volt－ age at pin 2．Resistor R2 has a power rating of $1 / 2$－watt，so the maximum continuous overvoltage that can be sustained by R2 indefinitely without damage is about 700 －volts RMS． Overvoltages up to 1200 －volts RMS can be withstood for several seconds． No damage at all can occur to R2 from overvoltage in the 2 －volt position and higher．

In the $200-\mathrm{mV}$ position． ICl reads the full voltage across the input termi－ nals．When S 1 is placed in the 2 －volt position，all input voltages are divid－ ed by 10，and the DC voltage across the output terminals，as read by a DC voltmeter，must be multiplied by 10 to obtain a correct RMS reading．With S1 in the 20 －volt position，the output reading must be multiplied by 100：in the 200 －volt position，by 1000 ；and in the 1000 －volt position．by 10.000 （Ta－ ble 2 lists the multiplier values）．The maximum continuous input voltage in

TABLE 2－MULTIPLIER VALUES

| Range in use | Multiply ouput by |
| :---: | :---: |
| 200 mV | 1 |
| 2 V | 10 |
| 20 V | 100 |
| 200 V | 1000 |
| 1000 V | 10,000 |

the $100(0)$－volt position should not ex－ ceed 1200 －volts RMS－the maximum rating of the voltage divider．

An important parameter of AC waveforms is the crest factor，which is defined as the ratio of the peak voltage to the RMS voltage．A sine wave has a crest factor of 1.414 ．while music with its high transients may have crest fac－ tors of 10 or more．The crest factor becomes signiticant when the peak excursions of the waveform approach the peak transient limits of the input of the measuring device．Peak clip－ ping will occur if either of those limits are exceeded，resulting in a loss of accuracy．For an AD736 that is powered by a 9 －volt battery，the peak transient limits of the input at pin 2 are approximately ± 2.5 volts．There－ fore，the crest factor of a $200-\mathrm{mV}$ RMS signal，measured on the 200－ mV range，would have to exceed 12.5

FREE GIFT with Order!
9 Function
Superior
Multi-Purpose Swiss Army like knife.
Value: $\$ 24.95$

VIDEOWRITER/WORD PROCESSOR A revolution in writing is right at your fingertips! This Magnavox Videowriter/Word Processor is the ideal personal writing system for the novice or seasoned pro. NO TRAINING NECESSARY...built-in instructions appear on the screen while you see what you write! - Write. insert, delete. move 8 copy text at any time

- Buiti-in 50.000 word dictionary lets you check spelling at any time - Built-in type styles: normal. bold. wide. superscript. \& subscript. - Screen spilis so you can work on 2 documents at once.
- Displays 18 lines at a time. Automatically saves each page. - Automatically indents, centers $\&$ juslifies right margin. Standard 3 1/2" disk holds approx. 75 pages. Printer automatically loads standard paper \& envelopes -Whisper quiet thermal print head • Includes ribbon. dictionary. storage diskette \& paper. - Factory Serviced. but like new!
before peak clipping occurs. If a 1 volt RMS signal were measured on that same range, however, 2.5 would be the maximum crest factor beyond which peak clipping would occur. Switching to the 2 -volt range would raise the crest-factor threshold of clipping to 25 for the same 1 -volt RMS signal.

Construction

The RMS Converter can be installed in any case (preferably plastic) that is large enough to fit the PC board, the battery, and all other associated wiring, switches, etc.

All components except S2. S3, B1, input jacks JI and J2, and the output jacks J3 and J4 mount directly on the PC board, as shown in Fig. 3. Rotary switch Sl is soldered directly to the PC board, and its bushing provides a rigid mounting to the case.

To accommodate Sl's anti-rotation tab, a $1 / 8$-inch diameter hole should be drilled $1 / 2$-inch below Sl's mounting hole. Both the input and output common terminals should be wired together (see Fig. 4) and to the 1 Cl pin-8 PC solder pad. The input and output jacks, as well as S2, S3, and the bat-tery-connector leads, should be connected to the appropriate PC pads indicated in Fig. 3, and secured to the face of the case as shown in Fig. 4. If you like, you can install a batterymounting clip as shown in Fig. 4.

Operation

As can be seen from Fig. 2, there is no isolation between the input and output common terminals. Therefore, ALWAYS CONNECT YOUR VOM OR DMM TO THE OUTPUT TERMINALS BEFORE YOU CONNECT THE INPUT TERMINALS TO AN AC VOLTAGE.

The True RMS Converter is portable and easy to use. Simply connect the test leads of a VOM or a digital multimeter capable of reading zero to 200 millivolts to the output terminals. and connect a pair of insulated test probes to the input terminals. Connect the test probes to the voltage to be measured, and move the selector switch to the appropriate range so that a reading of at least 50 mV but no more than 500 mV is obtained. Then multiply the reading by the scale factor from Table 2 for the range in use. For inputs that are less than 50 mV , the AC-coupled mode will give the most accurate readings.

R-E

> A Radio Data System FM car radio can automatically locate the kind of programs you like， control the volume and frequency response，display a paging message，and even keep you informed of traffic conditions．
moSt fm listeners，and Even some technicians，do not know that many stations routinely use a subcarrier to carry digital data．The data itself might represent stock－market infor－ mation，telemetry and remote－control signals for the FM transmitter，radio－ paging messages，or even data repre－ senting computer programs and mes－ sages sent from a school system＇s headquarters to individual schools．

The fact of the matter is that by using digital data just about anything is possible；and it is extremely fast．At approximately 1200 baud，which is a reliable bit rate for FM broadcasting， a burp of data－sounding like nothing more than a blip of static－can con－ vey enough information to satisfy many personal entertainment and safety needs．

And that＇s exactly what it＇s used for in Europe，where digital data broad－ cast on a conventional FM subcarrier is used to provide a driver with many wide－ranging services through his or her car radio．

Radio Data

The data system that we＇re talking about is known as RDS－which is derived from Radio Data System． Basically，RDS is a European－de－ veloped system for the co－transmis－ sion of digital data and conventional FM programming．It is presently esti－ mated that all of Europe will be inte－ grated into the RDS system in three to five years．Whether the idea travels across the Big Pond to our side of the world probably depends on the results of RDS experiments conducted in

Canada，because our FCC is not known as＂Mister Speedy＂when it comes to legitimizing new communi－ cation technologies．

Before we get into the bits，bytes． and code groups of the RDS subcar－ rier modulation，keep in mind that the system must not interfere with exist－ ing subcarrier services used in only a few European countries．Eventually． those services will be integrated into the RIDS system；but today，RDS must exist side－by－side with services that preceded RDS．

As shown in Fig．1，the European stereo－FM RDS signal closely resem－ bles U．S．stereo signal that also has subcarrier modulation．The fact that the RDS subcarrier is at 57 kHz shouldn｀t disturb you because $57-\mathrm{kHz}$ subcarriers are also used in the U．S．，

FIG. 1-THE RDS SIGNAL IS PLACED on a $57-\mathrm{kHz}$ subcarrier. If the station also broadcasts an ARI auto-radio information signal on 57 kHz , the RDS signal is applied in quadrature so both can use the subcarrier.
even though a $67-\mathrm{kHz}$ subcarrier is more common here. The Europeans selected 57 kHz because it's a multiple of the $19-\mathrm{kHz}$ stereo pilot, which makes the subcarrier frequency easy to derive and phase-lock.

Note that the RDS $57-\mathrm{kHz}$ subcarrier shows two distinct services: ARI and RDS. That is where "accommodating existing services" comes into play. ARI stands for Auto Radio Information; a system used in Germany and other countries to provide up-to-the-minute traffic information. (Actually, ARI stands for the German words that mean "auto radio information." Fortunately, the German and English words have the same initial characters-ARI.)

ARI works this way: The car radio constantly monitors the ARI subcarrier even if the driver is playing a tape. If the station broadcasts a subaudible frequency of approximately 10 Hz to 30 Hz , the tape program is interrupted by the radio so that the driver can hear traffic announcements made over the main channel by the station announcer. If the driver wants peace and quiet but wants to be kept up to date on traffic conditions, he can keep the volume turned down. Reception of an ARI signal automatically raises the volume so that the driver can hear the station's announcements and be aware of any emergency situations.

On the other hand, Sweden uses 57 kHz for its MBS national paging service. You can drive the entire 2000mile length of Sweden and be paged if your radio is tuned to an FM station. (It is exactly the same as the cue nationwide radio paging system, which we covered in the January " 88 issue of Radio-Electronics)

Multipath

In order to share the subcarrier with existing ARI $57-\mathrm{kHz}$ subcarrier services in Austria, Germany, and Switzerland, the RDS modulation is applied in quadrature (90° out of phase) with the existing service. An RDS radio can use either quadrature signal. Unfortunately, although the quadrature method works almost exactly the same as our FMX stereo broadcasts, which were discussed in Larry Klein's Audio Update column in the June ' 88 issue of Radio-Electronics, quadratured RDS also suffers from the same kind of multipath interference that afflicted early FMX reception. Again, like FMX, multipath interference problems created by quadratured RDS is being reduced. Since, as we'll show, RDS can accommodate both traffic and paging digital data, when RDS is the sole ancillary FM communications system, the multipath problem won't exist because RDS will be the only signal using a $57-\mathrm{kHz}$ subcarrier.
The quadrature modulation is the reason why Fig. I shows both the ARI and RDS services sharing the $57-\mathrm{kHz}$ subcarrier. It does not show the Swedish MBS paging signal because that is not compatible with RDS. Sweden is developing an interim system where MBS and RDS will be implemented on individual radio networks. Eventually, MBS will be phased out, and paging will be integrated within RDS.

Digital info

Bear in mind that once we have a digitized source of information, any device associated with the digital data can be made intelligent; which means that the device is capable of making
decisions. In the case of RDS, the intelligent device is the car radio. And before we get into the nuts and bolts of RDS, let's take time out for a few whet-the-appetite examples of what's possible with an intelligent RDS car radio.

Intelligent is a broad term that covers anything and everything. The most recent RDS radios can be programmed on-the-fly by the user for certain functions, such as traffic-information reception, specific programming, etc. A super-intelligent radio-which is what is really envisioned, since an RDS radio has an onboard microprocessor-will resemble the functional block diagram shown in Fig. 2. Other than the power switch, and the manual tuning and volume controls, just about every feature and function can be determined, set, or varied by the digital signal received on the RDS subcarrier. For example, an RDS station might send a signal indicating whether they are broadcasting music or voice. The user can program the radio, through a keypad or other pushbuttons, to automatically raise the volume when music is broadcast, even optimize the radio's frequency response for speech or music, or for a particular kind of music.
If the RDS data signal indicates that speech is being broadcast, the data can be used by the radio's microprocessor to reduce the radio's audiofrequency response to the 250-7500 Hz range for maximum clarity. When the RDS data indicates that music is being broadcast, pre-programming by the user can cause the audio bandwidth to increase to $50-15,000 \mathrm{~Hz}$, with or without Dolby decoding. It is even possible to use the RDS signal to indicate rock, wall-to-wall, or classical music, and then to adjust the radio automatically-for example, the volume level for the specific kind of music being broadcast.

On the other hand, the radio can be user-programmed so that if the RDS signal is an emergency announcement, the driver hears the emergency signal itself-a tone burst, or the volume is automatically increased to the threshold of pain.

User memory

As shown in Fig. 2, the receiver's microprocessor control is what makes both user and automatic feature/function control possible. But also note that the receiver has EPROM memory
and a voice synthesizer．In later RDS receivers，the user will be able to order a custom EPROM；one that is replaceable from the front panel．The first reason for the replaceable EPROM is obvious：The user can change features on demand．The sec－ ond reason is not so obvious，but it is
sports．Figure 3－b shows the display if a message page，coded specifically for that radio，was received．Figure 3－c shows how the display might ap－ pear if a traffic－information bulletin were being transmitted，or scheduled to be transmitted．It might be accom－ panied by a warning tone；or the mes－
sage might override normal tape or radio reception，with the display serv－ ing only to tell the user what the mes－ sage is about

The user of an RDS car radio could accommodate possible variations in the RDS data，or a language barrier． by simply substituting the appropriate

FIG．2－THE FUNCTIONAL BLOCK DIAGRAM of a super－intelligent RDS receiver．The voice synthesizer allows an emergency or traffic bulletin to be heard in the listener＇s native language．
probably more important，particularly in Europe where an auto can easily be driven across three or four language borders in a single day．

The EPROM．in conjunction with the voice synthesizer，can be pre－pro－ grammed with standardized emer－ gency and road－service phrases in the driver＇s native language．That means that an RDS signal can force the voice－synthesized announcement to override or replace a received signal， or even a tape playback，with emer－ gency broadcast announcements or a personal－paging message．Either way，regardless of the country of ori－ gin of the RDS signal，the driver hears the emergency announcements or the page in his own language．

Also，the message or page might be shown on the radio＇s LCD display．In Fig． 3 we use a conventional RDS receiver to illustrate the kind of dis－ play that might be attained on a super－ intelligent RDS radio．Figure 3－a shows how the display would appear during the microprocessor＇s program－ ming if the user wanted the radio to tune only stations broadcasting

FIG．3－THE DISPLAYS MIGHT INDICATE：a）the kind of station that the listener wants tuned in；b ）a personal paging message；c ）traffic information．

FIG. 4-RDS INFORMATION CAN ORIGINATE from ROM's as static (permanent) data, or from individual computer sources as dynamic data.

FIG. 5-THE RDS DATA IS TRANSMITTED in groups of 104 bits. Each group consists of four 26 bit blocks. Each block uses 16 bits for information, 10 bits for error-checking. The effective information transmission-rate is 730 bps .

EPROM when the car crossed a country's border. For example, imagine that you're traveling in Italy, the language of which you have little knowledge other than a few words such as pizza and manicotti. You're tooling your Fiat up the Appian Way while listening to your travel-tape of Bruce Springsteen on the car stereo, when suddenly "The Boss" is interrupted by an emergency travel advisorygiven in perfect, though computerized English. And while you're hearing the travel bulletin in English. French tourists are hearing the same
bulletin in French, and in another car, filled with visitors from Japan, they are hearing the same bulletin, at the same time, in Japanese.

If user-exchange of the EPROM is needed because you intend to drive through many countries, you simply rent a car having an RDS radio that speaks your language. If you own the car, the voice synthesizer will, of course, be in your native language.

An RDS emergency-announcement uses the same digital code regardless of the country of origin, although there might be exceptions to
handle unusual conditions. For example, it is more likely that the digitized phrase MI motorwoy rather than Appian Way is pre-programmed for car radios intended for Great Britain; while autobahn would be used in German radios. To handle unusual traffic conditions, the voice synthesizer might simply contain the equivalent of "Ho Boy! You drivers in the south of England (or wherever) are in for massive tie-ups, so pay attention to local officials.

Static and dynamic

RDS data can be either static or dynamic. Static data can be the station's I.D.. automatic time and clock correction (as you drive through different times zones the radio's clock is automatically corrected), the network affiliation, the kind of program being broadcast, etc. For example, in Sweden you can drive 2000 miles and have an RDS radio trach the same progranl even as you drive out of the range of one station into the reception zone of another. If programmed to a particular service or program, such as sports, the radio continually searches out the RDS data representing that service or program-automatically adjusting the radio's tuning to the appropriate local station.

Dynamic data is RDS information continued on page 76

WORKING WITH A

MOST OPERATIONAL AMPLIFIERS ARE Voltage-Differencing Amplifiers, or VDA's, which have an output that is proportional to the difference between the voltages applied at the two input terminals. But the LM3900) is a Current-Differencing Amplifier, or a CDA; it is also known as a Norton opamp. The device has an output that is proportional to the difference between the currents applied at the two input terminals.

The LM3900, first introduced in the early 1970 's, was specifically designed as a low-cost, medium-performance, quad op-amp that could operate off a single-ended power supply and provide a large output-voltage swing. It is the most widely known CDA-type op-amp, containing four identical and independently accessible op-amps, as shown in Fig. 1. The device can operate with any DC supply from $4+-46$ volts, and each opamp has a unity-gain bandwidth of 2.5 MHz and an open-loop gain of 70 dB .

Basic principles

The LM3900 incorporates four identical op-amps, each having the circuit shown in Fig. 2. To help you understand how that circuit works, it is broken down into four simple stages in Fig 3.

Figure 3-a shows the basic invert-ing-amplifier circuit. Transistor Q1 is a common-emitter amplifier with a constant-current collector load, providing high-gain inverting action. Transistor Q2 is a non-inverting emit-ter-follower output bufter with a con-stant-current emitter load. The upperfrequency response of the resulting high-gain non-inverting amplifier is rolled off by Cl to enhance circuit stability. Note that the output can swing within a few hundred millivolts of ground and the supply voltage.

The overall current gain of the Fig. 3 -a circuit is limited to the product of the two individual transistor current gains. Fig. 3-b shows how the current gain can be further increased. with little reduction in the output-voltage swing, by adding transistor Q3.

FIG 1-THE LM3900 NORTON OP-AMP contains four identical and independently accessible amplifiers.

The output from the circuit in Fig. $3-b$ can typically source up to 10 mA , but can sink only 1.3 mA (via the constant-current generator of Q2). Figure 3-c shows how the sink current can be increased by adding Q4, providing class- B operation during the over-drive condition. Also, transistors Q5 and Q6 are used as con-stant-current generators, which are biased by an internal network in the LM3900 IC.

The circuit in Fig. 3-c is the basis of each of the LM 3900 amplifier stages, but it can only provide inverting action. The non-inverting action of the LM3900 is provided by the addition of the current-mirror circuit in Fig. 3-d. That circuit is made up of two identically matched transistors and will draw an output current that is almost identical to the input current. The circuit operates as follows:

The input current to the circuit in Fig. 3-d is applied to the base of each transistor. Suppose that both transistors have current gains of 100 , and that both transistors draw base currents of $5 \mu \mathrm{~A}$. In that case, the collectors of both transistors will draw 500 $\mu \mathrm{A}$. Note, however, that the collector current of Q7 is drawn from the cir-

NORTON OP-AMP

Abstract

This month we explore the mysteries of the LM3900 op-amp, and show the many ways of using this versatile device.

RAY MARSTON

cuit's input current, and equals 500 $\mu \mathrm{A}$ plus $(2 \times 5 \mu \mathrm{~A})$, or $510 \mu \mathrm{~A}$, and that the collector current of Q8 is the output or mirror current of the circuit. The input and output currents are almost identical, regardless of the in-put-current magnitude.

Finally, if we connect the currentmirror circuit in Fig. 3-d to the circuit in Fig. 3-c. we have the circuit in Fig. 2, where the mirror circuit is driven by the non-inverting input terminal, and the mirror current is drawn from the inverting-input terminal, which is also connected directly to the base of the Q 1 amplifier stage Consequently, the base current of Ql is equal to the input current at the inverting input. minus the input current at the noninverting input. The complete amplifier (Fig. 2) thus provides CDA action already mentioned. Note that CDA's can operate like conventional VDA's by wiring high-value resistors in series with the input terminals, so that the input currents are directly proportional to the input-voltage/resistor values.

The output of an LM3900 amplifier will start to swing down through the half-supply point (half of the supply voltage) when the input-bias current

FIG 2-THE CIRCUITRY for each of the four op-amps inside the LM3900 looks like this.

FIG 3-THE BASIC INVERTING AMPLIFIER is shown in a, and an improved inverting amplifier is shown in b. Constant-current generators have been added in c, and the current-mirror circuit is shown in d.
of Q1 rises above 30 nA or so. The input-bias current is normally equal to the difference between the two inputterminal currents, and those currents should normally be restricted to the range from $0.5 \mu \mathrm{~A}$ to $500 \mu \mathrm{~A}$.; an ideal value for the input-bias current of an LM3900 amplifier is usually around $10 \mu \mathrm{~A}$.

Linear amplifier circuits

In linear applications, an op-amp is normally biased so that its output takes on a quiescent value of half of the supply voltage to accommodate maximum undistorted signal swings. Also. when an op-amp is biased for linear operation, its output is proportional to its input. The feedback cur-
rent automatically limits the internal QI base current, providing a closedloop gain. In Fig. 4, R1, R2, and CI generate a decoupled half-supply reference voltage, which applies a reference current to the non-inverting terminal via R3. Also, a negativefeedback current is applied to the inverting terminal via R4, from the opamp's output.

In Fig. 5. R2 and R3 bias the output to a quiescent half-supply value. The input signal is applied to the inverting

FIG 4-AN OP-AMP CAN BE BIASED so that its output takes on a quiescent value of half of the supply voltage.

FIG 5-THIS INVERTING AC AMPLIFIER uses supply-line biasing.

FIG 6-AN IMPROVED BANDWIDTH and high gain are featured in this circuit.
terminal via RI，and the voltage gain is determined by the $R 2 / \mathrm{RI}$ ratio，so that circuit is set up as a $\times 10$ invert－ ing amplifier．

The op－amps of the LM3900 have slew rates of only $0.5 \mathrm{~V} / \mu \mathrm{s}$ ，so they have very restricted useful band－ widths．Figure 6 shows how the useful bandwidth can be increased by con－ necting a transistor to the output and rearranging the input connections of the standard amplifier circuit to make a $\times 100$ inverting amplifier with a $200-\mathrm{kHz}$ bandwidth．Because of the high overall gain，that circuit may be somewhat unstable．If so，R7 and C2 can be added to slightly reduce the bandwidth and improve overall circuit stability．

The circuit in Fig． 6 can be modi－ fied to have a peak－to－peak output swing of 150 volts．That is done by supplying the output transistor with a separate supply of 150 volts $D C$ ．The output will then take on a quiescent value of 75 volts，causing $7.5 \mu \mathrm{~A}$ to be fed to the non－inverting terminal of the op－amp．Therefore，in order to have correct biasing， $7.5 \mu \mathrm{~A}$ would also have to be applied to the inverting input．

The LM3900 op－amp can be used as a unity－gain non－inverting buffer amplifier，or voltage follower．That is done by connecting the output to the inverting input with a 1 －megohm re－ sistor，and applying the input signal to the non－inverting terminal via an equal－value resistor；that way the cir－ cuit will provide unity gain．

Schmitt triggers

The LM3900 op－amp can be used as a voltage comparator by wiring equal－value current－limiting resistors in series with cach input，using one resistor as the input，and the other as the sample input．The circuit in Fig． 7 is an inverting voltage comparator，in which the output switches high when $\mathrm{V}_{\text {IN }}$ falls below $\mathrm{V}_{\mathrm{REF}}$ ；

The circuit in Fig． 7 could also be used as a non－inverting voltage－com－ parator．That would be done by apply－ ing $\mathrm{V}_{\text {REF：}}$ to the inverting input and $-V_{\text {IN }}$ to the non－inverting input．The output will then switch high when $\mathrm{V}_{\text {IN }}$ rises above $\mathrm{V}_{\text {REF }}$

The circuit in Fig． 7 can supply output currents of only a few mA． However，the output current can be boosted to tens or hundreds of mA by connecting a transistor to the circuit＇s output．

FIG 7－THE CIRCUIT SHOWN HERE is an inverting voltage comparator．

FIG 8－THE CIRCUIT SHOWN HERE is an inverting Schmitt trigger．

FIG 9－AN OVER－TEMPERATURE SWITCH will trigger its output when a pre－ determined temperature is exceeded．

FIG 10－AN UNDER－TEMPERATURE SWITCH will trigger its output when the temperature falls below a predetermined value．

Hysteresis can easily be added to LM3900 voltage－comparator circuits so that they operate as Schmitt trig－ gers．That is done by connecting a high－value resistor between the out－ put and the non－inverting terminal． Figure 8 is an inverting Schmitt trig－ ger，in which the R3／R2 ratio deter－ mines the hysteresis magnitude．The circuit becomes a non－inverting Sch－ mitt trigger by transposing the inputs．

Comparator applications

Figures 9－12 show some useful ap－ plications for voltage comparators． The circuit in Fig． 9 is an over－tem－ perature switch，where the output goes high when a pre－set temperature is exceeded．A fixed half－supply refer－ ence voltage feeds a reference current to the inverting input，and a variable current is fed to the non－inverting in－ put．Resistor R6 is a Nega－ tive－Temperature－Coefficient（NTC） thermistor，so the potential at the junction of R5 and R6 rises with tem－ perature．The op－amp will switch high when that voltage exceeds the half－supply value．The trip tem－ perature can be pre－set via R5．

Figure 10 is an under－temperature switch．In that circuit the reference current is fed from the supply voltage via RI，to the inverting terminal，and the variable（non－inverting）current is

FIG 11－AN UNDER－VOLTAGE DETECTOR can be used to monitor a voltage supply．

FIG 12－A 3－INPUT and gate can be con－ verted to a nand gate by transposing the two inputs．

FIG 13－SIMPLE VARIABLE－VOLTAGE ref－ erence circuit uses the voltage at its inver－ ting terminal as a reference．

FIG 14-THIS VARIABLE-VOLTAGE REGULATOR has a boosted-current output.

FIG 15-FIXED-CURRENT SOURCE can deliver 1 mA to any load that is from 0 to 14 kilohms.

FIG 16-A SIMPLE 1-mA CURRENT SINK will draw 1 mA from any load.
supplied from the junction of R3 and $R 4$. Since the value of R 1 is approximately double that of R2, and generates a current that is proportional to the supply voltage, the trip temperature (pre-set via R3) is independent of the supply voltage.

An under-voltage detector is shown in Fig. II. Its output goes high when the supply falls below a value determined by Zener diode DI. If DI is a 5.6-volt Zener, the op-amp will switch high when the supply voltage falls below approximately 11 volts. The precise trip point can be varied by replacing $R 3$ with an 820 K resistor in series with a 470 K potentiometer.

Finally. Fig. 12 shows how a comparator can be used as a 3 -input AND gate, having a high output only when all three inputs are high. The non-inverting-input current, when all three inputs are high, must exceed that of the inverting input, as determined by R4. The circuit can be converted to a NaND gate by transposing the two inputs of the op-amp.

Voltage-regulator circuits

There are various applications that can make use of the LM390) as a voltage regulator or reference. Figure 13 is a variable-voltage reference source. The non-inverting terminal of the op-amp is grounded, and the circuit uses the voltage at the inverting terminal as a reference. Its voltage gain is determined by the $R 2 / R 1$ ratio. When R2 is set at zero, the circuit has unity gain and a 0.55 -volt output. When R 2 is set to the maximum value, the circuit has a gain of 50 and an output of about 25 volts. The circuit provides good regulation and can supply output currents of several mA . The output voltage however, is not temperature compensated.

Figure 14 is a variable voltage regulator. The op-amp is wired as a $\times 2$ non-inverting DC amplifier with a gain that is determined by the R3/R2 ratio. The input voltage to the op-amp

FIG 17-AN IMPROVED CURRENT SINK with a fixed reference of 2.7 volts.

FIG 18-A 1-kHz SQUARE-WAVE generator can be used as a tone generator.

FIG 19-THIS CIRCUIT is a variable duty cycle square-wave generator.

FIG 20-THIS PULSE GENERATOR has a duty cycle of about 1:60.
is variable between 0 and 15 volts via R5. The output voltage is therefore variable over the approximate range from 0.5-30 volts. The available output current has been boosted by adding transistor Q 1 to the output.

Current-regulator circuits

The LM3900 can be used as a fixed-current regulator. Figure 15 is a fixed $1-\mathrm{mA}$ current source, which delivers a fixed current to a load connected between Ql's collector and ground; the load can be anywhere in the range from 0 ohms to 14 kilohms. The circuit is powered from a regulated 15 -volt supply, and the R1-R2 voltage divider applies a 14 -volt reference to R3. The op-amp's output automatically adjusts to provide an identical voltage at the junction of R4 and R5. That produces 1 volt across R 5 , resulting in an R 5 current of 1 mA . Since that current is derived from QI's emitter, and the emitter and collector currents of a transistor are almost identical, the circuit provides a fixed-current source. The output current can be doubled by halving the value of R 5 .

Figure 16 shows a simple 1-mA current sink, in which a fixed current flows through any load connected becontinued on page 76

Plug a Friend into Radio-Electronics this Christmas ... and Save \$11!

Abstract

This Christmas give an electrifying gift ... plug a friend into Radio-Electronics and brighten his whole new year! Whether electronics is his livelihood or his hobby, your gift will sharpen his focus and illuminate the whole spectrum of electronics throughout the coming year.

Radio-Electronics will keep him informed and up-to-date with new ideas and innovations in all areas of electronic technology ... computers, video, radio, stereo, solid state technology, satellite TV, industrial and medical electronics, communications, robotics, and much, much more.

He'll get complete plans and printed circuit patterns for building valuable test equipment and electronic devices for home and car practical money-savers like these ... a TV signal descrambler ... a video test generator ... an auto exhaust analyzer ... a clockboard for his PC ... a radio commercial zapper ... a solid state barometer ... a working robot ... and many others!

PLUS ... equipment repair and troubleshooting ... circuit design ... new
product news and buyer's guides ... service clinics ... equipment test reports ... a special "Computer Digest" section ... regular columns on video, stereo, radio, circuits, solid state, satellite TV and robotics ... and lots more exciting features and articles.

SAVE \$11 ...OR EVEN \$22 ... For each gift of Radio-Electronics you give this Christmas, you save a full $\$ 11.00$ off the newsstand price. And as an R-E gift donor, you're entitled to start or extend your own subscription at the same Special Holiday Gift Rate - you save an additional \$11.00!

No need to send money ... if you prefer, we'll hold the bill till January, 1989. But you must rush the attached Gift Certificate to us to allow time to process your order and send a handsome gift announcement card, signed with your name, in time for Christmas.

So do it now ... take just a moment to fill in the names of a friend or two and mail the Gift Certificate to us in its attached, postagepaid reply envelope. That's all it takes to plug your friends into a whole year of exciting projects and new ideas in Radio-Electronics!

RADIO DATA SYSTEM

continued from page 68
that is usually input, when needed, from personal computers located at various locations. Figure 4 shows how both static and dynamic data are integrated. The stereo encoder provides a sample of the $19-\mathrm{kHz}$ pilot signal to the RDS encoder for phase-locked generation of the RDS subcarrier. The static data is input to the encoder, as is dynamic data from three independent sources: (I) local announcements from the radio station's studio; (2) paging data from a paging service; (3) emergency and traffic information from the local safety officials (police, fire, etc.).

Actually, to avoid a clash of data if several dynamic sources decide to operate at the same time, all RDS data sources generally pass through some kind of automatic polling or sequencing master-control facility. Also, the master control does not allow an individual operator to create interference to an RDS data source to which he does not have access. In other words, if the master control allows the pub-lic-safety computer to give its data precedence by immediately seizing the RDS system, other operators cannot override, delay, or interfere with the public-safety data; nor can they interfere with the paging data, etc. The protection is attained by tagging incoming data with its source or origin, so that the master control knows what signal is coming from where, and its order of precedence.

Data groups

As shown in Fig. 5, RDS data is transmitted in groups of 104 bits divided into four 26 -bit blocks. Of the 26 bits, which are transmitted at 1187.5 bps (bits-per-second), the first 16 bits represent information, the remaining 10 bits are checks for error protection. Therefore, the effective information bit-rate $1187.5 \times 16 / 26$, or 730 bps .

RDS provides for individual identified groups, such as $0 \mathrm{~A}, 0 \mathrm{~B}, 7 \mathrm{~A}$, and 15B. The system requires that specific data be placed in specific groups and blocks so that no station creates a Tower of Babel by going its own way. For example, Swedish paging, which allows up to 18 characters per pager, must be in group 7A, while decoder information, which provides informa-
tion on mono/stereo transmission and special noise reduction or encoding is found in groups $0 \mathrm{~A}, 0 \mathrm{~B}$, and 15B. A station's program service data, a maximum of 8 ASCII characters (for LCD display) must be transmitted at least once each second on groups 0A and 0B.

Various services and future expansion is built into the group assignments; for example, a 5-bit channel code representing computer-program normal text can be placed in groups 5 A and 5 B ; the music/speech identification bit that enables the radio to switch between two volume levels or tone-control adjustments is transmitted four times per second in groups $0 \mathrm{~A}, 0 \mathrm{~B}$, and 15 B ; the station's automatic telemetering and remote-control signals can be in groups 6A and 6B. It is even possible, within groups $2 A$ and $2 B$, to display up to 64 characters for say, a program parade (schedule), or program information such as "Verdi - La Traviata."

As you can see from the few previous examples, each group can contain the data for several functions because the data can utilize the individual group blocks.

Why not here?

To say that Europe is rushing pellmell toward total implementation of the system would be an understatement, because almost everything coming from Europe that concerns communications mentions RDS and when it will be totally implemented on a country-by-country basis. The question we should ask is why RDS stops at Land's End in Europe. The U.S. is 3000 miles wide, and while we don't have contiguous govern-ment-controlled radio networks that allow the tracking of a single broadcast from coast to coast, and while we also don't have a single paging system, certainly all the other RDS functions would be the ideal thing for the average autosound enthusiast. Its an idea whose time and technology came a long time ago in the U.S. In fact, the equipment is here; the encodingequipment manufacturer, RE Instruments Corp. (31029 Center Ridge Road, Westlake, OH 44145), has encoding units here that they use for demonstration. It really would be an advantage to the consumer if the FCC allowed FM communications to get ready for the 21st century-it's almost here.

| NORTON OP-AMP |
| :---: |
| continued from page 72 |

tween the positive supply and Q1's collector. The non-inverting terminal of the op-amp is grounded, and negative feedback flows between the output of the circuit (Ql's emitter) and the inverting terminal. The voltage across R1 is thus equal to the voltage at the inverting terminal (approximately 0.55 volt), so a fixed current of about 1 mA flows through the load, Ql's emitter, and R1.

Figure 17 shows another type of current sink, in which the op-amp has a fixed reference of 2.7 volts applied to the non-inverting terminal via R2. Consequently, the circuit automatically adjusts to generate 2.7 volts across R 4 , which has a value of 2.7 K ; therefore 1 mA flows through the emitter and collector of Q1

Waveform-generator circuits

Figure 18 is a $1-\mathrm{kHz}$ square-wave generator. When the output is high, R3 and R4 are in parallel, and Cl charges via R1 until the current in R2 equals that the non-inverting terminal. That occurs when Cl 's voltage rises to $2 / 3$ of the supply voltage. At that point the circuit switches regeneratively. The output switches low and Cl starts to discharge via R1. Now R4 is effectively disabled and the current to the non-inverting terminal is determined solely by R 3 , so Cl discharges until the current through R2 falls slightly below that of R3. That happens when the voltage across Cl falls to about $1 / 3$ of the supply voltage. At that point the circuit again switches regeneratively, and the output again goes high.

The circuit in Fig. 18 is useful for generating symmetrical square waves with maximum frequencies of only a few kHz . And, because of the poor slew-rate characteristics of the LM3900 ($0.5 \mathrm{~V} / \mu \mathrm{s}$), the output waveforms have rather slow rise and fall times. In the circuit in Fig. 19, Cl alternately charges via R1-D1 and the upper half of R5, and discharges via RI-D2 and the lower half of R5. The duty cycle can be varied over the range from 1:10 to 10:1 via R5.

Figure 20 is a free-running pulse generator. In that circuit Cl alternately charges via R1-D1 and discharges via R2, producing a duty cycle of about $1: 60$.

R-E

YOU CAN BUILD the RMS adapter using this foil pattern．

THE GATED SYNC experimenter＇s descrambler board．

FULL SIZE FOIL PATTERN for the video－edit controller．

THE COMPONENT SIDE of the voice-synthesizer board.

THE SOLDER SIDE of the voice-synthesizer board.

A NEW KIND OF MAGAZINE FOR ELECTRONICS PROFESSIONALS

BUILD A SPEECH SYNTHESIZER Teach any computer to talk.

ASSEMBLY LANGUAGE PROGRAMMING

Programming the 68000
Page 86

PUB:IICATION

DAVID A. WARD

Computerized voice synthesizers are turning up everywhere. Perhaps you've heard one at the grocery store check-out stand, in an automobile, or from an educational toy. Other uses include text-to-speech converters for the visually impaired, talking clocks, calculators, radar detectors, chess and other games, blood-sugar and pressuremonitoring devices, and automotive test equipment.

It's a lot of fun experimenting with voice synthesizers; in fact, the author has built and experimented with four different voice synthesizer IC's, and has listened to at least ten different synthesizers in all.

So that you can share in the fun too, we'll present theory and construction details of a stored-word speech system that you can connect to any personal computer

FIG. 1-THE PARALLEL PRINTER PORT of any personal computer can drive the Digitalker.
having a parallel printer port. A simple BASIC prosram then uses LPRINT statements to create speech output. A number of terms relevant to electronics are included: ampere, kilo, milli, volt, circuit, connect, farad, hertz, meg, mega, micro, nano, ohms, pico, as well as letters of the alphabet, numbers, and numerous others. The project can be built for about $\$ 75$.

Speech systems

Most speech synthesis systems operate in one of two ways: the stored-speech method or the allophone method. The allophone method uses allophones, little chunks of sound that can be combined to form words. The stored-word system stores entire words and phrases.

Each system has advantages and disadvantages. Allophone synthesis can offer an unlimited vocabulary and yet require very little memory. However, allophone speech synthesis is usually artificial sounding, monotone, and difficult for the untrained ear to understand. Probably the best application for allophone synthesis is in converting text to speech. Text-to-speech conversion can be a great aid for the visually impaired, allowing them to operate word processors and other computer programs.

By contrast, a stored-word synthesizer can offer excellent speech quality with intonation or feeling. However, a stored-word system requires tremendous amounts of memory for just a few minutes of speech. Typically, that limits a stored-word system to a vocabulary of several dozen words. The best application for a stored-word synthesizer is one that requires the clearest possible speech and a limited vocabulary, such as in an automobile, or a supermarket check-out stand. A stored-word

 $\frac{2}{2}$
 \qquad点 －

NOTE 1：＂ED＇s＂ 31 and 32 work best with words that end with＂T＂or＂D＂．＂ED＂ 34 works best with words that end with soft sounds．
NOTE 2：＂TH＂（\＃115）can be added to words like；six，seven，and eight to make sixth． seventh，and eighth etc．

NOTE 3：＂UTH＂（\＃122）can be added to twenty，thirty，and forty to make twentieth， thirtieth，and fortieth，etc

\qquad z宗

NINE ． ： THIRTEEN． FOURTEEN． 를
胥己
过隹 SIXTY SEVENTY它
 HUNORED．

FIG. 2-SCHEMATIC DIAGRAM OF THE DIGITALKER. The speech processor (IC1) reads data from the ROM's (IC2-IC5) and delivers speech output via pin 39.
synthesizer is useless for text－to－speech conversion be－ cause of the large amount of memory that would be required．

The Digitalker

National Semiconductor＇s Digitalker is a stored－word speech synthesis system that produces an exceptionally clear＂voice．＂In fact，the Digitalker＇s quality exceeds Texas Instrument＇s Speak \＆Spell speech synthesizer．The Digi－ talker＇s voice has intonation or feeling，is not monotone， and even uses a female voice for the phrase＂This is Digitalker．＂

The MM54104 SPC（Speech Processor Chip）is the heart of the Digitalker system．It＇s a 40－pin IC having 8 data lines （pins 8－15）that can be programmed manually with switches，or by connecting the device to a computer．For best results，a computer should be used to control the SPC so that sentences can be formed by stringing words together rapidly．

The SPC also has 14 ROM address lines（A0－A13，pins 25－38）that are to address ROM＇s containing speech data． Through those 14 address lines，the SPC can directly access 128 K bits of speech data，which is good for about one minute of continuous speech．The SPC receives its data from the ROM＇s through eight data lines（pins 16－19 and pins 21－24）．A number of other lines（pins 3，4，and 7） are used for handshaking with a host computer，for con－ necting an extemal crystal oscillator（pins 1 and 2），and for speech output（pin 39）－which is connected to a filter and an audio amplifier．For more information on the SPC， see National＇s 1982 Linear Databook．

The right words

One key to a good stored－word speech－synthesis sys－ tem is to choose the right words to store，convert them from an analog source，and then compress them into digital data suitable for the SPC．

National Semiconductor will conivert analog tapes into custom digital data for customers，but that＇s an expensive proposition for hobbyists．However，the company has developed four general－purpose 64 K －bit ROM＇s that con－ tain data for 273 words，phrases，tones，and pauses． National＇s Linear databooks list several different ROM sets， but the SSR1，SSR2，SSR5，and SSR6 provide the best selection of words and are easy to obtain．The four ROM＇s together contain nearly two minutes of continuous speech；the words contained in each ROM set are shown in Tables 1 and 2.

Hooking it up

As shown in Fig．1，the simplest way to use the Digitalker is to connect it to your computer＇s printer port．There are several advantages to doing so．First，handshaking be－ tween the computer and the Digitalker is automatic，so it isn＇t necessary to place timing loops in the software．
second，most printer ports have a STROBE line that goes low when data at the port is valid．The strobe line can be connected to the SPC＇s $\overline{W R}$ line．When it is asserted，the SPC reads the ROM data for the selected word over its eight data lines（D0－D8），and then delivers the word to the audio output（pin 39）．

The SPC＇s intr line（pin 6）goes high after the entire word has been pronounced．By connecting the intr line（or，if necessary，the inverted $\overline{\operatorname{NTR}}$ ）to the printer port＇s busy input，

FIG．3－ROM－SELECT CIRCUITS：Use the circuit shown in（a）to select between ROM sets manually．The circuit shown in（b） allows manual or automatic computer control，but only the first 128 words and phrases are accessible in the auto mode．

FIG．4－POWER SUPPLY for the Digitalker．A＋12－volt wall trans－ former provides the raw DC input．
the host computer will wait until each word has been spoken before sending more data to to the SPC．

Two SPC pins provide options．First，$\overline{\mathrm{CS}}$ is the chip－ select line；it must be grounded momentarily when the computer addresses the SPC．$\overline{C S}$ is provided to allow the SPC to share the data bus with other devices．

Second，CMS（command select）resets the interrupt and starts a speech sequence when it is low，and only resets the interrupt when it is high．

The PC board layout brings both $\overline{\mathrm{Cs}}$ and cms out to the edge connector．For normal operation from a parallel－ printer port，it＇s most convenient to ground both pins at the edse－card connector．

Now let＇s look at the circuit，shown in Fig．2．The SPC＇s speech output drives IC8，which buffers the audio signal and drives a volume control．Final audio output is pro－ vided by IC9．

Flip－flop IC6 and 3－to－8 line decoder IC7 select the speech ROM＇s，depending on whether SPC address line AD13 is high or low，and on the state of the $\overline{\mathrm{CS1}}$ signal（edge connector pin 2）．AD13 picks the high or low ROM of a pair，and ©S1 picks one pair or the other．

There are several ways to select which ROM pair you want to use．If you have an extra output bit available on your PC（perhaps a bit from a second parallel port），you can program ©̄1 directly．Otherwise，you can use a manual switch，as shown in Fig．3－d．

A combination approach is shown in Fig．3－b．With switch S 1 in the Manual position，you can use S 2 to switch
between ROM's. But with S 1 in the Auto position, you can switch between ROM's using a single eight-bit port. The upper data bit (D7) provides the switching function, so only the first 128 words ($0-127$) in each ROM set will be accessible using that approach

The power-supply schematic is shown in Fis. 4. An inexpensive wall transformer provides the raw DC power. Voltage regulators inside the project's cabinet provide the required voltages: +5 -volts $D C$ for the digital circuits, and +8 -volts $D C$ for the audio circuitry. The entire circuit draws about 300 mA when the volume is turned up, so use a +12 -volt DC, $500-\mathrm{mA}$ power supply.

Construction

PC board patterns are shown in PC Service. An etched and drilled PC board is also available from the source given in the Parts List. Figure 5 shows how the parts are mounted on the board. Note: six jumper wires must be soldered to the circuit board before the IC sockets are installed. An additional jumper must be soldered from the center int terminal to eitherint or $\overline{\mathrm{NT}}$, depending on the handshaking requirements of your computer's parallel port. Most computers use an active-high busy signal, so try the int setting first if you're not sure which one to use.

Observe normal precautions when handling the SPC and ROM IC's.Leave the chips in their protective "rugs" until they are ready for use. To protect the components against damage caused by static electricity, make sure to ground yourself before removing the IC's from from their rugs, or when handling or moving the PC board.

After mounting all components, check your work carefully for solder bridges and cold joints. Fix any problems before applying power to the board.

FIG. 5-PARTS LAYOUT: Note that six jumpers must be installed on the component side of the board before installing the IC sockets. (Sockets mount over five of the six jumpers.)

DIGITALKER PARTS LIST
All resistors are $1 / 4$-watt, 5% unless otherwise noted.
R1-1500 ohms
R2-1 megohm
R3-50,000 ohms, potentiometer
R4-620,000 ohms
R5- 9100 ohms
R6, R8-10,000 ohms
R7-10 ohms
All capacitors are rated 15 volts or higher
$\mathrm{C} 1-\mathrm{C} 5, \mathrm{C} 10-\mathrm{C} 13, \mathrm{C} 16-0.1 \mu \mathrm{~F}$, ceramic disc
C6-50 pF, ceramic disc
C7-20 pF, ceramic disc
C8, C9-0.01 $\mu \mathrm{F}$, ceramic disc
C14- $0.05 \mu \mathrm{~F}$, ceramic disc
C15-220 $\mu \mathrm{F}, 15$ volts, electrolytic

Semiconductors

IC1-MM54104, speech processor
IC2-MM52164-SSR1, speech ROM
IC3-MM52164-SSR2, speech ROM
IC4-MM52164-SSR5, speech ROM
IC5-MM52164-SSR6, speech ROM
IC6-7474, dual D flip-flop
IC7-74138, 3-to-8 line decoder
IC8-LM346, programmable op-amp
IC9-LM386, audio power amplifiere
IC10-7404, hex inverter
Other components
XTAL1-4.00 MHz crystal
POWER SUPPLY PARTS LIST
R1-330 ohms
IC1-7808 8 -volt regulator
IC2-7805 5-volt regulator
C1-2200 $\mu \mathrm{F}, 25$ volts, electrolytic
C2, C3- $1 \mu \mathrm{~F}, 15$ volts, tantalum
F1-fuse, $0.5 \mathrm{amp}, 125$ volts
LED1-light-emitting diode
Note: An etched and drilled PC board is available for $\$ 15.95$ from David A. Ward, 2261 W. Skyview, Cedar City, UT 84720-2233. All orders add $\$ 2.00$ shipping and handling; Utah residents add 6% sales tax.

LISTING 1

```
10 REM This program will make the
20 REM Digitalker pronounce all words
30 REM in SSR1 and SSR2 (CS1 is low)
40 FOR X = 0 to 143
50 LPRINT CHRS(X);
6 0 ~ N E X T ~ X ~
70 END
```


LISTING 2

10 REM This program will make the
20 REM Digitalker pronounce all words
30 REM in SSR5 and SSR6 (CS1 is high)
40 FOR X=0 to 130
50 LPRINT CHRS(X);
60 NEXT X
70 END

LISTING 3

```
O REM REAL TIME CLOCK PROGRAM
20 CLS
30 PRINT"HOW OFTEN DO YOU WANT THE TIME ANNOUNCED?"
40 PRINT:PRINT
50 PRINT"ENTER 1 FOR 1 MINUTE INTERVALS...."
60 PRINT"ENTER 5 FOR 5 MINUTE INTERVALS..."
70 PRINT"ENTER 30 FOR 30 MINUTE INTERVALS....*
80 INPUT"",I
90 TIMES=TIMES
100 TS=LEFTS(TIMES, 2)
110 T1S=MIDS(TIMES,4,2)
120 HS=LEFTS(TS,1)
130 H1S=RIGHTS(TS,1)
140 H=ASC(HS)
150 H1=ASC(H1S)
160 H=H-48
170 H1=H1-48
180 H=H*10
190 HT = H+H1
200 IF HT>12 THEN HT=HT-12:P=47:GOTO 220
210 P=32
220 IF HT=12 THEN P=47
230 IF HT=0 THEN HT =12:P=32
240 MS=LEFTS(T1S,1)
250 M1S=RIGHTS(TIS,1)
260 M=ASC(MS )
270 Ml=ASC(M1S)
280 M=M-48
290 Ml=M1-48
300 IF M=0 AND M1=0 THEN M*68:M1=68
310 IF M=0 AND M1>0 THEN M=46
320 IF M=1 AND Ml=0 THEN M=10:M1=68
320 IF M=1 AND M1=0 THEN M=10:M1=68
340 IF M=1 AND M1=2 THEN M=12:M1=68
350 IF M=1 AND M1=3 THEN M=13:M1=68
360 IF M=1 AND M1=4 THEN M=14:M1=68
370 IF M=1 AND Ml=5 THEN M=15:Ml=68
380 IF M=1 AND M1=6 THEN M=16:M1=68
390 IF M=1 AND M1=7 THEN M=17:M1=68
400 IF M=1 AND M1 =8 THEN M=18:M1=68
410 IF M=1 AND M1=9 THEN M=19:M1=68
4 2 0 ~ I F ~ M = 2 ~ T H E N ~ M = 2 0
430 IF M=3 THEN M=21
440 IF M=4 THEN M=22
450 IF M=5 THEN M=23
460 IF M1=0 THEN M1=68
470LPRINT CHRS(0);CHRS(138);CHRS(67);CHRS(139);CHRS(67);
CHRS(96):CHRS(71);CHRS(HT):CHRS(69);CHRS(M);CHRS(M1):
CHRS(71);CHRS(P);CHRS (44);CHRS (71);CHRS(71)
480 PRINT TIMES
490 GOSUB 510
500 GOTO 90
510 IF I=1 THEN I=60
520 IF I=5 THEN I=300
530 IF I=10 THEN I=600
540 IF I = 30 THEN I= 1800
550 z =TIMER
560 Y=TIMER
570 IF Y-Z<I THEN }56
580 RETURN
```


Making the connection

Connecting the Digitalker to your computer is as simple as plugging it into your computer's parallel printer port. For testing purposes, wire a ROM-select switch as shown in Fig. 3-a.

It's easy to program the Digitalker. For example, simply by typing

LPRINT CHR\$(0);

the Digitalker will say the phrase "This is Digitalker" if $\overline{\text { CS1 }}$ is low, or "abort" if $\overline{\mathrm{CS1}}$ is high.

Listing 1 and Listing 2 are test programs that sequentially pronounces all words contained in the selected ROM set. Both programs were written in GW-BASIC; they were tested on a Kaypro PC.

More sophisticated applications are not difficult. For example, the author has written BASIC programs that do the following; announce the time from the computer's
real-time clock, pronounce the corresponding letter of the alphabet as a key is typed (great for a small child learning his ABC's), pronounce phone numbers as names are typed in, and prompt the user for input in various programs. The talking clock program is shown in Listing 3.

There are a couple of things to be aware of when programming the Digitalker. First, addressing a word with a number higher than that listed in the word lists will produce unintelligible speech, but will not damage the

FIG. 6-THE ASSEMBLED SYNTHESIZER with its cover removed.

SPC or ROM chips. Second, the semicolons following the LPRINT statements are essential. If they are not present the Digitalker will pronounce thirteen and then ten after each word is spoken. That occurs because an ASCII 13 is a carriage return, and an ASClI 10 is a linefeed. The semicolon (;) eliminates the carriage return and linefeed.

Applications ideas

Computer voice synthesis can be a very natural way for computers to communicate with people. For example, a synthesizer could be used to warn a pilot that the plane's altitude is critically low, or that the fuel level is low. A visually impaired person could compose documents with a word processor, or compute math problems with a calculator.

Undoubtedly, there are many other uses for computerized voice synthesis in cash registers, automatic teller machines, emergency warning systems, automobiles, telephone systems, etc. Have fun finding them! $\boldsymbol{D}_{\boldsymbol{\prime}}$

68000 ASSEMBLY LANGUAGE

An introduction to 68000 assembly-language programming.

PETER A. STARK,
STARK SOFTWARE SYSTEMS CORPORATION

Copyright (C) 1988 by Peter A. Stark

Programming the 68000 in a high-level language (BASIC, C, etc.) is not much different from programming in a high-level language on any other microprocessor. But if you're building the PT-68K computer, we assume that you want to go beneath the surface and learn a bit about the internal structure of the microprocessor, and how to program it in its native language. What follows will serve as a necessarily brief introduction; we'll also provide references for further information.

Even though the 68000 is an extremely versatile and powerful microprocessor, it is still fairly easy to program it in assembly language, especially compared with the difficulty of programming other microprocessors (the intel family in particular). With some effort, it is even possible to program it in machine language, though one has to be pretty desperate to want to attempt it.

As shown in Fig. 1, Internally, the 68000 has nineteen user-accessible registers; each register is a memory location within the microprocessor that can store a number while it is being used. All registers but one are 32 bits long.

For purposes of experimentation, we'll use HUMBUG, the PT-68K's built-in ROM monitor that allows you to examine and change memory, execute programs at full speed and a step at a time, etc. Start your computer, and when you get the prompt, you can press the letters HE to display a help screen. Each command is a two-character abbreviation for the command.

One useful command is RE (Register Examine). At the prompt, press RE to get a display similar to that shown in Table 1. The line starting D : shows eight 8 -digit numbers corresponding to the eight data registers (DO-D7); the line starting with A : shows eight 8 -digit numbers corresponding to the eight address registers (A0-A7). For example, data register D3 is shown on the D: line, under the 3 ; address register A 0 is on the A : line, under the 0 .

The last line of Fig. 1 shows four additional registers: the
program counter (PC), the status register (SR), the user stack register (US), and the supervisor stack register (SS, also called the system stack register). Actually, only nineteen registers are shown, because one of the registers is shown twice. Register A7 is normally used as the user stack pointer, so the register dump shows that the two registers have identical contents.

Except for SR (the status register), each register contains an eight-digit hexadecimal number. For example, Table 1 shows that D0 contains the number 12121212 (your display will contain different numbers). Each hex digit represents four bits, so each register (other than SR) can contain a 32-bit number.

The SR (status) register differs in that it contains only 16 bits, or four hex digits. In the example, those hex digits are 0000 ; the periods to the right of the number indicate the status of each bit.

The 68000 can work with an entire register (32 bits), half a register (16 bits), or even a quarter of a register (8 bits) at a time. A two-digit hex number is called a byte; a fourdigit hex number is called a word; an eight-digit number is called a long word.
Although instructions in a high-level language may consist of complex mathematical calculations, at the lowest level all microprocessors work with machine language, which are usually represented with hex numbers and binary digits. Somewhat more readable (to humans, that is) is assembly language, which represents those instructions with words, not just numbers.
Machine- and assembly-language instructions are concerned with relatively small tasks. The most common such task is one that simply moves a number from one place to another. For example, the assembly-language instruction that moves a long word from the D5 register to the A2 register would be written:

> MOVE.L D5,A2

Note that the instruction Consists of four parts: MOVE tells

FIG．1－THE MC68000＇S REGISTER MODEL．All registers except the status register（also called the condition code register or CCR）are 32 bits long．A7 is used as the user stack pointer．
what we want to do，．L specifies that a long word（32 bits） is to be moved， D 5 （the source）tells where the number is to be moved from，and A2（the destination）tells where to move it to．In 68000 programming，the source always comes first，so you may think of the format as from，to；that differs from some microprocessor families（notably the Intel family）where the format is to，from．

Normally data registers contain numbers used in cal－ culations of some kind，and address registers contain
addresses that indicate the location of that data．There are exceptions to that rule，so moving a long word from D5 to A2 is perfectly valid－the 68000 doesn＇t care whether the number being moved is an address or data．That is why Motorola states that the 68000 has sixteen＂general pur－ pose＂registers．

The 68000 can directly address as many as 16 million locations；those addresses are numbered consecutively from $\$ 000000$ to $\$$ FFFFFF，for a total of just six hex digits． But the registers can hold eight hex digits，not just six． Therefore，in most cases the two left digits of an address will both be 00 （like the A7 and PC registers in Table 1）．

Even though the two left digits are not used by the 68000 for addressing，the scheme maintains com－ patibility with the microprocessor＇s more powerful sib－ lings，the 68020 and the 68030，both of which allow full eight－digit addresses，thereby allowing as many as four billion locations to be accessed directly．

Here are two other common 68000 assembly－language instructions intended to exemplify the from，to structure MOVE．B D7，\＄00FF0200
moves a byte from register D7 to memory location $\$ F F 0200$ ，and

> ADDW \$00FF0100,D6
adds the number that is stored in memory location $\$ F F 0100$ to the contents of data register D6，and leaves the result in that register

Machine and assembly language

Those instructions are simple examples of assembly language．Unfortunately，microprocessors don＇t under－ stand assembly language－instead，they require an even more down－to－earth language called machine language， in which the four parts of the above instructions are coded as binary bits．For example，our first example instruction（MOVE．L D5，A2）is actually coded as the 4－ digit hex number 2445，which translates to a binary 0010010001000101 ．Each of the parts of the original as－ sembly－language instruction is carefully preserved in the machine code as well：the first 0010 means＂MOVE．L，＂the next 010001 means＂to A2，＂and the final 000101 means ＂from D5．＂

Although the original MOVE．L D5，A2 is understandable to humans，a number like 2445 （or，worse yet， 0010010001000101）doesn＇t make much sense．If we had to write all our programs in machine language－as either hex numbers or even strings of ones and zeroes－pro－ gramming would be very difficult indeed．Fortunately，a program called an assembler translates from assembly language to machine language for us．SK＊DOS includes a 68000 assembler，but you need a built－up PT－68K（one with disk drives and some DRAM）to run it．If you＇ve got only a bare－bones system（one with 2 K or 4 K of RAM），to assemble programs what you are going to have to do is to try one of the ideas outlined below．

TABLE 1－HUMBUG＇S REGISTER DISPLAY

| 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| D： 12121212 | 00000012 | 00000013 | 00000014 | 00000015 | 00000016 | 00000017 | 00000018 |
| A： 98765432 | 00000099 | 00000088 | 00000077 | 00000066 | 80000055 | 00000044 | 00FFgEFC |
| $\mathrm{PC}=00 \mathrm{~F} 00206$ | SR＝øØ0 | 0 | | $\mathrm{US}=\emptyset \emptyset \mathrm{FF}$ | OEFC | $S \mathrm{~S}=\emptyset \emptyset \mathrm{FF} 0 \mathrm{D}$ | |

LISTING 1

| FF0000 | | ORG | \$FF0000 |
| :--- | :--- | :--- | :--- |
| FF0000 2002 | START | MOVE.L | D2,D0 |
| FF0002 2401 | | MOVE.L | D1,D2 |
| FF0004 2200 | MOVE.L | DO,D1 | |
| FF0006 4EF9 00FF 0000 | | JMP | START |
| | | | |
| | | END | |
| O ERROR(S) DETECTED | | | |

Move D2 to D0 Move D1 to D2 Move D0 to D1 And repeat

0 ERROR(S) DETECTED

You can, of course, wait until you have installed more memory and a disk interface, at which time you can run the SK*DOS assembler. Alternatively, you could use an assembler that runs on another computer, such as a Macintosh, an Atari ST, or even a PC compatible. (An assembler which runs on a totally different computer is often called a cross-assembler.) With the latter approach, you'll have to enter the hex bytes generated by the assembler into your PT-68K by hand.

If you are really persistent, it is possible (though not easy, and definitely not enjoyable) to "hand-assemble" a program-i.e., translate it manually from assembly language to machine language-with the aid of a few good books on 68000 assembly-language programming. Two such books are The 68000: Principles and Programming, written by Leo J. Scanlon, and published by Howard W. Sams \& Co., and M68000 16/32-bit Microprocessor Programmer's Reference Manual, by the Motorola Staff, published by Prentice-Hall Inc. Both books are also available from local Motorola sales offices; the latter book is a "must have" if you intend to do really serious assembly-language programming.

Last, you could send your assembly language program to the PT-68K BBS (at 914-241-3307) by phone; the Sysop will assemble it for you free of charge. Again, you'll have to enter hex bytes by hand.

To get started, let's write a simple program and show you how you could enter it and test it on your computer. Let's start with a simple BASIC program; it's not really useful, but it does make a good introduction to assembly language:

TABLE-ENTERING A SIMPLE PROGRAM

```
*ME ADDRESS: FFOQOQ
00FFQ000 00 20
OOFFOOO1 00 02
00FF0002 00 24
00FF000300 01
OOFFOOO4 30 22
00FF0005 00 00
OEFQ006 00 4E
00FFg007 00 F9
00FF0008 00 00
OOFF0日09 00 FE
OOFFOOOA 0O 00
OOFFOOOB 00 00
OOFFOOOC 00
*HD FROM FFg0BO TO FFOOOB
00FF0000 20 02 2401 2200 4EFF% 00 FF 00 00
*
```


TABLE 3－SINGLE STEPPING WITH HUMBUG

```
*ST FROM FFg000
00FF0000: 2002
    0
D: 22222222 llllllll 22222222 33333333 44444444 55555555 66666666 77777777
A: 88888888 99999999 AAAAAAAA BBBBBBBB CCCCCCCC DDDDDDDD EEEEEEEE G\emptysetFF@EFC
PC=\emptyset\emptysetFF|\emptyset\emptyset2 SR= \emptyset\emptyset\emptyset\emptyset=\ldots...\emptyset......... US=\emptyset\emptysetFF\emptysetEFC SS=\emptyset\emptysetFF\emptysetDFC
*SS
00FF0002: 2401
    0
D: 22222222 111111111 11111111 33333333.44444444 55555555 66666666 77777777
A: 88888888 99999999 AAAAAAAA BBBBBBBB CCCCCCCC DDDDDDDD EEEEEEEE GOFF\emptysetEFC
PC=|0FF\emptyset\emptyset\emptyset4 SR= \emptyset0|\emptyset=\ldots...0........ US=\emptyset\emptysetFF\emptysetEFC SS=\emptyset\emptysetFF\emptysetDEC
*SS
00FF0004: 2200
    0
        1 2 3
        4
        5 6
        7
D: 22222222 22222222 11111111 33333333 44444444 55555555 66666666 77777777
A: 88888888 99999999 AAAAAAAA BBBBBBBB CCCCCCCC DDDDDDDD EEEEEEEE GOFFOEFC
PC=\emptyset\emptysetFF\emptyset\emptyset\emptyset6 SR=\emptyset\emptyset\emptyset\emptyset=\ldots...\emptyset........ US=\emptyset\emptysetFF\emptysetEFC SS=\emptyset\emptysetFF\emptysetDFC
*SS
00FF0006: 4EF9
    0
D: 22222222 22222222 111111111 33333333 44444444 55555555 66666666 77777777
A: 88888888 99999999 AAAAAAAA BBBBBBBB CCCCCCCC DDDDDDDD EEEEEEEE GOFEOEFC
```



```
*SS
00FF0000: 2002
                    1 2 3
            4
                5 6
                7
D: 111111111 22222222 111111111 33333333 44444444 55555555 66666666 77777777
A: 88888888 99999999 AAAAAAAA BBBBBBBB CCCCCCCC DDDDDDDD EEEEEEEE GOFFQEFC
PC=\emptyset\emptysetFF\emptyset\emptyset\emptyset2 SR=\emptyset\emptyset\emptyset\emptyset=\ldots...\emptyset........ US=\emptyset\emptysetFF\emptysetEFC SS=\emptyset\emptysetFF0DFC
```

| LISTING 2 | | | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| FF0000 | 287C | COFF | 0012 | START | ORG MOVE．L | \＄FF0000
 \＃STRING，A4 | Address of string
 Print it
 And repeat |
| FF0006 | 4EB9 | 00F8 | 0102 | | JSR | \＄F80102 | |
| FFOOOC | 4EF9 | OOFF | 0000 | | JMP | START | |
| FF0012 | 48454C4C4F2104 | | | STRING | DC．B | ＇HELLO！＇， 4 | |
| | | | | END | | | |

We then call the assembler to do the translation；it prints out a listing of both the source program and the translated machine code，which is called the object program or object code．As shown in Listing 1，the object code is at the left，and the source code is at the right．

At the left side of the listing，the first column of num－ bers（beginning with FFOOOO）are the addresses where the program instructions will be stored．（The beginning ad－ dress was specified in the ORG directive at the beginning of the program．The first instruction（MOVE．L D2，D0）， translates into a 2002 machine－language instruction，
which is stored in location FF0000．That instruction \propto C－ cupies two locations in memory，namely FF0000 and FF0001；therefore the second instruction begins at loca－ tion FF0002．The second instruction also occupies two bytes，so the third instruction begins at FF0004，and so on．

Note that each of the three MOVE instructions take only two bytes，but the JMP instruction（equivalent to BASIC＇s GOTO）at the end of the program takes six bytes．In general，instructions that involve only internal registers tend to be short（and fast），whereas instructions that involve memory tend to be long（and slow），because

R-E Computer Admart

Rates: Ads are $21 / 4^{\prime \prime} \times 278^{\prime \prime}$. One insertion $\$ 900$. Six insertions $\$ 875$. each. Twelve insertions \$845. each. Closing date same as regular rate card. Send order with remittance to Computer Admart, Radio Electronics Magazine, 500-B Bi-County Blvd., Farmingdale, NY 11735. Direct telephone inquiries to Arline Fishman, area code-516-293-3000. Only 100\% Computer ads are accepted for Ihis Admart.

CIRCLE 183 ON FREE INFORMATION CARD

PROMPT DELIVERY!!!
SAME DAY SHIPPING (USUALLY)
OUANTTTY ONE PRICES SHOWN Ho SEPY. 13. 190

CIRCLE 61 ON FREE INFORMATION CARD
they often require a complete four-byte memory address. Thus JMP translates into 4EF9, followed by 00FF0000, which is the address of the START label.

Without an assembler, you'll have to type the machinelanguage code in by hand to test and run it. As shown in Table 2, first type in the command ME (which stands for Memory Examine), and then respond with FF0000 (and a space) when HUMBUG asks for an address.
On the second line, HUMBUG prints out the address 00FF0000, followed by the present contents of that address. Although it is shown as 00 in the example, your computer will most likely have some other data there when you begin. You should then type in the number 20, which is the first byte of the first instruction (2002). HUMBUG will then go to the next line and display the contents of the next location; now you should type in the 02. After typing in twelve bytes, just press the Enter key when the program asks for data to place in location 00FF000C.

The last two lines in Table 2 show how to use the HD (Hex Dump) command in order to ensure that the data was entered correctly. The twelve bytes of our program are now neatly displayed, one after another, in consecutive locations.
Now let's test the program. If you look at the orisinal BASIC prosram, you see that if we typed it in and typed RUN, the program would simply get tied up in a loop and never output a single number. The same would happen with the machine-language program. To avoid that, and to see what is happening, we will trace the program one instruction at a time, rather than run it at normal speed.

As shown in Table 3, start by issuing the ST (STart STepping) command, and reply FF0000 when HUMBUG asks where to start.

On the next line, HUMBUG prints out the address and operation code of the instruction it is about to perform (in this case, 00FF0000: 2002). Then the instruction is executed, and next the 68000's registers are dumped. (For
purposes of illustration, all registers had been preloaded with distinctive data, thereby making it easy to see that the contents of D2 has been copied into D0.)

In the first register dump, note the item that reads $P C=00 F F 0002$. The PC is the Program Counter, a register in the 68000 that holds the address of the next instruction to be performed. In this case, the next instruction is at location 00FF0002.

Next the SS command was typed in, HUMBUG performed the next instruction, and the registers were dumped again. Now both D1 and D2 contain the number 11111111.

Note what happens after the computer performs the JMP (4EF9) instruction at 00FF0006. This time the data registers do not change; what happens is that the program counter changes to 00FF0000, indicating that the computer will do the instruction at FF0000 next. In that way we see how the JMP instruction causes the program to repeat from the beginning.

For more practice, you can play with the program shown in listing 2. Here, the second instruction (JSR \$F80102) causes HUMBUG to display the string pointed to by A4, in this case the message "HELLO!" Enter the machine code as before, but don't try to trace through HUMBUG. Just execute the program at high speed (using the command JS FF0000) to see what happens. Then try to figure out how to vary the message.

Conclusions

Assembly-language programming is a complex topic, so we cannot possibly do it justice here. However, we hope that we've given you an idea of what it's like to program in assembly language. If you want to leam more about it, consult your local engineering bookstore, one of the books mentioned above, local computer clubs, and your local college or university. Most important try to get some experience. Good luck. \quad ©

Audio UPDATE

The Audio Engineering Society－Pt．II

LARRY KLEIN，
AUDIO EDITOR

IN LAST MONTH＇S COLUMN I WROIL about the Audio Engineering So－ ciety and the services it provides to those interested in the technical side of audio．I had mentioned that l＇ve been a member of the AES for some 30 years，and I credit it－ through its monthly Journal and meetings－for much of my audio education．Present AES mem－ bership includes more than 10,000 engineers，researchers，edu－ cators，manufacturers，audio re－ tailers，and students．

Aside from the talks，lectures， and debates scheduled during the regular local section meetings held in many major cities，scores of papers detailing the latest audio research and developments are presented during the annual con－ ventions．For information on be－ coming a member of the AES and／ or a catalog of available papers and special publications，simply write to：Audio Engineering Society， 60 East 42 nd Street，New York，NY 10165．Anyway，here＇s a couple of presentations from the October 1987 meeting that I found par－ ticularly interesting．

2504，0－7
A Musically Appropriate Dy－ namic Headroom Test for Power Amplifiers，Mitchell．

This paper discusses in depth a matter that I have written about extensively in a variety of publica－ tions．It questions the validity of the EIA dynamic headroom test found in the current amplifier standard，which measures an am－ plifier＇s ability to provide more

FIG． 1
power for brief peaks than it can on a continuous or sustained basis．The author does not find the concept of dynamic headroom at fault；the problem lies in the spe－ cific characteristics of the standard test signal that is used to deter－ mine dynamic power，which，in his view（and mine），are inadequately representative of typical music waveforms．

The present amplifier test stan－ dard（EIA RS－490）calls for a 1，000－

Hz tone burst of 20 －milliseconds duration，recurring at half－second intervals．The amplitude of the tone－burst test signal is gradually increased until the output wave－ form begins to clip．The dif－ ference，expressed in $d B$ ，between an amplifier＇s maximum rated out－ put with a continuous signal ver－ sus its output with a tone－burst signal is its dynamic headroom rat－ ing．The dynamic headrooms of today＇s amplifiers have been mea－
sured as low as 0.25 dB , and as high as 6 dB -or four times the continu-ous-power rating.
Mitchell's paper includes nine oscilloscope photos (some of them are displayed in Fig. 1) showing the dynamic envelopes for a 2 second period of recorded selections ranging from Genesis and the Bee Gees to Bruckner, Mahler, and Strauss. The scope photos adequately establish that there are substantial musical peaks on compact discs that extend in time far beyond the 20 milliseconds of the EIA standard. Equally interesting are two graphs that illustrate the differences between conventional amplifiers and "commutating" amplifiers that adjust their powersupply voltages to the demands of the output signal. In the latter case, the power supply is operating at a low level most of the time-which minimizes heating and the need for a heavy-duty power supply. When musical tone bursts demand more power, the power supply switches to a higher voltage level.

Mitchell states that the original choice of 20 milliseconds for the tone-burst length was done "somewhat arbitrarily." Not so. As I recall, Edward Foster, who as chairman of the committee had undertaken the task of framing the standard, volunteered to research the question of an appropriate test signal. Only one technical paper bearing on the duration of musical peaks turned up, and our test-signal parameters were based on it.
Mitchell's paper concludes with a suggestion that the audio industry adopt a revised dynamic-headroom rating as its primary standard, because it most closely relates to an amplifier's ability to reproduce music without distortion. That is an interesting suggestion; but my experience as a member of the original IHF com-mittee-which took two years to frame the current dynamic-headroom standards-leads me to believe that changes are unlikely to be agreed upon and adopted, given the nature of today's industry.

2518 C-1

Results of the 1986 AES Audiometric Survey, Martinez, Gilman.

About 25 years ago I visited the sound-mixing department of a major Hollywood motion-picture studio. As I recall, what impressed me most about the facility were the ear-blasting sound-pressure levels that were used for monitoring the mixes.

The sound was so loud that I couldn't see how it was possible to judge the finer points of audio quality while being buffeted by such sonic storms. I was later told that the high volume levels were used to listen for artifacts such as audible tape splices, rather than for nuances of quality. But there's another reasonable-and rather unfortunate-explanation for the high levels used by many audio professionals and musicians: hearing loss.

We'll look at that problem next month before we move on to the topic of amplifier damping factors.

R-E

The ER-4 PHOTO ETCH KIT gives you the tools, materials and chemicals copies artwork from magazines like this one without damaging the page. Use the circuit patterns. tapes and drafting film to make your own 1 X artwork. Or try the Direct Etch ${ }^{\text {N }}$ system (also included), to make single circuit boards without artwork. The ER-4 is stocked by many electronic parts distributors. or Order direct, postpaid.
ER-4 PHOTO ETCH KIT (NJ and CA residents add sales tax)
$\$ 38.00$ DATAK'S COMPLETE CATALOG lists hundreds of printed circuit products and art patterns. Also contains dry transfer letter sheets and electronic title sets for professional looking control panels. WRITE FOR IT NOW!
DATAK Corp. - 3117 Paterson Plank Rd. N. Bergen, NJ 07047

ATLANTIC CABLE DISTRIBUTLNG CENTER INC. P.O. BOX 276 -GREENVALE, NY 11648

CIRCLE 197 ON FREE INFORMATION CARD

Drawing Board

Seven-segment displays

FIG. 1

FIG. 2

We've covered some of The basics of display multiplexing, but everything we've talked about so far involved single LED's. Not only that, but we've also looked at circuitry that only demonstrated the idea of multiplexing. As everyone knows, there's usually quite a difference between demonstration stuff and reality.

All LED-display multiplexing uses the same basic principle we've been talking about-strobing the LED's fast enough so that it seems as if they're constantly on. But, different circuits may have to be handled in different ways. Now let's try multiplexing a seven-segment display.

The block diagram in Fig. 1 is a
typical setup for a seven-segment display. Each display has a latch-and-decoder combination in front of it, and most circuits will use chips that combine the latch and driver in one package but the operation of the circuit is the same.

A practical implementation of that block diagram is shown in Fig. 2. The only thing that's missing from the display is multiplexingand that's exactly what we're going to add to it. Although the design considerations are specifically aimed at the circuit that you see in Fig. 2, they're the same for any other circuit.
The first thing we need is a scan oscillator. You can use the one that we put together in the October issue, or any other one that you happen to have around. That isn't as silly as it sounds, because if you're adding display multiplexing to a circuit, the chances are that there already is a clock in that circuit. It's always a good idea to keep the amount of silicon on a board to a minimum, so it makes perfect sense to steal a clock signal from something in the circuit if you can.

The requirements for an oscillator are really minimal. As a matter of fact, there are only two requirements that are absolutely essential: The first is that the frequency be high enough to keep the display from flickering noticeably and the second is that the duty cycle will make the display bright enough.

The minimum frequency needed to avoid flicker depends on several different things-how many display elements are being

FIG. 3
multiplexed, the characteristics of the particular displays being used, and so on. But as long as you turn on each display at least once every hundredth of a second or so you don't have anything to worry about. You can do it less often but the demonstration circuit we've already discussed should have shown you that the minimum frequency varies from person to person. Most circuit designs that use multiplexing techniques have scan
frequencies of well over 1 kHz to keep the problem from even being considered.

The clock's duty cycle can determine how bright the display is going to be, depending on the particular circuit. The one we're looking at, for example, uses com-mon-cathode displays; the more time the common-cathode terminal spends low, the brighter the display is going to be. If you're stealing a clock signal from an al-
ready-existing circuit, you'll probably be stuck with a given duty cycle. But, if you're generating your own, you have control over everything. Let's do it both ways.

The circuit in Fig. 3 is the same basic one that we used before. A few additions are needed, because the 4017 puts a high on the selected pin and we need a low to light the digit. The transistors are set up as simple switches to invert the 4017 outputs. It may seem as if the circuitry we're adding is unnecessarily cumbersome, but there are reasons for it.

It's true that we could replace the 4017 with a multiplexer that puts a low on the selected output rather than a high. Then we wouldn't need the transistors and we could have the display driven directly by the multiplexer's outputs. On the face of it, that seems like a good idea-fewer parts is a good thing...sometimes.

Using the circuit in Fig. 3 adds complexity but it also gives us two advantages that we'll discuss next month.

R-E

SHORTWAVE RADIO

continued from page 42
The highest maximum ever observed was during cycle 19 , which started in April of 1954 with a smoothed number of 3.3. Within $2-1 / 2$ years it exceeded 159 , which had been the previous record of cycle 3. By March 1958 the smoothed number was 201.3.

Conditions during the maximum year of cycle 19 have already become legendary. Worldwide ionospheric propagation in the amateur 6 -meter band (50 MHz) was observed; the 16 -meter (17 MHz) broadcast band was open around the clock on a worldwide basis. From 1957-1959, transatlantic and transcontinental TV DX was commonplace via the ionosphere on channels 2-5.
Cycle 20 was more "normal," reaching a maximum of 111 in November 1968. However, once the cycle began to decline it displayed some unusual characteristics in that it remained confined to the range between 100 and 110 for 21 months, from November 1967, to August 1970. To cycle 20 belongs the distinction of the longest plateau at maximum ever observed. Cycle 20 was also longer (11.5 years) than the average cycle, and took longer (7.4 years) to go from maximum to minimum.

Cycle 21

Cycle 21 began in June 1976 with a smoothed sunspot number of 12.2; many scientists and astronomers were fooled by that cycle, having expected it to be similar in intensity to cycle 20 . Some forecasters had predicted that we'd see a maximum smoothed number under 100. However, within 27 months of its start, the smoothed number had already risen above 100, and by November of 1979 had become the second highest cycle ever recorded.

A Look at the Future

If we consider that the sun is about four billion years old, and that we have been keeping records for about 250 of those four billion years, it becomes apparent that we really don't know very much about sunspot cycles. We can, at best,
offer only educated guesses:

- Cycle 22 will reach its maximum in the summer of 1990.
- There is a strong possibility that cycle 22 will peak at 200 or above, and that it will be the highest ever observed.
- That would result in unprecedented radio conditions, including around-the-clock amateur 10 meter and Citizen's Band DX a reality. DX television will be commonplace, and TV interference levels will be significant. $17-\mathrm{MHz}$ short-wave DX is likely to be possible around the clock during the summer months, and 21 MHz will be open for longer periods than ever before.
- During the next three years, short-wave DX will be better than ever before!
We'll have to wait and see, of course, how those predictions turn out. When will it reach its peak, will it be the highest cycle ever to be recorded, and will it reach 200? Those are questions that only time can answer.

Don't forget-you heard it here first!

Get A Complete Course In

ELECTRONIC ENGINEERING

8 volumes, over 2000 pages, including all necessary math and physics. 29 examinations to help you gauge your personal progress. A truly great learning experience.
Prepare now to take advantage of the growing demand for people able to work at the engineering level.
Ask for our brochure giving complete details of content. Use your tree information card number, or write us directly. \$99.95, Postage included. Satisfaction guaranteed or money refunded.

FREE CHEMTRQNICS CATALOG!
Comprehensive new source for over 200 products used in electronic manufacturing and field service. Precision cleaning agents, flux removers, bulk solvents, circuit refrigerants, precision dusters, non-residual wipers, foam swabs. premoistened pads/swabs, antistatic compounds, conformal coatings, lubricants, adhesives. desoldering braids. rosin core solder and solder masking agents. Complete with technical specifications and application guide.

[^2]
R-E Engineering Admart

Rates: Ads are $21_{4^{\prime \prime}} \times 27 / 6^{\prime \prime}$. One insertion $\$ 900$. Slx insertions $\$ 875$. each.Twelve insertions $\$ 845$. each. Closing date same as regular rate card. Send order with remittance to Engineering Admart, Radio Electronics Magazine, 500-B Bi-County Blvd., Farmingdale, NY 11735. Direct telephone inquiries to Arline Fishman, area code-516-293-3000. Only 100\% Engineering ads are accepted for this Admart.

CIRCLE 176 ON FREE INFORMATION CARD

FCC LICENSE PREPARATION

The FCC has revised and updated the commercial license exam. The NEW EXAM covers updated marine and aviation rules and regulations, transistor and digital circuitry. THE GENERAL RADIOTELEPHONE OPERATOR LICENSE - STUDY GUIDE contains the necessary preparation for ONLY $\$ 25.00$.

WPT PUBLICATIONS

979 Young Street. Suite A Woodburn, Oregon 97071

Phone (503) 981-6122
CIRCLE 181 ON FREE INFORMATION CARD

- Includes anterna. rechargeable battery, charger/adaptor \& belt clip. Full range of optional accessories avalable.
- Covers $27.54 \mathrm{MHz}, 108 \cdot 174 \mathrm{MHz}$, 406.512 MHz . and $800-950 \mathrm{MHz}$.

AR900 - 5 Scan Banks and 5 Search Banks.

Tolal Price. Freigm Prepad 25 Day Satislaction Guarantee.
s299.00 Full Refund if not Satisfied. - No Frequencies cut out. - Size: $2^{\prime \prime} \times 5 \% 4^{\prime \prime} \times 11 / 3^{\prime \prime}$ wr: 12 oz.

COMMUNICATIONS
10707 E. 106 th St. Indpls., IN 46256
Toll Free 800-445-7717 Visa and MasterCard (COD slighly higher)
In Indiana 317-849-2570 Collect FAX (317) 849-8794 CIRCLE 199 ON FREE INFORMATION CARD

HARDWARE HACKER
 continued from page 36

Two ready-to-use solid-state digital compasses are now available from AutoHẹlm and KVH Industries. Further info on those appears in issue ten of Speleonics.

For this month's contest, just tell me something new and unusual that you would do with a solidstate compass, particularly if the compass measured amplitude as well as direction.

There will be the usual Incredible Secret Money Machine book prizes, along with an all expense paid (FOB Thatcher, AZ) tinaja quest for two for the very best entry of all.

New tech lit

Siliconix has some free samples available on their new ultra-fast DMOS transistors and analog gates. Those dudes switch in less than a nanosecond and can have their on-resistance value as small as 19 ohms. Obvious uses are in video switching and for various special-effect generators.

Crystal Semiconductor has an amazing new 16-bit AD converter available with pricing in the $\$ 20$ range. The part number is $\mathrm{CS}-5501$.

It is very easy to interface with most any personal computer.

The Silicon Systems people have a pair of new data books out, one on Microperipheral Products, and a second on Telecommunications. Products described include modems, call-progress detectors, diskdrive chips, and precision motor controllers.

For information on alternates to traditional power generation that include cogeneration, solar energy, management, conservation, and superconductivity, you might want to check into the Association of Energy Engineers.

Turning to my own products, for lots more information on comput-er-circuit modeling, you might like to try out my Micro Cookbooks, volumes I and II. And, yes, we finally have complete sets of edited and up-graded Hardware Hacker reprints available, as well as plenty of other great stuff on the PostScript language.
Let's hear from you.
R-E

"Help! The laser printer is malfunctioning again!"

1988

ANNUAL INDEX

Electronies Volume 59

and
ComputerDigest Volume 5

Abbreviations：（AR）Antique Radio；（ARE）Ask Radio－Electronics＇（AUD）Audio Update；（C）Construction； （CC）Communications Corner；（C）Department；（DB）Drawing Board；（DN）Designers Notebook；（ED）Editorlal； （ER）Equipment Reports；（HH）Hardware Hacker；（LTR）Letter；（NI）New Ideas；（PCS）PC Service；（SC）Service Clinic；
（SR）Shorwave Radio；（SOSS）State of Solid State

Automobile
Automobile Battery Mònitor（ARE） Electronics（Lancaster）（HH） Radio Data System（Friedman） Radio for AM DX＇Ing（ARE）

Jan 22 Dec 65

B

Bar Codes（Lancaster）（HH）．
Apr 72
Beckman HD150 Series DMMs（ER）Aug 20
Blue Boxes（LTR）Jan 24，（LTR）Mar 14，
Breath－Alert Alcohol Tester（DiLalo）（C）Oct 51，（PCS）Oct 69
Bulletin Board
Using the RE－BBS
May 84

C

| CD－I，The Potential of（Fenton）（ED） | |
| :---: | :---: |
| Cable－TV converter hum（ARE） | May |
| Cafibrating VCR Counters（Blechman）
 （LTR） | (LTR)May |
| Calibration（Martin）Jun 57，（LTR | （LTR）Sep |
| Can you hear the difference？（Klein）（AUD）Aug 75，Sep | |
| Canon FAX－L920 Laser Facsimile（ER） | |
| Car（see Automobile） | |
| Carbon－filter components（Klein）（AUD） | Oc |
| Cellular phones | （LTR）Jan |
| Cheap Color Fuser，A（Lancaster）（HH） | Nov |
| Clock，IO and BIOS（Grossblatt）（DB） | |
| Coils，Coping Wihh（Powell） | |
| Command Communications TF500 Autoswich（ER） | Nov |

TF500 Autoswich（ER）
$\operatorname{Jan} 82$
Communications
Jan 82 Mar 33，May 80
Aug 24，Sep 84, Oct 36，Nov 78
Double your modem＇s
Nov 78
data throughput Signals Invisible
Multiplexing by color
New way to communicate，A
Mar 33

Phantom Hand，The
Sep 84
Jan 82
Real personal
Aug 24
communications service，A
May 80
When a shield isn＇t a shieid
Facts on Fax．The（Friedman）
Nov 45
ISDN：Telephone of
Tomorrow（Summer）
Parasitic Signaller（Crooks）（NI）
Oct 41，（LTR）Dec 14
Parasitic Signalter（Crooks）（Ni）Feb 98
HFBC 87：Planning the
Shortwave Bands（Leinwoll）Feb 55
National Radio－Paging
System，A（Friedman）
Radio Data System（Friedman）
Jan 41
Compact discs，recordable ReadWrite Compact Discs（Fenton） Dec 65

Compass，Aug 8
Computer（See Also Computer Digest，page 100）
Clock，t／O and BIOS（Grossblatt）（DB）Jut
Copy protection（Grossblatt）（OB）
Fluke 90 Series

Microprocessor Board Tester（ER） Microprocessor Board Tester（ER）May 19
General Purpose Interface Bus（Martin）Jul 57，Aug 53 $\begin{array}{lr}\text { Generaics on VCRs } & \text {（LTR）Feb } 14 \\ \text { Interactive TV（Fenton）} & \text { Dec } 45\end{array}$
Interactive TV（Fenton）
Memory expansion（Lancaster）（HH）
Memory expansion（Lancaster）（HH）
Jun 65
Modeling（Lancaster）（HH）
Multiplexing and
Dynamic RAM（Grossblatt）（DB）
Dec 33
Nov 74
Handheld Computer（ER）
Sep 24
REACTS（Roberts，Tucker \＆Bybee）（C）Jan 67,
Feb 47，Mar 49 ，Apr 52
Jul 46，Aug 45，Sep 45
$\begin{array}{lr}\text { Seven－segment display（Grossblatt）（OB）} & \text { Oct 65，Nov } 65 \\ \text { Technology Marketings } & \text { Dec } 93 \\ \text { PC Weather Pro（ER）} & \\ \text { Z80 hardware（Grossblatt）（DB）} & \text { Mar } 23 \\ \text { Jun } 71\end{array}$
Z80 hardware（Grossblatt）（DB）
Jun 71
Construction
Amplified Speaker（McClellan）Sep 41
Audio
Jan 5
Scrambling System（Lindell） Video Switcher（Templin）
Vreath Alert Alcohol Tester（Dil sio）Feb 65
Breath Alert Alcohol Tester（DiLaio）Oct 5
Differential Audio－Distortion
Analyzer（Friedman）
Digital
Oct 62
LC Meter（Heck1）（C） Jul 41 ，Aug 50
Telephone Lock（Sokolowski）（PCS）Jul 66，（LTR）Nov 14
Nov 59．Oct 58
Electronic

| Knighthood（di Zerega） | Apr 35 |
| :--- | :--- |
| Thermometer（Spiwak） | Oct 55 |

Thermometer（Spiwak）
Oct 55
Mar 43
Gated－Sync Decoder（Pence）（C）Dec 49，（PCS）Dec 77
In－Clrcuit Digital IC．Tester（Green）
Sep 37，（PCS）Sep 88，Oct 108
Micro－Sized Amplifier（Polimene）Aug 33
Powerline Monitor（McCletlan）Nov 55
REACTS（Roberts，Tucker \＆Bybee）（C）Jan 67
Feb 47，Mar 49，Apr 52
Jul 46，Aug 45，Sep 45，

| Radiation Monitor（Sythe） | Oct |
| :--- | ---: |
| $60-\mathrm{Hz}$ TimebaselGiftord） | Jun 41, Jul 51 |
| Soil Moistune Meter（Jimenez） | Jan 56 |
| Subwooter Simulator（Hill） | Jun 49 |
| Surround Sound Decoder（Mill） | May 57 |

True RMS Converter for your
DMM（Brown）（C）
Dec 61，（PCS）De
TV－Derived Frequency Standard（Stroud）Apr 55
Uninterruplable Power Supply（Perkins）Jan 44
Versatile Function Generator（Wannamaker）May 39
Video－Edt Controller（Nery）（C）Dec 57，（PCS）Dec 77 Wireless
$\begin{array}{lr}\text { Speaker System（Graf \＆Sheets）（C）} & \text { Aug 37，} \\ \text { Stereo Link（Graf \＆Sheets）（C）} & \text {（PCS）Aug 66 } \\ \text { Mar } 54, \text { Apr } 50\end{array}$
Consumer Electronics for
the Consumer（Fenton）（EO）Mar 4
Control system
REACTS（Roberts，Tucker \＆Bybee）（C）Mar 49
Coping With Coils（Powell）Noy 6 ？

Copy protection（Grossklatt）（OB）Sep 82
＂Crowbar＂circults（ARE）Jan 22，（LTR）Apr 14
CPU
board，REACTS（Roberts）（C）Mar 49
module，REACTS（Roberts）（C）Apr 52
CRT controller，REACTS（Roberts）（C）Aug 45
Current－differencing op－amps
Norton Op－Amps，Working with（Marsion）Dec 69

| Posistors(Lancaster)(HH) | Mar 71 |
| :---: | :---: |
| Postive and negative feedback(Kiein)(AUD) | D) $\quad \tan 78$ |
| PostScript tanguage(Lancaster)(HH) | May 69 |
| Potential of CD-I. The(Fenton)(ED) | Apr 4 |
| Power Supply, Uninterruplable(Perkins)(C) | Jan 44 |
| Powerline | |
| Interference(ARE)
 Monilor (McClellan)(C) | $\text { 5,(PCS)Nov } 71$ |
| Predicting the audio future(Klein)(AUD) | May 76 |
| Pressure | |
| Measurements(Lancaster)(HH) Transducers(Lancasler)(HH) | $\begin{array}{r} 0 \mathrm{Ot} 71 \\ \text { Apr 72,0ct } 71 \end{array}$ |
| Programmable Logic Devices(Meyer) | Febs 59,Mar 63 |
| Propagation, Radio Wave(Leirwoli)(SR) | Apr 78 |
| Psion Organiser II | |
| Psychoacoustics(Klein)(AUD) | Aug 75,Sep 79 |
| Puise generators | |
| 60-Hz Timebase(Gifford) | Jan 56 |
| Working with Monostable Mullivibralors(Marston) | Apr 65 |

R

Radalert Radiation Monitor(Sythe)(C) Jun 41,Jul 51, Radio
Data

| Radio | |
| :---: | :---: |
| Data Systern(F) | |
| awing radio schernatics(Fitch)(AR) | |
| Earty Days of Radio, The(Clitor | |
| General conditions | |
| and fundamentals(Leinwoll)(SR) for July and August(Leinwoll) (SA) | act 39
 a) Aug |
| FBC 87: Planning the | |
| Shortweve Bands(Leim | Feb 55 |
| Sning the Blame(Friedman) | |
| Station WWV(Leinwoll)(| |
| What makes shortwave | |
| New Column Debuts, A(Leinwoll)(SR) | |
| R-E Robot(Sams)(C) Jan 67,(LTR)Mar 14 | |
| REACTS(Roberts, Tucker \& Bybee)(C)Fob 47, Mar 49, Japr 57,May 50, may 50 , Jun 51 ,.Jul 46 , | |
| | |
| | |
| tyi | |
| Control system(Roberts, fucker \& Bybee)(C) May M0,Jun 51 , | |
| | |
| | |
| board(Roberts) (C) | |
| RT Controiler(Plobents)(C) | |
| RAM/PROM programmer | |
| Terminal interface(Tucker)(C) | |
| | |
| Universal I/O(Roberts)(C) | |
| Read/White Compact Discs(Fenton) | |
| Reader-Help-Peader(D) | |
| Real persoriat-communications service(Friedman)(CC) | |
| Refiling toner cartridges, and more(Lancaster)(HH) | |
| Regulators. battery powered(Lancaster)(HH) | |
| Remote controls and a great AD converter(Lancaster)(HH) | |
| Ring-equivalency numbers(Lancaster)(HH) | |
| Robotics | |
| RS-232 interface (See also Computer Dige | |
| (Lancaster)(HH) | |
| | Aug 66,(LTR)S |
| Russian tubes(ARE) | Oct |

S

| Santa Claus machine(Lancaster)(HH) | $\operatorname{dan} 7$ |
| :---: | :---: |
| Satellite paging.
 National Radio Paging System(Friedman) | Jan |
| Scrambling Audio Scrambing System(Lindel)(C) | Jan 5 |
| Securtity
 Drgital Telephone Lock(Sokotowski)(C) Electronic Security Systems(Glasser) | $\text { Nov } 59$ |
| Semiconductors, Teating(Byers) | tan 63 |
| Semiconductor replacements(Lancaster)(HH) | May 69 |
| Service Clinici(D)(Dart) Ghost busting | $\begin{aligned} & \text { May } 31 \\ & \text { May } 31 \end{aligned}$ |
| Servicing Ghost busting(Darr)(SC) | May 31 |

Wireless

-

Speaker Sysem
(Grat \& Sheets)(C)
Stereo Link(Graf \& Sheets)(C) Aug 37.(PCS)Aug 66
Mar 54, Apr 50 Subwooter periormance(Klein)(AUD) Nov 42
Subwooter Simulator(Hill)(C) May 57,(PCS)May 100
Sunspots(Leinwoll)(SR)
Oct 39
Superconductivity Breakthroughs(Fenton) Feb 43
Superconductors(Lancaster)(HH) Feb 73, Mar 71,Jun 65
Surface-mount technology Letters
Micro-Sized Amplifier(Polimene)(C) (LTR)Jan 24,Feb 14
Surplus EGR Valves(Lancaster)(HH) Apr 72
Surround Sound
Decoder(Hill)(C)
Switching circuits
Logic Circuit Design Basics(Sharp) Sep 57
Synchronous Invertert
(ARE)
Feb 12
Sep 68
(Lancester)(HH)
Sep 66
Synergy Card(CD)
(PCS)Nov 71

T

Technical literature(Lancaster)(HH) Jan 71
Technology Marketıng's PC Weather Pro(ER) Mar 23
Telephone
Command Communications Nov 22
-coupling transformers(Lancaster)(HH) Nov 32
ISDN: The Tolephone
of Tomorrow(Surnmer) Oct 4t,(LTR)Dec 14
-line recording phones(Lancaster)(HH) Jul 69
Ring detectors(Lancaster)(HH)
Tele-Guard II
Digital Telephone Lock(Sokolowski)(C) Oct 58,Nov
59,(PCS)Nov 71
Television(See Video, see also TV)
Terminat infertace
REACTS(Tucker)(C)
Test Equipment
Test Equipment
Voltage Detector(ER) Jun 26
Beckman HDi50 Series DMMs(ER)
Dight
Lic Meter(Heckt)(C) Jul 41, Aug 50 In-Circuit IC Tester(Green)(C) Powarline Monitor(McCleltan)(C
Fluke 90 Series Microprocessor Board Tester(ER)
Generator
Sine-wave Simple(Nassar)(NI) Versatile Function(Wannamaker)(C) Apr 77 In-Circuit Digital may 39 IC Tester(Green)(C)

Sep 37
Philips ECG ACT7501
Remole Control Tester(ER) Jul 22
True RMS Comerter for your DMM(Brown)(C)

Dec 61,(PCS)Dec 77

TV-Derived Frequency Standard(Stroud)(C) Apr 55
Testing Semiconductors(Byers) Jan 63,Aug 61
Thermoelectric Coolers(Shields) May 61

Thermometer, Electronic(Spiwak)(C) Oct 55 Tips, Products, and Publications(Lancaster)(HH) Mar 71
Touch-sensitive lamp(ARE) Oct 12

True North(ARE) Sep 12,(LTR)Nov 14
True RMS Converter for your
DMM(Brown)(C)
Dec 61,(PCS)Dec 77
TTL devices
Testing Semiconductors(Byers) Aug 61
Transmission identification(Friedman)(CC) Feb 32
Transmitter
FM Wiretess Stereo
Link(Graf \& Sheets)(C) Mar 54,(PCS)Mar 69,Apr 50 TV-Derived Frequency
Standard(Stroud)(C) Apr 55,(LTR)Oct 16,(PCS)Apr 69 TV on RGB monilor(Lancaster)(HH) Nov 32
Two common record-player problems(Klein)(AUD) Jul 74

U

| UV-Curing resins(Lancaster)(HH) | Feb 73 |
| :--- | ---: |
| Uninterruptable Power | |
| Supply(Perkins)(C) | Jan 44,(PCS)Jan 67 |
| Universal I/O | |
| REACTS(Roberts)(C) | Jun 51 |
| Using | |
| Bargraph Displays(Marston) | Mar 59 |
| the RE-B8S | May 84 |

| V | |
| :---: | :---: |
| Versatile Function | |
| Generator(Wannamaker)(C) (LTP | May 39,(PCS)May 100. (LTA)Aug 12,(LTR)Sep 16 |
| VCR | |
| Calibrating VCR Counters(Blechm | chman) Jan 57 |
| Servicing Easics(Phelps) | Sep 53 |
| Video-Edit Controller(Nery)(C) |) Dec 57,(PCS)Dec 77 |
| Videonic's DirectEd(ER) | Apr 27 |
| Video | |
| AudioNideo Switcher(Tomplin)/C)
 Fob 65
 Calibrating VCR Counters(Blochman)
 Jan 57 | |
| | |
| Gated-Sync Decoder(Pence)(C) Dec 49,(PCS)Dec 77 | |
| Ghost busting(Darr)(SC) | May 31 |
| HDTV Update(Fenton)Jan 16 | |
| Heath GR-9009 Portable Color TV(ER) Jan 32 | |
| IC's(Lancaster)(HH) Mar 71 | |
| -imaging devices(Lancaster)(HH) | HH) Apr 72 |
| Interactive TV(Fenton) Dec 45 | |
| Palette (LTR)Feb 14 | |
| Signals(ARE) Jun 14 | |
| Subwooter Simulator(Hill)(C) May 57 | |
| Surround Sound Decoder(Hill)(C) Apr 45 | |
| Video-Edit Controller(Nery)(C) Dec 57,(PCS)Dec 77 | |
| Videonic's DirectEd(ER)
 Apr 27 | |
| VCR Servicing Basics(Phelps) Sep 53 | |
| Video News(Lachenbruch)(D) | |
| Apr 8,M | , May 6, Jun 6,Jul 6,Aug 6, |

W

Weather station
Tectrology Marketing's
PC Weather Pro(ER)
Mar 23
Welcome to a new column(Lancaster)(HH) Jen 71
What makes shortwave possible(Leimwoll)(SR) Jun 78
What's Mowe(D)
Jan 6,Feb 4, Mar 6. Apr 6
May 4, Jun 4,Jul 4, Mug 4,
When a shield isn't a shield(Friedman)(CC) May 80
Wireless
Speaker System(Grat \& Sheets)(C) Aug 37,(PCS)Aug 66
Slereo Link(Grat \& Sheets)(C)
Working with
Monostable Multivibrators(Marston) May 63,Jul 61
OTA's(Marston) 65
Z

280
hardware(Grossblatt)(DB)
Jun 71
resel(Grossblatt)(DB)
Sep 82

COMPUTERDITEST VOI. 5 January 1988. - December 1988

Abbreviations: (C)Construction; (D)Department; (EW)Editor's Workbench; (HWR)Hardware Review; (LTR)Letter; (SWR)Software Review

| Acceierator card Microsoft's Mach 20(EW) Baby AT Motherboard(EW) | $\begin{gathered} \text { Jul } 84 \\ \text { Mar } 89 \end{gathered}$ |
| :---: | :---: |
| Address decoding, PT68-K(Stark)(C) | Jan 95 |
| Assembly-language programming. PT-68K(Stark)(C) | Dec 86 |
| AST's Premium 386 (HWR) | Oct 86 |
| Autodesk
 Autocad (EW) AutoSketch (EW) | $\begin{aligned} & \text { Apr } 87 \\ & \text { Apr } 87 \end{aligned}$ |
| AutoSwitch Monochrome EGA(EW) | Sep 90 |

| E | |
| :---: | :---: |
| Editor's Workbench(D) Jan | Jan 88,Fob 83,Mar 89,Apr 87 May 86,Jun 86,Jul 85,Aug 82 Sep 90,Oct 86,Nov 84 |
| EIA-323-D:New \& improved RS-232(Bali) | Nov 87 |
| | |
| Floppy-Disk | |
| Coniroller, PT68-K(Stark)(C) | Sep 97 |
| Data Storage(Grossblatt) | dan 90 |
| formalting(Grossblatt) | dan 90 |

| | |
| :--- | :--- |
| Gotden Bow Systems' VOPT(EW) | |
| Graphics | |
| Boards(EW) | |
| Card: Autoswith Monochrome EGA(EW) 90 | |
| comersion: Hijaak(EW) | Sug 82 |
| GratPlus(EW) | Sep 90 |
| Orchids Designer VGA(EW) | Apr 87 |
| VGA Plus(EW) | Jun 86 |
| Grandview(EW) | Sep 90 |
| | Sep 90 |

C

Central Point Software
Copy II PC Deluxe Option Board(HWR) Nov 84 Communications (Nichols) (C) (Nichols)(C)

Jul 87,Aug 88,(PCS)Aug 66 Configurable motherboard Orchard Technology(EW)

Aug 82
CeBIT: The Greatest Computer
Show on Earth(Endrijonas)(EW)
Jul 84 Comdex
Report from Atlanta(EW)
Aug 82
Commodore 64
$\begin{array}{lc}\text { Digital IC Tester for(Barbarello)(C) } & \text { May } 89 \\ \text { Compaq's 386SX systems(HWR) } & \text { Oct } 86\end{array}$
Compaq's 386SX systems(HWR)
Construction
$\begin{array}{lr}\text { Biofeedtoack Montor(Barbarello) } & \text { Oct 95,(LTR)Dec } 14 \\ \text { Digital IC Tester(Barbarello) } & \text { May } 89 \\ \text { Line-Carier Modems(Nichols) } & \text { Jui 87,Aug } 88, \\ \text { (PCS)Aug } 66\end{array}$

RADIO-ELECTRONICS
B

| Backup Tape Subsystem Inwin Model 310(EW) | Apr 87 |
| :---: | :---: |
| BASIC 6.0(EW) | Sep 90 |
| Brofeedback Monitori(Earbarela)!() | Oct 95,(LTR)Dec 14 |
| Book Review | |
| Customizing AutoCAD(EW) | Sep 90 |
| OS: 2 Programmer's Guide(EW) | Jui 84 |
| Osborne/McGraw-Hill Programming | ing Series(EW) Jan 88 |
| Brain waves | |
| Synergy Card tor Your PC (Warner)(C) | Sep 94,Oct 90,Nov 90 |
| Buttonware, Inc. PC-File + (SWR) | Oct 86 |

| Hardware Review | |
| :---: | :---: |
| AutoSwitch Monochrome EGA(EW) | Sep 90 |
| Baby AT Motherboard(EW) | Mar 89 |
| Copy II PC Deluxe Option Board(EW) | Nov 84 |
| Irwin Model 310 Backup Tape Subsystem(EW) | Apr 87 |
| Microsoft's Mach 20(EW) | Jul 84 |
| MicroSolution's CompatıCard(EW) | Nov 84 |
| Mothercard 5.0(EW) | Sep 90 |
| No-Stot Clock(EW) | Feb 83 |
| Orchid's Designer VGA(EW) | Jun 86 |
| VGA Plus(EW) | Sep 90 |
| Hemi-sync generator Synergy Card for Your PC (Warner)(C) | |
| | |
| Hijaak, Inset Systems(EW) | Sep 90 |
| interface | |
| New \& Improved RS-232(Bali)
 RS-232 Monitor Control Syatem(Frickey | Nov 87
 Aug 83 |
| IBMs DOS 4.0(EW) | Nov 84 |
| Inset Systems Hijaak(EW) | Sep 90 |
| Intel's 80386SX-16(HWR) | Oct 86 |
| Interchange File Exchange System(Byers)(EW) | Mar 89 |
| UO control sysiem | Aug 83 |
| Inwin Model 310 Backup Tape Subsystem(EW) Apr 87 | |
| Line-Carrier Moderns(Nichols)(C)
 Jui 87,Aug 88, (PCS)Aug 66 | |
| Living Video Text, Grandview(EW) Sep 90 | |
| \cdots | |
| Microcomputing Mice(Holtzman) | Jun 87 |
| Microsoft | |
| BASIC 6.0(EW) | Sep. 90 |
| Bookshelf(EW) | Jan 88 |
| Excel(EW) | Sep 90 |
| Mach 20(EW) | Jul 84 |
| Windows/286 \& 386(EW) | Nov 84 |
| MicroSolution's CompatiCard(EW) | Nov 84 |
| Modems | |
| Line-Carrier(Nichols)(C) Jul 87,Aug 88,(PCS) | Aug 66 |
| Mothercard 5.0(EW) | Sep 90 |
| Multi-tasking | |
| DESQview(EW) | May 86 |
| OS:2(EW) | May 86 |
| TaskView(EW) | May 86 |
| ThinkTank(EW) May 86 | |
| N | |
| Neuralytic Systems' Dr, Shrink(SWR) | Oct 86 |
| New 8 Improved RS-232(Ball) | Nov 87 |
| New chips, bus, and DOS(HWR)(SWR) | Oct 86 |

| New Riders Publishing Customizing AutoCAD(EW) | Sep 90 |
| :---: | :---: |
| No-Slot Clock(EW) | Feb 83 |
| 0 | |
| Orchid's Designer VGA(EW) | Jun 86 |
| 05/2 | |
| (EW)
 On an XT Mothercard 5.01EW) | May 86
 Sep 90 |
| Outliner, Grandview(EW) | Sep 90 |
| Programmer's Guide(EW)
 Report from Atlanta(EW) | Jul 84 Aug 82 |
| Osborne McGraw-Hill Programming Series(EW) | |
| | Jan 88 |
| P | |
| PageMaker
 Desktop Publishing(Bernard) | Mar 98 |
| Paradise Systems Inc. | |
| AutoSwitch Monochrome EGA(EW)
 VGA Plus(EW) | $\begin{aligned} & \text { Sep } 90 \\ & \text { Sep } 90 \end{aligned}$ |
| Parallel port, PT68-K(Stark)(C) | Sep 97 |
| Programming BASIC 6.0(EW) | Sep 90 |
| PC-File + (SWR) | Oct 86 |
| Persott's IZE(EW) | Nov 84 |
| Q | |
| Qualitas' 366MAX(HWR) | Oct 86 |
| Quarterdeck's DESQview(SWR) | Oct 86 |
| R | |
| RAM, PT68-K(Stark)(C) | Jan 95 |
| Report from Atlanta(EW) | Aug 82 |
| ROM, PT68-K(Stark)(C) | Jan 85 |
| RS-232 Monitor Control System(Frickey)(C) | Aug 83 |
| S | |
| Screen Extender(SWR) | Oct 86 |
| Seaside Software's AskSam(EW) | Nov 84 |
| Serial interfacing | |
| Serial Printer Multiplexer(Renton)(C) Mar 93,(PCS)Mar 69 | |
| Software Review | |
| Autodesks AutoCAD and AutoSketch(EW) BASIC 6.0(EW) | Apr 87
 Sep 90 |
| DESQview(EW) | Moy 86 |
| Disk Technician(EW) | Apr 87 |
| Dr. Shrink(SWR) | Oct 86 |
| GraiPlus(EW) | Apr 87 |
| Grandviow(EW) | Sep 90 |
| IBM's DOS 4.0(EW) | Nov 84 |
| Microsolt | Mar 89 |
| BASIC 6.0(EW) | Sep 90 |
| Bookshelf(EW) | Jan 88 |
| Excol(EW) | Sep 90 |
| Mach 20(EW) | Jul 84 |
| Windows/286(EW) | Nov 84 |
| Windows/386(EW) | Nov 84 |
| OS/2(EW) | May 86 |
| PC-File + (SWR) | Oct 86 |
| Persoti's IZE(EW) | Nov 84 |
| Screen Extender(SWR) | Oct 86 |
| TaskView(EW) | May 86 |
| ThinkTank(EW) | May 86 |
| Turbo Pascal 4.0(EW) | Mar 89 |
| VOPT(EW) | Sep 90 |
| ZBASIC(EW) | Feb 83 |
| SOTA Technology's Mothercard 5.0(EW) | Sep 90 |
| Speech Synthesizer(Ward)(C) | Doc 80 |
| Stairway Software's Screen Extender(SWR) | Oct 86 |
| Spreadsheets Excel(EW) | Sep 90 |
| $\begin{aligned} & \text { Synergy Card for Your PC } \quad \text { Sep } 94,0 \mathrm{ct} 90 \text {,Nov } 90 \\ & \text { (Wamer)(C) } \end{aligned}$ | |
| | |
| Ventura Publisher
 Desktop Publishing(Bernard) Mar 98
 Video display, PT $68 \cdot$ K(Stark)(C) Feb 91
 VGA Plus(EW) Sep 90 | |
| | |
| | |

MARKET CENTER

FOR SALE

TUBES，name brands，new， 80% off list．KIRBY， 298 West Carmel Drive，Carmel，IN 46032.

GREAT buys！Surplus prices，ICs，linears，transfor－ mers，PS，stepping motors，vacuum pump，pho－ totransistor，meters，Isase，FERTIK＇S， 5400 Ella， Phila．，PA 19120.

CLASSIFIED AD ORDER FORM

To run your own classified ad，put one word on each of the lines below and send this form along with your check to：

Radio－Electronics Classified Ads，500－B Bi－County Boulevard，Farmingdale，NY 11735

PLEASE INDICATE in which category of classified advertising you wish your ad to appear．For special headings，there is a surcharge of $\$ 23.00$ ．
（）Plans／Kits
（ ）Bu
ess Opportunities
（ ）For Sale
）Satellite Television
（ ）

Special Category：$\$ 23.00$

PLEASE PRINT EACH WORD SEPARATELY，IN BLOCK LETTERS．

（No refunds or credits for typesetting errors can be made unless you clearly print or type your copy．）Rates indicated are for standard style classified ads only．See below for additional charges for special ads．Minimum： 15 words．

| 1 | 2 | 3 | 4 | 5 |
| :---: | :---: | :---: | :---: | :---: |
| 6 | 7 | 8 | 9 | 10 |
| 11 | 12 | 13 | 14 | 15 （\＄42．75） |
| 16 （\＄45．60） | 17 （\＄48．45） | 18 （\＄51．30） | 19 （\＄54．15） | 20 （\＄57．00） |
| 21 （\＄59．85） | 22 （\＄62．70） | 23 （\＄65．55） | 24 （\＄68．40） | 25 （\＄71．25） |
| 26 （\＄74．10） | 27 （\＄76．95） | 28 （\＄79．80） | 29 （\＄82．65） | 30 （\＄85．50） |
| 31 （\＄88．35） | 32 （\＄91．10） | 33 （\＄94．05） | 34 （\＄96．90） | 35 （\＄99．75） |

We accept MasterCard and Visa for payment of orders．If you wish to use your credit card to pay for your ad fill in the following additional information（Sorry，no telephone orders can be accepted．）：

Card Number
Expiration Date
$\xrightarrow{\text { Please Print Name }}$
／
Please Print Name
Signature

IF YOU USE A BOX NUMBER YOU MUST INCLUDE YOUR PERMANENT ADDRESS AND PHONE NUMBER FOR OUR FILES．ADS SUBMITTED WITHOUT THIS INFORMATION WILL NOT BE ACCEPTED． CLASSIFIED COMMERCIAL RATE：（for firms or individuals offering commercial products or services） $\$ 2.85$ per word prepaid（no charge for zip code）．．．MINIMUM 15 WORDS． 5% discount for same ad in 6 issues； 10% discount for same ad in 12 issues within one year；if prepaid．NON－COMMERCIAL RATE：（for individuals who want to buy or sell a personal item）$\$ 2.30$ per word，prepaid．．．．no minimum．ONLY FIRST WORD AND NAME set in bold caps at no extra charge．Additional bold face（not available as all caps）50c per word additional．Entire ad in boldface，$\$ 3.40$ per word．TINT SCREEN BEHIND ENTIRE AD：$\$ 3.55$ per word．TINT SCREEN BEHIND ENTIRE AD PLUS ALL BOLD FACE AD：$\$ 4.15$ per word．EXPANDED TYPE AD：$\$ 4.30$ per word prepaid．Entire ad in boldface，$\$ 5.15$ per word．TINT SCREEN BEHIND ENTIRE EXPANDED TYPE AD：$\$ 5.40$ per word．TINT SCREEN BEHIND ENTIRE EXPANDED TYPE AD PLUS ALL BOLD FACE AD：$\$ 6.25$ per，word．DISPLAY ADS： $1^{\prime \prime} \times 214^{\prime \prime}-\$ 385.00 ; 2^{\prime \prime} \times 21 / 4^{\prime \prime}-\$ 770.00 ; 3^{\prime \prime} \times$ $2 V_{4}{ }^{\prime \prime}$－$\$ 1155.00$ ．General Information：Frequency rates and prepayment discounts are available．ALL COPY SUBJECT TO PUBLISHERS APPROVAL．ADVERTISEMENTS USING P．O．BOX ADDRESS WILL NOT BE ACCEPTED UNTIL ADVERTISER SUPPLIES PUBLISHER WITH PERMANENT ADDRESS AND PHONE NUMBER．Copy to be in our hands on the 12 th of the third month preceding the date of the issue．（i．e．，Aug．issue copy must be received by May 12th）．When normal closing date falls on Saturday， Sunday or Holiday，issue closes on preceding working day．Send for the classified brochure．Circle Number 49 on the Free Information Card．

TWO－WAY－RADIO，PC COMPUTERS，UNIDEN SERVICE．General Radiotelephone licensed tech－ nician．Catalog－RAYS， 2025 Moline，Ft．Worth，TX 76117 （817）831－7717
AIDS？Yes we have！Cable aids to help you．Zenith Jerrold，Scientific Atlanta，Oak，Hamlins，much more．No Michigan sales！HOTRONICS，（313） 675－5834．
RESTRICTED technical information：Electronic surveillance，schematics，locksmithing，covert scl－ ences，hacking，etc．Huge selection．Free bro－ chures．MENTOR－Z，Drawer 1549，Asbury Park，NJ 07712.

TUBES 59：．Year guarantee．Free catalog．Tube checker \＄8．95．CORNELL， 4215 University，San Diego，CA 92105
FAIR prices SB－3，Z－TAC，SA3，TRI－BI， MLD－1200－3．Pioneer，any notch filters．Small deal－ er only．No Michigan sales（313）979－8356
DESCRAMBLERS．All brands．Special combo Jer－ rold 400 and SB3 $\$ 165$ ．Complete cable de－ scrambler kit \＄39．Complete satelite descrambler kit $\$ 45.00$ ．Free catalog．MJM INDUSTRY，Box 531， Bronx，NY 10461－0531
TRS－80 color computer software，Low prices！Huge selection！Free catalog．T\＆D，P．O．Box 1256，Hol－ land，MI 49422.

CB RADIO OWNERS！

We specialize in a wide variety of technical information，parts and services for CB radios．10－Meter and FM conversion kits，repair books，plans，high－performance accessories．Over 12 years of satisfied customers！Catalog \＄2．

CBC INTERNATIONAL

P．O．BOX 31500RE，PHOENIX，AZ 85046
IS it true．．．Jeps for $\$ 44$ through the government？ Call for facts！1－（312）742－1142，ext． 4673.
TUBES．＂Oldest．＂＂latest．＂Parts and schematics SASE for list．STEINMETZ， 7519 Maplewood Ave． R．E．Hammond，IN 46324
PC products－A／D，D／A，relay，digital I／O cards starting at $\$ 79$ ．Free catalog－parts，kits，comput－ ers．JB COMPU－TRONIX， 3816 N，Wadsworth Blvd．，Wheat Ridge，CO 80033．Call（303） 425－9586
SOLAR electric systems Discount prices．SUN POWER－TEXAS，Dept．01C，P．O．B．2788A Free port，TX 77541．1－（409）233－8350．
BANDSTOP Filters－Clear up channels affected by interterence．Channels 2，3，4，14，15，16，17， 18 19，20， 21 and 22 available．$\$ 20$ each－ 10 for $\$ 130$ ． dB ELECTRONICS，P．O．Box 8644，Pembroke Pines，FL． 33084.

Quality Microwave TV Antennas
Multi－Channel 1.9 to 2.7 GHz ． 40 dB Galn 30－Channel System complete $\$ 149.95$ 12－Channel System complete $\$ 104.95$ 2－Channel System complete $\$ 79.95$ Pillifis－Tech Emetinonics
 （602）947－7700（ 8300 Credit all phone orders！！

CATV CONVERTERS \＆DESCRAMBLERS．Qual－ ity Products．Prolessional Service．Call 1 （800） $541-5487$ Visa M／C Accepted．MOUNTAINTECH INC．Box 5024，Mt．Crested Butte，CO 81225 ．
CABLE TV CONVERTERS／DESCRAMBLERS Free Catalog VIDEO MART 3938 E．Grant \＃241－C Tucson，AZ 85712．（602）721－6557．
RENTAL MOVIE STABILIZER Connect betwen VCRs or to monitor．Satisfaction Guaranteed． $\$ 59.95, \$ 4$ handling． 1 （800）338－8751．

ON SUB-MINATURE VOICE FM TRANSMITTERS. KITS CONTAN PC BOARDS FM VOICE XMTR with fine fune, range control plus
$\$ 24.50$

- TELX-1 TELEPHONE FM XMTR (3 MI) automatically operates when phone is used. Crystal clear clarity with fine tune and range control Non detectable
$\$ 24.50$

*ATR-1 AUTOMATIC TELEPHONE RECORDING DEVICE tapes telephone conversation all automatically. $\$ 19.50$ ALL THREE OF ABOVE FOR $\$ 49.50$
CALL OR SEND VISA, MASTER CHARGE MONEY ORDER ETC. TO AMAZING CONCEPTS BOX 716, AMHERST, NH 03031. (603) 673-4730.

MICROPROCESSOR based prototype board. Zilog Z8, RAM, EPROM, serial/parallel $1 / O$, prototype area. Boards, kits, software from $\$ 49.00$. Free cata$\log$ with application notes. SOFTWARE SCIENCE 3535 Roundbottom Road, Cincinnati, OH 45244 (513) $561-2060$

ELECTRONIC Test Equipment, parts. Lowes prices. EF ELECTRONICS, Box 249, Aurora, IL 60507

FAIR Pricing 1 (313) 979-8356. Lots 5 and 10;65 SB 55; 65 MLD 1200 55; 85 TriBi 75; 90 SA 80; 120 SSAVI 110; 130 Pioneer 120; 180 Z-Tac 170; 180 TOCOM 170; 18 Filters Any Channel -15; No. Mich igan Sales.

FRE CATALIG

FAMOUS "FIRESTIK" BRAND CB ANTENNAS AND ACCESSORIES. QUALITY PRDDUCTS FOR THE SERIOUS CB'er. SINCE 1962
FIRESTIK ANTENNA COMPANY 2614 EAST ADAMS PHOENIX, ARIZONA 85034

TUBES. new, unused. Send self-addressed, stamped envelope for list. FALA ELECTRONICS, Box 1376-2, Milwaukee, WI 53201.
PHOTOFACT folders, under \#1400 \$4.00. Others $\$ 6.00$. Postpaid. LOEB, 414 Chestnut Lane, East Meadow, NY 11554
Free power supply, connectors ($\$ 8.95$ value) with TV Project Assortment \#103 (February 1984 G. Sync article) contains PCB TOKO coils, transistors (BFO85), IC's, dlodes, article reprint. $\$ 25.00$. Five' $\$ 112.50$. As sortment \#104, contains all other parts $\$ 10.00$. Shipping $\$ 3.00$. MC VISA, COD accepted. Jim Rhodes, Inc. P.O. Box 3421, Bnstot, TN 37625.
LASERS, 1 to 9 milliwatt, from \$30, write MWK INDUSTRIES, 9852 W . Katella Suite 340 , Anaheim, CA 92804.

| Multi-Channel Microwave TV. Receivers | | |
| :---: | :---: | :---: |
| | 1.92 .7 GHz Parabolic Dish $40 * \mathrm{~dB}$ Gain LIFETIME WARRANTY
 Complete System $\$ 99.96$ (Shipping Incl.) Replacement Components \& Expert Repairs Available | |
| | K \& S ELECTRONICS P.O. BOX 34522 PHOENIX. AZ 85067 | Call now tor same [602] 230-0640 |
| VISA/MC/C00 | \$2 CAEOIT ON | NE OROERS |

EPROM, Emulator/Programmers. IBM PC/XT compatible. Free info sheet. SOLICON, 8825 EI Matador Dr., Gilroy, CA 95020.
EARN thousands with your own part time elec tronics business. I do. Free proof, information. IN DUSTRY, Box 531, Bronx, NY 10461-0531
CABLE TV CONVERTERS We sell only the best. Low prices, we ship COD. $\$ 2.00$ for catalog. ACE PRODUCTS PO Box 582 Dept E. Saco, ME 04072 (207) 967-0726.

ENGINEERING software. IBM/compatibles. CompDes Circuit Design. Basic electricity through circuit designs. CompMath. General mathematics through statistics Compliew. Digital Analysis, waveforms and filters. \$49. (614) 491-0832. BSOFT SOFTWARE 444 Colton Road, Columbus, OH 43207.

REMOTE CONTROL KEYCHAIN

Complete w/mini-transmitter
and +5 vdc RF receiver
Fully assembled including plans to bulid your own auto a larm Quantlify discounts avallable $\$ 19.95 \begin{gathered}\text { Check, Visa or } \\ 30 \text { days refund }\end{gathered}$

30 days retund
(415) 872-0128
VISITECT INC
415) 872-0128

CABLE TV DECODERS, Jerrold, Scientific Atlanta, Zenith, most major brands. Dealer Inquiries Welcome. Visa-M/C Accepted. E \& O VIDEO, 9691 E. 265th Street, Elko, MN 55020. 1 (800) 638-6898.
LOW prices: ICs, transistors, capacitors, switches. SASE SANTECH, 11 Revere Place, Tappan, NY 10983. (914) 359-1130. FAX: (914) 365-0243

PLANS AND KITS

BUILD this five-diglt panel meter and square-wave generator including an ohms, capacitance and frequency meter. Detailed instructions $\$ 2.50$. BAGNALL ELECTRONICS, 179 May, Fairfield, CT 06430.

ELECTRONIC kits, devices, testers, components, plans, bugs-software. Catalog \$1.00. EXPO:TRONICS, 1222 Highland, Berwyn, IL 60902
VIDEOCIPHER II Manuals. Volume 1-hardware Volume 2-software. Either $\$ 29.95$ both $\$ 49.95$ NEW! Volume 3 -Projects/software-\$39.95. All for $\$ 79.95$. CODs-1-(602) 782-2316. Catalog- $\$ 3.00$ TELECODE, Box 6426-R, Yuma, AZ 85366-6426.
The DECODER. Satellite and cable descrambling newsletter. News-schematics-modifications-re views. $\$ 24.00 /$ year.Complimentary sample. TELE. CODE, Box 6426, Yuma, AZ 85366-6426.
MICRO-link FM stereo audio transmitter. One chip does it all! Transmit your CDNCR/ Walkman in stereo to any FM radio. Free schematic and info. Send a self addressed/stamped envelope to: DJ INC., 217 E. 85th St., Suite 108, New York, NY 10028.

DESCRAMBLING, new secret manual. Build your own descramblers for cable and subscription TV. Instructions, schematics, for SSAVI, gated sync, sinewave. (HBO, Cinemax, Showtime, etc.) \$8.95, \$2 postage CABLETRONICS, Box 30502R, Beth esda, MD 20814.

BIC PROFITS!

Leam VCR cleaning-Repair! Prior expesience unnecessary. Need only small hand tools, average mechanical ability. Blg demand pertorming VCR cleanings and repairs! Viejos 400 page TRAINING MANUAL (over 500 photos and illustrations!) and companion VIDEO TRAINING TAPE contalns hundreds of REAL-WORLD examples of VCR malfuncfions and their repair solutions. Secrets revealed! Also: business tips or your new service business!

Free INFO: call (toll free) 1-800-537-0589
of write 10: Viejo Publitations, Dept. R-E
217 E. 86th St. STE 272. NY. NY. 10028

TOP quality imported, domestic kits, surplus, discount electronics, computers, components. Free catalog. TEKTRASONIX, 1120 Avenue of the Americas, 1/fl Suite 4038, New York, NY 10036
"CB Trick of the Trade book" learn CB repair trickS and tuning lricks. Send $\$ 19.95$ to MEDICINE MAN, CB, P.O. Box 37, Clarksville, AR 72830
FREE kit catalog. Home, auto, industrial kits. BALLCO, INC., 148S. Clayton, Lawrenceville, GA 30245. (404) 979-5900

FM transmitter 88 to 108 MHZ kit $\$ 12.95$ Sierra Electronics. Box 709, Eliers, FL 34680-0709.
POWER Supply Kit: Variable, D/C voltage, fullwave bridge retification. Complete: Transformer, PC board, meter, cabinet and components. Satisfactlon Guaranteed. $\$ 29.95+\$ 3.00$ S/H. KDC ELECTRONICS, Box 577, Bloomington, $\mathbb{N}, 47401$.

EICALLY!

An interesting and worthwhile project. This EASY-TO BUILD circuit lets you use any regular TV set as a simple OSCILLOSCOPE. Build for less than \$10. NO MOOIFICATIONS TO TV! Single or dual trace. Send for Free CATALOG of other plans and kits.

CAR Alarms: Schematics, kits. Remote controlled Inio \$1. KCO 8 Manor House Lane, Uxbridge, MA 01569.

Sing WITh The Worldes best Bandst An Unlimited supply of Backgrounds from standard stereo records！Record with your voice or perform live with the backgrounds．Used in Professional Performance yet connects easily to a home component stereo．This unique product is manufactured and sold Exclusively by LT Sound－Not sold through dealers．Call or write for a Free Brochure and Demo Record．
LISound，Dept．RL－3，7980 LT Parkway Lithonia，GA 30058
（404）482－4724
Manufactured and Eold Enclusively yp 11 sound
24 MOVI PMOME DEMO IM 314011832186

ELECTRONIC Kits！Transmitters！Recorders Phone Devicces！Surveillance items！More！Catalog \＄1．00：XANDI ELECTRONICS，Box．25647，60H． Tempe，AZ 85285－5647．

COMPUTER kits，$\$ 49.95$ complete．Build your own Sinclair 2X81 with built in BASIC．School discounts available．Add $\$ 3.00$ for shipping．Visa／MC．Zebra Systems，Inc．78－06 Jamaica Ave．，Woodhaven， NY 11421．（718）296－2385．
HOW to rewind power transformers to your specs． Instructions \＄7．95．BROSS ELECTRONICS 350 Tremont Drive，Suite D－51，Dept．R12，Murfreesboro， TN 37130.

CATALOG：Hobby／broadcasting／HAM／CB：Ca－ ble TV，transmitters，amplifiers，bugging devices， computers，more！PANAXIS，Box 130－₹12 Para－ dise，CA 95967

PRINTED circuit boards etched \＆drilled．Free deliv ery．K \＆F ELECTRONICS，INC．， 33041 Groesbeck， Fraser，MI 48026．（313）294－8720

SCRAMBLE FACTS 718－343－0130

PHONE TODAY for 3 minutes of satellite TV industry news，technical tips，and new product information

SATELLITE TV

CABLE TV Secrets－The outlaw publication the ca－ ble companies tried to ban．HBO，Movie Channel Showtime，descramblers，converters，etc．Sup plier＇s list included \＄8．95．CABLE FACTS，Box 711 R，Pataskala，OH 43062
SATELLITE TV receiver kits！Instruction manual boards，semiconductor parts！ 59° LNA＇s！LNB s！Ku Band LNB＇s！Catalog $\$ 1.00$ XANDI ELEC． TRONICS，Box 25647 ，Dept．21MM，Tempe，AZ 85285－5647．

FREE catalog．Systems，Upgrades，Houston，Uni－ den，Chaparral，etc．Save，$\$ \$ \$ \$$ SKYVISION， 2009 Collegeway，Fergus Falls，MN 56537．（218） 739－5231
SATELLITE descrambling－cable descrambling Send stamp for catalog．COMMUNICATIONS EN－ GINEERING， 76 Boulevard，Hudson Falls，NY 12839.

FREE catalog 36 pages．Major brands．Nobody undersells WEST since 1977 ．Immediate shipping Call for prices． 1741 Cedardale Road，Mt．Vernon， WA 98273．（800）222－9064．

CABLE－TV

BONANZA！

| 1TEM | $\stackrel{1}{\text { UNIT }}$ | $\begin{aligned} & \text { 10OR } \\ & \text { WORE } \end{aligned}$ |
| :---: | :---: | :---: |
| HAMLIN MCC 300036 COROEO REMOTE CONVERTER（Cn 3 Only） | 2900 | 1800 |
| PANASONIC WIRELESS CONVERTER（Our best buy） | 9800 | 7900 |
| MOVIE TIME VR ${ }^{\text {POONA（manual fine lune）}}$ | 8800 | 6900 |
| JJERROLO 400 COMBO | 16900 | 19900 |
| JERROLO 400 HANO REMOTE CONTROL | 2900 | 1800 |
| JERROLD 4 COMBO | 19900 | 13900 |
| －JERROLD 450 HAND REMOTE CONTROL | 2900 | 1800 |
| JERROL S SB ADO－ON | 9900 | 6300 |
| －JERROLO SB AOD ON WITH TRIMODE | 10900 | 7500 |
| ＇M．35 B COMBO UNIT（Ch 3 output only） | 9900 | 7000 |
| ＇M－35 B COMBO UNIT WITH VARISYNC | 10900 | 7500 |
| －MINICOOE（ N －12） | 9900 | 62.00 |
| －MINICOOE（ N － 12 ）WITH VARISYNC | 10900 | 6500 |
| －MINICODE VARISVNC WITH AUTO ON－OFF | 14500 | 10500 |
| ECONOCOOE（minicode substyute） | 6900 | 4200 |
| ECONOCOOE WITH VARISVNC | 7900 | 4600 |
| MLD－1200－ 1 （ CN 3 Ouiput） | 9900 | 6200 |
| MLD－1200－2．Cn 2 Output | 9900 | 6200 |
| －ZENITH SSAVI CABLE READY | 17500 | 12500 |
| INTERFERENCE FILTERS（Ch 3 only） | 2400 | 1400 |
| ＇EAGLE PD－3 DESCRAMBLEA（Ch 3 Oulput Only） | 11900 | 6500 |
| ＇SCIENTIFIC ATLANTA ADO－ON REPLACEMENT DESCRAMBLEA | 11900 | 8500 |

| Quantity | Output
 Channel | Price
 Each | TOTAL
 PRICE | | | |
|---|---|---|---|---|---|---|
| | | | | |
| | | | | |
| | | | | |
| | | | | | | California Penal Code \＃593－D forbids us |
| :--- |
| from shipping any cable descrambling unit |
| to anyone residing in the state of California． |

Prices subject to change without notice．
\qquad
Address City
State \qquad Zip \qquad Phone Number（
\square Cashier＇s Check
\square Money Order
－COD
\square Visa
\square Mastercard
Acct ${ }^{\text {\＃}}$
Exp．Date
Signature

FOR OUR RECORDS

DECLARATION OF AUTHORIZED USE－I，the Undersigned，do hereby declare under penalty of penury that all products purchased，now and in the future，will only be used on cable TV systems with proper authorization from local officials or cable company officials In accordance with all apolicabte federal and state laws FEDERAL AND VARIOUS STATE LAWS PROVIDE FOR SUBSTANTIAL CRIANINAL AND CIVIL PENALTIES FOR UNAUTHORIZED USE

Dated
Signed

Pacific Cable Company，Inc．

 732512／2 RESEDA BLVD．，DEPT．\＃R－12 • RESEDA，CA 91335 （818）716－5914－No Collect Calls •（818）716－5140IMPORTANT：WHEN CALLING FOR INFORMATION Please have the make and model：of the equipment used in your area．Thank You

Abstract

Cable TV Converters Why Pay A High Monthly Fee? Jerrold Products include "New Jerrold Tri-Mode," SB-3. Hamlin, Oak VN-12, M-35-B, Zenith, Magnavox, Scientific Atlanta, and more. (Quantity discounts) 60 day warranty. For fast service C.O.D. orders accepted. Send SASE (60 cents postage) or call for info 1-800-648-3030. MIDWEST ELECTRONICS, INC., 5143-R W. Diversey, Chicago, IL 60639. MCNisa orders accepted. No Illinois orders accepted. Mon.-Fri. 8 A.M.-5 P.M. CST

DESCRAMBLERS for movies, networks, \$175. vid00 only. $\$ 450$ complete. Visa, MC accepted. Catalog \$4. SKYWATCH, 238 Davenport Road, Toronto, Ontario, Canada, M5R-1J6.
VIDEOCYPHER II descrambiling manual, schematics, video and audio DES, cloning, muskateering, EPROM codes. (HBO, Cinemax, Showtime, adult channels.) $\$ 13.95, \$ 2$ postage. CABLETRONICS, Box 30502R, Bethesda, MD 20814.

CAR-STEREO EQUIPMENT

POWERamplifier stereo bridgeable 800W linear class A, $2 \times 400 \mathrm{~W}$ or use $4 \times 200 \mathrm{~W} \$ 295.00$! Subwoofer speaker systems. Hemholtz enclosure kits, electronic crossovers etc. wholesale prices, free catalog. Information BOOM-BOOM ELECTRONICS 2905 Las Vegas Blvd. North \#53RE, North Las Vegas, NV 89030 (702) 399-3139.

BUSINESS OPPORTUNITIES

EASY, lucrative. One man CRT rebuilding machinery Free info: (815) 459-0666 CRT, 1909 Louise, Crystalake, IL 60014.
YOUR own radio station! AM, FM, TV, cable. Licensed/unlicensed. BROADCASTING, Box 130F12, Paradise, CA 95967
MECHANICALLY inclined individuals desiring ownership of small electronics manufacturing busi-ness-without investment. Write: BUSINESS, 92.R. Brighton 11th, Brooklyn, NY 11235.

BURGLAR ALARMS-BOOMING BUSINESS. GET STARTED NOW. INFORMATION \$2.00. DYNAMIC SECURITY POBB 1456-M Grand Rapids, MI 49501.

EASY Work! Excellennt Pay! Assemble products at home. Call for information. (504) 641-8003 Ext. A-5192.

CABLE TV CONVERTERS

CABLE TV converters. Scientific Atlanta, Jerrold, Oak, Zenith, Hamlin. Many others. "New" Video Hopper "The Copy Kitler." Visa, M/C \& Amex. 1 (800) 826-7623. B8B INC., 10517 Upton Circle, Bloomington, MN 55431.

EDUCATION \& INSTRUCTION

F.C.C. Commercial General Radiotelephone license. Electronics home study. Fast, inexpensive! "Free" details. COMMAND, D-176, Box 2223, San Francisco, CA 94126.

MASTER new skills fast through our short specialized home study courses. Condensed and highly effective! Passport to success! 50 choices! Diploma! CIEE-12, Box 20345, Jackson, MS 39209. MICROPROFESSOR 8 bit trainer. Z-80 C.P.U. 158 instruction set, 8 K monitor ROM, enter programs in assembly, machine, basic, or forth. \$199.95 and $\$ 7.50$ s\&h. ETRONIX 5326 9th Ave.N.E. Seattle. WA 98105. 1 (800) 426-1044 and (206) 527-5223.
MAGIC! Four illustrated lessons plus inside information shows you how. We provide almost 50 tricks including equipment for four professional effects. You get a binder to keep the materials in, and a oneyear membership in the International Performing Magicians with a plastic membership card that has your name gold-embossed. You get a one-year subscription to our quarterly newsletter, "IT'S MAGIC! Order now! \$29.95 for each course plus \$3.50 postage and handling. (New York residents add applicable state and local sales tax.) THE MAGIC COURSE 500-B BiCounty Boulevard, Farmingdale. NY 11735.

DESCRAMBLER MODULE

LATEST technology alternative to Jerrold SB-3 or Radio-Electronics Feb. 1984 project. Featuring electronic tuning, AGC, auto-on/off, AD/DC power, mini-size, A\&T, and more. For fiterature-SOUTHTECH DISTRIBUTING, (813) 527-2190.

AUTO ALARMS

REMOTE auto alarm accessory. Locks/unlocks power doors from remote. Compact kit \$21. (516) 691-4543. Leave address for info.

CALL FOR FREE CATALOG

TEXT TO SPEECH BOARD!

PC/XT COMPATIBLE. MAKE YOUR COMPUTER TALK! a very powerful and amazing speech card. uses the new general INSTRUMENTS SPO256-AL2 SPEECH CHIP AND THE CTS25BA-AL2 TEXT TO SPEECH CONVERTER.
THIS BOARD USES ONE SLOT ON THE MOTHERBOARD AND REOUIRES A COM SERIAL PORT. BOARD MAY ALSO BE USED INA
STAND ALONE ENVIRONMENT WITH ALMOST SNY COMPUTER THAT HAS A HS232 SERIAL PORT. FEATURES ON BOARD AUDIO AMP OR MAY BE USED WITH EXTERNAL AMPS.
demonstration software and a liemary BUILDING PROGRAM ARE INCLUDED ON A 5\% INCH PC/XT DISKETTE. FULL DOCUMENTATION AND SCHEMATICS ARE ALSO INCLUDED.

NEW! pRICECUTI $\underset{\text { ASSEMBLED }}{\$ 6995}$
\& TESTED

NEW! IC TESTER! \$149.00

SIMILAR TO BELOW EPROM PROGRAMMEA. PLUGS IN TO YOUR PC OR XT. TESTS ALMOST ALL 14, 16, AND 20PIN 74XX SERIES. INCLUDES STANDARD POWER, "S"AND ${ }^{\text {ALS }}$ " DEVICES. ALSO TESTS CD 4000 SEAIES CMOS. SOFTWARE INCLUDED CAN EVEN DETERMINE PART NUMBERS OF MOSTUNMARKED AND HOUSE NUMBEFED OEVICES WITH SIMPLE MOD. THIS UNIT CAN ALSO TEST $6.4 K$ AND 256K DRAMSI WITH MANUAL AND SOFTWARE: \$149. PERFECT FOR SCHOOLS.

PC/XT EPROM
 PROGRAMMER \$169

> ASK ABOUT OUR NEW PAL

PROGRAMMER!

- LATEST DESIGN * PROGRAMS UP TO 4 dEVICES AT ONE TIME \# FEATURES EASY TO USE MENU DRIVEN SOFTWARE THAT RUNS UNDER PC ORMS-DOS. * USES AN INTELIIGENT PROGRAMMING ALGORITHM FOR SUPEA FAST (AX) EPROM INTELIGENT PROGRAMMNG ALGOATHM FS OA SUPEA FAST MIN) EPASIS CONTANING 4 TEXTOOL ZIIF. SOCKETS. NO PERSONALITY MODULES REOUIRED * AUTOMATIC VPP SELECTION: 12.5V, 21 V, OR 25V. *EPROM DATA CAN ALSO BE LOADED FROM OR SAVED TOA DISKETTE, * PROGRAMMING SOFTWARE SUPPORTS: 2715, 2732, 2732A, 2784, 276AA, 27128, 27128A, 27258, 27258A, 27512, AND
27512A. ASSEMBLED AND TESTED, BUANED. IN WITH MANUAL. 5169 WITH 27512A.
SOFTWARE. JUST RECEIVED. SAME AS ABOVE PROGRAMMER, BUT PROGRAMS B UNITS AT ONE TIME - $\$ 299$.

Digital Research Computers

P.O. BOX 381450 - OUNCANVILLE, TX 75130 - (214) 225-2309

TERMS: Add $\$ 3.00$ postege. We pey belance. Orders under $\$ 15$ add 754 handing. No C.O.D. We sccept Viad and MastarCard. Tezas Res. add $-1 / 4 \%$ Tax. For

| JUST SIMPLY SAID....
 "When you're looking for a company that provides service and up-to-date technical advances, call us. That's what we're here for."
 800-85-AMCOM | | | | | | |
|---|---|---|---|---|---|---|
| CABLE EQUIPMENT | | STP | | |
| Super SSAVI ADd-ON ELMMITES UNE 20 FALSE FUSHIMG AUTOMATCALY HNNOLES NORMAL Fuly antomac \$219.00 | | CHANNEL *3 inchannel \#3 OUT. BUILD IT YOURSELF AND SAVE. | | |
| | | Kil Induseos eil parn | | - 109.00 |
| | | | | TER" $\$ 25$ |
| | | UHF PREAMP KIt |
| | | |
| INTERFERENCE FILTERS $\$ 15.00$ CHANNEL 2R, 3. 5. 6, 8, 9, 14, 17, 22 ONLY BI-STATE TRIMODE ADD.ON $\$ 119.00$ | | | | |
| | | wat | |
| | | $\begin{array}{lllll}24 & \mathrm{VAC} & 525 \mathrm{MA} & \mathrm{N} / \mathrm{C} & .50 \\ 12 \mathrm{YAC} & 600 \mathrm{MA} & \mathrm{W} / \mathrm{C} & 2.00\end{array}$ | mponew supply $\$ 90.00$ |
| TV TUNER VARACTORS
 TFMIDUHF MITSUMI $\$ 25.00$ | | | | $\begin{aligned} & \text { CALL US!!! } \\ & \text { WE BUY EXCESS } \\ & \text { NVENTRRY } \end{aligned}$ | | $\begin{aligned} & \text { ORIGMNL 2.TAC } \\ & \text { SSAV POWE SLPPCY } \end{aligned}$ |
| LINEAR | CMOS | | TH | CH |
| | | | cowe | CAMERA SYNC CHIP SUTHES ALI SYNC AND COLOR ANO
 Super Special
 MM5321 $\$ 8.50$ |
| DEALERS WANTED:! GREAT QUANTITY PRICES | | | | |
| | AMCOM
 P. O. Box 68391 Virginia Beach, VA 23455 804-456-5505(TECHNICAL) 800-852-6266(ORDERS ONLY) | | | DAIL |
| | | | | | | ACCEPTED |
| | | | MINI | \$15.0 |
| | | | | 8 wituor monce |
| | | | | Les |

GABLE TV "Boxis"

Converters-Descramblers Remote Controls-Accessories

- Guaranced Bect Prices

* 1 Year Warranty-C.O.D's * * Immediate Shipping * - FREE CATALOG *

TAANS-wofilior wable co. 12062 Soultwest 117 ih Court, suite 126 marmi, Florida 33186 600-442-9333

NEURAL NETWORKS

AMAZING circuits or computer program simulate thought \& sensory processing. Plans $\$ 25$. Program \$50. Free Brochure. Author MSEE LP WEBER, Box 621, Dept. RE-1204, Allenwood, NJ 08720.

HIGH TECH ELECTRONICS

SCRAMBLER PHONES! Phone Bug Detectors Electronic Countermeasures Equipment! Executive and personal protection products! And much more!! Catalog $\$ 3.00$ (Refundable with first order) DIVER SIFIED WHOLESALE PRODUCTS, P.O. Box 1275
RE, Redondo Beach, CA 90278

DIGITAL CAR DASHBOARDS

BUILD yourself a complete electronic dashboard. Free details, \$1 P\&H. MODERN LABS, 2900 Ruisseau, St. Elizabeth, QC. JOK 2JO, Canada

WANTED

INVENTORS! AIM WANTS-ideas, inventions technology, improvements on existing prod ucts. We present ideas to manufacturers. Con fidentiality guaranteed. Call toll-free in U.S. and Canada 1 (800) 225-5900.

CABLE-TV AT IT'S BEST

SCIENTIFIC Atlanta mocels 8500-8550 remote included... $\$ 240.00$. SB-3's... $\$ 74.00$. TRI Bl's... $\$ 95.00$. SA-3's... $\$ 99.00$. Zenith (Z-Tac) descramblers... $\$ 169.00$. N-12 (Vari-sync) .. $\$ 89.00$ M-35 B (Vari-sync)...\$99.00. Hamiln MLD-1200's...\$89.00. 80-Channel convert ers...\$95.00. Dealer discount on (5) units. CallN.A.S. INTERNATIONAL, (213) 631-3552.

SCRAMBLING NEWS

Twenty plus pages of information per month, covering cable, satellite and wireless cable. News, product reviews, feedbacks, features, patents, circuits. tum-ons etc. Current articles Z-TAC, SSAVI SALVAGE? Cable TV. VC and the Self Sufficient. $\$ 24.95 / y$ r. Scrambling News $1987 \$ 22.95$. Sample \$3. Pay TV and Satellite Descrambling Vol 1 or Vol $2 \$ 14.85$ each. Cable W. Security $\$ 12.95$ MDS/MMDS Hacking $\$ 9.95$ Satellite Systems Under $\$ 600 . \$ 1295$ Experiments with Videocipher $\$ 14.95$ Any $3 / \$ 28$ or $6 / \$ 42$. ST-1085 descrambler schematic $\$ 15.95$. Z-TRAP II eliminates flashing \$15.95. \mathbf{Z} BAG Bogus Address Generator $\$ 19.95$. Both $\$ 29.95$

Shojlki Electronics Corp, 1552A Hertel Ave Butialo, NY 14216 CODs 716-874-208:

EOUIPMENT REPORTS

continued from page 24
does represent a major step forward in CD-ROM technology. For the first time you can have a CD in your PC that behaves like and offers the same conveniences of a hard disk. The software drivers are considerably easier to use than in competitive units like the Sony CDU-100, and software installation is a snap. That along with audioCD capability and Amdek's commitment to CD-software distribution make the Laserdek 1000 one attractive deal

THIS IS AN ALL BOLDFACE AD. If you want your entire ad in boldface the cost is $\$ 3.40$ per word.

INTERACTIVE TV

continued from page 47
to-most of the operation is automatic, and the entire upload takes about five seconds. Once your game console uploads your name, password and score (which are stored in the console's memory), a signal from the control computer instructs the microprocessor to also upload the counter contents.

The central computer

The return link of the interactive system ends at the central computer. Its block diagram is shown in Fig. 3. As we mentioned earlier, the central computer controls the SCA subcarrier transmitter. It receives the questions, the correct answers, and a difficultly multiplier for each question from the interactive game judge. It transmits all the information, via an FM SCA subcarrier to the game console, which keeps its own score.

The SCA transmitter also sends out random counter-start signals, which are sent to the game consoles to start one of the ten counters. An equivalent set of counters in the central computer also receive the start signals.

When the player calls to upload his results, his score is transmitted first, followed by his ID and password, which are checked and, we hope, approved. Then the contents of the consoles's ten counters are uploaded, and are compared with the counters of the central computer. If everything matches, the score is recorded. After the upload time period is over, (say I/2 hour after the end of the game) the winners will be notified, via the FM subcarrier.

Security

The interactive TV system can be used for a lot more than playing games. Using the game console for placing orders to a home-shopping channel or to order pay-per-view programming are only a couple of the many potential uses. State-lottery
registration might be in the works, also. If IGN's system is going to be used for something as potentially lucrative as winning the state lottery, it had better be secure. There are sure to be more than just high-school kids trying to get through the security measures. All data that is uploaded and downloaded by the game console is encrypted using DES (the Data Encryption Standard). To make it even more of a challenge to would-be hackers, the required software can be changed every day, so that a potential hacker has, at most, 24 hours to crack the security code!

Each console has its own softwareencryption key, and thus its own way of sending encrypted data. Since all game players must be subscribers with registered ID's and passwords, it will quickly be obvious who is trying to play around.

Speaking of playing around, the next time you find yourself watching a game show, remember: Now's the time to start getting in shape to win the game of the 1990's.

$6^{\prime \prime} \times 9^{\prime \prime}$ COAXIAL SPEAKERS Super buyout. Made in Japan by Pioneer for GM. Upgrade auto sound system. $6^{\prime \prime} \times 9^{\prime \prime}$ wooter, $2 \frac{1 / 2 " \prime}{}$ cone tweeter. 35 watts RMS, 50 watts max. 12 oz. magnet, Dust cover. Sold in pairs. 8 Ibs./pair. Limited quantities.

$\$ 1195$

PIONEER

15" WOOFER

60 watts PMS, 90 watts max. $11 / 2^{\prime \prime}$ voice coil. $8 \mathrm{ohm}, 25-2500 \mathrm{~Hz}$ response. 20 oz . magnet, paper cone with poly foam surround. $93 \mathrm{~dB}, 1 \mathrm{~W} / 1 \mathrm{M}$ sensitivity. Net weight: 7 lbs.
\$290-160

WOODGRAIN GRILL CLOTH
Authentic woodgrain print design cloth. $36^{\prime \prime} \times 60^{\prime \prime}$

EMNENCE MADE IN
100 WATTS RMS 10 " WOOFER
Super duty 34 oz . magnet. $2^{\prime \prime}$ voice coll. Paper cone, treated accordian surround. 100 watts RMS. 140 watts max. $8 \mathrm{ohm}, 70 \mathrm{~Hz}$ resonant frequency, response: $45-4000 \mathrm{~Hz}$. Net weight: 8 lbs

$$
\begin{array}{lll}
\text { *290-098 } & 53150 \\
5(1,3) \\
\$ 287000
\end{array}
$$

12" 3-WAY, 100 WATT SYSTEM Pioneer design engineers carefully evaluated the performance characteris tics of this speaker systems to ensure the best full range frequency response. System Includes: (1) 290-125 poly wooter, (1) \#280-045 heavy duty $51 / 4$ midrange. (1) \#270-035 4" soft dome iweeter. (1) $\# 260-2103$-way 100 watt crossover. (2) \#260-255 50 watt L-pads. (1) \#260-300 terminal. and (1) \#260-340 woodgrain grill cloth. Recommended cab woodgrain grili cloth. Recommended cabinet volume: 3 cu H. Cabinet Kit Available $\# 260-390$ s 19.95 each $\$ 595$
\#12-100
$\begin{aligned} & \text { WVML } \\ & \text { save Over } \\ & \$ 1000\end{aligned}$
$\$ 100$

SPEAKERS AND COMPONENTS (1) PIONEER: A) MOTOROLA EMNENCE (119) EMPIFE
(M)Poneer

100 WATTS RMS s1000

EMINENCE

Made in U.S.A. 18" WOOFER 100 oz. magnet, $3^{\prime \prime}$ volce coil. 250 watts RMS, 350 watts max. $8 \mathrm{ohm}, 30 \mathrm{~Hz}$ resonant frequency, $22-2700 \mathrm{~Hz}$ response Efficiency: $95 \mathrm{~dB}, 1 \mathrm{~W} / 1 \mathrm{M}$ Paper cone ireated accordian surround Net wt: 29 lbs.
${ }_{* 290-200} \quad$ s9880 $\quad \$ 8950$
(1) PIONEER

HORN TWEETER
Exponential horn design Mylar dome. $31 / 2^{\prime \prime} \times 31 / 2^{\prime \prime}$ $1800-20,000 \mathrm{~Hz}$ response 35 watts PMS, 50 watts max.

| 3-WAY 100 WATT CROSSOVER | |
| :---: | :---: |
| 12 dB/octave rolloff. 800 | |
| $\mathrm{Hz}, 5000 \mathrm{~Hz} .8$ ohm. 100 | |
| watts RMS. | |
| \#260-210 \$1250 | |

Novice Ham
Study Package
Take Advantage of the New Voice Privileges

Radio Shack's Novice Exam Study Package includes two cassettes for self-paced code learning plus practice exam. \#62-2402

Includes Durable Binder

Electronic Speech Recognition

VCP200. Experiment with leading-edge technology-voice recognition! This high-tech IC recognizes spoken commands regardless of the person speaking-five motion commands and two on/off commands. Clipped analog input simplifies circuitry so no external A-10-D Conversion is needed. 20-pin DIP with data. \#276-1308

Handle RAMS and CMOS the Safe Way

Opto Bargains

(1) Super-Bright LED. 2000 mad output! \#276-087. . 1.69 (2) Jumbo LED. Six LED elements in a single housing! \#276-064
3.49
(3) Flexible Solar Cell. 65 mA at 1.2V. \#276-138 . . 5.95
Megacable ${ }^{T M}$ NEW! [ymerion 99 ${ }^{\text {c }}$ for Our best-ever speaker cable. 12-gauge braided pure copper conductors. \#278-1268

Coiled
Mike Cable NEW!
6^{49}

Precision Tool Kit

10^{95}
Fitted Case

Top-quality jeweler's-type philips and blade drivers, nutdrivers, hex keys and a torque bar-16 pieces in all. \#64-1961

Thermistor

199
Precision device converts temperature to proportional resistance. -50 to $+100^{\circ} \mathrm{C}$. Ideal for remote sensing. \#271-110

15-Turn Trimmer Pots

| | - 10%
 - $3 / 4$-Watt 149
 Each |
| :---: | :---: |
| 1k. \#271-342 | 1.49 |
| 10k. \#271-343 | 1.49 |
| 20k. \#271-340 | 1.49 |

"Hotline" Order Service Saves Time and Postage

Our store manager can order a wide variety of parts and accessories from the Radio Shack warehouse. Fast service, no minimum order!

SAMS Books Now Available

We can also order many of the famous SAMS service manuals. Come in for details.

Krypton bulb-visible over a mile away! Rotate head to turn on/off and adjust beam width. Batteries extra. \#61-2736
RF Project Parts

(1) NEW! 95-420 pF Trimmer Capacitor. \#272-1336 ... 1.69 (2) Dual 335 pF Variable Capacitor. \#272-1337
4.95

50 Small-Value Caps

NEW! Ceramic discs, 1 to 33 pF,
50WVDC. \#272-806, Set 2.99

(1) Pulsing or Continuous Buzzer. Piezo type. \#273-068 7.95
(2) Chime. \#273-071 8.69
(3) Mini DC Buzzers. With leads.

| VDC | Cat No | Each |
| :---: | :---: | :---: |
| $1.5-3$ | 273.053 | 1.99 |
| 6 | 273.054 | 1.99 |
| 12 | 273.055 | 1.99 |

19^{95}

Studfinder

Ends

Guessing

Easy to use and saves time! Senses changes in wall density to find wooden studs fast-also locates wires, conduit and pipes. Battery extra. \#64-2825

Pro Soldering Station 39^{95}
 - 15 or 25 Watts - Grounded Tip

A super value! With a convenient sponge tipcleaning pad. UL listed AC. \#64-2057

Logic Probe and Pulser

 16^{95}Probe. LEDs and tones reveal logic states in TTL, LS and CMOS circuits. \#22-303

17^{95}

Pulser. Teammate for the probe. Produces a single 5μ s pulse or a continuous pulse train at the push of a button. \#22-304

Our best! Has analog display in addition to big LCD digital readout. Built-in transistor gain checker, diode-check, memory function, continuity buzzer and more. Includes probes and illustrated manual. \#22-195

Over 1000 items in stock! Binding Posts, Books, Breadboards, Buzzers, Capacitors, Chokes, Clips, Coax, Connectors, Fuses, Hardware, $1 \mathrm{Cs}_{\text {, }}$ Jacks, Knobs, Lamps, Multitesters, PC Boards, Plugs, Rectifiers, Resistors, Switches, Tools, Transformers, Transistors, Wire, Zeners, More!
STATIC RAMS

| Part | SIZE | SPEED | PRICE |
| :---: | :---: | :---: | :---: |
| 2112 | 256x4 | 450 ns | 2.99 |
| 2114 | 1024×4 | 450 ns | . 99 |
| 2114L-2 | 1024×4 | 200ns | 1.49 |
| TC5516 | 2048×8 | 250 ns | 3.95 |
| TMM2016-200 | 2048x8 | 200ns | 3.25 |
| TMM2016-150 | 2048x8 | 150ns | 3.29 |
| TMM 2016-100 | 2048x8 | 100 ns | 4.29 |
| HME116-4 | 2048x8 | 200ns | 4.95 |
| HM6116-3 | 2048x8 | 150ns | 5.95 |
| HM6116-2 | 2048x8 | 120ns | 6.45 |
| HM6116LP-4 | 2048x8 | 200ns | 5.95 |
| HMG616LP-3 | 2048x8 | 150ns | 6.45 |
| HM6116LP-2 | 2048×8 | 120ns | 6.95 |
| HM6264LP-15 | 8192×8 | 150ns | 9.95 |
| HM6264LP-12 | 8192x ${ }^{\text {d }}$ | 120ns | 10.95 |
| HM43256LP-15 | 32768× ${ }^{\text {d }}$ | 150ns | 12.95 |
| HM43256LP-12 | 32768x8 | 120ns | 14.95 |
| HM43256LP. 10 | 32768×8 | 100 ns | 19.95 |

DYNAMIC RAMS

| PART | SIZE | SPEED | PRICE |
| :---: | :---: | :---: | :---: |
| 4116-200 | 16384×1 | 200ns | . 89 |
| 4116-150 | 16384×1 | 150ns | . 99 |
| MK4332 | 32768× 1 | 200ns | 6.95 |
| 4164.150 | 65536×1 | 150ns | 2.89 |
| 4164.120 | 65536x1 | 120 ns | 3.19 |
| 4164.100 | 65536x1 | 100ns | 3.95 |
| TMS4164 | 65536×1 | 150ns | 2.89 |
| TMS4416 | 16384x4 | 150ns | 8.95 |
| 41128-150 | 131072×1 | 150ns | 5.95 |
| TMS4464-15 | 65536×4 | 150ns | 10.95 |
| TMS4464-12 | 65536×4 | 120ns | 11.95 |
| 41256-150 | 262144×1 | 150ns | 12.45 |
| 41256-120 | 262144×1 | 120ns | 12.95 |
| 41256-100 | 262144×1 | 100ns | 13.45 |
| 41256-80 | 262144×1 | 80 ns | 13.95 |
| HM5 1258-100 | 262144×1 | 100 ns | 13.95 |
| 1 ME-120 | 1048576x1 | 120ns | 34.95 |
| 1 ME-100 | 1048576x1 | 100ns | 37.95 |

EPROMS

| PART | SIZE | SPEED | Vpp | PRICE |
| :---: | :---: | :---: | :---: | :---: |
| 2708 | 1024x8 | 450ns | 25 V | 4.95 |
| 2716 | 2048x8 | 450 ns | 25 V | 3.49 |
| 2716-1 | 2048×8 | 350ns | 25 V | 3.95 |
| 2732 | 4096x ${ }^{\text {B }}$ | 450 ns | 25 V | 3.95 |
| 2732A | 4096x8 | 250ns | 21 V | 3.95 |
| 27 C 64 | 8192x8 | 250ns | 12.5 V | 4.95 |
| 2764 | 8192x8 | 450 ns | 12.5 V | 3.49 |
| 2764.250 | 8192x8 | 250 ns | 12.5 V | 3.69 |
| 2764-200 | 8192x8 | 200ns | 12.5 V | 4.25 |
| MCM68766 | 8192×8 | 350ns | 21 V | 15.95 |
| 27128 | 16384x8 | 250ns | 12.5 V | 4.95 |
| 27128A-200 | 16384×8 | 200ns | 12.5 V | 5.95 |
| 27C256 | 32768×8 | 250 ns | 12.5v | 7.95 |
| 27256 | 32768x8 | 250 ns | 12.5 V | 5.95 |
| 27256-200 | 32760x8 | 200ns | 12.5 V | 7.95 |
| 27512 | 65536x 8 | 250 ns | 12.5 V | 11.95 |
| 27 C 512 | 65536×8 | 250ns | 12.5 V | 12.95 |
| 27C101-20 | 131072X8 | 200ns | 12.5 V | 34.95 |

CO-PROCESSORS 8087
$8087-2$ 8087
$8087-2$ $8087-1$ 80287
$80287-8$ 80297-8
$80287-10$
$80397-16$ $80287-10$
$80387-16$
$80387-20$ $80387-20$
$80387-25$

$\begin{array}{ll}5 \mathrm{MHZ} & 99.95 \\ 8 \mathrm{MHZ} & 59.9\end{array}$ $\begin{array}{rr}5 \mathrm{MHZ} & 99.95 \\ 8 \mathrm{MHZ} & 159.95 \\ 10 \mathrm{MHZ} & 229.95\end{array}$ 6 MHz 6 MHz
8 MHz 10 MHz
16 MHz 249.95
309.95 309.95
499.95 499.95
799.95
999.95 inte ${ }^{-}$ 5 WARRANTY

CALL FOR VOLUME OUOTES ORDER TOLL FREE

| MICRDPRDCESEDRS | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 6500 | | 8000 | | 8200 | |
| 6502 | 2.25 | 8031 | 3.95 | ${ }^{82525}$ | 1.95 |
| 6502 A 55028 | 2.69 | ${ }_{8039} 8035$ | 1.95 | ${ }_{8}^{8254}$ | 2.1.99 |
| 65028 65002 | - 4.25 | ${ }_{80529}^{8039}$ | . 95 | ${ }_{82555}^{8235}$ | 1.49 1.59 |
| 6502 | 1.65 | BASIC | 3.95 | ${ }_{8256}$ | 5.95 |
| 22 | 2.95 | 8080 | . 49 | ${ }^{8239}$ | .95 |
| ${ }_{6526}^{6524}$ | 5.95 | 8085 | 1.95 | ${ }^{82992}$ | ${ }^{2.29}$ |
| ${ }_{6552} 65$ | 13.95 | ${ }_{8}^{\text {B0056 }}$ 80.2 | 3.75 | | 8, 395 |
| 6545A | 3.95 | 8088 | 5.99 | ${ }_{8275}$ | 16.95 |
| 6551 | 2.95 | ${ }^{8088.1}$ | 12.95 | 8279 | 249 |
| os | 6.95 | ${ }^{\text {8088. } 2}$ | | 8279.5 | 2.95 |
| | | ${ }_{8156}$ | 2.95 | | 3.95
 3.95 |
| | | $8155-2$ | 3.95 | 8224 | 2.25 |
| | | 8791 | 9.95 | ${ }^{8215}$ | 3.95 |
| | | 8742 | 29.95 | ${ }_{8287}$ | 3.95 |
| 6800 | | -8749 | 7.95 | ${ }^{2288}$ | 4.95 |
| | | | | | |
| ${ }_{6802}$ | ${ }_{2.95}^{1.95}$ | ${ }_{80286}^{80266-8}$ | 9.95 | 2-80 | |
| 6803 | ${ }_{3}^{2.95}$ | 80286-8 | 249.95 | | |
| ¢ 6 6889 68.9 | ${ }_{2} 2.95$ | 8200 | | ${ }^{280}$ CPU | ${ }^{25}$ |
| | 2.95

 1.95 | | | ${ }_{\text {zoobecpu }}^{\text {280 CPu }}$ | |
| | 5.49 | 8205 | 3.29 | $2804 . C T C$ | . 69 |
| | 1.95 | 8212 | 1.49 | 280日.CTC | . 25 |
| 6810 6820 | 2.95 | 8216 | 1.49 | 280A-DAA | 3.95 |
| 6821 | 1.25 | 8224 | 2.25 | 2808 -dA | 95 |
| | 1.35 | ${ }_{8228}$ | 2.25 | 280a-dma | 95 |
| 68822 6840 6409 | 3.95 | ${ }^{8237}$ | 3,95 | 2804. P10 | 89 |
| ${ }_{6}^{6845}$ | 2,95 | ${ }^{8237.5}$ | 4.75 | 280日-pio | |
| ${ }_{68847}^{68845}$ | 4.75 | ${ }_{8243}$ | ${ }_{1}^{4.95}$ | ${ }_{2808}^{2808.510}$ | (1295 |
| ${ }_{\text {cke }}^{6897}$ | 1.95 | 8250 | | 280 -SIO | ${ }_{5} 5$ |
| $\begin{aligned} & 6850 \\ & 68850 \end{aligned}$ | 1.75 | ${ }_{8251}$ | 1.29 | 2880 -SIO | 5.95 |
| ${ }_{6}^{6683}$ 68000 | 22.95 | ${ }^{82514}$ | 1.69 | 2808-sio | 12 |
| | 9.95 | ${ }_{8253}$ | 1.59 | z8671bas | IC 9.95 |

PHEAMRECN SPOTTLICHIT

 GCGI HOST ADAPTOR $\$ 49.95$ALOW POWER, SHORT SLOT CARD FOR PC COMPATBL THAT CAN CONTROL UP TO SEVEN SCSII DEVICES. THIS POPULAR STANDARD OFFERS SPEED, EXPANDABILITY AND TME ADVANTAGES OF USING A DEVICE INDEPENDENT BUS MCL SCS

\qquad

V-20 5ERIES

SPEED UP YOUR PC BY 10 TO 40% ? - HIGH SPEED ADORESS CALCULATION IN HARDWARE - PIN COMPATIBCE WITH 8088 - SUPERSET OF 8088 INSTRUCTION SET V20 LOW POWER CMOS

30DAY MONEY-BACK GUARANTEE TOLL-FREE TECHNICAL SUPPORT

LINEAR COMPPONENTS

HIGH GPEED CMOS LOGIC

| TLO71 | . 69 | Lm380 | 89 | XR2206 | 3.95 | 7aHCOO | . 21 | 74HC244 | . 85 | 74HCT138 | 35 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| TLO72 | 1.09 | LM383 | 1.95 | xR2211 | 2.95 | 74HC04 | 25 | 74HC245 | . 85 | 74HCT139 | . 55 |
| TL074 | 1.95 | LM386 | . 89 | LM2917 | 1.95 | 74MCO8 | . 25 | $74 \mathrm{HC273}$ | . 69 | 74HCT157 | . 59 |
| TL081 | . 59 | LM393 | 45 | CA3046 | 89 | 74HC14 | . 35 | 74MC367 | . 69 | 74MCT161 | 79 |
| TLO82 | . 99 | LM394H | 5.95 | CA3146 | 1.29 | 74HC32 | 35 | $74 \mathrm{HC373}$ | . 69 | 74HCT240 | 89 |
| TLO84 | 1.49 | Lm399H | 5.95 | MC 3373 | 1.29 | 74HC74 | 35 | 74HC390 | . 79 | 74HCT244 | . 89 |
| LM301 | 34 | TL494 | 4.20 | MC3 3470 | 1.95 | 74 HCl 38 | 45 | $74 \mathrm{HC374}$ | . 69 | 74HCT245 | . 99 |
| Lm309K | 1.25 | TL497 | 3.25 | MC 3480 | 8.95 | 74HC139 | 45 | $74 \mathrm{HC4040}$ | . 89 | 74HCT273 | . 99 |
| LM310 | 1.75 | NE555 | . 29 | MC 3487 | 2.95 | 74 HCl 54 | 1.09 | 74 HCTOO | . 25 | 74HCT373 | . 99 |
| LM311 | . 59 | NE556 | . 49 | Lm3900 | . 49 | 74HC157 | 55 | $74 \mathrm{HCTO4}$ | 27 | 74 HCT 374 | . 99 |
| Lm311H | 89 | NES58 | . 79 | LM3909 | . 98 | 74HC161 | 65 | $74 \mathrm{HCTO8}$ | . 25 | 74 HCT393 | . 99 |
| Lm311K | 3.49 | NE 564 | 1.95 | LM3911 | 2.25 | 74HC 164 | . 65 | 74 HCT 32 | 27 | 74HCT4040 | 99 |
| LM312H | 1.75 | LM565 | . 95 | Lm3914 | 1.89 | 74HC175 | 59 | 74 HCT 74 | 45 | 74HCT4060 | 1.49 |
| LM317 | . 69 | LM566 | 1.49 | LM3915 | 1.89 | | | | | | |
| LM318 | 1.49 | LM567 | 79 | MC4024 | 3.49 | | STANDARD CMIS LOEIC | | | | |
| LM319 | 1.25 | NE570 | 2.95 | MC4044 | 3.99 | | | | | | |
| LM323K | 3.49 | NE590 | 2.50 | RC4136 | 1.25 | 4001 | . 19 | 4028 | . 65 | 4069 | 19 |
| LM324 | 34 | NE592 | 98 | RC4558 | . 69 | 4011 | 19 | 4040 | . 69 | 4070 | . 29 |
| LM331 | 3.95 | LM723 | 49 | LM1360 | 1.49 | 4013 | . 35 | 4042 | . 59 | 4089 | 22 |
| LM334 | 1.19 | LM733 | . 98 | 75107 | 1.49 | 4015 | -29 | 4044 | . 69 | 4093 | 49 |
| LM335 | 1.79 | LM741 | 29 | 75108 | 1.49 | 4016 | . 29 | 4046 | 69 | 14411 | 9.95 |
| LM336 | 1.75 | LM747 | . 69 | 75110 | 1.95 | 4017 | . 49 | 4047 | . 69 | 14433 | 14.95 |
| LM338K | 4.49 | MC1330 | 1.69 | 75150 | 1.95 | 4018 | . 69 | 4049 | 29 | 14497 | 6.95 |
| LM339 | . 59 | MC1350 | 1.19 | 75154 | 1.95 | 4020 | . 59 | 4050 | . 29 | 4503 | 49 |
| LF347 | 2.19 | LM1458 | . 35 | 75188 | 1.25 | 4021 | 69 | 4051 | . 69 | 4511 | 69 |
| LF353 | . 59 | LM1488 | . 49 | 75189 | 1.25 | 4023 | . 25 | 4052 | . 69 | 4518 | . 85 |
| LF356 | . 99 | LM1489 | . 49 | 75451 | . 39 | 4024 | 49 | 4053 | . 69 | 4528 | . 79 |
| LF357 | . 99 | LM1496 | 85 | 75452 | . 39 | 4025 | 25 | 4060 | . 69 | 4538 | 95 |
| LM358 | . 59 | ULN2003 | . 79 | 75477 | 1.29 | 4027 | . 39 | 4066 | . 29 | 4702 | 9.95 |

169^{95}

Co montilus

Save time and telephone charges with a high SPECD 2400 BAUO MOOEM FROM JDH
INTERNAL 24DO BAUD

- SELF TEST ON POWE
- TOUCHTONE OR PULSE DIALING
- FULL OR HALF SYSTEMS COMPATIBLE - MIRROR HALF DUPLEX

MCT-241
MCT-121 1200 GAUD 1/2 CARD EXTERNAL 2400 BAUT 2400/1200300 HAYES COMPATIBL - BEASY-TO-READ STATUSLED'S - CALL PROGRESS MONITORING \& ADJUSTABLE VOLUME - REQUIRES SERIAL PORT \& CABLE IOPTIONAL MCT-24E $\$ 169.95$ MCT-12E 1200 BAUD EXTERNAL $\$ 99.95$

APPLEIMACINTOSH MIDEMS

MACINTOSH 2400 BAUD EXTERNAL AS ABOVE WITH CABLEAND PROCOM.M SOFTWARE. MCT-24EM
MCT-24A APPLE II 2400 BAUD MODEM $\$ 139.95$

PDCKET MODEM 599^{95}

YOULL NEVER
BE FAR FPOM YOUR DATA WITH THIS 6 OUNCE - 1200/300 BAUD - BATTER - SERIAL INTERFACE (D825) AC POWER MCT-12P

KEYBDARDG

MDDULAR CIRCUIT TECHNDLOEY

ENANCED STYLE LAYOUT

- AUTOSENSE FOA XT OR AT COMPATIBLES - LED INDICATORS AUTO REPEAT FEATURE a SEPARATE CURSOR PAD
MCT-5339
84 KEY LAYOUT
a SOFTWARE AUTOSENSE FOR XT OR AT COMPATIBLES TO REPEAT
$\$ 59.95$

MAXI-SWITCM REYBDARDS

MAX 5339 E
MAX-5060 84 KEY LAYOUT
AUDIBLE "CLICN" REYBDARD

- ENHANCED STYLE, 101 KEY KEYBOARD

K-103-A
$\$ 84.95$

HANDY SCANNER 524.995

VGA COMPATIBLE PACKAGE ${ }^{5} 549^{00}$

- 800×560 MAXIMUM RESOLUTION
- $640 \times 480 \mathrm{IN}$
16 COLORS

- $320 \times 200 \mathrm{~N}$
- IBM ST YLE. ANALOG
MONITOR
- Fully vga. EGA CGA. HERCULES
\& MONOCHROME
 COMPATIBLE
$\$ 599.95$
NEC MULTISYNEII

$\$ 399.95$

- $640 \times 200 / 350$ RESOLUTION 31 MM DOT PITCH

CASPER RGB

$\$ 279.95$

- COLOR GREEN AMBER SWITCH 39MM DOT PITCH
- 640×240 RESOLUTION 14° NON-GLARE SCREEN

SAMSLNG MOND
$\$ 129.95$

- 12 " NON-GLARE LOW DISTOATION AMBER SCAEEN

MONITOR STANDS
MODEL MS-100
$\$ 12.95$

- TILTS AND SWIVELS
$\$ 39.95$
- TILTS AND SWIVELS E BUILT.IN SURGE SUPRESSOA
- INDEPENOENTLY CONTROLS UP TO 5 AC OUTLETS

TOWER CASE

SAVE DESK SPACE AND ADD STYLE TO YOUR OFFICE WITH THIS SLEEK UPRIGHT DESIGN - ACCOMODATES AL SIZES OF MOTHERBOARDS - 250 WATT POWER SUPPLY

- MOUNTS F
\& 4 HARD DRIVES
- TURBO \& RESET SWITCH
- SPEED DISPLAY, POWER
- MOISNLEDS MOUNTING HARDWARE,
FACEPLATES \& SPEAKEF CASE-100
CASE-FLIP FOR 8088 MOTHERBOAROS $\$ 34.95$ CASE-SLIDE FOR 8088 MOTHERBOARDS $\$ 39.95$ CASE-70 FOR 286 MOTHERBOARDS $\$ 89.95$ CASE-JR MINI-286 W/POWER SUPPLY

POWER SUPPLIES

- UL APPROVED
$\$ 59.95$

| CBL-PRINTER | PC PRINTER CABLE | $\$ 9.95$ |
| :--- | :--- | ---: |
| CBL-PRINTER-25 | AS ABOVE-25 FOOT | $\$ 15.95$ |
| CBL-PRINTER-RA | RIGHT ANGLE PRINTER | $\$ 15.95$ |
| CBL-DB25-MM | DB25 MALE TO DB25 MALE | $\$ 9.95$ |
| CBL-OB25-MF | DB25 MALE TO DB25 FEMALE | $\$ 9.95$ |
| CBL-9-SERIAL | 9PIN TO 25 PIN SERIAL | $\$ 6.95$ |
| CBL-KBD-EXT | KEYBOARD EXTENSION | $\$ 7.95$ |
| CBL-CNT-MM | 36 PIN CENTRONICS-MM | $\$ 14.95$ |
| CBL-HD-20 | 20 PIN HARD DISK CABLE | $\$ 3.95$ |
| CBL-HD-34 | 34 PIN HARD DISK CABLE | $\$ 4.95$ |
| CBL-HD-34D | 34 PIN DUAL HARD DISK | $\$ 6.95$ |
| CBL-FDC-EXT | 37 PIN EXTERNAL FLOPPY | $\$ 9.95$ |

- IBM XT COMPATIBLE
- $\begin{array}{r}5 \mathrm{~V} \quad 15 \mathrm{~A} .12 \mathrm{~V} 4.2 \mathrm{~A} . \\ -5 \mathrm{~V} .5 \mathrm{~A} .12 \mathrm{~V} .5 \mathrm{~A}\end{array}$

PS-135
PS-150 150W MODEL $\quad \$ 69.95$ 200 WATT
$\$ 89.95$

- UL. APPROVED
- IBMAT COMPATIBLE
$-5 \mathrm{~V} 22 \mathrm{~A} .+12 \mathrm{~V} 8 \mathrm{~A}$
$-5 \mathrm{~V} .5 \mathrm{~A}, 12 \mathrm{~V} .5 \mathrm{~A}$
PS-250 250 WATT MODEL $\$ 129.95$

1.44 MB $31 /{ }^{\prime \prime}$ DRIVE
 \＄149 ${ }^{95}$

－also migh density
FDD－1．44X
FDD－1．44A BEIGE FACEPLATE
HP HEIEMT FLDPPY DHSK DRIVES
FD－55 5．14 TEAC DSDO 360 K
$\begin{array}{ll}\text { FD－558 } & \text { 5．1／4 } \\ \text { FD－55G TEAC DS．OD } 360 \mathrm{~K}\end{array}$
$\$ 99.95$ $\begin{array}{llr}\text { FD－55G } & \text { 5．1／4＊TEAC DS／HD } 1.2 \mathrm{M} & \$ 129.95 \\ \text { M2551A } & 5.1 / 4^{*} \text { FUUTSU DS／OD } 360 \mathrm{~K} & \$ 89.95\end{array}$ M2551A 5．1／4 FUUTTSU DS／OD 360K $\$ 89.95$ $\begin{array}{lll}\text { M2553K } & \text { 5．1／4＊FLUTTSU DS／MD } 1.2 \mathrm{M} & \$ 119.95\end{array}$ FDD－360 5．1／4＊DSOD 360 K FDD－1．2 5．1／4＊DS／HD 1.2 M $\$ 119.95$
$\$ 69.95$ FDD－3．5A $3.1 / 2^{*}$ MITSUBISHIDSIDD（BEIGE）$\$ 109.95$ FDD－3．5X 3－1／2 MI

TAPE RACK－UP DRIVES

AR5240X ARCHIVE TAPE DRIVE XTS \＆ATS $\$ 369.95$ HARD DISKS
Whatever your hard disk needs，we have rellable high quality Seagate drives at the lowest prices available．Buy them alone，or with an MCT disk controller for even greater savings？

| SIZE | MODEL | $\begin{aligned} & \text { AVG } \\ & \text { SPEED } \end{aligned}$ | HEIGHT | DRIVE
 ALONE | WITH MCT CONTROLLER | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | | | | | HDC | RLL | AFH | AFH－RLL |
| 20 MB | ST－225 | 65 ms | Half | \＄225 | \＄269 | － | \＄339 | － |
| 30 MB RLL | ST－238 | 65 ms | Half | \＄249 | － | \＄299 | － | \＄389 |
| 40 MB | ST－251 | 40 ms | Half | \＄429 | \＄469 | － | \＄539 | － |
| 40 MB | ST－251－1 | 28 ms | Half | \＄529 | \＄569 | － | \＄639 | － |
| 60MB RLL | ST－277 | 40 ms | Half | \＄499 | － | $\$ 549$ | － | \＄639 |
| 30 MB | ST－4038 | 40 ms | Full | \＄559 | \＄603 | － | 5659 | ． |
| 80MB | ST－4096 | 28 ms | Full | \＄895 | \＄939 | － | 5995 | － |

AR5540A FASTERTAPE DRIVE ATS ONLY $\$ 369.95$ AR340 40 MB TAPE CARTRIDGES $\mathbf{\$ 2 4 . 9 5}$

UISERETTES

N－MD2D BOX OF $105.1 / 4^{\circ} 360 \mathrm{~K}$ DSIOD $\$ 6.95$
N－MD2H BOX OF 10 5－1／4＊ 9.2 MBDSAMD $\$ 13.95$
N－3．5DS BOX OF $103-1 / 2$－ 720 K DS／OD $\$ 16.95$ N－3．5HD BOX OF $103-1 / 2{ }^{-1.44 ~ M B ~ D S / H D ~ \$ 49.95 ~}$

DRIVE ACCESSORIES

FD－ARAIL MTG．RAILS FOR AT COMPATIBLE $\$ 2.95$ FD－55FP BEIGE FACEPLATE FOR TEAC DRIVES $\mathbf{\$ 2 . 9 5}$
FD－55MHW HALF－HEIGHT MOUNTING HARDWARE $\mathbf{\$ 2}$ FD－5S
FD－5Y
YALF－HEIGHT MOUNT ING HARDWARE
$\$ 2.95$
$\$ 2.95$

INBCARD 38G／PC ＊ 895^{00}

NEWHI SIGMA VGA CARD ${ }^{*} \mathbf{2 7}^{50}$

UPGRADE YOUR XT TO A 396 FOR LESS TMAN $\$ 900$
－ 16 MHZ PROCESSOR REPLACES 8088
－ 1 MB MEMOAY INSTALLED
－ 5 YEAR WARRANTY
PCIB 1200
PIGGYBACK MEMORY BOARDS
PCIB1210 IMEINSTALLED
PCIB1220 2 MB INSTALLEO
$\$ 649.00$
$\$ 1195.00$

INTERFACE CARDS
 BY MODULAR CIRCHIT TECHNOLDGY

DRIVE CONTROLIERS

FLOPPYDISKCONTRDLLER EZ9．95
SINGLE SLOT CONTAOL OF 4 FLOPPIES
－INTERFACES UP TO 4 FDDS TO AN IBM PC OR
SUPPORTS DS／DD AND DS／OD W／OOS 32 MCT－FDC

1．PRAB FLOPPY CONTROLIER \＄69．95 ADD VERSATILITY AND CAPACITY TO YOUR XT －S＇JPPORTS 2 MCT－FDC－1．2

FLOPPY／HARD CONTROLLER \＄139．95 XT SVSTEM SHORT OF SLOTS？THIS CARO FREES ONE UPI FDOIHDD E SUPPORTS BOTH DSIOD \＆DSIOD WIDOS 3.2 MCT－FH

286／386FLOPPY／HARD \＄149．95
FLOPPY HARD DISK CONTROL IN A TRUE AT DESIGN －SUPPORTS UP TO $2360 \mathrm{~K} / 720 \mathrm{~K} 1.2 \mathrm{MB}$ FOD＇S
MCT－AFH
HARO RISK CONTROLEER \＄79．95
HARD DISK CONTROL AT AN ECONOMICAL PRICE
－SUPPORTS 16 DRIVE SIZES INCLUDING $10.20 .30 \& 40 \mathrm{ME}$ －DIVIDE 1 LARGE DRIVE INTO 2 LOGICAL DRIVES MCT－HDC

RLL CONTROLLER
1179．95
－SUPPORTS UP TO 2 RLL HARD DRIVES
－DESIGNED FOR XT COMPATIBLES
MCT－RLL
286／386FLOPPY／HARO RLL $\quad 199.95$ IMPROVE SPEED AND STORAGE OF YOUR AT COMPATIBLE －SUPPORTS UP TO 2 RLL HARD DISCS AND 2 FLOPPIES
－SUPPORTS $360 / 720 / 12 \mathrm{MB}$ FLOPPIES IN $55^{\circ} \& 5^{\circ} .5^{\circ}$ －SUPPORTS $360 / 720 / 1.2$ MB FLOPPIES IN 5.25° \＆ 3.5° MCT－AFH－RLL

MLLTIFUNLTION CARDS

MULTIIO FLOPPY CONTROLUER 79.95 A PEAFECT COMPANION FOR OUR MOTHERBOARDS －SUPPORTS UP TO TWO 360 K FLOPPIES， 720 K WIDOS 32 MCT－MIO
MIO－SERIAL—2ND SERIAL PORT
$\$ 15.95$
MULTIIIO CARD
－59．95
USE WITH MCT－FH FOR MINIMUM OF SLOTS USED
－SERIAL PORT，CLOCK CALENDAR WITH BATTERY
MCT－10
286／386RUULTIFUNLTION 1339.95
ADDS UP TO 3 MB OF RAM TO YOUR AT
－USER EXPANDABLE TO 1.5 MB OR 3 MB WITH OPTIONAL AND PARALLEL PORT
MCT－AMF
MCT－AMF－MC PIGGYBACK BOARD
AMF－SERIAL 2ND SERIAL PORT
28GIBE6 MULTIIITCARD
USE WITH MCT－AFH MINIMUM OF SLOTS USED SERIAL．PARALLEL ANO GAME PORTS US US
SERIL SUPPORT CHIPS FOR HIGH SPEED OPS MCT－A1O
AIO－SERIAL 2ND SERIAL PORT

MEMORY CARDS

576KRAREARD

A CONTIGUOUS MEMORY SOLUTION IN A SHORT SIOT
－USER SELECTABLE CONFIGURATION UP TO 576 K
－USES 64 K \＆ 256 K RAM CHIPS（OK INSTALLED）
MCT－RAM
EXPANGED MEMORY CARD \＃HRS． 95
2MB OF LOTUS INTEL MICROSOFTI MEMORY FOR AN XT
CONFORMS TO LOTUS INTEL EMS B USER EXPAND－ ABLE TO 2 MB CAN BE USED AS EXPANDED OR
MCT－EMS
MCT－AEMS 286／306 VERSION

DISPLAY ADAPTORG

MONOCMROME ERAPHICS 459.95

 TRUE MERCULES COMPATIBHITY SUPPORTS LOTUS $1.2-3$ LPT2 USES VLSI CHIPS TO ENSURE RELIABILITY MCT－MGP
EEA ADAPTDR

－149．95
100% 18M COMPATIBLE PASSES IBM EGA DLAGNOSTICS － 256 K OF VIDEO AAM ALLCWS 640×350 IN 16 OF 64 CHROME ADAPTORS MCT－EGA

COLOP GPAPHICS ANAPTOR $\quad 49.95$
COMPATIBLE WITH IBM GAAPHICS STANDARDS
－SUPPORTS RGE．COLOR \＆COMPOSITE MONOCHROME － 640.320×200 RESOLUTION．LIGHT PEN INTERFACE MCT－CG

MONOGRAPHICSMULTI IO－H9． 75 TOTAL SYSTEM CONTROL FROM A SINGLE SLOTH
－CTRL 2 FLOPPIES．SERIAL．PARALLEL．GAME PORT －CTRL 2 FLOPPIES．SERIAL PARALLEL．GAME PORT． MONOCHROME MONITOR
MCT－MGMIO
286／3B6 MIONOGRAPHUCS ILC－99．95 VIOEO DISPLAY AND IVO FUVC TIONS IN ONE CARD － 720×348 RESOLUTION． $30 \& 132$ COLUMN TEXT MCT－MGAIO

TERMS ：MINIMUM ORDER $\$ 1000$ FOR SHIPPING AND HANOLING INCLUDE $\$ 2.50$ FOR UPS GROUNO AND 33.50 UPS AR．OROERS OVER 1 LB．ANO FOREIGN ORDERS MAY REOUIRE ADOITIONAL SNIPPING CHARGES－PLEASE CONTACTHE SALES OEPARTMENT FOR THE amount Ca resioents must incluoe applicable sales tax paices ane sub ject TO CHANGE WITHOUT NOIICE．WE ARE NOT RESPONSIBLE FOR TYPOGAAPHICA EARORS，WE RESEAVE THE GIGHT TO LMIT OUANTI＇IES AND TO SUBSTITUTE MANUFACTURER．ALL MEACMANDISE SUBJECT TO FAIOR SALE．A FULL COPY OF OUA TERMS IS AVALLABLE UPON REOUEST．ITEMS PICTUFED MAY ONLY BE REPRESENTATIVE 2

EUILD YOUR OWN GYGTEMH

DVER 2D, DDD JDR GYSTEMS HAVE ALREADY BEEN BUILT. EAGY TO AGSEMRLE IN JUGT R HOLRG WITH

 A GCREWDRIVER. SAVE MONEY AND LEARN MORE ABDUT YOUR COMPUTER AT THE GAME TIMEI
10 MHz TURBD 8088 ${ }^{5} 661{ }^{00}$

- includes serial port, 2 parallel ports, Clock CALENDAR AND GAME ADAPTOR - RUNS COLOR GRAPHICS ON A MONOCHROME MONITOR MOTHERBOARD 256 K AAM MEMORY 135 WATT
POWER SUPPLY FLIP.TOP CASE 84 KEY KEYBOARD OWER SUPPLY DRIVE E MONOGR EPHICS VO CARD - 360K FLOPPY DRIVE E MONOGRAPHICS VO CARD

16 MHz 1 Mb 386 234865

- MYLEX 386 MOTHERBOARD 1 MB RAM ON BOARD EOO WATT POWER SUPPLY E CASE E ENHANCED
KEYBOARD 1.2 MB FLOPPY DRIVE FLOPPYMARD CONTAOLLER E MONOGRAPHICS CARD - MONOCHROME MONITOR

MOTHER:DARIEG

TURED 4. $77 / 8 \mathrm{MHIZ}$

$\$ 99.95$

- XI COMPATIBLE NORTON SI 1.7 - 4.77 OA B MHZ OPERATION WITH 8088-2 AND OPTION. AL 8087-2 CO PROCESSOR EFRONT PANEL LEO SPEED INDIGATOR AND RESET SWITCH SET
SUPPORTED CHOOSE NORMALTURBO MODE OR SOFTWARE SELECT PROCESSOR SPEED MCT-TURBO
MCT-XMB STANDARD MOTHERBOARD
$\$ 87.95$
10 MHZ TURED SINGLE CHIP 8088
\$129.95
EXT COMPATIBLE NORTON SI 2.1 USES LESS POWEA, MMPROVES AELIABLITY KEY SELECTABLE SPEEO. 4.77 MHZ OR 10 MHZ 2.3 TIMES FASTEA THAN A STANDARO RESE SWITCH. KEYLOCK. ANO SPEEO/POWER INOICATORS SUPPORTEO MCT-TURBO-10

802856/10 MHz

5379.95
Q. AT COMPATIBLE LANDMARK AT SPEED 10 MHZ NORTON SI 10.3 E SLOTS ITWO SOCKETS FOR IMB OF RAM AND BO287 ONE WAIT STATE E BATTEAY BACKED CLOCK - KEYLOCK SUPPORTED AESET SWITCH

MCT-286
12 MHz MINJ-2BG
$\$ 399.95$

- AT COMPATIBLE LANDMARK AT SPEEO 13.2 MHZ O NORTON SI 11.6 \& 6 MHZ . 10 MHz (0,1 WAIT STATE). 12 MHZ (1) WAIT STATE) ZYMOS ASICS FOR FEWER CHIPS. GREATER RELLABILITY SUPPORTS 512 K - 1024 K MEMORY RECHARGEABLE HIGH CAPACITY NLCAD BATTEAY E SIX
MCT-M286 $6 / 10$ MHZ MINI 80286 BOAFD

16 MHz MVLEX 386

$\$ 1699.00$

- 1 MB RAM ON BOARD 8 SLOTS (TWO B-BIT. SIX 16. BIT) E USES AMI BIOS SUPPORTS BOz87 MEA O WIT STATE B SUPPORTS
MCT-386MB
MCT-386MB-4 FOUR MB MEMORY INSTALLED .. $\mathbf{\$ 2 9 9 9 . 0 0}$ MCT-386MB-MCB MATH CO-PROCESSOR ADAPTOR BOARD $\$ 149.00$

16 MHz MYLEX MINI 386
 1249^{00}

- LANDMARK AT SPEED 23.2 MHZ NORTON SI 18.7 64KB HIGH SPEED DIRECT MAPPEO STATIC RAM CACHE - 1 MB OR 2 MB MEMORY ON STD. MEMORY BOARD UP TO \& MB
OF 32 -BIT MEMORY ON PIGGYBACK MEMORY BOARD FOR TOTAL OF 10 MB AMI OF 32 - BIT MEMOAY ON PIGGYBACK MEMOAY BOARD, FOA TOTAL OF 10 MB - AMI BIOS FOUA 16 -BIT AND ONE 32-8IT SLOTS DALLAS CMOS /CLOCK DEVICE ON BOARD WI BAT MCT-386 JR (MEMORY CARD REOUIRED)
MCT-386.JR20 20 MHZ VERSION
$\$ 1695.00$
 MCT-386JR-M8 8 MB PIGGYBACK MEMORY BOARD OK INSTALLED $\$ 159.00$

NEWI MODULAR PROGRAMMERE

THE IDEAL GYSTEM FDR DEVELDPERG. ALL MODULEG USE A COMMDN HOST ADAPTOR CARD HDST ADAPTOR CARD $\$ 29.95$
E A UNIVERSAL INTERFACE FOR ALL THE PROGRAMMING
MODULES I USER SELECTABLE PROGRAMMABLE ADDRES MODULES \& USER SELECTABLE PROGRAMMABLE ADDRES SES PREVENT ADDRESSING CONFLICTS I MENU.DRIVEN MCT-MAC
UNIVERSAL MODULE $\$ 499.99$ a PROGRAMS EPROMS, EEPROMS, PALS, BI-POLAR PROMS 874888751 SERIES DEVICES ETESTS TIL. CMOS. DYNAMIC $\&$ STATIC RAMS
MCT-MUP

OIGITAL IC MODULE $\$ 129.95$

- TESTS TTL, CMOS, DYN. \& STATIC RAM a auto SEARCH MCT-MIC

EPROM MODULE
$\$ 119.95$

- PROGRAMS 24.32 PIN EPROMS CMOS EPROMS AND EEPROMS FROM 16 K TO 1024 K
MCT-MEP
MCT-MEP-4 FOUR-EPROM PROGRAMMER $\$ 169.95$ МСТ-MEP-8 EIGHT-EPROM PROGRAMMER $\$ 259.95$
PAL MODLLE $\$ 249.95$
- PROGRAMS MMI. NS. TI 208 TI 24 PIN DEVICES

MCT-MPL
8748 MODULE
$\$ 179.95$

- PROG. 8741, $8742,8748,8749$ \& 8750 EPROMS \& PROMS. MCT-MMP

B/-POLAR MODULE
$\$ 259.95$
a PROG. AMD. MMI, NS. TI \& SIGNETICS BI-POLAR PROMS MCT-MBP

SPECIAL PRODUCTS FROM NICM ELECTRONICS

TENMA Soldering Station

- Adjustable temperature range of 150° $420^{\circ} \mathrm{C}\left(300^{\circ}-790^{\circ} \mathrm{F}\right)-$ Grounded tip for soldering static sensitive devices a LED power, heater and temperature indicators - Overheat protection with closed loop temperature control - Heat resistant soldering iron cord a Grounded three wire power cord auxiliary ground terminal - Built-in tray with cleaning sponge - Easily accessible fuse holder - Replaceable iron clad tip . Improved circuit design for greater temperature stability - Adjustable temperature, and variety of available tips make this unit
 perfect for most soldering applications including SMD

\#21-147

TENMA슷 Autorange DMM

The rotary dial design permits rapid selection of functions. Meter automatically selects proper range for most accurate reading.
Features: $\quad 31 / 2$ digit LCD display

- Autorange/manual range selector - Data hold: Holds display reading after meter is removed from circuit a Memory: Removes stored measurement from future readings - Audible continuity tester Low battery indicator a Switchable Lo/Hi power ohms - Comes complete with test leads, carrying case and owners manual
\#72-560

Quick Shot Joystick

- Compatible with Nintendo Entertainment System a Six positive response micro-switches a Triggerlike primary fire button - Thumbactivated secondary fire button - Contoured pistol grip - Select/start switch • Auto-fire switch ■ Four stabilizing suction cups
\#83-0280

Amplified Indoor FM Antenna

- Helps your FM receiver deliver clean undistorted sound Adjustable gain a Improves reception without installing unsightly outdoor antenna - Black color blends well with any decor \#80-335

CIRCLE 87 ON FREE INFORMATION CARD

AM300E Stereo Mixer
Top quality rack mountable mixer manufactured by Audio-Technica. Perfect for amateur and professional DJ use
Features: a Echo circuit with continuously adjustable "repeat" and "delay"

- Built-in five band per channel graphic equalizer with in/out switch
- Ten switchable inputs with five slide and one rotary level controls
- Slide pot for smooth turntable cross-fade - Six position headphone monitor allows user to cue any input a Built-in 20 dB mute and 10 dB microphone "talkover" circuits a Master output levels are displayed on dual V.U. meters

\#80-315

Automatic CD Cleaner

- Motorized chamois cleaning system provides true radial cleaning - Cleaner automatically stops when finished - Can be used wet or dry $-10 z$. bottle of cleaning fluid included - Operates on four "AA" batteries (not included)

\#80-320

CD 700 Headphones

These lightweight headphones deliver full size sound. Semi-open design earpads are comfortable even during extended listening. $\quad 30 \mathrm{~mm}$ dynamic mylar speaker $\quad 320 \mathrm{hm}$ impedance $-20-20 \mathrm{KHz}$ frequency response a 10° straight cord with 3.5 mm plug. $1 /{ }^{\prime \prime}$ adaptor included

\#35-320

(1)audio-technica SG750CD Headphones - Expressly designed for use with digital playback systems a High sensitivity ensures wide dynamic range - Earpieces completely cover ears to filter out undesired outside noises ■ Speaker: 40 mm mylar full range driver - Frequency response: $20-20,000 \mathrm{~Hz}$ - Impedance: 350 hm - $7 \frac{11 / 2}{2}$ straight cord with $1 / 4 "$ phone plug for use with all home stereo systems
\#35-330

For your FREE copy of our NEW MCM ELECTRONICS CATALOG, CALL TOLL FREE 1-800-543-4330
In Ohio, call 1-800-762-4315 In Alaska or Hawaii, call 1-800-858-1849

What's New at
 AMERICAN DESIGN COMPONENTS?

WA warehouse 60,000 items at American Design Components expensive, often hard-to-find components for sale at a fraction of their original cost!
You'll find every part you need either brand new or removed from equipment (RFE) in excellent condition. But quantities are limited. Order from this ad, or visit our retail showroom and find exactly what you need from the thousands of items on display. OPEN MON.-SAT., 9-5

PLUS 4 -
(Cust. Returns - Tested Goodl) Built-in sotware incl.: a word processor, spread sheet graphics, \& a fliing system. Comes complete w/power supply \& instruction manual.

Item \#19202 \$49.95
VIC 20 - (Cust. Returns - As Is I) No guarantee. (Power supply not incl.) Item \#18770 \$29.95
Dual Disk Drive
Unit. .

The

050 uses

2 full height, 100 TPI
533 e-sided disk drives, ea. w/storage cap. of \& Is read/write compatible w/the 8250 disk drive. Complete w/bullt-in power supply. Power req.: $115 \mathrm{VAC} / 60 \mathrm{~Hz}$. (manuals Incl.) Dim.: $133_{4}{ }^{4} \mathrm{~W} \times 133 / 4^{-} \mathrm{D} \times 6^{4} \mathrm{H}$. hem 19313 Now - $\$ 89.95$

ADAM COMPUTER

Less
Printer)
No wiring
necessary
(just plugs together). Inct: hook-1p diagram; Keyboard, 1 cassette digital rata drive, 2 game controlers. power supply \& cassette. Capabla

Item \#7410 Complete $\mathbf{~} \mathbf{\$ 9 9 . 0 0}$ ACCESSORIES.
DATA DRIVE - Item \#6641...\$19.95 PRINTER POWER SUPPLY Item \#6642... $\$ 14.95$ ASCII KEYBOARD Itom \#6643... $\$ 19.95$ CONTROLLERS (Set of 4)

Item \#7013...\$9.95 RFE
ADAM CASSETTES -
Incl. Smart Basic, Buck Rogers \& blank cassette. Item $\$ 7786$

Baker's Dozen - S19.95
DISK DRIVE POWER SUPPLY
Item \#14603...\$14.95
ADAM DAISY PRINT WHEEL
Item \#13305... 53.95
COLECOVISION to ADAM
EXPANSION KIT
Just plugs into your Colecovision. W/printer power supply \& data drive (both incl.) you will have a working Adam computer. Adam keyboard. 1 Smart Basic cassette \& hook-up diagram also Incl. Item $\$ 9918$ \$59.50

51/4" FULL-HEIGHT HARD
DISK
DRIVES

40 Mb
(AT/XT
Compat.)
High speed, 40 ms . access time. Quantum \#0540
Hem $\# 17765$ Now - $\$ 379.00$ 10 Mb (ST 412 Compat.) Major manufacturers -
Got them while they last Got them while they lastl Item $\# 17199 \$ 99.00$ ea 31/2" MICROFLOPPY DISK
DRIVE

1 Mb (unformatted), 135 TPI, 3 ms . access time. Power requirements: $+12,+5$ volts. Removed
from operational computers
JESTED - LKE NEWI

Mfr - NEC, model FD 1035
Hem *17171 $\$ 79.00$ ea
2 for $\$ 150.00$
115 CFM MUFFIN ${ }^{*}$
FANS

115 VAC ,
60 Hz .,
21W.,
3100 RPM, 5 -blade model, aluminum housing. Can be mounted for blowing or exhaust. Dimen: $4^{11 / 18^{\circ}}$ sq. $\times 11 / 2^{"}$ deep NEW - Mfr: IMC Item \#1864 \$9.95
USED - Mfr: Centaur/Howard Item $\begin{aligned} & 5345 \\ & \$ 5.95\end{aligned}$
Call or write with any other requirements.
HEAD \& SCREEN
MAINTENANCE KIT (5 $1 / 4{ }^{*}$
Diskettes)

Maintain your disk heads \& CRT screens. Use regularly to help prevent memory loss \& down time. Protecting users from eve strain. One bottle of head-cleaning fluid, 2 head-cleaning diskettes, \& 10 wed 10 dry screen cleaning pads Mfr - Dialight \#611-0001

Item \#19228 New - \$7.95

COLECOVISION

Accessories..
EXPANSION MODULE 2 Play arcade quality driving \& rac ing games on your ColecoVision Incl. Turbo cartridge.
liem 13146 New - $\$ 39.95$
ROLLER CONTROLLER
Gives full $360 \operatorname{og}$ game control. Hispeed action of an arcade. Can be used withe Adam. Incl. Slither cartridge.
Item $\# 13147$ New - $\$ 39.95$
SUPER ACTION
CONTROLLER SET
Gives you indiv. control of $4+$ onscreen players. Includes Baseball cartridge.
Item ${ }^{\text {I }} 13148$ New - $\$ 39.95$

51/4" HALF-HT. 10Mb

 HARD DISKDRIVES

10 Mb
(IBM Compatible)
Mfr - NEC \#05124
Item \#19704 New - $\$ 99.00$ 20Mb (ST225 Compatible) Mif - Oliverti wEM5520/2
Tested-Like Newl
Item 20060 New $-\$ 159.00$

48 TPI, 40 Track, Double Side/Double Density Tandon \#TM100-2 or equiv.

Item $\$ 7928$ \$79.00 Now
2-WAY, HIGH-TECH, WALL MOUNT SPEAKER SYSTEM ($31 / 4^{\prime \prime}$ Thin)
80W. max., 4/8 Ohm, 150-20,000 Hz.

\star

\star
\star
\star

| \star |
| :--- |
| \star |
| \star |
| |

Cabinet.: heavy-duty aluminum, black w/mesh grille cover. Dim.: $9^{\prime \prime H} \times 131 /{ }^{2} \mathrm{~W} \times 31 / 4$ "deep
Mr \#SB-5000

12"-Monitor Kit
Greon phosphor. Input 115 VAC . Made up of sub assemblies: CRT, board, \& transforme Hook-up diagram incl.)
Item \#6811 New - \$19.95 15" Data Display/Monitor Kit Alphanumeric \& graphics display, Green phosphor. Input power reg. 24VDC. Bandwidth: $\mathbf{2 2 - 7 2 K h z}$. Con sists of 2 subassemblies! CRT \& board). (Hook-up diagram incl.) Wells Gardner \#15V7025
Item *1617! New-\$24.95
RECORDING TAPE
$71 / 2^{\prime \prime}$ Reel, 2400 ft.

1/4 Mil. Bulk erased. Major mírs Ampex, Scotch, etc. Item 6.611 15 reels for $\$ 9.95$

HIGH-RESOLUTION

INSTRUMENTATION TAPE

12/24VDC MUFFIN®-

 TYPE FANS 55/100CFM
8W. Can be

mtd. for blow
ing or exhaust. Alum. housing. Brushless, ball-bearing type. 1" THIN: 5 plastic blades with feathered edges. Centaur \#CUDC24K4-601
Item $\# 8541$ New - $\$ 19.95$ 1" STAND ARD: 5 plastic blades. Centaur \#CNDC2 4K4-601

Item \#12848 \$14.95 RFE
Free Catalog with every order!
NICAD BATTERY
PACKS (Rechargeable)

"AA" Cells

12V
@
450 ma
Contains $10{ }^{\text {" }} \mathrm{AA}^{\prime}$ cells, connected in series. Recharge rate $45 \mathrm{ma},{ }^{2} 6-18 \mathrm{hrs}$. Case w/tab output condex
Dim.: $21 / 10^{"} \times 21_{4}{ }^{\circ} \times 215 / 16^{\circ}$ Mfr - GE W123233 Item *5443 \$5.95 RFE

"Sub C"

Cells
${ }^{12 \mathrm{C}}$

1.2Ah.

Consists of $100^{\text {-S }}$ Sub C" cells. Connected in series. Case whab output connex. Recharge rate: 100 ma for $14-16 \mathrm{hrs}$.
Dim.: $41 / 2^{*} \times 134^{*} \times 17 /{ }^{\circ}$ Dim.: $41 /{ }^{*} \times 13 / 4 \times$
Mfr-GE or equiv.

Item \#19677 S9.95 RFE "C" Cells

\section*{| 7.2 V |
| :--- |}

1.25Ah.

Consists of $6^{\circ} \mathrm{C}$ " cells. Connected in series. Recharge rate: $80-100$ ma. for 16 hrs . Dim.: $6^{\prime \prime} \times 11 / \mathrm{m}^{\prime \prime}$ $\times 1$.Major Mirs.

Hem *19676 \$9.95

51/4" 1.2 Mb .
HALF-HEIGHT FLOPPY
DISK
DRIVE

IBMPAT Compatible.
48/96 TPI, 1.2 Mb.
Double sided, high density; 160 tracks. Mfr - Panasonic
\#JU-475
Item $\# 10005$ New - $\$ 99.95$
EXTERNAL
DISK DRIVE
CHASSIS

With 60 W

power
supply
(fan cooled).
Can ascominodate:
2 full-m. drives
our item 779:8
2 floppy driver \#1904
1 hard drive \& 1 floppy.........
Input: $115 / 230 \mathrm{~V}, 50 / 60 \mathrm{~Hz}$.
Orig. for Burrcughs computer.
Dim. $11^{" W} \times 8^{" H}+12^{2}$ deep Dim.: $11^{* W} \mathrm{~W} \times 8^{\prime \prime} \mathrm{H} \times 12^{\text {" }}$ deep Hem *14541 S59.50

COMPUTER/GAME

 ADAPTERS..

COMMODORE 64
DC Output: 5VDC @ 7.5W and 9VAC@6.7VA Indur: $117 \mathrm{VAC}, 50 / 60 \mathrm{~Hz}$. Commodore \$310157-02 (black) Item \#19315 New - \$24.95 COLECOVISION
DC Outpur: +5VDC @ 9A -5VDC @.1A +12VOC@.3A
Input: 120VAC/60Hz., 25 A
Coleco \$554 16 (black)
Item $\$ 1882$ New - $\$ 9.95$
MECHANICAL
KEYBOARDS.

48-KEY - Timex Z81/1000
Item $\# 6712$ New - $\$ 5.95$
75-KEY - Timex or Adam For computer upgrado-

Item ${ }^{2} 7429$ New - $\$ 5.95$
66-KEY - Commodore C-16 Item \#9394 Now - $\$ 5.95$
NEON TRANSFORMER
(Hi-Voltage)

for powering
neon lights, replace-
neon lights, replace-
ing oil burner ignition transformer,
building Jacob's ladder (spark gapl. Hi-voltage output: $1 / 4$ quick connect terminal \& case ground input fully enclosed metal case. input fully enclosed metal case. $51 /{ }^{\circ} \mathrm{W} \times 67 / \mathrm{a}^{\circ}$.

Item $=151$ New - $\$ 14.95$ equipment and components - AMERICAN DESIGN COMPONENTS!

\checkmark QUALITY \checkmark SERVICE \checkmark VALUE

| 1660 POINT OUALITY PROJECT BOARD
 - 50
 Ideal for full circuit 2 terminal strios with 1260 tie-points with 400 tie-points 3 binding posts for ACT NO: 69311 | QUALITY 2 TO 1 DB25 SERIAL SWITCH BOX 30^{40} \square
 Permits low-cost sharing of peripherals Guality rotary switch construction No external power required ACT NO: 69393 |
| :---: | :---: |
| QUALITY OSCILLOSCOPE PROBE KIT
 3499
 Switchable $\times 1, \times 10$ attenuation ranges Input impedance ($\times 1$) 1 Megohm (x1) 1Megohm (x10) 10Mecohms
 Bandwidth ($\times 1$) 10 MHz . ($\times 10$) 100 MHz Compensation range $10-60 \mathrm{pf}$ ACT NO: 70138 | QUALITY MINI BREAK-OUT BOX
 42^{20}
 testing of RS232 lines 24 DIP switches for
 reconfigurations
 - 12 interface included
 LED's for status
 ACT NO: 70196 |
| QUALITY ANTI-STATIC FIELD SERVICE KIT
 4750
 dissipative fabric
 grounding cords included
 ACT NO: 69269 | QUALITY EPROM ERASER 64^{00}
 Erases up to 8 eproms in 15-20 minutes
 Erases up tort. high impact plastic case Recommended for hobbyist/student use Erases 24. 28 or ACT NO: 69492 |
| QUALITY EFI SUPPRESSOR STRIP
 105^{25}
 Handles up to 10 amp loads
 Brownout protection (4.5 UF) Protects against possible catastrophic fallures due to line voltage fallures due to line voltage
 - Ul Ilsted with circuit breaker/high impact ACT NO: 69326 | QUALITY, SUPER RUGGED TOOL CASE
 120^{70}
 Size $173 / 4 \times 141 / 2$ Numerous Dockets for secure too
 - Quallty high density polyethylene construction Anodized aluminum valence and draw bolt lat ACT NO: 86130 |

THE ACTIVE DIFFERENCE... QUALITY!

but pricing only tells a very small part of the story All components and accessitive wit of the highest industrial quality. No surplus...no seconds... no pulls. ACTIVE is a proud affiliate of FUTURE Electronlcs (the 8th largest electronic components distributor in North America). As such ACTIVE has over one hundred million dollars of prime, first grade inventory. Our stores 20 now and FUTURER And e Electronics is a franchised distributor for over 200 of the best known names in electronics. 20 years we know been supplyng
Remember, all ACTIVE parts are first grade, industrial quality, are supplled to us solely by FUTURE Electronics and as such are totally suitable for use in any project or repair. And, you can count on that. Judge us by the companles we keep

TOLL FREE ORDER NUMBER 1-800-ACTIVE 4

Semiconductors and integrated circuits. in stock for Immediate dellvery.

| 1. | $\mathrm{ACP}^{\text {a }}$ | Palce | Part 1 | Acis | PPACE | MMFI | $4 c^{4} \cdot$ | Palc |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| LNEAR | | | TRANSISTORS | | | SN74LS SERIES | | |
| AMeci.s3iPC | 51012 | 1.58 | 2 F 2224 | Q185 | 3158 | STMASPV | 0676 | 41.58 |
| 24M26.5320 | 86 | 1.97 | W2\%46 | Q188 | 1.08 | sprasour | 05780 | 158 |
| 12620° | 54078 | 1.06 | \% | Q190 | 31.6 | spussosi | 06734 | 41.88 |
| Thasco | 5041 | 1.81 | 2eeosa | Q 919 | 21.00 | STM | 057\% | 41.58 |
| | Sit | 21105 | 2123074 | Q 20 | 3158 | S074 41414 | 10830 | 2125 |
| H107504 | | 215 | 2 m | Q190 | 22.00 | SNMLSPOA | 0006 | M4.58 |
| T100109 | $511+2$ | 21.05 | 2×1440 | ${ }_{\text {c10 }}$ | 158 | 330 | O8518 | 4.15 |
| TLO2CP | 5048 | 21.36 | 21377 | ${ }^{2130}$ | 235 | SNMSTM | 0.05834 | 21.50 |
| dap | 54650 | 2105 | W3Tm | 0205 | 297 | Smastiak | 158846 | 31.7 |
| Cap | 54.81 | 21.14 | 2×373 | 0206 | 3.06 | S674574y | C5846 | 31\% |
| T17xc.p | 427 | 1.14 | Whare | Q134 | 236 | SNT4575 | 05650 | 31.6 |
| maxczrop | | 4.00 | 2×8819 | 0207 | 21.08 | Sincistan | 0685 | 3125 |
| Ticher | 54037 | 1.05 | 2×1808 | P2a11 | 51.00 | SM14.585 | 03858 | 21.75 |
| Trench | 51108 | 1.36 | 213806 | 0212 | 51.00 | SMassow | OS580 | 3..6 |
| 309TC | 00132 | 21.00 | 2401 | 0214 | 41.0 | STILSSOM | 03680 | 3208 |
| 13176 | 0_{06108} | 31.14 | ancso | ceas | 188 | SNALSS\% | C5688 | 31.58 |
| ${ }^{318185}$ | 000014 | 1.18 | 241853 | 02080 | \% | | 08888 | 2158 |
| $3+5$ | O6025 | | $2 \mathrm{tan64}$ | 027 | 312 | STMLST3S4 | c3638 | 31.9 |
| 3 ScC | 05012 | 31.25 | 8, | 20. | 8 | STVLStay | | |
| 3TR | 36225 | 1.03 | ${ }_{16} 1 \times 530$ | 2608 | 201 | SWILC 146 CN | 069 | 1.64 |
| 3ep | ${ }^{06045}$ | 2158 | 1 FFF 50 | 26002 | 241 | SNT, 5 S 533 | ${ }_{0} \mathbf{C 5 9 9}$ | 21.14 |
| 3 35ct | 010 | 21.50 | 18 TzO | 2026 | 1.0 | SW74.515\% | 06913 | 31.64 |
| ${ }^{33817}$ | 06104 | 31.6 | 19R230 | 20067 | 271 | SWM 4 S1614N | 05916 | 2158 |
| | | 31.85 | \|18F24) | 20588 | 375 | S074.5123aN | 00978 | 21.58 |
| SEstc | 06106 | 311.00 | 14.308 | 2002 | 27 | Sima 5164 | O9919 | 21.58 |
| csscce | 5404 | 31.64 | ME1T2 | z603 | 1.06 | SNTALS | cse | 2161 |
| $555 \times$ P | 54148 | 158 | WJES0 | 26088 | 5 | SNuS3 | \% | 2200 |
| | 6 | 2 L 14 | WPSUCO | 4003 | vi.ct | SW74.534 | | 1.00 |
| 55 | 00228 | 1.35 | MPSAOS | 4006 | 41.05 | STITS235 | 95945 | 1.8 |
| 5700 | 0×350 | 21.4 | MPSA13 | 4070 | 31.06 | SW1245257N | 0652 | 21.14 |
| 7 Farc | | 21 | Mrsme | 4013 | 31.06 | STM 4 S5Sem | 0588 | 108 |
| \% | ${ }_{0}^{06020}$ | 21.64 3128 | HPSAM3 | 4×20 | 31.08 | 5374.5378 | ases6 | 10 |
| 7708 | 05019 | 211.14 | Prema | 4007 | 31.06 | Shfle 5373 N | 00971 | 51.97 |
| TOA1TON | Such | 1.97 | $1 \operatorname{THPS}^{\text {dex }}$ | ${ }_{2004}^{2004}$ | 24.35 | S04LS | | 1.00 |
| T41770s | 54040 | 125 | - | 20076 | 21.35 | , | Tock- | CALL |
| 12350 | | 106 | TMS | 2907 | 2475 | SNI400 | 0 SERI | des |
| Mc 1408. 8 | 54008 | 1.75 | TPPSC | 2016 | 20 | STriow | 18350 | 31.14 |
| 11558 CC | 06082 | 39.14 | Trect | 2000 | 3 | STP 404 | 05506 | 31.14 |
| | ${ }_{0} 0098$ | 31 | | 2083 | 120 | Smpay | 050110 | ${ }_{21.08}^{31.4}$ |
| | ${ }_{5} 50607$ | ${ }^{318}$ | , | 2909 | 21.47 | STHOT | C6518 | 21.08 |
| moser | | 21.97 | T1P10? | 2001 | 21.67 | SWTAEM | O5520 | 31.14 |
| SOCP | 54072 | 3.75 | | ${ }_{2}^{20404}$ | 206 | STITM | 0 | 21.00 |
| c | 06661 | 130 | | 2004 | 1.0 | STM 4164 | 0658 | 21.03 |
| 128038 | 54067 | 150 | 1 P 120 | 2004 | 1.0 | Sratim | 05050 | 2103 |
| 88044 | | 1.17 | T1P12 | 2089 | 1.72 | S1, $3 \times 2 \mathrm{y}$ | 005056 | 31.14 |
| - | sum | 180 1.14 | | 2008 | 24.58 | SNiz3en | Oc550 | 21.103 |
| MCa $170 \times \mathrm{P}$ | 5420 | 2.38 | T1P14 | 200 | 236 | SNTM ${ }^{\text {S }}$ | 05058 | 21.14 |
| 889 | | 1.58 | MORE IN | Stock. | CALL | SN14 5 W | 20 | ${ }_{100}^{1.03}$ |
| 56358401 | 54.2 | 258 | | IACS | | SW704 | 25588 | 21.03 |
| 3500 C | 10210 | 21.36 | 101060 | 2005 | N0 | S1243N | \% 559 | 21.03 |
| 13138 CC | 0×15 | 2136 | ${ }^{1616164}$ | 20100 | 1.7 | ST14764 | 06554 | 31.17 |
| 45151 C | 06072 | 1.00 | 260 | 20887 | 201 | Smipan | 20610 | 53.08 |
| 45 | 06220 | 31.25 | T1C250 | 2088 | 1.75 | S51712111 | S5640 | 21.00 |
| Nestis ${ }^{\text {a }}$ | 54003 | 180 | TM2160 | 20000 | 218 | SNT4230 | 05654 | 21.14 |
| NE532403 | 54034 | 1.58 | TCC280 | 20085 | 200 | SW7 15 SN | 06570 | 1.64 |
| MORE IN | STOCK | call | HRE IN | STO | K-CALL | MORE | Ock | |

PARTIAL LISTING ONLY
ACTIVE HAS THOUSANDS OF DIFFERENT SEMI-CONDUCTORS AND INTEGRATED CIRCUITS AVAILABLE FOR OFF-THE-SHELF DELIVERY. IF THE TYPE YOU REQUIRE IS NOT LISTED, PLEASE CALL FOR PRICING.

ORDERING FROM ACTIVE IS EASY.

By Phone
Our trained telephone order personnel are ready to take your order from 8:00AM to 6:00PM (Eastern). Orders are processed within 24 hours. Please have your credit card (Visa, Mastercard or American Express) handy when you call: By Mail
Simply list the items you would like to order - total your order and add 4.00 (UPS Ground) or 7.00 (UPS Blue) shipping/handling Massachusetts residents please add state sales tax and send it, to: Active Mallorder Center. 133 Flanders Road. westborough Mass. 01581
in our stores
westborough, MA Woburn, MA Long Island Mt. Laurel, N」 Seattle, WA Santa Clara, CA in Canada
Quebec, Q
Toronto. ON (3)
Edmonton, AB

415-592-8097

Mail-Order Electronics 24 HOUR ORDER HOTLINE CUSTOMER SERVICE (7AM-5PM PST)

| NECV20 \& 30 CHIPS | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Replace the 8086 or 8088 in Your 18 M PC and o. Increase its S peed by up to 30% ! | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| 7400 | | | | | |
| Pant No. | 1.9 | $10+$ | Part No. | 1.9 | $10+$ |
| 7400 | 29 | 19 | 7485 | 69 | 59 |
| 7402 | 29 | 19 | 7486 | 45 | 35 |
| 7404 | 29 | 19 | 74890. | 1.95 | |
| 7405 | 35 | | 7490 | 49 | 39 |
| 7406 | 39 | 29 | 7493 | 45 | 35 |
| 7407 7408 | 39 35 | 29 | 74121 | 39 | 99 |
| 7410. | 29 | 19 | ${ }^{74123}$ | -49 | |
| 7414 | 49 | 39 | 74126 | 55 | |
| 7416 | 35 | 25 | 74143 | 4.95 | 485 |
| 7417. | 35 | 25 | 74150 | 1.35 | 125 |
| 7420 | 29 | 19 | 74154. | 1.35 | 1.25 |
| 7430 | 29 | 19 | 7458 | 1.49 | 1.39 |
| 7432 | 39 | 29 | 74173 | | |
| 7438 | 39 | 29 | 74174. | . 59 | 49 |
| 7442 | 49 | 39 | 74175 | 59 | . 49 |
| 7445 | 79 | 69 | 74176 | 79 | , |
| 7446 | 89 | 79 | 74181 | 1.95 | 1.85 |
| 7447 | 89 | . 79 | 74189. | 1.95 | 1.85 |
| 7448 | 1.95 | 1.85 | 74193 | . 79 | |
| 747 | 39 | | 74198 | 1.85 | 1.75 |
| 7473 | 39 | 29 | 74221. | 99 | |
| 7474. 7475. | 39 49 | 3 | ${ }_{7} 7437385$ | 59 | $\begin{array}{r}1.85 \\ 4 \\ \hline\end{array}$ |
| 7476. | 45 | 35 | 74367. | 59 | 9 |
| 7415 | | | | | |
| | | | | | 65 |
| 74LS02 | 28 | 18 | 74LS166 | 89 | |
| 74L504. | | | 74LS173. | | |
| $74 \mathrm{LSO5} 5$ | 28 | 18 | 74LS174. | 39 | 29 |
| 74LS06. | 59 | 49 | 7415175 | 39 | |
| 741507. | 59 | . 49 | 74LS199 | 3.95 | 3.85 |
| 74LSO8. | 28 | . 18 | 74LS191. | . 59 | . |
| 74L510. | | | 74LS193 | . 69 | . 59 |
| 74LS14. | 49 | 39 | 74LS221. | . 69 | 59 |
| 741527. | 35 | 25 | 74LS24a | 59 | |
| 74L530 | | 18 | 74LS243 | . 69 | 59 |
| 74L532. | 28 | 18 | 7445244. | 69 | 59 |
| 741542. | 49 | 39 | 74LS245. | . 79 | 69 |
| 74 L547. | 89 | | 74LS259 | . 99 | 89 |
| 74253. | 39 | | 74LS273. | 89 | 79 |
| 744574, | 35 | 25 | 74LS279. | . 49 | 39 |
| 741575 | 39 | | 7445322 | 3.49 | 3.39 |
| 741576 | 39 | | 74LS365 | . 49 | 9 |
| 74L585 | 59 | | 74L5366 | . 49 | 39 |
| 74 L586 | 29 | 19 | 74L5367. | 49 | 39 |
| 74LS90 | 49 | 39 | 74L5368 | 49 | 39 |
| 741593. | | | 74L5373. | . 79 | |
| 7415123 | 49 | 39 | 74LS374. | 79 | 69 |
| 7415125 | 49 | | 74.5393 | 89 | 79 |
| $74 \mathrm{LS138}$ | 49 | 39 | 74 LS590 | 5.95 | 5.85 |
| 745139 | | | 74 LS624. | 1.95 | 185 |
| $74 \mathrm{LS154}$ | 1.19 | 1.09 | 74LS629 | 2.49 | 2.39 |
| 7425157. | 45 | 35 | 74LS640 | . 1.09 | 99 |
| 7415158 | | | 74 LS645 | 109 | 9 |
| 742163 | 49 | 39 | 74.5670 | -. 99 | |
| $74 \mathrm{LS164}$. | 59 | 49 | 74LS6B8 | | |

74S/PROMS*

MICROPROCESSOR COMPONENTS
MISCELLANEOUS CHIPS

MICROPROCESSOR SA EI

| \mathbf{M} | 5 |
| :---: | :---: |
| MC68701 | 8-8it EPROM Microcomputer. \$14.95 |
| MC68705P3S | 8-Bit EPROM Microcomputer. \$9.95 |
| MC68705U3S | 8-8it EPROM Microcomputer. \$10.95 |
| 80286-10 | 16-Bit Hi Performance MPU. \$69.95 |
| 80287-8 | Math Co-processor (8MHz). 5244.95 |
| 80287-10 | Math Co-processor (10MHz). $\$ 309.95$ |
| 80387-16 | Math Co-proc. (16MMz) grio array . . $\$ 474.95$ |
| | |

80387-20

| 105.548 |
| :--- | :--- |
| 262.1 |

$2016-12$
$2018-45$

2114 2114 N 21 21 C 510 .611 .611 .626 .626 .626 651 .432

Math Co-proc. (20MHz) grio array .
\$749.95

| Parko. Price | | |
|---|---|---|
| 6,570 | |
| woirz | ${ }^{8.95}$ |
| ${ }_{6} 65034$ | ${ }_{\text {1,19 }}^{1.19}$ |
| ${ }^{6557}$ 650. | |
| 6522 | ${ }_{295}$ |
| ${ }^{6525} 5$ | 4.95 |
| ${ }^{6522}$ | ${ }_{599}$ |
| ${ }^{65455-1}$ | ${ }_{3}^{395}$ |
| ${ }^{65657}$ | |
| | |
| ${ }_{6581}^{6512 \mathrm{M}} \quad 1 \quad 1295$ | |
| | ${ }_{8502}$ |
| ${ }^{3564}$ | |
| | | |
| ${ }_{8701}^{301 \quad 1 \quad 995}$ | |
| ${ }_{8722}^{821}$ | |
| $310554.05 \quad 995$ | |
| | |
| | |
| | |
| -82S100PLA$901225-01$ | |
| | | |
| $901225-0$$901226-0$ | |
| | |
| | | |
| | |
| 74C/CMOS | |
| \%,400 | 20129 |
| ${ }^{7}$ | ${ }_{7}^{24675}$ |
| \%cas | 27620 |
| ${ }_{\text {acta }}$ | ${ }^{2023}$ |
| rich - $\quad 1$ | 774874 |
| 76C4 | ${ }^{2} 26912$ |
| ${ }^{2}$ | 120920.1955 |
| | (2092) |
| | |
| | 74028 |

MISC. COMPONENTS
TANTALUM CAPACITORS
M $1 / 35.1,41$ a 35
\qquad
POTENTIOMETERS

43PXX \& Want is Turn $.99 \mid 63 \mathrm{PXX}$ is Watt i Turn .89

TRANSISTORS AND DIODES
\qquad
SWITCHES

D-SUB CONNECTORS

| | LEDS |
| :---: | :---: |
| | ${ }^{13} 13 \times 1 \times$ |

IC SOCKETS

The OTSS quickly determines the proper AS232 configuration required to interface two peripherals. Simply slide the switches and determine by the LEDs which confliguration works best. QTSS.
$\$ 49.95 \$ 29.95$

JAMECO SOLDERLESS BREADBOARD SOCKETS

| | JE24 | | JE 27 | |
| :---: | :---: | :---: | :---: | :---: |
| | Oim. | Contact Pounts | Binding Posts | Price |
| JE20 | $6 \% \times 3 /$ | 200 | 0 | \$ 2.95 |
| JE21 | 34×24 | 400 | 0 | \$ 4.95 |
| JE22 | $642 \times 13 / 8$ | 630 | 0 | \$ 5.95 |
| JE23 | $612 \times 2 \%$ | 830 | 0 | S 7.95 |
| JE24 | $61 / 2 \times 31 / 8$ | 1.360 | 2 | \$14.95 |
| JE25 | 6te \times 44 | 1.660 | 3 | \$22.95 |
| JE26 | $6 \% \times 5^{3 / 4}$ | 2.390 | 4 | \$27.95 |
| JE27 | $74 \times 7 \%$ | 3.220 | 4 | \$37.95 |

JE1001 4.77/8MHz (PC/XI) \$ 89.95 JE1002 4.77/10MHz (PC/XX). . . \$109.95 JE3005 8/12 MMz (AD). $\$ 329.95$

| Jameco Computer | |
| :---: | :---: |
| | |
| ComputerPowerFaxumurs | |
| Protection JE1190 | |
| JE1190 | (Power Base. \$29.95 |
| JE1191 | 1 6-Outlet Power Strip \$11.95 |
| Jameco IBM PC/XT/AT Compatible Keyboards | |
| |

 rwas 131K
 frartixathon |
| JE1015 JE1016 Pritured Stan 59.95 | |
| JE1015 Standard AT layout (XT/AT) . . S59.95 JE1016 Enhanced layout (XT/AD) . . . \$69.95 | |
| DATA BOOKS | |
| 104100 NSC | NSC Linear Data Book-Vot (88)..... $\$ 14.95$ |
| 104200 NSC | NSC Linear Data Boot-kot 11 (88). . . \$ 9.95 |
| 104300 NSC | NSC Linear Data Brok-Vot H1 (88). . . S 9.9 .95 |
| 210830 Intel | Intel Memory Handbook (88). $\$ 17.95$ |
| 230843 Intet | Intel microsystem Hndbk. Set (88) . . . \$24.95 |

IBM PCIXT 10MHz Turbo Compatible Kit With 640K RAM

 $\frac{\text { JE3003 IBM Comp. PC/XT 10MHz Turbo Kit } \$ 699.95}{\text { IBM COMPATIBLE DISPLAY MONITORS }}$

CTX2410
\qquad
$\$ 279.95$ cтх2410

14" EGA Color - EGACGA Compat., 720×350 Max. Resolution (PC/XT/AT) TM5154. $\$ 399.95$
$14^{\prime \prime}$ EGA Monitor and EGA Card - EGA compatible. 720×350 Max Resolution - displays up to 16 colors (PC/XT/AT) JE1059
\$519.95
14 " Multiscan Color - VGA/PGC/EGA Compatible, 800×600 Max. ResoIution (PC/XT/AT)
TM5155. \$549.95
IBM PC/XT/AT COMPATIBLE CARDS

JE1050 Mono Graphics Card w/Printer Porl (PC/XT/AT). . . . \$59.95 JE1052 Color Graphics Card w/Printer Port (PC/XT/AT) \$49.95 JE1055 EGA Card with 256K Video RAM (PC/XT/AT) \$159.95

JE1071 | Mult I/O with Drive Controller |
| :--- |
| and Mono Graphics (PC/XT). $\$ 119.95$ |

Multifunction, I/O and Expansion Cards
JE1060 Card with Sertial, Game, Parallel Printer
Port and Real Time Clock (PC/XI). $\$ 59.95$
JE1061 RS232 Serial Hall Card (PC/XT/AT) \$29.95

JE1065 | I/O Card with Serial Game and |
| :--- |
| Parallet Printer Port (AT). $\$ 59.95$ |

JE1078 Expand to 384 K (zero-K on-board) Mullitunc. w/Serial. $\$ 69.95$
JE1081 $\begin{gathered}\text { 2MB of expanded or extended memory } \\ \text { (zero-K on-board) (AT). } \$ 119.95\end{gathered}$ 3MB of expanded or extended memory, parallel printer JE1082 $\begin{aligned} & \text { port. serial port and game port } \\ & \text { (zero-K on-board) (AT). }\end{aligned}$ $\$ 169.95$

Floppy and Hard Disk Controller Cards $\$ 29.95$ JE1040 ${ }^{360 K B}$ Floppy Disk Drive Controller Card (PC/XI). . . . \$29.95 JE1041 20/40MB Hard Disk Controller Card (PC/XT). \$79.95 JE1043 $360 \mathrm{~K} / 720 \mathrm{KN1.2MB/1.44MB}$ Floppy Disk Cont. (PC/XT/AT) \$49.95 | JE1045 | $\begin{array}{ll}360 \mathrm{~K} / 720 \mathrm{~K} / 4,2 \mathrm{MB} / 1.44 \mathrm{MB} \\ \text { Controller Card (AT) }\end{array}$. |
| :--- | :--- |

\$149.95

COMPUTER PERIPHERALS

Zuckerboard 30Meg Hard Disk Drive Board for Tandy 1000, 1000A, 1000 SX, 1200, 3000 and 3000 HL

30 Megabytes formatted capacity. Uses only one siot • Pre-formatted with MS-DOS T30MB 30 MB Hard Disk \$599.95 \$399.95

Seagate 20,30 40 and 60 MB Half Height Hard Disk Drives
ST225 20MB Drive only (PC/XT/AT) ... $\$ 224.95$ ST225XT 20 mB w/Controller (PC/XT) $\$ 269.95$ ST225AT 20 MB w/Controlle (AT) \$339.95 ST238 $\quad \mathbf{3 0 M B}$ Drive only (PC/XT/AT) $\$ 249.95$ ST238XT 30 MB w/Controller (PC/XT) $\$ 299.95$ ST238AT 30ME w/Controller (AD). $\$ 389.95$ ST251 40M日 Drive onty (PC/XT/AD) S429.95 ST 251 KT 40 mB w/Cont Card (PC/XT) S 469.95 ST 251 AT 40MB w/Controller Card (AT) ... $\$ 539.95$ ST251-1 40MB Fast 28 ms (Drive only) . . . $\mathrm{S}_{499.95}$ ST 277 60M日 Drive only (PC/XT/AT) \$499.95 ST277XT 60 ME w/Controller (PC/XI) $\$ 549.95$ ST277AT 60 MB w/Controller Card (AD)... \$639,95 40MB Tape Back-Up for IBM PC/XT/AT DJ10 40м M Tape Back-Up. \$349.95
 \& AT Compatible Disk Drives JE1022 (Picturea)
JE1020 360K Black Brl. (PC/KT/AT) . . S 89.95 JE1021 збок Beige Brl (PC/XT/AT) . . . S 89.95 JE1022 1.2m8 Beige Bri. (PC/XT/AT) . . S 109.95 3.5" PC/XT/AT Compatible Disk Drives

Datatronics
2400/1200/300 Modems

| 1200P | 1200/300 Baud Pocket Modem. | \$ 99.95 |
| :---: | :---: | :---: |
| 1200H | 1200/300 Baud internal Modem. | \$ 69.95 |
| 24005 | 2400/1200/300 internal Modem. | \$129.95 |
| 1200 C | 1200/300 Baud External Modem. | \$ 99.95 |
| 2400 E | 2400/1200/300 External modem | 95 |
| | TEST EQUIPMENT | |

Data Sheets - 50c each Prices Subject to Change

Send \$2.00 Postage for a FREE 1989 CATALOG
FAX Numbers: 415-592-2503 or 415-595-2664 Telex: 176043
\square
V/SA ${ }^{\circ}$
FAX Numbers: $415-592-2503$
U.S. Funds Only
Shipping: Add 5% plus $\$ 1.50$ Insurance (May vary according to weight) California Residents: Add 6\%, 61/2\% or 7\% Sales Tax

- 1988 Jameco Electronics 12/88
\$20 Minimum Order

PLANS

Build Yourself — All Parts Avaidable in Stock
LC7-BURNING CUTTING CO LASER
RUB4- PORTAELE LASER RAY PISTOL
TCEI- 3 SEPARATE TESLA COIL PLANS TO 1.5 MEV
OGI- ION RAY GUN
GRA1- GRAVITY GENERATOR
EML1— ELECTRO MAGNET COIL GUN LAUNCHER

KITS

With Aall Necessary Plans
MFT3K- FM VOHE TRANSMITTER 3 MI RANGE
NWPMTK- TELEPHONE TRANSMITER 3 MI RANGE
TC3K - TELEPMONE RMANMDTM MO
LHC2K- SIMULATED MULTICOLOR LASER
BLSIK - 100,000 WATT BLASTER OEFENSE OEVICE
ITMIK- 100,000 VOLT 20' AFFECTIVE
RANGE INTIMIDATOR
SSPAK- TIME VARIANT SHOCK WAVE PISTOL
STA1K- ALL NEW SPACE AGE ACTIVE PLASMA SABER
WVPIK- SEE IN DARK KIT
PTGIK - SPECTACULAR PLASMA
TORNAOO GENERATOR

ASSEMBLED

With All Necessary Instructions
TCTO - 50,000 VOLT-WORLO'S SMALLEST TESLA COIL ... $\$ 54.50$ GU4O- IMW HENE VISIBLE REO LASER GUN 49.50

T30- AUTO TELEPHONE RECOROING OEVIC
UVPIO- SEE IN TOTAL OARINESS IR VIEWER USTIO- SNOOPER PHONE INFINTTY TRANSMITTER IPG70- INVISIBLE PAIN FIELO
generator mutil mode

- catalog containing oescriptions HUNDREDS MORE AVAILABLE FOR \$1 OO ABOVE PLUS PHONE FOR "ORDERS ONLY" 603-673-4730
PLEASE INCLUDE $\$ 3.00 \mathrm{PH}$ ON ALL KITS AND PRODUCTS PLANS ARE PDSTAGE PAID. SEND CHECK, MO, VISA. MC IN US FUNDS
INFORMATION UNLIMITED
P.O. BOX 716 DEPT.RE, AMHERST, NH 03031

*NEW STARGATE 2000
CABLE CONVERTER

1-\$89.00 10-\$69.00 10()-Call
Last Channel recall-Favorite channel select-
75 channel-Channel scan-Manual fine tuneOne year warranty-surge protection-HRC \& Standard switchable and much more. Call Today! INFORMATION(402)554-0417 Orders Call Toll Free 1-800-624-1150

M.D. ELECTRONICS

115 NEW YORK MALL SUITE 133E
OMAHA, NE. 68114

ADVERTISING INDEX

RADIO-ELECTRONICS does not assume any responsibility for errors that may appear in the index below.

| Free Information Number | | Page | Free Information Number | | Page |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 81, 192 | A.I.S. Satellite | 43 | 56 | Parts Express | 06 |
| 108 | AMC Sales | 28 | 68. 188 | Philips ECG | 56 |
| - | AMCOM | . 104 | 250 | Philips ECG | 56 |
| 199 | Ace Communications | 96 | 101 | Pomona Electronics | 7 |
| 189 | Active Electronics | . 116 | 78 | Radio Shack | 107 |
| 107 | All Electronics | 120 | 200 | SCO Electronics | 22 |
| - | Amazing Concepts | 102. 122 | 185, 186 | Sencore | 32, CV3 |
| 106 | American Design Components | . 114 | 74 | Solid State Sales | 105 |
| 76 | Associated Electronics/3M | 22 | - | Star Circuits | 95 |
| 197 | Atlantic Cable Distribution | 92 | 83 | Synergetics | 34 |
| 184 | Banner Teclonical Books | . 95 | 92 | Tektronix | 18 |
| 85 | Blue Star Industries | . 43 | 123 | Test Probes | 18 |
| 109 | C \& S Sales | . . . 48 | 182 | The Datak Corporation | 92 |
| 196 | CEI | . . . 102 | 195 | United Electronic Supply | 16 |
| 601 | CIE | 31.37 | 181 | WPT Publications | 96 |

Gernsback Publications, Inc
500-B Bi-County Blud.
Farmingdale, NY 11735
(516) 293-3000

President: Larry Steckler
Vice President: Cathy Steckler

For Advertising ONLY
516-293-3000
Larry Steckler publisher
Arline Fishman advertising director
Shelli Weinman advertising associate
Lisa Strassman
credit manager
Christina Estrada
advertising assistant

SALES OFFICES

EAST/SOUTHEAST
Stanley Levitan
Eastern Sales Manager
Radio-Electronics
259-23 57th Avenue
Little Neck, NY 11362
718-428-6037, 516-293-3000

MIDWEST/Texas/Arkansas/
Okla.
Ralph Bergen
Midwest Sales Manager
Radio-Electronics
540 Frontage Road-Suite 339
Northfield, IL. 60093
312-446.1444

PACIFIC COAST/ Mountain
States
Marvin Green
Pacific Sales Manager
Radio-Electronics
5430 Van Nuys Blvd. Suite 316
Van Nuys. CA 91401
1-818-986-2001

With Just One Probe Hookup You Can Confidently Analyze Any Waveform To 100 MHz, 10 Times Faster, 10 Times More Accurately, Absolutely Error Free, Guaranteed Or Your Money Back.

CHANNELA

With The SC61 Waveform Ansiyzer \$3,295.00 PATENTED

Promises of inc-eased productivity from other oscilloscopes fade fast when compared to the speed and accuracy of the SC61 Eliminate the confusisg menus, cursors and complexity of regular oscilloscopes at the push of a button. Here's what the SC61 does for you

Analyze Waveforn.s Easily

- Accurate Waveform Display - 60 MHz Bandwidth (use able To 100 MHz) To Test The Latest Digital Circuits.
- Rock-Sclid Syre - ECL Logic Circuits And Differential Amplifiers Give Fiddle Free Operation.
- Four Times The Measuring Range - Measure From 5 mV To 2000 Volts (3000 Volts Protection) For Expanded Signal Handling.

Autotracking ${ }^{\text {TM }}$ Digital Readings Analyze The Whole Signal

- Autoránging JC Volts Through Single Probe. Even With AC Coupled.
- Automatic Pak-To-Peak Volts - Even If Variable Control Is "Out Of Cal"
- Automatic Frequency Measurements Without Sensi tivity Adustment Or Range Switching CIRCLE 135 ON FREE INFORMATION CARD

Digital Delta Tests Analyze Any P'art Of The Signal.

- Deita Peak-To-Peak Volts - Peak-To-Peak Volts Of Any Part Of The Signal.
- Delta Time For Any Time Reading - Including Dela: Between Traces
- 1/Delta Time - Frequency Of Part Of The Signal Finds Sources Of Interference Or Ringing.

Frequency Ratio Test - Tests Multiplier And Divider Circuits

Easy To Use - Human Engineered Controls And Virtually No Graticule Counting Or Calculations

The SC61 is designed to give you the measurements you ceed fast. We make one claim:
"Try the SC6I on your bench for 30 days. If it doesn't rut your present scope time in half, send it back for a cornplete refund, no questions asked."

Try the SC61 for 30 days, and discover true troubleshooting speed.

Quality • Price • Delivery

Mini-Meters with Maxi-Specs

Generator

- $0.5 \mathrm{~Hz} \cdot 500 \mathrm{KHz}$ in 6 ranges • Sine, square \& triangle wave forms - VCA and VCF inputs - Accuracy $\pm 5 \%$ of full scale.
Model $\underset{\text { Our Price }}{\mathrm{FG}-202 ~} 14090$

- Easy to operate - VU meter • Two LED mode indicators • 1 KHz test tone $\cdot 8 \mathrm{ohm}$ speaker • Test leads.
Model SE-610 $\$ 11990$

FORDHAM LCR Bridge Meter

- Fully transistorized - 1 KHz signal generator - Measures resistance - Inductance - High mechanical and electrical stability • Battery operated. Model LC-340 44995

SCOPE Hand-Held Digital Multimeters

- Ovelload protection - Auto-decimal LCD readout - Polarity indication - 300 hr . 9 V battery life - Low battery indicator.

Telephone Orders Now! Everyar wcumg s.ivinay
ASK FOR FREE CATALOG. Money orders, checks accepted. C.O.D.'s require 25% deposit

Visi
 Fordham
260 Motor Farkway, Hauppauge, NY 11788

Service \& Shipping Charge Schedule fon orders Continental U.S.A.

In NY State 800-832-1446

 FOA $\$ \$ 50$ $\$ 51.100$ $\$ 101.200$
 $\$ 101.200$ $\$ 201-300$
 $\$ 201-300$ $\$ 301400$
 $\$ 301-400$ $\$ 401.500$ $\$ 501-750$
 $5501-750$ $\$ 751-1000$ $\$ 1.007-1.250$
 $\$ 1.201 .1 .250$ $\$ 1.2501 .2000$ $\$ 1.50 .2000$
 $\$ 1.501 .2000$ $\$ 2.001$ and $U 0$

[^0]: As a service to readers. RADIO-ELECTRONICS publishes available plans or information relating to newsworthy products. techniques and scientific and technological developments. Because of posslble variances in the quality and condition of materials and workmanship used by readers. RADIO.ELECTRONICS disclaims any responsibility for the safe and proper functioning of reader-bultt proiects based upon or from plans or information published in this magazine.

 Since some of the equipment and circuitry described in RADIO-ELECTRONICS may relate to or be covered by U.S. patents. RADIO-ELECTRONICS disclaims any liability for the infringement of such patents by the making, usIng, or selling of any such equipment or circuitry, and suggests that anyone interested in such projects consult a patent attorney.

 RADIO-ELECTRONICS. (ISSN 0033-7862) December 1988. Published monthly by Gernsback Publications. Inc. 500-8 Bi County Boulevard. Farmingdale. NY 11735 Second-Class Postage paid at Farmingdale, NY and additional mailing offices. County Boulevard. Farmingdale. NY 11735 Second-Class Postage pald at Farmingdale. NY and additional mailing offices Si7.97. Canada $\$ 23.97$ all other countries $\$ 2697$ All subscription arders payable in USA S Aunds only via international postal money order or check drawn on a U.S. A. bank. Single copies $\$ 2.25$. © 1988 by Gernsback Publications. Inc. All rights reserved. Frinted in U.S.A.

 POSTMASTER: Please send address changes to RADIO-ELECTRONICS, Subscription Dept., Box 55115, Boulder. CO 80321-5115.

 A stamped self-addressed envelope must accompany all submitted manuscripts and/or artwork or photographs if the ir return is desired should they be rejected. We disclaim any responsibility for the loss or damage of manuscripts and/or artwork or photographs while in our possession or otherwise.

[^1]: Software availability
 Within the last year, there has

[^2]: 8861 y $38 W \exists 3 \exists 0$

