DECEMBER 1947
EVERYTHING IN TELEVISION, RADIO, ELECTRONICS
FOR THE RADIO SERVICE - TECHNICIAN

RADIO
MAINTENANCE

YEARLY SUBSCRIPTION $3.00

BOLAND & BOYCE INC., PUBLISHERS MONTCLAIR, N. J.

ABOUT WIRE RECORDERS
RURAL RADIO SERVICE
AUTO RADIO NOISE
ALIGNMENT METHODS

www.americanradiohistory.com
Satisfied customers' goodwill is your surest formula for building a successful service business. However—the finest craftsmanship of the serviceman's art is to little avail if not protected against installations of inferior merchandise.

Genuine STANCOR transformers, “first” in the field, is your customer-assurance of the finest, top-quality units. And when you use STANCOR you are installing genuine “PROTECTED PRODUCTS,” for STANCOR transformers, packed with complete installation instructions, come to you permanently stamped for guaranteed protection, and expertly packed for your fast identification. Guarantee customer goodwill through STANCOR.
ALL 16 RIDER MANUALS!

Ever stop to think how many successful servicing shops, with which you are personally acquainted, have complete sets of Rider Manuals? Ever notice how many photographs of servicing benches, illustrating success stories in magazines, show all Rider Manuals? This is more than coincidence. It is irrefutable evidence of how Rider Manuals profitably meet the day-in-day-out data needs of busy shops.

Now, consistent with "Seventeen years of Continuing Service to the Servicing Industry," Rider has further ANTICIPATED your needs by establishing the "24 Hour Data Service" explained below.

Here is further justification for the faith of the many thousands of servicemen who have depended upon and benefited by the time-saving, authoritative, money-saving data supplied by Rider Manuals. It is such informed publishing which has resulted in Rider Manuals pouring out profits for servicemen year after year after year. It is such progressive services which suggest you be sure your shop has the sign of successful servicing—all sixteen Rider Manuals.

A NEW 24 HOUR DATA SERVICE

On November 30, 1947, we instituted our new photostat service to supply you with information on any newly issued, or old, receiver. For a fee of $5.00 (stamps are OK), we will send you the schematics of any receiver up to seven manufacturers’ data—data from the service departments of the companies that made the sets. No machine makes better than the manufacturer what servicing procedures are best for his product. This is the basis for the authority and the success of Rider Manuals.

YOU NEED ALL 16

Volume XVI.......................... $6.60
Volume XV........................... 18.00
Volumes XIV to VII
(see Vol.)............................ 15.00
Volume VI............................ 11.00
Abbreviated Manuals I to V
(one volume).......................... 17.50
Record Changers and
Recorders............................ 9.00
Master Index, covering Rider
Manuals, Vols. I to XV.............. 1.50

OTHER RIDER CLASSICS

Inside the Vacuum Tube.............. $4.50
The Cathode Ray Tube at Work........ 4.00
Servicing by Signal Tracing........... 4.00
The Meter at Work..................... 2.00
The Oscillator at Work............... 2.50
Vacuum Tube Voltmeters.............. 2.50
Automatic Frequency Control
Systems.............................. 1.75
Radar—What It Is..................... 1.00
Understanding Microwaves............ 6.00
A.C. Calculations Charts............. 7.50

3 MORE NEW RIDER PUBLICATIONS

FM TRANSMISSION & RECEPTION
For the radio serviceman—for the
"ham"—the student or engineer.
Over 300 pages—paper cover
Similar edition, but hardback, cloth cover

2 NEW RIDER 99’rs

PA INSTALLATION AND SERVICING
UNDERSTANDING VECTORS
AND PHASE

OUT IN JANUARY

RADIO MAINTENANCE • DECEMBER 1947

368 Pages
Plus "How It Works!" Book $6.80

RIDER MANUALS
MEAN SUCCESSFUL SERVICING

(Above photo taken at servicing bench of the Heppe Co., Phila.)
Tried...Tested...Proven Oscillographs
that keep you on the beam for that up-to-date
PROFITABLE SERVICING

For Television...

Your Job is Easier with this
DU MONT TYPE 224-A OSCILLOGRAPH
LOW COST • LIGHT AND PORTABLE • 3-INCH PICTURE TUBE

Perfect adjustment in television-receiver servicing is
an absolute "must" met only by using a cathode-ray
oscillograph. And this Du Mont Type 224-A is the logical
choice because: It’s easy to use. Designed especially for
that sort of critical work. You really see what you are
doing; where the fault lies; when it is corrected. Outstand-
ing is the provision for use of probes. Besides shielding,
the high impedance of the probe prevents overloading
the circuit under test and resultant distortion of the wave-
form. Further, through compensation, the frequency re-
response (see typical waveform) remains excellent without
serious loss of sensitivity. The frequency response of the
224-A is sufficient to display all necessary details of this
waveform for receiver servicing. Compare this with other
instruments in the same price-field.

For FM & AM Radio...

Handle More Business, Make More Money, Save Valuable
Time, with the DU MONT TYPE 274 OSCILLOGRAPH
PRACTICAL AND RUGGED • IRRESISTIBLE LOW COST • BIG 5” TUBE

The big tool in radio servicing is the cathode-ray oscillograph.
And for the serviceman, Du Mont has designed this Type 274. It’s
inexpensive, dependable, all-around equipment. Features latest devel-
opments from servicemen’s point of view, including the big 5” tube
for convenient observation. Greatly simplifies radio servicing espe-
cially since you receive the complete instruction manual telling, in
clear, easy-to-follow language, how to use it. Typical service problems
demonstrated and explained. Your 274 can be put right to work, pay-
better job performed.

Technical specifications on
request. Or see the instruments at your jobber’s.

© ALLEN B. DU MONT LABORATORIES, INC.
Contents

About Wire Recorders J. Richard Johnson 4
A new field for the serviceman

Rural Radio Servicing Jack Darr 8
Servicing battery sets

Auto Radio Noise Elimination Don Blair 12
Mobile sets should not be noisy

Alignment Methods Irving Dlugatch 14
Tabulation of standard methods

The Organizations 18
News of group activities

Review of Trade Literature 34
Catalogs, books, etc.

The Notebook 39
Practical suggestions from readers

Over the Bench John T. Frye 41
A serviceman's opinion

Industry Presents 43
New products

Index of Articles 46
All Radio Maintenance articles since October, 1945

William F. Boyce
Publisher

Paul Wendel
Business Manager
Advertising

Stuart J. Osten
Midwestern Advertising Manager

Eastern Advertising Office
460 Bloomfield Ave., Montclair, N. J.
Tel.: Montclair 2-7101

Joseph J. Roche
Editor

J. Richard Johnson
Managing Editor

A. J. Polhemus
Assistant Editor

Victor M. Turner
Art Director

Morton Scheraga
Contributing Editor

Thomas A. Byrnes
Director Of Field Services
And Quality Control

Al Johnston
Circulation Manager

Frank Van Seeters
Circulation Manager

Midwestern Advertising Office
228 N. La Salle St.
Chicago, Ill.
Tel.: Dearborn 3507

Copyright 1947, Boland & Boyce, Inc.

Subscriptions Rates: In U. S., Mexico, South and Central America, and U. S. possessions, $3.00 for 1 year, $5.00 for two years, single copies 35 cents; in Canada, $3.60 for 1 year, $6.00 for 2 years, single copies 40 cents; in British Empire, $4.00 for 1 year, $7.00 for 2 years, single copies 50 cents; all other foreign countries, $5.00 for 1 year.

Entered as Second Class matter July 13, 1946, at Post Office, East Stroudsburg, Pa., under the Act of March 3, 1879.

Change of address: Four weeks' notice required for change of address. When ordering a change, please furnish an address stencil impression from a recent issue if you can. Address changes cannot be made without the old stencil as well as the new one.

WILLIAM F. BOYCE
Publisher

PAUL WENDEL
Business Manager
Advertising

STUART J. OSEN
Midwestern Advertising Manager

Eastern Advertising Office
460 Bloomfield Ave.,
Montclair, N. J.,
Tel.: Montclair 2-7101

JOSEPH J. ROCHE
Editor

J. RICHARD JOHNSON
Managing Editor

A. J. POLHEMUS
Assistant Editor

VICTOR M. TURNER
Art Director

MORTON SCHERAGA
Contributing Editor

THOMAS A. BYRNES
Director Of Field Services
And Quality Control

AL JOHNSTON
Circulation Manager

FRANK VAN SEEETERS
Circulation

Midwestern Advertising Office
228 N. La Salle St.
Chicago, Ill.
Tel.: Dearborn 3507

Copyright 1947, Boland & Boyce, Inc.

Subscriptions Rates: In U. S., Mexico, South and Central America, and U. S. possessions, $3.00 for 1 year, $5.00 for two years, single copies 35 cents; in Canada, $3.60 for 1 year, $6.00 for 2 years, single copies 40 cents; in British Empire, $4.00 for 1 year, $7.00 for 2 years, single copies 50 cents; all other foreign countries, $5.00 for 1 year.

Entered as Second Class matter July 13, 1946, at Post Office, East Stroudsburg, Pa., under the Act of March 3, 1879.

Change of address: Four weeks' notice required for change of address. When ordering a change, please furnish an address stencil impression from a recent issue if you can. Address changes cannot be made without the old stencil as well as the new one.

WILLIAM F. BOYCE
Publisher

PAUL WENDEL
Business Manager
Advertising

STUART J. OSEN
Midwestern Advertising Manager

Eastern Advertising Office
460 Bloomfield Ave.,
Montclair, N. J.,
Tel.: Montclair 2-7101

JOSEPH J. ROCHE
Editor

J. RICHARD JOHNSON
Managing Editor

A. J. POLHEMUS
Assistant Editor

VICTOR M. TURNER
Art Director

MORTON SCHERAGA
Contributing Editor

THOMAS A. BYRNES
Director Of Field Services
And Quality Control

AL JOHNSTON
Circulation Manager

FRANK VAN SEEETERS
Circulation

Midwestern Advertising Office
228 N. La Salle St.
Chicago, Ill.
Tel.: Dearborn 3507

Copyright 1947, Boland & Boyce, Inc.

Subscriptions Rates: In U. S., Mexico, South and Central America, and U. S. possessions, $3.00 for 1 year, $5.00 for two years, single copies 35 cents; in Canada, $3.60 for 1 year, $6.00 for 2 years, single copies 40 cents; in British Empire, $4.00 for 1 year, $7.00 for 2 years, single copies 50 cents; all other foreign countries, $5.00 for 1 year.

Entered as Second Class matter July 13, 1946, at Post Office, East Stroudsburg, Pa., under the Act of March 3, 1879.

Change of address: Four weeks' notice required for change of address. When ordering a change, please furnish an address stencil impression from a recent issue if you can. Address changes cannot be made without the old stencil as well as the new one.
The idea of recording sound on a magnetic strip is not new; in fact, it is older than the more common disc method. Original patents on a method of wire recording were granted in 1862, whereas Edison's phonograph was not invented until 1876.

If the birth of magnetic recording thus preceded the advent of the disc type, it may be wondered why it was so much longer in reaching its full development. Several important factors are involved in this lag. First, the lack of amplifiers or amplifying devices made it impossible to record at the high levels of intensity required to overcome noise level. Second, a good medium was not available since the type of wire now used is of very good grade and quite fine in diameter, requiring modern drawing methods. During World War II, however, great strides were made in magnetic recording in general and wire recording in particular; and we have now reached the point where several very practical models are available commercially and offer the possibility of profitable maintenance work for the radio service technician.

Magnetism

Let us consider some of the basic principles and difficulties involved in the operation and servicing of the modern wire recorders. To recognize the actual practical features, it is important to understand the fundamentals which underlie the design of this equipment. These fundamentals are relatively simple. For instance, the simple phenomenon of magnetism forms the complete basis for the whole operation. A magnet is considered in modern
theory to be composed of a large number of molecular elements, each of which forms its own little magnet. Fig. 1 shows two representations of this set-up, including one bar of steel which has not been magnetized, and another which has gone through this process.

Each of the little elementary magnets is made to line up in the same direction so that the total magnetic effect points toward one pole or the other after the bar has been magnetized. Previous to magnetizing, however, these elements point in various directions so that the total magnetic effect due to their random positions adds up to zero.

If we now extend this idea of the magnet into a long, thin, steel wire, we can have the same effect taking place as shown in Fig. 2. Here, portions of the wire become magnetized in one direction or the other; thus one inch of the wire might be North in one direction and South in the other, whereas the next inch would have the opposite polarity. It can be seen immediately that this arrangement allows the possibility of what is known as “demagnetization.” Demagnetization is the leakage of magnetism from one section of the wire into the next. It is thus important that succeeding sections of the wire which are oppositely magnetized be sufficiently spaced so that this leakage is reduced to a minimum.

Electromagnet

The next fundamental principle of magnetism involved is that of the electromagnet. This device is an artificially created magnet which derives its magnetic force from the fact that it is surrounded by turns of wire carrying an electric current. It is usually constructed of soft iron so that the retentivity, which is the ability to hold magnetism, is kept at a low level, allowing the magnetism to disappear almost completely when the current through the coil is interrupted.

Let us now combine an electromagnet and the steel wire that we first discussed into an arrangement similar to that shown in Fig. 3. The electromagnet is formed into a shape such that a narrow gap is provided at one end through which steel wire is pulled. If we now place a varying electric current on the coil of the electromagnet, the variations in this current will result in a varying amount of magnetism in the wire as it passes through the gap. If we now reverse the procedure, removing the source of current on the coil of the magnet and passing the magnetized wire through the gap, a corresponding

Fig. 1 How the elementary magnets align themselves in a magnetized bar.

Fig. 2 How a magnetic signal is applied to an iron wire.
voltage will appear at the terminals of the coil. This varying current, or voltage in the case of the wire recorder, is the audio signal. It is thus impressed in magnetic form upon the wire, and in many instances the same instrument which did the recording is used for playback.

Development Difficulties

Now let's consider some of the imperfections inherent in the wire recording system and which designers have had to cope with. First, consider Fig. 4, which shows what is known as the magnetization curve of a piece of iron. As added magnetizing force from a coil is applied, the resulting magnetization in the iron itself is shown plotted on the graph. Notice that the relation between the two is not linear. In other words, it does not vary as a straight line.

There is also a tendency for demagnetization to take a different path from that during magnetization. This effect is known as hysteresis. In trying to produce high fidelity recordings, this is a difficulty because the audio tones will be distorted when played back by this system. To overcome non-linearity and hysteresis effects, we add to our wire recorder what is known as bias. This bias raises the operating point on the magnetization curve to the linear portion, thus giving us a better chance for faithful reproduction. A DC bias could be used, but it has been found more advantageous to use an alternating bias to accomplish this purpose. This not only improves linearity, but at the same time improves the signal-to-noise ratio of the system. The frequency of the bias applied is in all cases somewhere in the supersonic region, varying usually from little over the range of audibility to about 100 kc. It is thus necessary to include an oscillator in magnetic recording devices.

The Medium

Another factor important in the quality of reproduction is the suitability of the medium used, which in this case is wire. The wire should have a good magnetization characteristic and the right amount of retentivity to keep the recording at full strength without losing its value. It must also have a low leakage from one section, known as an element, of the wire to another, thus reducing the contrast. If the succeeding elements of high and low intensity are spaced far enough apart, this leakage can be reduced on almost any type of wire within reason; but this would have to be accomplished by an increase in the speed so that with a given frequency, succeeding cycles would be properly spaced. It is therefore necessary to compromise on these two factors. It has been found that quite satisfactory results can be obtained with speeds of as low as eight inches per second, although many recorders run at several times this speed. Of course, this factor is also influenced by the frequency of the audio tone being recorded. If the frequency is very high, a much higher speed must be used to space the elements properly.

Magnetic difficulties are also encountered with wire, mostly due to the difficulty of coiling and uncoiling the fine material without tang-
ling effects and twisting. In order to accomplish this, wire recorders are designed with both driver and follower spools synchronized to keep the turns constant. Fig. 5 shows the effect of various amounts of twisting upon the output of a wire recorder. Fig. 6 shows frequency response curves of three types of wire recording units.

This brings us to the general consideration of the frequency response of the system. As has been pointed out before, the spacing of the elements on the wire is a function of frequency and no matter how carefully we design the unit, there is always bound to be a drop off of efficiency at the higher frequencies. This is no great difficulty, however, since it can be largely overcome by the proper use of equalization in the amplifier.

Equalization consists of making the amplifier response greater to high frequencies and low frequencies than the response through the middle range. This equalizes for the drop-off in the response of the recorder and playback system at high and low frequencies. How the two response curves combine is shown in Fig. 7.

It is usually found advantageous to use not more than 3 db of pre-
equalization at 3 kc, 9 db at 5 kc, and 15 db at 7 kc. One other type of trouble which occasionally arises is what is known as cross talk or signal transfer. This is the result of the proximity of several turns when the wire is spooled, resulting in transfer of magnetic force from one turn to the other. The severity of this factor can be greatly reduced, and generally is, in commercial models by perfection of the medium or wire. Some of the factors which are involved in this are (1) the retentivity and coercivity of the medium; (2) the shape of the magnetization curve, especially in the low region; and (3) permeability of the medium. Perfection of the composition of the wire in most cases also prevents another difficulty which was experienced by early designers of wire recorders. This factor is what is known as modulation noise and results from the non-uniformity in the magnetic properties of the medium. Modulation noise, however, is not always a result of medium variations, but may result from imperfections in the mechanical driving system which cause the turns in the wire to vary as it passes through the recording head. These latter causes, however, are fortunately very rare in the average commercially available wire recorder.

We will now consider some typical examples of wire recorder units now available on the market and point out the particular features which are important in servicing work. To summarize the basic requirements for good operation, we will list the following: (1) The speed must be proper and must be uniform. (2) The speed must be
BATTERY powered receivers represent an important percentage of present day service work. City and suburban dwellers are again using many of these sets in the form of portables and three-way models. In many farm communities, however, the battery set has been predominant from the beginning of radio broadcasting.

In any event, rural or urban, the battery set is here to stay for a long time, and familiarity with its special problems is a "must" for the efficient radio service technician.

Let's classify the battery type receivers most frequently encountered. They fall into the following general classes:

1. The "straight" battery receiver. This is the kind which uses A, B and sometimes C batteries.

2. The 6-volt household type of receiver. This class makes use of a vibrator pack and usually contains 2-volt tubes connected in series groups of three tubes per group.

3. The AC-DC battery pack receivers. These are the sets which use a high filament voltage tube as rectifier; the other tubes are battery types and get filament voltage from the plate supply or the cathode of the power tube when on AC operation.

Battery set design is almost standardized, due to the need for economical operation. Tube lineups and functions for the 2-volt and 1.4-volt sets are summarized in Table I. A typical battery set arrangement is shown in Fig. 1.

Test Equipment and Methods

A good electronic volt-ohmeter, signal generator and a condenser tester will service any of these sets, although a signal tracer is also useful. The writer has on his bench a 1.4-volt and a 90-volt battery connected to a socket on a cable which feeds through a hole in the panel. There is enough spare cable to reach any part of the bench. This arrangement is very convenient when serv-

Table I

<table>
<thead>
<tr>
<th>Function</th>
<th>2-volt, 4-volt</th>
<th>1.4-volt</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mixer-oscillator</td>
<td>IA6, IC6, IC7G, ID7G</td>
<td>IA7, 187, 1R5</td>
</tr>
<tr>
<td>RF, IF amp.</td>
<td>32, 34, 1D5, 1E5</td>
<td>1N5, 1F5, 1L4, 1T4, 1U4</td>
</tr>
<tr>
<td>2nd Det.–1st AF</td>
<td>1H6, 1F7, 30-diode, 30 triode</td>
<td>1H5, 1S5</td>
</tr>
<tr>
<td>Power output</td>
<td>33, 950, 1F5, 1G5</td>
<td>1A5, 1C5, 1Q5, 3Q5</td>
</tr>
</tbody>
</table>

DECEMBER 1947 • RADIO MAINTENANCE
icing sets with short battery cables. A milliammeter (0-20) is connected in the B-minus lead for checking leaky filters, plate current drain, etc. The battery itself includes six No. 6 dry cells for the A supply, and two 90-volt “B” sections from old packs, in parallel. Filament supply for 2-volt, 4-volt, and 6-volt sets may be obtained by bringing a lead from each cell of your bench car radio battery to give 2, 4 or 6 volts. “B” supply for older sets requiring up to 135 volts may be had from a power pack made from the power section of an old AC receiver, with appropriate bleeders. A test speaker arranged to give impedances of 8000 ohms, 25,000 ohms, or the voice coil alone will match almost all sets. A good outside antenna and a good ground are essential for testing on the air. Equipment and layout suitable for battery set servicing are shown in Fig. 2 and 4.

Servicing Methods

Battery receiver servicing methods are conventional, with the advantage of not having to hunt hum in the power supply! If you are using the customer’s battery, be sure it is up to rated voltage. Minimum usable voltage for the “A” section, which is critical, is around 1.1 volts. All battery voltage measurements must be taken under full load. Types of batteries used in standard receivers are illustrated in Fig. 3. It is a good idea to develop a routine for testing battery sets. I have obtained good results with the following procedure:

1. Test all tubes.
2. Check the battery cable and plugs for loose or bare wires and for proper connection to be sure the “A” wires are not on the “B” battery, etc. Never leave a bare spot on any battery wire as a short can burn out a full set of tubes in a split second.

3. Hook it up and turn it on. Be sure the antenna and ground connections are good. A poor ground

Fig. 1 A simplified schematic diagram of a typical battery powered receiver design.

Fig. 2 A representative four tube 1.4 volt battery set of the kind discussed in the text. Note the milliammeter at the right reading plate drain. The author's extension battery-cable and plug are also shown.
will result in loss of sensitivity and oscillation at the low end of the dial in some sets.

Sensitivity and selectivity on some of the lower priced sets can be improved by removing the loop and substituting a good antenna coil. This must be carefully matched and tuned. Check the performance of the set on your test stations. A station between 550 and 600 kc will provide an excellent check of oscillator performance. Antenna and RF coils are standard. Some sets, such as 1942 Philco and earlier Zeniths, are critical. Factory replacements are recommended for these.

IF Section

The IF section in battery receivers is not much different from that found in the AC variety. Occasionally an extra IF stage using resistance coupling is inserted. Several standard approaches, well known generally, work very well with the battery type. A signal from a signal generator is fed into the receiver and output indication may be obtained with:

1. A VTVM connected from AVC to ground.
2. A signal tracer hooked to the diode second detector plate. (If the tracer is the tuned type, it must be adjusted to the intermediate frequency.)
3. Output meter connected to the last AF stage.

One of the most important factors contributing to instability in the IF section is a defective decoupling condenser. In AC receivers, the filter condensers in the power supply provide a decoupling effect to prevent oscillation. In battery types, even though filtering is not necessary, a good sized condenser is necessary to prevent feedback effects when the batteries act as a common impedance.

Now consider some of the most frequent troubles originating in the IF section:

1. Oscillation and "birdies" at the low end of the dial. This is an indication that the IF is tuned
to a broadcast frequency instead of the correct intermediate frequency. This often results from attempts of the layman to do home "alignment."

2. The IF section breaking into oscillation when the trimmers are peaked. This ordinarily is caused by a defective decoupling or filter condenser as described above. The condenser is usually a dry electrolytic having a value from 4 to 12 uf at 100 - 150 volts. It is connected either from B-plus or from B-minus to ground. Usually this is the only screen or plate return bypass in the whole set so an open unit or one with a high power factor (over forty per cent) will cause oscillation. Check for the presence of signal at the IF or audio frequencies across this condenser. Any signal voltage indicates a defective unit. High power factor condensers will have to be disconnected to give a correct check. Replacing the defective unit with a good condenser will quickly reveal this trouble. Always realign the IFs after replacing filter condensers as the change in the B-plus return impedance will change alignment considerably.

3. Low volume due to high resistance windings in the IF transformers. Check for this trouble with an ohmmeter. A good winding in a 450 kc section should measure from 10 to 20 ohms.

4. Shorted multiple trimmers. Some later sets use a multiple trimmer gadget which incorporates the IF trimmers and the two small IF filter condensers in one unit. These develop shorts and stop the signal although no effect is found with ohmmeter, due to 47,000 ohm filter resistor. Disconnect and check each part if the signal comes up to the last IF plate and quits!

Troubles in the 1H5 second detector-first AF stage are usually open plate resistors, leaky coupling condensers, both in and out of the stage. Plate voltage should measure 40-50 volts with a VTVM, through a half megohm load resistor.

Power Stage

Leaky coupling condensers into the power stage will cause loss of bias, severe distortion and high battery drain. Bias voltage should be checked at the output grid every time a set is serviced. Even a difference of one volt will give trouble. Most 1.4 volt sets use a self-bias circuit (see Fig. 5) with a resistor isolating the B-minus ground by the voltage needed; 4.5 volts is correct for a 1A5, 1Q5, or 3Q3; 7.5 volts for a 1C5. A short in the high voltage will burn out this resistor, which is usually 1/8 watt, as it will shunt it directly across the 90 volt battery. Visual evidence of overheating will warrant replacement of the resistor. Check the bias voltage at the resistor, then at the grid, across the decoupling resistor. A difference in reading indicates a leaky coupling condenser. Check output transformers with an ohmmeter. The DC resistance of the primary should be around 400-600 ohms. Readings up to 2000 ohms indicate a high resistance joint. In this case, replace the transformer. Be sure to match the load impedance of the transformer replacement to the tube in use—8000 ohms for 1C5, 1Q5, 3Q5; 25,000 ohms for a 1A5. Watch the position of the leads as coupling between plate...
Auto Radio Noise Elimination

by Don Blair

The right adjustment here and there often makes a profitable job and a happy customer.

EVEN if you don't like it, the automobile radio receiver is here to stay. The radio service technician is going to continue to encounter plenty of the mobile type, and the noisy ones are popping up every day.

The little gremlins who live underneath automobile hoods thus have caused and will continue to cause a lot of headaches among the members of the radio service fraternity. They are the demons who cause noise in auto radios. However, like most other bogies, they

Fig. 1 Some of the critical points in eliminating noise: a—antenna lead in; b—point where the receiver is grounded to the car chassis; c—battery wire; d—wheels. Under seat heater hose also can cause trouble.
cannot long survive when exposed to the light—we propose to expose 'em!

Battery Wire Noise

The first step in logically tracing auto radio noise is to disconnect the antenna. The second step is to start the motor, try it at varying speeds, and note the noise levels.

With a good installation, and with the receiver audio and tone controls turned high, there should be no ignition noise with the engine turning at constant speed. A little hash as the motor is accelerating or decelerating is to be expected and tolerated.

Now, remember that any noise in the radio must be sneaking in through the back door, on the battery wire, since the antenna is entirely disconnected. This noise must be gotten rid of before we can proceed further.

Here the generator bypass, the distributor suppressor or bypassing condenser, and other factory recommended filters get in their good work. Noise must be reduced to the absolute minimum without an antenna if a good finished job is expected.

If the recommended filters are in place, and ignition noise persists, try experimental lead dressing under the dash while motor and radio are running—with the aerial still disconnected. It is often surprising what a little regrouping of jumbled wiring will accomplish.

A sometimes baffling source of noise can be brought inside the car on the water cooling system; where underseat heaters are supplied through lengths of rubber hose. Usually these must be shielded.

Common Ground Point

In this connection, dealing with VHF circuits has taught the effectiveness of establishing a common ground for each RF circuit or stage. This idea can be used in routing auto noise to oblivion.

Consider the steel box of the radio as the point of zero RF or noise potential. Add as large a part of the car as possible to this zero point by making doubly sure the radio is thoroughly grounded to the bulkhead, or to the dash if mounted thereon.

Use lockwashers!

If good sharp washers are at hand, pull the mounting bolts up snug; then with a punch and a hammer, drive the washer one-sixteenth turn in the direction of rotation. This will gouge each tooth of the lockwasher into the bulkhead metal, and through the paint, which a simple tightening of the nut may not accomplish.

This makes a neater job, with less effort than scraping or sanding the paint around the mounting holes.

Finally, tighten the mounting nuts.

Assuming that our installation is satisfactory up to this point, with the radio free from noise, we can plug in the antenna lead.

Antenna Noise Pickup

Once in a long time, just often enough to make it interesting, we get no noise through the aerial, and our job is done. But very much more often, noise comes through when the antenna connection is made, and we must trace it and short it out.

Noise can get onto the aerial, onto the lead-in, or onto an unshielded connection between antenna and lead-in.

To prove lead-in pickup—ground the antenna rod to the car body.

→ To Page 38
The service technician is confronted with a bewildering variety of circuits these days. A handy reference table to standard procedures is often a useful jog to the memory.

Circuits that require alignment have multiplied rapidly since the birth of radio communications. The technician must be thoroughly familiar with all of them in order to restore a customer's receiver to its original efficiency. However, where so great a variety of adjustments may be met, it is increasingly difficult to remember the necessary details. The chart that follows is intended to provide the serviceman with a quick guide to standard methods of alignment thus obviating the need for time-wasting research.

Nothing in this chart is intended to take the place of information that can be obtained from the manufacturers. The correct way to align any receiver is the method used by the factory that produced it. Where such data are not available, generalized standard methods as herein outlined will suffice.

The following rules should be followed for best results:

1. Always use the weakest signal from your signal source which will produce output from the receiver.

2. Use appropriate insulated alignment tools to avoid hand capacity effects.

3. Do not connect the signal generator across a tuned circuit being aligned.

4. Do not connect the signal generator across an inductance which is directly in the magnetic or electric field of a circuit being aligned.

5. Always repeat the alignment at least once.

Chart of Standard Alignment Methods

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Neutrodyne</td>
<td>Open fila-</td>
<td>Grid of previous</td>
<td>Modulated RF</td>
<td>AC Output</td>
<td>Plate of</td>
<td>Neutralizing condenser for min.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ments or</td>
<td>stage or antenna</td>
<td>freq. in</td>
<td>RF amplifier</td>
<td>output</td>
<td>output</td>
<td></td>
</tr>
<tr>
<td></td>
<td>B+ to stage</td>
<td>post</td>
<td>receiver range</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TRF</td>
<td>(a) Dial set</td>
<td>Same</td>
<td>Modulated</td>
<td>Same</td>
<td>Same</td>
<td>Trimmers for max. peak</td>
<td>Use of dummy antenna advised **</td>
</tr>
<tr>
<td></td>
<td>at 1400 kc</td>
<td></td>
<td>1400 kc</td>
<td></td>
<td>Same</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(b) Dial set</td>
<td>Same</td>
<td>Modulated</td>
<td>Same</td>
<td>Same</td>
<td>Slotted sections of tuning cong.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>at 600 kc</td>
<td></td>
<td>600 kc</td>
<td></td>
<td>max. peak</td>
<td>for max. peak</td>
<td></td>
</tr>
<tr>
<td>AM Superhetero-</td>
<td>Short osc.</td>
<td>Grid of previous</td>
<td>Modulated</td>
<td>Same</td>
<td>Same</td>
<td>IF trimmers for max. peak</td>
<td></td>
</tr>
<tr>
<td>dyne Selective IF</td>
<td>tuning cond.</td>
<td>stage or 1st</td>
<td>IF</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ground ant-</td>
<td>detector stage</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>tenna post</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Stop AVC</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

DECEMBER 1947 • RADIO MAINTENANCE
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Fidelity IF</td>
<td>Same</td>
<td>Same</td>
<td>Modulated IF plus or minus 5 kc</td>
<td>Same</td>
<td>Same</td>
<td>(a) Peak 1st IF to 5 kc below IF (b) Peak 2nd IF to 5 kc above IF</td>
<td></td>
</tr>
<tr>
<td>Broadcast Oscillator and Antenna</td>
<td>(a) Remove osc. cond. short Remove ant. term. ground Dial set at 1400 kc</td>
<td>(b) Dial set at 600 kc</td>
<td>Modulated 1400 kc</td>
<td>Same</td>
<td>Same</td>
<td>Osc. trimmer then ant. trimmer for max. peak</td>
<td>Rock tuning condenser for best peak</td>
</tr>
<tr>
<td>Short Wave Oscillator and Antenna</td>
<td>Dial at 16 mc or near high freq. end of each band</td>
<td>Same</td>
<td>Modulated 16 mc</td>
<td>Same</td>
<td>Same</td>
<td>Osc. trimmer then antenna trimmer for max. peak</td>
<td>Trimmers will be at minimum capacity. Peak is 2nd one as trimmer is opened</td>
</tr>
<tr>
<td>IF Trap</td>
<td>Antenna post</td>
<td>Modulated IF</td>
<td>Same</td>
<td>Same</td>
<td>Trap for minimum output</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AFC</td>
<td>Grid of last IF</td>
<td>Unmodul. IF</td>
<td>DC VTVM Across bottom diode resistor of discriminator</td>
<td>Discriminator trimmers for max. peak</td>
<td>Should be no change in control tube plate current as AFC is switched on and off****</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FM Superheterodyne Ratio Detector</td>
<td>Same</td>
<td>Same</td>
<td>Same</td>
<td>Diode load resistor</td>
<td>Same</td>
<td>Identified by large condenser across single load resistor</td>
<td></td>
</tr>
<tr>
<td>Travis Discriminator</td>
<td>(a) Same</td>
<td>Unmodul. IF plus ½ bandwidth</td>
<td>Same</td>
<td>Diode #1 load</td>
<td>Secondary #1 trimmer for max. peak</td>
<td>Identified by two separately tuned secondary windings</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(b) Same</td>
<td>Unmodul. IF minus ½ bandwidth</td>
<td>Same</td>
<td>Diode #2 load resistor</td>
<td>Secondary #2 trimmer for max. peak</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(c) Same</td>
<td>Unmodul. IF</td>
<td>Same</td>
<td>Across both load resistors</td>
<td>Primary trimmer for min. peak</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Foster-Seeley Discriminator</td>
<td>Same</td>
<td>Same</td>
<td>Across one diode load resistor</td>
<td>Both trimmers for max. peak</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Chart of Standard Alignment Methods

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Summerhays Discriminator</td>
<td>Procedure the same as Foster-Seeley. Differs only in that one diode is reversed.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IF</td>
<td>Procedure the same as for AM except that output meter will be a DC VTVM and it will be connected across grid leak of last limiter stage. With the ratio detector, the meter will be connected across the diode load resistor. Unmodulated signal used.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Oscillator and Antenna</td>
<td>Same</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Television Video IF</td>
<td>Short osc. tuning cond.</td>
<td>Grid of prev. stage</td>
<td>Sweep generator with marker. IF frequency old-12.75 mc new-26.4 mc</td>
<td>Oscilloscope</td>
<td>2nd vid. det. load resistor</td>
<td>Trimmers for correct response curve**</td>
<td>Freq. given are usual values</td>
</tr>
<tr>
<td>Audio IF</td>
<td>Grid of previous stage</td>
<td>Sweep generator with marker. Center frequency old-8.25 mc new-21.9 mc</td>
<td>Same</td>
<td>Same</td>
<td>Same##</td>
<td>For slope detection, center freq. will be the low end of bandwidth</td>
<td></td>
</tr>
<tr>
<td>Traps</td>
<td>Conv. Grid</td>
<td>Trap freq. unmodul.</td>
<td>Same</td>
<td>Video 2nd det. load resistor</td>
<td></td>
<td></td>
<td>For min. output</td>
</tr>
<tr>
<td>Discriminator</td>
<td>See FM Superheterodyne</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Oscillator and Antenna</td>
<td>Procedure same as for AM receiver for coarse adjustment. Final alignment best done with receiver connected to antenna with test pattern being received</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AFC (Automatic sync)</td>
<td>Discriminator slug adjusted to point where observation of raster shows instability then turned in slightly to lower frequency.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

NOTES:

* A series condenser should be used whenever possible with the hot lead of the signal generator.

** This assumes "staggered" method of obtaining broad IF band. Some receivers use over-coupling and resistor loading and in these, all stages should be aligned exactly on the IF.

*** Since the alignment will be affected by the antenna used, it is well to attempt to duplicate factory methods. A standard dummy antenna consists of a 200 uuf condenser between the signal generator and a parallel circuit using a 20 mh coil shunted by a 400 uuf condenser in series with a 400 ohm resistor. The output of this connects to the antenna post of the receiver.

**** AFC alignment is done only after all other alignment has been completed.

\[\text{Diagram of Sound and Picture IFs}\]

DECEMBER 1947 • RADIO MAINTENANCE
READY NOW! PHOTOFACT VOLUME 3

New companion to popular Volumes 1 and 2 to bring your file of post-war receivers right up to January 1948! The most accurate and complete Radio Data ever compiled...an absolute MUST for all Servicemen. Everything you need to know for faster, more profitable servicing, in handy, unified form—large size schematics with the exclusive PHOTOFACT Standard Notation; photo views keyed to parts lists and alignment data; complete listings of parts values and proper replacements; alignment, stage gain, circuit voltage and resistance analysis; coil resistances; dial cord stringing; dis-assembly instructions; record changer analysis and repair instructions. Send in your order today for the only Service data that meets your actual needs!

YOUR PRICE, EACH VOLUME, IN EASY-TO-USE DELUXE BINDER...$18.39

Howard W. Sams 1947 Automatic Record Changer Manual
Nothing like it! COVERS MORE THAN 40 DIFFERENT POSTWAR MODELS. Absolutely accurate, complete, authoritative—based on actual study of the equipment. Shows exclusive "exploded" views, photos from all angles. Gives full change cycle data, information on adjustments, service hints and kinks, complete parts lists. Shows you how to overcome any kind of changer trouble. PLUS—for the first time—complete, accurate data on leading WIRE, RIBBON, TAPE, COVER board record changers! PAPER DISC RECORDERS! 400 pages; hard cover; opens flat. Don't be without this manual. ONLY...$4.95

Howard W. Sams Dial Cord Stringing Guide
There's only one right way to string a dial cord. And there's only one book that shows you how. It's the Howard W. Sams DIAL CORD STRINGING GUIDE. Here, for the first time, in one handy pocket-sized book, are all available dial cord diagrams and data covering 1938 through 1946 receivers (over 2200 models). Licks the knottiest dial cord problem in a matter of minutes. This low-cost book is a "must" for servicing. You'll want one for your tool kit and one for your shop bench. Order today, ONLY...75c

ON SALE AT YOUR LOCAL JOBBER'S TODAY

FREE! New PHOTOFACT Cumulative Index
Latest Cumulative Index to all Sets of PHOTOFACT Folders now available! Your guide to more than 2700 receiver models and chassis (1946 and 1947 models). Ask your parts jobber for FREE copy, or write us direct.

Mail This Order Form to HOWARD W. SAMS & CO., INC., 2524 E. Washington St., Indianapolis 6, Indiana.

[Instructions for ordering follow]
WE'RE waiting for more complete news about the Radio Clinic for servicemen to be held in Philadelphia, January 11, 12, and 13. As mentioned before in this column, radio service technicians from far and near will be invited and the Philadelphia Radio Servicemen's Association will hold a convention and dinner. We know that committees are hard at work, and in the January issue we expect to have full details.

"The Associated Radio Technicians of British Columbia held their annual convention in the Stanley Park Pavilion on September 24th with an attendance of about 150. The convention opened at 9 AM with most of the jobbers showing a wide range of test equipment and parts in their displays.

"The technical discussions opened with a very interesting description on the 'Theory and Operation of Fluorescent Lighting' by Al Hurley. Dr. Frank Noakes described some of the electronic devices used in industry today, such as the latest methods and equipment used to locate breaks in power lines from the distribution point—much more efficiently than a physical examination of the line could do. Another electronic device tests the quality of concrete and metals by measuring the speed of shock waves through its mass. A third instrument tests the strain applied to a metal article or structure at any desired point. Dr. Noakes expressed his belief that the possibilities for employment of electronic engineers now in training are limited only by their ability to apply their knowledge in industry.

"After lunch, Jack Davies of C.G.E. demonstrated their new reluctance phono pickup, followed by Nick Foster, instructor at Edison Vocational School, Seattle, who spoke on the latest developments in FM and television. As FM servicing could be put to almost immediate application (FM transmitter is being installed in Vancouver) Mr. Foster went into great detail of circuits used by manufacturers in the United States and Canada and also discussed FM detection and antenna requirements. Speaking about transmitting problems, Mr. Foster stated that live talent should be used as much as possible. Disc jockeys are out if FM reception is to come up to the high-quality entertainment most people are told to expect.

"After dinner, a very successful day was concluded with an excellent floor show."

S. Beyer, Publicity

New organizations are still joining our column. The Radio Research Club of Portland, Oregon, makes its debut with the following report.

The Radio Research Club meets every Thursday at twelve noon in the Multnomah Hotel. The meeting room is always announced on the lobby bulletin board. We spend half an hour for lunch, and an additional hour is spent on radio problems—business, technical, or...
What's The Indian Rope Trick Got To Do With MALLORY CAPACITORS?

MALLORY originated and produced the first type "FP" capacitor. These have been famous for performance for so long—have been so consistently preferred for original equipment—it follows they naturally become first choice of radio servicemen. You might imagine there was some special magic in their making. The popularity of FPs, however, has never depended on tricks of engineering or manufacture. Yesterday, as today, it has been a matter of quality. Careful control of materials...painstaking manufacturing methods that keep impurities down to a fraction of a part per million...rigid standards of testing and inspection...explain why Mallory FPs are preferred.

They are the reasons why Mallory FP capacitors last...why millions are in use all over the world...why they can be counted upon for service beyond the normal. They are your assurance that when you install a Mallory FP, the customer can depend on a job well done.

YOU EXPECT MORE AND GET MORE FROM MALLORY
leads and volume control will cause audio howl.

The later types of 1.4 volt tubes are all GT types with a metal collar connected to pin No. 1. This connection on the socket is used as a tie-point on some older sets for B-plus, AVC, etc. Check this factor when replacing G with GT tubes. This connection should have all extra wires removed and the lug connected to ground.

Switches

Switches should be checked, especially in intermittents. Most sets use a DPST switch, breaking the A-plus and B-plus leads. Occasionally, a DPST type will be found breaking A-minus and the ground end of the bias resistor. In emergencies, an SPST switch may be used to break A-minus and ground the end of a bias resistor. Check the contact resistance; even one ohm is enough to impair performance. So called “battery-saver” switches will be found in some sets which switch a 0.5 to 0.75 ohm resistor into the A circuit, and an extra resistor into the bias. If there is no perceptible difference in the battery drain, as is frequently the case, I suggest jumping the switch and leaving the resistors out of the circuit.

AC-DC Types

Now we come to those sets beloved of all radioamateurs, the AC-DC battery type. The major difference in these jobs is a series filament string, energized from a bleeder resistor in the high voltage, or from the cathode of the output tube. Some sets use a complicated switching arrangement, changing the filaments from parallel on battery position to series on AC-DC position. In most cases, they are left in series, switching the B-plus and the filament string from the “A” battery to the resistor (see Fig. 6). These resistors run around 2000 ohms, center-tapped for a large (20-40 uf) filter condenser. Some sets use a 3Q5 for battery operation and the pentode section of a 70L7, 117L7, etc., for AC-DC. The 3Q5 filament is usually left out when the set is on AC-DC, and the rest of the tubes are heated from the cathode current of the pentode section of the 70L7, etc. A bewildering assortment of shunt resistors, bypass condensers, etc., will be found in some sets. These are necessary to carry plate currents of preceding tubes around the other filaments. The HI5 second detector is usually the last tube in the string, nearest to ground or common, to minimize hum potential between its filament and ground. The power tube, 3Q5, 1A5, etc., is usually the first. Filament voltage may be checked across the whole string by connecting a voltmeter to the load end of the resistor and common, and turning the set on. The voltage will rise slowly enough to enable you to turn it off if it goes above the correct amount. Overloads of more than one volt should be remedied to avoid short tube life. Filament voltage should also be checked across each tube as a weak tube will sometimes assume more than its share of voltage. Open input filter condensers will cause low filament voltage as well as low plate voltages as most rectifiers used in these sets are of the half-wave type. Hum is sometimes due to open or low filament filter condensers, though this is rare. Watch for substitution of a tube with incorrect filament current rating—1C5 for 1A5, etc., as the wrong drain will cause upsetting of the voltages on all the other tubes. Be sure to check the oscillator filament voltage as this can cause stoppage or weakness of oscillation.

Filament Conversion

There is still a market for conversion jobs in some places where there remain a large number of 2-volt and 4.5-volt sets. Types using octal based tubes are easily changed.
ON THE WAY—a superior line of test equipment that puts time-consuming service jobs on a profitable, production-line basis... that anticipates all FM and television needs. Matched styling of all instruments permits attractive, convenient grouping. Watch for announcements of the other units in this new line.

Provides every signal you need for fast, accurate FM alignment

THE WR-53A removes the last element of doubt from FM receiver alignment regardless of band-width requirements. You bring the recognized advantages of the sweep method of alignment to every FM job—speed, accuracy, and reliability that add up to a perfect job every time, in less time.

It's packed with features to make your work easier. Here's a quick check list:

- i-f center frequency, 8.3 to 10.7 mc
- adjustable i-f sweep width
- internal and external frequency modulation
- r-f range continuously variable from 85 to 110 mc
- provides AM or c-w signals
- includes step and fine attenuators
- scope phase control permits centering of sweep patterns.

With the i-f sweep section, you can align i-f stages by the variable-frequency or visual method. When used with an oscilloscope or VoltOhmyst, you can quickly adjust an FM discriminator circuit by either the visual or single-frequency method. Alignment of r-f, local-oscillator, ratio-detector, and mixer circuits all become simple, routine jobs.

Here's an instrument that's comparable in performance yet half the price of similar laboratory-type equipment. It's a "natural" for the receiver manufacturer's laboratory as well as the radio service shop.

A new bulletin is yours for the asking. Keep in touch with your RCA Test Equipment Distributor.
About Wire Recorders

From Page 7

the same as that used for recording. (3) The tension in the wire must not vary. (4) The manner in which the wire is wound upon the spool must be regular and uniform so as to avoid snarling. (5) Provision must be made for rewinding the wire after recording is finished.

In Fig. 8 is shown a top view of the Silvertone Wire Recorder Unit. Notice that part of the mechanical system used for spooling the wire is also the turntable for the record player. The wire speed and sizes of the parts have been chosen so that 78 r.p.m. can be used with this turntable in both recording and record playing operations. Parts shown in the photograph are (a) the turntable, which also acts as a spool for the wire; (b) the supply spool; (c) the cutting head; (d) the automatic switch mentioned above; (e) the magnetic selector control; and (f) the phonograph pickup arm.

In Fig. 9, the bottom view of the unit, is shown the motor and drive mechanism, which consists of a pulley driven by the motor; which pulley in turn drives the turntable. A very important part of any wire recorder is the recording head. A diagrammatic representation of the one used in this unit is given in Fig. 3. Notice that this instrument contains two coils: one is the recording and play-back coil, and the other is the erase coil. As can be seen in the diagram, the erase coil is connected through a switch to a 40 kc oscillator. The 40 kc oscillator is the source of bias voltage described earlier in the article, and is also used to erase previous recorded material on the wire so that it will be ready to take a new record. At the top of the main magnet is shown the position of the groove for the wire. Notice that it passes through two gaps: one is the recording gap, and the other is the erase gap. These gaps are quite small, on the order of one or two thousandths of an inch so that high magnetic concentrations can be built up and only a small portion
A Reliable Tube Tester . . . A High Sensitivity Circuit Tester such as the NEW Precision Series 10-54 Electronamic Test Master *

Combination Master Electronic Tube Performance Tester, Battery Tester and 35 Range, Push-Button Operated, Supersensitive Set Tester.

TUBE TESTING HIGHLIGHTS

- Features the Precision "Electronamic" circuit — the all-inclusive, single-operation, positive, vacuum-tube Performance Test.
- 12 Element Central Lever Selector System affords highest practical order of obsolescence insurance.
- Absolute Free-Point element short-check and performance test selection regardless of varying or multiple pin and cap terminations.
- Employs standard tube basing numbering system on all element selectors, permitting most simplified operation and comprehension of test results.

CIRCUIT AND BATTERY TESTING HIGHLIGHTS

- 35 A.C. and D.C. ranges to 6000 volts, 60 microamperes, 12 amperes, 70 DB, 60 megahms.
- 20,000 ohms per volt D.C., 1,000 ohms per volt A.C.
- High speed, positive, double-wiping contact, push-button selection of ranges.
- All standard ranges at Only Two polarized tip jacks.
- Tests all standard radio A, B and C batteries under dynamic load conditions, simulating actual performance.

A Stable, Accurate Source of R.F. Signals such as the NEW Precision Series E-200-C Wide Range Signal Generator

- Direct Reading Frequency coverage 88 KC to 120 MC for A.M., F.M. and T.V. alignment (absolute fundamentals to 30 MC).
- 1% Accuracy on all bands. Precision "Unit-Oscillator" construction.
- 6½" etched aluminum, no-glare dial. Approximately 8 ft. of scale length.
- Specifically designed for Servicing by Signal Substitution.

NEW 9th edition of "Servicing by Signal Substitution" NOW OFF THE PRESS!

Furnished FREE with the Series E-200-C Signal Generator. Also available from Precision distributors or factory at nominal cost of 40¢ per copy. The signal generator is more than merely an alignment tool. S-S-S tells how — in simple, direct terms.

Requires nothing complex, to learn

Is Universal — non-obsolescent

Does not require costly, extraneous apparatus

Employs only BASIC TEST EQUIPMENT — as is absolutely necessary for the conduct of up-to-date radio service technique.
Rural Radio Servicing

→ From Page 20

over, and most 2-volt octals have corresponding 1.4-volt types. Converting older sets using 4-, 5- and 6-pin bases is not recommended as expense of changing sockets would be prohibitive. Table II shows a list of interchangeable tube-types.

When converting 4.5 volt sets, the filament circuit must be rewired to form a parallel circuit. Self-bias is used, with the power tube grid the only one to receive any voltage. Be sure that the AVC network has an actual ground return. The old battery cable is sometimes usable as only four good wires are needed. New four-conductor cable is not expensive, however, and will "dress-up" the job a lot. The standard RMA battery socket for 1.4-90 volts is shown in Fig. 7. When cutting cable, allow enough so that the battery may be placed on the floor under a table. Thirty inches outside the cabinet is enough. Extreme care is necessary in realigning, and a careful check of the completed job is well worthwhile.

Servicing 2-Volt Sets

The only difference here is in the battery requirements. Check your battery cables carefully. These are generally color-coded. Silvertone's color code is: Blue and Yellow, A-plus; Black and Yellow, A-minus; Red, B-plus; and Black, B-minus. This code is used on their 1.4-volt sets, also. It pays to note coding on all makes of battery sets as manufacturers generally use the same code from year to year. Silvertone's 4-volt sets use 2-volt tubes in pairs, and a 4.5-volt dry battery, or 4-volt wet storage battery. Be sure the set is actually

→ To Page 26

Fig. 7 RMA standard 1.4-90 volt battery socket viewed from prong side.

Make YOUR SHOP a modern, profitable
SERVICE LABORATORY

Two things — and only two things — spell success or failure in radio servicing today. One is knowledge and skill. The second is instruments. McMURDO SILVER brings you the Laboratory Caliber Electronic Test Instruments which turn your shop into a modern service laboratory. Simple instructions make them easy to use. They are proved by thousands upon thousands of users. Compare value and prices and LCETI will be your selection, too.

MODEL 906 FM/AM SIGNAL GENERATOR: The basic need for AM, FM, and television servicing. 8 ranges calibrated ±1% accurate, 90 kc. thru 210 mc. 0-100% variable 400 AM; 0-500 kc. variable FM sweep built-in. Metered microvts; variable 0.1 volt. Strays lower than $500 laboratory generators. Only $99.50 net.

MODEL 904 CONDENSER/RESISTANCE TESTER: Measures accurately 1/16 mmfd. thru 1,000 mmfd.; 1/16 thru 1,000 meg=. Internal 0-500 V. variable d.c. polarizing voltage. Measures condensers with rated d.c. volts applied. Only $49.90 net.

MODEL 905 "SPARX" SIGNAL TRACER: Time-saving visual and audible signal tracing; also tests phone pickups, microphones, speakers, PA amplifiers. Is your shop test-speaker, too. 20- thru 200 mc.; FM speaker; mains-insulated transformer power supply. Only $39.90 net.

SEND FOR COMPLETE CATALOG. See these and Silver communication transmitters, receivers, "Micromatch," Xtal-controlled VFO, preset tuned frequency multiplier at your jobber.

OVER 36 YEARS OF RADIO ENGINEERING ACHIEVEMENT

McMurdo Silver Co., Inc.
EXECUTIVE OFFICES: 1240 MAIN ST., HARTFORD 3, CONN.
FACTORY OFFICE: 1249 MAIN ST., HARTFORD 3, CONN.

DECEMBER 1947 • RADIO MAINTENANCE
"the Old Order Changeth, Yielding Place to New"

...and this new component CAN MEAN NEW BUSINESS FOR YOU

"Lots of water has gone over the dam" since the early radio fan tickled a crystal with a "cat's whisker." And every major advance in radio design has meant more and better business for the radio industry—from manufacture to servicing.

So it is with Federal's new Miniature Selenium Rectifier, which replaces the rectifier tube in AC-DC radio receivers. Already more and more radio manufacturers are including it as original equipment—and more and more progressive service men are getting new business by installing it to modernize the sets they service. Here's what it can do for you:

- INCREASE YOUR BUSINESS
- ASSURE SATISFIED CUSTOMERS
- REDUCE YOUR INVENTORY

Federal's profit-making Miniature Selenium Rectifier can be obtained from major jobbers all over the country—complete with detailed instructions for installation.
Rural Radio Servicing

From Page 24

cause the oscillator filament voltage to be low.

General hints on connecting battery sets: Be sure set is turned off before making any connections; always check tubes before making any battery connections; then if tubes are blown, you know who blew them! This is mentioned because of the frequency with which battery sets come in with all tubes burned out, due to misconnection by the owner or others. Quickly pull out a couple of tubes and look at the filament tension spring (the "hook"). If the filament is open, the hook will be up against the top of the glass. These are definitely dead and you have saved testing them. Always connect "A" battery leads first. This gets them out of the way and insures against accidental contact with "B" batteries. Be very careful when testing voltages. An accidental slip of a test-lead will blow a whole set of tubes. (Voice of Experience again!)

Portables, large and "pee-wee"

To Page 28
This New IRC JUNIOR Control Cabinet Belongs on Your Bench

Here's one selection of 9 "hot-number" controls, switches and shafts you'll use every day! The new IRC Junior Control Cabinet contains 9 of the most-used ½, 1 and 2 meg. type D controls with the added adaptability of the tap-in shaft feature—plus 4 switches and 4 special shafts.

This inexpensive assortment of popular controls will save you time and money, and reduce your need for exact replacements. Factory-packed in a handsome four drawer cabinet of sturdy cardboard. Cabinet attractively finished in blue, yellow and silver with twelve individually identified compartments. Order the new inexpensive JUNIOR Control Cabinet from your IRC Distributor today. International Resistance Company, 401 N. Broad Street, Philadelphia 8, Pennsylvania. In Canada: International Resistance Company, Ltd., Toronto, Licensee.

HERE'S WHAT YOU GET

<table>
<thead>
<tr>
<th>IRC Control</th>
<th>Resistance</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>D13-133</td>
<td>500,000 ohms</td>
<td>A</td>
</tr>
<tr>
<td>D13-133X</td>
<td>500,000 ohms</td>
<td>B</td>
</tr>
<tr>
<td>D13-137</td>
<td>1.0 meg.</td>
<td>A</td>
</tr>
<tr>
<td>D13-137X</td>
<td>1.0 meg.</td>
<td>B</td>
</tr>
<tr>
<td>D13-139</td>
<td>2.0 meg.</td>
<td>A</td>
</tr>
</tbody>
</table>

Purpose: A - Tone or Audio Circuit control; B - Tapped for tone compensation.

SWITCHES

<table>
<thead>
<tr>
<th>Type</th>
<th>No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>41</td>
</tr>
<tr>
<td>1</td>
<td>42</td>
</tr>
</tbody>
</table>

SHAFTS

1 Type "A" double-fluted tap-in shaft is included with each control—plus:
3 Type "B" with universal knurl for special type push knobs.
1 Type "H" with universal groove for many Delco, RCA, Sears-Roebuck and Westinghouse models.

Cabinet furnished at no extra cost.

INTERNATIONAL RESISTANCE COMPANY

RADIO MAINTENANCE • DECEMBER 1947
ESPEY TELEVISION TRAINING KIT

Learn television through this unique "assembly line" procedure. Modern circuits and postwar design make up-to-the-minute training an absolute necessity. This ESPEY television training kit, available in several fundamental stages, (see below), will help you understand and gain a working knowledge of TELEVISION—the latest development in electronics. FREE with every kit—a new type of pictorial instruction book, giving easy to follow, step by step method. No previous knowledge of television necessary to build—and LEARN from—this ESPEY kit.

FEATURES:
- 18 tubes, including 15 miniatures.
- 3 stage, stagger tuned pix i-f.
- 21.25 mc sound i-f. Trap tuned.
- Balanced FM discriminator.
- Portable—weighs only 17 lbs.
- Uses 3" low-cost cathode ray tube.
- Magnifier makes 4" picture.
- Can be aligned with ordinary test oscillator and V.T. Voltmeter.

BASIC KIT—includes all i-f, power, blocking oscillator transformers, chokes, ceramic capacitors, speaker, and sockets riveted into place on punched and welded chassis. All tubes and required resistors and capacitors are easily- obtainable types available through Distributors everywhere.

FOR FURTHER DETAILS WRITE TODAY TO:

ESPEY MANUFACTURING COMPANY INC.
528 EAST 72ND STREET—NEW YORK 21, N.Y.

THE SIMPLEST FM CONVERTER

Converts 40-50Mc FM Tuner and receivers to 50-100Mc operation. Simple to attach and adjust. No power required. Hundreds now in use all over U.S.

Model 1002A List $10.00

FM INTERFERENCE TRAP FOR TELESETS

Eliminates FM and amateur interference from tele image by absorption of interfering signals. Two adjustments provide for elimination of signals in 80-110Mc and 40-60Mc ranges.

Model 1005A List $10.00

See Your Local Parts Jobber or write for Information

CRYSTAL DEVICES CO.
1819 Broadway PO Box 380 GPO
New York 23, N.Y. New York 1, N.Y.

Rural Radio Servicing

From Page 26

will be fundamentally the same as the sets described above. These must usually work on a small loop alone; and with the very minute field strength of rural areas, they must be serviced and aligned very carefully if any results at all are obtained.

In conclusion, as with any other kind of set, a thorough, careful service job will pay off, with the added advantage that the farmer will usually be your good customer for life if you do him a good job at a fair price—but you will never see him again if you don't! His word-of-mouth advertising is better than any kind you could buy. From twelve years in a farming community, I know whereof I speak! I am sure you will find this philosophy applies to many other folks, too.

About Wire Recorders

From Page 22

of the wire is affected at any given instant.

The erase gap is five to ten times as great as the record gap. For high frequencies, it can be seen that a narrow gap will give better results since each cycle will take up a smaller element of the wire; whereas, conversely, a wide gap would be suitable for low frequency response. The wire material used on the Silverstone recorder is stainless steel with a diameter of 4 thousandths of an inch, and the speed is kept at about two feet per second. In case the wire should break, it can be mended by tying a square knot which will pass through the groove of the head without any difficulty.

Servicing problems in connection with this equipment are of two main types: namely, mechanical and electrical. Mechanical troubles which might occur are very similar to those encountered in ordinary record changer equipment and disc recorders which were described in the article on disc recorders in the

To Page 30
Radio Service Engineers

Build a Laboratory that will serve your needs for years!

Here it is!—The Industry’s most modern Test Equipment, designed for tomorrow’s needs as well as for today’s. New circuits, new styling, new ruggedness, new accuracy. Equip yourself to do a bigger, better, more profitable service business—with Philco Test Equipment.

PHILCO SIGNAL GENERATOR, MODEL 7070. Range from 100 kc to 110 mc—all fundamentals! No switching trouble at any frequency. Residual output less than 5 microvolts! High output—over 1 volt at 100 mc. Coaxial output cable.

PHILCO CIRCUIT MASTER, MODEL 7001. Uses exclusive vacuum tube voltmeter and electronic bridge circuit. All ranges and functions including 10,000 volts AC or DC. Probe available for RF measurements to over 200 mc.

PHILCO DYNAMIC TESTER, MODEL 7030. Searchlighted probe head has Lucite lens and four switch positions giving wide choice of input impedances. Covers RF and IF circuits, with DC position for microphone and amplifier testing.

PHILCO JUNIOR SCOPE, MODEL 7019. Small, lightweight, rugged portable. New C-R tube, vertical and horizontal amplifiers, self contained sweep circuit and synchronization, complete power supply.

PHILCO TUBE TESTER, MODEL 7050. Can never become obsolete with changes in tube types, thanks to exclusive Philco Element Switching system. Built-in loose leaf chart.

See your Philco Distributor about these modern instruments—today.
The new Weller Soldering Guns with Solderlite plus the last 5 second heating help make service work more profitable for radio, television and appliance service men, electrical maintenance men, electric motor rewinding and repair shops automotive electrical service.

See your radio parts distributor or write for bulletin direct.

WELLER MANUFACTURING CO.
812 Packer St., Easton, Pa.
In Canada: Atlas Radio Corp., Ltd., 560 King St., N. W., Toronto, Ont.
Export Dept.: 25 Warren St., New York 7, N. Y.

TRACER FOR INTERMITTENTS

In the article "Gremlins—or Intermittents" by John T. Frye in the October issue of Radio Maintenance, a tuning eye tracer was described. Because of the many requests from our readers, we are publishing the above schematic diagram of that device. A photograph of the unit appeared on page 12 of the October issue.

About Wire Recorders

→ From Page 28

October 1947 issue of Radio Maintenance Magazine. However, there is the additional factor that the wire must wind and unwind in the regular fashion without variation of turns. This means that there must be no loose parts, brakes must be set properly, and the head should oscillate in such a manner that the wire will wind on a spool uniformly. Electrical points to be checked are relatively simple. The recording head windings should be checked for open circuits or shorted. The bias oscillator output should be checked for both frequency and voltage. The matter of frequency check at, for instance, 40 kc may seem a bit baffling but will be greatly simplified if the service technician will use the following method: Place the unit so that the oscillator is near or, if necessary, coupled to the antenna.

→ To Page 32
NOW!

in 1,000 pages:

All data and basic knowledge in radio and electronics digested into 12 sections... in a complete, quick to find, easy to read, handbook form.

Plan every operation in radio and electronics with the Radio Data Book. This new radio bible will be your lifelong tool... you will use it every day, on the job, in the field! Use it for construction, troubleshooting and testing. The RADIO DATA BOOK will be your invaluable aid in design, experiment and in layout. It will help you make production better, faster and easier. In any and every operation in radio and electronics, you will use the RADIO DATA BOOK!

CONTENTS

Each section is a COMPLETE coverage of its subject...

Section 1. THE 150 BASIC CIRCUITS IN RADIO...
Every circuit is analysed and explained in a Johnny-on-the-spot reference for any occasion.

Section 2. COMPLETE TEST EQUIPMENT DATA...
Know more about the test instruments you now have... Find the new ones you want to buy... They're all in here—importantly described!

Section 3. TESTING, MEASURING AND ALIGNMENT...
Simplified operation of the Oscillograph... See what's happening inside any radio circuit... Dynamic alignment—AM, FM and TELEVISION made easy with the Oscillograph... Scientific use of the Vacuum Tube Voltmeter, Signal Generator, and other basic instruments.

Section 4. ALL ABOUT ANTENNAS...
AM/PM/Television... Design, installation, characteristics, construction and feed.

Section 5. SOUND SYSTEMS...
Planning, installing and serving a PA System. A complete chapter on every component... How to select and combine components... Estimating costs... Basic acoustic requirements.

Section 6. ELECTRICAL AND PHYSICAL CHARACTERISTICS OF RADIO COMPONENTS...
How the size, the power, the shape, a quick reference on the construction and design of any circuit or equipment.

Section 7. COMPLETE TUBE MANUAL...
Receiving, transmitting and Commercial. A shelf of the pages brings you to all the data and ratings of any tube model.

Section 8. CHARTS, GRAPHS AND CURVES...
Quick calculation devices... Plotting curves, nomographs, rules and tables for speed solutions to radio problems.

Section 9. CODES, SYMBOLS AND STANDARDS...
Handy reference to all radio symbols and abbreviations—code symbols, phrases and characters... Where you want them... When you want them!

Section 10. 50 TESTED CIRCUITS DESIGNED FOR OPTIMUM PERFORMANCE...
Find any circuit you want with complete parts list and specifications... One tube receivers to complete AM, FM and Television receiver circuits... Amplifiers... Transmitters... Test Equipment and Control Circuits... All with the latest engineering refinements.

Section 11. DICTIONARY OF RADIO AND ELECTRONIC TERMS.

THE RADIO DATA BOOK is a work of complete authority, prepared by engineers with many years of practical experience. They have been assisted by the Boland & Boyce staff of editors skilled in preparing electronics manuals for the U.S. Signal Corps for many years. These men have worked for several years gathering material for this book... all the knowledge of radio principles and operation... all the statistics... all the newest developments in electronics... every possible angle and detail. Eighteen months were spent digesting this material into the most concise, the clearest, and the most readable form. The result is this invaluable manual... The RADIO DATA BOOK. Whether you use this book for general reference, for scientific instruction, or for education, one thing is certain—the practical help, the daily usefulness you will derive from it will prove to be worth many, many times its astonishingly low price!

Advanced Sale... first printing. Only 10,000 available... To make sure to get your RADIO DATA BOOK, mail your order NOW!

12 complete books in one only $5.00! Less than 42¢ per book

MAIL THIS COUPON TODAY

BOLAND & BOYCE INC., PUBLISHERS
460 BLOOMFIELD AVE. MONTCLAIR, N. J.

Please send me a copy of THE RADIO DATA BOOK Enclosed is $5.00.

NAME

ADDRESS

CITY

ZONE

STATE

BOLAND & BOYCE INC., PUBLISHERS
FIVE POPULAR ASTATIC PICKUPS
Are now Available with the New “QT” CARTRIDGE

The “QT” Cartridge, now famous for its rare beauty of tone reproduction and freedom from annoying needle scratch is, because of popular demand, being supplied in the five Astatic Low Pressure Pickups illustrated above. The specially designed needle with which the “QT” Cartridge is equipped is replaceable and is available with sapphire or precious metal playing tip.

Pickup Models QT-508, QT-510 and FP-QT, with standard mounting centers, may be used for reproduction of 10" and 12" Records. Transcription Models QT-400 and HP-QT may be used for reproduction of all lateral transcriptions. Needle pressure with all models is but one ounce.

See your local Radio Parts Jobber or write direct for Literature

About Wire Recorders
→ From Page 30

The circuit of a good broadcast receiver. If the oscillator is oscillating, harmonics of 40 kc frequency should be heard at various points on the dial of the receiver. The distance between these harmonic points, expressed in kilocycles, will always be the same and will be equal to the frequency of the oscillator.

Another point which should be remembered in servicing work is that many difficulties may arise from using an improper audio recording level. If the wire is overloaded, distortion will result during playback. It will also then be difficult to erase the wire for future recordings, thus some of the old recording will remain on the wire and will be audible in the background of any new recordings made. On the other hand, if insufficient audio level is used, the background noise level will be relatively too high and will be very annoying in playback.

30,000 SERVICE TECHNICIANS
Read
RADIO MAINTENANCE
Every Month

Every day is
RADIO MAINTENANCE
day in your shop!

RADIO MAINTENANCE
460 Bloomfield Ave.
Montclair, N. J.

Please send me RADIO MAINTENANCE for:

[] 2 years at $5.00
[] 1 year at $3.00
[] Check enclosed
[] Bill me later

Name
Occupation
Address
City, Zone
State

DECEMBER 1947 • RADIO MAINTENANCE
NOW! For the First Time In History

TRADE IN YOUR OBSOLETE, DEFECTIVE Test Equipment ON NEW, POST-WAR DESIGN

SUPREME Testers

SUPREME TEST EQUIPMENT Available on Trade-In
- Tube Testers
- Set Testers
- AF Oscillators
- RF Oscillators
- Oscilloscopes
- Multi-Meters
- Signal Tracers
- Signal Generators

SUPREME'S 20TH ANNIVERSARY CELEBRATION FOR A LIMITED TIME ONLY!

Liberal Trade-In Allowances on your old test equipment regardless of type, make, age, or condition.

See Your Supreme Parts Jobber Now!

SUPREME INSTRUMENTS CORPORATION, GREENWOOD, MISS., U.S.A.
CLAROSTAT
KIT NO. 4

 Hundreds upon hundreds of volume control replacements were analyzed. And Clarostat arrived at the minimum number of types for the maximum number of standard set replacements. And this is it—the No. 4 Kit—servicing upwards of 95% of standard radios.

CONTENTS...
17 selected volume and tone controls of most popular ohmages and taps,
8 selected A-D-A-Switches. Both S.P. and D.P. types,
4 Glassmohm (glass-insulated flexible resistors) for use in tight spots,
PLUS Authorized Service plaque. PLUS latest Clarostat catalog,
All packed in handsome steel cabinet—free of all advertising labels.
A total value of $29.65 list, for only $17.75, your net cost.

Ask Your Jobber...
Order this "special" today—before the supply runs out. At least ask for latest Clarostat catalog listing widest choice of resistors, controls and resistance devices. Or write us direct.

WALDOM Electronics Inc., manufacturers of speaker components, have issued a 16-page reference catalog on replacement cones. This catalog is a list of the models of over fifty receiver manufacturers and the proper speaker cone for each model is given. Also included in the catalog are illustrated instructions on how to replace a cone and how to find the replacement number for cones of unknown brands. Prices of all items are given. This booklet is designated Catalog No. 48, and can be obtained free. Write to Waldom Electronics Inc., 911 N. Larabee, Chicago, Ill.

The General Cement Manufacturing Company has released illustrated literature on new products. Described in this literature are: carbon volume control cleaner, silver plating compound and four kits of assorted radio set knobs. Write for this literature to General Cement Mfg. Co., 919 Taylor Ave., Rockford, Ill.

The Stronghold Screw Products Corporation has just released a 32-page inventory of screws, nuts, bolts, and fasteners of all types. The line includes screws small enough to fit under the fingernail up to 2½" diameter bolts. To obtain this inventory, write to Stronghold Screw Products Inc., 216 W. Hubbard Street, Chicago 10, Ill.

The Hytron Radio and Electronics Corporation is presenting a line of literature and other sales aids. These include display cartons, reference guide for miniature tubes, "decal" advertising radio service and job record cards. Of special interest also is a combination pencil, eraser, and tube taper which is available for 5 cents. It is useful in tracing intermittents and it fits nicely into the smallest sets. The above material is all available through your local Hytron distributor.

Cornell-Dubilier's Bulletin NB101 describes the new T121 television voltage doubler capacitor. This capacitor has a rating of 7500 v. DC and has two 0.05 uf sections. For full details write for Bulletin NB101, Cornell-Dubilier Electric Corp., South Plainfield, N. J.

The E. W. Pike Company has issued a leaflet describing the "Flash-O-Lens." This instrument is a combination magnifier and flashlight. It is designed for inspection work and magnifies and illuminates small objects. It should be useful in service work for examining small objects in "out-of-the-way" locations. The leaflet contains photographs, descriptions and prices of the various models available. To obtain this leaflet, write to E. W. Pike Company, 492 North Avenue, Elizabeth 3, N. J.

Concord Radio Corporation's 1948 Catalog has just been released.
SPRAGUE TRADING POST

TIME SAVERS for busy service shops

Now it's easy to have exactly the capacitor you need — when you need it. No lost time or motion. No dangerous substituting because you don't happen to have exactly the right capacitor type, size, or rating on hand.

Ask your Sprague jobber about Sprague Flex-Kits. These contain economical assortments of exactly the capacitor types and ranges that you really need. You don't have to buy slow-moving capacitors to get ones you really want. Flex-Kit assortments are also designed by Sprague jobbers to fit actual, everyday service needs. Keep supply of them in your service shop or ham shack. Be prepared to make prompt, efficient capacitor replacements on almost any job.

FREE CATALOG: Write for the complete Sprague Capacitor and Koolohm™ Resistor Catalog describing types for every service, amateur and experimental requirement.

FOR SALE — Rader's manuals, 14 complete volumes — 1 to 14 inclusive, in good condition complete with index. $150. Wm. H. Carr, Roodhe Park, Stato, N.Y.

FOR SALE — Rieder Chainless with all attachments and instruments, good condition. $350; also Superior 360 Electronic multiplier, almost new. $325. Elsa Automatic & Electric, Pittston, Penna.

FOR SALE — Daybird 26, 6 tube tube tester. $10 with instructions. Roy K. Brandt, Port Allegheny, Iowa.

FOR SALE — 25 tube super Halti receiver radio AX 456, with 3 new tubes, 4 bands, in good shape. James F. Morgan, 411 Park Ave., Hoboken, N.J.

FOR SALE — Precision 928-A tube and set tester, and 1000 watt dynamotor for good condition. $120 or cash. Both or either or both 1920-1940. 2110 Park Ave., Minneapolis 4, Minn.

FOR SALE — Name Professional folders with boxes, never used. $33. H. Opal Radio Service, Melbourne, Ky.

FOR SALE — Mullardette 8-46 receiver about 6 months old; New Magnent 7 tube radio photographs, tube pinout clear photos with records of 1940s, also AVC tone control, 5 x 7" dynamic speaker, slider variable, several tubes with permanent needle in table cabinet, $109.89. R. H. Schmidt, Jackson, N. C.

FOR SALE — Webster Chicago $280, 20 watt, 110 volt a-c & d-c amplifier, complete extra tubes, 2 Ulax 12" tubes, 6 tubes, $40.00. John A. Johnson, 229 E. 15th Ave., Greensboro, N. C.

FOR SALE — Baby Dumont 1020, 50 meter, $150; 100 meter, $175.00; 150 meter, $250. 250 meter, $450. National, Chicago 10, Ill.

FOR SALE — Baby Dumont 1020, 50 meter, $150; 100 meter, $175.00; 150 meter, $250. 250 meter, $450. National, Chicago 10, Ill.

FOR SALE — Baby Dumont 1020, 50 meter, $150; 100 meter, $175.00; 150 meter, $250. 250 meter, $450. National, Chicago 10, Ill.

FOR SALE — Baby Dumont 1020, 50 meter, $150; 100 meter, $175.00; 150 meter, $250. 250 meter, $450. National, Chicago 10, Ill.

FOR SALE — Baby Dumont 1020, 50 meter, $150; 100 meter, $175.00; 150 meter, $250. 250 meter, $450. National, Chicago 10, Ill.

FOR SALE — Baby Dumont 1020, 50 meter, $150; 100 meter, $175.00; 150 meter, $250. 250 meter, $450. National, Chicago 10, Ill.

FOR SALE — Baby Dumont 1020, 50 meter, $150; 100 meter, $175.00; 150 meter, $250. 250 meter, $450. National, Chicago 10, Ill.

FOR SALE — Baby Dumont 1020, 50 meter, $150; 100 meter, $175.00; 150 meter, $250. 250 meter, $450. National, Chicago 10, Ill.

FOR SALE — Baby Dumont 1020, 50 meter, $150; 100 meter, $175.00; 150 meter, $250. 250 meter, $450. National, Chicago 10, Ill.

FOR SALE — Baby Dumont 1020, 50 meter, $150; 100 meter, $175.00; 150 meter, $250. 250 meter, $450. National, Chicago 10, Ill.

The Log,” official publication of the Associated Radio Technicians of Alberta, comments as follows in its August issue:

“In a recent survey of the radio trade it has been found there are some 50 radio servicemen’s associations in the United States and Canada. It would appear to be about time for some of these to amalgamate and produce a parent organization to which all might belong.

To which we wish to add our approval. Radio service technicians’ organizations represent a mighty important part of our society and by working together they can be an even greater influence for good, both for themselves and the radio listeners of North America. Members of organizations are experiencing the good which can be realized from group action; “continent-wide” coordination of efforts is certainly not such a wild dream and offers the possibility of great benefits to all concerned. Efforts in Pennsylvania and Alberta show that things are already moving in this direction.

R. D. Thomas

State of New Jersey

County of Sussex

Before me, a notary public in and for the State and county aforesaid, personally appeared William F. Boyce, who, having been duly sworn according to law, deposes and says that he is the publisher of RADIO MAINTENANCE, and that the following is to the best of his knowledge and belief, a true statement of the ownership, management, and circulation (and if a weekly, semi-weekly or tri-weekly newspaper, the circulation), etc., of the aforesaid publication for the date shown in the above caption, required by the Act of August 24, 1912, as amended by the Acts of 1933 and July 2, 1946 (sections 357, Postal laws and Regulations), printed on the reverse of this form, viz:

1. That the names and addresses of the publisher, editor, managing editor, and business managers are: Publisher, William F. Boyce, 460 Bloomfield Ave., Montclair, N. J.; Editor, Joseph J. Roche, 460 Bloomfield Ave., Montclair, N. J.; Managing Editor, J. Richard Johnson, 460 Bloomfield Ave., Montclair, N. J.; Business Manager, Paul H. Wendel, 460 Bloomfield Ave., Montclair, N. J.

2. That the owner is: (If owned by a corporation, its name and address must be stated and also immediately thereunder the names and addresses of stockholders owning or holding one per cent or more of the total amount of stock. If not owned by a corporation, the names and addresses of the individual owners must be given. If owned by a firm, company or other unincorporated concern, its name and address, as well as those of each individual member, must be given.) Boland & Boyce, Inc., William F. Boyce, Joseph J. Roche, Mary Ann Boyce, Howard Shonning.

3. That the known bondholders, mortgagees, and other security holders owning or holding one per cent or more of the total amount of bonds, mortgages, or other securities are: None.

4. That the two paragraphs next above, giving the names of the owners, stockholders, and security holders, if true, contain not only the list of stockholders and security holders as they appear upon the books of the company but also, in cases where the stockholder or security holder appears upon the books of the company as trustee or in any other fiduciary relation, the name of the person or corporation for whom such trustee is acting, is given also that the said two paragraphs contain statements embracing affidavit’s full knowledge and belief as to the circumstances and conditions under which stockholders and security holders who do not appear upon the books of the company as trustees, hold stock and securities in a capacity other than that of a bona fide owner and this affidavit has no reason to believe that any other person, association, or corporation has any interest either direct or indirect in the said stock, bonds, or other securities than as so stated by him.

WILLIAM F. BOYCE, Publisher.

Sworn to and subscribed before me this first day of October, 1947.

(SEAL) FRID.f SCHARFENBERG, Notary Public of N. J.

DECEMBER 1947 • RADIO MAINTENANCE
It's Triplett's new method of dial lighting—one of the features of Model 3432 Signal Generator. The dial is BIG (330°) and correctly illuminated... accurately calibrated... quickly readable at a glance... with 10 to 1 Ratio Vernier Tuning for ease of adjustment. The seven long scales on the dial of Model 3432 have five fundamental ranges 165 KC to 40 MC and two harmonic ranges directly calibrated 36 MC to 120 MC. Variable 400 cycle modulation 0 to 100%; special copper plated internal shielding, R.F. attenuation—and many other features that have to be seen—and used—to be fully appreciated. Model 3132 is a Triplett top value that's priced right. See it now and buy it from your distributor.
THE LOGICAL MOVE
for any serviceman who wants to
EXPAND HIS BUSINESS
... into an uncrowded field!!!

Learn
ELECTRIC
MOTOR
REPAIR

This Big Book Teaches You Every
Step of the Work ... for only
$5 complete

Look ahead to where the BIG profits might be when
today's radio repairing rush dies down!

There's good pay in electric motor repair work. Every home,
every business house and industrial plant is a prospect. It's an
easy and logical addition to any radio service business. Best of
all, the field is uncrowded — because, up to now, there hasn't
been any easy way to learn the work in spare time. Be the
man in your community who cashes in on this glowing opportunity!

Based on What Can Be Learned from This Big Book Alone.
You Can PREPARE FOR PROFITABLE SERVICE
ON PRACTICALLY ANY MOTOR!

ELECTRIC MOTOR REPAIR, the unique new bench book
with Duo-Spiral Binding (by publishers of famous Ghirardi Radio-
Electronic Books) teaches you this profitable work from the very
beginning.

570 pages ... Over 900 Illustrations.

“BORROW” IT AT OUR RISK!

ELECTRIC MOTOR REPAIR is ideal for
beginners and equally valuable for daily use
in busy motor shops. Unique Duo-Spiral Binding divides book into 2 sections,
permitting both text and related diagrams to be seen
at the same time. Over 900 specially prepared
diagrams and illustrations make your training
easier — AND TWICE AS FAST. Send coupon
now andPreview from ELECTRIC MOTOR REPAIR for 5 full days. If you're not more than
interested, return it to us and we'll cheerfully
refund EVERY CENT of your money.

PRACTICE FROM IT FOR 5 FULL
DAYS!

5-DAY MONEY-BACK GUARANTEE

Dept. RM-127, Murray Hill Books, Inc.
232 Madison Ave., New York 16, N. Y.

Enclosed find $5 ($5.50 foreign) for a copy of ELECTRIC MOTOR REPAIR;
or send C.O.D. for this amount plus cost of postage (no foreign C.O.D.). In
either case, if not satisfactory, I return book for complete refund of
my money.

Name
Address
City & Zone
State

Auto Radio Noise Elimination

→ From Page 13

A sharp pocket knife will serve momentarily to short the antenna
through the paint if there is no chrome trim handy. If shorting the
antenna rod will not kill the noise, the pickup is obviously in the lead
wire. It must be grounded perfectly at both ends.

Where noise comes through even
with both ends of the lead-in
grounded, either there is a break in
the shielding or the braid is not
adequate. And it must be good.
Sometimes it pays to try a new
lead-in. (See “Auto Antenna In-
stallation,” Radio Maintenance,
September, 1947.)

Assuming the lead-in satisfac-
tory, and that the noise comes in
only via the antenna rod, it remains
only to ground or bond the hood or
the side panel of the car in the
vicinity of the aerial. Our pocket
knife can be used here again to
determine the best spot to establish a
good ground.

The pocket knife with a keen
edge and a sharp point is a most
useful tool to probe through the
painted metal of auto bodies in
search of ground points; however,
it is to be remembered that some
owners may resent such procedure.
This method is not recommended
unless the paint is already scratched
up and additional tiny marks will
not be noticeable.

Wheel Static

Another difficulty which often
arises in connection with auto radios
is what is known as “wheel static,”
or “tire static.” It manifests itself
as rapidly recurring bursts of

— To Page 42

Throw Away Your Old Instruments
Remarkable New STETHOSCOPE Method
Guaranteed to Lick Toughest Jobs

Why list old-fashioned methods and equipment
when you have this modern tool, the STETHOSCOPE?
STETHOSCOPE is the answer to your need for
immediate diagnosis! Now, for the very first time, you can
have the same 100% accuracy of the Stethoscope in
your own home or office. Take advantage of the
unparalleled opportunity to become a
top-notch Stethoscope user.

Send coupon for FREE booklet, "The Inside Story."

Feiler Engineering Co.,
345 George St., Chicago 14, Illinois Dept. I2M7

DECEMBER 1947 • RADIO MAINTENANCE
Each month the reader sending in the best suggestion receives a crisp ten dollar bill. For all others published, RADIO MAINTENANCE will pay five dollars. Let's hear from you.

Broken Wire Checker

"U"nder-insulation breaks in wire are usually found by prodding and piercing methods which tend to damage the insulation. Here is a method which finds breaks quickly and keeps your wire in good shape. A signal generator and a signal tracer are used. Connect your signal generator "high" lead to one end of the wire. Then hold the tracer probe in your hand and feel along the wire. At the same time listen to the signal in the tracer. When the signal drops sharply, you've found the break.

J. F. Appleton
App's Music House
Burlington, Iowa

Rubber from Vibrators

Don't throw away your old vibrators. Many of them contain high grade sponge rubber. You can use this rubber in many ways. Some examples are: tube socket mountings (anti-microphonic), speaker housings and microphones. You can punch nice clean holes in this rubber with a leather punch.

J. D. Murphy
Statesboro, Ga.

A Eliminator Control

If you are having trouble getting just the right voltage from your A battery eliminator, a good way to provide control is to put a variable transformer, ("powerstat" or "variae"), in the primary circuit. With...

→ To Page 45

RADIO MAINTENANCE • DECEMBER 1947
BACK NUMBERS

Our most recent back numbers of RADIO MAINTENANCE have now been made available. Listed below are the back issues which we still have on hand. Their contents are listed to enable you to select those magazines of interest to you. We don't know how long we will be able to fill orders for those earlier issues as the supply is dwindling fast, so if you want to get your back copies, fill out the coupon below today.

Get Them While They Last

JANUARY 1946
THE PROBLEMS OF ORGANIZATION
TELEVISION RECEPTOR INSTALLATION—This article will initiate the serviceman into the first step in television—its installation.

APRIL 1946
PA SYSTEMS—This article covers a general discussion of all the opportunities and procedures for the serviceman about to enter the public address field.
A MIDGET AUDIO FREQUENCY OSCILLATOR
IF I WERE SERVICEMAN
AN EQUALIZED AMPLIFIER FOR MAGNETIC PICKUPS

MAY 1946
PA SYSTEMS—This article covers initial layout of a modern PA system in bars, dance halls, auditoriums, etc.
TEST PANEL FOR THE MODERN BENCH
RINGING THE BELL

JUNE-JULY 1946
FUNDAMENTALS OF TELEVISION
VOLUME CONTROL TAPERS
THE ELECTRONIC VOLT OHMMETER
VECTOR ANALYSIS

AUGUST 1946
AVC CIRCUITS
FM TROUBLESHOOTING
TELEVISION RECEIVER FUNDAMENTALS
RECORD CHANGERS

NOVEMBER 1946
PART II TEST & ALIGNING TELEVISION RECEIVERS
DON'T FORGET THE DIAL LAMP
THE OSCILLOGRAPH—HOW TO USE IT
CRYSTAL PICKUPS

DECEMBER 1946
TELEVISION RECEIVERS—THE RF SECTION
TUNING INDICATORS
PART III THE OSCILLOGRAPH—HOW TO USE IT
REPLACING AUTO CABLES

JANUARY 1947
SERVICING BY EAR
TELEVISION RECEIVERS—VIDEO CHANNEL
PART III THE OSCILLOGRAPH—HOW TO USE IT
MINIATURE TUBE CHART

FEBRUARY 1947
THE OSCILLOGRAPH—HOW TO USE IT PART IV—It covers the alignment of receivers using the oscillograph and a frequency swept generator.
TELEVISION RECEIVERS—THE SOUND CHANNEL
THE AUDIO OSCILLATOR
SELENIUM RECTIFIERS—The theory and application of the selenium and other dry metal rectifiers.

MARCH 1947
ANTENNAS—FM AND TELEVISION PART I—First of two articles giving an easily understood explanation of transmission lines and matching systems.
SERVICING AUTOMATIC RECORD CHANGERS
OSCILLATORS AND CONVERTERS
TELEVISION RECEIVERS—THE VERTICAL SWEEP—Article No. 4 on the television receiver.

APRIL 1947
ANTENNAS—FM AND TELEVISION, PART II
PHASE INVERTER CIRCUITS
A UNIVERSAL SPEAKER—Although comparatively simple, this universal speaker is a big time-saver in the shop.
TELEVISION RECEIVERS—THE HORIZONTAL SWEEP

MAY 1947
THE OPEN AND CLOSE CASES—A unique and effective method for locating open coil windings.
VOLTAGE DOUBLERS
SIGNAL TRACER
TELEVISION RECEIVERS—THE CATHODE RAY TUBE

JUNE 1947
WHEN THE CUSTOMER ISN'T RIGHT—How to handle some difficult situations.
TEST EQUIPMENT MAINTENANCE—First of a series of three articles explaining how to increase the life and efficiency of your equipment.
CRYSTAL CONTROLLED SIGNAL GENERATOR
TELEVISION RECEIVERS—THE POWER SUPPLY

JULY 1947
SERVICING FM RECEIVERS—First of several articles giving the latest information needed for servicing FM receivers.
TEST EQUIPMENT MAINTENANCE, PART III
SERVICING FM RECEIVERS
TELEVISION—HF POWER SUPPLIES

SEPTEMBER 1947
AUTO ANTENNA INSTALLATION
ANTENNA SYMPOSIUM—A comprehensive list of available FM and television antennas.
RADIO SERVICING IS BIG BUSINESS
THE TELEVISION PICTURE TUBE
SERVICING FM RECEIVERS

MAIL ORDER FORM

RADIO MAINTENANCE MAGAZINE
460 BLOOMFIELD AVE.,
MONTCLAIR, N. J.

Please send me the back numbers checked here...
I am enclosing 35c for each copy, or $2 for any 8 copies, or $3.75 for all 16.

January 1946 [] April 1946 [] November 1946 [] May 1947 []
April 1946 [] May 1946 [] January 1947 [] June 1947 []
June-July 1946 [] February 1947 [] July 1947 []
August 1946 [] March 1947 [] August 1947 []
April 1947 [] September 1947

[] Have selected 8 copies encasing $2.00 [] Send me all 16 encasing $3.75

NAME ___________________________ ADDRESS ___________________________
CITY ____________________________________ STATE _________________________

DECEMBER 1947 • RADIO MAINTENANCE

www.americanradiohistory.com
THERE is probably no more troublesome problem for the beginning serviceman than that of how much he should charge for his work. His concern over this matter is fully justified, too, for the success or failure of his budding business will depend to a very large extent upon his decision.

There are two main systems of charging: the flat-rate system in which each job, such as installing a filter condenser, is charged for at a fixed price; and the time-consumption system in which the charge is directly proportional to the amount of time consumed in making the repair. Each has its advantages and drawbacks.

The trouble with the flat-rate system is that it is difficult to allow for the great difference in time consumption between doing the same job on two different model receivers. For example, replacing an out-in-the-open plate bypass condenser is a simple and quick matter, but the picture is greatly changed when the condenser lies up inside an IF can and several other components have to be unsoldered and removed before the condenser can be reached, and all of these parts have to be replaced and resoldered after the condenser has been replaced. Another objection lies in the fact that it makes it hard for the serviceman to charge for the most difficult part of his job, locating the trouble.

Charging by the hour, on the other hand, is based on the assumption that all radio men are equally and expertly proficient. Unfortunately, this is not so. Highly skilled A will locate and repair a defect in one-third the time that it takes bumbling B to do the same job. Is it fair that B should receive three times as much as A? Hourly rate charging often results in the customer's having to pay for the serviceman's ignorance.

On the credit side of the ledger, time-charging makes it much easier to tie the charges in with overhead. When you know all of the expenses of your shop, including the wages of any hired repairmen, it is comparatively easy to figure out how much you have to receive per hour to make a reasonable profit.

There are various other unorthodox factors that often determine charges, such as the prices a competitor charges, the financial condition of the customer, and how much the customer charged you for some other service. I mention these debatable charge incentives merely to recognize that they do, unfortunately, exist, but I hasten to add that none of these or similar factors should ever influence the charging in a reputable shop. Whatever the basis for the charges is, it should be absolutely impersonal, and it should be designed to bring in a reasonable profit above the cost of doing business.

The common fault of beginning servicemen is to charge too little. He usually is a little lacking in self-confidence, and he is eager to secure as much work as he can. In order to secure this volume of business, he sets his prices below his competitors.

This is a mistake. In the first place, he is branding himself as a "cheap" serviceman, and he is fostering the idea in the back of potential customers' minds that inferior workmanship goes along with cut-rate prices. What is more, he will find that raising his prices will meet with a surprising amount of resistance from the customers he has secured on the cut-rate basis.
Auto Radio Noise Elimination

→ From Page 38

static while the car is in motion. The origin of this trouble is the static electricity generated by the tires as they move along the road surface. Fig. 2 shows why this static builds up. The axle and the wheel are separated by bearings and a thick coat of grease. Since grease is ordinarily a good insulator, the static electricity built up by the tire does not ground out to the automobile chassis until it has built up a considerable potential.

As mentioned above, tire static is recognized by rapidly repeating bursts of scratching noise, due to the discharges taking place. A good way to check for this trouble is gentle application of the brakes while the car is zooming along the highway; if the static stops, tire static is your trouble. The brake lining pressing against the drum grounds the wheel to the chassis.

Fortunately, rare indeed is the case which will not respond to properly installed collectors in the wheels. These collectors are gadgets designed to fit inside the hub cap over the bearing nut, and to bear against the cap itself. They thus complete a circuit between the wheel and the axle, so as to provide a good ground. Fig. 3 shows how to install a collector. A complete job calls for one on each wheel.

When the little gremlins cannot sneak into the radio via the back gate, or by sliding down the antenna, their nasty sharp voices will not come through the loudspeaker. Confusion to all of ‘em, we say.

Picture Credits

Page 4 Top—Lear Incorporated
Bottom—Webster Chicago Corp.
Page 6 Sylvania News
Page 8 Burgess Batteries
Page 22 All illustrations—Sylvania News

RADIO SERVICEMEN!
STOP NOISY VOLUME CONTROLS REMOVAL FROM CHASSIS

Use...

QUIETROLE

Quietrole is a highly effective cleaner and lubricant now widely used and highly recommended by service men. Quietrole is packed in economical six-packs. It will clean and return static to normal where dirt and grime are the cause of the condition. Quietrole prolongs the life of all controls.

A small service to the customer by saving you of additional profit from a satisfied customer. A 1 oz. bottle @ $1.75 contains enough Quietrole for 50 applications.

If you distributor cannot supply you, order direct and include the name of your nearest distributor.

Distributors’ inquiries invited. $1.75
QUIETROLE DISTRIBUTING CO. 395 St. John Street, Spartanburg, S. C.

ILLINOIS
CONDENSER CO.
NOW HAS UMP!

TYPE UMP
A popular replacement twist prong line of COMPACT, HERMETICALLY SEALED, efficient, dry electrolytic condenser, is now a member of the ILLINI line of highest quality capacitors.

The “Illini” UMP capacitors are now available at your local jobber. Our latest catalog, listing complete Illinois line, will be mailed to you upon request.
high voltage low current supplies, they are useful for the power supplies for cathode ray tubes in television receivers. Further details may be obtained from Cornell-Dubilier Electric Corp., South Plainfield, New Jersey.

SOLDER FEEDER

The Solder-matic solder feeding arrangement clamps on to any standard electric soldering iron. With this device, solder can be fed to the iron tip with one finger of the hand which holds the iron. The other hand is thus freed for other operations such as holding a wire in place. Solder in small coils or spools up to 25 lb. can be handled and a length of up to 3/16" per stroke can be fed. Further information can be obtained from Helpin Manufacturing Company, 45-17 Davis Street, Long Island City 1, N. Y.

HV CAPACITOR

The Cornell-Dubilier new type RC-108 capacitor is the latest addition to their line of television types. Suitable as filters in

DYNAMIC MICROPHONE

The Electro-Voice Model E-V 635 is a new high fidelity dynamic microphone designed for broadcasting and recording. Response is flat within 2.5 db from 60-13000 cycles per second, and the output is minus 53 db. Impedance can be either 50 or 250 ohms as chosen by a selector switch. For further data, write for bulletin No. 135 to Electro-Voice, Inc., Buchanan, Michigan.

VACUUM TUBE VOLTMETER

Allied's new model, 730 Vacuum Tube Voltmeter, features an RF probe with flat response to 120 mc, positive and negative readings on DC, six ranges and an accuracy of ±3% on AC or DC. Low weight and compact size are obtained by the use of miniature tubes and power consumption is less than one watt. For further information, — To Page 45

Mural Displays Sell Service

These outstanding new Mural displays are scientifically designed to create a modern, selling atmosphere in your store. They will give your store more sell per square foot. Each is silk-screened in rich oil colors on heavy, washable stock. They are fadeproof and are easily applied to walls, windows and panels with cellulose tape.

Available in either vertical or horizontal form, these exciting displays will brighten up your place of business, emphasize your services, and identify you with the famous Cunningham brand. Get some from your Cunningham Distributor today.

For expert guidance—TURN THE PAGE ▶

Cunningham Electron Tubes

A product of RADIO CORPORATION OF AMERICA
Harrison, N. J.
On the Bench

This is not surprising when you consider that his clientele will be chiefly made up of "bargain hunters."

If he would just stop to think, he would know that the competitors who have been in business for years must have a pretty good idea of what prices must be charged to earn a decent living. If he charges substantially less than what has been established as a fair price, he will soon find himself working day and night for a niggardly profit, if any. What is worse, he will have won for himself the contempt and hostility of his competitors. I am not advocating that any attempt should be made to match the prices of your competitors, but I am advising that you make very sure of what you are doing before you offer any cut-rate service. Cut rate pricing not only leads to your own ruin; it injures the whole servicing profession.

In most of the shops that I have visited, charges are made on a combination of flat-rate and time-consumed basis. Jobs that are routine, such as replacing volume controls, filter condensers, etc., are charged for on a flat-rate basis. Other jobs that are likely to vary widely in the amount of time required are charged for at an hourly rate. Complete alignment is an example of this last kind of job. It may require only the adjustment of two screws on a four tube TRF midget, or it may take you two full hours to connect up your scope and completely and exactly align an all-wave AM or FM console or communications receiver.

Personally, I am a firm believer in a fairly high minimum charge. I make my minimum charge high enough so that I can afford to take all the time I need to go over each set very thoroughly and locate everything that is wrong with it. I can afford, too, to perform all of those little extras, such as alignment, cleaning, cabinet repair, etc.

Another thing that I try to keep clearly before me is that my charging is not for what I do; instead, it is for what I know. In making out my bills, I list the price of parts first—and there is never, never, never any deviation from the manufacturers list price here—and then, instead of labor, I write "For knowing what to do and doing it." This heads off those people who would exclaim, "You mean you are going to charge me two dollars for soldering in a new condenser? Why I'll bet it didn't take you ten minutes."

In conclusion, then, I advise the beginning serviceman to employ both flat-rate and hourly-rate charges in his business, to charge enough to make a reasonable profit, to have a fairly high minimum charge, and to keep firmly in mind that he is charging for hard-earned technical knowledge and not for common labor. These are good guides to keep in mind until he has acquired enough experience to formulate his own rules.
Industry Presents

→ From Page 42

from Page 42

write to Allied Laboratory Instrument Corporation, 355 West 26th St., New York 1, N. Y.

The Notebook

→ From Page 39

this arrangement, primary voltage can be adjusted to any value between 0 and 130 volts and output DC voltage will vary accordingly. Other DC voltages below 6 volts can thus easily be obtained.

E. J. Balcom
Balcom Radio & Sound Service
Tulsa, Oklahoma

Cutting Aluminum Sheets

In making panels or brackets it is often necessary to cut aluminum sheet stock into smaller pieces. Scribe a line along the cut to be made. Then go over this line with a heavy knife or glass cutter until the metal is slightly dented. The metal can then be easily broken along the desired line.

Joseph Novak
Binghamton, N. Y.

Trade Literature

→ From Page 34

Thousands of radio components and units are listed in its 160 pages.

RADIO MAINTENANCE • DECEMBER 1947

Among the especially interesting items described are FM tuners and high fidelity amplifiers and speakers, PA systems and reproducers, intercom systems. Nine full pages are devoted to test equipment alone; over 100 types are listed. All available radio components and materials are included in the catalog. To get your copy free, write to Concord Radio Corporation, 901 W. Jackson Blvd., Chicago 7, Ill.

Ohmite Catalog No. 19 gives ratings, dimensions, full electrical data, and list of prices of various types of resistors. Included in this 15-page catalog are rheostats, vitreous enameled resistors, dummy antenna resistors, precision resistors, tap switches, knobs, and dials. All items are illustrated with photographs. To obtain this free 15-page catalog, write to the Ohmite Manufacturing Company, 4835 West Flournoy Street, Chicago, Illinois.

This book is written directly for the serviceman and aims to develop a scientific, orderly approach to his problems. To quote from the introduction, the authors have attempted to present "whole dynamic procedures for application to specific radio troubles." Each receiver section is treated as a unit. The sections are presented in the order in which they would be encountered in service work. For instance, the AC power supply is considered first, loudspeakers next, AF power stage, etc. Multimeters and signal generators are discussed in early chapters and other test equipment later in the book as the need arises.

Such subjects as AC-DC power supplies and auto radio power supplies are given a full chapter each. A survey of servicing procedure and list of graphic symbols and abbreviations are included. The book is well illustrated with line drawings and photographs. The style of writing is a little heavy and could be easier to read. The subjects of FM and Television are hardly mentioned, and the subject matter is limited strictly to the AM receiver field.

John Rider Says...

Repair Your Public Standing

→ It is not inconceivable that the popularity of record changers will tend to improve the relationship between the general public and the radio serviceman.

As a mechanical device, its workings are not mysterious when it refuses to change records, rotate the turntable, or otherwise perform as it should, the presence of a defect is clearly evident. We doubt seriously if the public's view of such a defect will be surrounded with the uncertainty which prevails in connection with the repair of radio receivers.

Prompt and efficient correction of defects in record changers is an opportunity to win the public respect and confidence which servicemen rightfully deserve. A perfect repair will help achieve this goal.

Built for Service

Cunningham
Electron Tubes

A product of RADI O CORPORATION OF AMERICA
Harrison, N. J.
INDEX OF ARTICLES

All articles since the July 1945 issue are listed. Subjects from "Over the Bench" and "The Notebook" are also included.

- AIRCRAFT
 - Radio Maintenance in Aviation, I, Myron F. Eddy...July '45
 - Radio Maintenance in Aviation, II, Myron F. Eddy...Oct. '45
 - Servicing Aircraft Radio Power Packs, Myron F. Eddy...Jan. '46

- ALIGNMENT
 - Using the Signal Generator and Oscillograph, G. C. McProud...July '45
 - Testing and Aligning Television Receivers, I, Monroe Scheraga...Oct. '45
 - Testing andAligning Television Receivers, II, Monroe Scheraga...Nov. '45
 - Alignment Methods, Irving Dlugatch...Dec. '45

- AMPLIFIERS
 - An Equalized Amplifier for Magnetic Pickups, E. C. Cross...April '46
 - PA Systems, I, G. C. McProud...April '46
 - PA Systems, II, H. C. McProud...May '46
 - Let's Explore the Multitap, G. E. Byl...Oct. '46

- ANTENNAS
 - Antennas for FM and Television, Charles Chilton...Oct. '45
 - Antennas—FM and Television, I, Milton Kaufman...Mar. '46
 - Antennas—FM and Television, II, Milton Kaufman...Apr. '46
 - Antenna Symposium...Sept. '46
 - Auto Antenna Installation, R. K. Cull...Sept. '46

- ASSOCIATIONS
 - Radio Repairmen's Associations, John F. Rider...Mar. '46
 - The Organizations (Column)...Apr./May '46
 - The RTG Story, Bertram L. Lewis...Nov. '47

- AUDIO OSCILLATORS
 - Aidget Audio Frequency Oscillator, Rex Gilbert...Apr. '46
 - Radio Oscillator, A. B. Knight...Feb. '47

- AUTOMATIC FREQUENCY CONTROL
 - AFC, Monroe M. Lange...Oct. '46

- AUTOMATIC VOLUME CONTROL (AVC)
 - AV Circuits, Peter Markantes...Aug. '46

- AUTOMOBILE RADIOS
 - Replacing Auto Cables, Albert Lustig...Dec. '46
 - Over the Bench, John T. Frye...June '47
 - The Notebook, Auto Radios...June '47
 - Auto Radio Noise, Don Blair...Dec. '47

- BATTERIES
 - Battery Replacement, R. C. Clock...Oct. '46
 - Real Radio Servicing, Jack Darr...Dec. '47

- BENCH
 - Modern Bench Construction, Joseph J. Roche...Feb. '46
 - Test Panel for a Modern Service Bench, Joseph J. Roche...May '46
 - The Notebook, Novel Bench...Feb. '47

- BULBS
 - Don't Forget the Dial Lamp, G. F. Prideaux...Nov. '46
 - The Notebook, Adapting Pilot Lamps...Sept. '46
 - The Notebook, Pilot Bulbs...Oct. '46

- BUSINESS
 - Business Management for the Radio Dealer, Joseph J. Roche...Oct. '46
 - De Young Does It This Way, Eugene A. Conklin...Jan. '46
 - If I Were A Serviceman, Charles Doherty...Apr. '46
 - Ringing the Bell, Peter Markantes...May '46
 - Over the Bench, John T. Frye...Aug. '46
 - Radio Servicing Is Big Business, J. K. James...Sept. '46
 - Over the Bench, John T. Frye...Sept. '46
 - The Notebook, Pilot Bulbs...Nov. '46

- CABINETS
 - Cabinet Repair, R. G. Ellis...Oct. '46
 - Replacing Auto Cables, Albert Lustig...Dec. '46

- CAT RAYS TUBES
 - The Cathode Ray Tube, Television Receivers, Morton Scheraga...May '47
 - The Television Picture Tube, Morton Scheraga...Sept. '47

- CHARTS
 - Test Equipment Symposium, 1946...Feb. '46
 - Miniature Tube Chart...Jan. '47
 - Speaker Matching Charts...Aug. '47
 - Cathode Ray Tubes for Television...Sept. '47
 - Antenna Symposium...Sept. '47
 - Test Equipment Symposium, 1947...Nov. '47

- CONDENSERS
 - The Notebook, Bridging Filter Condensers...Feb. '47
 - The Notebook, Condenser Leakage Tester...July '47
 - The Notebook, Condenser Tool...Nov. '47

- CONTROL
 - AFC Circuits, Peter Markantes...Aug. '46
 - Automatic Frequency Control (AFC), Monroe M. Lange...Oct. '46

- CONTROLS
 - Controls, E. E. Johnson...Jan. '46

- CRYSTALS
 - Crystal Pickups, J. K. Poff...Nov. '46
 - Crystal Controlled Signal Generator, J. R. Judge...June '47
 - Microphone Maintenance (crystal microphones) John B. Ledbetter...Oct. '47

- CUSTOMER RELATIONS
 - When the Customer Isn't Right, E. A. Conklin...June '47
 - Over the Bench, John T. Frye...Aug. '47

- DENTAL TOOLS
 - The Notebook, Dental Tools...Nov. '47

- DIAL CORDS
 - The Notebook, Dial Cord Guide...Sept. '47

- DIAL LAMPS
 - Don't Forget the Dial Lamp, G. F. Prideaux...Nov. '46
 - The Notebook, Adapting Pilot Lamps...Sept. '47
 - The Notebook, Pilot Bulbs...Oct. '47

- DISTORTION MEASUREMENTS
 - Using the Oscillograph for Distortion Measurements, C. G. McProud...Jan. '46

- EAR
 - Servicing by Ear, John T. Frye...Jan. '47

- EQUALIZATION
 - An Equalized Amplifier for Magnetic Pickups, E. S. Cross...Apr. '46

- EQUIPMENT MAINTENANCE
 - Test Equipment Maintenance, I, John B. Lathetter...June '47
 - Test Equipment Maintenance, II, John B. Lathetter...July '47
 - Test Equipment Maintenance, III, John B. Lathetter...Aug. '47

- EQUIPMENT, TEST (See Test Equipment)

- FLYWHEEL SYNC
 - Television Receivers—Flywheel Sync, Morton Scheraga...July '47

- FREQUENCY CONTROL (FM)
 - AFC (Automatic Frequency Control), Monroe M. Lange...July '47

- FREQUENCY MODULATION (FM)
 - Antennas for FM and Television, Charles Chilton...Oct. '45
 - FM Troubleshooting, I, Ralph B. Roland...Aug. '46
 - FM and Television Antennas, I, Milton Kaufman...Mar. '47
 - FM and Television Antennas, II, Milton Kaufman...Apr. '47
 - Servicing FM Receivers, I, Milton Kaufman...May '47
 - Servicing FM Receivers, II, Milton Kaufman...Aug. '47
 - Servicing FM Receivers, III, Milton Kaufman...Sept. '47

- FUNDAMENTALS
 - Fundamentals of Vacuum Tube Voltmeters, C. G. McProud...Feb. '46
 - Fundamentals of Television, Lionel P. Paradise...June-July '46

DECEMBER 1947 * RADIO MAINTENANCE

www.americanradiohistory.com
Reliable help when you need it

An accurate knowledge of fundamentals is often essential for solving "sticky" servicing problems. These books provide that knowledge in the clearest, most practical manner. Put them on your reference shelf where you can turn to them for help whenever you need it.

INTRODUCTION TO PRACTICAL RADIO by Tucker

Outstandingly clear, thorough explanations of all basic principles, showing in complete, practical detail just how they are applied in the construction and operation of radio parts and circuits. All necessary math is fully explained at the points where it is used. Many large, clear illus. $3.00.

AN INTRODUCTION TO ELECTRONICS by Hudson

A masterly explanation (non-mathematical but not elementary) of the underlying theories, construction of basic parts, and applications of electronics in radio, television, photography, power and all other fields. Illus. $3.50.

PRINCIPLES OF RADIO FOR OPERATORS by Atherton

470 illustrations and very graphic, easy-to-understand explanations of the operating principles of every radio part, including antennas. Much valuable reference data in appendix. $6.00

At your bookstore or from

The Macmillan Company, 60 Fifth Ave., New York 11

HERE THEY ARE!

BINDERS FOR YOUR RADIO MAINTENANCE MAGAZINES!

Here are the binders you have been asking for. Each will hold 12 issues of RADIO MAINTENANCE, protecting and preserving them. Your valuable copies of RADIO MAINTENANCE will always be easily accessible in these handsome simulated leather binders. Each binder is rugged and durable and stamped in bright gold lettering. It holds your magazines firmly without puncturing holes or deflecting them in any way. Your copies of RADIO MAINTENANCE in these attractive binders will form a lasting, invaluable library! Our ordering in quantity has kept the cost to you down to a less-than-retail price of $2.25 each postpaid. Get yours from the first shipment—send in your order today!
PILOTUNER

Pilotuner makes any radio into an FM set. Radio Servicemen have reported to us that this is the FM tuner that works anywhere at any time. No wonder it sells. Pilotuner has 5 tubes and rectifier, built-in FM antenna, velvet tuning. List price is $29.95.

REGAL SUPER-MITE

Regal super-mite remains the most sensational 3 way portable ever built. 5 "A" batteries; and 1 "B" battery with life of 100 hours. No higher than your fountain pen but full size components. Your cost, $21.72, less batteries.

PRECISION

Precision multi-band signal generator covers all A.M., F.M., and television requirements. The name Precision on this smart instrument means that it is the finest you can get. If you want F.M. and television work, your shop should not be without this money-making necessary piece of equipment. Your cost for Precision E-200-C, $64.15. Use our easy time-payment plan.

TELEKIT

Servicemen are installing Telekits in bars, clubs, restaurants and homes. Never before has a television kit been offered for so little. Big Ten inch Telekit is $124.50, and the Number Seven Telekit only $77.50, both less tubes.

You can purchase any of these items or any service instrument in our stock on our easy budget terms. Make your service instrument pay for itself under the Almo budget plan. Ask about this plan next time you are in our store.

PHONE WRITE OR WIRE TODAY TO:

Phone LO 3-9225

ALMO RADIO CO.

509 ARCH STREET

PHILADELPHIA, PENNA.

SAY YOU SAW IT IN RADIO MAINTENANCE!
30,000 SUCCESSFUL SERVICEMEN

In rural districts . . . in small towns . . . in the big cities . . .

Everywhere 30,000 successful servicemen are reading and using RADIO MAINTENANCE in their work. These men have found this magazine to be their most valuable source of information, the most interesting to read. Every issue contains a wealth of new ideas and vital data. Add it to your previous issues and form a complete service library. Yes, all your RADIO MAINTENANCE magazines are designed to form a reference library in themselves.

. . . Don't miss any of them!

RADIO MAINTENANCE MAGAZINE

BOLAND & BOYCE INC., PUBLISHERS

460 BLOOMFIELD AVE. MONTCLAIR 1, N. J.