1937
 Radio

Data Book

1937 RADIO DATA BOOK

Edited By
Laurence M. Cockaday

Associate Editors

S. Gordon Taylor

William C. Dorf
John H. Potts
Walter H. Holze
John M. Borst

Copyright 1936 By Teck Publications, Inc.

461 Eighth Avenue
New York, N. Y.

CONTENTS

OPPORTUNITY IN TELEVISION 2
ALL-WAVE RECEPTION AIDS 3
DX Tips3
-3
4
World Time Conversion Chart 4
Antennas And Grounds5
International Call Letters 6
Verifying Short.Wave Calls 7
U. S. And World-Wide Mileage Chart 9
Amateur Activities 9
How To Learn The Morse Code. 9
Wavelength-Frequency Conversion 10
CHARACTERISTICS OF RECEIVING TUBES11
Detector And Amplifier Tubes 12
Rectifier Tubes 14
Special Tubes, Comparison Charts.15
Socket Connections. 16
RADIO RECEIVER CONSTRUCTION17
Portable 10 -Tube A.C.D.C. Receiver17
A 21/2-555 Meter Receiver.18
Low Current Farm Receiver 19
New Converter With Metal Tubes 21
All-Wave Pre-Selector.23
Amateur Communication Receiver 24
EXPERIMENTAL RADIO DATA 27
Making Your Own Relays 27
Compact 5-Watt P. A. Amplifier 28
Non-Slip Dial Cables 28
Plug-In Coil Shields 28
Home-Made Multi-Point Switch 28
Lamp For Photo-Cell Use 29
Improving The All-Star Receiver. 29
Pilot Light For Soldering Iron 29
A Simple Stroboscope.29
A Handy Tool. 30
Overcoming Refrigerator Interference. 30
Two Soldering Kinks 30
Identifying Replacement Connections. 31
Simple Vacuum-Tube Voltmeter. 31
Rack For Experimenters 31
Relay From Old Audio Transformer 31
Resonance Indicator.
32
32
Concrete Foundation For Antenna Mast 32
New Uses For Condensers 32
Improving The Browning 35 32
An Electronic Interrupter. 32
AMATEUR RADIO33
The Popular 5-Meter Range. 33
Transmitting Tube Chart 34
5-Meter M.O.P.A. Transmitter 35
Two. Way Auto Radio. 36
Ten Meter Transmission 38 38
All-Band Transmitter. 39
SERVICING AND ENGINEERING NOTES. 41
All-Wave Frequency Meter 41
Simple B. F. Audio Oscillator 42
Crystal Calibrating-Oscillator. 43
Resonance Tester 45
Service Hints. 46
SOUND EQUIPMENT.46
Radio News 20-Watt Amplifier 47
Radio News A.C. Pre-Amplifier 49
15-WaH High-Gain Amplifier 51
SUPPLEMENT I-TEN LESSONS IN RADIO 52
Lesson One-Radio Waves, Defection 52
Lesson Two-Simple Diode (or Crystal) Set. 52
Lesson Three-Operation of Vacuum Tubes
Lesson Four-Simple Triode V.T. Receiver 55
Lesson Five-R.F. And Audio Amplification 56
Lesson Six-One-Stage Audio Amplifier56
Lesson Seven-How A Power Supply Works 57
Lesson Eight-How An Amplifier Works. 58
Lesson Nine-Discussion On Volume Controls 59
Lesson Ten-A.F. Amplifier And Power Unit. 60
SUPPLEMENT 2 - STATION LISTS. 62
U. S. Broadcasting Stations. 62
World's Leading Short-Wave Stations 64

Opportunity In Television

by Laurence M. Cockaday

MORE than 30 years ago some scientific writer suggested that the time would come when the telephone subscriber would be able to see the person with whom he converses. That statement fired the public imagination. With the popularization of radio broadcasting there were more rumors and forecasts, based on radio being a more adaptable medium for the purpose. Then, in 1931 or 1932 it was even possible to buy television receivers and kits, such as they were. The furor of excitement was short-lived, however, when it developed that the electrical and mechanical problems had not been satisfactorily solved by these scanning. disc systems.

Along about 1934 it was learned that several large radio laboratories were at work developing cathode-ray television. Occasional news of their progress leaked out but those engaged in the experimental development work were extremely coy, keeping news of their progress secret and discouraging public interest.

Finally the clamor of the public and press caused a modification of this policy of coyness, with the result that actual demonstrations of their experimental results have now been given by several of the leading laboratoriesdemonstrations for the press primarily, but reports were passed along to the public by the writers who were privileged to participate. As a result the old question "Do you think we will ever have television?" has given way to "How soon will we have television for the home?"

Just how soon television receivers will be available to the public, is anybody's guess. In the laboratory tele. vision is a success. The clarity and definition of the images on the televisor screen are equal to good home movies, although smaller in size - the television picture size being about 5 by 7 inches. Movie films can be readily reproduced by television, and direct pick-up of persons and scenes, indoor and outdoor, is successfully accomplished. For this purpose slightly higher light values are required than for movie photography but this is not either an insurmountable obstacle nor is it, in the meantime, a serious drawback because where conditions are unfavcrable for direct televising of a scene, it can be recorded on movie film and then reproduced by television.

If these are the facts, what is holding up the parade? There are several reasons, some valid and other questionable. First of all, there must be television transmitting stations and these must be duly licensed and assigned
operating frequencies by the government. Secondly, it is jointly agreed by the prospective broadcasters, the prospective television manufacturers and the government, that certain technical standards must be decided upon and adopted before regular television transmissions can begin; standards which will protect the purchasers of televisors and prevent monopolies in both the broadcasting and manufacturing ends.
Beyond these there appear to be some other obstacles of a commercial nature. One is concerned with the question of who is to pay the costs of equipping and maintaining the television stations. This is apparently not a serious obstacle, however, because it seems to be the feel-

ACTUAL TEIEVISION PICTURE

This picture was taken with an ordinary camera, focussed on the screen of a lelevision receiver, during a recent demonstration by the Pbilco Radio and Television Corp., after the image bad been sent through the air a distance of $71 / 2$ miles by ulira-shoriwave ralio.
ing that television broadcasting will find itself financed in much the same way as radio broadcasting. A more serious consideration and likely cause for delay is the attitude, on the part of some of the key manufacturers of equipment, that television should be born in full bloom-that it should be withheld from the public until perfected. Also until receiving equipment can be placed on the market at a reasonably low price.

Let us consider these factors causing the delay. Most of them are legitimate and understandable but some of them smack of business racketeering. The necessity for due consideration in adopting standards and in assigning transmitting frequencies is self evident. Stand-
ardization will aid, for instance, in the simplification of receivers, and the lower cost which attends this simplification. But, as for withholding television until it is fully perfected and refined, there is room for suspicion concerning the motives. Unprejudiced opinion is that a combination sight and sound receiver can be produced today to sell at $\$ 200$, which seems fair enough. The automobile was not withheld for perfecting -nor was the radio-yet the public had many years of enjoyment from both while in their infancy. Moreover, production experience and healthy competition are necessary in perfecting any device as complicated as a television receiver-and neither is possible under this proposed plan of "laboratory incubation and maturing".
Frequency assignment is a special problem, where television is concerned, because a single television transmitter requires a band 300 to 400 times as wide as the 10 -kilocycle channels assigned to regular broadcast stations. The only portion of the explored radio spectrum where such wide bands are available is in the ultra-high-frequency ranges above $40,000 \mathrm{kc}$. (7.5 meters), and relatively little is known as to the characteristics of these frequencies. At present it appears that the ranges of $42-56$ and $60-90$ megacycles will be made available for television; in fact experimental licenses are now being issued in these ranges.
No attempt is made here to predict the date when television will arrive. From the standpoint of those who plan to make television their life work, the important thing is that television development is well under way and whether it comes in six months or two years it will be a field of opportunities, and this time can well be spent in preparing for it.

There are opportunities today in the laboratories that are carrying on this development. Such opportunities are largely limited to engineers who are well qualified in the electronic and optical sciences. When the manufacturers are ready to go into production, there will be all sorts of openings available for men who are versed in the various phases of radio production work. Following this there will be openings in the sales and service ends of the new industry. In fact it is believed that we will again go through a period of opportunity comparable with that provided by the early days of radio. The major difference will be that television will be more highly technical than was radio in its early days and the opportunities which do open up will be
(Turn so page 61)

ALL-WAVE RECEPTION AIDS

DX Tips

So many new listeners are being introduced to short-wave reception via a new all-wave radio receiver, persons who have little idea of the problems of reception on these bands, that this section of timely hints should be of first importance in many a household.
The following tips are aimed at the newcomer to the DX pastime, with the hope that all of them may be helpful to some-and some of them helpful to all. An effort has been made to pack the meat of varied researches of the editors into one section, making a ready reference for the tyro in the DX sport who does not wish to wade through one or several years' copies of Radio News in order to find this or that item of needed information.
First, let us consider several pointers which apply to short-wave listening (and incidentally, to long-wave DX too). The importance of an appropriate aerial is always plainly stressed and often rightly so. It is largely a matter of location-dependent on how much (or how little, if you are in a fortune spot) unwanted aerial matter there may be near your receiver, such as power lines, trolley wires or steel buildings. Such metal masses will rob the incoming signal of a portion of its strength. Hence your aerial must be efficient to counteract those losses.

World Time Conversion

In attempting very distant or transoceanic reception, consideration must be given to differences in time. Thus, when it is noon (Standard Time) in New York City, it is 9 a.m. in Los Angeles, 5 p.m. in Daventry and London, 6 p.m. in Berlin and Rome. 5:30 a.m. in Honolulu, and (the following morning) 1 a.m. in Shanghai, 2 a.m. in

Tokyo, and 4:30 a.m. in New Zealand. The general rule is that places 15 degrees of longitude apart vary one hour in time. The World Time Conversion Chart (Figure 3) provides a simple means for computing the time in any place in the world.
To use this chart, first locate your country, or your section of your country, in the alphabetical list, to find its longitude. Then locate this longitude on line A. Next, consult the alphabetical list to determine the longitude of the country whose time you want to find, and locate this longituate on line C. Now lay a ruler or other straightedge across the chart so that it connects these two points on lines A and C. The point at which it crosses line B shows the time difference between these points. If the hour is preceded by a plus sign, add this figure to the time in your locality. If a minus sign is shown, deduct the hours.

From the foregoing it is evident that the use of this chart represents an utterly simple method of accurately determining the time in any part of the world, corresponding with that in any other part. If desired, a strip of cardbcard may be employed in place of a ruler, pivoting one end on line A in a position corresponding to one's own lucation so that the straight-edge may be swung through an arc sufficiently long to reach all points on line C. This will still curther simplify the use of the chart.

Tuning For Stations

Hardly a day goes by but what some new drama of the ether is unfolded and it is this unexpected and dramatic interest that makes short-wave reception so exhilarating. Although we are not all privileged to "sail the seven seas," we can all be transported, at least for a time, far from the hum-drum
realities of our everyday existence by sailing the ether lanes on our present-day shortwave radio receiver.
To get the most pleasure from your short-wave receiver, there are certain facts that should be kept in mind.
It is commonly known that short-wave stations do not operate at all hours, or every day. It is also well known that these stations change their wavelengths with the changing seasons, and some of the large stations use different frequencies at certain hours of the day. Short-wave broadcasting also covers only narrow bands within a wide wave spectrum which runs from 1500 to some 40 , or even 50 thousand kilocycles, including thousands of separate channels. If it were not for the up-to-date and accurate World Short-Wave Timetable, published monthly in Radio News, all the best equipment in the world would be of very little use, as it would be like searching for a "needle in a haystack" to find out wien the stations were operating, where they were located, and upow what frequencres they were operating.
Short-wave tuning is different from broadcast tuning. On the long waves we know almost when and where (on the dials) to find stations, for we grow accustomed to tuning them in day after day. But on 2 short-wave set we must search for the stations at first and then keep a record of the dial-reading in order to go back and get it later. It is not necessary to keep a written record always, as dial settings on a short-wave set soon get fixed in mind just the same as on long waves. But you must search for the station at first, and to get it you must tune when it is on the aur!
In running up and down the dials you might pass over a distant station dozens

TWO WELL-KNOWN SHORT-WAVE STATIONS

At almost any time, day or night, you can hear these stations on short-waves. Figure 1, right, is the B. B. C. building in London, England. Figure 2, below, is the German broadcast center.

Figure 3-World Tinse Conversion Chart
of times and never know it is a station unless you happen to stop right on the exact spot where the signal is located. Therefore, you must tune slowly. Short-wave stations are mostly experimental and change quite often. Be sure your station list is up to date and kept up to date or you will spend much time tuning for stations that are not on the air. Then, paying particular attention to the time each station is on the air, tune for it near where the local station was heard on the dial. For example, you can easily tune in W2XAF, New York, on 31.48 meters and station VK 3 ME is just a shade on the dials above it.

Helpful Hints

The non-technical broadcast listener is often apt to forget that headphones sometimes will bring in a weak DX signal where in some cases loudspeaker reception might be unsatisfactory. If your receiver has no
phone jack, a suitable adapter can be made or purchased.

For the utmost success in DX dialing, it is not enough to "tune slowly," always. Rather, you must move the condenser control over one (or one-half) point on the dial scale, leaving it motionless there for a half minute or longer, depending on air conditions. Fading, atmospherics and the like may completely blank out a faint signal, which may come in with fair strength after a short wait.

The various DX Clubs are a real help to the enthusiastic nighthawk listener. They provide, generally at nominal cost, a valuable exchange of lard-to-get informationtips, station changes, schedules, special DX programmes, and perhaps best of all, the sporting spirit of comperition which makes one try to acquire a better \log than the other fellow.

By all means, consult the Short-Wave Timetable in Radio News, for your "regu-
lar" short-wave listening-in. It will save you time and insure you getting real results out of your receiver! Also consult the listeners' reports in The DX Corner to see if you can better the records other listeners are making.

Anyone with an all-wave set is missing an opportunity for a lot of pleasure and satisfaction if they do not try a twist at the fascinating high frequencies-a plunge into the earth-girdling short waves. It seems that everyone and his auntie are doing it. Here one can recapture the thrills of early days in radio-multiplied tenfold!

To such as may be hesitating on the brink of this plunge, the advice of a confirmed addict will invariably be, "Go ahead-you'll never regret it!" To get the full mixture of joy, exasperation and surprises from the game, start off by building a small shortwave receiver for yourself. Every schoolboy nowadays has the necessary diagram for just the best circuit very clearly in his mind, right where the algebra should be!

A RFGULAR STANDBY

Figure 4, above, shows the studio of the powerful station EAQ at Madrid, Spain.

You may by some miracle get by without once mastering a jigsaw puzzle and face posterity with a certain assumed air of calmness. But never will you be able to look your grandchildren in the optics if you failed to throw together a two or threetube blooper, and (with the aid of the plumber, the postman and Miss Nextdoor) drag in "Rah-de-oh Rom-ah" by brute force and some ear-stretching.
A general working rule for short-wave radio reception, as regards the best time of day for the various bands, would be: below 30 meters during daylight, and above that wavelength at night.

There is little point in trying to tell anyone just how sharp the tuning is on short-wave reception, as it is one of those facts capable of being grasped properly only by personal experience. However, if the newcomer to the high-frequency channels, after building or buying the first receiver, can control or at least faintly moderate his eagerness to bring Australia "pounding in" till after the first evenings tuning, there is a gradual means of approach to the full realization of this extremely sharp tuning.

Influence of Weather

Weather is often the bane of the serious DX hunter, yet at times even its vagaries can be put to worthwhile use. On the

Good air conditions for big DX often appear to lie in directional strips across the world. Thus a listener near the Great Lakes may experience a night when he can log most of the European stations yet be unable to hear anything of value from Asia or Australia. Another night the reverse mav hold true.

Anteninas and Grominds

SOME receivers perform hetter, in the case of signals coming (for the maior portion of their travel) across a large body of water, using no ground connection. In other cases, reception has been improved (static noticeably lessened) by disconnecting the usual aerial. and changing the ground wire to the antenna post. Go ahead and experiment! Almost anything is worth a trial-save perhaps such carefree gestures as applying " B " (plate) voltages to the tube filaments. Even the long-bearded experts in this wireless game will at times admit there are a few things yet to be learned.

One of the best DX grounds can be easily made, as follows: a coil of wire, anything from 18 to 22 gauge or the like. is wound on a 2 - or 3 -foot length of copper pipe, of which the diameter may be anywhere between or near 1 and 2 inches.

Bury the assembly well down in moist earth. One fault with the usual cold-water pipe ground is that there may be an insulating gasket in a pipe connection between your ground wire and earth. Almost any metallic mass buried in moist ground will make a good "ground". An old clothes boiler, automobile radiator, hot water tank -all are good.

All joints in aerial and ground leads must be carefully made and soldered to insure both a strong mechanical and electrical contact. The metal surfaces to be joined should be scraped or filed to a clean. uniform brightness. Fasten firmly together. For best results and permanency add all three finishing touches-solder, tape and paint.

An outdoor aerial should be at right angles to a nearby power line, railway or the like. Aerial wire is hetter if stranded
and enamelled. If a shielded lead-in is employed. ground the shielding.

Suppose you fear or suspect that your aerial is too long for the station tuned in, or the receiver in use, but do not wish to do a job of roof-climbing after midnight. Here is a quick way to decrease the acrial's effective length: put a 100 mmfd . fixed condenser in series with your lead-in wire.

Inspection should be made from time to time of the outdoor portions of your aerial system. Insulation is all-important. Remember that even the wet wood of a roof or house wall forms a partial conductor, eager to steal those vital micro-volts from the incoming signal.
Give all tube-prongs a light sandpaper cleaning several times per year. Keep variable condenser plates free of dust-applying the same care to exposed resistor surfaces and similar gear.

Figure 7
Such minor attentions may appear insignificant, taken separately. Adopted collectively, they may reward you with the long-awaited logging of Shanghai or Africa.

Noise-Reducing Antennas

In spite of the huge amount of literature that has been published on this subject, people still entertain the queerest notions about it. Let's get the fundamentals straightened out first. To start, it is not the antenna that reduces local noise, but the lead-in. If the antenna itself cannot be
placed outside of the noise zone, it will continue to feed noise as well as radio signals to the receiver, regardless of the fanciness of the lead-in or whether it consists of twisted wire or a transposed or paralle! line. This goes for end-fed halfwave wires, for center-connected dipoles and for double-doublets, regardless of who makes them or what magical properties are attached to them by advertising copy writers who themselves have never climbed a water tank or hung precariously over the edge of a roof with arms and legs entangled with wire.
Every location presents an individual problem as far as the placement of the antenna is concerned. The patient listener who is willing to spend a little time experimenting with the aerial's position is likely to be rewarded with real results. The leadin, if properly constructed, picks up practically nothing of its own accord, and serves only to transmit to the receiver what the antenna plucks out of the atmosphere.

An important point to remember is that the distance between the aerial and the local noise area is what counts, and that this distance may be horizontal just as well as vertical. Many a listener has been pleasantly surprised to find that a rather low antenna strung fifty, seventy-five or even two hundred feet in back of the house, such as shown in Figure 7, is extremely quiet, whereas a similar antenna strung on the highest practicable poles above the house is noisy.

Figure 8
Incidentally, much better signals are often obtained with both feeder wires connected to the aerial binding post than with the recommended coupling device. This is due to the fact that the lead-in may be quite long in comparison with the horizontal "doublet" on the roof. When the two feeder wires are shorted together, they act as an ordinary lead-in and become a part of the aerial proper, picking up considerably more energy than the small doublet. This means louder signals, but also more noise if the lead-in happens to pass through a noise zone.
A doublet antenna receives best in the directions at right angles to its length. (See Figure 8.) This effect is most marked when the antenna is out in the open, but is subject to considerable variation if large buildings or other structures are nearby.

International Call Letters

CALL letters of code stations as well as broadcasters heard are of special interest to the short-wave fan because from these it is possible to tell the nationality of the transmitter. Thus any call beginning with K, N or W indicates a station in the United States, its territories or its ships. The larger countries of the world have similar assignments: G for Great Britain; F for France, D for Germany, etc. Smaller countries with fewer transmitters have more limited assignments. Morocco, for instance, is assigned all calls which employ CN as the first two letters. The list of these "International Call Letter Assignments" is given below.
In code transmission the call letters are always preceded by - . . . (de). The letters of the station called are usually repeated 3 times, followed by the letters of the caller, also repeated 3 times, thus: XAB, XAB, XAB de KNL, KNL, KNL, would indicate a U. S. Station calling a Mexican Station.
Study of the Morse Code on Page 10 of this book will enable short-wave listeners to gain sufficient knowledge of the various letters to readily identify c.w. stations.
Inasmuch as c.w. (code) transmissions carry further than 'phone or broadcast signals, and as many c.w. stations employ high power, it is possible to \log many countries in this way, who either do not have broadcast transmitters or whose broadcast transmitters do not reach out.

Call Signal	Country
ONA-OTZ	Belgium and colonies
QUA-OZZ	Denmark
PAA-PIZ	Netherlands
PJA.PJZ	Curacao
PKA.POZ	Dutch East Indies
PPA.PYZ	Brazil
PZA-PZZ	Surinam
Q	(abbreviations)
R	U. S. S. R.
$\begin{aligned} & \text { SAA.SMZ } \\ & \text { SOA.SRZ } \end{aligned}$	Sweden Poland
SSA-SSZ	
STA.SUZ $\}$	Egypt
SVA-SZZ	Greece
TAA-TCZ	Turkey
TFA.TFZ	Iceland
TGA-TGZ	Guatemala
TIA-TIZ	Costa Rica
TKA-TZZ	France and colonies and pro tectorates
U	U. S. S. R.
VAA-VGZ	Canada
VHA-VMZ	Australia
VOA-VOZ	Newfoundland
VPA-VSZ	British colonies and protectorates
VTA-VWZ	British India
VXA-VYZ	Canada
W	United States of America
XAA-XFZ	Mexico
XGA-XUZ	China
XYA-XZZ	British India
YAA-YAZ	Afghanistan
YBA.YHZ	Dutch East Indies
YIA.YIZ	Iraq
YIA-YJZ	New Hebrides
YLA-YLZ	Latvia
YMA.YMZ	Free City of Danzig
YNA-YNZ	Nicaragua
YOA-YRZ	Roumania
YSA-YSZ	Republic of El Salvador
YTA-YUZ	Yugoslavia
YVA-YWZ	Venezuela
ZAA-ZAZ	Albania
ZBA-ZJZ	British colonies and protectorates
ZKA-ZMZ	New Zealand
ZPA-ZPZ	Paraguay
ZSA•ZUZ	Union of South Africa
ZVA-ZZZ	Brazil

Verifying Short-Wave Calls

0NE of the incidental pleasures of long. distance reception, on either shortwave or broadcast bands, is obtaining written verifications from the foreign stations. Many of these "veris" are elaborate, multi-colored documents and are well-worth framing; even the simpler and
less pretentious ones make good exhibits when you have company and want to show off your standing as a DX fan of international accomplishments.
Merely hearing a foreign station is only the first step in the process of getting a veri. You must appreciate the fact that
writing to a foreign country is not like requesting a catalog from a nearby mailorder house. The first and most important rule is: WRITE PLAINLY! If at all possible, typewrite your letter or have someone else do it for you. At most of the radio stations in Europe, Asia and South

Figure 9-Short-Wave Station Identification Chart

Call	Name or Slogan	Address	Call	Name or Slogan	Address
$\begin{aligned} & \text { CB960 } \\ & \text { CEC. } \end{aligned}$	"El Praoo"	P.O. Box 1342, Suntiago, Chile Compania Internacional de Radio S.A. Casilla 16-D, Santiago, Chile		'Portavoz de la Farmacia Legalidad"	Trujillo, D. R.
CFN, CFU.............		Consolidated Mining \& Smelting Co.			13ox 623, Trujillo, D. R.
		B. C., Canads			Box 1105 Trujillo, D. R. Mr. J. R. Salalin, Director station
CGA, CJA, et		Canadian Marconi Co., P.O. Box 1690, Montreal, Que., Canada			HIX, Trujillo, D. R. lle Duarte 68, Trujillo, D. R.
CGP, CZQ, VXX		North-West Telephone Co., ${ }^{\text {a }}$ (768 Seymour St., Vancouver, B.C., Can.	HILA.	"İ Voz del Yaqu	O. Box 423, santiago de los Caballeros, D. R.
CH	"The Key Station of the	Maritime Broadcasting Co. Ltd., P.O.	HIIJ.		P.O. Box 204, San l'edro de Macoris,
CJRO, CJRX.		Jas. Richardson and Sons Ltd., Royal Alexandra Hotel 155, Winnipeg, Manitoba, Canads	HI S HI 3 C HI 3 C	"La Voz de la Hispaniola".. . "La Voz de Rio Dulce" "La Voz del Comercio"	Puerto Plata, D. R La Romana, D. R Santiago de los C
CMB2		Cuba Transatlantic Radio Corp.,		"La Voz de (Ruibqueya"	Trujillo, D.
CNR.	"Radio Maroc"	L'Inspecteur General, Directeur de l'Ófice dea Poater, Rabat, M oroceo		a Voz de la Mariba". Broadcasting Hotel Me	Calle Duarte 48, Trujillo, D. K. P.O. Box 95, Santiago de los Cabal-
COCD.	"La Vos del A	l Orfice des Poates, Rabat, Morocco P.O. Box 2294, Havana, Cuba		cedes, Bradcasting	
COCH.		Calle B. No. 2, Vedado, Havana, Cuba P.O. Box 98, Havana, Cuba	HI5M	"La Voz del Almacen Dominicano"	Santiago de los Caballeros,
COKG(C		Apartado 137, Nantiago, Cuba ${ }^{\text {a }}$			
$\begin{aligned} & \mathrm{COsJQ} . \\ & \mathrm{COgWR} \end{aligned}$		Calle del General Gomez No. 4, Camaguey, Cuba P.O. Box 8.5, Sancti Spiritus, Cuba	HJA3.		Compania Telefonica de Barranquilh. Apartado Nacional 263, Barranquilla, Colombia
СР5, СР'6, CP7	"Radio Illimani"	P.O. Box 8., Sancti Spiritus, Cuba Compria Radio Bolivians, Calle Socabaya 231, La Paz, Bolivia	HJB		Murconi's Wireless Telegraph Co. Ltd., Apartado 1591, Bogota. Colombia
CQN		Cineral Post Office, Macso, Asia		".	gotal. Colombia
CR6AA	"Radio	1'.O. Box 103, Lobito, Angola, Iortuguese W'. Africa		..	Ferrocariles Nacionales, Buenaventura, Colombia
CR7AA................		Ciremia do Radiofilo da Colonia de Mozambique, Caixa Postal 544, Laurenzo Marques, Mozantique	HJ1ABB $H J 1 A B C$	"La Voz de Barranquills" "La Vos de Choco".	P.O. Box 715, Barranquilla, Colombia Intendencia de Choco, Director ol Publie Education, Quibdo, Choco,
CSL	"Emissora Nacion "Radio Colonial".	Lisbon, Portugal Av. Duque de Avila 86, Lisbon,			Puble Education, Quibdo, Choco, Colombia
CTIAA		Av. Duque de Avila 86, Lisbon, Portugal	HJIAB	"La Vor de loe Laboratorios	P.O. Hox 31, Cartagena, Colombia
$\begin{aligned} & \text { CT1CT. } \\ & \text { CT1GL., CT1GO. } \end{aligned}$	''Estacao Radio	Rua Carvalio Araujo $97 \quad-3 \quad \mathrm{D}$, Lisbon, Portugal		${ }^{\prime}$	partado 445, Barranquiltar Colombit
		Radio Club	11.J1ABH	${ }^{1}$	enaga, Colombia
		Portugal			
CT2AJ. ${ }^{\text {DAF, }}$ D.		Ponta Delgada, Ean Miguel, Azores	11J2AB	ucu	
		Hanptfunkstelle Norddeich, NordenLatod, Germuny	HJ3ABD	Colombia Broad	Alford liadio, Calle 16 Nio. 5-40,
DDHR, DNCP, DDFF, DDFT		North German Lloyd, Pier 42 North River, New York City	HJ3ABF	'La'Vor de Bogota'.	A partiado Postal 31\%. Bogota, Colombia
DHAO, DHDL. DHEY, DHJZ, DHRL		Hamburg American Lincs, Pier 86 North liver. New York City	HJ3A	de la	Apartulo 565, Bogota, Colombia
DOAH. DOAI		North German Lloyd, lier 4, Frot of 58th street, Brooklyn, N. Y.	H.J4BA	-r	Ajartado 513, Bogota, Colombia Medellin, Colombia
$\underset{\text { stations }}{\text { DFA, DFB. }}$ Nauen...		Reichspostzentrulamt. schoeneberger	HJ4ABB		Manizales, Colomb
		Strassc 11-15, Berlin-Tempelhof,	HJ4ABC	Voz de Perei	creira, Colombia
		Gerinany ${ }^{\text {a }}$,	HJ4ABD	La roz de Castila	Box 39, Ibague, Colo Medellin, Colombia
DJA, DJB, all Zeesen sta.		Reichsrundfunkgesellschaft, Haus des	HJAABE	"La Voz de Antioqui	exlellin, Colombia
		Rumfunks, Berlin-Charlottenburg 9. Gerutany	HJ5ABC	"La Yoz de Colombia"	Calle 12 no. 235, Cali, Co
		Traneradio Espanola, Apartado 951,	HJ5.ABD.	a Voz del Valle	Cali, Colombia
FIU		Madrid, Spain Administration des Postes. des Tele-			Cla. Radiorifusora Colombiana, A partado 50, Cali, Colombia
		graphes et des Telephones, Tananarive, Madagascar	HKE	diodifusora Cartagena"..	Apartado 37, Cartarena Colombia Observatorio Nacional de San Bartolomew, Bogota. Colonbia
FNSK FNSM, FTNQ. F(QO. FHO, FTA, Ste. Asoise stations.		Frencli Lines, Piet 88 North River, New York City	H		Ministry of War, Bogota, Colombia
		French Lines, Pier 57 North River, New York City	HP5B	de Colon	A partado 910, Panama City, Panama Apartado 405, Colon, Panama
		Societe Francaise Radio-electrigue 79 Bvd. Haussman, I'aris (8), France	HP5.	"La los de Pamama"	Cia. de Servicio Publico de Radio S. A., Apartado 867. I'anama City, Psnama
FIA.	'Radio Colonia	Brd. Haussman 98 bis, Paris (8),	HRN	"La Vos de Hondurss"......	Tegucigalpa, Honduras
	Radio Calon	France ${ }^{\text {a }}$		'El Eco de Honduras en San Pedro Sula"	San Pedro Sula, Honduria
		Cie. Generale de T. S. F., P.O. Box 238, Saigon, French Indo-China	Hp	"La Voar de Atlantics". ...	La Ceiba, Honduras
GAA, GBA, all Rugby sta		Engineer-in-Chief, GI'O (Radio Section), Armour House, St. Marins	HRW...		Tropical Fruit Importers, La Faba. Honduras
		Le Grand. London EC1, England,	HRY		Tropical Fruit Importers, Tela, Honduras
GBZW, all British shipa . HAS HAT		Connaught House, 63 Aldwych, London WC2, England	HYJ	dio-Vaticano"	Pontificia Academia della Scienze, Roma-Castino Pio IV, Vatican City
HAS. HAT............HBL HBO, HBP, etc... .	"Justice for Hunga	Research Labs. for Electrical Communication of the Hungarian Post,			City Radio Maritime Coltano, Pisa, Italy
		Gyali-ut 22, Budapest. Hungary	IRM, IRW		ociete Italo Radio, Servici Radioelettrici, lis Calabus 46-48,
L, HBO, FBP,	"Radio Nations".	Information Section, Leasue of Nstions, Geneva, Switserland			Rome, Italy
HB9B		Radio Club Basle; P.O. Box Basle 1 Switzerland	I2RO, 2RO.	rato Smeraldo".	Ente Italiano Audizione Radiofoniche, 5 Via M ontello, Kome, Italy
$\underset{\text { HCETC }}{\text { HCJ }}$	T	Casilla 134, Quito, Ecuador	JIA, JIB, JIC.		okusai-Denwa Kaisha. Tyurek
	"Ls Yoz del	Casilla 691, Quito, Ecuador			
$\xrightarrow{\mathrm{HC2CW}}$	"Ondas del Pacific	P.O. Box 1166, Guayaquil, Ecuador	C, JVD, all Namaki ata		
	' Ecuador Radio'	Guayzquil, Ecuador			Blug.- Kopimachiku, Tokio, Japar
HC 2 SSl HC 2 RL		Box 759, Guayaquil, Ecuador Nociete Haitienne de Radiodiffusion	Stations		kawa Cho, Chiba-Ken, Japan
HH2S.		Port-au-Prince, Haiti P.O. Boi A-117, Port-au-Prince, Haiti	JZA. TDE, TDD.		Manchukuo Telephone and Telegraph Co., Shinkyo, Mauchukur

Figure 10-Short-Wave Station Identification Chart

America there is someone with at least a book knowledge of English.
Use plain white paper, and write on only one side of the sheet. Spell out the name of your town and state. To a person unfamiliar with domestic geography, N.Y., N.J., N.H. and N.M: all look somewhat alike.
If you can find the full strect and city address of the foreign station in any of the published call lists, put it on your outgoing envelope If you can't, the mere call letters or name of the station, the city and country are enough. Outside of the United States, practically all radio stations are government controlled, and the postal authorities know where to deliver any-
thing mailed "radio." The Identification Charts herewith, Figures 9 and 10 , will give you the addresses of most of the leading short-wave stations. Of course, put your own name and full address, including "U.S.A." after the state, on the outside of the envelope.

Here is one way of reporting a QSL (verification card or letter) which has usually brought courteous and generally prompt answer. First, be sure of what you have heard. Don't rush off a glowing letter to German or French stations after catching an odd word or two in their respective languages, and making a hopeful stab at guessing the wavelength! Remember there are certain broadcasts from transmitters on this side of the pond offered in various
foreign tongues which you might mistake for foreign transmissions.

List these facts in your report asking verification:

Call Ietters, place name, or identifying sound used.
Approximate irequency or wavelength.
The date.
The time (reduced to that of the transmitter's locality)
Names of at least two musical selections heard (or the equivalent of an address, newscast, etc.)
Your airline DX in miles from the station. (This can be ascertained by reference to the World Distance Chart, Figure 11.) Iocal weather conditions.
Quality of reception: (1) Clarity, (2) Type of receiver and aerial (if any).
D. Club membership, or connection with radio work.

Figure 11

U. S. \& Worldi-Wide Mileage Chart

TO determine mileage between any two of the listed cities of the world, first find these two cities on the top triangle of the world chart (Figure 11). Follow the horizontal column across the chart from the upper city, and the vertical column up from the lower city. The box at which these two columns intersect shows the required mileage in hundreds. The same method applies to the U. S. chart (lower
triangle) except that mileages are shown in tens.
All mileages show the shortest (great circle) paths between points.
Just for an example, suppose you live in New York City and hear a station in Tokyo. By glancing at the mileage chart. following the horizontal column next to New York across until it bisects the vertical column up from Tokyo, you find
the distance to be 6,700 miles
Or, if you live in San Francisco and want to find out how far away a station in Atlanta, Ga. is, refer to the U. S. Mileage Chart (lower right hand corner of Figure 11). Follow the horizontal column next to Atlanta, Ga. until it bisects the vertical column down from San Francisco. You will find the distance to be 2140 miles.

Amateur Radio

LISTEN in on 20,80 and 160 meters for the Amateur Stations and see what "kick" you can get out of their conversations. You may think at first that these "Ham" voices are talking English; then a few moments later begin to question your rash assumption-because of much that you will hear, it may seem as if the boys are making sport of the alphabet, with a pronounced liking for the letter Q .
The translation of a few of their short abbreviation forms follows:

yl-young lady R9-very lond
sk-end of transmission
om-old man
xmitter-transmitter

qsl-verification
sked-schedule
qrm-interlerence
qrt-stop sending
Aussie-Australian bam
cans-beadphones
lid-poor operator.
ow-old woman
Zedder-N. Zealand ham
cq-general call
hi-laughter
CW -code (continuous wave)
xyl-wife
qra-address
shack-radio room
qrl—busy.
qrn-static
qrx-stand bs
bcl-broadicast listener
cul-see jou laser
op-operator
qSo-2-way communication
73 -best regards
88-love and kisses
Instead of saying "sk" (end of transmission), friend ham may throw it into a vocal imitation of the code characters for those two letters (...-.-) thus: dit dit dit dah dit dah. Or if he is in a more exuberant frame of mind and oral output, his rendering of sk may be something like "diddely bump de bump." In like manner 'hi" (laughter) becomes dit-dit-dit-dit, dit- dit.

How To Learn The Morse Code

 mitted is, of course, out of the questionunless one has had long practice at it
However, slow-speed sending is often heard when stations are testing or when one is

Tigure 12
calling another. In either case, the test signal or the call letters of the station called, together with the call letters of the transmitting station, are repeated over and over again, in many cases so slowly that the rankest novice can catch these calls and interpret them with the aid of the code printed herewith. (Figure 12).

It is fun to know the code, and those of us who possess short-wave or dual-wave receivers are missing many an evening of good solid entertainment if we do not know the International Morse code. There are new and recurrent thrills; radio signals from merchant and naval vessels in all parts of the world, weather bulletins, news flashes, time signals and oceanic services competing with the world's cable system; there are the thousands and thousands of amateur radio operators to whom most of the credit must be given for developing and opening up the shorter waves. All of

Figure 13
these stations communicate by Morse code. Messages, some bearing on world affairs, tragedy and comedy, love and simple fellowship are buzzing out from radio stations all over the world; they are there for those of us who know the code. Though we are bound to secrecy in what we intercept (it is a serious offense and there are severe penalties for divulging the contents of radio messages) we are at liberty to "eavesdrop" all we want.
"But," you say, "it takes a lot of study and it's hard to learn the code. I could never do it." And that is where you are wrong. During the war, Great Britain turned out high-speed operators in less than a month's training. There is a right and wrong way, a pleasant and an unpleasant way, to learn the code.

Most of us make the mistake of thinking of the code in terms of "dots and dashes"; unknowingly we separate the dots from the dashes, we break into its component parts a character that should be thought of as a whole. Forget the dots and dashes, and in their place think of dits and dahs; think of the sound of each character as one complete unit-a, for instance, becomes dit dah.

Each letter of the alphabet has a separate and distinct sound of its own. Very good code can be produced by whistling, or on any wind instrument of the orchestra. As a novelty, it is often the practice at radio operators' conventions to pass out wooden whistles with which it is possible to blow good code, readable blocks away. So, with this simple music lesson we start out to learn the code.

The International Morse code shown herewith is the accepted radio code. Now, we'll make a copy of the code, but instead of putting down dot-dash for a we'll draw two little tents, one short and one long (Figure 13); and every time we see this group in our future study of the code, we'll think of it as dit dah, repeating it in our minds and verbally droning the signal out on our lips. A sharp staccato dit is followed by a longer dah (about 3 times as long as the dit). These sounds can be made distinctly with the tongue and lips, and hummed over a few times it doesn't take long for us to know without a doubt that the familiar little tune of dit dah can be nothing but the letter a.

Next comes b, which we put on paper as one long tent and three short ones, dabbh-dit-dit-dit. The writing of the characters as short and long tents help to
prevent us from learning the groups as dots and dashes; instead, it gives us the impression of sound.

Each character follows with equal ease and simplicity. Practice each letter from A to Z just as you like; let the numerals go until you have mastered the alphabet. Hand the printed dit dahs over to some fellow sufferer and have him skip around and call out characters for you to respond to in song. It's pleasant, like doing a crossword puzzle, and you'll find yourself repeating the signals over and over, whether you be president of Amalgamated Mush. rooms or Johnny Clerk; and you both can expect and get just as much ultimate pleasure out of knowing the code as the rest of us.

You don't have to have telegraph keys, buzzers, oscillators and batteries to learn the code. Start today and make your voice the buzzer and your lips and tongue the key. In this manner the characters, dits and dahs, are more quickly and lastingly impressed on the brain and the sound is conveyed with directness and realism to the ears. Later on if you like, you can equip yourself with a telegraph key and buzzer or oscillator. If you use the dot-and-dash method you'll find yourself counting the number of dots and dashes to make the characters, and if you have to hesitate, see it in your mind's eye, take your mental pencil and point out each dot and dash, you'll find yourself greatly hampered and soon you'll give up in disgust at your slow progress.

Perhaps by now you are settling down to copy all the code you hear. All right, good, but tune until you can find some slow signal. They're there, especially between 8000 and 9000 kilocycles on your receiver dial. Just listen without trying to put any. thing on paper. After a moment you'll single out individual characters. Try listening for some predetermined letter and confine your efforts to recognition of that particular sound. You'll find that in a remarkably short time you can recognize that selected character without any trouble at all. Just watch the individual characters; never mind the words and sentences, they'll come later.

It's not work, it's fun; get a group together-father, son, and all the youngsters and oldsters in the neighborhood, boy scout troop-it doesn't matter, but do get in line for the fun you can get out of such little and pleasant effort.

Wavelengili - Frequency Conversion

Formerly all short-wave enthusiasts thought in terms of wavelengths and receivers, if calibrated at all, were calibrated in wavelengths. Now, however, the trend is definitely toward the use of frequencies rather than wavelengths.

Because of this changing situation it is often found necessary to convert frequency listings to terms of wavelengths and vice
versa. A common practice is to divide the known unit into 300,000 to determine the unknown unit. Thus if one knows that a certain broadcast station transmits on 25 meters, and wants to find the frequency, he divides 25 into 300,000 and the answer12,000 -is correct to an accuracy of a fraction of 1 percent. Or if he knows the frequency of this station and wants to find
the wavelength, he simply reverses the process, dividing 12,000 into 300,000 .

It is to be noted that 300,000 represents the speed of radio waves in km . per second. This figure is not quite correct, the latest experiments giving 299,760 , but 300,000 is used for conversion by international agreement.

CHARACTERISTICS OF RECEIVING TUBES

THE time has long since passed when a serviceman, an amateur or an engineer could quote from memory the "basing" and all the "characteristics" of the available vacuum tubes. From a modest beginning, the number of types has increased to a total so great that not even the type designations can be memorized with assurance. The purpose of the consolidated tube charts (Figures 15, 16, 17, 18 and 19) is to group together the essential data on each type so that information can be had in a minimum of time.

Glass Octal Base Tubes

In studying the vacuum tubes available today, two groups can be formed. The first includes tubes of the conventional glass type manufactured prior to the introduction of the metal tube in April, 1935. The second group includes all-metal tubes and several classes of glass tubes designed to be interchangeable with metal tubes.

Glass tubes designed to be interchangeable with the all-metal types can be subdivided into two general classifications. First of these is the " G " classification (or group in which the tubes are glass but are equipped with the octal base first introduced on metal tubes. These " G " tubes, except for the base, appear to be exactly like certain of the conventional glass tubes and indeed they are. For example, type 6 K 7 G is a 78 with an octal base and type 6 A8G is type 6A7 with an octal base. When fitted with a "glove" shield, these tubes are practically interchangeable with the all-metal 6 K 7 and 6 A 8 types.

Metal-Glass Tubes

The second group includes the "metalglass" tubes. These M.G. tubes are the conventional glass types which correspond in characteristics to the all-metal tubes but they are equipped with the octal-type base and are covered with a close-fitting sleeve
cover of shield metal. In general they are designated with the same number used for the all-metal tubes followed by the suffix MG. In receivers of modern design, the MG tubes like those in the G classification can be substituted for all-metal tubes with small realignment adjustments. The smallest of the metal-glass tubes are the "Coronet" type. These, except for height, correspond to the regular MG tubes, although they are designated with the same type numbers which apply to the all-metal tubes.

Present Numbering System

The application of type designations to vacuum tubes was a haphazard process until the Radio Manufacturers Association set up a committee of engineers from the radio tube industry to handle the numbering of tubes and associated problems connected with the new types. From this committee came the present numbering system of: a numeral to indicate approximate filament or heater operating voltage; a letter to show the function of the tube, and a numeral to indicate the number of elements. Thus the $25 Z 5$ tells by its first numeral group that the filament or heater operates at approximately 25 volts, by the letter Z that the tube is a rectifier and by the final numeral that the tube has five connected elements: two plates, two cathodes and one common heater. Reference to the charts will show that inore than seventy-five tubes appear under the old numbering system of an arbitrary numeral. No doubt there are many more tubes in this class which for some reason (usually poor adaptability to circuits) were dropped by the manufacturer who introduced them.

Special Tubes

Ariong the special tubes listed in the charts are several of the "spray shield" type introduced by Majestic. The replacement tubes now furnished for them are no longer sprayed with metal in most cases, but are fitted with a "glove shield" soldered at the joints.

Socket Connections

The basing views shown with the tube charts are for the bottom of the tube base or the bottom of the socket. This arrangement provides the clearest picture of connections, since construction (or service) involves the bottom of the base in all cases. The pin numbering, looking at the bottom of the base or socket, runs clockwise. In the conventional base glass tubes, with the filament or heater pins toward the observer, the left-hand pin is number one. In the octal base tubes, looking at the bottom of the base, the first pin in a clockwise direction from the key is the No. 1 pin. While this explanation is unnecessary in reference to the base diagrams shown, it is useful in checking the basing of new types where the pin numbers and their corresponding internal connections may be published without a diagram.

Plate Supply Voltage

The data given in the tube charts covers essential points of interest for each type. It should be noted that the plate supply voltage is indicated. In resistance-coupled amplifiers, the actual plate voltage will be considerably lower due to the drop in the plate resistor. In adjusting bias to the proper value, this lower plate voltage should be taken into account.

Internal Capacitance

The values of internal capacitance are useful in the design of radio-frequency circuits and in figuring shunt effect on high audio frequencies in high-gain, resistancecoupled amplifiers.

Filament voltages should be held within a few percent for the older thoriated, tung. sten-filament tubes such as the 01A, V99 and X99. Oxide-coated filaments and the heaters for oxide-coated cathode tubes should be maintained within 10 percent of the rated values.

Figure 14-Some of the New Metal Tubes

COMPLETE TUBE CHART

TYPE	description			FIL. Curremt AMPS	CAPACITANCES micro-micro farads			OPERATING			CONDITIONS			AND	CHARACTERISTICS			
			WHEN					$\begin{aligned} & \text { PLATE } \\ & \text { SUPPLY } \end{aligned}$	$\begin{array}{\|c\|} \hline \text { SCR } \\ \text { GRID } \\ \text { VOLTS } \end{array}$	GRID BIAS VOLT		AMP	$\begin{aligned} & \text { PLATE } \\ & \text { RESIS. } \\ & \text { HHMS } \end{aligned}$	$\begin{aligned} & \text { MUT } \\ & \text { COND } \\ & \text { LM ноS } \end{aligned}$	$\left\|\begin{array}{l} \text { MAXX } \\ \text { UANOSY } \\ \text { OuFFur } \\ \text { WAATS } \end{array}\right\|$	RECOMM. load resis OHMS	$\begin{aligned} & \text { Cur.af, } \\ & \text { B:AS } \\ & \text { Volts } \end{aligned}$	
	TYPE	CATHODE			$\begin{array}{\|l\|l\|} \hline \text { GRIATE } \\ \text { PLATE } \end{array}$	input	Put	USED AS										$\left\|\begin{array}{l} \text { supLr } \\ \text { vots } \end{array}\right\|$

3.3 VOLT D.C. DETECTOR AND AMPLIFIER TUBES

20	TRiode	FIL	${ }_{\text {sm }}{ }^{40}$	0.132				AMPlifier	135		22.5	6.5	33	6300	525	0.110	6500	
$\frac{v-99}{x-99}$	TRioot	FIL	${ }^{\text {a }}$	0.063	3.3	25	2.5	GG. LeAk Dek.	45		+ 4	1.5	66	17000	370	0.007		
22		FIL.		0. 132	-	3.3	12	RFAMPLI:	135	67.5 2.5	1.5	37 3.3	166 150		$\begin{array}{\|} \hline 425 \\ \hline 500 \\ \hline 179 \end{array}$		0.25 MN	7.5

5.0 VOLT D.C. DETECTOR AND AMPLIFIER TUBES

6.3 VOLT A.C. OR D.C. DETECTOR AND AMPLIFIER TUBES

SPECIAL TUBES					
$\begin{array}{\|l\|} \hline \text { TYPE } \\ \text { NO. } \end{array}$	FILAMENT		BASING		CHARACTERISTICS USE \& DIMENSIONS
	vours	An	view	Sunto conv.ro	
2S\|4S	2.5	1.35	5D	CATHODE PIN	(e)
24S	2.5	1.75	5E	CATHODE PIN	SAME AS 24A
275	2.5	1.75	5E	CATHODEPIN	SAME AS 27
35\|515	2.5	1.75	5E	CATHODE PIN	SAME AS 35
555	2.5	1.0	6G	CATHODE PIN	SAME AS 55
565	2.5	1.0	5A	CATHODE PIN	SAME AS 56
57S	2.5	1.0	6F	CATHODEPIN	SAME AS 57
57 AS	6.3	0.4	6F	CATHODE PIN	SAME AS GCG EXCEPT HEATER AMPS.
58 S	2.5	1.0	6F	CATHODE PIN	SAME AS 58
58AS	6.3	0.4	$6 F$	CATHODE PIN	
$75 S$	6.3	0.3	6 G	CATHODE PIN	SAME AS 75
85AS	6.3	0.3	6 G		
182B	5.0	1.25	4D	NO SHIELD	
183	5.0	125	4D	NO SHIELD	
485	3.0	1.25	5A	NO SHIELD	
950	2.0	0.12	5 K	NO SHIELD	
2A7S	2.5	1.0	7 C	CATHODEPIN	SAME AS 2A7
$\frac{272}{684}$	2.5	1.5	4B	NO SHIELD	SIMILAR TO I-V
6A7S	6.3	0.3	7 C	CATHODEPIN	SAME AS 6A7
6B75	6.3	0.3	7 D	CATHODEPIN	SAME AS 6B7
$6 \mathrm{C7}$	6.3	0.3	7G	separate pin	SAME AS 85A-S
6D7	6.3	0.3	7 H	SEPARATE PIN	SAME AS 6C6
6 E7	6.3	0.3	7 H	SEPARATE PIN	SAME AS 6D6
6F7S	6.3	0.3	7E	CATHODE PIN	SAME AS 6F7
6Y5	6.3	0.8	$6 J$	SEPARATE PIN	SIMILAR TO 6Z4\|84
6 Z5	$\frac{12.6}{6.3}$	O. 0.4	6 K	NO SHIELD	SIMILAR T0 6Z4\|84

BASE CONNECTIONS OCTAL BASE TWO VOLT GLASS TUBES										
$\begin{array}{\|l\|} \hline \text { OCTAL } \\ \text { BASE } \\ \text { "G"TYPES } \end{array}$	Equiv. TYPES	1	2	3	4	5	6	7	8	CAP
1C7G	106	NC	+F	P	$\mathrm{a}_{3} \mathrm{G}_{5}$	G_{1}	G_{2}	-F	NC	G_{4}
1D5G	IA4	NC	+ F	P	G_{2}	NC	-	-F	NC	G_{1}
1D7G	1A6	NC	+F	P	$\mathrm{G}_{3} \mathrm{G}_{5}$	G_{1}	G_{2}	-F	NC	G_{4}
1E5G	184	NC	+F	P	G_{2}	NC	-	-F	NC	G_{1}
1F5G	IF4	NC	+F	P	G_{2}	G_{1}	-	-F	NC	
1 H4G	30	NC	+F	P	NC	G_{1}	-	-F	NC	
1 H6G	185/25s	NC	+F	P	$D(t)$	D(-1	G	-F	NC	
1 J6G	19	NC	+F	P_{1}	G_{1}	G_{2}	P_{2}	-F	NC	

COMPARISON CHART SIMILAR CHARACTERISTICS

OCTALBASE GLAS	METAL GLASS	METAL	GLASS
$5 Y 3$	$5 Z 4 M G$		80
$6 A 8 G$	$6 A 8 M G$		$6 A 7$
$6 C 5 G$	$6 C 5 M G$	$6 C 5$	
$6 F 5 G$	$6 F 5 M G$	$6 F 5$	75 TRI0DE
$6 F 6 G$	$6 F 6 M G$	$6 F 6$	42
$6 H 6 G$	$6 H 6 M G$	$6 H 6$	
$6 J 7 G$	$6 J 7 M G$	$6 J 7$	77
$6 K 7 G$	$6 K 7 M G$	$6 K 7$	78
$6 L 7 G$	$6 L 7 M G$	$6 L 7$	
$6 N 7 G$	$6 N 7 M G$		$6 A 6$
	$6 M 6 M G$		$6 B 5$
$6 Q 7 G$	$6 Q 7 M G$	$6 Q 7$	
$6 R 7 G$	$6 R 7 M G$	$6 R 7$	
6×56	$6 \times 5 M G$	6×5	
$6 B 6$	$6 B 6$		75
$6 P 7$	$6 P 7$		$6 F 7$
$25 A 6 G$	$25 A 6 M G$	$25 A 6$	43
$25 Z 6 G$	$25 Z 6 M G$	$25 Z 6$	$25 Z 5$

TABLE OF COMPARATIVE TYPES

OCTAL BASE GLASS	METAL GLASS	METAL	GLASS
$5 V 4$			$83 V$
$6 L 6 G$		$6 L 6$	
$1 C 7 G$			$1 C 6$
$105 G$			$1 A 4$
$1 D 7 G$			$1 A 6$
$1 E 5 G$			$1 B 4$
$1 F 5 G$			$1 F 4$
$1 H 4 G$			30
$1 H 6 G$			$185 / 255$
$1 J 6 G$			19

SOCKET CONNECTIONS－BOTTOM VIEW

$\otimes_{4 B}^{1}$				${ }^{\circ}$	雨	－
e_{4}^{2}		等		有		
	σ_{6}					
	\％		28		$\begin{array}{ll} 8 \\ 0 \end{array}$	
	Ber			0	R	
		\％${ }^{\text {a }}$	Noser			

RADIO RECEIVER CONSTRUCTION

Portable 10-Tube A.C.-I.C. Receiver

HERE is a compact receiver which may be used wherever a.c. or d.c. lines are available. No antenna is needed, yet it will provide excellent reception even under the most adverse conditions.

Some of the outstanding features of the set include
(1) A readily-procurable portable radio cabinet, with a built-in screen aerial, which when closed looks like a high-grade suitcase, as shown in Figure 21.
(2) Two tuned r.f. stages and one i.f. stage
(3) Three stages of audio amplification.
(4) The use of transformerless rectifier circuits employing two $25 \mathrm{Z5}$ tubes.
(5) The employment of two low-gain, well-stabilized audio stages driving a pair of 48 ubes in push-pull, and an unusually good rectifier and filter system.
(6) The inclusion of an illuminated airplane dial, tuning meter, automatic volume control and a balanced circuit, tested over many months.

Assuming that you purchase the cabinet as listed, the chassis is made as follows: It is of $1 / 16$ inch aluminum, 15 inches wide, 5 inches high and $51 / 2$ inches from front to back, all outside dimensions. The top, front and ends are formed from a single piece with flanges on the ends as illustrated in Figure 23. The back is a separate piece and is attached to the rear flanges of the end pieces. The bottom end flanges are drilled for fastening the apparatus in the case. A cut-out will have to be made in the front and top of the chassis to accominodate the speaker. Although the constructor may cut the socket and other small holes in the base himself it is wise to let the base maker cut the speaker hole. as that is none too easy a job. Drill as

Figure 20
many of the required holes as possible before mounting any of the apparatus. The antenna coupler, the i.f. output and the oscillation transformer are mounted with $1 / 4$ inch tapped brass rods and 6-32 machine screws about $1 / 2$ inch below deck to allow foom for wiring.

Practical Construction

To obtain maximum volume without howling, the speaker is supported on rubber
and held down by simple clamps as noted in the parts list. The five speaker wires are run through a rubber-grommeted hole in the base. The two resistors R1 and R3 that radiate considerable heat are mounted above deck with fibre washers top and bottom, thus leaving the interior of the base free from practically all heat-radiating parts. A panel-controlled midget condenser, C20, is shunted across the secondary of the antenna coupler, to permit precise tuning with either an outside antenna or the selfcontained one. To bring about more ex-

Figure 21
Figure 22

Figure 23
act tracking, C 14 was reduced to .01 mfd . and a suitable decrease in the oscillator padding was made giving a noticeable gain on the tuning meter. Another set-up might present a little different problem in tracking.
It is good practice to wire the sockets first, then the r.f. and i.f. transformers, the gang condenser, tuning meter and dial bulb socket, leaving the small resistors and by-pass condensers until later. |Next wire the resistors R1 and R3 and then the tone and volume controls and the speaker. There are so many wires to be grounded that a piece of bare bus bar about two inches long and perpendicular to the base will be found useful as a ground terminal. The power cord and switch should now be wired in, then the audio transformer and filter chokes, and the electrolytic condensers last. To guard against a.c. hum pickup the input push-pull transformer should be placed at right angles to the filter chokes, and the control grid of TS and the lead to the high side of the volume control shielded.

The type 48 tubes were selected as output tubes because, at low voltages, these tubes produce greater undistorted output than any other type.

No External Ground Connection

As the chassis of this receiver is grounded to one side of the line an external ground connection must not be used. The antenna
circuit is insulated from the line by the stopping condenser C29, and is therefore entirely safe to handle.

Although broadcast stations can be used in aligning the tuned circuits a service oscillator is to be preferred. If an a.c.d.c. type is used, do not use the ground connection.

Align the r.f. transformers first. To do this, remove the clip from the antenna and clip it onto any part of the chassis. Connect the output of the test oscillator between the first detector control grid and chassis. Tune the service oscillator to 175 kc . and adjust the signal input until the tuning meter swings only slightly to the right of its normal no-signal position. Now adjust four condensers in the two i.f. transformer shields for greatest swing of the meter. Begin with the fourth, counting from left to right on the circuit diagram (Figure 20), and work back to the first. Check over the adjustments twice more and then proceed to the r.f. and oscillator adjust. ments.

Tune the service oscillator to 1400 kc . and connect to the antenna terminal and chassis. Adjust the trimmer condensers, one of which will be found on each section of the gang condenser, until maximum swing of the tuning meter occurs about twenty divisions from the end of the dial. The trimmer across the first section of the gang condenser should be set at minimum capacity as the panel-controlled midget condenser C20 acts as trimmer for this section.

Next set the service oscillator to 600 kc .

Adjust only the oscillator padding condenser C28, at the same time turning the dial of the receiver back and forth through the signal until the greatest swing of the tuning meter is obtained. Repeat the 1400 kc . adjustment of the oscillator trimmer to compensate for any change caused by ad. justment of C28.

Parts List

C1, C2, C3, C4-General Instrument variable condensers- 4 -gang-. 000364 mfd . with $1 / 4$ inch shaft, all sections alike.
C5, C6, $\mathrm{C} 7, \mathrm{C}, \mathrm{Cio}, \mathrm{Cl}$
C5, C6, C7. C9, C10, C11, C12, C13-Acratest tubular paper condensers, 11 mfd., 200 volls C8. C16, C22-Tubular paper condensers, . 05 mfd. 600 volt.
C14-Acratest tubular paper condenser, 01 mfd ., 200 volt.
C15-Acratest tubular paper coodenser, . 006 mid. 200 volt.
17. C21-Acratest moulded mica condeaser. .0002 mfd .
mfd. mfd.
C19-Acratest moulded mica coodenser, . 001 mid
C20-Hammerlund Star midget variable condea. ser. 20 mmfd .
C23. C24-Aerovox electrolytic coadeaser, 10 midd., 25 volts, d.c.
C25, C26-Edison cardboard electrolytic con-
denser, 175 volts (working voltage) C25 being 24 mfd . and C26 16 mfd .
C27-2 Edison cardboard electrolytic condensers in parallel $8 \mathrm{mfd} ., 175$ volts.
C28-Acratest compression type padding conden. ser, 94.419 mfd .
CH . C Ancratest heavy duty filter choke, 100 CHi-Acratest heavy duty filter choke, 100
ohms, 150 ma . CH2-Acratest midget filter choke, 200 ohms 50 ma .
SFT1. IFT2_Gen. Win i.f, transformers, 175 kc .
OT-Sickles oscillation transformer 175 kc (for .000365 mfd . condenser).
R1-Electrad type $\boldsymbol{\Lambda} 10$ watt, 100 ohms, cut down to 91 ohms.
R2-Power cord resistor, 140 ohms.
R3—Acratest, 1200 ohms, 10 watt.
R4—Acratest, 18,000 ohms, $1 / 4$ watt.
R4—Acratest, 18,000 ohms, $1 / 4$ watt.
R)—Acratest, 300 ohms, $1 / 2$ watt.
R)-Acratest, 300 ohms, $1 / 2$ watt.
R6, R15-Acratest. 2000 ohms, $1 / 2$ watt.

R6, R15-Acratest, 2000 ohms, $1 / 2$
R8, R9. R10, R11, R12—Acratest, . 5 meg., $1 / 4$ watt.
R13-Acratest, $60,000 \mathrm{ohm}, 1 / 4$ watt.
R14. R19-Centralab volume controls, with switch; . 5 meg., taper No. 6.
$\begin{array}{ll}\text { R16-Acratest, } \\ \text { R17-Acratest, } & 28,000 \mathrm{ohm}, \\ \text { R1/ } \\ \text { watt. }\end{array}$
R17-Acratest, 38,000 ohm, $1 / 4$ watt
R20-Acratest, 200 ohms, $2 / 2$ watt.
R21-Acratest, 1500 ohms, 1 watt,
RPT1—Sickles intenna transformer.
RPT2, RFT3-Sickles r.f. transformers Swl-On-off switch (on volume control).
Sw2-Silent tuning switch (on tone control).
Til-Dial bulb, 6 volts, 1 ampere, with bracket. TR1-Acratest input push-pull transformer-. large core.
TR2-(Supplied with speaker).
1 Readrite tuning meter.
1 Aluminum chassis.
1 Ansley suit-case type cabinet $151 / 2$ io. long, 11 inches high, 6 inches deep, inside dim.
18 -inch Magnovox dynamic speaker with 2000 ohm field, equipped with output transformer for push-pull 48 tubes and hold-down hard. ware.
1 Aitplane dial 23% inches outside diameter
2 Pointer knobs.
tuning knob.
4 Aluminum tube shields.
10 Eby wafer sockets.
$\mathrm{Fs}-2 \mathrm{amp}$. ato fuse and holder.
1 Mueller No. 45 clip for aerial. 1 roll of push-back hook-up wire.

A $\mathbf{2}^{1 ⁄ 2-555}$ Meter Receiver

THE name of A. J. Haynes will recall to the oldtimers the early days of radio and his achievements with regenerative circuits, especially his well-known DX Circuit and its slogan, "One Thousand Miles for $\$ 15.00$." In those days his circuit designs had a tremendous following among home
set-builders. Now he has brought his old skill into play, in the design of this new $21 / 2$. to $5 s 5$-meter regenerative receiver which has proved surbrisingly effective in "on the air" Listening Post tests.

The "R.S-R" (regenerative-super-regenerative) s-tube receiver comes complete with
an electro-dynamic speaker and housed in a crackle-finished metal cabinet, and features complete and continuous wavelength coverage from 555 to $21 / 2$ meters (540 kilocycles to 120 megacycles).

Some readers may wonder what the bands under 15 meters have to offer. At the

Figure 24
present time there are the amateur phone stations on the 10 -meter band which can be heard at phenomenal distances, commercial experimental stations between 6 and 10 meters broadcasting music and speech, amateur phones on 5 meters, and two-way police calls around 7 and 8 meters. This ultra-high-frequency range will come into prominence when television arrives, for both the image signal and the sound accompaniment. In fact, further expansion of radio entertainment will probably all take place in the range below 15 meters.

A Real Go-Getter

Unier test in two New York City Listening Posts, the receiver considerably exceeded expectations. Short-wave stations were tuned in, all on the loudspeaker, from Spain, Italy, England, France, Germany, Colombia, Cuba, Canada (and of course the U.S.), on the $25-31$. and 49 . meter bands.
Reception of the 5 -meter amateur band proved beyond a doubt that the ultra-highfrequency ranges of this little receiver really work. Any number of 5 -meter ham stations were tuned in with every indication that this receiver is as effective as many of the receivers especially designed for this range.

Two Tuners in One

Reference to the schematic circuit, Figure 26, discloses that this little set is actually two receivers in one. One tuner, which consists of a 37 tube emplcyed as a super-regenerative detector, covers the range from $21 / 2$ to 15 meters. The other tuner consists of an untuned r.f. stage and a regenerative detector and covers all wavelengths from is to 555 meters. The audio amplifier stage and loudspeaker may be connected to

Figure 25
either of these tuners at will by means of a small switch on the front panel. The lower frequencies are tuned by means of the main airplane dial while the ultra high frequencies are tuned by means of the large pointer knob at the lower center of the front panel.

Small self-supported plug in coils are employed to cover the ultra high frequency range while from 15 meters up there are 5 overlapping tuning ranges any one of which
is selected at will by means of a switch on the front panel. The receiver operates from any 110 volt a.c. or d.c. line and any ordinary type of antenna may be employed. The loudspeaker is included in the receiver and a headphone jack is provided at the rear of the chassis. Thus the receiver is an entirely self-contained, lineoperated job and has all the neatness in appearance of a regular commercial receiver.

Figure 26

Low-Current Tarm Receiver

ABATTERY-operated inexpensive radio that will compare in performance and operating cost with the average five tube a.c. set. The design includes the following features:

1. Low current drain. (3.2 watts with 135 volts B battery.)
2. No C battery is used.
3. Ability to play with run-down B batteries until the total voltage drops below 60 volts.
4. Full automatic volume control without any sacrifice of signal strength on weak stations, or the use of any extra tubes.
5. Quiet operation - no power unit noise.
6. A high degree of selectivity. Most stations operating with a frequency difference of 10 kilocycles can be separated without objectionable cross-talk or interference.
7. The sensitivity is sufficient to bring signals in with loudspeaker volume from most 50 kilowatt broadcast stations within a radius of 500 miles, in daylight, without the use of any antenna, but with a good ground connection made to the antenna post, and chassis left ungrounded.
8. The battery connections are simple and easy to make.

This set is quite easy to construct. Directions for drilling are shown in Figure 29, and the circuit is given in Figure 30.

Wiring the Set

The r.f. and intermediate transformers are color-coded and are to be connected as follows: Red to "B" plus; Blue to plate; Green to grid; and Black to ground or a.v.c. return. In mounting and wiring these transformers, care should be used to keep the grid and plate leads as short as possible to avoid unwanted coupling and

Figure 27-Left
Figure 28-Above
oscillation. Connect all bypass condensers directly to the coil or tuhe socket where bypass is to occur and make ground returns to a common point whenever possible. Trouble due to oscillation may be frequently traced to a neglect of the above precaution.
One side of the dial lamp assembly should be grounded and the other side connected to " A " plus at one of the tube sockets. A special 2 -volt dial bulb is available for use in sets of this type-the drain is the same as for a 30 tube. How. ever, a dial bulb should not be used unless the set is operated from a 2 volt storage battery or "Air Cell." Note also that Bis not grounded. A little careful thecking may save ruining a set of tubes.
Notice the method of obtaining bias voltages. The grid of the 33 tube is returned to B-, however. B- is grounded through 1000 ohms resistance and the voltage drop
across this resistance affords bias for the tuhe. The 10 mfd . electrolytic condenser is in hypass the lower audio frequencies and also prevent motorboating. A larger capacity may be used if necessary. The grids of all the other tubes are returned to a common point of a.v.c. voltage source and from there through 500,000 ohms to a point 200 ohms from ground. The voltage drop across this resistance is sufficient to maintain minimum bias on the rest of the tubes, for maximum sensitivity of the r.f. and detector circuits. The $1 / 2$ megohm resister in the circuit allows a higher voltage to be built up in the rest of the a.v.c. network.
The type 32 second detector circuit is stardard with the exception that the grid return is connected to the a.v.c. network just as it would be for diode detection. When connected in this way, the tube acts as a diode rectifier as far as the a.v.c.

Figure 29

circuit is concerned, and when a strong signal comes through the i.f., we get a proportional d.c. voltage in the a.v.c. circuit which is due to this rectifying action
The tubes are not operated with the bias recommended by the manufacturers. They are all slightly overbiased to reduce the drain on the B batteries.

Alignment

With batteries and speaker connected, and an outside antenna and ground. the set sloould receive some signals as soon as it is turned on if all connections have been properly made. It is desirable to have a good calibrated service oscillator in order to properly adjust the various tuned circuits. However, temporary adjustments can be made without it. Find a broadcast station you can easily identify at about 1400 kilocycles, and reset the dial so that it reads the frequency of this station you are going to use as a basis for calibration. Retune the set to this station by varying the trimmer on the oscillator section of the variable condenser (C3) until it comes in at the correct place on the dial. Now adjust the r.f. and detector trimmers for maximum response without making any change in the dial setting. The i.f. transformers may next be adjusted for maximum response by making slight movements of the trimmer screws. Find a station around 600 kilocycles, and if it does not come in at the proper place on the dial, bend the rotor plates of the oscillator section of the variable condenser very slightly until the station comes in at the correct dial setting.

Adjustment of the r.f. and detector sections may be made in a similar manner.

For the greatest economy in operation, the recetver should be used with a 2 volt storage A battery of at least 300 ampere hours capacity, and two heavy duty B batteries. For places where an ordinary wet battery would be undesirable, a special storage cell with semi-solid acid may be obtained. In case a 3 volt dry A battery or an "Air-Cell" is used for the filament supply, it will be necessary to use a resistance or voltage regulator tube to step the voltage down to 2 volts at the tubes.

List of Parts

1 Crowe airplane type tuning dial calibrated is kilocycles
1 DeJur.Amsco three gang tuning condenser with 175 kc oscillator tracking section
${ }_{2}$ Mcissner 175 kc . intermediate teansformers
3 Gen Ral r.f. coils:
1 Antenna coil
1 Oscillator coil
I Intermediate, det. coil

Figure 30

Resistors and condensers as shown in Figure 30 1 Piece alloy chassis metal- $123 / 4 \times 12 \frac{1}{2}$
3 Large tube shields
1 Small tube shield
4 Four-prong wafer sockets
1 Five-prong wafer socket
1 Sixprong wafer socket
] Terminal strip-5 wire

3 Knobs
1 Antenna-ground strip
4 Grid clips
1 Dial light assembly
1 Dial light assembly
1 Double wiring tie
2 Single wiring ties
2 Single wiring ties cable
Miscellancous screw.s. solder and hook-up wire

Accessories
1 Cabinct
1 Rola '" $^{\prime \prime}$ PM. dynamic speaker
1 Speaker plug-4-prong
3 45-volt "B' batterics (or less) 12 volt " A " battery (1 dial lamp)

New Converter With Metal Tubes

IN the design of this preselector-converteramplifier, the shortcomings of the ordinary converter of a year or so ago were clearly kept in mind. Consequently, the design consists of a sharply-tuned antenna circuit and one stage of radio-frequency amplification before the converter tube. Thus inherently, amplification as well as selectivity and image suppression is obtained in this apparatus itself.
The unit. besides providing preamplification. combines the functions of a preselector and all-wave converter. Then it goes one step further and also allows remote control if desired. It will be noted from the schematic diagram (Figure 34) that it is a complete unit in itself containing its own
power supply and hence may be placed at some distance from the receiver with which it is used. Unlike the common converter, it covers the long-wave broadcast band as well as the short-waves! Thus, the receiver proper is tuned to 550 K.C. and then left entirely alone.
While the unit is so designed that it may be used with any receiver, from the lowly one-tube regenerator up to the most elaborate "super". with preamplification, it is of particular interest when used in combination with a superheterodyne-and it doesn't necessarily have to be a very good one either-to provide double superbeterod)ne rescopion. This results in double frequencyconversion and extremely fine selectivity.

The unit itself gives such great preamplification that it is not necessary to use much gain in the intermediate amplifer of the original superheterodyne, and it can thus be adjusted and left at a point well below its own noise level.
A socket connection for plugging in the broadcast receiver is provided in the rear of the chassis so that the "off-and-on" switch will control both units. The only other connection between the two units is a lead which carries the intermediatefrequency currents from the transformer output to the antenna post of the broadcast receiver. This does not have to be shielded except in the case where a local station has a broadcast frequency near 550 kilocycles.

Figure 31-Below
Figure 32-Right

Figure 33

In such a case shielding is necessary so that broadcast stations will not be picked up on the lead between the receiver and the converter. Generally it is not necessary to ground the two units together, as the lighting circuit performs this operation satisfactorily. In all cases, however, it is advisable to determine whether or not a direct ground connection between the two is necessary. If there is any hum in reception, reversing the A. C. plug will remedy it.

Covers Three Bands

The unit covers a frequency range from .56 to 18 megacycles in three bands. Band No. 1 has a range from 5.6 to 18 mc . ; band 2 from 1.7 to 5.7 mc .; and band 3 from . 56 to 1.84 mc . The three sets of three coils each are placed in a tuning catacomb with shields separating the antenna, r.f., and oscillator coils. Coil-
witching is employed and the switch blades are mounted in the same catacomb as the coils. The switching is so arranged that all coils in the tuning catacomb, not being employed in the circuit, are automatically short-circuited. This applies to primary and tickler as well as secondary windings. Thus, dead spots are entirely eliminated which might be caused by coil absorption.

A 3-gang tuning condenser is mounted on top of the coil catacomb as shown in Figure 32. Each of the individual coils has its own trimming condenser so that correct alignment may be obtained on all bands. The 6 K 7 tube is used as an r.f. amplifier while the $6 A 8$ is used as an oscillator mixer. The 6A8 metal tube is somewhat better as an oscillator mixer than the corresponding glass tube 6A7, for not only is its conversion conductance greater but it is apparently considerably quieter in operation.

Figure 34

All resistors, condensers, etc., associated with these tubes are mounted in the tuning satacomb of the Tobe P.C.A. Tuner which may be obtained as an integral unit.

The tuned antenna circuit and the r.f. amplifier have other functions besides increasing overall selectivity. One of these functions is what is known as image suppression. It is generally known that image frequencies appear on any superheterodyne if the incoming signal is allowed to produce a voltage on the grid of the mixer tube, for a signal will be received whenever the difference between the incoming signal and the signal produced by the oscillator gives the intermediate frequency. Consequently, if the oscillator is tuned over a frequency range of twice the intermediate a repeat spot will be obtained. By employing a tuned antenna circuit and a stage of radio frequency amplification an appreciable voltage will only be produced on the grid of the mixer tube when the antenna circuit and r.f. amplifier are tuned to the incom. ing frequency.

Another function of the tuned antenna circuit and stage of r.f. amplification is its ability to increase the signal-to-noise ratio. It has been found in superheterodyne design that if the intermediate amplifier is run at a low level and high gain is obtained in the r.f. amplifier preceding the mixer tube, that a material reduction in noise for a given amount of signal is obtained.

The parts for this unit may be obtained in kit form and assembled in less than two hours as all the wiring has been done on the tuning catacomb, r.f. amplifier, and oscillator mixer tubes. Consequently, the set-builder has only to mount the apparatus, wire the power supply, volume control, switches, etc.

Construction Details

The first step in the construction of the complete unit is to mount the socket for the 84 -type rectifier tube, the power transformer, choke, filter condenser, 110 volt outlet plug switch and volume control on the main chassis. When this is done the power supply should be completely wired before the tuner is placed in position. This tuner is mounted on soft rubber grommets which not only insulate it from the chassis but also give it a cushioning effect. The tuner then should be grounded to the main chassis at one point only. There are only six connections other than a ground that need to be made to this tuner. Two of these are for the filament supply; two fot the doublet, or plain antenna and ground; one for the plus B; and one for the output volume control.
The photographs, Figures 32 and 33, show where the various parts are placed. The unit is then completed and ready to attach to any radio set. This is done simply by connecting the output to the antenna post of the receiver. The 110 -volt plug from the original receiver is then plugged into the receptacle provided for this connection on the converter, whereupon the "off" and "on" switch of the latter will control both units. A doublet antenna may be used or, if an ordinary antenna is used, the doublet connection should be grounded to the chassis. The main receiver should be set for a frequency of 550 K.C. with some degree of accuracy, for if the intermediate frequency is a considerable amount off, the tuning unit will not track accurately over the band.

A tuned impedance-matching output transformer is used between the plate of the 6 A8 mixer oscillator tube and the output of the converter, which is connected to the radio receiver. This transformer has been tuned for a frequency of 550 K.C. but the
frequency to which it is tuned may change slightly when its secondary is connected to the broadcast receiver. Consequently, it will be necessary to slightly adjust the tuned circuit. This may be done conveniently by setting the volume control at the point of maximum response (turn clockwise). Set the band selector switch on band 2. Disconnect the antenna from the converter. Turn the volume control on the broadcast receiver so that a slight hiss is heard in the loudspeaker. Adjust the condenser in the output transformer for maximum hiss (this condenser is adjusted by means of a screw-driver through a hole in the top of the output-transformer can). It then is in operating condition. It will be found that for average reception the broadcast receiver should be set for a sensitivity of about 50 to 100 microvolts. The lower the volume control is set on the
main receiver the better the signal-to-noise ratio on the whole combination. Of course sufficient sensitivity must be retained for the desired volume.
As stated before, the tuner itself is carefully aligned and tracked at the factory, consequently none of the trimming or padding condensers should be adjusted except in rare cases. Tracking and align ing are identical with the process followed in tracking and aligning the Tobe SuperTuner in the Browning 35 All-Wave Receiver, and is completely covered in literature on that set.

Blueprints, including a full-size picture wiring diagram showing exact placement of each wire in assembling this converter, have been prepared by our Technical Staff especially for the benefit of our readers who have never built or assembled a set before. These may be obtained by sending 25 cents in
cash or U. S. postage to Radio News, Blue print Department, 461 Eighth Avenue, New York City.

List of Parts

1 Tobe three band P.C.A. tuner (the dial escutcheon, and knobs are included with this tuner).
1 power transformer 250 volts at 20 M A with $63 / 10$ volts filament winding to carry 1 Amp United Transformer Co.
10 to 12 henry 400 ohm choke. United Trans former Co.
5 prong socket
100 volt receptacle
line cord
single pole rotary 110 volt switch
10,000 ohm volume control-Centralab
chassis and antenna strip (Tobe)
.05 mfd .300 volt condenser. Tobe M S O double 8 mfd. 500 volt Electrolic condenser knobs for volume control and switch. Tobe 628A

All-Wave Pre-Selector

TTHIS compact unit which may be connected ahead of any type of receiver, provides an additional stage of tuned r.f. amplification, with a separate regenerative tube to provide still further amplification when needed. Plug-in coils permit its use in any wavelength sange.

The trend in designing highly sensitive receivers has been more and more during the past two years in the direction of more preselection and pre-amplification. A favorable signal-to-noise ratio requires that a relatively high signal voltage be applied to the converter tube. Unless this is done, maximum usuable sensitivity cannot be obtained, regardless of the amount of amplification provided at the intermediate frequencies.

A number of receivers during the past year or so have incorporated two stages of two tuned r.f. ahead of the converter and these circuits have definitely proven the distinct advantages offered by a high degree of pre-amplification. In many cases DXers and short-wave listeners are using superheterodyne receivers which do not have sufficient pre-amplification. Naturally, they do not feel that they can afford to discard the receivers, but on the other hand, they are interested in obtaining maximum usable sensitivity. A good preselector such as the unit described here offers the solution of this problem. It can be constructed at home and has proven highly successful with both t.r.f. and superheterodyne receivers.

Figure 35

Heretofore, most preselectors have employed a single regenerative r.f. tube and as a result have for the most part been cranky in operation and extremely critical so far as antenna coupling is concerned. If antenna absorption or improper design resulted in the inability to bring the tube up to a point of active regeneration, such preselectors have resulted in actual loss of signal strength at the particular frequencies where this condition obtained.

For this and other reasons it is important that the functions of amplification and regeneration be handled by two separate tubes. In this way the amplifier tube always functions as an amplifier so that increased signal voltage is obtained at all frequencies.

Then, when still further sensitivity is required for weak signals, the regeneration provided by the separate tube is brought into play to provide an extremely high degree of additional amplification as well as decidedly improved selectivity.

The input circuit shown in Figure 36 can be used only with ordinary "L" type antennas with a single lead-in wire. It is flexible, however, and can readily be adjusted for special antenna systems, as will be described later. Since the rotor of C 2 is grounded, it can be mounted on the front panel.

Unless certain precautions are taken a regenerative r.f. stage is apt to develop undersirable characteristics, especially when

Figure 36

Figare 37-

Front view of the completed preselector which in tests showed a veritable "kick like a Missouri mule."
coupled to a regenerative receiver. One of these precautions is to insulate the rotor of the tuning condenser Cl from the chassis and dial. R2 and C3 were also found essential for maximum isolation. A metal cabinet, as shown in Figure 37, solves the shielding problem most adeguately. A tube of the 58 or 6D6 type is used as the amplifier to prevent cross-modulation. The re. generative tube may best be a 6C6 or a 57.
The tuning condenser, C 2 , is fastened to a Diece of victron, (bakelite will dol and this assembly is mounted on two pillars so that the rotor will be insulated from the sub-basc. The half-inch bushings supplied with Hammarlund sockets were just the right height for lining up the condenser shaft with the bushing of the tuning dial.

Short Leads Stressed

If the layout in Figure 35 is approximated the r.f. leads will be quite short and the efficiency of the coil will not be impaired by the shielding. The components beneath the sub-base should be arranged so that the important leads will be short, and all the r.f. grounds should be made at one point on the sub-base. Heavy copper wire should be used to connect this ground point to the ground post. If the heater current for two tuhes would overload the power
transformer in the main receiver, mount a small filament transformer in the space indicated by dotted lines in Figure 35.

The Hammarlund plug-in coils were selected because of their efficiency and reasonable price; nevertheless there is no apparent reason why the constructor should find it difficult to wind his own coils. or to adapt other makes or types.

A choke-capacity coupled output is indicated in Figure 36, but if the receiver input is designed for antenna systems with two lad-in wires, that is if it has a separate and insulated antenna coil, leave out the connection between points marked E and F, connect C 7 as shown by the dotten line and connect the out-put leads to E and F. A twisted pair may then be used for the output leads, but they will have to be as short as it is possible to make them. With the choke-capacity coupled output it will usually be found desirable to use a shielded lead. In that case, a single-conductor cable of the low-capacity type with a $1 / 2$-inch outside dıameter should be used. By connecting one end of the shield to the ground post of the receiver and the other end to the ground point of the pre-selector, the shield will serve as the ground and B-lead. The B plus lead may be connected to any point on the filtered side of the receiver's plate supply, where a voltage between 150 to 250 volts is obtained.

The operation of this preselector is very simple. While "fishing" for signals little or no regeneration should be employed, C2 is set for maximum capacity, and the circuit tuned approximately to the center of the band to be explored. Since C2 affects the tuning its best setting for each coil-range should be determined, noted, and duplicated after the signal of a desired station has been tuned in on the receiver. Then, the dial of the pre-selector is adjusted for maximum volume.

Receiving conditions and the preferences of the operator will determine whether or not regeneration should be used. Adjusting the regeneration control to the best setting will increase the sensitivity and selectivity to a surprising degree. The tuning becomes quite critical and it is good practice to tune for maximum volume after each adjustment of the regeneration control. Every regenerative set has a few peculiarities of its own, and a little patience and practice may be necessary to fully realize the advantages of r.f. regeneration. In general the considerations applicable to a regenerative detector also apply to a regenerative r.f. stage except that oscillation is undesirable even for CW reception.

To adjust the input for special antenna systems with two lead-in wires disconnect $C 2$ from $A G$, connect the antenna leads to A and $A G$, and then remove turns from the primary until oscillation is obtained over the entire tuning range of the coil at maximum screen-grid voltage. The turns should be removed from the top of the winding. that is, from the end connected to terminal No. 5.

Parts List

Cl _Hammarlund midget condenser type MC 140 M .140 mmfd .
$\mathrm{C}_{2}-$ National midget condenser type SSS-50, 50 mmfd .
C3-. 006 mfd . mica condenser
C4- .01 mfd . mica condenser (5)
C6- 3 mfd. paper condenser (2)
C7-1 mfd. Paper condenser (2)
C8-250 mmid. mica condenser
R1-1,000 ohms, 1 watt metallized R2- 500.000 ohms, $1 / 2$ watt metallized R3- 50,000 ohms potentiometer R4-75,000 ohms, 1 watt metallized (2)
RS-25,000 ohms, 1 watt metallized
R6- 300 ohms, 1 watt metallized
RFC-Hammarlund r.f. choke type $\mathrm{CH}-8$ (2) 1 set of 4 Hammarlund 3 -circuit, 6 -prong plug-in coils
2 Hammarlund tube shields, type TS. 50
3 National Steatite 6.prong sockets
1 National dia!, type B
1 National cabinet, type C.SRR (plain)
1 National coupling, type TX-1
$21 / 2^{\prime \prime} \times 2^{\prime \prime}$ pieces of victron (any low loss insula. tion from $1 / 16^{\prime \prime}$ to $3 / 16^{\prime \prime}$ thick will do) 3 binding posts
$13 / 16^{\prime \prime} \times 1 / 2^{\prime \prime} \times 3^{\prime \prime}$ piece of bakelite, for mount. ing the tuning condenser

Amateur Commumication Receiver

THIS particular receiver is the result of many different models of high.fre. quency supers built and tested ever since the first single-signal receiver made its appearance. Although it has only eight tubes and is simple in design and construction. this receiver is proving its worth daily in leading amateur stations. It would be well to note first the standards set for this receiver. These are: stability, consistency of operation and a high signal-te-noise ratio as forenost-and it is in these respects that some receivers fall down on the job. The first named requirement is obtained by using only air-spaced tuning and trimming condensers throughout. single purpose tubes,
low-gain high-bias audio stages, elimination of all unnecessary frills, good shielding. and a system of wiring which makes possible the greatest isolation of individual stages. What is probably one of the greatest contributions to easy tuning and precise log. ging is the new National PW type of gang. condenser and dial. The 500 -degree pre ciston dial and isolated rotor condensers of this unit form the basis of a high-gain. stable high-frequency section with band spread tuning for all frequencies. A very high signal-to-noise ratio is obtained by realization of some of the fundamental suner-heterodyne design principles-and their proper utilization. One of these prin
ciples is that of dividing the total receiver gain properly between the three frequencies used in a superhet-namely signal (high) frequency, intermediate-frequency (465 kc .) and the audio-frequency band. Excessive gain on anyone of the latter two frequencies gives an unnecessarily large amount of noise. These three frequencies are represented respectively by the pre-r.f., detector and high-frequency oscillator-the 1 st and 2 nd i.f. stages, diode section of the 55 second detector and beat oscillator -and the triode section of the 55 tube and the 59 output tube.

Regeneration is used in the pre-r.f. stage, with the cathode-coupled circuit for greatest

Figure 38

Figure 39
stability and smoothness of control. This regencrative pre-r.f. stage is the equivalent of two ordinary stages and solves quite adequately the problem of getting high pre-r.f. gain, which in turn is the allimportant link in obtaining our much desired high signal-to-noise ratio. This regenerative pre-r.f. stage also solves another problem encountered in superhet receiversthat of image-frequency interference.
In order to keep the pre-r.f. gain high at all tumes no a.v.c. is used on either the pre-r.f. or 1st detector, being confined alone to the two i.f. stages. The high-frequency oscillator is of the standard electron-coupled type. The coupling to the screen-grid of the 1 st detector from the oscillator has been found the best of the many methods tried.

The design of the i.f. amplifier is more or less usual except for the method used for obtaining selectivity sufficient for singlesignal c.w. reception. Instead of the more complicated crystal filter usually used for this purpose we use merely a regencrative 1st i.f. stage. This regeneration is also obtained by the cathode-coupled method. A simple 3 -turn cathode coil, wound next to the grid coil in the 1st i.f. transformer and a variable cathode voltage control do the trick. The degree of selectivity obtained through this regeneration approaches closely that obtained by use of a crystal.

The strictly class A audio system used is the final step in securing really enjoyable
musical results on the foreign broadcasters. The most important feature in the construction of this i.f. amplifier section is the use of the Hammarlund air-tuned i.f. transformers. Using regeneration to obtain high selectivity in the i.f. section means that the tuned circuits must be kept exactly on the peak of resonance at all times, and only good air-tuned intermediates will do this.

Layout of the Set

The knob just to the right of the tuning dial is a screen voltage control on the pre-r.f. tube and controls both the pre-r.f. gain and regeneration. The knob furthest to the right on the panel is a grid bias (or cathode) voltage control on the 1st i.f. stage. This quite satisfactorily takes care of both the i.f. gain and 1st tube regeneration (selectivity). The separate audio gain control on the extreme left of the panel, as shown in Figure 39, permits of adjustment of speaker output without disturbing either the signal-to-noise ratio, image rejection or degree of selectivity previously obtained by proper adjustment of the other two gain controls A switch mounted on the audio gain control cuts "off" the B voltage.
The beat-frequency oscillator stage is quite ordinary in design and is coupled capacitatively to the diodes of the 2nd detector.

The circuit diagram is given in Figure 40. The layout of the 2nd detector circuit both diode and audio triode sections, and the a.v.c. system should be very carefully followed. It has had careful and painstaking design and testing.
The mechanical design and construction are next of interest. The band-spread system used is properly a point of mechanical interest. As said before, the 500 -degree, 12-foot equivalent-scale-length dial permits of good hand-spread over the entire range of all sets of coils. There are four coil sets used. They cover the ranges shown in the coil-data table (Figure 41). As will be noticed there is an amateur band at both ends of every range. Although the number of dial degrees for each amateur band appear to be small, the spread on the dial is actually much greater. This is because each dial division is a full quarter-inch wide, so that, for instance, the 25 -degree spread of the 20 -meter amateur band is a full half-dial wide, and equal to a 100 degree spread on any ordinary dial.
The air-trimmer condensers mounted in the coils eliminate the neccessity for auxiliary trimmers on the panel and provide the means for precise relogging of any station when shifting sets of coils. The only auxiliary tuning control on the panel is the small pre-r.f. trimmer on the left of the main tuning dial. The combination of varying antenna load and extreme sharpness of

Figure 40

COIL DATA TABLE				
BAND	10-20 METERS TURNS RIBS	20-40 METERS TURNS RIBS	40-80 METERS TURNS RIBS	80-160 METERS TURNS RIBS
R.F. PRIMARY	31	61	61	121
R.F. SEC.TAP	15	25	3	6 - 5
R.F. SEC.GRID	$2-8$	73	163	$40-3$
DET PRIMARY	$3-1$	41	13 1	15 1
DEF. SEC.	27	$7 \quad 8$	478	428
OSC. TAP	USE 2OM OSC.	25	3 - 5	6 6
- GRID		$7 \quad 7$	$16 \quad 7$	$40 \quad 7$
	GRID WINDINGS SPACED \perp TO DIAMETER OF WIRE.			

COIL TURNS ABOVE ARE FROM ONE TAP TO THE NEXT.
FOR INSTANCETHE SECONOARYOF THE $2 O-4 O M E T E R ~ R . F I C O I L ~ H A S ~ A ~$ TOTAL OF 9 TURNS AND 8 RIBS, NOT 7 TURNS AND 3 RIBS.

OSCILLATOR
ABOVE ARE BOTTOM

DETECTOR PRE-R.F.

Figure 41
uning, due to regeneration, makes it impossible to track the pre-r.f. stage exactly over an entire coil range. The degree of change necessary with this trimmer is actually quite small, so that it can be set and left for any particular amateur or broadcastband being received. With it, changes in the antenna can be taken care of right on the front panel.

Constructional Details

Several points should be emphasized be fore construction of this amateur communications receiver is begun. They are: the neccessity of using only those parts specified keeping the exact layout of parts as shown; and making no changes in either wiring diagram or the single-ground-point, shortlead wiring system to be described.
Before the first i.f. transformer is mounted it should be disassembled and the cathode coil wound. Three turns of No. 30 wire should be wound on the dowel about a quarter inch above the grid coil. Two small holes through the dowel will hold the winding in place. Space these holes a little so that the coil can be moved up and down later for correct adjustment. The two leads from this coil should be cut several inches longer than necessary to come out one of the holes in the bottom of the can and a piece of "spaghetti" shoved up over them almost up to the coil.

Adjusting the Receiver

In lining up and adjusting the receiver the i.f. amplifier should be lined up first using a 465 kc . test oscillator. The cathode coil leads should be tried connected both ways to find which way the 1st i.f. stage oscillates best. After this is done it will probably be found that the oscillation point on the cathode regeneration control comes either too far down or possibly can not be reached with the control full on. The 3 . turn cathode coil should be slid up or down until the oscillation point is reached with the control turned from two-thirds to threequarters on. Remember that all i.f. trans former trimmers must be exactly in resonance for proper regeneration. The a.v.c. switch should be turned off during this adjustment.

We can now take the final step and adjust and track the high-frequency coils. With the antenna connected we will find that although not lined up properly some signals will still come in. Tune in a signal near the high-frequency (500 degree) end of the range and line up exactly the r.f. stage panel trimmer knob and the detector coil trimmer. Then swing the dial to the low-frequency (0 degrec) end of the range and tune in a steady signal there. Do not touch either the r.f. or detector trimmer while tuning in this second station. After this station is tuned in, reset the detector rimmer to proper resonance. If this trimmer must be decreased in capacity for resonance it means that the detector circuit is tuning too wide a range and must have the coil inductance reduced. This is done by spacing the turns of the grid winding further. If the trimmer capacity must be increased in capacity the range is too small and the inductance must be increased by moving the turns of the grid coil closer together. After each adjustment of the coil turns check the tracking again until the detector trimmer does no have to be changed from one end of the band to the other. All the trimmers should now be re-adjusted so that the coil range will cover the amateur bands at either end. Always remember that the oscillator trimmer must be set on the high-frequency beat for proper tracking.
The same process should be gone through with the r.f. coil of each set. Due to the antenna load and regeneration, we will not be able to keep this r.f. panel trimmer at exactly the same setting through the entire dial swing. but we should adjust the coil so that the control will tune the r.f. stage to resonance at any place on the dial. Another factor entering the adjustment of the r.f. coil is the degree of regeneration to be obtained. Spacing the grid coil turns further apart at the ground end while moving them closer at the grid end to keep the same inductance will reduce the degree of regeneration, and vice-versa. The oscillation point on the r.f. regeneration control should nccur in the range from one-half maximum to full. A small trimmer condenser connected externally in the antenna lead will permit of the easiest adjustment of antenna load. which will in turn determine the oscillation point on the r.f. regeneration control. These adjustments are really
easier than they sound. The coils can now be doped to hold the turns in place perman ently. Use a good lacquer, such as the Victron Q-Max No. 3.

The A. V. C. Circuit

To check the a.v.c. circuit before placing the receiver in service just watch the tuning neter while tuning in a steady carrier with the a.v.c. switch turned on. It should read nearly maximum when no signal is turned in. With the carrier tuned to resonance it should dip; the amount of the dip depending upon the strength of the carrier. A strong signal should knock it down to about two to four mils. The adjustment of the coupling from the beat oscillator to the diodes should be adjusted for best single-signal effect. This "coupling condenser" consists of a pair of insulated wires twisted together for about two inches. Cutting off a little of either wire or loosening the twist will reduce the coupling and viceversa. This beat oscillator coupling should be adjusted with the a.v.c. switch turned off, as no single-signal effect will be obtained with a.v.c. on-in fact the oscillation point will not be reached when using the a.v.c. This condition is quite desirable for phone or broadcast reception.
These instructions should cover all the problems that may be encountered during construction and adjustment of this receiver. As has been said before, a strict adherence to these instructions will produce a receiver which will give the builder the fine performance he should rightly expect of it. The stability of operation and exceptionally low noisc level should prove a boon to the operator whether he be an amateur or short-wave listener-or a commercial operator.

Parts List

1-Three-gang tuning unit National PW type
1-25 mmfd. Cardwell Trimmatr 1-25 mmfd. Cardwell Trimmatr
7 - 25 mmfd. Hammarlund APC type trimmers 2-5 prong Hammarlund isolantite coil sockets 1-4-prong Hammarlund isolantite coil sockel 1-G.prong water socket
7 - 7 -prong water sockets

- 7 prong waler socket

7- 58 type tube coil shields
1- 58 type tube shicids
-double circuit phone jack
-leeds interstage audio transformer, type AU107
-465
465 kc . i.f. transformers, Hammarlund, air tuned

- 465 kc . i.f. transformer, Hammarlund, cen-ter-tapped, air-tuned
-465 kc. b.o. transformer, Hammerlund, ait tuned
-binding posts with insulating bushings 4-knobs
2-s.p.s.t. toggle switches
$1-0.10 \mathrm{mil}$. meter, 2 . inch diameter
-Hammarlund SW. 4 coil forms
8-Hammarlund SW-s coil forms
3- $350 \mathrm{ohm}, 1$ watt resistors
$6-2.000$ ohm; 1 watt resistors
1-20,000 ohm, 1 watt resistor
$1-25,000$ ohm, 1 watt resistor
4- 50.000 ohm, 1 watt resistors
2-100,000 ohm, 1 watt resistors
2-250,000 ohm, 1 watt resisors
1 - $500,000 \mathrm{ohm}$, 1 watt resistor
1 - 1 meg., 1 watt resistor
1-2 meg., 1 watt resistor
1 -3 meg., 1 watt resistor
- meg., 1 watt resistor
$1-500 \mathrm{ohm}, 10$ watt resist or
1 - 1500 ohm, 10 watt resistor
- $\$ 00.000$ ohm potentiometer

2- 50.000 ohm potentiometers
1.4 -. 1 mfd., 400 v., paper condensers
$2-.01 \mathrm{mfd}$., $400 \mathrm{v} .$, paper condensers
$1-.004$ mfd., midget, mica condenser
2 -. $0001 \mathrm{mfd} .$, midget, mica condensers
1-. 0002 mfd ., midget, mica condenser
2 -. 00005 mfd ., midget, mica condensers
2-s mid.. 50 v.. electrolytic condensers
t-19"x8 $3 / 4^{\prime \prime}$ crackle-finish specially drilled panel Bergen Radio Lab.
-I I"' $\times 17^{\prime \prime} \times 21 / 2^{\prime \prime}$ cadmium plated specially driller, chassis-Rergen Radio Iah.
1-black crackle-finish cabinct-Bergen Radio Lab.
1-set of onstruction plans-Bergen Radio Lab

EXPERIMENTAL RADIO DATA

Making Your Dwn Relays

EXCELLENT relays, including those which will be actuated by a current of 1 milliampere, can be easily made from the windings and core of an audio transformer or choke. Only a few common tools are re quired and the materials are easily obtainable. The work does not require skill and if carefully done the relay will give excellent results. This is largerly due to the very efficient electro-magnet formed by the transformer core and coils.
A transformer with an "E" type core is the most common type and therefore is used in the relay described here. The electromagnet assembly consists of the core, coil and mounting. The transformer is taken apart and the core and coil assembled with all of the " E " laminations in one position. The "I" laminations are not used in this assembly. The core is well designed and adds greatly to the efficiency of the electro-magnet by providing a good path for the magnetic flux. With a given core and armature arrangement and spring tension the sensitivity of the relay depends on the number of ampere turns of the coil. If the resistance of the circuit is very high, and the current small, as in the plate circuit of some vacuum tubes, highest sensitivity is obtained with the greatest number of turns of fine wire. In most circuits the amount of current to be carried and the amount of resistance that may be introduced into the circuit limit the size of wire. An audio transformer secondary will carry at least 5 ma. and the primary 10 to is ma. continuously. If the current is in termittent, as in a keying relay, more current may be carried safely. The maximum current depends entirely on the heating of the windings. Ordinarily currents will be well within the maximum limits, but in certain cases, as when the windings are parallelled this matter must be watched.
If the relay is to close on the smallest current through the windings, they should be connected in series. If it is to close on

Figure 42 -
Here is an example of what can be accomplished through the use of an old transformer. Under test, it operated dependably on 0.8 ma .
the least voltage across the windings they should be connected in parallel. This choice adds greatly to the value of such relays in experimental applications.

Construction Details

The electromagnet assembly is best mounted by means of clamps made from non-magnetic material. The armature should be made from material that is a good carrier of magnetic flux. For most purposes ordinary sheet iron is entirely satisfactory Soft iron is much better than hard iron. in small relays a single strip of heavy sheet iron such as No. 20 is satisfactory. For heavy relays extra strips the length of the pole pieces may be riveted on or the leftover "I" laminations may be used. Figure 43 shows the arrangement of core, armature and contacts; the manner of mounting is illustrated in the photograph.

In delicate relays where only a little tension is used on the armature it is desirable to counter-balance the armature to minimize the effect of vibration. A weight made of solder is satisfactory for this use. The armature should be balanced in all positions.

Mounting the Armature

A simple yet good bearing may be made by soldering a piece of hard steel wire, a little longer than the width of the armature and sharpened to a point on each end, to the armature. These points rest in deep center-punch marks in the ends of two screws which are adjustable and can be locked in place by means of locknuts; this is illustrated in Figure 44.
Springs may be taken from old automobile tire valve insides. The spring may he held in place by a rivet made from No.

Figure 43-Left; Figure 44-Center; Figure 45-Right; Figure 46-Extreme Right

12 wire and riveted to the armature (as shown in Figure 45). It should project about one-eighth inch from the bearing.

The adjusting screw can be made by filing down about one-eighth inch of the end of a machine screw. (See Figure 46.) If a nut is put on the screw before filing any damage to the threads will be removed when the nut is taken off.

If the relay is to open and close rapidly the armature should not be too heavy and the spring tension should not be too light. In cases where the spring tension is great enough it may be desirable to climinate the counterweight.

When the contacts are connected directly to the armature the spring carries the current. The bearings should not carry current. Stranded wire carries the current in case of insulated contacts.

The stationary contacts also act as stops for the armature. Contacts may be obtained from automobile supply stores. The contacts used on gas engines with make and break ignition are good.

Compact 5-Watt P.A. Amplifier

Here is an extromely compact portable sound system using only two amplifier tubes which operates from a 6 -volt storage battery and is capable of delivering over 5 watts Class A undistorted power output. The type 6B5 tube used in the power stage makes possible the high power output and simplicity and economy of circuit design

Figure 47
not obtaimable with any other type of power tube in a comparable P. A. system. 'The tube has two triodes contained in a single glass envelope, the output of the first section of the tube is direct-coupled, internally to the second triode.

The circuit diagram in Figure 48 shows a 6C6 used as a high-gain pentode in the first stage, the output of which is resis-tance-coupled to the type 6BS power tube. The power supply is of the vibrator type using an 84 tube as a rectificr. The power transformer is the kind employed in most

Figure 48

Figure 49

auto radio receiving sets having 7 tubes or more. This transformer can be bought from any distriubtor of auto radios or from the large radio mail-order houses. The best procedure is to use a vibrator matched to the power transformer, however, this is not absolutely necessary, and a good universal vibrator for the purpose is the Mallory type 53 or Radiart types No. 3260 or No. 3417. All other parts are standard. The power supply should be capable of delivering an output voltage of from 225 to 350 volts on full load. If desired, two 5 -mfd., 150 -volt condensers may be used in place of the two 50 ohm resistors shown connected across the primary winding of the power transformer T1.

Tivo individual input channels are provided in the mixing unit (Figure 49) one for a double-button carbon microphone and the other for a high-impedance phonograph pickup or a crystal microphone. It will be noted that each channel has its own individual volume control and there is a master control to the input of the first tube.

The mixing unit can either be connected directly to the amplifier input or it can be used as a remote unit and in this case a slielded cable between the mixer and the amplifier is recommended. This cable must be grounded to both units. It is extremely important to use heavy connecting wires from the battery to the amplifier and power unit.

Non-Slip Dial Cables

If the cord friction cable which drives a tuning dial has been stretched, or if the cable or pulley has been worn smooth, there will sometimes be slippage, resulting in a great deal of annoyance in tuning the receiver. This trouble is casily overcome by rubling some powdered rosin on the section of the cable that travels over the drive pulley and also on the traction surface of the pulley. The friction will be much greater and the traction as originally intended. The idea can be applied with equal success to small pulley-driven, mechanized parts in remote control systems and photograph equipment or similar apparatus. This wrinkle is not very effective on metal wire cables.

Plug-In Coil Shields

One of the big dawbacks to the use of coil shields in home constructed short-wave reccivers using plug-in type coils is the difficulty of obtaining easy access to the coils. This trouble can be easily overcome by adapting the shields to either of the phig-in atrangements shown in the drawing.

In the first method, Figure SOA, the fastening lugs, generally machine screws
eyeleted to the side of the shield can, are filed down to make a snug fit into a pair of standard tip-jacks mounted on the chassis as illustrated. If the shields do not have fastening lugs, the second arrangement as shown in Figure 50B can be used to advantage. Two phone tips and two tipjacks are used for this arrangement. The first thing to do is to cut 2 half circles at the

Figure 50
bottom of opposite sides of the shield can, just high enough to clear the tip-jacks. Then high enough to clear the tip-jacks. Then prepare the phone tips by slitting them at the top for possibly $1 / 4$ inch so they will slip over the shield in the cut-away portion as shown. To secure the tip, solder it to the can. The rest is self-explanatory.

Home-Made Multi-Point Switch

Experimenters will be interested in this little kink for making a multi-point switch from a discarded Centralab type volume control. The accompanying sketch, Figure 51, clearly outlines the procedure for assembling the switch and no trouble should be encountered in its construction.

The first thing to do is to remove the back plate, then loosen the lock-nut in the front, which will loosen the contact arm assembly. The metal ring that rides on the carbon resistance strip should now be cut away with wire cutters. The carbon resistance strip is broken away from its two terminal studs and lifted out. An examination of the contact arm will show that a small wheel-like fiber plug is attached to the end of this arm. This is easily poked out with a screwdriver. The arm is then replaced in the case.

The switch shown has 14 taps not including the arm terminal. The number of taps or points will, of course, depend upon one's requirements. Alignment of the holes is accomplished by marking them through

Figure 51

the hole on the contact arm from which the fiber plug was removed. The machine screws employed for the taps are size No. 2-56; one-half inch long and are inserted with the heads inside the case. On the outside of the case very small soldering lugs are inserted over the screw and they are tightened with the nuts.

Lamp for Photo-Cell Use

A small light source for use with photocells may be made from an old light socket case and a 6 -volt headlight bulb.
By enlarging the chain or key slot in the case to accommodate the base of the headlight bulb, it will be found that the lamp can be enclosed in the case very neatly. A small concave metal disk may be inserted in the top of the case as a reflector and the whole unit held in a small clamp such as is sold for use on automobile dash-

Figure 52-Top; Figure 53-Above
boards. If a concentrated spot of light is desired, a flashlight lens may be fitted on the front by means of an improvised wire support.

You can run the light source from a small transformer and will find this means of illumination much more convenient than an electric lamp.

Improving the All-Star Receiver

Owners of the All-Star All-Wave Senior receiver, which was described in the September 1934 issue of Radio News may be interested in the revisions that can be made in this circuit so as to obtain the additional features of automatic volume control, a tuning meter, and manual audio volume control. With the assistance of these circuit revisions and the use of a doublet antenna you will be able to improve reception results on all bands and especially so on the 20 meter phone band.
A reference to the schematic circuit diagram (Figure 54) will show that only 4 tubes are employed in the revised circuit. one i.f. stage having been eliminated. A single i.f. stage provides ample gain, consistent with a good signal-to noise ratio.

Figure 54

The tone control has also been eliminated but for those who want to retain this feature it can be incorporated in the plate circuit of the power tube.
The sensitivity or r.f. volume control R2, is a 5,000 ohm linear unit instead of the 25.000 ohm unit previously used. The 1000 ohm rheostat is employed to adjust the C bias to the i.f. tube for best results, also to adjust the tuning meter to full scale reading with no signal tuned in. The sensitivity control R2 should be advanced to the extreme point, that is, with all the resistance out, when the automatic volume control switch is turned to the "on" position. This is necessary in order to make the a.v.c. action complete, it also permits maximum retardation of the tuning meter when sigrals are tuned in. This meter is not only an advantage in tuning but it also serves as a direct indicator of signal strength.
The audio volume control, R3. is a $1 / 2$ megohm left hand tapered potentiometer which can be mounted on the front panel in the place previously occupied by the tone control. This control is of material assistance in holding down very powerful signals. All leads to this control and to the 2.46 grid cad must be shielded and the shields grounded.
The beat note oscillator is connected at the point marked " X " instead of to the detector plate in the original set. A small coupling condenser can be made from two small $1 / 4$-inch metal plates, or from two small pieces of push-back wire twisted together. The a.v.c. switch should be thrown to the "off" side when receiving code on the beat osciilator. The tuning meter will give quite a wide swing on strong signals and will be helpful in centering DX broadcast stations for best quality, although the very weak signals will hardly move the meter.
The doublet type antenna is 16 feet each side of the center with a Lynch "Giant Killer" lead-in cable approximately 18 feet long, the small matching coil for the antenna input circuit is made of two turns of No. 20 d.c.c. wire approximately 2 inches in diameter, placed right around the antenna indactance. The two ends of this coil are connected directly to the two leads of the lead in cable. Tests indicated that this type of antenna matching gave best results in noise elimination.

Pilot Light for Soldering Iron

An efficient little pilot light device for the clectric soldering iron can be made up by building a small cardboard form and
arranging an electric light plug in one side and an electric light socket in the top and holding them together by filling the form with sealing wax after the wire connections have been made as per Figure 56 . The

Figure 55
three-wire lamp cord is connected in such a manner to the swith that the third wire leading from the red (7-watt) lamp is connected to the iron side of the circuit.
The form with the lamp fastened in it can be plugged into any standard socket of

Figure 56
suitable size and with the operator it will become second nature to keep the iron at the proper operating temperature while doing the work by being able to observe out of the corner of his eye if the current is on or off.

A Simple Stroboscope

Many forms of motion, too fast for the unaded eye to follow, can be "slowed down" and analyzed with a high-speed movie camera. In similar fashion you can
use this little gadget to get a slow-motion picture of the rectification process in mer-cury-vapor tubes, and to find just what fraction of the cycle is being used. An investigation of this kind would ordinarily require the use of an oscillograph.

The device, as shown in Figure 57, consists of a heavy cardboard disc mounted on the shaft of a fan motor from which the guard has been removed. The disc may be eight or more inches in diameter, with

Figure 57
two slots about an inch square located near opposite edges. A tight-fitting spool makes a convenient hub for mounting the disc. For speed control, a lamp socket and a heavy-duty rheostat of at least 30 ohms are wired in series with the motor.

Employ a lamp of the right size to bring the motor speed to approximately 1800 r.p.m. An easy way to find this speed is to examine, through the rotating disc, a neon lamp lighted from the 110 -volt A.C. line. As the speed approaches synchronism (1800 r.p.m.) the glow will flicker slowly, shifting from one plate to the other. When the disc is in step the glow will remain on one plate or the other.

Now, with the disc slightly off synchronism, examine an operating mercury-vanor tube of the 82 or 83 type by the method shown in Figure 58 . The blue glow will be seen to shift from one plate to the other, showing that the plates carry current in alternation. With the disc in step, the glow will appear on one plate only, while if the tube be viewed from a point 180 degrees around the circumference of the disc, the glow will appear on the other plate. Still other portions of the cycle can be selected by shifting your viewpoint.

Arnateurs using 866 type rectifiers will find the device useful, because when the disc is in step the angle over which the glow is visible indicates how much of the cycle is being used by the tube. For example. if the filter is of the condenser-input

Figure 58
type and the first condenser is too large, the glow will be seen through a narrow angle only. This indicates that the tube is carrying a current in brief spurts of dossibly dangerous peak value. Higher audio frequencies can be observed in like manner by using discs with more holes. Of course, the stroboscope can be used to study many other forms of high speed motion, such as motors. alternators, engines, etc.

A Handy Tool

The cutting of tube-socket holes or any large size cut-out in a metal chassis is probably the most troublesome job in home radio-set construction. It is difficult only because so few radio constructors are fafiliar with the proper tool for that purpose and the proper means of supporting the chassis itself, during the drilling operation.

The tool for the job is a very simple and inexnensive device called a circle cutter which fits in any standard hand brace. While three sizes are available it is only necessary to possess the medium size model, (costing a little more than a dollar) for radio construction work. This size is capable of cutting holes from 1 to 4 inches in diameter in aluminum, steel, bakelite, hard rubber and wood.

To anyone who has laboriously made socket holes with a small drill, a cold chisel and a file, the circle cutter will be an absolute revelation. Holes that previously took 15 or 20 minutes can now be made in 15 or 20 seconds, and furthermore, they are really round!

As the cutting tool of the cutter takes a healthy bite out of the metal chassis. the latter must be braced securely so that

Figure 59
there is no possibility of twisting and the best aid for this is a large husky vise, but a small one is satisfactory if it is supplemented bv some short pieces of 2 by 4 wood blocks and a couple of ten-cent C clamps. The accompanying illustration, Figure 59, shows how a 12 inch steel chassis was handled in a vise having only $21 / 4$-inch jaw:. A 6 -inch stub of a 2 by 4 was first tightened in the vise in a vertical position, and the chassis held in place over it by a single clamp, as shown. The drilling pressure was then applied against the heavy word, which in turn was solidly sunvorted by the vise. The chassis remained perfectly fixed and the holes were made in quick order.

The same set-up was used in cutting holes in the short sides of the chassis. In this case the clamp was merely turned around so that the handle was out of the way of the long arm of the circle cutter.
In cutting 2. and 3 -inch holes in panels for meters, it is advisable to use a scrap piece of board as a backing in the vise. This will prevent the panel from buckling under the pressure of the brace. To avoid clamp marks, place bits of hard wood under the feet of the clamp and tighten the latter carefully.

Overcoming

Refrigerator Interference

Quite often radio interference can be traced to static discharges from the motor belt of electric refrigerators. To eliminate this type of interference simply connect a wire from the motor frame to the compressor and continue this lead to a good ground.

Two Soldering Kinks

Strange to say, few irons have been produced with a rest attached. The one shown in the diagram, Figure 60, is similar to the folding rest on a carving fork and can be constructed in a short time from odds and ends of hardware.

Make a band to fit around the iron, from flat brass and clamp together below with a

Figure 60
small bolt. Then from stiff wire bend the rest as shown in detail. The legs spread out at the bottom and the two eyes fit around the bult; the cross bar between them serving as a stop bar when the legs are in a vertical position. This bar straddles the clamp and the eyes oo between the clamp and washers as shown. By using lock washers the tension can be regulated and and held by the tension of the nut on the brlt. Thus vour iron can be rested above the bench or the rect folded back against the shank when not in use.

String solder wound on spools is awk ward to hold and it is much easier to rack it, as shown in the little holder in the sketch, Figure 61. Take a piece of suitable copper tubing about 8 inches long and split down one end, for a third of the distance with a hack-saw. Open this split and drill the ends. Then insert the spool of solder and hold it with a metal pin inserted in the holes in the ends of the prongs.
Run the solder through the tubing until it projects from the end. By wrapping the

Figure 61

tubing with a layer of electricians' tape or felt it can be used as the solder holder in lengthy jobs without the heat of the solder beine imparted to the hand.

Identifying Replacement Connections

In replacing transformers, condenser blocks, and similar parts with numerous leads, the problem of reconnecting the wires to the proper points may be greatly simplified and a great deal of time saved if the old leads are clipped off close to the defective component.

After the defective part has been removed, the color-coded loose wires remaining will indicate where the leads from the replacement unit are to be connected.

If an exact duplicate replacement part is used, one need only replace the old leads with each new lead having the same color coding, one by one. If a different replacement part is used, the slip accompanying same will enable one to identify the corresponding lead.

A Simple

Vacuum-Tube Voltmeter

Figure 62 shows the circuit diagram of a diode-type vacuum-tube voltmeter that can be used for a wide variety of tests, where a slight circuit load is not objectionable. Being substantially independent of frequency it is adaptable to either a.f. or r.f. circuit

The value of R1 will depend upon the sensitivity desired. For full-scale deflection

Figure 62
with 100 volts input the value of this resistor should be about 75,000 olms. For greater sensitivity R1 can be decreased so as to cover any desired range. The device has a fairly linear scale and it may be calibrated on an A.C. 60 cycle supply line by connecting it in parallel with an A.C. meter. This calibration will hold for radio frequency as well as audio frequency

Every Experimenter
 Can Use This Rack

livery radio experimenter at one time or another experiences the difficulty of finding sufficient space to store his ever-increasing radio equipment. We all know how tables can become cluttered with equipment until they cannot accommodate another article and how parts and sets are pushed under the rable or in corners until needed. The wooden rack shown in the photographs. Figures 63 and 64, completely answered one experimenter's requirements and now his roorkshop is not only neater, but he can

Figure 63
easily find any radio item without calling on Providence and everyone to help him.

The rack provides a relativelv large amount of shelf-space and it is so designed that the shelves can be adjusted to various heights which makes the rack especially suitatle for holding a variety of radio ecuipment such as parts. receivers, transmitting equipment, etc. The rack is mounted on heavy rollers for added convenience.

The depth of this rack is 14 inches, the width 36 inches and height 86 inches. The ret inside area of each shelf is roughly $\xi_{\bar{a}}$ by 31 inches and the height above each stielf can be adjusted in steps of 3 inches.

Seasoned pine wood is used throughout in the construction of the rack. Four differen sizes, as enumerated below are employed and are easily procurable from any lumber yard. The 2 cross braces on the rack are 1 by 4 inches. Half the thickness of each one of these cross pieces is cut cut at the point where they cross and they are locked and screwed together supplying a back brace for the rack. For the 4 wirights and for the 2 bottom cross picces. 2 by 4 inch material is used. Regular floor material 1 by 4 inches is used for the top, bottom and the removable shelves. This materval is tongued and grooved and for neatness the tongue or gronve should be planed off the front and rear board of each

Figure 64

shelf. For the cross-ties at the top and bottom, for the shelves and the supports nailed to the uprights, use 1 by 2 inch material. The casters have wheels $21 / 2$ inches in diameter, with rims 1 inch in width.

The close up illustration of the rack shows the shelves, side supports and back cross picces. The front corner of each shelf has a countersunk hole leading diagonally down through the shelf and into the corresponding side support. Wood screws of the proper length are used to screw the shelves into fixed positions. In the picture one screw is shown with its head protrud. ing ahove the top shelf and three screws are shown sticking up from pilot holes in side supports which carry no shelves.

Relay Made From Old Audio Transformer

A highly sensitive relay that will operate on 1 milliampere or less can be made from an old audio transformer. A Kellogg 3-to-1 transformer was used in this particular

Figure 65-Top left; Figure 66-Top right; Figure 67-Above
relay, but any kind may be used if the windings are intact and the core laminations have the form shown in Figure 65. The laminations have two diagonal cuts across

Figure 68
the center leg to permit assembly. Remove all the laminations, cut off two small pieces from erch as indicated, and re-assemble to form an E-shaped core. A brass clamp around the bottom leg serves to mount the relay on a stitable wooden base. Make the
armature from an extra lamination as in Figure 66 , bend the small tab of the armature at right angles and solder to the brass clamp. Be sure that the lower end of the armature is in contact with the bottom pole piece.
The contacts are self-explanatory, one being a thin strip of brass soldered to the armature, the other a long machine screw working through a binding post and lock nut. The primary and secondary leads are brought out to binding posts on the small panel and allow a choice of connections. Using the primary coil alone, the contacts should close on about ${ }^{5}$ milliamperes. Using both coils connected in series-aiding, less than one milliampere will be needed, making the relay ideal for photo-electric and simblar work. If heavy currents are to be controlled, an auxiliary power relay or contactor must be used.

Figure 67 suggests a possible use for the relay in protecting a sensitive votlmeter from a dangerous overloads.

A correction has to be made for the resistance of the relay winding and the multiplier resistors reduced accordingly.

Resonance Indicator for Aligning A.V.C. Receivers

This device using the type 6Es tube as a resonance indicator eliminates the usual difticulty of aligning receivers by means of an output meter and replaces the more ex-

Figure 69
pensive vacuum tube voltmeter or cathode ray oscillograph.

As shown in the accompanying circuit, Figure 69, it consists of the 6Es electron ray tuning indicator tube hooked up with tapped input circuit and power supply, the input being simply connected to the a.v.c. line of the receiver and the usual procedure followed.

Concrete Foundation for Antenna Mast

The irresistible urge to try something different, especially in the way of antennas, is one of the principal characteristics of the radio amateur.

In order to facilitate a quick changeover to different type aerial systems when experimenting with antennas, one amateur rigged up a mounting for his antenna mast as illustrated in the accompanying diagram 70. A and B. A cube of concrete, measuring 2 feet in each dimension, is embedded in the earth with the top surface level with the ground. This block contains three 1inch iron eye-bolts about one foot long. The mast is mounted on a wood block 18 inches square by $41 / 2$ inches thick and is securely held in place by four 2 - by 4 -inch

Figure 70
braces. A hole is bored through one end of the block and a $1 / 2$-inch stecl rod 2 feet long is placed in this hole, the ends protruding to form "hinges" when used in conjunction with the eye-bolts as shown. A short bolt or rod is placed in the center at the opposite side and with the ring-bolt locks the mast in the vertical position.

The chief advantage gained by the use of this mounting is the ease with which the mast can be raised or lowered. One man, with the help of a long ladder, can easily raise a 20 - or 30 -foot supnort, and once it is in the vertical position it will not fall over in the opposite direction as is usually the case when a wood mast is buried in the earth.

New Uses for Condensers

It is not generally known that a condenser can be used as a voltage-dropping device for lighting from one to several tubes directly from 110 volts A.C. line supply. This method has some advantages over the line-cord dropping resistor. It does not develop any heat and it saves power. The required capacity for a given tube can be calculated as follows. Suppose one 6.3 -volt tube requiring .3 ampere is to be heated directly from a 115 -volt, 60 -cycle line. What is the size of the required condenser?

The total impedance of the circuit should be:

$$
\mathrm{Z}=\frac{115}{.3}=383 \mathrm{ohms}
$$

The resistance of the filament itself is:

$$
\mathrm{R}=\frac{6.3}{.3}=21 \mathrm{ohms}
$$

The required capacitive reactance is then:

$$
X c=V 383^{2}-21^{2}=372.4 \text { ohms }
$$

and the capacity is:

$$
\mathrm{C}=\frac{1,000,000}{2 \pi \mathrm{f} \mathrm{Xc}}=\frac{1,000,000}{376.8 \times 372.4}=
$$

The nearest commercial value, 7 microfarads may be used. It should be a paper condenser of at least 200 volts d.c. rating and the right capacity is important.

There is very little difference in the required capacity when another tube is to be
added. Up to three tubes can probably be connected in series with 7 mfd .

With an 8 mfd . condenser in series you can light nine 6.3 -volt type tubes operating on .3 ampere such as the type $39,43,44$, 75, 77, 78, etc., or one 25 Zs and five ordinary tubes or one 2525 , one 43 and one other 6.3 -volt tube.
A single 2 -volt .06 -amp. tube requires 1.33 mmifd. Don't use electrolyzics.

Improving the Browning 35

The type 635 tube proves an excellent output tube for receivers which employ a single 42 in the power stage. In order to change over from the 42 to the 6B5, all that is necessary is to short circuit the bias resistor, as shown in Figure 71. The drain on the power supply is practically the same and the replacement tube requires the same output impedance as the type 42 . The result is better quality and higher output (4 watts). This change has been tried on

Figure 71
a Browning 35 receiver and found to work very satisfactorily and can of course, be used with equal success in other receivers that use the type 42.

An Electronic Interrupter

An interesting application of a vacuum tube is shown in Figure 72, in which a regenerative circuit with grid-leak omitted, is utilized to operate a relay which in turn operates its secondary circuit periodically. The rate at which the circuit is interrupted is regulated by the tuning condenser of the oscillator and of course is limited by the sensitivity of the relay. The amount of amplification depends on the relay as well as on the type of tube used. Using the 30 tube, with two stages of transformercoupled amplification, sufficient power is available to operate a relay, rated at 3 ma . at 3 volts, over a variety of speeds. The tuning unit may be from an old broadcast receiver or made up of some similar combination of apparatus that will cause the tube to "motorboat" when in a circuit of this sort.

This apparatus may be used for flashing signals or in any circuit where an intermittent current is desired.

Figure 72

AMATEUR RADIO

The Popular 5-Meter Range

FIOR the uninitiated it will be interesting to know that 5 -meter amateur radio (and commercial experimental radio) is enjoying a tremendous growth in popularity. It is estimated that in the New York metropolitan district alone there are over 1000 active 5 -meter "ham" stations on the air and every large city boasts numerous experimenters in this field. Not only that. but the suburban and even rural sections boast numerous 5 -meter signals.
The popularity of 5 -meters is explained in 3 ways. First the equipment necessary for transmission and reception is extremely inexpensive as compared with the equipment required for operation on the other amateur bands. Second, for local contacts the 5 -meter transmitter will provide dependable communication with very low power as is demonstrated by the fact that a number of New York "hams" have worked 400 or more 5 -meter stations in this area. The great majority of the 5 -meter transmitters around New York City put considerably less than 10 watts into the antenna and many of them put out only a fraction of a watt. The majority of such transmitters employ receiving tubes exclusively. In fact the 5 -meter transmitter that uses one or more regular transmitting tubes is the exception rather than the rule. The third reason for the popularity is found in the fact that this ultra-high-frequency band provides a tremendous field for the experimentally inclined. While s-meter radio dates back several years it is still in a constant process of development. Every month produces appreciable advances in the art. During these past years a great deal has been learned but the field has not as yet advanced sufficiently far to be "over the head" of the novice who has perhaps tired of the more conventional frequency ranges and is looking for new worlds to conquer.
The requirements of receiver equipment for 5 -meter operation in some respects

Figure 74

Figure 73-
A typical 5 -meter receiver circuit using 6 tubes.

differ radically from those encountered in the lower-frequency amateur bands and the shert and long-wave broadcast ranges. This is essentially a "local" band. Under ordinary conditions reception of signals over range greater than 25 or 30 miles constitutes real DX. On the other hand, good stable communication, with good signal intensity can be expected even from lowpowered stations within a radius of 20 to 25 miles. The ranges will be expanded in time through the use of directional transmitting and receiving antennas and through other developments which overcome the tendency of s-meter signals to travel in straight lines rather than following the curvature of the earth.
5 -meter receivers need not have anything like the degree of selectivity or sensitivity required in receivers operating on the regular short-wave or broadcast ranges. In fact extreme sensitivity or high selectivity seem to be undesirable at the present state of development. The average 5 -meter transmitter does not maintain constant frequency and for that reason a receiver having extreme selectivity would not be able to hold a signal from such a transmitter. Transmitter frequency shifts of 50 to 100 kilocycles or even more are not at all uncommon on 5 -meters. Until such time as transmitters are developed to the point of employing crystal control, M.O. P.A. or other means for stabilizing frequency, high selectivity will continue to constitute a distinct disadvantage.

Super-Regenerative Receivers

Too much sensitivity is likewise a disadvantage in the average noisy location or at least is unnecessary because of the interference from automobile ignition systems and certain other types of "man-made static." Most of the noise interference familiar on other wavelengths, including atmospheric static, is not present on 5 meters but unfortunately ignition noise is present in exaggerated form as are some other forms of interference such as from high-frequency diathermy equipment, some oil burners, etc. Definite values of required sensitivity and selectivity have probably not been worked out but it is
estimated that receiver sensitivity better than s microvalts is superfluous.

At the present time there two types of receivers in general use. These are the super-regenerative and the superheterodyne types. Each type has its staunch supporters and each type has its definite advantages as well as disadvantages. The superregenerative receiver has the advantage that it is particularly effective on s-meters. When properly designed and operated it shows good sensitivity. Perhaps its outstanding characteristic is its peculiar tendency to reject external noise. Even when used in sections where the automobile traffic is continuous, the super-regenerative receiver is not particularly susceptible to ignition disturbance. Such a receiver is likewise simple to operate.
As against these conditions, adherents of the superheterodyne type will point out 3 basic drawbacks to this type of receiver. The super-regenerative detector is inherently unselective. Furthermore, when connected direct to the receiving antenna it radiates badly. Third, the operation of the super-regenerative detector is characterized by a "rushing" sound. On strong signals this rush disappears completely but, on the other hand, it is very much in evidence on weak signals. The amplitude of this rushing sound varies considerably in different

Figure 74A

TRANSMITTING TUBE CHART

super-regenerative receivers, depending upon the care put into the design and adjustment. Claims are made that if a receiver is properly designed, the rush (with no signal tuned in) can be reduced to a point close to inaudibility. However, there are few 5 -meter experimenters that have ever been able to reach this ideal condition without greatly decreasing the inherent sensitivity of this type of circuit.

The Superheterodyne

Recently super-regenerative detectors have been improved greatly through the use of a preselector stage. Such an amplifier stage provides increased selectivity and, being connected between the detector and the antenna, effectively eliminates radiation. It also, in many instances, reduces the "rush" when receiving weak signals. This is not true in the case of all receivers having a preselector stage, however, because it is a rather difficult matter to obtain any appreciable gain in a t.r.f. stage at this ultrahigh frequency unless one resorts to the use of the "Acorn" pentode tube (954) and even then extremely high gain is not to be expected.

The superheterodyne receiver, (for typical circuit, see Figure 73), has the advantage of providing almost unlimited sensitivity and selectivity. Strange as it may seem, it has been necessary, in designing 5 -meter superheterodynes, to intentionally reduce the selectivity and to purposely avoid building in too much sensitivity. This has usually been accomplished by avoiding the use of the usual double-tuned i.f. transformers and substituting resistance-coupled i.f. stages with the resistance and coupling condenser
values so selected as to broadly tune each stage to the desired frequency. These internediate amplifiers will usually pass a band 40 to 100 kc . wide. Such selectivity as is desired is then obtained in the r.f. circuits ahead of the intermediate am. plifiers.

It is a common practice to use the autodyne system of frequency conversion. To accomplish this the first detector is used in an oscillating condition and instead of being tuned to peak on signals it is tuned enough off the signal frequency to beat the signal to the intermediate frequency. To make this practical, the intermediate frequency selected is of a very low order, usually in the neighborhood of 20 or 30 kc . so that the detuning of the first detector will not materially reduce signal strength. Many experimental superheterodynes are provided with a preselector stage with the object of improving the signal to-noise ratio and also of preventing radiation from the oscillating detector. There are, in some instances, a resulting improvement in sig. nal selectivity and in sensitivity. The one weakness of the superheterodyne is that it lack; the noise-reducing characteristic of the super-regenerative receiver.

Unquestionably the ideal receiver installation for a 5 -meter amateur station would consist of two receivers, one of each type. With a low prevailing-noise condition the superheterodyne rcceiver could be employed for weak signals; or at times, when the 5 -meter band is crowded with signals, advantage could be taken of the superior selectivity of the superheterodyne. When the noise conditions grow bad or where high selectivity is not needed the super-regenerative receiver can be switched in. It is more than likely that some manufacturer will produce a receiver in which are com-
bined these two circuits with a switch to pernit either one to be selected as required.

In 5 -meter reception, the antenna plays an extremely important part and for best results the antenna should be one which resonates at 5 meters and should be a vertical rather than a horizontal wire.

The most common practice is to employ an 8 -font length of $1 / 4$-inch copper tubing mounted in a vertical position and supported by means of stand-off insulators on a wood mast. This type of mounting not only holds the copper tubing rigid but also provides a firm anchorage for the lead-in.

The lead-in is a parallel pair with the wires spaced two inches apart as shown in Figure 74. In such a combination, the two wires are fanned out beginning at a point 30 inches from the antenna, and spreading to a distance of 28 inches where they connect to the antenna rod. This type of lead-in should be continued at a right angle to the antenna rod for a $1 / 4$-wave (4 feet) and from that point on may be run to the receiver at any desired angle.

Another excellent receiving antenna sys tem employs an 8 -foot copper rod with the single wire lead-in taken off the top end as shown in Figure 74A.

There are numerous other effective types of 5 -meter receiving antennas but the two mentioned have the advantage of high efficiency and simplicity. Incidently, the 8 foot length is selected not as a matter of convenience, but because this length resonates ($1 / 2$-wave) at 5 meters and therefore, provides extremely effective pick-up for 5 meter signals. Any type of antenna, in cluding a broadcast receiver antenna, will provide a certain amount of pick-up at 5 meters but such antennas are very definitely less effective than the types shown.

5-Meter M.D.P.A. Transmitter

STABILITY equal to that obtainable on lower amateur frequencies may be obtained at 5 meters by following standard M.O.P.A. design practice, provided certain precautions are taken with respect to mechanical layout and choice of tubes.
Signals from the transmitter described have been received on a standard all-wave superheterodyne using two sharply-tuned,
transformer-coupled i.f. stages. Absence of frequency modulation has been further demonstrated by satisfactory reception of phone signals on this same receiver oper ated with its beat oscillator in the "ON" position. Attempts to receive typical modulated oscillators of the long-line type have by way of comparison, proven completely fruitless on this type of receiver.
C.W. reception of the emitted signal is completely practical, comparing favorably with present-day 40 - or 80 -meter trans mission.

The circuit shown in Figure 77 is funda mentally sound in every respect; all "tricks" have been avoided. There are no twin tubes, push-pull stages which are hard to excite, or pentodes in the final

Figure 77

Figure 76

stages which are difficult to keep from going "up in smoke" when under modulation. By avoiding all so-called short cuts and concentrating on high-frequency facts, a stable, high-efficiency transmitter can be constructed.

The 89 oscillator of this M.O.P.A. transmitter is operated on 20 meters, clectron coupled. The plate circuit is tuned to 10 meters and feeds into the second tube, an 89 doubling from 10 to 5. An 802 buffer provides ample excitation to an 801 in the final stage running 60 watts input. The omission of an r.f.c. in the grid circuits of the 89 doubler and 802 stages is rather unusual. However, by so doing. stray capacities are avoided and a high leak resistance provides a minimum of grid losses.
Inductive coupling is desirable from the 802 buffer to the final stage to furnish maximum energy transfer and to further isolate the modulated stage from the rest of the transmitter. The use of a triode in this stage was thought desirable when one studies the inter-electrode capacities of pentode and screen-grid tubes. The tank circuit of the 801 is of the split-stator variety, supplying high efficiency by virtue of the high l.c. ratio. This is accomplished by reducing the circulating tank current and consequently the heating of this circuit and of the tube itself.

The power supplies are mounted on the
lower shelf along with the modulator, and supply 600 volts for the 801 final, 500 volts for the 802 buffer and 450 volts for the oscillator and doubler. This transformer is a special U. T. C. job delivering 600 volts at 350 ma . which feeds all the r.f. stages. The modulator consists of a pair of 59's in Class B, driven by a single 59 Class A; all of which is run from the second supply of 450 volts at 200 ma . The speech amplifier (not slown) consists of a GFS higlı-mu triode, resistance-coupled to a 6Cs transformer-coupled to the 59 driver. This unit provides sufficient gain for a crystal mike, but it is not shown. as it is assumed that most every "ham" has his own "pet" speech amplifer and mike.

All coils are wound with No. 14 enameled copper wire with the exception of the oscillator grid and final plate, which are of No. 12. The remainder of the transmitter is more or less straight-forward practice, as can be seen in Figures 77 and 78.

In adjustment, nothing could be more simple. With the 801,802 and 89 doubler out of their sockets, apply plate voltage to the oscillator. Check the screen and suppressor voltage with a voltmeter. They should read approximately 200 volts and 45 volts respectively. This tube should os cillate immediately and can be checked with a neon bulb. Operation is identical

Figure 78-Left; Figure 79-Above
with any other electron-coupled oscillator. The plate circuit is tuned to 10 meters by watching for a dip in plate milliameter of this tube. It is possible to use the cyystal oscillator circuit, shown in Figure 79, with this rig with similar results when substituted for the electro-coupled inpur circuit. The 89 doubler is plugged in its socket and its plate circuit also tuned to resonance. Likewise with the 802 buffer. The next step is quite important and deals with the loading of the 802 buffer with the grid of the 801 .
This can be done most effectively by disconnecting the plate voltage from the final stage and placing the 801 in its socket. By watching the grid meter on this tube and rotating the grid condenser a sharp rise in grid current will result. When properly tuned. the grid current should read between 18 and 20 milliamperes. If a lower reading is obtained, bend the grid coil near or further away from the buffer plate coil. Once this coupling is found the stage should be neutralized in the usual manner by checking the dip in grid current as the tank condenser is rotated through resonance.

The antenna coupling will depend on the type of antenna or feeder used. In the original tests a Zepp feeder was used. incuctively coupled to the plate end of the tank. The remaining step is to connect the modulator and speech and the rig is ready for QSO.

Two-Way Auto Radio

MANY American amateurs have been having a lot of fun and gaining experience in the operation of portable mobile radio installations by building and operating a 5 -meter radio telephone transmitter and receiver for their cars. The activities on the 5 -meter band have increased to such an extent, recently, that no matter where you drive there are always a number of stations you can contact along the path of travel. This article gives the details of construction of such a transmitter and receiver.

The complete car-radio installation is made in two small metal cabinets installed in a shelf under the back window, as illustrated in Figure 80. One of these contains a complete transmitter and the other a superheterodyne receiver.

The Transmitter

The transmitter itsclf consists of one 6AG oscillator tube using a T.N.T. circuit, with another 6A6 tube as a Class B modulator, and a third 6AG tube as a Class A driver. The transmitting equipment is enclosed in a metal cabinet $5 \frac{1}{2}$ inches by 6 inches by 12 inches, as shown in Figure 81. On the front panel are: the tuning dial (at the left) with the two antenna terminals directly above; a s.p.s.t. switch to aut on and off the B-plus supply for transmission-reception, a microphone jack and a 0-100 milliammeter for checking operation At the right-hand side of this cabinet is a 5 -pronged socket for connecting a plug running to the power supply. B hatteries are employed for furnishing the
plate energy and the transmitter operates very well with B voltages as low as 100 volt:: and develops full power with 275 volts on the plate. At the present time B batteries are used and the oscillator is biased so that it draws about 60 milli amperes at 275 volts. The transmitter has worked very successfully with ranges from 10 to 20 miles, with reports of R8 to R9 reception. Both the transmitter and the receiver are suitable for duplex operation so ihat the car can be moving along while the transmitter is in operation and signals can be reccived and transmitted at the same time, as in a regular telephone conversation.

Details of the coils for the transmitter are as follows: The oscillator plate-tank coil consists of nine turns of No. 12 or

Figure 80-Right; Figure 81—Above
No. 14 wire, wound in a spiral 5/8ths of an inch in diameter and spaced a distance of the diameter of one wire. This tank circuit is tuned by a three-plate 35 mmid . condenser. The grid.tank may have 14 to 15 turns of No. 14 wire, wound in a spiral $1 / 2$ inch in diameter and spaced a distance of the diameter of one wire.
The circuit for this transmitter is shown in Figure 82 and the various parts are noted on the diagram, together with their circuit constants.
A single-button carbon microphone is used with the transmitter and good quality reproduction is assured with a regular telephone hand set.

The Rod Antenna

The antenna itself is mounted directly on the license plate rack, bolted and grounded in this way onto the frame. A single-wire feeder is tapped off this rod direct to the antenna post on the transmitter. The rod is 52 inches long and the tap is made $351 / 2$ inches from the top end. This point is very critical in adjustment and should be carefully checked, for a difference of only $3 / 4$ of an inch up (or down) in this adjustment will cause the signal to drop from an R9 to an Rs. Final adjustment of this tap is made while contacting a distant station duplex so that the receiving station can report at which point the transmitter is operating most efficiently.

The Receiver

The receiver, shown in Figure 84, utilizes 5 tubes in an autodyne "superhet" circuit, using resistance-coupled r.f's. The coils are home-made and full winding instructions for making them are given in the wiring diagram (Figure 83). The first tube. which serves as a combination oscil lator and detector, is a 6C6. The two r.f. stages use 6 D ' tubes while the output detector is a 76 triode tube. Many "hams" prefer to use the set in a car with headphones (to exclude noises while driving along the road) but shown in the circuit is an additional output tube. connected by a switch, for amplifying the signals so that a loudspeaker may also be used.

Construction Details

The set is constructed in a metal cabinet of the same dimensions as that used in the transmitter.

Going back to the wiring diagram (Fisure 83), it will be noticed that the tuning condenser is a small midget of 15 mmfd. The conventional grid leak and condenser are used for coupling to the grid of the first tube. Notice that the r.f. choke is incorporated in the cathode-toground lead. Two of the grids are con-

nected together and brought over to the resistance control which is . 5 megohms with a .1 mfd . by-pass condenser to ground. The chassis is used as a general ground for the various points so designated in the diagram. The first plate-coupling resistor

Figure 82-Below
is 20.000 ohms, the second and third ones are 50,000 ohms each. All of the other grid resistors are $1 / 4$ megohm. The cathode variable resistor, for the first and second 6D6 tubes, is returned to ground for controlling volume. A 10 microfarad con-

Figure 83-Bottom

Figure 84
Birdseye view of the receiver. Looking down on the autodyne receiver discloses the arrangement of the parts in the top compartment and on the front panel.
denser by-passes this part of the circuit for both of these tubes.

The receiver operates very well on 135
volts B and up to 250 volts B. It is used with a 6 -volt storage battery. The detector operates with 45 volts on the plate as
shown. The r.f. choke can be built by winding 75 turns of No. 34 insulated wire on a wooden or glass peg (or a bakelite tube) $1 / 4$ inch in diameter. If wood is used it should be boiled in paraffin first to exclude moisture.

The receiver can be used with a short length of wire installed in the car roof as an antenna or it can be used with the transmitting antenna, with a switching arrangement for changing over from "transmit" to "send."
The receiver is operated by tuning the main dial over the band slowly with the volume control turned part way on for suitable volume while the oscillator adjustment dial is kept in position just beyond the oscillating point. It will be remembered that the autodyne circuit uses the single tube as a detector and oscillator in one. This would not be a very efficient circuit on the higher wavelengths but on ultra-short waves, using a wide-band re-sistance-coupled i.f. amplifier it seems to work out quite efficiently giving great sensitivity.

Ten Meter Transmission

THE 10 meter amateur band has become tremendously active. It has opened up, and there is DX galore to be had with the proper transmitting and receiving equipment. As a matter of fact, for the last year there have been an ever-increasing number of stations on the band, and when conditions have been "right" contacts over several thousands of miles with small amounts of power have not been uncommon. With the increasing number of stations operating on it, more and more is being learned about the necessary types of transmitters. receivers and antennas.

Antennas

In general, it has been found that a half-wave doublet is about as effective as any antenna that can be erected for 10 meters. A majority of the stations are using variations of this system. It would appear, judging from the results obtained by most stations on the band, that a horizontal antenna is the most effective. This may be due to the fact most receiving antennas are horizontal, and naturally are more effective in receiving horizontally polarized waves. The radiation pattern from a half-wave antenna, of course, provides the greatest amounts of radiation in the two directions at right angles to the
axis of the antenna, as shown in Figure 88. Therefore, its erection direction is important.
As for feeding the horizontal doublet, any of the accepted methods may be used. These are three: matched impedance voltage fed; twisted-pair matched impedance and the transformer or Johnson " Q " method. All three are effective. It might be pointed out that a station on the West Coast has done considerable experimenta. tion with different types of antenna, including beams, diamonds, etc., and was heard to say recently that he has always returned to his Johnson " Q " for the best results.

Another type of antenna which should give excellent results but on which complete data is not usually available, is two half-wavelength antennas operating in phase. This type of aerial is less direc. tional than the half-wave type. It merely consists of two half-wave Zeppelin antennas strung end-to-end and fed in the middle with a common pair of feeder wires. It might be called a current-fed 20 -meter antenna. This type antenna provides good radiation in four directions at about forty degrees to the axis of the aerial wire.

The height above ground also is impor. tant. It is something that should be experimented with until the best results are obtained. One station in the East has
found that it is desirable to tilt the antenna in the direction it is desired to "spray" the signals. Between 30 and 45 degrees will give the most marked directional characteristic. The station in question tilts the antenna toward Europe in the morning and toward the West Coast in the afterroon.

It is impossible to predict when the 10 meter band will "open" up during any one day, but observation over an extended period seems to indicate that stations from Europe begin coming through at about 8 A.M. on Sunday morning and other days when these stations are free to operate. Sometimes it is as late as 9 o'clock before they begin to filter through. Stations to the West begin coming through shorly after noon (on the East Coast) and seem to arrive at a peak at about 4 P.M. The times given here are Eastern Standard Time, and of course, conditions will vary in the different time zones, but should follow about the same trend in other sections.

Furthermore, there is no means of forecasting when the 10 -meter band will be good. Some Sundays it will be excellent, and on others no distant signals may be heard at all. Some study of sun-spot phenomena might give some clue as to what may be expected for a given time, but this would not always follow. In general, it seems that with a sudden increase in

Figure 85
Figure 86

Figure 87

Figure 88
the sun-spot curve, short-wave radio improves. Sun-spots, in addition to following the general eleven-year cycle from time to time, show increase for a few days at a time. At such intervals it has been found that instead of improving high-frequency transmission, they have the contrary effect and have been known to cause complete dead spots. Also, another factor enters into the problem of forecasting conditions, that is magnetic storms. These, too, are generally accepted as being related to sunspot activity. But, unlike the effect the spots have on the ionosphere, which appears to follow in step with the sun-spot cycles, the magnetic storms seem to be further removed from the cause. That is, they do not seem to follow immediately after the sun-spot activity which causes them. Therefore, with this additional influencing factor, the problem of predicting conditions is made more difficult.

Transmitters

Several suggested transmitting layouts are illustrated here. Each of them have been in use at different Eastern amateur stations and have provided excellent results. The one which seems to provide the greatest all-around stability and effectiveness is that shown at Figure 85. It is a conventional
layout. The tube line-up is a 53 used as 40 -meter oscillator- 20 -meter doubler; an 802 for doubling into 10 meters and an 801 type tube in the final. It was possible to run up to 100 watts input in the final amplifier with a high degree of efficiency.

Another suggested layout is shown at Figure 86. It consists of a 59 tri-tet oscillator using a 40 -meter crystal with the output tuned to 20 meters, a 46 amplifier, an 841 doubler and an 801 in the final. This arrangement proved quite effective with 50 watts input to the 801 .

A third suggested layout is shown at Figure 87. This consists of a 53 oscillator, quadrupler, a 46 buffer and an RK. 20 am plifier. By using regeneration in the 53 amplifier-it is possible to obtain sufficient excitation to drive the 46 at low input in 10 meters. Of course, the output from the 46 will be sufficient to drive the pentode final amplifier on ten meters, as 5 milliamperes grid current is more than sufficient to operate this tube at a normal input. A high c.w. output and a 15 to 20 -watt carrier, with suppressor grid modulation, may be obtained.

Receivers

Receivers for 10 meters are another problem. Few of the all-wave receivers that per-
form exceptionally well on frequencies of 14,000 kilocycles or lower are proportionally as efficient on 10 meters. Some will give satisfactory results, but the chicf problem on 10 meters is that most all-wave receivers tune so manv kilocycles per dial division that only very careful tuning will reveal signals. Ten-meter signals seem to be much sharper than those of lower frequencies. This, of course, is only apparent, as it requires only a small amount of capacity change in an L.C. circuit to cover several kilocycles, with a result a far greater degree of band spreading is necessary than available for lower frequencies. In receivers with changeable coils, the band-spreading problem is simplified by the fact it is possible to change the tuning ratio more in keeping with the frequency. The 10 -meter band, however, covers 2,000 kilocycles, and even with a receiver designed to spread the whole band over a 180 degrees of a dial, tuning will be found to be exceedingly sharp.
This in a general way covers the problems of 10 -meter operation. It is hoped with the increased activity, more will be learned about the band, and just what may be expected of it. As we said before, in ad dition to providing good DX possibilities, it also is an excellent band for local com munication.

All-Band Transmitter

THE last few years have brought so many new developments both in equip. ment and circuit design, that it is difficult to keep pace. New tubes have been developed that lessen the number required for a given amount of power in a transmitter; new exciter units have been designed that facilitate greater flexibility and band switching equipment has been made available. In view of these developments it is possible now to build a transmitter that may be operated on all but the ultra-high frequencies (above 56 megacycles) and even these may be covered with some of the latest types of equipment. It no longer is necessary to have a separate transmitter for different bands as it once was; either changeable coils or switches may be installed that facilitate all-band operation with a single unit.

For instance, a typical all band transmitter might be something like this: A 53 or 6A6 type tube as oscillator and frequency multiplier, a 210 or 801 buffer stage and a 203A or 211 final amplifier. Such a trinsmiter may be operated on all frequencies ranging from 1,800 to 28,000
kilocycles. In the experimental model shown in Figure 90 plug-in coils and semi-bread board construction were used, but the lay-
out lends itself well for standard rack and panel mounting. With it, it is possible to jump from 1,800 to any other band in

Figure 89

COIL DATA					
BAND	11	L2	L3	14	15
1.8MC	65 TURNs ON 1/2 FORM, Ne 22 tapped	-	$\left\|\begin{array}{c} 55 \text { TURNS } \\ 2^{2}{ }^{2} .18 \end{array}\right\|$	$\begin{gathered} 55 \text { TURNS } \\ 2 . \\ \mathrm{N} 0.18 \end{gathered}$	$\begin{aligned} & 45 \text { TURNs } \\ & 3^{3} .14 \end{aligned}$
3.5MC.	$\begin{aligned} & \text { SAME } \\ & \text { AS FOR } \\ & 1.8 \mathrm{MC} \end{aligned}$	$\begin{gathered} 25 \text { TURNS } \\ 1 / \frac{1}{2} \\ N \in 48 \end{gathered}$	$\begin{gathered} 28 \text { TuRNs } \\ 2^{2} .18 \end{gathered}$	$\begin{gathered} 28 \text { TuRNs } \\ 2^{2} .18 \\ N .18 \end{gathered}$	$\begin{aligned} & 34 \text { TURNS } \\ & 21 / 2 \\ & N 8.12 \end{aligned}$
7 MC .	$\left\{\begin{array}{l} 14 \text { TURN } \\ 14 / 2{ }^{2} \\ \text { NAPPED } \\ \text { TAP } \end{array}\right.$	-	$\left\lvert\, \begin{aligned} & 22 \text { TURNS } \\ & 2^{2}-14 \\ & N^{2} \cdot 4.4 \end{aligned}\right.$	$\begin{aligned} & 22 \text { TURNS } \\ & 2.14 \\ & \text { NBACED } \\ & \text { SPACE } \end{aligned}$	$\begin{aligned} & 16 \text { TURNS } \\ & 21 / 2^{\prime \prime} \\ & 3 / 16^{21 A} . \\ & \text { COPPER } \\ & \text { TUBING } \end{aligned}$
14 MC .	$\begin{aligned} & \text { SAME } \\ & \text { AS FOR } \\ & 7 \mathrm{MC} \end{aligned}$	$\begin{aligned} & 7 \text { TUUNS } \\ & 1 \text { 1/2 } \\ & \text { Noi } 18 \\ & \text { SPACED } \end{aligned}$	$\begin{array}{\|c\|} \hline 10 \text { TURN } \\ 2^{*} .12 \\ \text { NQ.. } \\ \text { SPACED } \end{array}$	$\begin{gathered} \text { HO TURNS } \\ 2^{2} .12 \\ \text { NPACED } \end{gathered}$	9 TURNS $1 / 4^{\circ}$ DIA. COPPER TUBING
28 MC	11	11	"	"	3 TURNS 1/4 COPPER WIDELY SPACED
THE TAP FOR L4 COILS IS $1 / 4$ THE NUMBER OF TURNS FROM THE PLATE END.					

about thirty seconds; to use 'phone with either grid or high level plate modulation or C.W. merely by switching or plugging in the necessary cuils, crystal or amplifier.
With a variety of crystals, each in a separate holder, it is possible to operate on any band. In the experimental transmitter two crystals were used, one at 1,995 kilocycles and the other at 7,100 and with these operation is possible on 1995 or 3,990 kilocycles with one and on $7,100,14,200$ and 28.400 with the other, thus facilitating five band operation. This necessitates two crystal coils each tapped one-quarter the total number of turns from the plate for fundamental operation; two

Figure 90-Above;
doubler coils, one for 75 meter operation and the other for 20 meters; four sets of buffer plate and amplifier grid coils each with separate links and five tank coils for the final amplifier. All are of the plug in type, although coil switching arrangements could be used in all cases if desired.
The circuit diagram is shown in Figure 89 and complete coil data is given in Figure 91.

To operate the transmitter on the 1.800 kilocvcle band the necessary oscillator coil is plugged in, and the plate coil of the doubler section of the 53 oscillator is removed from the circuit. This disconnects the nlate voltage from the second triode section. If tapped coils are used in this circuit, it will be necessary to provide a switch to cut this unit out of the circuit. The exciter control switch is connected to the oscillator coil tap by means of the

Figure 91—Left
single-pole-double-throw-switch; the 1800 buffer tank, amplifier grid and plate coils are plugged in the circuit. To shift the transmitter to the 75 meter 'phone band, the oscillator coil of course is the same; the doubler coil is inserted in the second 53 triode plate circuit; the exciter switch is connected to the plate of the frequency multiplier; the 75 -meter coils are plugged in the remaining three circuits. A similar procedure to that for $1800-\mathrm{kc}$. operation is followed for putting the transmitter on 7100 ; and the doubling procedure for 14. 200-kilocycle operation. To operate the transmitter on 10 meters, everything is the same as for 20 meters, excepting the final tank coil, which uses the final amplifier as a doubler. This arrangement is not as efficient as exciting the final amplifier at 28 megacycles, but will give adequate output for reliable work at this frequenc

MOST IMPORTANT FEATURES EVER OFFERED IN A CONTROL

1. "KNEE ACTION" CONTACT

Made by 5 separate silver plated phos. phor bronze springs.
2. NO "JUMPINC"

Fach contactor invariably follows the same smooth "path" across the resistance element.
3. NO OBSTRUCTIONS

IRC contact method on tapped controls eliminates obstructions in path of conractor. Smoother adjustment-no noise.
4. DUST-PROOF CASE
5. CORROSION-PROOF

All electrical contacts are proofed against corrosior

6. METALLIZED TYPE

RESISTANCE ELEMENT

Permanently bonded to moisture-proof Bakelite base.

MOISTURE-PROOF
The Bakelite base of resistance element cannot absorb moisture--nor will moisture damage the Metallized type resistance coating.
8. SMALL-But Not Too Small Minimum size for universal application and maximum performance.
9. PROTECTED TERMINALS

Deeply set in molded Bakelite.
10. AMAZINCLY SMOOTH

IRC products ate sold by leading jobbers everywhere. Write today for catalog listing Volume Controls aad Resistors for every need.

Pioneered and perfected by IRC. Insulated Resistors have proved theit superiority for service replacenvent and amateur radio use. Made in $1 / 2$ watt, 1 watt and 2 watt sizes in a complete range of values.

International Resistance Company Philadelphia, Pa.

SERVICING AND ENGINEERING NOTES

All-Wave Frequency Meter

IN response to an insistent demand for an all-wave oscillator of high frequency stability, low cost and small size, this simple instrument has been developed. The range extends from 540 kc . to $22,800 \mathrm{kc}$., which is sufficient to cover all short-wave bands from 14 meters up as well as the regular broadcast band. Through its use, the calibration of all-wave receivers may be readily checked, or one may determine immediately the frequency of an incoming signal with a high degree of precision.
The circuit employed is an improved negative resistance type which extends the outstanding features of this type of oscilla. tor to ultra-high-frequency operation. The simplicity, high stability and excellent waveform characteristics of the negative resistance circuit described in the RCA Radiotron Company's Application Note No. 45 stimulated our endeavors to find some way of overcoming its inherent limitations, namely, failure to operate consistently at radio frequencies above 15 megacycles and weak oscillation at somewhat lower radio frequencies.

In analyzing the circuit, it was discovered that by shifting the phase of a large portion of the shunt impedances and considering other transconductance relationships, the frequency range might be greatly extended and its normal high-frequency performance definitely improved. This was confirmed experimentally and the present circuit (Figure 96) illustrates an application of the new method. Briefly it is done by inserting low-inductance, ultra-high-frequency chokes in the control-grid and plate circuits.

Uses Standard Parts

The instrument shown in Figure 94 is entirely self-contained. A small transformer designed to operate from the a.c. line furnishes filament current. Since the total cathode current is but 2 ma., the other voltages required are economically supplied by a small Burgess $221 / 2$-volt type 5156 battery and a $4 \frac{1}{2}$-volt C battery. type 2370. Five Hammarlund plug in coils are used to cover all the usual short

Figure 95

Figure 94
The vernier dial permits accurate readings to $1 / 10$ of 1 degree. Once calibrated from broadcast stations by the harmonic method, the calibration will be accurately maintained indefinitely.

wave bands and the broadcast band. The special high-frequency coil may be wound quite simply by hand. It consists of but 5 turns of No. 20 wire spaced of $13 / 8$ inches on a Hammarlund coil form. The manufactured coils all have an extra winding of fine wire, which is not used in this design. A Hammarlund 140 mmfd midget Midline variable condenser is used for tuning. It is supported by a heavy brass angle bracket as shown in the photograph. A Crowe precision vernier dial makes for ease in tuning and exact calibration. The Yaxley pilot light and bull's-eye is used as a reminder to those of us who occasionally forget to turn off the power when the instrument is not in use.
The layout as shown in the photograph should be carefully followed. The Hammarlund Isolantite tube socket is mounted slightly below the chassis, spacing washers serving to prevent any accidental shorts to

Figure 9^{6}

the chassis. The coil socket of the same make is elevated about $3 / 4$ inch above the chassis to facilitate coil changing and decrease coil losses. The Ohmite 5.2 mi crohenry r.f. choke is in the control-grid circuit and the Insuline 5 -meter r.f. choke is used in the plate circuit.

Simple and Compact

While a type 6C6 tube was used in this instrument, the corresponding 2.5 -volt type 57 may likewise be used if a suitable filament transformer is on hand. The type 57 is capable of an even greater frequency range and output. The Insuline cabinet is 9 inches long, 6 inches high and 5 inches deep, and the chassis of the same make is $81 / 2$ by $43 / 4$ by $11 / 2$ inches. The small stand-off insulator post serves as the oscillator output connection. For sensitive receivers, the nut and screw terminal projecting into the case will provide suff. cient pickup when receiving weak signals, particularly in the short-wave ranges. If greater output is desired, a 4 -inch length

Figure 97

of wire may be bent around the output terminal and curved over near the coil winding.

Lower frequencies may be covered by using simple, single-winding coils. No other changes will be required. The circuit is readily adaptable to band-spreading and to operation at much higher frequencies, if suitable chokes are used.

In spite of the fact that this oscillator uses a small tuning condenser (a "low C" circuit) its stability is nevertheless excellent, as indicated by the following descripton of tests made at W2JCR. The model shown in the photographs was turned on cold and turned to zero beat with the crystal-controlled carrier of WEAF, 660 kc . During the following ten minutes the oscillator drifted very slowly through a range of only 200 cycles. At the end of this ten-minute period the oscillator was
again tuned to zero beat and for the two hours following did not vary more than 60 cycles. At the end of this test the oscillator was turned off and everything was left without change until the following morning. When the oscillator was again turn on cold it was found to be 240 cycles off resonance but at the end of a ten-minute period had again arrived at a point within a few cycles of zero beat.

The foregoing test-and this test was borne out by numerous others - indicates that the maximum frequency variation encountered from a cold start was less than 300 cycles when tuned to a frequency of 660,000 cycles (660 kc .), or one part in 2200.

The stability of this oscillator can be still further improved by employing a "high C" tuning circuit. In the present model a wide tuning range was required for universal
operation. However, if the constructor desires to use the oscillator in some particular ranges, as in covering the relatively narrow amateur bands, a fixed shunt capacity of at least 100 mmfd . could be employed. The fixed capacity value could be selected to provide the coverage or amount of band-spreading desired. The Hammarlund plug-in coils have provision for mounting adjustable tank capacities within the coil. Either their type APC air condensers or type IBT mica compression condensers fit these mounting holes. The former are available in capacities up to 100 mmfd . and the latter in capacities up to 220 mmfd., both with screwdriver adjustment. This plan cannot be used in the very high-frequency range because with such high capacity the inductance required would be too small to permit stable oscillation.

Simple B. F. Audio Dscillator

0CILLATORS covering a wide range of audio frequencies form an indispensable part of the equipment of all radio laboratories and factories. They are used in making performance curves and in production testing of practically every type of sound reproducing apparatus. With the present trend toward increasingly high fidelity of reproduction, widespread interest has developed among service organizations for satisfactory instruments of this type.

The beat-frequency type offers distinct advantages in speedy operation over a wide and continuously variable range of audio frequencies. Through its use, speaker rattles or other deficiencies are quickly revealed. It is essential for the proper adjustment of audio filters in high fidelity receivers.

A satisfactory instrument of this type should have substantially pure sine wave output, since a high percentage of harmonics will make it useless for measurement purposes. It should be free from "birdies". a common defect caused by spurious beats occurring between undesired frequencies generated in the individual oscillators and mixer. To avoid frequency drift, each oscillator must be of identical design, free from harmonics and with carefully adjusted voltages. Furthermore, the circuits must have high inherent electrical stability.

The instrument shown in Figure 98 meets these requirements yet is no more difficult to build than a simple receiver.

There are no special coils to wind, no ticklers or taps to adjust, no special shielding, no ponderous array of batteries. Yet, as the oscillograms in Figure 101 indicate, its output is substantially a pure sine wave, slight distortion being apparent only at 30 cycles.
A relatively unfamiliar means of obtaining oscillation has been adapted to both the variable and fixed frequency oscillators. In spite of its simplicity, it should be distinctly understood that it is not a secondary emission dynatron. It utilizes the negative resistance characteristics of pentodes which results when voltages of the values indicated are applied to individual elements. This method of obtaining nega. tive resistance is thoroughly described in Application Note No. 45, issued by the RCA Radiotron Company.

The Circuit Details

As shown in Figure 100, the instrument employs three tubes, 6C6's being used as the oscillators and a dual triode 6A6 as the mixer. A $221 / 2$ volt B battery and a $41 / 2$ volt C battery mounted within the case, and an external filament supply transformer constitute the entire power supply. If desired, the filament supply may be taken from the associated amplifier or a storage battery. The filament transformer is mounted externally to avoid any possibility of hum-pick-up. The inductances L1 and

L2 are simple 2.1 milli-henry Hammerlund r.f. chokes. The fixed-frequency oscillator is tuned to approximately 108 kc . by means of C3 and C4. The variable frequency oscillator range extends from 108 kc (with C10 and C11 at minimum capacity setting) to approximately 94 kc . C 11 is a 15 mmfd. midget variable condenser from which one rotor plate was removed and the remaining one bent to give a small capacity change at low-capacity settings. The total rated range is from 30 to 13,000 cycles, but it will be found possible to operate below 30 cycles if desired since there is no noticeable tendency toward interlocking with this circuit even as low as 2 or 3 cycles per second. The upper limit may be increased or decreased by using smaller or larger capacitances to replace C4 and C12. The variable-frequency oscillator output is fed through RS, and the blocking condenser C_{7} to one grid of the 6A6. RS limits the input to the grid and also minimizes back-coupling reaction from the plate of the 6A6 to the suppressor of the 6 C 6 . The fixed-frequency oscillator output appears across R1 and R2 in series. The very small voltage drop across R 2 is fed into the remaining grid of the 6A6. This form of coupling has been selected because it keeps the grid at low potential with respect to stray voltages so no shielding is required. The plates of the 6A6 are connected in parallel, so that modulation of the stronger variable frequency by the weaker fixed frequency is effected in the

Figure 98
Figure 99

Figure 100
plate circuit. The oscillograms prove that grid rectification as used in this instrument is satisfactory. The 85 millihenry r.f. choke L3, with C6, are used to by-pass r.f. components. T2 is an interstage transformer, its excellent frequency characteristic making it desirable for this instrument.

Construction Data

The instrument is assembled on an Insuline chassis measuring $7 \frac{1}{2}$ by 11 by $21 / 2$ inches. After drilling, the parts may be assembled and wired in accordance with the general layout indicated in the photographs, Figures 99 and 102. Keep the wiring of the oscillator circuits as nearly alike as possible. The inductances, L1 and L2, should be placed at right angles, though the stray field is small. The leads to the 6 A6 grids should be well separated. Particular care should be taken with the heater leads. These should be twisted together and kept as far as possible from leads carrying r.f. The $221 / 2$ and $41 / 2$ volt batteries are joined in serics. Voltages indicated are with respect to ground, which is taken at the -3 tap on the $4 \frac{1}{2}$ volt battery. The plate voltages are not critical. The higher voltage gives greater output and the lower, maximum stability.

When completed, the output terminals should be joined to the input of a good two-stage audio amplifier. The oscillator has a high-impedance output designed to work directly into a grid, therefore the leads should be short. Connect a speaker to the amplifier and vary C 10 until an audio note is heard. With Cl 0 and Cll at minimum capacity setting, adjust C3 (which is mounted on the chassis) until no sound is heard (zero beat). Leaving C3 set, varying either C 10 or C 11 should cause a low-frequency note to be heard. If C_{3} cannot be adjusted to zero beat as indicated. interchange Cl2 and C4 and repeat. C4 should have the lower capacitance. C3 is used to compensate for inequalities of capacitance.

It is desirable to match the tubes in any beat-frequency oscillator. This may be done by interchanging the tubes with the instrument adjusted to a very low frequency. The frequency change should be as small as possible. They should likewise be matched for thermal characteristics. Disconnect the filament supply while listening to a low note. Only a slight change in pitch should result as the tubes cool.

Calibration without laboratory apparatus may be effected by comparison with notes of a musical instrument. Middle C on the piano is 256 cycles (international pitch) and the frequency will double for each octave above this point. Likewise, we may divide by two for each lower octave. After obtaining several points, a curve may be plotted and the higher frequency points determined by extrapolation. A musician's pitch pipe, forms a convenient means of rechecking frequency calibration each time the instrument is used, for precise work.

In operating, the small dial is calibrated for the lower frequency range while the large dial is used for the balance. This combination will be found to give a smooth and non-critical coverage of the entire range without the use of specially shaped variable condensers.

The output of this instrument is about .3 volts at 400 cycles. Therefore, an amplifier will be necessary for nearly all applications. Both the Radio News amplifier described on page 47 and the small unit described on page 60 and 61 of this book have given excellent results.

Parts List

C1. C2, C8, C9-Aerovox tubular by-pass con C3-Hammarlund Type MC-140 M midget Mid-C3-Hammarlund Type $\mathrm{MC}-140 \mathrm{Mmmid}$
C4. C6. C12-Aerovox fixed mica condensers.
 Cs, C7-Acrovox fixed mica condensers .0001 C10--
Cio--Hammarlund Type MC-325M midget Mid line variable condenser, 325 mmid . Ctl-Hammarlund "Star" midget variable con. L1. L.2-Hammarlund Type CH.X midget e.t chokes, $2.1 \mathrm{~m} . \mathrm{h}$.

Figure 101

Figure 102
L3-Hammarlund Type RF. 85 r.f. choke, 8s R1, R3. R 3 , I.R.C. resistors. 1 meg., 1 watt R2-I.R.C. resistor, 40,000 ohms, I watt R4-IR.C. resistor, is meg., 1 watt R5-I.R.C. resistor. I. 5 meg., 1 watt
R6-Center-tapped filament resistor, 60 ohms, (used only of filament transformer is not center tapped)
SW—Insuline s.p.S.t. oggle switch Ti-Amertram De Luxe interstage a.f. transNormer, Pype Dional Precision dial, type N., O.100, clock. wise rotatton
Wise rotation light, hracket and bulls eyc
Insuline No. 2218 dial plate and pointer knob, 0-100
Insuline pointer knob No. 3828 . $12 \times 8 \times 7$ irches 1 Insuline steel chassis No. 1531 (not drilled). $11 \times 71 / 2 \times 21 / 2$ inches
I Binding post terminal strip, 2-gang
2 wafer sockets 6-prong
1 Wafer socket 9 -prong (large)
2- 1 C 6 or 9 tubes
IFilament transformer (sce text)
$221 / 2$ volt type 5156 Burgess hattery
41/2vole type 2370 Burgess battery
1 Line cord and plug:

Crystal Calilibrating-Dscillator

RECENTLY a need was felt in the Radio News laboratory for an accurate frequency standard for use in checking receiver calibration, r.f. oscillator calibration, etc.

The accompanying photographs and circuit diagram show the instrument which was built up to fill this need. The unit is a crystal oscillator with built-in power supply
to operate from the a.c. line, using a 6 L. 6 "beam-power" amplifier tube for the oscillator because of the abundance of strong harmonics which this tube provides. So

Figure 103-
A speedy and highly accurate instrument for checking receiver or signal generator calibrations throughout all ranges. A built-in power supply furnishes all operating voltages from the a.c. line.
useful has this device proved that the circuit (Figure 104), photos (Figures 103, 105 and 106) and parts lists are presented herewith for the benefit of others who may have need for a similar unit.
The crystal employed will depend on the purpose for which it is to be primarily used. The cheapest crystals are those employed by amateurs and resonate in the 160 , 80 and 40 meter bands. One resonating around 2000 kc . will prove very useful for checking the calibration of tunable r.f. oscillators or signal generators. Such a crvstal will provide check points every 2000 kc . throughout the high-frequency range of the oscillator. Then by tuning the oscillator in the low frequency ranges sn that its harmonics beat with the crystal fundamental, additional calibration points are obtained at $1 / 2,1 / 3,1 / 4$. etc.. of the crystal frequency. When the calibration of an r.f. oscillator has been checked, it in turn can be employed to check the calibration of receivers or other equipment.

Determining Frequency

It is not necessary to purchase an expensive crystal of accurately known frequency for this work. If it is rated at approximately 2000 kc ., for instance, its frequency can be readily determined to 1 part in 10,000 by a simple procedure, requiring only the use of a receiver and any sort of a tuned r.f. oscillator. This is accomplished by first tuning the receiver to resonance with the crystal fundamental frequency, then tuning the other oscillator around the 1000 kc . range until its second harmonic heterodynes the crystal to zero beat as heard in the receiver. Next tune the receiver to resonance with the tuned oscillator to determine its approximate frequency
then tune in a broadcast station on the nearest adjacent broadcast channel. The result will be an audible heterodyne between the tuned oscillator and the broadcast station on that channel. The pitch of this heterodyne is then estimated, or can be more accurately determined by finding the nearest note on a piano and converting this pitch to terms of frequency.

As an example, suppose after following this procedure, the broadcast station proved to be KDKA and it was just lower in frequency than the tuned oscillator, heterodyning at some audible frequency. Inasmuch as broadcast stations are required to maintain their carrier frequencies constant within 50 cycles and most of them stay well within this range, the frequency of the tuned oscillator would be 980 kc . less the frequency of the audible heterodyne. Now, running up a piano keyboard the note nearest might be found to be middle E . The frequency of this note is 320 cycles, therefore the tuned oscillator frequency is 980,000 cycles less 320 cycles or 979.68 kc . The crystal frequency would therefore be twice this, or 1959.36 kc . The only factors of error here are those resulting from inability to determine by ear exact zero beat between the oscillators, and to precisely judge the frequency of the audible heterodyne between the oscillator and the broadcast station carrier. With due care these errors combined should not amount to more than approximately 100 cycles. For applications around the laboratory or shop this degree of accuracy is so far superior to the accuracy with which receiver or signal generator dials can be read that is entirely negligible.

The harmonics of this crystal oscillator will provide good strong signals all the way down to 1 or 2 meters. Using a crysstal that resonated at 737.81 k.c., for in-
stance, a 5 -meter receiver was calibrated using harmonics around the eightieth which were sufficiently strong to be the equivalent of a good R9 ${ }^{+}$signal in the 5 -meter receiver.

Use with Tuned R.F. Oscillator

One practice followed in the laboratory is to use this oscillator in conjunction with a simple tuned r.f. oscillator. Naturally, when an attempt is made to use the harmonics of a relatively low-frequency oscillator, there is usually some difficulty in identifying the harmonics. To overcome this the tuned r.f. oscillator is adjusted to one of the low harmonics of the crystal, such as the fifth for instance. Then as the receiver under test is tuned down through its range the audible beat of the two oscillators will be heard at the fifth harmonic of the crystal frequency, the tenth harmonic, etc. Then between thesc multiples of five it is easy to keep track of the other harmonics

No modulation was provided in the crystal oscillator as all the crystal harmonics will show up in a receiver either by watching the tuning meter if it has one, by listening to the suppression of noise in a.v.c. receivers or by the use of a beatfrequency oscillator if the receiver in question is equipped with one.

Where a very low frequency crystal is employed, such as 100 kc ., numerous calibration points can be obtained to check calibrations in the broadcast band. If the main interest is in short wave or ultrashort wave calibrations, a crystal of higher Erequency can be employed.

The method suggested above can be reversed with a fair degree of success by adjusting the tunable oscillator so that the crystal will beat with one of its harmonics. In that case, any of the conventional tubes could be used in the crystal oscillator as its higher harmonics would not be used.

The method of using the oscillator to check the calibration of a receiver should be quite obvious. The first step is to make, by simple multiplication, a complete list of the frequencies at which harmonics of the crystal fall. Then it is only necessary to tune the receiver through its range, starting at the low frequency end (assuming that a low-frequency crystal is used). As the receiver is tuned to resonance with each harmonic, a notation is made of the frequency as read on the receiver dial and beside it is noted the frequency of the harmonic. The difference between these two will be the calibration error of the receiver. Due to the relatively high power of the harmonics of the crystal oscillator. it will normally not be difficult to keep track of them if tuned in regular sequence but in any event the use of a separate tuned oscillator will provide an audio beat at every fifth harmonic (or other multiple)

Figure 104

thus providing a sufficient check to keep the harmonic count straight.

Provides For Different Crystals

The unit provides for using different crystals if desired. The crystal plugs into an ordinary 6 -prong tube socket and coils of the plug-in type make the tuned circuit adaptable to crystals of any frequency. W'hen crystal and coil are plugged in it is only necessary to rotate the condenser until the meter dips, thus indicating an oscillating condition. Best operation is obtained just off the point of maximum dip. The non-oscillating plate current is around 12 ma . The meter may be an $0-10 \mathrm{ma}$. meter shunted to provide full-scale deflection when the circuit is not oscillating. Or a higher range meter may be employed without a shunt if desired.

Parts List

C - Hammarlund "Star" midget variable condenser, 140 mmfd .
C2-Acrovox fixed tubular condenser, type 484, $.05 \mathrm{mfd} ., 400$ volt
C3. C4-Aerovox 2 -section electrolytic condenser, type GG. 8.8 mfd ., 200 volt
R1-I.R.C. carbon resistor, 1 meg. $1 / 2$ watt.
R2, R3-Electrad wire-wound resistors, 10,000 obms, 10 watts
124--Wire resistor meter shunt
Ti: Wholesale Radio Service Company power transformer, type MYB 1353, primary 110 v., 60 cycles; secondary. $250 / 250 \mathrm{v}$. at 65 ma . 6.3 volt. 5 v.

Triplett type 223 milliammeter, 0.10 ma .
Bud crystal holder
1 crystal
1 Hammarlund plug-in coil, 4 prong (tange to suit crystal)
6-prong wafer socket for crystal
1 4-prong wafer socket for coil
Octal wafet sockets
Insuline steel cabinet, $9 \times 5 \times 6$ inches, type 3825 Insuline cadmium plated steel chassis, blank, $81 / 2 \times 43 / 4 \times 1 / 2$ inches. type 1560
Yaxley pilot light bracket and bulls eye

Figure 106
Under-chassis view of oscillator

1 double binding post strip
Insuline toggle switch, S.P.S.T
1 Insuline pointer knob (small)
Rubber grommets, assorted sizes
16.3 volt pilot light

6 feet power cord, plug

Resonance Tester

IN radio-frequency work the serviceman and experimenter often find it necessary to match coils, check the tracking properties of tuning condensers or to adjust a series of tuned circuits to resonance. The instrument described here is designed for just such uses.
Fundamentally this simple unit consists of a high-frequency oscillator beating with some harmonic of a low-frequency oscillator so that a condition of zero beat is indicated in headphones connected in the plate circuit of the former. Now when a tuned circuit is connected across the grid circuit of the low-frequency oscillator and C. (Figure 108) is adjusted to zero beat with some harmonic a very slight change in the electrical characteristics of this tuned circuit will upset the condition of zero beat. Thus we have a simple and very accurate method of comparing tuned circuits, tuning coils and condensers, and adjusting them to exact resonance.

Three type - 27 tubes are used, two as oscillators and one as rectifier in the plate supply. Of course, any other suitable triode may be used, such as the 56, 76, 6 C 5 , etc. The entire unit is contained in a metal case $83 / 4$ inches long, 7 inches high and 5 inches deep with a panel $91 / 2$ inches long, 8 inches high, of $1 / 16$ inch steel. The accompanying photographs show the layout of the parts and general method of construction.

The two oscillator coils are home made. L1 consists of 45 turns secondary, 20 turns tickler, L2 consists of 11 turns secondary, 7 turns tickler. All windings are wound with No. 26 enameled wire on a $11 / 2$ inch form.

A detailed account of the construction of this device is not necessary as the illustrations and drawings are self explanatory. Suffice it to say that the small filament

Figure 109

Figure 107-
Not only will this instrument provide an accurate indicator for matching coils and condensers but it is equally effective in checking alignment of tuned circuits.

transformer is mounted under the bottom panel as is also the filter choke. The filter condensers are mounted directly above the transformer on the top side of the pancl. The two oscillator coils, variable condenser, power switch, phone jack, and variable resistor are mounted on the front panel. Precautions for insulation should be taken where necessary.

Operating Data

After the unit has been assembled and' wired, insert tubes and plug in headphones. If the high-frequency oscillator is functioning properly a distinct click should be heard upon touching the stator plates of the variable condenser with a

Figure 108

Figure 110
metal screw driver. If there are indications that this circuit is not oscillating try reversing the tickler connections. The variable resistor should control any howls or squeals that may take place. Now upon rotation of the tuning condenser a series of beat notes should be heard, one every 10 or 15 points on the dial. This shows that the low-frequency oscillator is functioning and after placing the instrument in its shielding case it is ready for use. A shielded lead about 20 inches long provided with spring clips on one end and spade tips on the other is used for connecting to the circuit under test.

If a tuned radio-frequency amplitier is to be aligned the procedure is as follows: Make sure tubes and shields of receiver are in place. The external grounds should be disconnected. The test lead is clipped to the ground (chassis) and grid end of the detector tuning coil. Now turn the indicator dial until a beat note is heard in the phones and carefully tune to zero beat. Next move the grid clip to the grid of the preceding r.f. stage. If condition of zero beat is not maintained in this stage adjust trimmer condenser until it is. Proceed in this manner with remaining stages. The alignment may be checked at any other setting of the tuning condensers without disturbing the trimmers as would have been necessary using an ordinary oscillator and output meter. Intermediate amplifiers in superheterodyne receivers are aligned in the same way.

To determine if a set of coils is properly matched, simply clip the test leads across one of them and tune the resonance indicator to zero beat. Upon connection to any of the other coils zero beat should be obtained at the same setting. If zero beat is obtained at a lower dial setting, the inductance is too low. If at a higher dial setting the inductance is too high. (Pro-
viding, of course, that the dial reads 100 when the condenser is closed.) Ganged condensers may be checked in the same way.

In the year or so during which the designer has used this device it has proven to be of inestimable value, and the fact that it is powered from the light mains seems to have no bearing on the results of which it is capable. But remember, it is not a frequency meter, it can be used only to indicate a condition of resonance when the values are approximately the same.

List of Parts

12.5 volt filament transformer. (1100 turns No. 32 DCC wire as primary, and 25 turns No. 16 enameled wire as secondary wound over an old audio transformer core
filter choke (may be the primary of small audio transformer)
Sw, power switch
3 waker type sockets, 5 prong
2 oscillator coils (as specified)
120 in . shield lead (shield itself may be used as one conductor)
vernier dial, 1 phone jack
Condensers and resistors of values shown in Figure 108
Wire, hardware, etc
The constructor may use his own judgment in building a suitable case.

Service Hints

Windmill Power

With several manufacturers putting out Wind-Mill Power Plants and receivers designed especially for use with them both the farmer and the rural serviceman are getting a new "break." Some servicemen are jacking up their profits by constructing the wind-mill and charging unit themselves.

The accompanying photograph (Figure 112) shows an improved power plant. The model is mounted on a standard steel windmill tower. A 6 -foot airplane-type propeller

Figure 112

is mounted on the front-wheel assembly of a Model T Ford. and drives a 6 -volt automobile generator at a $3-1$ ratio by means of the conventional V -shaped fan belt. Sliding contacts on the platform permit it to turn with the wind. The propeller is offset $31 / 2$ inches from the turntable pivot, providing a tendency to turn away from a strong wind, with the effect of a governor.
Obviously, as high a position as possible, within reasonable distance from the receiver location, should be chosen for the windmill. The charger should be positioned at least 10 feet above the ground, and be sure that no obstructions, such as trees, silos and large buildings, are close enough to obstruct the wind. In almost every location there is a prevailing wind, and the tower should be erected in such a spot as to take full advantage of it.

All connections must be well solderedexcepting, of course, such as are made to posts. These latter should be made with soldered lugs. Be sure the ammeter, relay and battery connections are tight. In other words, watch out for high-resistance contacts. In running the wire from the wind charger to the battery, number $12 \mathrm{~B} . \& \mathrm{~S}$. gauge copper wire can be used on distances up to 50 feet. From 50 to 75 feet, number 8 is in order. From 75 to 200 feet, number 6 or $4 \mathrm{~B} . \& \mathrm{~S}$. must be employed. In cases where the receiver draws less current than the average charging rate, it will be more economical to house the battery as close to the wind-mill as possible -rather than alongside the set, which, however, is usually the more convenient location. (Many farmers, though in the habit of milking at 4 A.M., balk at the idea of trudging through sub-zero snow to put electrolyte in the battery!)

A Universal Plug

For "Blanked Out" Sockets

A group of radio manufacturers have recently agreed to discontinue the use of "blanked out" octal sockets. But the radio serviceman for many years to come will be confronted with the problem encountered in testing such receivers. Boring
through the blanked holes, or carrying along a truck-load of adapters have been alternative solutions to the difficulty. Figure 111 shows two universal plugs.
Both bases are drilled for the full complement of octal pins. Base number 1 is the easier to construct. Threaded sleeves are inserted into the holes, and the required number of pins are screwed into the correct holes. Base 2 presents a some-

Figure 111
what more complicated construction, but its use is simplified. Hollow pins, with internal springs, are inserted in each hole. Pins hitting the blanks are forced up into the base, while those over the socket holes insert themselves to make contact. Fairly strong springs should be used.

New Use For Dental Mirror

In trying to look around a corner in a periscopic fashion to see the end color of a resistor, a dental mirror works out quite nicely. It is also a great help in tracing circuits through a maze of half-hidden wires.

The magnification afforded by such mirrors relieves eye strain and contributes to the speed and accuracy of many a service job. Try it on some tubular condenser with the capacity marked on the side you can't see!

SOUND EQUIPMENT

Radio News 20-Watt Amplifier

THE amplifer shown in Figure 113 features the superior quality of reproduction obtainable with Class A power amplification and resistance-coupled voltage amplification, both in push-pull. A new non-distorting phase-inverting circuit voids the use of transformers or chokes for this purpose, eliminating one source of induction hum and possible distortion. Re-sistance-capacity filters of unusual size insure complete absence of "motor-boating" and reduce hum to a negligible quantity. Absolute stability with high gain is attained through careful design and selection of the components used.
The input circuit employs a dual-triode 6A6 as an electronic mixer and amplifier, permitting the use of two microphones simultaneously with independent control of each one by the two volume controls R1 and R2 (Figure 114). A switch, SW1, is provided so phonograph pickup amplification is accomplished without using the additional gain provided by the 6A6, affording a smoother and wider range of control. A tone control is also provided (not shown in the diagram), which may be employed to minimize needle scratch when using records, reduce microphone hiss, etc., when required. In spite of its high-gain and power output of full 20 watts, the amplifier is perfectly stable even when operated at full sensitivity. It may be used without a pre-amplifier, with either carbon or crystal microphones. Velocity mikes may also be used, but while good volume is obtained, the usual pre-amplifier should be used for maximum output.

Drawbacks; of Earlier Circuits

The usual phase inverter consists of two uriodes and rests on the principle that the signal in the plate circuit is 180 degrees out of phase with the signal in the grid circuit. The phase is then reversed by applying a part of the output of the first tube to the grid of the second tube and taking the signals from the plate circuit of the two tubes. The system is imperfect because due to the capacity coupling the two sides are not exactly in opposite phase, although the difference is small. Furthermore, if one tube changes its characteristics through ageing, the balance is lost and the two sides will have unequal amplitude.

1-Tube Inverter

In this new system only one tube is used and the two sides of the signal are perfectly in phase and of equal amplitude. When a resistor is in the plate circuit, during the positive half cycle of the input signal, the current increases and the voltage across the plate load increases, so the plate voltage drops. If the plate load is put in

Figure 113-
An entirely new Class A amplifier which incorporates a new foolproof and distortion. less method of phase inversion. A combina tion of resistance and direct coupling is em. ployed.

the cathode side, when the current increases the cathode voltage goes up. So, if the load is divided equally between the plate and cathode circuit (R7 and R8, Figure 114), the drops across these load resistors will be equal and opposite and the inversion is complete. There are no condensers to shift the phase and variations in the mu of the tube will have no effect.

The big problem, however, is to supply the correct bias to the grid without spoiling the balance. One solution to this was given by Mr. W. Richter in Electronics for October 1935. The grid return is brought to a point on a voltage divider, R10-R11-R12, which is negative with respect to the cathode thereby placing the correct bias on the tube. Under these con-
ditions the variation in voltage across the cathode resistor, R8, reacts on the grid bias so as to cause degeneration. Consequently there can be no gain in the stage. The output of one side of the push-pull artangement is about .8 of the input signal voltage. The degeneration does not affect the desired phase inversion in any way, it just does not deliver any large output.

The voltage amplifier is resistance coupled to the push-pull power stage. The plate and grid resistor values have been conservatively chosen, not to provide the utmost in gain but rather to assure reliable operation with tubes of varying gas content.
The power stage consists of two 6B5's, a type of tube wheh is coming into wide use in sound system amplifiers. Essentially, it

Figure 114

Figure 115
consists of two tubes in a single glass envelope with the second section directcoupled to the first or input section. Through its use a full 20 watts of undistorted power is obtained with Class A operation with economy and simplicity of circuit design not obtainable with other types of power tubes.
The complete schematic circuit of this new 20 -watt P.A. amplifier for amateurs or servicemen to build themselves is shown in Figure 116 and indicates the simplicity of the design. Three individual input channels are provided, two of which may be used for microphones and the third for a phonograph pick-up or pre-amplifier. Convenience and ease of connection are assured through the use of a 6 -contact input terminal strip.

Flexible Input Circuits

Since the 6A6 is composed of two similar high-mu triodes, provision has been made to connect channels A and B simultaneously, to each input section. As the output plates of this tube are wired in parallel, sounds picked up by microphones connected to these channels are amplified and mixed in

the plate circuit before passing on to the phase-inverter tube. Separate gain controls are provided for both channels A and B to facilitate proper mixing. In addition, for phonograph pick-up amplification, where the increased gain of the 6A6 is not required, channel B and its associated volume cratrol may be transferred directly to the phase-inverter tube by simply throwing switch 2 to point b.

Channe! C connects directly to the phase inverter circuit and is intended for use with an external pre-amplifier, but may likewise be used for pick-up work when the turntable is already fitted with a volume control. Switch 2 must be on point a when using this channel.

Figure 117

Figure 116-The complete circuit
The tone control is connected from the plate to cathode of the phase-inverter tube and is therefore effective, regardless of which channel is used.

High Stability

Freedom from motor-boating and other forms of instability is obtained through the liberal use of resistance-capacity filtering. In all circuits, except the screen supply to the 6C6 tubes, considerable capacity has been used. The screen filter circuit, consisting of a 1 -megohm resistor and a .1 mfd . condenser, has a time constant of $1 / 10$ th second which is sufficiently fast to eliminate motor-boating under these design conditions, without affecting the fidelity characteristic over the useful range. It is important that no larger capacity be used at this point.
The chassis employed is of standard size, using heavy No. 16-gauge steel, and is fitted with a bottom cover. Drilling is done in accordance with the layout shown in Figure 117. The two gain controls are located in the front of the amplifier, with the power switch S1 in the center. Above the input terminal strip is located the channel switch S2 and the ground binding post. The tone control is on the top portion of the chassis. Provision is made for five output channels. The output transformer is designed to match $15-, 7.5-, 5-, 3.75$ - and $1.25-\mathrm{ohm}$ loads in addition to a standard $500-\mathrm{ohm}$ transmission line.

Wiring Suggestions

In wiring, the leads in the input circuits should be kept well separated to reduce stray coupling. The filament circuits should be wired in first. The filter circuit wiring may then be completed. Finally, the resistors and by-pass condensers are wired in, using small terminal strips located close to the sockets. After the witing is completed, the voltage adjustment of the phase-inverter tube may be undertaken. The slide on R22 should be adjusted until the voltage between point C and ground is approximately 26 volts. Ncxt, put a milliammeter in the plate circuit of the 76 and readjust the slide until the meter reads 1.4 ma., approximately. Point D , for the screen voltage, is taken at 250 volts.
If the amplifier is to be operated over long periods, longer tube life, particularly of the 6 B 5 's, may be obtained by using less

of the RADIO NEWS amplifier
than the maximum plate voltage of 400 volts. A reduction to approximately 350 volts is accomplished by simply omitting Cl_{1}. The power output will, of course, drop slightly but will be sufficient for practically all purposes.

Measured Characteristics

The amplifier's performance was measured in the Radio News Laboratory in the usual way. The gain of the amplifier was 102 db . In practical language, this means that it takes .025 volt at the input terminals to deliver full output.

The frequency characteristic was measured with the same set-up, shown in Figure 115. This was taken also at full gair and with the anmplifier delivering 20 watts to a 500 -ohm load.
The frequency characteristic is essentially fla: throughout the audible range. At 18.000 cycles it was .7 db . down, at 10,000 cycles .4 db . down. On low notes good response is obtained; at 80 cycles it is .9 db . down, at 50 cycles 3 db . down and at 30 cycles 6.7 db . down. When the first stage is cut out, the voltage gain is reduced 10 times, so the total gain of the amplifier is then 82 dt .; it takes .25 volt at the input terminals for full 20 -watt output. This arrangement will generally be preferred with the average phonograph pick-up.
One should be careful to shield input wires and to ground the shields of input
transformers, etc., to eliminate any possibility of hum pick-up by induction.
Finally, some cathode-ray tests were made. The first one was a test for harmonic distortion. It was made by applying the input signal to one set of defecting plates and the output signal to the other set of deflecting plates. When proner phase relations exist., the trace should be a straight line. If it curves at the ends, third harmonic distortion is present. While there was a slight curvature at the ends at full output, the line was perfectly straight at slightly reduced levels. Another cathode-ray test was made to establish the action of the inverter tube. After measuring the voltage across resistors, R11 and R17 with a vacuum tube voltmeter, to be sure that they were equal, the deflecting plates were connected so that one side of the signal sweeps horizontally, the other vertically. The resultant trace must be a straight line and at 45 degrees to the axis-nearly, because the two sets of plates are not equally sensitive. The experinient proved that this was the case. Reversing the connections to the input grids of the 6C6's did not change the trace. This was a proof that the inverter delivers a symmetrical signal to the push-pull circuit.

Parts List

C1-Cornell-Dubilier PE-B6808 papet filter conC 2 -Two, Cornell-Dubilier EB8800 dual electrolytic condensers 8.8 mid . cach, $\$ 25$ peak C3-Cornell-Dubilier electrolytic condenser 25
mid. 50 volts

Figure 118
C4. C10, C11. C12, C14. C15, C17-CorneltDubilier tubular paper condenser, 1 mid., 400 Cs. type DT.4P1
Cs, Co-Cornell. Dubilier dual electrolytic conC7. Ci3. © C16-Cornell-Dubilicr
C7. C13. C16-Cornell-Dubilicr electrolytic condenser 25 mfd .25 v. ED- 2250
C8-Cornell-Dubilier tubular paper condenser type DT-4P1, 1400 volt
C9 Cornell-Dubiler electrulytic condenser 8-8 mfd., 525 volts peak
Ch-Amertran filter choke, $Z \cdot 913$, dual sections in parallel, 8 henries, 200 ma
R1. R2, R10-Electrad potentiometers, 500,000 ohms
R3-1RC carbon resistor, 1250 ohms, 1 watt
R4-lRC carbon resistor, $\$ 0,000$ ohms, 1 watt
R5, R9. R19-IRC carbon resistor, 100,000 ohms
R6. R11, R12, R16, R17-IRC carbon resistor, R6. 5 meg, $1 / 2$ watt, R17-lRC carbon resistor, R7. R8-IRC carbo
R13-IRC carbon resistor, 1500 ohms, watt
R14-R1S-IRC carbon R18-IRC wire wound resistor, 150 ohms, 10 watts
R20-IRC carbon resistor, 1 meg., 1 watt
R21-Electrad Truvolt resistor, 90,000 ohms, 25 R22-Electrad Truvolt resistor, 25,000 ohms, so watts
R23-IRC carbon resistor, 75,000 ohms, 1 watt
R24-Trutest, center tapped resistor, 20 ohms
SWI-SPST toggle swith
SW2-SPDT toggle switch
Ti-Amertran Power transformer, type U981
 $21 / 2$ volts 10 A volt. 3 A: $2 \% / 2$ volts, 5 :
T2-Amertram output transformer, type J874, Primary 10.000 ohms. CT, secondaries, 500 ohms and universal voice coil
1 4-prong water socket
1 s-prong wafer socket
1 large 7 -prong water socket
4 o-prong wafer socket
$\frac{1}{2}$ chassis $17 \times 11 \times 3$ with bottom cover
2 terminal strips, 6 terminals each
2 tube shields
3 V. C pninter knobs
2 indicator dials marked "Volume"
1 indicator dial marked "Tone"
4 termital lug strips- 2 terminals
1 line cord and plug
1 rubber frommet
1 hinding post
2 6C5 Raytheon metal tubes
6 feet parallel or twisted pair, power cord
Honkup wire or twisted pair, power cord
1 dozen nickel plated brass screws-6/32-1/2" with nuts and lock washers
2 grod clits
$26 B 5$ tubes Triad or Sylvania
2 6C6. 1523,176 and $16 A 6$ tube

Radio News A.C. Pre-Amplifier

MANY p. a. amplifiers and many of the speech amplifiers employed in "ham" transmitters have sufficient gain for operation with carbon mikes but not enough for the more modern crystal and velocity types. In any p. a. amplifier, if an attempt is made to concentrate too much amplification in a single unit, the problem of securing stable operation becomes exccedingly difficult. With resistance-coupled amplifiers, "motorboating" is likely to result if the amplifier is effective at low frequencies, due to coupling from a common power supply source.

With transformer coupling, extreme shielding and balancing precautions must be taken to secure a low hum level. The simplest way out is to use a self-powered pre-aniplificr. Pre-amplifiers are generally' batteryoperated. In the instrument shown in Figure 119, the hum level is so low as to be completelv inaudible with phones connected to its output circuit. When connected to the main amplifier, with the overall gain adjusted to give full output the amplified hum level is still negligible.
The circuit diagram is shown in Figure
121. As indicated, it employs two resistancecoupled stages using 6C5 tubes. The overall gain is 58 db .

Metal tubes are used throughout, eliminating the need for tube shields which are so often a cause of noise due to poor conlacts. The $5 \mathrm{ZZ}_{4}$ rectifier is slow heating. therefore no bleeder resister is required. This relieves the chokes of an added current burden and permits better filtration. In the plate circuit of the input tube, a resistance-capacity filter, R3-C2 gives the required additional smoothing to this circuit.

In this design, the output circuit has a relatively low impedance. The usual plate-to-line and line-to-grid transformers are therefore not required. This results in a considerable saving in cost. The plate load resistor of the 6C5 output tube is 20,000 ohms. Using this value, 7 or 8 feet of low. capacity shielded cable may be employed to join the amplifiers with a loss of less than .5 db . at 10.000 cycles. While higher gain may be obtained by using a 50,000 or 100 , 000 ohm plate load, the present gain of 58 db . is more than adequate for p. a. work and avoids complications.

Fidelity Curve

The fidelity curve is shown in Figure 120. This was obtained using the set-up indicated. A General Radio type 377-B low frequency oscillator is employed with a General Radio vacuum-tube voltmeter across its output.

The output voltmeter is a Radio News multimeter using a copper oxide rectifier and Weston meter. The 100 volt scale was employed and the output voltage kept constant at 20 volts. The v.t. voltmeter and output meter were checked against each other and a correction factor used to compensate for the slight frequency error in the output meter.

Calculating Amplification

The db . gain was calculated by the usual method, multiplying by 10 the logarithm of the ratio of the power in the
output circuit under load to that of the input circuit. The output meter load is 100 , 000 ohms, which introduces more loss at low frequencies than will occur with the usual amplifier input circuit load. Nevertheless, it is down only .5 db . at 50 cycles and but .13 db . at 10,000 cycles. Even at 20,000 cycles, it is down only .3 db . It should be pointed out, however, that db . ratings for overall gain of amplifiers with resistance input may be confusing. If the input resistance were 5 megohms instead of .5 megohms, the voltage amplification would still be the same though the rating would be 10 db . higher.

Overall Gain

The overall gain of the Radio News $20-$ watt amplifier (described in the preceding pages) is 108 db . reckoned on the basis of the input resistance of 500,000 ohms. With a transformer secondary connected, rated at 150,000 ohms, it would be 102 db . When we connect the pre-amplifier, we do not get 108 db . plus 58 db . because the output impedance of the pre-amplifier is 20,000 ohms. This will cause a loss of approximatelv 14 db . From the input of the prc-amplifier to the output of the main amplifier, the overall gain is therefore 108 db . plus 58 db . minus 14 db ., or 152 db . If we connect a 2000 ohm velocity mike to the pre-amplifier the input will then be 2000 ohms instead of 500,000 ohms. This will reduce the effective gain 24 db . making 128 db . overall.

Figure 121

Figure 120
It is rather difficult to express the sensitivity of crystal mikes in terms of db . since they are designed to work into a very high impedance and their own impedance takes the form of a capacitive reactance which varies with frequency Methods of rating these microphones now include the output in millivolts at average speech levels. From this information, the voltage gain required to deliver the desired output may be readily computed.

There are two types of crystal mikes, the sound cell and diaphragm models. The former can be designed to give exceptionally fine fidelity while the latter gives good fidelity and high sensitivity at somewhat lower cost.

Manufacturers of crystal mikes recommend using a 2 to 5 megohm grid resistor to assure best low-frequency response.

How much gain do we actually require? Figuring on a basis of .006 watts at zero level, 15 watts is plus 33 db . If the microphone is rated at -70 db . we require 103 db . overall gain to get this output. For 20 watts, we require 2 db . more, or 105 db .

The filter chokes are laid out with their centers on a line with that of the power transformer and with their cores mutually at right angles. The input tube is opposite choke 2, which will have the smallest external field. The terminal blocks are arranged to give the shortest possible leads. The input grid lead should be shielded.

In wiring, the heater leads should be twisted and kept close to the chassis and well away from grid and plate leads. This also applies to the power cord. The tube shield prong on each octal socket should be grounded directly to the chassis. The filament supply for the 5 Z 4 is obtained by connecting the two 2.5 volt power transformer windings in series-aiding If connected in series-bucking, no voltage will result.

In operation, care should be taken to use only shielded cable to the microphone. The shielding should extend right up to the input to the pre-amplifier, in order to prevent pickup of extraneous voltages.

Parts List

C1, C4-Acrovox electrolytic condensers, type PR-25, 25 mfd., 25 volts
C2, 6, 7,8 -Aerovox electrolytic condensers. type GG. $5,8.8 \mathrm{mfd}$. 450 volts
C3. C5-Acrovox tubular paper condensers. type 484, 1 merovex 400 volts
Chl, 2 -Amertran filter chokes, 30 henry, type Z-904
R1-I.R.C. carbon resistor, 500,000 ohms, 1 watt R2-I.R.C. carbon resistor, 4500 ohms, 1 watt R3. R4-I.R.C. carbon resistor, 50,000 ohms, 1 watt Rs-I.R.C. carbon resistor, 1,000 ohms, 1 weatt RG-I.R.C. carbon resistor, 20,000 ohms, 1 watt 1-S.P.S.T. toggle switch
T1-Amertran power transformer, type U-971. 600 v., c.t., $2.5 / 2.5 / 6.3$ c.t.
1 Cadmium plated steel chassis- $71 / 2 \times 11 \times 21 / 2$ inches, not drilled
2 double binding post strips
3 octal wafer sockets

Figure 122

A 15-Watt High-Gain Amplifier

AN unusually successful high gain amplifier is represented by the 15 -watt unit shown in Figure 122 which is espe. cially designed for use with either crystal or high impedance type velocity microphones.

The output stage uses two 2As tubes connected as push-pull triodes, self-biased, in a class $A B$ circuit. The rating given by tube manufacturers to this type of 2AS arrangement is 15 watts and the preceding stages employed in this design are ample to fully excite the output stage with the microphones mentioned. The amplifier has an extraordinatily low hum level, at all times better than 25 db . below zero level.
In designing the system, special attention was given to making it versatile in application. The input of the amplifier is arranged for ribbon-velocity or crystal microphones, and may be easily adapted for carbon microphone use. Almost any type of phonograph pickup may be employed and radio input may also be used. The output transformer has taps at 4, 8, 16 or 500 ohms. The lower output impedances may be used in various combinations with a number of standard dynamic speakers. The 500 ohm output is employed for coupling to a line when the speakers are placed some distance away from the amplifier. It is evident that these flexible input and output provisions will meet practically all lowpower public address requirements that may arise.
It provides an unusually high gain of 104 decibels to insure more than enough gain to permit the direct use of a crystal or a high impedance velocity microphone without a pre-amplifier.

Figure 123

In looking over the schenatic circuit diagram, (Figure 123), it will be noted that four audio stages are employed. A type 57 tube is used in a high-gain microphone pre-amplifier stage. A type 53 tube is used as a voltage amplifier and a novel electronic mixer. For this application the plates of the two triode sections are tied together, while the grids are coupled to two dissimilar sources. The grid of one section is connected to the output of the 57 stage and the input voltage is controlled by means of a one-megohm potentiometer. The second grid is connected to the phonograph pickup input terminals. By means of these two
potentiometer controls the microphone and phono inputs may be mixed and blended in any desired proportion.
The next stage is used as a voltage amplifier and driver and employs a 2As tube connected as a triode. This tube in turn is coupled through a specially designed transformer to a pair of 2AS's in a class AB arrangement. The plate voltages and field current are obtained from a conventional, well filtered full-wave rectification circuit using one $5 \mathrm{Z3}$ tube. The fields are connected in series across the high voltage, acting as a bleeder and stabilizing the output voltage.

Free Information Service

If you require any further information regarding parts, wiring or operating data on the radio apparatus described in this book, mail us a postcard with your questions. The information will be furnished promptly - absolutely free of charge.

SUPPLEMENT I
 Ten Lessons In Radio

LESSON ONE

Radio Waves-How A Radio Station Works-Detection

THIS first lesson presents a simplified discussion of the theory of operation and of the functions of the various parts of a receiver.

Readers who wish to take maximum advantage of these lessons will want to build most of the units to be described. If parts from earlier units are again used wherever possible in building subsequent units, the cost can be held to a low figure.

It is recommend that you study up on radio fundamentals as you go along. Reading of radio books and periodicals will help materially, or enrollment in a regular radio school or correspondence course will result in a well rounded out training in which are combined both theory and practice.

Radio Waves

Radio stations all over the world are sending out radio waves. Just what these waves are, we do not know. We do know, however, that a radio waves has the power to create an electrical pressure in any electrical conductor (such as wire) and this electrical pressure will cause a current to flow in the conductor. Thus the wave from a radio transmitter causes a minute electric current in any receiving antenna (or other conductor) within its path. The strength of this current will depend on the power of the station, the distance from the station and the length, location and direction of the receiving antenna.
This tiny electric current flows down to the receiver which must convert it back into the original speech, morse code, music, picture. etc., being conveyed by the radio waves. Note that there is no difference in the transmission of telegraph, telephone messages, music or picture. The nature of the wave, the transmitter or the receiver is the same, it is just the translating device (microphone, key, televisor) which differs.

Duties of the Receiver

The duties of the receiver are: first, to pick up the sinall electrical pressures or

voltages; second, select the desired signal excluding all others; third, translate the signal into sound (or picture or code message, but in this lesson let us consider sound only). Before the latter can be accomplished a process, called "detection" must take place.

The natural question will be-what is detection and why is it necessary? Why can't we connect the headphones to antenna and ground and listen for stations? The answer is not so simple.

How A Radio Station Works

It is necessary to consider briefly how a radio station works. Most of us are familiar with alternation current or A.C. Any electrical current flowing through a conductor creates an electro-magnetic field around the conductor. If the conductor is coiled up, the field can be concentrated so that the coil will attract iron, nickel or cobalt. This electro-magnetic field represents energy. The energy was supplied by the electrical circuit and now resides in
the space surrounding the coil. When the circuit is opened, the field disappears and returns the energy to the circuit by creating a voltage or electrical pressure in the coil.
The electro-magnetic field around a con ductor which carries alternating current, is constantly collapsing and reversing in direction. It will return its energy to the wire as long as the reversing process is not too rapid. If the reversal occurs frequently enough, or the frequency (number of cycles or vibrations per second) becomes high enough, some of the energy in the electro-magnetic field travels away-is radiated. Therefore, the name radio-frequency. There is no sharply defined limit of radio frequency, but generally it is assumed to be from 25,000 cycles per second up. Frequencies lower than this, when sent through a loudspeaker, are translated into audible tones hence the term "audio-frequ"

Each broadcasting station, when it is "on the air," is sending out a steady wave at some particular radio frequency, and this is called the carrier wave. As a performer in the broadcast studio speaks into the microphone this carrier wave varies in amplitude or strength in accordance with the movements of the microphone diaphragm and the carrier is then said to be "modulated." Figure 1 graphically portrays the carrier wave at a moment when no sound reaches the microphone. Figure 2 shows the carrier wave when "modulated" by speech or other sound at the microphone.

Detection

An exact replica of this wave will reach the radio receiver and must there be converted back into sound. The first step in this conversion process is called detection. A perfect detector is nothing but a device which will permit electrical current to flow in one direction only and not in the reverse direction. When the received signal passes through this detector, it may be represented as in Figure 3. When such a current as that of Figure 3 flows tirough an electrical device which does not permit the fast variations of the individual radio frequency pulscs (the headphone is such a device), the result is an average current, as shown in Figure 4.

LESSON TWO

Constructing A Simple Diode (or Crystal) Receiver

THE simplest receiver that could be made would consist of a headphone and a Jetector connected between aerial and ground.
It is more satisfactory and more reliable to use a vacuum tube as a detector as it requircs no adjustments of any kind, and so the receiver described here employs a type 30 tube.

This tube contains a filament, a grid and a plate. When the filament is heated, elec-
trons will flow from the filament to the plate and grid (which is connected to the plate externally) but not vice versa.

The tuned circuit consists of the usual coil and condenser and in order to keep the condenser capacity small and still cover the required broadcast range, it is necessary to tap the coil and use a switch to employ any desired part of it. The next problem is to collect the signals and bring them to the tuned circuit. This could be done by
running the received currents, on their way from aerial to ground, through another coil on the same form as the tuning coil, as shown in Figure 5. The combination would work as a transformer, the antenna winding being the primary and the tuned winding the secondary. The winding which serves as primary had better be variable, too, because the smaller this part, the better the ability of the tuned circuit to separate the signals but the more turns there are in it the louder the signals.

Figure $10-$
(Left)-Rear view of the simple diode receiver. Figures 11 and 12 (Lower right-hand corner) front and top view showing placement of parts.

When a crystal detector is used, the detector circuit becomes as shown in Figure 7. Instead of using the three coils as in Figure 5 , it is possible to make a single coil do the work of three by means of taps. This system is employed in Figure 6 which is the diagram of the diode receiver to be built.

When all the parts have been procured, construction may proceed in the following order:

Beginning with the panel, the centers for the holes should be marked off.
The screws for joining baseboard and panel should be $1 / 4$ inch from the bottom edge of the panel. The hole for switch 3 is located 3 inches from the left edge and $11 / 2$ inches from the bottom. Drill the holes to fit the various parts.
The panel may now be screwed to the baseboard and all other parts except the coil mounted on the baseboard, as shown in the photographs, Figures 10, 11 and 12. The tube socket should be turned so as to have the large holes towards the back of the baseboard.

After all parts except the coil are mounted, as much as possible of the wiring should be completed. A study of Figures 6 and 8 and the photographs will help. The middle lug of C_{2} should be the grounded side while one of outer lugs is connected in the moving arm of SW2.

When looking at the back of the panel the switches appear as in Figure 8. Connect point 1 of SW_{1} to point 1 of $\mathrm{SW}^{\prime} 2$ point

2 of SW' to point 2 of SW2, etc. At the same time solder a few inches of wire to each point of SW2 except to point 11. These wires will later be connected to taps on the coil.

Figure 9 and the pictures show the proper location of the taps with reference to the mounting brackets. First drill the holes for the mounting brackets at such a distance from the lower edge that the brackets will be level with the edge of the tubing. Then drill two holes for fastening the beginning of the winding.

When taking off a tap, twist a little loop in the wire, but be careful not to break the wire. The taps of the coil in the illustration are in two vertical rows. making it much easier to make connections as the taps are spaced well apart. When the coil is finished, scrape the insulation from the taps and tin the exposed wire loops. Mount the coil in the proper position and solder the wires from $S W_{2}$ to the droper taps. From point 1 on SW 2 to tap 1, from point 2 to tap 2, etc.

In operating the receiver remember that the right-hand switch, SW2, and the dial both control the frequency of the tuned circuit. For the lowest frequency use the highest taps. The condenser in itself has not enough range to cover the whole broadcast band, so it will be necessary to go to lower taps for higher frequency. The condenser allows you to make finer adjustments.

Switch 1 adjusts the coupling of the an-

tenna. The set will be more selective if the switch is set on the lower taps On the other hand, the higher taps make the stations come in stronger. The best compromise has to be found.

Parts List

C1-Acrovox mica condenser type 1467. . 00025 mfd .

C2-Hammarlund "Star" midget variable condenser, 140 mmid.
SW1, SW2, Yaxley one-gang 11 point switches, non-shorting, type 1211
Bud $23 / 4$ inch dia!
Bakelite coil form, $21 / 2$ inches in diameter, 4 inches in length
4 lb. magnet wire, number 24, d.s.c.
4 Fahnestock clips, 1 inch overall
small angle brackets (for mounting the coil)
baseboard, wood, $6 \times 9 \times 1 / 2$ inch thick
panel, wood, $10 \times 6 \times 1 / 4$ inch thick

1 pair of Acme headphones, 2000 ohms
When using tube as detector, add
1 Eby basemount socket, 4 prong
R1- 15 ohm filament resistor
SW3 s.p.s.t. toggle switch
Fahnestock clips, 1 , inch overall
Burgess 'Little six' dry cells
type 30 tube
When using crystal detector, add:
1 crystal with holder

LESSON THREE

Operation of Vacuum Tubes - Plate and Grid Detection

THE little receiver described in Lesson Two employed a vacuum tube as a diode detector. Lesson Four will be devoted to describing minor changes in this reseiver so as to employ the same tube as a much more efficient detector, providing louder signals and reception from greater distances. Before procceding it will be best to review briefly the action of a vacuum tube.

A vacuum tube consists of a closed bulb of glass or metal wherein several metallic elements are placed. The simplest type ("diode") has two such metallic elements, a flament and a metal plate. When the filament is heated, electrons-the smallest known negatively charged particles-will be thrown off the filament wire. The heating of the filament is for no other purpose than to obtain a source of free electrons in this manner.

What happens to the electrons? When enough of these negative particles leave the filament, the filament itself becomes positive. When this occurs the electrons tend to rush back to the flament unless a stronger attraction is provided elsewhere in the tube. The entire action of a vacuum tube hinges on the controlled movement of these electrons. The presence of air hampers this movement and for that reason the air is pumped out of the tube during manufacture, hence the name "vacuum" tube.

The Diode Tube

When a metal plate is nearby, and the
metal plate is insulated, some of the clectrons will settle down on the plate until it becomes negatively charged, in which condition it will repel other electrons. If the metal plate is connected to the filament, the electrons which went to the plate will return to the filament through the wire because the filament is positive (lacking in negative electrons). Thus an electric current will flow from the filament, through the vacuum to the plate and then through the wire back to the filament.

Suppose we go a step further and by inserting a battery, " B," between the plate and filament, make the plate positive with respect to the filament (Figure 13). Then the electrons will be attracted to the plate and pass through the battery and back to the filament. The current obtained in this way is much larger than without a battery, the amount depending on the voltage between plate and filament. If, on the other hand, the plate were made negative with respect to the filament (by reversing the battery connections), the plate would repel the electrons and practically no current would flow in the plate circuit. This type of tube is called a "diode" and is a device which conducts electricity in one direction only.

The first property is utilized in the use of such a tube as a detector (or rectifier). Since it conducts in one direction only, the negative half of an alternating voltage does not produce any current and alternating currents are therefore converted into direct current.

Fig. 13-Top, left; Fig. 14-Bottom, left; Fig. 15-Top, right; Fig. 16-Bottom, right

The Triode Tube

Introduction of a third element (making the tube a "triode") opens up new possibilities for the tube. When a "grid," consisting of a metal spiral or a mesh of wires, is placed between the plate and filament and the plate is made positive, it is possible to control the plate current by applying small voltages on the grid. This works as follows: Since the grid is much closer to the filament than is the plate, it has a greater effect on the electrons which are just emerging from the filament. When the grid is made negative, even a few volts, it may completely cancel the attracting power of the positive plate. On the other hand, reducing the negative voltage applied to the grid, will allow electrons to pass through the grid on their way to the plate. As long as the grid does not become positive, there will be no current in the grid circuit and it will take no power to control the larger power in the plate circuit.

To illustrate a tube's properties or characteristics the radio man resorts to the use of curves. One such curve showing the plate current for different grid voltages while the plate voltage is constant, is shown in Figure 15. Note that there are two bends in the curve. The upper bend is present because there is a maximum "saturation" current which exists when all the electrons emitted by the filament are travelling to the plate. There is a different saturation current for each plate voltage and each filament voltage, because a higher filament voltage will cause a greater emission and a higher plate voltage will exert a greater pull on the electrons, which is necessary to overcome the "space charge," which is a charge of the cloud of electrons themselves. This charge also limits the maximum plate current.

Plate Detection

There are several ways in which a tube can be made to detect (rectify). In Lesson One we said that an ideal detector would be a device which is conductive only in one direction. However, a perfect detector has not been developed to date. Nevertheless this rectifying action can be performed and utilized even though the rectifier is not perfect.

The most simple way to use a tube as a rectifier or detector would seem to be to give the grid a steady negative voltage (as in Figure 14) so that the operating point is on a sharp bead of the curve. Figure 16 illustrates what happens when a signal voltage is applied to the grid. While the grid voltage varies up and down, the plate current will go up and down too but it re. sponds much better in one direction than in the other because of the bend in the characteristic. The plate current now closely resembles the rectified current shown in

Figure 3, and this current when passing through the phones will reproduce the orig. inal sound which first entered into the microphone at the transmitter.

The difference between the above de
scribed system and diode detection is that it is much more sensitive because the tube when used as a triode, serves as an amplifier as well as a detector. The increased power is supplied by the B-battery with
the grid acting as a valve to control it, while in the diode system the received signal itself must supply the power for the phones. A triode receiver is described in Lesson Four.

LESSON FOUR

Building A Simple Triode V. T. Receiver

THERE are several reasons why the method of operation described in Lesson Three, (Figure 14), is not popular for small sets. In the first place it requires an extra "C" battery and it is necessary to know the exact location of the sharpest point of the bend for a given plate voltage, so as to get most efficient detection.

A More Practical System

A second system which does not require a "C" battery is more practical for a simple receiver. This makes use of a grid condenser and a grid leak. The circuit is shown in Figure 18. The grid-leak resistor, R 2 , is connected to the positive side of the flament, making the grid slightly positive and as a result a considerable plate current will flow when no signal is coming in. When the grid is driven more positive by a signal (the positive half of a cycle), electrons will be attracted by the grid itself and will charge the grid-condenser C3, the grid side of it becoming negative. During the next half-cycle (negative) no electrons can be attracted and the grid cannot get rid of its charge except through the grid leak R2. This takes a relatively long time and while a current is flowing through the resistor, there is a voltage drop across it making the grid negative except at the peak of the positive half cycle. In this way the bias adjusts itself to a point where detec. tion takes place.

Proper proportioning of the grid condenser and grid leak are necessary, so the charee will leak off at the required rate. Suppose, for instance, that the grid resistor has a very high value, it will take very long before the charge leaks off and during that time, the grid may stay so far negative that the tube is inoperative. On the other hand, if the resistance is too small there may not be enough bias and the tube will be insensitive.

The Revised Receiver

This circuit is used in the revised receiver and makes the signals much louder. For detection purposes a rather low plate

Figure 17-
Rear view of the triode receiver showing placement of the various parts, etc. Note the additional clip, resistor and mica condenser.

voltage (" B " battery) will be satisfactory, It works well with only 22.5 volts. Since a standard 45 -volt " B " battery is required for use with units to be described in other lessons of this series, the parts list shows such a battery rather than the 22.5 -volt type. There is, of course, no objection to using a smaller capacity battery with 22.5 volts maximum for this receiver.

The complete circuit of the new unit is shown in Figure 18.

Changing The Old Circuit

Changing the old circuit to the new one is simple. The connections to the coil and the tap switches remain the same; nearly all changes are made at the tube socket. First mount another Fahnstock clip at the right-hand back corner of the baseboard. This will become the B plus terminal. Disconnect and remove the leads to the phone jacks and to the plate and grid of the tube.

There is a wire which runs from the filament switch to tap 3 or 4 of the coil.

Figure 18

Disconnect this wire from the coil and connect it to the ground wire. This connects the negative side of the filament to ground.
Connect the B plus Fahnestock clip to the nearest phone clip. The other phone clip is connected to the plate terminal of the socket. The grid condenser, C3, is connected from the stationary plates of the tuning condenser (one of the outside term. inals) to the grid terminal of the tube socket. Then connect the grid leak, R2, from the grid terminal to the positive filament terminal. The photographs, Figures 17 and 19, will aid in making these changes.

When hooking up the set, note the correct polarity of the batteries and coanect them as shown in Figure 18.

Additional Parts List

(for change over to triode detection)
C3-Aerovox, type 1467 mica condenser, .0001 mfd .
R2-IRC carbon resistor, 2 megohms.
1 Fahnestock clip
1 Burgess standard 45 -volt B-battery, tapped at $221 / 2$ volts.

Figure 19

R. F. and Audio Amplification-Versatility of Tubes

B
ESIDES performing ail the functions described in the previous lessons, the modern radio receiver amplifies the signal (multiplies its strength or intensity) many thousands of times.
Amplification can be accomplished either before or after the detector of a receiver or both before and after. An amplifier ahead of the detector must operate at the original frequency of the incoming signal; it is

Figure 20-Top; Figure 21-center; Figure 22-Bottom.

NOW, we will employ a 30 tube with a plate voltage of 45 volts and build an amplifier unit for the receiver described in Lesson Four. Since the plate voltage is so low and our signal is rather weak, we need a grid bias of about one volt. This
called a radio-frequency amplificr. An amplifier stage after the detector is called an audio-frequency amplifier. The difference in results obrained is that an audio-frequency amplifier is intended primarily to make received stations come in louder. If the signal from a distant station is too weak to be detected, no amount of audiofrequency amplification can bring it in. Radio-frequency amplification increase sensitivity and will add new stations. It also provides the opportunity for additional tuned circuits and therefore sharper tuning.

Tubes Are Versatile

Why is it that the same tube can work as a detector or as an amplifier? This brings us back to the theory of tubes.
An amplifying stage consists of a tube and some means of coupling it to the previous tube. First let us confine our attention to the tube itself. In Figure 15 we showed a so-called "static characteristic," which illustrates the variation in plate current due to changes in grid voltage while the plate voltage remains fixed. Actwally the plate voltage does not remain fixed during operation because the phone or transformer in the plate circuit has resistance and inductance which cause a voltage drop across it when the tube plate current flows. This voltage drop will change when the plate current changes, which results in a change of plate voltage. Curves which take these things into consideration are called "dynamic characteristics." These enable the radio man to determine the best plate and grid voltages, etc. and to find the other necessary constants of the circuit. However, these curves do not lend themselves to an easy explanation of the tube's functions. Therefore, we are sticking to the static characteristic which better illustrates what happens.

Used as Amplifier

The coupling device usually consists of a transformer or a network of resistors and condensers. It is important to prevent the plate voltage of the previous tube from reaching the grid of the next one. A transformer does this, generates a signal voltage in the secondary and gives some amount of step-up. The voltage in the secondary would be three times the voltage in the primary if a 3.1 ratio transformer were used, for instance. Of course this adds to the amplification.

Figure 20 illustrates the characteristics of a tube and shows the way it amplifies. The grid is given a fixed negative voltage so as to bring the operating point to the center of the straight portion of the curve. The detector utilizes the bend of the curve.
as explained in Lesson Three, but the amplifier must work on the straight part. The way to make the tube do the required work is to give it the correct fixed negative voltage or "bias" also called "C-bias" because it would require a third or C-battery. So in the case of Figure 20 if the fixed bias is equal to OP, the tube is an amplifier, if it is equal to $O Q$ it is a detector.

When working a tube as an amplifier, there are two things to look out for. The first one is to keep the variation of gridvoltage due to the signal within the limits of the straight part of the "curve," and never to let it run over a bent part. As long as the straight portion of the characteristic is utilized, the plate current will vary in exact proportion to the grid voltage. As soon as the grid-voltage becomes too large so that the tube works on a bend during a part of the cycle, the plate-current variations no longer correspond to the grid-voltage variations, in other words there is distortion. This is illustrated in Figure 21. It is seen that the tops have been cut off the highest peaks. For this reason, it is essential that the applied signal volatge should never exceed OP or PX. In a good arrangement OP should egual PX.

Grid Always Negative

The second limitation is that the grid should never be allowed to go positive. As soon as this happens grid current will flow and the grid current will cause a voltage drop in the grid circuit which usually has a high resistance. This voltage drop subtracts from the signal voltage and therefore is another cause for distortion. In practice then, it is only possible to use that part of the straight portion of the characteristic which is situated to the left of the zero line.

The fixed grid voltage or bias should then be chosen at the center of this straight portion.

The manufacturers have listed the proper grid bias for different plate voltages, so it is not necessary to make a curve (they are made by measurements). But this explanation should clarify the meaning of these figures. It should also be clear now that if the recommended grid bias is 2 volts, the peak of the signal voltage on the grid should never exceed 2 volts. This is equal to 1.4 volts as shown by an A.C. voltmeter as only the peaks reach 2 volts, whereas the voltmeter shows an average rather than peaks. If the signal is likely to exceed this value, one must look for another tube which has a larger fixed bias. Sometimes the same tube with a higher plate voltage will need the larger bias and would then be suitable. the very strongest stations could just reach the maximum signal allowable of 1 volt peak.

LESSON SIX

A One-Stage Audio Amplifier

can be obtained without the use of an extra battery. The filament requires but two volts while the battery supplies 3 volts, the extra volt is lost in the resistor R1 If we place this resistor in the negative leg of the filament circuit, the negative side of
the battery will be 1 volt negative with respect to the negative side of the filament. All we have to do is to connect the lead marked " F " of the transformer to the negative A terminal and 1 volt bias results. See the circuit of Figure 22. In our model,

Constructional Details

The illustrations, (Figures 23 and 27), clearly show the layout and construction of the unit. The Fahnestock clips are so arranged that it is easy to connect the two units together, or to operate either one separately. It was found necessary to make a small change in the unit described in Lesson Four in order to have the original switch control the filament of both tubes. This is done by adding a Fahnestock clip and connecting it to the negative filament terminal of the detector socket. The original A- clip is moved over towards the left and the new one put in its place; then both are connected as shown in Figure 24.

The amplifier is built on a $1 / 2$-inch base. board 5 inches wide and 6 inches deep (the same depth as the old unit). Mount the parts as shown in Figure 27. The transformer has its wires marked; the side which has the plate (P) and B plus wires coming out should be turned towards the front. The socket is mounted with the filament terminals towards the back.

The Fahnestock clips on the left edge of the baseboard should be placed so that they come exactly opposite the phone terminals of the one-tube set. Soldering lugs should be employed at each Fahnestock clip. You should also use a small drill to make holes for all screws to avoid splitting the baseboard.

The wiring is simple. Be sure to connect the transformer wires right. The red wire, marked G, goes to the grid terminal of the socket, while the one marked I should go to the A-Fahnestock clip, the one which has the resistor connected to it. This is important for obtaining the right negative bias on the grid.

Operation

Connect the two units together as shown in the top view, kecping in mind the polarity of the A terminals. Then connect the batteries as shown in Figure 25. A 45 -volt B battery is employed, the same one as used with the original set. Those who wish may try higher voltages, but then a 3 -volt battery should be inserted at X, (in Figure

Figure 24
Figure 25

LESSON SEVEN

How A Power Supply Works

THE first six lessons have covered batteryoperated equipment, but from now on the equipment to be described will be for operation from 60 -cycle, 110 -volt A.C. lighting lines.

All but the most simple radio receivers require direct current of several different voltages up to 300 volts and current values so large as to make batteries impractical. In order to meet this demand. the modern receiver includes a "power supply"-which turns the 110 -volt A.C. into higher D.C. voltage and at the same time delivers A.C. of a few volts for the tube filaments.

This and the next three lessons will de-
scribe a general utility power supply and audio amplifier in one unit which can be used with the several tuning units to be described later. This unit is also an excellent andio amplifier for phonograph reproduction and it can be used Iesson Six's battery set to obtain high-volume loudspeaker reception. Lessons Seven and Eight will describe how the apparatus works and the constructional details will be given in Lessons Nine and Ten.

Obtaining D.C. from A.C. is accomplished by means of a "rectifier"-a device which conducts electricity in one direction only and was described in Lesson One.

22), with the negative side connected to the transformer the positive side to A-. The actual operation and tuning remain the same as described in Lesson Four, because the addition of the amplifier stage does not add any controls.

Readers who made the crystal set described in Lesson Two can also employ this amplifier unit. The two units can be connected up without any further changes except that there is no flament switch. You would have to take the tube out or disconnect one of the filament wires to turn off the amplifier. The remedy is to put a switch on the main panel and place two Fahnestock clips at the back of the base. board, the connections are then as shown in Figure 26.

It is possible to use this amplifier with the diode detector described in Lesson Two, tut this would be rather impractical and wasteful. It is therefore recommended that those having the diode receiver convert it for triode operation as described in Lesson Four. In this way greater sensitivity and output volume will be obtained. Then the one-stage audio amplifier described in the present lesson can be added as explained above.

Parts List for Amplifier Unit

R1—15-ohm wire-wound filament resistor
T-United Transformer Co. interstage transformer, type U31
${ }_{8}$ Eby base mount socket, four-prong
8 Fahnstock clips, 1 inch overall
Baseboard, 5 inches by 6 inches by $1 / 2$ inch thick
t.ugs. screws. push-back wire

For several reasons it is necessary in the case of a power supply to utilize both halves of the wave and to arrange two diode rectifiers to provide "full-wave" rectification.

Referring to Figure 28, the 5Z4 tube has been drawn upside down for convenience. The transformer winding, B, serves to heat the filament of this tube. This particular rectifier is one of the "indirectly heated" type. Its cathode consists of a tiny cylinder which is a good electron emitter when heated. The filament is inside of and heats the cathode but does not touch it--therefore the term "indirectly heated."

Figure 28

Transformer winding C delivers 375 volts A.C. each side of the center tap. On onehalf of each cycle the plate P becomes positive with respect to the ground, or center-tap. A diode conducts only when the plate is positive; therefore, during this half cycle, electrons will flow from the cathode to plate P, through the upper part of winding C to ground and from ground through the resistor, the speaker field and the choke back to the cathode. Meanwhile, the lower half of winding C is not conducting any current.

During the next half cycle, the conditions are reversed and Q becomes positive. Consequently, electrons will flow from cathode to plate Q , through the lower half of winding C to ground and back again through R6 and the chokes. The direction of the electron flow through the resistor and the chokes is the same in both cases and the result is 120 pulses of D.C. per second. If this pulsating voltage were applied to
the plates of the amplifier tubes, a loud 120 -cycle hum would be heard in the speaker. To smooth out the pulsating voltage and remove the hum, a filter must be used.
The power supply filter generally consists of one or more sections, each section consisting of a choke in series with the rectifier output and one or two condensers across the output. The first condenser C4 serves as a reservoir. At the peak of each voltage impulse the condenser charges up to that peak, but as the voltage subsides the condenser discharges through the chokes and the resistor. The net result is a partial smoothing out of the impulses as well as the raising of the average voltage.

The choke, CH , tends to oppose any change in current and therefore helps also in smoothing out the impulses. The function of condenser C s might best be explained by considering that the current passing through the choke consists of the
desired direct current plus some undesirable 120 -cycle A.C. It is the purpose of C5 to remove the alternating current by providing an easy path to ground for it. The D.C. cannot, of course, pass through a condenser. In this filter the hum has been cut down about sixty times in the first section. In the next section the hum is cut down again about 200 or 300 times. These effects multiply so that the total reduction of hum in both sections is 60×300 or 18,000 times. Such a reduction is more than enough. Measurements have shown that the hum voltage across the primary of the output transformer is less than .1 volt, while the maximum signal voltage across this primary is nearly 200 volts.

A further explanation of the speaker field is needed. This and all other "electrody. namic" speakers require that a current be sent through the magnet or "field" windings. At the same time the field can serve as a choke in the filter, thus killing two birds with one stone. There are, however, complications to this arrangement. The field requires a certain minimum power to be properly magnetized and consequently the number of turns of the field must be just right for the total current flowing through it. These fields are usually specified by their resistance as well as the power consumption. When designing the power supply, the designer must arrange the circuit so that he makes best use of the field: filtering property without losing too much voltage in it.

More or less standard field resistances are 1000,1800 and 2500 ohms, which usually require currents of 100 ma., 70 ma . and 45 ma . respectively. In our case, the power supply unit is designed to provide a maximum direct current of 85 ma . and so the 1800 -ohm field was most suitable. During the employment of smaller tuning units with a total drain of only 50 ma ., including the amplifier, extra current can be drawn through the bleeder resistor R G by decreasing its resistance, in order to bring up the total current drain, if this is found necessary.

A 5-prong socket is provided for carrying the power to a tuner unit, although only 4 prongs are used. The extra prong is to prevent the error of plugging this cable into the 4 -prong speaker socket.

LESSON EIGHT

How An Amplifier Works

voltage would vary accordingly. This variation in cathode volatge would be in such a direction as to oppose the original signal and amnlification would be reduced. The large by-pass condenser, C 1 , provides a very easy path for alternating currents and so practicallv nothing will be fed back to the grid.
The resistance coupling consists of the combination R4, C2, and R5. The plate current of the 6FS passes through R4 and causes alternating voltages across it. Since the point E is held at a fixed potential (plus 300 volts), the voltage at D fluctuates. The ideal way of coupling would be to connect the grid of the next tube to D and the cathode to E, but unfortunately this is impractical, because the high plate voltage at D would likewise be applied to the 6Bs grid. C2, R4 and C6 may be considered in parallel with RS, with the result that the greater part of the signal voltage is also across R5. There is not much lost in the condenser coupling through C2 and

C6 if the condensers are large enough. C 6 is always large enough, but C_{2} has to be chosen so that its reactance is low compared to the resistance of RS. The reactance varies with frequency, so the calculation has to be made for the lowest frequency which has to be amplified.

On the other hand, C2 cannot be too large or a loud signal may make the grid of the 6 B 5 positive for a very short time When this happens, the condenser C2 will be charged, making the grid negative and "blocking" the tube. The charge leaks off through the resistor RS. The larger C2

Figure 29

Figure 30
and the larger RS, the longer it will take before the charge has disappeared and the tube is working again. The values must be chosen so as to make the blocking time very short. In the example of Figure 28, it will be one-twentieth of a second.

The story of the 6B5 is much too long
to be told in this lesson. The tube was chosen because it does its work well and because it requires the simplest circuit. It is best to consider that it consists of two coupled triodes. The bias for the tubes is developed automatically inside the tube. The power tube drives the speaker voice
coil through a transformer. The voice coil consists of a few turns of heavy wire and therefore offers a relatively low resistance. For efficient operation this must be matched to the higher output resistance of the tube. The output transformer, included in the speaker, performs this function.

LESSON NINE

Discussion On Volume Controls

IN the previous lessons the discussion on the amplifier and power pack wasn't quite completed. Therefore the remainder will be covered in this lesson.

The tone control has been added because one or more of the tuners to be described in later articles will be of the all-wave type. Such reception often requires that interfering noise be reduced and since most such noise consists of high-pitched sounds, a tone control which reduces high notes is helpful.

The ordinary type of control depends on the fact that a condenser offers an easy path for high frequencies and not for low frequencies, its "impedance" becoming lower and lower as the frequency increases. Thus a condenser placed across the circuit by-passes some of the audio currents, particularly those of higher frequencies. A variable resistor in series with the condenser will regulate this action, the adjustment of the resistance value varying the degree of tone control. When the series resistance is large enough there will be no tone control action. In Figure 28, the tone control consists of C3 and R2.

Whenever the best quality is desired the tone control should be adjusted for maxi mum resistance by turning the control R2 all the way to the left. Maximum noise reduction, on the other hand, is obtained with R2 turned to the opposite extreme.

Figure 32

If a greater degree of tone control is required it can be obtained by changing C 3 from .01 to .05 mfd .

In order to judge the performance of an amplifier the radio man makes curves showing the variation in output for differ ent frequencies while the input is held constant. This is called the "fidelity curve" and in its most perfect form it should be a straight line. Figure 29 shows the curve of the amplifier as it was measured in the Radio News Laboratory. It was measured with the amplifier connected to a resistance load instead of the speaker. Therefore, it does not include the characteristics of the speaker.

The gain or amplification of the amplifier is 77 decibels. It is not possible here to
go into an explanation of the decibel as a unit. One might think of a decible as representing a change in sound level just sufficient to be noticeable to the ear. In practical language a 77 db . gain means that it takes .25 volts at the input terminals of the amplifier to obtain 4 watts output (the maximum output for the 6 B 5). The signal across the output transformer primary is then 170 volts approximately.

For those who wish to acquire the parts for this combination A. F. Amplifier and Power Supply Unit, a parts list follows The drilling specifications of the chassis are given in Figure 31

Parts List

Cl -Aerovox electrolytic condenser. type PRso, 10 mfd., 50 volts

Figure 31

Figure 33-I.eft
Figure 33A-Above

C2-Aerovox tubular paper condenser. type 484 .01 mfd .400 volts.
C3-Aerovox tubular paper condenser. type -18-1 C4-Acro. 400 volts.
Gl Acrovox dry electrolytic condenser, type C5, C6-Acrover volts ser. type GGI dua dry electrolytic conden R1-Electrad volume contiol, type 203, 500,000 ohms
R2-Electrad tone control, type 242. 100,000 R ohins
R3-IRC. carbon tesistor. 2500 ohms. $1 / 2$ watt R4-IRC carbon resistor, $1 / 4$ megohm, $1 / 2$ watt

RS——IRC carbon resistor, $1 / 2$ negohm, $1 / 2$ wate Ti-Electrd variohm, 25,000 ohms, 75 watts CH - Thordarson power transformer, type 'I 7062 henries, 85 ma .
Wright-DeCoster
870-13 (spester 10 -inch dynamic speaker, model primary 7000 (speaker field 1800 ohms, transformet primary 7000 ohms)
lour-prong, 1 five-prong, 1 six-prong and 2 octal wafer type sockets. Mounting centers
CA cadmium-plated stecl chasssis $12 \times 7 \times 3$ inches high, type 1527, blank or drilled SWI-ICA toggle switch, type 1230

ICA bakclite puinter knobs, type 1155
ICA terminal strip maked "INPUT," type 2417
E 1CA fusc mounting, type 2340
1 Littelfuse 2 amp . fuse
2 lug terminal strips, each having 2 terminals ribber grommet for $3 / 8$-inch hole
small grid-clip (for metal tubes)
1 line plug ands feet of line cord
Bolis, nuts, washers, soldering lugs. push-back wite
1 6FS tube
521 tube

LESSON TEN

Constructing the A. F. Amplifier and Power Unit

INN selecting the parts employed in the model discussed in this lesson, every effort was made to keep the cost as low as possible, consistent with the required quality. It is not imperative that the parts employed by the constructor be of the exact makes and type numbers shown in the list of parts in I.esson Nine, but it is important that the quality and electrical values be the same if results are to equal those provided by the model. If stubstitions are made they may in some cases require some alteration in the drilling layout.

The first thing to do is to prepare the chassis. The socket holes can be made easiest with a punch as as the Livermore Five-In-One Punch on sale at many radio stores. Holes of five different sizes can be made with this tool. The holes for the socket mounting screws should be laid out after the large holes are punched, thus allowing for any slight error in placement of the large holes.

All except the socket holes can be made with ordinary twist drills. Start the larger holes with a small drill, then use a larger one of the required size.

The centers of the tube sockets mounting screw holes are shown $1 / 2$ inches apart in Figure 31. There are three standard spacings of these mounting centers: $11 / 2$ inches.
$111 / 16$ inches and $127 / 32$ inches. At present the smallest size is the most often used. If sockets with the wider spacing are used the holes in the chassis should be spaced accordingly.

All sockets on the chassis are to be placed with the filament terminals towards the rear; that is, the notches in the central hole of the metal tube socket should point towards the rear and the large hoics of the middle socket should be at the rear. (See Figure 34). The sockets for the cables should be placed as shown in Figure 32.

When mounting the choke and the in put terminals, care should be taken to prevent short circuits. The lugs stick through the holes and no part of the lug or any metal connected to it should touch the chassis. This is so important that a special test is recommended. This is done by connecting one terminal of a voltmeter to a baticry. and the other terminals of the voltmeter and battery to the lug and the chassis respectively. If the meter shows at voltage reading it indicates a short circuit.

After all the parts have been mounted, the terminal lug strips are inounted with screws as shown in the bottom view, alion the fuse holder.

Beginning wih the wining it is pernaps easiest to begin with the transformer con-
nections. The wires are distinguished by their color. A paper comes with the transformer which explains the color code; they are also shown in Figure 28.

The electroylytic condensers must be connected with d::e regard to their polarity. The electroylytic condenser consists of two aluminum foils separated by an electrolyte (a solution which conducts electricity and is decomposed by the current). The current causes an extremely thin film to form on one of the foils. This film being nonconductive, the whole becomes a condenser. Due to the fact that the film is extremely thin, the capacity can be made large in relatively small space. This type of condenser will be ruined if the polarity is reversed; they are good only in D.C. circuits, or when A.C. is superimposed on D. C. as in the power pack. In our case, all the negative erminals should be connected to the chassis. The condensers are marked and color coded; the colors are also shown in Figure 28.
The proper connections to the sockets are shown in Figures 34 and 32. Figure 34 shows the sockets on the chassis as they look from the bottom. Figure 32 gives the bottom views of the sockets at the rear of the chassis.
The terminal lug strips serve as a support for connections which would otherwise

Figure 35
hang in the air. The first one serves to stupport R4 while the other one is used to support one side of the line and the junction between C3 and R2 of the tone control.

The volume control and tone control are wired as in Figure 36. This is a view of the bottom of the chassis looking from the rear.
The constructor might first complete the power pack and then test it by turning it on, seeing that all the tubes light and (with due caution) measuring the high-voltage.
With the voltage divider in the circuit as the only drain, there will be about 430 volts.
When the other tubes have been connected, the plate voltage will be dropped to approximately 310 volts.

With the power turned off, the slider on the voltage divider can be connected to the high side and adjusted until the total current is 70 ma . The slider will then be less than an inch from the high end. The plate voltages will be slightly over 300 volts.

Use of the Amplifier

The input of the amplifier can be connected to the two-tube receiver described in Lesson Six. Remove the audio tube of the battery set and connect the input term-

Figure 36
inals of the amplifier across the secondary of the transformer being sure that the grounded side of the transformer connects to the chassis. If the set has a tendency to squeal it can be cured by a 00025 mfd. condenser across the primary of the transformer. It may also be useful to ground the speaker chassis.

If it is desired to use a phonograph pickup of the "high-impedance" type it is simply connected to the input terminals direct. With a pick-up of the low-impedance type a suitable matching transformer is required, as shown in Figure 35a. The amplifier can also be employed with a carbon microphone, either single button or double button, as shown in Figures 35b and 35c. The other types of microphones such as the crystal, velocity, etc., are too low in output for use with this amplifier. In all these cases it is important to keep the leads in the amplifier input circuit short. Where a transformer is used with microphone input, etc., its case should be grounded and it may be necessary to shield the leads from it to the amplifier input in order to prevent instability and pick-up of hum.

The Speaker

The Wright De Coster Model 820B dynamic speaker used with this amplifier was selected for this use because it offers the attractive combination of good quality and low cost. Another advantage is that its 1800 ohm field is just right to permit the field to function as one of the chokes in the power-supply filter, thus insuring freedom from hum and saving the cost of an extra choke. Also it comes equipped with a cable and plug, thus simplifying the program of making connections to the main unit.

Figure 34
Without a baffle, which may be a flat board or a cabinet, a dynamic speaker will not properly reproduce low notes because in the case of low frequencies the sound from the back of the cone tends to cancel that from the front. The remedy is to miake the path from front to back rather long by mounting the speaker on a baffle. The lower the note the larger this baffle should be. In order to fully reproduce a 50 cycle note, for example, the baftle would have to be 22 feet square. Of course, no one would care to make so large a bafle. For practical purposes a baffle three or four feet square gives very good results. Placing the baffle on the floor, extends its size at least in one direction.

When a speaker is placed in a cabinet, the sides of the cabinet constitute an effective part of the baffle. A smaller baffle or cabinet does not bring out the low notes fully but is better than none at all.

Additional lessons in radio are appearing in Radio News. The next lesson appears in the October, 1936, issue and more will follow. They will provide instructions for building various types of tuners, both t.r.f. and superheterodyne, which may be used with this amplifier-power supply unit.

Television Opportunity (Continued from Page 2)

for men who are already familiar with the technical complications of modern radio, and have, in addition, an understanding of branches of electronics which have thus far not been of great importance to those engaged in the radio industry.

Along what lines preparation should follow depends upon previous training and experience and upon the branch of the new industry in which the individual is most interested. Television operation will definitely be limited to the ultra high-frequency ranges; the cathode-ray tube, the photocell, and other electronic devices will play an essential role and television will have much in common with moving picture photography, projection and sound reproduction. All of these therefore represent logical and helpful lines of study. The oscillograph, for instance, involves all the features of the television image reproducer. Plenty of information is available on oscillographs and a thorough study of this will provide
an excellent foundation for more detailed study of the television processes.

Ultra high-frequency transmission and reception introduce new phenomena and new problems. The construction and operation of a 5 -meter amateur station will provide excellent practical study and training-or at least the construction of a receiver capable of listening in on the 5 -meter "ham" band and the experimental broadcasting on the adjacent television channels.

Radio News will present constructional data on television receivers - and transmitters as well - just as rapidly as satisfactory designs permit. It may seern a bit far-fetched to recommend that those interested in television occupations actually construct their own equipment but the fact remains that many of the most important figures in radio today gained their early knowledge by building their own radio sets in the early days of radio.
A study of motion-picture operations will prove extremely helpful. Television pickup technique will follow closely along lines of movie photography-and even the direction of players and planning of programs
will closely parallel those of the movies. Technically, they have much in common also-optically and electrically.

Obviously the important feature in preparing for television is to read everything dependable that one can find on the subject, not only technical literature but articles pertaining to the commercial angles as well.
There are now a number of well qualified schools offering courses in television. For those who can take advantage of such training it is invaluable as it provides the necessary knowledge in concentrated form Moreover most students find it more beneficial to follow a regular prescribed routine of study, and in almost every case this method will provide better results, when combined with outside reading and practice, than the more laphazard methods of selftraining.

To anyone desirous of making a future for himself in television it cannot be too strongly stressed that now is the time to prepare. Hours intelligently spent now in preparation are sure to pay big dividends in years to come

U. S. Broadcasting Stations

Call Location	K c.	$K u$.
KABC........San Antonio, Texas	1420	. 1
KABR........Abcrdeen, S. Dak	1420	0.1
KADA........Ada, Okla.	1200	0.1
KALB......... Alexandria, La.	1.120	0.1
KALE.........Portland, Ore.	1300	0.5
KANS........Wichita, Kans.	1210	0.1
KARK........Litlle Rock. Ark.	890	0.25
KASA........Elk City, Okla.	1210	0.1
KAST.........Astoria, Ore.	1370	0.1
KBHB.........Rapid City, S. Dak.	1370	0.1
KBIX.........Muskogee, Okla.	1500	0.1
KBPS..........Pottand, Ore	1420	0.1
KBST..........Big Spring, Texas	1500	0.1
KBTM........Jonesboro, Ark.	1200	0.1
KCMC........Texarkana, Ark.	1420	0.1
KCMO........ Kansas City, Mo.	1370	0.1
KCRC.........Enid, Okla.	1360	0.25
KCRI..........Jerome, Ariz.	1310	C. 1
KDB..........Santa Barbara, Calif.	1500	0.1
KDFN........Casper, Wyo.	1440	0.5
KDKA........Pittsburgh, Pa	980	50.0
KDLR.........Devils Lake, N. Dak.	1210	0.1
KDNC.........Lewistown, Mont.	1200	0.1
KDON...._Del Monte. Calif.	1210	0.1
KDYL.......-salt Lake City, Utah	1290	1.0
KECA........-os Angeles, Calif.	1430	1.0
KEHE.......-m Angeles, Calif.	780	0.5
KELD.........EE Dorado, Ark	1370	0.1
KERN.........Bakersfield, Calif.	1370	0.1
KEUB.........Price, Utah	1420	0.1
KEX...........Portland, Ore.	1180	3.0
KFAB.........Liacoln, Neb	770	10.0
KFAC......... Los Angeles, Calif.	1300	1.0
KFBB..........Great Falls, Mont.	1280	1.0
KFBI..........-Abilene, Kans	1050	5.0
KFBK.........Sacramento, Calif.	1490	5.0
KFDM.........Bcaumont, Texas	560	0.5
KFDY.........Brookings, S. Dak.	780	1.0
KFEL Denver, Colo	920	0.5
KFEQ.........St. Joseph, Mo.	680	2.5
KFGQ..........Boone, lowa	1370	0.1
KFH............Wichita, Kans	1300	1.0
KFI............I.os Angeles, Calif.	640	50.0
KF1O..........Spokane, Wash.	1120	0.1
KFIz..........Fond du Lac, Wis.	1420	0.1
KFJB...........Marshalltown, Jowa	1200	0.1
KFJI...........Klanath Falls, Ore	1210	0.1
KFjM......--Grand Forks, N. Dak.	1370	0.1
KFJR.........-Portland, Ore.	1300	0.5
KFIZ......ort Worth, Texas	1370	0.1
KFKA.........Grecley, Colo.	880	0.5
KFKU.......... ${ }^{\text {Laxrence, Kans. }}$	1220	1.0
KFNF.........Shenandoah, Iowa	890	0.5
KFOR........_Lincoln, Neb	1210	0.1
KFOX.........Long Beach, Calif.	1250	1.0
KFPL	1310	0.1
KFPW........Fort Smith, Ark.	1210	0.1
KFPY.........Spokane, Wash.	890	1.0
KFQD.........Anchorage, Alaska	780	0.25
KFRC..........San Francisco, Calif.	610	1.0
KFRO......... Longrier, texas	1370	0.1
KFRU	630	0.5
KFSD..........San Diego, Calif.	600	1.0
KFSC.........L.os Angeles, Calif.	1120	0.5
KFUO.........St. I.ouis, Mo.	550	0.5
KFVD..........tos Angeles, Calif.	1000	0.25
KFVS..........Cape Girardeau, Mo.	1210	0.1
KFWB........Hollywood, Calif.	950	1.0
KFXD......... Nampa, Jdaho	1200	0.1
KFXI.......... ${ }^{\text {Stand }}$ Junction, Colo.	1200	0.1
KFXMSan Bernardino, Calif.	1210	0.1
KFXR.........Oklahoma City, Okla.	1310	0.1
KFYO...........	1310	0.1
KFYR...........Bismarck, N. Dak.	550	1.0
KCASpokane, Wash.	1470	
KGAR.........Iucson, Ariz.	1370	0.1
KGB...........San Diego, Calif.	1330	1.0
KCBU.........Ketchikan, Alaska	900	0.5
KGBX.........springfield. Mo.	1230	0.5
KGCA.........IDecorah, iowa	1270	0.1
KCCU.........Mandan, N. Dak.	1240	0.29
KCCX W olf Point, Mont.	1310	0.1
KGDE.........Fergus Falls, Minn.	1200	0.1
KCDM.......Stockton, Calif.	1100	1.0
KCDY.........Huron, S. Dak.	13.40	0.25
KCEK.........Sterling, Colo	1200	0.1 -
KCER.........I.ong Beach, Calif.	1360	1.0
KGEZ...........alispell. Mont.	1310	0.1
KGFF.........Shawnee, Okla.	1420	0.1
KGFG.........)klahoma City, Okla.	1370	0.1
KGFI..........Corpus Christi, Texas	1500	0.1
KGF)............. os Angeles, Calif.	1200	0.1
KGFK.........Moorhead, Minn.	1500	0.1
KGFL.........Roswell, N. M.	1370	0.1
KCFW.........Kearney, Ncb	1310	0.1
KGFX.........Pierre, S. Dak.	630	0.2

Call Location	$K c$.	$K w$.
KCCC.........San Francisco, Calif.	1420	0.1
KCCF.........Coffeyville, Kans.	1010	1.0
KCCM........Altuquerque, N. M.	1230	0.25
KGHF.........Pueblo, Colo.	1320	0.5
KGHI..........Little Rock, Ark.	1200	0.1
KGHL..........Billings, Mont.	780	1.0
KGIR.........Butte, Mont	1340	1.0
KGIW........Alamosa, Colo.	1420	0.1
KGKB.........Tyler, Texas	1500	0.1
KGKL..........San Angelo. Texas	1370	0.1
KGKO.........Wichita Fails, Texas	570	0.25
KGKY........Scottsbluff, Neb.	1500	0.1
KGLO.........Mason City, Iowa	1210	0.1
KGMB.........Honolulu, T. H.	1320	1.0
KCNC.........Amarillo, Texas	1410	1.0
KGNF.........North Platte, Neb.	1430	1.0
KGNO........Dodge City, Kans.	1340	0.25
KGO...........San Pirancisco, Calif.	790	7.5
KCU........... Honolulu, T. H.	750	2.5
KCVO......... Missoula, Mont.	1260	1.0
KCW..........Portland, Ore	620	1.0
KCY...........Olympia, Wash.	1210	0.1
KHBC.........Hilo, T. H.	1400	0.25
KHJ............. I os Angeles, Calif.	900	1.0
KHQ..........Spokane, Wash.	590	1.0
KHSL.........Chico, Calif.	950	0.25
KICA.........Clovis, N	1370	0.1
KID.............ldaho Falls, Idaho	1320	0.5
KIDO..........Boise, Jiaho	1350	1.0
KIDW........Lamar, Colo.	1420	0.1
KIEM.........Eureka, Calif.	1450	0.5
KIEV...........Glendale, Calif.	850	0.25
KINY..........luneau, Alaska	1310	0.1
KIRO..........Seattle, Wash.	710	1.0
KIT.............Yakima, Wash.	1310	0.1
KIUI.......... Santa Fe, N. M.	1310	0.1
KIUL........... ${ }^{\text {Sarden City, Kans. }}$	1210	0.1
KIUN...........Pecos, Texas	1420	0.1
KIUP..........Durango, Colo.	1370	0.1
KIBS	1070	0.5
K\|R............Seattle, Wash.	970	5.0
KLCN.........Blytheville, Ark.	1290	0.1
KLO........... Ogden, Utah	1400	0.5
KLPM........ Minot, N . Dak.	1240	0.25
KLRA.........Little Rock, Ark.	1390	1.0
KLS.............Oakland, Calif.	1.440	0.25
KLUF.........Galveston, Texas	1370	0.1
KLX............ Dakland, Calif.	880	1.0
KLZ...........Denver, Colo.	360	1.0
KMA.........Shenendoah, lowa	930	1.0
KMAC.......San Antonio, Texas	1370	0.1
KMBC........ Kansas City, Mo.	950	1.0
KMED.........Medford, Ore.	1310	0.1
KM)...........Fresno, Calif.	980	1.0
KMLB..........Monroc, La.	1200	0.1
KMM)........Clay Center, Neb.	740	1.0
KMO..........Tacoma, Wash.	1330	0.25
KMOX....... St. L.ouis, Mo.	1090	50.0
KMPCBeverly Hills, Calif.	710	0.5
KMTR........Hollywood, Caif.	570	1.0
KNEL..........Brady, Texas	1500	0.1
KNET...........Palestine. Texas	1420	0.1
KNOW........Austin, Texas	1500	0.1
KNX..........Hollywood, Calif.	1050	50.0
KOA...........Denver, Colo.	830	50.0
KOAC.........Corvallis, Ore.	590	1.0
KOB......... Albuquerque, N. M.	1180	10.0
KOCA.........Kilgore. Texas	1210	0.1
KOH...........Reno, Ner.	1380	0.5
KOIL	1260	1.0
KOIN Portiand, Ore.	940	1.0
KOL..........Seattle, Wash.	1270	1.0
KOMAOklahoma City, Okla.	1480	5.0
KOMO........Seattle, Wash.	920	1.0
KONO........San Antonio, Texas	1370 1390	0.15
KOOS.........Marshficld, Ore.	1390 1420	0.25
KORE..........ugene, Bluff Are.	1500	0.1
KOY...........Phoenix, Ariz.	1390	0.5
KPAC.........Port Arthur, Texas	1260	0.5
KPDN...........Pampa. Texas	1310	0.1
KPLC.........Lake Charles, La,	1500	0.1
KPLT..........Paris Texas	1500	0.1
KPO................an Prancisco, Calif.	680	50.0
KPOF..........Denver, Colo.	880	0.5
KPPCPasadena, Calif.	1210	0.1
KPQ...........Wenatchee, Wash.	1500	0.1
KPRC.......... Pouston, Texas	920	1.0
KQV.............Pittsburgh, Pa_{2}.	1380	0.5
KQW...........San Jose, Calif.	1010	1.0
KRBC.........tbilene, Texas	1420	0.1
KRE............ Berkeley, Calif.	1370	0.1
KRGV........ Weslaco, Texas	1260	0.5

Call	Location	Kc.	$K \boldsymbol{w}$.
KRKD	Los Angeles, Calif.	1120	0.5
KRKO	Everett, Wash.	1370	0.05
	Lewiston, Idaho	1420	0.1
KRLD	..Dallas, Texas	1040	10.0
KRLH	Midland. Texas	1420	0.1
KRMD	Shreveport, La.	1310	0.1
KRNR.	Roseburg, Ore.	1300	0.1
KRNT.	. Des Moines, Iowa	1320	0.5
KROC.	.Rochester, Minn.	1310	0.1
KROW	.Oakland. Calif.	930	1.0
KROY.	Sacramento, Calif	1310	0.1
KRRV	Sherman, Texas	1310	0.1
KRSC...	.Seattle, Wash.	1120	0.1
KSAC.	Manhattan, Ka	580	0.5
KSCI.	..Sioux City, Iowa	1330	1.0
KSD...	St. Louis, Mo.	550	1.0
KSEI.	Pocatello, Idaho	900	0.25
KSFO.	.San Francisco, Calif	960	1.0
KSL	Salem, Ore	1370	0.
KSLM.	Salt Lake City, Utah	1130	90.0
KSO....	Des Moines, Lowa	1430	0.5
KSOO.	. Sioux Falls, S. Dak.	1110	2.5
KSTP...	.St. Paul, Minn.	1460	25.0
KSUN	Lowell, Ariz.	1200	0.1
KTAR.	Phoenix,	620	1.0
KTAT.	Fort Worth, Texas	1240	1.0
KTBS	.Shreveport, La.	1450	1.0
KTEM.	... Temple, Texas	1370	0.1
KTEP..	.El Paso. Texas	1500	0.1
KTFI.	Twin Falls, Idaho	1240	1.0
KTHS..	..Hot Springs, Ark.	1060	10.0
KTRB..	Modesto, Calif.	740	0.25
KTRH.	..Houston. Texas	1290	. 0
KTSA.	.San Antonio, Texas	550	1.0
KTSM	...El Paso, Texas	1310	0.1
KTUL.	...'iulsa. Okla	1400	0.5
KTW.	..Seattle, Wash.	1220	1.0
KUJ.	...Walla Walla, Wash.	1370	1.0
KUMA	Yuma, Ariz.	1420	0.1
KUOA.	Fayetteville, Ark.	1260	1.0
KUSD.	Vermillion, S. Dak	890	0.5
KUTA.	. Salt Lake City, Utah	1500	0.
KVCV.	..Redding, Calif.	1200	0.1
KVEC.	...san Luis Obispo, Calif.	1200	0.2
KVI.....	..liacoma, Wash.	370	1.0
KVL....	.-Seattle, Wash.	1370	0.
KVOA.	Tucson, Ariz.	1260	0.5
KVOD.	Denver, Colo	920	0.9
KVOE.	Santa Ana, Cali	1500	0.1
KVOL.	Lafayette, La.	1310	0.1
KVOO.	Tulsa, Okla	1140	25.0
KVOR.	Colorado Springs, Colo.	1270	1.0
KVOS.	..Bellingham, W	1200	0.1
KVSO.	..Ardmore, Okla.	1210	0.1
KWAT	Watsonville, Calif,	1310	0.25
KWBC	Hutchinson, Kans.	1420	0.
KWG..	..Stockton, Calif.	1200	0.
KWIJ.	...Portland, Ore.	1040	0.
KWK.	...St. Louis, Mo.	1350	1.0
KWKH	..Shreveport, La.	1100	10.0
KWLC	Decorah, Iowa	1270	0.1
KWSC	Pullman, Wash	1220	1.0
KWTN	Watertown, S. Dak.	1210	0.1
KWTO	.Springfield, Mo.	560	5.0
KWYO	Sheridan, Wyo.	1370	0.1
XA	Se	760	. 25
KXL.	Portland, Ore	1420	0.1
KXO.	El Centro, Calif.	1500	1
KXRO.	Aberdeen, Wash.	1310	0.1
KXYZ	Houston, Texas	1440	-
KYA.	San Francisco, Calif	1230	
KYOS.	Merced. Calif.	1040	. 25
KYW..	Philadelphia, Pa.	1020	10.0
AAB	Boston, Mass.	1410	0.
WAAF	Chicago. 111.	920	1.0
WAAT	Jersey City, N, J.	940	0.3
WAAW	Omaha, Neb	660	0.5
WABC	...New York, N. Y.	860	0.0
WABI	...Bangor, Maine	1200	0.1
WABY	Albany, N. Y.	1370	0.1
WACO	...Waco, Texas	1420	0.1
WADC	...Akron, Ohio	1320	1.0
WAGF	...Dothan, Ala.	1370	0.25
WAGM	...Presque Isle. Me	1420	0.1
WAIM	...Anderson, S. C.	1200	0.1
WALA	Mobile, Ala.	1380	0.5
WALR	...Zanesville. Ohio	1210	0.1
WAM	...Laurel, Miss.	1310	0.1
WAPI	...Birmingham, Ala	1140	5.0
APO	...Chattanooga, Tenn	1420	0.1
WARD	...Brooklyn, N. Y.	1400	0.
WASH	...Grand Rapids, Mich.	1270	0.
WATL	...Atlanta, Ga.	1370	0.1

rall Location	Kc.	$K w$.	Call Location	Kc.	$K w$.	Call Location	Kc.	$K w$.	
WATR.........W'aterbury, Conn.	1190	0.1	WFBR........Baltimore, Md.	1270	0.5	WLAC.........Nashville, Tenn WLAK Lakeland, Fla	1470	5.0	
WAVE..........Louisville, Ky.	940	1.0	WFDF......... Flint , Micl	1310	0.1	WLAP..........Lexington,	1420	0.1	
WAWZ.....Zarephath, N. J.	1350	0.3	WFEAManchester, N. H .	1340	1.0	WLB...........Minneapolis, Minn.	1250	1.0	
WAYX.......Waycross, Ga.	1200	0.1	WFIL	620	1.0	WLBC Muncie, Ind.	1310	0.1	
WAZL.......Hazleton, Pa.	1420	0.1	WFLA	900	0.5	WLBF.......... Kansas City, Kans	1420	0.1	
			Y St..... Augustinc, Fla.	1210	0.1	WLBL	00	2.5	
WBBA........West Lafayette, Ind.	890	0.5				WLBZ	620	0.5	
WBALBaltimore, M	760	2.3				WLEU	1420	0.1	
WBAL.........Baltimore, Md.	1060	10.0	WGAL.......Lancaster, Pa	1500	0.1	WLLH...... Lowell, Ma		0.1	
WBAP.........Fort Worth, Texas	800	50.0	WGAR.......Ceveland, Ohio	1450	0.5	WLM U......Middestoro, Ky.	1310	0.1	
WBAX	1210 1400	0.1		1210 630	0.1	WLSH..........Chicago, Ill.	870	50.0	
WBBC......... Brooklyn, ${ }^{\text {P }}$, Y.	1210	0.1	WGBF.........Evansville,	880	0.5	WLTH Brooklyn, N.	1400	0.	
	770	so. 0	WCBI......Scranton, Pa	1210	0.1	WLVA.......Lynchburg, Va.	1200		
WBBR......... Brooklyn, N. Y.	1300	1.0	WGES.......... Chicago, Ill.	1360	0.5	WLW.........Cincinnati, Ohio	700	300.0	
WBBZ........Ponca City, Okla.	1200	0.1	WGH............Newport News, Va.	1310	0.1	WLWL........New	1100	5.0	
WBCM.......Bay City, Mich	1410	0.5	WGL...........Fort Wayne, Ind.	1370	0.1				
WBEN....... Buffalo, N Y.	900	1.0	WGN.........Chicago. III.	720	50.0	WMAL	630	50.0	
WBEO..........Marquette, Mich.	1310	0.1	WGNY.......Chester, N. Y.	1210	0.1	WMAQ......-chicago, il	420	50.0	
WBIGGreensboro, N. C	1440	0.5	WGPC......-Albany.	1420	1.0	WMAZ.....o Macon,	1180	1.0	
WBLY.........lima, New Orleans, L	1200	0.1	WGR	1370	0.25	WMBC........-Detroit. Mich.	1.120	0.1	
WBNS..........Columbus, Ohio	1430	0.5	WGRS	890	1.0	WMBD......Peoria, 111	1440	0.5	
WBNX.......New York, N. Y.	1350	0.25	WGY...........Schenectady, N. Y.	790	50.0	WMBC.......Richmond,	1210	0.1	
BNY........Buffalo, N	1370	0.1				WMBH	20	0.1	
WBOQ.......New York, N. Y.	860	50.0		40	. 5	WMBI.......chicago,	10	5.0	
WBOW.......Terre Haute ind.	1310	0.1		1150	50.0	WMBO	1500	0.1	
WBRE.........Red Bank, N. J.	1210	0.1	WHAM Rochesville,	820	50.0	WMBRjacksonville, Fla	1370	0.1	
WBRC....... Birmingh	930	. 1	WHAT.......Philadelp	1310	0.1	WMC Memphi	780	. 0	
WBRE......... Wilkss-Barre, Pa.	1310	0.1	WHAT Troy	1300	0.5		570	. 3	
WBT..........Charlotte. N. C.	1087	50.0	WHAZ	860	1.0	WMEX - Bosto			
WBTM...... Danvilie, Va,	1370	0.1		1500	0.1	WMFD...... Wilmington, N. C.	1370	0.	
WBZ..........Boston, Mass.	990	50.0	WHBC.........Canton, Ohio	1200	0.1	W MFF........platesburg, N. Y.	1310	0.25	
WBZASpringfield, Mass.	990	1.0	WHBF..........Rock island, Ill.	1210	0.1	WMFC.......Hibbing, Minn.	1210	0.1	
			WHBI..........Newark, N. J.	1250	1.0	WMFI.........Daytona Beach, Fla.	1420	0.1	
WCADCanton, N. Y.	1220	0.5	WHBL........Sheboygan, Wis.	1300	0.3	WMFNClarksdal	1210	0.1	
WCAE........Pittsb		1.0	WHBQ........Memphis, Tenn.	1370	0.1	WMFODecatur, Ala	1370	0.1	
WCAL	1250	1.0	WHBUAnderson, Ind	1210	0.1	WMFRHigh Point, N. C.	1200	0.1	
WCAM......Camden, N. J	1280	0.5	WHBY......... Green Bay, Wis.	1200	0.1	WMIN.......St. Paul, Min	1370	0.1	
WCAO........Baltimore. Md.	600	0.3	WHDF........calumet, Mich.	1370	0.1	WMMN.....Fairmont,	890	0.25	
WCAP.......Asbury park, ${ }^{\text {N }}$.	1280	0.5	WHDH.......-Boston, Ma	830	1.0	WMPC	1200	0.1	
WCAT.......Rapid City, S.	1170	50.1	WHDL	1420	0.1	WMSD Sheffield, Al	1420	0.1	
WCAU.......Philadelphia ${ }^{\text {P }}$ Pa.	1170	s0.0	WHEB.........Portsmouth	740	0.25	WMT..........Cedar Rapids, lowa	00	. 0	
WCAXBurlington, Vt .	1200	0.1	WHEC........R ${ }^{\text {achester, N. Y. }}$	1430	0.3				
WCAZ........Carthage, III.	1070	0.1	WHEF........-Kosciusko, Miss.	1500	0.1	WNAC........Boston, Mass.	1230	1.0	
WCBA.......Allentown, Pa.	1440	0.5	WHFC........Cicero, ill.	1420	0.1	WNAD.......Norman,	1010	1.0	
WCBD.........Waukegan,	1080	5.0	WHIO........-Dapton, Ohio	1260	1.0	WNAX.......Yankton, S. Dak.	570	1.0	
WCBM.......Batimore, Md.	1370	0.1	WHIS.........Bluefield, W. Va.	1410	${ }_{0}^{0.3}$	WNBC........vew Britain, Conn	1380	0.23	
WCBS........Springfield, Ill.	1420	0.1	WHIB	620	0.25	WNBF........Binghamton, $\mathrm{N}_{\text {, }}$ Y.	1500	0.1	
wCCO........ Minneapolis, Minn.	810	50.0	WHK..........Cleveland, Ohio	1390	1.0	WNBH.......New Bedford, Mass.	1310	0.1	
WCFL........Chicago, Ill	970	5.0	WHKC.......Columbus, Ohio	640	0.5	WNB.........Memphis, Ten	1430	0.9	
WCHS........Charleston, W, Va.	580	0.9	WHLB.......Virginia, Minn.	1370	0.1	WNBX.......Springfield,	1260	1.0	
WCHV........ Charlottesville, Va.	1420	0.1	WHN......... New York, N. Y.	1010	50.0	WNBZ	1290	0.1	
WCKY........Covington, KY.	1490	5.0	WHO......... Des Moines, Iowa	1140	${ }^{5} 0.05$	WNEL	1290	1.0	
WCLO........Janesville, Wis.	1200	0.1		1430	0.5	WNEW.......Newark, N. J.	1250	1.0	
WCLS........Joliet, Ill.	1310	0.1	WHP..........Harrisburg, Pa.		0.5	WNLC.......New London,	1500	0.1 1.0	
WCMI.......Ashland. Ky	1310	0.1				WNOXKnoxville,		0.1	
WCNW Brookyn, N. Y.	1500	0.1	WIBAMadison, Wis.	1280	1.0	WNR1.........wport,	1200 810	1.0	
WCOA.......Pensacola, Fla.	1340	0.5	WIBCGlenside, Pa	970	0.1	WNYC........New Yor			
WCOC.......Meridian, Miss.	880	0.5	WIBM........Jackson, Mich.	1370	0.1				
WCOL........Columbus, Ohio	1210	0.1	WIBU	1210	1.1	WOAI........San Antonio Texas	11370	0.1	
WCOP........Boston, Mass	1120	0.3	WIBW	580 1200	1.0	WOC..........Davenport, ${ }_{\text {Woct }}$ W	1310		
WCPO......Cincinnati, Ohio	1200	0.1	WIBX Utica, N. Y.	1200 600		WOCL WO.........amestown	640	5.0	
WCRW.......Chicago, 111.	13120	0.1	WICC	600 1200	0.1	WOKO........Alba	1430	. 9	
WCSC........Clarleston, S. C.	1360 940	1.0	WIL..........Stit Louis,	580	1.0	WOL...........Washington, D. C.	1310	0.1	
WCSH.........Portland, Me.	940	1.0	WILL	1420	0.1	wols..........Florence, S. C.	1200	0.1	
WDAE....... Tampa, Fla.	122	. 0	WIND Gary, lnd	360	1.0	WOMT.......Manitowoc	1210	0.1	
WDAF.........Kansas City, Mo.	610	1.0	WINS..........New York, N. Y.	1180	1.0	WOOD.......Grand Rapi	1270	0.5	
WDAH.......EL Paso, Texas	1310	0.1	WIOD......... Miami, Fla.	1300	1.0	WOP1........	710	50.0	
WDAS........Philadelphia, Pa	1370	0.1	WIP.........PPiladelphia, Paj		1.5	WORC W Worcester,			
WDAY........Fargo, N. Dak.	940	1.0	WIREIndianapolis, Ind.	${ }_{56}$	1.0	WORK....... York, Pa'.	1320	. 1	
WDBI........-Roanoke, Va.	930	1.0	WISN M Milwauke , iwis.	1120	0.25	WORL Moston, Mass.	920	0.5	
WDBO......-Orlando Fla.	580	1.0	WISN...........Miwauke, Wis.			wosJefferson City, Mo.	630	0.5	
WDELWilmington, Del.	1120	0.25				WOSU........Columbus, Ohio	570	0.75	
WDEV.......Waterbury Mt.		0.3 1.0	WJAC	1310 1060	0.1 1.0	WOV..........New York, N. Y.	1130		
WDCY....... Minneapolis, Minn.	1180 1500	1.0 0.1	WJAC.........Norfolk,	1060 890	1.0	wow......Omaha, Neb.	590	5	
WDNC.......Durham, N. C.	1280 1200	0.1 1.0	W/AR........Providence,	1290	1.0	WOWOFort Wayne, Ind.	1160	10.0	
WDOD WDRC.......Chattanooga, Hartford, Conn.	1330	1.0	WIAXJacksonville. Fla.	900	1.0		1420		
WDSU........New Orleans, La.	1250	1.0	WJAY..........Cleveland, Ohio	610	0.5		1420	0.1	
WDWS...... Champaign, ill.	1370	0.1	W JBC............ ${ }^{\text {Bloomington, }}$ Ill.	1200	0.1	WPARXThomasville, Ga.	1210	0.1	
WDZ.........Tuscola, Ill.	1020	0.25	W/BK........ Detroit, Mich.	1500	0.1	WPAY.......Portsmouth, Ohio	1370	0.1	
WEAF New York, N. Y.			WJBL	1200	0.1	WPEN........Pliladelphia, P2.	920	0.25	
WEAN Providence, R. İ.	780	${ }^{0.5}$	WJBO......... Baton Rouge	1420	0.1	WPFB........-1attlesburg,	1370	0.1	
WEAC...........Superior, Wis.	1290	1.0	WIBWW.........New Oreans, La.	1200	0.1	WPC	880	5	
WEBQ.......... Harrisburg, Ill.	1210	0.1	W1BY Gadsden, Ai.	1210	0.1	WPRO	630	0.25	
WEBRBuffalo, N. Y.	1310	0.1	WJDXJackson, Miss.	1270	1.0	WPRP.........Ponce, P.	1420	0.1	
WEDC.........Chicago. 111.	1210	0.1	WIEI Hagerstown, Md.	1210	0.1	WPTF.........Raleigh, N. C.	680	5.0	
WEED.........Rocky Mount, N. C.	1420	0.1	WIIM.........Lansing, Mich.	1210	0.1				
WEEI..........Boston, Mass.	590	1.0	W\\|D.........Chicago, Ill.	1130	20.0	WQAM Miami, Fla.	560		
WEEU........Reading, Pa.	830	1.0	WIMS	1420	0.1	WQANScranton, Pa,	880	0.25	
WECL	1400	0.5	WJNO.........W. Palm Beach, Fla.		50.1		1360 1370		
WEHS........Cicero, Ill,	1420 900	0.1	W/R........Detroit, Mich	750 1200	50.0 0.1	WQDM.......St. Albans, Vt.	1370	. 1	
WELI.........New Haven, Conn.	1420	0.3	WISV	1460	10.0	WRAK Williamsport, Pa.	1370	0.1	
WELL WEMP Mattle Creck, Mich.	1420 1310	0.1	WJW............Akron, Ohio	1210	0.1	WRAWReading, $\mathbf{P a}^{\text {a }}$. ${ }^{\text {a }}$	1310	0.1	
WENR..........Clicago, ${ }^{\text {a }}$, 11.	870	50.0	WJZ...........New York, N. Y.	760	50.0	WraxPhiladelphia, Pa	920	0.25	
WEOAEvansvilie, Ind.	1370	0.1				WRBL........Columbus, Ga.	1200	0.1	
WESC........Elmira, N. Y.	850	1.0	WKAQ........San Juan, P. R.	1240	1.0	WRC..........Washington, D. C.	950	0.5	
WEST.........Easton, Pa .	1200	0.1	WKAR.......eEast Lansing, Mich.	850	1.0	WRDO........Augusta, Me.	1370	0.1	
WEVD........ New York, N. Y.	1300	1.0	WKBB.........EEast Dubuque, Ill.	1500	0.1	WRDWAugusta, Ga.	1500 600	1	
WEW.........St. Louis, Mo.	760	1.0	WKBH........LaCrosse, Wis.	1380	1.0	WREC WREN.......Memphis, Tenn.	${ }_{1220}^{600}$	1.0	
WEXL........Royal Oak, Mich.	1310	0.05	WKB1Cicero, Ill.	1420	0.1	WREN........ Rawrence, Kans.	1220 1500	1.0 0.1	
WEXP........Clarksburg, W. Va.	1370	0.1	WKBN.........Youngstown, Ohio	570 1200	0.5	WRCA WRIN..........Rame, Rasine, Wis	1300 1370	0.1	
WFAA Dallas Texas	800	50.0	WKBV...........Richmoad, Ind.	1500	0.1	WROK.........Rockford, Ill.	1410	0.5	
WFAB........New York, N. Y.	1300	1.0	WKBW.......Buffalo, N. Y.	1480	5.0	WROL........ K noxville, Tenn.	1310 1280	0.1	
WFAM...... South Bend, Ind.	1200	0.1	WKEZMuskegon, Mich.	1500	0.1	WRR..........Dallas, Texas	1280	0.5	
WFAS........White Plains, N. Y.	1210	0.1	WKEU	1210	0.1	WRVA........Richmond. Va.	1110	5.0	
WFBC Greenville, S. C.	1300	1.0	WKOK........ Sunbury, Pa.	1210 50	1.0	WrVaRichmond. ${ }^{\text {a. }}$			
WFBC Altoona, Pa.	1310	0.1	WKRC........ Cincinnati, Ohio Okla	900	1.0	WSAI..........Cincinnati, Ohio	1330	1.0	
WFBL.......Syracuse, N.			lamazoo	590	1.0	WSAI.........Grove City, Pa .	1310	0.1	

Call Location	Kc.	$K w$.	Call	Location		$K w$.	Call	Location		Kc.	$K w$.
WSAN........Allentown, Pa. WSAR......... Fall River, Mass.	$\begin{aligned} & 1440 \\ & 1350 \end{aligned}$	0.9		Harrisonburg, Va.	550	0.5		East St. Louis, Il		1500	0.1
WSAR.........Fall River, Mass.	$\begin{aligned} & 1350 \\ & 1710 \end{aligned}$	1.0	WSvs	$\text { Buffalo, } N \text {. }$	1370	0.05	WTNJ	Trenton, N. J.		$\begin{aligned} & 1500 \\ & 1280 \end{aligned}$	$\begin{gathered} 0.1 \\ 0.5 \end{gathered}$
WSAZHuntington, iw. Va.	1190	1.0	WSYR.	racuse, N. Y.	1500 570	0.1	WTOC	Savannah, Ga.		1260	1.0
WSB.........Atlanta, Ga.	740	50.0			570		WTRC	Elkhart, Ind.		1310	0.1
WSBC.........Chicago, South Bend. Ind.	1210	0.1	WTAD	Quincy, Ill.	900	0.9	WVFW	Brooklyn, N. Y.		1400	0.5
WSFA............ Mouth Bentgomery, Ald.	1360	0.5	WTAC	W orcester, Mass.	980	0.5					0.5
WSCN.........Birmingham, Ala.	1310	0.5	WTAL	Tallahassee, Fla.	1310	0.1	WWA	Hammond, Ind.		1200	0.1
WSIX......... Springfield, Tenn.	1210	0.1	WTAM	Green Biy	1070	50.0	WWJ	Detroit, Mich.		20	1.0
WSIS.......... Winston-Salem, N. C.	1310	0.1	WTAR	Norfolk, ${ }^{\text {Ga, }}$,	1330 780	1.0	WW	New Orleans, La		850	10.0
WSM - .-.....Nashville, Tenn.	650	50.0	WTAW	Collere Station, Texas	1120 180	0.5	WWRL	Asheville, ${ }^{\text {Woodside, }}$ N. Y .		570	1.0
WSMB	1320	0.5	WTAX	Springfield. Ill.	1210	0.1	WWSW	Pittsburgh, Pa .		1500	0.1
WSOC C....... Chayton, Ohio	1380	0.2	WTBO	Cumberland, Md.	800	0.25	WWVA	Wheeling, W, Va		1160	5.0
WSPA........ Spartanburg. S. C.	920	1.0	WTEL	Minneapolis, Minn.	1250	1.0					
WSPD.........Toledo, Ohio	1340	1.0	WTFI...	Athens, Ga.	11450	0.1	WXYZ	Detroit, Mich.		1240	1.0
WSPG.........Portland, Me	640	0.5	WTHT	Hartford, Conn.	1200	0.1	Wix	rbury, Co			
WSPR........Springfield, Mass.	1140	0.5	WTIC.	Hartford, Conn.	1040	50.0	$N 2 \times R$	Itong Island City		1590	
WSUN	880	0.5	WTIS	Jackson, Tenn.	1310	0.1	W6XAI	Bakersfield, Calif.		1590	1.0
WUN........St. Petersburg, Fla.	620	1.0	WTMJ	Milwauke, Wis.	620	1.0	W9XBY	Kansas City, Mo.		1530	1.0

World's Leading Short-Wave Stations

Meters	$\begin{gathered} \text { Call } \\ \text { ers Letlers } \end{gathered}$	Frequency Kc.	Cil) Country
31.28	PCJ	9590 Ein	hoven, Holland
31.28	HPsJ	9590 Pa	ma City, Pana.
31.30	HJ2ABC	9585 Cuc	ta, Colombia
31.32	VK3LR	9980 Lyn	hurst, Australia
31.32	GSC	9580 Dave	ntry, England
31.35	W1XK	9570 Millis	s, Mass.
31.38	DJA	9560 Zec	n, Germany
31.40	TIPG	9559 San	Jose, C. R.
31.45	DJN	9540 Zeese	n, Germany
31.48	W2XAF	9530 Sch	cetady, N. Y.
31.48	LKJ1	9530 Jelo	Norway
31.55	GSB	9510 Dav	ntry, England
31.55	HJU	9510 Buena	ventura, Colom.
31.55	VK3ME	9510 Melb	ourne, Australia
31.56	Xert	9505 Ver	ruz, Mex.
31.58	HJIABE	9500 Carta	gena, Col.
31.75	TGWA	9450 Guat	mala City
31.82	COCH	9428 Hav	na, Cuba
31.35	HS8PJ	9350 Bang	kok, Siam
32.88	HAT4	9125 Buda	pest, Hungary
33.33	HCJB	8948 Quit	, Ecuador
34.29	ZBW	8750 Hong	Kong, China
34.62	CO9JQ	8669 Cama	guey, Cuba
38.48	HBP	7797 Gen	a, Switzerland
39.95	JVP	7510 Naza	i, Japan
41.80	CRGAA	7177 Lob	Angola, Africa
42.80	EA8AB	7010 Tener	ifc, C. I.
43.48	H13C	6900 L.a R	omana, D. R.
43.99	XGOX	6820 Nan	Ing, China
44.14	HIH	6796 San Pa	Pedro, D. R.
44.44	JVT	6750 Nazali	i, Japan
44.71	TIEP	6710 San	ose, Costa Rica
45.00	HC2RL	6667 Guay3	quil, Ecuador
45.25	HIT	6630 Truj	Io, D. R.
45.34	PRADO	6618 Rioba	mba, Ecuador
45.38	RV72	6611 Mose	w, U.S.S.R.
45.80	HI4D	6550 Truji	lo, D. R.
46.01	YV6RV	6920 Valen	cia, Venezuela
46.08	HIL	6310 Trujil	o, D. R.
46.66	HIIS	6430 Puerto	Plata, D. R.
46.91	HI8Q	6395 Trujil	o, D. R.
47.06	YV4RC	6373 Carac	5, Venezuela
47.24	HRPI	6350 San P	dro Sula, Hond.
47.54	HIZ	6310 Trujil	O. D. R.
47.62	YV12RM	6300 Marac	ay, Venezuela
47.77	HIG	6280 Trujil	o, D. R.
47.77	CO9WR	6280 Sancti	Spiritus, Cuba
48.05	HIN	6243 Trujil	o, D. R.
48.11	HRD	6235 La Ce	iba, Hond.
48.15	OAX4G	6230 Lima,	Peru
48.19	HJIABH	6225 Cienag	a, Colombia
48.50	H11d	6185 Santia	go, D. R.
48.70	VPB	6160 Colom	bo, Ceylon
48.70	CJRO	6160 Winni	peg, Canada
48.78	VE9CL	6150 Winni	peg, Canada
48.78	HJ2ABA	6150 Tunia	Colombia
48.78	YV3RC	6150 Caraca	s, Venezuela
48.78	HJSABC	6150 Cali,	Colombia
48.78	COKG	6150 Santiag	o, Cuba

Meter	Call rs Lellers	$\begin{gathered} \text { Frequency } \\ K c . \end{gathered}$	City Country
48.86	W8XK	6140 Pi	burgh, Pa.
48.88	Cr7as	6137 Lo	enzo Marques, 1
48.94	XEXA	6130 Mex	co, D. F.
48.94	COCD	6130 Hava	na, Cuba
48.96	HJ3ABX	6128 Bog	ta, Col.
49.02	HJIABB	6120 Bar	nquilla, Col.
49.02	W2XE	6120 New	York, N. Y.
49.10	CHNX	6110 Hal	ax, N. S.
49.18	"Beograde"	6100 Belgr	ade, Y̛ugoslavia
49.18	W3XAL	6100 Bound	d Brook, N. J.
49.18	W9 XF	6100 Chi	go, 111.
49.20	ZTJ (JB)	6098 Johan	nesburg, Africa
49.22	HJ4ABE	6095 Mede	llin, Col.
49.26	CRCX	6090 Tor	nto, Canada
49.30	HJSABD	6085 Cali,	Col.
49.31	HJ3ABF	6084 Bog	Cal.
49.32	VQ7LO	6083 Nair	bi, Kenya, Afr.
49.34	HPSF	6080 Colo	, Panama
49.34	W9XAA	6080 Chica	go, 111.
49.34	ZHJ	6080 Penan	g. S. S.
49.40	OER2	6072 Vienn	a, Austria
49.42	YV7RMO	6070 Mar	caibo, Ven.
49.50	W'8XAL	6060 Cinci	nnati, Ohio
49.50	W3XAU	6060 Phila	delphia, Pa.
49.50	OXY	6060 Skam	ebaek, Denmark
49.59	HJ3ABD	6050 Bogo	a, Col.
49.59	H19B	6050 Truj	lo, D. R.
49.63	HJ3ABI	6045 Bogo	a, Colombia
49.65	HJ1ABG	6042 Barra	quilla, Col.
49.67	Y'DA	6040 Tand	ong Priok, Java
49.67	WIXAL	6040 Bosto	, Mass.
49.75	HPs B	6030 Pana	a City, Pana.
49.83	DJC	6020 Zeese	n, Germany
49.83	XEUW	6020 Verac	ruz, Mex.
49.85	ZHI	6018 Singa	pore, Malaya
49.90	HJ3ABH	6012 Bogot	, Colombia
49.92	COCO	6010 Havan	a, Cuba
49.95	HJ1ABJ	6006 Santa	Marta, Col.
49.96	CFCX	6005 Mont	cal, Can.
49.96	HPSK	6005 Colon	, Panama
49.96	VE9DN	6005 Mont	eal, Canada
50.00	XEBT	6000 Mexic	City, Mex.
50.00	RVs9	6000 Mosco	w, U.S.S.R.
50.17	HIX	5980 Trujill	o, D. R.
50.21	XECW	5975 Xanto	cam, Mexico
50.25	HJN	5970 Bogot	, Colombia
30.25	XEWI	5970 Mex.	D. F.
50.26	HVJ	5969 Vatica	C City
50.50	TG2X	5940 Guata	mala City
50.72	HH2S	5915 Port-a	-Prince, Haiti
50.76	HRN	3910 Teguc	galpa, Hond.
50.85	YV8RB	5900 Barqu	simeto, Ven.
51.15	HI1J	5865 San P	edro, D. R.
51.46	TIGPH	3830 Alma	Tica, Costa Rica
51.72	YV2RC	5800 Caraca	s, Venezuela
51.90	OAX4D	3780 Lima,	Peru
35.45 2	ZBW	5410 Hong	Kong, China
70.21 R	RV15	4273 Khaba	ovsk. Siberia

