IN THIS ISSUE:

Operation & Service of Keyed AGC Systems
Sampling Techniques Applied to Television Front Ends, Part 6
Looking For Trouble? No. 2
Assembling Coaxial Cable Connectors
Does The Radio-TV Technician Belong In The TV Retailing Business?
High Quality Analyses Series, No. 6

The Professional Radio-TVman's Magazine

AM-FM-TV-SOUND

Paid Circulation Of This Issue: Over: 25,000
Total Distribution Of This Issue: Over: 30,000
Largest Selling Booster

AT ANY PRICE!
Troublesome Days Are Ahead

An "emergency committee" of RTMA has asked National Production Authority to release at once sufficient quantities of materials now restricted, such as cobalt, nickel, copper and aluminum, to prevent imminent stoppage of all TV and radio set production. War Production Board's James D. Secrest, RTMA's general manager, who clearly outlined the industry's position by reasoning that if the Government will want the services of radio plants in 90 days when war contracts are to be issued, unless the factories can be kept in operation in the interim, they face shutdown and the irrevocable loss of their trained manpower to other industries.

The electronics industry committee that coordinates industry—Government war contract relations must also bear in mind that the general public's welfare—meaning the duty of keeping existing receivers in operable use—is of paramount importance too. That our Government is able use—is of paramount importance too. That our Government is justifying in producing radio-electronic equipment for all-out war use, plus the usual 5 to 1 stockpiling, is self-evident. But the fact also remains that now, more than ever before, it is necessary to keep America's home and amateur radios working. The day of atom bombing with its potential vast disruption of other types of communications is the basis for this contention.

Even if all-out war production strains our productive capacity, even if new receiver production must be curtailed to the vanishing point—it must be conceded that a small allocation to the replacement and maintenance fields must be considered worthwhile to the Nation's welfare and economy.

Color TV Held Back

As predicted, the Courts have enjoined CBS and the FCC from putting a non-compatible method of color videocasting into commercial use until the matter can be given further study. Upwards of 60 days, at least, will be required, and perhaps the matter may drag along in the courts for many months. That's fine! Meanwhile, the proponents of compatible methods can continue their developmental efforts and come up with an acceptable system. We hope so! We are 100% for color TV . . . but, only when it is the right kind of color, completely compatible, and perfected to the Nth degree. Let's have no half-way substitutes in the meanwhile. Of course, there's no reason for getting too excited about color TV right now because the industry itself, due to the war effort, is more than bogged down trying to get necessary tubes and parts needed for ordinary black and white models. As we have stated many times before, all this hubbub about color TV is silly. Anyone who wants a "TV set should not hesitate to buy any good brand right now—or when he can get one, because they may become unobtainable or mighty scarce very soon.
No Need To Worry About Moisture When You Use The MALLORY PLASCAP*

MALLORY FP CAPACITORS

When you select Mallory FP Capacitors, you can be sure of their performance even in circuits where heat is a problem. Every Mallory FP Capacitor will operate continuously at 85°C. In addition, Mallory FP Capacitors are famous for their long shelf-life...you can depend on them when you need them. Buy the one line that services both AM and TV sets. They are an outstanding example of Mallory Precision Quality at standard prices. See your Mallory Distributor right away!

The Mallory Plascap plastic tubular capacitor exceeds R.M.A. requirements for humidity and immersion tests...even for metal-cased capacitors. It's the plastic tubular that's years ahead of the rest of the field.

No oil leakage, no unsoldered leads, no messy wax coating, no insulation problems! Check these four exclusive features which make your service jobs surer and easier:

- **TRISEAL CONSTRUCTION.** Sealed three ways...with moisture-free Mallotrol, tough outer plastic shell, exclusive Mallocene!
- **FASTITE LEADS.** Permanently fastened...sealed with Mallocene...unaffected by soldering-iron heat!
- **DISTORTION-FREE WINDING.** No flattened cartridges due to molding pressures...no failures due to "shorts"!
- **TRU-CENTER CARTRIDGES.** Cartridges centered every time...uniform insulation guaranteed at all points!

You don't have to handle the Mallory Plascap with kid-gloves...it is built to "take it"! See your Mallory Distributor, now. Remember, you pay no more for Mallory Precision Quality!
OVER 75 TV SET MANUFACTURERS USE "THE STANDARD TUNER"

3,000,000 TUNERS

Now in Use

Over 2,000,000

STANDARD COIL PRODUCTS CO
Chicago
Los Angeles
Bangor, Michigan
THE EYE IS QUICKER
THAN THE EAR

IF YOU SERVICE TV, YOU KNOW THIS!
Customers are quick to see imperfections. Much slower to hear them. Therefore premium-quality Hytron receiving tubes for the tougher TV jobs. At no extra cost! You gain also: Through fewer expensive service call-backs. Better customer satisfaction and confidence. More profits.

How does Hytron do it? By working closely with leading TV set manufacturers. By endless striving to better already superior performance. By improved design...processing...inspection...testing.

Try Hytron TV receiving tubes: 1X2A, 5U4G, 6AG5, 6AL5, 6AU6, 6B5G, 6B6G6GT, 6C6B, 6SN7GT, 6V6GT, 6W4GT, 12BH7, 25BQ6GT, etc. Also Hytron rectangular picture tubes: 14BP4, 16RP4, 17BP4A, 20CP4. You pay no more for Hytron. But see the difference yourself...on the TV screen...on your cash register.

THEY COST PENNIES, BUT SAVE DOLLARS!
Order from your Hytron jobber today.

HYTRON TUBE PULLER — 75¢ net. Pull or insert 7-pin miniature the a-a-1_y way. Neoprene rubber puller works by suction and friction on top of tube. Positive grip. Reaches tight spots. Another Hytron time-tamper-and-money saver.

HYTRON TUBE LIFTER — 15¢ net. Lift 'em all the e-a-1_y prybar way: Tubes (GT, G, standard, lock-in, metal). Vibrators and plugs (Jones, Amphenol) — and knobs. A natural for compact auto radios, etc. Slotted and lipped lock-in, snap-in trimouts...easily, safely. Of stainless steel with comfortable rolled edges.

HYTRON TUBE SAPPER — 5¢ net. Handy combination pencil, eraser and tube tapper. Discovers microphonism, shorts, and opens in tubes, etc. Compact, non-metallic, rugged. Doubles in brass for writing orders, etc.

HYTRON PIN STRAIGHTENERS, 7-Pin and 9-Pin — 55¢ net ea. You merely press tube gently into Hytron Straightener until button base seats squarely. Presto, pin or straight! Fast...safe. Avoiding one broken tube pays for Straightener twice over. Precise, stainless-steel insertion die. Comfortable knurled aluminum handle. For hand, bench or tube tester use.

HYTRON TOOLS FOR SERVICE ENCODE.
THEY COST PENNIES, BUT SAVE DOLLARS!
all we can say to you is

A MERRY CHRISTMAS

Snyder Mfg. Co.
The Sangamo line offers 34 types of mica, paper, and electrolytic capacitors to take care of practically any replacement requirement in the radio and television field.

For example, the line includes Sangamo Micas, which have enjoyed a reputation for excellence throughout the radio and electronic industry since 1923. It includes the famous "Redskin" ... the plastic molded paper tubular that is easy to work with because the flexible leads can't pull out. It includes a complete range of Electrolytics that will measure up to the toughest assignments in exacting applications where ordinary electrolytics might cause premature failure.

Sangamo Capacitors are packaged in distinctively designed cartons that you can identify with ease and that make inventory simple.

A trial of Sangamo Capacitors will convince you. Stock up at your Jobber.
SAVE Up to $1.00 each.
Form a Group,
Service Dealers

Subscribe to “RTSD”-

★ The more in a group the bigger the savings. 6 men in a group save $1.00 each; 4 men groups save $.75 per man. Present “RTSD” subscribers may participate in or form a group with co-workers, or even competitors. Still active subscriptions are automatically extended 1 year. Start a Group today! The timely and exclusive technical data appearing in future issues of “RTSD” will make this the best investment you ever made. The special Group Rate offer may be withdrawn at any time—so hurry.

Use This Coupon For Convenience
(The coupon below can be used for from 1 to 6 subscription orders. Use it today!)

<table>
<thead>
<tr>
<th>Name</th>
<th>Address</th>
<th>State whether a New Subscriber ☐ or Renewal Order ☐</th>
</tr>
</thead>
<tbody>
<tr>
<td>Describe Title or Position and Type of Business</td>
<td>State whether a New Subscriber ☐ or Renewal Order ☐</td>
<td></td>
</tr>
<tr>
<td>Name</td>
<td>Address</td>
<td>State whether a New Subscriber ☐ or Renewal Order ☐</td>
</tr>
<tr>
<td>Describe Title or Position and Type of Business</td>
<td>State whether a New Subscriber ☐ or Renewal Order ☐</td>
<td></td>
</tr>
</tbody>
</table>
Smart TV Dealers are

HITTING THE

TENNA-ROTOR JACK-POT!

PROOF IS IN RESULTS! Nation-wide TV Advertising Delivers Thousands of Sales—Every Week!

Over 50 key TV stations demonstrate Alliance Tenna-Rotor to 7 million viewers! Tenna-Rotor is the only TV accessory backed by a powerful, sustained television campaign—national in scope! Hundreds of thousands of Alliance Tenna-Rotors are in use!

Alliance Tenna-Rotor offers faster installation with Alliance 4-conductor "Zip" cable—Works in all weather—Guaranteed for one year—Approved by Underwriters' Laboratories.

NEW DELUXE MODEL HIR IS FULLY AUTOMATIC!

ALLIANCE MANUFACTURING COMPANY • Alliance, Ohio
Best Sellers

Most used ... by brand
and by type ... RCA kinescopes
are the fast-moving
profit makers

The largest and most profitable replacement business
in television picture tubes comes from the types used
in most television receivers ... the Best Sellers.

RCA's types are Best Sellers. There are more of
them in actual use in TV receivers than any other
brand. Industry choice of these high-volume types
reflects to your advantage. Inventory and stocking
problems are simplified ... and you have the assurance
of rapid, profitable turnover.

In addition, when you sell RCA kinescopes, you
gain from customer confidence in the RCA brand ... solidly established by the proved performance of RCA
kinescopes in millions of television receivers.

Remember, too, that the quality and dependability
of RCA kinescopes mean fewer service failures and
fewer costly call-backs. There is, therefore, more
profit in every RCA kinescope you sell.

Always keep in touch with your RCA Tube Distributor.
IF YOU SERVICE TV, YOU KNOW THIS!

Customers are quick to see imperfections. Much slower to hear them. Therefore premium-quality Hytron receiving tubes for the tougher TV jobs. At no extra cost! You gain also: Through fewer expensive service call-backs. Better customer satisfaction and confidence. More profits.

How does Hytron do it? By working closely with leading TV set manufacturers. By endless striving to better already superior performance. By improved design...processing...inspection...testing.

Try Hytron TV receiving tubes: 1X2A, 5U4G, 6AG5, 6AL5, 6AU6, 6B6G, 6BQ6GT, 6CB6, 6SN7GT, 6V6GT, 6W4GT, 12BH7, 25BQ6GT, etc. Also Hytron rectangular picture tubes: 14BP4, 16KP4, 17B4A, 20CP4. You pay no more for Hytron. But see the difference yourself...on the TV screen...on your cash register.

THEY COST PENNIES, BUT SAVE DOLLARS!

Order from your Hytron jobber today

Hytron Soldering Aid - 49¢ net. Fork tip effortlessly, quickly unwraps "mechanically solid" joints. Straddles wire, grips, unwraps, pulls it free. Guides new wire; holds it firm while soldering. Spade tip reams solder from lug hole, pushes other wires aside. Tips are hardened, twist-proof, insulated, hard-chrome to shed solder. Tool handles like pencil. Reaches tight spots. Many dozens of other uses.

Hytron Tube Fapper — 5¢ net. Handy combination pencil, eraser and tube fapper. Discovers microphonism, shorts, and opens in tubes, etc. Compact, non-metallic, rugged. Doubles as brass for writing orders, etc.
By applying the proven "end-fire" principle to TV antennas the WORKSHOP DUBL-VEE set the pace for 1950. Its quick acceptance — over 80,000 installed in three short months — is a testimonial to WORKSHOP's acknowledged leadership in antenna design and engineering.

The DUBL-VEE is typical of WORKSHOP antennas in other fields — commercial, amateur and aircraft. In every instance, advanced engineering and outstanding performance have established ready acceptance. You know when you specify the DUBL-VEE, or any other WORKSHOP antenna, that you are getting the best.

Write for Bulletin E

THE WORKSHOP ASSOCIATES, Inc.
135 CRESCENT ROAD, NEEDHAM 94, MASSACHUSETTS

any serviceman knowing he would be prosecuted for malpractice would cease and desist evildoings pronto. The only catch is that at present ARSNY's treasury is low and if many legal actions were required, it might fast become depleted. To prevent such an event from occurring, it would seem advisable for set distributors and manufacturers to contribute to the ARSNY legal fund, knowing that their money is merely being placed in care of ARSNY to be used only when and if such expenditure becomes necessary. Police action of the TV service industry by the industry itself is the surest and quickest way of accomplishing desired results. Manufacturers and dealers have done nothing to protect the public; now it is incumbent upon the servicemen to handle the matter themselves.

Injunction Stops Immediate Color TV-casts by Non-Compatible CBS Method

Judges Major, Sullivan and LaBuy, sitting in the Circuit Court in Chicago on November 14th and 15th, heard RCA and many other TV manufacturers request that FCC and CBS be restrained from beginning color transmission on Nov. 20th. Anyone not legally trained who heard both sides of the case would agree that the Judges' decision to issue a temporary restraining order favoring RCA et al's was fitting and proper. For example, it seemed to us that FCC's main contention was merely to the effect that "we have studied this matter for a long time and now we want to wind it up, so, having decided in favor of the CBS system, why not let it go at that?" In contrast, RCA et al's came up with some basically sound points in their argument, outstanding of which were these: 1) - a good, compatible color TV system is not yet available, so why try to foist upon a public (that doesn't care one way or the other about a system's technical makeup) something that will cost the present-day TV set owners 2½ billions of dollars. 2) — why accept a system that will not have for a very long period of time much of an audience, because it is generally conceded that none of the major set makers intended to swing their production from conventional black and white TV models to a mechanical system that would cost vastly more, have but limited sale, look atrocious, and most important, not be able to bring to people the worthwhile TV commercially sponsored programs. 3) — the trend is towards large size picture screens by popular demand.

[Continued on page 40]

RADIO-TELEVISION SERVICE DEALER • DECEMBER, 1950
12 Improvements IN NEW 1951
MODEL 0-6 PUSH-PULL

Heathkit
OSCILLOSCOPE KIT

Only $39.50

New INEXPENSIVE MODEL S-2
ELECTRONIC SWITCH KIT

Twice as much fun with your oscilloscope — observe two traces at once — see both the input and output traces of an amplifier, and amazingly you can control the size and position of each trace separately — super-impose them for comparison or separate for observation — no connections inside scope.

All operation electronic, nothing mechanical — ideal for classroom demonstrations — checking for interments, etc. Distortion, phase shift and other defects show up instantly. Can be used with any type or make of oscilloscope. So inexpensive you can't afford to be without one.

Has individual gain controls, positioning control and coarse and fine switching rate controls — can also be used as square wave generator over limited range. 110 Volt transformer operated comes complete with tubes, cabinet and all parts. Occupies very little space beside the scope. Better get one. You’ll enjoy it immensely. Model S-2. Shipping Wt., 11 lbs.

Only $19.50

The new 1951 Heathkit Push-Pull Oscilloscope Kit is again the best buy. No other kit offers half the features — check them.

Measure either AC or DC on this new scope — the first oscilloscope under $100.00 with a DC amplifier.

The vertical amplifier has frequency compensated step attenuator input into a cathode follower stage. The gain control is of the non frequency discriminating type — accurate response at any setting. A push-pull pentode stage feeds the C.R. tube. New type positioning control has wide range for observing any portion of the trace. The horizontal amplifiers are direct coupled to the C.R. tube and may be used as either AC or DC amplifiers. Separate binding posts are provided for AC or DC.

The multivibrator type sweep generator has new frequency compensation for the high range it covers; 15 cycles to cover 100,000 cycles.

The new model 0-6 Scope uses 10 tubes in all — several more than any other. Only Heathkit Scopes have all the features.

New husky heavy duty power transformer has 50% more laminations. It runs cool and has the lowest possible magnetic field. A complete electrostatic shield covers primary and other necessary windings and has lead brought out for proper grounding.

The new filter condenser has separate filters for the vertical and horizontal screen grids and prevents interaction between them.

An improved intensity circuit provides almost double previous brilliance and better intensity modulation.

A new synchronization circuit allows the trace to be synchronized with either the positive or negative pulse, an important feature in observing the complex pulses encountered in television servicing. The magnetic alloy shield supplied for the C.R. tube is of new design and uses a special metal developed by Allegheny Ludlum for such applications.

The Heathkit scope cabinet is of aluminum alloy for lightness of portability.

The kit is complete, all tubes, cabinet, transformer, controls, grid screen, tube shield, etc. The instruction manual has complete step-by-step assembly and pictorials of every section. Compare it with all others and you will buy a Heathkit. Model 0-6. Shipping Wt., 30 lbs.
all we can say to you is

A MERRY CHRISTMAS

Snyder Mfg. Co.
This article discusses the basic theory of keyed AGC as well as various commercial circuits and their applications.

Inoperative AGC can cause excessive contrast, weaving of picture and sync instability when a strong station is tuned in.

by Matthew Mandl

OPERATION & SERVICE of KEYED AGC SYSTEMS

The latter, in its basic form, is illustrated in Fig. 1. Here, the detected composite video signal is injected into the circuit in a positive-going polarity. This causes the a-g-c diode to conduct, charging \(C_1 \) to the peak value of the sync tips. The time constant of \(R_1 \) and \(C_2 \) is made quite long so that \(C_1 \) will remain charged to almost full value between sync tips. The charge across \(C_1 \) appears across \(R_1 \) and represents the a-g-c voltage which is used to establish the bias level on the r-f/i-f picture amplifier tubes of the receiver. Potentiometer \(R_1 \) can be adjusted to get the proper degree of bias control on the amplifier tubes.

While the amplitude of the picture signal varies during transmission, the level of the sync tips is held constant at the transmitter. The bias developed in the a-g-c system, therefore, will also be held at a fixed value unless the station fades. If this occurs, there will be less voltage available at the a-g-c tube and the charge across capacitor \(C_1 \) will decrease in proportion. This, in turn, decreases the negative bias applied to the amplifier tubes and thereby increases the gain of these stages to compensate for the fading.

Inasmuch as the vertical sync pulses (60 cps) are also present in the composite video signal applied to the a-g-c circuit, the long time constant is necessary to filter these out. Because of this long time constant, the a-g-c voltage is relatively unaffected for any changes in signal amplitude unless this change occurs over an appreciable time interval. Thus, this system does not respond to the rapid increase and decrease of signal caused by reflections from an airplane.

Besides this, if the signal to noise ratio in the area is poor, the noise impulses may add a sufficient voltage to the a-g-c system to materially decrease the gain of the amplifiers due to the excess bias which is developed. This proves of decided disadvantage, and cannot be corrected by the contrast control, for the latter is usually located in the video amplifier stages when AGC is used.

In some of the earlier receivers an extra tube was employed for noise filtering, but this added to manufacturing costs and still left unsolved the case of airplane flutter. With the advent of "keyed AGC", however, both problems were solved with a circuit virtually as simple as the conventional AGC but much more ingenious in design principles.

How Keyed AGC Functions

Figure 2 shows the basic keyed AGC circuit. Here, a small positive voltage is applied to the cathode which, in
Thus develop less a-g-c bias voltage be lower in amplitude and cause less lock, both sync tips and horizontal deflection circuits and appear. A positive going, spike appear have a long time constant, for it is the filter circuit at the plate need not the a-g-c voltage. At the same time riding on them have no influence on the tube to function. Inasmuch as the a-g-c tube does not conduct between sync pulses, the amplifier stages will increase their gain at the output. Less bias on the amplifier stages will increase their gain and compensate for the decreased signal due to fading. Inasmuch as the a-g-c tube does not conduct between sync pulses, the video signals or any noise signals riding on them have no influence on the a-g-c voltage. At the same time the filter circuit at the plate need not have a long time constant, for it is only necessary to filter out the 15,750 ripple frequency. The relatively shorter time constant makes the system sensitive to the rapid changes of signal due to airplanes.

Typical Commercial Circuits

Figure 3 indicates the type of keyed a-g-c employed by Westinghouse in various models of their receivers using the V-2150 series chassis. The similarity between this and Fig. 2 is readily apparent, the only innovation being the use of a 150 ohm section of twin lead from the horizontal circuits to the plate of the 6BH6 system.

The correct amount of bias for proper operation of the a-g-c is established by the relationship of the plus voltage at the grid and that at the cathode. The voltage at the grid due to direct coupling from the 1st sync amplifier is approximately 70 volts. The positive potential of approximately 95 volts at the cathode, will make the grid negative with respect to the cathode by the difference between the two voltages, or 25 volts.

Figure 4 shows the type of a-g-c circuit used by Zenith in their 24G30 series TV receivers. Zenith refers to their system as "Gated AGC" and its function is essentially the same as the keyed systems previously discussed. The a-g-c triode is one-half of the 12AT7 which also contains the video detector. The i-f signal from the secondary of the 3rd i-f transformer is applied to the grid of the a-g-c tube through a 200uuf coupling capacitor. During the positive half-cycles of this i-f voltage plate conduction occurs because of the presence of 15,750 cps pulses from the horizontal oscillator. Since the frequency of grid and plate signals coincide, the a-g-c has an "open gate condition" only during the time duration of the applied sync pulses. During the interval between pulses the tube is non-conductive (gate closed) and therefore immune to noise signals present between horizontal sync time. The period of tube conduction can be changed by the potentiometer in the cathode circuit. Some keyed a-g-c systems utilize more than one tube if additional refinements or greater a-g-c control is desired. An example of this may be found in the DuMont TV receivers and the one employed in their Model RA-105 is shown in Fig. 5.

Fig. 2. Basic circuit of keyed a-g-c system.

Fig. 3. Basic circuit of keyed a-g-c system used by Westinghouse.

Fig. 4. Zenith a-g-c system.

RADIO-TELEVISION SERVICE DEALER • DECEMBER, 1950
The signal from the output of the video i-f stage is applied to the plate of the a-g-c diode 6AL5 tube. As with the Zenith previously discussed, this tube conducts on the positive half cycle of the input signal sync pulses. An RC filter is used to couple the voltage present in the cathode circuit to the grid of the 6AT6. This means that the grid receives a positive d-c voltage which has an amplitude depending on picture signal, and this d-c controls the gain of the triode portion of the 6AT6 tube. A 15,750 signal which is primarily a square wave is also amplified by the horizontal oscillator. This square wave signal is also applied to the grid of V209 and this is procured from the plate of the 6AT6 tube. A 15,750 signal which has an amplitude depending on picture signal, and this d-c controls the gain of the triode portion of the a-g-c triode, though the gain depends on the d-c signal derived from the 6AL5 a-g-c diode.

The amplified signal appearing in the plate of the triode section is coupled to the upper of two diode plates in the same tube envelope. The diode rectifies this signal and thereby develops a negative potential which appears across R246 and R247. The filter network (R244 and C226) smooths out variations and assures substantially ripple free d-c for a-g-c bias purposes at the inputs of the picture i-f stages. When the incoming signal to the receiver changes in amplitude, the gain of the triode is altered and the resultant bias corrected to compensate for the changes in the received signal.

Circuit variations other than those shown in the foregoing examples will, of course, be encountered in the field. Essentially however, all keyed a-g-c systems function on the same basic principles—bias is developed during tube conduction, and the latter can only occur when both sync tips and horizontal sweep signal are applied to the a-g-c circuit simultaneously.

Service Notes

Because the purpose of any a-g-c system is to maintain a constant picture signal level by controlling the bias applied to the r-f/i-f stages, the lack of such bias is a positive indication of a-g-c circuit failure. The best method for ascertaining the presence of the a-g-c bias is to tune the receiver to a station and measure the voltage existing at the grid of the first or second video i-f amplifiers. Use only a vacuum tube voltmeter so that the impedance of the measuring device will not materially effect the circuit. The bias should change when the receiver is tuned to other channels. A stronger station should develop greater bias, while a decrease in the a-g-c bias will be noticed for the weaker stations. Figure 6 shows a typical a-g-c filter network usually found in the i-f stages, and method for measuring a-g-c voltage is also shown. The VTVM should be switched to read minus d-c voltage.

A change in tube characteristics or complete failure of the a-g-c tube is a common cause for faulty a-g-c operation. If tube conduction had decreased, sufficient bias will not be available for strong signal inputs, and in consequence the stages are overloaded. Bending and tearing of the signal appearing on the screen will result. This is identical to the condition set up in sets not having a-g-c, where the contrast control is set up too far on a strong local station.

An open circuit in the line feeding the pulse from the horizontal circuits to the plate of the a-g-c will also cause failure of a-g-c, because the tube will no longer conduct. The resultant zero bias will cause excessive gain, and this uncontrolled amplification will again result in picture instability and excess contrast.

Filter capacitors C2 and C3 in Fig. 6 usually give little trouble because very little d-c voltage appears across them. When these give trouble, it is usually due to a capacitor which was defective or poorly constructed during manufacture. Occasionally these will be damaged by excessive heat generated by other components which have been placed too close. A shorted C2 and C3 will, of course, short out the a-g-c voltage and again the r-f or i-f amplifier tubes will be running with excess gain due to insufficient bias. Opening one side of these capacitors and checking with an ohmmeter will establish whether

[Continued on page 44]
Sampling Techniques
APPLIED TO TELEVISION

by EDWARD M. NOLL
(Author of "Television for Radiomen")

In last month's article, sampling & multiplex techniques were introduced. Practical examples of sampling technique have been demonstrated by the RCA color television system and by the high definition black and white experiments conducted by the Philco Corporation. The use of sampling has permitted RCA to produce a color picture with excellent resolution on only a six megacycle channel. Sampling in black and white systems has permitted monochrome resolution figures approximately double that which can be obtained by our present commercial system in a standard 6 megacycle spectrum.

In our present black and white television system a possible maximum of 400 horizontal elements can be conveyed from transmitter to receiver. Frequency response of the system to convey these 400 elements must be in excess of 3½ megacycles.

RCA Color TV System

Inasmuch as the frequency components in a video signal extend up to this high frequency, sampling rate must be exceptionally high. In the RCA system a sampling rate of 3.8 megacycles is recommended. This would at first seem to limit the high response to one-half of this frequency rate or 1.9 megacycles. However, in the RCA system a method of mixed highs is employed to obtain an equivalent resolution. Thus a sampling rate of 3.8 megacycles, use of mixed-high transmission, and a method of dot interlacing permit a high resolution color picture to be conveyed.

A color system, Fig. 1, uses three color interpretations—green, red and blue. Each of the color signals feed a low pass video amplifier which has a frequency range up to 2 megacycles. The output of these amplifiers are sampled at a 3.8 megacycle rate, breaking up the individual color video signals, up to a frequency limit of 2 megacycles (approximately one-half the sampling rate frequency). The frequencies in excess of 2 megacycles (from 2 to 4 megacycles) are mixed together in a mixer or added producing a composite signal from the three colors which is representative of the definition of the picture in form of half-tone levels. It has been found that the definition of the picture is represented in the higher frequencies and that they need not be broken up into individual color elements to reproduce a highly resolved picture. Frequencies below 2 megacycles are apportioned, sampled and broken up into color levels that are a function of the amplitude levels of the three basic colors in the object.

Fig. 2. Method of converting individual color signals into 3.8 mc sine waves. At the receiver a separate sampling circuit separates the colors and impresses them on the picture tube in their proper phase and amplitude relations.
A standard scanning sequence is used for each camera and the output of the sync generator used must not be too different from that used in present commercial practice. A special pulse is used, however, to control the sampling generator which forms a pulse that keys the output of the three color video amplifiers at the proper instant permitting their signals to reach the output mixer video amplifier.

The action of the sampling system can be seen from the waveforms of Fig. 2. Each of the individual colors in accordance with their respective amplitudes and variations are sampled and produce corresponding pulses at the output of the sampling system. Again, the repetition rate of these pulses is the 3.8 megacycle interruption frequency, and as they are passed through the mixer video amplifier, which has a frequency response no higher than 4 megacycles, the pulses are converted into a 3.8 megacycle sine wave. Again the amplitude of this sine wave is a function of the amplitude of the pulse and, therefore, a function of the individual color intensities.

It is to be observed there is a separate train of 3.8 megacycle sine waves for each color. Relation between these respective sine waves is such that other two sine waves are passing through zero or below at the instant any one sine wave is at its crest value. Thus the crest of the sine wave represents the peak amplitude of the pulse from which it was derived. If these three sine waves are added, a composite sine wave of this same frequency is obtained, amplitude and phase of which is a function of the respective amplitudes of the three sine waves that form it. The average level of this composite is a function of the d-c components of brightness of these various color signals which make up the composite. As observed from the original color sine waves, the average level of each is a function of the average brightness of that color over a finite time. Thus the instantaneous variation and the average brightness level of each color is conveyed by the sampling system. The color composite video signal is combined with the mixed-highs output of the filter (which only passes the mixed-highs) to produce the complete video signal that is used to modulate (after proper amplification and insertion of pulses) the carrier of the color picture transmitter.

Color Receiver

At the receiver this information is picked up in a receiver using a conventional r-f and i-f section. The color video signal at the output of the video detector is applied to a sampler circuit which has been synchronized with the operation of the sampler at the transmitter. Thus the video signal is again broken up into 3.8 megacycle-pulse components, one group of pulses for each basic color. The pulses are segregated into three separate color video amplifiers again and will be used to excite three separate picture tube grids. Frequency response of the individual video amplifiers is not much in excess of the 3.8 megacycle sampling rate. Nevertheless, each video amplifier is capable of passing the individual color samples in the form of a 3.8 megacycle sine wave and along

Fig. 1. Block diagrams of RCA color system for transmitter and receiver.

Fig. 3. Sampling principles applied to black and white transmission for high definition transmission and reception.

[Continued on page 42]
THE alignment of TV Front Ends consists essentially of two sets of operations. The first is to obtain the required bandwidth and gain, this being accomplished by:

1. Adjusting suitable capacitance trimmers which control the response characteristics over certain frequency limits.

2. Adjusting the circuit inductances for optimum response. The second set of operations consists of adjusting the oscillator trimmers so that the correct i-f response is produced in the plate circuit of the mixer.

In general, Front Ends may be interchanged with slight alterations between split-sound and intercarrier receivers. Basically, all one has to do in order to adapt a Front End designed for split-sound use to intercarrier operation is to remove the sound trap. In some receivers the latter is used to partially attenuate the sound signal as required in intercarrier reception. For purposes of explanation, the block diagrams of intercarrier and split-sound systems are shown in Fig. 3-45.

Response Curves

A typical set of response curves corresponding to the output obtained at point A in both systems is shown in Fig. 3-46. This set of curves represents the r-f output for either type of receiver. Notice that in each curve the response is fairly symmetrical around the center frequency of each channel, no attempt being made at this point to favor the sound or video carriers at either end of the channels. The response at the output of the mixer (point B) is also symmetrical; this time, however, the center frequency is at the center of the i-f band. In all types of receivers a converter transformer is connected at the output of the mixer tube so that the i-f response curve is first influenced by this component. Then, as
the signal leaves the plate circuit of this transformer and enters the various video and sound i-f stages its response may be further influenced by other circuit components such as sound and adjacent channel traps.

Many split-sound receivers allow the sound signal to be amplified together with the video i-f signal for one or two stages of overall amplification before the sound is diverted to the sound i-f section. This is indicated by the dotted lines shown in Fig. 3-47A. The i-f response after adjustment of the sound trap appears as shown in Fig. 3-47A. This corresponds to the output at point C in Fig. 3-45A.

Proper intercarrier operation requires that the sound i-f carrier level be reduced to about 5% of the corresponding video i-f level. This reduction usually takes place in the converter output or in one of the earlier video i-f stages. Figure 3-47B illustrates the i-f response taken at point C of Fig. 3-45B.

Alignment

It will be recalled that symmetrical response curves around the center r-f frequency are called for when aligning r-f stages. Because of the wide frequency range of these response curves it is difficult to align these stages with a single frequency and an output meter as is the general practice in AM receivers. Instead, it becomes necessary to employ a sweep generator capable of inserting a wide band of frequencies into the r-f stages, and to adjust the various trimmers so that the required response curve as observed on an oscilloscope is obtained.

A typical test set-up of this type is illustrated in Fig. 3-48. Certain equipment must be used and basic rules observed in hook-ups of this type which apply to all alignments of this nature. These are as follows:

1. **Sweep**: The amount of sweep employed should be more than enough to encompass a complete r-f bandwidth. Because the r-f stage response is generally greater than 6 db recommended r-f sweep settings are 15 mc.

2. **H-F Probe**: The type of signal at all r-f points except in the grid circuit of the mixer is a modulated r-f. Measurements made at these points, in order to be observed, require that the signal be demodulated. For this reason a h-f detector probe such as is used in an ordinary VTVM must be connected between the scope and the point at which the output signal is observed. A probe of this type is shown schematically in Fig. 3-49.

At the grid circuit of the mixer tube the signal is demodulated by virtue of the detector action of the tube. Therefore, no r-f probe is necessary at this point. However, it is customary to isolate the mixer grid from the probe by inserting a suitable resistor between the grid return and ground. A popular value of this resistor is 100K. The scope probe is then connected across this resistor and ground for measurements of the demodulated waveform present. Commercial Front Ends generally have this point readily accessible at some convenient position on the chassis, and it is referred to variously as a tuner test point, looker point, oscilloscope point, etc. Figure 3-50 illustrates the partial schematic of a typical mixer circuit showing this connection clearly.

3. **Marker**: It will be recalled that the r-f response curve observed on a scope represents the r-f response of the circuit to a wide range of frequencies, the latter being injected into the circuit by the sweep generator. During alignment it often becomes necessary to identify the exact frequency at certain points on the curve. An external oscillator or absorption circuit is therefore provided which in effect provides these exact frequencies, and when combined with the output of the sweep generator results in a slight break in the response curve.
corresponding to the frequency of this oscillator or absorption circuit. The latter may be contained within the sweep generator or may be a separate and external piece of test equipment such as a signal generator. In any event, to be effective, it must have a high degree of accuracy—preferably crystal controlled.

The break in the curve may take on the appearance of a dip or a wiggle (birdie). The first is produced by an absorption device such as a wavemeter, the second by a c-w r-f oscillator. The output of the marker generator must be kept as low as possible; or, if an absorption circuit is used, the coupling must be as loose as possible, otherwise serious disruption of the waveform will result.

4. Impedance Matching: At very high frequencies, response curve measurements are valueless unless the sweep generator output terminals are properly terminated at the input terminals of the receiver. The reason for this is that at these frequencies a mismatch of this type results in standing waves which may or may not seriously affect the observed waveform, depending on the amount of mismatch present in the circuit. It is therefore advisable that some sort of matching network be employed between the generator and the input terminals of the Front End being aligned. Data for typical matching networks for connecting generators with 50, 75, and 92 ohm outputs to a 300 ohm input receiver is given in Fig. 3-51.

5. Connections between units: All connecting leads should be as short as possible. Shielded leads should be used in the r-f probe, in the 'scope output probe, in the sweep generator output probe, in the marker output probe, and in the connection between the sweep generator and the horizontal output terminal of the 'scope.

Ground connections should be made with care. Wherever, possible all grounds from the various units should be connected to a single point on the chassis. Sometimes peculiar wave shapes which change as the operator touches various units occur. This is indicative of improper grounding between units. Some manufacturers recommend a metal bench top when aligning Front Ends. While this practice lends itself to excellent grounding it is a little dangerous, being a potential source of high voltage shock.

6. Vertical Probe Pickup: Without signal output from the sweep and marker generators the vertical amplitude on the 'scope should be zero. Be sure to make this check, otherwise the observed waveforms will be worthless. If any vertical signal does appear even though the sweep and marker generator outputs are set at zero, oscillation or hum is present in the tuner, or external energy is being picked up by the 'scope probe. At full 'scope sensitivity a slight vertical amplitude may be observed. This is permissible because during the actual alignment the 'scope sensitivity is invariably reduced from its full sensitivity range and this pickup will not appear in the final signal.

7. Receiver Feedback: To reduce possible feedback from the video i-f stages it is customary to remove the 1st or 2nd i-f tubes during the Front End alignment. Another possible source of disturbance is the vertical blocking oscillator, which can cause large variations in the "B" plus line. Removal of this tube in many cases will result in smoother alignment of the Front End.

As an example of the principles discussed in this and previous installments the following alignment procedure of the Standard Tuner Model TV 101 Front End is presented. For the convenience of the reader the schematic of this tuner which appeared originally in the Sept. issue, as Fig. 3-24 is presented again as Fig. 3-52.

I. F. and Trap Alignment

Connect V T V M in series with 10,000 ohm resistor to 2nd detector video output on main chassis. Remove tube shield on 6J6 on tuner. Capacity couple AM Signal Generator to 6J6...
2. Adjust C_3 and C_4 for flat-top response curve and maximum gain. Check markers on all channels. They should fall in automatically on all channels.

Oscillator Alignment

1. Turn station selector switch to channel 12.
2. Connect calibrated crystal signal generator to one antenna terminal and ground. Set to sound carrier frequency 209.75 mc.
3. Connect vacuum tube voltmeter to d-c output of ratio detector or discriminator, whichever is used.
4. Adjust C_3 for zero reading on VTVM between a positive and negative peak.
5. Check all channels for zero reading on VTVM. It is usually not necessary to make any further adjustments. If necessary to touch up the oscillator coils, the following procedure is recommended:

Oscillator Re-check (not usually necessary)

a. Center sharp tuning control
b. Place a non-metallic screwdriver through opening, and adjust oscillator coil on channel 12.
c. This adjustment can be repeated for all channels or, if necessary, on any single channel.

Conversion From Split Sound To Inter-Carrier

1. Disconnect green lead from tap on L_{12}.
2. If a 21.25 mc trap is required in first i-f transformer, remove C_{15} (68 mmf condenser). If a 19.75 mc trap is required, replace C_{15} with an 80 mmf condenser.
3. The 6AG5 then becomes the 1st inter-carrier i-f amplifier.

General Procedure

It must be remembered that there are many different types of Front Ends in use, each requiring an individual alignment sequence. For this reason the manufacturer's specifications and instructions should be followed in detail during the alignment of any one unit. However, it will be found that all alignments follow a general pattern, this being:

1. Adjusting the antenna and r-f stages for proper bandpass and gain.
2. Adjusting the oscillator to the exact frequency required to produce a required i-f bandpass.
3. Adjusting the converter i-f transformer to its required frequency.
4. Adjusting the sound or adjacent channel traps.

Aligning Front Ends Removed From Receiver

Very often it becomes necessary to remove the Front End from the receiver proper in order to align it properly or to check it for loose connections. To do this the video output terminals must be terminated in a load equivalent to the input of the succeeding i-f stage. An average value of this load is 10K ohms.

To make tests of this type an external power supply must be used. Such a supply employed by the writer, and utilizing batteries only, which has proven very satisfactory is illustrated in Fig. 3-53 and Fig. 3-54. This battery supply may be used in many other applications such as testing portable receivers. It provides an “A” supply of 6 volts, a variable “C” supply of 45 volts, and “B” voltage taps of approximately 90, 150 and 200 volts. The pilot light used in conjunction with the “C” supply indicates to the user that the potentiometer is connected across the “C” battery. When not in use the switch is turned off and the pilot light goes out.

Thus far, the writer has been able to test any Front End entirely disconnected from its chassis by connecting it up with this battery supply. Many interments and other defects almost impossible to locate with the Front End connected in the receiver have been detected in this manner. To those who have occasion to repair and align many Front Ends a unit of this type will prove invaluable.
Here we go looking for trouble again—this time in Hallicrafter Model #T-64, using transformer low voltage supply, kickback high voltage supply, 10BP4 picture tube, and push-button channel selector. The sound was normal but the picture exhibited a marked foldover at the bottom.

The object of the game is to duplicate as far as possible the general steps in servicing a television set as might be done on the bench or in the home until the trouble is found. The rules of the game are simple. Answer each question before going on to the next, since the answer is sometimes given in the following question.

1. The first step in trouble-shooting usually consists of checking appropriate controls to make sure there really is a trouble instead of only misadjusted controls. On the basis of the above picture on the screen:
 (a) There is definite trouble in the vertical sweep circuit and there is no need wasting time to check vertical controls, since this type of trouble cannot be caused by misadjustment of controls.
 (b) Same as (a) except that the trouble is indicated in the horizontal sweep circuit.
 (c) Possibly can result from misadjustment of vertical linearity control.
 (d) Possibly can result from misadjustment of horizontal drive control.

2. Varying the vertical linearity control varied somewhat the amount of foldover, but manipulating this control and the vertical size control could not take it out. This kind of trouble is caused most usually by a bad tube or a leaky coupling condenser or leaky saw-tooth condenser in the vertical sweep circuit, although there are other possibilities. In this type of circuit it can also be caused by a shorted cathode by-pass condenser in the cathode of the vertical amplifier stage. The vertical sweep tube, 6H6, 6SN7, consisting of both the oscillator and amplifier stages, was changed. No improvement. The cathode voltage on the amplifier stage was measured with a voltmeter and found to be normal, varying from 0 to +16 v. as the linearity control was varied, showing that the cathode condenser was not shorted.

A quick way to check for a leaky saw-tooth condenser, C-90 (See Fig. 1) would be to turn set on and to:
 (a) Check with VTVM to see if there is a positive voltage from top
of C-90 to ground with the vertical sweep tube out of socket.

(b) Put VTVM across C-90 to check if there is a positive voltage with the vertical tube in.

(c) Bridge a known good condenser of the same value across C-90 and watch picture tube to see if picture or raster returns to normal.

(d) Put VTVM across R-112 to see if there is a positive voltage with the vertical tube out.

3. Saw-tooth condenser checked O.K. Next check made to see if the indication of where the trouble might off, but did not show any conclusive

B+ was normal and plate and grid normal. On taking voltage readings, readings of the vertical transformers checked normal. Resistance checked leaky. Resistance check made bottom of R-112 shorted to ground.

Either side of R-81 shorted to ground; condenser C-89 unsoldered at one end; the following were done: Coupling

verti cal oscil lator stage must be changing value when voltage is applied.

(d) Shorted C-81 in integrating network.

ANSWERS & DISCUSSION

Answer 1-c.

In some receivers, misadjustment of controls can cause vertical foldover. This is true in this receiver because linearity control can reduce vertical amplifier cathode resistance to zero. (See Fig. 1) As a result, lack of cathode bias on the amplifier stage will cause top of modified sawtooth wave to be flattened off and so cause foldover. In many sets there is a fixed resistor in series with the linearity potentiometer in the cathode of the vertical amplifier to limit the range the bias can be varied. In such cases, varying the vertical linearity control can correct for (or if set is too far off, cause) vertical non-linearity but not actually foldover.

Trouble definitely is indicated in the vertical rather than the horizontal circuit since it is a fault that is not common to all horizontal lines. Such a fault would be expressed in a vertical direction. That is, trouble in the horizontal sweep generally shows up in the vertical direction, and in the vertical sweep in the horizontal direction.

(Radio-Television Service "Dealer" December, 1950)
On these pages we show results of tested work procedures based on extensive experience in assembling connectors for use with RG 55/U, RG 58/U, RG 59/U, RG 62/U and RG 71/U cable. These methods have been adopted as standard on Amphenol assembly lines and are being passed on to our readers in the interest of building toward a higher degree of efficient workmanship. Shown to the right are the first three steps to be taken in processing either of the two assemblies. After these instructions have been followed either of the procedures shown in Figs. 4 to 8 or 9 to 13 may be continued according to the connector type being used.

OPERATIONS FOR RG 55/U AND 58/U CABLE

4. Dip exposed shield in rosin-alcohol flux to a depth of 1/8" (Apply a minimum amount of flux for a neat job.) Dip fluxed cable quickly into solder pot and immerse immediately into the alcohol. This cools the dielectric, prevents distortion and removes excess flux.

5. The tinned shield is then cut and removed to expose 1/4" of the dielectric.

6. The dielectric is then cut and removed to expose 1/8" of the center conductor.

7. Tin the center conductor, slip on the contact and solder through the cross-drilled hole. The rubber or plastic sleeving which protects the external solder connection can now be slipped over the cable.

8. The connector shell is now slipped over the contact and shielding and soldered. Be certain the shell is properly located. It is in proper position when the tip of the contact is flush with dielectric and the end of the body shell.
CABLE CONNECTORS

1950, by permission of the American Phenolic Corp.

1. After the cable is cut to required length, cut and remove vinyl jacket.

2. Slit vinyl jacket laterally to allow easy removal.

3. Remove vinyl jacket, exposing braid to 9/16" on the smaller and 7/16" on the larger cable.

OPERATIONS FOR RG 59U, 62U AND 71U CABLE

9. Slip the vinyl or rubber sleeving over the cable. Flare the braid slightly to permit trimming and remove 1/4" of shield, leaving 3/16".

10. Cut the dielectric and remove to expose 1/8" of the center conductor.

11. The conductor is then tinned and the contact slipped in place and solder added through the cross-drilled hole.

12. Flare the braid slightly again and assemble connector shell to the cable. The shell should enter under the braid. The braid is squeezed into position over the shell body and soldered.

13. Slide rubber or plastic sleeving over the solder connection and the job is finished.
Your editor firmly believes that most servicemen can more than double their incomes by assuming an aggressive, rather than "hands-off" approach where potential sales of appliances, receivers, and accessories are concerned. Try it out—you'll be surprised at the results.

The above captioned question has oft been asked by both the technician and the television manufacturer. To answer this question let us first establish the facts in the case.

On the negative side, let us assume that in most cases franchises for the top brand lines of television will not be available to the technician.

Secondly, the main portion of the technician's business is technical know-how and the sale of replacement parts and not merchandising, as is needed to sell television sets.

Third: Most of the secondary television lines available carry very little and, in some cases, no consumer advertising, which makes them hard to sell items.

Fourth: Warehouse space being at a premium, most technicians do not have adequate facilities for handling large quantities of television receivers.

To offset the above negatives, the technician will have, in most cases, with a secondary television line, a larger margin of profit to work with. His dealer mark-up will be better and his list prices somewhat lower than those of the top name brands. Larger margins and lower list prices should certainly offset, somewhat, the fact of no consumer advertising. So let us assume for the moment that the selling of television receivers should be profitable.

From a physical equipment point of view, most technicians are amply prepared. Television must be demonstrated to be sold. Therefore, a display and demonstration corner or room is absolutely necessary. The receivers in this room or space must be in good working order and must be polished or dusted daily. Technicians know all of the idiosyncrasies of receivers and also all of their good qualities. This gives them a decided edge in demonstrating and selling TV receivers.

Most technicians are capable of buying at least one television receiver at a time. They may sell this sample and then immediately reorder. This is a nice lucrative business as the dollar profit is high. Besides, the installation and future servicing of these receivers will provide technicians with additional, regular services of income.

On the servicing side of the ledger, the technician is well equipped. He has oscilloscopes, signal generators and voltmeters; in fact, all of the equipment necessary for servicing television. Parts inventory creates no problem as most technicians already carry comprehensive inventory of needed standard television parts and tubes.

The technician, in most cases, is not expected by the manufacturer, to carry a large inventory of receivers at any one time. So, in buying what he needs, selling them quickly and re-ordering, the technician is never stuck with obsolete merchandise nor is he caught with a big inventory if and when prices decline.

I particularly emphasize the fact that the radio-TV technician has always been the receiver manufacturer's liaison with the public and undoubtedly is the industry's greatest single factor in the molding of public opinion. Invariably, the serviceman's good or bad opinion of a receiver line is respected by the public, and influences its future purchases.

In conclusion, may I say that the technician definitely belongs in the television receiver business as the affirmative side of the question certainly outweighs the negative considerably.

WANTED

Technical articles on installation, maintenance, and service of allied Radio-TV and Industrial Electronic equipment.

Attractive prices paid for original manuscripts.

Address replies to: EDITOR, RADIO-TV SERVICE DEALER, 342 Madison Ave., New York 17, N. Y.
This is the sixth article on high quality tuners and receivers prepared by the author for our readers. Those who have followed this series are unanimous in their praise of the objective manner in which the various products were handled. In this installment the Midwest Model JC-16 is described.

In the interest of high quality reproduction from a combination model JC-16 by Midwest Radio & Television Corp., Fig. 1, several worthy features. For example, instead of jamming quantitative functions within one envelope, this model provides an independent 6AL5 tube for AM detection while it includes another 6AL5 tube connected as ratio detector for FM translation. There is no shortage of tubes in the straight-forward circuits divulged in the schematic of Fig. 2. The block diagram of Fig. 3 shows the assignment of all tubes.

To the lower left of the schematic (Fig. 2) are shown low capacity jacks and switching facilities for:

(a) inclusion of a video adapter unit which economically employs the contained audio amplifier.

(b) high quality phonograph pickup.

For reception of weaker FM and shortwave AM signals, a properly matched low-loss external dipole antenna should be connected across input terminals “A-A” which offer a 300 ohm balanced input. In many instances a built-in dipole serves adequately for local reception. Terminal “G” should be properly grounded. High impedance loop antenna, provided for this chassis, will answer most standard AM broadcast requirements.

Tuning Facilities
Simplified band-switching selects individual r-f, mixer and oscillator tuning coils for each of the five channels listed below. Short-cuts are held to a minimum, as proven by the schematic Fig. 2. Twenty-three inductances, twelve trimmer capacitors and sixteen tubes serve the channels below:

Band A - 540kc to 1600 kc - AM broadcasts.
Band B - 1.6 mc to 4.7 mc - AM shortwave.
Band C - 4.7 mc to 10.0 mc - AM shortwave.
Band D - 11.2 mc to 22.0 mc - AM shortwave.
Band E - 88.0 to 108 mc - FM broadcasts.

Note: Seven International bands are covered by B, C & D above.

Manual tuning control is spurred to six-gang capacitors. This control is augmented by seven pushbuttons, each of which may be set mechanically for a station at any point on the dial. These pushbuttons, however, are not recommended for the exacting requirements of shortwave tuning. To minimize noise, and distortion from the cutting of sidebands, a 6U5 tuning indicator is energized through a 1-megohm dropping resistor from the a-v-c bus which is in turn supplied by the detector tube in use. As a signal is properly tuned, the a-v-c voltage increases and deflection of the 6U5 is reduced to a minimum. This indicator is useful for stronger FM stations but not too accurate for the weaker ones. An auxiliary mechanical device just above the volume control shows visual indication numerically. It serves as a good reference for repeat tuning of a given station and allows volume to be accurately preset for local stations prior to warmup.

Since oscillator frequencies are changed with band switching the double-tuned r-f stages remain fixed at 10.7 megacycles for FM and at 456 kilocycles for AM reception. Good tracking alignment is accomplished through coil-core and trimmer capacitor adjustments detailed in service-men’s pamphlets.

Input and output r-f channels for all bands are switched to and from one miniature 6BA6 pentode whose high transconductance aids high signal-to-noise ratio.

Mixer-Oscillator
The 6BA7 pentagrid mixer offers separate grids to amplified r-f and local oscillator signals. Entrance interactions are thus minimized. A high conversion efficiency is derived from the selection of this tube which has a low internal noise content. However, since some hiss will be generated within any mixer tube, it is wise to take
every possible step to obtain a healthy signal potential at the grid of the first r-f stage.

As modulated carrier and local oscillator potentials are combined within this tube, the first step in signal translation is effected. Incoming signals from the r-f stage are fed to grid #3 of the 6BA1 mixer via the selector switching system. Output from the 12AT7 oscillator tank is fed directly to its grid #1. Grid #2 screens off spurious interaction prior to desired mixing in the electronic plate stream.

There results in the mixer output circuit a new modulated carrier whose difference frequency equals the interval between the incoming r-f signal and the r-f of the local oscillator.

Mechanically ganged, the oscillator tank tracks with the tuning of preceding r-f tanks. This results in a fairly constant difference frequency output from the mixer-oscillator. Even casual FM transmitter deviations from normal frequency must be tracked as must aberrations within the tuner itself. Hence a means of automatic frequency control is applied to the FM channel.

AFC-(FM) [Reactance type]

Oscillator stability is highly necessary in high frequency channels. The second half of the 12AT7 (double triode) serves as a reactance-type a-f-c control tube. Plate current in it is made to lag almost 90 degrees behind its plate voltage changes. As witnessed from the schematic, Fig. 2, both the plate and grid of this reactance tube, coupled together by a 5 µfd capacitor, receive signal from whichever oscillator circuit they are switched to.

An original FM control potential, tapped from the d-c output network of the 6AL5 ratio detector, is fed back through bus #4, (lower left corner of schematic), and through the 1-megohm resistor, directly to the grid of the reactance control tube (12AT7). The more positive this voltage the greater the plate current therein and vice-versa. Then since plate and cathode of this reactance tube are connected directly across the oscillator tank circuit, and since its plate current and plate voltage are

Fig. 2. Circuit diagram of Midwest Model JC-16 combination AM-FM receiver.

Fig. 4. Compensation effects of tone control at various positions of the latter. Audio output taken at voice coil.
be amplified beyond the saturation or limiting point of this third i-f tube as pre-determined by the values of its circuit components.

Due to the higher gain of this FM i-f section, regeneration must be guarded against. One of its effects is to peak the i-f response curve to such a degree that amplitude distortion attains higher levels of modulation. The four 10.7 megacycle i-f transformers are overcoupled thus passing the necessary band width and insuring good adjacent channel attenuation.

In the AM channel there are three 456 kc transformers used for intermediate stages. Their coefficient of coupling is adjusted to be slightly less than critical. When properly set there is only one peak.

Only the oscillator section of the 12AT7 serves the AM channels. AFC is applied only to the FM channel. Whereas a.v.c. is derived from the 6AL5 detector and supplied to all four AM channels through the selector switch and bus #3 as evidenced in the schematic of Fig 2.

FM Ratio Detector

The regulated plate signal output of the third i-f driving stage is supplied to the fixed-tuned primary of the ratio detector. The main center-tapped secondary winding connects to the plate of one diode and to the cathode of the other diode within the 6AL5 envelope, thus effectively connecting the two diodes in series; they conduct on the same i-f half cycle. The rectified voltage across the lower shunt capacitor in the 6AL5 output circuit is proportional to the voltage across the lower diode. The same holds for the upper capacitor and upper diode. Since the voltage across the two diodes differ according to instantaneous carrier frequency, then the voltages across the two capacitors differ proportionately. The voltage across one capacitor is the larger of the two capacitor voltages at carrier frequencies below to intermediate frequency, and the smaller of the two at frequencies above the intermediate. It follows, then, that the voltage across the two capacitors is additive.

Rectified signal current causes a d-c voltage drop across the two 82K shunt resistors. This charges the large 10 μF capacitor thus maintaining a steady state d-c value proportional to transmitted signal strength. The resultant stabilizing voltage keeps the summation voltage across the two smaller 100 μF capacitors always constant thus minimizing any residual AM component in the detector output. The tertiary winding, shown above the primary of the driving transformer, and common to both diodes, simplifies the signal transfer problem. The transfer from r-f to a-f is not simple. These few tightly coupled tertiary turns aid in the balanced elimination of any undesired AM hangover component. For greater understanding of this transfer problem the reader is referred to literature on ratio detectors.

Intermediate Stages

Adequate gain must be derived from the i-f section for proper operation of the individual AM diode and FM ratio detectors. This especially holds true for weaker signals and therefore we find a third i-f stage driving the FM detector. The average FM antenna input potential is lower than those derived from AM transmitters of the standard broadcast band. Some limiting action is advisable prior to the final interpretation of the FM ratio detector. It will be noted from Fig. 2 that the i-f plate and screen voltages are tapped from the supply bus successively lower. This facilitates the input stage. The third 6BA6 i-f or driver stage, having low screen and plate voltage, becomes easily saturated and therefore does not respond to a variety of changes in signal amplitude, but, instead produces a fairly constant amplitude output. It remains a frequency-sensitive rather than an amplitude-sensitive device. Amplitude variations are thus smoothed out. They cannot

90 degrees out of phase, variations within the tube introduce reactive effects upon the oscillator output.

Should the oscillator frequency become higher than intended, the i-f frequency would naturally rise with it. Such action would indirectly raise the negative potential of the reactance tube grid thereby causing less plate current to flow therein. Resulting directly from this action, the inductive or reactive effect of the control tube adds to the normal inductance value of the oscillator tank circuit. From basic formulae we know that any increase of tank inductance will reduce oscillator frequency. Hence the reactance tube stabilizes oscillator frequency as it responds to plus or minus control potentials supplied to its grid from the ratio detector d-c output. Frequency drift or small tuning errors are therefore compensated.

Power Supply

Technically this power supply, employing a full wave rectifier, is not unusual despite its simplicity. A 500 ohm loudspeaker field serves as choke-coil in the rectifier output circuit. Initial high voltage is fed from the choke to the screen grids of the 6V6 beam power tubes while plate potential is supplied to these tubes through the mid-tap of the audio output transformer primary winding. Bleeders drop the initial voltage as required for all other potentials except heaters. Heaters are fed from their own 6.3 volt unrectified source.

Ventilation must be considered when this or any chassis is applied to custom-built or special installations. Dissipation of heat from all tubes is provided for in commercial models and must never be neglected elsewhere.
Philco Models 48-1000 1001-1050-
Correcting loss of a-g-c action

An extremely black picture and difficult in synchronizing the picture may be caused by the loss of a-g-c action in the above models. Loss of a-g-c action may be due to the failure of the condenser which is connected between the triode plate and the diode plate of the a-g-c amplifier tube. If this condenser develops a short or a leak, a positive voltage is placed on the a-g-c bus and is fed to the grid of the r-f and i-f amplifiers.

Whenever the symptoms indicate loss of a-g-c action, this condenser should be checked. If it is found defective, replacement should be made with Philco Part No. 61-0120, which has a capacitance of .01 μf, with a working voltage of 600 volts, d.c.

Philco Model 49-702 Replacement of Tuner

The tuner available for replacement for Model 49-702, Code 121, is the one used in Model 50-702. Since there have been some circuit changes in both the latest tuner and the receiver, it will be necessary to make a slight modification to the new tuner to adapt it to Model 49-702, Code 121. This modification consists of removing one turn from the 1st v-i-f coil. The procedure for removing the turn and installing the new tuner is as follows:

1. Remove the chassis from the cabinet, and the picture tube from the chassis.
2. Un solder the tuner connecting wires, and record the connections.
3. Remove the perforated shield from the bottom of the tuner.
4. Locate the 1st v-i-f coil, which is connected to pin 3 of the 7F8 tube, and disengage the coil mounting clip from the chassis.
5. Un solder the winding furthest from the chassis, and very carefully peel one turn off.
6. With fine sandpaper, remove the insulation from the wire and solder it to the coil terminal.
7. Secure the coil form.
8. Replace the perforated shield.
9. Install the new tuner in the chassis and rewire the same as the original tuner.
10. Align the i-f and r-f systems of the receiver as described in the service manual for Model 49-702, Code 121.

Philco Service Dep't.

Stromberg-Carlson-Pads for the purpose of connecting Multiple TV-12's to one antenna

To connect more than one television receiver to one antenna without the use of switches, resistor pads will be necessary to match the impedance of the lead-in to the impedance of the receiver.

Shown below is a chart of the resistors to use with each specified number of receivers. The figures are based on the filament circuit to give the same current regulation in this circuit during the warm-up period as was previously accomplished by the two - 0.6 ampere Globar resistors, R454 and R455. The details of the circuit change are shown above.

The new Globar resistor is stocked as: RRW-054-35 ohm, 0.6 ampere Globar resistor, (1455) $1.75.

G. E. Increased Horizontal Sweep Width

Late production receivers incorporated the following changes to increase the horizontal sweep width.

1. Add a 230 μf, 1500 v., capacitor (Stock RCU-295) between terminals #6 and #8 of the horizontal sweep output transformer, T351. Either two 390 μf, capacitors (Stock UCU-1042) in series or two 470 μf, capacitor (Stock UCU-1044) in series may be substituted for the 220 μf, capacitor.
2. Change the termination of the high voltage capacitor, C735, from pin #8 to pin #5 of the 25W40T damper tube, V15.

The above changes will be incorporated in all production receivers from this date.

G. E. Removal of 41.25 MC Video I-F Trap

Early production receivers made use of a 41.25 mc trap coupled to the 2nd video i-f coil. This caused "buzz" in audio on some receivers when the receiver was properly tuned for best picture detail at low contrast setting or when operating on a rather weak signal. This trap was removed on all late production receivers and was made less effective on receivers in process of fabrication, by shunting the trap by a 5100 ohm, 1/2 watt resistor by connecting it across the trap trimmer C281. If this change is desired in the field, the shunting of C281 by the resistor does not require a realignment of the video i-f.

For replacement purposes the Stock No. RLI-123 2nd video i-f coil with trap will no longer be available. Replace this coil by Stock No. RLI-066. This latter i-f coil has a list price of $0.85.

General Electric Service Dep't.
NEW PRODUCTS

7-INCH OSCILLOSCOPE

A new, seven-inch oscilloscope, especially designed to meet the need for a high-quality instrument combining the advantages of large screen size, compactness, portability, and ease and convenience of operation, has been announced by the RCA Tube Department.

The new RCA WO-56A Cathode-Ray Oscilloscope is a precision-engineered instrument having wide application in service shop, laboratory, and factory. It features three push-pull stages of direct-coupled amplification. A wide frequency response, a high deflection sensitivity, and an excellent square-wave response provide waveform reproductions of unusual accuracy and clarity on its seven-inch screen.

NEW BEAM POWER TUBE

A beam-power amplifier tube, designed for use in the audio output stage of television and radio receivers, has been added to the production lines of the General Electric Tube Divisions.

TV MARKER GENERATOR

A new television marker generator Type 501 designed particularly for use with TV sweep signal generators has been announced by the Radio Tube Division, Sylvania Electric Products Inc., 1740 Broadway, New York 19, New York.

The Sylvania Marker Generator Type 501 provides a means of accurately marking frequencies on the oscilloscope trace of response curves while testing a TV receiver during manufacture or during servicing. Through the use of the marker generator, which is designed to cover the entire range of TV frequencies, accurate measurements of bandwidth and evaluation of dynamic response at any spot frequency may be made.

CRYSTAL CARTRIDGE

The Astatic Corporation, Conneaut, Ohio announces its tiny new CAC-J Crystal Cartridge designed for slow speed records.

Ability of the CAC-J to provide high quality performance is attributed to the fact that it is “internally equalized” to follow Columbia Records, Inc., ideal frequency response for the recording characteristics of LP records (20 to 11,000 cycles).

The new cartridge has a small, lightweight aluminum housing with standard 1/2-inch mounting holes to fit most tone arms. It is furnished with an adapter plate to permit mounting in RCA and similar 45 RPM record changers.

Output is listed at approximately six-tenths volt at 1,000 cycles per second on Columbia No. 103 test record and one volt on RCA 12-5-31-V test record.

The CAC-J is claimed to play both 33 1/3 and 45 RPM records with equal fidelity. Another model, the CAC-78-J, with three-mil needle tip radius for 78 RPM records, is available.

Both models use the well known Astatic Type Sapphire tipped needle, the design of which, in itself, contributes to reduction of needle talk through high lateral and vertical compliance.

10 MC OSCILLOSCOPE

The Instrument Division of Allen B. Du Mont Laboratories, Inc., Clifton, N. J., recently announced a quantitative, 10-megacycle cathode-ray oscillograph, their Type 303. Time calibration is provided for the horizontal sweep of the instrument and regulated voltage calibration for vertical deflection. Both time and voltage calibration are accomplished by substituting a calibrating signal for the input signal.

The Y axis of the instrument, which includes a fixed, signal-delay line, provides a sensitivity of 0.1 volt peak-to-peak per inch. The frequency response of the Type 303 is down 3 db at 10 megacycles with no positive slope in the high-frequency range. Response falls off slowly past the 10-megacycle point, so that the instrument is usable at frequencies considerably higher than 10 megacycles. The Type 303 will synchronize stably on signals higher than 15 megacycles.

PHONO-SWITCH ADAPTORS

The popular line of JFD Radio-Phono Switches is being readied for record-breaking sales volume during the fall and winter seasons, according to the JFD Manufacturing Co., Inc., Brooklyn.

The JFD Universal Record Player Selector No. ST144 permits use of a single sound sy-
RADIO-TELEVISION SERVICE DEALER • DECEMBER, 1950

DIRECTIONAL DIAL INDICATOR

John Bentia, Sales Manager for The Alliance Manufacturing Company, Alliance, Ohio, announces that the original deluxe model Tenna-Rotor control case, which is fully automatic and which was announced at the NSDA Show in Cleveland, will be supplied with a NORTH - EAST - SOUTH - WEST direction indicator dial.

The new Model HIR will be advertised in new television films over more than 50 TV stations throughout the country and is available for immediate delivery.

TV ANTENNA

A new all-driven-element antenna is announced by Technical Appliance Corporation, Sherburne, N. Y., manufacturers of Taco antenna systems for TV, FM, and AM. This new antenna type has been designed as the 1700 Series and is called the Twin-Driven Corner Antenna.

With all elements driven the directivity of reception has been narrowed, thus minimizing ghosts caused by reflected signals. The front-to-back ratio is extremely high adding to its fine performance. Both high and low-band lobes coincide due to the phase relationship controlled through feeding.

The antenna elements are merely swung into place and wing nuts tightened to complete the antenna ready for installation. These new antennas are available in single or stacked models, depending upon the requirements of the installation.

TV LINE VOLTAGE REGULATOR

For steadier TV pictures regardless of line-voltage fluctuations, Clarostat Mfg. Co., Inc., Dover, N. H., now offers its Automatic Line-Voltage Regulator to and through its distributors. This aid to still better TV entertainment, particularly in rural districts or areas experiencing line-voltage fluctuations, is really a handy accessory. With male and female Edison connections at either end, it plugs in between the TV set's attachment plug and the outlet. Two models are available: TV-A rated at 300 watts, for sets consuming 200 to 300 watts, and TV-B rated at 375 watts, for sets consuming 300 to 375 watts.

POLICE-TYPE AUTO ANTENNA

A new auto aerial, embodying police and army type construction and mounting features, has been announced by Snyder Manufacturing Company, Philadelphia television, radio and automotive accessory firm. Among its features are an extra long four-section staff of chromed plated Admiralty brass, shock absorbing spring mount, red ceramic insulators and red tenite static ball.

Complete with 8 feet of UHF polyethylene cable and aircraft fittings, the HOT ROD is the latest addition to the complete line of Snyder Auto Aerials for all types of mounting. Catalog sheets on this aerial may be obtained by writing to Snyder Manufacturing Company, 22nd and Ontario Streets, Philadelphia 48, Pa.

CERAMIC DISC CAPACITORS

Centralab, Division of Globe-Union Inc. announces a new line of ceramic disc capacitors. The line includes single, dual and shielded dual capacitors with very high capacities in relation to size, some as small as 1/4 inch diameter. The third dimension—thickness—is virtually eliminated enabling disc capacitors to fit into very narrow spaces. These units are highly efficient as bypass and coupling capacitors in high frequency circuits and the shielded dual discs are especially valuable [Continued on page 45].
The Sangamo line offers 34 types of mica, paper, and electrolytic capacitors to take care of practically any replacement requirement in the radio and television field.

For example, the line includes Sangamo Micas, which have enjoyed a reputation for excellence throughout the radio and electronic industry since 1923. It includes the famous “Redskin” . . . the plastic molded paper tubular that is easy to work with because the flexible leads can’t pull out. It includes a complete range of Electrolytics that will measure up to the toughest assignments in exacting applications where ordinary electrolytics might cause premature failure.

Sangamo Capacitors are packaged in distinctively designed cartons that you can identify with ease and that make inventory simple.

A trial of Sangamo Capacitors will convince you. Stock up at your Jobber.

Your Assurance of Dependable Performance

Send for our new Catalog No. 980. It’s the most complete replacement catalog in the industry.

SANGAMO ELECTRIC COMPANY
SPRINGFIELD, ILLINOIS
IN CANADA: SANGAMO COMPANY LIMITED, LEASIDE, ONTARIO
DURABLE DURANITE

- Durable! That's why Duranite tubulars are so popular. This radically different molded capacitor features Aerovox polypropylene, the new improved processing methods: new Duranite molded casing.
- Drop, bang, scratch—no damage to that durable Duranite casing. Unaffected by high temperatures. Immune to high humidity. Stock them well in advance if you wish—no shelf deterioration. Pigtails won't pull out. Definitely, the durable Duranite.
- See Your Jobber...
- Insist on Duranites for durable tubulars. Ask your local distributor for latest Aerovox catalog featuring many new capacitor types and extended listings.

NOW BETTER, BRIGHTER PICTURES

insuline new "BI-CON" TELEVISION ANTENNA

Single Type and Stacked Array for fringe areas

An engineering triumph by Insuline . . .
proven outstanding by actual test. Pre-assembled sections for quick installation.

- Peak ALL-Channel reception.
- Suitable for ANY make TV set.
- Exclusive — separate High Frequency and Low Frequency dipole reflector elements.
- Popularity priced.

FREE! New Catalog

Thousands of items including metal goods, radio parts, TV indoor and outdoor antennas and accessories, tools, hardware, etc. Write Dept. RD-12.

BOOK REVIEWS

This is the most complete book on cathode-ray oscilloscopes published to date and, although it covers the subject minutely and includes a vast array of information, every paragraph indicates a careful desire to explain the subject matter simply and clearly.

The first portion of the book deals with the electrical and mechanical theory and application of the 'scope. Also included in this section is an excellent treatment of electrostatic and electromagnetic deflection principles. We particularly enjoyed reading the chapter on Linear Time Bases which is a very complete treatment of this subject.

The second portion of the book deals with the basic oscilloscope and its modifications. This is a single chapter of 130 pages and discusses the various 'scope circuits, their variations and effects, as indicated in the different types of patterns that might be observed.

The third section concerns itself with measurements. This section is described in the chapter headings which are as follows: Phase and Frequency Measurement, Nonlinear Time Bases (measurements utilizing nonlinear sweep systems), Auxiliary Equipment (used in conjunction with measurement), Testing Audio Frequency Circuits, Visual Alignment of AM, FM and TV Receivers, Waveform Observation in TV Receivers, Electrical Measurement, Scientific and Engineering Applications.

A fourth section (Chapter 20), is devoted to complex waveform patterns. Here we find 82 pages of patterns consisting of fundamentals and harmonics at various combinations of amplitude and phase.

In the fifth and final section, we are treated with a discussion of various special purpose C-R tubes, commercial 'scopes, and related equipment.

A tremendous amount of work and material was evidently entailed in the preparation of this encyclopedia, and any technician who has anything at all to do with the cathode-ray tube.
ASSURES YOU the most complete tests of all tubes including television.

ACTUALLY APPLIES 19 separate filament voltages—eliminates usual compromises.

TESTS OVER 700 tubes listed on roll chart—Many thousand tubes used to properly evaluate correct settings.

POSITIVE INDIVIDUAL test of each element.

SPECIAL CIRCUIT feature accurately compensates to provide correct voltages on each tube test.

IMPROVED LEVER switching originated by Triplett for complete control of each tube element.

EACH ELEMENT quickly and conclusively tested for shorts by a flip of the switch.

ILLUMINATED SPEED-ROLL chart with latest tube listings. Kept up-to-date.

LARGE 6" meter—RED-DOT Life-time Guaranteed.

FOR COUNTER or portable use.

MODEL 3413 TUBE TESTER
Only
$69.50

COMPLETE WITH ACCESSORIES
AND INSTRUCTION MANUAL

In Canada: Triplett Instruments of Canada,
Georgetown, Ontario

FOR THE MAN WHO TAKES PRIDE IN HIS WORK

Triplett

TRIPLETT ELECTRICAL INSTRUMENT COMPANY - BLUFFTON, OHIO, U.S.A.
SAVE Up to $1.00 each.
Form a Group,
Service Dealers
Subscribe to "RTSD"-

★ The more in a group the bigger the savings.
6 men in a group save $1.00 each; 4 men groups
save $.75 per man. Present "RTSD" subscribers
may participate in or form a group with co-
workers, or even competitors. Still active sub-
scriptions are automatically extended 1 year.
Start a Group today! The timely and exclusive
technical data appearing in future issues of
"RTSD" will make this the best investment you
ever made. The special Group Rate offer may
be withdrawn at any time—so hurry.

Use This Coupon For Convenience
(The coupon below can be used for from 1 to 6 subscription orders. Use it today!)

RADIO-TELEVISION SERVICE DEALER MAGAZINE
342 Madison Ave., New York 17, N. Y.

Please enter 1 year subscription orders for the names
given below. Our remittance is enclosed.

NOTE: If you do not wish to tear this order blank out, just print or
type the information on a single sheet of paper, following the style
given. Each subscriber's occupation must be clearly
described.

Name .. Address ..
Describe Title or Position and Type of Business ..
State whether a New Subscriber ☐ or Renewal Order ☐

Name .. Address ..
Describe Title or Position and Type of Business ..
State whether a New Subscriber ☐ or Renewal Order ☐

Name .. Address ..
Describe Title or Position and Type of Business ..
State whether a New Subscriber ☐ or Renewal Order ☐

Name .. Address ..
Describe Title or Position and Type of Business ..
State whether a New Subscriber ☐ or Renewal Order ☐

In U.S.A. & Canada Rates

☐ One 1-year subscription $2.00 $3.00
☐ Two 1-year subscriptions, each 1.75 2.75
☐ Three 1-year subscriptions, 1.50 2.50
☐ Four 1-year subscriptions, 1.25 2.25
☐ Five 1-year subscriptions, 1.10 2.00
☐ Six 1-year subscriptions, 1.00 1.50

NAME .. Address ..
Describe Title or Position and Type of Business ..
State whether a New Subscriber ☐ or Renewal Order ☐

Name .. Address ..
Describe Title or Position and Type of Business ..
State whether a New Subscriber ☐ or Renewal Order ☐

Name .. Address ..
Describe Title or Position and Type of Business ..
State whether a New Subscriber ☐ or Renewal Order ☐

Name .. Address ..
Describe Title or Position and Type of Business ..
State whether a New Subscriber ☐ or Renewal Order ☐

Name .. Address ..
Describe Title or Position and Type of Business ..
State whether a New Subscriber ☐ or Renewal Order ☐

Th- Professional Radio-Television man's
Magazine"— published monthly. All articles
are exclusive and timely. Practically every
issue is worth what an entire 1 year sub-
scription costs.

This text is divided into three sections. Part I analyzes receiver circuits, starting with the picture tube and its function and ending with front ends. Other material included in this section deals with the sound system, power supplies and projection units.

In Part II the author discusses alignment and installation. Procedures referring to video and sound alignment are given in the portion devoted to alignment. In the installation section, the author deals with physical location of the receiver, installation procedures and problems and, finally, receiver adjustment.

In the final section, Part III, which deals with trouble shooting, a breakdown of possible receiver symptoms is presented along with corresponding servicing procedures. Thus, inoperative receivers, loss of synchronization, defective deflection systems, poor picture quality, poor sound quality and poor CRT performance are individually analyzed and cause.

The book is well balanced textwise and is written in a clear and straightforward style. It abounds in illustrations, and coupled with its excellent mechanical makeup (printing, binding, size and layout), it will prove a worthy addition to libraries of those engaged in television servicing. S.L.M.

Section I - Component replace listings covering radios and amplifiers produced from 1938 through 1948 (components included are tubes, dial lights, electrolytic capacitors, transformers, chokes, phono-cartridges, RF coils, speakers and controls).

Section II - Same components as above covering the period between 1948 to 1950.

Section III - Component replacement listings covering postwar television receivers.

Section IV - Vibrator replacement listings for the vibrator-powered receivers produced from 1938 to 1950.

Section V - Battery replacement listings for battery-power receivers produced from 1938 to 1950.

Section VI - Selenium rectifier replacement listings for postwar radios, amplifiers and TV receivers.

Section VII - Volume control replacement listings for very popular 1951 through 1953 receivers.

Section VIII - Installation notes for applications of Sections 1 through 7 showing references to the specific note required.

For the busy serviceman who wants

INSTALL IT and FORGET IT

No fear of costly "call backs" that eat up a dealer or installer's profit. In any climate, anywhere...the new WALSCO Signal King antenna provides sharper, clearer response over entire TV spectrum. Rugged aluminum alloy construction for elements, cross-arm and mast. Corrosion resistant. All steel parts are cadmium plated to AN specifications.

NOTHING LIKE IT ANYWHERE...
- High gain on all channels—no weak spots. Excellent for fringe areas.
- Entirely new insulator guaranteed unbreakable under all operating conditions. Outstanding and lasting dielectric properties.
- Marine type aluminum alloy elements, reinforced and closed ends.
- Assemble in a jiffy (less than 2 minutes).

WALSCO
—in any climate, anywhere...

PIP Write for Information Bulletin No. 51D

WALTER L. SCHOTT CO. Beverly Hills, Calif. • Chicago 6, III.
his replacement part identified in a hurry, this book is a must. S. L. M.

SYNC PULSES
[from page 12]

so why try to impose upon the public a return to small size pictures. 4) — why was an FCC staff engineer who invented a device useable only in the CBS system allowed to influence the commission in favor of adopting a color method that requires use of his brainchild — at least he should have refrained from participating in the making of the decision.

LOOKING FOR TROUBLE
[from page 25]

The top of C-90 would always have a positive voltage to ground since that is the side of the condenser going to the plate. In the same manner, a voltmeter across C-90 would always be positive, whether the condenser is leaky or not. It would show no voltage only if C-90 were shorted. Bridging a good condenser across a leaky one in this type of circuit would not give any clear-cut indication since it would immediately change the oscillator frequency and throw the picture out of synchronization.

Answer 3-b.

The tube is generally taken out when checking for a leaky coupling condenser and the grid checked for positive voltage because a gassy tube can also cause positive grid voltage. While this possibility was eliminated by changing tubes, it is also possible that a distorted waveform can affect the d-c reading on the grid, as outlined above. With the tube out, the oscillator is not operating and a leaky coupling condenser will give a positive voltage on the grid. This is best checked with a high resistance meter, preferably a VTVM on a low range. There usually is no trouble getting a readable voltage across a high value grid resistor when the coupling condenser is leaky. On the other hand, a low resistance meter is not too reliable for the type of check since it will reduce the total value of resistance in series with the leaky condenser as soon as it is put in parallel with the grid resistor. A small leak-
sawtooth can be linear when it is generated and become distorted in the amplifier or output circuits. Where non-linearity is seen at the plate of the oscillator, it may be caused by a fault in the oscillator stage, or the coupling or input to the amplifier stage, which is actually part of the oscillator stage load (leaky coupling or input to the amplifier or output circuits). Where the oscillator, it may be caused by a fault in the oscillator stage, or the coupling or input to the amplifier stage, which is actually part of the oscillator stage load (leaky coupling or input to the amplifier or output circuits).

Resistance values already checked O.K., indicating no resistor had changed value, and so caused the distortion. Condensers were not leaky but it was considered possible that the sawtooth condenser had decreased in value causing it to charge to too great

Answer: 4-c

Sawtooth is non-linear on both the plate of the oscillator and grid of the amplifier. Non-linearity is shown by the curve of the waveform along the upper right portion, instead of an angle being formed with straight sides. (See Fig. 3) Non-linearity can originate in the oscillator circuit and be passed on in that form, or the

Fig. 3. Non-linear and linear waveforms.

Bayonet type fitting provides rigid, rapid assembly.

- High quality corrosion resistant aluminum.
- High frequency type plastic for superior electrical connection.
- Circular design — rugged construction — no loose ends.

CIRCLE-X TO ANY OTHER TV ANTENNA

The mechanical and electrical construction of Circle-X is unsurpassed. No other antenna combines all the features that are engineered into the Circle-X. It is perfectly matched to 72, 150 and 300 ohm receiver input circuits.

Compare

- One type antenna for all jobs.
- Single lead-in.
- Clear, sharp pictures on all channels.
- Eliminates ghosts.

NIAGARA — ONE OF AMERICA'S GREAT ELECTRONICS STORES

YOUR MONEY BUYS MORE AT THE NIAGARA STORE!

TELOMATIC STURDY TUNE DETENT

British interference with Niagara's Hi-pass filter. Positive protection against interference from amateur transmitters, dial phones, and all other devices generating radio frequency interference below 40 Mc. Designed for 300 ohm lead-in. No loss in brightness or clarity.

NEW LOW PRICE

FAMOUS HIGH PASS FILTER

Write today for our big free bargain bulletin.

Niagara Radio Supply Corp.

Dept. D2 — 146 Greenwich Street, New York 6, N.Y.
Although the waveform remained tentative from consideration when they had been either checked or changed, condensers in the oscillator circuit didn’t improve. Opening the coupling transformer eliminated the trouble. However, it is usually more feasible to change condensers in the oscillator circuit had been either checked or changed. Only component left that was likely to cause trouble was the transformer.

Sometimes, in components like a transformer, resistance measurements are inconclusive, since faults like shorted turns may not show up in a resistance reading. However, it can often be found by the principle of exclusion—making certain all other components in the given stage are good, leaving only one component that could be causing the trouble—even though this component may not generally cause that kind of trouble.

Defective tube sockets usually cause intermittent operation rather than this type of distortion. If a resistor has changed value, it generally stays at the new value when the power is shut off. A shorted condenser in the integrating net would have no effect on the oscillator wave-shape but would have some effect on frequency, making it difficult or impossible to keep the picture from rolling vertically.

with this signal is the highest frequency component which is contributed by the mixed highs that are also sampled at the receiver but were not at the transmitter. However, the mixed-high components in each of the three video channels is approximately the same, but will, nevertheless, produce a high resolution picture. Color levels are, of course, set by the amplitudes of the individual 3.58 megacycle sine waves in each channel and applied to the three grids in timed sequence.

It is interesting to observe that in our basic discussions of sound sampling systems in the previous article, the amplifier which followed the sampler at the receiver only passed information up to the highest frequency of audio to be passed and, therefore, the sampling rate frequency was also filtered, producing only an audio output. However, in the color system the sampling rate is permitted to pass through these receiver video amplifiers and, therefore, the signals as they appear on the grids are in the form of pulating 3.58 megacycle sine waves and by properly positioning them on the cut-off characteristics of the picture tube, each can be made to represent a specific group of elements on the television screen. For example, the green 3.58 megacycle sine wave can be at its maximum producing green
OVER 2 MILLION
Battery Radios Offer
Huge PROFIT Market!

CONVERT BATTERY RADIOS
TO A C ALL-ELECTRIC
Now is the time your customers want de-
pendable all-electric hum-free performance. Operates any 1.4 volt 4 to 6 tube battery
radio from 115 volt 50/60 cycle source. Easily slips into battery space. Guaranteed
3 years. $10.65 net

SAVE TIME, MONEY...
Servicing DC Equipment
From AC Lines!

DEMONSTRATE AND TEST
AUTO RADIOS
... also relays, 'phone circuits, instru-
ments, other low voltage devices. Only
filtered power supply with new conduction
cooling. Provides lowest cost per ampere
output: unequalled power, efficiency, de-
pendability. Costs less than conventional
types. 6 Volts, 20 amperes $43.50 net
Ask About New Low Cost
"BJ" JUNIOR DC POWER SUPPLY
6 Volts, 12.5 Amperes, $32.40 net

SEND COUPON NOW!
ELECTRO PRODUCTS LABORATORIES
4495-SB Ravenswood Ave., Chicago 40, III.
Send new literature and name of nearest jobber.
Name
Address
City Zone State

In these type tubes there are three
color pick-up process there would be
individual groups of elements, each repre-
seated a specific color. If this process
continued throughout the individual
Pick-up process there would be
groups of elements set off on the view-
ing screen representing just one color.
There would be individual groups of
green, red and blue elements, each
segregated from each other. Such a
system, however, would limit the resolu-
tion per color and, therefore, the
overall definition of the color picture.
To improve color operating conditions,
hower, the sampling pulse circuit
is shifted at regular intervals (gen-
ernally after each frame) so the groups
of elements which represent one color
for a given frame represent still an-
other color for other fields. Thus, each
element on a viewing screen is at one
time or another representing the light
level of each of the three basic colors.
Method of transmission is referred to
as dot interface.

In the very latest RCA system using
the new single or three-gun color tube
only a single video amplifier is need-
ed, video being applied simultaneous-
ly to the three grids of a single
picture tube gun or to a single grid.
In these type tubes there are three

cathodes which are keyed by
sampling pulses, turning on indivi-
dual color beams in proper order. Each
beam strikes its own elements of the
three color phosphor and lights it in
accordance with amplitude of signal
present on the grid at that instant.

Sampling In Black And White TV

A similar sampling process can be
used to obtain a black and white pic-
ture with more elements per line and,
therefore, an improvement in apparent
resolution. In such a system, the high
resolution output of a camera (up
to 8-10 microns) is sampled at a high
frequency, Fig. 3. Information is again
broken up into pulses and then into
sampling rate sinusoids. The three
sampling rate sinusoids (no frequen-
cies in excess of sampling rate) form a
composite signal that is the video por-
tion of the television signal which
modulates the r-f carrier.

At the receiver this signal is again
demodulated into pulses and then

NEW OHM'S LAW
CALCULATOR

Quickly solves Ohm's Law problems—inc-
cluding parallel resistance. Also
has standard slide rule.

OHMITE MANUFACTURING CO.
4846 Flournoy St.
Chicago 44, Illinois

Be Right with
OHMITE

RHEOSTATS • RESISTORS • TAP SWITCHES

Pioneer Manufacturers of Battery Eliminators
back into three sampling pulsating sine waves. These variations (three sampling rate sine waves displaced by 120 degrees) are applied to the grid of the picture tube. Each sine wave crest lights up an element on the screen in proportion to the original light intensity. Consequently, sampling forms three complete sets of elements displaced slightly from each other to form a television picture with more elements per line and an improvement in resolution.

Synchronizing Of Sampling Generator

A sampling circuit at the receiver must, of course, be synchronized with the sampling frequency and phase at the transmitter. One method of accomplishing synchronization is to utilize the back porch of the horizontal blanking period to transmit a sampling rate sine wave from the transmitter. At the receiver this sampling rate sine wave will be taken off the back borch of the blanking and used to synchronize the generator which forms the sampling rate pulse at the receiver.

To obtain dot interlace it is necessary to shift the sampling pulse in polarity at prescribed intervals. One method is to reverse the polarity of the sampling pulse at the end of each frame and, therefore, a different sequence of sampling will be set up for each frame and dots for element samples will become interlaced. Still another technique is the use of a sampling pulse frequency which is not an interval multiple of the line rate but has a frequency which is an integral and half times the line frequency. Thus the flip-over of the sampling pulse becomes automatic at the end of each field.

Sampling and multiplex technique open new horizons in the electronic field and may some day, when frequency spectrum becomes too crowded, instigate a major revision of allocations. Possibilities appear unlimited and at present technique is just in its beginning experimental state.

KEYED AGC

[from page 17]

or not a short exists. If an ohmmeter gives no reading, and it is suspected that the capacitor is open, it may be bridged with another for a quick check.

With receivers having an adjustable control for proper setting of the a-c bias level, poor results may be due to improper adjustment. The

SHOOTS TROUBLE FASTER!

Makes More Money For You On Job Or At Service Bench!

PRICE

$9.95 at Distributor or postpaid, direct. Add 3% State Tax.

Sigalette

MULTI-FREQUENCY GENERATOR

In radio service work, time means money. Sigalette trouble faster, handle a much greater volume of work with the Sigalette. As a trouble shooting tool, Sigalette has an equal margin in any 110 V. A-C-D-C line, start at speaker end of circuit and trace back, stage by stage, listening to sets' speaker. Generates RF, IF and AUDIO frequencies, 2250 cycles to 20 Megacycles. Also used for checks on Sensitivity, Gains, Peakings, Sidelobes, Filter testing, etc. 14 oz. Pilla pocket tool kit. Satisfaction, or money back! See at your drt., or order direct.

CLIPPARD INSTRUMENT LABORATORY, INC.

Dept. F, 1125 Bank Street, Cincinnati 14, Ohio

Qualified Jobbers write, wire for details.

TELEVISION WIRE

- 300 OHM Twin Lead Television Wire, for immediate shipment. 1500 ft. Spools at $40.00 per 1000 ft. net. Check with order, or 25% deposit required on C.O.D. orders. F.O.B. N.Y.C.

L and L Products Co. 537 Timpson Place New York 55, N. Y.
NEW PRODUCTS

[from page 34]

for bypassing in multiple stages because they will function with freedom from feed back. The ceramic discs use No. 22 tinned soft copper wire radial leads which permit easy, close coupled connections and eliminate tricky bending and fitting. These discs have a low TV LIGHTNING ARRESTER

Jerome E. Respers, President of LaPointe-Plascombol Corporation (Vee-D-X) Unionville, Connecticut announced that the Vee-D-X 4-wire lightning arrester (BW-204) is now being constructed of high dielectric, double phenolic. This material, he stated, is for installation in accordance with the National Electric Code and is also approved by Underwriter's Laboratories (UL). He further stated that it is the first and only arrester designed to accommodate 4-wire rotator line as well as regular 300 ohm transmission line.
1950 INDEX★ RADIO- TV SERVICE DEALER

Sync Pules (A Regular Department)

Color TV. Ha! Ha! Ha! Nov.
HeTelevision Sept.
Injunction Stops Immediate Color TV Events Nov.
by Non-Compatible CBS Oct.
Installation Buying Controls Oct.
Price Trends Nov.
Redactors Get Ultimatum Oct.
Shortages Oct.
Sound-Too Personal Oct.
TV Ratings Oct.
TV Micro-Waving Starts Oct.
TV Still Killing Laymen Oct.

Television Circuits

Admiral Model 19A1 (Circuit Court) Mar.
APC for Local Oscillators, by Allan Lytel Mar.
High Voltage Circuit of National CGTVT Apr.
(Circuit Court) Oct.

Television Components

Attachable Shaft for Controls (New Prods.) May.
Cables for TV (New Prods.) May.
Ceramic Transformers (New Prods.) June.
Components for TV (New Prods.) June.
Components for TV (New Prods.) June.
Concentric Control Adjustment (New Prods.) Sept.
Dual-Concentric Control (New Prods.) Oct.
Pulse Holder (New Prods.) June.
Front Ends Oct.
Horizontal Transformer (New Prods.) June.
Isolation Transformer (New Prods.) July.
Low R-P Impedance Electrodics (New Prods.)
Miniature Metal-Cased Tubulars (New Prods.) Aug.
New Simplified RCA TV Chassis (Trade Flashes) May.
Printed Tuner Kit (RCA-Trade Flashes) May.
RCA-16GFP (New Prods.) Feb.
TV Components (New Prods.) July.
TV Wave Traps (New Prods.) Nov.

Test Equipment

Capacity Bridge (New Prods.) Oct.
Combination Induct. Bridge May.
Electronic Groover (Shop Notes) May.
Electronic VOM (New Prods.) Mar.
Front Ends, No. 6, by S. L. Marshall Nov.
High Voltage Tester (New Prods.) Apr.
Imped. Bridge Kit (New Prods.) Jan.
Lab Type VOM (New Prods.) Jan.
Panel Instrument (New Prods.) Sept.
Portable TV Service Lab. (New Prods.) Aug.
Philco Sweep Gen Attenuators (Shop Notes) Jan.
Plastic Test Cables (Sheep Notes) May.
RCA High Volt. Probes (Trade Flashes) Mar.
Repairing Geiger Counters Feb.
Selenium Tester (Shop Notes) Jan.
Signal Generator Kit (New Prods.) Sept.
TV Sweep Generators (New Prods.) Nov.
The Scope As A Modern Service Tool May.
TV Marker Generator (New Prods.) Dec.
TV Sweep Generator (New Prods.) May.
TV Sync-Sweep Tracing with Lighting Speed May.
TV Signal Tracing with Lightning Speed Jan.
TV Test Equipment by G. E. (Trade Flash) May.
Tube Checkers, by Wm. R. Wellman Jan.
Tube Testers (New Prods.) March.
Tube Testers (New Prods.) June.
TTVM Kit (New Prods.) June.
Warm Air Device for Testing Defective Parts (Shop Notes) Sept.
Wide Band Oscilloscope (New Prods.) Sept.
5-Inch Oscilloscope (New Prods.) July.
7-Inch Scope (New Prods.) Sept.
7-Inch Scope (New Prods.) Nov.
8-Inch Oscilloscope (New Prods.) Nov.
10 MC Oscilloscope (New Prods.) Dec.

Trade Literature & Books

Aerovox General Catalog Oct.
Antenna Booklet by Ward Oct.

Antennas Manual Apr.
Byte Catalog Mar.
Encyclopedia on CH&O & Their Uses Oct.
Enphodia on CH&O, Their Uses Dec.
Filter Facts Oct.
"High Quality" Brochure Mar.
Mallory's 2nd Book TV Microphone Catalog Aug.
New Antenna Book Nov.
New Source of DU26 Oct.
New Catalog June.
New TV Handbook May.
New 1949 Electronic Index June.
Philco TV Components Handbook Mar.
Radio Service Catalog 27 Centralab June.
RCA Rec Tubes for AM, FM & TV BC Sept.
Rider's TV Manual Vol. 4 Sept.
Standard TV Components. Replaces, Guide Sec.
Sylvania TV Tube Complement Book Mar.
TACU Antenna Bulletin Sept.
Television Servicing by W. H. Buschbaum Dec.
The Scope As A Modern Service Tool May.
TV Installation Techniques Aug.
Voluntary "Fair Practice Code" Apr.
You Don't Have To Be A Recording Expert Sept.

Tubes

Cathode Ray

DuMont "Bent Gun" July.
DuMont "160" 17 Teletron July.
DuMont 5BP-1 A June.
DuMont 12LP-4 June.
E. G. 2MP June.
E. G. 14CP June.
E. G. 16KP June.
E. G. 19A4 June.
Know The Cathode Ray Tube, Part 1, J. P. Lytel June.
Know The Cathode Ray Tube, Part 2, J. P. Lytel May.
Picture Tube Sise & Shapes (1 Tell You So) July.
Sylvania TV Tube Complement Book Mar.
Small TV Tubes Pairs (Editorial) May.
TV Picture Tube Chart May.
National Union 16CP4 June.
National Union 14KP4 June.
National Union 16TP4 June.
Raytheon 16LP4 Jan.
RCA 19A4P-B June.
RCA 70P1 Nov.
RCA 12LP4 Oct.

Receiving

G. E. 6AS6 July.
G. E. 6AS7 July.
Hytron's 19X7 June.
Hytron 2BCCT/8016 June.
Hytron 12BBT June.
JFD Antennas Sept.
RCA Receiving Tubes Booklet Sept.
Receiving Tubes for AM, FM & TV Broadcast Sept.
RCA 5916 Sept.
RCA 5988 Oct.
RCA 5992 Oct.
Sylvania 16L6 Jan.
Sylvania 16KP4 June.
Sylvania 7X5 Jan.
Sylvania 1AP2 Apr.
Sylvania 1AP5 Apr.
Sylvania 6AD4 Feb.
Sylvania 6HAS Feb.
PROOF IS IN RESULTS! Nation-wide TV Advertising Delivers Thousands of Sales—Every Week!

Over 50 key TV stations demonstrate Alliance Tenna-Rotor to 7 million viewers! Tenna-Rotor is the only TV accessory backed by a powerful, sustained television campaign — national in scope! Hundreds of thousands of Alliance Tenna-Rotors are in use!

Alliance Tenna-Rotor offers faster installation with Alliance 4-conductor "Zip" cable—Works in all weather—Guaranteed for one year—Approved by Underwriters' Laboratories.

NEW DELUXE MODEL HIR IS FULLY AUTOMATIC!
The quality of RCA tubes is unquestioned.

Most used...by brand and by type...RCA kinescopes are the fast-moving profit makers.

The largest and most profitable replacement business in television picture tubes comes from the types used in most television receivers...the Best Sellers.

RCA's types are Best Sellers. There are more of them in actual use in TV receivers than any other brand. Industry choice of these high-volume types reflects to your advantage. Inventory and stocking problems are simplified...and you have the assurance of rapid, profitable turnover.

In addition, when you sell RCA kinescopes, you gain from customer confidence in the RCA brand...solidly established by the proved performance of RCA kinescopes in millions of television receivers.

Remember, too, that the quality and dependability of RCA kinescopes mean fewer service failures and fewer costly call-backs. There is, therefore, more profit in every RCA kinescope you sell.

Always keep in touch with your RCA Tube Distributor.