Radio-Television SERVICE DEALER
TV - AM - FM - SOUND

Includes: "VIDEO SPEED SERVICING" & "TV FIELD SERVICE" Data Sheet Sections

The Professional Radio- TVman’s Magazine
Reaching Every Radio TV Service Firm Owner in the U.S.A.
ONE MILLION SOLD!

Original

Snyder

PHILADELPHIA

UHF 3D VHF

Directronic

PORTABLE TV ANTENNA

New Low Price!

795

FORMERLY

995

RETAILED WITH A 5-DAY MONEY BACK GUARANTEE

Snyder MFG. CO., PHILADELPHIA 40, U.S.A. • BELLEVUE TUBE MILL, INC., PHILADELPHIA 40, U.S.A. • SNYDER ANTENN-GINEERS LTD., TORONTO, CANADA • WORLD EXPORT: ROBURN AGENCIES, INC., N.Y.
For
"Trouble-Free" Fuses
Handle BUSS FUSES

There is a reason manufacturers and service organizations have learned to rely on BUSS fuses to operate properly under all service conditions. Every BUSS fuse normally used by the Electronic Industries is tested in a sensitive electronic device that rejects any fuse that is not correctly calibrated, properly constructed and right in all physical dimensions.

Once properly installed, a BUSS fuse will blow only to protect. If a BUSS fuse does blow, the service man knows there is trouble in the circuit. When he has corrected the trouble and installed a new BUSS fuse the job is finished. There won't be any costly and time-wasting "call-backs" due to the fuse failing to operate properly... because a BUSS fuse will carry its rated current and it is properly constructed to prevent poor contact heating causing needless blows.

And by standardizing on BUSS fuses, you can fill your exact fuse needs from one source. The line is complete-dual-element (slow-blowing), renewable and one time types... in sizes from 1/500 ampere up.

To your customers too, the BUSS trademark represents quality.

Millions and millions of fuses, used throughout the country for over 39 years, have firmly established BUSS as the known brand. When you furnish a BUSS fuse, there are no "kicks" or "comebacks" from the customer. It's just good business to handle only genuine BUSS fuses.
Belden makes a complete line of Aptitude-Tested electronic wires and cables. You can select the right wire for every application, because all performance values are shown. See your Belden Catalog.

Belden Manufacturing Company
Chicago, Illinois

Belden
WIREFORMER FOR INDUSTRY
FEATURE ARTICLES

Servicing Video 1-F Systems, Symposium Series No. 10, by Matthew Mandl ... 21
Troubles, symptoms, and cures for defective 1-F circuits.

Color TV, Part 4, by Leonard Lieberman
Explanation of color TV receiver circuitry. ... 25

Key Test Points, Part 3, by Bob Dargan
Servicing the set through to the audio output stage. ... 29

Correcting Sync Circuit Troubles (The Work Bench), by Paul Goldberg
Three sets are examined for sync disorders. ... 33

Replacing Tuners With Standard Cascode Tuner (The Answer Man) ... 51

CIRCUIT & SERVICE DATA

The Work Bench
Capehart Model CX-33, Horizontal Wiggle
Motorola TS-60, Poor horizontal hold.
G.E. 12T1, Horizontal tearing ... 33

Video Speed Servicing Systems Data Sheets (VSSS)
Du Mont RA-109 ... 35
Philco RF 41, 42, 44 ... 37
Zenith 23G22 ... 39

Rider TV Field Service Manual Data Sheets
Emerson models 711F, 712F, 720D, 732B, 734B, 733F ... 43
Sylvania chassis I-508-1; 1-508-2 ... 47

DEPARTMENTS

Trade Flashes ... 6
Trade Literature ... 16

Editorial ... 10
The Work Bench ... 33

Guest Editorial ... 12
The Answer Man ... 51

Association News ... 14
New Products ... 54

Advertising Index ... 64

the newest addition

TR-4

TR-4... the de-luxe HEAVY DUTY rotor complete with modern design meter control dial cabinet, using 4 wire cable... 53.95

CORNELL-DUBILIER
SOUTH PLAINFIELD, NEW JERSEY
to the family of C·D·R Rotors

the ultimate in heavy duty Rotors

incorporating all the fine features

that have made the TR-2 outstanding

plus these fine features:

* Handsome Meter Dial Cabinet * Uses 4 Wire Cable

TR-12 ... a special combination value consisting of complete rotor, including thrust bearing... handsome modern design cabinet with meter control dial, 4 wire cable ... 47.95

TR-2 ... the Heavy-Duty rotor, complete with "Compass Control" cabinet having illuminated "perfect pattern" dial... 49.95

TR-11 ... the all-purpose rotor with handsome modern design cabinet with meter control dial, uses 4 wire cable ... 44.95

THE RADIART CORPORATION
CLEVELAND 13, OHIO
SERVICE MEN HAVE NO WORRIES

Tung-Sol works harder to make Tung-Sol tubes better. That pays off in fewer service call-backs.

TUNG-SOL
dependable
PICTURE TUBES

TUNG-SOL ELECTRIC INC., Newark 4, N. J. Sales Offices: Atlanta, Chicago, Columbus, Culver City (Los Angeles), Dallas, Denver, Detroit, Newark, Seattle

Trade Flashes

Thomas Electronics To Produce
Lawrence Color TV Tubes

21-inch color tubes and larger will be mass produced by next summer in the Thomas Electronics, Inc. plant in Passaic, New Jersey. The nation's largest independent manufacturer of cathode ray picture tubes, Thomas Electronics, Inc. is setting up pilot operations at once and expect to begin sample deliveries to the TV set manufacturers within the next few months, according to Thomas L. Clinton, President of the company. Personnel will be increased as production gets under way.

Dr. Ernest O. Lawrence, director of the Radiation Laboratory of the University of California and winner of the Nobel Prize in physics in 1939, developed the tube for Chromatic Television Laboratories, Inc. of New York and Oakland, California. The tube employs a single electron gun like present black and white picture tubes, and is capable of receiving black and white images as well as color.

RCA Making Color TV Training
Available to Service Industry

A comprehensive training and educational program designed to make available to the entire TV service industry the knowledge gained through years of research and development in color television was announced by the RCA Service Company recently.

The program will provide information on the theory and practice of installation and service for color television equipment to the service industry even before the first commercial color sets reach the public.

The industry-wide training and educational program for service technicians is divided into four major elements. One is a series of two-day technical clinics to be held in 65 key cities across the country, starting early in February. The clinics will be conducted by technical specialists of the RCA Service Company, using textbooks, test equipment, and other instructional materials developed especially for the clinics by the company. Service dealers and servicemen in each city will be invited to attend.

The RCA Service Company has also prepared a comprehensive textbook, "Practical Color Television for the Service Industry." The text, illustrated by photographs in four colors, graphically depicts service techniques for color television receiver installation and maintenance. Copies of the book will be available to servicemen completing the clinics. It will also be made available either through RCA parts and tube distributors or directly from the RCA Service Company, Camden, N. J., at $2.00 per copy.

A third service will be a home study course in color television offered to technicians in the television service industry by the RCA Institutes, New York.

As a fourth point, the company has developed new test equipment for use with color TV sets. Called the color signal simulator, it is essential for the proper phasing and alignment of color sets. The importance of this test equipment is indicated by the fact that ample color test patterns may not be available. The equipment is now installed in the company's factory service branches located in areas where color television will be received. Should this special equipment be scarce during the early stages of color broadcasting, the company will make its services available to local servicemen. Under this arrangement, local service-
men would be able to bring sets to the RCA Service Company branch for alignment at a nominal charge.

CBS-Columbia Sees 1954 As Big Year

"While the nation's population is expanding, personal disposable income is at an all-time high and there are 20,000,000 homes still without television receivers, it is the industry's immediate job of creating in the public's mind the idea of buying a television receiver for the first time, or replacing an old, small-screen set," states CBS-Columbia president, David H. Cogan.

"The biggest television news in 1954 will be color. As far as quantity production is concerned, this is a difficult question but I believe it will be a great deal more than the 50,000 generally estimated. However, in spite of this anticipated production figure, color poses problems of engineering, testing, establishment of efficient production techniques, and the re-training of servicemen.

"The introduction of color receivers will have only a temporary effect on the sale of black and white receivers. This lull will be more pronounced in higher priced video units. The industry will experience a situation directly paralleling that of radio some years ago when television was introduced. There was a temporary lull in radio sales then. However, once the novelty of television wore off, radio sales came back up to their normal levels.

"The radio receiver industry should experience a banner production and sales year in 1954 with total sales easily topping the 14 million projected figure for 1953. More widespread use of radio as a personal instrument of entertainment plus increasing popularity of clock and portable radios and quality high fidelity radio-phonograph combinations make this segment of the electronics exceedingly bright.

"High Fidelity, at modest cost, has provided the electronic industry with another magnificent market opportunity. To the public it means a new experience in listening that is new and satisfying. To the distributor and dealers it means a new and expanded business. The huge market for good reproduction and good music has no limit. Sales of mass-produced quality high fidelity combination units, such as ours 500, should break previous high-water marks.

"The significance of high fidelity in television cannot be overlooked. The introduction of High Fidelity sound in production-line receivers is the greatest advance in black and white television reception in recent years."

G.E. Forecasts Pix Tube Sales

Almost one in every seven TV sets in use today will require a new picture tube in 1954, predicts J. Milton Lang, general manager of the G.E. Tube Department.

The country now has over 27 million sets in use. The G-E executive said the high replacement tube figure represents "a normal development, with so many sets growing older."

Despite the advent of color TV, the industry should produce about 5,200,000 additional picture tubes for new black-and-white sets, Mr. Lang estimated.

Sylvania Builds New Plant

Sylvania Electric Products Inc., has announced that construction of a 280,000 square-foot plant extension to be used for the manufacture of large-size (21 and 27-inch) television picture tubes, and for pilot-line production of color tubes, is nearing completion in Seneca Falls, N.Y.

The new extension, which was begun in mid-December, 1952, will bring Sylvania's total manufacturing space to 687,000 square feet. The company now has 118,000 square feet in Seneca Falls, N.Y.; 218,000 square feet in Ottawa.

[Continued on page 57]
over 100,000 already installed!

CHANNEL MASTER'S fabulous

CHAMPION*

the world's most powerful all-channel VHF antenna
—OUT-PERFORMS AND OUT-SELLS THEM ALL!

Never before in the history of television has an antenna received such an overwhelming reception. Channel Master's CHAMPION — in a few short months — has rocketed to the top as the nation's most-wanted, best-selling, best-performing VHF antenna!

CHAMPIONSHIP Performance: Only the CHAMPION has the unique new "Tri-Pole", a triple-powered dipole system in which the Low Band dipole also functions as three dipoles tied together, in phase, on the High Band.

All-aluminum. Assembles faster than a 5-element Yagi! The CHAMPION is another great contribution of the Channel Master Antenna Development Laboratories.

CHAMPIONSHIP Promotion: The CHAMPION is the antenna America knows best!
- Publicized in leading magazines!
- Outstanding dealer Cooperative Advertising Program!
- Free newspaper mats, window streamers and TV film commercials!

THE STACKED CHAMPION OUT-PERFORMS

THE STACKED CHAMPION PROVIDES:

11-13 DB High Band gain
6½-7½ DB Low Band gain

<table>
<thead>
<tr>
<th>Model No.</th>
<th>Single Bay</th>
<th>List Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>325-2</td>
<td>2-Ray</td>
<td>$50.00</td>
</tr>
<tr>
<td>325-4</td>
<td>4-Ray</td>
<td>$89.99</td>
</tr>
<tr>
<td>325-3</td>
<td>2-Ray Harness</td>
<td>$3.00</td>
</tr>
<tr>
<td>325-5</td>
<td>4-Ray Harness</td>
<td>$4.17</td>
</tr>
</tbody>
</table>

pat. pending
Although an ever-increasing styrene electrical wax, high melting-point electrical wax, locked in an attractive styrene case.

- Single lead
- No switching
- No signal loss
- No inter-action, effective isolation.

There are also indications that fringe area color reception may be more critical. This may necessitate the use of fringe area antennas in areas closer to the TV station.

In the nation’s most advanced television research laboratory, Channel Master antennas have always been designed for full band width and minimum variation in gain on any one channel.

For this reason, every Channel Master antenna which you have installed in the past, as well as the ones you install today, will provide reception of outstanding quality when color TV comes to your area.

Channel Master antennas were the antennas selected for the tests which led to the F.C.C.’s approval of the National Television Standards Committee color system.
EDITORIAL... by S. R. Cowan

PUBLISHER

RANDOM NOTES AND QUOTES

Idaho Falls recently had a "first reading" of a new TV code that calls for the licensing and bonding of all TV installers. A provision of the proposed code also limits the height of TV towers atop buildings to 20 feet maximum. If passed, the ordinance will require that TV installers each be bonded in the sum of $10,000; designates installation methods to be used; requires the use of non-combustible materials; designates location of the antenna; and requires that a permit be obtained where a tower exceeding 15 feet high is used.

Several Philadelphia TV service firms have started to farm out TV antenna installation work to other service organizations who specialize solely in that type of endeavor. It is said that the average skilled TV technician is paid from $2.50 to $3.00 per hour, an amount too high to allow for time-consuming antenna installation work, while antenna installers are paid from $1.60 to $2.00 per hour. Dealers generally charge customers $30.00 for an antenna installation, and farm out the contract for $22.00, which allows a fair profit margin to all parties. However, large service firms prefer to do their own antenna installation work, using apprentices and lower salaried beginners for this work.

PICTURE TUBE PRICES

RCA announced long ago that they would "soon offer" color TV picture tubes to all buyers. Subsequently, other manufacturers announced that they were in production of color TV tubes. Thus most of the major manufacturers are on record as having color TV picture tubes in production, but one cannot buy any tubes yet to the best of our knowledge.

Selling price of the RCA color TV picture tubes to other TV set manufacturers is placed at $175.00. No list prices have been announced. But jobbers hope list prices will not exceed $275 to $300.00. One rumor puts the dealer list price closer to $500.00.

COLOR TV SET PRICES

No manufacturers have announced definite selling list prices of their color TV set lines as of January 15, 1954, but an Admiral executive is quoted as saying that their line will probably sell for about $1,000 to $1,175, and Emerson's proxy is quoted as saying that they may price their first models at $375 to $950. It's much too soon to guess what price levels will be established for initial production.

Despite all guesstimates by optimists, we believe that during the 12 months of 1954, less than 50,000 color TV sets will be produced by all manufacturers combined. Time alone will tell how right or wrong our guess is.

But even if 50,000 color TV sets are made and sold during 1954, and if they are distributed into the same geographic ratios as black and white TV sets now in use, New York and the Eastern Seaboard would have 25,000 of them; the Mid-West and South combined would have 9,000; and the West Coast would get the 16,000 balance. Economic factors are important—as is the number of hours of weekly color casts to be available to a person who contemplates spending almost $1,000 for a new TV set.

SERVICING COLOR TV SETS

Don't misunderstand us—we're sold on color TV—only we believe it will not hit with a volume sales impact for months to come. Meanwhile, technicians and Service Dealers must use the interim time to learn what there is to know about servicing color TV sets. Happily, RCA Institutes of New York has just announced (see page 6) that it now has available a "Color Television Home Study Course." It consists of nine lessons "that will prepare the TV technician for the color TV problems he will encounter." We mention this editorially because we fully subscribe to the idea that servicing color TV is so much more complex compared to servicing conventional monochrome TV sets, that all technicians must start to study the subject now, well in advance of the time when they will be called upon to put that knowledge into actual practice.

And, as we have said repeatedly—as authoritative and practical facts and data on color TV servicing become available, we'll publish all of that material in Service Dealer. We won't waste our reader's time on puff and glamorous hog-wash articles that are, to all practical purposes, of no value to a professional technician.

TV CHANNEL CHANGES

Many TV stations have, after being "on the air" for a while, switched from one channel to a different one. The reasons behind the changes do not justify discussion here. But the fact that such frequency changes do affect relationships between Service Dealers and their customers does merit discussion. Customers who have bought and paid for a certain type yagi antenna, cut, let us say to Channel 6 and oriented to it—suddenly find they must pay for installation of a new antenna cut to Channel 8. The broadcast stations don't bear the brunt of blame as a rule—no, instead the service dealer gets the abuse for the extra expense involved.

Here's where a new type of public educational program is needed to take the pressure off the Service Dealer.

PRICE CUTTING IS RAMPANT

Frank Moch, editor of the "NATESA Scope," (house organ for the National Alliance of TV and Electronic Service Association) openly declared war in his December issue, on the "termites in the house of TV," as he so aptly classifies certain disrupting factions to the service profession. He particularly blasts at the independent service firm operator who advertises a "No Service Fee" to the public, hoping to cash in on gyp practices of one kind or other so that the final bill gets up into high figures.

We subscribe to Mr. Moch's views completely, and urge every technician to read the article in question.
INTRODUCING the greatest advance in Conical antennas...it's the all-new WALSCO Imperial. Featuring a new "barrier disc" insulator with 2 inches of air space between the terminals to prevent shorts. Soot deposits, dirt, moisture, salt, etc., cannot affect this insulator. The WALSCO Imperial will therefore maintain lasting high gain performance anywhere, regardless of weather conditions. Contact surfaces and terminals will never rust or oxidize. Front end hardware is stainless steel to prevent corrosion losses permanently. Front end elements are pre-assembled to holding plates which are fastened to the insulator with one wing nut. Less than 2 minutes to assemble.

Guaranteed lasting high gain on all VHF channels

WALSCO ELECTRONICS CORPORATION
3602 Crenshaw Blvd., Los Angeles 16, Calif.
Ellery Hale came to the movie with an "American Idea" that resulted in the creation of the "Glass Giant of Palomar"—world's largest telescope—to gather new light from the farthest stars for the searching eye of science.

With us, the "American Idea" is, by directed effort and applied know-how, to continue to lead in bringing you electronic products of the highest quality.

I AM wondering whether or not we, as members of the television service fraternity, are taking sufficient advantage of the science of semantics. This science deals with the emotional connotations of words, rather than the actual words themselves.

A long time ago the airlines learned that they could help remove the butterflies from the stomachs of first-time passengers by calling the belts that held the passengers in their chairs, "Seat Belts" instead of "Safety Belts." Nowadays, they never tell you that "we're rushing into a storm." They say, "Mild turbulence ahead."

Perhaps we can increase the public's acceptance of service and its attendant costs, if we call our work "maintenance" instead of repair.

If you replace a small tube for a customer one week and find that two weeks later you are called back to replace another one, the impact of the second call on the customer will be lessened if during the first call it is pointed out that small tube replacement is part of the normal maintenance of a television receiver; that it may very well be necessary to replace any of the other small tubes at any time.

This can be compared to replacing a fouled spark plug in a car. The auto mechanic doesn't thereby guarantee the remaining plugs. This similarity can be pointed out to the customer, tactfully, as a matter of information.

Some people don't like the idea of being told that your service work is done on a C.O.D. basis. Then why not call it "pay as you go maintenance."

I am sure that if you give a little thought to all the words and actions that go to make up a service call—from the time the telephone rings to the moment you close your tool kit on a satisfactory repair—you will agree that there is plenty of room for much more sell in both our words and our actions.

H. J. S.
Here's another sensational Raytheon first. It's a different kind of flashlight that sheds a new light on Radio-TV servicing — makes it faster, easier, more profitable.

RAYTHEON BROW-LITES are available through your Raytheon Tube Distributor. Ask him how to get a supply for you and your men.

Here's why Service Dealers from coast to coast are hailing the RAYTHEON BROW-LITE:

- **FREE BOTH HANDS** — work is easier, faster
- **DIRECTS LIGHT AUTOMATICALLY** — you see what you look at in a clear, bright light
- **USES STANDARD PARTS** — 1½ volt penlite batteries and 3 volt penlite bulb
- **ANYONE CAN USE IT** — fits easily above glasses
- **EASY TO CARRY** — folds compactly to pocket size
- **REPLACES FLASHLIGHTS** — easier, safer to use
- **DURABLE** — made of rugged plastic

RAYTHEON MANUFACTURING COMPANY
Receiving Tube Division
Newton, Mass., Chicago, Ill., Atlanta, Ga., Los Angeles, Cal.

RAYTHEON MAKES ALL THESE:
Receiving and Picture Tubes • Reliable Subminiature and Miniature Tubes • Semiconductor Diodes and Transistors • Nuclearic Tubes • Microwave Tubes

RADIO-TELEVISION SERVICE DEALER • FEBRUARY, 1954
A recent color forum sponsored and conducted by Guild members in Wiltson Park broke all attendance records for any association meeting. Two hundred and forty-three attended. The lecture and discussion were considered so interesting and vital that more than one hundred and fifty applications were requested and handled out to guests.

Mr. Henry Wawrycz, new president of LITRTE, stressed that the present-day service technician is "better educated, with larger and more complicated problems, more interested in his work, his customers, and his fellow technicians."

Mr. Barlowe lectured on color TV circuitry, stressing that the "screwdriver mechanic was through," and that "Service is now an industry that requires more study and should be better compensated." Additional knowledge and new shop equipment requirements were also mentioned.

NATESA Awards G.E.

G.E. Tube Dept's fifth award for its extensive public relations program in behalf of the TV service industry came recently from the National Alliance of Television and Electronic Service Associations. Bertram L. Lewis, left, Rochester, N.Y., NATESA Eastern vice-president, presents the "Friends of Service Management" plaque to John T. Thompson, center, manager of replacement tube sales for the Tube Dept. At right is Frank J. Moch, Chicago, president of NATESA. Award, made to G.E. for second straight year, cited Tube Dept's, "for outstanding service to television service management in creating better customer relations." Precious awards to G.E. came from NATESA, the Associated Radio and Television Service Dealers, Inc., Columbus, Ohio; the Federal of Radio Servicemen's Associations of Philadelphia, and the Radio Technicians Guild of Boston.

Every one a winner

A line of the most popular, fast-moving sizes, in both general purposes and temperature compensating types. Ask your C-D jobber about them today! He's listed in your local Classified Telephone Directory. For catalog write to Dept. RSD 24R, Cornell-Dubilier Electric Corp., South Plainfield, New Jersey

There's a C-D ceramic with the "Million Dollar Body" for every requirement

There are more C-D capacitors in use today than any other make.
Directivity patterns of the CONICAL are exceptionally clean. The strong major lobe indicates fine directivity.

Now ready to join the fastest-growing and fastest-selling antenna line in the United States is a new AMPHENOL VHF antenna. Designed to supplement the fabulous INLINE* for VHF reception, the new CONICAL antenna will give true-picture reception in every VHF signal area: major, fringe and long-distance. Gain and directivity have been engineered to the high AMPHENOL standards that have set the quality goal for the entire industry; craftsmanship attention to the small but important details make the CONICAL another example of AMPHENOL’s fine antenna work.

AMPHENOL CONICALs are available in single, two and four bay models. The stacked models use unique phasing harnesses for extra gain. The CONICAL may be obtained in packaging that contains all the necessary stacking equipment or else the individual antenna may be purchased one or two to a carton. In addition, the single bay CONICAL is available in a complete antenna installation kit.

All elements of the CONICAL are constructed of sturdy, long-lasting seamless aluminum tubing—assuring rust-free years of top performance.

*Reissue U. S. Patent 23,273

High gain of the CONICAL is illustrated in the gain charts for single, two and four bay models. Measured in accordance with proposed RETMA standards, the charts also show the desirable flatness of the gain.
Mid-Atlantic Reps Elect Officers

The Mid-Atlantic Chapter of The Representatives has elected to office and appointed as Committee Chairmen for 1954 the following: President, George G. Scarborough; Vice-President, John J. Mahoney; Secretary, David G. Quinlan; Treasurer, Kenneth Randall; Publicity and Information, Wilfrid Graham; Industry Relations, Samuel A. Jeffries; Membership, J. R. Benge; New Industry, C. H. Newson, Jr.; Entertainment, Charles W. Lienau; Board of Governors, Robert L. Wilkinson.

PRSMA Hears Color TV Talk

PRSMA members recently enjoyed an informative talk on color television presented by the Sylvania Caravan. Mr. James Early, of Sylvania's commercial engineering department, gave the lecture with the aid of projected pictures on a screen among which were block diagrams of color TV transmitter and receiver. The question and answer period which followed the lecture brought up many important technical points.

[Continued on page 56]

TV Books

John F. Rider, publisher, has announced that the list price of their package service information on TV receivers, known as TV TER-FILE, has been reduced to $1.50 per pack to the television technician. Former price was $2.00 . . . Rider Television Manual Volume 12, the latest edition in the series of unabridged, factory-authorized, TV servicing information, contains complete data on TV receivers manufactured during the period March through August 1953. TV boosters, tuners, and converters are also incorporated. The total number of 8¼ by 11-inch pages published in the 12 Rider TV Manuals is now over 27,000.

* * *

Catalogs, Bulletins, and Guides

RMS (Radio Merchandise Sales, Inc.), New York manufacturers of TV antennas and accessories, has produced a brochure entitled "Get the Rabbit Habit." Indoor antennas presently manufactured by the company are described. In addition, RMS has just published Hardware Bulletin H953, describing the entire line of insulators and standsoffs carried by the firm. RMS has changed their method of packaging Tenna-Tek. Each gross of tubes of the corrosion resistant compound now comes packed in yellow and black counter display carton. Further information can be secured from RMS, 2016 Bronxdale Ave., New York 62, N. Y.

* * *

R.F. noise suppression filters housed in hermetically-sealed metal cases are dealt with in the bulletin Aerovox R.F. Noise Suppression Filters issued by Aerovox Corporation, New Bedford, Mass. The bulletin lists seven filter types, together with their dimensions and drawings, electrical factors, attenuation curves and approximate weights. The bulletin may be had for the asking.

[Continued on page 53]
Another Outstanding Service Success Story...

with SYLVANIA!

From Basement Repair Shop to prosperous Service Business... featuring Sylvania Tubes, Parts and Promotion Programs!

The steady and substantial growth of the Ball Television and Radio Service, from basement shop to the large handsome brick building, shown below, is a tribute to the fair practices and alert policies of the owner, Mr. Ted Ball.

Says Mr. Ball: “My men are as skilled and experienced as any you’ll find anywhere, and each is instructed to do the best job possible with the best of parts... and that, of course, includes Sylvania Tubes.”

Ted Ball is another important Radio-TV Service Manager that appreciates the quality performance, dependability, and the nation-wide high reputation of Sylvania products.

Mr. Ball also knows about the business-boosting power of Sylvania’s promotion and display offers. Find out how Sylvania can step up your business. Your friendly Sylvania Distributor is ready and anxious to give you full cooperation. Call him today.

SYLVANIA
Sylvania Electric Products Inc., 1740 Broadway, New York 19, N. Y.
NOW AVAILABLE TO...

1. Servicemen who are employed by Service Organizations.
2. Servicemen employed by radio/TV Dealers.
3. Independent servicemen who do not have business establishments.
4. Employees of Distributors.
5. Students enrolled in accredited Radio/TV Schools, Colleges, etc.
6. Hobbyists and Experimenters.

A TYPICAL ISSUE COVERS

- Video Speed Servicing Systems
- Rider's "TV Field Service Manual" data sheets
- Latest TV Installation and Maintenance Techniques for VHF and UHF
- Auto Radio Installation and Service
- Advanced Data on New Circuitry
- Production Changes and field service data on receivers
- New Tubes
- New Test Equipment, operation and application
- Hi-Fi installation and service
- New developments, such as transistors, color, UHF, etc.
- News of the trade
- Service Short Cuts & Shop Notes
- Explanation of difficult circuits

and many more EXCLUSIVE...
ORIGINAL...
AUTHORITATIVE...
TIMELY...
FULLY ILLUSTRATED
subjects that can ONLY BE READ IN "SERVICE DEALER"

RADIO-TV SERVICE DEALER
67 W. 44 St., New York 36, N.Y.

Gentlemen: Here is $1.00 for which enter my 2-year subscription. [This rate applies in USA only. Elsewhere add $1 per year]

Name
Address
City Zone State
Employed by [Name of firm]
Firm's business address
City Zone State
Your Position or Title
Check whether firm is: [] Service Organization or [] Dealer having Service Dept.
If some other type of company describe:
IF STUDENT, Name of School
HOW TO WIN

To win one of these 503 prizes all you have to do is complete in 25 words or less "I like Pyramid capacitors because_______" You fill in this statement on a Pyramid contest entry blank which can be obtained from any electronic parts jobber selling Pyramid capacitors. You have this entry blank countersigned by your jobber or one of his salesmen and forward it to us attached to a Pyramid Dry Electrolytic Capacitor box top—the top being the part which carries the description of the item. There is no limit to the number of entries which you may make in this contest but each entry must be accompanied by a box top. Full rules for the contest appear on the entry blank.

It's so easy. Here is the kind of statement that might win:

"I like Pyramid capacitors because they always check out perfectly and don't deteriorate and so I know I won't have to call back at my expense."

"I like Pyramid capacitors because the line is so complete that I can always get what I need and don't have to worry about an off-brand capacitor."

...easy to win

PYRAMID FEATURES:

1. Only one quality—the best at no premium. All Pyramid capacitors are made of materials commanded by rigid military specifications.

2. All Pyramid capacitors are non-hygrosopic.

3. Highest quality insulator material used in all production results in low leakage factor.

4. Exclusive non-contamination technique guarantees close tolerances and no deterioration. Peak performances for life.

5. Pyramid capacitors operate unchanged at ambient temperature of 85 centigrade.

6. Designed by service technicians across the country for their requirements.

7. Individually packaged for protection.

8. Permanently legible, high visibility ratings on each item.

9. 100% absolute electronic inspection before shipment.

Pyramid is in its 10th year as a leading manufacturer of high-quality capacitors.

PYRAMID ELECTRIC COMPANY
1445 HUDSON BOULEVARD
NORTH BERGEN, N. J.
telrex offers more in '54!

1. **SUPERIOR QUALITY—**
 All Aluminum, All-Weather Construction — Quality first is the Telrex pledge. Extra rugged construction includes all-aluminum design with precision parts fabrication for lasting installations.
 Wherever feasible, Telrex pre-assemblies at the factory to save you time and money at the site.

2. **SUPERIOR RECEPTION—**
 "Better By Design"...
 Rain or Shine — For UHF or VHF you can depend on Telrex for clearer, sharper pictures...finer sound reception. Near or far — city, suburb or rural area — there's a Telrex model engineered for your particular locality. Over 60 antenna types are included in the new Telrex catalog. Write for your copy, today!

FOR ULTRA-HI GAIN ON UHF MODEL 84 "CONICAL-V-BEAM"
- Four bay unidirectional array
- All in-phase signal addition at all frequencies with no lobe splitting
- All-aluminum light weight and rugged

FOR UNIFORMLY HI-GAIN CHANNELS 2 to 83 DUAL-BAND "CONICAL-V-BEAM"
- Uniformly Hi-Gain
- Excellent Directivity
- Automatic Transition From UHF to VHF
- High Signal-To-Noise Ratio

FOR THE ULTIMATE IN LONG DISTANCE RECEPTION THE TELREX 4 BAY "CONICAL-V-BEAM" SERIES

"Conical-V-Beams" are produced under Re-Issue Patent Number 23,246 and sold only thru authorized distributors.

By the MAKERS of the FAMOUS "BEAMED POWER" COMMUNICATION ROTARIES

ASBURY PARK 5,
NEW JERSEY

RADIO-TELEVISION SERVICE DEALER • FEBRUARY, 1954
TROUBLES in the video if stages of television receivers can cause such symptoms as loss of picture and sound, poor sync, poor contrast, intercarrier buzz, and intermittent reception. Besides these, misalignment or tube defects can increase susceptibility to interference and impair fine detail. For such reasons it is worthwhile to investigate the general characteristics of the video amplifier stages of television receivers so that increased knowledge will enable the technician to facilitate trouble shooting.

It is in the video amplifier stages that the degree of the receiver's selectivity is established. Here maximum gain can be achieved by the design engineer for the particular band-pass required. In television, the if circuits must have the broad response necessary for the picture signal. This means that some gain must be sacrificed. Thus, we find that there are usually three or four stages of if as compared to the single if tube found in many radios, to bring the gain up to that required.

Stagger Tuning System

In order to widen the band-pass response of the video if stages, some resistive loading across the tuned circuit is utilized. Besides this, however, other means are employed to get the required 5.5 or 4 mc response needed. This usually consists of either overcoupling the transformers between the plate and grid circuits, or tuning the various circuits to different frequencies around the if response required. This system is known as "stagger tuning" and the combination of the various frequencies results in a general overall band-pass. A typical example of a staggered tuned if system is shown in Fig. 1. Here the stage between the first and the second amplifier is tuned to 23.9 mc, while the transformer between the second and third if stages is tuned to 25.8 mc. The transformer between the third if stage and the video detector is tuned to 26.1 mc. The combination of the various resonant circuits produces the band-pass response curve shown in Fig. 2.

The response curve must be such that the sound carrier is sufficiently low to prevent sound bar interference on the screen while at the same time minimizing buzz in intercarrier receivers. The picture carrier should be down approximately 50 per cent on the response curve so that the vestigial sideband components will not give abnormal amplification of the sidebands around the carrier.
Fig. 3—RCA 8T241 receiver using split-sound system.

Tubes used are of the remote cut-off type to permit usage of automatic gain control. The automatic gain control (AGC) is similar to the automatic volume control for radios. When a strong signal is received it will increase the bias and reduce the gain, while a weak signal will decrease bias and increase gain. (The age is, of course, also applied to tubes in the tuner.)

In intercarrier receivers both sound and picture signals must travel through the video if stages for heterodyning at the video detector. For this reason the characteristics of intercarrier video if circuits differ somewhat with respect to response characteristics than the conventional split-sound receivers. In the intercarrier receiver the slopes of the band-pass curve are usually designed to be fairly steep so that the sound if rests approximately 90 per cent down from the peak of the response curve. The steep slope also minimizes adjacent channel interference. When such a response curve is utilized the manufacturer often dispenses with upper and lower adjacent channel traps and includes only the trap for the sound carrier for the receiver itself.

With older types of receivers using the split-sound system instead of intercarrier, the sound take-off must be included within the video if system. This is shown in Fig. 3 where the sound for the audio if amplifiers is taken from a combination trap and feed coil following the second picture if amplifier. In some such receivers the sound if signals may be taken from earlier video if amplifiers or from the output of the tuner.

It will be noted that the adjacent channel traps are included in this circuit (19.75 mc and 27.25 mc). Two traps are also included for the sound if to minimize the appearance of interfering bars on the screen of the receiver.

In Fig. 3 the age again is applied to the grid of the first video if as well as the third. The second and fourth stages do not have age control. In some receivers all video if stages will be directly controlled by the age, while in others only one or two of the video if stages may have age applied to them. In Fig. 1, for instance age is applied to the first and second if stages only and omitted from the third.

In many of the modern receivers an if frequency as high as 44 mc is used in contrast to frequencies around 25 mc for other models. The higher intermediate frequency has been adopted by many manufacturers because of the several advantages which result from its usage. These include reduced oscillator radiation interference to neighboring television receiver; reduced image frequency interference; and interference from local FM stations or short-wave installations. Besides this, the higher if frequencies also reduce the tendency for the reception of other interfering signals such as diathermy, etc.

At the higher if frequencies the local oscillator stability is affected to some extent and is more critical. Besides this, the 44 mc is over one and one-half times higher than the earlier 23 mc if amplifiers. This produces some problems in servicing because of the higher frequency involved. Invariably, operation at higher frequencies will make circuit function more critical and precautions must be observed to assure peak performance. Thus, parts replacements in video if stages using the higher frequencies should be made with exact duplicates and lead dress must not be disturbed. Tube replacements are apt to influence the band-pass characteristics to a greater extent than with lower if values. It would, therefore, be preferable to try several tubes to avoid serious disturbances of the resonance or the necessity for realignment of the video if system.

The general factors detailed in this article apply to all video if systems even though considerable circuit variations exist. Thus, some video if systems may use transformers as shown in Fig. 1, but may incorporate four stages instead of three. The transformers may be over-coupled and each tuned to the same frequency, or they may be stagger-tuned and use frequencies other than those shown. Besides this, the system may be intercarrier or split-
sound and may use a minimum of traps, or may use duplicate traps for the upper and lower adjacent channels.

Common Troubles
As with other circuits in a television receiver, the tubes should be checked first when troubles occur. Tube failures are common, as well as a decline in emission characteristics. Tube failures will result in complete picture loss in such instances where sound take-off is made prior to the defective tube. In intercarrier receivers tube failures in video if stages would mean loss of both picture and sound.

Component parts also contribute their share of troubles to those which are found in video if stages. In particular, capacitors can become leaky or open and resistors can change in value. Thus, if tube substitutions do not help, a thorough check should be made for leaky, shorted, or open capacitors, or for off-value, or open resistors. Parts values should be compared with those given in the schematics for the receiver in question and replacement made when values are off by more than 10 per cent.

Besides tubes and component defects, the circuit should also be checked for proper voltages at the screen and anode terminals of the tube. Voltages should also be read between grid and cathode to make sure that a minus potential exists at the grid of each tube.

This is particularly important when coupling capacitors are used between the stages as shown in Fig. 3. A leaky coupling capacitor can nullify the minus potential on the grid of the tube or can produce a positive potential at the grid. When this occurs, amplification will be excessive and an overly contrasty picture will result. Besides this, picture quality will be very poor and some of the sync tip amplitude may be decreased. This will result in picture weave and pulling.

The age bias on the tubes should also be checked with a voltmeter. The voltmeter should show a negative bias from the age line to ground. The bias should vary as the fine tuning control is adjusted or the station selector switched. A strong incoming signal should increase the negative age bias to the grids of the tubes affected while a weak signal should produce a corresponding decrease in the applied bias. Failure of the age circuit to function in this manner would indicate either a defective age rectifier or amplifier tube, an open age resistor, or shorted and leaky capacitors. Again, a check of the component parts involved is necessary.

When a screen grid by-pass capacitor opens, the stage may go into oscillation. This would give a very distorted signal, or also produce diagonal line heterodyne interference. If a screen by-pass capacitor should short it would cause excessive current to flow through the voltage dropping resistor and usually cause it to overheat or burn out. Thus, a burned-out resistor would mean that a check should also be made of the associated by-pass capacitor for shorted conditions.

A change in tube characteristics may also result in some sync clipping. With the sync amplitude below normal, the picture may not lose synchronization entirely but may bend to the upper position as shown in Fig. 4. This bending or pulling at the top can also be caused by a misaligned if system. If, for instance, the carrier sets down too far on the response curve, it would mean that the sidebands which are clustered around the carrier will not be amplified as much as the rest of the signal. This decline in amplification would diminish the 60 and 15,750 sync signals as well as the lower frequency video signals. The result would be a picture which would have some trailing smears because of poor low frequency response as well as some bending and pulling at the top as shown in Fig. 4.

Misalignment could also aggravate intercarrier buzz because it would upset the relationships of the signal versus the video signal. (This is what occurs when the fine tuning control is not adjusted for minimum buzz.)

Misalignment of the traps in the if system could also cause adjacent channel interference. If the slopes of the response curve are too broad, adjacent channel interference will also result. Such interference can cause diagonal line interference on the screen so characteristic of heterodyne interference or it can cause "framing" as shown in Fig. 5. Here the next lower channel picture signal is interfering but inasmuch as it is not synchronized it will sweep across the screen in a wind-shield wiper effect. In Fig. 5 the blanking bar is shown down the center of the picture and obscures the vertical wedge. The horizontal dark bar is also visible at the lower position of the screen and represents the blanking which occurs at the bottom of the sweep.

Signal Tracing

Detective or dead stages can be located by signal tracing procedures. A variety of equipment can be used for signal tracing purposes with the procedure illustrated in Fig. 6. Here an indicating device is applied across the video detector load resistor as shown.

The signal injecting unit can be a single-signal generator or a sweep generator. If a single signal generator such as a marker unit is used, the indicating device across the detector load can be a vacuum-tube voltmeter using a low dc range. This will then indicate the rectified signal derived from the signal generator.

If the signal generator has provisions for internal modulation an oscilloscope can be used for the indicating device. If, for instance, the signal generator is modulated with a 400 cycle tone the scope would show the 400 cycle waveform if the signal is getting through the last picture if stage. A sweep generator could also be used in conjunction with an oscilloscope. The response curve waveform would be visible on the oscilloscope and would be identifying clue if the injected signal is getting through the stages. The signal generator is then moved progressively back toward the tuner to ascertain which stage does not pass the signal. In this manner each stage can be checked for signal transfer by moving the signal generator but leaving the indicating device across the detector load resistor. This is a much simpler method than moving both the indicating device and signal generator from one stage to an-
NEW
truly functional
TUBECHECKER
by
WESTON
with new features for
greater accuracy and time-
saving facility in all testing

- Provides accurate meter measurement of
 leakage resistance as high as 5 megohms be-
tween tube elements.
- Permits high transconductance measure-
 ments, with ranges 3000/6000/12000/24000
 micromhos.
- Multiple switching protects against early
 obsolescence, allows making any combination
 of tube connections.
- Element switching permits checking and
 comparing individual sections of twin-section
 tubes without changing selector switch.
- Only one socket for each type tube base
 eliminates plugging tubes into wrong sockets.
- Sockets for all type bases . . . including acorn
 and 7 and 8 pin subminiatures.
- 19 filament voltage settings—65 to 115 volts.
 5 plate voltages—20 to 177 volts. A 45-volt
 source for testing subminiature types.
- Grid bias, plate voltage and meter sensitiv-
 ity adjustable.
- Large, readable fan-shaped meter . . new
 roll chart with complete, up-to-date data on
 all tubes.

Complete data on the new Model 981 Type 2
available in bulletin form. Write . . WESTON
Electrical Instrument Corporation, 614 Fre-
linghuysen Avenue, Newark 5, New Jersey.
5539

Available through leading distributors

WESTON Model 981 Type 2

WESTON Instruments
A representative NTSC set which was shown to the FCC will now be analyzed in detail. This model is typical of the 16 different developmental models made by as many manufacturers. By the time sets reach the market in mass production quantities, some specific circuit changes may have been made, but basic design consideration however will still be the same. The 630 monochrome RCA can still be validly used to explain monochrome operation even though present day sets vary widely from it, in circuitry.

Figure 1 is a block diagram of the chroma channel in greater detail than analyzed previously. Note that the burst gate (pentode section of a 6U8) is also a burst amplifier (Fig. 2). The composite video signal from the plate of the first video amplifier is coupled to the gate grid. The tube is in a cut off condition except when a negative pulse from the horizontal transfer is applied to the cathode. This pulse occurs at the same time that the color burst is present in the signal.

The separated and amplified burst is applied to the phase detector. The output of a 3.58 mc (see block diagrams) oscillator suitably amplified and adjusted is also fed to the phase detector. If the oscillator and color burst are not in phase, an error voltage is developed by the phase detector. This voltage is filtered and applied to a reactance tube (6U8). The reactance tube then acts to change the oscillator phase in the direction of reducing the error voltage to zero.

The 6BL7 “killer” tube serves to kill the chroma channel when a monochrome signal is being shown. The Es, Ea, Ea channels are designed so that when a white signal is shown, their outputs are proportioned so that the total output will add up to white. When only a monochrome signal is

Part 4 of this series explains the receiver used in color TV.
Don't Worry—I used ASTRON® BLUE-POINT

you're always sure with BLUE-POINT because...

Bonded Blue Point Seal—locks out humidity
85°C Operation
No Soldering Damage
Highest Insulation Resistance

AND FOR THE DRY ELECTROLYTICS YOU NEED...

Superior Astron SMT will do the job better, meeting the most exacting demands for heat and moisture resistance and low leakage.

Ask your jobber for Astron—the best capacitor made. For the name of your nearest Astron jobber, write today to Dept. SD.

ASTRON CORPORATION
255 Grant Avenue, East Newark, New Jersey

Manufacturers of a complete line of capacitors and filters for every television, radio, and electronic application.

Safety Margin

Trade Mark

present, the chroma channel is killed and only the luminance signal is applied to the inputs of the adder tubes. The chroma channel is killed to prevent any interaction from the 3.58 mc oscillator or its associated circuits.

From the correctly phased oscillator, a reference signal is applied to the “I” demodulator directly, and the “Q” demodulator through a quadrature amplifier. This circuit arranges the reference voltage so that the “I” and “Q” channel oscillator inputs are 90° apart.

The luminance signal is fed to the 6U8 band-pass amplifier. The output of this amplifier is a signal containing the low frequency color signal. This signal is then applied to the demodulators. (Figure 3 shows a partial schematic.) The oscillator signal is applied to the suppressor grid. The output of the band-pass amplifier is fed to the control grid. In the plate circuit, we find a band-pass filter which passes only the desired signal.

The oscillator signal is applied to the suppressor grid. The output of the band-pass amplifier is fed to the control grid. In the plate circuit, we find a band-pass filter which passes only the desired signal.

From the demodulators, the signal is fed to phase splitters. The E_a and E_r signals contain both $(E_a - E_r)$ and $(E_a + E_r)$. $(E_a + E_r)$ can therefore be formed by correctly mixing E_a and E_r. By taking both positive and negative phase outputs of the E_a and E_r channels and applying the outputs to the E_a, E_r, and E_0adder grids, the $E_a - E_r$, $E_a + E_r$, and $E_0 - E_r$ can be obtained. The E_r output of the second video amplifier is also applied to the grids of the color adders. The output of the tubes are the E_a, E_0, and E_r signals of the scene as presented to the pick-up camera. Figure 4 is a partial schematic of the adder circuit.

Fig. 2— Burst gate (pentode section of 6U8) is also burst amplifier.

RADIO-TELEVISION SERVICE DEALER • FEBRUARY, 1954
The Deflection Circuit in a Three Gun CRT Section

The three gun CRT which is the one discussed in this article is used in most of the current, developmental models. The corrective measures in the deflection system mentioned previously consist of the following devices:

1. Purity coil, beam positioning magnets and tube neck shield.
2. Dynamic focus and convergence circuits.
3. Regulated high-voltage supply.

The purity coil provides a means whereby the three electron beams can be aligned with their respective color dots. The beam positioning magnets keep the three beams in proper alignment with each other. The neck shield acts to exclude any stray magnetic fields from entering the beam fields.

In order to maintain a constant focus for all three beams, an additional electrostatic focusing element is added to the standard electrostatic focusing plates. This is known as the convergence electrode. On this electrode an ac wave form (Fig. 5), is superimposed on the dc voltage. This wave form, by adjusting the electrostatic focusing field, allows the beams to be kept in focus from one end of the sweep to the other.

In this dynamic convergence circuit (Fig. 6), a wave form is taken off the cathodes of the horizontal and vertical deflection output tubes. These voltages are coupled to the input of the convergence amplifier. The adjustable coil and potentiometer are for the purpose of phasing the horizontal and vertical wave forms.

The output of the dynamic convergence amplifier is applied through two transformers to the convergence electrodes. The taps insure that the voltage ratio between the dynamic convergence and dynamic focusing elements is kept constant. The dc voltage for the convergence electrode (approximately 11 KV) is taken off the high voltage regulator bleeder supply. The focusing dc is supplied by a rectifier tapped on the horizontal output transformer primary. A potentiometer in the cathode ground return of the rectifier acts as the focus control.

Fig. 3—Partial schematic of the demodulators.

Fig. 4—Partial schematic of the adder circuit.

The purity coil, beam positioning magnets, and tube neck shield are essential for proper beam alignment. The beam positioning magnets keep the three beams in proper alignment with each other. The neck shield acts to exclude any stray magnetic fields from entering the beam fields.

The convergence electrodes, on the other hand, provide a means for maintaining a constant focus for all three beams. An additional electrostatic focusing element is added to the standard electrostatic focusing plates. This is known as the convergence electrode. On this electrode, an ac wave form, superimposed on the dc voltage, allows the beams to be kept in focus from one end of the sweep to the other.

In this dynamic convergence circuit, a wave form is taken off the cathodes of the horizontal and vertical deflection output tubes. These voltages are coupled to the input of the convergence amplifier. The adjustable coil and potentiometer are used for phasing the horizontal and vertical wave forms.

The output of the dynamic convergence amplifier is applied through two transformers to the convergence electrodes. The taps ensure the proper voltage ratio between the dynamic convergence and dynamic focusing elements.

The high voltage supply (Fig. 7) consists of three rectifiers hooked up in a doubler circuit. The output is between 20 and 25 kc. It is filtered by a 2,000 µf condenser at the output in parallel with 2,000 µf in the CRT coating to ground. Across this output is a bleeder network of 132 megohms to ground. A shunt regulator tube is connected across the bleeder. The current from this tube maintains the voltage across the bleeder constant within a very small range.

The CRT

There are presently two approaches to the construction of the color tube:

1. The dot triad system, represented by the RCA, or CBS Hytron (RTSD, Nov. '53). The second type being tried is the Lawrence tube developed by Chromatic Labs, Inc.
SOLVED! Your TV tuner small parts problem!

Get the handy, all-new STANDARD Tuner Replacement Parts Kit No. 1011

Now... 104 small TV tuner parts are at your fingertips in one convenient, low-cost kit that's sturdy, compact, fully labeled for quick reference. You get the most-called-for parts servicing Standard tuners series TV-200, TV-1500, TV-2000 and TV-2200. Each item is individually boxed, except the very small.

More Profit—$25.03 worth of tuner parts for only $22.50.

Save Time—Hard-to-find tuner parts right at hand for quick, sure selection.

Build Customer Goodwill—Replace tuner parts direct from your Standard kit, so your customer will know each part is completely new.

Plan now to speed up your service work, bring new order and efficiency to every job. Get your Standard tuner replacement parts kits today! Call, write or wire your parts jobber, or address Standard Coil Products Co., Inc., 2085 N. Hawthorne Ave., Melrose Park, Ill.
PART 3

In the second article one of the key test points of the if strip, the point at which the video detector load resistor voltage is obtained was examined and explained. There is also another test point in the if strip that also must be discussed.

The Agc Line

Another excellent test point of the if stages is the negative voltage at the agc line. If the negative bias is present, it indicates that the video if information is being supplied to the detector and agc rectifier. The negative voltage on the agc line is also an indication of the signal strength being received for the individual television channels. The stronger the channel signal applied to the receiver by the antenna, the more negative will be the agc voltage. This voltage is developed in some manner due to the rectification of the video if signals and therefore confirms that if signals are present at the video if detector in most television receivers.

Use Of A Bias Box

Many technicians will not accept the facts and act accordingly. If there is any possibility of trouble in a receiver due to the agc system, connect a bias box that supplies a negative voltage to the agc line. Adjust the negative voltage so that about 2 to 3 volts are at the grid of the if tubes. If the trouble is in the agc system, the picture will be presented normally when this is done. The bias box will confirm quickly and easily if the trouble is in the agc system. One of the reasons that many technicians are very slow in completing a television repair is that they are very hesitant about making easy, quick checks like this when they should be done. With the more complex, fast acting agc systems in use, there is more possibility of trouble in this system than formerly. If there is any possibility of the trouble being in the agc system, the technician will be guessing and groping until this type of check is performed.

The Video Section

The purpose of the video amplifier and output stages is to amplify the composite video signal from the video detector to the level that will properly drive the picture tube, thereby providing a satisfactory black and white picture. The polarity of the signal is such that the sync and blanking pulses made the grid negative with respect to the cathode of the CRT and therefore cut the picture tube current off for these signals.

In this section, the same checks can be performed for signal continuity as can be made in other amplifier stages, in that the video tube can be clicked in and out of the socket. Flashes in the raster, indicate the circuits will pass signals. As before, scratching of the grids or sparking the plate elements will also indicate whether there is signal continuity in these sections by causing bars to flash on the picture tube. Another method of checking the video amplifier and output stages is to feed filament voltage to the grid of the video amplifier or output tube through a .1 uf dc blocking condenser.

Fig. 1—Signal tracing at key test points in the video section. See text for correct meter hook-up.

In the third article of this series, trouble-shooting the i-f system is continued. Also discussed are the video and sound portions to the CRT and audio output stages.
This will cause dark and light horizontal bars to appear on the raster.

Another indication of whether signals are passing through the amplifiers can be obtained with an ac voltmeter using a .1 μf condenser in series with one lead to block the dc potentials. The condenser will prevent damage to the meter if the lead is connected into a plate circuit. The arrangement can then be used the same as the output section of most volt-ohmmeters and it is an effective composite video signal tracer (see Fig. 1). The exact numerical value is not important. If it is desired to know whether video information is present at these points, the grids and plates of the video amplifiers, and whether there is gain in the stages, the output voltage will provide a rough idea of the gain in the stage as well as indicate whether the signal is present. The use of an output meter has never been fully appreciated and adopted as a useful tool by television technicians.

The CRT Section

The socket that supplies the voltages to the CRT is an excellent means of checking the voltages that control the picture tube. By removing the female socket from the back of the picture tube, a number of voltages can be measured in the socket terminals.

First, the No. 1 anode voltage can be determined by connecting the dc voltmeter between the #10 pin and chassis as shown in Fig. 2. The No. 1 anode voltage for picture tubes is usually about 650 volts. Measuring it at the disconnected socket will reveal immediately whether this voltage is normal.

An important consideration concerning this voltage is the fact that it is generally supplied by the horizontal damper boost voltage circuit. This is because of the modern trend in power supplies. Since the low voltage supply using selenium rectifiers can only develop 210 volts dc, it cannot be used for the No. 1 anode of the picture tube. So the voltage is obtained from the damper boost circuit where it is much higher. Very little current will be drawn from the picture tube #1 anode and the boost voltage at the damper circuit is a convenient source for this purpose. But the important consideration is the fact that by measuring the voltage at the #10 pin on the picture tube socket, an indication of the horizontal deflection system can be quickly obtained. If the deflection system is operating properly, this voltage will be normal.

However, if the damper boost is not used for the #1 anode, pin #10 is still an excellent check on the B plus voltage on the chassis and is readily accessible.

The Background Circuit

Many television technicians have no idea of how the background circuit may be checked for proper operation. If high voltage is present and yet there is no raster on the picture tube, some technicians are stumped and at a loss as to how to check further. It is a case of not being able to apply common electronic theory to the practical case. The current in any tube can be cut off when sufficient bias is applied between the grid and the cathode. As the bias is reduced (the grid is made less negative with respect to the cathode), current flow through the picture tube is permitted. This same theory applies to picture tubes. The electron beam in picture tubes is cut off when the grid is about 55 volts negative with
respect to the cathode. It is not too important whether the background
ccontrol is in the grid circuit supplying
negative voltage, or is in the cathode
supplying positive voltage, because the
same result will be accomplished.

When the cathode is made more
positive with respect to chassis, it in-
creases the negative bias of the grid
with respect to the cathode. When
the grid of a picture tube is made
negative 55 volts with respect to the
cathode, the picture tube current will
be stopped. Any less negative voltage
between the grid and cathode will per-
mit tube current to flow. Therefore,
a check of the background circuits is
made between the grid and cathode
connections in the socket, pin #11 for
the cathode and pin #2 for the grid.
The background control is adjustable,
and it should provide a range of volt-
gages from about zero volts when the
background control is in the full
brightness position, to much more than
55 volts negative in the position of the
minimum brightness. If this range of
voltages is measured at the CRT sock-
et, it is evident that the background
circuit is operating properly. The bias
voltage in some receivers may be as
high as 125 volts negative at the grid
with respect to cathode, but it is only
necessary to make the grid negative
55 Volts with respect to the cathode
to perform the proper action.

Also, the grid pin can be used to
determine if the video information is
reaching the grid (provided the cir-
cuit design is for the picture informa-
tion to be applied to the grid and not
the cathode) by measuring the grid
pin #2, with respect to chassis. This
measurement is made with an output
meter and it will indicate whether the
composite video signal is being applied
to the picture tube grid circuit.

Another check which can easily be
made at the picture tube socket is of
the filament voltage to the picture
tube. This voltage is easily measure-
able at the socket and can be made
use of when the picture tube filament
is not lighted as a confirmation that
filament voltage is being supplied to
the tube. This measurement would
be performed with an ac meter.

The Sound System

With intercarrier sound systems the
FM and video carriers beat together
in the video detector. The resultant 4.5
me signal output contains the exact
modulating signal that the original
FM carrier contained. From the video
detector the 4.5 me FM signal is fed
to the sound intermediate frequency
stages which are tuned to 4.5 me, and
the signal is amplified. There may be
two sound if stages in some receivers
before the signal is applied to the FM
detector.

The radio detector stage takes the
frequency modulation deviations and
converts them to corresponding audio
signals. The audio signal is then ap-
plicated across the volume control which
is a means of adjusting the level of
sound supplied to the grid of the audio
amplifier tube.

Ratio Detector

In the FM ratio detector circuit, there
will be developed at the FM
test point, a negative dc voltage which
is proportional to the amplitude of
the FM signal received. This test point
is the top point of the AM filter which
consists of a parallel resistor-condenser
combination. A negative voltage will
be developed at this point which is
proportional to the FM signal strength.
If the FM signal is not reaching the
FM detector circuit, no voltage will be
measurable at this key test point.
With average signal strength, the
potential developed can be minus 30
volts or higher. See Fig. 3. This test
point can also be used for checking
signal strength of different channels
since it provides an excellent indica-
tion of relative signal level.

This key test point in the FM
sound section is the dividing or half
way point in the sound system. The
first step in servicing a receiver with
no sound is to measure the voltage at
the test point with respect to chassis
to determine if the FM information is

(Continued on page 59)
TRIPLETT 630 Volt-Ohm-Mil-Ammeter "speaks" for itself in any company

This long-scale factor accounts for the ease with which precise readings are easily made. Further legibility is gained by use of black and red scale markings. D.C. and D.B. are black and white. A.C. and Ohm markings are red on white. Ohms from one hundred million to one-tenth ohm mark the range of this amazing scale. On low ohms, center scale reading is 4.5 ohms.

The Single Switch
Further indication of the practical skill and engineering "know-how" behind Triplett 630 is the Single Switch. Its simplicity of operation assures no burn-outs thru momentary memory lapses. There is instant switch-
THREE sync circuit troubles have been chosen for this installment. Much useful information can be obtained in analyzing them as they are not too common in today’s TV receivers.

Capehart Model CX-33
Horizontal Wiggle

The set was turned on and the horizontal gradually began to pull into sync and then start to wiggle. It was an “S” shaped wiggle. The first video amplifier tube was pulled out to see if the raster was wiggling also, but all four sides were straight. which proved that the wobble was entering the pix via the sync circuits. All tubes that affected the horizontal sync, 6AL5, 6SN7, and the 6AU6 were then replaced without effect. The 6AL5 rf phase detector tube was then removed again to determine if the trouble was in the horizontal oscillator. It was observed this time that even though the picture was out of sync, the diagonal lines were not “S” shaped anymore.

After replacing the 6AL5, the syncro-clock (Primary of T209) adjustment was varied and it was noticed that there was a point where momentarily the horizontal would straighten out, and then start wiggling again. Because the horizontal range was affected only slightly and the vertical hold was functioning properly, it was deduced that the trouble was probably somewhere in the phase detector.

The scope was set up and a few waveforms on the afc detector and reactance tube were checked, but the waveforms bounced all over the scope. In fact, the only place a decent waveform could be obtained was at the horizontal oscillator 6SN7 grid. Voltages were then taken on the 6AU6 reactance tube. The plate and screen readings were close enough, but the grid read about 4.5 volts positive when it should have read about 2 volts positive.

Here was a clue. Now what would cause it? Let us see. If C251 were leaking, it should have affected the horizontal range greatly. However, the horizontal range was only slightly affected. That left out C251. If C247 were leaking, it probably should have affected the vertical hold somewhat. But the vertical hold was okay. That left C247 out.

It was then decided to make a fast resistance check for leakage across C249, C250, and C248. One side of C248 was clipped out of the circuit because it was across the primary of T209. It checked okay. The other two condensers did not have to be clipped out of the circuit as they were in parallel with high resistors. C250 measured okay, but C249 measured a complete short. It was clipped out of the set and measured again. Sure enough it was shorted. The odd thing about this 600 volt, .0047 µf condenser shorting is that there is no B+ applied to it. The most that would ever be applied probably would be about 5 volts. You will observe that C249 in parallel with R279, and C250 act as a pulse voltage divider network in the output section of the afc detector. These components also filter out extraneous noises and occasional vertical sync pulses that sneak through. Now with C249 shorted, the full afc detector output (5V) voltage is applied to the grid of the 6AU6 reactance tube. C249 was replaced with a new .047 µf-600 volt condenser and the set functioned properly.

Motorola TS-60—Poor Horizontal Hold

When the set was first turned on the horizontal pulled into sync and then proceeded to fly far out of the horizontal frequency range. Attempts to bring it back into sync by adjusting L21, (Fig. 2) the horizontal oscillator slug, were of no avail. The 6SN7 (V16) was then changed, but the trouble remained. After replacing the old 6SN7 (V16), the 6AL5 (V15) was removed to see if trouble in the phasing detector was causing the horizontal oscillator range problem.

As soon as the 6AL5 was pulled out, the horizontal oscillator came back into range. Naturally, it did not hold
well horizontally. However, it proved that the trouble was not in the horizontal oscillator. The 6AL5 (V15) phase detector was replaced next. This too did not cure the trouble. Since the vertical hold was okay, the 6SN7 (V12) was eliminated as a possible cause of the trouble.

The chassis was then turned on its side and trouble-shooting was begun in the phase detector circuit. A voltage reading at pin 4 of the horizontal oscillator tube (V16) was first taken. Here, any trouble in the phase detector could be checked voltage-wise. The meter read approximately 5 volts positive whereas the diagram called for about 12 volts positive with respect to chassis. So far we were on the right track.

A waveform check with the scope at pins 5 and 7 of the 6AL5 (V15) phase detector was then taken. At pin 5 the waveform was fairly similar to the correct waveform, but at pin 7 it was obvious that something was wrong. C83 (.001 µf) was clipped at pin 7 and checked for leakage. There was no leakage. With the scope, C83 was now checked for an open. On the 6SN7, clipper (V12) side of the condenser, the waveform was correct, but on the other side, there was no waveform. Thus, C83 (.001 µf) was open.

The grid voltage on the horizontal tube V16 depends on the sync signal from the clipper causing conduction in 6AL5 phase detector. Under these conditions a voltage is developed across R82 (4.7M). If no sync signal is present this voltage becomes less negative with respect to B−, which is what the symptom was in this case.

Compared to shorted condensers, open condensers are rather rare. In examining the connections, it was noticed that the condenser (C83) barely reached the terminal to which it was soldered and had to be stretched to a maximum in order to be soldered. Since it was a paper condenser, this stretching probably aided in causing it to open. Replacing the condenser cured the original trouble.

G.E. 12T1—Horizontal Tearing

The set was turned on and everything appeared normal for a while. However, a horizontal tearing which started to get worse with time became evident. The set also broke out of horizontal hold severely and vertical sync slightly. It was also noticed that as the brightness was increased the left side of the raster got dark before the right side. However, as the brightness was increased the raster became normal again. The latter symptom usually means a bad filter. However, there was some question as to whether or not the filter was causing the sync problem. Therefore, the 12SN7 horizontal oscillator (V21 A & B), and the 6SL7 sync amp. (V20) were individually replaced; but the tubes didn’t solve the sync problem.

The filter most likely to cause these combined symptoms would be one associated with the horizontal section because a sync problem was also present. C406, 10 µf, was checked for an open by placing across it another 10 µf condenser. As soon as this was done the dark side of the raster became as bright as the right side. The vertical and horizontal sync trouble were also corrected.

This particular problem was selected for those who have not come across the “dark left-side symptom.” This is a wonderful clue to solving filter troubles. Many times a filter may be leaking only slightly and by observing the raster as you vary the brightness control, a filter trouble can be diagnosed immediately. Moreover, the dark left side may appear at a very low level of brightness and as you increase the brightness even slightly, the left side will brighten up to normal.
Mfr. Du Mont Model No. RA109
Card No. DM-109-7
Section Affected: Sound
Symptom: No sound.
Cause: Component failure.
What To Do:
Replace: C215 (680 µf)—shorted.

Mfr. Du Mont Model No. RA109
Card No. DM-109-8
Section Affected: Sync
Symptom: No horizontal hold
Cause: Component failure.
What To Do:
Replace: C271 (.005 µf)—shorted.
Also, R316 (22K)—burned up.

Mfr. Du Mont Model No. RA109
Card No. DM-109-9
Section Affected: Pix
Symptom: No pix; R250 burns.
Cause: Z209 shorts (primary to secondary).
What To Do:
Replace: Z209 and R250 (1K).
Mfr. Du Mont Model No. RA109
Card No. DM-109-10
Section Affected: Sound
Symptom: No sound; also R204 burns.
Cause: Z202 shorts (primary to secondary)
What To Do:
Replace: Z202 and R204 (1K).

Mfr. Du Mont Model No. RA109
Card No. DM-109-11
Section Affected: Sync
Symptom: Very critical horizontal hold.
Cause: Component failure.
What To Do:
Check: R316 (22K)—loses resistance.
Replace: C271 (.005 µf)—may be leaky.
Also, V225 (6BC5) Hor. reactance tube.

Mfr. Du Mont Model No. RA109
Card No. DM-109-12
Section Affected: Sound and raster
Symptom: Set does not light.
Cause: Power fuse blown.
What To Do:
Replace: C275 (.05 µf)—common cause of B+ failure.
Also, 5 amp power fuse.
Mfr: Philco
Model No. RF41, 42 and 44

Card No. PHRF 41-1
Code No. 121 and 123

Section Affected: Pix
Symptom: Poor low frequency response.

Reason For Change: Circuit improvement.

What To Do:
Change: R_{301} (3.9K) to 5.6K.

Mfr: Philco
Model No. RF41, 42 and 44

Card No. PHRF 41-2

Section Affected: Pix
Symptom: Insufficient high frequency detail.

Cause: Shunt peaking coil inductance (L_{302}) too high.

What To Do:
Change: L_{302} (220 µH) to 180 µH.
Also, C_{308} (4700 µµf) to 3300 µµf.

Mfr: Philco
Model No. RF41, 42 and 44

Card No. PHRF 41-3
Code No. 121 and 125

Section Affected: Sync

Symptom: Insufficient sync lock-in action in locations where signal strength varies between extremes of low and high.

Reason For Change: Circuit improvement.

What To Do:
Change: R_{601} (10K) to 4.7K; R_{607} (220K) to 39K.
Also, R_{606} (240K) to 180K; R_{604} (1.2 meg) to 1 meg.

Move: C_{603} (33 µµf) from 12AU7 grid (pin #2) and plate (pin #1) at C_{602}—.015 µf to the other side of C_{602} (junction of R_{604}, R_{605}, C_{601}).
Mfr: Philco Model No. RF41, 42 and 44
Card No. PHRF 41-4 Code No. 121 and 125
Section Affected: Sound
Symptom: Sound buzz.
Reason For Change: Circuit improvement.
What To Do:
Change: C406 (390 µf) to 330 µf—ceramic.

Mfr: Philco Model No. RF41, 42 and 44
Card No. PHRF 41-5 Code No. 121 and 125
Section Affected: Pix
Symptom: Excessive brightness.
Reason For Change: Circuit improvement.
What To Do:
Change: R314 (82K-1W) to 68K-1W. Also, R313 (120K) to 100K.

Mfr: Philco Model No. RF41, 42 and 44
Card No. PHRF 41-6
Section Affected: Sound
Symptom: Sound too boomy.
Reason For Change: Circuit improvement.
What To Do:
Change: C414 (.015 µf) to .01 µf.
Mfr: Zenith Chassis No. 23G22
Card No. ZEG50-7
Section Affected: Pix
Symptom: Pix overload.
Cause: Leaking video if coupling condenser.
What To Do:
Replace: \[C24 \ (470 \ \mu\text{f}) \].

Mfr: Zenith Chassis No. 23G22
Card No. ZEG50-8
Section Affected: Pix
Symptom: Intermittent flashes in pix.
Cause: Leaky condenser (intermittent).
What To Do:
Replace: \[C16BB \ (110 \ \mu\text{f}) \].

Mfr: Zenith Chassis No. 23G22
Card No. ZEG50-9
Section Affected: Pix
Symptom: Pix smeared.
Cause: Resistor drops in value.
What To Do:
Replace: \[R44 \ (8.2K) \].
Mfr: Zenith Chassis No. 23G22
Card No. ZEG50-10
Section Affected: Sound
Symptom: Sound raspy.
Cause: Open screen resistor.
What To Do:
Replace: R33 (12K).

Mfr: Zenith Chassis No. 23G22
Card No. ZEG50-11
Section Affected: Sync
Symptom: Erratic horizontal sync.
Cause: Resistors increase in value.
What To Do:
Replace: R75 (Both 56K-1/2W) with 56K-2W.

Mfr: Zenith Chassis No. 23G22
Card No. ZEG50-12
Section Affected: Raster
Symptom: Raster collapses intermittently leaving white vertical line momentarily.
Cause: Resistor opens intermittently.
What To Do:
Replace: R19 (10K-2W) with 10K-5W.
FOR GREATER PROFITS

SPEED UP YOUR SERVICING with THIS NEW BOOK

which shows you how to take care of and repair in the quickest possible time:
- Troubles commonly found in certain receivers
- "Bugs" which might take you hours to find
- Factory and field service changes

SET UP SO THAT YOU CAN MAKE THESE REPAIRS IN THE SHOP OR IN THE FIELD WITHOUT REFERENCE TO ANY OTHER SOURCE.

$4.95 (postpaid)

Distributors—order your supply now!

Service Dealers—get your copy of VSSS from your Distributor. If he can't supply you, order direct by mail from us.

Video Speed Servicing Systems IS GUARANTEED to Simplify Servicing All TVsets. 24 (or more) new Data Items are published in every issue of "Radio-Television Service Dealer" as a regular monthly feature.

TEAR OFF AND MAIL NOW

RADIO-TELEVISION SERVICE DEALER
67 West 44th Street, New York 36, N.Y.

Please send me post-paid VIDEO SPEED SERVICING SYSTEMS Volume 1. Enclosed herewith is

my ☐ check ☐ money order for $__________ for ______ copies at $4.95 each.

Name __

Address __

City __________________________ Zone ________ State ________________

RADIO-TELEVISION SERVICE DEALER • FEBRUARY, 1954
...a product as complex as a television receiver cannot possibly be maintained satisfactorily without timely, understandable and helpful service information.

"Every manufacturer tries in his own way to develop service helps that will keep his product performing the way in which it was designed to perform. But in the final analysis, it is only through the efforts of the experts in the field, like yourself, that servicemen can expect a steady flow of all-inclusive service information.

"We have found your publications to be consistently high in quality and integrity. We particularly single out your current Parts Replacement Information program as a service to the industry.

"We hope you continue to help the service technician service our products intelligently and well through your fine service publications."

ANNOUNCING RADIO MANUAL 23!
OUT IN FEBRUARY.
Up-to-the-minute information on all home AM, FM radios built during 1952 and 1953.
(Place your order with your jobber)
Tek-File is now only $150 per pack

FOR EASIER RADIO SERVICING...USE RIDER'S 23 AM-FM RADIO MANUALS

GET THE FACTS!
Latest Aerovox catalog contains outstanding selection of capacitors and resistors for profitable servicing. Ask your distributor for your copy.

You get no "knocks"
EMERSON

MODEL NUMBERS TV CHASSIS TUBE SIZE
733F 120169-F T.V. 21MP4 (metal-rect.)

TUBE COMPLEMENT

<table>
<thead>
<tr>
<th>SYMBOL</th>
<th>TUBE</th>
<th>FUNCTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>V1</td>
<td>6CB6</td>
<td>1st Vid. IF Ampl.</td>
</tr>
<tr>
<td>V2</td>
<td>6CB6</td>
<td>2nd Vid. IF Ampl.</td>
</tr>
<tr>
<td>V3</td>
<td>6CB6</td>
<td>3rd Vid. IF Ampl.</td>
</tr>
<tr>
<td>V4</td>
<td>6AL5</td>
<td>Vid. & A.G.C. Det.</td>
</tr>
<tr>
<td>V5</td>
<td>6CB6</td>
<td>Vid. Ampl.</td>
</tr>
<tr>
<td>V6</td>
<td>6AU6</td>
<td>1st Sound IF Ampl.</td>
</tr>
<tr>
<td>V7</td>
<td>6AU6</td>
<td>Sound Limiter</td>
</tr>
<tr>
<td>V8</td>
<td>6AL5</td>
<td>Sound Discriminator</td>
</tr>
<tr>
<td>V9</td>
<td>6AU6</td>
<td>1st AF Ampl., A.G.C. Clamp & Noise Suppressor</td>
</tr>
<tr>
<td>V10</td>
<td>6V6</td>
<td>AF Output Ampl.</td>
</tr>
<tr>
<td>V11</td>
<td>12AU7</td>
<td>Sync Ampl. & Hor. Separator</td>
</tr>
<tr>
<td>V12</td>
<td>12AU7</td>
<td>Hor. Sync Phase Inverter & Hor. Phase Det.</td>
</tr>
<tr>
<td>V13</td>
<td>6SN7</td>
<td>Hor. Osc.</td>
</tr>
<tr>
<td>V14</td>
<td>6BQ7</td>
<td>Hor. Output Ampl.</td>
</tr>
<tr>
<td>V15</td>
<td>1B3</td>
<td>HV Rect.</td>
</tr>
<tr>
<td>V16</td>
<td>6W4</td>
<td>Hor. Damper</td>
</tr>
<tr>
<td>V17</td>
<td>6C4</td>
<td>Vert. Sync. Separator</td>
</tr>
<tr>
<td>V18</td>
<td>6SN7</td>
<td>Vert. Osc.</td>
</tr>
<tr>
<td>V19</td>
<td>6W6</td>
<td>Vert. Output Ampl.</td>
</tr>
<tr>
<td>V20</td>
<td>5U4</td>
<td>Low Voltage Rect.</td>
</tr>
<tr>
<td>V21</td>
<td>5U4</td>
<td>Low Voltage Rect.</td>
</tr>
<tr>
<td>V22</td>
<td>6BQ7</td>
<td>RF Ampl.</td>
</tr>
<tr>
<td>V23</td>
<td>6J6</td>
<td>Osc. & Mixer</td>
</tr>
<tr>
<td>V24</td>
<td>21MP4</td>
<td>Picture Tube</td>
</tr>
</tbody>
</table>

ADJUSTMENTS

Beam Bender (Ion Trap)

A single magnet type of beam bender is used and should always be adjusted by sliding and rotating the unit for maximum brightness. Do not adjust the trap for removing corner shadows if in so doing the brightness is reduced.

If two positions of maximum brightness are found use the one closer to the picture tube socket.

Use Of The Fringe Compensator

In fringe areas there is generally a higher ratio of electrical impulse noise (ignition, neon signs, electrical motors, etc.) to signal which might tend to effect sync operation. To reduce this condition this chassis has been equipped with a "Fringe Compensator and Switch." This compensator is located at the rear of the chassis, and can be adjusted to handle the effects of electrical interference in most fringe locations. This compensator is provided with an on-off switch so that it can be disconnected when not required.

NOTE: In most locations this added protection will not be necessary and the fringe compensator should remain in the "off" position.

Improper adjustment or application of the fringe compensator may result in excessive audio buzz and/or picture wiggle. This device is designed to give added performance in fringe areas and will result in satisfactory operation only if instructions are carefully adhered to.

Adjustment Of The Fringe Compensator

1.) Tune set to a low frequency channel in a normal fashion. If low channels are not available use a higher channel.

2.) Turn fringe compensator switch to the "ON" position and adjust the potentiometer to the center of its mechanical range.

3.) Check all channels normally received in the area and re-adjust compensator if necessary for best performance.

[Continued on page 46]
EMERSON TROUBLE SHOOTING CHART

NO SOUND—NO RASTER
Power input circuit
B+ Fuse F-1
V20, V21
Phono-TV Switch

NO RASTER—SOUND OK
Brightness control
V12, V13, V14, V15, V16, V24
Ion trap
HV xformer Hor. yoke CRT connections

WEAK PIX—SOUND AND RASTER OK
Tuner fine tuning
Contrast control
V1, V2, V3, V1, V5, V22, V23

POOR HOR. LIN.
V14, V16
Check 0.1 mf cap. connected to terminal 8 of Hor. Out. Trans.

POOR VERT. LIN.
Vert. Lin. and Size Controls
V18, V19
Check 0.1 and 0.047 mf caps. connected to pin 5 of V18

PIX JITTER SIDEWAYS
Hor. Balance and Hold controls
Hor. Phase Coil Adj.
Fringe Compensator control
V11, V12, V13, V14
Check 0.0022 and 0.001 mf caps. connected to pin 1 of V12

SMEARED PIX
Tuner fine tuning
Contrast control
Fringe Compensator control
V1, V2, V3, V4, V5, V23
Check Vid. Det. and Amp. peaking coils IF and RF alignment

POOR PIX DETAIL
Tuner fine tuning
Focus control
V1, V2, V3, V4, V5, V23, V24
Check Vid. Det. and Amp. peaking coils IF and RF alignment

SOUND BARS IN PIX
Tuner fine tuning
Check alignment of L16
Contrast control
V1, V2, V3, V23
IF and RF alignment

SNOW IN PIX
Fringe compensator control
V1, V2, V3, V4, V11, V22, V23
Antenna and transmission line

AC IN PIX (DARK HOR. BAR)
V1, V2, V3, V4, V5, V11, V22, V23

ENGRAVED EFFECT IN PIX
Tuner fine tuning
Contrast control
V1, V2, V3, V4, V5, V23
Check Vid. Det. and Amp. peaking coils

VERT. BARS
V14, V16
Check damping network connected between terminals 3 and 7 of defl. yoke
Defl. yoke ringing

PIX JITTER UP AND DOWN
Vert. Hold and Fringe Compensator controls
V11, V12, V17, V18, V19

PIX BENDING
Hor. Balance and Hold controls
Hor. Phase Coil Adj.
Fringe Compensator controls
V11, V12, V13, V14
Check 0.01 and 0.001 mf caps. connected to pin 1 of V12

AUDIO HUM IN SOUND
V6, V7, V8, V9, V10

DISTORTED SOUND
Tuner fine tuning
Volume control
V6, V7, V8, V9, V10, V23
Check 0.047 mf cap. connected to pin 5 of V10
Sound and Vid. IF alignment T5 and T6
Det. alignment T7

NO SOUND—PIX OK
Tuner fine tuning
Volume control
V6, V7, V8, V9, V10
Speaker (open voice coil or defective connection)
Sound and Vid. IF alignment T5 and T6
Det. alignment T7

WEAK SOUND—PIX OK
Tuner fine tuning
Volume control
V6, V7, V8, V9, V10, V23
Sound and Vid. IF alignment T5 and T6
Det. alignment T7

NOISY SOUND—PIX OK
Volume control
V6, V7, V8, V9, V10
Check sound system for loose connections
Speaker
Sound IF and Det. alignment T5, T6, T7

SYNC. BUZZ IN SOUND
Tuner fine tuning
V6, V7, V8, V11
Fringe Compensator control
Sound IF and Det. alignment T5, T6, T7

INTERMITTENT SOUND—PIX OK
V6, V7, V8, V9, V10
Poor connections in sound system

44 RADIO-TELEVISION SERVICE DEALER • FEBRUARY, 1954
WEAK OR NO PIX—
SOUND WEAK—RASTER OK
Tuner fine tuning
Contrast control
Fringe Compensator control
V1, V2, V3, V4, V5, V11, V22, V23
RF and IF alignment

INTERMITTENT RASTER—
SOUND OK
Brightness control
V12, V13, V14, V15, V16, V24
HV xformer

RASTER BLOOMING
V14, V15, V20, V21, V24
Check 100KΩ res. connected in series with sec. anode lead
Check 0.1 mf cap. connected to pin 4 of V14

INSUFFICIENT BRIGHTNESS
Ion trap
Brightness control
V14, V15, V16, V20, V21, V24
Check 6.8KΩ res. connected to pin 4 of V14
Low line voltage

EXCESSIVE RASTER (PIX SIZE)
Hor. and Vert. Size controls
V14, V15, V24

INSUFFICIENT RASTER WIDTH
Hor. Size control
V13, V14, V16, V20, V21
Check 0.001 and 0.22 mf caps. connected to pin 5 of V13
Check 220 mmf cap. connected in series with 0.22 mf cap. connected to pin 5 of V13
Low line voltage

INSUFFICIENT RASTER HEIGHT
Vert. Lin. and Size controls
V18, V19, V20, V21
Check 0.047 and 0.1 mf caps. connected to pin 5 of V18
Low line voltage

NO VERT. DEF.
V18, V19
Check 0.0047 mf cap. connected to pins 2 and 4 of V18
Check 0.047 and 0.1 mf caps. connected to pin 5 of V18
Vert. Defl. yoke
V.O.T.

NO VERT. SYNC.
HOR. SYNC. OK
Vert. Hold control
V11, V12, V17
Check 0.047 mf cap. connected to pin 1 of V18

NOTE ARROWS ON MINIATURE TUBE SOCKETS INDICATE THE CENTER POLARITY OF THE WIDER SPACED PIN(S). THIS SHOULD ASSIST YOU IN INSERTING THESE TUBES WHERE A SOCKET IS OBSTRUCTED FROM VIEW.

TUBE LOCATIONS DIAGRAM FOR CHASSIS 120169B and F

REAR CONTROLS

NO. HOR. OR VERT. SYNC.—
PIX SIGNAL OK
Fringe Compensator control
V11, V12, V17
Check 0.01 and 0.047 mf caps. connected to pin 6 of V11

NO HOR. SYNC.—
VERT. SYNC. OK
Hor. Hold, Phase and Balance controls
V12, V13, V14
Check 470 mmf cap. connected between pins 2 and 4 of V13
Check 120KΩ res. connected to pin 5 of V13

RADIO-TELEVISION SERVICE DEALER • FEBRUARY, 1954
Alignment Of Miracle Picture Lock

1) Tune set to a good channel.
2) Short phase coil leads have been brought to top of chassis on a terminal strip near fuse (see tube location diagram).
3) Short horizontal control grid to chassis. This point has also been brought to top of chassis on same strip as mentioned in step 2.
4) Rotate horizontal hold control to center of its mechanical range.
5) Adjust horizontal balance control (rear of chassis) until picture pulls into synchronism (in most cases picture will swing from side to side).
6) Remove short from horizontal phase coil and adjust for same synchronous condition as step 5 above.
7) Remove short from horizontal control grid. Horizontal frequency circuits are now properly aligned.
8) When properly adjusted (steps 1-7) the horizontal hold control can be moved slowly over most of its range without throwing the picture out of sync.

Centering Procedure

1. Set the unit, magnets forward, on the tube so that the magnets are about ¼” behind the yoke. Adjust the clamp so that the unit is a sliding fit on the tube.
2. Set the magnets so that the adjusting arms are approximately 120° apart.
3. Adjust the ion trap magnet for maximum brightness.
4. Rotate the whole unit, this will cause the picture to move around a circle. Stop where the picture is most nearly centered.
5. Rotate the magnets separately, in equal distances but in opposite directions to complete the centering.
6. Repeat Steps 3, 4 and 5, if necessary.
7. Tighten clamp.
8. Readjust ion trap magnet to give maximum brightness.

CAUTION: It is important that the centering magnets not be operated too close to the yoke as the A-C field from the yoke may cause the centering magnets to become demagnetized.

NOTE: Some slight improvement in focus may be obtained by adjusting the ion trap magnet within the range of the maximum brightness.

On no account should the trap magnet be adjusted to give good focus at the expense of brightness, as this condition produces ion “burns” on the screen in the course of time.

RECORD CHANGER

3 SPEED (78, 45, 33-1/3) R.P.M. AUTOMATIC RECORD CHANGER pt #819069 (MODEL 733F)

This changer plays records through the sound portion of the TV chassis when the “Phono-TV switch” is placed in the phono position.

Features of this changer include playing and automatically changing as many as ten—12”, twelve—10”, twelve—7”, or any assortment of intermixed 10” and 12” records of the same R.P.M. (78, 45, 33-1/3 R.P.M.)

This changer shuts off automatically after the last record has been played.

PREPARING FOR OPERATION

1. SHIPPING BOLTS

Before placing in operation, the changer must be floated freely on the mounting springs. During shipment, the mechanism is secured by means of two shipping bolts. To float the changer, remove the turntable* by lifting it straight up the spindle. Turn the two shipping bolts in a clockwise direction as far as they will go and replace the turntable. Before the turntable can be fully seated, the idler wheel must be gently pushed back out of the way to prevent damage to the rubber tire.

* When shipped turntable is secured to the back of the cabinet.

2. LEVELING RECORD CHANGER

It is essential to have the record changer absolutely level. Use a torpedo or similar type level on the record changer baseplate. Use adequate shims to level the record changer pan or radio combination cabinet to achieve perfect level.

RADIO-TELEVISION SERVICE DEALER • FEBRUARY, 1954
SYLVANIA

MODEL NUMBERS
172K, 172KU, 172M, 172MU
175B, 175BU, 175L, 175LU, 175M, 175MU
176B, 176BU, 176L, 176LU, 176M, 176MU
177B, 177BU, 177M, 177MU
178B, 178BU, 178M, 178MU

CHASSIS NUMBERS
1-508-1, 1-508-2

TUBE COMPLEMENT

<table>
<thead>
<tr>
<th>SYMBOL</th>
<th>FUNCTION</th>
<th>TYPE</th>
</tr>
</thead>
<tbody>
<tr>
<td>V1</td>
<td>R.F. Amplifier</td>
<td>6BK7</td>
</tr>
<tr>
<td>V2</td>
<td>Oscillator-Mixer</td>
<td>6J6</td>
</tr>
<tr>
<td>V3</td>
<td>1st Video IF Amplifier</td>
<td>6CB6</td>
</tr>
<tr>
<td>V4</td>
<td>2nd Video IF Amplifier</td>
<td>6CB6</td>
</tr>
<tr>
<td>V5</td>
<td>3rd Video IF Amplifier</td>
<td>6CB6</td>
</tr>
<tr>
<td>V6</td>
<td>4th Video IF Amplifier</td>
<td>6CB6</td>
</tr>
<tr>
<td>V7</td>
<td>Video Detector</td>
<td>D440 Crystal</td>
</tr>
<tr>
<td>V8</td>
<td>Sound IF Amplifier</td>
<td>6AU6</td>
</tr>
<tr>
<td>V9</td>
<td>Sound IF Limiter</td>
<td>6AU6</td>
</tr>
<tr>
<td>V10</td>
<td>Ratio Detector</td>
<td>6AL5</td>
</tr>
<tr>
<td>V11</td>
<td>1st Audio Amplifier & Tuner</td>
<td>6AV6</td>
</tr>
<tr>
<td>V12</td>
<td>AGC Clamp</td>
<td>6V6GT</td>
</tr>
<tr>
<td>V13</td>
<td>AGC Amplifier</td>
<td>6AU6</td>
</tr>
<tr>
<td>V14</td>
<td>Sync Separator & AGC Rect.</td>
<td>12AX7</td>
</tr>
<tr>
<td>V15</td>
<td>Sync Amplifier & Clipper</td>
<td>12AU7</td>
</tr>
<tr>
<td>V16</td>
<td>Vertical Oscillator</td>
<td>6C4</td>
</tr>
<tr>
<td>V17</td>
<td>Vertical Output</td>
<td>6AH4GT</td>
</tr>
<tr>
<td>V18</td>
<td>Horizontal Discriminator</td>
<td>6AL5</td>
</tr>
<tr>
<td>V19</td>
<td>Horizontal Control</td>
<td>6CB6</td>
</tr>
<tr>
<td>V20</td>
<td>Horizontal Oscillator & Discharge</td>
<td>12AU7</td>
</tr>
<tr>
<td>V21</td>
<td>Horizontal Regulator</td>
<td>40A1</td>
</tr>
<tr>
<td>V22</td>
<td>Horizontal Output</td>
<td>6B06GT</td>
</tr>
<tr>
<td>V23</td>
<td>Damper</td>
<td>6V3</td>
</tr>
<tr>
<td>V24</td>
<td>H.V. Rectifier</td>
<td>1B3GT</td>
</tr>
<tr>
<td>V25</td>
<td>H.V. Rectifier</td>
<td>1B3GT</td>
</tr>
<tr>
<td>V26</td>
<td>L.V. Rectifier</td>
<td>5U4G</td>
</tr>
<tr>
<td>V27</td>
<td>L.V. Rectifier</td>
<td>5U4G</td>
</tr>
<tr>
<td>V28</td>
<td>Picture Tube</td>
<td>21EP4A</td>
</tr>
<tr>
<td>UHF Oscillator (1-508-2 only)</td>
<td>6J6</td>
<td></td>
</tr>
<tr>
<td>UHF Oscillator Doubler (1-508-2 only)</td>
<td>1N82 Crystal</td>
<td></td>
</tr>
<tr>
<td>UHF Mixer (1-508-2 only)</td>
<td>1N82 Crystal</td>
<td></td>
</tr>
</tbody>
</table>

Key Voltages

All voltages are measured with respect to chassis ground.
B+ voltage, Plate voltage of Damper tube 330VDC
V23 pin 9
Boosted B+ voltage, Terminal #5 of Hor. Out. Trans. 560VDC
Plate voltage of Vert. Osc. V16 295VDC
Plate voltage of Vert. Out. Ampl. V17
Pin 1 310VDC
Pin 5 270VDC
Plate voltage of Hor. Osc. V20 Pin 1 125VDC
Plate voltage of Hor. Control tube V19 Pin 5 70VDC
Plate voltage of Hor. Dis. tube V20 Pin 6 0VDC
Grid voltage of Hor. Out. Ampl. V22 Pin 5

SPECIAL INSTALLATION AND SERVICE INSTRUCTIONS

Chassis Handling Precaution
Whenever handling a 1-508-1, 1-508-2 chassis exercise extreme caution at all times. The chassis should be carried by means of the handle provided on the rear tube mounting bracket and the front center lower lip of the picture tube. When carrying a chassis in this manner care should be observed that the hands are free of dirt and grease to prevent slipping on the smooth surface of the glass.

Alignment of Picture Tube To Mask
Replacement of the chassis after normal servicing should not necessitate alignment of the mask and picture tube. However, if the tube support members have been disturbed as in the case of tube replacement it will be necessary to observe the following procedure.

1. Locate the tube and its associated mounting brackets in their approximate normal position, with the front face of the tube tilted forward about 3 degrees, then tighten the following just enough to permit further adjustment in the cabinet.
 a. Mounting stud nuts on tube holddown strap.
 b. Nuts on holddown strap rods.
 c. Nut on rear mounting bracket rod.
 d. Wing nuts on yoke.
 e. Screws at base of rear mounting bracket, if previously loosened.

2. Carefully slide chassis in cabinet, replace and tighten chassis holddown screws.

3. Replace all knobs and electrical connections. If tuner shaft does not center, loosen tuner rear bracket wing nuts and shift tuner until knobs function freely.

4. By carefully moving the tube in its mountings align the mask and face of the tube.

ADJUSTMENT OF HORIZONTAL AFC CIRCUIT

Check of Operation
The operation of the AFC circuit should be checked as follows:

A. Tune the receiver to a channel on which no signal is received and return to the original channel. The picture should immediately fall into synchronization.

B. Switch off the power to the receiver for about five minutes and then switch back on. Picture should immediately fall into synchronization.

C. Check for correct phasing of Horizontal AFC Circuit by noting that there is approximately 1/4" of blanking visible on the right hand edge of the picture. It will be necessary to turn the Picture (Contrast) control towards minimum and readjust the Brightness Control to see the blanking.

If the receiver cannot pass checks “A,” “B,” or “C” the adjustment of the Horizontal Hold control as noted under “Horizontal Hold Adjustment” should be made.

[Continued on page 50]
SYLVANIA TROUBLESHOOTING CHART

NO SOUND—NO RASTER
Power input circuit
V26, V27
Check B+ Filter Network

NO RASTER—SOUND OK
Brightness control
HV Fuse (0.25) Amp
Ion trap
V19, V20, V21, V22, V23, V24, V25, V26
HV xformer Hor. yoke CRT connections

WEAK PIX—SOUND AND RASTER OK
Tuner fine tuning
Contrast and A.G.C. controls
V2, V3, V4, V5, V6, V7
Check Vid. Det. crystal D410 (Part of T58)

POOR HOR. LIN.
Hor. Lin. and Drive controls
V21, V22, V23
Check 0.033 and 0.1 mf caps. connected to Hor. Lin. coil

POOR VERT. LIN.
Vert. Lin. and Height controls
V16, V17
Check 0.1 and 0.047 mf caps. connected to red lead of Vert. Osc. Trans.

PIX JITTER SIDEWAYS
Hor. Hold and Phasing controls
V18, V19, V20
Check 100 nmf cap. connected to terminal 5 of Hor. Osc. Trans.

SMEAREDPIX
Tuner fine tuning
Contrast and A.G.C. controls
V2, V3, V4, V5, V6, V7, V13
Check Vid. Det. crystal D440 (Part of T58)
Check Vid. Det. and Amp. peaking coils IF and RF alignment

POOR PIX DETAIL
Tuner fine tuning
V3, V4, V5, V6
Check Vid. Det. crystal D440 (Part of T58)
Check Vid. Det. and Amp. peaking coils IF and RF alignment

SOUND BARS IN PIX
Tuner fine tuning
A.G.C. control
V1, V2, V3, V4, V5, V6, V13
Check Vid. Det. crystal D440 (Part of T58)
IF and RF alignment

SNOW IN PIX
V1, V2, V3, V4, V5, V6
A.G.C. control
Antenna and transmission line

AC IN PIX (DARK HOR. BAR)
V1, V2, V3, V4, V5, V6, V7, V13

ENCEGRAVED EFFECT IN PIX
Tuner fine tuning
Contrast and A.G.C. control
V2, V3, V4, V5, V6, V13
Check Vid. Det. crystal D440 (Part of T58)
Check Vid. Det. and Amp. peaking coils

VERT. BARS
Hor. Drive control
V22, V23
Check 68 nmf cap. connected to defl. yoke
Defl. yoke ringing

PIX JITTER UP AND DOWN
Vert. Hold and A.G.C. control
V13, V14, V15, V16, V17
Vert. Int. Network

PIX BENDING
A.G.C. control
Hor. Hold and Phasing controls
V18, V19, V20, V22

AUDIO HUM IN SOUND
V8, V9, V10, V11, V12

DISTORTED SOUND
Tuner fine tuning
V1, V8, V9, V10, V11, V12
Check 0.01 mf cap. connected to pin 5 of V12
Sound and Vid. IF alignment L62, T51
Det. alignment T52

NO SOUND—PIX OK
Tuner fine tuning
Volume control
V8, V9, V10, V11, V12
Speaker (open voice coil or defective connection)
Sound and Vid. IF alignment L62, T51
Det. alignment T52

WEAK SOUND—PIX OK
Tuner fine tuning
Volume control
V1, V8, V9, V10, V11, V12
Check Vid. Det. crystal D440 (Part of T58)
Sound and Vid. IF alignment L62, T51
Det. alignment T52

NOISY SOUND—PIX OK
Volume control
V8, V9, V10, V11, V12
Check sound system for loose connections
Speaker
Sound IF and Det. alignment T51, T52, L62

SYNC. BUZZ IN SOUND
Tuner fine tuning
A.G.C. control
V8, V9, V10
Sound IF and Det. alignment L62, T51, T52
WEAK OR NO PIX—
SOUND WEAK—RASTER OK
Tuner fine tuning
A.G.C. control
V1, V2, V3, V4, V5, V6, V7, V13
Check Vid. Det. crystal D440
 (Part of TS8)
RF and IF alignment

WEAK OR NO PIX—
SOUND OK
Brightness control
V18, V19, V20, V21, V22,
V23, V24, V25, V26, V28
HV xformer

INTERMITTENT RASTER—
SOUND OK
Brightness control
V18, V19, V20, V21, V22,
V23, V24, V25, V26, V28
HV xformer

RASHER BLOOMING
Hor. Drive control
V22, V24, V25, V26, V27, V28
Check 3-1 megΩ res. connected to
plate cap of V24

INSUFFICIENT BRIGHTNESS
Ion trap
Brightness and Hor. Drive con-
trols
V20, V21, V22, V23, V24, V25,
V26, V27, V28
Low line voltage

EXCESSIVE RASTER (PIX SIZE)
Hor. Drive, Size and Height con-
trols
V21, V22, V24, V25

INSUFFICIENT RASTER WIDTH
Hor. Drive and Size controls
V21, V22, V23, V26, V27
Check 0.001 mf and 680 mmf caps.
connected to pin 6 of V20
Low line voltage

INSUFFICIENT RASTER HEIGHT
Height and Vert. Lin. controls
V16, V17, V26, V27
Check 0.047 mf cap. connected to
red lead of Vert. Osc. Trans.
Low line voltage

NO VERT. DEFIL.
V16, V17
Check 0.1 and 0.047 mf cap. con-
ected to red lead of Vert. Osc. Trans.
Dell. yoke
V.O.T. and Vert. Osc. Trans.

NO VERT. SYNC—
VERT. SYNC. OK
Vert. Hold and A.G.C. controls
V13, V16, V17
Vert. Int. Network
Check 0.001 mf cap. connected to
Vert. Hold control

NO VERT. OR VERT. SYNC—
PIX SIGNAL OK
Hor. Hold and Phasing controls
V18, V19, V20
Check 0.0022 mf cap. and 470KΩ
res. connected to pin 2 of V20
A.G.C. control
V13, V14, V15
Horizontal Hold Adjustment

A. Tune in a station and adjust the Channel Selector for best picture quality. Adjust the Picture Contrast and Brightness controls for normal picture.

B. Remove V18 - 6AL5 - Horizontal Discriminator tube.

C. Turn the Horizontal Hold control until the picture moves back and forth across the screen with blanking bar vertical.

D. Replace the Horizontal Discriminator tube and repeat A, B, and C under “Check of Operation” above.

E. If receiver still will not pass these checks, it will be necessary to proceed with “Phase Adjustment.”

Phase Adjustment

A. Turn the core in Ringing Coil - L69 - all the way out counterclockwise. Short out the 4,700 ohm horizontal charge circuit peaking resistor - R264.

With the horizontal size coil set for approximately the correct picture width, and with the horizontal linearity coil adjusted for best linearity, rotate the Horizontal Drive control fully counterclockwise. Slowly turn the drive control clockwise until crowding is visible in the center of the picture. Now carefully turn the control back (counterclockwise) just enough to remove the crowding or vertical lines in the picture or pattern.

NOTE: Do not operate the receiver with the Horizontal Drive control maladjusted.

B. Remove the Horizontal Discriminator tube V18 - 6AL5 from its socket.

C. Carefully turn the horizontal hold (frequency adjustment) screw top of Horizontal Discriminator Transformer - T62 until the picture moves back and forth across the screen with the blanking bar vertical.

D. Replace the 6AL5 in its socket.

E. Adjust the phase adjustment screw bottom of Horizontal Discriminator Transformer - T62 until approximately 1/4” of “blanking” is visible on the right-hand edge of the picture. In order to see the “blanking” it will be necessary to readjust the Brightness Control and turn the Picture (Contrast) control towards minimum.

F. Check the “free-running” of the horizontal oscillator as described under paragraphs “B,” “C,” and “D,” and, if necessary, readjust the frequency adjustment screw on top of Horizontal Discriminator Transformer - T62.

G. Make a final check of the phasing as described in paragraph “E” above. It is important that both the “free-running” and the phasing are correct.

H. Remove the short from across the 4,700 ohm resistor R264 and readjust the Horizontal Drive control as described in “A.” Turn the core in the Horizontal Ringing Coil - L69 - clockwise until approximately 1/4” of “blanking” is again visible on the right-hand edge of the picture.

1. Before the horizontal synchronization circuit is adjusted to the final position, it will be necessary to check the operation as follows:

Slowly turn the oscillator frequency adjustment screw (top of transformer T62) in either direction until the picture suddenly falls out of synchronization as indicated by the presence of a number of diagonal bars. Slowly turn the adjustment screw so as to decrease the number of bars and note the total number of bars visible just before the picture again falls into synchronization. The last number of bars visible must not be less than three, or more than six. The two half-bars at the top and bottom of the screen are counted as only one bar. In order to get an accurate indication of the minimum number of bars obtainable, the adjustment screw must be turned very slowly and carefully once the number of bars has been reduced to six or seven. Turn the adjustment screw in the opposite direction until the picture suddenly falls out of synchronization in the opposite direction and repeat the foregoing procedure. Again, not less than three or more than six bars must be visible just before the picture falls into synchronization.

J. After checking the operation as in “I,” it is necessary to repeat the procedure described in paragraphs “B,” “C,” and “D.”

K. Remove the signal by tuning to a “free” channel, then returning to the original channel. The picture should immediately fall into synchronization.

L. Switch off the power to the receiver for about five minutes and then switch receiver on and check that the picture pulls into synchronization.

TOP VIEW OF RADIO CHASSIS

RADIO-TELEVISION SERVICE DEALER • FEBRUARY, 1954
Replacing Tuner with Standard Cascode Type

Dear Answer Man:

I constructed a TV kit some years ago. Since then I have improved the set in many ways. This is a Model P30 (630TS chassis) 10-inch, converted to a 12½ inch receiver, made by the Philmore Mfg. Co. of New York.

This set has three 6J6 tubes in a 15 channel tuner which is giving me trouble because the points on the switches are becoming separated. Because the set is in wonderful condition I am interested in replacing the tuner. Is it possible to replace this tuner with a cascode type, and what circuit changes will have to be made? Kindly advise where I can purchase the parts, if available, for the 630TS chassis.

C.K.
Chicago, Ill.

Dear C.K.

Because of the many other inquiries concerning the installation of more sensitive tuners in older TV receivers the following information is discussed in a rather broad manner.

Many tuners have been replaced in the 630TS chassis. It is not a very difficult job. The results, after the installation of a cascode tuner, are very worth the efforts. The biggest problem is the mechanical one of mounting the tuner in the chassis, rather than the electrical adaptation of the tuner. This has been made easier with the availability of exact mounting frames for this chassis.

Several different tuners have been made available for this purpose, such as the Colorado cascode tuner. Another favorite is the Standard cascode tuner TV-2232. See Fig. 1. This tuner is obtainable from most local electronic distributors along with the proper mounting frame for the tuner. The Standard cascode tuner provides a considerable improvement in sensitivity and noise reduction in the picture. A mounting frame has been made available that will adapt the tuner to the 630TS chassis with the shaft at the level with the other controls without the need of extension cutting, bending and fitting.

After the old tuner has been removed from the chassis, mount the new tuner if the shaft does not need to be cut. This depends upon the shaft length of the previous tuner and the cabinet. If the tuner shaft has to be cut it should be done before the tuner is installed.

Recommended Procedure For Cutting Shafts

WARNING: Do not remove the drum and drum bracket held to the chassis with a screw.

1. Remove the fine tuning assembly from the tuner chassis.
2. Remove the outer fine tuning shaft assembly, arched spring and fiber spacing washer.
3. Cut the drum shaft to the desired length, making sure that the shaft is clamped securely in a vise near the point to be cut off. Hold the piece of shaft to be removed in the vise so as not to damage the balance of the shaft on the drum. Make sure that during the cutting operation the tuner chassis and drum are supported so that no strain is placed on the shaft bearings. Remove burrs from the cut end.
4. Cut the fine tuning shaft to proper length and remove burrs.
5. Reassemble the fiber spacing washer, spring, fine tuning shaft assembly and bracket in that order.

Installation

Install the tuner physically on the chassis after cutting the shafts to the

Fig. 1—Schematic, Standard Cascode Tuner TV-2232.
proper length and connect the leads as follows:
- **White**—to audio source.
- **Black**—to 6.3 volt heater source.
- **Red**—to 135 volt B plus source.
- **Blue**—to 250 volt B plus source.
- **Output terminal**—to if input on main chassis.
- **Antenna**—to antenna terminals.

Note: The color of the wire indicates, except for white, the tracer color.

Prior to aligning the **if**, check the high B plus voltage to be supplied to the blue lead with the antenna lead disconnected and the two wires shorted. The **dc** voltage should be 250 volts under this condition for optimum operation. The 630TS chassis supplies 275 volts from the B plus supply, so a series voltage dropping resistor will have to be inserted to drop 25 volts which will fulfill this condition.

Split Sound IF Systems

In those TV receivers which have the sound split at the tuner it will be necessary to provide some means of obtaining the sound signal to be fed to the sound if tube.

For those systems which previously required the use of a 21.25 mc if sound "take-off" coil connected to the tuner converter plate circuit, as did the 630TS, there has been made available with the Standard tuner a separate coil, part XM-752. See Fig. 2. This coil can be mounted in a suitable location on the TV chassis and connected as shown in Fig. 3. When more audio output is required, connect the trap as shown in Fig. 4. The sound-if coil can be adjusted for maximum audio output once it has been installed. A simple method of accom-

![Fig. 2—Separate coil, part XM-752.](image)

Fig. 3—One way to connect XM-752. Placing the sound "take-off" when the coil is not handy is shown in Fig. 5. In this circuit the sound is tapped off through a 2 µf condenser without benefit of a trap.

Some TV receivers may not have enough sound rejection built into the if system and will require more trapping than the XM-752 sound "take-off" trap will provide. In these sets it is suggested that an additional trap at sound if frequency be included in the if system.

Fringe Areas

For optimum performance in fringe areas, the B plus supplied to the blue tracer lead should be 250 volts. Approximately .8 to 1.1 volts bias to the age white lead will result in the best sensitivity. A suitable bias control, however, must be available to avoid overload on strong signals.

IF Alignment

Connect a **dc** voltmeter with a 10,000 ohm resistor to the video detector output on the main chassis. Remove the tube shield on the 6J6 tube on the tuner. Capacitive couple an 4M signal generator to the 6J6 tube by slipping a tight-fitting, ungrounded tube shield over the 6J6 and connecting the generator to the ungrounded shield. Set the frequency of the generator to the if recommended by the set manufacturer. Tune L.11 (screw set at an angle on the top of the tuner) for maximum voltage at the video detector. Use a low output for this adjustment.

Note: The Standard cascode tuner coil is normally set at 22.3 mc at the factory, but can be adjusted to any frequency within the range of 19 to 26 mc. Therefore, if other if frequencies are required, or if tube or other parts are replaced, alignment will be necessary.

RF And Mixer Alignment

1. Set station selector to Channel 10.
2. Connect oscilloscope through 10,000 ohm resistor to the test point T (wire loop on top of the tuner).
3. For negative bias connect 3 volts dc to the age lead (white covered wire) from tuner.
4. Feed sweep generator into antenna terminals, sweeping Channel 10.

![Fig. 5—Getting sound "take-off."](image)

5. Adjust C3, C6 and C13 on the top of the tuner for a flat top response curve and maximum gain. Check markers on all channels. They should fall in automatically on all channels.

Oscillator Alignment

1. Turn on set and select a channel to be viewed.
2. Center the fine tuning control.
3. Place a non-inductive screwdriver through the opening and adjust the oscillator coil for the best picture and sound.
4. Repeat this adjustment for each channel that can be received in the area.

Gain can be considerably improved in most cases at least 50%-with the installation of a Standard cascode tuner. This tuner has the distinct advantage for those areas where uhf stations are transmitting. Insertable coils can be used for this type of reception as well as for the uhf reception.
The First Practical, Understandable Book About TRANSISTORS

distributed by HOWARD W. SAMS & CO., INC.

NEW COYNE PUBLICATION

"TRANSISTORS AND THEIR APPLICATIONS IN TELEVISION-RADIO-ELECTRONICS"

by Louis E. Garner, Jr.

Written by an authority on the subject. Explains in easy-to-understand language the theory and practical applications of Transistors. Clears up common misconceptions; clarifies Transistor circuitry, installation, testing techniques, theory and servicing. An important book for everyone in Electronics.

CONTENTS

Chapt. 1: History of Transistor development and its implications for the electronic industry.
Chapt. 2: Non-mathematical explanation of how Transistors work, description of basic types.
Chapt. 3: Physical and electrical properties of transistors.
Chapt. 4: Transistor amplifier circuits.
Chapt. 5: Transistor oscillator circuits.
Chapt. 6: Special Transistor circuits (D.C. amp., R.F. det., Clipper, Phase Inverters, etc.).
Chapt. 7: Transistor Components (sub-miniature parts and power supplies).
Chapt. 8: Care and servicing of Transistors.
Chapt. 9: Practical Transistor circuits (experimental circuits with parts values, audio and r.f. circuits).
Chapt. 10: Reference data; commercially available Transistors and their characteristics, etc.

Have ALL the latest information on Transistors in this authoritative, low cost book—it’s a “must” for your library.

100 PAGES: 5½ x 8½: $1.50

ORDER CTB-7. Only....

HOWARD W. SAMS & CO., INC.

Order from your Parts Jobber today, or write direct to Howard W. Sams & Co., Inc., 2209 East 46th St., Indianapolis 5, Ind.

My (check) (money order) for $ enclosed. Send copy(s) of “Transistors” (CTB-7) at $1.50 per copy.

Name: ________________________________

Address: ________________________________

City: ___________________ Zone: __ State: __

The "inside story" of Transistors for Service-men, Engineers, Amateurs and Experimenters

"TRANSISTORS AND THEIR APPLICATIONS IN TELEVISION-RADIO-ELECTRONICS"

by Louis E. Garner, Jr.

Address: ________________________________

RADIO-TELEVISION SERVICE DEALER • FEBRUARY, 1954

STOP SCOUTING AROUND FOR HARD-TO-FIND CAN-TYPE ELECTROLYTICS!

Your Sangamo Jobber can supply all your “twist-tab” needs

Whether you need a hard-to-find capacitor for an obsolete set, or the latest size for any 1953 model, you can make just one stop for all electrolytic replacements—your Sangamo Jobber. He carries the most complete line of twist-tabs in the industry... and he has them IN STOCK!

Sangamo Type PL Electrolytics are used as original equipment by all major manufacturers—they are exact replacements—they assure long life and dependable performance at 85° C and under conditions of high surge voltages and extreme ripple currents.

Make your Sangamo Distributor your “headquarters” for all your capacitor needs. He can help you because he stocks...

Sangamo... still the most complete line in the industry

THOSE WHO KNOW... CHOOSE SANGAMO

SANGAMO ELECTRIC COMPANY
MARION, ILLINOIS

SCS4-1
Universal Lightning Arrester

Introduced by (Vee-D-X), La Pointe Electronics Inc. this product is believed to be the first hermetically sealed arrester with completely encased electrodes fully protected from moisture and deterioration due to weather aging. Quick installations can be made without wire stripping, cutting or wire separation. Form fitted channels assure positive anchorage for all popular types of lines.

New Peak-To-Peak VTVM

Radio City Products Company, Inc., 152 West 25th Street, New York 1, N. Y., has announced VTVM, Model #655. This unit gives a true reading measurement of complex and sinusoidal voltages, RMS value read directly, for the analysis of waveforms in video, sync., and deflection circuits. The model provides complete versatility of measurement and serves all equipment utilizing any type of waveform or DC.

Remote Control TV Boosters

With Blonder-Tongue’s 2-piece remote control unit, any B-T television amplifier, uhf converter or distribution unit may be operated automatically from the TV set “On-Off” switch. The power control unit of the Model RC-1 plug into any 117 volt A.C. outlet and receives the TV set line cord. A single heavy duty 300 ohm line is used between the two parts to carry A.C. power and TV signals back at the same time.

New Feed-Thru Bushing

Walco Electronics Corporation has developed a practical, new Feed-Thru Bushing that can accommodate any and all popular TV lead-in wires. It also has provision for terminating to open line, enabling the serviceman to bring a 300 ohm twin lead-through a wall and into a room. The Walco bushing is 15¢ over-all and fits walls up to 1/2 thick. It requires a 3/8" hole and can easily be cut to fit with knife.

Marker-TV Bar Generator

Electronic Measurements Corp., 280 Lafayette St., New York, N. Y., has announced a new RF-AF-Crystal Marker-TV Bar Generator. KMC Model 709 gives complete coverage from 18 cycles to 108 megacycles on fundamentals. It provides a bar generator for TV adjustments with a variable number of bars available for horizontal or vertical alignment, square wave generator to 25 kilocycles.

Pre-Inspection Kit

Duluth Company, Inc., Keyport, N. J., is now giving dealers absolutely free of charge an inspection kit as part of a buy-back offer of $25.00 worth of needles for only $12.50. This kit includes a microscope and electro-wire cloth, a professional tool for replacing needles and a plastic kit box. The microscope has a fine 50 power wide angle lens which enables dealers to quickly and accurately examine needles without removing them from the cartridge.

Remote TV Control Unit

A universal TV remote control unit which may be attached to any conventional TV receiver is now in production by the Gonset Company, 881 South Main Street, Burbank, California. Featuring a standard coil cascode tuner ahead of a booster amplifier, the unit not only permits channel selection from the viewing position but also provides improved reception in weak signal areas, particularly on older sets.

Miniature Oscillograph

A new wide-band, quantitative oscillograph which features quality, laboratory-performance and versatility, with "brief-case" portability, is announced by the Du Mont Laboratories, Inc. The new instrument, designated the Du Mont Type 201-A, measures 9½ high x 6½ wide x 16½ deep, and weighs only 20 pounds. Mechanical specifications are available from the Technical Sales Department at 700 Bloomfield Ave., Clifton, N. J.

Open Wire Transmission Line

Fiveto Inc., of Pittsburgh, introduces their Model S-auerline—the newest open wire transmission line used for uhf and vhf lead-in purposes. The insulator is designed for minimum signal loss and is the newest type of low loss material available, called polychemline. The invariance of the wire is 300 ohms and is good in wet and dry weather. No standoffs are necessary.

ATR Inverters

New models of ATR Inverters for operation from 6 volt or 12 volt storage batteries in automobiles and trucks have recently been announced by the American Television & Radio Company, 500 East Fourth Street, St. Paul, Minnesota. Provides 110 volt AC 60 cycle output in various wattage capacities for the operation of test equipment and other related small electrical or electronic apparatus.
A bulletin on the new Du Mont Type 322 Cathode-ray Oscillograph is now available from Technical Sales Department, Allen B. Du Mont Laboratories, Inc., Clifton, N. J.

A new Catalog has just been published by the Precision Equipment Company. Many new items have been added to Precision’s standard line consisting of steel shelving, lockers, ladders and other storage and maintenance equipment for industrial and institutional use. Each item is clearly illustrated and priced. Cartoons by nationally famous cartoonists are included throughout the publication. Write Precision Equipment Co., 5702 N. Milwaukee Ave., Chicago 41, Illinois, for your copy.

Catalog RC-9 contains information on the complete line of fixed and variable composition resistors, line and slide switches, fixed composition capacitors, powdered iron, molded coil forms, and Ceramag ferromagnetic core manufactured by the Electronic Components Division, Stackpole Carbon Company, St. Mary’s, Pa. Complete electrical and mechanical specifications, dimensions, and application data for all standard Stackpole electronic components are given. Copies of the new Catalog RC-9 are available on letterhead request to Stackpole.

The 19th edition of the Tung-Sol Electronic Tube Characteristics Manual contains technical data on receiving and cathode ray tubes. Many charts and diagrams supplement the text. In the back of the manual there is a special 20-page section which contains basic marketing information to help servicemen plan a local promotion program for their own business. The Manual is distributed through Tung-Sol tube wholesalers.

Jensen Industries, Inc., 329 South Wood, Chicago, has issued a two-color pocket-sized booklet on the care of records, needles, pickups, and cartridges. The booklet, designed as a consumer publication available for dealer distribution, illustrates needle wear comparison, information on caring for your phonograph and has included a comprehensive chart showing how to determine the exact needle replacement for your specific record player.

A new bulletin describing television antennas and accessories for uhf installation has just been published by RMS (Radio Merchandise Sales, Inc.), 2016 Bronxdale Ave., New York 62, N. Y. Its six pages are devoted to complete description of yagis, bow ties, corner reflectors and other antennas designed and manufactured by the company for uhf. The newest uhf lightning arresters are also discussed. Copies obtainable from RMS.

A new notebook providing practical technical data on uhf-uhf tuners, uhf antenna performance, uhf propagation characteristics and uhf converters has been published by The Paul H. Wendel Publishing Co. The new notebook, Number 7 in the Television Technicians Lecture Bureau series, was written by Edward M. Noll. The author has presented uhf data in three logical steps: discussion of uhf tuners, basic uhf considerations and useful uhf service information. Tabular data on uhf TV Channels and wavelengths in inches at center frequency is also given. The 72-page notebook contains over one hundred illustrations, including block diagrams, schematics and photographs of components and circuit sections to supplement readily understandable text. Copies may be obtained by remittance of $1.00 direct to The Paul H. Wendel Publishing Co., Inc., Post Office Box 1921, Indianapolis 6, Indiana.
ASS'N NEWS
[from page 16]

NEDA—Chicago
Twenty-eight distributors attended the recent monthly meeting of independent parts distributors in the Chicago area sponsored by the Chicago Chapter of the National Electronics Distributors Association. Verne Swanson, staff member of the Vocational Guidance Association of the International Harvester Co., addressed the group on a timely subject entitled “On How You Handle Your People.” Lantern slides added to the lecture. An enthusiastic question and answer period followed Mr. Swanson’s remarks.

Council of Radio and Television Service Associations

Proper care and maintenance of home radio and television receivers will be stressed in an intensive public service campaign conducted jointly by the Council of Radio & TV Service Dealers and Service Technicians Associations and WFIL and WFIL-TV. The Council represents all of the service associations in the station’s coverage area, with all cooperating in this project.

David Kranz, chairman of the Industry Relations Committee for the Council, announced that more than 2,500 service men from Eastern Pennsylvania, New Jersey, and Delaware, will participate in this campaign.

In addition to on-the-air promotion of this campaign, displays and handbills will be distributed by the Council to its members for use at the neighborhood level. Periodicals published by the Council will also be used extensively to point up the advantages of the campaign, and to enlist the active cooperation and support of the members in this project.

LIETA Issues Monthly Journal

RTSD congratulates the Long Island Electronic Technicians Association (Oceanside, N. Y.) on putting out a terrific monthly gazette, the LIETA News. The 12-page mimeographed journal reports that members of LIETA have approved a plan whereby the Association will guarantee all repairs made by a LIETA member.

LIETA News contains the Association’s “Code of Ethics” concerning the serviceman’s handling of his job and relation to the public. Also explained is the “Share-A-Day” plan whereby members who are not busy may find a day’s employment with technicians who are busy.

LIETA News carries reports on meetings, lectures and discussions of color TV and other servicing points. In addition, the paper contains a page for women (who have formed a Ladies’ Auxiliary to LIETA), classified ads, and personal news.

NATESA Honors Publisher

The electronics industry, the City of Indianapolis, the Chamber of Commerce and nearly a hundred of its leading citizens joined here on Thursday noon, January 7th, to pay tribute to Howard W. Sams, founder of Howard W. Sams & Co., Inc., Indianapolis, technical publishers, when Sams was presented with the “Friend of Service Management” Award of the National Alliance of Television-Electronics Service Associations at a luncheon at the Indianapolis Athletic Club.

As guests of Mayor Alex Clark and the Chamber of Commerce, the city’s leading industrialists, bankers, merchants and educators hear Frank J. Moeh, of Chicago, president of NATESA, laud Sams for his efforts in behalf of the service business and his contributions to the training of service personnel. William Book, executive secretary of the Indianapolis Chamber of Commerce served as master of ceremonies at the award luncheon.

56
RADIO-TELEVISION SERVICE DEALER • FEBRUARY, 1954
COLOR TELEVISION WILL NOT REQUIRE SPECIAL ANTENNAS

Color television will not require new or special antennas, reports Harold Harris, Vice President in Charge of Engineering of the Channel Master Antenna Development Laboratory, Ellenville, New York.

This break for consumers is due to the fact that color TV will be broadcast over the same frequencies as black and white. Since the size and design of a television antenna determine the frequencies received, it makes no difference whether a particular frequency is used for color or black and white.

"With the advent of color television, the antenna would assume even greater importance than it does today," Harris noted. In order for the color picture to be reproduced faithfully and clearly on the screen, a particularly strong, clear signal must be brought into the television set. An antenna which may provide an acceptable black and white picture will, in many cases, not produce a satisfactory color picture.

"If the antenna purchased now is selected with care, it not only will furnish superior black and white pictures today but also will be able to provide satisfactory color TV reception in the future," said Harris.

Channel Master recently announced a new $1,500,000 TV antenna plant with a production potential of over four times its present factory.

1ST NEW ENGLAND TELEVISION EXPOSITION

New Englanders are enjoying an opportunity to be the first people in the nation to view many TV and Electronic advancements of "Tomorrow" at the New England Television Exposition held in Worcester, Mass. Feb. 5, 6 and 7. The purpose of this 1st New England Television Exposition is to give this section of the nation a closer and clearer picture of the "behind-the-scenes story" of Television.

Mr. Ansel E. Gridley, Chairman of the Exposition Steering Committee, reports that in addition to exhibits representing the leading TV set manufacturers, unusual demonstrations of every type of television antenna and industry accessories can be seen on the Exhibitors Roster, including a special section of the Exposition called "TV the American Way."

RETMA REPORTS ON SET PRODUCTION AND SALES

Television set production during the first 10 months of 1953 set a new record while the radio output remained at the highest level since 1950, the Radio-Electronics Television Manufacturers Association reports. Total production in the first 10 months was 6,204,803 TV sets and 11,201,656 radios. RETMA reported, compared with 8,394,707 television receivers and 8,398,750 radios manufactured in the same 1952 period. Radios with FM circuits manufactured in October totaled 19,797. In addition, 5,002 TV receivers with FM facilities were produced.

During the period, 4,922,128 TV receivers and 4,911,115 radios, excluding automobile sets, were sold through retail outlets.

These RETMA surveys on retail radio and television sales are conducted with the cooperation of dealers throughout the country as a service to the radio and television industry.

Pyramid Announces Cash Prize Contest for Servicemen

A contest for servicemen that offers $3,600 in cash prizes has been an-

MR. SERVICEMAN and TECHNICIAN

Thanks for Your Acceptance...

FLYBACK TRANSFORMER TESTER

Has PROVEN ITSELF!

- Takes the Guesswork Out of Horizontal Sweep Circuit Servicing
- Saves Time Inexpensive Easy-to-Operate

Detects shorted turns in Flyback Transformer and indicates as low as one shorted turn.
Tests transformer while in Television Receiver.
Also tests continuity on yokes, coils, speakers, switches, etc.

Suggested Dealer Net Price $39.95

SEND FOR FREE INFORMATION

KIRBY PRODUCTS CORPORATION, 20 East Herman Street, Philadelphia 44, Pa.

- "How to Test Flyback Transformers" Instruction Manual
- "Specification and Data Sheets"

Name. ___________________ Address _______________ State. ____________
announced by the Pyramid Electric Company of North Bergen, N. J.

The contest begins Feb. 1 and will continue until the end of April. First prize in the Pyramid contest will be $2,000. The second and third prizes are $500 and $100, respectively. In addition, there are 500 other cash awards.

The contest entails completing the sentence: "I like Pyramid capacitors because..." in 25 words or less. Entry blanks for the contest are available through jobbers, who will counter-sign each one submitted. Duplicate awards will be granted to the lucky jobbers whose servicemen win prizes. Each entry in the competition must be accompanied by the top of a box from a Pyramid dry electrolytic capacitor. There is no limit to the number of entries that may be submitted by each serviceman.

Simpson to Send Middleton On Servicemen's Lecture Tour

Bob Middleton, formerly with RCA and Precision Apparatus, has joined the sales-engineering division of Simpson Electric Company, Chicago. In his new position, which became effective January 2nd, Bob Middleton will conduct lectures for servicemen throughout the country. A novel twist will be his open invitation to all servicemen who attend the meetings to bring their "can't-fix-it" repair problems to the sponsoring jobber the following morning. Bob will personally tackle each repair problem with Simpson test equipment.

Permo Enlarges Plant

Sherman E. Pate, President of Permo, Inc. announced today that contracts have been let for the construction of a new building addition of 17,000 square feet to its plant at 6101-6133 Ravenswood Avenue, Chicago.

Teletypewriter Service

Clarostat Mfg. Co., Inc., Dover, N. H., announce that they are now connected to the nation-wide teletypewriter service. Thus another channel has been added for expediting customer orders and inquiries. The exchange number is DOVER, N. H., TWX 275-U.

Reon Tube Corp. Protects Buyers with Escrow Fund

Recognizing the necessity of instilling confidence in his product—as well as in his company—Leon Resnicow, president of Reon Tube Corp., in Maspeth, L. I., manufacturers of TV cathode ray picture tubes, has established an escrow fund in the Royal Industrial Bank. And to further protect his distributors and their dealers Reon is also paying the controversial federal excise tax on all tubes.

New and Popular

Mueller PRODUCTS

<table>
<thead>
<tr>
<th>COMPLETELY INSULATED</th>
<th>NEEDLE CLIP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alligator Olio</td>
<td>Pierces Insulation—makes quick contact anywhere along insulated wire. No. 50-G.</td>
</tr>
</tbody>
</table>

Send for Free Samples & Catalog 1905

Mueller Electric Co.
1605 E. 31st St., Cleveland 14, O.
KEY TEST POINTS

[from page 31]

being detected. If the negative voltage is not measured at this test point, the trouble must lie between the video detector and the FM detector; particularly in the FM detector transformer itself.

The Sound IF Stages

One or two stages of FM sound if amplification are usually employed between the video detector and FM detector. The servicing of these circuits is rather simple consisting mainly of checking voltages and measuring resistances of the components in these stages. The grids can be scratched; the tubes clicked in and out of the socket or the plates of the tubes sparked to chassis to produce noise in the speaker indicating whether or not the sound system is operating.

In many types of sound if amplifiers, the developed grid bias indicates the presence of signal at the stage. Sound if stages are sometimes supplied with fixed cathode bias, and sometimes are biased by the signal driving the stage causing grid current to be drawn which develops a negative voltage at the grid. In the latter case, the negative bias is due to the signal and therefore indicates the presence of a signal at that particular grid circuit. See Fig. 3.

This is a very convenient method of signal tracing the 4.5 mc sound if amplifiers using this method of biasing. It is important that a resistor of about 100K ohms or higher be used in series with the meter lead to prevent loading of the circuit when making these tests.

The presence of the 4.5 mc signal voltage can be confirmed by varying the fine tuning control which will increase and decrease the voltage. The negative voltages can be as low as 2.5 volts in some receivers and as high as 8 volts in others. The important consideration is whether or not the negative voltage is present, thereby indicating the presence of the 4.5 mc signal.

FM Detector Alignment

As pointed out previously with intercarrier receivers the sound if frequency is 4.5 mc, which is the result of the beating of the two carriers. The difference between the two carriers is fixed by the television transmitter and cannot be changed in the receiver. Therefore, no matter how the fine tuning control is adjusted, the resultant signal fed to the sound if stages is 4.5 mc. Actually, the fine tuning control changes the local oscillator frequency.

This changes the if frequencies of the FM and video carriers but cannot affect their frequency separation of 4.5 mc. What does change with the different settings of the fine tuning control is the amplitude relationship of the FM and video carriers. The 4.5 mc resultant beat signal can be increased or decreased in amplitude with different settings of the fine tuning control but the signal provided by the station is probably more accurate than most frequency generators in use in repair shops.

In aligning the FM stages, the fine tuning control is adjusted to the position that will provide the best possible picture. A dc voltmeter is connected with the polarity shown in Fig. 3; the negative lead of the meter being connected to the plate of the ratio detector tube. T1 and T2 are adjusted for maximum negative voltage at the test point. Also any sound take-off coils can be adjusted for the same maximum indication. This adjusts the sound if circuits and the primary of the FM detector transformer. This does not apply to the secondary.

In the adjustment of the secondary winding of the FM detector transformer, two 100K ohm resistors are

T-HIS

VOLTAGE
ADJUSTER

T-8394M MANUAL
VOLTAGE ADJUSTER

IS EASY TO USE ON SERVICE CALLS

Where low voltage is affecting TV reception the serviceman can detect the conditions immediately with a T-8394M Acme Electric Voltage Adjustor.

To determine line voltage, set the tap switch at 115 volts. The meter reading will show the exact incoming line voltage.

REPRODUCING LOW VOLTAGE EFFECT

The T-8394M Voltage Adjustor can also be used to reproduce the operating condition about which the customer complained. For example, the customer complains that evening program pictures flicker and shrink but daytime pictures are alright.

This indicates low voltage conditions in the evening. By adjusting the tap switch to 97 volts the condition may be duplicated. This quickly convinces the set owner that good performance can be sustained with a T-8394M Voltage Adjustor. A sale is made.

NOT A GADGET

The T-8394M Voltage Adjustor is small and compact. It is supplied with a primary cord and a secondary receptacle. Just plug the cord into any convenient outlet — then plug the television cord into the secondary receptacle. No tools are necessary.

The Acme Electric T-8394M Voltage Adjustor is a high quality variable voltage type transformer that has been on the market for 25 years. Regulation is adjustable over a range from 95 to 125 volts. It is a dependable, low cost voltage regulator that can adjust voltage to the exact amount necessary for top TV performance. Write for Bulletin VVA-190.

ACME ELECTRIC CORPORATION

MAIN PLANT: 462 Water Street • N. Y.
West Coast Engineering Laboratories: 1375 West Jefferson Boulevard • Los Angeles, Calif.
In Canada: Acme Electric Corp. Ltd.
50 North Line Road • Toronto, Ontario
Audio Amplifier and Output Stages

If the normal negative voltage is measured at the FM detector key test point, the audio trouble is after the test point towards the audio amplifiers and speakers. In this case, the audio amplifier and output stages can be checked as the other stages by disconnecting the tubes in and out of the socket to determine if making and breaking the connections results in static noise bursts in the speaker. Other checks which can be made are to scratch the grids of the audio tubes or to spark the plates of the tubes to chassis momentarily. Another means of signal tracing is to feed a 60 cycles filament voltage signal into the grids and plates of the audio tubes with a 1 µf condenser to isolate the 60 cycle source from the points being tested.

Another quick and easy method is to place a finger on the grid of the audio amplifier or at the top of the volume control whenever is convenient. A 60 cycle signal will be transferred through the amplifier into the speaker. These checks are to be made after tubes have been substituted for in the suspected stages.

If no audio is heard when the tubes are checked in and out of the sockets, the secondary of the audio output transformer or voice coil may be open. This can easily be determined with an ohmmeter. However, remember that these two items are in parallel and therefore if one or the other is open, there will still be resistance of a low value measured from the top of the secondary and the voice coil when they are connected together in the circuit.

If the voice coil is not open, there should be a click heard when the lead of the ohmmeter is connected because of the battery voltage in the meter energizing the voice coil. If the click is heard, suspect the transformer and check by resistance measurements, making sure to open one leg of the transformer. In most receivers the plate voltage fed to the audio output tube can be measured by removing the connected in series as shown in Fig. 4. These resistors should be closely matched. The dc voltmeter is connected between the junction of the two resistors and the tertiary section of the FM detector circuit. The secondary core is adjusted for zero voltage between the two points indicated in Fig. 4 and is therefore balanced. The voltmeter in general used by technicians can be adjusted off center for the zero voltage setting by turning the zero adjustment. This will permit a definite zero adjustment of the secondary of the FM detector transformer.

VHF-UHF Marker Generator

- Crystal controlled frequency coverage from 425 to 225 mc on fundamentals — harmonic output on UHF.
- Optically magnified screen permits most accurate marker setting.
- Write for technical details...

THE HICKOK ELECTRICAL INSTRUMENT CO.
10533 DuPont Ave., Cleveland 8, Ohio

The Dollar You Make is Yours ONLY if There are NO CALL BACKS

The Hickok, 3911 Canada: Available S. Michigan Ave., Chicago Spearkers permits output on fundamentals ELECTRIC from on UHF. from Generator accurate marker setting. for 4.25-UHF me... for 225 me... is energizing of voice coil. If the click is heard, suspect the transformer and check by resistance measurements, making sure to open one leg of the transformer. In most receivers the plate voltage fed to the audio output tube can be measured by removing the

RMC DISCAPS

Insure Your Service Profits by Using the 1000 V.D.C.W. Ceramic Capacitors that TV Manufacturers Depend on.

NOW, RMC DISCAPS are supplied in handy, reusable molded plastic boxes. Contents and ratings can be determined at a glance. You'll find dozens of uses for the box in your tool kit.

Remember, you can install 1000 V.D.C.W. DISCAPS at no extra cost and end your call-back problems.

RADIO MATERIALS CORPORATION

Factories at Chicago, Ill. and Atlanta, Ga.
For the name of your nearest RMC jobber contact:

JOBBERS SALES COMPANY

NATIONAL DISTRIBUTORS FOR RMC DISCAPS

FOR TV-RADIO SERVICE LIBRARY

IF HERE IS LATE INFORMATION IN A HANDY FORM FOR RADIO AND TELEVISION REPAIRMEN, SERVICEMEN AND STUDENTS

2 VOLS. $6 COMPLETE $12 A PI, PAY ONLY 1 NO.

AUDELS TV. RADIO SERVICE LIBRARY

Highly Endorsed—1001 Parts—Over 1502 Pages—625 Illustrations, Diagrams of Parts Presents Important Subjects of Modern Radio, Television, Industrial Electronics, P.M. Public Address Systems, Auto, Marine & Aircraft Radio, Phonograph Pick-ups, etc.

IT PAYS TO KNOW!

Get this information for yourself. 7 DAY TEST—ASK TO SEE IT!

MAIL ORDER

AUDELS PUBLISHERS, 49 W. 43 ST., N.Y. 10, N.Y.

RMC DISCAPS at a SPECIAL BARGAIN PRICE

ORDER NOW FOR IMMEDIATE DELIVERY

MAIL ORDER

Name
Address
Occupation
Employed by

RADIO-TELEVISION SERVICE DEALER • FEBRUARY, 1954
tube from the socket and making contact with the plate terminal into the tube socket from the top of the chassis, thus confirming that the primary of the audio output transformer is not open.

The Use Of An Output Meter

In checking circuits in an audio system, the audio signal can be traced through the stages with an output meter which is nothing more than an ac meter with a dc blocking condenser in series with the lead to the meter. The output meter will indicate the presence of signals in the audio stages and is made use of in alignment. It can also effectively be used in other stages where a scope is not immediately available and it is desired to know whether signals are present as in the video amplifier stages.

The audio voltage at the top of the volume control can be measured with the output meter to be sure that the audio signal is being applied to control from the detector circuit.

Audio Hum

If the trouble is hum in the audio signals from the speaker, turn the volume control to the position of minimum volume. This puts the audio amplifier grid at ground potential. See Fig. 5. In this position, examine the receiver for hum. If the hum is present, it is probably due to poor filtering in the B plus supply or hum pickup in the audio amplifier grid circuit. In the grid circuit, a large coupling condenser in combination with a large grid leak resistor is used to couple the signal from the volume control. Across this resistor-condenser circuit hum voltages can easily be developed because of the high impedance. Move any poorly filtered leads from close proximity to this junction. If grounding the grid of the audio amplifier removes the hum, it indicates that this is the possible cause of the trouble. If grounding the grid of the audio output stage does not remove the hum, it is probably due to poor B plus filtering and the electrolytics should be checked.

If hum is experienced only when receiving a signal the trouble is most likely due to improper alignment of the FM detector or video and sound if. This takes for granted that the tubes are not defective. The FM detector alignment then have to be checked as previously discussed, and if the hum is still present, the video and sound if alignment should be investigated, particularly the circuit adjustments which involve the sound shelf.

COLOR TV

[from page 27]

In the Lawrence tube, instead of the color phosphors being arranged in triads to form a single color element, the color phosphors are arranged in lines. By means of voltage applied to a grid network in front of each line, the beam is directed to the proper point to be scanned. Although the principle of fixing the color dots varies between the RCA and CBS-Hytron tube, the dynamic operating method of each is basically the same.

This series could not cover all aspects of the theory and problems of color TV. As an indication of the complexity of pioneer sets, the RCA set discussed has 31 potentiometer controls.

Setting up and aligning these receivers will, of course, come from practice, but speedier servicing can come from previous study of the principles of operation. If color kits appear on the market, get and build one, if only for the adjustment and alignment experience.

STANCOR HAS EXACT REPLACEMENT FLYBACKS FOR ALL THESE TV MANUFACTURERS' SETS...and others will be available soon

Stancor TV replacements are listed in Sams' Photofact Index, Counterfacts, Rider Manuals and Tek-Files.

CHICAGO STANDARD TRANSFORMER CORPORATION
3586 ELSTON AVE., CHICAGO 18, ILL.

EXPORT SALES: Roburn Agencies, Inc.
39 Warren Street • New York 7, New York

RADIO-TELEVISION SERVICE DEALER • FEBRUARY, 1954
for like - new performance
replace with original ROGERS full-focus deflection yokes

Since most of the better TV sets are made with ROGERS Deflection Yokes, this same top quality yoke should be used for replacement. With over 25 years of electronic know-how, ROGERS Precision Engineered Products make TV sets perform like new.

ROGERS Full-Focus Deflection Yoke assures double brilliance with knife-edge sharpness over the entire screen. Each ROGERS yoke—precision tested for perfect focus—is designed for peak performance and extra long life.

"the eye tells why"
packaged individually—attractively

ROGERS ELECTRONIC CORP. 43-49 Bleecker St. New York 12, N.Y.
FREE: Send for new catalog "B" listing TV set models and ROGERS Yoke and Flyback replacements, or see your jobber.

That's for Me for TV!

insl-x
INSULATING SPRAY

Higher dielectric strength than any other insulating spray on the market...Proven by twenty years of use by leading component parts manufacturers...Now packaged in an easy-to-use Spra-tainer especially for you!

These are just a few of the many features that make insl-x E-16 best for you! The extremely high dielectric strength of insl-x assures positive insulation. Use insl-x, the material that was designed to do one specific job—INSULATE.

Available in clear, aluminum, glass and flat black
$1.95 LIST
12 OZ.

Fig. 6—Signal generator and indicating device shown in position for tracing signal through video i-f.

On occasion it has also been recommended that the vertical and horizontal oscillator tubes be removed to minimize the creation of spurious signals from the latter generators. This, however, is not advisable in modern receivers because removal of these tubes may upset load factors on the power supply and change voltages which are applied to the video i-f stages. At the same time removal of the horizontal oscillator tube will also eliminate the flyback voltage and will thus obliterate the voltage boost potentials derived from the damper tube. Since many receivers feed the voltage boost potentials to various circuits, over-all performance will be seriously affected and proper alignment will be difficult.

It is preferable to bond the sweep generator, marker, and other units to the chassis of the receiver to minimize losses and the effects of floating grounds. This also may not always be feasible because some receivers have

MOVING?
When you change your address please notify our circulation department as soon as possible. This is to your advantage, since it takes approximately 5 weeks to have your stencil changed and duplicate copies cannot be sent. Be sure to give your old as well as your new address.

RADIO-TV SERVICE DEALER
67 West 44th St.
New York 36, N. Y.
“hot” chassis which would cause power shorts. If possible, however, the generators should be grounded where permissible and shielded cable used.

The output from the generator should be kept as low as possible while still getting an indication on the oscilloscope. An overload which would result from an excessive output from the sweep generator would cause saturation of the video if amplifiers and this would result in the pattern giving a false indication of having a flat top. When the video amplifiers are working at saturation the output level will be constant for various degrees of alignment adjustments and therefore cannot be adjusted properly by observation of the response curve.

The same holds true of the age bias furnished by the system. The age system should be made inoperative by removing the age amplifier tube or by disconnecting the age bus from the age rectifier or amplifier. A substitute age voltage of a fixed value (approximately 4 volts) should be applied to the age circuits. If this isn’t done an increase in gain, which results as the if’s are brought into correct alignment, will cause an increase in age bias, which in turn reduces the gain. Thus, the output waveform would not show variations in amplitude which are necessary during the alignment procedure. Of greatest importance is the accuracy of the marker generator and the flat output of the sweep generator. The marker generator should be calibrated against a crystal calibrator unit or crystal markers should be used. (Calibration of television alignment generators was covered in the July 1951 issue of Radio-Television Service Dealer.)

The sweep generator does not have to be accurate in terms of frequency because the marker will indicate the correct frequency required. The sweep generator should, however, have a substantially flat output over its entire sweep range. If not, it will give a false indication of a perfect response curve when actually some of the amplitude may be contributed by a decline or an increase in amplitude at some portions of the sweep from the sweep generator.
"TIP WRENCH"
GETS NUTS, BOLTS AND SCREWS
Into "Hard-To-Get-At" Places—
HOLDS THEM FIRMLY
WHILE TIGHTENING

Or, "TIP WRENCH" goes in and un-
loosens them and takes them OUT. "TIP
WRENCH" is built to work in deep. It
holds nuts, bolts and screws when
fingers can't hold them. With "TIP
WRENCH" you can stop fumbling and
save valuable minutes in either REPAIR
or LINE PRODUCTION WORK... In
total, it SPEEDS THE JOB—SAVE THE
COST MANY TIMES OVER.

"TIP WRENCH"
SOCKET
POCKET-WRENCH

NEEDED IN EVERY
TOOL BOX
HAS ALL
THESE FEATURES:

1. It grips—starts—tightens (or loosens)
 Just one setting.
2. It GRIPS FIRMLY. A nut or bolt won't
 slip or turn. For screws, the screw driver
 blade—ow in each jaw—engages the slot
 in the screw head.
3. By thumb pressure on the plunger head,
 the jaws slide out and OPEN, the nut,
 bolt or screw is inserted, gripped firmly,
 and the user is ready to go and com-
 plete the job.
4. "TIP WRENCH" is a TOUGH TOOL—
 FOR TOUGH JOBS. Built of finest ma-
 terials and precision manufactured... It's
 RUST PROOF, too.
5. SHOCKPROOF. Has a tough Vinylite in-
 sulated shank.

Knurled—Hardened Steel Jaws slide in
form-fitting barrel which "take the pres-
sure" when tool is in use.

7. Capacity: No. 2 to No. 12 Nut or Screw.

THREE
CONVENIENT SIZE:

No. 1. Capacity: No. 2 to No. 6
Nut or Screw. 4 1/2"

No. 2. Capacity: No. 6 to No. 12
Nut or Screw. 5 1/2"

No. 3. Capacity: No. 6 to No. 16
Nut or Screw. 4 1/2"

EACH $1.35
ORDER A SET

ORDER THROUGH YOUR JOBBER
If he cannot supply immediately, ORDER
DIRECT—but GIVE US YOUR JOBBER'S
NAME. SAVE MONEY & TIME—WITH
"TIP WRENCH" Write For Literature
Sold on A Money-Back Guarantee
Address "TIP WRENCH" DIVISION
SMITH HEAT TREATING CO.
5885 Wilmington Ave., Los Angeles 1, Cal.

Advertising
Index

Acme Electric Corp. 59
Aeroxox Corporation 42
All Channel Antenna Corp. 56
American Microphone Co. ... 12
American Phenolic Corp. 15
Astron Corporation 26
Audel Publishers 60
Balden Manufacturing Co. 2
Bussmann Manufacturing Co. ... 1
Century Electronics Co. 64
Channel Master Corp. 8, 9
Chicago Standard Transf. Corp. 61
Columbia Wire & Supply Co. 58
Continental Carbon, Inc. 63
Cornell-Dubilier Electric Corp. 14
General Instrument & Appliance Corp. ... 66
Guardian Elec. Manufacturing Co. ... 63
Hickok Electrical Instrument Co. ... 60
Inst-X Sales Company 62
Jensen Industries, Inc. 58
Kirby Products Corp. 57
Mueller Electric Company 58
Oxford Electric Corp. 60
Precision Apparatus Co., Inc. ... Cover 3
Pyramid Electric Company 19
Radiant Corporation 4, 5
Radio Materials Corp. 60
Raytheon Manufacturing Co. 13
RCA Tube Dept. Cover 4
Rider, John F., Publisher, Inc. ... 42
Rogers Electronic Corp. 62
Sams, Howard W. & Co., Inc. 53
Sangamo Electric Company 53
Smith Heat Treating Co. 64
Snyder Manufacturing Co. Cover 2
South River Metal Prods. Co. 64
Standard Call Products Co., Inc. 28
Sylvania Electric Products, Inc. 17
Telrex, Inc. 20
Triplett Elec. Instrument Co. 32
Tung-Sol Electric, Inc. 6, 7
TV Products Company 30
Walsco Electronics Co. 11
Wen Products, Inc. 55
Weston Elec. Instrument Corp. ... 24

SOUTH RIVER METAL
PRODUCTS CO., INC.
SOUTH RIVER, N. J.
PIONEER AND OUTSTANDING PRODUCER OF FINEST LINE OF ANTENNA MOUNTS

SOUTH RIVER 55

ONLY $4.95
or C.O.D.

THE NEW
TV DYNATRACER

• TRACES TV SIGNALS AND VOLTAGES
• LOCATES DEFECTIVE COMPONENTS
• REQUIRES NO ADDITIONAL EQUIPMENT

This sensational new piece of test equipment is used by the technicians of the
industry to free themselves from the time consuming and hazardous job of the
sweep. The "DYNATRACER" will also assist in locating unidentifiable faults in
home TV, even those located prior to the presence of a TV Technician.

A Must for Every TV Technician

SPECIFICATIONS: The "DYNATRACER" is an electronic circuit-controlled test
instrument designed to help TV Technicians locate and repair faults in home TV
sets. It will locate unidentifiable faults, leaving the Technician free to deal with
other faults. The "DYNATRACER" is supplied complete with: DYNATRACER,
2-KWIK STRAPS, 2-Eyebolts, AC/DC Adapter and 2-12"x3/4" GALVANIZED steel
straps. May be used on broadcast TV, color TV, or leaky (un to
2--12'x3/4"

STRAWS

Unattached

Strapping Fasteners

Also available, KIT "A", similar to
KIT "C", except furnished with 3/4" wide GALVANIZED steel banding.

Universal — may be used with any chimney antenna mount.

In Canada: A.T.R. Armstrong Co., Toronto

THANKS FOR YOUR SUPPORT

SOUTH RIVER ELECTRONICS CO.
8509-21st Ave., Dept. 402, Brooklyn 14, N. Y.

$1.00 to $5.00 PAID
for SHOP NOTES

Write up any "kinks" or "tricks-of-the-trade"
in Radio-TV servicing that you have
discovered. We will pay from $1 to $5
for such previously unpublished "SHOP
NOTES" found acceptable. Send your
data to "Shop Notes Editor," RADIO-
TELEVISION SERVICE DEALER, 67
West 44 St., New York 36, N. Y. Unused
manuscripts cannot be returned unless ac-
companied by stamped and addressed return
envelope.

RADIO-TELEVISION SERVICE DEALER • FEBRUARY, 1954
THE INSTRUMENT THAT DEMANDS
OVERALL PERFORMANCE
FROM THE TUBE UNDER TEST!

PRECISION SERIES 10-12

Electronamic* Tube PERFORMANCE Tester

with 12 element free-point Master Lever Selector System

To test modern tubes for only one characteristic will not necessarily reveal OVERALL PERFORMANCE CAPABILITIES. Modern tube circuits look for more than just mutual conductance or other single factor.

It has been conclusively proven that even though a tube may work well in one circuit, it might fail to work in another—simply because different circuits demand different relative performance characteristics, such as amplification factor, plate resistance, power output, emissive capability, etc.

In the PRECISION "ELECTRONAMIC" Circuit, the tube under test is made to perform under appropriately phased and selected individual element potentials, encompassing a wide range of plate family characteristic curves. This COMPLETE PATH OF OPERATION is electronically integrated by the indicating meter circuit in the positive performance terms of Replace-Weak-Good.

The efficiency of this "Electronamic" test results from encompassing several fundamental tube characteristics, NOT JUST ONE. Accordingly, when a tube passes this demanding OVERALL PERFORMANCE test, it can be relied upon, to a very high degree, to work satisfactorily.

Compare these features

- Facilities to 12 element prongs.
- Filament voltages from 2.5 to 117 V.
- Tests Noval 9 pins: 5 and 7 pin acorns; double-capped H.F. amplifiers; low power transmitting tubes, etc., regardless of filament or any other element pin positions.
- Isolates each tube element regardless of multiple pin positions.
- Dual Hi-Le short check sensitivity for special purpose tube selection.
- Simplified, High Speed, 12 element Short-Check system, uses consecutive push-button switching.
- Battery Tests under dynamic load conditions.
- 4½" Full Vision Meter.
- Built-in Dual-Window, high speed, geared roller chart.
- Free Replacement Roll Charts & supplementary tube test data service.

See the "Precision" Master "Electronamic" Tube Testers at leading Radio Equipment Distributors. Write for new "Precision" catalog.

PRECISION APPARATUS CO., INC.
92-27 Horace Harding Boulevard, Elmhurst, New York
Export Division: 458 Broadway, New York 13, U.S.A. * Cables: Morhanex
In Canada: Atlas Radio Corp., Ltd., 360 King Street, W., Toronto 28

Convenient "PRECISION" Purchase Terms can be arranged with your local and favorite authorized "PRECISION" Distributor.
"TELL & SELL" CONTEST

For Dealers and Servicemen* who use RCA Tubes

Here's all you do—

Get an entry blank from your RCA Tube Distributor Salesman. Complete the following sentence in 25 additional words or less:

"I use and recommend RCA Tubes because"

It's as easy as that...and you may enter as often as you like, but each entry must be on an official entry blank.

Hints to help you win

See your RCA Distributor Salesman right away. He has a copy of the "clue book" waiting for you. This book contains full details on the whole exciting "Tell and Sell" Campaign, including contest rules.

You may win first prize...so don't waste a moment. Contest closes April 30, 1954.

*Your RCA Distributor Salesman will be glad to help you...because if you win, he wins a duplicate prize!

400 FABULOUS PRIZES

including:

* TV sets
* Watches
* Cameras
* Air Conditioners
* Test Equipment
* Radios
* Ranges

RADIO CORPORATION of AMERICA

HARRISON, N.J.

Electron Tubes