The mechanical accuracy of IRC Exact Duplicate Controls or universal CONCENTRIKIT equivalents is based on set manufacturers' procurement prints. Specifications on those prints are closely followed.

Shaft lengths are never less than the set manufacturer's nominal length—never more than 3/8" longer.

Shaft ends are precisely tooled for solid fit.

Inner shaft protrusion is accurately duplicated for perfect knob fit.

Alterations are never needed.

For Exact Duplicate Controls, specify IRC. Most Service Technicians do.
MORE DEALERS ARE INSTALLING

CHANNEL MASTER'S

CHAMPION

THAN ANY OTHER
ANTENNA IN
TELEVISION HISTORY!

All-channel reception: VHF & UHF

ONLY THE CHAMPION enjoys this overwhelming acceptance:
over 300,000 already sold!

ONLY THE CHAMPION is powered by the unique "Tri-Pole" the
triple-powered dipole system that provides fabulous VHF-UHF fringe area
performance. 100% aluminum; rugged, exclusive alloy. Installs in a flash!

ONLY THE CHAMPION gives you this four-star promotion program:
∗ FREE newspaper ads
∗ FREE colorful display material
∗ FREE consumer literature

The antenna America knows best!
Introduced to millions through the editorial pages of their favorite
magazines and newspapers, and on TV.

DON'T BE MISLED BY "LOOK-ALIKES" . . .
THERE'S ONLY ONE REAL CHAMPION!

Model no. 325. Single bay; Model no. 325-4. Four bay; Model no. 325-6, Super Champion

CHANNEL MASTER CORP. ELLENVILLE, N. Y.
The World's Largest Manufacturer of Television Antennas
Copyright 1954 Channel Master Corp.
AMPHENOL installation-proved VHF and UHF television antennas are the first choice of dealers, servicemen and distributors because they are easy to sell. Viewers choose AMPHENOL antennas for the very good reason of better picture quality, their assurance of viewing satisfaction.

AMPHENOL television accessories are designed by skilled engineers with years of experience in electronics. Each installation accessory, whether it is the new Lightning Arrestor, new Tele-Couplers, or any other part, operates at peak efficiency because of AMPHENOL quality-designing.

AMERICAN PHENOLIC CORPORATION

chicago 50, illinois
Every Service Firm Owner in the U.S.A.

Receives SERVICE DEALER Monthly
DISTRIBUTION THIS ISSUE OVER 65,000

COWAN PUBLISHING CORP., 67 West 44th Street, New York 36, N. Y.

VOL. 15, NO. 5 MAY, 1954

FEATURE ARTICLES

Horizontal and High Voltage Color-Set Circuitry, Part 1, by Bob Dorgan and Sam Marshall
Analysis of horizontal oscillator and output circuits.. 9

Entering Hi Fi, by Gil Tint
How to get started and make progress in a lucrative branch of your industry..................... 22

Color Stripe Signal
Color signal on B & W broadcast enables serviceman to check color reception................... 29

Sound Problems, by Paul Goldberg (A Workbench Feature)
Various service problems involving the sound sections of TV receivers......................... 30

Jetronic Antenna, by Douglas H. Carpenter
Evolution of an all-channel antenna... 32

RC Circuits, Part 3, by Cyrus Glickstein
Theory and operation of parallel RC circuits.. 34

TV Instrument Clinic, Part 2, by Robert G. Middleton
More questions and answers on the use of instruments in TV servicing......................... 41

CHARTS

Your Hi-Fi Equipment Guide
A components chart listing Hi-Fi manufacturers and their products................................. 28

CIRCUIT & SERVICE FORUM

Answer Man
Emerson Model 600: Vertical retrace suppression.. 12
Bias Box: For trouble shooting agc circuits.. 12
G. E. 17T101: Vertical hold Proper Servicing Techniques: Clipping components........... 20

Video Speed Servicing Systems
RCA Chassis KCS57A.. 37
Sylvania Chassis 1-504-1.. 39

Rider TV Field Manual Service Data Sheets
Arvin 9200 Series.. 43
Fada Models 17C2, 17CA, 17C6, 1719... 47

The Workbench
Admiral 2001: Buzz... 30
Telev. King 812: Distortion... 30
Motorola 1595: Sound distorted at high volume setting... 31

DEPARTMENTS

Editorial.. 5 New Products... 51
Answer Man.. 12 Trade Flashes.. 52
The Workbench... 30 Trade Literature... 63

Advertising Index... 64

POSTMASTER: SEND FORM 3579 TO RADIO-TELEVISION SERVICE DEALER, 67 WEST 44TH ST., NEW YORK 36, N. Y.
The complete rugged service line of vibrators that has dominated the field for years. Exclusive design plus controlled manufacture guarantees long-life performance! Built to "take it", they work under the most adverse conditions. You too will agree RADIART VIBRATORS are the STANDARD of COMPARISON!

THE RADIART CORPORATION
CLEVELAND 13, OHIO

TV ANTENNAS • AUTO AERIALS • VIBRATORS • ROTORS • POWER SUPPLIES

RADIO-TELEVISION SERVICE DEALER • MAY, 1954
EDITORIAL... by S. R. COWAN
PUBLISHER

OUR NEW DEPARTMENTS

Since our "TV Field Service" department began to appear as a regular monthly feature hundreds of our readers have written us to say how valuable it is to them. This department's basic purpose is to help technicians so they may do as much minor TV set repairing as possible while in the customer's home, thus saving much travel time, and allowing more time for other service jobs.

But one reader, although praising the section itself, said that he does not favor doing any under-the-chassis TV set repair work while the customer is about to watch the operation, because, as he puts it, if only a minor component needs replacing, the customer might object to a high charge—or at least a charge that could be gotten without quibbling had the set been repaired out-of-sight at the shop.

This points up a pricing factor that has always been the bane of the service profession. It is our opinion that customer charges should be predicated upon the time AND know-how factor. Every second—travel time; take-out-of-the-console time; trouble-shooting time, etc.—put into any set is time that a customer should pay for. And in addition, the customer must pay for the technician's years of training, his investment in tools, etc.

These are part of the over-all package that must be paid for by someone—and that someone must be the customer.

WORTHWHILE INCOME BOOSTER IDEAS

The men who prosper most in the service business always try to sell more than their mere know-how and skill as servicemen. Think! You can easily round out and amplify your income and avoid a drop in take-home pay during certain seasons like summertime by using ideas that have been successfully tried by other servicemen.

For example—during summer many battery sets go into use again. So, go after your customers now. Sell 'em flashlights too! Always look for "plus sales" such as long-play phonographs, picture tube brightening devices, etc. Sell customers on replacing obsolete and worn out antennas while they're away this summer. Make auto-radio service checkup campaigns now before your customers start their summertime trips. Tell your customers that auto and battery radios should be kept in good working order at all times not merely because of the pleasure they give—but more important—because if there were an atom bomb attack anywhere that put power lines out of use, such self-powered radios would be the sole means of communication still available.

Our article, in last month's issue, on how easy it is to sell and install Remote TV Tuners, showed that timely merchandising can be very profitable indeed. Several service shops that we know of have been averaging better than $500.00 a month net profit on Remote Tuner sales alone.

And don't forget, air conditioners are simple to service. Only one or two minor adjustments, or a replaced defective relay, are needed in 99% of the jobs that you'll come across. Why not get some manufacturers' service notes? What applies to one brand applies to most others. Then, a low-cost direct-mail advertising campaign to your regular customers, telling them to have their radio-TV-appliance summerizing done by you, will pay nice dividends.

YOU ASK FOR IT

Our sole editorial aim is to provide you with facts and data which will enable you to do your work more easily, more efficiently, in less time and at greater profit. Knowing that most of you are old-timers, pioneer servicemen who cut your eyeteeth on theory many years ago, we stick to text of practical nature and we only delve into theoretical matters on rare occasion. Note for the record that we alone of the servicemen's magazines have opined that color TV is still many months away. But take careful notice—that which we have published and will publish on color TV has been and will be of true value to you.

Time is one of your most precious assets. Our text is geared to help you utilize it to the greatest advantage. Our four exclusive, regular departments, "Video Speed Servicing Systems"—"TV Field Servicing"—"TV Instrument Clinic" and "The Answer Man" are, we sincerely believe (and this has been confirmed by thousands of complimentary letters saying so), the most valuable monthly features available to servicemen.

However, as this is your magazine, you should feel free to guide its editors in selecting subject matter that you'd like to have covered. Write any time.

SHOP EFFICIENCY

In the near future we'll have an article showing how a shop can profit from investing in such commonplace accoutrements as shelving, parts bins and drawers, etc. Have you any pictures of your shop? We're in the market for same.
NOW AVAILABLE TO...

1. Servicemen who are employed by Service Organizations.
2. Servicemen employed by radio/TV Dealers.
3. Independent servicemen who do not have business establishments.
4. Employees of Distributors.
5. Students enrolled in accredited Radio/TV Schools, Colleges, etc.
6. Hobbyists and Experimenters.

A TYPICAL ISSUE COVERS

- Video Speed Servicing Systems
- Rider’s "TV Field Service Manual" data sheets
- Latest TV Installation and Maintenance Techniques for VHF and UHF
- Auto Radio Installation and Service
- Advanced Data on New Circuity
- Production Changes and field service data on receivers

- New Tubes
- New Test Equipment, operation and application
- Hi-Fi Installation and service
- New developments, such as transistors, color, UHF, etc.
- News of the trade
- Service Short Cuts & Shop Notes
- Explanation of difficult circuits

and many more

EXCLUSIVE . . .
ORIGINAL . . .
AUTHORITATIVE . . .
TIMELY . . .
FULLY ILLUSTRATED
subjects that
can ONLY
BE READ IN
"SERVICE DEALER"

RADIO-T.V SERVICE DEALER
67 W. 44 St., New York 36, N.Y.

Gentlemen: Here is $1.00 for which enter my 2-year subscription. (This rate applies in USA only. Elsewhere add $1 per year)

Name
Address
City Zone State
Employed by (Name of firm)
Firm’s business address
City Zone State
Your Position or Title
Check whether firm is: ☐ Service Organization or ☐ Dealer having Service Dept.
If some other type of company describe:
IF STUDENT, Name of School

RADIO-TELEVISION SERVICE DEALER • MAY, 1954
Bonnet-type cabinet simply lifts off this revolutionary new chassis, exposing every component.

Vertical-plane chassis, a radical new departure, is one reason why Crosley's Super-V takes up so little space.

Here's Why the Crosley Super-V Is a Service Man's Dream

Removing the back of the Super-V plainly exposes all secondary controls and every tube in the set. For any other service job, it's as simple as opening the hood of your car—no chassis to pull, just slide the entire cabinet up off the chassis.

You can get at the works immediately and without obstruction. You can service the Super-V in less time. And you can make more repairs in the home.

The Super-V is a cinch to install. It's compact, weighs only 53 pounds. And in many places you'll find its built-in antenna is all you need for perfect reception.

Here are a few of the reasons why the Crosley Super-V is the fastest-selling TV set on the market today:

• Takes up to 1/2 less space.
• Front is all screen—side controls.
• Choice of walnut-, mahogany-, blond-finished cabinets.
• Full-Year Warranty on picture tube—90 days on chassis parts!
• Available in large volume.

FOR MORE INFORMATION ON THE SUPER-V CALL YOUR CROSLEY DISTRIBUTOR NOW!

You can SELL them better on a CROSLEY

RADIO-TELEVISION SERVICE DEALER • MAY, 1954
An Invitation...

To men who want to “go places” in TV SERVICING

Find out about this NEW, ALL-PRACTICE WAY of becoming a Professional TV SERVICEMAN

If you have some Radio or Television experience, or if you know basic Radio-Television principles but lack experience—NRI’s new Professional Television Servicing course can train you to go places in TV servicing. This advertisement is your personal invitation to get a free copy of our booklet describing this training in detail.

Learn-by-Doing “All the Way”

This is 100% learn-by-doing, practical training. We supply all components, all tubes, including a 17-inch picture tube, and comprehensive manuals covering a thorough program of practice. You learn how experts diagnose TV defects quickly. You see how various defects affect receiver performance—picture and sound; learn causes of defects, accurately, easily, and how to fix them. You do more than just build circuits. You get practice recognizing, isolating, and fixing innumerable troubles. You get actual experience aligning TV receivers, diagnosing the causes of complaints from scope patterns, eliminating interference, using germanium crystals to rectify the TV picture signal, obtaining maximum brightness and definition by properly adjusting the ion trap and centering magnets, etc. There isn’t room on this or even several pages of this magazine to list all the servicing experience you get.

UHF & COLOR TV Making New Boom

Installing front-end channel selector strips in modern UHF-VHF Television receivers and learning UHF servicing problems and their solution is part of the practice you get. To cash in on the coming color TV boom you’ll need the kind of foundation in knowledge and experience this training gives.

Get Details of New Course Free

Once again—if you want to go places in TV servicing, we invite you to find out what you get, what you practice, what you learn from NRI’s new course in Professional Television Servicing. See pictures of equipment supplied, read what you practice. Judge for yourself whether this training will further your ambition to reach the top in TV servicing. We believe it will. We believe many of tomorrow’s top TV servicemen will be graduates of this training. Mailing the coupon involves no obligation.

Train at home easily, quickly, for TV’s top servicing jobs. NRI’s Professional Television Servicing course includes a 17-inch picture tube and all other tubes and components to build a complete TV Receiver, Oscilloscope, Signal Generator, H.F. Probe. Complete training, including all equipment, available now for a low introductory price—under $200 on easy terms.

National Radio Institute, Dept. 4EF4T
16th and U Sts., N.W., Washington 9, D.C.

Please send my FREE copy of “How to Reach the Top in TV Servicing.” I understand no salesman will call.

Name: Age:
Address:
City: Zone . . . State:

RADIO-TELEVISION SERVICE DEALER • MAY, 1954
The high voltage supply for a three-gun color TV receiver differs from the conventional high voltage supply in many ways. These are primarily a result of the new circuits that have been added because of the increased power requirements and voltage regulation of the color picture tube.

A three-gun color picture tube fires three electron beams which simultaneously bombard three color phosphor materials. In general, approximately five times more current is drawn by a color tube than by a B & W picture tube. Also, a color picture tube requires much higher accelerating voltage so that the phosphor material when bombarded with the electron beam may provide a brightness comparable to that available with B & W picture tubes. For this reason most color receivers apply 19.5 to 20 KV to the high voltage ultor.

The color picture tube generally draws between 500 and 600 microamperes. The present color tube is rated for a maximum current of 750 microamperes which should not be exceeded. The power drawn by the picture tube is about 15 watts maximum (20KV X .00075 amps). This is many times the power used in a typical black and white picture tube.

In the color TV receiver using the tri-gun picture tube high voltage is obtained by the rectification of the flyback pulse developed by a horizontal deflection auto-transformer. This method is similar to the one used in B & W TV receivers except for the increased power requirements.

An examination of the color receiver deflection and high voltage block diagram, Fig. 1 shows that the blocks which are the same as those found in a B & W...
receiver are drawn in solid lines. The additional blocks necessary to achieve proper operation of a color picture tube are shown in the dashed lines.

Horizontal Oscillator Circuits

Two types of horizontal oscillator circuits are presently employed in color TV circuitry. These are the multivibrator and blocking oscillators which are described in the following paragraphs. Their purpose is to produce a sawtooth waveform of correct frequency for providing correct trace and retrace of the electron beam across the face of the picture tube.

Multivibrators

The horizontal multivibrator circuit as shown in Fig. 2 is usually described as two resistance coupled amplifiers connected to each other so that the output of each is coupled to the input of the other.

In a cathode coupled multivibrator circuit the conduction of V2 in Fig. 2 causes a positive voltage to be developed across the common cathode resistor due to the current flow through tube V2. The voltage developed across the common cathode resistor is applied at the same time to tube V1. Since this voltage is positive at the cathode side of the resistor it causes plate current in the tube to be reduced. The reduction in plate current through V1 causes the plate voltage to increase in a positive direction, the waveform of this voltage being the same as the waveform of the spike applied at the cathode. This positive pulse is coupled to the grid of the tube V2 through the 420 µuf coupling condenser where it causes the grid to draw current. The grid current charges up the coupling condenser with the polarity shown, negative at the grid side of the coupling condenser and positive at the plate side. The negative charge cuts off the tube V2 until the charge leaks off through the grid leak resistors, 100K and 250K ohms. When the tube V2 is no longer biased to cutoff the tube conducts heavily and discharges a sawtooth voltage waveform that has been building up across the 420 µuf coupling condenser in series with a 15K resistor. Once the tube V2 begins to conduct the cycle starts over again. It is this sawtooth voltage that is used to eventually affect the horizontal sweep across the picture tube.

Frequency control of this tube is achieved by comparing the phase of a pulse fed back from the horizontal output transformer with the incoming sync pulse. If the multivibrator speeds up or slows down with respect to the incoming sync pulse a correction voltage is developed in the phase comparator circuit. This voltage, applied to the grid of V1, brings the multivibrator back to the proper frequency determined by the incoming horizontal sync pulse.

Horizontal Blocking Oscillators

A blocking oscillator circuit used in color TV receivers is shown in Fig. 3. When the blocking oscillator tube conducts, the current flows with increasing amplitude through the transformer until tube saturation is reached. The increasing plate current flow through the transformer couples a positive voltage to the grid of the tube. This causes the grid to draw electrons from the tube which charges up the grid side of the coupling condenser. The long time constant of the condenser-resistor network establishes a negative bias at the grid of the tube. This bias blocks the tube which remains in the cut-off state until the electron charge on the condenser discharges through the grid resistor. With the bias removed from the grid circuit the tube conducts once more and the cycle starts all over again.

Tube cut-off is controlled primarily...
RADIO

Fig. 4—Grid waveform is modified by the pulse from the horizontal output transformer. By straightening the edge of the waveform a sharper and faster cutoff of the tube conduction is achieved with greater resulting efficiency.

by its grid bias. Therefore, if this bias is reduced the oscillator action will speed up and if increased it will slow down. This property is made use of in controlling the frequency of the blocking oscillator.

An automatic frequency control circuit is provided in conjunction with the blocking oscillator to correct for conditions which might cause the incoming sync pulse to lose control. The system shown is generally called a "pulse width" off circuit. It uses a phase comparator circuit that compares the phase of the horizontal oscillator with the phase of the reference sync pulse. The two pulses are fed into the grid circuit, and when the sync pulse sits on top of the sawtooth voltage the phase comparator tube conducts, developing a positive voltage at the cathode of the phase comparator. This positive voltage is fed to the grid of the blocking oscillator through a voltage dividing network where it adds with the self-generated bias at the oscillator grid.

If the oscillator speeds up or slows down, the resultant pulse width due to the positioning of the sync pulse on the oscillator sawtooth voltage causes conduction of the tube. The tube will conduct more or less current depending upon whether the pulse width is wider or narrower than the normal width. The result is more or less current flow in the phase comparator tube which causes a corresponding variation of voltage supplied by the cathode of the phase comparator to the grid of the oscillator. This voltage is in a direction which corrects the oscillator phase so that it eventually comes into exact sync with the sync pulse.

Horizontal Output Circuits

The horizontal oscillator circuits used in TV color receivers generally requires that the output signal voltages be a little higher than in conventional B & W receivers. To drive the horizontal output tubes of present color circuits a peak-to-peak voltage of about 150 volts is employed.

To maintain horizontal output circuit efficiency the plate current in the horizontal output tube during the retrace time must be cut-off rapidly and kept cut off during the entire retrace period. It must be realized that pulses as high as 6000 volts are at the horizontal output tube plates during retrace time. To prevent these pulses from drawing plate current in the output tube special shaping of the grid signal voltage is necessary.

To effect this shaping a pulse is usually obtained from a special winding on the horizontal output transformer which, depending upon the polarity of the connections, can be applied to the grid or cathode of the horizontal output tube. This pulse, as shown in Fig. 4 shapes the driving signal so that cut-off of the horizontal output tube will definitely be assured during the retrace interval.

Fig. 5 shows the manner in which the pulse is inserted in one type of color receiver. Here the cathode circuit is used. Fig. 6 shows how the pulse shaping voltage can be supplied to the horizontal output tube grid to achieve the same kind of shaping.

This shaping accomplishes an important purpose in the deflection system. All the energy must be built up in the auto-transformer windings for the high voltage circuit so that the maximum possible positive spike voltage can be applied to the high voltage rectifiers. If current is drawn by the horizontal output tube during the retrace time less voltage will be available to the high voltage rectifiers. Also the "Q" of the circuit will be reduced because of the loading effect if the output tube conducts.

Horizontal Output Transformers

Horizontal output tubes used in color TV are usually two 6CD6's, 6BG6's or 6BQ6's connected in parallel. New, single tubes are presently being designed

Fig. 5—One of the windings on the horizontal output transformer supplies shaping waveform to cathode.

Fig. 6—The shaping waveform is supplied to the grids of the horizontal output tubes above to handle this high current deflection job. Horizontal output tubes drive a horizontal output transformer as with black and white receivers. However, the transformer used in color work is larger. It is also considerably more complicated, containing many more windings than its black and white prototype. The output transformer shown schematically in Fig. 7 is of the auto-transformer type with taps on the main windings for the following circuits. The letters associated with each tap correspond to the lettered taps shown on the schematic of Fig. 7. It can also be noted that further taps or separate windings are provided for the following functions:

1. Four filament windings are provided for the high voltage and focus rectifiers. The high voltage doubler tube filament uses only a single turn.

2. AGC gate windings are usually provided. This may be just a tap

(Continued on page 57)
Vertical Retrace Suppression

Dear Answer Man:

I have an Emerson Model 600 TV receiver in which I would like to incorporate vertical retrace suppression.

B.E.H.
Nampa, Idaho

Dear B.E.H.:

The incorporation of vertical retrace suppression is easily accomplished and is particularly effective in those areas where the received signal is weak and the resulting picture tube signal is also weak.

In most TV receivers the changes incorporate a relatively simple circuit which feeds a positive pulse from the vertical output circuit to the picture tube cathode. Since the pulse is positive the picture tube is cut off during the vertical retrace periods.

In other types of receivers where the video signal is supplied to the cathode a negative pulse can be applied to the picture tube grid to cut off the tube current during vertical retrace periods.

Referring to Fig. 1 the incorporation of vertical retrace suppression involves the addition of three components, two resistors and one condenser. The condenser is used for de blocking purposes and ranges in value from a 0.0015 to a 0.003 μf depending upon the tolerable loading of the vertical output circuit and the amplitude of the pulse necessary to accomplish the retrace suppression.

In series with the condenser is connected a resistor of about 180K to 220K ohms. The purpose of the resistor is to drop some of the voltage across it and to help prevent loading the vertical output stage. If the stage is loaded it will cause the vertical height and linearity to be affected beyond correction with the adjustment controls.

The series condenser-resistor network is usually connected to the plate of the vertical output tube where a positive going pulse is obtained that can be integrated in the condenser-resistor network. The waveshape at the plate of the vertical output tube is reduced in amplitude and shape so that a proper waveform is available for the picture tube as shown schematically in Fig. 1.

The third component used in the suppression circuit is a resistor of about 68K ohms. This resistor is inserted in series with the cathode circuit of the picture tube if the cathode is grounded or a large bypass condenser between the cathode and ground or B plus places the cathode effectively at if ground potential. The purpose of the resistor is to have a circuit component in the picture tube circuit across which the suppression voltage can be developed. Since the resistor is inserted in the cathode circuit of the picture tube the integrated vertical deflection voltage will cause the picture tube to be biased beyond cut-off by the integrated vertical pulses and the electron beam is thereby prevented from flowing during the vertical retrace periods.

The circuit for vertical suppression in the Emerson Model 600 receiver is shown in Fig. 2.

Bias Box

Dear Answer Man:

In the series of articles titled "Troubleshooting TV With Key Test Points," a bias box is mentioned in troubleshooting Automatic Gain Control (age) systems.

Since I have had a lot of age trouble I would like to know more about it.

J.J.S.

Dear J.J.S.:

With the use of more complex age systems in current TV receivers it is very desirable to be able to determine immediately and quickly whether the difficulty in a receiver is due to age trouble or not. Also in alignment work a fixed negative source should be supplied in most cases to the age negative voltage line as specified by the manufacturers of the particular TV receiver.

A battery with a potentiometer connected across it so that the desired negative voltage can be tapped off is the most common method of obtaining a negative voltage but this is cumbersome and the battery does not last too long.

A more convenient method of obtaining a negative voltage is an arrangement as shown in Fig. 3.

The components necessary are:
1) two 5 ma selenium rectifiers
2) [Continued on page 15]
There's never been a rotator like it!

JFD ROTENNA

- The CUSTOMER will LOVE the STYLING and EASE of TUNING.
- YOU will LOVE the CARTRIDGE SERVICING and tuning ACCURACY.

Piano keyboard tuning!
Cartridge servicing!
Stop watch accuracy!
Ideal for UHF and Color Reception!

Never before have there been so many outstanding engineering developments combined in one great rotator! One year in development. Destined to set new standards in rotator performance.

Finger tip piano control tuning with outstanding position indicator. Finely calibrated. Easy to read. "Panoramic" dial face indicates precise antenna position at all times. Magnificently styled console enhances beauty of modern or period decor.

Cartridge type detachable power drive unit can be removed in seconds without dismantling antenna. Simply unloosen two screws.

Stop-watch tuning accuracy. Ultra-sensitive system accurate within 1/2 degree of rotation. Brakes to an instant stop. No drift or error.

390° continuous rotation in either direction, today's widest traverse range. Permits station selection beyond normal 360° traverse—allows perfect tuning in all directions.

Powerful balanced inline construction supports direct dead weight load of as many as 10 element channel 2 yagis as can be stacked on mast.

JFD antennas—your key to sharper, steadier, brighter UHF and VHF pictures in your area, black and white or color.

JFD MANUFACTURING CO., INC.,
Brooklyn 4, New York, OEnonhurst O-9200
World's Largest Manufacturers of TV Antennas and Accessories.

www.americanradiohistory.com
"Color Television is here—not around the corner, or in the developmental labs, but here! The big question now is... Are You ready for Color TV?

You may now have a successful TV servicing business. When color sets come to your bench for servicing, will you be able to handle them?

"Color Television is a vast new field, embodying entirely new concepts... principles of light and vision, radically new circuitry."

First Home Study Course in Color TV

Now is the time to prepare. Now, for the first time, you can train yourself for the opportunities in this brand-new field. The just-announced RCA Institutes Home Study Course is the first home study course covering all phases of color television. Offered only to those already experienced in radio-television servicing, it explains the "why" of basic theory, as well as the "how-to-do-it" of servicing techniques.

Planned and written by RCA instructors, the entire course is based on the practical experience of RCA engineers—the men who have pioneered in the research and development of color television since the very first color experiments, many years ago.

Remember when black-and-white television first became a reality? Overnight, the demand for men who knew television grew. Even now, a shortage of qualified servicemen exists. Think, then—of the even greater demand for servicemen who will understand the many additional problems of color reception!

Costs so little to gain so much

RCA Institutes makes it easy for you to prepare yourself now for color television. Not only is the cost of the home study course for qualified servicemen extremely low, but you pay for the course on a pay-as-you-learn basis.

Send for FREE Booklet—Mail the coupon, today. Get complete information on the RCA INSTITUTES Home Study Course in Color Television. Booklet gives you a general outline of the course lesson by lesson. See how thoroughly you can learn Color TV. Mail coupon in envelope or paste on postal card.

MAIL COUPON NOW!

RCA INSTITUTES, INC., Home Study Dept. RT54
350 West Fourth Street, New York 14, N. Y.

Without obligation on my part, please send me copy of booklet "RCA INSTITUTES Home Study Course in COLOR TELEVISION." (No salesman will call.)

Name ______________________________________ (please print)

Address ___________________________________

City ___________ Zone ______ State ____________

RADIO-TELEVISION SERVICE DEALER • MAY, 1954
ANSWER MAN

[from page 12]

2) three 20 uF, 50 volt, electrolytic condensers
3) one 2000 ohm, 1/4 watt resistor
4) one .01 uf condenser
5) three alligator clips.

These eight components can be easily mounted on a flat plate of insulation material or in a small box. All components can be obtained at the local electronic distributor and can be assembled in relatively no time at all. Fig. 4 shows a possible arrangement of these components on the insulation panel.

If it is desired to use a small rectifier tube such as a 6AL5 duo-diode tube, it can be employed in place of the selenium rectifiers but this necessitates the use of a tube socket which makes for a slightly more bulky item.

If alligator clips are connected to the three leads from the bias box it can easily be fastened into the chassis under test. The ground lead is connected to the ground side of the filament and the other alligator clip is connected to the 6.3 volt filament supply. This supply point can be either at the filament transformer or at the filament pin of one of the tubes supplied with 6.3 volts ac.

The 6.3 volts which is an rms value has a peak voltage of 1.4 times this value or 8.8 volts. The voltage doubling circuit of the bias box permits the obtaining of almost twice this amount of negative voltage.

GE 17T103: Vertical Hold

Dear Answer Man:

I have a G.E. 17T103 on which the vertical hold is very touchy. Just by touching the control it will roll one way; and then when you try to stop it, it will roll the other way slowly. I have checked the sync and vertical circuits. The voltages check with the manufacturer's print. I have replaced tubes, but this does not correct the trouble. Could you give me any information as to what could cause this set to drift vertically?

P.S. I get voice on Channel 7 but no picture. What do I adjust to get the picture in? Is there an adjustment on the tuner?

J.K.

Wellsville, Ohio

Dear J.K.

From your letter it appears that the troubles are only associated with the [Continued on page 18]
Your Own Portable "Service Bench" for IF-RF Alignment!

PHILCO
VISUAL ALIGNMENT GENERATOR
Oscilloscope, Sweep and Marker Generator
All in One Instrument!

NEW! PHILCO FIELD STRENGTH METER

Here's more than an antenna signal checker. The new Philco Field Strength Meter provides direct readings of RF signal level, has built-in electronic sensitivity control, signal levels above 100 microvolts are read directly on the calibrated dial. Read 10 to 100 microvolt levels on the high sensitivity meter. High gain, low noise TV tuner provides exceptional wide range of sensitivity. Now, measure both strong and weak signals with the Philco reference calibration method, it's the same type found in expensive laboratory equipment. MODEL M-8104.

The Philco Model 7008 Visual Alignment Generator is a completely self-contained "service bench" for all alignment and trouble shooting problems in the field. It is specifically designed to permit rapid servicing of the IF amplifier and front end of TV and FM receivers. The sweep section furnishes a high output signal with uniform sweep level throughout the FM and television bands, as well as the intermediate frequencies used. The marker system, with its associated crystal calibrator, has an accuracy of .005%. The built-in oscilloscope greatly simplifies test set-up. Furnished complete with high frequency detector probe, output and input cables and AC cord.

Look at these PHILCO features:

1. Only two external cable connections necessary...minimizes regeneration and feed-back.
2. Shielded multiplier attenuator provides accurate control of RF output from a few microvolts up to .1 volt.
3. RF output increases with frequency to offset the fall off in gain which normally occurs on the higher frequencies.

AVAILABLE THROUGH YOUR PHILCO DISTRIBUTOR ON A NEW SPECIAL PAYMENT PLAN

Take advantage of the great SHARE and PROFIT Program on Philco Receiving Tubes, Parts and Accessories

NOW AT YOUR PHILCO DISTRIBUTOR

OFFER ENDS MAY 29

www.americanradiohistory.com
“Not in 55,973 years
have I had an imp that operated so efficiently in such high temperatures,”
says L. (Lucifer) Satan, Hades strong man. “What’s more,
the improved Jet Imps are tough and won’t scar under heat.”

Jet Imps are designed to operate at 100°
Centigrade (212° F. — boiling point) 15° higher operating temperature than most molded capacitors available today. This means that Jet Imps not only withstand emergency conditions but also under normal operating temperatures, such as the high temperatures under a TV chassis, Jet Imps have a real safety margin for long trouble-free service.

The rugged low loss thermosetting plastic case of the Jet Imps enables them to pass the RETMA Humidity test. Jet Imps are small too, built to the sizes which conform to the requisite design factors for the finest capacitors.

See your Pyramid jobber for the new Imp.
Outperforms them all...!

- in moisture resistance
- in high temperature operation
- in holding rated capacity
- in long troublefree life

The Sangamo

Telechief

MOLDED PAPER TUBULAR CAPACITOR

The Telechief will outlast all other tubulars! MIL-C-91A tests prove that Telechiefs have a final insulation resistance value 10 to 15 times greater than paper tubulars molded in any other material. That's because they're molded in HUMIDITITE!

YOU GET EXTRA VALUE AT NO EXTRA COST! This amazing new capacitor—that meets specifications so tough that no previously existing paper tubular could approach them—is a premium tubular at the price of an ordinary one. See your Sangamo Distributor today!

VISIT BOOTH 776 AT THE MAY PARTS SHOW

Those who know choose Sangamo

SANGAMO ELECTRIC COMPANY
MARION, ILLINOIS

ANSWER MAN
[from page 15]

vertical circuit and the picture is normal in that the low frequency response and vertical blanking bar appear to be proper.

On the basis that the horizontal oscillator lock-in action is also normal, more than likely a component in the integrating circuit is defective. The vertical sync pulse is not triggering and locking in the vertical oscillator. Examination of the schematic for the integrating network reveals five components in the circuit, one of which is undoubtedly defective. See Fig. 5.

The .002 µf condenser is the most common component that has failed in this model receiver with respect to this trouble. It usually opens up. However, there is also a .470 µf condenser that could be open, causing the same effect. If either of the two resistors from the sync amplifier stage (82K and 39K) has increased in value the same effect would result. One other compo-

Fig. 5—Partial schematic of G.E. 17T103 indicating various components in integrator circuit that might give rise to troubles outlined in communication received.

nent that could introduce vertical trouble is the .001 µf condenser in the integrating network. A thorough check of these five components will more than likely reveal the source of the trouble.

In response to your inquiry concerning the adjustment of Channel 7, the tuner does not have a separate oscillator adjustment. A screw adjustment is provided for Channel 13 which will align the channels below to Channel 7. For Channel 6 and below there are separate oscillator screws. If the Channel 13 oscillator slug is adjusted to bring in Channel 7 the adjustment will also affect the channels below Channel 7 and they may have to be touched up. This is because the tuner is of the incremental type with each channel starting with Channel 13 add-

www.americanradiohistory.com
Manufacturers and service organizations know from experience that BUSS fuses won't let them down. For over 39 years, under all service conditions, BUSS fuses have given dependable electrical protection.

Rigid quality control is the reason for "trouble-free" BUSS fuses. Every BUSS fuse normally used by the electronic industries is tested in a sensitive electronic device that rejects any fuse not properly constructed, correctly calibrated and right in all physical dimensions.

So for the finest possible electrical protection, turn with confidence to BUSS fuses. The fuse that can be relied on to protect when there is trouble in the circuit. The fuse that eliminates those needless blows, which otherwise could be so annoying to your customer.

And there is another reason it pays to standardize on BUSS fuses. You can simplify your buying, stock handling and records by using BUSS as the one source for fuses. The line is complete: — standard type, dual-element (slow blowing), renewable and one-time types . . . in sizes from 1/500 ampere up.

Let BUSS fuses help protect your profits. Why take a chance on a part so small but so important as a fuse? Faulty fuses can cause endless trouble — if your customer "kicks" there is likely to be a costly, time-wasting "call-back" or replacements. So rely on BUSS fuses . . . that are made to protect — not to blow.
ing a small amount of series inductance to the oscillator circuit.

Concerning General Electric receivers a very informative bimonthly publication is available from the General Electric Company which will be of great use. Just address a letter to them at the Electronics Department, Schenectady, N.Y. and ask to be included in their mailing list to receive "Techni-Talk."

Proper Servicing Techniques

Note: We recently received a letter addressed to the Editor, the essence of which is contained below. We could not resist the temptation of including it in our "American Idea" column with the Editor's thoughts on the subject.

Dear Editor:

I have recently serviced a TV receiver in which a number of condensers had been "clipped" for a fast resistance check, and stuck back with a thread of solder—which any service technician can tell you is exceedingly poor practice. In this particular chassis, as might be expected, several of the connections had come loose—making the cure worse than the disease.

For the benefit of some of your readers who might not know better it should be pointed out that a good workman does not clip leads: he unsolders them carefully. Most sets don't have leads long enough to allow them to be clipped and then put back with the proper mechanical joint before soldering. And if the mechanical joint of the lead is not made the lead will work loose in short order.

Dear Sir:

The point of unsoldering condensers versus cutting the pigtail has been a topic of discussion with many electronic technicians. There are those electronic technicians who are neat and thorough and every time they check a condenser they unsolder the connection and then resolder the pigtail after the check. These technicians are certainly to be commended for their high quality craftsmanship, their carefulness, their neatness and all around technical ability.

However, from other standpoints, speed in making repairs is actually the essence of a profitable service organization. Speed is a result of "Know How," and is attained through training and experience. In essence the measure of a serviceman's worth is his practice of the following rules:

1. Inspect the TV receiver to determine which section is faulty, and if possible at this time, which stage is affected.
2. Substitute a known good tube for every tube that can possibly be the cause of the receiver difficulty.
3. Inspect the chassis visually for burnt, broken or leaky components.
4. Check the condenser, particularly the paper type, used for such purposes as coupling and bypassing.

Now, the great majority of electronic troubles are found in the first step. The second step is very useful and reveals a great portion of the troubles that are not tubes. The third step includes a great portion of the troubles that are encountered after the first two steps do not locate the difficulty. Under the fourth step a great many troubles will be corrected. That is, when the coupling condensers of the stages which are not operating properly are investigated, defective condensers will be found to be a great cause and source of TV troubles.

If crackerjack shop technicians are observed in action, it will be found that they pretty much follow these preliminary servicing procedures. Naturally, there is more to servicing TV receivers than just these four steps. They are only the beginning steps in a complex operation but they will locate about 98% of the troubles in TV receivers.

Notice, now, that for a profitmaking operation speed is essential; speed particularly in the completion of these first four steps.

The fourth step which is the checking of condensers should also be conducted with a degree of speed. Electronics servicing men have been clipping condensers for many years. Some have been checking in this manner long before the advent of TV, and have not experienced any misfortunes or recalls because of it. It must certainly be understood and accepted that these fellows can solder two wires together and have them stay together without resorting to a preliminary mechanical joint. In most cases a mechanical joint is nice but not absolutely essential.

Usually, if two pigtail leads have been properly soldered together and stress is applied, the wire will pull out of the condenser before the soldered joint will part.

Naturally, if the pigtail length permits the hook splice it should be used. The hook splice, shown in Fig. 6.

[Continued on page 57]
NEW RAYTHEON GUN WITH CROSSOVER CONTROL

Helps RAYTHEON PICTURE TUBES Set New Standards of Picture Quality

Raytheon prepared suspension, quality controlled by standard diode method originally developed by Raytheon, guarantees perfect cathode performance.

Molded powdered glass eliminates possibility of trapped air in bubbles.

8 contact points insure beam centering.

Long contact fingers keep internal coating away from strong field areas thus preventing stray emission.

New field design in cathode area creates Crossover Control for small spot of high current density.

Rolled edge of No. 2 grid prevents arcovers at this point.

Redesign of focus lens structure stops arcing.

Flanged assembly with internal concentric ring allows perfect alignment of focused lens.

For crisp, clean, high definition pictures, you can’t beat Raytheon Picture Tubes with the new Crossover Control Gun. This new gun has a specially shaped grid designed to keep the electrostatic field undisturbed. Emission from the center of the cathode is vastly improved eliminating slow electrons from the edges which overshoot and smear. These design improvements do away with tailings and halos, lines and spots won’t blur even under highlight conditions.

You owe it to your customers and yourself to replace with Raytheon. Ask your Raytheon Tube Distributor for complete information.

RAYTHEON MANUFACTURING COMPANY
Receiving Tube Division
Newton, Mass., Chicago, Ill., Atlanta, Ga., Los Angeles, Cal.
RAYTHEON MAKES ALL THESE
RELIABLE MINIATURE AND MINIATURE TUBES • SEMICONDUCTOR DIODES AND TRANSISTORS • KINESCOPIC TUBES • MICROWAVE TUBES • RECEIVING AND PICTURE TUBES
ABOUT twenty years ago, an enthusiastic group composed mostly of radio engineers, experimenters and musicians started making noises about the possibilities of greater fidelity in sound reproduction. For many years they were treated by the industry with an attitude living somewhere between outright ridicule and amused indulgence. Today, however, they are treated with respect. Interest in high fidelity has reached such a feverish pitch that it threatens to become the "Tail that wags the donkey" of the radio industry. So great has the public's demand become for better audio reproduction that several of the nation's largest producers of console radios and TV receivers have come out with their own versions of radio tuners, amplifiers, speakers and other units that comprise a high fidelity system.

All this hubbub is of interest to the serviceman and technician insofar as it means a tremendous new potential market for his services. He can take on a four-fold role in this field—consultant, seller, installer, and repairman.

Consultation

The consultant should consider three factors when advising a potential customer what sort of audio system he should purchase: the size and decor of the listening room, the response of the client's ear and the amount of money he is prepared to spend.

The dimensions of the room are important in determining the power handling capacity of the system. There would be little point in installing a 25 watt amplifier and speaker system in a 12 x 15 foot living room. If played at full level, it might result in the eventual eviction of the tenant from his apartment and the loss of a client. As a matter of fact, a system is never used at its maximum rating. This figure is only an indication of the amount of reserve available in the unit. The largest home rarely requires more than five or six watts of audio. However, the amount of harmonic distortion present at a given listening level is considerably less in a 25 watt system than in one with a 5 watt maximum rating. The power capacity of the system should therefore be no larger than necessary.

For an entirely different reason, the decor of the room on which the equipment is to be installed is also important. This aspect of the situation is often better discussed with the feminine member of the family. She may be more con-

Fig. 1—Closet door installation. This is cheapest if closet contains clothes and door faces into long dimension of the room. See text for details.

Fig. 2—Typical layout of units in commercial hi-fi cabinets. Amplifier sits behind tuner containing controls.

Fig. 3—Modular units may also be used to house the hi-fi components.

BOUT twenty years ago, an enthusiastic group composed mostly of radio engineers, experimenters and musicians started making noises about the possibilities of greater fidelity in sound reproduction. For many years they were treated by the industry with an attitude living somewhere between outright ridicule and amused indulgence. Today, however, they are treated with respect. Interest in high fidelity has reached such a feverish pitch that it threatens to become the "Tail that wags the donkey" of the radio industry. So great has the public's demand become for better audio reproduction that several of the nation's largest producers of console radios and TV receivers have come out with their own versions of radio tuners, amplifiers, speakers and other units that comprise a high fidelity system.

All this hubbub is of interest to the serviceman and technician insofar as it means a tremendous new potential market for his services. He can take on a four-fold role in this field—consultant, seller, installer, and repairman.

Consultation

The consultant should consider three factors when advising a potential customer what sort of audio system he should purchase: the size and decor of the listening room, the response of the client's ear and the amount of money he is prepared to spend.

The dimensions of the room are important in determining the power handling capacity of the system. There would be little point in installing a 25 watt amplifier and speaker system in a 12 x 15 foot living room. If played at full level, it might result in the eventual eviction of the tenant from his apartment and the loss of a client. As a matter of fact, a system is never used at its maximum rating. This figure is only an indication of the amount of reserve available in the unit. The largest home rarely requires more than five or six watts of audio. However, the amount of harmonic distortion present at a given listening level is considerably less in a 25 watt system than in one with a 5 watt maximum rating. The power capacity of the system should therefore be no larger than necessary.

For an entirely different reason, the decor of the room on which the equipment is to be installed is also important. This aspect of the situation is often better discussed with the feminine member of the family. She may be more con-

Fig. 1—Closet door installation. This is cheapest if closet contains clothes and door faces into long dimension of the room. See text for details.

Fig. 2—Typical layout of units in commercial hi-fi cabinets. Amplifier sits behind tuner containing controls.

Fig. 3—Modular units may also be used to house the hi-fi components.

BOUT twenty years ago, an enthusiastic group composed mostly of radio engineers, experimenters and musicians started making noises about the possibilities of greater fidelity in sound reproduction. For many years they were treated by the industry with an attitude living somewhere between outright ridicule and amused indulgence. Today, however, they are treated with respect. Interest in high fidelity has reached such a feverish pitch that it threatens to become the "Tail that wags the donkey" of the radio industry. So great has the public's demand become for better audio reproduction that several of the nation's largest producers of console radios and TV receivers have come out with their own versions of radio tuners, amplifiers, speakers and other units that comprise a high fidelity system.

All this hubbub is of interest to the serviceman and technician insofar as it means a tremendous new potential market for his services. He can take on a four-fold role in this field—consultant, seller, installer, and repairman.

Consultation

The consultant should consider three factors when advising a potential customer what sort of audio system he should purchase: the size and decor of the listening room, the response of the client's ear and the amount of money he is prepared to spend.

The dimensions of the room are important in determining the power handling capacity of the system. There would be little point in installing a 25 watt amplifier and speaker system in a 12 x 15 foot living room. If played at full level, it might result in the eventual eviction of the tenant from his apartment and the loss of a client. As a matter of fact, a system is never used at its maximum rating. This figure is only an indication of the amount of reserve available in the unit. The largest home rarely requires more than five or six watts of audio. However, the amount of harmonic distortion present at a given listening level is considerably less in a 25 watt system than in one with a 5 watt maximum rating. The power capacity of the system should therefore be no larger than necessary.

For an entirely different reason, the decor of the room on which the equipment is to be installed is also important. This aspect of the situation is often better discussed with the feminine member of the family. She may be more con-

Fig. 1—Closet door installation. This is cheapest if closet contains clothes and door faces into long dimension of the room. See text for details.

Fig. 2—Typical layout of units in commercial hi-fi cabinets. Amplifier sits behind tuner containing controls.

Fig. 3—Modular units may also be used to house the hi-fi components.

BOUT twenty years ago, an enthusiastic group composed mostly of radio engineers, experimenters and musicians started making noises about the possibilities of greater fidelity in sound reproduction. For many years they were treated by the industry with an attitude living somewhere between outright ridicule and amused indulgence. Today, however, they are treated with respect. Interest in high fidelity has reached such a feverish pitch that it threatens to become the "Tail that wags the donkey" of the radio industry. So great has the public's demand become for better audio reproduction that several of the nation's largest producers of console radios and TV receivers have come out with their own versions of radio tuners, amplifiers, speakers and other units that comprise a high fidelity system.

All this hubbub is of interest to the serviceman and technician insofar as it means a tremendous new potential market for his services. He can take on a four-fold role in this field—consultant, seller, installer, and repairman.

Consultation

The consultant should consider three factors when advising a potential customer what sort of audio system he should purchase: the size and decor of the listening room, the response of the client's ear and the amount of money he is prepared to spend.

The dimensions of the room are important in determining the power handling capacity of the system. There would be little point in installing a 25 watt amplifier and speaker system in a 12 x 15 foot living room. If played at full level, it might result in the eventual eviction of the tenant from his apartment and the loss of a client. As a matter of fact, a system is never used at its maximum rating. This figure is only an indication of the amount of reserve available in the unit. The largest home rarely requires more than five or six watts of audio. However, the amount of harmonic distortion present at a given listening level is considerably less in a 25 watt system than in one with a 5 watt maximum rating. The power capacity of the system should therefore be no larger than necessary.

For an entirely different reason, the decor of the room on which the equipment is to be installed is also important. This aspect of the situation is often better discussed with the feminine member of the family. She may be more con-

Fig. 1—Closet door installation. This is cheapest if closet contains clothes and door faces into long dimension of the room. See text for details.

Fig. 2—Typical layout of units in commercial hi-fi cabinets. Amplifier sits behind tuner containing controls.

Fig. 3—Modular units may also be used to house the hi-fi components.

BOUT twenty years ago, an enthusiastic group composed mostly of radio engineers, experimenters and musicians started making noises about the possibilities of greater fidelity in sound reproduction. For many years they were treated by the industry with an attitude living somewhere between outright ridicule and amused indulgence. Today, however, they are treated with respect. Interest in high fidelity has reached such a feverish pitch that it threatens to become the "Tail that wags the donkey" of the radio industry. So great has the public's demand become for better audio reproduction that several of the nation's largest producers of console radios and TV receivers have come out with their own versions of radio tuners, amplifiers, speakers and other units that comprise a high fidelity system.

All this hubbub is of interest to the serviceman and technician insofar as it means a tremendous new potential market for his services. He can take on a four-fold role in this field—consultant, seller, installer, and repairman.

Consultation

The consultant should consider three factors when advising a potential customer what sort of audio system he should purchase: the size and decor of the listening room, the response of the client's ear and the amount of money he is prepared to spend.

The dimensions of the room are important in determining the power handling capacity of the system. There would be little point in installing a 25 watt amplifier and speaker system in a 12 x 15 foot living room. If played at full level, it might result in the eventual eviction of the tenant from his apartment and the loss of a client. As a matter of fact, a system is never used at its maximum rating. This figure is only an indication of the amount of reserve available in the unit. The largest home rarely requires more than five or six watts of audio. However, the amount of harmonic distortion present at a given listening level is considerably less in a 25 watt system than in one with a 5 watt maximum rating. The power capacity of the system should therefore be no larger than necessary.

For an entirely different reason, the decor of the room on which the equipment is to be installed is also important. This aspect of the situation is often better discussed with the feminine member of the family. She may be more con-
Right now... IS THE TIME TO REPLACE THAT OUT-MODED AND WORN OUT TV ANTENNA

Your customers can enjoy better TV reception with their present receiver WITH BRIGHTER, CLEARER, SHARPER PICTURES

Provide your customer with greater enjoyment with his present TV receiver—put new life into the pictures on the screen—supply him with the equipment necessary to bring in all the available channels better, clearer...with the installation of a new Taco antenna.

We all know that there is a tremendous amount of replacement antenna and installation business to be had. The next few months will have a great effect on your overall business for the year.

SEE YOUR TACO DISTRIBUTOR—HE WILL TELL YOU WHAT TACO IS DOING FOR YOU.

Mr. Serviceman:

Postcards with your message directed to your customers and bearing your imprint and telephone number are available through your Taco distributor. Your customers will thank you for sending him this reminder that he needs television antenna service.

Especially with a Genuine TACO HIGH-GAIN ANTENNA

Technical Appliance Corporation, Sherburne, N. Y.

In Canada: Hackbusch Electronics, Ltd., Toronto 4, Ontario

RADIO-TELEVISION SERVICE DEALER • MAY, 1954
start a pyramid of recommendations worth much more than the income derived from misinforming a few naive customers. They don't stay naive long.

However, if a person is found whose high frequency response is somewhat below average (and this is easily determined by the use of an audio oscillator and speaker—a good publicity stunt by the way), he can be told that a wide range system can increase his listening pleasure nevertheless. Improvements such as overtone enrichment of music, reduced distortion, bass and treble control, cleaner transient response (sometimes referred to as overhang), static-free FM reception and the ease of AFC tuning are sufficient to win over a potential customer. As a matter of fact, he will be able to detect a wider range of frequencies on a good system in spite of his limited hearing. This can be explained by the fact that his old radio attenuated even those frequencies within his range to such an extent that he never heard them. The best way to clinch a situation like this is to let him listen and judge for himself.

Thirdly, it is wise never to recommend equipment beyond the customer's financial means. There are enough commercially available components to choose from in all price ranges to fit almost any budget. Strangely enough, the purchaser's confidence can be gained in this manner at no sacrifice in profit. The reason is that a very small, (if any) percentage of the returns from an installation comes from the mark-up on components, but more of that later.

Installation

Assuming the customer has been sold, the next job is to install the system. The two major considerations of this phase of the operation are the type of housing to be used for the installation, and the interconnection of the equipment. Several methods of enclosing the equipment will now be discussed in their order of increasing complexity.

The easiest and also the most impractical way of setting up the system is to place it on a shelf or table in the open. This suggestion is likely to come from the customer. The chances are that he either has a bachelor friend who threw it together that way or he attended the Audio Fair and thought that's the way it's done. Nevertheless, such factors as shock hazard, dust collection, nagging wives and tube burns make this method highly unfeasible.

For small apartments, or for rooms which cannot take much more furniture, a closet installation is recommended (see Fig. 1). If space permits, the speaker alone may be mounted in the door, and the other units placed on shelves. This method, if workable, has certain advantages over other methods discussed here. The only cabinetry needed here is a new closet door. Rather than cut up the closet door in use, it is wise to buy an extra one for this purpose; the old one can be stored somewhere. Customers in rented homes or apartments will appreciate this suggestion since they usually have to pay for such damages. Ventilation is no problem since the large volume of a closet will keep the ambient temperature well below the critical value. If the speaker is installed in the door, no

Fig. 4—Custom installation houses record-changer, tuner, amplifier, speaker. Note ample storage area.
—Courtesy, Sultan Laboratories

Fig. 5—This installation includes TV and features a desk surface adjacent to the record-changer.
—Courtesy Webster-Chicago Corp. and Voice and Vision, Inc.

Fig. 6—Here the hi-fi equipment becomes part of the room's wall. Note large speaker area.
—Designed and installed by Voice and Vision, Chicago.

Fig. 7—This installation provides ample and correct housing for all units; is also room divider.
—Designed and installed by Voice and Vision, Chicago.

RADIO-TELEVISION SERVICE DEALER • MAY, 1954
SURVEY SHOWS 78% OF SERVICE-DEALERS REPLYING REPORT ENTHUSIASTIC SUPPORT OF CQS PLAN!*

Using the Certified Quality Service plan? If not, you may be losing business to your competitor across the street. If you are using the CQS tags and all the sales aids available to you, you're all set...

*Survey conducted January, 1954

AND HERE'S GOOD NEWS!

Your NATIONAL ADVERTISING continues to sell for you in LIFE during May and June.

BE SURE YOU HAVE YOUR CERTIFICATION TAGS

Your national advertising says, "Ask your Service-Dealer for this CQS Tag." Tie in. All you have to do is:

1. Use your improved, colorful, multi-use CQS Tags to build more business and greater customer confidence . . . in you.
2. Use your CQS signs, posters, decals, and other sales aids. Make it easy for customers to find you.

CQS Tags are available: 250 for $2.25, 500 for $3.50, 1000 for $6.00, with your 3-line imprint. Ask your distributor salesman for special offer . . . or use coupon to order direct.

GET YOUR CQS CBS-STAR KIT

CBS-Star Kit is free with CQS Tags . . . Kit alone, 25¢

Let folks know you're the Service-Dealer they read about in the national magazines. Ask your distributor salesman for special offer . . . or use coupon. Order your Tags and CBS-Star Kit today.

CBS-HYTRON Main Office: Danvers, Mass.

A Division of Columbia Broadcasting System, Inc.

A member of the CBS family: CBS Radio - CBS Television
Columbia Records, Inc. • CBS Laboratories • CBS-Columbia • and CBS-Hytron

Manufacturers of Receiving Tubes Since 1921
damping or absorbent material need be used to line the closet walls. The clothes or linens themselves make excellent sound absorbers. Naturally, no speaker should be installed in a china or dish closet. The cabinet work necessary for the various cut-outs can usually be done by the installer himself.

For those who want one or two large cabinets for a prominent place in the room, there are commercial items available which are ready-made for the more popular hi-fi components (see Fig. 2). The equipment need only be mounted and connected. A study of any hi-fi catalog will show that the cabinets come in several styles and finishes, and even unfinished if desired. When ordering them, it is necessary to list the make and model of each component so that the proper cut-outs will be made.

There is another type of installation, similar to the above, which makes use of the now-modular type of units on the market (see Fig. 3). Here, the system is integrated with bookshelves, a drop-leaf type of desk and secretary, storage cabinets, knick-knack shelves and record storage compartments. Since these units are put out for the most part by furniture manufacturers, they are not geared for the audio trade. Hence, these units might require a fair amount of modification and carpentry to adapt them to the installation. A record changer cover must be added, matching front panels for the various components must be supplied and cut out, and the back panels must be removed in part to provide adequate ventilation. In any case, it is only fair to point out to the customer that an added TV unit necessitates a larger installation.

Finally, there is the custom-built installation, such as the wall unit, recommended for the home owner and the custom-built with a specific design in mind. Examples of this type of installation are shown in Figs. 4 through 7. This is the most expensive type of installation and can bring in a nice return. However, it is important to make sure that every detail of the design and wood finish is carefully discussed with the customer and cabinet-maker before going ahead with the job. Otherwise, some dimensions might be off, the finish might not match the other wood pieces in the room, or some other overlooked detail might cause trouble. This only results in strained relations, a dispute over the bill and a bad recommendation—no matter whose fault it is.

Interconnection of Components

The interconnection of the components, in spite of what the manufacturers say, does require some thought to suit individual needs and tastes. A few important considerations on this subject will be discussed here.

Fig. 8—External switching arrangement for single control selection of desired unit. Other controls for volume, treble, bass, record equalization, tape-record, etc., must be used as provided in set.

First of all, a switching system could be arranged which requires the operation of only one control for power and selection. A system with a separate off-on switch for each component may not be practical. Neither, on the other hand, is it desirable to turn all of the equipment on when only part of the system is being used since this is a waste of power and money. There is enough of a choice of components available to meet most requirements, under average conditions. However, certain set-ups may require some interconnection modifications. Fig. 8 illustrates a method of switching which requires only one control and permits power to reach only those units in use. Almost every component used in home systems is included in the block diagram. For simplicity, the tape recorder is shown connected for play-back. The individual instruction sheets of the various manufacturers should be consulted when setting up the system for tape-recording from the various sound sources. Notice that antenna switching, if necessary, can be provided. If a balanced 300 ohm line is used, an extra wire must be added. The other side of the twin lead should then be connected to corresponding positions on the added wire. Both sides of the line should be adequately fused since some amplifiers and tuners are not individually fused. Secondly, an attempt should be made to avoid the duplication of volume and tone controls. With two bass, treble and volume controls to play with plus an equalizer, even Job would give up and go to a concert. Also, the less units with controls, the fewer front panel cutouts needed. If there are volume controls on both the radio tuner and on one of the other components (which is usually the case), the control at the highest sound level point in the chain should be replaced with a fixed resistor equal to the maximum value of the control. Both noise level and harmonic distortion can be reduced somewhat in this way.

Thirdly, adequate provisions for the ventilation of the high-powered units in the system should be provided. This first rule, in this connection, is to keep the cabinets at least four inches away from the wall, where possible. Also, when it doesn't interfere with the appearance of the installation, no back

Fig. 9—Unwanted capacitance may be introduced if long speaker leads are used with feedback amplifier.
the Booster with Twice as much Gain as Ever Before!!

CASCADE TWO-STAGE

MODEL DB-550
ONLY $37.50 LIST

DESIGNED SPECIALLY FOR USE WITH CASCODE FRONT ENDS!

REGENCY DIV., I.D.E.A., INC., 7900 PENDLETON PIKE, INDIANAPOLIS 26, INDIANA
<table>
<thead>
<tr>
<th>Manufacturers</th>
<th>Components</th>
<th>Manufacturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACR PRODUCTS CO., Philadelphia, Pa.</td>
<td>[]</td>
<td>JAMES B. LANNING SOUND, INC., Los Angeles, Calif.</td>
</tr>
<tr>
<td>AMERICAN WIRE CORP., N.Y., N.Y.</td>
<td>[]</td>
<td>LEAK POINT ONE AMPLIFIERS (inc. BRITISH INDUSTRIES)</td>
</tr>
<tr>
<td>ESSIE LANSING CORP., N.Y., N.Y.</td>
<td>[]</td>
<td>LIVINGSTON ELECTRONICS CORP., Long Island, N.Y.</td>
</tr>
<tr>
<td>AMPEX ELECTRIC CORP., Redwood City, Calif.</td>
<td>[]</td>
<td>ADDISON RADIO CORP., Nanaimo, N.J.</td>
</tr>
<tr>
<td>AMPEX ELECTRONICS CORP., N.Y., N.Y.</td>
<td>[]</td>
<td>BAGNECORP, Inc., Chicago, Ill.</td>
</tr>
<tr>
<td>CYPHER ELECTRIC CORP., Chicago, III.</td>
<td>[]</td>
<td>LEE MARK & ASSOCIATES, Inc., Chicago, III.</td>
</tr>
<tr>
<td>AMPO CORP., Chicago, III.</td>
<td>[]</td>
<td>H. L. MARTIN & CO., Cranston, III.</td>
</tr>
<tr>
<td>AMP PRODUCTS, Grand, Ill.</td>
<td>[]</td>
<td>MONARCH CORP., Birmingham, N.Y.</td>
</tr>
<tr>
<td>AUDIO DEVICES, Inc., N.Y., N.Y.</td>
<td>[]</td>
<td>MEASUREMENTS CORP., Buffalo, N.Y.</td>
</tr>
<tr>
<td>AUDIO EXCHANGE, Inc., Kansas, N.Y.</td>
<td>[]</td>
<td>NEW YORK MFG & FCO. N.Y., Fall, Mass.</td>
</tr>
<tr>
<td>AUDIO VIDEO PRODUCTS CORP., N.Y., N.Y.</td>
<td>[]</td>
<td>NORTHERN AZUSA MFG CORP., Chicago, Ill.</td>
</tr>
<tr>
<td>AVCO MFG CORP., Cincinnati, Ohio.</td>
<td>[]</td>
<td>THE NATIONAL COMPANY, New Haven, Conn.</td>
</tr>
<tr>
<td>BEAM INSTRUMENTS CORP., N.Y., N.Y.</td>
<td>[]</td>
<td>REESE AUDIO PRODUCTS CO., Hollywood, Calif.</td>
</tr>
<tr>
<td>BENDIX MFG CORP., Chicago, III.</td>
<td>[]</td>
<td>ORIO RADIO INDUSTRIES, Opelika, Ala.</td>
</tr>
<tr>
<td>FULL SCALE SYSTEMS, Inc., Columbia, Ohio</td>
<td>[]</td>
<td>PENTHOUSE CORP., Chicago, Ill.</td>
</tr>
<tr>
<td>HELIX ASSOCIATES, Los Angeles, Calif.</td>
<td>[]</td>
<td>PENTHONYX CORP., Chicago, Ill.</td>
</tr>
<tr>
<td>DAVCO BOOGER CORP., N.Y., N.Y.</td>
<td>[]</td>
<td>PICKERILL'S CORP., Newton, Mass.</td>
</tr>
<tr>
<td>E. T. ROSS CORP., Suburban, Conn.</td>
<td>[]</td>
<td>PICKERING & CO., Inc., Nassauville, N.Y.</td>
</tr>
<tr>
<td>BRITISH INDUSTRIES CORP., N.Y., N.Y.</td>
<td>[]</td>
<td>POOLE RADIO CORP., Long Island City, N.Y.</td>
</tr>
<tr>
<td>BROOK ELECTRONICS, Inc., Elizabeth, N.J.</td>
<td>[]</td>
<td>PORTABLE GRAMAPHONE CORP., McGrawville, N.Y.</td>
</tr>
<tr>
<td>COLLIER RESEARCH CHARGES (see ROCKSTAR CORP.)</td>
<td>[]</td>
<td>PIERRE RECORDING CORP., New York, N.Y.</td>
</tr>
<tr>
<td>COLLINS AUDIO PRODUCTS, Westfield, N.Y., N.Y.</td>
<td>[]</td>
<td>RADIO AMERICA CORP., HCA Victor Div., Camden, N.J.</td>
</tr>
<tr>
<td>COLUMBIA RECORDS, Inc., N.Y., N.Y.</td>
<td>[]</td>
<td>THE RADIO CRAFTSMEN, INC., Chicago, III.</td>
</tr>
<tr>
<td>COREC, INC., Glen Ridge, N.J.</td>
<td>[]</td>
<td>RADIO ENGINEERING LABS, Inc., Long Island City, N.Y.</td>
</tr>
<tr>
<td>CORD LABORATORIES, Inc., Standard, Conn.</td>
<td>[]</td>
<td>RADIO AVIATION CORPORATION (LAFAYETTE), N.Y., N.Y.</td>
</tr>
<tr>
<td>DARTON CORP., Inc., Kansas City, Mo.</td>
<td>[]</td>
<td>RAYMARK CORPORATION (RAY, N.Y., N.Y.</td>
</tr>
<tr>
<td>DAYTON ELECTRIC CORP., Cleveland, Ohio, Columbus, NY.</td>
<td>[]</td>
<td>REGULAR DIVISION, D. L. & Co., Inc., Indianapolis, Ind.</td>
</tr>
<tr>
<td>DURASOUND CORP., Inc., Cleveland, N.Y.</td>
<td>[]</td>
<td>RD-44 CO., Long Island City, N.Y.</td>
</tr>
<tr>
<td>EMTONE CORP., Inc., Kansas City, Mo.</td>
<td>[]</td>
<td>RUNNE RAHA, RAI, N.Y., N.Y.</td>
</tr>
<tr>
<td>ESOT MFG CORP., Inc., Equipment, N.Y. J.</td>
<td>[]</td>
<td>RIVER EDGE INDUSTRIES, River Edge, N.J.</td>
</tr>
<tr>
<td>FALCHIO RECORDING INSTRUMENT CORP., Winnetoka, Ill.</td>
<td>[]</td>
<td>R*I+ ELECTRIC CORP., N.Y., N.Y.</td>
</tr>
<tr>
<td>FERNANDO ELECTRIC, Inc., N.Y., N.Y.</td>
<td>[]</td>
<td>ROBINSON CORP., N.Y., N.Y.</td>
</tr>
<tr>
<td>FISHER RADIO CORP., Long Island City, N.Y.</td>
<td>[]</td>
<td>ROCKSTAR CORP., N.Y., N.Y.</td>
</tr>
<tr>
<td>FISHER RADIO CORP., Long Island City, N.Y.</td>
<td>[]</td>
<td>SHIELDS LABS, Inc., Buffalo, N.Y.</td>
</tr>
<tr>
<td>GARSIDE RECORDI, INC. (see BRITISH INDUSTRIES)</td>
<td>[]</td>
<td>SIMPSON MFG CORP., N.Y., N.Y.</td>
</tr>
<tr>
<td>GARDEN DEVELOPMENT LTD., Barrington, N.J.</td>
<td>[]</td>
<td>SINE INC., Upper Darby, Pa.</td>
</tr>
<tr>
<td>GB, V. WOOD PRODUCTS CORP. (Cayman) Bar, N.Y.</td>
<td>[]</td>
<td>SIMON'S CORP., N.Y., N.Y.</td>
</tr>
<tr>
<td>GENERAL ELECTRIC CORP., Stratford, N.Y.</td>
<td>[]</td>
<td>SIEGWERD, CARLSON & CO., Haverford, N.Y.</td>
</tr>
<tr>
<td>GOODMAN INDUSTRIES (William Elec Sales Corp.), N.Y., N.Y.</td>
<td>[]</td>
<td>TANDO CANADA LTD., London, England</td>
</tr>
<tr>
<td>GRAY BEXTER & DEVELOPMENT CORP., Hackensack, N.J.</td>
<td>[]</td>
<td>TELEMETRY ELECTRIC COMPANY, N.Y., N.Y.</td>
</tr>
<tr>
<td>GRAMMAM AMPLIFIERS (see PRECISION ELECTRONICS)</td>
<td>[]</td>
<td>TELEPHONIC CORP., N.Y., N.Y.</td>
</tr>
<tr>
<td>H. A. BARTLEY CO., Inc., N.Y., N.Y.</td>
<td>[]</td>
<td>TITAN CORP., N.Y., N.Y.</td>
</tr>
<tr>
<td>THE HALLBACH COMPANY, Chicago, III.</td>
<td>[]</td>
<td>TOPEPER, N.Y., N.Y.</td>
</tr>
<tr>
<td>HARLIE-WELLS ELECTRONIC, Inc., Southbridge, Mass.</td>
<td>[]</td>
<td>TRISTON CORP., N.Y., N.Y.</td>
</tr>
<tr>
<td>HEALTH COMPANY, Boston, Mass.</td>
<td>[]</td>
<td>TV & RADIO CORP., Kansas City, Mo.</td>
</tr>
<tr>
<td>JENSEN MFG CO., Chicago, III.</td>
<td>[]</td>
<td>UB SOFT CORP., N.Y., N.Y.</td>
</tr>
<tr>
<td>MASTER RESEARCH CO., N.Y., N.Y.</td>
<td>[]</td>
<td>UNITED DISPLAY CORP., UTOC, N.Y., N.Y.</td>
</tr>
<tr>
<td>MURRAY ELECTRONIC CORP., N.Y., N.Y.</td>
<td>[]</td>
<td>UNIVERSITY ELECTRONICS CORP., White Plains, N.Y.</td>
</tr>
<tr>
<td>NORTHERN ARIZONA MFG CORP., Chicago, Ill.</td>
<td>[]</td>
<td>VIDEO CORP. OF AMERICA, N.Y., N.Y.</td>
</tr>
<tr>
<td>NORTHWEST RADIO CORP., N.Y., N.Y.</td>
<td>[]</td>
<td>V-1 CORP., British India, Ltd.</td>
</tr>
<tr>
<td>Omnilux, Inc., New York, N.Y.</td>
<td>[]</td>
<td>VANTIN INDUSTRIES, Inc., Los Angeles, N.J.</td>
</tr>
<tr>
<td>Omnilux, Inc., New York, N.Y.</td>
<td>[]</td>
<td>WHITE AND SMALLER, INC., New York, N.Y.</td>
</tr>
</tbody>
</table>
Color Stripe Signal

Provides Color Signal Check on Black and White Transmissions

Fig. 2—Color stripe appears as light green bar. On black and white sets bar is almost invisible.

The new color stripe generator developed by the Radio Corporation of America for use by television stations is a major step toward solving the problem of satisfactorily installing color TV receivers in homes despite the relatively few hours of color programming presently being aired. The new unit, which is of relatively simple design and can be installed by a television station for approximately $500, will add a narrow color stripe to the station’s regular black and white television signal during station breaks. The color stripe, practically unnoticeable on black-and-white receivers, will enable the receiver serviceman who is making a color television receiver installation to determine whether the station’s color signal is reaching the receiver.

The RCA Color Test Generator is designed to be inserted in the video line feeding the television transmitter in such a way that the normal system operation is not changed in any way. The normal signal at this point in the system is a composite (video and sync) monochrome signal such as that shown in (a) of Fig. 1. The inserted Color Test Generator does not change this basic signal at all but simply adds to it a small amount of color information.

This information consists of (1) a color sync "burst" signal which appears on the "back porch" of the regular monochrome sync pulse and (2) a short test "burst" of color signal which is superimposed on the monochrome video signal at the right side of the raster as shown in (b) of Fig. 1.

Monochrome receivers are relatively "blind" to these added signal components because most receivers have relatively low response at 3.6 mc. In a color receiver, however, the color sync signal and color test burst signal operate to generate a single greenish-yellow bar (3¼ to 3½" wide) at the extreme righthand side of the picture on a 15" Kinescope.

On a color receiver, this bar will appear with the color gain control advanced as for a normal color picture. With the color control turned down, a normal black/white picture will result. Naturally, during a color transmission the color bar will be deleted. On a monochrome transmission, however—even for such brief periods as station breaks (5-15 seconds)—this color bar will provide a color test signal of inestimable value to the service technician. Here, within a few seconds, he will have a signal that will provide a complete system check. If the color bar is not apparent in its true color and intensity, it will be an indication that additional work is needed at that location, apart from the receiver. This work (antenna change, relocation or realignment, distribution check, termination, etc.) could well be scheduled before the next transmission of the color bar. In any event, this single color test signal would provide a conclusive check on the over-all receiving system at any customer’s location. Likewise, the customer, too, would have this same “tool” available to him to determine whether service was needed in advance of a scheduled color program transmission.

Description of the RCA Color Stripe Generator

A block diagram of the RCA Type WA-8A Color Stripe Generator is shown at the right in Fig. 1. Referring to this diagram the operation is as follows:

The input video signal is fed to a “sync separator” which amplifies the signal, then strips off the picture part of the signal, leaving only the sync signal to be passed on.

The “pulse width discriminator”, to which the signal is next fed, blocks off the equalizing and vertical sync pulses, leaving only the horizontal sync pulses.

The separated horizontal sync pulses are used in two ways. First, they are fed to a “burst kever amplifier and shaper” which amplifies and shapes these pulses and feeds them on to a “gate” circuit. Here these pulses allow bursts of subcarrier frequency to go through to the output amplifier at just the right time for these bursts to appear on the back porch of the standard monochrome horizontal sync signals. Thus positioned they provide color sync signals of the type specified by the new FCC Color TV Standards.

The second use made of the separated horizontal pulses is to trigger a “delay” circuit which in turn triggers a “pic-

[Continued on page 56]
ORDINARILY, sound troubles in the television receiver don't seem to give the serviceman too much trouble. However, occasionally the serviceman comes across an audio problem which can give him more than a few new grey hairs. The following case histories are typical examples.

Admiral 20V1: Buzz

The first problem dealt with an Admiral 20V1. When the set was turned on it played normally. However, after about 20 minutes a loud buzz was heard. It sounded like trouble in the ratio detector. See Fig. 1.

First, a few preliminary checks were made. Varrying the vertical hold control had no effect on the pitch of the buzz. Thus, the vertical section was eliminated as a source of the trouble. Variying the fine tuner caused the buzz to come and go. On station, however, the picture quality was good while the buzz remained.

The 6AL5 was replaced and the ratio detector transformer secondary slug was adjusted for minimum buzz. The set now seemed to play properly.

About 20 minutes later, the buzz returned. The trouble was definitely in the ratio detector. But what was causing the drift? Looking at the diagram it seems logical to suspect C204-180 muf. And so it was replaced together with the old 6AL5. Naturally, with a new capacitor, the ratio detector transformer had to be realigned for minimum buzz.

After this was done the set was again left to cook. Imagine our dismay when a half an hour later the buzz came back as usual. From previous experience it was known that this particular Admiral 20V1 had a few modifications that were recommended. We looked them up and found that a 20 muf minus 750 temperature coefficient ceramic condenser placed in parallel with C204 was recommended for a drifting ratio detector.

The 20 muf condenser was installed and again the ratio detector transformer had to be realigned, both primary and secondary, for minimum buzz. The set played well for about two hours when the buzz came back again.

Admiral 20V1: Buzz

We were about to commit suicide but before doing so, we got the idea that the ratio detector transformer (T201) could be the cause of this trouble. So, without further hesitancy, the part number of T201 was looked up. While doing this, an important bit of information was noticed, namely, that C204 was also a minus temperature coefficient capacitor.

It then dawned on us that the replacement condenser 180 muf (C204) which was still in the set was not a temperature compensated condenser. The original condenser was then installed and again the ratio detector transformer was realigned for minimum buzz. The television set played all that day and the next without drifting. The writer then gave due thanks, made out the bill, and returned the set to the customer.

Tele-King 812: Distortion

The second problem involved a Tele-King 812. After the TV receiver had played a few minutes the sound became distorted. We first varied the fine tuner to see if the sound would clear up. As the sound remained distorted and as there was no buzz at the "on station" setting of the fine tuner, it was assumed that the trouble was in the audio section of the receiver. See Fig. 2.

The diagram showed that V1, V2, and V3 in the sound section were the tubes whose cathodes were connected in series with the 360V B+ supply. Thus a 140 volts B+ source was made available at the cathodes for the plates and screens of the rf and if tubes.

We also saw that R106 and R105 formed a bleeder network to bias the grid of the 6AQ5 (V-1) at about 17 volts negative with respect to cathodes, or at about 123 volts positive to ground. Moreover, the 6AQ5 acts as a voltage regulator by keeping the 140 volts rf-if

Fig. 1—Partial schematic of sound section of Admiral Model 20V1. Note modification insertion and Exact Replacement Only indication.

Fig. 2—Partial schematic of sound section of Tele-King Model 812. Note that +140 volt connection is obtained at cathodes of tubes.

The Work Bench

by Paul Goldberg

ORDINARILY, sound troubles in the television receiver don't seem to give the serviceman too much trouble. However, occasionally the serviceman comes across an audio problem which can give him more than a few new grey hairs. The following case histories are typical examples.

Admiral 20V1: Buzz

The first problem dealt with an Admiral 20V1. When the set was turned on it played normally. However, after about 20 minutes a loud buzz was heard. It sounded like trouble in the ratio detector. See Fig. 1.

First, a few preliminary checks were made. Varrying the vertical hold control had no effect on the pitch of the buzz. Thus, the vertical section was eliminated as a source of the trouble. Variying the fine tuner caused the buzz to come and go. On station, however, the picture quality was good while the buzz remained.

The 6AL5 was replaced and the ratio detector transformer secondary slug was adjusted for minimum buzz. The set now seemed to play properly.

About 20 minutes later, the buzz returned. The trouble was definitely in the ratio detector. But what was causing the drift? Looking at the diagram it seems logical to suspect C204-180 muf. And so it was replaced together with the old 6AL5. Naturally, with a new capacitor, the ratio detector transformer had to be realigned for minimum buzz.

After this was done the set was again left to cook. Imagine our dismay when a half an hour later the buzz came back as usual. From previous experience it was known that this particular Admiral 20V1 had a few modifications that were recommended. We looked them up and found that a 20 muf minus 750 temperature coefficient ceramic condenser placed in parallel with C204 was recommended for a drifting ratio detector.

The 20 muf condenser was installed and again the ratio detector transformer had to be realigned, both primary and secondary, for minimum buzz. The set played well for about two hours when the buzz came back again.

Admiral 20V1: Buzz

We were about to commit suicide but before doing so, we got the idea that the ratio detector transformer (T201) could be the cause of this trouble. So, without further hesitancy, the part number of T201 was looked up. While doing this, an important bit of information was noticed, namely, that C204 was also a minus temperature coefficient capacitor.

It then dawned on us that the replacement condenser 180 muf (C204) which was still in the set was not a temperature compensated condenser. The original condenser was then installed and again the ratio detector transformer was realigned for minimum buzz. The television set played all that day and the next without drifting. The writer then gave due thanks, made out the bill, and returned the set to the customer.

Tele-King 812: Distortion

The second problem involved a Tele-King 812. After the TV receiver had played a few minutes the sound became distorted. We first varied the fine tuner to see if the sound would clear up. As the sound remained distorted and as there was no buzz at the "on station" setting of the fine tuner, it was assumed that the trouble was in the audio section of the receiver. See Fig. 2.

The diagram showed that V1, V2, and V3 in the sound section were the tubes whose cathodes were connected in series with the 360V B+ supply. Thus a 140 volts B+ source was made available at the cathodes for the plates and screens of the rf and if tubes.

We also saw that R106 and R105 formed a bleeder network to bias the grid of the 6AQ5 (V-1) at about 17 volts negative with respect to cathodes, or at about 123 volts positive to ground. Moreover, the 6AQ5 acts as a voltage regulator by keeping the 140 volts rf-if
supply constant. It does this through R102 and R103. For example, if the 140 volts happens to increase, this automatically makes the 6AQ5 cathode more positive with respect to the grid, thus decreasing the cathode current flow. This in turn decreases the voltage drop across the cathode load R102 and R103. This decrease in voltage will now be just enough to offset the previous increase in cathode voltage. We have discussed this series cathode voltage dropping method because it is used similarly in so many other television receivers. Now with all this in mind we first replaced V1 and V2 individually but this did not solve the situation. We then measured the grid to cathode voltage of the audio output tube V1 (6AQ5). It measured about 40 volts positive. Here was an irregularity. As was stated before, the voltage should have measured about 17 volts negative to cathode. First we checked C104, 02 uf for leakage. It checked satisfactorily. Next we checked the voltage divider network R105 and R106. R105 checked accurately at about 330K, but R106 which was supposed to be 180K measured about 350K. It now can be seen why the 6AQ5 grid-to-cathode measured 40 volts positive. The voltage developed across R106 was now at about half of the 360 volt B+ supply or 180 volts, and the cathode was at 140 volts. Thus the grid was 40 volts positive. R106 was then replaced with a new 180K resistor and the sound was no longer distorted.

Motorola TS95: Sound distorted at high volume control setting

The third problem concerned a Motorola TS95. The set came into the shop with the complaint that when the volume control was turned up toward maximum, the sound would distort. However, at a normal setting the sound was fine. This condition had existed since the day the set was installed. First, a new speaker was connected in place of the old one. (As you probably have experienced, a defective voice coil can operate properly at normal volume but at maximum volume will tend to rub and give a nasal quality.) However, the same condition prevailed.

The 6J5 and 6V6 were replaced individually but this too did not solve the situation. The volume control R31B was then checked for any defects but none were found. The coupling condenser (C54) to VII was then checked for leakage. See Fig. 3 Occasionally, condensers leak only at maximum input. But C54 checked okay. We now decided to check C53, the coupling condenser to the 6J5, but alas, this condenser was missing. R44, the grid resistor (4.7 meg) was also missing. It was observed that the center arm of the volume control fed the 6J5 grid directly.

We immediately installed R44, and C53 and turned the set on. The volume control now varied from minimum to maximum without any distortion. R44 and C53 are not only the coupling network but also provide grid bias. With R44 and C53 out of the circuit, the voltage across the volume control R31B, when at a maximum, would drive the 6J5 to draw grid current, thus causing sound distortion.

In rechecking the operation of the volume control it was observed that at a minimum setting there was a pronounced buzz which we had not noticed before. However, at normal and maximum volume control settings there was no buzz. The vertical hold control was varied, which varied the pitch of the buzz. Naturally, we concluded this to be vertical buzz.

From experience, we remembered that a glass 6J5 (V10) was not called for in this receiver. It was then replaced with a metal 6J5 the shield of which is grounded. This change put an end to the vertical buzz problem.

In this receiver, the audio circuits run extremely close to the vertical circuits. This is the reason for the metal tube. We believe it very important to replace the original tubes with the exact duplicate; even with regard to whether it is glass or metal. In audio circuits hum and buzz pickup are very probable if this is neglected.

![Diagram](https://www.americanradiohistory.com/images/1980/1954_MOTOROLATSY95.jpg)

Fig. 3—Partial schematic of sound section of Motorola TS 95. Observe where components were omitted. Use metal or shielded 6J5.
ULTRA high frequency telecasting has created many new installation problems for the television service technician. Basically, every dealer must make a choice between two different types of conversion techniques. A good percentage of existing consumer receivers employ turret tuners, where a uhf step can be inserted for reception of the new ultra high frequency channel. The alternative to this procedure is of course to use a separate converter in conjunction with the TV set, permitting reception of all channels in this new uhf range. I can appreciate that this is fairly common knowledge to the reader, but it is emphasized because at this point the dealer has made a decision as to the type of outside receiving installation he is going to make to get the best possible television pictures for his customer.

Other factors that will affect this selection include future uhf assignments, the possibility of uhf channel changes, and new uhf channels coming on the air. The procedure of adding a separate uhf antenna requires the use of an additional transmission line. In the interests of economy the new uhf antenna is almost invariably mounted below the existing uhf array, in the worst possible signal location. Of course additional stand-offs and associated hardware must be used, and we still have two leads for one set of receiver terminals. The problem of connecting these two leads to the receiver can be solved by installing a switch or separation filter at the antenna input terminals of the TV set. If a low loss separation filter were available, this would be an ideal solution as it would allow automatic operation of the individual antenna systems.

It is this author's opinion that there is no filter yet developed that will efficiently isolate a uhf and vhf antenna without excessive loss, particularly in the uhf range. The filter could of course be installed at the antenna and a single lead line brought down to the receiver. The saving through such practice is questionable however, as a new low loss line must be used for uhf. This new transmission line will carry both vhf and uhf signals, and the original flat ribbon line removed. The filter type uhf-uhf installation is restricted to areas of high signal from the uhf transmitter where the inherent losses of the filter can be tolerated.

It might be interesting at this point to resolve some of the factors involved in the strip tuner vs the converter type installation. In the case of the strip tuner the set sensitivity is just as good as a uhf converter placed between the antenna and receiver. The strip tuner TV set has only one set of antenna terminals necessitating the use of a separation filter at the antenna or receiver. The fixed loss of the filter will cut down the amount of uhf signal arriving at the set. Whether this is serious or not from an operational standpoint depends again upon the original amount of uhf signal available. The converter on the other hand has two sets of terminals and the uhf and vhf antennas may be connected independently without filter loss. This in turn explains why in many cases converters have been used on sets that were designed to take uhf channel strips. The net result is a more costly installation, the requirement of tuning and switching the converter, and the natural objection of having an additional piece of equipment on top of the television set.

The ideal solution would be to have the entire range of signals from Channels 2-83 available on a single transmission line without resorting to the use of lossy filters, or the need of an entirely individual uhf installation. In the past the basic limitation has been in the television antenna system. At

![Fig. 1](left)=Simple dipole antenna and its radiation pattern.
Fig. 2=(right)=3/2 wavelength ant. and its radiation pattern.

![Fig. 1a](left)=Reflector added to simple dipole antenna above.
Fig. 1b=-(right)=Directors added.

![Fig. 2a](left)=Tilted dipole and its radiation pattern.
Fig. 2b=(right)=Response characteristics of antenna for Ch. 2-6.

JETOMIC

by Douglas H. Carpenter
Chief Engineer, JFD Manufacturing Co., Inc.

ULTRA high frequency telecasting has created many new installation problems for the television service technician. Basically, every dealer must make a choice between two different types of conversion techniques. A good percentage of existing consumer receivers employ turret tuners, where a uhf step can be inserted for reception of the new ultra high frequency channel. The alternative to this procedure is of course to use a separate converter in conjunction with the TV set, permitting reception of all channels in this new uhf range. I can appreciate that this is fairly common knowledge to the reader, but
the antenna proper. Minimum signal will of course be received at the antenna ends. This condition will be true for only one frequency, and restricts the use of the dipole antenna for a maximum of one television channel.

If we wished to raise the gain of the dipole at this frequency and to cut off one lobe a reflector may be placed behind the dipole. As illustrated in Fig. 1a the response is now uni-directional and the response from the back of the antenna is eliminated. To further narrow the beam width and increase gain directors may be added. The response now becomes that of Fig. 1b.

Although we have a high gain uni-directional antenna its use is restricted to the basic frequency range of the simple dipole. In the design of a broad band antenna the use of any type of straight dipole is impractical because of this limitation.

Figure 2 shows the same dipole (of Fig. 1) at three times its resonant frequency. The reader will note that the polar pattern now consists of four major lobes located at roughly 45 degree points in relation to the antenna axis.

This pattern would be of course unusable, as the antenna gain is distributed and not additive as in the resonant condition. To place some practical values on these two conditions let us assume that the resonant response of Fig. 1 occurs at Channel 3, and the third harmonic condition at television Channel 9.

In the drawing of Fig. 2a we have the same dipole in a different mechanical form. Here the dipole elements have been tilted forward to form a V. As we shift the mechanical elements of the dipole we have shifted the polar response. If we consider first the operation on the third harmonic it will be noted that we no longer have four major lobes, but rather a single lobe polar pattern (Fig. 2a). The effect of tilting the dipole elements forward has been to superimpose the forward dipole lobes into a single pattern. It must be remembered that although the dipole was one half wave length long at its fundamental resonant frequency it is three half wavelengths long at the third harmonic frequency or in our case Channel 9. Since we have an extended wavelength antenna we automatically have power gain, as the signal collecting area has been increased as compared to a dipole cut for this same frequency.

The third harmonic condition is simply a matter of design angles, and not difficult to accomplish for the frequencies under consideration. When we alter the polar response at the third harmonic we have of course changed the pattern at the resonant condition. Reference to the drawing of Fig. 2b indicates much the same response as we had in the original resonant condition of Fig. 1. The major difference being that now there is a slight dip in the forward portion of the curve.

To review exactly what has happened the reader must visualize the right hand side of the original dipole response being moved to the left and the left hand side of the curve to the right. To satisfy the angle requirements of the third harmonic operation, the polar pattern at the half wave resonant condition is altered. In much the same manner as the gain and pattern response of the simple dipole was improved in Fig. 1a, a reflector is added and our resonant pattern becomes that of Fig. 2c. Here, the dip in the forward portion of the pattern has disappeared, the lobe has been narrowed and the back lobes have been minimized.

Although it might seem at this point that we have satisfied the requirements of a broad band antenna for channels 2-13 there is still another consideration that must be met for extended frequency operation. The operation of a broad band antenna requires a uni-directional response on all channels between 2 and 13; gain considerably above that of the simple dipole, and a close match to a standard 300 ohm line. The antenna of Fig. 2c consists of a single

Fig. 3—Filter employed in Jetonic.

Fig. 4—Filter incorporated in complete Jetonic antenna assembly.

Basic Jetonic Antenna. Details of this unusual antenna illustrated in text.
EVERY basic type of series-parallel RC circuit acts differently from a simple series RC circuit—and differently from each other. The first series-parallel RC circuit we will examine (Fig. 13) illustrates this. To compare the action better, let’s summarize briefly the action in the simple circuit shown in Fig. 14.

In a simple series RC circuit, Fig. 14, there is no voltage across the condenser and the full battery voltage appears across the resistor at the instant the switch is closed. Maximum current flows. Then, as the condenser charges, the voltage across the condenser builds up and the voltage across the resistor drops. Current flow becomes smaller and smaller. After 5 RC current in the circuit stops. The condenser has charged up to the full battery voltage and is equal to and opposite to (buckling) the battery voltage. There is no longer any voltage across the resistor.

The circuit in Fig. 13 acts similarly in some respects but quite differently in others. At the instant the switch is closed in this circuit, the uncharged condenser C1 acts like a short circuit across R1. At this instant, there is zero voltage across R1, C1 and the full battery voltage is across R2. The initial current which flows depends only on the battery voltage and the value of R2. Then the condenser starts to charge. As C1 charges, the voltage across the condenser, and therefore across R1 in parallel, rises—while the voltage across series resistor R2 drops. If the switch is kept closed, the condenser charges up to a certain voltage, which is less than the battery voltage. The amount of voltage to which the condenser charges depends on the value of R1 and R2. The two resistors act as a voltage divider. If R1 is one-half of the total resistance (R1 = R2), then C1 charges up to half of the battery voltage. If R1 is two-thirds of the total resistance (R1 twice as large as R2), then C1 charges up to two-thirds of the battery voltage, and so on. With the values of resistance shown in Fig. 13, the condenser charges up exponentially in the usual way to 40V, then stops charging, while the voltage across R2 drops from full battery voltage to 80V. At this point, there is twice as much voltage across R2 as across R1, since R2 has twice the resistance of R1. Thereafter, a steady current flows through both resistors and there is a constant voltage across the condenser.

The exact operation can be better understood by describing the action from the standpoint of current in the circuit. As in the simple series circuit, maximum current flows at the first instant. The amount of current depends on the source voltage and the resistance of series resistor R2. R1 is effectively shorted by C1. This total initial current flows through R2 and C1. Then C1 starts to charge, and the current flows through both C1 and R2 drops.

However, since the voltage across the parallel resistor R1 is rising (C1 is charging), the current through R1 must increase. Whenever voltage across a resistor increases, the current through it increases. Obviously, the current through C1 must be falling faster than the current through R1 is increasing. This must be true since the combined currents through C1 and R1 form the total circuit current which flows through R2. The total current through R2 is falling since the voltage across R2 is dropping. The condenser stops charging when the rising current through R1 becomes equal to the falling current through R2. A steady current then flows through the resistors. This occurs when the voltage drops across the resistors become exactly proportional to the resistance.

Calculating Time Constant

To understand the operation clearly in terms of time constant, it is a simple matter to reduce the series-parallel circuit to an equivalent series RC circuit. On the basis of this analysis, we will see that a parallel resistor across the condenser has a simple effect on the time constant of the circuit, but a more complex effect on the output waveforms.

In the circuit, of Fig. 15a, maximum current flows through C1 and R2 at the instant the switch is closed. This current depends on the battery voltage and the resistance of R2.

\[I_{\text{max}} = \frac{E}{R_2} = \frac{120}{100,000} = 1.2 \text{ mA} \]

Also, after a certain period, C1 charges up to 40V, then stops charging. No more current flows through C1, even though a steady current flows through the two resistors. From the standpoint of the condenser action, therefore, it is easy to figure out a series RC circuit which gives the same results. All we need is a 40V battery and a value of resistance that, with a 40V battery, gives 1.2 mA at the first in-

Fig. 13—Simple series-parallel r-c circuit for studying basic RC action.

Fig. 14—Simple series r-c circuit for comparing with that shown in Fig. 13.
stant. By simple Ohm's law \((R = \frac{E}{I})\) this is found to be a resistor of approximately 33,000 ohms. Figure 15h shows the series circuit which is the equivalent of the original series-parallel circuit considering condenser action only. In this equivalent circuit, the same initial current flows when the switch is closed (1.2 ma) and the condenser charges up to the same maximum voltage (40V) in the same period of time.

The equivalent circuit has a definite mathematical relationship to the original circuit. In the original series-parallel circuit, the voltage to which \(C1\) charges depends on the values of \(R1\) and \(R2\) and how they divide the source voltage. The resistors act as a voltage divider. Therefore, \(Eo\) (the equivalent source voltage across the condenser) is equal to:

\[
Eo = \frac{R1}{R1 + R2} \times E_r = \frac{50,000}{150,000} \times 120 \approx 40V
\]

It is interesting to note that the one resistor in the equivalent circuit is equal to the parallel value of the two resistors in the original circuit. (This will be discussed in greater detail shortly.) That is, 50K in parallel with 100K is equal to 33K. The equivalent resistance \((R_{eq})\), that is, the single resistor in the equivalent circuit, is therefore equal to:

\[
R_{eq} = \frac{R1 \times R2}{R1 + R2}\]

This, of course, is the formula for the equivalent resistance of two resistors in parallel. To be very clear, these equations are useful simply to find an equivalent series RC circuit which has the same condenser-charging action, which means the same time constant. The time constant of the original series-parallel circuit therefore is:

\[
T = R1 \times R2 \times CI/R1 + R2 = 33,000 \times 10^{-6} = 3300 \mu\text{sec}
\]

This is exactly the same as the time constant of the equivalent series circuit \((T_{eq} = R_{eq} \times C1)\).

Figure 15c shows the curve representing the change of current through \(C1\), from maximum to zero, as the condenser charges to its final voltage. Figure 15d shows the voltage across \(R1\), \(C1\) rising to its maximum value (40V) and remaining at that value. From the standpoint of current and voltage across \(C1\), this action is very much like the action in a series circuit, except that the parallel resistor \(R1\) modifies (reduces) the time constant. The voltage across \(R2\) will be discussed shortly.

Let us assume now that \(C1\) in Fig. 16a has been charged to 40V while \(S1\) was closed and \(S2\) open. Then \(S1\) is opened and \(S2\) is closed. \(C1\) now discharges. Note that \(C1\) discharges through two paths, \(R1\) and \(R2\), as shown by the dotted lines in Fig. 16a. This is equivalent to \(C1\) discharging through the two resistors in parallel as shown more clearly in Fig. 16b.

Analysis of Two Positions of \(R\)

It is interesting to note that both for the charge and discharge period, the two resistors act—as far as the time constant of the circuit goes—as if they are in parallel. In the discharge circuit, they definitely are in parallel. In the charge circuit, they are effectively in parallel. Let's see why. We know in a simple series RC circuit, the time constant is equal to \(R \times C\). If we put a second resistor in parallel to the first one (Fig. 17a), then the time constant is still \(R \times C\) but now \(R\) is the parallel

![Fig. 15—Series-parallel r-c circuit of Fig. 13 reduced to equivalent series r-c circuit to show the charging action and time-constant waveforms.](image)

![Fig. 16—Discharge action in series-parallel r-c circuit; (b) is equivalent circuit of (a). This circuit is same as shown in Fig. 13.](image)

![Fig. 17—\(R_p\) has same effect on time constant whether put across \(C\) or \(R_s\).](image)
value of the two resistors—a smaller value than before.

Yet our formula above tells us that if we put the second resistor in parallel with the condenser, it has exactly the same effect on the time constant of the circuit as when we put it in parallel with the resistor. This becomes clear on a closer analysis of what happens in both cases.

Let's place a second resistor \(R_p \) across the condenser \(C_1 \) (Fig. 17b). \(R_p \) is equal to \(R_s \) in this example. We don't change the initial charging current but we reduce by one-half the value of voltage to which the condenser can charge as compared to the original series circuit. The condenser therefore reaches 63% of full charge (and full charge) faster—to be exact, in one-half the time. The time constant of the circuit has been effectively cut in half.

If the equal resistor \(R_p \) is placed across \(R_s \) (Fig. 17a), then the initial charging current is doubled, since the total value of resistance is cut in half. The condenser charges up to the same source voltage. The condenser therefore charges twice as fast, and the time constant is again one-half of the simple series circuit value. Note that the same result is obtained, as regards time constant, by placing the second resistor in parallel with either the condenser or the first resistor.

**Limitations of Using an "Equivalent Circuit"

In reducing a relatively complex circuit to a simple equivalent circuit, to follow the action more clearly, we have followed a common practice in radio and TV. However, when we use an equivalent circuit to find out one particular point, we don't thereby do away with the fact that the original circuit is a complex one. The simplified equivalent circuit does not provide all the answers. For the complex circuit of Fig. 18a, for example, the simple equivalent circuit of Fig. 18b can be used to find the total circuit current, but not the voltage drops across each individual resistor or the current in each branch of the original circuit.

In the same way, the equivalent series RC circuit clarifies the time constant of the more complex network as well as the condenser action but it does not clarify the entire action. We have seen that the parallel resistor in the series-parallel RC circuit we have examined has the same effect on the time constant whether it is placed in parallel with the condenser or the series resistor. We will now see that the parallel resistor has a noticeably different effect on the output waveform when it is in parallel with the condenser.

This occurs essentially because the voltage change across the series resistor \(R_2 \) (Fig. 15a) in a series-parallel circuit is different as compared to the voltage across the resistor in a simple series circuit. In the simple series RC circuit, the voltage across the resistor drops to zero when the condenser is fully charged. On the other hand, in the series-parallel circuit, the voltage across \(R_2 \) drops from the battery voltage at the instant the switch is closed to some value of voltage depending on the voltage division between the two resistors. This is shown in Fig. 15e.

This action has very marked effects in ac circuits—especially differentiating and to a lesser extent, integrating circuits. For example, assume the time constant of a series-parallel RC circuit (like that in Fig. 19a) is short compared to one cycle of an incoming square wave signal. The signal is being taken off \(R_2 \) and is therefore being differentiated. (The circuit can have a short-time constant if either resistor is small enough, since the two resistors together are equivalent to parallel resistors in their effect on the charging of the condenser. However, if the parallel resistor \(R_1 \) is very large compared to the series resistor \(R_2 \), the condenser \(C_1 \) would charge up to practically all of the source voltage. The voltage across \(R_2 \) drops to practically zero. The waveform across \(R_2 \) would be very close to a normal differentiated wave, Fig. 19b. On the other hand, if the values are reversed, and \(R_1 \) is small compared to the series resistor \(R_2 \), then a differentiated waveform would not appear across \(R_2 \). In this case, most of the voltage remains across \(R_2 \) as the condenser completes charging, and the output waveform across this resistor would be as in Fig. 19c.

![Fig. 18—Limitations of using "equivalent circuit": circuit n (b) gives total current, but no info on branches of circuit in (a).](image_url)

Fig. 19—Differentiating and integrating action in a series-parallel r-c circuit (parallel RC shown in series with \(R \)). Note different "output" points.

[To Be Continued]
WAVEFORM interpretations concerned with various conditions in TV receivers are the gist of the questions and answers in this month's installment of TV Instrument Clinic. Dealt with are: ringing in horizontal output circuits, dot generators, hum in video amplifiers, and variations in the appearance of various types of waveforms.

Q. When I test current waveform through the horizontal deflection coils, a wiggle sometimes appears at the beginning of the sawtooth. What is the meaning of this wiggle?
A. The ringing condition noted is shown in Fig. 1. The ringing voltage is a damped sine wave which is caused by shock excitation of stray reactances in the sweep circuit. Shock excitation results from the abrupt rise of the sawtooth flyback. The frequency of this ringing is often in the vicinity of 1/2 mc, and can be trapped out by use of a suitable ringing trap in series with the deflection coil. It is desirable to trap out the ringing wave, because it produces vertical gray bars on the left-hand side of the picture.

Q. Does ringing in the sweep circuit always take place at about 0.5 mc?
A. No. As shown in Fig. 2, situations may arise in which the ringing frequency is much lower.

Q. What is the difference between a linearity dot generator, and a white dot generator?
A. The patterns are the same, but the polarity of the pattern voltage is reversible in the case of a white dot generator. Typical pattern is shown in Fig. 3.

Q. When testing deflection linearity with an audio oscillator, I often find that the width of the bars varies from top to bottom of the screen on the picture tube. What would cause this condition?

Q. What is the meaning of flatness in the output from a sweep generator?
A. Flatness refers to the uniformity of output voltage from the generator over the swept band. A sweep generator is usually tested with a crystal probe of the demodulator type, to make a flatness check. The pattern shown in Fig. 6 shows the output from a flat generator; the pattern shown in Fig. 7 shows the output from a generator which is not flat. In various cases, the amount of departure from flatness in terms of percentage cannot be determined unless a d-c scope is used, since the true zero-volt reference level may be otherwise unknown.

[Continued on page 62]
FOR GREATER PROFITS

SPEED UP YOUR SERVICING with THIS NEW BOOK

which shows you how to take care of and repair in the quickest possible time:

- Common troubles characteristic of certain receivers
- "Bugs" which might take you hours to find
- Factory and field service changes

SET UP SO THAT YOU CAN MAKE THESE REPAIRS IN THE SHOP OR IN THE FIELD WITHOUT REFERENCE TO ANY OTHER SOURCE.

$4.95 postpaid

Contains over 600 Service Items representing over 1000 of the most-serviced Television models now in use. Over 25 different manufacturers' lines are covered.

Video Speed Servicing Systems IS GUARANTEED to Simplify Servicing All TV sets. A number of new Data Items are published in every issue of "Radio-Television Service Dealer" as a regular monthly feature.

TEAR OFF AND MAIL NOW

RADIO-TELEVISION SERVICE DEALER
67 West 44th Street, New York 36, N. Y.

Please send me post-paid VIDEO SPEED SERVICING SYSTEMS Volume 1. Enclosed herewith is

my □ check □ money order for $——— for ——— copies at $4.95 each. (Add 3% Sales Tax in New York City)

Name

Address

City Zone State

DISTRIBUTORS—ORDER YOUR SUPPLY NOW!

Service Dealers—get your copy of VSSS from your Distributor. If he can't supply you, order direct by mail from us.
ARVIN

(9200 SERIES)

MODELS: 9210
9212
9215
9216
9218
9219
9240

CHASSIS TE-358, TE-359
TE-363, TE-364

TUBE COMPLEMENT

<table>
<thead>
<tr>
<th>SYMBOL</th>
<th>TYPE</th>
<th>FUNCTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>V1</td>
<td>6AU6</td>
<td>Intercarrier Sound Amp.</td>
</tr>
<tr>
<td>V2</td>
<td>6BN6</td>
<td>Sound Limiter—Detector</td>
</tr>
<tr>
<td>V3</td>
<td>6BK5</td>
<td>Audio Output</td>
</tr>
<tr>
<td>V4</td>
<td>6CB6</td>
<td>First Picture IF</td>
</tr>
<tr>
<td>V5</td>
<td>6CB6</td>
<td>Sound Picture IF</td>
</tr>
<tr>
<td>V6</td>
<td>6CB6</td>
<td>Third Picture IF</td>
</tr>
<tr>
<td>V7</td>
<td>6CB6</td>
<td>Fourth Picture IF</td>
</tr>
<tr>
<td>V8</td>
<td>6CL6</td>
<td>Video Amplifier</td>
</tr>
<tr>
<td>V9</td>
<td>6AU6</td>
<td>AGC Tube</td>
</tr>
<tr>
<td>V10</td>
<td>6BE6</td>
<td>Syne Separator</td>
</tr>
<tr>
<td>V11A</td>
<td>6SN7GTA</td>
<td>Vertical Oscillator</td>
</tr>
<tr>
<td>V11B</td>
<td></td>
<td>Syne Splitter</td>
</tr>
<tr>
<td>V12</td>
<td>6AH4GT</td>
<td>Vertical Output</td>
</tr>
<tr>
<td>V13</td>
<td>6AL5</td>
<td>Horizontal Disc.</td>
</tr>
<tr>
<td>V14</td>
<td>6SN7GTA</td>
<td>Horizontal Oscillator</td>
</tr>
<tr>
<td>V15</td>
<td>6BDQGT or 6CD6G</td>
<td>Horizontal Output</td>
</tr>
<tr>
<td>V16</td>
<td>1B3CT</td>
<td>Hi-V Rect.</td>
</tr>
<tr>
<td>V17</td>
<td>6AX4GT</td>
<td>Damper</td>
</tr>
<tr>
<td>V18</td>
<td>5U4G</td>
<td>Power Rectifier</td>
</tr>
<tr>
<td>V19</td>
<td>5U4G</td>
<td>Power Rectifier</td>
</tr>
<tr>
<td>V20</td>
<td>21EP4B or 24CP4</td>
<td>Picture Tube</td>
</tr>
<tr>
<td>V21</td>
<td>6BZ7</td>
<td>RF Amplifier</td>
</tr>
<tr>
<td>V22</td>
<td>6J6 or</td>
<td></td>
</tr>
<tr>
<td>V23</td>
<td>6AF4</td>
<td>UHF Osc.-Mixer</td>
</tr>
<tr>
<td>V24</td>
<td>6BZ7</td>
<td>UHF IF</td>
</tr>
</tbody>
</table>

KEY VOLTAGES

All voltages are measured with a VTVM connected between the tube pins and chassis.

B+ Output of Filter Choke 300 VDC
Boosted B+, terminal “T” on Hor. Output Transformer 560 VDC
Plate of Vert. Osc., V11 pin 2 170 VDC
Plate of Vert. Out., V12 pin 5 260 VDC
Plates of Hor. Osc., V14 pin 2 170 VDC
Grid of Hor. Out., V15 pin 5 250 VDC
Grid of Hor. Out., V15 pin 5 -5.0 VDC

ADJUSTMENTS

VERTICAL HOLD

This control is adjusted to prevent the picture from rolling up and down. By rotating the control in both directions its action will be self evident—and it should be set in the position that leaves the picture most stable.

HORIZONTAL HOLD

This control is adjusted to prevent the picture from breaking up into horizontal black bars. Usually its most stable position will be near the center of its rotation.

TONE

This control permits choice of bass-treble tone balance on TV and phono. Also, when rotated maximum to the left until the switch clicks, it will allow a phonograph attachment to play through the television receiver. For TV reception this switch must be turned maximum to the right.

CONTRAST CONTROL

Adjust the CONTRAST CONTROL so that the picture has the desired tones in shading. This control varies the ratio of black to white in the picture.

TRIPLE-POWER SWITCH

The normal position of the switch is in the “distance” position (maximum to the right) and should be moved to the “suburban” position (center) if picture shows evidence of overloading or distortion. In extreme cases where the receiver is operated in close proximity to television station, it may be necessary to turn this switch to the “local” position (maximum to the left) to prevent this overloading.

TWEET ADJUSTMENT (UHF MODELS ONLY)

This adjustment is made accessible by removing channel...
ARVIN TROUBLESHOOTING CHART

RASTER BLOOMING
Hor. drive con.
V15, V16, V17, V18, V19, V20
Check 3-220kΩ Res. connected in series with second
anode lead.
Check HV filter cap

INSUFFICIENT BRIGHTNESS
Ion trap
Brightness and hor. drive con.
V15, V16, V17, V18, V19, V20
Low line voltage

EXCESSIVE RASTER (PIX SIZE)
Hor. drive and width con.
V15, V16, V17, V18, V19, V20
Check 2-18k52 Res. and
0.1 MFD cap connected to
pin 4 of V15.
Check 270 MMFD cap connected to
pin 2 of V14.
Low line voltage
H.O.T.

INSUFFICIENT RASTER WIDTH
Height and vert. lin. con.
V11, V12, V18, V19
Check 0.047 and 0.1 MFD caps connected to red lead
of Vert. osc. transformer
V.O.T.
Low line voltage

NO VERT. DEFL.
V11, V12
Check 0.047 and 0.1 MFD caps connected to red lead
of Vert. osc. transformer
Vert. Defl. yoke
V. O. T. and Vert. osc. transformer

NO VERT. SYNC.—HOR. SYNC. OK
Vert. hold and electronic stabilizer con.
Vert. Int. network
V10, V11, V12

NO HOR. OR VERT. SNC.—PIX SIGNAL OK
Electronic Stabilizer con.
V9, V10, V11

NO HOR. SYNC.—VERT. SYNC. OK
Hor. hold and lock con.
V13, V14, V15
Check 330 MMFD cap connected to pin 1 of V14.

NO SOUND—NO RASTER
Power input circuit
V18, V19

NO RASTER—SOUND OK
Brightness con.
Ion Trap
HV Fuse (0.25 Amp. Slo-Blow)
HV xformer Hor. yoke CRT connections

PIX JITTER UP & DOWN
Vert. hold, electronic stabilizer con.
V9, V10, V11

WEAK PIX—SOUND AND RASTER OK
Tuner fine tuning
Contrast con.
Sub., dist. and local selector switch
V4, V5, V6, V7, V8, V9

POOR HOR. LIN.
Hor. lin. and drive con.
V15, V17
Check 2-0.047 MFD caps connected to Hor. lin. coil
H.O.T.

POOR VERT. LIN.
Vert. lin. and height con.
V11, V12
Check 0.047 and 0.1 MFD cap connected to red lead
of vert. osc. transformer
Check 100 MFD EL. cap connected to pin 3 of V12
V.O.T.

PIX JITTER SIDEWAYS
Hor. hold, lock and electronic stabilizer con.
V10, V13, V14
Check 0.01 MFD cap and 22kΩ Res. connected to pins
5 and 7 of V13

SMEARED PIX
Tuner fine tuning
Sub., loc. dist. selector switch V4, V5, V6, V7, V8
Check vid. det. xstal 1N64 (part of T-206)
Check vid. det. and amp. peaking coils
IF and RF alignment

POOR PIX DETAIL
Tuner fine tuning
V4, V5, V6, V7
Check vid. det. and amp. peaking coils
IF and RF alignment

SOUND BARS IN PIX
Tuner fine tuning
V4, V5, V6, V7, V21, V22
Check alignment of L-201
IF and RF alignment

SNOW IN PIX
V4, V5, V6, V7, V21, V22
Antenna and transmission line

AC IN PIX (DARK HOR. BAR)
V4, V5, V6, V7, V8, V9, V21, V22

ENGRAVED EFFECT IN PIX
Tuner fine tuning
Contrast con.
Sub., loc. dist. selector switch
V4, V5, V6, V7, V8, V9, V22
Check vid. det. xstal 1N64 (Part of T-206)

VERT. BARS
Hor. drive con.
V15, V17
Check 56 MMFD cap and 1kΩ
Check 56 MMFD cap and 1kΩ Res. connected to terminals
3 and 7 of yoke
Defl. yoke ringing

RADIO-TELEVISION SERVICE DEALER • MAY, 1954

www.americanradiohistory.com
PIX BENDING
Hor. hold, lock and electronic stabilizer con.
V11, V13, V14, V15
Hor. drive con.

AUDIO HUM IN SOUND
V1, V2, V3

DISTORTED SOUND
Tuner fine tuning
V1, V2, V3, V22
Tone con.
Check vid. det. xtal 1N64 (Part of T-206)
Sound and vid. IF alignment L-201, T-101
Det. alignment T-101, L-101

NO SOUND—PIX OK
Tuner fine tuning
Vol. con.
V1, V2, V3
Speaker (open voice coil or defective connection)
Sound and vid. IF alignment L-201, T-101
Det. alignment T-101, L-101

WEAK SOUND—PIX OK
Tuner fine tuning
Vol. and buzz con.
V1, V2, V3, V22
Check vid. det. xtal 1N64 (Part of T-206)
Sound and vid. IF alignment L-201, T-101
Det. alignment T-101, L-101

NOISY SOUND—PIX OK
Vol. and tone con.
V1, V2, V3
Check sound system for loose connections
Buzz con.
Speaker
Sound IF and det. alignment L-101, L-201 and T-101

SYNC. BUZZ IN SOUND
Tuner fine tuning
Buzz con.
V1, V2, V22
Check vid. det. xtal 1N64 (Part of T-206)
Sound IF and det. alignment L-101, L-201 and T-101

INTERMITTENT SOUND—PIX OK
V1, V2, V3
Poor connections in sound system

WEAK OR NO PIX—SOUND
WEAK—RASHER OK
Tuner fine tuning
Contrast con.
Sub. loc. dist. selector switch
V4, V5, V6, V7, V21, V22

Check vid. det. xtal 1N64 (Part of T-206)
RF and IF alignment

SYNC. SEPARATION
V14, V15, V16, V17, V20
HV xformer
nel selector and fine tuning knobs. This adjustment is the center of the three screw driver adjustments and is the furthest to the right. This UHF position oscillator trimmer should not be adjusted unless some type of interference is present at the 127 megacycle frequency.

REAR ADJUSTMENTS

1. CABINET ANTENNA (UHF-VHF)
This receiver has separate built-in antenna for UHF and VHF. This receiver is normally shipped with these built-in antennas connected. If an outdoor antenna is required, the built-in antenna which is being replaced with an outdoor antenna, must be disconnected.
NOTE: If an all-channel (UHF-VHF) antenna is satisfactory for use in your area, it is possible to connect both the UHF and VHF terminals on the back of the television set to the antenna lead-in by the use of a MM 30 Mighty Match (Vee-D-X) or equivalent.

2. BUZZ CONTROL
This control is provided to adjust the AM rejection characteristics of the sync system (sync buzz, noise, or hiss). Since this control has been adjusted for an optimum setting at the factory, do not attempt to make this adjustment unless sync buzz noise or hiss is present.
Caution: Turn this control slowly from the present preset position—usually not more than 30 degrees rotation in either direction will be necessary.

3. HORIZONTAL LOCK
For best adjustments turn horizontal control maximum counter clockwise and set the horizontal lock coil so that the pattern will break on 3 to 4 bars at this point.

4. VERTICAL LINEARITY
This control affects the linearity of the top of the picture—for instance, improper setting of this control will cause a persons being televised to have a stretched or flat head.

5. PHONO
Phono jack is on rear panel. Switch on tone control must be turned when using this receiver as a phono amplifier.

6. HEIGHT CONTROL
This control affects the picture height and also controls the stretching or shrinking of the bottom of the picture—for instance, causing long or short legs on a person being televised.

7. HORIZONTAL DRIVE
Adjust HORIZONTAL DRIVE TRIMMER to the right to the point where "overdrive" lines just disappear. "Overdrive" lines appear as a vertical white line in the left portion of the picture. The Horizontal Drive Trimmer is located in the control grid circuit of the Horizontal Output Tube controlling the operating characteristics of the tube. Turning the HORIZONTAL DRIVE TRIMMER to the right reduces the Horizontal Drive.

8. AUTOMATIC ELECTRONIC STABILIZER CONTROL
This control provides a means of stabilizing the sync circuit against electrical interference (such as automobile ignition and other impulse type noises). This control is set at the factory for best overall results. When electrical interference makes the picture unstable tune in strongest station available and turn control clockwise until picture shifts or distorts. Then turn control counter clockwise until picture shifting or distorting disappears. If a strong signal is not available turn control until picture becomes most stable. (Usually about one half of full rotation.)

9. WIDTH
Adjust WIDTH CONTROL to obtain a picture with sufficient width to just fill the picture frame. Maximum width occurs when the screw is maximum clockwise. This adjustment regulates the amount of deflection current flowing in the horizontal deflection coils controlling the horizontal dimension or width of the picture.

10. HORIZONTAL LINEARITY
Adjust for uniform linearity across face of tube. Should one or two horizontal white bars appear on the right side of the picture with the horizontal drive, width and HORIZONTAL LINEARITY CONTROLS set properly, turn the HORIZONTAL LINEARITY CONTROL clockwise until these bars disappear.

11. FOCUS CONTROL
This control is operated by a plastic rod with a loop end which protrudes from an opening near the center of the rear cover. Rotate this plastic rod for the sharpest detail.

12. CENTERING
Loosen lock screw move CENTERING CONTROL until picture is properly centered.

SOUND AND 4.5 MC TRAP ALIGNMENT

1. Tune in available TV station and reduce signal into set until hiss is heard with sound. This can be done by inserting an attenuator in the antenna lead-in or by removing antenna lead-in from the set and stray feeding in signal by placing lead-in close proximity of the set.

2. Set buzz control in the middle of its range. Adjust take off coil L201, top and bottom T101, Quadrature coil (L101) and buzz control for cleanest sound and minimum buzz. If any adjustment causes hiss to disappear reduce signal into set until hiss reappears and continue with adjustments.
FADA
MODELS 17C2, 17C4, 17C6, 17T9

TUBE COMPLEMENT

<table>
<thead>
<tr>
<th>SYMBOL</th>
<th>TUBE USED</th>
<th>FUNCTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>V1</td>
<td>6BQ7 or 6BK7</td>
<td>Cascode RF Amplifier</td>
</tr>
<tr>
<td>V3</td>
<td>6J6</td>
<td>Osc. Mixer</td>
</tr>
<tr>
<td>V4</td>
<td>6C86</td>
<td>1st IF</td>
</tr>
<tr>
<td>V5</td>
<td>6C86</td>
<td>2nd IF</td>
</tr>
<tr>
<td>V6</td>
<td>6C86</td>
<td>3rd IF</td>
</tr>
<tr>
<td>V7A</td>
<td>1/2 6AL5</td>
<td>Video Detector</td>
</tr>
<tr>
<td>V7B</td>
<td>1/2 6AL5</td>
<td>A.G.C.</td>
</tr>
<tr>
<td>V8</td>
<td>6AG7 or 12BY7</td>
<td>Video Output</td>
</tr>
<tr>
<td>V9A</td>
<td>1/2 12AU7</td>
<td>Sync. Separator</td>
</tr>
<tr>
<td>V9B</td>
<td>1/2 12AU7</td>
<td>Sync. Clipper</td>
</tr>
<tr>
<td>V10</td>
<td>6AL5</td>
<td>Hor. Phase Detector</td>
</tr>
<tr>
<td>V11</td>
<td>6SN7-GT</td>
<td>Hor. Osc. & Discharge</td>
</tr>
<tr>
<td>V12</td>
<td>6CD6-G</td>
<td>Hor. Output</td>
</tr>
<tr>
<td>V13</td>
<td>6W4-GT</td>
<td>Damper</td>
</tr>
<tr>
<td>V14</td>
<td>1B3-GT</td>
<td>High Voltage Rectifier</td>
</tr>
<tr>
<td>V15</td>
<td>6S4</td>
<td>Vertical Output</td>
</tr>
<tr>
<td>V16</td>
<td>5U4-G</td>
<td>Low Voltage Rectifier</td>
</tr>
<tr>
<td>V17</td>
<td>5U4-G</td>
<td>Low Voltage Rectifier</td>
</tr>
<tr>
<td>V18A</td>
<td>1/2 6SN7</td>
<td>Vertical Osc.</td>
</tr>
<tr>
<td>V18B</td>
<td>1/2 6SN7</td>
<td>Sync. Inverter</td>
</tr>
<tr>
<td>V19</td>
<td>6K6-GT</td>
<td>Audio Output</td>
</tr>
<tr>
<td>V20A</td>
<td>1/2 6T8</td>
<td>Audio Amplifier</td>
</tr>
<tr>
<td>V20B</td>
<td>1/2 6T8</td>
<td>Ratio Detector</td>
</tr>
<tr>
<td>V21</td>
<td>6AU6</td>
<td>Ratio Det. Driver</td>
</tr>
<tr>
<td>V22</td>
<td>17BP4 or 17RP4</td>
<td>Picture Tube</td>
</tr>
</tbody>
</table>

Key Voltages

All voltages are measured with a VTVM connected between the tube pins and chassis.

B+, plate of damper, V13 pin 5 340VDC
Boosted B+, cath. of damper, V13 pin 3 520V
Plate of Vert. Osc. V18 pin 5 180V
Plate of Vert. Out. V15 pin 9 415V
Plates of Hor. Osc. V11 pin 2 335V
pin 5 170V
Grid of Hor. Out. V12 pin 5 -19V

OPERATING INSTRUCTIONS

(1) Turn OFF-ON SOUND volume control clockwise about a half turn. This turns the receiver on and sets the sound volume to a reasonable level.
(2) Allow a brief warm-up period.
(3) Set Station Selector to desired channel.
(4) Adjust the Fine Tuning control to where music or speech is heard, assuming that the station is broadcasting.
(5) Turn picture control fully counter clockwise.
(6) Turn the brightness control fully clockwise and then slowly clockwise until light is just visible on the screen.
(7) Turn the picture control clockwise until activity or a definite form is just noted on the screen. Do not advance control any further until steps 8, 9, and 10 are completed.
(8) If the pattern is moving up or down adjust Vertical control until pattern is stationary in vertical direction.
(9) If picture appears as black and white diagonal lines or seems to be moving sideways, adjust Horizontal control until a proper picture is obtained.
(10) Readjust Fine Tuning control for best picture.
(11) Adjust Picture control until picture is suitable for brightness and contrast. If the control is advanced to maximum clockwise position, overloading of the picture will occur on strong signals. This will be noted by excessive contrast, bending of picture and raspy noise in the sound output. When this occurs rotate the picture control slowly in a counter clockwise direction until the picture and sound distortion disappears. The brightness and details of a picture are controlled by the Brightness and Picture knobs. Adjust Tone Control for desired quality of sound.
(12) Recheck the Fine Tuning control for best picture. NOTE: If any difficulty is experienced with steps number 8 or 9, turn the PICTURE control 1/4 turn counter clockwise, readjust the Fine Tuning control and then repeat these adjustments.
If the receiver has been in previous operation and no controls disturbed except for turning the on-off knob to "off" position, then subsequent operation should require the previous steps 1 through 3 and, if necessary, steps 13 and 14 as follows:
(13) Adjust the FINE TUNING control for best picture quality. Readjust the SOUND volume control to desired level.
(14) Adjust PICTURE and BRIGHTNESS controls to obtain desired level of contrast and brightness.

ADJUSTMENTS

Ion Trap, Focuser and Deflection Yoke Adjustments

Before any adjustments can be made the back of the cabinet will have to be removed. Remove all screws holding back cover to cabinet, and pull cover away from cabinet. Since the power cord circuit is broken by the interlock when the cabinet back is removed, an extra television [Continued on page 501]
FADA TROUBLE SHOOTING CHART

DISTORTED SOUND
Tuner fine tuning
V3, V19, V20, V21
Check 0.02 MFD cap connected to pin 5 of V19
Sound and Vid. IF alignment L-12, L-13
Det. alignment L-16, L-17

NO SOUND—PIX OK
Tuner fine tuning
Vol. con.
V19, V20, V21
Speaker (open voice coil or defective connection)
Sound and Vid. IF alignment L-12, L-13
Det. alignment L-16, L-17

weak sound—PIX OK
Tuner fine tuning
Vol. con.
V3, V19, V20, V21
Sound and Vid. IF alignment L-12, L-13
Det. alignment L-16, L-17

NOISY SOUND—PIX OK
Vol. con.
V19, V20, V21
Check Sound system for loose connections
Speaker
Sound IF and Det. alignment L-12, L-13, L-16, and L-17

SYNC. BUZZ IN SOUND
Tuner fine tuning
Contrast con.
V7, V8, V19, V20
Sound IF and Det. alignment L-12, L-13, L-16, L-17

INTERMITTENT SOUND—PIX OK
V19, V20, V21
Poor connections in sound system

WEAK OR NO PIX—SOUND WEAK—RASTER OK
Tuner fine tuning
Contrast con.
V1, V3, V4, V5, V6, V7, V8
RF and IF alignment

INTERMITTENT RASTER—SOUND OK
Brightness con.
V11, V12, V13, V14, V22
HV xformer

RASTER BLOOMING
Hor. Drive con.
V12, V13, V14, V16, V17, V22
Check HV Filter cap and 100kΩ Res. connected to i.f.

INSUFFICIENT BRIGHTNESS
Ion trap
Brightness and Hor. Drive con.
V12, V13, V14, V16, V17, V22
Low line voltage.

EXCESSIVE RASTER (PIX SIZE)
Hor. Drive, Width and Height con.
V12, V14

INSUFFICIENT RASTER WIDTH
Hor. Drive and Width con.
V12, V13, V16, V17
Check 270 and 390 MMFD cap. connected to pin 5 of V11
H.O.T.
Low line voltage

INSUFFICIENT RASTER HEIGHT
Height and Vert. Lin. con.
V15, V16, V17, V18
Check 0.1 and 0.05 MFD caps connected to red lead of Vert. Osc. Transformer
V.O.T.
Low line voltage

NO VERT. DEFL.
V15, V18
Check 0.1 and 0.05 MFD caps connected to red lead of Vert. Osc. Transformer
Vert. Defl. yoke
Vert. Osc. Transformer

NO VERT. SYNC.—HOR. SYNC. OK
Vert. Hold con.
Vert. Int. Network
V15, V18
Check 0.005 MFD cap. connected to yellow lead of Vert. Osc. Transformer

NO HOR. OR VERT. SYNC.—PIX SIGNAL OK
V9, V18

NO HOR. SYNC.—VERT. SYNC. OK
Hor. Hold and Freq. con.
V10, V11, V12
Check 330 MMFD cap. connected to pins 2 and 4 of V11

SOUND BARS IN PIX
Tuner fine tuning
V3, V4, V5, V6
Check Alignment of L-12
IF and RF alignment

SNOW IN PIX
V1, V3, V4, V5, V6, V7
Antenna and transmission line

AC IN PIX (DARK HOR. BAR)
V1, V3, V4, V5, V6, V7, V8

ENGRAVED EFFECT IN PIX
Tuner fine tuning
Contrast con.
V3, V4, V5, V7, V8, V22
Check Vid. Det. and Amp. peaking coils

RADIO-TELEVISION SERVICE DEALER • MAY, 1954
VERT. BARS
Hor. Drive and Lin. con.
V12, V13
Check 56 MMFD cap connected
to yoke terminals 1 and 2
Defl. yoke ringing
PIX JITTER UP & DOWN
Vert. Hold and Contrast con.
V9, V15, V18
PIX BENDING
Hor. Hold and Freq. con.
V9, V10, V11, V12, V18
AUDIO HUM IN SOUND
V19, V20, V21
NO SOUND NO RASTER
Power input circuit
V16, V17
NO RASTER—SOUND OK
Brightness con.
HV Fuse F1 (0.25 Amp)
Ion trap
V11, V12, V13, V14, V22
HV xformer Hor. yoke CRT connections
WEAK PIX—SOUND AND RASTER OK
Tuner fine tuning
Contrast con.
V3, V4, V5, V6, V7, V8
POOR HOR. LIN.
Hor. Lin. and Drive con.
V12, V13
Check 0.25, 0.05 and 0.033 MFD caps connected to Hor. Lin coil
POOR VERT. LIN.
Vert. Lin. and Height con.
V15, V18
Check 100 MFD cap. connected to pin 2 of V15
Check 0.1 and 0.05 MFD caps connected to red lead of Vert. Osc. Transformer
PIX JITTER SIDEWAYS
Hor. Hold and Freq. con.
V10, V11
Check 0.01 MFD and 6.8 k Res connected to pins 5 and 7 of V10
SMEARED PIX
Tuner fine tuning
Contrast con.
V3, V4, V5, V6, V7, V8
Check Vid. Det. and Amp. peaking coils
IF and RF alignment
POOR PIX DETAIL
Tuner fine tuning
V4, V5, V6
Check Vid. Det. and Amp. peaking coils
IF and RF alignment
power cord will be necessary to make a power connection to the receiver. A mirror placed in front of the receiver will help in making the adjustments.

For Magnetic Focus Kinescopes: Ion Trap Adjustments

Turn on the receiver and switch to one of the television channels not in use in your area. With the brightness control in the maximum clockwise position and the picture control fully counter-clockwise adjust the ion trap by moving it forward or backward at the base of the tube, at the same time rotating it slightly around the neck of the cathode ray tube for the brightest raster on the screen. Reduce the brightness control setting until the raster is just visible on the screen, readjust the ion trap for maximum brilliance. Adjust the focuser adjustment control until the line structure of the raster is clearly visible. Readjust the ion trap for maximum raster brilliance. The final touches of the adjustment should be made with the brightness control at the maximum position with which good line focus can be maintained.

Focuser Magnet Adjustment

The focuser magnet should be adjusted so that there is approximately one-eighth inch of space between the rear shell of the deflection yoke and the front face of the focuser magnet. This spacing gives best average focus over the face of the tube. The axis of the hole through the focuser magnet should be parallel with the axis of the cathode ray tube neck.

NOTE: The cardboard insert between the focuser magnet and the neck of the cathode ray tube must not be removed.

Deflection Yoke Adjustment

If the lines of the raster are not horizontal or squared with the picture mask, loosen the yoke centering wing screw and rotate the yoke until this condition is obtained. Tighten the wing screw making sure the deflection yoke is as far forward on the neck of the cathode ray tube as possible.

Centering Adjustments

No electrical centering controls are provided. Centering is accomplished by means of a separate plate on the focus magnet as shown. The centering plate has a locking screw which must be loosened before centering. Up and down adjustment of the plate moves the picture side to side and side to side adjustment moves the picture up and down.

If a corner of the raster is shadowed, check the position of the ion trap. Reposition the ion trap within the range of maximum raster brilliance to eliminate the shadow and recenter the picture by adjustment of the focus centering plate. In no case should the ion trap be adjusted to cause any loss of brilliance since such operation may cause immediate or eventual damage to the cathode ray tube. In some cases it may be necessary to shift the position of the focuser magnet in order to eliminate a corner shadow.

For Electrostatic Focus Kinescopes: Ion Trap Adjustments

Turn on the receiver and switch to one of the television channels not in use in your area. With the brightness control in the maximum clockwise position and the picture control fully counter-clockwise adjust the ion trap by moving it forwards or backwards at the base of the kinescope, at the same time rotating it slightly around the neck of the kinescope for the brightest raster on the screen.

Deflection Yoke Adjustment

If the lines of the raster are not horizontal or squared with the picture mask, loosen the yoke centering wing screw (shown in figure 4) and rotate the yoke until this condition is obtained. Tighten the wing screw making sure that the deflection yoke is as far forward on the neck of the cathode ray tube as possible.
I. I. UHF Generator
I. I. I. announces a unique UHF TV Generator which is particularly useful where no UHF signal is yet available. Called the IT-I20R UHF Generator, this device uses the signal from any VHF station and translates it to a UHF signal on any channel. In addition, VHF test equipment can be adapted to UHF by this unit. Complete details are available from Industrial Television, Inc., Clifton, N. J.

Hallidorton Flyback Transformer
Hallidorton's new F8412 flyback transformer is an exact replacement for Part No. C-201-21025-1 used in AIRLINE, RAYTHEON, and TRUE-TONE television sets. It features a variable-gap width control, tapped AGC winding, special mounting base, etc. Bulletin 116 describing this item, and listing all TV models and chassis in which it is an exact replacement, can be obtained from Hallidorton Transformer Company, 4540 Ravenswood Avenue, Chicago 40, Illinois.

No-Noise in Spill-proof Con
Introduction of a new spill-proof, easy-to-use spray can has been announced by Electronic Chemical Corp., 512 Communipaw Ave., Jersey City 4, N. J., manufacturers of No-Noise, the formula for contacts. The new spray can has been proved more economical because of its easy-to-handle, easy-to-use spill-proof construction.

Superex Adapter for Tube Testers
Superex announces an adapter that can be used with any make tube tester and all picture tubes. Without removing the picture tube from the TV cabinet, any tube from 10" to 50" can be checked for electrostatic or magnetic shorts. Overall length, 49½". For details, write to Superex Electronics Corp., 23 Atherton St., Yonkers, N. Y.

TACO's "Trapper"
The TACO "Trapper," catalog no. 1880, provides exact performance and gain on all VHF channels 2 through 13. It comprises a forward director with auto-match stubs, two tuned driven elements with auto-match stubs, one tuned high-band reflector and one low-band reflector. Installation is facilitated by use of TACO's Jiffy-rig assembly method. Details are available from Technical Appliance Corp., Sherburne, N. Y.

RMS NeaTip Indoor Antenna
Model K-38, a new UHF-VHF indoor antenna with a criss-cross phasing element, features a six-position switch for tuning the proper pair of poles for best reception of channels 2 through 6. RMS K-38 is equipped with the NeaTip base, 5 feet of twin lead and instructions. For data, write to Advertising Dept., RMS, 2910 Riverdale Ave., New York 62, N. Y.

Haydon Mast Kits
Haydon announces new improved models of their zip-up mast kits. These are furnished with markers to prevent pulling out. Each length is 10 feet long and is precision made to telescope into each other snugly. Accessories, guy rings, bolts are furnished. Heavy duty 16 gauge and economy models are available. (Haydon Products Corp., 1801 Eighth Ave., Bklyn 15, N. Y.)

JFD Announces "Rotenna"
Five main features of the "Rotenna" are said to be: (1) Stop-Watch tuning accuracy, (2) Cartridge type removable drive unit, (3) "Inline" mast collar construction, (4) 90 degree traverse and (5) Finger-tip piano control console. The "Rotenna" housing is constructed of die-cast aluminum, as is the drive unit's housing. For further details, write JFD Manufacturing Co., Inc., Bklyn, N.Y.

New Capacitor-Resistor Bridge
Capacitor-Resistor Bridge BF-60 quickly measures the important characteristics of substantially all types of condensers and resistors and determines their quality. It detects opens, shorts and intermittents; the capacity between wires and shieldings, transformer windings, wires in cables, etc. For further information write to Mr. E. J. Maginot, Sales Promotion Manager, Cornell-Dubilier Electric Corporation, South Plainfield, N. J.

Imperial Ground Rod
Imperial Radar & Wire Corp., of New York City introduces a new ground rod which features a heavy steel rod ¾" in diameter with a heavy double plating, and finished off with a hand rubbed oil coating to insure extra long life. This ground rod comes in 4 ft. lengths, and has a fine turned down point which makes it easy to drive into any type of soil. Imperial Radar also manufactures open line, ground wire and guy wire.
TRADE FLASHES

The Radio-Electronics-Television Manufacturers Association reports these production totals during the first two months of 1954: TV sets, 847,504; radios, 504,099; portables, 144,846; auto radios, 726,403; clock radios, 265,865. This represents some decline from 1953's level.

RETMA's plan for curbing TV receiver interference has been submitted to the industry. The gist of the proposal involves adherence to a recommended intermediate frequency of 41.25 mc for TV receivers. Other aspects of the plan call for radiation limits for TV and FM sets, and voluntary submission of sets for testing and certification to an independent laboratory. The F.C.C. appears to be in general agreement with the plan.

Alfred A. Ghirardi, famous in the radio text-book industry for more than thirty years, will co-author a new series of books on radio and TV test equipment with Robert G. (Bob) Middleton, the well-known lecturer and writer, whose series on the "TV Instrument Clinic" is currently running in SERVICE DEALER. The first book in the new series by Ghirardi and Middleton will be published by John F. Rider, Publisher, N.Y., and is scheduled to appear this summer.

In line with the "do-it-yourself" trend, Admiral Corporation today announced the addition of outdoor TV antenna kits to its accessories line. There are nine kits in all, each with a choice of four different mounts covering all types of TV reception—UHF, VHF and combined UHF-VHF. They are designed for color as well as black and white reception.

Each outfit contains everything the set owner needs, down to the last screw-eye, for his outdoor antenna installation—antenna, mast, mast mount, guy wires, insulators and lead-in, plus a step-by-step instruction booklet.

More than 27,000 television servicemen have attended the first 35 sessions in a nationwide series of technical clinics on installation and maintenance of color television receivers sponsored by the Radio Corporation of America.

Hold Everything!

on ELECTRIC SOLDERING GUNS

WEN IS BRINGING OUT A NEW LINE and it's Terrific!

- PRICE WISE
- PERFORMANCE WISE
- SALES WISE

Nothing like it on the market. It's a sales "natural". Shown for first time at the Chicago Parts Show, May 17th thru 20th.

CONRAD HILTON HOTEL... DISPLAY ROOM 602-A

WEN PRODUCTS, INC.
5808 NORTHWEST HIGHWAY... CHICAGO 31, ILL.

WENIS BRINGING OUT A NEW LINE
America and its distributors, it was announced recently.

Similar clinics in a total of 65 major cities are scheduled in the series presented by RCA for servicemen-dealer customers of RCA Tube and RCA Victor Home Instrument distributors. These distributors sponsor the meetings locally.

Over 800 service dealers attended RAYTHEON "Service Saver" and Color TV meetings held recently in Toledo, Columbus, Cleveland, Cincinnati, and Lima, Ohio. Approximately 500 service dealers attended RAYTHEON "Service Saver" and Color TV meetings held recently in Fargo, North Dakota and Minneapolis, Minnesota.

At the "instruction clinics," Bill Ashby, RAYTHEON TV's popular staff lecturer, gave a slide-illustrated presentation of the RAYTHEON "Service Saver" plan developed around the RAYTHEON TV Owner's Guide and dealer "Service Saver" Manual and Wall Chart. Mr. Ashby further developed the practical aspects of color TV servicing.

A horizontal convergence coil for color TV sets, said to withstand high voltage to an unusual degree, has been announced by General Instrument Corporation. Another unusual item being produced by G.I. is a half-inch-square IF transformer, one-third smaller than those currently in use, for pocket radios and equipment using transistors.

A new plan for "field assembled" replacement controls and switches has been announced by Clarostat. The system is said to replace the numerous types of shafts and various electrical values with relatively few types and values that can be assembled in the field to meet any requirement. For details, contact Clarostat Mfg. Co., Inc., Dover, N. H.

Parts distributors from all over the country will show their latest components at the 1954 Electronics Parts Show, to be held in Chicago's Conrad Hilton Hotel May 17 through 20.

Color blindness does not seem to affect a serviceman's ability to adjust a good color TV picture, according to Carl Finzer, an instructor in Motorola Inc.'s color television school for distributor service personnel.

Finzer based his opinion after observing 75 service managers perform the same experiment in the laboratory of the factory service school in Chicago.

The experiment is to set up a color set to receive black and white pictures.
Quam Speakers just don't come back. Ask any serviceman or distributor who handles them. The patented Adjust-a-Cone suspension and the patented U-shaped coil pot, combined with Quam's advanced production and inspection procedures, are your assurance that every Quam Speaker is a trouble-free speaker.

A FREE copy of the latest Quam Catalog, listing over 100 replacement speakers, is available from your distributor, or from the Quam-Nichols Company.

Reception of a good black and white picture lies in the technician's ability to focus all three of the primary colors (red, blue and green) with equal intensity.

"If a man can adjust a color set to receive a clear black and white picture, he can be sure of getting a good color picture since the intensities of color are already focused," Finzer explained.

ANNNOUNCEMENT was made jointly by Jerry B. Minter (Components Corporation), president of the Audio Engineering Society and Harry N. Reizes, Man-

aging Director of Audio Fairs, that there has been a renewal of the Sponsorship Agreement wherein A E S will continue to sponsor the Audio Fair for the years 1954 and 1955. The sponsorship covers the periods for the Sixth and Seventh annual conventions of the Society.

For five successive years the Audio Fair has provided the forum, meeting rooms, society headquarters, convention facilities, banquet arrangements and contributed the cash sponsorship honored to assist the Society in the conduct and support of Society functions. The Sixth Annual Convention of the A E S will again be held in conjunction with and at the same time as The Audio Fair—October 14, 15, 16 and 17, 1954 at the Hotel New Yorker, 34th St., and 8th Avenue, New York City.

Simpson Electric Company of Chicago will incorporate a new utility handle on their Model 260 volt-ohm-milliammeter. The new "Adjust-A-Vue Handle" permits the technician to set his tester at any convenient viewing angle right while he is servicing.

THE TUBE DIVISION of RCA has developed three types of equipment for servicing home color TV sets. These include a color-bar generator for facilitating adjustment of color circuitry in the receiver, a portable dot-bar generator for making convergence adjustments in the receiver, and a 3-inch dual-band width oscilloscope for observing the color-burst signal and for checking the color-burst circuit.

Precision Apparatus Co., Inc., manufacturers of radio, television and electronic test equipment, presently located in Elmhurst, Long Island, announces that it will move to a new plant in Glen-dale, Long Island, by mid-summer of 1954. The new plant will provide expanded facilities for the Precision concern as well as for the Pace Electric Instruments Co., Inc., their wholly owned meter manufacturing subsidiary.

A training school, in which the passing requirement is the ability to repair a color television receiver, is being held in Chicago by Admiral Corporation.

JETOMIC ANTENNA
[from page 33]

13 the diameter requirement would be roughly 26 inches. This of course would be impractical so an alternative method is used to accomplish the same result.

In Fig. 2d four additional elements are added to the V section of the antenna. An angle is chosen so that the separation at the flared ends of the V elements is less than 1/4 wavelength at the highest desired frequency. The three elements on each side of the V become electrically intercoupled, and the result is the same as if we had used the larger diameter tubing or a flat sheet as illustrated in Fig. 2d.

The reader is probably aware at this point that we have been describing a form of the familiar conical antenna. The conical because of its inherent electrical configuration is a frequency compensated antenna. The gain of the con-
RADIO-TELEVISION is probably aware of the greatest majority of cases becomes an advantage, as propagation characteristics, tuner sensitivity and transmission line losses become greater as the frequency is increased. Economy of manufacture, ease of assembly and established acceptance were other factors that influenced the selection of the conical for the uhf section of the All Channel Model 454.

Before thought was given to the problems of electrical combination of two dissimilar antennas for all channel operation, a complete review of all uhf antenna types was undertaken to determine the best possible high gain broad band type. Standard models such as the corner reflector, and extended V seemed to give best gain results, but had the disadvantage that it was necessary in many cases to probe for the best location at uhf.

At ultra high frequency the reader is probably aware that signal scattering occurs to a much more marked degree than on Channels 2-13. This means that multiple signal paths are available at the receiving location. The situation is further aggravated at uhf by the extremely short physical length of the transmitted wave. As the reflected signals arrive with the original ground wave at the receiving location, the in and out of phase components add and cancel resulting in high and low signal points both in the horizontal and vertical planes. This means that any small antenna must be moved to a position where maximum signal occurs if best results are to be expected.

The disadvantage of the smaller antennas can be overcome by employing an antenna that is physically long enough to cover several signal maximums. The reasoning behind the selection of the rhombic for the uhf section of the JFD 454 was twofold. First the gain of the rhombic exceeded that of any other broad band uhf type tested. Second the annoyance of spending valuable installation time in probing for a maximum signal location was completely eliminated. The rhombic has additionally the sharpest directional response of any uhf antenna, and can discriminate between closely spaced reflections and the major desired signal.

The selection of the two antenna types for coverage of Channels 2-83 was the first step in the development of Model 454. The problem of combining
these two inherently different antennas without loss or electrical interaction was quite a different matter. Standard printed circuit isolation filters had dielectric losses in addition to off resonance insertion loss which would have cut the efficiency of our rhombic section in half. The problem of a perfect hermetic seal for this type of filter had never been satisfactorily solved In the component type filters high and low pass circuitry relied upon perfect termination for best performance. High losses in the order of 35 to 45 percent were not uncommon in the commercial versions tested.

At this point JFD engineers designed a simplified form of isolation filter to solve this specific problem. The filter had to have less than .5 db loss as viewed from either end. It additionally must completely separate both antennas at their individual frequency ranges. The filter had to be air mounted to eliminate dielectric loss encountered in the potted or printed circuit types.

Figure 3 is a schematic of the filter employed in the JFD Model 454. Here we have in essence a frequency discriminating electronic switch. In the case of the conical operation on Channels 2-13 the following occurs. The short piece of transmission line connecting the conical terminals to the transmission line take off points is only a fraction of a wavelength at these frequencies, and its net effect is to act as an extension of the down lead. The rhombic antenna on the other hand is connected to these same transmission line take off points through a capacitor network. The capacitor values are chosen to present a very high impedance to the passage of vhf signals. These capacitors follow a considerably higher impedance curve than their nominal value plotted against frequency. The reason for this is the variation in terminating impedances involved at the rhombic and the lead line take off points. The conical therefore can operate as a completely independent antenna on Channels 2-13.

Color Stripe Signal

(from page 29)

The output of this keyer goes to a "gate" which allows bursts of sub-carrier frequency to be passed to the put out amplifier. The timing and duration of these bursts depends on the setting of the delay and the keyer. Ordinarily these bursts are of very short duration and appear at the end of the raster as shown in (b) of Fig. 1. So positioned they cause a green-yellow line about 1/4" wide to appear in the picture as shown in Fig. 2.

The sub-carrier oscillator which is the heart of the WA-3A Generator is a crystal-controlled oscillator which is locked to the picture sync signals. However, it is mounted in a heat-controlled chamber so that it maintains its
frequency of 3.58 megacycles within sufficient limits for the purpose.
The output of the two "gate" circuits are fed into an amplifier, the output of which is loosely coupled to the signal line.
It will be noted that there is a straight-through circuit from input to output. Thus a failure in this unit will not interrupt regular monochrome operation. The switch from normal black and white to black and white plus color stripe is effected simply by applying B+ voltage to the output amplifier and oscillator.

ANSWER MAN

from page 20

is used to increase the strength of the joint.
Most pieces of electronic gear such as television receivers are not going to have to withstand shock or vibration as an aircraft receiver must stand up under. Therefore, the solder connection in practically every case will be sufficient without the mechanical connection.

Also consider this most important fact. In the process of unsoldering a paper condenser, which has had its pigtail wound around a terminal, several times as many of them have, the heat applied in first unsoldering and then reconnecting can and often does damage the condenser. Aside from the heat, the pulling and tugging on the pigtail can also loosen the connection of the pigtail internally in the condenser and cause it to pull right out, so that the technician is left standing with a pigtail in his hand and a big question in his mind. He must replace the condenser and if the trouble in the receiver was in any manner an intermittent it will probably necessitate at least a half hour of inspection to feel sure that this condenser was the culprit responsible for the difficulty.

The conclusion that many fully experienced electronic technicians have come to is that:

1) clipping of condenser leads is fast and easy, less tiring on the technician so that he can accomplish more repairs.
2) It does not damage the component as might be done due to heating and bending of the pigtail.
3) safe and reliable connections can be made if the pigtails are cleaned and soldered without forming a resin joint.
4) many years of experience has proved that this type of disconnecting of components is practical and does not result in future troubles.

COLOR

from page 11

on the horizontal deflection coil winding on some color receivers.
3. A color burst gating voltage is usually employed necessitating a separate winding or a tap on the transformer.
4. A horizontal output tube grid pulse shaping voltage is provided with a separate winding. This voltage permits shaping the horizontal oscillator voltage which drives the output tube grid.
5. A color killer winding which prevents video information from passing through the color circuits unless a color broadcast is being received.

Deflection Yokes

By passing current in the form of a sawtooth through the horizontal coils the electron beams can be linearly deflected from one side of the picture tube to the other. Vertical deflection is accomplished in a similar manner; that is, by passing a sawtooth of current through the vertical deflection coils at the vertical deflection rate.
PHOTOFACT

you're on easy street with PHOTOFACT

FIELD SERVICE HINTS & TROUBLE-SHOOTING AIDS

PHOTOFACT EXCLUSIVE Trouble-Shooting Aids—in each and every PHOTOFACT TV Folder are applicable to the particular receiver covered by the Folder. Describes trouble symptoms—tells where to look for them; explains new or unusual circuits used in the receiver. Specific, invaluable time-saving help!

NOW—included in each and every PHOTOFACT TV Folder—Invaluable time-saving guide and reference for adjustments and services you can perform on the specific receiver in the customer's home—right down to safety-glass cleaning tips. Helps eliminate costly chassis-hauling back to shop...

22 other exclusive features consistently in every PHOTOFACT Folder—the world's best data for faster, more profitable servicing...

NOW! GET THE PROOF FOR YOURSELF!

We'll send you a FREE PHOTOFACT TV Folder—just ask us for it!

Learn for yourself how PHOTOFACT pays for itself by earning bigger profits for you! We'll send you the proof—a FREE specimen PHOTOFACT TV Folder that shows all the features found consistently and exclusively only in PHOTOFACT. Send for your FREE specimen TV Folder now. Examine it. Compare it. You'll see why PHOTOFACT belongs in your shop! And you'll want to ask your parts distributor about the pay-as-you-earn-plan. Only $25 down brings you the entire PHOTOFACT Library. Write for FREE specimen TV Folder—learn now how to earn more!

HOWARD W. SAMS & CO., INC.
2209 E. 46th St., Indianapolis 5, Ind.

HOWARD W. SAMS & CO., INC.

Deflection yokes used with color picture tubes have a horizontal deflection angle of 45 degrees for the 15 inch tube and 59 degrees for the 19 inch tube. The horizontal output transformer is designed to properly deflect the three electron beams over the color tube face with a uniformity of focus, high sensitivity and optimum convergence.

The vertical and horizontal coils are specially designed to develop uniform magnetic fields for deflection. The physical construction of the windings are such that the forward portion of the yoke is flared to minimize convergence errors due to fringe field effects.

The core of the yoke is made of eight sections, fitted together to produce a single ring of ferrite iron, a high efficiency core material. The core sections are chamfered at the front edge permitting the core to fit close up to the flare of the coil windings.

The yoke is not designed to be used as a support for the color picture tube. The picture tube is supported by a Mumetal shield, as a consequence the yoke can be positioned easily on the neck of the tube. Proper operation of the picture tube requires the following yoke adjustments:

1. Positioning of the yoke along the picture tube neck. When positioning the yoke on the neck of the tube place it about 3/8 of an inch from the funnel of the picture tube as the preliminary point to start the adjustments from.

2. Rotating the yoke permits lining up the raster horizontally to coincide with the horizontal edge of the receiver mask.

3. By adjusting the yoke at a slight angle with respect to the neck of the picture tube or radially on the neck, the center of deflection of the magnetic field of the yoke can

Fig. 8—Typical color receiver yoke circuit, showing horizontal and vertical deflection coils.

Get your Sales UP mates!...

WITH THE ANCHOR LINE

Sell Anchor Briteners. Stock the britener that can be used on all TV sets, parallel or series wired. Simplify your stock problems by carrying the Universal UB 160—the ALL PURPOSE HEAVY DUTY BRITENER.

ANCHOR UNIVERSAL UB 160 BRITENER FOR USE ON ALL TYPES OF CIRCUITS Electro-magnetic or electrostatic type CR tube and series or parallel wired filaments. Relieves cathode to filament shorts and increases brightness in parallel or series wired sets.

anchor wire products

2712 W. MONTROSE AVE., CHICAGO • ILLINOIS

www.americanradiohistory.com
be made to coincide with the deflection center of the picture tube. Purity at the center of the picture can be accomplished by moving the yoke axially on the mount. In the color receiver the positioning of the yoke is part of the adjustment procedure for color purity.

The deflection yoke is much larger in overall size than the one used with black and white receivers, measuring about 7 1/4 inches in outside diameter. The inside diameter is about 2 1/4 inches. With reference to the inside diameter an axial movement of about one inch is necessary to facilitate yoke adjustments for color purity.

Coils in a color yoke must be more accurately wound than B & W coils so that the magnetic fields are very uniform. The requirements of the deflection magnetic fields for the three beams are more stringent than that for the single beam black and white picture tube. The yoke is specially wound and designed to achieve simultaneous deflection of the three beams without defocusing the beam at the sides of the picture tube. This improved focus characteristic results in pin-cushioning in excess of that usually present in B & W tubes. For this reason the color tube is usually overscanned to make conceal this effect. Any dispersion of the three electron beams during deflection will make convergence more difficult.

The angle of horizontal deflection is either 45 or 59 degrees. Inductance values used to date are 12 to 15 millihenrys, for the horizontal cores and 80 to 120 millihenrys for the vertical deflection coils. These coils are located on the neck of the picture tube diametrically opposite each other as shown in Fig. 8, with the horizontal coils to

NEW! Electro Products

6 and 12 VOLT DC POWER SUPPLY

Model D-612 completely assembled at a comparable

KIT PRICE

only $39.95 net

UNMATCHED FOR TESTING AND SERVICING

0 to 0, 0 to 16v. completely variable. 0 to 10 amps. at 12v. continuous. An unbeatable combination for testing and service work. Operates all auto radios. For relays, phone circuits, low voltage devices, battery charging, etc. Less than 5% ripple over rated ranges. Withstands high overloads.

MODEL "B"

FILTERED DC POWER SUPPLY

For servicing, testing or operating low power 2-way mobile auto radios. 1 Model B delivers 6v. at 20 amps. 2 Model B's in parallel deliver 6v. at 40 amps. $49.80 net

MODEL "S"

CONVERTS BATTERY RADIOS TO AC ALL-ELECTRIC

Assures hum-free reception from any 12 volt, 4 to 6 tube battery radio using 115 volt, 50/60 cycle source. Fits battery space. Guaranteed 3 years. $11.10 net

See your jobber or write direct for details.

ELECTRO PRODUCTS LABORATORIES

4501 Da N. Ravenswood Ave., Chicago 40, III.

Chicago, May 17-20

KIRBY ANNOUNCES A NEW SERVICE UNIT

- Modernizes Old Oscilloscopes!
- Improves Utility of New Oscilloscopes!
- Amplifies from 30 Cycles to 150 KC!

THE KIRBY Model SA-103

OSCILLOSCOPE PRE-AMPLIFIER

Increases voltage gain of average scope from 100 to 10,000. Gain control calibrated for comparison measurements and for checking attenuator pads. Uses adjustable hum balancing circuit, low frequency phase shift correction, and voltage regulated power supply. Can be used to extend the low range of your AC voltmeter into the Millivolt region.

Only $49.95 Slightly Higher in West
Nearest thing to universal replacement control! Clarostat's new 15/16" control (Series A47) fits anywhere. 1/2 watt rating. Values of 500 ohms to 10 megohms maximum.

Then take the new Series SWE "Ad-A-Switch" switch (S. P. S. T. 5 amps.; D. P. S. T. 3 amps.). Pry off cover tab of control... slip on "Ad-A-Switch" switch... bend locking lugs.

Finally, select any one of 12 different "Pick-A-Shaft" shafts. Insert keyed end in slot. Tap slightly. Presto! You now have the right shaft.

It pays to keep an assortment of these universal replacement items on hand for quick, satisfactory, profitable servicing.

CONTROLS and RESISTORS
CLAROSTAT MFG. CO., INC., DOVER, N. H.

In Canada: CANADIAN MARCONI CO., LTD., Toronto, Ont.

Service Men!

THE GUARDIAN SERIES 200 RELAY...

Interchangeable COIL and CONTACT SWITCH ASSEMBLIES

Save Time—Cut Costs!

★ Coil assembly includes coil and field piece. Contact assembly consists of switch blades, armature, return spring and mounting bracket. Standard and Midget contact assemblies in either S.P.D.T. or D.P.D.T. are interchangeable and can be used with any of 13 coils.

GUARDIAN ELECTRIC
1606 E. W. WALNUT STREET
CHICAGO 12, ILLINOIS

A COMPLETE LINE OF RELAYS SERVING RADIO AMATEURS

15/16 CONTROL
AD-A-SWITCH*

Fig. 9 — Controls in the horizontal output stage of color receiver for adjustment of width, horizontal linearity and horizontal centering, connect the tap on the horizontal output transformer to the junction of the two horizontal deflection coils. This network also functions to effect neutralization of the horizontal windings.

(To Be Continued)

ENTERING HI-FI

[from page 26]

panels should be used. Where this isn't practical, the rearboards can be decoratively perforated. To protect the wood and also to prevent the finish from changing due to heat, the underside of the shelves can be lined with single layers of aluminum foil, face down. The grocery store variety is fine for this purpose. In cases where there is either insufficient circulation of air or an extremely high-powered system is being installed, a blower can be mounted in an appropriate place. Interference from the motor presents no problem on FM or phonograph reception—and
what audiophile bothers with AM?
A word about wiring between a remotely located speaker and the rest of the system might be included here. The shortest and most invisible method of connection is preferred. Normally, the length of speaker lead would not be critical. Most quality amplifiers of today, however, employ a feedback system which includes the secondary winding of the output transformer. Any capacity introduced by the connecting wire is therefore effectively in parallel with the feedback (see Fig. 7). If a critical length (usually above fifteen feet) is reached, high frequency oscillations are introduced. A trick used more than once by the author in situations where wall to wall carpeting is used is to gradually shove a sufficiently large steel measuring tape under the rug and padding until it comes out the other end. One end of connecting wire can then be tied to the steel tape, and the whole works can be pulled back under the carpet. TV twin lead is ideal for this purpose since it lies flat and cannot be seen or felt through the rug.

Servicing
If all of the above advice is faithfully followed, there should be no need for further contact between the installer and the purchaser. But some part of the system is going to fail or wear out sooner or later and the customer will need a serviceman. The installer will usually get first crack at the job since he knows most about the particular system and the customer has confidence in him. A discussion of some important phases of this situation might be in order here.

There is the question of whether to handle service on a contractual or a per call basis. At first, it might seem wiser to choose the service contract arrangement. There are two good reasons against this choice. One is that, expensive as they are, a great many of the high-fi components on the market are just border line quality. Power transformers and output tubes are pushed to the limit, power resistors are not sufficiently de-rated and condensers are occasionally caught leaking wax all over the place. This is not true of a few of the better units, but enough of them fall into this category to warrant an objection to service contracts. Another reason is that, no matter how well the system performs, there is always a critical listener who "hears" things and is calling his serviceman to hear them with him. The end result is that the customer becomes a slave. Charging for service on a per call basis is clearly the wiser choice.

Like most television sets, almost all audio components are supplied with parts lists, schematics, adjustments and alignment procedures. This is a great help in tracking down symptoms. Guarantee periods are usually longer on these units than on TV sets. And many manufacturers have authorized service agencies in various large cities so that if the trouble occurs within the guarantee period the offending member need not be touched at all.

Most important of all, there are very few really tough repair jobs. Most of them involve worn-out needles, faulty output tubes, noisy volume controls, intermittent cable connections, open filaments and the like. After several of these calls, the complicated ones occur as a relief.

Profit
Now that the field has been covered from three major viewpoints—consulting, installing, repairing—it might be a good idea to analyze the source of profit available to the technician or serviceman who enters the audio field.

To start with, little if any profit is derived strictly from over-the-counter sales of components unless the seller is a franchised distributor. True, there is a nominal list price on most of the units which is about 30% or 40% above net. This figure is highly inflated, however, and is rarely charged. Besides, it would be quite embarrassing to have customers discover at a later date that they can buy the equipment for considerably less than they were quoted. Here again, it pays to level with the customer rather than risk a valued reputation. It may be possible, however, to obtain a professional or service discount from the local electronic distributor amounting to as much as 20% off the net price on some items. Another source worth investigating is the possibility of becoming a franchised distributor for a couple of audio firms. There are several newer and lesser-known outfits who will put out quality items that easily compete with the nationally advertised units. These small manufacturers would be more likely to offer a distributorship to a retailer who is in a position to push their line.

The largest percentage of profit from audio work, however, comes from the services performed in the installation. On custom cabinet jobs, an arrangement can be made with a good local cabinet maker and the net profit shared equitably. Then, there are many extra services which the purchaser might want, such as extra speakers, earphones, remote switching, integration of his TV set with the system and other such items which require extra parts and a great deal of labor time. And of course, there is always that intangible quantity.
known as "professional services rendered" which should not be overlooked. Good advice is worth a lot of money and the customer will be the first to realize that when he listens to his hi-fi system and compares it with his neighbor's over-priced console combination. Finally, as was previously discussed, there is the revenue from service calls, which can be as remunerative as TV calls. The average audio system costs much more than the average TV set today and repair costs are roughly proportional.

After weighing both the advantages and disadvantages of adding audio work to the serviceman's business, the author has come to the conclusion that it would be a shame to neglect this lucrative field. In spite of its almost unbelievable increase in popularity in the past few years, it is relatively wide open in all areas except those in and around some of the largest cities. National magazines and radio networks have climbed on the bandwagon and can serve as a free source of advertising. And finally, the idea of hi-fi is so attractive that just setting up a demonstration unit is sufficient to bring in customers.

TV CLINIC (from page 41)

Q. What causes a pattern to appear very blurred and fuzzy during signal-tracing procedures?

A. This situation is shown in Fig. 8. It is usually the result of operating the receiver at high gain, so that the noise voltages appear prominently in the pattern.

Q. Upon occasion interference appears in the pattern which is not ragged, like noise, but which tends to blur the display. What is the source of such interference?

A. A typical situation of this kind is shown in Fig. 9. It is caused by stray pulse voltages from the horizontal sweep circuit or from the picture tube. Better shielding should be used in the test setup, or, the horizontal sweep circuit of the receiver can be disabled during test.

The NEW MOSLEY ORIENTOR

HERE'S HOW THE "ORIENTOR" SAVES TIME AND MONEY...

- Permits ONE MAN To Do The Job Formerly Requiring Two!
- Makes Possible Use Of Low Cost, Portable VOM To Read Relative Video Signal Strength!
- Eliminates Need For Extra Wires From Set To Roof!
- Use To Determine Best Lateral, Vertical and Directional Orientation Of Antenna!
- Ads In Determining If Transmission Line Is Functioning Properly!

Try it on your next installation job. You'll quickly see why the MOSLEY "ORIENTOR" has been termed "The TV Installers Hardest Tool Since The Stop ladder!"

Write for your FREE copy of new MOSLEY TV Accessories Catalog. Tells HOW DEALERS CAN Make More INSTALLATION PROFITS! Ask for FORM D-1.

Mosley Electronics, Inc.

8622 ST. CHARLES ROCK ROAD
ST. LOUIS 14, MISSOURI

exact duplication

It Pays To Replace With...

ROGERS TV DEFLECTION COMPONENTS

Original Equipment on Better TV Sets

For complete customer satisfaction... replace with Rogers Deflection Yokes and Flybacks. They're original equipment on most TV sets... so replacement with Rogers mean exact duplication.

DEFLECTION YOKES

Assure double brilliance with knife-edge sharpness. Designed for peak performance and extra long life.

FLYBACKS

Higher voltage insulation, greater efficiency and higher voltage.

In Attractive... Individual Packages

FREE

Send for new "F" listing TV sets, models. ROGERS Yoke and Flyback replacements or your jobber.

Fig. 7—Response curve obtained using a non-linear amplifier.

Fig. 8—Fuzzy pattern obtained with receiver gain set very high.

Fig. 9 — Stray pulse interference causing blurred scope display.
TRADE LIT Check List

LITERATURE AVAILABLE

Microphones, antennas, accessories, a phone pickup, wire and tape recording heads are described in new Catalog 244A.

Antennas, mast, towers, hardware, installation equipment shown in Catalog available with distributor's imprint.

Type 301-A miniaturized wide-band, quantized, CRT oscillograph described in new Bulletin. Also, Techniques of Photo-Recording from Cathode Ray Tubes, 3rd ed.

How to Modernize Your Materials Handling Operations, 6-page illustrated booklet, depicts use of two-way communication in industry. Includes resume of F.C.C. license requirements.

TV antennas and accessories described in Catalog 255, a 32-page multi-colored booklet, which includes Gain Reference Chart, 3-hole punched.

Electro-welded TV antenna masts and butt and lock seem tubing are shown in new Catalog issued by this affiliate of the Snyder Mfg. Co.

TV Replacement Transformer Popularity Tables, Stancor Bulletin no. 409 lists TV models using each Stancor replacement transformer. Separate tables for 55 major TV set manufacturers.

Catalog DE lists almost 500 new dry electrolytic capacitors as well as data on new type TDL, hermetically sealed dry electrolytic.

Bulletin describing eight new TV accessory items including TV filter, UHF-VHF crossover, etc. TV coupling, calibrated variable L kit, Klipzons, clip and plug adapters.

Two-color, 8 1/2" x 11" Catalog Sheet on Telex Earset, listing specifications and related information.

Products for maintenance and storage of materials described in Catalog R-1290-B.

Turbo tubings, sleevings, and wire described in Illustrated Brochure.

Promotion Kit containing display material, mailing stuffers, newspaper mats, TV slides, commercial announcements describing Televanes.

Brochure on antenna package merchandise available to parts jobbers and service dealers. Also, 24-page Radio Parts Catalog no. 538/1929 showing essential parts used daily available to all servicemen.

Switches listed and illustrated in new Catalog. Twenty-five item numbers are catalogued.

Complete characteristics and data on I.R.C. molded boron-carbon resistors, type MBC are given in new Catalog Bulletin B-8.

Sample Card with different sizes wire manufactured showing gauge, weight per 1000 feet, breaking strength, diameter, etc.

SOURCE

Shure Bros., Inc. 295 W. Horon St. Chicago, Ill.

Admiral Corp. Accessories Div. Chicago 47, Ill.

Du Mont Laboratories, Inc. Tech Sales Dept. 700 Bloomfield Ave. Clifton, N. J.

General Electric Co. Advertising Inquiry Electronics Park Syracuse, N. Y.

R M S 1961 Bronze Ave. N. Y. 62, N. Y.

Pyramid Electric Co. North Bergen, N. J.

United Technical Labs Morristown, N. J.

Dept KP, Telex, Inc. Telex Park St. Paul, Minn.

Red Tiger Products, Inc. 26 North Wacker Chicago 6, Ill.

Ward Products Corp. 1148 Euclid Ave. Cleveland, Ohio

JFD Manufacturing Co., Inc. 6101 Sixteenth Avenue Brooklyn 4, N. Y.

Imperial Radar & Wire Corp. 590 East 23rd St. Bronx 66, N. Y.

New RIDER Books

Make Servicing Easy!

INTRODUCTION TO COLOR TV

by Kaufman & Thomas

Here is the complete story about color television—all types of receivers—all types of picture tubes—all types of circuits—written in a clear, understandable language without mathematics. The most complete book on the subject. Easy to understand! A "must" for all technicians, engineers and students. Over 140 (5½x8½") pages, illus. $2.10

HIGHLIGHTS OF COLOR TELEVISION

by J. R. Locke, Jr.

A right-to-the-point explanation of the highlights of the NTSC color television system—such as colorimetry—mathematics—the color sub-carrier—synchronous detection—etc. A "quickie" on color TV. 48 (5½x8½") pages, illus..... Only $.99

HOW TO INSTALL AND SERVICE AUTO RADIO RECEIVERS

by Jack Darr

An expert gives practical, detailed instructions on how to install and service all types of automobile radios. Not a schematic book. Shows where to run leads, how to install antennas, eliminate noise and gives methods for selecting and testing parts. Complete, complete list of tools, spare parts and other equipment and how to set up an auto radio service business. 128 (5½x8½") pages, illus......... $1.80

SERVICING TV VERTICAL AND HORIZONTAL OUTPUT SYSTEMS

by Harry Toman

Complete, easy-to-understand. Discusses all types of vertical and horizontal output circuits used in TV receivers—recognition of trouble—trouble-shooting—how to locate parts and their repairs. No other book in print offers equivalent coverage of the subject or explains details as clearly. 176 (5½x8½") pages, illus........ $2.40

TV FIELD SERVICE MANUAL, VOLUME 1

Edited by Harold Alsberg

The finest practical data service for in-the-home servicing. Tube layouts; picture tube adjustments; rear and front controls; tube compliment; tuner horizontal oscillator adjustments; tube compliment; key voltages; tone dial stringing; trouble symptoms; chart with tubes and parts to check; service filament wiring. Book lies flat, spiral binding. Covers 1947 through 1955. Volume 1 covers: Admiral, Affiliated Retailers (Artemis), Amcree (AMC), Air King, Air Mariner, Allied Purchasing, Americo, Arvin and Automatic. 128 (5½x8½") pages, illus......... Only $2.10

COMING IN JUNE

Write for information on all RIDER books. Buy these books now from your jobber... bookstaxe

RADIO-TELEVISION SERVICE DEALER • MAY, 1954
NEWS

All Steel Adjustable Wall Bracket—Model ST-18A

2 heavy-gauge, adjustable, embossed steel, rugged braced brackets permit 18" clearance under eve. Hot-dip galvanized to prevent corrosion. Bracket has embossed steel bracing log. Features unique U bolt and plate sliding type mast clamp.

AT CHICAGO PARTS SHOW: Booth 2774 & Rm. 2652-A

Write for Catalog

In Canada: A. T. B. Armstrong Ltd., Toronto

SOUTH RIVER METAL PRODUCTS CO., INC.

SOUTH RIVER, N. J.

Pioneer and outstanding producer of finest line of antenna mounts

In America even the workers can buy JENSEN NEEDLES

Advertising Index

American Microphone Co. 20
American Phenolic Corp. 2
American TV & Radio Co. 53
Argos Products Co. 61
Anchor Wire Products 58
Bussmann Mfg. Co. 19
CBS-Hytron 25
Century Electronics Co. 64
Channel Master Corp. 1
Chicago Standard Transformer Corp. 55
Clarostat Mfg. Co., Inc. 60
Crosley Div., Avco Mfg. Co. 7
Electro Products Labs, Inc. 59
Guardian Electric Mfg. Co. 60
International Resistance Co. Cover 2
JFD Mfg. Co., Inc. 13
Jensen Industries, Inc. 64
Kirby Products Corp. 59
Mosley Electronics 62
National Radio Institute 8
Permo, Inc. 64
Philco Corp. 16
Pyramid Electric Co. 17
Quam-Nichols Co. 54
Radiant Corp., The 4
RCA Institutes, Inc. 14
RCA Tube Dept. Cover 4
Raytheon Mfg. Co. 21
Regency Div., I.D.E.A., Inc. 27
Rider, John F., Publ., Inc. 63
Rogers Electronic Corp. 62
Rohn Mfg. Co. 57
Sams, Howard W. & Co. 58
Sangamo Electric Co. 18
Simpson Electric Co. 15
Snyder Mfg. Co. Cover 3
South River Metal Products Co. 64
Technical Appliance Corp. 23
Wen Products, Inc. 52
Windsor Electronic Tube Co. 56

THE NEW TV DYNATRACER

Traces TV signals and voltages
Locates defective components
Requires no additional equipment
A Must for Every TV Technician

SPECIFICATIONS:

The *DYNATRACER* is a self-contained icovolts, and audio fingerprint indicator for trouble shooting TV signals through any video, sound, sync., horizontal, or vertical sweep circuit. A low cost, portable, sensitive device which indicates TV set troubles at a glance. It is powered by a 9-volt battery included. It is ideal for use in the home or in the shop, it is portable and can be used to trace TV signals through any video, sound, sync., or horizontal sweep circuit. A low cost, portable, sensitive device which indicates TV set troubles at a glance. It is powered by a 9-volt battery included. It is ideal for use in the home or in the shop, it is portable and can be used to trace TV signals through any video, sound, sync., or horizontal sweep circuit.

ADDED FEATURES:

1. Trace TV signals and voltages up to 10 volts. A convenient, portable tool for TV service technicians. It allows for quick and easy identification of TV set troubles.
2. Locate TV signals and voltages with accuracy and ease. It is a must-have tool for service technicians.

Century Electronics Co.

211-04 95th Ave., Deering, Queens Village, N. Y.

MOVING?

When you change your address please notify our circulation department as soon as possible. This is to your advantage, since it takes approximately 5 weeks to have your stencil changed and duplicate copies cannot be sent. Be sure to give your old as well as your new address.

RADIO-TV SERVICE DEALER

67 West 44th St., New York 36, N. Y.
ANTENN-GINEERED BY SNYDER

4D Directronic® INDOOR TV ANTENNA

8.95 LIST

- VHF/UHF
- All channels
- Maximum adjustments
- Gold tone, diamond embossed aluminum halo element and phasing disc
- Heavy duty, top-lab base

AMAZING NEW Directronic® HALO ELEMENT & PHASING DISC
Independently operated for maximum orientation

Directronic 6-Position BEAM SELECTOR GIVES CLEAREST PIX ON EVERY CHANNEL
- 5" Air-Core" Tri-Stroke Transmission Line
- Aids in Impedance Matching, Ghost Elimination, Orientation

HALO ELEMENT & PHASING DISC INDEPENDENTLY OPERATED FOR MAXIMUM ORIENTATION

Snyder MFG. CO., PHILADELPHIA 40, U.S.A. • BELLEVUE TUBE MILL, INC., PHILADELPHIA
Snyder Antenn-Gineers Ltd., Toronto 14, Canada • World Export: Roburn Agencies, Inc., N.Y.
They look alike...

...but what a difference!

These RCA types today give you...

LONGER LIFE
SUPERIOR PERFORMANCE
AT NO EXTRA COST

Here are 3 more examples of how regular RCA receiving tubes are constantly being improved to meet the changing requirements of radio and television applications. These RCA types provide you with the superior performance usually claimed for higher priced specialty designed types.

RCA-6J6 features pure tungsten heaters for improved life... uses a special cathode material to help maintain characteristics throughout the life of the tube. Each tube mount is adjusted to provide increased uniformity of characteristics of each triode unit.

RCA-6CB6 uses a No. 2 grid of improved design, resulting in lower grid operating temperature and longer tube life. Special controls on materials and processing improve uniformity of plate cutoff and reduce variations in characteristics when heater voltage fluctuates.

RCA-6AU6 uses a double helical heater, resulting in an extremely low hum level. Inverted pinched cathode reduces possible motion of tube elements thus minimizing microphonics.

The superior performance of regular RCA receiving tubes—at regular prices—eliminates unnecessary callbacks, assures you of greater customer satisfaction, results in increased profits for you.

When you sell a receiving tube, your reputation and profit depend on its performance and reliability. So, you can't afford to buy anything less than the best in receiving tubes... and the best are RCA.

RADIO CORPORATION of AMERICA

ELECTRON TUBE

HARRISON, N. J.