1. External, Magnetic Flux

2. Internal Pole Piece

3. Direction of Beam Movement

Crystal Calibrator
Topliner Antenna
Travelling Wave Antenna
Color Luminance Section
Tapping TV Transmission Lines

www.americanradiohistory.com
Everything You Need for Profitable Rotor Sales

CDR ROTORS have EVERYTHING

YOUR COMBINATION TO MORE SALES

THE COMPLETE LINE
... a model for every need... whatever the application there is a CDR Rotor that meets the situation best!

PRE-SOLD FOR YOU!
The greatest coverage and concentration of full minute spot announcements on leading TV stations in every major rotor market is working for YOU...pre-selling your customers!

CORNELL-DUBILIER
SOUTH PLAINFIELD, N.J.

THE RADIART CORP.
CLEVELAND 13, OHIO

EDITORIAL STAFF
Sanford R. Cowan ............................ Publisher
Samuel L. Marshall ...................... Editor
Oscar Fisch .................................. Assistant Editor
Robert T. Dargan ......................... Technical Editor
Charles W. Gardner, Jr. ................ Editorial Production Manager
Sam D'Arcy ................................. Contributing Editor
Paul Goldberg ............................. Contributing Editor
Elbert Roberson ......................... Marine Communications Editor
Lawrence Fielding ....................... Hi-Fi & PA Editor

BUSINESS STAFF
Advertising Sales
New York .......................... Richard A. Cowan
and ................................. Jack N. Schneider
East ................................. 67 West 44th Street
New York 36, N. Y.
Murray Hill 7-2080

Chicago .............................. Jim Summers
Midwest .............................. 400 North Michigan Ave.
Chicago 11, Illinois
Superior 7-1641

West ............................ Ted E. Schell
Coast ............................... 2700 West 3rd Street
Los Angeles 57, Calif.
Dunkirk 2-4889

David Saltman ....................... Advertising Production Mgr.

CIRCULATION
Harold Weisner ....................... Circulation Manager
Carol J. Binderman ................... Ass't Circulation Mgr.

SERVICE DEALER and ELECTRONIC SERVICING
(formerly Radio-TV Service Dealer) is published monthly by Cowan Publishing Corp., 67 West 44th Street, New York 36, New York. Murray Hill 7-2080. Subscription Price: $3.00 one year, $6.00 two years in the United States, U.S. Possessions, Canada and Mexico. Elsewhere $10.00 per year additional. Single copies 50¢. Second Class Mail privileges authorized at New York, N. Y.

POSTMASTER: SEND FORM 3579 TO SERVICE DEALER and ELECTRONIC SERVICING, 67 WEST 44TH STREET, NEW YORK 36, N.
FEATURE ARTICLES

Compatible Crystal Calibrator, by Winston H. Starks .................................................. 6
Servicing color TV sync circuits with a compatible crystal calibrator.

Terminated Travelling Wave Antenna, by Harold Harris ............................................. 8
New type of high gain antenna is described in detail.

Color TV Luminance Section, Part 2, by Bob Dargan and Sam Marshall .................... 12
Horizontal and vertical blanking and delay circuits in luminance sections are analyzed.

Auto Radios for 1956—Pontiac, by Andrew V. Dopple .................................................. 16
Installation and service notes are given on this line of car radios.

Taco Topliner Antenna, by F. R. Voorhaar and Robert T. Leitner ................................ 18
The characteristics and operation of the newest Taco antenna.

Tapping TV Transmission Lines, by Ira Kamen ............................................................. 24
Coaxial transmission line coupling is described.

Pricing Index, by Son D’Arcy ......................................................................................... 48
Sound business procedures are given on parts pricing.

CIRCUIT AND SERVICE FORUM

Complete Manufacturer’s Schematics
RCA TV Portable Chassis KCS102B .............................................................................. 27
G.E. TV Portable Chassis “T” Line .................................................................................. 28
Emerson TV Portable Chassis 120331-H, 120332-R ......................................................... 29
Admiral TV Portable Chassis 14YP3B ............................................................................ 30

Video Speed Servicing Systems
Philco 440 chassis ............................................................................................................ 43
G.E. "O" line ....................................................................................................................... 45

The Answerman
Du Mont RA-340 vertical bounce ..................................................................................... 20
G.E. vertical stretch ............................................................................................................ 21
Crosley 477 horizontal sync .............................................................................................. 22

Workbench
CBS Color Chassis 205 ....................................................................................................... 32
RCA KCS48T .................................................................................................................... 35

DEPARTMENTS

S. R. Cowan Ad Libs ......................................................................................................... 2
Association News ............................................................................................................... 5
Rider Speaks ..................................................................................................................... 36

Buyer’s Directory .............................................................................................................. 34
Trade Flashes .................................................................................................................... 38
Advertisers’ Index ............................................................................................................. 39
Cover III ..............................................................................................................................

THIS MONTH’S FRONT COVER
The 21AXP22-A RCA directly viewed picture tube of the metal-shell type for use in color TV receivers is shown. Above and to the right of the tube is a schematic of lateral-converging pole pieces while the lower left drawing shows a schematic of the radial-converging pole pieces. These converging magnets are important in adjusting the color receiver.

Entire Contents Copyright 1956, Cowan Publishing Corp.
Industrial Electronics Servicing:

Pages 16 and 17 of September SERVICE DEALER and ELECTRONIC SERVICING each carried messages that set a precedent for the electronics service industry. Did you scan them carefully? One page carried the message that "TV and Electronics Servicemen are 'Wanted' by manufacturers of industrial electronic devices." The manufacturers referred to have sold and installed thousands of different types of industrial electronic devices to industry. These manufacturers, at the outset, provided factory service to the users of their equipment. But now the service volume has become so great—now the users of the equipment are located in so many remote places—now there is such an acute shortage of competent servicemen—these original equipment manufacturers want to "farm out" their service contracts. They want to appoint branch service depots which can and will take over all of their service work so they can concentrate on

Ad Libs

CHANNEL MASTER PUTS NEW SELL IN

Dealers have sold more CHANNEL MASTER T-W and SHOWMAN ANTENNAS during the past 30 days than any other antenna during any 30 day period in TV history!

Isn't it time you called your Channel Master distributor?

2-Page Spreads

Full-Color Ads

Full-page Ads

Month after month...all thru the prime TV buying months...this continuing series of sales-stimulating ads is creating loads of lively new prospects...right in your own selling area.

55,000,000 ads building new customers and sales for you!
NATIONAL ADVERTISING
TV ANTENNAS!

"Showman" INDOOR ANTENNA
This smartly styled antenna overcomes consumer objection to ug y "rabbit-ear" antennas. Exclusive "Vatro-Dyne" electronic tuning brings in pictures sharp and clear on all VHF channels. Tuning knob with channel markings just like a TV set makes channel selection so easy. It's the most powerful indoor antenna ever developed . . . and it's backed with an UNCONDITIONAL MONEY-BACK GUARANTEE. Engineered for Black and White and COLOR.

T-W OUTDOOR ANTENNA
The revolutionary new T-W is the very first TV antenna to use the "Traveling Wave" principle. This unique design electronically reinforces signals . . . eliminates "ghosts" and "snow" . . . rejects all unwanted signals and interference. In gain, front-to-back ratio, and mechanical strength, the T-W is unequalled by any other Broad Band antenna. Engineered for Black and White and COLOR.

Thinking Out Loud
New York, September 8th:
This is an "open letter" addressed to servicemen everywhere.

In a few hours I will board a plane, destination Chicago. There, in the Windy City, next Saturday, September 15th. I will deliver an address titled "Opportunities In Industrial Electronic Servicing." My audience will be independent service shop owners, members and delegates who are attending the NATESA Convention.

NATESA is synonymous with the National Alliance of Television & Electronic Service Associations. NATESA is comprised of almost 60 independent servicers' associations located in various

selling more new equipment to new customers. The opportunities for competent independent service firms and servicemen are magnificent!

By the same token, many of our subscribers, realizing the vast new markets and profit potential now opening to them from industrial electronic and commercial communications maintenance, have told us they would like to be put in touch with electronic equipment manufacturers who wish to set up factory service branches. Our service firm subscribers do not want to give up their present radio-TV service businesses—but they do want to expand their service activities in the industrial fields.

Now we are acting as a "Jobs Wanted"—"Jobs Offered" clearing house to bring the two groups—electronic equipment manufacturers and service firms—together so they will benefit mutually. There will be no charge or fee of any kind whatsoever for this liaison service.
For safe electrical protection—and the elimination of needless blows, rely on BUSS FUSES . . .

When electrical faults occur, BUSS fuses open and clear the circuit. The danger of damage to equipment is reduced to a minimum.

Yet, BUSS fuses are designed and engineered so they won’t blow needlessly. When you replace a blown fuse with a Fusetron or BUSS fuse, your customers are protected against useless, irritating shutdowns—and you avoid costly, time-wasting callbacks.

By relying on BUSS for all your fuse needs . . . you can help safeguard against loss of customer good will and costly troubles.

In sales and service, profit by the BUSS trademark

Millions upon millions of BUSS fuses for home, industry and automotive use have firmly established BUSS as the known brand. Handling quality products, like BUSS fuses, help you maintain your reputation for quality and service.

Be sure to get the latest information on BUSS and FUSETRON small dimension fuses and fuseholders. . . . Write for bulletin SFB.

BUSSMANN MFG. CO.
(Div. of Gram Electric Co.)
Univers'y at Jefferson  St. Louis 7, Mo.

Makers of a complete line of fuses for home, farm, commercial, electronic, automotive and industrial use.

sections of the country and has a gross membership of approximately 8,000 independent radio-TV service from owners. It is too bad that NATESA’s gross membership isn’t 50 or 60 thousand because the one thing most needed by the radio-TV servicing fraternity as a whole is a spokesman.

Today NATESA is probably the largest single body of servicemen working together. There are other servicemen’s associations and federations extant having memberships of varying sizes which, for one reason or another, have not found it expedient to join forces with NATESA, although they do interrelate their work with other associations. By the same token, it might be said that there are many extant servicemen’s associations with which NATESA has failed to tie up for one reason or another. And, there are many thousands of independent service firm owners who have not as yet become affiliated with any servicemen’s association whatever.

It is my opinion that solely and simply because many individuals and segments of the servicing fraternity have not been able to “get together” and work in harmony and unity—with a spokesman elected and authorized to voice the views of the majority—that today we find the service fraternity being “pushed around” and relegated to a much lesser status than it properly deserves.

I am sure that when I reach Chicago I will find delegates to the NATESA Convention hemming and hawing about certain present-day industry conditions which they deem are adverse to their best interests. But—and this is a big “but”—what will the NATESA body be able to do about having those “adverse conditions” corrected? In view of the fact that at most NATESA can only claim to speak for 8,000 of this country’s 53,000 service shop owners—15% of the total—well, that fact could dilute the degree of consideration their grievances will be given by those who are deemed the “offenders.” How different it would be if NATESA, (or some other service industry spokesman), had the solid backing of 40 or 50,000 service shop owners and independent radio-TV servicemen.
ASSOCIATION NEWS

by SAMUEL L. MARSHALL

Radio and Television Guild of Long Island

The first Electronics Fair of Long Island, sponsored by the Radio and Television Guild of Long Island, will be held on December 6th, 7th and 8th, 1956 at the New York State University in Farmingdale, Long Island, New York.

Thousands of dealers and technicians, together with a large segment of the general public, will attend. They will see at first hand the latest advances and newest products offered in the realm of color television, high fidelity equipment, test equipment, antennas, tools, etc., in short, everything pertaining to electronics.

The lecture program committee is lining up top industry speakers to discuss technical and business problems. The following is a partial list of some of the men who have offered their time to speak at our Fair:

Mr. Miller—Vidaire Electronics Mfg. Co.
Mr. Platt—Wintronics Test Equipment
Mr. Tellis—Zenith Corporation
Mr. Dynes—R.A.M. Transformer Corporation
Mr. Dressler—Chromatic Labs
Mr. Credo—R.C.A. Service
Mr. Wendell—Service Management Magazine

C.B.S. Laboratories have offered the use of their closed circuit color television camera equipment. The committee is presently negotiating with General Electric for the use of their Electronic Robot which has been demonstrated several times on television.

The Guild itself is making plans to have a large display at the Fair. In the booth will be educational material pertaining to the Television service industry in general, and to Radio and Television Guild of Long Island in particular. The Fair will offer an excellent opportunity to acquaint the general public with the fact that there is a Guild and the advantages derived from doing business with licensed Guild members.

Associated Radio-Television Servicemen of New York, Inc.

Additional information obtained from Sam Marshall, lecturer of the forthcoming color series, discloses that he will be assisted by an old friend of ARTSNY's, Bob Dargan, Technical Editor, and Oscar Fisch, Assistant Editor of Service Dealer and Electronic Servicing. Bob was former chief instructor and head of technical information and training at Philco.

NATESA, Chicago

At the Omaha, Nebraska, board of directors meeting of the National Alliance of Television and Electronic Service Association, Frank Moch, president, was named Chief Executive Director and voted a salary plus expenses, to cover the last half of the fiscal year ending August 31, 1956. A committee was established to work out ways and means, including organizational changes, to free Moch of some of his duties, to enable him to devote more time to top level executive problems.

As steps in this direction, three governors were named. Albert C. W. Saunders will serve in dual offices, as educational director and as New England zone governor; Gordon Vrooman, Central Atlantic Zone; and Robert L. Kidd, South Atlantic Zone.

Fred Colton announced his resignation at the meeting. His post as Great Lakes governor was assigned to his former business partner, John Graham.

[Continued on page 26]
Compatible Crystal Calibrator

Discusses the functioning and the use of an accurate test instrument for checking, aligning, and trouble shooting the reference oscillator circuits in color TV receivers.
teristics similar to those of the hori-
total oscillator.
One characteristic of the 3.58 mc os-
cillator is that it must be adjusted to
a high degree of accuracy. Otherwise,
the color reference oscillator may not
be close enough for the phase control
circuit to pull it on frequency. For ex-
ample, if the phase detector circuit has
a pull-in range of 358 cycles, this would
represent a range of only .01% of the
burst frequency. The average signal
generator does not have this high de-
gree of accuracy. The test instrument
for aligning the oscillator should be at
least 3 times as accurate as the required
setting of .01%. Therefore, a 3.579545
mc standard frequency generator is
needed which will have better than
.002%. Without such accuracy there
is no guarantee that a color receiver
installed or repaired will lock in on a
color program when one is received.
The result would only be more call-
backs and free service calls.

Description of Crystal Calibrator
The instrument shown in Fig. 1 is the
Win-Tronix Compatible Crystal Cali-
brator and includes a precision 3.579545
mc crystal standard which is calibrated
to an accuracy better than .0017% or 17
parts per million, which is within 60
cps of 3.579,545 cycles. The drift and
residual phase modulation in the unit is
so small as to be negligible even in
critical laboratory tests.
The color subcarrier standard crys-
tal is mounted inside the unit and is
selected by the Function switch. This
switch will select any of three other
crystals which can be conveniently
plugged into the crystal sockets mounted
on the front panel. Crystals from 100
ke to 20 mc can be used in the unit and
selected instantly by the switch without
any requirement for tuning. An output
te attenuator gives a range of better than
100 to 1, with a maximum output level
of better than 1 volt rms. An internal
mixer/modulator diode produces har-
monics and sidebands for calibration
marks and signal modulation by other
generators.

Circuit Description
The schematic of the Model 120 Com-
patible Crystal Calibrator is shown in
Fig. 4. The signal circuit is an extended
[continued on page 54]
TV antennas, over the past 10 years, represent an unusual study in swift technical progress. They actually evolved and improved more than the TV set itself, as the parade of advancing types passed by: Dipole and Reflector, Conical, Fan, Yagi, Dipole and Screen, and on up to the latest series of Broad Band VHF Yagis. This latter class has been the most powerful type of multi-channel antenna created to date, and practically every antenna manufacturer makes a version of this basic type.

The purpose of this article is to introduce and describe a new basic antenna type, which by its nature and design represents an advance in gain, front-to-back ratio, and mechanical strength.

This new antenna, shown in Fig. 1, is called the "Terminated Travelling Wave Antenna." It embodies a number of important features, developed by engineers of the Channel Master Corporation. Many of these are not apparent to the casual observer. For example:

1. Six of the seven elements are "driven."
2. The phasing harness is in two sections, each with a different impedance (Z).
3. Despite its appearance, the antenna has no conventional folded dipoles:
   a) Five dipoles are "hairpin" or "fat" dipoles, (Fig. 2).
   b) One is a 3-conductor high Z dipole with a shorting bar.
   c) One is a folded reflector.
4. All dipoles have a different length.
5. Two different "Vee-ing" angles are used.
6. A terminating resistor is employed.

The configuration of this new antenna is a series of "Vee'd" dipoles. To understand the theory of its operation, it is necessary to review the basic Vee dipole. When this dipole is approximately ½ wave on the low band, it is about 3 half waves on the high band (Fig. 3). Anti-phase high band operation is overcome by the fact that the center section is located 180 degrees in space behind the two outer sections. In effect, the high band dipole operates as shown in Fig. 4. The phase of the current changes 180 degrees as it travels to the point in space where it is abreast of the two outer dipole sections. Therefore, the current of all three sections is in phase.

It is an established and well known fact that the basic directivity patterns (and consequently, the gain) of an antenna are determined by the phase and amplitude of the current in the dipoles, as well as the position of the dipoles with respect to each other.
Current Phase

Keeping the operation of the "Vee'd" dipole in mind, we must now think of these dipoles as impedances. Fig. 5 shows each element of the Terminated Travelling Wave Antenna as an impedance. The lines connecting the dipoles or impedances represent the phasing harness.

The harness length between each dipole is greater than the free space distance. When the total electrical harness length of the driven elements is equal to the physical spacing, plus 180 degrees, the result is termed "Increased Directivity Condition." This produces narrower lobes and higher gain than would be obtained if the harness length and physical spacing were of equal dimensions. However, the phase relationship which produces increased directivity is not dependent on harness length alone. The phase in each dipole also depends on its impedance. Therefore, the harness must be cut to compensate for the variations in dipole impedances as described below.

Current Amplitude

By controlling the impedance of each dipole, we control the flow of current through that dipole. For maximum performance, the value of the impedances shown in Fig. 5 must be such that each dipole receives an equal amount of current. At first glance the solution would seem to be that since they are all in parallel, the impedances should be equal, and therefore, equal current would flow in each dipole. It must be borne in mind that these impedances occur in a travelling wave antenna and each impedance is separated from its neighbor by a significant portion of a wave length.

The major achievement in the design of this antenna is the development of a series of impedances which decrease in magnitude from the feed point of the antenna to the front end, maintaining this descending series of values for every individual vhf channel.

This is best explained by considering the concept of reciprocity. It holds that the gain, directivity, and impedance characteristics of an antenna are the same for both receiving and transmitting. Since this is so, an understanding of this antenna will be simplified by considering it for the time being, as a transmitting antenna.

Referring again to Fig. 5, it will be seen that the dipole of highest impedance must be at the feed point, with the impedances of the other dipoles in descending order. Since the dipole at the feed point has the highest Z, only a small controlled amount of the total current flows through it (about 1/6 of the total) and most of it continues down the harness. The impedance at the next dipole is the highest of all the remaining dipoles, and again only a small portion of the current is permitted to flow through it. The major portion of the current continues down the harness, with each impedance (dipole) getting a portion of the remaining current. The last impedance, farthest from the feed point, absorbs the remaining current.

In a travelling wave antenna any current which is not absorbed is reflected back up the harness, and this in turn, produces rear lobes. A terminating resistor, such as used on long wire rhombics, absorbs whatever power the dipole impedances do not. This resistor, together with the folded parasitic reflector provides front-to-back ratios higher than 10:1 (relative voltage) on all low band channels.

Methods of Maintaining Descending Impedances

A point of major importance concerns the method of controlling the descending impedance values over the entire frequency range. The solution to this problem lies in "tapering" the lengths of the dipoles so that each dipole gets progressively shorter as you go from the feed point to the terminating resistor. The theory behind this involves the basic characteristics of any dipole.

Fig. 6 shows the typical spiral curve of the impedance of a dipole. The horizontal line indicates resistance of 0 to infinity. Inductive reactance is indicated by the area above the line, and capacitive reactance by the area below. Whereas the spiral crosses the horizontal line the dipole impedance is purely resistive, and the dipole is resonant. Points A, B, C, and D represent the 1st, 2nd, 3rd, and 4th harmonics—or in effect, what happens when a dipole is ½, 1, 1½ and 2 wave lengths long. It is important to note that the dipole's characteristics are about the same between points A and B and between points C and D. The arc AB represents the impedance on the low band; arc CD, the high band.

Looking at the actual antenna it will be seen that the problem of having a very high impedance at the feed point was solved by using a specially designed new type of 3-conductor dipole. The outer conductors are made of ¾" tubing and the center conductor is ⅜" tubing. The precise impedance desired was obtained by the use of a novel shorting bar properly positioned across the 3-conductors. This new design is called the Controlled Impedance Dipole (C.I.D.).

[Continued on next page]


Service Dealer and Electronic Servicing — October, 1956
DON'T PASS UP PRINTED CIRCUIT REPAIRS!

EVERYTHING YOU NEED IS IN THE...

PRINTED CIRCUIT REPAIR KIT

Now you can repair any printed circuits or printed circuit wiring. This kit contains silicone resin and solvent, pure silver print, solder and tools... plus the G-C Printed Circuit Service Manual. Used and recommended by leading set manufacturers. Ask for G-C No. 680.

ALWAYS USE THESE G-C CHEMICAL SERVICE AIDS!

Fig. 8—Position of dipoles. Impedances decrease from feed point to shortest dipole.

The next dipole is a hairpin type, which has better impedance characteristics than either a folded or straight type. It is cut so that it is a full wave on channel 6. Its characteristics, Fig. 7A, show that this dipole has its greatest low band impedance on channel 6, with the impedance decreasing with frequency. The same is true of the high band. The impedance characteristic of the second dipole from the feed point is shown in Fig. 7B and that of the third in Fig. 7C. Since the remaining dipoles are progressively shorter, the frequency points of channels 2, 6, 7, and 13 would be farther to the left. In other words, the shorter the dipole, the lower the impedance on each of the VHF channels. By comparing Fig. 7A, 7B and 7C, which represent dipoles A, B, and C in Fig. 8, it will be seen that no matter what channel we compare, the impedances of the dipoles decrease as we move from the feed point to the shortest dipole. This in turn creates the condition which guarantees that the current will be divided equally among all of the dipoles.

This is a desirable condition, since one of the basic theoretical conditions for maximum antenna performance in a multi-element antenna is that every element must receive an equal amount of current in the proper phase relationship.

This is the most basic of the limitations which cannot be overcome by the parasitic elements of a yagi. As stated earlier, both the phase and the amplitude of the current flowing in each parasite is determined by the self-impedance of the parasites and the physical spacing between them. Since there is no way to make them variable with
frequency as was accomplished with the travelling wave antenna, the broad band yagi has severe front-to-back limitations as well as major problems in broad band gain.

Mechanical Features
Since there is an apparent reawakened interest on the part of TV service men in the mechanical strength of antennas, this new antenna design, which Channel Master calls the T-W, should attract added attention. The antenna utilizes folded elements exclusively. This provides definite physical advantages. Each fold is, in effect, a truss and is actually 5 times stronger than a straight dipole of the same tubing under normal operating conditions.

The structure of the antenna is strengthened still further by an unusual type of “boom bracing.” This too employs the truss principle. The “boom” actually amounts to a second full-length crossarm, joined to the basic crossarm by aluminum truss members. The entire “twin boom” unit is completely and permanently assembled in the factory by riveting.

The durability of this antenna—its exceptional resistance to excessive wind and ice loading—will appeal both to profit-conscious dealers and service-conscious consumers.

Smaller Models Developed
The original design project called for the development of an antenna for deep fringe use—very high gain and very high front-to-back ratios. This led to the development of the 7 element Travelling Wave Antenna—described and illustrated above. However, this antenna lent itself ideally to modifications for both suburban and near fringe application. As a result, 3 element and 5 element models have been developed to provide improved reception and durability for these areas as well.
Three different types of circuits used in the luminance section are analyzed along with such features as horizontal and vertical blanking and delay line circuitry.

By BOB DARGAN and SAM MARSHALL

From a forthcoming book entitled "Fundamentals of Color Television"

Part 2

**COLOR TV LUMINANCE SECTION**

THREE general types of luminance section systems are found in color TV receivers, as is shown in Fig. 1. In the first (Fig. 1A), one detector is used for the luminance signal, and another detector (not shown) is used for the chroma and sound signals. In the second (Fig. 1B), one detector is used for the sound signal (not shown) and the other is used for the chroma and luminance signals. In the third (Fig. 1C), one detector is used for the sound, chroma, and luminance signals.

**Block Diagram Analysis**

Referring to Fig. 1A, we observe that any chroma signals present in the luminance circuit are removed by the 3.58 mc trap located between the delay line and the luminance amplifier.

In Fig. 1B, the output of the luminance and chroma detector is fed into a video amplifier which in turn provides separate output paths for the chroma and luminance signals. In this case, the chroma information is attenuated by designing the response characteristic of the Y channel so that there is a rapid rolloff beyond 3 mc.

In Fig. 1C, the output of the single sound, chroma, and luminance detector is fed into a video amplifier, which in turn provides separate paths for the sound, chroma, and luminance signals.

In all of the above cases the output of the luminance amplifier is fed either to a suitable matrix where the luminance and color-difference signals are combined, or are fed directly into the cathodes of the color picture tube, in which case matrixing is effected by the color tube itself.

Of the three systems shown in Fig. 1, it will be observed that only the one shown in (A) does not require an additional video amplifier. The reason for this will be explained subsequently.

**Circuit Analysis**

A circuit corresponding to the block diagram system of Fig. 1A is shown in Fig. 2. The signal at the output of the second detector has a positive picture polarity. Since the signal fed into the luminance amplifier is inverted at the plate circuit, the signal fed into the picture tube cathode will have a negative picture polarity which is correct and proper. Coils L12, L14, L23, and L31, are the usual peaking elements designed to compensate for the distributed capacities of the circuit, and to

---

Fig. 2—Partial schematic of luminance section of Sentinel Model 1U-816.
ARE YOU COLOR-BLIND?
NOT IF YOU CAN READ THIS... BUT THE ANTENNAS YOU INSTALL COULD BE...

The age of color ushers in your greatest challenge as well as your greatest antenna selling opportunity since the advent of television. For even the finest color TV receiver cannot deliver a satisfactory picture if the eye of the receiver—the television antenna—is "color-blind."

Exhaustive tests by leading color receiver manufacturers have proved that an antenna must possess the following electrical characteristics to render true color reception:

1. Sufficiently high gain to override set noise and provide a clear color picture.
2. Flat response. Gain variation of not more than 1 db within 1.5 mc. below and .5 mc. above the color subcarrier.
3. Narrow unidirectional polar pattern.
4. Close impedance match to help effect a low V.S.W.R. to eliminate line reflections.

11 months ago, the JFD engineering staff undertook an intensive antenna research program. Their objective: to develop a select group of antennas that more than satisfied these stringent color requirements. The results: 8 outstanding antennas, so color-perfect in performance, that we have designated them as the NCB* Colortenna line, signifying Non Color Blind performance.

8 COLORTENNA models to choose from assure you of the right antenna answer for every location or reception problem. They spell out a great new profit opportunity for you... in replacement antenna sales... in new set sales, in trade-in sales—black and white, or color. Because now, for the first time, you can guarantee your prospects and customers the finest black and white TV today, as well as the truest color performance possible in the future when they decide to buy.

Spearheading your antenna sales break-through will be the most spectacular sales promotion in antenna history—the NCB* COLORTENNA Sell-A-Bration!

Every COLORTENNA you sell earns you merit points for all-expense paid trips to Europe, America or any place you want to go—and a host of free valuable gifts from minks to Chris Craft cruisers. Plus newspaper advertisements, displays, streamers, direct mail, TV-radio spots, and give-aways selling you and your JFD NCB* COLORTENNA performance guarantee.
American Express all-expense paid trips to Paris, Rome, Switzerland, Hawaii, Mexico, Bermuda, Havana, Miami, Las Vegas—or any place you name. You go when you want to go, where you want to go, how you want to go or...

If you prefer merchandise prizes, take your pick from over 900 of America’s most wanted products—mink coats, MG sports cars, diamond rings, living room suites, Chris Craft cruisers, power mowers, and other wonderful gifts. You can’t miss. Every point counts. Everybody wins.

Your JFD distributor has your NCB* COLORTENNA SELL-A-BRATION portfolio waiting for you. It doesn’t cost you a cent—no entry blanks—no red tape. Get started now and write your own ticket in the greatest give-away in antenna history.

SALES PROMOTION EXCITEMENT FOR YOUR STORE!

- window streamers
- displays
- cards
- newspaper mats
- TV film commercials
- mailers, stickers
- TV slide commercials
- radio commercials
- bumper signs

JFD MANUFACTURING COMPANY, INC., BROOKLYN 4, N.Y.
world's largest manufacturer of TV antennas and accessories
International Div.: 15 Moore St., N.Y.C. * Canadian Div.: 51 McCormack St., Toronto 14, Ont.

Form No. 550 8-56 Litho in U.S.A.
tain the wideband characteristics of the detector circuit. The tapped
ance L12, C63, and R63 constitute a T trap producing a high rejection
58 mc. The 4.1 K resistor R63 in the cathode circuit serves a dual purpose; not
is it a part of the T trap but it acts also as the detector load.

The contrast control is connected in the cathode circuit in a manner de
tended to provide partial high frequency. Inasmuch as the cathode imped
ance consists of the contrast potentiometer (500 ohms) and R63 (47 ohms),
its obviously that C64 (4005 uf) will decrease an increase in stage gain for
high frequencies. Capacitor C65 (015 uf) is present simply to minimize the changes in circuit response as
of the potentiometer is moved across its range from minimum to maximum contrast.

In Fig. 3 is shown a circuit corresponding to the block diagram of Fig.
3. The detected signal output has a negative picture polarity as it is fed into
1A the first video amplifier. A 4.5 mc T trap is located in the plate
circuit of this tube and is in series with the chroma takeoff transformer.

Note that the plate load of this tube consists of the primary of transformer
T701 and the resistor that connects to B plus. The chroma signal is taken off
the transformer impedance, whereas the high-frequency drop across the resistor provides the signal information below 3
mc. As such, this information contains the signals required for the age circuit, and the horizontal and vertical sync separator.

Note that Fig. 3 utilizes two tubes in the video amplifier section. This impos
poses the requirement that both tubes have usable gain characteristics and that
the combination shall have a single phase inversion in order to provide the signal at the CRT at its proper phase. This is accomplished by designing the video detector circuit so that it is completely off ground, and its output is fed to
V401A between grid and cathode. The luminance output signal from this tube is taken from R403 with a gain of approximately 4. This circuit is referred to as a "Bootstrap" circuit. The luminance signal is fed through the delay line and C403 (1.1 uf) to the grid of
V402, the second video amplifier. Reversal of the picture polarity at the plate
of V402 imparts a negative signal polarity to the signal, and, as such, it is fed into the picture tube cathodes via the fixed matrix network consisting of R418, R419, and R115.

Contrast control is effected by R103A which is connected in series with the cathode of V402, the second video ampli
ifier, and ground. The brightness control is connected as one leg of a voltage divider between ground and the grid of
the horizontal output tube which is about 40 volts with respect to ground. Variation
of this control produces a change of plate current, causing a corresponding increase or decrease in the voltage at the plate of V402. Since the picture tube cathodes are connected to the plate of V402, this voltage variation is transferred to the cathodes, thereby effecting an increase or decrease in brightness.

A circuit corresponding to the block diagram of Fig. 1C is shown in Fig. 4. As in Fig. 3 a bootstrap circuit is used in the detector output, the latter, in this case, containing sound, chroma, and luminance signals. Also, as in the circuit previously discussed, luminance is taken off at the cathode, and color is taken off at the plate through a chroma takeoff transformer. The sound, sync, and age signals, in this circuit, are taken off at the plate return which is above rf ground by virtue of a 5K resistor (R133) connected between the plate return and B plus.

Connected across a portion of the secondary of the chroma takeoff transformer is a 4.5 mc sound trap. This trap effectively eliminates the 4.5 mc information and the 920 kc beat from the chrominance system.

Luminance information is fed, via the delay line, to the second video amplifier. The amplitude of the output signal is controlled by potentiometer R134 (contrast control) at the end of the delay line.

The brightness control consists of a potentiometer connected between ground and the -20 volt line. As in the previous circuit described (Fig. 3) variation
of this control provides an increase or decrease of plate voltage which is transferred as a change in cathode potential on the picture tube, thereby increasing or decreasing its brightness.

[Continued on page 42]
Auto Radios for 1956 — PONTIAC

A discussion of the important features of the two Pontiac receiver models for 1956. Tuning adjustments, removal procedures, and servicing hints are dealt with in each case.

by ANDREW V. DOPPLE
Auto Radio Serviceman
Frank A. Reeve Co.

The trend in auto radio for 1956 is toward the two unit construction type, and it is this type that Pontiac offers in two 12 volt models. Both models are interchangeable in all models of Pontiac automobiles. They are custom designed and supplied by The United Motors Service Division of General Motors.

The two units consist of a tuner or rf unit which contains the complete tuner section, and the speaker unit, which contains the complete power amplifier section with speaker.

The "De Luxe" model, part 988568, (see Fig. 1), has manual tuning plus five push-buttons, and uses six tubes in addition to a rectifier.

The "De Luxe Electromatic" model, part 988569 (see Fig. 2) features electronic signal seeking with five electronic push buttons. The tube complement is seven plus a rectifier.

The circuit of the Electronic model is identical with that of the De Luxe, except for the addition of a 12AU7 used to trigger the automatic feature. This set can be tuned manually by the right-hand control (see Fig. 2). Directly behind the manual tuning control is located the sensitivity control (see Fig. 2) which operates a four position rotary switch, which, when rotated clockwise,
There is a Difference in P.A. Speakers.... and You Can Hear it.

Model 848 CDP for the biggest jobs. 25 watts. 16 ohms. Response, 175—10,000 cps, crossover at 1000 cps. Sensitivity rating, 52 db. Size, 10⅜" x 20¼" x 20°. Wt., 12 lbs. List $75.00.

INTELLIGIBILITY

Model 847 CDP for smaller areas. 12 watts. 16 ohms. Response, 250—10,000 cps, crossover at 1500 cps. Sensitivity rating, 51 db. Size, 11⅛" x 7¾" x 10⅜". Wt. 6½ lbs. List $46.33.

INTELLIGIBILITY and Coverage are what count in public address systems. Power alone won't do the job.

Electro-Voice tells your best prospects the CDP story. Fact-packed ads make "sales calls" on prime prospects.

Electro-Voice backs you up with informative, selling literature—printed pieces as intelligible as CDP speakers themselves!
In the early 1800's the suggestion was made that the United States Patent Office be closed because in the words of the legislator making the suggestion, "everything new and worthwhile has been invented." If he came back today, what a surprise he would get.

We, too, have come a long way from the earliest days of television when most TV receivers were installed in public places and used primarily to "bring in the customers." Again, the stations available were limited, with most TV sets receiving only a single channel. What a change has taken place since those days! It is almost impossible to find any part of this country where only a single channel can be received, and there are many areas where the multiplicity of signals would make satisfactory reception impossible if we had to be content with the antennas which were called "best" less than five years ago.

Engineers at TACO, for example, have devoted considerable engineering effort during the past several years to the design of new antennas. These antennas embrace a new concept in the use of driven elements. It is not enough that the elements be driven, but they must add something to performance not only from the standpoint of gain but also from that of pattern configuration. These new antennas incorporate an entirely new engineering design for coupling the elements for greater efficiency over both the high and low vhf bands.

Driving multiple elements in a streamlined yagi type array produces good "staying-power" in fringe and sub-fringe installations. It is only through this effective use of the elements in the antenna, that acceptable performance on a multiple number of channels is attained. Needless to say, these results are not possible without new theories which have been fully tested and developed. In the case of the popular "Trapper" series of antennas, the isolation obtained by the use of the patented traps involved new techniques. These are augmented in the "Topliner" series by a new development whereby maximum signal is transferred to the transmission line "in-phase," thereby further increasing the efficiency of the antenna.

The performance of this new Topliner series and the operation of the delay line principle is most easily analyzed by studying the electrical operation of the driven elements in conjunction with the connecting network. Since this delay line is designed to do its work on both the high and the low bands, it will be best to describe this combination of antenna elements in two stages. Bear in mind also, that the frequency separation between high and low band channels involves a third factor.

**First Driven Element**

Fig. 1 shows a schematic drawing of the "controlled drive" type of antenna which is the subject of this article. The development of this antenna begins with a basic end fed antenna made with an ordinary open wire transmission line and illustrated in Fig. 2a. Here we have one wire cut shorter than the other by one half wavelength at the mean high band frequency. The instantaneous current distribution is shown by the dotted line. Let us go one step further and use two of these antennas placed end to end, feeding them in parallel. This results in the antenna shown in Fig. 2b, and we now have an antenna which is 3 half wavelengths long at high band and approximately one half wavelength at the low band. However, because of the method of feeding, the operation at low band frequencies will be found to be rather inefficient.

By feeding this antenna array in series rather than in parallel, as in Fig. 2c, we accomplish two things. First we improve the high band characteristic by increasing the impedance and secondly we have the well known center fed half wave dipole for the low band. The short bar associated with this element becomes one conductor or a two wire transmission line, one half wavelength long at high band and because of its short length it has negligible effect at low band frequencies.

Further low band improvement is obtained by converting the element to a stepped up two diameter
dipole as shown in Fig. 2d. Here the low band impedance is improved greatly without sacrifice in operation on the high band. Furthermore, the resulting element is designed to be extremely effective at the low frequency (long wavelength) end of the low band. The effectiveness on the high band is obtained by having two end fed half wave elements whose signals add in-phase by means of the series connection. By thus improving the impedance characteristic and the resultant single lobe pattern, the two diameter dipole becomes the first major component in the **Topliner antenna**.

**Second Driven Element**

The second element in this combination may be considered as an end loaded dipole at the low band and a half wave center fed element at the high band. Referring to Fig. 3a, we have an element which is three half wavelengths long at the high band and one half wavelength long at the low band. By folding this element at a point approximately one-sixth of the length from the ends there results the antenna of Fig. 3b. Because of the close coupling between the portion folded back and the original straight portion, the antenna at the low band operates as an end loaded dipole with current distribution as shown. Its operation over the low band channels is very effective. As indicated in Fig. 3, the high current density at the center has been unaffected and the relatively small current at the ends contributes very little to the gain of the system. The out-of-phase currents at the ends of the element cancel each other resulting in an in-phase current at high band operation.

Thus we have produced a very important part of our new **Topliner antenna**—a combination of driven elements both of which are extremely effective over the entire **VHF** TV spectrum.

**The Delay Line**

The problem of connecting these elements so that the signals are additive, or “in-phase,” over the entire **VHF** band is accomplished by the **delay line** network. This connecting network takes into account the phase shift encountered in the transmission line portion of the element shown in Fig. 2. The solution is the automatically frequency selective delay line, constructed of a combination of lumped and distributed circuit elements. Hence is illustrated the theory behind the operation of the matching network and shows how it insures additive in-phase signals.

Fig. 4a shows the basic elements for high band operation. Fig. 4b shows the vector relationship of the signals as they are induced on the elements and as they are additively combined at the output terminals by means of the delay line. The subscripts associated with the vectors refer to the individual elements upon which the signal is induced. The vectors with the prime (') designation refer to the individual signals as they appear at the output terminals. Referring to the high band operation in Fig. 4, the induced signal Ec leads Eb and En signal by 90 degrees, (1/4 wavelength), because of the space separation of the elements. Eb and Ec are further retarded in phase by 90 degrees in traveling through the transmission line path to the output terminals. If Ec is to be additive in phase at the output terminals, this signal must be delayed by 90 plus 90 or 180 degrees in traveling over a quarter wavelength transmission line path. The delay line automatically performs this job by giving the 180 degree phase shift over a 90 degree (1/4 wavelength) path.

Fig. 5a and 5b show the basic elements and a similar vector relationship for low band operation. For purposes of simplicity, the long element is shown as a simple dipole and the short transmission line element is omitted in this case. The constants of the delay line at low band frequencies are such that it will not act to delay the signals, therefore it will work as an ordinary straight transmission line of 30 electrical degrees, (1/12 wavelength), in length. Thus at low band the signals add in phase as in Fig. 5b.

[Continued on page 31]
NEW EDITION!

SONOTONE

PHONOGRAPH MODERNIZATION
MANUAL
SECOND EDITION
PRICE TO-CENTS

PACKED WITH
VALUABLE INFORMATION

• Advantages, operation
  and use of ceramic
  cartridges
• Replacement
data

...and it's yours
FREE!

This handy booklet will help you make proper
and intelligent use of the amazing new Sonotone
Ceramic Cartridges. It will enable you to make
profitable replacements, modernizing your
customer's phonograph. It will give him extra
satisfaction and bring you prestige.

SONOTONE® Corporation
Department CD-106
Elmsford, N. Y.

Please send me, without cost or obligation, a copy
of the newly revised "Sonotone Phonograph Modernization Manual."

NAME__________________________

ADDRESS______________________________

CITY______________ZONE____STATE____

THE ANSWERMAN

Inquiries Sent To The Answerman Will Be Acknowledged Only
If Accompanied By Radio-TV Service Firm Letterheads Or Similar
Identification.

BY SERVICE DEALER & ELECTRONIC SERVICING TECHNICAL STAFF

Dear Sir:

In a Du Mont RA-340 chassis I am servicing I have a condition I would
like to correct. The symptoms are that the picture jumps slightly vertically
when scenes are changed. I can produce the same bounce by quickly rotat-
ing the brightness or contrast controls. All normal checks have been made. There appears to be no reason
for this that I can see.

B. G.
Detroit, Michigan

A vertical bounce condition is very
often due to a need for additional capaci-
tance in the B plus boost circuit. Changes of loading on the high voltage
system can momentarily disturb the electron charge on condenser C282
shown in the partial schematic of Fig. 1. The capacitance may not be large
enough to filter and supply the necessary electrons to other circuits under all
conditions. Since the vertical oscillator is operated from the boost B plus cir-
cuit an instantaneous change in the boost voltage can introduce a slight ver-
tical bounce to the picture.

This type of difficulty is especially evident in circuits which employ no fil-
tering or capacitance reservoir between the boost voltage charging circuit and
ground. A large capacitor from the boost voltage circuit to ground would
be able to furnish a sufficient supply of electrons when called upon to do so by
a change in circuit loading, such as occurs with increases of contrast or bright-
ness control settings.

In this receiver, vertical bounce can be
eliminated by changing the boost charging condenser, C282, to a larger
value. Du Mont suggests a 10 uf semi-
polarized capacitor, part number 03 250
421. Some RA-340 chassis employ two
20 uf electrolytic capacitors in series
from the 430 volt boost point to ground.

This type of circuit provides sufficient filtering and electron storage so that the
boost condenser need not be changed. There is no vertical bounce with con-
trol adjustments or signal changes with this arrangement. The addition of two
20 uf caps in series in this circuit will remedy the condition when the
suggested 10 uf semi-polarized cap-
acitor is not readily available.

The difficulty of vertical bounce can
be noted in many other manufacturers' receivers and is generally corrected by either of the above changes.

Mr. Answerman:
I have a vertical problem with a G. E. receiver of the "N" chassis type. The difficulty is that the top of the picture is stretched a small amount. Adjustments of the height and vertical linearity controls will not correct or reduce the excessive stretch sufficiently. The voltages are just about what are called for and as far as I can determine every component is good. But something must be bad or the problem wouldn't exist.

C. O.
San Francisco, Cal.

More than likely the resistors and condensers in the vertical circuit have been measured and examined several times. Therefore, it is logical to suspect some component disassociated from the vertical oscillator circuit and yet connected to it. This component might very possibly be in the vertical blanking circuit as shown in Fig. 2. Quite frequently components fail in this network and cause all sorts of difficulties such as pulls at the top of the picture, bends, shading, etc. For some reason the retrace blanking circuit is often ignored in the servicing process. This case is probably another instance where the retrace elimination circuit has been overlooked. Condenser C175. 470 uuf should be tested for leakage. Only a small amount of leakage is necessary to disturb and distort the generated vertical deflection waveform. This particular 470 uuf condenser has been known to

Fig. 2—Vertical output and blanking circuit of G.E. "N" chassis.
Dear Answerman:

I have an intermittent condition that has proved quite difficult to correct. After the receiver has been operated for a period of time the horizontal phase of the picture will slip so that the horizontal blanking bar is exhibited. Also, on occasion, the horizontal oscillator frequency may change so that the horizontal oscillator is out of sync.

Since the trouble is so infrequent, (although when the receiver has warmed up it occurs every minute or so), I have been having a difficult time trying to locate the intermittently defective part. One point of interest is that it takes about half an hour or more for the condition to appear. Once the receiver has been operated for that period of time the improper action continues for the balance of the period of use. When the horizontal oscillator slips out of phase the horizontal hold control does not seem to have too much effect upon the circuit.

What component would be most likely to cause this trouble? The receiver is a Crosley 477 chassis.

J. S.
Washington, D. C.

From the description of the symptoms, that of slipping out of horizontal phase intermittently, it appears that the automatic frequency control circuit is not holding or operating at these times.

As can be seen in Fig. 3 a portion of the circuit consists of a special winding on the horizontal output transformer circuit. A pulse is supplied from the winding to the horizontal afe stage for phase comparison action with the horizontal sync pulse. This winding on the flyback transformer is one of the first points to test and is accomplished by measuring the resistance between terminals 4 and 5 on the transformer. The resistance should be about 3.6 ohms. The check should be made after the receiver is thoroughly warmed up and is performed to determine whether the winding is open or the ground connec-

The C-D “Cub” capacitor has proven itself the best on the market today—by out-lasting, out-performing, out-selling any other replacement capacitor for radio or TV. For consistent high quality—always rely on C-D, the only tubulars with the built-in extras required in servicing sets today. That’s why distributors who know, carry the complete C-D line.

Special “Cub-Kit” with bonus plastic service dispenser. IT’S FREE!

Ask your C-D Distributor. He’s listed in your local Classified Telephone Directory.

C-D’s Cub best—bar none in molded tubular capacitors

The C-D “Cub” capacitor has proven itself the best on the market today—by out-lasting, out-performing, out-selling any other replacement capacitor for radio or TV. For consistent high quality—always rely on C-D, the only tubulars with the built-in extras required in servicing sets today. That’s why distributors who know, carry the complete C-D line.

Special “Cub-Kit” with bonus plastic service dispenser. IT’S FREE!

Ask your C-D Distributor. He’s listed in your local Classified Telephone Directory.

The C-D “Cub” capacitor has proven itself the best on the market today—by out-lasting, out-performing, out-selling any other replacement capacitor for radio or TV. For consistent high quality—always rely on C-D, the only tubulars with the built-in extras required in servicing sets today. That’s why distributors who know, carry the complete C-D line.

Special “Cub-Kit” with bonus plastic service dispenser. IT’S FREE!

Ask your C-D Distributor. He’s listed in your local Classified Telephone Directory.
Here are some typical CBS tubes and transistors you will be discovering in 1957 "hybrid" auto radios. They combine the advantages of new CBS power output transistors and modern CBS low-voltage mobile radio tubes. All power for them is drawn directly from the 12-volt battery; the vibrator power pack is eliminated. Both the tubes and transistors are especially designed for hybrid auto radio.

As the 1957 automobiles come into use this fall, you will find CBS ready to supply you with these new tubes and transistors. That's only natural. CBS pioneered the first auto radio tube kit. CBS has specialized for years in supplying auto radio tubes to leading set manufacturers. And now CBS advanced-engineering pioneers again with new hybrid auto radio components.

Whether it's tubes or transistors — whatever you need for auto radio — old, modern, or ultramodern . . . make it CBS. Replace with the same tubes and transistors the original equipment designer specifies . . . CBS.

Reliable products through Advanced-Engineering

CBS-HYTRON
Danvers, Massachusetts
A Division of Columbia Broadcasting System, Inc.

Fig. 3—Partial schematic showing Crosley 477 chassis afc circuit.

A look at the latest in AUTO RADIO
A coupling device to connect coaxial transmission lines is presented which permits quick solderless connections without disturbing the physical or electrical characteristics of the coaxial transmission line.

TAPPING TV TRANSMISSION LINES

by IRA KAMEN
Vice President Brach Division, General Bronze Corporation

The success of TV master antenna installations and community system installations has been based upon the proper technique of tapping TV coaxial transmission lines.

In all TV master antenna system installations where a coaxial cable transmission line must be tapped at various places along the line, to transfer the TV signals to TV receivers, the tapping must be done in such a way as not to produce a change in the concentric nature of the inner and outer conductor of the coaxial cable. If the impedance of the coaxial cable is materially changed, standing waves along the line will be developed. These standing waves dissipate the TV signal energy being transmitted along the line. The amount of energy lost depends upon the impedance changes produced by the number and nature of the taps along the line. This is especially true where the taps distort the symmetrical continuity of the conductors. In some cases, the standing waves will cause a duplicate picture on the TV screen, marring the quality of reception.

Early Method of Tapping

When TV master antenna systems were first introduced to the market in 1948, the lines were tapped in the manner shown in Fig. 1, in which every effort was made to tap the transmission line with isolation resistors by a method which would distort the coaxial line to the minimum extent. This technique (Fig. 1) required soldering the transmission line and outlet devices and installing a resistor in an outlet box of some kind. However, this rough type of soldered connection tap-off introduced standing waves which produced serious signal loss on the high frequency band from channels 7 to 13. Further, with the soldered type of connection, the coaxial lines were always in danger, for when the soldering was completed, it was necessary in rather compact quarters to make sure that the exposed inner and outer conductors of the main line and branch lines did not short circuit each other. One manner of accomplishing this was to fill the space between the conductors with a suitable insulating compound which hardened and the other was to wrap an insulating tape between and around the various conductors as shown in Fig. 1.

Experience has shown that when joints are made in the manner described above that they are subject to aging, resulting in a large measure from the moisture entering the transmission line at the junction points. The aging and corrosion which were produced by this solder technique developed signal losses which, in many cases, could only be
remedied by removing the completely installed cable only a few years after its installation.

**Tubular "T" Couplings**

Certain manufacturers, like Jerrold and Lynmar, overcome some of the difficulties described by using tubular metallic T couplings, as shown in Figs. 2 and 3. These devices require the cable to be cut, each conductor skinned and, in some cases, carefully soldered to its respective point on the connector. With careful soldering these two unions will produce good performance in a system installation.

**Solderless Couplers**

One of the new trends toward solving the TV transmission line tapping problem is a device developed by the author under patent No. 2,615,948 for the Commercial Radio Sound Corporation, who have assigned it exclusively to the Radio Corporation of America. This coupler device is shown in Fig. 4 in both exploded and assembled views. It is known in the field as a solderless coupler since it has been designed for installation without the use of solder. Laboratory tests indicated that these couplers could be installed without disturbing the physical or electrical characteristics of the coaxial line. Installation of this coupler along the transmission line requires the use of only the simple tool shown in Fig. 5. This tool is used to bore a small hole through the outer conductor of the coaxial cable, as shown in Fig. 6, so that the center conductor

[continued on page 36]
ASSOCIATION NEWS
[from page 4]

The meeting was closed with a banquet at which Friends awards were presented to several tube and component manufacturers. Dan Creato of RCA Service Co., received a personal citation for the part he has played in handling industry problems.

ESCO, Missouri

Very recently the Electronic Service Council of the Ozarks (ESCO) consisting of three associations in south Missouri, TESA of southwest Missouri, TESA of the Ozarks and the TESA South Central Mo., culminated an idea into a tangible product: The Raster will be published each month by ESCO and sent to all electronic technicians in south Missouri.

ESFETA, New York

ESFETA held their regular business meeting in the Hotel Wellington in the State Capital at Albany, New York. They had as their guests Edward M. Boor representing Doctor Persia Campbell consumer council of the governor of the State of New York. Mr. Boor spoke on the progress of the consumer council as related to the television service industry and of the investigations that have gone on in many cities of the state. He displayed several pieces of literature that the council has already published for distribution to the general public.

Publicity for ESFETA was discussed and Dan Hurley appointed as publicity and liaison chairman. Dan offered to visit all of the associations of the State (if, when, and where they meet) to offer them any assistance in the name of ESFETA. Associations wishing assistance of any sort should write to Dan Hurley, 10 Florida Rd., Syracuse 11, New York.

Movement of the manufacturer into the retail television service field was discussed with enthusiasm. Great alarm was expressed by all segments.

Syracuse Television Technicians Association, Inc.

It has come to the attention of this association of professional television technicians, who earn their livelihood at television servicing and operate from designated business zones and collect city sales taxes at the retail level, that many individuals are operating a business in a residential zone and not collecting the sales tax as required by law.

This is made apparent by the fact that more and more of our members are having difficulty collecting city sales tax from the customer who claims that other service men do not charge for this tax. We have investigated this situation and find that there are many so-called TV service men who hold jobs in factories and operate businesses from their homes. Syracuse to lose tax revenue from bookkeeping or record of sales tax collections. These same men flagrantly advertise in newspapers and telephone directories.

We feel that it is unfair for the city of Syracuse to lose tax revenue from these sources while our customers have to pay this tax. We further feel that it is the duty of the tax commission to either collect these taxes or to exempt our customers from having to pay this tax.

TESA-St. Louis, Mo.

In all future phone books the telephone company has promised a committee set up by TESA to stop price advertising. This committee met with officials of the phone company at the Kingsway Hotel, to discuss price advertising in the Yellow Pages of the Telephone Directory. They have also promised a number of other things to help upgrade television service, such as: no company can advertise they are a member of a TV Service Association, unless the name of the Association is placed in the ad. Phone answering service address will not be allowed. Superlatives, such as largest in Mo., etc., will be discontinued.
Models
ANTENNA INPUT
The K837F tuner unit is designed for VHF reception only, with a 300 ohm antenna input provided.

Model 14-S-7071U
The K837F tuner unit is designed for UHF-VHF reception with 300 ohm inputs provided for UHF and VHF use. Use a UHF antenna or UHF antenna (both) connect the transmission line to each antenna to the proper receiver antenna terminals.

Model 14-S-7070U, 24-S-7070D and 16-S-7070D
In these models the antenna input to the UHF and VHF tuner is connected to a crossover network to provide a single antenna input to the receiver. This provides for antenna input from a single VHF antenna, a UHF antenna, a combination UHF/VHF antenna, or the receiver cabinet antenna.

The attached cabinet antenna is automatically connected to the tuner inputs when the front panel is fully extended. When using the external antenna retract the rod antenna fully.

Installation check list
Connect the antenna transmission line to the receiver antenna terminals.

Plug the power cord into the 117 VAC outlet and turn the receiver "ON." The receiver should operate normally. However, a check of the following adjustments should be made:

1. Check position of top magnetic and readjust for minimum carrier brightness, if necessary.
2. Check status for proper timing (3:5:5) in mask. Adjust rake position by rotating.
3. Check width of horizontal lines, readjust width control as outlined below, if adjustment is necessary.
4. Check for normal operation of horizontal hold control. Should hold sync for two full lines or more of the control.
5. Check centering of picture. Adjustment is made with the centering lever on the base magnet.
7. Check R.F. oscillator adjustment on all channels. Readjust if necessary, especially at the highest frequency channel, according to the latest.

Chassis rear view

SERVICE DEALER & ELECTRONIC SERVICING COMPLETE MANUFACTURERS SCHEMATICS. An exclusive service of Coman Publishing Corp. by special arrangement with John F. Rider, Publisher.
To Remove The Chassis From The Cabinet - In order to remove the tubes or components:

1. Disconnect the line cord from the power outlet.
2. Remove any antenna connection to the chassis terminal.
3. Remove all knobs from the control shafts.
4. Remove the 3 screws located on the bottom of the cabinet at the sides (3 each) and rear (2 each).

The cabinet is then removed by sliding back off the cabinet front and bottom board assembly. This leaves all components exposed with the picture tube remaining secured in the cabinet front and bottom board assembly.

Install the cabinet to the chassis in the reverse order of the disassembly.
FIELD ALIGNMENT OF PART NO. 470938 TUNER USED IN CHASSIS 120331-H

Ordinarily the only adjustments required in the field are those necessary to compensate for variations in oscillator tube replacements. This can usually be accomplished with the channel No. 13 oscillator adjustment. If individual channel adjustments are necessary, then proceed as follows. Since this tuner is of the incremental inductance type, all oscillator adjustments should be made commencing with the highest channel and then proceeding to the lower channels.

1. Set channel selector to channel No. 13. Set fine tuning control to electrical center of its range.

2. Adjust channel No. 13 oscillator adjustment. (See Figure No. 1) for best picture and sound. Use a non-metallic screwdriver.

3. Channels No. 2, No. 4 and No. 6 have slug adjustments and should always be adjusted starting with the higher channel. (See Figure No. 1). It is recommended that channels No. 13, No. 8, No. 4 and No. 2 slugs only be adjusted in the field in that order when necessary.

4. Channels No. 12 through No. 7 can be adjusted if required by bending the hair pin inductances through the hole provided (See Figure No. 1).

5. Channels No. 3 and No. 5 (split coil windings) should not have to be compressed or separated ordinarily.

ALIGNMENT OF MIRACLE PICTURE LOCK (Horizontal Oscillator and A.F.C.)

1. Short phasing coil (L-7) by means of a jumper wire.

2. Rotate horizontal hold control (R-43) fully clockwise.

3. Starting with horizontal frequency slug (T-5) all the way "in" looking at rear of chassis, rotate "out" until picture just locks into sync (adjust "out" additional 1/4 turn).

4. Remove short from phase coil and starting with slug all the way "in" adjust "out" until picture almost locks into sync (2-3 diagonal bars).

5. Check for horizontal hold while switching channels. If this is not obtained at extreme clockwise position of horizontal hold control R-43) turn frequency slug (T-5) "out" slightly until desired results are obtained. If excessive squidding (Christmas Tree effect) is experienced while switching channels, repeat steps No. 1 through No. 5.
ADMIRAL TV PORTABLE
Ch. 14YP3B
Models: 7/75101, 102, 103, 114, 105A1, 106A1, 107A1

SERVICING TUBES

IMPORTANT: To prevent possibility of electric shock, do not remove or install tubes unless the set is disconnected from the power line.

Tubes in the receiver, with exception of VHF tuner, can be serviced by simply removing the cabinet back and tilting the printed circuit board. To tilt printed circuit board, remove screws mounting it to the chassis. A tube puller may be used for removing the high voltage rectifier tube (1X2B) located in the high voltage compartment.

The picture tube is accessible for replacement by removing the cabinet front, cabinet back and tilting the printed circuit board. To replace tubes in the VHF tuner, remove chassis from cabinet as instructed under “Removing Cabinet Back & Front.”

LOCATING A BURNED OUT TUBE
The heaters of tubes (except V404 high voltage rectifier) are connected in a series circuit. If tubes do not light, check the interlock line cord to see that it is making good contact. Check to see that all tubes are firmly seated in sockets.

A total of 13 tubes are used in the heater circuit. The tube location diagram on the schematic page contains a simplified circuit diagram of tube heater connections. Through the use of this diagram and instructions given below, an “open” turned out tube in the heater circuit can be quickly located without the need for substituting or testing of all tubes.

A simplified procedure is given in the figure below for quickly locating an open heater tube. Checks are made with an ohmmeter from the tube socket pin to chassis ground with a tube removed. IMPORTANT: The picture tube mounting brackets, rear control bracket and tuner shafts are insulated from the chassis.

REMOVING CABINET BACK & FRONT
The cabinet back and front are removable. Remove mounting screws, then pull away from set. In sets with carrying handle, mounting screws must be removed from handle first.

To remove chassis from cabinet shell, remove back, front and screws at bottom. Remove chassis through front.

FUSIBLE RESISTOR
A pig-tail type fusible resistor (Part No. 6A26) is used as a B+ and initial surge fuse. It is located below the tuner.

NOTE: Tube socket pins are counted in a clockwise direction when viewed from the tube side of the socket.

CHANNEL ADJUSTMENT
Channel adjustment of each station should be checked upon installation and at every service call. With proper adjustments, the best picture is obtained at approximately center rotation of Fine Tuning control.

IMPORTANT: Always make adjustment on lowest channel first, then work up, in order of channel number to the highest channel. (For example, if channels 9, 17, 7 and 5 are received, adjust in this order: 9, 5, 7, 17.)

Before proceeding with adjustment, see illustration for location of channel selector switches, then adjust as follows:

a. Turn the set on and allow 15 minutes to warm up.
b. Set Channel Selector for lowest channel to be adjusted. Set other controls for normal picture and sound.
c. Set Fine Tuning control at center of its range by rotating it approximately halfway between its stops.
d. Remove Channel Selector and Fine Tuning knobs and the gold escutcheon under the knobs.
e. Using a lig. blade non-metallic tool (Part No. 98A 30-19), carefully adjust the channel slug for best picture. (Note: tube sound is not loudest at this point.) Repeat procedure for remaining stations, adjusting them in order of their channel number (from lowest channel to highest channel).

REMOVING SOCKET FROM PICTURE TUBE. MEASURE RESISTANCE FROM PIN 12 OF SOCKET TO CHASSIS GROUND.

NOTE: Tube socket pins are counted in a clockwise direction when viewed from the tube side of the socket.

Occasionally a tube heater will measure good when cold, but will “open” upon application of power. In this case, measuring continuity of the heater circuit with power applied may be necessary. An AC voltmeter or an electronic’s neon test lamp can be used to circuit trace (check voltage) the heater circuit with AC power applied. However, be sure to observe the “High Voltage Warning.”

RECONNECT TUBE SOCKET, REMOVE V50 (2CB3), MEASURE RESISTANCE FROM PIN 3 OF V50 SOCKET TO CHASSIS GROUND.
The delay line is essentially a balanced "T" section composed of inductive series elements and a capacitive shunt element. By proper design of the elements, the transmission of signals is delayed at the high band frequencies, while at low band frequencies the reactance of the circuit is such that transmission is not retarded. Fig. 6a shows a schematic representation of the delay line. Fig. 6b is a sketch of the final delay line, where the length L, spacing S and wire diameter have been chosen to give the proper amount of distributed shunt capacity. The delay line is constructed of 3/8 inch aluminum wire and special insulators to maintain the spacing, on which stable operation depends.

Parasitic Elements

The desired gain and directivity have been obtained by adding several elements to the basic driven units indicated in Fig. 1. A conventional reflector is added for increased low band gain and improved front-to-back ratio. To equalize the gain in the low band a parasitic director is added as the first element on the crossarm. This director is insulated at the center and a phase reversing loop is inserted between the two dipoles to make the unit work in both the high and the low bands. A split director is employed to give uniform increased gain on high band channels. The resulting antenna gives a unidirectional single lobed pattern over the complete high and low band channels.

Mechanical Features

To maintain consistent day-in and day-out performance of the antenna, and in order to maintain the stability of the delay line under all operating conditions, the antenna is designed for maximum mechanical strength in all its phases. Completely factory assembled, high signal strength 5052H16 aluminum alloy is used throughout. Being many times stronger than aluminum used in antennas manufactured in the early days of television, the antenna will stand up under the rigid requirements of present day reception. Wind sway, vibration, misalignment of elements and similar conditions which would not have affected the operation of a TV receiver being used on only a single channel, cannot be tolerated in the present day multi-channel era. The alloy used is many times stronger, and in addition the elements incorporate top quality mechanical support to hold them permanently in position. Insulators are of a tough durable plastic material of high dielectric quality and have excellent impact properties thus insuring consistent operation.
"SURE, I use CLEAR BEAM Antenna Kits...they've doubled my installation business!"

Using Clear Beam Antenna Kits makes sense right from the start! Attractive packaging and do-it-yourself label creates customer interest in a new or replacement antenna—makes it a cinch to sell complete installations.

Servicemen installing Clear Beam Antenna Kits have eliminated "loose stock" inventory problems and are now able to price installation jobs accurately and profitably due to fixed material costs!

Start doubling your installation business with Clear Beam Antenna Kits now. Display them in your shop—show them from your service truck—let Clear Beam's self-selling antenna kits clinch extra installation sales for you!

THE WORK BENCH

Unusual Service Problems And Their Solutions

by PAUL GOLDBERG
Service Manager

This Month's Problem:
No Color Reception,
Using HV Transformers

This month's installment is devoted to troubles with which a thorough knowledge of receiver circuitry is necessary.

CBS Color Receiver 205

The receiver was turned on and it was observed that the black and white picture was normal but no color was seen on the screen during color transmission. The sound was OK. In other words a black and white picture was seen at all times.

The diagram was studied and it was noted that the following tubes could cause this trouble: V16A, \( \frac{1}{2} \) 6AN8, band pass amplifier, V16B, \( \frac{1}{2} \) 6AN8, color killer, V43B, \( \frac{1}{2} \) 6B17, pulse shaper. These were first replaced individually, but had no effect. V17, 6CB6 and V18, 6AL5 were also replaced but had no effect. (See Fig. 1)

The diagram was again studied. One can see that the chroma signal is fed from the first video amplifier V14, 6CL6's contrast control to the grid of V16A, \( \frac{1}{2} \) 6AN8, the bandpass amplifier. The bandpass amplifier amplifies a band of frequencies of approximately 2.1 to 4.1 megacycles (chroma) which is then fed to the demodulators.

The purpose of the color killer V16B, \( \frac{1}{2} \) 6AN8, is to prevent video information from passing through the bandpass amplifier and subsequent circuits when the receiver is receiving black and white picture.

Fig. 1—Partial schematic of CBS TV receiver showing bandpass amplifier, color killer, pulse shaper, video amplifier and connecting circuitry.
transmissions. It operates in the following manner: A pulse from winding "D" on the horizontal output transformer is applied first to the grid of the pulse shaper V43B. Here it is shaped and amplified and fed to the plate of the color killer tube through C16B-3, 680 μf. This pulse causes V16B to conduct, which in turn applies a negative voltage to the grid of the bandpass amplifier killing this amplifier during black and white transmissions.

During the reception of color signals the bandpass amplifier will not be biased off because the color killer tube will not be conducting. The burst information being transmitted during color transmission causes a negative voltage to appear at the plate (pin 27) of the phase discriminator, 6AL5, V18, which is fed to the grid of the color killer tube through the 3.9 meg resistor. This negative voltage is sufficient to cut off the color killer tube. Consequently no bias is presented to the bandpass amplifier.

Knowing these facts the station selector was set to a channel transmitting color and voltage measurements were made at the plate, screen and cathode of V16A. These voltages were found to be rather high. It seemed that the bandpass amplifier was not conducting. Now if V16B were continually conducting a negative voltage would be applied to the grid of the bandpass amplifier, V16A, which would be sufficient to cut off the chroma signal coming through. Because the black and white transmissions were received properly, the color killer was assumed to be supplying a sufficient negative voltage.

It was now suspected that the color killer tube V16B was not being cut off during color transmissions. The grid (pin 22) of V16B to ground, was then voltage checked. It was found to measure zero volts. The ohmmeter was then set up and a resistance measurement was made from pin 22 of V16B to ground. (Refer to diagram for voltages.) The meter read zero ohms. C16B-1, 01 μf, was then clipped out of the circuit and was found to be shorted. C16B-1 was replaced with a new 01 μf condenser and the receiver now operated properly on black and white and on color transmissions.

The cutoff bias supplied by V18, Phase Detector, to the grid of the color

*Published as a service to servicemen by*

**HOTPOINT TV TUBE CHARTS**

HOTPOINT TV, America's newest major TV line, is now in the stores.

Complete service information is now available from Hotpoint TV Distributors. If you have not yet ordered it, these tube charts give you basic service information for use until your complete material arrives.

**Service Dealer and Electronic Servicing • October, 1956**
BUYER'S DIRECTORY OF ADVERTISED PRODUCTS

- This department is an additional service to our readers and advertisers. It is not intended to cover all products in all categories, nor is it intended to cover all products made by any manufacturer.
- The classifications are broad. Under each is listed the name and address of only those manufacturers who have, in the recent past, or who are currently advertising these particular products in this publication.
- This service is not a part of the advertiser's contract. The listings may change in future issues. Every reasonable effort is taken to avoid errors and omissions.

HF & I. Manufacturing Co.
323 N. Hoyne Ave., Chicago 12, Ill.

MOTOROLA ELECTRIC, INC.
1515 E. 31st Street, Cleveland 14, Ohio

SPEAKERS

- Argonaut Corporation, 2000 S. Bel Air Ave., Los Angeles 21, Calif.
- Auto-Industrials, Inc., 3100 E. 30th St., St. Paul 1, Minn.
- Electro-Demand, Inc., 2660 E. 30th St., St. Paul 1, Minn.
- Eico, Inc., 200 E. 40th St., New York 16, N. Y.
- Phonekall, Inc., 200 W. 33rd St., New York 1, N. Y.
- Tele-Tech, Inc., 516 E. 34th St., New York 1, N. Y.
- Voice, Inc., 200 W. 33rd St., New York 1, N. Y.
- Western Electric Co., 240 E. 32nd St., New York 1, N. Y.
- Western Electric Co., 240 E. 32nd St., New York 1, N. Y.
- Western Electric Co., 240 E. 32nd St., New York 1, N. Y.
- Western Electric Co., 240 E. 32nd St., New York 1, N. Y.
- Western Electric Co., 240 E. 32nd St., New York 1, N. Y.
- Western Electric Co., 240 E. 32nd St., New York 1, N. Y.
- Western Electric Co., 240 E. 32nd St., New York 1, N. Y.
- Western Electric Co., 240 E. 32nd St., New York 1, N. Y.
- Western Electric Co., 240 E. 32nd St., New York 1, N. Y.
- Western Electric Co., 240 E. 32nd St., New York 1, N. Y.
- Western Electric Co., 240 E. 32nd St., New York 1, N. Y.
- Western Electric Co., 240 E. 32nd St., New York 1, N. Y.
- Western Electric Co., 240 E. 32nd St., New York 1, N. Y.
- Western Electric Co., 240 E. 32nd St., New York 1, N. Y.
- Western Electric Co., 240 E. 32nd St., New York 1, N. Y.
- Western Electric Co., 240 E. 32nd St., New York 1, N. Y.
- Western Electric Co., 240 E. 32nd St., New York 1, N. Y.
- Western Electric Co., 240 E. 32nd St., New York 1, N. Y.
- Western Electric Co., 240 E. 32nd St., New York 1, N. Y.
- Western Electric Co., 240 E. 32nd St., New York 1, N. Y.
- Western Electric Co., 240 E. 32nd St., New York 1, N. Y.
- Western Electric Co., 240 E. 32nd St., New York 1, N. Y.
- Western Electric Co., 240 E. 32nd St., New York 1, N. Y.
- Western Electric Co., 240 E. 32nd St., New York 1, N. Y.
- Western Electric Co., 240 E. 32nd St., New York 1, N. Y.
- Western Electric Co., 240 E. 32nd St., New York 1, N. Y.
- Western Electric Co., 240 E. 32nd St., New York 1, N. Y.
- Western Electric Co., 240 E. 32nd St., New York 1, N. Y.
- Western Electric Co., 240 E. 32nd St., New York 1, N. Y.
- Western Electric Co., 240 E. 32nd St., New York 1, N. Y.
- Western Electric Co., 240 E. 32nd St., New York 1, N. Y.
- Western Electric Co., 240 E. 32nd St., New York 1, N. Y.
- Western Electric Co., 240 E. 32nd St., New York 1, N. Y.
- Western Electric Co., 240 E. 32nd St., New York 1, N. Y.
- Western Electric Co., 240 E. 32nd St., New York 1, N. Y.
- Western Electric Co., 240 E. 32nd St., New York 1, N. Y.
- Western Electric Co., 240 E. 32nd St., New York 1, N. Y.
- Western Electric Co., 240 E. 32nd St., New York 1, N. Y.
- Western Electric Co., 240 E. 32nd St., New York 1, N. Y.
- Western Electric Co., 240 E. 32nd St., New York 1, N. Y.
killer tube V16B, during color transmission was shorted to ground by the defective C16B-1, thus allowing the color killer to conduct continually which in turn cut off the band pass amplifier V16A.

**RCA KCS 48T**

The receiver was turned on and arcing was heard in the high voltage cage. The high voltage cage was removed and arcing was observed from filament winding to the mounting screw on the bakelite strip. This screw is connected directly to the 6BG6 plate cap. The customer had previously stated that the HV transformer had been replaced just two weeks ago for the same reason. It was found after examination that the core mounting as well as the filament wires were burned through and had to be replaced. Before installing the transformer the circuitry was examined in an effort to discover some possible cause of the arc over. The only thing we discovered was the omission of C198, 8.2 µf off the plate of the 6BG6, which may be noted in Fig. 2.

The HV transformer was next replaced. The receiver was set on the bench and turned on. After a few hours sizzling and intermittent arcing was noted from the filament wires to the mounting screw. The receiver was immediately turned off and a new C198, 8.2 µf was installed. For the next few days the receiver was allowed to cook. But no arcing or sizzling was heard again. We deduced therefore that the serviceman who had previously installed the HV transformer had neglected to put back C198. Without C198 in the circuit the difference of potential between the filament winding and the 6BG6 plate would be great enough to cause the arc over.

---

**PROFESSIONAL HI-FI SPEAKERS FOR PROFESSIONAL PA SYSTEMS**

**ONLY JENSEN HAS THIS COMPLETE LINE OF SPECIALLY DESIGNED 2 AND 3-WAY SPEAKERS FOR PROFESSIONAL HI-FI SOUND SYSTEMS**

The "chips are down" when it comes to hi-fi sound coverage in industrial, commercial and institutional systems. Many a speaker that might "get by" in a music lovers living room just won't do the job in professional installations. Here you've just got to have full efficiency, ample power handling capacity and wide-angle distribution over the frequency range.

Jensen has five 2-way coaxial and 3-way TRIAXIAL speakers to do this job for you. All are honest multi-way units with independently-driven horn-loaded compression-driver mid and high channels with full crossover networks. They are minus frills like fancy covers and pretty nameplates but are plus on dependability features like corrosion and moisture resistant treatments. For realistic sound quality, we know of nothing the equal of these fine high performance hi-fi speakers. They work excellently in very small enclosures on ceiling or wall or suspended overhead. And of course they may be used in larger cabinetry when ultimate reproduction of "lows" is needed.

Higher quality interior sound distribution systems are the trend of the future. Jensen Professional Series High Fidelity Loudspeakers insure highest quality results.

The Jensen Professional Series also includes: Lifetime Driver Units; Hypex Projector Horns; Hypex Complete Projectors; Extended Range High Fidelity Loudspeakers; Weather Master Speakers; Transformers; Controls; Cabinets and accessories.

---

**Fig. 2—Horizontal deflection circuit of RCA KCS48T chassis.**

---

**Jensen MANUFACTURING COMPANY**

6601 S. Laramie, Chicago 38, Illinois
Division of The Muter Co.—In Canada: Copper Wire Products, Ltd. Licensee
TAPPING TV TRANSMISSION LINES
[from page 25]

may be contacted by the resistor which is subsequently inserted through the hole created by the cutting tool. This “doughnut hole” cutter requires only a few easy turns to clear the outer sheath, the shield, and the small portion of polyethylene between the inner and outer conductors. The ground connection to the cable is made by means of an insert ground screw which is threaded all the way down and cuts its way through the cable sheath to establish the ground contact with the shield. Making the ground connection applies the tapped TV voltages to the coaxial outlet. Regular inspection of the boring tool is required to make certain that it is in good working order. Special attention to the proper depth setting is important to make certain that the correct amount of metal and plastic is removed from the cable.

RIDER SPEAKS

by JOHN F. RIDER

"Dean of America's Radio Servicemen"

THE big problem in the minds of servicing dealers and technicians is factory service. Two prominent receiver manufacturers have recently announced their intention to open a number of factory service branches in major population centers of the United States—this in addition to the one manufacturer who has had a great number of these stations in operation for the past 10 years.

Looking at the situation without rose colored glasses and analyzing its effects without emotion we do not foresee the end of the electronic servicing industry. As a matter of fact this conclusion is reached even after consideration of the possibility that other receiver manufacturers will do the same thing.

Some of the receiver manufacturers who will remain in the home electronic equipment field after the present battle between the giants of the industry is finished are not too happy about the prospect of direct service contact with the receiver buying public, but the likelihood is that a factory service program of some sort will be conducted by most of them. The thinking is dictated by the sales departments, which maintain that an advantage in receiver sales accrues to any organization that eases the mind of the buying public on the question of service.

A not insignificant factor in this thinking is the possibility of making the factory service branches a profitable operation, since they would service all the products made by the parent concern. As things look now it is reasonable to presuppose that the sales programs of those who stay in the manufacturing business will encompass home electronic and home white goods equipment. So, opening factory service branches is a pattern which will without doubt be adopted by most producers of TV receivers and white goods—including those concerns which at present say they'll do nothing. Competition is a powerful influence in making manufacturers change their minds.

Interestingly enough, quite a few manufacturers who have not yet declared themselves broadly on the issue of factory service have, during the past few years, operated a few scattered installations.

Let us for the moment assume the worst; that makers of the equipment will operate factory service branches. Experience in the past has illustrated that operating a service branch is not cheap. It costs money and we must accept the premise that factory service branches which lose money will not be continued for long. Naturally, every effort will be expended to make them profitable. The reasoning behind this statement is that sales competition between the producers is keen, and while profits can be earned even the big manufacturers question the advisability of maintaining service branches which are draining off profits earned on sales. In a limited way this has been proven; TV receiver manufacturers have closed down unprofitable service branches.

The factory service branch has advantages over the independent servicing facility. More money is available for advertising and there is great public trust in the words "factory service" or "service by factory trained personnel." Whether the factory service is better than that given by a technically competent service facility is debatable; a fact that is, unfortunately, not generally known.

However, let's not lose sight of the
vulnerable point—profitable operation of the factory service branch—it must operate profitably or close down. Advertising sells brand names, but the dealer who carries the line is in direct contact with the public. If he is a servicing dealer he need not worry very little about factory service, because he can sell his service to his customers. After all, the dealer sold the original product, and the path of least resistance, when service is required by the customer, is back to the organization which sold him equipment.

What about the service shop which doesn’t sell receivers? How does this new approach to service affect it? If the shop is located in an area of relatively low population density (which also means relatively low receiver population) it may not pay for a factory to establish a local competing service facility. Even the manufacturer with the greatest number of factory service branches presently in operation is not active in many areas except perhaps by arrangement with a local service shop. It is doubtful that any other manufacturer can spread his service branches as widely as this one.

Widespread activity is dependent on diversification of products to be serviced. The greater the variety of products being manufactured by the organization the greater the possibility of making a factory service branch pay, because the categories of product owners who call for service are more numerous.

The ability to finance a great many factory service branches is not equal for all electronic equipment manufacturers. This statement does not reflect adversely on the financial standing of any concerns; it simply means that some manufacturers have greater financial power than others and can afford to do things which others can’t.

Thus the service shop owner who is not engaged in equipment sales is not doomed to extinction. He will have the opportunity to compete to an extent which offers greater possibilities than that of mere existence. In next month’s issue we’ll describe the things which are being done and can be done by servicing facilities not only to maintain their standing, but to grow in spite of factory service.
Radio set shipments to dealers during June, excluding automobile receivers, increased over the June 1955 level by 47 per cent and over the first six months of 1955 by 23 per cent, the Radio-Electronics-Television Manufacturers Association announced. Radio shipments in June also increased substantially over the May shipments, it was reported. Radio receiver shipments to dealers in June totaled 798,114 compared with 551,712 sets shipped in May and 542,382 receivers shipped in June of last year. First six months of 1955 shipments had totaled 2,515,807 radios compared with 3,270,809 radios shipped to dealers during the first half of this year.

Allen B. Du Mont Laboratories, Inc., and Chromatic Television Laboratories, Inc., have reached an agreement whereby Du Mont will undertake immediately a program aimed at getting the Chromatic single-gun color tube and the color television set using the Chromatron into production.

The announcement was made jointly by David T. Schultz, President of Du Mont, and Paul Raibourn, (Right) Chairman of Chromatic.

It is anticipated, according to Messrs. Schultz and Raibourn, that preparatory work leading to mass production of the tube and color receivers will be completed within a year. When production begins, it was stated, the Chromatic tube will be available to all set manufacturers as well as for Du Mont receivers.

Appointment of Kenneth C. Kleidon to the newly-created post of National Color Television Manager for...
"Service Dealer & Electronic Servicing" magazine and the CBS-Hytron Tube Division were honored by being given, for the first time, the Friends of Service Management Award for 1956 by NATESA at their annual convention held at Chicago September 14-16, 1956. Due to unsettled conditions in the set division, as it pertains to service, no awards were voted in the set division.

Channel Master Corp. has introduced two new television antennas which will be backed by a $50,000 national consumer advertising campaign. This is the first national consumer advertising campaign in the history of the industry. It has been announced that the New York advertising agency of Bartin, Barton, Durstine & Osborn have been appointed to introduce the new Channel Master T-W outdoor antenna and the smartly styled Showman indoor antenna to the American public.

Discussing these new antennas, Mr. Harold Harris, Channel Master Vice-President in charge of Sales and Engineering, recently addressed a conference of Channel Master distributors. Checkered boxes on the tables contain miniature versions of the revolutionary new T-W outdoor antenna—only antenna to employ the "Traveling Wave" principle.

The New England Radio-Electronics Meeting jointly sponsored by the Boston and Connecticut Valley sections of the I.R.E. will henceforth be held each fall instead of in the spring as in the past decade. The decision to shift the timing was made in order to make the meetings, which have grown steadily in importance and attendance in recent years, of even greater usefulness by moving them to a time halfway between the national conventions at New York each spring. The first fall meeting of NEREM will take place this November 15 and 16 at the Hotel Bradford in Boston.

Don Cain, Admiral Distributors-Chicago Division flying serviceman, made use of Polk Brothers' courtesy helicopter service when going to the International Amphitheatre to check the TV sets installed in the workrooms of newspapers, news magazines and press associations for the Democratic National Convention.

A new dealer-aid, to assist distributors and dealers in selling and servicing color television, has been announced by E. P. Atcherly, merchandising manager, of Sylvania Electric Products, Inc. The new item is a 10-minute film strip entitled "Make Way for Color" and has been made available to all Sylvania's electronic products district sales offices. The film will be shown in the next few months to electronic products distributors and dealers at meetings from coast-to-coast by Sylvania sales representatives and sales engineers. The color film and recorded narrative points up selling reasons and outlines major differences in the composition of black-and-white and color television sets. It also touches on some of the new terms added to the technical vocabulary as a result of the impact of color television. According to Mr. Atcherly, the film may be requested for distributor or dealer meetings through the local Sylvania electronic products sales representative.

Walter W. Watts, Executive Vice-President of the Radio Corporation of America, said that new electronic developments—now in the laboratory or just emerging—will have a decisive impact on American living. Speaking to a luncheon meeting of Findlay civic and business leaders, the RCA executive foresaw such devices as magnetic TV tape recording for replay at home of favorite television programs, electronic refrigeration and air conditioning, mural television and a variety of new devices for industry, medicine and education. As a result of these and other developments, Mr. Watts said that the electronics industry would increase its present sales volume by more than 50 per cent by the next decade, exceeding 18 billion dollars by 1964.
No matter how experienced a service engineer may be with other types of radio equipment, he is likely to find marine radiotelephone a peculiar breed of cat. In fact, I've heard expressions of astonishment from technicians in practically every other electronic field, and even from amateur radio operators, over various design and constructional features of marine radio communications equipment. From some of the criticism and comment, one might think that the designers of marine equipment were out in the boondocks when the brains were passed around.

Actually, however, there is a sound reason for the way marine radiotelephones are built. This will be easily understandable after a look into the background, and the technical and economic requirements.

The first commercial marine radiotelegraph transmitter I ever worked on gave me the "willies." It was a self-excited oscillator, covering the band between 300 and 500 kc, and the transmitting frequency was adjusted by changing the position of clips and flexible leads on the oscillator tank coil. Fine tuning was performed by bending the flexible leads slightly. When the tuning for one channel was changed, of course, it affected the adjustment on the other channels as well. This was a trying trick, especially with an FCC inspector looking over your shoulder, waver- meter "at the ready." Mind you, this set was a first-line commercial outfit.

Later, when radiotelephony arrived on the maritime scene, I tuned up my first marine radiotelephone. Again I was agast to find that transmitter tuning was accomplished by changing the position of clips on coils. This also was a first-line commercial product. Not only would no self-respecting amateur have had it in his shack, but the FCC would have prohibited him from putting it on the air.

This is not meant to imply, by any means, that all radiotelephones are designed in this fashion. However, it would be a very rare instance in which factors, other than excellence of design, did not, in a somewhat similar manner, alter the final outcome of the designer's dream.

The market for marine radiotelephones is very limited, compared to that for television or table-model radios. A run of a few hundred radiotelephones is a substantial one. From this standpoint it is not so amazing that marine radiotelephones may possibly be deficient in some theoretical respect. Indeed, it is amazing that they have as many excellent features as they do at such a comparatively low price. Competition, and the roving ear of the FCC, which has just recently noticed a little splatter and a few harmonics around marine frequencies, have served to shake out most of the "bugs," and today's equipment is about as cleanly designed and as reliably put together as one could hope. This has been made possible only by a step-by-step evolutionary development, bringing out small improvements from time to time on the old ideas and traditional designs, and not from any dazz- zling and expensive exploitation of brand-new concepts. Therefore, to understand what we have today, it helps to look back a little.

One of the first and most popular pieces of equipment for this service consisted of a "Vibrapack" power supply, to change the 6 or 12-volt battery input to as high as 300-volts dc; a 4-tube superheterodyne receiver, and a 2-tube transmitter.

Circuits of this early telephone were simple and straightforward and designed to operate with pre-set adjustments. The operator needed no technical knowledge. A knob on the front panel changed operation of both transmitter and receiver to any one of four different operating frequencies, which provided for two ship-to-ship channels, one channel to the Coast Guard, and one channel for shore-telephone communications.

Inside the cabinet, the receiver was entirely conventional, with the exception that the superheterodyne mixer circuit was crystal controlled. The handswitch selected the proper crystal for the channel to be received, and also selected pre-set input trimmer capacitors, which on installation of the equipment were peaked for best reception on the different frequencies. Loudspeaker reception was provided, or the receiver

---

**MARINE ELECTRONIC BUSINESS**

**RADIO TELEPHONE CHARACTERISTICS**

**Part 4**

*The author talks of early marine transmitter design, and discusses modern trends.*

by ELBERT ROBBERSON  
Marine Electronics Consultant

---

**Fig. 1—Compromise measures such as coil-clip tuning are still used, as seen in this photograph, for reasons of economy.**
output could be switched to a conventional telephone handset earpiece.

The transmitter consisted of a single oscillator tube in a tuned-plate crystal-controlled circuit. The bandswitch selected the crystal for the desired transmitting channel. A single coil was used in the transmitter output circuit, and the capacitance of the antenna itself was used to establish plate resonance. Different coil taps for the antenna and the plate of the oscillator tube were selected by the bandswitch for tuning, and at the same time established some sort of impedance match.

The modulator used a single tube of the same type as the rf oscillator, and was transformer coupled to its plate. Audio from the carbon microphone was impressed on the modulator-tube grid through a stepup transformer. The high level output of the singlebutton carbon microphone obviated the need for a speech amplifier, and sufficient output was obtained for a high degree of modulation under optimum transmitter loading adjustments.

A push button on the handset operated a multi-contact control relay, which transferred “B” voltage from the receiver to the transmitter circuits, and switched the antenna likewise.

With all due respect for the dead, and for the fact that this type of equipment gave long and faithful service in its time, it possessed several features which have fortunately passed out of favor. For example, it has since been determined that the direct modulation of an oscillator tube is bad practice, since on negative modulation peaks oscillation may cease entirely, giving rise to serious distortion products.

Using the antenna as a reactive element in the transmitter tuning circuit was bad enough, and direct connection of the antenna to the plate circuit of the oscillator tube compounded the probability of spurious emanations from this type of rig. Not only was such a circuit potentially a source of interference, but it was also difficult to tune if the antenna did not have the proper impedance to serve its multiple purpose on a number of different frequencies. Accord-

[Continued on page 51]
Color TV Luminance Sections
[from page 15]

Retrace Elimination

Retrace, both horizontal and vertical, presents problems in color TV reception. Although the vertical retrace problem is the same in color receivers as in black and white, horizontal retrace presents additional problems in color receivers.

In receivers using dc restorers, such as the CBS 205, the presence of a burst at the demodulator will produce a recovered square wave not unlike a secondary horizontal sync pulse. Should this pulse exceed the horizontal sync pulse in amplitude (and the FCC specifications allow this to happen) the restoration action on the blue gun will be in error because the restorer sets up at the recovered burst amplitude instead of the horizontal sync pulse amplitude. The consequence of this action is that the picture will appear too blue. The reason that the blue color is affected more than red and green during this sequence of events is that the burst phase is recovered at greater amplitude along the B-Y axis as compared to any other axis. This is overcome by removing the burst from the chroma signal prior to demodulation. This removal is effected by adding a horizontal blanking pulse to the chroma amplifier.

In direct coupled systems which do not require dc restorers, and where horizontal retrace blanking is not employed, the burst is recovered as a strip of color information in the demodulator section, and will show up as a faint yellow strip occupying about 35% of the raster to the left of center. On bright scenes this coloration is effectively masked; however, on dark scenes it becomes faintly perceptible.

Horizontal blanking may be performed either by the addition of a blanking pulse to the screen grid of the video amplifier or to the screen grids of the picture tube.

In the circuit used in Fig. 2 horizontal blanking is effected by applying a horizontal pulse to the screen grids of the picture tube. No vertical blanking is used because a resistive matrix applying both horizontal and vertical blanking pulses to the picture tube screens results in a seepage of horizontal information into the vertical sweep system, which in turn produces poor interface.

In Fig. 3 vertical retrace blanking is performed by feeding a positive pulse from the vertical output transformer to the CRT cathodes, thus biasing the picture tube beyond cutoff during the vertical retrace time.

Horizontal retrace blanking is obtained by feeding horizontal pulses into the chroma channel for this purpose. A more detailed explanation of this circuit will appear in a subsequent circuit analysis of this section.

In Fig. 4 horizontal blanking is accomplished by connecting the screen grid of the second video amplifier to the output of a blanking amplifier. The latter provides a high negative horizontal pulse derived from a tap on the horizontal output transformer. This high negative pulse cuts off the tube, causing the CRT cathodes to go positive enough to produce picture tube cutoff. Vertical retrace blanking is effected by feeding a positive vertical pulse from the vertical output circuit to the CRT cathodes.

Delay Line Circuits

One of the interesting aspects of video amplifiers in color TV receivers is the manner in which a delay line is connected into the circuit. As first glance it might seem that this component is merely connected into the luminance signal path (as shown in Figs. 2, 3 and 4) with no regard to the impedance characteristics of the input and output circuits. This is not so, for the delay line is essentially a transmission line, and as such, its impedance characteristics, as well as the source and load impedances to which it is connected, must ideally be taken into consideration if line reflections are to be avoided.

As a practical consideration some receivers (CBS 205) have been built using a proper termination only at the load end. Terminating in this manner prevents reflections from the load end and obviously there can be no subsequent

[Continued on page 47]
Mfr. Philco  Chassis No. TV-440, 444
Card No. PH 440-1
Section Affected: Pix
Symptoms: Range of lock-in action of horizontal hold control is too small and thus requires more or less critical adjustments.
Reason For Change: Circuit improvement.
What To Do:
Change: Resistor R35 (39K) across the horizontal hold control to 82K.

Mfr. Philco  Chassis No. TV-440, 444
Card No. PH 440-2
Section Affected: Pix
Symptoms: Range of contrast control is too small requiring too exact an adjustment.
Reason For Change: To improve circuit operation.
What To Do:
Remove: Resistor R8, 2200 ohms.
Change: Contrast from 5000 ohms to 1500 ohms. (Philco Pt. No. 33-5572-31).

Mfr. Philco  Chassis No. TV-440, 444
Card No. PH 440-3
Section Affected: Raster and picture
Symptoms: When picture information is removed by station or channels are changed a motorboating takes place. The picture sometimes loses horizontal and vertical sync.
Reason For Change: Circuit improvement. The changes are incorporated to produce a more stable in-sync raster by altering age filtering time constants.
What To Do:
Change: C307 from .01 µf, to .006 µf, 400 volts, C304 from .1 µf to .15 µf, 200 volts.
Mfr. Philco  
Chassis No. TV-440, 444  
Card No. PH 440-4  
Section Affected: Pix  
Symptoms: Beat patterns and interference in picture in areas where 40 mc police or doctor call transmitter interference is present.  
Reason For Change: Circuit improvement.  
What To Do:  
Install: Tunable vhf antenna trap, Philco Pt. No. 420-0015. Solder the trap to the high voltage cage using the mounting tabs provided.  
Note: The traps are pre-tuned to 42.5 mc. Tune the trap if necessary to obtain minimum interference while the interfering signals are being experienced. It is suggested that a plastic tuning tool be employed.

Mfr. Philco  
Chassis No. TV-440, 444  
Card No. PH 440-5  
Section Affected: Pix  
Symptoms: A broad overshoot in picture on Channel 2, 3 or 4. To reduce the overshoot it is possible to tune the picture into the smear condition, but this produces a lack of sharp detail.  
Cause: Improper impedance match between tuner and antenna.  
What To Do:  
1. If the condition is moderate reduce the length of lead-in from the antenna to the set by an ¾ of a wave length of the channel most affected. Removal of an additional ¾ of wave-length may provide further improvement, allowing the receiver to tune smoothly to a point where no overshoot is present.  
2. In extreme cases, to improve the match between the antenna and the tuner install a 1000 ohm resistor across the low channel coils. Remove the tuner cover and wire the 1000 ohm resistor across C21, the 27 µµf low band matching capacitor.  
Note: Be sure to use short leads in wiring the resistor across the condenser.

Mfr. Philco  
Chassis No. TV-440, 444  
Card No. PH 440-6  
Section Affected: Pix and raster  
Symptoms: No high voltage, no picture or raster, boost voltage is not normal. There is usually repeated failures of 6AX4GT damper tube.  
Cause: 6AX4 damper tube breaks down (shorts internally).  
What To Do:  
Change: Damper tube from a 6AX4 tube to a 6AU4/GT for more reliable operation and less frequent tube failures.
WHEN PERFORMANCE IS AFFECTED BY LOW VOLTAGE CONDITIONS

SELL THIS ACME ELECTRIC VOLTAGE ADJUSTOR

TV sets are designed to operate best when voltage holds closely to 115-117 volts. Overloaded supply lines (the power industry's greatest problem) may result in a voltage drop of 10 to 15% at certain times of day. Usually the TV set will function in a fashion under such low voltage conditions but with a great strain on its components. For example; narrowing of picture, output stage tube life shortened, frequent burn-out of filaments, fuzzy focus have been traced to lack of proper voltage.

These conditions can be corrected with an Acme Electric T-8394M Voltage Adjustor. Simply plug-in to convenient outlet. Plug-in television set cord into female receptacle built into adjustor. Voltmeter indicates output voltage. If voltage is incorrect turn regulating control until proper voltage is reached for best performance. Voltage range 95 to 125 volts. Tell your supply dealer you want the Acme Electric T-8394M. No other so compact, practical, inexpensive.

ACME ELECTRIC CORPORATION
4610 WATER ST. CUBA, NEW YORK

Video Speed Servicing Systems & DATA SHEETS

Mfr. GE Chassis No. 21C130—"O" Line
Card No. GEO-1
Section Affected: Pix
Symptoms: Horizontal jitter.
Cause: Defective component.
What To Do:
Replace: C257 (.1 µf) which is open.

Mfr. GE Chassis No. 21C130—"O" Line
Card No. GEO-2
Section Affected: Raster
Symptom: Excessive height.
Cause: Defective component.
What To Do:
Replace: R206 (5.6 meg.) which has decreased in value.

Mfr. GE Chassis No. 21C130—"O" Line
Card No. GEO-3
Section Affected: Pix and sound.
Symptoms: Pix and sound flutter.
Cause: Defective component.
What To Do:
Replace: C213 (.5 µf) which is open.
Mfr. GE  Chassis No. 21C130—"O" Line
Card No. GEO-4
Section Affected: Pix
Symptom: Wiggles in background.
Cause: Defective component.
What To Do:
Replace: R162 (3.3K) which has decreased in value.

Mfr. GE  Chassis No. 21C130—"O" Line
Card No. GEO-5
Section Affected: Sync
Symptom: Weak composite sync.
Cause: Defective component.
What To Do:
Replace: C167 (.15 µf) which is leaky.

Mfr. GE  Chassis No. 21C130—"O" Line
Card No. GEO-6
Section Affected: Pix
Symptom: Picture tearing.
Cause: Defective component.
What To Do:
Replace: R167 (120K) increased in value.
Luminance Sections
[from page 42]

reflections from the incorrectly terminated receiving end.
An analysis of the impedance elements connected to the input and output terminals of a delay line will reveal that these input and output load components are generally selected to provide an impedance match to the voltage sources and input circuits to which they are connected. The delay line must then have a characteristic impedance equal to these input and output loads. Failure to adhere to these conditions will result in a waste of available signal strength, and unstable circuit operation due to reflections.

It is for the above reasons that various components are seen connected in color video amplifiers that are not otherwise seen in black and white video systems. The typical impedance range of delay lines commonly used in TV sets today is between 1500 and 4100 ohms. Although the higher impedance lines make for greater gain characteristics they are more difficult to make and harder to compensate for the bandwidths required (approximately 3.5 mc).

In Fig. 3, the input load to the delay line is shown as R403 (1.5K), and the output load as R405 (1.8K) in parallel with R182 (4.7K), the combination of which is equal to 1.3K ohms. In Fig. 4 the input load is shown as R127 (1.2K), and the output load is the contrast control, R134 (2K).

In Figs. 3 and 4, low impedance lines are used and the resultant lower gain realized necessitate the use of a 2 stage amplifier.

The need for an additional stage of video amplification is overcome by the insertion of a high Z delay line (4.1K) in the detector circuit as shown in Fig. 2. Here the detector impedance matches the source requirements of the line, and the terminating line resistance becomes the effective detector load. In this manner, insertion of a delay line into the video system introduces negligible loss of the Y signal. Thus, systems using this design can employ a single video amplifier to adequately drive the picture tube. [To Be Continued]
Webster's Dictionary defines the word *Forum* as follows: "An assembly for the discussion of public matters or current questions." Well, between January and March of this year I held Forums with servicemen's groups in all parts of the country.

Many subjects were covered, such as: Licensing (pro and con); the benefits accruing to Servicemen's Association members; what retaliatory action, if any, can servicemen take against, 1) Distributors who sell at retail, or 2) Distributors who operate service departments in open competition with servicemen; should tubes be tested free?; should repair estimates on TV sets be given free?; how radio-TV service firms can expand operations by getting industrial electronic and commercial communications service contracts; how servicemen can increase their prestige and income by using the proper business forms; why servicemen must use the newest pricing lists and digests available, etc.

Discussions on all subjects and especially this last-mentioned subject were always spirited and brought to light the fact that servicemen themselves believe much public resentment against radio-TV servicemen as a group stems from the fact that so many of them either employ unorthodox pricing systems or they do not use any type of itemized bills. Many do not use price-determining references, or proper business management methods, all of which are available from several sources at very nominal cost.

Yes, the discussions sharply brought to light the astounding fact that many times servicemen unwittingly "gyp" themselves, and sometimes their customers, because they do not properly price items they sell.

**Don't Gyp Yourself or Customers.**

What do I mean when I say “servicemen sometimes gyp themselves or their customers unwittingly when they fail to use pricing lists?” Well, glance at Fig. 1 for a typical example. Tube type 6A7, although not one of the most popular tubes currently in use, is produced by eight tube manufacturers. Of the eight such manufacturers listed in Dave Rice's "Official Pricing Index," six list the 6A7 at $3.05, one list prices it at $2.90 and the other at $3.00. In like manner the

**Fig. 1—Page from "Official Pricing Index."**
list prices of tube type 6BA7 vary considerably. One of the eight brands has a list of $2.60, one lists at $2.80, two list it at $2.90 and four list price it at $2.95.

It is quite possible and very probable that a serviceman will have several different brands of tubes in his caddy—and should he happen to use the brand of 6BA7 that lists at $2.60 and charge $2.95 for it, he is in effect overcharging the customer by $3.5. By the same token, if he uses one of the 6BA7 brands that lists at $2.95 and charges the customer only $2.60, then he is gypping himself. When customers are overcharged, even unwittingly, grave consequences can result and the serviceman will probably be labeled a "gyp." When servicemen underecharge because they rely on memory or do not refer to accurate price tables, they lose profits they should not lose.

All tube makers list price their 6SJ7 tubes at $2.25, but not so 6SJ7GTs. Six of them list the latter type at $2.15 while two list it at $2.25. The 6SJ7 and 6SJ7GT types, so similarly numbered, can easily confuse a serviceman and get him "in dutch" with a customer who is overcharged because the serviceman carelessly relied on memory and charged $2.25 when using a brand and type which actually lists at $2.15.

Refer to Rice's "Official Pricing Index" and you'll

The Best Thing About the "Cure-all"

...was the Professor's pitch!

Yes, sir, the old time medicine showman sure made some high, wide and handsome claims about his particular brand of "cure-all". Trouble was, his elixir's performance rarely matched his claims. That didn't matter to the Professor, though, he'd made his pitch and was miles away by the time the customer found he needed a specialist. Now, today, most of us try to keep our customers happy—keep them coming back. And most of us realize that today's "cure-all" claims are just as hard to swallow as the old timer's snake oil . . . nobody really profits from a "cure-all" substitute except the "Professor"! It stands to reason that when a phonograph manufacturer, for instance, puts a pickup cartridge into his product, it's because that particular cartridge is best for the job. No substitute is exactly the same. So, for highest performance, for full profit markup, for complete customer satisfaction, don't rely on "cure-all" substitutes! Always replace with Astatic original and direct replacement cartridges.

ASTATIC IS THE WORLD'S ONLY COMPLETE LINE OF PICKUP CARTRIDGES!

Leader with Originals, First with Replacements.

NEW! Ask your distributor for the latest Astatic Cartridge Cross Reference and Needle Listing CRC-56.

Manufacturers, Distributors and Users of Electronic Equipment

Thousand of financially sound, qualified electronic servicemen and service organizations are desirous of affiliating themselves with manufacturers as official service depots or service representatives. If you are interested in employing the services of these capable experienced technicians on a permanent or contract basis, please advise us of your needs and requirements, and we will forward you the names and addresses of such individuals and organizations in any area you specify.

This is a free service of Service Dealer and Electronic Servicing.

Service Dealer and Electronic Servicing
COWAN PUBLISHING CORP.
67 W. 44 ST., DEPT. S, N.Y. 36, N.Y.

*ANOTHER COWAN PUBLISHING SERVICE
AUTO RADIOS—PONTIAC

[from page 17]

the correct station is not tuned accurately, readjust the selector tab as needed.

Removal of Tuner Section

1. Disconnect the "A" battery and dial light leads from the fuse block located under the steering column. (Current is supplied through a 7 1/2 amp. AGW type fuse.)

2. Remove the antenna lead located on the righthand side.

3. Disconnect the three prong plug from the speaker unit.

4. Disconnect the single filament lead at the plastic connector.

5. With a 7/16" wrench remove the bracket mounting bolt, located at the right side directly above the glove compartment.

6. With an allen wrench, loosen the set screws in the front panel control knobs; remove the knobs and controls.

NOTE: On the De Luxe push button tuner jobs, the dummy knob (right side behind manual tuner) is threaded and screws on the control.

7. With a 7/8" deep socket remove the two mounting nuts.

8. Open the glove compartment door and remove the front mounting panel.

9. With a 7/16" wrench remove the two front mounting bolts (see Fig. 4).

Service Hints

Complaints of excess fading, or decrease of volume when the antenna is held have been traced to broken wires or radio reception; up to 100% gain over standard 54" antenna fully extended. Beautiful design, chrome finish. Short height avoids damage.

Removal of Speaker Amplifier Section

1. Remove the two phillips head screws in the lower edge of the instrument panel.

2. Remove the single phillips head screw in the left side near the glove compartment.

3. Push unit forward and out through the front (see Fig. 5).

New Profit Maker...

Electenna

AUTO RADIO REPLACEMENT ANTENNA

Here's sales potential! Millions of car owners will welcome new Electenna...first and only replacement antenna that installs fast, using present mounting and wiring. Boosts radio reception. Up to 100% gain over standard 54" antenna fully extended. Beautiful design, chrome finish. Short height avoids damage.

Retail profitably for you at.......

$5.95

Coiletenna


Dealers! Jobbers! Write today!

Another Quality Product of

Electrend PRODUCTS CORPORATION


1. The names and addresses of the publisher, editor and business manager are: Publisher, Sanford R. Cowan, 6 Embassy Court, Great Neck, N. Y. Editor, Samuel L. Marshall, 262 Sullivan Place, Brooklyn 2, N. Y.; Managing Editor: None; Business Manager, Sanford R. Cowan, 6 Embassy Court, Great Neck, N. Y.

2. The owner is: (if owned by a corporation, its name and address must be stated and also immediately thereunder the names and addresses of stockholders owning or holding 1 percent or more of total amount of stock if no; owned by a corporation, the names and addresses of the individual owners must be stated. If owned by a partnership or other unincorporated firm, its name and address, as well as that of each individual member, must be given.) COWAN PUBLISHING CORP., 61 West 44th Street, New York 36, N. Y.; Sanford R. Cowan, 6 Embassy Court, Great Neck, N. Y.

3. The known bondholders, mortgagees, and other security holders owning or holding 1 percent or more of total amount of bonds, mortgages, or other securities are: None.

4. Paragraphs 2 and 3 include, in cases where the stockholder or security holder appears upon the books of the company as trustee or in any other fiduciary relation, the name of the person or corporation for whom such trust is held. Also the statements in the two paragraphs show the affiant's full knowledge and belief as to the circumstances and conditions under which stockholders and security holders who do not appear upon the books of the company as trustees, hold stock and securities in a capacity other than that of a bona fide owner.

(Signed) S. R. COWAN, Publisher

Sworn to and subscribed before me, this 18th day of September, 1956.

EMANUEL M. VIRSHUI, Notary Public

TOP QUALITY PARTS

FOR RADIO AND T.V. SERVICEMEN

SELENIUM RECTIFIERS

300 M.A.—$1.00 ea. 500 M.A.—1.19 ea.

FILTER CONDENSERS

RADIO PACKS:

40-20-20 MFD-150V, 100-25V $2.49

50-30-30 MFD-150V, 200-25V $2.99

40-40-40 MFD-150V, 300-25V $2.99

T. V. PACKS:

250 MFD-150V, 50 MFD-150V $2.49

250 MFD-150V, 50 MFD-150V, 100-25V $3.49

140 MFD-300V, 40 MFD-300V, 100-50V $3.99

140 MFD-300V, 5 MFD-300V, 300-50V $3.99

SERVICEMAN'S SPECIALS

50 ea. Carbon, 1/4 & 1 watt resistors $1.49

12 ea. W.W. resistors, 5 to 15 W. $1.49

10 ea. assorted caps $1.49

25 ea. Assorted Condensers $4.99

TUBE SPECIALS

6AC7—.65 | 6317—.55 | 6EC7—.89

6AK7—.69 | 6457—.49 | 6160—.29

6SN7—.69 | 12SN7—.39 | 6517—.69

24AF4—.98 | 516W—.64 | 6AF4—.98

4" P.M. SPEAKER $1.99

10" P.M. HEAVY PLUG, INDIVIDUAL $2.49

SLUG, INDIVIDUAL $2.59

No order too small. Merchandise shipped within 24 hours of receipt of order. 25% deposit required with order. F.O.B. Brooklyn.

FEDERATED TELEVISION
MART, INCORPORATED
513 Rogers Ave., Dept. R, Brooklyn 23, N. Y.

Anchor V-500-VTVM!

• Simpler to operate
• Easier to maintain
• No battery

Sandy Says!
Be Modern with an Anchor

Latest type tubes and circuitry, simple control selects range and function. Has 4 1/2" full view meter, separate 3 volt AC scale, zero centering for TV and FM equipment. DB scale and burnout proof mesh circuit, housed in durable carrying case. Completely tested and warranted.

only $47.50 net

AT YOUR DISTRIBUTOR

Anchor products co. ELECTRONIC COMPONENTS
2712 W. Montrose • Chicago 18, Ill.
Marine Electronics

[Continued from page 41]

...many of these transmitters would modulate upward on one channel, and downward on the next, and there wasn't much that could be done about it.

Since then, transmitters have all become more or less respectable. Among the refinements are that separate oscillator and rf amplifier tubes are used in the transmitter, and antenna-tuning and coupling circuits are separate from the rf amplifier plate tuning circuit. Negative modulation peaks are limited by one means or another, harmonic radiation is reduced to a level comparable to that for other services, and audio band width has been drawn into the limits necessary for voice transmission. However, there is still a tendency toward impressing microphone voltage directly on the modulator tubes, with speech amplifiers being used only in more elaborate sets.

While the receiver design in modern inexpensive radiotelephones is basically the same as that originally used, except for new miniature tubes, more efficient if transformers, printed circuits, and compact components, the larger outfits have several improvements. Such improvements are squelch circuits, which mute the speaker thus cutting out noise between reception periods; and noise

Fig. 3—Ray Jefferson Model 460

Aermotor Towers have proven their excellence in thousands of installations... installations exposed to the most severe weather and wind loading conditions.

Aermotor steel antenna towers are self supporting... require no cumbersome guy wires. Each part is heavily galvanized after fabrication to insure complete protection from exposure.

Towers are shipped knocked down in convenient bundles; well designed parts make section-by-section assembly easy.

Aermotor 3-post antenna towers are available in heights of 33, 47, 60, 73, 87 and 100 feet.

Write for additional information about the Aermotor Towers and a dealer franchise in your territory.

Since 1888, Manufacturers of Quality Built Towers

Aermotor Company

2500 W. Roosevelt Rd.—Chicago 8, Illinois U.S.A. Dept. 32110

Digital Oscilloscope Kit for Color TV

1. Check the outstanding engineering design of this modern printed circuit scope. Designed for color TV work, ideal for critical laboratory applications. Frequency response essentially flat from 5 cycles to 5 Mc down only 1-1/2 db at 5-38 Mc (TV color burst sync frequencies). Down only 5 db at 5 Mc. New sweep generator 20-500,000 cycles, 5 times the range usually offered. Will sync wave form display up to 5 Mc and better. Printed circuit boards stabilize performance specifications and cut assembly time in half. Formerly available only in costly Lab type scope. Features horizontal trace expansion for observation of pulse detail—traceblanking amplifier—voltage regulated power supply—3 step frequency compensated vertical input—low capacity nylon bushings on panel terminals—plus a host of other fine features. Combines peak performance and fine engineering features with low kit cost!

Heathkit TV Sweep Generator Kit

Electronic Sweep System

2. A new Heathkit sweep generator covering all frequencies encountered in TV service work. (color or monochrome). FM frequencies 19-60 Mc, 220 Mc on fundamentals, harmonics up to 880 Mc. Smoothly controllable all-electronic sweep system. Nothing mechanical to wear or tear out. Crystal controlled 4-5 Mc fixed marker and separate variable marker 19-60 Mc on fundamentals and 37-180 Mc on calibrated harmonics. Plug-in crystal included. Blanking and phasing controls—automatic constant amplitude output circuit—efficient attenuation—minimum RF output well over 1 volt—vastly improved linearity. Easily your best buy in sweep generators.

Aermotor Towers have proven their excellence in thousands of installations... installations exposed to the most severe weather and wind loading conditions.

Aermotor steel antenna towers are self supporting... require no cumbersome guy wires. Each part is heavily galvanized after fabrication to insure complete protection from exposure.

Towers are shipped knocked down in convenient bundles; well designed parts make section-by-section assembly easy.

Aermotor 3-post antenna towers are available in heights of 33, 47, 60, 73, 87 and 100 feet.

Write for additional information about the Aermotor Towers and a dealer franchise in your territory.

Since 1888, Manufacturers of Quality Built Towers

Aermotor Company

2500 W. Roosevelt Rd.—Chicago 8, Illinois U.S.A. Dept. 32110

Digital Oscilloscope Kit for Color TV

1. Check the outstanding engineering design of this modern printed circuit scope. Designed for color TV work, ideal for critical laboratory applications. Frequency response essentially flat from 5 cycles to 5 Mc down only 1-1/2 db at 5-38 Mc (TV color burst sync frequencies). Down only 5 db at 5 Mc. New sweep generator 20-500,000 cycles, 5 times the range usually offered. Will sync wave form display up to 5 Mc and better. Printed circuit boards stabilize performance specifications and cut assembly time in half. Formerly available only in costly Lab type scope. Features horizontal trace expansion for observation of pulse detail—traceblanking amplifier—voltage regulated power supply—3 step frequency compensated vertical input—low capacity nylon bushings on panel terminals—plus a host of other fine features. Combines peak performance and fine engineering features with low kit cost!

Heathkit TV Sweep Generator Kit

Electronic Sweep System

2. A new Heathkit sweep generator covering all frequencies encountered in TV service work. (color or monochrome). FM frequencies 19-60 Mc, 220 Mc on fundamentals, harmonics up to 880 Mc. Smoothly controllable all-electronic sweep system. Nothing mechanical to wear or tear out. Crystal controlled 4-5 Mc fixed marker and separate variable marker 19-60 Mc on fundamentals and 37-180 Mc on calibrated harmonics. Plug-in crystal included. Blanking and phasing controls—automatic constant amplitude output circuit—efficient attenuation—minimum RF output well over 1 volt—vastly improved linearity. Easily your best buy in sweep generators.
see scores of instances where components of similar characteristics produced by different manufacturers list at prices which vary greatly. For example, one leading capacitor manufacturer has a list price of $8.85 (while a competitor has a list of $.90) for a 3V. 25 uf miniature metal capacitor and a still different manufacturer lists his unit, with the same ratings, at only $.25. Strangely enough all three of these capacitor manufacturers list price their 6V. 5 uf capacitors at $.90. You figure it out! A serviceman must constantly refer to a current, reliable pricing source if he wants to operate on a proper and businesslike basis. It could happen that, failing to refer to a pricing guide, a serviceman might charge $25 for a capacitor that actually cost him over $4.00—and such a careless serviceman won't be able to stay in business long.

Despite what the politicians say, prices of most commodities have been rising constantly. In other words, every serviceman's operating costs have been going up and up. It is incumbent upon all businessmen and particularly radio-TV servicemen who work on a nominal margin to realize this and they must take advantage of it when possible. Here's an example of what I mean. According to Dave Rice's "Official Pricing Index" Vol. 1 No. 2, issued in January of this year the five picture tube manufacturers who make them had a list price of $44.75 for type 16AP4A CRT's. However, the July 1956 issue of "Official Pricing Index," Vol. 1 No. 4 shows that while two manufacturers still list the 16AP4A at $44.75 two others now list it at $46.40 and the fifth manufacturer now list prices at $46.72. When Rice's next issue is released in October, other price changes like this will undoubtedly be recorded.

I checked with Dave Rice about his "Official Pricing Digest" and concur with his theories about it. To begin with, the "Digests" are published four times a year, January, April, July and October. They have a list price of $2.50 but a great many parts distributors buy them in large lots and gladly give them away free to their regular servicemen customers for several reasons. For example, "Digests" save the distributors much time answering servicemen's queries regarding new list prices of items. And distributors realize that it helps them when their servicemen customers charge the right prices. As for servicemen themselves, I personally feel that even if they have to buy a copy of the Pricing Index for the nominal sum involved they will get that investment back many times by making certain that they can quickly price any item, that they will neither gyp themselves, nor will they improperly charge their customers. In fact, when itemizing a bill for a customer, it's wise to refer to the index and thus show the customer that you did not guess at the prices you charged.
MARINE ELECTRONICS
[from page 51]
limiting circuits, which remove sharp peaks of interference, such as those from static and engine ignition.

The relatively costly handset has been done away with in all but the luxury models, in favor of a hand microphone, with reception over the loudspeaker, which is just as practical and a great deal less expensive.

When I looked inside my first marine radiotelephone, I was very much disturbed at seeing rf leads, especially in

the transmitter circuits, cabled together as if they were dc circuits. Look inside many radiotelephones built this year, and you will still see rf leads cabled as if they were carrying filament current. I suppose it is all right, as long as the insulation is good, for practices such as this to continue. Actually, loaded rf circuits are low Q, and using cabled wires and other distributed capacitances as part of the circuit reactance is permissible, if the insulation is not too muddy. Marine radiotelephones have not changed a great deal since their inception, but I'm happy to state that in the past few years things have taken a turn for the better.
COMPATIBLE CRYSTAL CALIBRATOR
[from page 7]

range Pierce type oscillator requiring no adjustment for crystals having fundamentals over the range of 100 ke to 20 mc. The cathode coil and condenser L101 and C101 form a resonant circuit to extend the range of the oscillator to the low frequencies. The oscillator V101A is isolated from the output by a cathode follower V101B. The crystal CR101 serves as the harmonic generator, modulator and signal mixer in the output. Y101 is the precision color carrier crystal which is calibrated to its high degree of accuracy by the ceramic trimmer across it. This is adjusted at the factory. A selenium rectifier and isolation transformer are used with a long time constant RC filter to provide a hum-free power supply. Test jacks J101 and J102 permit the use of a 0 to 100 microampere meter or multimeter to read oscillator grid current, providing an activity test for checking and comparing quartz crystals.

Use of the Crystal Calibrator

The front panel accessibility of the crystal sockets in conjunction with the crystal selector switch gives the instrument universal applications in both the service shop and the laboratory. When a 4.5 mc crystal is used in a front panel socket the instrument may be used for troubleshooting and alignment of intercarrier sound I.F. amplifiers, sound I.F. discriminators, 4.5 mc trap alignment and sideband marking for alignment sweep curves. It can be used with appropriate crystals as a frequency standard or band limit marker since the accuracy with a good crystal is better than that of the average frequency meter.

In color television the 3.579545 mc standard is useful not only in servicing but also in laboratory work, television transmitter testing and community antenna systems testing for color operation.

Figure 5 shows the hookup used with a color TV receiver to check and align the frequency of the 3.579545 mc reference oscillator. The slanting lines of color appear when the 3.58 MC reference oscillator is not on the correct frequency. These lines are analogous to the ones seen on the screen when the horizontal oscillator is not synchronized.

In like manner, if we count the number of slanting lines of color multiply by 60 (the vertical sweep frequency) we have the amount by which the oscillator is off frequency. Also, as we adjust the color hold or reference oscillator frequency, counting the number of lines on the screen when the phase detector circuit starts to pull the oscillator in to synchronization will give the "pull-in" range of the circuit, thus determining whether the phase detector circuit is operating properly. For example, if pull-in starts at 10 lines this shows that the pull-in range of the color phase detector circuit is 10 x 60 or 600 cycles.

Another possibility in the servicing of color receivers is that the color circuits will not function and no color can be produced because the 3.58 mc reference oscillator will not operate. In this case, the Model 120 can be used to substitute for the reference oscillator to determine the exact nature of the trouble. This is a form of troubleshooting by signal substitution.

The entire burst and chroma chain can be tested by signal tracing the 3.58 mc signal produced by the Model 120. The signal from the Model 120 is fed to the video detector test point of the color receiver, ahead of the color take-off points. Then a broad band scope is used to trace the 3.58 mc signal through the chroma circuits to the chroma detectors, or through the burst gate (equivalent to a sync separator), burst amplifiers, etc, up to the color phase detector circuit. The defective stage would be located when the oscilloscope tracing reaches a point in the sync or chroma chain beyond which the signal cannot pass or is excessively low.
The printed circuit boards shown below are viewed from the component side of board. The shaded area represents the printed wiring. Components mounted on the board and other connections are shown in black.
Bottom View of Printed Board Showing Top Components Symbolically
### SERVICE DEALER & ELECTRONIC SERVICING

#### Manufacturer's Schematics

#### 3. SERVICE DEALER & ELECTRONIC SERVICING

<table>
<thead>
<tr>
<th>Ref. No.</th>
<th>Part No.</th>
<th>Description</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>C107</td>
<td>21V1340264</td>
<td>Capacitor, 100 mfd 500V</td>
<td>Capacitor</td>
</tr>
<tr>
<td>C105</td>
<td>21V1340260</td>
<td>Capacitor, 100 mfd 300V</td>
<td>Capacitor</td>
</tr>
<tr>
<td>C106</td>
<td>21V1340260</td>
<td>Capacitor, 100 mfd 300V</td>
<td>Capacitor</td>
</tr>
<tr>
<td>C107k</td>
<td>21V1340260</td>
<td>Capacitor, 100 mfd 300V</td>
<td>Capacitor</td>
</tr>
<tr>
<td>C400</td>
<td>21V1340260</td>
<td>Capacitor, 100 mfd 300V</td>
<td>Capacitor</td>
</tr>
<tr>
<td>C450</td>
<td>21V1340260</td>
<td>Capacitor, 100 mfd 300V</td>
<td>Capacitor</td>
</tr>
<tr>
<td>C451</td>
<td>21V1340260</td>
<td>Capacitor, 100 mfd 300V</td>
<td>Capacitor</td>
</tr>
<tr>
<td>C452</td>
<td>21V1340260</td>
<td>Capacitor, 100 mfd 300V</td>
<td>Capacitor</td>
</tr>
</tbody>
</table>

### TV CHASSIS

<table>
<thead>
<tr>
<th>Ref. No.</th>
<th>Part No.</th>
<th>Description</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>R120</td>
<td>12T709-1</td>
<td>Control, 500 turns, 1/4 W.</td>
<td>Control, 500 turns, 1/4 W.</td>
</tr>
<tr>
<td>R121</td>
<td>12T709-2</td>
<td>Control, 500 turns, 1/4 W.</td>
<td>Control, 500 turns, 1/4 W.</td>
</tr>
<tr>
<td>R122</td>
<td>12T709-3</td>
<td>Control, 500 turns, 1/4 W.</td>
<td>Control, 500 turns, 1/4 W.</td>
</tr>
<tr>
<td>R123</td>
<td>12T709-4</td>
<td>Control, 500 turns, 1/4 W.</td>
<td>Control, 500 turns, 1/4 W.</td>
</tr>
<tr>
<td>R124</td>
<td>12T709-5</td>
<td>Control, 500 turns, 1/4 W.</td>
<td>Control, 500 turns, 1/4 W.</td>
</tr>
<tr>
<td>R125</td>
<td>12T709-6</td>
<td>Control, 500 turns, 1/4 W.</td>
<td>Control, 500 turns, 1/4 W.</td>
</tr>
<tr>
<td>R126</td>
<td>12T709-7</td>
<td>Control, 500 turns, 1/4 W.</td>
<td>Control, 500 turns, 1/4 W.</td>
</tr>
<tr>
<td>R127</td>
<td>12T709-8</td>
<td>Control, 500 turns, 1/4 W.</td>
<td>Control, 500 turns, 1/4 W.</td>
</tr>
<tr>
<td>R128</td>
<td>12T709-9</td>
<td>Control, 500 turns, 1/4 W.</td>
<td>Control, 500 turns, 1/4 W.</td>
</tr>
</tbody>
</table>

### SECTION 2 SOUND + F AND AUDIO

**Sweep Board**

- **Bottom Terminal**
- **Top Terminal**
- **IF Terminal**

### SECTION 3 VIDEO

**Video Out**

### SECTION 4 SWEEP

**Remote Chassis Only**

- **V-2346, V-2347, V-2354, V-2355, V-2356, V-2357**

---

**WESTINGHOUSE**

---

**Rider, Publisher.**
If it's worth the cost of installation...

...it's worth the cost of engineered cable

Belden
TRANSMISSION LINES
• ROTOR CABLES
Superior Cables engineered for the job—
In a complete line for every requirement.
Packaged for easy handling.
"More items from the Complete Belden Line"
Win bigger picture-tube profits

Join the RCA Silverama CRUSADE FOR PROFITS

The top picture-tube line on the market ... Compelling national advertising ... The most forceful promotional material in picture-tube history ... These join forces now to spearhead your CRUSADE FOR PROFITS in RCA's newest selling campaign for Silverama Super-Aluminized Picture Tubes.

RCA paves the way with a barrage of national advertising in Life, TV Guide, the Saturday Evening Post, and on the N.B.C. TV and Radio Networks.

And, to help you cash-in on this CRUSADE FOR PROFITS, your RCA Distributor is ready now with a winning array of RCA Silverama sales promotion material—window displays, decals, streamers, local spot commercials by Vaughn Monroe, direct-mailers, and consumer give-away items.

So, join the Crusade now. There's a selling-season of profits waiting to be won over by you. See your RCA Distributor immediately.