

Increase Your

EARNING POWER!

Wide Range of Courses Now Available

Enlarge your present technical background. Increase your value to your employer and to yourself by taking one of these new courses now!

RADIO TECHNOLOGY

 ELECTRICAL TECINOLOGY COMNIERCIAL RADIO OPERATING ADVANCED RADIO ENGINEERING APPLIED RADIO AND ELECTRONICS REFRIGERATION AND PRINCIPLES OF AIR CONDITIONINGA convenient and proven home study plan is available on the above courses in addition to day classes for those wio are able to attend. All courses, with the exception of Conimercial Radio Operating which leads to the Dominion Government Certificate as issued by the Department of Transport, lead to the College diploma. For additional information write for our free 50 page booklet.

This Institution is registered as a trade school under the Trade-School Regulation Act 1938 (Ontario), by the various provinces across the Dominion and by the Department of Transport, Ottawa.
The illustrations show how this Institution provides seientific instruction in modern classrooms with latest equipment: (1) One of the most modern code instruction rooms on the Continent. The elaborate control panel makes it possible to provide operating conditions similar to those students will encounter after graduation. (2) A close-up of student in transmitting laboratory showing how personal instruction is given. (3) RCこ students learn to clear faults and to take bearings on modern direction finding equipment. (4) Fault analysis with modern equipment. 15) Exterior of Model Service Shop at Radio College. (6) Student alignirij a receiver in RCC laboratory.

RADIO COLLEGE OF CANADA

IDivision of Northern Institute of Technology
54 Bloor St. WKest
Recomplerd by the entire redles indlustry as " comstant source of tamined techmical prisommel

Radio College of Canada Individual Circuit Service

Canadian Receivers Now Considered Obsolete 1927-1930

Fifty Cents Per Copy

A.C. DAYTON

CANADIAN GENERAL ELECTRIC
FADA

Radio College of Canada Circuit Manual

Index of 1930-33 Series

Radio College of Canạda Circuit Manual Index of 1933-34 Series

FADA

Chassis Model Data Sheet No.
NA ...

RW ... 15
MAJESTIC

Chassis Model	Data Sheet No.
66	13
371	12
403	12
460	12, 13
465	12
470	12
475	. 12
563	13
MARCONI	
Chassis Model	Data Sheet No.
40	.. 17
41 AW	18

910, 911, 912, 915, 916 16
918 17
14
$935,955,965$ 15
Chassis Model 33C 16
17
270 18
333
$475 \mathrm{~A}, 575,575 \mathrm{~B}$ 19

708
20

988 (Country House Receiver) ... 19
STEWART-WARNER
Chassis Model Data Sheet No.
Data Sheet No.
King 33 50-5911R 102-D7-104 A-BR 105XR 108B1312
14
109 D
R 109 A-B 15
R 110 A-B 15
16
R 111-CR111 14
CR 112 12
R 119 16
R 301 A-B-E (converter) 10
301-D (converter10
G-81301 (converter) 10
STROMBERG-GARLSON
Chassis Model Data Sheet No
42 13
$48,49,60,51$ 10
64 10
11
VICTOR
Chassis Model Data Sheet No
29 13
R30 13
31 13
33 13
M34 18
R37 19
R49 15
14
R67-68 14
R87-88 14
R101 16
115 13
M-116 19
R.-122 17
140 17, 27
210 13
R. 221 17
R280 15
15
All Wave 17
Portette 19
WESTINGHOUSE
Data Sheet No.Cha
43 A
18
$V 16$
44 A V18
53 15
73 14
83 All Wave 16
83B 15
103 14
103B 17
53317

Radio College of Canada Circuit Manual Index of 1934-35 Series

STEWART-WARNER

Chassis Model	Data Sheet No.
117	19
	18
	20
177	21
178	22
179	23
180	24
181R	25
182R	25
1171R	19
1811-1819	25
Daventry	23

STROMBERG-CARLSON

Chassis Model Data Sheet No.
33A ... 13
60 .. 11
68-69 .. 12
VICTOR
Chassis Model Data Sheet No.
18 ... 20
123-M ... 20
126-B ... 21
128 ... 20a
129 ... 20a
135-B .. 26
141 ... 27
143 ... 26
211 20
222 ... 21
223-B ... 21
224 ... 20a
226 .. 20a
235-13 .. 26
243 .. 26
262 .. 28
281 ... 23
321 ... 22
3.10 ... 27

381 ..24, 25
WESTINGHOUSE
Chassis Model Data Sheet No.
54 ... 20
64 ...20-21
64-B ...?1, V21
74-B ... V26
84 ... 19
104 20a
124 ... V23
155, A, XV87, V38
165, A, X, Y ...V20a
254, A, X ...21, V20
534 ...20, 21
6:34
.. .. 20
634-B
21, V21

Index 1934-35

Radio College of Canada Circuit Manual Index of 1935-36 Series

ANDREA	
Chassis Model	Data Sheet No.
Align. Instru. for A5, A7.............. 3	
CANADIAN GENERAL ELECTRIC	
Chassis Model	Data Sheet No.
A4B ...V29	
A4CB	
43-A ..V36	
44-A	V6
50-M .. V45	
E1-D-................V44	
M-55-A ... 4 45	
63-A ..-V39, V40	
68-A .. V9, V40	
70-A	
82-A ..V43	
A-87-Y ...V43	
${ }_{128-A}^{108-A}$...V30	
148-AV32, V33	
DE FOREST CROSLEY	
Chassis Model	Data Sheet
Buckingham	
Cambridge	RM10
Connaught .. ${ }^{\text {M15 }}$	
Duchess	
Earl ...RM16	
Empire	
Empress .. RM3	
King (5441)	
Knight ...RM15	
Oxford ...RM10	
Realm (5755D) R23	
Wales\qquad RM15RM8	
MAJESTIC	
Chassis Model	Data Sheet No.
AlgonquinRM10	
 RM2
Chippewa ... ${ }^{\text {RM9 }}$	
Huron ... RM9	
Iroquois ... ${ }^{\text {Jacqu }} 15$	
Jolliette ..RM15	
Laurier ... RM7	
Montcalm ${ }^{\text {Normandie } . ~ R M 6 ~}$	
Papineau ...RM15	
MARCONI	
Chassis Model Data Sheet No.$62-63$..	

Index 1935-36 Series

Radio College of Canada Circuit Manual

Index of 1936-37 Series

(:ANADIAN GENERAL ELEGTRIC

Model Data Sheet No.						
E.4B ... 13						
F-4CB 13						
E:-ヶK .. 13						
E.tCK .. 13						
E-5id ... 14						
E-5.5X ... 14						
E-53 ... 15						
E-5f 15						
E-81 .. 15						
E-86 ... 15						
Alignment Data for E-53-56-81-86 .. 15a						
E: 98 .. 16						
E-106 .. 17						
E. 157 ... 17						
Alignment Data for E-106 \& E. 157.. 15a						
N.61 .. 18						
6M2 18						
Alignment Data for N-51 and 6M2.. 18a						
DE FOREST CROSLEY						
Model Data Sheet No.						
Altair—See Rog. Maj. Sheet........... 17						
Curona " " " 17						
Electra " " ، " 18						
Mars " ، " " 18						
Meteor " " " " 18						
Grion " " " ، 18						
Saturn " " " " 18						
Vega " " ، " 17						
Venus						
Alignment Instructions for above						
Neptune See Rog. Maj. Sheet........... 19						
Lyra " " " ، 22						
Comet " " " " 22						
Finyal Star " ، " 23						
Jupiter " " " " 23						
Custom Built " " " 23						
Alignment Instructions for above models on Rogers Maj. Sheet . \qquad 24						
MARCONI						
Model Data Sheet No.						
78 .. 43						
79-79C-80 44						
81-82-83 .. 45						
84 .. 46						
85 ..47, 46						
86-87 .. 48						
88 ... 49						
89-90 ... 50						
93-94 ...51, 51a						
45 .. 52						
F6-97 .. 51, 51a						

MAJESTIC

$-I$ F $=47 \square \mathrm{KC}$.

ALIGNMENT INSTRUCTIDNS

I.F. $=47 \mathrm{BK} . \mathrm{C}$.

"A5"- RECEIVER - (TRIMMERS MARKEO L'ARE

MODEL - A7

- F. ADJUSTTEMTS: Connect signal generator in series with .l mrd. condenser to grid of 6A7 tube. Set generator to $470 \mathrm{~K} . C$. Adjust trimmers on top of first, second and third I.F. transformers.

SHORT "AAVE BA:ID MU": Rotate band selector switch fully to the right. Connect signal generator in series with 400 ohm resistor and attach to receiver antenna lead (RED); receiver ground wire connected to generator ground.

Set generator $20,000 \mathrm{~K} . \mathrm{C}$. and station selector knob to $20 \mathrm{~m} . \mathrm{c}$. Rotate station selector until signal is heard. Align antenna and R.F. shunt trimers, constantly rotating the gang condenser throughout adjus tnents.

Change generator to $10,000 \mathrm{~K} . \mathrm{C}$. and rotate selector knob until signal is heard. Adjust. oscillator series condenser, rotating the gang condenser during adjustment. Recheck at $20 \mathrm{~m} . \mathrm{c}$.

SHORT WAVE "S" BA"D: Set generator at $8 \mathrm{~m} . \mathrm{c}$. and tune receiver to this point. Rotate wavelength selector switch to position marked "S". Align antenna and R.F. trimmer as for Band m".

Set generator to $3.75 \mathrm{~m} . \mathrm{c}$. Rotate station selector knob until signal is heard. Adjust oscillator series condenser as for alignment in Band TU". Recheck at 8 magacycles.

EDIOM BAND Mam: Replace 400 ohm dunmay antenna with . 00025 mfd . condenser. Rotate station selector knob to $1400 \mathrm{~K} . \mathrm{C}$. Change selector switch to band "Mm. Reset generator to $470 \mathrm{~K} . \mathrm{C}$. Adjust attenuator for maximum output, then adjust $470 \mathrm{~K} . \mathrm{C}$. rejection condenser. Reset generator to $1400 \mathrm{~K} . \mathrm{C}$. Adjust antenna and R.F. shunt trimmers. Set generator and receiver at $600 \mathrm{~K} . \mathrm{C}$. then adjust medium band oscillator series trimmer. Recheck antenna and R.F. at 1400 :-. C.
 "AT" RELEIVER-(TRMMERS MARNES "L"

Manel:A5

I.F. ADJUSTMENT: Connect signal generator in series with .1 mfd . condenser to grid of 6A7. Set generator to $470 \mathrm{~K} . \mathrm{C}$. signal, until a small output deflection on output voltmeter is obtained. Adjust trimers on top of first and second I.F. transformers.

MEDIUR BAND MEM: Set selector switch at MM" and rotate station selector until gane condenser is all in. Replace . 1 mfd condenser with regular dunmy antenna or 250 mold. condenser, set generator for $470 \mathrm{~K} . \mathrm{C}$. and connect to antenna lead (RED); ground lead BLACK, should be connected to ground on signal generator throughout all measurements.

Adjust attemuator on signal generator for maximum input, and adjust 470 K.C. rejection condenser for minimum deflection on output meter. With generator at $1400 \mathrm{~K} . \mathrm{C}$. rotate station selector knob until dial reached 214 meters, then adjust antenna and R.F. coil shunt trimers.

Change generator to $600 \mathrm{~K} . \mathrm{C}$. and rotate station selector until dial reaches 500 meters. Adjust broadcast oscillator series trinmer (tophole on chassis side), rotating station selector for maximum output. Recheck antenna and R.F. adjustments at 1400 K.C.

SHORT WAVE "S" BARD: iMove selector switch to right. Replace dummy antenna by a single 400 ohm resistor connected to antenna lead. Sp ${ }^{2}$ generator at $17000 \mathrm{~K} . \mathrm{C}$. and set station selector at 17 mc . Adjust short wave R.F. trinmer, rotating station selector knob slowly for each position of short wave R.F. trimmer adjustment, until maximum output is obtained.

כXS4 11
2\&-1861
0.7300 W

MODEL-E

1931-32
IF-175 KC

MODEL- II 1931-32 IF 175 KC

Model $\cdot \mathrm{H} \cdot 71$ (comb) T•51-T.31(has ilems 米mitled) 1931-32

Model T.41 $1930-31$ (similar to Viclor-R 15)

	Cathode to Control Gridd Centrol Gri Volt	Cathode to Scroon Grid, Scroon Grid Volta	Cathode to Plate, Volve	$\underset{\substack{\text { Plate Curront } \\ \text { M. }}}{\text { an }}$
1.	3.0	95	250	5.0
2.	3.0	95	250	3.0
3.	6.0	89	170	0.3
4.	18.0	235	220	32.0
5.	275	ate to	-60 M	OTAL

(c) After the I. F. circuits are aligned, the broad-
cast band R. F. is adjusted at $1400 \mathrm{~K} . \mathrm{C}$.
This is done with the Range Switch at the
\qquad
Models K K 64 1933 M-64-65 1934.1 .570 kc .
Line-Up Capacitor Adjustments

vivezataz

DATA SHEET
$\bar{C}^{-} \quad 6=E_{m \times x} \cdot 12$

These instruments are similar to the Models $A-6 B$ and $A-6 C B$, except for several cir ait modifications. The major differences include: A more efficient oscillator circuit; The redesign of the 1st and 2nd I.F. transformers so as to obtain better fidelity or reproduction; The insertion of a filter in the 2nd I.F. plate circuit to reduce regeneration; The reduction of the screen grid voltages on the R.F. section of the circuit so as to increase sensitivity, and to obtain better A.V.C. action; The addition of a tone control and pilot light; The reduction of "B" battery current drain, and the adaption of the battery cables for use with the new type plug-in batteries.

Refer to the Service Notes for the Models A-6B and A-6CB to obtain the electrical apecifications, description of electric circuit, and service data."

It is very important that only the special. 060 ampere pilot lamp be used; otherwise, the "A" battery current drain will be excessive.

DATA SHEET

C. G.E. $-N-5 /$

Auto Receiver
(R.C.A. Victor ModelSM) Aligment Data on Dato Sheet-18a

I-F Adjumements

(a) Connect the output of the test oscillator to the control grid cap of the i.f tube (Type-6K7) through a 0.25 mfd . capacitor and connect the ground of the oscillator to the receiver chassis. Adjust the frequency of the oscillator to 260 kc . Tune the receiver to a point where no interference is received from the heterodyne oacillator or local stations.
(b) Adjust the two screws (attached to molded cores) of the second i-f transformer, one on top and one on bottom, until maximum output is produced by the indicating device.
(c) Remove the oscillator from the i-f tube input and connect it between the control grid cap of the first detector tube (Type-6A8) and chassisground, using the 0.25 mfd capacitor as previously. Allow its tuning to remain at 260 kc . Tune the receiver to avoid interference as in (a).
(d) Adjust the two screws of the first i.f trans former for maximum (peak) receiver output. The indication for this adjustment will be broad due to the "flat-top" characteristic of the i.f system. The two screws should, therefore, be very carefully adjusted so that the indicator remains fixed at maximum as the oecillator is shifted through a range 2 kc . above and below its normal setting of 260 kc . An irregular double-peaked indication is to be avoided.

R-F Adjurtments

NOTE: Before making r-f adjustments, it may be advisable to replace the bottom cover to eliminate vibrator interference.
(a) Adjust the dial pointer on the remote control head by the following procedure. Rotate tuning knob to its extreme clockwise position irrespective of location of pointer on dial. Now turn the pointer adjusting screw in the center of the back of the control unit until the pointer is at the end calibration mark below the 55 on dial scale.
(b) Connect the output of the test oscillator to the antenna-ground terminals of the receiver with a 175 mmfd . capacitor in series with the antenna lead.

NOTE: For r-f alignment of receivers in which the tubular paper condenser C-3 (.01 mfd.) has been replaced by the snall molded condenser 500 mmfd . (changc easily identified by reference to Figure 2 and bottom of chassis), use a .001 mfd . capacitor instead of the 175 mmfd. capacitor in series with the antenna lead and test oscillator.
There should be a shunt capacitor of 50 or 60 mmfd . from the antenna lead at the receiver to ground. Tune the oscillator to $1,400 \mathrm{kc}$. Allow the output indicator to remain attached to the receiver output. e-panal C far N.S!
(c) Tune the receiver so that the dial reading is $1,400 \mathrm{kc}$. Then adjust the oscillator, dettator, and antenna coil trimmers, $\mathrm{C} \cdot 13,{ }^{*} \mathrm{C}-8$, and ${ }^{\mathrm{C}} \mathrm{C}-5$ respectively, tuning each to the point produc. ing maximum indicated receiver output.
(d) Shift the oscillator frequency to 600 kc . and tune the receiver to pick up this signal, disregarding the dial reading at which it is best received. The oscillator series trimmer,* C-15, should then be adjusted, simultaneously rock: ing the receiver tuning control backward and forward through the signal until maximum (peak) receiver output results from the com. bined operations. The adjustment of C 13 ,
${ }^{\circ} \mathrm{C} .8$ and $\mathrm{C}-5^{\circ}$ should be repeated as in (c) to correct tor any change in its alignment due to the adiustment of $\mathrm{C}-15 \leqslant-\mathrm{C}-200 \sim \mathrm{~N}-51$

* C-H2on mooel MSI
$0<-9$

Aliqnment Data
C.C.E. Models N-5l, 6 M 2 (Auto R Receivers) (R.C.A. Victor Models 5M, 6M, GMZ)

- THIS VALUE MAY VARY APDRECIABLY.

BOTTOM NEEW OF CHASSIS

- VOLUME CONTROL AT MINIMUM SETTING.

- THIS VALUE MAY VARY APPRECIABLY.

BOTTOM VIEW OF CHASSIC

De Forest Crosley Color Cocie for Battery Operated Models

$$
\begin{array}{ll}
\mathrm{A}+\mathrm{B}-\text { White } & \text { B90+-Red } \\
\mathrm{A}-\mathrm{C}+\text { - Black } & \text { B135+-Brown } \\
\text { B45+-Green } & \text { C41/2-Yellow } \\
& \text { C9-Red and Black }
\end{array}
$$

THE WARWICK AND WINDSOR (1927-28)
THE BALMORAL AND BERWICK :1927-28) Battery Operated

THE CONCERTO, SONATA AND OPERA MODEIS (1928-29)
NOCTURNE (High Boy)
Sarne Chassiz also used in DUET (Phono-Comb.)

THE SYMPHONY CHASSIS
(First Series-Power Unit Separate) (1928-29)

THE DE FOREST CROSLEY POWER UNIT FOR ELECTRIC HASTINGS, BERWICK

AND FIRST SERIES SYMPHONY
MODEL (1927-28)
Also see Data Sheet (No. 8)

THE ELECTRIC HASTING؟
(1927-28)

THE ELECTRIC BERWICK CHASSIS
(1927-28)
CONSOLE

Type 762 Chassis

(Combination) also

Type 603 Incorporated in the

Pioneer Voyageur - Explorer
Same as above but less dotred portion.

Type 766 Chassis
Incorporated in the
(1929-30)

Royal York Tudor Stuart Norman - Lancaster
(Combination)
(Combination)

Battery operated ROAMIO 1930.

CIRCUIT DIAGRAM-TYPE 4T0 CHASSIS ("ElEn" Model) $\quad 1930-31$
LINE DRAW (at 120 volto)
$\begin{array}{lll}25 \text { cycle Power transformer (all tubes in position) } & \text { *79 watts } \\ 60 \text { cycle Power transformer (all tubes in position) } & 71 \text { watts } \\ \text { 95 cycl Phono motor (no load on torntable) } & \$ 2 \text { watts } \\ 60 \text { cycle Phono motor (no load on tarntable) } & 25 \text { watts }\end{array}$

Stmpol Description			
Cl	Tuning fondenser gang	R1	5,500 ahmman
C 1	. 25 Mfd. cathode R.F. by-pass	Re Rg	75 ohm UY 294 bias resistance 300 ohm vol. control (biss) resistance.
Cs	. 25 Mfd, screen R.F. by-pasa condenser	R4	¢, 500 ahm voltage divider resistance
C4	. $\mathbf{3 0}$ Mid. plate R.F. ty-pass condenser	R5	S,050 ahm voltage divider resiatance J
C5	. 10 Mid. Det. automstic bias by-pass condeaser	R6	580,00() ohm Det. automatic bias revistance
C6	1.0 Mfd. R.F. cathode by-pasg	R7	$\mathbf{9 4 , 0 0 0}$ ohm cathode bias resistance
	condenser 10 Mid. R.F. creen try-pass con	R8	$\mathbf{2 5 0 , 0 0 0}$ ohz screen voltage reducing reaistance.
C7	. 10 Mid . B.F. screen try-pass condenser)	R9	100,000 ohve hum filter resistance.
C8	. 0001 Mfd. R.F. plate by-pasa condenser	R10	300,000 ohm Det. plate resistance
${ }^{\text {C'9 }}$. 0001 Mid. R.F. plate by-pass condenser	R11	900,000 ohm A.F. grid leak resistance....
Cll	. 10 Mfd. hum filter condenser	R12	1,650 ohw UX 945 bias resistence
C12	1.0 Mfd output coupling condeaser \}		
C13	8 Mid. Mershon power filter condenger		

	$\left\lvert\, \begin{gathered} \text { Ponirion } \\ \text { outy } \end{gathered}\right.$	--_-_TUbe in test Set				
		voits	voits	Temat	(tr)	
224	RF	2.23	196	90	31	$2 \cdot 4$
224	DETC	$2 \cdot 23$	100	20	${ }^{*} 6$	$1 \cdot 5$
245	AF	2.25	250	-	50	25-45
280	RECT	$4 \cdot 7$	325	A.C.		2-37

Pobition or volume contnol MAX

* READING BETWEEM CATHODE
AMD CHASSIS

Symeol

LINE DRAW (at 120 rolts)
95 cycle power transformer (all tubes operative) (*) 60-70 watts 30 cycle power transformer (all tubes operative) (*) 52-62 watts

$\begin{gathered} \text { yous } \\ \text { Tuis } \end{gathered}$	$\begin{aligned} & \text { Poorion } \\ & \text { Tưar } \end{aligned}$	EST SET				
		vôt.	voro	zemew	(-7\%	vomac
224	RF	2'21	180	90	3	35-4
224	DETC	$2 \cdot 22$	150	25	65	13-4
245	AF.	$2 \cdot 21$	250		*	25-40
280	Rect	325	AC		$0-35$	5 P.P.

pobition of volume contmol MAR.
Actually 50 volts. Cannot be measured Use plate mil-amps. as indication of correct voltage

Printed in Canada.

 Adjust oscillator trimming condenser indicated by symbol "C". This condenser peaks at a point when the adjusting screw is turned almost "full oat."

Adjust aligning screws " B " and " A " in that orler for maximum reading on output meter. " E " is the R.F. stage.trimming or aligning condenser and " A " is a similar unit for adjusting the antenna stage.

AUDIO SYSTEM Ganged switches S4, S5, and S6 serve to adapt the audio system for record reproduction. Due to the use of a grid resistance between the two 245 grids, it was found advisable to place the tone control in the plate circuit of these tubes instead of in the grid circuit as in the 705 chassis.
On phonograph operation, the pickup is connected into the grid circuit of the second detector tube V5 while the normal plate circuit of this tube through the primary of the audio transformer is opened. The secondary of this transformer now functions as an auto transformer.

Elimination of any amplification of R.F. signal is obtained by grounding the antenna by one of the contacts of S5.

1.F. 175 Kc

Alignment inst same as mod. 905. Data Sheet. 16.

Un a few receivers of the tirst release the uscillator plate circuit is opened instead. A different type of gang switch is used in these receivers.
Additional filtering has also been provided by twin filter chokes T13 and T14 in addition to an added eight mfd. Mershon condenser C25.
The additional mershon condenser will be readily seen to be mounted between the oscillator and first R.F. tube sockets, while the additional filter choke is enclosed in the same assembly replacing the single choke on the 705 chassis.

Position	Patev	Gend V	ScREEN Y	PLATE MA.
Osc	. 05	7.5		2'2
RF	180	$2 \cdot 8$	85	3
1 aET	"	7	"	-9
IF	1	$2 \cdot 8$	"	$3 \cdot 75$
2OET	200	31		1.25
DWR	250	20\%		30

* hctually 50.

C4 - 0005	R^{\prime}	25000Ω
c5-c6 -00038	R^{2}	30000
$c^{7}, c^{9} \cdot 05$	R^{3}	6600
C^{8}-0001	R^{4}	140
$610 \cdot 25$	R^{5}	725
C11,C12.3	E^{6}	6225
C15 000025	R^{Y}	6500
c16 -00003	R^{8}	2200
c 1710	R^{9}	5000
c/8 -12	$R^{\prime \prime}$	7000
C $20 \cdot 002$	$R^{\prime \prime}$	1 MEL
C21,C22. 8° ELECT.	. R^{12}	400,000.
C23 001	R^{13}	6 MEG
C24 -5	R/4	3.5"
TYPE 707 ONLY	R^{15}	30000
C25 8°	TYPE	707 OYLY
c27 5	P'6	26000Ω
c28 •12	$R^{\prime \prime}$	2000
c29 \%	R^{18}	31
$R^{19} 80.0$	R^{20}	45000

C2I,C22. 8. ELECT. R $R^{12} \quad 400,000$.

Adjust service oscillator and receiver "in tune" at 1460 kilocycles. Adjust screw " E " for maximum value on the output meter. Two resonance peaks will be noted in aligning this condenser. It should be aligned on the outside peak. (See Note 2). If the inside peak is used, the receiver will be found to be dead around the center of the dial and possibly weak at 600 kilocycles.
Align "H", "G" and " F " respectively for maximum reading on the output meter. (See Note 1).
With service oscillator lead still connected to the receiver antenna adjust the oscillator to 600 kilocycles, the receiver also tuned to this frequency. Adjust the padding condensers " I " and " J " by varying. The condenser gang should be moved while.peaking the padding condensers. If the gang is left stationary a false peak will be obtained and the receiver will be weak at 600 kilocycles. The padding condensers also have a double peak; always align on the outside one.
"Belcanto"
..apnlodd,

Following alignment of " I " and " J " at 600 kilocycles readjust service oscillator and receiver to tune at 1400 kilocycles and again check condensers " E ", " F ", " G " and "H", compensating for any difference brought about in adjusting padding condensers " I " and " J ".

Very slight differences only are present in the $855-\mathrm{B}$ chassis, consisting of a shielded antenna lead, terminating at a small panel on the bottom shield of the chassis,

IF 175 Kc .

Set receiver tuning at point near 550 kilocycles which is entirely free from interference or incoming signals.

Adjust service oscillator to 175 kilocycles (exactly) and place in operation.

Align adjusting screws $\mathrm{C} 10, \mathrm{C} 11, \mathrm{C} 9$ and C 8 in that order for maximum reading on output meter.*

Transfer oscillator output lead to antenna wire of chassis.

Reconnect grid clip to autodyne tube cap.
Adjust both receiver and oscillator in tune at 1,400 kilocycles. If difficulty is encountered in securing sufficient attenuation with service oscillator output control directly connected to antenna lead, a 100,000 ohm resistance connected in series with antenna lead will reduce the signal sufficiently,

Adjust autodyne trimming condenser indicated by symbol " A " in illustration 2 . This condenser peaks at a point approximately three-quarters of minimum capacity setting (ie., the adjusting screw turned almost "full out").

Align adjusting screws " B " and " C " in that order for maximum reading on output meter. " B " is the R,F. stage trimming or aligning condenser and " C " is a similiar unit for adjusting the antenna stage.

Adjust service oscillator and receiver in tune at 600 kilocycles. Adjust the padding condenser "D"
for maximum indication on output meter.* The tuning condenser should be varied slightly while peaking this padding condenser " D ". If the gang condenser is left stationary a false peak will be obtained and the receiver will be weak at or near 550 kilocycles.

Adjust service oscillator to 175 kilocycles (exactly) and place in operation.

Align adjusting screws C8, C7, C6 and C 5 in that order for maximum reading on output meter.*

Transfer oscillator output lead to antenna wire of chassis.

Reconnect grid clip to autodyne tube cap

Adjust both receiver and oscillator in tune at 1400 kilocycles. If difficulty is encountered in securing sufficient attenuation with service oscillator output control directly connected to antenna lead, a 100,000 ohm resistance connected in series with antenna lead will reduce the signal sufficiently.

Adjust autodyne trimming condenser indicated by symbol "C"
This condenser peaks at a point approximately three-quarters of minimum capacity setting, (i.e., the adjusting screw turned almost "full out").

Align adjusting screws "B" and "A" in that order for maximum reading on output meter. " B " is the R.F. stage trimming or aligning condenser and " A " is a similar unit for adjusting the antenna stage.

> "WINDSOR" Model " Types 608A and 608B "BERWICK" Model " Types 608C-608D-608G "CAVENDISH" Model " Types 708A-708B-708F

(12) Adjust service oscillator and receiver in tune at 600 kilocycles. Adjust the padding condenser " D "
for maximum indication on output meter.* The tuning condenser should be varied slightly while peaking this padding condenser "D". If the gang condenser is left stationary a false peak will be obtained and the receiver will be weak at or near 550 kilocycles.

Adjust both receiver and oscillator in tune at 1400 kilocycles. If difficulty is encountered in securing sufficient attenuation with service oscillator output control directly connected to antenna lead, a 100,000 ohm resistance cornected in series with antenna lead will reduce the signal sufficiently.

Adjust oscillator trimning condenser indicated by symbol "C"

This condenser Deaks at a point approximately three-quarters of minimum capacity setting, (i.e., the adjusting screw turned almost "fuli out").

Align adjusting screws " B " and " A " in that order for maximum increase on output meter. " B " is the R.F. stage trimming or aligning condenser and " A " is a similar unit for adjusting the antenna stage.

Adjust service oscillator and receiver in tune at 600 kilocycles. Adjust the padding concenser "D" for maximum indication on output

Courtesy De Forsst Crosley Limited.

"Carillon" Model . . . Type 853 Chassis

/F 175.K.C.	
SYMBOL	L DESCRIPTION PART NO.
Cl	Tuning Condenser Gang (3)-54!0
C2	. 25 Mfd. R.F. plate by-rass condenser........ 5919
C3	. 05 Mid. R.F. cathode by-pase condenser.... 5885
C4	.05 Mfd. R.F. screen by-pass condenser...... 5885
C5	. 0005 M dd. Osc. cathode by-paus condenser...5321
C6	. 07065 Mfd. Osc. padding condenser.............536\%
C7	.0601 Mid. Osc. var. padding condenser...... 5845
C8	. 0001 Mfd. Det. grid condencer................... 5886
- C 9	. 0015 Mid. Det. plate by-pass condenser...... 5835
C9	. 01 Mid. Det. plate by-pmss condenser........ 6837
C10	. 05 Mid. A. F. coupling condenser............ 5886
C11	. 25 Mtd. A. F. filter .condenser..................... 6868
C12	. 002 M 1 d. Tone control rondenser............... 3992
C13	8.0 M di. Electrolytic filter condenser.....-.-. 4560
C14	8.0 Mdd. Electrolytic filter condenser.......... 1560

$$
\begin{aligned}
& \text { FRONT OF CHASSIS } \\
& \text { TUBE } \angle A Y O U T \\
& \text { RF }
\end{aligned}
$$

CAROLa. -MUSICALEa.
Models 705a-707a 1931-32 1.F 175.kc.

CLIFTON - CANTERBURY-CHESTERFIELD WESTMINSTER - WESTMINSTER UNIVERSAL Models 405 a.b.c.d.e 1932 1F. 175 .kc.

Models 851a.b-YORK-MAYFAIR-1933

THE "NEW OVERTURE" AND. - TYPE 503 CHASSIS
"NEW HARMONY" MODELS 1933-34 IF. 175 K.C.

the "new symphony" model - TYPE 505 CHASSIS

DATA SHEET

THE "NEW MELODY" MODEL - TYPE 507 CHASSIS

THE "WORLD WIDE" Moderne Series. Model-514 1934. IF.456.Kc.

ROAMIO AUTO RECEIVER ALSO GM. 134-134-b

 Model.5IO. 1933 IF 175 Kc .

Models-513.C.d. G.M. 1351934 IF 175 KC

LEGEND-
$c^{3}-.025 m f d$.
c 5 -. 1
$\begin{array}{ll}c^{5} & -.025 \\ c^{6} & -.1\end{array}$
C^{7}
C
$R^{\prime}=500,000$ ahms.
$R^{2}=10,000$
$R^{3}=25,000$
$R^{1}=165=50,000$
$R^{6}=20,000$
$R^{7}=21,000$
$R^{8}=335$
$R^{9}=750,000$
$R^{10}=100,000$
$R^{11}-50,000$
$R^{12}-750$
$R^{13}-50,000$
$R^{14}-50,000$-model C only
$L^{12}-5.5$

Synchronode Connections

A power : upp y or Synchronode unit is kuile into the cast- assembly, When delivered to you this power supply unit is arranged for use (without change) on cars in which: the negative (-) terminal of the battery is grounded (connected to frame).
When a Super-Roamio is to be installed on a car having the positive (+) battery terminal grounded, a change must be made in the Synchrorode connertions. The receiver will not operate with the Synchronode connections reversed and if operation is attempted under such conditions, damage to the meshanism will result. Avoid this possibility by first changing the Synchronode connections if the radio is to be installed on a car having the positive (t) batery terminal grounded.
To change th: Synchronode connectuons when installing in cars with positive (+) battery ground, proceed as follows. Refer to Figure 1.

1. Remove the four acorn nuts on the top case cover. Use a $8 / 8$ in. spanner or nut wrench.
2. Remove the top case cover.
3. Remove the four small screws is the small terminal cover plate.
4. Lift the terminal cover plate " D ' out of position.
5. Interchange the positions of the "black" and "yellaw" lead wires. (See Figure 1).
6. Replace the terminal cover plate and tighten the screws securely.
7. Replace the top cover and tighten the acorn nuts se:curely. Always replace all lockwashe

Model IO2I 1934-35 I.F. 456 Kc.

THE "WORLD.WIDE" MODEL- CIRCUIT OM

see Rogers Sheets ITa-b

DATA SHEET ...mom DEFOREST CROStEY. 29

Models 14II-12 Regal-Royal 1934-35 I.f. 456 Kc.

DATA SHEET
see Rogers Sheets $17 a-6$

(Princess Marina Models 1523-24 (envor-Ranger de Luxe 1934-35

\qquad
15. 456 kc \qquad

alignment instructions on Rogers Sheets $17 a-b$ Models |62|-22 COURIER_VOTAGER_ADVENTURER 1934-35

alignment instructions on Rogers Sheets 17a-b.

DATA SHEET …wom DE FOREST Groser-31

Model 475a Fada'7'

Unit, used with "Special" and "7" AC Receivers

FADA-4

-For Fada 50, 70, 71 and 7.2 Recai?rs

Schematic Wiring Diabram of ' E : 180 a $\mathrm{E}^{-1} 180-2$ Electaic Uilit
Electric Unit-For Fada 50 and 70 Receivers
Printed in Canada

FADA MODELS 10, 11, 30, AND 31 RECEIVERS

1928-29
Models 10 Metal Table 10Z Metal Table 11 Wood Table 112 Wood Table 30, 31, 30Z, 31Z, Consoles

1929
Models
16 Metal Table
16Z Metal Table
17 Wood Table
$17 Z$ Wood Table 32 Console $32 Z$ Console

Ose of the utusual features about this Fada receiver is the use of a the desirod sipmals but is tuned so as to eliminate underired signals.
 rejector circuit in the antenna stage. The primary of this rejectior former. The rejector circait is not, however, funed to the frequeucy of

Another unhamal frature is the use of an untumedt r.f. transformer beween the first and second r.f. amplifier tuhes, the transformer being of such characleristics as to equalize the r.f. gain.
kiacirts ruurtesy 'Radin Broadcasf'

A thmee-stage tumen-raliu-frequme:y amplifier is used in this set It is interesting to nole that the inpat cirvita of the r.f. tuthes arr connectwil across only part of the tomed eircaits. Neutratization is accom-
plished by connecting the neutralizing condenser frwm the grid of a tube to the secondary of the following r.f. transformer. The volume control is connected across the anteman-ground circuit.

Fada 16, 17 and 32 Receivers - 60 cycles Fada $16-\mathrm{Z}$ and $32-\mathrm{Z}$ Receivers - 25 cycles

1929-30
Models
$265 S$
Table
30/65S
Console

1929-30
Models 20, 20 Z

Both
Table Models

1929-30
Models
25, 25Z
Both
Consoles

THE Fada 20 and $20-\mathrm{Z}$ are alike except that in the 20-Z a 1 power transformer is used that is satisfactory for 25 -cycle lines. The receiver is of the neutrodyae type, utilizing five type -2% tubes in the three radio-frequency stazes, detector. and first audio stage. Push-pull type -71A tubes are used in the output stage. An -80 tube is used as a rectifier. Provision is made to excite the field of the dynamic
reproducer by utilizing it as a choke in the filter circuit. An unusual feature of the receiver is found in the fact that a small amsunt of regeneration is introduced in the radiofrequency amplifier, which materially improved both sensitivity and selectivity. At no time can this regeneration become sufficient to ctase annoying oscillation. Provision is made for phono pick-up.

Fada 20 Receiver-AC 60 cycles
Fada 20-Z Receiver-AC 25 cycles

Fada 25 and 25-Z Receivers
used with
M-250 and M-250-Z Electric Units

THE Fada No. 35-B receiver, a.c.-operated, embodies the following features:

1. Four tuned, stabilized circui:s.
2. Power detection.
3. High quality two-stage audia cliannel. employing pushpult in the final stage.
4. Eight tubes. as follow's: 3-24's: $2-27^{\circ} \mathrm{s}: 2-50$'s ; $1-80$
5. Provision for phonograph pick-up attachment.

The receiver. composed of two units, namely, the tuneramplifier and power supply, is a.c.operated throughout. Complete circui: details of both units are shown above. Values of resistors coupling condensers, etc, together with a chart for identifying the various voltage laps on the power unit. are also shown.

Models 43-43z. 1031
z stands for 25 cycle.

Model
DATA
40c. 42. 44.
46. 47.

SHEET

Models-2123-4 Used in Phonola, Serenader. Dictator, Arcadia.

Models-2B63-4 Used in Phonola and Serenader

Models 3A6I and 3A62(Auto-Receivers) 1933-34 IF. 175 Kc .

-Schematic Circuit Diagram for Serial Numbers Above-63445.

D!pDJA甘 - ADPDuDads
-olouoyd - य! pasn !!nod!?

Model-3B41-2 1933-34 If. 465 Kc. Viking-Arcadia

Model-3B64-5 1933-34 1F. 175kc Phonola-Serenader

vavnvo ni OBanizd

t-G7ONOHd

LJHHS HLHO

Model.47. used in all models as above.

 Viking Phonola

k.c. higher than the receiver oscillator. Care should be taken to see that the receiver is tracked with the signal generator adjusted to the lower of the two frequencies at which a signal is heard, in order that the oscillator in the receiver will be 262. k.c. higher in frequency than the signal.

Turn the broadcast short wave switch to the short wave position. As explained above, the volume control should be at the maximum pusition and the signal should be reduced to prevent A.V.C. action.

Next, set the signal generator for 15,000 k.c. The short wave trimmers are accessible from the bottom or under side of the chassis. Turn the rotor until maximum output is obtained. 15,000 k.c. should locate just inside the 19 meter band area. This is indicated by a colored mark at the lower right hand side of the dial strip. After the signal is located, adjust the antenna trimmer, (first trimmer from the front of the receiver.) Now while moving the rotor slowly back and forth over the setting adjust the 1st detector or interstage trimmer (center trimmer) until highest output is obtained. If oscillation should occur at 15,000 k.c. or higher, increase slightly the oseillator trimmer capacity (trimmer farthest from the front of chassis). After any adjustment on the oscillator trimmer, re-adjust the antenna and interstage trimmers.

No adjustment is necessary at 6,000 k.c. However it is customary to check the alignment at this point.

Model-455 1934-35 used in Serenader-Phonola

Above illustration is of No. 455 series. No. 456 lay-out is the same except that 6F7 tube is replaced by 6A7.

INTERMEDIATE FREQUENCY ADJUSTMENT

Set the signal generator for 456 k.c. Connect the antenna lead of the signal generator to the grid of the 1 st detector through \& .05 mfd . condenser. Turn the turing condense ${ }^{-}$ rotor until the plates are completely out. The ground lead from the signal generator goes to the ground lead of the receiver. The volume control should be at the maximum position. Reduce the signal so that A.V.C. action is not obtained.

Then adjust the four I.F. trimmer condensers until maximum output is obtained. The adjusting screws for the 1st and 2nd trimmer condensers are reached from the top or rear of the chassis. The openings of these trimmer condensers are covered over by small cover plates which are held in position by nuts. Laosen these nuts until the cover plates can be swung around. CAUTION-Use an insulated screw driver for adjusting trimmers to prevent short circuiting to ground.

BROADCAST BAND ADJUSTMENT

The broadcast short wave switch should be in the broadcast position. The antenna lead from the signal generator is in this instance connected to the antenna lead of the receiver. Reduce the sigral so that A.V.C. action is not obtained.

Then set the signal generator for 1400 k.c. Turn the rotor urtil maximum output is obtained and set the pointer at the 1400 k.c. mark on the broadcast band scale. Then adjust the oscillator antenna and 1st detector broadcast trimmers until maximum output is obtained.

SHORT WAVE BAND ADJUSTMENT

In aligning the short wave band of the receiver, it will be noted that the signal will be heard with the signal generator set at two points 912 k.c. apart. That is, if the receiver is tuned to $15,000 \mathrm{k} . \mathrm{c}$. a signal will be heard when the signal generator is set at $15,000 \mathrm{k} . c$. and again at approximately $15,912 \mathrm{k} . \mathrm{c}$. This is due to image recepetion or the fact that a $456 \mathrm{k} . \mathrm{c}$. is obtained when the signal is $456 \mathrm{k} . \mathrm{c}$. lower than the receiver oscillator and also when the signal is $456 \mathrm{k} . c$. higher than the receiver oscillator. Care should be taken to see that the receiver is tracked with the signal generator adjusted to the lower of the two frequencies at which a signal is heard, in order that the oscillator in the receiver will be 456 k.c. higher in frequency than the signal.

Turn the broadcast short wave switch to the short wave position. As explained above, the volume control should be at the maximum position and the signal should be reduced to prevent A.V.C. actior.

Next, set the signal generator for 15,000 k.c. The short wave trimmers are accessible from the bottom or under side of the chassis. Turn the rotor until maximum ontput is obtained. $15,000 \mathrm{k} . \mathrm{c}$. should locate just inside the 19 meter band area. This is indicated by a coloured mark at the lower right hand side of the dial strip. After the signal is located, adjust the antenna trimmer, (first trimmer from the front of the receiver), while moving the rotor slowly back and forth over the setting until the highest output. If oscillation should occue at 15,000 k.c. or higher, increase slightly the oscillator trimmer capacity (trimmer farthest from the front of chassis). After any adjustment on the oscillator trimmer, re-adjust the antenna trimmer.

No adjustment is necessary at 6,000 k.c. However it is adviscable to check the alignment at this point.

Model-452 used in Phonola-Serenader-Lindsay

Set the signal generator for 175 k.c. Connect the signal tube through a .05 mfd . condenser. Turn the turing condenser from the signal generator goes to the ground lead of the recever. Then adjust the four intermediate frequency condensers
for maximum output. The adjusting screws for these condensers are accessable from the rear of the chassis.

Next set the signal generator for a signal of exactly 1400 adjust the three trimmer condensers on the gang tuning condenser for maximum output, adjusting the oscillator trimmer first.

Next set the Then set the signal generator again for a signal of $1400 \mathrm{k} . \mathrm{c}$. adjust the oscillator $600 \mathrm{k.c}$. trimmer. The adjusting screw this frequency for maximum output.
Model -456 1934-35 used in Serenader-Phonola. also see Data Sneer 20.

DATA SHEET

FlLTUVIVIETV/ INSTRUCTIONS.

CIRCUIT
The circuit conalats of a single tubed antenna stage which couples directly into a type 1 Ce cube, which funtitions as oscillator and firat detector. The oocillating circulf te tuned by The second section of the gang condenser and ta always resonant at a frequency of tse bllocyclem
above the frequency to which the R.F. amplifter ts tuned. above the frequency to which the R.F. amplifter to tuned.
One ntage of I.F. amplification is enplayed, using a rype 34 tube. The primary and eacondary clrcult is provided with variable trimmers for gd justment at iss k.c. A second l. F. unit of of a small trimmer condenser locsied inside the of $1 . F$. shleld.
A type sutube ts employeu second detector or demodulator. Nemodulation takes place in the grid circuit of this tube.
Realstance coupling is used betwean the second detector and the ss Pentode audlo power amplifior. The ourput of the 38 la coupled to a magnetic reproducer.

The volume contro is in the antenna primary circult and varying the position of the arm of the control varles the signal input voltage to the type iCs tube.
The amall trimmers on the top of the ging are provided for the purpose of aligning the recelver at $1,600 \mathrm{k} . \mathrm{c}$. and the padding condenser provided for tracking the osclllator at $800 \mathrm{k} . \mathrm{c}$.

The recelver la of the extended band type, being calibrated from 598 to $1,85 \mathrm{k}$ k.c., which Includes a police short wave and amateur band at the high frequency end.
The total " A " draln ts 500 miliamperes, which ts one-half ampere at two volts.
The wverage " B " draln of this receiver is 10 milamperes at 90 volts.
batteries
Thle recelrer is dealigned for operation with a two-volr atorage wet cell "A" battery; ; wo 65 -voit "B" battarios conactod ta sorios to supply the plate poten tlal of of volits; and two" "C" batterien

CONDENSER ALIGNMENT

Pxocedure of Aligning Set
Couple the output of test algnal gemerator to the grid of the 1 Ce tube throuth a .os paper condenser and aet your generator at 45 k.c. With as low output as le posible, so that you may I.F. shelde until maimum output is obtained from the set. Next, couple the slanal generatar to the mintenna, setting the recelver dial at $1,5 e 0$ k.c. and adjust the sidgal generator to axactly 1,50e k.c., adjusting the screws on the top of the gang for maximum outpur. Adjust the penerator to $60 \mathrm{k} . \mathrm{c}$, , and turn the dial to $600 \mathrm{k.c}$. . SHehtly rock the gand forward and backward, at the asme time adjusting the padder condenser, (which is marked C-z un the diagram) untlimaximum eensitivity is secuxed. Now ajust the pointer to exactly on the dial and output. Your set fhould now be at maximum sensitivity and tracking correctly over the entire ditp.

CIRCUIT

The circuit conmbets of a drele tuaed antenna etage which couplee directly invo a cype 100 tube, which functione atoclilator and firtot dotector. The ocillinting circult to tuap by the wecond eaction of the gang condencer and in alwaye resons

One ntage of I.F. amplificattion te employed, ublny atype st tube. The primary and acocondary circuit is provided with varimble trimmers for adjustment ar A50 k.c. A second I.F. unit of the impedence couplod type is provided, in which the primary laductance is tuned by mean of a emall trimmer condenaer locrited inelde the of I.F. ehtold.
A type so tube is employed as uecond detector or demodulator. Demodulation take place that kube.
 atage. Following the se driver gre two type so tubee tranaformor coupled in Chace "B" amplification. The output of the two so's is coupled to a magnetic reproducer.
The volume comtrol to la the antemana primary circuit and rarying the poattion of the arm of the control varlee the alignal input voltage to the type 1Ce tube.

The emall trimmers on the top of the tang are provided for the purpone of allgnitag the recelver at 1,500 k.c. and the paddimif condencer provided for tracking the oacllator at the k.c.
The recelver it of the ertended band type, belag calibrated from 588 to 1,850 k.c., which The total "A" dratn to $5 e 8$ millimperes, which fe one-hatif ampere et two volts.

The average "B" drain of thit reculver ta 18 millamperes at se volte.

Batteries

Battery requireneate for thie recelwer are:-One 2-volt " A " battery, two 15 -volt "B" batterien and 7f-volt "C" battery. The 181 (note licence plate) modele are dealgned for wet cell "A",
 proviaton is made by memse of a terminal otrip on the top of the chasef near the 1Ce tube for
 model is to be ueed with wif whe cell terminal strip which is mountad on the top of the chatede near the 1Ce tube, but this wire mue not be connected between theee two ecrews for uee with ma Alr Cell.

CONDENSER ALIGNMENT

Procedure of Allgning Set

Couple the output of a cees algenal generator to the grid of the 1 Co tube through a of paper condenser and met your dencrator at sfik.c. With as low output as le poesble, wo that fou meg 4.P. ehlelds until manimnm output is obtalned from the set. Next, couple the eignal genarater to the sntenna, settlag the recenver dial at 1, soe k.c. and mdjust the plenal generator to eractiv 1,504 k.c., adjathy the ecrews on the top of the gang for mazimum output. Adjuat the
genermor to generntor to $\mathbf{w a r d , ~ a t ~ t h e ~ e a m e ~ r i m e ~ a d j u s i f o g ~ t h e ~ p a d d e r ~ c o n d e n s e r , ~ (w h i c h ~ i s ~ m a r k e d ~ f o r w a r d ~ a n d ~ b a c k - ~}$ ward, st the same time adjusting the padder condenser, (which is mariced C-is on the ditgrams untlimgrmum senaltivity is emcured. Now ajuat the pointer to azactly one on the dial and output. Your tet chould now be at manlmum eenditivity and tracking correctly over the entire dlal.

SERIES. 5B60-5B60:A

(30)

$\theta \perp \theta O$

,

LAVOUT FOR.-5856

LAYOUT FOR- -5350

ALIGNMENT INSTRUCTIONS, ETC., SERIES. 5B50-5B55-5B55-A-5B56 5865. Guno omivi icior kray.

1. F. ALIGNMENT

Use an non-metallic screw driver to make the ndjustmeats.
Adjut sisanal zenerstor for 458 K.C. And apply output of
 of the tC6 tube. The zround lead of the rignal generator
Bis to tied to cine cinasis baee ground prinit.
place the selector band switch on "B" band, and volume and tone control at maximum clock wise position.
Attenuate the sifnal from the sijnal generator to poina where it is sudible and at about half scale deflection on the Adjuet the l.F. trimmers located at the lop of the I.F.
cans until maximum output is obtainod.
"B" BAND ADJUSTMENT

The output of the signal semerator is applied to the antinne pots of the receiver through a .00025 condeneer for Set the afignal generator for 1800 K.C. Set the gang rotor and pointer at $1500 \mathrm{~K} . \mathrm{C}$. on the dial and adjust the oscillintor moximum output at this setting. this setting.
A Ajuat Preselector and antenna trimmera (located on top the lst two sections of the zaps) for maximum output. Noceiver set the aiganal zenerator for 600 K.C. and turn the rock the gang back and forward across $800 \mathrm{K.C}$. and at the
same time adjuat the $600 \mathrm{~K} . \mathrm{C}$. paddor to maximum output.

SHORT WAVE BAND

The output of the signal zenerator his now fod through

- too ohme resintor to the Amt. posi of the recelver. Set the aigel gomerator for 15000 K.C. The rectiver solector switch is on the Short Wave position. Set the receiver pointer and gang on the 15000 K.C. point and adjuat
 which is located near the "Ooc." trimmer, for maximum
A fixed comenser is provided, which automatielly tracke
 alo
Aftur oveillator trimumer has been adjuited, the gaag con. whila malfild the "rocked" beck and forth across the siggel

VOLTAGES AT SOCKETS
All voltage readings must be taken at the sockets with a 1000 ohmm per volit. voltmeter, and by following the circuit
 and plate supply, as this would either hurn out the
The "C" voltage is so small that it can only be read at
the batieries themselves. Always replace the "C" betteriea
when new "B" s are repliced.

Larout foe-5B65

PHONOLA-27

[^0]

SERIES. 5/05

VOLTAGES AT SOCKETS

$\begin{aligned} & \text { Tyse } \\ & \text { Tube }_{\text {of }} \end{aligned}$	Function	Pllameat	Plate	Screen	Cathode	$\begin{aligned} & \text { Plate } \\ & \text { Curreat } \end{aligned}$
${ }_{6} \mathrm{Cb}_{6}$	1st. Detector - Onelllator	E. 3	240	${ }^{5}$	3.5	4
6D8	10t. 1.F.	6.3	240	${ }^{5}$	3.6	7.6
ecs	2nd Detector	6. 3	40	13	3.6	. 116
42	Output	6.3	280	250	14.	35.
so	Rectifier	6.1				

CONDENSER ALIGNMENT Misalignment or mistracking of condensers generally
manifeste iteelf in broad tuning and portions of all oof the broadcant band. The recelvers are
all properly aligned at the factory with prectelon all properly alignod at the factory with precision inatrumanty
and roalignment should not be attempted ualess ant other and rolilignment should not be attompted unless all other
posisibe causen of the faulty operation bave first boon investigated and umless the service technician has the proper equipment. A signal generator that will provide an accurataly
calibrated signals over the broadeast band, and an output indicating meter are necescery. The procedure la as fol-lows:-
Set the signal generator for 178 K.C. Always use the loweat possibie aignal input in order to secure sharp tuning. of this 1 ist. dotactar teiblo through . 06 mfd. condenger. Turn the tuning condenser rotar until the plates ere complotely the ground lead of the receiver. Then adjuitt the four interadjusting serews condensers for maximum output. The the rear of the chassite.
1400 KX set the signal generator for a signal of ozecty inetance, connectod to the of the signat gaperrator is in thes the thal pointer on the $1400 \mathrm{~K} . \mathrm{C}$. mark on the dial veeto sel ©juat the throe trimmer condensers on the gang tuning condenaer for
trimmer first.
Next set the signal genorator for a signal of 600 K.C screvifor this osendenser is accessible from the rear right

A non-motallic screw driver is neceasary for this edjustnent. Tura the tuning condenser rotor uniti mortimum outpuz this sotting, then the same thetor sljuwliay the and forth ove $600 \mathrm{K.C}$. Therew until the higheat output is obteniaed. 100 K.C. and check the adjustment of the tuming condanser mmers at this frequency for maximume output.
The output of the oigmal gamerator ha applied to the adjustmens of the recoediver mend condoneer for

DISTORTED PRODUCTION
 have been operating aatifencterlly in another roceivor. or Distortion chay be due to the apeakar wolige out of
aljustmemt. Check the apeakor and try out mow one if ose is avallakle. Asother cauee of distortion is high or low grild velages. Choct the volteges as given in the volteze of dyearract tuning of the receiver is mery common cause tuand to resogance for bett reproduction.

SPEAKER

The color colimg of the speaker leads is as followa:of thite and maron. The maroon wire grounde out side

$\dagger \varepsilon-\theta 7 O N O H d$ HINO

0.31H243 OF1 17SNOFNNETNWIS GNW FUt H. OBxatu SLMOD 77H
 SLGXDOS IV S3DVITOA

ALIGNUANT AND CALIBRATION: Each all wave receiver is properly aligned at the factory with precision instruments; therefore, it is extremely important that all other possible causes of faulty operation be thoroughly investigated before attempting to realign the receiver. The service techrician should be properly equipped with a signal generator that will provide accurately the following signals: $456 \mathrm{~K} . \mathrm{C} ., 1500 \mathrm{~K} . \mathrm{C} ., 600 \mathrm{~K} . \mathrm{C} ., 5000 \mathrm{~K} . \mathrm{C} .$, , 2000 K.C., $15,000 \mathrm{~K} . \mathrm{C} .$, and $6000 \mathrm{~K} . \mathrm{C} .$, also a dependable output meter.
I.F. ADJUSTMENT: Use a non-metallic screw driver to make the adjustments. NOTE:- On models $585,585-\mathrm{M}$ and $5115-\mathrm{M}$ always have High Fidelity switch on the fine tuning position.) Adjust signal generator for $456 \mathrm{~K} . \mathrm{C}$. and apply output of signal generator through a . 1 condenser to control grid of GA7 tube. Ground lead of generator is to be tied to chassis base ground point. Elace selector band switch on "B" band, and volume control at maximun clockwise position, also tone control. Attenuate the signal from generator to a point where it is audible and at about half scale deflection on output meter. Adjust I.F. trimmers located at top of I.F. cans until maximum output is obtained.
"B" BAND ADJUSTMENT: Set generator for $1500 \mathrm{~K} . \mathrm{C}$. Set gang rotor and pointer at $1500 \mathrm{~K} . \mathrm{C}$. on dial, and adjust oscillator trimmer. (No. 7 from front) (note trimmer sketch) Adjust interstage and antenna trimmers for maximum output, No. 1 and No. 4 respectively. Now set generator for $600 \mathrm{~K} . \mathrm{C}$. and turn receiver gang until pointer
rests at 600 K.C. Slowly rock gane back and forward across 300 I.C. and at same time adjust $600 \mathrm{~K} . \mathrm{C}$. padder. Connect output lead of generator through a .00025 condenser to int.post of receiver.
"I" BATD ADJUSME:TP: Set genora tor for $6800 \mathrm{~K} . \mathrm{C}$. Oonnect output of generator through a 400 ohm resistor to Ant. post of receiver. Turn selector switch to "I" band. Nove gang until pointer rests at $5800 \mathrm{~K} . \mathrm{C}$. Now adjust "I" band oscillator trimmer No. 8 to maximum output. Now set generator at 5000 K.C. and likewise condenser gang and pointer. Adjust "I" band interstage and Ant. trimmers Nos. 2 and 5. Do not touch trimmers on bands already adjusted. "I" band has a fixed padder for correct $2000 \mathrm{~K} . \mathrm{C}$. adjustment.
"IT" BAMD ADJUSTMENT: Set signal generator for $18000 \mathrm{~K} . \mathrm{C}$. The receiver selector switch is on the "H" band position and the 400 ohm resistor still remains in the output circuit of the signal generator. Signal is still being fed into the receiver on antenna post. Set receiver gang and pointer on $18000 \mathrm{~K} . C$. point and adjust oscillator trimmer ITo. 9 until maximum output is obtained. Now set generator Ior $1500 \mathrm{R} . \mathrm{C} . \mathrm{Tu} \mathrm{m}_{\mathrm{m}}$ rotor of gang until signal is heard. This should be either on or very close to point marked 15 on dial. Adjust H.F. interstage trimmer NO. 6 and the H.F. Ant. trimmer iio. 3 for maximum output. Wile adjusting the above trimmers, move condenser gang slowly back and forward across signal until maximum ontput is obtained. Now set generator for $6000 \mathrm{~K} . \mathrm{C}$. Turn tuning condenser to point where signal is heard and adjust 6000K.C. padder for maximum output. After oscillator trimmer has been adjusted the gang condenser should be "rocked" back and forth across the signal while making adjustments of the short wave R.F. compensating trimmers.

CHANGE IN EARLY MODELS 566, 566-M and 575-M: Since the early models of these receivers R21 and C41 have been added in the 655 control grid circuit; $C 40$ and R20 have also been added to the filter circuit.

CHARGE IT EARLY l.SODELS 585-585-M: In the early models of this receiver a single volume control was employed. The control R7 was added and C5 was increased to .25 mfd . The resistor R7 was 1500 ohms and the bias resistor for the 78 or 6K7 I.F. tube only. Resistors R25 and R26 were added and C23 changed to .01 mfd . in the 655 control grid circuit.

SERIES-GB7/-E.

 r.f. 456 кс.
 Below: Chossis layout ond trimimer veluse connta - sminan succrop

Battery Operated
Vibrator Type

Alignment Data Series 650 and 655

ALIGNMENT PROCEDURE

Should
dolls: necessary to reaingt the receiver, proceed
Both volumes and tape controls must be turned to the extreme right hand position (Clockwise). The frequency range switch counter clockwise). The tuning control is to be met ha the maxi stator plates).
M.F. ADJUSTMENT

Connect the signal generator, adjusted to 456 K.C., through output of the eliroal generator to a suitable value and adjust the the receiver ats shows thy ain output meter connected from 42 plate to ground.
obtained.

SERIES TRAP ADJUSTMENT

Connect the dismal generator (still adjusted to 450 KC.)
 quincy polit (rotor platen fully covered by stater plates), lacrease the anteman trap series condemner for minimum output of the receiver.

BROADCAST BAND

Set the tun control to 1500 K.C. on the dina and adjust the signal generator (still connected to

Obtain maximum an output by means of adjusting the Broadcuet decillator and Broadcast anteman trimmers. Rotate the tunis control to K.C. Set the signal generator to the same fro: queasy and adjust tho Padding, Condenser for maximum output, secrecy of adjustments. 5

Replace the .e0025 mfd. condemet to the signal generator lead Th a ohm resistor. Turn the Broadenat-Short Wave S witch to the right hand (clockwise) position. Set the tuning control and the sisal generator to 15,001 K.C. Adjust the high frequency oscillator trimmer for maximum output of the receiver, taking care to soloct the higher of the two responses points, that is, the ave for which the trimmer screw is farthest out. To check this adjustment stipel will be found when the gang is rotated use K.C. away from tire original gang mettle at 15,00 K.C., and the checking frequency will be M,54 K.C.

Then adjust the life frequency antenna trimmer, carefully rotating the receiver tuning control back and forth across the 15,00e K.C. polit in order to allow for alight detuning of the

Alignment Data

Series-6B71-E, 6B51-D.P.

I. F. ALIGNMENT

Sot the signal generator to 456 K.C. and connest the output to the grid can of the 1 C 6 tube through a . 1 Mid. condenser. The generator ground is connected to the chassis ground post or frame, which must be externally grounded. The
receiver dial is met to its highest frequency (gang open) and the volume control turned full on.

The list and ind 1. F trimming condensers located as shown on the tube layout chart, are then adjusted by means of a non-metallic screw driver until maximum output is obtained. It is recommenced that the chassis be placed on a nonmetallic surface otherwise the adjustment of Ch may be affected.
R. F. ALIGNMENT

1500 L. ${ }^{5}$. The signal generator is set to 1500 K.C. and connected to the antenna post of thu receiver through a .00025 Mid . condenser.

The generator ground lead and chassis frame must be connected and externally grounri.ed

With the receiver dial set at 1500 K.C. and volume full on, adjust the oscillator trimming con denser until a signal is heard.

Vote: There may be two signals present, use the on: obtained by minimum capacity setting of the trimming condenser and adjust it to its peak The antenna trimming condenser is then adjusted for maximum output.
600 K. C. The signal generator and the receiver dial are fen set to $600 \mathrm{~K} . \mathrm{C}$. The $600 \mathrm{~K} . \mathrm{C}$. padding condenser, located as shown on the tube layont chart, is adjusted for maximum output. While making this adjustment, rock the tuning contra: back and "orth through the signal until maximum output results. Following this it is advisable it output results. Following this, it is advisable to repeat the procedure outhed for 1500 K.c.. order to compensate for an g the adjustment of the series padding condenser.

beíou:-
 Series 6V82-E only

 io 15 M.G. and connect its output to the antenna post of the receiver through a 400 ohm resistor The ground of the signal generator is connected to the chassis frame or ground post and must be externally grounded. Switch the receiver to short wave band, set the receiver dial to $15 \mathrm{M} . \mathrm{C}$. and turn the volume control full on.

Adjust the short wave oscillator trimming condenser (shown on the tube layout chart) until a signal is heard. Note: There may be two signals present. Use the one obtained by the minimum capacity betting and adjust the trimming condemnser to the peak of the signal. Then adjust the short wave antenna trimming condenser for max ymum output. The short wave sensitivity is 30 microvolt y at $15 \mathrm{M} . \mathrm{C}$ and 75 mic volts at 6 M .
wAVE TRAP ADI'STMENT
The foregoing alignment having been complated, adjust the signal generator to 456 K.C. and connect its output through a . $000: 5 \mathrm{M}$ Mid. condenser to the antenna post of the recwiver. With the selector switch in (he form pave trap to minimum output. It will probably be ne c essary to use several thousand microvolt to obtain a readinir while making this adjustment.

For Circuit Information see Data Sheets 38 and 39

PHONOL

Alignment Dato for Series-
6B51-D and P, 6B7 IE, 6V82-E, 650 and 655

.559 saldaS - siammisf-fnohol faypos

DATA SHEET

PHONOLA- 40

Shea $-1 / 2$ nect the output to the grth cap of the 1 C 6 tube through a . 1 Nid. condeazer. The generator ground is connected to the chassis ground post or frame, which mast be externally grounded. The receiver dial is set at maximum frequency (gang open), and the volume control turned full on.

The 1 st and 2 nd 1 . F. trimming condensers located as shown on the fube layout chart, are then adjusted by means of a non-metallic screw driver until maximum ostpit i:3 obtained.

R. F. AHGNMENT

1500 K.C. The gignal geuerator is set to $\mathbf{1 5 0 0}$ K.C. and connected to the antenna post of the recelver through a .00025 Mfd . condenser.

The generator ground lead and chassis fram + must be connected and externally grounded.

With the receiver dial set at 1500 K.C. an denger undil a aignai is neard.

Notes There may be two sigrals present, use the one ubtained by minimum capacity setting of the trimming condenser and acjust it to its peak. The anteana trimming condenger in then adjusted for maxicium: output
$600 \mathrm{~K} . \mathrm{C}$. The signal generator and the recelver dial are hen set to $600 \mathrm{~K} . \mathrm{C}$. The $600 \mathrm{~K} . \mathrm{C}$. padding roncenser, located as shown un the tube layout chart is adjusted for maximum output. While making this adjustment, rock the tuning control back and forth through the signal until maximuri: output remults. Following this, it is advisable tu repeat the procedure outlined for $1500 \mathrm{~K} . \mathrm{C}$. . in order to compensate for any slight discrepancy caused by the adjustment of the series padding condenser.

Short Wave Alignment-Serres 6 b62-E short Wave Band 15 M.C. Set the sigmal generator to 15 M.C. and connect Its output to the antenns post of the receiver through a 400 ohm resistor The ground of the signal generator is connocted to the chassis frame or ground post and must he externally grounded. Switch the recedver to short wave band, set the receiver dial to $15 \mathrm{M} . \mathrm{C}^{2}$. And turn the volume control full on.
Adjust the short wave oscillator trimming con denger untll a signal is hoard

Note: There may he two signals present. use the one obtained by the mininum capacity setting of the trimming condenser and adjust to its peali. The short wave antenna trimming condenser is then adjusted for meximum output.

PHONOLA-4I

$2-V 7 O N O H d$
 IJJHS VIVO

173HS VIVO

Set the sigral generator to $456 \mathrm{~K} . \mathrm{C}$. and ron nact the output to the griti cap of the 1 ch tube through a 1 Mid. contemser. The generator ground is connected to the chassis ground post or frame, which must be externally grounded. The receiver dial is set at maximum frequency (gang open), the selector switch turned to broadcast band position and the volumn control turned full on.

The 1st and 2nd I F. trimming condensers forated as shown on the thhe layout chart, are then adjusted by moans of a non-motalle screw driver until inaximum output fs obtalned.

Broadeast Band 1500 K.C. Set the signal generator to 1500 K.C. and connort its output lead to the antenna post of the recever in sertes with a .0002 Mid. condenser. The gronind from the signal fon frator must be connected to the fhas soun post or irame and externally grounded.

With the hand selector switch in the broadcast position, the volume control turned full at $1500 \mathrm{K.C}$. broadcast oscillator tilmming condenser (located as shown on the tube layout chart) until a signal is heard. Nole: There may be two signals preseni, use the one obtained by the minimum capacity setting and adjust the trimming condenser to the peak of the signal. Then adjust the broadcast sntenna trimming condenser for maximum output.. 600 K.C. Set the receiver dial and the signal generato: to 600 K.C. Adjust the 630 K.C. padding condenser for maximum output. While making this adjustment rock the tuning costrol back and forth throunh the gignal until maximun output results. Following this, it is advisable to repeat the procedure ontlined for 1500 k . C- to compensate far any sligtt discrepancy cansed by the adjustment of the series padding condensez.

Short Wave Iband 15 M.C. Set the signal generator to 15 M.C. and connect its output to the antenna post of the recelver through a 400 ohm resistor The ground of the slgnal generator is connected to the chassis frame or ground post and must be externally grounded. Switch the receiver to short wave band, set the recelver dial to 15 M.C. and turn the volume control full on.
Adjust the short wave oscillator tilmming condenser unill a signal is heard.

Note: There may be two signals present, use the one obtained by the mindmum caparity setting of the trimming condenser and adjust it to its peak, The short wave antenna trimning condenser is then adfusted for maximum output.

AL/GNMENT DATA

1. F. ALIGMMENT

Set the signsl generator to 456 K. C nect the output to the rrid cap of the 6 A 8 tube through a. 1 Mfd. condenser. The generator ground is connected to the chassis ground post or frame Which must be externally grounded. The recelver dial is set to it hishest. fremurncy (gang open), the selector switcin turned to the broadcast position, and the volume control turned full on.
The I. F. trimers, located as shown on the tube layout chart, are then adjusted by means of a non-metallic screw driver until maximum output results.

R. F. ALIGNMENT

Broadcast Band
$1500 \mathrm{~K} . \mathrm{C}_{\text {. }}$ Set the signel generator to $1500 \mathrm{~K} . \mathrm{C}$., and connect its output lead to the antenna post of the receiver in series with a 00025 Mfd . condenser. The ground from the signal generator must be connected to the chassis ground post or frame, and ex ternally grounded.

With the band selector switch in the broadcast position, the dial of the recefver set at 1500 K.C. and the volume control turned full on. adjust the

I. F. ALIGNMENT

Set the signal generator to $456 \mathrm{~K} . \mathrm{C}$. and connect the output to the grid cap of the 6A8 tube through a .1 Mfd. condenser. The generator ground is connerted to the classis ground post or frame, which inust be externally grounded. The receiver dial is set to its highest frequency (gang open) and the volume cantrol tirned full on.

The I. F. trimmers lorated as shown on the tube layout chart are then adjusted by means of a non-metallic screw driver until maximum output is obtained.

r. F. ALIGNMENT

Broadcast Band 1500 K.C. The signal generator is set to 1500 K.C. and conmected to the antenna post of the recmiver throuph a .00025 Mid. condenser.
The generator rround lead and chassis frame must be connected and externally grounded.

With the receiver dial set at 1500 K.C. and volume full on, adjust the ascillator trimming condenser until a stgnal is heard.

SERIES-673-E, G103-E-P. G1AJ-E Circuits and Layouts on Data Sheets-45 \&

broadcast osclllator trimming cordenser, located as shown on the tube layout chart. until a signal is heard. Note: There may be two signals present, use the one obtained by the minimum capacity setting of the trimming condenser and adjust it to its peak. Then adjust the interstage and antenna trimming condensers to maximum eutput.
600 K.C. Set the receiver dial and the signal generator to 600 K.C. Adjust the 600 K.C. padding condenser for maximum output. While making this adjustment rock the tuning control back and forth through the signal until maximum output results.

Following this, it is advisable to repeat the procedure outlined for 1500 K.C. to compensate for any slight discrepancy caused by the adjustment of the series padding condenser.

Interinediate Band

5 M. U. Set the signal generator to 5 M.C. and connect its output to the anteuna post of the recelver through a 400 ohm resistor. The ground of the signal generator is connacted to the chassis frame or ground post and exterually grounded.
lurn the band selector switch to intermediate band, the receiver dial to 5 M.C. and the volume control full on

Adjust the intermediate oscillator trimming condenser, shown on the tube layout ahart, until a slgnal is heard. Note: There may be two signala present, use the one obtained by minimum capacity setting and adjust the trimming condenser to the peak of the signal. Then adjuit the futermediate and antenna trimming sondensers to maximum output.
Shome Wave Banos.
M. C. The intermediate paiding condenser is adjusted at 2 M.C. The same procedure as outlined for the adjustment of the 600 K.C. padding condenser is used only, of course, on 2 M.C. instead of $600 \mathrm{~K} . \mathrm{C}$.

15 M.C. and 6 M.C. The same procedure is employed as outlined for the intermediate band only, of course, the parallel trimming condenser is adfusted at 15 M.C. and the series padding condenser at 6 M.C.

SERIES-65I-L-D-D. 662-E

Note: There may be two signals present, use the one obtained by minimum capacity setting of the trimming condenser and adjust it to its peak. The antenna trimming condenger ift then adjusted for maxireum output.
$600 \mathrm{~K} . \mathrm{C}$. The signal generator and the receiver dial are s.hen set to 600 K.C. The 600 K.C. padding conderser, located as shown on the tube layout chart, is adjusted for maximum output. While making this adjustment, rock the tuning control back and ccrth through the sigual until maximum output results. Following this, it is advisable to repeat the procedure outlined for $1500 \mathrm{~K} . \mathrm{C}$., in order to compensate for any slight discrepancy caused by the adjustment of the series padding condenser.

WAVF THAP ADJUSTMENT

The toregoing alignment having been completed, sec the signal generator ta $456 \mathrm{~K} . \mathrm{C}$. and closed). Connect the generator to the antenus post of the receiver through a .00025 Mfd . condenser. Then adjust the wave trap trimming condenser to minimum output. Several thousand microvlts will be required to make thls adjust microvits will be required to maise this adjust ment.
circuits and Layouts on Data

Short Wave Band Serees 662-5 ondy
15 M.C. Set the signal generator to 15 M. C. and connect its output to the antenna post of the roceiver through a 400 ohm resistor. The ground of the signal generator is connected to the chassis rame or ground post and exiernally grounded. Switch the receiver to short wave band, set the receiver dial to 15 M.C. and turn the volume control full on.

Adjust the short wave oscillator trimming condenser, shown on the tube layout chart. until a signal is heard. Note: There niay be two signals jresent, usa the one obtained by the minimum capacity setting and adjust the trimming condenser to the peak of the signal. Then adjust the short wave antenta trimming condenser for maximum output.

LIJHS VLVO

Ob-f2a45 ofog

ALIGNMENT DATA SERIES GAI

Circuiton Data Sheet-48

I. F. ALIGNMEENT

Set the signal generator to 456 K.C., and connect the output to the grid cap of the 6 A 8 tube through a. i Mfd. condenser. The generator ground is connected to the chassis ground post or frame which ruust be axternally grounded. The receiver dial is set to its highest frequency (gang open), and the voiume control turned full on.
The I. F. trimmers, located as shown on the tube layout chart, ere then adjusted by means of a non-metallie serew driver until maximum output results.
R. F. ALIGNMENT

1500 K. C. Set the signal generetor to 1500 K.C., and connect its output lead to the amtenna post of the recelver in series with a .00025 Mid . condenser. The ground from the signal generntor must be con-
pected to the chassis ground lead or frame, and externally grounded. WIth the receiver dial set s 1500 K.C., and volume full on, adjuat the oecil lator trimming condenser until a signit is heard Note: There may be two signass present use the one obtained by the minimum capacity set eng of the trimming condenser and adjust it to it reak. Then adjust the antenna trimming condenser for maximum output.

00 K.C. Set the receiver dial and the efgnal generator to $600 \mathrm{K.C}$. Adjust the $600 \mathrm{~K} . \mathrm{C}$. padding condenser for maximum outpurt. While making this adjustment rock the tuniag contral back and eorth through the signal until marimum output re sults.

Following this, it is advisable to repeat the prosedure outlined for $1500 \mathrm{~K} . \mathrm{C}$. to compensate for any slight discrepancy caused by the adjustment any slight discrepancy caused by

The R.F. sensitivity of this recelrer is 100 nicrovolts at $1500 \mathrm{K.C.}$, and 125 milcrovoles at 600 K.C.

VOLTAGLES

All voltages Indicated on the diagram are measured from the chassis with a voltmeter of 1000 ohms per volt. Readings were takan with volume control turned full on line voltage et 115 volts und antenna and ground leads shorted together.

MODEL 6B41-M
MODEL 6B41-D
Circuit on Dota Sheet-48

1. F. AIMGNMENT

Set the signal generatar to $456 \mathrm{~K} . \mathrm{C}$. and connect the output to the srid cap of the 1C6 tube through a .1 Mrd. condenser. The generator ground is connected to the chansis ground post or frame, which must be externally grounded. The recelver dial is set at maximum irequency (gang open), and the volume cantrol turned full on.

The 1 st and 2 nd I. . trimming condensers located as shown on the tube layout chart, are then adjusted by means of a non-metallic screw driver until maximum cutput obtained. It is recommended that the chasis the placed on a non-
metallic surface, otherwise the adjustment of $C 7$ may be affected.
H. F. ALIGNMENT

1500 K.C. The signal generator is set to 1500 K.C. anc connected to the antecna post of the receiver through a .00025 Mfd . condenser.

The generator ground lead and chassis frame must be connected and externally grounded.

With the receiver dial set at 1500 K.C. and volume fall on, adjust the oscillator trimming con. denser until a signal is heard.

Note: There may be two slgrals present, use the ane obtained by minimum capacity setting of the trimming condenser and adjust it to its peat The anteana trimming condenssr in then adjusted
for mazimum ontput
800 K. . The signal genarator and the recalver dial are i.hen set to 600 K.C. The 600 K.C. padding condenser, located as shown on the tube layout chart, is adjusted for maximum output. While making this adjustment, rock the tuaing control back and forth through the sigaal unill mazimum output results. Following this, it is anvisable to repeat the procedure outlined for 1500 K.C., in order to compensate for any slight discrepancy caused by the adjustment of the series padding condenser.

The R. F. sensitivity of this receiver is 65 mlanovolts at $1500 \mathrm{~K} . \mathrm{C}$. and 90 mlerovolts at $600 \mathrm{~K} . \mathrm{C}$.

$$
\text { Irost }=7 \%
$$

<6-986/ $0-5209$ pun 7.5289 S71275

919

519949

DATA SHEET

PHONOLA-51

DATA SHEET

Chassis
Fitted in RogersMajestic 589
Phono-Comb. 1930

NOTE-
Majestic
Model 101 Phono-Comb. Uses same Circuit But Power Unit is Separate 1929-30

MAUESTIC SCREEN GRID RECEIVEE

Tinge		Put	${ }_{\text {L }}$	Pout vat (sa.v.vato				
RF.	924	3		180	20	3	2.55	3
Det	5.34	3		225	so	10	2	10
p.p	445	25		250				37-5
- measureo								

SCHEMATIC DIAGRAM of MAJESTIC SUPER SCREEN GRID
Mooct 130 -A crasas/s 28.00 f 30.00 crece $1930-31$ I.F.175. KC

Printed in Canada

tube arrangement Model 50 LDOKING FROM BALK.
(RF) OSC (1.0) (1F)

Printed in Canada.

MODEL 21 (AC) 1930-31

Printed in Canada.
DATA SHEET

SUPERHETERODYNE RADIO RECEIVER MODEL 26 - 1931-32

$c_{,}^{\prime}, c_{,}^{5} c_{,}^{6} \div \cdot 5 \text { mғd. }$ $c^{2} c_{3}^{3} c^{22} c^{23} c^{24} \%$	$\begin{aligned} & R^{3} \quad 30000 \\ & R^{7}, R^{8} 100000 \end{aligned}$	$R^{\prime \prime}$ $R^{\prime 4}$	40000 500000	Oscillator 54	4	-	2.5
$c^{8}-8 \cdot 1$ M/ $c^{9}-6.0$.	$R^{10} 6000 \Omega$	2^{15}	800000Ω	I. F. 235	3	62	2.5
$c^{10}, c^{18}, c^{19} \quad 02$.				2nd. Det. 135	Nil	-	15
$c^{12} \cdot 00075 c^{13} \cdot 00068$	MODEL-29			A.V.C. 25	Nil		1
c^{14}, c^{20} 00025 $c^{25}, 29$.04	MODEL -29			Power ... 200	30	215	5

MODEL 29
 1932

1.F. 175 kc

$\begin{array}{lr}\text { Plate } \\ \text { Volts } & \text { Pur } \\ \text { Cu }\end{array}$
R. F. ..

Plate urrent	Screen Volts	Grid Volts
2.5	-	3
.5	54	5
4	-	2.5
3	62	2.5
Nil	-	15
Nil	-	1
30	215	5

Model. 32.

$$
\pi
$$

Position

lst. Det.	125	0	65	1.1
Osc.	64	4	-	0
I.F.	125	2	65	2.2
zud. Det.	65	. 15	-	11.
1st. A.F.	120	2	-	2.
power	10)	5	-	21 .

Model 34 1932-33 I.F 175 kc.

TRIMMER ADJUSTMENT MODEL 34
I.F.-175 K.C. Adjust in order No. 1, No. 2, No. 3, No. 4 R.F.-Trim at 1,40t K.C. in order-Osc., Det., and R.F. Oscillator Tracking Condeuser-Adjust at $600 \mathrm{~K} . \mathrm{C}$.

1.F 175 kc

C-1	(0.5 mf)	K-1	16,000
C-2	1 mf		
C-3	$\{0.1 \mathrm{mf}\}$	k-2	25,000
C-4	0.5 mf	R-3	30,00\%)
(-5) (-6)	${ }_{\text {a }}^{0.5 \mathrm{mif}}$. $0+$	1-.	10,000
(-6)	$8^{.04} \mathrm{mit}$	1,	0
C-8	8 mf	R-S	+0,000)
C-9	6 mf	R--	350,000)
C-11	0.02 Mf	E. -7	100,000
C-12	750 mmf	12.8	200,000
(-13	800 mmmf	R-9	
C-14	0.0025 mf	R-9	S,(00)
(-15	380 mmmf	R-10	6,000
C-16		R-11	40.000
		R-12	150
C-18	. 1 mf	R-13	100,000
(-19	$\begin{aligned} & \text { 2x. } 02 \mathrm{minf} \\ & .00025 \mathrm{mf} \end{aligned}$	R-14	1.5 Meg
C-21	. 04 mf	R-15	$8(0), 000$
C-22	$\begin{array}{ll}.1 & \mathrm{nif} \\ .1 & \mathrm{mff}\end{array}$	R-16	500.000
C-24	. 1 mf	R-17	120,000
C-25	. 04 mf	R-18	
C-26	. 25 mmf	R-19	2 Meg
C-28	. 004 mf	R-19	2 Meg
C-29	. 04 mf	R-20	1 Meg
C-30	160 Mmf .	R-21	5,000
C-3!		R-23	250,000 15,000
C-32	. 00025 Mf	R-24	75
C-33	. $1 \mathrm{Mf}$.	R-25	15,000
C 34	. 0001 Mf .	R-27	6,0

Radiotron No.	Control Grid	Screen Grid	Plate to	Soreen	Plate
	to Filament Volts	to Filament Volts	Filament	Current	Current
R.F.	0.2	65	157	1.0	M.A
1st Detec	tor. 0.5	65	157	0.1	0.2
Oscillator	- 1.0		65		4.0
I.F.	0.5	6.5	157	1.0	3.0
2nd Dete	tor 2.0	155	0	4.0	0
1st A.F.	. 1.0 M		155		2.5
Power.	.14.0 M	DEL 32-	155		1.2

TRIMMER ADJUSTMENTS

I.F.-175 K.C. acjust in order-No. 1, No. 2, No. 3, No. 4

Printed in Cunada.
DATA SHEET
MARCONI- 14

Models 36-37

 1932-33 IF. 175 kc.

MODEL 37 Model 36 is identical except for output transformer und speaker connections which are as in Model 35.
mimosc. Thumens. mum conran

S/W I.F.-1520 K.C. Adjust in order-No. 1, No. 2, No. 3 S/W Oscillator Tracking Condensers. Adjust at following frequencies-(1) Red Band-12,000 K.C. (Approz. 81° on dial) (2) Yellow band - 4,500 K.C. (Approx. 93° on diad)
(3) Green Band-1,650 K.C. (Approx. 90° on dial).

VOLTAGE READINGS AMD CONDENSERS FOR MODELS 35, 36-37
(MODELS 36-37 ONLY)

TRIMMER ADJUSTMENTS—MODELS 35, 36-37
I.F.-175 K.C. Adjust in order-No. 1, No. 2, No. 3, No. 4. R.F.-Trim at 1400 K.C. in order-Osc., Det., and R.F. Oscillator Tracking Condenser-Adjust at 600 K.C.

CONDENSERS FOR MODELS 35, 36-37
*Modeis 36, 37 only.

C1*	21-370	Mmf	C27	. 01	Mf
C1+	21-370	"	C28	. 02	"
C2	60	"	C29	. 05	"
C3*	250	"	C31	1.	"
C4	850	"	C33	. 02	"
C5	. 1	Mf	C34	500	Mmf
C6	. 05	"	C35	1.	Mf
C7	. 1	"	C36	8	,
C8	. 05	"	C37	8	"
C9	. 1	"	C38	$\{.02$	"
C10*	. 1	"	C39 ${ }^{\text {a }}$	$\{.02$	"
Cl1	. 1	/	C40	. 004	"
C12	. 1	/	C41	. 2	"
C13	1	"	C42*	13-268	Mmf
C14	6-70	Mmf	C43*	360	"
C15	6-70	"	C44*	250	"
C16	6-70	"	C45	. 004	Mf
C17	. 004	Mf	C46*	. 002	"
C18	. 1	"	$\mathrm{C} 47^{*}$. 1	"
C19	. 1	"	C48*	. 1	"
C20	. 05	"	C49*	308	
C21	6-70	Mmf	C50*	308	
C22	250	"	C50\%	665	\%
C23	. 01	Mf	C51*	248	"
C24	. 01	'.	C52*	4-20	"
C25	. 001	"	C53*	6-70	"
C26	250	Mmf	C54*	6-70	"

RESISTORS FOR MODELS 35, 36-37 SEE DRTA Sheet-

Model 40 1933-34 I.F. 175 kc .

Note-Late models have an additional resistor (R38) connected between Tone Controlf(R29) and condenser,C28.

Model 43 1933-34 I.F. 175 kc.

Model 45

The wiring diagram of Model 45 is identical with Model 43 except for the addition of a Tone Control to the output circuit as shown in cut.

Continuity, Voltage Readings and Alignment are exactly the same as Model 43.

ADDITIONS TO PARTS LIST
 FOR MODEL 45 ONLY

R16 250,000 Ohms Tone Control and Switch. Type 41541 (Rep-aces Switch-Type No. 39977)
C15 .05 Mf. 400 volt Tubular Condenser Speaker Type X 775 (Replaces Type A3)

Model 42 Auto Receiver: same as Westinghouse Model 43

See Westivghouse 18 .

Tune Test Oscillator and receiver to $600 \mathrm{~K} . \mathrm{C}$. and adjust Oscillator Tracking Condenser (C5).

Short Wave Trimmers:-First make sure that the Broadcast Band Trimmers are properly aligned then switch to short wave and set the receiver dial to 1,120 ard the Test Oscilla, or to 2,400 K.C. The S/W'Trimmers C26 and C 25 should then be adjusted for maximum output.

If the Test Oscillator will not supply a fundamental frequency of $2,400 \mathrm{~K}$.C. it may be set at 800 or $600 \mathrm{~K} . \mathrm{C}$. Do not attempt to use a harmonic of $1,200 \mathrm{~K} . \mathrm{C}$. as this frequency may be picked up directly, as mentioned under "Short Wave Circuit."

 tor to the grid cap of the 6A7 tube and to chassis, leaving the grid clip in place. If there is no blocking condenser in the Test Oscillator, a $1 \mathbf{~ M f . ~} 200$ vo't condenser should be connected in series with the lead from the Test Oscillator to grid. This is necessary to avoid changing the bias. The I.F. trimmers should now be adjusted for maximum output, in the following order:C29, C28, C27, C26.
R.F. Trimmers:-Turn the tuning condenser to minimum and set the dial pointer to the last scale division. Connect a Broadcast Band Test Oscillator to the antenna and ground leads and tune the receiver and oscillator to $1,400 \mathrm{~K} . \mathrm{C}$. Adjust in order:-Oscillator (C5), Detector (C3) and R.F. (C1) Trimmers.

Tune Test Oseillator and receiver to $600 \mathrm{~K} . \mathrm{C}$. and adjust Oscillator Tracking Condenser (C9) for maximum outpat.

Short Wave Trimmers:-It is highly desirable that the S / W Oscillator trimmer remain as acjusted in the factory and care should be taken not to disturb the setting of this condenser (C6). If this adjustment has not been disturbed or the wiring of the receiver altered, the S/W circuits should be aligned as follows:-Connect a test oscillator to the A and G leads, using a 200 Mmf condenser in series with the antenna lead. Adjust the test oscillator to give a 14,000 K.C. signal and tune the receiver to the signal. The Detector and R.F. trimmers (C4 and C2) should now be adjusted for maximum output.

If the adjustment of the S / W oscillator trimmer has been changed, it will have to be properly reset, otherwise, the receiver may not tune to the maximum frequency required. The easiest way of accomplishing this is to use an additional short wave receiver. This receiver is tuned to a 16,000 K.C. unmodulated signal supplied by

Models 49-51. 1934-35

the Test Oscillator. The receiver to be adjusted is then turned on and the gang condenser set at minimum. The S/W Oscillator Trimmer (C6) is now adjusted to the point where this circuit is oscillating at a frequency which, when picked up by the auxiliary receiver (still tuned to the Test Oscillator) will produce a low beat note. This indicates that the S/W Oscillator is tuned to 16,000 K.C. The Detector and R.F. Trimmers (C4 and C2) are then aligned as described above, taking care not to make any further change in the setting of the S/W Oscillator Trimmer (C6) while making these adjustments.

Wave Change Switch:-Dirty switch contacts will cause noisy and intermittent operation and should therefore be cleaned periodically with gasoline or alcohol. Do not use any labricant on these contacts.

We also recommend periodic cleaning of the contact springs in the gang tuning condenser.

Overload Indicator: This device is provided to indicate when the audio output of the power tubes has reached the maximum for undistorted output. Considerably greater volume can be obtained but a large percentage of harmonics will be present and some distortion will be apparent. The functioning of this device is as follows:-1'he D.C. voltage drop across the speaker field is applied to the plate and cathode of a type 89 tube while the grid is connected to the cathode through the primary of the output transformer. Normally, no plate current flows in this tube but when the audio voltage across the output transformer reaches a certain value, sufficient plate carrent (approx. 10 Ma .) Hows to cause the relay to close, which changes the colored slide in front of the pilot lamp. 'Tkis takes place at 3 peak output of approximately 4.5 watts.

Adjustment of Overload Indicator:-The procedure for adjusting the overluad indicator is as follows:- First make sure that both 42 output tubes and the 89 relay tube are in $0 . K$. condition, next, connect an output voltmeter across the primary of the output transformer (this can conveniently be done by connecting to the grid and plate pins of the speaker socket).

Supply a signal to the receiver from a modulated oscillator and turn the volume control up slowly until the indicator changes to red. The output meter should then read approximately 125 volts, if too high turn down the volume control and turn the adjusting screw on the back of the indicator case, counter clock wise about hulf a turn. If too low, turn clock wise. Again increase the volume and note the voltage at which the light changes. Repeat this procedure until an adjustment is secured which allows the slide to change when the voltage reads approximately 125 volts A.C. R.M.S., which is equivalent to an output of 4.5 watts. Note that the change back from red to green takes place at a somewhat lower voltage. Care shonld be taken not to unscrew the adjustment too far or the spring retainer will drop down and it will be necessary to remove the indinator and re-assemble.

Before disassembling, remove the pilot light socket and rubber grommet from the top of the case. Two small screws on the back retain the mechanism.

Delay Relay: A thermostatic switch is connected to the filament of the rectifier tube and is used to prevent full voltage being applied to the filtar condenser until the tubes in the receiver are sufficiently heated to draw plate current. About ten to fifteen seconds is required for the relay to heat up when it closes and shorts out the $5,000 \mathrm{Ohm}$ resistor R 27 . If the receiver is switched on shortly after turning it off, the relay will naturally operate somewhat more quickly

Adjustment of Overload Indicator:-The procedure for ad justing the overload indicator is as follows:-First make sure that both 42 output tubes and the 99 rolay tube are in O.K. condition next, connect an output voltmeter across the speaker voice coil.

Supply a signal to the receiver from a modulated oscillater and turn the volume control cp slowly until the indicator changes to red. The output meter should then read approximately 7.85 volts, if too high, turn down the volume control and turn the adjusting screw on the back of the indicator case, counter clock wise about half a turn. If too low, turn clock wise. Again increase the volume and note the voltage at which the light changes. Repeat this procedure until an adjustment is secured which allows the slide to change whem the voltage reads approximately 7.85 volts A.C. R.M.S., which is equivalent to an output of 8 watts. Note that the change back from red to green takes place at a somer hat lower voltage. Care should be taker not to unscrew the adjustment too far or the spring retainer will drop down and it will be necessary to remove the indicator and re-assemble.

Before disassembling, remove the pilot light socket and rubber grommet from the top of the case. Two small screws on the back retain the mechanism.

Delay Relay: A thermostatic switch is connected to the fill ament of the rectifier tube and is used to prevent full voltage being applied to the filter condenser until the tubes in the receiver are sufficiently heated to draw plate current. About ten to ifteen seconds is required for the relay to heat up when it closes and shorts out the $5,000 \mathrm{ohm}$ resistor K 27 . If the receiver is switched on shortly after turning it off, the relay will naturally operate somewhat more quickly.

ALIGNMENT:

Always proeeed in the foilowing order:-(1) I.F. Trimmers (2) Broadcast Band Trimmers and Oscillator Padding Condenser
(3) Short Wave Trimmers anc S/W Oscillator Padding Concenser. Note that any alteration to the B.C. band trimmers will affect the sligament of the short wave circuits. Correct aligament can only be obtained by using a weak signal and measuring the output voltage with an output meter.
I.F. Trimmers:-Connect a 450 K.C. Test Oscillator to the grid cap of the 6A7 tube anc to chassis, leaving the grid slip in place. If there is no blocking condenser in the Test Oscillator, a 1 Mf. condenier should be inserted in the lead to the grid cap. Adjust in order:-C29, C28, C27, C26.

Broadcast Band Trimmers:-First see that the dial pointer is set at maximum when the gang condenser plates are fully nceshed.

Connert a Test Oscillator to the A and G terminals, adjust it to supply a $1,400 \mathrm{~K} . \mathrm{C}$. signal and set the receiver dial to $1,400 \mathrm{~K} . \mathrm{C}$. Adjust in order:-Oscillator, Detector and R.F. Trimmers. (See chassis diagram.)

Tune Test Oscillator and receiver to 600 K .C. and adjust Oscillator Padding Condenser C3.

Short Wave Trimmers:-Switch to the Red Band and connert a S/W Test Oscillator to A \& G terminals using a 200 Mmf . cos. denser in series with the lead to the antenna terminal. The tait oscillator should be set at $14,000 \mathrm{~K} . \mathrm{C}$. and the dial of the receiver at 21.4 metres. The Uscillator, Detector and R.F. S/W Trimmers (C45, Ca9 and C38) ghould now be adjusted. Make a careful adjustment of all three, using a very weak signal. Note the reading on the output meter, then make a slight readjustment of the Detector Trimmer (C39), carefully retune the receiver and again read the outpat meter. Praceed in this manner until the optimum adjustment is obtained. A final readjustment of the R.F. Trimmer may be required but do not touch the Oscillator Trimmer again.

Switch to the Purple Band, set the dial to 48 metres, adjust the Test Oscillator to give a 6,000 K.C. signal and carefully adjurit S/W Oscillator Trimmer C44 for maximum output.

Switch to Green Band, set the dial to 100 metres, set the Text Oscillator to give a $3,000 \mathrm{~K} . C$. signal and adjust S/W Oscillator Trimmer C40 for maximum output. Adjust the Test Oscillator to supply a 1,700 K.C. signal and turn the dial to 175 metres. Adjuat S/W Oscillator Tracking Condenser C 4 while rocking the dial back and forth.

Model 54
 1934-35
 IF. 450 Kc .

 MARCONF 25

MODEL 55

Overload Indicator:-The audio frequency output of the power stage is applied to the grid and cathode of the 89 relay tube. When this voltage reaches a value corresponding to an outpus of 8 watts, sufficient plate current flows (approx. 10 Ma .) to operate the indicator. Adjustment:-Make sure all output and rectifier tubes and the 89 relay tube are in O.K. condition.

Connect an output meter across the voice coil terminals of the dynamic speaker. See that the C.C. switch is in position No. 3 ($60-5,000$ cycles) and the speaker switch turned for dynamic speaker only

Supply a signal from a modulated test oscillator and increase volume until the output meter reads 6.9 volts, which should be a sufficiently strong signal to cause the indicator to change to red. If change takes place at a lower or higher voltage, adjust upper screw on back of indicator case and again increase volume to check operating point.

NOTE: 2.78 volts (RMS) across voice coil $=1$ watt and 8.8 volts $=10$ watts.

ALIGNMENT: a/so sep Date Shpets 24-25

The leads from the Test Oscillator should be connected to the grid cap of the 6A7 Detector tube aad to chassis, leaving the grid clip in place. If the oscillator is not provided with a blocking conderser, s . 1 Mf. 300 volt condenser should be connected in the lead to the grid. (1) Loosen Trimmer C28 until the screw is quite loose and then adjust C29 for maximum output. This will require a fairly strong signal from the oscillator. (2) Without making any further change in C29, proceed to adjust C28 for maximum output. (3) With the C.C. switch in Pasition No. 2, adjust C27 and C26. (4) Turn the C.C. switch to Position No. 3 and align C33 and C32. (5) Increase the output of the Test Oscillator until the tuniag meter shows a reasonable deflection and adjust C31 for ninimum output. This adjustment also gives maximum deflection of the funing meter.

All adjustments except that for C31 should be made with a weak signal. The adjustment for C29 and C28 should be made carefully or the audio frequeacy response of the receiver will be affected.

Broadcast Band Trimmers:-First see that the dial pointer is set at maximum when thée gang condenser plates are fully meshed. Connect a Test Oscillatar to the "A" and " C " termizals, adjust it to supply a 1,400 K.C. signal and set the receiver dial to $1,400 \mathrm{~K}$.C. Adjust in order:-Oscillator, Detector.and R.F. Trinmers. (See chassis diarram.)
1.F. Trimmers:-A sharply tuned $450 \mathrm{~K} . \mathrm{C}^{2}$. '`sst Oscillator modulated at about 100 cycles or less, is required. A . 2 to 5 Mf . condenser connected across the modulator grid inductance will usually bring the modulation down to this frequency. Note that

Tune Test Oscillator and receiver to 600 K.C. and adjust Oscillator Padding Condenser C3.

Short Wave Trimmers:- Switch to the Red Band and connect a S/W Test Oscillator to " A " and " G " terminals, using a ' 200 Mmf . condenser in scries with the lead to the antenna terminal. The test oscilhator should be set at $15,000 \mathrm{~K} . \mathrm{C}$. and the dial of the receiver at 20 metres. The Oscillator, Detector and IR.F. S/W Trimmers (C45, C39 and C38) should now be adjusted. Make a careful adjustment of all three, using a very weak signal. Set the Test Oscillator to 11,000 K.C., tune the receiver to this frequency (approximately 27 metres) and adjust Tracking Condenser C6 while rocking the dial back and forth. Reset the oscillator to 15,000 K.C. and carefully tune the receiver to this signal. Note the reading on the output meter, make a slight re-adjustment of the Detector Trimmer (C39), carefully retune the receiver and again note the output reading. Proceed in this manner until the optimum adjustment is nbtained. A final re-adjustment of the R.F. Trimmer may be required but do not touch the Oscillator Trimmer again.

If the receiver seems to lack sensitivity, replace the 6A7 tube and repeat the operations described in the above paragraph.

Switch the Purple Band, set the dial to 48 metres, adjust the Test Oscillator to give a $6,000 \mathrm{~K} . \mathrm{C}$. signal and carefully adjust S/W Oscillator Trimmer C44 for maximum output. When this has been completed, adjust the S/W R.F. Trimmer C64 for maximum sigusl. Do not touch the Detector Trimmer.

Suitch to Green Band, set the dial to 100 metres, set the Test Oscillator to give a $3,000 \mathrm{~K} . \mathrm{C}$. signal and adjust S / W Oscillator Trimmer C40 for maximum output. Adjust the Test Oscillator to supply a 1,700 K.C. signal and turn the dial to 175 metres. Adjust S/W Oscillator Tracking Condenser C4 while rocking the dial back and forth.

Mod. 55 1934-35 I. .450 Kc .

Wave Change Switch:-Dirty switch contacts will cause noisy and intermittent operation and should therefore be cleaned periodically with gasoline or alcohol. Do not use any lebricant on these contacts.

Condenser Vernier Drive:-Slipping oit this drive mechanism may be caused by lack of tension in the ball race spring. Erratic action is usually due to low spots on the inner surface of the ball race, which will necessitate replacing this part. A special lubricant (Castordag) can be obtained for lubricating this mechanism.

ALIGNMENT:

I.F. Trimmers:-Adjust the Test Oscillator to supply a modulated 450 K.C. signal and conrect to grid cap of 1C6 and chassis. The grid clip should remain in place and a series condenser of about . 1 Mi. should be used in the lead from the test oscillator.

Turn the volume control on full and reduce output from test oscillator until an output meter connected across the speaker terminals reads not more than 24 volts. Adjust in order, $\mathrm{C} 13, \mathrm{C} 12, \mathrm{C} 11$ and C 10 . Readjust the attenuator on the test oscillator as necessary, to keep the audio output below 24 volts.

Broadcast Band Trimmers:-Set dial pointer to last inder mark to the right on the dial when the gang condenser is at minimum capacity (plates out of mesh). Connect test oscillator to aerial lead and to chassis. Tune receiver to 136 and supply a 1,400 K.C. signal. Adjust C6, C4 and C2, at all times keeping the audio output at a very low value by adjusting the attenuator on the test oscillator.

Tune receiver to 55 and supply a 550 K.C. signal. Adjust oscillator padding condenser C2 for maximum output, while rocking the dial back and forth.

Short Wave Trimmers:-The test osciliator should be connected to the serial lead, using a 250 Mmf . series condenser and to chassis (not to ground lead). See that the chassis is also connected to ground. Unscrew short wave oscillator trimmer C7 until it is held by about two threads. Rotate the gang to tune in the 15,000 K.C. signal which should appear at about $140-$ 142 on the dial.

1934-35
 I.F. 450 Kc .

Make a rough adjustment of the short wave detector and S / W R.F. trimmers and then make a final adjustment of each by carefully observing the output meter reading while rocking the dial slightly after each adjustment of the trimmer screw. Keep the output below 24 volts while making these adjustments.

After making these adjustments, tune the receiver slowly toward 134 to pick up the image frequency eignal which should give about $1 / 3$ the output of the true signal. If no image frequency is picked up, the oscillator has been trimmed to the wrong peak (trimmer too far in). If more than $1 / 3$, the oscillator is O.K. but the R.F. and Detector trimmers are adjusted toward the image frequency.

These incorrect trimming positions result in good sensitivity at top and bottom of the scale but weak in the middle. Correct trimming results in uniformly high eensitivity.

Set pointer at 58 and supply a 6,000 K.C. signal. Adjust S / W Oscillator padding condenser C 9 while rocking the dial.

 ically with gasoline or alcohol. Do not use any lubricant on these contacts.

Condenser Vernier Drive:-Slipping of this drive mechanism may be caused by lack of tension in the ball race spring. Frratic action is usually due to low spots on the inner surface of the ball race, which will necessitate replacing this part. A special lubricant (Castordag) can be obtained for lubricating this mechanisin.

ALIGNMENT:

I.F. Trimmers:- Connect a 175 K.C. Test Osollator to the grid cap of the 6A7 tuke and to chassis, leaving the grid clip in place. If there is not blucking condenser in the Test Oscillator, a . 1 Mf. condenser should tic conrected in tlic lead from the Oscillator to the grid cap. Adjust in order:- C 12, C7 and C6

Broadcast Band Trimmers:- With the gang condenser set at minimum capacity (plates out), the dial pointer should be set at the last index mark to the left of the dial.

Connert the Test Oscillatcr to the aerial lead and to chassis. Tune the receiver to 138 and adjust the Test Oseillator to supply a 1,400 K.C. signal. Adjust in order:-Oscillater (C32), Detector and R.F. Trimmers.

Tune receiver tor 60 and supply a $600 \mathrm{~K} . \mathrm{C}^{2}$ signal. Adjust Oscillator Pudding corcenser ('5 while rccking the dial back and forth.

Short Wave Trimmers:-Set pointer at 140 and supply a weak 15,000 K.C. signal, connecting one lead of the Test Oscillator to the acriai lead, using a 250 Mmf series condensur, and the other lead to chassis (not to ground lead). Tine in the signal by adjusting S/W Oscillator Trimmer C25. The signal may be tuned in with two settings of this trimmer, the adjustment witi the trimmer the farthest out is correct. After setting this condenser, adjust the Detector Trimmer ghlle rocking the dial slightly, Adjust the R.F. Trimmer the same way. Only slight adjustments of these two trimmers should be required if the dial peinter has been correctly set.

In making these adjustments the signal should not be greater than will produce a reading of 1 volt across the voice coil.

Tune the receiver slowly toward 134 to pick up the image frequency signal. This should give about $1 / 3$ the cutput of the true signal. If no image is picked up the osc. trimmer C25 has been set to the wrong peek. If more than $1 / 3, \mathrm{C} 25$ is set $0 . \mathrm{K}$. but detector and R.F. Trimmers are adjusted toward the image position.

These incorrect trimming positions result in good sensitivity at 15,000 and 6,000 K.C. but weak at 12,000 and 10,000 K.C. Correct trimming gives gocd sensitivity at all points on the dial.

Set pointer ut 58 and supply a $6,000 \mathrm{~K} . \mathrm{C}$ signal. Adjust S/W Uscillator Padding Condenser C26 while rocking the dial back and forth. Switch back to Broadrast Band and check alignment of uscillator trimmer C32 at $1,400 \mathrm{~K}$.C. while rocking the dial back and forth. Do not louch the R.F. or detector trimmers after they have been adjusted on short wave.

printeo in canada
MARCONF 28

DATA SHEET

1.F. Trimmers:-Set the gang condenser at minimum and connect a $450 \mathrm{~K} . \mathrm{C}$. Test Oscillator to the grid cap of the 6A7 tube leaving the grid clip in place. A . 1 Mf . blocking condenser should be used in series with the lead from the Test Oscillator. Turn the volume control on full and reduce the output of the T.O. until the output of the receiver is not more than $1 / 2$ Watt (e.g. 1.07 volts at 400 cycles across v$⿴$ ice coil). Adjust, in order, $\mathrm{C} 12, \mathrm{C} 33, \mathrm{C} 7, \mathrm{C} 6$. Go over these adjustments several times to insure the best possible setting.

Broadcast Band Alignment:-Set the gang condenser at minimum eapacity (plates out of mesh) and adjust pointer to the lower side of the black band on the right hand side of dial scale.

Connect the Test Dscillator to the A and G terminais and supply a $1,600 \mathrm{~K} . \mathrm{C}$. signaL Tune the receiver to 1,600 and adjust, in order, С29, С27, C4.

Tune the receiver to 580 and supply a 580 K.C. signal. Adjust oscillator tracking condenser C5 while rocking the dial slightly in order to secure the maximum output. A final adjustment should be made at $1,600 \mathrm{~K}$. C .

These adjustments should be made with the volume confrol full on and the output of the T.O. reduced to give a maximum output from the receiver of not more than $1 / 2$ Watt.

Holes are provided in the tops of R.F. Det., and Osc. coil shield cans to permit the insertion of a tuning wand. This device may be used to check the correctness of alignment. Inserting one and of the wand in a coil, increases its inductance and inserting the other end decreases its inductance. With the receiver tuned to a steady signal, inserting either end of the wand in any of the three coils will cause a drop in output if all circuits are correctly aligued. If an increase is noted, it will indicate incorrect adjustment of the trimmer.

The same procedure cav be used for checking short wave alignment.

Short Wave Alignment:-If correct short wave alignment is to be obtained it is imperative to use a test oscillator that will supply the necessary tesit frequency as fundamentals and that will attenuate the signal so that a very low output is obtained from the receiver. An output meter is, of course, also essential. Connect the T.O. to the " A " and " G " terminals using a 250 mmf . condenser in series with the aerial lead and adjust it to supply a 16 M.C. signal. Rotate the gang condenser until the pointer is at 16 M.C. and tune in the 16 M .C. signal by adjusting C32, C28 and C25. To obtair exact trimming the detector trimmer C26 should be varied while rocking the gang condenser back and forth until maxims:m output is obtained.

Rotage the gang till the pointer is at approximately 6 M.C. and supply a 6 M.C. signal. Adjust S/W tracking condenser C10 while rocking the dial slightly to obtain maximum output. A final adjustment should be made at 16 M.C.

IE-INOJZHW ,

ALIGNMENT INSTRUCTIONS FOR MODELS 64-65 BATTERY-OPERATED

GENERAL DATA:

Circuit:-Dual Wave, six tube battery operated superheterodyne with automatic volume control.

Frequency Range:-525 to 1730 K.C. and 5600 to I 8000 K.C. Intermediate Frequency :- $450 \mathrm{~K} . \mathrm{C}$.
Undistorted Power Output:-485 Milliwatts.
Maximum Power Output:- 685 Milliwatts.
Sensitivity in Microvolts for 100 MW output © Short wave ($10 \mathrm{M} . \mathrm{C}$.) 8 MV ., Long Wave ($1000 \mathrm{~K} . \mathrm{C})$.3 MV .

Selectivity: -30 K.C. at 1000 times input at $1000 \mathrm{~K} . \mathrm{C}$.
Image Ratio:-13000/1 at 1000 K.C.
Filament Current: -620 Ma . at 2.1 volts.
Total Plate Current:-26 Ma. at 135 volts.

BATTERIES:-

Do not attempt to operate the receiver with more than 135 volts of "B" battery or the tubes will be damaged.

No "C" battery is required as correct bias voltages are automatically supplied to all tubes by the potential divider (Fil, R2, R25 and R3). This permits using " B " batteries even after they have dropped as low as 100 volts, although maximum sensitivi y and tone quality can only be expected with fresh " B " batteries.

When the total " B " voltage drops below about 112 volts, the 1 C 6 tube may not oscillate on the short wave bands. The actual voltage at which oscillation stops will vary with different tubes and if the receiver does not function on short wave when the batteries are partially run down, it may be necessary to try several new 1C6 tubes, in order to obtain one that will operate satisfactoriy.

Resistor Parrel

Resistor Panel

First Producion

Second Production.

ALIGNMENT

I.F. Trimmers:-Set gang condenser at minimum and connect a 450 K .C. Test Oscillator to the grid cap of the 6.47 tube leaving the grid clip in place. A . 1 Mf. blocking condenser should be used in series with the lead from the Test Oscillator. Turn the volume control on full and reduce the output of the T.O. until the output of the receiver is not more than 100 MW (e.g. 27 volts at 400 cycles across the speaker terminals). Adjust, in order, C13, C12, C11, C10. Go over these adjustments several times to insure the 'jest possible setting.

Broadcast Band Alignment:-Set the gang condenser at minimum capacity (piates out of mesh) and adjust pointer to the jower side of the black band on the right hand side.

Connect the test oscillator to the $A \& G$ terminals and supply \& $1600 \mathrm{~K} . \mathrm{C}$. signal. Tune the receiver to 1600 and adjust, in order, C6, C4, C2.

Tune the receiver to 580 and supply a 580 K.C. signal. Adjust the oscillator tracking condenser C8 while rocking the dial slightly in order to secure the muximum output. A final adjustment should be made at $1600 \mathrm{~K} . \mathrm{C}$.

These adjustments should be made with the volume control full nn and the output of the T.O. reduced to give a maximum output from the receiver of not more than 100 MW .

Holes are provided in the tops of R.F. Det. and Osc. coil shield cans to permit the insertion of a tuning wand. This device may be used to check the correctness of alignment. Inserting one end of the wand in the coil, increases its inductance and inserting the other end decreases its inductance. With the receiver tuned to ε steady signal, inserting either end of the wand in any of the three coils will cause a drop in outpat if all circuits are correctly aligned. If an increase is noted, it will indicate incorrect adjustment of the trimmer.

The same procedure can be used for checking short wave alignment.

Short Wave Alignment:-If correct short ware aligrment is to be obtained it is imperative to use a test oscillator that will supply the recessary test frequency as fundamentals and that will attentuate the signal so that a very low output is obtained from the receiver. An output meter is, of course, also essential. Connect the T.O. to the " A " and " G "" terminals using a 250 mmf . condenser in series with the aerial lead and adjust it to supply a 16 M.C. signal. Rotate the gang condenser until the pointer is at $16 \mathrm{M} . \mathrm{C}$. and tune in the 16 M.C. signal by adjusting $\mathrm{C} 7, \mathrm{C} 5$, and C 3 . To obtain exact trimming, the detectur trimmer C5 should be varied while rocking the gang condenser back and forth until maximum output is obtained.

Rotate the gang till the pointer is at approximately 6 M.C. and supply a $6 \mathrm{M} . \mathrm{C}$. signal. Adjust S / W tracking condenser C 9 while rocking the dial slightly to obtain maximum output. A final adjustment should be made at 16 . M.C.

PRINTED IN CANADA

1935-36

MODEL 66

RESISTANCE OF COILS, ETC.

Voice Coll Impedance: Model 65-2.3 Ohms; Model 67-1.5 Ohms: Model 68-8.3 Ohms.

VOLTAGE READINGS

SOCKET PINS TO CHASSIS-NEW R.M.A. STANDARD PIN NUMBERS

	CAP	PIN 2	PIN 3	PMN 4	PIN 5	PIN 6	CAP	PIN 2	PIN 3	PIN 4	PIN 5	PIN 6
R.F...... 6D6	-	235	90	5.5	5.5	-	1.4 Meg	30,000	15,006	650	650	-
Det. Oec... . . .6A7	0	235	95	220	13.5	4	1.4 Meg	30,000	98,000	50,000	50,650	403
I.E........... .6D6	0	235	90	5	5	-	1.2 Meg	30,000	15,000	650	650	-
2nd Det.......6B7	-	18	50	0	0	2.25	0-1 Meg	130,000	8,000	351,000	351,000	1,000
Power. 42	-	225	235	0	16	-	-	30,090	30,000	300,000	300	-
Rectifier....... 80	-	380 A.C.	380 A.C.	340	-	-	-	110°	110 ${ }^{\circ}$	31.200	-	-
							*180 Ohm	in 25 cyc	models			

Model 68.--Model 67 is iaentical except that Overloud Indicator is amitted.

DATA SHEET

ALIGNMENT INSTRUCTIONS FOR MODELS 66-67-68

GENERAL DATA:

Circuit:-Dual Wave, 7 tube, superheterodyne with preselector and full Automatic Volume Control.

Frequency $=1,750-525$ K.C. and 18,000 to 5,650 K.C.
Intermediate Frequency:- $450 \mathrm{~K} . \mathrm{C}$.
Undistorted Power Output:-Model 68, 3.2 Watts.; Models 67 and 68, 3.3 Wrtts.

Maximum Power Output:-Model 66, 4.5 Watts; Models 67 and 68, 5.4 Watts.

Sensitivity in Microvolts for 0.5 Watt output:-
Model 66, Long Wave- 3.5 Mv . Short Wave- 7 Mv
Models 67 and 68, Lorg Wave, High Sensitivity-1 Mv. High Selectivity-3.5 Mv.

Models 67 and 68, Short Wave, High Sensitivity-3.5 Mv.
Selectivity, Model 64:-28 K.C. at 1,000 times inpu'*.
Models 67 and 68, High Selectivity- 24 K.C. High Sensitivity38 K.C.

Image Ratio:-Better than 20,000/1 at 1,000 K.C.
Power Rallig:-115v. A.C.: 60 cy., 72 Watts; 25 cy., 74 Watts.
Short Wave Circuit -A six-pole, double throw switch is used to substitute short wave coils for the breadcast band coils, the circuit arrangement remaining unchanged. Individual trimmers are provided for each secondary winding and padding eondensers are provided for both the long and short wave oscillator coils.

Second Detector:-The 6B7 acts as a diode detector and 1st audio amplifier and supplies A.V.C. to the R.F., Converter and I.F. grids. Note that the I.F. is controlled to a lesser exteat than the others due to its grid return being connected to a lower point on the A.V.C. putential divider (R14, R13, R12). The I. F. Signal is applied to both diode plates of the 6B7, where it is rectified and the resulting audio frequensy appears across R14 and R1E, a portion of it being tapped off by the arm of the volume control and applied to the control grid of the 6B7, where it is amplified and passed on to the 42 Power tube.

Selectivity Switch (Models 67 and 68 only):-This switch is used to cut in either of two I.F. transformers between the 1st Detector and the I.F. Amplifier tube. One of these No. 45513) is designed to give normal selectivity and full tone cuality with maximum sensitivity. The other (45511) is designed to give high selectivity as an aid in separating stations when interference is experienced from stations in adjacent channels. A slight loss in sensitivity and fidelity occurs when this transformer is used. Always use High Sensitivity position when tuning for short wave stations.

Overload Indicator (Model 68 only):-A neon glow lamp is connected across a portion of the primary winding of the output transformer. When the audio voltage across this portion of the winding rises to approximately 70 volts, the lamp will glow. This corresponds to a power output of approximately 1.5 watts. As the volume is raised, the brilliancy increases and indicates that satisfactory tone quality cannot be expected.

Vernier Drive:-These models are fitted with an improved type of planetary ball type vernier and silent gear type condenser drive. A hardened drive spindle is used which should give a minimum amount of trouble. The spindle and drive shaft may be disassembled by removing the split washer under the pinion gear inside the condenser frame.

ALIGNMENT

I.F. Trimmers:-Connect a 450 K.C. Test Oscillator to the grid clip of the 6A7 tube and to chassis, leaving the grid clip in place. A . 1 Mf. blocking condenser should be usec in the lead from the Test Oscillator.

Model 66 only:-Adjust, in order, C29, C28, C40, C41.
Models 67 and 68 :-With switch in "High Selectirity" position, adjust in order, C29, C28, C27, C26, then turn to "Hign Sensitivity" and adjust C40 and C41.

Caution:-I.F. alignment is made at the factory using cathode ray oscilloscopes, and, as these circuits are very stable, it is inadvisable to attempt realignment unless you are certuin it is neces-
sary. This is particulurly important in Models 67 and 68 where it may be difficult to obtain correct I.F. adjustment unless the visual method of alignment is used.

Broadcast Band Trimmers:-With the gang condenser set at minimum capacity (plates out of mesh), the dial pointer shculd be set to point between the letters " G " and " A " of the word "Mega." Connect the Test Oscillator to the " A " and " G " terminuls and supply a 1,600 K.C. modulated signal. Rotate the condenser until the dial pointer is at 160 and adjust, in order, C5, C3, C1.

Supply a 580 K.C. signal and set pointer to 58 . Adjust oscillator tracking condenser C9 while rocking the dial slightly.

Holes are provided in the tops of R.F., Det. and Osc. shield cans to permits the insertion of a tuning wand. This device permits checking to correctness of the alignment without varying the trimmer adjustment.

Short Wave Trimmers:-If correct short wave alignment is to be obtained it is imperative to use a test oscillator that will supply the necessary test frequency as fundamentals and that will attenuate the signal so that a very low output is obtained from the receiver. An output meter is, of course, also essential. Connect the T.O. to the " A " and " G "' terminals using a" 250 mmf . condenser in series with the aerial lead and adjust it to supply a $16,000 \mathrm{~K}$. C. signal. Potate the gang condenser until the pointer is at $1,520 \mathrm{~K}$. C. (equivalent to 16 M.C.) and tune in the 16 M.C. signal by adjusting $\mathrm{C} 2, \mathrm{C} 4$ and C 6 . To obtain exsct trimming the detector trimmer (C4) should be varied while rocking the gang condenser back and forth until maximum output is obtained.

Rotate the gang till the pointer is at approximately 58 and supply a $6,000 \mathrm{~K}$. C. signal. Adjust S/W tracking condemser C10 while rocking the dial slightly to obtain maximum output.

Note:-Models 67 and 68 wiring diagrams are identical except for the neon lamp overload indicator which is used on Model 68 only.

Model 67-68

PRINTEQ IN CANADA

ALIGNMENT

I.F. Alignment:-

To balance the I.F. Circuit, connect the $2521 / 2$ K.C. test oscillator to the grid of the 6 C 6 tube through a 0.5 mfd . condenser and to ground. Adjust tine 1st I.F. primary trimmer to maximum output from either the speaker or an outpat meter. Follow in the same manner with the secondary, and the primary and sesondary of the 2nd I.F. transformer. This completes the I.F. circuit adjustment.
R.F. Alignment:-

1. Next attach the test oscillator through a 150 mmf . condenser to the antenna and ground leads.
2. Turn condenser plate completely out of mesh.
3. Set test oscillator to 1600 K.C.

VOLTAGE READINGS

Position	Tube	Ef	Ek	Eg 1	Eg 2	Eg^{3}	Ep
R.F. Amplifier	6D6	5.6	4.1	$*$	4.1	76	200
1st Det.-Osc.	6C6	5.6	4.5	0	4.5	76	200
I.F. Amplifier	6D6	5.6	4.1	$*$	4.1	76	200
2nd Det. A.V.C.	55	5.6	1.3	0	0	-	165
Power Amp.	42	5.6	0	3	0	200	192
Rectifier	84	5.6	200	-	-	-	-

f-Filament; k-Cathode; g ${ }^{1}$-Control Grid; ga-Suppressor; $\mathbf{g}^{3}-$ Screen Grid; \mathbf{p}-Plate; *-Depends on applied signal strength. All voltages measured from indicated points to ground. Battery voltage 6 volts. (Check voltages with condenser gang in full mesh.)
4. Adjust the oscillator condenser trimmer to approximate resonance at 1600 . Disregard dial setting for this operation.
5. Set test oscillator to 1400 K.C. and turn gang condenser to resonance and peak the three trimmers accurately. Now set pointer on the dial to 1400 K.C. by turning indicator screw from rear of head through pilot light socket hole.
6. Set test oscillator to 600 K .C. and tune set to pick up the signal. Rock the dial over this point while adjusting the padder condenser for gieatest output.
If the dial is off calibration at the low frequency end after this is done the indicator may be moved slightly in either direction to give a uniform accuracy over the entire scale.

RESISTANCE OF COILS

ALIGNMENT INSTRUCTIONS
 MODEL 70

ALIGNMENT:

r.F. Trimmers:-Connect Test Oscillator to grid clip of 6A8 tube and chassis, learing grid clip in place and using a . 1 Mf . condenser in weries with the lead from the test oscillator to the grid clip. Adjust to supply a frequency of $462.5 \mathrm{~K} . \mathrm{C}$.

With the Selectivity Switch in "High Selectivity" position, adjust, in order, C24, C23, C20 and C19. Recheck several times to make sure maximum output is obtained.

Turn Selectivity Switch to "Standard Selectivity" (Right) and align C22 and C21.

If a Cathode liay Oscillograph is used, the donble image method is considered hest for the alignment of I.F. circuits. The folding back of the high and low frequency sides makes symmetrical adjustment easy and very accurate, and reduces the poasibility of frequency error in aligning, since a small error is more obvious with two images on the sereen.

EIG. 1

FIG. 2

FiG:

Fig. 1 shows the image obtained on the high selectivity and Fig. 2 on the standard selectivity position. Fig. 3 shows a double image whech represents a circuit not symmetrically aligned to 462.5 K.C. but usually the closest approach to Fig. 2 that can be obtained with the esc of an output meter.

Note: After aligning the I.F. Circuits, all subsequent trimming operations should be made with the Selectivity Switch in the "High Sclectivity" position (Left).
S.W. I.F. Trimmors:--Supply a 1680 K.C. signal to the grid cap of the 6A8 second converter tube through a .05 Mf . condenser, leaving the grid clip in place. Turn W.C. switch to short wave and set gang at minimum. Adjust C18 for maximuin output.

Note that the oscillator circuit, contrary to usual practice is tured to a frequency lower than the signal, i.e., to 1217.5 K . C . Hence, if C18 is found to peak at two points, the currect setting is with the greater capacity (trimmer in).

Connect the test oscillator to the grid of the first. converter tube, 6 A 3 through a condenser. Adjust C17 and C16 for maximum output. See that the input is reduced to keep the output below . 5 watts.

Broadcast Band Trimmers:-With the gang condenser at miaimum capacity, set the pointer between the letters " E " and " G " of the word "MEGA" on outer scale. Set the switch for broadeast band, conneet test oscillator to A and G and supply a 1 tifo K.C. signal. Wiuh dial pointwr indicating 1600 K.C., adjust C10, $\mathrm{C7}$ and C4. If two peaks are noted on C10, the adjustment with the trimmer farthest out (lower capacity) is correct.

Supply a $580 \mathrm{~K} . \mathrm{C}$. signal and adjust C13 while rocking the dial back and forth at this frequency to obtain maximurn output.

Police Band: (B.W. Band No. 1):-With the W.C. switch in the central position, supply a 6600 K .C. signal to A and G through a 400 (hm non-indactive resistor. Rotate the dial to indicate 6.6 M.C. and adjust C11, C8 and C5.

Tune to $2.4 \mathrm{M.C}$. and supply a 2400 K .C. signal. Adjust C14 while rocking the dial slightly to obtain maximum output. Recheck CII at $6600 \mathrm{K.C}$. a above.

Short-Wave Band (No. 2):- (ionnect the test oscillator as above and turn the W.C. switch to the extreme left. With the dial pointer indicating 20 M.C., tune in a signal of this frequency by adjusting, in order, C12, C9 and C6. Set the dial to approximately 8 M.C. and tune in signal of this frequency by adjusting C15. Rock the dial to obtain the adjustment giving the greatest output. Recheck C12 at 20 M.C.

Note: On Broadeast, Police and Short Wave Bands if two settings of the oscillator trimmers are noted, the setting corresponding to the sinaller eapacity (trimmer out) is the correct one.

We recommend checking the correctness of alignment of R.F. Det. and Oscillator circuits by inserting a tuning wand into the tops of the coil shields. If the output decreases when either end of the wand is inserted, the circuit, is correctly aligned.

DATA SHEET
COUPTES: CPADN.

RESISTANCE OF COILS

ALIGNMENT

INSTRUCTIONS

ALIGNMENT:
I.F. Trimmers =-Wet gang at minimum, W.C. switch to broadcast band and variable I.F. control at maximum selectivity.

Connect Test Oscillator to grid clip of tube No. .j (and I.F.). Supply a 462.5 K.C. signal and adjust C28 and C27.

Connect Test Oscillator to grid clip of tube No. \ddagger (list I.F.) and adjust C26 and Ers. Touch up C28 and C27

Connect Test Oscillator to grid clip of tube Naca. 2 (mixer) and adjust C24 and C23. Touch up all trimmers, in order, C28, 27, 26, 25,24 and 23

It is absolutely essential that the diode transformer be in perfect alignment before attempting to trim the other transfo *mors.

If a Cathode Ray Oscilloscope is used for alignment of the I.F. circuits, the double image method is preferred and exactly the same procedure should be followed as specified above. After alignment is completed, the image seen should correspond to Fig. 1. As a check on the correctness of alignment, turn the selectivity control to the "broad" position which should give an image similar to Fig. 3.

If the curve is slightly unbalanced as in Fig. 2, it may be corrected by a slight adjustment of C28. If, however, it is badly out as in lii. 4, the entire alignment procedure should be repeated as it will be impossible to get correct trimming of all circuits with the oscillator connected to the grid of the mixer tube.

$$
\begin{gathered}
\text { MODELS } \\
\hline 1 /-72
\end{gathered}
$$

An opening has been made in the chassis base plate which permits connecting the oscilloscope to the junction of R14 and C40, which is a more suitable point to connect to than to the audio output. Similar provision has been made in the Model 70.
S.W. I.F. Trimmers: -Switch to short wave leaving control at maximum selectivity. Supply a 1680 K.C. signal through a condenser to grid clip of tube No. 3A (2nd converter).

Adjust C22 for maximum output. Note that this oscillator is tuncel to the lower peak, i.e., 1217.5 K .C.

Connect T.O. through a condenser to grid clip of tube No. ? (st converter) and supply a $1680 \mathrm{~K} . \mathrm{C}$. signal. Adjust C 20 and (in)

Broadcast Band Trimmers:-With gang condenser at maximum capacity, set dial pointer to centre line on right hand side of dial. Connect T.O. to A and G terminals, using a standard dummy antenna or a .00025 Mf . series condenser. Rotate dial to indicate $1600 \mathrm{~K} . \mathrm{C}$., and supply a signal of this frequency. Adjust in order, C13, C9 and C5. If C13 peaks at two points, the correct setting is with the trimmer further out.

Track C17 at 580 K.C. While rocking the dial to obtain the best setting.

IRetrim C13 at $1600 \mathrm{~K} . \mathrm{C}$.
Police Band Trimmers:-Switch to police band and supply a bueno K.C., signal to A and G through a 400 ohm non-inductiva resistor. Set dial at B.6 M.C. and adjust, in order, C14 and ('10) and C ti.

Track C18 at $2400 \mathrm{~K} . \mathrm{C}$., while rocking the dial to obtain maximus output.

Fetrim C14 at C.00 K.C.
Short Wave Band Trimmers:-Connect the T.O. to A and (i using a 400 ohm series resistor. Set dial to 20 M . C. and supply a signal of this frequency and adjust, in order, C15, C11 and C7.

Track C19 at 8. M.C. while rocking the dial to obtain maximum output.

Retrim C20 at $20 \mathrm{M} . \mathrm{C}$.
Weather Band Timmers:-Use standard dummy antenna and supply a 370 K .C. signal to A and G . Trim C12, C3 and C4 with the dial set to this frequency.

Track C16 at $160 \mathrm{~K} . \mathrm{C}$. while rocking the dial.

Ot-INOJdUW .mmoman LJJHS HLUO

$$
\begin{aligned}
& 3 \text { s.29t } \\
& =71
\end{aligned}
$$

ALIGNMENT INSTRUCTIONS MODELS 73-74-75

49874 (Models 73-74 only)

RESISTOR
PANELS.

(iENERAL DATA :

Circuit:-Dual wave, 7 tube superbetrodyne with preselector and full automatic volume control and adjustable selectivity.

The circuit is essentially the same as Models 67 and 68.
Frequency Range:-B.C.Band--529 to 1725) K.C. S.W.13and is 50 to 18000 K.C.

Intermediate Frequency:-462.5 K.C.
Power Output:-Undistorted-3.9 Watts. Maximum 5.5 Watts.
Sensitivity:-Better than 5 microvolts on the broadcast band and better than $3 \mathrm{M} . \mathrm{V}$. on shortwave, for an output of 0.5 Watts.

Selectivity. 34 or 24 K.C. at 1000 times input.
Image Ratio:-Better than 20,000 at 1,000 K.C.
Power Rating:-11; V. A.C.; 60 Cy., 72 Watts; 25 Cy., 7. Watts.

Adjustable Selectivity:-By means of a I.P.D.T. switch either one of two l.F. transformer may be used, one of which provides a broad I.F. channel and the other a narnow channel. A third winding is incorporated in the latter to introsuce a small smount of regeneration which improves the selectivity and increases the gain. In replacing this coil assembly be sure that the polarity of the coils is correet.

Tuning Indicators:-Models 73 and 74 are equipped with a shadow type tuning meter which is actuated by the plate current of the R.F. tube.

In Model 75 the new R.V.C. 6E5 Cathode Ray tuning indicator is used. The A.V.C. voltage is applied to the control grid of the triode portion which acts as a D.C. amplifier to contral the electron bearn.

ALIGNMENT :

I.F. Trimmers:-With the selectivity switch in the High Selectivity position, supply a 462.5 K.C. signal to the grid clip of the 6.18 through a . 1 Mf. condenser. Adjust, in order, C17, C16, C15, C14.

Switch to "Broad Selectivity" and adjust C13 and C12.
Broadcast Band Trimmers:-With the gang condenser set at minimum capacity, the pointer should be set midway between the letter "C"' and the end of the broadcast scale.

Using a standard dummy antenna, supply a modulated 1600 K.C. signal to the A. and G. terminals. Set pointer at 1600 and adjust C8, C6 and C4 for maximum output.

Supply a 580 K.C. signal and track C10 while rocking the tuning cuntrol back and forth. Fecheck C8 at 1600 K.C.

Short Wave Band Trimmers:-Switch to shortwave and rotate tuning control until pointer is at 1510 K.C. Supply a 16 M.C. signal using a 400 ohm non-inductive resistor in series with the lead to the " A " serminal, and adjust CO, C7 and C $C 5$ for maximum sutput. If two peaks are noticed when adjusting (9, the one with the trimmer further out is correct.

Rotate tuning control to set pointer at 570 K.C. and supply a is M.C. signal. Adjust C 11 while rocking the tuning control to obtain the adjustment giving maximum output.

Check alignment a.t 16 M .C. and re-adjust C9 if necessary.
We recommend that a tuning wand be used to check the correctliess of alignment on Broadcast and Shortwave Bands.

Model 75

COURTESY- GANON.

PRINTED IN GANADA
MARCONI-41

Models 76-77

R.F. $=462.5 \mathrm{~K} . \mathrm{C}$.

VOLTAGE READINGS
 SOCNET PINS 70 CHASSIS.

CAIP	PIN 2	PIN 3	PIN 4	PIN 5	PIN 6	PIN 7	PIN 8
0	0	2.10	122	-16	190	0	4
0	11	230	90	4.5	-	0	4.5
0	6	17.5	0	0	1.5	0	-
-	4	220	230	0	-	0	13.5

GENERAL DATA:
Circuit:-Dual wave, five-tube superheterodyae with full automatic volume control and antenna trap circuit.

Frequency Range:-Broadcast Band, 528 to 17 5 K.C. Short Wave Band, 5650 tq 18,000 K.C.

Intermediate Frequency:-462.5 K.C.
Power Oatput:-Undistorted, 2.3 Watts. Maximum, 4.5 Watts.
Power Rating:-115 Volts A.C., 60 cycle- 56 Watts, 25 cycle61 Watts.

Voice Coil Impedance:-Model 76-4.10 Ohms; Model 772.15 Ohms.

Antenna Trap Circuit:-The possibility of ihberference from sta,ions operating at irequencies around $462 \mathrm{~K} . \mathrm{C}$., has been prevented by the use of a tuned trap in the antenna circuit. This trap circuit normally should be tuned to 462.5 K.C., but if interference is experienced from some particular long wave station, it may be tuned to the frequency of the interference signal.

ALIGNMENT:

I.F. Trimmers:-Set gang condenser at minimum and suppl; a $462.5 \mathrm{~K} . \mathrm{C}$. signal to grid clip of 6 A8 through a. 1 Mf condenser. Adjust, in order, C12, C11, C10 and C9. See that the input is always low enough to avoid causing the A.V.C. to operate.

Broadcast Trimmers:-Connect the Test Oscillator to the A and G terminals through a standard dummy antenna. If necessary, a 200 Mmf series condenser may be used in place of the dummy antenia.

Set gang condenser at minimum and supply a 1725 K.C. signal. Adjust oscillator trimmer C 5 to tune in this sigaal.

Supply a 1600 K.C. signal and tune the receiver to pick up this signal and adjust detector trimmer C3 for maximum output. The dial pointer should be set to indicate 1600 K .C. after the above adjustments have been completed.

Supply a 580 K.C. signal and track C7 for marimum output while rocking the tuning control back and forth at this frequency.

Check alignment at $1600 \mathrm{~K} . \mathrm{C}$. and adjust C 5 if necessary.
Short Wave Band:-Switch to short wave and rotate tuning control until pointer is at $1510 \mathrm{~K} . \mathrm{C}$. on the Broadcast scale.

Supply a 16 M.C. signal through a 400 Ohm resistor to A and G terminals. Adjust C6 and C4 for maximum output. If two settings of Co are found which give approximately equal output, the one with the trimmer further out is correct.

Rotate tuning control until pointer is at 570 K.C. (on Broadcast scale) and supply a 6 M.C. signal. Adjust tracking condenser C8 while rocking the tuning control to find the setting giving maximum output.

Check alignment at 16 M.C. and adjust C6 if necessary.
Wave Trap:- With gang condenser at maximum capacity, supply a strong 4625 K .C. signal to A and G and adjust $C 33$ for minimum output.

in ordar to properly realign this raceivar the radiotrician should have avallable an output mater and a well attenuated test oscillator capable of giving the following frequency fundementele:-
462.5 KC for I.F. allennert.
$1600 \quad 150$ and 580 KC for broadonat band alignmeat.

The manual volume ountrol ahould almaya be kept
at maximum, and the signal from the test oscillator should be rept as low as possible. In any case the signal should not be of sufficient strength to bring the automatic volune control into operation.

ALIGNAENT OF
INTERLEDIATE FREQUENCY TRANSFORMERS
Set gang capacitor at micimum capacity an
supply a modulated 462.5 KC signal from a test oecillator to the control grid cap of the 6a7 converter tube through a 0.1 mfd . capacitor leaving the grid connector in place. Adjust in order C8, C7, and C6 for maximum output. This operation should be checked to aecertaln that maximum output hae been obtalned.

LLIGNENT OF BROADCASI BAND

1) Cneok sotting of pointer. With gang capacitor at maximum, the pointer should be set horizontally with respect to the last graduation mark on the left hand side of dial scale.

(2) Rotate tunine knob until pointer is at 1600 KC .
(3) Supply 1600 KC signal from test oscillator to the aerial and grourd laads using a atandard dumay antenna.
(4) Adjust oscillator trimmer $C 4$ to tune the 1600 KC slenai.
(5) Adjust R.F. trimmer C3 for maximum output.
(6) Shift test oacillator to 580 KC .
(7) Rotate tunirg sapecitor until the 580 KC eignal is reached.
(6) Adjuat osolllator tracking capacitor C5 while rocking the gang capacitor to and fro past the signal until the combination of adjustments Eiving the greatest ragding of the output mater is obtained.
(9) Recheck at 1600 KC .

- Lovospiances

Aliennent of Police Banc-Con.
(5) Shyft test oscillator to 1720 Kc .
(6) Rotate tuning capacitor until 1720 Kc signal 10
(7) Adjust police band oscillator tracking capacitor Cg whife rocking the gang capacitor to and rro
past the signal until the cominination or adjut ments giving the greatest reading of the output

Llignent on short wave bund

(1) Turn wavechange switch to ahort weve band extrame
(2) Rotate tuning knob until pointer is at 15 mc Rotate tuning kno
(3) Sunply a 15 NC signal from test oscillator to
(4) Adjust short wave oscillator trimer 05 to tuna in this signal
(5) Adjuat short wave R.F. trimmer C3 for maximum output.
(6) Shift test oscillatcr to 5600 KC
(7) Rotete tuning capacitor until 5600 KC aignal 10 reached
(8) Adjust short wave oscillator tracking capacito C8, while rocking the gane capacitor to and tro past the signal until the combination of adjust meter is obtained.
(9) Fecheck 15 MC alignment

nligment of mave trap

(1) Sat gang capacitor to approximately 580 KC .
(2) Supply atrong 462.5 KC aignal to the aeriel and ground leads.
(3) adjuat c30 for miniman output.

(2) Rotate tuning knoo until pointer is at 4800 KC
(3) Supply a 4800 KC eignal from test oscillator to
the aerlal and ground leads.
(4) Adjust polloe rand esenlletor trimer c8 malle rocking the gang capacitor to and fro past the
signal until the combination of adjustmonta
giving the greatest giring the
is obtalned.
(5) Shift test oscillator to 1720 Kc .
(6) Rotate tuning capacitor until 1720 KC 31 gnal is
reached.
7) reached. 7) Adjust police band oscillator tracking capacitor
Cil whie rocking the gang capacitor to and fro
past the signal until the combination of adjust past the siznal until the combination of adjust-
mente ging tha areatest rnading of the output

ALIGNENT OF SHORT WAVE BAND

(1) Turn wave change ewitch to short wave band extreme left. (2) Rotate tuning knob unt11 pointer is at 16 MC
3) Supply a 16 se signal from test oacillator to
aerial and ground loads.
4) Adjust short wave R.P. trimera C6 and C4 for maximum output.
(5) Shift teat oacillator to 5600 KC .
(6) Rotate tuning capacitor until 5600 KC signal is (7) Adjuat short mave oscillator tracking capncitor ments $81 \nabla 1 \mathrm{ng}$ the greatest reading of the output
moter is obtined. (B) Rechock 16 Mc allgnment.

	3	$\begin{array}{\|l\|l\|} N \\ \hline \\ \hline \end{array}$	$\begin{aligned} & \infty \\ & \stackrel{y}{a} \end{aligned}$	总	$\begin{aligned} & \text { n } \\ & \text { 吕 } \end{aligned}$	$\begin{aligned} & \text { O } \\ & \text { en } \end{aligned}$	品	号
	0.3	－	280	76	ก	－	0	0
648 Pantagr1a Converter	0.1	0	260	75	－7．5	${ }^{75}$	－	－
605 onalliator	－	0	175	－	－7．5	5	－	
651 I．F．Amplifiar	0	0	260	75	－	－	0	1.65
GB6 Diode det．4 ITC	－	0	－0．6		－0．6	6	0	0
EPS．1st 1．7．Anp．	0.3	0	－	75	－	－	0	0
6F6 output	－	0	255	260	0	－	－	18.5
6F6 outpat	－	0	255	260	0	－	－	18.5
80 Roetiples	－	$375 \triangle$	37540	380	－	－	－	

ALIGNENT OF INTEDMEDIATE FRERUENCY TRANSFORMERS 3ot gang capacitor at min！eum Gapacity，selectivity ight and supply a nodulated pesc． KC sisnal io the oscliliator to the control grid can or the 6 A8 converter
 C13 for maximum output．Th1s operatior should be
chocked to ascertain that maximur output has bean chocked to ascertain that maximur output has boan
obtinied．Smitch to broed selectivity i．e．，to lo nd adjust Cl4．

The manual volume control should always be kept at maximum，and the sienal from the test oscillatio
should be kept as ior as posille．In any case the sienal should not be of surficitit strengtin to brine ALIGNMENT OF Broabcast band
（1）Set gane copacitor at maximun capacity（plates meshed）
（2）Set dial pointer in a horizontal position on the left hand slde，1．e．，midway between the two acales．
（3）Rotate tuning knob until pointer is at 1500 kc ．
（4）Supply a 1500 KC algnal frome test oscillator to
the aerial and eround leade．
（5）Adjust broadcast oscillator trimmer C9 to tune in
（6）Adjust R．F．Trimera $C 7$ and $C 5$ for maximum output
（7）Shift test oscillator to 580 KC
（8）dotate the turing capacitor uitil the 680 KC sie－ eql in reached．
（9）Adjust broadcast oscillator trackine capecitor Cl2 While rocking the gang capacitor to and fro pas giving the gieatest reqding of the output meter is
（10）Recheck at 1500 Kc ．

（1）Turn wave change switch to pollé band－oentre
position．
（2）Rotete tuning knob until pointer 18 at 4800 KC
（3）Supply a 4800 KC signal fron test oscilletor to the aerlal and ground leads．
（4）Adjust pollce band obcillator trimaer ce thila sienel until the combination of eijustment past the sifalel until the combination of aijustments eivine
the ereateat readine of the output meter
is ob－ tained．
（5）Shift test oscillator to 1720 KC ．
（6）Rotate tuning ceppecitor until 1720 KC signal 18
（7）Adjust police band oscillator trecking capecitor oli while rocking the gane capacitior to and rro inents Elvine wio extatぁat reeding of the output mater is obteined． alignent of short mave band
（1）furn wave chane seltch to short wave band extreme
（2）Rotate tunine knob until pointer is at 16 MC mark－ ine on dial．
（3）Supply a 16 uc signal from test oaclliator to aerlel and ground leeds．
4）Adjust short wave R．F．trimuera C_{6} and C 4 for mexlmum output
（5）Shift test oscllletor to 5600 KC ．
（6）Rotate tuning capacitor until 5600 KC signal 18 reachect．
（7）Adjust short wave osciliator trazhere oapacitor past the rocking the gang capacitor to and fro past the signal until the combination of adjuet－ metar is obtolned．

8）Recheck 16 MC allenment．

alignient of intermediate frequency transformers

Set gang capacitor at minimum capacity and aupply - modulated 252.5 IC signal from a test oscillator to the control grid cap of the IC6 converter tube through 0.1 nfd. oapacitor leaving the grid connector in place. Adjust in order C10, C9, C8 and C7 for maximum output. This operation should be checised to ascertai thet mimu output has beon obtained

alignvent of broadcast band

(1) Sot gang oapacitor at minimum(plates out of mesh).
(2) Supply a $1725 \mathrm{~K}, \mathrm{C}$, elgnal to the aorlal and ground leads using a standard duman antonna.
(3) Adjust brondcast oacillator trimer C5 to tune the 1725 K.C. E1gnal.
(4) Shift test oscillator to 1600 K.C.
(5) Rotats the gend capacilur until the $2600 \mathrm{R} . \mathrm{C}$,
signal is ruached. (If calibration is not correct,
(6) Set the pointer to the 1600 K.C. marking on the dial and adjust $\mathrm{C3}$ for maximum output.
(7) Set test oscillator to $580 \mathrm{~K} . \mathrm{C}$.
(8) Rotate tuning eapacitor until the $580 \mathrm{K.C}$. . signal 1s roachod.
(9) Adjust oscillator tracking oapacitor C6 while rocking the gang onpecitor to and fro past the agnal until the combination of adjustments giving the greatest raading of the autput meter is obteined.
(10)Recheok at $1600 \mathrm{~K} . \mathrm{C}$.

Models-89-90

alignent of short mave band
(1) Switch to short wave band.
(2) Sot dial pointer to 80 degrees.
(3) Sot test oscillator to 6000 K. C.
(4) Adjust short wave oscillator trinmer C4 until the $6000 \mathrm{~K} . \mathrm{C} . \mathrm{signal}$ correspond with the 80 dh divie1on on the dial scale. If two peaks are obtainable out(minimum capacity)is correct. This adjustment must be mede accurately otherwise the fraquency range desired $w 11$ not be covered.

Aliqnment Data a Models-93-94-96-97

1936-37

Circuits on Data Shect-5/

In order to properly realign this recelver the radiotricien hould have available an output moter and a woll attonuated test ozcillator capable of giv-

462.5 KC for $1 . \mathrm{P}^{2}$ alignment.
1500 KC and 580 KC for broadcast band alignment
4600 KC and 1720 XC for police band allgment.
$16,000 \mathrm{KC}$ and 5600 KC for short wave band
alignment.

The manual volume control should always be kept at maximum, and the ignal from the tost oscillator should be kopt as low as possible. In any case the the automatic volume control into operation.

If a Cathode Ray Osoillograph i. used inatead of an output meter the vertical platen hould be conncoted between the junction R6, C17 and C28, 1.0., the upper soldering lug on the rolume control and chassis The allgnment should produce round topped, rather than a aharp peaked image.

ALIGNENT OF INTERNEDIATE FREQUENCY TRANSFORNERS

$$
\text { (640 an Models } 93 \text { and } 94)
$$

Set geng capacitor at minimum capacity and supply a modulated 462.5 KC aignel from a tost oscillator to the control grid cap of the lorghconerid connactor in place. Adjust in order Cl7, C16 C15 and Cl4 for raximum output. This operation should be checked to ascertain that maximum output has been obtained.

ALIGNENT OF PROADCAST BAND
(1) Sot gang capacitor at marimim oapaoity fplates meshod.
(2) Sot dial pointer in a horizontal position on the loft hand side, 1.e., midway betweon the two scales.
(3) Rotate tuning knob until pointer is at 1500 KC .
(4) Supply a 1500 KC aignal from a test oscillator to the serial and ground leads.
(5) Adjust broadcast oscillator trimmer Clo to tune in the 1500 KC signal.
(6) Adjust R.F. trimmers $C 7$ and $C 5$ for maximum output.
(7) Shift test oscillator to 580 KC .
(8) Rotate the tuning capacitor until the 580 KC signal is roached.
9) Adjust broadoast oscillator tracking capacitor Cl3 While rocking the gang capacitor to and fro peat the signal until the combination of adjuatments giving the greatest reading of the output meter is obtained.
(10)Recheck at 1500 KC .

ALIGNEENT OF POLICE BAND
(1) Turn wavechange switch to police band - centre position.
(2) Rotate tuning knob until pointer is at 48 ūu KC marking on dial.
(3) Supply a 4800 KC signal from test oscillator to the aorial and ground leads.
(4) Adjust -police band oscillator trimmer C9 while rocking the gang capacitor to and rro past the sigrentest readine or the
MoIt: 5.6 and 7 opply to Models yo
(5) Shift teat oscillator to 1720 KC .
(6) Rotate tuning, capacitor until 1720 KC signal is reached.
(7) Adjust police band oscillator tracking capacitor Cl2 while rocking the gane capacitor to and fro past the ignal until the combination of adjustments giving the greatest reading of the output

ALIGNHENT OF SHORT WAVE BAND
(1) Turn wavechange switch to short wave band extreme left.
(2) Rotate tuning knob until pointer is at 16 MC marking on dial.
(3) Supply a 16 xC signal from test oscillator to aerial and ground leads.
(4) Adjust short wave B.F. trimers C6 and C4 for maxiㅍum output:
(5) Shift test oncillator to 5600 KC .
(6) Rotate tuning capacitor unili 5600 KC aignal is resched.
(7) Adjust \quad hort wave oscillator tracking capacitor cll, While rocking the gang capacitor to and fro past iving the groatest combination of adjester is obtained.
(8) Rechack 16 MC alignment.

SOCKET VOLTAGES MODEL 95										
Tubo	Postion	1	2	3	4	5	6	1	8	9
6 K 7	R.F. Amp.	0	5.8	175	84	4.6	-	0	4.6	0
${ }^{6 \times 8}$	Ist Dat. Osc.	0	0	175	84	-16	110	5.8	4.6	0
$6 \mathrm{K7}$	1. F. Amp.	0	5.8	180	84	3.6	-	0	3.6	0
607		0	5.8	130	3	. 3	-	0	1.3	0
$6{ }_{6} 6$	Power	0	0.	170	180	-3.4	-	5.8	0	-
6×5	RECT.	0	5.8	AC	-	AC	-	0	180	-

ALIGNMENT

Every Marconi receiver is balanced, and the sensitivity measured on accurate crystal controlled signal generators before leaving the factory, and unless a part is changed, or the receiver otherwise altered, the adjustment should not be tampered with.

When alignment is thus required, an accurately calibrated service oscillator and output meter are essential.

The proper procedure is as follows :-
" A " Connect the service oscillator to the control grid of the 6A8 tube and the chassis.

Set the service oscillator to 252.5 K.C., and adjust the trimmers on the I.F. transformers for the greatest output reading. These adjustments should be repeated several times using as weak an input signal as possible so as to obtain greater accuracy.
"B" Change the service oscillator lead from the mers in that order to the Roint giving the trimgrid of the 6A8 to the antenna connection. A male output.
Delco Remy connector may be used in making a connection to the antenna lead.

Set the service oscillator st 1400 K.C. Rotate the gang capacitor one and one fourth tor until the combination of adjustments giving turns from the minimum setting. At the proper the greatest reading of the output meter is obposition eight teeth on the tuning gear will be tained.

Model- 95

Adjust the oscillator, R.F. and antenna trim-
"C" Set the service oscillator at $600 \mathrm{~K} . \mathrm{C}$. and rotate the gang capacitor to tune in this signal. Move the gang capacitor to and fro past the signal meanwhile adjusting the oscillator padder capaci-
"D" Repeat operation "B"

Connect the output meter across the primary visible past the gear bracket.
of the speaker transformer.

NOTEPlates
of
Rectifier
Tube
cannect
Points
6-6 of
Power
Trans-
former
for
6 Tube
Models
Points
8.8 for

8 Tube Models
Power
Unit for above Models
8-Tube Chassis Fitted
in all
Models
1928-29

Model 96
Screen Grid Chassis

Available
in
L.B.
H.B.

Comb.
Early 1930

1F SOONC.

Colour oode on speaker corresponde to oolour code on omble.
$\left[\begin{array}{cccc}6 & 1 & 2 & 9 \\ 01 & 1 & 0 & 10 \\ 3 & 11 & 5 & 12 \\ 01 & 11 & 01 & 10 \\ 01 & 01 & 0 & 10 \\ 4 & 8 & 7 & 10 \\ \hline\end{array}\right.$

Yellow in oable to yellow in speaker Green in ouble to green in seakar Blaok in asble to the two blaoks in epeaker Schematic LYRIC Model SW-80

Power Transfommer

Termmar Boano
12-11 Blenk

ZI -XMVHOW

SPEAKER IN MODEL SO. 650 R
SCHEMATIC DIAGRPAM OF LYRIC MODEL - 3938079 MODET 49 - DUAL SPRAKBR

1932-33

ST:-XMOHOW

...monam.
L.3FHS OLEO

Circuits for Models 556 and 566 on Data Sheet 17.

ALIGNMENT INSTRTUCTIONS FOR MODELS 55b and 56 b .
4. signal generator capable of supplying a modulated carrier of $456 \mathrm{~K} . \mathrm{C} .600 \mathrm{~K} . \mathrm{C}$. and $1400 \mathrm{~K} . \mathrm{C}$. is essertial. Aligment by other methods than the signal generator is not recommended.

The receiver must be grounded to the generator throughout all measurements.
The receiver volume control should je set for maximum volume, and the signal input from the generator should be adjusted for small output deflections.

456 K.C. I.F. Adjustment

1. Remove chassis and speaker from cabinet.
2. Connect input fram signal gererator in series with a . 1 mfd. condenser to the grid of the 1C6 tube.
3. Set generator to supply a modulated $456 \mathrm{~K} . \mathrm{C}$. ($170 \mathrm{~K} . \mathrm{C}$. for Model 56B) signal, until a small output deflection on the output voltmeter is abtained. Adjust trimmer condensers located on the top of the first and second I.F. transformer cans for Maximum deflection.
4. Remove signal generator connection from the grid of lC6 tube.
5. 470 K. C. Rejector Adjustment (For Model 56B only)

Rotate station selector knob until gang condenser capacity is all in. Replace . 1 mfd. condenser with regular dummy Antenne or 250 mmfd . condenser, and connect to Antenna (Red) lead of Receiver. The ground lead, (Black) should be connected to the ground or the signal
generator throughout all measurements.

1. Ldjust attenuator on signal generator for maximum input to the receiver and proceed to adjust 470 K.C. rejector condenser (located at the front of the chassis base) for minimum deflection on the output meter. It is also essential that the input frequency be 470 K.C. or loss in gain will result on the low frequency end of the band.

R.F. Adjustment

1. With sigal generator adjusted to $1400 \mathrm{~K} . C$. , rotate station selector knob until dial reaches 1400 K.C. then adjust osc. and ant. shunt trimers (located on top of Gang Condenser) for maximum output deflection on the output meter.
2. Change signal generator frequancy to $600 \mathrm{~K} . C$. and rotate station selector knob until dial reads $600 \mathrm{~K} . \mathrm{C}$. (See note below for 56B). As this chassis employs an osc. tracking section, no adjustment is necessary at this frequency. However, it is necessary to eheck this for sensitivity and proper dial setting.
Note: For Model 5BB only, adjust Oscillator series trimer (located at rear of chassis base) rotating station selector knob back and forth slowly for maximum output deflection.
3. Recheck Osc., R.F. and Antenna adjustments at 1400 K.C.

THE "'BANFF" MODEL SCHEMATK DIACRAM OF-MODEL 58 CHASSIS 1931

THE. "NIPIGON" MODEL
${ }^{\#} 5^{5}$ CHASSIS 60 CYCLE ${ }^{\#} 6^{\text {s }}$ CHASSIE 25 CYCLE-1931

THE "'MINAKI'" MODEL \#ECHASSIS.60CYCLE \#6CHASSIS.25CYCLE 1931

The "RichelieU" model *3I chassis- 60 Cycle

THE MODEL 80 AND 80-A RECEIVERS
1932-33

LЭᄏHS HLHO

Models-70-70a 1934 IF. 265 KC.

THE "J ASPER"AND "PICTOU"MODELS

Models-20-21 1931-32 alsomodels-22-23 1932 IF 175 KC

THE MODEL 22 NORMAL BROADCAST AND SHORT WAVE RECEIVER

In realigning the Model 72 Eeceiver, particular care should be exercised to see that any preselector coupling variation which may be necessary is made within very close limits. If care is not taken here, the full sensitivity which this ieceiver possessed when it left the factory will be lost and the short wave bands rendered useless. Realigning of the shore wave bands of this receiver shoald nor be attempied with some of the very questionable ascillators used by many servicemen. The oscillator or signal generator employed should be capable, preferably, of a measured output in fund amentals. Oscillators using harmonic outpue for short wave realigning will cause uncertainty in the aligning point and result in delay in service repair and mediocre or unsatisfactory short wave results to the medio

An output meter is of course essential. On no account touch the short wave band trimmers without an output meter connected across the voice coil and with a reliable and efficient signal generator at the input.

1. I.F. ALIGNING:-
(d) Set signal generator so 462.5 K.C. and connect to control grid 2nd I.F. tube.
(b) Align C-19 and C-20.
(c) Connect to control grid Ist I.F. tube.
(d) Align C-17 and C-18.
(c) Connect to control grid first detector tube.
(f) Align C-15 and C-16.
2. BROADCAST BAND OSCILLATOR:-
(d) Set receiver dial to 1.100 megacycles.
(b) Set signal generator to 1400 K.C. and connect to control grid first detector tube through . 1 mf. capacitor.
(c) Align C-8 (unmarked) (adjust to highest frequency peak where erimmer tarthest out).
(d) Still with signal generator at 1400 K.C., connect to antenna terminal No. 1 of receiver. through 200 mmf . mica capacitor; re-tune receiver to signal if necessary.
(b) Align R.F. eransformer secondary capacitors $\mathrm{C}-4$ and $\mathrm{C}-5$. These should nut be changed on any other band. Thev should not be changed at all unless very low seasitivity is indicared. In any case, when adjustment is made, trimmer should be from 1/2 to one turn open.
($)$ Set signal generator at 600 and tune receiver dial pointer to $600 \mathrm{~K} . \mathrm{C}$. (approximately . 6 megacycle). Vary receiver dial pointer within half a channd on either side, at the same time adjust oscillazor lag trimmer C. 9 so that correct tune obtained.
SHORT WAVE BAND
(GREEN BAND):-
(.45 TO
3.5 MEGACYCLES - (GREEN BAND):-
(a) Set signal generator to 3 meg. and connect to control grid lst detectar mbe through .1 mf . control grír

```
                                m
```

\qquad

(b) Set receiver dial pointer to 3 meg .
(c) Align C -10 (adjust to highest frequency peak where trimmer farthest out).
(d) Connect signal generator to antenna terminal No. I on receiver through 200 mmf . capacitor, strapping No. 2 and No. 3 on terminal strip to strappir.
grourd.
(i) Adjuse sliding coils L-11 and L-6. Great care must be exercised in the movement of these two coil sections. Alcohol should be ased to loosen the coil from its fixture before any attempt is made to move them. Coils L-11 and L-6 are indicited in Figure 2 of the service manual. They are located on the coil structure to the loft o: the three coils running parallel with the loft o the three coil
side of the chassis.
(f) Set signal generator to 1700 K.C. and tune set. Vary receiver dial pointer within $1 / 2$ channel on either side, at the same time adjusting oscilh.tor lag trimmer C -11 so that correct tune is obtained. It will be found thar in some sets the pointer reads about one division low.
SHORT WAVE BAND 3.0 TO 9.0 MEGACYCLES (RELO BAND):-
(a) Set signal generator and receiver dial pointer to 7.0 megacycles.
(b) Connect signal generator to anterina terminal No. 1 on receiver through . 1 mf ., capacitor, strapping No. 2 and No. 3 to ground.
(c) Vary coupling between coils L-10 and L-4. As in No. 3 above, great care must be exercised in the movement of the coils. See that coils are lousened with alcohol before any attempt is made to turn them. Coils L-10 and L-4 can be made to turn them. l aight-hand coil of the three on the left of the chassis base looking at the wiring with the chassis up-ended.
(d) Set signal generator to 3.4 megacycles and zune receiver.
(b) Align $\mathrm{C}-13$ and vary receiver dial pointer within $1 / 2$ channel on either side; at the same time adjust rrimmer so that correct tune is obtained.
5. SHORT WAVE BAND 7.5 TO 20.75 MEGACYCLES (BLUE BAND):-
(a) Connect signal generator to antenna terminal No. 1 on receiver through . 1 mf . capacitor and strap terminals No. 2 and No. 3 on strip to ground.
(b) Set signal generator to 16 meg and tune in receiver.
(c) Adjust C-6 and C-7 for maximum output (both trimmers should be on peak of greatest capacity). C-6 and C-7 are the small trimmers mounted inside the chassis.
(d) Set signal generator to 9 meg. and tune in receiver.
(1) Align C-14. Vary pointer withir $1 / 2$ a channel on either side; at the same time adjust trimmers so that correct tune is obtained.

On later production models of this receiva, it will be: found that a change has been made in the structure of the blue band trimming arrangememrs by removing L. 9 and C-7. Since the preselector coil and its tuning capacitor for the bluc band are not in carcuit with this arrangement, an increase in sensitivity reaults on extreme short wave signals. The same realigning details will apply, however, only the adjustment for C -7 being lefi out.

REALIGNING DETAILS:-In realigning the Models 102 or 103 receivers a thoroughly reliable signal generator and an output meter must be used. Great care must be exercised in varying the sliding sections of coils L-6, L-15, L-4 and L-3. Proceed as follows:-

1. IF.:-

(a) Set signal generator to 462.5 K.C. and connect to 2 nd I.F. control grid lead through . 1 mf . generator.
(b) Remove type 76 oscillator tabe. Turn volume control to maximum and tone control to treble. Connect ground to set.
(c) Align C-27 and C-28.
(d) Connect signal generator to lst I.F. control grid through .1 mf . capacitor.
1934-35
$102 a$
$10 \bar{\equiv} 3 a$
(b) Align C-25 and C-26.
(f) Connect signal generator to control grid 1st detector tube through .1 mf . capacitor.
(b) Align C-22, C-23 and C-24.
(b) Do not realign any trimmer once set.

2. BUFF BAND :-

(a) Replace oscillator tube. Set wave change switch to buff band and dial to $1400 \mathrm{~K} . \mathrm{C}$.
(b) Set signal generator to 140 C K.C. and connect to number one antenna terminal through 200 mmf . capacitor.
(c) Align C-14.
(d) Set si inal generator to 600 K.C. and receiver to 600 K.C.
(e) Align broadcast lay capacitor C-15.
(f) Set signal generator and receiver to 1400 K.C.
(g) Realign C-14 if necessary.

Cbassis layour showing rube and aligning posutions

Aligsing positions under sidk of cbarsis

(b) Align C-5 (on gang) C-9 and C-13.
(i) Set signal generator and receiver to 600 K.C.
(j) Set signal generator and receiver to 600 K.C.
(k) Align C-15 turning dial pointer short distance either side of 600 K.C. position.
(b) Set signal generator and receiver to 1400 K.C.
(m) Realign C-14, C-5, C-9 and C-13.

3. GREEN BAND -

(a) Turn wave change switch to green band. Set signal generator and receiver to 1.7 meg .
(b) Align C-17.
(c) Adjust sliding sections preselector coils L-6 and L-15.
(d) Set signal generator and receiver to 3.4 meg .
(e) Align C-16, C-8 and C-12.
(f) Set signal generator and receiver to 1.7 meg .
(b) Realign C-17 and sliding sections coils L-6 and L-15 if necessary.
(b) Cement coils into place.
4. RED BAND:-
(a) Turn wave change switch to red band. Set signal generator and receiver to 4.5 meg. Connect signal generator to No. I terminal on receiver through .1 mf . capacitor.
(b) Align C-19.
(c) Adjust sliding sections coils L-4 and L-13.
(d) Set signal generator and receiver to 9.0 meg .
(c) Align C-18, C-7 and C-11.
(f) Set signal generator and receiver to 4.5 meg .
(g) Realign C-19 and readjust sliding sections of L-4 and L-13.
(b) Cement coils into place.
5. BLUE BAND:-
(a) Turn wave change switch to blue band. Set signal generator and receiver to 11.0 meg .
(b) Align C-11.
(c) Set signal generator and receiver to 16.0 meg .
(d) Align C-20, C-6 and C-10.
(b) Set signal generator and receiver to 11.0 meg .
(f) Align C-20, turning dial pointer short distance either side of 11.0 meg. position.

DATA SHEET --- NORTHERY ELECTRIC-IB

MDDEL5-1ロ5-1ロ5-A

REALIGNING DETAILS:-Any realignment found necessary on this receiver should be very carefully carried out, in order to take full advantage of the excellent sensitivity and of the variable selectivity feature of this receiver. A reliable teat oscillator or signal generator should be used in preference to oscillators utilizing harmonics. These Latter are definitely incapable of properly aligning the hieb sensitivity all-wave bands of this receiver. The I.F. Transformers may be aligned, readiy but it is Oscillator Trimmers be changed unleas tronble has definitely been traced to these poits.
I. f. alignment:-
(a) Set Signal Generator to 465 KC ., and connect output through a 0.1 mf . condenser to the find cap of the firet dotecter, type 6A8
(b) Turn expander control all the way in a counterclockwise direction. (Most selective position). (This is very important. Two peaks will be obtained the algnment "is at" position. These peaks can be used for alim. ment checking only with oscilloscope equipment similar to what is used in the original factory aligmment.)
(c) Align trimmers, items $69,70,80,81$ and 91 for maximum output.
(d) Reduce the output from the oscillator to as low a value as will give an output reading, and check ase adyustments. All trimmers should peak properly

NOTE:-
Due to change in bias mentioned previously, the I.F. sensitivity will vary on the different bands, and will be least on the Purple band, equal on he Bur and Green bands, and

URPLE band:

(a) Connect signal generator to antenna terminal through a 200 mmf ., (0.0002 mf .) mica capacitor. Connect ground terminal to ground
(b) Set signal generator and receiver to 350 KC ., and adjust trimmers, items 46, 24 and 3, for maximum output.
(o) Set signa! gonerator aric set to 140 KC ., and adjust las capacitor 27 , at the same time dowly rocking the tuning capacitor back and forth until the point of maximum sensitivity is obtained
(d) Go back to 350 KC ., and check alignment.
roadcast, or buff band:-
(a) With signal generator still connected as above, set eenerator and receiver to 1600

KC.; with wave-change switch in broadcast position.
(b) Adjust trimmers, items 48, 25 and 4, for ${ }^{\circ}$ maximum output.
(c) Set generator and receiver for 600 KC ., and adjust lag capacitor item 49, at the same back and forth until the point of maximum sensitivity is obtained.
(d) Go hack to 1600 KC ., and check alignment.

GREEN BAND:-
(a) Connect signal generator to antenna terminal of receiver through a 400 -ohm Carbon to ground. Put wave-change switch in green band position.
(b) Set generator and receiver to 5000 KC ., and adjust trimmers, items 50,26 and 5 , for mavimum output.
(c) Set generator and receiver to 2000 KC ., and adjust lag capacitor, item 51, at the same time rocking the tuning capacitor back and forth until the point of maximum sensitivity is obtained.
(d) Co back to 5000 KC ., and check the alignment.

RED BAND:-
(a) With generator still connected as for the green band, set wave-change switch for red band.
(b) Set signal generator and receiver to 18000 KC ., and adjust oscillator trimmer, item 52 , to bring in maximum signal. Adjust trim. mers, items 27 and 6, each in turn, at the same time slowiy rortcing the tuning capacmum sensitivity is obtained.
(c) Set generator and receiver for 6500 KC ., and adjust the lag capacitor, item 53 , at the same

Centromatic unit showing lower Recligning Positions.
time slowly rocking the tuning capacitor back and forth until the point of maximum sensitivity is obtained
(d) Go back to 18000 KC ., and chock the align. ment.

MODEL5-502N-503N SPECIAL NOTE

In the Model 503-N (serial Nos. 2301 to 2350) departure from standard assembly as compared to the Model $502-\mathrm{N}$ was made. A variable tone control is used instead of the fixed tone control supplied with the model $502-\mathrm{N}$. This means that there are then four controls on the Model $503-\mathrm{N}$ having these serial numbers as compared to three on the model $502-\mathrm{N}$. The lower left hand knob is the tone control referred to above.

ALIGNMENT.

In order to secure full advantage of the careful design and precision construction of this receiver, any re-alignment necessary should be carefully carried out. A reliable test oscilator or signal harmonics are not satisfactory. An output mever with a resistance of 1000 ohms per volt should be used. Standard output 23.5 volts for 30% modu lation. If a 4000 ohm meter is used, standard output is 9.8 volts.
I.F. ALIGNMENT:-
(a) Set the signal generator to this KC., and connect the output to the grid of the firs detector, type 1 Ab , through a 111 mt capacitor
(b) Adjust trimmers $18,19,26,27,32, \& 3.3$ for maximum output
(c) Redure the mutput from the signal generator to as low a value as will give an output reading, and check the adjustments. All trimmers should peak properly.
R.F. ALIGNMENT:-
(a) Connect the signal generator to the antenna erminals of the set through a 100 mmf (. 0001 mf .) mica capacitor.
(b) Adjust the signal yeneratior and the receiver to 1500 KC Adiust trimmers 7 and 8 for maximum output.
(c) Set generator and receiver for 600 KC , and adjust trimmer 12, at the same time slowly rocking the tuning capacitor back and fort found.
(d) Return in 1.500 KC ., and check alignment

MODELS: 50]-501

 that the anterma and oscillator trimmers should not be changed unless trouble has definitely been traced to these points.

Fig. 1.-Cbessis Layout showing Aligning Positsoms. (500)
I.F. ADJUSTMENT:-
(d) Set signal generator to 463 K.C. and connect output through an 0.1 mfd . condenser to the grid cap of the lst detector ((yype 6-A-7).
(b) Adjust C-10, C-11, C-12 and C-13 for maximum output.
(c) Reduce the vutput from dhe usillatio io as low a value as will give an output reading and check the adjustments. All trimmers should peak properly
. BROADCAST BAND:-
(a) Connect signal generator to antenna terminal number 2, through a 200 mmf . $(0.0002 \mathrm{mf}$. mica condenser. Ground terminals 3 and GND.
(b) See signal generator and receiver for $600 \mathrm{~K} . C$., and adjust lag condense! C-8, ut the same time slowly rocking the tuning condenser back and forth until the point of maximum sensiclvily is ubrained.
(c) Set signal generator and receiver to $1600 \mathrm{~K} . \mathrm{C}$., and adjust C-7 and C-4 for maximum output.
POLICE BAN:D:-
(a) With signal generator still connected as above, set generator to 2400 K . C., ser receiver to 1474
4. Short-wave band:-
(a) Connect signal generator to terminal number Connect signal generator to terminal number
2 throl 400 -ohm reslstor (nrut wite wownd)
(b) Ser signal generator and receiver to 6.4 megacycles.
(c) Align C-9 for maximum output, at the same time slowly rocking the turning condenser back and forth until maximum sensitivity is obtained.
(d) Set signal generator and receiver to 15 megacycles and align C -6 for maximum output. counter-clockwise direction
(b) Adjust C-S for maximum output

Model 500
(e) Adjust C-3, at the same time rocking the gang slowly back and forth, until maximum sensitivity is obtained.

MPOR TANT NOTE:-In the aligning of the Broadcast Band, it was found that berter resules could be obained with an absolute minimum capacity at trimmer C-4. To accomplish this the screw was removed and the normally variable top plate bent back. The trimmer is located on the chassis wall midway betweer wavechange switch and police tone control switch

Manels:503-603A

REALIGNING DETAILS:-In order to secure full advantage of the excellent design and construction of this recieiver, it is necessary that any realignmens carried out should be done carefully, and that only a reliable test oscillator or signal generator should be used. Oscillators utilizing harmonics should not be used. An output meter connected across the loudspeaker voice coil should be used. The I.F. transform ers may be readily realigned, but it is urgently recom mended chat the R.F. and oscillator trimmers should these circuits these circuits

" ${ }^{-}$"
Model so
. 1.F. ADJUSTMENT
(a) Set signal generator to 463 K.C., and connere output through a $0,1 \mathrm{mfd}$. capacitor to grid cap of 1 st detector (type 6-A-7).
(b) Adiust C-12, C-13, C-14, C-15, C-16 and C-17 for maximum output
c) Reduce the output from the oscillator to as low a value as will give an output reading, and peak properly

Fig. 1-Cbasss, Layows showsug alggnsm: messtems
(503)
2. BROADCAST BAND
(a) Connect signal generator to antenna termmal number 1 through a 200 mmf . (0.0002 mf .) mica capariror Ground rerminals number two and three.
(b) Turn signal generator off, adjust pornter on se co about $600 \mathrm{~K} . \mathrm{C}$. and adjust $\mathrm{C}-10$ for maximum noise output.
(c) Adjust signal generator and set to $1400 \mathrm{~K} . \mathrm{C}$. and adjuse C-5, C-7 and C-9 for maximum output.
3. SHORT-WAVE BAND
(a) Connect signal generator to terminal number one through a 400 -ohm resistance (not wire wound).
(b) Make sure C-54 and C-55 are open about one turn.
(c) Adjust signal genierator to 6 mc ., and rune ser to it. Adjust $\mathrm{C}-11$ for maximum output, retuning set each time C-ll is shifted. This ad justment is not critical.
(d) Adjust signal generator to 14 mc ., and tune set to it.
(e) Tune set slowly back and forth across the sig nal, at the same time adjusting $\mathrm{C}-4$ and $\mathrm{C}-6$ unti the best sensitivity is obezing
Con

$-=$

 10SW ONH OOS:W S7900W

-

General:-The Model C-800 is an etght tube A.C. operated radio receiver in a table type Cabinet. The Model C -801 is identical except that a console cabinet is used and a larger loudspeaker. These tional long wave (low frequency) or "X" band for reception of weather report, aviation and orher signals.
A new airplane type dial mechanism with an indirectly illuminated etched glass dial and a "Flying Spot vernier is used. This is mounted with other Unit" or cushiong assembly upon the "The dial is calibrated in megacycles, except the long wave band calibrated in megacycles, except the long wave band
which is in kilocycles. The principal short wave bands of interest are indicated and are identified in meters or by abbreviations of cheir service designa tions.
The A.C. load rating for both 60 cycle and 25 cycle models is 92 watts at 115 volts.

TUNING RANGES:-Only one of the four dial pointers is illuminated at one time. By its colour and position on the dial it identifies the correct scale to read.

Wave Band	\quad Frequency Range	Colof of
Long Wave	120 to 375 kilocycles	Purple
Broadcast	.525 to 1.835 megacycles	Buff
Police	1.755 to 5.850 megacycles	Green
Short wave	5.7 to 18.6 megacycles	Red

Vacuum tubes:-All of the tubes with the exception of the rectifier are of the metal case type with
eighe prong bases. Tlicia furictions are as followe:-

6K7	R.F. Amplifier
6A8	1st Detector and Oscillator
6K7	I.F. Amplifier
6H6	2nd Detector and A.V.C.
6F5	Ist A.F. Amplifer
6F6(2) Class AB Push-Pull Output	
80	Rectifier

Rectifier

ALIGNMENT

in order that full advantage may be taken of the excellent design and construction of this receiver, any realgnment found necessary should be carried out generaty and only with the and of a reilable signal be employed. The I.F. transformers may be aligned readily, but it is urgently recommended that the antenna. R.F., and oscillator trimmers should not be adjusted unless trouble has been traced definitely to these points.
I.F. ALIGNMENT:
(a) Set the signal generator at $465 \mathrm{k} . \mathrm{c}$., and con-
nect its output through 20.1 nuf. capacito to the grid cap of the first detector (type 6A8 tube).
(b) Adjust trimmers, items $76,75,70,69$, for maximum output, with the wave-change switch in the broadcast position and the gang closed.
(c) Reduce the output from the signal generator to as low a value as will give an output read ing and check the adjustments. All trimmers should peak properly.
NOTE:-Due to change in bias on the I.F amplifier tube, which was mentione previously, the I.F. sensitivity will vary on the different bands.

PURPLE BAND

(a) Connect the signal generator to the antenna terminal through a 200 mmf . $(0.0002 \mathrm{mf}$. mica capacitne. Annect ground terminal to ground
(b) Set the signal generator and receiver to 350 K.C. and adjust trimmers, items 45,25 and 3 , for maximum output.
(c) Set the signal generator and set at $140 \mathrm{~K} . \mathrm{C}$ and adjust the lag capacitor, item 46, at the same time rocking the tuning gang back and forth until the point of maximum sensitivity is found.
(d) Go back to 350 K.C., and check alignment
(d) Return to 140 K.C. and check.

BUFF OR BROADCAST BAND:

(a) With the signal generator output connected as above, set it and the receiver at 1600 K.C. with the wave-change switch in the broadcast position.
(b) Adjust trimmers items 47, 26 and 4 for maximum output.
(c) Set generator and receiver at 600 K.C. and adjust the lag capacitor, item 48, while vary ing the gang setting slightly back and forth until the point of maximum sensitivity is
(d) Go back tu $1600 \mathrm{~K} . \mathrm{C}$. and check alignment.

GREEN BAND:
(ब) Connect the sigaal geaerator output to the antenna terminal of the receiver through a 400 ohm (carbon type) resistor. Connect re-wave-change switch in the green band position.
(b) Set the generator and receiver at 5000 K.C., and adjust the trimmers items 49, 27, and ; for maximum output
(c) Set the generator and receiver at 2000 K.C., and adjust the lag capacitor, item 50, while maximum sensitivity is found
(d) Go back to 5000 K.C. and check the aligntment

RED BAND
(ब) With the signal generator still connected as for the green band, set the wave-change switch at the red band.
(b) Set the signal generator and receiver at 18,000 K.C. and adjust the oscillator trimmer, item 51, to bring in maximum signal. Adjust trimmers, items 28 and 6 , in turn, while rocking the tuning gang back and forth to locate the point of maximum scositivity.
(c) Set the generator and receiver at 6500 K.C., and adjust the lag capacitor, item 52, while rocking the main tuning control as before, until the point of maximum seasitivity is found.
(d) Go back to 18,000 K.C. and check the alignment.

Contronatic Insir showing hower Realiguing Positions.

SOCKET VOLTAGE AND CURRENT READINGS

Tube	Position	Filament	Plate	Screen	Bias	Plate Current	
						$\begin{gathered} \text { Normal } \\ \text { Bias } \end{gathered}$	Red. Bias (41/2 voles)
1C6	1st Det. \& Oscillator	2.0	$\left\{\begin{array}{c} 127 \\ (A) 127 \end{array}\right.$	70	1.4 (B)	3.5	6.5
34	1st I.F.	20	130	70	1.4 (B)	2.8	3.5
34	2nd 1.F.	2.0	130	70	2	2.8	3.5
32	2nd Det.	2.0	- (C)	(C)	8	1	. 2
33	Outpur	20	130	135	2 (D)	11.5	17.0

(a) Oscillator anode.
(b) Volume Control on minimum ior this reading
(c) Correct readings impossible with analyser method due high resistance in circuit (Approximately 32 volts plate and 12 volts screen reading to ground).
(d) Correct bias 14 volts: Canmut be read with analyser method.

Readings taken with Volume Contol at Maximum and rone control treble
Tuning dial at 540 K.
Fil. rap on terminal No. 3 using diy cells.
 definitely been traced to these points. Standard out: put (100 milliwatrs) is obrained with 27 volts across the speaker. Terminals 2 and 3 on the antenna should be strapped to ground when generator is connected, to terminal number 1 .

1. I.f. ADJUSTMENT:-
(a) Set signal generator to 463 K.C. and connect output through an 0.1 mfd . capacitor to grid cap of the lst detector (type 1-C-6).
(b) Adjust C-9, C-10, C-11, C-12, C-13, C-14 for maximum ourput.
(c) Reduce the oatpu: from the oscillator to as low a value as will give an outpur reading and check the adjustments. All trimmers should peak properly.
2. R.F. ADJUSTMENTS (Broadcast Band):-
(a) Set signal generator and receiver to 600 K.C.
(b) Connect output from generator to receiver through 200 mmf. mica capacitor to terminal

M Manter -opegario

number 1 on the antenna strip. Adjast $\mathrm{C}-7$ for maximum output, at the same time slowly rocking the gang back and forth until the point of maximum sensitivity is obtained.
(c) Set generator and receiver to 1500 K.C.
(d) Adjust C-6 and C-4 for maximum ourpur.
3. POLICE RAND ADJUSTMENTS:-
(a) With the signal generator still connected to the antenna, set it to $2400 \mathrm{~K} . \mathrm{C}$.
(b) Tune set to 1474 K.C. and put police switch in extreme counter-clockwise pesition.
(c) Adjust C-15, and at the same time rock the gang back and forth until the point of maximum sensitivity as obrained.
4. R.F. ADJUSTMENTS (Short-W'ave Band):-
(a) Set signal generator and receiver to 16 megacycles.
(b) Connect to antenaa terminal number 1 through a 400 -ohm resistor (not wire wound).
(c) Align C-S.
(d) Align C-3 and rock gang slowly back and forth until most sensitive point is obtained.
(e) Set signal generator and receiver to 6 megacycles.
(f) Align C-8, and rock gang slawly back and forth until most arnsitive point is obtained.

(c) Set generator and receiver for 600 K.C., and adjust lag condenser, item 49, at the same time slowly rocking the runing condenser back and forth until the point of maximum sensitivity
(d) Go back to 1600 K.C., and check alignment. GREEN DARS:
(a) Connect signal generator to antenna terminal of receiver through a 400 -ohm carbon resistor. Connect receiver ground terminal to ground. tion.
(b) Set generator and receiver to $5000 \mathrm{~K} . \mathrm{C}$., and adjust trimmers, items 50,26 and 5 , for maxiadjust trimmer
mum nutnit
(c) Set generator and receiver to 2000 K.C., and adjust lag condenser, item 51, at the same time rocking the tuning condenser back and forth obtained.
(d) Go back to 5000 K.C., and check the alignment.
(a) With generator still connected as for the green
a) With generator still connected as for the gree
band, set wave-change switch for red band.
(b) Set signal generator and receiver to 18000 K.C., and adjust oscillator trimmer, item 52. to bring in maximum signal. Adjust trimmers, itcmes 27 and ó, each in curn, at the same time slnwing rncking the tuning condenser back and forth until the point of maximum sensi-
(c) Set generator and recciver for 6500 K.C., and adjust the lag condenser, item 53, at the same time slowly rocking the runing condenser back and forth until the point of maximum sensitivity is obtained.
(d) Go back to 18000 K.C., and check the alignment.
(a) Set signal gencrator to 465 K.C., and connect cap of the firs detector, type 6 A8.
Adiust trimmers, items 69,70 and maximum output, with wave-change swich in broadcast position and gang closed.
(c) Reduce the output from the oscillator to as low a value as will give an output reading and peak the adjustments. All trimmers should peak properly
NOTE: Due to change in bias mentioned previously, the I. F. sensirivity wii' vary on the different bands, and will be least on the purple band, equal on the buff and green bands, and maxi-
mum on the red band.

PITRPIE BAND:-

(a) Connect signal generator to antenna terminal through a 200 mmf. (0.0002 mf) mica cap.
Connect ground terminal to ground.
and adjust trimmers, items 46, 24 and 3, for maximum outpur.
(b) Set signal generator and set to $1+0$ K.C., and adjust lag condenser 47, at the same time slowly rocking the tuning condenser batik and obtained.
(d) Go back to 350 K.C., and check alignment.
(b) Return to 140 KC , and check alignment.

BROADCAST, OR BUFF BAND:-
(a) With signal generator still connected as above, set generator and receiver to $1600 \mathrm{~K} . \mathrm{C}$., with
(b) Adjust trimmers, items 48,25 and 4 , for maximum output.

REALIGNING DETAILS:
I. I.F. ADJUSTMENTS:-
(a) Set signal generator to 453 K.C.; connect output throagh 0.1 mf . capacitor to grid cap of first detector.
(b) Adjust trimmers items $57,58,66,67,73,74$.
(c) Reduce output from osxillator to low value output reading and check adjustments. All trimmers should peak properly.
2. BROADCAST BAND:-
(a) Set signal generator and receiver to 1300 K.C.; connect through 200 mmf . capacitor to antenna terminal 1. Strap terminals 2 and 3 together for all alignment. Ground chassis.
(b) Adjust trimmers items 44, 30, and 25.
(c) Set receiver and signal generator to $600 \mathrm{~K} . \mathrm{C}$.; adjust lag condenser, item 45; at the same time slowly rock tunng condenser back and forth until point of maximum sensitivity found.
(d) Ser signal generator and receiver to 1300 K.C.; readjust items $44,2 t)$ and 25.
3. GREEN BAND:-
(a) Wave change switch to green band. Receiver and signal generator to 3.5 megacycles, with input to antenna terminal 1 through 400 . ohms (non-inductive resistence such as carbon).
(b) Adjust trimmers items 39 and 18.
(c) Set receiver and generator to 1.7 megacycles; adjust lag condenser item 40; at same time slowly rock cuning condenser back and forth until point of maximum sensitivity found.
(d) Go back to 3.5 megacycles and realign items 39 and 18.

4. RED BAND:-

(a) Wave change switch to red band. Receiver and generator to 7 megacycles with antenna connected as ahove.

Mode/s
 NTZ a MTZA 1936-37

Chassis Layout shmuing realigning posit:ons.
i. BLUE BAND:-
(d) Wave change switch to blue band. Receive. and generator to 16 megacycles; antenna connected as above.
(b) Adjust trimmer item 29.
(c) Adjust trimmer item 16; at same time rock gang slowly back and forth until point of maximum sensitivity found.
(d) Set receiver and generator to 8 megacycles; adjust lag capacitor item 30; at sume time rock gang slowly back and forth until point of maximum sensitivity obtained.
(e) Go back to 18 megacycles and check alignment
(b) Adjust trimmers items 34 and 17 .
(c) Set receiver and generator to 3.4 megacycles; adiust lag capacitor item 35, at same time rock gang slowly back and forth until maximum sensitivity obtained.
(d) Go back to 7.0 megacycles and realign items 34 and 17.

Chassis Underside View.

Alignment Data Models 511 and 414

To secure full advantage of the performance characteristics of this receiver, any realignment necessary should be carried out carefully. A reliable test oscillator or signal generator, and also an output meter should be employed.
I.F. ALIGNMENT:
(d) Set the signal generator at 463 K.C., and connect its output through an 0.1 mt . Capacitot to the grid cap of the first detector (type 6A8
or 6 A 8 G) tube. Set the receiver dial at about 600 K.C.
(b) Sensitivity and selectivity depend greatly upon rhe regerteration control trimmer, item 27. The set should be allowed to operate and heat
up for half an hour at least before attempting adjustments. If possible, the line voltage adjustments. be raised to 125 volts to make sure that trouble will not occur subsequently if the line voltage rises to such values.
First unscrew trimmer, item 27, and then adjust trimmers, items 18 and 19 , for maximum output.
(c) Screw in the regeneration control crimmer item 27. The further this capacitance is increased the greater is the sensitivity. However, a limit is set by approach to a condition of instability and oscillation. Unless the line voltage is high, as noted above, the adjustment should be backed off from this optimum point to insure against instability developing Pater with the set in use,
(d) Reduce the output from the signal generator to as low a value as will give an output reading, and check the adjustments of trimmers, 18 and 19 .
R.F. ALIGNMEINT:
(a) With the gang all in, check the position of the pointer. It should line up with the .53 mc calibration.
(b) Couple the signal generator to the antenna lead through a 100 mmf . mica capacitor. Con nect the ground lead (black) to gruund.
(c) Set the signal generator and the receiver at 1600 kilocyales. Adjust the trimmer, item 9 to hring in the signal.
(d) Adjust trimmer, item 7, for maximum output
(e) Set the generator at 600 kilocycles, and tune the receiver to the signal. Adjust the lagging trimmer, item 16, for maximum output, while rocking the gang.
(f) Recheck at 1600 kilocycles.

Modl Sn-Cbassis Layout showing Aligning Positions

Model 414 $1936 \cdot 37$ LF: 403 Kc

Meats 114-Cbassis Layout showing Aligning Positioms.

 teristics of this receiver, any realignment necessary should be carried out carefully. A reliable test oscullator or signal generator, and also an output meter should be employed.
I.F. ALIGNMENT:
(a) Set the signal generator at $470 \mathrm{k} . \mathrm{c}$. and connect its output through an 0.1 mf . capacitor to the grid cap of the first detector (type 6A8G) tube. Set the receiver dial at about 600 k.c.

(c) Screw in the regeneration control trimmer, item 28. The further this capacitance is increased the greater is the sensitivity. However, a limit is set by approach to a condition of instability and oscillation. Unless the line voltage is high, as noted above, the adjustment should be backed off from this optimum point to insure against instability developing later with the set in use
(d) Reduce the output from the signal generator to as low a value as will give an output reading, and check the adjustments of trimmers, items 18 and 19. Both should peak properly
R.F. ALIGNMENT
(a) With the gang all in, cluck the position of the pointer. It should line up with the .52 mc . calibration.
(b) Couple the signal generator to the antenna lead through a 100 mmf . mica capacitor. Connect the ground lead (black) to ground.
r_{s}) Set the signal generator and the receiver at 1600 kilocycles. Adjust the trimmer, item 9, to bring in the signal.
(d) Adjust trimmer, item 7, for maximum output.
(d) Set the generator at 600 kilocycles, and tune the receiver to the signal. Adjust the lagging trimmer, item 16, for maximum outpur, while rocking the gang.
(f) Recheck at 1600 kilocycles.

Models 516-517 Battery Operated

ALIGNMENT DATA

Lo secure full advantage of the performance characteristics of these receivers, any re-alignment necessary should the carried out carefully. \AA reliable test oscillator or signal generator should be used, and an output meter Oscilmars emploving harmonics for the high frequency band should not be used.
1.F. ALIGNMENT:
(a) Set the generator at 463 k.c., ind connect its output through an 0.1 mf capacitor to the grid of the type 1 C 7 G , first derector rube
(b) Adjust trimmer +apacitors, items 32, 33, 39 and 40 for maximum output.
(c) Reduce the outpet from the signal generator to as low a value as will give an cutput reading from the receiver, and check the adjustments. All trimmers should peak properlv.
R.F. ALIGNMENT-HROADCAST BAND:-
(a) Connect the ourpur of the signal generator to the antenna terminal through a 100 monf. mica capacitor. Connect ground terminal to ground.
(b) Check that the indicator is at the small mark at the end of the short wave-band when the gang is turned ail in.
(c) Set the signal generator and adjust the set to 1600 kilocycles. Adjus: trimmer, itern 24, to bring in the signal. Then adjust trimmer, item 12, for maximum sensitivity
(d) Set generator at 600 k.c. and tune the receiver to it. Adjust trimner, item 25 , for maximum sensitivity while roiking the gang.
(i : Recheck at $1600 \mathrm{k} . \mathrm{c}$.
R.F. ALIGNMENT-SHOR7". W"AVE BANI:-
(a) Substitute a 400 ohm resistor in place of the capacitor in the lead. frumt the signal generator.
(b) Set the signal generator and the receiver at 15 megacycles. Adjust the trimmer, item 21, to bring the signal in. (Make sure that the set is not tuned to the image frequency, which should come in with signal generator at approximately 14.1 m.c.)
(1) Adjust trimmer, item 9, for maximum sensi tivity while rocking the gang.
(d) Set the generator at 6.0 m.c., and tune the receiver to the signal Adjust trimmer, item 13, for maximum respunse.
(G) Recheck at 15.0 ml

DATA SHEET NORTHERN ELECTRIC-32

LF. $463 K$

Yanr
ET. \& OSC

Cibausio Lajowit shaniug Tap Aligning Pasisions.

I.F. ALIGNMENT:

(a) Set the generator at 463 kc ., and connect its output through a 0.1 mf. capacitor to the grid of the type $6 \wedge 8$, first detector tube.
(b) Adjust trimmer capacitors, items 31, 32, 36 and 37 for maximum output.
(c) Reduce the output from the signal generator to as low a value as will give an ourput reading from the receiver, and check the adjustments. All trimmers should peak properly.
R.F. ALIGNMENT-BROADCAST BAND:
(a) Connect the output of the signal generator through a 100 mmf . mica capacitor to the antenna lead. Ground the ground lead of the set.
(b) Check that the indicator pointer is lined up with the small mark at the end of the short-wave-band calibration when the gang is turned all in. The pointer is of the push-on type and can be forced around as required.
(c) Set the signal generator and set at 1600 kilocycles. Adjust trimmer, item 23, to bring in the signal. Then adjust trimmer, item 14 , for maximum sensitivity.
(d) Set the generator at 600 kc ., and tune the receiver to it. Adjust trimmer, item 25, while

bring in the signal. (Make sure that the set is not tuned to the image frequency, which should come in with the signal generator set at approximately 14.1 mc .)
(c) Adjust trimmer, item 9, for maximum sensitivity while rocking the gang.
(d) Since the lag capacitor, item 10, is fixed, it is unnecessary to lag at the low frequency end.

Models

 610-611
REALIGNING INSTRUCTIONS

To secure full advantage of the performance characteristics of this receiver, any realignment necessary should be carricd out carefully. A reliable testoscillator or signal generator should be employed, and an output meter. (Do not use an oscillator that relies on harmonics to cover the short-wave bands.)
I. F. ALIGNMENT:
(a) Set the signal generator at 463 kc ., and corinect its output through a 0.1 mf . capacitor to the grid cap of the first detector (type 6A8 tuse).
(b) Adjust trimmers $36,37,42,43$ for maximum output.
(c) Reduce the output from the signal generator to as low a ralue as wi!! give an output reading, and check the adjustments. All trimmers should peak properly.
R. F. AIIGNMENT-SHORT-WAVE, OR RED B.AND:
(d) Check position of pointer with gang all in. It should be abou: $1-16$ inch below the 1700 kc end of the police band calibration.
(b) Couple the signal gencrator to the first detector grid through a 400 ohm resistor, and connect the ground rerminal to graund.
(e) Set the generator and receiver at 15.0 megacvcles. Adjust the oscillator trimmer, item 25, to bring in the signal. (Make sure the correct peak is ohtained and not that due to the image vith the gang turned out more.)
(d) Idjust the antenna trimmer, item 10 , wlile rocking the gang back and forth.
(b) Set the generator at 0.0 megacycles and tune :he receiver to it. Adjust lagging capaciror, tem 14, (connected to the antenna coil) for naximum output.
(f) Recheck at 15.0 megarycles.
police and aviation, or green band:
(a) Using the same 400 chm dummy antenna, set the generator and reteiver at 4.8 megacyeles. Adjust the oscillator trimmer, item 27, t, j b-ing
in the signal. (The wrong peak, due to the image, is now that with the gang turned further in than for the correct one.)
(b) Adjust the antenna trimmer, item 11, for maximum outpur, while rocking the gang.
(c) Set the generator at 1.7 regacycles and tune the receiver to it. Adjust trimmer, item 1l, for maximum output.
(d) Recheck at 4.8 megacycles.

BROADC AST', OR SILVER GRAY BAND:
(a) Replace the 400 ohm resistor in the generator lead with a 200 mmf mica capacitor.
(b) Ser the generator at 1400 kilocycles and the receiver at 1.4 mesacycles. Adjust oscillator trimmer, item 26 , to hring in the sig:nal.
(c) Adjust the antenna trimmer, item 12 , for maximum output.
(d) Set the generator at 600 kilocycles, and tune the receiver to the signal. Adjust the lagging trimmer, item 29, for maximum output, while rock irg the gang.
(e) Recheck at 1400 kidarycles.

NOTE: If trimmer, item 26 , is changed greatly while adjusting the broadcast sand, the oscillator sertings at 4.8 and 15.0 megacycles will change slightly. Therefore, these two points should be rechecked after the broadeast band has been aligned.

I-F ALIGNMENT:
(a) Set the wave-change switch in the broadcast position, with the gang closed, and the fidelity switch in the normal (contracted-selectivity) position. Accuracy in setting the signal gener ator to the required intermediate frequency of 463 k.c. is essential to ensure good tracking of the i-f and r-f circuits. Couple the output of the generator through a 0.1 mf . capacitor to the grid cap of the first detector (type 6А8) tube.
(b) The first i-f transformer has a single sharp response in the contracted selectivlty pusition. The second, by itself, has a broader response with two peaks and a small dip in between. Re-alignment can be carried out in the usual manner, the double peaking being masked in che compusite response of the two transformers Adjust trimmers, items 31, 32, 39 and 40 for maximum response.
(c) Reduce the output from the signal generator to as low a value as will give an output reading and check the adjustments. All trimmers should peak properly
(d) Set the fidelity control in the "high-fidelity" (expanded-selectivity) position. If the adjust ments previously made are correct, as the signal generator frequency is varied a few kilocycles on either side of 463 k.c. the output from the receiver should remain nearly constant, due to the flat-top band-pass characteristics, and then hould drop of firly abruptly and symmetric ally for frequencies further above and below

R.F. ALIGNMENT:
(a) Connect the output of the signal generator through a 100 mmf . mica capacitor to the antenna lead. Ground the ground lead of the set.
(e) Recheck at 1600 k.c.
(b) Check that the indicator pointer is lined up with the small mark at the end of the short-wave-band calibration when the gang is turned all in. The pointet is of the push-on type and can he forced around as required.
(c) Ser the signal generator and set at 1600 kilocycles. Adjust trimmer, item 23, to bring in the signal. Then adjust trimmer, item 14, for maximum sensitivity.
(d) Set the generator at $600 \mathrm{k} . c$. , and tune the receiver to it. Adjust trimmer, item 25 , while rocking the gang, for maximum sensitivity.
R.F. ALIGNMENT-SHORT.WAVE BAND:
(a) Substitute a 400 -ohm resistor in place of the capacitor in the lead from the signal generator
(b) Set the signal generator and the receiver at 15 megacycles. Adjust the trimmer, item 18, to bring in the signal. (Make sure that the set is not tuned to the image frequency, which should come in with the signal generatur ae at approximately 14.1 mc .).
(6) Adjust timmet, item 9, for maximum sensi tivity while rocking the gang.
(d) Since the lag capacitor, item 10 , is fixed, it is unnecessary to lag at the low frequency end.

I.F. ALIGNMENT:

(a) Set the signal generater at $463 \mathrm{~K} . \mathrm{C}$. , and connect its output through a 0.1 mf . capacitor to the grid cap of the frist detector (type 6AB) tube.
(b) Adjust trimmers, irems numbers 53, 46, 42 and 40, for maximum output, with the wave-change switch in the broadcast position and the gang closed.
(c) Reduce the output from the signal generator to as low a value as will give an output reading and check the adjustments. All trimmers should peak properly.
R.F. ALIGNMENT—BROADCAST (SILVER-GRAY) BAND:
(a) Connect the output of the signal generator to the ansenna terminal through a 200 mmf . mica capacitor. Connct the ground terminal to ground.
(b) Check that the main indicator pointer lines up with the lower ends of the amateur and 49 metre band markings on the dial scale when the gang is turned all in.
(c) Set the signa! generator and the receiver at 1600 tilocycles. Adjust trimmer, item 62, to bring in the signal. Then adjust trimmers, items 23 and 8 , for rraximum sensitivity.
(d) Set the generator at 600 K.C., and cune the receiver to it Adjust trimmer, item 63, for maximum sensitivity while rocking the gang.
(b) Recheck at 1600 K.C

R.F. ALIGNMENT-POLICE AND AVIATION

 (GREEN) BAND:(a) Substitute a 400 ohm . resistor in plaze of the capacitor in the le 1 from the signal generator.
(b) Set the generator and the receiver at 5.0 mega-
cycles. Adjust trimmer, item 66, to bring the signal in. (Make sure that the set is not tuned to the image frequency, which should come in with the generator frequency reduced to approximately 4.37 mc .).
(c) Adjust trimmers, items 26 and 11, for maximum sensitivity while rocking the gang.
(d). Set the generator at 1.9 mc . and tune the set to the signal. Adjust trimmer, item 67, for maximum response while rocking the gang.
(e) Recheck at 5.0 mc .
F. ALIGNMENT-SHORT-WAVE (RED) BAND:
(a) With the signal generator still connected as for the police-aviation band, set the wave-
change switch for the short-wave band.
(b) Set the signal generator and receiver at 16 megacycles and adjust the irimmer, item 70 , to bring in the signal. (Make sure that the set is not tuned to the image frequency.)
(c) Adjust trimmers, items 30 and 15 , for maximum sensitivity while rociking the gang.
(d) Set the generator at 6 mc . and tune the set to the signal. Adjust trimmer, item 71, for maximur output while ros'sing the gang.
(c) Recheck at 16 mc .

Chassis shouving Aligning Positions.

DATA SHEET

REALIGNING INSTRUCTIONS

To secure full advantage of the performance characteristics of these receivers, any realignment necessury should be carried out carefully \AA reliable test oscillator or signal generator and also an output meter, should be employed. A signal genera or utilising harmonics to cover the short-wave band should not be used.

IF. ALIGNMENT:
(a) Set the signal generator to 470 k.c. and connect its putput through a 0.1 mf . capacitor to the grid cap of the first detector (type 6A8G tube). Set the receiver dial to about $600 \mathrm{k} . \mathrm{c}$. and turr. the wave change switch to the broadcast position.
(b) Adjust :rimmers, items 26,27, 32 and 33 for maximum output.
(c) Reduce the output from the generator to as low a value as will give an output reading and check the adjustments. All trimmers should peak properly.
R.F. ALIGNMENT-BROADCAST BAND:
(a) With the gang all in check the position of the pointer It should line up with the end of the calibration line. Put the wave-change switch in broalcast position.
(b) Couple the signal generator to the antenna (blue) lead through a 100 mmf. mica capacitor. Connect the ground (black) lead to ground.
(c) Set the generator and receiver to $1600 \mathrm{k} . \mathrm{c}$. Adjust trimmer, item 12, to bring in the signal and then adjust timmer, item 10 , for maximum sensitivity
(d) Set the generator to $600 \mathrm{k} . \mathrm{c}$. and tune the receiver to it. Adjust trimmer, item 15, at the same time rocking the gang, until maximum sensitivity is obtained.
(c) Recheck at 1600 k.c.
R.F. ALIGNMENT-SHORT.WAVE BAND:
(ब) Substitute a 400 ohm carbon resistor in place of the capacitor in the lead from the signal generator. Turn the wave-change switch to the short-wave position.
(b) Set the receiver and generator to 9.0 megacycles and adjust trimmer, item 14 , to bring in the signal.
(c) Set generator and receiver to 9.4 megacycles and adjust trimmer, item 13, at the same time rocking the gang until maximum sensitivity is obtained.
(d) Recheck at 9.0 megacyeles.

Models
73-76
1930
Table
Low Boy
High Boy
De Luxe
High Boy
NOTE-
Condensers
No. 9 and 11
Must on no acocunt be disturbed as they cannot be adjusted correctly in the Field

Model 83-87 1929-30

Low Boy Hish Boy De Luxe High Boy

Models
62 -65
1929-30
Table
Low Boy High Boy De Luxe High Boy

indicates crounded shielding

Resistance Data

Fig.	Resintance in Ohms
1	$10: 000$
$4-23-24-28$	100.000
14	50,000
15	25,000
16	$2501-30-30$
$21-26$	$1.000,000$
$22-31$	250,000
33	$500-300$
$10-18$	250

Printed in Canada

Tube Socket Readings

Type	Position	A	B	C	Screen	Mills
224 171 A	R.F. Det.-Rect.	2	150	2	80	1.5
201A	Det.-Amp.	5	45	1		
201A	1 A.F.	5	140	2.5		8
171A	2 A.F.	5	142	32		16

										. 05	(B) (2) (1) (4) (0)	$\begin{gathered} 10,000 \\ 100,000 \end{gathered}$
	Circult	Folts	Yalte	$\begin{aligned} & \text { Grld } \\ & \text { Volta } \end{aligned}$	Grld Volt:	Volts	Amperes	Mill. Amperes:	(10) (1) (17)		(1) (2) (1) (0) (2)	$\begin{gathered} 100,000 \\ 50,000 \end{gathered}$
	1st R. F'.	2.1	190	60	. 2	5	1.7	1.75	(11) (2) (7) (17) (3)	. 00011	(18)	13,000
	Osc.	2.1	45		. 7	7	1.6		(21)	. 0007	(0)	1,000 50000
-	1st Det.	2.1	180	62	4.6	8	. 5 †	.is	(20)	. 05	(3)	500,000 500000
	1st I. F.	2.1	185	65		5	1.5	1.7	(39)	. 050005	(4)	500,000 250,000
	2nd I. F:	2.1	190	82	2.2	5	3	1.85	(3)	. 50005	(4) -	250,000 70,000
	Det. Rect.	2.2	'35		4	$5^{.5}$	$\cdots 301$ 00025		25,000
	Det. Amp. 1st A. F.	2.2 2.1	35 95		i1.4	5 5	4. 301			. 015	(i)	10,000
	2nd A. F.	2.2	255	-	50		32.5		(6)			70 800
	2nd A. F.	2.2	255	\cdots	50		32.5		(1)	. 015	(8)	800
	Rect.	4.9	50/Plate	\cdots	0			
	${ }^{*}$ Read with C' 100 Scale. \dagger Read with 20 Mil. Scale. \ddagger Read with 2 Mil. Scale.			Note-Volume Control Off; Station Selector turned to Low Frequency End; llange Switch set in "Normal" Position..					$\text { 1.F. } 175 \mathrm{Ke}$			

MODEL 212 AND 212-A RADIO-FHONOGRAPH

Models 112 and 112 -A Receivers

$\begin{gathered} \\ \text { 몰 } \\ 8 \\ 8 \\ \infty \end{gathered}$. 05 Ré and 2.50 Ohm Resistor .25 (two sections) .00011 .0007 . 05 .05 and 250 Ohm Rewistor .00005 . 5 .00025 . 015 . 05 . 015 (two secluuris) . 05	
		1. 1.5 1. 1. 1.5 1. 1.5 1. 1. 1.	$\begin{array}{r} 1,000 \\ 10,000 \\ 13,000 \\ 25,00 \\ 50,00 \\ 70,000 \\ 100,000 \\ 220,000 \\ 500,000 \\ 500,000 \\ 70 \\ 800 \\ 10,000 \end{array}$

19	-32	15	75%			
	FRO	OF	Chass		PWR 4	RF:
RECT				18		
Tube		Screen	Control	Cathode	Plate	screensorid
Circuit	Volte	Volte	Volt	Volta	Ampuras	Amperee \ddagger
1 st R. F.	190	60	. 2			1.78
Osc. list Det.	45 180	62	4.7	7 8	1.6	$\cdots \mathrm{i}$ \%
1st L. F.	185	65		5	1.0	1.7
2nd 1. F.	190	82	2.2	0	\%	1.88
Det. Rect.			. 4	. 5	\cdots	*.
Det. Amp.	35	-	. 4	8	$4{ }^{20 \%}$	\ldots
1st A. F.	95		1.2	6	42.5	...
2nd A. F.	255 255	\because	50 50	\ldots	32.6 32.5	-
Rect.	2	50/Plate	
-Read with C 100 Scale. \dagger Read with 20 Mil. Scale. \ddagger Read with 2 Mil. Scale. Note-Volume Control Off ; Station Selector turned to Low Frequency End; Range Switch set in "Nurmal" Poaition.						

Model 112 Condenser Block Part No. 3754

Model 112-A Condenser Block Part No. 3755

Printed in Canada

*All of the above readings were taken from the under side of the chassix, using test prods and leads with a suitable A.C. voltmeter for filament voltages and a high resistance malti-range D.C. voltmeter for all other readings. Volume control at maximum and atation selector zurned to low frequency ead. Readiugs taken with a radio set tester and plug-in adapter will not be satisfactory.

LTGHS VIVQ

1932-33

PHILCO MODEL 91 SERIES

-Speaker Connectiong-121 Code

Tube	Plate Volte	Scrgen Grid Volts	$\begin{gathered} \text { Control Grid } \\ \text { Voíte } \end{gathered}$	$\begin{aligned} & \text { Cathode } \\ & \text { Voles } \end{aligned}$
Circule				
R.F.	200	50	. 6	25
Det.-Osc.	250	80	10	10
I.F.	250	85	. 2	5
Det.-Rect.	0		. 2	2
Det.-Ampl.	60		. 2	2
Audio	100		0	2
Output	240	250	15	15
Output	240	250	15	15

(6)		900 2700	(4)	18,000 25,000
	er	95	(1)8	13,000
		205	(32)	09,000
(4) $\mathrm{a} T$ Spea		85	(0)	51,000
	ker	205	(3)	490,000
(1)		1,000	(43) (8)	1,000,000
		10,000	(3) (3)	2,000,000

Model-5 1934 IF 460 K.C

DATA SHEET

Model- II 1933-34 IF 260 K.C

$$
\begin{aligned}
& \text { Model-318 (U.S.A.18) } \\
& \text { 1933.34 IF } 260 \mathrm{KC}
\end{aligned}
$$

 (30) and ground. (30)-a Condenser (.05), Part No. 30-4020-(nat shown in Schematic), is connected betmesn high side of Volume Control (31) and junction of (20). (90). External

Model-316(u.s. Al (16) 1933-34-35 IF.460Kc.

Models-357-358(u.s.a. 57-58)1933-34 IF 460 KC

Model 58 is a four tube superheterodyne receiver, very similar to Model 57 Note that the center tap of filament wanding gnes to - B instead of to ground one end of the nscillator pick-up coii goes directly to the cathode of the detector-oscillator tube, and the "ther cnl! to the 8000 ohm resistor and .001 condenser, the other ends of these two units being grounded.

Models-319-389(u.s.a. 19.89) 1933-34 IF 260 KC

Model-337(u.s.a. 37) 1933.34 IF 460 K.c.

Model-344(u.S.A44) 1933.34 IF 460 KC .

MODEL 90

WITH 2- TYPE 47 TUBES
SERIAL NO. 32.00 TO B35,000 0150 -30, AND ABOVE B53,100

1931-32 I.F. 260 Kc.

Models $112 \mathrm{a}-112 \mathrm{a}$ 1931-32 IF 175 kc

1 ace ${ }^{\text {and }}$
and
Models 470-470a 1932 IF. 260 kc .

Tube and alignment
Condenser Locations.

Model 316wCodes 125 and 126 1934-35 LF. 460 KC

Adjusting Compensating Condensers

Fisures indicate relative FOSITIDN DF SECTIONS FROM FRIM FRONT DF CHASSRO.
ROM

Adjustment of I. \mathbf{F}.

1. Alemove the antenna consection from the reoefiver, dieconnoct the erid olip from the firt detactor (type 77 tube), and oonneot the "ANT" output torminal of the Modal 048 or 024 efmal peorntor to the grid eap of this tube; coanect the "GND" terminal of the riznal seenerntor to the "GND" terminal of the recelver.
2. Connect the 0 to 20 volt ragge of the output meter in the Model 048 or $025 \cdot$ tenter to the plato pronge of the two outpet tubee or to the two bottom pronge of the apeaker plut.
3. Adjuet the mignal generator to a frequescy of $460 \mathrm{~K} . \mathrm{C}$. Place the reocirere in operation with the dial tarned to the low frequeacy cod of the broedoest band, wave band witch to axtreme wit, and with the volume control edjunted near its
 approximately hal-soale rending of. the outpot meter.
4. Using the Phileo fibre adjuming merow ariver, part No. 27-7069, edjuat the I. F. compensenting condenears in the following under to give maximum reeding in the output meter: $\mathrm{O}, \mathrm{O}, \mathrm{O}, \mathrm{O}, \mathrm{B}, \mathrm{O}, \mathrm{O}$ ((Fe. 4).

Adjustment of Wave-Trap

1. Consect the aiznal goocrator loade to the antenna and ground terminain of the rectiver. Repleos the grid clip on the first deroctor grid cap.
2. Set the wavobasd ritah of the recolver to the extreme Wift (broedoart porition) (Ragge No. 1, 550-1500 K.C.), and tarm the deticn seloctor to 560 K.C.

$\text { COOE } 12$	$\frac{6}{2 \pi}$	$\begin{aligned} & 7 \\ & 10 \\ & 100 \end{aligned}$	0	$\begin{aligned} & \text { 㝻。 } \end{aligned}$			Na	026	-
crimer									
F6F.	18	4.8	4.3	43	0.1	6.8	68	6.8	6.8
P ¢ K .	810	≥ 0	78	28	215	0	70	215	230
8G to Y......	78	70	...	23	*	\cdots	4	215	200
	2.8	4.8	6.1	2.8	2.8	0	0	\bigcirc	0

3. With the eipnal generator in operatiou at 460 K.C., edjoen the wavo-trap (1) condemer until a minimum reading is obtained on the output moter. The Phileo fibre wrench, part No. 3164, is ued for thin edjustment.

Adjustment of High Frequency Padders

1. Leaving the output moter connooted to the reociver connect the PHition Model 091 dignal geocerator to the antenna
and ground terminali of the chacis and place the aignal senerator in operation.
2. Turn the wave-band witoh to Range 4 (extrome right) and edjust the station molector to 18.0 megecyclen, at which point the fifth harmonie of the $3600 \mathrm{~K} . \mathrm{C}$. signal will be heerd. By meana of the Philco pedder wrench, part No. 3164, edjuet the occillator, R.F. and antenna pedders for maximum reading in the output meter and in the order mentioned. Theee peddere are numbered () , (17) and O , respectively in figure No. 4. To make obrtain that the adjumtment ham been correotly made oheck the aixth harmonic at 21.6 M.C. en the dial.
3. Tura the wave-baad switch to Range 3 (4.1-10.0 M.C.) and adjuat the tuning dial to 7.2 M.C. (the second harmonic of the 3600 K.C. aigan). Adjuat the cecillator, R.F. and antenn padders ($\left(\right.$), (11) and 0^{9}, reapectively) for maximum output. Check the calitibation of the dial at the upper portion of the third baod by tuning in the image of the 10.8 M.C. signal at approximately 9.9 on the dial (If there is an appreciable error in calibration at thin point, readjuat padder 2 for maximum output. Retura the dial to the 7.2 M.C. position, tuning for maximum output. Readjuat padders (10) and (O).)
4. Turn the weve-bend awitch to aceie No. 2 (1.5-4.0 M.C.) and tune in the fundamental frequency from the signal generator at 3.6 M.C. Adjust paddrert (3), (8) and (1) for maximum output.
5. At thie point it will again be necemary to make une of the broadcast type gignal generator Models 024, 048 or equivalent. Connect the output of this alonal generator to the antennes and ground terminals of the chesis. Turn the station selector dial to $1.5 \mathrm{M} . \mathrm{C}$. (Range 2) and edjuat the equal generator to the same frequency (1500 K.C.). Adjuit padder (6) (nut).
6. Turn the wave-band writch to Rage No. 1 (broedcatt band) and net the dial at 1500 K.C. Adjurt the signal generntor to thim froquency and edjurt peddone, (3) and () for maximum output.
7. Tune the receiver and the fignal gnometor to 000 K.C. and edjust padder (ecrew) for maximum output.

Model 344 1954-35 rf.460.kc.

3-ADJUSTMENT OF THE DIAL FREQUENCIES Model 34 has four semarate frequency bands or ranges, each obtained by one of the four positions of the wivebend awitch. There is a compensating condenser for each range, which must now be adjusted. In the following procedure, the frequency rangea referred to, and obtained by the different positions of the swritch ere:

Comnect the output terminals of the Model 091 or equivalent Signal Generator, to the "ANT" and "GND" crminals of the receiver chasius. Connect an output meter to the primary terminals of the Output Trans: ormer of the receiver Set the Wave-Band Qwitch to Range 4, and the Station Selector at 21.6 M.C. The sixth harmonic of the 3.6 M.C. crystal in the Model 091 Signal Generator is picked up at this point. Adjust the con pensating condenser (i1) on Section 1 of Tuning Condense or maximum resporase in the output of the receiver.

ADJUSTING MODEL 334

DO NOT ATTEMPT TO ADJUST the compensating condensers mounted upon sections numbered 3 and 4 of the Tuning Condensur Assembly. These have been adjusted, and sealed. as the factory.

1-ADJCSTMENT OF THE INTERMEDIATE FREQUENCY - Remove the srid clip from the trype 1 C6 tube and connect the "ANT", output terminal of the signal generator to the grid cep of the tube. Connect the "GND" terminal of the signal generator to the "GND" terminal of the roceiver chsaris.

Connect the output meter to the primary terminals of the output transiormer. Set the signal generator at $400 \mathrm{K.C}$. (the intermadiate frequency of Model 34) and adjust each of the I.F. compengating condensers in turn, to give maximum reeronse in the output of the receiver. The location of the I.F. compensating condensers is shown in Figure 2. Each of these transformern has a dual compensating condenser mounted at its top, and mecoseible thru a hole in the top of the coil shield. In the dual compensators, the Primstry circuit is adjusted by turning the screw; the Secondary circuit is adjusted by turning the hex-head nut.

2-ADJUSTMENT OF THE WAVE TRAP-Replsce the grid clip upon the Detector-Owillator tube (Type 1C8). Connect the output leads from the signal generator directly to the antenna and gronnd terminais of the receiver. Set the Wave-Band Switch of the receiver to the atandard broadcast pand (Range 1) and the Station Selector at the low frequency (520 K.C.) end. Adjust the Wave Trap (3) coodenser to give MINIMUM response to $460 \mathrm{~K} . \mathrm{C}$. aignal from the siganal generator. The Wave Trap (9) is located at rear and underneath the charis, and is shown in Figures 2 and 5. It is reached from the rear of the chasis.

Turn the Wave-Band Switch to Kange 3 , and the Station Selector to 10.8 M.C. Here, the third harmonic of the 3.6 M.C. crystal will be heard. Adjust the compenenting condenser (ii) on Section 2 of Tuning Condenser penmang condenser (is) on Section 2 of Tuning Cond
Turn the Wave-Band Bwitch to Range 2, and adjust the Etation Selector to 3.6 M.C. The "Antenna" connecthon between the Signal Generstor and the receiver chasin raut be removed for this adjustment, otherwise the output of the Signal Generator will be too great. Adjust the compenmiting condenser (17) to give msximum response in the output circuit. This compensenting condenser is the output circuit. This compensaiting condenser is locsited underneath th
sbove. See Figure 5 .
This concludes sdjustments requiring the Model 091 (or equivalent) high frequency signal generator.
The Model 048 or its equivalent is now used again. Turn the Wave-Band Switch of the set to Range 2 and the Station Selector ta 1.5 M.C. Set tbe Signal Generntor at 1.500 K.C. Make aure the "Antenna" connection between the Bignal Geaerator and the Chamas has been restored. Adjust compensting oondenser locsted underneath the cheris, (Figure 5). Adjustment is made from the underaidn of the chamis.
Tune the Wave-Band Bwitch to Range 1 and the Station Selector to 1400 F.C. Set the Signal Generstor at 1400 Selector to 1400 K. . . Set the signd Generstor at 1400 K.C. Adjust compentating condenter (6), Which in located undernesth the chavia. (See Figure 0)

Finally, with Wave-Band Switch at Range 1 , and Station Seloctor at 520 K.C., net the Signal Generitor at 520 K.C. and idjust compensating condenser 0 (Figure 6). This compensating condenver is sloo mounted underneath the chypris, and reached from below.
For proper and sceurate sdjustment of Model 334. the procedure mast be tollowed exactly in the order diven. The adjustment should mot be undertaicen whout proper equipment as meetioned above.

Model 345 1934-35 lf. 460.kc.

ADJUSTMENT OF THE WAVE TRAP-Replace the grid clip upon .t the Detector-Oscillator tube (Type 6A7).
DETECTOR, AND OSCILLATOR "HIGH" AND "LOW" FREQUENCY ADJUSTMENTS-The "antenna" and "oscillator H. F." compensators are located on top of the tuning condenser assembly, reached from above.

Set the signal generator at 1500 K.C., tune in this signal on the set and adjust the antema compensator (7) (nearest tuning control) to give maximum reading in the output meter.

Next adjust the oscillater H. F. condenser (6) (located on the other section of tuning condenser) to maximum reading.

Finally set the signal generator at 600 , tune in this signal and adjust the osscillator "L. F. condenser", located underneath chassis (115) in Fig. 4) to maximum reading. This adjustment is reached thru the hole in top of chassis, between the two electrolytic condensers (left hand end of chassis when facing rear).
Model 360 1933-34 1.F 460 Kc

DATA SHEET
canctest PHLCO. 27

The adjustment of the compensating condensers in Model 66 Receiver requires the use of an scciurate signal generator - much a Philco Model 02A, an efficient output meter (Philco Model 012 or Model 025 are recommended), and a suitable fibre hex wrench. Connect the output meter to the plate and cathode prongs of the 42 output tube.

Adjustments are made in the following order:
(1)-I. F. (Intermediate Frequency)-Remove grid clip from cap on 6A7 tube and connect antenna lead from signal generator to cap of tube. Connect ground lead to ground post on set. Turn on set and signal generator; set wave switch of latter to 460 E. C. (the I. F. of Model 66) and dial of set at 540 , wave band switch to left. Adjust each of the four I. F. compensating condensers (17), (17), (22) and (23) in turn so that maximum reading is obtained in the output meter. If the meter reading goee of acale, adjust the attenuator on the signal generator so as to get a lower reading. These I. F. condensers (visible in Fig. 4) are adjusted by inserting the hex wrench thru the holes in rear of chasais sub-base (except one to extreme left when facing rear of set). Two of the holes are covered by small metal buttons which can be removed temporarily by hand.
(2)-WAVE TRAP-Replace grid clip on cap of 6a7 tube and connect antenns lead from signal generator to antenna post on set. Set signal generetor at 460 K . C. and adjust wave trap (1) so as to get MINIMUM reading in output meter.
(3)-ANT. and OSC. H. F.-These adjustments (7) and (11) are located on top of the tuning condenser aseembly at right (facing front of and adjusted from above. The "ANT" (7) is nearest front of set. Set signal generator at 1700 and dial of set at 1700 and adjust these two condensers to get maximum output meter reading.
(4)-OSC. L. F.-This condenser (193) is located underneath chasais and is reached from underneath. Set dial of set and signal generator awitch at 600, and adjust for

Model-30 1931-32

Adjustment of the Intermediate Frequency

Locations of Compensating Condencers Fic 2.

Set the sivnal zenerator at $460 \mathrm{~K} . \mathrm{C}$. (the intermediate frequency of Model339) and with the receiver and signal generator turned on, the wave band switch at left and dial at 600 K. C., adjust each of the I. F. compensating condenwers in curn, to give maximum response in the output meter. If the needle on the mater goes of scale, turn back the attenuator on the signal semerator.

Asjustment of the Wevi Trip

Replace the grid clip upon the Detector-Oncillator tube (Type 1C6). Connect the output leads from the 024 signal renerator direcily to the antenna and ground terminals of the receiver. Set the Wave-Band Switch of the receiver to the standand broadcast Eand (left position) and the Station Wave Trap condenser to give MINIMUM responte to a $\$ 60 \mathrm{~K} . \mathrm{C}$. aignat from the signal generator.

Adjustmente for Standard Wave

H. F. end: Set signal generator at 1500 K . C. and dial at 150 (lower ecale). Now adjust condenwers © (Antenna) and
(U) (Usillator H. F.) to get maxumum response. These condensere are loca
L. F. (eeries): Turn dial to 60 and set signal generator at 600 . Adjust condenser Ior maximum sutput. This is reached from the top, through hole in chassis at rear of tuning condeneer (see Fig. 2).

Adjustment of Short-Wave Compeneator

The crystal controlled signal generator is used for these adjustments. Connect its leads to antenna and ground posts of set. Turn the wave band switch to the right, and the 091 aignal generator "on." H.F. or maximum; Turn the dial of the set to about half way between 14 and 15 megacycles (top acale) and you should tbere pici up the th harmonic (14.4) of the 3.6 M. C. signal. Adjust the S. W. (maximumn) compenator \bigcirc (eve Fig .4) to give maximum respone in the output meter. This compensator is reached from undernenth the chassis.
S. W. (minimum): Turn dial of tet a little more than 7 megacycles at which point the second harmmonic of the signal megacycies at which point the second harmionic of the aignal generator (7.2 M . C.) should be beard. Adjust condenmer of reached from above, through hole in top of chamis (see Fig. 2).

MODELS. 3/1नB AND 3116X

Adjustment of compenaating condenters in. Model3116 requires an accurate aignal generator covering long-wave, PHIL.CO Model 088 All-Wave Sisna! Cenerntor, having a continuous range of from 100 to 20000 K.C. will be ideal for this purpose.
An output meter ia almo needed. PHILCO Model 025 Circuit Tester includea a high-grade output meter.
Philco No. 3164 fibre wrench and No. 27-7059 fibre handled screwdriver complete the equipment needed for making these adjustments. The locations of the various compensating the plate contacte of the provided with the " 025 ") and set it at the $0-30$ volt range.
I.F.-Set the Signal Generator at 460 K.C., and attach its antenna lead to the grid cap of the 77 int detector tube (having retroved the grid clip from the tube). Connect the ground terminal of the Signal Generator to the ground terminal of the set. Turn on the set. turn the waveband switch to standard broadcast (recond position from lett) and set dis! at 55. Turn coindenmer 3 (2nd 1.F. tertiary) all the way down before adjusting the other I.F. Compenaton. Now with the hbre screwdriver, adjust condensers O and '(3i) (3rd I.F.), (1) and © (2nd I.F.), and then $)^{2}$ and © (1st I.F.) until maximum reading it obtained in the output meter. Turn down the nedte goes of he cale Now adjuat condeneer (2nd IF. tertiary for maximum reading)

Wave TRAP-Connect the Signal Generator antenna and ground. leads to the antenna and ground posts of the aet. Replace the grid clip on the 77 tube cap. With the signad generator operating at 460 K.C. and the set controls adjuated as for l.F., adjust wavetrap (1) until the minimum reading is obtained in the output meter.

SHIORTWAVE (DAYTIME BAND)-Turn wave band switch to the shortwave (daytime) position (extreme right) Set signal renerator at 18 megacycles and dial of met at 18.0 (top scale). Nuw adjust the uscillator, Antenna, and R.F. short wave compensators in turn, for maximum reading. These are (3). () and (1) reapectively.
SHORTWAVE (NIGHT-TIME BAND)-Turn the waveband switch to position 4 (counting from the left). Set the band awitch to poaition 4 (counting from the lert). Set the ugqal generator and receiver at 9.5 megacycles and adjust the

Fig. 2. Locatlons of Comptneating Condensers

POLICE AND AMATEUR BAND-Turn the waveband switch to position 3. Set the dial and cignal generator at 4.0 megracycles and adjunt condensers , (1i) and reppectively for maximum reading.
Set the signal generator at $1600 \mathrm{~K} . \mathrm{C}$. and turn the dial to 1.6. Adjunt condenser (nut), oecillator police seriee, to maximum reading.
STANDARD BROADCAST BAND-Turn the waveband switch to position 2 (from left). Set the dial and mignal generator at $1500 \mathrm{~K} . \mathrm{C}$. and adjust condenser (2), (1) and 9 or maximum reading.
Set the dial and signal generator at 000 K .C. and adjuse condenser (acrew), broadesst series, for maximum reading LONGWAVE BAND-Turn wavebend switch to poition 1 (left). Set the dial and xignal generator at $340 \mathrm{~K} . \mathrm{C}$. and adjut condenter (acrew) to maximum. This is the upper end of the longwave (low frequency) band. Finally, the the dial and signal generator at $175 \mathrm{~K} . \mathrm{C}$. and adjust condenser Ba (nut) for maximum reading. This is the lower end of the longwave band.
VOLTAGES. 2

Clueit	$\mathrm{O}_{\mathrm{nn}}^{\mathrm{nn}}$	$\begin{aligned} & \text { 2n } \\ & \text { On } \end{aligned}$	$\begin{aligned} & \text { nod } A F \text { F } \\ & \text { (0uput } \end{aligned}$	Reenher
Typer Tume	11	7	42	0
Filmeat Voits-F to F	∞	63	63	50
Fate Volde-P wo	200	70	25	315
\$rreen Grid Volto-SG to K	\%	23	223	...

AOUUSTMENTS

The I.F. primary and I.F. secondary condensers .460 KC (the I.F. of Model 384) and the diat nointer at

DATA SHEET

1. Remove the antenna connection from the receiver, dieconnect the grid clip from the first detector (type 1C6 tube), and connect the "ANT" output termainal of the algaal geners. tor to the grid cap of this tube; comnet the "GND" terminal of the cignal senerator to the "GND" terminal of the receiver. 2. Connect the "025" output meter adapter leade to the plate and one filament contact of the type 30 driver tube. Set it at the; $0-30$ volt range.
2. Adjut the signal generator tos a frequency of $460 \mathrm{KC.C}$. Placr the receiver in operatior with the dial turned to the low frequency end of the standard broadcast band wave bend swit'h to extreme left (clocirwine), and have the volume control adjusted near ite maximum eetting. Adjust the aignal sener tor attenuator for approzimately half-acale reading of the output meter.
3. The I.F. compentating condemers are located at the tope of the J.F. coil shields and adisated by turning the two ecrew in top. Adjust condensers and 6 (2d I.F. primary and secondary) for maximum reading in the output meter, and then condenser 8 and 9 (1e I.F. primary and secondary).

Adjustment of Wave-Trap

1. Connect the wignal geneator leada to the antenna and

上゙ves 460 K.C.

ground terminale of the receiver. Replace the grid clip on the C6 grid cap.
2. Wrth the wave-band switch of the recriver still in the extrene leit (broadcast position), turn the station melector to 550 K.C.
3. With the aigral generator in operation at $460 \mathrm{K.C}$ adjut the wave-trap (1) condenser until a MINMMM readiry is obtained on the output meter. The wave-trap compensatur is reached from rear of chamia. ddjustment of High and Lov Frequency Compensators

With the wave-band switch atill at Positioa No. 1 (broad. cast band) aet the dialat $150 \mathrm{~K} . \mathrm{C}$. Set the signal generator

MODEL. $36 / 0$

눈뭉ㅇㅇㅇㅇㅇㅇ ALIGNMENT INSTR. ETC. ON DATA SHEET PHILCO:-34

Adjustment of I.F. . Remove the antenna connection from the receiver who l broailcast signal generator to the output terminal of the connect the "GND" terminal of the signal generator to the "GND" terminal of the receiver 2. Connect the 0 to 30 volt ran
in the Philo Ca18A or 025 unit to the plate and cathocle of the output tube or to the two bottom prongs of the speaker plug.
3. Adjust the signal generator to a frequency of 460 K.C. Place the receiver in operation with the dial turned to the low frequency end of the standard broadcast band, wave band switch to extreme left (clockwise), and have the volume control adjusted near its maximum setting. half-scale reading of the output meter.
4. The 1.F. compensating condensers are located at the tops of the I.F. coil shields. The primary is arljustell by Adjust condensers (36) and (38) (Ed 1.F. primary and secondary) for maximum reading in the output meter, and then condensers (31) and (33) (1st I.F. primary and secondary).

Adjustment of Wave-Trap

1. Connect the signal generator leads to the antenna and ground terminals of the receiver. Replace the grid clip on the 6AT grid cap.
2. With the waveband switch of the receiver still it the extreme left (standard band), (50 -1720 K.C.), turn
adjust the wave -trap (2) condenser until at 4 and reading is obtained on the output meter. The Pl ilco fiber wrench, part No. 3164, is used for this adjust:nent. Th

Adjustment of High and Low

Frequency Compensator

1. Wits the wave-bant witch still at Rance
broadcast" band), set the dial at 1700 ki Sit in o generator at this frequency an! auljust com, snsators shat (6) and (:0) for maximum output. The see are the uncillator, antenna, and ReF. stalwart" conpensators riser-
Lively. Tuns the receiver and the signal generator to dino
2. Tuns adjust K.C. and adjust compensator (17) screw) for nuxumum 3. Turn the waveband switch to the serond (milia) position. Set the dial at 3.6 M.C. at which point the 088 signal al the $0: 1$ signal will be harl. If the Music 088 Signal Generator is be ne used, set it at 3.f M. (' Adjust condensers (13), (5) and (1) in succession. These ament oscillator, antenna and R.F. police band adjust4. Tum the tuning dial to 1.8 M C ., and set the signal condenser (16) (Osc. L.F., police) (nut), to maximum signal.
3. Tum the waveband switch to Rand 3 (extreme
right) and adjust the station
wrench, part Non. 31 fou, adjust
 in the output meter. These arm nummoral \{12), (1) an

Tube Socket Voltages

Fig. 1. Tube Sockets ne viewed from bottom.

Moose. $36 /{ }^{2}$
 SEE CIRCUIT ON PHILCO DATA SHEET BS

Adjustment of I.F.

1. Remove the antenna connection from the receiver, disconnect the grid clip from the first detector (type 6A7 tube), and connect the "ANT" output terminal of the sig"GNI"" terminal of grid cap of this tube; connect the terminal of the: receiver.
2. Connect the 0 to 30 volt range of the output meter to the plate aril cathode of the output tube or to the two bottom prongs of the speaker plug.
3. Auljust the signal generator to a frequency of 460 K.C. Place the receiver in operation with the dial turned wave bani sw th to extreme left (clockwise), and have the volume control adjusted near its maximum setting. Adjust the signal generator attenuator for approximately half-scale reading of the output meter.
4. The 1.F. compensating condensers are locates at the tops of the 1.F coil shields and adjusted by turning the two screw: in top. Adjust condensers (26) and (28) (21 I.F. primary and secondary) for maximum rualling in the output meter, and then condensers (20) and (22) (1st I.F. primary and secondary).

Adjustment of Wave-Trap

1. Connect the signal pernemato leads to the antonia and ground terminals of the reverter. Ikeplace the grit

2. With the wave-bam? :with of the reviver still in Ge extreme left fromaltant posifionl, turn the station s. lector to $550 \mathrm{K.C}$.
3. With the signal permentor on operator at flat ki. at just the wave -tap is what the on the output meter.

Adjustment of leigh and Low Frequency Compensitors

1. With the wase-hand with till at Position No. (broadcast band), set the dial at $\$ 00 \mathrm{K.C}$. Set the sig nat generator at this frequency amp adjust compensator 11) and (5) for maximum output These are the oscillater and antenna "H.F. standard" compensators respect
lively.
2. Tune the receiver ant the signal generator to $600 \mathrm{K.C}$ put. This is the oscillator L.F stamiar
3. Turn the waveband switch to the extreme right (short-wave banal) and adjust the ration selector to 18.0 megacycles. By means of the Trike wrench, part No. 3 icy, adjust the oscillator S.W., and antenna S.W. com These are fun maximum reatimp in the output meter
4. Turn the tuning dial to 7.2 M.C., and adjust conden
sta (13) osee. L.F., (S.W.) (nut) to maximum signal.

Fis. 2. Lametions of ©ompernating Condenmera
I.F.-Set the Signal Geperatol at 460 ki.C., and attach its antenns lead to the grid cap of the 6 A 7 tube on the Connect the ground termina of the Signal Generator to the ground terminal of the set. Turn on the set, turn che wrevand switch to second position (standard) and set dial at 65 . Nuw with the tibre screwdriver adjust condensers (46) and 448) (2d I.F.) and then (98) and (40) (.at 1.F.) until maximum resuing is obtained in the outzenerator if the output neter needle goes of the scale.

WAVE TRAP-Connet the Signal Generator antenna and ground leads to the antenna and ground posts of the signal generater operating at 460 K .C. and the set controls aenjusted as for 1.F., adjust wavetrap (1) until the minirum reading is obtained in the out-put meter.

SHORTWAVE-Turn waveband switch to position 4 (extreme right). Set aigmall generator at 18 megacycles and dial of set at 18.0 (top sicale). Now adjust the oscilmum reading. These are (23), (16) and (7) respectively

Turn the dial to 6.0° M.C., sel the signal generator at G. M.C., and adjust condencer (2:) for maximun reading, reached from underneath. (See Fig. 3).

STANDARD WAVE - Turn the waveband switch to position 2 (standard bruadcast), set signal gererator at
1500 and dial of set at 150 . Now adjust the oscillator,

FIA. I. Tube Sockets at view from bottom.

> MODEL. 3650 $1 . F=$ $460 \mathrm{K.C}$.

1935-36

Tube Socket Voltages (Line Voltage 115)

Tube	$\begin{gathered} 78 \\ \text { R.F. } \end{gathered}$	6.47 Det. (3)	$\begin{gathered} 78 \\ 1 . F \end{gathered}$	$\begin{gathered} 75 \\ 2 \mathrm{~d} \\ \text { Det. } \end{gathered}$	$\stackrel{42}{\text { D-iver }}$	$\begin{gathered} 42 \\ \text { thut- } \\ \text { put } \end{gathered}$
Point P	65	210	200	115	200	300
SG	00	90	90	.-....	200	300
K	2.2	8.3	2.6
	6A7: G 8 \& $5=155$					

Power Transformer Data

Terminals	A.C.	Current	Cireuit	Color
1-2	120	Primary	White
3-5	760	$140 \mathrm{M} . \mathrm{A}$.	Secondary	Yellow
6-7	6.0	2.0 A .	Fil. Rect.	Hlue .
8-9	6.3	3.75 A.	Fi'aments	Hluck
4	$\begin{gathered} \text { Center Tsp of } \\ 80 \end{gathered}$	Yetlow, circen Trace

RF., and antenna "Standar!" condensers. These are (25), (13) and (6) respectively.

Now turn tha dial to 60, set signal generator at 600 and adjust condenser (27) (omcillator staxdard-series) (mut) for maximum reading.
POLICE BAND-Tarn waveband switch to posision 8 rom left (police band); set dial at 2.4 and signal gs-neratorm readine (Anterma and P.F. Police)

LONG WAVE (Weather) BAND - Tum waveband switch to position 1 (left) (Longwave). Set dial at af and sismal generator at 950 K.C. Adjust condensers (24), (12) ard (6) (oscillator,
maximum reading.

Turn dial to 17, signal generator to 170 and adjust zondenser (26) (longwave series) (screw) for maximum reading.

COURTESY -

tube and connect it through a 200 mmf Condenser to the antenna terminal on input panel (rear of chassis), and the generator ground lead to the sround terminal of this panel
2. Set the range switch in position No. 2. Turn the receiver and aignal generator dials to 7.0 M.C. Now adjust compensato: (12) for maximum output.
3. Turn signal generator and receiver dials to 6.0 M.C. and adjust compensator (5) a for maximum output
Tuning Range 530 to 1720 K.C.

1. Set range switch in position No. (I) (Browalcast). Turn signal generntor and receiver dials to $1600 \mathrm{~K} . \mathrm{C}$. Then adjust (16) Osc. "Screw", and (5) antenns for maximum output
2. Turn signal generator and receiver dials to $580 \mathrm{~K} . \mathrm{C}$. and adjust compensator (14)a ©sc., "nut" as follows: Ta adjust compensator (14) a the tuning condenser must be rolled for maximum output, thusly: First turn the compensator (14)a for maximum output. Nhen vary compensator (14) a and again vary the tuning condmnier back and forth about the 580 K.C. dial mark for maximum output.
This operation of first tuning the compensator, then the tuning condenser is continued until maximum output is obtainec at the 580 K.C. dial mark. If the signal generator is not accurately calibrated the maximum point on the dial of the receiver may fall alightly above or below the 580 . dal mark.
3. Turn signal generator and receiver dials to 180ϱ K.C. and readjust compensator (1-i) Osc. "screw" for maximum outputm
4. Turn signal generator and receiver dials to $1500 \mathrm{~K} . \mathrm{C}$. and readjust compensator (5) for maximum output.

INTERMEDDIATE FREQUENCY CIRCUIT
1 Turn range switch to Range 1. Rotate the tuning control to approximately $600 \mathrm{~K} . \mathrm{C}$. Connect the 088 Signal Generator output lead through a .1 mfd . condenser to the grid of the 6A8G tube.
2 Set Signal Generator indicator for 470 K.C. adjust attenuator for approximately $1 / 4$ scale reating on output meter. Then adjust compensators (26)a 2nd I.F. Sec., (26) 2nd I.F. Pri., (14)a 1st I.F. Sec., (14) 1st I.F. Pri., RADIO FREQUENEY CIRCUIT
Range 2.- 5.7 to $18 \mathrm{M} . \mathrm{C}$.
1 Remove the signal generator output lead and series condenser from the 6A8C tube and connert them to the denser from the 6A8G tube and connert them to the chassis) and the generator ground lead to GND. TERChassis) and the generator ground lead to GND, TERNo. 2 to GROUND TERMINAL No. 3 with connector link provided on the panel.
2 Set range switch in pasition No. 2 (S.W.). Turn signal generator and rectiver dials to 18 M.C. and adjust compensator (7) Osc. for maximum output
3 The andustment of the antenna compensator on the high frequency range causes a slight detuning of the oscillator circuit. In order to overcome this detuning effect,
connect a variable condenser of approximately 350 mfd ., having a good vernier drive, across the oscillator section of the tuning condenser. Leaving the signal generator and receiver dials at 18 M.C., tune the added condenser so that the second harmanic of the recelves oscilator wor eneator. The anena compensatwr

Now remove the external condenser from the tuning condenser of reveiver and turn compensator (7) osc. to out moving signal generator or receiver tuning conderser, turn compensator (7) (counter-clockwise) until a second peak is reached on the output meter. The first peak is caused by taning to the image frequency signad and must be neglerted. Compensator (7) is adjusted on the second peak to give maximum output.
RANGE 1: 530 to 1720 K.C.
Turn range switch to Range No. 1. Turn the Receiver dial to 1600 K.C. Then adjust compensators (8) and (3) for maximum reading on output meter.
The 088 Signal Gensrator dial is set at 800 K.C. and the second harmonie of this frequency (1600 K.C.) is used in making the above adjustment.
2 The low frequency end of the band is now tuned by turning Signal Generator and Receiver dials to 600 K .C and adjusting compensator (8)a-sae note (a) belowfor maximum output.
(a) When compensator (8) a osc. series is being adjusted, the Tuning Condenser must be rolled for maximum output. This is accomplished as follows: First tune compensator (8)a for maximum output. Then vary the Tuning Condenser for maximum output at $600 \mathrm{~K} . \mathrm{C}$. Now retune Compensator (8) a and again vary the tuning condenser back and forth at first tuning the Compensator then the Tuning Confirst tuning the Compensator, then the runing Con denser is continued until maximum output is obtain ed at the $600 \mathrm{~K} . \mathrm{C}$. frequency.
3 Set the 1600 K.C. and re-adjust Compensator (8) for maximum outcompensator (3) for maximum reading on output meter.

Model

37-36/

1936
-37

When adjusting each circuit, care should be taken to have the signal gemerator attensator set to approximately $1 / 4$ scale reading on output meter.

Intermediate Frequency Circuit

1. Turn gang condenser to maximum capacity (counter-ciockwise) and set the volume control of the receiver in the maximum pise) andion (clockwise).
2. Connect the 088 signal generator output lead through a . 1 mfi. condenser, to the grid of the 6J7G Detector-oscillator tube and the generator ground to the chassis.
3. Turn the sensitivity control (17) to maximum capacity position (clockwise), and then release $11 / 2$ turns (courter-clockwise).
4. Set signal gemerator at 470 K.C. and adjust compensators (11) and (15) for maximum reading on the output meter. Then turn Now turn sensitivity control (17) courter-clockwise until the hiss oeasee, then continue for $1 / 4$ turn more.

TUBE SOCKET VOLTAGES
(Measured from Tube Contact to Chassis)

Fige 2. Tubes as viewed from underside of Chassis The voltages et the points indicated by the arrows above were obtained with a Philca type 025 Circuit Tester which contains a high reslstance (1010 ohms per volt) voltmeter.

Fig. 1. Locations of Compensating Condensers

Radio Frequency Circuit

1. Turri the gang condenser to the minimum capacity position (extreme clockwise) and place a . $006^{\prime \prime}$ (six-thousandths inch) gauge between the stator and rotor plates. Now turn the gang counterclockwise unitl statar and rotor plates touch gauge.
2. Remove gauge from gang condenser. Now place signal generator output lead through a 100 mmfd . condenser to the aerial post of the recelver. Set signal generator at $850 \mathrm{~K} . \mathrm{C}$., (using sewond harmonic, 1700 K.C.) Adjust compensators (13) osc., and (5) ant., for maximum reading on output meter.
3. Turn signal generator to $1400 \mathrm{~K} . \mathrm{C}$. and adjust gang condenser for maximum output. Then adjust compensatur (5) for maximum reuding on output meter.
4. After the above adjustments are completed, the dial pointer is checked for calibration by turning signal generator to 1000 K.C. Them tune recelver for maximum signal. The dial polnter should then trdicate 1000 K.C.

Sothet voiluget, Micesured fiom Underolde of Chanets
The voltaces indicated by arrows were mearured with a Phileo 025 Cirreuit

intermeditte frequency circuit

requenct $470 \mathrm{k} . \mathrm{C}$.
 connection of the output lend to the chasecis
2. Set the recelver volume control in the maxlmum poaltion. arn (Bromenat): tuning condenwer to ; Rpproximatcoly in bo K.C., ".id jurat tho Eignal generator for $170^{10} \mathrm{~K}$. C
 4. Turn the fidelify-selectivity control to the expanded podition
(counterelock wise). The intermediate freauency eurve is now chock-

 pensator
depenting
equalized.
Each time the compen nator thet in another poosition, rotate the

 5. After adiuting the thind I.F

radio frrauency circuit

Tuning Renge $11.5-18.2$ m.C

 for meximuna compensator (43D) as kiven in paragraph 2 above for maximunt vutput.
 that hie tow tivelency
end of thial range.
Tuning hange (7.35-11.6 M.C.)
Tuning Range (7.35-11.6 M.C.)
 maximum output. Check for image at 10.06 M.C.

 must compensetirs (4SC). (23S) and (7C) for maximum output.
4. Readjust compensator (43B) as given in paragraph 1 above. S. Readjuut compensators (7B), (25B) and (43B) as Eiven in parar
graph 2 above. graph 2 above (
Tuning Ranre (
. 7 to 7.4 M.C.

 3. Readjuut compensators (43). (25) and (7) on the 7.0 M.C. Tuning Range (1.58 to 4.75 M.C.)

1. Turn the miector switch to renge 2. Set the sifnal generator
and reciver dials to
4.5 (21A) and
2. Rotete the dignal generator and reatver dials to 1.7 M.C. ase Pollows:
Frist tune
thirst tune compen sator (${ }^{(42 C)}$ for maximum output, then vary
 Fithet. IEf the vary the recelver tuning condenser for matimum

 3. Readjurt compensators ((12B), (24A) and ($\mathbf{(A)}$) for maximum

 2. Turn the aignall generator and recelver dials to
penamor (is)
S.c. Com-
 3. Readjuut comppenator (12) on 1500 K.c. and cormpen se-
tori (24) und (b) on a 1000 K.C. wignal. adjustment of the magnetic tuning control

 Ing condenser.
mum
autput.
(elockwie). The (Masnotic Tunlng Controf) to the "on": Doaition (elock wies). Compenstor (818) sec. of magnetic tuning trann
former is now enjurted for maximum output If he indicator of
ihe
 obtalned. ${ }^{\text {B. }}$ The above adjustment in now, checked tor necuracy, by turning

Speaker Wiring

Fig. 1. Loeation of Compensators

Radie Frequency Circuit

1. Remove the signal generator output lead from the 6A8G tube, and connect it to the aerial lead of the receiver 2. Turn the gang condenser to minimum capacity position, (counter-clockwise) and place a $.006^{\prime \prime}$ (six thousandths inch) gauge between the stator and rotor plates. Now turn the gang clockwise until stator and rotor plates touch gauge.
2. Remove gauge from gang condenser. Now get signal generator at $900 \mathrm{~K} . \mathrm{C}$., (using second harmonic $1800 \mathrm{~K} . \mathrm{C}$.$) ,$ adjust compensators (6) and (5) for maximum reading on
output meter.
3. Turn the signal generator and receiver gang condense gang condenser must be rolled slightly above and below the $600 \mathrm{K.C}$. signal until the maximum reading is indicated on the output.
4. Turn the gang condenser to $1800 \mathrm{~K} . \mathrm{C}$. and signal gen-
erator to 900 K . C. (using second harmonic of signal erator to $900 \mathrm{~K} . \mathrm{C} .$, (using second harmonic of signal genera
tor $1800 \mathrm{~K} . \mathrm{C}$.), readjust compensator (6) for maximum read. ing on nutput meter. Set eang as per paragraph 2, for this adjustment.
K.C. Turn the gang condenser and signal generator to 1400 put meter. After the above adjustments are completed and receiver is placed in the cabinet, the dial pointer is properly placed by turning the signal generator to $1,000 \mathrm{~K} . \mathrm{C}$. Then placed on gang shaft, so that it indicates 1000 K .C. on dial

Intermediate Frequency Circult

 1. Connect the 088 signal generator output lead through. 1 mfd . condenser to the Erid of the 6 A 8 G tulb and the ground lead to the chassis.
2. Turn the sensitivity compensator (23) to maximum
capacity position (clockwise), and then release it; $11 / 2$ turns (counter-clockriide)
3. Turn gang condenser to approximately 600 K.C. Set 4. Adjust the compensator (18) and (20) for maximum reading on the output meter. Then turn the sensitivity compensator (23) clockwise until a hiss, (oscillation) is heard Now turn the compensator (23) counter-clockwise until his ceases, then continue for $1 / 4$ turn more

Fis. 2. Tube Sockete as Viewel from Undernide of Chamin Volume Control in Maximum Poblion)

$1 .=470$ к.с.

Model 37-3600

1936-37

When adjusting each circult, care should be taken to have scale reading on output meter

Alignment of the Compensators

 pensators at the various frequencies specified. A visual indication of the
receiver output is also necessary to obtain correct adjustment of the compensators. Philco Model O25 Circuit Tester contains a sensitive output meter and is recommended for these adjustments.
Philco Fibre Handle Screw-Driver No. 27-7059 Philco Fibre Handle Screw-Driver No. 27-7059 and Variable Condenser
Part No. $45-2325$ complete the necessary equipment for these adjustments. The locations of the various compensators are shown in Figs. 2 and 3 .
The following procedure must be observed in adjusting the compensators: The following procedure must be observed in adjusting the compensators:-
DIAL ADJUSTMENT-The tuning cundenser is set at the maximum capacity position, by turning the tuniag knob counter-clockwise. Loosen the set
screw of dial hub and set dial, with Glowing Indicator centered between the scrow of dial hub and get dial, with Glowing indicator centered between the
first and pecond index lines at the low frequency end of the broadcast scale. Orst and gecond index ines at out Mut Meter is connected between one of
OUTPUT METER-The 025 Out
the plate prongs of the $1 J 6 G$ tube and the chasala. Then adjust the mete the plate prongs of the 1J6G tube and the chassis. Then
to use the $(0-30)$ volt scale.
Frequency 470 K.C.

1. Connect the e88 Signal Generator output lead, through a .1 mfd. con-
denser to the control grid of the 1 C7G tube, and the ground connection of the output lead to the chassis. 2. Set the range switch in position No. 1 (Broadcast). Rotate the tuning
condenser of the receiver to approximateiy 580 K.C. Then adjust the signal generator for $470 \mathrm{K.C}$.
3 . Adjust compensators (30 S), (30 P), (28S), and (281) for maximum rigut, radio frequency circuit
Tuning Range (7.35 to 22 M.C.)
2. Remove the signal generator outnut lead from the grid of the 1 C 7 G ,,$~$ and connect it through the 1 mid. condenser to terminal No. 1 on the Terminals 2 and 3 of the aerial input panel must be shorted with the 2. Set the range switch in position No. Na (mx freme clock wise). Turn the
signal generator and receiver dials to 20 M . signal gene ratror and reeriver dials to 20 M.C. the maximum capacity position, then slowly turn it counter-clockwise unpak from maximum canacity is the image sixnal and the receiver mut will be observed, therefore tune the compensator to maximum on this peak. If the above procedure is correctly performed, the image signal will be ing the receiver dial to this frequency mark on the scale.
3. Leaving the signal generator and receiver dials at 20 M.C. the an-
tenna and $\mathrm{R} . \mathrm{F}$. compensators (4 B) and (16B) are now adjusted, by connecting a variable condenser (Philco Part No. 45-2325) across the oscillator connyenisatur (20B) contact (first contact from the left silie of the the added condenser until the second harmonic of the receiver oscillator beats against the signal from the generator, resulting in a maximum indi-
cation on the output meter, NOTE: 1t may be necessary to increase the signal generator output to obtain a signal of sufficient strength for readfor on the output meter. Compensators (4B) and (16B) are now adjusted denser and readjust. compensator (20B) as given in paragraph 3 above. 1. Turn the range switch to position No: ${ }^{2}$ (middle range). Rotate the signal generator and receiver dials to 7.0 M.C. The adjust compensatoi
$(20 \mathrm{~A})$ for maximum output. 2. Now turn the signal generator and receiver dials to 6 M.C. and ad just compensacors 530 to 1720 K.C.
nal Turn the range switch to position No. 1 (Broadcast). Set the 088 signal generator indicator and the receiver dial to 1600 K.C.
Now adjust compensators (20) osc., (4) ant. and (16) R.F. for maximum output.
4. The low frequency end of this range is now adjusted as follows: Turn the signal maximum output, then vary the tuning condenser of the receiver for maximum output about the 580 K.C. dial mark. Turn compensator
(19) slightly to the right or left and vary the receiver tuning condenser (19) slighty to the right or matimum output. If the outnut reading increases, turn compensator for in the same direction a trifee more and again vary the tuning con-
(19) in then
denser for maximum output. This procedure of first setting the compen denser for maximum output. This procedure of first setting the compen-
sator, and then varying the tuning condenser, is continued until there is sator, and then varying the tuning condenser. is continued until there is
no further gain in the output reading. When a decrease in output is not-
ed turn the compensator in the opposite direction. ed turn the compensator in the opposite direction.
above and adjust compensator (20) for maximum output in Paragraph 1 4. Now turn the signal generator and receiver diallat. to 1500 K.C. and
adjust compensators (4) ant. and (16) R.F. for maximum outnut.

INTERMEDIATE FREQUENCY CIREUI'

Frequency 470 K-C. Simal Generator output lead throush a . 1 infil. con1. Cornect the signal Generator output lea the sround connection the Cienerator to the chassis. Turn the Volume Control to maximun volume foxition. 2. Set the ranre witoth in position N o. 1 (Brondeast), then rotate the the signal generator for $470 \mathrm{~K} . \mathrm{C}$. 2 I.F. Sec.4 (41P) 2nd I.F. Pri.. (40S)
 1.st I.F. Sec. and (40P) list I.F. Pli. for maximum

Tuning Range (3.35) to (22.0) M.C.

Tuning Range (2.35) to (22.0) M.C. tube and connect it through the 1 mfd. condenser to terminal No. 1 on of charsis. Termirals z and 3 must be conuected by the whorting linh povidel on the panel.
2. Sel the tranre switch in position No. 3. Turn the raceiver and wigat generator dials so 18 M.C. Now reljust compensator (243) by turning the aciew clockwiso) to the maximum canacity bosition then klowly turning it counter-clochwime until a secom reak signal is reacened on the output must pot be usad. Note-In adjusting monie receivers caly one reak will be oluservel, threzore, tune the compenator to maximum on this peah. If the qbove procedure is correctly performed. the imnue wiknal will be found at $1 \overline{7.06}$ M.C. by advancing the siknal generator attenuator and turnin: the receiver dial to this frequenry mark on the dial.
3. The antenna and R.F. Compensators (6 B) and (:80B) are now adjustel by connecting a variable condenker of ppproximately $3 \overline{0} 0 \mathrm{mmfd}$. Thilco Part No. 4i- 32 across the okcillator section of the rank condenser and found. Leaving the sixnal renerator and receivet diais at
tune the added condenser from the maximum capacity point until the cound harmonic of the receiver oscillator beats apainst the mipnal from

$$
1936-37
$$

DATA SHEET
PHILCO-45

REPAIR
 TICKET
 No 883

M
$-$

CLAIM CHECK

GREEP'S ELECTRIC

Radio \& Electrical Repairs
House Wiring

THE TUDOR ROSE BAGPIPES

 meter. The first weak from maximum capacity is the inmake signal and
 be obwryed. therefore, tune the enmpentintor to maximura on this neak.
If the nbove procedure is correctly performed, the image signal will be If the above procedure is correctly verformed, the image signal will be turning receiver dial to this frequency marh on the dial.
2. Using the 11 M.C. aignal, connensatorn (19B) R.F. and (7B) Ant. rie adjusted by usink the procedu eegiven in paragraph s, under tunink
remke (11.5) to (18.2) M.C. with the exception that the external conden-se- is ponnected across compensatur (29B) (Third contset from left wide of the receiver) and around. t. Turn the riknal generator and receiver dials to 7.5 M.C. And adjust cominersators (29C) Ose. Berles, (19C) R.F. and (7C) Ant. for maximum f. Due to the alight interaction of the hish and low frequency coranensan. S. Dee to the slight internction of the hlyh and low frequency combensa-
cos of this ramke. compensators (29B) Osc., (193) R.F. \#nd (7B) Ant. mi,gt be readjuated using the procelure in paragraphs 1 a ind a hbove. Tuning Range (4.7) to (7.4) M.C. Fing Fiknal generator and receiver

1. Ant. far maximum output. 2. Turn the giknal generator and reaciver diala to 5.0 M . $\mathrm{C}_{\text {a }}$ and adjust
compersators (29A). (19A) and (iA) for maximum output.
 compinasators (29) Ose. (19) R.F. and (7) Ant. for maximurt output.
Tuning Range (1.58) to (4.75) M.C. ${ }^{\text {1. }}$ Set the range awitch in position 2, Turn the signal generator and
receive- dials to 4.5 M.C. 2. $N \rightarrow W$ adjust
maxintom
output.
2. Kutate the kigasl wenerator ard receiver dials to $1.7 \mathrm{M} . \mathrm{C}$ ComsenasFirat tune compenator (27C) for maximum output, then vi, ry the in ing condenser of the receiven for maximum output about tiie 1.7 M.C. dial mark. Now turn compensator (27C) slishtly to the right or left and
vary tie. receiver tuning condenser for maximurn output. If the output vary the receiver tuning condenser for maximurn output. If the output
rendiny: increasen, turn compensatar (FiC) in the xame direetion a trifle more, and again vary the tuning ond inser for maximum outsuk. If the of tput decreases, set the compensa or in the oproxite direction. This pro-
cedure of first settling the compen ator and then varying the tunink conceldure of first setting the compen ator and then varying the tuning con-
denser in continued until there in no further gain in outeut rending. 4. Turn xignal kenerator and receiver dials to $4.5 \mathrm{M} . \mathrm{c}$. nind readjust er mper sators (27B); (18A) fnd
Tuning Range (530) to (1600) K.C
 generaor and receiver disia to 15,0 K.c. Now adjust combensators (27) Osc., (18) R.F. And (6) Ant. for maximum outpus.
(27A) Dic. series is then adjusted for maximum output as ali en in inara (27A) OMe. series is then adjusted for maximum ontput as ki, in in yara-
graph 3 under tuning range (1.58 , to (4.75) M.C., the only difference in the procedure being in the frequency ured.
3. Readjust compensator (27) for maxim
nul generator and receiver diala tor maximum output, by turning the sig. 4. Turn the signnl generntor ancl receiver dials to $1400 \mathrm{~K} . \mathrm{C}$ and adjust 1936-37

Models $100-110$ Emay 120

Models $1200_{\text {segecian ano }} 150$

R.F. CHASSIS.

400 Chassis
Fitted in
Model.
400 L.B.
400 H.B.
400 Comb.
410 H.B.
420 Table
400 H.B.
(Dynamic)
1928-29

Advanced Chassis
Fitted in
Models
440 Console
460 De Luxe
Console
480 Table
490 Console
1928-29

1929-30
Fitted in Rogers
Model
580
575
1929-30
RogersMajestic
586
588
1930

data sheet

Volume Concrol Protition Full on Courtesy Rosers-Majestic Cory. Ltd

[^1]

The circuit of the 562 chassis, as used in the model 905 portable receiver, consists of an 87 s oscillator modulator, an 88 s I.F. amplifier, an 87 s second detector and an 89 s power amplifier. The rectifier is an 84 s full wave rectifier.

Model 905, 1933-34

Battery Models 925 and 930 1933-34

The circuit of the 771 chassis, is used in the model 935 , the 772 chassis in model 955 and 772 A chassis in the 965 , consists of an 88 s R.F. amplifier, a 6 A 7 s oscillator modulator, an 88 s I.F. amplifier, an 85 s second detector and A.V.C., and two 42s tubes as the class "A" output. A 280 is the rectifier. In addition a 56 s and a 57 s tube is used in the 261 converter in models 955 and 965.

The all wave chassis is known as the 772 chassis and is the 771 chassis with the addrtion of the 261 chassis (Osc.-Mod.) fed inte the input, of the 771.

935, 955 and 965
1933-34

SHORT WAVE CONVERTER MODEL R261

The converter consists of two circuits-a detector and oscillator. A type R57S tube connected as a triode (Suppressor and screen grids being tied to the plate) is employed as a grid leak detector; and for the oscillator a type R56S tube is used.

The antenna circuit is tumed by means of a tapped coil, the unused portion of inductance being short circuited at the higher frequencies by positions III and IV of the wave change switch. A similarly tapped coil is used to tune the oscillator circuit and on the same form is wound the feedback and cathode windings. A two gang conderser is employed, one section tuning the oscillator and one the antenna circuit.

Position I, or "Broadcast" position of the wave change switch connects the antenna post of the converter directly to the antenna post of the receiver, grounds the detector plate and short circuits the oscillator grid coil.

The circuit used in the 563 chassis and employed in the models $910,911,912$ and 916 is the latest superheterodyne circuit using the latest Seal shielded Duo-valve tubes. A 6A7s tube used as an osc.-mod., an 88 s as an intermediate frequency arnplifier, a 6B7s second detector A.V.C. and audio, and an 89s power output tube. The rectifier is an 84 s full wave rectifier. The I.F. is tuned to $465 \mathrm{~K} . \mathrm{C}$.

The circuit of the chassis used in the console models (915 and 916) is identical with that in the mantle with the exception of the speaker and R16 and C16. The speaker is a standard D15 Jensen speaker with a 2,000 ohm field, while R16 and C16 are required to eliminate the hum produced when the D15 speaker is used.
Models. 910, 911, 912, 915, 916, 1933-34.

Connect the service oscillator to the grid cap of the type 6A7S tube, allowing the tube grid connection to remain in position. Tune the receiver to 1400 kilocycles. Disconnect the antenna, if necessary,
Adjust the intermediate frequency aligning condensers, $\mathrm{C}-10, \mathrm{C}-8$ and $\mathrm{C}-7$, in that order, for maximum reading of the output meter Transfer the service oscillator output connections to the antenna Adjust aligning condensers $\mathrm{C}-30, \mathrm{C}-29$ and $\mathrm{C}-28$, in that order, for maximum reading of the output meter Adjust the receiver and service oscillator in tune at 600 kilocycles. Adjust condenser $\mathrm{C}-4$ for maximum

Synchronode Connections

The power " 1 ", eliminator or Synchmonde is built into the ratio mit. When shipped fo you this unit is wired for use on cars in which the negative (-) terminal of the battery is grounded (connected to frame). When installed on a car having the positive (+) hattery terminal grounded. a change monst be made in the Synchromode connections. The recciader abll mot operati aith the Spuchronode conncotions reacrsed and if operation is attempted ander such conditions, damatie to the mechanism aritl result.

ALIGNMENT

Abstract

The following information sheets apply to all 1934-35 series Rogers, Majestic and De Forest Croslay receivers which use an I. P. of 456 KC . In general, those using 175 EC also follow the same procedure.

The method of alignment in all cases $1 s$ practically identical, in that the I.F. is aligned first (see paragraph 4 "I. F.STAGES.") Please note that where the alignent point is not specified as in (C, C, C, C), the first C stands for the secondary of the I.F. trensformer, zext to the second cetector, and the second C for the primary. Fhe third C stands for the secondary of the next I. P. transformer and the fourth C for the primary of this transformer, and so on. In other words, work beck fram the second detector.

Upon the care and exactitude with which alignment adjustments are made, depends the degree of satisfaction the receiver will provide. Proper alignment can only be arrived at by the use of proper equipment and procedure. Such being the case, it is of prime importance that the following recommendations and routines be closely followed, whenever the need for re-alignment occurs.

The tools and equipment required consist of: (1) a good signal generator (service oscillator) equipped with a good attenuator and providing modulated fundamental frequencies at $456 \mathrm{kc} / \mathrm{s} ., 600$ $\mathrm{kc} / \mathrm{s} ., 1,400 \mathrm{kc} / \mathrm{s} ., 6.0 \mathrm{mc} / \mathrm{s}$. and $15.0 \mathrm{mc} / \mathrm{s}$.; (2) a reliable output meter, preferably of the rectifier type; (3) a non-inductive 400 ohm 1 watt filament type resistor and; (4) a suitable combination aligning wrench and screw-driver, such as Part No. 32702 or equivalent; (5) a . 0002 Mfd . Condenser, used as a dummy Antenna on the broadcast band; and (6) a .05 or .1 Mfd. Series Condenser for use during I.F. alignment.

With the foregoing equipment on hand, re-alignment should be attempted only after a complete understanding of the following routines. The chassis should always be removed from the cabinet during alignment adjustments.

I. F. STAGES

(1) Connect output meter across roice coil terminals of the speaker.
(2) Connect output lead of signal generator to the control grid cap of the oscillator-modulator tube (6A7S) through a .05 or .1 Mfd . Condenser, allowing grid lead to renain in position. Range selecting switch must be in broadcast position for I.F. Alignment.
(3) Turn the receiver and generator on and adjust generator to exactly $456 \mathrm{kc} / \mathrm{s}$. Set receiver volume control at maximum. Adjust generator output for a low reading of output meter. Short circuit the oscillator section of the Gang, to avoid spurious signals.
(4) Commencing at the I.F. transformer which supplies the diode or second detector, and working progressively back to the I.F. transformer connected to the output of the oscillator modulator, carefully adjust the I.F. aligning nuts and screws ($\mathrm{C}, \mathrm{C}, \mathrm{C}, \mathrm{C}$, in that order) for maximum increase in reading of output meter. As the adjustment is being made, gradually reduce the generator output, so as to avoid possible overloading of any stage. Overloading may result in false alignment. Carefully check adjustments.

R.F. AND OSC. STAGES (STANDARD BAND)

(1) Connect output lead of signal generator through a .0002 Mfd . Condenser to the antenna lead of receiver. Connect generator ground lead to ground of receiver. If the receiver under adjustment is equipped for selective antennae, arrange the terminal connections as for Conventional antenna, vis.: Short No. 1 and No. 2, Short No. 3 and No. 4, Short No. 5 and No. 6, connect ground to No. 2 and generator output lead through .0002 Mfd . Condenser to No. 3.
(2) Tune receiver and generator to $1,400 \mathrm{kc} / \mathrm{s}$. Roughly adjust oscillator, interstage and antenna stage parallel pads ($\mathrm{C}_{\text {sed }}$ Cayou C) in that order for maximum sensitivity.
(3) Tune generator to exactly $600 \mathrm{kc} / \mathrm{s}$., and adjust receiver (without regard for dial calibration) to the generator frequency.
(4) Adjust $600 \mathrm{kc} / \mathrm{s}$. series pad (without regard for dial calibration) for maximum sensitivity, rocking the tuning control in the usual manner during this adjustment.
(5) If after this adjustment the dial calibration is incorrect, loosen dial pointer screw and reset pointer to exactly $600 \mathrm{kc} / \mathrm{s}$.
(6) Tune generator to $1,400 \mathrm{kc} / \mathrm{s}$. and adjust receiver in tune. If calibration is incorrect, adjust oscillator parallel condenser to correct dial calibration, then carefully align antenna and interstage trimmers. Recheck oscillator, interstage and antenna parallel pads ($\mathrm{C}, \mathrm{C}, \mathrm{C}$) in that order for maximum sensitivity. When adjusting these condensers use as little capacity as possible.

THIS IS IMPORTANT.

After the foregoing adjustments have been made, the series and parallel padding condensers should not be touched again.

R.F. AND OSC. STAGES (SHORT WAVE)

(1) Adjust band selector switch for short-wave operation. Connect generator output lead to control grid cap of oscillator-modulator tube, through . 05 or .1 Mfd . Condenser, and tune generator to exactly $15 \mathrm{mc} / \mathrm{s}$. ($15,000 \mathrm{kc}$.)
(2) Adjust receiver tuning and note at what points on the dial (near $15 \mathrm{mc} / \mathrm{s}$.) the generator is heard. Two points, approximately $1 \mathrm{mc} / \mathrm{s}$. apart, should be observed. The signal having the highest frequency is the desired one. The other, observed $1 \mathrm{mc} / \mathrm{s}$. lower in frequency, is the image frequency and must be identified as such to avoid error.
(3) If the signal of highest frequency value falls at some other point on the dial than $15 \mathrm{mc} / \mathrm{s}$., it should be moved to $15 \mathrm{mc} / \mathrm{s}$. by adjustment of the oscillator parallel pad (C .). This adjustment should be made in small steps as a gradual adjustment, in order to avoid losing the correct signal. After the foregoing has been completed, recheck for correct adjustment by tuning receiver approximately $14 \mathrm{mc} / \mathrm{s}$., at which point the image frequency should be observed.
(4) Connect generator output lead through 400 ohm resistor directly to antenna lead or terminal of receiver. This resistance should be located at antenna terminal panel or at the end of the receiver antenna lead. Adjust generator to exactly $15 \mathrm{mc} / \mathrm{s}$. Adjust receiver in tune with generator (without regard for dial calibration).
Attempt alignment of interstage and antenna stage parallel pads (C (layout $\mathrm{C}^{\text {) }}$) in that order. When aligning interstage coil the tuning control must be rocked in the same manner as when making a series osc. pad adjustment. If receiver has no interstage coil, the tuning control must be rocked when aligning the antenna coil. Shculd interstage refuse to peak, adjust interstage paralled pad (C) for minimum capacity value and find alignment by slowly tuning receiver towards high frequency end of the dial, and at the same time increase capacity of oscillator parallel pad (C). Continue this adjustment until a peak: is obtained, which indicates that the oscillator and interstage are in alignment. This adjustment should be made without regard for dial calibration. Watch carefully for double peak, choosing one requiring most capacity, if present.
(5) Adjust antenna stage parallel pad (Sere cayour maximum sensitivity.
(6) Recheck parallel pads of oscillator, interstage and antenna stage in that order (disregard dial calibration).
(7) Adjust generator to separactly $6.0 \mathrm{mc} / \mathrm{s}$. and tune receiver to generator. Adjast $6.0 \mathrm{mc} / \mathrm{s}$. series oscillator pad (\mathbb{C}) for maximum sensitivity, rocking the tuning control slightly in the usual manner during this adjustment. (Disregard dial calibration). If calibration is incorrect, it must be left that way because readjustment of series tracker will impair the sensitivity; moving pointer will, of course, upset broadcast calibration.
(8) Adjust generator to $15 \mathrm{mc} / \mathrm{s}$., and recheck alignment of parallel pads ($\mathrm{C}^{\text {see loyout }}, \mathrm{C}$) at that point for maximum sensitivity. If $6.0 \mathrm{mc} / \mathrm{s}$. series pad required more than a slight amount of correction this rechecking is very important.

After completion of short-wave alignment, in accordance with the foregoing routine, it is important that no further adjastment be made of the "Standard Band" condensers. If the Standard Band condensers are adjusted, complete re-alignment of the short-wave should follow.

The notation "without regard for dial calibration" mentioned throughout the aligning routine, has reference to the fact that at short-wave, calibration of the dial scale is approximate only. Therefore, short-wave alignment should always be made for the condition of maximum sentitivity, disregarding variation in dial calibration. At standard band frequencies, the logging of the dial scale can be held to within $10 \mathrm{kc} / \mathrm{s}$. (1 dial division).

World Redio History

81.58790

(22-1262 י1450.

Model 4443 1934-35 1.F.456. Kc.

King - 1935
for Service information see Data Sheets IT abb.

IF. 175 Kc.

DATA SHEET

Model 4624 1934-35 I.F.456 kc.

\square
Models 4621-2-3 \quad 1934-35 IF 456 kc .

Model 4541-42 1934-35 I. 175 Kc.

for alignment instructions see Sheets ITa-b.

Model 4821-21934-35 1.F.456 kc. (also majestic 2821)

> WHEN STARTING CLOCK BE SURE CENTRE POINTER INDICATES A.M. OR PM. SIDE OF LINE. IF ON WRONG SIDE
> ADVANCE CLECK 12. HOURS.
for alignment instructions see
SHEETS 17a-b

WITH SWITCH IN ON" POSITION THE CLOCK CONTROLS THE OPERATING TIME OF RADIO RECEIVER.
 SET OUTSIDE POINTER TO INDICATE NUMBER Of hours that the RECEIVER IS TO CONtinue operating
tO ADJIIST TIME AT WHICH CLOCK IS TO SWITCH. receiver "on" ROTATE SETTING DIAL TILL CENTER POINTER POINTS to desired time.

Models-R 5525 (regers)

M5525 majestic)

Rogers - Majestic

Models-R5725-26 (regers) M5725 (Mgjestik)

1935-36

ALIGNMENT INSTRUCTIONS ON DATA SHEETS-IIQIZ

ALIGNMENT INSTRUCTIONS ON DATA SHEEIS /IBIZ

ALIGNMENT INSTRUCTIONS ON DATA SHEETS. I/EIZ

ALIENMENT INSTEUCTIONS ON OPTA SHEETS. $1 / 6 / Z$.

DATA SHEET ROGEESS-MAJESTIC-7

$$
\begin{aligned}
& \text { 1935-36 } \\
& \text { THIS CIRCUIT USED IN- } \\
& \text { "HURONAESTIC } \\
& \text { "ETON RO GERS } \\
& \text { BATTERY-OPERATED }
\end{aligned}
$$

ALIGNMENT INSTRUCTIONS, LAYOUT, ETC. ON DATA SHEET.L4
1935-36
THIS CIREUIT USED IN -
DE FOREST CROSLEY
"ALGONAUUN MNTIC "TROQUOIS"
"BT/30GERS $B 7 / 35^{\prime \prime}$
BATTERY-OPERATED

DATA SHEET ROGERS-MAJESTIC.10

PREFACE
Re-alignment of a radio receiver may be in order periodically. Replacement of R. F. and I. F. trans ormers or by-pass condes may also be followed by re-alignment, if it is required that the receiver be kept up to maximuth perforniance. Irrcopective of the type nf raceiver. Pe-alifnment should only be attempted where proper equipment is avail
in accordance with the following ingtructions.
In the past, where the I. F. transformer coupling was ixed, ve-aligunient, without the use of sperial equipment, has been practiced with more or less satisfactory results. Invariably, where such ad tion signal and the ear only, the results have been far from satisfactory
With the introduction of special I. F. sjstems, such as those encountered in the models described, alignment by ear is not only impossible, but also disastrous to receiver performance Improper
alignment will render expanding I. F. amplifiers inoperative, so far as the high fidelity expansion process is concerned, and make impossible the attainment of high selectivity in the selective position. It is, therefore, imperative that the equipment specified be used when re-aligning reccivers given in the schedule which follow

EQUIPMENT

A list of equipment is supplied and although definite specification as to the manufacturer is no The lis Wherev of equipment is in two parts; (A) "Essential Equipment" and (B) "Optiunal Equiphent. the production testing of these receivers and it follows that service adjustments if they are to equa the production testing if these receivers and it original standard, should be made with similar equipment.

(a) ESSENTIAL EQUIPMENT

1. A satisfactory aligning wrench and screw-driver such as Part №. 32702 An output meter of the reclinier type, with several ranges permitting its use with receivers of a type othe
2. A signal generator or service oscillator, capable of supplying a modulated signal at 150, 400 $456,600,1,600,1,800,5,000,6,000$ and $17,800 \mathrm{kc} / \mathrm{s}$. The signal generator frequency should be variable at all the above frequencies and must hare og grod rariable attenuator or output contro If the signal generator is to be used with the oscillograph suggested under (B), it should equipped for connection to the Freque
3. A non-inductive, 400 ohm 1 watt resistor (filament type), to be used as police and short-wav band dummy antenna. Part No. 32608.
4. A .0002 mfd . midget mica condenser for use as a dummy antenna when aligning at broadcast
5. A .05 mfd . paper condenser (400 volt) for use during l. F. alignment.
6. A. 01 mfd. paper condenser (400 volt) with short leads and clips to short usc. sectiun uf gan conlenser during I. F. alignment

(b) OPTIONAL EQUIPMEN

The following equipment can be used to advantage where it is available. It permits visual exannin ation of the I. F. alignment and enables adjustanctit of thit 1 , F. etagres sn that prnansion and contraction of the selectivity curve is symmetrical. This expansion and contraction as explained in detail elsewhere is accomplished through a mechanical variation*of the coupling between primary
and secondary windings of one or more of the I. F. transformers. Details of operation of the oscillograph and associated equipment are invariably supplied by the manufacturers of such equipmen and will not be dealt with here.

1. A Cathode-Ray Oscillograph which should employ a built-in "vertical" amplifier and linear 1. A Cathode-Ray Oscillograph whic
2. Aweep and synchronizing
3. A signal generator as discussed under Section (A) 3.

Some manufacturers of the foregoing equipment present it in the form of a single or two unit assembly. The choice of single or multi-unit equipment is entirely a matter of personal preference.

PROCEDURE OF ALIGNMENT
With the equipment available, the routine to be followed becomes of first importance. Before attempting alignment, carefully read over the following procedure to fix in mind the order in which adjustmpnts are made. Reference should be made to the top view of chassis ayoun or lociation of ment.

TYPICAL $\angle A Y O U T ~ F O R ~ A L L ~$ CROSLEY. MASESTIC AND ROGESS A.G. RECEIVERS CROSLEY, MANESTIC ANO ROGERS A.C. RE

F. STAGES

(1) Connect an output meter of suitable range directly across the voice coil terminals of th speaker.
2) Connect the 01 mfd by-pass condenser across the oscillator section of the gang condenser Cl
(3) Connect the output lead of the signal generator to the control grid of the type 6 A 7 M tub through the .05 mfd . condenser. Allow the control grid clip to remain in position. Wave change switch must be in "broadcast" position and gang condenser at minimum capacity (all out).
(4) Adjust the receiver "Fidelity" control to "normal" position. This is very important. This is the contracted or maximum
(5) With recelver and signal gencrator "on", adjust gignal generator to exactly $456 \mathrm{kc} / \mathrm{s}$. Adjust ing on output meter. (See Note X)
(6) (a) Commencing at the secondary of the diode stage 1. F. transformer and working progressively backward to the output of the 6A7M stage, align condensers C23, C22, C21, C20, C19 and C1Ê in ihat urder fur iunximun incrasase in reading of output meter. Carẹfully rechec (b) In receivers having a separate A.V. C. system, the A. V. C. transformer trimmer C24, should be adjusted for minimum output.
the control in this position control full counter-clockwise to the "High Fidelity" position. With
(8) Adjus renar Adjust generator output to a low level and gradually tune it upwards in frequency until a
peak is found, which should appear at approximately $463.5 \mathrm{kc} / \mathrm{s}$. (or $+7.5 \mathrm{kc} / \mathrm{s}$.). Holding the generator output constant, nate carefully the exact output meter reading.
(9) Still holding the generator output constant, slowly tune the generator lower in frequency, Io locate a seagns peak which should annear at approximately $448.5 \mathrm{kc} / \mathrm{s}$. (or If it is impossible to determine the 7.5 kc . interval exactly, it is important that these twu measurements be made at exactly the sa
otherwise symmetry cannot be obtained.
(10) Upon locating the bewnd peak (and if the original adjustment has been properly made) should be found that the reading of the output meter is approximately the same value as thal noted at 463.5 kc 's. Small variations in the order of plus or minus 5% are permissable. If been reached and that further adjustment of aligning condensers is unnecessary. Following this, other alignment can be carried out.
(10a)If, however, it is found that the output meter readihgs du hat agres within a rasanabl COUTIVUED ON DATA SHEET. -IT
amount, further adjustment will be in order. First try further aligning adjustments as outlined under section 4,5 and 6 and rechecking as per sections $7,8,9$ and 10 with the couping
in the selective position. Should this fail to produce results, locate the peak at which the lower in the selective position. Should this fail to produce results, locate the peak at which C of the diode
output reading is obtained and try to increase this by careully adjusting C , output reading is obtsined and try to increase this by carefully adis possible that slight mis-
stage 1. F. transformer. As this stage peaks rather broadly, it is pose alignment may be encountered which would result in the condition discussed under section
(10) . Do not attempt to re-align any of the 1 st or 2 nd 1 . F. trimmers with the coupling in (10a). Do not attempt to re-align any
the high fidelity or expanded position. Where an oscillograph and frequency modulator is available, it is possible to observe visually on (contracted) and "high fidelity" (expanded) conditions and to watch the change in this curve as the "Fidelity" (or selectivity) control is adjusted.
The ability to visualize this change permits precise adjustment of the diode stage aligning conden-
sers so that symmetrical expansion of the I. F. selectivity curve takes place as the "Fiaelity" consers so that symmetrical expansion of the I. F. selectivity curve takes place as the "Fiaelity" con-
trol is rotated from the normal towards the high fidelity position. Most satisfactory results will generally be obtained hy first aligning by standard method using output meter, and then using the oscillograph to "shape" the selectivity curve by adjustment of the diode trimmers.
Detajls of the pperation of the cathode ray oscillograph will not be given here as they are usually A routine covering the application of this device to the I. F. adjustments is, however, of value. The routine is as follows.
(1) Complete alignment of all I. F. stages in accordance with sections 1 to 10 inclusive of section
(2) Connect output of sig
through a .05 mfd. condenser. Allow grid clip to gremain in of the 6A7M (Osc.-Mod.) tube
broadcag band switch being in the broadcast position. Tune osclilator w sweep i. $\overline{\mathrm{F}}$. at $4 \overline{\mathrm{~J} v} \mathrm{kc} / \mathrm{s}$.
(3) Connect input terminals of vertical amplifior (af cathode ray ngillograph) to the contact arm
and grounded terminals of receiver volume control.
(4) Place receiver, oscillograph generator and frequency modulator in operation. Adjust reize oscillograph pattern in center of screen. Adjust vertical and horizontal amplifier gain controls for reasonable amplitude and width.
(5) Observe the wave form projected on the screen, noting any irregularities or departures from a normal pattern. If irregularities are present, carediode stage transformer.
(6) Adjust "Fidelity" control slowly to the full counter clockwise position (expanded) checking oscillograph pattern closely to ensure that expansion is taking place symmetrically. If a lop-
sided pattern develops, it is due to mis-alignment of the diode transformer. Correct by adsided pattern develops, it is due to mis-alignment of the diode transf
justing diode aligning condensers to produce symmetrical pattern.
(7) Recheck pattern at contracted position (normal). This completes I. F. alignment.

R. F. AND OSC. STAGES (STANDARD BROADCAST BAND)

(1) Connect the generator output to antenna and ground terminals " A " and " G " with the .0002 mfd . condenser right at terminal panel. Ground receiver and generator
(2) Connect output meter across speaker voice coil terminals.
(3) Adjust wave-band awitch for standard band operation.
(4) Set receiver volume and sensitivity controls at maximum. Adjust fidelity control to normal
(5) Set receiver dial to log exactly $1,500 \mathrm{kc} / \mathrm{s}$. Adjust signal generator to exactly $1,600 \mathrm{kc} / \mathrm{s}$. and
(6) set for a low value of reading on output meter. (See Note X)
(6) Align carefully C3, reading of output meter.
(7) Adjust signal generator. to exactly $600 \mathrm{kc} / \mathrm{s}$. Set receiver to $600 \mathrm{kc} / \mathrm{s}$. signal and align C15 (series padder) rocking the tuning control in the usual manner during this adjustment. If
dial does not log correctly, loosen set screw and re-adjust. (8) dial does not log correctly, loosen set screw and re-adjust.

C7 and C11, at that point. If C11 required more than a small amount of adjustment it may
be found necessary to realign the parallel padders to correct logging. be found necessary to re-align the parallel padders to correct logging.
This compietes the standard band alignment.

R. F. AND OSC. STAGES ("X" BAND)

(1) Connect output meter across speaker voice coil terminals. Connect signal generator output to the conventional antenna terminals "A" and " G " of the receiver, the .0002 mid. condenser
being in series with the antenna lead right at the terminal panel. Ground receiver and genbeing in series with the antenna lead right at the terminal panel. Ground receiver and gen-
erator. Remove .01 mfd. condenser from osc. section of gang.
2) Place receiver and generator in operation. Adjust wave-change switch for " X " band operation. Set volume and sensitivity controls at maximum. Adjust "Fidelity" control to
"normal" position. Tune receiver (dial) and generator to exactly $400 \mathrm{kc} / \mathrm{s}$. Adjust generator output for low value of reading on output meter. (See Note X)
(3) Starting of output meter.
4) For most satisfactory results, start with oscillator trimmer screwed up fairly tight, so that it is necessary to reduce capacity to tune in signal. The antenna and interstage trimmers should be fairly loose in starting.
(i) Tune the generator to exactly $150 \mathrm{kc} / \mathrm{s}$. Adjust the receiver to tune in the $150 \mathrm{kc} / \mathrm{s}$. signal.
Align C 14 (series tracking) rocking the tuning control slightly during this adjustment. If al i- found to be out mure than a very slight amount, it will be necessary to recheck. If Tully the parallet pauls $\mathrm{C} 2, \mathrm{C} 6$ and C 10 .

R. F. AND OSC. STAGES (POLICE AND AMATEUR BAND)

(1) Connect the signal generator output to antenna and ground terminals "A" and "G" with the 00 ohm resistor in the antenna lead right at the terminal panel
(2) Connect output meter across speaker voice coil terminals.
(3) Adjust wave-band switch for police band operation
(4) Set receiver sensitivity and volume controls at maximum. Fidelity control should be in (5) Set reoeivar dial to lng oxactly at $5,000 \mathrm{kc}$, s Adjust signal generator to exactly $5,000 \mathrm{kc}$ /s and adjust output for a low value of reading on output meter. (See Note X).
(6) Align carefully the parallel padders C4, C8 and C12, in that order for maximum increase in reading of output meter.
(7) Adjust signal generator to exactly $1,800 \mathrm{ke}$ s. Set reeeiver tuning to $1,800 \mathrm{kc} / \mathrm{s}$. signal.
() Aligr $1,800 \mathrm{kc} /$ s. series padder C16, rocking tuning control slightly in the usual manne
during this adjustment, until maximum output is obtained.
(9) Retume receiver and generator to $5,000 \mathrm{kc}$, s and check condition of alignment of the paralle padders C4, C8 and C12, at that point. If the series padder C16, required more than a small amount of change, it may be found necessary to
X NOTE: Excessive output from the signal generator may cause overload of one or more stages, If overloading occurs, false aligning peaks may be indicated by the output meter. It is very important, therefore, that only sufficient output frum the signal generator be used that will give a As the various stages are brought into alignment, the receiver sensitivity will increase, necessitatine a gradual reduction in the output of the signal generator.
As it is impossible to set the dial scale iteslf for logging purposes on more than one idani, It should only be set for the broadcast band where scale calibration is more important than on the other
bands. For this reason, all adjustments should be made on the broadcast band before attempting alignment of any other band.
The antenna and yround connections for Police and Short-wave Bands referred to above are for receivers built to use the C. R. C. special antenna. Un the older models, the connections remain the
same except that the middle terminal "D" should be shorted to " G ". Should any doubt exist as to the internal connections, then connect " D " to " G ", otherwise on the older sets, the two high frequency bands would be dead at the antenna circuit.

SHORT-WAVE FOREIGN BAND

R. F. AND OSC. STAGES

Alignment on this band is somewhat different and should not be attempted until the following procedure is carefully studied, otherwise it is possible to apparently align the parallel pads but still
find the sensitivity extremely low. find the sensitivity extremely low. Connect signal generator output to "and " G " terminals of receiver with 400 ohms , dummy antenna resistor right at receiver terminal panel.
2. Fround generator and receiver.
. Place receiver and generator in operation. Adjust wave-change switch to short-wave band Set volume and sensitivity controls at maximum. Adjust fidelity control to "normal" position.
Tune receiver dial to 17,800 and set generator at same frequency.
4. Conmence aligning procedure by adjusting oscillatur trinmer C13, then the interstage Co, carefully rocking to gang condenser meanwhile. This is important, as the sensitivity may be
down as much as ten times when the normal "straight-through" process of alignment is down as much as ten times when the normal "straight-through" process of alignment is used
When further rocking and alignment produces no improvement in sensitivity, proceed to align the antenna circuit C 5 . Sometimes rocking the gang while aligning will improve the sensitivity Gin this band.
5. Adjust signal generatur to $6,000 \mathrm{kc} / \mathrm{s}$. and tune in the signal on the receiver. Adjust the series peddor r 17 whilo racking the grang in the unual manner until the sensitivity is maximum.
Recheck all adjustments at $17,800 \mathrm{kc}$. s . being sure to rock the tuning condenser at the same Time the interstage trimmer is adjustel. The set should now be checked to make sure that the oscillator has not been aligned on the tune the receiver $912 \mathrm{kc} / \mathrm{s}$. 0 wer in requency or to $16,888 \mathrm{kc} /$. (approximately) it the
oscillator is correctly aligned, the image will be found here. If it does not appear, it will be found $912 \mathrm{kc} / \mathrm{s}$. higher in frequency than $17,800 \mathrm{kc} / \mathrm{s}$. then tune the receiver $912 \mathrm{kc} / \mathrm{s}$. lower in frequency or to $16,888 \mathrm{kc} / \mathrm{s}$. (approximately). If the oscillator is correctly aligned, the
image will be found here. If it does not appear, it will be found $912 \mathrm{kc} / \mathrm{s}$. higher in frequency image will be found here. If it does not appear, it will be found $912 \mathrm{kc} / \mathrm{s}$. higher in frequency The trimmer should be loosened off until the correct one is located.

ALIGNMENT DATA. ETC. FOR THE FOLLOWING 7.TUBE BATTERY. OPERATED MODELS de forest ceaser CAMBRID GE ano OXFORD mavestic ALGONQUIN NV: IROQUOIS Rogers $B 7 / 30_{\text {nun }} B 7 / 35$

ALIGNMENT

Proper alignment can only be arrived at by the use of proper cquipment and procedure. It is need for re-alignment occurs

The need for realignment, will normally occur following transformer or condenser changes affecting the tuned I. F.. R. F. and oscillator circuits. It is also good practice where convenieht and possible to periodically re-align various stages of the receiver, not only to overcome gradual process of change which may develop but also to retain the receiver at its maximum peak performance, particularly following tube changes.

The recommended equipment required for re-alignment consists of :
(1) A good signal generator (service oscillator) equipped with a good attenuator and providing cycles and 17.5 megacycles.
(2) A reliable output meter of the rectifier type with a range of $0-1$ volt.
(3) A .0002 microfarad condenser used as a dummy antenna in the broadcast band; a 400 ohm (4) Tor use as pulice and shortoware dunany antenna.
4) Two 05 or 11 microfarad condensers for use during I. F. alignment
(5) A suitable combination aligning wrench and screw-driver

With the equipment recommended, re-alignnent should be attempted only after the information in the various adjusting screws and nuts. It is recommended that the chassis is removed from the cabine during re-alignment.

I. F. STAGES

(1) Connect the output meter across the voice coil terminals of the speaker.
(2) Connect the output leads of the signal generator to the control grid cap of the oscillator-moduator tube (type 1C6S) through a 05 or 1 microfarad condenser. allowing the grid lead to remain in osition. The band selector switch should be adjusted for broadcast reception during I. F. alignment (3) Connect a 05 or 1 microfarad condenser across the plates of the oscillator section of the gang
condenser in order to load the oscillator tube and prevent spurious signals from being produced.
(4) Turn the receiver and generator on and adjust the generator to exact!y; 456 kilocycles. Set the receiver volu
meter scale.
(5) Commencing at the input to the type 30S diode stage, progressively check alignment of C21, cutput and C18 in that order adjusting the condenser nuts for maximum increase in reaning of the output meter. As the adjustment is being made, gradually reduce the signal generator output as necessary to avoid possible overloading of any stage. If overloading is permitted to occur, it ma

R. F. AND OSCILLATOR STAGES

Number One Band (Broadcast Band

(1) If the receiver under adjustment is equipped for use of either conventional or special short wave antenna systems, it is necessary that the terminals be properly arranged as for use with a conven ional antenna. This means that terminal "A" is used as the input or antenna lead. The center ground connaction.
(2) With the generator connected to the antenna (through the .0002 mfd . condenser) and the round terminals of the receiver, tune the receiver and generator to exactly 1,600 kilocycles. Adjus C11, C7 and C3 in that order for maximum increase in reading of output meter, keeping the generator
output at a low value in order that overloading be avoided.
(3) Tune generator to exactly 600 kilocycles, tune in signal on the receiver, then adjust C15 oscillator series padding condenser rocking the tuning control in the usual manner during this adjustment
until maximum sensitivity is obtained. If the dial does not log correctly, the pointer should be shifted accordingly.
(4) Tune the receiver and generator to 1,600 kilocycles and cumpensate by re-adjusting C11, C7 and C3 in that order for any change that may have been introduced by adjustment of C15 or error in logging caused by shifting the dial pointer.

TOP VIEW OF CHASSIS
FOR 7 TUBE MODEL.

R. F. AND OSCILLATOR STAGES

Number Two Band (Police-Amateur Band)

This band covers a frequency range of approximately 1,700 kilocycles to five megacycles
shoul Adjust the wave-change switch for operation at No. 2 band. Signal generator output lead should be connected to the antenna terminal previously indicated through the 400 ohm resistor, located megacycles ($5,000 \mathrm{kc}$.)
(2) Adjust aligning condensers $\mathrm{C} 12, \mathrm{C} 8$ and C 4 in that nrder for maximum increase in reading of output meter, reducing signal generator output as necessary to prevent overloading
(3) Adjust receiver and generator in tune at exaetly two megacs cles ($2,000 \mathrm{kc}$.) and adjust qeries tracker C16 rocking the tuning control in the usual manner during this adjustment until maximum sensitivity is obtaine

When adjusting C16, a check should be made to insure that 1,700 kilocycles is. reached at the extreme low frequency end of the No. 2 band.
(4) Tune generator and oscillator to exactly five megacycles and recheck $\mathrm{C} 12, \mathrm{C} 8$ and C 4 compensating for any change that may have taken place through the adjustment of the series tracker C 16 . Chec for image response by increasing generator output, and leaving frequency fixed; image should be located by tuning receiver 912 kc s lower in frequency. If it appears $912 \mathrm{kc} / \mathrm{s}$ higher in frequency, the wron

Number 3 Band (Short-Wave Band)

This band covers International short-wave broadcasting between the limits of six and nineteen megacycles.
(1) With signal generator connected to the receiver terminals as for police band operation, the band Adjust Adjust aligning condenser $\mathrm{C13}$.C 9 and $\mathrm{C5}$ in that order for maximum increase in reading of outpur
meter. During adjustment of the interstage trimmer C 9 it is absolutely essential to rock the tunin

CONTINUED FROM DATA SHEET. 13

the input to the modulator and the oscillator stage. The tuning control should be rocked as for a series padder adjustment.
(2) Adjust signal generator and recelver in tune al exactly six megacyslog and adjnst C17, the adjustment.
(3) Retand signa! generator and recpiver to exactly 17.5 megacycles and recheck adjustment of C13, C9 and C5 in that order compensating for any changes that may have developed through adjust ment of C17, again rocking the gang while adjusting the inlerstage trimmer. After alignment of the
short-wave band, the image response at 17.5 mcs. should be checked by increasing generator output leaving frequency fixed, then tuning the receiver $912 \mathrm{kc} / \mathrm{s}$ lower in frequency, where the image should indicating that the wrong oscillator peak has been chosen, and re-alignment is necessary

The foregoing is a complete routine covering alignment of the seven tube battery chassis. In conclusion it is necessary to point out that rechecking of all adjustmenls is very important.

As the various bands are entirely separate as regards the tuned circuit, it is possible to re-align any one band without the necessity of re-adjusting the other. It is best to align the broadcast band first as it is sometimes necessary to shift the pointer for logging purposes. The importance of keeping the

RIGMT-
SHOWING CONMECTION OF CONVENTIONAL OR. CANDN RADIO CORP DOUBLET HLLWAVE ANTENNAE TO 7-TUBE
BATTERY- OPERATED CHASSN

It is always good practice before starting re-alignment to allow the receiver to operate for a pericd of from fifteen minutes to one-half hour before adjustment is attempted. This permits the various
circuit elements that might be subject to change through temperature variation, to stabilize and permit circuit elements that might be subject to change th

ALIGNMENT

Periodically it may be necessary or desirable to re-align the k, F oscillator and F . sturn tive thex elvers.
uch alignment may be in order, following changes affecting the I. F, R F. or oscillator coils or tub
When alignment is necessary, it should only be carried out with proper equipment. As it is, of course, a在 roper output indicator, a satisfactory aligning wrench and screw-driver and a good service oscillator or Procedure of alignment follows :
(1) Connect the output lead of service uscillator to the contro urad caf the type 1 A 6 S oscillator-modu hatur tule, allswing the contral erid rlị! to remain in position.
(2) Short the plates of the oscillator section of the gang condenser
3) With the service oscillator or signal generator tuned to exaclyy lij kilucycles, align in order C9, CB, $c 7$ and C6. As these adjustments are being made, it is particulary important that the output of the ignal generator be kept at a low value in order to avoid possible overioad of the second detector or output tube. Such overloads if allowed to develop may result in false readings of the output indicator or radual reduction of the signal generator output ghourd be nade lit urder tu picteril u'zrlogdine
4) Connect output lead of service oscillator to green antenna wire of receiver and ground signal gener tor to the black wire of the receiver. Remove short on oscillator section of gany condenser. Rutale he gang condenser to full-in position and adjust tuning indicatur so that pointer indicales exactly 535 5) Adjust service oscillator to exactly 1,400 kilocycles and adjust the recenver tuning so that dial pointer dicates exactly 1,400 kilocycles. Align culdunsor (2 for maximum sensitivity
6) Tupe generator to $600 \mathrm{kc} / \mathrm{s}$. and adjust receiver (without regard for dial calibration) to the enerator frequenty.
(7) Adjust 600 ke s. series pad (C5) (without regard for dial calibration) for maximum sensitivity ocking tuning control in the usual manner during this adjustment.
8) If after this adjustment the dial calibration is incorrect, loosen dial pointer screu and reset pointer exactly $600 \mathrm{kc} / \mathrm{s}$.
9) Tune generator to exactly $1,400 \mathrm{ke} \mathrm{s}$. and adjust reverivi in tuns. If gulbibatinn is incorrect, adjust interstage (C3) trimmers. Rechect correct dial calibration, then carefully align antenna (C2) and these condensers use as little capacity as

DATA SHEET
ROCERS MAJESTIL-17

DATA SHEET

ROCLERS MAJESTIC-18.

ROCERS

The I. F. transiomers usea in these chessis are iron core and are tuned to 456 kc. The method of aligning the I. F. trensformers is normel with the oxcoption that enough to shield the grid of the latter tube from any motal parte of the allgning wrench that may oxtend outside the I. F. tranaformer shield can.

(a) With the tuning condenser set at maximum capacitance and the band sivitch in the broadcast band poaition, adjust the pointer until it is exactly opposite the 5.7 mc . mark on the ahort-mavo scalo.
(b) Turn the condenser to minimum capacitance position. Connect the signal senerator to the antenne circuit throyich propar dumay antenne and adfust the oscillator pad so thet the set will just tune to $1,700 \mathrm{kc}$.
(c) Turn the tuning condenser until the pointer is exactly opposite the 1,500 kc. mark and note how close this comes to being $1,500 \mathrm{kc}$, as indicated by the pointer read correctly at $1,500 \mathrm{kc}$. and still heve the band extended to about $1,500 \mathrm{ke}$. Finen adjust the entonna parallel pad for resonence.
(d) Rotete the tuning condenser until the pointer is opposite 600 kc , and adjust the oacillator series pad for maximum senaitivity.
(o) It may be necessary now to return to $1,500 \mathrm{kc}$. for a slight readjustment of both oacillator and antenna perallel pad if the oacillator aeries pad was very mech out of adjustment in the operation mentioned in the above paragraph
(f) The adjustment of the parallel pads for both police band and short-wave band will be done in a manner similar to that described above. Note, however, thet there are no adjugtuents of the ceciliator serios pads in these bands.

The frequency ranges and alinging frequencies are as follows:

Frequency Range

$$
\begin{aligned}
& 530-1700 \mathrm{xc} . \\
& 1.7=5.7 \mathrm{mc} . \\
& 5.7-18.5 \mathrm{mc} .
\end{aligned}
$$

Aligning irequency

MAJESTIC

1i-15, 11-25

iks

VALIANT, ROYAL OAK

DE FOREST VEGA, ALTAIR
(1) Connect the output lead of service oscillator to the control grid can of the type 1C6S ossillatar(2) Turn Eank candenser to minimum capacity

C11, (3) With the service oscillator or signal generator tuned to exactly 175 kilocycles, align in order C11. C10. C9 and C8. As these adjustments are being made, it is particularly important that the output
of the signal generator be kept at a low value in order to avoid possible overload of the second detector or
or output tube. Such overloads it allowed to develop may result in false readings of the output indicator or meler. As the recelver $1 /$ brought into alignment, the sensitivity will tend, of course, to increase and a gradual reduction of the signal generator output should be made in order to prevent overloading. generator to the generator to the black wire of the receiver. Remove generator lead from grid of 1 C 6 S tube. Rotate
the gang condenser to full-in position and adjust tuning indicator so that pointer indicates exactly
535 kilocycles.
(5) Adjust service oscillator to exactly 1,400 kilocycles and adjust the receiver tuning so that dial pointer indicates exactly 1,400 kilocycles. Align oscillator parallel pad C6, interstage pad C5 and
(6) Tune generator to exactly $600 \mathrm{kc} / \mathrm{s}$. and adjust receiver (without regard for dial calibration) erator frequency.
(7) Adjust 600 ke, ${ }^{\text {(f. gerios pad (}}$ (C7) (without ragard for dial calibration) for maximum seasitivity ching tuning control in the usual manner during this adjustment
 (9) Tune generator to exactly $1,400 \mathrm{kc} / \mathrm{s}$. and adjust receiver in tune. If calibration is incorrect. adjust oscillator parallel condenser (C6) to correct dial calibration, then carefully align antenna (C4),

ROGERS	MAJESTIC	DE FOREST
$1 /-18,1 /-28$	CUMBERLAND	VENUS
	TRIUMPH	CORONA

I. F. STAGES

(1) Connect the output meter agross the vaice eail terminds of the speaker.
(2) Connect the output leads of the signal generator to the control grid cap of the oscillator-modulator tube (type 1C6S) through a . 05 or . 1 microfarad condenser, allowing the grid lead to remain in
position. The band selector switch should be adjusted for broadcast reception during I. F. alignment
(3) Connect a 05 or 1 microfarad condenser across the plates of the osciliator section of the gang ndenser in order to load the oscillator tube and prevent spurious signala from being produced
(4) Turn the tecelver and generator on and adjust the generator to exactly 456 kilocycles. Set the
(iver volume control at maximum. Adjust the generator output for a low reading on the output receiver volum
meter scale.
(5) Commencing at the input to the type 30 S diode stage, progresaively check alignment of C19, $\mathrm{C18}$, $\mathrm{C17}$ and C 16 in that order adjusting the condenser nuts for maximum increase in reading of the output meter. As the adjustment is being made, gradually reduce the signal generator output as
necessary to avoid possible overloading of any stage. If overlosding is permitted to occur, it may necessary to avoig possible overioading of any stage, If overio
result in false aligning peaks. Carefully recheck all adjustments.

R. F. AND OSCILLATOR STAGES Number One Band (Broadeast Band)

(4) With the generator connected to the antenna (through the . 0002 mfd . condenser) and the ground ter: 's of the reccivcr, tune the receiver and generator to exactiy 1,600 hilocycles, Adjust
C12, C 9 and C12, C9 and, in 'hat order for maximum increase in read
output at a lun va. . Oidur that overlording be avoided.
(2) Tune generator
lator series padding conctactlv 600 kilocycles, tune in signal on the receiver, then adjust C15 osciluntil maximum sensitivit is obtained. If the dial does not log correctly, the pointer should be shifted accordingly.
(3) Tune the receiver and generator to 1,600 kilocycles and compensate by re-adjusting C12, C9 and C6 in that order for any change that may have been introduced by adjustment of C15 or error in logsing

R. F. AND OSCILLATOR STAGES Number Two Band (Police-Amateur Band)

(1) Adjust the wave-change switch for operation at No. 2 band. Signal generator output lead should be connected to the sultema terminal previously indicated through the 400 ohin resistor, located
at the terminal panel. The signal generator and receiver should be adjusted in tune at exactly five meganyoles ($5,000 \mathrm{kc}$.).
(2) Adjust aligning condensers $\mathrm{C} 11, \mathrm{C8}$ and $\mathrm{CE} \ln$ that order for maximum increase in reading of output meter, reducing signal generator output as necessary to prevent overloading.
(3) Adjust receiver and generator in tune at exactly 1.8 ($1,800 \mathrm{kc}$.) and adjust series tracker Cl 4 rocking thed.
obtained.
When adjusting C14, a check should be made to insure that 1,700 kilocycles is reached at the extreme low sequency end of the No. 2 band.
(4) Tune generator and oscillator to exactly five megacycles and recheck $\mathrm{Cl1}, \mathrm{C} 8$ and C 5 compensating for any change that may have taken place through the adjustment of the series tracker C14. Check
for image response by increasing generator output, and leaving frequency fixed; image should be located for image response by increasing generator output, and leaving frequency fixed; image should be located
by tunitg receiver $912 \mathrm{kc} / \mathrm{s}$ lower in frequency
oscillator peak has been chosen, the one requiring the least capacity being the correct one.

ROGERS- $11-13, " C U S T O M$ BUILT゙ MANESTIC- QUEEN MARY $1.1 .=456 \mathrm{~K}$.

See Data Sheet- For Alignment instructions

chassis vo. 60731 NEPTUNE alignment Instructions on Data Sheet-

1.F: =956Kc.

instruchions on Duta Sheet-2A

1936-37

DATA SHEET

ROGERS-MAJESTIC-Z2

〔Z-OILS.JTUW-SOTJOO LJJHS WLOO

ALIGNMENT INSTRUCTIONS

ROGERS- MODELS - II/ISP. II/IOP. II/O5, Il/97.
 MANESTIC-MODELS - QUEEN ELIZABETH. QUEEN MARY, RESOLUTION, BONAVENTURE.
 DE FOREST CROSLEY-MODELS-COMET.LYRA. ROHAL STAR, IIDITER. CuSTOM BUILT.-

1. F. STAGES (See also "Use of Oscillograph")

The following routine for I. F. alignment applies specifically to those chassis equipped with variable I. F. transformers. For those chassis equipped with fixed coupling transformers, the routine is simila
excenting that those adjustments covering "shaping" are not reguired.
(1) Connect an output meter of suitable range directly across the voice coil terminals of the snpakpr
(2) Connect the .1 mfd . by-pass condenser across the oscillator section of the gang condenser Cl
(3) Connect the output lead of the signal generator to the control grid of the trjpe 6A7N tube throurt he 1 mfd condenser. Allow the contrul grid clip to remain in position. Wave change switc must be in "broadcast" position and gang condenser at minimum capacity (all out)
(4) Adjust the receiver "Fidelity" control to "full counter-clockwise" position. This is very important. This is the contracted or maximum selectivity position.
if the chassis under alignment is equipped with a noise suppressor stage, the volume control knob should be pulled out until the witch is operated, disconnecting the mise suppressor circuit (5) With receiver and signal generator "on," adjust signal generator to exactlv 456 kr .s. Arlinst
b) (commenig at
(b) Commencing at the secondary of the diode stage I. F. transformer and working progressively
backward to the output of the 6A7M stage, align condensers C22 *(21. (20 . C19, C18, C 17 and hackward to the output of the 6 A 7 M stage, align condensers C22. *(21. ('20. C19, C18, C17 and
(16 in that order for maximum increase in reading of output meter. Carefully recheck adust. ments until further adjustment fails to improve alignment. 7) Adjust receiver "Fidelity" control "full clockwise" to the "High Fidelity" position. With
contrul in this position the receiver will be in the "expanded" or least selective condition.
(8) Adjust generator output to a low level and gradually tune it upwards in frequency until a peak is found, which should appear at approximately $463.5 \mathrm{kc} s$. (or minus $7.5 \mathrm{kc} \mathrm{s}_{\mathrm{s}}$). Holding the generater output constant, note carefully the exact output meter reading
(9) Still holding the generator output constant, slowly tune the generator lower in frequency to locate a second peak, which should appear at approximately 448.5 ke s. (or minus 7.5 kc s.). If
it is impossible to determine the 7.5 kc . interval exactly, it is important that these two measureit is impossible to determine the 7.5 kc . interval exactly, it is important that these two measure ments be made at exactly th
symmetry cannot be obtained.
(10) Upun iveating the second peak (and if the original adjustment has been properly madn) it should be found that the reading of the output meter is approximately the same value as that noted a 463.5 kc s . Small variations in the order of plus or minus 5^{\prime} ' are purmiswible. If the two reall and that further adjustment of aligning condensers is unnecessary. Following this, other align mont can ha corrien nut.
(11) If, however, it is found that the output meter readings do not agree within a reasonable amount further adjustment will be in order. First try further aligming adjustments. as outhed unde section 4, 5 and 6 and rechecking as per sections $7,8,9$ and 10 with the coupling in the selective position. Should this fail to produce results, locate the peak at which the lower nutput reading obanned and try to imcrease this by carefully adjusting 20 and C 22 of the hiote stage he encountered which would result in the condition discussed under section (11). Do not attemp or re-align any of the 1st or 2 nd I. F. trimmers with the coupling in the high fidelity or expanded osition

The adjustment of the suppressor I. F. Transformer T18 is made in a similar manner to the other . F. transformers except the imput signal should he reduced to a salue where the suppresso
 and nearer resonance the imput signal shoutd be correspondingly reduced to maintain the suppressor just at its threshold operatiny point. The condensers (23 and C21 permit adjustment of
R. F. AND OSC. STAGES (STANDARD BROADCAST BAND)
(1) Connect the generator output to antenna and ground terminals " A " and " G " with the .0002 mfd condenser right at terminal panel. Ground receiver and generator
(2) Connect output meter across speaker voice coil terminals
(3) Adjust wure-tund awiteh for standard bant operathen
(4) Set receiver volume control at maximum. Adjust fidelity fontrol th mermal prixitiom. Set receiver dial to \log exactly $1,500 \mathrm{kc} / \mathrm{s}$. of output meter.
(7) Adjust signal generne in cont in

(8) Rutuin rignal generatul and revelser wi, iove ke s. ande check condition of atgument of ('18. ('! necessary to re-align the parallel padders to correct logging.
This completes the standard band alignment.
R. F. AND OSC. STAGES (POLICE AND AMATEUR BAND)
(1) Connect the signal generator output to antenna and ground ter (2) Connect output meter across speaker voiçe coil terminals.
(3) Adjust wave-band switch for police band operation.

Set receiver volume control at maximum. Fidelity control nhould be in hornal pmation
output for a low value of reading on output meter

(7) of output meter
(7) Adjust sighal generatur to exactly 1.8 me - Set receisem tuning to 1.8 me

 change, it may be found necessary to align the paralk-l padders to correct logging.
R. F. AND OSC. STAGES (SHORT-WAVE FOREIGN BAND

Alignment on this band is somewhat different and should ant be attempted until the balloment procenure lis carefulys stadien, oth
(1) Connect signal rexemerator loy
antemal resistor right at reconce termmal pancl.
(2) Ground generator and receiver.
(3) Place recewer and generator in operatom. Adjust wave-chamge switch to shon wave band. 17.8 mes s. and set generator at same thequence.
(4) Commence aligning procedure by adjusting use
rocking to ganyr condenser meanwhilest The ascillater trimme as ten times when the normal "straight-through rocking and alignment produce

 (6) Recheck all adjustments at 17.8 me s., being sutu
the interstage trimmer is adjustec
(7) The set should nowmer is adjusted.
 12 kc s. lower in frequency or $16,388 \mathrm{ke} s$ (approximately). If the osciliator is corredy aligned than 17,800 or at 18.712 ke . This indicates that the wrong weillator patk has leen durim. The

SILVER-MARSHALL-Model 35A

Schematic Diagram of Model 35-A SILVER MARSHALL Radio Chassis 1930

Schematic Diagram of 33-A Power Supply (25 eycle) for SILVER MARSHALL Radio

1930
Schematic Diagram of 33-A Power Supply (60 cycle) ros SILTER MARSHALL Re:110
LEGEND FOR MODELS BO.BCIANDD

$\begin{aligned} & c^{\prime}=.00035 \mathrm{mtd} \\ & c^{2}=.00035 \cdot \mathrm{mfd} \\ & c^{3}-00035 \end{aligned}$	$\begin{aligned} & c^{8}=.00015 \\ & C^{9}=1 \\ & C^{10}=1 \end{aligned}$	$\begin{aligned} & C^{\prime 4}=2 . \\ & R^{\prime}=400 \cdot 0 \mathrm{hms} \\ & R^{2}=400 \end{aligned}$	$R^{E}-3,000$ ohms $R^{\prime}=60,000$ $R^{E}-2.000$	$\begin{aligned} & R^{12}=1500 \cdot 0 \mathrm{hms} \\ & R^{13}=800 \\ & R^{14}=2 \cdot m e G \end{aligned}$
$c^{4}-.00035$	$C^{\prime \prime}-1$	$R^{3}-400$	$R^{s}-10.000$	mev
$c^{5}-0.0015$	$c^{12}-1$	$R^{2}-3.000$	$R^{\prime \prime}-300.000$	SEE DATA SHEET
$c^{6}-.0075$	$c^{13}-4$	$R^{5}-3,000$	$R^{\prime \prime}-3,500$	SEE DATA SHEET

Model 726 SW. 1931-32 IF 175 KC .

NOTE-
MODEL-726 SW. is BEARCAT CONVERTOR AND MODEL-D-RECIEVER.

LEFT-
BEARCAT RECIEVER.
LOWER-
MODEL-716•TUNER AND 683 RMPLIFIER.

SPARTON TUBE CHARACTERISTICS

*Recommended values for uge in Auotmobile Receivers.
†Recommended values for uee in Raceiver decigned for 110 volt D.C. operation.

Printed in Canada

Tuee	DOSirior	PLATE V.	Geio Y.	SCREEIY Y.	PLATE Ma.
35	RF	180-220	2:5-4	80-100	5-8
-	β F	\cdots	-	\cdots	-
*	1 F	"	-•	"	-
\cdots	1 DET	"	$6: 14$	"	-8-1.8
27	OsC.	80-100			
-	2 DET	170-205	14-20		$\bullet 7-1$
\cdots	A.V.C.		30-50		
45	P-PULL	225-270	30-45		20-30

Model-333 (Auto-Receiver) 1934 JF. 456 Kc.

Superheterodyne automobil.e radio receiver

ALIGNMENT INST. ON SHEET 25A.

Aligmment Instructions Mods 467a.b.c-970a-b.

NOTE-Before commencing the alignment of this receiver, see that the gang condenser plates are just flush when the dial pointer reads exactly 540 Kilocycles. If they do not fush at that frequency, loosen the lock-nut on the end of the station selector shaft, and with the plates flush turn the dial pointer to 540 by the lower cable drum and retighten the lock-nut.

1. Connect the output meter to the voice coil leads of the speaker, (maroon and white leads)
2. Attach the test oscillator to the receiver feeding a signal of exactly 345 Kilocycles into the grid of the type GA7 Converter tube. With the volume control full on and the receiver pointer set to the low frequency ead of the dial, adjust the output of the oscillator to give $1 / 2$ to $3 / 4$ ssale reading on the output meter.
3. Adjust both the first and second I. F. trimmers located on the top of the chassis (see Fig. 1) to a maximun reading on the output meter. If the adjustment of these trimmers produces a maximum reading off the scale of the meter, reduce the oscilator output still further. Correct alignment of these trimmers is indicated by a maximum reading of the output meter for a minimum input signal from the test oscillator.
4. Attach the oscillator to the antenna and ground leads of the receiver, and adjust the frequency to exactly 1500 Kilocycles. Turn Band Selector switch to the Broadcast Band position. Adjust trimmer condenser C3-5 until, with the signal tuned in on the receiver, the dial poimter indicates exactly 1500 K.C.
5. Adjust the oscillator signal to exactly 601 K . $\mathrm{C}_{\text {., }}$, and adjust the padding condenser $\mathrm{C}-12$ until, with the oscillator signal tuned in on the dial, the dial pointer indicates exactly 6100 K . C. Repeat the calibration of both 1500 and 600 K . C. on the dial until both points are correct without further adjustment of either C3-5 or C-12

6، Adjust test oscillator to 1500 K.C. again and tune the receiver in to this signal, adjusting the dial carefully to give a maximum reading of the output meter. Adjust trimmer condensers C3-4 and C3-2 for a further ramimum of the output meter, reducing the output of the test oscillator if necessary to bring this maximum reading on scale. The alignment of the Broadcast band of the receiver is complete.
7. Adjust the oscillator again to 1500 K .C. and tune the receiver exactly to that signal. Turn the Band selector switch to the Short-Wave Band position, and adjust the test oscillator to exactly $15,000 \mathrm{Kilocycles}$. Ieaving the dial pointer set, adjust trimmer condenser C3-6 until the oscillator signal is heard, and the output meter is at a maximum reading.
8. With the same signal from the oscillator, and the dial pointer still set at the same position, adjust trimmer condensers C3-3 and C3-1 for a further maximum reading of the output meter.

CAUTION-With the oscillator set at $15,000 \mathrm{~K}$.C. two signals can be heard in the receiver, one at 15,000 and the other at $14,310-$ K.C. Da not mistake the latter signal for the former. In aligning the receiver at $15,000 \mathrm{~K}$. C. the signal of highest frequency is the correct one, and the receiver is adjusted to it. After the alignment is complete, check to see if a second signal is audible at $\mathbf{1 4 , 3 1 0} \mathrm{K}$.C. If so, you will have been using the proper signal for the alignment.

Mod $467 B \rightarrow$ ADJUSTMENT OF THE SPARTON VISO-CLO

$14100 \mathrm{KC}$.
Mods 970 A-B
The Red Knurled k nob on the back of the chassis is the Visoglo adjustment control. This control should be adjusted by turning it to the right or beft until the Viso-glo is completely filled with light when a station has been properly tuned in.

With the control rotated in a clockwise direction, the light will respond to the most inaudible, weak, distant stations and will serve to help locate the small short wave stations. With the knob rotated in a counter-clockwise direction, the initial amount of light will be much less and the glow will indicate the stronger stations only. The same control will serve to compensate for unusually high or low line voltages affecting the intensity of the glow

DATA SHELT
PRINTED IN CANADA
SPARTON -25A.

1.F. = 345 K.C.

ALIGNMENT PROCEDIRE NOTE-Before commencing elignment make sure that the dial is set so that with the reloctor platea in quah, the the bromdent ncelle.

1. INTERMEDIATE FREQUENCY AMPLIFIER-Set mervice lead attechand to the GF7 (comverter) grid cap. adjust trimmers C8 for mavi2. OSCILLATOR TRIMMER Set service oscillator at 1500 K.C. and connect tent lead to yollow aerial lead, tuned in dial points to 150 .
2. oscillatom papmit-s et errvice oocillator at 600 K .C. and adtuned in dial points to 60
Ke-check at 1500 as in section 2 above.
3. R. F. TRIMMERS-With service ocillator at 1500 and net tuned to that frequency, adjust $こ 4$ and $C 5$ for maximum output.

NOTE-In some cases better resulta will be obtained if C4 (the antonna trimmer) is readjustod on a atation at 1400 K.C. when the set is connected to the merial with which it is to be used.

WHAT TO LOOK FOR IN CASE OF TROUBLE
EXCESSIVE NOHSE-C'bock alignment, chotik aerial, wo short aiu aerial wil! mendt in the nicking up of too large a percontage of noim. A ground abould always be used.

The pointer on this set is in the fortu of a mark on the green diat screen, in some canes the set appears off culibration a few Kunion and stations, thim is due to the fact that the aloctor has chirtod on its rubber mounting wanhers. The remedy is to tap the tuang knob gently in the denired direction, this causes the selector to shift far enough to remedy the trouble.

VOLTAGE ANALYSES AND RESISTANCE CHART

Tube	Location	Plate Mils	Plate Volts	$\begin{gathered} \left\lvert\, \begin{array}{c} \text { Screen } \\ \text { Volts } \end{array}\right. \end{gathered}$	Control Heater Grid Volts Volts		RESISTANCE TO GRUUND			
							Plate	Grid	Screen	Cathode
6F7	R. F. Pent.	5	200	100	(2)	6.3	30,000	1 Meg .	20.000	600
	OSC. Tri.	2	75	-	(8)	-	80,000	50,000	-	-
6 D 6	1st I. F.	7	180	90	(1)	6.3	39,000	1 Meg .	20,000	0
45	2nd Det. A.V.C.	1-	55	-	(1)	6.3	500,000	500,000	-	330
42	Output	20	175	180	$10 \quad$ (2)	6.3	30,000	250,000	-	600
80	Rectifier	62	300	-	-	5.0	100	-	-	-

(1) ririd bins supplied by signal, cannot be read on analyzer.
(i) Hisb rulirance arrcuit not tree voliage.

All readiags taken with volume control on full and no signal applied to aerial
All reading + or -10%. All vollages taken on $\mathbf{1 0 0 0}$ ohm per volt metar

ALIGNMENT MODELS. 254-254-355

AIIGNMENT PROCEDURE

NO'TE-Before commencing alignmert make sure that the dial in aet no that with the selector phoras in duab, the pointor points to the last divinion on the brondcare scale.

1. INTERMEDIATE FREQUENCY AMPIIFIER maximum reeding on output meter.
2. OSCILLATOR TRIMMER
 in dial poiato to 150.
3. OSCILLATOR PADDER

Set aervioe oacillator at 600 K .C., and adjust pedder (C9) until with signal tumed in dial pointo to 60 ,
4. R. F. TRIMMERS

With servioe oscillator set at 1500 K.C., and eet tuned to thal frequency, adjust trimmara C4 and C6 for maximumoutput. SHORT WAVE ALIGNMENT
red band. Whe the oscillat set at 15.000 K .C. adjust trimmer C 8 until with annal tuned in, dial pointa 1015 on the red band. Adjust ahort weve R. F. trimmer C5 to point of greateat output. The trimoner should then be turned a very mall
 green band. this fans in with the oner solector plates, thin destroys the seloctor aligament. Note-ln some canes botter reaulu will bo obtained if C
it is operation-With the oocillator bet at 15000 s .C. two signals can bo heard in the receiver, one at $15000 \mathrm{~K} . \mathrm{C}$. and the other at $14310 \mathrm{~K} . \mathrm{C}$. Do not mistake the latter signal for the former In alisntog the recciver at 15000 K . C. the signal of higheat frequency is the corroct one and the receiver is adjushed 10 it. Aiver for the ali pament. Thia mocondery imege is noticeable on all

WHAT TO LOOK FOR IN CASE OF TROUBLE:
AUDIO HOW"-Check cheais bolts, these should bo looes enough to allow the chaman to "Boat" mo wa rubber mount ing washere, melector should also be free to font on its rubber cuabions; check for microphonic wubes.

POOR SELECTIVITY-Check alignment.
EXCESSIVE NOISE-Chock alignment, check sarial, wo short an ecrial will reault in the picking up of too large e percentage of noive.

Fig. 1-Top View of Moded 604 Chasais.

[^2]

ALIT.A MENT PROCEDURE
Pofore rmmencing alignment the dial should ta get to thot with the welector plutos is fluah, the pointer point to the liat line on the slach scale. 1. I.F. AMPLIFIER-set nervie oncillator at $245 \mathrm{~K} . \mathrm{C}$. and with teat lead attached to 6 A 7 grid cap, odjuat the 4 trimmers C13 for maximum, eading on the output meter.

NOTE the electron rev vieo do cen he used as an odiput meter.
2. OSG:II.LATOR TRIMMEDSet service neicilator at 1500 K.C. and comnect tent lead to yellow arterman lead. Adjust trimmorr C6 until signal is tuned in with dial tuned to 50 on
3. OSNTLILATOR PADDER Set service ascillator at $600 \mathrm{~K} . \mathrm{C}$. and adjust pladder C7 until with signal luned in dial points to 60. Re-check 1500 as in aection 2 above.
4. H.F: TRIMMER-With the 1500 K.C. signal tuned in and dial at maximum output.
SHORT AVE ALIGNMENT
NO. 3 S.7. (PURPLIE) BAND-Set wornice oncillator at 15,000 K.C. end adjuast tritamer Cl2 until with signal tuned in the pointer is at 15 on the purple dial ecale
R.F.-Adjust C5 and Cl0 for maximum eutput.

NO. 2 S.W. (RED) BAND-Set sarvice oecelim tor at $6,00 \mathrm{C}$ K.C. and adjuat trimmers $\mathrm{C}!1$ and C_{4} for marimum output

NO. L S.W. (GREE'V) B.AND-No adjastments are required on this band.

Model. 469

DATA SHEET

 tuned in dial paints to 15 on the bhe band. A.F. adjust r. I. trimmers C7A, C6B for marimum output.

NUMBEF 2 S.W. BAND (RED) - (Vo. 3 Band)-Set service oscillator at 6000 K.C. and adjust erimmen CII, C6A for greatest outpur.
NTMBER IS.W. BANE (GREEN)-(No. 2 Hand)-No adjustments are required on this liand.
WAR'NING-Do not beod selector plates, this destroys selector alignment.
CAUTION-With the omillator aet at 15000 two signale can be heard in the receiver, one at 15000 K . C. and the other at. 1.4088 K.C ; do not mistake the lattor signal for the former. In aligning the recaiver at 15000 K . C. the sigal of bigber frequency is the correct one and the set should be adjused to it. This socondary image is noticeable on all ehort wave bands and appeare at a place lower in frequen'y than the deaired signal by twice the I. F. frequency.
 1. INTERMEDLATE FREOUENCY ALIGNMENT.
(8) Connect output of oacillation to grid of type 6A7 converter tabe and ground of chasis. Consect the output nsetur across (b) Adjust frequency of aecillator to exactly $456 \mathrm{~K} . \mathrm{C}$.
(c) Turn Volume Controt to the full on position and reduce oacilahe output until output meter reading is approxiniat.ly : 3 reading.
(d) Adjuat trimmer condeners C-6 (see Fig. -6 trimmers in all) until output meter reading is at maximm, If the Arinumet odjustments increase the output metor reading to an off-scale value. redwoe the oncillator output to bring the needle on acalo apain. and continue to adjust for maximum. Aepeat the adjustment of the six C-t condensers several tmes for a maxinumirnading oo the mift r

NOTE-For satiefectory dignment of the I.F. stages. set selector swith in the broadcast position and set dial at atrout 1000 K . . 2. OSCILLATOR AND R. F. ADJUSTMENTS

Connect oecillator to antenns.
(a) Broedcest Band.

Adjust condenser C1-5 so that with oscillator set at 1500 K . C. the receiver dial pointer ready evactly linoo. Adjust condensmi C3-1 so that with oscillator set at 600 k . C. the dial pointer with siguel tured in reads exactly 600 . Ileprat adjustment of both C.3-1 and Cli-5 several times. With oucillator met at 1500 again and signal tuned in on receiver adjuat condensers (:t.l and Ci.3 for maxinum output meter reading. The occillator cadibration has an allowable error of $\pm 5 \mathrm{~K} . \mathrm{C}$. at $600 \mathrm{~K} . \mathrm{C}$.
(h) No. I short wave band.

Ilepeat the above adjustment on No. 1 S.W. Band-trimming cecillator condenser C5-5 at 3000-K.C. and padding contenser (c) Repeat Aajnst condensers C.5-l and C5-3 at 3000 K.C. or maximum output roeter reading, K.C.. Trim condensens Ct2 and C4-4 for maximum outpu: meter reading at $\mathbf{7} 200 \mathrm{~K}$.C.
(d) Repeat adjustment agein for No. 3 S.W. Band-trimming oecilmtor condenger C5-6 at 15000 K . C. und padding cundensrt C.2-2 at 9000 K.C. Adjust codsemers $5: 5-2$ and $\mathbf{C} 5-4$ for maximum oulput moter reading at 15000 K .C.

WARNING-Lo aligning the short wave bands of this receiver. for a given frequency signal from the oscillatwr, two gignals night Le heard on the recoiver, apart in frequency by $900 \mathrm{~K} . \mathrm{C}$. The signal wo which the receiver must be aligned is the sigal of highevt requency. Aligning to the lower frequency signal or spuricus "image" will rffect a distinct lose in sensitivity of the receiver

MODEL. 604

CMASSIS LAYOUT ON SPARTON DATA
SHEET:-31

NOTE-Before commencing alignment make sure that the dual is set so that with the selector plates in flush, the pointer points to the last divinion on the dial.

1. INTERMEDUATE FREOUENCY AMPLIFIER.

Set sarvice oseillator at $456 \mathrm{~K} . \mathrm{C}$. and with teat lesd attached to 6.7 (sonverter tube) grid cap aajust trimmers C2. C3, C4 for macimum reading on the output metar.

CAUTION-Be sure that the selectivity control is set at the poeition for maximum selectivity (turned to the right)
2. HMUADCAYT DAND ALIGNMENT,
(a) OSCHLLATOR TKIMMER-Set mervice acillator at $1500 \mathrm{K.C}$. and connect test lead to yellow antenna lead adFuat trimmer C 98 until with signal tuned in dial pointe to 150 on btack scale.
(b) OSCILLATOR PADDFR-Set service oscillator at 600 h.l. and adjust padder C 12 B so that with signal tunad in, dial points wo 60 on black wale. (Recheck at 1500 as in mection " a " atove).
(a) R. F. THMMERS-With service oacillator set at 1500 K .C. and set tuned to that frequency, adjust trimmers C 7 A and C. 5 A for maximum output.
3. NIIMBER 2 BAND ALIGNMENT.
(a) OSGILIATOR TRIMMEX-Set wervioe cuillator at 3000 K .C. and with hand awitch turned to the green position, adjust trimmer C 10 A until with signal tuned in dial points to 3.0 on the rreon wale.
(b) OSCIILATOR PADDER-Set service oscillator at 1500 t.C. and adjust paddor C 12 A so that with signal tuned is diad points $w 1.5$ on the green scale. (Recheck at 3000 as above).
 and C 8 A for maximan reading on the output noter.
4. NLMBER 3 BIND ALIGNMENT.
(a) OSCILLATO青 TRIMMER-Set servioe oscililot at $7500 \mathrm{~K} . \mathrm{C}$. and with land switch turned to the red povition, adjust trimmer C 9 A until with mignd tuned in, dial points to 75 no toe red acale.
(b) OSCULATOR PADDER-Set service onsilntor at 3750 K.C. and adjust padder C II B so thet with signal tuned in dial points to 3.75 on the red scale (Hecluck at 7500 an above).
(e) R. W. TRIMMERS-With the mervice oacillator at 7500 K.C. and the set tuned to that froquency, adjust trimmers C ; B and C. 7 B for merinoun rending on unput moter.

5. NUMBER 4 RAND ALIGNMEAT.

(a) OSCTLHATOR TRTMMER-Set service oacillator at $15000 \mathrm{~K} . \mathrm{C}$. and with band swith turned to the blus: pasition, adjut trimmer C 10 B until with sigual tuned in dial points to 15 on the blue acale
(b) OSCHLLATOR PADDER - Set mervice omillator at 9000 K .C. and adjust pudder C 11 A so that with aigual tuped in, disl points zo 9. (Rechock at 15000 at above).
(c) R. F. TRIMMERE-With the vervice oncillator at I5000 and set tuped to that frequency, adjust trimmeri C 6 B and C 8 i for maximum reading on output meter.
6. LONG WAVE "X" BAND ALIGNMENT.
(a) OSCII工ATOR TRIMMER -Set service oscilator at $350 \mathrm{~K} . \mathrm{C}$. And with band switch turned to the brown position adjust trimmer C I3 B until with sipnal tuned in. dial points to 350 an the brown scale.
(b) OSCILLATOR PADDEA-Set mervice oncillator at 150 and adjust padder C 13 A ao that with signal tuned in, dial points to 150 . (Rechect at 350 ad above).
(c) R. F. TRTMMERS-. With servine oncilletor at 35C K.C. and set tuned to that frequency, adjust trimmors C is and C15 for muximum readiag on output meter.

Model. 8//

NOTE.-

 CHAS5/5 \angle AYOUT. TRIMMER LOCATIONS, ETC. ON SPARTON OATA SHEET-3/.

Nore-

I.F RLIENNENT IS SAME FOR BOTH MODELS.

PLIGNING INSTRUCTIONS ETC. FOR MODELS. 955
AND 968 ON OATA SHEET SPARTON. 40.

DATA SHEET
SPARTON-39

ALIGNMENT PHOCEDURE NOTR- Before commencing alignthat with the solector plaves in fush, the pointer points to the last divioion on the broplcair meal QUENCY AMPLIFIER-Set service merillotor at 345 K.C. and with teat cap adjust the six. condenserts (Clio) for meximum reading on the output meter. OSCILIATOR TRIMMERSat pervice oocillator at 1500 K. C. and connect teat batd to yellow aerisu lead, adjust trimmer $\mathbf{C 7}$ until ait with signal
uned in dial points to 150 . 3. OSCIIIATOR PA service ocillator ot $600 \mathrm{~K} . \mathrm{C}$., and adjust padder (C9) until with ingnal cuned in dial points to 60 . Re-chec
1500 K . C. as ulovo ia
eection 2 . 4. R. F. TRIMMERS-With vice oncillator tuned to 1500 K . C , ser and ct tuned to that frequency, adjuat C6 SHORT WAVE ALIGNMENT 15,000 K. C. and band switch sermed at $15,000 \mathrm{~K}$. C. and band switch rurned
to the red poition, adjust trimmer C8
until with. to 15 on the red band.

CHAS515 LAYOUT MOOEL. 955

CHAS515 LAYOUT $11002 \angle .903$
2. Adjust the ehort wave R. F. trimmer (C5) to point of rreateat oulput. The trimmer thould then be turned a capacity slightyly
This comples the alignment. there is no adjustment on the groen band, thin falls in with the other bands. destroy the selector alignment. if C4 (the antenna trimmer) is readjusted with the sel tuned to the aerial with which it is is unguate. CaUTIION-With the oscillator set at 1500 K . C. two signals can be heard in the rectivet, une at 15000 K . . end the
other at I 4310 K . C Do not mistake the latter signal for the former. In aligaing the receiver at 15000 K .C. the signal of higheat frequency is the correct oneand the receiver is adjusted to it. After the alignment is made check to see if a second
signal theard ai $1 \nmid 310 \mathrm{~K} . \mathrm{C}$. If en ynn will have been using
the correct signal for the alignen

NOTE. All model 968 radios, serial mumber
968501 and npwarde, have now Tolve comtro
circalt. This is show ebove. You will notice
that the volume control han been reacod from the geid circuit of the type la6 detector and $A_{0} V_{8} C_{0}$ trabe and instead hat been placed in the gaid circuit of the type 30 andio tube. This cmables the ralum to be turned coryletely off.

TCp Vien of Socket Commections.

Model 47 K .

CHASSIS-
The model 47 K has a four tube superheterodyne chassis. The circuit uses a two gang selector, a tuned I. F. rejector and two double tuned I. F. transformers. The 6A7 tulie is used as a first detector oscillator or convertor. The 6 F 7 tube is connected in such a way as 10 allow th. use of the pentode section as first I. F. amplifier, and the triode section as second detectar. The 41 cutput and 80 rectifier circuils are of the conventional trpe. A six inch full dynamic speaker is used.

ALIGNMENT DATA-

A service oscillator should always be used when aligring this set.
Step by step procedure-
I. I. F. ALIGNMENT-

Set service oscillator at 456 K.C. and at tach oscillator output lead to grid cap of 6 A 7 tube. Make sure dial on set is not turned to within $100 \mathrm{~K} . \mathrm{C}$. of 912 on the scale. Adjust trimmers C5A and B and C 6 A and B for maximum autput.
2. I. F. REJECTOR-

With oscillator conmected to yellow aerial wire and turned on fairly high, adjust C3 for minimum output.
3. OSCILLATOR TRIMMER-

Set service oscillator at 1500 K .C., and turn set dial to 1500 . Adjust Cl until signal is tuned in.
4. OSCILLATOR PADDER-

Set service osciliator at 600 K . C. and turn set dial to that figure. Adjust padder C4 until signal is tuned in. Re-check at 1500 K.C. as in section 3 above.
5. R. F. TRIMMER-

With service oscillator set at 1500 and set tuned to that frequency, adjust ©2 for maximum output.

I. F. ALIGNMENT-

With the service oscillator set at $315 \mathrm{~K} . C$. and the oscillator lead connected to the 1C6 grid cap, adjust trimmer: C33 for maximum output.
B. C. Band Oscillator Trimmer

1. R. F. ALIGNMENT-

With the band switch in the B. C. position and the service oscillator tuned to 1500 K .C., adjust trimmer C8 until with
set daa turned to 1500 signal is tuned in.
2. B. C. OSCILLATOR PADDERWith service oscillator tuned to $600 \mathrm{~K} . \mathrm{C}$., adjust padder C 10 until with set tuned to 600 signal is tuned in. Re-check at 1500 K.C. as above section one.

3. B. C., R. F. TRIMMERS-

Witn service oscillator set at 1500 K.C., adjust C 6 and C 4 for maximum output.
4. S. W., R. F. (turn l3and switch to red position).

Red band oecillator trimmer.

With service oscillator set at 15,000 K.C. and set tuned to 15 Meg., adjust trimmer C9 until signal is tuned in.
5. S. W., R. F. TRIMMERS-

With service oscillator still set at 15,000 K.C., adjust irimmers C5 and C 7 for maximum output.

There is no adjustment on the intermediate S. W. Band.

MODEL 87. 1936-37

ALIGNMENT INSTRUCTIONS

Due to the arrangement of the R.F. coils in this model, alignment of all R.F. bands is very easily done.

1.F. ALIGNMENT

Set service oscillator at 456 K.C. and connect oscillator output lead to grid cap of 6 A8 tube. Connect output meter in speaker circuit either across voice coil, or in series with a condenser between one 6F6G plate and ground. (Complete instructions are supplied with your output meter to suit that particular instrument). With service oscillator turned on, adjust trimmers C44A and B and C45 A and B for maximum output.

1. B.C. OSCILLATOR TRIMMER

Turn band switch to "white" or B.C. position. Set service oscillator at 1500 K.C. and turn set dial to 1500 . Then, with oscillator output lead attached to aerial terminal, adjust trimmer C8 until signal is luned in.

2. B.C. OSCILLATOR PADDER

Set service oscillator at 600 K.C. and turn set dial to 600 . Adjust padder C11 until signal is tuned in. Recheck at 1500 as in section one.
3. B.C. R.F. TRIMMERS

With set tuned to 1500 and oscillator set at that frequency adjust trimmers C 2 and C 5 for maximum output.

4. "RED" BAND OSCILLATOR TRIMMER

Set service oscillator at $600 \mathrm{~K} . \mathrm{C}$. and turn set dial to 6 on the Red band. Then adjust trimmer C9 until signal is tuned in.

5. "RED" BAND OSCILLATOR PADDER

Set service oscillator at 2000 K.C. Turn set dial to 2 on the Red band. Adjust padder C12 until signal is tuned in. Recheck at 6000 K.C. as in section four.

6. "RED" BAND R.F. TRIMMERS

Set service oscillator at 6000 K.C. and tune set to 6 (ou Red band). Then adjust trimmers C3 and C6 for maximum output.

7. 'BBLUE' BAND OSCILLATOR TRIMMER

Set service oscillatior at 15000 K.C. and turn set disl to 15 on the Blue band. Then adjust trimmer C10 until signal is tuned in.

8. "BLUE" BAND OSCILLATOR PADDER

Set service oscillator at 6000 K.C. and turn set dial to 6 on the Blue band. Adjust padder C13 until signal is tuned in. Recheck at 15000 as in section 7.

9. "BLUE" BAND R.F. TRIMMERS

With service oscillator set at 15000 K.C. and set tuned to that frequency, adjust trimmers C4 and C7 for maximum output.

MODEL 847 - 1936-37

ALIGNMENT DATA-

When adjusting this model it is essential that a service oscillator be used. To get the recuired gain from the set it is necessary that all adjust. ments be made carefully.

1. I. F. STAGES

Set service oscillator at 345 K.C., attach the output lead to the grid cap of the 1 C 6 convertor tube, connect output meter to speaker terminals, adjust the four trimmers marked C 7 for maximum output.
2. I. F. REJECTOR-

With oscillator still set at 345 K.C., attach the output lead to the yellow antenna wire and with oscillator furned on fairly strong adjust C5 for minimum output.

NOTE-Make'sure that the set is not tuned to a harmonic of the I. F. such as 690 K.C. or $\mathbf{1 0 3 5}$, etc.
3. OSCILLATOR TRIMMER-

Set service oscillator at 1500 K . C. and with it still connected to the aerial of the set adjust trimmer C4 until, with the signal tuned in, the dial points to 1500 .
4. OSCILLATOR PADDER-

Set service oscillator at $600 \mathrm{~K} . \mathrm{C}$. Turn set dial to that figure and adjust C6 until signal is tuned
in. Readjust at 1500 as in section 3 (above)
5. R. F. TRIMMER-

Set service oscillator at 1500 K.C. and with set tuned t.o 1500 K.C., adjust trimmer C3 for maximum output.

DATA SHEET

+C Green
-C 4162 Green with Black Tracer -C Pr. Green with Yellow Tracer
-B Black with Red tracer
+A Yellow
-A Black with Yellow tracer

Other early models 305-310-315 320-325-330-350-385-390.

1928-29
Series
800
Models
801, 201A, 802
(60 Cy .)
811-811A
(25 Cycle)
Standard
Compact
Fitted in
Draw to
Make Console
Low Boy and High Boy

1928-29
Model 800
Battery Operated

1928-29
Series B 801B, 811B
Same an
811 except that Push-Pull using (2) 112 A tubes in last atage.

1929

Series
900

901 Tabl
902 Table 903 Chassia (60) Cycle)

911 Table
912 Table
913 Chassis (25 Cycle)

Draw Type
Chassis
Fitted in
Low Boy
High Boy
Phomo-Comb.

RF. $132^{\circ} 3.3 \mathrm{ma}$ Det 32*28 ma $18 F 132^{\circ} 5 \cdot 4 \mathrm{ma}$ 2AF $226^{\circ} 30 \mathrm{ma}$

CIRCUIT DIAGRAM OF 900 SERIES A. C. BALANCED BRIDGE RECEIVERS 1929-30

1929
Series
950
110 Volt
D.C.

Receiver

Models-R-IO2a.b.e. 1931-32

Model R-1O4-1932

Model R-101-A and R-101-B

1931-1932

FRONT OF SET

Model-C.R.IIR-1933-34

Models-RIII-CRIII 1933.34

Model R108.b 1933-34

R-109a-109 b. 1933-34

Model-109-d -1933-34

Models RllO $a \cdot b$ 1933-34

Model- II7 1034-35.

IMPORTANT

III DC. voltagen mesured from socke "rminal to the chassis using a high esistance voltmeter of 1100 ohms per olt readings will deprand uoon the cllayy rance of the meter.

The values were oblained with a batters voltage of 6.0. The reading will vary with any other hattery voltege.

STEWART-WARNER MODEL R-117

(R. 1171 AUTO RADIO)

Cirenit	Plate Voltage	$\begin{aligned} & \text { S.reen } \\ & \text { ©irid } \\ & \text { Vodtage } \end{aligned}$	Cathode Voltare
$\mathbf{R}, \mathbf{F}^{\circ}$.	227	105	4.0
1 sf Det. d (Dac.	207	105	2.6
I.1.	227	105	4.0
2mi I) en.	148		1.8
Output	217	227	0
Ikertifier			227

1. P'ower Supply Protective Resistor

The filter system and the recifier tube are protected against breakdown from the high peak woltages during the warming up period ley means of a special globar resistor connected across the high voltage secondary of the power transformer (No. 21 in the attached diagram). This resistor has the unique property of dropping rapirly in resistance as the voltaye across it rises, so that when the set is first turned on and secondary voltage is high it acis as a load on the power transformer and keeps the voltage below the danger point until the tubes warm up and take their normal current. When the I3 voltage drops to normal the protective Globar resistor increases its resistance to about 500,000 chms. so that it draws no appreciable current while the set is in use.

Because of its unique voltage characteristic:, the Globar resistor cannot be tested with an ordinary ohmmeter, since it will show a resistance of several megohms.

I. F. Alignment

The I. F. trimmers are located on the top of the I. F. transformers which may be reached by removing the front cover. The modulated oscillator should be set to exactly 177.5 K.C. and conmected from the 6-A-7 control grid 10 ground. Adjust the oscillator output to give about half-scale reading of the autput meter. Adjust all three I. F. trimmers to give maximum output reading.

The first I. F. Transformer has a double trimmer consisting of a slosted screw for one trimmer and a hex nut around it for the other.

After the I. F. trimmers have been aligned once, go back and repeat the procedure, since any adjusiment of one will affect the others to some extent.

R. F. Alignment

The gang condenser trimmers ean be reached by removing the back cover. Connect a .00025 mfd mici condenser in series with the output of the test oscillator and the aerial lead of the receiver. Adjust the receiver to approximately $1400 \mathrm{~K} . \mathrm{C}$. and carefully tune the service oscillator to give maximum receiver mutput. Adjust the two trimmers nearest to the shaft end of the gang condenser to give maximum output meter reading. The trimmer on the other condenser section (oscillator scction) should not be touched unless the set does not calibrate properly.

The low-frequency oscillator padding trimmer located on the side of the chassis does not require adjustment in most cases.

Note A: Oscillator grid voltage varies from 0 to 1400 K.C. tus -5.0 at 600 K.C.
Oscillator anode voltage may vary from 118 at 1400 K.C. to 128 volts at 600
Oscill
K. C.
Note 1H: Actual blas voliagi on the grid of the 42 tube $18-15.5$ which must be meas ured from ground to the filter choke terminal. Dua to the high resistanc grid leak, the voltmeter will show only about 1 volt at the grid terminal.

STEWART-WARNER-19

MODEL R-181 CHASSIS (RECEIVER MODELS 1811 to 1819) 1934-35

Model-R-182 1934-35

ManEL R-1日2X BATTERY-OPERATED DOVER AND CALAIS
 -ALIGNNMENT

inatice Date-The following data is placed in this instruc

It the receiver lacks sensitivity and the tubes and their It the recelver lacks sensitivity and the tubes and their
voltages have checked $O . K$. (see voltage chart accompany ing circuit dlagram) proceed to check the alignment as follows
Aliknment-The alignment operation can all.be performed blthout removing the chassie from the cabinet.
(a) Connect an output meter to the speaker terminals or
hetween plate and screen of the output tube.
(b) Connect a 370 K.C. osclllator between the grid cap of the 1C6 Arst detector and ground. Make sure that there is a condenser lapproximateiy .0zmid) in tie orciivator and the blas upsee.
(c) With the volume control full on, align the 1.F. stages beginnlog with the last and worklng forward, keeping the tnput signal low enough ot that the lowest practical output reading is obtained. Particular care must be taken in
alligning the I.F. because these circults are very selective. allgning the i.F. because these circuits are very selectlve. tlon. This alignment should be carried out with the rai:ze swhety fo the "tradzant band" peotuter =ed ohe gang mon-
(d) Transfer the osciliator leads to the antenna and ground and tune it to $1400 \mathrm{K.C}$. . With the range switch in the
and
"brouactas tosition set ine dial on the receicet to $i \hat{u} \hat{0}$ к.c. and adjust C24, C27 and C28 in that order for maxinum output. Keep the input fron the oscillator as low as possible as before
(e) Adjuzt the receiver \leq nd oncillator in tune at 550 KC and align C6 tor maximuni out put, rocking the
(t) It an appreciable change in C6 was necessary operation (d) should be repeated.
(g) Turn the range switch to the short wave position and adjust the oacillator and tuning condenser in tune at 15 miegacycies 120 meters). A farriy strong 20 meter signa the loweat wave length polat.
(h) Adjuat C25 and C26 in that order for maximun output

IE. $=$
37ロK.C.

1.935-36

NOTE-A bak
C24 and C25.

(d) Transfer the oscllator leads to the antenne and ground
and tune it to $1400 \mathrm{K.C}$. . With the range alten in "broadcast position" set. Whe the thel on the recelver to the the K.C. and adjust C7B. C 33 and C 2 in that ordar for mand mum output. Feep the input from the orchlatior as io as posmble as before.
(e) Adfuat the receiver and oscllator in tune at $550 \mathrm{~K} . \mathrm{C}$. and allgn C9 for maxtmum output, rocking the tunlag condenaer hack end forth illoghty -whle aligning.
(t) If an appreciable change in C9 was neconsary operation (d) should be repented.
(B) Hurn the range switek to the short eave poition and adjuat the oncillator and tuning condenser in tune at 15 megacycles (20 meters). A faifly atrong 20 meter signal Wh be recelved at two polnts
(h) Ausuat C78 and C3 in that order for maximum output.
\qquad

Nore-1nsula
C7B and $\mathrm{C78}$

> IF $=37 \mathrm{~K} . \mathrm{C}$ $1935-36$

1. Turn the receiver range switch to the short2. Ste the test oscillator to give a 15000 k.c. signal. If the oscillator cannot reach this fre-
quency, use the second harmonic of $7500 \mathrm{k} . \mathrm{c}$., the quency, use the second harmonic of $7500 \mathrm{k} . \mathrm{c}$., the monic of 3750 k.c., all of which whll glve a 15000
2. To calibrate this point, turn the receiver dial Indicator to 15 (15 megacycles or 15.000 k.c.) on short-wave positinn of dial, and anjuat trimmers
No. 9 (short-wave oscillator shunt trinmer) to give maximum output. Generally, two peaks will be found. Align on the peak secured with the rinmmer screw farthest out. Then adjust trim-
mer No. 6 (short wave R.F. shunt trimmer) mer No. 6 (short Wave R.F. shunt trimmer) for
maximun output. (When adjusting trimmer No 6 two peaks may be found. The correct one is when trimmer is turned parthest in). Then adjust trinimer No. 3 (short wave antenna shunt
trimmer) for maximum output.

$$
\text { wist ot-rone } 15000
$$

1. With a $\begin{aligned} & \text { etrong } 15,000 \text { k.e. gignal from the }\end{aligned}$ oscllator, tune the receiver to 14260 k.c. and check th the imags signal. Which hould be weeger strong as the 15,000 it shows that the trimmer vo. 6 is not properly adjusted. If no signal is reshows that trinmer No. 9 is aligned on wrong requency, and thus both No. 6 and No. 9 nust be readjusted at the proper frequency,

I. $\mathrm{F}=37 \mathrm{~K} . \mathrm{C}$

Manel.R-185

SCHUBERT-CHDPIN

 beETHIVVEN mum output meter reading. Hetune the receiver and check the adjustments.6. Set the test oscillator to approximately 600 trimmer No. 14 (broadcast oscillator series pad) to get maximum output meter deflection. Retune the receiver dial pointer to a peak, and readjust ing the crlunues untll the untīut ت̈ictor radilig cannot be increased. Trimmer No. 14 should also dial. This procedure must be followed or the re-
7. With a 1400 k.c. signal, recheck alignment of trimmers Nos. 1, 4, and 7
ignal between 1300 and 1400 k.c. to callibrate the can use a 1400 kc . signal from your oscitlator nrovided that it is nroperly calibrated, To calirequency aetting of the signal then carefully aduast trimmer No. 7 (broadcast oscillator shunt trimmer) until the signal is tuned in with maxi
munn volume at its correct frequency setting.
8. With the test oscillaor set at $1400 \mathrm{k} . \mathrm{c}$., carefully tune receiver to the signal; adjust trimmer No. 4 (broadcast R.F. trimmer) and trimmer No

VERY IMPORTANT-A 400 -ohm, 1 -watt carbon resistor ONLY must be connected 'in series with the antenna lead to the osclllator. DO NOT OMIT THIS RESISTOR
IUCORRECT.

$\begin{aligned} & 580 \\ & \text { sont } \\ & 0 \text { ont } \end{aligned}$	$\lim _{6 \times 5} 0$	$\begin{gathered} \text { TUBE } \\ \text { LOCATIONS } \\ \text { e-185 } \end{gathered}$

I. F. ALIGNMENT

1. Set the test oscillator to exaetly 456 k.c. Con noet the output leads of oscillator from the 6-A-8 soatrol grid to ground and sot the range awitch (right-hand knob) to the broadcast position (clock wise). Carefully adjust the 1.5 . transformer trim deffection. Repeat the four adjustments since the edjustment of eech trimmer has some effect on the othern

BROADCAST BAND ALIGNMENT

1. Check the position of the dial on the condenser thaft by pushing the rotor platea of the gang con denser to ful mesh. The dial should then read 530 k.c. Please note that the plates should be pushed dial for this check
2. Turn the range switch (right-hand knob) to the maximum clockwise position, which is th brumbient aetting
3. Whenever possible, use a brondcast station signal between 1800 and 1420 k.c. to calibrate the -eceiver dial. If no such station can be heart, you ian use a 1400 k.c. signal from your oscillator, pro vided that it is properly calibrated. To calibrate the set, turn its dial to the exact frequency setting then carefully adjust trimmer No. 5 (broadcast oscillator shunt trimmer) until the signal is tuned in with maximum volume at its correct frequency etting.
4. Connect a ، 400 or 500 ohm, 1 watt carbon resistor in meries with the test oscillator output and the receiver antenna lead. This resistor must re - main connected for all broadeast and short-wave ad justmenta in order to secure proper alignment of the antenna stage. Ground the receiver chassis an connect the oseillator ground lead to the chasais.
5. Set the test oscllator to approximately 1400

Manel.R-18Б
VERDI AND HANDEL
k.e. and carefully tune the receiver to the signal. Adjust trimmer No. 6 (broadcast detector shunt shunt trimmer) for maximum meter reading. Retune the receiver and check the adjustments. Dn not touch trimmer No. 5 since this will change the calibration.
6. Set the test oscillator to approximately 600 k.c. and tune the receiver to the simpa. Adjust trimmer No. 8 (bromedcast oscilator padding trimmer) to get maximum output meter deflection. Retune the re Continue this procedure of adjusting the trimuer and retuning the set until the output meter reading cannot be increased. This procedure must be follow. ed or the receiver will not be properly aligned.
7. With a 1400 k.c. test oscillator signal, check aligument of trimmers No. 6 and 7.

SHORT-WAVE BAND ALIGNMENT

1. Turn the receiver fange switch to the dhort.
2. Sot the test oscillator to give a 20 meter ,0, k.c. signa. If your oscillator cannot reach . requency, use the second harmonic of 7,000 ., the third harmonic of 5,000 k.c., or the fourth $15,000 \mathrm{kc}$ signal (or 20 metres).

3. To calibrate this point, turn the receiver dial oo 15 meters on the inner dial scale and adjust to give maximum output. Generally two peaks will be found. Align on the peak secured with the trimmer screw farthest out. Then adjust trimmer No. 10 (shortwave detector shunt trimmer) in a peak. After this is done, try detuning No. 10 in either direction and retune the recelver diai. If this gives a higher output, continue detuning No. 10 and retuning the dial until the maximum output meter reading is reached. If this procedure results in a direction and retune the dial, etc.

IMPORTANT: Uiee a hizh resibtance voltmeter of 1000 ohmis per volt. NOTE B: The Erid bian for the 6A\&G, 6 K 7, and the anode voltaso of the

CALIBRATION AND ALIGNMENT
for Models R.145 \& R-146
ALIGNING THE I. F. AMPLIFIER: Turn the volume control th maximum volume position and akeep the entire alignment procedure. Turn the range awitch to the broadcast poaition (fully clockwise).
Connect the lest oneillator output leade to the 6A8 control grid and chassis. with a .1 mfd . condenser in series with the oscillator outpul. Set the oncillator to exactly 456 KC . Sel on the oscillator signal.
Adjust the four I.F. trimmers, Nos. 1, 2, 3 and 4, for maximum output meter defection, then repeal the trimmer adjustment

BROADCAST BAND CALIBRATION AND ALIGNMENT: With the gang condenser in full metho the dial pointer thould scale.

Tum the pange swith os the -utrsme glockwise patition and connect the test oscillator output to the A and G terminals of the receiver with 400 ohm carbon
Adjuat the test oscillator to exactly 1500 KC . and turn the receiver dial pointer to 1500 KC . on the tuning dial. To
brate the dial, adjuat trimmer No. 5 for maximum output. Carefully tune the receiver to the signal and adjust trimmers Nos. 6 and 7 for maximum output. Adjust the test oscillator to 600 KC . and tune the receiver to the signal. Adjust trimmer No. 8 for maximum output. Then try to increase the output meter reading by detuning gocs down. detune the inmmer in the opposite direction. Continue detuning the trimmer and retuning the receiver dial until maximum output meter defection is secured. "This operation is commonly known as rocking, and when perforned as
described will give maximum selectivity and sensitivity even though the dial may be slightly off calibration at 600 KC . Re; 45 Models) ADJUSTMENT: (included onily in chana WAVE-TRAP ADJUSTMENT: (included only in chassis
tamped S^{\prime}) The wave-trap adjusting trimmer, No. 13, is located on the back of the chanis. Lave the teat oscillator
 sistor and set the oscillator at 456 KC . Then adjust the wave-
Irap trimmer No. 13 for minimum output. If some particular trap trimmer No. irequency near 456 KCC . causes code interference, it may be desirable to adjust the wave-trap on the actual frequency of the interfering ptation,
Check the adjustment of trimmers 5,6 , and 7 at 1500 KC .
BAND NO. 2 CALIBRATION AND ALIGNMENT: Turn the range switch to the center position
Adjust the tert oacillator to exactly 5.0 MC . and turn the Adjuat the tert oscillator to exactly 5.0 MC . and turn ther
receiver dial pointer to exactly 5.0 MC . on the tuning dial. To calibrate the dial, adjuat trimmer No. 9 for maximum the trimmer screw fartheat out.
Carefully tune the receiver to the signal and adjust trimmer No. 10 for maximum output. Then try to increase the nutput by detuning No. 10 slightly and retuning the receiver dial. Continue detuning No. 10 and retuning the dial until the out-
put meter deflection is a maximum.

BAND NO. 3 CALIBRATION AND ALIGNMENT: Turn the range awitch to the extrame counter-clockwise poaition. Be oure the D and C ter
connected together.

Set the test oscillator to
pointer to exactly 16 MC . on the tuning dial.
To calibrate the dial adiuat trimmer No. II for maximum output. Check to see that it has been adjuated to the proper peak ty tuning the receiver to approximately 15.1 MC . A
repeat signal thould be heard at this point. If none is present, even with greatly increased oscillator output, retune the re ceiver to 16 MC . and adjust trimmer No. If to the prope peak with the trimmer acrew farther out.

Carefully tune the receiver to the signal and adjuat trimmer No. I2 to a peak. Then try to increase the output by detun
ing the trimmer slighty and retuning the dial until a maximum ing the trimmer sighty and retuning Check the adjustment by tuning the receiver to the image at about 15.1 MC. The image at 15.1 MC . dial setting is equal to or atronger than the 16 MC . igne !, trimmar Ne. 12 is $n=t$,et tathe proper peak. urn the trimmer in a turn or so, then readjuat as above

Alignment Data Model P-148 Schematic Diagram on Data Sheet-35

 Receiver Model-1485

 Receiver Model-1485
 BAND NO. 2 Alignment

ALIGNMENT OF THE I.F. AMPLIFIER 1. (a) Turn the volume control to maximum volume posi
tion and keep it in thds position throughout the enture align
ment procedure. (b) Connect the test oscillatır output leads to the 6A8C control grid and the thassis wizh a il or . .je mid. edndenser In series with the oveillator lead to the Gitsi grid. (c) Set the test osdillator to exactly - $\mathbf{5} 56 \mathrm{KC}$. Adjust th
outpul or the test oscillator to give about half scale deflec tion on the output neter. tion and set the tunigg dial to any point where there is n tuning effect on the mscillator signal.
(e) Adjust the four 1.F. transformer trimmers (orimmert No. 1, 2, 3. and 4) for maximum output, neter deffection. ment of cach trimmer has sommeffect on the other3.

adjustment of wave trap

2. (a) Leave the teg oscillater at 45 g KC . but cornect the oscillator output to t'ie A and (i erminals of the recelver ascillator output and the A terminal. (b) Adjust irinmer No. 5 for minimum output. Increase the oscilator output as necessary th obtain a clearis: define
point of minimum output. If sone particular station with frequency slightly difrerent than $15 f^{j} \mathrm{KC}$. causes corle interference, it may be advisable to adjust trimmer No. J on the

BAND NO. 1 (BROADCAST) CALIBRAIION

3. (a) Chuck the position of the dial pointer on xts shaft by turning the tuning innob until the rotor plates of the gang
condenser are in full mesh. The low-moving dial pointer should then colncide with the low irequancy end of the dial scale. $1 f$ it does nut hold the dial gear and turn the pointer to the correct position.
(b) Turn the range switch control to the extrense right (b) Turn the range switci) control to the extreme right
position. (Clockwfes). (c) Connect a 400 or 500 ohm carboa resistor in aeries minal. (Note: This resistor should remain connectell for all subsequent adjustments.
(d) Ground the receiver
(e) Adjust the test oscillator to exactly 1500 KC
(f) Tune in the 1500 KC . oscillator signal or a station above 1300 KC . on the dial and deternine whether the dial calibration is correct at the high frequency end of the dial. If it is not correct, adjust trimmer No. ${ }^{\ddagger}$ to give proper
calibration. Do not adjust this trimmer if the dial calibrathon is corrert at the ligh frequency end of the dial.

BAND NO. 1 (BROADCAST) ALIGNMENT
4. (a) Witt: the test oscilator set at $1: 500 \mathrm{KC}$. tune the
(b) Adjust trimmers No. 7 and 8 for maximum output. D not touch trimmer No. 6 as this will change the calibration. (c) Adjust the test oscillator to exactly 600 KC . and tune out put. Then try to in rease the output by mer and ret ining the receiver dial. If this reduces the trim put, detune the trimmer on the opposite direction. Continue detuning the trimmer and retuning the dial untll a maximum output meter deflection is secured. This operation is com monly known as rocking. The object of this adjustmen cont unier adjusment and tunin condenser position which g^{f} id naximum output. 'rhis
adjustnent should not be ct adjustment should not be ct pu siardless of whether the
dial reads exactly 600 KC . of jutly of 000 KC . 0 maximum oupput. (d) Chec
1500 KC .

band no. 2 Calibration

5. (a) Turn the range switch to the center position

 (b) Adjust the test oscillator to exactly 5.0 MC . on the receiner dial to deternine whether the receiver dial calibration is correct at 5 MC . If it is, do not adjust trimmer No. 10. If the calibration is incorrect, set the dial pointer at 5 MC. on the dial, and adjust trimmer. No. 10 until the oscil the propur one is that with the trimmer screw farthest out.6. (a) With the test oscillator set at $\mathrm{n}_{1} 0 \mathrm{MC}$., tune the re
(b) Adjust trimmer No. 11 and 12 for maximum output After this is done try to increase the output meter reading by detuning No. 12 slightly and retuning the receiver dial. If the output goes down, detune the trimmer in the opposite antil maximum output meter deflection is secured. Then readjust No. 11.

BAND NO. 3 CALIBRATION

7. (a) Turn the range switch to the extreme left (counter (b) Be sure that the 1$)$ and G terminals on the antenna (c) Adjust the test oscillator to exa
(c) Adjust the test oscillator to exactiy 16 megacycles. on the receiver dial to deternune whether the receiver dial calibration is correct at 16 MC . If it is, do not adjust trimmer No. 13. If the calibration is incorrect, set the receiver dial pointer exactly at 16 MC and adjust trimmer No. 13 until the oscillator signal comes in at this point.
proper peak by tuning the receiver to approximately 15.1 MiC. If a repeat signal is not heard at this point, even with greaty increased osciliator ollput, retulne the receiver to 56.0 MC. and adjust trimmer No. 13 to the proper peak with
the trimmer screw farther out.

BAND NO. 3 ALIGNMENT

8. (a) With the test oscillator set at 16 MC . tune the re
(b) Adjust trimmer No. 14 and 15 for maximum output After this is done, try to increase the output meter deflection by detuning No. 15 slightily and retuning the receiver dial. If this causes the output to drap, detune the trimimer in the
apposite direction. Continue detuning No. 15 and retunirg the set until the output is at a maxinam. Then readjust No. 14 . Check the adjustment of No. 15 by tuning the receiver the image at 15.1 MC . and noting if the image is much weaker than the 16 MC . signal. If the signal at 15.1 MC
dal setting is equal to or stranger thar the 16 MC signal Ial setting is equal to or stranger thar the 16 MC. signal, trimmer in a turn or so, then readjust is tn 8 (b).
CALIBRATION AND
ALIGNMMENT

BROADCAST BAND CALIBRATION AND ALIGNMENT:
With the gang condensmi in full meab, the dial pointen should acale. Leave the range awitch in the extreme clockwe position, and leave the teas oscillator connected to the A and G Adjus the tent oncillistor to exisctly 1500 KC . and turn the receiver dial pointer to 1500 KC . on the tuning dial. To calibrate the dial. adjust simmer No. 6 for maximum ou put. Nos. 7 and 8 for maximum output.
Adjust the teas ocillator to 600 KT. and tune the receiver to the eignal. Adjust trimmer No. 9 for maximum output.
Then try to increase the output meter mading by cletuning No. 9 dightly and retuning the receiver dial. If the output
inue detuning the trimmer and retuning the receiver dial until maximum output meter deflection io secured. Thie operation described will give maximum selectivity and seneitivity even BAND NO. 2 CALIBRATION AND ALIGNMENT: Turn the Adjuet the teat oscillator to exactly 5.0 KMC . and turn th receiver dial pointer to exactly 5.0 MC . on the iuning dial.
To calibratr. the dial, adiuat trimmer No. 10 for maxim output. If two peake are found, the proper one ie that with Carefuly tune the receiver to the oignal and adjuat trimmera output by detuning No. 12 olightly and retuning the receiver
dial. Consinue detuning No. 12 and getunug the dial until the outpnt meter deflection is maximum. Then readjuat

BAND NO. 3 CALIBRATION AND ALIGMMENT: Turn the range witch to the extreme counter-clockwise pooition. Be ure the D and G terminala on the antenna terminal strip are
Set the teat oacillator to 10 MC . and turn the receiver dial ointer to exactly, 16 MC. on the tuning dial. outpus. Chects to aee that it has been adjueted to the proper peak by tuning the receiver to approximately 15.1 MC. A reeven with greatly be heard at this point. If none is present,

criver to 16 MC . and adjuat trimmer No
Carefully tune the receiver to the aignal and adjust trimmera Non. 14 and 15 to a peak. Then iry to increase the output by detuning No. 15 slightly and retuning the dial until a maximum ostput meter defection is secured. Then readjust No. 14 for
maximum output. Check the adjuatment by tuning the remaximum output. Check the adjuatment by tuning the re-
ceiver to the image at about 15.1 MC. The image thould be much weaker than the 16 MC . oignal. If the signal at 15.1 MC . dial eetting is equal to or stronger than the 16 MC . aignal, trim. mer No. 15 is not set to the proper peak. Turn the trimmer
in a turn or to, then readjuat an above.

1936-37

ALIGNING THE I.F. CIRCUIT

1. Connect the output meter in serles with a 25 MFD
(approx.) condenser from the $1 F 4$ plate to ground on the chassis.
2. Turn the volume control to marimum and leave it at this setting througnout the whole alignment procedure 3. Adjust the test oscillator to exactly 456 K.C. and
connect dits output between the 1 C 6 control grid cap and the
 there is not already one in the oscillator itself.
3. Adjust the four I.F. trimmer condenser on top of the
cans beginning with the socond stage which feeds the 185 for maximum output as indicated on the output meter 5. Repeat section 4 as the adjustment of any one

456 KC. WAVE TRAP ADJUSTMENT l. Disconnect the antenna lead from ground and connect it to the output of the test osclllator through a dummy
antenna. A 200 or 250 MMFD condenser will serve this
purpose.
2. Without changling the test osclllator from the frequency used in aligning the i.F. circultas, adjust the wave
trap trimmer on the front of the chassls base for minimum output. Increase the test oscllator output an, a milninium 1s approached so that the trimmer can be accurately ad-
fusted. It is very sharp. NOTE: If code interference is justed. It is very sharp. NOTE: If code Interference is
troublesome on a frequency in the neighborhood of $456 \mathrm{~K} . \mathrm{C}$.. adjust the wave trap trimmer until it 1 s a minimum with a signal from the test oscillator of the same frequency as
the interfering code signal.

R.193

Battery Operated

ALL VALTAGES MEASURED FROM TUEE SOCKET TO

R.F. ALIGNMENT

1. Sot the test oscillator at 1400 K.C. and apply it to
2. Turn the pointer on the acaile to 1400 K.C. and ad just the trimmers on the gang for maximum output. Adjus
the oscillator trimmer firgt, the one nearest the front.

BATTERY DRAIN

1. The normal " A " battery draln is 360 milliamperes. 2. The normal "B" battery draln is 12 milliamperes

15

456 kc.

STEWART-WARNER-38

ris. 006 mfo

$$
\begin{aligned}
& \underset{\substack{\text { Naw } \\
\text { chasos. } \\
\hline}}{ } \\
& \text { No-4 }
\end{aligned}
$$

and Alignient: Turn the sunter-clockwise position. Be ic. and turn the recelver dial he cuntag dial.
t trimmer H for maximum , approximated to the proper zood occillator output, retune unt trimmer H
earther OUT.

Battery Operated

Service Data

It the reeelvar laoke senalitwly ond the tubee and thair Ciluakes bave checked 0.K. (soe voluage chart accompanying
diagram) proceed to check the aligument an follows. Alesime Equlpment-For proper alliknment, an output meter and an a accinately cellibraled orcillator with a tuxing range from 370 K.C. to 15 м.c. are required
Allinnernt-The alignment operation can all be pertormed
(a) Connect an output meter across the voice coll terminas or the sbesker.

Tube	Circuit location	FIL.	PLate	Screen	B1as
19	OUTPUT	1.92	155	\bigcirc	-2*
19	DRIVER	$1 \cdot 92$	125		-4*
185	2n_? DRT.	102	20		-3\$
IA4	I.F 2 ND .	192	120	50	-3*
IA4	I.F. 15T.	1.92	130	50	-3 \#
IC6	1ST. DET. OSC.	1.92	$\begin{aligned} & 1300 \\ & \text { oscos } \end{aligned}$	50	-37

* Derived from filament voltage drop.

OBTAIHEO FROH BIMS CELLE GAHHOT
OOTAINED FROM BIAS CELLS THROLGH AVC.CIRCUI
1936-37
 The 1-C. 8 frst detector and around. Make sure that there
is a condenser (approximatily 02 mpo.) tin the cocillator
 the biat upseqt
(c) With the volume control futl on, allign the I.F. stagea beginning with the iast and working forward, koeping the
 aligning the L.F. because thene circutce are vory belective. This allsnment should be carried out with the range owitch in the "broedcast bend" poaition and the gang rondenser set about 1400 K.C.
d) Transter the oacillator leads to the antenna and ground and tune ti to $1400 \mathrm{K.C}$. With the ranke awtict in tho ton S.C. Bnd ad lunt C33, ©6 ant C2 in that order for maximum outpul. Keep the laput from the oucliletor an
(a)
(e) Adjust the recelver and oncililator in tune at and aligit cs for mastmum uutput, rocing the tualige com
(a) it an appreciable change in C8 was necosary operation
(f) It an appreciable chaid be repeated.
(8) Turn the range switch to the short wave pmalition and
 will be recrived al two pointa on the dial; net the dial at the lowest wave length poin
(h) Adjuat C34 and C3 in that order for masimum output.

NOTE:-A bakelite screw driver muat be used for adjunt Ing C34 and C33.
L.F

370Kc.

ALIGNING THE I. F. CIRCUIT

(1) Connect an output meter across the voice coll
(2) Turn the volume control to maximum and leave It at this setting throughout the whole alignment pro
(3) Adjuat the teast oscillator to exactly 456 KC and connect iti output between the 1 C 7 G control grid cap and
the chasis. Use an 05 mid. condenser in seriem with the the chassis. Use an . 05 mid. condenger in serien with the
(4) Adjust the four I.F. trimmer condensers on toD of the cans, beginning with the second stage which feeds
the $1 H 6 \mathrm{G}$ for meximum output as indicated on the output meter.
(6) Papaat section 4 af the adjustment of any one
trimmer will have some effect on the remaning ones

DIAL CALIBRATION

follo the raceiver should requife calibration, proceed as
(1) Disconnect the entenns lead from the ground and connect it to the output of the teat oscillator through a dummy antenna. A 200 or 250 mmid. concenser will (2) Turn the gang condenser to full mesh and check to see that the pointer unes "p with the horizontal lin polinter. (3) Adjust the teat oscillator to 1400 KC and connec it to the set through the dummy antenna.
(4) Turn the knob till the pointer indicales 1400 KC on ths soale and adjust the trimmers on the gang for
maximum output using the weakest input signal that will maximum output using the weakest input signai
give a satisfactory reading on the output meter.

R. F. ALIGNMENT

(1) Set the test oscillator at 1720 KC and apply it the net as sbove.
(2) With the gang condenser set in the minimum for maximum output using the weakest input signal that will give a satisfactory reading on the output meter.
(3) Adjust the recelver and tent oucillator in tune at 1400 KC and adjust trimmer on front section of gang for oscillator as low as possible an before. Do not chent adjustment of trimmer on back bection, of geng. (4) Adjust the recelvit and teat oncillator in tune the tuning condenser back and forth alightly while aligning. (5) If an appreciable change in $C-14$ was nocessar
operation 3 should be repeated.

Battiay Drain 12 MA.

\because-F.FREQUENCY=
$456 \mathrm{~K} \cdot \mathrm{C}$

All Voltages measuree fnom tube Sockets Te Chassis witm Matin or at least reooluns PEPVOLTS EXCEPT AS OTMERWISE NETED

[^3]
Model 846 1020-30

Models 205-26.1032-33 《FI75 KE.

DATA SHEET \qquad STROMBEPG-CARLSON 7

Model 27 1932-33 1.F. 175. Kc.

Model 30 1932.33 IF.I75. kc.

Models 48-49-50-5) (1933-37) ।. ITS.K.

Resistors R1, R3, R6, R9, R11, R20, 0.1 -
 sw R31. 1. meg. ; R10, 2 meg. : R13, R14, R24. R24 2.000 ohmis; R15, 1,200 ohms : R18, 10.000 6,500 ohms; R25, 150 ohms; R26, 4.400 ohms: $\mathrm{R} 27,175$ ohms: R28, 125 ohms: $\mathrm{R} 24,1.0$ meg.
Potentiometer: R30, 3 megs., variable: R32. 0.25 -meg. potentiometer ; R33, 400 ohm potentiometer.

Condensers C1, C2, . $04 \cdot \mathrm{mf}$. ; C3, $0.6-\mathrm{mf}$.: C4, C7. C8, C29, 0.3-mf.: C5, C10, C12, C13, $\mathrm{C} 15, \mathrm{C} 18, \mathrm{C} 23, \mathrm{C} 27$, . $04-\mathrm{mf}$. ; C6. . $004-\mathrm{mf}$.: .001-mf.; C16, C-17, . $05-\mathrm{mf} .: \mathrm{C} 19, \mathrm{C} 26,1 \mathrm{mf}$. C20, $0.2-\mathrm{mf}$. $\mathrm{C} 21, \mathrm{C} 30, \mathrm{C} 31, \mathrm{C} 35,4 \mathrm{mf}$:

 C23, .04-mf.; CO, series padder; C10, I,F. 10,000 ohms: $K 4,16,000$ ohms; Rt. 300
 mp.; C13, C14, C15, C16, C33, 1.F. timmers; whms ; 1: 47 ohws: $1114,4,600$ ohms: K15.
 Ci37, $8 \mathrm{mf} . ; \mathrm{C} 20, \mathrm{C} 1, \mathrm{C} 41, \mathrm{C} 43,100 \mathrm{mmf}$;

 thermostatic condenser in remote selector ohms: Ei35. Gu0 ohms. oscillator circuit ; (44. . $002-\mathrm{mf}$.

DATR SHEFT

Terminal Layout for Voltage Measurement Chart.
Terminals of Sackets
Above.
Model. 60. 1934-35 IF. 370 K.

\begin{tabular}{|c|c|c|c|c|}
\hline Tube \& 2 \& 3 \& 4 \& 5 \\
\hline 6D6 \& \[
\begin{gathered}
\mathrm{P} \\
145
\end{gathered}
\] \& \[
\underset{85}{\mathbf{S}}
\] \& Sup.
5.5 \& \[
\begin{gathered}
K \\
5.5
\end{gathered}
\] \\
\hline 6A7 \& \[
\overline{\operatorname{Mix} . \mathrm{P}_{145}}
\] \& \[
\underset{85}{S}
\] \& \[
\begin{aligned}
\& \text { Osc. P. } \\
\& 175
\end{aligned}
\] \& \[
\begin{aligned}
\& \overline{\text { Ose. G }} \\
\& -20 .
\end{aligned}
\] \\
\hline 6B7 \& \(\stackrel{\mathrm{P}}{145}\) \& \(\underset{85}{\text { S }}\) \& \[
\begin{gathered}
\hline \mathrm{D} \\
0
\end{gathered}
\] \& \\
\hline 37 \& \(\underset{140}{ }\) \& Gr
0 \& \begin{tabular}{l}
K \\
8 \\
\hline
\end{tabular} \& H
0

5

\hline 41's \& $$
\underset{250}{\mathrm{P}}
$$ \& \[

\underset{250}{S}

\] \& \[

$$
\begin{gathered}
\overline{\mathrm{G}} \\
0
\end{gathered}
$$

\] \& \[

$$
\begin{aligned}
& \mathrm{K} \\
& 16
\end{aligned}
$$
\]

\hline \%oin wo \& \& N: \& \& \%ex

\hline
\end{tabular}

looking at inside bottom

Model. 64.
1933-34 /F. 265.kc.

DATA SHEET

The Intermediate Amplifier circuits are aligned on oscillographs to obtain the proper shape of resonance curves having "steep" sides to get proper selectivity and fidelity. "Peak" methods of alignnent (with oscillazor and meter) do not give the desired curve, as it may be broad and unsymmetrical although a high peak is indicated. The adjustment of these circuits is very stable sis shown by field experience and Proving Division tests. Therefore, as these adjustments cannot be duplicated exactly vithout the oscillagraph equipment, it is recommended that the L. F. circuits never be adjusted by a service man.

Model 33a. 1934-35 Note Madel 33 (1933-34) practically same.

STROMBERE-CARLSON 13

MODEL 58 ALIGNMENT IAS
DATA SHEET:-21

Lerminal Layout for Voltage Measurement Chart and Location of

	1	2	3	4	5	6
6D6 AMP		$+53$	$+105$	$+5.8$	+ 5.8	
6 A 7 M OSC.		$+225$	$+58$	$+145$	-4.4	+2.8
6 D 6 TMP.		$+235$	$+105$	$+3.1$	$+3.1$	
$\begin{aligned} & 75 \text { DEM. } \\ & \text { AUDV.C. } \end{aligned}$		+61	0	0	$+1.2$	
42 OUTPUT		+225	$+235$	0	+13.5	
80 RECT.	$+355$	335	335	+355	-	-

[^4]

VaVNVO NI OB\&NIYd

MODELS 58-61.62.63

For aligaing the R.F. and I.F. circuits, it will be neceasary to have two artificial antennas, one for the standard broadcast band only, the other for the short-wave bands. A 250 sienal capacitor in series with the high-side terminal of the broal sor use on the standard rave bend tan, 1 sultable antenna for the shorttor. Better cable is used to the signal generator to the recelter iow output terminals of

ALIGNIRG I.F. CIRCUITS: There are four adjustronts (at 465 K.C.) for the I.F. alignment. Always align alther R.F. or I.F. circuits (on receivers equipped wish ridelity circuits) with normal fidelity), unless the alimment high fidelity setting which requires cethode mer equipent

In series with the "A" post of the signal generator connect capacitor of 0.001 mfl . capacity, which $w 111$ pravant the volt-
 ontrol grid of Crm n'm

Adjunt aliening ca ocondary and primery capacitors which are connected across the ocondary and primary coils of second I.F. transformer in the

Now remove wire lead (which connects from the .001 fixed
itor and the No, $6 K 7$, I. F. tube's grid) from the grid of the No. 6K7. lead to the control grid cap of the No and connect this wire in model 58). Now adjust the allening bap Modulator tube (6A7 the primary and secondary coll of the first ito connected across assembly; adjusting the secondary allening capector fir the primary alifning eapacitor sacondi.

ALIGNING R.F. CIRCUITS: on receiver chassis equipped with a ceivers normal fidelity (marimer control a ume. ume
Sot modulator switch of signal generator to mon" position. Conminal of generator inaide of shielded land from high-side terminal of generator. The Comect metal shield to low-side ter1s comected to the particuler end of wire inside shielded lead other end of shield being connected to chantenna being used, the

CAUTION: As each circuit is aliged in the atteruator on the ignel generetor must be adjusted. Also, in making these R.F. adjustmente, always adjust aligning capacitor of cireuit being diraotion marimum capacity and then alowly adjust capacitor in peciely in mindin capacity. On of the alignments, estwo positions of ator circuits, it will be noted thet there are al pape ting her the aime minimum capacity set-

Poceo in the foll ois
Proceed in the following manner, except with Nos. 58 and 61 receivers where "C" band is aligned first.

M" BAND ALIGRENT: Set receiver and generator to high frequency setting called for in the table, for this bend, of recelver. Adjust shunt aligning capacitors of oscillator, R. F. Amplitier and Antenna Transformers. Set receiver and signal generntor to ow frequency setting called for in table, and alien only the scillator hy motns of oscillator series bligelng capacitor. Again check adjustment of ahuat aligning capacitors of Oacillaor, R.F. Amplifier, and Antenna Trensformers.
"B" BAND ALIGNMENT: Align Oscillator, R.F. Amplifier and Antmar Transformers in the same mannor as for "A" band, using frequencies listed in table under "B" band.
"C" BAND ALIGMENT: Proceed in same manner as for "A" and "B" bande.
"D" BAND ALIGMENT: Proceed in the same manner as given for the ALIGNMENT FREQUENCIES Nos. 58 and 61 Receivers

Frequency for Aligning Oscillator Series Aligning Capacitor 600 Kilocycles No Aligner No Aligner

Frequicicy for filigning Osicllator Series Aligning Capacitor 600 Kilocycles 1800 Kilocycles No Aligner

Frequency for Align ing Osicllator Series Aligning Capacitor 600 Kilocycles
500 Kilocycles
4 Megacreles
No Aligner

VOLTAGES AND TRIMMLR LOCATIONS FOR MODEL. 115

R.F.ALIGNMENT.

Align in the following order.

1. Uscillator's "C" Band Shunt Aligner at 17 Megacycles (Capacitor C-7).
2. R. F. Interstage "C" Band Shunt Aligner at 17 Megacycles (Capacitor C-6).
3. Antenna "C "Band Shunt Aligner at 17 Megacycles (Capacitor C-3).
4. Oscillator's "B" Band Shunt Aligner at 3.4 Megacycles (Capacitor $\mathrm{C}-8$).
5. R. F. Interstage "B" Band Stunt Aligner at 3.4 Megacycles (Capacitor $\dot{C}-5$).
6. Antenna " B " Band Shunt Alygner at 3.4 Megacycles (Capacitor C -2).
7. Oscillator's "A" Band Shunt Aligner at 1.4 Megacycles (Capacitor C-9).
8. Antenna "A" Band Shunt Aligner at 1.4 Megacycles (Capacitor C-1)
9. Antenna "A" Band Shunt Aligner at 1.4 Megacycles (Capacitor C-1).
10. Oscillator's "A" Band Series Aligner at 0.6 Megacycles (Capacitor (23)).
11. Oscillator's "A" Band Shunt Aligner at 1.4 Megacycles (Capacitor C-9).
12. R. F. Interstage "A" Band Shunt Aligner at 1.4 Megacycles (Capacitor C-4).
13. Antenna " A " Band Shunt Aligner at 1.4 Megacycles (Capacitor C-1).

TUEE LANOUT
MOOELS.130-132

L. ALlGNMENT Allgn in the following order.

1. Secondary of 2nd I. F. Transîormer (Capacitor C-13).
2. Primary of 2nd I. F. Transformer (Capacitor C-12).
3. Sccondary of 1st I. F. Transformer (Capacitor C-11).
4. Primary of 1st I. F. Transformer (Capacitor C-10).

5. Oscillator's "C" Band Shunt Aligner at 17 Megacycles (Capacitor C-4).
6. Antenna "C" Band Shunt Aligner at 17 Megacycles (Capacitor C-1).
7. Oscillator's "B" Band Shunt Aligner at 3.4 Megacycles (Capacitor C-5).
8. Antenna "B" Band Shunt Aligner at 3.4 Megacycles (Capacitor C-2).
9. Oscillator's "A" Band Shunt Aligner at 1400 Kilocycles (Capacitor C-6) .
10. Antenna "A" Band Shunt Aligner at 1400 Kilocycles (Capacitor C-3).
11. Oscillator's "A" Band Series Aligner at 600 Kilocycles (Capacitor (36).
12. Oscillator's "A" Band Shunt Aligner at 1400 Kilocycles (Capacitor C-6).
13. Antenna "A" Band Shunt Aligner'ạt 1400 Kilocycles (Capacitor C-3).

SOCKET VOLTAGES AND
TRIMMER $\angle O C A T I O N S$ for
MODEL- 120 .
SOCKET VOLTAGES AND
TRIMMER $\angle O C A T I O N S$ for
MOOEL- 120 .
SOCKET VOLTAGES AND
TRIMMER $\angle O C A T I O N S$ for
MODEL-IRO.

STROMBERG-CARLSON-24

Alignment information, etc. for Models. 140-142. See schematic an

Gelon - I.F.ALIGNMENT
THE HOLIOWIV OROER

- Secondary of 3rd I, F, Transformer (Capacitor (:-15),
- Secondury of 2nde 1. F. Transformer (Capacitor (C)-14),
- Primary of 2nd I. F. Transformer (Capacilor (:-12),

Secondary of 1st 1, F. Transformer (Capacitor ($:-11$)
Primary of 1st I. F. Transformer (Capacitor ©-10).

ALIGN RAF. TRIANHERS INTHE FOLLOWING ORDER.
Oscallator's "C"' Band Shunt Aligner at 17 Megarycles (Capacitor C-9) R. F. Interstage "C" Eand Shunt Aligner at 17 Mrgaryeles (Capacitor C-6) Antenna "C" Band Shunt Aligner at 17 Megacycles (Cavaritor C-3) "Iscillator's "B" Band Shunt Aligner at 3.4 Meßarycles (Capaciter ($:-8$). A.F.Interstage "B" Kand Shunt Aligner at 3.4 Megacyeles (Capacitor (- - 5) Oscillator's "A" Band Shunt Aligner at Megacycle's (C.pacitor C-2) R. F. Interstage "A" Pand Shunt Aligner at 1.4 Meracyeles (Capacitor C-4). Antonna "A" Band Shunt Aligner at 1.4 Megacyeles (Capacitor (-1). (Sscillator's "A" Band Series Aligner at 0.6 Mepacycles (Caparitor (30)), Oscillator's "A" Band Shunt Aligner at 1.4 Megacyeles (faparitor C. 7) Antenna "a" Band Shunt Aligner at 1.f Megac Meles (Cucyes (Caparitor C-4)

Intermediate Frequency Amplifier Idjustmeats
Because of the neressity of obtaining the proper shape of resonance curve of these stages in a high fldel ty receiver, it is recummended that unluss it is albsolutely essential, these i, F. adjustments be untouched In the factory these adjustnents are made using a visual system which allows toe operator to see the exact shape of case where this cansot be doae, the foilowing procedure should be followed at the factory. However, in the Operate the range switca of the receiver to the "A" range be followed.
frequency position, and operate the "Tune-Fidelity" control the position. Set the tuning dial at its extreme low ard fidenty position as indicated oy the fldelity indicator located on the front panel of the receit for the sland teinpt to align the I. F. carcuits of this receiver with the "Tone-Fidelity" control set at any position oticer than in the exact order as follows: circuits may then Je checked for alignmest by adjusting the aligning capacitors

1. Secondary of 3rd I. F. Trasrs. (Capacstor C-18).
2. Primary of 3rd I. F. Trans. (Cupacitor C-17).
3. Primary of :nd I. F. Trans. (Capacitor C-A5),
4. Secondary of 1st I. F Trans. (Capacitor $\mathrm{C}-14$).

Alignment of Long-Wave-Weather Range (Also Referred to as "X" Band) Circuit

1. Oscillator's "X" Band Shune AJgning Capacitor at 350 Kilocycles (Capacitor C-12). (C-s av Mbocl. ReO.
2. R. F. Interstage "XX" Band Shunt Alipning Capacitor at 350 Kilocycles "Capacitor C-8), C - 9 ors Moacz. $2 e 0$.
 has been completed rupeat uperations 1, 2, and 3 again and In the exact order given. (Then operatio
Alignment of Standard Broadcast Range (Alsp Referred to as "A" Band) Circuits
3. Oscillator's "A" Band Shunt Aligning Capacitor at 1500 Kilocycles (Capacitor C-1i1). C-A ownoced 180
4. R.F. Interstage "A" Band Shurt Aligning Caparitor at 1500 Kilocycles (Capacitor C-7\%. C-8 ow Woaer. 180
5. Antenna "A" Band Shunt Aligning Capacitor at 1500 Kilocycles (Capacitor C-3).
"A"Band, R. F. Bi-resonator Shunt Aligning Capacitor at 1500 Kilacyctes (Capacitor C-19). C:20 ov/Hact. 100 Whem operation No. 5 has been completed repeat operations $1,2,3$, and 4 again and in the exact order 200)

Aligmment of Amateur, Police, and Aircraft Range (Also Referred to as "B" Band) Circuits
6. Oscillator's "B" Bund Shunt Aligning Capacitor at 5 Megacycles (Capacitor C-10) C-/1 ow moacs 180
7. R. F. Interstage "B" Band Shunt Aligning Capacitor at 5 Megacycles (Capacitor C-6) C-Tew Hoacc. 180
8. Antepna "B" Band Shunt Afigring Capacitor at 5 Megacycles (Capacitor C-2), When operation No. 4 has been compieted repeat operations 1, 2 , and 3 again and in the exact order given.

Alignment of Short-Wave-Foreign Pange (Alvo Referred to as "C" Band) Circuits
9. Oscillator's "C" Band Shunt Aligning Capacitor at, 16 Megacycles (Capacitor C-9). C-10 or mbocl. 200
10. R. F. Interstage "C" Band Shunt Aligning Capacitor at 16 Megacycles (Capacitor C-5). C-6 av Aback. 100

Algnmenty of Ultra Short-Wave Range (Also Referred to as "D" Band) Circuits

1. The ank adjustment which it is neceasary to make for lringing the " D " Band Oscillator's circuit into alignment is accomplished by bendirg the sround low (shown in \quad " D " Band Oscillator Circuit Adjustment) either closer to the coil or farther away from the coil. This adjustment should be made with the
2. The only adjustment which it is necessary to malke. ment is accomplished by bendimg the srid lead loop (shown in ment) so as to form efther smaller or larger loop. This adjustment should also be made with the signal

rneatiker mixitifen militithen

REOVE ARE SHOWN
TRIMAER LOCATIONS,ETC FOR MODELS. HSO-18O

STROMBERG CARLSON-26

SHEET
 DATA

SHELT

(32)
Model- 145
Alianment Data on Sheet -Zba

Sant:

GK7 500 (19)

1936-37

1936-37

 1|l

Fhe. 22-Schematic Conneetione Betreen Decactor and Firnt Audio Tubse wita

Tubbes With Trameler 8witct in "Record Reproduction" poelition

Tubea with Tranner Swich in "Home Recording" poaltion.

Tube TYFE		vacis	$8^{8} 8^{\prime}$	'ci'	S:4. rewry	Rers.
224	/	2%	153	2.7	77	29
.	2	\cdots				34
*	3	-	-	28	75	$2 \cdot 6$
"15	4	-	215	46	34	- 4
245	p	2.05	190			25

			211	3544	701	3A17	
06	$30 \sim$ WJ				618	428	O8\%
tor		$\angle E$		802\%	CE.z	da\{	$\stackrel{\bullet}{s / Z}$
5.1	-	2.	-	49	1.8	3161	LzZ
E.	8	5.1	D.E	05	. 2	2250	..
\cdots	\square	"	\cdots	"	"	\cdots	\cdots
N	-	"	"	"	"	$\because z$	"
7.E	-	7.	68	ELI	1.2	? 1	$1+22$
-vom	\% ${ }_{\text {8170 }}$	$\max _{n \rightarrow 2}(\underline{2 m}$	N170^	$\xrightarrow{2170 \wedge}$		0×1	$\operatorname{sen}_{0} 1$
13515	S3+ ${ }^{\text {NO1 }}$	S3M N	3 m 01	-- -	-	NOHLSOd	

Microphone Reactor Terminals and Connectios

Models-R7-8-9
 1931-32 IF 175 KC .
 Models-R7-8-9 ${ }^{\mathrm{x}}$ use P.P. 475

Models-RI2-RE41 (coms) 193132 If 175 kc .

Models R2O-R21 $1931-32$ If 175 Kc .atsoRRE59(coms)

IF 175 K.C.
FRONT OF CHASSIS

Models R 104-105•106 $1932 \quad$ IF 175 K.c.

Model RIO9

FRONT OF CHRSSIS

Models-R47-R48 1033 if 175 kc .

MODEL-RE•37.1932-33 if. 175 к.c

MODELS R54-56-81 (coms) 1932-33 1E:175 k.

Model R28-28b-28-d-28f $1932 \cdot 33$ IF. 175 KC .

MODELS ${ }^{\text {r }} 53-80$ 1933 IF. 175 K.C.

[^5]

Model-RAE-84 $1932-33$ If.715 k.c.

Model-R30 1932-33 If. 175 к.c.

MODEL- R90 1933-34 If. 175 kc .

MODELS R67.68 1932-33 If. 175 к.c.

Models R49 апо 331 (рноно сомв) $1933-341$ F 175 KC .

Model-R280 1933-34 if 175 kc .

Modq)- R-37 1934 IF. 175 Kc.

Model- M-116(Portelle) 1934 JF. 175 Kc .

Models 118-2ll 1934-35 LF 460 K.

DATA SHEET.
R.C.A. VICTOR-20

Models 128-224 1934-35 1F.460 Kc.

DESCRIPTION OF ELECTRICAL CIRCUIT MODS 128 AND 224

The general circuit arrangement consists of an R. F. stage, a combined oscillator and first detector, an I. F. stage, a combined second detector and automatic volume control and a single Pentode output stage. A Type- 80 rectifier, together with a suitable filtering system, provides plate and grid voltages for all tubes and field excitation for the loudspeaker.

The signal enters the receiver through a shielded antenna lead and is applied to the grid of the R. F. tube through the antenna coupling transformer. The secondary of this transformer is tuned to the signal frequency by means of one unit of the gang-capacitor. The output of this stage is transformer coupled to the grid circuit of the first detector, which is also tuned to the signal frequency by a unit of the gang-capacitor.

Combined with the signal in the first detector is the local oscillator, which is always at a 460 K . C. frequency difference (higher) from the signal frequency. A separate coil system and the thind anit of the gang-capacitor are used in this circuit.

In conjunction with these three tuned circuits, it is well to point out that three diffe:ent groups of tuned circuits are used, one for each taning band. A three-position selector switch is provided for selecting the band in which the desired signal is located. In addition to selecting the desired coil system, additional groups of contacts are provided for short-circuiting the preceding lower frequency R. F. and detector coils and the two preceding oscillator coils. This is to prevent "dead" spots due te the absorption effects caused by the coils, the natural period of which, with tuning capacitor disconnected, fall in the next higher frequency band.

The output of the first detector, which is the I. F. signal ($460 \mathrm{~K} . \mathrm{C}$.), is fed directly through two tuned circuits to the grid of the I. F amplifier stage. The I. F. stage, which utilizes Radistron Type-6D6, uses two transformers, which consist of forr tuned circuits, all of which are tuned to $460 \mathrm{~K} . \mathrm{C}$.

The output of the I. F. amplifier is then applied to the diode electrodes of the Type-6B7, which is a combined second detector, automatic volume control and A. F. amplifier. The direct current component of the rectified signal produces a voltage drop across resistor

R-12. The full voltage drop constitutes the automatic bias voltage for the R. F. while a tap is provided for the first detector and I. F. voltage. These automatic bias voltages for the R. F. first detector and I. F. give the automatic volume control action of the receiver. The volume control selects the amount of audio voltage that is applied to the grid of the Type-6B7 and thereby regulates the audio output of the entire receiver.

The output of the Type-6B7 is resistance coupled to the grid of the Type-41 tube, which is the power output anplifier. This tube is operated as a Pentode and provides high audio gain and satisfactory output power. The plate circuit of the output stage is matched to the cone coil of the reproducer by means of a step-down transformer.

The tone control consists of a variable resistor and fixed capacitor connected in series across the primary of the output transformer. At the minimum resistance position of the variable resistor, maximum attenuation of the high audio frequencies is obtained.

Plate and grid voltages for all tubes are supplied from the output of the rectifier-filter system. A Type-80 is used as a rectifier and a suitable network of capacitors and resistors gives the necessary filtering and voltages. The loudspeaker field is used as a filter reactor.

(1) LINE-UP PROCEDURE

The line-up procedure of this receiver is somewhat involved and it is important that these instructions be carefully followed when making adjustments. Properly aligned, this receiver has outstanding performance; improperly aligned, it may be impossible to receive signals on all bands.

Equipment

To properly align this receiver, proper test equipment must be used. This consists of a modulated R. F. oscillator having proper frequency range, an output indicator, an alignment tool and a tuning wand. These parta, which are shown on page 10 have been developed by the manufacturer of this receiver for use by service men to duplicate the original factory adjnstments.

Checking with Tuning Wand

Before making any R. F., oscillator or first detector adjustments, the accuracy of the present adjustments may be checked by meens of the tuning wand

The tuning wand consists of a bakelite rod having a brass cylinder at one end and a special finely divided iron insert at the other end. Inserting the cylinder into the center of a coil lowers its inductance, while inserting the iron end increases its inductance. From this, it is seen that unless the trimmer adjustment for a particular coil is perfect at alignment frequencies, inserting one end of the wand may increase the output of ε particular signal. A perfect adjustment is evidenced by a lowering of output when either end of the wand is inserted into a coil.

The shields over the R. F. coil assembly have a hole at their top for entrance of the tuning wand. The location of the various coils inside of the shield is shown in Figure 8. An example of the proper manner of using the tuning wand would be to assume the external oscillator were set at 1720 and the signal tuned in, and the oulput indicator should be connected across the voice coil of the loudspeaker. Then the tuning wand would be inserted, first one end and then the other end, into the top of the three transformers at the left of the R. F. assembly, facing the front of the chassis. A perfect adjustment of the trimmer would be evidenced by a reduction in output when each end of the wand is inserted in each of the three transformers. If one end-for example, the iron end-when inserted in one coil caused an increase in output, then that circuit is low. An increase in the trimmer capacitance would be the proper remedy.

(2) I. F. TUNING CAPACITOR ADJUSTMEMTS

Although this receiver has one 1. F. stage, two transformers having four adjustable capacitors may require adjustment. The transformers are all peaked, being tuned to $460 \mathrm{~K} . \mathrm{C}$.

A detailed procedure for making this adjustment follows:
(a) Connect the output of an external oscillator tuned to 460 K . C. between the first detector grid and ground. Connect the output indicator across the voice coil of the loudspeaker.
(b) Place the oscillator in operation at $460 \mathrm{~K} . \mathrm{C}$. Place the receiver in operation and adjust the station selector until a point is reached (Band A) where no signals are heard and turn the volume control to its maximum position. Reduce the oscillator input until a slight indication is obtained in the output indicator.
(c) Refer to Figure 6. Adjust each trimmer of the I. F. transformers until a maximum output is obtained. Go over the adjustments a second time.

This completes the I. F. adjustments. However, it is good practice to follow the I. F. adjustments with the R.F. and oscillator adjustments due to interlocking which always occurs.

R. F. OSCILLATOR,AND FIRST DETECTOR ADJUSTMENTS

Four R. F., oscillator and first detector adjustments are required in band "A." Three are required in bands " B " and "C."

To properly' align the various bands, each band must be aligned and individually in the order given. This is " A," "B" and "C." The preliminary set-up requires the external oscillator to be connected between the antenna and ground terminals of the receiver and the output indicator must be connected across the voice coil of the loudspeake:. The volume control must be at its maximum position and the input from the oscillator must be at the minimum value possible to get an output indication under these conditions. In the high frequency bands, it may be necessary to disconnect the oscillator from the receiver and place it at a distance in order to get a sufficiently low input to the receiver.

The dial pointer must be properly set before starting any actual adjustments. This is done by turning the variable capacitor until it is at its maximum capacity position. One end of the pointer should point exactly at the horizontal line at the lowest frequency end of band "A." while the other end should point to within $1 / 64$-inch of the horizontal line at the highest frequency end of band "A."

Figure 8-Location of Coils in Shields

Aligament Tool

Band "A"
(a) Set the Band Switch at "A."
(b) The oscillator series capacitor, located on the rear apron of the chassis, should be set at about the center of its range.
(c) Tune the external oscillator to $1,720 \mathrm{~K} . \mathrm{C}$., set the pointer at $1,720 \mathrm{~K} . \mathrm{C}$. and udjust the oscillstor, detector and R. F. trimmers for maximum output.
(d) Shift the external oscillator frequency to 600 K.C. Tune in the 600 K.C. signal, irrespective of scale calibration, and adjust the series trimmers, located on rear apron of chassis, for maximum output, at the same time rocking the variable tuning capacitor. Then readjust at $1,720 \mathrm{~K}$. C. as described in (c).

Band "B"

(a) Set the Band Switch at "B."
(b) The detector and anteana trimmers should first be tightened to approximately $3 / 4$ maximum capacity (turned $3 / 4$ of the way in).
(c) Tune the erternal oscillator to 5,160 K.C., set the pointer at $5,160 \mathrm{~K}$.C. Adjust the oscillator trimmer for maximum ontput. The trimmer should be set at the first peak obtained when increasing the trimmer capacitor from minimum to maximum.
(d) Check for the image signal which should be received at approximately $4,24 \mathrm{CK}$. C. on the dial. It may be necessary to increase the external oscillator output for this check.
(e) Reduce the capacity of the detector trimmer, while rocking the tuning capacitor, until the signal disappears. The first detector circuit is then in alignment with the oscillator circuit and the Type6A7 tube is blocked. Then increase the capacity of the detector trimmer, while rocking the tuning capacitor, until the signal is peaked for maximum output.
(f) The antenna trimmer should now be peaked for maximum output. It is not necessary to rock the main tuning capacitor while making this adjustment.
Band "C"
(a) Set the Band Switch at "C."
(b) The detector and antenna trimmers should first be tightened to approximately $3 / 4$ maximum capacity (turned $3 / 4$ of the way in).
(c) Tune the external oocillator to $18,000 \mathrm{~K} . \mathrm{C}$., set the pointer at 18 M . Adjust the oocillator trimmer for maximum output. The trimmer should be set at the first peak obtained when increasing the trimmer capacitor from minimum to maximum.
(d) Check for the image signal, which should be received at approximately 17,080 on the dial. It may be necessary to increase the external oscillator output for this check.
(e) Reduce the capacity of the detector trimmer, while rocking the tuning capacitor, until the signal disappears. The first detector circuit is then in alignment with the oscillator circuit and the Type6A7 tube is blocked. Then increase the capacity of the detector trimmer, while rocking the tuning capacitor, until the signal is peaked for maximum output.
(f) The antenna trimmer should now be peaked for maximum output. It is not necessary to rock the main tuning capacitor while making this adjustment.

Output Indicator

Indicator is a neon lamp visual output indicator designed for use in conjunction with the Stock No. 9050 Test Oscillator. The indicator is very sensitive to changes of volume and frequency. It consists of a tapped transformer (giving three impedance inputs), a potentiometer and a neon lamp.

Oscillator

$90 \mathrm{~K} . \mathrm{C}$. to
$25,000 \mathrm{~K} . \mathrm{C}$

Tuning Wand

consists of a bakelite rod having a brass cylinder at one end and a special finely divided iron core at the other end. Inserting the brass cylinder into a coil lowers its inductance, while inserting the iron increases the inductance. From this it is evident that before adjusting trimmers, the adjustment may be checked by inserting each end of the wand into the coil. Proper adjustment is evidenced by a reduction in output with either end of the wand inserted into the coil. The wand is 7 " long and $5 / 16^{\prime \prime}$ diameter.

Models 126B, 223B 1934-35 1F460kc

below
 Model-222

 1934-35. IF 175 kc

OATA SHEET

Line-up Adjustments

I. F. Tuning Adjustments-Tiwo transformers comprising three tuned circuits the secondary of the second transformer is unsuned) are used in the intermeciate amplifier. These are tuned to $175 \mathrm{~K} . \mathrm{C}$. and the adjustment screws are accessible from beneath the chassis as shown in Figure C.
R. F. and Oscillator Adjustmente-The three gans capacitor screws are located on the main tuning capacitor, acceasible at the top of the chassis. The high frequency capacitor screws are located on the Range Switch.
b) Cannect the output of the oocillator to the antenna and zround
leud of the receiver. Check the dial at the watremse mazimum position of the tuning capeckitor The indicator pointer manimum eet on the white inaer radial line located at approsimately 530 K.C. Then eet the dial at 140 , the orecillator at 1410 K.C. and connect the outpur meter acroas the cone coil. Adjuat the oscillator output so that a alight deflection is obtained when the receiver volume consrol is at maximum.
(c) After making the $1400 \mathrm{K.C}$. . adjuatments, shift the oscillator to $600 \mathrm{K.C}$. and tune in the signal. Adjust the 600 K.C. trimmer, while rocking the pang-capacitor back and forth. Then output whine rocking the pens-capacitor beation (b).
(d) With the Range Switch at the counter-clo
the three tuning condonser line-up capectwise ponition. adjuet deflection is obtained in the output meter. Then zhitit the on cillator to 2440 K. . ., the Range Switch to the clock wise powition and the diai to 244. The three line-up capacitorn located on the Runge Switch and ancemible from the bottom of the chassis should then be adjuated for maximum output.

When making both the I. F. and R. F. adjustments, the important point to remember is that the receiver valume control must be at its maximum position and the minimum input signal necessary from the oscillator must be used.

Service work in conjunction with this receiver will be
imilar to that of other Superheterodyne receivers incorporat similar to that of other Superheterodyne rece
 .

* all voltages measured to cathode

Radio Rece

R. F. OSCILLATOR AND FIRST DETECTOR'
ADJUSTMENTS
Four R. F., oscillator and first detector adjustments are required in bands " A " and " X ". Three are required in bands " B " and "C." None are required in band "D."

Band " X "

(a) Tune the external oscillator to 410 KC , set the pointer at 410 KC and adjust the oscillator, detector and R. F. trimmers for maximum output.
(b) Shift the external oscillator to 175 KC . Tune in the 175 KC signal irrespective of scale calibration and adjust the series trimmer marked 175 KC on Figure 5, for maximum output, at the same time rocking the variable tuning capacitor. Then readjust at 410 KC as de-
scribed in (a).

(a) Short circuit the antenna and ground terminals, and connect the output oscillator between the control grid cap of the first detector (Type-1A6) and ground. Place the oscillator in operation at 460 K. C. and adjust its output and the receiver volume control until an appreciable output is noted.
(b) Adjust the secosndary and then the primary of the first I. F, transformer until the maximum signal is obtained.

This completes the I. F. adjustments. It is good practice to aiways follow the I. F. adjustments with the detector and orcillator adjustments, as there is an inferlocking of ad:ustments that always occurs.

Detector-Oscillator Adiustments

The two gang capacitor trimmer screws are accessible at the top of the chassis. The series $(600 \mathrm{~K} . \mathrm{C}$.)

Location of Line-uf Capacitors
trimmer is accessible from the rear. Proceed as follows:
(a) Connect the oscillator between the antenna and ground terminals of the receiver.
(b) Place the oscillator in operation at 1400 K . C. set the dial at 140 and adjust the oscillator output and receiver volume control until an appreciable signal is reached.
(c) Adjust each trimmer on the gang capacitor until maximum signal is obtained.
(d) Set the oscillator at 600 K . C. and tune in the signal on the receiver. Then adjust the series trimmer. located on the rear of the chassis. until maximum output is obtained. While making this adjustment, rock the tuning capacitor back and forth through the signal. Then again check the adjustment in (b).

MODELS.
BT4-1 BC4-1

BATTERY-OPERATED.

Socket Voltage Readings

Connect the tent Occillator to the control grid cap of the i.f tube. Advance the volume control of the recerver to its full-on position. Tune the test Oscillator accuraty to 460 kc . and align the trimmers C-20 and $\mathrm{C}-21$ to give maximum receiver output. Regulate the Oscillator output during this adjustment so that the output indication is as small as can be conveniently obeerved. After completing the adjurtments of these rimmers, re-connect the Oscillator so that it will feed into the control grid circuit of the Type-6L7 first detector. Then tune the first i-f transformer trimmers $\mathrm{C}-16$ and $\mathrm{C}-17$ for maximum receiver output.

R-F Alignment

After completing the i-f adjustments, it is advisable to correct the lineup of the circuis ahead of the first detector. The test Oscillator should be connected to the antenna-ground terminals of the receiver and the manual volume control turned to its maximum position. For each adjustment, the (secillator output should be maintained as low as posible in order to avoid broadneas of tuning which woruld result from a.v.c. action on a stronger signal
hand A-This band should be aligned by supplying a 1720 ke. signal to the receiver, tuning the station selector to a dial reading of 1720 and adjusting the trimmers C-47. C-12 and C-3 to produce marimum receiver output. The Oscillator should then be shifted to 300 ke. anc the receiver tuned to resonate this sig. nall, disregarding the reading at which it is best received. Trimmer C-46 must then be adjusted, simultaneously while rockung the station selector backward and forward through the signal until the maximum output results from the combined operations. C- 47 should be rechecked to assure that its adjustment has not changed becaue of the trimming of C-46.
Band B--This band must be aligned at 6132 kc . by tuning the test Oscillator to such a frequency and
turning the station selector to the 6132 kc . dial read ing. Then tune the trimmer $\mathrm{C}-45$ to produce maximum receiver output, using the setting of least capacitance which causes same. The presence of the proper "image" may be checked by tuning the receiver to 5212 kc . at which point the 6132 kc . signal will be heard if the trimmer $\mathrm{C} \cdot 45$ has been properly set to the position of least capacitance for maximum (peak) output. It may be necessary to increase the Oscillator output for this check. No adjustments are to be made. Return the station selettor to the 6132 kc. dial marking and trim capacitors $\mathrm{C}-11$ and $\mathrm{C}-2$ for maximum receiver output No other adjustments are necessary on Band B.

Band C-Change the receiver so that it is oper ative and the dial reads $18,000 \mathrm{kc}$. on the "C" Band Tune the test Oscillator to this same frequency. Then adjust the oscillator trimmer C-43 to produce max imum (peak) output. Two positions of this trimmer will be found which conform with this requirement. The one of least capacitance is correct. Check for the presence of "imare" response at $17,080 \mathrm{kc}$. by shifting the receiver tuning. If it is recrived at such a point, the trimmer C-43 has been correctly adjusted to the right peak. No adjustments are to be made during this check. Tune the receiver back to the 18,000 kc. dial marking, readjust $\mathrm{C}-43$ if necessary, and then tune the detector and antenna capacitors $\mathrm{C}-10$ and $\mathrm{C}-1$ for maximum receiver output. No further adjustments are necessary.

1935-36

I-F Adjustments-Cornect the output of the test Oscillator from the Type-6L7 fisst detector control grid to chassisground and adjust its frequener to 460 ke . Tune the receiver to Band " A ", setting the station selector at a print where no interferenct is received from local stations or the local oscillator. Then tune the i-f trimmers C-31, C-30, C-28, C-2\%, C-24 and C-23 in order, each for maximum indicated receiver output.

R-F Adjustments-Connect the Oscillator output to the ant-nna-ground terminals of the receiver. Keep the output indicator attached to the receiver output as ahove. For each adjustment, use the minimum signal which will give a perceptihle indication on glow indicator.

Bang A
(a) Set the range switch of the receive. tn its Band A positicin and tune the selector to a dial readiag of 1720 kc. Tune the: Oscillator to this same frequency and acjust trimmers C-46, C-12 and $\mathrm{C}-3$ to produce maximum indicated receiver output.
(b) Shift the O-cillator to 600 kc . and tune the re. ceiver tc pick up this s:gnal, disregarding the dial reading at which it is best received. Then adjust trimmer $\mathrm{C}-44$, simultancously rocking the tuning control backward and forward through the signal, until maximum output is obtained from the rombined operations. Repeat the alignment of C-46 as in (a) to correct for any change caused by adjustment of C. $\leftarrow 4$.

Band X

(a) Change the range switch to its Band "X" posi tion. Tune the receiver to read 400 kc . and set the Oscillator to produce this same freguency. Adjust trimmers C-47, C.-13 and C.4 to produce maximum receiver out jut.
(b) Shift the Oscillator frequency to 150 kc . and rune the receiver to pick up this signal, disre garding the dial reading at which it is best re aeived. Then tuase the ascillator stries trimmer $\mathrm{C}-48$, simultaneously rocking the toning control (receiven) backward and forward through the :ignal, until maximum cutput restlts from the combined operations. Repeat the alignment of

MODEL. CI2. (GENERAL ELECTRIC MODEL.A-128)
C.47 as in (a) to correct for any change caused by the adjustment of $\mathrm{C}-48$. Band B
Place the recciver range switch in its Band " B " po. sition and tune the station selector to a dial reading of 6132 kc . Set the frequency of the Oscillator to 6132 kc .
Then adjust trimmer $\mathrm{C}-26$ to give maximum receiver output. Two positions may be found which fulfill this condition. The one of least capscitance is correct. To assurv. that the right peak has been used; tune the receiver to 5212 kc , and increase the Oscillator output. The "image" of 6132 kc . will be seceived at this point if $\mathrm{C}-26$ has been adjusted to the proper point of maximum output. No trimmer adiustments are to be made during this check. Return the receiver tuning to 6132 kc., readjust C. 26 if necessary, and then tune the de. tector and antenna coil trimmers, C-11 and C-2 to produce maximum (peak) receiver output as indicated on the glow meter.

Band C

Turn the receiver range switch to its Band "C" posi tion and set the tuning control to a dial reading of $18,000 \mathrm{kc}$. Tune the Oscillator to this same frequency. Adjust the oscillator parallel trimmer $\mathrm{C}-41$ to produce maximum receiver output. Two positions of the trimmer will be found which fulfill such a condition. The one of least capacitance is correct. To assure that the right position has been used, check for the "imarge" of the $18,000 \mathrm{kc}$. signal which will be received at 17,080 kc. on the dial if C-41 is correctly adjusted. An in creast: in Oscillator output may be necessary. No trimmer adjustments should be made during this check. Return the receiver tuning to $18,000 \mathrm{kc}$., readjust C - 41 if necessary, and then tune the detector and antenna trimners $\mathrm{C}-10$ and $\mathrm{C}-1$ to give maximum receiver output.

Figure 8-Trimmer Locations and Radiotron Socket Voltages
NOTE -
THE MANUFACTURER CONSIOERS THE CITHODE REI ESSENTIALN ILIGNING THIS RECEIVER HNO CAN
SUPPLV FULL INSTRUCTIONS UPON REQUEST.

Alignment Procedure

The extensive frequency range of this receiver neces sitates a more or less involved methorl of alignment Circuits aligned by use of Cathode-Ray equipment will he ds near to perfection as possible, hence this ther methodse is oftentimes an caspros. Alignment by extrine care is taken and a good deal of time ex pended

The necessity for alignment and direction of required change may he tested with the Tuning Wand. Its use is as follows:-

The Tuning Wand, which consists of a bakelite rod having a small brase cylinder insaalled at one end and a cure o finely divided iron at the other. may be inserted into a tuttej
conl to obtain an indication of the tuning. With a signal being supplied to the receiver at the partucular trequency o the circuit concerned, each end of the Wand shouid be placed through the center of the coil. Holes are provide in the conl shaelds for this lest. A change in tuning u_{i} be produced by the presence of the brass cylintet ur it there is a decrease of output when either of the two and ase inserted, the tuning is correct and will require nou adjuet ment. However, should there be an increase of output du increase in inductance or capacitance is indicated as nceessary to bring the circuit into line. The trimmer involved should
theretore be increased accordingly. It the brass cyilnder end causes an increase in output, while the tron end causes a decrease, reduction of inductance will be necessary to bring the clircuit into alignment. Th
creasing the erimmer concerned.

I-F TRIMMER ADJUSTMENT

Six trimmers are associated with the three i-f trans ormers. Their locations on the chassis are shown by Figure 8 . Each must be aligned to a. basic frequency of 460 kc. The last i.f transformer should be adjusted irst, the one preceding it second and the operation carried through successive stages until the first trans ormer has been aligned. For such a process, it is necessary to feed the output of the Full Range Oscil ator to the stages in their order of alignment, adjusting the trimmers of each and obsirving the effect at
 sraph. The most convenient point for connectian of frst audio tube with the vertical "Hi" input terminal attached to the grid connection and the "Gnd" th the chassis. The "Ext. Sync " terminale of the Oscillngraph保 ustrated in Figure 7. A. 001 mfd . capacitor installed reven the voltage constants of the staze being ligned from becoming upset.

FIG. 10. General Phonograph Connections
ANTENNA, DETECTOR AND OSCILLATOR
For Bands A and X , adjustments must be made at the high and low frequency ends of the range. On Bands B and C , alignment is required only at the high frequency end. Band D is permanently adjusted dur. ing manufacture, hence no alignment will be necessary in this range. Locations of the various antenna, detector and oscillator tnmmers are shown on Figure 8. The test Oscillator should be removed from connection with

the iof system and its output attached wo the anterma ground terminals of the receiver. No changes are to be made in the attachment of the Oscillograph at the connd detector During the adjustments, the Oscil to keep the oscillotraphle trane st low as is practically observahle. Such procedure will obviate apparent broadness of tuning which would result from a.v. action on a stronger signal. The sequence of alignment should be Band A. Band X. Band B and Band C.

Receiver Chassis

Eynamac Amplifier

Power Amplifiet
Radiotron Socket Voltages
Measured at 115 volts, 00 cycle supply-No signal being received

ALIGNMENT
 INSTRUCTIONS ETC.

MODEL.D22-1
 (OUTPUT METERMETHOD)

Oscillator from the 「ype-6L7 first detector control-grid to chassis-ground and adjust its frequency to 460 ke. Tune the receiver to Hand " A ", setting the station selector at a point where no interference is received from local stations or the local oscillator. Then tun the i.f trimmers C.45, C.44, C.38, C.37, C.33, and C .32 in order, each for maximum indicated receive output

R-F Adjustments-Connect the Oscillator output to the antennaground terminals of the receiver. Keep the output indicator attached to the receiver output above. For each adjustment, use the minimum sig nal which will give a perceptinle indication on th glow indicator

Band A

(a) Set the range switch of the receiver to its Band A position and tune the selector to a dial read ing of 1720 kc . Tune the Oscillator to this same frequency and adjust trimmels C-25, C-14 and $\mathrm{C}-3$ to produce maximum indicated receive
(b) Shift the Oscillator to 600 kc . and tune the receiver to pick up this signal, disregarding the
dial reading at which it is hest received. Then adjust trimmer C 23 simultaneously rocking the tuning control backward and forward through the signal, until maximum output is obtained from the co:ntined operations. Repeat the align ment of C. 25 as in (a) to correct for any change caused by adjustment of C-23.

Band X

(a) Change the range switch to its Band " X " poosition. Tune the receiver to read 400 kc . and set the Oscillator to produce this same frequency Adiust trimmers $\mathrm{C}-26, \mathrm{C} \cdot 15$, and $\mathrm{C} \cdot 4$ to pro ducc maximum receiver output
(b) Shift the Oscillator frequency to 150 kc . and tune the receiver to pick up this signal, disre garding the dial reading at whichs it is bot it ceived. Then tune the uscillator series trimmer C-27, simultaneously rocking the tuning contro recal, until maximum output results from the combined operations. Repeat the alignment of C- iti) as in (a) to currect for any change casued by the adjurt ment of $\mathrm{C}-27$.

Band B

Place the receiver range switch in its Band " B " posi sion and tume the statiun selector to a dial reading of 6132 kc . Sec the frequency of the Oscillator to 6132 kc Then adjust trimmer C. 76 to give maximum receive output. Two positions may be found which fulfill this condition. The one of least capacitance is correct. To recewer to 5212 nght peak has been used, tune the

The "image" of b132 kc. will be recesved at this print if C-76 has been adjusted to the proper point of maximum output. No trimmer adjustments are to be made dang ind hak. Retorn the receiver tuning on biat k.. readjust C. $\%$ if necessary, and then tune the detector and antenna coil trimmers, $\mathrm{C}-13$ and $\mathrm{C}-2$ to produce maximum (peak) receiver output as indicated on the glow meter.

Band C

Turn the receiver range switch to its Band " C " posi tion and set the tuning control to a dial reading of $18,000 \mathrm{kc}$. Tune the Oscillator to this same frequency Adjust the oscillator parallel trimmer C-75 to produce maximum receiver output. Two positions of the trim mer will be found which fulfill such a condition. The one of least capacitance is correct. Io assure that th right position has been used, check for the "image" of the $18,000 \mathrm{kc}$. signal which will be received at 17,080 ke. on the dial if C-75 is correctly adjusted. An increase in Oscillator output may be necessary. No trimmer adjustments should be made during this check if necessary and then ine the dector and ant trimmers, C .12 and $\mathrm{C} \cdot 1$ to give maximum receiver output.

BAND D
NO ADUUSTMENT REQUIRED

Model T4-2 is sfmilar to Nodel T4-1 except for several modifications including: re-arrangement of wave-trap circuit, removal of oscillator low frequency trimer, replacement of the 6F7 and 6AB tubes with $6 B 9$ and $5 A^{\text {\% }}$ respectirely, and the reflexing of the I.F.stage for adcitional audio amplification. The I.F. -emains at $460 \mathrm{~K} . \mathrm{C}$. The antenna and oscillator coils arn aligned only at 1400 K.C.

NOTE LAVOWE SOME SERVCE NSTRUCTIONS APPLV'TO MODELS TH-1 AND TH-Z RLIKE.

Line-up Adjustments

- sөqn山 sE8T0 8ufsf

S-2 GALSO GENERAL ELECTRIC
I.F. TVNM ADJSMENTS. VESTINGHOUSE
Two transfarmers compresing four tuned circuits are used in the intermediate amplifier. Trese ure tuned to $460 \mathrm{r} . \mathrm{C}$. and the adilistisent screws are accessible as shown. froceeds as follows:
(a) Short-circuit the antenra and ground terminals and ture the recelver so that no simal is heard. Set the volune control at maximum and connect a ground to the ground tersinal.
(b) Connect the test oscillator output between the firs: detector control grid ard chassis ground. Cornect the ourput meter across the volce coll of the loudspeaker and adjust the oscillator output so that, with the recelver volume control at maximur: a slistot deflection is obtaired in the output meter.
(c) Adjust the secondary and primary of the first and ther the second I.F. transiomers

TRIMMER AND TUBE IAYOUT FOR WESTINGHOCSE MODEL 155 A AND 155 X.
until a maximpu deflection is obtatned. Keep the oscillator output at a low value so that only a slight deflection is obtalned on the output; meter at all times. Go over these adjustments a second time, as there is a slight interlocking of adjustments. This completes the I.F. adjustments.

R.F. AND OSCILLATOR ADJUSTMENTS.

The R.F. IInemp capacitors are located at the bottom of the coil asseriblies instead of their usual position on the gang capacitor. They are all accessible from the bottom of the chassis except the $600 \mathrm{~K} . \mathrm{C}$. series capacitor, Which is accessible from the top of the chassis.

155A AND 155X OMITTING WAVE TPAP.)
(a) connect the outyut of the osciliator to the antenna and ground teminals of the receiver. Check the position of the incicator folriter When the tuang capacitor flates are fully meshed. It should be coinciceert rith the * radial inne udjacent to the dial reading of * 540. Then set the Test Oscillator at 1720 K.C., the dial indicatcr at 1720 ard the oscillator output so that a slight jeflection Will be obtained in the outsut meter whon the volume control is at its maxfmum position.

* 530 ON WEST MODEL
(b) With the Range Switch at the ${ }^{m:} n^{\prime \prime}$ pasition adjust the two trimmers under the two R.F. co1ls, designated as BC until a maximum jeflection $1 s$ obtained in the output meter. Then shift the Tost Oscillator frequency to $600 \mathrm{~K} . \mathrm{C}$. The trimper capacitor, accessible from the top of the chassis, should now be adjusted for marimum output while rocking the main tuning capacitor back and forth through the signal. Then repeat the 1720 E.C. adjustment.
(c) Now place the Range Switch at the Nout" position, shift the Test 0sciliator to 28,000 K.C. and set the dial at 18F.Adjust the two trimer capacitors desigmeated as SW for maximum output, beginning with the oscillator trimer. It will be noted that the oscillator and first detector trimuers will have two positions at which the signal will give maximum output. The position which uses the lower trimer capacitance, obtained by turning the screw counter-clockwise, is the proper adjustment for the oscillator, while the position that uses a higher capacitiance is correct for the detector. The eetector trimmer MUST be adjusted for maximum output while rocking the main tuming capacitor back and forth through the signal. Both of these adjustments must be made es indicated irrespective of output.

The important points to remember are the need for using tio minimum oscillatar output to obtain a deflection in the output meter with the volume oontral at ita maximum rosition and the manaer of obtiaining the proper high frequency oscillator and detector adjustments.

WAVE TRAP ADJUSTMENT: VICTOR\&GE ONLK.
To eliminate code interference in localities near high powered radio telegreph atations operating at fraquencies in the vicinity of 460 K.C., a wave trap consisting of a parallel resonent circuit is incorporated in these recelvers.
ifith receiver in operation using its normal entenna tune, the station eelector to the point at which the intermediate-wave interference 18 most intense. Then adjust the wavetrap trimer to the point which oause maximum suppression of the interference.

COURTESY-R.CA.

Schematic Circuit Diagram of receiver using Glass Tubes.

жу"

Trimmer Locations and Radiotron Socket Voltages to Ground
(Measured at 115-volt A.C. Supply-Maximum Volume Control-No Signal)

AL/GNMENT.

Prelininary Tests

 "Tun1ng Wand" oonsists of a beicelite rod haring a brass oylinder attaohed to one ond, and a mall opposito ond. By ingerting ting uraso ejliader
ond into the contor of a particular coil, through

In tune or resonatice with the incoming algnal, one end will bring about an incroase of the 81 g-
nal, and the other ond will cause docrease.

I-F TUNING ADJUSIMENIS

The four 1-f trimar acrews shown on P1gure
2 aust be tuned to 460 kc ., as explained below:-
(a) Short alroult the antenne and around terninal or slgnal pick-up. Set the volume control to t ton to the recolver.
(b) Foed the test oscillator output to the ontrol grid or the f1rat-detector. Conne at an output 1pdioator to the voice coll cir-
oult. Regulato the oscillator outpue corrtrol so that a sllght indication occurs on the indicating instrument.
c) adjust the sodondary and primery trimuria of the ascond $1-f$ tranaformer for marimum (pak) output. Thwa turs the rirst 1 in osciliator output shoula oo mantainod a as lom a lovel as rill give a good outpu 1ndication. Thia the koep the signal rrom
boing arfected by the a. $\left.\begin{array}{l}\text { act. action or the }\end{array}\right)$ rosivar. t eligtt improvement in line-up
may obtained by repeating the above promay obtained by repeating the abovo pro offect botween the anveral tuned oircuits.

R-R AND OSCTLLATOR ADJUSTMENTS

follows : There adjustments should be perfcrmed as
(a) Attaon the oscillator oulput to the
(b) Cheok the dial puinter and oorrect 1 ts position if nucesaryy it and oorrect its
 540 when the gang condenser pletes are in full mosh
(c) With the external oscillator tuned to 1720 ko , and 1 tts output adjusted for the
criticai minimum at full volume con - oritioal minimuma at full voluwe control, marking. Turn the range switch to its right poestion kind aujust the trisume (peak) reoolvor output. Then ehift the oscillator frequency to $600 \mathrm{kc}$. and tune oscillator trimer, C8, simul teneously
 put obtaineble results from the two combin-
od operations. The dial calibration siould bo disragarded for this adjustment. The ascillator trimmer clo should be rotune oaused by the 600 ke. adjustment.
(d) Turn the Yecolvar rango anitch to ite laft (ahort-rave) position and set the station nolloctor at the 18 megaeyole dial marking.
Turn the teat osolliator to 18,000 ko. and regulato its output to produce no no 110 able indication at the reoes ror output.
Adjuat Cz and Cll of the antonna and ono1Adjuat C2 and C11 of the antenna and oun There 111 bo two positions of the tol.
 oscillator, the position of ninime oal
pacitanoe is corrects of maximum oapacitance in proper on the antenna trimar. The letter bould be made mile sulow roak ing sife vari
tuning oondenser through the algal.

It is important in maing the forscoine adJustuonts to have the roe日iver operating at maxi mum sensitivity and uainges low an inputa:
will give an acourato output indication. This Tlll give an acourate output indioation of This procedure inn from the effoot of automatic volume control.

MAVE TRAP ADJUSTMENTS

To oliminate oode anterforetion in lacal tios natar high powerad radio talegraph sthations operating at frequencies in the Ticinity of 460
 fosonent
celvoro.

W1 th recelver in operation using its normal antenna, tuase the station selootor to the poin at whi oh the intermodiate-wave interference 1 is to the point wich cause maximum suppression of

LF Trimmer Adjustments Connect the Type-6A8 first detector tube and chassis ground. Tune the oscillator to 460 kc . Advance the receiver vodume control to its full-on position and adjust the zeceiver tuning control to a point within ats rango: where no interference is encountered either from local broadcast stations or the heterodyne oscillator. Increase the output of the test oscillator untal a slight indication is spparent on the output indicator. Then adjust the two trimmers of the second i-f trans former to produce maximum (peak) indicated receiver output. Then, adjust the two trimmers of the first i.f rransformer for maximum (peak) receiver output as shown by the indicating device. Ituring these adjust ments, regulate the test oscillator output so that the indication is always as low as posible.

R-F Trimmer Adjustments

The two trimmers which are at all times directly in shunt with the variable tuning condenser necessitate that the high-frequency range (Eand C) be aligned firs. The range selector switch should, thesefore, be turned to its Band C prosition for the first adjustment. The Output Indicator should be left connected to the output system. Attach the: output terminals of the test occillator to the antenna and ground terminals of the receiva input.
Calibrate: the dial by rotating the tuning control until the variable condenser plates are in their full mesh (maximurn capactry) position and adjusting the dial painter so that its end points to the horizontal graduation (530 kc .) at the low frequeney end of the Band A scale.

Proceed further as rollows:
(a) Adjust the test oscillator to 18.000 kc . and set the receiver tuning control to a dial reading of $18,000 \mathrm{kc}$.
(b) Regulate the output of the test oscillator until a slight indication is perceptible as the receiver output. Then adjust the trimmer on the oscillator section of the variable conjenser to the point at which it produces maximum indicated receiver output. Two peints may be found, each of which produces such a maximum. The one of maximum trimmer cabaciunce is correct and shouuld be used. (The oscillator will be 400 kc . below the signal frequency at this adjustment point.)

MODELS. T6-2 and C6-3 (GENERAL ELECTRIC. A-64ANOA-69)

(c) Adjust the trimmer of the antenna section of the variable condenser, simultaneously rocking the receiver tuning control backward and forward through the $18,000 \mathrm{kc}$. input signal, entil maximum receiver output results from these combined operations. Rocking of the variable condenser will prevent inaccurate ad justment which would otherwise be caused by the inter-action between the heterodyne oscillator circuit and the antenna tuned circuit.
(d) Change the receiver range selector to 1ts Band A position and set the receiver tuning control to a dial reading of 1400 kc . Tune the test oscillator to this same frequency and regulate its output to produce a slight indication on the receiver output indcating device.
(e) Adjust the high trequency trimmers of the Band A oscillator and antenna coils, C-10 and C- 3 respectively, to the points at which each produces maximum indicated receiver output.
(f) Shift the test oscillator frequency to 600 kc . and tune the recerver to pick up this signal, disregarding the dial reading at which it is best received.
(g) Tune the low frequency trimmer, C-12, of the oscillator Band A coll, simultaneously rocking the tuning control of the receiver backward and forward through the signal, until maximum indicated receiver output resalts from these combined operations. The adjustment of $\mathrm{C}-10$ and C-3 should be corrected at 1400 kc . to compensate for any changes caused by the adjustment of the low frequency oscillator coil trimmer.

LF $=460 \mathrm{~K} . \mathrm{C}$.

oncillator will be 460 kc . below the signal fre
quency at this adjustment point.)
(c) Adjust the trimmer, $\mathrm{C}-12$, of the detector sec tion of the variable condenser, simultaneously rocking the receiver tuning control backward and forward through the $18,000 \mathrm{kc}$. input sig. nal, until maximum receiver output remults from these combined operations. Rocking of the variable condenser will prevent inaccurate adjustment which would ocherwise be caused by the inter-action between the heterodyne oscillator circuit and the delector tuned circuit.
(d) With the receiver tuning control set to 18,000 ke. adjust the trimmer, C-6, on the antenna section of the variable condenser to the poins which produces maximum (peat) indicated rezeiver output.
(e) Change the receiver range selector to its Band A position and set the receiver tuning contral to 2 dial reading of $1,400 \mathrm{kc}$. Tune the test oscillator to $1,400 \mathrm{kc}$. and regulate its output to produce a slight indication on the receiver output indicating device.
(f) Adjust the high frequency trmmers of the Band A oscillator, detector, and antenna coile, C-15, C-9, and C-4 respectively, to the points at which each produces maximum indicated receiver output.
(g) Shift the test oscillator frequency to 600 kc . and tune the receiver to pick up this signal. disregarding the dial reading at which it is best received.
(h) Tune the low frequency trimmer, $\mathrm{C}-18$, of the oscillator Band A coil, simultaneouly rocking the tuning control of the receiver backward and forward through the signal, until masimum indicated receiver output results from these combined operations. The adjustment of C-20, C-12, and C-6 should be corrected at $18,000 \mathrm{kc}$. as in (b), (c), and (d); also C-15, C-9, and C. 4 should be corrected at 1,400 tc. as in (f) to compensate for any changes.coused by the adjustment of the low frequency oscillator coil trimmer.
 detector, and osallator tuned circuits have their loca. tions shown by Figure 3. The three trimmers which are at all time directly in shurt with the variable tun. ing condenser necesstate that the high-frequency range (Band C) be aligned first. The range selector switch should, therefo:e, be turned to its Band C position tor the first adjustment. The Output Indicator should be left connected to the output system. Attach the output terminals of the test oscillator to the antenna and ground terminals of the receiver.

Calibrate the dial by rotating the tuning control until the vanable condenser plates are in their full meah (maxumum capacity) position and adjusting the dial pointer 50 that it end points to the horizontal graduation ($\$ 30 \mathrm{kc}$.) at the low frequency end of the Band A scale.
Proceed further as follows:
(a) Adjust the tent oxcillitor to $18,000 \mathrm{kc}$. and set the receiver tuning control to a dial reading of $18,000 \mathrm{kc}$.
(b) Regulate the coutput of the teat occillator until 2 slight indication is perceptible at the receiver output. Then adjust the trimmer, C-20, on the oucillator tection of the variable condenser to the point at which it produces maximum indicated soceiver output. Two points may be found, each of which produces such 2 maximum. The one of maximum trimmer capacitance is correct and should be used (The

I-F Aligmment

Connect the test Decillator to the control grid cap of the i.f tube Advance the volume control of the receiver to its full-on position. Tune the tent Occillator accurately to 460 kc , and zlign the trimmers C-29 and C-30 to output during this adjustment so that the outpur indication is as small as can be canveniently observed. After completing the adjustments of these trimmers, reconnect the Decillator so that it will feed into the control grid circuit of the Type-6L7 first detector. Then tune the first if transformer trimmers C-24 and C-25 for maxrmum receiver output.

R-F Alignment

After completing the if adjustments, it is advisable to correct the line-up of the circnits ahead of the firss the antenna-ground terminals of the receiver and the manual volume controi kept at ios maximum position For each adjustment the Oscilla:or output should be maintained as bow as possible in order to avoid broadnes of tuning which would result from a.v.c. ac tion on a stronger aignal. 8and \mathbf{A} ahould be aligned by supplying a 1720 he. signal to the receiver, tuning the station selector to a dial reading of 1720 and adjusting the trimmers $\mathrm{C}-20, \mathrm{C}-1 \mathrm{C}$ and $\mathrm{C}-3$ to produce maximum receiver output. The Docillator ahorald then this signal, diaregreding the reading it which it is beat received. Trimmer $\mathrm{C}-19$ must then be adjusted, nimul. taneously while rocking the station eelector bectward and forward through the signal until the maxinum output resulta from the combired operations. C-20 should be rechecked to assure that its adjustment has not changed because of the trimming of C-19. Band B must be aligned at 6132 kc . by tuning the text Oncil. lator to such a frequency and turning the ctation selector to the same dial reading. Tune the trimmer C-18 to produce maximum receiver output, using the
setring of least capacitance which cauea amme. The presence of the proper "image" may be checked by 'tuning the receiver to 5212 kc , at which point the been properly set to the position of least capacitance for maximum (peak) output. It may be neceseary to increase the Oscillator output for this check. No adjustments are to be made. Return the station selector to the 6132 kc . dial marking and trim capacitors C-9 and $\mathrm{C}-2$ for maximum receiver output. No other ad. justments are necceary on Band B . Change the reoeiver so that it is operative and the dial reado 18,000 k.. on the " C " Band. Tune the teat Oscillator to this same frequency. Then adjust the oscillator trimmer tions of this trimmer will be found which conform with this requirement. The one of least capacitance is correct. Check for the presence of "image" response at $17,080 \mathrm{kc}$. by ahifting the reoriver turing. If it is received at such a point, the trimmer C-16 has been correctly adjusted to the right peak. No adjustments are to be made during this check. Tune the receiver back to the $18,000 \mathrm{ke}$. dial marking, re-adjust C-16 if necessary, and then tune the detector and antenna capacitors $\mathrm{C}-1$ and $\mathrm{C}-8$ for maximum receiver output. No further adjustroents are necessury.

VICTOR-43

untit the dial pointer is at the ifu kc. scale marking.
Trimmer Locations and Radiotron Socket Voltages to Ground
(Measured at 6.6 volts battery supply-Volume Control Maximum-No Signal)

1935-36

175 K.c.
I. F. ADJUSTMENTS

Three trimmers are provided in the i-f system, two oa the first transformer and nee on the second trans-
(a) Tune the "Full Range Oscillator" to 175 kc . and connect its output to the first detector control grid and chassis ground. Tune the station selector to a point where no signals are received.
(b) Tune each of the trimmer capacitors, Cl 7 . Cl 4 and Cl 3 , in order. Cl 7 should be set
for maxirrum (peak) output. C 14 and Cl 3 for maxirrum (peak) output. Cl 4 and
should be roughly 'adiusted for maximum
(b) Adjust the oacillator krimmer, C-10; the detector trimmer. C7; and the r-f trimmer
(c) Set the external oscillaitor to a frequency of 600 kc . and rotate the station welector until this signal is accurately tuned on the receiver. ously rocking the tuning candenser slowly through the signal until the maximum obtainable output results from the two combined operations. This adjustment should be made irrespective of dial calibration.
(d) Recheck the adjustment of the 1400 loc . oscillator triminer, as in (b), to correct any refiective errors caused by the procedure of (c.)

terminals of the receiver. Check the position of the dial pointer. It should set exactly on the radial line, adjacent to the dial reading of 540 when the tuning capacitor platev are at full meah. After correcting the dial pointer, place the receiver in operation and aet the selector at 1720 kc ., advance the volume control to maximum and turn the range switch to ite broad. cast position.
(b) Adjust the frequency of the external occillator to 1720 kc . and regulate ite output until a perceptible indication appears on the output indicator. This indication should be beld at a minimum during the adjustments. The trimmers C44 and C45 should then be tuned to the point siving peak receiver output.
(c) Re-tune the teat oscillator, setting its frequency to 600 kc . Turn the receiver selector control to the point where the incoming accillator signal is received best. This point will not aluays be exactly at 600 on the dial. Then adjust the low-frequency trimmer, C40, simultaneously rocking the tuning capacitor alowly through the ismal until maximusa receiver output results from these combined operations. This adjustment must be made irrespective of dial calibration. It is advisable to repeat the 1720 kc . adjustment of the occilator trimmer C44, in order to correct for any change caused by the tuning of C40.

NOTE-

THESE ALIGNING. INSTR. ETC. ALSO APPLY TO MOOELS $1 / 7 . A N D 214$ (GENERAL ELECTRICMODELS. MSO AND M55C. DATA SHEET. VICTOR. $A 5$.

also see data Silent 9.

SIMILAR CIRCUIT TO 99and $99^{\text {R }}$ ALSO SEE DATA SHEET 6

1】 ANI 12 --PHONO COMB. $1930 \cdot 31$ ALSO SEE DRTA SHEET-8

B2 1932.33 IF I75KC.

122 ALSO COMSOLAIRE GRAND 1932-33-1F.I75-K.C,

122A 2933-EF.175-k.c.

58 and Console 58.8 1933-34 IF.175-K.C.

Model $83{ }^{66}$ All Wave" $1933-34$ IF.445 K.C.

Figure D-Lovalion of line-np capacilors.

Fintermal Oueillutor Frequaney	Dial Setting	Lorition of Lito-Up Capmatitore	$\begin{aligned} & \text { Pratition } \\ & \text { of Soler-tion } \\ & \text { Swifeh } \end{aligned}$	Adjust for
45 E. C.	Asy eattian that dow mot bring in etatiog.	At rem of chamis	Any poeition that does not brims im atation.	Marimum outpet
370 K. C.	370 K.C.	Bottom of chameis	X	Maximum ontput.
$175 \mathrm{Li} . \mathrm{C}$.	Set for simal.	Top of eh enior-	X	Magimam output while rooking dial back and forth
1400 L. C.	1400 K. C.	Bottore of chmesis.	A	Maximena outpat.
600 E. C.	Set for aignal.	Top uf chemin.	A	Marimum outpurt whila rocking diml back and forth.
3900 E. C.	$3900 \mathrm{~K} . \mathrm{C}$.	Bottom of chamis.	B	Maximusa output.
1710 L. C.	Set for mitmal.	Top of chamis.	B	Masimum output while nocking dial hack and forth.
$10 \mathrm{M.C}$.	$10 \mathrm{M} . \mathrm{C}$.	Rottom of chameis.	C	Maximum output.
15 or is M. C.	15 or $18 \mathrm{M} . \mathrm{C}$.	Bottoas and top.	0	Marimum output. Adjust oecil. lator trimmer until two points are noted where sigmal in heard. Une for adjustment the higher frequency of these twr ponts Thue will be the point lying counter-cloct wise froue the other point.

NOTE:- On 4 band receiver capacitor and coll units marked "X"are omitted.
driver such as Style No. H22451, and an outuut meter are required. The outpuat meter should be preferably a thermocouple ralvanometer connected either across or in place of the cone coil of the loudspeaker.

The output of the external oscillator should be at the minimum value neceseary to obtain adeflection in the outpu' meter when the volume control is at its maximum, monitot.
The external oscillator output should be connected between antenna and ground for the R. F. and oscillator adjugtments and between the first detector grid and ground for the I. F. adjustrments. All adjustments are made for anamum deflection in the output meter.

The accuracy of line-up of each bond mag be checiked without touching the trimmer condensers, by the use of the tuning wand, Stoek No. 6679.

Wne end of the wand consists of a brass oylinder. When this is inserted in a coil the effective inductance of the coil is lowered.

The other end of the wand contains a special fipely divided iron suitable for use at radio frequencies. When this is inserted in a cola the inductance is raised.

To use the uning wand a signal is first tuned in at the frecurency at which a check is desired on slignment. The ward is then inserted slowly in the Antenna and R. F. tramsformiers, using first one and and thren the orher end of the wand. Unless the alignment is perfect, it will be found that the power output indicated by the meter will be increased to a peak for a critical position of the wand in the coila.

The end of the wand required indicates whether the coil is hizh or low.

Of mourse, alignment correction at the high frequency ead of a tuning range should be accomplished by the use of the trinuner condemser. If alignment corrections gould be required at the k ow frequency end of a tunine range it may be accoming farthet from the trimmer panel is pasked foend the trinumer panel to increase the indoctance, and farther away to decrease the inductance. On band D coils the last two or threw turns nuy be pushed in a signilar mananer to obtain the proper inductance.

This adjustment shouid not be attempted unless a quite appreciable improvement will result (as shown by the tuaing wand).

The following chart gives the defails of all line-up adjust ments. The receiver sbould be lined up in the order of the adjuatments given on the clast. Rifer to Figure D for the locration of the line-up capacitors.

2. Adjust the buzzer-screw, 11, Figure D, so that when the position wof the armature is such that 1 and 2 are just making contact with 6 and 7 respectively, the contact between 4 and 9 shall just be breaking.

(2) Adjustment for the Reduction of Sparking.

If any pair of contacts show excessive sparking, the following procedure will in general rednce the sparling to a minimum.

For example, consider the case where excessive sparking is occurring between 6 and 1. Sparking will be redaced to a minimum by hending the armature spring on that side (secondary side) a way from 6 and toward 8. (See Figure D.) If the bend is too small, only a small change will be noted. However, if an excessive bend is made, the sparking will bo transferred from 6, 1 to 8,3 .

The same method may be applied to any pair of contacts. Usually only a slight bend will be necessary. Although after bending, no change in the position of the armature contacts may be noted, a sufficient change in the initial force requirements will have been made to reduce aparking.

(3) Output Voltage.

When connected to a 6 volt primary source, the output voltage acroes a 5,000 ohm resistor (coanected in place of the receiver load at the output of the filter), must be 230 volte or greater.

When the switch is turned "on" the vibrator makes and breals contact at point "A." This constitutes the driving action of the unit, and is in no way connected with the other circuits. The primary vibrator functions to connect the input bow voltage eurrent first across one-half and then across the other half of the primary of the transformer. This results in a pulsating direct current applied to the primary in an alternating disection. The result is en A. C. voltage emanating from the secondary of the transiormer; as the transformer has a step-up ratio the A. C. secondary voltage is considerably greater than the primary. The secondary vibrator functions in a similar manner as that on the primary side, so that by reversing the alternations applied to the load, a pulsating D. C. is obtained. After filtering, this is used as plate and grid supply to all Radiotrons.

(1) Spring and Contact Adjustments Limits.

Proper adjustments of the various contacts are made in the following order and manner:

1. With 3 and 10, Figure I, firmly held against their respective stops and with 3 and 5 in contact with 8 and 10 respectively, the air gap between 1,6 and 2,7 shall be $0.015^{\prime \prime}$ plus or minus $0.0145^{7 \prime}$. On no particular unit however, shall the differences between the two air gaps exceed $0.005^{\prime \prime}$.

Model-84 1934-35 1.F. 460 Kc .
similar to Victor Model 143

Model-104

Location of Adiustable Capacitors

LONG WAVE R.F. AND OSCILLATOR LINE-UP CAPACITOR ADJUSTMENTS Do not remove the W - 55 radiotron from the A.V.C. socket.

Place the oscillator in operation at exactly $1400 \mathrm{~K} . \mathrm{C}$. and couple its output to the antenna ground terminal of the chassis. Set the dial scale at exactly 1410 and noise barrier at maximum

Adjust the oscillator, first detector and R.F. line-11p capacitors, C-15, C-11 and C-4 for maximum output.

Set the oscillator at $600 \mathrm{~K} . \mathrm{C}$. Tune in the signal with the receiver until a maximum deflection is obtained in the output meter. Now adjust the 600 K.C. series capacitor, C-16, until a maximum deflection is obtained in the output meter. Rock the tuning capacitor back and forth while making this adjustment. Repeat the 1400 K.C. adjustment.

SHORT WAVE ADJUSTMENTS oscillator and the receiver should both be accurately tuned to 15000 kilocycles (1450 on receiver dial) while adjustment is made to the oscillator trimmer C-18. Leave the oscillator set at this frequency and rock the tuning condenser carefully back and forth while making adjustment to second R.F. short wave trimmer C-12. If after making this adjustment on $\mathrm{C}^{-}-12$, the tuning of the receiver has appreciably changed and the oscillator signal does not come in at 1450 on the receiver dial, re-adjust oscillator short wave trimmer C-18, following this with a re-adjustment of the second R.F. short wave trimmer C-12, as above. Finally with the reoeiver tuned to the short wave oscillator signal, adjust the first R.F. short wave trimmer C-5 to give maximum output. It will be found that there are two positions of C - 5 that will give maximum output. Choose the peak requiring the most capacity while rocking the gang condenser carefully.

This receiver has two I.F. stages, one for the second detector and one for the A.V.C., but onlv two of the three I.F. transformers are tuned by adjustable capacitors and require adjustments. The stage used for the A.V.C. is inherently tuned and does not require any adjustments.

Models 254A and X 1934-35. for circuit see Victor Model 118 - Dato Sheet Victor 20. I.F. Tuning Adjustments:

Two transformers comprising four zuned circuits are used in the intermediate amplifier. These are tuned to $460 \mathrm{K.C}$. and the adjustment screws are accessible as shown
(c) Adjust the secondary and primary of the first and then the second I.F. transformers until a maximum defection is obtained. Keep the oscillator output at a low value so that only a slight deflection is obtained on the output meter at all times. Go over these adjustments a second time, as there is a slight interlocking of adjustments. This completes the I.F. adjustments.
R.F. and Oscillator Adjustments:

The R.F. line-up capacitors are located at the bottom of the coil assemblies instead of their usual position on the gang capacitor. They are all accessible from the bottom of the chassis except the $600 \mathrm{~K} . \mathrm{C}$. series capacitor, which is accessible from the top of the chassis. Proceed as follows:
(a) Connect the autput of the oscillator to the antenna and ground terminals of the receiver. Check the position of the indicator pointer when the tuning capacitor plates are fully meshed. It should be coincident with the radial line adjacent to the dial reading of 540 . Then set the Test Oscillator at 1720 K . C., the dial indicator at 1720 and the oscillator output so that a slight deflection will be obtained in the output meter when the volume control is at its maximum position.
(b) With the Range Switch at the 'in' position, adjust the two trimmers under the two R.F. coils, designated as BC in Figure 5, until a maximum deflection is obtained in the output meter. Then shift the Test Oscillator frequency to 600 K.C. The trimmer capacitor, accessible from the top of the chassis, should now be adjusted fer maximum output while rocking the main tuning capacito- back and forth through the signal. Then repeat the 1720 K.C. adjustment.
(c) Now place the Range Switch at the "out" position, shift the Test Oscillator to $18,000 \mathrm{~K} . \mathrm{C}$. and set the dial at 18 M . Adjust the two trimmer capacitors designated as SW in

Figure 5 for maximum output, beginning with the oscillator trimmer. It will be noted that the oscillator and first detector trimmers will have two positions at which the signal will give maximum output. The position which uses the lower trimmer capacitance, obtained by turning the screw counter-clockwise, is the proper adjustment for the oscillator, while the position that uses a higher capacitance is correct for the detector. The detector trimmer must be adjusted for maximum output while rocking the main tuaing capacitor back and forth through the signal. Both of these adjustments must be made as indicated irrespective of output.
The important points to remember are the need for using the minimum oscillator cutput to ubtain a deflection in the output meter with the volume control at its maximum position and the manner of obtaining the proper high frequency oscillator and detector adjustmerts.

Models B64-B634
arcuit same as VICTOR-126.B. Daka Shret-21.
DATA SHEET

Monels. 275A, Xan Y

wirs sthemuic Cixuiut Dissem ALIGNMENT INSTR
1935-36
DATA SHEET
WESTINGHOUSE-22

ALIGNMENT INSTR. ON DATA SHEET-24

Monels. 295 Xan Y
I..$=4$ EDK.C.

DATA SHEET
WESTINGHOUSE-23

W175 and W275 Rediotron Socket Re
ALIGNMENT INSTRUCTIONS FOR MODELS. 175-275 and 195-295

Figure 6 A
195 and W295 Redian Socket Readinge and Trimmer Condemeern

Checking with Tuning Wand-
Before thatine wny K.F. owellintor of firat uetectur majust menta, the eccursecy of the existing adjustmentu may be checked
with a tuning wand (Stock $N \mathrm{No} 6679$). This wand consist of with a tuning wand (Stock No. 6679). This wand conaista of
bakelite rod having a brasu cylinder at one end and a special inely divided iron insert at the other end. Innerting the cylinder the irom end incresera tes inductance. From this, it is meen the ne ir on end increamen ten inductance. From this, it is neen the wand may increase the output of the feceiver. A perfect ad just ment is evidenced by a lowering of output when either end of th wand is inverted into a coil.

I. F. ADJUSTMENTS

Although this receiver hat one I.F. stage, there are two rensformeft. each having two adjurable capaciory mequiring 460 K.C.
A cetailed procedure for making this adjurtment follown: 460 K.C. between the firat detector Connect the cutput in irat detector grid and ground loudspeaker.
(b) Place the receiver in oparation and adjuat the atation relector untll a poimt in remecteu where nu ajgnale ac heara Reduce the oscillator output uncil malight indication obtained in the receiver output indicator.
c) Refer to Fizure 6. Adjust the trimmers of the IF. aren formers until manimum output is obtained. Go over the adjurtmenta \& recond time.

This completes the I.F. adjuatments. It is sood pa zctice adjutmenta due to interiocking which always. occurs betwe the two.

R. F. ADIUSTMENTS

Four oscillator and firat detector adjustmenta are required range "C
To properly align the three ranges, ench muart be aligned individually in the order given. The preliminary set-up re-
quires that the external oacillator be colnected between the antenna and ground verminala of the receiver and the outpur indicator be connected acroos the voice coil of the loudapenker. The volume control muat be at itt maximum position and the output of the oocillator munt be at the minimurn value posible
to get an output indication undef these conditions. high frequency hands, it may be necesmary to disconnect the oscillator from the receiver and place it at a distance in order to get a nuficiently low input to the receiver.
The dial pointer murt be properly set before starting actual until it is at its maximum capacity pooation. One end of the pointer should point exactly at the horizonta! line at the low frequency end of band " A. While the other end should point end of band " A ". Eind band $6 A$.
Figure 6 A showa the location of the trimmers for each band. Care must be exercised to only adjuat the trimmers in the band under test. Figure
a) Set the tuning range awitch at " A " (Blue)
b) Tune the external oecillator to 1.500 K .C., eet the pointer
at 1,500 K.C. and adjuant the oacillator, detector and an-
Shift the erternal omecillator frequency in the $600 \mathrm{~K} . \mathrm{C}$. vignal, irreapective of neale calibratioh, and aijutut the sariab trizainar for maximus, cutput, at the same time rocking the variable tuning capacitor. Then RANGE " $\mathrm{B}^{\prime \prime}$ -
a) Set turing range switch at "B" (Oreen)
(b) Tune external oecillator to $5160 \mathrm{~K} . \mathrm{C}$.
condeneer until the pointer indicates $5160 \mathrm{~K} . \mathrm{C}$.
(c) Adjust the oreiliator, detector and antenasa trimmery for
maximum nutpont RANGE " C " "
(b) Set the tuning range switch at " C " (Red).
(b) Tune the external oxcillator to 17,000 K.C., and set the pointer at 17M. Adjust the oscillator trimmer for maxiobtained when increaning the trimmer capacitor from
(c)
(d)
(d) Retune the receiver to the oucillator, leaving the occilleter aet at 17,000 K.C. Adjurt the antennm and detector short wive trimmers for maximuun output.

Checking with Tuning Wand.-Before making any R.F. oscillator or first detector adjustment the accuracy of the present adjustments may be checked by means of the tuning wand (Stoch No 6679). The tuning wand consists of a bakelite mod having a brass cylinder at one end and a special finely divided iron insert at the other ead. Insert ing the cylinder into the center of a coil lowers its inductance, while inserting the iron ead increases its inductance. From this, it is seen that unleus the trimmer adjustment for a particular coil is porfect at alignment frequencies, inserting one end of the wand may increase the output of a particular signal. A perfect adjustment is evidenced br a lowering of output when either end of the wand is insertec into a coil.

The shivlds over the R.F. coil assembly have a hole at their top for entrance of the taning wand

I. F. TUNING CAPACITOR ADJUSTMENTS

This receiver has one I.F. stage with two trans ormers having four adjustable capacitors that may require adjustment. The transformers ure all peaked at 460 K.C

A d.tailed procedure for making this adjust ment follows:
(a) Connect the output of an exteraal oscillator tujed to $460 \mathrm{~K} . \mathrm{C}$. butween the first detector grid and ground. Connect the output indicavor across the voice coil of the loudspeaker,
(b) Place the oscillator in operation at 460 F.C. Place the receiver in operation and adjust the station selector until a point is rearhed (Position A) where no signals are heard and turn the volume control to its maximum position. Reduce the oscillator input until a slight indication is obtained in the output indicutor.
CONTINOED ON DATA SHEET- 26.

ALIGNMENT INSTRUCTIONS FOR MODEL. 185X

(c)

Adjust ach trimnor of the I.F. transformers until maximum output is btained, (;o over the adimstments a scrond time

This completes the I.F. adjustments. However, it is good practice to follow the I 1 . adjustronents with the R.F. and oscillator arljutmente dete to interlocking which alwars occers.

R. F., OSCILLATOR AND FIRST

 DETECTOR ADJUSTMENTSFour R.F. oscillator and frst detector aeljustments are required in Range "A". Three are required in Ranges " \mathbf{B} " and "C".

To properly aligr the vuriots ranges, each range must be aligned individually. The preliminary set-up requeres the external oscillator to be connected betwern the antenne and ground terminals of the receiver and the output indicator across the voice coil of the lendspeaker. The volume and sensitivaty cont:ols must be at the maximum position and thi input from the oscillator must be at the minimum value pressible to get an output indication under these ronditions. In the high frequency ranges, it may be necessary to diseonnect the oscillator from the receiver and place it at a distance in order to get a sufficiently low infut to the receiver.

The dial pointer must be properly set before starting any actnal adjustments. This is done by turning the variable capacior until it is at its maximum capacity position. One end of the pointer should point exactly at the horizontal ine at the lowe,t frequency end of Range " A " while the other end shotild point to within $1 / 64$ inch of the horizontal line at the highest frequency end of Ranare " A ".

Range "A":-

(a) Set the tuning range switch at "A"
(b) Tune the external oscillator to $1,500 \mathrm{~K} . \mathrm{C}$. , set the pointer at $1,500 \mathrm{~K} . \mathrm{C}$. and adjust the oscillator, detector and R.F. trimmers for maximum output.
c) Shift the external oscillator frequency to 600 K.C. Tune in the $600 \mathrm{~K} . C$. signal, irrespective of scale calibration, and adjust the series trimmers, marked $6 \neq 0 \mathrm{~K} . \mathrm{C}^{\text {. . Figure }} 5$, for maximum output, at the same time rocking the rariable tuning caprecitor. The:n readjust al 1,500 K.C. as described in (b).

Range "B":-
(a) Set the tuning range switch at " B "
(b) Tune the exteraal oscillator to 5,160 K.C. and set the painter at 5,160 K.C. Adjust the oscillator trimmer for maximum outpt. The trimmer should be set at the first peak obtained when increasing the trimmer capacitor from minimum to maximum
(c) Check for the image signal which should be received at approximately $4,240 \mathrm{~K} . \mathrm{C}$. on the dial. It will be necessury to increase the external oscillator output for this check.
(d) The antenna and detector trimmers should now be peaked for cuaxinum output.

Range "C'":-
(a) Set the tuning range switeh at " C "
(b) Tune the external oscillator to $17,000 \mathrm{~K} . \mathrm{C}$. and set the pointer at $17 \mathrm{MC}$. . Adjust the oscillator trimmer for maximum output. The rimmer should be set at the first peak obtained when increasing the trimmer capacitor irom minimum to maximum
(c) Check for the inage signal, which should be receved at approximately 16,080 on the dial. t may be necessary to increase the external ascillator output for this check.
(d) Reduce the capacity of the detector trimmer, while rocking the tuning capasitor, until the signal disappears. The first detector cireuit is then at the oscillator frequency and the W.GA7 tube is blocked. Then increase the eapacity of the detector trimmes, while rocking the tuning capacitor, until the signal is peaked for maximum output
(e) The antenna trimmer should now be peaked for maximum output. It is not necessary to rock the main tuning capacitor while making this adjustment.

MAGNETIC PICKUP CONNECTIONS

A Terminal Board is provided at the rear of the chassis for adding phonograph facilities to this instrument. Figure 7 shows the connections that will be required.

FIDELITY LINK

It will be noted that a small link is mounted on the rear apron of the chassis. The purpose of the link is to increase the low fiequency output of the receiver when open.

VOLTAGE READINGS

The following voltages are those at the various tube sockets while the receiver is in operating condition. No allowance has been made for currents rawn by the meter, and if low-resistance meters are used, such allowances must be made.

Reproducer Wiring

Magnetic Pickup Connections Ploce Tuning lange Switch in A position during record raproduction

W255 Schematic Circuit Diagram
-Ors some chassis W-6A7 and W-78 are used instead of W-6A8 and W-6K 7 respectively

- Or early production pin No. 1 of 6A8 was connected to cathode instead of gound

W465 Schematic Circuit Diagram

- On a very few sets W-6A7 and W-78 are used instend of W-6A: and W-6K7 respertively.

W255 Radiotron Socket Readinga and Trimmer Condensers ($\mathrm{F} \mid \mathrm{Y}^{\text {a }}$)
ALIGNMENT INST. FOR MODELS_255A 255X, 255Y,465A,4Б5X

Checking with Tuning Wand-
Beiure making any R.F. zwill etme on firut dotector adjubtments, the accuracy of the exieting adjurtmenta may be checked with A tuning wand (Stock No. 6679). This wand contiats of a bakelite rod having a bress cylinder at one end and a apecial fnely divided iron insert at the other end. Inserting the cylinder in inductence. From thi it is meen that he iron end increases ita inductance. From thia, it is meen that wand may increase the output of the receiver. A perfect adjuatment is evidenced by a lowering of output when either end of the and is inserted into a coil.
The ahield over ench R.F. coil anembly has a hole at its top entrance of the tuning wand.
I.F.

Athough this receiver has one I.F. stage, there are two ranaformert, each having two adjuutable capacitors requiring 460 K.c.

Actailed procedure for making this adjust ment follows:
Connect the output of an exterat oxillator areiseing of 460 K.C. between the first detector grid and ground. Connect the
loud ppeaker.
(b) Place the receiver in operation and adjuat the station aelector untila point is reached where no signals are heard and turn the volume control to its maximum position. obe ained in the receiver output indicator.
(c) Refer to Figure 4. Adjust the trimmers of the i.F. transformers until a maximum output is obtained. Go over the adjuatments A second time.

This completer the I.F. acjuatments. It is good practice follow the I.F. adjustments with the R.F. and oocillata a the two.

R.F.

in range "BC". Two are required in range "sW"

To propecty align the two ranges, each muat be aligned individually in the order given. The preliminary set-up re

Detail of Second Detector and A.V.C. Circuit
wires that the external ocillator te sennoseed nerween the antery: and around terminals of the receiver and the outpu ndicator be connected ecroes the voice coil of the loudspeaker. output of the occillator must be at the minimurn value poomble to get on output indication under these conditions. In the
high frequency bands, it may be necemary to disconnect the high frequency bands, it may be necemary to disconnect the
acillator frotn the receiver and place it at a diotance in order to get a sufficiently low input to the receiver.

The dial pointer must be properly aet before atarting actual edjuatments. This is done by turning the variable capacito until it is at ite maximum capacity position. One end of the pointer should point eractly at the horizontal line at the low requency end of band "BC", while the other end zhould poin
to within a to within the inch of

Figure 4 ahowe the location of the trimmers for each band Care must be exercieed to only adjuat the trimmera in the band under tert.
RANGT "BC"-
(a) Set the tuning range switch at " BC "
(b) Tune the external oecillator to 1,500 K.C., net the pointer at 1,500 K.C. and adjuat the oncillator and detector trimmers for maximum output.
Shift the external oecillator frequency to 600 K.C. Tune in the $600 \mathrm{K.C}$. . signal, irrespective of scale calibratioh, yune time ruskiuid hia "ariable tunimg carneritrr. Then readjuat at $1,500 \mathrm{~K} . \mathrm{C}$. as dencribed in (b).
RANGE "SW"-
(a) Set the tuning range awitch at "sw"
b) Tune the extethal occulatur to $17,000 \mathrm{~K} . \mathrm{C}$., ans get the pointer at 17M. Adjust the ocecillator trimmer for maxinem output. The trimmer sievild be set at the feet peal oberned whon increasine the trimmer capecitor from minimum to maximun.
Check for the image signal, which will be received at done. It may bo reonemery to increnee the exterral oecillator out put for this check.
d) Retune the receiver to the oocillator, leaving the oscilator set at 17,000 K.C. Adjust the antenna (detector) shor wave trimmer for maximuinm outout.

MODELS. $B-2854$ AND Sockel Volteges

Moofls. $\begin{gathered}B-365 A \\ B-305 X\end{gathered}$ Socket Voltages
(1) Line-up Capacitor Adjustments:-

To properly align this receiver. it is ezential that a modulated
R.F. opecillator. such as Stocl No . 9050 , an out put indicator end
 ahows the location of the various line-up capecilor
J.F. Tuning Adjustments:-
uned in the intermediate amplifier. These are tuned to to 460 K . C. gend the eijumment mrews are accramile an ahown in Figure 3 .
(a) Short-circuit the antenna and ground termimian antid ture tite racciver wo that no wignnl ig heard. Set the volume control
at maximum and connect a ground to the ground terminal.
(b) Connect the tent oscillator output between the first detector control grid and chasis ground. Connect the output meter
accromes the volce coll of the lowlapeaker whil oujuat tha ocrillator output to that, with the receiver volume control at maximum, a alight deflection io oftained in the cutput

Adjust the scondary and primasiy of the firse a-d then the second 1.F. tranaformers until a maximum deflection 1 is
obtained. Keep the ocelintor output at low valu eo that
 is an slight interlocking of edjustments. This completes the
R. F. ard Oscillutar idjuatmenter

The R.F. line-up capacitora are located at the bottom of the
coil aesembliea instead of their uuul position on the coil asemblies instead of their useal position on the egng capaci-
orer. They are all creasibe from the bottomm of the chassis
oxcept the $600 \mathrm{KC}$. . except the 600 K.C. seriec capeciton, which is accewible from the
top of the chassis. Proced as follow:
(a) Connect the output of the ovillator to the antenna and indicator pointer when the tuning capacitor plates are fully
meshed. It should be coincident with the radial line adjament to the dial reading of 530 . Then set the Teat Occill tor
 output so that aslight deflection will be obtained in the out.
put meter when the volume control is at its naximum
powelt b) With

With the Range Wo R.F. coils,
deflection is Teat Oucillator frequency to 600 K . .C Ther. Then shif the citor, acceasible from the top of the chassia, thould now be adjusted for maximuma output while rocking the mein
tuning capacitor back and forth throum the signal. Then tuning capacitor back and forth throush the signal. Then
repeat the $1500 \mathrm{K.C}$. . ad juatment.
c) Now place the Range Switch at

Adjust the two trimmer capactioridedignated didiv, ano 17 M . Adjust the two trimmer capactior dedigmated an 17,000 K.C. tor trimmer. It will be noted that the oscillator and first de-
tector trimmers will have two positions at which the signal tector trimmers will have two positions at which the signal
will give maximum output. Phe pooition which uses the
lower terimmet capecitance, obtained by turning the screw Owcr trimmer capacitance, obtained by turning the screw
counter-clock wise. counter-clockwise. is the proper ndjubtment for the oscilla.
tor, while the pooition that uped hither caphectence is
correct for the detector. The detector timmmer muat be correct for the detector. The detector trimmer must b
edjuuted for maximum output while rocking the adjuated for maximum output while rocking the main
tuning capacitor beck and forth through the signal. Both of these adjustments must be made as indicated irrespectiv of output.

The important points to remember are the need for uting the
minimum oncillator ourput to
 manner of obtaining the proper high frequency occillator an
defector ediustments.

NロTES $\square N$ MDDEL.B-385 $X^{\prime \prime}$
The Model B-3B5-x is similar to the Nodel B-28\%-X except for the following:

Condensers C-88 and Case are in oreased to 2400 mind. Condenser C-28 is decreased to 3400 ment. Resistor R-15 previously in series with it is omitted. Ronistor R-1l has bean increared to 250,000 ohns. Reaistor R-14 has been increased to 6,500 ohm and connected as a
bleeder acrose the C-6 volt tap instead of acrose the $\mathrm{C}-13 \frac{1}{2}$ volt tap.

2 - W-49 Radiotrons which do not require any C bias are now used in the output stage instead of W-30 Radiotrons.

The B Battery has been reduced to 90 volts and the following changes mado in the C Battery taps: C-3 has boen changed to $\mathrm{C}-1 \frac{1}{2}$; $\mathrm{C}-4 \frac{1}{2}$ has been changed to $\mathrm{C}-3$; $\mathrm{C}-10 \frac{1}{2}$ has been changed to $\mathrm{C}-6$ and connected to the circult by means of the switch blade formerly used for connection of C-15t. $0-15_{2}^{2}$ volt tap has been removed and the grid return from the centre tap of the punin pull input trans rormer now gose directly to ground without any C blas.

The colour code for the bettery cable 1s given horewith: C+, Brown; $\Delta+$, Brown; B+ Red; Am, Black; B-, Black; C+, Green; $\mathrm{C}=1 \frac{1}{2}, \mathrm{Gr} 8$ हn; with Tellow Trecer; $\mathrm{C}-3$, Fellow; C-6, Green and Red.

ALIGNMENT INSTT. $\square N$ MDDELS. $\mathrm{B}-285 \mathrm{~A}-\mathrm{B}-285 \mathrm{X}-\mathrm{B}-365 \mathrm{~A}$

ALIGNMENT INST. DNMUDELS

TRIMMER LOCATIONS (also see below)

Model 4IOA IF: 460 Kc

The line up adjustment is made in the usual way to the adjustment screws shown in the trimmer location diagram. When making adjuatment the test oscillator frequency, receiver dial setting and switch position should correspond to the indicated line up frequency. When making I.F. adjustment the cacillator should be connected to the W-6AB control grid and ground with the antenna and ground wires shorted.

This receiver is capable of 10 K.C. separation of broadeast stations when properly adjusted.

WESTINGHOUSE-31

Alignment Procedure

There are three alignment trimmers provided in the antenna" transformes and oscillator citil tuned circuits. The i-f transformer adjustmenta are made by means of screws attarhed to molded magnetite cores. Al: of these circuits huve been accurately adjusted during manufacture and should semain properly aligsed unkss affected by abnormal conditions or altered during servicing. Loas of semuitivity, improper tone quality, and poor selectivity are the asual indications of improper alignment.

I-F Core .4djustments:

The four adjustment acriws (attached to molded magnetite cores) of the two i-f transforiners are located one on top and one on bottom of each i-f transformer. Each circuit muat be aligned to a basic frequeney of 460 kc . To do this, atrach the output indicator ucrose the loudspeaker voine coil.

Connect the output of the test oscillator ta the control grid of the W.סA8 through a .05 mid. capacitor. Connect the test oacillator ground termmal th the ground terminal of the receiver chassis. Tune the orcillator to 460 kc . Advance the receiver volume control tw its full-on position and adjust the receiver tuning control to a point, within its range, where no interference is encountered either from locill broadcast stations or from the heterodyme oscillator. Inc:ease the output of the teat oncillator until a alight indication preaent on the sutput indicator. Adjuat the two mugnetite core serewl of the second i-f tranaformer to produce maximura (peak) mdicated receiver output. Then, adjust the two magnetite core screws of the first i-f tranaformer for maximum (peak) receiver output as shown by the indicating device. During these adjustments, regulate the test oacillator output so that the indication is always as low as possible. By doing so, broednes of tuning due to a.v.c. action will be avoided. It is advisable to repeat the adjustment of all i-f magnetite core screws to assure that the interaction between them has not disturbed the original adjustment.

Broadcast Trimmer Adjustments:

Calibrate thr tuaing chial by actting the pointer to the angle of the border lane of the dial immediately below the 530 kc . calibration poist, with the two-gang tuninf. condenter in full mesh. The output indicator should be left connected to the system. Connect the test oscilator to artenns and ground terminals of thr chassis through a 200 mmfe . condenser. Adjust the teat oacillator to 1500 kc - and aet the receiver tuning control to a dial reading of 1500 kc . Leave the volume control of the receiver at its maximum position. Make aure that the Power, Range and Music Speech Switch is at ite broadcast positior.

Regulate the output of the test oacillator until a slight indication is perceptible at the receiver output. Then adjust the two trimmers, C 9 and C 2 , of the oscillator and antenna tranaformer coils (mounted on the variable condenser) so that each produce maximum (peak) receiver output. After thi maximum has been accurately obtained, shift the teat oscillator to, 600 kc . Tune the receiver to pick up this signal, diaregarding the dial reading at which it is best tceived. Then, adjust the receiver wscillator series trimmer, C10, simultaneously rocking the tuning rontrol backward and forward through the aignal until maximum receiver output remults from these combined operationa. The adjustment at $1,500 \mathrm{kc}$. should then be repeated to vorrect for any change which may have been caused by the oaciltator acries trimmer adjustment:
Police Bard Trimmer Adjustraent:
This adjustment should be made with the aame layout as the broadcast trimmer adjustment. The Power Range and Music. Speech Switch should be aet to the police band position. Set the teat oscillator dial and the receiver dial both to $2,600 \mathrm{kc}$. and adjust the police band trimmer for maximum output.

Radiotron Socket Voltages and Trimmer Locations

Reproducer Wiring Diogram

Models
 $5 / /$ P. and $5 / / / x$.
 r

 1936-37.Cnnnect thefoutput of the teat occillator to the control grid of the W. 6 A8 through a .05 mfd . capacitor. Connect the test chassie. Tune the occillitor to 460 kc . Adveace the receiver volume control to its full-on position and adjust the receiver tuning control ta a point. within its range, where no interference is encountered either from local broadcast stations of from the heterodyne oscillator. Increase the output of the test oocillat or until alight indication is present on the output indicator. Adjust the two magnetite core screwa of the eecond i-f transformer
to produce maximum (peak) indicated receiver output to produce maximum (peak) indicated receiver output. Then for movimum (peak) receiver output as shown by the indicatin Bevice Broadcast Trimmer Adjustments:
Calibrate the tuning dial by setting the pointer to the angle of the border line of the dial immediately below the 530 kc . calibration point, with the two-gang tuning condenser in full system. Connect the testorchillator to antenna and ground teracinele of the chassis through a 200 mmfl , condenser. Adjust the test oscillator to 1500 kc . and set the receiver tuhlag conarol to a dial reading of 1500 kc . Leave the volume control of the receiver at its maximum position. Make sure that the Range Selector is at its broadcast position. Regulate the output of the test oscillator until a slight indication is perceptible at the receiver output. Then adjust the two 1500 kc . trimmers (see diagram) of the oscillator and antenna transformer coils this maximum has been accurately obtained, shifi the teal oscillator to 600 kc . Tunc the receiver to pick up this signal, disregarding the dial reading at which it is best received. Then, adjust the receiver 600 kc . series trimmer, C16, simultaneously rocking the tuning control backward and forward through the signal until maximum receiver output results from these combined operations. The adjustment at $1,500 \mathrm{kc}$. should then be epeated to correct for any change which may have been caused by the oscillator series trimmer adjustment.
'Medium Wave"' Trimmer Adjustments
Use the same equipment and layout as for broadcast trimmer
adjustment. Place receiver range selector to its "mediurn wave" position with the reseiver riange selector to its "mediurn wave" test oscillator to 5000 kc .; adjust the two air dielectric trimmers (see diagram) for maximum output. Two peaks may be found on the oscillator trimmer. The peak obtained with minimum cadacity (plunger nearly out) should be used.
"Short Wave" Trimmer Adjustments
Leave the equipinent set up the same as for the hroadcast trimmer adjustment excepi that the outpul of the test oscillator oo the antenna terminal of the receiver should be connected "short wave" position and dial pointer to $17,000 \mathrm{kc}$. Tune the ceat cooillator to 17000 kc . Adjust the oscillator $17,000 \mathrm{kc}$. trimmer (see diagram) for maximum output. 'rwa peaks may be found. The geet with minimum capacity (plunger nearly
 eang tuning condenser back and forth through the signal. peaks may be found whth this circuit. The peak with maxitrum cupacit's (flunger nearly in) should be used. Check the image frequency by changing the receiver dial setting to $16.0 \hat{0} \hat{0}$ kc. The test oscillator signal should be faintly received at this position, indicating that the adjustment of the oecillator 17,000 kc. trimmer has been correctly made. No adjustment ahould be made while checking for thia image signal.

Although this recriver tas one I.F. stage. there are two transformers, each huving two adjoxtable capsicitors requiring adjustments. The transformers are all peaked, being tuned to 460 K.C.

A detailed procedure for maining this adjustment follows:
(a) Connect the ourput of an external oscillazor operating at 460 K.C. between the first detector grid and ground. Connect the output indicator across the voice coil of the loudspeaker.
(b) Place the receiver in operation and adpust the station selector untal a point is reached where no signals are heard
and turn the volume control to its maximum position. Reduce the oscillator putput until a slight indication is oblained in the receiver cutput indicator.
(c) Refer to Figure 4. Adjust the trimmers of the I.F. transformers until mazimum output is obtained. Go over the adjustrents a aecond time.

R.ANGE "BC"-

(a) Set the tuning range switin at " BC ".
(b) Tume the external oacillator tox 1,500 K.C., set the pointer at 1,500 K.C. and adjuar the ascillator, detector and anteana trimmers for maximum wutput.
ic) Shift the extemal obenlator frequency to $600 \mathrm{~K} . \mathrm{C}$. Tune in the $600 \mathrm{~K} . \mathrm{C}_{\text {. signal, }}$ irrespective of scale calibration, and adjust the scries trimmer for maximum output, at the sane time rocking the variable tuning capacitor. Then readjust at $1,5110 \mathrm{~K} . \mathrm{C}$. as described in (b)
RANGE "SH"-
(a) Set the tuning range switch at "SW'
(b) Tune the external oscillator to 17,000 K.C., and set the pointer at 17 M . Adjust the oscillator trimmer for maxiamum output. The turmer should be sut at the first peak obtained when increasing the trimmer capacitor froin minimum to maximure.
(c) Check for the image signal, which will be received at appromimately 16,080 on the dial, if (b) has been properly done. It may be necessary to increase the external oscillator output for this chreck
(d) Retune the receiver tc the oscillator, leaving the oscillator set at 17,000 K.C. Acijust the antenna and detector short wave trimmers for mazimuin output. No further adjustments are necessary.

WESTINGHOUSE-35

DATA SHEET
WESTINGHOUSE-36

Wotu--On later production the heater winding is grounded at one side instead of at centre. Grounded point is terminal No. 7 on 6 J 7 mocket. Two ine filter condensers are used (H 361760.02 Mfd .) almu); one from each bide of line tranformer to ground.

Models 813a, $813 x$, and $813 y$.

		Re ath Athon Of Cruver
OSE. cet.		- 1700kc (6) 5.50 kc (c) 5520 if (2) 1720KL (c) 5120 mc (0)

Alignment
Data on
Sheet-33

Radiotron Sacket Voltages and I.F. Trimmer Locations

runer stectron shown weat mave mation
Notes:- 1. On early production the heater winding was grounded at centre instr,ad of at contact No. 2 un the W. 6 H 6 sucket. 2. The lower end of tone control R27 was to positive plate: supply terminal instead of to-chassis trame. The wiring diagram is up-to-dase.
$1 \%=$ 460 к.с.
 Alignment Data 1936-37 on Sheet-37a.

R.F. Alignment Points

When adjusting the Air Delectric R.F. trimmers, it is necessery to use a special pool (See H-29644 in parts ist ' to slachen the lock nut on the frammer, previous to the adjustment. and to tighten it again after the adjustment. Anoiner special twol (see H-29543 in parts list) is qvailable for matting the actual asjustmert to the irtmmer. The adjustment should be made upward o downward in the plunger with a twisting motion. The special tool designid by the Canad:an Weasinghouse Company for this purpese is double ended; one end laving a pin for the R.F. adjustmersts. the other end i: a special socket screw driver for use in madsing l.F. adjustmenis.

BotTom new of chassis

AIR DIELECTRIC TRMMMERS

1F. ADJUSTMENTS USING CATHODE RAY EQUIPMENT

1. Set up the Cathode Kay Equipment in the manner recommended by the manufacturer of the equipment. The irequency modulated oscillator should be connected to the control grid cap of the W-6K7 second 1.F. Padion Mid capacitor The groundthrogh of the test oscillator output should ed side of the test osciliator ouput should The cathode ray oscillograph vertical terminala shoula be connected to points indicated on the radiotron socket voltare diagram.
2. Place the rectiver in operating condition. The fidelity control should be in the selective (counter clockwise) position, The antenna and gromid tetimnatis. shomiti
be short circuited and if necesisaly the ging condenser adjusted so that no stray sigmals are fed into the 1.F. anplifier during the adjustment.
Adjust the test oscillatom to supply a 4 th $\mathbf{K c}$. audio-modulated signal. Increase the output of the test usilluter until a deflemion is noticeable on the oscillugraph screch. The figures obtained repesent several waves: of the detected signal, ther amplitule of which may be observed as an indication of output. Cause the wave image formed to be spread completely across the scticen by adjusting the proper oscillograph controls.
3. Adjust the two magnetite screws of the third I.F. transformer (see radiotron socket voltage and I.F. trimmer location diagram) to produce maximum vertical deflection of the oscillograph image. This adjustinent places the transformer in exact resonance
with the 460 Kc . signal. with the 460 Kc . signal.
4. Set up the cathode ray and test oscil. lator equipment in the standard . namner to provide a frequency modulated siznal and a "double trace" image.
5. Adjust the frequency of the test oscillator until the two traces move together and overlap with their highest points exactly coinciding.
6. Now readjust the two maknetite core nciews on the third I.F.transformer so as 10 cause the two traces on the oscliiograph screen to coincide throughout their lengths and have maximum ampllude.
7. Without altering the sijustmens of the apparatus, shift the "Ant." output of the test crecillator to the control grid cap of the W-6K7 firat I.F. padiotron (with grid lead in place), through the .001 mfd . capacitor. Adjust the test oscillator ontput so that the amplitude of the image is approximately
same as used for adjustment (σ) above.
8. The two second 1.F. Iransformer magnetite core screws should then be adjusted so that they cause the forward and reverse traces to become coincident throughout their lengths and have maximum amplitude.
9. Without altering the adjustments of the apparatus, shift the "Am." output of the test oscillator to the input of the 1.1 c . system; i.e., to the grid cap of the W 6L7 lirat detector (with grid lead in plate) through the .001 mfl . capaciror. Repulate the test oscidlator output so that the ampliture of the oscillograph image is approximately the sarne as used for adjustment (6) abrave.
10. The two first 1.1\% Iranstormer magnetite core screws shoult then be edjusied so as to cause the forwald and I cuerse waves is hecome coincident thrmp;but theit leneths and have maximum amplitude.
11. Note width of oscollongiblicic image at a point which is 50% of inatsinum amplitude Turn receiver hatelity rimital to extreme clockwise position (hish liftelity pusition) Note width of oscillogroplic image at a point which is 50% of maximulu' amplititulc. Under normal conditions the latter zucisurement should be approxinately 50% gicalter in whith than the former meanurement. The imake sho humped. These cond width of proper a mplifier.
12. Turn range selector to "Medium wave" position and notr increase in ampli tude. The amplitude should increase several times. It may be necessary to decrease out
13. In is preterable to wie an RFisizna 13. It is preferable to use an R.F. signal when making adjustments to the tuning indicator I.F. transformer (fourth I.F. trans making this adjustment are included with the R.F. alignment instructions.

ALIGNNENT WITHOUT
CATHODF RAY EGOIFRENT.

IF ADNUSTMENTS.

These are similar to tho se using Cathode Ray equipment but adjusting
formax. oulput indication only. formax. output indication only.

R.F. ADJUSIMENI

Before attempting R.F. alignmont it is necessary to set the pointer in the correct position with relation ta the gang condenser plates. This is done by seting the poiner immediately below the 530 K.C. calibration point, with the gang tuning condenser in full point,
mesh.
"Broadcast" Trimmer Adjustments: nected to the system. Connect the test
oscillator to antenna and ground terminals of the chassis through a 200 mmfd . con denser. Adjust the test oscillator to 1500 kc . and set the recelver tuning controi to a dial reading of 1500 kc . Leave the volume oontral of the receiver wite meximum posi tion. Make sure that the Range Selector is at its broadcast position. Regulate the output of the test oscillator until a shight indica tion is perceptible at the receiver outpur. tiagram) of the oscillator detector and diagram) ransformer coils so that and produces maximum (peak) peceiver output After this maximun has been accurately obtained, shife the test oscillutor to 600 kc . Tune the recciver to pick up this signal, disregarding the dial reatl. ing at which it is best received. When. adjust the perefivep 600 kc . serieg trimmer, simultaneously rocking the cuning control backward and forward through the sigual until maximum recciver output results from these combined operations. The adjustment at 1500 kc . should then be repeated to correct for any change which may have been caused by the oscillator series triminer adjustment.
Tuning Indicutor I.F: Adjustment:
This adjustment can most conveniently be made when the radio set is checked on broadcast after completing the R,F. alignment. No test oscillator or output indicator is required. With the antenna connected to the receiver tune in a fairly strong signal on the broadeas band (not necessarily a local indicator tune the receiver by ear very care fully to secure the best quality of reproduc toh. Leave the recelver zuned to this point and aut the two magnetic core screwe of the fourth (tuning indicator) IF. transformer to secure maximum resonance indication of the W-6ES turing tube. The receiver may now be tuned by an unskilled operator using the W-6ES resonance indicator to securc the same degree of fine tuning as a skilled operator secures without the use of the indicator.
"Medium Wave" Trimmer Adjustment:
Use same equipment and layout ay for "broadcast" alignment, Place the receiver range selector switch to its "medium wave" Tune the the dial pointer set at sown Kc. the oscillator 5000 Kc . atr-trimmer to prodace maximum output. Two peake may be found with this circuit; the peak with minimum capacitance (plunger nearly out) cheuld he ured. Tighten locknut. Adjust the detector 5000 Kc . air-trimmer for maximum output while slightly rocking the gang condenser. Two peaks may be found with
this circuit; the peak with maximum capacitance (plunger nearly in) should be used. Tighten locknut. Adjust the R.F. $5000 \mathrm{Kc}(X)$ alr-timmer to produce maximum autput. Tighten locknut.
"Short-Wrare" Trimmer Adjuatmenta
Connect the "ANT" output of the test oscillator to the antenna terminal of the receiver through a 400 ohpa resistor. Set the receiver range selector switch to its "short wave" position and its dial pointer to 17000 Kc . Adjust the test oscillator to 17000 Kc . Adjust oscillator 17000 Kc trimmer until max be found with this circuit. The peak may be found with this circuit. The peak out) should be used. Tighten locknut. Adjust detector 17000 Kc . trimmer until maximum output is reached while slightly rocking the eang endenser. Two peak may he found with this circuit; the peak with maxi mum capacitance (plunger nearly in) should be used. Tighten locknut. Adjust the R.F. (X) 17000 Kc . trimmer until maximum output is reached, while slightly rocking the gang con denser. Two peaks may be found with this circuit; the peak with maximum capacitance (plunger nearly in) shouid be used. Tighten locknut. Check the image frequency by changing the receiver dial setting to 16080 Kc.; the image signal should be received at this position, indicating that the adjustments have been correctly made. No adjustments should be made while checking for the image

signal

Alignment Data MODEL W-15/6X ModeLs 10/5 X Y

NOTE:- FOR MODELS $1015 x+Y$ anlly (x) Adiust ANT not R.F
(a) Reter to (θ) not (σ)
(o) High fidelity switch should bein cquater-clockwise
position.

SCHEMATIC CIRCUIT FOR MODEL W-IEIGX ON OATA SHEET-N SCHEMAYIC CIECUIT FOR HODELS
$1015 X$ OID ON DITA SHEET:-39.

WHEN ALIGNING THE R.F. CIRCUITS, THE CHASSIS BOTTOM SHIET,D MUST BE IN RLACE ON TH CHASSIS AND SECURELY FASTENED WITH ALI OF THE RFTAINING SCREWS.

Voltage readings : aken with a Weston type 566 tester or high resistance Voltmeter. Mantal volume control in maximun pasition and antenna and ground disconnected. Line voltage 112.

[^0]: -

[^1]: World Radio History

[^2]: DETAILS OF

 ## MODEL. $8 / /$

 LEFT- CHPSS/S LAVOUT. BELOW-TRIMMER LOCATIONS. CIRCUIT FOR QII ON DATA SHEET-37

[^3]: Woter-BATTERY DRAIN ATG'GOLTS IS-BGAMPS.

[^4]: variona Aligning Capacitors.

[^5]: -Courtesy Victor Talking Machine Co. Limited.

