Distribution of This Issue-49,000 Copies

DECEMBER, 1949

TV SIGNAL STRENGTH VERSUS ANTENNA HEIGHT By ARNOLD B. BAILEY

In the standard broadcast band (5501600 kc), it is usually immaterial how high the receiving antenna is placed above the earth. The signal strength remains quite uniform with elevation. At television frequencies, cancellation of the signal at the receiving antenna because of reflections of the earth becomes a problem, as the receiving antenna is raised above ground.

As we leave the surface of the earth, we find ourselves in a region of "interference" of at least two waves. One of these is the "direct" wave which leaves the transmitting station and travels to the receiving antenna by a direct path. The second wave is that which leaves the transmitting antenna and travels toward the surface of the earth from which it is reflected at an angle, and then strikes the receiving antenna. Whether these two signals will aid each other, or cancel each other, or create a condition in between,

Editors Note: This material is an abridged excerpt of the same subject as found in "Theory and Prac. tice of $30-1,000 \mathrm{Mc}$ Receiving Antennas," a forthcoming book which has been written by the author of this article and will soon be published by John F. Rider Pub. lisher, Inc.
is the matter of importance. At ground level, cancellation is complete and the signal is zero. For the first few feet above the surface of the earth, cancellation gradually becomes less, and as the height increases, the signal becomes stronger. Soon a maximum is reached.
It is above this inst maximum or critical height that cancellation and a corresponding minimum signal again occur. As the receiving antenna is raised higher
and higher, we successively arrive at high. signal and low-signal points. The spacing between these minima and maxima points is expressible in feet, and this spacing will be unique for each receiving site.
As to the distance above earth where this phenomenon may be observed, it has been found that several thousand leet up, these nonuniform spots appear. An example of this is shown in Fig. 1. This graph depicts a typical case of the behavior of such waves over what is normally said to be the "low band" and "high band" in the present-day television channels, and the proposed 500 to $890-\mathrm{Mc}$ band. It will not apply to all receiving locations, but is given to indicate the broad trends. It is important to appreciate the value of this graph from the broad aspect rather than the exact conditions at any one receiving site, on any one specific channel within these bands. It is very interesting to (Please turn to page 8)

Television Changes

Muntz M-169

This chassis appears on page $3-4$ of Rider's TV Manual Volume 3. When a picture fails to fill the mask in height completely, it is due to the slightly high value of the vertical-size resistor in the plate circuit of the 6SN7 tube. If changing the 6SN7 tube does not correct this, the following change is suggested:

The vertical-size resistor, 1.5 megohms, connected to pin 4 of the 6SN7 tube must be lowered in value to 1.2 megohms. Remove the 1.2 -megohm resistor between pins no. 1 and no. 8 on the 6AU6 tube (video amplifier) and replace it with the 1.5 megohm resistor, replacing the 1.5 -megohm resistor in the plate circuit of the 6SN7 with the 1.2 -megohm resistor. This change applies only to chassis below serial number 24400 in 10 and 12 -inch tubes, and below serial number 31254 in 16 -inch tubes.

If the picture appears to bounce up and down, the addition of a 33,000 -ohm resistor to the vertical hold circuit, connected between the $0.004-\mu \mathrm{f}$ capacitor and pin no. 1 of the 6 SN 7 tube, will help to stabilize the circuit. The resistor is listed as Part No. RC-330-18 Resistor, carbon, 33,000 ohms, $\pm 10 \%, 1 / 2$ watt. This change has been incorporated in chassis above serial number 36000 in the 10 and 12 -inch tubes. and in chassis above serial number 25969 in the 16 -inch tubes.
If a "frying sound" comes from the rear of the cabinet, it is due to a slight corona condition (arc) that exists from the lighvoltage leads to ground beneath the 1B3 tube socket. To correct this, connect a $500,000-\mathrm{ohm}$ resistor across pins no. 2 and no. 4, and the high-voltage leads to pin no. 4. The high-voltage filter now connects to socket pin no. 2 and the filament leads connect to pins no. 2 and no. 7 , as shown in the accompanying diagram. The air space will be increased and prevent the high voltage from arcing to ground. This change applies to chassis below serial number 31886 in 12 inch tubes, and to chassis below serial number 24419 in 16 -inch tubes.

The bottom view of the 1 Bs socket for Muniz M-169.

U.S. Television

The Model 15 inch receiver that appears on changes pages C. 24 of Rider's TV Manual Volume 2 is designated as T15823.

Securs 9119, 9120

These models appear on pages $3.23,24$ through S-gs of Rider's TV Manual Volume s. The new models are being shipped with a centering ring in place on the neck of the picture tube. The centering ring is used to center the raster within the picture tube mask. A centering action of approximately $3 / 4$ inch in any direction may be obtained by rotating the ring around the neck of the picture tube. Proper centering is accomplished by correctly adjusting the focus coil position and rotating the ring as required.

Pilot T-531

The schematic for this model is identical to that given for the T-530 Series which appears on pages 18-1.2 through 19-5 of Rider's Manual Volume XVIII.

RIDER TV MANUALS YOLUMES

Certified Radio 49-710

This madel is the now number for Model 49-10 that appears in Rider's TV Manual Volume 2 on pages 2-1 through 2-23.

Westinghouse H-196

This model appears on pages s-1 through \$-18 of Rider's TV Manual Volume S . Early chassis used a $5 \mathrm{Z4} 4$ tube as a lowvoltage rectifier. In later production a 5 V 4 G , which has a higher current rating, was used in place of the 5Z4. To prolong tube life in the early chassis, it is recommended that the 524 low-woltage rectifier be replaced (direct substitution, no wiring change required) by a 5 V 4 G .
In weak signal areas the sync may be improved by replacing the 12 AU 7 sync amplifier tube, used in early chassis only, with a 12AT7, which will provide greater sync amplitude. This change is a direct substitution, and no wiring changes are required.
Under very low line-voltage conditions, the picture width may not be sufficient even though the width control is at maximum. If this is the case, check the code number of the deflection yoke. This number is located under the "V" number on the yoke. If the number is $98,108,11$, replace the yoke with one carrying any other code.
Hun in the audio section may be reduced by adding a $30-\mu \mathrm{f}$ capacitor, V . 6570 , across C99 which is connected between the screen of the 6AQ5 audio out. put tube and ground. This change has been incornorated in later production.

Hallicrafters T-54, 505, Run No. 1

These models appear on pages 1-1 through 1-29,50 of Rider's T'V Manual Volume 1, on pages C2.\& through C\&s of Rider's TV Manual Volume 2, and on CS-2 of Rider's TV Manual Volume 3. The alignment frequencies should read 24 Mc i-f adjustment for the video detector, 25 Mc i-f adjustment for the 2nd i-f amplifier, 23 Mc i-f adjustment for the 1st i-f amplifier, and 26 Mc i-f adjustment for the mixer.
Hallicrafters is now using reference numbers which differ from those that appear on the schematic on pages $1.29,30$ of Rider's TV Manual Volume 1. The complete parts list for T-54, 505, Run No. 1 with Hallicrafters' numbers and the corresponding Rider numbers is given below:

Referen Rider's	ce $N u m b e$ Hallicraf	Description ters'	Hallicrafters' Part Number
$\begin{aligned} & \text { C100A. } \\ & \text { CI } 12 \mathrm{~A} \end{aligned}$	C-1	Trimmer assembly, osc. stage, 13 sections	44B357
$\begin{aligned} & \text { C100B- } \\ & \text { CI12B } \end{aligned}$	C-2	Trimmer assembly, mixer and r-f amp. stage, 13 sections	44B358
$\begin{aligned} & \text { C100C- } \\ & \text { C112C } \end{aligned}$	C-3	Trimmer assembly, mixer and r-f amp. stage, 13 sections	44B358
$\begin{aligned} & \text { C-83, } \\ & 88,85, \\ & 93,8,71 \end{aligned}$	$\begin{aligned} & \text { C-4, } \\ & 7,9,11, \\ & 36,78 \end{aligned}$	$\begin{aligned} & 4.7 \mu \mu f, 500 \nabla, \\ & \text { bakelite } \end{aligned}$	47A160-6
C-90,53	C-5,49	$10 \mu \mu \mathrm{f}, 500 \mathrm{v}$ bakelite	47A160-11
C-89,87	C-6,8	$\begin{aligned} & 3.3 \mu \mu \mathrm{f}, 500 \mathrm{\nabla} \text {. } \\ & \text { bakelite } \end{aligned}$	47A160.5
C-86	C-10	$\begin{aligned} & 2.2 \mu \mu f, 500 \text { v, } \\ & \text { bakelite } \end{aligned}$	47A160-4
$\begin{aligned} & \text { C-84 } \\ & 91,92 \end{aligned}$	$\begin{aligned} & \text { C-12 } \\ & 13,14 \end{aligned}$	$39 \mu \mu \mathrm{f}, 500 \mathrm{\nabla}$. ceramic	47B20390K5
$\begin{aligned} & \text { C-59, } \\ & 57,47 \\ & 24,25 \end{aligned}$	$\begin{aligned} & \text { C-15, } \\ & 48,55, \\ & 68,69 \end{aligned}$	$\begin{aligned} & 100 \mu \mu \mathrm{f}, 500 \mathrm{~V}, \\ & \text { ceramic } \end{aligned}$	47B20101K5
$\begin{aligned} & \text { C-60 } \\ & 66.70 \end{aligned}$	$\begin{aligned} & \mathrm{C}-16 \\ & 21,26 \end{aligned}$	$\begin{aligned} & 0.02 \mu \mathrm{f}, 200 \text { v, } \\ & \text { tubular } \end{aligned}$	46AU203J
$\begin{aligned} & \mathrm{C}-80,+9 \\ & 51,48 \end{aligned}$	$\begin{aligned} & \text { C-40,17, } \\ & 52,53 \end{aligned}$	$\begin{aligned} & 0.25 \mu \mathrm{f}, 200 \text { v, } \\ & \text { tubufar } \end{aligned}$	46AT254J
$\begin{aligned} & \text { C-65 } \\ & 4,5,79 \end{aligned}$	$\begin{aligned} & \text { C-22,32, } \\ & 34,41, \end{aligned}$	$\begin{aligned} & 1,000 \mu \mu \mathrm{f}, 150 \mathrm{v}, \\ & \text { ceramic } \end{aligned}$	47B20A102N1
74,72.	42,44,		
55,81,7,	45,46,		
33,44,	36,79,		
+3,42, 41,40,	86,87,		
37,38,39	$\begin{aligned} & 90,91, \\ & 92,93 \end{aligned}$		
C-63,50	C-19,54	$\begin{aligned} & 5 \mu \mathrm{f}, 50 \mathrm{v} \\ & \text { electrolytic } \end{aligned}$	45A109
C-64	C-20	$330 \mu \mu f, 500 \mathrm{v}$ ceramic	47B0331K5
$\begin{aligned} & \text { C-67,68, } \\ & 54,22, \end{aligned}$	$\begin{aligned} & \mathrm{C}-23,24, \\ & 51,66 \end{aligned}$	$\begin{aligned} & 0.05 \mu \mathrm{f}, 200 \nabla, \\ & \text { tubular } \end{aligned}$	46AU503J
C-69	C-25	$\begin{aligned} & 0.01 \mu f, 200 \text { v, } \\ & \text { tubular } \end{aligned}$	46AU102J
C-58	C-27	$\begin{aligned} & 1-\mu \mu f, 500 \mathrm{v} \text {, } \\ & \text { bakelite } \end{aligned}$	47A160-2
C-1,2	C-30,31	$47 \mu \mu \mathrm{f}, 500 \mathrm{v}$, ceramic	47B20470K5
C-6	C-33	$\begin{aligned} & 1.5 \mu \mu f, 500 \text { v, } \\ & \text { bakelite } \end{aligned}$	47A160-3
C-75	C-35	$\begin{aligned} & 0.68 \mu \mu \mathrm{f}, 500 \mathrm{v} \\ & \text { bakelite } \end{aligned}$	47A160-1
C-9	C-37	Trimmer, fine tuning	48A199
$\begin{aligned} & \text { C-76 } \\ & 78,56 \end{aligned}$	$\begin{aligned} & \text { C-38 } \\ & 39,47 \end{aligned}$	$50 \mu \mu \mathrm{f}, 500$ т. ceramic	47B20500K5
$\begin{aligned} & \text { C-52, } \\ & 36,45 \end{aligned}$	$\begin{aligned} & \text { C-50 } \\ & 83.84 \end{aligned}$	$0.1 \mu \mathrm{f}, 200 \mathrm{v}$, tubular	46AU104J
$\begin{aligned} & \mathrm{C}-11 \mathrm{~B} \\ & 11 \mathrm{~A} \end{aligned}$	$\begin{aligned} & \text { C-57A, } \\ & 5713 \end{aligned}$	$60-30 \mu f, 450-300$ $\mathrm{v} \text {, electrolytic }$	45B126
$\begin{aligned} & C-13 A, \\ & 13 B \end{aligned}$	$\begin{aligned} & \mathrm{C}-58 . \mathrm{A}, \\ & 58 \mathrm{~B} \end{aligned}$	$40-40 \mu \mathrm{f}, 300 \mathrm{v},$ electrolytic	45B125
$\begin{aligned} & C-12 A, \\ & 12 B \end{aligned}$	$\begin{aligned} & \text { C-59A, } \\ & 59 B \end{aligned}$	$\text { 30-30 } \mu \mathrm{f}, 200 \text { т. }$ electrolytic	45B123
$\begin{aligned} & \text { C-10. } 1 \text {, } \end{aligned}$	$\begin{aligned} & \mathrm{C}-60 \mathrm{~A}, \\ & 60 \mathrm{~B} \end{aligned}$	$\begin{aligned} & 100-100 \mu \mathrm{f}, 150 \\ & \mathrm{v}, \text { electrolvtic } \end{aligned}$	45B124

Television Changes

$\begin{array}{ll}\text { Rider's } & \text { Hallicrafters } \\ \mathrm{C}-14,15 & \mathrm{C}-61,62 \quad 0.005 \mu \mathrm{f}, 200 \mathrm{v}\end{array}$ tubular
$\begin{array}{ll}\text { C-17, } 19, & \text { C-63,65, } \\ 23,30,31 \\ 67,76,77 \\ \text { tubular }\end{array}$ $\begin{array}{lll}\text { C-18, } & \text { C-64, } & 0.01 \mu \mathrm{ff}, 600 \mathrm{v}, \\ 82,46 & 75,85 & \text { tubular }\end{array}$
 $\begin{array}{lll}\mathrm{C}-20,21 & \mathrm{C}-73,74 & \begin{array}{l}0.05 \mu \mathrm{f}, \\ \text { tubular }\end{array} \\ \mathrm{C}-32 & \mathrm{C} & 000 \\ & \text { Trimmer }\end{array}$
$\left.\begin{array}{llll}\text { C-32 } & \text { C-80 } & \begin{array}{l}\text { Trimmer, adjust- } \\ \text { able, hv osc. }\end{array} & \text { 44A359 } \\ \text { C-34,35 } & \text { C-81,82 } & \begin{array}{l}\text { 0.001 } \mu \text { f, } 6,000\end{array} & \text { 46A146 } \\ \text { V, tubular }\end{array}\right)$
C77,3 Omit
C-18,28, $1,000 \mu \mu \mathrm{f}, 150$
47B20A102N I
47A160-5

Hallicrafters number C. 18 has been inserted from the junction of Rider's num-
bers R8 and R9 to L29 and ground. C28 has been inserted between the antenna and the junction of Rider's numbers Cl and L32. C29 has been inserted between the antenna and the junction of Rider's numbers L32 and C2. Rider's number C73 has been changed to Hallicrafter's numbering, C 43 , and the value has been changed to
$1.000 \mu \mu \mathrm{f}$. The location of the 7JP4, V13, has been changed to the junction of Rider's number C 40 and the 6SH7-5 (audio) and the 6X5 (rect.) C94 has been inserted between the junction of the new location of the 7JP4 and the 6X5 and gıound. The value of Hallicrafters' C96 (Rider's C27) has been changed to $3.3 \mu \mu \mathrm{f}$. C 97 has been inserted in parallel with C 96 . Reference Numbers Description $\left.\begin{array}{c}\text { Hallicrafters' } \\ \text { Rider's Hallicrafters }\end{array}, \begin{array}{c}\text { Part Number }\end{array}\right]$ R-110 R-1 $\begin{aligned} & 1,000 \text { ohms, } \\ & \text { carbon, part of }\end{aligned}$ carbon
R-11 R-2 ${ }^{2,200}$ ohms, $1 \mathbf{w}$, carbon
R-112 R-3 $\begin{aligned} & \text { 3,300 ohms, } 1 \\ & \text { carbon, part of }\end{aligned}$
R-49 R-4 $\begin{aligned} & \text { L-10 } \\ & 3,300 \text { ohms, } 1 \\ & \text { w, }\end{aligned}$

	R-5	2,200 ohms, 1 w , cazbon, part of L-7	
	R-6	3,300 ohms, 1 w , carbon, part of L-6	
R-46	R-7	1 megohm, 1 w , carbon, part of L-4	
R-47	R-8	1 megohm, 1 w, carbon, part of L-3	
R-48	R-9	1 megohm, 1 w , carbon, part of L-2	
R-108	R-10	1 megohm, 1 w, carbon, part of L-9	
R-109	R-11	1 megohm, 1 w, carbon, part of L-5	
R-114	R-12	1 megohm, 1 w, carbon, part of L-1	
$\begin{aligned} & \text { R-94, } \\ & 69.27 \end{aligned}$	$\begin{aligned} & \text { R-13, } \\ & 55,91 \end{aligned}$	150,000 ohms, $1 / 2 \mathrm{w}$, carbon	RC20AE 154 M
R-96,99,	R-14,18.	33,000 ohms,	RC20AE333M
$\begin{aligned} & 102,66, \\ & 38,17 \end{aligned}$	$\begin{aligned} & 21,52 \\ & 62,76 \end{aligned}$	1/2 w, carbon	
R-95	R.15	12,000 ohms, $1 / 2 w$, carbon	RC20AE123K
R-97,98	R-16.17	10,000 ohms, $1 / 2 \mathrm{w}$, carbon	RC20AE 103J
R-100	R-19	1 megohm, volume control	25B721
$\underset{1,3}{\mathrm{R}-101,}$	$\underset{\mathbf{2 6 , 2 7}}{\mathbf{R}-20}$	150 ohms, $1 / 2 \mathrm{w}$, carbon	RC20AE151M
$\underset{22}{\text { R.103, }}$	${ }_{83}^{\mathrm{R}-22,}$	$680,000 \mathrm{ohms}$, $1 / 2 \mathrm{w}$, carbon	RC20AE684M
R-104	R-23	100,000 ohms, $1 / 2 \mathrm{w}$, carbon	RC20AE104M
R-105	R-24	470,000 ohms, $1 / 2 \mathrm{w}$, carbon	RC20AE 474 M
R-106	R-25	$100 \text { ohms, } 1 \mathrm{w} \text {, }$	RC30AE101M

 R-59 R-48 $\quad \begin{array}{ll}1 / 2 w, \text { carbon } \\ 1,000 \text { ohms, } w w, \\ \text { contrast coutrol }\end{array}$

R-64,67 R-50,54 330,000 ohms.
R-93 R-51 $\quad 1 / 2, w$, carbon
82,000 ohms,
R-65 R-53
R.800 ohms,
$\begin{array}{lll}\text { R-70 } & \text { R-56 } \quad \begin{array}{l}\text { 1/2 w, carbon } \\ 25,000 \text { ohms, } \\ \text { brightness con }\end{array}\end{array}$
R-9 Omit
R-1 3 R-59 22,000 ohms,
R-40,18, R-60,77, $\begin{aligned} & 1 / 2 \mathrm{w}, \text { carbon } \\ & 100,000 \text { ohms }\end{aligned}$

R-39,20 R-61,79 47,000 ohms,
R-36 1 1 w, carbon
$\begin{array}{rr}\text { R-36,21 R-63,81 } \\ & 680 \text { ohms, } \\ 1 \mathrm{w}, \text { carbon }\end{array}$

| R-35 R-64 $\quad \begin{array}{l}\text { R }\end{array} \begin{array}{l}\text { (w, carbon } \\ 500,000 \text { ohms, } \\ \text { horizontal control }\end{array}$ |
| :--- | :--- |

R-34 R-65 270,000 ohins,
R-41,42 R-67,68 47,000 ohms,
R-30,29 R-69,70 2 w , carbon
$1 / 2 \mathrm{w}$, carbon
R-31 R-71 $\begin{array}{ll}220,000 \text { ohms, } \\ 1 / 2 \\ \text { w, carbon }\end{array}$
R-10 R-72 680 ohms,
$\begin{array}{lll}\text { R-11 R-73 } & \begin{array}{l}2 \mathrm{w} \text {, carbon } \\ 18 \mathrm{ohms}, 2 \mathrm{w},\end{array}\end{array}$
carbon
R-12 R-74 1,200 ohms,
R-15 R-75 470 ohms
R-19 R-78 1.5 megolims,
R-16 R-80 472 , carbon
$\begin{array}{lll}\text { R-16 } & \text { R-80 } & 4,700 \text { ohms, } \\ & & 1 / 2 w, \text { carbon }\end{array}$
R-107 R-82 $\begin{aligned} & \text { 500,000 ohmss } \\ & \text { vertical control }\end{aligned}$
R-23 R-84 $\begin{gathered}2.5 \text { megohms, } \\ \text { height control }\end{gathered}$
$\begin{array}{ll}\text { R-26 R-87 } & 2,700 \text { ohms } \\ \text { l } w, \text { carbon }\end{array}$

R-87	R-90	$\begin{aligned} & 120,000 \text { ohms, } \\ & 1 \text { w. carbon } \end{aligned}$

R-86,85 R-92,93 3.9 megohms,
R-84 R-94 5 megohms,
R-83,82, R-95,96, 4.7 megohms, $76,72100,1061 \mathrm{w}$, carbon R.81,80, R-97,98, 3.3 megohms, $\begin{array}{ll}\text { R.81,80, R.97,98, } \\ 78,79 & 101,302 \\ \text { i megohms carbon }\end{array}$ $\begin{array}{lll}78,79 & 101,102 & 1 w, \text { carbon } \\ \text { R-77 } & \text { R-99 } & 5.6 \text { megohms }\end{array}$ $\begin{array}{lll}\mathrm{R}-77 & \mathrm{R}-99, & 5.6 \text { megohm } \\ 74 & 104 & 1 \mathrm{w}, \text { carbon }\end{array}$ R-75 R-103 5 megohms, ve tical pos
control control
5 megoh horizontal position control
18 ohms, 10 w ,
68 ohms, 2 w , 68 ohm
carbon
Reference Numbers Description $\begin{array}{lll}\text { R-2, } & \text { R-28. } & 2.2 \text { megohms, } \\ 14,28 & 32,88 & 1 / 2 \mathrm{w},\end{array}$ $\begin{array}{lll}14,28 & 32,88 & 1 / 2 \mathrm{~W}, \text { carbon } \\ \text { R-4 } & \text { R-29 } & 10,000 \text { ohms, }\end{array}$ $\begin{array}{lll}\text { R-5, } & \text { R-30, } \\ 45,44, & 36,37\end{array} \quad 100$ ohms,
$\begin{array}{ll}\text { R-6,58, } \\ 63,32 & \mathbf{R}-31,44,1 \text { megohm, } \\ 49,66\end{array}$ $\begin{array}{lll}\text { R-7, } & \text { R-33, } & 27,000 \text { ohms, } \\ 51,52 & 39,40 & 14\end{array}$ R-50,53 R-34,35 120,000 ohms,

R-55 R-41 | 1 megohm, $1 / 2 \mathrm{w}$, |
| :---: |
| $\begin{array}{c}\text { carbon, part of } \\ \text { L-19 }\end{array}$ |

R-56 R-42 560,000 ohm

RC20AE 564 M
RC20AE562K
Hallicrafters' RC20AE 225M

RC20AE103M
RC20AE 101 M

RC20AE105M
RC20AE273M
RC20AE124K

Reference Numbers Description Rider's Hallicrafters'			Hallicrafters' Part Number RC30AE470K
R-91	R-109	47 ohms, 1 w, carbon	
R-89	R-110	39 ohms, 1 w, carbon	RC30AE 390K
R-54	R-112	33,000 ohms, 1 w, carbon, part of L-1 8	
R-33	R-114	2.5 megohms, width control	
R-37	R-115	$470 \mathrm{ohms}, 1 \mathrm{w}$, carbon, part of L-22	
	$\begin{aligned} & \text { R-16, } \\ & 58 \end{aligned}$	6,800 ohms, 2 w , carbon	RC40AE68 2M

Hallicrafters'
Part Number RC30AE470K

RC30AE 390K

R58 is located where R9 ((Rider's num ber) was located. Resistor R116 has been added in parallel with R58 (Hallicrafters' number). C16 and R15 (Hallicrafters' numbers) have been relocated in parallel from
the cathode lead of the 6 SH 74 , audio i -f bers) have been relocated in parallel from
the cathode lead of the $6 S H 74$, audio i-f stage, to the G2 lead.

RC20AE8 22.11

Reference Numbers Rider's Hallicrafter		Description $\left.\quad \begin{array}{r}\text { Hallicrafters' } \\ \text { Part Number }\end{array}\right)$	
	T-1	Transformer, f-m sound detector	50B406
	T-2	Transformer, audio output	55B080-3
	T-3	Transformer, hvosc.	51B1038
L-1	L-1	Coil, osc. stage	$51 \mathrm{Al041}$
L-2	L-2	Coil, osc. stage	51 A1042
L-3	L-3	Coil, osc. stage	51 A1043
L-4	L-4	Coil, osc. stage	51 A1044
L-5	L-5	Coil, mixer stage	51 A1045
L-6	L-6	Coil, mixer stage	51 A1046
L. 7	L-7	Coil, mixer stage	51 A1047
L-8	L-8	Coil, mixer stage	51A1048
L-9	L-9	Coil, r-f amp, stage	51 A1049
L-10	L-10	Coil, r-f amp. stage	51 Al 1050
L-11	L-11	Coil, r-f amp. stage	$51 \mathrm{Al051}$
L-12	L-12	Coil, r-f amp. stage	51 A1052
L-31,	L-13,	Choke, r-f	53B008
27,30	24,29	(red color code)	
$\begin{aligned} & \text { L-14, } \\ & 15,16, \\ & 17 \end{aligned}$	$\begin{aligned} & \text { L-14, } \\ & 15,16, \\ & 17 \end{aligned}$	Coil, i-f amplifier	50A372
L-18	L-18	Coil, video peaking, video detector	51 A1053
L-19	L-19	Coil, video peaking, video detector	S1A1054
L-20	L-20	Coil, video peaking, video amp.	S1A1055
L-21	L-21	Coil, video peaking, video amp.	S1A1057
L-22	L-22	Coil, sync, shaping	5181040
L-29	L-23	Coil, 45 Mc , sound trap	$51 \mathrm{B1037}$
	L-25	Choke filter	$56 \mathrm{C093}$
L-26,25	L-26A,B	Choke, dual winding, hv oscillator	53A134
L-23,24	L-27A,B	Choke, dual winding, 6 C 4 oscillator fil.	53A133
L-32	L-28	Antenna coil	51A1039

RC30AE272M
RC30AE12+K
RC30AE 395M
25B723
RC30AE 775 A
RC30AE335M
RC30AE565:M
25B723

25B723

24BG180E
RC40AE680 lue, to the G2 lead

RC20AE475M
RC20AE224M
RC40AE681M
RC40AE180M
RC30AE122M
RC20AE471M
RC20AE155M
RC20AE472M
25B720
25B724
$\begin{array}{lll}\text { L-32 } & \text { L-28 } & \text { Antenna coil } \\ & \text { V-1,3,7, } & \text { Type 6SH7, audio i-f; }\end{array}$
8,9,11 audio amp.; 1st, 2nd
and 3rd i-f amp.; video
amp.
V-2 Type 6AL5, f-m detecto
V-4 Type 25L6GT audio
output
V-5,6 Type 6H6, mixer, r-f amp.
V-10 Type 6H6, video detector
V-12,17, Type 12SN7GT, video
18,19,20 output; horizontal osc.;
vertical osc.; horizontal
amp.; vertical amp.
V-1 3 Type 7JP4, kinescope
V-14,21 Type 6C4, r-f oscillator,
hv osc.
V-15 Type 25Z6GT, rectifier
V-16 Type 6X5GT, rectifier
V-22 Type 1B3G', hv rectifier

Long life in a capacitor is one thing-long life in high temperature is quite another matter. That's why the record of Mallory Capacitors is so impressive. Tests prove that the characteristics of Mallory Capacitors are practically unchanged after 2000 hours at a temperature of $185^{\circ} \mathrm{F}$.

It takes materials of the highest purity to withstand heat like that. But purity control is one of the big points in the manufacture of Mallory Capacitors. They are untouched by human hands; production workers wear rubber gloves. Specifications on the chloride content of the gauze are even more rigid than on hospital gauze. This gauze is the base on which aluminum is sprayed to create the anode plate.

That's not all! Mallory Capacitors have longer shelf life-longer life in an inactive setlower RF impedance-ability to withstand higher ripple current.
Mallory Capacitors cost no more than ordinary capacitors-they're easy to install, and when they're installed they're dependable . . . and that means the kind of service that satisfies customers. Order from your Mallory distributor.

New Improvements in Mallory FP Capacitors

. . Feature stronger anode tabs-withstand higher discharge currents-improved high surge separators-still greater heat resistance-extra heavy rubber seal-heavier cathode tab-special etched cathode.

Don't Miss the Mallory Television Serrice Encyclopedia. Get Your Copy From Your Mallory Distributor . . Only 35c !

-SuccessfuL
 SERVICING
 REE. U. S. PAT. OFF.
 DECEMBER, 1949

Vol. 11

Dedicated to the financial and technical advancement of the
 Electronic Maintenance Personnel

Published by
JOHN F. RIDER PUBLISHER, INC.
480 Canal Street
JOHN F. RIDER, Editor
Copyright 1949, by John F. Rider
No portion of this publication may be reproduced without the written permission of the publisher.

CURTAIN TIME

Report To The Servicing Industry

It is all well and good to read prognostications, but it is perhaps better to formulate your own ideas from the sunmaries of statistical reports. They definitely reflect trends and should orient thinking about matters relating to the activities of the radio servicing industry. That which happens in the radio munufacturing industry mean much to the servicing industry, It forecasts the future.

At this time about 90 TV stations are on the air. About 22 more stations are under construction. What happens after that due to the freezc is yet to be seen. The most popular TV receivers in tems of sales are those with screens of around 12 inches in diameter. although the 10 -inch job is not yet dead. They rank high in production and sales, as do the receivers with screens larger than 12 inches.

Here and there one hears stories about picture tube replacement. When looked into, it is found that more coloring than flavor exists in the storics. You would be surprised to know how insignificaut picture tube failures are in comparison to the number of TV receivers which are sold. Naturally, the service outfit handling comparatively few TV receivers will experience a much higher percentage of tube failures than the outfit haudling many receivers. This just happens to be the rule in sampling; an appreciable volume always must be sampled in order to arrive at a reasonably correct average. By and large, TV picture tubes have stood up very well all over the nation.

More than 15 individual cities in the U.S. have more than 30,000 TV receivers. Six cities have more than 100,000 receivers and N.Y.C. leads the nation with more than 600,000 units in use. As to large centers where TV receivers have been sold, they exceed 50 in number. Although there are many cities in the U.S. this number of large cities embraces virtually most of the industrialized areas of the nation, where the greatest population is to be found.

Relative to other kinds of receivers, AM and FM, the industry is still doing a job. It is not turning out as many units as
during the years of 1946 and 1947, but October showed a substantial increase over the previous months. Nomewhere around 650,000 units were produced. Conventional AM-FM receiver servicing is still a significant part of the service shop activity. Don't Sell It Short!!

Morals and Manners

The entertuinment world recently lost one of its leading figures, Bill "Bojangles" Robinson. While he will be remembered for having udded a word "copasetic" to the American language, he will be better remembered for some advice he once gave. "Morals and mauners," he suid. "will open the doors where money will not." We knew Bill, and we know that he meant just what he said, but above all, we will always remember him for his willingness to umstintingly contribute his wonderiul talent to every charitable activity regardless of how frequently they occurred. Rest In Peace, Bill.

Please Finish The Job

This is addressed to the men who have been working on our TV receiver. Why not finish the job completely? We know that you did your best in making certain additions to the receiver and it was to our best interest. But, for heaven's sake - don't leave the insulation clippings and the strands of wire on the floor in back of the receiver. It was really a pile of stuff and while we understand what happened - some other customers may not be so agreeable. Also please try each soldered connection after you make it. We were happy with the resulte until the pieture went bad and we traced it to a cold soldered joint which you had made the day before.
After being married to me for 21 years, my wife has some appreciation of the problems of the radio servicing industry, but even she can't understand the sudden development of triple images. So, be a good guy the next time - won't you? Please finish the job. Then I'll have some peace in the family. Thanks.

TV-3

Well, our TV Manual Volume 3 is off the presses and being shipped. By the time this column sees daylight your jobber will have his copies. To say the least we are proud of it - in fact we're proud of the comments it elicited. We say with parclonable pride that it is the best thing we have ever done in manuals. Now that it's out, we're heading for TV4, which will be ready around March or April 1950.

21 and Not 2

Duc to a printer's error one of the mail order honse catalogs listing the Antenna book by Arnold B. Bailey, soon to be published by us, stated that his bachground is 2 years. What an error! The man has 21 - we repeat, 21 years of experience in the design and installation of VIIF and UIIF antennas. W'e must confess that it did interfere with our sleep the first time we saw that mistake.

John F. Rider

Rider receives Educational Pioneering Award

John F. Rider, president of the publishing company bearing his name, was the recipient of an award presented by the Empire State Federation of Electronic Technicians Associations.

Samuel L. Marshall, education director, made the presentation on November 12, 1949, at the banquet held at Locu* Lawn,

Ionia, New York by the Radio Technicians' Guild of Rochesier. N . Y.

Mr. Rider received the award for his unceasing efforts on behalf of the radiotelevision sprvicemen of the country. He was instrumental in inaugurating the current ESFETA TV lecture series, having delivered the opening talk of the series. In addition, during the past year he has traveled extensively for ESFETA, lecturing at servicemen's meetings.
The author of a score of textbooks now being used by radio servicemen and technical educational institutes, Mr. Rider has actively participated in the educational development of the radio serviceman since 1921.

Television Changes

Sears 110.499 Series

This series appears on pages 8.1 through s-11 of Rider's T'V Manual Volume 3. The following production changes have been made :
Capacitor C45, 4,700 $\mu \mu \mathrm{f}$, has been changed from its position in series with the vertical oscillator transformer, T4, pin number one of the vertical oscillator tube, to a position in the low side of the vertical oscillator transformer in series with R53, the 8,200 ohm integrating resistor. This change was made to improve the interlace characteristics of the receiver and, therefore, improve the apparent focus.
To widen the range of the vertical hold control, a 1.2 -megohm resistor has been placed across the control from the top center to the grid side. In addition to this, a 12 -megohm resistor has been placed in series with the vertical hold control to center the control area in the mid-portion of the potentiometer range.
To eliminate slight vertical unsteadiness or jitters, which was present in a few receivers, the $0.005-\mu \mathrm{f}$ capacitor in the integrating circuit of the vertical oscillator has been changed to $0.01 \mu \mathrm{f}$.

To further improve the horizontal stability and eliminate all trace of jitters, a 1.3 ohm resistor has been placed in series with the filament of the 6AL5 horizontal phase detector to lower the filament voltage and eliminate the effect of variance in tubes.

General Electric 805, 806, 807, 809
These models appear on pages 8-1 through 3-15 of Rider's TV Manual Vol ume 3. Under 9. B + Power Supplies, the 6th paragraph should read "B371 is a thermal cutout to protect the receiver in cases of excessive current drain from the power line or from excessive heat within the chassis. After this cutout has opened the power line circuit, a iive-minute period should elapse before it is reset".
Under Video I-F Alignment, note 3, K27 should read 27,000 -ohm resistor.
Under R-F Alignment, note 1 , delete "through a capacitor". The finish of this sentence should read "and coupled to the antenna terminals at the head-end unit, Figure 18".
Under R-F Alignment, the following should be added to paragraph 2 "On U and W version receivers, add a bias battery across C385 and adjust control to give 4 volts bias on V2".
Under step 11 of R-F Alignment Chart, the signal generator frequency of 203.25 Mc should read 203.75 Mc.
On the schematic diagram, Figure 28, at clipper-grid-circuit tube V11B, change C314 to $5,000 \mu \mu \mathrm{f}$ value and R311 to 2.2 megohms. Reconnect R311 so that it is between pin 1 of V11B and the junction of R314 and R312. When these changes are made, this clipper-grid circuit will be the same as the circuit in Figure 27.

On the schematic diagram, Figure 30, the $1-\mu \mathrm{f}$ capacitor C345, at the sound discriminator, should be relabeled C346.

V13, pin 3, of Figure 32 should be changed to read 0 volts and 0 resistance for " T " version receivers.

Under Replacement Parts List change Stock No. RCN-024 to read RCU-289, C332, capacitor- $82 \mu \mu$, ceramic, 1,500 volts.

On Waveshape Diagram, Figure 27, note diagram corrections as follows: (1) Test scope for steps $9-32$ should connect to B. of head-end unit not to B1-, (2) Test scope for steps $1-4$ should connect to B2or B3-, not to B1., (3) VTVM shown at sound i-f discriminator should be shown connected to R2-, not to B1.

RIDER TV MANUALS $\begin{gathered}\text { VOLUMES } \\ 1,2, \text { and } \\ 3\end{gathered}$

General Electric Service Notes

When it is necessary to perform align. ment, measure socket voltages, or trouble shoot a TV receiver, it is desirable to remove the picture tube for convenience as well as a personal safety precaution. In receivers with series lighting of the filaments, the removal of the picture tube breaks the continuity of the heater circuit for all tubes and a substitute resistor or suitable filament element must be used to restore continuity. A defective 6SN7GT tube with a good heater may be used for this purpose. To prepare the 6SN7GT tube, saw or clip off all base pins except 7 and 8 . These are the filament pins and it will be found that they will insert readily into the crt socket pin openings 1 and 12. This will re-establish the continuity and provide proper voltage division on the filament strings. The keyway on the altered 6 SN7GT will not line up with the keyway slot in the crt socket; however, it will not interfere with the insertion of the tube into the socket.
The germanium crystal diode is used in many of the current TV receivers for two different circuit applications: (1) video detection and (2) d.c restoration at the picture tube grid. This diode is symbolized as shown with the corresponding tube equivalent symbol. The polarity marking on the case of the diode will be designated by a plus (+) mark, whioh corresponds in function to the plate of the rectifier tube.

Giermanium Diode Symbol and Marking.

Radio \& Television

Page 3-1 of Rider's TV Manual Volume 3, the bottom left-hand corner reads "See Model L-14, TV2 page 2-1 through 2-13,14." This should read "see Model L-14, TV2 pages $2-15$, through $2-21$ ".

Looking for an antenna book? . . . Here It Is!

THE THEORY AND PRACTCE OF 30-1000 MC RECEINNG ANTENNAS

> by

Arnold B. Bailey

The radio and television industry - the schools teaching electronics - antenna design engineers all personnel interested in antennas have long felt the need for a book which reflects world-wide knowledge of the antenna art. A book which not only is practical in every sense of the word, but also has that rare quality of clearly explaining the theory behind the performance of every type of 30-1000 Mc receiving antenna.

Here is that book - written by an individual with 21 years of designing experience and closest association with the practical aspects of the subject as well. It is a book which will teach - a book
which every person interested in antennas will use every day because of the facts and figures it contains. Well planned and clearly written - it is a real gem among texts and reference books.

In the main, it is oriented toward the television art, to serve all the men whose livelihood depends on getting the most out of an antenna system. It is, however, equally important to the antenna engineer, to every student who is studying electronics, to every school where electronics are being taught and to every ham. It is a singular book, the like of which has never before been written and it will enjoy years and years of use.

CHAPTER HEADS

```
1-Definition and Terminology
2-The Tolevision Signal
3-Problems of TV Reception
4-The Electromagnetic Wave
5-The Radio Path
6-The Theory of Signal Interception
```

7-The Center-Fed Zero DB Half-Wavo Antenna
8-Comparison of Zero DB Half-Wave Antenna
9-Parasitic Element Antennas
10-Special Horizontally Polarized Antennas
II-Vertically Polarized Antennas
12-Practical Aspects of $30-1000 \mathrm{Mc}$ Receiving Antennas

SAMPLE CHAPTER BREAKDOWN

To give you an idea of how detalled this book is, and to enable you to compare it with other texts, here is a sample breakdown of the subheads in one of the chapters, to be specific. CHAPTER 5 - THE RADIO PATH.

FUNDAMENTAL CONSIDERATIONS
Sine and Cosine Waves
Phase
Time versus Phase
How the Electromagnetic Wave May
Change Its Direction
Reflection, Refraction, Diffraction
Reflection-The Merging of Two Waves
Polarization
Transparent Materials
Nontransparent Materials
Comparison of Types of Polarised Waves
Brewster Angle
Total Reflection
Diffraction
Dispersion
PDQ Constonts
The Q Factor
Dielectric Constant
Permeability
Combined Effect of Dielectric Constant and Permeability
'TPF"' GEOMETRY OF THE RADIO PATH
The Actual Radio Path
Shielding the Transmitter
The Expanding Signal
Effects of the Earth's Surface
New Sources of Energy Due to Reflection
Summary of Radio Path Characteristics
Action of One Field on Another
Superposition of Electromagnetic Waves
of Identical Radio Frequency
The Perfect Radio Poth
The Free-Space Path and the Practical
Path Ccmpared
Residual Energy
The Height Affect
Equivalent Earth Radius
RADIO PATH PREDICTIONS AND STANDKRDS
Approximate Propagation Formula Radio Atmosphere
Errors of Ray Treatment
Actual Heceived Power
Limitations of the Simple UHF Propagation Formula
Free-Space Formulas
Near Field and Far Field

Improved Method for Improving UHF and VHF Propagation
Summory of Method
Effect of Wooded Areas on Signal Strength
Effect of Wooded Areas on Signal Stre
"Law of Reciprocity" for Radio Paths
Optimum Size of Reflecting Surfaces
Etimum Siva ol Reflect
Ellipsoidal Suriaces
Nonellipsoidal Suriaces Sizes of Obstructions and Blocked Sign
Horizontal versus Vertical Polarization
RADIO NOISE
Signal-to-Noise Ratio
Character of Noise
Random Thermal Noise
Receiver Noise
Effect of Frequency
Man-Made Noise
Man-Made Noise
Causes of Noise
LONG-DISTANCE RECEPTION
Possible Radio Path Lengths and Their Probability of Occurrence
Formation of Signal Path Along Valleys and River Beds
Heception from Highly Beamed Transmitting Antenna

An equally detailed treatment exists in every chapter. Chapters 7 through 12 will give you a clear picture of the behavior of every known type of receiving antenna design which has appeared upon the commercial market, and for the first time you will have a clear understanding of why each behaves as it does.

In this book, Bailey has done a remarkable thing. He has resolved the mathematics of the antenna art into graphs and charts and tables, so that everyone may not only read the text. but also use it every day. Be certain to receive your copy from the first printing.

TV Signal Strength Versus Antenna Height

(Continued from page 1)
note that the maximum on one band is not necessarily the maximum for another band. We can interpret this again as signifying that the maximum of one channel in any one band is not the same as for another channel in the same band. The primary value of the grapl from the practical viewpoint is to indicate that a good starting point relative to elevation of the antenna is as low as possible, consistent with the location, rather than the usual procedure of immediately raising a TV antenna to the maximum practicable height. Time and again, it has been found that the high antenna is inferior to the low antenna, in this case "high" and "low" signifying elevation.
The matter of cancellation or augmentation of signals is a function of the angle of arrival of signals at the point of earth's reflection, for this determines the phase relationship between this signal and the direct-wave signal at the receiving antenna. In turn, the angle of arrival of signals at the point of earth's reflection is determined by the geometry of the radio path. As the angle increases, the electrical chararter of the earth at each particular operating frequency must be taken into account becanse of its effects on the final signal which operates the receiver.
(Editor's Note: Details pertaining to the electrical character of the earth are discussed in the text.)
Both the efficiency of the reflection and this angular phase change at reflection are effected by the character of the earth.

Two effects may be noted with an increase in height of the receiving antenna above ground. The first is, that as the receiving antenna is raised, the signal which strikes it is one which has a higher angle at the point of reflection than the signal which strikes the receiving antenna at a lower elevation. This makes the reflection less perfect, and increases the path length of the reflected signal without substantially changing the length of the direct path. These conditions change the time of arrival of the reflected signal in relation to that of the direct signal, and

Fig. 1. A typical case showing how the signal strength varies with height at the receiving location.
consequently, not only prevent perfect cancellation, but also may, if the receiving antenna is raised high enough, actually as sist the direct signal, thus producing a stronger resultant signal at the receiver.
This point above earth is called the "first maximum". Further increases in leight will change the receiving conditions because they involve a different angle of reflection. The effect is usually less distinct at very great heights, since the reflected signal will become weaker, and hence less able to cancel out the direct signal.
Just how high these maxima and min. ima are located is not always easy to predict, but it is important, nevertheless, to appreciate their existence, because they can have a beneficial effect upon the problem of installation.

Many factors contribute to the aforementioned conditions, such as the frequency, distance from the transmitter, whether the location is high or low compared to the height of the surrounding terrain, where the reflection occurs, and the transmitting antenna height. It is, therefore, important not to consider the one case in the figure as being universally applicable to every case.
(Editur's Note. Methods for estimating optimum heights are given in the book.) It is interesting to note that you can be situated too high as well as too low, and experience based on actual tests is the best way to find the exact location of the extreme points.

The maxima and minima occur closer to the ground on Channel 13 than they do on Channel 2 (Fig. 1). In fact, they are not as clearly defined on the higher channels, because not only do reflections occur at a point on the earth between transmitter and receiver, but also reflections occur locally at these higher frequencies at points almost directly below the receiving antenna, and the transmitting antenna, if the ground slopes away from either antenna location. The net effect of additional local reflections is to "mask" the normal maxima and minima, and produce secondary effects. This is particularly noticeable at $500-\mathrm{Mc}$. and
above, where the maxima and minima will occur very close together in terns of height, but is also predominant at Channels 7 to 13.
Thus we see that. at television frequencies, each receiving location is experiencing an intricate and complex radio field pattern. Furthermore, over the wide range of television channel frequencies substantial changes in this pattern may occur. Appreciation of this effect may allow us to seek out preferred antenna positions and these may not always be at extreme heights above ground.

HIWYNI $\begin{gathered}\text { Hove it When } \\ \text { You Need it }\end{gathered}$

Rider Diagram Service

Are you taking full advantage of the Rider Diagram Service?
If you are interested in diagrams which we have not yet published we have a diagram service to meet your needs. Naturally, a time lag exists between the publication of the volumes of Rider Manuals and it is to fill this gap that we have this service, so that you may have whatever you need in the way of service data as yet unpublished. The charges for this service are as follows:

1. 35 cents is the charge for all the available data on any radio receiver model up to and including six pages. Each page thereafter will cost 10 cents.
2. If additional money is required to cover the data requested, you will be notified. We cannot forward data without receiving your remittance.
3. Service data on television receivers may be obtained at costs varying from 35 cents to $\$ 1.50$. It is suggested that you inquire the cost before sending us a remittance for television data.
4. Be sure to enclose a self-addressed envelope bearing a 3 -cent stamp.

If you will follow these rules, it will simplify matters for both of us and you will receive the data you need with a minimum of delay.

$\sim 1950 \sim$. A Repaxt to the Industuy

We have stated, consistently, that the service shop owner who places his faith in Rider Manuals will find that faith justified - will find that he can depend upon the Rider Organization to furnish him with the servicing information that he needs year after year, day in and day out.

The entire Rider Organization is dedicated, in its Manuals, to serve the servicing industry . . . to place in its hands, regularly, those data which the equipment manufacturer has declared to be his official and authentic information. For more than 20 years Rider Manuals have been geared to the needs and interests of the radio servicing industry.

The 19 volumes published to date comprise a complete, chronological history of factory-authorized American circuits and data on radio receiver design and operation. These volumes contain 27,958 fact-filled pages on 27,112 models, 14,176 chassis.

And the Rider Public Address Manual, one complete volume of 2,024 pages, contains all of the required data for 1,285 models, 1,106 chassis, covering the years from 1938 to 1948.

Then along came Television. And the radio servicing industry, taking on the job of television servicing, required the more highly complex data for television receivers. The close co-operation which has existed between receiver manufacturers and the Rider Organization for more than 20 years continued without interruption. Rider TV Manuals soon appeared.

Rider TV Manuals are now in three volumes and cover the products of 116 manufacturers. In the equivalent of 6,332 pages, they incorporate the factory-authorized servicing data for more than 741 different models of TV receivers.

Of course, we take pride in being able to say, without any fear of contradiction, that nowhere else can you find as much TV servicing data . . . such complete data, such complete coverage . . . as in Rider's TV Manuals.

But most important of all is the fact that the concerns who believed in Rider Manuals-who continued to build their Rider Manual library through these many years-have found that their faith was not misplaced . . . that when the radio manufacturing industry took on this new outlook, the Rider Organization was there-continuing to serve the servicing industry.

While we have not published many book titles, each has been well received, several selling up to 200,000 copies. Each selection has reflected a most sincere effort on the part of both author and publisher to print such texts as were specifically needed to clarify some of the more complicated phases of servicing problems. We published those books which we were convinced would prove most useful, year after year, to the purchaser. The textbooks scheduled to appear during the first three months of this new year will be vivid testimony of this philosophy in book publishing.

We promised that we would "be thar fustest with the mostest"-and we have kept that promise.

That we shall continue to recognize our obligations to the servicing industry, and to the receiver manufacturers who build the products which are the daily bread for the serviceman . . .

That Rider Manuals shall continue to serve these two groups, and these only . . .
That your faith in Rider Manuals, which has been time-tested and proven, will be merited . . .
That you will always have the best . . .
That we are here to serve you . . . as we have for more than 20 years.

For a quick review of the essential theory, as well as a refresher for advancement in the field, student and operator will find this the most complete, comprehensive treatment of the subject. Instructors will discover enough material here to develop an entire course. The six elements of the FCC examination are completely covered by thorough discussions of the answers. Appendices on Small Vessel Direction Finders and Automatic Alarm provide an extra expansion of the subjects not ordinarily included in a volume of this type.

The author, Milton Kaufman, is an instructor in the Department of Radio Operating at RCA Institutes. This background enables him to write with complete assurance and knowledge of the subject.
2. Horizontal blanking pulses, (525 per frame, 15,750 per second).
3. Vertical synchronizing pulses, (1 per field).
4. Equalizing pulscs, (12 per field, 6 on either side of each vertical synchronizing pulse).
5. F-m sound carrier frequency and sidebands.
6. Video carrier frequency.
D. See Questions $4.260,4.263$, and 4.264 .
Q. 4.263. What are synchronizing pulses in a television broadcasting and receiving system?
A. These are short duration rectangular pulses which are used to control the synchronism of both the transmitting and receiving scanning generators.
D. See Question 4.260 .
Q. 4.264. What are blanking pulses in a television broadcasting and receiving system?
A. Blanking pulses are rectangular pulses of short duration used to extinguish the electron beam during the retrace periods.
D. See the figure for Question 4.260. Blanking pulses are of negative polarity when applied to the intensity grid of the electron gun at both the transmitting and receiving cathode ray equipment. At the end of each horizontal line just before the retrace is initiated, the horizontal blanking pulse extinguishes the electron beam so that it returns to the left side of the picture unnoticed. The horizontal blanking pulse width is 10.16 microseconds, and there are 525 per frame or one for each horizontal synchronizing pulse. When the scanning beam reaches the extreme bottom of the picture and just prior to the vertical retracing, the vertical blanking interval pulse causes the electron beam to be extinguished so that the lines moving upward will not be seen. The duration of the vertical blanking interval pulse is about 1250 microseconds and there are 60 per second.
Q. 4.265. For what purpose is a voltage of sawtooth wave form used in a television broadcast receiver?
A. To produce the desired scanning pattern on the Kinescope screen.
D. A voltage (or current) of sawtooth wave form is provided by the horizontal and vertical sawtooth generators in the receiver and synchronized by the incoming horizontal and vertical synchronizing pulses. These sawtooth waveforms are applied to the horizontal and vertical deflection plates (or coils) for the purpose of producing a linear scanning pattern upon the Kinescope screen. (See also Questions 4.258 and 4.260 .)
Q. 4.266. In television broadcasting, what is the meaning of the term "aspect ratio"?

CORRELATION

of subject matter by use of reference numbers for direct and cross reference

TABLE OF CONTENTS

Element I-Basic Radio Laws, Rules, and Regulations; Element II-Basic Theory and Practice; Element III-Radiotelephone; Element IV-Advanced Radiotelephone; Element V-Radiotelegraph; Element VI-Advanced Radiotelegraphy; Amateur Radio Questions and Answers; Rules Governing Amateur Radio Service; Classes B and C Amateur Radio License Examination Questions and Answers; Class A Radio License Examination Questions and Answers; Appendix I-Part 13 -Rules Governing Commercial Radio Operators; Appendix II-Extracts from Radio Laws; Appendix III-Conventional Abbreviations, International Morse Code; Appendix IV-Small Vessel Direction Finders; Appendix V-Automatic Alarm.

Farnsworth P73

This model appears on pages $R C D$. CH. 18.1 through 18.9 of Rider's Manual Vol ume XVIII. The following part should be added to the parts list:
71245 Removal needle only, osmium tipped (P73).

Automatic A.T.T.P.

The alignment and battery information that appears on page 17-8 of Rider's Manual Volume XVII under the heading of Models 660, 662, 666, Series C is labeled incorrectly. This page should be labeled Model A.T.T.P. The schematic for Model A.T.T.P. appears on page $16-1$ of Rider's Manual Volume XVI.

Westinghouse H-161, H-168, H-168A, H-168B

These models appear on pages 18.8 through 19-92 of Rider's Manual Volume XVIII. In production of some chassis, V. 5596 "HI-KAP" capacitors are substituted for the following capacitors:

V-5040-15 (C7, C8, C9, C61, C62)
V-5040-11 (C19, C20, C63).

RIDER MANUALS KEEP MPTO DAIE

Templetone G418, G4108

Model G418 appears on page $17-1$ of Rider's Manual Volume XVII. The value of resistor R5 has been changed to 10 megohms. Model G4108 is the same as G418.

RCA 9W101, 9W103, Ch. RC-618B

These models appear on pages 19.96 through 19-44 of Rider's Manual Volume XIX. In some chassis i.f transformers stamped $970435-2$ have been used as a substitute for 2 nd i.f transformers stamped 970435-5.

The $455-\mathrm{kc}$ windings of $970435-2$ trans formers use resonating capacitors of 235 $\mu \mu \mathrm{f}$ each; the d-c resistance of each winding is 8.2 ohms. The transformer indicated in the schematic diagram is stamped 970435-5.

The addition to parts list is as follows:
74579 Bumper, rubber bumper (black) for front panel of record changer drawer, walnut or mahogany instruments, Models 9W101 and 9W103 (2 required)
74580 Bumper, rubber bumper (white) for front panel of record changer drawer, blonde or limed-oak instruments, Models 9W101 and 9W103 (2 required).

RCA 8X541, Ch. RC-1065F, 8X542,

 8X547, Ch. RC-1065HThese instruments are similar to Models 8X541, 8X542, 8X547 which appear on pages $18-46$ through $18-46$ of Rider's Manual Volume XVIII, except that an RCA 50B5 tube is used in the output stage. The tuning capacitor and oscillator coil used are those described for the second production of the above models.
Chassis RC-1065 is used in Models 8X541, 8X544, and 8X545. Chassis RC1065A in used in Models 8X542, 8X546, and 8 X 547 . Chassis RC-1065B is used in Models 8X541, 8. 544 , 8×545 2nd production. Chassis RC-1065C is used in Models $8 \mathrm{X} 542,8 \mathrm{X} 546$. 8 X 547 2nd production.
The addition to parts list and the output tube circuit appear below:
74822 Socket-tube socket, miniature, for 50B5 tube.

Output tube circuit for RCA chassis $R C-1085 F$ and $R C-1065 H$.

United Motors 7258155

This model appears on pages 19.78 through 19-80 of Rider's Manual Volume XIX. The following changes have been made in the parts list after serial 5596000:
Illus. Production Service Description No. Part No. Part No.
$6 \quad 1219508 \quad 1219508 \quad$ 1st i-f assy.
$7 \quad 1219509 \quad 1219509$ 2nd i-f assy.

26	7240724	M908	Electrolytic $20 \mu \mathrm{f}, 25 \mathrm{v}$ 26 A
		$20 \mu \mathrm{f}, 400 \mathrm{v}$	
26 B			$20 \mu \mathrm{f}, 400 \mathrm{v}$

United Motors 984249

Model 984249, Pontiac, appears on pages 19-65 through 19-70 of Rider's Manual Volume XIX. The 330 -ohm, $1 / 2$-watt, i-f cathode resistor, No. 54, has been replaced by a 390 -ohm, $1 / 2$-watt resistor on the late production sets. It has been found that the tendency to motor boat is caused by a 6SK7 tube with a much higher than average contact potential. A slightly higher bias on the i.f tube corrects this tendency, and the slightly higher value of cathode resistor accomplishes this.

Westinghouse H-203, H-212

These models appear on pages 19-99 through $19-32$ of Rider's Manual Volume XIX. The volume control is tapped at 50,000 ohms from ground rather than 450 , 000 ohms as shown on the schennatic diagram.
In later production, a 33 -ohm, $1 / 4$-watt resistor (RC10AE330K) was inserted in the lead from pin 7 of the 6BE6 oscil-lator-converter tube. The purpose of this resistor is to suppress parasitic oscillations that may develop when certain 6BE6 tubes are used.

In early sets, R35 in the cathode circuit oi the 12AT7 FM r-f amplifier and mixer tube served as a form around which was wound the reactor, L21. For convenience in later production, the resistor was deleted from the circuit and the reactor was wound on other material. The part number, V-4886-10, shown in the parts list for this item applies to the later version which does not include the resistor, and R35 should be disregarded.
On some chassis, V-5596 "HI-KAP" capacitors are substituted for V-5040-13, C36 and C37, capacitors. These capacitors were substituted for convenience in production, and the operation of the receiver is not affected by the substitution.

RIDER MANUALS \%eas succussinc

Sears 101.211-4

This model appears in the Record Changer Section of Rider's Manual Vol. ume XIX on pages RCD. CHI. 19-1 through 19-14. Chassis 101.2114 is basically the same as the 101.211-1: however. the 101.2114 incorporates a revised spindle assembly, turntable and hinge body assembly. The change in parts list is as follows:

Location Number	Part Number	Description
5	R57943	Turntable assembly
12	R49953	Hinge pin
14	R57945	Hinge body assembly
15	R57710	Adjusting screw
20	R65101	Cartridge-syntronic pickup (grounded)
21	R66691	Arm-pickup (less cartridge)
68	R62360	Motor assembly, 110 -volt, 50 -cycle (Alliance)
70	R57902	Spindle assembly
70	R57934	Spindle shaft and bese assembly
71	R57940	Record pusher
73	R57903	Pusher spring
76	R57051	Turntable bearing
81	R57768	Spring-pusher shaft
105	R49958	Spring-counterbalance

Location number 83 through 88 and num. ber 103 have been deleted.

The 456.211.5 Record Changer is basically the same as the 101.211.1, except that the $456.211-\bar{z}$ incorporates a bottom pan assembly, R66692, and a revised spindle assembly, turntable and hinge body assembly. The syntronic pickup arm and grounded syntronic cartridge replace the old style plastic arm.

JFD Conicals. Superior Conicals. More powerful Conicals. More economical Conical . . . to fill any and all of your TV antenna requirements. The largest and most complete line in the whole, wide world. You'll do better with JFD . . . beffer in sales, better in customer sarisfaction, better in profit! Here are some of the more popular models:

ALL BAND CONICAL
Channels 2 to 13 and FM. Outstanding performance at a price that's right. $\begin{aligned} & \text { Less Mast, LIST } \$ 1395\end{aligned}$

TA 161 "Double D-Xer" STACKED ALL-BAND CONICAL. Exceptionally high DB gain on ali channels. $1 / 4 \$ \mathbf{2 9 2 5}$
wavelength stacked...Less Mast, LIST TA 162 Same as TA 161 but $1 / 2$
wavelength stacked....Less Mast, LST $\$ 30^{90}$

TA 167 "Inline D-Xer" DOUBLE STRAIGHT
 LINE CONICAL

Channels 2 to 13 and FM. Provides ultrasharp directivity and ultra-high gain. Ideal for remote areas. $1 / 4$ wavelength stacked.

Less Mast, IIST
TA 168
wavelength stacked

$$
\text { Less Mast, LIST } \$ 1395
$$

TA 164

"Super D-Xer" dOUBLE STACKED ALL-BAND CONICAL

Delivers unsurpassed DB gain for pulling in weak signals from long
distances.Less Mast, LIST
$\mathbf{6}$
$\mathbf{1 8 0}$
 CONICAL WITHOUT REFLECTORS. For areas where high and low band transmitters lie in approximately the same direction....LIST $\$ 1150$

TA 169 Duo-Orienting HI-LO ALL-BAND CONICAL. Ideal where upper and lower band transmitters tune in different directions.Less Mast, LIST
$\$ 2345$

(370 "COMMANDAIR"
 ALL-BAND CONICAL

with High Frequency Element. Completely preassembled. Installs in an instand!Less Mast, LIST ONLY $\$ 1050$

TA 170 same as TA 169 but $1 / 4$ wavelength stacked for extra gain in weak signal areas.Less Mast, LIST \$4940

TA 166 "Inline D-Xer" straight

 LINE CONICAL. Sharper directivity and extra gain on all channels. Less Mast, lust \$ $\$ 2810$
(360 "COMMANDAIR"

ALL-BAND CONICAL. As simple to assemble as opening
on umbrella....Less Mast, LIST $\mathbf{\$ 9 5}$
 of charge.

MANUFACTURING CO., Inc. 6119 16th AVENUE, BROOKLYN 4, N. Y.

Hest In Television Antennas and Accessories

Noblitt-Sparks Models 358T, 359T
Arvin Models 358 T and 359 T have the same chassis assembly as Models 152 T and 153 T which appear on pages 18.1 through 18-s of Rider's Manual lolume XVIII. The only difference in these models is the color of the cabinet, rear cover, and knobs. The parts that differ from those listed in the 152T-153T parts list are as follows:

AA22993-1
AA22993-2 Cabinet, willow green, for Model 359T
AC21696-3 Cabinet rear cover assy., willow green, for Model 358 T
AC2169-4

AC20501.3 Knob, gold for Model 358T and Model 359T.

RIDER MANUALS Mean PROFITS

United Motors R-705

This model appears on pages 17-1 through $17-6$ of Rider's Manual Volume $X^{\prime} I I$. This receiver may be installed in the 1949 Cherrolet by using speaker and control mounting parts in adapter package No. 4415. Speaker installation instructions noted under "Pontiac" are used for mount. ing the speaker to the instrument panel.

RCA RP168 Series

The RP168 Series record changer appears on pages KCD. CH. 19-1 through $19-8$ of Rider's Manual Volume XIX. The RP168-2 differs from the RP168-1 essential ly in that it uses a capacitor-type motor. It also has a power input receptacle and audio output jack mounted on the base sub-assembly. The RP168-3 is identical to the RP168-1 except for the use of a motor which will operate satisfactorily on a 50 cycle power supply. For conversion to 50 cycle operation, a spring sleeve is added to the motor spindle shaft.
The changes in the replacement parts list for the RP168 Series are as follows:

Stock	Ill.
No.	No.

$\begin{array}{ccl}\text { No. } & \text { No. } & \begin{array}{l}\text { RP168-1 } \\ 74620\end{array} \\ \text { i }\end{array} \begin{aligned} & \text { Nose-spindle nose (late type-thick } \\ & \text { wall) }\end{aligned}$ wall)
Spring-reject lever spring ($0.203^{\prime \prime}$
$7442659 \quad \begin{aligned} & \text { O.D. x } 0.531^{\prime \prime}-13 \\ & \text { type, } 2 \text { required) } \\ & \text { Spring-trip lever }\end{aligned}$ spring ($0.171^{\prime \prime}$
$7442659 \quad \begin{aligned} & \text { O.D. } x \text { 0.531"-13 turns) (late } \\ & \text { type, } 2 \text { required) }\end{aligned}$ O.D. $x 0.595^{\prime \prime}-30$ turns)

74453 Washer-bearing washer between trip pawl (III. No. 37) and trip pawl lever (IIl. No, 66)

RP168-2

$\begin{array}{lll}74472 & 1 & \text { Nose-spindle nose } \\ 74445 & 8 & \text { Tumtable-turntable and mat-less }\end{array}$ spindle nose and separator assemblies
$\begin{array}{lcl}74471 & \text { 8A } & \text { Mat-turntable mat } \\ 74470 & 24 & \text { Wheel-idler wheel } \\ 74468 & 45 & \begin{array}{l}\text { Base - sub-base assembly complete } \\ \end{array} \\ & & \text { with all staked and riveted parts }\end{array}$ including idler lever and reject

MASTERFUL NEW QUALITY of television reception, covering a considerably extended area - that is the great stride in television progress made possible by Astatic's new Model AT.I Television Booster, the Channel Chiet. A radically improved new type of booster, the Channel Chief brings good reception to previously unsatisfactory areas as well. The common failing of many boosters - showing a "peak" on some channels and "fall-off" on others - has been eliminated. The Channel Chiel provides extremely high gain - and does it throughout the television spectrum. Its dual controls allow separate tuning of picture and sound, with no sacrifice of one for the other. A variable gain control permits reduction of signal strength to prevent picture distortion when the signal input is greater than that required for good definition. The best tuning is quick and easy to achieve. The selectivity of any receiver is increased, which serves to reduce drastically, or eliminate, interference from outside sources. The need for expensive outdoor antennas is eliminated within service areas. These are the advantages which make the Channel Chief undisputed master of today's greatest area of television reception. Why not write for complete details, technical data?

Leading Manufacturers of Microphones, Phonograph Pickup Cartridges and Related Equipment
capacitor type motor complete with connector and $5-\mu \mathrm{f}$ capacitor

74469	73	Motor-105/125 volts, 60-cycle capacitor type motor complete with connector and $5-\mu \mathrm{f}$ capacitor
74621		Capacitor-motor capacitor- $5 \mu \mathrm{f}$
74473		Bracket-metal bracket with power input connector and audio output jack
		RP168-3
74624	73	Motor-105/125 volts, 60 -cycle motor (stamped 941072-1) complete with connector and RCA 73158 spring sleeve (for 50 -cycle conversion)
73158		Spring-spring sleeve to convert 941072 -1 motor to 50 -cycle operation
		RP168A-1
74209	75	Cover-mounting screw cover (threaded type) (3 required) use with 74424 screv
74581	75	Cover-mounting screw cover (plugin type) (3 required) use with 74582 screw
74424	76 76	Screw-No. 8 -32 $\times 1$ 1/" special screw (with tapped hole) for mounting record changer (3 required) use with 74209 cover
74582	76	Screw-No. $8-32 \times 13 / 4{ }^{\prime \prime}$ special screw (non-tapped hole) for mounting record changer (3 required) use 74581 cover
74422	78	Spring-conical spring for mounting record changer-upper-L.H. side (2 required)
74423	79	Spring-conical spring for mounting record changer-bottom (3 required)
74208	80	Nut-tee nut for mounting record changer (3 required)
74184	81	Motorboard - motorboard complete with welded brackets and studless rest and operating parts
74421	84	Spring-conical spring for mounting record changer-upper-R.H. side (1 required)
The replacement parts listed above are for the specific models mentioned, other parts not listed are identical with those listed for RP168-1 in Rider's Manual Volume XIX.		
		RP168-2

This changer uses RP168-2 mechanism and RMP130.1 pickup and anm assembly
$74467 \quad 83$ Knob-reject control knob
7444481 Motorboard - motorboard complete with welded brackets and studless rest and operating parts
$74446 \quad 82$ Rest-pickup arm rest
74474 . Switch-ON-OFF switch.

HIWYNI Hove it when You neal 1

RCA 9W101, 9W103, 9W105

These models appear on pages 19-35 through 19-44 of Rider's Manual Volume $X I X$. The original mounting screws used a cover which screwed into the top of the mounting screw. The screws now being used have a plug.in type of cover. This applies to the RCA 9 Y 7 also. The change in parts list is as follows:

74209 Cover-mounting screw cover (threaded type) for RP168A-1 record changer (3 required) (used with RCA 74424 screw)
74424 Screw-8-32 x 1 3/4" special screw (tapped hole) for RP168A-1 record changer (3 required) (used with RCA 74209 cover)
74581 Cover-mounting screw cover (plugin type) for RP168A-1 record changer (3 required) (used with RCA 74582 screw)
74582 Screw- 8.32×1 x/4" special screw (nontapped hole) for RP168A. 1 record changer (3 required) (used with RCA 74581 cover).

A-C VACUUM-TUBE VOLTMETERS
 By Henry Chanes

The a-c signal voltages in a television receiver can also be measured by the use of an a-c vacuum-tube voltmeter. This meter is usually the same instrument as the d-c VTVM referred to under d-c measurements, but with the addition of an a-c probe. The probe contains a vacuum-tube diode rectifier which rectifies the a.c. and the resultant d.c. is measured by the d-c VTVM, which is also calibrated for a-c voltage measurements. The a-c rectifier is built into the probe rather than into the meter unit in order to reduce the input capacitance as much as possible.
The RCA-advanced Voltohmyst is an example of this type of vacuum-tube voltmeter. This particular meter has a frequency range from 30 to 250 Mc . As mentioned before, the frequency range required for measuring video, sync, and sweep signals is from 60 cycles to 300 kc , therefore a meter of this type is adequate. In addition, this meter can be used at the intermediate and radio frequencies encountered in television receivers which go up above 200 Mc . However, it is seldom necessary to measure these voltages directly. In the servicing of television receivers, almost all the a-c voltage measurements are of the video, sync, and sweep voltages. This meter employs a full-wave diode rectifier probe which will respond to either the positive or negative peaks of the signal being measured. The reading of the meter is, therefore, an indication of the peak-to-peak value of the voltage being measured, which, of course, is the type of reading desired. Although the meter itself responds to peak-to-peak voltages, the scale is calibrated in terms of the rms value of a sine wave. It is, therefore, necessary to multiply the meter reading by 2.83 to obtain the peak-to-peak value.
With the a-c probe in this meter, voltage measurements to 100 volts rms, or 283 volts peak-to-peak, can be made. If a higher range is desired, a multiplier which extends the voltage range 10 times is available. The use of this multiplier limits the frequency range to a $15-\mathrm{kc}$ sine wave. The horizontal sync and sweep signals are at 15,750 cycles but have highorder harmonics due to their complex waveform. These harmonics will be attenuated by the multiplier and cause error in the meter reading. However, large vertical sync and sweep signals can be measured with the multiplier since the fundamental frequency in this case is only 60 cycles, and the harmonics are still within the frequency range of 15 kc .

Not all vacuum-tube voltmeters employ full-wave rectifiers in the a-c probe. Some use a half-wave rectifier. This type of meter responds to only one half of the cycle, either the positive or negative half depending upon the manner in which the rectifier is connected in the circuit. The scales on this type of meter are calibrated in rms volts of a sine wave and it is necessary to multiply by 1.414 to obtain
the peak value of the half-cycle that is being measured.

It may seem at first glance that multiplying by 2.83 will give the peak-to-peak value of the signal. However, this is true only in special cases where the waveform is symmetrical such as ideal sine, square, or sawtooth waves. Unfortunately, many of the waveforms encountered in a television receiver are far from symmetrical, and the positive peak will not equal the negative peak of the signal.
In most cases, it is possible to obtain peak-to-peak readings with a half-wave type of a-c probe by measuring first one peak, then the other, and adding the two values. To illustrate this, let us suppose we have a half-wave type of probe that responds to the positive half of the cycle. The probe is first connected normally, that is, the low side to the chassis of the television receiver and the high side of the probe to the signal being measured. The meter reading is multiplied by 1.414, giving the positive peak of the signal. The probe terminals are then reversed and the reading thus obtained is also multiplied by 1.414 to give the negative peak of the signal. The positive-peak and negativepeak values are added together to obtain the peak-to-peak value of the signal. If desired, the two rms readings can be added together and the sum multiplied by 1.414. Either method will give the same result.
When the probe terminals are reversed to obtain the negative peak of the signal, the low side of the probe is connected to a "hot" point in the receiver circuit. This low side of the probe is usually also connected to the chassis of the VTVM. Therefore, the meter chassis will be at the same potential as the point where the signal is. If there is d.c. at this point in addition to a.c., it is a good idea to use a capacitor (about $0.01 \mu \mathrm{f}$) between the low side of the probe and the point being measured, to keep the d-c voltage off the meter chassis and lessen the danger of shock. The meter chassis will also introduce capacitance at the point being measured which might cause a serious error in the measurement. To lessen this effect, the VTVM should be placed away from the television receiver chassis. Also, the VTVM itself or the probe should not be touched while the negative peak is being measured, so as not to add additional capacitance across the circuit being measured.

If only a d-c VTVM is available, it is possible to adapt it for a-c voltage measurement by the addition of a crystal probe. These probes are available as accessory equipment for most popular types of vac-uum-tube voltmeters. The crystal probe is a half-wave rectifier type and is very similar to the usual r-f probe except that it uses a crystal for rectification rather than a diode. The frequency range of the crystal probe is usually in the order of 60 cycles to about 100 Mc . Within its frequency range, the crystal probe can be used instead of the diode type of a-c (Continued on page 20)

RIDER'S

 Volume XXNow on the press

- more than 1,700 pages
- all pages filed in place - up to November 1949
- a-m receivers
- f-m receivers
- record changers
- auto-radio receivers
- over 70 manufacturers

This manual brings you right up to date on the authentic receiver manufacturer's information. The contents of Rider's manuals are the manufacturers' authorized information INCLUSIVE of the production changes he has made in his products.

All SUCCESSFUL service shops use Rider's Manuals and have been doing so for 20 years. When you use Rider's Manuals - you are working with the authorized - official service data which the manufacturers have released on their products . . . No one knows their products better than the manufacturers who made them!

> HIW YNI... Have It When You Need It. Keep your Rider Manual Library up to date

More than
1.700 pages $\$ 18.00$

Publication in February 1950

GIVE YOUR JOBBER YOUR ORDER TODAY

HERE IS THE LIST OF AUTHORIZED RIDER JOBBERS Only through them can you take advantage of

ALABAMA
BIRMINGHAM
James W. Clary, Co. Forbes Distributing Co., Inc. Reid Distributing Co. DOTHAN
Hand Supply Co. Signal Radio Supply Co. MOBILE
Emrich Radio Supply Nelson Radio \& Supply Co. Radio Labs, Inc. MONTGOMERY Southeastern Radio Parts Co.
Wlther Brothers Co.
allen TUSCALOOSA
ARIZONA
PHOENIX
Dalis Brothers
Radio Parts of Arizona Southwest Wholesale Radio * Appl. Co.

TUCSON
Elliot Electronics
ARKANSAS
BLYTHEVILLE
Blytheville Radio Supply FT. SMITL
Wise Radio Supply LITTLE ROCK David White kadio ${ }^{\text {S }}$ Supply Co.

CALIFORNIA

ALHAMBRA
Coast Electronices Supply Co. Kaemper \& barrett Supply Co. Valley Electronic Supply Co.

FRESNO
Jack C. D. Arbuckle Wharnatt Wholesale
G. GLENDALE

Hager'ty Radio Supply
Hollywood Radio Supply.
Pacific Radio Exchange, Inc.
Yale Radio Electric Co
corn Radio Sunoly
LONG BEACH
Distributor's
Fred S. Dean Co.
Scott Radio Supply
Figart Radio Supply Co.
Gough Industries, Inc.
Henderson Co.
Henry Radio
Leo J. Meyberg Co., Inc.
Radio Equipment
Distributors
Radio Parts Sales Co.
Radio Products Sales Co.
Radio Specialties Co.
Radio Television Supply Co.
Ravenscrort ${ }^{\text {Soll }}$.
Shelley Radio \& Electric Co.
Co.
Universal Radio Supply Co.
Western Electronics, Supply
Corp.
Corp. OAKLAND
W. D. Brill Co

Electric Supply Co Supply
PaLO ALTO
Zack Radio Supply Co.
PASADENA
Dow Radio Supply
Electronic Sunply Corp.
C. C. Brown Co.
E. M. Kemp Co.

Sacramento Electric Suppiy SAN DIEGO
Coast Electric Co.
Electronic Equipment
Distributors
Radio Parts Co.

Shanks id Wright
Western Radio \& Television Supply Co.
Associated Radio
Distributors
C. C. Brown Co. Supply Co.
Leo J. Mesberg Co.
Offenbach-Remus Co
Pacific Wholesale Co.
San Francisco Radio \&
Supply Co.
Smith © Crawford
Wholesale Radio \& Electric
Zack Radio Supply Co.
Frank Quement, Inc.
Radio \& Television Equip.
Co. SOUTHGATE
Mac's Radio Supply
B. J. De Jarnatt Wholesale

Dunlap Wholesale Radio Co.
COLORADO
DENVER
Fistell's Radio \& Electrical Supply Co.
Inter-State Radio \& Supply
Radio Products Sales Co. L. B. Walker Radio Co.

CONNECTICUT
BRIDGEPORT
Hatry No Young, Inc.
L. N. Waldhaus

Hatry \& Young. Inc.
R. G. Scelt \& Co.

United Radio Supnly
Ammrad Co.
Thomas H. Brown Co
Congress Radio Co
Hatry \& Young Inc.
Hatry \& Young of New
London Inc.
Hatry \& Young
Stamford Radio Supply
The Bond Radio Supply
Hatry \& Young
DELAWARE
WILMINGTON
Radio Electric Service Co.

DISTRICT OF

COLUMBIA

Capitol Radio Wholesalers
Electronic Wholesalers, Inc.
Kenyon Radio Supply Co. Rucker Radio Wholesaler's Southern Who Electronics Southern Wholesalers, Inc. Sun Radio
The Jos. M. Zamoiski Co.

FLORIDA

Baird Gardware
Baird Hardware Co.
Kinkade Radio Supply
Thurow Distributors. Inc.
Turow LAKELAND.
Radio Accessories Co.
Electronic Supply Co
Herman Radio Supply Co.
Walder Radio \& Appliance
Co. ORLANDO
Hammond-Morgan, Inc.
Radio Accessories Co.
Thurow Distributors. Inc.
Grice RENSACOLA \& Electronics
Suppliers
Gulf Electric Supply Co.
Cooper Radio Company
Cooper Radio Company
Welch Radio Supply
Morley Radio
Thurow Distributors. Ine.

TAMPA
Kinkade Radio Supply, Inc. Radio Accessories Co.

WEST PALM BEACH
Goddard Distributors
Thurow Distributors, Inc.

GEORGIA

ATLANTA
Concord Kadio Corp.
Southeastern Radio Parts Co
The Yancey Co. Co. Inc.
The Yancey Co.. Inc.
AUGUSTTA
Prestwoo COLUMBUS
Radio Sales \& Service Co
Specialty Distr. Co
pecialty Distr. Co.
Southeastern Kadio Parts Co.
Specialty Distr. Co.
The Yancey Co.. Inc.

IDAHO
 BOISE
 Craddock's Radio Supply

ILLINOIS

BELLEVILLE
Lurtz Electric Co.
Lamples BENTON
CHICAGO
Allied Radio Corp.
Atronic Corporation
Chauncey's, Inc.
Chicago Radio Apparatus Co., Inc.
Concord Radio Corp.
Grant Radio Co., Ine.
Lake Radio Sales Co.
Lukko Sales Corp.
Midwest Electronics
Montgomery Ward \& Co.
Nationwide Radio Co.
Newark Electric Co.
Pilgrim Distributing Co.
Radio Parts Outlet, Inc.
Radio Shack, Inc.
Radio Television Supply
Corp.
Sears, Roebuck and Co.
Star Electronic Distributors
Walker Jimieson, Inc.
DECATUR
York Radio Supply Corp.
Illinois Appliance Co
Radio Doctorsakee
MOLINE
Lofgren's Distributing Co
OAK PARK
Melvin Electronics Co.
Herberger Radio Supply
Klaus Radio \& Electronic
Co. ${ }^{\text {Co. }}$.
Pilgrim Distributin
Cooper $\underset{\text { Rupply }}{\text { ROCKFORD }}$
Mid-West Associated
Distributors
Tri-City Radio Sunply
ST. JACOB
Michael's Electric Supply
Co. SPRINGFIELD

Harold Bruce

Wilson Supply Co.
Moulden Distributing Co.
INDIANA
Seybert's Radio Supply Co BLOOMINGTON
Stansifer Radio Co.
Castrup's Radio Supplies
Ohio Valley Sound Service
Wesco Radio Parts
FORT WAYNE
Pembleton Lahoratories
Warren Radio co.
Cormonolitan Radio Co.
INDIANAPOLIS
Honsipr Radio Supply
Kiefer-Stewart Co.
Radio Distributing Co.
Rodefeld Co.
Ronefer Sickle Radio Supply
Van.
Con

Mobile MARION
Moble Radio supply Co Rodefeld Co.
Commercial Sound \& Radio $\xrightarrow{\text { Co. }}$ O Distributing Co.
Archer \& Evinger
Terre Haute Radio
IOWA
CEDAR RAPIDS
Gifford-Brown, Inc. World Radio Laboratories. Inc.
Mid DAVENPORT
Midwest-Timmerman Co.
Gifford-Brown, Inc.
Iowa Radio Corn.
G. W. Onthank Co.

Radio Trade Supply Co.
Boe Distributing Co
FORT DODGE
Ken-Els Radio Supply Co.
Radio Trade Supply $C o$.
Duke's Radio CITY
Farnswo ATERLO

KANSAS

SALINA
Four State Radio \& Supply
TOPEKA
Acme Radio Supply
Overton Electric Co., Inc.
WICHITA
Excel Distributors
Interstate Distributors. Inc.
Radio Supply Co.
KENTUCKY
GLASGOW
Cresent Radio Supply
Radio EquipINGTON EME.
P. LOUISVILILE
I. Burks \& Co.
Peerless Electronic
Equipment Co.
R-K Distributing Co.
Universal Radio Supply Co.
United Television Labs.
PADUCAH
West Kentucky Electronic
Supply Co.

LOUISIANA
ALEXANDRIA
Central Radio Supnly Co.
Electronicy Supply
LAFAYETTE
Radio Electronic Supply
F. H. Schneider Sons

Hale \& MONROE
Hale ${ }^{\&}$ NEW OReil
Columbia Radio \& Supply
Colum
Ole Miss Supply
Radio Parts. Inc.
Southern Radio Supply Co
Universal Supply Co.
Walther Brothers Co.
The Electronics Co.. Inc.
Inter-State Electric Co.
Koelemay Sales Co.
MAINE
AUBURN
Radio Sunply Co., Inc.
Radio Service Laboratory
Maine Electronic Supply
Radio Service Laboratory
MARYLAND
H. o. Berman Co., Inc.

Kann Ellert Electronics, Inc.
Lytron Distributing Co.
Radio Electric Service Co.
A. R. Spartana Co.

Wholesale Radio Parts Co..
${ }_{\text {Jos. }}^{\text {Inc }}$ M. Zamoiski Co.

CUMBERLAND
zimmerman Wholesaler
HAGERSTOWN
zimmerman Wholesaler
Standard Electronics Supply co.

MASSACHUSETTS

BOSTON
De Mambro Radio Supply Co.
Hatry \& Young of Mass.,
Louis. M. Herman Co.
A. W. Mayer Co.

The Radio Shack Corp.
Radio Wire Television, Inc.
Ware Radio Bupply
Ware Radio Supply
The Eastern Co.
Electrical Supply Corp.
Selden Distributing Co.
E. A. Ross d Co.

Springfield Radio Co.. Inc.
Hatry \& Young
Melrose Sales Co
Melrose Sales Co.
Willett Radio Supply
C. NEW BEDFORD
. Beckman Co.
Pittsfield Radio Co.
Gerber Radio Suply Co.
T. F. Cushing

Hatry \& Young
Springfield Radio Co.
Springfield
Sound
Co
Springfield Sound Co.
David B. Dean \& Co.
De Mambro Radio Supply Co.
Radio Electronics Sales Co.
Radio Maintenance Supply
Co.

MICHIGAN

ANN ARBOR
Wedemeyer Electronic
Supply Co. CREEK
Electronic Supply Corp.
Straits Distributors, Inc.
M. N. Duffy \& Coit

THEY SELL YOU A RIDER PUBLICATION--WE STAND BEHND IT the various sales-aid programs which we develop.

Northwest Radio \&
Radio Maintenance Co.
Radio Maintenancely Co.
Lw ST.
Lew Bonn Co.
Electronic Distr. Co.
Hall Electric Co.
Northwest Radio ©
Stark Radio Supply Co.

MISSISSIPPI

The Goyer Supply Co
Cabell Electric Co.
Southern Distributors, Inc.
-rfi MERIDIAN
Griffin Radio Supply Co.
Radio Supply Co.
MISSOURI
JEFFERSON CITY
Central Missouri Distributing
Co.
JOPLIN
M. Brotherson Co.

Burtsein-Applebee Co.
Manhattan Radio
Equipment, Inc.
Radiolab
Tri-State Radio \& Supply
Co. ST. JOSEPH
St. Joseph Radio \& Supply
ST. LOUIS
Walter Ashe Radio Co.
Ebinger Radio \& Supply Co.
Ebinger Radio \& Suppl
Interstate Supply Co.
Radionic
Radionic
Van Sickle Radio Co.
Harry Reed Radio \& Supply Co.

MONTANA
Electronic Supnly Co.
George Lindgren Co.
NEBRASKA
LINCOLN
Hicks Radio Co.
Leuck Radio Supply
J. B. Distributing Co.

Omaha Appliance Co.
Radio Equipment Corp.
Joachim Radio Supply
NEVADA
Metcalf's Radio Supply
Saviers Electrical Products Corp.
NEW HAMPSHIRE
Evans Radio
American DOVER
MANCHESTER
De Mambro Radio Supply
Co., Inc.
Radio Service Laboratory
NEW JERSEY

ATLANTIC CITY

Almo Radio Co.
Co Electric Service
Co. of Pa.; Inc.
Joe's Radio Shop
General Radio Supply Co.
Radio Electric Service Co. of Pa. CLIFFSIDE
Nidisco EAST ORANGE
International Distributing
Co.
JERSEY CITY
International Standard Electric Corp.
Nidisco
NEWARK
Continental Sales Co
Krich Radisco. Inc.
Aaron Lippman \& Co.
Radio Wire Television
Variety Electric Co.

Nidisco PASSAIC
PERTH AMBOY
Bennetts Radio Supply
PHILLIPSBURG
Carl B. Williams
RED BANK
Monmouth Radio Supply Co.
Allen \& Hurley
Nidisco

NEW MEXICO

ALBUQUERQUE
Monsen-Dunnegan-Ryan Co.
Radio Equipment Co.
L. B. Walker Radio Co.

Supreme Radio Supply
NEW YORK
ALBANY
Ft. Orange Radio
Distributing Co.
E. E. Taylor Company

Adirondack Radio Supply
Dare's AUBURN
Dare's Radio Service
Federal Radio Supply Co.
Bronx Wholesale Radio
Fordham Radio Supply Co.
National Radio Distributors
Radio Wire Television
Slate \& Co.
Wilco Radio Distributors
Ben-Ray Distributing
Ben-Ray Distr
Sam Buchman
Sam Buchman Electric Equipment, Inc
Electric Equipment, Inc.
Green Radio Distr.
Hornbeam Distributing Co.
Hornbeam Distributing
National Radio Part
Stan-Burn Electronics Corp.
BUFFALO
Dymac, Inc.
Genesee Radio \& Parts Co.
Radio Electric Products, Inc.
Radio Equipment Corp.
Standard Electronics
Distributing Co.
Empire State Distributors,
Inc.
C. A. Winchell Radio

Supply Co.
CROTON-HUDSON
W. R, O. Radio Laboratory

Fred C. Harrison Co
GLEN FALLS
Ray Distributing Co.
HEMPSTEAD
Davis Electronics Corp.
Island Radio Distributors
Standard Parts Corporation
Stallman of Ithaca
Chanrose Radio
Harrison Radio
Norman Radio Distributors,
Inc. Inc.

Radio Dist
Johnson Radio \& Electronic
Equipment MIDDLETOWN
L \& S Radio Sales
Davis Radio Distributing Co.
Hugh Radio \& Television
Parts NEW YORK
Arrow Electronice, Inc.
Blan, Inc.
Bruno-New York
H. L. Dalis

Douglas Radio Co.
Federated Purchaser
Fischer Distributing Co.
Harrison Radio Corp.
Harvey Radio Co.
Rene M. Jacobs Co., Inc.
Newark Electric Co.
O. W. Radio Co.

Radio Wire Television
Radionic Equipment Co. Sanford Electronics Corp. Stan-Burn Electronics
Sun Radio \& Electronics
Co., Inc.
Sylvan-Wellington Co.
Terminal Radio Corp.

NIAGARA FALLS
Niagara Radio Parts Co Ray Distributing Co Ray Pistributing CO Chief Electronics
Beaucaire Inc.
Hunter Electronic
Masline Radio \& Electronic
Equip. Co.
Radio Parts \& Equipment
Co.
Rochester Radio Supply Co. SCHENECTADY
Electric City Radio Supply
Maurice Schwartz Sons
SYRACUSE
W. E. Berndt

Robert \& O'Brien
Stewart W, Smith
Trojan Radio Co., Inc.
Beacon Electronics. Inc.
Electronics Laboratories
Supply Co.
Vaeth Electric Co.
Westchester
Westchester Electroni
Supply Co
Supply Co., Inc.
NORTH CAROLINA
ASHEVILLE
Freck Radio \& Supply Co.
Long's Distributing C
Dixie Radio Supply Co.
Radiotronic Distributors,
Inc.
Shaw Distributing Co.
CONCORD
The Question Shop Eastern Radio Supply
Johannesen Elect. Co. Inc. RALEIGH
Southeastern Radio Supply
Co. WINSTON-SALEM Dalton-Hege Radio Supply Lambeth Electric Supply
Noland

NORTH DAKOTA

FARGO
Bristol Distributing Co. Radio Equipment C .
Radio \& Sound Division

OHIO

AKRON
Olson Radio Warehouse, Inc
The Sun Radio Co.
Warren Radio
Morrison'stabula
Morrison's Radio Supply CANTON
Armstrong Radio Co.
Burroughs Radio Co.
The Sommer Electric Co.
Chambers Radio Supply Co.
Herrlinger Distr. Co.
Hughes-Peters, Inc.
Steinberg's Inc.
United Radio Inc.
Broadway Electric Supply
Goldh
Goldhamer, Inc.
Olson Radio Warehouse of
Pioneer Radio Supply Corp
Progress Radio Supply Co.
Progress Radio \& Electronic Parts
Winteradio Inc.
COLUMBUS
Hughes-Peters, Inc.
Whitehead Radio Co.
Hughes-Peters, Inc.
Srepco. Inc.
Stoots-Friedman Co.
EAST LIVERPOOL
D \& R Radio Supply
LIMA
Lima Radio Parts Co.
The Northwestern Radio Co
Warren Radio Co.
Burroughs Radio Co.
Sound Electronic Suppliers

SPRINGFIELD Eberie's Radio Supply D \& R Radio Supply
Toledo Radio Specialties
Warren Radio Co.
YOUNGSTOWN
Radio Parts Co.
Ross Radio
ZANESVILLE
Thompson Radio Supplies

OKLAHOMA

OKLAHOMA CITY
Milectronic Supply Co.
Radio Supply. Inc.
Radio Inc.
\mathbf{S} \& S Radio Supply

OREGON

EUGENE
United Radio Supply, Inc.
R \& F Sumath FALLS
$R \& F$ Supply Co.
Verl G. Walker Co.
Bargelt Supply
Harper-Meggee. Inc
Lou Johnson Co.
Northwest Radio Supply Co
Portland Radio Supply Co.
Portland Radio Supply Co.
United Radio Supply, Inc.

PENNSYLVANIA

Luckenbach if Johnson, Inc.
Radio Elec. Service Co.
Hollenbach's Radio Supply
Buss Radio Electric Supply
Radio Electric Service Co.
John V. Duncomb
John V. Duncombe Co.
Warren Radio ic Co
Warren Radio. Inc.
D. \& H. Distributing Co..

Radio Distributing Co.
JOHNSTOWN
Cambria Equipment Co
George D. Barbey Co., Inc.
Eshelman Supply Co.
Kratz Bros.
PHILADELPHIA
A. C. Radio Supply Co.

Allied Electric Appliance
Parts, Inc.
Almo Radio Company
Barnett Brothers Radio Co.
Emerson Radio of
Pennsylvania. Inc.
Herbach \& Rademan
Nat Lazar Radio Co.
M \& H Snorting Goods
Penn Electronics Co.
Radio Electric Service Co.
of Pa. Inc.
Radio Elec. Service Co.
Raymond Rosen \& Co.
Albert Steinberg \& Co.
Eugene G. Wile
Cameradio Co.
Hamburg Brothers
John Marshall Co.
Madio Parts Co.
Radio Parts Co.
Tydings Cotisvili.
Moyer Electronic Supply
Co., Inc. READING
George D. Barbey Co., Inc.
George DCRANTON
Broome Distributing Co.
Fred P. Pursell
Electronic Sales o Service
UNIONTOWN
Zimmerman Wholesales
WILKES-BARRE
D. \& H. Distributing Co.,

Inc.
Co.
Radio
Service Co.
Williamsport Radio
J. R. S. Distributor
C. R. Minnich

RHODE ISLAND
PROVIDENCE
Wm. Dandreta
W. H. Edwards Co.

SOUTH CAROLINA
CHARLESTON
Radio Laboratories
Dixie Radio Co.
Electronics. Inc.
Carolina Radio
Dixie Radio Supply Co., Inc.
Gilliam Radio Co.
SPARTANBURG
McElhenney Radio Supply
Toland Company
SOUTH DAKOTA
SIOUX FALLS
Power City Radio Co.
Warren Radio Supply
Burghart Radio Supply
Dakota Supply Co.
TENNESSEE
CHATTANOOGA
Curle Radio Supply
Radio Sales Co.
Specialty Distributing
Radio EIectric Supply Co.
Chemcity Radio \& Elect. Co.
Roden Electrical Supply Co.
Bluff City Distributing Co.
Lavender Radio
W. \& W. Distributing Co.

LIST OF AUTHORIZED RIDER JOBBERS

(Continued)
TEXARKANA
Lavender Radio Supply Co.
Lavender Radio Supply Co.
The Hargiss Co.. Inc.
Clark \& Gore Radio Supply UTAH
OGDEN
Ballard \& Carter
Central Radio Supply Co.
O'Loughlin's
Radio Supply Co.
Standard Supply Co. VERMONT
BURLINGTON
Vermont Appliance
Co. Appliance
VIRGINIA Bristol Radio Supply Co.
Womack Electric Supply Co.
Eastern Electric Co.
Eastern Electric Co.
Ignition Co. CT NEWS
NEWPORT NEWS
General Supply Co.
Nolan Co., Inc.
Ashman NORFOLK
Radio Equipment Co.
Radio Parts Distr. Co.
Radio Supply Co.
Virginia Battery Ignition
Co. RICHMOND
Johnston-Gasser Co.
D. R. Johnston Co.

Radio Supply Co.
H. C. Baker Co.. In Dixie Appliance Co.
Leonard Electronic Supply
Co.
M. A. STAUNTON
M. A. Hartley \& Co.
hern Electric Co.
WASHINGTON EVERETT T
Pringle Radio Wholesale Co. SEATTLE
General Radio. Inc.
Harper-Megree, Inc.
Seattle Radio Supply Co. Inc.
Western Electronic Supply Co.
Herb E. Zobrist Co.
Columbia Electric \& Mfg. Co.
Harper-Meggee Inc.
Standard Sales Co.

TACOMA
C E Radio Supply Co. A. T. Stewart Co.

Gar Radio \& Electric Co.
Lay \& Nord
WEST VIRGINIA
BLUEFLELD
Whitehead Radio Co.
CHA RLESTON
Chemeity Radio \& Elec. Co
Chemcity Rad
Hicks Radio The Mountain Electronica
Co., Inc.
Trent
Trenton Radio Co.
White Electric Co.
Electronic Supply. Inc.
King \& Irwin, Inc.
Plumber's Radio \& Electric Supply
MORGAN
Trenton Radio Co.
PARKERSBURG
Rundle \& Hornbrook
General Distributors
WISCONSIN
APPLETON
Appleton Radio Supply
Valley Radio Distributor e
G. M. GREEN BAY
G. M. Popkey Co.

Satterfield Radio Supply.
Inc. MARINETTE
G. M. Popkey Co.

Electro-Pliance Distr. Inc.
Juneau Radio Supply Co.
Marsh Radio Supply Co.
Radio Parts Co. Inc.
Taylor Electric Co.
Charles E. Turnock Co.
Standard Radio Parts Co.
Radio Service Supply Co.
wyoming
CHEYENNE
Houge Radio \& Supply O.
ALASKA
Alaska Radio Supply
HAWAII
HAWAII
Nylen Bros. \& Co. Ltd.
Precision Radio Service \&
Supply Co.
Radio Wholesale Supply
Co. S ut

CANADA

ALBERTA

CALGARY
Radio Supply Co., Calgary Ltd.
Taylor Pearson \& Carson
taylor EDMONTON
Radio Supply Co., Ltd.

british columbia

VANCOUVER
Hygrade Radio Ltd.
Taylor \& Pearson Ltd.
Western Agencies, Ltd
Ellison Quale Radio Supply Ltd.

MANITOBA
WINNIPEG
Sparling Sales Ltd.
NOVA SCOTIA
HALIFAX
Manning Equipment Ltd.

ONTARIO

The Big A Co.. Ltd
Cast Hamilton Radio
Exchange
Western Radio Supply Co.
MacDonald EHENER
MacDonald Electric Ltd.
Fisher LONDON
Radio OTTAWA
Radio Television
Laboratories
TORONTO
Alpha Aracon
Radio Trade Supply Co.
Wholesale Radio \&
Electronics Ltd.
Bowman-Anthony, Limited
QUEBEC
MONTREAL
Canadian Electrical Supply Co.. Ltd.
Commercial Radio Supplies
Ranis Radio \& Electric
Supply Co., Inc.
Payette \&UEBEC
John Millen Quebec, Ltd.
Dawson Auto Parts, Ltd.

SASKATCHEWAN

REGINA
Radio Supply \& Service Co.
Bowman Bros
Bowman Bros. Ltd. Let.

It's as True Today as it was Then --.

Books must follow sciences, and not sciences books.

-Bacon

Radio Operator's Licence Q 6 A
Manual, 608 pages $\$ 8.00$

The Business Helper
134 pages $\$ 2.00$
FM Transmission and Reception
416 pages Cloth Cover $\$ 3.60$
TV Picture Projection and
Enlargement. 190 pages \$3.30
Broadcast Operators Handbook
278 pages $\$ 3.30$
Understanding Vectors and Phase
Cloth Cover $\$ 1.89$
Paper Cover \$0.99
Inside the Vacuum Tube
420 pages \$4.50
The Cathode-Ray Tube at Work 345 pages $\$ 4.00$
Servicing by Signal Tracing
\qquad
The Meter at Work
160 pages $\$ 2.00$
Installation and Servicing of Low Power Public Address Systems 208 pages $\$ 1.89$
A-C Calculation Charts $\mathbf{\$ 7 , 5 0}$
High Frequency Measuring Tech.
niques Using Transmission
Lines. 62 pages $\$ 1.50$
The Oscillator at Work 254 pages $\$ 2.50$
Vacuum Tube Voltmeters 188 pages $\$ 2.50$
Automatic Frequency Control SYstems. 154 pages $\$ 1.75$
Radar - What it is
\qquad
Understanding Microwaves
396 pages $\$ 6.00$
Radio Amateur's Beam Pointer
Guide. 32 pages $\$ 1.00$
Master Index.Volume I to XV $\$ 1.50$
Order from your Jobber or Directly from Us

NEED YOUR HELP

In order to be of service to you, the Rider library of electronic magazines, one of the most extensive in the country. needs the following back issues to complate its files. We will pay $\$ 1.50$ per copy. For the 1947 Volume Transactons AIEE we will pay a reasonable figure-make us an offer. Send to John F. Rider Publisher, Inc., 480 Canal St., New York 13. N. Y.

Magazine and missing issues
B.B.C. Quarterly

Vol. 3, No. 4, Jam. 1949
Vol. 4, No. 1, Apr. 1949

Chemical Industries
Jon. - June 1949

Electrical Communication

July 1922	July 1934
Oct. 1922	July 1935
Jan. 1923	July 1937
Jan. 1934	

Electrical Review
Vol. CXLIV, Nos. 3711 to 3714, J en. 7.
14. 21, 28

Electrical West
Vol. 102, Nos. 4-7 Apr., May, June,
July 1949

Electronic Engineering
Vol. 20, No. 246, Aug. 1948

Engineers Digest
Jan. 1949

Journal of Applied Mechanics
Vol. 16, No. 1, March 1949

Journal Research of National Bureau Standards
Vol. 42, No. 1, Jan. 1949

Nature (English)
No. 4089 Mar. 13, 1948 $\begin{array}{llrl}4092 & \text { Apr. } & 3, & 1948 \\ 4093 & \text { Apr } & 10, & 1948\end{array}$
4096 May 1, 1948
4097 Mary 8, 1948
$\begin{array}{ll}4108 & \text { July 24, } 1948 \\ 4112 & \text { Aug. 21, } 1948\end{array}$

Proceedings of The Radio Club of America Jun. to June 1949

Radio
Jan. 1922
Aug., Sept., Oct. 1932
Feb., March, Apr., May 1933

The Electrician
Vol. CXLII, Nos. 25 - 52, Jan. -
June 1949
The Engineer
Dec. 13, 1946 - Dec. 27. 1946
The Iron Age
Vol. 163, Nos. 21, 22, May 26 and June 2. 1949

Tout La Radio.
No. 103, Feb. 1946
Transactions AIEE
1947 (Bound Annual Volume)

You Get OVERALI Test Performance With...

-IPRECCHSSHON一 series 10-12 Electronamic* tUbe performance tester

with 12 ELEMENT free-point Master Lever Selector System
*To test modern tubes for only one characteristic will not necessarily reveal overall performance capabilities. Tube circuits look for more than just Mutual Conductance or other single factor.

MODEL 10-12-P (illustrated): in sloping, portable hardwood case with tool compartment and hinged removable cover. Size $133 / 4^{\prime \prime} \times 171 / 4^{\prime \prime} \times 63 / 4^{\prime \prime} \ldots \$ 96.10$ MODEL 10-12-C (Counter Type)..... $\$ 99.40$ MODEL 10.12-PM (Panel Mount).... $\$ 99.40$

- In the Precision Electronamic Circuit, the tube PERFORMS under appropriately phased and selected individual element potentials encompassing a wide range of plate family characteristic curves. This complete Pat of Operation is integrated by the indicating meter in the positive PERFORMANCE terms of Replace-Weak-Good.
* Facilities to 12 element prongs.
* Filament voltages from $7 / 4$ to 117 voits.
t Tests Noval 9 pins; 5 and 7 pin acorns; double-capped H.F. amplifiers; low power transmitting tubes; etc. REGARDLESS OF FILAMENT OR ANY OTHER ELEMENT PIN POSITIONS.
+ ISOLATES EACH TUBE ELEMENT REGARDLESS OF MULTIPLE PIN POSITIONS.
- DUAL short check sensitivity for special purpose tube selection.
* Battery Tests under dynamic load conditions.
* 41/2" Full Vision Meter.
- Built-in Dual-Window, brass-geared roller chart.
* FREE Replacement Roll Charts and supplementary tube test data service.

See

he 'Prectston'" Master Electronamic Tube Testers at leading radio equipment dlstributors. ment for all phases of modern A.SI.. F.SI., and TV.

\leftarrow SERIES ES-500-20 mv. High Sensitivity, Wide Range 5 inch C.R. OSCILLOGRAPH.
V. Amp. Response to 1 MCl Low C. High R input Step Attenuatorl Z axis modulation terminals! 9 tubes incl. V.R. and 2 rectifiersl Complete with light shield and mask. Heavy steel case $81 / 4 \times 141 / 2 \times 18^{\prime \prime} \ldots$ Net Price: $\$ 149.50$ SERIES E-400

Wide Range H.F. SWEEP SIGNAL GENERATOR Direct Reading from 2 to 480 MC.
Narrow and Wide Band Sweep tor F.M. and TV - 1500 pt . vernier calibrating scale - Multiple Crystal Marker - 8 tubes including V.R. and rectifier - RG/62U Coaxial Terminated Output. Complete with 2 crystals. In heavy copperplated case $101 / 2 \times 12 \times 6^{\prime \prime} \ldots$ Net Price: $\$ 124.70$

TUBE TESTING
Many years experience and development have indicated to Precision Field and Factory engineers that: "General purpose Tube-tester design should not be based upon just one selected characteristic such as mutual conductance alone."
It has been conclusively proven that a tube may work well in one circuit, but fail to work in another circuit - simply because different circuits demand different relative performance characteristics. Among these characteristics are: electron emis. sion, amplification factor, plate resistance, mutual conductance, power output, etc.

Tube manufacturers and research laboratories maintain elaborate tube testers which actually measure each characteristic individually. These testers, aside from great size and complexity, are much too expensive for service technicians. Their demand is for a tube tester which is com pact, reasonable in cost, simple in operation, and which gives a reliable indication of the general over-all tube merit, or performance capability.

Extensive research has proven to our satisfaction that such a practical tube tester should be based upon the common factor that Tube output (voltage or power) is the result of a plate current caused by an applied control-grid voltage - which current must be adequate even at full peak operating conditions.

This important principle is illustrated in Fig. 1 and is the heart of the famous, time-proven, Precision Electronamic* tube-tester circuit.

Because of the appropriately phased A.C. char acter of the test potentials, we refer to it as a sweep-signal or "Electronamic" test. It determines tube performance over a complete path of oper ation, from zero to peak output. This point-by-polnt performance-ability is then integrated by and in dicated on a meter in direct terms of Replace. Weak-Good.

Ep ~ Phati Potential
Fig. 1 - The "Electronamic" Mcthod Tests
The Tube Over a Complete Path of Operatfor.
The efficlency of this sweep-signal or "Electronamic' test results from encompassing severa fundamental tube characteristics, NOT JUST ONE Accordingly, when a tube passes this demanding performance test, it can be relied upon, to a very high degree, to work satisfactorily in most circults.
It is for this reason that we find the "Electro namic' tester best to meet the realistic require ments of the technician - affording high practical correlation between test results and "in-application' performance.
By comparison, a single-characteristic test, such as the emission tester, has usefulness insofar as the tubes to be tested are used in circults which depend primarily upon cathode-emission capability (assuming little alteration of vital electrode posiassuming little alte
tions or continuity).
Even other single-characteristic testers have their definite limitations. More practically, the progressive technician will find the sweep-signal or "Electronamic" test to efficiently indicate the general over-all tube performance merit.

A－C Vacuum－Tube Voltmeters

（Continued from page 19）
probe．As with any other half－wave rec－ tifier probe，it responds to only one peak of the signal being measured，and is not very convenient for peak－to－peak measure－ ments．These，however，can be made by measuring each peak separately，as des－ cribed previously．

The crystal probe has one rather serious limitation with regard to its use on televi－ sion receivers．This is its inability to measure very large signals without in－ troducing errors in the reading due to the nonlinearity of the crystal characteristic at large amplitudes of voltage．＇The largest peak voltage that can be accurately meas－ ured is about 20 or 30 volts．This limits peak－to－peak readings to 40 or 60 volts， which is sufficient for many of the video and sync signals．However，some of the sync and most of the sweep signals are quite high，in some cases as high as 900 volts peak－to－peak．Adding multipliers is usually not possibie due to their adverse effect on the frequency response．

FOR THE TV MAN IN THE FIELD

We have developed a tech． nical service for the TV man in the field．Each and every one of you who have occasion to visit the customer＇s home on TV serv－ ice calls will find this service of extreme value．Watch for com－ plete announcement in the Jan－ uary， 1950 issue of SUCCESSFUL SERVICING．

RIDER BOOKS IN PREPARATION CATHODE－RAY TUBE AT WORK

Completely rewritten and vastly enlarged．The theory is greatly expanded－ all scopes and synchroscopes manufactured during the last 10 years are de－ scribed．Great emphasis on application to all fields．Written to serve all users of scopes．Size $8^{1 / 2^{\prime \prime}} \times 11^{\prime \prime}$－more than 3000 illustrations．Never has there been a book like this one．

VACUUM TUBE VOLTMETERS

This book has been rewritten and enlarged．Commercial vacuum tube volt－ neters are fully described as well as the basic theory of these meters．Em－ phasis on application and theory．

SERVICING A－M，F－M，AND TV RECEIVERS （Replacing Servicing Superheterodynes）

Written in the easy－to－understand Rider style．Describes troubles usually en－ countered and the way they can be cured．l＇nique circuits are also discussed．

THE OSCILLATOR AT WORK

Describes oscillator circnits used in a－m，$f-m$ ，and television receivers and also the test oscillators and generators used in the servicing of these receivers． Emphasis is placed on the test procedures required and commercial oscillators are discussed in detail．

Watch For Publication Dates And Further Details

Regal 1107， 7254

Models $\mathbf{2 2 5 4}$ and the revised 1107 are the same as Model 1107 which appears on page 19－S of Rider＇s Manual Volume $X I X$ with the following clanges：
Antenna loop，30－128，has been changed to an antenna coil，30－145．
Ganced variable caparitore $40-101$ have been changed to $40-101 \mathrm{G}$ ．
The value of the 13,000 ohin resistor con－ nected to the B lead of $30-127$ has been changed to 15,000 ohms and is designated as 65－155．
The 200,000 －ohm resistor， $65-142$ has been changed to 220,000 ohms and is des－ ignated as $65-108$ ．
The $0.01-\mu \mathrm{f}$ capacitor connected to the A lead of $30-127$ has been changed to 0.006 $\mu \mathrm{f}$ and is designated as $50-101$ ．
Resistor $20-101$ is now 20－103，the value remains the same．
Capacitor 53.103 is now 55－103，the value remains the same．
The 25 －ohm， $1 / 2$－watt resistor， $65-101$ has been changed to 22 ohms， $1 / 2$ watt，and is designated as $65-160$ ．
The two $50-\mu \mathrm{f}$ capacitors， $60-106$ ，have been changed to $40 \mu \mathrm{f}$ and are designated as 60－108．
The 2,400 －ohm resistor， $65-132$ ，has been changed to 2,200 ohms and is designated as $65-162$ ．

RIDER WANUALS When sutcusinis

TV PICTURE PROJECTION AND ENLARGEMENT

＂Here is one of those rare volumes that are useful both to the neophyte and the experienced engineer．At first glance it appears to be a run－of－the－mill work on fundamentals of the TV art， which are appearing in all 200 gresi a profusion these days．As one progresses through this book，however，one＇s inter－ est is progressively heightened，and it is amazing to learn in the process how easy it is to forget basic data of this sort as one goes on to nore complicated equipment and technique．

First Rate Job on TV Optics

Of the six sections into which the book is divided，the first two deal with elementary optics，and it is these chap－ ters which should exert the greatest ap－ peal to one who seeks to understand the optical principles underlying TV．The other four chapters show how these principles are applied commercially to TV equipment by the various manufac－ turers，in addition to comprehensive notes on the adjustment of the various receivers．

The volume benefits by a good job of indexing as well as a very useful bibliography．IP recommends this book unreservedly．＂－International Projec－ tionist．

T mind in dealing with the filament circuits of a television receiver. First of all, chokes may be used in series and capacitors in parallel with filaments in a television receiver to prevent coupling of signals between the several sections; secondly, series and parallel arrangements of the filaments may be found. In addition to these, manufacturers may not use the same filament circuits in their different models. Also, more taps may be used on the power transformer to supply the different filament voltages and to divide the load, as well as to prevent unwanted coupling between stages. Therefore, the serviceman cannot haphazardly pull out tubes which are not lighted and replace them thinking that the trouble has been fixed. The wiring diagram must always be checked.

A low-impedance path into the filament circuit from the cathode is thus presented to high-frequency signals. We are dealing with a very real circuit component even though it is not represented on the schematics of receivers. It would be simple for signals to be coupled through the filament of an r-f tube back to the common source, and then to the filaments and the cathodes of the picture and video tubes, thus causing interference in the picture.

It has been shown that these signals may be coupled into the circuits of other tubes. How can this be prevented? If another component were inserted in series, or in parallel, with the filament, blocking or bypassing of the signal is readily. accomplished. For instance, with the 12AT7, the filament resistance for parallel operation is equal to the filament voltage divided by the current
will effectively block or drop most of the stray r.f. in the filament circuit and prevent it from entering any other circuit. At 60 cps the reactance of the choke is negligible, being much less than a small fraction of an ohm.
In addition to this, a capacitor may be placed directly across the filament. The action with a $5,000-\mu \mu \mathrm{f}$ capacitor would be as follows. Its reactance at 25 mc is $\frac{1}{2 \pi f C}$ $=1 / 6.28 \times 25 \times 10^{6} \times 5,000 \times 10^{-12}$ or a little over 1 ohm. Therefore, the r-f signal is effectively bypassed to ground, and does not pass to the other filament circuits of the set.

Examples of Filament Isolation

In Fig. 2 the partial filament circuit for Admiral Chassis 20X1 is shown. One side of the circuit is grounded, the other being at

After Admiral
Fig. 2.-The schematic diagram of the Admiral Chassis 20X1 filament circuits with the use of r-f blocking chokes and bypass capacitors.

TV
 Filament
 Circuits

R-F Chokes and Bypass Capacitors

The eye is more sensitive to changes than is the ear. In the same way the video section of a television set is more sensitive to irregularities than is the audio portion. Since r-f signals are inaudible, the sound system does not usually have to be protected from any stray r-f signal. However, r.f. may easily be coupled through to the video stage causing interference in the picture if precautions are not taken.
Coupling in the filament stage occurs through the small but still significant capacitance between the cathode and filament of a tube (see Fig. 1). For instance the twin triode, the 12AT7, has a filament-to-cathode capacitance (for each unit) of $2.5 \mu \mu \mathrm{f}$. This might be thought small, but at the frequencies used in a television receiver, it becomes important. At a frequency of 80 mc the reactance of this $2.5-\mu \mu \mathrm{f}$ capacitance is equal to $\frac{1}{2 \pi f C}=\frac{1}{6.28 \times 80 \times 10^{6} \times 2.5 \times 10^{-12}}=800$ ohms.
$=\frac{6.3 \text { volts }}{0.3 \text { amperes }}$ or 21 ohms. The effective r-f circuit is shown in Fig. 1B. Since the filament offeres a low-impedance path to signals, an r-f choke is placed in series with it. The reactance of even a $1-\mu \mathrm{h}$ choke at a frequency of 80 mc is $2 \pi f L=6.28 \times 80 \times$ $10^{6} \times 1^{-1} \times 10^{-6}$ or about 500 ohms. This

Fig. 1.-(A) shows a simplified tube circuit showing the filament-to-cathode capacitance. (B) is the equivalent r-f circuit showing the low filament-to-cathode reactance used for coupling the filament and cathode circuits of a tube.
an a-c potential of 6.3 volts. The r-f amplifier and the oscillator-mixer are each in series with a choke, the two circuits being in parallel, and both are in series with another choke. The first and second video i-f amplifiers, in contrast, are directly in parallel with each other, the combination then being in series with a choke. The highfrequency stages are thus isolated from the rest of the circuits; the r-f tuning unit more so than the video i-f stages. The rest of the filaments are directly in parallel across the 6.3-volt supply.

The filament circuits of Capehart-Farnsworth Models $3001-\mathrm{B}$ and $3001-\mathrm{M}, 3002-\mathrm{B}$ and $3002-\mathrm{M}$, and their Series A , are shown in Fig. 3. It is seen that the B-is connected to one side of one 8.3 -volt winding. There is no ground involved in this source of filament voltage. However, there is another 6.3volt source used, one end of which is grounded. This winding is used to supply the four video i-f amplifiers and the r-f tuning unit filaments. These stages are seen to

[^0]

USING AN A-M SIGNAL

 Fig. 1. Pattern produced by signal generator with 400 -cycle modulation.

 GENERATOR publication Techni-talk.

In some areas tv stations have either reduced "test-pattern time" to only a few minutes a day or the time is such, that when the test pattern is on, very few if any receivers can be installed and adjusted. Several manufacturers of test equipment are producing cross-hatch generators which can be conveniently used to adjust the height, width and linearity controls. These instruments should be used whenever available since they are designed for this particular application. Some service-technicians may not as yet have acquired one of these instruments or in a large service organization there may not be a sufficient number to go around. If a cross-hatch generator is not available an ordinary a-m signal generator can be used for the same purpose.

The vertical linearity and height controls can be checked and adjusted by setting the channel selector to some channel not used in your area. This should probably be one of the lower channels since most of the older signal generators do not cover the high tv channel frequencies. The r-f output cable of the signal generator should be connected to the antenna terminals of the receiver. The output of the signal generator must be modulated since it is the frequency of the modulation which is visible on the picture tube screen. Most signal generators have provision for 400 -cycle modulation which produces a bar pattern similar to that shown in Fig. 1.

The output of some signal generators such as the General Electric YGS-3 can be modulated by a 60 -cycle or 400 -cycle fixed frequency, or by any frequency within the variable frequency range of 100 to 12,000 cycles. The 60 -cycle modulation produces a pattern consisting of two horizontal bars as shown in Fig. 2. The positive half of the sine wave produces the bright bar, while the negative half produces the black bar. The 400 -cycle modulation produces six bright bars and five dark bars as shown in Fig. 1. The number of black and white bars will vary depending on the frequency of the

Fig. 3. Pattern produced by signal generator with 1500 -cycle modulation.

Fig. 5. 1500-cycle modulation with poor vertical linearity.
audio modulation. If the frequency of the audio modulation is increased to 1,500 cycles, the number of black and white bars will increase to 25 as shown in Fig. 3. The number of bars which appear on the screen can also be varied somewhat by adjusting the vertical-hold control which changes the frequency of the vertical oscillator.
The vertical linearity and height controls can be adjusted with either 400 -cycle modulation or some higher frequency such as 1,500 cycles. A squeezing at the top is shown with 400 -cycle modulation in Fig. 4 and with 1,500 -cycle modulation in Fig. 5. The controls should be adjusted until the spacing between each bar is the same, keeping in mind, of course, that the top and bottom should not extend more than onehalf inch beyond either the top or bottom of the screen.

Fig. 2. Pattern produced by signal generator with 60-cycle modulation.

a CROSS-HATCH GENERATOR

Fig. 4. 400-cycle modulation with poor vertical linearity.

Fig. 6. Pattern produced by Signal generator with 157.5 K C unmodulated output.

Reasonably good vertical adjustments can also be made without instruments by checking the scauning lines for crowding near the top or bottom of the screen. This type of adjustment can be made somewhat easier if the vertical-hold control is adjusted so that the vertical scan lines for each frame pair up or overlap. If a receiver has good interlace, this point may be very close to the position where the vertical loses sync.

Still another method which can be used is to adjust the vertical-hold control so that the verticat roils slowly. The height of the blanking bar between frames can be observed as it moves from the top to the bottom of the screen. If the height of this bar changes either near the top or near the bottom of the screen, the picture will be affected in the same way at the same point.
(Continued on page 8)

Here's a real lively "stopper" to attract attention to your place of business and emphasize the quality of your service-. Coiorful - bright red and two shades of blue. 15 inches high. Your jobber salesman will tell you how to get one.

VOLUME 14 NUMBER 1

JANUARY, 1953

JOHN F. RIDER, Publisher
ANNETTE M. TRICARICO, Edifor

Stuart Flexner, Assistant Editor
Milton S. Snitzer, Technical Advisor
Advertising Representative
H. J. Olsow \& Co.

3951 Grand Central Terminal
New York 17, N. Y.
MUrray Hill 6-4670

Cuntain Time

The Itinerant TV Service Technician

It has been common practice to do light TV servicing - mainly tube changing - in the home. Judging by the comments of some large service facilities of all sorts, customers' home service will be expanded in the future to where virtually all troubles will be remedied in the home. Only in extreme cases will chassis be pulled.

This approach to TV servicing will, more than likely, result in other changes too. It is going to mean a greater investment in test equipment - portable equipment which can be taken into the home. This means that test equipment manufacturers will have to design equipment specifically for this purpose.

It is going to give the small independent operator the opportunity to survive. It has been the general opinion that TV servicing set a limit on the minimum number of personnel required by a service facility because of the to-and-fro movement of a TV receiver. Doing most of the service in the home enables a TV service facility to operate with whatever number_ of technicians the facility wishes to place in the field - as few as one man.

Another practice associated with this kind of service is the use
of the rolling parts stock, that is, the replacement parts stock will be in the truck which is driven to the job. This is being done to a limited extent today and is proving successful. In fact, the roving service truck idea was talked about years ago-at the advent of television, but it did not gather too much momentum, except as applied to receiver and antenna installations. Now it looks like it will become an everyday occurrence.

The idea will be accepted by the public. Even though the average housewife is not too happy at the prospect of having one of her rooms cluttered with servicing equipment, it still is the lesser of the two evils relative to all the possibilities of what can occur when the chassis is removed from the home. In the mind of the public anything can happen after a chassis is pulled even to having to pay a ransom to get it back. Having it serviced in the home will reduce the period during which the receiver is inactive. It will cut the travel time cost, to say the least.

Once the practice blooms, it will be necessary for all service facilities to follow suit. This is becoming evident today in the form of the responses received by those shops that advertise service in the home. They outpull the ads which do not make the same offer.

Doing extensive TV servicing in the home will place a greater than ever premium on technically qualified men. In fact, successful operation cannot be carried on in any other way. Properly handled, it should minimize repeat calls because it is possible to demonstrate the performance of the receiver before the technician leaves; also it means freedom from the complications of operating a receiver in one location and servicing it in another, where completely different receiving conditions prevail.

All in all, major service in the customer's home offers interesting possibilities. Let's see what happens.

The OPS Price Order for TV Service

The price order covering TV service has yet to be issued by the OPS. According to reports it will be done, providing the regulatory body will remain after the new administration becomes active. We have not changed our ideas as expressed in the November, 1952 issue of SUCCESSFUL SERVICING. We feel that the problem .of diagnosis of TV receiver troubles, the "bugs" which frequently develop in TV receivers - in general the behavior of electronic equipment makes it necessary to treat the repair of these devices differently than ordinary electrical and mechanical equipment.

It is reported that the contents of the proposed regulation has the approval of TV service facilities. We hope that diagnosis time was given its full due apart from the time required for the repair.

John \mathscr{F}. Rider

[^1]

Replacement Parts in TV Receivers

Part I-Capacitors (cont'd)

This is the third in a series of articles on "Replacement Parts in TV Receivers." "Capacitors" will be continued next month.

DIFFERENCE BETWEEN CAPACITORS

The various names which appear in the capacitor family tree designate both physical and electrical differences in the components and in the behavior and suitability of the component for different classes of service. As to the physical differences in dimensions, these require no special comments other than to say that, in the final analysis, the suitability of a capacitor on this basis, is determined by its location in the receiver.

Mica Capacitors. The differences between foil mica and silver mica capacitors are manifold. The foil type, or ordinary "molded" mica is made up of alternate slabs of active surface (usually metal foil) and mica dielectric. The assembly is compressed under high pressure and housed in a molded case, usually of brown bakelite, although yellow bakelite also is used for this purpose. The uniformity of closeness of the foil to the dielectric slab determines in a great measure the electrical behavior of the device. This behavior is a function of the materials used, the pressure applied when the unit is encased, and the expansion or contraction of the casing under the influence of varying temperature. This in turn gives rise to changed spacing between the active surfaces and the dielectric, and a change in capacitance.

The variation in capacitance under varying temperature conditions is minimized by the use of yellow bakelite, but since the foil type represents. a category of component, certain conditions of behavior are acceptable. Thus the usual brown bakelite mica capacitor is acknowledged to possess certain operating characteristics and is used on that basis.

The tendency toward change in capacitance with variation of temperature has given rise to a sub-classification. This is the deliberately engineered temperature coefficient mica capacitor, wherein the capacitance changes by a prescribed amount per degree C. change in operating temperature. This type was popular years ago for correcting circuit behavior with changing temperature, but, as is discussed in detail later, it has been supplanted by the ceramic dielectric unit.

The silver mica variety, whether of the "postage stamp" or "button" shape, uses a deposit of silver on the two sides of the mica dielectric. This produces a firm bond

by John F. Rider

between active surface and dielectric. Moreover, the assembly is housed in either red or yellow bakelite; that is, in material which maintains its dimensional stability with changing temperature. The result is a capacitor which is very efficient electrically; is much more stable in capacitance than the ordinary mica; can be produced to a much greater degree of accuracy relative to capacitance rating; in general is much more suitable for use in all critical circuits under varying conditions of frequency (including UHF), temperature and humidity. It too is available in a variety of temperature coefficient characteristics, although in the main it is a positive temperature coefficient capacitor.
Manufacturing know-how enables producers of mica capacitors to deliver an end

New RIDER TEK-FiLE Packs
 with
 Replacement Parts Listings
 avcilable this manth!

Pack 62. Gamble-Skogmo, G.E.
Pack 63. G.E., Hallicrafters
Pack 64. Hallicrafters, Hoffman
Pack 65. Hoffman, Jackson, Magnavox
Pack 66. Majestic, Meck, Montgomery Word
Pack 67. Motorola, Muntz, Mational, Olympic
Pack 68. RCA, Philco
Pack 69. Sylvania, Tech-Master, Trav-Ler, Video Products

The following Packs will not be released until February, 1953, but are included in this month's index-for your convenience and for future reference:

Pock 70. Motorola
Pack 71. Packard-Bell, Philco
Pack 72. RCA
Pack 73. Western Auto, Westinghouse
Pack 74. Radio Craftsmen, RCA, Sears Roebuck
Pack 75. Sentinel, Sparion, Spiegel, Starieft, -Stewart-Warrier Pack 76. Stramberg-Carlsan, Sylvania Pack 77. Westinghouse, Zenith

For the individual models included in these Packs, refer to the TEK-FILE INDEX in this issue.
product which displays prescribed characteristics relative to an increase or decrease in capacitance within prescribed limits for unit changes in operating temperature. This establishes the "class" or "characteristic" of the capacitor. Since the set designer weds the characteristic of the capacitor to the circuit requirements, it is a relatively important consideration in the matter of replacement. In essence, the characteristic is a designation of the temperature coefficient of the capacitor. More about this later.

The comparative superiority of the silver mica capacitor over the ordinary foil mica type does not make the latter a bad unit. It is an excellent capacitor and enjoys a great variety of uses; it is simply that where frequency stability is a very important item, and the frequency is controlled by capacitance (as for example in oscillators and other critical tuned circuits) the silver mica unit is preferred.

The use of mica as a dielectric provides high insulation resistance. This is true for both kinds of active surface construction; hence the mica capacitor is frequently used for d-c isolation (and coupling) where d-c leakage must be kept very low. To minimize the absorption of moisture in humid atmosphere, and also to keep surface leakage between the connecting wires low, the complete capacitor often is coated with a layer of wax.

Ceramic Capacitors. Ceramic capacitors are available in a number of types. Neglecting physical differences, the ceramic unit is highly efficient electrically. Constructionwise, regardless of the shape, it consists of a metallic deposit on the opposite surfaces of a ceramic dielectric with connecting leads soldered to the active surfaces. The result is a very stable capacitor, and one in which, by selection of the ceramic dielectric material, a variety of electrical characteristics can be achieved. One of its paramount virtues is a relatively high value of capacitance in a small, compact-sized unit. In this respect it is superior to all other types of capacitors.
Another feature stemming from the easy control of the specific composition of the ceramic dielectric, is the ability to manufacture a capacitor which will change in capacitance in a definite direction and decrease or increase by a predetermined amount with changes in operating temperature. While this is possible with the foil type of mica capacitor, it is much more easily controlled in the ceramic, with the result that the latter variety of temperature compensating capacitor has displaced the
(Continued on page 26)

Using An A-M Signal Generator etc.

(Continucd from page 3)
The height and vertical linearity controls should then be adjusted until the height of the blanking bar is uniform regardless of its position on the screen.

Although the vertical height and linearity controls can be adjusted for reasonably good linearity without a test pattern or test equipment, the adjustment of the horizontal linearity control does require some type of a pattern on the screen. An incorrect adjustment of the height and vertical linearity controls is more noticeable on the ordinary program than is an incorrect adjustment of the horizontal controls. This does not mean that the horizontal adjustments can be overlooked, however, since the owner will see a
number of programs on which a circle will be used, and if this is not a reasonably true circle, a return service call will probably be required.

The signal generator can also be used to make this adjustment without removing the chassis from the cabinet. The only additional items required are a $.01-\mu \mathrm{f}$ capacitor and a piece of thin spaghetti. The location of the first video amplifier tube must also be known. This tube can, of course, be identified if a circuit diagrain is available. If a diagram is not on hand, the tube layout will ordinarily indicate the video amplifier tube or this tube may be recognized by its location on the chassis.

Addition to TV 10 and TEK-FILE Pack 67

National TV Model 1701
VOLTAGE CHART

Tube No.	Pin 1	Pin 2	Pin 3	Pin 4	Pin 5	Pin 6	Pin 7	Pin 8
V1	-. 5	0	6.3 AC	0	80	80	0	
V2	96	96	6.3 AC	0	-3. 5	-2. 5	0	
V3	-. 45	0	0	6.3 AC	90	90	. 4	
V4	-. 45	0	6.3 AC	0	90	90	. 5	
V5	-. 45	0	0	6.3 AC	90	90	. 6	
V6	0	0	0	6.3 AC	90	90	. 7	
V7	-2. 5	-. 2	0	6. 3 AC	. 5	0	-3	
V8	0	6.3 AC	$-\dot{-2.5} \text { to }$	-2.5	. 4	160	0	115
V9	90	-9	4.5	0	0	0	0	0
V10	20	0	0	6. 3 AC	20	-. 6	0	
V11	0	0	6.3VAC	0	13	NC	-9	
V12	NC	NC	6.3VAC	0	320	-90	0	
V13	NC	0	350	350	27	0	6.3VAC	0
V14	25	220	13	-7	120	13	6.3VAC	0
V15	NC	6. 3VAC	1.7	TP*	-18	NC	0	320
V16	HV RECTIFIER							
V17	NC	280	540	NC	360	NC	6. 3VAC	6.3VAC
V18	PICTURE TUBE							
V19	0	0	0	6. 3AC	88	90	. 6	
V20	96	140	340	90	94	96	90	
V21	88	92	42	92	280	150	92	
V22	0	90	320	250	80	90	90	105
V23	NC	390	0	0	360	0	NC	390
V24	88	88	92	92	92	NC	80	

*Tie point

Fig.7. Pattern produced by signal generator with 157.5 kc modulated by 400 -cycle audio.

A number of manufacturers are also including test jacks located at various points in the circuit which can be used for troubleshooting or signal insertion. One of these test jacks is usually located at the output of the video detector or the input to the first video amplifier. If a test jack is available the output of the signal generator can be connected to this point through a $.01-\mu \mathrm{f}$ capacitor by inserting one end of the capacitor, bent to make proper contact, into the test jack.
If a test jack is not available at this point in the circuit, contact can be made by connecting the $.01-\mu \mathrm{f}$ capacitor to the grid pin on the first video amplifier tube. A piece of thin spaghetti should cover both of the capacitor terminal wires so that only about one-quarter inch of wire is exposed at the end of each wire. One end can then be bent so that it will fit snugly over a miniature pin, and the other end can be bent to fit over an octal pin. Either end can then be used depending on the tube used in the receiver. The spaghetti will prevent a short either to the chassis or to some other tube pin.
The channel selector should be sent on a blank channel and the r-f output cable of the signal generator connected to the unused end of the $.01-\mathrm{mf}$ capacitor. The output of the signal generator should be unmodulated and the frequency adjusted for some harmonic of the horizontal sweep frequency of 15,750 cycles, such as the tenth harmonic which is 157,500 cycles or 157.5 kc. This will produce about ten vertical dark and light bars across the screen as shown in Fig. 6. The spacing of these bars can then be used to adjust the horizontallinearity control. If more bars are preferred the frequency of the signal generator can be increased; if fewer bars are desired the frequency can be decreased. The vertical bars will sync in at harmonics of the hori-zontal-sweep frequency. If the audio modulation is not turned off the bars will be wavy as shown in Fig. 7.

If either a cross-hatch generator or an a-m signal generator must be used, it should be remembered that these instruments are only substitutes for the test pattern. If a pattern can be used it should be preferred although reasonably close linearity adjustments can be made with instruments.

by John D. Burke

What goes on in the head of a TV repairman when he goes into a house or apartment to "take a look" at a TV set?

Within the space of a very few minutes a torrent of thought surges through his head. Yet, to the observer, it would seem that the repairman has little on his mind.

From years of personal experience I shall try to set down a record of such thinking. Perhaps it will be interesting to psychologists. At any rate, my fellow repairmen should be interested, amused, even compensated for their somewhat tonguetied characteristic - unable to convey to an outsider that which we of the trade undergo.

Since we are dealing with a torrent of thoughts - the only organization possible is movement. It will start at one point, and finish at another.
"What could it be? It must be just a tube! We had all the tubes overhauled just last month! Must be just an adjustmentl Maybe the aerial has blown downl Do you think it is the picture tube? What do you think of these................sets? What kind of a set do you have? Which set would you recommend? Let the man alone! What's that? An ash tray? (Gladly they rush to bring an ash tray. Gives them something to do. Like a doctor asking for hot water.)"
". . . Hmm. They never think to clear the junk off the top! Where's the light? Living rooms are certainly dark nowadays since television . . . ah, at least this floor lamp still has a bright bulb. What is it? A console. Drag it out. Careful, watch out for that rug . . . remember, put something on the top . . . this paper will do. Never forget the time I accidentally burned a tiny spot on a top. So small it rubbed out easy . . . looked like they'd kill me . . . refused to take pay for the job . . . told 'em to apply it to re-
finish the cabinet . . . man came to my shop and insisted on paying for my work.

The back . . . oh no . . . screws mostly missing. Watch out for that tube neck . . . sticks out! If the back drops . . . bang goes the picture tube. Hey! Better take a look at the front before pulling off the back. What's the complaint? Plays a while - then goes crazy. Hmmm - at least this one's got the hold controls on the front . . . Ah, not enough width . . 5U4 or more? Gee, I hope it doesn't use a 6CD ... haven't got one with me Lousy intermittent. Picture's solid now. Try to speed up the craziness . . . rotate band switch. Turn set on and off . . . rotate hold controls. The people will think I'm ruining their set - swinging these knobs so fast. Those fix-it books - TUUUUUURN SLOOOOWLY - got everybody nuts. 'Fraid to turn a knob. Never forget the old pair that thought the set should be turned off before changing stations!
O.K. - there she goes. Sync. Is it both vert and hor? Vertical very unstable . . . horizontal, no sync at all. Oh, oh - breaks into multiple images sideways. Nice. Hope its just the oscillator. Nice, clean, simple through in a wink. Maybe the horizontal amplifier, too. Hope not. Rough to explain that tube's price. Off with the back . . . where's my junk? Ah, ah, somebody's broken the cheater off the back. No need to use my cord . . . always forgetting them . . . such a hurry to get out after the job is done I forget the cord.
How about the controls? Marked on the chassis . . . ? Those engineers should have to work on some of their own monstrosities. What is this . . . intercarrier or conventional? Looks intercarrier. How many tubes in the sync . . . Mmmm. Horizontal oscillator - where the devil is it? The places they put tubes! Ah, at least this one has a spring mount base. That's the baby . . . oh, oh . . . wait . . don't pull it or you'll blow a fusel

Off with the cord . . . change tubes . . . hope this new one is good! Now . . . let's see . . . before turning it on . . . Where's the fuse? In the box. Good. Lucky. Better open her up before turning it on again. May see something. Some case, that last one! Somebody just laid a new fuse on top of the
old one! That set sure acted crazy. How about finger smears on the tubes? Yeh, they've been in here. Just feeling to see if they are hot. Heyl How about the trap . . . have they been at it, too? Yeh! Mm . . . doesn't look like they moved it. It looked O.K. when the set did play before . . .

Would the horizontal oscillator tube being bad explain lack of vertical sync? Might. If vertical draws voltage from the damper damper works off horizontal . . . O.K. Let's see how she works . . . look at the people watching mel Every move I make. Probably figure I'm trying to cheat them . . . they should know. If I get out of this without a shop job, or an argument, I'll be happy.

Set's two years old . . . plenty trouble due any minute now. Original picture tube . . . funny, it looked bright in spite of its age . . . O.K. . . . she holds. How's that hold control? Whoops! Got to readjust the back to permit centering of front control. Where's that mirror . . . That's alright . . . I'll just hold my own. Thanks! Wonder if it was just the tube? How long should I let it play to be sure? Oh-oh-look at that width jumping! In and out an inch on each side! ... Damper? Sound seems steady . . . vertical, too. Must be the 6BG - variation in screen current, maybe . . . lucky it's not a 6CD . . . lucky if it is just the tube. Hate to put one in . . . Nobody believes a tube can be foureighty. When they hear six-sixty for a 6CD . . . Man! . . . Ouch! That tube's hot! Pry it out with a screw driver . . . burn your fingers! . . . Alright. Try again. When they saw that second tube come up their eyebrows went up too! Width . . . good . . . steady.
Focus? Where is it? Um, um. Linearity? Just a touch-O.K. That does it. How about the glass? Not too bad. Does the front come off? No! Too bad. I'm not going to pull out the chassis for that little dirt on the face. If I did, I'd surely be blamed for every future trouble. "It was working fine till you pulled out the chassis!" Glad this thing wasn't a series filament job . . . hate em.
Oh! Look at that ghost on Channel 9! . . . Sneak a look at the people . . . are they
(Continued on page 29)

7CLLA-FAULT

FILLS A MUCH NEEDED AID ON THE SERVICE BENCH.

Orville Hoffman
Hoffman Radio Service
521 Liberty Street
Ripon, Wisconsin

"Should go a long way to assist servicemen in their work where they do not specialize in one make."

> J. R. Kelley
> Riverdale, Maryland
"There isn't anyone more capable of furnishing us servicemen with this information than Rider."

William J. Stack
R1, Box 38
Sturtevant, Wisconsin

NEED WE SAY MORE!

These comments are from servicemen just like yourself who are using TELL-A-FAULT in their everyday servicing work. Thoy have found that TELL-A.FAULT does their troubleshooting for them. It can do the same for youl

This quadruple-threat service cemsists of:
(1) time-saving pictorial, symptom and cure sheets
(2) fault pinpolnting circuit guides
(3) servicing-techniques short cuts
(4) how to use all sorts of test equipment
Save anywhere from 50 to 200 hours of troubleshooting time per year by using this practical service based on symptoms rather than circuitry. It completely removes the guesswork in locating receiver troubles by rapidly locating the faults and giving you the proper cures.
TELL-A-FAULT is only a fow months old, but the Idea has caught on with thousands of progressive service technicions throughout the country.

The entire service costs you less than twenty cents a week. You receive a full 12 month's TELL-A-FAULT for only $\$ 10.00$.
Start your subscription todayl We'll send you your TELL-A-FAULT binder, subject separators and all the Installments that hove been released to date. For full informetion on the most unique SERVICE ever made available to TV and radio service technicians — write to Dept. TF 8.

Here are more data that will keep your RIDER'S DEPENDABLE REPLACEMENT PARTS LISTING published in TV Volume 10 up to date. This is also to be included in TEK-FILE Packs 58, 59, 60, 61, $63,64,67,68,70,71,75$, and 76.

ADDITIONS:

Set Mig.	Set Mfg. 's Original Part No.	Replacement Part Mig. Name	Dependable Replacement Part No.	Remarics
Belmont	8C-17845	C. D.	C031	
"	8C-18487	C. D.	D078*	* Omit 125mi section
"	8C-19546	C. D.	BR2015A	
"	8C-19564	C. D.	BR1015	
Hallicrafters	45B173	C. D.	C036*	*Parallel sections
Motorola	25B710925	Stancor	A-3877	
Philco	30-2417-7	C. D. Mallory	$\begin{aligned} & \text { BBR2-50T } \\ & \text { TC } 302 \end{aligned}$	
"	30-2570-57	C.D.	D 111	
		Mallory	FP 476	
"	30-2570-66	C. D.	XA 004	
		Mallory	FP 117	
"	30-2584-9	C. D. Mallory	$\begin{aligned} & \text { D } 111 \\ & \text { FP } 344.5 \end{aligned}$	Parallel sections
"	30-2584-10	Mallory	FP 225	
"	30-2584-15	C. D.	UPT 435	
		Mallory	FP 255-TC 72	
"	32-8242-11	Stancor	A-3823	
"	32-8522	Stancor	A-3825	
		Triad	F-21A	
Starrett	CO 1050-2	Aerovox	A FH-3-44	
"	CO 1050-3	A erovor	A FH-4-14	
Stromberg-		8tancor	C-2326	
Carlson	161030	Stancor	C-2326	
Western-				
Auto	12C-18743	Stancor Triad	$\begin{aligned} & \text { A-3878 } \\ & \mathrm{S}-8 \mathrm{X} \end{aligned}$	
"	12M-18241-1	Stancor	A-8125	
		Triad	A -97X	
CORRECTION:				
Western-		Change A-99X to A-97X in Triad Sweep Transiormers column.		
Auto	12M-18241			

CORRECTIONS FOR VARIABLE RESISTANCE CONTROLS LISTINGS:

Crosley Emerson	153348 390156	Change P 128 to P1-128 in IRC Outer Shaft column. Transpose DS-36 from Mallory Switch No. column to Inner Shaft column.
"	390181	Transpose DS-36 from Mallory Switch No. column to Inner Shaft column.
Firestone	390183	Transpose DS-36 from Mallory Switch No. column to Inner Shaft column.
	78×12	Change QJ-375 to QJ-418 in IRC Stock No. column.

RIDER Books May Now Be Purchased with TEK-FILE Coupons!

You can now buy Rider books from your favorite parts distributor and pay him with TEK-fILE binder coupons.

The TEK-fILE binder coupon, included with each TEK-FILE pock you buy, has a purchase value of five cents when you purchase Rider books.

Of course, you can still use the coupons to get TEK-FILE binders, but you now have the alternative of opplying them toward your purchase of Rider books. This special offer does not apply to Rider Manuals or TEK.FILE.

Do you want to own a copy of the TV TROUBLE-SHOOTING AND REPAIR GUIDE BOOK, ENCYCLOPEDIA ON CATHODE-RAY OSCILLOSCOPES AND THEIR USES, etc? Start saving your TEK-FILE binder coupons today. They're redeemable at all TEK-FILE distributors.

ATTENTION AUTHORS:

We are soliciting articles concerning radio, television, and allied electronic maintenance. All aspects are of interest. Articles of 1,000 to 2,000 words are desired. Preference is given to subject matter which reflects practical work rather than theory. The presentation should be direct, to the point, and amply illustrated. Finished art work will be prepared by us from the roughs submitted. Photographs are welcome. The rate of payment is on a word basis - and, needless to say, good writing rates good pay!

Submit all articles and inquiries to Editor, Successful Servicing.

JOHN F. RIDER PUBLISHER, Inc. 480 CANAL STREET New York 13, N. Y.

Let's forget the "glittering generalities" about quality.

Let's Check 4 specific ways CBS-HYTRON cuts your call-backs

A. BY MAKING CBS-HYTRON TV ORIGINALS BEST.

Longest experience with production . . . with applications . . . with improvements . all count. CBS-Hytron-built 1AX2, 1X2A, 6GQ6GT, 12A4, 12B4, 12BH7, 12BY7, 12BZ7, 25BQ6GT; 16RP4, etc. are more trouble-free. Prove it to yourself.

2. BY ENDLESSLY IMPROVING STANDARD TV TYPES.
Close co-operation with leading set makers alertsCBS-Hy tron daily to needed betterments. Take one of endless examples: the CBS-Hytron 6CB6. You will find its clear, non-carbonized bulb eliminates undesirable loading effects at vhf.

3. BY APPLYING "RELIABLE" TUBE TECHNIQUES.

CBS-Hytron 6AL5 is typical. Experience with the military 6AL5 family (JAN 6AL5, 6097/CT, 5726) is passed on to you. You profit by a commercial CBS-Hytron 6AL5 made truly reliable.

4. BY MATCHING EACH TUBE TO THE SET.
Daily, CBS-Hytron analyzes leading TV chassis. Dynamic socket-by-socket checks, plus continuous field experience, pay off. Give you CBS-Hytron matched-to-the-set performance... with the accent on trustworthy replacements.

Take advantage of CBS-Hytron extras like these. Keep your customers happy. Guarantee yourself against profit-slicing call-backs. Demand dependable CBS-Hytron tubes.

NOW...TEST THE EASY TOPSIDE WAY!

Wish you could teat a chassis topside? Without first pulling and wrestling with the heavy chassis? Without disturbing wiring and parts by digging underneath for buried sockets? How much faster, easier, safer you could work! New CBS-Hytron Test Adapter does the trick. Just replace a 7 -pin miniature tube with the Test Adapter. Plug tube into Test Adapter. Presto, all socket connections are topside . . . within instant reach of your test prod or clip. Just one job pays for this new CBS Hytron Test Adapter. Get yours today!

HERE'S HOW! With the CBS-Hytron Test Adapter, you quickly measure voltage, resistance, gain. You inject and trace signals . . . monitor intermittents. You check oscillating stages. Or the effect of adding a bypass condenser or shunt resistor.

With several CBS-Hytron Test Adapters you make stage-bystage circuit checks... fast. You do all this dynamic testing the e-a-s-y way . . . topside. With no ill effects at a-f frequencies. And only slight capacitance and inductance effects at much higher frequencies.

You will like: The positive contact of the low-resistance, silverplated base pins and test points. The plainly marked pin connections. The easy insertion and tight grip. CBS-Hytron Test Adapter is another designed-by-and-for-you "must" you must have. See your CBS-Hytron jobber today.

TV Set Functions With Transitors*

A complete portable television receiver functioned perfectly here today without radio vacuum tubes. Instead, it utilized thirty-seven bits of laboratory magic known as "transistors," which even now are said to perform nearly all the functions of the ordinary radio tube, and do some of them even better.
The video receiver, which was battery operated and about one-quarter the weight and size of an ordinary home table model set, was only one of a number of familiar eleotronic devices such as home and auto-

C-D does it again!

6 capacitor assortments

Ideal for storing screws, tubes, small parts of all sorts. Even fishing tackle. And you pay no more than if you bought the capacitors individually.

The majority of sets can be serviced with these six twist-prong electrolytic replacement kits. See your jobber today for full details. Cornell-Dubilier Electric Corp., South Plainfield, New Jersey.

T. R. Kennedy Jr.

motive radios, record players and public address systems - using only transistors demonstrated for the first time as a "transistor application progress report" in this new field by the David Sarnoff Research Center of the Radio Corporation of America.

The only conventional type of vacuum tube in the video set was its own self-contained picture tube, on which the image was created.

And even that last conventional radio tube in the home video may in time give way to a newer device patterned after the in beautiful plastic cases!

```
        KIT #1 - UNIVERSAL
```

 KIT #1 - UNIVERSAL
 KIT #2 - FOR RCA SETS
 KIT #2 - FOR RCA SETS
 KIT #3 - FOR PHILCO SETS
 KIT #3 - FOR PHILCO SETS
 KIT #4 - FOR MOTOROLA SETS
 KIT #4 - FOR MOTOROLA SETS
 KIT #S - FOR GENERAL ELECTRIC SETS
 KIT #S - FOR GENERAL ELECTRIC SETS
 KIT #S - FOR GENERAL ELECTRIC SETS
    ```
        KIT #S - FOR GENERAL ELECTRIC SETS
```


transistor. Dr. E. W. Engstrom, vice president of the R.C.A. Laboratories Division, expressed such views as the new transistoroperated devices were demonstrated for newspaper men and technical writers, who saw thein for the first time.
"Even now we are thinking along such lines," he said. "Tomorrow's video screen may be something entirely different than we have in today's sets. We have seen more progress in four years of transistor development in the laboratory than-in twenty for the radio tube."

Great Cost Production Seen

Dr. Engstrom explained that the small size of the viewing screen of the receiver demonstrated - five inches wide - had nothing to do, however, with the transistors inside the unit, which provided only the amplification of the signal and converted it to something the viewing screen could turn into a moving image. The laboratories had only tried to eliminate the thirty-seven ordinary tubes.

With transistors in use, however, the largest element of cost in the ordinary home video set except the viewing screen - the power needed to light twenty-four to thirty ordinary tube filaments - might be reduced almost to nil. It was Dr. Engstrom's estimate that tomorrow's video receivers with full complement of transistors and the usual cathode-ray viewing screen might be, when production is stepped up, "something about half of today's costs."

For those not familiar with transistor history, Dr. Engstrom explained that the original device was a product of the work of Dr. Willian Shockley and associates of the Bell Telephone Laboratories in 1948, and since then under intensive development in many electronic laboratories, including the R. C. A.'s.

In the various branches of the laboratories the visitors saw transistors being made from refined bars of metal called "germanium," which must be first purified, then contaminated with other elements to achieve the required end of being good amplifiers and generators of electric currents - "better than most radio tubes and far more versatile than many."

When the germanium bars are finished they are sliced up into minute particles, the bits, mounted in plastic holders, "cat whiskers" of fine wires" applied through which small voltages are applied from batteries. The result is amplification of a radio signal, without the heated filaments in ordinary vacuum tubes.
> ${ }^{\text {a }}$ Reprinted through courtesy of The New York Times.

CORNHM-DUBRMH: world's largest maker of capacitors
-ghe plants in so. plainfielo. n. J. - new aedford. worcester and camarioge, mass, - providence, r. a. indianapolis. ino. - fuouat springs. n. C. - subsidiary. hadiart corp.. cleveland. ómio

| $1 / D E \pi \cdot E K=\sqrt{7} / I E$ | | | | | | ADMIRAL ANDREA | | | | | | | | | | | |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| PACKS 1-77 | | | | | | MODEL | CK-FILE | Pages | MODEL | CK-FRE | Pages |
| | HO | TOUS | THIS INDEX | | | ADMIRAL CORP. (Cont'd) AFFILIATED RETAILERS, INC. (Conild) | | | | | |
| To locate service data instantly, all you need to know is the manufacturer's name and the model or chassis number of the set. | | | File number. | | | 39817C, Ch. 21 IJi | 1-1 | $8=23-46$ | AR-163-CR | -2 | $5=1-8$ |
| | | | Record Changer | | | ${ }_{\substack{\text { AR-218 } \\ \text { AR-316, } \\ \text { AR-316-3CM }}}$ | 40-2 | $8=1-8$ $5=1-8$ |
| | | | Under the column headed P/ | AGES, the | st and secons | ADMIR AL RC550 | 1-RC2 | RCH21-9-16 | AR-816, AR-316-3CM | 40-2 | ${ }_{5=1-8}$ |
| | | | numbers indicate the page whe the last number shows where the | data is con | mation starts; | | 43-9 | | ${ }_{\text {AR-81816-3CM, }}^{\text {AR-816-3CR }}$ | 40-2 | |
| The index is compiled alphabettcally, according to manufacturer. Note the column headings at the top of each page: MODEL, PACK-FILE, PAGES. | | | | | | as an example, let's look up admiral model 36x36as. | | | ADMIRAL RC550 | 1-RC2 | RCH21 $=0-18$ | AR-819, AR-819-3CM | 40-2 | $5=1-8$ |
| | | | $39 \times 25 \mathrm{~A}, 39 \times 26 \mathrm{~A}, \mathrm{Ch} .21 \mathrm{JI}$ | 1-1 | $8=23-46$ | | | | | | ${ }_{\substack{7=1 \\ 8=1-8}}$ |
| | | | it shows that the information is | | ck No. 1, AD- | Record Changer | | | AR-919 | 40-2 | $\begin{aligned} & \delta=1-8 \\ & 7=1 \end{aligned}$ |
| Model numbers run in numerical sequence, starting with 23 and runs through page 8 -46. There is also data on the | | | miral, File No. 1. The data 23 and runs through page 8-46. | $8=23-48$) st There is | ts on page 8 so data on the | ADMIRAL RC550 | 1-RC2 | RCH21 $=9-16$ | | | |
| applies also to model numbers using letters. (i.e. model ADMIRAL record changer model RC 550. If's in (1-RC) | | | | | | $39 \times 35,39 \times 36$, Ch. 2151 Record Changer | | 8=23-46 | AIMCEE WHOLESALE CORP.
 (AMC) | | |
| | | | | | | ADMIRAL RC550 | 1-RC2 | RCH21=9-16 | | | |
| AR precedes model CG). Model numbers starting with let- \quad No. 2, The data begins on page 21-9 and ends on page 21-1ters precede model numbers starting with numbers. | | | | | | $4 \mathrm{M} 15, \mathrm{Ch} .21 \mathrm{~W} 1$ | ${ }^{57-4}$ | 1014-28 | | | |
| | | | II you remove the pages from the TEK-FILE Files and insert them in the TEK-FILE binder, you can disregard the paCK-FILE column and refer to the PAGES only. | | | 47M15A, Ch. $21 \mathrm{Z1}$ | $57-4$ $57-4$ | $10=29-46$ $10=14-28$ | 117C, 117CD, 117 | 57-1 | 10=1-10 |
| Under the column PACK-FILE, the first number is the TEK-FILE Paci number, and the second number is the | | | | | | 47M16, 47M17, Ch. 21wi 47M35, 47M36, 47M37, | 57-4 | $10=14-28$ | AIR KING PRODUCTS CO., INC. | | |
| | | | | | | $\mathrm{Ch}, 21 \mathrm{zl}$ | 57-4 | 10=29-46 | 12C1, Ch. 700 | 43-1 | $7 \times 1-24$ |
| MODEL | -K-FILE | pages | | -FILE | PAGES | $57 \mathrm{M10}, 57 \mathrm{M11}, 57 \mathrm{M12}$,
 Ch. 2121A | 87-4 | $10=29-46$ | $12 \mathrm{T1} 12 \mathrm{~T} 2,, \mathrm{Ch} .700$ | 43-1 | $7=1-24$ |
| | CK-Fİ | PRGES | MODBL PA | Ck-fles | | 57M16, 57M17, Ch. 21 Zi
 $121 \mathrm{KI5}, 121 \mathrm{~K} 16,121 \mathrm{~K} 7$,
 Ch. 21 M 1 | 67-4 | $10=29-48$ | $14 \mathrm{T1}, \mathrm{Ch} .700-30$
 16C1. Ch. 700-1, 700-10, | | |
| ADMIRAL CORP | | | ADMIRAL CORP. (Cont'd) | | | | | | | | |
| | | | | | | 67-4 | $10=14-28$ | 16C2, 16C3, Ch. 700-10 | 43-1 | $7 \times 1-24$ |
| 4H15A, 4H15B, Ch. 20A1: | 40-2 | $4=1-37$ $4=1-37$ | 26R35A, 26R36A, 26R37A, | | | | $121 \mathrm{~K} 15 \mathrm{~A}, 121 \mathrm{~K} 16 \mathrm{~A}, 121 \mathrm{~K} 17 \mathrm{~A}$, Ch. 22 M 1 | $10=1-13$ | 16C5, ch. $700-10,700-90$ | 43-1 $7=1-24$ | |
| 4H16A, 4H168, Ch. 20A1 | 40-2 | $4=1-37$ $4=1-37$ | Ch. 2181 | ${ }_{48-1}^{1-1}$ | ${ }_{\text {c }}^{8=23-46}$ | ${ }_{121 \mathrm{M10}, \mathrm{Ch}} \mathbf{C h} 22 \mathrm{M1}$ | 87-4 | 10=1-13 | $16 \mathrm{KI}, \mathrm{ch} .700-2,700-50$, | | |
| 4H17A, 4H17B, Ch. 20A1 | $40-2$ | $4=1-37$ | 26x35, 26x36, 26X37, Ch. 24D1 | 48-3 | 7=1-24 | $121 \mathrm{Ml1}$ 121m12 Ch .21 ml | | $10=14-28$ | 700-92 | 43-1 | 7=1-24 |
| $4 \mathrm{H18C}, 4 \mathrm{H18CN}, \mathrm{Ch} .20 \mathrm{OL}$ | $40-2$ | ${ }_{4}^{4}=1-37$ | 26x45, 26x46, Ch, $24 \mathrm{H1}$ | 48-3 | $7=1-24$ | | 87-4 | $10=1-13$ | 16m1. Ch. 700-10, 700-90 | 43-1 | $7=1$$7=1$--d |
| $4 \mathrm{H19C}, 4 \mathrm{H19CN}, \mathrm{Ch} .20 \mathrm{BI}$ | 40-2 | $4=1-37$ | 26x55, 26x56, 26x57, Ch. 24D1 | 48-3 | | | | (0)-13 | $16 \mathrm{T1}, \mathrm{ch}$. . $700-1,700-10$ | | |
| 4H126A, $4 \mathrm{H126B}, \mathrm{Ch}$. | 40-2 | $4=1-37$ $4=1-37$ | $26 \times 55 \mathrm{~A}, 26 \times 56 \mathrm{~A}, 26 \times 57 \mathrm{~A}$, Ch. $21 \mathrm{D}_{1}$$\qquad$ | | | | | 10=14-28 | 16T1B, Ch. $700-1,700-10$,$700-90$ | | |
| $4 \mathrm{HL26C}, 4 \mathrm{H126CN}, \mathrm{Ch} .21 \mathrm{AI}$ | $40-2$ $40-2$ | $4=1-37$ $4=1-37$ | | 48-3 | ${ }_{\substack{\text { \% } \\ 7 \times 1-24}}$ | 221K45A, 221K48A, 221K47A, | 57-4 | | | 43-1 | $7=1-24$ |
| ${ }_{4}^{4 H 137 A}, 4{ }^{\text {a }}$ | $40-2$ $40-2$ | $4=1-37$ $4=1-37$ | | | | | | 10=1-13 | | 43-1 | $7 \times 1-24$ |
| 4H145A, $4 \mathrm{H145B}$, Ch. 2081 | 40-2 | $4=1-37$
 $4=1-37$ | | 1-1 | | 320R17, Ch. 2151 | 1-1 | $8=23-46$ | 19C1, Ch. $700-40,700-91$ $20 \mathrm{Cl}, 20 \mathrm{C}, \mathrm{Ch} .700-93$ | 43-1 | 7=1-24 |
| $4 \mathrm{HI} 45 \mathrm{C}, 4 \mathrm{4H145CN}, \mathrm{Ch} .20 \mathrm{Ci}$ | $40-2$ | ${ }_{4}^{4}=1-37$ | | | 8=23-46 | | | | ${ }^{20 \mathrm{~K} 1 .} \mathrm{Ch}$. $700-95$ | | 7=1-24 |
| $4 \mathrm{H146A}, 4 \mathrm{H146B}$, Ch. 2081 | 40-2 | $4=1-37$ | 26x75, 28X76, Ch. ${ }^{24 \mathrm{D} 1}$ | 48.8 | ${ }_{\substack{7=1-24 \\ 8=23-48}}$ | | 1-RC3 | RCH21 $=9$-16 | | 43-1 | 7=1-24 |
| 4H146C, Ch. 20BI | 40-2 | $4=1-37$ | 28x75A, 26x76A, Ch. 21D1 | 1-1 | $8=23-48$ 10 | ADMIRAL RC550 ${ }^{\text {a }}$ - 2151 | ${ }_{1-1}^{1-R C 2}$ | 8=23-46 | $700-10,700-20,700-30,$ | 43-1 | 7=1-24 |
| $4 \mathrm{H147A}, 4 \mathrm{4H} 147 \mathrm{~B}, \mathrm{Ch} .2081$ | 40-2 | $4=1-37$ | 27M12, Ch. 21×2 | $57-4$ | 10=29-46 | 320R25, 320R26, Ch. 2151 | 1-RC2 | | | | |
| 4H158C, 4H155CN, Ch. 20B1 | 40-2 | $4=1-37$ | 29x16, 29x17, Ch. 24F1 | 48-3 | $7=1-24$ | Record Changer | | RCH21-9-1 | | 43-1 | 7=1-24 |
| 4H157A, 4H1578, Ch. 2081 | $40-2$ | $4=1-37$ | 29X25, 29x26, 29X27, Ch. 24 FI | $48-9$ | | | | | $700-90,700-91,700-92,$ | | |
| $4 \mathrm{H165A}, 4 \mathrm{H185B}$, Ch. 2081 | 40-2 | $4=1-37$ $4=1-37$ | $29 \times 25 \mathrm{~A}, 29 \times 26 \mathrm{~A}, \mathrm{Ch} .21 \mathrm{211}$ | $1-1$ $40-2$ | $8=23-46$ $4=1-37$ | | 57-4 | 10=14-28 | | 43-1 | 7=1-24 |
| $4 \mathrm{H166A}, 4 \mathrm{H168B}$, Ch. 20B1 | 40-2 | $4=1-37$ | | 40-2 | $\substack{4=1-37 \\ 4=1-37}$ | | | | $700-93,700-95, \mathrm{Ch} .$ | | |
| $4 \mathrm{HH66C}, 4 \mathrm{H166CN}, \mathrm{Ch} .20 \mathrm{BL}$ | 40-2 | 4=1-37 | 30F16, 30F16A, Ch. 2081 | +40-2 | $4=1$$\substack{4=1-37 \\ 4=38-62}$ | ${ }_{\text {Ch. }}^{21 \mathrm{NL}}$ (${ }^{\text {a }}$ | 87-4 | 10=14-28 | See MORTRLINE | | |
| 4H167A, $4 \mathrm{H11678}, \mathrm{Ch} .20 \mathrm{B1}$ | $40-2$
 $40-2$ | $4=1-37$ $4 \times 1-37$ | | | | | | | | | | | |
| 12X11, 12X12, Ch. 2021 | 40-2 | $\begin{aligned} & 4=1-37 \\ & 1=38-62 \end{aligned}$ | 32X26, 32X27, Ch. 2021 | 40-2 | ${ }_{5}^{4} 58$-9 | | $57-4$ | 10=14-28 | See MONTGOMERY WARD | | |
| | | $5=8-9$ | | | 4=38-62 | $321 \mathrm{M} 25 \mathrm{~A}, 321 \mathrm{~m} 26 \mathrm{~A}, 321 \mathrm{~m} 27 \mathrm{~A}$, | | | AIR MARSHAL CORP. | | |
| 14R12, 14R16, Ch. 20T1, Reor. | 1-1 | $8=1-22$ | | 40-2 | $5=8-9$ | | $\begin{aligned} & 57-4 \\ & 57-4 \end{aligned}$ | $\begin{aligned} & 10=1-13 \\ & 10=14-28 \end{aligned}$ | B-17-T | 43-1 | $7=1-4$ |
| $16 \mathrm{M12}, \mathrm{Ch} .21 \mathrm{K1}$ | 17-4 | $10=2 \mathrm{Cl}-4 \mathrm{~B}$ | 32x35, 32x36, Ch. 2021 | | ${ }_{\substack{4 \\ 5 \\ 5 \times 8-8-82}}$ | | | | | | |
| 16R11. 16R12, Ch. 21 Bl | $1-1$
 $40-2$ | $8=23-48$ $4=1-37$ | 34R15, 34R15A, 34R16, 34R16A, | 1-1 | $8=1-22$ | $421 \mathrm{M} 35,421 \mathrm{M} 36,421 \mathrm{M} 37$, | 87-4 | ${ }_{\substack{10-1-13 \\ 10=1-13}}$ | ALLIANCE MFG, CO. | | |
| 20A1, 2081, Ch. | 40-2 | $4=1-37$ | | | | | 57-4 | | AB, Booster | 43-1 | |
| ${ }_{20 \times 1,}^{2071, ~ 20 V 1, ~ C h ., ~ R o v . ~}$ | $1-1$
 $40-2$ | $8=1-22$ $4=38-62$ | Record Changer | | | $520 \mathrm{M15}, 520 \mathrm{M} 16,520 \mathrm{M} 17$, | | $10=1-13$ | | | 7×1 |
| $20 \times 11,20 \times 12, \mathrm{Ch} .2081$ | $40-2$ | $4=38-62$ | | ${ }_{1-1}^{1-R C 1}$ | $\begin{aligned} \mathrm{RCH} 2 & =1-8 \\ 8 & =23-40\end{aligned}$ | Ch. 22A2 ${ }^{\text {a }}$, | 57-4 | | | | |
| 20x122, Ch. 20x1 | $40-2$ | 4=38-62 | | | | $521 \mathrm{M} 15,521 \mathrm{M} 16,521 \mathrm{M17}$, | $57-4$ | $\frac{\text { ALLIED PURCHASING CORP. }}{\text { (AMBASSADOR) }}$
 (AMBASSADOR) | | | |
| 20X145, 20X146, 20x147, Ch. 20Yi | 40-2 | 4=38-62 | ADMIRAL RC500 ADMIRAL RC550 | $\begin{aligned} & 1-\mathrm{RC1} \\ & 1-\mathrm{RC} 2 \end{aligned}$ | RCH21=1-8 RCH21=9-16 | Б21M15A, 521M16A, 521M17A, Ch. 22 Y 1 | | | | | | | | | | | |
| | 40-8 | 4=38-62 | | | | | 57-4 | 10-1-13 | AM17C, AM17C1M, See STARRETT Ch. 1231 | 75-1 | O=1 |
| 20Y1, ch. | 40-2 | $4=38-62$ | 36X35,Record Changer | | | AFFILIATED RETAILERS, INC. | | | | | |
| 20Z1, Ch, | 40-2 | 4-38-62 | | | | AM17T, AM17TIM, See STARRETT Ch. 12 Sl AM20C, AM20T, See | 75-1 | 10-1-8 | | | |
| | | $5=8-9$ | AdMmal rcio | | $\begin{aligned} & \mathrm{RCH} 21=1-8 \\ & \mathrm{RCH} 21=9-16 \end{aligned}$ | | | (ARTONE) | | | |
| 21al, Ch. | 40-2 | 4=1-37 | 36X36, 36X36A, Ch. 24EI | | | AR-MST-14, AR-MST-18 | 48-8 | 6x1-9 | AM20C, AM20T, See | 75-1 | 10-1-8 |
| 21B1, 21C1, 21D1, 2151, Ch. | $1-1$ | $8=23-46$ | | | | | | | C1720, C2020, C2420, CD2020, See trad t-20e Series | | |
| ${ }_{2 n \times 12} 181,{ }^{2151, ~ C h . ~}$ | 40-2 | $8=23-46$ $4=38-62$ | ADMITAL RC500 | $1-\mathrm{RCI}$ | RCH21=1-8 | AR-14-LG, AR-14-P | -18-3 | ${ }_{8=1-9}^{8=1-12}$ | | 54-1 | 9-1-16 |
| 2nx12, Ch. 2021 | | | Admiral rcs50 | 1-RC2 | RCH21 $=9$-16 | AR-16-ATR | 48-3 | $6=1-9$ | PL17C, PLI7CB, PL17CG,See STARRETT Ch. 1281 | | |
| 22x25, 22×26, 22X27,Ch. 20 Z 1 | 40-2 | $4=38-62$ | 36X36AS, 36X36S, Ch. 21E1 Record Changer ADMTRAL RC550 | 1-1 | 8=23-46 | AR-16-CD, AR-18-CD-3CR | 40-2 | ${ }^{511-8}$ | | | $10=1$ |
| | | $5=8-9$ | | | | AR-16-CR | $48-8$ | $6=1-9$ | PLI7TG, PL17TM, PL27CD, See STARRETT Ch. 1251 | 75-1 | |
| 24A12, Ch. 20A1 | 40-2 | $4=1-37$ | | 1-RC2 | RCH21=9-18 | AR-16-CX | 40-2 | $5=1-8$ | | | 1071-8 |
| $24 \mathrm{~A} 125 . \mathrm{Ch} .20 \mathrm{~A} 1$ | 40-2 | $4=1-37$ | | | | ${ }_{\text {AR }}^{\text {AR-17-3D, }}$ AR-16-TR | 48-3 | $6=1-9$ $6=1-9$ | tit20, ${ }_{\text {T-20E Series }}$ | $54-1$ | 9=1-16 |
| ${ }^{24 A 125 A N}$. Ch. 20x1 | $40-2$ $40-2$ | $4=38-62$ $4=1-32$ | ADMIRAL RC500 | 1-RC1 | RCH21=1-8 | ${ }_{\text {AR }}^{\text {AR-17-3DG }}$ | $1-1$ | $8=1-12$ | 20C23P, See starrett | | |
| ${ }_{24 \mathrm{Cl}, 24 \mathrm{Cl}, 24 \mathrm{Fl}, 24 \mathrm{GI}, 24 \mathrm{Hl}, \mathrm{Ch} \text {. }}^{\text {24, }}$ | 40-2 | | ADMIRAL RC550 | 1-RC2 | RCH21 $=9-16$ | ${ }_{\text {AR }}^{\text {AR }}$ - 7 -CD | 48-3 | 6=1-9 | Ch. 12 Sl | 75-1 | 10-1-8 |
| 24D1, $24 \mathrm{El}, 24 \mathrm{Fl}, 24 \mathrm{GI}, 24 \mathrm{HI}, \mathrm{Ch}$. | - | ${ }_{\substack{7=1-24 \\ 8=1-22}}$ | 37м $25,37 \mathrm{M} 26,37 \mathrm{M} 27$, | | | AR-17-CDG | 1-1 | $8=1-12$ | ANCHOR RADIO CORP. | | |
| | -10-2 | ${ }_{4=38-62}$ | Ch. 212 z | 87-4 | $\begin{gathered} 10=29-48 \\ 7=1-24 \end{gathered}$ | AR-17-CR | 48-3 | $6=1-9$ | | | | | |
| 24X16, 24×16s, Ch. 20X1 | 40-2 | $4=38-62$ | 39×16, 39×16A, 39X16B, Ch. 2461 | | | AR-17-CRG | ${ }_{1}^{1-1}$ | ${ }_{\substack{8=1-12 \\ 8=1-12}}$ | | | $7=1-3$ |
| $24 \mathrm{X17S}$, Ch. 20X1 | 40-2 | $4=38-62$ | Record Changer | | | $\underset{\text { AR-17-LG, }}{\text { AR-17-P }}$ | - $\begin{array}{r}1-1 \\ 48-3\end{array}$ | ${ }_{\substack{8=1-12}}^{8=1-9}$ | ARC-101-75, ARC-101-100 | 43-1 | 7×1.3 |
| 25A15, 25A1B, 25A17, Ch. 21A1 | 40-2 | $4=1-37$ | | ${ }_{1-\mathrm{RCZ}}^{1-\mathrm{RCl}}$ | RCH2F=9-18 | AR-17-ROCG | 1-1 | ${ }_{8=1-12}$ | ANDREA RA | 10 | |
| 28R12, Ch. 21B1 ${ }^{\text {2 }}$ | 1-1 | $8=23-46$ | 39X17A, $39 \times 17 \mathrm{~B}, \mathrm{Ch} .3461$ | 48-3 | | | | | | | |
| 26R25. 26R28, Ch. 244 HI | 48-3 | ${ }^{7=1-24}$ | S*x Record Changer | | | AR-20-CRG, AR-20-TRG | 1-1 | $8=1-12$ | Brewster | 43-1 | |
| $26 \mathrm{P} 25 \mathrm{~A}, 26 \mathrm{R} 26 \mathrm{~A}, \mathrm{Ch}$. $218 \mathrm{B1}$ | 1-1 | | ANMMRAL RC500 | 1-RC1 | RCE21=1-8 | AR-112X | 48-3 | $8=10-18$ | Caronia, Fleetwood | 43-1 | $6=1-10$ |
| 26R35, 26R36, 28R37, Ch. 24 HI | 48.3 | | Admiral rcs50 | 1-RC2 | RCH21=-16 | AR-14A | 48-5 | 6=1-9 | cotham | 43-1 | $9=1-4$ |

| $8=28-35$ $8=28-38$
 $\mathrm{B}=26-35$
 $6=28-38$ $6=39-46$
 $6=38-4$
 $8=39-40$
 $10=1-10$
 $5=1-9$
 $8=1-8$ $5=1-8$ |
| :---: |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |

| ADIO CORP. |
| :---: |
| $19-1$ |
| $19-1$ |
| 19-1 |
| $19-1$ |
| $19-1$ |
| $19-1$ |
| $19-1$ |
| $19-1$ |
| $19-1$ |
| $19-1$ |
| $19-1$ |
| $19-1$ |
| $19-1$ |
| $19-1$ |
| $19-1$ |
| $19-1$ |
| $19-1$ |
| $19-1$ |
| $19-1$ |
| $19-1$ |
| $19-1$ |
| $19-1$ |
| $19-1$ |
| $19-1$ |
| $19-1$ |
| $19-1$ |
| $19-1$ |
| $19-1$ |
| $19-1$ |
| $19-1$ |
| $19-1$ |
| $19-1$ |
| $199-1$ |
| $19-1$ |
| $19-1$ |

GENERAL ELECTRIC CO.

| 10C101, 10C102 | 19-2 | $\mathrm{s}=1-11$ |
| :---: | :---: | :---: |
| 1071. 1074, 1075, 1076 | 19-2 | $3=1-11$ |
| 12C101. 12C102, 12 Cl 105 | 19-2 | 5625-34 |
| $12 \mathrm{C} 107,12 \mathrm{C} 106,12 \mathrm{C} 109$, | 19-2 | 5=35-47 |
| 12 K 1 | 19-2 | $5=12-24$ |
| Record Changer Cr P14 | 19-RC1 | RCH31-5-12 |
| $12 \mathrm{T1}$ | 19-2 | 5=25-34 |
| 12T3, 1274 | 19-2 | 5-25-44 |
| 127s, 12T4, B Veruion | 19-2 | 5-35-47 |
| 12 T 7 | 31-4 | B=1-11 |
| 14C102, 14C103 | 31-4 | $8=12-21$ |
| 14T2, 1473 | $31-4$ | 8=12-21 |
| ${ }^{18 C 110,18 C 111}$ | $31-4$ | $8=35-44$ |
| $18 \mathrm{Cl13}$ | 19-3 | 7=1-10 |
| $16 \mathrm{Cl115}$ | 31-4 | 8-35-44 |
| $16 \mathrm{Cl16}$ | 19-3 | $7=1$-10 |
| $16 \mathrm{~K} 1,16 \mathrm{~K} 2$ | 31-4 | $8=28-34$ |
| 16T1, 1672 | 31-4 | 6=35-44 |
| 1673,1674 | 19-3 | 7=1-10 |
| 17C101, 17C102 | 19-3 | 7=1-12 |

8

HALLICRAFTERS
INTERSTATE

GENERAL INSTRUMENT CORP.
45, Tunectune

| gENERAL ELECTRIC CO. (Contrd) | | |
| :---: | :---: | :---: |
| 17C103, 17 C 104 , 17 Cl 105 | $5 \cdot 1$ | 6=21-32 |
| 17C107, 17C108, 17C109 | 6-1 | $8=21-32$ |
| 17C110, 17C111 | 5-1 | $8=1-20$ |
| $17 \mathrm{C112}$ | -50-5 | $9=1-8$ |
| $17 \mathrm{Cl13}$ | 50-5 | 9=9-24 |
| $17 \mathrm{C114}$ | 50-5 | $9=1-8$ |
| $17 \mathrm{C115}$ | 50-5 | $9=9-24$ |
| $17 \mathrm{C117}$ | 50-5 | $9=9-24$ |
| 17 Cl 20 | 50-5 | 9=9-24 |
| 17T1, 1772, 1773 | 5-1 | $6=21-32$ |
| 17T4, 17T5, 17T8 | 50-5 | $9=1-8$ |
| 1777 | 50-5 | 9=9-24 |
| ${ }^{19 C 101}$ | 5-1 | $6=33-44$ |
| 20C105, 20 C 106 | 63-7 | 10-34-53 |
| 20C150, 200151 | 62-6 | 10=1-22 |
| 2072, 21C200 | 63-7 | 10=38-53 |
| | | 10=23-38 |
| 815 | 19-3 | 7 $=13$-22 |

$\frac{\text { THE HERTNER ELECTRIC CO. }}{\text { (PRECISION) }}$

$$
\mathrm{L}-1
$$

Tuner

```
7B104, 7B303, Ch., 190,190日 
7P105,
208102, Ch, 183T
```

208102F, Ch. 194
$20 \mathrm{M101}, \mathrm{Ch}$.183 T
$20 \mathrm{M101F}, \mathrm{Ch} .194$
20M101F, Ch, 194
20M500, 20 P 502, Ch. 163T
218107, 218301, Ch. 191,
218107, 218302, Ch. 163T,
218504, 218701, Ch. 191, 191 B

21M5900, Ch. 192
$\underset{\text { 21 Ph. }}{ }$
487707, 24M708, Ch. 187,
187B, 187 C
140,142, Ch.
140, $142, \mathrm{C}$
49,
Ch.
150, ${ }^{151,} 152, \mathrm{ch}$
$153, \mathrm{ch}$.

153, ch .
154,
Ch.
155, ch.
156, 157, Ch
158, Ch.

| $9=1-14$ | 159, 100, |
| :---: | :---: |
| 9=37-52 164, Ch . | |
| $10=25-36$ | |
| $9=15-16 \quad 170$, | 170, 171, |
| | |
| 10=25-38 $\quad 172, \mathrm{Cn}$. | |
| $9=53-66$ | 173, ch. |
| | 174, |
| $9=67-64$ | |
| 10=12-24 | 176, cn . |
| | 180, |
| $9=53-68$ | |
| 10=1-11 | 1638, 183 |
| | 1838, |
| $9=53-68$ | 184, 185 |
| 10=12-24 | 167, 187 |
| | |
| $9=53-66$ | 192, 194, |
| | |
| $\begin{aligned} & 9=53-68 \\ & 9=53-68 \end{aligned}$ | 801, Ch. |
| | |
| 9x53-68 | |
| | |
| | 613 Ch. |
| 10=12-24 620, 621, | |
| 10=59-68 | |
| 9=37-52 | 622, 623, |
| $9-37-52$ | 630, 631, |
| 10=45-58 | 630, 631, |
| | 632, 633 |
| $9=67-84$$10=1-11$ | 632, 633, |
| | 638, 637, |
| 9=25-36 | 6368 |
| | 638, 639, |
| $\begin{gathered} 19=1-10 \\ 9=25-38 \end{gathered}$ | 630, 631, |
| | 636 |
| | 841, 642 |
| $19=1-10$$10=45-56$ | 848, ch . |
| | 847, 646, |
| $\begin{aligned} & 10=45-56 \\ & 10=45-58 \end{aligned}$ | |
| | |
| | |
| | $\begin{aligned} & 856,857, \\ & 880,661, \end{aligned}$ |
| 8-1-18 | 686, 667, |
| | ${ }^{688 \mathrm{~A},} 867$ |
| | 670, 671 |
| | 678, 677 , |
| 6*1-4 | $876 \mathrm{~A}, 677$ |
| | 880,681, |
| $9=11-16$ | 686, 68 |
| 101-1-24 | 8688, 667 |
| | 690, 691, |
| 10=1-24 | 693, 694, |
| 10=25-32 | Record |
| $10=1-24$$10=25-32$ | or w |
| | 696, 697, |
| $10=25-32$ | 8968, 69 |
| 10=1-24 | 914, 915, |
| 10-25-32 | 917, 916, |
| $10=1-24$ | 921, Ch. |
| | 930, 931, |
| $10=1-24$ | 936, 937, |
| | 946, 947, |
| 込 $10=1-24$ | |
| 10=1-24 | |
| | 950A, 951 |
| 10-1-24 | 953 |
| | |
| $9=1-10$ | |
| S=8-16 | 96s, 064, |
| $5=6-16$ | Recon |

| 159, 160, cn. | 29-2 | 305-14 |
| :---: | :---: | :---: |
| 164, Ch . | 30-3 | |
| | | 7=0-21 |
| 170, 171, Ch. | 39-2 | © $=15$-28 |
| 172, Cn . | 29-3 | 7-22-30 |
| 173, ch. | 29-3 | $8=15-26$ |
| 174, ch. | 29-3 | 7 22 -30 |
| 175, ch. | 29-2 | 6=15-28 |
| 176, cn. | 29-3 | 7=22-30 |
| ${ }^{180}$, Ch. | -1 | $8=38-34$ |
| 183, ch. | -1 | $8=8$-25 |
| 183B, 183M, 18JT, Ch. | 65-6 | 10=25-32 |
| 184, 185, 186, Ch. | 6-1 | $8=8-25$ |
| 187, 1878, 187C, Ch . | 29-8 | $9=1$ |
| 190, 1908, 191, 1918, Ch | 64-5 | 10=1-24 |
| 192, 194, Ch. | 64-5 | 10=1-24 |
| $600, \mathrm{Ch} 154$ | 35-4 | $5=1-13$ |
| 801, Ch. 155 | 35-4 | 521-5 |
| | | S=7 |
| 610, Ch, 140, Rer. | 35-4 | $5=6$ |
| 612, Ch. 142, Rev. | 30-4 | $5=6$-16 |
| 613, Ch. 149 | $35-4$ | $5=6$-18 |
| 620, 621, Ch. 155 | 35-4 | $5=1-5$ |
| 622, 623, Ch. 149 | 5-4 | $5=8-18$ |
| 622, 623, ch. 140 | 35-4 | Sos-16 |
| 630, 631, Ch. 159 | 39-8 | 6x5 |
| 630, 631, Cn. 170 | 29-2 | $8=15-28$ |
| 632, 633, ch. 180 | 29-2 | 8 -5-14 |
| 632, 633, 654, 635, Ch. 171 | 29-3 | $0=15-28$ |
| 636, 637, Ch. 183 | 0 -1 | $8=8-25$ |
| 6368, $637 \mathrm{~B}, \mathrm{Ch} .183 \mathrm{~B}, 183 \mathrm{M}$ | 65-6 | 10=25-32 |
| 638, 639, Ch. 160 | 6-1 | $8=28-34$ |
| 630, 631, 632, Ch. 151 | 85-4 | 5=17-24 |
| 636, 637, 640, Ch. 153 | 29-3 | $7 \times 1-5$ |
| 841, 642, 643, Ch. 158 | 35-4 | 5×1 |
| 648, Ch. 151 | 35-4 | S=17-24 |
| 647, 646, 849, Cn. 156 | 89-3 | 7×1 |
| | | 7 76 6-21 |
| 850, 851, 652, Ch. 151 | 35-4 | $5=17-14$ |
| 856, 857, 658, Cn. 153 | 29-3 | $7=1-5$ |
| 880, 681, 882, Cn. 157 | 20-3 | $\begin{aligned} & 7=3 \\ & 7=6-21 \end{aligned}$ |
| 686, 867, 868, Ch. 171 | 20-2 | $8=15-28$ |
| 686A, 867A, 868A, Ch. 173 | 29-2 | 6=15-28 |
| 670, 671, 672, Ch. 170 | 29-2 | 6=15-28 |
| 678, 877, 878, Ch. 171 | 29-2 | 6=15-28 |
| 876A, 677A, 876A, Ch. ${ }^{173}$ | 29-2 | $0=15-28$ |
| | | |
| ${ }^{6866,867, ~ C h . ~}{ }^{\text {ces }}$ | -1 | 6=6-25 |
| 686B, 667B, Ch, 183B, 169M | 68-6 | 10=25-32 |
| 690, 691, 692, Ch. 175 | 24-2 | $8=15-26$ |
| 693, 694, 695, Ch. 165 | 6-1 | 6=6-25 |
| Record Changer VM-OSO | 6-RC1 | RCH22=1-16 |
| Or WEBSTER 100 | 6-RC1 | RCH21:1-10 |
| 696, 697, Ch. 185 | -1 | 8-8-25 |
| 8968, 6978, Ch. 183 T | 65-6 | 10=25-32 |
| 914, 915, 916, Ch. 150 | 35-4 | $5=7$-18 |
| 917, 916, 920, Ch. 152 | 35-4 | 5=17-24 |
| 921, Ch. 150 | 35-4 | 5=7-16 |
| 930, 931, 932, Ch. 150 | $35-4$ | S=7-16 |
| 936, 937, 936, Ch. 152 | 35-4 | $5=17-24$ |
| 946, 947, 946, Ch. 164 | 29-3 | |
| | | 7=6-21 |
| 950, 951, 952, Ch. 172 | 23-3 | 7=22-30 |
| 950A, 951A, 952A, Ch. 174 | 29-3 | 7=22-30 |
| 953, 954, 955, Ch. 164 | 6-1 | 8 $=8$-25 |
| Record Changer VM-950 | 6-RC1 | RCH22=1-16 |
| or WEESTER 100 | 6-RC1 | RCH21=1-10 |
| 980, 961, 962, Ch. 176 | 29-3 | 7=22-30 |
| 963, 064, 985, Ch, 186 | -1 | 8=6-25 |
| Record Changer VM-950 | 6-RC1 | RCH22=1-16 |
| or WEESTER 100 | 6-RC1 | RCE21-1-10 |

HYOE PARK

$\frac{\text { INTERSTATE STORES BUYING CORP. }}{\text { (PLYMOUTH) }}$.

\begin{tabular}{|c|c|c|c|c|c|}
\hline MODEL PA \& PACK-FILE \& pacrs \& MODEL P \& ACK-PILE \& PACses \\
\hline \multicolumn{3}{|l|}{MOTOROLA INC.} \& \multicolumn{3}{|c|}{MOTOROLA INC. (Conty)} \\
\hline T8-53, Ch. \& 36-3 \& \(8=1-15\) \& 17\%78C, Ch. 78 -174, 78-174A, \& \& \\
\hline TS-60, Ch . \& 47-4 \& 7=1-16 \& TS-174B \& 9-1 \& 8=1-15 \\
\hline T8-74, Ch. \& 36-3 \& 6=51-64 \& Record Changer \& \& \\
\hline TS-68, Ch . \& 36-3 \& \(8=29-41\) \& motorola rc-se \& 9-RC1 \& RCH21-1 \\
\hline TS-60, Ch . \& 47-4 \& 7=17-34 \& 17F6, Ch. 78-116 \& \& 7=35-45 \\
\hline TS-94, Ch. \& 47-4 \& 7=17-34 \& 17FB, Ch. TS-118A, \& \& \\
\hline TS-95, Cb . \& 47-4 \& 7=17-34 \& TS-118B \& 51-6 \& \(9=25-32\) \\
\hline T8-101, Ch. \& 47-5 \& 7=57-85 \& 17F6C, Ch. TS-174, T8-174A, \& \& \\
\hline TS-114, Ch. \& 36-3 \& \(8=42-50\) \& TS-174B \& -1 \& 8=1-15 \\
\hline T8-115, Ch. \& 36-3 \& \(8=16-28\) \& Record Changer \& \& \\
\hline \multirow[t]{2}{*}{TS-118, Ch.} \& \multirow[t]{2}{*}{47-5} \& 7=35-45 \& motorola rc-38A \& 9-RC1 \& RCH211-16 \\
\hline \& \& \multirow[t]{2}{*}{\[
\begin{aligned}
\& 7=86-68 \\
\& y=25-32
\end{aligned}
\]} \& \multirow[t]{2}{*}{\(\underset{\text { T8-118B }}{178-118 \mathrm{~A},}\)} \& \& \\
\hline \multirow[t]{2}{*}{} \& 51-8 \& \& \& \multirow[t]{2}{*}{47-6} \& \(9=25-32\)
\(7=35-45\) \\
\hline \& 9-1 \& \(8=25-88\) \& 17F9; 17F9B, Ch. TS-118 \& \& \[
7=66-68
\] \\
\hline Ts-119D, Ch. \& 67-7 \& 10=51-58 \& \(17 \mathrm{FPBC}, 17 \mathrm{FPC}, \mathrm{Ch} . \mathrm{TS}-174\), \& \multirow[b]{2}{*}{9-1} \& \multirow[b]{2}{*}{\(8=1-15\)} \\
\hline TS-172, Ch . \& 47-6 \& 7-46-58 \& \multirow[t]{2}{*}{R-174, \({ }_{\text {Record Changer }}\)} \& \& \\
\hline TS-174, TS-174A, TS-1758, Ch . \& ch. 9-1 \& \(8=1-15\) \& \& \multirow[t]{2}{*}{} \& \multirow[t]{2}{*}{RCH21=1-16} \\
\hline TS-214, Ch . \& 51-6 \& \(9=33-40\) \& motorola rc-s8A \& \& \\
\hline TS-216, Ch . \& 9-2 \& \(9=1\)-8 \& 17F11, Ch. T8-228 \& 70-8 \& 10=1-12 \\
\hline Ts-221, Ch . \& 9-1 \& \(8=18\)-24 \& 17F12, Ch. TS-325 \& 70-8 \& 10=13-41 \\
\hline T8-228, Ch. \& 70-8 \& 10-1-12 \& 17F12A, Ch. TS-326 \& 70-8 \& 10=13-41 \\
\hline TS-238, ch. \& 9-2 \& \(9=9-18\) \& 17F12B, Ch. T8-325 \& 70-8 \& 10=13-41 \\
\hline Ts-s07, Ch . \& 70-8 \& 10=42-50 \& 17F12BA, Ch. TS-928 \& 70-8 \& 10=13-41 \\
\hline TS-314, Ch. \& 51-6 \& \(9=17-24\) \& 17F12D, Ch. TS-401 \& 67-7 \& 10-59-86 \\
\hline TS-314A, Ch . \& \(51-6\) \& \(9=41-44\) \& \(17 \mathrm{KLA}, 17 \mathrm{K1BA}, \mathrm{Ch} .78-95\) \& 47-4 \& \(7=17-34\) \\
\hline TS-315, Ch. \& 51-6 \& \(9=17-24\) \& 17K18E, 17K1E, Ch. T8-172 \& 47-5 \& \(7=46-58\) \\
\hline Ts-315A, Ch . \& 51-6 \& 9 F -1-44 \& \(17 \mathrm{~K} 2 \mathrm{BE}, 17 \mathrm{K2E}, \mathrm{Ch} .78 \mathrm{TS2}\) \& 47.5 \& 7=46-58 \\
\hline TS-325, TS -3258, Ch . \& 70-8 \& \(10=13-41\) \& 17K9, Ch. TS-118 \& \multirow[t]{2}{*}{47-5} \& \multirow[t]{2}{*}{7 \(735-45\)} \\
\hline TS-326, TS-326A, TS-3268, Ch . \& Ch. \({ }^{70-8}\) \& \(10=19\)-41 \& 17K3, Ch. TS-116A, \& \& \\
\hline Ts-351, Ch . \& 70-8 \& 10-13-41 \& TS-1188 \& 51-6 \& \(0=25-32\) \\
\hline TS-401, Ch . \& 87.7 \& 10=59-88 \& 17K3A, 17 K 3 BA, Ch. T8-80 \& 47-4 \& \(7=17-34\) \\
\hline 12K1, 12K18, Ch. TS-53 \& 36-3 \& 6=1-15 \& \({ }^{17 \mathrm{~K} 3 \mathrm{~B}}\), Ch. TS -118 \& \(47-5\) \& \(7=95-45\) \\
\hline 12K2, 12K28, Ch. T8-53 \& 36-3 \& \(0=1-15\) \& 1744A, Ch. Ts-95 \& 47-4 \& \(7=17-34\) \\
\hline \({ }^{12 \mathrm{~K} 3,12 \mathrm{~K} 3 \mathrm{~B}, \mathrm{Ch} .} \mathbf{7 8} 53\) \& 36-3 \& \(6=1-15\) \& 17K4E, Ch. TS-172 \& 47-5 \& 7-46-58 \\
\hline \({ }^{12 \mathrm{~T} 1,} 12 \mathrm{~T} 1 \mathrm{~B}, \mathrm{Ch} . \mathrm{TS}-53\) \& 36-3 \& \(6=1-15\) \& \multirow[t]{2}{*}{17K5, Ch. TS-116} \& \multirow[t]{2}{*}{47-5} \& \multirow[t]{2}{*}{\(7=35-45\)
\(7=86-88\)} \\
\hline 12T2, 12T3, Ch. 78 -53 \& 36-3 \& \(6=1-15\) \& \& \& \\
\hline 14K1, 14K18, Ch. \({ }^{\text {ds-88 }}\) \& 38-3 \& \(8=29-41\) \& \multirow[t]{3}{*}{17K5, Ch, TS-118A, T8-11期 17K5C, Ch. TS-174,} \& \multirow[t]{2}{*}{\(51-8\)} \& \multirow[t]{2}{*}{\(9=25-32\)} \\
\hline \(14 \mathrm{~K} 1 \mathrm{BR}, 14 \mathrm{~K} 1 \mathrm{H}, \mathrm{Ch} . \mathrm{TS}-115\). \& 38-3 \& \(8=18-28\) \& \& \& \\
\hline 14T1, 14T1B, Ch. TS-88 \& 36-3 \& \(8=29-41\) \& \& \multirow[t]{2}{*}{\[
\begin{aligned}
\& 9-1 \\
\& 9-1
\end{aligned}
\]} \& \multirow[t]{2}{*}{\(8=1-15\)
\(8=16-24\)
\(7=95-45\)} \\
\hline \(14 \mathrm{T3}\), Ch. TS -114 \& 38-3 \& \(8=42-50\) \& \multirow[t]{2}{*}{} \& \& \\
\hline 14T4, 14T4B, Ch. T8-218 \& 9-2 \& 9 P 1-6 \& \& 47-6 \& 7=95-45 \\
\hline 16F1, 18F18, Ch. Ts-60 \& 47-4 \& 7=1-18 \& \multirow[b]{2}{*}{17K8, Ch. TS-118A, T8-1188} \& \multirow[b]{2}{*}{51.4} \& \multirow[t]{2}{*}{\begin{tabular}{l}
\(7 \times 68-68\) \\
\(9=25-32\)
\end{tabular}} \\
\hline \({ }^{16 F 1 B H}, 16 \mathrm{FlH}, \mathrm{Ch} . \mathrm{TS}-89\) \& 47-4 \& \(7=17\)-34 \& \& \& \\
\hline 18K2, 18K28, Ch. TS-74 \& 36-3 \& \(8=51-64\) \& \multirow[t]{2}{*}{} \& \& \multirow[b]{2}{*}{\(8=1-15\)} \\
\hline \(18 \mathrm{~K} 2 \mathrm{BH}, 18 \mathrm{~K} 2 \mathrm{H}, \mathrm{Ch} . \mathrm{Ts}-94\) \& 47-4 \& 7=17-34 \& \& \multirow[t]{2}{*}{47-8} \& \\
\hline \({ }^{18 T 1, ~ 16 T 18, ~ C h . ~ T S-80 ~}\) \& 47-4 \& 7=1-18 \& \multirow[t]{2}{*}{17K7, 17K78, Ch. TS-118} \& \& 7=35-45 \\
\hline \(18 \mathrm{Tl18H}, 18 \mathrm{TlH}, \mathrm{Ch} . \mathrm{TS}-69\) \& 47-4 \& 7=17-34 \& \& \multirow{3}{*}{51-8} \& \multirow[t]{2}{*}{\[
\begin{aligned}
\& 7=86-68 \\
\& 9=25-32
\end{aligned}
\]} \\
\hline 17F1, Ch. T8-118A, TS-1188 \& \(51-8\) \& \(9=25-32\) \& \multirow[t]{2}{*}{17K7, Ch. TS-118A, TS-118B 17 K7BC, 17 K7C, Ch.} \& \& \\
\hline 17F1, 17F18, Ch. TS-118 \& 47-5 \& 7-35-45 \& \& \& \multirow[b]{3}{*}{\(8=1-15\)
\(9=9=16\)} \\
\hline \({ }^{1751 A}, 17 \mathrm{~F} 1 \mathrm{BA}, \mathrm{Ch} . \mathrm{TS}-89\) \& 47-4 \& 7-17-34 \& \multirow[t]{2}{*}{} \& \multirow[t]{2}{*}{\({ }_{9-8}^{9-1}\)} \& \\
\hline 17F2W, Ch. TS-118 \& 47-5 \& 7 \(\mathbf{3 5} 5\)-45 \& \& \& \\
\hline 17F2w, Ch. T8-118A, T8-1188 \& 51-8 \& \(9=25-32\) \& \& 70-8 \& 10-1-12 \\
\hline 17F2WA, Ch. TS-89 \& 47-4 \& 7=17-34 \& \({ }_{17 \mathrm{~K} 88 \mathrm{~B}, \mathrm{Ch} . \mathrm{TS}-236}\) \& 9-2 \& \multirow[t]{2}{*}{} \\
\hline 17F3B, Ch. TS-118 \& 47-5 \& 7=35-45 \& 17K88A, Ch. TS-228 \& 70-8 \& \\
\hline 17F38, Ch. TS-118A, TS-118B \& 51-6 \& \(9=25-32\) \& \multicolumn{2}{|l|}{17K9A, \(17 \mathrm{~K} 9 \mathrm{BA}, 17 \mathrm{K10}\),} \& \multirow[b]{2}{*}{10-1-12} \\
\hline \({ }^{17 F 3 B A}\), Ch. TS-89 \& 47-4 \& \(7=17\)-34 \& \multirow[t]{2}{*}{} \& \multirow[t]{2}{*}{70-8
\(51-8\)} \& \\
\hline 17F4, Ch. TS-118 \& 47-5 \& 7=35-45 \& \& \& \multirow[t]{2}{*}{\begin{tabular}{l}
\(\mathrm{g}=17-24\) \\
\(\mathrm{~g} 41-44\) \\
\hline 1
\end{tabular}} \\
\hline 17F4, Ch. TS-118A, TS-1188 \& \(51-8\) \& \(9=25-32\) \& 17K10E, Ch. TS-314A \& 51-6 \& \\
\hline 1754A, Ch. \(75-88\) \& 47-4 \& 7=17-34 \& \multirow[t]{2}{*}{\({ }_{17 \mathrm{~K} 11}\), Ch. TS-236} \& 70-8 \& \multirow[t]{2}{*}{(\(\begin{aligned} \& 10=1-12 \\ \& 988-16\end{aligned}\)} \\
\hline 17Fs, Ch. TS-118 \& 47-5 \& 7=35-45 \& \& \multirow[t]{2}{*}{\(70-8\)} \& \\
\hline 17F5, Ch. TS-118A, T8-118B \& \(51-6\) \& \(\mathrm{y}=25-32\) \& 17K11A, Ch. T8-228 \& \& (\(\begin{array}{r}989-16 \\ 10=1-12\end{array}\) \\
\hline 17F5A, Ch. TS-89 \& \(47-4\) \& 7=17-34 \& \multirow[t]{2}{*}{17K118, Ch. TS-238} \& \multirow[t]{2}{*}{9-2
\(70-8\)} \& \(9=8-16\) \\
\hline \({ }^{1755 B}\), Ch. TS-116 \& 47-5 \& 7=35-45 \& \& \& \multirow[t]{2}{*}{- \({ }_{\substack{10-1-12 \\ 9=9-16}}\)} \\
\hline 17F5BA, Ch. TS-89 \& 47-4 \& 7=17-34 \& \multirow[t]{2}{*}{\begin{tabular}{l}
17K11C, Ch. TS-296 \\
17K12, Ch. TS-325
\end{tabular}} \& \multirow[t]{2}{*}{70-8} \& \\
\hline 17F6, Ch, TS-118 \& 47-5 \& 7-35-45 \& \& \& 10-13-41 \\
\hline 17F8, Ch. TS-118A, T8-1188 \& 51.6 \& \(9=25-32\) \& 17K12A, Ch. TS-326 \& 70-8 \& \multirow[t]{2}{*}{\(10-13-41\)
\(10=13-41\)} \\
\hline \multirow[t]{2}{*}{17F6B, Ch. T8-118} \& \multirow[t]{2}{*}{47-8} \& 7=35-45 \& \multirow[t]{2}{*}{\begin{tabular}{l}
17K12B, Ch. Ts-325 \\
17K12BA, Ch. TS-326
\end{tabular}} \& \multirow[t]{2}{*}{\[
\begin{aligned}
\& 70-8 \\
\& 70-8
\end{aligned}
\]} \& \\
\hline \& \& 7=66-68 \& \& \& \(10=13-41\)
\(10=13-11\) \\
\hline \({ }^{17 \mathrm{FGBC}}\), 17FBC, Ch. \(78-174\) \& \multirow[b]{2}{*}{92} \& \& \multirow[t]{2}{*}{} \& 70-8 \& 10-13-41 \\
\hline TS-174A, TS-174B \& \& \(8=1-15\) \& \& 70-8 \& \multirow[t]{2}{*}{\(10013-41\)
\(10 \times 15-41\)} \\
\hline Record Changer \& \multirow[b]{2}{*}{9-RC1} \& \& \multirow[t]{2}{*}{17K13A, Ch. Ts-326A, Ts-986B 17K13D, Ch. Ts-401} \& \multirow[t]{2}{*}{70-8} \& \\
\hline motorola rc-s8A \& \& RCH21-1-18 \& \& \& 10x59-68 \\
\hline 17F7, Ch, TS-118A, \& \multirow{4}{*}{\[
\begin{aligned}
\& 51-8 \\
\& 47-8
\end{aligned}
\]} \& \& \multicolumn{2}{|l|}{\(17 \mathrm{T1}, 17 \mathrm{T1B}, \mathrm{Ch}, \mathrm{TS}-116\) 47-5} \& \multirow[t]{2}{*}{\(7=3-45\)
\(7=17-54\)

7}

\hline \multirow[t]{2}{*}{17F7B, Ch. TS-118} \& \& $9=25-32$ \& \multirow[t]{2}{*}{17T2, Ch. TS-118A, T8-118B} \& $47-4$ \&

\hline \& \& $7=35-48$ \& \& 51-8 \& \multirow[t]{4}{*}{$8=25-32$
$7=35-45$ $7=17-34$
$7=35-45$ $9=25-32$}

\hline \& \& $7=68$-68 \& 17T2, 17T2B, Ch. TS-118 \& \multirow[t]{3}{*}{$$
\begin{aligned}
& 47-4 \\
& 47-5 \\
& 57-5 \\
& 51-6
\end{aligned}
$$} \&

\hline 17F7B, Ch. T8-118A, T8-118B \& \multirow[t]{2}{*}{51-8} \& 205-32 \& \multirow[t]{2}{*}{| 17T2A, 17T2BA, Ch. T8-89 |
| :--- |
| 17T3, Ch. TS-118 |
| 17T3, Ch. T8-118A, T8-1188 |} \& \&

\hline \& \& \& \& \&

\hline
\end{tabular}

MOTOROLA
MODEL

| MOTOROLA INC. (Cont'd) | | |
| :---: | :---: | :---: |
| 17T3A, Ch. TS-89 | 47-4 | 7=17-34 |
| ${ }^{17 T 3 G}$, Ch. TS-221 | 9-1 | $8=16-24$ |
| ${ }^{1773 \times 1}$, Ch. T8-118A, 78 -118B | $51-8$ | $9 \times 25-32$ |
| 17T4, Ch. TS-116 | 47-5 | 7=35-45 |
| | | 7=66- |
| 17T4C, ch. $78-174$, | | |
| | | |
| TS-174A, TS-174B | $9-1$ | $6=1$ |
| 17T4E, Ch. TS-221 | $9-1$ | $8=16-24$ |
| 17T5A, Ch. TS-214 | 51-6 | $9=33-40$ |
| ${ }^{1755 C}$, Ch. TS-228 | 70-8 | 10=1-12 |
| 17T5CA, Ch. TS-214 | 51-6 | 9-33-40 |
| 17T5D, Ch. TS-236 | 9-2 | $9=9-18$ |
| 17T5E, Ch. TS-314 | 51-6 | $9=17-24$ |
| 17T5E, Ch. TS-314A | 51-8 | $9=41-44$ |
| 1775F, Ch. TS-315 | 51-6 | $\theta=17-24$ |
| 17T5F, Ch. TS-315A | 51-8 | $\mathrm{P}=41-44$ |
| 17T8Bd, Ch. TS-236 | 9-2 | $9=8-16$ |
| ${ }^{17788 F}$, Ch. Ts-228 | 70-8 | 10x1-12 |
| $17 \mathrm{TCC}, 17 \mathrm{T6D}$, Ch. TS-288 | 9-2 | 9=9-16 |
| 17T8F, Ch. TS-228 | 70-8 | 10-1-12 |
| ${ }^{17796}$, Ch. TS-314A | 51-8 | $9=41-44$ |
| 1777, Ch. TS-325 | 70-8 | $10=13-41$ |
| 17T7A, Ch. Ts-328 | 70-8 | 10 c13-41 |
| 1778, Ch. TS-325 | 70-8 | 10=13-41 |
| 17T8A, Ch. TS-328 | 70-8 | 10=13-41 |
| ${ }^{17788,}$ Ch. T8-325 | 70-8 | 10-13-41 |
| 17T8BA, Ch. T8-328 | 70-8 | 10-13-41 |
| 17T9, $17 \mathrm{T9A}, 17 \mathrm{TOE}$, | | |
| 17T9EF, 17T9F, Ch. Ts-401 | 87-7 | 10=50-68 |
| 17T10, Ch. Ts-925B | 70-8 | 10-13-41 |
| 17710A, Ch. TS-326A, TS-3268 | 70-8 | 10-13-41 |
| 17T10D, Ch. TS-401 | 67-7 | 10=59-68 |
| $19 \mathrm{~K} 2,19 \mathrm{~K} 2 \mathrm{~B}, \mathrm{Cb} .78 \mathrm{~T}-101$ | 47-5 | 7=57-85 |
| $19 \mathrm{~K} 2 \mathrm{EE}, 19 \mathrm{~K} 2 \mathrm{E}, \mathrm{Ch} . \mathrm{TB}-119$, | | |
| ${ }_{19 \mathrm{KS}} \mathrm{TS}^{\text {che }}$ Ch, TS -101 | -1 | $8=25-38$ |
| $19 \mathrm{KM}, \mathrm{Ch}, \mathrm{Ts}-101$ | 47-5 | 7=57- |
| 20F1, 20F1B, Ch. TS-119, | | |
| | | |
| Record Changer | | |
| MOTOROLA RC-38A | O-RCI | 181=1-16 |
| ${ }^{\mathrm{F} 2} 2.20 \mathrm{~F} 2 \mathrm{~B}, \mathrm{Ch} . \mathrm{TS}-119 \mathrm{~B}$, | | |
| TS-119C | 9-1 | $8=25$ |
| | | |
| | | |
| Ch. TS-1198, Ts-119C | 9-1 | $8=25-38$ |
| 20к3, 20к38, Ch. T8-110D | 07-7 | 10-31-58 |
| 20K4, 20K4B, Ch. TS-119D | 67-7 | 10-31-58 |
| | 70-6 | 10=42-50 |
| ${ }^{20} 1{ }^{\text {T1B, Ch. TS-1108, }}$ | | |
| TS-119C | 9-1 | $8=25-38$ |
| 20T2, Ch. TS-110D | 67-7 | 10751-58 |
| 20T2A, Ch. TS-307 | 70-8 | 10=42-50 |
| 2072B, Ch. TS-119D | 67-7 | 10-51-58 |
| 20T2BA, Ch. Ts-307 | 70-8 | 10-42-50 |
| 20T3, 2073B, Ch. TS-307 | 70-8 | 10=42-50 |
| 21F1, 21F1B, Ch. TS-351 | 70-8 | 10-13-41 |
| 21K1, 21K18, Ch. TS-351 | 70-8 | 10-13-41 |
| ${ }^{21 K 2} 21 \mathrm{~K} 2 \mathrm{~B}, \mathrm{Ch} . \mathrm{TS}$-351 | 70-8 | 10=13-41 |
| $21 \mathrm{ks}, 21 \mathrm{k} 3 \mathrm{~B}, 21 \mathrm{kJw}$, | | |
| Ch, TS-351 | 70-6 | 10=13-41 |
| 2171, 21T1B, Ch. T8-351 | 70.6 | $10=13-41$ |
| 2172, 21T2B, Ch. T8-351 | 70-6 | 10-13-41 |
| M. P. TELEVISION | | |
| 18T803, 171504 | 9-1 | $8=1-4$ |
| MULTIPLE TELEV, MFG. CO. | | |
| EC20, Ch. 630к3B | 9-1 | 8-1-2 |
| HFD17, $\mathrm{HFD} 20, \mathrm{Ch} .690 \mathrm{~K} 3 \mathrm{~B}$ | 9-1 | 8-1-2 |
| CFD17, LFD20, Ch. 830K3n | 9-1 | 8=1-2 |
| OF17, OF20, OF20R, | | |
| Ch. 830 K 3 B | 9-1 | 0-1-2 |
| 6sorsb, Ch. | 9-1 | e=1-2 |

| MODEL | ACK-fils | paces |
| :---: | :---: | :---: |
| OLYMPIC RADIO \& TELEV. INC. (Contr) | | |
| 7850 | 44-1 | 6=1-12 |
| 735, Moate Cario | 44-1 | 8=1-12 |
| 7534 | 44-1 | 8m1-12 |
| 756, Challenger | 44-1 | 6=1-12 |
| 785 | 44-1 | © $=1-12$ |
| 782, Rtviera Deluce | 44-1 | 7 $=1$-8 |
| 704, Broadmoor | 44-1 | 6x1-12 |
| 7840 | 44-1 | 6 $=1$ 12 |
| 768, Catalina | 44-1 | $8=1-15$ |
| 7880, 787 | 44-1 | 8=1-12 |
| ${ }^{769}$, Prince Georse | 44-1 | ${ }_{8=1-15}$ |
| 783 | $44-1$ | $7 \times 1-8$ |
| 989, windsor | 44-1 | 7 $=1-8$ |
| 988, Lancaster | 44-1 | 7=1-8 |
| 970, Mariborough | 44-1 | 7*1- |
| PACKARD-BELL CO. | | |
| 2001-TV, 2002-TV | 44-2 | 8-1-8 |
| 2001-TV, 2092-TV | 44-2 | 5-S-8 |
| 2101, 2102, Ch. 2101-2 | 44-2 | 7-1-9 |
| ${ }^{2101-2, ~}{ }^{\text {ch. }}$ | 44-2 | $7=1-9$ |
| 2105,2105A, Ch. 2101-2 | 44-2 | 7=1-9 |
| $2202-T \mathrm{TV}, 2204$-TV | 44-2 | 7*10-16 |
| 2111, Ch. 2111-2 | 82-3 | $9 \mathrm{P} 15-20$ |
| $2111-2, \mathrm{Ch}$. | 62-3 | 8=15-20 |
| 2112, 2113, Ch. 2111-8 | 62-3 | ¢ $=15-20$ |
| 2114, Ch. 2114 | 52-3 | 9=15-20 |
| ${ }^{2114,} \mathrm{Ch}$. | 52-3 | 9-15-20 |
| 2115, Ch. 2115-2 | 71-4 | 10=1-10 |
| 2115-2, Ch.2116, beLuxe, standard, $\quad 12-4$ | | |
| | | |
| 2117, DeLuxe, stancard, 1-4 101-10 | | |
| Ch. 2117 | $71-4$ | 10-1-10 |
| ${ }^{2117}$, Ch. | 71-4 | 10=1-10 |
| 2118 | 71-4 | 10=17-28 |
| 2301, 2302 | P-1 | $\mathrm{C}=1-13$ |
| 2311 241, Ch 361-2 | $52-4$ | 901-14 |
| 2411, Ch. 2421-2 | 71-4 | 10=27-39 |
| 2421-2, Ch. | 71-4 | 10-27-30 |
| 2422, DeLuxe, Standard, | | |
| 2423, DeLuxe, standard, 11-4 | | |
| Ch. 2423-2 | 71-4 | 10-27-39 |
| ${ }^{2423-2, ~ C h . ~}$ | 71-4 | 10=27-39 |
| 2801 -TV | 44-2 | 8 $\times 9$ 9-14 |
| 2802 | 44-2 | $7=1-9$ |
| | | $8=14-19$ |
| ${ }^{2611}$ Record Changer VM-980 | 52-3
 62-RC1 | RCR22-1-16 |
| 2012, Ch. 2115-2 | 7-4 | Rcciolicil-18 |
| 2692 -TV | 44-2 | $8=8-14$ |
| ${ }^{2801-T V, ~ 2801 A-T V ~}$ | 44-2 | 6=1-7 |
| 2803 | Q-1 | $8=1-13$ |
| Record Chenger | | |
| 2811 WEBSTER 100 | 9-RCI | RCER1=1-10 |
| 2811 | B2-3 | 9-1-14 |
| Record Changer | | |
| WEBSTER 100 | 32-RC1 | RCH21-1-10 |
| 2811, Late | 52-3 | 9 $=1-14$ |
| 2822, Ch. 2822 | 71-4 | 10=27-39 |
| 2822, Ch. | 71-4 | 10=27-s9 |
| PATHE TELEVISION CORP. | | |
| TAP, Ch. | | |
| 14-PT | 10-1 | 8=6-15 |
| 17-N35, Ch. TAP | 10-1 | B=1-5 |
| $17-\mathrm{PC}$ | 10-1 | Bre-11 |
| 17-RPC, 17-RPT, Ch. TAP | 10-1 | $8=1-5$ |
| PHILCO CORP. | | |
| RC-1 Remote Control Uult | 10-1 | |
| C-2, CP-1, Cb. | 22-3 | $0=1-16$ |
| D-1, D-4, Ck. | 22-8 | $9 \mathrm{Cl} \mathrm{T}^{-32}$ |
| F-2, Ch | 83-8 | 9=1-16 |
| C-1, Cb. | 71-4 | 10-1-12 |

| | RAYTHEON SEARS | |
| :---: | :---: | :---: |
| moder | PACK-FILE | Pages |
| RAYTHEON TELEV, a RADIO CORP, (Conty) | | |
| RC-1619B, Ch. 16AY28, | | |
| | | |
| | | |
| RC-17188, Ch. 17AY21, - 48-3 | | |
| The Savoy | 48-3 | 7=1-16 |
| RC-1719A, Ch. 17AY24, | | |
| RC-1719日, Ch. 17AY21, | | |
| The Santung | $48-5$ | 7=1-16 |
| RC-1720A, Ch. 17AY27, | | |
| The Starllght | 2-1 | 8=14-25 |
| Record Changer VM-950 | 2-RC1 | RCH22=1-18 |
| RC-2005A, Ch. 20AY21, Adams | 2-1 | $8=1-13$ |
| Record Changer VM-950 | 2-RC1 | RCH22=1-16 |
| 6je, 12AT7, Tuners | 2-1 | $6=26-31$ |
| 70x22P, Ch . | 27-2 | 5=31-34 |
| 12Ax27, Ch . | 27-2 | $5 \mathrm{E} 1-8$ |
| 14Ax21, ch. | 27-2 | $5=9-20$ |
| 16AX23, 16AK25, 16AX26, Ch. | 27-2 | $5=21-29$ |
| ${ }^{16 A \times 29, ~} \mathrm{Ch}$. | 27-2 | 5=21-29 |
| ${ }^{16 A Y 28, ~} \mathrm{Ch}$. | 48-3 | 7=1-18 |
| 18AY211, Ch. | 48-3 | 7=1-18 |
| 17AY21, Ch. | 46-3 | 7=1-18 |
| 17AY21A, Ch. | 58-4 | 10=1-10 |
| 17AY24, Ch. | 48-3 | 7=1-16 |
| 17Ay27, Ch. | 2-1 | $8=14-25$ |
| 201Y21, ch. | 2-1 | $8=1-13$ |
| 21AY21, Ch. | 88-4 | 10-11-20 |
| SCOTT RADIO LABS., INC. | | |
| Aahly, Chippendale, Creasy, Croydon, Ravenswood, | | |
| AC-17, AT-17, Ch. 720, | | |
| Ravenswood | 54-1 | 9=1-16 |
| Record Changer | | |
| WEESTER 100 | $54-\mathrm{RC1}$ | RCH21-1-10 |
| 310, Ch. 720, Croydon | 54-1 | 8=1-16 |
| Record Changer | | |
| MILWAUKEE 11600 | 54-RC1 | RCH 9-1-4 |
| 320, Ch. 920, CroydonRecord Changer54-1 | | |
| | | |
| b10, Ch. 720 , Cressy | ${ }_{54-1}^{\text {54-RC1 }}$ | RCH ${ }_{9=1-18}^{9=1}$ |
| S10, Ch. 720, Cressy \quad S4-1 $\quad 9=1$ | | |
| WEBSTER 100 | 54-RC1 | RCH21-1-10 |
| | | |
| Record ChargerWESSTER 100 | | |
| WEBSTER 100 | $54-\mathrm{RC} 1$ | RCH21=1-10 |
| $720, \mathrm{ch}$. | 54-1 | $9=1-16$ |
| 910, Ch. 920, Waverly | 54-1 | $9=1-16$ |
| Record Changer | | |
| WEBSTER 100 | 54-RC1 | RCH21=1-10 |
| ${ }^{920, \mathrm{Ch}}$. | 54-1 | 9=1-18 |
| 924, Ch, 924, wellington $54-1$ | | |
| Record Changer
 WEBSTER 100 | | |
| | | |
| | | |
| | | |
| ChippendaleRecord Changer | | |
| | | |
| Record Changer WEBSTER 100 | 54-RC1 | RCH21-1-10 |
| SEARS, ROEBUCK a co. (SILVERTONE) | | |
| 100.112, Ch. | 11-1 | $8=1-14$ |
| 100.120, Ch. | 55-4 | 9-57-72 |
| 102-A, Ch. 549. 100-7 | 55-4 | 9x49 |
| $110.111, \mathrm{Ch}$. | 11-1 | $8=15-31$ |
| 110.700, Ch . | 74-5 | 10=1-30 |
| 110.700-1, 110.700-2, Ch. | 74-5 | 10=1-30 |
| 110.700-10, 110.700-20, Ch. | 74-5 | 10=1-30 |
| 110.700-40, 110.700-50, Ch. | 74-5 | $10=1-30$ |
| 110.700-90, 110.700-91, ch. | 74-5 | $10=1$-30 |
| 110. $700-92,110.700-93, \mathrm{Ch}$. | 74-5 | 10=1-30 |
| 110.700-98, 110.700-97, Ch. | 74-5 | $10=1-30$ |
| 111, 113, Ch. 110. 700 | 74-6 | 10x1-30 |

SEARS
SPARTON

| MODEL | PACK-FILE | pages | SPARTON STARRETT | | | STEW. WARNER SYLVANIA | | | | | | |
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| | | | MODEL PAC | CK-rile | pages | MODEL PA | ACK-FILE | pages | MODEL PA | CK-FILE | Phazs |
| SPARTON RADIO-TELEVISION (Cont'd) | | | SPARTON RADIO-TELEVISION (Cont'd) | | | STEWART-WARNER ELECTRIG | | | STROMBERG-CARLSON CO. (Cont'd) | | |
| 28spl70, DeLuxe, Ch., 50798 | 24-1 | $\begin{aligned} & 7=3-10 \\ & B=22 \end{aligned}$ | 5107x, Ch. 26SS171, Whitney 5108, Ch. 26SS170D, Whitney | $\begin{aligned} & 56-2 \\ & 56-2 \end{aligned}$ | $\begin{aligned} & 9=17-21 \\ & 9=1-10 \end{aligned}$ | STEWART-WARNER CORP. | | | $\begin{aligned} & \text { 112107, Cb. } \\ & \text { 112114, Ch. } \end{aligned}$ | 23-2 | $\begin{aligned} & 7=0-20 \\ & 7=0-20 \end{aligned}$ |
| | | ${ }_{8=25-28}^{88}$ | 5110, Ch. 26SS170DD, Berkeley | 56-2 | $y=1-10$ | 9120-A, $9120-\mathrm{B}, 8120-\mathrm{C}$, | | | 112119, Ch. | 23-2 | 7=1-8 |
| 2680170P, Ch. | 24-1 | 7=3-10 | 5125, Ch. 26SS170dD | 58-2 | $9=1-10$ | | 24-2 | 7=1-17
 $7=18-36$ | 112120, 112121, Ch. | 15-1 | $8=1-8$ $7=1-8$ |
| | | $8=2$ | 5152, 5153, 5154, Cn. 26SS170, 26SS170p | 24-1 | | ${ }_{9122-\mathrm{A}}^{9121-\mathrm{A}}$, $9121-\mathrm{B}$ | 24-2 | $\begin{aligned} & 7=18-36 \\ & 8=1-19 \end{aligned}$ | | 23-2 | $\xrightarrow{7=1-8}$ |
| | 24-1 | $8=21-25$ | | | $7=5-10$ $8=29-24$ | ${ }_{9125-A}$ | 50-4 | $\begin{aligned} & 8=1-19 \\ & 9=19-36 \end{aligned}$ | 112127, ct. | 23-2 | $9=1-8$ |
| 268D170x, 26SD170XP, Cn. | | ${ }_{8=2}^{7 m-10}$ | | $8=27$ | | Record Changer STEW, - ${ }_{\text {WARNER VM-509032 }}$ - 6 -RC1 | | RCH 9=1-16 | $\frac{\text { SUPREMACY }}{\text { Soe MAGY'S }}$ | | |
| | | $8=21-25$ | | | | | | | | | |
| 26SD171, ch. | 75-3 | $9=22-24$ | 26SD170X, 28SD170XP | 24-1 | 7*3-10 | | | 9-37-4 | | | |
| ${ }_{26 S D 172 C}$. Ch. | | 10=1-7 | 5158, Ch. 288D170, 26SD170p | 24-1 | | ${ }^{9127-A}$ - | | $9=42-46$ | See BENRAY SURREY | | |
| 26SS160, 26SS160B, 26SS160L, Ch. | 24-1 | 7=3-12. | | | | $9200-\mathrm{FA}, 9200-\mathrm{G}$ | 12-1 | $8=20$ | | | CORP. |
| 26ss170, Ch. | | $7=3-10$ | | | $8=2$ | 9202-A, 9202-B | $75-5$ | 10=1-22 | SYLVANIA ELECTRIC | PRODU | INC. |
| | | 6=23-24 | | | $8=21-25$ | ${ }^{920202-C}$ | | | | | |
| | $\begin{aligned} & 56-2 \\ & 24-1 \end{aligned}$ | 8=27-31 | 62X, $5163 \mathrm{x}, \mathrm{Ch} 26 s$. | -2 | 9-17-21 | 9202-DA | 12-1 | $10=1-22$ $8=37-53$ | 1-227, Ch. | 13-1 | ${ }^{8=53-63} 8$ |
| 26SS170D,26SS170D,26SSS170DD, | | 9=1-10 | | | | 9202-DA, Late | 75-5 | 10=1-22 | 1-231, Ch. | 13-2 | $8=65-63$ $8=105-117$ |
| | | $\begin{aligned} & 7=5-10 \\ & 8=23-24 \end{aligned}$ | 5165X, 5166X, Ch. 28SDI71, Sheffield | 56-2 | 9=22-24 | 9202-DB | 12-1 | 8=37-53 | 1-245-2, Ch. 1-227 | 13-1 | $8=53-63$ |
| 2688170P, Ch. | | 8×27 | 5170, 5171, Ch. 25sd201 | 24-1 | $7=10$ | 9202-DB, Late | 75-5 | 10-1-22 | 1-247-1, Ch. 1-231 | 13-2 | $8=105-117$ |
| | 24-1 | 7=5-10 | 5175X, Ch, 26SD171, Rochelle | | $8=14-20$ | 9202 -DD | 12-1 | ${ }_{8=37-53}$ | 1-260, 1-261, Ch. | 23-3 | 7=1-23 |
| | | $8=23-24$ | | 88-2 | $9=22-24$ | 9202-DD, Late, 9202-DDA | 78-8 | 10=1-22 | 1-329, ch. | 13-1 | $8=64-82$ |
| - | | $8=27$ | 5178x, Ch. 26SD171, Del Mar 5182, 5183, Ch. 26SD170, 26sD170p | 56-2 | $8=22-24$ | ${ }_{\text {9202-E, }}^{9202-E}$ Late | -75-5 | - | | 13-2 | ${ }^{8}=1800-173$ |
| 26ss171, 26SS171A, Cb. | 56-8 | 9 9 17-21 | | 24-1 | | ${ }_{\text {9202-F }}^{\text {9202-E, }}$ Late | 75-5 | $10=1-22$ $8=37-53$ | ${ }_{1-388(\mathrm{COB})}^{1-368 .}$, Ch. | 23-3 | $7=1-23$ $8=140-153$ |
| 5025, Ch. 2658180 5025BA, Ch. 26SS170 | $24-1$ | $7=3-12$ $7=3-10$ | | | | 8202-F, Late, 9802-FA | 75-5 | 10=1-22 | ${ }_{1}$-366-66, Ch. | (29-3 | ${ }^{8=14-23} 7$ |
| | | $8=28-31$ | | | $8=21-25$ | 9209 - | ${ }^{25-5}$ | 9\%1-18 | 1-381, Ch . | 13-1 | $8=64-81$ |
| 5026, Cl. 26ss 160 24-1 | | ${ }_{7}^{7=3-12}$ | $\begin{gathered} \text { 5188, 5180, Ch. 268D170, } \\ 28 S D 170 \text {, } \end{gathered}$ | 24-1 | $7=3-10$ | 9204-A | 75-5 | 10-1-22 | | ${ }_{\text {13-1 }}^{13}$ | $8=83-98$ $8=118-131$ |
| 5029, 5030, Ch. 26SD160 24-1 | | $7=3-12$ | | | ${ }_{8=2}^{7=3-10}$ | STRAND TELEVISION CORP. | | | ${ }_{1-387-1, ~ C h ., ~}^{\text {23m-1 }}$ | 13-2 | ${ }_{8=118-139}$ |
| Ch. 26SS1602 | 24-1 | 7 7 -12 | | | $8=2$ | | | | 1-387-1, Ch., 25 M | $25-4$ | 9=15-30 |
| $50758 \mathrm{BA}, \mathrm{Ch}$. | 24-1 | 7=8-10 | 5191, 5192, Ch. 25sd201A, | | | Riverdale, 2412 The Commodore, | | | 1-437, Ch. | ${ }^{23-8}$ | $7=24-37$ |
| | | $8=28-31$ | | 50-2 | 9=11-16 | | | | 1-437-1, Ch. | 25-4 | $9=1-14$ |
| 5076, Ch. 26ss160 50768A, Ch. 26SS170 | ${ }_{34-1}^{24-1}$ | $7=3-12$ | 5220, Ch. 26sD172C, Harrison | 75-3 | 10-1-7 | 2417-C The Van Courtland, | | | | | $9=41-52$ $10=39-57$ |
| | | $7=8-10$ $8=28-81$ | 5225. Ch. 26SD172C, Hastings | 75-3 | $1021-7$ $10=1-7$ | | | | $\begin{aligned} & 1-437-2,1-437-3, \mathrm{Ch} \\ & 1-441, \mathrm{Ch} . \end{aligned}$ | -80-5 | , $10=1039-57$ |
| 50768B, Ch. 26SS160日 | | $8=28-31$ $7=3-12$ | 5226, Ch. 26SD172C ${ }^{\text {5270, Ch. }}$ 26SD172C, Roxbury | 75-3 | 1001-7 | The Aristocrat, 3217 The | | | | | $8899-104$ |
| 5077, ch. 2685160 | ${ }_{24-1}$ | 7 7 3-12 | 5272, 5273, Ch. 268D172C, | 75-8 | 10=1-7 | provence, 3224 The Carolinian, 3255 The Danberry, 3353 The | | | 1-441(CO2), Ch . | 13-2 | $8=140-159$ |
| 50778, Ch. 2655160B | | 7=3-12 | | | | | | | 1-442, Ch . | 23-3 | 7=24-37 |
| | 24-1 | $7=3-10$ | Radmoor | 75-3 | 10-1-7 | ${ }^{\text {Madision, }} 3357$ The Jackson, 3642 The | | | ${ }_{\substack{\text { c } \\ 1-502-1, ~}}$ | ${ }_{76-8}$ | $9=31-40$ $1021-21$ |
| 50788B, Ch. 26SD170, DoLaze | 24-1 | $8=28-31$ $7=3-10$ | SPENCER-KENNEDY LABS., INC. | | | 3357 The Scarsdaie, 3844 LK , The | | | | $76-8$ $76-6$ | $10-1-21$ $10=1-21$ |
| | | $8=6$ | | | | Crestwood, 3645 The | | | 1-502-5, ch. | 76-6 | 10=1-21 |
| | | ${ }_{8=31}$ | 21TTV, Booster | | 8=1-3 | Yorktowne, 4000 The New | | | 1-507-1, Ch. | 70-6 | 10=22-38 |
| 5079, Ch. 26SD180 5079B, Ch. 26SD170, DeLuxe | 24-1 | 7-3-12 | STANDARD COH PRODUCTS CO. WC. | | | Yorker, 4000 Ch. L, Sae VIDEO PRODUCTS 630-K3C, 630-DX, 650-FM | | | | $76-8$ | 10=22-38 |
| | | 7 $73-10$ | | | | 80-1 | 10-1-12 | 228-11, Ch. ${ }^{\text {220,507-1 }}$ | $76-6$ 13.2 | ${ }_{8 \times 118-131}^{1022-38}$ |
| 60798B, Ch. 2680170, Deluxe | 24-1 | $8=22$ $8=25-26$ | B-51, Booster | 12-1 | $8=1$ | | | | | 22M-1, Ch. 1-387-1 | 13-2 | $8=118-139$ |
| | | $7 \times 3-10$ | | | | STROMBERG-CARLSON CO. | | | 22M-11, Ch. 1-507-1 | 70-6 | 10-22-38 |
| | | $8=6$ | STARRETT TELEVISION CORP, | | | | | | | 78-6 | 10=21-38 |
| | | ${ }_{7}^{82} 31$ | | | | ${ }_{\text {Cravaller, }}^{\text {Brighton }}$ (Futura | $78-9$ $23-2$ | ${ }^{10} 10=1-8$ | | 13-2 | ${ }_{\substack{\text { 8 } \\ 102118-139}}$ |
| 5080, Ch. 26SD160 50808B, Ch. 28SD170, DeLume | $\begin{array}{r} 24-1 \\ 24-1 \end{array}$ | $7=3-12$ $7=3-10$ | ${ }_{120 \mathrm{l}}^{117 \mathrm{H}, \mathrm{Ch}} \mathrm{Ch}$ | | $10=1-8$ $10=1-8$ | Invader | 76-3 | 10=8-18 | 23M, Ch. ${ }^{\text {che }}$ - $387-1$ | 13-2 | ${ }_{8 \times 118-150}$ |
| | | ${ }_{\substack{7=3-10}}^{8=6}$ | | 75-1 | 10=1-8 | ${ }_{\text {M }}$ Mrader | 76-s | 10 $=1-7$ | 23M-11, Ch. 1-507-1 | 76-6 | 10=22-38 |
| | | 8×31 | 117\% | 75-1 | 10-1-8 | pan American | ${ }^{78-3}$ | 10=8-18 | 24M-1, Ch. 1-367-1 | 13-2 | $8=118-139$ |
| S082, 5083, Ch. 26Sd 170 | 24-1 | 7=3-10 | 472.20xMC, 472. $20 \times \mathrm{MMT}$, Ch. | | | Panatomic | 78-3 | 10=8-16 | 25M, Ch. 1-387-1 | 25-4 | $9 \mathrm{~F} 15-30$ |
| | | $8=1-6$ | 120H | 75-1 | 10=1-8 | 24C, $24 \mathrm{CM}, \mathrm{Ch}, 112126$ | 23-2 | $7=1-8$ | Record Changer VM-050 | 25-RC1 | RCH22 1 1-18 |
| 5082, 5083, Ch. 288D170x, 26SD170XP | 24-1 | | Ell Whitney | 75-1 | $10=1-8$ | 24Rp, 24 Serles, Ch. 112119 | 23-2 | $7=1-8$ | $71 \mathrm{M}, \mathrm{Ch} 1-.441(\mathrm{CO} 2)$ | 13-2 | $8=140-153$ |
| | | 7=3-10 | James Buchanan | 75-1 | $10=1-8$ | 24RPM, 24 Series, Ch. 112119 | 2S-2 | 7=1-8 | 71M-1, 728-1, Ch. 1-502-1 | ${ }^{25-4}$ | $0=31-40$ |
| | | $8=2$ | James Madison | 75-1 | 10=1-8 | Record Changer | | | 728-11, Ch. 1-502-3 | $78-6$ | 10=1-21 |
| | | 8 821-25 | patrick Henry | 75-1 | 10=1-6 | WEBSTER 100 | 28-RC1 | RCER1=1-10 | 72M, Ch. ${ }^{1-368}$ | ${ }^{23-3}$ | 7=1-23 |
| 6085, 5086, Ch. 258 PD 190 | 24-1 | $7=10$ | Peter Stuyvesant | 75-1 | 10=1-8 | $119 \mathrm{CDM}, 119 \mathrm{CM}, \mathrm{Ch}$. | 23-8 | $7=9-30$ | 72M, Ch. 1-388(COB) | 13-2 | $8=140-153$ |
| | | $8=7-13$ | The Riviera | 75-1 | $10=1-8$ | 119M5A, 19M5D, 119 MSG, | | | ${ }^{73 \mathrm{M}-1, \mathrm{Ch}}$ 72M-2, ${ }^{\text {1-502-1 }}$ | ${ }^{25-4}$ | $\theta=81-40$ |
| 5088, Ch. 28SD170, The Westmont | | | 12S1, Ch. | 75-1 | 10=1-8 | | 23-2 | 7*9-20 | 72M-2, Ch. 1-437-3 | -89-5 | 10-39-57 |
| | | $\begin{aligned} & 7=3-10 \\ & 8=1-8 \end{aligned}$ | 14S1, Ch. 15S1, Ch | 75-1 | $10=1-8$ $10=1-8$ | 119RPM, 119RPM2, Ch. 112114 | 23-2 | 7=9-20 | ${ }_{72 \mathrm{M}-11 \mathrm{~A},} \mathbf{7 2 \mathrm { M } - 1 1 \mathrm { B } , \mathrm { CL } .} \mathbf{1 - 5 0 2 - 5}$ | 76-8 | |
| 5089, Ch. $285 \mathrm{SD170}$ | 24-1 | 7=3-10 | 17BM1, ch. 1281, | 75-1 | 10=1-8 | 317RPM, Ch. 112120 | ${ }_{15-1}^{15-1}$ | RCH2$8=1-8$
 18 | 738, Ch. $1-888(\mathrm{COB})$ | 13-2 | 80140-153 |
| | | $8=1-6$ | | | | Record Changer VM-950 | 15-RC1 | RCH22=1-18 | 73B-5, Ch. 1-437-3 | 69-5 | 10=39-57 |
| 5090, Ch. 26SD170, The Sparcraft | 24-1 | $\begin{gathered} 7=8-10 \\ 8=1-6 \end{gathered}$ | 20BM1, Ch. 15S1, peter Stuyyesant | 75-1 | | 317TM, Ch. 112121
 321CD2M, 321CD20, 321
 Series, Ch. 112127, Futura | | $8=1-8$$9=1-6$ | | 78-8 | $\substack{10-1-21 \\ 7=1-23}$ |
| | | | | | 10-1-8 | | 28-2 | | | - | 7=1-23
 $8=140-153$ |
| 5101, $5102,5103, \mathrm{Ch}$$2885170,2685170 \mathrm{p}$ | 24-1 | | Patrick Henry | 75-1 | 10=1-8 | 321CF, $321 \mathrm{C} 2 \mathrm{M}, \mathrm{Ch} .112127$, | | | 73M-1, 73M-2, Ch. ${ }^{\text {P-508-2 }}$ | 78-6 | 10-1-21 |
| | | $7=5-10$ | 29AM1, Ch. 14S1, | | 10=1-8 | | $\begin{aligned} & 23-2 \\ & 76-3 \end{aligned}$ | $\begin{array}{r} 9=1-8 \\ 10=1-7 \end{array}$ | | | |
| | | $\begin{aligned} & 8=28-24 \\ & 8=27 \end{aligned}$ | Peter Stuyvesant 308M1, Ch. ass | 75-1 | | 417C5-Dec, 417 Series, Mandartr 76-3 | | | $73 \mathrm{M}-11, \mathrm{Ch} .1$ 1-502-3 78-6 | | 10-1-21 |
| 5104, 5105, Cl. 2688170D,26SS170DP | 24-1 | $\begin{aligned} & 7=5-10 \\ & 8=23-24 \end{aligned}$$\begin{aligned} & 8=23-2 \\ & 8=27 \end{aligned}$ | 30BM1, Ch. 15S1, James Madison | | | $417 \mathrm{TX}, 417$ Series, Brighton | $78-3$ | $10=1-7$ | 748-1, Ch. $1-437-1$ | 25-4 | ${ }_{9 \times 41-52}$ |
| | | | 378B1, Ch. 12S1, Ell Whitney | 75-1 | $10=1-8$ | $421 \mathrm{CDM}, 421$ Series, | | | 748-2, Ch. 1-437-2 | $88-5$ | 10=38-57 |
| | | | 39AM1, Ch. 14S1, James Madison | | | 421CM, 421 Series, Invader $421 \mathrm{TX}, 421$ Series, Panatomic | | $\begin{aligned} & 10=8-1818 \\ & 10=8-18 \end{aligned}$ | | - | $B=160-173$ |
| 5107x, Ch, 26881700, Whitioy | 56-2 | $\begin{aligned} & 8=27 \\ & \theta=1-10 \end{aligned}$ | | | | | 76-3 | $10=8-18$ $10=8-18$ | ${ }_{744 \mathrm{M}-2,{ }^{\text {7 }} \text {, } 74 \mathrm{M}-\mathrm{S}, \mathrm{Ch}, 1-457-2}$ | (28-4 | $\begin{gathered} 9=41-52 \\ 10=39-57 \end{gathered}$ |

Just one knob-extra large-easy to turn-flush with the panel, controls all ranges. This one knob saves your timeminimizes the chances of "burn-outs" because you don't have to remember to set another control. You can work fast with Model 630 with your eyes as well as your hands. Look at that scale-wide open-easy to read, accurately. Yes, this is a smooth TV tester. Fast, safe, no projecting knobs, or jacks, or meter case. Get your hand on that single control and you'll see why thousands of "Model 630's" are already in use in almost every kind of electrical testing
 ONLY 888.50 AT TOUR DISTRIBUTOR
 Prices Subject to Change
 FOR THE MAN WHO TAKES PRIDE IN HIS WORK
 Triplett
 TRIPLETT ELECTRICAL INSTRUMENT COMPANY - BLUFFTON, OHIO, U.S.A.

Replacement Parts in TV Receivers

(Continued from page 7)

mica type almost completely. It is interesting to note the rapid rise in the use of negative temperature coefficient ceramic capacitors in television receivers. In these, the capacity decreases with increase in temperature. They are very prominent in the front-ends and are used more and more in other parts of a tv receiver where it is desired to maintain constant circuit behavior under varying temperatures.

The ceramic dielectric capacitor offers high insulation resistance; therefore, it is used for d-c blocking, bypassing, and coupling, especially in those circuits that operate at frequencies above the audio range. Its behavior under varying conditions of frequency (including UHF), temperature, and humidity is excellent.

Another feature of the ceramic dielectric unit is the ease with which it can be produced in very low values of capacitance, with the result that the wide variety of low values of capacitance used in television receivers are prominently available in this kind of capacitor.

Construction of fixed mico and ceramic
capacitors.
A high order of interchangeability between mica and ceramic capacitors exists, especially between certain ceramics and silver micas. Since the subject is somewhat elaborate, the discussion will be held in abeyance until the subject of substitution is treated.

Paper Dielectric Tubulars. Paper dielectric tubulars follow two patterns of construction. One utilizes alternate layers of foil (the active surface) and paper dielectric between. The foil and paper are wound concentrically; by making proper electrical connections to the active surfaces, non-in-ductive behavior is accomplished to a highly satisfactory degree. Also, any desired capacitance value and voltage rating within certain limits is achieved.

The usual limit on the minimum capacitance produced in this manner, and also on
the maximum, is a low of about $.001 \mu \mathrm{f}$ and a high limit of about 50μ. However, the upper capacitance limit of paper dielectric capacitors used in tv receivers is about .25 μ f.
A second form of construction uses metallized paper, that is, metal is sprayed on the paper dielectric. The metallized strip then is rolled concentrically and the connections made to the active surfaces.

An important part of the construction of both varieties of capacitors is the impregnation. All air is drawn out of the assembly and all spaces within are filled with an impregnant that also penetrates the paper dielectric. It may be any one of a variety of substances such as mineral oil, castor oil, wax, or a synthetic substance. The impregnant ascribes certain electrical characteristics to the capacitor. Only some of the highlights can be treated here because the subject is extremely broad.

The impregnant influences the capacitance of the capacitor - whether it is going to increase or decrease relative to the nominal value with changing temperatures, and by what amount. It determines the variation in electrical losses within the capacitor with changes in operating temperature, thereby determining the suitability of the component for use at various operating temperatures. Insulation resistance on the other hand always decreases with increase in temperature.

These details are a matter of concern to the tv receiver designer, although his problem revolves more around what happens with increasing temperatures than for the opposite temperature variation. That is why design engineers specify the operating temperature of fixed capacitors used in the equipment they conceive. Fortunately, the service technician's problem is greatly simplified, in that the vast majority of paper dielectric capacitors used in television receivers bear one of two operating temperature ratings, $65^{\circ} \mathrm{C}$ or $85^{\circ} \mathrm{C}$. Judging by specifications, the tendency is toward the higher rating. These needs are being satisfied by replacement components, but it still behooves the responsible to service technician to make certain that he is procuring the proper part. This is one reason why the use of surplus capacitors for replacements is a very bad practice, and suggestions for replacement must be based on the original specifications.
The casing or housing used for the capacitor has a bearing on its operation with different conditions of temperature and humidity. There was a time when all these capacitors were contained in wax impregnated cardboard tubes and wax sealed. The tendency is away from these to molded plastic casings in order to improve operation under high humidity conditions. Hermet-
ically sealed metal cases also are available, but these seldom are used as original equipment or for replacement in tv receivers.

Electrolytic Capacitors. Although the electrolytic capacitor is in a class by itself, it still conforms with the basic requirement of a capacitor; namely two conducting surfaces between which a dielectric exists. The essential difference between the electrolytic capacitor and the ordinary fixed capacitor is that the dielectric in the form is an exceedingly thin oxide film which is deposited on the metal surfaces of the capacitor. The film displays unilateral conductivity properties, that is, when the applied voltage is of one polarity, the film displays very high resistance, and relatively little current flows through the dielectric, and when the voltage is of the opposite polarity a high current would flow through the capacitor. In spite of this, the unit is still capable of storing electricity.

In view of this behavior relative to the polarity of the applied voltage, electrolytic capacitors are polarized. By this is meant the capacitor terminals bear polarity designations which must be adhered to when the d -c or pulsating voltage is applied to the

capacitor. Otherwise, the unit may be damaged.

The three types of electrolytics - etched foil, plain foil and fabricated - refer to the manner in which the basic metal surface is treated so as to afford maximum surface for contact with the oxide film. The plain foil presents a smooth surface and affords a unit surface area, hence a unit value of capacitance. When the metal is etched by a chemical process, the surface area is increased. This occurs because the etching process causes microscopic cavities in the surface, all of which tends to increase the surface area in contact with the film. Substantial increase in capacitance is obtained in this fashion, perhaps from 5 to 8 or more times the capacitance which is obtainable with the plain foil. In the fabricated plate type, the anode material is made by deposit-

Notice ta All Purchasers of:

 RIDERS TV 10We have always prided ourselves on the accurate information we have made available to the servicing industry. To live up to this tradition we wish to correct certain discrepancies that crept into the replacement parts listings published in TV 10. Because we are anxious to give you thoroughly accurate replacement parts listings, which include additions that arrived after the publication of TV 10, we ask you to do the following:

Please fill in the registration coupon on the first page of your Rider TV 10 Manual and send it to us. We will forward the replacements parts listing corrections direct to your address. Also, by returning this coupon to us, you will be assured of having your name on our mailing list for exclusive information that will be available to TV 10 owners. Do Not send us the replacement parts pages!

Look to future issues of SUCCESSFUL SERVICING for the newest additional replacement parts listings.

John 9. Rider, Publisher

Defilers getinc wesinchulse TUBES PROFII FROM HEAVY lucal avierising at No cost

Service dealers are getting powerful local advertising support from new Westinghouse RELIATRON $_{\text {tw }}$ Tube Distributors. In cities now served by Westinghouse Distributors, dealers get local newspaper advertising, a complete kit of store display and imprinted mailing material.
All of it-local ads and kits-are designed to build TV-radio service business in the dealer's local area.
Best of all, none of it costs the dealer a penny!
You can get your store listed in two local newspaper ads at no charge, and get a kit to boot. If Westinghouse Tubes are now sold in your area, see your Westinghouse Distributor and take advantage of this $\$ 900$ -worth-of-advertising-at-no-cost offer.

COMING YOUR WAY

If Westinghouse Tubes are not yet distributed in your area, be patient. Distributors are being established in all market areas as fast as product availability and good service permit.
You'll soon have the chance to buy RELIATRON Tubes. Keep this tremendous opportunity in mind: you'll get newspaper advertising at no cost! Imprinted material for mailings! Imprinted signs for your window!

All of it is local advertising which sells your service in your own area where it counts.
For the name of your Westinghouse Distributor, or the approximate date when Westinghouse Tubes will be available in your area, drop a postal card to Dept. M-201 or have your regular distributor contact Dept. M-201 for information on how he can better serve you.

ELECTIRONIC
TUBEDDIVISIONO
Westinghouse Electric Corporation
Box 284, Elmira, N. Y.

The 2uick Diaqnosis

(Comtinacd from page ?)
used to this poor reception? Or am 1 going to be blamed? Nothing on their faces lucky. The times I've been blamed for all the ghosts and everything else after just putting in one tube . . . !

Hey! What's that noise? Picture, too? Yeh. Streaks, and flashes, once in a while. Is it aerial? Bang the cabinet! Yeh, something's loose . . . here we go again! Tap. Where's that long handled fibre screw driver? No good for alignment anymore, but swell for tapping. Watch out for that picture tube! Don't put your hand near it! Oh. This one's glass. Got so I react against any picture tube . . . got banged so hard by the metal ones without a plastic shield. Imagine, expecting a man to work on a set without that protection. .

Boy! Like a toothache . . . this one hurts all over. Uh. Tuner? Not more sensitive than most . . . just normal oscillator response to a bang. First i.f.? No. Second . . . um . . . gee . . . everything around that tube is sensitive. Can I work without a mirror? Yeh. The flashes when I hit show through the edge of the picture tube . . . hear and see at the same time. Is it this tube? Doubt it . . . but, have to try a new one . . . I wonder . . . try another . . . Wow! Hotter'n the devil! What is it? Mmm. Oh, here it is . . . 6CB6. Where's that tube kit? The load I carry! Can't keep 'em in order . . . swell
here it is. They are really watching me now! Sure that I'm putting in more than necessary. Alright . . . she's hot now . . . no use banging till they are hot . . . same thing! Alright! Pull out the new one . . . put back the old. Darn these tiny pin tubes!

Ugh, ugh . . . got to be a contortionist
geez it's hot in here . . . O.K., turn her on again. Tap some more . . . that's the spot alright. Just like an unsoldered connection. Wonder if they had been bothered by this . . . ?

What's that? Yeh, the trouble for which you called me is fixed . . . but what I just found is another trouble which may not bother you, if you are lucky. It is apparently a loose connection under the chassis, but if the set is not jarred too much, it may hang on and you can get it fixed when the set does have to have a major repair

GET YOUR COMMERCIAL TICKET EASIER WITH...

There's a RIDER Book For Every Phase of
 Radio - Television

TV and Other Receiving Antennas
(Theory and Practice)
606 pages .$\$ 6.90$
TV Installation Techniques 336 pages ... $\$ 4.50$
TV Master Antenna Systems 356 pages
Receiving Tube Substitution
Guide Book, lst Ed. 224 pages.. $\$ 3.00$
First Supplement, Receiving Tube Substitution Guide Book 48 pages . $\$.99$
TV Picture Projection and Enlargement 192 pages $\$ 3.30$
Television-How It Works 203 pages $\$ 2.70$
Radio Operator's License $Q \& A$ Manual, 3rd Ed. 734 pages..... $\$ 6.60$
Broadcast Operator's Handbook, 2nd Ed. 440 pages $\$ 5.40$ Radar-What It Is 60 pages...... $\$ 1.00$
Understanding Vectors and Phase in Radio
160 pagesCloth cover $\$ 1.89$ Paper cover \$.99
Installation and Servicing of Low Power Pa Systems 208 pages.... $\$ 3.00$
Servicing by Signal Tracing
360 pages $\$ 4.00$
Inside the Vacuum Tube 424 pages $\$ 4.50$
Servicing Superheterodynes 288 pages $\$ 2.00$
Servicing Receivers by Means of Resistance Measurement 203 pages ..$\$ 2.00$
The Business Helper
134 pages . $\$ 2.00$
WE GUARANTEE your satisfaction! Make these books PROVE their value to you. Examine them at your favorite jobber. If he does not have them order from us.

Order Your Copy Now!

john f. Rider publisher, inc. 480 Canal Street, New York 13, N. Y.

MERIT ADDED TO RIDER'S REPLACEMENT PARTS LISTING PROGRAM

Merit Cail and Transformer Carp. is now a participating manufacturer in the Rider Replacement Parts Pragram.

Merit replacement parts will make their appearance with TEK-FILE Pack Na. 78 and Rider's TV Manual 11. However, it is intended that supplementary informatian an Merit replacement parts will be made available to the servicing industry for thase TV receivers covered by Rider's TV 10 This data will appear in SUCCESSFUL SERVICING.

Only Sylvania tubes showed NO FAILURES after 1400 hours . . . at accelerated voltages

Exhaustive tests conducted under the supervision of an outside impartial laboratory, the United States Testing Company, showed Sylvania Picture Tubes lasted longer than any others tested.

These tests included the picture tubes of nine leading manufacturers. All tubes were placed in identical test racks and tested under identical accelerated voltages. At the end of 1400 hours, only the Sylvania

Picture Tubes showed no failures. These tests definitely establish the outstanding dependability of Sylvania Picture Tubes. They prove that these tubes will best uphold your reputation for fine performance in the sets you manufacture, sell or service. Send today for complete details about Sylvania Picture Tubes. Sylvania Electric Products Inc., Dept. 3R-1801, 1740 Broadway, New York 19, New York.

radio tubes; television picture tubes; electronic PRODUCTS; ELECTRONIC TEST EQUIPMENT; FLUORESCENT tubes, fixtures, sign tubing, wiring devices; light BULBS; PHOTOLAMPS; TELEVISION SETS

Additional literature on each of the products described in these columns may be obtained from SUCCESSFUL SERVICING. See the coupon in column three.
New Tester for Mobile Radio Systems
This new general purpose test meter, RCA Model 6X-7A, will measure current, voltage, and radiated power - all the electrical measurement necessary to install and service two-way radio communications systems. Tester is designed so that several related functions can be checked with a single arrangement of test leads.

Item 1

Sturdy-Tune Detents

Telematic Industries has broadened its line of Sturdy-Tune Detents so that it now includes eleven different detents to handle the replacement needs of nearly every brand TV receiver on the market.

Item 2

The detents are available with or without a back plate. The availability of the Sturdy-Tune Detents without a back plate, if so desired by the serviceman, serves to cut the replacement cost.

Rack Mounting Adapter for Cathode-Ray Oscillographs

Allen B. DuMont Laboratories announces the availability of a new Rack Mounting Adapter, Type 2598, for use with DuMont Types 303, 303-A, 303-AH and 322 cathoderay oscillographs.

Shipped dis-assembled, the Adapter provides a rigid mount for the instrument in
standard 19 inch relay racks; the front opening is large enough to permit all but the front panel of the oscillograph to pass through. The Adapter has been designed so that the entire relay rack may be moved with the instrument in place.

Item 3
Stundard Voltage Rated Power Supplies
Kepco Laboratories has released a new group of voltage regulated power supplies, the Model 700 series. Model 700 feature one regulated d-c voltage supply, a high voltage supply continuously variable from 0 to 350 volts and a delivery of from 0 to 750 milliamperes; Model 710 delivers 1.5 amperes, 720 delivers 2.25 and Model 730 delivers 3 amperes. In the range of $30-350$ volts, output voltage variation is less than $1 / 2 \%$ for line fluctuations from 105-125 volts and load variation from minimum to maximum current. Ripple voltage is less than 10 millivolts P-P.
The gray cabinet is 22% inches high, 21% inches wide and 15% inches deep.

Item 4

Video Output Tube

General Electric has added a new power pentode, type 6CL6, for use in the video output stage of tv receivers.

The tube provides a high plate current at low plate voltage, giving a 40 to 45 voltage gain in wide band video circuits and being capable of supplying 132 volts peak-to-peak output across a load resistor of 3,900 ohms. This new nine-pin miniature
may also be used as a wide-band amplifier in industrial and laboratory equipment.

Item 5

Low Resistance-High Accuracy Instrument Resistor

Type 245S, a new l-watt precision wirewound resistor for decades and other applications requiring low resistance values with close tolerances, low temperature rise, and low inductance, has been announced by the Slaallcross Mfg. Co. The new resistor can be calibrated to a tolerance of $\pm 0.1 \%$ or better and is available in values from 0.1 ohm to 1000 olims. A single layer bifilar winding protected by a moisture resistant lacquer coating is used for all values. The Steatite bobbin and axial wire leads are at the same end for ease in mounting the resistor directly on decade switch decks or other similar equipment. Size is $1 / 3$ inches long by $\%$ inch diameter.

Item 6
To obtain additional literature on any of the items described in this section encircle the number of the product (number appears under picture) on the coupon below, cut the coupon out and mail it to SUCCESSFUL SERVICING, 480 Canal Street, New York 13, N. Y.

| SUCCESSFUL SERVICING480 Canal Street, New. York | | | | |
| :---: | :---: | :---: | :---: | :---: |
| Please send me additional literature on the items circled below appearing in the | | | | |
| | | | | |
| NEW PRODUCTS column of the Jan- | | | | |
| vary. 1953 issue of SUCCESSFUL SERV. ICING: | | | | |
| | | | | |
| 1 | 2 | | 3 | |
| | 4 | 5 | | 6 |
| Name. | | | | |
| Address | | | | |
| City Zone State | | | | |
| Company | | | | |

A monthly summary of product dezclopments and price changes supplied by RADIO'S MASTER, the ficial Buying Guide, available through
local parts distributors.

COMMENT: With more manufacturers reporting changes for tbis period, a continued emphasis is being placed on the in troduction of new products, especially by manufacturers of antennas, ca. pacitors and controls. Aiso evident is the continued tendency toward in creased prices by the leading TV tube manufacturers.

New Items

AEROVOX-Added 3 new values to their geries CP 2, 2 watt carbofilm resistors.
ASSEMBLY PRODLCT'S - Added No. 2056-1, thermocouple at $\$ 2.90$ net and Model C., portable pyrometer case at $\$ 1.75$ net
pyrometer case at $\$ 1.75$ net.
BAKER MFG. Added Nio. 2 FM at $\$ 2.37$ net to their linz of TV antenna towers.
BLILEY ELECTRIC - Added TV service crysta MC9, 13.627 .5 kc . at $\$ 5.50$ net.
BOGEN ${ }^{13627.5 \mathrm{kc} \text {. at } \$ 5.50 \text { net. }}$. Introduced Model R701, high fidelity FM-AM receiver at $\$ 1+5.20$ net, high Model DO10, high fidelity power amplifier at $\$ 37.95$ net and Model RCPR, remote controller$\$ 37.9 \mathrm{~s}$ net and Model RCP
preamplifier at $\$ 78.85$ net.
CLAROSTIAT at $\$ 78.85$ net. RTV 356 to 383 Added TV
EITEL-McCULLUUGH - Added No. HR-10 a $\$ 1.60$ net to their series of heat dissipating connectors.
ELECTRUNIC MEASUREMENT-Added Model 600, oscilloscope at $\$ 99.50$ net, to their test
equipment line.
all purpose selen \& RAD - Added kit No. 3 al purpose selenium rectifier assembly at $\$ 19.95$
GENERAL ELECTRIC - Added No. RPX-052 at $\$ 38.95$ list and No. RPX-053 at $\$ 57.90$ list to their triple play variable reluctance cartridge series. Also added $20 \mathrm{DP4A}$, rectangular ail-glass picture tube for TV receiver applications at $\$ 39.35$ net.
GON-SET - Introduced FM radarray No. 1517 at $\$ 28.50$ net . . No. 1529, rhombic UHF antenna with 8 foot mast at $\$ 7.77$ net . . No. 1531 , parabolic with 9 foot mast at $\$ 5.18$ net and 5 other UHF antennas.
GREAT EASTERN MFG. - Added Model CRT, luzor emission booster at $\$ 1.9 \mathrm{r}$, net.
HYTRON - Introduced No. SH27, test adapter at $\$ 1.45$ net. Also added special purpose tubes OA2WA at $\$ 4.50$ list and OB2WA at $\$ 4.90$ list.
ENSEN INDUSTRIES - Introduced a number of diamond replacement needles for the following manufacturers: Astatic, Audak, Columbia, Crosley, Electro-Voice, General Electric, Magnavox, Philco, RCA, Seeburg. Shure. Sonotone, Webster Electric and Webster-Chicago
MALLORY \& CO. - Added No. PS54010, motor starting capacitor at $\$ 4.89$ net No. FF45052, photoflash capacitor at $\$ 13.50$ net. . No. U. 67 , 5 meg, carbon control at $\$.75$ net and WF252-T23, 2500 ohm wire wound control at $\$ 1.50$ net.
MERIT TRANSFORMER - Added No. A-3100, high fidelity output transformer at $\$ 10.80$ net. recording tape No. 111 AP , plastic prof. reel, PACIFIC TRANSD
(Added Model 201 D $\$ 33.00$ net This model is the same as Model 201, a wide range variable reluctance cartridge with a frequency response to above $12,000 \mathrm{cps}$. with an output of 60 millivolts. with a diamond stylus instead of a standard sapphire stylus.
PERMOFLUX - Added No DHS-31B at $\$ 50.00$ net to their line of monaural dynamic headsets and No. PHA- 6 at $\$ 8.00$ net and No. PHA- 8 at $\$ 13.00$ net to their line of headbands.
PREMAX PRODUCTS-Added mobile mounting CA at $\$ 6.00$ net.
PREMIER METAL PRODUCTS - Introduced new series ARP, aluminum rack panels.
R.C.A. - Added 12 BF 6 at $\$ 1.70$ list. a multi-unit minature tube of the heater-cathode type containing two diodes and one medium-mu triode in one envelope, intended primarily for use as a detector or an amplifier in auto radio receivers operating from a 12 -volt storage battery. Also added 12 V 6. GT at $\$ 2.00$ list, a beam power tube of the

Use either one...

BOTH make your TV servicing fast, easy, more profifable!

All Rider TV servicing information is produced to make your TV service work easier! Making it easier makes it faster and more profitable. Why is Rider information easier to use? Because it is the only source for official, complete, factory-authorized data. Exactly as issued by the receiver manufacturer... with all of his production changes and trouble cures - organized into indexed, easy-to-follow style. When you repair a set with Rider servicing data, you have everything you must know to do a fast, accurate diagnosis and make a permanent repair. RIDER TV SERVICING DATA COMES IN TWO FORMS. MANUALS ... The TV Manual has 10 Volumes covering more than 4,650 models of TV receivers. Each volume has over $2,000\left(81 / 2 \times 11^{11}\right)$ pages of servicing data with an index that covers the contents of all volumes. The Manual form is ideal for shop use and as a permanent reference.

TEK-FILE . . is Rider's same, complete, official TV service information in packaged form. The only difference is that each TEK.FILE pack covers a few receiver brands where, each Manual covers all of them. With TEK-FILES, you buy only what you need. You'll find the models you want listed in the FREE, up-to-date TEK-FILE INDEXES at your jobber's. There are now 69 TEK-FILE Packs covering over 2,500 TV models. NEW FEATURE ADDED! Beginning with TV Manual Vol. 10 and TEK.FILE Pack 57, you'll find a feature that can't be beat - a listing of dependable replacement parts by brand names! All listed parts check against the physical and electrical requirements of the receiver's original parts. DON'T BE SWITCHED! Remember, Rider Manuals and TEK-FILES are the only source for complete, factory-authorized servicing data. If your jobber doesn't have Rider Manuals, write to us... we'll tell you where to get them. If he doesn't have TEK-FILES, write to us . . . we'll fill your order directly. (Please include jobber's name). Prove to yourself that Rider Servicing Data really makes servicing easy! Try one Rider TV TEK-FILE pack at our risk! for the next receiver you repair. . . if you don't agree that it makes your servicing easier than anything you've ever used, RETURN THE PACK TO US WITHIN SEVEN DAYS AND WE'LL SEND YOU A FULL REFUND! Act now. . . you have absolutely nothing to lose!

For Easier Radio Servicing . . Use Rider's 22 AM-FM Manuols!

 480 Canal Street, New York 13, N. Y.

Replacement Parts, etc.

(Continued from page 26)
ing small particles of molten metal (aluminum) on a suitable carrier. This construction also provides increased surface area over that of plain foil, hence greater capacitance per unit size. This type is said to have as much as 10 times the capacitance as the plain foil type.
The varieties of foils also affect the operating capabilities of the electrolytic capacitor. Since a certain amount of current leakage is permitted in an electrolytic unit (although definite limits are set on it), and since each electrolytic capacitor is associated with a value of equivalent series resistance, power loss occurs inside the unit. This raises the operating temperature of the device, which in turn, is a limiting agency on the proper functioning of the unit and on its operating life. The plain foil type of electrolytic is capable of withstanding higher operating temperatures than the etched variety. Also, the plain foil electolytic is capable of withstanding much higher a-c ripple components than is the etched foil type.
As a general rule, electrolytic capacitors used in television receivers for a variety of

filtering and bypassing duties are of the etched foil kind. This derives from the fact that it affords the maximum capacity per unit size and per unit price, and also because the temperatures prevailing in a tv receiver are within its ratings. On occasion the tv receiver makes use of plain foil units.

The references to tubular and can electrolytics apply to the physicial types. Both
are contained in metal housings, except that the tubular variety has an insulating cardboard sleeve around the metal container. These are mounted in place by means of the connecting wires, or a mounting bracket. The can type is intended for above chassis mounting, to be screwed into a socket, or to be locked in place by means of twist lugs.
Like the paper dielectric capacitor, the electrolytic variety also is affected in its operation by temperature. This is especially true of the leakage current. This leakage increases with operating temperature inasmuch as heat tends to deteriorate the oxide film. Any action which tends to destroy the effectiveness of the film naturally displays an adverse effect on the capacitance of the unit. Also, high operating temperatures tend to dry out the electrolyte and so effeot the capacitance and performance of the device.

Cut Down Your TV Servicing Time with
 TV MANUFACTURERS' RECEIVER TROUBLE CURES VOL. 1

First in a brand new series of practical books that will give you the exact directions for correcting TV receiver performance "bugs." Each remedy is the one developed by the receiver's own manufacturer. It is positive! Each cure is official, factoryauthorized. It will help correct some of the most difficult faults-picture jitter, hum, instability, buzz, tearing, etc.

If you work in a strong-signal area, a fringe area, an area of high humidity, efc., you have special problems in servicing. The manufacturers' trouble cures given in this book will relieve these troubles when properly applied to the receiver in question. These tried and tested cures will speed up your work, make it easier and more profitable.
For instant reference, a complete index in which trouble cures are listed by brand and chassis or model number, is included.

VOLUME 1 covers 12 prominent brands-AD MIRAL, AIRKING, ANDREA, ARVIN, BELMONT RAYTHEON, BENDIX, CALBEST, CAPEHART-FARNS WORTH, CBS-COLUMBIA, CERTIFIED, CROSLEY, DUMONT. The later volumes, due every few months, will include models of most of the manufacturers in Rider Manuals and TEK-FILE. You'll want VOLUME I and all the others to come. Order VOLUME 1 today and reserve your copies of the others. We'll notify you when they are ready.

Buy TV MANUFACTURERS' RECEIVER TROUBLE CURES now and receive your copy as soon as it is off press in January. One service job will mare than pay the cost of the bookl
Over 120 pages. $\quad 51 / 2 \times 81 / 2^{\prime \prime}$ illus. $\$ 1.80$

Radio's Master Reports

(Continued from page 33)

heater-cathode type intended primarily for use in the output amplifier of auto radio receivers operating from a 12 -volt storage battery
RADIU MFG. ENGINEERS-Added mobile converters No. MC-55 at $\$ 69.50$ net and MC-57 at $\$ 64.50$ net.
REGENCY - Added UHF converter, Model RC. 600 at $\$ 37.46$ net.
RIDER, JOHN F. \rightarrow Added Na 2010, Rider's STAevision Manual, Volume 10, at $\$ 24.00$ net. SIANDARD TRANSFURMER —Ad Aded defiection yokes (with leads and networks added) No. DY-1A at \$4.74 net. No. DY-7A at $\$ 5.37$ net at $\$ 6.60$ net and No. DY-10A at $\$ 6.60$ net.
at $\$ 6.60$ net and No. DY-10A at $\$ 6.60$ net.
SUPERIOR INS'TR.-Added Model $660-A$, signal SUPERIOR INSTR.-Added Model 660-A, signa tracer generator at $\$ 42.95$ net.
SUPREME INC.-Added a number of "vest pocket" testing instruments; Model 402, voltmeter at $\$ 10.65$ net net Model Model 403 . voltmeter at net. net Model Model 404, voltmeter at $\$ 10.65$ net . . Model 410, milliammeter at $\$ 10.65$ net Model 411, milliammeter at $\$ 10.65$ net Model 430 , microammeter at $\$ 14.50$ net and Model 440, ohmmeter at $\$ 11.50$ net.
TABET-Added Model NT10, 10 foot antenna top section with guy rings at $\$ 15.38$ net and Model NRB, rigid mounting base with hardware at $\$ 5.67$ net.
TERADO CO.-Introduced Model 6-71160 at $\$ 37.50$ list and Model 12.71160 at $\$ 42.95$ list, both in the Trav-Electric super series, portable de to ac converters designed for car use to operate other electrical devices.
UTAH RADIO PRODUCTS - Added Model SP15R at $\$ 41.70$ net to their series of wide range VIDE ${ }^{\text {a }}$ ND
VIDEO INDUSTRIES-Added 5 elemen
antenna for channel three at $\$ 6.83$ ne
3095 at $\$ 11.75$ net to their guyed tower series and Model 2406 at $\$ 2.97$ net, screw anchor for guyed towers.

Discontinued Items

ASTATIC CORP.-Discontinued Model S-8, cryetal pickup arm. AUDIO DEVELOPMEN
111A microphone cable. fidelity 10 watt amplifier... Model PH10, 10 fatt multi-range photo-amplifier and Model PX15, watt multi-range photo-an
Is watt phono-amplifier.
CHICAGO INDUSTRIAL INSTR.-Discontinued Model 453 , featherweight miniature volt-ohm-milliammeter.
HUBBELL, HARVEY-No. 408B32, straight plug and No. 412B42, connector are discontinued. LENK MFG.-Discontinued Models 201 and 205, heavy duty industrial soldering irons.
RADIART CORP - Discontinued TV booster, Model TVB-1.
R.C.A.一Discontinued No. 202S1 from their electronic components speaker (PM type) series. RADIO MFG. ENGINEERS-Discontinued mobile converter MC-H4
RADIO MERCHANDISE SALES-Discontinued No. STYL.8-2H, 8 element Yagi antenna.
SARKES TARZIAN-Advises that their line of TV picture tubes is discontinued.
SUPERIOR INSTR. - Discontinued Model 660, ac signal generator and CA-12, signal tracer. SYLVANIA - Discontinued subminiature tubes 6BF7 and 6BG7.
TALK-A-PHONE - Discontinued Models C-5912 and C-5920 in their "chief" universal series. UN 1 ERS MODCTS-Model EM. 2 in their series of universal mounts is discontinued.

Price Increases

ARGOS PRODUCTS - Increased price on Model TC-2, tube caddy junior" to $\$ 7.75$ net.
BOGEN CO. Increased price on Model CH18P-1 to $\$ 92.50$ net and Model CH 30 P .1 to $\$ 108.80$ net in their challenger sound equipment series. BURLINGTON INSTR.-Increased price of No. A70×32 to $\$ 11.50$ net in their current transformer series.
HAMMARLUND MFG. - Increased price on HQ129X, receiver withoat speaker to $\$ 239.50$ net.
LITTELFUSE - Increased price on No. 342008, dust-proof, drip-proof in their 3 AG fuse ex tractor post series to $\$.75$ list.
MERIT TRANSFORMER-Increased No. A-3080, vertical output transformer to $\$ 3.60$ net and No. A-4003, vertical blocking oscillator transformer to
PENN BOILER \& BURNER-Increased price of the universal adaptor in their tenna-mast hardware series to $\$.50$ net.
RADIO MERCHANDISE SALES - Increased price on the TYL8 series of 8 element Yagi antennas.

This "Dual Voltage" cartridge is an excellent all-around replacement for old-style 78 r.p.m. cartridges. It guarantees improved performance in many cases. A unique "Slip. On" condenser harness provides choice of output voltage - 1.5 with condenser harness installed and 3.75 without condenser. For fine quality at low cost your best bet is the Model W42BH at only $\mathbf{\$ 4 . 9 5}$ list.

This high output (2.1 volts!) "Direct Drive" cartridge was specifically designed for use with all fine-groove records. Universal mounting bracket provides quick, easy installa tion in RCA-type 45 r.p.m. changers. (Fits $1 / 2^{\prime \prime}$ and $5 / 8^{\prime \prime}$ mounting centers.) Has easy-toreplace needle. For maximum quality, highest output, and low cost, specify Model W31AR at the low list price of only $\$ 6.50$

Also avallable as ceramic cartridge (same price)-Model WC31AR. Highly rec ommended in areas where heat and humidity make use of conventional crystal cartridges impractical List price. $\$ 6.50$
 Cable Address: SHUREMICRO

Radio's Master Reports

(Continued from page 35)

SIMPSON ELECTRIC-Increased price on Model 476, mirroscope to $\$ 197.00$ net. This oscilloscope employs a 5° " cathode ray tube mounted in a employs a
vertical position, with the image mollected in a vertical position, with the image reflected from a high grade mirror mounted in the adjustable
cover at the top of the cabinet, bringing the cover at the top of the cabinet, bringing the
viewing surface near eye level when used on work viewing surface near eye les of normal height.
SYLVANIA-Increased price on IN82, UHF detector crystal to $\$ 1.15$ net.
VIDEO INDUSTRIES-Increased price on No: 103, fan antenna to $\$ 3.68$ net and No. 106, inline folded di-pole antenna to $\$ 4.75$ net.

Price Decreases

BURLINGTON INSTR.-Decreased price on No. A70x8 to $\$ 7.80$ net in their current transformer series.
CLAROSTAT-Decreased prices on their series of 160 watt adjustable wire-wound resistors, series K-160-WA
GENERAL ELECTRIC - Decreased prices on 2 number of items in their Alnico 5 loudspeaker line.
NATIONAL UNION RADIO-Decreased prices on videotron TV picture tubes NU-16 DP4 to NU-10BP4A to $\$ 21.00$ net.
R.C.A.-Decreased price on portable "AB" pack VSO64 to $\$ 3.68$ net.

Official, accurate factory-authorized data!
All pages filed in place!
All production runs and changes through September 1952!
Big $12^{\prime \prime} \times 15^{\prime \prime}$ size
Cumulative index TV Volumes 1 through 10 Over 2,000 pages (equivalent of $81 / 2^{\prime \prime} \times 1 I^{\prime \prime}$)

ORDER FROM YOUR JOBBER TODAY!

TV Filament Circuits
 (Continued from page 1)

These examples, which are representative, show the serviceman that, in troubleshooting a receiver, filament circuits cannot be taken for granted but must be checked with the wiring diagram. The fact that chokes are used in the r-f tuning and video i-f units must not be forgotten. Suppose, for instance, in Fig. 3, that the choke between the first and second i-f amplifiers should burn out, or there should be a bad connection. This means that the second, third, and fourth amplifiers would fail to function. Or, if a filament bypass capacitor should short, the heating current would no longer pass through the filament. More important than this is the fact that the transformer winding is shorted and will be damaged. An understanding, therefore, of why and how chokes and capacitors are used in the filament circuits is necessary for successful servicing.

After Capehart-Farnsworth
Fig. 3. The schematic diagram of Cape-hart-Farnsworth Model 300-1B filament circuits showing the use of r-f blocking chokes, bypass capacitors, series and parallel combinations, and several transformer windings.
contain many chokes and capacitors. The r-f amplifier and the mixer-oscillator have $500-\mu \mu \mathrm{f}$ capacitors in parallel with their filaments. These bypass any high-frequency signals. There is also an r-f choke directly in series with each filament to block the r-f signals. In addition, there is a $5,000-\mu \mu \mathrm{f}$ capacitor which is across the two-tube parallel network. This, of course, further and more completely bypasses the r-f voltage. And finally there is another r-f choke in series with the circuit across the supply which even further removes any rof signal

Again, this is done to prevent these signals from reaching the video stages of the receiver and causing interference in the picture.

The video i-f amplifiers are also across this filament winding to ground. Each has a $1,500-\mu \mu \mathrm{f}$ capacitor across it to bypass signals. These elements are three times the size of those across the r-f tuning unit tubes. This is so since the frequencies in the video i-f stages are reduced from the incoming carrier frequency which the r-f stages use. The r-f chokes are again used to block the r-f signals. Note also the use the filament choke used to isolate the audio amplifier and the 2 nd audio i-f tube as well as the use of the $5,000-\mu \mu \mathrm{f}$ capacitor for video and audio bypassing.

Arnold J. Unger

HOW TO BUY . . . HOW TO USE
 How to get maximum enjoyment from a hi-fi installation
 High Fidelity Simplified by Harold D. Weiler

HERE ARE ALL THE FACTS to enable you to develop progressively your high fidelity system. Learn what components you need to start you on the path to the ultimate in listening enjoyment. Step by step you are told how to develop a hi-fi system with the smallest initial expendifure. By knowing the various brand names and price ranges before you buy you can make an intelligent selection of high fidelity components af the most economical cost.

Know how to achieve concert hall and sfudio-clear reception in your own home. Full defails are given in a simple, down-toearth manner.

Interesting and decorative installations are shown to assist you in your efforts to install a unit to conform with your household furnishings. Accurate construction details are included for suitable enclosures for a high fidelity loud-speaker.

The complete story of high fidelity from the point of origin, through the tuner or record player, into the amplifier, the loudspeaker, and finally into the human ear is discussed.

Audio hobbyists, record collectors, in fact, all those who enjoy lifelike audio performance will find this up-to-the-minute book authentic and practical.
224 pp. $51 / 2^{\prime \prime} \times 81 / 2^{\prime \prime}$ durable paper binding Over 104 illustrations Only $\$ 2.50$

JOHN F. RIDER PUBLISHER, INC. 480 Conal St., New York 13, N. Y.

```
LZY6 ©oN llwald
A'N'yyO人 M3N
    ||Vd
    30v1sOd`s:n
* % % 7'd'99'&&'30s
```


Distribution of This Issue-46,000 Copies

seme
 SERVICING

JUNE, 1949

TV

MEASUREMENTS

THIS is the second of a series of three articles on Measurements. This material is reprinted from the "How it Works" book that accompanied Rider's TV Manual Volume 2 because of the importance of the material and the fact that the distribution of this "How It Works" book is limited esentially to those areas where TV exists.

Almost all voltmeters in use today are of the multirange type. That is, they have more than one scale in order to handle a large range of voltages. It is important for us to consider the effect that using the instrument on different scales has on the reading. Let us compare the 20,000 olm-per-volt meter and the VTVM in this respect. We showed in the previous issue that using a 1,000 ohmpervolt meter results in large errors in most circuits, and as a general rule, we can say that the 1,000 ohm-per-volt meter should not be used at all for d-e measure. ments in television receivers.

By referring to Table I in the previous issue, the 20,000 ohm-per-volt meter is seen to have an input resistance that varies from 60,000 ohms on the 3 -volt scale to 6 megohms on the 300 -volt scale, while
the VTVM has a constant input resistance of 11 megohms on all scales. The VTYM should, therefore, have the same effect on the circuit regardless of to which scale the meter is set, and the meter reading should be the same on all scales. Un the other hand the effect of the 20,000 ohm-per-voltmeter on the circuit will vary depending on which scale the meter is set.
To illustrate this effect, the voltage at (1 in Fig. 3 (shown in the May $19+9$ issue of Stccessfle servicing) was measured with both the VTVM and the 20,000 ohm-per-k-volt meter on all seales which would give a readable voltage. Point (C) was chosen instead of the other two points in order to eliminate the effect of the input capacitance of the meters. This efiect will be discussed in detail later. The results of these measurements are as shown in Table III.

TABLE III

VTVM

10-volt range, -5.3 volts
30 -volt range, $-5.3 \quad 10$-volt range, 2 volts volts
100 -volt range, $-5.3 \quad 100$-volt range, -5 volts volts
As expected, the readinge obtained with
the VTVM were the same on all ranges. The 20,000 olm-per-volt meter, on the other hand, gave readings which varied considerably on the different range settings. An examination of these results shows that the 20,000 ohm-per-volt meter will be more accurate on its higher ranges since its input resistance is higher. In fact, on the higher ranges, the input resistance of the 20.000 ohm-per-volt meter becomes comparable to and even larger than the input resistance of the VTVM. For example, on the 300 -volt range, the input resistance is 6 megolms and on the 1000 -volt range, the input resistance is 20 megs.
This would seem to indicate that when measuring voltages in high-resistance circuits with a 20,000 olm-per-volt meter, the highest possible scale should be used. This is true within limits; if the meter is set on too high a scale, it is not possible to read a small voltage. Using this 20,000 ohm-per-volt meter, it was not possible to read 5 volts on any range higher than the 100 -volt range. The reading on this scale was. therefore, the best that could be obtained.
When comparing voltage measurements on a television receiver taken with a 20,000 ohm-per-volt meter with the voltages

Please turn to page 6

RCA 612V1, 612V3, 612V4,

 Ch. RK-121, RS-123Models 612V1 and 612V3 appear on pages 17-31 through 17-43 of Rider's Vol. ume XVII. Model 612V4 is the same except for the cabinet. Some of these receivers have developed a howl when operating on the f-m band. Howl of this nature is generally a result of vibration from the speaker being transmitted to some component, or series of components, in the oscillator circuit. This vibration causes the oscillator frequency to become modulated, resulting in a howl being emitted from the speaker.
The following are possible causes:

1. Loose elements in the oscillator tube.
2. Loose plates or unequal spacing of rotor and stator plates in the f-m oscillator section.
3. Capacitor C 88 should be placed adjacent to the side wall of the r-f shelf and held firmly in place. This may be accomplished by melting wax against the capacitor and the chassis.
4. All oscillator, r-f, and ant. leads should be well separated and arranged to produce the least capacitance change if set breaks into vibration.
When searching for the cause of the trouble, an alignment tool having a high dielectric constant and without a metal tip can be used to probe in the circuit. It is important that the position of the wires and components be changed as little as possible during realignment. During such probing, the air column of the speaker in relation to the chassis must be as near
as possible to normal operating position. Failure to maintain such relation may result in false indications of either excessive howl or no howl.

On the RK-121 chassis, starting with serial number 25,000 , a 10 -ohm carbon resistor has been added between C16 ($100 \mu \mu \mathrm{f}$) and terminal number 1 of S 4 Front. This resistor has been inserted to eliminate dead spots between 1400 and 1600 kc on the " A " band. This resistor should be added to any early model set developing dead spots, but make certain that the over-all lead length, including the resistor remains the same as before.

Fig. 1. The early production coupling shaft of the RCA 612V series.

The range switch coupling shaft on the early and late productions differ. To remove the early production coupling shaft, refer to Fig. 1 and the following directions. Loosen square head set screws "A" in collar of shaft, remove "C" washer from shaft at inside of bushing " B ", push shaft through bushing to permit removal of "C" washer normally recessed inside bushing.

Pull shaft through bushing to inside of chassis.

Fig. 2. The late production range switch coupling shaft of the RCA 612 V series.

Refer to Fig. 2 for the late production range switch coupling shaft. Loosen square head set screws "C" in collar of gear. Remove nut "E" (on front apron of classis) from bushing " D ". Push shaft and bushing to the rear so that shaft and bushing are clear of the chassis apron. Flex the shaft and pull forward. To remove bushing from shaft, use procedure described for early type shaft.
The brown lead of the dial lamp for phono. operation is at present dressed to contact \#3 of S-1 Front, then through the space between the switch rotor and through the bolt spacer. This lead should be dressed between the spacer and the shelf cradle. The bus wire from the "C" band antenna coil to contact \#9 of S-1 Rear is to be dressed a distance of $1 / 4$ inch from the loop load coil antenna lead (yellow). The $\mathrm{f}-\mathrm{m}$ antenna lead (yellow) is to be dressed between the switch spacer through the bolt and the switch rotor shaft, keeping clear of the shelf and cradle.

The changes indicated should be made in the parts list. The entire listing of Miscellaneous parts is given for convenience.

RIDER MANUALS Meam SUCCESS

Western Auto D4832-B

This model appears on pages 19.60 through 18.72 of Rider's Volume XVIII. The " B " chassis of this model differ frot.1 the " A " chassis by a change in the value of resistor R-4 from 220,000 ohms to 10 . 000 ohms.
The new part number and description are as follows:
R-4 B-85103 10,000 ohms, 0.5 w .

Federal 1028 TB , 1029

These models are the same as Model 1024 TB , appearing on pages 17.1 through 17-3 of Rider's Volume XVII, excent for the following changes. A 12SK7 tube is used as the i-f amplifier instead of the 6SS7. The cathode resistor (R2) of the i.f amplifier can be either 1500 ohms or 750 ohms. C17 can be either $470 \mu \mu \mathrm{f}$ or $1000 \mu \mu \mathrm{f}$. R13 (in filament lead) has been eliminated, and pin 2 of the 50 LGGT tube connected to pin 7 of the $35 \mathrm{Z5GT}$ tube.

General Electric 250, 260

Model 250 appears on pages $15-32$ through 15.96 of Rider's Volume XV. Model 260 appears on pages 16.6 through 16-12 of Rider's Volume XV'I. The following should be added to the parts list for both models: Hinge pin for cover, catalog number RMP. 011.

> Practical On-the-Job Training Program for the Better Serviceman Who Wants Greater Earnings and Security In This Expanding Field

> THIS basic CREI Servicing Course paves the way to greater earnings for you. Since 1927 thousands of professional radiomen have enrolled for our home study courses in Practical Radio Engineering. Now, CREI supplies the answer to the need for a Practical Servicing supplies the answer to the need for a Practical Servicing
Course. You do not have to be, or want to be, an engineer to benefit from this course. It is written for
you-the average good servicemen! It's not too eleengineer to benefit from this course. It is written for mentary for the experienced. It's not "over the head"
of those who have limited experience-if they have real mentary for the experienced. It's not "over the head"
of those who have limited experience-if they have real ambition and natural ability.

> CREI developed this course at the request of several large industrial organizations. The urgent need of capable, trained servicemen is one of the big problems of the industry. Hundreds of thousands of Television Receivers will be marketed in 1949. By 1953 -just 4

MAIL
 TODAY

years- it is estimated that there will be 12 million TV sets in use. With Television comes FMI receivers and circuits. This new field demands a tremendous increase in the number of properly trained television and FM technicians to install and service this equipment.

CREI EQUIPS YOU TO INSTALL AND SERVICE
ALL TYPES OF TELEVISION AND FM RECEIVERS

SAMPIEELESSON FREE

Now, see for yourself! Mail the coupon for free sample lesson and see how simple it is to study at home and improve your ability the CREI way.
"TELEVISION \& FM TROUBLE SHOOTING"
A down-to-earth, practical lesson based on actual servicing experiences with Television and FM equipment.

VETERANS! CREI TRAINING IS G.I. APPROVED For most Veterans July 25, 1951 is the deadlineACT NOW!
 \section*{\title{
Radio Service Division of
 \section*{\title{
Radio Service Division of CAPITOL RADIO CAPITOL RADIO ENGINEERING INSTITUTE
}} ENGINEERING INSTITUTE
}}

An Accredited Tecbnical Institute
Dept. 256-4 16th \& Park Rd., N. W., Wash. 10, D. C. Branch Offices: New York (7) 170 Broadwoy • Son Francisco (2) 760 Market St.

CAPITOL RADIO ENGINEERING INSTITUTE
16th \& Park Road, N. W., Dept.256A, Washington 10, D. C.

Gentlemen:

Please send me ONE FREE sample lesson and details of your new home study course in Television and FM Servicing. I am attaching a brief resume of my experience, education and present position.

NAME \qquad
STREET
CITY. \qquad ZONE.-.....STATE
\square I AM ENTITLED TO TRAINING UNDER G. I. BILL

Farnsworth GK-266, K-699, Chassis C-152, GK-267, K-267

Chassis C-153

These models are the same as Models EK. 263 and EK.264, which appear on pages 15.7 through 15-9 of Rider's Volume XV, except for the cabinets. The parts list should be amended to include the following:

| Ref. | Part | |
| :---: | :---: | :---: |
| No. | No. | Description |
| 39 | 94235 | Output transformer, GK-266, |
| | | GK.267. K.267, K 669 |

4138533 Loop antenna, EK-264, GK267, K-267
4138997 Ioop antenna assembly, K669
4138894 Loop antenna assembly, GK-266
4781169 Speaker, K-669
4781170 Speaker, GK-266, GK-267, K-267
31318 Dial glass, EK-264, GK-267, に-267
31280 Dial glass, EK-263, EK-265, (iK-266, K-669
59211 Dial escutcheon, EK-264, GK-267, K-669, K-267
59199 D ial escutchron, EK-263, EK-265, GK-266
58587 Dial background, GK-266, K-669
58586 Dial background, GK-267, K-267
H-2781 Cabinet and packing, GK267, walnut
H-278.2 Cabinet and packing, GK267. blonde

H-277-1 Cabinet and packing, GK266, walnut
H-277-2 Cabinet and packing, GK. 266, blonde
H-317 Cabinet and packing. K669
59134 Knob for walnut cabinets 59450 Knobs for GK-266, GK-267, blonde

Federal 1024TB

This model appears on pages 17-1 through $1 \pi-3$ of Rider's Volume XVII. Some sets have been equipped with a 12sK7 tube as an i-f amplifier instead of the 6SS7. This gives better performance.

General Electric 376, 377, 378

These models appear on pages 19-36 through $10-41$ of Rider's Volume XIX. The f-m choke, L 8 , in the cathode circuit of the 6BE6 oscillator converter tube, V2, was listed under catalog number RLF-007. Due to a production change, this choke now becomes RLF-012.
Delete URD-033, R12, Resistor-220 ohms. $1 / 2 / 2$ w., carbon. Add C'RD.037, R12, Resistor- 330 ohnts, $1 / 2$ w., carbon. Add RCW-3009, C37, Capacitor- $20.5 \mu \mu \mathrm{f} . \pm 5 \%$, ceramic. Delete [TCW-2011, C37. Capacitor $-20 \mu \mu \mathrm{f}$, ceramic. Add symbol number P4 to R.JP-003. Delcte P3 and P4 (Plug-preamplifier power plug) from RJP. 004. Add RJP-005, P3, Plug-preamplifier power plug.

Air King A400, Minstrel; Ch. 470

This model appears on page 16-1 of Rider's Volume XII. The following material should be added to that which appears in the Manual. The voltage and resistance measurements follow.

| TUBE | PIS | VTVM | $\begin{aligned} & 20,000 \\ & 0 \mathrm{Hi} / \mathrm{V} \end{aligned}$ | $\begin{aligned} & 1,000 \\ & 0 \mathrm{BR} / \mathrm{V} \end{aligned}$ | RESISTAICS |
| :---: | :---: | :---: | :---: | :---: | :---: |
| | 1 | 0 | 0 | 0 | 0 |
| $12 S A 7$ | 2 | AC | AC | AC | 25 |
| Converter | 3 | +76 | $+76$ | $+76$ | OVER 500\%' |
| | 4 | +76 | +76 | +76 | OVER 500k |

| OSC. VOLTAGE | 550 | KC | -3.1 | -3.2 | -0.3 | 17K |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | 1600 | KC | -3.9 | , -5.2 | -0.3 | 17K |
| | 6 | | 0 | 0 | 0 | 0.6 |
| | 6 | | AC | AC | AC | |
| | 8 | | -1.5 | -0.7 | 0 | 6.5 MEG |

| | 1 | 0 | 0 | 0 | 0 |
| :--- | :--- | :--- | :--- | :--- | :--- |
| 12SQ7 | 2 | -1.3 | -0.8 | -0.6 | 5.2 MEG |
| DST. AVC | 3 | 0 | 0 | 0 | 0 |
| 1st AF | 4 | -1.0 | -0.6 | -0.3 | 2 MEG |
| | 5 | -1.6 | -0.8 | -0.4 | 6.5 MEG |
| | 6 | +48 | +40 | +23 | 0 VER SOOK |

I-F Alignment

Connect an output meter across the voice coil. Connect the signal generator to the primary of the antenna transformer through a $100-\mu \mu \mathrm{f}$ capacitor.
Set the signal generator to 455 kc and fully mesh the receiver tuning capacitor.
Keep the receiver volume control at maximum and the output of the signal generator sufficient to give a readable deflection on the output meter and adjust i.f trimmers C15 and C14 for maximum.

The top front riew of the Air King A400, shouing tubes and trimmer locations.

R-F Oscillator Adjustment
Keeping the same setup as used for i-f alignment, set the signal generator for 1600 ke and adjust oscillator trimmer Cl 3 for maximum output.
Set signal generator and receiver for 1400 kc and adjust antenna trimmer Cl2 for maximum output.
The parts layout and alignment points are shown in the accompanying diagrams.

The bottom front view of the Air King Afon, showing parts layout.
-

RCA 710V2, Ch. RC-613A

These models appear on pages 18.55 through 18.60 of Rider's Volume XVIII. Resistor R15 in the cathode circuit of the type 6AU6 f-m driver stage has bean changed from 68 ohms to 120 ohms. This change was made because certain 6ACO tubes were found to draw grid current at the bias value produced by 68 ohms, which resulted in a decrease in $\mathrm{f}-\mathrm{m}$ sensitivity.

Westinghouse H-188, Ch. V-2133

This model appears on pages 19-18 and 1!-19 of Riders I'olume XII. Short wave interference may be cured by replacing the $0.05-\mu \mathrm{i}$ resonant capacitor (C7) with a $0.1-\mu \mathrm{f}$ standard paper capacitor of 200 volts or higher rating.

-SuccessfuL SERVICING
 REG. U. S. PAT. OFF.

Vol. 10

JUNE. 1949
No. 8

Dedicated to the financial and technical advancement of the Electronic Maintenance Personnel
 Published by
 JOHN F. RIDER PUBLISHER, INC.

New York 13, N. Y.

JOHN F. RIDER, Editor

R. I. LATZER, Associate Editor

Copyright 1949, by John F. Rider
No portion of this publication may be reproduced
without the written permission of the publisher

CURTAIN TIME

It's the Weather

This being golfing weather, we can't help repeating waht we think is a very excellent golfing story. Mrs. C. had just made her seventh shot and she was about 50 yards from the green. After consultation with her caddy, they decided that she would hit an 8 iron to the green. Thereupon with extreme politeness he handed her the club. She measured the shot several times, took a half-dozen practice swings and finally took a mighty swat at the ball. It was a bad shot and dribbled about 2 feet. She turned towards the caddy and very sweetly murmured, "I think you're underclubbing me again"...

The Service Shop Window

We noted a very significant detail during the past few months while traveling around the country. It is only natural that when we hit a town we should be interested in servicing activities. Among these interests is what is done by the service shop owner to altract business. This is somewhat different from the various means of getting business. In the long run the end product is the samemoney in the till, but a distinct lack of activity to attract business exists.

Everyone knows the importance of properly dressing a window so that it will be attractive to the passing eye. The idea is to STOP the passerby. That is why window dressing is a special activitysomething which receives much attention from all of the big selling outfits. Now, it is not our idea that the service shop owner should hire a window dresser to do his work-but most certainly a need for an attractive window exists in every service shop. An eye stopper is essential!

Needing an eye stopper and getting one are two different things. We admit that. But even in the absence of an eye stopper, 99 out of every 100 radio service shops have cluttered-up windows. To many different objects and signs are to be found in the average shop window. Space in the window is not intended to be filled with a haphazard collection of cbjects. Leave a little air. Let the viewer sce what he is looking at. Remove some of the distracting influences. Leave space around objects.

The shop window is not a storage place. It must convey a message! It must have eve appeal. It must have a focal point of interest. Devote a little thought to what is put into the window. It is a means of getting business. Neatness is imperative because it creates the impression of what is inside the store-of what hapjens inside the store-of what will happen to the customer's set, if you service it.

Neatness and efficiency go hand-in-hand in the customer's mind. If a window is seedy in appearance-if it is slipshod in arrangement-if the objects are covered with dust-it conveys the impression that the workmanship is of similar character. If the window is neat and clean and well-dressed, the impression is that of an eifficient, successful shop. People judge a shop by the appearance of its windows. Electric power is cheap. Lse it plentifully to illuminate the window.

We have given much though to the subject and will shortly announce "eyestoppers" for every service shop window. These will be available through our jobbers. They will be free for the asking. But to make them effective, they will require a good background. WATCII FOR THE ANNOUNCEMENT IN THE JULY ISSUE OF SLCCESSFUL SERVICING!

The Pattern Is Set

There is no doubt about the price pattern being set for TV receivers. It is downward and it means that everybody is shooting for the mass market. What will happen to TV receiver sales during the coming Summer months is not yet known-but everyone is in agreement that TV set sales during the coming Fall and Winter will be telific! Whether the 10 inch receiver will be stabilized at $\$ 169$ or $\$ 189$ is not of moment-the important thing is that set prices are getting to that level where people who wanted TV but could not afford it will have their recoivers this Christmas.

Licensing

This ogre is raising its head in different parts of the country. Everything which can be done, should be done to stop it.

Neither the public nor the servicing industry requires licensing for the installation of TV alltennas or for the servicing of TV receivers. Licensing never cured anything. Look around you and see the many licensed activities which are taking advantage of the public whenever they can do so. A dishonest man is not made honest just because he must pay a fee to operate. If anything, he will start thinking about ways and means of stealing and not getting caught. The nation has many jails and the threat of incarceration has not stopped the activities of thieves.

If malpractice exists among some of the men who do TV servicing. it will not be stopped by licensing. If some oldtime servicemen fear competition from newcomers -it will not be stopped by licensing. The competent will win out. If city governruents are needlessly afraid of lightning, it will not be stopped by licensing. If servicemen think that licensing is a TEMPORARY measure to cure an evil, it is erroneous thinking. First of all, it will not cure anything. Second, it is not a temporary measure-it is permanent-a PERMANENT TAX-from which neither the public nor the industry will benefit.

Serviceman-Ham

We have an idea which might be of interest to those service shop owners who have ham tickets. We know that among the 46,000 -odd people who receive this publication, there are thousands with such licenses. Won't you drop us a postcard identifying yourself? Also let us know if any airport is near you - and if the answer is yes, how far you are from it. Thanks.

HIWYNI

Have It When You Need It! We are talking about Rider Munuals. They are a lifetime investment. How many times have you used the Rider Manuals you now own? They have paid for themselves time and time and time again. Think back upon the days when you bought your old copies. They fortify your operations-they furnish you with the information you need. The manuals you bought 5. 10. 15, and even 20 years ago are still working for you. Do you know of anything else in the shop with equally long life? Fill in the missing gaps in your Rider Manual Library today. HIWYNI, Have It When You Need It!!

John F. Rider

RIDER MANUALS Meam succussini

Vacation Time

The office of John F. Rider Publisher, Inc. will be closed for vacations during the last two weeks of July. Please try and anticipate your needs and send your orders and requests for schematics in to us before July 15 or after July 30 . We'll be back all sunburned on August 1, ready to serve you agaiu.

SERVICEMAN
 Espey Radio Chassis are
 Easy to Sell . . . Easy to Install . . .

514 AMPLIFIER 513 TUNER
This New DeLuxe Custom
Built AM-FM Quality Chassis
gives you increased sales in the profitable chassis replacement market.
Model 513 is intended for the discriminating listener who desires the ultimate in performance. Separate tuned RF stages are employed on both the AM and FM bands to provide extreme sensitivity and minimize spurious responses. It is designed to operate from an external power supply and feed into an external audio amplifier. The power requirements for the Tuner are 6.3 volts $A C$ or $D C$ at 3.5 amperes, and 220 volts DC at 60 milliamperes. Tuning ranges are:
FM-88 megacycles to 108 megacycles AM-535 ke to 1720 ke

FEATURES

1. Superheterodyne AM/FM circuit.
2. Improved Frequency Modulation circult, stabilized against drift.
3. 10 tubes plus electronic tuning indicator.
4. Tuned RF circuits on AM and FM
5. 6-gang Yariable Tuning Condenser.

Automatic volume control.
7. Full range treble control.
8. Full range bass boost control.
9. Indirectly illuminated "slide-rule" dial.
10. Smooth fly-wheel tuning
II. Antenna for $A M$, and Folded dipole antenna for FM.
12. Provision for external antennas.
13. Wired for phonograph operation.

MODEL 514 POWER SUPPLY \& AUDIO AMPLIFIER

Model 514 De-Luxe Power Supply \& Audio Amplifier is designed specifically for use in conjunction with the Model 513 Tuner, but may be used wherever a high quality audio amplifier is required. Power requirements are 105/125 volts AC, 50/60 cycles; power consumption approximately 150 watts.

FEATURES

- Parallel push-pull output circuit.

Self-balance phase inverter systam.
Extended range high fidelity response.
. Inverse feeddack circuit,
5. 6 tubes plus two rectifiers.
. Output impedance selective for any speaker requirements (4 ohms to 500 ohms). Power output approx. 25 watts. Write Dept. KD12 for your free catalog.

Makers of fine radios since 1928.

528 east 72 nd strety, new york 21. N. Y.

TV Measurements
 (Continued from page 1)

given for the receiver, this characteristic of the meter should be kept in mind. Of course, if the voltage in a low-resistance circuit is being checked, it will not make any difference which scale on the meter is used. In this case, for best accuracy, a scale that will place the reading somewhere around the middle of the scale should be chosen.
Tnless the range used is specifically given with the measurements of highresistance circuits, the safest procedure is to use the highest scale that will allow an accurate reading. If the meter range is mentioned, the same range should be used if the meter being used has this range. Not all 20.000 ohm-per-volt meters have the same ranges, however. If this situation occurs, the nearest range should be used.

Input Capitance

In determining the effect of a voltmeter on the circuit to which it is connected, we have considered that the meter has a definite input resistance which places a load on the circuit. In addition to this input resistance, the meter also has an input capacitance, and under some conditions this may influence the readings obtained. The equivalent input circuit of

Fig. 4. Meter equivalent in put circuit which consists of an input
capacilance and an input resistance.
any meter can be represented as shown in Fig. 4, where $R_{\boldsymbol{v}}$ is the input resistance of the meter and $C w$ is the input capacitance.

This input capacitance is due to several factors, among which are the meter leads, the internal wiring in the meter, series resistors, and the meter movement itself. To reduce the effect of the meter on the circuit, this input capacitance should be made as small as possible. Perhaps the best method of reducing this capacitance is to isolate it from the end of the lead

Fig. 5. VTVM d-c probe containing an isolating resistor to reduce the input capacitance.
that is actually connected to the circuit. This is done in the "VoltOhmyst" type of VTVM by building an isolating resistor into the d-c probe, as shown in Fig. 5.

The equivalent circuit of the meter input then appears as shown in Fig. 6.

Fig. 6. Equiv. alent input circuit of a T'TVM which employs an isolating resistor in the probe.
Note that the isolating resistance R_{s} is in series with the parallel combination of $C ⿲$
and R_{M}. This makes the capacitance at the tip of the probe much less than the actual capacitance C_{k}. Since the resistor is placed right at the probe tip, it is possible to use a shielded lead to the meter without appreciably increasing the input capacitance.
Since the input resistance of this type of VTVM is 11 megohms and 1 megohm is used as an isolating resistor in the probe, the meter unit itself must have a resistance of 10 megohms. As this input resistance is constant, the addition of the isolating resistor does not effect the use of the meter on different ranges.

Fig. 7, Coupling circuit used in the sound section of a television receiver.

The 20,000 ohm-per-volt meter does not lend itseli to the use of this device for reducing input capacitance when making low-voltage d-c measurements. Obviously the isolating resistance can not be any higher than the input resistance of the meter, as the isolating resistance is part of the total meter input resistance. This, therefore, limits the value of an isolating resistor to the lowest value of meter input resistance. The usual 20,000 ohm-per-volt meter has a low range of 3 volts. The meter resistance on this range is 60,000 ohms, which is also the maximum possible resistance that could be used for isolation and yet enable the meter to be used on the 3 -volt range. However, 60,000 ohms is too low a value to be used for effective isolation of the input capacitance, as this resistance should be of the order of 1 megohm.

Let us examine several examples to observe the possible effect of the input capacitance. In Fig. 1 (shown in the May 1949 issue of Successful Servicing) where the output voltage of the power supply was being measured, the input capacitance of the meter will have no effect at all on the circuit. Point A is already bypassed to ground by capacitor C_{2} which may be as high as 40 or 80μ. The addition of a few micro-microfarads due to the meter will not make any difference. In Fig. 2 (also shown in the May 1949 issue of Successful Servicing) which is a plate circuit of an R-C coupled amplifier, the effect of the input capacitance will also be negligible.
However, if the meter is placed across a tuned circuit, the effect of the added capacitance, especially at high frequencies, may be appreciable where the original capacitance in the circuit may have been only a few micro-microfarads to begin with.
Fig. 7 illustrates the type of circuit where this effect may be appreciable. This figure shows a coupling circuit between a second sound i-f amplifier and the following limiter stages. The primary of transformer $T 1$ is tuned by the output

Please turn to page 9

Protect Your Tube Testing Investment Protect Your Tube Tesigies 10-12 with the Precision Serien

Unparalleled and highest practical order of obsolescence insurance - thru use of the Precision 12 element, free-point Master Lever Selector System.
 Testing a tube for just one selected characteristic does not necessarily reveal its overall performance capabilities. Electronic tube circuits look for more than just Mutual Conductance or other single factor. In the Precision MASTER Electronamic Tube Test Circuit, the tube under test is subjected to appropriately phased and selected individual element potentials and is electrodynamically swept over a complete Path of Operation, on a sinusoidal time base. Encompassing a wide range of plate family characteristic curves, this complete Path of Operation is automatically integrated by the indicating meter in the positive, direct and non-confusing terms of Replace-Weak-Good.

Compare These Features THE SERIES 10-12 TUBE MASTER

\star The POSITIVE solution to tube PERFORMANCE test. ing plus optimum anti-obsolescence insurance.
\star Direct facilities to 12 element prongs
\star Filament voltages from 75 to 117 volts.
\star Tests the new Noval 9 pins; 5 and 7 pin acorns; double-capped H.F. amplifiers; low power transmitting tubes; single-ended F.M. and TV amplifiers etc. RE. GARDLESS of FILAMENT OR ANY OTHER ELEMENT PIN POSITIONS.

* ISOLATES EACH TUBE ELEMENT REGARDLESS OF MULTIPLE PIN POSITIONS
\star DUAL (HIGH-LOW) short check sensitivity for special purpose tube selection.
\star INDIVIDUAL TESTS OF MULTI-SECTION TUBES including F.M. and A.M. cathode-ray tuning indicators. * Simple, direct Ballast Unit Tests. \star Battery Tests under dynamic load conditions.
\star Built-in Double Window, brass-geared roller chart.
* 41/2" Full Vision Meter, 1 MA sensitivity.
* Panel-Mounted Extractor Fuse Post.

Ashto see the "Precision" Master Electronamic Test Instruments on display at leading radio parts and equipment distributors. Write for the Precision catalog fully describing Precision Test Equipment for all phases of modern A.M., F.M., and Television.

PRECISION

APPARATUS COMPANY INC. 92-27 horace harding boulevard ELMHURST 14, NEW YORK

Television Changes

The coupling circuits associated with the first $6 B .46$ tube in the main chassis of the Belmont 18DX21.

The coupling circuit to the grid of the first 6BA6 tube in the main chassis (tube 6) has been changed. See the accompanying diagram. Resistor R28, the grid resistor of the second 6BA6 tube (tube 7) has been changed in value from 47,000 ohms to 18.000 ohms. Resistor R31 (the plate resistor of the same tube) has also been changed in value from 47.000 ohms to 18,000 ohms. Capacitor ('119 (1030 $\mu \mu \mathrm{f})$ has been omitted. Resistors R87, K88, R89, and R90 have all been changed in value from 2.2 megohms to 1.0 megohm.
Capacitor C92 has been connected from the grid (pin 1) of the 12 SN 7 tube (tube 12) to the plate (pin 2) of the same tube. Capacitors C93 and C94, which were formerly connected to this plate, have been connected to the plate of the other half of the tube (pin 5). Resistor R112 is used only when ballast resistor R55 is 104 ohms. When 5R5 is 40 ohms, the container is marked with a yellow dot.

Capacitor C116 ($1000 \mu \mu \mathrm{f}$). choke coil L9, resistor R108 (33,000 ohms), and capacitor C115 ($10 \mu \mathrm{f}$) have all been omitted. The diode plate (pin 6) of the 19T8 tube is now connected to its cathode (pin 7) instead of to the bottom of the parallel combination of C115 and R108.
Delete the following from the parts list. Rff.

| Symbol | Part No. | Description |
| :--- | :--- | :--- |
| C6 | A-8G-12495-2 | $1.0 \mu \mu \mathrm{f}$ |
| C117-118 | A-8G-12495-7 | $0.5 \mu \mu \mathrm{f}$ |
| R109 | C-9B1-71 | 5600 ohms, 10%, |
| | | $/ 2$ watt |

| L-4-56- | | |
| :---: | :---: | :---: |
| 7.8 | A-16A-16637 | R-f choke |
| C115 | A-8C-11495 | Electrolytic, 10μ, 150 v . |
| C116-119 | C-8G-13201 | $100 \mu \mu \mathrm{f}$, ceramic |
| C44 | C-SF3-109 | $47 \mu \mu \mathrm{f}, 10 \%, 500 \mathrm{v}$. |
| R23 | C-9B1-13 | $\begin{aligned} & 1000 \text { ohms, } 20 \% \text {, } \\ & 1 / 2 \text { watt } \end{aligned}$ |
| R24 | C-9B1-19 | 10,000 ohins, 20%, $1 / 2$ watt |
| R28.34 | C-9B1-82 | 47,000 ohms, 10%, 1/2 watt |
| $\begin{aligned} & \text { R87-88- } \\ & 89-90 \end{aligned}$ | C-9B1-102 | 2.2 megohms, 10%, 1/2 watt |
| L10-11-14- A-201-16379 Choke coil | | |
| | | |
| 18-22-23 | A-16A-16637 | Filament choke coil |
| T15 | B-201-15612 | stagger tuned coil assembly |
| | A-200-15732 | Strap assembly for front of picture tube |
| | B-200-16300 | Strap assembly for rear of picture tube |
| | A-51A-16693 | Iron core for stagger tuned coil assembly (part num. ber B-201-15612) |
| R61 | C-9B2-66 | 2200 ohms, $10 \%, 1$ watt |
| Add the following to the parts list: | | |
| Ref. | | |
| Symbol | Part N o. | |
| C6 | A-80-12495-7 | $0.5 \mu \mu \mathrm{f}$ |
| L4-5-6-7-8 | A-201-15677 | R-f choke |
| C44-47 | B-201-15142 | Trimmer capacitor |
| R23 | C-9B1-71 | 5600 ohms, 10%, $1 / 2$ watt |
| R24 | C-9B1-180 | 7500 ohms, 5\%, |
| | | 1/2 watt |
| R28.31 | C-9B1-77 | 18,000 ohms, 10%, $1 / 2$ watt |
| R87-88- | | |
| 89-90 | C-9B1.31 | 1 megohm, 20%, $1 / 2$ watt |
| L.9 | B-201-15611 | Converter coil |
| L10-11-14- | | |
| 18-22-23 | A-201-15609 | Filament choke coil |
| | A-2C-156- | Retainer strap for |
| | 15654 | rear of picture tube |
| | A-49A-15616 | Spring for rear tube strap |
| | A-51 A-11761 | Iron core for stag- |
| | | ger tuned coil as- |
| | | semby (part number 1-201-15612) |
| R61 | C-9B2-64 | 1500 ohms, 10%, 1 |
| | | watt |

RIDER TV MANUALS $\begin{gathered}\text { vOLUMES } \\ 1 \\ \text { and } \\ 2\end{gathered}$

Pilot TV-42, TV-952

These models are the same as Model TV-40, TV-950 on pages 2-14 through 2-5s, 54 of Rider's TV Volume z.

Correction

RC'A pagc 2-28 in Rider's TV Manual Volume 2 should be labelled Model 8TS30 instead of Models 8PCS41, 8PCS41-B, 8PCS41-C.

Andrea T-VK12, BT-VK12, Ch. VK12

These models appear on pages $2-9,10$ through 2-sit of Rider's TV Manual Vob ume 2. The following corrections should be made on the schematic diagram.
Part

| \cdots | Error | Correction |
| :---: | :---: | :---: |
| R14 | Connected to +150 r. bus | Connect to +300 v bu |
| C35A | HCE-1313 | HCE-1318 |
| C68 | $50 \mu \mu \mathrm{f} \pm 10 \%$ | $60 \mu \mu \mathrm{f} \pm 10 \%$ |
| C74 | $5 \mu \mu \mathrm{i} \pm 10 \%$ | $50 \mu \mu \mathrm{f} \pm 10 \%$ |
| C102 | Connected across R109 | Connect across R110 |
| C112A | | |
| ${ }_{C 11213}$ | Connected to B-bus | s Connect to |
| ${ }_{\text {Cl13 }} \mathrm{C} 118$ | \} ground | |

Hallicrafters T-54 and 505

These models appear in Rider's TV Manual Volume 1 on pages 1-1 through 1-29.30. The following should be tried if trouble is encountered with picture synchronization.

If the picture moves up and will not center with the vertical centering control, replace capacitor C20. If the picture moves down and will not center with the vertical centering control, replace capacitor C21.
It the picture mores to the right and will not center with the horizontal centering control, replace capacitor C28. If the picture moves to the left and will not center with the horizontal centering control, replace capacitor C29.

Farnsworth 651-P, 661-P

These models appear on pages 2-11,12 through 2-25 of Rider's TI Manual Volume 2. Certain bypass capacitors may be a possible source of trouble in case of horizontal sync failure or instability in these models. Recent reports have indicated instances of breakdown of the $6 \mathrm{SN7}$ cathode bypass capacitor ($0.02 \mu \mathrm{f}$, 200 v). This breakdown results from the use of capacitors which did not come up to the required heat specifications. The recommended replacement for this capacitor is either Aerovox Duranite type P-88 ($0.022 \mu \mathrm{f}, 400 \mathrm{v}$.) or Solar type ST (0.02 $\mu \mathrm{f}, 400 \mathrm{r}$).

Transvision Service Hints

If a remote control installation should result with weak signal symptoms, the following check should be made. Shunt the co-ax cable and feed the signal directly to the input of the tuner with a separate lead. It has been found that careless soldering of the co-ax fittinge may rectllt in a partial short at these points with symptoms that direct suspicion to the tuner.
It is suggested that two leads be used where high-frequency and low-frequency elements are both used. They can be switched by means of an anti-capacity switch. The leads should not come down from the antenna to the set less than 10 inches apart.

TV Measurements

Continucd from page 6
capacitance of $\mathrm{V}^{\prime} 1$ which is indicated by the capacitance C_{1}. The secondary of the transformer is tuned by the input capacitance of $\left[2\right.$, represented by \mathcal{C}_{z}. These capacitances are small, in the order of 5 $\mu \mu$. Both primary and secondary circuits are tuned to the sound i.f., which in this case is 21.2 j mc .
The grid-leak resistor and capacitor combination ($R_{3}-\left(C_{3}\right)$ develop a negative bias at point A, which is necessary for proper limiting of the i-f signal in order to remove any amplitude modulation that might be present. This voltage is developed only when a signal is present. Therefore, any change in the circuit that will affect the signal at the grid of I'2 will affect the voltage developed across the combination of R_{3} and (' ${ }_{3}$. From the circuit, it can be seen that the d-c volage at point A should be the same as the d-c voltage at point B, which is at the grid of the limiter. This is because the grid current that flows is very small, and the resistance of the transformer is also very small, usually about 0.1 ohm. Therefore the d-c drop accross the secondary winding will be negligible.
This, of course, suggests the idea, that if the d-c voltages are the same, and the grid voltage was desired, it would be advantageous to measure it at point A instead of at point B. This is true, since placing the meter at point B places it across the tuned circuit, whereas placing it at point A shunts it only across the grid-leak resistor and capacitor combination.
To determine the effect of the meter in this circuit, several measurement were made. First, the VTVM was connected to point A, and sufficient signal was fed into the grid of the first sound i-f am1 lifier to produce a voltage reading of -3 volts on the VTVM. To eliminate the possibility of the VTVM loading the circuit and changing the voltage that would normally appear at point A, another VTVM was connected at point A while observing the first VTVM to see if the voltage changed. The voltage remained constant, showing that the second VTVM did not add any additional loading. Since the two VTVM's are identical, it is fairly safe to assume that the first VTYM did not load the circuit either. This meter was, therefore, left at this point to serve as a reference indicator, keeping in mind that the d-c voltage at point B is the same as point A.

The next step was to determine the effect of the input capacitance of both the VTVM and the 20.000 ohm-per-volt meter at both points A and B. To eliminate the $\& \cdot f$ fect of the input resistance of the meter, since we are now primarily concerned with the input capacitance, a fairly large capacitance ($1500 \mu \mu \mathrm{f}$) was placed in series with the lead of each meter. This completely removed the resistance of the meter from the probe. Of course the meters could not read the d-c voltage while connected in this manner, but d-c voltage could be observed on the first VTVM which was l.ft connected to point A as the reference indicator.
Table IV shows the effect of connecting
the VTVM and the 20,000 ohm-per-volt meter to points A and B on the d-c voltage. These measurements were all repeated without the series capacitor, which indicated the combined effect of the input capacitance and resistance.

TABLE IV
METER CONNECTED TO POINT POINT

| | | A | B |
| :--- | :--- | :--- | ---: |
| with series | VTVM | -3 v | -1.2 v |
| capacitor | $20,000 / \mathrm{v}$ | -2.9 v | -7 v |
| without series | TTMM | -3 v | -1.2 v |
| capacitor | $20,000 / \mathrm{v}$ | -2.8 v | -.5 v |

Considering the readings obtained when the meters were used with series capacitors, the input capacitance of the VTVM had no effect on the circuit at point A, but when connected across the tuned circuit at point B it detuned the circuit sufficiently to cause the voltage to drop from 3 to -1.2r. The input capacitance of the 20,000 ohm-per-volt meter, on the other hand, affected the circuit slightly at point A, causing the voltage to drop to -2.9 v and had more detuning affect than the VTVM at point B, where it calused the voltage to drop to -7 v . It can be said, therefore, that neither meter is entirely satisfactory in this respect, although the VTYM is somewhat better than the 20,000 ohm-per-volt meter.
In the particular circuit used for these measurements, all of the error due to the input capacitance of the VTVM, and most of the error due to the input capacitance of the 20,000 ohm-per-volt meter could have been elintinated by taking the voltage measurement at point A and assuming that the voltage at point B was the same. However, with different circuit configurations, especially where the grid-leak resistor is connected from grid to ground, this method is not applicable and the voltage must be measured at the grid.
The second part of Table IV is interest. ing in that it shows the additional loading effect caused by the input resistance of the meters. Note that there is no loading for the VTVM, and only a little for the 20,000 ohm-per-volt meter, which was used or the 10 volt scale. The input resistance of this meter was, therefore, 200,000 ohms. The VTVM, as before, had an input resistance of 11 neegohms.

High D-C Voltage Measurements

Cautions
The high voltages used for the picture tubes in television receivers vary from 5,000 to 15,000 volts for direct-view tubes and as high as 30,000 volts for projection tubes. It is important that the serviceman keep these high voltages in mind when working on television receivers. Accidental contact can cause severe burns and even death under some conditions. The following general procedure is sug. gested as a safe method in making highvoltage measurements of any kind.

1. Turn off the receiver. If one side of the line is connected to the receiver classis. remove the line cord.
2. Discharge the high-voltage capacitors.
3. Connect the low side of the meter to chassis ground. Connect the high side Please turn to page 13

VEE-D-X means video disfance

You win two ways with the amazing Mallory Midgetrol.
First. it is ideal for servicing auto radios, portables and other sets requiring small size controls. Second, its husky electrical capacity allows you to use it in sets originally equipped with older, bulkier controls.

So when you stock the Mallory Midgetrol, you're actually able to handle more jobs with a smaller inventory. That's important these days.

LOOK WHAT THE MALLORY MIDGETROL OFFERS:

WIDER APPLICATION-The small size allows you to service portables, auto radios and small AC-DC receivers requiring $15 / 16^{\prime \prime}$ controls.
SIMPLER INSTALLATION - The new and unique flat shaft design of the Mallory Midgetrol saves installation time with all types of knobs.
LESS INVENTORY - Electrical characteristics allow you to use the Mallory Midgetrol to replace $118^{\prime \prime}$ as well as $15 / 1^{\prime \prime}$ controls. Since no special shafts are required, you carry fewer controls in stock.

| NEW SIZE | NEW SHAFT | NEW SWITCH | NEW CONTACT |
| :--- | :--- | :--- | :--- |
| NEW DESIGN | NEW EXTENSION | NEW ELEMENT | NEW TERMINAL |

See your Mallory Distributor for this new standard in carbon controls

RCA 8BX5, 8BX54, 8BX55:

Ch. RC-1059, RC-1059A

These models appear on pages 19-5 through 199 of Rider's Volume XIX. The position of the battery pack in these models affects the loop inductance. When the battery is removed, the loop induc. tance will increase and the sensitivity will decrease because of improper electrical tracking of the loop circuit with the oscillator.
When a battery is temporarily unarailable, a sheet of aluminum $81 / 2^{\prime \prime}$ long by $3.5 / 8^{\prime \prime}$ wide and from $0.020^{\prime \prime}$ to $0.050^{\prime \prime}$ thick may be placed in the position occupied by the battery so that it is lying flat on the bottom of the cabinet. This sheet of aluminum has an effect on the loop inductance similar to the effect caused by the battery and will, therefore, return the performance of the loop to ap. proximately the same as obtained when a battery is installed. If aluminum is not available, brass may be substituted with approximately the same performance. DO NOT C'SE STEEL OR IRON since the performance will be adversely affected. If desired, the sheet of aluminum may be waxed to the inside bottom of the case. DO NOT PLACE ANY WAX, CEMENT. OR OTHER MATERIAL ON THE LOOP WINDINGS.
For the reasons mentioned, the battery as well as the chassis must be properly installed in the case when realigning the oscillator and antenna circuits. Failure to do this will result in extremcly poor performance because of improper tracking. It is, of course, necessary to remove the chassis from the case for i-f alignment.

Since the first i-f stage employs neutralization by means of capacitor C 7 , incorrect alignment of the primary of transformer T2 will result if stage-by-stage alignment procedure is employed. Follow the alignment procedure on page 19-5 to assure correct alignment.
The following changes have been made i:t the parts list.
Delete:
73144 Hinge-
Add:
74180 Hinge-cabinet hinge (2 required) It has been found that the detent used on the original hinge (73144) caused strain ou the cabinet which might result in breakage of the cabinet or back if roughly handled. The new hinge (74180) does not have this detent.

General Electric 230, Kaiser-Frazer

This model appears on pages 18.26 through 18.28 of Rider's Volume XVIII. When rough manual tuning action is experienced, it is usually traced to insufficient spacing between the end of the center shaft of the turret assembly and the guide rod bracket near the tuning shaft. Production requirements call for one or more (as required) brass shim washers at this point for smooth tuning action. Where rough tuning is experienced, a thin "C" washer slipped onto the end of the center shaft of the turret in addition to the brass shim washers will relieve binding and result in smoother tuning action.

THEORY AND PRACTICE Get The "Know-How" of Technical Achievement RIDER'S TEXTS COVER THE FIELD

TV Picture Projection and Enlargement

by Allan Lytel $\$ 3.30$

TV projection text, first of its kind. Describes systems used in commercial receivers. Makes servicing of complex projection systems easier. Every TV student and servicemen should have one.

Broadcast Operators Handbook by Harold E. Ennes $\$ 3.30$

Inside the Vacuum Tube
by John F. Rider $\$ 4.50$

Understanding Vectors and Phase by John F. Rider and S. D. Uslan

....................Paper Cover \$. 99
Installation and Servicing of Low Power PA Systems $\$ 1.89$

Servicing by Signal Tracing by John F. Rider
English Edition $\$ 4.00$

Spanish Edition $\$ 4.00$
Understanding Microwaves
by Victor J. Young $\$ 6.00$

Radio Amateur's Beam Pointer Guide by John F. Rider $\$ 1.00$

> FM Transmission and Reception by John F. Rider and S. D. Uslan Ninth Printing $\$ 3.60$

The Meter at Work
$\$ 2.00$
A.C Calculation Charts
by R. Lorenzen $\$ 7.50$

High Frequency Measuring Techniques

Using Transmission Lines
by Phillips, Sterns, Gamara $\$ 1.50$
The Oscillator at Work 32.50

Vacuum Tube Voltmeters $\$ 2.50$

Automatic Frequency Control SYstems $\$ 1.75$

Radar-What It Is

by John F. Rider and G. C. B. Rowe
72 Pages
$\$ 1.00$

An-Hour-A-Day With Rider Series

Alternating Currents in Radio Receivers
Resonance and Alignment D-C Voltage Distribution
Automatic Volume Control

96 PP. Each - Hard Covers - $\$ 1.25$

 Hangs from a string, always at your fingertips

EVEBEADY

The term "Eveready" is a registered trade-marh of NATIONAL CARBON COMPANY, INC. 30 East 42nd Street, New York 17, N. Y.
Unit of Union Carbide [एT and Carbon Corporation

> NATIONAL CARBON COMPANY, INC.

30 East 42nd Street, New York 17, N. Y.
Please send me without charge the "Eveready" Battery Replacement Guide and the catalog showing the Complete Line of "Eveready" Radio Batteries.

Dealer's name

Street

City \qquad State

Cutaway index for quick, easy reference

Heavy stock, colorfully printed, iv stays neat

The 1949 Replacement Guide for "Eveready" Radio Batteries shows you in a few seconds the proper "Eveready" batteries to sell a customer when he gives you the make and model number of his radio. In addition, there is a list of interchangeable stock numbers. You can supply the equivalent "Eveready" radio battery at once by checking this list.

8-page listing of Complete Line of "Eveready" Radio Batteries!

This concise and complete catalog gives you the dimensions, stock numbers, voltages, and list prices of all "Eveready" radio batteries. Handy and necessary in any radio shop.

TV Measurements

Continued from page 9
of the meter to the point at which the voltage is being measured.
4. Stand clear of the meter and the connecting leads. Turn on the receiver and observe the voltage reading.
5. Turn off the receiver. Discharge the high-voltage capacitors.
6. Remove the meter leads.

High-Voltage Meters

As in measuring low-voltage d.c., the effect of the meter on the circuit has to be considered. For this reason, almost all high-voltage measurements are made at points which are bypassed to ground. The input capacitance of the meter, therefore, will have very little effect on the circuit at these points and can be neglected. The input resistance, on the other liand, if not high enough, can result in large errors, and has to be taken into consideration.

Fig. 8. Simplified schematic of a highvoltage power supply of the "kickback" type.

Fig. 8 shows a simplified schematic of a typical high-voltage supply. The highvoltage pulse developed in the primary of the transformer during the flyback period is rectified by the high-voltage rectifier tube. Resistor R_{1} and capacitors C_{1} and C_{ε} make up a filter to remove the a-c ripple and supply a substantially pure d-c voltage to the 2nd anode of the picture tube. C_{1} is usually about $500 \mu \mu \mathrm{f}$ and R_{1} about 1 megohm. G_{2} may be an actual capacitor but is more likely to be the caparitance between the 2nd anode and the external eoating on the tube, which is grounded. In the case of a tube such as the 10BI'3, this may vary from 500 to 2,500 $\mu \mu$ f.

One of the reasons that such a comparatively small value of capacitance can be used is the high frequency of the a.c. being rectified, in this case, 15,750-cycle pulses. Another factor that allows the use of small capacitors and high resistances in the filter circuit is the small amount of current drawn by the picture tube. This current usually averages only about 100 microanperes.
The current drawn by the meter should not be so large as to cause the voltage across the filter capacitors to drop appreciably because of the increased load. About 50 microamperes should be the maximum current that the meter is allowed to draw from the circuit. Even this small amount of current will cause the output voltage to drop somewhat, but not so much as to make the measurements insignificant. This immediately eliminates the 1,000 ohm-per-volt meter as this type of meter will draw 1 milliam. pere (1,000 microamperes) for full-scale
readings. The 20,000 ohm-per-volt meter will draw 50 microamperes on a full-scale reading and is, therefore, satisfactory for ligh-voltage measmrements. By the use of stitable multipliers, the VTVM can also be used for measuring high voltages without drawing excessive current.
The voltmeter used to measure high voltages cam be either a commercially. made instrument specifically designed for ligh-voltage measurement or an already available voltmeter which is adapted for high-voltage measurement by the use of multipliers. If a commercial instrument is used, it should have the following characteristics:

1. High enough range to handle the voltages encountered in television receivers. This is about 30 kilowatts in modern television receivers.
2. Low current drain, 50 microamperes or less, as discussed above.
3. High-voltage insulation in meter and leads, sufficient to handle the voltage range of the instrument.

RIDER MANUALS Meam PROFITS

Rider Diagram Service

Are you taking full advantage of the Rider Diagram service?
If you require service data on a new receiver, you can obtain the information from us. Naturally, a time lag exists between the publication of the volumes of Rider Manuals and it is to fill this gap that we have this service, so that you may have whatever you need in the way of service data as yet unpublished. The charges for this service are as follows:

1. 35 cents is the charge for all the available data on any radio receiver model up to and including six pages. Each page thereafter will cost 10 cents.
2. If additional money is required to cover the data requested. you will be notified. We cannot forward data without receiving your remittance.
3. Service data on television receivers may be obtained at costs varying from 35 cents to $\$ 1.50$. It is suggested that you inquire the cost before sending us a renittance for telerision data.
4. Be sure to enclose a self-addressed envelope bearing a 3 -cent stamp,

If you will follow these rules, it will simplify matters for both of us and you will receive the data you need with a mininum of delay.
Be sure to send in your requests for diagrams so that we receive them before July 15 or after July 31. The office will be closed for vacation between those dates.

The Cover

On page 1 is shown a technician at one of the Naval Research Laboratories engaged in a chemical reduction experiment. Electronic equipment is used to control these experiments correctly. The Nary is now one of the nation's largest research agencies.

Industrial Television IT-11R, IT-13R

Model IT-11R appears on pages $2-1,2,3$ of Rider's TT Manual Volume 2 and Model IT-13R appears on pages $2-4,5,6$ oi the same volume. Due to recurrent internal shorts in the 6BG6-G horizontal sweep output tubes, it has been found necessary to devise a means to protect the horizontal output transformer from being damaged by excessive current. A Mazda \#47, brown bead, 6-8-volt, 0.150ampere pilot bulb is inserted in the $B+$ feed to terminal \#1 of the horizontal output transformer, T102. serving as a fuse in case of a shorted 6BG6-G tube. This change has been made in production and may readily be made in the field.
A special pilot light socket with good insulation to ground is available. The part number of this socket is $4 \mathrm{~A}-235$. The socket clips onto the assembly strap of transformer T102.

General Electric 118, 119

These models appear on pages 19.8 through 19-11 of Rider's Volume XIX. The green grid lead and blue plate lead of the first i-f transformer must be dressed as far as possible to the rear of the chassis and against the chassis. Coupling capacitor C24 should never lie against either of these leads. This will eliminate auy possibility of rf leakage into the phono-preamplifier which causes stations to be heard while operating the phonograph.
The following changes should be made in the parts list. Add P2 under symbol for RJP-003. Delete: RCN゙-014, C26, Capacitor-phenolic. for Model 118. Add to L:CC-045: C26, Capacitor, $0.05 \mu \mathrm{f}, 600$ -•, paper, for Model 118.

Magnavox AMP-101C

This model is the same as Model AMP. 101A on pages 17.1 and 17.2 of Rider's Volume XI'MI, except for the following chauges in parts values.
Kej.
No. Description Part. No.
2.1 Capacitor, paper, $0.1 \mu \mathrm{f}$ 600 r .

250152G33
2.2 Capacitor, paper, $0.1 \mu \mathrm{f}$, 600 •

250152G33
8 Resistor, composition, 15.000 ohms.$\pm 10 \% .1 / 2$ w. $\quad 230084 \mathrm{G} 76$

9 Resistor. composition, 100,000 ohms, $10 \%, 1 / 2$ w. 230084 G 86

General Electric 210, 211, 212

These models appear on pages 18 -1 1 through 18-25 of Rider's Volume XVIII. In the tube and trimmer location shown on page $18-25$, the secondary tuning slug of T 6 is available through the top of the can, while the primary tuning slug of T6 is a vailable through the holes in the bottom of the can.

General Electric 356, 357, 358

These models appear on pages $18-40$ through 18-4' of Rider's T'olume XV'III. The following changes should be made in the parts list. Tinder ©CC-025, remove symbols C43, C65, C70. Add to UCC-026, symbols C43, C65, C70.

World's Only Complete RADIO CIRCUIT LIBRARY

The 19 Rider Manuals contain:

27,958 Pages
14,176 Chassis
27.112 Models

FACTORY FACTS-Only when you have Rider's Manuals can you say that you have the service data issued by the manufacturer.
UNIFORMLY ORGANIZEDBound in Rider's standard looseleaf binder-rugged and wear resistant.
TIME SAVE-"'Clari-skematix" -the breakdowns of hard-totrace multiband receivers, showing the wiring of each band.
WIDEST COVERAGE-Greatest number of models and chassis of receivers and record changers.
LOWEST COST-Rider Manuals deliver data at about a penny per receiver chassis.
SUPPLEMENTS-"How It Works" book accompanies Rider Manuals from Volume VIII, supplying available information on circuit innovations.

Vol. XIX 2122 Pgs. $\$ 19.80$
Vol. XVIII ... 2036 Pgs. 19.80
Vol. XVII 1648 Pgs. 16.50
Vol. XVI 768 Pgs. 8.40
Vol. XV 2000 Pgs. 19.80
Vol. XIV 1376 Pgs. 16.50
Vol. XIII 1672 Pgs. 16.50
Vol. XII 1648 Pgs. 16.50
Vol. XI 1652 Pgs. 16.50
Vol. X 1664 Pgs. 16.50
Vol. IX 1672 Pgs. 16.50
Vol. VIII 1650 Pgs. 16.50
Vol. VII 1600 Pgs. 16.50
Vol. VI 1240 Pgs. 12.50
Vol. I-V 2000 Pgs. 19.80
(Abridged)
ORDER FROM YOUR JOBBER NOW

RCA 8R71, 8R72, 8R74, 8R75, 8R76; Ch. RC-1060, RC-1060A
These models appear on pages 19-10 through 19-15 of Rider's Volume XIX. The second i-f transformer (T3) used in these receivers may be stamped $970435-2$ or $970435-5$. The d-c resistance (8.2 ohms) of the windings indicated on the schematic is for transformer 970435-2. The d-c resistance of the same windings in transformer 97043505 is 12 ohms.
The number of turns of dial drive cord on the tuning knob shaft has been changed from $31 / 2$ turns to $41 / 2$ turns.

The following changes have been made in the parts list.
Dclete:
73363 Transformer
71033 Washer
71034 Washer
Add:
74019 Transformer-second i-f transformer, dual (T3)
73333 Washer - insulating washer - ex. truded - for mounting output transiormer (2 required)
73332 Washer-insulating washer-flatfor mounting output transformer (2 required)

Westinghouse H-210, H-211;

Ch. V-2144, V-2144-1
These models appear on pages 19.38 through 19-35 of Rider's Volume XIX. If the dial pointer has a tendency to bind, lubricate the two dial pulleys with record clanger lubricant and move the dial cord tension spring to another hole in the drum to increase the tension.
If the dial pointer rattles, glue a piece of bumper material (cork and rubber composition) $1 / 8^{\prime \prime}$ thick and about $1 / 2^{\prime \prime}$ square between the right-hand pulley rivet on the dial background and the front of the chassis.

Crosley 9-212B

This model is the same as Model 9-209 appearing on pages 19.19 through 19-21 of Rider's Volume XIX.

RCA 610V1, Ch. RC-610C; 610V2.

Ch. RC-610

These models appear on pages $19-56$ through 19-60 of Rider's Volume XIX. A small quantity of these receivers were shipped with the incorrect loop antennas. The incorrect loops contain approximately 14 turns instead of 17 turns. This reduced inductance causes low sensitivity and poor selectivity, particularly below 900 kc .
Complaint cases of poor sensitivity, poor selectivity, or interference in the form of local station(s) repeating at one or several places on the "A" band (except response at the image frequency) should have the loop checked as one possible cause.
The incorrect loop may peak at the high end of the "A" band but will not peak at lower frequencies. This may be checked by varying the oscillator coil inductance. The correct loop tracks normally across the band.
The stock number of the antenna terminal board is 72058 . It was listed incorrectly as 70258.

THE BIGGEST

 AND BEST YET! Rider's Vol. XIXIN our 20 years of publishing factory-authorized service data for the radio service industry. we have never published a bigger manual. The 2122 pages are chockful of schematics, "Clari-skematix", alignment charts, voltage and resistance tables, and parts lists.
"How It Works" book discusses unique circuit features. The 102 manufacturers represented in Manual XIX are:

| Admiral | Meissner |
| :---: | :---: |
| Affilicted Retcrilers | Midwest |
| Airadio | Minerva |
| Air King | Monitor |
| Alden | Montgomery Ward |
| Allied Purch. | Motorola |
| Allied Radio | National |
| Altec Lansing | National Coop. |
| Amer Comm. | Noblitt-Sparks |
| Andrea | Northern Radio |
| Art | Olympic |
| Associated Merch. | Packard-Bell |
| Corp. | Pentron |
| Audar | Philco |
| Automatic | Philharmonic |
| Avalon | Phillips Petroleum |
| Bendix | Pilot |
| Butler | Pure Oil |
| Copehar ${ }^{\text {c }}$ | R.C.A. |
| Coast-to-Cost | Radio Displays |
| Concord | Radio Kits |
| Crosley | R.M.E. |
| DeWald | Radio and Telev. |
| Electromatic | Radio and Telev. |
| Emerson | Prod. |
| Empire | Radio Wire |
| Espey | Regal |
| Fada | Remler |
| Farnsworth | Scott |
| Federal | Sears |
| Firestone | Sentinel |
| Gamble-Skogmo | Signal |
| Garrard | Simmons |
| Garod | Sonora |
| G.E. | Sparks |
| General Imp. | Spiegel |
| General Instrument | Stewart-Warner |
| General Telev. | Stromberg-Carlson |
| Globe | Symphony |
| Goodrich | Taffet |
| Grant | Tele-Tone |
| Hallicrafters | Templetone |
| Howard | Travler |
| Jowel | United Motors |
| Kappler | U.S. Tel. |
| Kernwood | Warwick |
| Kraft | Watterson |
| Lear | Webster-Chicago |
| Magnavox | Western Auto |
| Maguire | Westinghouse |
| Majestic | Wilcox Gay |
| Meck | Zenith |

NOW AVAILABLE
Net Price $\$ 19.80$
ORDER FROM YOUR JOBBER NOW

Tung-Sol's reputation has been built because, year after year, Tung-Sol's quality has consistently been of the highest standard. There is a TUNG-SOL Tube to satisfy every receiving tube requirement. That is why Tung-Sol's customers are among the foremost manufacturers in the electronics industry.
IN THE ORIGINAL EQUIPMENT MARKET Tung-Sol is small enough to give individual attention to every customer and large enough to produce high quality products in large quantities. Tung-Sol has always realized that the quality of a customer's product is de-
pendent upon the quality of the tubes used. IN THE REPLACEMENT MARKET most reputable wholesalers prefer to handle Tung-Sol tubes. They like their uniform high quality and appreciate TUNG-SOL's friendly way of doing business. TUNG-SOL LAMP WORKS INC., NEWARK 4, N. J.

Send for the "TUNG-SOL Technical Data Book". It is a valuable aid to troubleshooting. You will find its 400 pages to be an up-to-date source of information on types af tubes, both new and old, and their characteristics. In additian to written descriptions there are diagrams, graphs, and curves for at-a-glance reference. Price $\$ 4.75$ delivered.

TUNG-SOL TELEVISION AND RADIO TUBES

Farnsworth K－084，K－086，K－289

The first two models appear on pages 186 through $18-12$ of Rider＇s Volume XIIII．The following changes have been nade in production．Model K－289 incor－ porates these changes．

A 3 －gang tuning capacitor is used，neces－ sitating changes in the r－f amplifier circuit． The $100,000-\mathrm{ohm}$ resistor connected to the grid（pin l）of the $6 \mathrm{AC5} \mathrm{r}-\mathrm{f}$ amplifier has been changed in value to 1 megohm．The lead which was formerly connected from the bottom of this resistor to the junction of resistors 7 and 8 （ 1 megohm and 4.7 megohms，respectively－）is now connected directly to resistor 4 （ 100,000 ohms）and to D5 of switch section 2 rear．Resistors 7 and 8 have been eliminated．

The band－pass coil and the $470-\mu \mu \mathrm{f}$ capacitor which were connected between the plate（pin 5）of the $6 \mathrm{~A}(\mathrm{i}, 5$ tube and the third grid（pin 8）of the 6SB7I oscil－ lator convertor tube have been removed． A conuretion has been made from the phate of the $6 . \mathrm{AG}^{5}$ tube through a $100-\mu \mu \mathrm{f}$ capacitor to D3 of switch section 2 rear． The third grid of the $6 \mathrm{SB}_{5} \mathrm{I}^{-}$is still con－ nected to I）2 of switch section 2 rear． The 100,000 －ohm resistor，which was for－ merly connected between D1 of switch section 2 rear and the junction of $\mathbf{L i}$ of the same switch section and the 1000 －ohm resistor，has been removed．There is a connertion from D1 of switch section 2 rear and（＇l of switch section 2 front， indicatrd on the schematic by the black dot on these connections．
The $0.005-\mu \mathrm{f}$ capacitor connected to C 7 of switch section 2 front has been removed， as has the wave trap and $100-\mu \mu \mathrm{f}$ capacitor connected to Cl of the same switch section．The third section of the ganged tuning capacitor is connected between Cl and ground，and is shunted by the $\mathrm{f}-\mathrm{m}$ converter trimmer，and also by a band－ pass coil（49）in series with a $0.05-\mu \mathrm{f}$ capacitor．A 100,000 ohm resistor is con－ rected from the junction of this capacitor and coil to D4 of switch section 2 rear． A $0.01-\mu i$ capacitor in series with a coil is connected from this common ground point to the junction of the 4700 －ohm resistor and the r－f choke in the plate circuit of the $6 \mathrm{AG} 5 \mathrm{r}-\mathrm{f}$ amplifier．A 47,000 － ohm resistor has been connected in the line going between A3 of switch section 1 front and the junction of the $47,000-\mathrm{ohm}$ resistor，the 470,000 ohm resistor，and the $100-\mu \mu \mathrm{f}$ capacitor in the filter circuit of the a－m detector．
The following step should be included in the a－m alignment table on page 18．1 between steps 6 and 7.

| Step | （＇onnect Generator | Sel generator At | Set Gang At |
| :---: | :---: | :---: | :---: |
| 6A | Fx．Ant． Binding | $1500 \mathrm{kc} \text {. }$ | 1500 kc ． |
| Adjusit
 BC R－F Trimmer | | To Obtain | |
| | | Maximum | |
| | | | |

The following additions should be made to the parts list．

```
Ref. Part Description
No. No.
27
34
39 26277 Tuoing capacitor
46 13766 Loop antenna (GK-084, -088; K-084)
46 13784 Loop antenna (GK-086, -087 ;
\ll
38933 F-m converter coil
    81175 F-m oscillator coil
    81175 Speaker
    42185 Pilot lamp, 250 ma (K-084, -086)
    42187 Pilot lamp, Mazda 55 (K-289)
    22147 Pickup cable (GK-084, -088: K-084
    22150 
    31421 A-m dial glass (K-084, -086)
    31422 F-m dial glass (K-084, -086)
    31453 rrm dial glass (K-289)
    31454 Frm dial glass (K-289)
    31431 Dial escutcheon (K-084; -086
    92192 Dial drive cord (45 inches)
    17014 Drive drum D Saver (K-084, -086)
    54091 Band switch lever (K-084, -086)
    59451 Knohs (K-084, -086)
    92228 Dial background (K-084)
    60665 Escutcheon backing (K-289)
```

H－283－1 Cabinet and carton for K－084（walnut） H－283－2 Cabinet and carton for K－084（hlonde） H－285－1 Cabinet and carton for K－086（walnut） $\mathrm{H}-28 \mathrm{~J}-2$ Cabinet and carton for K－086（blonde） H－315 Cabinet and carton for K－289

RCA 77U，Ch．RC－1057A

This model appears on pages $18-58$ and 18－5．j of Rider＇s Volume XV1II．The fol－ lowing voltage and current measurements apply to this model．A selenium rectifier is used．The oscillator grid voltage（pin

| Tube | Plate Voltage | Screer Volicy＊ | Cathode Voltage | Cathode Current |
| :---: | :---: | :---: | :---: | :---: |
| （1）12SA7 lat dot ouc． | 92. | 32. | － | 9.4 ma． |
| （2）12SK7 1．F．Amp． | 92. | 92. | － | 13.3 ma |
| （3）GC4 A．F．Amp． | 15. | － | － | 0.32 ma ， |
| （4）6A06 2nd Det－AVC－ Oh lnv． | 30. | － | － | 0.18 ma |
| （5）3SL6GT＇Output | 121. | 92. | 5.8 | 31.7 ma |
| （6）35L6GT Output | 121. | 92. | 5.8 | 31.7 ma ． |

5 of the $12(\mathrm{~A}, \mathrm{~F})$ is -10 volts at 600 kc and -11 volts at 1600 kc ．Voltawes are measured with Chanalyst or Voltohmyst to common insulated wiring－B ）．The voltages and currents should hold to within $\pm 20 \%$ with a 117 －solt， 60 －cycle power supply．

Oscillator coil 73048 is connected into the circuit of the $R C^{\prime} A$ irl as shown．
ln some chassis capacitor Cl 8 is 0.027 $\mu \mathrm{f}$ instead of $0.025 \mu \mathrm{f}$ as shown on the schematic．In some instruments a subs－ titute oscillator coil has been used．The original coil（70477）uses a capacitive wind－ ing（L4）for coupling the oscillator circuit to the oscillator grid（pin 5）of the 12SA7 tube．The substitute coil uses a $56-\mu \mu \mathrm{f}$ ceramic capacitor for the same purpose． （L4 is not used．）The accompanying fig－ ure shows how this coil is connected into the circuit．
The following changes should be made in the parts list．
Delete：
73007 Condenser－

Add：

73007 Condenser－variable tuning con－ denser（C3，C4，C6，C7）

RIDER TV MANUALS VOLUMES

RADIO OPERATOR＇S LICENSE Q \＆A MANUAL

A book that will prove a boon to every． one studying for a radio operator＇s license examination is Rider＇s newest text，Radio Opelatoris Ificense Q \＆A Mantal．Writ－ ten by Milton Kaufman．lecturer in the Department of Radio Operating at RCA Institutes，this up－to－the－minute text in－ cludes the questions used on the FCC examinations given in April， 949

Covering all six elements，the questions and answers are numbered to agree with the Study Guide and Reference Material for Commercial Radio Operator＇s Exams． A section is deroted to the questions and answers for the amateur operator＇s exams． Part 12 of the FCC rules and regulations pertuining to amateur radio service is also included in this section．
The outstanding feature of this book is the discussion that follows each answer． All the necessary information for a com－ plete understanding of each answer makes this a valuable text for selfstudy．There is a copious use of illustrations in the discussions．These discusions and the ac－ ecmpanying illustrations make this book a uscful reference work for those who have already pased the FCC examinations．

In addition to this complete coverage on the questions and answers，five separate appendices are included，covering：Direc－ tion Finding Iequipment；Auto Alarm Equipment；the Q code．International Morse Code，and miscollaneous abbrevia－ tions：excerpts from Part 2 （General Rules and Regulations）of the FCC requlations； and excerpts from Part 13 （Rules for Com－ mercial Rudio Operators）of the FCC regulations．
Containing more than 500 pages Radio Operitor＇s License Q \＆A Mavial will be available in september．

甘出OI
－377IATVHMUV
＇g2IAyas OIO甘y EnIH2OR

Distribution of This Issue-46,500 Copies

AUGUST, 1949
Courtcsy Ncw York Central

EYE STOPPER FOR SERVICE SHOPS' WINDOWS

 By John F. RiderDo you have a service shop with a street front window - one before which people can gather? If the answer is "yes," then here is a service which you can use. It is intended for use by service shops with street front windows and the sole purpose is to stop the passerby and make him go to your window. Once there he will look at what you have on display in the window.
It is said that more than $10,000,000$ people in the U'nited States are philatelist:that is, interested in postage stamp collection. so we have conceived the idea of illustrating postage stamps - the gemuine and the counterfcit. with identifications to show the points of difference between the two. The stamps should be of interest to young and old and it matters not who stops in front of your windows. If it is the youngster and lee tells his dad what he has seen and where he
saw it. sou recejve free adrertising. If it is the grownup who is the collector of stamps - he ll look closely at what you have on display and will remember where lee saw it. And don't be surprised if he will come in and ask for a copy or a small reproduction. If so, write to us and we'll be glad to supply them to you so that you will have direct personal contact with your prospective customer.
The displays are 14×17 inches and printed in color. They are intended to be attached to the INSIDE of your window facing outwards by means of small gum stickers or tiny pieces of scotch Fape. Each of the displays shows two stamps and it carries a meseage to the public that your file of service data on the receivers brought into your shop is found in your library of Rider's Manuals.

The displays, with full instructions, are contained in an envelope which you can
pick up from your jobber without any charge to you. Each envelope contains two displays. T'se one for two weeks and then replace it with the other. Then on Uctober 10 go to your jobber and he will have new displays for you. Each of the displays will show different stamps; in this way collectors of all types of stamps will be interested.

The first two displays cover two issues of Chile. You will be interested in learning that the information your window will disclose has never been diaclosed before. This is brand new information which we personally discovered. It so happens that we specialize in the stamps of Chile. The Uctober displays will concern another country. and so on each month.
The first of the two posters for September shows the Corrientes issue of 1867. and is shown on pg. 4 in small size. These
(Please turn to page 4)

Stewart-Warner A61C and A61CR Series

The following models are the same as Model A61CR1, appearing on pages 17 s and 17.7 and 17.8 of Rider's Volume XVII, except for the record changers and cabinets. The parts list for these models appears on page $17-8$. This information was inadvertently left out of the index and should be inserted.

The parts list appearing on page $17 \$$ should be amended to include the following:

The parts lise of the Stewart Warner A61C and A61Ch verics.

| Model numbers and | code numbers: | A6ICR11 | 9034 N |
| :---: | :---: | :---: | :---: |
| Model No. | Code No. | | $903+$-GR |
| A61C20 | 9034-P | ${ }^{461 C R 13}$ | 9034-GL |
| A61CR1 | $903+$ C | A61CR13LP | 903-GLLP |
| A61CR1LP | $903+-C L P W$ | A61CR1+ | 903+GM |
| A6ICR2 | 9034-D | A61CR1+LP | 903+GMLP |
| A61CR2LP | $903+$-DLP | A61CR15 | 9034-GT |
| A61CR3 | 9034-E | A61CR15LP | 903+GTLP |
| A6ICR+ | $903+$ F | ACICR16 | $903+$ FH |
| A6ICR4X | 9034-FX | A61CR16LP | $903+$ FHLP |
| A6ICR4LP | 9034-FLP | A61CR17 | $903+$ CM |
| A61CR4LPX | 9034-FLPX | A61CR17LP | 9034-CMLP |
| A61CR5 | $9034 . \mathrm{G}$ | A61CR21 | $903+$-R |

The phonograpl connections for some of these models are shown in the accompanying diagram.

PHONO CONNECTIONS
FOR MODELS A6ICR4X. A6ICR4LPX, A6ICR7X \& A6ICR7LPWX.

RIDER MANUALS Mrom SUCCESS

General Electric 145

This model appears on pages 19-13 through 19-16 of Rider's Volume XIX. The B battery minus connection is made to the dummy lug 5 on the switch shown in Fig. 2.

Zenith 9H881, 9H882, 9H885, 9H888, Ch. 9E21

These models appear on pages 19-ZZ through 19-29,30 of Rider's Volume XIX. If capacitor C-4, $0.05 \mu \mathrm{f}$, in series with the waremagnet is open, the signals will be weak and the addition of an external antenna will not appreciably improve the signal strength. The replacement of this capacitor with a new $0.05 \mu f$ capacitor usually clears up the trouble.

If the phonograph is dead, check resistor R-14, 10,000 ohms, $1 / 2$ watt, for intermittent operation. Due to movement of the r-f shelf when the band switch is operated, this resistor sometimes becomes intermittent, thus opening the phono circuit.

In most cases when aligning these models, it is not necessary to change or make any alterations in the i-f or discriminator trimmers. These trimmers are quite stable, and the only change recommended in alignment is that of the r-f section.

Be very sure to dress the tone control wires away from the pulley and dial cord. If these are not dressed away, binding and dial slipping will result.

If static is present when tuning in a station, check and see if the silver foil on the paper tube shield is tightly wrapped on the cardboard form. Sometimes this foil unwraps from the cardboard form and lies against the rang plates, creating static.

Sears 101.809 Series

These chassis are all the same as Model 7080, Ch. 101.809, appearing on pages 16.1, $10 \cdot-4,16-5$, and 16-8 of Rider's Volume XVI, except for the following clanges.
Models 8089, 8083A, Ch. 101.809-1A. Pushbuttons have been added. The record changers used in these models are all different. Resistor R5, 330,000 ohms, formerly across the phono pickup socket, has been removed. The dial drive hookup is as shown in the accompanying diagram.

The dial drive hookup for the Sears Chassis 101.809.1 A.

All resistors which were $1 / 3$ watt are now $1 / 2$ watt. All capacitors, except C23, C26, and C27, now have a voltage rating of 600 volts. A 6 -by- 9 -inch p-m speaker (R62658) is used, requiring cone and voice coil R62659, and output transformer R62660.
Models 5084, 8084A, Ch. 101.809-1B. Same as Chassis 101.809-1A, except for the record changers.
Models 7080, 7080A, Ch. 101.809.2. Same as Chassis 101.809 , except for a new type tone control circuit. A $0.001-\mu \mathrm{f}$ capacitor (C24) is connected from the plate (pin 2) of the 7 C 6 tube to the variable arm of the 2 -megohm tone control (R16). The other end of this tone control is connected to the B-line. The parts layout for this chassis is shown in the accompanying diagram.

The parts layout for the Sears Chassis 101.809.2.

Models 8101, 8101A, 8101B, 8101C, 9101, Ch. 101.809-9C. These models are the same as chassis 101.809-2 except for difftrences in the cabinets, and the fact that different record changers are used.

Westinghouse H-164, H-166,

 H-166A, H-167These models appear on pages 18.12 through 18.19 of Rider's Volume XVIII.
To reduce hum in later production of these models, a de-coupling network was inserted in the plate circuit of the 6AT6 a-m detector, avc and a-f amplifier tube. This network consists of a $100,000-\mathrm{ohm}$ $1 / 2$ watt resistor (RC20AE104K) and a $0.1 \mu \mathrm{f} 400$ volt resonant type capacitor
(V-5442-1). The resistor is inserted between the plate load resistor (R11) and the B plus line, and the capacitor is connected from the junction of R11 and the new resistor to ground.

RCA 8R71, 8R72, 8R74, 8R75, 8R76, Ch. RC-1060, RC-1060A
These models appear on pages 19-10 through 19-15 of Rider's Volume XIX. In some instruments, speakers stamped 92572 . 4W have been used as a substitute for the specified speaker ($92572 \cdot 2 \mathrm{~W}$). For replacement use the specified speaker (stock number 72201).
In some chassis, two 3300 -ohm resistors are connected in parallel as a substitute for the 1500 -ohm resistor, R22. In other chassis, two 820 ohm resistors are connected in series as a substitute for this resistor.

RIDER MANUALS KEEP UP TO DATE

NEW BODKS IN PREPARATION RADIO OPERATOR'S LICENSE φ AND A MANUAL
 By Milton Kautman

All the questions and answers for the FCC exams. Easy-to-understand discussion and clear illustrations make this text valuable to both the student and those who have already passed their FCC exams. The discussion is intended to make the answering of multiple-choice questions a simple matter. Pocket size for ease in carrying. Profusely illustrated.

CATHODE-RAY TUBE AT WORK

Completely rewritten and vastly enlarged. The theory is greatly expandedall scopes and synchroscopes manufactured during last 10 years are described. Great emphasis on application to all fields. Written to serve all users of scopes. Size $81 / 2^{\prime \prime} \times 11^{\prime \prime}$-more than 2000 illustrations. Never has there been a book like this one.

VACUUM TUBE VOLTMETERS

This hook has been rewritten and enlarged. Commercial vacuum tube voltmeters are fully described as well as the basic theory of these meters. Emphasis on application and theory.

SERVICING A-M, F-M, AND TV RECEIVERS (Replaces Servicing Superheterodynes)

Written in the easy-to-understand Rider style. Describes troubles usually encountered and the ways they can be cured. Unique circuits are also discussed.

THE OSCILLATOR AT WORK

Describes oscillator circuits used in a-m, f-m, and television receivers and also the test oscillators and generators used in the servicing of these receivers. Emphasis is placed on the test procedures required and commercial oscillators are discussed in detail.

THE THEORY AND PRACTICE OF 30-1000 MC RECEIVING ANTENNAS
 (Formerly: The Theory And Practice of High Frequency Antennas)

A new book written expressly for the man who is not familiar with antennas, by a man who has spent 21 years working with such antennas. The emphasis is on theory and practice-especially of TV antennas. The subject is broadly treated and covers all sorts of antennas from 30 mc to
1000 mc , propagation over the band of frequencies, and many other details hitherto not revealed in any practical book on antennas.

THE BUSINESS HELPER

By Leslie Rucker

A person-to-person talk by a successful parts jobber who started from scratch and worked his way up to where he now has three stores. IIe tells the small businessman-and this means the radio service shop owner-how to run a successful business. Every phase of business operation is explained. It is a "must" book for every service shop - large or small; in fact, it is a very good book for every businessman.

Watch For Publication Dates And Further Details

EYE STOPPERS

(Conlinucd from page 1)

Which one is the phony?

First poster in the Rider Eye-Slopper Series, showing Corrientes issue of 1867.
posters, and the other display for September will be available at your jobber on September 10.

Each of the displays is printed in a different color, although not necessarily the exact color in which the stamp was issued. The matter of counterfeiting is more important relative to the design than the color, because departures from the correct color are easily detected, whereas forgery of the design is much more difficult to detect.

To make this program effective - keep the window glass clear of all signs other than the stamp display. Naturally this statement does not apply to the name of the establishment - it means signs which are hung or attached to the window. If other signs must be shown, keep them
away from the stamp display. Make certain that the location of the stamp display is at eye level for the average individual so that he will be able to examine the enlargements of the stamps easily and note the points of difference between the genuinc and the forgery.
Originally we intended that these displays be changed every week. After consultation with experts on the subject, it was decided that a better plan is to change them every two weeks; thus leaving the display on the window for two week periods. Therefore your first display package will contain two window displays instead of the four originally mentioned.

We deliberated a long time before selecting philately as the basis of the campaign. We considered many different types of items, and it was this one which possessed the greatest possibilities in making people - young and old - speak about the service shop where they saw the information. Philately is a hobby of a hundred years standing - the kind of hobby which places shipping clerks and bank presidents in the same category. Once a philatelist - always a philatelist!

Get behind this program. It is for mutual benefit - yours and ours. Make the public recognize that you have a good shop - a competent shop - a neat shop. Put up these displays and get them talking about you. When they come into your shop - show them your equipment - your Rider Manuals. This is a campaign which is original in concept and can be profitable to you.

HIWYNI Hove it When You Need It

Westinghouse H-186, H-187

These models appear on pages $18-26$ through 18-s0 of Rider's Volume XVIII.
To reduce hum in later production of these models, a de-coupling network was inserted in the plate circuit of the 6AT6

Its as True Today as it was Then ---

A wise man will make more opportunities than he finds.

-Bacon

FM Transmission and Reception
416 pages Cloth Cover $\$ 3.60$
TV Picture Projection and
Enlargement. 179 pages $\$ 3.30$
Broadcast Operators Handbook 288 pages \qquad
\qquad
Understanding Vectors and Phase 160 pages Cloth Cover $\$ 1.89$ Paper Cover .99
Installation and Servicing of Low
Power Public Address Systems
208 pages
$\$ 1.89$
Inside the Vacuum Tube
424 pages $\$ 4.50$
The Cathode-Ray Tube at Work 338 pages \qquad $\$ 4.00$
Servicing by Signal Tracing
360 pages

Master Index-Volu
Master Index-Volume
Order from your Jobber or Directly from Us

AM detector, AVC and A-F amplifier tube. This network consists of a 100,000 ohm $1 / 2$ watt resistor (RC20AE104K) and a $0.05 \mu \mathrm{f}$ 400 volt rapacitor (RCP10W4503A). The resistor is inserted between the plate load resistor (R13) and the B plus line, and the capacitor is connected from the junction of R13 and the new resistor to ground.

RCA 77U

This model appear on pages 18-63 and 18-54 of Rider's Tolume XIIII. The following parts should be added to the parts list.
73109 Nut-Tee nut to mount record changer- 3 required.
73110 Screw- $1 / 4-20 \times 1 \frac{3}{4}$ " fillister head marhine screw to mount record changer.
The service data previously issued for this model also apply to instruments using blonde mahogany cabinets, except for the following parts which are used with such cabinets.

73631 Knob-power, radio and phono switch knob-tan-for blonde instruments.
73629 Knob-tuning knob -tan- for blonde instruments.
73630 Knob-volume control knob-tan -for blonde instruments.

Sears 8020

This model appears on pages 18-56 through 18-60 of Rider's Voiume XVIII. If excessive hum is encountered, try disconnecting the low-voltage section of the clectrolytic capacitor. part number N21744, which is the cathode bypass capacitor on the 50 L 6 GT output tube. Substitute a separate $20-\mu \mathrm{f}, 25-\mathrm{v}$. capacitor for this section.

Some of the original electrolytic capacitors had the sections wound in inproper sequence, so there was capacitive coupling between the input high-voltage section and the low-voltage cathode bypass section. This condition would cause excessive hum in the receiver output. It is probable that this condition will be found only on the later production sets of this model.

Title Change

The title of the antennaz book now in preparation has been changed to: Theory and Practice of $30-1000 \mathrm{MC}$ Receiving Antennas. This book was formerly known as: Theory and Practice of High Frequency Antennas.

Correction

In the article "Measurements" appearing in the June, 1949 issue, on page 13, column 2, the statement reading "This is about 30 kilowatts in modern television receivers" should have read 30 kilovolts.

Cover

A maintenance man for the New York Central's electronic telephone carrier syslem adjusts the voltage output. The high frequency telephone system is used for the line's telephone network.

-Successul SERVICING

REG. U. S. PAT. OFF.

Vol. 10
AUGUST, 1949
No. 10

Dedicated to the financial and technical advancement of the Electronic Maintenance Personnel
 Published by
 JOHN F. RIDER PUBLISHER, INC.

JOHN F. RIDER, Editor
R. I. LATZER, Associate Editor

Copyright 1949, by John F. Rider
No portion of this publication may be reproduced without the written permission of the publisher.

CURTAIN TIME

Service Assoc. Activities

A new association of TV servicemen has been formed in New Jersey. It is known as the Allied TV Technicians. Their zone of operation will be in Southern New Jersey. If you desire to contact the chairman, he is Frank Basler, 135 Sixth Ave., Mt. Ephraim, N. J. We hope either that this group eventually embraces all of New Jersey, or that other organizations come into being and then form a statewide federation.
ORCHIDS TO THE DALLAS RADIO SALFS AND SERVICE ASSOCIATION.
The store, stock, and equipment of one of their members was washed out on the evening of June 13 by a Texas storm. Ten inches of rain fell in a short time. Everything in the store was topsy-turvy and the owner was sure that he was ruined. To make a long story short, within 48 hours after the incident the members of the association pitched in and with the aid of local jobbers had the service shop running, complete with parts, test equipment, and new receiving equipment. The members of the association donated parts and test equipment to the unfortunate victim of the storm. Such cooperationspirit of friendship and willingness to help a fellow man, with a total disregard of the fact that he is a competitor, is worthy of the highest tribute.

New FCC Ruling

Attention all TV Servicemen... The FCC has issued a new ruling which prohibits the transmission of music simultaneously with TV test patterns. Since it is the general concensus of opinion that the adjustment of TV receivers is better accomplished with music and the test pattern than with a constant tone and the test pattern, it is suggested that all servicemen interested in the adjustment of TV receivers, and for that matter, all who eventually will be participating in such activities and desire music rather than the constant tone, write to Jack Poppele, President of the Television Broadcasters Assoriation, 500 Fifth Ave., New York, N . Y .

The TBA intends to request the FCC
for a reversal of the ruling and all letters requesting musical accompaniment to the test pattern will strengthen their position.

Infra-Red Pickup of Hot Spots

Have you ever noticed that the TV camera shows beards which don't exist? It is due to infra-red sensitivity, which tends to penetrate part way into the skin and show hairs on a clean-shaven individual. According to RCA the same phenomenon is now being put to use to check hot-spots in metals before they become visible to the naked eye. A series of experiments were undertaken in association with engineers of the Wright Aeronautical Corp. to assess the applicability of monochromatic television for continuous gross evaluation of the performance of ram jet engines by remote observation of their exhaust flames. When checking heated metals, the television system showed gray spots well before the eye could detect any red coloring on the metal itself. Each of the gray spots showed the location of a hot spot.

Death Takes A Test Equipment Manufacturer

Murray Mentzer, founder and president of Precision Apparatus Company, passed away on July 23rd. I knew Murray well and the radio industry has lost a progressive leader. He was a good man-a charitable individual who started his business right from the bottom and guided it to its present high standing. A reputation for honesty meant a great deal to him, from the very days when he first started modernizing old test equipment, to the last minute of his mortal life. Peace be with you, Murray.

Canadian Town Meeting

The Town Meetings for Radio Technicians, five of which were conducted in the United States during the Fall and Winter of 1948-1949, have been picked up in Canada. One such meeting was conducted under the auspices of Canadian manufacturers and jobbers during March $28-30$ in Toronto and the second will be run during October 17-19 in Moptreal,

The U. S. meetings are now in the planning stage and we hear that five will be run during the Fall and Winter of 1949 1950. As before, we expect to participate in some of these meetings.

Preventative Maintenance Month

With all the attention focused on television, it is very easy to lose sight of that which has been standby for the radio servicing industry during its twenty odd years of life. We mean the everyday a-m or $\mathrm{f}-\mathrm{m}$ radio receiver. Many of these receivers are inoperative and stored in attics and closets. The many $a-m$ and $f-m$ broadcasters know this and reconnize that they have lost listeners for any one of a number of reasons associated with completely or partially defective receivers.
Progressive servicemen in two states have taken the bull by the horns and have initiated a program of a Preventative Maintenance Month-the month of October, 1949. During this period, service shops, parts jobbers, several parts inanufacturers, and $\mathrm{a}-\mathrm{m}$ and $\mathrm{f}-\mathrm{m}$ broadcast stations in two states will endeavour to get these defective receivers into operation for the mutual benefit of all concerned-including the public.
The Federation of Radio Servicemen of Pennsylvania carried out such an effort in Harrisburg last year and found it to be effective beyond their fondest expectations (see Successful Servicina, April, 1949). This year it will be statewide throughout Pennsylvania. The Empire State Federation of Electronic Technicians is going to do the same thing in New York State at the same time... Every radio serviceman should participate in this artivity. It is definitely to your benefit. To get full details communicate at once with the following individuals. In Pennsylvania, it is John Rader. 704 Walnut Street. Reading, Pa., and in New York State, it is Max Liebowitz, Mecca Radio, 101 West 53 Street, New York City.
Preventative Maintenance Month will br October, 1949. Participation is open to every radio serviceman, and should be actively engaged in by every man. It is a proven activity - something which will pay off for every bit of effort expended. Write today for information.

HIWYNI

Have It When You Need It. We are speaking about Rider Manuals - the regular AM and FM receiver Manuals - the PA Manual and the TV Manuals. Don't hunt for service data when the need arises. Have it at your finger tips. Think back on the number of times you have referred to Rider Manuals. Do you realize how you would have been inconvenienced if you did not have them when you needed then? Remember - they are a capital investment in your busincss. The owners of Volume I have been profiting on its contents for almost 20 years!

John F. Rider

Television Changes

DuMont RA-103, RA-105, RA-106

Model RA-103 appears on pages 1.58 through $1-80$ of Rider's TT Manual Volume 1. Model RA-105 appears on pages 2-0 through 2-56 of Rider's TV Manual Volume 2 and Model RA-006 is on pages : $2-5 \%$ and $2-5 \$$ of the same volume. The following change has been made on the inputuners. which are the same on all these models.
The screen bypass capacitor, C 110 , on the 6AK5 mixer has been changed to $5000 \mu \mu \mathrm{i}$, minimum. The purpose of this change is to improve the strong signal handling capabilities.
The new capacitor is described as follows:
G3016760 F CE $500 \mu \mu \mathrm{f} \min , 600 \mathrm{v}$.

Farnsworth 651-P

This model appears on pages 2-11,12 thiough 2-25 of Rider's TV Manual Volume 2. If the top of the picture is below the limits of the mask, even though the height control is at its maximum upward position, use the following procedure:

Rotate the focus coil. This may move the picture upward.

If this is insufficient, modify the wiring of the vertical centering control by removing the lead attached to the tap (not the movable arm) and re-connect to the control terminal to which is attached the 3.3-ohm resistor.

Belmont 7DX21, Series B

This model is the same as Model 7DX21, appearing on pages 2-11 through 2-25 of Kider's TV Manual Volume 2, except for the following. The vertical multivibrator and vertical sweep circuits were modified, as shown in the accompanying diagram, to improve the vertical linearity and to provide greater vertical capabilities.

The following components have been changed:
Resistor R80 from 10 megohms to 4.7 megohms.
Resistor R81 from 4.7 megohms to 10 megohms.
Resistor R82 from 3.9 megohms to 5.6 megohms.
Resistor R85 from 4.7 megohms to 10 megohms.
Resistor R97 from 10 megohms to 6.8 megohms.
Resistor R113 (10 megohms) added.
Capacitor C101 from $0.03 \mu \mathrm{f}, 600$ volts, to $0.02 \mu \mathrm{f}, 1600$ volts.
Capacitor C104 from $0.05 \mu \mathrm{f}, 6000$ volts, to $0.005 \mu \mathrm{f}, 6000$ volts.
Capacitor C105 from $0.05 \mu \mathrm{f}, 6000$ volts, to $0.005 \mu \mathrm{f}, 6000$ volts.
Capacitor C106 from 1000 to 1600 volts.
Capacitor C107 from $0.1 \mu \mathrm{f}, 600$ volts, to $0.02 \mu \mathrm{f}, 1600$ volts.
Capacitor C108 from $220 \mu \mu \mathrm{f}$ to $0.0014 \mu \mathrm{f}$. Capacitor C120 ($800 \mu \mu \mathrm{f}, 1600$ volts) added.
The parts list should be changed to agree with the following:
Ref.No. Cat.No. Description
R80 C-9B1-35 Resistor, 4.7 meg ohms, $\pm 20 \%, 1 / 2$ w.
R81-85-113 C-9B1-37 Resistor, 10 megohms, $\pm 20 \%, 1 / 2 \mathrm{w}$.
R82 C-9B1-249
Resistor, 5.6 meg . ohms, $\pm 5 \%$, $1 / 2 \mathrm{w}$.
C101-107 B-8D-16578 Capacitor, $0.02 \mu \mathrm{f}$, 1600 volts
C104-105 B-8D- 16574 Capacitor, 0.005μ f, 6000 volts
C106 B-8D-16577 Capacitor, $0.01 \mu \mathrm{f}$, 1600 volts
C108
B-8D-16576 Capacitor, $0.0014 \mu \mathrm{f}$, 1600 volts
C120 B-8D-16575 Capacitor, $800 \mu \mu \mathrm{f}$, 1600 volts
The following changes have also been incorporated in the "Series B" chassis. R43 was changed from 150,000 ohms to 47,000

The vertical multivibrator and vertical sweep circuits of the Belmont Model 7DX21, Series B.
ohms (part C-9B1-82) to improve the video response. R114 (1 megohm, part C-9B1-31) has been added between the picture-tube shield and $13-$ to bleed off static charges.

DuMont RA-105, RA-106

Model RA-105 appears on pages 2-5 through 2-56 of Rider's TV Manual Volume 2. Model RA-106 appears on pages 2-57 and $2-58$ of the same volume. Capacitor C213 (1-3.5 $\mu \mu \mathrm{f}, 500 \mathrm{v}$.) is changed to 2.6 $\mu \mu \mathrm{f} \pm 10 \%$. This new capacitor is made from a piece of twinex transmission line. The capacity may be varied by separating or squeezing together the two wires. In alignment, the greater the capacity. the broader will be the response of the stage.
The part number of this new capacitor is 03016891 .

RIDER TV MANUALS $\begin{gathered}\text { VOLUMES } \\ 1\end{gathered}$

RCA 68R1, 68R2, 68R3, 68R4, Ch. RC-608; 610V1, Ch. RC-610; 610V2, Ch. RC-610C
The 68R series appear on pages $16-38$ through 16-43 of Rider's Volume XVI. The 610 series appear on pages 19-56 through $19-64$ of Rider's Volume XIX.
In locations where 10.7 -mc i-f interference (not tunable) is encountered on the $\mathrm{f}-\mathrm{m}$ band of these receivers, the following may eliminate the condition:

1. Check lead dress (and correct if necessary) to minimize antenna coupling into the i-f amplifier input. Resistor R1 (located on the antenna terminal board) should be dressed on the side of the terminal board away from the 6BE6 1st detector socket, V1.
2. Dress the 6BE6 1st detector plate lead along the shelf base and under C2 ($330 \mu \mu \mathrm{f}$) using C 2 as a partial shield for this lead.
3. Ground one f-m antenna terminal to the chassis at the terminal board. (Dipole still connects normally.) This is generally more effective than connecting a $10.7-\mathrm{mc}$ series-tuned trap from the f-m antenna terminal to the chassis.
4. Place a tube shield over the 6BE6 1st detector tube, grounding the shield to chassis using as short a ground as possible. Correct for any detuning caused by this method.
5. Correct realignment of circuits is sug. gested to provide maximum sensitivity, since step 3 may reduce sensitivity slightly.

Correction

The Pilot model shown as 160 in TV Manual Volume 2 and in the index on pages 2-14 through 2.20 is not a separate model, but actually is an integral part of Models TV40 and TV-950.

Sound Advice From One Serviceman To Another!

John Rider Publisher,
MACS Radio REPAIR
Choleau. Montana prone 3.1
Inc.
480 Canal Street
New York $13, \mathrm{~N}$. Y.
circles to the effect that a good

\square financial circles to the effect themselves are New york 13 , , ing found financial into business such rumors since pull Rumors are running ar who have I can weal I am just beginning Bradstreet, By ex G.I. radium to death. and a hall I think since the many ex ally starving ter a year red ink pool. customer. to take practical l. am an ex from the deep as good cash-bly true, to pass on some radio away from list me as are probably tent to pattering the rad Inc. Sinentioned rum advertising de contemplate advantage of yare now in or who a good解 repair business. radio repair must have test equipment, and be stressed A man entering radio radio, adequerence library cannot tough jobs are working knowledge That good re me mean jobs REFERENCE because the big jobs. much, because that library. a few radio wreckers radios right in depend there are quite a found for setting manufacturer has made chang all Uni ortunately key that I have. If the manuracter's. In most case according the use of Eider's manual are included the radio rend with the set, those should be discarded mach to do with other schematic.
to sch en which repair work is comply I recommend radio doesn't mind
The SPEED In the interest of with the work done give you customers. in incomstomer who is plefor it. Rider will mean pleas extra money you paying a good priv made and if edith advertising prove
REPEAT BUSINESS and doing conscientious good advertising. your pocket. both repeat business tout Rider manuals, sure that many rider's will 8 many shops operating without business. a complete set of There are many of newcomers an investment in a especially the new will mean the manual business.

This is not a code. It is simply an abbreviation of a very important condition in the operating life of a service shop. HIWYNI means HAVE IT WHEN YOU NEED IT. It applies to many things, but especially to RIDER MANUALS. Make sure that you have a complete library of RIDER MANUALS on hand at all times.

NOTE:

 E: Are you receiving your copy Rider's own publication of interest to every serviceman. In it you will And all of the circuit changes In sets, as is soon as they toreNOTE: Tho Mallory Ratio Service Encyclopedia, fth edition, makes reference to only one source of radio receiver schematics - Rider Man.
Hals. ANOTHER NOTE: The C Capacitor Manual for Radio Service. ing. 1948 edition No. 4, makes reference to only one source of re.
elver sehematics-Rider Manuals.

These RIDER books are the result of twenty years of specialized publishing for the Radio Servicing Industry

 Servicing by Signal Tracing, $\$ 4.00$ pages. illustrated $\$ 4.00$ Servicing by Signal Traoling. (Spanis Edition), 404 pages, illustrated Understanding Vectors and Phase. $\$ 160$
pages, paper binding. 99 c cloth. $\$ 1.89$ Vacuum Tube Voltmeters, 180 pages illustrated
illerstanding Microwaves, 385 pages Understanding Microwaves, 385 pages,
illustrated A. C : Calculation Charts, 160 pages. High Frequency Measuring Techniques Using Transmission Lines, 64 pages, The Meter at Work, is pages, illusThe Radio Amateur's Beam Pointer Guide, 32 pages.

JOHN F. RIDER PUBLISHER, INC. • 480 Canal Street, New York 13, N. Y. Export Agent: Roche International Cord., 13 East coth Street, Now York City e Cables: ARLAB

Farnsworth P7, P9, P10, Capehart

Thesc models appear on paycs 19.19 through 19-33 of Riders Volume NIX. The program control knob on these models turns a switch with detent contacts. If this knob is not pushed down to grip a substantial portion of the knurled shaft, the inside of the knob may become reamed cut and in time lose its ability to grip the shaft sufficiently to actuate the switch.

Method of wedging the program rontiol knobs of the Farnsworth Pr, P?, P10, so they grip the shaft.

If such a condition occurs and there is no replacement knob handy. refer to the accompanyine diagram and the following:

A piece of metal sitrip $5 / 16^{\prime \prime} \times 3 / 8^{\prime \prime}$ or $1 / 2^{\prime \prime}$ should be wedged tightly into the renter of the knob. When the knob is placed over the shaft, the metal insert will engage the shaft slot.
Improved knob gripping can sometines be obtained by slightly spreading the shaft slot. Care inust be exercisied in doing this however. If the shaft slot is spread too far, it is likely to break or be spread uuevenly, thereby imparting an undesirable "wobbly motion" when turned.

Stewart-Warner 61T Series; 9022-T

These models are the same as Model 61T16. appearing on pages $15 \overline{-\gamma}$ and $1 \overline{0}-8$ of Rider's Volume XV, except for some changes. The code listings for these models are:

| Model | Code |
| :--- | :---: |
| 61 T 16 | $9022 \cdot \mathrm{~A}$ |
| 61 T 16 W | 9022 AW |
| 61 T 26 | $9022 \cdot \mathrm{~B}$ |

A $0.01 \cdot \mu \mathrm{f}$ capacitor (45) has been added from the black lead (center tap) of the loop antenna to ground. A $0.05-\mu f$ capacitor (46) has been connected from the cathode of the 12SF7 tube to the AVC line. A 390 -ohm resistor (44) has been connected in shunt with the pilot lamp.

The following should be added to the parts list:

5003s5 Cabinct-ivory, Model 61 T 16 W
502476 Cabinet-ivory, Model 0022 T
502006 (Clam !-dial seule mitg. Model 9022T
502553 Knob-ivoly, Model 61T16W
502564 Knob-ivory, Model 9022.T

RIDER MANUALS KEEP MPTO MATE

General Electric 150

This model appears in Rider's Manual Volume XIX on pages 19-10 through 19-12.

If a condition of parasitic oscillation with strong signals and high volume setting, characterized by whistles and distorted output is reported on late production models in the gray cabinet the follow. ing change will correct the condition:

Change the grid return of the i-f amplifier by moving bus wire lead on \#2 lug of first i.f transformer to pin \#5 of the r-f amplifier (1T4), instead of pin \#5 of the i-f tube. This changes the bias of the i-f amplifier from zero volts to minus 1.4 volts.

The following replacements should be made in the catalogue numbers:

Delete the following parts:
$\left.\begin{array}{llll}\begin{array}{c}\text { Old } \\ \text { Cat. No. }\end{array} & \begin{array}{c}\text { Newy } \\ \text { Cat. No. }\end{array} & \begin{array}{l}\text { Symbol } \\ \text { URD-009 }\end{array} & \begin{array}{l}\text { Description } \\ \text { URE-009 }\end{array} \\ \text { Resistor - } 330 \\ \text { ohms, } \\ \text { W., carbon* }\end{array}\right\}$

These Models are the same as Model 7070. appearing on pages 17.2, 1i-s, and 1\%15 of Rider's Volume XVII, except for the following changes. The appearance only of the parts have been changed in Ch. 101-817-1A.

In Ch. 101.817.2A. capacitor Cl 7 has been changed in value from $0.05 \mu \mathrm{f}$ to $0.01 \mu \mathrm{f}$. Resistor R8 has been changed in value from 100 ohms to 150 ohms. The second i-f transformer has been changed from capacitor tuning to slug tuning. The new parts number is R65374. The location of the trimmers is shown in the accompanying diagram.

The trimmer localions of the Sears Chassis 101.S17-1A and 101.81~-2A.

Stewart-Warner A41T1, Code 9032-A
This is the same as Model A41T1 appearing on pages 17-1 through 17-s of Rider's 'olume XVII.

Distribution of This Issue-47,000 Copies

Courtesy Olficial U.S. Taty Photo
SEPTEMBER, 1949

ALL PAGES IN PLACE IN RIDER TV MANUAL VOLUME 3

The production of Rider Manuals has been faced with a problem for a number of years, as is well known to every customer who was called upon to insert unbound pages into their allotted places. Time and again we stated that we were forced to do what was done in order to satisfy the needs of the servicing industry and still offer the Rider Manuals at the lowest possible price. Every buyer of Rider Manuals knows that during the past 20 years we have crammed each volume full to the hilt. Time and again the finished manual contained far more pages than were pronised in our advertisements released during the production of manuals. Nevertheless we never denied that it was wrong to call on the cnstomer to place pages in their proper places.

It never was too much of a task to properly insert pages in the regular AMFM series of Rider Manuals, because the so-called unbound pages were comparatively few in number. But with the advent of television and its 25 to 50 -tube receivers, related service data assumed much greater proportions-greater in the number of pages, larger in the dinensions of the diagrams and chassis charts, triple spreads
with two folds and giant pages with as many as eight folds. The landling of these pages also created a difficult situation.

We were aware that multiple folds on a page were difficult to handle. The average man who unfolds a map and tries to refold it properly frequently gives up. let there was no alternative in the presentation of the information. It had to be complete and it had to be readable. Above all, it was needed in the hands of the servicing industry because TV receiver sales advanced by leaps and bounds.

Taking everything into account, the situation was distasteful all around. Please understand that as a publishing organization we must satisfy our customers. We have always realized our responsibility and will continue to do so. We were very much concerned with finding a solution to this problem with many facets. We are happy to be able to say that it has been solved!

Beginning with Rider TV Manual Volume 3. all pages will be in place when the Manual is received by the customer. As far as TV service data is concerned, with its large diagrams and chassis layouts, this
means a new type of manual-a binder which is larger in dimensions than those produced during the past 20 years. This largesize binder, specifically $12^{\prime \prime} \times 15^{\prime \prime}$, will be used for TV manuals only. The AM-FM series of Rider Manuals will be continued in the regular size, and when Volume 20 appears, all the pages will be in their proper places.

The larger-sized TV manual binder means larger pages. This will afforl a number of very important advantages. The basic page size will be $12^{\prime \prime} \times 15^{\prime \prime}$, or the equivalent of the previous doublespread page, and there will be no fold. It will be perfectly flat like the conventional page.

The triple spreads will be printed in pairs on the giant-size page and there will be only one-we repeat, only onefold. The giant pake will be 360 square inches in area-and only one fold will be used in place of the previous multiple folds. Thus we will maintain the original high order of readability and still afford the ntmost in ease of use.

The entire manual will be easier to use for the iollowing reasons. The manu(Please turn to page 13)

Television Changes

Meissner 24TV. Serial Higher
 Than 1500

This receiver is the same as Model 24 TV , appearing on pages 2-1 through 2-12 of Rider's TV Manual Volume 2, except for the following changes. The 100 -ohm resistor connected between the contrast control and the 100 -ohm cathode resistor of the first video i-f stage has been removed. A $0.00025-\mu \mathrm{f}$ capacitor in parallel with a 100 -ohm resistor has been connected between the cathode (pin 5) of the 6AC7 first video amplifier and ground. The choke in the plate circuit of the second video amplifier has been changed in value from $250 \mu \mathrm{~h}$ to $125 \mu \mathrm{~h}$. The new part number is 05654 .

The $0.25-\mu \mathrm{f}$ capacitor connected between the brightness control and the choke in the plate circuit of the second video amplifier has been removed. A 6AL5 diode

Fig. 1. The 6SNy sync separalor circuil for Meissner $24 T V$ shouing recent changes.
has been added to the circuit as the horizontal phase detector. This new tube necessitated changes in the 6SN7 sync separator circuit, as may be seen in Fig. 1.

The resistor in the arm of the brightness control has been changed in value from 220,000 ohms to 680,000 ohms, and a $0.25-\mu \mathrm{f}, 600$-volt capacitor connected from the top side of this resistor to ground. The 22 -ohm resistor connected to the horizontal deflection coil has been replaced by a $0.5-\mu \mathrm{f}, 400$-volt capacitor. The $0.02-\mu \mathrm{f}, 600-$ volt capacitor connected from the junction of the horizontal linearity control and the primary of transformer 29445 to the bottom of the grid-leak combination of the 6BG6G tube has been changed to a $0.03-\mu \mathrm{f}$, 1000 -volt capacitor.

A corona ring has been added between the 1 -megohm resistor and the filament (pin 7) of the 1 B3GT high-voltage rectifier. A variable choke (05845) is used as a horizontal size control and connected from a tap to the bottom of the secondary of transformer 29445. A connection has been made from this tap to the $0.5-\mu \mathrm{f}, 400$-volt capacitor mentioned formerly. The 6SN7 horizontal oscillator circuit has been changed as shown in Fig. 2.

Fig. 2. Changes in 6SN7 horizontal oscil. lator circuit for Meissner 24 TV.

A $0.002-\mu \mathrm{f}$ capacitor has replaced the 100,000 -ohm resistor in the CR network in the primary of transformer 29443. A 22,000 ohm resistor has replaced the $0.005-\mu \mathrm{f}$ capacitor in the line leading from the sync stparator The $0.05-\mu\{, 600$-volt capacitor connected from the bottom of transformer 29443 to ground has been changed in value to $0.25 \mu \mathrm{f}$. The connections to the elements of the 6SN7 vertical oscillator tube have been reversed; that is, the connections to pins 1 and 4 have been reversed, as have those of 2 and 5,3 and 6 , and 7 and 8 . No other change has been made in the circuit. The $4700-\mathrm{ohm}$ resistor connected between the cathode (pin 3) of the 6SN7 vertical amplifier and the $0.05-\mu \mathrm{f}$ capacitor has been removed.

The voltage readings of the sync separator and the horizontal phase detector are:

| Pin \# | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
| :--- | :--- | :---: | :--- | :---: | :---: | :---: | :---: | :---: |
| 6 SN7 | 0 | 7 | 3 | 0 | 210 | 8.8 | $6.3 A C$ | 0 |
| 6AL5 | 0.8 | -0.5 | 6.3 AC | 0 | 0 | 0 | 0 | 0 |

The resistance readings for the sync separator and the horizontal phase discriminator are:

| Pin \# 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $6 S N 7$ | 0 | $39 K$ | 220 K | 1 Meg | 32 K | 3.3 K | 0 | 0 |

$\begin{array}{lcccccccc}6 S N 7 & 0 & 39 K & 220 K & 1 \text { Meg } & 32 K & 3.3 K & 0 & 0 \\ 6 A L 5 & \infty & \infty & 0 & 0 & 27 K & \infty & 2.7 K & 0\end{array}$

Farnsworth 651-P

This model appears on pages 2-11,12 through 2.25 of Rider's TV' Manual Volume 2. If low signal or noisy reception is encountered, it is suggested that the following be checked. Make sure that the connection at the antenna terminal lead plug has not been pulled loose. A good soldered connection is important. Make sure that the antenna terminal lead plug has not been inserted backwards into connector on side of chassis. Note: If the large prong has been forced into the small clip, the chances are that it has sprung this connector. This allows the small prong to float in the connector and may result in loss of signal energy or noise.

General Electric Television Receivers

Fffective immediately, General Electric will make available stock replacement coils iustead of complete horizontal sweep out-
put transformers for all television receivers.
The core laminations are not interleaved and come apart as two sections, thus it is only necessary to remove the support clamping bolts, take apart the two halves of the assembled core, and then slip off the defective coils. The replacement coils consist of all windings assembled together with the necessary resistors and plate caps. Reassemble the new coils on the core sections and bolt the cores together. Where the two core sections are butted together, they must be squeezed during assembly so that as small an air space as possible is obtained. This can be best accomplished by clamping the two core sections together in a vise, then tightening the mounting bracket bolts.
The following stock parts have been added:

Coils listed for Models 820, 830, 805, 806, 807 , and 809 will replace only coils used on early production receivers.

General Electric 150

This model appears on pages 19.10 through 19-12 of Rider's Manual Volume XIX. The following replacement has been made in the parts hist:
Connecting pin SJS-008 for the loop antenna has been changed to RJC-001.

RCA 75X11, 75X12, 75X14. 75X15, 75X16

These models appear in Rider's Manual Volume XV'III on pages 18-49 and 1S-50.

In some chassis a substitute i-f transformer has been used in these models. An adapter plate is riveted to the chassis for mounting purposes. A mounting clip is used to secure the transformer to the mounting plate. The accompanying diagram illustrates the revised schematic.

The following have been added to the Parts List:
73935 Clip-Spring clip for mounting i-f transformers, type 970441
93036 Transformer-First i-f transformer, stamped 970441-1 (C6, C7, L6, L7)

 boost sales!

SERVICEMEN... DEALERS

Build your radio sales around this quality chassis.

NEW ESPEY model 511

AM-FM CUSTOM BUILT.
This profifable chassis replacement market means increased sales to you and increased savings to over 19 million potential customers.

- Here is a fine radio, in chassis form, to please the most discriminating music lovers.
- Easy to install in any console cabinet old or new, the Espey 511 AM-FM radio chassis embodies the latest engineering refinements for lasting high quality at a price that defies competition.

FEATURES

1. AC Superheterodyne AM-FM Receiver.
2. Improved Frequency Modulation Círeult, Drift Compensated.
3. 12 tubes plus rectifier and electronic Tuning Indicator.
4. 3 dual purpose tubes - added performance.
. Treble Tone Control.
5. 6-gang tuning condenser.

- Hili-range bass tone control

8. High Fidelity AM-FM Reception.
9. Is watt (maximum) control.
10. 13 watt (maximum) Push-Pull Audio Out1. 12 put.

12 inch PM speaker with Alnico V Mag. net 25 watts rating.
2. Indirectly illuminated Slide Rule diel.
13. Smooth, flywheel tuning.
4. Antenna for AM and folded dipole antenna for FM Reception.
5. Provision for external antennas
16. Wired for phonograph operation.

Multi-tap output transformer, 4, E, and 500 ohms.
19. Subject to RMA warranty, registered code symbol \#174.

SPECIFICATIONS

Model 511 chassis is supplied ready to oporate, complete with tubes, antennas, speakor and all necessary hardware for mounting In a table cabinet or console, including escutcheon. Power requirements $105 / 125$ volts AC. $50 / 60$ cycles. Power consumption- 85 watts.
Chassis Dimensions: $131 / 2^{\prime \prime}$ wide $x 1 / 2^{* \prime}$ high x lo deep.
Carton Dimensions: (2 units): $20 \times 141 / 2 \times$ $103 / 4$ inches.
Net Weight: $161 / 2$ pounds each.
Sold through your favorite parts distributor.
WRITE FOR CATALOGUE KDI2 CONTAIN. ING COMPLETE SPECIFICATIONS ON THIS AND OTHER MODELS.

Mokers of fine radios since 1928.
 528 EAST 72nd STREET, NEW YORK 21, N. Y.

NEED YOUR HELP

In order to be of service to you, the Rider library of electronic magazines, one of the most extensive in the country, needs the following back issues to complete our files. We will pay $\$ 1.50$ per copy. For the 1947 Volume of Transactions AIEE we will pay a reasonable figure - make us an offer. Send to John F. Rider Publisher, Inc., 480 Canal St., New York 13, N. Y.

| NAME OF MAGAZINES | MISSING ISSUES |
| :---: | :---: |
| Radio | Jan. 1922
 Aug., Sept., Oct. 1932
 Feb., March, Apr., May 1933 |
| Proceedings of The Physical Society | Vol. 51 Part 4. 1939 |
| Transactions AIEE | 1947 (Bound Annual Volume) |
| Journal Research of National Bureau Standards | Jan. 1949 |
| Nature (English) | $\begin{array}{rlrr}\text { No. } 4089 & \text { Mar. } & 13,1948 \\ 4092 & \text { Apr. } & \text { 3. } 1948\end{array}$ |
| | 4093 Apr. 10, 1948 |
| | 4096 May 1, 1948 |
| | 4097 May 8, 1948 |
| | 4108 July 24, 1948 |
| | 4112 Aug. 21, 1948 |
| ATE Journal
 Now (Broadcast Engineers Journal) | Feb. and March 1941 |
| Engineers Digest | Jan. and Feb. 1949 |
| The Engineer | Dec. 13, 1946 - Dec. 27, 1946 |
| Electrical Communication | July 1922 Oct. 1933 |
| | Oct. 1922 Jan. 1934 |
| | Jan. 1923 Apr. 1934 |
| | July 1924 July 1934 |
| | July 1925 Apr. 1935 |
| | Oct. 1925 July 1935 |
| | Jan. 1926 Oct. 1936 |
| | Oct. 1926 July 1937 |
| | Jan. 1928 Apr. 1938 |
| | Oct. 1929 Oct. 1938 |
| | Jan. 1932 Jan. 1939 |
| | Oct. 1932 Apr. 1939 |

The Eye-Stopper

By the time you receive this issue of successfil Servicing, you no doubt have displayed the eye-stopper in your shop window. To make this program effective, you should dress your window properly. Make it look neat-but above all, place in the window such items as are indicative of not only what you do-but how.

The number of articles in the window should be dependent on the scope of your activities and what you wish to stress. Select several items to push-or at least to attract the eye after the passerby has been drawn to the window by the stamp display. Use your window to associate ideas. It's impossible to put your entire stock on display and even if you did-there would be so much there that it would confuse the eye. If it:s radio receivers you wish to push -tie one or two of them into some featured program, for which you can get publicity pictures.
If it's service you wish to sell show the bottom of an elaborate chassis and indicate the work you did-that it is like the criginal-that it can't be told from the original. Naturally you will select a chas sis in which the wiring is most orderly. Give the public an idea of how many resistors, condensers-connections exist in a chassis-the possible number of places
where faults may develop. Seldom if ever does a set owner see the inside of his receiver.
Compare a large set with a small one. Give statistics. Tell the public the different kinds of substances which go to make up the parts in a receiver. The manufacturers of the components can furnish such information-in fact the tube manufacturers have released such data. Make the window interesting-but don't crowd it.

Rider Manual Volume 20

This manual now is in preparation and will be released with all pages in place sometime during the month of November 1949. Watch for nore detailed announcements.

Farnsworth 661-P

This model appears on pages 2-11,12 through 2-20 of Rider's TV Manual Volume 2. In the late production of these receivers, the width control has been removed. It was decided that removal of this control would not affect the operation of the receiver, since the control was operated at maximum width in all cases. The width is now a fixed value and the height as varied to obtain the correct aspect ratio. The over-all size of the picture can be varied by the tap adjustment on the power transformer.

High-Voltage Multipliers
 By HENRY CHANES

If a 20,000 ohms-per-volt meter or VTVM is available, it can bo adapted for measuring high voltages by the addition of high-voltage multipliers. These multipliers are large-value resistors which extend the range of the instrument by reducing the actual voltage that appears at the meter.

Fig. 1. Circuit showing the use of a multiplier resistance to extend the range of a d-c voltmeter.

This is shown in Fig. 1 where $R_{\boldsymbol{k}}$ is the input resistance of the meter and R_{P} is the resistance used to extend the range of the meter.

The physical position of the multiplier may be either inside the meter unit itself or outside the meter, usually built into a probe. The outside position of the multiplier is to be recommended since, in this case, only a small fraction of the high voltage being measured will be applied to the meter. No additional insulation problums will be introduced, as the voltage at the voltage at the meter itself will never exceed the voltage for which it was designed.

The proper value of resistance to be used for the multiplier depends on the particular meter used and the voltage range desired. The calculation involved in determining this resistance can best be shown by considering several typical cases.

First, let us consider the 20,000 ohms-per-volt meter. Most meters of this type have a high-voltage scale of 5,000 or 6,000 volts. It will be most convenient if the multiplier is designed so that a scale on the meter is multiplied by 10 or 100 rather than some odd number. When a reading is made, it will then merely be necessary to add one or two zeros to the reading obtained on the original meter scale. In the case of the meter with a 6,000 -volt scale, a multiplication factor of 10 will provide for high-roltage readings up to 60,000 volts. Although television sets at present do not use voltages higher than 30,000 volts, a 60,000 -volt range on the meter means that the meter will draw only 25 microamperes for a 30,000 -volt reading and less for smaller voltages. This is an advantage because more accurate readings are obtained with less loading of the circuit.

There is a limit to which the range of the meter can be extended in order to obtain a small current drain. This is the amount of deflection of the meter that
is obtained for low values of high voltage. For example, if the meter range has been extended to 60,000 volts and the meter is used to check a voltage of only 9,000 volts, there will still be sufficient deflection to provide a satisfactory reading. If voltages lower than 6,000 volts have to be measured, the original 6,000 -volt range on the meter can be used.

Coming back to the evaluation of the multiplier resistance, $\boldsymbol{R}_{\boldsymbol{P}}$ in Fig. 1, we will assume a 20,000 olms-per-volt meter with a range of 6,000 volts which is to be extended by a factor of 10 to read 60,000 volts full scale. The input resistance of the meter without the multiplier, R_{s}, is equal to $20,000 \times 6,000$ or 120 megohms. Similarly the input resistance of the meter with the multiplier, $R_{P}+R_{\boldsymbol{y}}$ will be $20,000 \times 60,000$, or 1,200 megohms. The multiplier resistance, R_{P}, is the difference between these two values and is equal to 1,200-120 or 1,080 megohins.

It should be noted that since the input resistance of the 20,000 ohms-per-volt meter changes with the different ranges of the instrument, the multiplier will provide the desired multiplying factor only on the range for which it was designed. This limitation does not apply to the VTVM type of meter, since the VTVM has a constant input resistance on all ranges.

In the case of a typical VTVM which has a high range of 1,000 volts, a multiplying factor of 10 will enable voltages up to 10,000 volts to be measured. To enable voltages up to 30,000 volts to be measured a multiplying factor of 100 should be used. Since this factor is good for all ranges of the VTVM, a meter that has ranges of $30,100.300$, and 1.000 volts before the multiplier is added will provide ranges of $3,000,10,000,30,000$, and 100,000 volts with the multiplier added. Together with the 1,000 -volt range in the VTVM itself a tremendous range of voltages can be measured with the addition of only one multiplier.
The evaluation of the multiplier resistunce for the VTVM is similar to that of the 20.000 ohms-per-volt meter except that the isolating resistor already in the lowvoltage probe has to be considered. The high-voltage probe containing the multiplier resistance will usually replace the low-roltage probe so that the 1 -megohm isolating resistor is no longer in the circuit. This will affect the calculation of the multiplier resistance as will be shown. The exact value of the input resistance and the probe isolating resistor for the VTVM must be known before the value of the multiplier resistance can be determined.

Let us consider a VTVM with a total input resistance of 11 megohms which includes the 1 -megohm isolating resistance in the low-voltage probe. For a multiplying factor of 100 , the total input resistance, $R_{P}+R_{x}$, has to be increased by this same factor. This will mean a total input resistance of 11×100 or $1,100 \mathrm{meg}$.
ohms. To find the value of the multiplier resistance, R_{s}, we subtract the meter resistance, R_{y} from the total input resistance of 1,100 megohms. If we are not going to use the low-voltage probe, we subtract only 10 megohms from this figure, since this is the resistance of the meter with the isolating resistor removed. This gives a value of $1,100-10$ or 1,090 megohms for the multiplier resistance. If we are going to use the low-voltage probe in series with the multiplier resistance, we subtract 11 megohms from the total R_{P} $+R_{4}$. This gives a value of $1.100-11$ or 1,089 megohms for the multiplier resistance. The current drawn at 30,000 volts will be 30.000 divided by $1,090 \times 10^{6}$ or 27.5 microamperes which is within the allowable current drain.

For the meter to have the same accuracy on high voltages as on low volt. ages, the multiplier resistance should have the same tolerance as the resistances used inside the meter itself. These are usually 1% resistors. That is, their actual value is $\pm 1 \%$ of their rated value. However, it may not be possible to obtain 1% resistors at the very high value required for the high-voltage multiplier. In this case a 2% resistor can be used without introducing objectionable error. If very accurate readings are not required, 5% resistors will do.

Another important characteristic of the roltage multiplier is its voltage rating. Since all but a small fraction of the high voltage appears across the multiplier, this resistor must be capable of withstanding this high voltage without breaking down. For television high voltages, this resistor will, therefore, have to be rated at 30,000 volts or better. A resistor of this kind is usually quite large and will probably have a high enough wattage rating. If desired, the power dissipated in the resistor can be calculated and compared with the power rating of a vailable resistors. In the last example given, that of the VTVM. if we assume that all the voltage appears across the multiplier (actually, all but 1% does), the power dissipated at the highest roltage to be measured, 30,000 volts. will be equal to 30.000 squared divided by $1,090 \times 10^{6}$ or about 0.83 watts.

Various high-voltage probes are commercially available which are specifically designed for most of the voltmeters in current use. These probes have the multiplier resistance built into the probe and have plugs that fit the meter for which they are designed.

RIDER MANUALS Mean SUCCESS

RCA Q109, Q109X.

Ch. RC-602, RC-602A
These models appear on pages 188 through $18-10$ of Rider's Volume XVIII. The following should be added to the parts list under Chassis Assemblies.
72996 Capacitor-molded paper, $0.05 \mu \mathrm{f}$, 600 v. (C53)
30787 Resistor-fixed composition, 47,000 ohms, $1 / 2$ w. (R26)

VERSATILITY...

Another Big

Feature of

The Mallory Midgetrol

The tremendous nation-wide demand for the Mallory Midgetrol is a result of definite advantages this amazing control has over all others. And one of the most important of these advantages is the remarkable versatility of the Mallory Midgetrol!
Yes, here is a precision control that will replace $11 / 8^{\prime \prime}$ controls in standard sets, as well as giving you a big new market in the popular smaller sets requiring a $15 / 16^{\prime \prime}$ control. Think what this means in profits for you, and...

LOOK WHAT THE MALLORY MIDGETROL OFFERS:

WIDER APPLICATION - The small size allows you to service portables, auto radios and small $A C$-DC receivers requiring $156^{1 / \prime \prime}$ controls.
SIMPLER INSTALLATION - The new and unique flat shaft design of the Mallory Midgetrol saves installation time with all types of knobs.
LESS INVENTORY-Electrical characteristics allow you to use the Mallory Midgetrol to replace $11 / 8^{\prime \prime}$ as well as $15 / 6$ " controls. Since no special shafts are required, you carry fewer controls in stock.

| NEW SIZE | NEW SHAFT | NEW SWITCH | NEW CONTACT |
| :--- | :--- | :--- | :--- |
| NEW DESIGN | NEW EXTENSION | NEW ELEMENT | NEW TERMINAL |
| | | | |
| | | | |

Don't Miss the Mallory Television Service Encyclopedia.
Get Your Copy From Your Mallory Distributor . . Only 35c!

Vol 10

-Suceacsul SERVICING

REG. U. S. PAT. OFF.
SEPTEMBER, 1949

No. 11

Dedicated to the financial and technical advancement of the Electronic Maintenance Personnel

Published by

JOHN F. RIDER PUBLISHER, INC.

480 Canal Street

JOHN F. RIDER, Editor
Copyright 1949, by John F. Rider
No portion of this publication may be reproduced without the written permission of the publisher.

CURTAIN TIME

Summer's End

Well, Labor Day has passed and with it the many activities of the summer, especially the week-end trips by drivers who care little for the lives of others and even less for their own. Many an innocent man, woman and child no longer is here because some madman decided to cut across a highway to buy peaches at a stand. If you get the leeling that we are voicing a personal grudge, you're right because we were forced off the highway on two occasions. We don't travel much on weekends in the summer, limiting our trips to a suburb of New York City, about 18 miles distant.

TV Receivers

Looks like the $10^{\prime \prime}$ tube receiver is on the way out. More than likely it will be supplanted by the $12^{\prime \prime}$ tube. Quite a few manufacturers have dropped the smal. ler tube from their lines. Everybody looks towards high TV receiver sales this falland suprising enough the sales of receivers during the summer months were not too bad. They were spotty as far as areas are concerned, but they were being sold just the same. This color business has stirred up a hornet's nest. Looks like the FCC will approve color, but we think that after that happens, the public will be advised that several years will elapse before color television will be available to the public. This is something you might bear in mind and get across to the public. If the public decides not to shave until color TV is available, the United States will be a land of flowing beards.

Intermission

There is a word we are learning to detest more and more each day. It is appearing three and four times during the video presentation of a movie, and it's beginning to get our goat. What makes it worse is that we like to watch cow operas and other movies, but these $\%$ S\#\&")' intermissions are a pain in the neck. We understand that TV transmission cannot be free of commercialism-but is it necessary to interrupt a movie every 15 minutes or so! We can understand intermission periods during a three act play, or even an inter-
mission at the middle of a movie-just when it looks as if the hero is being wounded (we know he will not be killed), but not three or four and even five times within 60 minutes! Please, Mr. TV broadcaster, have a heart! Isn't a commercial at the beginning, the mid-point and the end sufficient?

New Cathode-Ray-Tube Book

We're seeing daylight in the revision of the Cathude-Ray Tlbe at Work. Only a chapter or two remain to be completed, and then the new book is going to the printer. It's been a long grind, but I'm certain that everyone will feel that it has been worth waiting for. We can tell you that it will contain around 800 pages maybe 900 -each approximately 8×10 inches. This makes the new book about five times as large in contents as the old one. It is right up to the minute and has been written with certain specific aims in mind. It is intended to make every scope owner familiar with the equipment he owns, if it was manufactured at any time during the past 10 years. It is intended to show every scope user how to get the most out of his equipment, whether the device is in a service shop, school lab. oratory, or even research laboratory, because the chapters covering radio, scientific, and industrial applications total several hundred pages.

The fundamental theory of the cathoteray tube embraces hundreds of pages, so that every student, no matter what type of school he attends-whether college, commercial, or Armed Forces, will find data on the tubes and equipment he will handle explained in detail.

For the engineer, the chapter describing every scope and synchroscope made during the past 10 years, complete with 'schematic data and circuit analysis, as well as the applications of the devices in scientific and industrial applications, will prove a boon. The chapter on complex waveforms and their composition contains around 1.500 individual traces, each pattern individually identified with respect to amplitude and phase of the components.

It's an all-around book which will be found timesaving, informative and useful
to every user of the scope. And last but by far not the least, the coverage of the tube and its related circuits enbraces television too. Watch for the final announcement next month.

The TV Antenna Book

Every so often an individual relatively unknown to an industry writes a text book for that field which proves to be a classac. Such is the man, Arnold Bailey, who is preparing a manuscript on $30-1000 \mathrm{Mc}$ antenna practice and design. While it is broad in its coverage, it emphasises the television antenna. Most of the chapters are in the house and the writing and editing will be completed by the end of September. We say with pardonable pride that the answers to questions posed by the servicing industry in fringe and local areas relative to television antennas, will be found in this book. Believe us when we say that we are impatient to see it in final form, because we feel that it will take the servicing industry and the radio school fields by storm. There never has been a book like this one. The man who wrote it has 21 years of high frequency antenna design and practice in back of him. Above all, he possesses the faculty of making himself understood when he explains a point. It's a wow! We know you'll agree that every one of the 400 -odd pages is packed full of valuable and useful theory and practice.

HIWYNI

Have It When You Need It. This applies to every Rider Manual-TV, AMFM, and PA. It's your capital investment in your servicing business-just like your test equipment. Why fret and fume because data you need is not on hand? Get it now-don't wait. You can't go wrong with a Rider Manual.

Master TV Antennas

Master antemas for TV seem to be the thing among the apartments house owners. More and more of these system are reteriving a lavorable reaction from tenants. The general plan of charges is that a fee of from 50 to 75 dollars is charged cach user during the first year after installation; then an annulal maintenance fee of from 10 to 15 dollars per year is added to the rent as long as the TV antenna-outlet-equipped apartment is occupied; that is, if the outlet is used.

Johy F. Rider

RIDER MANUALS Meam PROFITS

Cover Picture

Illustrated on the front page is the mechanical calculator being installed by the Navy for use in guided missile computations. This calculator is capable of solving in one second a multiplication problem running into millions. A special building has been erected to house the 25 -ton machine which fills a room 50 by 80 feet. As many as 70 men were employed at a time on the complicated wiring and assembly of the machine which contains more than a million feet of wiring.

FIRST FIVE bOOKS IN YOUR RADIO LIBRARY

F-M TRANSMISSION AND RECEPTION

By Rider and Uslan
Fundamental Consideration: Frequency Modulation Essentials of F-M Transmitters Transmitters of Today
The Transmission of F-M Signal Receiving Antennas
The F-M Receiver
Alignment of F-M Receiver
Servicing F-M Receivers

UNDERSTANDING VECTORS AND PHASE

By Rider and Uslan
What Is A Vector?
The Coordinate System
Single Vector Representation
Multiple Vector Representation
Resolution of Vectors
Addition of Vectors
Subtraction, Multiplication, And Diviaion of Vectors
Radio Circuit Problems

TELEVISION_ HOW IT WORKS

General Aspects Of The Television Systom Frequency Characteristics Of The Television Signal
Television Receiving Antennas
R-F Amplifier, Oscillator. And Mixer Circuits
The F-M Sound Channel
The Video I-F And Detector Section
Video Amplifiers And D-C Restorers
Synchronizing Circuits
Sweep Circuits
The Picture Tube
Power Supplies
Alignment And Servicing

TV PICTURE PROJECTION AND ENLARGEMENT

By Allan Lytel
Properties Of Light; Reflection And Mirrorn Refraction And Lenses
The Television Picture
Commercial Applications Of The Modified Schmidt Projection System
Commercial Receivers Using Refractive Projection
Television And Motion Picturea

INSIDE THE VACUUM TUBE

By John F. Rider
Introducing The Electron
Electron Emission
Movement Of Charges
Space Charge And Plate Current
Fundamentals Of Tube Characteristia
The Diode
The Triode
Static Characteristics of Triodes
Triode Dynamic Characteristics And Load Lines
Dynamic Transfer Characteristice
Voltage Amplification
The Tetrode And Pentode Vacuum Tubes The Cathode Circuit
Power Amplitiers:
Miscellaneous Vacuum Tubes
ORDER FROM YOUR JOBBER OR FROM US

Stewart-Warner A51T Series
These models are the same as Model A51T1, appearing on pages $17-4$ through 17.6 of Rider's Volume XV'II. The code listings for these models are:

| Model | Code |
| :--- | :---: |
| A51T1 | $9020-\mathrm{A}$ |
| A51T2 | $9020-\mathrm{B}$ |
| A51T3 | $9020-\mathrm{C}$ |
| A51T4 | $9020-\mathrm{D}$ |

On chassis which have the letters H or R stamped on the rear surface adjacent to the model numbers, the rotor of the gang tuning capacitor is grounded instead of being connected to the AVC line. Oscillator coil 505397 (see uccompanying diagram) is used on chassis which are stampbed with the letters " S ", " H ", or " R ".

Oscillator coil for Stewart-W'arner A51T series.

Sears 8133

This model appears on pages 2-1 through 2.22,28,24 of Rider's TV Manual Volume 2. A limited number of these models were shipped from the factory with loose deflection yoke caps. This cap protects the highvultage terminals of the deflection coil and it is important that it be securely fastened to the deflection yoke housing. A good grade of paper cement can be used to fasten the cap securely. It is recommended that all deflection yoke caps be checked for proper bonding to the housing before servicing.

Rider's Big Nineteen!

World's Only Complete Radio Circuit Library 20 Years of FACTORY-AUTHORIZED DATA

19 Rider Volumes With:
27,900 Pages

FACTORY FACTS-Only when you have Rider's Manuals can you say that you have the service data issued by the manufacturer.

UNIFORMLY ORGANIZED Bound in Rider's standard looseleaf binder-rugged and wear resistant.

TIME SA VER-'Clari-skematix" - the breakdowns of hard-totrace multiband receivers, showing the wiring of each band.

WIDEST COVERAGE-Greatest number of models and chassis of receivers and record changers.

LOWEST COST - Rider Manuals deliver data at about a penny per receiver chassis.

SUPPLEMENTS - "How It Works" book accompanies Rider Manuals from Volume VIII, supplying valuable information on circuit innovations.

Vol. XIX 2122 Pages $\$ 19.80$
Vol. XVIII ... 2036 Pages $\$ 19.80$
Vol. XVII . . . 1648 Pages $\$ 16.50$
Vol. XVI 768 Pages $\$ 8.40$
Vol. XV 2000 Pages $\$ 19.80$
Vol. XIV . . . 1376 Pages $\$ 16.50$
Vol. XIII . . . 1672 Pages \$16.50
Vol. XII 1648 Pages \$16.50
Vol. XI 1652 Pages $\$ 16.50$
Vol X 1664 Pages $\$ 16.50$
Vol. IX 1672 Pages $\$ 16.50$
Vol. VIII 1650 Pages $\$ 16.50$
Vol. VII 1600 Pages $\$ 16.50$
Vol. VI 1240 Pages $\$ 12.50$
Vol. I-V Abridged
2000 Pages \$19.80
Order From Your Jobber

* Build Your ServiceSales Future on a Firm Foundation with....

...These 5 Matched "Precision" Instruments provide a Complete Modern Service Laboratory for TV-FM-AM at only moderate cost.

SERIES E-400 - Wide Range H.F. SWEEP SIGNAL GENERATOR Direct Reading from 2 to 480 MC. Norrow and Wide Band Sweep for F.M. ond Multiple Crystai Marker 8 tubes including

 Net Price:- $\$ 124.70$
Net Price:-\$124.70

SERIES ES-500-20 MV. High Sensitivity, Wide Range 5 inch C.R. OSCILLOGRAPH. V. Amp. Response to 1 MCI Low
 tubes incl. V.R. ond 2 rectifiorst1
Complete. with light shiold ond
 $141 / 2 \times 18^{\prime \prime}$. Net Price: $\$ 149.50$

SERIES E-200-C - Modern Multi-band SIGNAL and MARKER GENERATOR for A.M., F.M., and TV alignment.
Exceptianal Accuracy and Stability! 1000 pt . vernier colibroting scalel 0.100% Madulo-
 output cable and toch. manvol. in mothed output coble and foch. manuo.
heovy gouge cose $101 / 2 \times 12 \times 0^{\prime \prime}$
$\begin{aligned} & \text { heory gouge case } 101 / 2 \times 12 \times 6{ }^{\prime \prime} . \\ & \text { Net Price:- } \$ 67.25\end{aligned}$

SERIES EV-10-True Zero.Center VTVM - MEGOHMMETER with large 7" meter - plus complete $1000 \Omega / \mathrm{V}$. functions. 59 ranges to 6000 Valts, $2000 \mathrm{Megs}+,70 \mathrm{DB}$, 12 Amps - Valtoge Regulated bridge type
 RF probe. Complete with test cables. Matched heary gauge steel cabinat $101 / 2 \times 12 \times 6^{\prime \prime}$. Net Price:-\$89.95

SERIES 612-Modern Free-point Cathode Conductance TUBE TESTER and dynamic A-B-C Battery Tester. Incarparates RMA recommended circuit prin-
ciplosit 10 lever free-paint element selectian! ciplest io lever free-paint element selection tivity! Naise, Ballast and Pilat Tests! Com. plete, ready to aperate. in matched heavy
gouge steel cabinet $101 / 2 \times 12 \times 6^{\prime \prime}$ Net Price:-\$66.65

BUY PERFORMANCE — NOT SPECIFICATIONS

For over 15 years, "Precision" PERFORMANCE, ACCURACY, WORKMANSHIP and VALUE have set a standard of comparison...products of an organization whose sole efforts are concentrated exclusively in the design, development and production of the FINEST TEST EQUIPMENT...nothing else!

PANEL MOUNTS, PORTABLES, COUNTER TYPES

Most "Precision" instruments are available in various enclosure Mosles to suit your individual application, field or shop. WRITE OR OUR LATEST ILLUSTRATED CATALOG describing the full line of Precision quality test equipment for all phases of modern radio, television and communications.

SERIES TV- Super-High Voltage Safety Test Probes. Extends range of Series EV. 10 (abave) UP to 30 KV and oquipment. Multipliar, with fult safidges availy to aperata to match mast VIVM's ond 20,000 ohms/V. Tost sets. Net Price:-\$15.45
-.Precision" Porformance Engineared nstruments ore on display of leading
rodio parts ond equipment distributors.

- TV • AM • FM - TV • AM • FM • TV

Convenient "Precision" Purchase Terms con be orranged with your fovarite
authorized Precision Distributor.

TV : AM - FM • TV $\cdot A M \cdot F M$ - TV $=$

You can believe in signs, including the ones that say "Wholesale Only", when you see them on a NEDA Distributor's window. Your NEDA Distributor does a legitimate wholesale business, and stays out of your retail field. He is not the fellow who encourages YOUR customer to say " $/$ can get it wholesale." Through NEDA, his national association, he works actively to see that the industry's objectives get much more than lip service . . . and NEDA's good business practices mean the welfare of all. Make a point of dealing with the NEDA Distributor in your area and safeguard the profits of your own business at the same time.

Consult the list of NEDA members on the opposite page.

ALABAMA
BIRMINGHAM
James W. Clary Co.
MOBILE
Nelson Radio \& Supply Co.
TUSCALOOSA
AIlen \& Jemison Co.
ARIZONA
PHOENIX
Radio Parts of Arizona
ARKANSAS
FORT SMITH
Wise Radio Supply
IITLE ROCK
Southern Radio Supply
JEXARKANA
Lavender Radio Supply Co.
CALIFORNIA

GLENDALE
R. V. Weatherford Co.
LONG BEACH LONG BEACH
Scott Radio Supply
Scott Radio Supply
LOS ANGELES
Radio Products Sales, Inc. Universal Radio Supply Co. W. D. Brilt Co. Electric Supply Co. Wave Miller \& Co. E. C. Wenger Co.
SAN BERNADINO

Inland Electronic Supply Coast Electric Coast Electric Co
Electronic Equipment Distr. Associated Radio Distrs. C. C. Brown Co.
Kaemper-Barrett Dealer Supply Co.
San Francisco Radio \& Supply Co.
Wholesale Radlo \& Electric
Supply Co. Zack Radio Supply Zack Radio Supply
SAN JOSE Frank Quement, In
Carter W. Dunlap Wholesale Radio Co. COLORADO
PUEBLO L. B. Walker Radio Co. CONNECTICUT BRIDGEPORT Hatry \& Young
HARTFORD Hatry \& Young, Ine. United Radio Supply NEW HAVEN Hatry \& Young Thomas H. Brown Co. NEW LONDON Hatry \& Young Hatry \& Young Hatry \& Young
The Bond Radio Supply DISTRICT OF COLUMBIA
WASHINGTON WASHINGTON Capitol Radio Wholesalers
Kenyon Radio Supply Co. Kenyon Radio Supply Co.
Rucker Radio Wholesalers Rucker Radio Wholesalers
Silberne Radio \& Elec. Co. FLORIDA MIAMI
Electronic Supply Co. Werman Radio Supply Co. Waider Radio \& Appliance
ORLANDO
Radio Accessories Co. GEORGIA AUGUSTA Prestwood Electronics Co.
COLUMBUS Radio Sales \& Service Co. IDAHO
Craddock's Radio Supply
Kopke Electronics Co. ILLINOIS BELLEVILLE Lurtz Electric Co.
BLOOMINGTON
Alverson Sales Co. CHICAGO Allied Radio Corp.
J. G. Bowman \& Co. d. G. Bowman \& Co.
Chauncey's, Inc. The Lukko Sales Corp.

 Radio Electronic Sales Co. Radio Maintenance Supply

 Radio Parts Co. Walker-Jimieson, Ine. MOLINELofgren Distributing Co. Herberger Radio Supply
ROCK ISLAND ROCK ISLAND
ri-City Radio Supply SPity Radio Supply
SPRINGFIELD Wilson Supply Co. RNDIANA CROWN POINT
Hub Appliance \& Supply Co
FORT WAYNE
Pembleton Laboratories
HAMMOND
Stanton Radio Supply
INDIANAPOLIS Van Siekle Radio Supply Co. 10WA
COUNCIL BLUFFS
World Radio Laboratories DAVENPORT
MIdwest-Timmerman Co.
DES MOINES DES MOINES Gifford-Brown, inc.
Iowa Radio Corp. Iowa Radio Corp.
Radio Trade Supply Co DUBUQUEP
Boe Distributing Co.
FORT DODGE
Ken-Els Radio Supply Co -Els Radio Supply
SIOUX CITY
Duke's Radio Co. Duke's Radio Co.
WATERLOO Ray-Mac Radio Supply KANSAS TOPEKA
The Overton Electric Co.
WICHITA WICHITA
Interstate Distributors, Inc. KENTUCNY EXINGTON
Radio Equipment Co. LOUISVILLE Peerless Elect ronic
Equipment Co.
Universal Radio Supply Co. LOUISIANA ALEXANDRIA Central Radio Supply LAFAYETTE Radio Electronic Supply LAKE PROVIDENCE F. H. Schneider \& Sons MONROE Hale \& McNeil NEW ORLEANS Wm. B. Alten Supply Co. Columbia Radio \& Supply Co
Shuler Supply Co. Shuler Supply Co.
Sout hern Radio Supply Co.
SHREVEPORT SHREVEPORT
Koelemay Sales Co MAINE Radio Supply Co., Inc.
Maine Electronic Supply MARYLANO BALTIMORE Kann-Ellert Electronics, Inc. Radio Electric Service Co.
Wholesale Radio Parts Wholesale Radio Parts
HAGERSTOWN Zimmerman Wholesalers MASSACHUSETTS BOSTON
De Mambro Radio Supply Co. Hatry \& Young of Mass., Inc. A. W. Mayer Co. The Radio Shack Co
BROCKTON Ware Radio Supply Co. CAMBRIDGE Electrical Supply co
LAWRENCE Hatry \& Youn MELROSE Melrose Sales Willett Radio Supply, Inc. NEIV BEDFORD
C. E. Beckman Co

Pittsfield Radio Co ROXBURY Gerber Radio Supply Co. SPRINGFIELD Hatry $\frac{\&}{8}$ Young T. F. Cushing
Springfield Radio Co.. Inc.
Springfield Sound Co.
MIENIGAN
ANN ARBOR
Wedemeyer Electronic
Supply Co.
BATILECREE
Electronic Supply Corp.
DETROII
M. Nuffy \& Co.

NOETH CARORINA

ASHEVILLE
Freck Radio \& Supply Co.
Long's Distributing Co.
CHARLOTTE
Radiotronic Distr.' Inc.
GRENSSOORO GREENSBORO hannesen Electric Co., I
GOLDSBORO
Signal Radio Supply
RALEIGH
Carolina Radio Equipment
Southeastern Radio Supply
WILMINGTON
WILMINGTON
French Radio Co.
Dalton-Hege Radio Supply
Lambeth Electric Supply Co.
Noland Co., Inc.
NORTH DAKOTA
FARGO
Dakota Electric Supply Co.
OHIO
AKRON
The Sun Radio Co.
ASHTABULA
Morrison's Radio Supply
CINCINNATI
Chambers Electronic Supply Herrlinger Distributing Co. Radio \& Refrigeration Supply Co.
The Schuster Electric Co. United Radio, Inc.

CLEVELAND
Radio \& Electronic Parts Corp. Winteradio, Inc. COLUMBUS Electronic Supply Co. Hughes-Peters, Inc. Thompson Radio Supplies Whitehead Radio Co. DAYTON Srepco, Inc
Lima Radio Parts Co. TOLEDO
Toledo Radio Specialties Warren Radio Co.
YOUNGSTOWN YOUNGSTOWN Ross Radio Co.
ZANESVILLE
Thompson Radio Supplies
OX1AHOMA
OKLAHOMA CITY
Miller Jackson Co., Inc. TULSA
Patterson Radio Supply Co.
$S \&$ Radio, Inc.

OREGON EUGENE
Carlson, Hatton \& Hay, Inc.
Verl G. Walker Co.
PORTLANO
Bargelt Supply
Bargelt Supply
Stubbs Electric Co.
United Radio Supply, Inc.
PENNSYIVANLA
ALTOONA
Hollenback's Radio Supply BETHLEHEM
Buss Electric Supply
J. V. Duncombe

Jordan Electronic Co.
Warren Radio, Inc
HARRISBURG
HARRISBURG
Radio Distributing
JOHNSTOWN
Cambria Equipment
PHILADELPHIA
A. C. Radio Supply Co.

Allied Electric Appliance Parts, Inc.
Almo Radio Co.
Barnett Brothers Radio Co.
Consolidated Radio Co.
Emerson Radio of Pa., Inc.
Herbach \& Rademan, Inc.
Nat Lazar Radio Co.
M\& H Sporting Goods Co.
Radio Electric Service
of Pa., Inc.
Raymond Rosen \& Co
Eugene G. Wile
Cameradio Co.
John Marshall Co.
Radio Parts Co.
Tydings Co.
ST. MARYS
B \& R Electric Co.
Scranton Radio \& Televison
WILLIAMSPORT Williamsport Radio Supply
J. R. S. Distributors
York Radio \&

York Radio \&
Refrigeration Parts
SOUTH CAROLINA
COLUMBIA
Dixie Radio Supply Co.
SOUTH DAKOTA
SIOUX FALLS
Power City Radio Co.
Warren Radio Supply
WATERTOWN
Burghardt Radio Supply

TENNESSEE
CHATTANOOGA
Curle Radio Supply
JACKSON
K. Rush Co.
KNOXVILLE
Chemcity Radio \& Electric
Roden Electrical Supply Co.

MEMPHIS
Bluff City Distr. Co., Inc Boyd Electronic Supply NASHVILLE Electra Distributing Co.

TEXAS
AMARILLO
R\&RElectronic Co.
West Texas Radio Supply
AUSTIN
The Hargis Co.
BEAUMONT
Montague Radio Distr. Co.
CORPUS CHRISTI
Electronic Equipment a
Eng. Co.
Wicks-DeVilbiss Co.
All-State Distributing Co.
Crabtree's Wholesale Radio
Ra-Tel, Inc.
Wilkinson Brothers
FORT WORTH
Electronic Equipment Co.
Fort Worth Radio Supply Co.
Fort Worth Radio Supply Co.
Bill Sutton's
Wholesale Electronics
HOUSTON
R. C. \& L. F. Hal!, Inc.

Sterling Radio Prod
LUBBOCK
R. \& R. Supply Co., Inc.

Mission Radio, Inc. WACO
The Hargis Co., Inc.
Clark \& Gose Radio Supply
Mooney Radio Supply Co.

VIrGinia

DANVILLE
Womack Electric \& Supply
Ashman Distributing Co.
Radio Parts Distributing Co.
Radio Supply Co
RICHMOND
Johnston-Gasser Co.
Winfree Supply Co.
ROANOKE
H. C. Baker Sales Co., Inc.

Leonard Electronic
Supply Co.
WASHINGTON
BEILJNGHAM
Waitkus Supply Co.
Waitkus Supply Co.
SEATTLE
General Radio Inc.
Harper-Meggee, Inc.
Seattle Radio Supply, Inc
Herb E. Zobrist Co. SPOKANE
Columbia Electric \& Mfg.
TACOMA
C \& G Radio Supply Co.
Wible Radio Supply
YAKIMA YAKIMA
Lay \& Nord

WEST YIRGINIA

BLUEFIEID

Whitehead Radio Co., Inc.
CHARLESTON
Chemeity Radio \& Electric
HUNTINGTON
Electronic Supply, Inc
King \& Irwin, Inc
Randle \& Hornbrook
WISCONSIN
GREEN BAY
Northern' Electrical Dist.
Radio Distributors
Radio Oistributors
Satterfield Radio Supply
MANITOWOC
Harris Radio Corp.
MILWAUKEE
Acme Radio Supply Corp.
Aeme Radio Supply Corp.
Central Radio Parts Co.
Central Radio Parts Co.
Electro-Pliance Distrib.
Marsh Radio Supply Co.
Radio Parts Co., Inc.
RACINE
Standard Radio Parts Co. WAUSAU
Radio Service \& Supply
WYOMING
CHEYENNE
Houge Radio \& Supph

Philco 48-1001 Code 122

This model is similar to the Philco 48-1001 Code 121 appearing on pages 2-81, 82 through 2-86 of Rider's TV Manual Volume 2. It also incorporates the changes given on page 14 of the April, 1949 issue of Successfll Servicing and page 8 of the May, 1949 issue.

The following changes have been made in Code 122:
Section 1
The a-c power line has been connected directly to transformer T100 instead of to pins 4 and 10 of the a-c interlock.

Fig. 1. New discriminator transformer and associated circuit for Philco 48-1001.

Section 2

Refer to Fig. 1. $Z 202$ has been replaced by a new discriminator transformer, part number 32-4317. Balancing choke, L204, part number 324143-1, has been removed. The $5-\mu \mu \mathrm{i}$ capacitor, connected from the plate of the second a-i- f^{*} tube (7 H 7) to ground, has been removed.

Capacitor C208, $0.001 \mu \mathrm{f}$, part number 45-3500-5, has been added between pin 3 of the second a-i-f tube and ground. L202C, part of Z202, has been added. C202A, $100 \mu \mu \mathrm{f}$, part of Z202, has been removed. Balancing capacitor, C202C, part of Z202, has been removed. C202B, $10 \mu \mu \mathrm{f}$, part of Z202, has been changed to $20 \mu \mu \mathrm{f}$, and resymbolized C202A.

C206, 0.001μ, part number 45-3500-5, was removed from the cathode (pin 7) of the second a-i-f tube, and connected as shown in Fig. 1. R222. 47.000 ohms, part number 66-3473340, was added. See Fig. 1. R223, 47 ohms, part number $66-0473340$, was added. See Fig. 1.

R219, 3,300 ohms, part number 66. 2333340, was changed to 1.200 ohms, part number $66-2123340$. R209, 27,000 ohms, part number 66-3273340, was changed to 10,000 ohms, part number 66-3103340. R210, 27,000 ohms, part number 66-3273340, was changed to 10,000 ohms, part number 66 3103340.

Section 5

See Fig. 2. C509, coupling capacitor, $0.25 \mu \mathrm{f}$, part number 61-0125, was changed to $0.1 \mu \mathrm{f}$, part number 61-0113. The connection of the vertical deflection yoke, P9 and P3, were changed to 4 and 5, respectively. Rj49, linearity-control limiting resistor, 6,200 ohms, was changed to 33,000 ohme, part number 66-3333340. R545 and R546, horizontal linearity controls No. 2 and No. 3 were removed. The circuit was rewired as shown in Fig. 2.

R548, beam-bender control, was removed.

Fig. 2. Changes in wiring output circuit in Philco 48-1001.

Z502, beam-bending coil assembly (including L.502A and L502B) was removed. A permanent-magnet type of beam bender (BB500), part number 76-3913, was added.
J500, chassis receptacle (deflection-yokecable connector) 11. pins, part number 27 6229 , was changed to 8 pins, part number 27-6174-4. P500, deflection-yoke-plug connector and cable, 11 pins, part number 41. $3 \overline{6} 64-1$, was changed to 8 pins, part number 41-3860.
*a-i-f means audio i-f.

RIDER TV MANUALS YOLUMES

Rider Diagram Service

Are you taking full advantage of the Rider Diagram Service?
If you require service data on a new receiver, you can obtain the information from us. Naturally, a time lag exists between the publication of the volumes of Rider Manuals and it is to fill this gap that we have this service, so that you may have whatever you need in the way of service data as yet unpublished. The charges for this service are as follows:

1. 35 cents is the charge for all the available data on any radio receiver model up to and including six pages. Each page thereafter will cost 10 cents.
2. If additional money is required to cover the data requested, you will be notified. We cannot forward data without receiving your remittance.
3. Service data on television receivers may be obtained at costs varying from 35 cents to $\$ 1.50$. It is suggested that you inquire the cost before sending us a remittance for television data.
4. Be sure to enclose a self-addressed envelope bearing a 3 -cent stamp.

If you will follow these rules, it will simplify matters for both of us and you will receive the data you need with a minimum of delay.

Zenith 6R886Z, Chassis 6E02Z

Model 6R886Z is the same as Model 6R886 which appears in Rider's Manual Volume XVII, pages 17-16 and 17-17. except that a tone control has been added, as illustrated in the accompanying diagram.

The following parts were added:
S-14667 Dial pointer and pulley assy.
S-14670 Tone control brkt. and lug ascy.
12-1490 Cover plate support
$22-827 \quad 0.1 \mu \mathrm{f} 200 \mathrm{v}$.
46-688 Tone control knob
57-1398 Escutcheon
63-1653 Tone control
78-793 Socket-octal tube
85-438 Phono-Radio switch
125-66 Rubber grommet
16641 Rubber bumper
18834 Retaining ring.

3 Minutes of TV for a Nickel

According to GE, a luncheonette in Hoboken will furnish 3 minutes of TV viewing for five cents. Individual coin operated TV receivers are located in the booths. Each machine will accommodate up to a quarter, which means fifteen minutes of viewing.

Just a matter of opinion-

Rider TV Manual Volume 3

('ontinued from proge 1)
facturer's name will appear next to the page number, which will be located on the top of the pages, thus making it easy to find the required page. Because each printed page contains the equivalent of two of the regular-size pages used in TV Volumes 1 and 2, it will be easier to follow the text instructions and there will occur less frequent need for turning pages in order to correlate text and diagrams.

The use of a single fold for giant-size pages will make the hundling of the manual very much easier. Because the multiplefold pages have been eliminated, the other pages will lie better within the binder. By making the binder slightly larger in capacity than is required to accomodate the number of pages, the opened manual will lic substantially flat.

The increased size will be no incon. venience on the service bench. This has been surveyed and the response was 100% for the new size among service shop, owners. It means of course that shelf dimensions will have to be increased to accommodate the new TV series, but since it is only for the TV manuals, that will impose no hardship on the service shop owner. 'The regular series of AM.FM and PA Rider Manuals will be in the same size as heretofore.

So we have finally solved the unbound page problem in Rider Manuals. Naturally we cannot effect a change in all existing manuals at one time. It will be a progres: sive change as time passes. Please bear with us on the existing Rider TV Manuals Volumes 1 and 2. They contain unbound pages which must be put in place. They are not too numerous, and at first glance the task sppears much greater than it really is. At any rate, you now know that henceforth, beginning with TV Volume 3, ali pages will be in place. Thanks for your consideration in the past and you can rest assured that Rider Manuals will continue rendering service.

The new TV Volume 3 will be ready for publication in November, perhaps sooner. The exact publication date will be announced in the October issues of Successful Servicing and other publications. The AMFM Rider Manual Volume 20 will also be ready around November, 1949. Watch for announcements.

RCA 8X53, 65X1, 65X2, RC-1064

Model 8. 53 appears on pages $15-\frac{1}{1}$ and 18.42 of Rider's l'olume XV'II and Models 65 X 1 and 65 N 2 appear on pages $15-61$ and 15-62 of Rider's Volume XI'.

The number of turns of dial cord on the tuning shaft has been increased from $2-1 / 4$ turns to $3-1 / 4$ turns.

RCA Radiola 75ZU (Blonde)

This model appears in Rider's Manual I'olume XIX on pages 19-45 and 19-46.

The following have been added to the parts list for instruments using bloade mahogany cabinets:
73722 Knob-Power-Phono-radio switch knob-for blonde instruments

ADDITIONAL
IMPORTANT
FEATURES
4. Self.contained power supply opurating from 115 rolt. 60 , cycle AC power lins.
2. On-off switch allows boosfer to be switchet in or out of the cinctut al will.
Recessed pilot light inidy. cates when booster is on:
4. Beautiful, furniture-finish mahogany cabinet $181 / 2^{\prime \prime}$. widq $\times 61 / 2^{\text {me }}$ high x 7\%" deep) to complemunt fin home furnishings.
5. Simple to install and op-erafe-camplett instruce tions with each unit.

ASTATIC RESEARCH - which has led the march of progress in various sound reproduction fields since the company first pioneered in crystal microphones, phonograph pickups, cartridges, parts and accessories now brings major new advantages in reception and tuning to the television field. The new Astatic device which makes it all possible is the Channel Chief, Model AT-1, a radically improved type of television booster. The common failing of many boosters - showing a "peak" on some channels and "fall-off' on others-has been eliminated. The Channel Chie! provides extremely high gain - equivalent of two conventional boosters - uniform on all 12 television channels. Its dual controls allow separate tuning of picture and sound, with no sacrifice of one for the other. Or, it one signal is weak and the other adequate, both controls may be adjusted to the weaker to bring it in strong. A variable gain control permits reduction of signal strength to prevent picture distortion when the signal input is greater than that required for good definition. Altogether, the results are the considerable extension of fringe areas. good reception in areas previously rated as unsatisfactory. easier tuning and added selectivity on any receiver, elimination of the need for expensive outdoor antennas within service areas. The increased selectivity serves to reduce drastically, or eliminate, interference from adjacent channels, amateur and commercial fundamentals and harmonics in the receiver's I.F. range. FM stations and oscillators of nearby FM. TV and short wave receivers. No other booster can do so much . . . for your installation and service business, for the televi. sion receiver owner. Write for added details.

73629 Knob-Tuning Knob-for blonde instruments
73630 Knob-Volume Control Knob-for blonde instruments

Sears 8133. Serial Less Than BO8T-3378

This model appears on pages 2-1 through 2-22.23,24 of Rider's T'V Manual Volume 2. For a time these models were produced with less than normal sensitivity, because the alignment and checking equipment at the source had drifted, and the drifting was unnoticed. This drifting caused a slight misalignment of all chassis produced at that time.

Complete realignment of the receiver is not recommended, since it is not neces-
sary. A slight retouching of the i-f trimneers on both the video and sound channels is all that is necessary. Since the bandwidth was not affected by the drifting of the alignment equipment, this misalignment is not detrimental where the receiver is located within approximately 15 miles oi the transmitting station.

General Electric 233, Kaiser-Frazer

This model appeurs on pages $18-29$ through $18-96$ of Rider's Manual Volume XVIII. The following changes in production wiring should be noted in the schematic diagram:

Capacitor C28 has been changed to the left side of switch, S1, at the junction of C27 and the switch connection. The ground lead of C28 is connected to chassis ground.

RCA 8R71, 8R72, 8R74, 8R75, 8R76. 8V90, 8V91

Models 8R71, 8R72, 8R74, 8R75, and 8R76 appear in Rider's Manual Volume $X I X$ on pages $19-10$ through $19-15$ and Models 8 V 90 and 8 V 91 appear in the same Volume on pages 19-16 through 19-25.

To insure greater oscillator stability a support has been added for the f-m oscillator coil as illustrated in the accompany. ing diagram. Adjustment of the coil is

A support has been added to insure greater oscillator stability for the f.m oscillator coil for the RCA Models $8 R 71,8 R 72,8 R 74$, 8R75, 8R76, 8V90, 8V91.
made as described in the Service Data. After adjustment the coil is cemented to the coil support.
The following is added to the parts list: 74202 Support-Polystyrene coil support complete with mounting bracket.

Hoffman C501 and C511. Chassis 108
These models are the same as Model A501, Chassis 1085, appearing on pages $15-6$ through $15-10$ of Rider's- Volume XV, except that four 6K6 beanl-power tubes are used in push-pull parallel in the output stage instead of the two push-pull 6 V 6 's. The change is indicated in the accompanying diagrams. The alignment is still the same as given on page 15-9.
The parts list should be changed to read as follows:

Symbol

C47, C23, C24
C28, C32
C29, C30
C41, C46
C42, C44
R2, R17
R3, R27
R11
R12, R18
R23
R28
R13, R14, R24

RIDER MANUALS KEEP MPTO DATE

Rider TV Manual Volume 3

This manual now is in preparation and will be released in the new enlarged size with all pages in place sometime during November, 1949. Watch for more detailed announcements.

Sound Advice From One Serviceman To Another!

John F. Rid Street
480 Canal Sire N. Y. New York 13. N. . Rumors are runadiomen who have gonean well belleve just beginning to pulrest. a do death. and a half I I think Dund since the mactically starving after a year a red ink poine customer. to take am an ex G.1.. and part of thash-on-the-1ine would like to tips to away from the me as a good probably tment to pass on so radio away. still list rumors are probepartment date entering the above-mention your advert or who contemplay in or good advanti.'s who are ne
ex G.I.' repair business. A man entering radio radio, adequalence library cannot tough jobs are working ke IIbRARY. That gi, the mean REFERENCE much, becaus that library. dependent on radio wrect those radios ranges in depen there are quite a found for setting has made changer all Unfortunately they that I have if the manufacturs. In most cases acording only compof Rider's manualse are included in the radio re-asse
the set, those chang be discarded and mach to do with other changes to schematic. The SPEED with which repal speedy repal done on his rathe information on income. In the is PLEASED with the Rider's manuals give mean pleased customers. in A customer who price for it. if used will mean means extratisfactory you paying a good radio made and evouth advertis that proves. nearly everness and word-onscientious wad advertising. your poct both repeat bus mill gid manuals, are that many or There are many shops operating the business. a complete semers io in especially tru will find that ance between success biference who the newcomers mean the dilfore nell some of the boys also manual business. written this with the hope hair is ler of I have busy pulling out will serve to our business. are busy pult that it iliter name to - Iork and thus give a betters truiy.
A. E. MCCORKLE
"HIHYNT"
This is not a code. It is simply an abbreviation of a very important condition in the operating life of a sery. ice shop. HIWYNI means HAVE IT WHEN YOU NEED IT. It applies to many things. but especially to RIDER MANUALS. Make sure that you have a complete library of RIDER MANUALS on hand at all times.

NOTE: Are you recelving your copy Rlder's amp publication if It' to every serviceman. In it you will And all of the circuit thanges in

NOTE: The Mallory Redio Sorvice Enneyetopedia, 6th edititon, makes reference to only one source of radio recoiver schematics - RIder Man. uals. ANOTHER NOTE The C.D Ing. 1948 edifion No. 4. makes reference to only one source of re coiver athematics-Rider Manuals.

These RIDER books are the result of twenty years of specialized publishing for the Radio Servicing Industry

JOHN F PIDER PUBLISHER INC * Export Agent: Rocke International Corp.. 13 East 40 th Stroot, New York city

RCA 9W101, 9W103, 9W105

These models appear on pages 19.95 through 19-44 of Rider's Manual Volume $X I X$.

A capacitor ($150 \mu \mu \mathrm{f}-\mathrm{C} 44$) has been added between the screen grid terminal of V8 (6V6GT) socket and chassis as shown in the accompanying illustration. This was

Ompent Twbes Circwit Pickmp Arm Cable Models 9W101, 9W103. 9W10s
done to eliminate spurious audio oscillation.

The simplified schematic diagrams (phono position) on page 19.39 show C34 and C56 connected to ground. They should be shown connected to the cathodes of the 6V6GT tubes as shown in the accompanying illustration.

To improve f-m stability one dial lamp is now connected to pin \#2 of V9 (6X5GT). Previously both were connected to pin \#2 of V8 (6V6GT).

Speakers stamped $92569-1 \mathrm{WX}$ have been used as a substitute for $92569-5 \mathrm{~W}$ speakers in Model 9W101; 92569-1WX speakers have a 2.2 -ohm voice coil; $92569-5 \mathrm{~W}$ speakers have a 3.2 -ohm voice coil.

The following additions have been made to the parts list:
48125 Capacitor-Ceramic, $150 \mu \mu \mathrm{f}$ (C44)
Same as C7, C19, C38, C50, C53
13867 Cap-Dust cap
36145 Cone-Cone and voice coil assembly
5039 Plug-4 prong male plug for speaker
71145 Suspension-Metal cone suspension
37899 Transformer-Output transformer (T3)
Note: When replacing complete speaker order Stock No. 73635 ($92569-5 \mathrm{~W}$).
37396 Grommet-Rubber grommet for mounting speaker (3 required)-for Model 91V103
73896 Loop-Loop antenna complete for Models 9 W 101 and 9 W 103 (previously listed for 9 W101 and 9 Wi05).
The RP-168A-1 record changer pickup arm cable now being used is a three wire cable (REI)-WHITE-BLACK). In some instruments the black wire is omitted or a shielded wire may be used as shown in 9W101. 9W103, 9W105 Service Data. The latest connection diagram is shown in the accompanying illustration.

RCA 8X71, 8X72

These models appear on pages 19-50 through 19.34 of Rider's Manual Volume XIX. A capacitor ($0.01 \mu \mathrm{f}$-C38) has been added between pin \#3 of V'6 (35C5) and chassis. The revised heater connection

Hecter Connections-Models. 8X71, 8X72
schematic diagram is illustrated in the accompanying diagram.

The following have been added to the parts list:
71923 Capacitor-Tubular. $0.01 \mu \mathrm{f}, 200 \mathrm{v}$. (C38) same as C23, C36.

RCA 612V1, 612V3, 612V4

These models appear in Rider's Manual Volume XV'II on pages 17.31 through 17-43.

Add the following to the parts list:
72119 Escutcheon-Escutcheon only - less screen, window and marker stripsfor blonde instruments.
Change 71868 Frame in the parts list to read
71868 Frame-Rollout carriage frame with brackete-less wheels.
The parts list for these models applies to Model 612V4 also except for the following miscellaneous parts:
73719 Back-Cabinet back - blonde - for sides-2 required
73720 Back-Cabinet back - blonde - for center
X1825 Cloth-Grille cloth—for 612 V 4 blonde
The RP-176A record changer ined.

General Electric 810, 814

Model 810 appears on pages 2-22 through 2-43 of Rider's TV Manual Volume 2 and Model 814 on pages 2-4.4 through 2-57,58 of the same Volume.

The color code shown on the horizontal sweep output transformer, T17, on Model 810 was shown in error on the schematic diagram of the service notes. No replacement transformers have been shipped having the code shown. The Model 814 service notes do not show the color code on the service note schematic.
The following is the correct color code as it appears for all replacement sweep transformers as used in these models:

Primary Winding
 B+ Return
 Color Code
 Secondary Winding
 5V4G Plate
 White Dot
 Junction of B+ and I.18
 Blue Dot

All other leads are identified physically, either by the tube caps assembled thereon, or by their lead length.
Audio clicks heard when the volume control is moved past the tap or at maximum volume setting when operating in a high channel can be cured by redress of the audio shielded leads and placement of components. To make these changes proceed as follows:

Remove the two shielded audio leads from under the cable clamp which is located on the side chassis apron above the 2 nd audio i-f transformer. These audio leads are then dressed out of this clamp so they will be spaced approximately
$1 / 8$-inch away from the chassis side apron.
The three paper capacitors ($\mathrm{C} 87-0.01 \mu \mathrm{f}$, $\mathrm{C} 74-0.01 \mu \mathrm{f}$, and $\mathrm{C} 76-0.02 \mu \mathrm{f}$) mounted on the left apron terminal board must be dressed down close to the side apron, as far away as possible from the head-end unit.

General Electric 233, Kaiser-Frazer

This model appears on pages 18-29 through $18-36$ of Rider's Manual Volume X'IIII. In cases where the volume and tuning control shafts appear too short to acconodate the shaft parts and knobs, a formed lip which is bent forward in the escutcheon opening of the instrument panel will be found to obstruct receiver installation. This lip may be removed by either filing or bending it back.

In instances where the hole for the receiver mounting bracket has not been accurately located, it is possible that the receiver is positioned a bit too far toward the front of the car to allow the receiver control shafts to come through instrument panel holes to their maximum extent. If the "knock out" hole for the mounting brackets screw must be drilled, make certain it is accurately positioned.

In case of pushbutton sticking, check for and remove any burrs from the bottom of the cast grille for pushbutton openings. A binding tuning shaft will also cause the pushbottons to stick or fail to return to their normal positions. To clear shaft from binding, enlarge the tuning shaft opening using a reamer, or a rat tail file.

If the receiver is dead, check installation wiring to make certain the correct lead is connected to the ignition and instrument light switch respectively. If the receiver lead that should go to the instrument light control is connected to the ignition switch, the receiver will not operate though pilot lamps will light.

Check the loudspeaker plug connection. Though the pligg pin receptacles in the speaker lead connector are arranged in such a manner to be polarized, it is often that the operator neglects to align the receptacles with respect to the male plug pins at the speaker. Forcing together of the incorrectly aligned parts is liable to cause the male pins to break through into the thin walls of the non-conducting adjacent holes of the speaker plug. resulting in open circuit wiring to the loudspeaker.

Exposure of the radio receiver to such dampness as water drain-leaks upon the receiver components and wiring, results in voltage breakdown at tube sockets (especially the 656 output tubes), or the shorting of capacitors and resistors. The r-f trimmer strip at the center of the receiver will also be affected. causing the radio to become weak or dead. Water leaks around the windshield, and screw head holding the set mounting bracket to the cowl should be well sealed against water draining upon the receiver. A thorough check for probable leaks and the necessary steps taken to prevent their occurrence should be taken at the time of the initial radio receiver installation.

A lower than normal battery voltage can be the cause of the radio to be weak or fail to operate. The receiver will not function nroperly if the battery voltage meacures less than 5.8 volts.

If anything goes wrong in a set, after you have serviced it, the customer expects you to repair it free-for-nothing. And even though the trouble may not be related to any work you have done, you usually make good in order to preserve customer good will.

Dial Lamps are a frequent cause for call-backs. They seem to have the unexplainable habit of letting go after every other circuit in a set has been put in good shape. Then too, when a lamp filament deteriorates, it may cause an overload on a tube filament.

It is good practice to renew the Dial Lamps in a set when you are doing other service work.

A lamp only costs a few cents and the customer is always willing to pay for it especially if you return the old lamp as evidence of the renewal. Make all replacements with TUNG-SOL Lamps. They are the recognized top quality lamps of the industry.
tung-sol lamp works inc., newark 4, N. J.

Send for the "TUNG-SOL Technical Data Book". It is a valuable aid ta trouble-shooting. You will find its 400 pages to be an up-fo-date source of information on types of lubes, both new and old, and their characteristics. In addition to written descriptions there are diagrams, graphs and curves for at-a-glance reference. Price $\$ 4.75$ delivered.

SALES OFFICES: ATLANTA - CHICAGO • DALLAS • DENVER - DETROIT • LOS aNGELES • NEWARK ALSO MANUFACTURERS OF MINIATURE INCANDESCENT LAMPS, ALL-GLASS SEALED BEAM HEADLIGHT LAMPS AND CURRENT INTERMITTORS

JFD Conicals. Superior Conicals. More powerful Conicals. More economical Conicals . . . to fill any and all of your TV antenna requirements. The largest and most complefe line in the whole, wide world. You'll do befter with JFD . . . befter in sales, betfer in customer satisfaction, befter in profit! Here are some of the more popular models:

TA 160
"D-Xer"
ALL BAND CONICAL
Channels 2 to 13 and FM. Outstanding performance at a price that's right.

Less Mast, LIST $\$ 1395$
TA 161 "Double D-Xer" STACKED ALL-BAND CONICAL. Exceptionolly high DB gain on oll channels. $1 / 4$ wavelength slocked....Less Mast, LIST $\$ 2925$ TA 162 wavelength stacked....Less Mast, LIST $\$ 3090$

TA 167 "Inline D-Xer"

 DOUBLE STRAIGHT LINE CONICALChannels 2 to 13 and FM. Provides ultrasharp directivity and ultro-high goin. Ideal for remote oreas. $1 / 4$ wovelength slocked. \qquad

ess Most, LIST $\$ 5670$
TA 168 some as TA 167 but $1 / 2$ wavelength stocked..Less Mast, LIST

TA 166 "Inline D-Xer" STRAIGHT LINE CONICAL. Shorper directivity and extra gain on all chonnels.
 Less Mast, LISt \$2810

R61
R61 Same as R 60 but $1 / 4$ wavelength stacked for greater gain in low signal areas. Less Mast, LIST ONLY $\$ \mathbf{2 0 0}$

FREE Catalog!

JFD makes not only the largest assortment of Conicals, ment of Conicals. lety of antennas and TV accessories as TV accessories as
well. They're all well. They're all
listed in the comlisted in the com-
prehensive JFD Catalog No. TV100 which will be sent to you upon request, free of charge.

TA164
"Super D-Xer"
DOUBLE STACKED
ALL-BAND CONICAL
Delivers unsurpassed DB goin for pulling in weak signols from long distonces.Less Most, LiST $\$ \mathbf{6 1 8 0}$

TA 165 "Single D-Xer" CONICAL

WITHOUT REFLECTORS. For areas where high ond low band transmitters lie in $\$ \mathbf{1 5 0}$
approximotely the same direction....LST $\$ \mathbf{1}$

TA 169 Duo-Orienting

HI-LO ALL-BAND CONICAL. Ideal where upper and lower band transmitters tune in different directions.Less Mast, LIST \$2345

TA 170 same as TA 169 but $1 / 4$ wavelength slocked for extro goin in weak signal oreas. .

R71 same as R 70 but $1 / 4$ wavelength stacked for long-distance reception. Less Mast, LIST ONLY $\$ \mathbf{2 6 6 5}$

Copyright 1949 Jf0 Manufocturing Ca., Inc.

manufacturing co., inc. 6119 16th AVENUE, BROOKLYN 4, N. Y. FIRST In Television Antennos and Accessories
 department like this to prove whether or not the manufacturers are telling the truth.
For everyday testing of essential capacitor characteristics in your own service shop, we recommend the Sprague Tel-Ohmike Analyzer. Measures capacitances from .00001 to 2000 mfd ., electrolytic power factor to 50%, and electrolytic leakage under rated voltage from built-in power supply. Checks insulation resistance of ceramic, paper and mica capacitors. Measures resistors from 2.5 ohms to 25 megohms. Also is a $0.15-150-750$ volt and $0-1.5-15 \cdot 75 \mathrm{ma}$. volt-milliammeter.

Write for catalog M-414 today.

FREE! LARGE REPRINTS OF THIS CARTOON Handsomely lithographed with advertising removed, size $11^{\prime \prime} \times 14^{\prime \prime}$, suitable for framing. Send 10c to cover mailing and handling cost.
 SPRAGUEPRODUCTS CO., North Adams, Mass. Distribufors' Division of the Sprague Electric Company

Magnavox CT 214 B

This model is the same as CT 214 A, appearing on pages 2-1 through 287,38 of Rider's T'V Manual Volume 2, except for the following modifications. A greencolored peaking coil, part number 360332 G10, has been inserted between the $2,000 \cdot \mathrm{ohm}$ plate load resistor (138) of V14A and the +135 -volt bus. This extends the h -f response of this video amplifier stage.

An iron-slug coil, part number 360346 G , has been inserted as the horizontal oscillator frequency control (speed), replacing the $120-\mu \mu \mathrm{f}$ capacitor (25) used previously. If it is desired to install this unit for improved stability of horizontal deflection. the following should be done:
(1) Remove the $120-\mu \mu \mathrm{f}$ capacitor (33) and replace with mica capacitor, $180-\mu \mu \mathrm{f}$ $\pm 10 \%$, 500 -volt, part number 250159 G 85 . Note: The capacitor which is removed may be used in step (3).
(2) Remove the horizontal speed capacitor. This is the center capacitor of the threc-gang trimmer (25).
(3) Connect a $120-\mu \mu \mathrm{f} \pm 10 \%, 500$ volts, part number 250159 G 83 , from the tie lug at the junction of the 100,000 -ohm resistor (172) and the 180,000 -ohm resistor (181) to the grounded terminal of V18 (pin 8). (4) Mount the horizontal speed coil, part number 360346 C 1 , with mounting bracket part number 633750 G 2 directly above the gang trimmer (25). The tuning slug of th coil should be accessible through the opening marked HORIZONTAL SPEED. (5) The horizontal speed coil should be connected as shown in the accompanying diagram.

Horizontal speed coil in the Magnarox TV set model number CT 214 B.
(6) Connect one side of the coil to the second lug from the end of the strip nearest horizontal linearity coil (13). Remove the 10,000 -ohm resistor (155) and retain for use in step (8).
(7) Conneet the opposite side of the coil to the center tap of Magnalok transformer (22). Dress the lead so that it will follow the contour of the wires leading to the tie lug strip mounted between the Magnalok transformer (22) and the 6V6GT audio output stage. Connection should be made from the opposite terminal of the horizontal speed coil to the second tie lug from the end of the tie lug strip nearest the front of the chassis.
(8) Connect resistor 55 removed in step (6) across terminals 1 and 2 of the tie lug (across one-half of the coil).
(9) Connect a $0.01-\mu \mathrm{f}, 300$-volt capacitor, (Please turn to page 20)

THE BUSINESS HELPER

The Business Helper is a new book which will be released to the trade in september. It was written by one of the nation's best known radio and electronic parts jobbers, Les Rucker, of Rucker Radio W'holesalers of Washington, D. C'. It describes just what he did to build his business which started about 25 or so years ago on very much limited and borrowed capital (\$500.) to its pesent level of a main store in Washington, D.C. proper and a number of branch stores in the suburbs of the nation's capitol.

It is the story of what a small businessman should do about selling. purchasing, credit. advertising, dealing with his hankhis suppliers every phase of a small business activity. It explains how to build a sound business-and the man who wrote it can prove every one of the statements he inakes-because he did what he says and found it successful. He does not theorize. He speaks in understandable language and talks turkey. He is practical -and tells how to avoid the pitfalls which always are there to trip up the man who is not careful.

It is not a technical book because Les Rucker is not a technical man. I.es is successful-let him tell you what he did to get where he is. Every worl is precious-down to earth-and worth dol. lars to the reader. Just one idea out of the many contained in this very handy book will be worth ten or even fifty times the price of the book.

Ask your jobber for The Business Helper. It's only $\$ 2.00$. Get it todayNow!

RIDER MANUALS KEEP MPTO OATE

Magnavox CT 214 B

(Conlinued from page 19)
part number 250161G53, across the coil. The connection should be made across the tie lug points 2 and 3.
Note: Some models do not incorporate the tie lug described in step (7). For these raodels, steps (8) and (9) should be done as follows:
a. Mount resistor 155 directly across the Magnalok transformer coil terminals.
b. Mount the $0.01-\mu \mathrm{f}$ capacitor directly across the terminals of the horizontal speed coil.

Connect a 4.7 -megohm resistor between lug F on the discriminator transformer (4) and the open lug of the terminal strip mounted directly under the 6AU6 tube socket (V6). Then connect a lead from this lug to pin 1 of the Sync Clipper 6SN7 tube socket (V'16).

RIDER BOOKS IN PREPARATION radio operator's license 9 and a manual By Milton Kaufman

All the questions and answers for the FCC exams. Easy-to-understand discussion and clear illustrations make this text valuable to both the student and those who have already passed their FCC exams. The discussion is intended to make the answering of multiple-choice questions a simple matter.

CATHODE-RAY TUBE AT WORK

Completely rewritten and vastly enlarged. The theory is greatly expandedall scopes and synchroscopes manufactured during the last 10 years are described. Great emphasis on application to all fields. Written to serve all users of scopes. Size $81 / 2^{\prime \prime} \times 11^{\prime \prime}$-more than 2000 illustrations. Never has there been a book like this one.

VACUUM TUBE VOLTMETERS

This book has been rewritten and enlarged. Commercial vacuum tube voltmeters are fully described as well as the basic theory of these meters. Emphasis on application and theory.

SERVICING A-M, F-M, AND TV RECEIVERS (Replaces Servicing Superheterodynes)

Written in the easy-to-understand Rider style. Describes troubles usually encountered and the way they can be cured. Unique circuits are also discussed.

THE OSCILLATOR AT WORK

Describes oscillator circuits used in $a-m$, $f-m$, and television receivers and also the test oscillators and generators used in the servicing of these receivers. Emphasis is placed on the test procedures required and commercial oscillators are discussed in detail.

THE THEORY AND PRACTICE OF 30-1000 MC RECEIVING ANTENNAS
 (Formerly: The Theory And Practice of High Frequency Antennas)

A new book writien expressly far the man who in not familiar with antennas, by a man who has spell 21 years working with such antennas. The emphasis is on theory and practice-especially of TV antennas. The subject is broadly treated and covers all sort of antennas from 30 Mc to 1000 Mc , propagation over the band of frequencies, and many other details hitherto not revealed in any practical book on antennas.

THE BUSINESS HELPER

By Leslie Rucker

A person-to-person talk by a successful parts jobber who started from scratch and worked his way up to where he now has three stores. He tells the small businessman-and this means the radio service shop owner-how to run a successful business. Every phase of business operation is explained. It is a "must" book for every service shop - large or small; in fact, it is a very "must" book for every service shop for every businessman. Publication date September 28, 1949.

Watch For Publication Dates And Further Details

Rider On The Move Again

The Fall and Winter of 1949 will see John F. Rider speaking at various service neetings. The present schedule for the month of September covers New York City on the 7th for the Associated Radio Servicemen of New York, the 13th in Kingston, N.Y. for the Kingston Radio Servicemen's Assoc., the 14th in Pough-
kecpsie. the 19th in Philly at Town Hall for the Philadelphia Radio Servicemen's Assoc., the 21st in Binghampton, N.Y. under the auspices of the Empire State Federation of Electronic Technicians Associations and on the 27 th in Rochester. N. Y., also under the auspices of ESFETA. All of the talks will be related to different aspects of television.

- ${ }^{\text {SuceessfuL }}$ SERVICING

OCTOBER, 1949

SAWTOOTH

SWEEP

LINEARIZATION

By
Seymour D. Uslan

One of the simplest and cheapest methcds of linearizing a sawtooth sweep is to employ some form of additional timeconstant network in the sweep circuit. In most cases, a resistance-caparitance network is the type of time constant employed. This new circuit is designed to operate in such a manner that it will offer a correcting voltage to the usual exponential rise time of the sawtooth wave so that the resulting sawtooth will be linear. Numerous different types of circuit arrangements are possible but only two will be considered here. These two, however, will give us a fair idea of how such new time constants should operate.
Let us first study the circuit of Figure 1. This figure is a simplified form of the usual type of sweep circuit where V1 represents the discharge tube. This tube can be part of a thyratron relaxation oscil-
lator, nultivibrator, or blocking oscillator in which its period of conduction is very short compared to its period of cutoff. Thus, the plate current in this tube flows in pulses of short time duration. Capac-

Fig. 1. Simplified sweep circuit.
itor C charges up from the B supply through $R 1$ during the periods that $V 1$ is cut off, and during the periods of V1 conduction, C discharges through the tube because the plate resistance of this tube is quite low compared to R1. The charge of C represents the rise time or trace of the resultant sawtooth and the discharge of C represents the retrace or flyback of the sawtooth. The sawtooth output is tsken across C and is not very linear because its rise is exponential in shape.

Figure 2 is the new circuit for improving the linearity of the sawtooth, where resistor $R Z$ and capacitor $C Z$ are the additional circuit elements. Capacitor C of Figure 1 is effectively split in two and is represented by C1 and C3 in Figure 2. Capacitors C1 and C2 are approximately of the same value and resistor $R 2$ is about
(Please turn to page 12)

Television Changes

Stewart-Warner T-711, Ch. 9031-A: T-711-M, Ch. 9031-AM; T-712, Ch. 9031-B; TRC-721, Ch. 9037-A

These models appear on pages $9-1$ through t-21, 22 of Rider's TV Manual Volume 2. rhe following changes occurred during production:
Capacitor C88, $0.006 \mu \mathrm{f}$, was removed from a position between the junction of R99 and R100 and ground, and relocated between the junction of R92 and R99 and ground.
Capacitor $\mathrm{C} 51,0.01 \mu \mathrm{f}$, was removed from a position between the junction of R92 and R99 and ground and relocated between the junction of R99 and R100 and ground.
Rf transformers T21, T30, T31, and T32, were redesigned to use polystyrene coil forms, and a copper tuning ring was placed on the form whenever required to obtain correct alignment. See Fig. ure 1.
Video peaking coil and resistor combination L3 and R98, located in the plate circuit of tube 17 ($6 \mathrm{AC7}$) video amplifier stage, was redesigned to improve high-frequency response. Latest type assembly appears in chassis with serial numbers above 10,600 and utilizes a new coil plus a parallel-connected $68,000-\mathrm{ohm}$ resistor, instead of a $22,000-$ ohm resistor for R98.
The following changes occurred on chassis with serial numbers above 4,450:
Capacitor C21, $10 \mu \mu$ f, originally connected across the $21.9-\mathrm{Mc}$ trap coil on the 4th video i-f transformer T4, was removed from the circuit.
1st video i-f transformer T1, was replaced by a new type. The original transformer used trimmer capacitor C8 for primary tuning, and the 27.9 Mc trap consisted of a separate parallel tuned circuit including a coil, fixed capacitor C118, and trimmer capacitor C10; one side of the trap circuit was connected to ground. On the latest type transformer, trimmer capacitor $\mathrm{C8}$ is omitted and primary tuning is accomplished by positioning a copper ring on the coil form. The winding for the 27.9-Mc trap was rearranged and connections were revised as shown in the accompanying schematic diagram. See Figure 1.
sistor R116, 3,300 ohms, was added to the circuit and connected in series with pin 3 of switch section SIII and capacitor C41, in the grid circuit of tube V21B (6 AQ 7 GT) audio amplifier stage, as shown in Figure 2.
Resistor R117, 3,300 ohms, was added to the circuit, in place of R113, and inserted between R70 and pin 1 of switch section S 1 H , in the grid circuit of tube V21B (6AQ7GT) audio amplifier stage. See Figure 2.
Resistor R54, 470,000 ohms, originally connected from grid pin 5 of tube V22

Fig. 1. Steuart-Warner T-711, Ch. 9091-A; T-711-M, Ch. 10081-AM; T-718, Ch. 9081-B; TRC-721, Ch. 9057-A.
(6V6GT) audio output stage to ground, was removed from the circuit.
Horizontal output transformer, T9, was modified to increase horizontal sweep width and ligh voltage for the picture tube. The latest type transformer can be readily recognized by their white polyethylene coated leads and the molded polyethylene coating on both windings. Identification of leads is accomplished by continuity measurements and by the fact that certain leads are grouped for connection to the $1 \mathrm{~B} 3 / 8016$ and 6BG6G tube caps.
Resistor R118, 3,900 ohms, was added to the circuit and connected in series with the orange lead from T9 to R47. 6,800 ohms. This change is incorporated in chussis which use the late type horizontal output transformer T9.

The following phonograph circuit parts are used only on Model TRC-721, Ch. 9037 -A. These components may be iden. tified on Figure 2, by the \dagger notation which precedes the symbol number.
R113 Resistor 68,000 ohms
R114 Resistor 220,000 ohms
C 121 Capacitor $0.01 \mu \mathrm{f}$
S3
S4
Switch-"Radio-Phono"
Switch-"On-Off" for record changer
505100 Crystal cartridge
505273 Motor for record changer 505492 Socket-Phono motor cable 501031 Plug-Phono motor cable 505654 Socket-Phono pick-up cable 500966 Plug-Phono pick-up cable.

Fig. 2. Steltart-Warner T-711, Ch. 9031-A; T-711-M, Ch. 9081-AM; T-712, Ch. 9031-B; TRC-721, Ch. 9057-A.

Television Changes

Bendix 235M1, 235Bl

These models appear on pages 2.1 through 2.18 of Rider's TV Manual Volume 2. The following production changes have been made. The antenna wave traps, consisting of C141, C142, L50, and L51, were deleted in some receivers. Cathode resistor, R4, of V1 was in some units deleted and the cathodes connected directly to chassis ground; in other units it was either 47 ohms or 180 ohms, $1 / 2$ watt. A $100-\mu \mu \mathrm{f}$ capacitor, C 7 , paralleled C 6 and C 70 in units prior to the use of a shielded r-f bias lead to terminal " S " of the r-f i-f chassis. Damping resistor, R3, was changed from across C 9 to switch contacts S1 and S2, thns paralleling either C8 or C9, depending on the position of range switch S 1 and $\mathbf{S} 2$.
The plate (V1) load dropping resistor, R5, was changed from a $1 / 2$-watt, 680.0 hm resistor to a 1 watt of the same resistance and, at the same time, R9 was changed from 220 ohms to 4,700 ohms paralleled by R34, also 4,700 ohms. Grid-bias resistor for V3, R10, was changed from 33,000 ohms, connected to pin 5 of V2, to 220 , 000 ohms, connected directly to chassis glound.

Grid resistor R38 in the grid circuit of the first i-f amplifier, V8, replaced an r-f choke, L53, used in early models.

A clamper tube V18, 6AL5, was added, preceding the sync clipper and amplifier tube V14. Early units used two 7A5 tubes in parallel, shown as V18 and V19, in the horizontal output circuit. When a single 6BG6G was incorporated in this circuit, it was listed as V19. Therefore, the number V18 was later assigned to the added 6AL5 clamper tube.

RIDER MANUALS KEEP MPTO DAIE

Belmont 18DX21A, 7DX21

These models appear on pages 2-11 through 2-20 of Rider's TV Manual Volume 2. The dynamic limiter circuit used in these models was designed to reduce noise, external interference, and other objectionable effects expected in television reception. It was later discovered that the noise and other effects were not as noticeable as expected, and the dynamic limiter circuit could be eliminated. Since the dynamic limiter introduces a loss, an increase of audio sensitivity of approximately three times is now obtainable. To make this change, remove the $1,000-\mu \mu \mathrm{f}$ capacitor, C 116 , that is connected between terminal 2 of transformer T8 and pin 6 of tube 4, 19T8. If it is not convenient to realign transformer T8, a $10-\mu \mu \mathrm{f}$ capacitor may be added between terminal 1 and terminal 2 of T8. Addition of the $10-\mu \mu \mathrm{f}$ capacitor will compensate for the disturbance of the alignment of the ratio detector transformer, T8, caused by the removal of C116.

Bendix 235M1, 235B1

These models appear on pages s-1 through 2-18 of Rider's TV Manual Volume 2. The following corrections should be noted on the schematic diagram. The primary of T3 should be labelled as coil L28. The lead from pin 6 of tube V10 should connect to the junction of R37 and R35, instead of to the r-f bias string.

Bud TAB-81-G

This model is the same as Model TABS98.A, appearing on page 2.2 of Rider's T'V Manual Volume 2, except that the $50-\mu \mu \mathrm{f}$ capacitor connected from the $20-\mu \mathrm{f}$ capacitor to ground has been removed.

General Electric 810, 814

Model 810 appears on pages 2.22 through 2-43 of Rider's TV Manual Volume 2 and Model 814 on pages 2.44 through $2-57,68$ of the same Volume. The switch wafers used to make up the channel selector switch, S1, are available for replacement and should be added to the parts list:
RSC-001 Front wafer, RSC-002 Center wafer, RSC-003 Rear wafer.
The front wafer is located nearest the chassis front apron.

General Electric 814

This model appears in Rider's TV Man. ual Volume 2 on pages 2.44 through $2 \cdot 57$, 68. In step 1 of video i-f alignment. under signal-generator frequency, 26.4 should be changed to 26.3 Mc , and in step $2,22.8 \mathrm{Mc}$ should be changed to 22.9 Mc .

Under sound i-f alignment in alignment suggestions, the L5 audio i-f coil has been changed to a transformer T21 on which the primary and secondary are botli adjusted.

The oscilloscope should be connected to the junction of L16 and C27 to get the response curves of Figure 11 instead of as shown.

Rembrandt 1950

This model appears on pages 2-1, 2, 3 through 2.4, 5, 6 of Rider's TV Manual I olume 2. The damper tube VT 23, should be listed as a 6 W 4 . This also applies to Model 721, 1606 and 1606-15.

RIDER MANUALS Whan succussici

Hallicrafters T-54 and 505

These models appear on pages 1.1^{-} through 1-29,30 of Rider's TV Manual Vol ume 1, and pages C2-2, through C\&-S of Rider's TV Manual Volume 2. If insufficient height is encountered, the following operation is suggested: Check the value of R78, 1.5 -megohm, $1 / 2$-watt resistor. If the value of R78 has increased, replace it with two 680,000 -ohm, $1 / 2$-watt resistors in series. The resistors are small and need no tie point at the junction if they are wired together close to the resistor bodies.

Hallicrafters T-67

This model appears on pages 2-1 through 2.15 of Rider's TV Manual Volume 2. If horizontal instability is encountered, it is suggested that the horizontal oscillator Flate load, resistor R83, $5,600-\mathrm{ohm}$, $1 / 2$-watt, Part. No. RC20AE562K, be changed to a 1-watt unit of the same value, Part No. RC30AE562K.

DuMont RA-105

This model appears on pages $2-5$ through 2. 66 of Rider's TV Manual Volume ?. The wattage rating of the horizontal drive control R405 in the flyback power supply has been changed from $1 / 4 \mathrm{w}$. to 2 w . This new part is described as follows:
R405, 01018500, 25,000 ohms, 2 w., 士 20%.

RIDER MANUALS Mean SUCCESS

National NC-TV-7

This model appears on pages $2-1$ through 2.28 of Rider's TV Manual Volume 2. In the NC-TV. 7 receivers, Series 249 , the current surge, that occurs when the receiver is first turned on, sometimes blows the 2-ampere fuse. It is suggested that a 3 -ampere fuse be used.

Farnsworth 504P16, Ch. U-12

This model is similar to the U-12A Capehart that appears on pages 2.1 through 2-9, 10 of Rider's TV Manual Volume 2. The vertical output tube has been changed from 6 K 6 -GT to $6 \mathrm{~V} 6-\mathrm{GT}$. The $1,800-\mathrm{ohm}$ resistor in the cathode circuit of the vertical output stage has been shunted by a $4,700-\mathrm{ohm}$ resistor.

It takes a superior capacitor to operate at $185^{\circ} \mathrm{F}$. And Mallory Capacitors do IT!-tests have proved that the characteristics of Mallory Capacitors are practically unchanged after 2000 hours at a temperature of $185^{\circ} \mathrm{F}$.
Without a high degree of purity and cleanliness no capacitor could give this remarkable performance.

NEW IMPROVEMENTS IN MALLORY FP

CAPACITORS . . . Feature stronger anode tabs -withstand higher discharge currents-improved high surge separators-still greater heat resistance-extra heavy rubber seal-heavier cathode tab-special etched cathode.

Mallory capacitors are untouched by human hands; production workers wear rubber gloves. And Mallory specifications on chloride content of the gauze are even more rigid than on hospital gauze, for gauze is the base on which aluminum is sprayed to create the anode plate.

You can count on Mallory Capacitors for longer shelf life-longer life in an inactive set-lower RF impedance-and ability to withstand higher ripple current.

Mallory Capacitors cost no more than ordinary capacitors-they're easy to install, and when they're installed they're dependable ... and that means the kind of service that satisfies customers. Order from your Mallory distributor.

Don't Miss the Mallory Television Encyclopedia.
Get Your Copy From Your Mallory Distributor... Only 35c :

- Suceasfia SERVICING
 REG. U. S. PAT. OFF.

Vol. 10
OCTOBER, 1949
No. 12

Dedicated to the financial and technical advancement of the Electronic Maintenance Personnel

Published by
 JOHN F. RIDER PUBLISHER, INC.

480 Canal Street

JOHN F. RIDER, Editor

Copyright 1949, by John F. Rider
No portion of this publication may be reproduced without the written permission of the publisher.

CURTAIN TIME

TV

About 82 stations are now in operation. The number is growing and that 100 number which seemed so distant a year ago is fast approaching. We understand that a well-known electronics engineer by the name of Dana Criffin has presented the FCC with an entirely new plan for the allocation of channels in the uhf band. The idea is to minimize interference. Good luck, Dana! We have seen an example of microwave relaying of TV pictures which were picked up on a receiver, then scanned by a TV camera and retransmitted to a local TV station there reradiated for local consumption. It wasn't bad at all.

TV Antennas

The RMA has appointed a committee (now functioning) whose job it will be to set standards of measurements which will set the basis of antenna performance claims to be used in advertising. As we understand it, when these standards exist, TV antenna manufacturers will be in a position to state that their antennas have such and such performance capabilities, measured according to the RMA requirements. A swell idea.

While on the subject of antennas, what is the status of noise generated by the aitenna system as the result of the use of dissimilar metals - aluminum tubing, brass screws, and the like, and corrosion in salt air? Seems like a very good battery! We're leading up to the matter of welding antenna connections and joints, as a means of keeping the noise to a minimum. The difficulty of packing makes welding at the manufacturing plant a problem. This leads to the possibility of some sort of portable welding equipment which can be used after an antenna has been assembled for erection. Any ideas on the subject?

Help for the TV Serviceman

We recently witnessed a preview of 22 shorts (1 minute and 20 seconds) intended to make the public understand their TV receiver sets better. These movies, to be put on the air for viewing on home TV receivers, should relieve the problems of nuisance calls received by many service organizations operating on contracts. When the services of a serviceman are indicated, the sound accompaniment suggests that he be called. The program is sponsored by RMA and it is indeed meritorious.

In The News

TV is used for teaching surgery at the University of Kansas Medical Center. Two operations were televised on September 21, and were viewed by the student body under conditions most conducive to mass appreciation. A recent article in the N.Y. Herald Tribune announced a new type of book called a "Dutch-book", consisting of two parts separated from each other. The top part contained the illustrations and the bottom part contained the text pages. Each could be handled separately, thus making for most convenient reading and correlation between text and illustration. We notified both the feature writer and the publisher of the book in question that our book "The Meter at Work", published in 1940, employed just that type of construction. Do you recall it?

About Manufacturers' Changes

We try very hard not to back up changes with changes. Occasionally a slip is made, for after all, all of us are human. Really we are and we're trying continually to "get there fustest with the mostest". The size of Successful Servicing is becoming a problem. We're running 16 pages per issue, with an exception here and there, but it looks like more pages per issue during 1950 in order to accomodate the technical material we have on hand and the manufacturers' changes. These are very important and they should be in your possession. That's why service data which originate in the receiver manufacturer's plant are the most authentic, and valuable to the servicing industry.

The Prices of Things

Wherever we've gone during the past two months, especially during the month of September, the story was the samethings are firming up. We're not speaking about Rider publications at the mo-ment-rather about other items of all kinds. People have been expecting reduc tions in prices. Some have taken place, but it does not look like a continuation of falling prices; the reverse seems to be in the offing, despite the cut-price sales of TV receivers. If you're holding off (Please turn to page 10)

TV JOE - ON THE BEAM

Radia Changes

Magnavox CR-202 Series

These models appear on pages $18-16$ through 18-25,26 of Rider's Manual Volume XVIII. Two resistors, R143 and R144, have been added to Ch. CR-202C. R143 is connected between C41 and the junction of R118 and C64. R144 is located between the junction of R142, R113, and C40, and the rotary band switch 153.

The parts list should be amended to include the following:

| Ref. No. | CR-202A | Part No. |
| :---: | :---: | :---: |
| 34 | Capacitor, mica $510 \mu \mu \mathrm{f}, \pm 5 \%$ | 250159G64 |
| 40 | Capacitor, mica $300 \mu \mu \mathrm{f}, \pm 10 \%$ | 250159G88 |
| 41 | Capacitor, mica, $510 \mu \mu \mathrm{f}, \pm 5 \%$ | 250159G64 |
| 113 | Resistor, comp, 82,000 ohms, | |
| | 1/2 w, $\pm 10 \%$ | 230084G85 |
| 124 | Resistor, comp, 220,000 ohms, $1 / 2 \mathrm{w}, \pm 10 \%$ | 230084G27 |
| 142 | Omitted | |
| 143 | Omitted | |
| 144 | Omitted | |
| | CR-202B | |
| 142 | Resistor, comp, 3.3 megohm, 1/2 w | 230084G34 |
| | CR-202C | |
| 40 | Capacitor, mica, $0.002 \mu \mathrm{f}$, $+10 \%$ | 250160G68 |
| 41 | Capacitor, mica, $0.0015 \mu \mathrm{f}, \pm 10 \%$ | 250160G66 |
| 124 | Resistor, comp, 470,000 ohms, $1 / 2 \mathrm{w}$ | 230084G94 |
| 143 | Resistor, comp, $33,000 \mathrm{ohms}, 1 / 2 \mathrm{w}, \pm 10 \%$ | 230084G80 |
| 144 | Resistor, comp, $150,000 \mathrm{ohms}, 1 / 2 \mathrm{w}$ | 230084G26 |
| | CR-202D | |
| 124 | Resistor, comp, 470,000 ohms, $1 / 2 \mathrm{w}$ | 230084G94 |

General Electric 118, 119M, 119W

These models appear on pages $19-8$ through $19-10$ of Rider's Manual Volume $\boldsymbol{X} I X$. The phono radio switch $\$ 1$, catalogue number RSW-043 has been changed to RSW-065 and the new switch is wired as follows:

Connect terminals 1 and 3 together. Connect terminals 5 and 6 together. Connect terminals 7 and 8 together and then connect terminals 9 and 10 together. The leads may then be transferred from the old switch to the corresponding terminals on the new switch RSW-065, as shown in the accompanying diagram.

General Electric 118, 119.

Ketay RP570T

This model appears in the Miscellaneous section, page $16-8$ of Rider's Manual Volume $X V$. This model is listed in the Indexes as RP507T. It should read RP570T.

General Electric 150

This model appears in Rider's Manual V olume XIX on pages 19-10 through 19-12. For chassis numbers up to 55,000 the capacitors C10, $100 \mu \mu \mathrm{f}$, and C12, 0.005 $\mu \mathrm{f}$, were not connected according to the schematic diagram. Their B- connections were made to the left side of the switch S1B, together with the capacitors C2A and C2B. This was done to prevent a howling sound when the power switch S1 is turned off.
For chassis numbers from 60,000 to 70,000 the capacitors C10 and C12 were wired according to the schematic diagram. However, the wiring of the capacitors C2A and C2B has been changed. It was found that, under certain circumstances, these capacitors added their charge to the peak of the line voltage, causing a current surge which was capable of damaging any tube. Therefore, the negative sides of the two capacitors (C2A and C2B) were connected to the right side of the switch S1B (B- line) and the positive side of C 2 B was connected to the terminal of the S2A switch which is connected to the B+ line of the receiver. Now the charge can leak off after the set is disconnected from the power supply.

74 MANUFACTURERS IN RIDER'S TV MANUAL VOLUME 3

Westinghouse H-210, H-211

These models appear on page.s 19 -3.3 through 10-35 of Rider's Manual Volume XIX. In later production models, the resistance of the 12BA6 i-f amplifier cathode resistor, R3, was changed to 668 ohms. The part number of the new resistor is RC20AD680J. In addition, the resistor, R12, in the lead from pin 5 of the $35 W 4$ was deleted from the circuit, and a direct connection was made in lieu of the resistor.
The tuning shafts used in later production have a wider groove for the dial cord. With these shafts, there are $31 / 4$ turns of dial cord around the shaft rather than $21 / 4$ turns as indicated on the dial-drive drawing.

Stewart-Warner A41T1, Code 9023-A

This is the same as Modol A41T1 ap. pearing on pages $17-1$ through $17-3$ of Rider's Manual Volume XVII, except for the following change. Resistor 40, formerly 270 ohms, has been changed to 560 ohns to minimize " B " supply drain. Chassis which incorporate this change have a letter " S " stamped on the rear surface. The new resistor is described as follows:
502127 Resistor-carbon- 560 ohms, $1 / 4 \mathrm{w}$.

Transvision Service Hints

In some cases where difficulty is encountered in obtaining sufficient right-hand leg length (flat pattern on right side), the addition of a 0.1 capacitor in parallel with capacitor VV which is also a 0.1 should produce an improvement. Capacitor VV goes from pin 3 of X4 to pin 2 of X6.
When changing a 7EP4 socket to a $7 \mathrm{JP4}$, note the extra thin orange lead coming from the latter socket. This is merely connected to the yellow filament lead in the set which is lug \#1 of terminal strip Z. On the 7EP4 socket, this connection was made internally in the socket.

Bendix 69 Series

This model appears on pages 19-1 through 19.8 of Rider's Manual Volume XIX. The location of trimmer C3c on gang capacitor in Figure 8, Trimmer Location Diagram, should be on terminal 4, rather than terminal 3.

RCA 75ZU, Ch. RC-1063A

This model appears on pages $19-45$ and 19-46 of Rider's Mancal Volume XIX. A groove approximately $1 / 16$ inch deep by $1 / 8$ inch wide is now included on the outer rim of the bakelite station selector indicator pulley, Stock No. 73060.

If trouble is encountered with the drive cord coming off this pulley, either of the following corrections may be applied:
(a) Position the pulley in relation to the gang drum by the adjustment provided on the long support bracket for the dial back plate assembly so that the drive cord occupies the position indicated in the accompanying illustration.

(b) Replace the pulley with one incorporating the groove indicated above.
The service data for the 50 -cycle version of Radiola 75ZU will apply to this instrument except:

RP-178 record changer only is used.

A conversion spring (Stock No. 73158) is added to the motor spindle shaft for 50 -cycle operation.
A decal ("RCA Victor" Stock No. 71984) is added to the front of the cabinet.
These changes apply to the RC-1063B also.

RCA 8V151, Ch. RK-121C

This model appears on pages 18-25 through 18-40 of Rider's Manual Volume XVIII. In the diode load circuit, R29 (270,000) should be deleted-R20 $(82,000)$ and R34 $(180,000)$ should be added, as shown in the accompanying diagram.

Diode Load Circuit for RK-121C.

The wiring diagram is incorrect in the wiring of the range switch. The illustration below shows the changes which should be made.

Late production models of Chassis No. RK-121C use a crystal rectifier for $a-m$ detection instead of the diode plate (pin 6 of V8) of 6AT6 as shown.

Crystal Rectifier for RK-121C.
Service Caution: (1) Maintain a minimum lead length of $3 / 4$ inch on the crystal leads. Excess heat from a soldering iron will damage the crystal, (2) the normal voltage existing in this circuit should never be exceeded when testing or trouble shooting, and (3) maintain polarity of crystal.

The following change has been made in the parts list.
Add:
54374 Rectifier-crystal rectifier (CR1)

Change in Wiring of RCA 8V151.

RCA 8R71 to 8R76, Ch. RC-1060, RC-1060A; 9W101, 9W103.

Ch. RC-618B

Models 8R71 to 8R76 appear on pages 19-10 through 19-15 of Rider's Manual Tolume XIX and Models 9W101 and GW103 appear on pages $19-95$ through 19if of the same Volume.
Some ceramic capacitors C11 ($5 \mu \mu \mathrm{f}$) have been used which have a color code of black-green-black. The capacitor is correct, but the color code is incorrect. The normal color code of this capacitor is green-black-white.

Sears 8011, Ch. 132.840

This model is the same as Model 8010. Ch. 132.840, appearing on page 19-26 of Rider's Manual Volume XIX, except for the following changes. Model 8010 has a brown cabinet and knobs, while Model 8011 has un ivory cabinet and knobs. Parts which are different from the 8010 are as follows: N21092-1 Cabinet less front trim assembly N21204-3 Knob, control, volume and tuning.

United Motors 982421

This model appears on pages 19.44 through 19-49 of Rider's Manual Volume XIX. The following service parts have been changed after serial \# 1.38500.

| Illus, | Production | Service | Description |
| :---: | :---: | :---: | :---: |
| No. | Part No. | Part No. | |
| 6 | 1219508 | 1219508 | Ist i-f coil assy. |
| 7 | 1219509 | 1219509 | 2nd i-f coil assy. |
| 25 | 7240724 | M908 | Electrolytic |
| 25A | | | $20 \mu \mathrm{f}, 25 \mathrm{v}$ |
| 25B | | | $20 \mu f, 400$ v. |
| 25C | | | 20μ f, 400 จ. |
| 28 | 7237836 | E202 | $\begin{aligned} & 0.002 \mu f, 600 \nabla \text {. } \\ & \text { tubular } \end{aligned}$ |
| 48 | 1213217 | A101 | 100 ohms, 1/2w. |
| | 1218107 | 5233 | 6SR7 |
| | 1213793 | 5241 | 6V6GT |
| | 7237751 | 5229 | 6SK7 |
| | 7237752 | 5222 | 6SA7 |

Correction

In the change notice that appeared in the January issue of Successful Servicing for Hallicrafters T-54 and 505 picture syn. chronization, C71 should read C29, C72 should read C28, C73 should read C20, and C74 should read C21.

RCA 66BX, Ch. RC-1040, RC-1040A, RC-1040B; 8BX5, 8BX54, 8BX55, Ch. RC-1059, RC-1059A; 8BX65, Ch. RC-1040C, RC-1040D: 9BX5, Ch. RC-1059B

Model 66BX appears on pages $15-87$ through 15-8s of Rider's Manual Volume XV and on page C17-7 of Rider's Manual Volume XVII. Models 8BX5, 8BX54, and 8BX55 appear on pages 19-5 through 19-9 of Rider's Manual Volume XIX. Models 8BX6 and 8BX65 appear on pages 18-11 through 18-14 of Rider's Manual Volume XVIII.

The line-battery switch used in these receivers is of the "slide" type. The actual switch does not have numbered terminals, although the schematic diagrams have numbers indicated. The numbers on the schematic diagrams do not indicate the actual sequence of the terminals on the switch. The accompanying illustrations show the actual sequence of the switch terminals and the corresponding numbers which appear on the schematic diagrams. Figure 1 is the diagram for the $8 \mathrm{BX5}$,

Fig. 1. Line-battery switch for RCA 8BX6.
first production, Ch. RC-1059. Figure 2 applies to models $8 \mathrm{BX5}, 8 \mathrm{BX54}, 8 \mathrm{BX55}$, second production, Ch. RC-1059A; 9BX5, first production, Ch. RC-1059B; 9BX5, second production, Ch. RC-1059C. For models 8 BX 6 and 66 BX , the circuit is as shown in Figure 2, except for different resistor numbers and values.

Fig. 2. Line-battery switch for RCA SBX5, $8 B X 54,8 B X 55,9 B X 5,8 B X 6$, and $66 B X$.

"Of Vital Importance to Every Progressive Servicing Establishment"

"Here in Mt. Vernon we have, what we sincerely believe to be, one of the finest servicing organizations of its kind. Our equipment and facilities are the most modern to be found anywhere. Rider Manuals are an integral part of our equipment. We have a complete library on hand, and we find them to be essential to tracing the trouble and correcting faulty receivers of all makes and models. In our opinion, Rider Manuals are of vital importance to every progressive servicing establishment."

Frank R. Frasco-Dovid R. Petrie
Tolevision Laboratories
11 West Prospect Avenue Mt. Vernon, New York

Library of IIIELI MANDALS it makes in your business!

World's Greatest Compilation of Authentic, Reliable, Factory-Authorized Servicing Information!

On the way! RIDER TV-3

GREATER IN SIZE! ALL PAGES IN PLACE! EASIER TO USE!
Rider again points the way to successful TV servicing. The Rider TV Manual Volume 3 is bigger and better in every way. New and enlarged page size, 12×15 inches. All pages are collated in position. Double spreads, friple spreads and glant pages have been retained to assure clarity and ease of reading... but triple spreads and giant pages now have only ONE fold for greater durability. Easier to use because there are fower pages to turn. Easier to read because diagrams and related text are more closely positioned. TV. 3 is more compact, more complete...fully covering overything you should know about each receiver. More than 60 manufacturers are listed In the equivalent of approximately 2000 pages ($81 / 2 \times 11$), PLUS Cumulative Index Volumes 1, 2 and 3, PLUS "How It Works" Book. Reserve Your Copy Todoy.

RIDER MANUAL Vol. XX

Covering the latest AM, FM and Auto Receivers. Complete in every respect, this volume will hove the added advontage of text and double sproads assembled in position.

A New Book...A Helpful,

 Profitable Book for Youl BUSINESS HELPERby Leslie C. Rucker (Rucker Radio Wholesalers) You can't afford to miss the valuabie pointers offered in this person-to-person talk by a successful business man who started from seratch and worked his way up to a chain of 3 stores. Any one of his mony worthwhile ideas can mean fifty times the cost of the book in your pocket. This authoritative guide will show you how to ovoid losses and turn ideas into profits.
22 chapters, $\$ 2.00$

RADIO OPERATOR'S LICENSE Q AND A MANUAL

Lists all the questions and answers for the FCC exams. But the oulstanding feature of this Manual is its thorough FOLLOW-THROUGH.... carefully simplified discussion of the answer to the technical question...so necessary for an absolute understanding of the answer.

Approx. 750 pages, profusely Illus. $\$ 6.00$

RIDER MANUALS

| Television Manual, Vol. 2.
 (plus "How il Works" and Index)
 Telovision Monual, Vol. 1. \qquad
 (plus 'How If Works' ' and Index) | . 00 |
| :---: | :---: |
| Volume XIX | 19.80 |
| Volume XVIII | 19.80 |
| Volume XVII | 16.50 |
| Volume XVI | 8.40 |
| Volume XV | 19.80 |
| Volume XIV to VII (each vol.) | 16.50 |
| Volume VI | 12.50 |
| Abridged Manuols I to V (one volume). | 19.80 |
| Record Chongers and Recorders. | 9.0 |
| Master Index, covering Manuals, Vols. I to | 1.50 |
| PA Equipment Manual, Vol. | 18.00 |

EPE Eye-Stopper for Service Shop Windows

A new Display, 14×17 inches, captioned 'Which One is the Phony". It shows two greatly enlarged photos of stamps, one genuina, one a known counterfeit, with identifying characteristics and means of recognizing the forgery. Over choracteristics and means of recognizing the forgery. Over
$10,000,000$ people in the U.S.A. are stamp collectors. This display will be of interest to young and old, and will ottract altention to your windows and, consequently, business to your shop. 2 displays will be issued eoch month. ond you can get them FREE of CHARGE from your jobber.

NOTE: Are you receiving your copy
of "Successful Servicing?" It's Rider's own publication of interest to every Serviceman. Write for it . . . it's FREE! ANOTHER NOTE: The C.D Copacitor Monual for Radio
Servicing, 1948 edition No. 4, makes reference to only one source of receiver schematics - Rider Manuals.

Hotman C501 and C511, Chassis 108
These models are the same as Model A501, Ch. 108S, appearing on pages 15-6 through 1510 of Rider's Manual Volume $X V$, except that four 6K6 beam-power tubes are used in push-pull parallel in the output stage instead of the two push-prol 6V6's. The change is indicated in the accompanying diagranis. The alignment is still the same as given on page $15-9$.

6K6 tubes for Hoffman C601 and C511.

The parts list should be changed to read as follows:

| Symbol | Description | Hoffman Number |
| :---: | :---: | :---: |
| $\underset{\mathrm{C} 25}{\mathrm{C} 4, \mathrm{C} 23, \mathrm{C} 24,}$ | $100 \mu \mu \mathrm{f}, \pm 20 \%$, mica | 4000 |
| C28, C32 | $0.005 \mu \mathrm{f}, 600$ volt, tubular рaper | 4102 |
| C29, C30 | $10 \mu \mathrm{f}, 450$ volt, tubular electrolytic | 4203 |
| C31, C33, C34 | $0.01 \mu \mathrm{f}, 400$ volt, tubular paper | 4112 |
| C41, C46 | $0.001 \mu \mathrm{f}, 600$ volt, tubular | |
| C43 | Paper $0.01 \mu \mathrm{f}, 600$ volt, tubular | 4104 |
| C42, C44 | $330 \mu \mu \mathrm{f}, \pm 10 \% \text {, mica or }$ ceramic | 4010 |
| C45 | $650 \mu \mu \mathrm{f}, \pm 10 \%, \text { mica or }$ ceramic | 4011 |
| L1 | Loop antenna | 55210 |
| LS | $12^{\prime \prime}$ speaker, electrodynamic | - 9044 |
| R2, R17 | 22,000 ohm, $\pm 20 \%$, $1 / 2 \mathrm{w}$ | - 4501 |
| R3, R27 | 2.2 megohm, $\pm 20 \%$, 1/2 w | 4502 |
| R4 | $10,000 \mathrm{ohm}, \pm 10 \%, 2 \mathrm{w}$ | 4503 |
| R11 | 4,700 ohm, $\pm 20 \%$, $1 / 2 \mathrm{w}$ | 4543 |
| R12, R18 | $47,000 \mathrm{ohm}, \pm 20 \%$, 1/2 w | 4504 |
| R23 | $500 \mathrm{olm}, \pm \overline{20} \%, 3 \mathrm{w}$ | 4550 |
| R28 | $1,500 \mathrm{ohm}, \pm 5 \%, 61 / 2 \mathrm{w}$ | - 4701 |
| R13, R14, R24, | $47,000 \mathrm{ohm}, \pm 5 \%, 1 / 2 \mathrm{w}$ | 4537 |
| R25 | | |
| R26 | 22,000 ohm, $\pm 5 \%, 1 / 2 \mathrm{w}$ | 4538 |
| T10 | Output transformer | 5108 |

Antenna connection changes for Hoffman C601 and C611.

Circuit changes for Hoffman C501 and (:511.

Westinghouse H-183, H-183A

These models appear on pages 19-15 through 19-17 of Rider's Manual Volume XIX. An error existe in the schematic diagram. The value of R9 in the converter circuit should be 3,300 ohms instead of 300 ohms.

The position of C 20 in the circuit has been changed. On some chassis this capacitor was connected across the primary of the output transformer as shown on the schematic diagrain. In later production, the capacitor is connected from the plates to the cathodes of the parallel 25 L 6 GT output tubes.

HIWYNI Have it when You Need it

'Did over \$5,000 additional business installing ESPEY chassis"

Valco Mfg. Co.

This company was formerly National Dobro Corp. The name was changed to Valco in 1942. The manufacturer suggests that any public address equipinent which cannot be located in Rider's PA Manual Volume 1 under one name be looked up under the other.
from 1938 to 1948. Covers PA systems, intercommunication systems, and theater and church hearing aids.

2024 Pages Net Price $\$ 18.00$ Order From Your Jobber

De Young, Ithaca, N. Y.

THERE ARE THOUSANDS OF OUT-MODED RADIOS IN YOUR "BACK YARD" JUST WAITING TO BE REPLACED... AT YOUR SUGGESTION

Here is the custom-built AM-FM chassis that means BIGGER PROFITS for you!

SPECIFICATIONS

Supplied ready to operate, complete with tubes, antennas, speaker and all necessary hardware for mounting in a table cabinet or console, including escutcheon. Power requirements $105 / 125$ volts AC, $50 / 60$ cycles. Power consumption -85 watts.
Chassis Dimensions: $1312^{2 \prime \prime}$ wide $\times 81 / 2^{\prime \prime}$ high $\times 10^{\prime \prime}$ deep.
Carton Dimensions: (2 units) $20 \times 141 / 2 \times 103 / 4$ inches.
Net Weight: $161 / 2$ pounds each.
Sold through your favorite parts distributor.
WRITE FOR CATALOGUE KDI2 CONTAINING COMPLETE SPECIFICATIONS ON THIS AND OTHER MODELS

The NEW ESPEY model 511 FEATURES

1. AC Superhełerodyne AM-FM Receiver,
. Improved Frequency Modulation Circuit, Drift Compensałed
. 12 tubes plus rectifier and electronic Tuning Indicator.
2. 3 dual purpose tubes
3. Treble Tone control.
4. Full-rang tuning condenser.
5. Ful-range bass to ne control,
6. Auth Fidelity $A M-F M$ Reception.
7. Automatic volume control.
8. 13 watts (max.) Push-Pull Audio Output. 12-inch PM speaker with Alnico V Magnet, 25 watts rating.
9. Smooth fly illuminated Slide Rule Dial.
10. Antenna for AM funing for FM Reception
11. Provision for exter
12. Wired for phonograph antennas.
13. Multi-tap phonograph operation.
14. Licensed output trans., 4-8-500 ohms
15. Subject to RMA warranty, registered code symbol \$174.

Makers of fine radios since 1928.

Write for FREE SAMPLE

Curtain Time

(Continued from page 5)
buying test equipment, parts, books, and the like-waiting for reduced prices-you may be unpleasantly surprised. Perhaps prices will not rise much-but it does not look as if they will fall. The index of business is on the way up. The inventories which were responsible for certain declines have been exhausted. We understand that, even in TV receivers, the output of some manuiacturers is sold far into January, 1950, with allocations to jobbers.

TV Contracts and Insurance Departments

It seems that the bone of contention concerning TV service contracts being insurance policies, is the replacement of parts. As we understand it, a contract which covers free replacement of parts is construed as an insurance policy. Isn't it strange that the part of a TV set which gave the most mental concern at the outset gave the least concern actually? We're talking about the picture tube. Every. body was wortied about the failure of that part of the TV receiver-by and large, it gave very little trouble. Looks like the know-how of cathoderay-tube manufacturing, gained during the war years, did a lot of good.

Wanna Help Your Business?

If you are running a small business-you need The Business Helper advertised elsewhere in this issuc. Take our word for it, it's worth every penny of the two bucks. Bringing just one of the very many ideas contained in this book to fruition will repay you a hundred-fold. The man who wrote that book can prove everything he says.

HIWYNI

Some TV service shops are operating without TV sweep generators. In the face of that condition, we say it can't be done. Stop kidding yourself! You can't run a profitable business without equipment. Equipment is a capital investment of the most important kind. Time is money. Lack of suitable equipment wastes time-therefore, money. That goes for marker signal scurces, vacum-tube voltmeters, and Rider Manuals, too. Every model of a TV receiver contains special features-special instructions developed by the TV receiver manufacturer. Let him tell you how. These are shown in Rider's TV Manuals. HIWYNI. Have It When You Need It. This goes for equipment and service data. You need them both!!

Johs F. Rider

Cover

An electrician makes final adjustments on the uppermost "bat-wing" of the television antenna which tops WOR-TV's 760 foot tower in North Bergen, N. J. The transmitter, which beams out WOR-TV's television programs on Channel 9, is situated on the Palisades overlooking Manhattan.

Crosley 9-407, 9-407M, 9-407M1, 9-407M2 Tolume 2. A Comparison Parts List and Thesc models appear on pages 2-1 a Picture Tube Interchangeability Chart
are given below. All other information and parts are identical for each model. This also applies to Model $9-407$ M3.

PICTURE TUBE INTERCHANGEABILITY CHART
Models 9-407, 9-407M, 9-407M1, 9-907M2, 9-407M3

| | From 9-407,407M(12JP4) | | | $\begin{gathered} \text { From 9-407M1 (12LP4) } \\ \text { TO } \end{gathered}$ | | | From 9-407M2 (12KP4) | | | $\begin{gathered} \text { From 9-407M3 (12QP4) } \\ \text { T0 } \end{gathered}$ | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| PROCEDURE | $\begin{aligned} & \text { 9-407M1 } \\ & \text { (12LP4) } \end{aligned}$ | $\begin{aligned} & \text { 9-407M2 } \\ & \text { (12KP4) } \end{aligned}$ | $\begin{aligned} & 9-407 \mathrm{M} 3 \\ & (12 \mathrm{QP4}) \end{aligned}$ | $\begin{gathered} 9-407{ }_{7} \\ (12 \mathrm{JP4}) \end{gathered}$ | $\begin{aligned} & 9-407 \mathrm{M} 2 \\ & (12 \mathrm{KP} 4) \end{aligned}$ | $\begin{aligned} & 9-407 \mathrm{M} 3 \\ & (12 Q P 4) \end{aligned}$ | 9-407, 9-407M $(12 \mathrm{JP} 4)$ | $\begin{aligned} & 9-407 \mathrm{M1} \\ & (12 \mathrm{LP4}) \end{aligned}$ | $\begin{gathered} 9-407 \mathrm{M} 3 \\ (12 \mathrm{QP4}) \end{gathered}$ | $\begin{gathered} 9-407 \\ (1207 \mathrm{M} \\ (12 \mathrm{PP}) \end{gathered}$ | $\begin{aligned} & \text { 9-407M1 } \\ & \text { (12LP4) } \end{aligned}$ | $\begin{array}{\|l\|} \hline 9-407 \mathrm{M} 2 \\ (12 \mathrm{KP4}) \end{array}$ |
| Resistor (R324, Part No. 138201-6). Refer to Schematic Diagram. | $\stackrel{\underset{x}{x} \text { (Ad) }}{ }$ | $(\underset{d d}{\boldsymbol{x}})$ | | $\begin{gathered} x \\ \text { (Remove) } \end{gathered}$ | | $\begin{array}{\|c\|} \hline \\ \text { (Remove) } \end{array}$ | $\underset{\text { (Remove) }}{x}$ | | $\underset{\text { (Remove) }}{x}$ | | $\underset{\text { (Add) }}{\underset{x}{2}}$ | $\underset{(A d d)}{\mathbf{x}}$ |
| Hesistor (R325, Part No. 89874-41). Refer to Schematic Diagram. | $\stackrel{x}{(A d d)}$ | | | $\underset{\text { (Remove) }}{\mathrm{x}}$ | $\underset{\text { (Remove) }}{\mathrm{X}}$ | $\underset{(\text { Remove })}{x}$ | | $\stackrel{\underset{(A d d}{x})}{ }$ | | | $\underset{(\underset{\text { (Add) }}{\boldsymbol{x}}}{ }$ | |
| Replace High Voltage Cable Clip with Connector (Part N̦o. 188488). | \times | \times | | | | | | | . | | \times | \times |
| Replace High Voltage Cable Connector with Clip (Part No. 160058). | | | | \times | | | \times | | | | | |
| Adjust Bottom Tube Support and remove one cushion from center of support. | | | | \times | | | x | | | x | | |
| Adjust Bottom Tube Support and place one cushion (Part No. 160128-1) in center of support. . . | \times | \times | \times | | | | | | | | | |
| Early Production only-Replace the 10 " rubber strip Irom bottom Tube Support with a 10 " strip approximately $1 / 5$ " thick | x | \times | \times | | | | | | | | | |
| Replace the two screws that secure the Tube Clamp, with screws $1 / 4^{\wedge}$ longer. | x | \times | \times | | | | | | | . | | |
| Form a bulge approximately $1 /{ }^{\prime \prime}$ deep in cabinet back directly in rear of tube socket, or replace Back with Back Assembly (Part No. 160504). | \times | | | | | | | \times | | | \times | |
| Place Ion Trap (Part No. 144315) on neck of tube and adjust. | \times | | | | | | | x | | | \times | |
| Place Ion Trap (Part No. 146592) on neck of tube and adjust. | | | \times | | | x | | | \times | | | |
| Replace Mask with a Mask (Part No. 160473)... | \times | \times | \times | | | | | | | | | |
| Replace Mask with a Mask (Part No. 160050-2) | | | | x | | | \times | | | x | | |

COMPARISON PARTS LIST
Models 9-407, 9-407-M, 9-407M1, 9-407M2, 9-407M3

| $\begin{aligned} & \text { Symbol } \\ & \text { No. } \end{aligned}$ | $\begin{aligned} & \text { Part } \\ & \text { No. } \end{aligned}$ | DESCRIPTION | $(12-407)$ | $\begin{aligned} & 9-407 \mathrm{M} \\ & (12 \mathrm{JP4}) \end{aligned}$ | $\begin{aligned} & 9-907 \mathrm{M} 1 \\ & (12 \mathrm{LP4}) \end{aligned}$ | $\begin{aligned} & 9-407 \mathrm{M} 2 \\ & (12 \mathrm{KP4}) \end{aligned}$ | $\begin{aligned} & 9-407 \mathrm{M} 3 \\ & (12 Q P 4) \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| R-324 | 138201-6 | Resistor, 1250 ohm, $\pm 10 \%$, 10 w., wire wound, Ceramic............ | | | \times | \times | |
| R-325 | 39374-41 | Resistor, 22,000 ohm, $\pm 10 \%$, 1/2 w............. | | | x | | |
| | 160473 | Mask, Picture Tube. | | | \times | \times | \times |
| | 160050-2 | Mask, Picture Tube.................... | \times | \times | | | |
| | 160177 | Clamp, Picture Tube............. | \times | \times | | | |
| | 160475 | Clamp, Picture Tube | | | \times | \times | \times |
| | 160497 | Support, Picture Tube (Bottom, 2 used)................... | x | x | \times | \times | x |
| | 160172 | Support, Picture Tube (Bottom, Early Production only). . : | \times | \times | | | |
| | 160128-4 | Cushion, $21 / 4 \times 11 / 2^{\prime \prime}$ Rubber (used on 160497) | x (4 used) | x (4 used) | \times (5 used) | x (5 used) | x (5 used) |
| | 160128-3 | Cushion, 271/2" $\times{ }^{\text {m }}$, Rubber (Picture Tube Clamp) | \times | \times | \times | \times | \times |
| | . 160128-1 | Cushion, 10* $\times 11 / 2^{\prime \prime}$, Rubber (used on 160172)...................... | \times | \times | | | |
| | 160058 | Clip, High Voltage Cable.. | \times | \times | | | |
| | 138488 | Connector, High Voltage Cable. | | | \times | x | |
| | 144315 | Trap, Ion... | | | \times | | |
| | 145592 | Trap, Ion . | | | | | \times |
| | 160392 | Back Panel and Cable Assembly . | \times | x | | \times | \times |
| | 160504 | Back Panel and Cable Assembly . | | | x | | |

Scrwtooth Sweep Linearization
 (Continued from page 1)

Fig. 2. New circuit for improaing linearity.
$1 / 2$ megohm. Let us examine the operation of this circuit to see how it makes the sawtooth more linear.

Assume a starting point with all the capacitors charged up from the power supply. Capacitors $C 1$ and $C 3$ charge up through resistor $R 1$ and capacitor C2 charges up through resistors $R 1$ and $R 2$. When V1 starts conducting, all the capacitors start to discharge through the tube. Capacitors C1 and C3 discharge very rapidly but C2 discharges slowly because of the high value of $R 2$. In other words, the time constant of discharge for capacitor $C \mathscr{E}$ is much higher than for the other
capacitors. By the time V1 becomes cut off C1 and C3 are almost completely discharged, whereas capacitor (' 2 has only lost a small quantity of its charge. C1 and C3 start to charge up again from the B supply. The voltage across $C \cong$ is, however, still very high so that it continues to discharge through R2 because the voltage across C1 is very low. As C2 continues to discharge, its electrons pile up on C1. Thus C1 is charging up from two scurces - from the B supply and also from C2. As the voltage across C1 increases and that across C2 decreases, a point will be reached where the voltages across each will be equal and $C Z$ will stop discharging. Therefore, immediately after this period is reached, the voltage across C1 will be greater than that across CQ and the latter capacitor will start to charge again.

From the circuit of Figure 2, we see that the output signal is taken across capacitors C2 and C3. The voltage wave across capacitor C3 is the nonlinear sawtooth with an exponential rising characteristic. The voltage wave across C2 is, however, much different. During part of the cycle of capacitor CS charge, capacitor C2 is discharging. The amount of discharging that $C Z$ undergoes results in a somewhat semicircular or parabolic waveshape across C2. Thus, while the exponential voltage across $C 3$ is convex, that across C2 is concave. The time constants of the circuits are so arranged that the

A Radically Improved New Type of TELEVISION BOOSTER

 Offering Great New ADVANTAGES IN RECEPTION AND TUNING THE ASTATICT he new astatic Channel Chief, Model at-l Telovision Booster, eliminates the common failing of many boosters - showing a "peak" on some channels and "Iall-off" on others. The Channel Chief provides extremely high gain, uniform on all 12 television channels. Its dual controls allow separate tuning of picture and sound, with no sacrifice of one for the other. A variable gain control permits reduction of signal 'strength to prevent picture distortion when the signal input is greater than that required for good definition. Altogether, the results are the considerable extension of fringe areas, good reception in areas previously rated as unsatisfactory, easier tuning and added selec tivity on any receiver, elimination of the need for expensive outdoor antennas within service areas. The increased selectivity serves to reduce drastically, or eliminate, interference. No other booster can do so much . . . for you or for your customers. Write for added details.

Leading Manufacturers of Microphones, Phonograph
Pickups, Cartridges and Related Equipment.

Fig. 8. A is the normal exponential charg. ing curve, curve B represents the discharge of capacitor C2, and curve C is the combination of A and B.
resulting waveform of the addition of the voltages across $C 2$ and $C 3$ is a fairly linear sawtooth.
The curves of Figure 3 fundamentally illustrate the operation of the circuit of Figure 2. In this graph, curve A is a normal exponential charging curve (where E is the maximum charging voltage) and, therefore, represents that of capacitor C8. Curve B represents the discharge of capacitor C2. The time of $C 2$ discharge is so arranged that when curves A and B are added together, they produce a linear rising resultant curve as indicated by curve C in the drawing.
The circuit of Figure 4 illustrates another very simple method of linearizing a sawtcoth wave by the addition of a new time-constant network. Tube V_{1} serves the same purpose as in the other circuits. Resistor $R 2$ and capacitor $C 2$ are the added components. Nothing else in the circuit is changed from the conventional type of Figure 1. This new circuit operates upon the same basic principles as that just discussed whereby the linear trace of the resulting sawtooth depends upon the clarging of one capacitor and the discharging of another. The circuit operates as follows:
Let us assume a starting point with erpacitors C1 and C2 fully charged up from the B supply, and the input signal biases the tube above cutoff thereby making it conduct. The moment that plate current begins to flow, C1 and C2 both start to discharge through the tube. Capacitor C1 discharges very rapidly as compared to capacitor C2 because resistor $R 1$ is included in the discharge path of

Fig. 4. Another method of linearizing a sawtooth wave by means of a new time. constant network.

FIRST in Television Antennas

The New CATHODE-RAY TUBE AT WORK

by Rider ef al
Completely rewritten from start to finish More than 900 pages
$81 / 2 \times 11$ inches $\$ 9.00$

The NEW Cathode-Ray Tube At Work is about five times the size of the old standby which has been the standard for almost 15 years. Almost 500,000 words and about 3,000 illustrations have gone into this new edition. Never has there been a book on this subject like this one!
Are you interested in learning the theory of operation of the cathoderay tube?

Here it is, right from the ground up - for all kinds of cathode-ray tubes as used in scopes and TV receivers.
Are you interested in learning what is inside of your present scope or the one you're going to buy?

Here it is, with complete explanation of everything. Every scope which was produced and sold during the last 10 years is described and discussed completely - with the schematic wiring diagram. More than 50 models of scopes are covered.
Are you interested in getting your money's worth from the scope you now own?

Here it is, with complete explanations of how you can supply your scope to every type of servicing problem AM-FM-TV-PA anything you come up against.
Are you interested in electronic or industrial research?
Here it is! The chapter on scientific and industrial applications of the scope is the greatest ever - more than 500 illustrations in this one chapter alone!
Are you interested in understanding the amplifier, sweep and synchronizing circuits used in scopes?

Here it is, with full and complete discussions of theory and practice of each of the systems which comprise a scope. More understandable information than you have ever seen before.
Are you interested in the application of the cathode-ray scope to transmitters, vibrators, power supplies, rectifiers, etc., etc.?

Here it is, with pictures and discussion to satisfy the most demanding individual.
Are you interested in interpreting scope patterns?
Here it is, with more illustrations than you have ever seen in not only one book but in many books put together.
Are you interested in the composition of complex waves?
Here it is, almost 2,000 illustrations of complex waves synthezied from sine waves; and the composition of each wave - phase and amplitude - is stated beneath each picture.

Examine These Chapter Headings

1. INTRODUCTION
2. PRINCIPLES OF ELECTROSTATIC

DEFLECTION AND FOCUSING
3. PRINCIPLES OF ELECTROMAGNETIC

DEFLECTION AND FOCUSING
4. MECHANICAL CHARACTERISTICS
5. THE ELECRON GUN
6. DEFLECTING SYSTEMS
7. SCREENS
8. DEVETOPMENT OF THE TRACE OR THE SCREEN
9. THE BASIC OSCILLOSCOPE
10. PHASE AND FREQUENCY

PHEASUREMENTS
MEASUREMENTS TIME BASE
11. LINEAR TIME BASES (SWEEP CIRCUITS)
12. SYNCHRONIZATION
13. NONLINEAR TIME BASES
14. COMMERCIAL OSCILIOSCOPES

The greatest, most complete reference book ever written on the cathode-ray tube. It is a practical, right-down-to-earth volume which will repay its buyer many times over.

Place your order today. NOW! Make certain that you will receive your copy from the first printing. You will not want to be without this book.

Publication January, 1950
 ORDER FROM YOUR JOBBER OR DIRECTLY FROM US

15. AUXILIARY EQUIPMENT
16. TESTING AUDIO-FREQUENCY CIRCUIT8
17. AM, FM, AND TV ALIGNMENT
18. TELEVISION RECEIVER SERVICING
19. AM, FM, AND TV TRANSMITTER TESTING
20. SCIENTIFIC, ENGINEERING, INDUSTRIAL, AND EDUCATIONAL APPLICATIONS
21. COMPLEX WAVEFORM PATTERNS
22. SPECIAL PURPOSE CATHODE-RAY TUBES

APPENDIX

1- CHARACTERISTICS OF CATHODE-RAY TUBES
II - CATHODE-RAY TUBE BASES AND
II - SOCRETS
III - PHOTOGRAPHY

Sawtooth Sweep Linearization

(Continued from page 12)
C2. As a result of this, by the time the tube becomes nonconducting (i.e. cutoff), capacitor $C: 2$ has only discharged a small portion of its voltage whereas capacitor C1 is almost completely discharged. Once the tube becomes cut off, $C 1$ charges up again from the B supply through $R 1$ and R2. However, the voltage across $C 2$ is ruch greater than that across C1, so C'S still continues to discharge, its discharging current piling up electrons on $C 2$ and, therefore, further charging this capacitor. A point will soon be reached where the voltage across $C 1$ and $C Z$ will be equal, CI will stop discharging and then begin charging through R ? from the B supply. Thus both capacitors are again in a state of charge, and when the tube becomes conducting once more, the cycle of opera. tion starts all over again.
With the output sawtooth signal, as you will note from Figure 4 taken across only capacitor C1, the reader may at first wonder how the operation of this circuit will linearize the sawtooth signal. The arswer to this is easily explained if we carefully consider the two charging actions on C1. We said that $C 1$ charges up from the B supply and for a certain period of time also charged up as a result of the discharging of $C 2$ through $R 1$. The charging of $C 1$ from the constant voltage B plus source is the normal rising exponential curve. The discharging voltage of $C \mathscr{F}$ is exponentially decreasing and part of this voltage is used to charge C1. Therefore, across C1 we effectively have two charging voltages, that from the B supply having a convex shape and that from capacitor C \mathcal{Z} having a concave shape. The time ccnstants of the circuit are so arranmed that the superposition of these two curves produces a fairly lincar sawtooth signal across C1, similar to that of Figure 3.

Fig. $\overline{\text {. }}$ Adjustment of the potentiometer regulates the time constants of the circuit and, is, therefore, called a linearity control.

The circuit of Figure 5 is a rearrangement of Figure 4. In this new circuit, resistors $R 1$ and $R \mathscr{E}$ are replaced by a jctentiometer where the arm represents the junction point of these two resistors to which capacitor $C \mathscr{Z}$ is connected. By the use of such a potentiometer, it is easy to adjust the time constants of the circuit for the best possible. linear sawtooth signal. The potentiometer in a circuit such as this is known as a linearity control.
References:
"Television Time Base Linearization", by A. W. Keen, p. 195, Electronic Engineering, June, 1949.
"Linear Sawtooth Oscillators", Wireless W'orld, p. 425, May 4, 1939.

> Build Your ServiceSales Future on a Firm Foundation with

PRECISION tist rivioment diatace dy hameny..

SERIES E-200-C - Modern Multi-band SIGNAL and MARKER GENERATOR for A.M., F.M., and TV alignment.
 tionl A.V.C. substitution $\begin{gathered}\text { networkl Direct } \\ \text { reoding } 88 \mathrm{KCC} \\ \text { to } 120 \mathrm{MCl} \\ \text { Complete with }\end{gathered}$ reoding sebe tho tech, manual, ," matere with heory gavge case $101 / 2 \times 12 \times 6$

Net Price: $=\$ 67.25$

SERIES E-400 - Wide Range H.F. SWEEP SIGNAL GENERATOR Direct Reading from 2 to 480 MC . Narrow and Wido Band Sweep for F.M. and IV - 1500 pt - vernier calibroting scale. Mutiple Crystail Marker $\dot{8}$ tubes including
V.R. and rectifer $\mathrm{RG} / 62 \mathrm{C}$ Cooxial Ter-

 Net Price:- $\$ 124.70$

SERIES ES-500-20 MV. High Sensitivity, Wide Range 5 inch C.R. OSCILLOGRAPH. V. Amp. Response to 1 ACl Low C. Aigh R input Step Attonuotorl Z oxis modulation terminults
tubes incl.
V.R. and
2 Complete. with light shieldifioss! mask. Hoovy sleol case $81 / 4 x$
$141 / 2 \times 18^{\prime \prime} \cdot$ Net Price: $\$ 149.50$

...These 5 Matched "Precision" Instruments provide a Complete Modern Service Laboratory for TV-FM-AM at only moderate cost.

SERIES EV-10-True Zero.Center VTVM - MEGOHMMETER with large $7^{\prime \prime}$ meter - plus complete $1000 \mathrm{~s} / \mathrm{V}$. functions. 59 ranges to 6000 Volts, 2000 Megs , +700 BB , 12 Apps Voltage Reosulated bridge tye

 heovy gavge steel cabinet $101 / 2 \times 12 \times 0^{\prime \prime}$ Net Price:-\$89.95

SERIES 612-Modern Free-point Cathode Conductance TUBE TESIER, and dynamic A.B.C Battery Tester. incorporates RMA recommended circuit prin. iplest 10 ever free-point element selection tivity1 Noise, Boallast and pilat Tests: Cam leate, ready to operate. In matched heary gauge stetl cabinet $101 / 2 \times 12 \times 6$ Net Price:- $\$ 66.65$

BUY PERFORMANCE - NOT SPECIFICATIONS

 For over 15 years, "Precision" PERFORMANCE, ACCURACY, WORKMANSHIP and VALUE have set a standard of comparison...products of an organization whose sole efforts are concentrated exclusively in the design, development and production of the FINEST TEST EQUIPMENT...nothing else?PANEL MOUNTS, PORTABLES, COUNTER TYPES Most "Precision" instruments are available in various enclosure styles to suit your individual application, field or shop. WRITE FOR OUR LATEST ILLUSTRATED CATALOG describing the full line of Precision quality test equipment for all phases of modern radio, television and communications.

SERIES TV - Super-High Voltage Safety Test Probes. Extends range of Series EV.10 (above) up to 30 KV or 60 KV diract reading, with full satety to operator
 Net Price:-\$15.45

Convenient "Precision" Purchase Terms can be arranged with Yaur favorite
authorized Precisian Distributor.
$T V \cdot A M \cdot F M: T V \cdot A M \cdot F M \cdot T V E$
your favorit

Check-Up Month

Attention: All Servicemen. This is your nonth. October is Radio Check-up Month, sponsored by Associated Radio-Television Servicemen N. Y., Inc., Members of National Association Broadcasters, and National Electronic Distributors. What should you do about it? You should urge your customers to bring in their old sets to be fixed, or for a check-up (and of course you can use your Rider Radio and Television Manuals to get all of the information you will need). The idea is to drum up more trade than ever. to bring to your customer's attention that the hum or distortion that they considered insignificant can and should be eliminated. You can point out to them that you have the information, thanks to Rider's Manuals, and the equipment that you have kept in top-notch form, - you have the tools to satisfy their needs.

Rider Receives Honorary Membership

At a recent meeting of the Philadelphis Radio Service Men's Association, Inc., the proposal was made to award John F. Rider an Honorary Membership in that organization. The vote of approval was unanimous and Mr. David Krantz, president of PRSMA made the presentation.

Current Meetings

John F. Rider will be busy making speeches at service meetings again this month. The present schedule for the month oi October covers Montreal, Canada, on the 19th, for the Town Meeting of Radio Technicians, sponsored by the Capadian Radio Industry; Fort Wayne on the 26th, for the meeting sponsored by Warren Radio Company and Pembleton Laboratories; Battle Creek on the 27 th, and for the meeting sponsored by the Electronic Supply Corp. On November 3rd, he will be in Washington. D. C., for the Town Meeting of Radio Technicians, sponsored by the Radio Manufacturers Association. All of the talks will be related to good business management and different aspects of television.

Zenith 6R886Z, Chassis 6E02Z

Model 6R886Z is the same as Model 6R886 which appears in Rider's Manual Volume XVII, pages $1 \underset{1}{1} \cdot 16$ and 17~-17, except that a tone control has been added, as illustrated in the accompanying diagram.
The following parts were added:

Its as True Taday as it was Then--.

... the ideal library is one in which the shelves are empty, since the books ars all in circulation.

The Business Helper 144 pages $\$ 2.00$
FM Transmission and Reception 416 pages Cloth Cover $\$ 3.60$ TV Picture Projection and Enlargement. 179 pages $\$ 3.30$
Broadcast Operators Handbook 288 pages \qquad
Understanding Vectors and Phase 160 pages Cloth Cover $\$ 1.89$

Paper Cover $\$ 0.99$
Installation and Servicing of Low Power Public Address Systems 208 pages

Inside the Vacuum Tube 424 pages $\$ 4.50$
The Cathode-Ray Tube at Work 338 pages $\$ 4.00$
Servicing by Signal Tracing 360 pages

| -Chauncey Breuster Tinker | |
| :---: | :---: |
| The Meter at Work
 152 pages \qquad | |
| A-C Calculation Charts 160 pages | |
| gh Frequency Measuring Te niques Using Transmission Lines. 64 pages | |
| Oscillator at Wo 256 pages \qquad | |
| acuum Tube Voltmeters 180 pages \qquad | |
| utomatic Frequency Co Systems. 144 pages .. | |
| adar - What It Is
 72 pages | |
| aderstanding 385 pages ... | |
| adio Amateur's Beam Guide. 32 pages | |
| aster Index-Volume I to XV | |

Chauncey Brewster Tinker
The Meter at Work
152 pages $\$ 2.00$
A-C Calculation Charts
High Frequency Measuring Tech.
niques Using Transmission
Lines. 64 pages $\$ 1.50$
The Oscillator at Work
256 pages \$2.50
Vacuum Tube Voltmeters
180 pages $\$ 2.50$
Automatic Frequency Control Systems. 144 pages \$1.75
Radar - What It Is
72 pages
nderstanding Microwaves
Radio Amateur's Beam Pointer
Master Index-Volume I to XV $\$ 1.50$

Order from your Jobber or Directly from Us

| S. 14667 | Dial pointer and pulley assy. | 63-1653 | Tone control |
| :---: | :---: | :---: | :---: |
| S-14670 | Tone control brik. and lug assy. | 78.793 | Socket-octal tube |
| 12-1490 | Cover plate support | 85-438 | Phono-Radio switch |
| 22-827 | $0.1 \mu \mathrm{f} 200 \mathrm{v}$. | 125-66 | Rubber grommet |
| 46-688 | Tone control knob | 166-41 | Rubber bumper |
| 57-1398 | Escutcheon | 188-34 | Retaining ring. |

Distribution of This Issue-48,000 Copies

Courtesy RCA Service Co.
NOVEMBER, 1949

MATCHMG A GENERRTOR TO ITS LOAD By ARNOLD B. BAILEY

(Editors Note: This material is an abridged excerpt of the same subject as found in "Theory and Practice of $30-1,000$ Mc Receiving Antennas," a fortlicoming book which has been written by the author of this article and will soon be published by John F. Rider Publisher, Inc. The subject of the proper matching of an antenna to its transmission line, and in turn the matching of the line to its load presented by the receiver input circuit, is frequently a cause of confusion and misapprehension concerning the seriousness of possible mismatches.)
Nonresonant circuits, be they antennas or coils and capacitors have one common characteristic. The power which flows into them is reflected back again at an adverse part of the radio cycle. This adverse timing can be easily expressed in terms of the radio cycle. If the power is not reflected back to the point of application, the generator will deliver its maximum power and will inherently see a load circuit which looks like a resistance having a value in ohms equal to the number of
unit volts required to produce one unit of current. This is the definition of resistance. Volts divided by amperes is the resistance in ohms, provided that we measure the voltage and current either at their peak value, or their rms value, and have a single sine-wave voltage generator as the source. When maximum power is delivered, we say the generator and its load are matched, indicating that one-half of the generated energy is usefully delivered to the load. No more than one-half of gen. erated power may be delivered to any load. At this optimum condition, the generator resistance equals the load resistance. The power is smoothly transferred from generator to load, since no reflection of power takes place.
The next case of interest is when the load resistance does not equal the antenna resistance. For instance, the load resistance may be too small in value. If so, excess current is required to maintain power, since power is $I^{2} R$. If R is too snall. I must increase, for the same amount of power. This cannot be supplied. hut can be ap-
proached, since the generator must also carry this excess current; in trying to do so, more power will be used up by the generator resistance. A balance will be reached, when the generator takes some excess current, and thus uses up more than one-half of the total generated power, leaving less than one half for the load.
If the load has too high a resistance value for the generator, it tends to share more than one-half of the generated voltage, but cannot pull sufficient current for normal power output. The result is that the generator again takes more than onehalf of the total power, leaving less to the load.
In general then, for any given generator, the load must be so proportioned that it absorbs exactly one-half of the generated power. If it does not, the residual power is "reflected" back into the generator, and there is lost in the internal generator resistance.
Another way of looking at this same problem. is to realize that a generator can
(Please turn to page 18)

Television Changes

Farnsworth 651P, 661P

These models appear on pages 2-11,12 through 2.25 of Rider's TV Manual Volume 2. Figures 1 and 2 show circuit clanges that have been made. The focus circuit has been revised, and its position on the schematic has been changed as shown in these illustrations. In addition to these, the following changes should be noted:
The lead shown in Figure 1 from the 470,000 -olm resistor goes to the connection from the radio transformer to the input of the lst i-f stage.

General Electric 810

This inodel appears on pages 2-22 thiough $2-43$ of Rider's TV Manual Volume 2. When replacing the speaker on Model 810 with speaker UOP-577, two speaker contact clips, RJC-002, should be soldered to the speaker to adapt this speaker to the speaker leads of this model.

In late production, the block oscillator coil, T16, was mounted below the chassis rather than on top of the chassis. This change materially reduced the amount of horizontal oscillator drift.

Fig. 1. Circuit changes for the Farnsworth 651P and 661P.

A 270 -ohm resistor has been added between pin 8 and pin 2 of the adapter socket.
The 68 -ohm resistor in the framing circuit has been deleted, and the value of the variable resistor in that circuit has been changed from 250,000 ohms, $1 / 4$ watt to 50,000 olıns, $1 / 4$ watt.
A $1,200-\mu \mu \mathrm{f}$ capacitor, N 2100 , has been added in parallel to the one already shown in the horizontal AFC circuit.
The 100 -ohm, 10 -watt resistor in the 1st i-f stage has been changed to 130 ohms, 5 watts.

Fig. 2. Circuit changes for the Farnsworth $651 P$ and 661P.

Tele-King 510, 712

Model 510 is the same as Model 410 which appears on pages 8-1 through 3-8 of Rider's TV Manual Volume 3. Model 712 is the same as Model 512 which appears on pages 3-1 through 3-8 of the same Volume.

RIDER TV MANUALS YOLUMES 1,2 , and 3

Allied Purchasing Ambassador Models 912, 712

These models are the same as TeleKing's Model 712 which appears on pages 3-1 through 3-8 of Rider's T'V Manual Volume 8 .

Belmont 10DX21

This model appears in Rider's T'V Manual Volume $\underset{\sim}{2}$ on pages 2-1 through 2.10. Modification kits are now available to reduce the tendency toward picture drift and improve picture resolution in lowsignal areas. Modification Kit EF can be used only with 10DX21, 10DX24, and 10.AXF43, Series A Chassis No-Code or Code B. Modification Kit F may be used with 10DX, 10DX22, and 10AXF43 Chassis, Series A, Code C or D, and with Series B, No Code. Code 51, 52, and 53 sets had this modification incorporated at the factory. Modification Kit G pertains to areas where only 25 -cycle power lines are available. Since all B. R. C. 10 DX Series Chassis television receivers were designed to operate on 50 to 60 cycles, this modification kit will enable operation on 25 cycles.

Allied Purchasing Ambassador Models 910, 410

These models are the same as TeleKing's Model 410 which appears on pages 3-1 through 3-8 of Rider's T' Manual Volume 3.

DuMont RA-105, RA-106

Model RA-105 appears on pages $2-5$ through 2-56 of Rider's TV Manual Vol ume 2; Model RA-106 appears on pages 2-57 through 2-58 of the same Volume. Changes have been made to eliminate the horizontal displacement or "hook" in the top of the picture. The changes are shown in the accompanying diagrams. The list of

Circuit Changes for the DuMont RA105 and RA106.

Circuit Changes for the DuMont RA105 and RA106.
changes follows:
R327, 150 ohms, connected from R326 to ground, is deleted, and R326 is connected to ground.
C289, the $25-\mu$ f, 25 -volt capacitor connected from the junction of V224-3 and R326 to ground, is deleted.
The connection from pin 2 of V 218 to ground is removed.
Pin 2 of V218 is connected to the junction of K201, R339, R338, and R337.
Pin 3 of V224 is connected to pin 1 of V224.
R299 is disconnected from pin 2 of V218 and reconnected to pin 1 of V219, which is at ground potential.

Easy to buy...

That's why more folks ask for \longleftrightarrow

YOUR customers like "Eveready" radio bat1 teries because they can buy them in stores everywhere-and because these batteries give long, satisfactory playing life in any portable. "Eveready" batteries are the most widely advertised batteries in the world. Specialize on the batteries your customers want and reduce your inventory by stocking just one line- "Eveready" brand radio batteries.

The Mallory Midgetrol

How much business did you let slip through your fingers last year? Good business! Big business! All because you couldn't get controls small enough to service personals, portables and auto radios!
This year, discover how profitable these jobs can be. Stock up on the $15 / 6^{\prime \prime}$ Mallory Midgetrol and discover more business with a lower inventory!

WIDER APPLICATION-The small size lets you service portables, auto radios and small AC-DC receivers requiring ${ }^{15 / 6{ }^{\prime \prime}}$ controls.
SIMPLER INSTALLATION-The new and unique flat shaft design of the Mallory Midgetrol saves installation time with all types of knobs.
LESS INVENTORY-Electrical characteristics allow you to use the Mallory Midgetrol to replace $1 \frac{1}{s^{\prime \prime}}$ as well as ${ }^{15} / 6^{\prime \prime}$ controls. Since no special shafts are required, you carry fewer controls in stock.

NEW FEATURES-NEW FEATURES!

| NEW SIZE | NEW SHAFT | NEW SWITCI | NEW CONTACT |
| :--- | :--- | :--- | :--- |
| NEW DESIGN | NEW EXTENSION | NEW ELEMENT | NEW TERMINAL |
| NEW TWO-POINT SUSPENSION | | | |
| Don't Miss the Mallory Television Service Encyclopedia. | | | |
| Get Your Copy From Your Mallory Distributor... Only 35c! | | | |

MALLLORYCAPACITORS . . CONTROLS . . . VIBRATORS SWITCHES . . . RESISTORS . . . RECTIFIERS . . . VIBRAPACK* POWER SUPPLIES . . FILTERS

-Surcectial SERVICING
 REG. U. S. PAT. OFF.

Vol. 11
NOVEMBER. 1949
No. 1

Dedicated to the financial and technical advancement of the Electronic Maintenance Personnel

Published by

JOHN F. RIDER PUBLISHER, INC.
480 Canal Street
New York 13, N. Y.

JOHN F. RIDER, Editor

Copyright 1949, by John F. Rider
No portion of this publication may be reproduced without the written permission of the publisher.

CURTAIN TIME

American Town Meetings

We understand that the 7 th Town Meeting for Radio Technicians, recently completed in Washington, D.C., is the last one contemplated in the United States. It is possible that they were expensive-that the RMA in the United States feels that it cannot afford a continuation of the series, and that those electronic parts distributors who were called upon to locally support each of the meetings also feel that the expense was not warranted. Although it is only one man's expression, backed however, by conversation with those in attendance, we feel that they should be continued. Perhaps they were somewhat late in starting, but having been started, they are a sufficiently important activity and should be continued on several counts.
First, it establishes close, cordial relations between the servicing industry and the jobbers and manufacturers; for the first group, the servicentan is its livelihood, for the second, the serviceman is its liason with the public. It is admitted that the set manufacturer could sell equipment to the public regardless of the feeling of the servicing industry, but it must also be recognized that the servicing industry can. by helping to create a sat-
isfied public, make the business life of the set manufacturer much happier.
Second, the usefulness of these Town Meetings as the means of spreading technical information, business information, and other pertinent facts which help the service industry, and in the final analysis, the manufacturer too, is extremely important.

Third, it has always been recognized that the servicing industry as a whole was reluctant to devote its efforts to study, even though it felt the need for better and better technical background. These Town Meetings cannot help but serve as a means of creating intercst in the study of technical methods, theory, business administration-all the details pertinent to the servicenan's business. The efforts carried on by individual manulacturers and others, through the medium of technical meetings, also bear fruit. Sometimes it is not immediately evident, but in the long run, these activities produce the desired effects.
Those who are actively engaged in the operations of Radio Town Mectings. experimenting with the different sessions. especially with the program material, learn a great deal. Some of the attendances
were remarkably ligh, and indicated an ever-growing interest on the part of the servicing industry not only to participate in the ellort, but also to take advantage of what it olters.
To say the least, these Meetings serve to show the servicing industry the inany benefits which can be derived from a well. defined, well-planned technical program. such thinking should be encouraged, and there is no doubt that there is no one better equipped to do that in this nation, than the RMA.

Canadian Meeting

Un the lytil of Uctober, I had the privilege of addressing the closing session oi the Town Meeting of Radio Technicians in Montreal. This gathering, which lasted three days, was sponsored by the Canadlian RMA, and the various jobber and dealer associations existing in Canada. The attendance of several hundred people for each of the three sessions, with approximately 400 and some odd on the closing night, is without question living teo timony of the value of such a program for the dissemination of knowledge to the radio servicing industry of Canada.

The enthusiasm and thirst for information displayed by those in attendance was indeed most gratifying, and if I may be permitted to say so, it would be most advantageous for the radio industry of Canada, if such a program of Town Meetings were continued for a long time to come.

The scope of the Canadian radio industry, including the manufacturers, dealers, and servicemen, is not as expansive as in the States. This may be fortunate, because it tends to foster closer relationships between the segments of the in. dustry.

Be that as it may, the fact remains that the servicemen of Canada, like the servicemen of the United States, are hungry and thisty for knowledge. Such Town Meetings are mediums whereby, by cooperative effort, vital information can be spread far and wide among those who, in the final analysis, are the direct liason between the manufacturer and the public.
The problems of television. as encountered in the I'nited States, will no doubt
(Please turn to page 20)

TV JOE-THE RIDER PITCHMAN

NEED YOUR HELP

In order to be of service to you, the Rider library of electronic magazines, one of the most extensive in the country. needs the following back issues to complete its files. We will pay $\$ 1.50$ per copy. For the 1947 Volume of Transactions AIEE we will pay a reasonable figure-make us an offer. Send to John F. Rider Publisher, Inc., 480 Canal St., New York 13, N. Y.

MAGAZINE AND MISSING ISSUES

ATE Journal (now Broadeast Engineers Journal)
Feb. and March 1941
B.B.C. Quarterly

Vol. 3. No. 4, Jan. 1949
Vol. 4, No. 1, Apr. 1949
Chemical Industries
Jan. - June 1949
Electrical Communication

| July 1922 | July | 1934 |
| :--- | :--- | :--- |
| Oct. | 1922 | July |
| Jan. 1935 | | |
| Jan. 1934 | July | 1937 |

Electrical Review
Vol. CXLIV, Nos. 3711 to 3714, Jan. 7. 14. 21, 28

Electrical West
Vol. 102, Nos. 4 - 7 Apr., May, June. July 1949

Electronic Engineering
Vol. 20, No. 246, Aug. 1948
Engineers Digest
Jan. 1949
Journal of Applied Mechanics
Vol. 16, No. 1, March 1949
Journal Research of National Bureau Standards
Vol. 42, No. 1. Jcm. 1949
Nature (English)
No. 4089 Max. 13, 1948
4092 Apr. 3, 1948
$\begin{array}{rrr}4093 & \text { Apr. } & 10,1948 \\ 4096 & \text { May } & 1,1948\end{array}$
$\begin{array}{rlrr}4096 & \text { May } & 1, & 1948 \\ 4097 & \text { Mary } & 8,1948 \\ 4108 & \text { July } & 24, & 1948\end{array}$
4112 Aug. 21, 1948
Proceedings of The Radio Club of
America
Jan, to June 1949
Radio
Jan. 1922
Aug., Sept., Oct. 1932
Fug., March, Apr., Mary 1933
Radio \& Television News
Vol. 41, No. 1, Jan. 1949
(Electronic Engineering Edition)
Radio Service Dealer
Jan., Feb., Sept., Nov. 1947
The Electrician
Vol. CXIII, Nos. $25-52$, Jan. -
June 1949
The Engineer
Dec. 13, 1946 - Dec. 27, 1946
The Iron Age
Vol. 163, Nos. 21, 22, May 26 and June
2. 1949

Transactions AIEE
1947 (Bound Annual Volume)

Fornsworth GV260, 651P, 661P

Model GV260 appears on pages $1-1$ through 1.20., 26 of Rider's TV Manual Volume 1. Models 651P and 661P appear on pages 2-11, 12 through 2.25 of Rider's T'V . Manual Volume 2. Sync. chassis as used in the $651 \mathrm{P}-661 \mathrm{P}$ physically appear to be identical to those of the GV260 receiver. There is, however, a difference in some component parts and in wiring, so that the two are not directly interchangeable. The procedure for converting a GV260 sync. chassis for use in the 651P and 661P receiver is given on page 2-20 of Rider's TV Manual Volume 2. While some of the sync. chassis were produced without code marking, it has been arranged to stamp " 650 " on those of recent production, to indicate the necessary wiring changes.

Comparing the two, by way of identification, the following is noted:

1. Pin 2 of the adapter plug is grounded in the GV260. but connects to pin 6 of the 6SN7 in the 651P. In the GV260 instrument, there are two shielded cables, while in the $651 \mathrm{P}-661 \mathrm{P}$ there are three cables in the sync. chassis connection.
2. The grid circuit of the input section of the 6 SN 7 has a resistor of 22.000 ohms in the GV260, 1 megohm in the $651 \mathrm{P}-661 \mathrm{P}$. The input capacitor of the same circuit is $0.05 \mu \mathrm{f}$ instead of $1.500 \mu \mu \mathrm{f}$.

DuMont RA-105, RA-106

Model RA. 105 appears in Rider's TV Manual Volume 2 on pages 2-5 through 2-56 and Model RA- 106 appears on pages 2-57 and 2-58 of the same Volume. In the May issue of Successful Sprvicing, cable \#50014180 was listed as having a ring of red paint on the male plug. The new method of identifying this cable is by using a red tracer through the entire length of the cord, thus making it much easier to identify. The part number remains the same.

RIDER TV MANUALS YOLUMES 1,2 and 3

Olympic 10-, $121 / 2-, 16$-inch Models

To improve linearity, increase vertical and horizontal deflection, and improve horizontal stability in all $10-121 / 2^{\circ}$, and 16 -inch models, the following changes are suggested:

1. Change the red load oi the vertical output transformer from $\mathrm{B}+$ to +300 volts. This red lead may be removed from the lug on the electrolytic capacitor and placed on the opposite lug.
2. Change R88, 120,000 ohms, $1 / 2$ watt, to 3,300 ohms, 1 watt. This is the resistor attached to the holizontal linearity coil.
3. Change R82, 120,000 -ohm, 1-watt resistor, to 68,000 ohms. 1 watt. This resistor is located at terminal C of the horizontal oscillator coil.
These modifications were incorporated in all sets starting with production of October 22, 1949.

Pilot TV-37U

This is similar to Model TV-37 that appears on pages 2-1, 2 through 2-13 of Rider's TV Manual Volume 2. The following circuit changes have been made in the schematic diagram. The $100-\mu \mu \mathrm{f}$ capacitor connected to the junction of S2 and C1 has been changed to a $250-\mu \mu \mathrm{f}$ capacitor. The $180,000-\mathrm{ohm}$ resistor connected to the grid of the $12 S N 7 G T$, vertical amplifier, has been changed to a 120,000 -ohm resistor. The accompanying diagrams show the other circuit changes that have been made.

Circuit changes in the $35 W_{4}$ negative reotifier tube circuit of the Pilot TV-37U.

all FIEED...period!

"FIXED', only means clearing up existing trouble . . but "ALL FIXED" means preventing future trouble! And every serviceman knows from bitter experience that his customers expect him to make good, free-of-charge, if sets go haywire after he's serviced 'em.
While some future troubles are unpredictable, you can count on a percentage of old tubes and dial lamps going pffftt soon after you've put circuits in order. So . . . use only top quality tubes in your service work, always replace the inexpensive dial lamp, then see how you cut time-eating, profitless and unnecessary "callbacks" to a happy minimum.

TUNG-SOL Tubes and Dial Lamps, preferred by successful servicemen everywhere for dependable top
quality, are made to the most exacting standards of rugged uniformity. Use TUNG-SOL when you service and you'll find that less "call-backs" mean more greenbacks in your pocket!
TUNG-SOL LAMP WORKS INC., NEWARK 4, N. J. Sales offices: atlanta - chicago - dallas - denver detroit - los angeles - newark

How radio and television service is viewed by the set owner is inferestingly told by Don Herold in a booklet, "How You Can Sell Me Radio Service". Send for a complimentary copy. Following its suggestions will help build a more profitable business.

Tratasmeater
 TELEVISION KITS AND INSTRUMENTS

4Build it in 1 Day!

GIANT
160 Sq. In.
PICTURE
Has 16 Inch
PICTURE
TUBE
(All-Glass Pieture Tube, giving bright, clear, steady picture)

- KIT COMES SEMI-WIRED and ALIGNED. Can be completed in one day!
- SAVE by installing the set yourself.
- NEW LOW PRICES!

SAVE UP TO $1 / 2$ on the cost of equivalent picture-size sets.

Magnavox CT218, CT221

These chassis are identical to CT214A and C'[214B which appear on pages \&-1 through 2-87, 38 of Rider's TV Manual 1 olume 2, and on page C3 of Rider's TV Manual Volume 3, except for the r-f unit assembly.
Chassis CT218 is a 12 -channel r-f unit, with coil-selection of channels, and incorporates the adjustment of coils in the upper channels by compression of the coils. The underside of the unit is enclosed by a metallic shield. The schematic for the CT218 r-f tuner is shown in Figure 1.
Chassis CT221 is a 12 -channel r-f unit with continuous condenser-tuning between channels in either group. The schematic for the CT221 r-f tuner is shown in Figure 2.

CT218, CT221 A Chassis are a mechanical modification to the chassis, wherein a cutout is made behind the r-f tuner position, and a bracket inserted. This also applies to the CT214 C Chassis.
For reduction of possible hum that might be encountered in the CT218, CT221 B Chassis, the following modifications, shown in Figure 3, are incorporated:
(1) Remove the black wire joining the $20-\mu \mathrm{f}, 50$-volt section of capacitor C91, and 6V6, V9, cathode pin 8 . This removes the $20-\mu \mathrm{f}$ section of the capacitor which is not to be used.
(2) Add a $20-\mu \mathrm{f}, 150$-volt electrolytic capacitor from pin 8, the cathode of the 6V6, to chassis ground. Be sure to connect the positive terminal of the capacitor to ground as the cathode of the tube is at 85 volts potential.
(3) Remove yellow wires which tie to gether at the negative terminal of capacitor C91, and splice together, solder and tape. Connect this negative capacitor terminal to the chassis ground. Use the nearest ground lance opposite capacitor C91 as a ground point.
(4) Remove the grey wire from the $10-\mu \mathrm{f}$ section of capacitor C91. Tie the $10-\mu \mathrm{f}$ section of capacitor C91 to the $25-\mu \mathrm{f}$ section of capacitor C91.
(5) Remove the jumper connection from the $10-\mu \mathrm{f}$ section of capacitor C 92 and the $30-\mu \mathrm{f}$ section of the same capacitor. In the CT218 chassis the B-lead to the r-f unit will use the $10-\mu \mathrm{f}$ section of capacitor C92 as a tie-in point. It will be necessary to remove this lead and connect it to the $30-\mu \mathrm{f}$ section of this capacitor and then remove the jumper between the 10 - and $30-\mu \mathrm{f}$ sections.
(6) Tie the grey wire, referenced in step 4, to the $10-\mu \mathrm{f}$ section of capacitor C92.
(7) Remove the red wire, pin 1 of the speaker cable, from one end of the 1,500 ohm, 2-watt resistor, R137, and connect this wire to the other end of this resistor. These modifications also apply to the CT214 D chassis.
Another change involves relocating a part to eliminate 60 -cycle vertical synchronizing pulse interference. Unsolder one end of the resistor connected to the sync clipper V16B and wire it to the open lug, 2nd from end, on the terminal strip located between the vertical output transformer and the rear of the chassis. Then connect a jumper wire between the lug to which this resistor is connected and pin 1 of V16B.

Fig. 1. R-f tuner for Magnarox ('T218.

Fig. 2. R-f tuner for Maynavox CTezs.

Fig. 3. Modifications for Magnavox CTR18, CTe21 B Chassis.

The change in parts list is as follows:

No. Description
96 Capacitor, molded mica,
$0.01 \mu \mathrm{~F}, 150 \mathrm{v}$
250161-53
97 Capacitor, molded mica,
$120 \mu \mu \mathrm{f}, \pm 10 \%, 500 \mathrm{v}$ Coil, horizontal speed
$250159-83$
360346-1
360332-10
99 Peaking coil, green
100 Capacitor, electrolytic,
$20 \mu \mathrm{f}, 150$ v
270027-6
105 Resistor, carbon,
125 120 ohms, $\pm 10 \%, 2 \mathrm{w}$
25 Resistor, wire wound, 520-520 ohms
136 Resistor, wire wound,
800 ohms, 11 w
Resistor, carbon,
150,000 ohms,
150,000 ohms, 1 w
CT2 18 tuner unit, f
223 CT218 tuner unit, r-f
229 Socket, external input CT214 r-f tuner
CT221 r-f tuner

230085-211
$700320 \cdot 1$
$180060 \cdot 1$
700317

RIDER MANUALS Mean sutcisting

Farnsworth U-12, Capehart

This model appears on pages w-1 through 2-9, 10 of Rider's TV Manual Volume? A production change has been made which specifies that a 6AG5 tube be used as the 4th picture i-f amplifier in place of a 6AH6 previously used. All U-12 chassis recently produced incorporate this change. No wiring changes are required for this replacement. The 6 AG 5 tends to increase the gain of the 4th stage. This replacement can be made in the field, however not without checking the picture i-f alignment.

General Electric 814

This model appears on pages 2-44 through 2-57, 58 of Rider's I'V Manual Volume 2. Audio regeneration which causes a click in the speaker as the tuning control is tuned through the station can be eliminated by the use of a $5,000-\mu \mu$ f capacitor across the audio i-f B lead. This capacitor is connected between the B and ground terminals at the terminal board located between the limiter tube socket, V18, and the discriminator transformer, T19. The new capacitor is identified as Stock No. RCW-3014, ceramic capacitor.
This also applies to Models 811. 820. 830 . and 835 .

JFD Conicals. Superior Conicals. More powerful Conicals. More economical Conicals... to fill any and all of your TV antenna requirements. The largest and most complefe line in the whole, wide world. You'll do betfer with JFD . . . beffer in sales, betfer in customer satisfaction, better in profit! Here are some of the more popular models:

Channels 2 to 13 and FM. Outstanding performance at a price that's right.

TA 161 "Double D-Xer" Stacked ALL-BAND CONICAL. Exceptionally high D8 gain on all channels. $1 / 4$ wavelength stocked....Less Mast, LIST \$2925 TA 162 wavelength stacked....Less Mast USI

ALL BAND CONICAL

Less Mast, LISt \$1395
TA 160 "D-Xer"

TA 167 "Inline D-Xer" DOUBLE STRAIGHT LINE CONICAL

Channels 2 to 13 and FM. Provides ultrasharp directivity and ultra-high gain. Ideal for remole areas. $1 / 4$ wavelength stacked.
TA 168 Same as TA 167 but $1 / 2 \$ 5820$
wavelength stacked..Less Mast, LIST $\$ 58$

TA 166 "Inline D-Xer" STRAIGHT LINE CONICAL. Sharper directivity and extra gain an all channels. Less Mast, LISt \$2810

(360 "commandair"
ALL-BAND CONICAL. As simple to assemble as opening
an umbrello....Less Mast, LIST $\mathbf{\$ 9 5}$ C 361 Same as $C 360$ but $1 / 4$ wavelength stacked for greater gain in low signal areas..................less Mast, LIST ONLY $\$ 2095$

FREE Catalog!

JFD makes not only the largest assortment of Conicals, but the largest var. rety of antennas and TV accessories as well. They're all listed in the comisted in the comrehensive JFD Cataog No. TV100 which will be sent to you upon request, free of charge.

MANUFACTURING CO., Inc.
6119 16th AVENUE, BROOKLYN 4, N. Y.
FIRST In Television Antennos and Accessories
C 371 same as $C 370$ but $1 / 4$ wavelength stacked for long-distance reception. Less Mast, LIST ONLY
$\$ 2210$

Copyright 1949 JFD Manufocluring Co., Inc.

Radia Changes

Magnavox CR198 Series

Chassis CR198, CR198A, and CR198B appear on pages $16-5$ through 16.11 of Rider's Manual Tolume XVI. The schematic diagrams and the parts lists for ('hassis CR198C, CR198D, CR198E, CR198F, CR198H, and CR198J are the same as those for CR198, CR198A, and CR198B except for the changes that are noted below.
Item No. 13 has been changed from $20 \mu \mu \mathrm{f}$ to $13 \mu \mu \mathrm{f}$.
Section 1 front of item 99 is the same for all models except for J . This wafer is shown in Figure 1.

Fig. 1. Wajer used in Mag. navox CR198 Series.

The position of item 12 has been changed for model J only. Capacitor 12 for model J has been removed from across item 4 and inserted in the wafer lead to the junction of items 4 and 43. In all other models, it remains in parallel with item 4.
Resistor 91 has been inserted from the tap of item 97 to item 91. Its value is shown in the accompanying table.

Table of electrical values for Magnavox CR198 Series.

| ITEM | electrical values | | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| NO | CR 198A | CF 198: | CR1980 | CRISOE | CR198F | CR198 | CRIPE) |
| 16 | 000068 | 0001 | 0001 | . 0001 | 0001 | OM1T | OMIT |
| 26 | 01 | 005 | 005 | 005 | 005 | 005 | 005 |
| 31 | 02 | 015 | 015 | 015 | 015 | 015 | 015 |
| 21 | 00033 | 00068 | . 00068 | . 00068 | 00068 | OMIT | OMIT |
| 83 | OMITEO | 680 K | 680k | 680* | 680k | 820 K | 820 K |
| 72 | 4700 | 22 x | 22 K | 22\% | 22 K | 22k | 220 |
| 89 | OMITTEO | OMITTEO | 150M | 150k | 150 K | OM1T | OMIT |
| 106 | OMITTEO | OUMTEO | OMiT TEO | USEO | UsEO | USED | USED |
| 62 | 2200 | 2200 | OMITTEO- SEEAUXILIARY CIRCUIT | | | | |
| 90 | OMITTEO | OMIT TED | OMITTEO | Omitreo | 68MES | 330 K | 330 K |
| 91 | Omir - | OMIT | OMIT | OMIT | OM1T | tok | 10x |

Fig. 2. Auxiliary Circuit for Magnavox CR198 Series.

Resistor 62 has been deleted from all models except CR198A, CR198B, and CR198C. The auxiliary circuit is shown in Figure 2.
The connection from item 99, section 2 rear, to the cathode and grid leads of
the 6.J5, 1st a-f stage, has been deleted. Resistor 83 is now connected between pins 1 and 5 of the 6J5, in all models except CR198A. The values are given in the accompunying table.
Items 48, 90, and 89 have been added as shown in Figure 3. Item 48 appears

Fig. s. Circuit changes for Magnavox CR198 Series.
in Models CR198H and CR198J only. Its value is $0.001 \mu \mathrm{f}$.
The 6 -rolt socket, item 106, has been inserted across the filament leads in models CR198E, CR198F, CR198H, and CR198J.
The positions of items 8 and 9 for all models have been changed from the transformer side of the $R-C$ filter to ground, to the wafer side and to ground.

HIWYNI Hove it When

Farnsworth P71, P72, P73

Model Py1appearson pages RCD.CH.19-1 throagh 19.10 of Rider's Manual Volume $X I X$, and Models P72 and P73 appear on pages RCD. C'H. $18-1$ through 18.9 of Rider's Manual 「olume XVIII. There appears to be some misunderstanding concerning the correct nomenclature of parts numbers 58854 and 64467. Part 58854 is correctly titled "Starting Lever Spring". The function of this part is to exert the proper amount of tension on part 58853, starting reset lever, which in turn performs the dual purpose of transmitting the motion of the trip mechanism to the starting lever, thus setting the starting lever in the proper position for starting the change cycle and also resetting the starting and reject levers, after the change cycle has started, to their proper positions. Part 64467 performs the operation of transmitting the motion from the reject button mechanism to the reject lever, thus starting the change cycle. Part 64467 is referred to in the parts list as the "Trip Spring". In order to avoid future misunderstanding, the nomenclature of this part has been changed to read-Part \#64467, Reject lever spring.

Westinghouse H-202, H-204

These models appear on pages 19-24 through 19.88 of Rider's Manual Volume XIX. The schematic diagram shows C12 and R17 in series between the $a \cdot m$ antenna terminal and the top of L17. R17 should connect to the bottom of L17 rather than to the top of L17.

Farnsworth P71

This model appears on pages $\mathrm{KCD} . \mathrm{CH}$. 19.1 through 19-10 of Rider's Manual Vol ume XIX. The following changes should be noted in the parts list:
Part No.
07594 Turntable assembly, changed to 15241
64437 Tone arm counterbalance spring, changed to 64343.
Part number 44064, phono motor, has been deleted. This is shown on pages $K C D$. CH.19-j. It is available as Part Number 11437 only. Motor parts, Numbers 15237, 37241, 54308, 64471, and 92335, are no longer available as separate parts. If any of these are required, a complete motor as sembly, No. 11437, inust be ordered.

Majestic 6FM769, 6FM783, Ch. 6Cl4D

Model 6FM783 is a 1949 styled, 6 -tube, using Oak and Milwaukee record changers, console combination using a cabinet similar to Model 8FM783, which appears on pages $1 \mathrm{i}-1 \%$ ', 18 through 1i-22 of Rider's Manual Volume XVII and on page C18-4 of Rider's Manual Volume XVIII. Model 6 FD1769 is a 1949 styled, 6-tube, console combination using the Aero record changer.

For voltages, alignment, and chassis parts reler to data on Model 6lim773 which appears on pages $18-3$ through $18-4$ of Rider's Manual Volume XVIII. The output transformer, '13, is located on the speaker instead of on the chassis. The parts list remains the same except for the following changes:

| Symbol Part No. | Description |
| :---: | :---: |
| L1 S-2017 | Loop antenna assembly (BC only) |
| 117.108 | Dial scale, glass |
| 117-109 | Dial scale, background |
| 129-65 | Dial scale clips, (6 req'd) |
| 133-34 | Dial pointer |
| 15.91 | Socket, speaker |
| 115-61 | Cabinet, console-Model 6FM783 |
| 115.70 | Cabinet, console-Model 6FN1769-mahogany |
| 21-24 | Oak record changer (6FM783) |
| 21.31 | Milwaukee record changer (6FM783) |
| 21.36 | Aero record changer (6FM769) |
| 22-63 | Spcaker, 8" PM |
| 122 -57 | Escutcheon plate |
| $128-63$ | Knob, tuning |
| 128-68 | Knob, tone |
| 128.69 | Knob, volume |
| 128-80 | Knob, bandswitch |
| 120.60 | Spring, for knobs |
| 123-39 | Cabinet back Model 6FM783 |
| 123-40 | Cabinet back Model 6FM769 |

Bendix 1217B, 1217D
Model 1217B appears on pages 19.9 through 19-19 of Rider's Manual Volume X/X and Model 1217D appears on pages 19.20 through 19.33 of Rider's Manual Vol ume XIX. Hum can be corrected by removing the shielded lead between the two chassis from the plug assembly and running it in through a separate connector. All of the hum pickup is taking place at the cight-prong plug on the radio chassis. With the cable running in through the chassis about two inches away from the plug assenbly, the hum level is so low as to be almost unmeasurable.

" $M+F M+A M$. We're making sure that we get all of this business .. ."

For Greater Efficiency...For More Information...For More Value For Your Money
 Larger Page Size! $12 \times 1 \mathbf{" 1}^{\prime \prime}$! All Pages in Place! Easier to Use!

Order Now From Your Jobber New RIDER MANUAL

vol. XX

New Material! More Material!
New Profit-Possibilities! Peliable, outhentic, factory-outhorized servicing Reliable, authenting the latest AM. FM radio, informato Receivers, Record Changers, or added advanAuto Recoiver, respect, but with the added aled in plete in of lext and
tage of position.

FREE! Eye-Stoppers For
Service Shop Windows
ary clover Rider Disploy ideo, 14×17 inches, A very cleypr "Which One is The Phony?'. It shows coptioned Whithed photor of postage stamps, two greotily one a known counterfeit, with idenone genvine, one ond meons of recognizing titying charoctoris Disploy is a real traffic-stopper. the forgery. This build mare business for you. 2 ond will help build more bonth, and you can get Disploys ore issued each mon your Jobber,
Them FREE of CHARGE from your
 NOTE: Are you reeciving yon publication it's FREE:
Servicing'? I's Rider's own
to every Serviceman. Write for it...

Here is accurate, authentic, reliable servicing information direct from 74 TV receiver manufacturers. New, enlorged page size, 12×15 inches, with all pages filed in position. Giant pages have been retained... but now have only one fold for greater convenience and durability. There's more ease in using, too, because there are fewer pages to furn and because diagrams and related text are more closely positioned. Order now from your jobber.

JOHN F. RIDER PUBLISHER, Inc., 480 Canal Street, New York 13, N. Y. - Export Agent: Rocke titernational Corp., 13 E. 40th St., N.Y.C., Cable, ARLAB.

RIDER MANUALS mean succissivt

 NOTE: The Mallory TV Service Encyclopedio, Ist TV Edition, mokes reference to only one source of TV receiver schemotics-Rider TV Manuols. NOTE: The Mollory Rodio Service Encyclopedia, oth Edition, makes reference to only one source of radio receiver schemotics-Rider Monuals. NOIE: The C.D Capacitor Monual for Rodio Servicing, 1943 Edition No. 4, mokes reference to only one source of receiver schematics-Rider Monuals.
Westinghouse $\mathrm{H}-188$

This model appears on pages 19.18 through 19.1y of Rider's Manual Volume $X I X$. The 220,000 -hm resistor, R11, which was previously connected between the common negative line and the chassis, is not being used on late chassis.

The switch, SW1, is incorrectly shown on the schematic diagram and parts list as a D.P.S.T. switch. Actually, it is a S.P.S.T. switch, and it interrupts only one side of the a-c line, the side which connects to the common negative line.

In later production, a $1-6199-2$ 2nd i-f transformer was used in place of the V. 5686 2nd i-f transformer listed. Although the new transformer is smaller than the original one, it is directly interchangeable through the use of a V. 5426 mounting clip. The new transformer is slug-tuned and has one adjustment hole in the top of the can and one in the bottom of the can. The terminals are marked by numbers which are equivalent to the colors on the old transformer as follows: 1 equals green, 2 equals white, 3 equals blue, and 4 equals red. For replacement purposes, order the V-6199-2 2nd i-f transformer and V-5426 mounting clip.

Some chassis may use a V-5686 i-f transformer in place of the V-5685 1st i-f transformer; however, the V. 5685 transformer as listed in the parts list should be ordered for replacement of the 1st i-f.

The following items should be added to the parts list:
Part No. Description
V-6199-2 Transformer, 2nd i-f, (L6, L7, C19, C20)
V-5426 Clip, i.f mounting
V-1160-2 Cabinet, ivory
V-5778-2 Baffle and grille cloth assembly for ivory cabinet
V-5779-2 Grille, for ivory or black cabinet Note: The V-1160-1 cabinet listed in the parts list is a black cabinet, and the V.5778-1 baffle and grille cloth assembly is for use with the black cabinet.

RIDER MANUALS KEEP MP YO DAIE

Farnsworth P7, P9, P10, Capehart
These models appear on pages 19.19 through 19-ss of Rider's Manual Volume $X I X$. If hum is encountered in the 35P7 or in any instrument using the P7, P9, or P10 chassis, it may be due to either a gaseous or aged 6 T 8 that is used as the 1st audio amplifier, or a signal that is being picked up on the power line because of a faulty $0.005-\mu \mathrm{f}, 600$-volt capacitor, Part No. 25031, located between the unbuffered side of the line and ground.

Westinghouse H-204A

This model appears on pages 19.24 through 19-28 of Rider's Manual Volume XIX. On some chassis, V-5595 'HI-KAP" capacitors are substituted for V.5040-13 (C51, C52, C53, C54, C55, C56, C57) capacitors. The substitution was made for convenience in production, and the receiver operation is not affected.

Magnavox CR197 Series

Models CR197, CR197A, and CR197B appear on pages 16-1, 2 ihrough 16.7 of Rider's Manual Volume XVI. The schematics and parts lists for Models CR197C, CR197D, and CR197E are similar to those listed above except for the following changes:
Part No. 8 is now connected from ground to the junction of 24,83 , and 99 , in all models.
Part No. 9 is now connected from ground to the junction of 25,85 , and 99 , in all models.
The value of Part No. 13 has been changed from $20 \mu \mu \mathrm{f}$ to $13 \mu \mu \mathrm{f}$ in all models.
Resistor 61 has been deleted in Models CR197D and CR197E, as shown in the accompanying diagram.

Circuit changes for the
Magnavox CR197D and CR197E.

Part No. 106, a 6 -volt socket, has been added between the filament connections and the lamps in Model CR197E only.
The supplement to the parts list is as follows:

| Part No. | Magnavox Part No. |
| :---: | :---: |
| CR197A | |
| 32 Capacitor, paper, $0.02 \mu \mathrm{f}$, | 250152G37 |
| 49 Omitted | |
| 61 Resistor, composition, 2,200 ohms, $1 / 2 \mathrm{w}$ | 230084G15 |
| 65 Resistox, composition, 10,000 | |
| ohms, $1 / 2 \mathrm{w}$ | 230084G19 |
| 88, 89, 90,91 Omitted | |
| 99 Switch, rotary band selector | 160172G1 |
| 106 Omitted | |
| CR197B | |
| 32 Capacitor, paper, $0.02 \mathrm{\mu f}$, | 250152G37 |
| 49, 88, 89, 90, 91, 106 Omitted | |
| CR197C | |
| 19 Capacitor, molded mica, $680 \mu \mu f,+10 \%$ | 250159G131 |
| 32, 49, 65 Omitted | |
| 88 Resistor, composition, 680,000 | |
| ohms, $\pm 10 \%$, $1 / 2 \mathrm{w}$ | $\begin{aligned} & 230084 \mathrm{G} 90 \\ & 160172 \mathrm{G} 1 \end{aligned}$ |
| 99 Switch, rotary band selector | |
| 106 Omitted | |
| CR197D | |
| 19 Capacitor, molded mica, | 250159G131 |
| 32, 49, 61, 65 Omitted | |
| 88 Resistor, composition, 680,000 ohms, $\pm 10 \%, 1 / 2 \mathrm{w}$ | 230084G90 |
| 89 Resistor, composition, 150,000 | |
| ohms, $\pm 10 \%$, $1 / 2 \mathrm{w}$ | 230084G88 |
| 90, 91, 106 Omitted | |
| CR197E | |
| 19 Capacitor, molded mica,
 $680 \mu \mu f,+10 \%$ | 250159G13 |
| 32, 61, 65 Omitted | 2S0159 |
| $88 \begin{aligned} & \text { Resistor, composition, } \\ & \text { ohms, }+10 \%, 1 / 2 w\end{aligned}$ | 230084G90 |
| 89 Resistor, composition, 150,000 | |
| ohms, $\pm 10 \%, 1 / 2 \mathrm{w}$ | 230084G88 |
| 90,91 Omitted | |
| 106 Socket, 6 volt | 189788G1 |

Meck Chassis 4D7

Chassis 4D7 is used in models DA-601, DB-602. This chassis is similar to Chassis 618 which appears on page 19-5 of Rider's Manual Volume XIX. The 4D7 differs from the 6B8 in the following ways: Capacitors C1, C2 and C7 have been deleted. A capacitor, designated as C2, has been inserted in place of C7. Resistor R1 has been removed from across the junctions of R2 and R3, and L1 and C2, and is now located in the cathode lead of the pentode (12BA6, 12SG7). Capacitor C5 is connected from the plate lead of the tetrode (50B5, 50L6) to ground. The parts list is given below, with the exception of those parts that are identical to those for the 6B8.

| Symbol | Part No. | Description |
| :---: | :---: | :---: |
| C2 | CP-14203 | Capacitor, paper, tubular, $0.02 \mu \mathrm{f}, 400 \mathrm{v}$ |
| R1 | RC-10680 | Resistor, carbon, 68 ohms, $1 / 3$ w |
| R2 | RC-11003 | Resistor, carbon, 100,000 ohms, 1/3w |
| R 4 | RC-11005 | Resistor, carbon, 10 megohms, $1 / 3 w^{*}$ |
| R5, R6 | RC-14703 | Resistor, carbon, 470,000 ohms, $1 / 3 \mathrm{w}$ |
| R7 | RC-11500 | Resistor, carbon, 150 ohms, $1 / 3 \mathrm{w}$ |
| R8 | RC-32001 | Resistor, carbon, 2,000 ohms, 1/3w |
| L1 | TRF10017-A | Antenna coil |
| C4 | CP-12502 | Condenser, paper, tubular, 0.005μ f, 200 v . |
| C3 | CP-12202 | Condenser, paper, tubular, $0.002 \mu f, 200 \mathrm{v}$. |

General Electric 160

This model appears on pages 19-17 through 19.21 of Rider's Manual Volume $X I X$. The following change in parts list should be noted:
Change catalogue number RTO-003 to read RTC-003 T5 Transformer-charging transformer.

RIDER MANUALS Meen PROFITS

Westinghouse H-190, H-191, H-191A

These models appear on pages 19.20 through 19๕s of Rider's Manual Volume $X I X$. In later production, the cathode resistor, R3, for the 6BA6 1st i-f amplifier was removed and the cathode connected directly to ground. In addition, a $0.0022-\mu \mathrm{f}$ mica capacitor (RCM30B222M) was connected across the 6BA6 2nd i-f amplifier cathode resistor, R4.
On some chassis, V-5596 "HI-KAP" capacitors are substituted for the following capacitors:

V-5040-15 (C7, C8, C9, C10, C11)
V-5040-11 (C19, C20, C21).
In the parts list, the part number of "Pull, door, phono (H-191 and H-191A)" should be changed to V-5877-1 and the part number of "Pull, door, record compartment (H-191 and H-191A)" should be changed to V-5877-2. These part numbers were reversed. Also, the part number of "Hinge, L.H." should be changed to V. $6603-1$, and the part number of "Hinge, R.H." should be changed to V.6603-2.

HIGH A-C VOLTAGE MEASUREMENTS By Henry Chanes

Very high values of a-c voltage, up to 10,000 volts will be found in the highvoltage supplies of television receivers. It should be remembered that high a-c voltages are dangerous, just as high d-c voltages are, and it would be well to review all the safety precautions listed under High D-C Voltage Measurements* before attempting to make high-voltage measure ments of any kind. In the normal servicing of television receivers, it is necessary to make high a-c voltage measurements only occasionally. In most cases measurement of the high d-c voltage, with perhaps a few resistance measurements, is sufficient to determine the defect in the highvoltage supply. For this reason, the meas urement of high a-c voltages will not be discussed in as much detail as were high d-c voltages.
The waveform and frequency of the high a-c voltages depend on the type of high-voltage power supply. In the 60 cycle type of power supply, the frequency, of course, is 60 cycles, and the wave is a sine wave. In the r-f type of supply, the waveform is also a sine wave but the frequency is in the range of 50 to 500 kc . In the "kickback" type of supply, the frequency is the horizontal-line frequency, or 15,750 cycles per second, and the waveform will be slarp pulses rather than sine waves. The "kickback" high-voltage supply will be used to illustrate a method for measuring high a-c voltages, but this method is also applicable to the other types of supplies.

Fig. 8* shows a simplified circuit of "kickback" high-voltage supply. As mentioned previously, a high-voltage pulse is developed in the primary during flyback and is rectified to produce the high d -c voltage for the picture tube. From the circuit, it can be seen that this highvoltage pulse will appear at the plate of the high-voltage rectifier and also at the plate of the horizontal output tube. This pulse will have a greater amplitude at the plate of the rectifier tube than at the horizontal output tube since the horizontal output tube is connected to a tap on the primary.

As previously discussed, the oscilloscope has many advantages for measuring sync and sweep signals and can also be used for measuring high a-c voltages. In this particular type of power supply, the a-c voltages to. be measured are very much like the sync and sweep voltages in the rest of the receiver but at much higher amplitudes. Therefore, it is necessary to extend the voltage range of the oscilloscope by means of a multiplier. The resistance type of multiplier will not work satisfactorily in this case since the distributed capacitance of the resistors themselves will cause large errors in the measurement.

A capacitance type of voltage divider as shown in Fig. 1 will enable fairly accurate measurements to be made of high a.c voltages. This particular voltage divider will extend the voltage range of the
oscilloscope by 100 times. The $10-\mu \mu \mathrm{f}$, 10,000 -volt capacitor can be a single capacitor or a series combination if a single capacitor with these characteristics is not available. For example, five $50-\mu \mu \mathrm{f}$ capacitors each rated at 2,000 volts or ten $100-\mu \mu \mathrm{f}$ capacitors each rated at 1,000 volts will be the equivalent of a $10-\mu \mu \mathrm{f}$ capacitor rated at 10,000 volts. The other capacitance in the divider, a $1,000-\mu \mu \mathrm{f}$ capacitor at 500 volts, is, of course, readily available.

Fig. 1. Voltagc-divider circuit which extends the range of an oscilloscope for the measurement of high a-c voltages.

When connecting this divider, see that the lead from the test point to the $10-\mu \mu \mathrm{f}$ capacitor, and the $10-\mu \mu \mathrm{f}$ capacitor itself (or series combination), is not close to the chassis of the television receiver so as not to introduce any additional capacitance to ground. The oscilloscope is used to measure the signal in the same manner as described previously and then the reading obtained is multiplied by 100 to obtain the peak-to-peak voltage across the entire divider. An example of the waveform obtained at the plates of the horizontal output tube and the high-voltage rectifier is shown in Fig. 2.

Fig. 2. High-voltage pulse obtained at the plate of the horizontal output tube and the plate of the high-voltage rectifier in a television receiver that employs a "kickback" type of high-voltage supply.

The effect of loading on the circuit when using this type of divider was checked by metering the high d-c voltage output at the same time the high a-c voltages were being measured. For a circuit of the type shown in Fig. 8 where the primary is tapped, it was found that connecting the capacitance divider to the plate of the horizontal output tube had only little effect on the d-c output voltage, in one case, causing it to drop from 7,650 volts to 7,200 volts. The a-c voltage
measured at this point was 4,200 volts peak-to-peak.

Connecting the capacitance divider at the plate of the high-voltage rectifier caused a greater drop in the d-c output voltage, this time, from 7,650 volts to 6,300 volts. The a-c voltage measured at this point was 6,200 volts peak-to-peak. Correcting for the effect of loading by the same percentage as the drop in d-c voltage would make the actual a-c voltage at the plate of the rectifier about 7,500 volts peak-to-peak. In most cases, this correction will not be necessary to determine if a defect exists if it is kept in mind that some loading effect takes place at the plate of the high-voltage rectifier, and the voltages measured will be about 10 to 15 per cent lower than the actual voltage. Another point worth mentioning is that the voltages given above are for only one particular receiver and are given as examples, rather than as reference values for all types of television receivers.

Presence of High-Voltage Pulse

Referring to the circuit of the "kickback" power supply shown in Fig. 8, it can be seen that measuring the d-c voltage on the plate of the horizontal output tube will be complicated by the presence of the high a-c voltage (or pulse) present at the same point. This d-c voltage is not very high, not more than 400 volts in most cases, but, as noticed before, the 15,750 cycle pulse at this point may be used as high as 5,000 volts. If a meter were applied directly to this point, there is a good chance of damaging the meter. In order to prevent this, it is necessary to first filter out the a.c., so that only the d.c. is applied to the meter.

The $R \cdot C$ filter shown in Fig. 3 will do this. The total resistance in this case is 11 megohms. This value was chosen because the VTVM used had an input resistance of 11 niegohms; the reading of the meter then has to be multiplied by 2 instead of by some odd number. This can also be done with a 20,000 ohms-pervolt meter. If the 500 -volt scale on a 20,000 ohms-per-volt meter is used, the input resistance is 10 megohms and using a 10 -megohm resistance in the filter will multiply the meter reading by two. The resistors used for this purpose should be carbon, not wire-wound. A series string of resistors should be used rather than one resistor, so that the a-c voltage across any one resistor is not excessive.

This arrangement can also be used to measure the d-c voltage on the plate of the high-voltage rectifier (see Fig. 8). Normally, the d-e voltage at this point is the same as the d-c voltage at the plate of the horizontal output tube, since the d.c. that flows through the high-voltage rectifier is very small.

Fig. 3. Filter used for removing high-voltage pulse so that d-c voltage can be measured without damaging the meter.

EV- 10 is a WIDE-RANGE ZERO-CENTER ELECTRONIC INSTRUMENT. stressing the utmost in performance and ease of manipulation. Application Engineered for rapid check of modern A.M., F.M., and TV networks.

IMPORTANT FEATURES

* VOLTAGE REGULATED-BRIDGE TYPE CIRCUIT
ZERO-CENTER VTVM-no polarity switching or reversal of test prods. \star SHIELDED COAXIAL TEST PROBES. $\star 1 \%$ wire and metallized resistors.
- MOISTURE RESISTANT, plastic insu lated wiring assures perlormance under adverse conditions
* DUO-BALANCED ELECTRONIC. BRIDGE OHMMETER
* 7' RECTANGULAR METER

RANGE SPECIFICATIONS

* Eight Zero-Center VTVM Ranges. trom

 Inpul Resistance-$131 / 3$ megs. constant to 600 volts. $1331 / 3$ megs. at 6000 volts

* Seven D.C. Current Ranges:
from 0-600 microamperes 1012 amps .
* Six Ohmmeter-Megohmmeter Ranges:

Chmmeter-Megohmmeter Ranges:
self-contained to 2000 megohms.
Eight A.C.-D.C. and Output Voltage Ranges at 1000 ohms per volt: from 0-3 10 6000 volts.
\star Six Circuit Probing, 2ero-Center VTVM Ranges:
from ± 3 to ± 600 volts D.C. \star Eight DB Ranges: -26 to +70 DB.
\star VTVM Ranges to 60,000 volts avail. able via use of Series TV Test Probe.
 Oscilloscope.
Oscilloscope. WRITE for the PRWSS) describing
(UST OFF THE PRE UUST OFF the complete instruments for and quality test $A M \cdot F M-T V$ service and phases
lest. test.

SERIES RF-10 HIGH FREQUENCY PROBE

 An accessory item to Series EV-10, the RF-10 Probe provides direct voltage test facility to approx. 200 MC . Connects directly to EV-10panel. Employs type 9002 tube. Net Price: $\$ 14.40$

EV-10 MCP (illustrated) In open tace portable stee! case. Complete with tubes, battery, and test probes
EV-10-P In closed portable case. EV-10-PM For standard rack mount \qquad $\$ 92.70$ $\$ 92.70$

< SERIES ES-500

- $\mathbf{2 0}$ Mv. High Sensitivity, Wide Range 5 inch C.R. OSCILLOGRAPH.
V. Amp. Response to 1 MCl Low C, High R input Step Attenuatorl Z axis modulation terminals! 9 tubes incl. V.R. and 2 rectifiers! Complete with light shield and mask. Heavy steel case $81 / 4 \times 141 / 2 \times 18^{\prime \prime} \ldots \ldots$ Not Price: $\$ 149.50$

SERIES E-400

Wide Range H.F.

SWEEP SIGNAL GENERATOR Direct Reading from 2 to 480 MC .
Narrow and Wide Band Sweep for F.M. and TV - 1500 pt. vernier calibrating scale - Multiple Crystal Marker - 8 tubes including V.R. and rectifier - RG/62U Coaxial Terminated Output. Complete with 2 crystals. In heavy copperplated case $101 / 2 \times 12 \times 6$ "........Net Price: $\$ 124.70$

CIRCUIT PROBING WITH THE VTVM

Experienced television technicians know that the efficient way to run down sectional defects in a television chassis is to PROBE for the trouble. Such circuit probing is usually done with a vacuum.tube voltmeter, and the measured values are checked against the mfr's. service data.
Circuit probing must frequentiy be performed under dynamic (signal carrying) conditions and in addition, numerous polarity reversals are also met in modern television circuits. For example. five positive terminals, and six negative terminals appear in the typical sync network shown in Fig. 1 .

At first glance, it might be thought that polarity reversats could be taken care of by reversing the test leads of the VTVM. Actually, this prac. tice can cause incorrect measurements, because the isolating probe of the VTVM is ineffective when test leads are reversed.
For example, the -30 dc volts of signal. developed bias at the grid of V3 cannot be meas. ured by reversing the test leads. This bias is caused by high-frequency puises and flow of grid current, - and the pulses are "killed" unless the Isolating probe is used at the grid of V3.
The return (ground) test lead of a VTVM does not contain an isolating resistor, but instead is a direct connection to the case of the instrument. It is easy to see that if the instrument case is connected to the grid of V3, the heavy shunt capacitance will "kill" (and/or short) the stage.

Signal-developed bias voltages can be meas. ured if the VTVM has a polarity-reversing switch, because the isolating probe is then always in the "hot" side of the measuring circuit. Such switches, however, are wasteful of both time and tempers. Note that five polarity reversals would be required when probing the network of Fig. 1.
time is money in the busy shop, and it is very important to use the right instruments for the job.
The right answer to the television (as well as general) circuit-probing problems is the ALL Direct-reading zero.center-scale as shown in Fig. 2.

When the VIVM is provided with such direct. reading zero-center scales, no polarity switch is used, and it is never necessary to reverse the test leads. Correct measurements will be obtained in all circuits, and no "figuring" is required. Polarity and magnitude are indicated simultane. ously in onfy one operation.

The direct-reading zero-center scale puts extra hours into every service day, and is one of the keys to high-speed profitable servicing.

The New CATHODE-RAY TUBE AT WORK by Rider ef al

Completely rewritten from start to finish
The NEW "Cathode-Ray Tube At Work" is about five times the size of the old standby which has been the standard for almost 15 years. Almost 500,000 words and about 3,000 illustrations have gone into this new edition. Never has there been a book on this subject like this one!
Are you interested in learning the theory of operation of the cathode-ray tube?
Here it is, right from the ground up - for all kinds of cathode-ray tubes as used in scopes and TV receivers.

Are you interested in learning what is inside of your present scope or the one you're going to buy? Here it is, with complete explanation of everything. Every scope which was produced and sold during the last 10 years is described and discussed completely - with the schematic wiring diagram. More than 50 models of scopes are covered.
Are you interested in getting your money's worth from the scope you now own?
Here it is, with complete explanations of how you can apply your scope to every type of servicing problem-AM-FM-TV-PA-anything you come up against.
Are you interested in electronic or industrial research?
Here it is! The chapter on scientific and industrial applications of the scope is the greatest ever -more tham 500 illustrations in this one chapter alone!
Are you interested in understanding the amplifier, sweep and synchronizing circuits used in scopes? Here it is, with full and complete discussions of theory and practice of each of the systems which comprise a scope. More understandable information than you have ever seen before.

Are you interested in the application of the cathoderay scope to transmitters, vibrators, power supplies. rectifiers, etc., etc?

Here it is, with pictures and discussions to satisfy the most demanding individual.
Are you interested in interpreting scope patterns?
Here it is, with more illustrations than you have ever seen in not only one book, but in many books put together.
Are you interested in the composition of complex waves? Here it is, almost 2,000 illustrations of complex waves synthesized from sine waves; and the composition of each wave - phase and amplitude - is stated beneath each picture.

EXAMINE THESE CHAPTER HEADINGS

1. INTRODUCTION
2. PRINCIPLES OF ELECTROSTATIC

DEFLECTION END FOCUSING
3. PRINCIPLES OF ELECTROMAGNETIC

DEFLECTION AND FOCUSING
4. MFCHANICAL CHARACTERISTICS
5. THE ELECTRON GUN
6. DEFLECTING SYSTEMS
7. SCREENS
8. DEVELOPMENT OF THE TRACE ON THE SCREEN
9. THE BASIC OSCILLOSCOPE
10. PFRSE AND FREQUENCY MEASUREMENTS
11. LINEAR TIME BASES (SWHEP CLBCUIRE)
12. SYNCHRONIZATION
13. NONLINEAR TIME BASES
14. COMMERCIAL OSCLLOSCOPES
15. AUXILIARY EOUIPMIENT
16. TESTING AUDIO-FREQUENCY CIRCUITE

1. AM FM GND TV AIIGNMENT
2. TELEVISION RECEIVER SERVICING
3. AM, FM, AND TV TRANSMITIER AM, FM,
4. SCIENTIFIC, ENGENEERING, INDUSTRIAL AND EDUCATIONAL APPLICATIONE
5. COMPLEX WA VEFORM PATTERNS
6. SPECIAL PURPOSE CATHODERAY TUBE

APPENDD
I - CHARACTERISTICS OF CATHODERRY
I - CATHODE-HAY TUBE BASES RND SOCEETS
III - PHOTOGRAPHY

The greatest, most complete reference book ever written on the cathode-ray tube! It is a practical, right-down-to-earth volume which will repay its buyer many times over.

Place your order today. NOW! Make certain that you will receive your copy from the first printing. You will not want to be without this book.

Publication February, 1950
More than 900 pages

NOVEMBER

EYE STOPPERS

The Rider Eye Stopper campaign is in its second month. Have you picked up your window displays? Here are the two streamers... They illustrate a Nova Scotia stamp and one from the Netherlands Indies. Each shows the genuine and the characteristics of the forgeries. Both are of great interest to stamp collectors the world over. This is the kind of information that philatelists desire very much.
I"hich one is the phony?

Which one is the phony?

Take advantage of this program for attracting the passerby to your window. One out of every 14 individuals in the United States is a stamp collector. Records show that more than $10,000,000$ stamp collectors are active in the United States. Each of these owns or operates a radio receiver, a car radio - maybe more than one. Many of them are TV receiver owners. Get them to your windowl Let them see that you are in business.
The November series, Numbers 3 and 4 are now at your Rider jobber. Pick up your copy today. It costs you nothing and can do you a great deal of good which you can turn into dollars. Don't miss this opportunity of cashing in on a brandnew - entirely different type of sales promotion program.

INSIDE THE VACUUM TUBE

"The preface states: 'Throughout this book, which covers diodes, triodes, tetrodes, and pentodes, the aim is to present a clear physical picture of what is occurring in a vacuum tube, inclusive of the development of characteristic curves, load lines, dynamic transfer characteristics,' etc.

This is an adequate summary of the book, and the author has admirably succeeded in his aim. There is a thoroughness about Mr. Rider's textbooks which might well be emulated by other American authors who set out to explain elementary principles of radio engineering by leaving out all the hard bits. Mr. Rider uses actual examples of characteristics and refers to them quantitatively, there is a sketch on nearly every page, and there is no shirking of difficult points in the theory.

It is the sketches which will probably rouse antagonism in the die-hard formal text-book school. Mr. Rider's electrons have legs and wings and arms, and the early sketches show them cavorting in the style of a comic strip. In fact, when they hit an anode, one expects to see the word 'SPLAT!'

This style may help the beginner to visualise the happenings inside a valve, but the same effect might have been achieved by just dismembering the electrons. The chapter headings are a welcone relief from the drier diagrams, however.

Also, there are three stereoscopic anaglyphs with a red and blue filter
provided at the back of the book. Here again, one may question whether the advantage of this method of presentation is not outweighed by the expense, but that is not the reviewer's business. Certainly, far more questionable stunts have been resorted to in order to attract the student's attention, and there is no doubt that anyone who has gone to the trouble of using the filters will remember what he has used them for.

For the text matter there is nothing but praise. This is just the book for the practical man in allied fields who has never been able to study valve theory from the conventional textbook, and even experienced radio engineers will find some of the explanations refreshing and interesting.

Mr. Rider's last chapter, which mentions the origin of the American valve nomenclature, has an illuminating comment on the fatuity of trying to standardise prematurely. After giving the rules-first digit for heater volts, letter(s) for type of valve, the final digit for number of electrodes, each example is followed by a string of exceptions! What does the reader make of this: 'The letters from U to Z inclusive are used for rectifiers, but the following are exceptions: 6U5, 6U7, 6V6, 6V7, 6W7, 6Y6, 6Y7, 6Z7, 7V7, 7W7, 14W7!' Also, if the last digit is the number of electrodes, what is the 2D21?"-Journal of The Television Society.

"Did over $\$ 5,000$ additional business installing ESPEY chassis" ${ }^{\text {" }}$

De Young, Ithaca, N. Y.
THERE ARE THOUSANDS OF OUT-MODED RADIOS IN YOUR "BACK YARD" JUST WAITING TO BE REPLACED... AT YOUR SUGGESTION

Here is the custom-built AM-FM chassis that means BIGGER PROFITS for you!

SPECIFICATIONS

Supplied ready to operate, complete with tubes, antennas, speaker and all necessary hardware for mounting in a table cabinet or console, including escutcheon. Power requirements $105 / 125$ volts AC, $50 / 60$ cycles. Power consumption - 85 watts. Chassis Dimensions: $131 / 2^{\prime \prime}$ wide $\times 81 / 2^{\prime \prime}$ high $\times 10^{\prime \prime}$ deep.
Carton Dimensions: (2 units) $20 \times 141 / 2 \times 103 / 4$ inches.
Net Weight: $161 / 2$ pounds each.
Sold through your favorite parts distributor.
WRITE FOR CATALOGUE KDI2 CONTAININE COMPLETE SPECIFICATIONS ON THIS AND OTHER MODELS

The NEW ESPEY model 511

FEATURES

1. AC Superheterodyne AM-FM Receiver. 2. Improved Frequency Modulation Circuit, Drift Compensated.
2. 12 tubes plus rectifiar and electronic Tuning Indicator.
3. 3 dual purpose tubes.
4. Treble Tone control.
5. 6-gang tuning condenser
6. Fullirange bass tone control.
7. High Fidelity AM-FM Reception
8. Automatic volume control.
9. I3 watts (max.) Push-Pull Audio Output.
10. 12-inch PM speaker with Alnico V Magnet. 25 watts rating.
11. Indírectly illuminated Slide Rule Dial.
12. Smooth, flywheel tuning.

- Antenna for AM and folded dipole antenna for FM Reception.

15. Provision for external antennas.
16. Wired for phonograph operation.
17. Multi-tap output trans., $\mathbf{4 - 5 0 0}$ ohms.
18. Licensed by RCA.
19. Subject to RMA warranty, registered code symbol \#174.

Makers of tine rodios since 1928 .

Fig. 1. Power loss for a given mismatch. It can be applied equally well to matching $T V$ antennas to transmission lines and receiver input, and to matching a d-c resistance load to its power generator.

Matching A Generator to Its Load
 (Continued from page 1)

 only deliver energy if some current is taken by the load. If the current is too low, the generator is unable to produceenergy at the same rate, which is identical to saying the power will be too low. If the load pulls too high a current, the generator is being asked to deliver energy at too fast a rate (or too high a power). Since the generator has only one optimuin rate. at which it can deliver energy best,
 a considerably extended area - that is the great stride in television progress made possible by Āstatic's new Model AT-1 Television Booster, the Channel Chief. A radically improved new type of booster, the Channel Chief brings good reception to previously unsatisfactory areas as well. The common failing of many boosters - showing a "peak" on some channels and "fall-off" on others - has been eliminated. The Channel Chief provides extremely high gain - and does it throughout the television spectrum. Its dual controls allow separate tuning of picture and sound, with no sacrifice of one for the other. A variable gain control permits reduction of signal strength to prevent picture distortion when the signal input is greater than that required for good definition. The best tuning is quick and easy to achieve. The selectivity of any receiver is increased, which serves to reduce drastically. or eliminate, interference from outside sources. The need for expensive outdoor antennas is eliminated within service areas. These are the advantages which make the Channel Chief undisputed master of today's greatest area of television reception. Why not write for complete details, technical data?

Leading Manufacturers of Microphones. Phonograph Pickup Cartridges and Related Equipment
the load must take the exact amount of current corresponding to this rate of energy flow.
The loss incurred by not matching a generator or antenna to its load from the standpoint of equalizing their resistances is shown in Fig. 1. It will be seen that the losses are not serious until a mismatch of 2.5 to 1 is present. Even then the mismatch loss is only about one db . A three db loss indicates a 2 to 1 reduction in power, a loss which will not be incurred until the ratio of resistances exceeds about 6 to 1 . It is evident that, for most practical purposes, resistance mismatches must be excessive before power losses are serious. As we will see later, although the power loss is not serious in magnitude, other effects caused by the reflection of the power may be far more serious, such as allowing signal energy to traverse a circuit in the reverse direction. What appears to be a mere 10 per cent loss in power, may show up as delayed signal energy in another part of the antenna system and arrive at the receiver at a later instant, thus contaminating the direct signal. It is important to note that a mismateh to the flow of signal power in one direction. may also be a mismatch to the flow of power in the reverse direction. If other parts of the antenna system at the radio receiver end are mismatched, the reversed power flow will tend to come back to the antenna terminals, and there possibly again suffer reflection. Such double reflection sends delayed signal energy back down the system again toward the receiver. A good match at the antenna will preclude this secondary reflection of energy, as well as the direct reflection. A good match may be looked upon as presenting no discontinuity of power flow, and hence a valuable asset for freely passing direct energy to the radio receiving system.

N 4
 A Cbristmas Gift Suggestion

To the Wife, Mother, Sweetheart of the Radio Service Technician:

The giving of a gift is not merely a material token of esteem and affection, it carries with it the thought that the giver wishes to be remembered all year round, not just one day or one week of the year.

Just about this time of the year your thoughts are centered upon your Christmas gift list, and as always, it's a mighty difficult job preparing it.

We can help you to some extent in making your selection for your Radio Service Technician (husband, son, fiance).

Here's a gift that will be faithfully used every day of the year; a gift that is practical and useful to him in his everyday work; a gift that helps him to do his job quicker and more profitablyA Rider Manual.

He knows Rider Manuals, and uses them in his work. Probably he has a complete or partial set of them (there are nineteen volumes, including those on Television and Public Address Equipment).

Sound him out concerning those volume numbers he wants, and then surprise him on Christmas Day with an individual volume, or those he needs to make his set complete.

When you give a Rider Manual, you give a gift that has an exceptionally long life. Volumes that were purchased fifteen years ago are still giving faithful service to their users.

Rider Manuals are suitably priced from $\$ 8.40$ to $\$ 21.00$ a volume.

Fill in the attached coupon. We'll promptly send you our latest catalog and the names of merchants in your area who sell Rider Manuals.

Christmas is just around the corner. Give him a present he'll value and use... Give him a Rider Manual.

JOHN F. RIDER PUBLISHER, Inc.
480 Canal Street
New York 13, N. Y.
I want to give Rider Manuals as a Christmas Gift. Please send me your catalog and a list of Rider distributors in my vicinity.

Name.

Addrese.

City, Zone

RIDER MANUALS Rider Radio Manuals
 Vol. XIX
 \qquad . 2122 Pages $\$ 19.80$ Vol. XVIII 2036 Pages $\$ 19.80$ Vol. XVII 1648 Pages $\$ 16.50$
 Vol. XVI
 \qquad .. 768 Pages $\$ 8.40$
 - Vol. XV
 \qquad . 2000 Pages $\$ 19.80$ Vol. XIV 1376 Pages $\$ 16.50$ Vol. XIII 1672 Pages $\$ 16.50$ Vol. XII 1648 Pages $\$ 16.50$ Vol. XI 1652 Pages $\$ 16.50$ Vol. X..............$~$ 1664 Pages $\$ 16.50$
 Vol. IX 1672 Pages $\$ 16.5$
 Vol. VIII . 1650 Pages $\$ 16.50$
 Vol. VII 1600 Pages $\$ 16.50$
 Vol. VI 1240 Pages $\$ 12.50$
 Vol. I.V Abridged 2000 Pages $\$ 19.80$
 - Rider Television Manuals

Vol. 3 ..Equivalent of 2032 Pages $\$ 21.00$
Vol. 2 ..Equivalent of 2300 Pages $\$ 18.00$
Vol. 1 ..Equivalent of 2000 Pages $\$ 18.00$

Rider PA Manual

Vol. 1

Rider Books

Radio Operator's License Q \& A
Manual, 600 pages
$\$ 6.00$
The Business Helper
134 page
M Transmission and Reception
416 pages Cloth Cover $\$ 3.60$
TV Picture Projection and
Enlargement. 190 pages $\$ 3.30$

- Broadcast Operators Handbook

278 pages
..............................
$\$ 3.30$
Understanding Vectors and Phase
158 pages Cloth Cover $\$ 1.89$
Paper Cover \$0.99
Installation and Servicing of Low
Power Public Address Systems
208 page
$\$ 1.89$
Inside the Vacuum Tube
420 pages $\$ 4.50$
The Cathode-Ray Tube at Work
345 pages $\$ 4.00$
Servicing by Signal Tracing
370 pages
Work
160 pages $\$ 2.00$
A.C Calculation Charts

168 pages
$\$ 7.50$
High Frequency Measuring Tech-
niques Using Transmission
Lines. 62 pages \$1.50
The Oscillator at Work
254 pages $\$ 2.50$
Vacuum Tube Voltmeters $\$ 2.50$
Automatic Frequency Control
Systems. 154 pages \$1.75
Radar - What It Is
80 pages \qquad . $\$ 1.00$
Understanding Microwaves
396 pages \$6.00
Radio Amateur's Beam Pointer
Guide. 32 pages $\$ 1.00$
Master Index-Volume I to XV.... $\$ 1.50$

Abstract

Curtain Time (Continued from page 6) be repeated in Canada, when that Dominian starts telecasting. Anything which can be done to make the serviceman or the installation man cognizant of his responsibility to the public and to the vendor of the receiver, will in the long run be of mutual benefit to the industry as a whole.

One detail of this Town Meeting, and considered of significance, was the arrangement employed to teach those in attendance the mechanics of record changers, and to make them acquainted with certain specialized types of test equipment. Not only was it conducted in an orderly manner - as a tribute to the ingenuity of those responsible for the planning - but the consensus of opinion among those who had attended, was that they benefited greatly. In every respect, orchids to the Canadian RMA, and to the various associations who sponsored the Meeting, and especially to those men who were actively engaged in the planning and accomplishment of the program.

Test Equipment

A very interesting condition was noted during our recent journeys through TV areas. TV service shops are not sold on TV sweep generators. They're ready to buy scopes of VTVM devices and 20,000 ohms-per-volt voltmeters but not sweep generators.

You may have many reasons why every TV shop should have a sweep generator. We agree, but the shop owners think otherwise. The weak link seems to be that misalignment is not such a problem as anticipated - that simple "touch-up" is ample in very many cases. Technically that is correct, but no matter how infrequent the need for a sweep generator, the TV shop should have one when it is needed.
So, Mr. Manufacturer, you still have a selling job to do.

The Rider Eye Stoppers

Mr. Service Shop Owner:

Have you picked up your Rider Eye Stoppers from your jobber? They are in his possession and available for you. Take advantage of this opportunity to attract people to your shop window. Remember, one out of every fourteen people in the United States is interested in philately; stamp collecting is becoming more popular.

The November series now is being packed for shipment during the third week of November. In the meantime, the first series should be on display.

Sncpshots

In TV areas, it is the TV service shops who are getting more and more $a-m, f-m$, and car radio servicing business. FCC hearings on color TV have been put over until February, 1950. About 40 million $\mathrm{a}-\mathrm{m}, \mathrm{f} \cdot \mathrm{m}$, and car radio receivers have been produced since the beginning of 1946. These will require servicing; in other words, radio is far from being dead.
The best-liked serviceman in the nation is the individual who works for the telephone company. He keeps his promise, and cleans up after the job is done. One of the gripes of the public, relative to TV, is that the promise to call at a specified time is seldom lived up to by the small shop owner, but it is fulfilled by large organizations.
The dissemination of technical knowledge has been the function of many branches of the radio industry. Manufacturers, jobbers, and publishers have participated. In proportion to the number which exist, the radio broadcasters have been the weakest link. Some have co-operated by giving spot announcement time, for which the servicing industry thanks them wholeheartedly, but very many, entirely too many, have done nothing to keep their audience at the largest figure, by aiding the servicing industry in their various projects.
Arnold B. Bailey, the author of the antenna book described elsewhere in this issue, spent 21 years with Bell Telephone Laboratories, designing and installing uhf and vhf antennas. He is the inventor of the coaxial antenna used in virtually all vhf communication systems where vertical. ly polarized, single-frequency signals are radiated. Such are police systems, point-to-point communication systems, ground-
to-plane systems, etc. Mr. Bailey is one of the co-inventors of the omni-directional aircraft beacon system used internationally by the CAA. As publishers, we are indeed happy to number him as one of our authors, and we are certain that every reader of his first text book will recognize him as a teacher and writer of unqualified ability. He is blessed with the faculty of dissecting a difficult technical subject, and describing it in completely understandable language, without sacrificing the technical truth.

HIWYNI

Have It When You Need It... People do not use everything they own each day. Sometimes some things are not put to work except on rare occasions - but it is good to have what you want when you need it. That's the reasoning behind the ownership of Rider Manuals and Texts. You never know what set will be referred to in the next phone call - or what receiver the next customer will bring into the store. With $85,000,000$ receivers in the hands of the public - every one of the Rider Manuals - AM - FM Record Changers - PA - TV - sees use month after month and year after year. Make sure your Rider Manual Library is complete. Have It When You Need Itl Each manual will serve you for years. Ask the man who purchased his first Rider Manual 20 years agol

Cover

The photograph on the cover shows the orderly manner in which sets at RCA Service Company are sorted on the as sembly rack before and after servicing. The cards hanging from each set enable a person to tell at a glance what work is to be or has been done.

TV PICTURE PROJECTION AND ENLARGEMENT

"In this up-to-date publication the author offers some valuable material that is quite different from that usually prepared on television subjects. The book undertakes to instruct on only one aspect of TV receivers, the optical systems employed, with special emphasis on the projection types. No circuits are included, but the thorough treatment given to the basic principles and theory of operation of lenses and optics should prove very helpful to the serious student.

For example, the first chapters concentrate on the properties of light, reflection, and mirrors and the rules and principles of refraction and lenses as a preliminary to the study of television
pictures and projection systems. Following chapters on the television picture discuss the many ways of viewing the picture, providing descriptions of magnifiers used with the direct-view types of receivers. Subsequently, direct-view systems are contrasted with projection TV, and a long chapter describes com. mercial applications of the modified Schmidt projection system. This is followed by a study of refractive projection.

Questions at the end of each chapter drill the reader on the material covered therein, so that no aspect will be overlooked or misunderstood. An extensive bibliography and well-formulated index conclude this authoritative work."Radio \& Television News.

YHOI
"G77IAFVHNYUS *GDIAY3S OIOYン STIHDOS

JANUARY, 1949

1948

IN RETROSPECT

BY
JOHN F. RIDER

Courtesy linited Air Lines

1948 is finished. Taking all things into account, it hasn't been such a bad year, in fact from the riewpoint of the servicing industry, it has been a good one. Let's review some of the happenings.

Mandatory TV Service

The general idea of mandatory TV service tied in with the sale of TV receivers has for the most part come to an end. Not that factory service on TV receivers, or for that matter other equipment, is no longer available; - it still is, which is alright, but the general philosophy of mandatory service has been discarded. That too is alright 1. . Relative to factory service no one can pick a bone with that because it still permits free enterprise, which in the final analysis is America.

TV Education Among Servicemen

The enthusiasm displayed by the radio repairing industry to learn TV equipment operating theory during 1948 is without question a highlight of that year. It is living testimony that the members of that fraternity are going all out to do a good job. The manufacturers of TV equipment can rest assured that given the opportunity - their equipment in the homes of the American public will receive competent and just treatment. There can be no
doubt in anybody's mind that the zeal demonstrated by the radio servicing industry's personnel to acquire a background in TV theory is honest and far reaching. We have been in close touch with the radio servicemen of America for more than 25 years and can truthfully say that never in all our years of public speaking at service association meetings, have we witnessed the avid interest the undivided attention and the effort to assimilate the spoken and written word, as during 1948. Mention of TV is the open sesame to the mind of the electronic maintenance man. Given the opportunity, the servicing industry will not let the receiver manufacturer down.

Licensing

The defeat of the effort by the City Council in New York City to foist licensing on the radio industry in that metropolis by the formation of a well knit, welladministered, progressive local radio serricemen's association is in our estimation a highlight of 1948 as far as radio servicing is concerned. The enactinent of regulations of this type in the world's largest city would have had far reaching effects in other communities within the United States. But more important than that, is the fact that staving off the program was accom-
plished by association effort. The plan of following up every consumer complaint and seeing that it was remedied was the most powerful weapon which a radio service association could create to defeat such regulation.
Adnittedly the threat was beneficial for it did knit into a group many men who otherwise were lackadaisical about the need for mutual cooperation and recognition of the urgency to clean the house of those comparative few who did so much harin to the many. In commenting about what happened in New York City we are by no means forgetting about the existence of many outstanding organizations such as the PRSMA in Philadelphia, others in Harrisburg, Wilkes Barre, and Reading in Pennsylvania. still others in New York State as for example Rochester, still others in the Middle West and on the West Coast. All of these have either successfully warded off licensing programs, or at least developed such relationships between themselves and the public as to make unnecessary any discussion of municipal licensing.

State Federations

The program of forming state federations of radio servicemen's associations
(Please turn to page 10)

General Electric P4

This model appears on RCD. CH. Pages 17-5 through 17.9 of Rider's Volume XVII. The sound of a metallic click and audible thump through the receiver speaker is usually traced to the operation of the relocity trip mechanism. This is caused by too much tension of the Clutch Tension Spring (reference 29 in Fig. 3 on RCD. CH. Page 17.7) binding the velocity trip lever. Adjustment may be made, reducing spring tension to prevent binding and still maintain normal operation.
In earlier production, a limited quantity of record changers employed a flat spring type clip fitted over the pickup arm pirot shaft. The clip was brought to bear upon the clutch tension spring, compressing the spring to the proper friction upon the velocity trip lever as was necessary for proper changer operation. To provide a more positive adjustment, later productions use a Clutch Spring Tension Collar, in lieu of the original clip, which makes a more convenient, accurate, and more permanent adjustment.
If extreme difficulty is experienced in proper adjustment of the earlier production changers, the spring clip may be replaced with the collar, Cat. No. RMX-0so. A detailed view of the later version of record adjustment is shown in Fig. 6 on RCD. CH. 17-8.

Hottman C502 and C512, Chossis 113

These models are the same as Model B502, Chassis 113, appearing on pages 17-1 to $17-6$ of Rider's Volume XVII, except for the following changes. Four 6K6-GT tubes are used in push-pull parallel in the output stage instead of the 6 V 6 tubes in push-pull.
An "entertainment panel" has been wired into the tuner chassis to provide microphone input, a speaker off-on switch, a pillow speaker plug, and an auxiliary
phono input to be used either for television sound or wire recorder input. See Fig. 1.
A resistance-capacity filter R111 and C110, has been inserted in the B-plus line of the phase inverter stage in order to reduce the inherent hum level of the receiver, as shown in Fig. 2.

Fig. 2. The resistance-capacity filter in the Hoffman models C502 and C512.
The following changes should be made in the parts list:
Symbol Description Hoff. No.
C60 $\quad 0.005 \mu \mathrm{f} .600 \mathrm{~V}$,
4102
$\mathrm{R} 16, \mathrm{R} 20, \mathrm{R} 50100,000$ ohms $\pm 20 \%$, $1 / 2$ watt
R21, K $88 \quad 47.000$ ohms, $\pm 20 \%, 1$ $1 / 2$ watt
R49 10 megohms, $\pm 20 \%$, $1 / 2$ watt
R27, R46
0.22 megohm, $\pm 20 \%$, 1/2 watt
R47, R51
0.47 megohm, $\pm 20 \%$, 1/2 watt
$10 \mu \mathrm{f}, 450 \mathrm{~V}$, electrolytic

4203

R111

 10,000 ohms, $\pm 20 \%$, $1 / 2$ watt4515

General Electric YRB 92-2

This model is the same as Model YRB 67.1 appearing on pages $15-53$ and $15-54$ of Rider's Volume XV, except for the cabinet.

RCA 54B5

This model appears on pages 1628 through 16.30 of Rider's Volume XVI.

Fig. 1. The entertainment panel that is wired into the Hoffman models C502 and C512.

The following addition should be made to the parts list.
70708 Lead-battery lead assembly

Westinghouse H - 165

This model appears on pages 17-12 through 17-14 of Rider's Volume XVII. The switch for this model was listed as a complete assembly including a wafer section (SW1) and an a-c switch section (SW2). In cases where the a-c switch is defective, but the remainder of the switch is not damaged, repairs can most easily be made by replacing the a-c section only. For this reason, the a-c section of the switch assembly is listed below as an addition to the parts list.
Part No.
Description
V-4803-1 Switch, a-c (SW2) and mounting plate
mounting plate

RCA 67V1, Chassis RC-606C

This model appears on pages 16-\$5 through 16-s9 of Rider's Volume XVI. Resistor R18 which was originally 470,000 ohms, appears in some chassis as 330,000 ohms and in some chassis as 220,000 ohms.

RIDER MANUALS Wean succussing

Hallicrafters SX-42

This model appears on pages 17-6 through 17-18 of Rider's Volume XVII. The following service hints apply to the S-Meter operation.
SYMPTOM NO. 1:
Meter fails to zero on AM.
ANALYSIS:
Assuming that all connections and other circuits, including AVC, are normal...

1) The line voltage is low, or
2) The first RF tube is weak

SYMPTOM NO. 2 :
Zero adjustment appears too critical. Does not hold.
ANALYSIS:
The leads to the outside terminals of the "Zero Set" potentiometer should be disconnected, reversed, and reconnected. SYMPTOM NO. 3:
Meter fails to zero on FM
ANALYSIS:

1) Adjust meter indicator mechanically with zero set on the meter.
2) Replace 7A4 tube
3) Replace R-68 with lower resistance if indicator remains on right side of FM zero
4) Replace R-68 with higher resistance if indicator remains on left side of FM zero

REMARKS:

The internal resistance of the meters is not specified, and depends on the supplier. The resistance ranges from 12 to 50 ohms.
The meter has a range of 5 ma . on a linear scale. The FM zero is arbitrarily calibrated at 1.4 ma .
An arbitrary figure of $60 \mathrm{~m} . \mathrm{v}$. to the antenna terminal was used for S-9 on the 20 meter band. Each S-unit represents 6 db variation.
$60 \mathrm{~m} . \mathrm{v}$. to the antenna terminal of the receiver represents roughly a field strength of $15 \mathrm{~m} . \mathrm{v}$. per meter.

Practical On_{n}-the-Job Training Program for the Better Serviceman Who Wants Greater Earnings and Security In This Expanding Field

THIS basic CREI Servicing Course paves the way to greater earnings for you. Since 1927 thousands of professional radiomen have enrolled for our home study courses in Practical Radio Engineering. Now, CREI supplies the answer to the need for a Practical Servicing Course. You do not have to be, or want to be, an engineer to benefit from this course. It is written for you-the average good serviceman! It's not too elementary for the experienced. It's not "over the head" of those who have limited experience-if they have real ambition and natural ability.

CREI developed this course at the request of several large industrial organizations. The urgent need of capable, trained servicemen is one of the big problems of the industry. Hundreds of thousands of Television

Receivers will be marketed in 1949. By 1951 two million TV units are expected to be flowing into American homes. With Television comes FM receivers and circuits. This new field demands a tremendous increase in the number of properly trained television and FM technicians to install and service this equipment.

CREI EQUIPS YOU TO INSTALL AND SERVICE ALL TYPES OF TELEVISION AND FM RECEIVERS

Now . . . with the help of this new CREI streamlined Service course you can move ahead to unlimited opportunities in your chosen field. CREI has again taken the lead by offering a course so entirely new that for the first time in our twenty-one year history we can offer a down-to-earth course of training for servicemen. In offering this course at a popular price, CREI is enabling thousands
of the "top third" now engaged in service work to enter the ultimate profitable field of television and FM installation and service.
This can be your big year! Don't waste another day. CREI has the answer to your future security in this new servicing course. Write today for complete information. The cost is popular. The terms are easy. The information is free. Write today.

Radio Service Division of CAPITOL RADIO ENGINEERING INSTITUTE

An Accredited Technical Institute
Dept. 251-A 16th \& Park Rd., N. W., Wash. 10, D. C. Branch Offices: New York (7) 170 Broadway - San Francisco (2) 760 Market St.

CAPITOL RADIO ENGINEERING INSTITUTE
16th \& Park Road, W. W., Depl.251-A Washington 10, B. C.
Gentlemen :
Please send me complete details of your new home study course in Television and FM Servicing. I am attaching a brief resume of my experience, education and present position.

NAME.
STREET
CITY. \qquad ZONE.......STATE
ป I AM ENTITLED TO TRAIHING UNDER G. I. BILL

General Electric 140

This model appears on pages 17-21 through 17.23 of Rider's Volume XVII. The following procedure is recornmended for repairing broken antenna loop connecting straps.

The broken straps should be cut back flush with the inside edge of the notch on the loop. The flexible wire is then used to make connections from the loop to the inside of the receiver. Consult the accompanying diagrams for loop connecting details and wire specifications. Carefully lift the section of the loop to allow connecting the specified pieces of wire and solder

WIRE DETAILS

2 REQUIRED PER SET

Above, the loop connecting details of the General Electric Model 140. The wire details for the antenna loop connections are shown in the lower figure.
wires to remainder of loose straps. Remove the fibre strap guide which originally insulated the loop straps within the cabinet. Remove original wire leads and pieces of loop strap connected inside the cabinet to the chassis terminal strip and pin 6 of the 1R5 oscillator-converter tube socket. Solder the new leads from the antenna loop directly to the terminal board and tube socket. Make certain that the inside of the loop is connected to pin 6 of the 1R5 tube socket.

RCA QU-62

This model appears on pages $1 \tilde{\gamma}-13,14$ through $17-20$ of Rider's Volume XVII. In some instrunents the speakers listed following have been used as alternates for the speakers listed in the parts list. Speaker Assemblies 92520.1 K
70574 Cone-cone and roice coil assembly
5118 Plug - 3 prong male plug for speaker
70686 Speaker-12" PM speaker com. plete with cone and voice coil less plug
(Used as alternate for PM speaker stamped $92469-4 \mathrm{~W}$)
Speaker Assemblies $92516-2 \mathrm{~K}$
Cone-cone and voice coil assem. bly
5119 Plug-3 contact female plug for speaker
31539 Plug - 5 prong male plug for speaker
70573 Speaker-12" EM speaker complete with cone and voice coil less output transformer and pluys
70688 Transformer-output transformer (T4)
(Used as alternate for EM speaker stamped $92566-3 \mathrm{~W}$)
The alternate speakers will not fit on the mounting bolts used with the original speakers. If a replacement which differs from the orixinal equipment speaker becomes necessary; it is suggested that the mounting bolts be cut off and the replacement speaker mounted using rubber grom. mets. spacers, and wood screws.

Westinghouse H-124

This model is the same as Model H-125 which appears on pages $15-8$ through $15-10$ of Rider's Volume XV, except that the side panels of the $\mathrm{H}-124$ cabinet are a darker shade of green. The following items have been added to the parts list:
Part No.
V-3461-3
V-3459-3
Cover, left hand
Cover, right hand
Description

Zenith S 13200

This model is the same as Model S11468 on RCD. CH. Pages $15-1$ through 15-8 of Rider's Volume XV, except that the Model S 13200 has a Cobra tone arm and a muting switch.

INSTALLATION AND SERVICING OF LOW POWER PUBLIC ADDRESS SYSTEMS
 By John F. Rider
 CONTENTS:
 Chap. I. Fundamentals of Sound
 2. Microphones and Phono Pickups
 3. Impedance Matching
 4. Amplifier Specifications
 5. Loudspeakers
 6. Installation
 7. Servicing

Your Jobber has it or Order Directly from Us

Sears Roebuck 7054, 8052, 8053

Models 8052 and 8053 are similar to Model 7054, but include the change shown on page 3 of the September issue of Successful Servicing. Model 7054 appears on pages 16.1 through $16-3$ of Rider's Volume XV'I. It has been found that some of the failures of the 35 Y 4 rectifier tube in these models can be prevented by adding a shunt resistor of 270 ohms across pins number 1 and 4 of the 35 Y 4 tube. This change was not made in production, so it is suggested that it be made in service when this type of failure is encountered.

RIDER MANUALS \%ean succissfut

GE 250

This model appears on pages 15.72 through $15-36$ of Rider's Volume XV. The switch that is supplied under the number RSW-009 is of a different construction than the original flat-wafer switch. The accompanying figure shows the numbers which correspond to those in the schematic diagram.

Construction of the wafer switch replacement for the General Electric 250.

RCA 66X11, 66X12, 66X13
These models appear on pages 17-29 through 17-30 of Rider's Volume XVII. Some oscillator coils which were specified for the first production ($\mathrm{RC}-1046 \mathrm{~A}, \mathrm{RC}$ 1046, RC-1046B) of these models have been used on the second production (RC1046C, RC-1046D, RC-1046E).
Some oscillator coils and associated coupling capacitors (C19) which were specified for the second production have been used on the first production.
If replacement is necessary - use the specified parts - the range of inductance adjustment may be insufficient if used otherwise.

Firestone R3157A

This model is the same as Model S7427. 2 appearing on pages 12-19,20, 12.21, 12-6, and (..S. 12-4 and C.S. 12-6 of Rider's V'olume . YII.

Montgomery Ward 64WG-1050C

This model is the same as Model $64 \mathrm{WG}-1050 \mathrm{~A}$ on pages 15.75 to 15.77 of Rider's Volume XV, except for the following changes. The 1500 -ohm resistor R-3 is now connected from the center tap of the filament of the $3 S 4$ output tube to the common negative circuit, lug 4 on the changeover switch, instead of to the pcsitive filament lead (pin 7) of the 1S5 oscillator-detector tube, lug 9 of the changeover switch.

A 100 -ohm resistor R - 12 has been connected between R-11 and the selenium rectifier.
Ref. Part Description
No. No.
R-12 D84101 100 ohms, 2.0 watt, carbon

Vol. 10

480 Canal Street

Dedicated to the financial and technical advancement of the
Electronic Maintenance Personnel

Published by
JOHN F. RIDER PUBLISHER, INC.

-Sucressful
 SERVICING

REG. U. S. PAT. OFF.
JANUARY, 1949 freeze on Trequency allocations - .
Sometimes the comments get back to the public and, like the usual quotations, have public and, like the usual quotations, have
been so distorted as to create doubt in the mind of the public about the normal useful life of their equipment . . Spike these rumors! . . . At least set them right . . If there are any changes in the

 Rider's TV Manual, Volume 2.

John F. Ride:
When is it going to end? . . . Peace it's wonderful!
False Rumors . . . Here and there one hears rumors that changes in TV operating frequencies are imminent. These rumors started as the result of the recent FCC freeze on TV frequency allocations . .. No portion of this publication may be reproduced without the written permission of the publisher

CURTAIN TIME

We Are Just Wondering . . .

Will it ever end? . . . Every newspaper talks about the fourth round of price increases . . . In 1941 a 1600 page Rider Manual sold for $\$ 12.50$. . Today it sells for $\$ 16.50$. . . That's an increase of about 33 percent . . . Since 1941 paper has gone up 80 percent . . . the binder has increased about 160 percent . . . The binding operation has increased just under 100 percent . . . Editorial makeup cost has gone up about 100 percent . . Printing has increased more than 100 percent.
as well as the attention, is to be commended to the fullest . . . Orchids to the group . . . Such organized activities are of very great importance to a manufacturer because it assures his travelling speaker of an audience . . .
ESFETA is the name of the New York State federation of associations of radio servicing personnel. When fully identified it is Empire State Federation of Electronic Technicians Associations . . . Let's hope that they get into full swing soon and set up their lecturers' bureau
Right now the headquarters is in Binghampton. Membership is open to accredited service associations . . For information write to Wayne Shaw, 392 Chenango Street, Binghampton, N. Y. . . . This is a grand step and we hope that the movement will spread across the entire nation. Each state should have its own federation ... After this has been accomplished, then it is time to think of a national organization . . . Such procedure will result in a service organization of national scope with the necessary substance to make its efforts and benefits of tremendous value to all the men associated with this branch of the radio and television industry... To think about a national organization BE FORE the state organizations have been placed on a solid footing is not only putting the cart before the horse, but is actually jeopardizing the local organizations, where in the final analysis the main strength should be found, because virtually all servicemen problems are local issues.
.
service to those who read it. That
this advertising is limited is simply the result of there being a definite limit to the number of pages which can be devoted to advertising.

TV Antennas

Pay a visit to some TV fringe areas? . . You'll be surprised . . . TV antennas of the most elaborate variety, mount. ed atop 40 to 80 ft . poles and towers are serving receivers which cost just a bit more than the antenna installation! The public in TV fringe areas wants TV and the servicing industry is giving it to them - and doing a GRAND job . . . And to make the cheese more binding cheap antennas are not easy to sell in those places . . . The men realize that certain areas require wide-band systems, whereas other places need high-gain single frequency systems . . . They are picky and choosey about what system they select . . . THEX'RE EXPERIMENT. ING . . . Then they buy in accordance with the PERFORMANCE in that area.
Speaking about performance, we've personally viewed TV pictures around Harrisburg, Pa ., which were accomplished with two boosters operated in a series! ... One such booster wasn't enough . . . In the mountainous areas of Eastern Pa., TV viewers are watching pictures on receivers which have their video i-f systems peaked instead of the usual wide bandpass. . . Performing this change is the DIFFERENCE between pictures and no pictures . . Were it not for this modification in alignment by the competent serviceman, TV receivers would not be sold there! . . . The Mfgr's engineers may not approve - but since it is a MEANS of satisfying the public demand - and in no way does it damage the receiver for realignment in the future; it can't help but reflect credit on the servicing industry for demonstrating the necessary ingenuity to accomplish public satisfaction.

Service Associations

We have just completed a speaking tour among the affiliates of the Federation of Radio Servicemens Associations of Pennsylvania - At present this group includes servicemen in Philly, Wilkes Barre, Allentown, Bethlehem, EastonPhillipsburg, Scranton, Harrisburg, Williamsport. and Reading; each of which cities has its own local group . . . The coop spirit is terrific and the attendance,
,
\qquad
 .

[^2]

[^3]

General Electric 41, 42, 43, 44, 45
These models appear on pages 17-1,2 through 17-16 of Rider's Volume XVII. A sliding type switch has been added in series with R67 (8200 ohms) connecting the resistor to the phonograph pickup input jack, J3. This switch is on the receiver chassis back apron with its respective label indicating High Fidelity and Normal, the open and closed positions, respectively.

In the replacement parts list under Cat. No. RSS-003, add the item: High FidelityNormal switch.

Montgomery Ward 64WG-1050B.

1050D, 74WG-1050D
These models are the same as Model 64WG-1050A on pages $15-75$ to $15-77$ of Rider's Volume XV, except for the following changes. The $0.1-\mu \mathrm{f}$ capacitor $\mathrm{C}-11$, is connected between pin 1 of the 1R5 oscillator-detector tube and the common negative circuit instead of the chassis ground.

In the D models, a 1000 -ohm resistor, $\mathrm{R}-13$, is connected between pin 7 of the $3 S 4$ output tube and the common negative circuit. The following should be added to the parts list.
Ref. Part Description
No. No.
R-13 B84102 100 ohms, 0.05 watt, carbon

Majestic 7BK758

This model is the same as Model 7JK777R appearing on pages $17-5$ and 17-6 of Rider's Volume XVII, except for the dial scale. The dial scale used is part no. 117-78.

RIDER MANUALS Wheat succissive

General Electric 140

This model appears on pages 17-21 to 17.23 of Rider's Volume XV11. The following procedure is recommended to replace a speaker in this model.
1-Unsolder leads on speaker, using small tip iron.
2-Unsolder $90-\mu \mathrm{f}$ capacitor (C14) at terminal strip.
3-Without unsoldering, remove dual 40 $\mu \mathrm{f}$ capacitor (C20) from mounting clip.
4 -Using long screwdriver (8 inches or longer) loosen screws holding speaker to chassis.
5-Remove nuts holding speaker to front panel.
6 -Lift up left end of resistor mounting plate and then lift out speaker.
If the antenna straps which interconnect the antenna in the receiver cover with the radio chassis circuit break, the follow-
ing replacement procedure is recom. mended:
1-Bend up insulating material covering set end of antenna strips by inserting the tip of a long-nose pliers and twisting gently so as not to tear material.
2-Unsolder wires from loop strips in receiver.
3-Remove screws holding door cover.
4-Lift loop at point midway between hinges to expose strip rivets and unsolder loop from loop strips.
5-Remove rivet or rivets as needed, taking care not to damage loop or loop back.
6-Replace broken straps by new members, Cat. No. RCE-002, and rivet it in place with eyelets, Cat. No. RHE-003. In order to replace the rectifier disc assembly, SR, proceed as follows:
1-Remove two mounting screws from the power switch, Sl (door switch).
2-Dress power switch away from mounting plate, providing more access to underside of top chassis deck.
3-Unsolder leads to rectifier disc assembly.
4-Push aside components underneath rectifier assembly mounting screw until screw can be loosened.

RCA QU-62

The top view of this model is shown on page 17.18 of Rider's Volume XVII. The tuning capacitor has six sectionsC1 and C2 Ant, C14 and C15 R.F., and C11 and C31 Osc. The tube and trimmer location view shows only $\mathrm{C}, \mathrm{C} 14$ and C31, which are used on the " A " and " B " bands only.
The following change should be made in the parts list on page 17-20. Replace Stock No. 31970 spring with Stock No. 31418 spring-Drive or indicator cord spring.
The instrument label used on some instruments is incorrect in showing tube locations. The r-f shelf assembly should be turned 90° clockwise. The correct tube locations are illustrated in the accompanying diagram.

The correct tube locations for the RCA Model QU-62.

RCA QB55X Chassis RC-563-K
This model appears on pages 17.9 through 17-11 of Rider's Volume XVII. In some chassis two $2000 \cdot \mu \mu \mathrm{f}$ capacitors in parallel are used in place of the specified $3900-\mu \mu \mathrm{f}$ capacitor C7.

The Cover

A radio technician at United Air Lines' San Francisco maintenance base in one of the eight special test cells where radio sets are repaired and calibrated. The aluminum cells are insulated with special copper screening on the top and have every kind of a device to enable thorough testing under a variety of conditions.

\star Extended high dielectric
anti-leakage paths. * Multi-channelled guard barrier. * Full handle length internal arc-back shield directly grounded. * External are-back barrier
directly grounded. t Fully shielded instrument
connecting cable. \star All critical high potential and ground connections within the probe are positively accomplished via high compression contact springs.

* Special helical film-type cartridge multiplier, developed specifically for very high potentials.
* Custom molded polystyrene probe head, bakelite handle and barrier. Specially machined and tooled lucite internal components.
* "Application Engineered" to meet the exacting requirements demanded by its intended field of usage.

NOW . . . the TV high voltage test problem solved with safety and operational confidence. A super high voltage test probe, "Application Engineered" for the job...tested on the job... approved for the job. Custom designed for YOUR safety FIRST, and providing the accuracy, dependability and reliability you expect from products bearing the "Precision" name.
\# Series TVP... High Voltage Test Probe less multiplier cartridge.
Net Price $\$ 12.35$
\star Series TV-1 ... Model TVP with cartridge for Precision Series EV-10VTVM.
\star Series TV. 2 vacuum tube voltmeters.

Model TVP with cartridge for Nide Range
Precision (or any) 20.000 ohms per volt test sets having a built-in 6000 volt DC range.

Net Price $\$ 15.45$

* Multiplier cartridges are available to match most popular 20,000 ohms/volt test sets and

 Sweep Generator
Fide Range
 YOUR ANSWER \$O TV 8 FMM
COMING NEXT MONTH

Series TV High Voltage Test Probes provide direct kilovoltmeter facilities with your present high sensitivity test set, and vacuum tube voltmeter such as the "Precision" instruments illustrated below.
\checkmark See them on display at all leading radio equipment distributors along with the complete Precision
line of modern electronic iest instruments for all phases of AM-FM-TV service and maintenance.

PRECISION APPARATUS COMPANY, INC.
92-27 Horace Harding Boulevard Elmhurst 14, New York
Export Division: 458 Broadway, New York, U. S. A. - Cables-Morhanex

Garod 3915 TVFMP

Riders TV Manual Volume 1 pages 1-1 through $1.7,8$ contains the preliminary service data covering the Garod 3912 TVFMP. The television receiver for the Garod 3915 TVFMP is the same as in the Model 3912 TVFMP. The difference between the two models is found in the radio receiver. The Model 3915 TVFMP employs a 9 tube receiver identified as Model 9FMT. The final service data for all these receivers will appear in Rider's TV Manual Volume 2

Crosley Models 9-408, 9-408(50)

These receivers are substantially the same as Models 307TA and 307TA(50) which appear in Rider's TV Manual Volume 1 on pages 1-1 through 1-17,18. They differ in certain parts of the over-all circuit. In the speaker circuit, models $9-408$ and $9-408(50)$ employ a three-prong plug and cabled socket to connect the speaker to the output transformer. Also the hum bucking coil has been omitted. See Fig. 1.

Fig. 1. The speaker circuit of the Crosley Models 9-408 and 9-408(50).
In models $9-408$ and $9-408(50)$ video i-f transformer T102 (two winding) replaces the single-tuned circuit L183 in the grid circuit of the 4 th video i-f stage. This introduces a change in the picture i-f and trap adjustments as given in the alignment table on Crosley TV Page $1-10$ in Rider's TV Manual, Volume 1. Step 9 in the "Adjust" column should read "T102 (top of chassis) adjust for minimum." In addition, the presence of the second winding on this transformer requires an operation which is not necessary in models 307TA

Fig. 2. The third and fourth video i-f atages of the $9-408$ and $9-408(50)$.
and $307 \mathrm{TA}(50)$. This operation is done when step 5 in the aforementioned alignment table is performed. The frequency is 27.25 nic and the bottom trimmer on T102 is adjusted for minimum signal on the indicator. See Fig. 2.
Another change in models 9.408 and $9-408(50)$ is found in the voltage distribution system of the low-voltage power supply units. The two ion trap coils L202 and L203 connected across R232 are removed, including the resistor. See Fig. 3.

Fig. 3. Low-voltage power supply of the 9-408 and 9-408(50).
A final difference between these two groups of receivers is the use of two f-m traps L81 and L82 in the $9-408$ and 9. 408(50) series. These are connected as shown in Fig. 4. See trap adjustment data elsewhere in this issue of Successful Servicing.
The complete schematic of models $9-408$ and 9-408(50) will appear in Rider's TV Manual, Volume 2.

Fig. 4. The f-m traps used in the $9-408$ and 9-408(50).

General Electric 802

Refer to Rider's TV Manual, Volume 1 General Electric TV Page $1-68$ and change
designation V18A to V18B in Fig. 48 and designation V18A to V18B in Fig. 49. In the paragraph on "Ion Trap Adjustment" on General Electric TV Page 1-63 in Rider's TV Manual, Volume 1, the vertical multivibrator tube is referred to as V16 in steps 1 and 3. Change this tube desig. nation to V19.

Industrial Television IT-1R Series 2

Realignment for higher gain. It is possible to increase the gain of the video i-f in the IT-1R Series 2 control unit by narrowing the band pass to approximately 3 mc . In marginal areas where low signal levels result in poor pictures, this change is recommended.
The reference schematic will be found in Rider's TV Manual, Volume 1, IT TV pages $1-3$ and 1-4. The video i-f is realigned according to the instructions given, except that the following frequencies are used:

| Stage | Frequency |
| :---: | :---: |
| 5 | 25.7 mc |
| 4 | 23.4 mc |
| 3 | 26.4 mc |
| 2 | 24.3 mc |
| 1 | 26.0 mc |
| Sound Trap | 21.9 mc |

Two turns must be removed from coupling coil I 2 in the input of the first video i-f stage, tube V1. Then L3 the output inductance of the input network is retuned for maximum signal output.
The reduction in band pass is not recommended where adequate signal strength is available since the picture quality will be impaired. All possibilities of improving picture reception by adjustment of the antenna installation should be exhausted before such realignment is attempted.

U. S. Television Model 15 Inch

The following changes in circuitry have been made since the appearance of Rider's TV Manual Volume 1, wherein this receiver is covered on pages l^{\prime}. S. Tel $1-89$ to $1-4$. Resistor R162 (1.5 meg) associated with tube V17 has been replaced by R210 (750 K ohms) and R211 (750 K ohms). C163 associated with V21 was changed from $0.1 \mu \mathrm{f}$ to $0.05 \mu \mathrm{f}$ and capacitor C151 ($0.00012 \mu \mathrm{f}$) associated with tube V18 has been removed.

Hallicrafters T-54 and 505 Picture Synchronization

If the picture moves up and will not center with vertical centering control, replace C73.
If the picture moves down and will not center with the vertical centering control, replace C74.
If the picture moves to the right and will not center with the horizontal centering control, replace C72.

If the picture moves to the left and will not center with the horizontal centering control, replace C71.
The diagnosis by the manufacturer is that leaky capacitors in these locations cause the aforementioned actions.

Television Changes

Crosley Models 9-408, 9-408(50), 307TA(50) Antenna Traps

This model appears on pages 1.1 through 1-17,18 of Rider's T'V Manual, Volume 1. When the receiver is aligned in the shop, the antenna trap should be adjusted to reject the type of interference which might be encountered at the customer's home. It can be adjusted by actual observation of the interference on the air, or by the use of a signal generator. Two methods of adjustment are possible if a signal generator is used. Select the type of interference and the method to suit the test equipment involved.
Method 1 for channel 6-10 interjerence. Connect the VT voltmeter to the junction of L188 and R137 (in plate circuit of video detector). Turn the picture control to the maximum clockwise direction. Connect the signal generator to the antenna terminals through a balance network shown on page $1-5$ of Rider's TY Manual, Tolume 1. Tune the receiver oscillator to 109 megacycles with the fine tuning control as determined by the method described for the r-f oscillator adjustment on page 1-6 of Rider's TV Manual, Volume 1. Feed in the channel 10 picture carrier of 193.25 mc from the signal generator. Adjust L81 and L82, the two antenna traps, for minimum reading on the VT voltmeter, keeping both cores in about the same position. For final touches, adjust L81 about one-half turn clockwise and readjust L82 for minimum indication of the voltmeter. If this minimum is lower than the previous indication. repeat the operation until the lowest minimum is obtained. If this minimum is higher, adjust $L 81$ onehalf turn counter-clockwise and readjust L82. Repeat for lowest ininimum.

Method 2 for channel 6-10 interference. With the same setup as before, switch the receiver to channel 3 and tune the receiver oscillator to 87 mc . Feed in a signal of 109 mc from the signal generator and adjust the traps as previously described.

Method 1 for channel 5.7 interference. With the same setup as before, switch the receiver to channel 5 and tune the receiver oscillator to 103 mc . Feed in the channel 7 picture carrier of 179.25 mc from the signal generator and adjust the traps as previously described.

Method 2 for channel 5.7 interference. With the same setup as before, switch the receiver to channel 2 and tune the receiver oscillator to 81 mc . Feed in a signal of 103 mc from the signal generator and ad. just traps as previously described.

Method for F-M image interference. With the same setup as before, switch the receiver to channel 2 and tune the receiver oscillator to 81 mc . Feed in a signal of the frequency of the interfering $f-m$ station and adjust the traps as previously desscribed. To adjust the traps by observation of the picture under actual operating conditions, connect an antenna to the receiver and tune in the station on which the interference is observed. Adjust the trap as above for minimum interference in
the picture. Since the customer's home antenna will affect these adjustments slightly, in cases of severe interference it may be necessary to retouch the trap adjustments when the receiver is installed in the home.

RIDER MANUALS Mean succrssing

Transvision Electromagnetic Deflection Receivers

In some cuses on the newer models of these receivers which have interchangable CRT saddles, it has been found that the machine screw holding this saddle on the side opposite the tuner sometimes may short to one of the lugs on the adjacent terminal strip. If this happens the bright. ness potentiometer control will become ineffective.

Correction

The change notice that appeared in the October-November issue of Successful Servicing for the Transvision 12 -inch kit should read: In cases where the picture width is not sufficient and replacement of the sweep tubes has not corrected this condition, the $680,000-\mathrm{ohm}$ resistor connected from pin \#2 of the 6SN7 horizontal oscillator X-6 to B plus should be checked and replaced if necessary.

The resistor was indicated as going from the horizontal oscillator to ground.

Garod 3912 and 3915 TVFMP

Fig. 1 and Fig. 2 give the locations of the alignment adjustments for the TV tuner used in these receivers and shown in Rider's TV Manual, Volume 1. The notations conform with the alignment references given on pages 1.2 through 1-3.

TUNER FRONT VIEW

TUNER SIDE YIEW

Fig. 1, above. The alignment adjustments reached from the front of the tuner of the 3912 and 3915 TVFMP. Fig. 2, below, shows adjustments reached from the side.

Garod 3912 and 3915 TVFMP Revisions

Model 3912 is shown on pages 1-1 through 1.7,8 of Rider's TV Manual, Volume 1. Inability to sync the Vertical Hold Potentiometer after the receiver has been on for about an hour can be corrected by making the following changes:
(1) Remove R110 (4.7 meg) resistor from pin 1 to ground of the 6SN7 vertical blocking oscillator tube V24.
(2) Remove R109 (3.3 meg) resistor and replace it with a 1 -meg, $1 / 4$-watt resistor. The Vertical Hold control should operate through both sides of the "hold" position.
In case of Horizontal Sync troubles, check items R78-R79, R80, R83, C70 and C71 for correct match.
In case of failure of capacitors C51, C72 and C75, all of which are rated at 400 volts working voltage, replace them with 600 volt working voltage capacitors of like capacity rating. Failure of C 75 will impair the vertical sweep.
In the event that an examination of the receiver is being made, look for charring of resistors R81 and R82 ($10 \mathrm{k}, 1 / 2$ watt). If these are charred or have changed value, replace them. Both are associated with the Hor. Dect. tube, V18.

The over-all i-f response curve of the Garod Models 3912 and 3915 TVFMP.

The input circuit of the R-F tuner contains two F-M traps. These may be tuned within the band of 88 to 110 megacycles to eliminate f-m interference.
6BG6G failure . . . High current flowing in the plate circuit of the 6BG6G may under defective tube conditions cause trouble in the Horiz. Sweep Output Trans. primary circuit. A bad tube may cause the plate current to rise from 250 to 300 milliamperes. After the defective parts have been replaced, protection against such a condition may be attained by connecting a 125 -milliampere fuse in series with the 100 ohm resistor in the cathode circuit of the 6BG6G tube. This fuse should preferably be located between the resistor and its connection to the chassis.
The over-all i-f response curve for these receivers is given herewith.

Hallicrafters T-54 and 505

The alignment frequencies shown in the top view on Hallicrafters TV page 1-1 of Rider's TV Manual, Volume 1 have been changed. The 25.5 mc i.f adjustment should read 25.0 mc and the 23.5 mc i-f adjustment should read 23.3 mc .

In Retrospect

(Continued from page 2) received added impetus during 1948. One such federation was formed in New York State and discussions with associations in other states who are interested in forming federations in their states was carried on by representatives of the New York and Pennsylvania organizations. In this connection, a very progressive step indicative of sound thinking was demonstrated when these federations opposed the formation of a national association of radio servicemen, because they felt that the time was not yet propitious for such a venture. They were unanimous in their opinions that national activity should not procede until statewide federations had made sufficient headway. They felt that national associations based upon individual man membership would conflict with the growth of local and statewide groups. In our estimation - and we have observed the various movements which have developed over the past 20 years, the judgement of the state leaders is well grounded.

Supply and Demand of Servicemen

There can be no denial of the fact that more servicemen are active today than ever before. The year 1948 - a period sufficiently far removed from VE and VJ Days to permit a conclusion - can be said to have proved that the frequently quoted threat of competition from armedforces trained GI's or those who enrolled in the numerous technical educational institutions has not come to pass. In fact it is safe to say that such a threat does not exist and if we can use 1948 as a barometer of events, the possibility of such a threat developing in the next few years is very remote.
Admittedly many schools have graduated many technicians; but it is also true that many enrolless never completed their courses of instruction. The tremendous expansion of technical production facilities
of all varieties, not necessarily associated with radio or television although in the electronic field, has absorbed a comparatively great number of personnel. Then along came the expansion of television with its demand for personnel. Unlike conventional blind radio equipment, TV receivers require installation, an activity heretofore productive of negligible demands on personnel. In fact an installation demands the services of two. people. Add to this the need for technical servicing people, and finally the definite limitation in time allowed for the accomplishment of a repair and it is very easy to see why there should be an actual shortage, rather than an overbundance of service facilities. This despite the fact that the ranks have been augmented by technical school graduates.

Recognizing that the distribution of TV receivers is still at the very bottom of the hill of sales, the likelihood is that for the next five years at least, there will be a continual demand for competent servicemen. As a matter of fact, if the recently announced (Dec. 1948) TV carrier synchronization development of RCA becomes a reality by being used nationwide, as it now is used between stations WNBT in New York City and WNBW in Washing. ton D.C., the expansion of TV facilities will receive a tremendous push. This development enables two or more stations on the same channel to operate with synchronized carriers, thereby eliminating interference at receiving points between the two stations. Moreover it will permit the erection of many nore stations within the present structure of channel allocation. Today the number of channels are limited in any one area because of possible interference from other stations operating on the same frequencies at locations not too far distant. With this new plan, stations on the same frequency could be located closer together, thus enabling the erection of stations on identical channels within

Its as True Taday as it was Then---

Knowledge is of two kinds: we know a subject ourselves, or we know where we can find information upon it.

| Tranamiasion and Reception 416 pages . . . Cloth Cover | n-C Calculation Charts 160 pages |
| :---: | :---: |
| Broadcast Operctors Handbook 288 pages $\$ 3$ | High Frequency Measuring Tec Using Transmission Lines |
| nderatanding Vectors and Phase | 64 |
| 160 pages - . $\begin{gathered}\text { Cloth Cov } \\ \text { Paper Cov }\end{gathered}$ | The Oscillator at Wor |
| tion and Servicing of | |
| d | - |
| tems 208 page | Control |
| ide the Vacuum | 144 pages |
| eathode-Ray Tube at Work | adar - What |
| 338 pages | derstan |
| ${ }^{\text {rrvicing }}$ by S | derstanding Microwaves
 385 pages $\$ 6.0$ |
| Mas | |
| e Meter of W 152 pagen | Radio Amateur's Beam Pointor |

Master Index-Volumes 1 to XV $\$ 1.50$
Order from your Jobber or Directly from Us
areas now prohibited by virtue of interference.
Of course the problem of receiver manufacturing still exists - that is, the production of sufficient glass blanks for the picture tube, but like every other production problem in this nation, this one too will be solved. The net result will be a tremendous increase in the sale of receivers, for the necessary transmission stations will become available in many locations which are shy TV facilities today. All in all, it is a safe guess to say that if anything will happen, it will be a shortage of servicemen.

AM-FM

1948 can be-said to be the year when public discussion relative to the destiny of AM and FM took place. That it should occur is not strange in the light of TV. It would be silly to deny that the latter has had an effect upon the former; advertising revenue at the AM stations is being threatened, whereas advertising revenue at the TV station is on the upswing. Artistwise, more and more of the top artists of show business and the movies are getting on the band-wagon of TV. Of course the sledding of the TV station is not always smooth; they too have their problems, but there are few if any people who envision anything but forward motion.
But back to the AM and FM situation - that is, receivers for the reception of such blind broadcasting. At the outset the TV set owner sits in front of the screen every waking hour, but after a while, at least the grown ups become rational and more selective of the programs. The result is that the conventional receiver again begins to see some use. As a matter of fact the human eye requires a rest from the TV screen image. Inasmuch as the commentary accompanying a video transmission is of necessity much less than that in the usual type of programming for blind radio where the speech and the sound effects must create the illusion of the action, it is not so simple to just turn down the video and listen to the sound. Maybe it will be someday but it isn't so now. So, the old standby receiver still sees much use in the daytime -in the bedroom or the kitchen or the living room.
Then we must recognize that new cars are being made each year and that each of these requires a car radio . . . Also that replacement of existing car sets is still necessary ... Then there is the usual sale of radio receivers to those people who have TV but still listen - or to those people who are still far removed from TV facilities. After all, no matter how rapid the expansion of transmitting facilities, years will elapse before the nation will be blanketed by TV broadcasting. Nationwide TV coverage will undoubtedly require chain type of broadcasting, especially if synchronization of carriers is accomplished. Finally the human being does not change too rapidly, twenty eight years of blind radio broadcasting has created habits of life which will remain for quite awhile .. There may be a reduc(Please turn to page 16)

Television Carrier Synchronization

A recent news release from RCA announces that after extensive engineering, they have accomplished synchronization of the television carriers of stations WNBT in New York City and WNBW in Washington. Operation of these two TV stations now is being carried on in this way, with the result that localities which may have experienced interference from TV stations operated on the same frequency now are due to receive pictures free from such interference. According to the release this also enhances the possibility of operating a greater number of stations on the same channel, which would certainly be a boon to all those people who desired television, but were destined to be denied that service for a long time because they lived in remote areas.

Hallicrafters T-54 and 505 RLn:

Run \#1 of these receivers is contained in Rider's TV Manual Volume 1 on pages $1-1$ through 1-29,30. The following differences are to be found in Run \#2 of this receiver. Resistor R58 associated with the oscillator tube V14 now is 3300 ohms and rated at 10 watts. R116 originally used has been removed.

R83 associated with V18 the vertical oscillator now is 560,000 ohms instead of the original 680,000 ohms.

C73 and C74 in the output circuit of the vertical amplifier V20 now are $0.03 \mu \mathrm{f}$ each instead of the original $0.05 \mu \mathrm{f}$ each.
R108 connected across the heater of V2 now is 120 ohms instead of the original 68 ohms.

C17, the video output capacitor, now is $0.1 \mu \mathrm{f}$ instead of the original 0.25μ.
R40 the grid leak for V9 now is 18,000 ohms instead of the original 27,000 ohms.

R33 the grid leak for V7 now is 18,000 ohms instead of the original 27,000 ohms.
R39 the grid leak for V8 now is 12,000 ohms instead of the original 27,000 ohms.

The circuits of V3 and V4 the 1st and output audio stages have been modified to circuits shown herein. The greatest change is found in V3, where the tube now used is a duo-diode triode instead of the original pentode. In the case of the output stage V4, the only difference is the addition of a $10-\mu \mathrm{f}$ electrolytic capacitor, C98, rated at 25 volts across the cathode resistor R25. The change to the duo-diode triode for V3
results in discardin: capacitor C24 and resistor R22. Natural'y here is no screen voltage to be measured. This should be remembered when using the reference voltage table for these receivers.

Identification of Run 2 of this receiver, and other runs as well, is on the chassis.

GE 41, 42, 43

These models appear on pages $17-1,2$ through 17.15 of Rider's Volume XVII. The following changes should be made. Add C:.. No. REF-003, line fuse F201, 3AG, 5 amp ., 250 volts, to the parts list and add this to the schematic diagram of the Special Power Unit on page 178. The fuse should be placed in series with the power transformer primary and the power cord. Besides the addition of a fuse, the safety will be further increased by placing a sheet of asbestos underneath the power unit to cover the ventilation slots. Thus, even in the case of overload, the hot tar of the over-heated transformer is prevented from dropping on the floor.
Add Cat. No. RSV-001, Switch-power ONOFF switch to the parts list. Replacement is readily made by merely bending the mounting taps.
To adjust for minimum hum level, turn the volume control until the audio output is zero and vary resistor R201 (which is parallel to the filaments and center-tapped to the chassis, forming an effective hum balancing circuit).

GE 140

This model appears on pages 17-21 through 17.9S of Rider's Volume XVII, The following changes should be made in the parts list: From Cat. No. RAD-027 remove the statement "(with loop connecting strips only)." Change Cat. No. RCC. 075 to read RCC-080. Delete Cat. Nos. RDK-098, RHC-008, and RMX-103. Add the following parts.
RDK-106 Knob-door catch knob
RCE-002 Strap-loop contact strap
RHE-002 Eyelets-spacer eyelets for escutcheon screws RHS-016
RHE-003 Eyelet-used for loop contact
RHR-002 Rivets-door hinge rivets (power cord access)
RHS-015 Screw-self tapping (used for cabinet door cover)
RHS-016 Screw-Phillips, flat-head, mounts bottom of escutcheon

The audio stages of Run 2 of Hallicrafters T54 and 505.

SERVICEMEN... DEALERS

Build your radio sales around this quality chassis.

NEW ESPEY model 511

AM-FM CUSTOM BUILT. This profifable chassis replocemenf market means increased sales to you and increased savings to over 19 million potential customers.

- Here is a fine radio, in chassis form, to please the most discriminating music lovers.
- Easy to install in any console cabinet old or new, the Epsey 511 AM-FM radio chassis embodies the latest engineering refinements for lasting high quality at a price that defies competition.

FEATURES

I. AC Superheterodyne AM-FM Recelver.
2. Improved Frequency Modulation Circuit, Drift Compensated.
3. 12 tubes plus rectifier and electronic Tuning Indicator.
4. 3 dual purpose tubes - added performance.
5. Treble Tone Control.
6. 6-gang tuning condenser.
7. Fulltrange bass tone control
8. High Fidelity AM-FM Reception.
8. Aigh Fidelity AM-FM Rece
10. 13 watt (maximum) Push-Pull Audio Out-
put. PM .
I. 12 inch PM speaker with Alnico V Mag net, 25 watts rating.
12. Indirectly illuminated Slide Rula dial,
13. Smooth, flywhee! tuning.
14. Antenna for $A M$ and folded dipole antenna for FM Reception
15. Provision for external antennas.
16. Wired for phonograph operation
17. Multi-tap output transformer, 4, 8 and 500 ohms.
18. Licensed by RCA.
19. Subject to RMA warranty, registered code symbol \#174.

SPECIFICATIONS

Model 511 chassis is supplied ready to operate, complete with tubes, antennas, speakor and all necessary hardware for mounting in a table cabinet or console, including escutcheon. Power requirements 105/125 volts $A C, 50 / 60$ cycles. Power consumption -85 watts.
Chassis Dimensions: $131 y_{2}{ }^{\prime \prime}$ wide $\times 81 / 2^{\prime \prime}$ high $\times 10^{\prime \prime}$ deep.
Carton Dimensions: (2 units): $20 \times 141 / 2 \times$ 103% inches.
Net Weight: $161 / 2$ pounds. each.
Sold through your favorite parts distributor. WRITE FOR CATALOGUE KDI2 CONTAINING COMPLETE SPECIFICATIONS

RIDER'S VOLUME XVIII Now On Press

* FACTORY FACTS

Only when you have Rider Mamuals can you say that you have in your possession the authentic service data as set forth by the manufacturers of the equipment.

* RADIO RECEIVERS

AM and FM receivers exclusively and their associated equipment . . . No television or public-address material for which you have no need but which occupies apace.

* WIDEST COVERAGE

Greatest number of models and chassis of receivers and record changers of more than 100 manufacturers. Up to date to Jomuary, 1949.

* TIME SAVERS
"Clari-skematix" - the breakdowns of hard-to-trace multiband receivers, showing the circuit wiring of each band.
* THEORY EXPLAINED

Electrical and mechanical innovations in Volume XVIII explained in "How It Works" book. Not only does this aid servicing, but helps you understond modern theory better.

* UNIFORMLY ORGANIZED

Bound in Rider's standard loose-leaf binder - rugged and wear-resistant. No loose sheets to handle every month.

* COMPLETE INDEX

Accumulative index covering Volumes XVI, XVII, and XVIII.

* LOWER COST

2036 Pages in Volume XVIII plus "How It Works". Greatest coverage. yet most economical. Volume XVIII is delivered ot far less than a penny per page. Not only is it most economical to buy, but it is the longest investment, because it is regularly bound.
2036 PAGES
PRICE $\$ 19.80$

LATE JANUARY OR EARLY FEBRUARY 1949 PUBLICATION

Radio Display Radio Eng. Labs Radio Kits
Radio \& Television Radio Wire Telev.
Regal
Raymond Rosen
Russel

Sargent-Rayment
cott
Sears Roebuck
Harold Shevers
Sonora
Stewart-Warner
Stromberg-Carlson
Symphony
parks-Withington

Taffett
Teiechron
Templeton Tele-Tone
Tradio
United Motors
Walgreen
Warwick
Webster-Chicago
Western Air Patrol
Western Auto
Wilcox Gay
Zenith

RIDER'S TV MANUAL VOLUME 2

Now On Press
The Very Latest Receivers Up to January 1949

Equivalent of 2000 PAGES
PRICE \$18.00

EARLY FEBRUARY 1949 PUBLICATION

Among the Manufacturers Represented in Rider's TV Manual Volume 2 are:

| Admiral | Fada | Pilot |
| :--- | :--- | :--- |
| Air King | Farnsworth | RCA |
| Andrea | Garod | Scott |
| Ansley | GE | Sentinel |
| Automatic | General Instrument | Sightmaster |
| Bace | Hallierafters | MarkSimpson |
| Bagdad | Hoffman | Sonora |
| Belmont | Howard | Stewart Warner |
| Bendix | Industrial Television | Techmaster |
| Bud Radio | Jerrold | Tele-Tone |
| Capehart | Magnavox | Television Assembly |
| Colonial | Mars | TeleVista |
| Cornell | Meissner | Templetone |
| Crosley | Merrick | United Mofors |
| De Wald | Motorola | U.S.Television |
| Dynamic | National | Vidcraft |
| Electro-Tech | Nielsen | Vlympic |
| Emerson | Philco | Video Corp. of Amer. |
| | | Vision Research Labs. |

- Service Data on Complete Receivers and Kits and Boosters - Double, Triple Spreads and Giant Pages that Unfold to 440 Square Inches - Test Patterns - Waveforms - Schematics - Voltages - Adjustments of traps, complete alignment tables - Parts lists - Accumulative Index covering TV Volumes 1 and 2.

Televisian Changes

Industrial Television Receiver Service Hint

Correction of grid-cathode shorts in CRT. Some cathode-ray tubes after a period develop grid-cathode leakage, as evidenced by an apparent lack of d-c restoration and poor or no control of brightness. This is usually caused by a small piece of semiconducting material dropping into the gap between the grid cylinder and the cathode shield.
This condition can be cured in many cases by gently tapping the tube neck with a very light rubber-headed tapper, such as an ordinary pencil with a rubber grommet forced over one end of it. In cases where tapping is ineffective, another method has been found to be practical. This is as follows:

1. Set the brightness control at about the midway position.
2. Ground the grid of the cathode-ray tube.
3. Connect an insulated wire to the vertical B-plus supply, available at the vertical positioning control.
4. Very carefully momentarily touch the B-plus wire on the arm of the brightness control.
5. Check operations of the brightness control.
6. Remove the wire from the B-plus connection. remove the ground from the grid of the cathode-ray tube and reset the controls.
If one application of this suggestion fails to clear the trouble repeat steps 1 through 5 until the brightness control operates properly. The B-plus lead must NOT be left on the arm of the brightness control for more than a fraction of a second, or the control may be burned out or the cathode-ray tube damaged. This procedure has been used successfully in several cases by the test and service department of Industrial Television and saved replacement of the cathode-ray tube.

A-M interference on IT Receivers . . . Amplitude modulation interference is characterized by clearly defined straight diagonal or vertical bars or lines across the picture. There are two possible sources of a-m interference in TV receivers located close to an a-m station. The first and foremost, easily corrected, is cross-modulation in the input stage, due to overload of this stage by the a-m signal picked up by the antenna or lead-in. The second one is picked up by the interconnecting cables between the control and picture units.

The first step is to determine the cause of the interference. If the trouble is crossmodulation in the r-f system, the interference will be a constant percentage of the video signal and will change equally with the picture as the control unit contrast control is operated. If the interference is being picked up on the interconnecting cables. its intensity will not vary with the rotation of the control unit contrast control.

In the case of cross-modulation in the input stages, a simple high-pass filter is
usually effective. This filter is installed in the antenna lead-in, as close to the control as possible, and must be shielded. A sug. gested circuit is shown in Fig. A.

High-pass filter to correct cross-modulation.
Where the interference is being picked up by the interconnecting cables the cure may be more involved and difficult. The cause of this interference may be from direct pickup of the interfering a-m signal by the shield of the co-ax cable, or it may be introduced by a "pickup loop" type of circuit, as shown in Fig. B. The alleviation of the interference may require trying several different techniques. Here are a few which should be tried.

WHERE CI IS PRIMARY-TO-GROUNO CAPACITANCE OF POWER TRANSFORMER, AND CZ IS COIL-TO-GROUNO CAPACITANCE
OF CONTROL RELAY. LOOPS ARE INDICATED BY DOTTEO LINES FIGURE B
"Pickup loop" circuit shown may introduce interference.

1. If the installation is close to an a-m station, keep the control unit and picture units as close together as possible and the interconnecting cables as short as possible.
2. The simplest method, which can be used only where relatively strong TV signals prevail, is to reduce the contrast control in the picture unit and bring up the contrast control in the control unit to compensate. This increases the level of the video sig. nal on the co-ax cable and increases the signal-to-interference ratio.
3. Bypass the a-c line to ground at either the control unit or the picture unit, or both.
4. Ground the control unit, the picture unit, or both to the nearest cold water pipe, using heavy wire or flexible braid. Keep the ground lead as short as possible.
5. Run a heavy ($\# 00$) armored ground wire from the control to the picture unit, bonding carefully at each unit.
6. Operate both picture and control units from the same a-c outlet, keeping the a-c line as close to the co-ax as possible. See Fig. C.

NOTE: THAS MAY BE REVERSED, FEEDING AC FROM OUTLET NEAR
CONTROL UNIT FIGUREC.
This connection may reduce interference from the interconnecting cables.
7. Isolate the control and/or the picture unit from the a-c line. See Fig. D.

Control unit may be isolated as shown here.
8. Isolate the relay control line as in Fig. E, by inserting an isolation unit in series with the control line near the control unit.
9. Use a double shielded co-ax, such as $\mathrm{RG}-6 \mathrm{U}$ or $\mathrm{RG}-42 \mathrm{U}$ between the control and picture units in place of the RG-59U. Ground the inner shield to both units, and ground the outer shield to either the control unit or the picture unit.
(Signed) Charles M. Puckette, Jr. Svc. Mgr.

14-sAME AS IN FICURED
EIGUREE
The relay control line may be isolated in this manner.

Hallicrafters T-54 and 505

This model appears in Rider's TV Manual, Volume 1, pages 1-1 through 1 -80. Poor 7JP4 Kinescope brightness is usually the result of low anode voltage. Adjustment of the anode voltage to the recommended 4700 volts is described in the service data; however this may result in the observed picture being "folded-over" horizontally, particularly on the left hand edge. When increasing the anode voltage, set the width control to just fill the screen along the horizontal direction and increase the high voltage until a fold-over occurs. Then readjust the width control and repeat the voltage adjustment until maximum voltage is applied without a fold-over.
The fold-over indicates that the horizontal sweep limits have been reached. Chang. ing horizontal oscillator or amplifier tube or tubes may provide higher sweep limits, allowing a higher kinescope anode voltage to be used.

The Little Fellow Gets BIG Results!

The Mallory Midgetrol

"Phenomenal!"-that's the only word to describe the lightning-like scceptance of Mallory's revolutionary new standard in volume controls. But its success was a foregone conclusion when you realize what the Mallory Midgetrol offers:
WIDER APPLICATION-The small size lets you service portables, auto radios and small AC-DC receivers requiring $15 / 16^{\prime \prime}$ controls.
SIMPLER INSTALLATION - The new and unique flat shaft design of the Mallory Midgetrol saves installation time with all types of knobs.

LESS INVENTORY-Electrical characteristics allow you to use the Mallory Midgetrol to replace $11 / 8^{\prime \prime}$ as well as $15 / 6^{\prime \prime}$ controls. Since no special shafts are required, you carry fewer controls in stock.

Quietest and Smoothest by Actual Tests

And Mallory Midgetrol stays quiet, too. Creative research that has made Mallory the standard in carbon controls has seen to that. In addition, the Mallory Midgetrol offers nine big features all NEW:

| NEW SIZE | NEW SIIAFT | NEW SWITCH | NEW CONTACT |
| :--- | :--- | :--- | :--- |
| NEW DESIGN | NEW EXTENSION | NEW ELEMENT | NEW TERMINAL | NEW TWO-POINT SLSPENSION

See your Mallory Distributor for this new standard in carbon controls
P. R. MALLORY \& CO., Inc., INDIANAPOLIS 6, INDIANA

General Electric 502

This model appears on pages $17-99,40$ to $17-47$ and $17 \cdot 4$ to 17.7 of Rider's Volume XVII. To increase the sensitivity at certain points on the broadcast and short wave bands, a $470-\mu \mu \mathrm{f}$ capacitor, C137, Cat. No. UCTI-544, has been added between terminals 3 and 5 of the first i-f transformer.
Early production sets without this capacitor may be changed as follows. This copacitor should be added between terminals 9 and 10 of wafer number 6 on the band switch. The orange, green, and black leads from terminals 5,3 , and 8 , respectively, from the first i-f transformer to the band switch should be grouped together and pressed to the chassis. The ground end of C108, a $0.02-\mu \mathrm{f}$ bypass capacitor should be removed and grounded under the mounting lug of the first i-f plate coil.

Authentic Manufacturers' Data is Vital

It has always been our claim that service data concerning a product should be prepared in accordance with the producing manufacturer's requirements. He built the unit - knows what changes were affected in circuitry between the different production runs - can quote average figures for operating voltages - knows the exact operating procedure for alignment - in fact, knows the product. Rider Manuals have consistently reproduced the manufacturer's OWN data, therefore supplying to the servicing fraternity, the OFFICIAL - AU. THENTIC information . . . This is one of the many reasons why Rider's Manuals have proved so valuable and profitable to the radio servicing industry during the past 18 years.
Now with television booming at a terrific rate - this is MORE IMPORTANT THAN EVER! . . . Many, many conditions have contributed to great numbers of CHANGES in television chassis . . . The extent of these changes is an unknown quantity - yet every change is vital to the radio servicing industry ... For example in the forthcoming Rider's TV Manual Volume 2, we show SEVEN DIFFERENT CHASSIS FOR THE SAME MODEL NUMBER - each of these chassis representing changes in circuitry and values made by the manufacturer during the production runs...

Other manufacturers may show three and four different schematics for the same model number or for different production runs . . No matter how you look at it - there is ONLY ONE source of reliable service data - the original equipment manufacturer's service manuals as they appear in Rider's Manuals! . . . Remember It's Factory Authorized!

Industrial Television IT-1R Series 2

Modification of Power Supply. This change should be noted in your Rider's TV Manual, Volume 1 pages 1.9 and 1-4, in connection with this receiver which is shown therein. The change shown herewith has been made in production, but it should not be made in the field unless it is found

Television Changes

necessary. If performance is satisfactory, do not make the change.

Modification of the power supply of the Industrial Television IT-1R Series 2.

Change in Video detector Circuit to improve gain. This change has been made in production. In the 5th video i-f stage the shunt peaking coil L9 should be replaced by a 6.8 k -ohm, 1.0 -watt resistor and R 27 should be replaced by L9. In other words, this change is a simple transposition of L9 and R27. However it is necessary to realign the 5 th video i-f stage at 25 mc .

Hallicrafters T-54 and 505

These models appear on pages 1-1 through 1-29,30 of Rider's TV Manual, Volume 1. Type 6C4 tube failures . . . It has been found that the probable cause of type 6 C 4 tube failures in this model receiver is that the tubes made prior to this year were made with filaments which were incapable of withstanding the surge voltage in a series filament circuit. Accordingly all T. 54 and 505 receivers made since September 24, 1948 employed recently manufactured tubes. The major part of the Hallicrafters stock of recently made tubes were purchased from RCA, therefore any RCA tube made since March 1948 is supposed to be able to withstand the surge in such a series filament circuit.
The date of manufacture on RCA tubes can be identified by the RMA data number which appears under the "Made in CSA" label. The first of these numbers indicates the year, the second the week; for example 8-35 means that the tube was made during the 35 th week of 1948. It is recommended that each T-54 and 505 receiver received for service be checked to see that the type 6 C 4 tubes are of the later type. If they are not, then they should be changed immediately. Only new types of tubes will be shipped from the Hallicrafters Service Department, if the orders are sent there, and reference to "New Type" will not be required.
Since the old type 6C4 tubes removed from such receivers are suitable for use in the conventionally-wired parallel circuits, such replaced tubes can be put into regular use in other receivers with parallel wired filament circuits or in other positions in the TV receiver where such type tubes are used.

Industrial Television IT-3R

This receiver is shown in Rider's TV Manual, Volume 1, pages IT 1-13 and 1.14. The first audio amplifier, originally a 6SN7GT has been changed to a 6SL7GT. This modification affords increased gain
and higher level of undistorted output; however it should not be made unless the audio output using the original tube is considered insufficient. No wiring changes are required for the substitution of these tubes.

Starting with serial number 420 , the 1 Y 2 high-voltage rectifier tubes have been replaced by 1B3-GT/8016 tubes. In addition, the two filament resistors R166 and R167 were changed to 3.3 ohms each. When it becomes necessary to replace the 1Y2 tube now in service, the replacement should be a 1B3/8016. The new production utilizing the 1B3/8016 will contain octal sockets instead of the 4 prong used previously. Some sets have been shipped with adaptors to make the aforementioned socket change.

Hallicrafters T-54 and 505

The service data on this receiver will be found in Rider's TV Manual Volume 1 on pages Hallicrafters 1-1 through 1-29,30. The following changes should be made on all T. 54 and 505 receivers received for service.
Change oscillator injection capacitor C75 from $0.68 \mu \mu \mathrm{f}$ to $1.5 \mu \mu$, Part No. 47 Al 60 3. This effectively raises the r-f gain with a considerable improvement on channel 7. Realignment may be necessary.
All Micamold or Industrial 6000 -volt, high-voltage capacitors should be removed and replaced with Cornell-Dubilier or Chicago Television types.
Resistors R58 and R116 should be changed to a single 3300 -ohm, 10 -watt wire wound resistor, Part No. 24BG332E, and mounted on the top of the chassis, using a two terminal tie lug, Part No. 88B291. There is a convenient hole for mounting this tie lug on top of the chassis directly under the neck of the picture tube.

Change resistor R73 from 18 ohms 2 watts, to 18 ohms, 10 watts, Part No. 24 BG 180 E . If this resistor is not on top of the chassis, it should be mounted behind the selenium rectifier bracket using one terminal of tie lug Part No. 88B291.
If resistor R107, 10 ohms, 10 watts, is not on top of the chassis, it should be placed there by mounting it in back of the selenium rectifier bracket across the two terminals of tie lug Part No. 88B291, which was added previously.
A $10-\mu \mathrm{f}, 25$-volt electrolytic capacitor. Part No. 45A121, should be added as a cathode bypass for the 25L6 (V4) audio output tube. This raises the audio gain by 6 db and should be made only on sets which use a type 6AV6 audio amplifier tube.
It is possible that some of these changes already exist in the receivers which may come in for service, having been made at the factory. The action then is obvious.

Hallicratters T-54 and 505 Weak Channels 2, 7 and 8
Change C35 the oscillator coupling capacitor from $0.68 \mu \mu \mathrm{f}$ to $1.5 \mu \mu \mathrm{f}$. See note elsewhere in this issue relative to the correct part number.

In Retrospect

（C＇ontinued from page 10）
tion in the price levels of the AM and FM receivers which will be purchased by the public，but they＇ll still buy them．
Taking all these things into account， the servicing industry will still be called upon to service such equipment．The year 1948 in New York City where six TV stations are operating，one of them start－ ing at 7：00 AM（heaven knows why）has demonstrated to the servicing facilities that AM and FM receivers are still failing and still being repaired．

Such are the highlights for 1948 as we see them influencing the servicing indus－ try．If we＇ve omitted any items which you may think were important and de－ served comments，our sincere apologies． Anyway the space was limited；receiver changes still remain the most important part of Successful Servicing ．．．Before closing Happy New Yearl

Rider＇s Volume XVIII To Bed Volume XIX is Next

Volume XVIII now is rolling on the presses．The last form was put to bed several weeks ago and when the run comes off about $30,000,000$ pages will have been printed for this manual．Completed it con－ tains the products of over 110 manufac－ turers in its 2036 pages．These products are $a-m$ receivers，$f-\mathrm{m}$ receivers，auto radio receivers，and record changers ．．．The makeup of this volume posed quite a problem．The amount of material on hand was tremendous．Even with Volume NVIII crammed as much as possible，we still have on hand almost 2000 pages of factory authorized service data．
Now that Volume XVIII is on the way， we shall soon announce Volume $X I X$ ， which will contain between 1500 and 2000 pages of a－m，f－m，auto radio and associated equipment data．．．Watch for announce－ ment next month．With the issuance of this manual，we will have released to the radio repairing industry the world over， approximately 31,000 pages of service in－ formation ．．No other single source of American radio and allied industry service information can even remotely approach this tremendous coverage．

Rider Manuals now are divided into three groups－the regular Manuals－ the TV Manuals and the PA Manuals．．． Each of these embraces a different classifi－ cation of servicing data so as to serve the needs of the radio repairing industry ．．No purchaser is burdened with ma－ terial he does not need．If your area does not yet have television，you can buy the regular Rider Manuals with the full reali－ zation that it does not contain TV data which you cannot use．

If you are interested in TV only，there is Rider＇s TV Manual Volume 1 with Vol．

Part of the audience at Harrisburg．Penna．，who heard John F．Rider deliver a lecture on Nov． 15 under the auspices of the Mid－State Radio Servicemen of Central Penna．
ume 2 now in the process of production．．． If you are interested in PA operations，you now have available in Rider＂s PA Equip． ment Manual Tolume 1 service data on PA equipment manufactured in the past 10 years．Whatever classification of service you may be doing－Rider＇s Manuals are ready to scurice vo．\vdots t．on they tare urate for the past 19 years ．．．Keep your files up to date－remember，all of the informa－ tion is factory authorized．

Understanding Vectors and Phase

Sometime ago we introduced this book to the servicing industry and to the edu－ cational field as a whole．If we talk about it，we＇ll be blowing our own horn－so， here are the comments of two representa－ tive organizations－a school and the reviewer of a highly representative month－ ly magazine ．．．We have many more like these．
From the General Electric Revieu－May 1948
＂The authors of this short book have sought to describe in simple，monmathe－ matical language the methods and basis for representing the relationships between sine wave currents and voltages in elec－ trical and electronic networks in terms of rotating vectors：and in this respect，they have done an admirable job of presenta－ tion ．．．＂（K．O．Straney）－and from Hardin College School of Radio and Electronics，Wichita Falls，Texas－
＂Your handling of these two subjects
which are of tremendous importauce to the working knowledge of radio is unique， basic and well prepared．The fact this book can be ured profitably if studied by men in the field does not detract from its use as a text in service schools．It＇s adoption in our school has strengthened
 ground so essential to success in any phase of radio．＂
（Signed James H．Sligar
Director of the School of Radio and Electronics－Hardin College）

RCA QU－62 Chassis RC－602B

This model appears on pages 17－13．14 through 17－20 of Rider＇s Volume XVII． It has been found in some cases that the shielded wire（green）connecting to ter－ minal 12 of S－5 Front has been making intermittent contact with other terminals， resulting in a＂noisy when tapped＂con－ dition．To prevent future cases of such trouble，a piece of insulated sleeving is added to this shielded wire．
To reduce the tendency to howl on short wave，a viscoloid damper is cement－ ed midway and across the two exposed stator plates（rear）of the oscillator tuning capacitor（C11）and to the frame of the tuning capacitor．
To correct the physical alignment of the tuning capacitor，two spring lock－ washer：are added under the rear mount－ ing foot of the tuning capacitor．

FEBRUARY, 1949
Courtesy General Electric Co.

CONTRACT TV SERVICE

By John F. Rider

Although the comments made herein are born of conditions around New York City, there is no doubt in our minds that equivalent situations do, or will, exist in other communities where TV transmitters operate.

The picture is, simply, this. TV manufacturers are being forced to deal with the user because independent TV service stations are very reluctant to handle contract TV service. On one hand, the set dealer sells the service contract, while, on the other hand, the service facility is unhappy about landling the work. The contention of the servicemen is that the fixed annual fees which prevail are not sufficiently high to ensure a profit. Although most people have learned to like the service insurance idea, they are rebelling against paying much higher annual fees. Finally, because some receiver manufacturers feel that such annual trouble insurance con-
tracts should exist, the other manufacturers are very hesitant about instituting any contrary program. This attitude is very understandable.
What can be done about this situation? That is the 64-dollar question. To us, it seems that the main difficulty is the open sesame the contract gives the consumer for calls on the scrvice station. If these calls were reduced in number over the year, the annual contract fee might become sufficient. We are told that service calls due to actual failures in the receiver are in the ininority. Inder the circumstances, the solution revolves around the installation and the receiver owner.

Installation of TV Receivers

Let us first tackle the problem of in. stallation. There is no valid reason for the tie-in sale of an antenna installation and the annual service contract. To us it
seems as if these two should be divorced. It is true that both can be handled at the same time, but they should be distinctly different deals. The antenna installation can be contracted for at the time of the receiver sale-but service insurance sbould be a separate contract. The same individual can handle both, of course, but the contracts should be kept apart.
If the contracts are handled in this manner, the over-all psychological effect will be better. Moreover, this system affords greater latitude for change in antenua costs dictated by location requirements or increased antenna prices. It is entirely conceivable that the antenna installation costs be far greater than the normal over-all annual fre. From our conversations with prospective purchasers, as well as TV receiver owners, they can readily understand a breakdown between in-
(Please turn to page 18)

RCA 711V2

 dition worse. made as follows. it.This model appears on pages $17-44$ to 17-65 of Rider's Volume XVII. Interference has been noted on the broadcast band in certain localities. This interference appears in the background of certain stations or between stations, and generally takes the form of code or amateur voice. An abnormal quantity of whistles when tuning across the band is also present. Connecting an external antenna to the set merely makes the con-

A production change has been made to overcome this condition. Receivers having this change may be identified by the letter 1. following the serial number on the radio chassis. The antenna coil L3 has been removed and a different loop antenn:i installed. These changes may be

1. Remove radio chassis.

2 Refer to illustration and remove the red lead connected from the loop loading coil L3 to terminal 8 of S4.
3. Unsolder the blue lead from loop loading coil L3 and connect this lead to terminal 8 of S4. L3 may be left in the chassis without leads connected to
4. Remove the loop cable from loop and from the terminal board on the rear of the cabinet.
5. Remove the lug from the end of the yellow loop lead and solder this lead to terminal 5 on the antenna terminal board on the radio chassis.
6. Re-install the radio chassis.
7. Clip off pin 5 on chassis end of the five.conductor flexible antenna cable and file the remainder of the pin smoth with surface of plug.
8. Plug the five-conductor cable into the antenna terminal board on chassis (see sketch). Note that with one pin removed, the plug can be moved one pin to the right and plugged in, making incorrect contact.

9. Carefully pull the yellow lead downward along the five-conductor cable far enough to permit taping it to the plug portion of this cable to prevent the yellow lead from breaking at the soldered joint at terminal 5 when flexed by opening of the radio door.
10. Connect the red and black loop leads to the rear terminals 4 and 5 respectively from which they were originally removed. Close link from 4 to 5 if an external antenna is not used. If an external antenna is used, it may be connected as described on page 17 54 of Rider's Volume XVII.
11 Remove the screw from terminal 6 in the antenna board on rear of cabinet to avoid improper connection in the future.
12 Remove the old loop and install the new loop in its place.
13. Pluy the loop cable into the new loop.
14. Peak the loop trimmer on a weak station around 1400 kc .
15. If a test oscillator is available, the low-frequency oscillator core (L12) adjustment should be made while rocking the gang through 600 kc , to obtain maximum output. Repeak loop trimmer again at 1400 kc .
16. Grounding one of the the f-m antenna terminals (connect terminal 1 to 5) on the board on the rear of the cabinet may prove advantageous to reduce excess signals if an external $\mathrm{f}-\mathrm{m}$ antenna is used.
NOTE: The new loop referred to above may be identified by a green paint dot on one metal mounting bracket. Also, the large coil has 20 turns of wire with only a few turns, or no turns, visible through the holes near the edge of the loop frame. The original loop contains 13 turns, all of which are visible through the holes near the edge.

The leads which are not shown in the accompanying diagrams need no change.

Necessary connections for the new loop for the RCA model 711Y2

Delete 71863 cable from the parts list and add the following.
73250 Cable-five-conductor molded antenna lead in cable
71614 Capacitor-120 $\mu \mu \mathrm{f}$, ceramic - in shunt with the loop primary
73480 Loop-antenna loop complete. For receivers without loop loading coil.

RIDER MANUALS Mas \$rysemic

Sears Roebuck 6362, 6363. 6364. Chassis 101.581

These models appear on pages 11-64, 11-80, and 11-82 of Rider's Volume XI. If frequency shift in the $a-m$ band occurs, the following should be done. Remove the screw and mica and bend up the lea! of the capacitor shunted across the a-m oscillator trimmer capacitor C23. Replace this part with a $15-\mu \mu \mathrm{f}, 10 \%$ ceramic capacitor. Then realign the a-m band as outlined on page $11-82$ of Rider's Volume $X 1$. This change is being incorporated in the present production of these models.

Majestic 12FM782, Chassis 12C20E

This model is the same as Model 12FM778, Chassis 12B26E, appearing on pages 17-27, 28 to $17-38$ of Rider's Volume XVII, except that it does not have pushbuttons and indicator lights for "Recorde and "F.M."

The following additions should be made to the parts list.
Part\# Description
115-45-2 Cabinet-console combination
21.32 Changer, oak

22-43 Speaker, $12^{\prime \prime}$ including output transformer
20.27 A-mi loop antenna (less cover)

122-20 Fscutcheon glass (large)
122-44 Dial grill
128-37 Knob (vol-tuning-tone)
128-85 Knob (band switch)
128-46 Spring insert for above knob

Automatic Projection 215

This model appears on pages $1-1$ through 1.14 of Rider's PA Manual, Vol. ume 1. The corner cards and index er. roneously read model 315.

General Electric 230 Kaiser-Frazer

This model appears on pages $18 . \%_{1}$ through 18-28 of Rider's Volume XVIII. The change involves a substitution of catalog numbers in the replacement parte list as follows:

Cat. No. URE-035 and URF-055 are catalogued for carbon-type resistors. These numbers are to be replaced for numbers specifying wirewound resistors, RRW-03: becoming the Cat. No. for R13 and RRW. 036 the number for R18.

Sears 6230A, Ch. 101.802-1

This model is the same as model 6230 . ch. 101.802, which appears on pages 15-15 through 15.18 of Rider's Volume XV', ex. cept for the following change.

A phono jack has been added to the circuit. This phono jack is connected to the control grid (pin 6) of the 1LB4 output tube. Physically, the jack is located on the top of the chassis in the rear left corner near transformer T3.

Make More Money In The Expanding Servicing Field maximal TELEVISON \&FM SERVCICNG

The next twelve months will produce some of the greatest opportunities that have ever been offered to alert men in the Servicing Field.

It is the year for you to make the big decision. Either you are going to catch up with the new developments in the industry, or you are going to be passed by.

We think your opportunities are so great, that over a two year period we have been developing this brand new, practical course. It is written for today's serviceman to meet today's problems and opportunities.
CREI knows what you need, and every effort has been made to keep this course practical and to the point. If you are now engaged in servicing work. you will be able to understand and apply each lesson. This course has been reviewed and checked by qualified service experts who know what you must know to get ahead in this booming field.
Every lesson can be helpful in your daily work -
RADIO SERVICE DIVISION OF CAPITOL RADIO ENGINEERING INSTITUTE

An Accredited Technical Institute

Dept. 252A 16th \& Park Rood, N. W., Washington 10, D. C. Branch Offices: N. Y. 7, 170 Broadway; San Francisco 2, 760 Market St.
you will soon have the technical knowledge necessary to handle all types of good paying Television and FM servicing business.

In offering this course of training for servicemen at a popular price. CREI is enabling thousands of the "top third" now engaged in service work to enter the ultimate profitable field of television and FM installion and service.

This can be your big year! Write today for complete information. The cost is popular. The terms are easy. The information is free. Write today.

VETERANS! THIS COURSE IS GI. APPROVED.

CAPITOL RADIO ENGINEERING INSTITUTE

16th \& Park Road, M. W., Dept. 252A 'ashingion 10, D. C.
Gentlemen :
Please send me complete details of your new home study course in Television and FM Servicing. I am attaching a brief resume of my experience, education and present position.

NAME
STREET \qquad
CITY
ZONE .-. STATE
$\square 1$ AM EMTITLED TO TRAINIMG UNDER G. I. Bill.

Arvin 182TFM Service Hints

This model appears in Kuler's Volume XVII, pages 17-9,10 through 17-15.

FADIN(;
If fading occurs, check the shielded audio leads. One lead should be connected from the center lug of the volume control to the audio coupling capacitor on the stand-off insulator. The other lead should be connected from the righthand terminal of the control to the band-change switch. If these two leads are reversed, the AVC will be ineffective.

ANTENNA . . . On some of the first sets produced, the primary and secondary windings of the antenna-coupling transiormers T 1 , were shorted together, causing the antenna terminals on the back of the set to be grounded to the chassis. This should be carefully checked before connecting an external antenna to the set, because one position of the a-c plug in the outlet will place 110 volts between the antenna and any grounded object. This would be a shock hazard, and if the antenna became grounded the r-f choke in the a-c leads in the set would burn out.

OSCILLATION . . . If oscillation is encountered, try dressing the yellow filament leads, in the i-f section of the receiver, down against the chassis and away from the tube sockets. Also, see that all grounded leads on the variable capacitor are soldered and not broken.
Some cases of regeneration in the FM i-f circtit have been encountered. This can be detected by a high discriminator voltage, and also a high are voltage with no signal input. Replacing the $0.005-\mu \mathrm{f} 2 \mathrm{nd}$ i-f cathode-bypass capacitor, C32, with a $0.002-\mu \mathrm{f} \quad 350$-volt ceramic capacitor will correct this in most cases.
22-OHM RESISTOR BURNS . . . Some receivers have a $1 / 4$ watt 22 -ohm fusing resistor in the B-plus circuit. If this resistor burns, replace it with a 1 -watt resistor. CACTION... First check the B-plus current to see that it does not exceed approximately 100 milliamperes. If the current is greater than this value, some
other trouble exists in the receiver and this must be corrected in order to prevent damage to other parts in the receiver.
FI.OATING R-F UNIT . . . On some sets the complete r-f assembly is mounted on rubber to prevent nicrophonics. When servicing these sets, be sure that the ground leads between the r-f assembly and the chassis are securely soldered.
INSULATING CONTROL SHAFTS some sets have been found with the flat metal washer under the insulating fibre washer on the tone control, volume control and band switch. This would be a shock hazard if a knob was left off the shaft and should be corrected by removing the metal washer and placing it on top of the fibre washer.

Bendix 626

This model appears on pages 16-1 lhrough 16-9 of Rider's lolume XVI. Either of two coils may be found in this model. In some, an r-f coil making use of a small capacitor ($3.3 \mu \mu \mathrm{f}$) between the start of the secondary winding and the finish of the primary winding is used, while in others an r-f coil with an added tertiary winding is used in lieu of the capacitor. These coils, when properly used, are interchangeable, and in the future only r-f coils with the tertiary winding will be provided as replacements.
If, in the receiver to be repaired, the coil requiring the $3.3-\mu \mu \mathrm{f}$ capacitor is replaced with the other type, eliminate the $3.3-\mu \mu \mathrm{f}$ capacitor from the circuit.

Majestic 5AK781

This model is the same as model 5AK731 lound on pagcs $17-3$ and $17-4$ of Rider:s lolume XVII, except for the following changes in the parts list.
Part No. Description
S-1441 Dial cord assembly
S. 1448 Output transformer

21-29 Aero record changer
115-49-1 C'abinet, (Aero cut out)
Blonde, walnut, or mahogany
122.47 Fscutcheon plate. metal

128-62
128.80
101.485

106-124

RCA QU-61

This was published in Rider's Manual Volume 15, page 15-55. The following pertains to the powersupply ratings for this receiver.
Only one power-supply rating (Symbol Rating D) is applicable to (QU.61. As manufactured it may be operated on 100 to 260 volts, $50-60$ cycles. A universal type of transformer having five voltage ranges is used. The desired range may be selected by the proper positioning of a link beneath a cover on the top of the power transformer as follows:

$$
\begin{array}{ll}
110 \text { position } & 100 \text { to } 115 \text { volts } \\
125 \text { position } & 115 \text { to } 135 \text { volts } \\
150 \text { position } & 135 \text { to } 165 \text { volts } \\
210 \text { position } & 165 \text { to } 230 \text { volts } \\
240 \text { position } & 230 \text { to } 260 \text { volts }
\end{array}
$$

The receiver is shipped with this tink in the 240 -volt position.
CAUTION . . . Remove the power cord from the line receptacle before changing the position of the link.
The record changer is made for operation on a 60 -cycle power supply but may be converted to 50 -cycle operation by the addition of a conversion spring to the motor shaft.
Change in Replacement Parts:
Stock No. 34183 Transformer Delete "For Specification Ratings A and C"
Add "For Specification Rating "D"
Stock No. 39786 Transformer
(No phonograph motors are available to permit operation of this instrument on 25 -cycle current. However, this transformer may be used for operation on 105 to 125 volts. $50-60$ cycles.)

Westinghouse H-185 and H-195

These models appear on pages 18-2S through 18.25 of Rider's Volume XVIII. The changes are as follows:
The value of R 3 on the schematic diagram should read 220 ohms instead of 220 K ohms as shown.
The 220 K resistor, R7, which was previously connected between the common negative line and the chassis, is not being used in late production chassis. Also in later production chassis, the value of R9 was changed from 3,300 ohms to 1,800 ohms.

In later production receivers, an adjust. ment hole was provided in the right side of the model H-185 cabinet. It is recommended that the r-f trimmer (C6) be adjusted with the chassis in the cabinet and the rear cover closed. The plug that fits this hole is listed below.

The following items should be added to the parts lists:
R('20AE182K Resistor, 1,800 ohms, $1 / 2$ w. (R9)
V.1157-4
V.4836-6

Cabinet, plastic (H-185 grey)
V.4836-5

Plug, button (H-185 grey cabinet)
Order from your Jobber or Directly from Us

Plug, button (H-185 maroon cabinet)

Vol 10

Dedicated to the financial and technical advancement of the Electronic Maintenance Personnel

Published by
JOHN F. RIDER PUBLISHER, INC.

480 Canal Street
JOHN F. RIDER, Editor
Copyright 1949, by John F. Rider
No portion of this publication may be reproduced without the written permission of the publisher

CURTAIN TIME

TV
Looks like all comments made about the Dome intercarrier TV receiver system will have to be changed to the Parker system. According to Volume 614 (Sept. 7th, 1948) of the Patent Gazette, a patent, filed July 13, 1944 and issued Sept. 7th. 1948 in the name of L. W. Parker, number $2.448,908$, is the intercartier TV receiver system . . Whichever way this situation resolves itself, rumor has it that the intercarrier type of TV receiver circuit will receive much greater attention among manufacturers.
Back in 1915 we listened to the Paris-Honolulu-Arlington broadcasts of speech and music. Naturally we can't recall the exact thrill experienced at that time, but we know that we got a big bang out of it. But the tie-in between the Midwestern and Eastern TV Networks during the evening of January 11 was something we'll never forget. We're sure proud to be associated with an industry which can do such things for the human race!

What can be done about the problem of watching two competing TV prograus on the same receiver? It's leading to "afussin' and afuedin"' in my home. I'm going to compromise by getting another receiver and I'm sure that I'll be watching the smaller screen. How about you? If you think you're the master in your house, you've got another think coming ... The more you imagine so, the less it is so!

Did You Know That

Slightly more than 2 ounces of whiskey on an empty stomach of a 150 -pound man creates a concentration of 0.05 percent of alcohol in the blood . . . with a concentration of 0.2 percent, you're really plastered! The same authorities, the Yale Laboratory of Applied Physiology; contend that the general impression of liquor being a stimulant is wrong. They say that it does not pep one up - in fact does the reverse. So there! The Gettysburg speech by Lincoln lasted about 5 minutes that's all! It isn't a matter of how long you speak, but what you say.

Isn't It Time

For the setting of minimum standards concerning test equipment sold to the ser-
ricing industry-or for that matter, whereever they are sold? More than a generation has passed since the introduction of such equipment - without any standards of performance being developed. It is true that the user determines the final effective. ness of the equipment, but any manufacturer can make almost any claim without fear of contradiction. It just dersn't seem right. We realize that the capabilities of an equipment need be only as good as the customer desires, but there should exist certain minimum standards, especially when many different brands of equipment are offered for the same purpose.
For example, what should be the minimum bandwith of the vertical amplifier of a scope offered for cheching waveforms in a television receiver? Should it be 100 kc , $300 \mathrm{kc}, 1.0 \mathrm{mc}, 5.0 \mathrm{mc}$, or higher? Admittedly the answer involves many factors, but one thing cannot be denied-the serviceman reads many ads, each stating similar utility for the equipment, yet each equipment is possessed of different characteristics. What should be the sensitivity? . . What should be the spot size? ... What should be the minimum loading effect of voltmeters for checking TV power-supply systems? .. What should be the minimum output of signal sources of various kinds?
What should be the degree of accuracy of the frequency calibration? . . . What should be the amount of linearity in $\mathrm{f}-\mathrm{m}$ signal outputs?
It isn't a matter of selecting the best circuitry. There are numerous ways of accomplishing the same thing, but certain$1 y$ some standards should be set to be met by all the different systems - as long as they are being offered for like application ... Once the minimum exists, then from that point the manufacturers can employ their specialized techniques to offer the most for the money . . . Don't get us wrong, we're not suggesting standardization of equipment - all we're talking about is the setting of minimum standards of performance and manufacture

Today its a case of "caveat emptor."

Just Wondering

Have you read "Man Does Not Stand Alone" by A. Cressy Morrison? It helps
a person develop faith in a Creator no matter what the individual creed . . Why an orderly atomic table? . . . Why is the earth just far enough away from the sun so that people thrive, food grows - we have tolerable amounts of cold and heat? . . How did the carth become tilted so that we have seasons? . . Who is responsible for the fact that different elements exist which enable greater and greater progress by civilization? That birds and fish and other animals migrate over tremendous distances that rivers flow within oceans so as to warm vast areas on the globe? . . . Life just didn't happen!

About the LP records turning at 33 and those turning at 45 . . How soon crosshatch generators and dot-dash generators for checking linearity in TV receivers will receive as much attention as alignment generators? . . . They merit equal attention to say the least ... Why TV set dealers are cutting prices when there exists a definite shortage of picture tubes? ... What happened to Citizen's Radio?
. When couboys kiss their sucethearts.' Has television killed off facsimile in the home? . . If General sarnoff's forecast of nationwide coverage of TV by 1953 ($18,000.000 \mathrm{TV}$ receivers) will be speeded up? . . . If the Nary's use of TY for education will show the way to the rehools of the Nation?

Interesting Reading

The work being done with microwaves We don't mean radio links - rather the sterilization of bacteria - absorption of microwave energy by different gases using gases as frequency standards - determining molecular dimensions by means of microwaves, etc. It's really hot stuff!
Of course, some of the new books we'll be announcing next month also will be interesting reading.

Rider's Manuals

In addition to being the servicing reference source for the radio servicing industry the world over - they are without question the world's best history of American radio receiver circuitry.

Serviceman Licensing Rears Head Again

We have just received a letter about radio serviceman licensing in New York City. The sponsor of the legislation is the same man, Councilman Stanley Isaacs. As yet no meeting has been called, but it will happen soon. In the meantime, it would be well if everyone who reads these lines and has an expression concerning more regimentation - (God knows we have enough) - will drop a line to the aforementioned gentleman at City Hall, New York City.
Recognizing the numerous problems TV servicing is placing in the lap of the radio servicing industry - annual service contracts, multiple signal paths to receivers, the public's demand for the lowest possible antenna installation charge, insufficient men to handle the demand - licensing of the activity would break the camel's back. That's all we have room for at the moment. A full report next month.

John F. Rider

RCA 66BX, Chassis RC-1040B

This model is the same as model 66 BX , Chassis RC-1040 appearing on pages $15-87$ and $15-88$ of Rider's Volume $X V$, except for the following changes:
Chassis RC-1040B uses a 3 V 4 output tube and a selenium rectifier. Resistor R3 and capacitor C8 in the converter stage are omitted.
Resistor R17 in the power supply has been changed in value to 2650 ohms. Resistor R20 (2700 ohms) replaces resistor R18 in the power-supply circuit. A 33 -ohm resistor (R31) has been added between the selenium rectifier and the "hot" side of capacitor C33. Capacitor C33 is now grounded. See Fig. 1.

Fig. 1. Power supply of the RCA Chassis RC-1040B.
If the volume control needs replacement, the following steps should be followed. See Figs. 2 and 3.

1. Remove the 3 V 4 power output tube.
2. Remove the three screws holding the power cord bracket assembly. (Do not damage insulating washers.)
3. Remove the screw holding the switch assembly and remove the switch.
4. Remove the dial cord from the pulley.
5. Remove the screw holding the volume control bracket assembly.
6. Loosen the screw which maintains pressure on the expansion assembly.
7. Remove the drum.
8. Remove the expansion assembly from the volume control shaft.

9. Remove the nut holding the volume control to the bracket.
The following changes should be made in the parts list. Delete the following:
Stock No. Description
38875 Resistor- 1800 ohms, 1 watt (K18)
71038 Resistor - ballast resistor, 2300 ohms, 6 watt (R17)
30649 Resistor - 2.2 megohms, $1 / 4$ watt (R3)
70392 Cord - power cord
31709 Capacitor - ceramic $6.8-\mu \mu \mathrm{f}$ (C7) Add the following parts to the parts list. Stock No. Description
39043 Capacitor-Ceramic, $6.8-\mu \mu \mathrm{f}$ (C7)
70022 Cord - power cord
72283 Grommet - rubber grommet to mount tuning capacitor (4 required)
72543 Rectifier - selenium rectifier
71290 Resistor- 33 ohms, 1 watt (R21)
30930 Resistor - 1800 ohms, $1 / 4$ watt (R6, R15)
72760 Resistor - ballast resistor, 2650 ohms, 7 watt (R17)
14421 Resistor- 2700 ohms, 1 watt (R20)
72541 Socket - tube socket - miniature - 7 prong bottom mounted with shield
72980 Side - case side - I.h. with decorative ribs at top, bottom. and both sides.
72979 Side - case side - r.h. (loop side) less capacitor assembly, with decorative ribs at top, bottom, and both sides.

RIDER MANUALS Meam succissiul

Bendix Par 80

This model appeare on pages $18-1$ through 18-5 of Rider's Volume XVIII. On late production model PAR 80 receivers, a rubber grommet has been added over the battery switch lead at the metal shield to prevent eventual wear and shorting of the lead. If servicing of this receiver indicates excessive wear of the battery switch lead, a small standard grommet of suitable size may be added at point where the lead enters the switch shield.

General Electric 502

This model appears on pages $17-4$ through 17-8 and pages 17-59,40 through 17-47 of Rider's Volume XVII. The changes involve a schematic correcton and a correction in the value of a component in the replacement parts list.
The schematic diagram which shows an open circuit in the screen grids of the 6 V 6 tubes, V10 and V11, should be corrected to show the screen grids connected to the 260 -volt B-plus line.
In the listing of Cat. No. RCW-1028, the capacitor value was mistakenly given as $22-\mu \mu \mathrm{i}$. The capacitors listed are actually $100-\mu \mu \mathrm{f}$ and RCW-1028 should be changed to read $100-\mu \mu \mathrm{f}$.

Fig. 2, above. Parts layout of RCA chassis RC-1040B. Fig. 3, left. Volume control dissassembly.

Arvin 182TFM (Chassis RE-237)

This appeared in Rider's Manual Volume 17, pages 17-9,10 through 17-15. Arvin is the trade name of Noblitt-Sparks. The following changes should be made on the schematic diagram:

1. A B- connection was added between R10 and L15.
2. A 220 -ohm resistor, R15, has been added across the antenna terminals.
3. Antenna coil L4 has been relocated. In the original schematic it was in series with Cl , and the series combination was shunted by ClA. The modification consists of placing Cl and $\mathrm{C1A}$ in shunt with each other. and placing LA in series with this shunt combination and the top connection of L1, the point which is connected to the AM terminal of the selector switch.
The following changes should be made in the parts list:
4. R5 should be C20060-22I resistor, 220 ohms, $1 / 4$ watt
5. P.S. - A21709 parasitic suppreswor should be added
6. C10 should be C20204-500 chpacitor, $0.00005-\mu \mathrm{f}$., 500 V , ceramic
t. R8, 22 -ohm fusing resistor should be 1 watt, C20103-220
7. A19328-4 grommet, rubber, Mtg., RF Assy.
8. A19138-3 eyelet spacer, Mtg., RF Assy.

Crosley 9-101

This model appears on payes $18-1$ (hrough 18-s of Rider's Volume X'III. Recently it was discovered that in some areas, the oscillator coil (Part No. 142975) developed trouble due to corrosive tape. To aroid possible complaints in the field, it is recommended that the coil be replaced with a new coil (Part No. 145105).

Federal 1034

This model is essentially the same as model 1024 which appears on pages 16.1 through 16-4 of Rider's Volume XVI. The only modification has been in the cabinet.

Sears 7100, Ch. 101.811-1

Model 7100 , Ch. 101.811, appears on pages 16.1, 16-4, 16-5, and $16-8$ of Riiler's Volume XVI. A change has been made in the circuit as follows:
A tone-control network consistillg of resistor R16 and capacitor C24 has been connected from the plate (pin 2) to the cathode (pin 7) of the 7C6 tube. In order to accommodate this added circuit, some rearrangement has been made in the position of parts on the bottom of the chas sis.

Bendix 847B

This model appears on pages $17-7$ through 17-14 of Rider's Volume XVII. The replacement parts list on paje 17-1S should be revised as follows:
The r-f oscillator chassis assembly bearing the stock number AROBOO is no longer stocked as a complete replacement assembly. This chassis can be repaired satisfactorily in the field and the necessary component parts may be obtained as separate stock items, when desired.

Federal 1027, 1035

Basically, these models are the same both in chassis and cabinet as model 1025 which appears on pages 16.1 through 16-4 of Rider's Volume XVI. However, differences exist in the exterior cabinet finish and color of these models.

General Electric 50

This model will be found on pages $15-1$ through $15-4$ of Rider's Volume XV. This change covers a correction to the original parts list in the model 50 where Cat. No. RHS-001 was changed to RMX-006 for a tuning assembly and spacer.
A further correction is necessary in the item description since only the tuning shaft and drive pulley (assembled) is supplied under RMX-006. The spacer is the tuning shaft bearing, and is catalogued as a separate item under RHJ-001. The original parts listing of the drive pulley under this number has been deleted.

Bendix 110, 110W. 111, 111W.

112, 114, and 115

These models appear on pages $18-6$ through 18-8 of Rider's Volume XV'III. On recent models of this series a circuit change has been made which adds a coupling plate, stock number ACOCO , between the first audio tube, 12 SQ 7 , and the output tube, 5016 , in lieu of the following components used on earlier receivers:
Plate-load resistor, R5, stock no. RC1H54; grid resistor, R7, stock no. RC1H58; Plate r-f bypass capacitor, C8, stock CP4T20.
These parts are eliminated when coupling plate, stock no. AC0C00 is used, although installation is otherwise interchangeable. To use the coupling plate may cause a. slight increase in the plate voltage of the 12 SQ 7 tube, but no adverse effect is made on the receiver. 'The resistance measured from the grid of the 50L6 tube to common B- is approximately 450 K . while the resistance measured from the plate of the 12SQ7 tube to common B - will give a reading which increases approximately 10 megohms in magnitude, caused by the charging of the filter capacitors since the receivers have no d-c return to ground.

RCA 67V1. 67AV1

These mode!s aprear on pages $16-35$ to 1639 of Rider's Volume XVI. In late production models, resistor R18 connected from the phono jack to ground has been changed from 120,000 ohms 10330,000 chms.

Bendix 646A

This model appears on payes $10-5$ and 15-6 of Rider's Volume XV. The change involves a revision in the replacement parts list as follows:
In the cabinet components section of the parts list on page $15-6$, substitute the stock number HZOS04 for the existing stock number HZOL 01 which is incorrect. The nomenclature and identification of the component part is correct as listed.

5

provides

 everything you need
SINGLE SOURCE

 ANTENNAS - MASTS - TOWERS CHIMNEY \& VENT-PIPE MOUNTS - GUY CABLE - IIGHTNING ARRESTORS - TRANSMISSION LINE
FOR BETTER TV \& FM INSTALLATIONS

Costs go up and profits vanish with poorly designed, hard-to-erect antenna equipment. Why gamble with profits and customer good will when you can be sure of allaround satisfaction with VEE-D-X - the complete single sourse quality line. Every VEE.D-X product is skillfully engineered for your entire range of technical requirements and problems. Fast, low cost installation insures full profit margin for you on every TV sale.

CHIMNEY MOUNT
The finest chimney mount on the market. Fits any openinground, square or rectangular from $4^{\prime \prime}$ to $22^{\prime \prime}$ for $1^{\prime \prime}$, $11 / \mathrm{s}^{\prime \prime}$. and $11 / 4^{\prime \prime}$ masts.

Send Caupan Today

VEE-D-X brings you the best things first in TV antenna equipment. Watch for VEE-D-X every month in this publicotion. Wrife foday for literoture and pricesl

means video distance

LaPOINTE-PLASCOMOLD CORP.
Unionville, Conn.
Please send complete information on the follawing: \square VEE-D-X Single Source Plan
\square VEE-D.X Chimney Mount
\square VEE-D-X Mast NAME
COMPANY
STREET
\square VEE-D.X Tower
\square VEE-D.X Anfennos \square Lightning Arrestors

You Asked For It...

HERE IT IS!

The Control You Engineered

Check these points and you'll see why the Mallory Midgetrol has become the first control in the business!
\checkmark FASTEST OF ALL TO INSTALL
\checkmark saves time
$\sqrt{ } \sqrt{ }$ sAVES TROUBLE
\checkmark SAVES MONEY
\checkmark EASIEST SWITCH TO INSTALL
$\sqrt{ }$ ELIMINATES SAWING AND FILING

First In Quality...Best For Results!

Television Changes

Spot Speed and Ghosts*

Sometimes it is well to know the approximate location of a reflecting surface which is responsible for a ghost in a television picture. Of course, if there are many ghosts, it's a different matter. At any rate, knowing what to look for may help.

Ordinarily one would say that the small difference in time involved when a wave is traveling at 186,000 miles per second would be negligible, but some practical figures will show that comparatively very small distances of travel of a radio wave are important when considering the effect of multiple signal paths on a televisionreceiver picture tube.

For example, a conventional 10 -inch receiver which produces a picture eight inches wide has the following properties: the spot size is about 0.025 inch in diameter and will require about 60 microseconds to advance across the eight inches of picture space. While moving across this space, it will traverse one inch each 7.5 microseconds or 0.133 inch per microsecond. In turn, the speed of the radio wave is 982 feet per microsecond.
Using these figures, it can be scen that 0.19 microsecond will be required for a spot to move a distance equal to its own diameter. This is an extremely small amount of time - yet in this extremely small amount of time a television wave will travel through 187 feet of space. This means that if two signal paths to a receiver exist and one is 187 feet longer than the other, the picture will be blurred. Naturally a certain amount of diffusion of a line is tolerable, but to meet good reproduction requirements this diffusion should not exceed that caused by a difference of 70 feet in traveling distance, or the arrival of a second wave 0.071 microsecond later.

If two pictures are received displaced by one inch, it means a time difference of 7.5 microseconds which, interpreted in distance traveled by the lagging television wave, would be 982×7.5 or 7355 feet. Thus by interpreting the picture displacement in time differential, it is possible to approximate the location of the reflecting surface.
Such calculations are of necessity different for different size tube faces. For example, if the picture size is five inches across, each inch of excursion of the spot requires $60 / 5$ microseconds or 12 microseconds. Since the speed of the radio wave is a constant at 982 feet per microsecond, a one-inch displacement of the picture in this case would mean a distance of 982 x 12 or 11,784 feet, whereas in the case of the 10 -inch tube, it means a distance of only 7,355 feet.
In the case of magnified or projected pictures, the determination of possible location of the reflecting surface should be made after compensation for the amount

[^4]of magnification. Thus if a horizontal dimension is magnified eight times, the picture displacement on the picture tube is only $1 / 8$ of that on the screen. Moreover the dimensions to be considered should be the picture size on the tube, rather than the diameter of the tube face; then the time of spot travel is determined for that particular tube size.

Stromberg-Carlson TV-12LM, 12M5M, 12PGM, 1220T, TV12H1M, 12H2M, 12H2A

This receiver is shown in Rider's TI Manual Volume 1 pages 1.29 and $1-80$. Terminal 5 of the horizontal-output transformer returns to plus 400 volts.

Resistor R258 is 33 K instead of 3.3 K .
Resistor R309 is 100 K instead of 10 K .
Un recent models the relay contacts of K201 break the B-phus lead instead of the B-minus lead. This is between the junction of R316 and L217, and the cathodes (pin 8) of V218 and V219.

General Electric 802

Refor to the waverom diagrams on Page 1-68 of Kider's TV Manual Volume 1. The captions on some of these drawings should be altered as follows:

Fig. 48: the raption should read "Crid (4) V18B"'

Fig. 49: the caption should read "cathode (6) of V18B"

RIDER MANUALS \%ean succivssing

Transvision

A condition has been noted where some 12JP4 picture tubes occasionally become electrically leaky between cathode and grid. This is usually evidenced by horizon. tal tearing, loss of horizontal sync which cannot be corrected by the usual circuit procedure. The best and most conclusive test is made by trying another tube in the set. This condition occurs after the tube has been in operation for several months. Voltage from an inductiontype spark coil which has been touched momentarily to the cathode and grid pins of the picture tube ustually corrects this condition. (See IT Service Hint page 13 Successiful Ser. vicing, January, 1949.)

Hallicrafters T61-T67

Keduction of noise in picture . . . Certain parts of the Boston area, having lower-than-normal TY signal strength, experience an accentuation of noise on the screen. An investigation revealed that this condition is improved by shielding the leads to the contrast control. Ordinary braid shielding may be used to encase the two leads, shielding that portion which appears above the chassis. The braid should be grounded to the chassis. This information applies to the receiver shown on Hallicraflers pages 1.1 and 1.2 in Rider's TV Manual Volume 2.

Transvision, All Models

Models 7 -inch kit, early, late; 7 -inch kit, early; 7 -inch kit, late; and 12 -inch kit appear on paye 1-1 through page $1-53$ of Kider's T'elcuision Manual Volume 1. The following notes and change notices apply to all models:
several cases have been reported where the house line-fuse was blown when the metal mast of the antenna was grounded. This was due to an error in the primary circuit of the power transformer. A short circuit in the primary of the transformer could also blow the fuse.
The picture should be held in horizontal sync when the horizontal hold control is in approximately the midposition. If the potentiometer must be turned to the end in order to obtain proper sync, the 56,000 ohm resistor on pin \#4 of the 6SN: horizontal oscillator tube (X-6) should be removed to permit centering the control.

In some cases it has been found that running the tuner lead (co-axial on deluxe or Amphenol on standard models) in between the i.f's causes some interference in the picture. Keep this lead as far apossible from the i-f section, merely allowing it to bridge over from the tuner to the terminal strip on the rear of the chassis.
If the self-tapping screw that holds the high-voltage shield to the chassis is omitted alongside tube socket X - 6 , there is always an existing danger of the flange sliding under the base of the tube and causing a short in the filament line.
Occasionally, a wavering effect, similar to a flag waring, may be noticed in the picture. This is due to phase differences existing in the a-c power sources when the transmitter and receiver are located in different power service areas. To minimize this. connect a $1,000-\mu \mathrm{f}$ capacitor across the 10 -ohm parasitic resistor which is connected between the junction of the horizontal linearity control, the secondary tap of the horizontal output transformer, and the 680 K -ohm resistor in the horizontal discharge circuit and the junction of one side of capacitor CF-1, terminal 3 of the horizontal winding of the yoke, and one side of the focus coil.
As a safety precaution, the manufacturer strongly suggests the following check-out procedure on all Transvision receivers, particularly the electromagnetic models:

1. Picture tube firmly strapped down.
2. Picture-tube neck well cushioned with corrugated paper, inside of the focus coil.
3. High-voltage cover firmly screwed in place.
4. Bottom cover firmly screwed in place.
5. Ace line cord neatly wrapped around low-voltage transformer.
6. All elements-deflection yoke, focuscoil support assembly - firmly screwed in place.
Teletone 149, 157
These models are the same as model 135 which appears on page Misc. 16-11 of Rider's Volume XVI.

RIDER'S VOLUME XVIII $A V A I L A B L E$

* FACTORY FACTS

Only when you have Rider Manuals can you say that you have in your possession the authentic service data as set forth by the manufacturers of the equipment.

* RADIO RECEIVERS

AM and FM receivers exclusively and their associated equipment . . .
No television or public-address material for which you have no need but which occupies space.

* WIDEST COVERAGE

Greatest number of models and chassis of receivers and record changers of more than 100 manufacturers. Up to date to January, 1949.

* TIME SAVERS
"Clari-skematix" - the breakdowns of hard-to-trace multiband recelvers, showing the circuit wiring of each band.
* THEORY EXPLAINED

Electrical and mechanical innovations in Volume XVIII explained in "How It Works" book. Not only does this aid servicing, but helps you understand modern theory better.

* UNIFORMLY ORGANIZED

Bound in Rider's standard loose-leaf binder - rugged and wear-resistant. No loose sheets to hondle every month.

* COMPLETE INDEX

Accumulative index covering Volumes XVI, XVII, and XVIII.

* LOWER COST

2036 Pages in Volume XVIII plus "How It Works". Greatest coverage. yet most economical. Volume XVIII is delivered at far less than a penny per page. Not only is it most economical to buy, but it is the longest investment, because it is regularly bound.
2036 PAGES
PRICE $\$ 19.80$
YOUR JOBBER HAS IT GET YOUR COPY TODAY!

Now On Press
 The Very Latest Receivers
 Up to January 1949

RIDER'S TV MANUAL VOLUME 2

The Manufacturers Represented in Rider's TV Manual Volume 2 are:

Equivalent of 2300 PAGES
PRICE $\$ 18.00$

EARLY FEBRUARY 1949 PUBLICATION

| Admiral | Hallicrafters | Scott |
| :---: | :---: | :---: |
| Air King | Hoffrman | Sears |
| Andrea | Howard | Sentinal |
| Ansley | Industrial Television | Sightmaster |
| Automatic | Jerrold | Mark Simpson |
| 8ace | Magnavox | Sonora |
| 8agdad | Mars | Standard Coil |
| Belmont | Meissner | Stewart Warner |
| Bendix | Merrick | Techmaster |
| Bud Radio | Motorola | Techmaster |
| Certified | Multiple | Tele-Craft Tele-King |
| Crosley | National | Tele-Tone |
| De Wald | New England | Television Assembly |
| DuMant | Nielsen | TeleVista |
| Dynamic | Philco | Templetone |
| Elecłro-Tech | Philharmonic | Transvision |
| Emerson | Philmore | United Motors |
| Fada | Pilot | Videraft |
| Farnsworth | RCA | Video Corp. of Amer. |
| Garod | Radio : Television | Videodyne |
| GE | Regal | Vision Research |
| General Instrument | Remington | Zenith |

- Service Data on Complete Receivers and Kits and Boosters - Double. Triple Spreads and Giant Pages that Unfold to 440 Square Inches - Test Patterns - Waveforms - Schematics - Voltages - Adjustments of traps. complete alignment tables - Parts lists - Accumulative Index covering TV Volumes 1 and 2.

"TV How It Works" Corrections

In the event that you are an owner of Rider's TV Manual Volume 1, with which we furnished a copy of TV How It Works, or if you purchased this volume separately, the following corrections should be noted.

On page 4, second column, reference is made to the number of elements found in a TV picture. The figure of 367,500 is closer to the figure than the 224,000 quoted.

On page 45, line 7 of the second column, the statement is made that the use of a reflector will increase the impedance of a dipole. There are conditions of design where this can be accomplished, but in the usual manner of application the use of a reflector will, if anything, reduce the impedance at the center of the driven element at the resonant frequency.

On page 145 , the caption "vert. sync pulses to horiz. mult." should read "vert. sync pulses to vert. mult." We realize that this correction may be obvious, but since we found it, we make it.

-

Sears 6686, Chassis 101.851
This model appears on page $17-1$ of Rider's Volume XVII. If frequency shift occurs, the following change is recommended to correct the condition:

1. Remove the screw and mica and bend up the leaf of the capacitor shunted across the a-m oscillator trimmer capacitor, C23.
2. Replace this part with a $15-\mu \mu \mathrm{f} \pm$ 10% ceramic capacitor.
3. Realign the $a-m$ band of the radio receiver.
This change is being incorporated in production and will be effective on all sets shipped after September 30, 1948.

General Electric 210, 211, 212
These models appear on pages 18-21 through $18-25$ of Rider's Volume XVIII. Change the third column (Signal Input Point) of the alignment charts on page 18 . 23 to read: 12BE6 grid (pin 7 of V2). See note 7.
The parts list on page $18-25$ should be changed as follows: Change catalogue number UOP-557 to UOP-558 for Speaker 51/4-inch PM. Add the reference symbol R32 to Cat. No. URD-141-Resistor- 6.8 meg., $1 / 2$ w., carbon.
The following changes have been made in the schematic diagram on page 18-21. Where capacitor C38 is shown terminating at ground on this schematic, later model receivers have this ground connection removed and the capacitor is terminated at the junction of the antenna input and capacitor C14. Capacitor C36 should be added and connected from the junction point of R29, pilot lamp I1, and pin 4 of V7 to ground. Resistor R32, which has been added to replacement parts list above, is connected from the junction of R8 and C4 (AVC filter) to the cathode, pin 2, of output tube V6.

This resistor, R32, has been added to increase the converter stage gain when operating in the A-M position because of at change in performance characteristics relative to grid cut-off of the 12BF6 tube.

(1) PRE PHENOLIC MOLDED TDBUAAR CAPACTORS Types and and nit :
 1600 Volts)
 $(1600$ Volts)

Take a look at Sprague Type TM and MB Phenolic Molded Tubular Capacitors! See how their sturdy phenolic jackets offer complete protection against moisture, vibration and heat-the three factors that cause 9 out of 10 failures in ordinary wax tubulars. Then try Sprague TM's and MB's on your toughest jobs-and you'll quickly understand why these little units represent the greatest capacitor development in modern radio servicing history! Sprague TM's and MB's are a "must" for auto radio, aircraft radio and television applications. And because they cost exactly the same as ordinary wax cardboard tubulars, wise servicemen use them exclusively for all service replacements. There are no service complaints, no dissatisfied customers when you use Sprague TM's and MB's.
Get the genuine article! Be sure and ask for Sprague TM's and MB's by name!

HERE IS YOUR BASIG TELEVISION and FM SERIICE LAB

\& APPLICATION ENGINEERED for TV, FM and other modern costiy and requirements. Every necessary fuplication of instruments you already own.
cumbersome duplication of for practical operational simplicity and rug-
\star PERFORMANCE DESIGNED fore

Series E-400
 WIDE RANGE SWEEP SIGNAL GENERATOR

Complete with test cables, quartz marker crystals and Technical Manual. Size $101 / 2 \times 12 \times 6$."

Net Price $\$ 19470 \begin{gathered}\text { Convenient Terms Avallable } \\ \text { see your PRECISION Distillutar }\end{gathered}$

Series ES-500 HIGH SENSITIVITY $5^{\prime \prime}$ OSCILLOSCOPE

Complete with light shield, calibrating screen and operating manual. Size $81 / 4 \times 141 / 2 \times 18^{\prime \prime}$
Net Price $\$ 7450 \begin{gathered}\text { Convenienf ferms Avallable } \\ \text { See your Phecision Dlstributor }\end{gathered}$

SUMMARY OF IMPORTANT FEATURES

2 to 480 Mc. 5 ranges to 240 MC. 280-480 MC bands harmonically calibrated. 3 color, $61 /{ }^{2}{ }^{*}$ diam. etched tuning dial, high ratio rim driven. Zero back-lash.

* 1500 Point Vernier Scale. Engraved lucite hair-line indicator. Positive readings free from parallax.
\star High Output and Accuracy via use of selected and true VHF components and circuits. Voltage regulated oscillators. Crystal calibrated plus crystal control.
* Narrow and Wide Band Sweep. 0-1MC and 0-10MC.
* Wide Range Phasing Control.
* Multiple Crystal Marker-Calibrator Oscillator built-in. 4 rotary selected crystal sockets. 10.7 MC and 2 MC crystals furnished as standard equipment.
* Terminated RG/U Coaxial Output Cable and dual R. F. attenuators, triple shielded, stepless, quiet.
* Simultaneoun A.M. and F.M. test facilities.
* Double-Pi Line Filter plus multi-section, copper-plate shield. ing of entire instrument.
* Tube Complement: 3 each 6J6 \& 6C4. 1 each VR-105 \& 6X5
\star Fully Licensed under W.E., A.T.ST. and Remco patents
* PLUS many other new "Precision" developments and improvements too lengthy to list at this time.

YOU MUST SEE the Series E-400 :

Megacycle. 2 Megohm in put resistance with exceptionally high stability.
$\star 20$ Millivolt Vertical Sensitivity. Such high sensitivity required for diversified TV. FM and AM circuit analyses.
\star Vertical Input Step Attenuator. x1, x10, x100. Additional continuous vernier control. Cathode follower input circuit.
\star Extended Range Horizontal Amplifier. Response to .5MC $1 / 2$ megohm input resistance.

* Linear Multi-Vibrator Sweep Circuit. 10 cycles to 30 KC Improved circuits assure unusual linearity thruout range.
* Amplitude Controlled Synch Selection.
* "Z" Axis Modulation terminals for blanking, timing, elc.
* Phasing Control for line sweep operations.
- Audio Monitoring phone jacks provided at rear of cabinet plus direct access to H and V deflection plates.
- Light Shield and Calibrating Screen removable and rotatable for varied applications and light conditions.
\star Tube Complement: 1 each type 6IS, 6AK5, 7N7, 6X5, 2×2. 2 each type 7W7. 5CPI/A CR tube.
* Fully Licensed under patents of Western Electric and AT.\&T. companies.
* PLUS a lengthy list of "Precision" refinements and facilities that must be seen to be appreciated.

Order Noun
from your nearest authorized Precision" distributor to assure earliest possible delivery.

See
the new Series E-400, ES-500 and the complete "Precision" line of A.M., F.M. and Television instruments.
to view the inside of any instrument and know why "Precision" is the Standard of Workmanship. Performance and Accuracy.

TV Service

$$
\text { (continued from page } 1 \text {) }
$$

stallation and insurance. Antenna installation costs should have no ronnection with service insurance; the two operations are entirely different. In fact, if the customer so desires, he should be able to buy his antenna installation and worry about service later.

Service Insurance Charges

Such a system would enable service charges to seek their own level, which they must eventually do. To our way of thinking, the contract system of selling serviee insurance will run into a snag during the third year of life of the receiver. Although the value of the receiver has decreased due to depreciation, the possibility of troubles has increased. This in no way reilects upon the receiver - the older the individual who sceks insurance, the greater is the premium! The same principle applies to TV receivers.

Let us return to the matter of reducing service calls when a contract exists
How about the following plan, which as sumes that the antenna installation is dealt with separately. Why not issue with each service instrance contract a number of free service coupons? For the sake of illustration, suppose these coupons were five in number. These five coupons entitle the owner to five frec-of-charge service calls, with part and tube replacements being handled as heretoforc. In addition, the customer would receive five other coupons. each of which entitles him to a call with a charge, say $\$ 3.00$, to cover traveling time. The fee asked in connection with these coupons could be based upon a zoning arrangement - that is, the distance to be traveled by the repair man. Most certain$l y$, it is unfair to expect a service facility to send its men ten or fifteen miles for the same charge as when a mile or two is traveled.

To say the least, such a coupon arrangement would have a good effect all around. It. woukd tend to restrict the number of nuisance calls because the customer will be cautious about expending his free collpons when he knows that there is a charge for all calls above five. Today, the customer calls the service shop on the least provacation. It is distinetly unfair to the service facility and this practice should be stopped if at all possible.

Our selections for the number of free coupons and the charge for the "pay" coupons is solely for the sake of illustration. Some organizations may decide to issue fewer, or more, free coupons and to charge more, or less, for the "pay" coupons. That is for the individual manufacturer - dealer - service organization setup to decide.
Such factors as the number of chassis found in the equipment, or whether it includes an $a-m$ or $f-m$ receiver, a record changer, etc., should play a part in determining the charge. The immediate future will, undoubtedly, see TV receivers with more than one record player. This condition is introduced by the existence of 33 , 45 , and 78 rpm equipment. It does not seem difficult to this writer to organize a system of charges based upon the number of basic components within the receiver.

Whichever way it is handled. somothing must be done to make the over-all service insurance operation more attractive to the servicing organizations - at loast to protect them ugainst loss. Perhape what we have suggested is the answer. We would certainly like to receive romments.

Next month we will discuss another item which is receiving much attention.

The Cover

On page 1 is shown the interior of the television studio at the [J. S. Nuvy Special Devices Center at Sands Point. Long Island. N. Y., during a broadeast of a lecture using a cut-away jet engine. These lectures can be relayed to naval bases or to units of the fleet. In the foreground are the control and monitoring panels which were supplied by the (leneral Electric Company.

These Navy experiments in the mass training of personnel by means of television presage the time when television will be used by schools. colleges. and professional socifties as a mass training medium.

RIDER MANUALS Man \$irctecte

RCA 76ZX12

This receiver is in Rider's Mamual Volume 18 , pages $K(' A 18-51,18-52$. The following corrections are made in the parts lists. Under the miscellaneous herding

Delete No. 36886 Knob and
Add No. 70414 Knob-control knob ivory for 767 Zl 2

Westinghouse H-186, H-187

This model ippears on pages $18-26^{\circ}$ through 18-30 of Rider's Volume XIIII. The $0.1-\mu \mathrm{f}$ resonant-type caparitor (C33) is not used on late production chassis. This capacitor is shown connected between the B-plus line and ground in the schematic diagram on page $18-20$.

RCA Q10, Q10A, Q10A2, Q10-2, Q10-3, Q110

This material appears in Riders . Manual Volume 15, pages 15-5 through 15-7. In the event that regeneration develops in the receiver. it may be due to a resonant condition due to electrolytic capacitor C21 being parallel with capacitor C11 ($0.1 \cdot \mu \mathrm{f}$). Three methods have been used at the factory to rorrect this condition. These are:
(1) C11 may be $0.05-\mu \mathrm{f}$ instead of $0.1-\mu \mathrm{f}$
(2) An additional $0.1-\mu \mathrm{f}$ capacitor may be added in parallel with Cll
(3) The RliJ) and (iRLEN loads of the electrolytic rapacitor ((21 and ('22) may be intorchanged
In some chassis. R1 may be 2.0 megohms: instead of 2.2 megohms.

Crosley 9-201, 9-202M, 9-303B

These models appear on payes 18-14 through $18-19$ of Rider's Volume XIIII. The part number of item 83 (volume control) was shown on page $18-19$ as 39368 -14. This number should be $39368-18$. To use the So. 39368-18 control on these models. it will be necessary also to use a No. 39-370-2 plug-in type knurled shaft.

SERVICEMAN Espey Radio Chassis are Easy to Sell Easy to Install . . .

514 AMPLIFIER
513 TUNER
This New DeLuxe Custom Built AM-FM Quality Chassis gives you increased sales in the profitable chassis replacement market.
Model 513 is intended for the discriminating listener who desires the ultimate in performance. Separate tuned RF stages are employed on both the $A M$ and $F M$ bands to provide extreme sensitivity and minimize spurious responses. It is designed to operate from an external power supply and feed into an external audio amplifier. The power requirements for the Tuner are 6.3 volts $A C$ or DC at 3.5 amperes, and 220 volts DC at 60 milliamperes. Tuning ranges are:
FM-88 megacycles to 108 megacycles AM-535 kc to 1720 kc

FEATURES

1. Superhaterodyne AM/FM eircuit.
2. Improved Frequency Modulation circuit, stabilized against drift.
3. 10 tubes plus electronic tuning indicator.
4. Tuned RF circuits on AM and FM
5. 6-gang Variable Tuning Condenser.
6. Automatic volume control.
7. Full range treble control.
8. Fuil range bass boost control.
9. Indirectly illuminated "slide-rule" dial.
10. Smooth fly-wheel tuning.
II. Antenna for $A M$, and folded dipole antenna for FM.
11. Provision for external antennas.
12. Wired for phonograph operation.

MODEL 514 POWER SUPPLY
\& AUDIO AMPLIFIER
Model 514 De-Luxe Power Supply \& Audio Amplifier is designed specifically for use in conjunction with the Model 513 Tuner, but may be used wherever a high quality audio amplifier is required. Power requirements are 105/125 volts AC, 50/60 cycles; power consumption approximately 150 watts.

FEATURES

1. Parallel push-pull output circuit.
2. Self-balance phase inverter system.
3. Extended range high fidelity response.
4. Extended range high fidel
5. 6 tubes plus two rectifiers.
6. Output impedance selective for any speaker requirements selective ohms to any 500 speaker requirements (4) ohms to 500
ohms). Power output approx. 25 watts. Write Dept. KD12 for your free catalog.

MANUFACTURING COMPANY, INC. 528 east 72 nd Strest, new york 21, N. Y.

Ham Interference In Amplifiers

(Editors Note: This material strikes a responsive chord because we faced the problem of being picked up by the am. plifiers in a nearby motion picture theater. We understand that the audience was quite surprised to hear a singing cabellero, guitar in hand, who appeared on the screen calling T12RC in Costa Rica and signing W2RID. The cure was proper shielding and grounding of the photo-cell heads.)
It is difficult to pin down the exact manner in which interference from radio amateur stations reaches various types of audio amplifiers, record players, and wire recorders. Therefore, it is almost impossible to state specific remedies applicable to all equipments. Sometimes a cure will be effective in many cases - then again it will work only in isolated instances, despite the fact that the equipments are used in similar manner and in like locations. Here are some ideas on the subject.

Three places in the amplifier usually are the vulnerable spots. One of these is the first stage grid circuit, including the microphone input system. The second is the output circuit of the final power.

Fig. 1(B). A series grid resistor and a of the first stage may correct ham interference.
amplifier stage, and the third is the powersupply system.

In both the first and second locations. the problem seems to be pickup of r-f signals and rectification in these circuits. Remedies are probable, and it is a fairly safe gamble that at least one will be effective. For example, in the input circuit of the very first amplifier stage, the use of a small value of bypass capacitance, C , say between 50 and $100 \mu \mu \mathrm{f}$ between the grid and ground may prove effective. This is shown in Fig. 1(A). Sometimes this alone does not do the job, it then lecomes necessary to add a series grid resistor of from 50,000 to 100,000 ohms, shown as R in Fig. 1(B), between the grid and the usual grid-leak resistor. The high side of the bypass capacitor is connected to the grid end of the series grid resistor.

Fig. 1(B). A series of grid resistor and a bypass capacitor may be used to cut out interference.
In place of the series grid resistor, an r-f chole of from 1.0 to about 2.5 millihenry is sometimes used, connected to the r-f bypass capacitor, as shown in Fig. 1(C). One of the Sears Roebuck service notes recommends placing the ca-
(C)

Fig. 1(C). A choke may be used in place of the resistor shown in Fig. 1(B).
pacitor as shown by the dotted line.
Sometimes such pickup comes about as the result of corroded connections or ground loops in the grounded input circuits - that is ground connections at two points along the input cable. Sometimes, especially when such ground loops exist o: the ground contact is poor, and the length of the microphone cable may correspond to a half wavelength of the frequency at which the interference signal is being radiated, the trouble is quite severe. Increasing or decreasing the length of the cable so as to destroy this resonance may be of aid.
The trouble is less prevalent when metal tubes are used than when the input tube is of the glass variety. Placing a shield around the tube and grounding it properly has been found to work in some cases. although such interference troubles do not, as a rule, originate there.
Shiclding the "hot" grid lead between the input jack and the grid of the tube has frequently helped. Making certain that all supposedly grounded jacks really are grounded was found to be of aid. Sometimes these remedies were partially successful; that is, the intensity of the interference was reduced, although the signal was not completely climinated.
When the interference occurs in the output stage, the most useful remedy is bypassing from the plate to cathode, or plate to ground, circuit as shown in Fig. I(D). An average value of this capacitor is about $0.001 \mu \mathrm{f}$, although in some cases lower values function properly and in a few cases higher values are required. Frankly, the determining condition is the degree of distortion which can be tolerated, since the addition of such bypassing must, of necessity, affect the frequency response at the high-frequency end of the audio bandwidth of the system.

Fig. 1(I)). l3ypassing from plate to cathode (only these two elements are shown here) in the last stage clears up interference.

Relative to grounding of bypass capacitors, two possible return points exist; one of these is the chassis and the other is the cathode. Which of these should be used is best determined by experiment.
Finally we reach the power-supply circuit. Sometimes, due to proximity of the transmitting station, modulated r-f energy from the transmitter gets into the power line and finds its way into the equipment power supply. One way of keeping it out is by means of a conventional power sup-
ply r-f filter as shown in Fig. 2. How. ever, in order that this filter be effective. it must be shielded and it is best located near the point where the power line feeds into the equipment, whether this point be at the power transformer in an a-c unit, or at the rectifier tube in an ac-dc unit.

$C 1,-2,-3,-4=0.002$ Mf EACH
L $=100$ TURNS OF \# 16 WIRE ON

L = 100 TURNS OF \# 16 WIRE ON I" TUBE

Fig. 2. Filter for use either at the ampli. fier or at the transmitter.
Sometimes due to overloading of the power line during modulation, the power supply becomes modulated at the audio frequency. The remedy lies at the transmitter, and is usually reduced power output and reduction of the power-line drain, making this drain within the capabilities of the line. The use of an r-f filter between the transmitter power input and the local power line, as shown in Fig. 2, is sometimes effective. However, the current. carrying capacity of the r-f chokes must be sufficient to accomodate the input current requirements of the transmitter at full power. Finally, the remedy may be simply a good ground at the transmitter.
Having said all of this in connection with amplifiers - it would not be out of order to say that these instructions also are uscful in eliminating such interference in the so called "midget" ac-de receivers.

Westinghouse H-164, H-166, H-166A. H-167

These models appear on pages 18-12 through 18.19 of Rider's Volume XVIII. The changes are as follows:
The notes under Figs. 1 and 4 should be revised to read: "All V-2119 chassis have 1st and 2nd i.f transformer adjustments as shown by the dotted line." The dotted-line adjusting points apply to current production chassis as well as to early models. The adjusting points shown in Fig. 3 apply to the V-2119-1 chassis which was also used in the above models.
Early models of the V- 2119 chassis used a V.3295 power transformer which required a voltage-dropping resistor (R50) between the rectifier tube and the filter input to provide the correct voltage at the input to the filter. The V-2119-1 chassis and late models of the V-2119 chassis use a different power transformer (stock numbered V. 4761) and the voltage-dropping resistor, R50, is no longer required.
Capacitor C76, which is shown connected between the B-plus line and ground in the schematic diagram on page 18.13 , is not being used on late production chassis.
The items listed below are incorrectly listed in the replacement parts list. They should be changed to read as follows:
RC30AE332K Resistor, 3,300 ohms, 1 w. (R31)
V-4886-1
Choke, filament (L2, L3)

RCA 75X11, 75X12 (RC-1050)
The following changes have been made in the wiring. The circuit appears in Rider's Manual Volume 18 pages RCA 18-49 and 18-50.

Capacitor C18 is now connected between pin \#3 and pin \#8 of the 35 Z 5 GT rectifier. The service data indicates that it is connected between pin \#3 of the above rectifier tube and the junction of R17 and C19.
Add to the parts list the following; under the heading of Chassis Assemblies:

39632 Capacitor-Mica $150-\mu \mu \mathrm{f}$ (C 13)

RCA Radiola 61-10 (RC-1023A and RC-1023C)

This material appears in Rider's Man. ual Volume 15, pages 16-9s, 15-51, and 15-62. In some of the 1023A chassis, two $10-\mu \mu \mathrm{f}$ capacitors are used in parallel in place of the specified $22-\mu \mu \mathrm{f}$ caparitor, C-15.
In the case of the 1023 C chassis, service data given for the 1023A chassis will apply in toto.

NEDA and Licensing of Servicemen

We have been taken to task for omitling mention of the National Electronic Distributors Association (NEDA) as having done its part to ward off radio-repair licensing in New York City. The complaint voiced by L. W. Hatry, president of the organization, is justified, that is, if we take into account all of the individuals and organizations who participated in the discussions which took place then. Frankly, we were thinking solely of the part played by ARSNY, the local radio service association. However, since we have brought to the fore the participation by NEDA, they, too, are entitled to much credit for the pressure they exerted.
As a matter of fact, it might be well to quote from Lou Hatry's letter:
"Further, you may not know that the NEDA Board of Directors has gone on record as opposed to any and all licensing legislation of any kind for the radio repairman, on the basis that every licensing law founded on licensing "ability" has always ended in political maneuvering in being "licensing of business". The end product is a restriction upon free enterprise, little dictatorships and baby cartels where the established in hand with politicians prevent new businesses from even opening. I think that this is forward looking, intelligent and in the American tradition and I am proud that NEDA undertook such a stand on a National basis and in the National interest of all repairman and all small business."
NEDA helped very much and we are very happy to make this belated acknowledgement. While we are on this subject, the nation-wide Rider Survey of 1947,* covering the operations of the radio servicing industry of the nation also was used during that discussion to prove in actual figures that the industry was anything but a rackeetering group. In fact, we know that Councilman Isaacs who sponsored the original legislation placed much credence in the figures.
*See Radio Retailing, Nor.Dec. 1947.

PRESENTS
THENEW

Model 12CL TV-FM Kit

Brings the biggest and best in television within the reach of everyone.

GigANTIC VALUE!
over
200

SQ. IN. PICTURE VISIBLE from ALL ANGLES

With FM Radio

(DeLuxe Continuous TV-FM Imputuner)
(Picture much bigger than a tabloid newspaper page.) IMAGE IS EQUAL to that of a $20^{\prime \prime}$ tube-even sharper and clearer-and it is visible from all angles.

MODEL 12CL TV-FM KIT

- Features $121 / 2^{\prime \prime}$ tube with fitted All-Angle Lens, giving over 200 sq. inch picture which is visible from anyplace in a room.
- Gives ideal long-range reception with CONTINUOUS TUNING on ALL CHAN. NELS. Has DeLuxe continuous TV-FM Inputuner.
- COMPLETE with Cabinet. Lens, RotoTable, Antenna, Lead-in Wire.
- A BIG PROFIT-MAKER for service dealers. This kit is TOPS-ideal for homes, clubs, taverns, and other commercial installations.

EASY TO ASSEMBLE . . . NO

TECHNICAL KNOWLEDGE REQUIRED Transvision's simple step-by-step Instruetion Sheet makes assembling a TV Kit a pleasure. Each kit comes complete with all-channel double-folded dipole antenna and 60 Ht . of lead-in wire. Nothing else to buy!

TRANSVISION ALL-CHANNEL TELEVISION BOOSTER

To assure television reception in weak signal areas, or areas which are out of range of certain broadcast stations, Transvision engineers have designed this new booster. If increases signal strength on all television channels. Tunas all telavision channels continuously. Can be used with any type of television receiver. Unusually high gain in upper television channels.
Main in upper television channels.
LIST $\$ 44.95$
TRANSVISION COMPLETE LINE OF TELEVISION COMPONENTS Essential units for building a quality elevision set
Transvision makes available a complete line of high quality parts competitively priced. Included in this line are Filter Chokes, all types of Transformers, Focus Coils, Deflection Yokes Coils-and, of course, major units such

WRITE FOR COMPONENTS FOLDER P-I
RADIOMEN . . You Can Get Into the television business
in a big way with the transulicion dealer plan

Write for Dealer Folder D.1

539900

Includes Kit, Cabinet, Lens, Table, Antenna and 60 Ft . of Lead'In Wire

EQUIVALENT OF $\$ 1000.00$ SETS!

 Price of the new 12CL electromagnetic kit includes these outstanding features:- $121 / 2^{\prime \prime}$ picture tube with special fitted All-Angle Lens and color kit.
- Beautiful select-grain cabinet and rototable.
- DeLuxe Continuous TV-FM Inputuner.
- New all-channel hi-gain antenna and 60 feet of lead-in wire.
Nothing else to buy.

TRANSVISION REMOTE CONTROL

 UNIT KITWill operate any TV receiver from a distance. Turns set on, tunes in stations, controls contrast and brightness, turns set off. Ideal for installa. tions where the television receiver is inacces sible. Tuner unit is a high gain, all-channel unit with about 50 micro-volt sensitivity. Easy to assemble in about on hour.
Model TRCU, with 25 feet of cable.... Net $\$ 69.00$ Without cabinet Net $\$ 65.00$

Assemble Your Own CABINETS

 Transvision's "MODULAR" Cabinets come in knock-down, unpainted units, offering an un-limited range of combinations, including even imited range of combinations, including even

Corner piece, shown above, has room for TV, Phono, Record Storage, and open Book Case. COMPLETE Net $\$ 84.00$ For other "units and prices, writa for 'Modular' Catalog.

In Calif.: Transvision of California, 8572 Santa Monica Blvd., Hollywood 46 All prices 5% higher west of Mississippi; all prices fai- traded: Subject to Change Without Notice.

Your Jobbe: Has Your
 Rider's Manual Volume XVIII

We have forwarded Rider's Manual Volume XViil to all of our Jobbers. By the time you read these lines he will have received his shipment. Get your copy today!

2036 Pages
115 Manulacturers

Sears-Roebuck Date Coding

The source, Colonial Radio Corporation has established a new code dating system which will allow the serviceman to determine more closely the date of mannfacture.
Under the old dating system, three numbers were stamped on the chassis. The first two numbers represented the week of production, and the third number represented the day of the week.
The new dating system will also contain three numbers. The first two numbers will again represent the week of production. However the third number will represent the year of production. Last year (1948), for example, was represented by the number 8. Thus the code date number 438 indicates the 43rd week in 1948.
The new system for home receivers started on August 30, 1948. For auto sets. the new system started November 19, 1948. These numbers are stamped above or below the metal identification tag on the chassis.

RCA Q109 (RC-602), Q109X (RC-602A)

The following voltage - current table should be added to the service data appearing in Rider's Mamual Volume 18, pages RCA 18-s through 18-10.

Nocket Voltages - Cathode Currents
Local-Phono-Distant Switch in Distant Position.

| Pube | | | | Plate
 Volts | STreen
 Volts | | |
|---|---|---|---|---|---|---|---|
| 1 | 6SG7 | 137 | 112 | 0 | Cathode
 Volts | | Cathode |
| :---: |
| Current |

*Measured with Chanalyst or Voltohinyst
In LOCAL position the cathode circuit of the 6SG7, the RF amplifier. is opened ("A" Band only) and the voltages are correspondingly higher due to the absence of cathode current in this tube.
The stock number of the speaker cone should be changed to read:
No. 70972 Cone - Cone and voice coil assembly

Facts About Rider's TV Manual Volume 2

Here are some facts about the contents: of the forthooming Ruder's TV Manual Volumer 2 . As you can appreciate, we cannot describe in Successful Servicing the contents of every page in this volume, therefore we have picked some highlights that we feel will be of interest to you.
We have talked frequently about the coverage of Riller Manuals. Here is a tabulation of some of the most important items:
66 manufacturers of TV receivers and TV boosters!
Originally we advertised 50 manufacturers, but as you can see the actual number contained in the manual is greater by more than 25 percent. The number of manufacturers would have been greater, but the closing date forced us to omit several names. Information on those sets omitted will either be given in Successful Servicing in the future, or will be included in the next TV volume.
So that you will have an idea of how extensive the coverage of models and data in Rider:s TV Manual Volume 2 really is, here is a tabulation of the actual pages for SOME OF THE MANUFACTITRERS by name

| Name | Single Double Triple Giant Pages Spreads Spreads Pages | | | |
| :---: | :---: | :---: | :---: | :---: |
| Admiral | 40 | | 1 | |
| Andrea | 32 | | | 3 |
| Belmont | 18 | | 1 | 1 |
| Bendix | 14 | 1 | | |
| Crosley | 62 | 1 | | 3 |
| DrıMont | 50 | | | 4 |
| Emerson | 14 | 1 | | 3 |
| Farnsworth | 22 | | | 2 |
| General Electric | c 76 | 2 | 1 | 1 |
| Hallicrafters | 10 | | | 1 |
| Howard | 10 | 1 | | |
| Magnavox | 32 | 1 | | 1 |
| Motorola | 162 | | | 11 |
| Philco | 170 | 5 | 1 | |
| Pilot | 50 | | | 2 |
| RCA | 92 | 5 | | |
| Scott | 24 | 1 | | 1 |
| Sentinel | 12 | | | 1. |
| Stewart-Warner | 16 | 1 | | 1 |
| United Motors | 14 | | | 2 |
| Zenith | 26 | | | 1 |

Remember if you please. this is only a partial list - there are 66 manufacturers represented in the manual! Especially significant is the fact that the changes made by manufacturers in their TV receivers have received special attention. For example, in the case of Motorola, one receiver model was identified with a number of chassis; each of these is shown complete . . . There are many more like this!
It is in this connection that having the manufacturer's OWN service data in your possession is so tremendously important. The manufacturer makes changes in his
product's circuitry and only he knows what changes he made and WHEN he made them. Invariably he indicates the different runs on the chassis. The information contained in Rider's Manuals is the manufacturer's data; yof always have the latest and most accurate information at your finger tips when you own Rider's Manuals!
We are sure that you will be interested to learn that Rider's TV Manual Volume 2 contains about 350 pages more than were furnished in TV Volume 1 - in fact about this number of pages more than we originally advertised. Foremost in our thinking is to give the service industry: the utmost accurate service data at the most economical price. We believe in Gen. Forrest's philosophy of "git thar fustest with the mostest."
We appreciate that reading diagrams can be a problem if the type is too small. What with the number of tubes in a TV receiver, we use as many double. triple, and GIANT pages as the material dictates . . . Remember that in comparison with the usual 80 square inches on the ordinary pages, a double-spread page in Rider Manuals affords 140 square inches of reading space; a triple-spread page affords 215 square inches of reading space and a GIANT page affords 440 square inches of reading space . . . This is for your convenience and to make the Rider TV Manual easiest to use.
PLACE YOUR ORDER FOR RIDER'S TV MANUAL VOLUME 2 TODAY!!

Sears 6686, Chassis 101.851

This model appears on page $17-1$ of Rider's Volume XVII. It has been found that the dial cord slips on some of these models. To help correct this condition, it will be necessary to replace the present dial cord with a longer dial cord to change the pointer hookup. The new cord should be cut about 40 inches long and should measure 1634 inches folded after assembly to the dial string tension spring. See the accompanying diagram for correct hookup.

Dial cord hookup for Sears chassis 101.831. Fig. 1. Power supply of the RCA chassis RC-1040B,
Dial slippage may be due to a tight ganged tuning capacitor. If light lubrication does not correct the condition, the thrust adjusting screw on the rear of the tuning gang may be backed off very slightly and securely locked in the new adjustment. Use great care to avoid excessive loosening as the rotor and stator plates may short. The set may require realignment after this adjustment.

YMOI
-3771ムสษhncys
'gコIAyas oloyy Smihoor

Distribution of This Issue-44,500 Copies

April, 1949
Courtesy American Airlines

PREVENTIVE MAINTENANCE

By John F. Rider

Frequently significant things happen without enough fanfare to bring the results to the attention of all those who should know about them. We believe that the "Preventive Radio Maintenance Month" conducted by the Mid-State Radio Servicemen's Association of Harrisburg, Pa., was such an eyent. This organization is affiliated with the Federation of Radio Servicemen's Associations of Pennsylvania, a group who in their own right have demonstrated upon numerous occasions the ability to take progressive steps for the benefit of members.

Here is the background before we present the results. We are certain that every radio servicemen's organization in every state of our nation will find this interesting reading. In fact, even those communities which do not have radio servicemen's organizations can benefit by application of such a program on a cooperative basis, if not after they have formed a local association.

In June 1948 the Federation of Radio Servicemen's Associations of Pennsylvania met in Philadelphia and discussed the possibility for the success of a "Preventive Radio Maintenance Month" to be held throughout the State of Pennsylvania. At the suggestion of representatives from different branches of the radio industry, it was proposed that the program be presented to one chapter of the State Federation as an experiment in order to develop information and data necessary for a statewide program during 1949. The Harrisburg Chapter instituted such an experiment during the period of 1 November to 1 December 1948.

Although hampered by lack of time in setting up the program, as well as for coordination, the plan was put into operation through the efforts of local members, the parts distributors they deal with, and, in this particular case, with the cooperation of three manufacturers of parts, Philco, Raytheon, and Sprague. The office of the

Secretary of the State Federation acted as coordinator and these manufacturers furnished window displays, streamers, blotters, envelope stuffers, and give-aways. The local chapter of the servicemen's association was supplied with cooperative advertising funds by their local distributors.

Arrangements were made for dealer newspaper advertising, direct mail advertising, and through the cooperation of the local $\mathrm{a}-\mathrm{m}$ and $\mathrm{f}-\mathrm{m}$ broadcast stations, spot announcements were made to the public advising them of the need for periodic checkups on their radio receivers. This type of spot advertising was very powerful in keeping the public aware of the program as a whole, the need for periodic checkups of the receivers, as well as the benefits of keeping every receiver in good repair.

The Mid-State Radio Servicemen's Asso. ciation had the full support of its membership. They also subscribed to a large ad-
(Pleaser lurn to page 12)

GE 210, 211, 212

These models appear in Rider's Volume XVIIl, pages $18-21$ through $18-20$. . In the schematic diagram (12 is shown as $22 \mu \mu \mathrm{i}$. This should be corrected to read $20 \mu \mu \mathrm{i}$. C12 is listed correctly in the replacement parts list as Cat. No. RCW-3016, $20 \mu \mu \mathrm{i}$.
The following items should be added to the replacement parts list:
RII-021-Insulator - Textolite (to insulate the volume control from chassis)
RII-022-Insulator - Textolite (to insulate the band switch from chassis)

Magnavox AMP 111D, AMP 11it'

These models are the same as Model AMP 111, appearing in Rider's Volume XV'III, pages $18-4$ through 18-7, except for the following parts value changes: Rej.No. Description Part.No.
9 Capacitor, paper, $0.03 \mu \mathrm{i} . \quad 250152 \mathrm{C} 25$ 400 V
22 Resistor, composition, 230084(i78 22,000 ohms, $\pm 10 \%, 1 / 2 W$

Zenith 8H023, 8H034, Chassis 8CO1
These models appear on pages $15 \cdot \hat{i} 1$ to 10.74 of Rider's Folume XV . The rushing noise that occurs when the volume control is turned to minimum is caused by a poor connection from the grid element to the grid cap of the 6S8GT tube. A hot iron and a little flux on the grid cap will remove the high-resistance solder joint.
If the i-m oscillator drifts, check for a red dot on the oscillator tuning-slug wire. If the wire is unmarked, replace with one which has a red dot. If the receiver flutters on f.m., this may be cured by installing a $22-1635,20-\mu \mathrm{f}, 150-\mathrm{V}$ rapacitor and two $1 / 4$-watt resistors. $63-583$, 1000 ohms, and 63-600. 2.2 Megohms, as indicated in the accompanying diagram.

RCA 8X544, 8X545, 8X546, Chassis

 RC-1065, RC-1065AThese models are the same ats Model 8N541. on pages 18% and $18-46$ of Rivler's Folume XT'III, exerpt for the rolor of the cabinets and the parts noted here.
The parts are the same. exerpt for:
73486 Loop - loop and back cover assembly for Models 8 N 544 and 8X545
73487 Loop - loop and back cover assembly for Model 8X546
12096 Cabinet - plastic cabinet - mahogany - complete with station indicator and dial backing dise for Model 8X544
Y゙2097 Cabinet - pla-tic cabinet - walnut - complete with station indicator and dial backing disc - for Model 8X545
$「 2098$ Cabinet - plastic cabinet - blonde - complete with station indicator and backing disc - for Model 8X546
70429 Grommet - rubber srommet to mount spraker (4 required). This part has bern added to Models 8X541, 8N542. 8X543. 8X544. 8X545, 8.546. and 8N547. To reduce microphonics, the speaker is now mounted to the chassis and to the cabinet using rubber grommets. The screws through the grommets should be tightened only: enough to obtain a secure assembly.

Farnsworth Chassis

C-170, C-194, C-216, C-201

These chassis are used in Models (iK-100, (ik-102. GK-103, and (ik-104. appearing on pages $1 \pi / 3$ through 1i-10 of Rider's Volume Y[1I. These chassis are listed as follows:

| Model | ('hassis |
| :---: | :---: |
| GK-100 | C-170 |
| GK.102 | C.194 |
| CK-103 | C.216 |
| CK-104 | C.201 |

Zenith 5DO and 5RO Series, Chassis 5C01, 5C02, and 5CO4

These models appear on pages $1 \overline{0}-8$ and $15-9$ of Rider's "olume XI'.
Alternate tubes are used in the 5 CO chassis. A single chassis may contain octal. lock-in, and miniature button tubes. The alternate lineups are as follows.

| Original | Allernate | Alternale |
| :--- | :--- | :--- |
| 12SA7GT | 12BE6 | 14 C 7 |
| 35Z5GT | 35 W 4 | |
| 12SK7 | 12 BA 6 | |
| 12SQ7 | 12AT6 | |
| 50L6GT | 50 B 5 | |

If the oscillator should shift, replace the 220 -ohm oscillator coupling resistor (R8) with a 1000 -ohm resistor. When the oscillator drops out at the low end of the band. remove the 10,000 -ohm grid leak resistor (R1) from the common return (B-) and counect it instead to the cathode of the converter. If audio oscillation occur: in the carly model, disconnect the $0.0005-\mu \mathrm{f}$ capacitor (C 13) from the common return and connect it to the cathode of the 50L6GT output tube, as shown in the late model schematic on page 15-8. Remove the $250-\mu \mu \mathrm{f}$ capacitor (C20) that is connected from the plate to the cathode of the 50L6GT output tube. When hum and microphonics appear, check for a grounded tuning capacitor frame to the cabinet ventilator plate.
The letter " V " after a chassis number indicates that an aluminum chassis is used.

RIDER MANUALS \%ean stevistinc

RCA 8BX6, Chassis RC-1040D

This model is the same as the model using Chassis No. RC-1040C. appearing in Rider's Folume X1'III on pages 18-11 through 18-14, except that the external loop antenna socket is omitted on RC-1040D.

Drift in the f-m oscillator of the Zenith SH023 may be corrected by making the changes indicated.

Change Your Uncertainty to PROFIT with CREI's New Home Study Course in

Television and FM Servicing

TELEVISION'S growth has been so rapid that it has exceeded the forecasts of even the experts. And it has exceeded the abilities of a lot of radio servicemen, because they aren't properly qualified to work with TV and FM.

If you want to make your future secure in the expanding servicing field, CREI can show you the way with this practical Servicing Course. It helps you earn more money faster because it assumes you already know radio fundamentals. Yet you do not have to be an engineer to reap the benefits. The course is not over the heads of those with limited experience-if they have natural ability and a real desire to get ahead. It teaches what you need to know to install and repair TV and FM sets. It gives you sound instruction in basic radio math, lenses and mirrors, modern test equipment, inductive coupling and condensers at ultrahigh frequencies; practical applications of resonant circuits; TV tubes; FM receiver alignment; TV anten-

RADIO SERVICE DIVISION OF CAPITOL RADIO ENGINEERING INSTITUTE

An Accredited Technical Institute

Dept. 254A 16th \& Park Road, N. W., Washington 10, D. C. Branch Offices: N. Y. 7, 170 Broadway; San Francisco 2, 760 Market St.
nas; picture synchronization; TV trouble-shootingand much more, all of a practical nature that you can put to work immediately.

Chairman Wayne Coy of the FCC estimates there will be 400 TV stations on the air within two years-and 1,000 in eight or nine years. David Sarnoff, chairman of the board of RCA, predicts about 18 million TV sets will be in use by the end of 1953. FM figures are equally impressive, with about $4,000,000$ more radios with FM forecast in 1949. There can be no doubt about the importance of, and the need for, experienced TV-FM servicemen. Are you going to be qualified for the increased earnings that lie ahead?

VETERANS! THIS COURSE IS G.I. APPROVED.

MIAIL TODAY!

[^5]
"HOW IT WORKS" BOOKS - EXTRA DIVIDENDS

TThe "How It Works" books which have been supplied with most of the Rider Manuals since Volume VIII and with Volumes 1 and 2 of Rider's Television Manuals, have been published with the sole purpose of providing Manual users with a closer union between the theoretical and the practical-that extra knowledge which is so necessary for successful radio servicing.

Every Rider Manual ever published has had the latest servicing data on the newest receivers that we have been able to include. This has meant-and your experience will bear this out-innovations in the way of new tubes-new components -new circuits-new mechanical "gadgets" all new and generally unfamiliar to the average serviceman and so a time-consuming factor when such sets come into his shop. It is to eliminate this unfamiliarity that the "How It Works" book came into being and from thousands of radio repairmen throughout the world for the past eleven years have come acknowledgements of how much help they have had from these free extra Rider Manual dividends.

Besides these explanations of circuit and mechanical innovations, which are, of course, referred to actual models in the Rider Manual which the "How It Works" book accompanies giving you concrete examples, there are discussions of servicing procedures and the reasons they are employed. Consider the matter of alignment, for example; its general aspects, reasons, and procedures are covered in the "How It Works" books of Volumes VIII and IX; an article about image frequency is contained in "How It Works" of Volume XI; the alignment of ordinary and double superheterodynes and $\mathrm{f}-\mathrm{m}$ sets are in the Volume XV "How It Works," and one on the latest ideas on general alignment with Volume XVII.

For example, the "How It Works" book of Volume VIII contains a discussion of audio degeneration, ave and afc circuits, the beam power tube, etc.; among other subjects meter and shadow-type indicators and saturable-core tuning indica tors are covered in the "extra" that accompanied Volume IX. The Volume X "How It Works" contained a description of the television receiver and $\mathrm{f}-\mathrm{m}$ sets as they were in 1939 (compare them with the sets of today!) and negative feedback and phase-inverter circuits are covered in the Volume XI book.

The numerous innovations that appeared in the post-war receivers demanded an extra large "How It Works" book with Volume XV. Here were described those war-born developments such as intricate tuning assemblies, "gimmicks", new arrangements of i-f transformers, home recorders, etc., as well as many new circuit features for both $\mathrm{f}-\mathrm{m}$ and a-m sets. And while on the subject of this particular "How It Works" book, there are still quite a few purchasers of Volume XV who were sent a temporary Index which contained a post card with which they could obtain their copy of the "How It Works" book and index by sending us the card This they have failed to do and we are still holding their copies. So, if you have not already done so, please mail us that card-we pay the postage-and we will send at no cost to you, your copy of the Volume XV "How It Works" book. You'l find it invaluable!

The first article in the Volume XVI "How It Works" is on f-m receiving antennas which is followed by articles on the selenium rectifier, the nature of pre-emphasis and de-emphasis, tuning indicators for $\mathrm{f}-\mathrm{m}$ receivers, battery charging circuits, television high-voltage power supplies, etc.. while in the Volume XVII book magnetic

Its as True Taday as it was Then---

Knowledge exists to be imparted.
 —Ralph Waldo Emerson.
 FM Transmisaion und Recoption 416 pages . . . Cloth Cover $\$ 3.80$ Broadcast Operaior: Handbook 288 pages
 33.30
 Understanding Vectors and Phase 160 pages . . Cloth Cover 81.89
 Installation and Servicing of Low Power Public Address Sys.
 tems 208 pages $\$ 1.89$
 Inside the Vacuum Iube
 424 pages 84.50
 The Cathode-Ray Tube at Work
 338 pages $\$ 4.00$
 Servicing by Signal Tracing
 360 pages 84.00
 The Moter at Work
 152 pages $\$ 2.00$
 A.C Calculation Charta 160 pagen $\$ 7.50$
 High Frequency Meanuring Techniques Using Transminsion Lines
 64 pages 81.50
 The Oscillator at Work
 256 pages $\dot{\text { Valtmetora }}$ Vacuum Tube Voltmetera
 180 pager $\$ 2.50$
 Rutomatic Frequency Control Syatems
 144 pages $\$ 1.75$ Badar - What it is
 72 pages $\$ 1.00$ Undermtanding Microwavee
 385 pagen $\$ 6.00$
 Radio Amatour's Beam Potntor Gulde
 32 pages $\$ 1.00$

wire recording is discussed at length; then $\mathrm{f}-\mathrm{m}$ tuners, and new tuning indicators ae well as other $\mathrm{f}-\mathrm{m}$ features.

The "How It Works" book for Rider's Volume XVIII contains chapters on the detector circuits in AM-FM receivers, the locked-in oscillator detector, unusual I-F amplifier circuits, oscillators for F-M sets. grounded-grid input circuits, application oi the printed circuit, and audio noise suppression, discussed in 30 informative pages
"The How It Works" book which accompanied Rider's Television Manual, Volume 1 has as its opening chapter a general over-all description of the transmission and reception of television signals and then follows a detailed explanation of each portion of a receiver. (For the Table o! Contents of this 203-page book, see page 4 of the March, April, May, 1848 issue of SUCCESSFUL SERVICING.) The last chapter deals with the trouble shooting and servicing of television receivers. Incidentally, this book has been adopted by three television receiver manufacturers as a text for the training of their service personnel and that of their distributors and is being considered by several other manufacturers for the same purpose.

In the "How It Works" book supple. menting Rider's Television Manual, Volume 2 , television receiver controls, the intercarrier sound system, measurements. and the television receiving antenna art discussed at length. These subjects are fully developed and explained in the 50 pages in this book.

Counting the 253 pages of the Television "How It Works" books. the total num ber of pages in all these extra books that have accompanied Rider Manuals is 713 which means more than 60,500 words and illustrations in the ten "How It Works" books that have been given to you at no extra cost when you bought your copiee of Rider Manuals. . . These books have assisted thousands of radio repairmen throughout the world in gaining a thorough. knowledge of the new things in radio and will help you too. We urge you to make good use of this source of information. especially the one accompanying the first television manual, which you can get either from your jobber or directly from us.
Here is information you need-use it wisely-it will pay you profits.

Regal W800

This model is the same as Model 800 which appears on page 16.1 of Rider's Volume XVI. The socket layout for both mo. dels is shown in the accompanying diagram.

The socket layout of the Regal Models W800 and 800.

-Successful SERVICING
 REG. U. S. PAT. OFF.

Vol. 10
APRLL, 1949
Dedicated to the financial and technical advancement of the Electronic Maintenance Personnel
Published by
JOHN F. RIDER PUBLISHING, INC.

No. 6

480 Canal Street

New York 13, N. Y.
JOHN F. RIDER, Editor
R. I. LATZER, Associate Editor

Copyright 1949, by John F. Rider
No portion of this publication may be reproduced without the written permission of the publisher

CURTAIN TIME

1 Buck and 2 People

There is no doubt about the American public being unique in this hectic world. We face tremendous problems of all kinds - international - political - labor - individual - yet things like the Pyramid Clubs can spread across the nation. We don't know their classification from the viewpoint of the jurist - whether they are lotteries, a form of escapism, or just a means of getting "easy" money. Whatever they may be, they are an illuminating commentary on our mental attitude - especially that of the American woman. She plays her part in domestic affairs - she worries about the family - takes care of the children - yet she can still find the time to stay on the phone for ten hours a day to keep the chain unbroken. Marvelous woman - the American woman! Whatever it is, it is wonderful that ideas can spring up, consume the attention of our womenfolk in the main, and mask so many mental aches and pains.

Radio Bargains

Looking at the daily papers these days, we see that radio receivers are being slashed in price. Maybe that is not good from the viewpoint of the vendor who may be taking a loss on his inventory - but if the receivers are being sold at those low prices, it does no harm to the servicing industry. Just the contrary - it is putting more receivers into active use. In time, service will be needed. Some of the owners may not be willing to spend the necessary money for the service job - especially if they paid $\$ 9.45$ for the receiver. But many of these receivers are being sold for higher sums - amounts which will justify service. So there is no ill wind which does not blow someone some good.

A New Day?

Is it true that in TV areas, at least those which are on the existing TV nets, the days of the week are to be changed? We understand that a recommendation has been made to change the days to Monday, Berleday, Kraftday, and so on!

N. Y. C. Licensing

After a delegation from the Associated Radio Servicemen of New York visited Councilman Stanley Isaacs, who recently raised the question of licensing radio servicemen in N. Y. C., the issue was dropped. Congrats to the men for being able to show that the existence of the local association during the past year has done much to clean up whatever unwholesome condition existed. We are certain that an effort was made to develop public satisfaction and will be continued at an undiminished pace. So once again the issue of licensing is at rest.

Such results should be of interest to service associations throughout the nation. They show that if the desire is there and the men are willing to put in effort, things (an be accomplished.

The Insurance Dept.

We understand that the N. Y. State Insurance Dept. is raising a question about annual service contracts between the public and the serviceman. They contend that if such contracts include a year's replace. ment of parts, the contract is tantamount to an insurance policy, THEREFORE COMING UNDER THE JURISDICTION of the State Insurance Dept. The basis for this contention is that such a contract is no different from one which covers a plate glass window. There are many sides to this question and opinions should not be formed hastily. At the present moment the RMA legal division is investigating the situation. The decision will be important because what is decided in this specific instance may influence the action of insurance control agencies in other states.

Capehart Data

Capehart record changer data has been scarce as hen's teeth for all these years. You'll find a goodly amount in Rider's Volume XVIII and the remainder will be in our Volume $X I X$. In those two volumes you will find all the data they have re leased so far, all with the approval of the equipment manufacturer!

The FCC Speaks

Wayne Coy, chairman of the FCC, speaking before the Advertising Club of Baltimore on 23 March, said, "...the present television sets available on the market will get service from these channels continuously." He was talking about the present 12 television broadcasting channels.

Saving Money Dept.

The purchasers of our TV Manual Vol. ume 2 will find that double, triple, and GIANT pages must be put in their place. We have timed this operation on numerous occasions. Following the guide sheet to be found in each volume, the operation consumes between 30 and 45 minutes. Our bindery feels that the operation carried out by their people requires 2 hours. (Remember they are paid by the hour.) If we paid the bindery its actual labor cost and the necessary profit, the list price of the manual would have to be increased about 6 bucks. That's too much money and we feel certain that each buyer of this volume is happy to save this amount of money for a maximum of 45 minutes' work.

The Inquiring Reporter

We've been making some inquires among people during the past few months and are coning to the conclusion that maybe conventional radio still has a great deal of life left in it. Generally speaking, TV programs cease around 11 PM , sometimes earlier. But people don't go to bed that early. Maybe they don't like to be called on the phone that time of night, but they're still awake and listening to RADIO. Perhaps their habits may change during the earlier hours when TV is on, but eventually they get back to listening. Ladies and Gentlemen - radio ain't being dethroned so easily.

The Gripe Dept.

We have a gripe against the guy who asks us our opinion about something and then says that he does not agree. Did we ask him or did he ask us for an opinion?

John F. Rider

RIDER MANUALS in is VOLUMES

The Cover

Illustrated on page 1 is a mechanic of American Airlines servicing and adjusting a Collins 17 H 2 transmitter. The test panels below the shelf were all built by American Airlines mechanics and are used to test and align radio equipment, particularly that used in American Overseas aircraft.

Tell Your Friends

We would like your friends to know about Successful Servicing. Please tell them about this free magazine for we would like to add their names to the mailing list. A postcard with their names and addresses is all that is necessary. Receiving Successful Servicing every month is the easiest way of keeping up with the changes the manufacturers make in their receivers.

Rider's Big Eighteen!

World's Only Complete
 Radio Circuit Library

20 Years of FACTORY-AUTHORIZED DATA

18 Rider Volumes With:

25,836 Pages
13.665 Chassis

26,309 Models
FACTORY FACTS-Only when you have Rider's Manuals can you say that you have the service data issued by the manufacturer.
UNIFORMLY ORGANIZED Bound in Rider's standard looseleaf binder-rugged and wear resistant.
TIME SAVER-"Clari-skematix" - the breakdowns of hard-totrace multiband receivers, showing the wiring of each band.
WIDEST COVERAGE-Greatest number of models and chassis of receivers and record changers.
LOWEST COST - Rider Manuals deliver data at about α penny per receiver chassis.
SUPPLEMENTS - ''How It Works" book accompanies Rider Manuals from Volume VIII, supplying valuable information on circuit innovations.

Vol. XVIII . . . 2036 Pages $\$ 19.80$
Vol. XVII 1648 Pages $\$ 16.50$
Vol. XVI 768 Pages $\$ 8.40$
Vol. XV 2000 Pages $\$ 19.80$
Vol. XIV 1376 Pages $\$ 16.50$
Vol. XIII 1672 Pages $\$ 16.50$
Vol. XII 1648 Pages $\$ 16.50$
Vol. XI 1652 Pages $\$ 16.50$
Vol. X 1664 Pages $\$ 16.50$
Vol. IX 1672 Pages $\$ 16.50$
Vol. VIII 1650 Pages $\$ 16.50$
Vol. VII 1600 Pages $\$ 16.50$
Vol. VI 1240 Pages $\$ 12.50$
Vol. I.V Abridged
2000 Pages $\$ 19.80$
Order From Your Jobber

Zenith 6G001. 6G001YX, Chassis 6C40, 8G005, 8G005YX. Chassis 8 C 40
Model 6G001 appears on pages 15-30 and $1 \overline{0}-31$ of Rider's Volume XV. Model 8G005 appears on pages $15-63$ through $1 \overline{0}-\% 0$ of Rider's Volume $X V$. The On-Ofi switch must be in the Off position whenever the line plug is inserted into the changeover switch on the rear of the chassis. Failure to do this may cause flashing and possible burn-out of the output tubes.

Intermittent operation may be caused by the wavemagnet snap connectors being sprung. causing a poor contact. Poor wavemagnet contact is made through the cabinet hinge.

The letter " X " after the model number (6(9001YX, 8 G 005 YX) indicates that an aluminum cabinet is used.

Watterson RC-4581

This model is the same as Model 4581 appearing on page $15-1$ of Rider's Volume $X V$.
GE 230, 233
Model 230 appears in Rider's Volume XVIII on pages $18-26$ through $18-28$ and Model 233 in the same Volume, pages 18 . 29 through 18-96. To the replacement parts list for these two models add RMX-120, Coil Cap Retaining Spring and Screw.

A quantity of these are used to service the anteuna r-f or oscillator-converter coil and shield assemblies where the tabs have been broken. The spring is placed upon the assembly to form a bridge. Bearing upon the coil and held by the small selftapping screw through the hole in the shield, the bridge retains the coil within its shicld in lieu of tabs.

While early production receivers of Model 233 were wired as shown in the schematic, late production changes revise the power supply circuit as follows:

R24 has been deleted and the circuit for C30 is completed by connecting its free end to the secondary winding lead going to pin 5 of the rectifier, V8, so that C30 appears across the secondary of T4. Resistors R26 and R27 are connected in series with one another and across the primary winding of T4. The junction of the resistors is grounded.
To conform with these production changes, Cat. Part URE-073, R24 is deleted from the replacement parts list and item I'RD-023, R26 and R27, 82 ohms, $1 / 2 \mathrm{w}$., carbon resistor is added.

Cat. No. RMX-123, pushbutton locking screw is also added. This screw locks the pushbutton device for automatic station tuning and has a knurled head and threaded end.
Cat. No. RCY-028 for Cl has been changed for an improved antenna trinmer, $8-480 \mu \mu \mathrm{f}$, used in late production, listed RCY-052. This item allows knob adjustment of the antenna trimmer for which a knob is available under Cat. No. RDK-158.

Motorola CR7

This model is the same as Model CR6, appearing on pages $15-9$ and $15-10$ of Rider's Volume $X V$ and pages $16-1$ through 16-8 of Rider's Volume XVI.

Nam In Twa Valumes

RIDER'S TV

 ManualsService data on complete receivers, kits, and boosters of 80 manufacturers are covered in the equivalent of 4000 pages. These manuals contain double and triple spreads and giant pages that unfold to 440 square inches. A "How It Works" book accompanies each manual.

Schematics, alignment procedure, voltage and resistance tables, adjustment of traps, waveforms, parts lists, and test patterns are included.
The following manufacturers are covered:

| Admiral Air King Andrea | National
 New England
 Nielsen |
| :---: | :---: |
| Ansley Automatic Radio | Olympic |
| Bace
 Bagdad
 Belmont
 Bendix
 Bud | Philco Philharmonic Philmore Pilot |
| | RCA
 Radio : Television |
| Certified Cleervue Consolidated Crosley | Regal Remington Republic |
| Crosiey
 De Wald DuMont Dynamic | Scoth
 Sears, Roebuck
 Sentinel
 Sightmaster
 Mark Simpson |
| Electro-Technical Emerson Espey | Sonora
 Standard Coil
 Stewart-Warner
 Stromberg-Carison |
| Fada
 Farnsworth | Tech-Master Telecraft
 Tele.King |
| Garod General Electric General Instrument Gilfillan | Tele-King
 Tele-Tone
 Television Assembly
 Television Develop.
 Televista |
| Hallicrafters Hoffman Howard | Tel Vision Templetone Tradio Transvision |
| Industrial | United Motors Service
 U. S. Television |
| Jerrold | Videraft |
| Magnavox Mars Maguire Merrick | Video Corp. of Amer.
 Videodyne
 Viewtone
 Vision Research |
| Mitus | Westinghouse |
| Multiple | Zenith |

VOL. 2 Up to Jan. $1949 \$ 18.00$
VOL. 1 Up to March $1948 \$ 18.00$
Order From Your Jobber

RIDER'S PA MANUAL

Ten Years
of
Production

from 1938 to date. Covers PA systems, intercommunication systems, and theater and church hearing aids.

The 147 manufacturers represented are:

2024 Pages Net Price $\$ 18.00$
Order From Your Jobber

Zenith Chassis 6C01, 6D0 Series
Chussis 6C01. 6I 0 Series, which appears on page $15-36$ of Rider's Volume XV, will contain variations in the tube line-up. A single chassis may eontain octal, lock-in, and miniature button tubes. If an original tube is replaced with un alternate, the socket must also be replaced.

| Original | Allernale |
| :--- | :---: |
| $3575 \mathrm{G} / \mathrm{GT}$ | 35 W 4 |
| 12 SQ 7 GT | 12 AT 6 |

When replacing speakers, use a speaker with the same code letter (49U, A(i ete.) as the original otherwise a low-pitch hum may be produced. If a speaker with a different code is used, R10 (feedback resistor) may have to be changed. With 49U, H , or AC speaker', R10 is 390,000 ohms. When using a 49CS549 speaker, R10 must be 680,000 ohms. R10 is 330,000 ohms for all other speakers.

To repair this set when it produces a howl. change the 14 C 7 tube, which is probably microphonic.

For oscillation, hum, and poor sensitivity, check for gromed tuning capacitor frame. Correct by inserting a rubber pad between the capacitor frame and chassis. Cement in place.

Federal 1021, 1031, 1032, and 1540
These models are the same as Model 1030 T , appearing on pages $16-5$ through 16 \mathcal{S} of Rider's Volume XVI, except for the cabinets.

Tele-Tone Chassis A

Models $123,125,127$, and 131 are the same as Model 100, Chassis A, which appears on page 15.2 of Rider's Volume XV.

Zenith Chassis 6C05, 6DO Series

This chassis appears in Rider's Volume XV^{\top}, pages 15-2, 15-28, and 15-29.

There will be variations in the tube line-up for different 6 C 05 chassis. A single chassis may contain octal, lock-in, and niniature button tubes. If an original tube is replaced with an alternate, the socket must also be replaced.

| Original
 12SJ7GT | Allernale | Allernale |
| :---: | :---: | :---: |
| 12SA7GT | 12 BE 6 | 14 Q 7 |

12SQ7GT
12AT6
35L6GT
35Z5GT
$35 W 5$
If the oscillator shifts, replace R3 (220 ohms) with a $1,000 \cdot \mathrm{ohm}$ resistor.

If the oscillator drops out at the low end of the band, disconnect R1 (10,000 ohms) from the negative return and connect to the cathode of the converter tube.

For audio oscillation, disconnect C14 from the negative return and connect to the cathode of the 35 L 6 GT . Take out C21 (connected from the plate to cathode of the 35 I .6 GT).

If there is oscillation at 910 kc , change C5 (negative return to chassis) from 0.05 to $0.1 \mu \mathrm{f}$.

Check for grounded tuning capacitor frame in case of oscillation, hum, and poor sensitivity. Correct by inserting cork or rubber pad between rear capacitor frame and chassis. Cement in place.

The letter" "V" as in Chassis number 6 C 05 Y , indicates that an aluminum chassis is used.

THE BIGGEST

AND BEST YET! Rider's Volume XIX

TN our 20 years of publishing service data for the radio service industry, we have never published a bigger manual. More than 2100 pages, chockful of schematics, "Clari-skematix", alignment charts, voltage and resistance tables, and partslists."How It Works" book-of course! Among the more than 100 manufacturers represented:

Tung-Sol's reputation has been built because, year after year, Tung-Sol's quality has consistently been of the highest standard. There is a TUNG-SOL Tube to satisfy every receiving tube requirement. That is why Tung-Sol's customers are among the foremost manufacturers in the electronics industry.

IN THE ORIGINAL EQUIPMENT MARKET Tung-Sol is small enough to give individual attention to every customer and large enough to produce high quality products in large quantities. Tung-Sol has always realized that the quality of a customer's product is de-
pendent upon the quality of the tubes used. IN THE REPLACEMENT MARKET most reputable wholesalers prefer to handle Tung-Sol tubes. They like their uniform high quality and appreciate TUNG-SOL's friendly way of doing business. tUNG-SOL LAMP WORKS INC., NEWARK 4, N. J.

Send for the "TUNG-SOL Technicol Dota Book'. It is o valuable oid to troubleshooting. You will find its 400 poges to be an up-to-date sourse of information on types of tubes, both new and old, and their characteristics. In addition to written descriptions there are diagrams, grophs, ond curves for at-a-glance reference. Price $\$ 4.75$ delivered.

TUNG-SOL TELEVISION AND RADIO TUBES

Television Changes

Admiral Chassis 30A1

This chassis appeurs on payes 2 -1 through 2-46 of Rider's TV Manual Volume 2. Type 6AG5 tubes were used for V302 and V303. Future production will use type 6AU6 tubes as a substitute for these two type 6AG5 tubes. Due to differences in interelectrode capacitances, video i-f transiormers T301 and T302 must be changed when the type 6AU6 tubes are used. When 6AU6 tubes are used, T301 will be part number 72 A 81 and T302 will be part number 72A82. The connections to the substitute transformers are identical to those used with transformers 72B40 and 72341 (used with the 6AG5 tubes).

When the 6AU6 tubes are used for V302 and V303, the chassis will be identified by "E" after the chassis type number. For example, such a chassis would be marked "30A1S.E." Replacement tubes and transformers should be of the type speciiied for a particular chassis. For example, 6AU6 tubes must be used for V302 and V303 in a 30A1S-E chassis. Type 6AG5 tubes must not be substituted.

Industrial Television IT-11R

This model appears on payes 2-1,2,5 of Rider's TV Manual Volume 2. The following changes have been incorporated in current production. It is not recommended that these changes be made in the field. except in the case of the noise limiter change. This change may be made if conditions of high noise are encountered.

In the vertical positioning circuit, the 100 -ohm potentiometer, R186, and the 47 . ohm resistors, R187 and R188, have been replaced by a 100 -ohm center-tapped potentiometer. This change is shown in the accompanying diagram.

The 100 -ohm potentiometer connected into the vertical positioning circuit of the In. dustrial Television Model $1 T-11 R$.

Resistor R180 in the vertical sawtooth generator has been changed to 180,000 ohms, one watt from 270,000 ohms, one watt. This change improved the range of the vertical size control.

Resistor R1100, (470,000 ohms, one watt) has been added between the plate and cathode of V103 to stabilize the action of the noise limiter circuit.

Hallicrafters T-67

This model appears on pages 2-1 through \$-15 of Rider's TV Manual Volume 2. There have been some reports that the bosses on the plastic escutcheon are breaking, allowing the safety glass to drop out of position. To prevent this, additional
clips, part number 76 A 446 , have been fastened with round head screws directly to the inside of the cabinet. These six clips are installed around the safety glass in a manner to hold it in position independent of the bosses on the escutcheon. It is no longer necessary to replace the entire escutcheon because of broken bosses. The clips may be obtained from the Service Parts Department.

Farnsworth 651-P

This model appears on pages $2.11,12$ through 2.25 of Rider's TV Manual Volume 2. A scratching or barking sound sometines eminates from the r-f unit of Model 651-P when the 12 -channel tuner is used. This may be noticeable after a period of service, when switching channels or in operating the Fine Tuning Control.

The present run of 12 -channel units (which use a separate variable capacitor for fine tuning, rather than the former system of varying the main tuning capacitor by a gearing system) use a glass detent ball instead of a metal ball as originally used. This glass ball is used to preclude the possibility of scratch caused by friction between the metal ball and the metal detent cam. It is suggested that the metal ball be replaced with a glass ball if scratch is encountered. This will provide quieter operation over a long prriod of time.

These glass detent balls are now available in lots of ten only, from the Parts Department of Farnsworth. The part number is 450191-A.

Stromberg-Carlson TS-10

Because of the limited supply of twelveinch picture tubes, it has been necessary to substitute the ten-inch 10BP4 for the 12JP4 in some of the TV-12 table model receivers. The receiver with the ten-inch tube is known as the TS-10. Service data on pages 1-17 to 1-29,30 of TV Volume 1 applies to the TS 10 when the following changes are made.

R-286 (250 ohms) has been shorted out to provide adequate focus range. C-287 ($220 \mu \mu \mathrm{f}$) has been onitted to give the correct horizontal sweep for the ten-inch tube.

The following parts have been added: $11105540 \mu \mathrm{f}, 475 \mathrm{v}$, capacitor C-264(A) to replace 111040
$11105640 \mu \mathrm{f}, 400 \mathrm{v}$, capacitor $\mathrm{C}-264$ (B)
113047 10-inch tube clamp
114635 Ion trap
154053 Mask
162024 10BP4 picture tube
165009 Anode connector
In most cases when installing a Model TS-10 receiver, the ion trap will have to be adjusted. Move the ion trap back and forth on the neck of the tube, at the same time rotating it until the brightest raster is obtained on the screen of the picture tube.

DuMont RA- 105

This model appears on pages 2-5 through 2-55,56 of Rider's TV Manual Volume 2.
A defective 6AT6 tube in the AGC amplifier may result in "drift" of the AGC setting which would become apparent as a change in sensitivity of the receiver as it operates. In such cases the 6AT6 tube should be replaced and the AGC readjusted as described on page 2-24. An accidental change in the AGC setting during shipment might result in low sensitivity, also necessitating readjustment of the control.
It is possible to adjust the AGC using the "meter" method wthout removing the main chassis from the cabinet. This can be acconiplished by removing either the first or second video i-f tube, V201 or V202, and inserting a sharp-pointed test prod into pin \#1 of the tube socket involved. (Remember that when the tube socket is viewed irom the top, the pins are counted in the counter-clockwise direction.) Once the meter connection has been made, the procedure is the same as that outlined on page 2-24 under the heading "Procedure for Ad. justment in the Shop."

DuMont RA-105

This model appears on pages 2-5 chrough 2 2-55,56 of Rider's TV Manual Volume 2. The following corrections should be made in the service data.

Un the detailed block diagram on page 2.7 , in the block for V401-A, the abbreviation Amp. should be changed to "Maker."
In the voltage measurement chart on page 2-52, the measurement for pin \#2 of V220 should be 135 volts instead of 13.5 volts.

In the schematic on payes 2-55,56, in the volume control circuit, R336 is shown shorted out and the "hot", wire of the shielded lead is shown grounded. The accompanying diagram shows the correct connections.

Corrected diagram of the volume control circuit of the DuMont Model RA-105.

Hallicratters T-54 and 505

These models appear on pages 1-1 through 1-29,31 of Rider's TV Manual, Volume 1. Remove all dark brown $3.3-\mu \mu \mathrm{i}$ capacitors C96 and C97 and replace with 6 - $\mu \mu \mathrm{f}$ mica unit, Part No. CM20A060M. The light tan colored $3.3-\mu \mu \mathrm{f}$ capacitors used for C96 and C97 in some receivers are okeh and need not be changed.
Resistors R67 and R68 should be 47,000 ohms rated at 2 watts.
Change the 7JP4 filament wiring so that it is in series with the 6X5GT filament on the ground end of the filament circuit.
Add a $1000-\mu \mu \mathrm{f}$ ceramic capacitor from the filter capacitor side of the R57 fila. ment to ground, and from the 6X5GT filament, Pin 2 to ground.
Resistor R-29 found in some plate circuits of V. 5 should be removed and discarded entirely. This results in additional gain.

TELEVISION and FM SERVICE LAB

- APPLICATION ENGINEERED for TV, FM and other modern electronic requirements. Every necessary feaments you already own. cumbersome dUPISESED for practical operational
PERFORMANCE DESIGNED for prouble-free service.

Series E-400 WIDE RANGE SWEEP SIGNAL GENERATOR
Complete with test cables. quartz marker crystals and Technical Manual. Size $101 / 2 \times 12 \times 6$."

Not Price $\$ 7 / 470$

Series ES-500

 HIGH SENSITIVITY 5" OSCILLOSCOPEComplete with light shield, calibrating screen and operating manual. Size $81 / 4 \times 141 / 2 \times 18^{\prime \prime}$ Net Price $\$ 4950$ convenient Terms Avaliable

- Direct Frequency Reading 2 to 480 Mc. 5 ranges to $240 \mathrm{MC} .280-480 \mathrm{MC}$ bands
harmonically calibrated. 3 color, $61 / 2^{\prime \prime}$ diam. etched tuning dial, high ratio rim driven. Zero back-lash.
* 1500 Point Vernier Scale. Engraved lucite hair-line indicator. Positive readings free from parallax.
\star High Output and Accuracy via use of selected and true VHF components and circuits. Voltage regulated oscillators. Crystal calibrated plus crystal conirol.
* Narrow and Wide Band Sweep. 0-1MC and 0-10MC
* Wide Range Phasing Control.
* Multiple Crystal Marker-Calibrator Oscillator built-in. 4 rotary selected crystal sockets. 10.7 MC and 2 MC crystals furnished as standard equipment.
* Terminated RG/U Coaxial Output Cable and dual R. F. atteמuators, triple shielded, stepless, quiet.
* Simultaneous A.M. and F.M. test facilities.
* Double-Pi Line Filter plus multi-section, copper-plate shielding of entire instrument.
* Tube Complement: 3 each 6]6 \& 6C4. l each VR-105 \& 6X5.
* Fully Licensed under W.E., A.T. \boldsymbol{C} T and Remco patents.
* PLUS many other new "Precision" developments and improvements too lengthy to list at this time.

YOU MUST SEE the Series E-400:
\star Extended Range, Voltage Regulated Vertical Amplitier. Response to 1 MC. 2 Meg. input resistance. Approx. 20 mmid. input capacity.

* 20 Millivolt Vertical Sensitivity. Such high sensitivity required for diversified TV, FM and AM circuit analyses.
* Vertical Input Step Attenuator. xl, x10, x100. Additional continuous vernier control. Cathode follower input circuit.
\star Extended Range Horizontal Amplifier. Response to . SMC $1 / 2$ meg. input resistance. Approx. 25 mmid. input capacity.
\star Linear Multi-Vibrator Sweep Circuit. 10 cycles to 30 KC . Improved circuits assure unusual linearity thruout range.
* Amplitude Controlled Synch Selection.
* "Z" Axis Modulation terminals for blanking, timing, etc.
* Phasing Control for line sweep operations.
* Audio Monitoring phone jacks provided at rear of cabinet plus direct access to H and V deflection plates.
\star Light Shield and Calibrating Screen removable and rotatable for varied applications and light conditions.
\star Tube Complement: l each type 6]5, 6AK5, 6SN7, 6X5, 2X2. VR-150. 2 each type 7W7. 5CPI/A CR tube.
* Fully Licensed under patents of Western Electric and A.T.\&T. companies.
\star PLUS a lengthy list of "Precision" refinements and facilities that must be seen to be appreciated.
from your nearest authorized "Precision" distributor to as sure earliest possible delivery.

See the new Series E-400, ES. 500 and the complete "Precision" line of A.M., F.M. and Television instruments.
to view the inside of any instrument and A1k know why "Precision" is the Standard of Workmanship, Performance and Aecuracy.

Export Division: 458 Broadway. New York. U. S. A. - Cables - Morhanex

Zenith 4G800 Chassis 4E41

This model appears in Volume XVII of Rider's Manuals, pages 17.1 and 17.2. The On-Off switch \#85-433 does not completely break contact on some receivers when the lid is closed, causing battery drain. To correct this condition, saw one plastic switch knob $46-736$ into $1 / 16^{\prime \prime}$ lengths and place a length on the switch shaft, and then replace the knob. This will force the switch down far enough when the lid is closed to break contact and disconnect the batteries.

In some rases the calibration pointer touches the metal front of the cabinet, thus putting the gang at an a-c potential and causing a hum. To correct this condition place a fibre washer \# $93-323$ between the pointer and the metal dial front. This fibre washer between the metal front panel and the dial pointer, completely prevents this "shorting" condition.

In very rare cases, when hum is encountered and cannot be corrected in any other manner, changing the 1 S 5 tube is suggested.

On later production runs the 3 Q4 tube was replaced with a 3 V 4 tube. The circuit remains the same in this case. However, the wiring to the tube base has been al. tered. The $3 Q 4$ is not interchangeable with the 3 V 4 because of socket connections.

Enough extra lead length should be left when replacing the wavemagnet lead on the Zenith fagOo so that a break does not occur at the point indicated.

In some cases when the front lid of the receiver is open. the receiver will cut in and out or sometimes be entirely dead. The wire from the wavemagnet to the front door hinge may break at the linge connection. To correct this condition, remove the handle and resolder these leads, being quite certain that solder is not allowed to run back on the antenna lead and that enough extra antenna lead is allowed for flexing to prevent breakage when the door is open as illustrated in the accompanying diagram.
Noblitt-Sparks Chassis RE-202, RE-231
These chassis are used in Models 555, $555 \mathrm{~A}, 552 \mathrm{~N}$, and 552 AN , appearing on pages 16.1 through 16.4 of Rider's Volume XVI.

Farnsworth U-12A Capehart

This model appears on pages 2-1 through 2-9,10 of Rider's TV Manual Volume 2. Horizontal output transformer 750002-A is now being supplied as a replacement for transformer 94276. The parts are identical with the following exception. The secondary of transformer 94276 is tapped twice and these leads are numbered 5 and 6, while the secondary of transformer 750002-A has only one tap. numbered 5. When using transformer $750002-\mathrm{A}$ as a replacement, thercfore, leads 5 and 6 must be connected to the points previously connected to leads 6 and 7 .

Tops for TV Replacements - New Sprague Type TVA and TVL Drys

- Sprague serves the service industry first again with the most complete line of television electrolytics. Engineered especially for tough TV replacement applications, Sprague's new Type TVA "Atom" and Type TVL "Twist-Lock" electrolytics stand up under the high temperatures, high ripple currents and high surge voltages encountered in TV sets.
- You will find comprehensive listings of the most popular replacement units for RCA, Philco, Dumont, Admiral, General Electric, Motorola, Emerson, Zenith, Westinghouse and other leading set brands in Sprague's new bulletin TV-1.
It's yours for the asking. Write today.

SPRAGUE PRODUCTS COMPANY, North Adams, Massachusetts
Please send me your bulletin TV-1 without delay.
\qquad
Name
Street
City ... Zone................ State.............................

SERVICEMAN Espey Radio Chassis are Easy to Sell . . . Easy to Install . . .

514 AMPLIFIER
513 TUNER
This New Deluxe Custom Built AM-FM Quality Chassis gives you increased sales in the profitable chassis replacement market.
Model 513 is intended for the discriminating listener who desires the ultimate in performance. Separate tuned RF stages are employed on both the $A M$ and FM bands to provide extreme sensitivity and minimize spurious responses. It is designed to operate from an external power supply and feed into an external audio amplifier. The power requirements for the Tuner are 6.3 volts AC or DC af 3.5 amperes, and 220 volts DC at 60 milliamperes. Tuning ranges are:
FM-88 megacycles to 108 megacycles AM-535 kc to 1720 kc

FEATURES

1. Superheterodyne AM/FM circuit.
2. Improved Frequency Modulation circuit, stabilized against drift.
10 tubes plus electronic tuning indicator.
3. Tuned RF circuits on AM and FM
4. 6 -gang Variable Tuning Condenser.
5. Automatic volume control.
6. Full range treble control.
7. Full range bass boost control.
8. Indirectly illuminated "slide-rule" dial.
9. Smooth fly-wheel tuning.
ii. Antenna for AM, and Folded dipole antenna for FM.
10. Provision for external antennas.
11. Wired for phonograph operation.

MODEL 514 POWER SUPPLY \& AUDIO AMPLIFIER
Model 514 De-Luxe Power Supply \& Audio Amplifier is designed specifically for use in conjunction with the Model 513 Tuner, but may be used wherever a high quality audio amplifier is required. Power requirements are 105/125 volts AC, 50/60 cycles; power consumpfion approximately 150 watts.

FEATURES

1. Parallel push-pull output circuit.
2. Self-balance phase inverter system.
3. Extended range high fidelity response.
4. Inverse feedback circuit.
5. 6 tubes plus two rectifiers.
6. Output impedance selective for any speaker requirements (4 ohms to 500 ohms). Power output approx. 25 watts. Write Dept. KD12 for your free catalog.

Preventive Maintenance
(Continued from page 1)
vertising progran which was carried on in local newspapers and amusement digests circulating in the area. Supplementing such advertising was the advertising of parts and set distributors who bought space on the radio pages of local dailies, calling attention to the program for "Preventive Maintenance." The continuous bombardment of the public through newspapers, broadcasts, mailing pieces, and other forms of publicity aroused the interest of everyone in and around Harrisburg, so much so, that members of the local radio servicemen's association developed new lights in their eyes. Moreover, the association became the focal point of interest in the local servicing industry as well, with the result that many requests for membership were received and numerous unsolicited offers of cooperation were forthcoming.

The results of the program were beyond expectations. It was felt that such an effort would have beneficial effects in all directions, but they were far in excess of even the fondest hopes. Not only did the members of the servicing industry and their jobbers, consequently the parts vendors who sell these jobbers, note increased sales, but even the radio broadcast stations gained listeners. In this respect, it is only natural that stations located on a portion of the tuning scale where reception, for one reason or another, is not very good, suffer a falling-off of listener interest. Many of these conditions are associated with imperfect receiver operation. Therefore, restoration of the receiver condition to that which will afford equal efficiency all across the tuning dial, will add listeners to the stations located along the improved portion of the tuning scale.

As to direct results, the radio servicemen in that community noted that receivers which had been up in attics for long periods were being brought in for checkup and repair. As frequently as they came in single units, they were brought in pairs. Many men reported that when they called at the customer's home, they were requested to inspect as many as two and three additional receivers! All along the line it was a revelation!

In a survey taken among the members after the program was completed, it was found that business had increased from 25% to 30% OVER THE EQUIVALENT PERIOD IN 1947, when the servicing business was still riding fairly high higher than normal.

Here are some other data for serious consideration. Among the members who participated in advertising and kept records, 70% reported an increase in business of the aforementioned 25% to 30%. Of these receivers, fully 65% were pre-war and 35% were post-war. Even among the 10% of the members who did not participate in the advertising, the increase in business was about 15% !

From the viewpoint of the parts jobbers and the manufacturers, the following figures are highly significant. They show the increase over an equivalent period in 1947, in servicemen purchases of three types of parts, namely tubes, capacitors, and volume controls.

| Percent
 of Members | Tubes | | |
| :--- | :--- | :---: | :---: | | Parts |
| :---: |
| Capacitors | Controls

Recognizing the fact that only three local broadcast stations, two $a-m$ and one $\mathrm{f}-\mathrm{m}$ station, participated in this pro. kram, and that it carried the weight of only three of the many nationally prom. inent parts manufacturers, although these were important, the showing is remarkable. Congratulations to all the participants.

It is significant to remember that tre. mendous improvement in public relations between the servicing industry and the public was also attained. This is important to every branch of the radio industry because the servicing group are of vital importance in the successful sale of every electronic device made available to the public. It is not sufficient to sell it. It must be serviced so that it will stay sold!

From what we are given to understand, the State Federation plans to institute such a program sometime during 1949 with every one of its chapters in Pennsylvania. Without question it will benefit every parts vendor in the state and through the parts jobbers, every manufacturer of parts who sells in the area. Most certainly it will benefit the servicing industry and now is the time to formulate such plans in all the states of the nation. Anyone interested in communicating with the Sec. retary of the Federation of Radio Service. men's Associations of Pennsylvania for additional details, can write to John G. Rader, 704 Walnut Street, Reading, Pa .

RIDER MANUALS KEEP MPTO OATE

Town Meetings

The Town Meetings of Radio Technicians that have proved so popular elsewhere have been carried to Toledo, Ohio, and to Anderson and Evansville in Indiana. On March 14, John F. Rider spoke to the local servicemen's association at Toledo, Ohio, at a meeting sponsored by the Warren Radio Co. His subjects were: TV Antennas, Transmission Lines, and Impedance Matching. A Question and Answer period followed the talks.
The servicemen of Anderson, Indiana, and vicinity gathered at a Town Meeting on April 5. This meeting was sponsored by Seybert's Radio Supply Co., and the local radio servicemen's association. The meeting was held at Seybert's new store. Rider spoke on the same topics that had proved so popular in Toledo, with a Q and A period again following the lectures.

On the evening of April 6, the radio servicemen of Evansville, Indiana, and vicinity gathered in the Knights of Columbus Auditorium in Evansville. This meeting was jointly sponsored by Ohio Valley Sound Service and Wesco Radio Parts Co. Rider spoke on the same subjects as at the Toledo and Anderson meetings, with a Q and A period again following.

Notice

On page 14 of the March issue of Suc. cessful Servicing a listing of chassis numbers versus model numbers was given. The caption was inadvertently omitted. The listing should have been captioned: A Listing of RCA Chassis Nunibers versus Model Numbers.

Old Receivers Still Being Repaired

Every so often people discuss the status of radio receivers in the hands of the public. Each year a number of very old receivers are discarded but surprisingly enough, receivers 10 to 15 years old still find their way into the service shops and not just now and then with major time lapses in between, but almost as a regular daily diet. As a matter of fact there has been a jump in this activity during the last few weeks, even in TV areas.
The $70,000,000$ receivers said to be in the hands of the public, in homes and cars, embraces the production of more than 20 years. Yet no one year's production can be said to have disappeared completely from use. Each time something happens which limits the sale of new equipment, many of these old-timers crop up. Many a receiver owner still feels that his "Homodyne" of 1931 is still the best thing out!

Reviewers Praise "UnderStanding Vectors and Phase."

"A book for the radio serviceman, this is an excellent example of what can be done by the practical writer for the practical reader. The authors realized that vectors are inherently far simpler than much of the mathematics traditionally taught as preparation to their study, and have produced a book which can be understood by any radioman with a knowledge of arithmetic and simple geometry.
"Methods of handling vectors and calculating impedance, reactance, and resistance in circuits containing various combinations of resistors and reactors are clearly explained. Incidentally, many radio servicemen will find in this book their first understandable exposition of the FM discriminator."-Radio Craft.
"This new book has been written as an aid to understanding new technical developments in the radio and electronic field. The text is prepared especially for the radioman without technical training, electronic engineering students, and servicemen. A minimum of mathematics has been used in presenting the material, thus any person with a simple knowledge of electronics should have no difficulty in grasping the subject.
"Since more and more technical publications use vectorial representation in discussing radio and electronic circuits, a working knowledge of this method of presentation is worth while for those in the industry.
"The book is clearly written and diagrams have been used freely to illustrate the points under discussion. The book is recommended for home study."-Radio News.

Hace vee-d-X has an

ANTENNA FOR EVERY NEED

CHIMNEY MOUNT - The finest chimney mount available. Firs any opening - round, square or rectangular from $4^{\prime \prime}$ io $22^{\prime \prime \prime}$ for $1^{\prime \prime}$. $11 / e^{\prime \prime}$. and $11 / 4^{\prime \prime}$ masts.

VEE-D-X means video distance

JUNIOR JR-13 - A fine
performer, yef moderately priced. Two bay, full wave, sixteen element stocked orroy, odequate for most fringe oreos.

LIGHT WEIGHT MAST Nothing finer - or foster to instoll. Sturdy mog. nesium mast in 12 or guy cobles instolled
———

CHAMPION RDH-A sixfeen element full wave, four bay, stacked array, cut especially for any One of channels 7 to 13 . high channel antenna.

LIGHTNING ARRESTER No need to cut tronsmission lines. Does not disturb impedance match. High di-electric, low loss

LoPOINTE.PLASCOMOLD CORP., Unionville, Conn.,

Gentlemen: Send me new literature and prices on the complete line of VEE.D.X television accessories.

Name.
Company
Sireet...
Streel THE NEW YAGI
sensafional low cost, high gain antenna

The new VEE.D.X, RDY
Series, a four element beam cut for each partic. ular channel. Here is an ontenna which is the most sensational single channel performer yet to be man. ufactured, VEE-D-X engineers have aftained as. tonishing results in producing an array combin. ing every desirable char. acteristic necessary for optimum performance.

Y...

Television Changes

Philco 48-1001, Code 121

This moulel appears on pages 2-81,88 through 2-86 of Ruler's TT Manual Volume \gtrsim. All model 48 -1001 receivers are Code 121 unless a different code number is stamped next to the model number on the rear of the chassis. To determine the run number of a set. examine the series of numbers stamped in ink on the rear of the chassis. The last digit of the series gives the run number. For example if the number is 1111374 , the set is run 4.

Run 4

All paper capacitors were changed to paper-moldert capacitors. When replacing parts. the parts number given in TV Manual Volume 2 should be used with, the following exceptions.
Section :
C210 should be Part No. $45-3502$
(211 should be Part No. $45-3502$
(21) should be Part No. $45-3502$

Section 8
C304 should be Part No. $45-3502$
C305 should be Part No. $45-3502$
C:306 should be Part No. 45-3502
C307 should be Part No. 45-3502
C30s should be Part No. 45-3502
(310 should be Part No. 45-3502
C311 should be Part No. 45-3502
(312 should be Part No. 45-3502
(314 should be Part No. 45-3502
('315 should be Part No. 45-3502
(31\% should be Part No. 45-3502
Section 5
('509 should be Part No. 45-3500-3

Run 5
Z202, the discriminator transformer, Part No. 32-4214. was replaced by Part No. $32-4214-3$ to reduce frequency drift.

Run 6
R547, Part No. 33-5547-2, was replaced by Part No. 33-5546-12. This involved a change only in rating.

Run γ
To reduce modulation hum of high-frequency channels. a choke, Part No. 32-4112-2. was added between the junction oi R400, C402, and L402 and the junction of C409 and R405.

Industrial Television IT-1R Series 2
This model appears on pages $1-3,4$ of Rider's Television Manual Volume 1. The gear assembly on the r-f tuning assembly may be adjusted in the following manner.

With the chassis removed from the cabinet and placed on the bench fucing the mechanic:

Loosen screw in left-hand bottom corner of the dial assembly. (This screw holds the i(ller gear bracket.)

Move the idler gear out of mesh with the rest of the assembly.

Rotate tuner clockwise to stop.
With pointer held at the right-hand edge of the $7-13$ television box, gently mesh idler gear and tighten the screw holding same to the rear assembly.

Pointer should now be in the correct position, and indicate correctly over the range of the tuner.

Remington 1950

This model is the same as Models 80 and 130, appearing on pages $1-1$ through 1-9,10 of Rider's Television Manual Volume 1 , except for the following changes.

The B-supply voltages are all supplied by one power transformer and a 5 U 4 G rectifier. Both the centering rontrols are wired in series with the common supply. Only one filter choke is used in the common supply, instead of two as in Models 80 and 130.

RIDER TV MANUALS VOLUMES

"How It Works" TV Volume 2
On page 13 of the "Hore It Works" Book of TV Volume 2, the diagrams of Fig. 6 and Fig. 7 should be interchanged.

TV PICTURE PROJECTION AND ENLARGEMENT

By Allan Lytel

The story behind TV picture enlargement by viewing lenses and projection systems. Optics as applied to the TV receiver, installation, and adjustments is made simple and understandable. Every TV serviceman and TV student should own this book!

Contents include: Properties of Light - Reflection and Mirrors Refraction and Lenses - The TV Picture - Modifications of Schmidt Projection System - Refractive Projection - TV versus Motion Pictures.

Approximately 250 pages
 Over 100 illustrations

Price $\$ 3.30$
May 1949 Publication
Order From Your Jobber Or Directly From Us

General Electric 417, 417A

Model 417 appears on pages 16-16 through 16-19, and pages 16-21 through 16-24 of Rider's Volume XVI. Model 417A a ppears on pages 17-27,28 through $17-98$ of Rider's Volume XVII. These changes are in reference to the wiring of Phono Preamp Plug RJP-005.
since some of the plugs supplied are inconsistent with specifications regarding the identification notch often referred to in wiring guides, this notch must be disregarded for indentification purposes to avoid confusion. While in some receiver productions the position of this key notch will differ from others, nevertheless, all receiver productions are wired the same in respect to the polarized system of prong arrangement.

Phone Preamp Plug RJP-005 in the GE 417, 417 A should be wired as shown.

When replacing the plug RJP-005, it is only necessary to follow the simple wiring rule as used in all receiver production where the cluster of four prongs is first located within one-half the area of the plug base as determined by the inaginary center line. Next, locate the two remaining prongs as viewed from the prong end of the plug and begin the wiring in a clockwise direction as indicated by the letter designations in the accompanying diagram. The letters A, B, C , etc., in the diagram, are keys to wiring points, as referred to in the various published receiver circuit diagrams.

RCA RP-176 Record Changer

This record changer appears on pages KCD.CH. 17-1 through RCD.CH. 17-12 of Rider's Volume XVII. The method of attaching the pirot arm spring (Ref. \#75) has been changed. The stud (Ref. \#74) is no longer being used. A curved spring which clips into the inside rear of the tone arm is used in its place. The timing notch originally in the rim of the main cam and gear is no longer used. A small metal projection has been added to the inside of the rim of the main cam and gear for the same purpose. The indention in the hub of the main cam and gear into which a projection on the ratchet lever fits may also be used for timing purposes.

Add the following stock number to the parts list: 73198-Curved spring for anchoring pivot arm spring.

RCA 8V151

This nodel appears in Volume XVIII of Rider's Manuals, pages 18.25 through 18.40. An addition to the Parts List under Miscellaneous is:
74312 Ornament - Wood fibre ornament for front of cabinet.

Long life in a vibrator results from a combination of good design and careful production. The design of Mallory Vibrators is a product of an unusual combination of engineering talent

Mallory "2448" Vibrator Deal

This deal gives you a handsome storage and display cabinet for your stock of vibrators, together with a selection of vibrators and buffer capacitors that will answer 75% of your requirements.

and resources in electronics, electrochemistry and metallurgy.
For example, the contacts in Mallory Vibrators are Mallory-specified and Mallory-made. And a patented Mallory design insures a perfectly balanced mechanism.
Convincing proof that Mallory maintains careful production is the fact that more Mallory Vibrators are in use as original equipment than all other makes combined.
You get not only long life, but dependable starting, and high output efficiency from Mallory Vibrators. No wonder they are so popular with radio service men everywhere-Mallory Vibrators are best for replacements. See your Mallory Distributor.
mohe mallory vibrators are lised in original equipment than all other makes combined

VIBRAPACK* POWER SUPPLIES . . FILTERS
APPROVED PRECISION*PRODUCTS

Zenith 6G801, Chassis 6E40

This model appears in Rider's Volume XV111, pages 18-7, 18-8, and 18-10. In some cases when microphonics are encountered they can be eliminated by replacing one or more of the tubes. The offending tube can be located by turning the set on with the volume advanced and the set tuned to an off-station position. Then qently tap each tube, the one emitting the loudest "ping" is the defective item.

Tele-Tone Chassis W

Models 154, 155, 173, and 177 are the same as Model 152, Chassis W, which appears on pages $17-2$ and 17.3 of Rider: Volume XV1I.

Westinghouse H-125, H-126, H-127

Models H-125 and H-120 appear in Rider's Volume XV, pages $15-8$ through 15-10. Several changes were made in the chassis of these two models in late production. A 35L6GT output tube replaces the 35 A 5 . The electrical characteristics of the lubes are sinilar except for a differ ence in tube bases and connections. An isolating network consisting of a 470 -ohm resistor (44) and a $0.02-\mu \mathrm{f}$ capacitor (14) has been inserted in the plate and screen voltage supply line for the r-f and converter stages. In the circuit, the rotor plates of the tuning and trimmer capacitors are now connected directly to chassis ground rather than to the AVC line.
Model H-127 is the same as the previous models with a burgundy and gold cabinet. The following items should be added to the parts lists for these models:
14 RCP10W2203A Capacitor, $0.02 \mu \mathrm{f}$
44 RC20AE471M Resistor, 470 ohms 0.5 watt
V.3711-2

V3991
Case Assembly, center ($\mathrm{H}-126$ and $\mathrm{H}-127$)
Cover, left hand (H-127)
V. 3992 Cover, right hand (H-127)
V.3498-2 Handle Assembly (H-127)
V-3481-2
V.3333-2
V.3455.2

Knob (H-127)
Medallion ($\mathrm{H}-127$)
Dial (H.127)

Zenith S-11468

Model S-11468 may be found in the Record Changer section of Rider's Volume XV, pages RCD.CH. 15-1 through RCD. CH. 15-9.
The following instructions deal with repairing erratic landing of the needle of Model S-11468. In the first production of

Courtesy Sears Roebuck
The service bench of the Sears Roebuck Service Shop at Durham, North Carolino Perhaps this will give ideas to those of you who are planning to renovate your shop Incidentally, notice the Rider Manuals above the work bench where they can br reached quickly and easily.
this nou-intermixer record changer, a neoprene cork-tipped liit pin, Part No. S-13056, was used to stabilize the set down or landing of the needle on the mun-in groove of the record. The weight of the tone arm and the friction plate, riding on the neoprene tip of the lift pin was relied on to provide effective braking action. Grease or oil on the neoprene tip of the lift pin will cause erratic landing of the tone arm on the record. To remove the oil or grease, clean the pin tip and friction plate with carbon tetrachloride and roughen with fine sandpaper.
Later production S-11468 changers have a spring type brake on the tone arm shaft and use an all metal lift pin, Part No. S-13086. Erratic landing, where the arm swings sharply to the center of the record or beyond, may be caused by an incorrect locating bushing. Replace with a $94-415$ bushing.
If the tone arm skips grooves and repeats, the vertical hinge on the tone arm may be too tight, causing the arm to hang slightly. This prevents the needle from exerting enough pressure on the record to follow the record grooves. To free the hinge, use a pair of long nose pliers and bend the horizontal spring " U " bracket until it pivots freely, Be certain that the connecting lead to the crystal cartridge is dressed so that it does not interfere with either the vertical or hori-
zontal movement of the tone arm. 7'his is important.
Excessive center hole wear on recorde is caused by a sharp edge or burrs on the spindle shelf. The edge of the record shelf must be perfectly smooth and slightly rounded. Check the edge, and if sharp. smooth out with fine sandpaper.

RIDER MAYUAIS weak sicitisive

GE 201, 202

Since there are electrically identical. these models have been added to the listing for Models 200, 203, and 205 which appears in Rider's Volume XVIII, pages 18-19 and 18-20.
The following items have been added to the parts list:
RAU-001 Cabinet-ivory (plastic), model 201
RAU-023 Cabinet-brown (plastic), model 202
The Beam-a-Scope cabinet baak listed as RAB-003 also applies to models 201 and 202

Tele-Tone Chassis D

Models 110, 119, 124, 126, and 132 are the same as Model 117, Chassis D, appearing in Rider's Volume, XV, page 15.4.

```
LZ२6 'ON LIWHGd
< N 'yMOX MaN
    ||Vd
g\visOd s `\Omega
4 & T d d 'zos '3es
```


Distribution of This Issue-45,000 Copies

MAY, 1949

TV MEASUREMENTS by Henry Chanes

II the servicing of television receivers, observation of the picture and sound will very often yield sufficient information so that the defect can be isolated to a certain part of the receiver. However, in order to dotermine the stage or circuit in which the defect exists and then the defective part itself. it is ustally necessary to make rarious measurements in the television receiver. Many of these measurements are the same as those used in servicing radio receivers. These include d-e and a-c voltage and resistance measurements. Other measurements such as high-voltage and waveforms, are peculiar to television receivers. By high roltage is meant the voltage used on the anode of the picture tube. which may be anywhere between 5,000 and 30,000 volts.
The measurement of low d-c voltages in television receivers includes that of B. plus supply roltages, bias voltages, plate, screen, and cathode roltages. and the control voltages used in the afe or age sres
tems. These voltages vary from a small fraction of a volt to perhaps as high as 400 volts. These will all be referred to as low dec roltages to distinguish them from the high voltages mentioned above.

> THIS is the first of a series of three articles on Measurements. This material is reprinted from the "How It Works" book that accompanied Rider's TV Manual Volume 2 because of the importance of the material and the fact that the distribution of this "How It Works" book is limited essentially to those areas where TV exists.

The measurement of a-c voltages in a television receiver may involve power line voltages, which are usually 60 cycles, audio voltages which may range from 40 to 10 ,000 cycles, and video voltages which may be as high as 4 mc . In addition there are the sync and sweep voltages. which only
go up to 15,750 crecles in frequency, but due to their irregular waveform require some special care in measuring. In some cases it may be necessary to measure i-f or r-i voltages. In this case the frequencies range from 4.5 mc to as high as 216 me.

From this brief description. it can be seen that the voltages encountered in a modern television receiver have a tremendous variety with regard to irequency, anıplitude, and waveform. Because of this, it is necessary to know which instrument should be used to make any necessary measurement. It is important for the serviceman to know how to take full adrantage of the instruments he has at hand. at the same time realizing the limitations of each. In many cases the serviceman can improvise in order to obtain measurements that he ordinarily could not make with his existing test equipment.
(Please turn to page 11)

Sears 8020, Chassis 132.841

This model appears on pages 18-66 through 18.60 of Rider's Volume XVIII. It has been discovered that the dial cord on some of these receivers binds. If the dial cord is strung as shown on page 18-58, continued turning of the tuning knob in a clockwise direction, after the pointer has reached the right-hand end of the dial, will cause the tuning shaft to turn in the cord and the cord will slide back on the shaft toward the chassis. Then, when the knob is turned in the counterclockwise direction, the cord will travel farther back on the shaft and have a tendency to come in contact with the chassis and bind on the shaft.
If the cord is wound from back to front on the tuning shaft, as shown in the accompanying figure, it will travel away from the chassis when the knob is turned in a counterclockwise direction and the binding will not occur.

When the dial cord of the Sears 8000 is wound from back to front on the tuning shaft, the cord will not bind on the chassis.

Federal 1034

This model is the same as Model 1024 TB , appearing on pages 17.1 through 17 s of Rider's Volume XVII, except for the cabinet.

RCA 8V112, Chassis RC-616, RC-616F

The schematic diagram for this model, which is contained in pages 18.17 through $18 .{ }^{2} 4$ of Rider's Volume XVIII, is in error in showing the connection of R22. It should be shown connected to C18A instead of to the RED lead of the output transformer.
In order to provide adequate lead length, resistor R10 (56,000 ohms) has been changed from $1 / 2$ watt to 1 watt.

Chassis RC-616F, used in the second production of these instruments, is very similar to Chassis RC-616 except for the following:

> First Production RC-616
fFour position selector switch
\{M.M.-PHONO-AM-FM
Aux. input jack is not used
Sscond Production RC-616F
fFive position selector switch
(AUX.-M.M.-PHONO-AM-FM
Aux. input jack is used
Except for the following replacement parts, all parts are identical.
74163 Selector switch is used in place of 73608 (switch S1, S2)
74164 Control panel decal for mahogany or walnut instruments is used in place of 73764 decal

74354 Control panel decal for blonde instruments is used in place of 73765 decal

Fig. 1. (Above) shows the selector switch used in RCA Chassis RC-616F. Fig. 2. (Below) The simplified circuit of the selector switch in the \#2 position.

Figs. 1 and 2 show the selector switch S1 used in Chassis No. RC-616F. The connections to S 2 are identical in both chassis. Note that position \#2 (M.M.) of RC-616F corresponds to position \#1 (M.M.) of RC-616. No connections are made through S2 in AUX. position.

Espey 509

This model is the same as Model 7B1, appearing on pages 18-1,2 of Rider's Volume XVIII, except for the following changes. Capacitor C55 ($10 \mu \mu \mathrm{f}$) connected from pin 1 of the 7F8 tube to ground has been removed. The $0.003-\mu \mathrm{f}$ capacitor C 9 has been changed to $1500 \mu \mu \mathrm{f}$.
The position of the trimmers has been changed. Looking at the front of the set, they are: C49 (broadcast trimmer), C51 ($\mathrm{f}-\mathrm{m}$ oscillator), C50 (broadcast oscillator), and C52 ($\mathrm{f}-\mathrm{m}$ r-f trimmer).
A coil has been placed in the cathode lead of the $7 Q 7$ tube before this lead is
connected to C50. Capacitor C53 ($15 \mu \mu \mathrm{f}$) has been changed to a variable capacitor and is now connected between L5 and ground, instead of across L5. The junction of C 50 and the cathode lead of the 7 Q 7 tube is connected to the ground side of this capacitor.

The $22,000-\mathrm{ohm}$ resistor, R51, connected between R13 and ground has been eliminated. The side of C19 that is not connected to R13 is grounded directly. The side of the tone control, R14, previously connected to C19 has been left open. R20 has been changed from a 470,000 -ohm resistor to a 1 -megohm variable resistor. The movable arm of R20 is now connected to pin 5 of the 7 F 7 tube, and one side of R20 is connected to the junction of C21, C22, and C23. C56, the $1500-\mu \mu \mathrm{f}$ capaeitor across the filaments of the 6BA6 tube, has been removed.

Federal 1027, 1035

These models are the same as Model E1025TB, appearing on pages 16-1 through 16.4 of Rider's Volume XVI, except for the cabinets.

General Electric 802, 803

Model 802 appears on pages $1-52$ through 1.72 of Rider's TV Manual 1 and Model 803 appears in TV Volume 2 on pages 2-1 through 2-21.

A sharp low-frequency audio buzz which sounds similar to 60 cycle sync pulse reproduction has been isolated to the filament lead that connects to the head-end switch wafer of these models. This hum was noted particularly on Channel 13 reception but possibly exists on some of the other high-frequency channels. It is apparent only when tuned to the station. Make the following corrections:

Disconnect the supply filament lead at the point where it connects to the r-f head-end switch wafer (2nd from rear). This filament lead runs between V20 and the $r-f$ head-end switch, S1. Wind a choke out of self-supporting \# 18 insulated wire by close winding 8 turns around a $1 / 4$-inch rod. Slip the choke off the rod and connect it in series with the filament lead and the point of the switch where the lead was originally connected. Connect a 5,000 $\mu \mu \mathrm{f}$ ceramic capacitor between the junction of the choke and filament supply lead, to the lug on which C147 is grounded. Attach the ground end of this capacitor as close as possible to the ground end of the lug where it assembles to switch back plate. Leads on choke and capacitor must be short.
The following new parts are to be added to the Parts Lists:
1 Choke- 8 turns \# 18 wire closewound, $1 / 4$-inch inside diameter.
$15.000 \mu \mu \mathrm{f}$ ceramic capacitor, Cat. No. RCW-3014.

Templetone H-127

This model is the same as Model G-725, appearing on pages 17-9 through 17.6 of Rider's Volume XVII.

Radio Servicemen: Enroll Now in the Industry's

Newest, Practical Course in

Backed by the Famed Facilities of CREI

 Safeguard Your Future! Earn more Money in the Expanding Servicing Field

- CREI-long known as one of the nation's outstanding technical schools-now offers good radio servicemen a practical home study course in Television and FM Servicing. It is based on the assumption that you are a practicing radio repairman with sense enough to know that if you don't learn FM and Television, you might as well close up in a year or two. The shop without qualified FM and TV repairmen will soon be as obsolete as a blacksmith shop... because approximately $1,300,000$ television sets will be produced in 1949 alone... because there will be $4,000,000$ more radios with FM by the end of this year ... because the repair business will go to the men with ability to do a scientific servicing job on any kind of set.
CREI developed this course at the request of several nationally known manufacturers and distributors who recognized the lack of qualified servicemen to handle TV and FM installations and servicing. After careful preparation CREI has created this special servicing course. It has been tested-and proved in the field. It is as practical as we can make it. It enables you to put the knowledge you gain from each lesson to work immediately. It won't make you rich overnight. It won't make a television engineer out of you in "ten easy lessons". You don't get a "free television set with your first lesson"-or your last. But here's what you do get: a systematic method of FM and TV installation and
maintenance, knowledge of TV fundamentals, lessons in basic radio mathematics. meters, lenses and mirrors, inductive coupling and condensers at ultra-high frequencies, practical applications of resonant circuits, TV tubes, FM receiver alignment, TV antennas, picture synchronization, TV receivers, TV trouble-shooting-and much more.

CREI is an accredited technical school with 22 years experience teaching radio engineers and technicians, both in home study and residence school work. Hundreds of practical engineers with key positions in industry, radio, and TV stations owe their successful training to CREI. More than two years of preparation have gone into this FM \& TV servicing course. Backed by one of America's foremost technical institutes, it is designed for one purpose only; to help a good radioman become a good FM-TV serviceman. The course is practical; the cost is popular. Get complete details by filling in and mailing this coupon.

Radio Service Division of ENGINEERING INSTITUTE

An Accredited Technical Institute
Dept. 255-A 16 th \& Park Rd., N. W., Washington 10, D. C. Branch Offices: New York (7) 170 Broadway - San Francisco (2) 760 Market St.

General Electric 41, 42, 43

These models appeur on pages 17-1,2 through 1r-15 of Rider's V'olume XVII. To increase the sensitivity at certain points on the broadeast and shortwave bands, a $470-$ $\mu \mu \mathrm{f}$ capacitor, Clll, catalog number UCU544, has been added between terminals 3 and 5 on the finst i.f transformer. On curly production sets without this capacitor, the following should be done:

1. This capacitor should be added between terminals 9 and 10 of wafer \#6 on the band switch.
2. The orange, green, and black leads from terminale 5,3 , and 8 of the first i-f transformer to the bund switch should be grouped together and pressed to chassis.
3. C 108 , a $0.02-\mu \mathrm{f}$ bypass capacitor. ground end, should be removed and grounded under the mounting lug of the first i-f plate coil.

RCA 8BX6, 8BX65, Chassis RC-1040C
These models appear on pages $18-11$ through 18-1' of Rider's Volume XVIII. The parts list should be changed as fol. lows:
Add: $\mathbf{7 1 0 4 0}$ Socket-2 contact female sock. et for external loop
Delete: Speaker assembly 92577.3.
73123 Speaker-4" PM Speaker
U'se Stock No. 71058 Speaker (4" x 6") as replacement.

RIDER MANUALS KEEP UP TO MATE

General Electric 219, 220, 221

These models appear on pages $15 \cdot 28$ through $15-31$ of Rider:' Volume XI'. In the part: list, catalog number RIL.003 should be identified ats a replacement loop assembly only for Models 219 and 220. Catalog number RLL.025 should be added as the loop asermbly for Model 221.

Magnavox AMP-109B, AMP-109C, AMP-109D

These are the same as Model AMP-109 on pages 18-1,2 through $18-3$ of Rider's Volume XVIII, except for the following changes. In Model A.MP-109D, only, the 4 -ampere, 250 -volt fuse has been removed from the a-c line. Pin number 1 of the changer motor receptacle is now connected to the bottom of the primary of the a-c transformer. A 4 -umpere, 250 -volt fuse is connected from the bottom of the primary of the a-c power transformer to the high side of the a-c power socket. This side of the a.c power socket is alwo connected to pin 1 of the speaker socket.
The following parts have been substituted:
Ref..No. Part No. Description
3 250152G33 Capacitor, tubular, 0.1 $\mu \mathrm{f}, 600 \mathrm{v}$.
4 250152G33 Capacitor, tubular, 0.1
$\mu \mathrm{f}, 600 \mathrm{v}$.
22 230084G21 Resistor. composition, 22.000 ohms, $1 / 2 \quad w$. (AMP-109B only)
22230084 G 18 Resistor, composition, $6.800 \circ \mathrm{hm} \mathrm{s}$, $\mathrm{I} / 2 \mathrm{w}$. (AMP-109C \& D only)

Farnsworth P72 Record Changer

This record changer may be found on pages $R C D . C H .18-25$ through RCD.CH. 1NO of Riller's Volume XVIII. A production change has been made in the Surfa-Sonic Control. The $0.02-\mu \mathrm{f}$ capacitor has been changed to $0.1 \mu \mathrm{i}$. The $3,300-\mathrm{ohm}$ resistor has been changed to 2,200 ohms.

The following have been deleted from the parts list:

| Pail Sio. | Description |
| :---: | :---: |
| 25276 | $0.02 \mu \mathrm{f}, 200 \mathrm{v}$ |
| 77240 | 3,300 ohms, $1 / 2 \mathrm{w}$ |

The following have been added to the parts list:

$$
\begin{array}{ll}
25182 & 0.1 \mu \mathrm{f}, 200 \mathrm{v} \\
77184 & 2,200 \text { ohms, } 1 / 2 \mathrm{w}
\end{array}
$$

Its as True Taday as it was Then-.-

Not only strike while the iron is hot, but make it hot by striking.

| FM Transmission and Reception 416 pages . . . Cloth Cover | \$3.60 | A-C Calculation Charts 160 pages $\$ 7.50$ |
| :---: | :---: | :---: |
| Broadcast Operators Handbook 288 pages | \$3.30 | High Frequency Measuring Techniques Using Transmission Lines |
| Understanding Vectors and Phase | | 64 pages |
| 160 pages - . $\begin{gathered}\text { Cloth Cover } \\ \text { Paper Cover }\end{gathered}$ | $\begin{array}{r} \mathbf{\$ 1 . 8 9} \\ .99 \end{array}$ | Oscillator at Work |
| Installation and Servicing of Lo | | 256 pages |
| Power Public Address Sys- | | acuum Tube Voltmeters
 180 pages $\$ 2.50$ |
| tems 208 pages | \$1.8 | utomatic Frequency Control |
| Inside the Vacuum Tube 424 pages | \$4.50 | Automatic Frequency Conirol Sy |
| The Cathode-Ray Tube at Work | | Radar - What it is |
| 338 pages | \$4.00 | 1.0 |
| rricing by Signal Tracing | | ng |
| 360 pages | \$4.00 | 385 pages |
| The Meter of Work | | Radio Amateur's Beam Pol |
| 152 pages | 52.0 | 32 pag |

Master Index-Volumes I to XV $\$ 1.50$
Order from your Jobber or Directly from Us

-Suceacful SERVICING
 REG. U S. Pat. Off.

Vol. 10
MAY, 1949
No. 7

Dedicated to the financial and technical advancement of the Electronic Maintenance Personnel

Published by
JOHN F. RIDER PUBLISHING, INC.

480 Canal Street

New York 13, N. Y.

JOHN F. RIDER, Editor

R. I. LATZER, Associate Editor

Copyright 1949, by John F. Fider
No portion of this publization may be reproduced without the written permission of the publisher

CURTAIN TIME

Safety Is No Accident

We see by the papers that Colonial Airlines has just completed 20 years of flying without a single death or serious injury to either passenger or crew nember. This period of activity represents about $251,000,000$ passenger miles. Quite a record to say the least - but what is more interesting is that the company has adopted a symbol which expresses the attitude of all concerned. It is a safety pin - which is being worn by all personnel.
The use of some such reminder by radio servicemen who are working on TV receivers is not beyond the realm of possibility. It is a habit of the human being gradually to become contemptuous of anything with which - he or she - becomes familiar. A reminder which would tend to alter this contempt to respect would be a very good idea - especially when working with the high-voltage units in TV receivers.
It is said time and again that these voltages will not kill because the current is too low... but we have heard of numerous instances when the physical damage was the result of involuntary motion in consesquence of the shock. To put it simply, men have been injured because they jumped when shocked and during that moment of involuntary activity, their motions were completely out of control.

Safety interlocks are put on TV receiv. ers for a definite purpose to safeguard life and limb. The time saved by shorting the interlock during service inspection or probing of the receiver is too little to gamble with the unpleasant possibilities... It just isn't worth it!... Rubber gloves of the kind which will withstand high voltages should be a must in every TV serviceman's kit. Sleeves should be rolled down, thus covering the skin of the forearm. Operating in this fashion is not too clumsy... If the surgeon can operate with gloves on, the serviceman can make measurements and handle tools with gloves on.

On Ice

According to the Video Newsletter there are about 310 TV station applications under the freeze. Close to 600 FM stations
are operative... The requests for FM station construction permits anount to about one-half of those requested for TV.

What's The Market?

It is reported that as of about the middle of April almost $1,400,000 \mathrm{TV}$ receivers were in use in about 34 cities of this nation. Four cities, N. Y', Philly, Chi., and LA have more than 100,000 receivers each. New York City leads the roster with almost $540,000 \mathrm{TV}$ receivers.

Thanks

Just a public thanks to the different antenna manufacturers who wrote us letters concerning the recent Curtain Time editorial relative to TV antennas; especial. ly the comments that our points were well taken and that more and more performance data will be forthcoming.

Pardon our Pride

Maybe you recall an earlier issue of Successfic Servicing wherein we talked about the forthcoming "Cathode-Ray Tube at Work". This book is being completely rewritten and we just reviewed the pictures for that text. We're certain that you will be happy to see this book. It will have in it just about everything which every user of cathode-ray tube equipment desires - material of the type which never has appeared in any reference or text book heretofore. The publication date will be announced in the June issue of SS - with all the details.

Just for the record, the Simmons people have been advertising their electronic blan. ket for a long time. They feel that its repair should be within the scope of the independent radio serviceman - hence the data on this electronic device will appear in Rider's Volume XIX (19) out during the last week in May.

During the past week we examined the pages being prepared for a new TV antenna book which we shall soon announce. It made our heart happy to see the wealth of practical data - the kind of information which the servicing industry has been seeking. The book is being
authored by an individual who has spent more than 20 ycars in the development and design of high-frequency antennas. This guy really knows his stuff and his ability to put theoretical information into practical, useful language is marvelous. The facts and figures and charts will astound you. The coverage of local and fringe requirements will be COMPLETE \ldots and we mean COMPLETE!

HIWYNI

This is not code. It is simply an abbreviation of a very important condition in the operating life of a servire shop. HAVE IT WHEN YOU NEED IT. It applies to nany things, but especially to Rider Manuals. Remember, your Rider library is a capital investment. It is like having a simnal source or a voltmeter. It is your tool in trade. The means of making servicing profitable... HWYNT. Johi F. Rider

RIDER MANUALS KEEP MPTO DANE

The Rider Diagram Service

Are you taking full advantage of the Rider Diagram Service?
If you require service data on a new receiver, you can obtain the information from us. Naturally, a time lag exists between the publication of the volumes of Rider Manuals and it is to fill this gap that we have this service, so that you may have whatever you need in the way of service data as yet unpublished. The charges for this service are as follows:

1. 35 cents is the charge for all the available data on any radio receiver model up to and including six pages. Each page thereafter will cost 10 cents.
2. If additional money is required to cover the data requested, you will be notified. We cannot forward data without receiving your remittance.
3. Service data on television receivers may be obtained at costs rarying from 35 cents to $\$ 1.50$. It is suggested that you inquire the cost before sending us a remittance for television data.
4. Be sure to enclose a self-addressed envelope bearing a 3 -cent stamp.
If you will follow these rules, it will simplify matters for both of us and you will receive the data you need with a minimum of delay.

The advertising in Si-ccessful Servicing is accepted purely as means of making this publication larger and of greater service to those who read it. That this advertising is limited is simply the result of there being only a certain number of pages which can be devoted to ad. vertising. The fact that an advertisement appears in this magazine does not imply product endorsement by the publisher.

Hersmo TTMEVISION INSTrumbulis

EQUIPMENT AND COMPONENTS

For Better TV Performance and tower Installation Costs

Eliminate the Variables in Television Installation with the Transvision FIELD STRENGTH METER

Improves Installations!! Save $1 / 2$ the Work!!
Has numerous featores and advantages, including-(I) Measuses actual picture signal strength

(3) Antenna orientation can be done exactly ...(4) Measures losses or gain of various antenna and lead-in combinations. . (5) Useful for checking receiver re-radiation (local oscilator)...(6) 12 CHANNEL SELECTOR. (7) Amplitudes of irtertering signals can be checked.... (8) Weighs only 5 lbs.... (9) Individualiy calibrated... (10) Housed in attractive metal carrying case...(11) Initial cost of this unit is covered after only 3 or 4 installations... (12) Operates on $110 \mathrm{~V}, 60$ Cycles, AC.
Transvision Field Strength Meter Model FSM-I, complete with tubes ... Net $\$ 99.50$

TRANSVISION ALL-CHANNEL TELEVISION BOOSTER
 continuous tuning

Model B-I List $\$ 32.50$

TRANSVISION TELEVISION and FM SWEEP SIGNAL GENERATOR

Complete frequency coverage from 0-227 MC with no band switching Sweep width from 0-12 MC completely variable .. Accurately calibrated buili-in marker generator.
Model 56 Net $\$ 79.50$

TRANSVISION IS NOW EXCLUSIVE DISTRIBUTOR OF DU MONT TV/FM INPUTUNER

Model IT-I with tubes \qquad List $\$ 59.95$

All Transvision Prices are fair traded; subject to change without notice. Prices 5% higher west of the Mississippi
TRANSVISION, INC., Dept. SS, NEW ROCHELLE, N. Y.
Please ship the following Transvision Products THROUGH YOUR NEAREST LOCAL OU:',ET:- 55.5

I am enclosing 10% DEPOSIT in the amount of $\$ \ldots \ldots \ldots \ldots \ldots$............................ance C.O.D. () I want to get into the Television Business. Send me details of your Dealer Plan.

City and Zone.
Name
(please print)
Addres
State.

Farnsworth 4IE Capehart

Record Changer

This record changer may be found on pages RCD.CH. 18-25 through RCD.CH. 18-46 of Rider's V'olume XVIII. The change cycle is placed into operation when the trip finger releases the mercury switch dog (part number 561222). If, for any reason, a changer should fail to cycle properly and, upon checking, the trip mechanism is found to be operating normally, it is suggested that the top of the mercury switch Reset Lever (part number 561221) be examined to make sure that it is smooth. Many hours of operation may tend to wear a groove in the top of the Reset Lever which would tend to hold the dog in place, thus resisting the action of the trip mechanism. This condition is caused by normal wear due to friction between the two parts.

When this condition is found, it is recommended that the mercury switch Reset Lever be replaced by a new one. The new stock has been haidened to provide longer operating life.

In an parly production run, a mercury switch with a metal shell or housing was used. Due to the slow action and greater angle of drop necessary to actuate this switch, it has since been replaced by one using a glass housing or bulb. Changers employing the metal-housed mercury switch should be checked for positive switch action, especially if it has been reported that the changer cycles continuously, or more than once for a single tripping action.

In such cases, it is recommended that the metal switch be replaced with the more positive glass bulb type (part number 90147).

Tele-Tone Chassis U

Models 172 and 176 are the same as Model 156, Chassis U, which appears on page $17-4$ of Rider's Volume XVII.

Magnavox CR-208C

This model is the same as Model CR208 appearing on pages $17-18$ and 17-25,26 through 17.81 of Rider's Volume XVII, except for the following changes. Capacitor 15 has been changed in value from $510 \mu \mu \mathrm{f}$ to $150 \mu \mu \mathrm{f}$. A $150,000-\mathrm{hm}$ resistor (80) has been connected in series $\mathrm{vi} . \mathrm{h}$ capacitor 15 . Capacitor 16 and resistor 72 in series with it have both been omitted. Capacitor 17 has been changed from $510 \mu \mathrm{f}$ to $150 \mu \mathrm{f}$. A 33,000 -ohm resistor (79) has been connected in series with capacitor 17. Resistor 71 has been changed from 220,000 ohms to 470.000 ohms.

The following changes have been made in the parts list:
Ref. No. Description
Part No.
15 Capacitor, fixed mica, $220 \mu \mu \mathrm{f}, 500 \mathrm{v}$

250160G68
16 Omitted
17 Capacitor, fixed mica, $1500 \mu \mu \mathrm{f}, 500 \mathrm{v}$
2.50160G66

71 Resistor, composition, 470,000 ohms, $\pm 10 \%$ $1 / 2 \mathrm{w}$.

230084G94
72 Omitted
79 Resistor, composition, 33,000 ohms, $\pm 10 \%$, $1 / 2 \mathrm{w}$.

230084G80
80 Resistor, composition, 150,000 ohms, $\pm 10 \%$, 1/2 w.

230084G88

High Temperature is Tough On Long Life...
 But
 Mallory Capacitors Can Take It!

It's one thing for a capacitor to have long life. But it takes a MALLORY CAPACITOR to sustain its long life at high temperatures. Tests prove that the characteristics of Mallory FP Capacitors are practically unchanged after 2000 hours at a temperature of $185^{\circ} \mathrm{F}$.

Rigid manufacturing controls guard MALLORY CAPACITORS against contamination-the enemy of long life. Mallory Capacitors are untouched by human hands; production workers wear rubber gloves. And Mallory specifications on chloride content of the gauze are even more rigid than on hospital gauze, for gauze is the base on which aluminum is sprayed to create the anode plate.

You can depend on Mallory Capacitors for longer shelf life-longer life in an inactive set-lower

RF impedance-ability to withstand higher ripple current.
Mallory Capacitors cost no more than ordinary capacitors. They're easy to install, and when they're installed they're dependable ... and that means the kind of service that satisfies customers. Order from your Mallory distributor.

NEW IMPROVEMENTS IN MALLORY

FP CAPACITORS . . . Feature stronger anode tabs-withstand higher discharge currents-improved high surge separators-still greater heat resistance -extra heavy rubber seal-heavy cathode tab-special etched cathode.

Buy Mallory Assured Quality At Regular Price Levels

| APPROVE | PRECISION | PRODUCTS |
| :---: | :---: | :---: |

Television Changes

Admiral Chassis 30A1

This chassis appears on pages $2-1$ through $2-\frac{f}{6}$ of Riders TV Manual Volume 2. Transiormer 72B44 was used for T201 (the first audio i-f transformer) in early production. Transformer 72B58 was used in place of 72 B 44 in later production. Since transformer 72 B 58 can be detuned by vibration during shipment, the slug in these units was sealed with glyptal.

In the event that alignment adjustntent is necessary, a few drops of solvent should be applied to the glyptal around the slug. The slug will be free a short tine after application of a solvent. Alignment adjustinent can then be made in the usual manner. Lacquer thinner or amyl acetate (banana oil) are among the solvents for glyptal.

Replacements for T201 should always be ordered by part number 72 B 44 even though part number 72 B 58 was originally used in the chassis being serviced. Future production will also use part number 72 B 44 for T201.

The terminal numbers of transformer 72 B 58 are different from those of transformer 72B44. Wiring diagrams for both transformers are shown in the accompanying figures.

Wiring diagram for transformer $72 B 44$ in the Admiral Chassis SOA1 is shoun above, and that for transformer 72B5S is shown below it.

Philco 48-1001 Code 121

This moxlel appears on pages 2-S1,82 through $2-S 6$ of Rider's TV Manual V'olume 2. All model $48-1001$ receivers are code 121 , unless marked otherwise. The last digit of the serial number gives the run number of the set.
Run 8
The width coil, I 505 , part number $32-4163-2$ was replaced by a new width coil, part number $32-4318$. In conjunction with this new coil, a bracket and panel assembly, part number 76-4239 (symbolized TB500). was added. This assembly is mounted vertically in the left rear corner, inside the cage containing the high-voltage assembly.

To obtain maximum width, set the link
in a downward position; this shorts part of the series winding. The tuning core, TC500, then acts as a vernier for fine adjustment.
Run 9
Due to a temporary shortage of 10.000 . ohm resistors for R 204 and R 207 , j,art number 66-3105340, a substitution for each was made by using two pairs of $22.000-\mathrm{ohm}$ resistors, each pair being connected in parallel. The part number of each 22.000 -ohm resistor is 66.3224340 .

DuMont RA-105. RA-106

Model RA-105 appears in Rider's Television Manual Volume $\underset{\sim}{2}$ on pages 2.5 through $2-56$ and Model RA- 106 appears on pages 2.57 and 2-58 of the same Volume.

Extension cables. designed to allow the main chassis or power supply chassis of these telesets to be serviced outsicle the cabinet while leaving the tube or other chassis in the cabinet, are now available.

These cables are 6 feet long, permitting the serviceman to work on the chassis in front of the set and riew the action on the face of the CRT while making any checks.

The following description of these cables should be added to the parts lists:
Part Vo. Where l'sed
34001281 Between CRT base and main Chassis (J206).
50014161 Between yoke focus assembly (P6Q4) and muin chassis (J204).
50014171 Between main chassis (P201) and power supply (J702) on RA-106.
50014180 Between main chassis (P202) and power supply (J402) on RA-105. Between main chassis (P202) and power supply (J701) on RA-106.
When servicing the $a-m$ tuner or the audio amplifier in the new Colony or in the Manchu, it is possible to use cable \#50014171 as the extension. The use of this cable will introduce hum in the output since the signal lead of either unit should be shielded. The servicentun should take this into consideration when using this cable.

Cables \#50014161 and \#50014180 are exactly the same as far as external appearances are concerned. However, cable \# 50014180 contains the svinc line between the main chassis and the power supply chassis and this line is a sliclded lead.
To identify this cable, it has been color coded with a ring of red paint near the male plug.

A complete set consists of the 4 cables and will permit removal of both chassis simultaneously if necessary. However, for the high-voltage connections if the power supply is removed, an improvised cable can be made up in the field. This cable consists of a suitable length of high-voltage cable with an alligator clip on each end. Obriously, the serviceman should be careful how he "dresses" this lead to prevent "arcing."

GE 810

This model appears on pages 2.22 through 2-43 of Rider's TV Manual Volume 2. The circuit shown in the accompanying dia-
gram has been added in late production to remore the vertical retrace lines which appear when the contrast control is used at a low setting or the brightness control is used at a high setting.

The circuit will remove the vertical ittrace lines in the GE810 television receiver.

The following additions should be made to the parts list:
Ref.No. ('at. No. Description

C109 LiCC-635 Capacitor. $0.05 \mu \mathrm{f}, 603$ C110 [CC-631 | volts |
| :--- |
| Capacitor, $0.02 \mu f . ~$ |
| 00 | volts

R118 L'RD-059 Resistor, 2.700 ohms, $1 / 2 \mathrm{w}$.
R119 L゙RD-1082 Resistor, 24,000 ohms, $1 / 2 \mathrm{w}$.

RIDER TV MANUALS VOLUMES 1 and 2

Admiral 8C11, 8Cl2, 8Cl3, 30A15, 30A16; Ch. 30A1

Models 8C11, 8C12, 3C13 uppear in Riders Television Manual Volume $\cong \mathrm{m}$ pages 2.1 through 2-4ti. Models 30A15 and 30A16 appear on $p p$. 1.1 through 1-11,1.? of Kideris Television . Mamual 1.

Complaints have been reported concerning pulling at the top of the picture. ex. tending approximately one inch down from the top of the picture. It. can be noticed when there are vertical lines running to the top of the picture or pattern. These lines will pull to the right or left for a distance of one inch from the top of the picture.
The trouble is caused by a portion of the vertical synchronization pulses riding through the horizontal syne discriminator circuit and upsetting the horizontal o-cillator momentarily. As the vertical sync pulses occur 60 times per second. this out-of-phase condition would exist inmediately after the vertical blanking pulses and therefore show up in the top portion of the picture only. The low-frequency response o : the horizontal sync discriminator can be reduced to overcome this problem. It is recommended that Resistors R413 and R414 be changed from 470.000 ohms card to 180.000 ohms each. It will then be necessary to re-adjust the horizontal oscillator as described in the service notrs. This change is now being made in production.

Television Changes

Admiral 8C11, 8C12.
 30А15, 30А16; Ch. 30A1

Models 8C11, 8C12, 8C13 appear in Rider's Teleivision Manual Volume 2 on pages 2.1 through 2-46. Models 30A15 and 30A16 appear on pages 1-1 through 1-11,12 of Kider's Television Manual 1.

Original production of these sets incorporating the Standard Coil Tuner (part number 94 (8-2) employed a detent spring which did not have adequate tension. Production, subsequent to August, used a spring of greater tension and slightly modified shape, assuring more positive positioning of the turret assembly. In addition, the detent roller has been made smaller. When replacing the detent spring and roller, it will also be necessary to replace the channel selector knob with the new lever-type knob.

The procedure for making these changes involves no difficelties if the following instructions are utilized:

Remove the metal spider which serves as a front bearing for the fine tuning and channel selector shafts,

Remove the rear turret spring and front turret spring and retaining plate. This will allow the turret assembly to be removed, releasing the tension on the detent spring.

Loosen the screw holding the detent spring and replace with the new, heavier spring, making certain that the lips of the spring are fully seated. Failure to observe this will cause the individual channel sections to line up improperly with the contact plate.

Tighten the screw holding the detent spring and replace the turret assembly and its front and rear retaining springs. Replace the metal spider front bearing.
Replace the existing channel selector knob with the new lever-type knob. This is necessaly since with the increased spring tension it will be extremely difficult to rotate the turret assembly by using the older knob.

These changes should be made whenever a chassis is brought in for major repairs. The replacement may be ordered under the following part numbers:

| Detent Spring | \#98A45-37 |
| :--- | ---: |
| Detent Roller | \#98A45-32 |
| Channel Selector | Knob |

For Wood Escutcheon \#33C28-1, Type \#5 For Plastic Escutcheon \#33C28-9, Type \#5

RIDER MANUALS Moan SUCCESS

Sears 8133, Ch. 101.846, 101.829-1

This, model appears on pages 2-1 through 2-22,23,24 of Rider's TV Manual Volume 2. Late production of television chassis 101.846 have incorporated a $4.5-\mathrm{me}$ trap off the plate of the first video amplifier tube $6 A^{\prime} 6$, as shown in the accompanying dia-
grann. This trap is necessary to remove the heterodyne beat caused by the $26.4-\mathrm{mc}$ picture i-f signal at the video detector beating against the very low, but still present, $21.9-\mathrm{me}$ sound i-f signal. This sound i-f signal tends to pass through the sound traps when the receiver is slightly detuned. This beat will show up on the picture tube as sound bars or a small herringbone pattern across the entire screen.

To install this $4.5-\mathrm{mc}$ trap, proceed as follows:

1. Place the chassis on the bench in an upside down position.
2. Remore the \#6 machine screw located midway between the first video amplifier 6AU6 tube socket and capacitors C109 and C110.
3. Install the trap coil (L30) on the chassis by placing the screw through the hole in the coil bracket and replacing the screw in the chassis. Before tightening the screw, rotate the trap coil so that the side with the soldering lugs faces the front of the chassis.
4. Tighten the machine screw.
5. Solder a wire from the coil lug nearest the chassis to ground.
6. Connect a $4.7-\mu \mu \mathrm{f}$ ceramic capacitor to the top lug on the trap coil and the plate (pin 2) of the 6AC6 first video amplifier.
Due to the addition oi this trap, the following information should be added after Television Alignment Procedure High Band Alignment on page 2-11.
7. With the chassis completely adjusted and connected for operation, tune in a test pattern.
8. Turn the contrast control to its full-on position and the brightness control to a low level (so that contrast is still noticeable).
9. Detune the fine tuning control so that sound bars are just visible. A $4.5 \cdot \mathrm{mc}$ beat is now readily visible on the screen. 4. Rotate the $4.5-\mathrm{mc}$ trap coil adjustment
screw counterclockwise to its full-out position (about $1^{\prime \prime}$ of screw showing).
10. Turn the adjustment screw in (clockwise) until the $4.5-\mathrm{mc}$ beat on the screen just disappears. Do not go beyond this point.
Radio chassis 101.829-1 used in these sets, beginning with serial number 2001, have had a phono switch bracket assembly installed for phono operation. The switch is connected between the high side of resistor R202 (2.2 megohms) and the high side of volume control R205 (500,000 ohms). The high side of R205 no longer is connected to the junction of R203 and C213.
The following deletions have been made in the parts list:
Schematic Part

| Locatio | umb | Description |
| :---: | :---: | :---: |
| C24 | | Capacitor-1.0 $\mu \mu \mathrm{f}$-ceranic |
| C4 | | (apacitor-1.5 $\mu \mu \mathrm{f}$-ceramic |
| C131 | | Capacitor-100 $\mu \mu \mathrm{f}$-ceramic |
| | R70015 | Damper-trimmer |
| | R70017 | Damper-tube |
| | R63476 | Insulator-capacitor |
| | R63477 | Insulator-capacitor |
| | R65491 | Line ass'r.-transmissionhigh |
| | R65492 | Line ass'y.-transmissionlow |
| R9 | | Resistor- 5,600 ohms- $1 / 2 \mathrm{w}$. |
| R207 | | Resistor-4.7 megohms | 1/2 w.

The following should be added to the parts list:
Schematic Part

| tion | . Vumber | Description |
| :---: | :---: | :---: |
| C24 | | Capacitor-1.5 $\mu \mu \mathrm{f}$-ceramic |
| C4 | | Capacitor-2.2 $\mu \mu \mathrm{f}$-ceramic |
| C135 | | Capacitor-4.7 $\mu \mu \mathrm{f}$-ceramic |
| C131 | | Capacitor- $50 \quad \mu \mu \mathrm{f}$-ceramic |
| L30 R | R70077 | Coil-4.5-me trap |
| | R70090 | Damper-tube |
| | R70057 | Insulator-capacitor |
| R9 P | Resistor | Rexistor-2.700 ohms- $1 / 2 \mathrm{w}$, |
| R207 | | Resistor- 15 megohms$1 / 2 w$. |
| | R70140 | Phono switch bracket assembly (chassis serial number 2001 and up) |

A $4.5-\mathrm{mc}$ trap has been incorporated into the Sears television chassis 101.846.

Rider Television Manual
 Equivalent of 2300 pages PLUS
Cumulative Index Covering TV Cumulative Index covering Volumes 1 and 2 . Officia, Complete tic Service Data on Receivers, Kits and Boosents of 67 Manufacturers.

Complete . . $\$ 18.00$

Available Now!

RIDER PA MANUAL The first industry-wide public address equipment manual, covering amplifier product. 2024 pages manuafacturers from , 1938 to complete ... $\$ 1800$ PLUS "How It Works" Book. Complete Coming SIDOn VOUMME XIX RIDER MANUAL th the issuance of Volume XIX, we will have Witheased to the radio servicing industry the world. over approximately 31,00 More than 100 manuover aporized information. More pages. Available at authorized more than 2100 pages. AR IT! your jobber late in May. WATCH FOR M!
Your Jobber Carries RIDER MANUAS
The world's greatest compilation of radio servicing information direct from the manufacturers themselves. RIDER MANUALS are a "must" for Servicemen, Schools, Colleges, Public Libraries, Design and Development Laboratories!

IMPORTANT NOTE!

Are you receiving your copy of "Successful Servicing"? If's Rider's own publicotion of interest fo every Serviceman. Send your nome and cadress, FREE of charge.

RIDER MANUALS

Television Manual, Voiume $11 \$ 18.00$ (plus "How it Works" and Index)
Television Manual, Volume I. 18.00 (plus "How It Works" and Index) Volume XVIII 19.80 Volume XVII............................... 16.50 Volume XVI.................................... 8.40 Volume XV 19.80 Volume XIV to VII (each
volume) 16.50 Volume VI.................................. 12.50
Abridged Manuals I to V (one 19.80
volume) 19.80
Record Changers and
Recorders
Manuals, Vols. I to XV........ $\mathbf{1 . 5 0}$

RIDER MANUALS mean SUCCESSFUL SERVICING

JOHN F. RIDER, PUBLLSHER, Inc.,
480 Canal Street, New York 13, N. Y. Export Agent: Rocke International Gorp., 13 E. 40th St., N.Y.C. Cables, ARLAB.

NOTE, The Mallory Radio Service Encyclopedia, 6th edition, makes reference to only one source of radio receiver schematics - Rider Manvals,

TV Measurements
(Continued from page 1)

Accuracy of Measurement

In general, the accuracy of a measurement will depend on two factors:

1. The accuracy of the calibration of the instrument.
2. The effect of connecting the instrument in the circuit where the measurement is made.

The calibration accuracy of the meter is specified by the manufacturer as plus or minus a definite percentage. A fairly good meter has an accuracy of ± 2 or 3 percent on d.c. and from ± 3 to ± 5 percent on a.c. For service work a meter with an accuracy of ± 5 percent on either a.c. or d.c. is sufficient as far as calibration accuracy is concerned.
It should be remembered that the voltage and resistance measurements given in the service data for a television receiver are representative of that particular model and are not the exact values for every receiver of that type manufactured. In most of the circuits in a receiver, the resistor and capacitors used have a tolerance of $\pm 10 \%$. In addition, each tube of a particular type has somewhat different characteristics due to manufacturing tolerances. In the design of a television receiver, the maximum allowable tolerance for any part in the receiver receives careful consideration. For the purpose of economy, it is impractical to use parts with a lower tolerance than necessary. For example, if a circuit design required a 1000 -ohm resistor and the circuit worked equally well with a resistance as high as 1100 ohms or as low as 900 ohms, then a 10% resistor would be used. On the other hand, if the circuit did not operate properly when the resistance was increased above 1050 ohms or below 950 ohms, then a 5% resistor would have to be used.
These manufacturing tolerances must be remembered when comparing the voltage or resistance measurements made on a set with the measurements given for that set by the manufacturer. A 20% tolerance should be allowed in alnost all voltage or resistance measurements. In other words, unless a voltage or resistance measurement is more than 20% off the value given by the manufacturer, it will usually not be significant in isolating a defective circuit.

Thus far in our discussion of the accuracy of a measurement, we have neglected the second determining factor, which is by far the more important. The problem is briefly this: While the meter may be accurately measuring the voltage at a certain point, is this the same voltage that existed at this point before the meter was connected to it? Very often it is not. When using an oscilloscope to observe the waveform of a signal, the question arises as to whether the waveform seen on the scope is the same waveform that existed before the scope was connected. This problem is a basic one in taking any type of measurement and must always be considered.

There are two solutions to this problem. The ideal solution, of course, would be to build test equipment that has no effect on the circuit at all, or if this is not possible, only a negligible effect. The other solution is not really a solution at all, but rather a way of getting around this problem. That is to simulate the conditions under which the original measurements on the receiver were made and to compare these readings with the reading obtained on the receiver under test.
For example, if a voltage reading was originally taken with a 1,000 ohms-per-volt meter, it should be possible to obtain the same reading on another receiver with another 1,000 ohms-per-volt meter. Even if this reading is not the actual voltage present before the meter was inserted in the circuit, it provides a means of comparison. This method, however, is not infallible and may still introduce errors under certain conditions, as will be discussed in more detail.

Low D-C Voltage Measurements

As previously mentioned, low d-c voltages include all the d-c voltages encountered in the television receiver with the exception of the high d-c voltages used on the picture tube. Three types of meters are commonly used today to meas ure d-c voltages. These are the 1,000 ohms-per-volt meter, the 20,000 ohms-pervolt meter and the vacuum tube voltmeter. There are a few other types with sensitivities between 1,000 and 20,000 ohms-per-volt and some with sensitivities even greater than 20,000 ohms-per-volts, but these meters are not as common as the three groups mentioned previously. For simplicity we will limit the discussion to these three types, although most of it will also apply to any other type of meter.

Input Resistance

The input resistance of 1,000 and 20 ,000 ohms-per-volt meters is equal to the product of the maximum scale reading and the sensitivity. Let us consider a 1,000 ohms-per-volt meter and a 20 , 000 ohms-per-volt meter, each with scales of $3,10,100$, and 300 volts. For comparison, we will consider a vacuum tube voltmeter of the "Voltohmyst" type which has an input resistance of 11 megohms. The VTVM has a constant input resistance for all scales on the meter. The input resistance of these three meters on their various scales are shown in Table I.

| TABLE I | | | |
| ---: | ---: | :---: | :---: |
| Scale | $1,000 \Omega / \mathrm{v}$ | $20,000 \Omega / \mathrm{v}$ | VTVM |
| 3 v | 3 K | 60 K | 11 meg |
| 10 v | 10 K | 200 K | 11 meg |
| 30 v | 30 K | 600 K | 11 meg |
| 100 v | 100 K | 2 meg | 11 meg |
| 300 v | 300 K | 6 meg | 11 meg |

From this table we can see the limitations of the three instruments as far as input resistance is concerned. Theoretically, each meter will always have some effect on the circuit across which the meter is applied. Practically, it is possible to
(Please turn to page 14)

SERVICEMEN... DEALERS

Build your radio sales around this quality chassis.

NEW ESPEY model 511

AM - FM CUSTOM BUILT. This protitable chassis replacement market means increased sales to you and increased savings to over 19 million potential customers.

- Here is a fine radio, in chassis form, to please the most discriminating music lovers.
- Easy to install in any console cabinat old or new. the Espey 511 AM-FM radio chassis embodies the latest engineering refinements for lasting high quality at a price that defios competition.

FEATURES

1. AC Superhetarodyne AM-FM Receiver.
2. Improved Frequency Modulation Circuit,

Drift Compensated.
3. 12 tubes plus rectifier and electronic

Tuning Indicator.
3 dual purpose tubes - added performance.
5. Treble Tone Control
6. 6-gang tuning condenser.
7. Full-range bass tone control
8. High Fidelity $A M-F M$ Reception.
9. Automatic volume control
10. I3 watt (maximum) Push-Pull Audio Out-
II. 12 inch PM speaker with Alnico V Magnet 25 wattsl rating
12. Indirectly illuminated Slide Rule dial.
13. Smooth, flywheel tuning

Antenna for AM and folded dipole antenna for FM Reception.
15. Provision for external antennas.
17. Wired for phonograph operation.

500 ohms output transformer, 4, 8, and 500 ohms.
18. Licansed by RCA.
subject to RMA warranty, registered code symbol \#174.

SPECIFICATIONS

Model 511 chassis is supplied ready to operate, complete with tubes, antennas, speaker and all necessary hardware for mounting in a table cabinet or console including escutcheon. Power requirements $105 / 125$ volts AC, $50 / 60$ cycles. Power consumption- 85 watts.
Chassis Dimensions: $131 / 2^{\prime \prime}$ wide $\times 81 / 2^{\prime \prime}$ high $x 10^{\prime \prime}$ deep.
Carton Dimensions: (2 units): $20 \times 141 / 2 \times$ $103 / 4$ inches.
Net Weight: $161 / 2$ pounds each.
Sold through your favorite parts distributor.
WRITE FOR CATALOGUE KDI2 CONTAINING COMPLETE SPECIFICATIONS ON THIS AND OTHER MODELS

Makers of fine rodios since 1928.

General Electric 810, 814

Model 810 appears on pages 2.22 through $2-43$ and Model 814 on pages 2.44 through 2-5i,58 of Rider's TV' Manual lolume 2. Bias has been added to the converter grid (pin 7 of V2-B)' by the addition of R120, R121, and C113, as shown in the accom panying figure. This addition of bias is sometimes necessary when the receiver is used in areas of strong signal strength, especially on the high-frequency channels. The peaks of the signal, which are the vertical pulses, were causing the grid to draw grid current which. in turn, frequencymodulated the oscillator voltage at the vertical pulse rate (60 cps). This modula. tion appeared in the audio as a buzzing sound.

Bias is alded to the converter grid of the GE 810 and 814 in the manner shoun.

Add a teminal board to the underside of the main chassis near the r-f unit. The board should be mounted so that short leads cun be used. Remove R4 from ground under the oscillator trimmer C80 and connect to the junction of R120 and R121 on the new terminal bourd. Connect C113 from the junction of R120 and R121 to the ground point on the r-f chassis under oscillator trimmer C80.

NOTE: Dress C113 as far away as possible from the oscillator trimmer C80.

The following should be added to the parts list:
Part No. Cat. Vo. Description
R120, R121 ["RD-121 Resistor, 1 megohm, $1 / 2 \mathrm{w}$.
C113 RCW-3014 Capacitor, ceramic, $5000 \mu \mu \mathrm{f}$

General Electric 901, 910

These models appear in Rider's T'V Manual Volume 2 on pages 2.59 through 2-94. No picture in these sete may be caused by an inoperative horizontal sweep generator tube, V14, which results in no high voltage on the 5TP4 picture tube anode. In this sweep oscillator, feedback is provided through the common cathode resistor, R40, in the two triode sections of V14. This resistor has a value of 1,000 ohms. However, where low line voltage exists, this may not provide sufficient feedback to maintain oscillation und it is suggested that the value of R40 be increased to 1.200 ohms in all receivers to cure this trouble or insure against a possible service complaint.
When insufficient picture height is experienced with the vertical size control, the range may be extended about four inches by shunting R118 (2.2 megohms) with another 2.2 megohm resistor or replacing R118 by a 1.0 megohm resistor. R118 is one of the plate charging resistors in the vertical sweep generator tube. V11B. circuit located at the rear of the telerision chassis.
Add the following parts to the Parts List:
R40 Cat. No. L'RD-051 1200 ohms. $1 / 2$ w., carbon
Cat. No. LRD-129 2.2 megohm, 5/2 w., carbon or

Cat. No. URD-121 1.0 megohm, $1 / 2$ w., carbon

Regal W900

This model is the same as Model 900 which appears on pages 16.2 and 16.3 of Rider's Volume XVI. The socket layout and voltages for both models are shown in the accompanying diagram.

Tube layout, trimmer locations, and volt ages of the Regal W900.

Protect Your Tube Testing Investment with the Precision Series 10-12

Unparalleled and highest practical order of obsolescence insurance - thru use of the Precision 12 element, free-point Master Lever Selector System.

Truly free-point

Testing a tube for just one selected characteristic does not necessarily reveal its overall performance capabilities. Electronic tube circuits look for more than just Mutual Conductance or other single factor. In the Precision MASTER Electronamic Tube Test Circuit, the tube under test is subjected to appropriately phased and selected individual element potentials and is electrodynamically swept over a complete Path of Operation, on a sinusoidal time base. Encompassing a wide range of plate family characteristic curves, this complete Path of Operation is automatically integrated by the indicating meter in the positive, direct and non-confusing terms of Replace-Weak-Good.

Compare These Features THE SERIES 10-12 TUBE MASTER

\star The POSITIVE solution to tube PERFORMANCE testing plus optimum anti-obsolescence insurance.
\star Direct facilities to 12 element prongs

* Filament voltages from 75 to 117 volts.
\star Tests the new Noval 9 pins; 5 and 7 pin acorns; double-capped H.F. amplifiers; low power transmitting tubes; single-ended F.M. and TV amplifiers etc. REGARDLESS of FILAMENT OR ANY OTHER ELEMENT PIN POSITIONS.
* ISOLATES EACH TUBE ELEMENT REGARDLESS OF MULTIPLE PIN POSITIONS
* DUAL (HIGH-LOW) short check sensitivity for special purpose tube selection.
\star INDIVIDUAL TESTS OF MULTI-SECTION TUBES including F.M. and A.M. cathode-ray tuning indicators.
\star Simple, direct Ballast Unit Tests.
\star Battery Tests under dynamic load conditions.
\star Built-in Double Window, brass-geared roller chart.
$\star 41 / 2$ " Full Vision Meter, 1 MA sensitivity.
\star Panel-Mounted Extractor Fuse Post.

[^6]

TV Measurements
 (Continued from page 11)

make this effect negligible by making the meter resistance high enough. To determine how mueh the meter will effect the circuit, it is necessary to consider the resistance of the voltage supply at the point being measured, the load already across this point, and the additional load supplied by the resistance of the meter.
In the ideal case where the voltage supply has no internal or series resistance at all, there would be no difference in the meter readings. While this ideal condition never actually exists since all generators and power supplies have some resistance, it is possible to approach it in some cases. For instance, the internal resistance of a large d-c generator, such as those used by the power companies, is only a small fraction of an ohm. Therefore, any meter could be used to measure the line voltage of a d-c power line since the resistance of the meter is so great compared to the resistance of the generator that the effect of the meter would be negligible. For all practical purposes the voltage at the line terminals after the meter is connected would be the same as before.

Fig. 1. A conventional low-voltage power supply circuit. The meter resistance is in shunt with the load resistance.

Fig. 1 illustrates a conventional power supply such as may be used in a television receiver to supply B-plus voltages. The resistance R_{s} is equal to the sum of the resistance of the choke, the rectifier tube, and the transformer winding. Since these resistances are all in series they can be replaced by one resistance, R_{s}. Let us assume that R_{s} is 500 ohms. The load on the power supply has been replaced in Fig. 1 by the shunt resistor R_{L}. The value of this resistance is equal to the voltage at point A divided by the load current. For example, if the voltage at A.equals 275 volts and the load currernt equals $100 \mathrm{ma}, R_{L}$ would be equal to 2750 ohms.

If we connect a voltmeter from point A to ground, the resistance of the meter would be in parallel with the load resistance R_{L}. The load R_{L} causes a voltage drop in resistor R_{s}. In this case the voltage drop is equal to 500 times 0.1 or 50 volts. When the meter is connected, the total load resistance decreases and the current through R_{s} increases, causing a greater voltage drop across it.

However, the resistance of even the least sensitive meter, the 1,000 ohms-pervolt meter, is equal to 300,000 ohms on the 300 -volt scale, which is the scale that
would be used to measure the voltage at point A. This 300,000 ohms resistance, represented by K_{x}, in parallel with the 2750 ohms of R_{L} would give a parallel resistance equal to approximately 2730 ohms. The change in load resistance from 2750 ohms to 2730 is very small, and will have a negligible effect on the voltage at point A.

The 20,000 ohms-per-volt meter and the vacuum tube voltmeter will have even less effect on the voltage being measured. For a measurement of this type, therefore, any one of the three meters would do equally well.

Fig. 2. (A) The plate circuit of a triode amplifier. The meter reduces the voltage at the plate of the tube, the amount of reduction depending on the resistance of the meter. (B) Equivalent d-c circuit.

The plate circuit of a triode amplifier is shown in part (A) of Fig. 2. The 275 -volt B -plus voltage is obtained from a power supply as shown in Fig. 1. Assuming that the tube draws 1 ma plate current, the drop in the plate resistor will be 200 volts and the d-c voltage on the plate of the tube will be 75 volts.

The equivalent d-c circuit is shown in part (B) of Fig. 2. The plate circuit of the tube is replaced by the resistance which is equal to the voltage on the plate divided by the current, or 75,000 ohms. To measure the plate voltage, the meter is connected from point A to ground. As before, the input resistance of the meter is represented by $R_{\mathbf{x}}$.

First, let us consider the effect of using the 1,000 ohm-per-volt meter, whose resistance on the 100 volt range is equal to 100,000 ohms. This resistance $R_{\boldsymbol{Y}}$ is in parallel with R_{P}. The resistance of the parallel combination is equal to approximately 42,800 ohms. The voltage at point

$$
42.800
$$

A is now: $E_{\mathrm{b}}=275 \times \frac{42,800}{42,000+200,000}$
$=48.5$ volts. The 1,000 ohms-per-volt meter, therefore, changes the voltage at the plate from 75 to 48.5 volts.

Sinilarly, we can determine the effect of connecting the other two meters. The 20,000 ohms-per-volt meter has a resistance of 2 megohms on the 100 -volt scale and will cause the voltage at the plate to drop to 73 volts. The VTVM has an input resistance of 11 megohns, and when connected to the plate will cause the voltage to drop to 74.6 volts.

In this particular circuit then, it can be seen that the 1,000 ohms-per-volt meter would introduce a large error, the 20,000 ohms-per-volt meter a small error, and the VTVM practically no error at all.

Bias voltage measurements are another type of voltage measurement often made in television receivers. These measurements include those of grid-leak bias, fixed bias, cathode bias, and automatic gain control (age) voltages. Fig. 3 is an

Fig. 3. A typical automatic gain control (agc) systcm used in television receivers. Only one controlled stage is shown, usually there are more than one.
example of an agc system used in a typical television receiver. The a.g.c. usually controls more than one stage in the receiver, but for the purpose of illustration we have chosen the second video i-f stage.

First, let us briefly consider the operation of this circuit. The i-f signal from the video detector is applied through capacitor C_{1} to the diode. If the i-f signal exceeds the delay voltage, this signal will be rectified and charge capacitor C_{1} so that a negative voltage appears at point A to ground. Resistor R_{1} enables capacitor C_{1} to discharge so that the voltage at A can change in accordance with the strength of the i-f signal. Following R_{1} there are three stages of R-C filters which filter out the a-f and r-f components and allow only the d-c control voltage to be applied to the grid of the second video i-f stage.

When a voltmeter is connected from point A to ground, the resistance of the meter is in parallel with that of R_{1} which is 2.2 megohms. The total parallel resistance from point A to ground will then be smaller that it was. The time constant of $R_{1} C_{1}$ will then be smaller and the charge on capacitor C_{1} will leak off faster than it normally should, resulting in a smaller $d-c$ voltage at point A. It is possible to calculate the effect of the meter being inserted at this point, but this is rather laborious due to the rectifier circuit, so instead we will consider the results of actual measurements made in this circuit.
To make these measurements, all three meters were set on the 10 volt scale. From Table I, the 1,000 ohms-per-volt meter, the 20,000 ohms-per-volt meter, and the V'TVM have input resistances on this scale of 10,000 ohms, 200,000 ohms, and 11 megohms respectively. Table II, shows the results of measurements made on points A and B in the circuit of Fig. 3 with three different voltmeters.

| | TABLE II | |
| :---: | :---: | :---: |
| Meter | Point A | Point B |
| VTVM | -5.2 v | -5 v |
| $20,000 \Omega / \mathrm{v}$ | -0.2 v | -0.8 v |
| $1,000 \Omega / \mathrm{v}$ | 0 v | -0.1 v |

An examination of this table shows that the 1,000 ohms-per-volt meter is worthless for this type of measurement and that the 20,000 ohms-per-volt meter is not much better. The VTVM, therefore, is the only meter of the three types investigated which will give a reliable reading in this type of circuit.

Over 900 pages of dependable and complete information that is essential for the serviceman. Gives full information on all types of receiving tubes, boill new and old. Contains easy to read diagrams, graphs and curves for at-a-glance reference.
The book is designed just for the serviceman. It will lie open on a bench for reference while he is working. Has a good durable Du Pont Fabrikoid cover. The post type binder permits easy insertion of new pages.
It's more than a book, it's a service. The binder, including all data sheets issued up to the end of the year, costs the serviceman only $\$ 4.75$. After
that, you will be supplied with new sheets as they are issued each month for only $\$ 2.00$ per year. Ask your jobber who supplies you with Tung-Sol Tubes about this most useful TECHNICAL DATA BOOK.
tUNG-SOL LAMP WORKS INC., NEWARK 4, N. J.

TUNG-SOL TELEVISION AND RADIO TUBES

Farnsworth GK140 Series

This model appears in Rider's Manual XI'I, pages 16-6 through 16.11. The following procedure is conducive to increased sensitivity, noise rejection, broader tuning, and reduced thermal drift of the f.m section of the GK140 series combination instrument.

To reduce drift, change the oscillator grid coupling capacitor (grid of 6 C 4 to the oscillator coil) from $50 \mu \mu \mathrm{i}$ zero temperature coefficient to $40 \mu \mu \mathrm{f}$ N-1400 temperature coefficient. The part number of this replacement is $\mathbf{2 5 4 4 2}$. Change the oscillator padder capacitor (oscillator coil to f-m gang section) from $55 \mu \mu \mathrm{i}$ N.330 to 55 $\mu \mu \mathrm{i}$ zero temperature coefficient. This new part number is 25441 . These changes will necessitate slight realignment of the $\mathrm{f}-\mathrm{m}$ converter and oscillator. To make these modifications, use the following procedure:

Clip out two 330,000 -ohm, $1 / 2$-watt resistors connected between the ratio detector transformer (next to the 6 H 6 socket) and the terminal board. one $5,000-\mu \mu \mathrm{f}$ mica capacitor between the B-supply for the transformer and ground and two $6.000-$ ohm, $1 / 2$ watt resistors connected to the 6 H 6 socket. Clip four leads connected to the transformer. Remove the ratio detector transformer and replace with the transformer No. 38879 . To do this. it is necessary to drill two new holes as shown in the accompanying diagrams.

After the transformer is connected (make leads as short as possible) connect two $33.000-\mathrm{ohm}$. $1 / 2$-watt resistors. Part No. 7:183. one between pin No. 8 on the 6 H 6 socket and ground, and the other between Pin No. 3 and ground (short leads). Connect a $1,500-\mu \mu$ f capacitor. No. 25273 , between the B-supply to the transiormer and ground. Connect a $0.002-\mu \mathrm{f}$. 600 -rolt capasitor, No. 25185, between ground and the point where the 22,000 -ohm. ${ }^{1 / 2}$-watt resistor connects to the shielded lead on the terminal board by the 6 H 6 socket.

The 3/16-inch holes pointed out here must be drilk to accomodate transformer 38879 in the Farnsuorth GK1f series.

TV PICTURE PROJECTION AND ENLARCEMENT

By Allan Lytel

The story behind TV picture enlargement by viewing lenses and projection systems. Optics as applied to the TV receiver, installation, and adjustments is made simple and understandable. Every TV serviceman and TV student should own this book!

Contents include: Properties of Light - Reflection and Mirrors Refraction and Lenses - The TV Picture - Modifications of Schmidt Projection System - Refractive Projection - TV versus Motion Pictures.

Approximately 250 pages
Over 100 illustrations
Order From Your Jobber Or Directly From Us

This completes the changes. It is now necessary- to align the i.f.'s on f.m. Connect a voltohmyst on the AIC line (Pin 3 on 6 H 6 socket through a 1 -megohm resistor).

The circuit of the Farnsuorth GK140 series as it appears after modification.

Connect the a-m signal generator, set at 10.7 mc , to the grid of the $6 \mathbf{N K 7}$ which feeds the diode transformer. Connect the output meter acros: the roice coil of the speaker. Turn the bottom slug next to the chassis of the diode transformer out as far as possible. Tune the top slug for maximum output (negative voltage) on the voltolymst. More the generator to the grid of the second i-f amplifier. Detune the slug under the chassis by turning it out as far as possible. Tune the top slug for maximum roltage. next tune the bottom slug for maximum roltage. In each step do not ise an input greater than necessary to give three volts AVC. Move the signal generator to the grid of the first i-f amplifier. Detune the bottom f-m slug (nearest corner of (can) by turning it out as far as possible. Tune the top slug
(nearest corner of can) for maximum voltage, next tune the bottom slug for maximum voltage. More the signal generator to the 6AG5 rouverter grid and tune the first i-f transformer as described previously. With the generator still hooked to the 6 AG 5 grid and modulated with 400 cycles and with about 200 microvolts input, adjust the slug next to the chassis on the diode transformer for maximum output voltage on output meter, which is across the voice coil.

Association Libraries

We have sent copies of "FM Trans. mission and Reception." "Understanding Vectors and Phase." and "TelerisionHow It Works" to 60 service associations for their libraries. If your organization did not take adrantage of the offer made in the editorial in the August 1948 issue of Scecessfil Servicivg, send in the name and address on association stationery. We will forward the books gratis.

RIDER MANUALS Moan PROFITS

The Cover

The picture on page 1 shows a twoway communications system which enables maintenance trucks of the Tonited States Air Force to have direct contact with the maintenance shop. This system was designed by S/Sgt. David A. Baty, Des Moines, Iowa, at the Avon Park. Florida AAF. This system eliminates the necosity of relaying messages through the control tower and saves time and gasoline by cutting down on the number of trips necessary between the flight line and the shops. The switch box was constructed from scrap metal and spare parts, while the antenna was made out of alloy steel tubing. A safety switch controls the entire mechanism.

YROI

'GOIAUES OIOYU EnIHOOS
'x 'n ' ε I ygox man "Ls t甘nyo 08t -sul 'yarsitand yaaiy 'a NHOL

[^0]: (Continued on page 36)

[^1]: SUCCESSFUL SERVICING is published monthly by JOHN F. RIDER PUBLISHER, INC., 480 Canal Street, Now Yark 13, N. Y. Telephone WOrth 4-8340. No portion of this publication may be reproduced without written permission of the publisher.

[^2]: \qquad

[^3]:

[^4]: *Based upon material appearing in the Crosley Telerision Receiving Antenna Bulletin, No. 378, Crosley Div. AVCO Mig. Corp.

[^5]: CAPITOL RADIO ENGINEERING INSTITUTE
 16th \& Park Road, M. W., Dept. 254A Washingtan 10, D. C.

 ## Gentlemen :

 Send me complete details of the new home study course and the booklet that explains the CREl self-improvement program and courses. I am attaching a brief resume of $m y$ experience, education and present position.

 NAME.
 STREFT
 CITY \qquad ZONE
 D 1 am emtitied to training under 6. 1. Bill.

[^6]:

