ℓ
 ${ }^{\circ}$ SuccersfuL SERVICING

APRIL, 1951

Fig. 1. When there 8 -ohm loudspeakers are connected in series, the total impedance zeill match that of a 24 -ohm tap.

LOUDSPEAKER MATCHING

by JOHN F. RIDER

Abstract

Editors Notc: This article on Loudspeaker Matching is an excerpt from Chapter 3, entitled "Impedance Matching," of INSTALIATION AND SERVICING OF LOW FOWER PUBIIC ADDRESS SYSTEMS by John F. Rider, published by John F. Rider Publisher, Inc. The May issue of Successful Servicing; will contain another article on the subject of impeelance matching.

The matching of one component to another in a p-a system is very important. A bad match between a good amplifier and a loudspeaker will give poor results in terms of power output and fidelity.

Fig. 2. Four 8-ohm loudspeakers connected in parallel will matih the inpedance of a 2-ohm tap.

Given an output tube having a stated plate circuit impedance, it is necessary that the loudspeaker voice-coil impedance match the impedance of the plate circuit. For the best possible fidelity, the source and load impedances should match within about 10 percent.

The impedance of a loudspeaker is the impedance of the voice coil and is always included in loudspeaker specifications. This impedance, which is equal to the voltage across the moving coil divided by the current through it, is given at a particular frequency, usually 400 cycles. Voice-coil impedances generally range from 2 to 16 ohms, with most between 6 and 8 ohms, however, in special loudspeakers it may be as much as 50 ohms. When loud-
speakers are directly connected in various types of series, parallel, or series-parallel combinations, the imperlance offered by the total load may be anywhere from 0.1 ohm to 500 ohms in commercial practice.

Generally when the distance between the amplifier output transformer and the loudspeaker is about 200 feet or less, the line can be run at the impedance of the voice coil. The term "line imperlance" as used here does not refer to any characteristic which the line itself has but means that the conductors are connected to a load of that type impedance. Thus a low-impedance line means that the wires are comected to a low-impedance load. Any combination of loudspeakers can be connected by a low-impedance line.

Matching of Loudspeakers on Low-Impedance Lines

The total load impedance offered by two or more loudspeakers commected in series is
impedances. Thus, if three 8 -ohm loudspeakers are series-connected, matching is secured by connecting the entire load across a 24 -ohm tap on the output transformer as shown in Fig. 1.

The total load impedance offered by two or more loudspeakers comected in parallel, when all have the same voice-coil impedance, is equal to the imperlance of any one loudspeaker divided by the number of loudspeakers. Thus, if four 8 -ohm loudspeakers are connected in parallel, the total load impedance $Z r=8 / 4=2$ ohms. For proper matching, the loudspeakers should be parallel-comected to a 2-ohm tap on the output transformer as shown in Fig. ?.

The total load offered by four or more loudspeakers connected in series-parallel, when all have the same voice-coil impedance, is equal to the impedance of any series branch line, divided by the number of such series lines that are in parallel. If four 8 -ohm loudspeakers are series-parallel connected so that there are two loudspeakers comnected in series in each branch and two branches in parallel, then the effective load is $16 / 2=8$ ohms. This load slould be connected to an 8-ohm tap for proper matching, as shown in Fig. 3.

Mafching on High-Impedance Lines

Where several loudspeakers are situated at some distance from the amplifier and from

Fig. 3. When four 8-ohm loudspeakers are conncted in troo parallel branches of two seriesconnected loudspeakers cacth. the total load impedance will be 8 ohms. the sum of their individual impedances. This total load can match the amplifier output by comecting it across the same value of tap each other, then each loudspeaker (or group of loudspeakers) (an be matched to a 500 -ohm (Contimued on page 10)

Teleuisian Changes

Sarkes Tarzian TT3

The following revisions have been made in the TT3: The 6AG5 has been changed to a 6CB6 with no change in the wiring; a $680-\mu \mu \mathrm{f}$ capacitor has been added from ground to the junction of RI and the age lead.

Motorola 9L1

Model 9L1 incorporates a Chassis TS-18 or TS-18A and is electrically identical to the chassis published. The only difference is in the size of the picture tube and the hardware used with 9L1.

Affiliated Retailers AR-16CD, AR-16CD-3CR, AR-163CR, AR-216, AR-316, AR-316-3CM, AR-816-3CM

These models are similar to Models AR16 CX and AR-816-3CR, and employ 16 -inch round picture tubes.

Muntz M159

Sets below Serial No. 22,000 did not contain a high-voltage filter capacitor as the coating on the outside of the picture tube had a capacitance effect and the capacitor was not necessary. Since picture tubes now leaving the factory do not have an aquadag coating upon the outer surface of the tube, it will be necessary to add the high-voltage filter capacitor Part No. CC-0070, $500 \mu \mu \mathrm{f}, 20,000$ volts d.c. (as shown in the schematic for Model M169), if a new picture tube is installed in chassis below 22,000.

Crosley 10-401, 10-414MU, 10-416MU
It has been found that on some receivers the horizontal oscillator exhibits a tendency to drift causing the receiver to fall out of horizontal sync after operating several hours, or, if the horizontal sync adjustment was made after the receiver has been operating for some time, the picture will not fall in sync when the receiver is cold. This trouble may be attributed to the $0.01-\mu \mathrm{f}$ capacitor, C160. This capacitor, if it is of the molded type (Type 487), may clange capacitance with temperature change sufficiently to cause the receiver to fall out of horizontal sync. To make correction, replace the $0.01-\mu \mathrm{f}$ molded capacitor Cl 60 with a $0.01-\mu \mathrm{f}, 600-\mathrm{v}$, paper-type capacitor (Part No. 39001-13).

If trouble is experienced with the above models in centering the picture and reducing the neck shadow, it may be caused by reversed polarity of the focus coil. If this is suspected, the polarity can be changed by reversing the current through the coil. To do this, interchange the leads to the focus coil at the points where they are soldered under the chassis. Try centering the picture again. If the centering action is easier and the neck shadow diminished, and if the angle the focus coil makes with the neck of the picture tuhe is almost a right angle, the comection is correct. The reason for difficulty in centering, when the focus coil polarity is incorrect, lies in the fact that the magnetic field from the focus coil interacts unfavorably with the field from the ion trap. When the coil is connected correctly, the current flow will pro-

VACUUM-TUBE VOLTMETERS

(Revised and Enlarged)

by John F. Rider

The 1951 revision brings the text up to date in its coverage of all types of voltmeters-diode, triode, rectifier-amplifier, tuned, amplifier-rectifier, and slideback. This is the only book that deals exclusively with vacuum-tube voltmeters. The theory and application of the various types are described and presented in completed form-including schematics, parts lists, and maintenance instructions. Examine the Table of Contents. Everything for every VTVM use! Student, service technician, engineer, laboratory, instructor-all can use it to good advantage.

TABLE OF CONTENTS

1-Fundamentals of Vacuum-Tube Voltmeters; 2-Diode Vacuum-Tube Voltmeters; 3-Triode Vacuum-Tube Voltmeters; 4-Rectifier-Amplifier VacuumTube Voltmeters; 5-Tuned Vacuum-Tube Voltmeters; 6-Amplifier-Rectifier Vacuum-Tube Voltmeters; 7-Slide-Back Vacuum-Tube Voltmeters; 8-VacuumTube Voltmeters for D-C Voltage, Current, and Resistance Measurements; 9-Probes for DC and RF; 10-Design and Construction of Vacuum-Tube Voltmeters; 11-Calibration and Testing of Vacuum-Tube Voltmeters; 12-Applicafions of Vacuum-Tube Voltmeters; 13-Commercial Vacuum-Tube Voltmeters; 14-Maintenance of Vacuum-Tube Voltmeters; Bibliography; Index.

Published April, 1951
213 illustrations
400 pages
$51 / 2^{\prime \prime} \times 81 / 2^{\prime \prime} \$ 4.50$

Iobn F. Rider Publisher, Inc. 480 Canal Street
 New York 13, N. Y.

duce a "North Pole" on that face of the coil nearest to the tube socket.
Picture and sound separation can be caused by a narrow bandpass of the i-f stages, narrow bandpass of the r-f tuner, or a combination of both. Check the i-f bandpass with a sweep generator, marker, and scope. The response curve should appear as shown for Model 10-401. Check the r-f tuner by substituting it with a unit that is known to be in good alignment.

SWITCH

In some cases, when using test equipment to align the above models, or when the gain of the receiver nay be affected by another section of the receiver such as improper functioning of the horizontal deflection circuits, it is advisable to substitute a bias for the agc circuit which can be adjusted manually to any desired setting. It is suggested that the battery pack arrangement shown in the accompanying diagram be used for this purpose by clipping the two external leads into the classis wiring at the points indicated. No wiring changes are necessary. A spst switch is employed to break the circuit when the battery pack arrangement is not in use. In order to prevent a run down battery, due to the switch being left turned on, it is suggested that a micro-switch be incorporated in one side of the unit. When the unit is placed on the chassis with the switch down the switch contact will close. When the unit is removed from the chassis the.switch will open automatically.

Westinghouse $\mathrm{H}-605 \mathrm{Tl2}$, Ch. V-2150-101

In some deflection yokes used in this model, the nut for the deflection yoke adjustment wing-screw may bind with the metal channel in which it rides. The binding makes it difficult to position the yoke snugly against the bell of the cathode-ray tube. If the yoke is not fitted snugly against the bell, shadows may appear around the edge of the crt face. To correct this condition, loosen the deflection yoke adjustment wing-screw and carefully force the deflection yoke forward as required. In extreme cases, it may be necessary to remove the deflection yoke and pry the nut toward the rear of the yoke using a screwdriver.

ORDER YOUR COPY NOW RIDER TV VOLUME 6

Tele King MST14, 14TR, 17CA, 17RO, 114A, 117, 117C, 117CA, 117LO, 162. 173, 516A
These models are similar to Models 116 and 516. Models MST14, 14TR, and 114A employ 14 -inch picture tubes. Models 162 and 516A employ 16 -inch rectangular picture tubes. Models $17 \mathrm{CA}, 17 \mathrm{RO}, 117,117 \mathrm{C}, 117 \mathrm{CA}$, 117LO, and 173 employ 17 -inch rectangular picture tubes.

* Build Your ServiceSales future on a Firm Foundation With..... Service Lab... for TV-FM-AM ...at only moderate cost.

BUY PERFORMANCE-NOT SPECIFICATIONS!-BUY "PRECISION"'
"PRECISION" PERFORMANCE, ACCURACY WORHMANSHIP and VALUE have been setting a standard of comparison for over 15 years. DO NOT BE MISLED...It is not "PRECISION" test equipment unless it is manufactured by Precision Apparatus Co., Inc., Elmhurst, L.I., N.Y.

OTHER MATCHED COMBINATIONS

The instruments shown above illustrate one of many possible MATCHED COMBINATIONS of diversified "PRECISION" Test Equipment for TV-FM-AM. Each combination provides a selected and basic, modern, efficient Laboratory at moderate cost.

Convenient Purchase Terms can be orranged with your favorite Precisision Distributar.
$A M \cdot F M \cdot T V$

New Round Shaft Mallory Midgetrol*

Saves Valuable Installation Time

Single Section Mallory Midgetrol

Now the time-proved Mallory Midgetrol offers two important new time-saving features.

This sturdy $15 / 16^{\prime \prime}$ control is supplied with a permanently fixed, tubular brass shaft that can be adapted for split-knurl or flatted type knobs in a few seconds by inserting one of the two steel shaft-ends packaged
with every Mallory Midgetrol. It gives you utmost convenience-without sacrificing a stable, permanently secured shaft.

Also, switch attachment is made simple and sure by positive indexing. Switch locks securely in position without removing the control housing.

supplied. Extremely simple instructions show you how to assemble them quickly and surely-without soldering-with only the simplest of tools.

Both front and rear sections are factoryassembled and carefully inspected. You can be sure that your final dual assembly will give the performance you want!

This revolutionary new control can be assembled in five easy steps, in less than five minutes-permits you to match a wide range of combinations immediately from convenient distributor stocks, and without high "time" costs.

The "exploded" view below illustrates the parts and assembled control sections

The Mallory Midgetrol gives you fast, sure, simple installa-tion-with precision-controlled carbon element, smooth taper, quiet operation, accurate resistance value and less drift in TV sets.
*Trade Mark

> Make Sure!
> Make it Mallory !

MAllLORY

* CAPACITORS • CONTROLS • VIBRATORS • SWITCHES • RESISTORS - RECTIFIERS - VIBRAPACK* POWER SUPPLIES . FILTERS

APPROVED PRECISION PRODUCTS
P. R. MALLORY \& CO., Inc., INDIANAPOLIS 6, INDIANA

-SuccessfuL SERVICING

REG. U.S. PAT. OFF.

Vol. 12
Dedicated to the financial and technical advancement of the Electronic Maintenance Personnel

Published by
JOHN F. RIDER PUBLISHER, INC.

480 Canal Street
New York 13, N. Y.
JOHN F. RIDER. Editor
E. H. BEAUMONT, Associate Editor

Copyright 1951 by John F. Rider
No portion of this publication may be reproduced
without the written permission of the publisher.

No. 6
 a few of these troubles are obscure and, while
tied specifically to one receiver in the referincally to one receiver in the reterence. may be duplicated in sone other receiver. The remedy as given may not be applied "in toto," but at least some direction of approach will be indicated.

The Self-Made Man

Nany of the practicing servicemen of America are self-made men. By this we mean that their technical background has been gained by exposure to literature, by continued reading of theory, and, finally, by daily work at the bench. Expanding the storehouse of knowledge in this manner is nothing to be ashamed of for, after all, it is the practice of all people who have had a formal education and must keep up to date with the changing techmology. A formal education can do nothing more than lay the foundation upon which more and more knowledge may be piled. As far as the servicing industry is concerned. the circuit descriptions which are contained in Rider Manuals, especially the TV Manuals, are vital sources of technical information. They comprise an education because they explain what happens in the TV receivers which are sold to the public. It is wrong for the serviceman to feel that he does not have time to read circuit descriptions. He must find time. The servicing industry is not a static industry. It is continually on the move, and the technical background of every TV technician must expand with it.

Johs F. Rider

Sarkes Tarzian TT2

The following revisions have been made in the TT2: L213 is now . 180 (was. 173) : L. 313 is now 155 (was .160) ; and L. 401 is now .165 (was .170).

Tele King 16C03CR, 16CX, 162, 216, 316, 416CAF, 916, 916C, 916CAF. 3163 CM

These models are similar to Models 416 and 716 and employ 16 -inch round picture tubes. may not always be retained in the mind. Quite

Time is of the essence in the servicing industry! It is a certainty that it will become even nore important as the days and months pass. One of the gripes that is being roiced by many service technicians is the time required to untarine leads wound around a connecting point as a part of the unsoldering operation. The loss of time, however, is not the only source of aggravation. An equally important sore spot is the frequent need for changing the lead dress of adjacent wires and circuit components in order to unwind the connection. Sometimes this is voluntary and. quite frequently, involuntary.

Considering the importance of correct lead dress in TV receivers, and for that matter in $\mathrm{r}-\mathrm{f}$. oscillator, and i-f systems of all receivers, it is only natural that the service technician be anxious to keep all unnecessary changes in wiring and component location to a minimum. To be forced to deliberately alter component conditions and then be certain that they are returned to their original locations so that resonance conditions and feedback conditions be normal, is a problem. Of that there is no doubt. We have had the experience ourselves.

Admittedly, a simple expedient when a connection is to be interclanged or a defective part is to be removed, is to clip a connecting wire at the junction point or soldering lug. This is quick, but it is messy and, strangely enough, is viewed with disfavor by meticulous service technicians. Isn't it possible to adapt a standard procedure of hooking the wire through a hole in the soldering lug or around the connecting point and then soldering? This would make the unsoldering operation very much simpler than having to untwist several turns. Quite frequently the solder cools and hardens before the untwisting joh is completed, and it becomes necessary to re-heat the junction. If the soldering is done properly during the manufacturing stage, it makes for an equally good comnection and a perfectly safe mechanical joint. Above all, it will be a boon to the servicing industry.

Changes

Quite a few of the changes relating to radio and television receivers contained in Rider Manuals and published in Successful Servicing make direct reference to servicing problems being solved by the circuit change. This is very important information, and we
seriously recommend that if time does not permit a complete reading of each circuit change, the change should be glanced at prior to filing. The trouble being eliminated will be remenbered even though the exact procedure

CURTAIN TIME

RIDER MANUALS HELP BREAK RECORDS!

RIDER MANUALS AND WORK
EASIER AND FASTER AND HAVE MORE TIME TO MYSELFYOU CAN DOTHE SAME THING

YOU'LL NEVER REGRET T-THEY'RE THE BEST BUYI EVER MADE-I'M STILL USINGA VOLUMEI BOUGHT 2OYEARS AGO-REMEMBERTO BUY VOLUME 2 IANDTV6-

Television Changes

DeWald DT-160

The focus coil has been deleted from the circuit. This information was omitted inadvertently from the change notice on this model that appeared in the February 1950 issue of Successful Servicing.

Attiliated Retailers AR-MST14, AR-MST16, AR-16ATR, AR-114A

Models AR-MST14 and AR-114A are similar to Model AR-14TR and employ 14inch picture tubes. Models AR-MST16 and AR-16ATR are similar to Model AR-16TR and employ 16 -inch rectangular picture tubes.

RCA 8T241 Series

Check to see that the receiver antenna transformer T115 is connected properly and that no windings are open. Remove 8T241 r-f unit and change R11 to 10,000 ohms.

If the receiver is to work in weak signal areas and never to receive a strong signal, then maximum r-f gain can be obtained by installing a small bleeder just to supply -0.5 volts for the r-f amplifier grid. RI2 should be disconnected from its present position and reconnected to this -0.5 -volt point. Check oscillator injection into mixer. This should read at least -2.5 volts on all channels when measured by a VoltOhmyst at test connection R13. If this is not achieved, adjust the link between L2 and L3 until such injection is obtained.

ENGINEERED to keep pace with the growth of the electronic industry.
MANUFACTURED to quality standards which meet fully the performance requirements of every leading radio and television set manufacturer.

TUNG-SOL LAMP WORKS INC
(NC., Newark 4, N. J. - Sales Offles: Allanta
Chicago - Dallas • Denver - Defrait . Los Angeles • Newark

Realign r-f unit for peak performance on the channels to be received.
Change R102 to 68 ohms. Realign the picture i-f making sure that the high frequency slope of the response curve is broad as specified in the service data. If receiver is to be operated in a very weak signal area, place the picture carrier at 60%, or even 80% on the slope. Check to see that the receiver retains proper response at low signal input levels, and -1.0 -volt i-f bias. Some change in response is normal, but the picture carrier should remain high on the curve. This alignment causes the picture to be smeared on strong signals but produces the best pictures on signals of less than 100 microvolts.
Make sure that the a-c line feeding the receiver is at least 115 volts at all times, as this radically effects the kinescope anode voltage. If the horizontal deflection system is operating improperly or is incorrectly adjusted, there may be insufficient high voltage on the kinescope. When a "snow flake" occurs, this causes the tube to bloon, making the snow more pronounced. Make sure that all $+B$ voltages are normal, especially the 6BG6 screen. Change R181 to 150,000 ohms. Adjust the drive trimmer as far counterclockwise as possible. It should be possible to have at least 9000 volts on the kinescope at this point.

Adjust the focus coil carefully so as to obtain best focus in white areas of the picture. Modify the video amplifier to saturate on whites, thus reducing the prominence of the "snow." Disconnect R124 from - 120 volt bus and return it to ground. This causes adjustment of the picture control to affect brightness, however, once set, these adjustments can be left alone.
Adjust the agc threshold control counterclockwise from the normal position to provide the best signal to noise (snow) condition. Unfortunately, this makes the sync more susceptible to impulse type interference such as ignition, etc.
Cut the antenua transmission line length to provide maximum signal. This effect is most noticeable on the high channels.
In general, use the highest gain antenna array that can be had, place it as high in the air as possible and above all surrounding obstacles, especially power lines. In some cases, however, if the electric field is distorted. a simple antenna may produce more signal than an elaborate array, and the height may become critical. In selecting an antenna for gain, make sure that high gain occurs on the channel or channels to be received. Some antennas, in order to reduce size, cut off badiy on channel 2 , and on some, the response is slightly down even on channel 3. In general. the best antemna or array for any particular channel is one cut for that channel.
Unless bothered with an extremely high noise level (ignition, etc.) the antenna transmission line should be the 300 -ohm open type. Coaxial and twinex have higher losses than the open line, which in weak signal areas cannot be tolerated. In time, however, open wire line may foul up and have to be replaced. This fouling shows up as a loss of signal in wet weather.
The above modifications make these receivers so "hot," that a booster is not likely to be of help in the receiving of weak signals.
Tele King MST12, 312
These models are similar to Model 812 and employ $121 / 2$-inch picture tubes.

SERVICEMEN ARE SOLD

Yes, SOLD ON RIDER MANUALS! And for good reason, too! Check for yourself . . RIDER MANUALS give you ALL the information you need! COMPLETE coverage o the manufacturers' ENIIRE receiver output! ALL pro duction runs (not just pilot models)... with ALL of the changes!

Yes, and ALL of the data is ACCURATE, AUTHENTIC, FACTORY-AUTHORIZED! ALL of it comes direct from the service departments of the receiver manufacturers themselves, and is compiled by RIDER into these indispensable television servicing manuals. . giving you in this ONE course, ALL of the priceless information that you MUST have

...and you can see WHY

For In the FIRST FIVE RIDER TV MANUALS, containing 10,544 pages:
731 pages are devoted to understandable descrip ions of circuit action...telling you HOW the circuit functions. NOBODY, but RIDER furnishes you with so much of this necessary information!
293 pages are on signal waveforms... so vital to 293 pages are on signal waverorme i.f., sound i.f. any rapid trouble diagnosis video, sync and sweep chis amount of important data! 0 ffers anywhere near this amour unpacking and in 337 pages have factorion, but RIDER, brings you as many of these heipful, time.saving notes!

ONH IN RIDER TMMNUAS

NOWHERE else can you get os much... in such esy-to-find format. . . so very easy-to-understand eosy-to-find format... so vorough ... so complete... so efficient. . .

$$
\star \star \star \star \star
$$

John F. Rider Publisher, Inc. 480 Canal Street New York 13, N. Y.

[^0]
MIDW00D

RADIO AND TELEVISION SERVICE 1328 Coney Island Avenue Brooklyn 30, N. Y.

John F. Rider Publisher, Inc.
480 Canal Street
New York 13, N. Y.
Gentlemen:
I use Rider TV Manuals in my service work. I have found the information covered more exact, and you can rely on the schematics because they are direct from the manufacturer. I can be sure that working with Rider's Manuals I have the complete servicing information to do an accurate and rapid job.

Keep up the swell work you are doing for the servicing industry.

Sincerely,
Herman Datis

RADIO REPAIR \& SALES

273 Central Avenue Newark 4, N. J.

John F. Rider Publisher, Inc.
480 Canal Street
New York, N. Y.
Gentlemen:
We have been in business for 18 years and have lways used Rider Manuals. We have found them to be invaluable in our work. I can truthfully say that we couldn't possibly have gotten along without them We have also found the information contained in Rider's Manuals clear and complete. We look forward to each new manual when it comes out.

Best wishes for your continued success.

Sincerely,

Frank A. Morrocco

TOWN RADIO \& TELEVISION CO.

72-06 Main Street Flushing, New York

John F. Rider Publisher, Inc.
480 Canal Street
New York 13, N. Y.

Gentlemen:

In the many years we have been operating as Radio and Television servicemen we were under the impres son that we could operate successfully without Rider Manuals.

In the past few months we have been called upon o service many $A M-F M$ and Television receivers for which we have needed all important service notes. So we went out and purchased a complete set of Rider Manuals from our favorite parts jobber.

It is our contention that no service shop can operate successfully without a complete set of Rider Manuals, Radio and Television. We now know that for any receiver Television or AM that is brought into our shop to be serviced we have the factory authorized data. It is a satisfaction to know that we have the data on hand when we need it.

Keep up the splendid work.
Very truly yours,
TOWN RADIO : TELEVISION
Samuel Freeman
SAMUEL FREEMAN

You need it!

Getit...Now!

New Rider TV Manual ... vOLUME 6

at your nearby Jobbers' today! Hurry in for your copy before the present supply is exhausted!

EXCLUSIVE FEATURES

- All TV Production Runs and Changes from August, 1950 Through January, 1951.
- Circuit Function Descriptions.
- Unpacking and Installation Data.
- Signal Waveforms for Trouble Shooting.
- COMPLETE Alignment Data.
- COMPLETE Parts List.
- Circuit Changes.

RIDER TV MANUAL...Vol. 6

ACCURATE . . . AUTHENTIC . . . FACTORYAUTHORIZED TV servicing information direct from 66 manufacturers. BIG 12"x $15^{\prime \prime}$ page size, and all pages filed in proper place. Large, easy-to-read diagrams. Equivalent of 2320 pages, ($81 / 2^{\prime \prime} \times 11^{\prime \prime}$) plus Cumulative Index Volumes 1 through $6 \ldots \ldots . .$. With all 6 RIDER TV MANUALS on your shelves you will have the world's greatest compilation of TV servicing information right af your fingertips. This information will save you time, save you trouble, help you do a better servicing job, and help increase your profits. SEE YOUR JOBBER TODAY!

Now Available!

RIDER Manual....Vol. XXI

Mere's another RIDER volume that you must have on your helves...another time-saver
another money-maker for you! Factory-authorized servicing information from 61 manufacturers . . . AM-FM, Auto Radios, Record Changers, Disc Recorders, Tape Recorders. Coverage from December, 1949 through October, 1950. 1648 pages plus Cumulative Index Volumes XVI through xXI
$\$ 2100$
Every Day, More and More Servicemen
JOHN F. RIDER PUBLISHER, Inc.
480 Canal street . New York 13, N. Y.

Television Changes

General Electric 12T3. 12T4, 12T7. 12C107, 12C108 and 12C109
Late production receivers incorporated the following change to increase the horizontal sweep width: Add a $220-\mu \mu \mathrm{f}, 1500$-volt capacitor (Stock RCU-295) between terminals \#6 and \#8 of the horizontal sweep output transformer, T351. Either two $390-\mu \mu \mathrm{f}$ capacitors (Stock UCU-1042, in series or two $470-\mu \mu \mathrm{f}$ capacitors (Stock ('CU-1044) in series may be substituted for the $220-\mu \mu \mathrm{f}$ capacitor.
Early production receivers made use of a 41.25-Mc trap coupled to the and video i-f coil. This caused "buzz" in audio on some
receivers when the receiver was properly tuned for best picture detail at low contrast setting or when operating on a rather weak signal. This trap was removed on all late production receivers and was made less effecfive on receivers in process of fabrication, by shunting the trap by a 5100 -ohm, $1 / 2$-watt resistor by connecting it across the trap trimmir C281. If this change is desired in the field, the shunting of C 281 by the resistor does not require a realignment of the video i -f.
To improve the "pull-in" range of the horzontal synchronizing circuit in the above receivers, a late production change was made which changes the value of R379 from 180,000 ohms, to 270,000 ohms, $1 / 2$ watt. This resistor is in the circuit which supplies bias to the afc control tube. In some receivers, a 220,000 -

Please mention Successful Servicing when answering advertising.
ohm resistor was substituted until an dequale supply of the recommended value was obtainable.

Westinghouse H-242, Ch. V-2150-31
The schematic diagram of the service notes for this chassis slows a capacitor, C336, and a resistor, R339, in the cathode circuit of the 6AH6 video output tube. These components were not incorporated in some of the early production chassis. In early chassis that do not contain C336 and R339. a sharper picture can be obtained in strong signal areas by adding the two components as shown on the schernatic. It should be noted, however, that insertion of the two components will reduce the gain of the stage somewhat, and in weak signal areas the reduced gain may overbalance the improvement in sharpness.
Steps 5 to 7 of the "High-Voltage Oscillator Adjustment Procedure" should be changed to read as follows:
5. Turn off the receiver, disconnect the 13 megohms of resistance, and connect the highvoltage lead to the crt
6. Connect the kilovoltmeter between the h_{1-v} lead and the chassis.
7. Turn on the receiver and adjust R466, which controls the dec supply voltage to the hiv oscillator, so that the voltage indicated on the kilovoltmeter is 10.5 kilovolts, plus or minus 0.5 kv .
The frequencies specified in steps 5 to 8 of the alignment procedure should be changed to read as follows
Step 5-22.6 Mc; Step 6-25.9 Mc; Step 7-25.6 Mc ; Step 8-23.8 Mc.

ORDER YOUR COPY NOW RIDER TV VOLUME 6

Westinghouse H-603C12, H-608C12, Ch. V-2152-01
The schematic diagram of the V-2152-01 chassis (Figure 14 in the service notes) should be changed to include later production changes as follows

1. The value of C408, which is connected from pins 5 and 7 of the 6AL5 horizontal af ic tube to ground, has been changed from 0.0033 $\mu \mathrm{f}$ to $0.002 \mu \mathrm{f}$. This change is made to improve the horizontal hold.
2. Add a $0.0-\mu \mathrm{f}$ capacitor $\mathrm{C}+39$ from the junction of R441 and R433, located in the pin 7 grid circuit of the 12 AU 7 horizontal multivibrator, to ground. This change is made to improve the horizontal hold.
3. Change the resistance of R456 in the cathode circuit of the $6 \mathrm{BQ} 6 / \mathrm{GT}$ horizontal output tubes from 33 ohms to 150 ohms.
4. Change the resistance of R431, located in the pin 6 plate circuit of the 12 AU 7 horzontal multivibrator, from 10,000 ohms to 33,000 ohms. This change stabilizes the opcration of the multivibrator.
5. Add a $0.01-\mu \mathrm{f}$ capacitor C511 and a 100 ohm resistor R506 connected in series from the junction of L 501 and R501 to ground. These components suppress arcing at the selector switch contacts.

The following changes and additions should be made to the Parts List:

Ref.	Part
No.	No.
C +08	V. 6023.6202 M
$\mathrm{C}+39$	V.6023.4104M
$\mathrm{R}+31$	RC30AE 333 K

C511 V.602
R506 RC20AE101K

List:
Description
Capacitor, 0.002μ
Capacitor, $0.11 \mu \mathrm{f}, 440 \mathrm{v}$
Resistor, 33,000 ohms, Resistor, 33,000 ohms, 1
Capacitor, $0.01 \mu \mathrm{f}, \mathrm{t} 00 \mathrm{v}$ Resistor, 100 ohms, 4,2

Here's the BOOSTER that says "YES" to all your demands...

Here at last is a TV Booster that gives you gain up to nine times, full band width for undistorted video and audio on all channels, plus - the newest development in booster design completely automatic operation.

The ITI AUTOBOOSTER turns itself on and off and is automatically tuned by the normal operation of the TV receiver. No confusing array of knobs - no unsightly mess of wires - You can install the ITI AUTOBOOSTER in the back of the receiver, out of sight. You get all the improved performance, all the fine picture quality that this precision-engineered booster can give you with none of the trouble of tuning, none of the exposed wiring usually involved in booster operation.

Customer acceptance is assured, too, because no customer instruction is needed. After it's installed, all you can see is the instruction is need
improved picture.

> omer s the

GREATER COVERAGE PER POUND

Perfect joints in less time with less solder - when you use Ersin MULTICORE Solder, the original 3-core solder and the only solder in the world made with non-corrosive, extra-active Ersin Flux! Eliminates "dry" joints! Bonds difficult metals! See for yourself! Send for FREE SAMPLE - Multicore Sales Corp., Dep't S., 164 Duane St., New York $13, \mathbf{N}$. Y.

LOUDSPEAKER MATCHING

(Continued from page 1)

line (or other high impedance) by means of an individual transformer having a primary impedance such that in combination with the other individual transformer primary impedances the total load is 500 ohms (or equal to the amplifier tap impedance used), Four loudspeakers in series-parallel using two matching
transformers, or mine loudspeakers in three series-parallel groups using three matching transformers, can each be connected so as to offer an impedance equal to that of the line. Fig. 4 illustrates line matching of the abovementioned series-parallel connected loudspeakers. It will be noticed that the matching transformer secondary impedance equals the load connected across it.
(More next issue)

Fig. 4. Low-impedance loudspeakers can be connected to a high-impedance amplifer in mans zoays using line matching transformers. Parts (A) and (B) illustrate tato such possihli. configurations.

Belmont C-1602 Series C

Model C-1602 Series C is similar to Model C-1602 Code 8 except for the differences mentioned below:

Resistor R3, the 470,000 -olim resistor connected from lug 2 (antenna input) to ground has been cleleted. Lug 2 is connected directly to lug 4, 1 and 3 are connected to the antenna input terminals. The value of resistor R 4 , going to pin 1 of the 6AG5 r-f amplifier, has been changed from 100,000 ohms to 10,000 ohms. Resistors R2, R5, R8 and R10, that were tied to lug 10 of the tuner, are now grounded. Capacitor C33, $1000 \mu \mu \mathrm{f}$. that went from R10 to ground, has been deleted. Capacitor C32, the $200-\mu \mu \mathrm{f}$ capacitor going from ground to the junction of pin 4 of 6AG5 r-f amplifier and tuner lug 6, has been deleted. Capacitor C31, the $220-\mu \mu \mathrm{f}$ capacitor going from ground to the junction of pin 3 of the 6 J 6 converter and tuner lug 7 , has been deleted. Capacitor C30, the $220-\mu \mu \mathrm{f}$ capacitor that was connected from pin 4 of the 6 J 6 converter and tuner lug 8 to ground, now is connected from pin 3 of the converter to ground. Pin 3 of the 6AG5 and pin 3 of the 6 J 6 are tied directly to lug 8 , which goes to the heater, pins 4 of both tubes are grounded. R4, mentioned above, now goes from pin 1 to lug 9 . instead of to ground, and lug 9 is connected to agc at the junction of the low side of capacitor C55 ($5 \mu \mathrm{f}, 50$ volts) and the 2200 -ohm resistor R 53 . The value of resistor R 54 has been changed from 220,000 ohms to 68,000 ohnis, and R54 is now inserted in the line going to tuner lug 9, instead of going from ground to tap 7 of T8. A $33,000-$ ohm resistor R110 has been added from ground to the junction of lug 9 and R54. The $0.2-\mu \mathrm{f}$ capacitor connected from ground to tap 7 of T8 has been deleted from the circuit.

In the tuner chassis, the $0.5-\mu \mu \mathrm{f}$ capacitor C 10 , connected in parallel with $\mathrm{C} 11,1.5 \mu \mathrm{f}$, has been deleted. The $51-\mu \mu \mathrm{f}$ capacitor C 28 , connected from L9 to C29 has been deleted.

The $7-\mu \mu \mathrm{f}$ capacitor C27, connected in parallel with L9, has been deleted from the circuit, and capacitor C 24 , the $7-\mu \mu \mathrm{f}$ capacitor connected in parallel with C26, has been substituted in place of C 27 . The $51-\mu \mu \mathrm{f}$ capacitor, C 25 , connected from the junction of C24 and C26 to pin 5 of the 6 J 6 converter, has been deleted from the circuit.

Gamble-Skogmo 94RA33-43-8135

The 94RA33-43-8135 is the same as Morlels 94R.433-43-8130C and 94R.-33-43-8131C except for the differences mentioned below. The physical difference is the cabinet, larger drum on the tuning gang, speaker bracket, dial glass. dial bracket and power-cord strain relief. The parts list for Model 94RA33-43-8135 is the same as that for the 8130 C and 8131 C except for the following parts.

Crosley 11-100U, 11-101U, 11-102U,
11-103U, 11-104U, 11-105U
The following procedure should be used when installing an ider spring (part no. 151085) on the drive shaft:

1. Remove cotter from end of shaft under chassis.
2. Pull drive shaft straight out from chassis being careful to keep drive cord on shaft and pulley.
3. Remove spring washer from shait.
4. Place idler spring on shaft and then hook one end of the spring under the chassis. The other end of the spring hooks around the portion of drive cord that is between the drive shaft and the tuning capacitor pulley.
5. Place spring washer on the drive shaft. insert drive shaft in chassis, and insert cotter on end of shaft.

WE GUARANTEE that RIDER BOOKS will show you how to do BETTER and MORE PROFITABLE servicing jobs...

This practical book tells you everything you should know about an oscilloscope! WHAT it is
and HOW to use it properly

ENCYCLOPEDIA ON CATHODE-RAY
 OSCILLOSCOPES AND THEIR USES
 by John F. Rider and Seymour D. Uslan

The FIRST and ONLY book that so fuilly and clearly describes the 'scope . . . its construction . . . its capa bilities its applications in communications, engl neering research with thousands of time-saving references, charts, waveforms, etc
and labor-saving references, during the past ten years, a total of All oscilloscopes produced are accurately described-with specimore than
fications and wiring diagrams.

Planning to buy or build a scope? This book will help you select the type best suited to your needs! If you already own one, the book will show you how to increase your instrument's usefulness in a thousand and one ways. 992 Pages - 500,000 Words - 3,000 Illustrations $81 / 2 \times 11^{\prime \prime}$ Size - 22 Chapters - Completely Indexed Easy to Read - Cloth Bound

And only $\$ 9.00$

TV and OTHER RECEIVING ANTENNAS

Theory and Practice

 by Arnold B. BaileyTells you . . . WHAT each type can do ... HOW to use it . . and WHICH is best! This is a text book on all types of receiving anten. nas. If you have any questions-you'll find the answers in this book! Manufacturer, engineer, student, teacher, service technicians - all can use this text. WE GUARANTEE IT! Antenna data never before published anywhere will be found in it. And it's readable-because mathematics has been translated into charts and graphs.
606 Pages . . . 310 Illustrations
And only $\$ \mathbf{6 . 0 0}$

Order this RIDER book, the ONLY text that gives you complete information on all the mechanical and electrical considerations.

TV INSTALLATION TECHNIQUES

by Samuel L. Marshall
KNOW the absolute facts about such things as ice loading, wind surface, and mounting requirementswhether for short chimney-attached mast or an 80 ft tower, including foundation
HAVE at your fingertips, accurate data on receiver adjustments in the home ... municipal regulations governing the instaliation of TV antennas and masts in all of the major television areas in the U.S.
SURE to help you wherever and whenever any part of the installation requires "doping out"! A TIMELY and IMPORTANT book!
336 Pages - 270 Illustrations • $5 \frac{5}{6} \times 8 \frac{5}{6}$ Size Cloth Bound

And only $\$ 3.60$

FM TRANSMISSION AND RECEPTION

 by John F. Rider and Seymour D. Uslan

The entire system of frequency modulation is ex plained thoroughly . . . all types employed in amateur radio, television, broadcast, railroad, aviation, marine, police, point-to-point and mobile receivers. Basic theory, transmission, reception, circuit design and servicing are covered, with mathematics kept to a minimum. Almost all of the presently used FM commercial transmitters are described in detail.

460 Pages, Profusely Illustrated
$\$ 3.60$

Beat the Tube Shortage!

This Sensational New RIDER Book Shows You HOW to Do It!

RECEIVING TUBE SUBStItution guide book

 by H. A. Middleton

For AM-FM-TV Receivers and Allied Equipment!

2500 Radio and IV Tube Substitutions Are Listed!

- TV Receiver Filament Wiring!
- Heater Substitution Wiring Instructions!
- Tube Types Classified By Functions!
- And A Wealth Of Other Priceless Data!

EXTRA! In addition to tube information ... this sensational book contains material on Cathode-Ray Tube Characteristics, Complete Tube Characteristics Chart, Ballast Tube Data, Pilot Light Information, Resistors-Capacitors-Transformer Color Codes, Transformer Substitution, Fixed Condenser Substitution, etc.

224 Pages in Heavy Durable Paper Cover. $81 / 2 \times 11^{11}$
Only
$\$ 2.40$

New

. . . Revised
Enlarged RADIO OPERATOR'S LICENSE Q and A MANUAL by Milton Kaufman
All the QUESTIONS and ANSWERS for the FCC examinations. New Elements 2, 5 and 7 have been included-and Elements 3 and 6 have been revised as of the September, 1950, FCC Supplements. However, the outstanding feature of this book is a THOROUGH FOLLOW.THROUGH . . . a carefully prepared discussion of the answer to the technical question, so necessary for an absolute understanding of the answer. It also lists "extras" not ordinarily found in a volume of this type ... including Useful Appendices which take in Small Vessel Direction Finders and Automatic Alarm.
766 Pages, Hundreds of Explanatory Diagrams. \$6.60
TV MASTER ANTENNA SYSTEMS
by lra Kamen and Richard H. Dorf
50 million dollars will be spent in 1951 for TV Master Antenna Systems installed in apartment buildings, hotels, hospitals, etc. . . in both new and old buildings. In TV MASTER ANTENNA SYSTEMS, the authors provide a practical working manual which deals with installation, maintenance, usage, etc. This book shows how the Master Antenna is installed, and how you can capitalize on this fast-growing field. how it works, and how you
 Cloth bound

WE GUARANTEE your satisfaction! Make these books PROVE their value to you. Examine them at your favorite jobber. If he does not have them, send your order to us.

JOHN F. RIDER,

When you replace a defective capacitor with a Sprague, it stays replaced! Why risk your reputation and customers' goodwill when the best costs no more?

Sprague capacitors are the dependable capacitors. P.S. Do you bave the latest Sprague Catalog C-607-5S on your bench?

SPRAGUE PRODUCTS COMPRAY
(Distributors' Division of Sprague Electric Co. NORTH ADAMS, MASSACHUSETTS

Radia Changes
 General Electric P15

To further clarify the identity of the three spindles for the record speeds for which they are to be used, the following descriptions have been added to the Parts List for record changer P15: RMU-060 Spindle, offset spindle for 7 inch, 33-1/3 rpm records; RMX162 Spinclle, for 10 or 12 inch, $33-1 / 3$ or 78 rpm records; RMX-163 Spindle, for 7 inch, 45 rpm records.

Admiral 6RT41, 6RT42, 6RT43

Ch. 5Bl-PH
Models 6RT41, 6RT42, and 6RT43 use radio chassis $5 \mathrm{~B} 1-\mathrm{PH}$. The $6 \mathrm{RT}+1$ is a plastic table combination using record changer RC160 or RCl 60 A . The 6RT4? and the 6RT 43 are wood table combinations using radio chassis $5 \mathrm{~B} 1-\mathrm{PH}$ and record changers RC 160 or RC160A. In acldition to the RC160 and RC 160 A , the 6RT42 may use an RCl 50 record changer.

Admiral 6C71-71A. Ch. 10A1;
7C62-62A, Ch. 6M1; 7C63-63A. Ch. 7Cl
Model 6C71-71A is a console combination using radio chassis 10 A 1 and record clanger RC200. Model 7C62A-62A. Ch. 6M1, and Model 7C63A-63A, Clı. 7C1, are console combinations and use either record changer RC170 or RC170A.

Gamble-Skogmo 94RA4-43-8129A,
94RA4-43-8130A, 94RA4-43-8130B, 94RA4-43-8131A, 94RA4-43-8131B, 94RA4-43-8132A
Model 94RA4-43-8129A is the same as Model 43-8129A. Models $94 \mathrm{RA}-43-8130 \mathrm{~A}$ and $9+\mathrm{RA} 4-43-8130 \mathrm{~B}$ are the same as Models $43-8130 \mathrm{~A}$ and $43-8130 \mathrm{~B}$, respectively. Model $94 \mathrm{RA} 4-43-8131 \mathrm{~A}$ is the same as Model 438131 A . Model 94RA4-43-81311B is the same as Model 43-8131B. Mordel 94RA4-43-8132A is the same as Model $94 \mathrm{RA}-43-8131 \mathrm{~A}$ except that it employs a maroon cabinet.

ORDER YOUR COPY NOW RIDER TV VOLUME 6

Motorola BKOA, CT8A, GM9TA, GMOT, HNO, ILOTC, KR9A. OEO, PCO, PC9A, SR9A, Ch. 10A
The above morlels all use Chassis 10-4 Model BKO 1 is used in 1950 Buick Special, Super and Roadmaster cars. It will also accommodate 1949 Buick Super and Roadmaster: also the $50-70$ Series $1948,{ }^{\prime} 47$, '46, and ' 42 Buick cars. Model CT8A is used in 1948 Chevrolet. It will also accommodate 1947, ${ }^{\prime}+6$, ${ }^{\prime}+2$, and ' 41 Chevrolet cars. Model GM9TA is used in 1949 and 1948 GMC and Chevrolet trucks. Model GMOT is used ill 1950, '49, and ' 18 GMC and Chevrolet trucks. Model HNO is used in 1950 Hudson (Pacemaker, Super, and Commodore). Model ILOTC is used in International L-Line trucks. Model KR9A is used in 1949 Kaiser and Frazer Model OEO is used in 1950 Series 76 and 88 , all 1949 and 1948 Futuramic Oldsmobile cars. Model PCO is used in 1950 and 1949 Pontiac cars. Model PC9A is used in 1949 Pontiac cars. Model SR9A is used in 1949 Studebaker cars.

BETIER

LOOKING!

 encineerinct PERFORMANCE!

ABSOLUTELY TIP-PROOF!

Properly balanced and weighted, solid metal base prevents tipping of the antenna ... regardless of the length or the angle at which the dipoles are set. Soft felt pad prevents scratching or marring of furniture.

3-section, triple-chrome plated metal telescopic dipoles can be oriented for each individual channel. Gets all 12 TV plus FM.

No. TA135
. complete with 300 ohm twin lead.
List
Price $\mathbf{6 . 9 5}$

SURE GRIP-SURE HOLD!

The ratchet contour inside the molded bakelite housing assures afirm grip and sure hold at whatever angle or length the dipoles are set.
"Made by JFD, the World's Largest Manufacturer of TV Antennas!"
Immediate Delivery From Your Jobber

MANUFACTURING CO., Inc.

I1/2 Ib. Weighted Base

Radia Changes

Admiral 6T06, 6T07, Ch. 4Al
Models 6 T 06 and $6 \mathrm{~T} 07, \mathrm{Ch} .4 \mathrm{~A} 1$, are wood table models using a farm battery.

Admiral 6T01, 6T05, Ch. 6Al

Model 6 T 01 is a plastic table model using chassis 6A1. Model 6 T 05 is a wood table model using chassis 6A1.

RCA 8X541, Ch. RC-1065L; 8X542, 8X547, Ch. RC-1065M

These instruments are almost identical to the previous production of these instruments which used Chassis RC-1065J and RC-1065K.

ORDER YOUR COPY NOW RIDER TV VOLUME 6

Admiral 6T02, 6T04, Ch. 5B1
Models 6 T 02 and 6 T 04 are table models using chassis 5B1. Model 6 T02 has a plastic cabinet, while Model 6 T 04 has a wood cabinet.

RCA A-82, Ch. RC-1094; A-91, Ch.
RC-1095; A-108, Ch. RC-1096; 45-W-9, Ch. RC-1095A
The original carriage in all of the above models used a pull-out handie on the top front, the carriage now in use has a handle under the lower front edge. The same plastic frame may be used for all models. A plug button (supplied with each plastic frame) is used to cover a center hole which is unused on all models except A-108

Frame-Stock No. 76161 is used as a replacement for frame Stock No. 75549 or 75571 (maroon).
Frame-Stock No. 76162 is used as a replacement for frame Stock No. 75683 or 75684 (light brown).
The new type of pull-out handle (lower front) is available as Stock No. 76125. If the original pull-out handle (top front) is desired it will be necessary to drill two holes in the frame. The holes are $.203^{\prime \prime}$ diameter and are located $.625^{\prime \prime}$ each side of the center line and $13 / 64^{\prime \prime}$ down from the top.
In Models A-91 and A-108 the color of wire used in the comnecting cable has been changed. A black-white wire has been used as a substitute for the black wire (pin 1 to speaker) and a brown-white wire has been used as a substitute for the brown wire (pin 8 to speaker). A brown wire goes from pin 2 to the jewel lamp and a black wire goes from pin 3 to the jewel lamp.
In Model A-82 a substitute speaker (stamped 92569-9B) has been used in some instruments. It requires a different speaker cone than the one listed in the A-82 Parts List. Speaker 92569-9B uses Stock No. 75875 cone. Speaker 92569-9W uses Stock No. 74901 cone.

Admiral 6RT4IA, 6RT42A, 6RT43A, Ch. 5B1A
Model 6 RT41A is a plastic table combination using radio chassis 5 B 1 A and record changers RC160 or RC160A. Models 6RT42A and 6RT43A are wood table combinations using radio chassis 5 B 1 A and record changer RC160 or RC160A.

ATTENTION! RADIO SERVICEMEN

there Are thousands Of OUT-MODED RADIOS IN YOUR "BACK YARD" JUST WAITING TO BE REPLACED... AT YOUR SUGGESTION

Here is the custom-built AM-FM chassis that means BIGGER PROFITS for you!

SPECIFICATIONS

Supplied ready to operate, complete with iubes, anfennas, speaker and all necessary hardware for mounting in a table cabinet or console, including escutcheon. Power consumption-105 watis.
Chassis Dimensions: $131 / 2^{\prime \prime}$ wide $\times 81 / 2^{\prime \prime}$ high $\times 10^{\prime \prime}$ deep.
Carton Dimensions: (2 units) $20 \times 141 / 2 \times 103 / 4$ inches.
Nof Weight: 17 pounds each.
Sold through your favorite parts distributor.
WRITE FOR CATALOGUE KDI2
AND NAME OF NEAREST DISTRIBUTOR.

The NEW ESPEY model 511-B

FEATURES

1. AC Superheferodyne AM-FM Receiver
2. Improved Frequency Modulation Circuit, Drift Compensated.
3. 12 tubes plus rectifier, and electronic Tuning Indicator and Pre-Amp. Tubes.
4. 4 dual purpose tubes.
5. Treble Tone control.
6. 6-gang tuning condenser.
7. Ful-range bass tone conirol.

High Fidelity AM-FM Reception
9. Automatic volume conirol

10 wotts (max.) Push-Pull Beam Power Audio Output.

1. 12-inch PM speaker with Alnico V Magnet
2. Indirectly illuminated Slide Rule Dial.
3. Smooth, flywheel tuning.

Antenna for AM and folded dipole antenno or FM Reception.
6. Wrovision for external antennas.

Wired for phonograph operation with switch for crysial or reluctance pick-up.
7. Multi-fap output trans.. 4-8-500 ohms.
18. Licensed by RCA and Hazeltine. Subject to RMA warranty, reaisfered code
symbol +174 .

Makers of fine radios since 1928

APPROVED for OUTDOOR-INDOOR Ușe \$ Protects Television Sets Against Lightning and Static

Twin Lead

Simple to install everywhere and anywhere ...no stripping, cutting or spreading of wires. More than 300,000 in use today!

SEe YOUR Jobber or write to

JFD MANUFACTURING CO., Inc. 6119016 th Avenue, Brooklin 4, N. . Y. First in Television Antennas \& Accessories
 Please mention Successful Servicing when answerin

Gamble-Skogmo 43-8101, 165, 197. 197U
Model 165 is the same as Model 94R.A31 43-8115A. Model 197 is the same as Model 94RA31-43-8115B. Model 197U is the same as Model 94RA31-43-8116A. Model 43-8101 is electrically the same as Models 94RA. $31-43$ 8115A, -8115B, and -8116A.

Gamble-Skogmo 43-7661, 43-7852
Model 43-7661 is the same as Model 43-7660 except that the 7661 uses a blond cabinet. Model 43-7852 is the same as Model 43-7851 except that it uses a blond cabinet.

Westinghouse H-312P4, H-312P4U, H-313P4, H-313P4U, H-314P4, H-314P4U, H-315P4, H-315P4U, Ch. V-2153-1

The following part should be added to the parts list for these models: RI3 (Part No. RC30AE 332 K), 3300 ohms, 1 watt.

United Motors 982421, Oldsmobile
Capacitance drift of the $0.0012-\mu \mathrm{f}$ mica capacitor used in the oscillator tank circuit (Illustration No. 20) sometimes occurs. This appears as intermittent oscillator frequency drift which seems to be the result of high temperature which may be caused by high input voltage or other extreme conditions. It may be necessary to cover the set or run at a high input voltage when bench testing in order to have the intermittent condition reappear. Since a fixed mica capacitor is usually considered a very stable unit, this condition is not a common occurrence. However, when oscillator frequency drift is encountered this capacitor should be considered as a possible source.

SQUARE INCHES OF FINEST PICTORIAL REPRODUCTION...
new Bent-Gun for edge-to-edge sharpness, gray filter face plate, "Standard" neck length of 73/16"

Our commercial engineering department invites all design inquiries

Please mention Successful Servicing when answering advertising.

Westinghouse H-217, H-217A, Ch. V-2146-11DX; H-217B, Ch. V-2146-35DX In the schematic diagram of the V-214611DX chassis (Fig. 6 of the service notes), the high-frequency oscillator tube should be a 6 C 4 rather than a $6 \mathrm{AB4}$. In the schematic diagram of the V-2146-35DX chassis (Fig. 7 of the service notes) the $0.05-\mu \mathrm{f}$ capacitor C 338 in the d-c restorer circuit should connect to the top (cathode) of the 1 N 34 rather than to the bottom (anode).
In later production of Model H-217B, a built-in TV antenna is incorporated. Replacement parts for the antemna are as follows: Port
No.
No

Part	Description
No.	
V. 9358.2	Antenna assembly, TV
V. 5574	Bearing, shaft (TV antenna)
V. 6146.5	Knob, TV antenna
V. 9323.1	Pulley and shaft assembly (short shaft)
V. 9324.3	Pulley and shaft assembly (long shaft)
V. 9328.1	Sleeve, rubber (TV antenna)
V.4057	Spring, TV antenna drive
V. 3752 S	Washer, felt (TV antenna knob).

INDEX OF CHANGES

Model
Page Number Successful
Servicing
Rrom

TELEVISION CHANGES

Affliated Retailers AR-MST14, AR-MST 16 AR-16ATR, AR114A AR.14TR, AR.16TR	6.6	$6 \cdot 1$	6.9
Affiliated Retailers AR-16CD. AR-16CD-3CR, AR-163CR, AR. 216. AR-316, AR-316.3CM AR.816.3CM AR-16CX, AR-816-3CR	2	5.1	5.8
Crosley 10-401, $10.414 \mathrm{MU}, 10.416 \mathrm{MU}$ 10.401 $10-414 \mathrm{MU}, 10.416 \mathrm{MU}$	2	$\begin{gathered} 5.25 \\ 5.37 \end{gathered}$	$\begin{aligned} & 5.36 \\ & 5.41 \end{aligned}$
Belmont C- 1602 Series C C. 1602, Code 8	10	5.21	5.29
De Wald DT. 160	6	$\begin{gathered} 3.2 \\ C+2 \end{gathered}$	3.5
$\begin{aligned} & \text { General Electric } 12 \mathrm{~T} 3, \\ & 12 \mathrm{~T} 4,12 \mathrm{~T} 7, \mathrm{Cl}^{2 \mathrm{C} 107,} \\ & 12 \mathrm{C} 128,12 \mathrm{CC109} \\ & 12 \mathrm{~T}, 12 \mathrm{~T}, 12 \mathrm{C} 107, \\ & 12 \mathrm{C} 108,12 \mathrm{C} 109 \\ & 12 \mathrm{~T} 7 \end{aligned}$	8	$\begin{aligned} & 5.35 \\ & 6.1 \end{aligned}$	$\begin{aligned} & 5.47 \\ & 6.11 \end{aligned}$
Motorola 9L 1 TS. 18, TS. 18 A	2	4-11, 12	4.18
Muntz M159	2	$4 \cdot 1$	--
RCA 8T2 21 Series	6	$3-1$	$3 \cdot 14$
Sarkes Tarzian TT2	5	4.1	4.2
Sarkes Tazzian TT3	2	4.3	4.4
$\underset{812}{\text { Telc }}$ King MST12, 312	6	$\frac{3-1}{5 \cdot 11}$	$3 \cdot 8$

Tele King MST14, 14 TR
$17 \mathrm{CA}, 17 \mathrm{RO}, 114 \mathrm{~A}$,
117LO, 162, 173,516A 2
16. $516 \quad 5.12 \quad 5.20$

Tete Ning $10 \mathrm{CO} 03 \mathrm{CR}, 16 \mathrm{CX}$,
162, $216,316,+16 \mathrm{CAF}$.
$916,916 \mathrm{C}, 916 \mathrm{CAF}$,
3163 CM
$+\begin{array}{r}3163 \mathrm{CM} \\ +16\end{array}$
416
716
Westinghouse $\mathrm{H}-217$,
estinghouse $\mathrm{H}-217$,
$\mathrm{H} \cdot 217 \mathrm{~A}, \mathrm{Ch}, \mathrm{V} \cdot 2146$
$11 \mathrm{DX} . \mathrm{H} .217 \mathrm{~B}$
Ch. V.2146-35DX $16 \quad 5.11 \quad 5.25$
Westinghouse H. 242 .
Ch. V. 2150.31
Westinghouse $\mathrm{H}-603 \mathrm{C} 12$,
$\mathrm{H}-608 \mathrm{C} 12$,
$\mathrm{Ch} . \mathrm{V} .2152 .01$
Westinghouse H-605T12, Ch. V-2150.101

RADIO CHANGES

Admiral 6C71.71A, Ch
10A1; $7 \mathrm{C} 62 \cdot 62 \mathrm{~A}$, Ch.
$6 \mathrm{M1;} \mathrm{7C63-63A}$,
Ch .7 C 1

Ch. 7 Cl	12		
Ch. 10A1		15.27	15.31
$\mathrm{RC200}$	$\mathrm{RCD} . \mathrm{CH}$.	17.8	17.13
Ch. 6Ml		16.1	16.2
		16.11	
Ch. 7-1		16.3	16.6
RC170, RC170A	RCD. CH .	16.1	16.7

Admiral 6RT41, 6RT42,
6RT43, Ch. $5 \mathrm{~B} 1 \cdot \mathrm{PH}$
$\mathrm{Ch} .5 \mathrm{BI} \cdot \mathrm{PH}$
RC150, RC160,
RC160A \quad RCD CH 15 A
Admiral 6RT41A, 6RT42A. 6RT43A, Ch. 5B1A 14
Ch. 5 Bl
RC. 160 , RC-160A RCD. CH. $15.11 \quad 15.12$
Admiral 6T01, 6 T05.
Ch. 6 Al 1
Admiral 6T02, 6T04,
Ch. $\mathrm{SB}_{\mathrm{B}}{ }^{5 \mathrm{~B} 1}$
Ch. 5 B 1
Admiral 6T06, 6T07, Ch. 4 Al
Ch. 4 Al (14
Crosley 11-100U, 11-101U,
$11.102 \mathrm{U}, 11.103 \mathrm{U}$,
$11.104 \mathrm{U}, 11.105 \mathrm{U} \quad 10 \quad 21.10 \quad 21.13$
Gamble-Skogmo 43-8101, $165,197,197 \mathrm{U}$
94RA31.43.8115A,
-8115B, -8116A
43.7852 43.7661
43.7660
43.7660
43.7851

Gamble. Skogmo $9+$ RA 4.43
$8129 \mathrm{~A},-8130 \mathrm{~A}$,
$-8130 \mathrm{~B},-8131 \mathrm{~A}^{\prime}$,
$.8131 \mathrm{~B},-8132 \mathrm{~A}$
$43.8129 \mathrm{~A},-8130 \mathrm{~A}$,
$8130 \mathrm{~B},-8131 \mathrm{~A}$,
amble-Skogmo 94RA33.43.
8135
94RA33-43-81:0C,
94RA33.43.8131C
$\begin{array}{llll}\text { General Electric P15 } & { }^{12} \text { RCD. }{ }^{\text {CH. }} 21.13 & 21.18\end{array}$
Motorola BK0A, CT8A.
GM9TA. GMOT,
HNO, ILOTC, KR9A,
OEO, PCO, PC9A,
SR9A, Ch, 10 A
Ch. 10 A
RCA A-82, Ch, RC-1094:
A-91. Ch. RC-1095;
A-108, Ch. RC-1096;
+4.W.9, Ch.
RC. 1095 A . 14
$\begin{array}{cccc}\text { RC. } 1095 \mathrm{~A} & 14 & & \\ \text { A.82, Ch. RC- } 1094 & & 21.13 & 21.16 \\ \text { A.91, Ch. RC. } 1095 & & 21.63 & 21.70\end{array}$
A. $108, \mathrm{Ch} . \mathrm{RC} \cdot 1096$
$\begin{array}{llll}\text { 45.W.9, Ch. RC-1095A } & 21.71 & 21.80 \\ & 21.81 & 21.88\end{array}$
RCA8X541, Ch. RC
1065L:8X542, 8X547,
X541, 8 X $542,8 \mathrm{X} 547$.
Ch. RC. 1065 J , 8 S 47
$\begin{array}{lrr}\text { Ch. RC- } 1065 \mathrm{~K} & \begin{array}{l}18.45 \\ \\ \end{array} \quad 18.46\end{array}$
United Motors 982421,
Oldsmobile
$14 \quad 19.44 \quad 19.49$
Westinghouse $\mathrm{H}-312 \mathrm{P} 4$,
$\mathrm{H}-312 \mathrm{P} 4 \mathrm{U}, \mathrm{H}-313 \mathrm{P} 4$,
H. $313 \mathrm{P} 4 \mathrm{U}, \mathrm{H} \cdot 314 \mathrm{P} 4$,
H. $314 \mathrm{P} 4 \mathrm{U}, \mathrm{H}-315 \mathrm{P}$
$\begin{array}{llll}\text { V.2153.1 } & \text { Ch. } & \text { 21.15 } & 21.17\end{array}$

[^1]LZャ6 ${ }^{\circ}$ ON WWHEd

- \AA 'N 'XYOX MIN

O\|Vd
30YISOd $s \cdot n$

peofubidng abolsod umiey
X "N 'EI HYOX MJN "IS TUNUD 08t

[^0]: Complete your Rider Manual Library! If any vol. umes are missing; order a replacement foday:

[^1]: \dagger The Rider Manual Page Numbers given under Television Changes are for Rider TV Manuals. The volume number is the number preceding the dash. Volume numbers preceded by an asterisk $\left(^{*}\right)$ apply to the $81 / 2^{\prime \prime}$ by $11^{\prime \prime}$ page size Manual only.
 The Rider Manual Page Numbers given under Radio

