-SuccessfuL SERVICING

REG. U.S. PAT. OFF.

Dedicated to the financial and technical advancement of electronic maintenance personnel

VOLUME 14 NUMBER 1
JANUARY, 1953

JOHN F. RIDER, Publisher ANNETTE M. TRICARICO, Editor
Stuart Flexner, Assistant Editor
Milton S. Snitzer, Technical Advisor

Advertising Representative

H. J. Olsow \& Co.

3951 Grand Central Terminal
New York 17, N. Y.
MUrray Hill 6-4670

Cuntain Time

The Itinerant TV Service Technician

It has been common practice to do light TV servicing - mainly tube changing - in the home. Judging by the comments of some large service facilities of all sorts, customers' home service will be expanded in the future to where virtually all troubles will be remedied in the home. Only in extreme cases will chassis be pulled.

This approach to TV servicing will, more than likely, result in other changes too. It is going to mean a greater investment in test equipment - portable equipment which can be taken into the home. This means that test equipment manufacturers will have to design equipment specifically for this purpose.

It is going to give the small independent operator the opportunity to survive. It has been the general opinion that TV servicing set a limit on the minimum number of personnel required by a service facility because of the to-and-fro movement of a TV receiver. Doing most of the service in the home enables a TV service facility to operate with whatever number of technicians the facility wishes to place in the field - as few as one man.

Another practice associated with this kind of service is the use
of the rolling parts stock, that is, the replacement parts stock will be in the truck which is driven to the job. This is being done to a limited extent today and is proving successful. In fact, the roving service truck idea was talked about years ago - at the advent of television, but it did not gather too much momentum, except as applied to receiver and antenna installations. Now it looks like it will become an everyday occurrence.

The idea will be accepted by the public. Even though the average housewife is not too happy at the prospect of having one of her rooms cluttered with servicing equipment, it still is the lesser of the two evils relative to all the possibilities of what can occur when the chassis is removed from the home. In the mind of the public anything can happen after a chassis is pulled even to having to pay a ransom to get it back. Having it serviced in the home will reduce the period during which the receiver is inactive. It will cut the travel time cost, to say the least.

Once the practice blooms, it will be necessary for all service facilities to follow suit. This is becoming evident today in the form of the responses received by those shops that advertise service in the home. They outpull the ads which do not make the same offer.

Doing extensive TV servicing in the home will place a greater than ever premium on technically qualified men. In fact, successful operation cannot be carried on in any other way. Properly handled, it should minimize repeat calls because it is possible to demonstrate the performance of the receiver before the technician leaves; also it means freedom from the complications of operating a receiver in one location and servicing it in another, where completely different receiving conditions prevail.

All in all, major service in the customer's home offers interesting possibilities. Let's see what happens.

The OPS Price Order for TV Service

The price order covering TV service has yet to be issued by the OPS. According to reports it will be done, providing the regulatory body will remain after the new administration becomes active. We have not changed our ideas as expressed in the November, 1952 issue of SUCCESSFUL SERVICING. We feel that the problem of diagnosis of TV receiver troubles, the "bugs" which frequently develop in TV receivers - in general the behavior of electronic equipment makes it necessary to treat the repair of these devices differently than ordinary electrical and mechanical equipment.

It is reported that the contents of the proposed regulation has the approval of TV service facilities. We hope that diagnosis time was given its full due apart from the time required for the repair.

John \mathscr{F}. Rider

Replacement Parts in TV Receivers

Part I-Capacitors (cont'd)

This is the third in a series of articles on "Replacement Parts in TV Receivers." "Capacitors" will be continued next month.

DIFFERENCE BETWEEN CAPACITORS

The various names which appear in the capacitor family tree designate both physical and electrical differences in the components and in the behavior and suitability of the component for different classes of service. As to the physical differences in dimensions, these require no special comments other than to say that, in the final analysis, the suitability of a capacitor on this basis, is determined by its location in the receiver.
Mica Capacitors. The differences between foil mica and silver mica capacitors are manifold. The foil type, or ordinary "molded" mica is made up of alternate slabs of active surface (usually metal foil) and mica dielectric. The assembly is compressed under high pressure and housed in a molded case, usually of brown bakelite, although yellow bakelite also is used for this purpose. The uniformity of closeness of the foil to the dielectric slab determines in a great measure the electrical behavior of the device. This behavior is a function of the materials used, the pressure applied when the unit is encased, and the expansion or contraction of the casing under the influence of varying temperature. This in turn gives rise to changed spacing between the active surfaces and the dielectric, and a change in capacitance.

The variation in capacitance under varying temperature conditions is minimized by the use of yellow bakelite, but since the foil type represents. a category of component, certain conditions of behavior are acceptable. Thus the usual brown bakelite mica capacitor is acknowledged to possess certain operating characteristics and is used on that basis.

The tendency toward change in capacitance with variation of temperature has given rise to a sub-classification. This is the deliberately engineered temperature coefficient nrica capacitor, wherein the capacitance changes by a prescribed amount per degree C. change in operating temperature. This type was popular years ago for correcting circuit behavior with changing temperature, but, as is discussed in detail later, it has been supplanted by the ceramic dielectric unit.

The silver mica variety, whether of the "postage stamp" or "button" shape, uses a deposit of silver on the two sides of the mica dielectric. This produces a firm bond

by John F. Rider

between active surface and dielectric. Moreover, the assembly is housed in either red or yellow bakelite; that is, in material which maintains its dimensional stability with changing temperature. The result is a capacitor which is very efficient electrically; is much more stable in capacitance than the ordinary mica; can be produced to a much greater degree of accuracy relative to capacitance rating; in general is much more suitable for use in all critical circuits under varying conditions of frequency (including UHF), temperature and humidity. It too is available in a variety of temperature coefficient characteristics, although in the main it is a positive temperature coefficient capacitor.

Manufacturing know-how enables producers of mica capacitors to deliver an end

New RIDER TEK-FILE Packs with
 Replacement Parts Listings

 available this month!Pack 62. Gamble-Skogmo, G.E.
Pack 63. G.E., Hallicrafters
Pack 64. Hallicrafters, Hoffman
Pack 65. Hoffman, Jackson, Magnavox
Pack 66. Majestic, Meck, Montgomery Ward
Pack 67. Motorola, Muntz, National, Olympic
Pack 68. RCA, Philco
Pack 69. Sylvania, Tech-Master, Trav-Ler, Vidèo Products

The following Packs will not be released until February, 1953, but are included in this month's index.for your convenience and for future reference:

Pack 70. Motorola
Pack 71. Packard-Bell, Philco
Pack 72. RCA
Pack 73. Wastern Auto, Westinghouse
Pack 74. Radio Craftsmen, RCA, Sears Roebuck
Pack 75. Sentinel, Sparton, Spiegel, Starrett, Stewart-Warner
Pack 76. Stromberg-Carison, Sylvania
Pack 77. Westinghouse, Zenith
For the individual models included in these Packs, refer to the TEK-FILE INDEX in this issue.
product which displays prescribed characteristics relative to an increase or decrease in capacitance within prescribed limits for unit changes in operating temperature. This, establishes the "class" or "characteristic" of the capacitor. Since the set designer weds the characteristic of the capacitor to the circuit requirements, it is a relatively important consideration in the matter of replacement. In essence, the characteristic is a designation of the temperature coefficient of the capacitor. More about this later.

The comparative superiority of the silver mica capacitor over the ordinary foil mica type does not make the latter a bad unit. It is an excellent capacitor and enjoys a great variety of uses; it is simply that where frequency stability is a very important item, and the frequency is controlled by capaoitance (as for example in oscillators and other critical tuned circuits) the silver mica unit is preferred.

The use of mica as a dielectric provides high insulation resistance. This is true for both kinds of active surface construction; hence the mica capacitor is frequently used for d-c isolation (and coupling) where d-c leakage must be kept very low. To minimize the absorption of moisture in humid atmosphere, and also to keep surface leakage between the connecting wires low, the complete capacitor often is coated with a layer of wax.

Ceramic Capacitors. Ceramic capacitors are available in a number of types. Neglecting physical differences, the ceramic unit is highly efficient electrically. Constructionwise, regardless of the shape, it consists of a metallic deposit on the opposite surfaces of a ceramic dielectric with connecting leads soldered to the active surfaces. The result is a very stable capacitor, and one in which, by selection of the ceramic dielectric material, a variety of electrical characteristics can be achieved. One of its paramount virtues is a relatively high value of capacitance in a small, compact-sized unit. In this respect it is superior to all other types of capacitors.

Another feature stemming from the easy control of the specific composition of the ceramic dielectric, is the ability to manufacture a capacitor which will change in capacitance in a definite direction and decrease or increase by a predetermined amount with changes in operating temperature. While this is possible with the foil type of mica capacitor, it is much more easily controlled in the ceramic, with the result that the latter variety of temperature compensating capacitor has displaced the

Using An A-M Signal Generator efc.

(Contimued from page 3)
The height and vertical linearity controls should then be adjusted until the height of the blanking bar is uniform regardless of its position on the screen.

Although the vertical height and linearity controls can be adjusted for reasonably good linearity without a test pattern or test equipment, the adjustment of the horizontal linearity control does require some type of a pattern on the screen. An incorrect adjustment of the height and vertical linearity controls is more noticeable on the ordinary program than is an incorrect adjustment of the horizontal controls. This does not mean that the horizontal adjustments can be overlooked, however, since the owner will see a
number of programs on which a circle will be used, and if this is not a reasonably true circle, a return service call will probably be required.

The signal generator can also be used to make this adjustment without removing the chassis from the cabinet. The only additional items required are a $.01-\mu \mathrm{f}$ capacitor and a piece of thin spaghetti. The location of the first video amplifier tube must also be known. This tube can, of course, be identified if a circuit diagram is available. If a diagram is not on hand, the tube layout will ordinarily indicate the video amplifier tube or this tube may be recognized by its location on the chassis.

Addition to TV 10 and TEK-FILE Pack 67

National TV Model 1701
VOLTAGE CHART

Tube No.	Pin 1	Pin 2	Pin 3	Pin 4	Pin 5	Pin 6	Pin 7	Pin 8
V1	-. 5	0	6.3 AC	0	80	80	0	
V2	96	98.	6.3 AC	0	-3. 5	-2. 5	0	
V3	-. 45	0	0	6.3 AC	90	90	. 4	
V4	-. 45	0	6.3 AC	0	90	90	. 5	
V5	-. 45	0	0 0.	6.3 AC	90	90	. 6	
V6	0	0	0	$6.3 \mathrm{AC}^{-}$	90	90	. 7	
V7	-2. 5	-. 2	0	6.3 AC	. 5	0	-3	
V8	0	6.3 AC	$-\dot{-2.5} \text { to }$	-2.5	. 4	160	0	115
V9	90	-9	4.5	0	0	0	0	0
V10	20	0	0	6.3 AC	20	-. 6	0	
V11	0	0	6.3VAC	0	13	NC	-9	
V12	NC	NC	6.3VAC	0	320	-90	0	
V13	NC	0	350	350	27	0	6.3VAC	0
V14	25	220	13	-7	120	13	6.3VAC	0
V15	NC	6. 3VAC	1.7	TP*	-18	NC	0	320
V16	HV RECTIFIER							
V17	NC	280	540	NC	360	NC	6.3 VAC	6.3VAC
V18	PICTURE TUBE							
V19	0	0	0	6. 3AC	88	90	. 6	
V20	96	140	340	90	94	96	90	
V21	88	92	42	92	280	150	92	
V22	0	90	320	250	90	90	90	105
V23	NC	390	0	0	360	0	NC	390
V24	88	88	92	92	92	NC	80	

*Tie point

Fig. 7. Pattern produced by signal generator with 157.5 kc modulated by tu0-cycle audio.
A number of manufacturers are also including test jacks located at various points in the circuit which can be used for troubleshooting or signal insertion. One of these test jacks is usually located at the output of the video detector or the input to the first video amplifier. If a test jack is available the output of the signal generator can be connected to this point through a $.01-\mu \mathrm{f}$ capacitor by inserting one end of the capacitor, bent to make proper contact, into the test jack.

If a test jack is not available at this point in the circuit, contact can be made by connecting the $.01-\mu \mathrm{f}$ capacitor to the grid pin on the first video amplifier tube. A piece of thin spaghetti should cover both of the capacitor terminal wires so that only about one-quarter inch of wire is exposed at the end of each wire. One end can then be bent so that it will fit snugly over a miniature pin, and the other end can be bent to fit over an octal pin. Either end can then be used depending on the tube used in the receiver. The spaghetti will prevent a short either to the chassis or to some other tube pin.

The channel selector should be sent on a blank channel and the r-f output cable of the signal generator connected to the unused end of the $.01-\mathrm{mf}$ capacitor. The output of the signal generator should be unmodulated and the frequency adjusted for some harmonic of the horizontal sweep frequency of 15,750 cycles, such as the tenth harmonic which is 157,500 cycles or 157.5 kc . This will produce about ten vertical dark and light bars across the screen as shown in Fig. 6. The spacing of these bars can then be used to adjust the horizontallinearity control. If more bars are preferred the frequency of the signal generator can be increased; if fewer bars are desired the frequency can be decreased. The vertical bars will sync in at harmonics of the hori-zontal-sweep frequency. If the audio modulation is not turned off the bars will be wavy as shown in Fig. 7.
If either a cross-hatch generator or an a-m signal generator must be used, it should be remembered that these instruments are only substitutes for the test pattern. If a pattern can be used it should be preferred although reasonably close linearity adjustments can be made with instruments.

by John D. Burke

What goes on in the head of a TV repairman when he goes into a house or apartment to "take a look" at a TV set?

Within the space of a very few minutes a torrent of thought surges through his head. Yet, to the observer, it would seem that the repairnan has little on his mind.

From years of personal experience I shall try to set down a record of such thinking. Perhaps it will be interesting to psychologists. At any rate, my fellow repairmen should be interested, amused, even compensated for their somewhat tonguetied characteristic - unable to convey to an outsider that which we of the trade undergo.

Since we are dealing with a torrent of thoughts - the only organization possible is movement. It will start at one point, and finish at another.
"What could it be? It must be just a tube! We had all the tubes overhauled just last month! Must be just an adjustment! Maybe the aerial has blown down! Do you think it is the picture tube? What do you think of these...
.sets? What kind of a set do you have? Which set would you recommend? Let the man alone! What's that? An ash tray? (Gladly they rush to bring an ash tray. Gives them something to do. Like a doctor asking for hot water.)"

Hmm. They never think to clear the junk off the top! Where's the light? Living rooms are certainly dark nowadays since television . . . ah, at least this floor lamp still has a bright bulb. What is it? A console. Drag it out. Careful, watch out for that rug
remember, put something on the top this paper will do. Never forget the time I accidentally burned a tiny spot on a top. So small it rubbed out easy . . . looked like they'd kill me . . . refused to take pay for the job . . . told 'em to apply it to re-
finish the cabinet . . . man came to my shop and insisted on paying for my work.

The back . . . oh no . . . screws mostly missing. Watch out for that tube neck. . sticks out! If the back drops . . . bang goes the picture tube. Hey! Better take a look at the front before pulling off the back. What's the complaint? Plays a while - then goes crazy. Hnmm - at least this one's got the hold controls on the front . . . Ah, not enough width . . 5U4 or more? Gee, I hope it doesn't use a 6CD ... haven't got one with me Lousy intermittent. Picture's solid now. Try to speed up the craziness . . . rotate band switch. Turn set on and off . rotate hold controls. The people will think I'm ruining their set - swinging these knobs so fast. Those fix-it books - TUUUUUURN SLOOOOWLY - got everybody nuts. 'Fraid to turn a knob. Never forget the old pair that thought the set should be turned off before changing stations!
O.K. - there she goes. Sync. Is it both vert and hor? Vertical very unstable . . . horizontal, no sync at all. Oh, oh - breaks into multiple images sideways. Nice. Hope its just the oscillator. Nice, clean, simple through in a wink. Maybe the horizontal amplifier, too. Hope not. Rough to explain that tube's price. Off with the back. where's my junk? Ah, ah, somebody's broken the cheater off the back. No need to use my cord . . . always forgetting them . . . such a hurry to get out after the job is done I forget the cord.
How about the controls? Marked on the chassis . . . ? Those engineers should have to work on some of their own monstrosities. What is this . . . intercarrier or conventional? Looks intercarrier. How nany tubes in the sync . . Mmmm. Horizontal oscillator - where the devil is it? The places they put tubes! Ah, at least this one has a spring mount base. That's the baby . .. oh, oh . . . wait : . . don't pull it or you'll blow a fuse! Off with the cord . . . change tubes . . hope this new one is good! Now . . . let's see . . . before turning it on . . . Where's the fuse? In the box. Good. Lucky. Better open her up before turning it on again. May see something. Some case, that last one! Somebody just laid a new fuse on top of the
old onel That set sure acted crazy. How about finger smears on the tubes? Yeh, they've been in here. Just feeling to see if they are hot. Hey! How about the trap . . . have they been at it, too? Yeh! Mm . . . doesn't look like they moved it. It looked O.K. when the set did play before . . .

Would the horizontal oscillator tube being bad explain lack of vertical sync? Might. If vertical draws voltage from the damper damper works off horizontal . . . O.K. Let's see how she works . . . look at the people watching me! Every move I make. Probably figure I'm trying to cheat them . . . they should know. If I get out of this without a shop job, or an argument, I'll be happy.

Set's two years old . . . plenty trouble due any minute now. Original picture tule ... funny, it looked bright in spite of its age . . . O.K. . . . she holds. Ilow's that hold control? Whoops! Got to readjust the back to permit centering of front control. Where's that mirror . . That's alright . . I'll just hold my own. Thanks! Wonder if it was just the tube? How long should I let it play to be sure? Oh-oh-look at that width jumping! In and out an inch on each side! . Damper? Sound seems steady . . . vertical, too. Must be the 6BG - variation in screen current, maybe . . . lucky it's not a 6CD . . . lucky if it is just the tube. Hate to put one in . . . Nobody believes a tube can be foureighty. When they hear six-sixty for a 6CD . . . Man! . . . Ouch! That tube's hot! Pry it out with a screw driver . . . burn your fingers! . . . Alright. Try again. When they saw that second tube come up their eyebrows went up too! Width . . . good ... steady.

Focus? Where is it? Um, um. Linearity? Just a touch-O.K. That does it. How about the glass? Not too bad. Does the front come off? No! Too bad. I'm not going to pull out the chassis for that little dirt on the face. If I did, I'd surely be blamed for every future trouble. "It was working fine till you pulled out the chassis!" Glad this thing wasn't a series filament job . . . hate em.

Oh! Look at that ghost on Channel 9! . . . Sneak a look at the people . . . are they

IFLLA FAULT

FILLS A MUCH NEEDED AID ON THE SERVICE BENCH.

Orville Hoffman
Hoffman Radio Service
521 Liberty Street
Ripon, Wisconsin

"Should go a long way to assist servicemen in their work where they do not specialize in one make."

$$
\begin{gathered}
\text { J. R. Kelley } \\
\text { Riverdale, Maryland }
\end{gathered}
$$

"There isn't anyone more capable of furnishing us servicemen with this information than Rider."

> William J. Stack
> RI, Box 38
> Sturtevant, Wisconsin

NEED WE SAY MORE!

These comments are from servicemen just like yourself who are using TELL-A-FAULT in their everyday servicing work: They have found that TELL-A-FAULT does their troubleshooting for them. It can do the same for you!

This quadruple-threat service consists of:
(1) time-saving pictorlal, symptom and cure sheets
(2) fault pinpointing circuit guldes
(3) servicing-techniques short cuts
(4) how to use all sorts of test equipment

Save anywhere from 50 to 200 hours of troubleshooting time per year by using this practical service based on symptoms rather than circuitry. It completely removes the guesswork in locating receiver troubles by rapidly locating the faults and giving you the proper cures.

TELL-A-FAULT is only a few months old, but the idea has caught on with thousands of progressive service technicians throughout the country.

The entire service costs you less than twenty cents a week. You receive a full 12 month's TELL-A-FAULT for only $\$ 10.00$.

Start your subscription todayl We'll send you your TELL-A-FAULT binder, subject separators and all the installments that have been released to date. For full information on the most unique SERVICE ever made available to TV and radio service technicians — write to Dept. TF 8.

Here are more data that will keep your RIDER'S DEPENDABLE REPLACEMENT PARTS LISTING published in TV Volume 10 up to date. This is also to be included in TEK-FILE Packs 58, 59, 60, 61, $63,64,67,68,70,71,75$, and 76.

ADDITIONS:

Set Mfg.	Set Mfg. s Original Part No.	Replacement Part Mfg. Name	Dependable Replacement Part No.	Remarks
Belmont	$8 \mathrm{C}-17845$	C. D.	C031	
"	8C-18487	C. D.	D078*	* Omit 125 mf section
"	8C-19546	C. D.	BR2015A	
"	8C-19564	C. D.	BR1015	
Hallicrafters	458173	C. D.	C036*	*Parallel sections
Motorola	25B710925	Stancor	A-3877	
Philco	30-2417-7	C. D.	BBR2-50T	
		Mallory	TC 302	
"	30-2570-57	C. D.	D 111	
		Mallory	FP 476	
"	30-2570-66	C. D.	XA 004	
		Mallory	FP 117	
"	30-2584-9	C. D.	D 111	Parallel sections
		Mallory	FP 344.5	
"	30-2584-10	Mallory	FP 225	
"	30-2584-15	C. D.	UPT 435	
		Mallory	FP 255-TC 72	
"	32-8242-11	Stancor	A-3823	
"	32-8522	Stancor	A-3825	
		Triad	F-21A	
Starrett	CO 1050-2	A erovos	A FH-3-44	
"	CO 1050-3	Aerovox	AFH-4-14	
Stromberg-				
Carlson	161030	Stancor	C-2326	
Western-				
Auto	12C-18743	Stancor	A-3878	
		Triad	S-8X	
"	12M-18241-1	Stancor	A-8125	
		Triad	A -97X	

CORRECTION:

Western-
Auto
12M-18241 Change A-99X to A-97X in Triad Sweep Transformers column.
CORRECTIONS FOR VARIABLE RESISTANCE CONTROLS LISTINGS:

Crosley Emerson	153348 390156	Change P 128 to P1-128 in IRC Outer Shaft column. Transpose DS-36 from Mallory Switch No. column to Inner Shaft column.
"	390181	Transpose DS-36 from Mallory Switch No. column to Inner Shaft column.
Firestone	390183	Transpose DS-36 from Mallory Switch No. column to Inner Shaft column.
Change QJ-375 to QJ-418 in IRC Stock No. column.		

RIDER Books May Now Be Purchased with TEK-FILE Coupons!

You can now buy Rider books from your favorite parts distributor and pay him with TEK-FILE binder coupons.
The TEK-FILE binder coupon, included with each TEK-FILE pack you buy, has a purchase value of five cents when you purchase Rider books.
Of course, you can still use the coupons to get TEK-FILE binders, but you now have the alternative of applying them toward your purchase of Rider books. This special offer does not apply to Rider Manuals or TEK-FILE.
Do you want to own a copy of the TV TROUBLE-SHOOTING AND REPAIR GUIDE BOOK, ENCYCLOPEDIA ON CATHODE-RAY OSCILLOSCOPES AND THEIR USES, etc? Start saving your TEK-FILE binder coupons today. They're redeemable at all TEK-FILE distributors.

ATTENTION AUTHORS:

We are soliciting articles concerning radio, television, and allied electronic maintenance. All aspects are of interest. Articles of 1,000 to 2,000 words are desired. Preference is given to subject matter which reflects practical work rather than theory. The presentation should be direct, to the point, and amply illustrated. Finished art work will be prepared by us from the roughs submitted. Photographs are welcome. The rate of payment is on a word basis - and, needless to say, good writing rates good pay!

Submit all articles and inquiries to Editor, Successful Servicing.

JOHN F. RIDER PUBLISHER, Inc. 480 CANAL STREET New York 13, N. Y.

Let's forget the "glittering generalities" about quality.

Let's Check 4 specific ways CBS-HYTRON cuts your callbacks

1. BY MAKING CBS-HYTRON TV ORIGINALS BEST.

Longest experience with production... with applications . . . with improvements . . . all count. CBS-Hytron-built 1AX2, $1 \mathrm{X} 2 \mathrm{~A}, 6 \mathrm{GQ} 6 \mathrm{GT}, 12 \mathrm{~A} 4,12 \mathrm{~B} 4,12 \mathrm{BH} 7$, 12BY7, 12BZ7, 25BQ6GT, 16RP4, etc. are more trouble-free. Prove it to yourself.

2. BY ENDLESSLY IMPROVING STANDARD TV TYPES.

Close co-operation with leading set makers alerts CBS-Hytron daily to needed betterments. Take one of endless examples: the CBS-Hytron 6CB6. You will find its clear, non-carbonized bulb eliminates undesirable loading effects at vhf.

3. BY APPLYING "RELIABLE" TUBE TECHNIQUES.
CBS-Fyytron 6AL5 is typical. Experience with the military 6AL5 family (JAN 6AL5, 6097/CT, 5726) is passed on to you. You profit by a commercial CBS-Hytron 6AL5 made truly reliable.

4. BY MATCHING EACH TUBE TO THE SET.

Daily, CBS-Hytron analyzes leading TV chassis. Dynamic socket-by-socket checks, plus continuous field experience, pay off. Give you CBS-Hytron matched-to-the-set performance... with the accent on trustworthy replacements.

Take advantage of CBS-Hytron extras like these. Keep your customers happy. Guarantee yourself against profit-slicing call-backs. Demand dependable CBS-Hytron tubes.

NOW...TEST THE EASY TOPSIDE WAY!

Wish you could test a chassis topside? Without first pulling and wrestling with the heavy chassis? Without disturbing wiring and parts by digging underneath for buried sockets? How much faster, easier, safer you could work! New CBS-Hytron Test Adapter does the trick. Just replace a 7-pin miniature tube with the Test Adapter. Plug tube into Test Adapter. Presto, all socket connections are topside . . . within instant reach of your test prod or clip. Just one job pays for this new CBSHytron Test Adapter. Get yours today!

HERE'S HOWI With the CBS-Hytron Test Adapter, you quickly measure voltage, resistance, gain. You inject and trace signals . . . monitor intermittents. You check oscillating stages Or the effect of adding a bypass condenser or shunt resistor.

With several CBS-Hytron Test Adapters you make stage-bystage circuit checks . . . fast. You do all this dynamic testing the e-a-s-y way . . . topside. With no ill effects at a-f frequencies. And only slight capacitance and inductance effects at much higher frequencies.

You will like: The positive contact of the low-resistance, silverplated base pins and test points. The plainly marked pin connections. The easy insertion and tight grip. CBS-Hytron Test Adapter is another designed-by-and-for-you "must" you must have. See your CBS-Hytron jobber today.

TV Set Functions With Transitors*

T. R. Kennedy Jr.

A complete portable television receiver functioned perfectly here today without radio vacuum tubes. Instead, it utilized thirty-seven bits of laboratory magic known as "transistors," which even now are said to perform nearly all the functions of the ordinary radio tube, and do some of them even better.

The video receiver, which was battery operated and about one-quarter the weight and size of an ordinary home table model set, was only one of a number of familiar electronic devices such as home and auto-
motive radios, record players and public address systems - using only transistors demonstrated for the first time as a "transistor application progress report" in this new field by the David Sarnoff Research Center of the Radio Corporation of America.
The only conventional type of vacuum tube in the video set was its own self-contained picture tube, on which the image was created.
And even that last conventional radio tube in the home video may in time give way to a newer device patterned after the

C-D does it again! 6 capacitor assortments

 in beautiful plastic cases!
Abstract

Ideal for storing screws, tubes, small parts of all sorts. Even fishing tackle. And you pay no more than if you bought the capacitors individually.

The majority of sets can be serviced with these six twist-prong electrolytic replacement kits. See your jobber today for full details. Cornell-Dubilier Electric Corp., South Plainfield, New Jersey.

KIT \#1 - UNIVERSAL
KIT \#2 - FOR RCA SETS
KIT \#3 - FOR PHILCO SETS
KIT \#4 - FOR MOTOROLA SETS
KIT \#5 - FOR GENERAL ELECTRIC SETS
KIT \#5 - FOR GENERAL ELECTRIC SETS
KIT \#S - FOR ADMIRAL SETS

transistor. Dr. E. W. Engstrom, vice president of the R.C.A. Laboratories Division, expressed such views as the new transistoroperated devices were demonstrated for newspaper men and technical writers, who saw them for the first time.
"Even now we are thinking along such lines," he said. "Tomorrow's video screen may be something entirely different than we have in today's sets. We have seen more progress in four years of transistor development in the laboratory than-in twenty for the radio tube."

Great Cost Production Seen

Dr. Engstrom explained that the small size of the viewing screen of the receiver demonstrated - five inches wide - had nothing to do, however, with the transistors inside the unit, which provided only the amplification of the signal and converted it to something the viewing screen could turn into a moving image. The laboratories had only tried to eliminate the thirty-seven ordinary tubes.
With transistors in use, however, the largest element of cost in the ordinary home video set except the viewing screen - the power needed to light twenty-four to thirty ordinary tube filaments - might be reduced almost to nil. It was Dr. Engstrom's estimate that tomorrow's video receivers with full complement of transistors and the usual cathode-ray viewing screen might be, when production is stepped up, "something about half of today's costs."
For those not familiar with transistor history, Dr. Engstrom explained that the original device was a product of the work of Dr. William Shockley and associates of the Bell Telephone Laboratories in 1948, and since then under intensive development in many electronic laboratories, including the R. C. A.'s.

In the various branches of the laboratories the visitors saw transistors being made from refined bars of metal called "germanium," which must be first purified, then contaminated with other elements to achieve the required end of being good amplifiers and generators of electric currents - "better than most radio tubes and far more versatile than many."

When the germanium bars are finished they are sliced up into minute particles, the bits, mounted in plastic holders, "cat whiskers" of fine wires` applied through which small voltages are applied from batteries. The result is amplification of a radio signal, without the heated filaments in ordinary vacuum tubes.
*Reprinted through courtesy of The New York Times.

R/der.Ten-FıLe Мпрен

PACKS 1-77

HOW TO USE THIS INDEX

 To locate service data instantly, all you need to know is
the manufacturer's name and the model or chassis number
of the set.

> The index is compiled alphabetically, according to man-
ufacturer. Note the column headings at the top of each page
MODEL, PACK-FILE, PAGES. Model numbers run in numerical sequence, starting with the smallest number under a manufacturer's name. This AR precedes model CG). Model numbers starting with let-
ters precede model numbers starting with numbers.
 PACK-FLLE PAGES
ADMIRAL CORP

 Etitetite

咠
曷

EMERSON GAMBLE-SKOGMO		
model	PACK-FILE	pages
EMERSON RADIO a PHONO. CORP. (Cantd)		
676B, Ch. 120140-B, $120140-\mathrm{G}, 120140-\mathrm{H}$	26-3	7=45-57
	3.1	$8=18-30$
576F, Ch. 120143-B,		
${ }_{680 B}$ Ch. $120144-\mathrm{B}$,		
	${ }^{3-1}$	${ }^{8}=16-30$
$120140-\mathrm{G}, 120140 \mathrm{H}$	26-3	$7=45-57$
$681 \mathrm{D}, \mathrm{Ch} .120144 \mathrm{~B}$,		
	3-1	8=16-30
6838 , Ch. $120141-\mathrm{B}$	3-1	$8=40-45$
$686 \mathrm{~B}, \mathrm{Ch} .120144-\mathrm{B}$,		
686D Cn. 120140-B,		
120140-G, $120140-\mathrm{H}$	26-3	$7=45-57$
686F, Ch. $120143-\mathrm{B}, 120143-\mathrm{H}$	3-1	8=31-39
similar to 6800 , 6868	26-3	$7=45-57$
687F, Ch. ${ }^{120143-B, 120143-H ~}$	- 3 -1	$8=31-39$
688B, $689 \mathrm{~B}, 698 \mathrm{~B}$,		
Ch. 120129-B	26-3	$7=36-44$
${ }^{6888 \mathrm{~B}, 6898,6908, \mathrm{Ch}}$		
120129-B	26-3	
696F, Ch. ${ }^{120143-\mathrm{B}, 120143-\mathrm{H}}$	${ }^{3-1}$	8 831
*6978, Ch. $120129-\mathrm{D}$,		
Record Chanter VM-9	${ }^{39-4}$	-
		$10=$
7008, Ch. 120153-B ${ }^{\text {- }}$ 39-4 ${ }^{\text {a }}$-1-8		
Record Changer VM-950	39-RC1	RCH22=1
	$61-7$	10=18-27
701B, Ch. 120153-B 39-4		
Record Changer VM-950	$39-\mathrm{RC}$	RCH22=1-16
701D, Ch. ${ }^{120158-B}$ - $50-5 \quad 9=17-24$		
709A, ch. 120162-A $\quad 61-7 \quad 10=9-17$		
7118, 712B, Ch. 120164	${ }^{61-7}$	10=28-39
120094A, Ch. ${ }^{26-2}$ - $6=5$		
120095-8, Ch. ${ }^{26-2}$ - $6=1$		
120129B, 120129D, Ch. 26-3 7=36-44		
${ }^{120131-\mathrm{B}, \mathrm{Ch}}$. ${ }^{26-3} \quad 7=20-2{ }^{2}$		
${ }^{120140-\mathrm{H}, \mathrm{Ch} .} \quad 26-3 \quad 7=45-57$		
120141-B, Ch.	3-1	$8=40-45$
120144-B, 120144-G		
$120144-\mathrm{H}, \mathrm{Ch}$.		
${ }^{120148-B, ~ C h . ~}$	39-4	$9=9-16$
120153-B, Ch, Late $61-7 \quad 10=18-27$		
$120160-\mathrm{B}, \mathrm{Ch}$.		
$120162-\mathrm{A}, \mathrm{Ch}$. $61.7 \quad 10=9-17$		

事荮

己
르․

E．

萨
号
©

～

SYDE PARK

 GENERAL ELECTRIG CO．

GAMBLE－SKOGMO，INC．	
15TV2－43－9025A	5－1
15TV2－43－9025B	5－1
15TV2－43－9026A	5－1
15TV2－43－9026B	5－1
15TV4－7003U，Ch．	5－1
15TV4－43－8948A，	
15TV4－43－8949A，Ch．	
15TV4－7003U	5－1
16AY210，Ch．	31－2
25TV2－43－9022A	62－4
94TV2－43－8972A，	
94TV2－43－8973A	32－3
94TV2－43－8987A	32－3
94TV2－43－8993A，94TV2－	
43－8994A，94TV2－43－8995A	32－3
94TV6－43－8953A	32－3

$\xrightarrow{\text { 12C4，}} \underset{12 \mathrm{CC5} ; 94 \text { Series }}{\text { GAROD RADIO CORP．}}$
 1444,94 Series
14 CT 4, 97， 98 Series
$14 \mathrm{~T} 2,14 \mathrm{~T} ;$ ； 94 Series

 ${ }^{1042 \text { 2GU，} 1042 \mathrm{~T} \text { Late }}$ 1 1043GU， 1043 T Late

13454 Late， 1345 Late
1348

0
0
0
0
0
 ${ }^{15449 \text { T }}$ Late 1549 G Late， 1549 GU ${ }^{1549 T}$ Late 1649 Late

 97,98 Series
$1900,97,98$ Series 2042T Late， 2043 T Late
2564T， 2547 T, 2548T， $2549 \mathrm{~T} ;$

Mosivyvox Maro

$29=2$

See JOHN MECK INOUSTRIES, INC.
MITCHELL MFG. $C O$.
$\mathrm{T} 16-2 \mathrm{~KB}, \mathrm{~T} 16-2 \mathrm{~K}$
$\mathrm{~T} 16-\mathrm{B}, \mathrm{T} 16-\mathrm{M}$
$\mathrm{T} 17 \mathrm{~B}, \mathrm{~T} 17-\mathrm{M}$

 Nois

MODEL
 $\frac{\square}{i}$
 든

志

PACK-FtLE

Tek－File Index

\qquad

令家
Oid

eit

${ }_{\substack{b_{i}^{t} \\ b i t}}$
${ }^{2}$

．

MODEL
OLYMPIC
PHILCO

MODEL		
	PACK-FILE	PAGES
RADIO CORR.	OF AMERICA	
(Cont'd)		

RAYTHEON TELEV. a RADIO CORP.

N disw

RAYTHEON
SEARS

MODEL

 See BENRAY SURREY
ELECTRONICS CORP.
SYLVANIA ELECTRIC PRODUCTS INC.

265D170, Deluxe, Ch., 5079B	
26SD170p, ch.	24-1
26SD170X, 26SD170XP, Cn.	${ }^{24-1}$
26SD171, Ch.	56-2
${ }^{2658172 C, ~ c h . ~}$	
${ }^{265 S 1506}$, 265511608 ,	
	${ }_{24-1}^{24-1}$
26ssi70D, 26SS170DD, Ch	
26SS170D, 26SS17008, Ch.	24-1
26SS170P, Ch.	24-1
26SS171, 26SS171A, Ch.	56-2
5025, ch. 2685160	2-1
50258A, Ch. 2655170	
5026, Ch. 265 S 160	24-1
Ch. 2655160 L	24-1
5075BA, Ch. 2655170	24-1
5076, Ch. 2655160	24-1
5076BB, Ch. 26SS160B	24.
${ }^{5077, \mathrm{ch.}} \mathbf{5 0 7 7 8 5 1 6 0}$	24
	24
5078BB, Ch. 26SD170, DeLure	
5079, ch. 2685160	24-1
5079B, Ch. 26SD170, DeLuxe	${ }^{24-1}$
5079BB, Ch. 26SD170, Deiluxe	
5080, Ch. 265D 160	24-1
5080Bb, Ch. 26SDI70, DeLuxe	
5082, 5083, Ch. 265 SD 170	$24-1$
26SD170XP 5082, 5083, Ch. 26SD170X	
5085, 5086, Ch. 25 RD 190	24
5088, ch. $265 D 170$, The Westmont	
5089, Ch. 26 SSD 170	24-1
5090, Ch. 26SDD 70,	
26SS170DP 5104, 5105, Ch. 26SS170D, 26SS170Dp	

PAGES
(Cont'd)
$8=14-26$
$8=14-24$
$8=14-21$
$8=28-30$
$8=14-26$
$8=14-24$
$8=32-39$
$8=32-43$
$7=36-42$
$8=14-30$
$9=-16$
$8=45-52$
$8=14-27$
$8=14-27$
$8=45-52$
$8=45-52$
$8=32-44$
$9=9-16$
$9=17-24$
$8=14-31$
$8=45-53$
$8=14-31$
$8=45-54$
$8=1-8$
$9=9-18$
$8=14-26$
$8=45-54$
$10=11-29$
$10=11-29$
$10=11-29$
$10=1-10$
$10=30-40$
$10=30-40$
$6=10-17$
$6=1-9$

PACK-FLLE

MODEL RENTH RADIO CORP.

($\begin{gathered}\text { mast one knob-extra large-easy to turn-flush with the panel, } \\ \text { controls all ranges. This one knob saves your time } \\ \text { mave to remember to set another control. You can } \\ \text { work fast with Model } 630 \text { with your eyes as well as your } \\ \text { hands. Look at that scale-wide open-easy to read, } \\ \text { accurately. Yes, this is a smooth TV tester. Fast, safe, no } \\ \text { projecting knobs, or jacks, or meter case. Get your } \\ \text { hand on that single control and you'll see }\end{gathered}$ why thousands of "Model 630's" are already in use in almost every kind of electrical testing
 FOR THE MAN WHO TAKES PRIDE IN HIS WORK

Triplett
triplett electrical instrument company - bluffton, ohio, u.s.à.

Replacement Parts in TV Receivers

(Continued from page i)

mica type almost completely. It is interesting to note the rapid rise in the use of negative temperature coefficient ceramic capacitors in television receivers. In these, the capacity decreases with increase in temperature. They are very prominent in the front-ends and are used more and more in other parts of a tv receiver where it is desired to maintain constant circuit behavior under varying temperatures.

The ceramic dielectric capacitor offers high insulation resistance; therefore, it is used for d-c blocking, bypassing, and coupling, especially in those circuits that operate at frequencies above the audio range. Its behavior under varying conditions of frequency (including UHF), temperature, and humidity is excellent.

Another feature of the ceramic dielectric unit is the ease with which it can be produced in very low values of capacitance, with the result that the wide variety of low values of capacitance used in television receivers are prominently available in this kind of capacitor.

Construction of fixed mica and ceramic
capacitors.
A high order of interchangeability between mica and ceramic capacitors exists, especially between certain ceramics and silver micas. Since the subject is somewhat elaborate, the discussion will be held in abeyance until the subject of substitution is treated.

Paper Dielectric Tubulars. Paper dielectric tubulars follow two patterns of construction. One utilizes alternate layers of foil (the active surface) and paper dielectric between. The foil and paper are wound concentrically; by making proper electrical connections to the active surfaces, non-inductive behavior is accomplished to a highly satisfactory degree. Also, any desired capacitance value and voltage rating within certain limits is achieved.

The usual limit on the minimum capacitance produced in this manner, and also on
the maximum, is a low of about $.001 \mu \mathrm{f}$ and a high limit of about $50 \mu \mathrm{f}$. However, the upper capacitance limit of paper dielectric capacitors used in tv receivers is about_ 25 $\mu \mathrm{f}$.

A second form of construction uses metallized paper, that is, metal is sprayed on the paper dielectric. The metallized strip then is rolled concentrically and the connections made to the active surfaces.

An important part of the construction of both varieties of capacitors is the impregnation. All air is drawn out of the assembly and all spaces within are filled with an impregnant that also penetrates the paper dielectric. It may be any one of a variety of substances such as mineral oil, castor oil, wax, or a synthetic substance. The impregnant ascribes certain electrical characteristics to the capacitor. Only some of the highlights can be treated here because the subject is extremely broad.

The impregnant influences the capacitance of the capacitor - whether it is going to increase or decrease relative to the nominal value with changing temperatures, and by what amount. It determines the variation in electrical losses within the capacitor with changes in operating temperature, thereby determining the suitability of the component for use at various operating temperatures. Insulation resistance on the other hand always decreases with increase in temperature.
These details are a matter of concern to the tv receiver designer, although his problem revolves more around what happens with increasing temperatures than for the opposite temperature variation. That is why design engineers specify the operating temperature of fixed capacitors used in the equipment they conceive. Fortunately, the service technician's problem is greatly simplified, in that the vast majority of paper dielectric capacitors used in television receivers bear one of two operating temperature ratings, $65^{\circ} \mathrm{C}$ or $85^{\circ} \mathrm{C}$. Judging by specifications, the tendency is toward the higher rating. These needs are being satisfied by replacement components, but it still behooves the responsible tv service technician to make certain that he is procuring the proper part. This is one reason why the use of surplus capacitors for replacements is a very bad practice, and suggestions for replacement must be based on the original specifications.

The casing or housing used for the capacitor has a bearing on its operation with different conditions of temperature and humidity. There was a time when all these capacitors were contained in wax impregnated cardboard tubes and wax sealed. The tendency is away from these to molded plastic casings in order to improve operation under high humidity conditions. Hermet-
ically sealed metal cases also are available, but these seldom are used as original equipment or for replacement in tv receivers.

Electrolytic Capacitors. Although the electrolytic capacitor is in a class by itself, it still conforms with the basic requirement of a capacitor; namely two conducting surfaces between which à dielectric' exists. The essential difference between the electrolytic capacitor and the ordinary fixed capacitor is that the dielectric in the form is an exceedingly thin oxide film which is deposited on the metal surfaces of the capacitor. The film displays unilateral conductivity properties, that is, when the applied voltage is of one polarity, the film displays very high resistance, and relatively little current flows through the dielectric, and when the voltage is of the opposite polarity a high current would flow through the capacitor. In spite of this, the unit is still capable of storing electricity.

In view of this behavior relative to the polarity of the applied voltage, electrolytic capacitors are polarized. By this is meant the capacitor terminals bear polarity designations which must be adhered to when the d-c or pulsating voltage is applied to the

Cutaway view of an electrolytic capacitor.
capacitor. Otherwise, the unit may be damaged.
The three types of electrolytics - etched foil, plain foil and fabricated - refer to the manner in which the basic metal surface is treated so as to afford maximum surface for contact with the oxide film. The plain foil presents a smooth surface and affords a unit surface area, hence a unit value of capacitance. When the metal is etched by a chemical process, the surface area is increased. This occurs because the etching process causes microscopic cavities in the surface, all of which tends to increase the surface area in contact with the film. Substantial increase in capacitance is obtained in this fashion, perhaps from 5 to 8 or more times the capacitance which is obtainable with the plain foil. In the fabricated plate type, the anode material is made by deposit-

Notice to All Purchasers of:

 RIDERS TV 10

 RIDERS TV 10}

We have always prided ourselves on the accurate information we have made available to the servicing industry. To live up to this tradition we wish to correct certain discrepancies that crept into the replacement parts listings published in TV 10. Because we are anxious to give you thoroughly accurate replacement parts listings, which include additions that arrived after the publication of TV 10, we ask you to do the following:

Please fill in the registration coupon on the first page of your Rider TV 10 Manual and send it to us. We will forward the replacements parts listing corrections direct to your address. Also, by returning this coupon to us, you will be assured of having your name on our mailing list for exclusive information that will be available to TV 10 owners. Do Not send us the replacement parts pages!

Look to future issues of SUCCESSFUL SERVICING for the newest additional replacement parts listings.

> John 7. Rider, Publisher

DEALERS GETTING WESTINGHOUSE TUBES PROFIT FROM HEAVY LOCAL ADVERTISING AT NO COST

Service dealers are getting powerful local advertising support from new Westinghouse RELIATRON ${ }_{\text {TH }}$ Tube Distributors. In cities now served by Westinghouse Distributors, dealers get local newspaper advertising, a complete kit of store display and imprinted mailing material.
All of it-local ads and kits-are designed to build TV-radio service business in the dealer's local area.
Best of all, none of it costs the dealer a penny!
You can get your store listed in two local newspaper ads at no charge, and get a kit to boot. If Westinghouse Tubes are now sold in your area, see your Westinghouse Distributor and take advantage of this $\$ 900$ -

COMING YOUR WAY

If Westinghouse Tubes are not yet distributed in your area, be patient. Distributors are being established in all market areas as fast as product availability and good service permit.
You'Il soon have the chance to buy RELIATRON Tubes. Keep this tremendous opportunity in mind: you'll get newspaper advertising at no cost! Imprinted material for mailings! Imprinted signs for your window!

All of it is local advertising
which sells your service in your which sells your service in your own area where it counts.
For the name of your Westing. house Distributor, or the approximate date when Westapproximate date when West-
inghouse Tubes will be available in your area, drop a postal card to Dept. M-201 or have your regular distributor contact Dept. M-201 for informa-
tion on how he can better serve tact Dept. M-201 for inforna-
tion on how he can better serve you.

> E L E C T R O N I C

Westinghouse Electric Corporation
Box 284, Elmira, N. Y.

The 2nick Diagnasis

(Continived from page 9) used to this poor reception? Or am I going to be blamed? Nothing on their faces lucky. The times I've been blamed for all the ghosts and everything else after just putting in one tube

Hey! What's that noise? Picture, too? Yeh. Streaks, and flashes, once in a while. Is it aerial? Bang the cabinet! Yeh, something's loose . . . here we go again! Tap. Where's that long handled fibre screw driver? No good for alignment anymore, but swell for tapping. Watch out for that picture tube! Don't put your hand near it! Oh. This one's glass. Got so I react against any picture tube
got banged so hard by the metal ones without a plastic shield. Imagine, expecting a man to work on a set without that protection.

Boy! Like a toothache . . . this one hurts all over. Uh. Tuner? Not more sensitive than most . . . just normal oscillator response to a bang. First i.f.? No. Second . . . um . . . gee .. . everything around that tube is sensitive. Can I work without a mirror? Yeh. The Hlashes when I hit show through the edge of the picture tube . . . hear and see at the same time. Is it this tube? Doubt it
but, have to try a new one . . . I wonder . . . try another . . . Wow! Hotter'n the devil! What is it? Mmm. Oh, here it is . . 6 CB6. Where's that tube kit? The load I carry! Can't keep 'em in order . . . swell
here it is. They are really watching me now! Sure that I'm putting in more than necessary. Alright . . . she's hot now . . . no use banging till they are hot . . . same thing! Alright! Pull out the new one . . . put back the old. Darn these tiny pin tubes!

Ugh, ugh . . . got to be a contortionist
. geez it's hot in here . . . O.K., turn her on again. Tap some more . . . that's the spot alright. Just like an unsoldered connection. Wonder if they had been bothered by this . . . ?
What's that? Yeh, the trouble for which you called me is fixed . . . but what I just found is another trouble which may not bother you, if you are lucky. It is apparently a loose connection under the chassis, but if the set is not jarred too much, it may hang on and you can get it fixed when the set does have to have a major repair

There's a RIDER Book For Every Phase of

 Radio - Television

 Radio - Television}

TV and Other Receiving Antennas
(Theory and Practice)
606 pages
TV Installation Techniques 336 pages $\$ 4.50$
TV Master Antenna Systems 356 pages
Receiving Tube Substitution Guide Book, lst Ed. 224 pages.. $\$ 3.00$
First Supplement, Receiving Tube Substitution Guide Book 48 pages . .99
TV Picture Projection and Enlargement 192 pages .$\$ 3.30$
Television-How It Works 203 pages $\$ 2.70$

Radio Operator's License Q \& A Manual, 3rd Ed. 734 pages...... $\$ 6.60$
Broadcast Operator's Handbook, 2nd Ed. 440 pages
. $\$ 5.40$
Radar-What It Is 60 pages...... $\$ 1.00$
Understanding Vectors and
Phase in Radio
160 pages
Cloth cover $\$ 1.89$
Paper cover $\$.99$
Installation and Servicing of Low
Power Pa Systems 208 pages.... $\$ 3.00$
Servicing by Signal Tracing 360 pages
.$\$ 4.00$
Inside the Vacuum Tube 424 pages .$\$ 4.50$
Servicing Superheterodynes 288 pages
$\$ 2.00$
Servicing Receivers by Means of Resistance Measurement 203 pages
$\$ 2.00$
The Business Helper 134 pages $\$ 2.00$
WE GUARANTEE your satisfaction! Make these books PROVE their value to you. Examine them at your favorite jobber. If he does not have them order from us.

Order Your Copy Now!

john f. RIDER PUBLISHER, inc. 480 Canal Street, New York 13, N. Y.

MERIT ADDED TO RIDER'S REPLACEMENT PARTS LISTING PROGRAM

Merit Coil and Transformer Corp. is now a participating manufacturer in the Rider Replacement Parts Program.

Merit replacement parts will make their appearance with TEK-FILE Pack No. 78 and Rider's TV Manual 11. However, it is intended that supplementary information on Merit replacement ports will be made available to the servicing industry for those TV receivers covered by Rider's TV 10 This data will appear in SUCCESSFUL SERVICING.

The right part when you need it for service This permanent, hard cover Official Buying Guide of the electronic-TV parts and equipment industry with its comprehensive detailed index, eliminates the need for maintaining files of small catalogs and manufacturers' literature. Radio's Master catalogs 90% of TV and electronic equipment. Not merely part number listings complete descriptions, specifications and illustrations written and compiled by each manufacturer. Enables you to make comparisons or substitutions right now!
united catalog publishers, inc.

Only Sylvania tubes showed NO FAILURES after 1400 hours . . . at accelerated voltages

Exhaustive tests conducted under the supervision of an outside impartial laboratory, the United States Testing Company, showed Sylvania Picture Tubes lasted longer than any others tested.

These tests included the picture tubes of nine leading manufacturers. All tubes were placed in identical test racks and tested under identical accelerated voltages. At the end of 1400 hours, only the Sylvania

Picture Tubes showed no failures.
These tests definitely establish the outstanding dependability of Sylvania Picture Tubes. They prove that these tubes will best uphold your reputation for fine performance in the sets you manufacture, sell or service. Send today for complete details about Sylvania Picture Tubes. Sylvania Electric Products Inc., Dept. 3R-1801, 1740 Broadway, New York 19, New York.

RADIO TUBES; TELEVISION PICTURE TUBES; ELECTRONIC PRODUCTS; ELECTRONIC TEST EQUIPMENT; FLUORESCENT TUBES, FIXTURES, SIGN TUBING, WIRING DEVICES; LIGHT bulbs; PhOTOLAMPS; TELEVISION SETS

Additional literature on each of the products described in these columns may be obtained from SUCCESSFUL SERVICING. See the coupon in column three.

New Tester for Mobile Radio Systems

This new general purpose test meter, RCA Model 6X-7A, will measure current, voltage, and radiated power - all the electrical measurement necessary to install and service two-way radio communications systems. Tester is designed so that several related functions can be checked with a single arrangement of test leads.

Item 1

Sturdy-Tune Detents

Telematic Industries has broadened its line of Sturdy-Tune Detents so that it now includes eleven different detents to handle the replacement needs of nearly every brand TV receiver on the market.

Item 2
The detents are available with or without a back plate. The availability of the Sturdy-Tune Detents without a back plate, if so desired by the serviceman, serves to cut the replacement cost.

Rack Mounting Adapter for Cathode-Ray Oscillographs

Allen B. DuMont Laboratories announces the availability of a new Rack Mounting Adapter, Type 2598, for use with DuMont Types 303, 303-A, 303-AH and 322 cathoderay oscillographs.
Shipped dis-assembled, the Adapter provides a rigid mount for the instrument in
standard 19 inch relay racks; the front opening is large enough to permit all but the front panel of the oscillograph to pass through. The Adapter has been designed so that the entire relay rack may be moved with the instrument in place.

Item 3
Standard Voltage Rated Power Supplics
Kepco Laboratories has released a new -group of voltage regulated power supplies, the Model 700 series. Model 700 feature one regulated d-c voltage supply, a high voltage supply continuously variable from 0 to 350 volts and a delivery of from 0 to 750 milliamperes; Model 710 delivers 1.5 amperes, 720 delivers 2.25 and Model 730 delivers 3 amperes. In the range of $30-350$ volts, output voltage variation is less than $1 / 2 \%$ for line fluctuations from 105-125 volts and load variation from minimum to maximum current. Ripple voltage is less than 10 millivolts P-P.

The gray cabinet is 22^{3} inches high, $21^{\frac{3}{4}}$ inches wide and 15% inches deep.

Item 4

Video Output Tube

General Electric has added a new power pentode, type 6CL6, for use in the video output stage of $t v$ receivers.
The tube provides a high plate current at low plate voltage, giving a 40 to 45 voltage gain in wide band video circuits and being capable of supplying 132 volts peak-to-peak output across a load resistor of 3,900 ohms. This new nine-pin miniature
may also be used as a wide-band amplifier in industrial and laboratory equipment.

Item 5

Low Résistance-High Accuracy

Instrument Resistor

Type 245S, a new 1-watt precision wirewound resistor for decades and other applications requiring low resistance values with close tolerances, low temperature rise, and low inductance, has been announced by the Shallcross Mfg. Co. The new resistor can be calibrated to a tolerance of $\pm 0.1 \%$ or better and is available in values from 0.1 ohm to 1000 ohns. A single layer bifilar winding protected by a moisture resistant lacquer coating is used for all values. The Steatite bobbin and axial wire leads are at the same end for ease in mounting the resistor directly on decade switch decks or other similar equipment. Size is $1 \frac{1 / 8}{}$ inches long by $\%$ inch diameter.

Item 6
To obtain additional literature on any of the items described in this section encircle the number of the product (number appears under picture) on the coupon below, cut the coupon out and mail it to SUCCESSFUL SERVICING, 480 Canal Street, New York $13, N . Y$.

 you are equaling or bettering original equipment-add to this:

- The service your customer expects
- The exact performance characteristics you demand
- Reduced call-backs everyone demands

And you have a few of the reasons why Astron Capacitors help "serve up satisfaction" to your customers. Alert jobbers are stocking Astron Capacitors-make sure you talk to your supplier today or write to us for the name of the Astron Distributor nearest you. Send for catalog AC-3.

255 Grant A venue - E. Newark, N.J.

A monthly summary of product developments and price chanyes supplicd by RADIO'S MASTER, the Industry's Official Buying Gitide, avallable through local parts distributors.

COMMENT: With more manufacturers reporting clanges for this period, a continued changes for this period, a conthe in-
emplasis is being placed on the int troduction of new products, especially by manufacturers of antennas, capacitors and controls. Also evident is the continued tendency toward increased prices by the leading TV tube manufacturers.

New Items

AEROVOX-Added 3 new values to their series CP 2, 2 watt carbofilm resistors.
ASSEMBLY PRODLC'TS - Added No. 2056-1 thernocouple at $\$ 2.90$ net and Model C, portable pyrometer case at $\$ 1.75$ nel.
BAKEK MFG. Added No. 2 FM at $\$ 2.37$ net to their line of TV antenna towers
BLILEX ELECTRRIC - Added TV service crystal MC9, $13,627.5 \mathrm{kc}$. at $\$ 5.50$ net.
BOGEN CO. - Introduced Model R701, high fideiity $1 \cdot \mathrm{M}-\mathrm{AM}$ receiver at $\$ 145.20$ net Model DO10, high fidelity power amplifier at $\$ 37.95$ net and Model RCPR, remote controllerpreamplifier at $\$ 78.85$ net.
CLAROSTAT - Added TV replacement controls RTV 356 to 383 inclusive.
EITEL-McCULLOUGH - Added No. HR-10 at $\$ 1.60$ net to their series of heat dissipating
ELECTRONIC MEASUREMENT-Added Model 600, oscilloscope at $\$ 99.50$ net, to their test equipment line
FEDERAL TKL. \& RADIO - Added kit No. 3, all purpose selenium rectifier assembly at $\$ 19.95$
GENERAI, ELECTRIC - Added No. RPX-052 at $\$ 38.95$ list and No. RPX-053 at $\$ 57.90$ list to their triple play variable reluctance cartridge serics. Also added 20 DP 4 A , rectangular all-glass picture tube for TV receiver applications at GON-SET
GON-SET - Introduced FM radarray No 1517 at $\$ 28.50$ net . . No. 1529 rhombic UHF an1531 with 8 foot mast at $\$ 1.3$ net 18 . No. 1531 , parabolic with 9 foot mast at $\$ 5.18$ net and GREAT EASTERN MFG.
GREAT EASTERN MFG. - Added Model CRT, HYTRON - Introduced No. SH27.
HYTKON - Introduced No. SH27, test adapter
 OA2WA at $\$ 4.50$ list and OB2WA at $\$ 4.90$ JENSFN INDUSTRIES - Introduced a numbe of diamond replacement needles for the following manufacturers: Astatic, Audak, Columbia, Crosley, Electro-Voice, General Electric, Magnavox,
Philco, RCA, Seeburg, Shure, Sonotone, Webster Electric and Webster-Chicago ster Electric and Webster-Chicago
MALLORY \& CO. - Added No. PS54010, motor starting capacitor at $\$ 4.89$ net No. FF45052,
photoflash capacitor at $\$ 13.50$ net phtotoflash capacitor at $\$ 13.50$ net, No. U-WF252-T23, 2500 ohm wire wound control at MERITT TRANSFORMER - Added No. A-3100, high fidelity output transformer at $\$ 10.80$ net. MINNESSOTA MINING \& MFG.-Added sound recording tape No. 111 AP , plastic prof. reel, PACIFIC TRANSDUCER - Added Model 201D at $\$ 33.00$ net This model is the same as Model with a frequency response to above 12,000 cps with an output of 60 millivolto, with a diamond wity an output of instead of a milandard sapphire stylus. PERMOFLUX - Added No DHS-31B at $\$ 50.00$ net to their line of monaural dynamic headsets and No. PHA- 6 at $\$ 8.00$ net and No. PHA. 8 at PRFMAX PRODUCTS
CREMIER METAL PRODUCTS - Introduced new series ARP, aluminum rack panels.
R.C.A. - Added 12 BF 6 at $\$ 1.70$ list, a multi-unit minature tube of the heater-cathorle type containing two diodes and one medium-mu troode in one envelope, intended primarily for use as a detector or an amplifier in auto radio receivers operating from a 12 -volt storage battery. Also added 12 V 6 . GT at $\$ 2.00$ list, a beam power tube of the

Use either one...

BOTH make your TV servicing fasf, easy, more profifable!

All Rider TV servicing information is produced to make your TV service work easier! Making it easier makes it faster and more profitable. Why is Rider information easier to use? Because it is the only source for official, complete, factory-authorized data. Exactly as issued by the receiver manufacturer . . . with all of his production changes and trouble cures - organized into indexed, easy-to-follow style. When you repair a set with Rider servicing data, you have everything you must know to do a fast, accurate diagnosis and make a permanent repair. RIDER TV SERVIC. ING DATA COMES IN TWO FORMS. MANUALS . . The TV Manual has 10 Volumes covering more than 4,650 models of TV receivers. Each volume has over $2,000\left(81 / 2 \times 11^{\prime \prime}\right)$ pages of servicing data with an index that covers the contents of all volumes. The Manual form is ideal for shop use and as a permanent reference.

TEK-FILE . . . is Rider's same, complete, official TV service information in packaged form. The only difference is that each TEK-FILE pack covers a few receiver brands where, each Manual covers all of them. With TEK-FILES, you buy only what you need. You'll find the models you want listed in the FREE, up-to-date TEK-FILE INDEXES at your jobber's. There are now 69 TEK-FILE Packs covering over 2,500 TV models. NEW FEATURE ADDED! Beginning with TV Manual Vol. 10 and TEK-FILE Pack 57, you'll find a featufe that can't be beat - a listing of dependable replacement parts by brand names! All listed parts check against the physical and electrical requirements of the receiver's original parts. DON'T BE SWITCHED! Remember, Rider Manuals and TEK-FILES are the only source for complete, factory-authorized servicing data. If your jobber doesn't have Rider Manuals, write to us... we'll tell you where to get them. If he doesn't have TEK-FILES, write to us. . . we'll fill your order directly. (Please include jobber's name). Prove to yourself that Rider Servicing Data really makes servicing easy! Try one Rider TV TEK-FILE pack at our risk! For the next receiver you repair. . . if you don't agree that it makes your servicing easier than anything you've ever used, RETURN THE PACK TO US WITHIN SEVEN DAYS AND WE'LL SEND YOU A FULL REFUND! Act now. . . you have absolutely nothing to lose!

For Easier Radio Servicing . . Use Rider's 22 AM-FM Manuals!
Joar F.RIuer
PUBLISHER, INC.
480 Canal Street, New York 13, N. Y.

Replacement Parts, etc.

$$
\text { (Continued from page } 26 \text {) }
$$

ing small particles of molten metal (aluminum) on a suitable carrier. This construction also provides increased surface area over that of plain foil, hence greater capacitance per unit size. This type is said to have as much as 10 times the capacitance as the plain foil type.

The varieties of foils also affect the operating capabilities of the electrolytic capacitor. Since a certain amount of current leakage is permitted in an electrolytic unit (although definite limits are set on it), and since each electrolytic capacitor is associated with a value of equivalent series resistance, power loss occurs inside the unit. This raises the operating temperature of the device, which in turn, is a limiting agency on the proper functioning of the unit and on its operating life. The plain foil type of electrolytic is capable of withstanding higher operating temperatures than the etched variety. Also, the plain foil electolytic is capable of withstanding much higher a-c ripple components than is the etched foil type.

As a general rule, electrolytic capacitors used in television receivers for a variety of

Construction of a paper tubular capacitor.
filtering and bypassing duties are of the etched foil kind. This derives from the fact that it affords the maximum capacity per unit size and per unit price, and also because the temperatures prevailing in a tv receiver are within its ratings. On occasion the $t v$ receiver makes use of plain foil units.
The references to tubular and can electrolytics apply to the physicial types. Both

These practical books make TV servicing EASY

1. UHF PRACTICES AND PRINCIPLES by A. Lytel
New, up-to-the-minute. Clear, easy-to-understand book covers both theory and applications of UHF. TV devices, converters, UHF test equipment, circuit components, tubes. 390 ($51 / 2 \mathrm{x}$ $81 / 2^{\prime \prime \prime}$) pages. Cloth cover..
$\$ 6.60$

2. IV TROUBLESHOOTING AND REPAIR GUIDE BOOK

by R. G. Middleton

The finest practical book to make your TV servicing easy. Spot TV receiver troubles rapidly. Includes receiver waveforms, visual alignment, test equipment kinks, etc. 204 ($81 / 2 \times 11^{\prime \prime}$) pages..
. $\$ 3.90$

3. ENCYCLOPEDIA ON CATHODE-RAY OSCILLOSCOPES AND THEIR USES by Rider \& Uslan

The most complete 'scope book ever published. Covers practically every 'scope manufactured during the past 10 years - and applications. $992\left(81 / 2 \times 11^{\prime \prime}\right)$ pages. 3,000 illus. Cloth cover
$\$ 9.00$

4. Vacuum-tube voltmeters by J. F. Rider

Completely revised. Covers theory, operation and application - also probes, calibration and testing. Illus. with $432\left(51 / 2 \times 81 / 2^{\prime \prime}\right)$ pages. Cloth cover
\$4.50

5. FM TRANSMISSION AND RECEPTION

by J. F. Rider \& S. D. Uslan
This 2nd edition covers FM from start to finish, including manufacturers' products. 460 ($51 / 2 \times$ 81/2") pages. Cloth cover........................ $\$ 4.95$
Buy these books now at your jobbers...
leading bookstores...or -

are contained in metal housings, except that the tubular variety has an insulating cardboard sleeve around the metal container. These are mounted in place by means of the connecting wires, or a mounting bracket. The can type is intended for above chassis mounting, to be screwed into a socket, or to be locked in place by means of twist lugs.

Like the paper dielectric capacitor, the electrolytic variety also is affected in its operation by temperature. This is especially true of the leakage current. This leakage increases with operating temperature inasmuch as heat tends to deteriorate the oxide film. Any action which tends to destroy the effectiveness of the film naturally displays an adverse effect on the capacitance of the unit. Also, high operating temperatures tend to dry out the electrolyte and so effect the capacitance and performance of the device.

Cut Down Your TV Servicing Time with
 TV MANUFACTURERS' ${ }^{\dagger}$ RECEIVER trouble cures
 VOL. 1

First in a brand new series of practical books that will give you the exact directions for correcting TV receiver performance "bugs." Each remedy is the one developed by the receiver's own manufacturer. It is positive! Each cure is official, factoryauthorized. It will help correct some of the most difficult faults-picture iitter, hum, instability, buzz, tearing, etc.

If you work in a strong-signal area, a fringe area, an area of high humidity, etc., you have special problems in servicing. The manufacturers' trouble cures given in this book will relieve these troubles when properly applied to the receiver in question. These tried and tested cures will speed up your work, make it easier and more profitable.
For instant reference, a complete index in which trouble cures are listed by brand and chassis or model number, is included.

VOLUME 1 covers 12 prominent brands-ADMIRAL, AIRKING, ANDREA, ARVIN, BELMONTRAYTHEON, BENDIX, CALBEST, CAPEHART-FARNS. WORTH, CBS-COLUMBIA, CERTIFIED, CROSLEY, DUMONT. The later volumes, due every few months, will include models of most of the manufacturers in Rider Manuals and TEK-FILE. You'll want VOLUME I and all the others to come. Order VOLUME 1 today and reserve your copies of the others. We'll notify you when they are ready.

Buy TV MANUFACTURERS' RECEIVER TROUBLE CURES now and receive your copy as soon as it is off press in January. One service job will more than pay the cost of the bookl
Over 120 pages. $\quad 51 / 2 \times 812^{\prime \prime}$ illus. $\$ 1.80$

Radio's Master Reports

(Continued from page 33)
heater-cathode type intended primarily for use in the output amplifier of auto radio receiver operating from a 12 -volt storage battery.
RADIU MFG. ENGINEERS-Added mobile converters No. MC-55 at $\$ 69.50$ net and MC-57 at $\$ 64.50$ net.
REGENCY - Added UHF converter. Model RC 600 at $\$ 37.46$ net.
RIDER, JOHN F. - Added Na. 2010, Rider's Television Manual, Volume 10, at $\$ 24.00$ net STANDARD TKANSFURMER - Added deflec. tion yokes (with leads and networks added) No. DY-1A at $\$ 4.74$ net . . No. DY-7A at $\$ 5.37$ net .. No. DY-8A at $\$ 6.60$ fiet . . No. DY-9A at $\$ 6.60$ net and No. DY-10A at $\$ 6.60$ net. SUPERIOR INS'「R.-Added Model $660-A$, signal tracer generator at $\$ 42.95$ net.
SUPREME INC.-Added a number of "vest poc. ket" testing instruments; Model 402, voltmeter at $\$ 10.65$ net . . Model 403. voltmeter at $\$ 10.65$ net . . . Model 404, voltmeter at $\$ 10.65$ net . . . Model 410, milliammeter at $\$ 10.65$ net Model 411, milliammeter at $\$ 10.65$ net Model 420, ammeter at $\$ 10.65$ net
Model 430, microammeter at $\$ 14.50$ net and Model 440, ahmmeter at $\$ 11.50$ net.
TABET-Added Model NT10, 10 foot antenna top section with guy rings at $\$ 15.38$ net and Model NRB, rigid mounting base with hardware at $\$ 5.67$
TERADO CO.-Introduced Model 6-71160 at $\$ 37.50$ list and Model $12-71160$ at $\$ 42.95$ list, both in the Trav-Electric super series, portable de to ac converters designed for car use to operate other electrical devices.
UTAH RADIO PRODUCTS - Added Model SP15R at $\$ 41.70$ net to their series of wide range
VIDEO INDUSTRIES-Added 5 element Yagi antenna for channel three at $\$ 6.83$ net.
WINCHARGER CORP.-Added Model 3095 at $\$ 11.75$ net to their guyed tower series and Model $\$ 406$ at $\$ 2.97$ net, screw anchor for guyed towers.

Discontinued Items

ASTATIC CORP.—Discontinued Model S-8, crys
AUDIO DEVEVELOPMENT - Discontinued No 111A, microphone cable.
BOGEN CO. - Discontinued Model DB10, high fidelity 10 watt amplifier ... Model PH10, 10 watt multi-range photo-amplifier and Model PX15, 15 watt phono-aamplifier.
CHICAGO INDUSTRIAL INSTR.-Discontinued Model 453, featherweight miniature volt-ohm-mil. liammeter.
HUBBELL, HARVEY-No. 408B32, straight plug and No. 412B42, connector are discontinued. LENK MFG.-Discontinued Models 201 and 205, heavy duty industrial soldering irons.
RADIART CORP. - Discontinued TV booster, Model TVB-1.
R.C.A.-Discontinued No. 202S1 from their elec tronic components speaker (PM type) series. RADIO MFG. ENGINEERS-Discontinued mobile converter MC-H4.
RADIO MERCHANDISE SALES-Discontinued No. STYL8-2H, 8 element Yagi antenna.
SARKES TARZIAN-Advises that their lino of TV picture tubes is discontinued.
SUPERIOR INSTR. - Discontinued Model 660 ac signal generator and CA-12, signal tracer. SYLVANIA - Discontinued subminiature tubes 6 BF 7 and 6 BG 7
TALK-A.PHONE - Discontinued Models C-5912 and C-5920 in their "chief" universal series. UNIVERSAL METAL PRODUCTS-Model.EM 2 in their series of universal mounts is discontinued.

Price Increases

ARGOS PRODUCTS - Increased price on Model TC-2, tube caddy 'junior", to $\$ 7.75$ net. BOGEN CO.-Increased price on Model CH18P-1 ta $\$ 92.50$ net and Model CH30P-1 to $\$ 108.80$ net in their challenger sound equipment series URLINGTON INSTR.-Increased price of No A70x32 to $\$ 11.50$ net in their current transformer AMM.
AMMARLUND MFG. - Increased price on HQ129X, receiver without speaker to $\$ 239.50$ net. ITTELFUSE. - Increased price om No. 342008 dust-proof, drip-proof in thei
MERIT TRANSFORMER-Increased No. A- 3080 vertical output transformer to $\$ 3.60$ net and No.
A- 4003 , vertical blocking oscillator transformer to A. 4003 , ve
$\$ 1.80$ net.

PENN BOILER \& BURNER-Increased price of the universal adaptor in their tenna-mast hardware series to $\$$. 50 net.
ADIO MERCHANDISE SALES - Increased price on the TYL 8 series of 8 element Yagi antennas.
(Continued on next page)

W 42 BH

W 26 B

W 22 AB

W 22 AB-T

This "Vertical Drive" "all-purpose" cartridge provides superlative reproduction for all types of records. Low tracking pressure (only 6 grams) and high needle compliance guarantee faithful tracking and longer record life. Uses exclusive Shure "Unipoint" needle, scientifically designed for maximum perform ance and long life. List price............ . 37.50

This "Vertleal Drive" "iurnover-type" cartridge provides extended frequency response (50 to 10,000 c.p.s.) at extremely low ncedle point pressure-only 8 grams. One of the most popular, widely used cartridges in original equipment. Highly recommended as replacement in phonographs equipped with turnover mechanism. Individual needles-one for finegroove and the other for standard recordsguarantec maximum results. List price. . $\$ 9.50$

Offers all the advantages provided by the Model W22AB, plus a long-life turnover mechanism. Furnishes replacement of old, worn-out turnover mechanisms as well as cartridges. Also an excellent replacement for converting all-purpose phonographs into turn. over type. list pricc.
$\$ 10.00$
SHURI and Acoustic Devices
Cable Address: SHUREMICRO

Radio＇s Master Reports

（Continued from page 35 ）
SIMPSON ELECTRIC－Increased price on Model 476，mirroscope to $\$ 197.00$ net．This oscillascape employs a $5^{\prime \prime}$ cathode ray tube mounted in a vertical position，with the image reflected from a high grade mirror mounted in the adjustable cover at the top of the cabinet，bringing the viewing surface near eye level when used on work benches of normal height．
SYLVANIA－Increased price on 1 N 82 ，UHF de－ tector crystal to $\$ 1.15$ net．
VIDEO INDUSTRIES－Increased price on No． 103，fan antenna to $\$ 3.68$ net and No．106，in－ line folded di－pole antenna to $\$ 4.75$ net．

Price Decreases

BURLINGTON INSTR．－Decreased price on No． A70x8 ta $\$ 7.80$ net in their current transformer series．
CLAROSTAT－Decreased prices on their series of 160 watt adjustable wire－wound resistors，series K－160．WA．
GENERAL ELECTRIC－Decreased prices on a number of items in their Alnico 5 londspeaker
line．
NATIONAL UNION RADIO－Decreased prices on videotron TV picture tubes NU－16DP4 to $\$ 30.00$ net
NU－10BP4A to $\$ 21.00$ net 4 to $\$ 21.00$ net and NU－10BP4A to $\$ 21.00$ net．
R．C．A．Decreased price on portable＂AB＂pack
VSO64 to $\$ 3.68$ net．

REPLACEMENT PARTS cistiugs Makes TV Servicing EASY！ Official，accurate factory－authorized data！ All pages filed in place！ All production runs and changes through September 1952！ Big $12^{\prime \prime} \times 15^{\prime \prime}$ size Cumulative index TV Volumes 1 through 10 Over 2,000 pages（equivalent of $81 / 2^{\prime \prime} \times 11^{\prime \prime}$ ）

ORDER FROM YOUR JOBBER TODAY！

TV Filament Circuits
 （Continued from page 1）

These examples，which are representative， show the serviceman that，in troubleshoot－ ing a receiver，filament circuits cannot be taken for granted but must be checked with the wiring diagram．The fact that chokes are used in the r－f tuning and video i－f units must not be forgotten．Suppose，for in－ stance，in Fig．3，that the choke between the first and second i－f amplifiers should burn out，or there should be a bad connec－ tion．This means that the second，third，and fourth amplifiers would fail to function．Or， if a filament bypass capacitor should short， the heating current would no longer pass through the filament．More important than this is the fact that the transformer winding is shorted and will be damaged．An under－ standing，therefore，of why and how chokes and capacitors are used in the filament circuits is necessary for successful servicing．

After Capehart－Farnsworth
Fig．3．The schematic diagram of Cape－ hart－Farnsworth Model 300－1B filament cir－ cuits showing the use of r－f blocking chokes， bypass capacitors，series and parallel com－ binations，and several transformer windings．
contain many chokes and capacitors．The r－f amplifier and the mixer－oscillator have $500-\mu \mu \mathrm{f}$ capacitors in parallel with their filaments．These bypass any high－frequency signals．There is also an r－f choke directly in series with each filament to block the r－f signals．In addition，there is a $5,000-\mu \mu \mathrm{f}$ capacitor which is across the two－tube parallel network．This，of course，further and more completely bypasses the r－f voltage． And finally there is another r－f choke in series with the circuit across the supply which even further removes any r－f signal．

Again，this is done to prevent these signals from reaching the video stages of the re－ ceiver and causing interference in the picture．

The video i－f amplifiers are also across this filament winding to ground．Each has a $1,500-\mu \mu \mathrm{f}$ capacitor across it to bypass signals．These elements are three times the size of those across the r－f tuning unit tubes． This is so since the frequencies in the video i－f stages are reduced from the incoming carrier frequency which the r－f stages use． The r－f chokes are again used to block the r－f signals．Note also the use the filament choke used to isolate the audio amplifier and the 2nd audio i－f tube as well as the use of the $5,000-\mu \mu \mathrm{f}$ capacitor for video and audio bypassing．

Arnold J．Unger

HOW TO BUY ．．．HOW TO USE

How to get maximum enjoyment from a hi－fl installation

High Fidelity Simplified

 by Harold D．WeilerHERE ARE ALL THE FACTS to enable you to develop progressively your high fidelity system．Learn what components you need to start you on the path to the ultimate in listening enjoyment．Step by step you are told how to develop a hi－fi system with the smallest initial expenditure．By know－ ing the various brand names and price ranges before you buy you can make an intelligent selection of high fidelity com－ ponents at the most economical cost．

Know how to achieve concert hall and studio－clear reception in your own home． Full details are given in a simple，down－to－ earth manner．
Interesting and decorative installations are shown to assist you in your efforts to install a unit to conform with your house－ hold furnishings．Accurate construction de－ tails are included for suitable enclosures for a high fidelity loud－speaker．

The complete story of high fidelity from the point of origin，through the tuner or record player，into the amplifier，the loud－ speaker，and finally into the human ear is discussed．

Audio hobbyists，record collectors，in fact，all those who enjoy lifelike audio per－ formance will find this up－to－the－minute book authentic and practical．
224 pp． $51 / 2^{\prime \prime} \times 81 / 2^{\prime \prime}$ durable paper binding Over 104 illustrations Only $\$ 2.50$

JOHN F．RIDER PUBLISHER，INC．
480 Canal St．，New York 13，N．Y．
peafubjong əbotsod usnfoy eub́ Bu！pjomsod

successful ing Servicting

CONVENTIONAL
 YOKE WINDING

WINDOW
(A)

Fig. 1. Cross section of yoke winding.

In physical appearance deflection yokes for tv receivers have changed but little since the early models. However, electrically and magnetically the changes have been considerable.

In size, for instance, the first yokes were about three inches long and were designed to be used with small picture tubes having deflection angles of about 50 degrees. Present-day yokes run a maximum of two and one half inches long and are used for 66 -degree and 70-degree tubes.

Electrically the old-style yokes used lower inductance horizontal coils (8 mh) while modern coils have inductances which run from 13 to 30 mh . At the same time, vertical windings have grown somewhat smaller, with inductances of about 30 to 40 mh , against the early 50 mh windings.

Magnetically, modern design employs ferrite cores in a yoke known as the cosine yoke. This yoke gives a notable improvement in focusing at the edges of the picture. This deficiency in performance of earlier yokes was generally ignored because of the use of smaller picture tubes. The design of these early yokes was primarily concerned with sensitivity of deflection and toward obtaining a perfectly rectangular raster with no sagging inward or bulging outward of the sides. The sagging inward is called "pincushioning" while the bulging outward is known as "barrelling."
The means employed to construct a cosine yoke involves the correct distribution of the
winding. The cross section of the winding is not uniform as in the case of older yokes (see part A of Fig. 1). The turns near the inside of the winding are in a thin layer, and pile up to successively increasing thickness as the winding progresses away from the window (see part B of the figure). As a result of this type of winding arrangement, the distribution of magnetic flux threading through the neck of the tube is more uniform than with the old-style yokes.

Because of this more uniform field, the focus of the spot toward the edges and the corners of the picture-tube raster is considerably improved.
As the electron beam, which has a definite thickness, passed through the nonuniform field produced by the conventional yoke, different portions of that beam experienced differing amounts of deflection force. As a result, an elongated spot was produced at the raster edges that resulted in an out-offocus condition. By causing the beam to travel through the more uniform field produced by the cosine yoke, uniform deflection of all parts of the electron beam occur, and a 500 minimum amount of defocusing takes place.
The arrangement of the conventional windings around the picture-tube neck can be seen in part A of Fig. 2. The deflection coils are shown in cross section here. The horizontal windings produce a magnetic field with vertical lines of force. This magnetic field produces horizontal deflection. The vertical windings produce a magnetic field
(Continued on page 10)
the cosine yoke

by harry e. thomas

Do you have the NEW sth Edition of the SPRAGUE TV REPLACEMENT CAPACITOR MANUAL?

If not, get your copy from your distributor without delay!
This 44-page reference guide shows the accurate, up-to-theminute Twist-Lok ${ }^{\hat{r}}$ and Atom Electrolytic Capacitor replacements for 2460 receiver models by 78 set manufacturers. It's the most comprehensive of all such manuals and it's yours FREE!

Also included for the first time in this new edition is a Printed Circuit Guide for the resistor-capacitor plates used by 46 manufacturers as well as a complete capacitor color code chart, two extra features to make the Sprague TV Replacement Capacitor Manual even more invaluable to every television technician!
P.S. If your distributor is temporarily out of stock, you can also get copies by writing Sprague Products Co., 55 Marshall St., North Adams, Mass. Please enclose 10 c to cover handling and postage.

Sharami SERVICING

HEG. U.S. PAT. OFF.

A house organ of John F. Rider Publisher, Ince, dedicoted to the financiat and technical odrancement of electronic maintenance personnel

VOLUME 14 NUMBER 2
FEBRUARY, 1953

JOHN F. RIDER, Publisher ANNETTE M. TRICARICO, Editor
Stuart Flexner, Assistant Editor
Milton S. Snitzer, Technical Advisor
Advertising Representative
H. J. Olsow \& Co.
3951 Grand Central Terminal
New York 17, N. Y.
MUrray Hill 6-4670

MEMBER

Cuilain Time

Transistors and Replacement Parts

The last few months have witnessed increased activity in the publicity given to transistors and other semi-conductors. In fact, almost the entire November, 1952 issue of the Proceedings of the LHE was devoted to this fabulous device. One manufacturer already is offering one type of transistor for sale to experimenters.

No one has any doubt about the impact of the transistor on the entire electronic industry. This will occur when there are no uncertainties about its reproducibility in large quantities and with consistent performance characteristics - application to all present uses of vacuum tubes over the full gamut of frequencies. When all of this comes to pass, the effect will be the equivalent of a revolution in electronic components and design.
The miniaturization of all equipment will be one manifestation, although this program involving subminiature vacuum tubes and transistors, has been going on for years under the impetus of the Armed Forces equipment requirements. The trend to transistors or some other devices made of materials showing similar behavior will, without question, shrink the physical dimensions of electronic equipment to a small fraction of even the smallest vacuum tube device made today.

Forgetting vacuum tubes for the moment, a tremendous effect seens likely on companion units presently being used to supply operating power to the vacuum tubes. A great portion of the energy supplied to vacuum tubes is wasted in heat. This is not so in transistors; hence those devices which supply operating power to the vacuum tubes in equipment are subject to change to a great degree - if not elimination in their present form.
All of this will not happen overnight. Engineers involved in the research of transistor and similarly behaving materials are very reluctant to forecast when the change from vacuum tubes to some
semi-conductor type of device will take place; estimates range from 4 years to 8 years. But who can tell? In the meantime, present-day designed equipments are still being sold in great quantities to the public. It is not a wild guess to say that before any major engineering change takes place in electronic equipments - television receivers especially - the nation's houses will contain from 40 to 50 million units, if not more. These receivers will require replacement parts for a long time, regardless of what radical engineering change may take place at the end of four or five years.
It is said that color television is on its way. It is highly doubtful if it will be a transistor-equipped receiver when it arrives, despite the fact that such a black and white receiver equivalent to 34 tubes has been shown already. All sound evaluations contend that the arrival of color television in a year or two, will still make use of vacuum tubes and present types of complementary equipments.

All in all, a tremendous market for replacement parts exists and is destined to increase substantially in the immediate future. The concern which need be felt by those who are producing and selling these parts is a matter of the nature of their planning. How far in the future do they look? The receivers in the field all kinds of receivers - must be serviced, and they require replacement parts. The table model radio displaced the console radio - but those consoles which were in people's homes were not discarded. They were serviced until television came along to grab the public's interest.

The birth of a "hot" war may change some of this. If past performance is any sort of a barometer, an acceleration of technological development is a certainty. A part of this will be the transistor or its equivalent because of the unbounded interest in miniaturization of electronic devices for military uses. If this occurs, semi-conductor devices will emerge full fledged much sooner than would be the case with just a cold war in progress. But even then, public holding in electronic equipment will not be thrown away; they will require service and so, replacement part production, selling, and installation.

Summarizing the whole thing, there is every reason why all individuals affiliated with the electronic industry should take note of the progress being made in the semi-conductor phase of the art. The tube manufacturers have been doing this for a long time. But we can't see any reason for concern about inventories in parts manufacturing establishments, parts jobbers stocks, or service technician's parts stocks. Everyone will sell what they have, and what they will make and buy, for years to come.

TV Service

Questions asked here and there among those who are in a position to know indicate a definite improvement in the level of competency being demonstrated by TV service technicians. Taking into account the television receiver sales during 1952, and the total number in use across the nation, the proportion of complaints has decreased. This is especially true in the largely populated areas, where greatest density of receivers prevails.

Chassis Coding

The matter of chassis coding is still a problem in the field. In view of the practice by many television receiver manufacturers to show different schematics representative of different production runs, especially when changes have been made, it is of the utmost importance that the service technician be able to correlate correctly, with the appropriate schematic, the chassis in for service.

We don't know what the answer is, but isn't it possible to establish some common method of coding and also a common location for the coding symbol on the chassis? The former may be difficult because of the different systems firmly rooted in the factories, but the latter is not faced with the same problems. Even if the entire issue is not settled for some time, taking care of one detail at a time would help.

Iohn FF, Rider

Accepted as outstanding. . . now with the ADDED features this BOOSTER leads the field. The automatic switch makes it possible to shut off the TV set by switching off the booster the stand-by position keeps the booster in readiness for use... and the extra outlet adds versatility to the booster.

* Automatic On-Off Switch
* Stand-By Position - eliminating "warm-up" time for booster
* EXTRA 110 volt convenience outlet - plug in rotor or any appliance
and these too: High Signal-to-Noise Ratio * Wide Band Amplification \star Complete Neutralization for Stable Operation \star Mahogany Grained Polished Finish \star Completely Enclosed for Dust-Free Operation 15 Degree Tilt for Easier Visibility.

Replacement Parts in TV Receivers Part I-Capacitors (cont'd)

This is the fourth in a series of articles on "Replacement Parts in TV Receivers." "Capacitors" will be continued next month.

Preceding paragraphs dealt with the identification of capacitors according to their physical construction. This base gives rise to the major type categories. But in the final analysis the suitability of a capacitor for a particular use is only in part determined by its physical construction. Every capacitor within a major type group is not necessarily suitable for every application even if the function indicates the general category of type from which the selection should be made. Still another basis of selection must be applied in order to establish suitability.

For instance a mica capacitor is generally considered to be a suitable type of capacitor for use in tuned circuits. The same may be said for the ceramic dielectric unit. Yet every version of these two general types of units is not suitable for use in every resonant circuit. The same applies to the paper dielectric and the electrolytic capacitors relative to portions of the TV receiver which contain these types. The final indicator in the suitability of use are the constants of the capacitor.

Constants of Capacitors

The suitability of a capacitor for a particular application is determined by many factors. Among these are
a. physical size
b. capacitance
c. operating voltage rating
d. allowable variation in capacitance from rated value
e. required change in capacitance with temperature
f. allowable change in capacitance with temperature
g. maximum temperature for normal operation
h. permissible electrical losses
i. insulation resistance
j. resonant frequency
k. test voltage rating

1. leakage current (if applicable) and several others.

With the exception of the physical dimensions, the other factors express the electrical qualifications of the component, and when stated in particular standardized terms, are the constants of the capacitor. Some of the terminology already listed are examples of terms which are constants, as for instance, items a, b, c, i, j, k and l. Item d is expressed by the constant "capacitance tolerance"; item e is "temperature coefficient" and item

by John F. Rider

f is "tolerance in temperature coefficient". Item g is expressed by "operating temperature", and item h by "power factor" and several others.

Because of the limitations in capabilities imposed by physical construction, or because of the capabilities given to a capacitor by its physical construction, each main type of capacitor has its own set of constants. Some of the constants are common to all types of capacitors because of the very nature of the device. A few examples of these are the physical size, the capacitance, the operating voltage and the electrical losses. When expressed numerically, they may differ widely - again because of the constructional features - but each set of constants does include them.

The selection of a particular capacitor for a particular use is a matter of comparison of the constants of the contemplated capacitor with the requirements of the circuit where it is to be used. At first thought this may seem to be a major problem to the service technician. Actually it is not so, because it already has been done by the individual who designed the circuit. In fact the entire problem is simplified because the receiver manufacturer's service literature contains the electrical specifications for the capacitors required at every point. All of the constants are not given, but a familiarity with the general order of constants applicable to that particular type of capacitor, will,

New RIDER TEK-file Packs

with

Replacement Parts Listings

awailable this month!

Pack 70. Motorola
Pack 71. Packard-Bell, Philco
Pack 72. RCA
Pack 73. Western Auto, Westinghouse
Pack 74. Radio Craftsmen, RCA, Sears Roebuck
Pack 75. Sentinel, Sparton, Spiegel, Starrett, Stewart-Warner
Pack 76. Stromberg-Carlson, Sylvania
Pack 77. Westinghouse, Zenith
For the individual models included in these Packs, refer to the TEK-FILE INDEX in the January, 1953 issue. If you do not have the issue, consult your Rider distributor or write to us directly.
when added to the details already known, lead to the correct replacement.

In the Rider Replacement Parts Program all the electrical requirements surrounding the original capacitor used in the television receiver are known, and these are compared with the electrical constants of the replacement items; then the suitable replacement is listed, that is, if there is one. A number of different types of capacitors can satisfy some of the original design requirements, but only after consideration of all of the constants is it possible to select which particular type of capacitor is suitable, or in some instances, which types are the equivalent of each other for a particular use. Examples of these will be given in a later article.

Physical Size

The physical size requirement is listed as one of the constants. Perhaps this is taking some license with the stricter meaning of constants but it does no harm. It is one of those descriptive terms which offers substantial leeway in the selection. At the factory end the physical size relates to most convenient production, satisfying space limitations inside or around other components, electrical performance when operation is at very high or ultra-high frequencies, and finally, to some extent the matter of economy. From the service technician's viewpoint, the physical size requirement is the one with the least problem, providing that when a limitation exists, it is realized.
We have illustrated the range of physical dimensions within which capacitors of different types are generally available. It was seen that each type comes in different sizes. In some categories of units the full range of sizes is available on the replacement market; in others it is not. But fortunately the mamer of use of a capacitor in a television receiver does not always demand complete conformance with the physical size specification, assuming that the electrical requirements can be satisfied.

For example, when a capacitor is located inside of some other component with fixed boundaries, such as an i-f or similar transformer can, or a deflection yoke, it is necessary that the replacement be of similar physical dimensions, or smaller, in order to fit within the same space. At the moment we are neglecting the possibility that the technician may not be interested in replacing a capacitor in an i-f transformer; he would rather replace the entire unit, which after all, does make sense when all factors are considered. Another example is the capa-
citor which is used in a critical circuit where space is at a premium and the distributed capacitance must be kept to a minimum, or when the lead length is important. The larger the unit in these cases, the lesser is the possibility of keeping the lead length to the dimension used for the original component.
It is not beyond the realm of the imagination that a service technician may feel that the replacement of a fixed tuning capacitor inside of a transformer can be accomplished by locating the component outside the can. This is bad practice, and should not be done. The performance of the transformer can be affected adversely and feedback problems may arise.
Finally there is the case of the can type of electrolytic capacitor for which a mounting plate already exists in the receiver. It is conceivable that a new mounting plate suitable for a lärger or smaller sized replacement can be used insead of the old one, but this involves the unwarranted expenditure of time and is justified-only when the proper replacement is not procurable. Or, it is conceivable that a completely new mounting arrangement will be used, such as locating the replacement beneath the chassis. Of course it can be done, but we feel that in the latter cases, which are not too numerous to begin with, the physical features of the chassis should be retained by procuring the part that fits the chassis properly.
As to capacitors which are located on the underside of the chassis, the physical dimensional requirements are not of major import, providing, as we have said before, that the electrical requirements are satisfied. However, it always is best to duplicate the original size, but if there is to be a difference, it is best and most convenient to work with the smallest physical sizes rather than the reverse.

Capacitance and Capacitance Tolerance

In the list of electrical qualifications and in any list of constants of capacitors, these two items are shown individually. In reality they are closely related; hence are treated together here. Moreover, they are associated with all basic categories of capacitors being treated in this replacement parts series.
All capacitors bear some identification which states the capacitance rating of the unit. Sometimes the value is simply stated on the box which contains the unit, as usually is the case with variable capacitors. In the case of fixed units of all kinds, the value is marked on a label attached to the capacitor, or it appears as some form of coding impressed on the unit. Whether the label or coding expresses the capacitance in microfarads or micromicrofarads is unimportant because one is convertible into the other. A more important thing is the realization that the value of capacitance so shown is an approximate value. Frequently it is referred to as the nominal value.

By approximate or nominal we mean a value corresponding to the standard value within a certain leeway or tolerance. As a matter of convenience, lowest cost, and other production factors, the radio and television industry has agreed upon certain values of capacitance for each type of capacitor as being "standard" values. Design engineers try to build their equipments around these values. Capacitor manufacturers in turn build capacitors to approximate these standard values within a certain tolerance (expressed as a percentage of the rated value) and label them accordingly.

Although the standard values of capacitance are not the same for all basic categories of capacitors, at least do not begin at the same low limit and end at the same high limit, there is a range of capacitance in which the paper dielectric, mica dielectric, and ceramic dielectric afford more or less the same standard values, but not exactly the same. Such a list would begin at about $0.0001 \mu \mathrm{f}$ and end at about $0.01 \mu \mathrm{f}$. It must be understood however that operating voltage ratings will tend to modify the range of standard values in all three types. As an illustration we might point out that the usual lowest standard value of capacitance in paper dielectric capacitors rated below 2000 volts working, is $0.001 \mu \mathrm{f}$, and even this is increased to perhaps several times that value when the working voltage is below 600 volts.

Mica dielectric and ceramic dielectric capacitors are available in like standard values from about $1 \mu \mu \mathrm{f}$ to about 0.01 μf, but even in this group, especially between a fraction of $1 \mu \mu \mathrm{f}$ and about 70 $\mu \mu \mathrm{f}$, the preponderant selection of ceramic capacitors for many uses by design engineers has lead to the creation of standard values which differ from each other in very small steps, perhaps 2 or $3 \mu \mu$.

The electrolytic capacitor is in a class by itself as far as standard values are concerned. They begin at about $4 \mu \mathrm{f}$ and extend up into the thousands of microfarads. But here too the particular type and the working voltage rating sets limits, as for example about $50 \mu \mathrm{f}$ is the limit at 450 volts, whereas $5000 \mu \mathrm{f}$ units are available at 6 volts.

Capacitance Tolerance. Concerning the association between standard values and tolerance, by definition, tolerance is the acceptable departure from a rated value. In the television industry, for that matter in the entire electronic industry, capacitance tolerance is expressed in two ways. One is in terms of percentage of the rated value, the other is in terms of a certain amount of capacitance. For instance when the capacitance is less than $10 \mu \mu \mathrm{f}$, and the unit is a ceramic dielectric capacitor, the + and - tolerance ratings may be $0.1 \mu \mu \mathrm{f}$, $0.25 \mu \mu \mathrm{f}, \quad 0.5 \mu \mu \mathrm{f}, \quad 1.0 \mu \mu \mathrm{f}$ or $2.0 \mu \mu \mathrm{f}$, depending entirely on the degree of accuracy required by the circuit involved. As a rule, oapacitors of this kind used in television
receivers bear either + or $-0.25 \mu \mu \mathrm{f}$ or $0.5 \mu \mu \mathrm{f}$ tolerance ratings.
In the case of mica capacitors up to and including $10 \mu \mu \mathrm{f}$, two minimum tolerance ratings exist. For the plain foil mica, the minimum tolerance is $1.0 \mu \mu \mathrm{f}$, whereas for the silver mica it is $0.5 \mu \mu \mathrm{f}$.

When the capacitance exceeds $10 \mu \mu \mathrm{f}$, the capacitance tolerance is expressed in
(Continued on page 20)

> There's a RIDER Book For Every Phase of Radio - Television
> Encyclopedia on Cathode-Ray Oscilloscopes and Their Uses 992 pages ... $\$ 9.00$
> Vacuum-Tube Voltmeters, 2nd Ed. 432 pages.. ..$\$ 4.50$
> TV and Other Receiving Antennas
> (Theory and Practice)
> 606 pages $\$ 6.90$
> $\begin{aligned} & \text { TV Installation Techniques } \\ & 336 \text { pages } \$ 4.50\end{aligned}$
> TV Master Antenna Systems
> 356 pages
> Receiving Tube Substitution
> Guide Book, Ist Ed. 224 pages.. $\$ 3.00$
> First Supplement, Receiving Tube Substitution Guide Book 48 pages TV Picture Projection and Enlargement 192 pages $\$ 3.30$
> Television-How It Works 203 pages
> FM Transmission and Reception, 2nd Ed. 460 pages $\$ 4.95$
> Radio Operator's License $Q \& A$ Manual, 3rd Ed. 734 pages...... $\$ 6.60$ Broadcast Operator's Handbook, 2nd Ed. 440 pages $\$ 5.40$ Radar-What It Is 80 pages...... $\$ 1.00$ Understanding Vectors and Phase in Radio 160 pagesCloth cover $\$ 1.89$ Paper cover $\$.99$
> Installation and Servicing of Low Power Pa Systems 208 pages.... $\$ 3.00$
> Servicing by Signal Tracing
> 360 pages $\$ 4.00$
> Inside the Vacuum Tube 424 pages $\$ 4.50$
> $\begin{aligned} & \text { Servicing Superheterodynes } \\ & 288 \text { pages } \$ 2.00\end{aligned}$
> Servicing Receivers by Means
> of Resistance Measurement 203 pages. . $\$ 2.00$
> The Business Helper
> 134 pages...
> WE GUARANTEE your satisfaction! Make these books PROVE their value to you. Examine them at your favorite jobber. If he does not have them order from us.

Order Your Copy Now!

JOHN F. RIDER PUBLISHER, INC.
480 Canal Street, New York 13, N. Y.
COMING IN APRIL RIDER'S TVII

Bring back that New-Set Sparkle with Performance-Tested Tubes

Meet John Cunningham, a CBS-Hytron Commercial Engineer. John is beginning at the beginning for you. Socket by socket, he is analyzing the tube requirements of a brand-new TV set design.

John knows the superior performance demanded. He concentrates his know-how on insuring top tube operation within standard specification limits. He tests sample tubes ... checks analysis data. Working hand-in-glove with the set designer and with CBS-Hytron engineers . . . he assures control of the characteristics of all tubes for this new chassis. Finally he achieves... from rectifiers to picture tube the perfect performance all of this engineering team (and you) seek.

Constantly CBS-Hytron carries on teamwork like this. Socket by socket analysis. Day in, day out - with 9 out of 10
leading TV set makers. Both tube and set engineers pool their specialized skills. Scores of the nation's foremost TV set engineers help make endless CBS-Hytron improvements. Help assure you of unsurpassed performance in virtually all leading TV sets.

Small wonder that your CBS-Hytron replacement tubes recapture that new-set sparkle. Please your customers. Cut your call-backs. Profit more. Take advantage of CBS -Hytron engineering. Demand CBS-Hytron... your logical replacement tube, because it is performance-tested all the way...from original to replacement.

MANUFACTURERS OF RECEIVING TUBES SINCE 1921 HYTRON RADIO AND ELECTRONICS CO.

A Division of Columbia Broadcasting System, Inc.
Main Office: Danvers, Massachusetts

NEW...BIGGER...BETTER
 FREE! 6th Edition
 CBS-HYTRON
 Reference Guide
 for
 Miniature Electron
 Tubes

- A CBS-Hytron original . . . it's unique.
- All miniatures, regardless of make.
- 250 miniature types . . . 87 new.
- 111 basing diagrams... 34 new.
- Similar larger protatypes indicated.
- 8 packed pages of data you need daily.
- And it's FREE!

Get your copy of this old friend braught up to date now. Ask yaur CBS-Hytran jobber or write direct . . . today!

Why not repair世V the easy way?

Rider TV MANUALS. These are the large, bound volumes that come out about 3 limes a year. Each valume covers the current production of every receiver brand from A to Z. There are now 10 TV valumes that cover a total of more than 4,650 different models. Each volume has 2,000 or more $81 / 2 \times 11^{\prime \prime}$ pages of official, factoryauthorized information and all contents are clearly indexed for fast and easy use. With a Rider TV Manual, you'll know all about the different production runs and changes, circuits, valtages, trouble cures everything the manufacturer has to tell for easy service.

TEK-FILE. Here is the same complete, official factory-authorized Rider information in packaged form. TEK-FILE information is just like the Manuals organized, indexed, easy-to-use. Buy TEK-FILE when you need information for just certain receivers and models. There are now 77 TEK-FILE packs that cover over 2,800 tv models. You can find out what packs are available from the free TEK-FILE indexes at your jobbers, or by writing to us.

Beginning with TV Manual 10 and TEK.FILE Pack 57, you'll find this new feature: a listing - by brand names of dependable replacement parts. All parts' specifications are checked and rated against original parts. If you can't get TEX-FILE information, let us know. We'll tell you where to buy it
or sell you direct. Find out for yourself how easy tv servicing can really be. Try a TEK-FILE Pack - if you're not completely salisfied-refurn it to us within 7 days and we'll relurn your moneyl

We don't mean by saying a few magic words over the sel. Before you can do that they'll build a set that just won't break down... and we'll all be out of business. We mean that once you know the make and model of the iv receiver, think how easy it would make your job if you knew as much aboul the set as the company that made it. Impossible? No. Rider servicing information tells you all you need to know to do a permanent repair job. One that really makes the customer happy. This complete and easy-to-use data comes two ways. . .

NOTE TO ALL TV 10 OWNERS! Do yourself and us o favor by filling in and sending to us the registration coupon on the first page of TV 10. This will help us send you additional exclusive informalion. Thank you.
For Easier Rodio Servicing . . . Use Rider's 22 AM-FM Monuals!
Jarr F.Rmer PUBILGHER

IN
480 Canal Street, New York 13, N. Y.
4216.20 w . Jefterson Bivd Los Angeles, Calmornum

The Cosine Yoke

(Continued from page 1)

with horizontal lines of force. This magnetic field produces vertical deflection. Part B of the figure shows a cross section of the windings of the cosine yoke. Windings which produce horizontal and vertical deflections are labeled. Part C is an enlarged view of one of the horizontal windings with the window and butting edge of the winding shown.

Note that the cosine distribution must be designed into both vertical and horizontal windings, but in different amounts. This is true because the deflection components of both magnetic fields are not the same due to the raster being wider than it is high. The size of the window in both horizontal and vertical coil assemblies affects the over-all distribution and hence the spot focusing in the corners of the picture.

The cosine distribution curve is a design detail and has no direct significance to the serivce man. Suffice it to say that the winding thickness varies in a cosinusoidal manner. Some windings claim to be cosine squared in character, which means that the winding thickness increases faster than in a normal cosine yoke.
In general a cosine yoke can be distinguished from a conventional-style yoke by inspecting the size of the winding window. Cosine yokes have narrow windows. This is natural, since the winding starts nearer to the center line of the assembly, and thus has farther to spread while increasing its thickness. The horizontal winding window can be readily seen, since this winding is on the inside of the yoke and lies along the neck of the tube.

Finally, in checking an old yoke when considering replacement with a cosine yoke, note that the cosine yokes probably have higher horizontal-winding inductance than conventional designs and replacement might result in poor performance and probably give ringing in the picture. Also, another condition to watch out for is whether the shape of the raster has been changed, since better corner focus may have been obtained at the expense of pincushioning of the raster. Some cosine yokes produce pincushioning that must be removed by placing small permanent magnets (held on brackets) around the neck of the tube. These antipincushioning magnets must be readjusted in making a replacement. A cosine yoke with such magnets cannot be used with metal picture tubes since the cone may become permanently magnetized and thus distort the raster.

Rider Ten-file gives you

Complete parts lists and values

Here's the hardest-selling, custom-made Home Calendar ever offered to Radio-TV Service Dealers! It's tailor-made just for you! Features an appealing illustration painted exclusively for Sylvania by a famous cover artist. Reproduced in full color and imprinted with your name and address.
Your prospects simply can't overlook this calendar. It's filled with timely hints and valuable household suggestions they'll want to keep handy. And, every time they turn the page they'll be reminded of your dependable service, skill, and experience.
Order now... supply limited! At only l1/2¢ per customer per month (in lots of one hundred or more), this calendar
is truly the smartest advertising buy ever offered. But don't delay, the supply is limited! Order a couple of hundred from your regular Sylvania distributor . . . TODAY! If he is out of stock, write to: Sylvania Electric Products Inc., Dept. 3R-1802, 1740 Broadway, N. Y. 19, N. Y.

SYIVANIA
 ∇

In compliance with the many requests we have received from our readers, this and future issues of SUCCESSFUL SERVICING will again contain the feature, TV PRODUCTION CHANGES.
The Rider Manual pages and TEK-FILE pack which include the original data and shematics to which the following production changes apply, appear in the index on page 24 of this issue.

ANDREA

Service Data Addenda (Coil and Transformer Resistances)
Low-Voltage Transformer, T12; Part. No. ST-3033

Primary: 8 ohm
High-voltage secondary: 38 ohms , (center tap)
5v secondary (yellow leads): . 1 ohm
6 v secondary (green leads): 11 ohm
6 v secondary (blue leads): .3 ohm
High-Voltage Transformer, T8, Part No. ST-3018-1
Terminals 1-2: 90 ohms
Terminals 2-3: 180 ohms
Terminals 4-5: 9 ohms
Terminals 5-6: 3 ohm
Vertical-Output Transformer, T7, Part No. ST-3030
Blue-red leads: 600 ohms
Green-yellow leads: 10 ohms
Vertical-Blocking Transformer, T6, Part No. ST-3029
Blue-red leads: 150 ohms
Green-yellow leads: 900 ohms
Horizontal-Oscillator Transformer, L18, Part
No. SA-335
Terminals A-F: 75 ohms
Terminals C-D: 43 ohms
Deflection Yoke, L17, Part No. ST-3034 Horizontal winding: 13.5 ohms
Vertical winding: 70 ohms
Foctis Coil, L14, Part No. ST-3032
1300 ohms
Horizontal-Linearity Control, L20, Part No. SA-315-1

35 ohms
Width Coil, L19, Part No. SA-336 .5 ohm
Speaker Output Transformer, T11, Part No. SL-4009

Primary: 4000 ohms
Secondary: .5 ohm
Filter Choke, L22, Part No. 3031
100 ohms

MAGNAVOX

CHASSIS CT-270, 271, 272, 273, 274
R-F Unit
These chassis use r-f tuner unit No. 700349.

GAMBLE-SKOGMO (CORONADO)
MODELS 05TV1-43-9014A,
15RA2-43-9105A
CHASSIS 16AY210
Circuit Changes, Video Amplifier
The following component changes were made in the video amplifier circuit:

Ref. No.	Old Part Number	New Part Number	Description
R35	C-9B1-70	C-9B1-66	2,200 ohms, $1 / 2$ watt, 10\%
R38	C-9B2-64	C-9B-62	1,000 ohms, $1 / 2$ watt, 10\%
R123	C-9B4-21	C-9B2-70	4,700 ohms, 1 watt, 10\%
R127	new part added	C-9B4-82	47 K ohms, 2 watts, 10%
C122	new part added	C-8G-11892	$22 \mu \mu \mathrm{f}$, ceramic
L20	A-16A-18685	A-16A-19486	$240 \mu \mathrm{~h}$ peaking coil
L21	A-16A-18685	A-16A-19485	$380 \mu \mathrm{~h}$ peaking coil

NOTE: Chassis code numbered 124023 or higher incorporate this change.

MITCHELL

MODELS T16-2KB, T16-2KM, T16-B, T16-M
Production Change (Tube Substitution)
In some receivers, a 6 SN 7 is used in place of a 12AU7 for the d-c restorer and sync separator stage. This is done by making the following wiring changes:

1. Filaments: Conneot pins 5 and 9 of the 12AU7 to pins 7 and 8 of the 6SN7, respectively. Disconnect pin 4 of the 12AU7.
2. Cathodes: Connect pins 3 and 8 of the 12AU7 to pins 6 and 3 of the 6SN7, respectively.
3. Grids: Connect pins 2 and 7 of the 12AU7 to pins 4 and 1 of the 6SN7, respectively.
4. Plates: Connect pins 1 and 6 of the 12 AU 7 to pins 5 and 2 of the 6SN7, respectively.

HOFFMAN

MODEL 612
CHASSIS 142
Hoffman Model 612 is a 24 tube table model with a 6 inch speaker and an audio power output of 3.0 watts. A 12 inch picture tube is used. Its major components are: Chassis - 142
Speaker $-6^{\prime \prime}$. PM (Part No. 9062 voice coil, 3.2 ohms at 400 cps.)
Cabinet - Part No. 7533
Escutcheon Frame - Part No. 2277
Filter Plate Glass - Part No. 734
Picture tube $-12 \mathrm{KP} 4,12 \mathrm{LP} 4, \mathrm{~L} 2 \mathrm{QP} 4$

SYLVANIA

MODEL 74M
CHASSIS 1-356(C05)
Sound I-F Limiter (Circuit Change)

1. Resistor R-104 (120 ohm) is removed from the cathode ($\operatorname{pin} 7$) of the Sound I-F Limiter (V-10, 6AU6) and the cathode is connected directly to ground.
2. Capacitor C-104 ($.2 \mu \mathrm{f}, 400 \mathrm{v}$), connected from the bottom of T-52 (sound discriminator transformer primary) to ground, is removed from the circuit.
3. Resistors R-105 ($33 \mathrm{~K},{ }_{12}^{1 / w)}$ and R-106 ($10 \mathrm{~K}, \frac{1}{1} \mathrm{w}$ w), connected to the screen grid of the Sound I-F Limiter (pin 6 of V-10, 6AU6), are removed from the circuit.
4. Pin 6 of $\mathrm{V}-10$ is connected to the bottom of T-52.
5. Resistor R-107 (33K, $1 / 2 \mathrm{w}$), connected between the bottom of T-52 and the +125 v supply, is changed to 22 K , $1 / 2 \mathrm{~W}$ (Service Part 181-0223).
NOTE: Chassis coded C06 (Serial Nos, beginning 5606-) incorporate this change.

SYLVANIA

MODELS 22M-1, 23B, 23M, 24M-1 CHASSIS 1-387-1
3rd Video I-F Stage (Resistor Change)
Resistor R-140, in the grid circuit (pin 1)
of the 3rd video i-f tube (V-5, 6BA6), is
changed from 27 K , $1 / 2 \mathrm{w}$ to 22 K , $1 / 2 \mathrm{~W}$ (Service Part 181-02235).
NOTE: Chassis coded C01 (Serial Nos. beginning 87101-) incorporate this change.

DEALIESS GETING WESTINGHOUSE tubes Profit from heavy local adverising at No cost

Service dealers are getting powerful local advertising support from new Westinghouse RELIATRON $_{\text {Tw }}$ Tube Distributors. In cities now served by Westinghouse Distributors, dealers get local newspaper advertising, a complete kit of store display and imprinted mailing material.
All of it-local ads and kits-are designed to build TV-radio service business in the dealer's local area.
Best of all, none of it costs the dealer a penny!
You can get your store listed in two local newspaper ads at no charge, and get a kit to boot. If Westinghouse Tubes are now sold in your area, see your Westinghouse Distributor and take advantage of this $\$ 900$ -

COMING YOUR WAY

If Westinghouse Tubes are not yet distributed in your area, be patient. Distributors are being established in all market areas as fast as product availability and good service permit.
You'll soon have the chance to buy RELIATRON Tubes. Keep this tremendous opportunity in mind: you'll get newspaper advertising at no cost! Imprinted material for mailings! Imprinted signs for your window!

All of it is local advertising which sells your service in your own area where it counts.
For the name of your Westing. house Distributor, or the approximate date when Westinghouse Tubes will be available in your area, drop a postal card to Dept. M-201 or have your regular distributor contact Dept. M-201 for information on how he can better serve you.

you can be SURE...IF IT'S Westinghouse

Ta. All Purchasers of:

RHDER'S TV 10

Please do not forget to fill in the registration coupon on the first page of your Rider TV 10 Manual and send it to us if you have not done so already. We will forward the replacements parts listing corrections direct to your address. Also, by returning this coupon to us, you will be assured of having your name on our mailing list for exclusive, replacement parts information that will be available to TV 10 owners. Do Not send us the replacement parts pages!

Here are more data that will keep your RIDER'S DEPENDABLE REPLACEMENT PARTS LISTING published in TV Volume 10 up to date.

ADDITIONS TO PHILCO VARIABLE RESISTANCE CONTROLS SECTION:

PHLCO part No.	REPLACEMENTS																	
	clarostat				IRC							Mallory						
	$\begin{aligned} & \text { Cat. } \\ & \text { No. } \end{aligned}$	$\begin{aligned} & \text { Kcit } \\ & \text { No. } \end{aligned}$	Inner	Switch No.	$\begin{gathered} \text { Stock } \\ \text { No. } \end{gathered}$	$\begin{aligned} & \text { Kit. } \\ & \text { No. } \end{aligned}$	Panel Elem.	Rear Elem.	Outer Shaft	Inner Shaft	Switch No.	$\begin{gathered} \text { Stock } \\ \text { No. } \end{gathered}$	$\begin{aligned} & \text { Kit. } \\ & \text { No. } \end{aligned}$	Panel Elem.	Rear Elem.	Outer Shaft	Inner Shaft	Switch No.
33-5546-41	A 43 -10K		FKS 1/4		WK-10000													
33-5546-49	$\mathrm{A} 10-10 \mathrm{~K}$		FKS 1/4		$4 \mathrm{WK}-1000 \mathrm{O}$							M10MP.						
33-5563-42	RTV-345				QJ-391		W17-111	WR11-118	P3-129	R8-213								
33-5563-43	RTV-241				QJ-302	K-2	B11-125	B11-130	P1-200	R1-216								
33-5563-44	RTV-360				QJ-340	K-2	B12-141	B18-139X	P1-200	${ }^{\mathrm{R} 1-216}$	76-1							
33-5563-50	RTV-358				QJ-356	K-2.	B11-123	${ }_{\text {B11-130 }}$	${ }_{\text {P1-200 }}^{\text {P3-131 }}$	R1-216				WF54L	UR25AL			
33-5563-51	RTV-359				QJ-357	K-3	W17-111	B11-128		R1-216				WF252	UR15L			
33-5564-14	AT-116		FS-3	SWA	Q18-139X							UT451						US26
33-5565-17	AG-55-S		FKS 1/4		Q11-120							SU46						
33-5565-30	AG-44-S		FKS 1/4		Q11-123							SU35						
33-5565-31	AG-85-S	*	FKS $1 / 4$		Q11-14							SU67						
33-5565-32	AG-84-S		FKS 1/4		Q11-239							SU565						

ADDITIONS AND CORRECTIONS TO FIXED CAPACITORS SECTION:

Set Mfr.	Set Mfr. 's Original Part No.	
Belmont	8C-18487	Add AFH4-82 to Aerovox column.
Packard-Bell	23936	Change BPD-. 0015 mf to SI-2-1500 mmf in Aerovox column.
'	"	Change K071 to G071 in Cornell-Dubilier column.
"	"	Change DC-5215 to UC-5212 in Mallory column.
"	'"	Change 5HK-D15 to 5GA-D15 in Sprague column.
\because	23955	Change K078 to KD077 in Cornell-Dubilier column.
\cdots	'	Change UC-5240 to DCD524 in Mallory column.
"	${ }^{\prime \prime}$	Change 5DA-D4 to 5HK-2D4 in Sprague column.
\%	23956	Change 1468L-HV 47 mmf to HVD30-47 mmf 10% in Aerovox column.
"	"	Delete 5P20Q47 in Cornell-Dubilier column. No replacement.
"	"	Delete MCL-447 in Mallory column. No replacement.
"',	" ${ }^{\prime \prime}$	Change 60GAB-Q47K to 20GAB-Q47K in Sprague column.
"	23967	Change $1468 \mathrm{~L}-\mathrm{HV}-100 \mathrm{mmf}$ to HVD15-470 mmf in Aerovox column,
** .	"	Delete 5P10T47 in Cornell-Dubilier column. No replacement.
* "	"	Delete MCK-347 in Mallory column. No replacement. -
"	23959	Change MMA20T5 to MMC-20T5 in Cornell-Dubilier column.
Philco	30-2417-3	Add PRS50-10 to Aerovox column.
"	"	Add BR-105 to Cornell-Dubilier column.
"	"	Add TC-32 to Mallory column.
"	"	Add TVA-1304 to Sprague column.
"'	30-2417-7	Add BBR-2-50T to Cornell-Dubilier column.
"	30-2570-57	Add D111 to Cornell-Dubilier column.
",	'''	Add FP476 to Mallory column.
",	30-2570-66	Add XA004 to Cornell-Dubilier column.
",	- 1	"Add FP117 to Mallory column. *.
"	30-2584-9	Add D111* to Cornell-Dubilier column.
"	30-2584-15	Add FP344. 5 to Mallory column.
"	30-2584-15	Add UPT 435 to Cornell-Dubilier column.
Stromberg-Carlson		Add FP225-TC72** to Mallory column.
Stromberg-Carlson	111082	Change PRS 15/500 to PRS 12/500 in Aerovox column.
"	111094	Change TVL-2764 to TVL-4840*** in Sprague column.
"	111095	Change FP238 to FP476*** in Mallory column.
-	111095	Change FP476* to FP238 in Mallory column. Delete 'Remarks' column Change TVL-4840* to TVL-2764 in Sprague column. Delete 'Remarks'"

[^0]

with 12 element free-point Master Lever Selector System

To test modern tubes for only one characteristic will not necessarily reveal overall Performance Capabilities. Modern tube circuits look for more than just mutual conductance or other single factor.

It has been conclusively proven that even though a tube may work well in one circuit, it might fail to work in another-simply because different circuits demand different relative performance characteristics, such as amplification factor, plate resistance, power output, emissive capability, etc.

In the PRECISION "ELECTRONAMIC" Circuit, the tube under test is made to perform under appropriately phased and selected individual element potentials, encompassing a wide range of plate family characteristic curves. This COMPLETE PATH OF OPERATION is electronically integrated by the indicating meter circuit in the positive performance terms of Replace-Weak-Good.

The efficiency of this "Electronamic" test results from encompassing several fundamental tube characteristics, NOT JUST ONE. Accordingly, when a tube passes this demanding OVERALL PERFORMANCE test, it can be relied upon, to a very high degree, to work satisfactorily.

Compare these features

MODEL 10-12-P (illustrated): in sloping, portable hardwood case with tool compartment and hirged removable cover. Sizes $133 / 4^{\prime \prime} \times 171 / 4^{\prime \prime} \times 63 / 4^{\prime \prime} \ldots \quad \$ 104.50$ MODEL 10-12-C (Counter Type) $\$ 109.25$ MODEL 10-12-PM (Penel Mount) $\$ 109.25$

See the "Precision" Master "Electronamic" Tube Testers at leading Radio Equipment Distributors. Write for new, 1952 "Precision" catalog.
AM FM • TV

PRECISION APPARATUS CO., INC.
92-27 Horace Harding Boulevard, Elmhurst 14, New York Export Division: 458 Broadway, New York 13, US.A. © Cables-Morhanex In Canada: Atlas Radio Gorp., Ltdu., 560 King Street. W., Toronto 2B

Convenient "PRECISION" Pur chase Terms can be arranged with your local and favorite authorized "PRECISION" Distributor.

$$
A M \cdot F M \cdot T V
$$

PRINTED ELECTRONIC CIRCUITS

(Continued from page 3)

The painting technique has the advantage of requiring a minimum of auxiliary equipment and so has been the most popular type for experimentation and design work with printed circuits. It is also the best method to use in making repairs on printed circuits, as will be discussed later.

The spraying method of reproducing printed circuits differs from the painting technique in that the conductors are sprayed onto the surface of the base. Both molten metals and metallic conducting paints may be applied in this manner. In some processes, stencils are used to define the circuit conductors. In others, grooves are machined or molded in the base material where a conductor or other circuit component is desired. Grooves may also be formed by sand-blasting through a stencil. Metal is then sprayed over the entire base plate, filling the grooves and covering the spaces between. The surface is then milled off, removing the excess metal and leaving only that in the grooves. High conductivity is obtained by this method since relatively large conductors are formed in the grooves. Standard

tube sockets and other components are sometimes connected to sprayed circuits by mounting them on the apposite side of the base plate so that the terminals protrude through holes into the grooves. Then, when the circuit is sprayed, connections are automatically made to the conductors. Circuit cross-overs are made in a manner similar to that employed in the painting process. Resistors, capacitors, and inductances may also be formed by spraying.
The vacuum evaporation process of circuit printing consists of evaporating a metal such as silver, copper, or nickel onto the surface of the dielectric material by melting the metal in a vacuum. A mask or stencil on the surface of the insulator is used to outline the circuit desired. In one such process, called "cathode sputtering", a high voltage is applied between the source of metal vapor (the cathode) and the work upon which it is to be deposited (the anode). The metal vapor is thus drawn to the work by electrostatic forces. Only a "rough" vacuum, such as can be produced by a good mechanical vacuum pump, is required for this process.
Another vacuum process used is very similar to cathode sputtering except that no voltage is applied between the cathode and
the work. Metal evaporated from a heated filament, or other source of metal vapor, is distilled on the printed circuit plate placed over it. In either type of vacuum processing, it is unnecessary to further heat treat or fire the deposited metal. Only thin films are usually deposited in this manner. If greater conductivity is required, conductors may be built up by electroplating.

In the chemical-deposition methods of making printed circuits, the techniques employed are similar to those used in silvering mirrors. A silvering solution, consisting of ammonia and silver nitrate mixed with a reducing agent, is poured on the chemically clean surface to be coated. The confines of the solution are controlled by an adhesive stencil. The metal films obtained are usually too thin to permit direct soldering, but may be built up by repeated coatings or by plating. The chemical processes have not been applied as extensively as those discussed above.
The metal stamping technique has been used principally to print loop antennas on the back covers of radio receivers. However,
other types of circuit wiring have been produced by this method. A die, bearing the outline of the desired circuit, is used to press a thin metal foil into the surface of a plastic or other insulator. In the same operation the sharp edges of the die cut the metal sheet to the desired shape. The metal sheet may be backed by an adhesive to insure a good bond. Circuits made in this manner have good conduotivity.

The last general type of printed circuit is produced by a process known as "dusting". In this method, a powdered metal is dusted onto the insulating base plate and fired in place. The cricuit outline is defined either by coating the entire insulator with a sticky substance and applying the metal powder through a stencil, or by applying the bonding substance through the stencil and then dusting on the powder so that it is held in place by the adhesive until fired.

Servicing Printed Circuits

As was mentioned above, the most convenient method of making repairs and replacements in printed circuits is the brushapplied painting technique. Kits of such paints, including both conductor and resistor mixtures, are commercially available.

First in a brand new series of practical books that will give you the exact directions for correcting TV receiver performance "bugs." Each remedy is the one developed by the receiver's own manufacturer. It is positive! Each cure is official, factoryauthorized. It will help correct some of the most difficult faults-picture jitter, hum, instability, buzz, tearing, etc.

If you work in a strong-signal area, a fringe area, an area of high humidity, etc., you have special problems in servicing. The manufacturers' trouble cures given in this book will relieve these troubles when properly applied to the receiver in question. These tried and tested cures will speed up your work, make it easier and more profitable.
For instant reference, a complete index in which trouble cures are listed by brand and chassis or model number, is included.

VOLUME 1 covers 12 prominent brands-AD. MIRAL, AIRKING, ANDREA, ARVIN, BELMONTRAYTHEON, BENDIX, CALBEST, CAPEHART-FARNS WORTH, CBS-COLUMBIA, CERTIFIED, CROSLEY, DUMONT. One service job will more than pay the cost of the book!
Over 120 pages. $\quad 5 \frac{1}{21} \times 8 \frac{1}{2 \prime \prime}$ " illus.
$\$ 1.80$

Out in March
 TV MANUFACTURERS' RECEIVER tROUBLE CURES VOL. 2

. . covering 11 prominent brands - EMERSON, FADA, FIRESTONE, FREED, GAMBLE-SKOGMO, GENERAL ELECTRIC, HALLICRAFTERS, HOFFMAN, INDUSTRIAL, INTERNATIONAL, JACKSON.
Over 120 pages. $\quad 51 / 2^{\prime \prime} \times 81^{\prime} 2^{\prime \prime}$ illus. $\$ 1.80$

TV SWEEP ALIGNMENT TECHNIQUES

by Art Liebscher, Test Equipment Specialist
Never before has there been a book such as this on TV sweep alignmnt! Here you have techniques set up by an expert in the field - a man who gives you accurate, time-saving methods and tells you how they work. The new Supermark method of TV sweep alignment is introduced. Learn new uses for your test equipment. Chock-full of sweep curve pictures taken from actual jobs using the test equipment set-ups and techniques discussed. Valuable for servicing in UHF signal areas. Covers TV sweep alignment methods completely from all angles. Know how to check video amplifier response with a sweep generator applied to the antenna input; how to peak align tuned circuits with sweep equipment; how to tune traps rapidly, etc. This book shows you how!
Over 100 pages $\quad 51 / 4^{\prime \prime} \times 81 / 4^{\prime \prime}$ illus.
\$2.10
Buy these books now at your jobbers... leading bookstores...or -
0

PRINTED ELECTRONIC CIRCUITS

(Continued from page 17)

Most of these paints require no heat for drying, so that they may be used for repairing circuits having parts which cannot be subjected to high temperatures. This is an important precaution when working with circuits printed on certain types of plastic.

Although subminiature tube sockets are sometimes used with printed circuits, tubes are frequently connected directly to metal eyelets in the base plate, as in Fig. 1. When replacing tubes connected in this manner, care must be exercised to avoid the use of excessive heat during soldering operations. Soldered connections may also be made directly to printed conductors if the base material will stand the heat involved.

A solder containing a small percentage of silver should be used for best results. Where soldering is inadvisable, connections to tube leads and other wires should be made with metallic paint.
Printed resistors which have become defective may be repaired or replaced by the painting technique. Defective resistors are located in the usual manner with an ohmmeter. If it becomes necessary to "disconnect" a printed resistor from the circuit for a resistance check, this may be accomplished by scratching through the printed conductor lead with a sharp instrument. If defective, the resistor may be repaired with resistive paint. It will usually be found to be open or high in value. In such cases, additional resistive paint should be applied over the old resistor to reduce its resistance to the
proper value. Some commercial printed circuits have a protective layer of lacquer over the conductors and particularly over resistors to prevent moisture absorption. This coating must be completely removed before repairing resistors. If attempts to repair defective resistors are unsuccessful, the old coating should be removed completely and a new resistor painted in its place. The proper dimensions may be determined by trial and error, keeping in mind that the resistance is directly proportional to the length, and inversely proportional to width and thickness. The resistance material must make good contact with the printed conductors at the ends. Breaks introduced in the conductors to isolate resistors may be repaired with a bridge of conducting paint.

New Horizontal Output Transformer May Be Replaced Easily

One component with a high mortality rate is the horizontal-output transformer. Not much was done to alleviate the replacement problem. To those who have undertaken such replacement, the tedious and delicate procedure can be well appreciated.

In the new Stewart-Warner 9300 television chassis, a realistic approach has been taken to the problem. The horizontal-output transformer (shown here) is simply mounted

New Horizontal Output Transformer.
and connectors are employed rather than soldered leads. With this transformer, it is not necessary to remove the high-voltage rectifier tube socket from the chassis merely to replace the filament leads, nor is it necessary to postpone replacement of the transformer as a last resort because of the work involved.
To replace the horizontal-output transformer, it is only necessary to remove two sheet metal screws and unplug the leads. The entire replacement procedure does not require much more than five minutes, and can be done in the customer's home without removing the chassis and without the use of a soldering iron.

TV SUPPLEMENTARY SHEET NO. 1

This supplementary sheet is for use as an up-to-the-
Form No. 751835010-5M-11/52 minute addition to your Clarostat RTV Manual. Manuals are available through your distributor or directly from Clarostat. Price $\$ 1.00$.

Replacement Parts

(Continued from page 8)
percentages, and sometimes in a value of capacitance, whichever is the greater of the two. As to minimum tolerances, they vary with the type of component. For example the minimum tolerance generally considered in ceramic dielectric capacitors and in silver mica capacitors is ± 1 percent. In the plain foil mica dielectric unit it is ± 2 percent, whereas in paper dielectric capacitors it is ± 5 percent. In electrolytic capacitors the minimum tolerance is 10 percent.

While on the subject of tolerances it is necessiuy to comment that the minimum tolerances quoted here are not necessarily the standard tolerances which are used for components in television (and radio) receivers. The high order of accuracy indicated by these minimum tolerances are seldom applied to household electronic equipments. The figures used are much more liberal, but none the less important as far as accomplishing a desired result, hence demanding recognition by the service technician who is making a replacement. It is because of this that television receiver manufacturers frequently list the capacitance tolerance in their service literature, and why the Rider Replacement Parts Program listings of capacitors always state the capacitance tolerance.

Each type of capacitor bears a standard tolerance figure plus and minus. The list shown below indicates the range of tolerances associated with capacitors used in household electronic appliances such as television and radio receivers. Attention is called to the fact that we have omitted the full gamut of capacitance tolerances which are available on request from capacitor manufacturers; instead we show only those values which appear in the capacitor specifications set by the receiver manufacturers for capacitors used in their television and radio receivers, and whatever other electronic products they make for public consumption. The list which follows applies to capacitors in excess of $10 \mu \mu \mathrm{f}$. Lower values of capacitance have tilrady been dealt with.
It is understandable that every single capacitance tolerance figure which is used in the industry is not listed here. But it can be said that those which represent the vast majority are included.

It also is important to state that the letter code shown on this listing corresponds to the coding in capacitor specifications contained in capacitor manufacturers' catalogs and in RTMA as well as JAN specifications. We have however omitted the letter coding indicative of 1,2 and 3 percent capacitance tolerances. These are F, G and H respectively, although the letter H when applied to ceramic units indicates 2.5 percent.
Finally, attention is called to the possibility of confusion between the capacitance tolerance code letters and the Temperature Coefficient as well as the Temperature Co-
efficient Tolerance code letters. While similar code letters apply to all of these, their meanings are completely different.

Type of Mica	$\begin{gathered} \text { Slandard } \\ \text { Industry } \\ \text { Capacitance } \\ \text { Tolerancee } \\ \text { in Percent } \end{gathered}$	Capacitance Tolerance in Percent in Percent	Letter Code
(Plain)	± 20	± 20	M
		± 10	K
(Silver)	± 5	± 10	K
		± 5	J
Ceramic(GP) \#			
	± 20	± 20	M
		± 10	K
		± 5	J
(GMV)*	$+100$		
	and - 0	$+100-0$	
		$+100-20$	
(TC) **	± 10	± 10	K
		± 5	J
Paper			
Dielectric	± 20	± 20	M
		± 10	K
		± 5	J
		+ 60-25	
		+ 40-20	
		$+40-15$	
		$+40-10$	
		+ 20-10	
Electrolytic			
(Tubular)		$+100-10$	
		$+150-10$	
		$+250-10$	
(Can)		+ 40-10	
		+ 50-10	
		$+100-10$	
		$+150-10$	

\# General Purpose
 - Guaranteed Minimum Value
 * Temperature Compensating

Applications of Capacitance and Capacitance Tolerance. How are these two constants used? . . . To begin with, the capacitance required in a circuit is a function of the design of the system which uses it. Among the constants of the circuit is the amount of capacitance required. But seldom, if ever, is this value an absolutely precise one; invariably it is an approximation, although it is stated as a definite amount as that value which most closely approximates the nearest standard value. We refer to it as an approximation because the capacitance value indicated is \pm a certain amount of capacitance. For instance the capacitance specified by a receiver manufacturer for a circuit may be $0.0022 \mu \mathrm{f} \pm$ 10 percent. Assuming all other conditions satisfied, any value of capacitance between $0.00198 \mu \mathrm{f}$ and $0.00242 \mu \mathrm{f}$ seems suitable.

The conclusions accompanying the example are correct except for one additional consideration. Suppose we deal with the $0.0022 \mu \mathrm{f}$ unit. In order to be a suitable replacement within the stated 10 percent capacitance limits, the value must be a measured value for the replacement unit. If this is not so, but instead a capacitor labelled

A monthly summary of product developments and price changes supplied by RADIO'S MASTER, the
Industry's Official Buying Guide, available through local parts distributors.

COMMENT: Since the last reported period, fewer manulacturers were engaged in "change activity". TV and radio recelving tube manufacturers are continuing their tendency toward increasing prices, while other product group price changes remain spotty with no apparent trend.

New Items

AEROVOX - Introduced a number of new items including AFH triple and quad electrolytic capacitors.
AMERICAN ELECTRONICS - Added No. 4-01, Code Booklet at $\$.50$ dealer net ... No. 103.01, Advanced Course at $\$ 6.95$ dealer net and Individual Records at $\$ 1.40$ dealer net.
AMERICAN PHENOLIC - Added Model 114-053, UHF bo-ty antenna at $\$ 3.00$ dealer net
Model $114-560$, UHF bo-ty reflector at $\$ 1.65^{\circ}$ dealer net and Model 114.558 , UHF bo-ty stacking harness at $\$.36 \mathrm{pr} /$ dealer net.
BELL SOUND SYSTEM - Added Model 372MB, 30 watt mobile anplifier at $\$ 165.00$ dealer net. BRIDGEPOR' BRASS - Added plastic spray Model 603 at $\$ 1.95$ dealer net.
CLAROSTAT 30 Added TV replacement controls RTV 384 to 390 inclusive.
CORNELL-DUBILIER - Added Model V.8, VHF antenna at $\$ 25.50$ dealer net . . Model U-4, UHF antenna at $\$ 5.97$ dealer net and Model 110 T 22 , vibrator converter at $\$ 47.31$ dealer net. CREST LABS. - Added Model LVB-117, line voltage booster at $\$ 10.08$ dealer net.
EBY SALES - Added laminated miniature sockets No. 49.6 H at $\$ 1.35$ dealer net and No. 49.7 H at $\$ 1.80$ dealer net.
GENERAL ELECTRIC - Added germanium transistors $+J A 1 A 1$ at $\$ 1.95$ dealer net 4 JAlA 2 at $\$ 3.85$ dealer net 4.80 dealer net and $4 \mathrm{JA} A 4^{\circ}$ at $\$ 3$ at $\$ 4.80$ dealer net and $4 \mathrm{JA2A4}$ at $\$ 5.30$ dealer net. Also added Model UPX-009, pickup and transcription arm at $\$ 9.33$ dealer net ... Model RPX-051, triple play variable reluctance cartridge at $\$ 5.28$ dealer pet and Model RPX-042, variable reluctance cartridge at $\$ 4.35$ dealer net.
GON.SET - Added No. 1499, UHF line at $\$ 7.08 / 100 \mathrm{ft}$. dealer net. . No. 3027, cascade pre-amplifier at $\$ 19.95$ dealer net and No. 3028, signal slicer at $\$ 29.95$ dealer net.
LLINOIS RESEARCH LABS. -
ILLINOIS RESEARCH LABS. - Added Silencer in quart size at $\$ 6.50$ dealer net and introduced Sta-clear, new chemical solution for keeping static attracted dust from accumulating on picture tube at $\$ 1.00$ dealer net. (4 oz, bottle).
KENWOOD ENGINEERING Added Model $12 \mathrm{~W}, 12^{\prime \prime}$ wall bracket and Model 7 W , 7 " wall bracket.
MERIT TRANSFORMER - Added Model HVO-11, transformer at $\$ 5.40$ dealer net.
MINNESOTA MINING \quad Added $7^{\prime \prime}$ (200^{\prime}) MINNESOTA MINING - Added $7^{\prime \prime}$ (1200^{\prime})
professional reel and box (plastic) at $\$ 1.25$ list. protessional reel and box (pio CITY PRODUCTS Added a number of new items including Model 345 , super vacuum tube voltmeter at $\$ 47.50$ dealer net and Model 8873, TV servishop at $\$ 139.95$ dealer net.
R.C.A. - Added radio receiving tubes 6 AR 5 at $\$ 1.65$ list .6 AX 4 GT at $\$ 2.40$ list and 6 K 8 G at $\$ 3.30$ list. Also added electron tubes 3 C 45 at $\$ 17.80$ list . 991 at $\$ 30.00$ list
$\$ 8.65$ list and 6211 at $\$ 2.95$ list
RAYTHEON - Added 6 AFH6V, radio receiving tube at $\$ 3.90$ list, a miniature sharp cut-off pentode having high transconductance and low input and output capacitances, and is designed specifically for television amplifier applications. REEVES SOUNDCRAFT - Added sounderaft +5 rpm recording disc at $\$.66$ dealer net.
STANDARD TRANSFORMER CORP. Added deflection yokes Model DY. 11 A at $\$ 6.00$ dealer net and Model DY'12A at $\$ 6.00$ dealer net.
STROMBERG-CARLSON \rightarrow Added a number of new items including No. AP-51, nower amplifier at $\$ 157.50$ list and TR-13, line transformer at $\$ 3.50$ list.
SYLVANIA - Added radio receiving tubes 6 T 4 at $\$ 3.55$ list . . 1 NRB at $\$ 2.65$ list 40 B 2 at $\$ 2.05$ list . 6 SN76TA at $\$ 2.20$ list and at $\$ 1.85$ dealer net and $6 \mathrm{BG7}$ at $\$ 1.85$ dealer net.

Thomas A. White
president: Jensen Manufacturing Company, Chicago, Themes
says: "Tr every field there's one-leader
.... in boosters it's regency"
the largest selling forster at any price

For accurate flexible and quick tube testing at low cost... model 3413-A

Model 3413-A... $\$ 79.50$ at your dis-
tributor. (Price subject to change.) BV Adapter, \$7.90 Add'I.

鼻 YOU CAN TEST EACH ELEMENT in each tube-by a simple flip of the switch.

Nearly Half a Century of Service to the Service Man

Replacement Parts

(Continued from page 20)
with the standard value of say $0.002 \mu \mathrm{f}$ (which is within tolerance of the original) is contemplated, what must be its tolerance? If it conforms with standard industry practice, namely ± 20 percent, then it could have any value between $0.0016 \mu \mathrm{f}$ and $0.0024 \mu \mathrm{f}$. Obviously it would be within tolerance on the high side but not on the low side.

Suppose that the contemplated replacement rated at $0.002 \mu \mathrm{f}$ was within $a \pm$ tolerance of 10 percent, what then? On the low side it would have a value of $0.0018 \mu \mathrm{f}$ and on the high side it would be $0.0022 \mu \mathrm{f}$. Again it is within tolerance on the high side but outside the tolerance on the low side.
Suppose we consider the next higher standard value, say $0.0025 \mu \mathrm{f}$ for the replacement. Would any normal tolerance satisfy? With a rating of ± 10 percent, the low limit would be $0.00225 \mu \mathrm{f}$ and the high limit would be 0.00275μ f. Now the contemplated replacement is within tolerance on the low side but beyond tolerance on the high side . . . Is there any answer?
Of course there is! But before we describe it, we might present another practical question - how important is the capacitance tolerance? . . . A simple reply is to say that it all depends on the circuit where the capacitor is used. But this is a very indefinite answer. We know that bypassing capacitance values are not as important as capacitance values related to time constant circuits, or resonant circuits or coupling circuits. But does it make sense to set up a tolerance on the tolerance in each and every particular application of a capacitor?
To do this involves something else - namely complete knowledge concerning the conditions established by the design engineer in every section of a television receiver which he designed . . . This is very difficult to determine. It is much easier to recognize the requirements established in the design of the receiver as indicated by the constants of the capacitor, and to satisfy these requirements of capacitance and capacitance tolerance.
To do this is simple. It means nothing more than the procurement of a capacitor rated at the same nominal capacitance and capacitance tolerance as the original. This is no problem because design engineers are using standard values, and capacitor manufacturers, are making them. We admit that procurement practice of this kind for replacement purposes is somewhat of a departure from past tactics, but to adopt it makes most sense, because it enlances the possibility of making the proper repair and attaining best performance from the receiver.

The above suggestion to follow the capacitance tolerance stipulated for the original is subject to some qualifications, especially
in the case of paper dielectric and electrolytic capacitors. Some of the tolerance percentages are different for the + side than for the - side, as for example +60 percent and -20 percent. In that event a variety of selections is available. Assuming the same nominal value of capacitance, say $0.005 \mu \mathrm{f}$ for the original and the contemplated replacement component, a replacement rated at any value of + tolerance between 0 and 60 percent and - tolerance between 0 and 20 percent obviously is suitable.

But the leeway for selection is even greater than described. With a 60 percent tolerance on the + side, the upper limit is $0.008 \mu \mathrm{f}$. On the - side, it is $0.004 \mu \mathrm{f}$. Under the circumstances, any standard value of capacitance which, with its rated tolerance limits falls within these two extremes of capacitance, is suitable as a replacement as far as capacitance is concerned. Naturally, any capacitor whose measured values fall within these limits is satisfactory capacitance-wise.

The use of +60 percent and -20 percent as capacitance tolerances are purely illustrative. It could just as soon be +100 percent and - 10 percent, as in some electrolytic capacitors. The same reasoning applies to any other set of capacitance values established by the tolerance limits for any type of capacitor. The more liberal the capacitance tolerance figures, the easier is it to find a suitable replacement in terms of capacitance. It is only when the capacitance is relatively small, say between $10 \mu \mu \mathrm{f}$ and $100 \mu \mu \mathrm{f}$ and the tolerance is severe, say 5 percent or even 10 percent in both directions - that it becomes difficult to find a replacement other than one which parallels the original in nominal capacitance and tolerance. Occasionally this happens with higher values of capacitance.

Two other items warrant comment, even if not complete at this time. One of these pertains to possible misinterpretation of these references to satisfying the capacitance requirement. This should not be construed as implying that as long as this constant and the tolerance constant requirements are met, free interchangeability exists between capacitor types. This is not so, for reasons which will become evident when the other constants are discussed.

The second item is a slight elaboration of a point already raised concerning capacitors rated at $10 \mu \mu \mathrm{f}$ and less. There isn't too much margin in these values for the selection of one standard value for another, based on the capacitance tolerance. One or two micromicrofarads do not seem like too much capacitance but when dealing with very small values to begin with, they represent high percentages. Moreover the selection of these small values is based on engineering requirement, and it is best servicing practice to comply with these needs, even if the reasons for their existence are not immediately apparent.

7F4 A FIUT

FILLS A MUCH NEEDED AID ON THE SERVICE BENCH.

Orville Hoffman
Hoffman Radio Service
521 Liberty Street
Ripon, Wisconsin

"Should go a long way to assist servicemen in their work where they do not specialize in one make."

J. R. Kelley
Riverdale, Maryland

"There isn't anyone more capable of furnishing us servicemen with this information than Rider:"

William J. Stack
R1, Box 38
Sturtevant, Wisconsin

NEED WE SAY MORE!

These comments are from servicemen just like yourself who are using TELL-A-FAULT in their everyday servicing work. They have found that TELL-A-FAULT does their troubleshooting for them. It can do the same for you!

This quadruple-threat service consists of:
(1) time-saving pictorial, symptom and cure sheets
(2) fault pinpointing circuit guides
(3) servicing-techniques short cuts
(4) how to use all sorts of test equipment

Save anywhere from 50 to 200 hours of troubleshooting time per year by using this practical service based on symptoms rather than circuitry. It completely removes the guesswork in locating receiver troubles by rapidly locating the faults and giving you the proper cures.

TELL-A-FAULT is only a few months old, but the idea has caught on with thousands of progressive service technicians throughout the country.

The entire service costs you less than twenty cents a week. You receive a full 12 month's TELL-A-FAULT for only $\$ 10.00$.

Start your subscription today! We'll send you your TELL-A-FAULT binder, subject separators and all the installments that have been released to date. For full information on the most unique SERVICE ever made available to TV and radio service technicians - write to Dept. TF 8.

PUBLSSHEA 480 CanalSt. N. Y. I3. N. Y.

Radio＇s Master Reports

（Continued from page zo）

TRICRAFT PRODUCTS－Added Model U－1， UHM antenna at $\$ 7.50$ dealer net． No． 4989 ，signal tring tor use with Model $3+41$ probe at $\$ 9.50$ dealer net， BV adaptor for IV picture tube tests at $\$ 7.90$ dealer net．
$T V$ WIRE PRODUCTS－Added new series， formvar covered copperweld，at $\$ 4.72$ dealer net， per 100 feet and at $\$ 4.21$ dealer net，per
VACO PRODUCTS－Added No．RT－14，handy service kit，complete with 7 nut drivers， 2 Philips service kit，complete with 7 nut drivers， 2 Philips
and 3 regular drivers plus extension piece at
$\$ 7.34$ dealer net．
WEBSTER－ELECTRIC－Added No．90－25，sepa－ rate teletalk amplifier for paging at $\$ 120.00$ list and 15 pair plastic interstation cable and junction box at $\$.3+$ list（on reel）

Discontinued Items
ADVANCE ELECTRIC \＆RELAY－Discon－ tinued Model 400 M ，transmitter relas．
AMEKICAN PHENULIC－Discontinued Model 14－358，twin lead transmission wire．．Model 187－072 and Model 187－079，molded polethylene rims and Model 509，rotator．Model $14-298$ ， 100 ， 500,1000 feet，remote control wire，temporarily discontinued．
CLAROSTAT－Discontinued wire wound control 43－7000．
ELECTRONIC TECHNICAL INSTITUTE－ Discontinued Model 5207 ，Novice $80-\mathrm{M}$ trans mitter kit．
GENERAL ELECTRIC－Discontinued Model RPX－046，broadcast type variable reluctance cartridge．Also discontinued G－10 series of tran－ sistors．
GON－SET－Discontinued Model 3005，tri•band amateur converter and their Gonset radarray series．
KENWOOD ENGINEERING－Discontinued Model 140，7＂wall bracke
POTTER \＆BRUMFIELD－Discontinued LC and LP series of plate circuit relays．
SHURE BROS．－Discontinued Model 55 and Model 556，multi－impedance，super－cardiod micro－
SIMPSON ELECTRIC－Discontinued Model 340， signal generator．
STROMBERGCARLSON－Model RD－22，driver unit，discontinued．
SUPREME，INC．－Discontinued Model 675， signal generator．
WEBSTER－ELECTRIC－Discontinued Model 53D50，teletalk amplifier for paging and Model SC45，speaker microphone
WIRT PRODUCTS Discontinued auto radio ignition suppressors S－915 and S．918．

Price Increases

ASTATIC CORP．－Increased price on＂scanafar＂ blooster，Model CT． 1 to $\$ 21.00$ dealer net．
BLONDER－TONGUE－Increased price on Model MT－1，matching transformer to $\$ 3.90$ dealer net． CORNELL－DUBILIER－Increased price on Model 8BD，＂hi－ball＂auto aerial to $\$ 3.03$ dealer net．
DUMONT LABS．，Increased price on two $12^{\prime \prime}$ one $16^{\prime \prime}$ ，four $17^{\prime \prime}$ ，four $20^{\prime \prime}$ ，and three $21^{\prime \prime}$ T
picture tubes
FISHER RADIO CORP．－Master audio control． Model $50-C$ increased to $\$ 97.50$ dealer net
GENERAL ELECTRIC－Radio receiving tube 6 BA 7 increased to $\$ 2.50$ list．Also increased one $12^{\prime \prime}$ ，three $17^{\prime \prime}$ ，one $20^{\prime \prime}$ and one $21^{\prime \prime}$ TV picture GON－SET
GON－SET－Increased price on Model 1531， rhombic UHF antenna，with 9^{\prime} mast to $\$ 7.77$ HICKOK ELECTRICAL INSTR．－Increased price on Model 605，portable all－purpose tube and set tester to $\$ 184.50$ dealer net．

R．C．A．－Increased price on Model WO－88A， $5^{\prime \prime}$ oscilloscope to $\$ 169.50$ user price．Also increased power tube fittings 202 Fl to $\$ 23.85$ user price 211 F 1 to $\$ 28.20$ user price and 228 F 1 to 67.60 user price

ST＇ROMBERG－CARLSON－Increased price on a number of itens including No．MD－38S， dynamic microphone to $\$ 70.00$ list．
SYLVANIA－Increased price on three $17^{\prime \prime}$ ，two $20^{\prime \prime}$ and one $27^{\prime \prime}$ TV picture tube．
－M CORP．－Increased price on record changers No． 150 to $\$ 33.47$ dealer net．No． 972 to $\$ 40.17$ dealer net and No． 985 to $\$ 53.57$ dealer net．（West Coast prices slightly higher）

Price Decreases

CREST LABS．－Decreased price on cathode ray tube rejuvenators Model B to $\$ 3.15$ dealer net Model C to $\$ 2.20$ dealer net and Model D to $\$ 2.60$ dealer net．
ELECTRONS，INC．Decreased price on grid control rectifier EL C 6 M to $\$ 31.00$ dealer net． GENERAL ELECTRIC－Decreased price on TV picture tubes 16 KP 4 and 16 KP 4 A ．
GON－SET－Decreased price on Gonset line to $\$ 6.24$ dealer net／ 100 feet．
R．C．A．Decreased price on radio receiving tube 6L6G to $\$ 3.00$ list and electron tube $565+$ to $\$ 4.90$ list．
WIRT PRODUCTS－Decreased price on slide switches SW 723 to SW 726.

MODEL TA5 Real protection against lightning and static charges－the RADIART Lightning Arres－ ter has all the features！Fits anywhere．．．inside or out．．．handles standard or jumbo leads．．．．no wire stripping necessary．．．does not unbalance the line．．．low internal capacity．．．no loss of signal ．．．internal resistance＂leaks off＂static discharges！ UNDERWRITERS LABORATORIES APPROVED．

the RADIART corporation

CLEVELAND 13，OHIO

Please mention Successful Servicing
When answering advertising．

Model No．	Manual From	Page To	Tek－File Pack
$\begin{gathered} \text { Andrea T-VL12 } \\ \text { Ch. VL12 } \end{gathered}$	6－1	6－10	43
Gamble－Skogmo $05 \mathrm{TV} 1-43-9014 \mathrm{~A}$ 15RA2－43．9105A Ch．16AY210	6－1	6－16	31
Hoffman 612 Ch． $1+2$	5.8	5－16	35
$\begin{aligned} & \text { Magnavox Ch. CT- } \\ & 270,271, \quad 272, \\ & 273,274 \end{aligned}$	7－14	7.28	30
Mitchell Tl6－2KB T16．2KM，T16． B，T16．M	6－1	6－4	45
$\begin{aligned} & \text { Sylvania } 23 \mathrm{M}-1, \\ & 23 \mathrm{~B}, 23 \mathrm{M}, 2+\mathrm{M}-1 \\ & \text { Ch. } 1-387 \cdot 1 \end{aligned}$	8－118	8－139	13
Sylvania 74 M Ch．1－356（C05）	8－160	8－173	13

HAVE SUCCESSFUL SERVICING DELIVERED TO YOUR MAILING ADDRESS EVERY MONTH！

John F．Rider Publisher，Inc．，
Dept．C9
480 Canal Street
New York 13，N．Y．

Gentlemen：

Rather than take the chance of missing the alternate copy of SUCCESSFUL SERVIC－ ING at my jobber＇s，I am enclosing one dollar（ $\$ 1.00$ ）to cover the cost of direct－ to－my－home mailing every month．

Name．

Address．
City
．．．．．．．Zone．．．．．．．State
\square Cash
\square Check
\square Money Order

GET YOUR COMMERCIAL TICKET

 EASIER WITH．．．RADIO OPERATOR＇S LICENSE Q AND A MANUAL by Milton Kaufman Covers Elements I through 8．Complete discussion 8．Complete discussion of answers to every
technical question in the technical question in the F．C．C．Study Guide！Used y over 50 leading
schools．Only $\$ 6.60$ at jobbers，bookstores

Jawr Fiturzi Publisher，inc

REVISED
SAN． 1953
480 Conal Street，New York＇13，N．Y．

[^0]: *Parallel 20 mf and one $20 \mathrm{mf} / 3000 \mathrm{VDC}$ section to replace original 30 mf section.
 TC72 tubular electrolytic used in place of $10 \mathrm{mf} / 450 \mathrm{~V}$ section of original unit. *Omit one 10 mf section.

