MALLORY YAXIEY
 RADIO SERVICE ENCYCLOPEDIA

Limited ©dition $\$ 250$

MALLORY YAXIEY

RADIO SERVICE ENCYCLOPEDIA

Limited Edition $\$ 250$

Compiled and Published by

P. R. MALLORY \& CO., INC.
INDIANAPOLIS, INDIANA

How to Use The Encyclopedia

Listings-A to G By Manufacturer and Model

Listings - G to R
By Manufacturer and Model

Listings $-R$ to Z
By Manufacturer
and Model

Section "A" Controls

Section "B"
Condensers

Section "C"
Vibrators
ubes

Transformers
-

Resistors

Antenna Design

Charts

Useful Servicing
Formulas

Radio Definitions

OUR THANKS TO YOU...

For years it has been the Mallory-Yaxley pledge to retain leadership in furnishing constructive, helpful information, and assistance to the Radio Service Fraternity-and to make that information worthy of its confidence. In this, the first Radio Service Encyclopedia, there is ample evidence of this pledge.

To boast of the possession and maintenance of the largest service "Morgue," or service library, in the world means little. It does mean much, however, to boast of the thousands of friends in the Radio Service Fraternity who, for almost three years, have helped to "cut and try"-to reject and finally accept only those improvements that were proven helpful and valuable. Their devotion and loyalty to an ideal-their friendship and their help has made the possession and constant maintenance of the service library possible. To them, we are deeply grateful.

Generous, spontaneous, willing help was evidenced at every request.
To RCA Manufacturing Company, Inc., Galvin Mfg. Co., General Radio Company, Radio Retailing, Radio News, The Radio Amateur's Handbook, Gernsback Publications, Inc., and to Radio Engineering Handbook by Keith Henney (Copyright McGraw-Hill Book Company, Inc.), we acknowledge a special debt of gratitude for their permission to use articles, charts, and other valuable information without which it would have been impossible to make the Encyclopedia complete.

In dedicating this Encyclopedia to the Radio Service Fraternity, we are also dedicating it to those who have made it possible.

You are always welcome at the Mallory Factory where you may review and witness the continued research and development workan activity that warrants your 100% confidence.

IN ORDER THAT YOU MAY UNDERSTAND HOW IT HAPPENED

In presenting the first real radio service encyclopedia, Mallory-Yaxley venture the hope that it will prove more helpful than any volumes yet published-and the belief that it will receive an enthusiastic.reception from the radio service fraternity.

The encyclopedia has only one purpose-to help service men. It is designed to aid its readers in their daily work-to save their valuable time-to give them quickly the correct answer to any and every radio service problem. Conceived over three years ago, its birth now permits a frank exposition of "How It Happened"-and here follows the story.

Early in 1934, Mallory-Yaxley realized the paucity of correct service data. Several manufacturers sincerely were at tempting to provide charts and guides for recommending their single product for various radio receivers. Two magazine publishers offered books of schematics for sale. But the radio service profession was dissatisfied becanse most of this material gave only one point of view-one opinion and only one answer-the answer all too often an incorrect guess. All that was available was a point of view, an opinion not based on actual experience of the radio service fraternity, but on the beliefs of the manufacturer or publisher who had something to sell.

Service men told us they were sick and tired of hunting, of fruitless searching for information-weary of looking through dozens of books to get the "dope" they needed. They told us their problems. They said there seemed to be no solution. "There were too many sets-out of date-obsolete-to ever catch up with." Apparently it was hopeless. "Too many changes in production to watch for." In short, it looked like an impossible task to bring all needed information into handy reference form.

But we had a hunch. We thought, "There is only one way to do it. That way is to get the men who actually service these sets to tell us how they do it, why they do it, and what they use."

So we undertook the job. Clearing houses were established in more than a score of cities where actual fieldtested data was collected. After an exhaustive, careful search for the right talent, a group of twelve radio service men, with experience and businesses of their own, were
employed full time to produce the work-and the "impossible" was on its way to a permanently helpful solution.

In May, 1936, after almost three years' research, the work was about completed-ready for assembling into three volumes. Then the editor had a bright idea. He remembered one friendly service man who had said, "My soul cries out for one book that will tell me all I have to know to repair a set. I'm mighty near crazy looking at schematics. I'm worn oct with hunting for books that will answer my questions. I'm fed up with pawing through dozens of books to get what I want-usually to find no agreement-and no solution. Oh, if I had one reliable book!" We remembered that anguished cry. Said the editor, "We're going to give that young man what he wants. We are not going to print three books, we will print one. We will put together all the information we've collected. We will list under each manufacturer's name, all the models he has ever made. For each model of his make, we will tell, on one line, and on one page, everything we have found out about that model."

That was the big idea-and the idea went big. The boys in the field said it was a "honey"-that such a book would pay for its cost in time saved on the first set repaired.

This Mallory-Yaxley Radio Service Encyclopedia is that Book. It is a book that will save you countless hours of time-many a headache, and it will help you make real money. This is a practical experience book. It is not theoretical. It has not been written or compiled by a manufacturer, his engineers, or by a staff of "guess artists." It has been written by service men, who have had the actual field experience, for service men who want practical help. Perhaps the Encyclopedia lacks something in academic form, but we think that it is clear and understandable. We believe that it will tell you what you want to know when you want to know it in the quickest, simplest, easiest, and correct way. We are sure that the way it has been compiled represents the way you would do it yourself.

In providing the financial aid that has made the book possible, Mallory-Yaxiey will be content and happy if you find this book a real help-so much help that you will use it daily to make your work more effective and more profitable.
...TO MAKE YOUR WORK MORE EFFECTIVE AND MORE PROFITABLE...

To Help You!

This воок has only one purpose - "to help you". It is designed to aid you in your daily work-to save your valuable time-and to give you quickly the correct answer to any and every radio service problem. It is divided into three major sections-

Section "A" - Controls
 Section "B"-Condensers
 Section "C"-Vibrators

-and supplemented by complete sections covering Tubes, Transformers, and other vital information. Its use is simple.

But let us dispense with the "hooey" and start now to save you time. The best way is to show, through an actual case, how the Encyclopedia will help you to repair a set that has gone bad. We are assuming that everything has worn out. The set is in terrible shape. There are many problems. Let's repair it quickly with an expenditure of a minimum amount of your time.

THE SET-Majestic Model 344 (chassis No. 340), (340-B)-is in your shop and you have turned it on its back to look it over. The illustration below shows what it looks like-exactly what you would see if you were looking at the chassis itself.

Now look at page 46 in this book.

Here is what you see listed for this Majestic set:

manufacturer AND MODEL	CONTROLS						CONOENSERS				Vibrators			Typee of Tubee Used	Prank	$\underset{\substack{\text { Trana. } \\ \text { Clit } \\ \text { Colt }}}{ }$
	Use	Circuit	Correct Replacement	Switch	Bias	*Noto	Original Part	circuit	Correct Replacement	*Noto	vibr. Cons	Replacement	* Noto			
$\underset{340,340 B}{\text { MAJESTIC-Continu }}$	ed Vol. Tone Supp.	83 22 12	M. M Y.	6		.	$\begin{aligned} & 8722 \ldots . . \\ & 8721 . . . \\ & 7988 . . \\ & 9019 . . . \\ & 8118 . . . \end{aligned}$	3 3 14 19 15	RS213..... RN2 $22 . . .$. CS123..... TS101..... TS102....	- $\mathrm{Br}^{\text {c }}$	56, 58, 57, 59, 82,...	175	3 $\cdots \cdots$

CONTROLS

You need a new volume control. Iooking at the chassis you will see the volume control; i. e.:

and here is its circuit (No. 83-on page 120).

The correct replacement is a 250,000 ohm carbon control with a left-hand taper-Type: M (page 100).

The Tone Control is next. Here's the way you see it in the chassis:

and here is its circuit (No. 22-on page 117).

Again, the correct replacement is a 250,000 ohm carbon control with a left-hand taperType M (page 100). Bul, wait a minute. The original tone control had a line switch.

All you have to do is use a No. 6 attachable switch-just as listed. Simple, isn't it?

Now there's one other control in the setand it is called a suppressor control. In the set it looks like this:

Here's the circuit (No. 12-on page 117).

The right replacement is a 20,000 ohm carbon control. left-hand taper-Type Y (page 100), just as listed.

CONDENSERS

Condensers are next, and there are a flock of them. They're just as easy to replace-and quickly tors. In the set your eye first lights on two units.

You can tell they are part of the filter circuit the moment you see the circuit (No. 3-on page 142).

Note that the rectifier is to the left and the load is to the right. This is the order of listing the condensers for this circuit.

When you examine the original condensers you will see they are marked with part number 8:22. That checks with the listing. The correct replacements are 8 mfd .450 volt
single section round can filter units-Type RS213 (page 148).

We've left one condenser in the row of three to examine. It looks like the first twobut it isn't.

It is marked with original part number 8721. The circuit is the same as for the first two condensers so it is part of the filter circuit. But, wait a second-there's a Note listed. Wherever you see a Note specified in the "Note Column" you want to be sure to read il. Note B8 on page 136 reads-"When a multiple section condenser is recommended to replace an original single section condenser, it is necessary to parallel the sections of the recommended replacement in order to obtain a capacity equal to, or greater than, that of the original."

Well, the original part number 8721 proves to be a 16 mfd .450 volt unit. The right replacement may be cither a single 16 mfd . 450 volt unit, Type RS 216 (page 148), or following the note, a common negative dual 8 mfd .450 volt condenser, Type RN242 (page 148) which you may use satisfactorily by connecting the two red leads-paralleling the 8 mfd . sections to obtain a 16 mfd . capacity. We specified the dual 8 mfd . unit because you are more apt to have it on hand. Renember we're trying to save your time.

There are still four more condensers to cover. Let's take them one by one. The first is in the lower right-hand corner of the chassis. Here it is:

You have noticed a lack of screen voltage and sure enough this by-pass condenser has "ehorted out."

Circuit 14 on page 112 quickly provides the dope that this condenser is connected from a tap on a voltage divider to ground.

The original part is marked number 7988. On checking the listing yon quickly find that this condenser is replaced with an 8 mfd . 250 volt single section cardboard carton unit, Type CS123 (page 148).

There's one condenser in your set which by-passes the screens of the RF amplifier and first detector, to the cathode of the 57 S first audio tube, and boy "how it is leaking." You won't see it by looking at the bot torn of the chassis for it's "cleverly" concealed. Get a laugh out of that. You'll find it eventually -and see that is has original part No. 9019.

Circuit 19 on page 142 gives connections.

The correct replacement is a 10 mfd .25 volt single section tubular by-pass unit, Type TS101 (page 148). Don't be alarmed at this low voltage for use in this circuit, for the potential difference of the circuit is not large even though one end of the condenser connects to 80 volts. You see--the actual voltage drop across the condenser is well within its rating.

If you don't know what a "Reactance Dimmer Indicator" is-let this tell you that in your set there's a circuit that dims the pilot light when the receiver is tuned to resonance with the station. The circuit you find is not working because the next to last one of the condensers in your set has "shorted out." This condenser is just above the one in the lower right-hand corner of the chassis and here's how it looks:

Marked part number 8118 shows it to be a 20 mfd. 25 volts, single section tubular bypass unit, Type TS102 (page 148). It's a cinch to replace this baby.

Our last condenser check reveals that the bias voltage on the Type 59 driver tube is
low. Here again is part No. 8118. The condenser is right in front of you at the almost center of the back of the chassis.

Reference to circuit No. 15 on page 142, clearly shows where the condenser is connected between the cathode of the Type 59 tube and the chassis.

Here the replacement is as simple as before, using a 20 mfd. 25 volt single section tubular by-pass unit, Type TS102 (page 148).
That completes our check on part of this particular Majestic chassis. Let's see what other help is here in the Encyclopedia. Let's start with "Tubes."
TUBES

For your convenience every type of tube used in your set is listed. As a time saver this listing is of the greatest value when making a service call. Ask your customer for the model number of the set and take the right tules you need with you when you make your call. You'll save yourself repeat trips to the shop. Time, gas, and mileage saved will pay you handsomely. Read pares 193 to 211 for up-to-date tube information. It's all there to help you. Where there have been tube changes from one type to another during proluction, they are indicated by a hyphen or the word "or;" i.e.: " $6 \mathbf{Z 5}-84$ " or "01A or 12A."

ALIGNMENT

Chances are, that now you have replaced a flock of parts-you'll need to line up the set. In the column headed 1. F. peaks on page 46 you'll see that Majestic Model 3.10 is listed at 175 kc .and on page 160 there's a swell article that will help you do the joh quiekly and accurately-that is if there's any doubt in your mind about how to do it. The "I.F. Peak" column is of the greatest benefit because it is a complete list of I.F. peaks, larger by far than any other compilation ever issued.

PAPER BY-PASS UNITS

On page 131 you'll find a "honey" of an article hearled "I3y-Pass Condenser Circuits" followed by some real meat in an article headed "Capacity of By-Pass Condensers." These tell you how you can free yourself from depending on general schematics-from failure to find the dope you want-and make you certain of getting the right answer always. You don't need to use canned type replacements. Individual (Type TP) units installed at points to be by-passed give better results as proved by modern practice.

RESISTORS

Resistors, in the great majority of cases, are color coded (RMAA Standard) and they're simple to replace, as you well know. On pages 168 and 169, the code has been reproduced and there's a valuable resistor wat tage chart to help you. In older sets where a color code was not used, yon'll find it necressary to figure the value yourself-and here's a good way to do it. Divide the voltage drop (required) across the resistor, by the current (in amperes) flowing through the resistor and the result will be the resistor value.

Example: A screen voltage of 100 is required. The screens will draw one milli-
ampre at 100 volts. The supply voltage is 2.50 volts. The supply voltage of 250 volts minus the voltage required (100 volts) indicates a voltage drop of $\mathbf{1 5 0}$ volts (required).

Dividing the voltage drop (required) of 150 volts by the current in amperes (. 001) gives an answer of 150,000 ohms-or the value of the resistor you want to use. That's simple-isn't it?

You don't have to hunt for the value of the voltage required at different tule elements because this dope is given on pages 193 to 208 in "Complete Tube Charts."

VIBRATORS

Section "C" Vibrators, on pages 151 to 159 is the most direct, simple, and concise article ever pullished. It answers every vibrator, auto radio, and vibrator power pack problem you will ever have. There's nothing to "Shy away from" in an automobile radio receiver. After reading this section you'll know that, and if you are not serving this fast-growing radio ownership, you'll start now. If you are serving automobile radio owners it will make your work easier and more profitable.
Now, just to be sure you understand, let's go over the whole arrangement again.

GENERAL INFORMATION

The encyclopedia is divided into three major sections: Section "A"-Controls Section "B"-Condensers Section "C"-Vibrators
Other important sections: Tubes, Transformers, Resistors, Antenna Design, and Useful Service Data are indexed in both the front and reur of this book. To use the encyclopedia is simple. Learn to use it, then use it on every job. Using it continually and faithfully will save your time, your labor, and will increase your profits.

Oner 12,000 different radio receivers are listed, and still there are some on which no records are available. Whether listed or not, information in the encyclopedia will enable you to effect a quick satisfactory repair.

ENCYCLOPEDIA-LISTINGS

Receivers are listed either by the manufac-
 turer's name, or the trade-name, according to popular usage. A cross-index in the listings will help you locate the receiver you are looking for.

Model numbers precede chassis numbers, with few exceptions. In these cases, model numbers are in parantheses and follow chassis numbers.

CONTROLS

CONTROLS						
Use	Cir- c-mit	Correct Replacement	Switch	Biss	*Note	

V_{0}
Vo
Tome
Supr
Vol.
Tol.
Vol.
Vol.
Tone
USE-Controls are listed with an ablireviation of their most common designation; i. e., "Vol."
= volume control; "Supp." $=$ Suppressor Control. A complete list of abbreviations ison page 150.

are working to make sure the circuit has not been changed during a previous repair or during that particular model's life in its period of manufacture. Often it is advisable to change a circuit to obtain better performance. Complete instructions are given in Section "A" Con-trols-pages 101 to 125.

CORRECT REPLACEMENT-Here are listed recommended correct replacements. By referring to page 100 an " M " is immediately translated to read " 250,000 ohm carbon control with left-hand taper-universal shaft." Where a recommendation reads " $500 \mathrm{M} 1-\mathrm{No}$. 1 " or is not a definite recommendation, and is followed by a note in the Note Column, it means that the consplete or partial value of a control is known. The note referred to gives comprehensive, clear, concise instructions to make a quick satisfactory replacement.

switch which must be used with the recommended control is listed in this column. Referring to page 123 , replacement switch numbers are quickly translated; i. e., No. $6=$ single pole-single throw.

AI carbon controls which may possibly be used in "bias" type circuits are provided with a separate adjustable resistor of 500 ohms total resistance. This may be adjusted to the value given in the "Bias" column. "EX350" means that the resistor is to be set at 350 ohms and wired between the right-hand terminal of the control and the cathode circuit. This is accurate and is not to be compared to the haphazard use of an arbitrary value of fixed resistance.

Wire-wound controls contain an adjustable section for this purpose. Where a wirewound control is specified, the bias column will contain a numeral from 1 to 5 designating the correct setting for this adjustable section.

*NOTE-

 able because they tell what to do and how to do it. They tell how to make a quick and easy replacement when information is impossible to obtain. They perinit the selection of a proper control either at your distributors, or to tell him by mail the correct resistance and the right taper which, with a sketch of the shaft that you will make, will enable you to receive the right control without delay, loss of time, or customer dissatisfaction.

The "Note" sections ("A" Controls, " B " Condensers, "C" Vibrators) of the encyclopedia are without doubt the finest and most helpful compilation ever printed.

We strongly advise, for your own benefit, that you read these "Note" sections. They will save you time and worry and will make money for you.

CONDENSERS			
Original Part	Ciro cuit	Correct Replacement	*Note
	ORIGINALPART— Under the heading "Original Parts" is listed either the value of the original condensers or the part numbers originally used.		
8-8			
898....			
4-2-4...			

the order of their importance. First, filter units, second, by-pass units. Filter units are in most instances listed in their respective order of installation, from the rectifier to the load.

8-8-8 means that there are three 8 mfl . condensers used in the circuit.

CIRCUIT-The use of each condenser section is not given because this is clearly shown in the schematics of condensers circuits. "B" (condenser) Circuits are shown on pages 142 to 144. A double number $1 / 13$ means that sections of the condenser are used in two different circuits; i. e., Circuit No. 1 and Circuit No. 13, both shown on page 142.

CORRECT REPLACEMENT-Here are listed recommended correct replacements. By referring to page 148 an RN232 is immediately translated to read-a dual 8 mfd .250 volt round can filter condenser. The word "Buffer" refers to the secondary or buffer condenser which is connected across the secondary of the vibrator power transformer, the value being given in the "original part" column.
*NOTE—

$$
\text { two hundred and twenty " } B \text { " }
$$

> (condenser) NOTliS. These are valuable because they tell
you what to do and how to do it. They tell how to make a quick and casy replacenent when information is impossible to obtain. They permit the selection of the right condenser without referring to original color coding which may have been obliterated by age, by faclory changes during production, or by a previous repair to the receiver. Quick, accurate and wonderfully easy condenser replacements will be cffected by reading " B " (condenser) Noles.

The "Note" sections ("A" Controls, "B" Condensers, "C" Vibrators) of the encyclopedia are without doubt the finest and nost helpful compilation ever printed.

We strongly advise, for your own benefit, that you read these "Note" sections. They will save you time and worry and will make money for you.

VIBRATORS		
Vibr. Conn.	Replacement	* Note
32	$28 . \mathrm{M}$	C3
32	G287M	C16
. ${ }^{\text {. }}$ ${ }^{\text {a }}$.
$3 \dot{2}^{-}$	287M.	$\stackrel{\mathrm{C}}{ } \times$
32	6887M	Cl6
24*'	273	. . . ${ }^{\text {c }}$
.
20		
20	G253	C16
$3{ }^{1}$		$\stackrel{+}{ }{ }^{-1}$
32	(2837 M	C16
35	294	C3

VIBR. CONN.-Vibrator connections are shown on pages 154 to 155 . They're easily understood for they show the appearance and the connections of all replacement units.

REPLACEMENT-Here the correct replacement is listed. No guess work for all have been field-tested just as has every other bit of information in the encyclopedia.

NOTE-Clear instructions for installation, or for the proper selection of a unit, are given in 23 concise notes all on page 153.

Always check the circuit of the receiver upon which you are working to make sure that it does not differ from the circuit listed against the replacement part in the Encyclopedia. In case you should find a difference, read the explanation of circuits given in . . .

Section "A" for Controls Section "B" for Condensers Section "C" for Vibrators

You'll find the answer you want every time. Now that an explanation of the encyclopedia has been completed, it is only fair to say that every possible help and advice has been compiled "to help you." Make use of this help. Read, learn and consult the encyclopedia daily. You have everything to gain and nothing to lose.

Matlony-yascey radio service encyclopedia

MALLORY-YMSEEY RADIO SERVICE ENCYCLOPEDIA

Matlory-Yasexey radio service encyclopedia

Mallory-yaxeley radio service encyclopedia

MALLORY-YABREY RADIO SERVICE ENCYCLOPEDIA

Mallory-Yastey radio service encyclopedia

MALLORY-YAKLEY RADIO SERVICE ENCYCIOPEDIA

Mallory-Yacoley.radio service encyclopedia

Mallory-Yareley radio service encyclopedia

Mallory-yarcey radio service encyclopedia

Mallory-yavery radio service encyclopedia

Mallory-yarrey radio service encyclopedia

MALLORY-YAXCEY RADIO SERVICE ENCYCLOPEDIA

MAllory-Yarzey radio service encyclopedia

Matlory-yarcley radio service encyclopedia

Mallory-yaxoley radio service encyclopedia

Mallory-Yascey radio service encyciopedia

Mallory-Yaseley radio service encyclopedia

MALLORY-YAYELEY RADIO SERVICE ENCYCLOPEDIA

Málory－Yaseley radio service encyclopedia

manuFacturer AND MODEL	CONTROLS						CONDENSERS				VIBRATORS			Types of Tubes Used	$\begin{aligned} & \text { 1. F. } \\ & \text { Peak } \end{aligned}$	Trans Cir－ cuit			
	Use	Cir－ cuit	Correct Replacement	Switch	Bias	＊Note	Original Part	Cir－ cuit	Correct Replacement	＊Note	Vibr． Conn．	Replace－ ment	＊Note						
	Vol． Tome	18	N	6		．．．．．．	$12-818$	1	Sne Nolle	． 133		．．．．．．．		58，55，56，57，46，813．	175	3			
	Supp．							\cdots					．．．．．．		－\cdots	\ldots			
	bol．	6	\cdots	\％${ }_{\text {\％}}$	Me No Mre Ni PX500		A－40		csisi	． 13.3	……	……		24． 35,4780					
		7				Co A5	11／8	1	C.M172....14213	－137			…．．．	39，36， 33 58．57．17．131					
	voi．	6	1112．．．．．			．．．．．．．		$\stackrel{1}{3}$		－1306					156	1			
	vol．																		
			，			16×301					1831								
1111JJK	Vol．	6		6 6 6 \ldots				kgos．．．	$\begin{aligned} & 11 \\ & 11 \end{aligned}$										
	Vol．	6			Sonvo	ie A ； le A：	111182. 11H182．			$\begin{aligned} & .13 .31 \\ & .13: 3 \end{aligned}$	…．．．		…．			13.3	…．．		
	yol．			$\begin{gathered} \cdots \neq . \\ \cdots \\ \cdots \end{gathered}$			Aloi	4	Ser Not					 24．35．17．80	$\begin{gathered} \cdots \\ i \\ 1 \\ 1 \end{gathered}$				
	Vol．	7			1		A3．	4	（S133．							$\begin{aligned} & 175 \\ & 175 \\ & 175 \end{aligned}$			
LAA（ILarly）．．．．．．．	Tone	29		\ldots	BXisoio	……	$8-1$	13415	Ser Note．．．	．133									
		7							CX161 T\＆J！				……	\％8， $77,38,1 \mathrm{~V}$ ．．．．．．	．．．．．				
LA（lhevisert）		7	Y $\ldots . . . \ldots$ ．		12×300			4	CM161．．．．					віб6с6 з8，					
					Ser No	$\begin{aligned} & \text { te AJ } \\ & \text { te A5 } \end{aligned}$		15	W101．Se：Not					\％he．					
LACA	Vol． Vol．	6								133	…．．．			$\begin{aligned} & 58,57,47,80 \\ & 58,57,40 \end{aligned}$		$\stackrel{.}{1}$			
								4	Ser Note．．	［133									
Mact．	Vol． Tone Vol．	$\begin{array}{r} 66 \\ 36 \end{array}$	$\begin{aligned} & \text { P7. } \\ & \mathbf{Y} . \\ & 1: 7 . \end{aligned}$	6	2			4	See Note． CX1172．	－133		－${ }^{\text {a }}$ ．	…．．	58，55，47，80．．．．．．	－175	i			
S7				6			－1920	1	CM1172	133				58，57，59，80．．．．．．	465	．．．．．			
S50．	Vol．	6		6			$1 C 43$ 18.4	20	TSiol					S，					
							1 C 43	20	TS101．	． 33				58.	165	1			
T	Vol．	6		6	3		A 403	4	Sece Note	133				35， $24,47,80$		i			
TS．	Vol．	6		6	3		${ }^{\text {A }}$ A 310.0	4	Sxe Note	I33				35.					
V4（E．arly）	Vol．	7			1EX300		${ }_{8-1}$	4	$\mathrm{CSIB1}_{\text {CMIFi }}$										
								15	TSi01．										
V4	Vol．	7			12X300		8	4	CM171．					6i）6，6C6，38，iv					
191 J	Vol．	6			15×300		кк⿺𠃊⿻丷木斤丶	1.5	CN145					6A7，6F7 43 05	5				
3LW	V	6		6			KKCi 5	15	TN110．					6A7，6F7，43，	6				
5 A ．	vol．	17	500．1 10.1	6	Sce No	e A3	${ }_{8}^{\text {K }} 8$	1	Sor Noi	：831	29	277 S		6A7．78，77，43，2575． 78．6A7，85， 42	$\begin{array}{r} 132 \\ 172.5 \end{array}$	10			
6 A	Vol．	17	500：1 No． 1		Seen No	te A3	－101－8．	15	TN111．	133	22	253 Y							
							10－10	15	See Nole．	113			cos	\％8，	172.5	10			
20A	Vol．	6	UC509．	6	EX200		${ }^{0083}$	1	Bufter	1314									
							110×32	15	TV113．					36，37，38， 39					
		6		6	EX300		IIC31	$1 \frac{1}{15}$	CNito										
26 （DAC5）	Yol．	6	Y	6	EX500		888.	4	Sim Nuio	133									
28 （5J）．	Vol．	6		6	EX300		UC93	4	CM172．					6156，6C6． 42.	456	1			
30.	Vol．	6			H×300		CC43．	15	TR101．										
30AW	Vol．	6		6	18X300			11	UR182．	1331				78， $78,4.3,25 / 5$.	172.5				
30 LW	Vol．	6		6	－		Kcoss．	11	（11）182．	1431				6A7，78． $77,43,25 \% 5$.	456 132				
32 L 5 S	Vol．	17					diac：137．	6／15	U18189	1198				6A7，61）6， 75,43,					
33AW	Vol．	6		6	L $\times 300$		KC68	11	U11832	．13，31				${ }^{9575} \ldots \ldots$ ．	456				
	Vol．	6	Y	6	EX300		KCos	11	บイば．．．．	．1431				647， $78.77,43,25 \%, 5$					
34C．（C6－1）6）	Vol．	18	M				8－8．	4	Ser Noie．．	．133				6A8， $6 \mathrm{~K} 7,75,6 \mathrm{Fb}, 80$.	${ }_{4} 156$	1			
	Tone	22		6															
35	vol．	17		6			12－12－	11	Sed Note	133				78，75，43，25̇̇5	172.5				
36 （135）	Vol．	6			FX150			1	Sire Vots．	． 13				6166，76，42， 30		11			
								15	T＇siol．					616，76，42，	406	ir			
38 （1J6）	Tone	22					$\mathrm{CICO}^{\text {a }}$	6／13	T1190．	133				6A7，6176，25\％5，43，					
38 （U61））．	Vol．	6		6	10x200		CCCi25	613	W1190．	133					456				
							11 C 32	15	TV110．．					75．．．．．．．．．．．	456				
－S5）	Vol．	\ldots	MN	6			8－8	4		133				2A7，2B7，47，58， 80.	456	ii			
								15	Twion．										
	Vol．	17		6	EX500		${ }_{8-8}^{10} 8$	11	L11180，	13，31				$61378.2585,43,78 . .$.	175				
42 （	Yol．	17					${ }_{\text {CCi }}^{8-8}$	6／13	Sue Nore．	． 183					456				
	Tome	22			See No	ieai	11 C 32	15	1＇N10．．．					6．7． $75.10 .2525,43$.	456				
42 （1161））	Vol．	6		6	EX200		Ccdies．	6／13	Sre Nors．	133				6А7，61）6， $25 z 55,43$					
45 （6131））．	Vol．	6		6	4		8－4．	1.5	Sive Note	． 133					456				
								12	Sme Note	． 1318				6D6，6A7，75，42， 80.					
49 （U6）	Vol．						${ }^{5} \mathrm{c}$ cims	615	TSiol	13.3									
$4{ }^{\text {（1）}}$	Tone	22			Sce	isio	110×32.	6／15	TNilo．	B， 3				6A7．6D6，257．5，43，					
49 （161）	tol．	6		6	12X 200		CCOI25	6／13	Ste Nute	13：				6A7，6176，25̇̇5，43，	4.56				
50 L	Vol．	6		6			$11 \mathrm{Cl23}$	1.5	TN110．	IB3				${ }^{75} . \ldots \ldots, \ldots$	456				
	Tone	34	Y				1 C 43	20	Tsio1	（B，）				55.	115	1			
50M	Fol．	${ }^{6}$					BC9	4	CM172	is3				$17,55,56,58,80$	175＇	1			
	Tone	34			2														
59 （1）S5）	Vol．	\ldots	，	6			${ }_{8-8}^{8-8}$	4	See Note	${ }^{133} 113$				24．47，56，58，80．．．	445	1			
								13	Sere Note	． 13				2A7，2B7，47，58， 80	456	1			
								15	TS101．										
71 （Aพิ7）	Yol．	17		6			${ }_{8}^{2-1}$	1	See Note	． 1131				21． $27.45,80,99$		2i			
	Tone	11		，			${ }_{4}$	13						6D6，6A7，75，42， 80.	456	1			
77.	Vot．	17	0				8 8－8	4	Sce Note	i3：					172．5				
101 （C6－1）6）	Yome	18	1				8－8．	4	Sme Nim	13									
	＇Tome	$2 \cdot$	1	6				4	－4 Noie	\％．				6А8，6K7，75，6F6， 80.	456	1			
103 （F5）	vol．	17		7															
105 （A11）	Vol．	20	－		Scer No	（e Ala	2AC－209A	30	UH191	． 133				$\text { LLIL5 } 6 \mathrm{BC}, 6 \mathrm{CS}, 6 \mathrm{~F} \%$	456				
	Toue	29		6			1C4．3．	19	TS101．					6116， $6 \mathrm{~K} 7 . \ldots$	456	1			
106 （C6B）	Vol．	18		6			2CC－	27	CM165					6A7，61）6，6116，6F5．					
107 （U6A）．	Vol．	18	N	6			zZC－I92A．		UH182．	1399				6A8， $6 \mathrm{~K} 7,775,43$.	456				
	Tone Vol．	18	M				YC98A．．．．	11	CS112．	－13（4）				25Z5．．．．．．．．．．	456				
－110．	Vol．	18		6			2DC－203	6	CM165	． 13100				6A7，6176，75，43．					
111 （U6A）	Vol．	18	N．．．．．．．．．	6			ZZC－192A．	11	U1182．	． 1399					6				
	Tone	22					YC－98A．．．．	11	（S121．	． 1399				25\％5．．．．．．．．．．	456				

MALlory-Yarley radio service encyclopedia

Mallory-Yareney radio service encyclopedia

Mallory-yncrey radio service encyclopedia

Mallory-yasery radio service encyclopedia

Matlory-Yaxcey radio service encyciopedia

Mallory-Yastey radio service encyclopedia

Matlony-yazeey radio service encyclopedia

Málory-Yarzey radio service encyclopedia

CROSS REFERENCE OF GEXERAL ELECTRIC-DCA VICTOR MODELS

A-90--Ser HCA Victor M30
HX -Ser IICA Victor R17M
B40-Sise RCA Victor M3-4
H52-See RCA Victor M116
H81-See RCA Victor 142 H
1386-See RCA Victor 241 1 B
C30-See RCA Victor 9113
C.41-See RCA Victor M105

C60-Sper HCA Victor M 107
C61-See HCA Victor M123
C62-See HCA Victor 126B
C67-See IICA Victor 223
C60-See HCA Victor 13513
C75-See RCA Victor 235 B
D50-See RCA Victor M101
D51-Sre RCA Victor M104
D52-See HCA Victor M108
D72-Se RCA Victor M109
R:52-See RCA Victor T5
H31-See Radioln 80
H32-See RCA Victor R50
H51-See Ihadiola 82
II51 H -See Radiola 82R
H71-Spe Radiola 86
II71R-See Radiola 86R
1172-See RCA Victor RAE: 59
H91, I191R-Sen I'revious Page
J70-See RCA Viehor H 4
J72-See RCA Victor R70 and R70N
Jt5-See RCA Victor R6
J80-See RCA Victor R8
J82-See RCA Victor H 71
J83-See RCA Victor R-73 with 47's
J83A-See RCA Victor R73 with 2A5's
J85-Soe RCA Victor H12
J86-See RCA Victor H72
J87-See RCA Victor R75 (47's)
J87A-See HCA Victor H75 (2A5's)
J88--See RCA Victor R71
J100-See RCA Victor R100
J105-See RCA Victor R76
J107-See RCA Victor R77
J109-See RCA Victor RE81
J125-See RCA Victor R78
J125A-See RCA Victor R78 (2)
JZ30-See RCA Victor SW2
JZ822-See RCA Victor R24
JZ822A-See RCA Victor R24A (47)
JZ.826-See Victor R24
JX828-J88 with SW adapter
JZ.835-See RCA Victor HO23
K40-See HCA Victor R27
K40A-See RCA Victor H18W
K41-See HCA Victor H17M
K 43-See RCA Victor 100
K48-See RCA Victor 300
K50-See RCA Victor R28
K50P-See RCA Victor R28P
K51-See RCA Victor $\mathbf{K 2 8}$
K51P-See RCA Victor R28P
K52-See RCA Victor 110
K53-See RCA Victor 111
K53M-See RCA Victor 115
K54-See RCA Victor RE40
K54P-See RCA Victor RE40P
K55-See RCA Victor 210
K58-See RCA Victor 310
K60-See RCA Victor R37
K601--See RCA Victor R37P

Kro-SmencA Victor R11
K63-Sm IICA Victor 1:0
Kor-Sie HCA Victor 121
K (tII)-See RCA Victor 127
K65-See RCA Victor H38
K6.5P-See RCA Victor H381P
K 66 -See RCA Victor 220
K 66 M - See RCA Victor 222
K78-See RCA Victor 330
K79-See RCA Victor 331
K80-See RCA Victor 140 and 140E
K80X-See RCA Victor 141 and 141E
K82-GE K 62 in clock cabinet
K85-See RCA Victor 240
K 88 -See RCA Victor 340
K 88 X -See REA Victor 34E
K105-See RCA Victor 261
K 106-See RCA Victor R90
K 1061²See RCA Victor R901
K 107 -See RCA Victor R260
K126-See RCA Victor 280
K\%-62P-See IRCA Victor RE18, RE18A
L50-Soe RCA Victor R22S
1.51-See RCA Victor R22W
I.52-See RCA Victor 112
L.52A-See RCA Victar li2A

Ln53-Sce RCA Victor 114
M40-See RCA Victor 102
M41-See RCA Victor 101
M42-See RCA Victor 103
M.19-See RCA Victor 301

M50-See RCA Victor 117
M51-See RCA Victor 118
M51-See RCA Victor 118 (mod)
M52-See HCA Victor 119
M55-See HCA Victor 214
M56-See RCA Victor 211
M61-See RCA Victor 128
M62-See HCA Victor 125
M63-See RCA Victor 124
M65-See HCA Victor 221
M66-See RCA Victor 226
M67-See RCA Victor 224
M68-See RCA Victor Duo 321
M69-See RCA Victor 322
M81-See RCA Victor 143
M85-See RCA Victor 243
M86-See RCA Victor 242
M89-See RCA Victor 341
M106-See RCA Victor 262
M107-See RCA Victor 263
M125-See RCA Victor 281
M128-See RCA Victor Duo 380 M128R-See RCA Victor 3801IR
M129-See FCA Victor 381
N60-See Previous Page
S22-See RCA Victor R7
S22X-See RCA Victor R7
S22D-See RCA Victor R7 DC
S42-See RCA Victor R9
S42B-See RCA Victor R43
S42D-See RCA Victor R9 DC
S132-See RCA Victor R10
SZ42P-See RCA Victor RE16
T12-See RCA Victor R5
T11D-See RCA Victor R5 DC
T12E-See RCA Victor R5X
T41-See RCA Victor Radiola 48

Mailory-yaxley radio service encyclopedia

MALLORY-YASEEY RADIO SERVICE ENCYCLOPEDIA

MALIORY-YABELEY RADIO SERVICE ENCYCLOPEDIA

MALLORY-YABELEY RADIO SERVICE ENCYCLOPEDIA

MALLORY-YAXELEY RADIO SERVICE ENCYCLOPEDIA

Mallory-Yaremy radio service encyclopedia

MANUFACTURER AND MODEL	CONTROLS						CONDENSERS				VIbrators			Types of Tubes Used	$\begin{aligned} & \text { 1. F. F. } \\ & \text { Peak } \end{aligned}$	Trans. Circuit
	Use	Circuli	Correct Replacement	Switch	Bias	*Note	Original Part	Circult	Correct Replacement	*Noto	Vibr. Conn.	Replacement	*Note			
HETRO-Contimued 8 Tube Superhet.	$\begin{aligned} & \text { Vol. } \\ & \text { Tone } \end{aligned}$	15 41	P	6			620.	3 3 3	11523.						456	1
9 Tube Air Ace. . .	Yol.	$\begin{aligned} & 18 \\ & 4.4 \end{aligned}$	$\mathbf{N}_{\mathrm{K}}^{\mathrm{i} i}$	6		.	490 30. 11.	15 1 1		. 118				6i¢6, 647, 85, 42-80.	456	1
$6 \mathrm{LH}, 6 \mathrm{SH}$.	You.	18	N				10.	15	'TSIOI					10\% 31.	4.5)	
	Trine	21	11													
22.................	Vor.	6	1112		10.		8-4	i	Sx Note	113				58. 5\%. 17, 50, 810.	11.5	1
31...............	Yo.".	\%					8-8.	i	Ster Nute.	. 133	...			55. 53, 55, 47, 800.	1%	1
$\begin{aligned} & 71 . \\ & 207 . \end{aligned}$	line	41					110-0-1	11	U18182	.1831				61\%. 7 -5, 43,	4,36	
	Vol.	17	N	6			623	1	¢ 1172	. 133				2А7, 58. 2A1, 2А5.80.	1.56	I
209.............	Vol.	17	N	6				15	CM172.	113		.		247, 58, 2A6, 24. 80	456	1
							490	15	TV101							
251...............	V0	${ }^{6}$	$\mathrm{I}_{\mathrm{Y}} 12$		1:X250		128	4	CM171	. B 3				57, 38, 2A5, 80		1
	Tone	117		6			623	4	O1172	. 13				2A7, 58, 246, 245, 80.	1.56	1
257, 259............	Vol.	17		6				15	T*101.	.1831				61\%, 75, 43, 25\%	4.56	
297.$412,166 \text {. }$							490	15	Tsilot							
	Vol.	17		6			466 490	11	H1182.	. 1331		\ldots		6А7.01\%, 5 ¢, 43, 25\%	456	
	Yol.	$\underline{17}$		6				${ }_{6}^{6 / 15}$	I11882 TSIO1	13114		...		6186, 6A7, 75, 13, 25\%	450	
IIIGI FREUUE:NC: A. C. Special Isotone 10.							5-9-9	24/1	See Nule.	. 131				27. 11 A, 310	1.	3
	$\begin{gathered} \text { 1AABS. } \\ \text { Yol. } \\ \text { Yol. } \\ \text { Sen. } \\ \text { Sol. } \\ \text { Vol. } \end{gathered}$	16	Shen Noli	\cdots		15	5-9-9	24/1	mee Nole.	.				22, 01A, 12A, 11		
		12	See Note.	\cdots		A5			See Note					26, 35, 47, 80		
L. "Mastertone"' 1929. "Mastertone" Suprer 10. 1931 "Nine in Line". 4 Tube Pentode 117-4.		12	$\mathrm{K}_{1} \mathrm{i}$	\cdots			5-15	3	MN27\%.	11360				21. $24.45,80$		7
		12	(il2				8-8-8	3	See Note	. 13				24. $27.45,80$		3
	Yo.	33	M											014.12 A .	175	
	Vol.	7					${ }_{8-8}^{4-1}$	1	See Nute. Sre Note.	. 1133				21, 24, 35, 47, 80	175	1
	Tone	22														
$\begin{aligned} & 160-6(280) \ldots \\ & 200 \end{aligned} .$	Vol.	7						4	See Note. See Note.	.183				$\begin{aligned} & 35.24, ~ 17, ~ 80 . \\ & 27,35, ~ 47,80 . \end{aligned}$		1
	Tone	41														
208-1	lal.	${ }^{7}$					4	4	See Nut	. 13		- .		24, 35, 47, 80, ...		
	Yo.	7					4	4	Sme Note	133				2i, $27,35,47,80$.	...	1
22	Tone	22														
$\begin{aligned} & \text { H1-LO } \\ & \text { 34TDDA } 4 \text { Tuhe } \\ & \text { AC-DC. . . } \end{aligned}$	Vol.	7	UC509....		Seo No	te Al0	$\begin{aligned} & 12-6 \\ & 10-10 \end{aligned}$	${ }_{15}^{6}$	$\begin{aligned} & \text { See Note. . . } \\ & \text { TNill.... } \end{aligned}$	$\left\lvert\, \begin{aligned} & 183 \\ & : 166 \end{aligned}\right.$				39, 36, 41, 25\%5.		
HOOIDWIN Aero A. F. Amplifier							4	25	Soe Note. .	. 13				56. 57, 47, 80.		1
6 Tube Super (IDC)	Vol.	33	1.					15	Thent				- .	36, 3 8	17.5	
	VoneVol.Vol.	92														
Aero Auto Hurlio. Aero Auto P'ent. "A" Aero Auto Pent. " B " International Aero. .		26												36, 38.		
	Yol.		11		\cdots											
		15					8-8-8	3	Soe Not	133				50, 58, 55, 47, 80	485	3
	Tone	95														
	Vol.	7					6-8 20.	15	TSioz	B3				36, 38		
	viol.	6	(i12				8-8.	1	Sie Nute.	133				58. 55. 17. 810		
	Vol.	7	11	6			4-8.	25	Sire N -1e.	13:3				57. 58. 47. 80.		1
	Vol.	88					8-8	1	Sore Note	B3				57, 58, 47, 80		1
	tol.	7					6-6	12	Sue Not	1 B 3				36, 38.......		
6 Tube Super 6 Tube Hatt. Super 6 Tube 32V DC.							$\stackrel{20}{4-8}$	$\underline{15}$	TSion	183				-5. 56, 57, 58, 47, 80.		1
	Voi.	54	Yoomip						re Nat	18.				32, 33, 36,	175	
	yol.	15												36, 37, 38,	175	
6-33 AtC......... 6 Tuber Superfien 110才 DC: Super	Tone						8-8	25°	siee Not	133				58, Winderlicho 47, 80		
	Tone	21														
								1	sen Not	133				36, 33, 38.	$1: 5$	
	Toue	22						1.5	Tsiol. .							
	$\begin{aligned} & \text { "iffany } \\ & \text { Vol. } \\ & \text { bol. } \end{aligned}$	Tone ${ }^{\text {c }}$	SR1963.													
							5-5	23 23 1	CM127. Soe Nute	183					165	
														$5 \% 4 . \ldots$	165	1
7MT	Vol.	56	N				8 -8	23	See Note.	183				6A8. 6h 7, 6116, 60.5. 6F't. 5%	465	
9MT, 9:1'TC	Tone	46	N					23	Spe Note	183						
	Tone	22	Y											6F6. $5 \% .4$	165	${ }_{3}$
15	Yol.	$2{ }^{6}$			See No	te A^{5}	8-8	4	H-213	1666				24. 45.		3
15M	Yol.	6	117				8-8	4	HS2I	133				27, 17, 80, 36		3
21.	Tone	22	(il2	6			4-8	23	CM171	. 133				57. 58, 47, 82		
25	Tone	$\simeq 2$	(i) 12													
	Yol.	6	S1112063			.	4-1.	4	(2117	. 183				2AT, 57 ${ }^{245,80}$	16.5	1
36.	Tone	-	(i12	6				23	CMIT							
	Yol.	17	$\stackrel{ }{N}$	6		.	-1	4	Sees Nul	. 133				6А7. 78, 687, 12, 80.	16.5	1
	Tone	22	${ }_{\mathrm{N}}$				8-8		Sere Nol							
55	Yol.	56	N.				8-8	23	Sere Nolt	183				57, 58,2 А¢, 2 A5, 80.	40.5	1
	Tone	2														
58	Vol.	15	N	\bigcirc			${ }^{\text {B-8 }}$	1	Smo	. 133				2A7, 58. 56, 57, 2A5,		
58 (1933)	Tone	76	N				10.	15	TS101						14, 16.5	1
	Tone	21	N				10.	15	TSiO1.	-				-AT, in, 3, 2is,		
59......	Yol.	7	G				8-8	1	See Noi	. 13				2.4. 27 51, 87.80	175	
${ }_{66}^{66}$	Tone	39	11													
	Vol.	15						23	Sce Notr.	183				648. ©K7. 6ll6, oJto		
	Tone	22												6F\%, 5\%	46.5	1

Matlory-Yareley radio service encyciopedia

Matlory-yamey radio service encyclopedia

Maltory-yareley radio service encyclopedia

Matlory-yayeley radio service encyclopedia

Mallory-Yarcey radio service encyciopedia

Mallory-yavery radio service encyciopedia

Mamory-yamery radio service encyclopedia

Málory-Yaxley radiv SErvice encyclopedia

Mallory-Yarkey radio service encyclopedia

MALIORY-YROLEY RADIO SERVICE ENCYClopedia

Matlory-yaserey radio service encyclopedia

manufacturer AND MODEL	CONTROLS						CONDENSERS				VIBRATORS			Types of Tubes Used	1. F.Peak	Trans. Circuit	
	Use	Circuit	Correct Replacement	Switch	Bias	*Note	Original Part	Cir- cuit	Correct Replacement	*Note	Vibr. Conn.	Replacement	*Note				
$\begin{gathered} \text { Mission BELL HA } \\ 19,19 \mathrm{~A} \end{gathered}$	$\underset{\substack{110 \\ \text { Vol. } \\ \text { Vol }}}{ }$	$\cdot-\text { Con }$	$\left\lvert\, \begin{gathered} \text { timued } \\ 500 \mathrm{M} \text { No. } 1 \end{gathered}\right.$	Sie Nout	te A!	1-8.	$\begin{aligned} & 1.5 \\ & 1.5 \\ & 1 \end{aligned}$. 133		$\begin{aligned} & \text { from Mr } \\ & 292 \end{aligned}$	\%...	57,58, Wunderlich, 41, 14 $77,78,75,42,81$	$\underline{252}$	$\cdots{ }^{\cdots}{ }^{\circ}$	
			300M No. 1		See No	te At	10..........		Trıo1. . .		Order						
	Yol. Tone	15 22				to A	1-18		Sen Note...	i 13	34						
							10.3		Buifer	1814							
	Vol.	18	(i)2	6	EX300		4	4	Spe Vate.	. 133				6166, 76, 42, 80....		i ${ }^{\text {] }}$	
														80.	156	1	
40 All-Wave $41 \mathrm{AW}, 41$ Skip Bani	Vol.	18 18	N	6				1	Sree Nole. Ser Note.	. 1138					+165	1	
Monarcil																	
L5......	Yol.	18					P17.	32	128211.					57.4. 6F\%, 6F6, 6116,			
	Tone	31					1160	3	CXI51	¢181				6k $7,61,7 \ldots \ldots$.	456	1	
	$\xrightarrow{\text { Yol. }}$	48	N............	6			${ }^{1917} \mathrm{P} 160$	3232	$\begin{aligned} & 115211 \\ & C N 151 \end{aligned}$. 1881				57. 6 C. 5,6 F6, 6 K 7 , $61.7,607$		\ldots1	
															456		
L7.	Yol.	4.5	N........	7		$\begin{aligned} & 130.4 . \\ & 1 \quad 391 \ldots \\ & .01-.01 . \end{aligned}$	15			11	24.c	$\ddot{\mathrm{C}} \overline{0}$	ic6, 19, 30, 31	456	10	
Z4.	Tone	+															
	Yol.	4	Sı1p275....	\cdots		1P391.....	$\cdots{ }^{\prime}$	R N 232	(131.	ii	2 isc	${ }_{\square} \mathbf{4}$	$\text { ic6, } 19,30,32,34$	456°	10	
	Tone	4.)					${ }^{011} 10.88$.	$\cdots{ }^{\prime}{ }^{\prime}$			ii	2450.		ic6, 19, 30, 32, 34...	${ }^{-156}$	$\cdots \mathrm{i}{ }^{\circ}$	
	Vol.	11									C3.				
${ }_{51} 31$.	Yol.	18	Nonii No.		$\left.\begin{aligned} & \text { Sce } \\ & \text { No } \\ & \text { Sor } \\ & \mathrm{No} \end{aligned} \right\rvert\,$		$\begin{aligned} & 01-0 \\ & 8-1 \\ & 6-10 \end{aligned}$	4	Sox Nute...	113		29i		6 A7, 616, 75, 12, 80 6 A7, 61)6, 75, 42, 8 :	$\underset{\substack{156 \\ 1.56 \\ \hline}}{ }$	\cdots10$\cdots$$\cdots$$\cdots$$\cdots$	
64.								1	See Note	.133	3.5		C 3				
	Vol.	18	$500 \mathrm{M} \mathrm{No}$.			te Al	6-10 02.	4	Sree Note. Bulter.	.133	3.5	29.4	C3		456		
										. 1314							
MONTGOMERY	A [17 ${ }^{8}$	CO.	Airline)	Radio	Invis	ion in	Montgomery	Ward	Catalop.		1	206				
Note: The prelix "6/	2-", or for	on of	63-" indicates								$\begin{aligned} & 36,37,39,38, \ldots \\ & 24,27,4,30, \\ & 24,26,27,45,80 \end{aligned}$			262			
	Yod.	4.5 6			\cdots		4-8-8........	15	$\begin{aligned} & \text { TSIO1. } \\ & \text { RSS } 213 . \end{aligned}$								
Al:10 (Two Typers).	Vol.	60	Fil		(Parly)			${ }_{3}$	See Nivie.	1116						1	
	Yo.	60/15			(Late)												
A1:11, $52,53,51$	Yol.	${ }_{8}^{8}$	A.t(00) ${ }^{\text {a }}$				1-1.5-1-1	$3 / 13$	Sre Not	i11				\% 71.80		${ }^{-1}$	
062...........	Vob.	45						${ }_{15}{ }^{1 / 3}$	Srenote.		i	206					
	lol.	-7/36	112131	6			4×10	$\because 3$	WE16iz...		1	-06		6K ${ }^{\text {\% , 6137, } 66, ~ 6 F \%, ~ 80 ~}$	156	i*	
	Tome	34	UC502				12 X 11	23	1\% N-12.....	188							
	Vol.							1									
$17 \text { (31) "Turret }$		6						1	CNI.I.	.133				21, 35, 47, 80.	262	1	
Cond."..	Vol.	59	S131273				927 928	1	Semen Nor	[1				24, 35, 47, 27, 80.	175	3	
								11	Sue Noros.	131							
20 W	Vol.	6					8-8	-5	Suse Note	133				24, 71A.80		${ }^{-}$	
	Tol.	${ }_{2}^{6}$					${ }^{8} 8$	3	16913,					24, 27, 45. 80	\ddagger	1	
261'. 261 X	Yolle	$\underline{6}$			Seenno	te As	${ }_{8}^{8-6}$	3	Ser Ning	133							
	Tone	22	JCSO2							Is3							
	Vol.	6			3		${ }^{8-8}$	1	See Not	133				-1, 45, 80		1	
$27 W, 271$ XX (1500. 15000, Collegian)	Vol.				3			1									
	Tone	22	K12		3			1	see Note	. 133				24. 27, 45, 80		1	
	Vol.	6												24, 26, 01A , 71A , or			
62	$\underset{1}{ }$	45						15	7×101		1	-06		36, 37, 38, $301 \mathrm{~A}, 1 . .$.	262		
	Vol.	97	Thi'602					12	See Norie.	133				30, 32, 34, 19.	175		
	vol.	17	N				P80956.	25/19	RM262/Tsio2	13126	34	-92	Ci2	75, 77, 78, 41, 84	262	io	
							P80937.	14/15	HN231...	18127							
102	Vol.	$\stackrel{9}{17}$	N.	6			${ }^{4} 103$	12	See Note. $\mathrm{H} \mathbf{1} 262$.	H3	37	296	C3	$30,32,34,19$ $6 \mathrm{D} 6,6 \mathrm{C}, 78,75,42$	175		
							20.	15	TSio2.		37		C		175	10	
123 (Series 7D).	Yol.			6			P809916	23		1314							
	Tone	22	UCSȮ	6			1'81043.	23	WE16. 47	. 1310				7, 76, 42, 80.	456	1	
							P81032	23	W E 847.								
							181042.	23	We1647								
$\begin{aligned} & 131(5 \mathrm{~B}), 133(7 \mathrm{D})) \\ & 142(7 \mathrm{D}), 14(\mathrm{Fi}) \end{aligned}$	Yol.	56		6			P80916.		WE847.						456		
	Tone	22	UC502				P81043.	23	WE1647	1310				606, 67, 76, 42, 80.	456	1	
							P81032.	23	WE847.								
							P810.2	23	WE16.77.	biso							
181.	Yob.	$4{ }^{7}$					1-1	3	See Note.	. 131				24A, 27, 45, 80.		1	
187	Vor.	7	I)				1-2-3	26	Ser Note.	B1				24A, 27, 45,			
	Vol.	6		(2nd	Type)	A 1			See Note.	.139							
500 1)ictator.	Bol.	8	A				1-1.5-1-2.	3	See Note.	. 131				24, 27, 45, 80		3	
811 Solo (62-1711).	lol.	7	,		1		8-8.	23	See Note. IRS213.	. 139				24, 27, 35, 47, 80	175	${ }^{-1}$	
	Time	95		6													
839, 921. 923, 921...	bol.	12	K1	13										29. $12 \mathrm{~A}, 7 \mathrm{~T}$			
1611)......	Yol.				1		8-8	23	RS213.					24, 27, 35, 47, 80	175	3	
	Tone	0.		6													
1238, 1238.	Tone	15 31	$1{ }^{0} \mathrm{C} 50$				${ }_{2852}^{2803}$	19	$\begin{gathered} C \cup 152 \\ C S 123 \end{gathered}$					27, 35, 47, 80.	262	3	
1355 Winstre (62-																	
1955).......	Y'ou.	$\begin{aligned} & 15 \\ & 41 \end{aligned}$	$\begin{gathered} \text { O. } \\ \text { UC502.......... } \end{gathered}$				2803 2719	13	Cilis2.					27, 35, 47, 80.	262	3	
							2852	15	CSI23.								
$\begin{aligned} & 1522(12 \mathrm{~A} \text { or 01A } \\ & \text { Det.). } \end{aligned}$	Vol.	6	912														
$1520(26 \text { ion }$	Vol.	6	(12		See No	te A32								$\frac{24}{4}, 26,01 \mathrm{~A}, 71 \mathrm{~A} . .$			
$\begin{aligned} & 1562(12 \mathrm{~A} \text { or oi ï } \\ & \text { Det.) } \end{aligned}$	Yol.	6															
	Tone	21												01A, 24, 12A, 71A.			
1562 ('26 Det.)	fot.	6	G12		See No	ie A32								24, 26, 01A, ${ }^{\text {IAA }}$			
1922	Tone	21												36, 01A			
	Tome	21															
2655.	vol.	1/15	Dilirat3.					\cdots	Sce Note	,i3i				-4, $26,27,45,80$		ii ${ }^{\text {- }}$	
	Yol.	8	A				1-1.5-1-2.	3	Sme Note.	. 131				24, 27, 45, 80.		3	
	Tome	11							Sae Note.	(139				2, 7, 15, 80.			
$55.5=8$	Yor.	2.4	(ifi..				2.5-1-2	28	Star Note. .	. Bl^{1}				24, 27, 45, 80.		3	
	Tome	4	(0..........														

Matlory-yauley radio service encyciopedia

manufacturer AND MODEL	CONTROLS						CONDENSERS				VIBRATORS			Types of Tubes Used	1. F.Peak	Trans. Cir: cuit
	Use	Circult	Correct Replacement	Switch	Blas	*Note	Original Part	Circuit	Correct Replacement	*Note	Vibr. Conn.	Replacement	*Note			
$\begin{gathered} \text { MONTCOMERY } \\ \text { Note: The prefix } \\ \text { 62-6.4, } 62-6 . \mathbf{" N}_{6} \end{gathered}$	ARI) 8	CO.	Continued.													
	-", or for		bo-" indicates	Hactio	Divis	ion in	Vontgomery-	Ward	Catalor.							
	Tone	45	K12.0.....					30 30	1110802.					56, 57, 58, 46, $82 \ldots$	175	3
	Supp.	8						30	Hsali.							
62-PC64.	Yol.						PCotis	19	CSI^{181}							
	Tone	${ }_{22}^{45}$					PC613.	7	M11262.	. 113				56, 58, 57, 46, 82	175	3
62-67.	Supl.	${ }_{17}^{8}$	10031.				${ }_{8}^{\text {PCorta }}$	15	TStot.							
62-68, 62-68. $\ldots . .$.	Tone	$\begin{array}{r}17 \\ 28 \\ \hline\end{array}$						1	11 N242	13				¢5, 5n, $572,58,470$	175	i
	Tol.	15 22	1				8 8-8.	-88	Mrsie.	${ }^{133}$				56, 57 , 58, 40, 40	262	7
62-1PC68..........	Supp.	7						19	TS ${ }^{\text {HS }} 103$.							
	Tone	15 22		6			8-8-3	3	HS213.	$1 i 66$				-3, 56, $57,58,46,82$	175	3
62-69.	Son.	7	11													
	Tone	${ }_{22}^{15}$	11 $K 12$					28	TM 12.12	$\begin{aligned} & 13,3 \\ & 183 \end{aligned}$				56, $66,58,80$	262	7
62-70, 62-70.......	Vol.	6						1319	117180.							
	Tone	31	1					19	Tsino.	183				50, 57, 58, 47, 80.	45	3
62-71..............	Nol.	59	S1219:1					$\stackrel{3}{3}$	CM172	-13				57, 58, 47, 80	175	$7{ }^{\prime}$
62-72, 62-72X......	lone	34 6	C6503.					1.1		133					17	..
62-71, 62-74X......	Tone	34						19	Tisiote.					56, 57, 58, 47, 80.	455	3
	Tone	34	UC50:					-	CM12	. 133				5\%, $38.47,80$	175	7°
62-75.............	lol.							12	Csi21.					30,	175	
62-76.	Y,	15						30	Sce Note..	. 113						
	Toue	$\because 1$						13	Sre Note...	${ }^{183}$				56, 57, 58, 47, 80	175	1
62-79	Tone	15 22					8-8	$\xrightarrow{28}$	(12N22.	. 1133				56, 58, 46, 80	262	7
62-80								$13 / 19$	$1 \mathrm{H180}$							
	Tone	12						1	12 ${ }^{2} 212$	133				55, $56,57,58,478,80$	175	i ${ }^{\text {- }}$
2-81	$\checkmark \mathrm{d}$.	40						1	CNIS2					57, 47, 80	455	1
$62-82$$62-83$	Yol.	17						19	TSlos.							
	Yot	15 20						13	CS121.					55, 57, 58, 47, 80...	175	1
62-81, 02-84X	Yoile	15 15 0						28	1 N 242							
	Tone	22						28	RS213.	. 113				56, 58, 46, 80	262	7
62-86, 62-86...	Vol.	15			Soe No	If Alt		13/19	Uh180.	H3						
	Tome	22						18	TS106.	. 3				58, 56, 57, 46, 82	262	7
62-88.	Vin.	$i 5$						28	Sea	B3						
	Toue	22						19	1s105.	B				57, 58, 56,	262	7
62-89.......	¢ol.	17		6			I8098	2/13	CN155/CN142	R120				55, 56, 58, 45, 82	175	21
	Tone	4	$\mathrm{IIC5}_{19}$						-						1%	21
	Tone	38	ii.					19	Sce No.	133				56, 57, 58, 47, 80	455	3
	Wol.	17					180988	12	CSI21.					30.	. 175	
	Yor.	6		6	3				Spe Not	i33						
	Yot.	15		6			${ }^{18} 8180$	12	CSI23.	. 133				57, 35, 47. 80. 61)6, 6C6, 37.	$\begin{array}{r} 269 \\ 175 \end{array}$	1
62-94, 60-94.	Yol.	15														
	Tone	22						28	HN242.	${ }^{183}$				56, 58, 46, 80	262	\%
62-96	Vol.	6		6	3		${ }^{8} 188096$	13/19	U4180. U1182.							
		6		6	3		1890988С	1	UR182.	1331				77, 78, 43, 2575	262
62-97, 62-97X	Vol.	17	\mathbf{N}				${ }_{\text {Pr809 }}$	15	TS105.							
62-98	Tone	22	Ki2					15	TS101.					A5,	2	1
	Vol.	6		6	3		18909.11	11	U14182.	B31				т7, 78, 43, 25z5	262	
							PRoris P80036C.	15	${ }_{\text {CSS }}$							
62-99, 62-99 X .	Yol.	17	$\mathrm{N}_{\mathrm{K}}^{1}$					1	CN152.						262	$\cdots{ }^{\text {. }}$.
62-10	Tone	22	K12					15	TS101.						-6	\ldots
	Tone	$2{ }_{2}^{6}$			See No	1e A5		3 3 3	${ }^{\text {RSS213. }}$					24, 27, 45, 80	$\because \ddagger$	${ }^{-}$
62-101, 62-101 X	Yod.	15		6			8-8-	28	СМ175.	.133				58, 56, 45, 80	262	i
62-103.	Vol.	15		6			1880916									
	Tone	23	10	6			${ }^{\text {P880990. }}$	25	Wixer	${ }^{18} 8$				6D6, 6C6, 37, 42, 80.	175	i
$62.104 ~$62.105	Yol.	6			3			115	TS101.	. 1310						
	Yol.	15		6			1P80916..	25	WE8.47.	. 13.31					175	
	Tone	22	us				188090	25	HN2.2.	'із8				615, 6C6, 3. 42, 80.	15	
62-106, 62-107.	Vol.						8	15	TS101.	. 1310						
62-106, 62-107....	Toue	11		- \ddagger	See No	18.45		$\stackrel{2}{2}$	CN152.	.133				56, 58, 45, 80	175	i
$\begin{aligned} & \text { 62-114, } 6 \mathbf{2}-116 \ldots . . \\ & 62-118 . \ldots . . . \end{aligned}$	Yol.	${ }_{6}^{64}$			-		P8ioit	40	2-CSi26.							
	Yol.	18	UC511	6			81028.	1	S13601.	W125	20	253	© 3	75, 77, 78, 41, $\mathbf{8 i l}^{\mathbf{1}}$	262.5	10
	Tone	29	$1:$				81021	15	TN111							10
62-120	Vor.	97	TRP甠...				- 01.	$12 \cdot$	${ }^{\text {Buffer }}$. 11.4				30, 32, 31119		
62-121	Yol.	15		$\cdots \ddagger$				2	CNIS2.	133				56, 58, 45, 80	175	1
	Tone	41			Sme ${ }^{\text {a }}$	1085		2	CS13:.	133				51, 3, , ${ }^{\text {a }}$		1
$\begin{aligned} & 62-1222 \\ & 62-124 \end{aligned}$	yol.	19	TRP碞				80908.	12-	CN121.					30, 32, 34, 19	175	
62-126, 62-128.	Tone	44	K 12				P82001	12,13	CNI41					30.	456	
	Vol.	97	TR1002				80968.	12	Csi21.							
62-129...........	Yol.	15					P820011	12/13	CN141.					30, 31, 19....	456	
62-132	yone	15		6			[281039	\cdots		B						
	Tone	41	UC50	,			81018.	2/13	CM173.	. 8				6)6, 76, 45, 80	456	3
62-134, 62-13-4 X	Tome	15 21	UCSoz	6			P181058..	48	WE16.7					6i16, $76,42,80$	456	1
							${ }^{1881056}$	48	CNI42.	- $\mathrm{Ba}^{\text {d }}$						
62-135, 62-135X...	Vol.	18					P'42001	48	On Oriter	W125						
	\%o.			6			${ }_{\text {P103-4 }}^{103}$	4	WE16.17 RN2.12					57. 27. 58. 246, 2A5,		
62-136,	Yol.	56					1281016	23	CMİ2.		30	F253	(:3		370	1
62-137.	Tome	315	U(1)502				.015...		Huffre	M114			(1.3		15.5	10
62-138.	Tone	41	UC504	6			P81018..	2/13	RM242.	.138				6I)6, 76, 45, 80.	456	,
	Vol.	56 34	N				P81016	23	CM172.		20	F253	C3	6F7, 6D6, 617, 12A5.		
	Tone	34							Bufter.	B14				1223............	175	10

Matlory-yayeley radio service encyclopedia

MALLORY-YAYREY RADIO SERVICE ENCYCLOPEDIA

MALLORY-YASOEY RADIO SERVICE ENCYCIOPEDIA

Mallory-yarley radio service encyclopedia

Mallory-Yarley radio service encyclopedia

MANUFACTURER AND MODEL	CONTROLS						CONDENSERS				Vibrators			Types of Tubos Used	I. F. Peak	Trans. Circuit
	Use	Circult	Correct Replacement	Switch	Bias	*Note	Original Part	Cir- cult	Correct Replacement	*Note	Vibr. Conn.	Replacement	*Note			
PHILCO-Comtinuel Co (Clirysiler) C:I's. C:Ts.	Viol.	17	THP614....	6			$\begin{aligned} & 4-8.0 \\ & 10-10 \\ & .01 . . \end{aligned}$	15	RN241. 'TNII!. Buffer.		42	50012	C3	36, 77, 44, 75, 42, 84.	260	10
CT2 (Chrysler Deluxe).....	Vol.	17	TRP614....	6			.181 $10-110$.01.	15	$\begin{aligned} & \text { MNoll. } \\ & \text { livill } \\ & \text { Buffer. } \end{aligned}$.13132 1318	13	500 P	C3	36, 77, 44, 75, 42, 81.	260	10
CT:5 (Chrysler AirHlow IDelinxe).	Vol.	17	TH1'614....	6			$\begin{aligned} & 4-8 \\ & 10-10 \end{aligned}$	15	$\begin{array}{ll} 12 N 211 \\ 10 \end{array}$	13132	42	5001	C3	36, 77, 44, 75, 42, 81.	260	10
CTII (Chryaler)....	Yol. Sen.	17	SRP282 UC500				$\begin{aligned} & 01 \\ & 48 \\ & .01 \end{aligned}$	4	Buffer CMIT Buifer	$\left[\begin{array}{l} 1311 \\ 13114 \end{array}\right.$	12	5001	(3	78, 647, $55,41,81 .$.	260	10
CU dic CV (Chirysler) (Cole 122)	Vol.	17	TH1¢614.	6			+818 $10-110$.01.	15	$\begin{aligned} & \text { RN2 } 11 \\ & \text { TNI } \\ & \text { Buffer. } \end{aligned}$. 13132	12	50013	C3	41, 77, 75, 42, 84. . .	260	10
$\begin{gathered} \text { CZ. (Chrysler) } \\ \text { (CT2. CT5) } \end{gathered}$	Vol.	17	TH1'614....	6				1.5	$\begin{aligned} & \mathrm{R}=11 \ldots \\ & \mathrm{~N}=111 . . \end{aligned}$	13132	42	5001)	C3	36, 77, 44, 75, 42, 81.	260	10
I) (Nash) (AC989)..	Vol.	19	THP603....	6				15	Butfer CN15! TS102 Bulfer	1311 .13131 .314	42	500 P	C3	41, 6А7, 75, 41, 84...	260	10
I) (Colle 122) (AC989 Code 122)	Vol.	18	TRP605....	6	FS252	A52	.006 $4-8$. 20. .060	15	Bumer...... CN151..... TSifle:..... Bufer....	1314 .3131 314	42	5001'	C3	4.4, 6A7, 75, 41, 84.	260	10
ID (Code DiPI21, I1P122) Police.	Vol.	18		6			$\begin{aligned} & \text { 4-8-1 } \\ & \hline 01066 \end{aligned}$	1/15	CN151/ISlol	13130 B1?	42	5005	C3	41. 77, 75, 41, 84	260	10
InPV.	Vol.	17		6	+S:51	A51	+1-8-10	1/15	CNi51/7Sioi	- 131818	12	5001'	C3	H, 6A7, 75, 42, 84...	260	10
$\begin{aligned} & \text { IU (Dexige) (CT2, } \\ & \text { CT5) } ~ \end{aligned}$	Vol.	17	TRP614....	6			+1-8 10111 .01 .0	15	$\begin{aligned} & \text { RN2411 } \\ & \text { TN111 } \\ & \text { Buffer. } \end{aligned}$. 13132 .1314	42	500P	C3	36, 77, 44, 75, 42, 84.	260	10
$\begin{aligned} & \text { E-(10) (IPierce- } \\ & \text { Arrow)...... } \end{aligned}$	Vol.	19	T18P603....	6	FSE51	A51	48. 20. 01.	15		-13131	12	510 P	C3	4. 6A7, 75, 42, 84...	260	10
lien Dynamotor EF Eliminator.							.01 4.8 4.8	$\underset{1}{i \underset{1}{2}}$. 1314	42	5001	C3			${ }_{10}^{16 .}$
FT6.	Vol.	17	TRP614....	6			.006.... 4 $10-10 . .$.	15	13 uffer....... MN241..... TNill....	-1314	4	5001’	C3	41, 77, 75, 42, 84.	260	10
FT9 (Ford)	Vol.	18	SRP282		See No	e A6:	$.01 \ldots \ldots$. $.0-8 .$. .01	4	Buffer. C.M17 Buffer.	$\left(\begin{array}{l} 1314 \\ \hdashline 1314 \end{array}\right.$	12	Soui	C.3	78. 6A7. $75,41,84 \ldots$	260	ii)
	Vol.	18	UC512	6			+-8...... 20.0	15		-1322	42	s00, ${ }^{\prime \prime}$	C3	44, 6A7, 75, 41, 84.	260	10
G (Code 122)	Vol.	17	TRP614....	6				15	$\begin{aligned} & \text { Bufer } \\ & \text { MN:+1 } \\ & \text { TNill } \end{aligned}$	-814	42	5001	C3	44, 77, 75, 42, 84.	260	10
(i1418.	Vol.	18	SRP282		See No	te ${ }^{\text {A67 }}$		4		- 11818	43	501 P	(23	78, 6A7, 75, 41, 84...	260	$1 i^{\circ}$
(11436	$\begin{aligned} & \text { Fol. } \\ & \text { Tone } \end{aligned}$	18	SliJ282		Sto			4		(1314	43	з0if	C3	78. 6A7, $55,41,84 .$.	260	io ${ }^{-}$
	Volle	18		6	FS551	te A5	+18.	$\begin{gathered} i \\ 1+15 \end{gathered}$	(1ater	1814 1131 1135	42	5001'	(3	44, 6. 7, 75, 37, 79, 81.	260	10
II (Code 122)	Vol.	18	TRP605	6	FS25]	A51		$\begin{gathered} \mathrm{i}_{1} \\ 14 / 15 \end{gathered}$	$\left\lvert\, \begin{aligned} & \text { Bufer } \\ & \text { Cf15 } \\ & \text { Cinjorineo } \end{aligned}\right.$	$\begin{aligned} & 1314 \\ & 131 \\ & 1313 \\ & 13135 \end{aligned}$	42	5001	C3	4, 6A7, 75, 37, 79, 84.	260	10
J (Nash)	Vol.	18		6	FS251	A51		-1 15 15		1314 .13131 131	42	5001	(\%)	$44,77,75,42,84$.	260	$10{ }^{\circ}$
J (Corle 122)	Vol.	18		6	FS251	A51		i/is	Bufer ${ }^{\text {BNI... }}$	(1314	12	5umip	C3	41, 77. 75, 12, 8.	260	10
LT14X3, LT14X4.	Vol.	18	Sh1P282				.01_.....	4	$\left\|\begin{array}{l} \left.\begin{array}{l} 13 \text { uffer } \\ \text { Chlifor } \\ \text { Huffer } \end{array} \right\rvert\, \end{array}\right\|$. 1114	12	5001" ${ }^{\circ}$	C3	\%8, 6AT, $75,41,84$	260	$10 \cdot$
ME (Pierce-Arrow).	vol.	19	TRP603	6	FS252	A52	$\begin{aligned} & 01 \\ & 4.8 \\ & 30 . \end{aligned}$	${ }_{15}{ }^{-1}$.1812	42	5001'	C3	44, 6, A7, 75, 42, 84.	260	10
MT3 (Pierce-Arrow Delaxe)	Vos.	17	T12P605.	6	FS251	A51	$.01 .$. $4-88$ 18.10 .01.	15		1314 .13131 131.4	12	500P	C3	36, 77, 44, 75, 42, 84.	260	10
MTI4X 4 (PierceArrow)........	Vol.	18	SHP282.				.	4	Buffer. CM1:1 13uffer.	8314	42	5001'	C3	78, 6A7, $75.41,84 . .$.	260	10
$\begin{aligned} & \mathrm{N} \text { (Ford Center- } \\ & \text { Control) } \text {. } \end{aligned}$	Vol.	17	TRP614....	6			${ }_{10-10}^{4-8}$	15	HN2:1 TNII Buffer	- 13132	42	500P'	C3	44, 77, 75, 42, 84.	260	10
NT12X, NTI2X2..	Vol. Sen.	$\begin{array}{r} 18 \\ 7 \end{array}$	SIRP282		Ser No	le A67	$\begin{gathered} 01 \\ .01 \\ .01 \end{gathered}$	4	BuIfer CMIT BuIfer	$\begin{aligned} & \text { Bi4 } \\ & 1819 \end{aligned}$	42	51010	C3	78, 6A7, $35,41,84 \ldots$	260	10
NT15 (Nash) .	$\begin{aligned} & \text { Seri. } \\ & \text { Vol. } \end{aligned}$	${ }_{18}^{7}$	UC500 Sllpres		Sce No		4. 4.	4	Buffer CuIf Buffer	$\begin{aligned} & 1311 \\ & 181 i \end{aligned}$	42	3001'	C3	78, 6A7, 75, 41, 84...	260	$10{ }^{\circ}$
N1418.	Vol.	18	S11P282		Stee No	te 160°	$\xrightarrow{4-8.8}$	4	Buffer. ハМ2も Bulfer	1314	43	Soii	C. 3	78, 6A7, 75, 41, 84.	260	10
N1433	Tol.	18	S111룡․		See No	le Aoi	cos. $\substack{408 . \\ 008 .}$	4	Hulfer. 113261	$\begin{aligned} & 1311 \\ & 1186 \end{aligned}$	4	50i1	© 3	78, 6A7, 75, 41, 84.	260	10
P1417.	Vol.	18	SHP-82		See No,	le Abi		4	Bulfer 11:1261 liulfar.	$\begin{aligned} & 1114 \\ & 11386 \\ & 1114 \end{aligned}$	13	50ii	C3	78, 6A7, 75, 41, 84.	260	10
['1430, P143211.	$\begin{aligned} & \text { Youl. } \\ & \text { Sen. } \end{aligned}$	18	SH1P82 110500.			...	$\begin{aligned} & 0075 \\ & 4-818 \\ & 0188 . \end{aligned}$	4	[3ulfer [11201 Ifulfer.	$\begin{aligned} & 1314 \\ & 11886 \\ & 11111 \end{aligned}$	43	5011	C3	78. 6A7, 75, 41, 84.	301	10
J'A (Packard belaxe) Pls (Packard)	$\begin{aligned} & \text { ion. } \\ & \text { Youl. } \\ & \text { vol. } \end{aligned}$	$\begin{aligned} & 16 \\ & 16 \end{aligned}$	\mathbf{N}	\div			$\begin{array}{r} \text { 48. } \\ .25 .5-8 .{ }^{2} \\ .006 \\ \hline \end{array}$	14/15	Buffer. 11 N 241 Sise Nute. Butfer.	$\left\|\begin{array}{l} 1314 \\ .131332 \\ .1133 \\ .1314 \end{array}\right\|$	4	$5001{ }^{\prime}$	C3	38, 85, 37, 79, 8.1....	260 260	$M_{10}^{M(i .}$
PlID, PlXI (Puckerd).	Vol.	18	TRP605....	6	FS25 1	A51	$\begin{aligned} & 4-8 \ldots-10 \\ & .051 .8 \end{aligned}$	1 $1+15$ $\cdots \cdots$.		$\begin{aligned} & \text { \|1331 } \\ & 131335 \end{aligned}$ 1.114	42	500P	C3	44, 6A7, 75, 37, 79, 84.	260	10

MAILORY-YAXEEY RADIO SERVICE ENCYCLOPEDIA

Mallory-Yabley radio service encyclopedia

MAllory-yascey radio service encyclopedia

Matlory-yareley radio service encyclopedia

Mallory-yapeley radio service encyclopedia

MAILORY-YAXCLEY RADIO SERVICE ENCYClopediA

Mallory-yaycley radio service encyclopedia

Mallory-Yatiey radio service encyclopedia

Matlory-Yaxley radio service encyclopedia

Matlory-Yaxem radio service encyclopedia

Matlory-Yarley radio service encyclopedia

MALlory-Yarmey radio service encyclopedia

Mallory-yaxley radio service encyclopedia

MALLORY-Yascley radio service encyciopedia

Matiory-Ybueley radio service encyclopedia

Malloŕy-Yaseley radio service encyclopedia

Matlory-Yareley radio service encyclopedia

Matlory-Yareey radio service encyclopedia

Mallory-Yamey radio service encyclopedia

Mallory-yarchy radio service encyclopedia

MALLORY-YARELEY RADIO SERVICE ENCYCLOPEDIA

MANUFACTURER AND MODEL	CONTROLS						CONDENSERS				VIBRATORS			Types of Tubes Used	$\begin{aligned} & \text { 1. F. } \\ & \text { Peak } \end{aligned}$	Trans. Circult
	Use	Cir- cuit	Correct Replacement	Swlth	Blas	*Note	Original Part	Cireuit	Correct Replacement	*Note	Vibr. Conn.	Replacement	*Note			
Sparton-Continu$867 . ~$																
	Vol.	77	\mathbf{M}.				Al1073....	25	RS216.					6K7, 6A8. 6K76.		
	Tone	107					A1 4072.		WC3510.					6076, 6F66. 513.		
	Yol.	7	S!1P958.				1-1-1	3	Spenote.	. 131					\%	8
	Yos.	$\xrightarrow{111}$					A8123-1. A6, 11	26	1119830..					58, 21, 50, 47, 80.	172.5	1
	'Tone						A6611A.	26								
	Nup.	17	SH15i.					\ddagger	Sire: Nolr	. 131				С:¢ı, 182, 80		$\underline{2}$
	yol.	7	Su1p 51				132327	1	प1N273					(148) C1621s 80		$\bar{\square}$
	Vol.	7	shpl54...					\pm.	Smenole.	Bi1				C48A, C182A.		
	Yol.	87	500 M No. 1		Ser No,	10 A19	11139.	$2 \cdot$	118216.	\%						
	Tone	22	K12.	6			A1413:.	2.5	HNe.	. 13				$5 Y 36$ 6l5	4.5	1
1116X............	You.	15		6				21	118245.					$6 \mathrm{~K} 7,61.7,6 \mathrm{Ci}, 6116$, 6F6, 5\%3, 61:5	10.6	1
	Supp.	7	1				110372	1.5	TSIO1							
1166..............	Yol.	15,		6			A12330.	1	IN 215							
	Tone	22					A1122:3-1	9	11N212.					6F6, 5\%\%3, 61:5....	450	1
$\begin{aligned} & 1176.1176 \times P \cdot 1186 \\ & 1196 \ldots . . . \end{aligned}$	Supp.						Al0377.	1.0	TSt01.							
				6			A12330. A11223-1		[19245							
	Tone Supp.	$\frac{22}{7}$					$\begin{aligned} & \text { A11293-1. } \\ & \text { A103:7... } \end{aligned}$	21	T1N212.					6F6, 6E5, 5\%.3...	1.56	1
SIMENCER (See Truey	alue)															
SILIPYORK' (Sme 'Th	мmam A.	Edison	Ine:.)													
STANDAKI HABHO Standardyne 29 AC.	Coner.	11	1112......				2-1-5...	3	Sem Note.	.131				26, 27. 71A, 80...		11
STAR All Siar Junior. All Slar Senior 062, 06OA 61.	Vol.			66				3	CM173							
	yol.	8	1				8-8-8	3	148213.	. 1366					1	1
	Tome	21														
	Vol.	4.5						15	Tisiol		1	006		39, 36, 37. 38	20	
	Vol.	18						1	CN152		20	25.3	C 3	78, 77, 75, 11, 84	20.5	10
	Tone	22					$12-12$		TNil1	I314						
STAR RAIDEH (Ser	Continen	$\xrightarrow{\text { tal } 1 \text { Ral }}$	dio, Corp.)													
\qquad	O.															
		7	\%		16×150		2-2-1-3.	37	Spe Note.	. 111				214, ${ }^{27}$ 15, 80...		3
	$\begin{aligned} & \text { Tol } \\ & \text { Tone } \end{aligned}$	6	\%		\|6.450			3	See Note.	. 181				24A, 27, 45, 80.	18.5	11
		22			See No	io A										
25 (8 lube l'entorle).$26 ~$		6					8-2-4	3	Soe Nole.	. 113						1
		$4{ }_{4}{ }^{7}$					8-2-	3	See Note	. 133				51, 24A, 27, 47, 80	175	1
	$\begin{aligned} & \text { Vol. } \\ & \text { Yol. } \\ & \text { Yol. } \\ & \text { Yol. } \\ & \text { plono. } \\ & \text { lool. } \end{aligned}$	6					8-8.8.	1	Sme Note	13, ${ }^{\circ}$						
		7					2-3-2	3	Siee Nole	.131				27. 71 а. 80.		+.
		7					2-3-3	3	Se Note	. 111				15. 7 7. 80..		
		7						3	See Not	. 131				27, 45, 81 .		\ddagger.
		${ }_{7} 8$					2-3	3	Sec Note	. 131				4.3, 27, 80		7
	Vol.	$?$					--2-1	37	Sere Not	. 11				21A. 27, 45, 80		3
	$\begin{aligned} & \text { Vol. } \\ & \text { Vol. } \\ & \text { Phonos. } \\ & \text { Kol. } \\ & \text { Yol. } \\ & \text { rone } \end{aligned}$	$?$,	See Nol	. 131				27. 50, 81		\pm
${ }_{203}^{102 \mathrm{C}} \text { (Chaswis No. 22) }$		63 7					2-3-3	3		. 131						
		6	G					3	See Note.	. 131				24A, $27,45,880$	175	1
		22			Sce No	ic As									,	
$261,262,263,264$.					Sce No	le A.5	1-1-1-	3/13	Sem Noto..	.131				26. $27.71 \mathrm{~A}, 80$.		11
420 (Chassis No. ${ }^{\text {a }}$		7					8-8.	1	See Note...	. 133				94, ${ }^{2}$ \%. 71.80.		11
120 (Chassis No. 10		7					2-2	3	See Note	. 131		\ldots		211. 27, 45, 80.		3
121. 125 (Chassis No. 21)		6		6			8-8-8	3	CN155.	. 133				24A, 45. 80		
12.3 (Clamssis Vo. 23)		6						,	CN152					2.14, 45, 80		1
4.50 (Chassis No. 15)		7			EX 50			1	Sre Nolo..	.133.				2.4, - $^{\text {¢ }}$ 71, 80		11
450 (Chussis No. ${ }^{17}$) $600,60 \%, 630,63.5$. 612. 643. (Chassis No. 22)		7					2-2-3	3	See Note..	. $131{ }^{\circ}$				$\underline{-14,45,27,80}$,
	Vol. Toure	6	G12.		LEX 4.50			3	See Note.	. 131				$2 \mathrm{Z}, 2 \mathrm{~A}, 4.580$	185	1
		22			See.No	ie 4.5			Sen Nor					-7, 21.		
642H, 000 (Classis No. 26)	Vol.	7					8-2-4	3	Sce Note.	. 13				27, 51, 24, 47, 80	175	1
	Tone	39														
$\begin{aligned} & \text { 700. } 701 \text { (Chassis } \\ & \text { No. } 28 \text {) } \end{aligned}$	Vol.	6	ET				8-8	4	See Note	B3				51, 214. 17. 80.		1
$70.3,706,23$. (Chassis No. 26)	Vol.	7					8-2-4	3	Sor Note	. 133				51, 241, 27, 17, 80.	1:5	1
	Tone	4.4	112													
	0.			6					Sme Vote.	. 111				32, 30, 31.		
	lol.	T3	(i!2.....	6			7350	3	RSE13.	.nı	\ldots			51, 27, 45, 80.		1
${ }_{113.2 ~}^{\text {. }}$	$\backslash \mathrm{ol}$.	12	$1{ }^{1} 12$. .			21. 27.45.		
	Vol.	12	(112											21, 27, 45.		
1.	Vol.	19	(112				B-8	1	Siee Note..	133				35. 27. 45. 80		25
13.	lol.	12	(i) 12											24, 27.45		
	Yol.	(1) 12		6			i-2.	1	Sme Note.	i31				21, 45, 80		
Fiva......	Vol.	\cdots	I1P119..	6			$1-0$	1	Sre Nule.	. 111						
	Vol.	-	1111919...	6				1	Srav Nole.	. 111				21. ${ }^{21}$ 45. 818.		3
M. N. P. I)	Vol.	2	1\%1ग9...	6			8238.		118013.					2, 4, 81		
8 Tulwe Reveriver....	dol.	25	Ditilla.	6			8-8-4	3	Ser note.	. 113				24, $27.45,80$		\%
VA...	Tome	41														
	Vor.	6	112				8573	1	Cst33					-4, 31, 4, 80	5	1
	Onioi.	17	500. ${ }^{\text {N No. } 1}$		See No	te Al	$\begin{gathered} 6-10 . \\ 5-5 . \end{gathered}$	1.3	$\begin{aligned} & \text { CN152. } \\ & \text { TV160. } \end{aligned}$. 13	34	292	C3	$\begin{array}{r} 6176 \text { or } 78,6 \mathrm{~A} 7,75, \\ 11,6 \% .5 \ldots . . . \end{array}$	26:	10
$\begin{aligned} & \text { STRWSHT-WABNE: } \\ & \text { HOOA, B, E: (AC).. } \end{aligned}$	$\begin{aligned} & 18 \text { confr } \\ & \text { Vione } \end{aligned}$	113 23					66170.	3	CNiss.					24. 27, 15, 80.		3
				Mfr.										12A, 01A, 22. 71A.		
	Tone	23		.1.												
R101A, H1013....	Vol.	6	E12...				$\begin{aligned} & 67265 \\ & 67=64 . \end{aligned}$	4	$\begin{aligned} & \text { his2i } \\ & \text { hsall } \end{aligned}$					51 or 35, 24, 47, 80.		1

MALLORY-YASLEY RADIO SERVICE ENCYCLOPEDIA

Mālory-Yazley radio service encyclopedia

MALLORY-YKOLEY RADIO SERVICE ENCYCLOPEDIA

MAILORY-YAKLEY RADIO SERVICE ENCYCLOPEDIA

Mallory－yartey radio service encyclopedia

MANUFACTURER AND MODEL	CONTROLS						CONDENSERS				VIBRATORS			Types of Tubes Used	$\begin{aligned} & \text { I. F. } \\ & \text { Poak } \end{aligned}$	Trans． Cir－ cuit
	Use	Cir－ cuit	Correct Replacement	Switch	Bias	＊Note	Original Part	Cir－ cuit	Correct Replacement	＊Note	Vibr． Conn．	Replaco－ ment	＊Note			
TRANSFORMERCO 88 AC90．904．91．91A， （25－90，25－91）．．．	$\left\lvert\, \begin{gathered} 18 \mathrm{li}^{2}:-\mathrm{Con} \\ \text { Tone } \\ \text { Ton } \end{gathered}\right.$	$\left\|\begin{array}{cc} \text { ntinum } \\ 3 \\ 34 \end{array}\right\|$		6			2－2－2．5	28	See Note．．．	． 111				51，24A，47， 80.	175	1
	Yol． Tone Tone yol． tol． Tones	8	${ }^{\text {LuOlP }}$				8－8	28	115213．	． 1366				35．24A．27，17，80．．．	175	3
		3 3	1112 140010	6			8－8	28	ins213．	． 1366				$27,51,214,47,80$.	175	3
92， $\operatorname{AC91}$（25－9） ．		31	112\％	6					\cdots	－131						
		1.8		6			$\begin{aligned} & 1-1-1 . \\ & 1-4675 \end{aligned}$	2	See Nale CM172．	． 131	35	29.1				10
		158					$\begin{array}{r} 14767 \\ -2.5 \end{array}$	28	Shee Note	i31	3.	－			185	10
		31		6												
		1	Al	，			8－8	28	RS213	． 1866				51．27，15． 80	175	3
AC：20（25－200） AC2．6．	Fone 1 ol． Tone	4	${ }^{\text {A }}$ ¢	6			i－1	26	Sxe vote	． 11				35．52，15．24A， 80.	175	i
		$\frac{29}{15}$	J́cisoz	6			－－2－25	28	Spe Nute	111				24A．51，56，58，27，80．	190	
	Tone Yol． Tone	15 22	1.	6			2－2－2									1
211．．．．．．．．．．．．．．		15	UiS 503				$2-25$	28	Smo Note．	B1				51，56，27，47，80	175	1
AC260 ．．．．．．．．．．		1.5	USCS03	6			8	26	See Note．	п13				51，57，27，56，47， 80.	185	1
	lone low． Thone	109		6				26	Sse Note．	． B^{1}				51，27，56，46， 80	175	1
AC280（25－280） AC300 \qquad	$\begin{aligned} & \text { Ton } \\ & \text { Yol. } \end{aligned}$ Tone	22		6	Seenot	te A19	6 －8	31	See Note．	． 13				54，56．16．82	175	3
	$\begin{aligned} & \text { Tome } \\ & \text { You. } \\ & \text { lone } \end{aligned}$	－ 2	500M Ns． 1	6	seno	le Aly	6－d									
$\begin{aligned} & \text { AC320. } \\ & \mathbf{A C}(3: 30 . \end{aligned}$	$\begin{aligned} & \text { supp. } \\ & \text { yol. } \\ & \text { yol. } \end{aligned}$	20					8－1	93	CM171	13				57，34．47， 80	185	I
		1.5	ЈС̇us				1 P 51	23	CM175					54，5\％，50，15， 80	175	1
360	$\begin{aligned} & \text { fol. } \\ & \text { Tone } \end{aligned}$	15	10：503	＂			11516	23	CM175．					＇58，5\％＇，56，\％6， 80	175	3
		21		0												
$400 \mathrm{AC}-\mathrm{DC}$ ．	Vol．	7					${ }^{8-8}$	6	CN148．			．		39．36，38，25\％5		
$\mathrm{AC} 420$422, 423. 425	Vol． Vol．	17					${ }_{2} 16.16$	11	UR182	． 1331				6А7．78，75，43，25\％5．	\ddagger	
								15	TS101							
		98						11	CSI_{12}						165	
$\begin{aligned} & 440 \ldots \\ & 450 \ldots \\ & 470,472 \end{aligned}$	Vol．						12，6332	11	CS123．							
		98					121719	11	UR18\％	1331				647 77，43， 2525	65	
	Yol．	56					12.4737	$\begin{array}{r}29 \\ 29 \\ \hline\end{array}$	UR190）．	1372					465	1
	Tone	17 22	UC503				［144．3	${ }_{15}^{23}$	CM171．					58，2A6，47，56， 80.	465	1
480.	Yol．	15	UCS03				P451．	34	CM175．					58，56，59， 573	465	3
	Tone	21		6			12． 1585	15	TNil3．							
490.	Sen．	56	UCS503				1－196	28	CM173	is3				54． $55.53,56,80$	亿示	3
500.	Tone	$\stackrel{22}{15}$														
	Tone	${ }_{22}^{15}$														
TRANSITONE－－See																
	Philso 18	adio \＆	Television	orp．												
$\begin{aligned} & \text { TRAV-LER RAIIO } \\ & \text { ACSG-DX...... } \end{aligned}$	\＆TELE	${ }_{6} \mathrm{~V} 1510$	N CORP. 012					30	See Note．	B1				21A，15， 80.		3
	Screen	12	А咅ip．					－	S							
C．．．．．．．．．．．．．．．．	$\begin{array}{c\|} \text { Syreen } \\ \text { Yol. } \\ \text { Vol. } \\ \text { Vol. } \end{array}$	12	A5M				－－1	3	See Note．	${ }_{113}^{181}$						3
		106	1：12．					1	So Note．	1181				35，27，17，80	\％	1
$\begin{aligned} & \text { SG-DC..... } \\ & \text { SG-DXX.i.. } \\ & \text { TraviLe TRF } \end{aligned}$	Tone Vol． Yol． Vol． Yol． Tone	4														
		8	Y50MP				${ }_{-1}^{8-8}$	3 3	See Note	${ }_{131}{ }^{181}$				$244.45,80$		
		6						4	CM 1					51， 214.4580		1
		6	1812				－1	30	Soe Note	131				26．24，15， 80		28
		31	${ }_{4} 12$													
8 Super	low．	6					8－8－2	31	Sme Note	i13					\cdots	1
		41					1－8	30	See Note	， 13				\＃1．214．2\％\％60．	175	1
S8	Tone	41	ki2													
S9．	Yol．	100					＋－2	4	See Note	． 11				35，27，17， 80	175	1
		． 6					16－1	27	1 M 257	133				616，6С6 $3, \pm 5$		
50 S	yil	18	N				4－8	23	CM17	183						1
	Yol．	18					6－10	23	CM182．	${ }_{13}^{133}$						10
5.1	Vol．	18	$500 \mathrm{M} \mathrm{No}$.		Ser No	：e A1	5－10	4	${ }_{\text {lin262 }}$	183 1314	35	201	（．3）	647，61）6，25．12． 81.	456	10
56.	Vol．	116						12	CS121					31，32．33，iE1		
		18					8－16－1	11	lint82	B3：1				$\begin{array}{cccc}417.6116 . & 85 & 43 \\ 25 z 3\end{array}$	．．\ddagger	
63 A.	Vol．	18					$8-8$	23	115213	186						
														6 F6．5ZA，or 6A7， 6136，7．5，42， 80.		，
6.1.	Vol．	18	500．M No． 1		Smon	Ie Al	6－10	4	See Not	133	35	294	C3	6А7．61）6． 75.12 .81.	6．6，	10
	Vol．						8－82	1	CNuffer	.$_{183}^{183}$	48	Ser Vint	－ CH	34． 1185.1 1，166． 30	．\ddagger	10
		18					02		liulfer．．	1314						
$\begin{aligned} & \text { TROPIC-IHE } \\ & 06 W \end{aligned}$	Tors						8－16．	1	CN13．		$\stackrel{1}{2}$	210	C	78，72，85， 41	202	26
		11	UCS02					13	CSIL1		12	23.	C．			
								1.5	TSIE1							
TROY RAIIOMFG．	Vol．													6156．6C6． 12.80		
4 ¢ube Tisif．	Vol．	6	112				1－4．	2.3	C\170．	． 113				58． 5.24 .8 80．．．．		，
515,5115 14.	yol．	17	N	6°			1－4	$\stackrel{3}{23}$	CM170	． 183					46.5	1
	Vol．	6	$\mathrm{Gi2}$				1－4	$\stackrel{23}{23}$	C C 11780	－ 183				58，5R，5\％， 24.7 80．	465	I
	Vol．	17	（iij	6				$\stackrel{23}{23}$	C．${ }^{\text {Cli }}$	． 113					465	1
12	vol．	6	（1）2		EX300		1－1	23	CM170	113				6A7．6F＇，12， 80.	465	1
16.	Tone	92													165	M（；
52.	Vol．	17	$500 \mathrm{M} \mathrm{No}$.		See No	le Al	5－5	15	TM110．	．n． 3				6A．，пои，\％s．	Ho	
	Yul．	17		6			1.4	$\stackrel{3}{15}$	CM170．	13				$2 А 5,246,24 \%, 58,80$.	465	1
53.	Tone	23	K12				10.	15	TS101 ${ }^{\text {cho }}$							
54.	Tour	1789		6			10.	15	TS1010					¢Y 3 ，	46.3	
	Yol．	\％					8－8	23	CM172	133				2А5．2A6，2АС．38， 80.	16.5	1
56.	Tone	$\stackrel{20}{17}$	$\underset{500 \mathrm{Mi}}{\mathrm{K}} \mathrm{No} \mathrm{O} \mathrm{O}$		See No	te Al		15	CN150．	．133				616，6А 7.85	175	Mi
			－1 No．				5－5	15	TNIIO							

Mallory-yareley radio service encyclopedia

MALLORY-YASREY RADIO SERVICE ENCYCLOPEDIA

MAILORY-YAXELEY RADIO SERVICE ENCYCLOPEDIA

MAILORY-YASCLET RADIO SERVICE ENCYCLOPEDIA

Mallory-Yareney radio service encyclopedia

Mallory-yarey radio service encyclopedia

Mallory-yancy radio service encyclopedia

manufacturer AND MODEL	CONTROLS						CONDENSERS				VIbrators			Types of Tubes Used	$\begin{aligned} & \text { I. F. } \\ & \text { Prak } \end{aligned}$	Trans. circuit
	Use	Cir- cuit	Correct Replacement	Swith	Bias	*Note	Original Part	Cir-	Correct Replacement	*Note	Vibr. Conn.	Replacement	*Note			
WELLLSG;ARIDNER 51: Series (25FI, 25 E5). 5 (i Series (35 (isio, 35(:560) 5 Tube 1). C. Miviel	\& CO.-	Conti	atued													
	Vol.	97	T141962....				1880068	12	CSI21					32, 34, 30, 19.	175	
	Vol.						P45X28	12	CSI21.					3-6 34, 30, 19.	17.5	
	Vol.	${ }^{97}$	1112.....	1.			P45X28	12							175	
	Tone	17														
613 Series (26131, 26135)	Vo	17		6			182002	1/15	CM173		32		(:16	6)6, 6c6, 75	1%	ii)
	Vol.	56					1810	23	CM172		20	F-5.5.	C.3	6137, 12A5.		
	Tone	34	118.502						Buffer.	. 1814				1:\%3	5 5	10
6C Series.	Tol.	17	U'C502				${ }_{1}^{18810.42}$	$\begin{array}{r}23 \\ \stackrel{3}{2} \\ \hline\end{array}$	RS215. HS216.					6166. 6AT, M2, 6137, 80	456	1
							181003	15	T'S101							
	Vol.	18		1.4			45×212.	12	CSI21.					ic6, 34.1185 30	156	
	Vol.	56		6	Sce No	te A8i	E15 X2113..	1/15	SR601/TSioi		18	24	C3	6К7. 657, 6137, 11 ,		
	Tone	22 18	O. ${ }^{\text {UCSisi }}$	6			${ }_{4} 005 \mathrm{X} 21$	\cdots		$[1314$	35	294	C3	616........8, 61)6, 6С6,	175 175	10
	Tone	22	UC502				${ }^{10075 .}$		Buffer.	114	3	-				
6N, 6R.	Vol.	17 34 3	Order from UC502	Mfr			1545906C..	$4 / 15$	CMi71/7Sta		33°	\cdots	Cis	61)6, 6С6, $95,41,8 i$	175	10
6S (26S1)	Vol.	17	UC511.	6			45×204	i	CNI5.		20	253	C3	6D6. 6C6, 75, 41, 84.	175	10
	Tone	22					45X203	15	TN111	1314						
6 Tube 32 Volt.....	Vol.	56					ir8iol	23	CM172		20	F253.	C3			
	Tone	3.4	ICSO2						Buffer	1314				İ\%3............	17.5	10
6U Series (26U1)...	Vol.	18 22	U6511.	6			${ }^{1}+81028$	15	CN152 TN111		20	25.3	13	78. 77. 75, 41, 81	262	10
									Buffer.	1314						
$\begin{gathered} \text { 7C Series (27C1, } \\ \text { 27C5)... } \\ \text { 7 Series } \\ \text { 27D5) } \end{gathered}$	Vol.	45					P810	12	CM16.					34, 30, 19	175	M(\%
	Vol. Tone	56 34	$\stackrel{N}{\mathbf{U}} \dot{\mathbf{C}}$	6				4 4 4 4		. 11810				76. 6116, 6177, 42, 80.	456	1 \cdots $\cdots \cdots . .$.
$\underset{(37(5508,37 G 566)}{\text { 7GM Series }}$	Tol.	${ }_{34} 7$	DRP314. UC502	6	See No	te A59	4.4	${ }_{23}^{23}$	RS 216.					6K7.6137, 6F6, 76, 80.	456	1
$\begin{aligned} & 711 \text { Series }(3711508, \\ & 3711566) \end{aligned}$	Yol.	45		18				12	CS126					31. 1C6, 30, 19	456	
	Tone	4.4					44×1	23	RS216						6	
	Tone	34	UCisio				44×10	23	RS216.						6	
	Vol.	7/56	DR131	6			44×10	${ }^{23}$	RS 16.					бк7,76, 6в7, 6F6, 80.	456	I
	Tone	34 20 20			See No	te	4.1×11	23 23	HS216.							
	Tone	34	Order from	Ufr..	See .	te Als	$4 \mathrm{4} \times 1$	${ }_{23}^{23}$	ITS216.					6, 60.3 67, 6F\%.		
							41×209	15	TSi01.							
71'.................	Vol.	18		6			45×217	12/15	TS107/TSioi					6 ¢ $7,6 \mathrm{AB}, 6 \mathrm{A6}, 8 \overline{5}, 43$	156	
8T (AC).........	Yol.	2/7						$\cdots \ddagger$	See Note	. 131				24A,		3
	Tone	41						-	Sed	-1in				A,		3
$\begin{aligned} & 9 \text { in Line. . } \\ & 9 \mathrm{~B} \text { Series }(29 \mathrm{~B} 5) \end{aligned}$	Vol.	$1 / 15$	$\mathrm{p}_{\mathrm{p}} \mathrm{p}^{\text {P24 }}$				${ }_{\text {-1 }}^{\text {2-1-1-1.5 }}$	-3 ${ }^{3}$	See Not	131				${ }_{34}^{26,} \mathbf{3 0}$ 24, $19.45,80$		9
	Tone	41					1882001.	24	CN141					34, 30, 19	456	
10-7 Tube Super...	Yol.	103	F		2		8 8-8	23	issi3	1366				35, 244, 17, 27. 80.	175	3
20 Series	Tone	103 78					8-8-8	30	HS213	. 1366				35. 27. 47. 80		
	Tone	41		6												
. .	Vol.	111	Y5M1				i 180896	30	CM173					35, 24A, 42, 27, 80	175	3
40A.	Tone	34 14	UC502				[1880878.	13 30	${ }^{\text {CSM121 }}$							
	Tone	34	UCSOO				1880878.	13	CS121.					35,	175	
50	Vol.	¢ \ddagger	Sl1P271				1'80196.	4	HS213					35, 24A, 47. 80	175	7
	Tone	34	UC502.				P80878C.	13	CSI21.							
60,63............	Vol.	6	T111500	7			IP80849. 1808.48	2.5 25						21A, 15. 80		1
72	Yod.	6	$1{ }^{1} 12$				-.... \ddagger	... \ddagger	See Note	isi				$214,27,45,80$		1
	Tone	2/7						. \ddagger	See	B1						
80	Tone	41	0.						see	is						
80A, 82.	Yol.		D	6				- \ddagger	See Not	i31				214. 270 , 45		3
	lione	4	ORi3ia					12	CSI21						175	
161, 162..	Vol.	6	TR15600	\div			1P8i8i49	25	HS213					-14. 45.80	1 1\%	1
$\begin{aligned} & 200,291,292,295 . \\ & 322, ~ . ~ . ~ \end{aligned}$							1880818.	25	HS213.							
	Vol.	1/15	17112.41.					33	Ste Note.	. 161						9 3
	Tone	41	UC502					30	HS213.					.8. 56, 57, 46. 8	$1 \% 5$	3
	Supp.	8	F				4	30	HS211							
	Yol.			6	3		8.8	19	CMIT2	.13				57, 35, 47. 80	175	
502.....	Yol.	15		6			TR8093	30	CNIS5.					58. 57. 56. 17, 80	175	1
	Tone	22					80873.3 80878 C	30 13	${ }_{\text {CSIL }}$							
572 (A	Vol.	*.	SIPP2:				8189413	4	СМ172					58, 57, 47, 80	175	7
	Tone	3.1	UC5502				8089113	13	CS121.							
872 Steries	Yol.	- ${ }^{\text {a }}$	Silp ${ }_{\text {UC502 }}$				8089.913. 8089113	13	CM172.					58, 57, 47, 80.	175	7
C-C. (yist and 2nd types)																
	Vol.	60/15	DR1P93.		See No	le 44	-1-1-1	59	See Note	131				26. 24A, 45, 80.		9
V6\%2, $\mathbf{7 6 \% 1}$.					See No	te A27										
	Vol.	17					P880956	$25 / 19$. 13126	34	292	(:12	78, 77, 75, 41, 84	262	10
							180937.		$\begin{aligned} & \text { IRN231. . . . } \\ & \text { IBuffer. . . . } \end{aligned}$							
$\begin{gathered} \hline \text { WESTERN AUTOSU } \\ 062,062 \mathrm{~A} . \ldots . . . \end{gathered}$																
	Pricy C	45	Netone, Wells	-Gard	ner)											
	Tone	34	UĊ502				4.	1.5	TS105.		1	206		39, 36, 37, 41	262	
06W.	Vot.	56	N .				16-8	1	CNis5.		2	210	C3	78, 77, 85, 11	262	26
	Tone	41	UĊ502					15	${ }^{1} \mathbf{S} 10.5$							
06%.	Vol.	18					1880956....	$2.5 / 19$	RM262/TS102		34	292	C. 12	78, 77, 41, 8.t. 75.	262	10
							1880937..... .12	$14 / 15$	RN231....	${ }^{13127}$						
6 S.	Vol.	17	UC	6			45×204	1	CN152	. 1	20	253	C3		175	10
	Tone	22					$45 \times 203 .$	15	TN111	814						
6 U.	Vol.		UC511	6			1P81028.	i'	CV152		2i1	25.3	© 3	¢ı. -170	262	i0
	Tone	22	UC502.				181021.	15	TN11.							
							. $01 . .$.		Buffer.....	1314						

MALLORTY-YRSELY RADIO SERVICE ENCYCLOPEDIA

Mallory-yasley radio service encyclopedia

Mallory-ynorey radio service encyclopedia

MAllory-Yascey radio service encyclopedia

MATLORY-YABEEY RADIO SERVICE ENCYClopedia

Mallory-ynacey radio service encyclopedia

Mallony-yasery radio service encyclopedia

\ddagger Data not substantiated.

* IMINRTANT: Head Notes in Note Section if apecified in Note Colemn.

CURRENT CAPACITY TABLE-Yaxley Controls

- In many instances it is necessary to have reference to a table which will give the approximate corrent value which can be applied to a control.
In presenting these tables we wish to call your attention to the fact that the current capacity of a control is limited by certain considerations, such
as ventilation, temperature of surrounding air, and voltage applied to the control.

We advise the full consideration of these factors when using either of the I wo talles given.

Overall Resistance Value	Catalog Number	Safe Current (at any pmint on the controil)
5,000	YSMP	20 Milliamperes
10,000	Y10M1	15 Millizmperes
20,000	Y20M11	10 Milliamperes
25.000	1031P	. 7 Milliamperes
50,000	150.11	. 6 Milliamperes
100,000	$1100 \mathrm{M1}$. . 4 Milliamperes
200,000	Y200311	2 Milliamperes
250,000.	12.5011	1 Villiamperes
500,000	Y00011	1 Milliamperes
1,000,000.	11000 NII	. 5 Milliamperes

(CURRENT TABIE FOR No. \& TAIEL (IINEAR) CONTROLS

CURRENT CAPACITY OF YAXLEY No. 2 RIGIIT HAND TAPER CONTROLS (in Milliamperes)

Hotation from Right to Left, starting point at full Clockwise rotation.

Resistance in (h hms	Catalog Number	10\%	25\%	50\%	75\%	100\%
10.000	UC501	70	4.5	22.5	11	10
25.000	J	5.5	34	14	7	6
50,040	K	40	24	10	5	4
75,000	Z	33	19	8	4	$31 / 2$
100.000	$1 \mathrm{UC.10}$	20	12	5	$21 / 2$	2
2.50 .000	1C.509	13	5	3	$11 / 2$	
500,000	UC513	9	.	2	11/2	1/2

Yaxley Universal Single Controls

$\xrightarrow{\text { Ohnms }}$	Taper	Ceneral Itse	Type Element	Catalop Number
2	IV	Iijlament	W.W.	Q
$1{ }^{6}$	IV	Vilament	W.w.	R
20	IV	fiolament	W.w.	S
30	IV	Fiflament	W.w.	U
60 100	IV	Filament	W.w.	V
200	IV	Misc.	W.W.	W
400	1 V	Misc	W.W.	$\mathrm{X}^{4} \mathbf{0} \mathrm{l}^{2}$
500	IV	Ant.-Shu	W.w.	
550	IV	Bias....	W.w.	A550p
1 M	IV	Voltage i) ivider (i3ias)	w.w.	AlMi
! M	11	Ant. or Pri, Shunt Bias.	W.w.	
2 M	IV	Voltage Divider (Bias)	W.W.	UC500
2 M	1	Ant. or Pri. Shunt. . .	W.W.	* ${ }^{\text {A2M }} 12$
2 M 3 M	IV	Rias..	w.w.	- ${ }^{(12}$
3 M 3 M	IV	Voltage Divider	w.w.	* $\mathbf{3 M P}^{\text {P }}$
3 M	11	Ant. or Pri. Shu	W.W.	${ }^{1} 1{ }^{12}$
3 M	V11	Ant.-Biä.	W.w.	${ }_{-}{ }^{-}{ }^{\text {P }}$
5M	IV	Voltage livider.	w.w.	*A5M ${ }^{\text {P }}$
5 M 5	1 V	Voltage Divider (Bias, Screen)	Carbon	Y5MP
5 M	1	Ant.-Shunt or Ant.-Hias	Carbon	E12
5 M	VII	Ant.-Bias	W.W.	*E
7500	I	Ant-Slunt or Ant.-Bias	Carlon	- ${ }_{1}{ }^{7} 12$
7500	11	Bias.	W.W.	*F
7500	VII	Ant.- Hias	W.w.	${ }_{-17}{ }^{\text {F }}$
10 M	IV	Voltage Divider (Bias, Screen)	W.W.	*A10MP
10 M 10 M	IV	Voltage Ibivider (Bips, Screen)	Carlon	V10MP
10 M	II	Ant.-Shunt or Ant.-Bias, Tone	Carbon	* ${ }^{\text {12 }}$
10M	11	Bias.	Carbon	${ }^{*}$ U'C501
10 M	VII	Ant.-13ias. . . ${ }^{\text {a }}$,	W.W.	* ${ }^{1} 7$
15 M	II	Ant.-Shunt or Ant.-Bias, Tone	Carbon	1112
15 M	VII	Ant.-Bias	W.w.	* ${ }^{\text {H }}$
20 M	IV		w.w.	*A20MP
20 M		Ant.-Shunt. Ant.-Bias. Screen	Carbon	
25 M 25 M	IV	Voltage ISivider (Screen)	Carbon	Y 25 MP
25 M 50 M	IV		Carbon	
50 M 50 M		Screen Voltage, Tonc	carbon	K12
50 M	11	Bias.	Carbon	
75 M 75 M	II	Screen Voltage. Ton	Carlon	Z12
100 M	IV	Voltage i) ivider (Bias s.ran)	carlon	Y100M ${ }^{\text {P }}$
100 M		RF or AF shunt. Screen, Tone	carloon	1100 MT
100 M	II	Bias or Ant.- Bias (AC-I) ${ }^{\text {c }}$)	Carlon	U'510
150 M 200 M	IV	Tone, RF or Al Shunt	Carbon	UC502
2.50 M	IV	Voltage Divider. Misc	Carbon	Y 200 MP
250 M	V	Audio Tone, RF or AF Shunt	Carbon	$\mathrm{M}^{250 \mathrm{M}}$
250 M		Audio (Automobile). ${ }^{\text {a }}$	Carbon	+UC511
200M	IV	Bias. Ant.- Bias (AC-I)C)	Carbon	UC509
500 M		Aoltage Rivider Misc.	Carbon	Y500M1
500 M	1	Audio (Automobile)...	Carbon	
500 M	11	Audio (Automobile)	Carbon	$\begin{aligned} & \text { OCOF } \\ & +\$ \mathrm{UC} 15 \end{aligned}$
500 M	11	Bias, Ant.-Bias. Bias-Audic	Carbon	UC513
750 M	IV	Tone, Audio, Audio Shant	Carbon	UC503
1 Meg.	IV	Misc. . Audio Audio Shunt Tone	Carbon	$\bigcirc 1000 \mathrm{MI}{ }^{\prime}$
1 Meg .	1	Audio, Audio Shunt. Tone Audio (Automobile).	Carbon	
2 Meg .	,	Audio. Audio Shunt. Tone	Carbon	
3 Meg .		Audio Shant. Tone.....	Carbon	UC504
4 Meg.	I	Tone. ${ }^{\text {Audio Si }}$	Carbon	UC505
5 Meg.	11		Carbon	UC.506 UC507
9 Meg .	I	Audio Shunt.	Carbon	UC508

*Has exclusive Yaxley Adjustable Bias Feature. W.W.-Wire Wound Element
†t1as long, adjustable Sloted Shaft for Automobile Receivers and Special Shaft Coupling
Yaxley Universal Dual Controls

Ohms Resistance		Taper		Type Flentent		General Use	Cat. No.
Front	Rear	Front	Rear	Front	Rear		
10 M	5M	VII	IV	W.w.	W.w.	Ant. Shunt and Bias.	CF
10M	10 M	VII	iV	w.w.	W.w.	Ant--Shlunt bias or Ser	(16)
10M	50 M	IV	IV	Carlon	Carlon	Ant.-Sluut Bias or screen	(i)
50 M	50 M	IV	1 V	Carlon	Cartoun	(irid Shunt and cathole Control.	+ド
100M	100 M	1	I	Carlon	Carbon	Autio Shunt in Push-1'ull. . ${ }^{\text {S }}$,	LL
100 M	250 M	I	I	Carlon	Carion	Audio Stunt. Tone, Screen or R1F shunt.	
250 M	250 M	I	I	Carlon	Carlon	Audio Shunt in jushi-puail	$\mathbf{M M}$
250 M	500 M	1	I	Carlon	Cartoon	Audio Shunt and Tone Compen.	
500 M	500 M	1	1	Carbon	Carbon	Audio Shiont in prush-puil	MN NN

*Formerly DR1'192 †Sce DRP 308.
Yaxley Universal Tapped (TRP) Controls

Catalog Number	Total Resistanc	$\begin{gathered} \text { Tapped } \\ \text { Ohiths } \end{gathered}$	Used	Catalog Number	$\begin{gathered} \text { Total } \\ \text { Ohming } \\ \text { Resistance } \end{gathered}$	$\begin{gathered} \text { Tapped } \\ \text { Shms } \end{gathered}$	Used
TRPrax	8 M	2500	Vol.	TRP612	2 M	25000	Vol.
TR19601	30M	61060 304610	Vol.	TR1'613	${ }^{2} \mathrm{Mag}$	40COM()	Vol.
TRP'603	250 M	125000	Voi.:	$\mathrm{TRP}^{6} 615$	35 Meg .	$1^{1 / 200}$	Vol.
			ilpano.	${ }^{\text {TRP }{ }^{6} 616}$	500 M	50000	Vol.
TR P605	350 M	55000 5000	Vol.	TRP'617	60 M	10000	Vol.
			Phono	TRP'618	2 M 500	200 M	I.
TRP'607	500 M	250000	Voi.			100 M	
TR1P608 TRP'RO9	1 Mer.	200000 500000	Vol.	TRP620	23	${ }^{1} \mathrm{Meg}$	Vol.
			plion		23	5800 M	
TRP'610	$\begin{aligned} & 1 \mathrm{Meg} . \\ & 1 \mathrm{Meg} . \end{aligned}$	20000 170000	Vol.	TRP622	44M	$\begin{aligned} & 7000 \\ & 14000 \end{aligned}$	Vol.

Yaxiey Universal Hum Controls

Ohms Rexistance	(ieneral lye	Type Element	Cat. Number
11.	11 mm	W.W.	$1{ }^{1 / 6}$
20.	1 lnm	W.W.	114100
30.	1 lmm	WW.	11130
75.	Hum	W.W.	H150
100.	Нит	W.W.	110760
$2(10)$	lium	w.w.	(11)20\%

Yaxley Special Single (SRP) Controls

Catalog Number	Ohms Resist.	Type Element	Used As
SR1P33	2 M	W.W.	
	4500	W.W.	Vol, son.
SRP139	5550	W.W.	Vol.
SRP141	1200	W.W.	Vol.
SRP144	${ }^{2400}$	W.W.	Vol.
SRP145	${ }^{2} \mathrm{M}$	W.W.	Voi.
SRP152	${ }_{60}$	Carbon	
SRP153	13 M	w.w.	Phons. Vol.
SRP154	50 M 5050	Carbon	Voual
\$R1P170	75 M	Carlon	Vol.
SRP179	12.5 M 150	Carkon	Vol.
SRPP188	32 M	Carlon	Vol.
SRP'213	${ }^{2350 M}$	Carbon	Vol.
SR1 2	${ }_{1} \mathrm{M}$	W.w.	Vol.
SRP1220	250 M	Carbon	ol. T Tone
SRP241.	${ }_{6} \mathbf{4}$	W.W. Strip	Vol.
SRPr245.	32 M	Carbon	Vol.
SRP 251	250 M	Carbon	
SR1252	500 M	Carbon	Vol.
	${ }_{3}^{4000}$	W.W.	Hum
SR1255.	15 M	w.w.	Vol.
SRP256	10 M	Carbon	Voi.
SRP258	15 M	Carbon	Vol.
SRP259	50 M	Carbon	1 'hono.
$\mathrm{SkPr}^{2 / 261}$	100 M	Carbon	Vol.
SRP263	1500	W.W.	vol.
SRP264	${ }_{650}$	Warbon.	Vol, Voi.
SRP265	200	ww:	Hum
Ser ${ }^{\text {SRP266 }}$	600	W.W.	1
SRP268	8 M	W.W.	Tone Beam
SRP269	10 M		Vol.
SRP270	15 M	H.W.	Vol.
SR ${ }^{2} 272$	${ }_{300}^{150}$	W.W.	Vol.
SRP'273	500 M	Carbon	Voi.
SR1275	500 M		Vol.
SRP276	3 M	Carbon	Regen.
SRP278		Cartoon	
SRP279	50 M	Carbon	Voi.
SRP1 ${ }^{\text {S }}$	${ }_{3500 \mathrm{M}}$	Carbon	Vol.
SRP ${ }^{\text {SkP2 }}$	350 M	Carbon	Vol.
SRP383	2500	W.W.	Vol.
SRPM01	${ }^{20 \mathrm{M}}$	Carbon	Voi.
SRP1960	${ }^{800}$	W.W.	Vol.
SRIP962.	260 M	Carbon	Vol.

Yaxiey Special Dual (DRP) Confrols

Catalog	Ohms Resistance		Tyse Element		$\underset{\mathrm{As}}{\substack{\text { Used }}}$
	Front	Rear	Front	Kear	
IRP14.	250	${ }_{5}^{50}$	W.W.	W.W.	Vol.
DRP116	Stacli.	3 Spol.	Carlon	W.W.	Vol.
10RP17	540 30	2506	WW:	W.W.	Vol.
1)RP122	${ }_{645}$	10 M	W:w.	W.W.	Vol.
${ }^{1 / 2}$ R169	7500	10 M	W.w.	W.w.	Vol.
DRP22	70 M	100M	${ }_{\text {Carbon }}^{\text {Carbon }}$	Carbon	Vol.
DRP232	3 Meg .	3 Mcg .	Carbon	Carbon	Voi.
$1) \mathrm{RP} 240$	250 M	10 M	Carbon	${ }_{\substack{\text { Carbon } \\ \text { Carbon }}}$	Vol.
IRRP241	${ }_{5} 5$	150 M	Carbon	Carbon	Vol.
DRPP43	10M	500 M 750 M	Carbon	Carbon	Vol.
DRP244	25 M	6 M	Carbon	Carbon	Vol.
DRP245	${ }^{1} \mathrm{Meg}$.	${ }^{3} \mathrm{Meg}$.	Carbon	Carbon	Vol.
DRP250	50 M	1 M	Carbon	Carbon	Vol.
DR Pr ${ }^{\text {P }}$	50M	2500	W.u.	Carbon	Vol.
DRP303	2500	100 M	(arbon	carbon	Vol.
$\mathrm{P}_{1} \mathrm{RPPr}^{304}$	1 Meg .	${ }^{3} \mathrm{Mcg}$.	Carbon	Carlon	Vol.
PRP306	${ }_{5}{ }^{\text {M }}$	10M	W.W.	(arlon	Vol.
PR1,307	${ }^{3 \mathrm{M}}$	12M	W.W.	carton	Vol.
1) RP309	12M	65 M	Carbon	Cartion	Vol.
DRP310	${ }^{25 \mathrm{M}}$	27 M	Carbon	Carbon	Vol.
DRP311	150M	${ }_{\text {cosem }}^{250 \mathrm{M}}$	Carbon	Carbon	Vol.
DRP312					
PRP33	1000	500 M	Carbon	Carbon	Vol.
DRP314	$\stackrel{500 \mathrm{M}}{2} \mathrm{Meg}$.	-2500	Carbon	Carbon	Vol.
DRP316	200 M .	1 M	Carbon	Carbon	
DRP317	500 M	1 M	Carbon	Carbon	Vol.

"A"

RESISTANCE VAIUE

What control value should I use for thls circult ? What type control of 10,000 ohms should I use? Do I need a certain value control for a certain use?
Here follows a complete explanation.
The most common misunderstanding is that of resistance value of a control. This is due to the general lack of information on the tolerance of resistance value.

Many servicemen will be amazed to learn that this tolerance is often very dreat. In one instance, a tolerance of plus 40%. minus 25% was allowed. Think of it. This means that if the nominal value is 10,000 ohms, the control will be acceptable and will give good performance if its resistance Is anywhere between 7500 ohms and 14,000 ohms inclusive. Nominal tolerance of carbon controls is plus or minus 20% from stated value. Yet many servicemen fear to use a 10,000 ohm control. (of proper taper) to replace one of $11,000 \mathrm{ohms}$. This is ridiculous.

Always Remember-"RESISTANCE VALUE IS NOT CRITICAL BUT TAPER MUST NOT BE CIIANGEI." This rule will save time and worry because the resistance value need only be sufficient to give full control. Thus, it should be great enough that weak stations may be heard at their full strength, and yet it should not be so great that difficulty is encountered on local stations. Simple, isn't it?

Consider an actual case, wherein the specified value is 12,500 ohms. This is readily replaceable with a $15,000 \mathrm{ohm}$ control. Warning! Of the same taper. 15,000 ohm control. W
(Remember the rule.)

In many instances this control is replaceable with a $10,000 \mathrm{ohm}$ control (of the same taper). To a certain extent, this is controlled by circuit action. (See "Circuit Action"-page 104.) To sum up."RESISTANCE VALUE" IS NOT CRITICAL BUT "TAPER" IS CRITICAL.

TAPER

"Taper" is the most important consideration in replacing a control.
Io you know that Taper is a complex question involving the human ear, as well as tube action?
Can you select the correct taper without hesitating?
Why aresome controls smooth and others jerky? Make all your replacements function smoothly. Make your work easier. Understand "TAPER"the most important control consideration.

Taper is the key to successful control replacement. Taper is simple, yet there is more misinformation and lack of information on this subject than on all others. bet us glance at at common taper grajh. Where we see a
graph with lines running in every direction, with little if any explanation as to what they mean. But remember, tajner is as simple as A B C , regardless of all clainıs.

"Left Hand" (Yaxley No. 1) and "Ripht Hand" (Yaxley No. 2). Period!

Popular usage has defined "Linear" as a "Taper," therefore it will be listed as such.
In addition to the two basic tapers, Yaxley lists the III (3), a combination of tapers I (1) and II (2), for "special" (SRP) controls. Also, the VII (7) taper (in wire wound controls only) for special use as a replacement for Aat.- Bias circuits, or to replace shunt controls for circuits designed before it was possible to trols for circuits designed betore it is not desirable make logarithmic types of taper. It is not desirable
to have a large and confuning array of slighty different tapers, because they are necessary only in special circults (for which Yaxley supplies SRP [special] controls).

Vaxley tapers are controlled by a new and exclusive design as shown in Figure 37.

This views a tapered element (Yaxley No. 2 right hand taper, with switch) and shows the method of tapering a control by "Geometric Design," mathetapering a control by "Geometric beskn, The only matically cafculated and field checked. The only
real solution to the problem of taper. Notice that real solution to the problem of taper. Notice that
the tails of each section fade into the next section the tails of each section fade into the next section
(marked bs; the ball and arrows) and that the "Roller" which does not roll, contacts a gradually increasing or decreasing area of each section. This prevents and eliminates any "step" or "jump" in resistance value and assures a smoothness unknown to any other method of tapering a control.

WHAT IS TAPER?

Taper means that the resistance of the control does not change "linearly." with the rotation of the control. Linearls means that the resistance value varies directly with the degree of ritation of the control. That is-at $1 / 6$ rotation there is' $1 / 4$ of the total resistance, similarly-at $1 / 2$ of the rotation of the contral there is $1 / 2$ of the total resistance.

WIIY TAPER?

It is necessary to taper the resistance of a control in order to sive an apparent linear control of the signal, thus when the control is turned to the "half-way on" position, one expects to hear a volume of signal which will be one-half that obtained at the full "on" position of the control. Why Taper the resistance to obtain this action? Why not use a linear control, won't it give $1 / 2$ volume at $1 / 2$ rotation? To quote Amos and Andy, the answer is "Yes and No - Mostly No," inasmuch as "Circuit Action" and the human ear are the determining factors.

Figure 3 s
Let us suppose that the control in Circuit 16 (Figure 38) is in an amplifier and that we supply a certain measured value of signal, with the control at full "on" position, then we turn down the control until the signal sounds only half as loud, and then measure the signal at the grid of the tube.
Look! It's almost unbelievable. Our measurement shows that we have reduced the signal to approximately $1 / 10$ its former value. Why is this? it dorsn't seem sensible.
The reason for this peculiar action is that the human ear has a peculiar characteristic in that to double a given volume of sound requires an increase of approximately ten times the original invensity.
Dr, more simply-if it requires a pressure of one pound per square inch, to produce a certain volume of sound, it will require a pressure of ten pounds per square inch to double this volume. Sound pressures are not measured in the large quantities given. However, the explanation is plain.

LEFT-HAND TAPER (Yaxley No. 1)

The taper action shown in Circuit 16 (Figure 38) is that of the common or "Left-Hand" taper (Yaxley No. 1). Let us see why this is called a "Left-Hand" taper.
It is common practice to have volume controls wired so that when the knob is rotated all the way in a clockwise direction, or as we often say. "to the right." we will have our full volume position. Minimum volume or "off" position will be at the full counterclockwise, or "left hand" position of the knob.
In the explanation of taper action, we pointed out that at half volume or half rotation position of the control knob, we need only $1 / 10$ of the full volume voltage. Therefore, we need only $1 / 10$ of our total resistance between full "left" position and the "halfway" position of our knob. This is made clear in Figure 39.

Figure 39
Note the position of the arm of the control and the resistance values of the two halves of the control.

Figure to

Figure 41
Figure 40 shows the connections of the ohmmeter, and Figure 41 illustrates the plotting of the complete taper curve.

Note that the left hand half of the control has ite resistance tapered out. This is the reason for calling this a "Left Hand" taper. (Remember, it is Y'axley No. 1 taper.)

Always use a left hand taper (Yaxley No. 1) for all "Shunt" or "Short Out" circults. (See the exceptions given in the chapter on "Circuit Action." page 104.) Refer to pages 117 to 121 and look at circuits numbered 1 to 6,10 to 16 to 20, (21). (22), 23, 33 to (36), 30 to 41,44 to $46,50,55$ to 57 , 60 to (67), (69$)$, 72, 73, 76, 77, 79, 80, 81, 83, 85, 87, 93, 94, 91, (100). All these circuits require a left hand taper fundamentally. Those marked with parenthesis and a few others use a modified or combination taper. The reasons for this departure are given in the chapter on "Circuit Action." Note! Tone Controls are generally left hand taper. They usually have the "Bass" position at the left of the knob. When "Bass" position is at the right of the knob, a right hand taper is required. See the chapter on "Tone Controls," page 110.
A good general rule is, "When only the center and left hand terminals are used, use a left hand taper (Yaxley No. 1).
When replacing a control, always examine the circuit and check the taper of the original control. It is wise to question your customer in regard to the action of the control to learn if it was smooth or jerky in its action. Study the circuit and refer to the chapter on "Circuit Action" before replacing it. Often a slight change will give better volume control and a satisfied customer.

HOW TO FIND THE

TAPER OF A CONTROL.

To find the taper of a control, set the moving arm at the middle point or center of its arc of travel and then (with the terminals "down" or toward yon) (Figure 42) measure the resistance between the center terminal and the left hand terminal and compare this resistance value with the resistance between the center and right hand terminals.

Figure 42
If the left-hand half of the control (Figure 42) has a lower resistance than that of the right-hand half of the control (Figure 43), the taper is "Left-Hand" (Yaxley No. 1). If the resistance of the two halves are (Yaxley No. 1). If the resistance of the two halves are
the same (or very nearly so), the control is a "linear" the same (or very nearly so), the control is a "linear" taper. If the right-hand half has the lowest resistance value, the control has a "right-hand" taper. (Figures 42 and 43 show a 100,000 ohm left-hand (Yaxley No. 1) tapered control Type "L").

Figure 43

To determine the taper of a control wherein there is an "open" in the resistance element proceed as follows:

> Figure 4-5

Refer to Figure 44-5 wherein there is a rear view of wire wound control with an "open" at the point marked ' X ."
Athough a wire wound control is shown, these instructions also apply to carbon type controls.
In Figure 4-5, note that the terminals bear the designations R, C and L. By rurning the control around and facing the shaft end, these would read properly; i. e., L, left hand; C, center, and R, right hand.
To determine the taper first place ${ }^{-1}$ the moving arm in the center of its rotation as shown in Figure 44-5. Second, measure the resistance between terminal R" and terminal "C" and make a note of this value.
Third, measure the resistance between " C " and the edge of the "open" marked " B " and make a note of this value.
Fourth, measure the resistance between terminal L" and the edge of the "open" marked "D."
Fifth, add the values obtained in steps three and four to obtain the resistance of right hand half of the control.
With the values of the two halves of the control known a comparison will quickly show the taper as explained carlier in this article.
If there is more than one "open" proceed as above with the exception that the value of resistance between the different"open" places will have to be obtained and added together so that it is possible to compare the resistance of the two halves of the control.

The foregoing method of determining taper by comparing the right and left halves of the resistance element is a "rough and ready" method applicable in most cases. However, for those who wish to obtain the exact shape of taper curve employed in any control they may do so very readily by employing the 360 deg. scale.
This scale should be made on paper. cut out and pasted on a thin Bakelite or Wood panel with a $7 / 16^{\prime \prime}$ or $1 / 2^{\prime \prime}$ hole at the center for the volume control bushing.
To use this device mount the control on the rear of the panel and fasten with the usual mounting nut or one of the Yaxley shoulder nuts No. 11260-12 or $11260-2$. Adjust the control so that when the knob is turned all the way to the left the dial reading is zero. Then turn the knob all the way to the right and read the total rotation in degrees and divide by ten to get the number of degrees for each 10% rotation. Attach an ohmmeter to the left hand terminal and to the center terminal of the control and with the control rotated all the way to the left take the first reading which in most instances will be zero.
Take a reading of the resistance every 10 percent of the rotation from left to right and plot the readings on graph paper.

RIGHT HAND TAPER

(Yaxley No. 2)

Right Hand Taper (Yaxiey No. 2) is the designation applied to a control wherein the Right Hand half of the resistance is tapered out. Right Hand taper is used in serles circuits.

We have explained the necessity of taper, because of the characteristics of the human ear. Right IIand taper is necessary because of the peculiar combination of circuit action and the action of the ear. Figures 46, 47, 48 and 49 give a clear picture of the arrangement and measurement of Right Hand Taper.

Study these illustrations. They will help you understand taper. Let's take a common application of Right-Hand Taper (Yaxley No. 2) to see Why it is necessary and how it works. The "graph" (Figure 50) flots the "resistance against rotation" versus the Mutual Conductance (Cm) of a tube of the remote "cut-off" tyme such as a (11)ti. The control- V'axley UC:IlO- 100,000 ohms No. 2 right-hand taper

Figure 46

Figure 47

Figure 48
Reducing the Mutual Conductance (Gm) of a tube Jowers the amplification, however, there is a limit to this reduction because if the plate current of the tube is reduced to'the "cut-off" point, distortion will occur. Be sure to read the full particulars of this in "Circuit Action" page 104. Study the curve in Figure 50 . Note that the "gain" is reduced to approximately 10% when this control is at the "middle" point of its rotation. This is necessary if we wish to have an apparent linear reduction of volume with rotation of the control. Right hand taper (Yaxley No. 2) is used in most "Series circuits, such as plate voltage, screen voltage, cathode or "Bias" control and "series losser" types of circuits. Note the list of Right Hand tapered controls (Yaxley No. 2) and look at the circuits that are specified for each one,

WHERE OVI THE CENTER ANO RNHT HAND TERAYNALS ARE SUPAIIED OH COHTPOL

I Pe MrASURMENT TAS PER TOP FIEURE BMMS 2 - MTASURAEIT (AS PER IOWER FHUURE)

Figure 49

QUICK REFERENCE(Yaxley No. 2)RIGIT HANDTAPERED CONTROLS			
$\substack{\text { Olinisis- } \\ \text { Renct } \\ \text { ance }}$	$\left\lvert\, \begin{gathered}\text { Cataloge } \\ \text { Number } \\ \text { a }\end{gathered}\right.$	туye	Gemeral Use
	Ucsso	w.w.	Bins
3.000	${ }^{\text {co }}$	w.w.	${ }_{\text {kias }}^{\text {kias }}$
7.5		w.w.	
000	UC: ${ }^{\circ}$	w.w.	$\underset{\substack{\text { Bias. } \\ \text { Bias, Loses }}}{ }$
mom		Wars.	${ }_{\substack{\text { Bias, } \\ \text { Bias }}}^{\text {cea }}$
00		${ }_{\substack{\text { Carbon } \\ \text { Carbon }}}^{\text {cose }}$	
$\xrightarrow[\substack{100000 \\ 205000}]{\substack{\text { 20, }}}$	UC510\%	Carbo	Bias A
	¢ 1		
	Uc507	Carbon	dudio

*Have exclusive Yaxley "adjustable fixed bias" feature.
Note: Nearly all low resistance "Blas" controls carry heavy current and are therefore wire wound type. Don't take a chance. Use Yaxley. In the "general use" column are abbreviations of the use of the control; Circuits follow: Bias-Circuits 7, 8, 42, 47, 49, 58, 98.
iosser-Circuit 84.
1'late-Circuit 26.
Screen-Circlit 27.
Bias-Audio-Circuit 88.
WARNING1 Ripht Hand taper (Yaxley No. 2) is to be used for Ant.-Blas only with Variable Mu or Remote Cut-Off tubes. It is msually found in popular AC-DC receivers. Be sure tos read "Circuit Action" page 104. Look at the taper curves for Yaxley No. 2 Right Hand taper and see the small curve at the left hand end. This curve gives amooth action in Ant.-Bias and Bias-Audio Circuits.

Ficure 50

QUICK REFERENCE (Yaxley No. 1)
LEFT HANI)
TAPERED CONTROLS

Ohris Resist ance	Catalok Number	Type	Ceneral Use
.00	A	WV. W.	Ant. Shunt
1000	13	W. W.	Ant. or P'ri, Shunt
2000	C12	IV. W.	Ant. or Pri. Shunt
33000	D12	W. W.	Atut. or Pri. Shumt
5000	E12	Carbon	Ant. or l'ri. Shumt
7500	112	Carbon	Ant. or 13ri. Slunt
10,000	G12	Carbon	Ant. Shunt or Ant.Bias Tone
15,000	H12	Carbon	Ant. Slunt or Ant.Bias Tone
20,000	Y	Carbon	Ant. Slunt or dnt.liias Tone
50,000	に12	Carbon	Screen Voltage. Tonn
75,000	Z12	Carbon	Screen Voltare, Tonn.
100,000	1.	Carbon	AF or R1* Shunt. Audio, Tone
150,000	UCino	Carbon	Al^{5} or R^{-8} Shunt. Audio, Tone
250,000	M	Carbon	$A F^{\circ}$ or $\mathrm{R}^{[8}$ Shume. Auclin. Tone
250,000	UCin1**	Carbon	Audio Control (Auto)
5002,000	N	Carbon	Audio Commrol
500,000	UC512*	Carbon	Autio Control (.)uth)
500,000	UC.51:	Carbon	Audio (\%ontrol (.\$th)
750,000	UC`503	Carbon	AF Shunt, Audio. Tone
1 Meg.	O	Carbon	Audio, Tone
1 Meg .	UC.514*	Carbon	Audio, Auto
2 Meg .	『	Carbon	Audio, Tone
3 Meg .	UC50 4	Carbon	Audin. Tone
4 Meg.	UC505	Carbon	Auclio. Tone
${ }_{5}{ }^{\text {Meg. }}$	UC50\%	Carbon	Audio. Tone
9 Meg .	UC. 0 Os	(carbon	Audio, Tone
\#Slotted shaft for auto receivers.
In the "General Use" column are abbreviations of the use of the control; circuits follow
Ant. Shunt-Circuits 1 to 5, 40, 00.
Iri. Shunt-Circuits 10, 81 (Plate control),
Ant.-Bias**—Circuits 6, 69
Screen Voltage-Circuit 12.
Tone-Circuits 21, 22, 34, 39, 41, 44, 57, 65, 67, 72. $85,101,103$.
AF Shunt-Circuits 15 to $18,33,76,96$.
RF Shunt-Circuits 13, 14, 81 (Cirid).
Audio-Circuits 15 to $18,33,45,46,55,56,61,73$. 76, 77, 76, 83, 03, 96.
**Ant.-Bias circuits 6 and 09 often use a loft hand tapered control where tubes of sharp colt olf characteristics (such as type 24) are used: لaxles No. 7 taper is excellent for this use.
WARNING! Be careful that the control for circuits fi and (30) is not too large a resistance value that phate current "cut-off" occurs at or near minimuth volume fosition. If cut-off is approached too closely distortion will occur. Read "Circuit Action" page' 10.4.

COMIBINATION TAPER
 (Yaxley No. 3)

Yaxkey No. 3 taper is a combination of left and right-hathd tamers. It is necessary in only a thew designs. Supplied in SRP (special) controls only.

YAYLEV NE 3 (III)TAPER

Figure 51

IINEAR TAPER
 (Yaxley No. 4)

A Linear control is not tapered, that is the resistance is equal in percentage to the percentage of rotation. At the center of rotation the resistance is equal in both haives of the control.

Figure 52
Note the ends of the "curve" are tapered off so that there will be no "hoj, off" on a weak signal.

"LINEAR" CONTROLS

Ohms Res't.	Catalog No.	Type
400.	A400P.	WW
550	A550P	WW
1.000	A1M1	WW
2,000.	. $\mathrm{A}^{\text {M }}{ }^{*}{ }^{*}$	WW
3,000	A3M1 ${ }^{\text {* }}$	WW
5,000	A5M13*	WW
5,000	Y5MP	Carbon
10,000.	A10M1)*	WW
10.000.	V'10MP.	Carbon
20.000	A20.11 ${ }^{\text {* }}$	WW
25,000.	V'25MP.	Carbon
50,000.	150MP	Carbon
100,000.	. 100 MP	Carbon
200,000.	l'200MP.	Carbon
250,000	. ${ }^{2} 2.50 \mathrm{M1}{ }^{\text {P }}$	Carbon
500,000.	1500.11	Carbon
1 Meg	V1000MP	Carbon

*Has exclusive Yaxley adjustable bias feature. WW-Wire Wound.

YAXIEY No. 7 TAPER

Figure 53
Yaxley No. 7 taper is almost a linear. Note that at the left hand terminal there is a small amount of resistance in the first few degrees of rotation. Yaxley No. 7 taper is for use in replacing older types of Wire Wound controls in Ant.-Bias circuits. The "spreadout" portion of resistance, at the left hand end of the control, sives a smooth control of the most powerful signals. Controls with this tajer have the Adjustable Bias feature, explained on page 123.

Many servicemen are deathly afraid to change a single wire in a receiver, even though they know that the receiver is old and entirely unfit for present day use, and that possibly a change of the control circuit will, for example, allow them to "turn down" the locals, yet they fear this clange. They forget that the recelver was made when 5,000 watts was "Hipower" and that modern receivers use modern circuits.

Try to help your customers. Here is a complete analysis of circuits that tells why and what takes place in the various circuits. Why does one receiver require $\mathbf{1 0 , 0 0 0}$ ohms and another, having the same circuit, require 20,000 ohms? Increase your knowledge! Get those "hard jobs"-they pay. Read this chapter on "Circuit Action." It will pay you well.

ANTENNA CONTROI. CIRCUITS

The most simple type of control circuit is that gencrally called the "Antenna Control." This type of control came into popular use with the introduction of the AC Tube, the filament rheostat having been widely used as a volume control previous to that time.

The reason for using this type of circuit was not so much to gain "volume control" but was to allow single dial tuning because this early date. antennat coil design had not been developed sufficiently to allow a tuned antenna circuit to "track" with the other tuned circuits. In addition the "AC" tube filament current could not be successfully varied so as to give control of volume.

This type of "Antenna" control functions as a regulator, controlling the amount of signal fed
 40 and 40 on pages 117 to 121, are variations of this tyive of control circuit. Circuit 1 (Figure 5.4), illustrates the simplest circuit of this type.

Figure 54

The antenna is directly connected to the risht hand terminal of the control, the left hand terninal being connected to the ground, and the moving arm (center terminal) is connected directly to the grid of the first RF amplifier tube. This connection gives maximum volume when the control is turned to the right (clockwise).

Thus, we see that the full antenna voltage of all signals, affecting the antenna, is applied directly across the control and that any portion of this voltage may be applied to the grid of the first tube, depending unon the setting of the moving arm of the control. The resistance value of this tyike control varies from a minimum of 450 ohms (see the older Atwater Kent receivers) to a value of about 10,000 ohms maximum, inasmuch as a resistance value greater than this tends to isolate the grid of the tube, and causes hum.

TAPER! Refer now to the previous article on "Left lland" taper and note that, here, we have the same conditions; i. e., a control shunted across the source of signal, therefore the same rules will apply to this or to any other circuit so connected, as apply to the circuit given as an illustration in that article.

The taper for the Antenna type control is, in general, of the left-hand, or Yaxley No. 1 type. Many of the earlier receivers used wire wound controls, which are difficult to make with logarithmic taper, and inasmuch as the antenna voltages developed by the earlier low-power transmitters were not of any great magnitude, it was not necessary to lay much attention to taper, although a slight amount of tajer in the form of a low resistance winding, generally 10 to 25 olums and spread over about 20% ($1 / 5$) of the rotation, at the left hand side of the control, was often used.

It is found that this type circuit, using the earlier type wire control, does not give pood attenuation, because of the high antenna sipnal voltapes developed by modern transmitters. This condition may be overcome by using a left-hand taper carbon control (Kaxley No. 1). This will allow smooth attenuation of powerful local signals. TROUBLES usually encountered with this type of circuit are: Poor attenuation or "hop off," that is, a sharp "cutting off" of the signal (usually on local stations), and generally poor control of all signals, as previously mentioned, a simple change from the original wire type control to the Yaxley No. I left-hand tapered carbon control will often cure the trouble. It has been reliably reforted that a sure cure of this trouble will be had if a Yaxley DRP241 or DRP243 control is installed with the low resistance section connected as the original antenna control and the high resistance section connected as per Circuit 16 (Figure 38), so as to give a dual control of both the input signal and of the output. This overcomes chassis pick-up due to lack of, or joor shielding.

Circuit 2 (Figure 55), illustrates the second type of "Antentas" control circuit.

Figure ins

The connections of the Antenna to the control are the same as those in Circuit 1 (Figure $5 \cdot 1$) but that the primary of an KF transformer is connected to "ground" and to the moving contact (center terminal), of the control. When the control is at maximum volume position (R-right-hand termimat) the total resistance of the control is inshunt with both the Antenna (Source) and the primary coil (Load). Varying the position of the control arm causes the resistance value of the shunt across the primary,to vary over the full range of the resistance value of the control.
In view of this, the total resistance of the control must be of such a value so that, at "full volume' position, there will be but little loss of sional through the control. In other words, the cotal resistance of the control niust be much greater than the impedance of the primary. In practice the resistance value of the control is usually not more than 4 or 5 times the value of the primary impedance, as higher ratios are not practical because of the shunting action of the antenna impedance. which varies greatly because of the wide variety of Antennas.

Resistance value of the control for this type circuit may range from 2,000 to 20,000 ohms, depending uikn the receiver design which is, of course, dependent to a large degrec upon the impedance value of the primary coil of the RF transformer.
TAPER for this circuit is Left Hand, or Yaxley No. 1. Some receivers were built with very little taper in the control. The replacement control for the latter may well be a Yarley control of No. 4 (Linear) taper although a Yaxley No. 1 tapered (carbon type) control will sometimes be better, than the original linear control, depending on local conditions.

Troubles with this type circuit are best overcome by the methods outlined for Circuit 1 (Figure 54). however, due to increased transmitter power, a lower tesistance control will often work wonders without loss of signal strengt l_{1} even on the weaker stations. It is best to "cut and try" to ascertain the correct value.
Circuit 3 (Figure 50) illustrates the third 'yje of "Antenna" control.

liggure inj

In this circuit the Antenna is connected to the lefthand terminal of the control. The brimary coil tloats across the total resistance of the control.

This change of connections causes the effective resistance in shunt with the antenna to vary with the setting of the moving contact of the control. The shunt resistance across the primary coil does not vary, to any great extent, with the fosition of the contact arm of the control. If anything, the shunt impedance rises slightly, with reduction of volume. This tyje of circuit does not give as good results as that of Circuit 2 (Figure 55) or Circuit 4 (Figure 57).

TAPER and Resistance values for this circuit are the same as for the previously mentioned types except that the range of resistance is limited to a certain extent by the impedance of the primary coil.

Trouble-In case of attenuation trouble it might be advisable to clange the connections to either that of Circuit 2 (Figure 55) or Circuit 4 (Figure 57) in addition to the information given previously,

Circuit 4 (Figure 57) is an illustration of a fourth type of "Antenna" control.

Ficure 17

The antenna is connected to the left-hand terminal and ground to the moving arm terminal. The righthand terminal is not used.

This type of circut is often called a "Shunt" circuit however, it is better to refer to it as a Short Out type of circuit, inasmuch as the control "Shorts Out" the primary and simultaneously grounds the anterna.
Taper and Resistance Value of the controls for this type circuit is the same as for the circuits freviously given.
Trouble is usually encountered with this type of circuit unless the chassis is thoroughly grounded. This is not so when the ground wire is connected to the antenna post, because this leaves the chassis at RF potential to pround.
If a good Antenna cannot be erected and it is necessary to use such an improvision for an Antenna, it may be advisable to change this circuit to that of Circuit 2 (Figure 55) or if possible use Circuit 6 (Figure 68),
Circuit 5 (Figure 58) is the fifth type of "Antenna" circuit.

Figure 58
This circuit is similar to that of Circuit 1 (Figure 54) except that an RI choke is connected from (irid to (iround.

The purpose of this choke may be to cither give a "rising response" at the lower frequency end of the broadcast band of to allow the use of a higher resistance value of control without hum trouble. in addition these chokes are often broadly peaked in the center of the broadcast band so as to get a slightly increaser signal voltage from the Antenna. For all gracticat purposes there is tittle to gain from such design.
Taimer and Resistance values for this circuit are much the same as for previous circuits except that the resistance of the control may be as high as 50,000 ohms.

This ends the discussion of "Antenna" type circuit and we will now consider the next most fopular tyix of the older circuits, one that is widely used today for "Sensitivity," "Quiet" or "Silent Tuning" control

"BBAS" CONTROL CIRCUITS

This type of volume control circuit makes use of a variation of the bias voltare, applied to the tubes as a means of controlling the volume of a receiver. Increasind the blas of a tube lowers the Mutual Conductance (GM) of a tube and reduces the "Ciain' of the stage.
Remember, there are two general types of tubes, those with "Sharp" cut-off and the Variable Mu or Remote cut-off types. This introduces a disturbing factor in that complete control camnot be had with Sharp cut-off tyjes of tubes.
"Cut-off" means the cutting off of plate current by means of a ligh bias voltage. The Shari Cut-Off type requires a rather small increase in bias voltage to requires a rather 8 mall increase in bias voltage to compietcly cut off the plate current whereas the Re-
mote Cut-Off type requires an enormous increase in mote Cut-Off type requires an enormous increase in
bias voltage to bring the plate current down to bias voltage to bring the plate current down to
"cut-off" and in some types of tubes the plate current cannot be completely cut off by the bias voltage.
As an illustration, the type 24λ tube has a (GM) of 1050 at 3 volts bias. yet it requires only 9 volts to bring the plate current down to cut-off. This is an bring the plate curre cut-off type of tube. The type 35 ule (CM) of 1050 at the same plate soreen tube also has a (GM) of $10: 0$ at the same plate, screen and bias voltages. It requires 40 volts to bring the plate current down to approximate cut-off. This is an example of the Remote Cut-Off type of tube. Incidentally, the useful range of control is 5 to 1 for the 24 and 70 to 1 for the 35 tubes respectively.

Circuit 31 (Figure 50) is an illustration of the earliest Bias Type control.

Figure 50
This control was used on the early battery sets. It consists of a fairly high resistance potentiometer generally of 200 or 400 ohms total resistance shunted across the filament supply which was, of course 6 volts. This control served to vary the bias on the R.F. amplifier tubes, and thereby gave control of the volume. On the whole, this circuit was not very satislactory, as the range of control was not great and it was used mostly as a control to prevent oscillation

Figure 60 (Circuit 7) illustrates the common Hias control sircuit.

Figure 40
In this illustration dotted lines indicate that a portion of the control resistance may be re pined to supply the minimum bias which is required by the tube at full volume. Also, the dotted lines show that one or more cathodes nay be connecied to the control and that there may, or may not be a bleed current through the control. For the present, we will consider that the circuit controls only one tube and does not have a bleed current. Although a triode tube is shown, this circuit is also used with etrodes and pentudes, For the purbose of explani ctrode ive figure $i l$ which shows the use of 6i, which shows the use of 100,000 ohm Yaxley No. 2 right-hand taper control Faxles tyje UCron, with the resistance ploted against the (GM) Mutual Conductance of the tube and both curves against the rotation of the control

Note that at 50% rotation, we have introduced approximately 10% of the total resistance of the control (considering for the present the rotation from sight to left) and that with this amount of resistance the Mutual Conductance has dropped tes aproximately 10% of its "full volume" value, to approximately 10% of its "full volume value Thus-by this curve we see that the Jaxley No. right-hand taper is adhering to the laws laid down in the explanation of "taper." A study of this graph with its two curves will reveal that at the full resistance of the control, i. e., at full counter-clockwise position, the "Mutual Conductance" has not been reduced to absolnte zero. However, it is down to such a value that no signals other than from powerful stations will be heard.

Figutre 61

The graph in Figure 61 (page 105) illust rates the use of a bias type control on a remote cut-off type of tube. In fact, a 6 DH was used in this calculation. In practice, a straight Bias type control would hardly ever be used with this tube, but rather the combination Ant.-Bias circuit in order that locals may be fully attenuated.
The eathode bias type control was widely used with the type 27 tube which has a fairly remote cut-off. However, the increased power of modern broadcasting stations has resulted in poor control from this type of circuit. Therefore, it is sometimes necessary to change this circuit to the "Ant.-Bias" type circuit by connecting the right-hand terminal, of the control, to the Antenna. Additional types of circuits similar to circuit 7 are circuits numbers 47 , 58 and ! $!8$, see pages 117 to 121. The difference in these circuits is merely in the connections to the control and associate circuit, the control action remaining entirely the same.
A study of these circuits will reveal that the main difference is in the connection of the blas resistor which supplies the minimum bias necessary for correct operation of the tube or tubes at full volume position.
The Second Class of "Bias" control circuits, represented by Circuit 8 (Figure 62) and Circuit 12 (Figure (i3) differs but little from the class just mentioned, the difference being that the resistance value is tower and that a current is bled. from either the screen or plate supply, into the control so as to give a rapidly rising bias voltage, with rotation of the control.

Figure 63
In receivers using the lower values of control resistance, such as from 15,000 ohms down, the control used for these types of circuits will usually be found to be of linear taper.

Taper used for blas control is nearly always of the right-hand type (Yaxley No. 2), except in the instances mentioned, or in the third class of bias control circuit which we will now discuss.
The Third Class of "blas" control circuit is that in which the prid return connects to the arm of a variable resistance, which is connected across the source of hlas voltage. This type of circuit is generally used in battery receivers and therefore the bias source is usually a "C" battery or "voltage dropping" network of resistors in the "B" circuit. In this type of control circutit, the range of bias voltage applied to the tube, is dependent almost exclusively upon the voltare applied to the control, inasmuch as the grid does not draw any current from the control circuit. The resistance value of the control may be quite high in order to prevent unnecessary "drain" on the batteries.
Circuit 9 (Figure 64) is an illustration of one of the most common circuits of this type.

Figure gat

Note, that the left hand terminal of the control connects to the highest negative polarity of the "C"' battery, as shown by the notation C-. The Right-Hand terminal of the control connects to a fixed resistor which is of such a value that the current flowing through the control will cause a voltage dropacross it, equal to the required "minimum"' blas of the tube. The rotating arm or "center Terminal" of the control connects directly to the grid return. Thus, it will be seen that the bias may be varied over quite a range, depending upon the voltage of the "C"' battery.

Circuit 54 (Figure 6.5), although a resistance coupled amplifier, is basically, identical to Circuit !? (Fig igre $(\mathrm{t}-\mathrm{A}$) and clearly shows the full connections for this type of circuit.

Circuit 59 (Figure 66), is of the same type as that of Circuit 9 (Figure 64) and Circuit it (Figure 65). However, it is applied in this case to an "A.C." receiver.

Figure ge
This type of circuit is often used on the AVC t.be for control of its action.
There is one remaining type of bias control in which the grid of the tube is biased by signal voltage developed across a diode rectifier Load, which in this case is the resistance of the control. Circuit tio (Figure (i7) illustrates a circuit of this type

Figure 67

Usually, there is provision made for minimum bias of the controlled tube. which is not shown in this schematic. Study of this circuit will reveal that the bias on the controlled tube varies with the strength of the signal input, in addition to the position of the "arm" of the control, this tyse of circuit being used in "Quiet" AVC circuits.
Resistance for use in the third class of Bias type control circuits is usually of a range from about 20,000 to $100,000 \mathrm{ohms}$, with the following exceptions:

The control for use in Circuit 59 (Figure 06) is usually of a fairly low value ranging from $1: 50$ ohms to 10,000 ohms, whereas the resistance range for Circuit 62 (Figure 67) will be from 100.000 to 500.000 ohms inclusive. The main consideration of resistance for this type of circuit is that the current flowing through the control should not be of such a large value that it will quickly exhaust the battery. In addition, where the voltage of the battery is much higher than that required to bring the tube or tubes down to cut-off, it is usually necessary to insert resistors in series with the control so as to limit the voltage drop across the control to the required value.

Taper of controls for the third class of Bias type of control circuit varies considerably. It depends upon the class of tube, that is, Sharp or Remote cut-off. In general, the taper is linear, although in some cases a slight left-hand taper is required, particularly where shary cut-off types of tubes are employed.

Trouble encountered in "bias" type control circuits is usually "noisy" controls, best overcome by replacing with a new control. In case the "range" of control is too great (i. e., cut-off is obtained, even on the most powerful stations, at less than full rotation), it may be advisable to insert a resistor in series with the control to reduce the voltage drop across the control, and give a smoother action.
In laying out a battery receiver using this type of control. or in rebuilding an old receiver to a modern circuit, in volving the use of this type circuit, it is advisable to carefully calculate the voltage drop which will be obtained across the control. It is imperative that the control circuit finclude means for obtaining the ninimum bias.

"AN'T.-IBIAS" CONTROI, CIRCUITS

The "Ant.-Bias" type of control circuit is probably the most widely used to date. However. it is indeed surprising that so many servicemen fail to have any knowledge concerning the action of this type circuit.
In this circuit. there are two distinct actions combined. The first is the control of volume by means of increasing the bias on the controlled tubes. The second action is the shorting out of the input signal at the Antenna.
Important-There are two basic types or classes of this circuit; i. e., that type employed with sharn cut-off tubes and that employed with remote cut-off tubes. In the first class, the control serves to increase the blas to reduce the (Cm) Mutual Conductance of the tube or tubes, to a slight extent, and simultaneously short out the input signal.
Note: The main function of the control in this case is really to short out the signal input and at the same time reduce the ($\mathbf{C m}$) Mutual Conductance of the tubes to a point where chassis pickup will not be bothersome. Chassis nick-up means the absorption of signal voltage from powerful stations by woorly shielded conductors within the receiver. This type of circuit is used where the straight antenna shunt or short-out type of circuit would fail to pive full attenuation of powerful signals such as from local broadcasting stations, and was widely used in the days when the type 24 and shar: cut-off tubes were used as radio frequency amplifiers.

The second class of Ant.-Bias circuit operates in exactly the reverse manner, in that the main attenuation of signal is accomplished by increasing the blas to a high value, which reduces the (Gm) Mutual Conductance. This action will attenuate all but the most powerful local sinnals. These powerful signals are taken care of by the antenna short-out action. The resistance value of controls for the second type circuit is much greater than that for use in the first class.
Circuit 0 (Figure 68) is an illustration of the "An-tenna-lias" type of circuit.

Figure 68
Your attention is called to the doted lines on this schenatic. The dotted line across the control indicates that a portion of the resistance may be retained for use as the minimum blas resistor to supply correct bias to the tube or tubes at full volume jwsition.

The straloht dotted line immediately below the cube indicates that other cathodes may the connected at this polnt. The dotted tine reslator immediately below the last mentioned dotted line indlcates that there may be a bleed current flowing through the control.

The exclusive design of Yaxley controls provides an adjustable reslstor for use when replaclng controls wherein a portion of the resistance was set aside for use as the minimum blas reslstor. In wire type controls, this is a built-in variahle resistor. In carhon type controls, it is a variable resistor supplied with the control for exterior application,

The bleed current mentioned is merely a current which is bled from cither the sereen or plate supply circuits. The purpose of this current is to stabilize the circuit and to provide a greater increase of bias per degree of rotation of the control, where it is necessary or desirable to use a fairly low resistance control.

Remember: That this is a very convenient way of controlling or lmproving the acton of a volume control when used in this rype clrcuit. There are many cases, especially in old receivers. where the control will not "cut out" the local signals, in which case the addition of a slisht amount of bleed current through the control will provide for sufticient increase in hlas, and thereby glve complete cut-off.

WARNING-Be very careful that the bleed current is not high enough to give complete cut-off, as this will introduce distortion. The correct value of bleed current is best ascertained by the old reliable cut and try method.

Circuit 69 (Figure 69) is the same as Circuit 6 (Figure (i8) except for the untuned antenna circuit.

Another type of "Antenna-Bias" circuit is generally" used in battery receivers. Circuit 70 (Figure 70) given below, is an example of this type circuit.

Figure 70

Study this circuit. Note that the control varies the blas applied to the tube, and in the left-hand position ahorts out the antenna. This latter action is accomplished by reason of the condenser connected from the antenna to the control. Signal current leakage, or by-pass in the full volume of the control, is prevented by the resistance of the control, and by the resistor connected between " C " and the junction of the condenser and left-hand terminal of the control.

Your attention is called to the resistor connected between the right-hand terminal of the control and the switch. This is the minimum bias resistor.

Taper for use in this circuit is generally left-hand (Yaxley No. 1), alt hough Yaxley No. 4 may be used, depending upon the type of tubes, as previously explained under "Bias Control Circuits."

Trouble encountered in this type of circuit may be due to leakage of the antenna condenser, or in the by-pass condenser which is connected bet ween moving arm of the control and ground. This condenser serves as an R.F. by-pass for the grid circuit. In addition, we wish to point out that a shorted tube would quickly exhaust the "C" battery, if the volume control should be in minimum volume nosition.

Oscillation and poor tuning may often be traceable to a poor by-pass condenser, inasmuch as the R.F. impedance of these condensers usually increases with age. It might be well to check this whenever servicing a receiver using this type of circuit.
General clesign of this type circuit calls for selecting the proper value of resistance for the contrul, for the minimum bias resistor, and in addition for the R.F. blocking resistor. The latter also serves to limit the value of bias voltage which may be applied to the tube, which, as has been previously mentioned, if too high, particularly with sharp cut-off tubes, will cause distortion.
The capacity value for the Antenna condenser should be rather large, inasmuch as it should offer but very little Capacitive Reactance to the lowest frequency signal voltage to be handled, and it will thus act so as to allow a complete short-out of the signal. The capacity value of the by-pass condenser from the moving arm of the control to ground, is generally of a value of .0 .5 mfd ., or .1 mfd .
(ircuit 97 (Figure 70A) is an illustration of another type Ant.-Bias circuit.

Observe that in this circuit the control is apped. The purrose of this tap is to divide the action of the control into two separate and distinct parts. Thus-when the moving arm is to the right of the tap, the control is acting purely as a bias type control. When it is to the leftof the tap, the control acts only as an Antenna short-out type of control. This circuit is ingenious in this respect, as the two actions of the control are entirely separate. They do not conflict.

Resistance Value for this control is usually about 6,000 ohms with the tap located at approximately 500 ohms from the left-hand terminal.
Taper for this control is special. This need not be explained as Yaxley TRP $; 00$ replacement control is especially designed for this circuit.
Trouble in this circuit is rare. A shorted antenna or tube will have little effect upon batteries.

SUMMARY "ANT.-BIAS" CONTROL CIRCUITS

The Resistance Value of controls for the first type Ant.-Bias contral circuit ranges from 1,500 to approximately 15,000 ohms, as the resistance value for use with sharp cut-off type tubes (type 24), can not very well be higher than these values, without introducing well be higher than of tubes, the resistance will range from a minimum of of tubes, the resistance will ran
10,000 ohms to 250,000 ohms.
AC -DC receivers quite often use the Ant--Bias type of circuit. Because they usually contain but one RF amplifier tube, the resistance value for the control must be very high. The types of tubes suitable for use in these receivers are usually of the Variable Mu or Remote cut-off type, such as GD6.

For use in this type of circuit, and especially in these receivers, Yaxley controls-UC509 of $\mathbf{8 5 0 , 0 0 0}$ ohms resistance, and UC510 of 100,000 ohms resistance will be found to be ideal.

Receivers using the lower resistance values of control, such as 1,500 ohms, usually employ a rather heavy "bleed" current, in order to obtain sufficient hias, and in addition to stabilize the current distribution of the receiver.

For the interinediate values of resistance approximating 25,000 ohms, we advise the use of the Yaxley special control SR1'263 (which is equipped with universal shaft), because this control is of the Yaxley No. 3 taper, which, incidentally, is the reason for it being listed as an SRI' or special control.

Taper for use in Ant.-Bias type circuits has been explained to a certain extent. However, we would like
w call your attention to the use of the Yaxley controls luving No. 7 taper, wire wound and of special design for use in Ant.- Bias circuits wherein the original control was wire wound, especially where a heavy bleed current is used. Yaxley No. I left-hand taper will be found to be excellent in most all cases where the resistance value is 20,000 ohms or less. As explained, intermediate resistance values above 20,000 ohms, can be serviced by Yaxley SRP2in3. In replacing controls having a resistance value above $50,000 \mathrm{ohms}$, we advise the use of Yaxley No. 2 right-hand taper, unless recommended ot herwise.
Troubles in this type of circuit, are usually limited to failure to cut-off the signal. The most frequent cause of this trouble is that the receiver was originally designed for much lower signal strengths than are found today (because of the terrific increase in power of broadcasting stations). Increasing the blas voltape developed across the control will of ten effect a cure. However, we would again like to give you warning that this voltage should not be increased so far as to drive the Tube to plate current cut-off, due to the possibility of distortlox

SCREEN VOLTAGE CONTROL CIRCIITS

Circuit 12 (Figure 71) is an illustration of the usual screen voltage control.

The action of this control is similar, in most respects. to the action obtained by controlling the bias of the tube. The (Cm) "Mutual Conductance" of the tube varies with the screen voltage.

Figure 73

The first graph (Figure 72) (page 107) shows the relation of Mutual Conductance to screen voltage. The gecond graph (ivigure 73) shows the curve of "Mutual Conductance" versus the rotation of the Yaxley control and illustrates the use of left-hand taper in this circuit.
At this time, we would like to point out that circuit 27, as given on page 118 , is a rate type of screen voltage control, in which the control is in series with the screen. Taper for this control is Yaxley No. 2 righthand, and the resistance is 5 megohms total. Circuit 79 (ligure 74), is an illustration of a combined screen voltage and antenna short-out control circuit.

Figure 74
This control is used to a limited extent in battery receivers. A study of this circuit will reveal that the control simultaneously controls the screen voltage, and by that the (Gm) of the tube, and at the same time acts as an Antenna short-out
This type control circuit is not recommended. Yaxley Silent Controls will give faultless service in this, or any other critical circuit.
General Desion considerations for the screenvoltage type control circuit are that the voltage range should be such that the plate current of the tube is not reduced to too low a value, inasmuch as this will introduce serious distortion. On the whole, the screen-voltage type of control circuit is not to be recommended wherever another type circuit could be used.
The screen-voltage type of control circuit is not recommended for Variable Mu tubes, as it is much better to employ the Bias type of control circuit for these tubes.

TAPER AND RESISTANCE

For very low resistance values, 10,000 ohms or less, the taper of the volume control, for use in this circuit is generally linear. For values above 10,000 ohms, it is the general rule to use Yaxley No. 1 left-hand taper.

The most common value of resistance for this type control, with the exceptions noted above, is 100.000 ohms. This value is replaceable with Yaxley type 1 . control.

PLATE VOLTAGE CONTROL CIRCUITS

Circuit 11 (Figure 75), is an illustration of the most common "Shunt Plate Voltage" volume control circuit.

Figure 76
The action in this circuit is similar to that of the "Screen Voltage" control circuit except that here the plate voltage is varied.
The Taper for use in this type circuit is nearly always left-hand. The resistance value is usually of the order of 50,000 to as much as 500,000 ohms.

The Trouble usually encountered in this type circuit is noise, due to the rather heavy current and the possibility of the control developing minute "burned" spots, which cause a rapid variation in resistance with rotation. Of course, this would cause terrific noise in the receiver.

This type of control circuit is no longer used. If encountered in service work, we advise that the control circuits be rewired to a more modern type.

Before closing this chapter on "Plate Voltage Control Circuits," we would like to call your attention to Circuit 26 (ligure 76)

Figure 76
This circuit uses a series control which should be of right-hand taper Yaxley No. 2. We strongly advise that wherever this circuit is encountered, the receiver should be rewired to use a different type control circuit.

RF (PRIMARY SHUN'T) CONTROL CIRCUITS

Circuit 10 (Figure 77), illustrates the connections of this type control circuit.

Figure 77
The dotted lines show connections that differ but little from each other, and may be encountered in the wiring of a control in a circuit of this type.

The action of this circuit is similar to that of the Ant.-Shunt type of circuit, in that the control is so arranged as to Short Out the primary of the RF transformer, and thereby prevent the transfer of RF current to the succeeding tubes in the receiver. This circuit was popular with the later battery and early $A C$ receivers. It is totally unsuited for modern conditions.
An additional type of this circuit is shown in Circuit 81 , on page 120 , in which the plate connectes to the moving arm of the control. The action in this circuit is similar to that of the ant.-shunt Circuit 3 (ligure si$)$), on page 105 , or Circuit 40 on page 118 .

Resistance range of controls used in the RF Pri-mary-Shunt type of control circuits is usually only a few thousand ohms, ranging from 1,000 to perhaps an upper limit of 10.000 ohms.

Many of the original controls in this type of circuit are wire wound. When encountered in your service work, we advlse replacing the wire type controls with Yaxley wire wound controls, or in some cases, with the Yaxley carbon controls.

Taper used in this type of circuit where the original control was wire wound, is usually of the Yaxley No. 7 type. Where the original control was of the carbon type, it may be either Linear Yaxley No. 4, or LeftHand Yaxley No. 1.

RF SECONDARY (SIIUN'I) CONTROL CIRCUITS

Circuit 13 (ligure 78). illustrates the usual connections for this type circuit.

Although the connections shown in circuit 14 on page 117 may sometimes be encountered, the latter circuit does not give quite as good control as that of Circuit 13 (Figure 78). The action of Circuit 13 (Figure 7%) is similar to the action of Circuit 16 (Figure 3x), page 101, illustrated and thoroughly explained in the chapter entitled Taper,

Figure 78

| In Fipure 78, we see the control shunted across a tuned RF transformer, with the left-hand terminal connected to the ground, and the right hand terminal to what would ordinarily be the srid side of the tuned circuit. The prid of the tube is connected to the moving arm of the control. Ilence-Variation in the position of the moving arm of the control varies the amount of RF voltage impressed on the grid of the tube.

In common with all shunt type circuits, the resistance of the control should be of such a value that it will not present too preat a load or by-pass of the RF voltage developed in the stcondary circuit. Inasmuch as one might broadly state that the average impedance of a tuned circuit of this type is rarely more than 100,000 ohms, the lowest value possible to use would be 100,000 olims, with usual values of 250,000 ohms and in some cases 500,000 ohms. An outstanding example of this circuit is that of the Bosch model 28 , which, incidentally. uses laxley Control SRP179 of 125,000 ohms resistance.

Taper of the control for use in this type circuit is of the left-hand Yaxley No. 1 type, thoroughly explained in the chapter entitled Taper. This also applies to controls for use in Circuit 14, page 117.
This type control circuit was not very widely used, and has long since passed out of favor. The introduction of the control into an RF circuit causes broad tuning and other troubles which make it impractical.

AF "SHLNT"

CONTROL CIRCUITS

Circuit 15 (Figure 79), is one of the two basic types of this circuit.

Figure 79
The AF "Shunt" control circuit is one in which the control is shunted across the Source which the control Audio frequency voltage, either as incicated in Circuit 15 (Figure 79), or as in the Short Out type of circuit as is shown in Circuit 33 (Figure *0).

Figure 80

Circuit 33 (Fisure 80), is not recommended because of distortion caused by the variation of the "plate load" of the preceding tube. Returnind to Circuit 15 (Fisure 79), note that the lefthand terminal of the control is the low volume or ground connection of the control and that the signal is applied to the right-hand terminal through the coupling condenser, which also serves to block out the IDC plate voltage of the preceding tube.

In this type of circuit the control is actually part of the plate load of the preceding tube this load is made up of the coupling condenser (canacitive reactance), the resistance of thecontrol and the resistance of the plate coupling resistor The input admittance of the tube must be considered. This is best determined by consulting tube manufacturers' data wherein you will often find a note "When using resistance coupling, the grid resistor for this tube should not exceed "hlank oh ms." This is one way of saying that the admittance of the tube is rather low and that a high value of resistance (of the control) cannot be used
Volumes have been published on the subject of "Impedance Matching" i. e., the relation of the loarl impedance to the impedance of the source or gen erator. We regret that space limitations do not allow more than a mention of this subject as applied to the above control circuits. The important point is that the resistance of the control is determined by the required plate load of the preceding tube and by the admittance of the grid circuit of the tube. It is also influenced by the coupling condenser and the plate resistor of the preceding tube. Thus we have a series parallel clrcuit made up of these three elements and also the consideration of admittance of the tube. Truly complicated subject. Entirely too broad to be presented there as gain, distortion and other factors must be considered. Finnally it is necessary to make a compromise of all these factors.
Circuit 1 (i) (Figure 81) is an illustration of the second type of Audio Shunt control circuit.

Figure $\$ 1$

In this circuit we have abproximately the same connections as for Circuit 15 (Fig 仿e 79). Note that the control is connected across the secondary of an Audio transformer. This gives a different wicture, in that the control resistance is determined to a certain extent by the Impedance Ratio of the transformer in addition to the other factors, such as plate load and admittance, previously mentioned.
Circuit 90, page 120, is a peculiar reversed type of the Audio Shunt circuits. The same considerations, such as taper and resistance, also apply to this circuit.
Resistance Value of controls for this tyje of circuit usually range from 100,000 ohms to 2 megohns. In replacing controls the original resistance value should be approximated, thus for 200,000 ohms use 200,000 ; 350,000 ohms may be replaced with either 250,000 or $500,000 \mathrm{ohm}$ values.

Taper of controls for use in these circuits is always Yaxley No. I Left-Hand. These circuits give but little crouble.

AUDIO
 CONTROL CIRCLITS

This designation is applied to any control which varies the Audio frequency veltage or current as a means of controlling the volume of a receiver. With one excerption, they are mostly variations of the Shunt type of Audio circuits. The exception is Circuit is (Figure 82).

Figure X: 2
In this tybe of circuit the control acts as a load Resistor, commonly referred to as the Load of a diode rectifier.

Study of this circtit will reveal the following act ions The signal current generated in the transformer secondary is applied to the diosle plate or phates and to the resistance of the control.

The signal current is an alternating current. the same as our ustal twewer and light supply. The frequency is determined by the resonant point of the transformer, usually several hundred kilocscles, i. c., 465 . 175, or other frequencies. When the plate of the diode goes jositive, in relation to the control, a current. the valur of which depends on the voltage and load resistance, flows from the cathode to the plate, through the coil and resistance of the control and arrives back at the cathode, thus compieting the circuit. The end of the control which is connected o the secondar: is at a potential above the cathode. because: "There is a voltage drop across a resistor when a current is flowing through it." Incidentally the polarity of the voltage drop is negative at the secondary end of the control, in respect to the cathode of the tube.

The voltage develofed across the diode load (the control) is usually thought of as having two components, first the DC voltage develojed by the rectifying action of the diode and second, the Audio Frequency voltage This is fully explained in the graph shown in Figure $\$ 3$.

Figure 83

This grapl shows the voltage appearing across the diode load; i. e., the control.

This is the Audio Frequency voltage applied to the grid of the tube (through the control) and in addition, it is also applied to a "filter" from which it emenges as DC: The value of which (in voltage) is directly proportional to the signal voltage induced in the secondary coil. As the signal voltage rises in value, so does the IM: The DC can be used as a "hias" voltage. (Ri" member it is wergative to the chassis) to pive Auto matic Volumre Control.

The Audio frequency component is taken off the control resistance and applied to the grid of the tube through the blocking condenser. In this circuit, the IX; component of the signal does not affect the srid circuit of the tube

In a certain tyw of this circuit, similar to Circuit 02 (Figure (i7), there is no blucking condenser. The IX: potential across the control is applied to the grid so that the bias on the grid varies with the signal intensity, therefore the tube is said to be "signal biased." This type of circuit is used in certain "Quict" AVC circuits wherein the first audio stage is biased to "cut off" (with no signal). When a signal is applied to the diode, the DC component, appearing across the control, counteracts the bias appiled to the tube. When the signal is strong enough to overcome the "overbias" on the tube, the signal will be amplified and appear at the speaker.
Kesistance value of controls for use in these types of circuits is from 250,000 to 500,000 ohms inclusive.

Tapers for controls for these circuits are Yaxley No. 1 Left-Hand for the first type and in most cases Yaxley No. 4 Linear for the second type. bicause of the common use of "Sharp Cut-Of" type tubes in this position.

TAPPEI) CoNTROL G:IRCUITS

With sare excentions, there are only three principal types of control circuits using a tapped control. By "tapped" control we mean a control having a tap brought out from some foint on the resistance element. This type of control construction is so common that it is hardly necessary to go into any detailed description
The three basic types of circuits using the tanped control are: first-where the control is tapped in order to provide different values of voltage such as in an AVC circuit; and second-where the tan is brought out so that automatic tone compensation may he accomplished; third-where it is desired to use one control to act upon two circuits; for example, to sive either radio or phonograph control.
We will consider the explanation of the action in these three types of circuits in the order in which they have been given-

Circtit 19 (Figure 84), is a circuit (of the first type) employing what might be termed the voltage type of tapped control, in that the tap is brought out so that iwo different values of Automatic Volume Control Voltage may be had.

Note that this control is used as a "diode load" type of control, the functions of which were explained in the chapter "Audio Controls."
A study of the connections of the control reveals that the maximum DC voltage, as developed across the cortrol, is used for Automatic Volume Control in a portion of the preceding circuit. The design of the receiver is such that only a fraction of this voltage is required in certain parts of the circuit. The casiest and the best method of obtaining this fractional voltage, is to tap it off the control. This assures the correct relation between the two values of AVC voltage which mixht not be obtained by the usc of a sepatate resistor net-work in parallel with the control, when one considers that the control resistance changes, with wear and age and in addition, the resistor net-work would add to the cost. Note that circuits using the net-work actually use a control circuit as shown in Circuit 15 (Figure 79).
This type of circuit and/or connections is perfectly satisfactory, except in a circuit such as Circuit 62. (Figure (i7), wherein the control is used as the diode load resistor, and furnishes signal bias to the succeeding tube.

The second type of tapsed volume control circui is that wherein the tap is used to obtain attomatic tone compensation with rotation of the control; i. e. an increase in apparent Bass response at the lower volume levels to'compensate for a deficiency of the car.
Circuit 20 (ligure 85) illustrates most clearly the usual connections for the tone compensated type of tapjed control circuit.

The action which takes place in this circuit follows: With the control arm at the Right-Hand (R) terminal, the signal is fed directly to the grid of the tube without being affected by the circuit. As the control arm is rotated toward the "Left-Hand" (L) terminal, the effect of the tap, with its associated circuit, consisting of the condenser and resistor connected from the tap to ground, becomes pronounced. The condenser, with or without a series resistor as shown in the illustration, acts as a by-pass for the
higher frequencies of the signal. When the arm is at the tapped position, or is at any position between the tap and the "Left-liand"' terminal, the higher frequencies of the signal are bypassed to ground. It appears to the ear as though the bass portion of the signal had been increased.

The position of the tap, that is, the relation of the amount of resistance between the ieft-hand terminal and the tap, and the resistance between the tap and the right-hand terminal determines the sional level at which the tone compensation becomes effective.

Previous to the designing of the Yaxley tapped replacement control (TRP) the method of locating and attaching the tap to the resistor element of the control was inaccurate, in that usually a rivet was driven through the resistor element at some pre-determined point based on the rotation of the control, or else an ear was made on the element to which the tap was attached. Both of these wo methods of tapping a control are, in our opinion, inaccurate, because the tan is mechancally fixed, and cannot be shifted from its position This would not be quite so bad, were it not for the fact that the total reaistance of a carbon type control element varies considerably in man ufacturing, it lbeing usual to allow a "tolerance" of plus or minus 20% of the value of the control. This means that there can be a variation in the resistance of the control of plus or minus 20% of the stated value.

When Yaxley engineers started the development of the Yaxley "TRP' type controls, they determined to overcome these difficulties, and to so design the Yaxley TRP control that the tap could always be located in the correct ratio of resistance, redardless of the variation in total resistance.

Figure 86 shows the method used in "tapping" the Yaxley control.

Figure 86

Note that underneath the resistor element is a silver-plated "ring," and that the actual tap connection is NOT at the terminal, but that the tap connection to the resistor element is made by means of the little clip which is indicated by the arrow. Observe that this clip may be attached at any point over the greater arc of the control element.

In building Yaxley TRP controls the elements are first made and then the tap location is determined on the basis of the resistance ratio. This method of tapping a control is exclusively Yaxley. It assures you that the action of the tap will be correct at all times. This assurance cannot be had with any other method of tapping a control.

To return to the action of the tapped control circuit, the percentage of attenuation, of the higher frequencies of the signal, is determined by the capacity of the condenser, and where used, the value of the resistor. The resistor is employed to broaden the action of the condenser and to prevent a rather sharp attenuation of the higher frequencies.

We regret that space does not permit a full discussion of the various factors entering into the design of the tone compensated tapped control circuit. We have covered the basic action, and although a great many varieties of circuits are used, the basic law rules all of them.

One of the latest developments in the use of (tone compensated) control circuits, is illustrated in Circuit 100 (Figure 87).

Figure 87

This shows a control circuit wherein there are two taps on the control, both used for tone compensation. The action in this circuit is basically the same as the action in any tone compensated control circuit using a single tap, except that here we have the compensating action in two phases. The first is not nearly so noticeable as the second. In simple words, when the control arm is in the full volume position, there is practically no compensation in the circuit, but as the signal value is reduced, there is a slipht amount of compensation at the first tap, and a much areater amount at the second tap. The reason for this arrangement is to give a very gradual and smooth tone compensation, which is much more gradual than that to be obtained by the use of a single tap, particularly where it is desirable to have a rather large attenuation of the higher frequencies or where two different bands are to be successfully attenuated.

The third type of tapped control circuit is illus trated in Circuit 82 (Figure 88).

TRP6O9

Figure X $^{\prime}$

In this circuit the control is center tapped and is made with two separate tapers which meet at the tap, so that in effect there are two separate controls. When the arm of the control is to the left of the tapt the control acts as the radio signal. When the arm is to the right of the tap it controls the phonograph signal Circuit 28, page 118 , illustrates a slightly different circuit of ten used in amplifiers. The action is the same as described with the exception that, here, the sources of signal may be microphone and phonograph. Yaxley control number TRPG09 is especially designed for these types of circuits.

Resistance Value of controls for use in tapped control circuits is roughty the same as for the audio control circuits.

Note: When replacing a tapped control, select Yasjey TRP control having the same overall resistance as that of the original AN1) BF. SURE that the resistance between the left-hand terminal and the tap (with terminal. down and facing the shaft side of the control) is duplicated within reasonable limits by the Yaxley control' which you select.

NOTICE-Do not be confused by the fact that the Yaxley tap terminal may be in a differen position from the other terminals than that of the oripinal control. As we pointed out, the tap value of Yaxley controls is determined upon a scientific basis and not by the mechanical replacement of the tap.

Taper of controls for use in tapped volume control circuits is roughly the same as for audio control circuits. It is sometimes necessary to distort what would otherwise be a logarithmic taper, in order that the tone compensation will not occur at such a fast rate as to cause an apparent hop-off in the signal attenuation. Yaxley TRP controls are properly designed with this feature in mind You need not consider this when using Yaxley TRP controls.

TONE CONTROL CIRCUITS

Tone controls are supplied with radio receivers so that the user may adjust the tone characteristics to suit a jersonal preference, for some people like a deep Bass Boomy response and others like a shrill and tinny sound.
The usual tone control consists of a condenser in series with a variable resistance so connected hat when the resistance of the control is zero, the higher frequencies of the signal will be attenuated; \mathbf{i}. e., by-passed, and will not appear at the loud speaker.
There are many types of tone control circuits. Fundamentally, all of them act upon this principle. There are a few tone control circuits arranged to really boost the bass response of a receiver. There are certain circuits so arranged that when the control is turned in one direction, the higher frequencies are attenuated. When turned in the other direction, the lower frequencies are attenuated. This cyje circuit can only be successfully employed in a receiver having a flat response over the whole audio frequency spectrum.
Circuit 21 (Figure 89) illustrates what is popularly known as a "Grid circuit" tone control.

Figure 89
This circuit is seen to consist of the condenser and the variable resistor. The action of the circuit follows: When the control arm is at the "Left-Hand" (I) terminal, the condenser is seen to be shorted directly from grid to ground. Inasmuch as the Capacitive Reactance of a Condenser decreases with an increase in frequency, it is easy to see that the resistance; i. e., "Capacative Reactance" of the condenser is much lower at the higher frequencies and that they are effectually short circuited and cannot influence the grid of the tube to any great extent. As the arm of the control is rotated toward the right hand terminal, resistance is gradually introduced into the circuit, in series with the condenser. This increasing resistance gradually adds to the resistance; i. c., Canacitive Reactance of the condenser. It will be seen that the variable resistance is a convenient means of reducing the Capacative Reactance of the condenser. Of course, the same action could be obtained by using a variable condenser. However, the space required by a variable condenser of a size suitable to obtain the desired action would be entirely prohibitive. Therefore, a fixed condenser and a variable resistance is used to obtain the same action. In the design of a tone control circuit of this type. a control laving a resistance value many times that of the "resistance"; i, c.. "Capacitive Reactance" of the condenser (at the lowest frequency to be considered) is chosen, in order that when the moving arm of the control is at the right-hand terminal there will be very little, if any, attenuation of the higher frequencies of the signal.
Circuit 22 (Figure (00), illustrates the so-called "plate circuit" type of tone control circuit.

Figure 90
The connections and action of this control circuit are practically the same as that of the previously discussed grid circuit type, with of course the exception that the condenser is connected to the plate of the tube.
There is one outstanding difference between the grid circuit and plate circuit types of tone control. That is the difference in impedance of these two circuits.

The impedance of the ordinary grid circuit is in the order of 100,000 ohnis or more, whereas the impedance of the plate circuit, particularly of the output or power tubes, ranges from approximately 2,000 to 20,000 ohms. As tone controls are in "shunt" with the respective grid or plate circuits, it is easy to see that in a grid circuit, a small condenser and a large value of resistance must be used. In the plate circuit, a larger condenser and a lower value of resistance is required to give the same amount of tone control.
Another consideration in the action of these two types of tone control circuits is the fact that there is little voltape, other than that of the signal. impressed upon the krld circuit type of control. In the plate circuit type of tone control the condenser ls subject to the full plate voltape of the tube. When used in the plate circuit of a high-powered amplifier, the control must be able to dissipate considerable power.

Failure to take this factor Into consideration has caused a good bit of drlef to service men who have installed tone controls in power amplifiers, in that they forgot that the control might have to handle 4 or 5 watts of power when used in this position, with the result that they "Burned Out" the control, and were "mystified" because the condenser failed to show leakape of the DK: plate current. The "Grid Circuit" type of tone control may use an ordinary carbon control with safety.

Resistance Value of controls for use in tone control circuits ranges for the "Grid" type from 50,000 to 500.000 ohms inclusive. The resistance value of controls for the plate type ranges from 5,000 to 50,000 ohms. In some cases, to a maximum of 150,000 ohms. The exact value of the control is dependent upon the amount of high frequency attenuation desired. This is determined by the "Capacitive Reactance" of the condenser. We would asain Hike to point out that the value of control resistance and capacity of the condenser is requlated by the impedance of the circuit in which it is used; 1 . e., high impedance for grid circults, and a low impedance for plate circuit use.

Taper used in tone controls is generally of the Yaxley No. 1 Left-Hand type.
A simple rule, redarding taper, to be observed when replacing tone controls is: "WHEN THE BASS POSITION IS TO TIIE LEFT OF TIIE, KNOB. USE A YAXLEY NO. I LEFT-IIAND TAPER, or, WHEN THE BASS POSITION IS AT THE RIGHT-HAND SIDF OF THE KNOB, USE A YAXLEY NO. 2 RIGHT-HAND TAPER."

Another convenient rule to be applied when replacing tone controls is: "WHEN ONLY THE, (EENTER AND LEFT-HAND TERMINALS OF THE CONTROL ARE USED, USE YAXLEY NO. 1 LEFT-HAND TAPER, or, WHEN ONLY THE CENTER AND RIGHT-HAND TERMINALS OF THE CONTROL ARE USED, USE YAXLEY NO. 2 THE CONTROL ARE USE
RIGHT-HAND TAPER.'

For the combination Bass and Treble control circuit where the control gives Bass attenuation when turned in one direction, and Treble in the other direction, use Yaxley No. 4 Linear taper.
Trouble encountered in tone control circuits ls usually in burning out of the control because of the break-down of the condenser. 'This occurs only in the plate circuit type of control. The cure for this, of course, is to install a new condenser of the same value of the oripinal before replaclng or attempting to replace the control.
Additional tone control circuits of the grid type are illustrated by Circuits 39, 41,57, 65, and 72, appearing on pages 117 to 121 . Additional tone controls of the plate type are illustrated in Circuits 34, 44, 80, 85, 95 . and 103, on pages 117 to 121 .

"ISASER" 'TYPE CONTROL CIRCCITS

Losser type volume controls were at one time in fairly common use. The general development and improvement of circuits obsoleted this type of control circuit.

Circuit 84 (Figure 91), illustrates one common type of "Losser" control.

This control was employed in a receiver designed only a few years ago; in fact, one of the early recrivers using AVC.

This circuit is an outstanding example of ail "losser" type control circuits. The reason for the peculiar name applied to this type of circuit la that the control introduces a "loss" into a circuit. The word "losser" indicates that the control destroys the efficiency of the circuit. In other words, the efficiency of the circuit. In other
To explain the action of this circuit it is necessary to bricfly review the action of a tuned circuit.
The voltage developed across the tuned circuit; i. e., fronı grid to ground, is maximum when the imsedance of the circuit is maximum; i. e., at resonance; as is shown by tho formula $L / R C$. Where I is the inductance, R is the resistance and C is the capacity.
This formula shows that an increase of R will decrease the impedance of the circuit and lower the voltage applied to the grid of the tube.
When the control arm is at the Right-Hand terminal, the lower end of the coil is grounded. In this sosition the control has no effect on the tuned circuit. When the arm is rotated, resistance is introduced into the circuit. This is, of course, an increase of " R " in the formula.
It will be seen from this formula and explanation, that as resistance is introduced into the circuit, the voltage applied to the grid of the tube is reduced, and from the explanation, it is clearly seen that any control which destroys the efficiency of a circult, can very aptly be termed a "losser" type control.
A characteristic of this type of control is that it tends to broaden the resonant peak, resulting in reduced selectivity.
Resistance Value of controls for "losser" type circuits is defendent ujon the circuit with which they are used. In the example given, the resistance, for a circuit tuned to 17.5 kilocycles, is 10,000 ohms. This might be taken as an average value for this type of circuit.
Taper for controls used in a circuit as shown in Figure 91 , is of the Vaxley No. 2 Right-Hand type, because the contral is a Series Control, and as we have previously explaineed in the chapter on Taper, a series circuit requires tire use of a Right-Hand taper.

Trouble in Circuit 64 (Figure 91), outside the gencral objections listed is noisy operation. This catn best be cured by replacing the original control with a be cured by replacing the original control with a
Yaxley No. 2 Right Hand taper control of approximately the same value as the original. It miglit b, wise when servicing a receiver equipped with a control circuit of this ty:se, to change the wiring of the receiver to use a more efficient and more modern control circuit wherever the control action is not satisfactory.

"DUAI." CONTROL CIRCLITS

The expression "Dual Control Circuits" is applied to all circuits using two controls driven by the same shaft.
The reason for usind a dual control circuit is that it is often necessary to do this in order to obtain smooth. even and complete attenuation of all signals.

In the following paragraphs, we will discuss a few of the outstanding, or more common types of dual cont rol circuits.
The first of these types to be discussed is one of the most common, illustrated by Circuit 23 (Figure 02).

This shows the use of a dual "Audio" control. This control is applied, in the circuit, to the grids of a pushpmill amplifier. This is necessary as it would be quite irnpossible to control the volume on only one side of the circuit.
Study of the control connections in the illustration reveals that as the control is rotated, the arm moves from the center of the diagram, where the letter "L" indicates the left-Hand terminals of both sections of the control, outward toward the Right-Hand terminals of the control, which are indicated by the letter "R.

A control for use in this circuit would consist of two sections, each of the same resistance and taper.
In our previous study of the action in volume control circuits, we learn that an "Audio" control requires a Yaxley No. 1 Left-Hand taper, and that, in general, the resistance for such a circuit may range from $100,000 \mathrm{ohms}$ to an approximate upper limit of 1 megohm.
Yaxley furnishes "Universal Dual" replacement controls, suitable for use in this circuit. These are "LL.". "MM." and "NN." A dual megohm is not supplied because there is litele or no demand for such a high resistance value, particularly in a circuit such as is given.
Before taking up other types of "dual" control circuits, we wish to soint out that Circuit 36, on page 118 is, for all practical purposes, identical to the one explained above.
The second most common type of dual control circuit i:: Circuit 24 (Figure 93).

In this circuit we mect a combination of two entirely different circuits, which are controlled by means of a dual control.
A study of this circuit reveals that it is a combination of two rather common circults. One section of the control acts as an antenna control of the ShortOut type, similar to that previously shown and discussed. (See Circuit 4, ligure 57). The other section of the cortrol is of the Bias type. This section of this control circuit is identical to that described and illustrated in Circuit 7, Fignre 40 .
The action in the dual control circuit No. 2.4 (Figure 03) is a conbination of the action of the two circuits controlled, in that as the control is rotated from right to left, the bias on the tube is increased and the signal is shorted out at the antenna.

The reason for using a duall control in this circuit. which is, as far as its action is concerned, the same as that of Circuit 6 (Figure 68), is that the conditions in this particular design are such that neither one of the two sections of the circuit could be used for satisfactors: control of the volume. Also Circuit of (Figure 68) was not applicable at the time of design, because the sensitivity of the receiver was probably rather low, and every nossible means had to be taken to get the most out of the receiver. The use of the single control Ant.-Hias circuit would probably reduce the input from the Antenna, whereas a special taper on the Amtenna section of the dual control, assures the full possible ingut.
Circuit 24 (Figure 93), has not been used for several years, because the terrific increase in power by the broadeasting stations has made it possible for designers to use Circuit 6 (Figure f8) even in the lowest gain receivers. It is often practical to replace the original dual control with a Yaxley single control with, in many instances, an improvement in the control action.

Kesistance Values for controls for use in ('ircuit 24 (Figure 93) usually range from a mininum value of 2,000 and 5,000 ohms to 10,000 and 50,000 ohnis. Yaxley DRP119, of 3,000 and 10,000 ohm value, is widely used in this tyje of circuit, as is the DRP16is, 7,500 and 10,000 ohms. "Universal Dual" controls "CE," "GE," "GG" and "GK" are widely used for this type dual control circuit.
Circuit 43 (Figure 94) illustrates another type of "Dual Control Circuit." This is one of the combination antenna Short-Out and Bias Control circuits.

Figure 94
Circuit 43 (Figure 94), is used in battery type receivers. A study of the circuit reveals that the action is identical to that of Circuit 24 (Figure 93).

In some cases it might be possible to replace this dual control with a single tapped control, by using Circuit 97, see page 120.

"ANTENNA-IOSSER" TYPE CONTROL CIRCUITS

This type is illustrated in Circuit 38 (Figure 95). and is seen to consist of two sections, one of which is an antenna "Short-Out"' type control. The other section serves to short out the RF signal at the plate of the first RF tube.

Figure 95

This circuit is rather unique in its action, in that when the control is rotated to its full counter-clockwise position, the two arms of the control, as shown in Figure 95, would be at the top of the resistance. In this position the antenna would be connected to ground. Inasmuch as the "Capacitive Reactance" of the condenser (usually of rather large capacity value) is practically zero at the frequencies involved, the whate is effectively shorted to ground, thereby preventing the flow of RF current through the mimary coil and thereby transferring to the suceceding tubes.
This circuit was used to a limited extent in some of the earlier battery receivers, and it is rarely encountered in service work.
Resistance Values for the control for this circuit, for replacement purposes, should approximate the values of the original control.
A second type of "Antenna-Losser" circuit is illustrated in Circuit 102 (1•igure 96).
The action in this circuit is standard for the antenna section. However, the losser section is unusual, in that the control forms a series circuit with a tertiary, or third coil, which is inductively coupled to the RF transformer between the second and third RF tubes.

The action of this losser control circuit is rather unique in that when the control is at maximum volume position, the full resistance value of the control is in series with the tertiary coil, and thus prevents this coll from absorbing energy from the RF transformer.

The anterna control arm, at full volume position, is at the right-hand terminal of the control. In this position it contacts the antenna. The signal is applied directly to the grid of the first RF tube.

When the control is turned so as to reduce the volume, the arm of the antenna section moves down the control, away from the antenna. reducing the RF: ingut. At the same time the arm of the losser section of the control moves up on the resistance, reducing the amount of resistance in series with the tertiary coil. This reduction of resistance causes the tertiary coil to absorb energy from the transformer and reduces the amount of signal which reaches the grid of the third RF tube.

When the control is at the minimum volume position, the grid of the first RF tube is grounded. The resistance in series with the tertiary coil is at zero. Under this condition this coil will absorb practically all the RF energy present in the RF transformer. Thus-it is seen that there will be no voltage at the grid of the third RF tube.

The reason for using this circult was that the straight single antenna control would be impractical in the high dain receiver in which the circuit was used. Due to the fact that filament heater Type 26 tubes, were used as the RF amplifier, it was impossible to use a bias type or combination "Ant.-Bias" circuit, because increasing the bias on a "flament type" tube introduces a serious amount of hum.

Figure 96

"ANT.-RF RIIEO" DUAL CONTROL CIRCUITS

In some respects, an unusual type of dual control circuit to be discussed. One of the most unique ever designed. The sclematic, Circuit 123, is shown in Figure 97.

Figure 97
Circuit 123 consists of two sections, each controlled by its own section of the dual control. One section is a more or less standard antenna control, discussed in the clapter headed Ant.-Controls. The other section acts as an RIF Rheostat which controls the amount of RF current flowing into the primary circuit of the RF transformer. This couples the plate of the first RF tube to the grid of the second RF tube.
A study of the connections of the above circuit will reveal that the primary of the RF transformer is tuned to resonance with the signal. The primary is coupled to the secondary by means of a small courding coil. immediately below. Immediately below this coil is an RF choke which prevents the RF current from getting into the plate voltage supply of the receiver.

In order to complete the R1F circuit, that is, in order that there may be a connection between the tuning condenser and the jrimary, there is a large condenser connected on one side to the junction of the coupling coil and the choke, and on the other to the right-hand terninal of the control.
Now, when the control is at the full volume position. the path of the RF current is from the plate through the primary and coupling coil; then through the large condenser, inasmuch as the right-hand terminal of the control is grounded at full volume prosition to the chassis. The tuning condenser being connected from the plate of the tube to chassis is (at full volume position of the control) effectively connected across the primary.
As the control is turned to reduce the volume, resistance is introduced in series with the tuned primary circuit. The Antenna-Section acts exactly as outlined in a previous chapter and illustrated by Circuit 4 (Figure 57).

In addition, due to the decreased current flowing in the primary circuit (because of the resistance introduced into its pati) there will be a reduction in signal transfer at the coupling coil. This signal transfer depende upon the amount of current flowing in the circuit.

While this action is taking place, the antenna section of the control has reduced the signal input to the grid of the tube.

The reason for using this peculiar and rather complicated circuit was because an "Antenna Type (Control Circuit" (using a single control) would not have diven satisfactory control of the volume, Also, the then popular screen voltage control (which was used on the same chassis in place of this control circuit) falled to give smooth and complete attenuation of signals, especially when the receiver was used in areas of high signal strength.
This dual control circuit may be replaced with the "Antenna-Bias Circuit," described in the chapter under that heading and illustrated by Circuit 6 (Figure 68).

Resistance and Taper of the dual control for use in Circuit 123 (Figure 197), are both special. A correct dual replacement control for the receivers using this circuit, is listed in the forepart of the encyclopedia

"IIUM"
 CONTROL CIRCUITS

As the title suggest, the type of circuit now explained is used to control hum in receivers.

Whenever "filament type" tubes are used, it is necessary that the grid return be connected (in effect) to the center tap of the filament. In other words the grid return must be connected to a neutral point in respect to the filament voltage. If the grid return is connected to either side of the flament, there will be an alternating voltage impressed upon the grid, which will cause an objectionable hum. An adjustable resistor is used to select the "neutral voltage" point in the filament circuit.
Although this effect may be had by center tapping the filament winding on the transformer, in practice it has been found that there are disturbing factors which in most cases make it preferable to use the adjustable resistor.
The adjustable resistor used for hum control is a notentiometer, usually connected directly across the filament supply. In some designs hum control is effected by selecting a voltage equivalent to the disturbing or hum voltage, but "out of phase" with the hum voltage, and applying this "out of phase" voltage to the grid of the tube in such a manner as to counteract the effect of the voltage causing the hum.

The most common circuit for hum control is illustrated by Circuit 37 (Figure 98), which shows the control connected across the filament supply.

The action in this circuit is simple, but rather difficult to explain. The simplest explanation is to consider that the filament supply of voltage reverses the solarity twice for each cycle of the supply voltage. The frequency at which this reversal occurs, is of course determined by the frequency of the filament supply current, ordinarily tio cycles per second, meaning 120 reversals of polarity per second.

In receivers using a direct current for filament supply, as in old battery receivers, it is customary to connect the grid return to one side or the other of the filament, depending upon the polarity of hlas desired, it beling the usual practice to make the connection to the neqative side of the filament. If this were attempted with an AC filament supply, the polarity applled to the grid would shift with the reversal of polarity in the filament circuit. This, of course, would give rise to a terrific hum.
Suppose that we theoretically "stop" or arrest the AC; filament supply at such a point In its cycle so that we would have full voltage across the filament. If this were possible, we could take a voltmeter and find a point on the reslstance element of the control at which the polarity of the voltape would be neutral. That is, it would be neither positive or negative. This neutral point does not shift with the frequency or the alternations of the filament supply voltage. If we connect our grid return to this point, there will be no alternating voltage impressed upon the grid, and no hum.
In practice the control is wired with the resistor element across the filament. The moving arm of the control is connected to the grid return circuit. This is usually accomplished through the chassis. The control arm may be connected directly to the chassis. It is necessary to apply a bias voltage to the tube. As this control not only provides the return or completion of the grid circuit, but also for the plate circuit, there is of ten a resis or connected between the moving arm of the control and the chassia. This resistor, because of the plate current, causes a "voltape drop" between the filament and the chassis (which is the grid return). This voltage developed across the resistor, is the blas voltare, because, due to the polarity of the plate current, the chassis end of the resistor will be negative in polarity, in respect to the filament.
Resistance Values of controls for use in this circuit are usually of a very low value, because of the low voltage impressed across the control. In practice, the resistance usually ranges from 6 ohms for a $21 / 2$-volt circuit, to a value of probably several hundred ohms where high filament volts are used.
Yaxley "HU" controls are especially designed for use in this type circuit.
Taper is not required in controls for these circuits, because of their use as a simple voltage divider.
Another type of hum control is illustrated in Circuit 30 (Figure 99).

Figure 90
In this circuit we see a center tapped control which is connected between the two halves of the secondary of an audio transformer which supplies signal to the grids of a push-pull amplifier.
The action taking place in the above circuit is that when the two tubes are exactly alike, the neutral point, obtained by the fixed center tapped resistor across the filament circuit, provides the correct adjustment for minimum hum. In this case the arm of the hum control would be at the center position of the control, which point is grounded.
Because tubes for use in this circuit are rarely exactly allke in their characteristics, and because of a slight difference in plate current, hum might develop. were it not for the fact that the control can be shifted to either side of the center tap to adjust the blas supplied to the tubes, and equalize the plate current and other factors causing the hum.

Another circuit. Having the same action as Circuit 30, is shown in Circuit 66 on page 119. These circuits are practically identical, with the exception that Circuit 66 is applied to a resistance coupled type of amplificr.
Resistance of the control for use in Circuit 30 is usually one of three values i. e., 200,400 or $\mathbf{t i 0 0}$ ohms. Yaxley supplies SRP controls Nos. 265, 253 and 21 it for use in these circuits.
These hum-controlling circuits are usable to a certain extent to overcome distortion which might arlse due to a lack of balance in the plate currents drawn by the tubes. These circuits perform a dual function, both controlled by one adjustment of the control. This could not be accomplished by the use of the first described type of hum control shown in Circuit 37 (Figure 98).
Circuit 51 (Figure 100), illustrates an unusual circuit which accomplishes the same results as that of the two circuits which have just been discussed.

Figure 100
A study of this circuit reveals that the control is connected from one acreen to the other of the two tubes in a push-pull amplifier, usually the out put or power tubes.
The arm of the control is connected, in case of Circuit 51 to a choke. This has little bearing on the action of the control.

As explained, the action of this circuit is similar to that of Circuit 30 (Figure 99), and Circuit 66 (see page 119). In this case the control of the hum is accompllahed by balancing the plate current of the two tubes by means of varyind the acreen voltage. As explained, balancing the plate current tends to minimize hum and to prevent distortion.

Resistance for this control should be rather low. determined to a certain extent by the range of control desired, which in most cases need only be a few volts. The resistance value can be calculated by means of the screen current.

MISCELLANEOUS CONTROL CIRCUITS

In addition to the control circuits discussed, there are others of relative unimportance. Gain. Sensitivity, Silent Tuning and Suppressor, are subsidiary controls in that they are used to control the sensitivity of a receiver, and not the volume. Although manyiof these controls affect the volume of the recerver, they are provided so that the sensitivity may be reduced to the required level and thereby reduce the amount of noise or interference which would otherwise be objectionable.

All these controls will be found to use one of the control circuits previously discussed. For example, the most usual circuit for use as Gain or Sensitivity control, is the "Bias" control circuit.
When you encounter a circuit not mentioned, we advise that you carefully study the connections, In practically all cases you will find that it will fall into one or another of the different types of control circuits which are illustrated on pages 117 to 121.
Occasionally a receiver will use a control, the circuit of which is peculiar and to be found only in that receiver.

A good example is the "Flash-O-Graph" control listed in the Encyclopedia with the abbreviation "F.o.G." This is a "trade name" for a tuning indicator used to indicate resonance of the receiver to incoming signals.
As signal intensity varies with each installation, it is necessary to provide a control so that the indication will be the same for all locations.
The proper control for use in this circuit is specified in the "Replacement Part" of the Encrclopedia. It is a simple voltage divider and should be replaced with a simple voltage divider and should be replaced with a control
required.

Another control circuit of the same description is a sinple woltage divider used to control the height of gas glow in a Neon tube used as a tuning indicator. This circuit is listed in the "Replacement l'art" of the Encyclopedia as "Tone Beam" with its proper replacement.

CARBON OR WIRE CONTROLS

This question is of ten asked.
Do you know all the advantages of carbon controls?

Do you know the weaknesses and disadvantages of carbon controls ?

Do you know why it is of ten imperative to use a wire wound control and that failure to do so will mean loss of prestige, time and money?

Stop wondering. See the whole picture clearly.
Many servicemen are of the opinion that only carbon type controls should be used. This is a mistake. Carbon and wire wound controls have their distinct individual advantages-advantages which are not alike. The wire wound control is the oldest type. Let us analyze its advantages and disadvantages first.

ADVANTACES OF WIRE WOLND CONTROLS

1. Absolute accuracy of resistance value maintained throughout the life of the control. Wire controls can be commercially made to within a tolerance of 2% plus or minus.
2. High current carrying abillty. In the case of Yaxley wire wound replacement controls, dissipation of a full 5 watts is assured.
3. Low resistance values are obtainable with the wire wound type control. Yaxley wire wound controls start as low as one-half ohm. Think of it.

DISADVANTAGES OF WIRE WOUND CONTROLS

1. Difficulty of obtaining taper. Tapers in wire wound controls are rather abrupt.
2. A slight amount of noise is penerated when the arm moves from one turn of wire to anotlier. The cause of this noise is the "voltage dros" per turn of the resistance wire.
3. Limited resistance value. Because it is difficult to handle wire of less than .001" diameter, controls of more than 150,000 ohms would be not only extremely diffieult to wind, but would require a large amount of space.

ADVANTAGES OF

CARBON TYPE CONTROIS

1. Ease of tapering-A distinct advantage in that any taper "curve" may be easily obtained.
2. Sllent operation, because the resistance change is progressive and not by means of minute steps as in the wire control.
3. Resistance values of carbon type controls may range into many megohms without bulkiness or undue difficulty of manufacture.

DISAIDVANTA(;ES OF

CARBON TYPE CONTROLS

1. Varlation of resistance. The resistance value of a carbon control is influenced by humidity, heat, age and wear, in addition to the tolerance which must be allowed in order to obtain commercial production. (See page 122 for further data).
2. Low current handling capaclty. The usual limit of dissipation for carbon type controls is 1 watt. Yaxley carbon controls below $\mathbf{7 5 , 0 0 0}$ ohms will readily landle 2 watts, or even more for the lowest resistance values.
3. Limited reaiatance value. It is almost impossible, at this time, to successfully make carbon controls of less than approximately 500 ohms.
From this compilation, we see that each type of control has advantages which offset the disadvantages of the other type. Each type of control is limlted in its application to the circuits or conditions requiring the particular advantages of its type.
In your service work, you are confronted with the replacing of controls of either type. It is our advice that you replace a wire control with a wire control, and an original carbon type control with a carbon type control. By adhering to this rule, you will avoid customer dissatisfaction, loss of time and labor, which are distinct possibilities if one type control is substituted for the other.
For your convenience "Yaxley" provides both type controls in all necessary resistance values; and tapers in the range of resistance wherein either type may be used.
There are certain conditions where it might be desirable to change the type of control; i. e., use a carbon control to replace an original wire wound control. This is a matter of discretion for the serviceman. The exchange should not be made unkess the advantages to be gained are NOT offset by the disadvantages of the particular type control. Quite often this can only be correctly ascertained by trial and error.
For your advantage. we list below a table showing the Yaxley wire wound and carbon types which are interchangeable as to resistance value and taper.

Wire	Carbon
$1: 7$.	. .E12
117.	.F12
(17.	. . Bl^{12}
117.	H12
	UC501

MIDGET CONTROLS

What to do? Do you fear these amall controls? Read this article and see how easy it is to handle this "tough" situation!
1035 saw the introduction of Midget volume con-trols-to many service men a distinct headache. But it is a headache that has a cure-for $\mathbf{9 0 \%}$ of these midget controls may be replaced with a standard sized control. The general belief that a midget control must be replaced with another midget control is erroneors, esjecially so where there is plenty of space for the Yaxley universal replacement control, inasmuch as the advantages of silent operation, higher current capacity and long life of the Yaxley control are not to be compared to the usual operation, low current carrying ability and short life of the average midget control now in use.

We strongly advise that the Yaxley Universal replacement control be used to replace all midget controls wherever space is available. It will pay you to do this, because by so doing. your customer is assured of advantages which cannot be had in the present midget type.

Yaxley's development of a small-sized control for original equipment, as wetl as replacement use, has had, and will have, months of proving and of testing. When released, it promises a definite solution to midget control problems.

AUTOMOHHE CONTROLS

Mechanical monstrosities. llere in a few words with clear distinct pictures is something new which will lighten your work tremendously. See the many ways provided for the replacement of Auto Radlo Controle.
The rapid development and wide spread use of auto radio receivers has brouglt about an annoying situation, in that it seems as though every designer strives to out-do all others in the mechanical design of the control shafts to be used in his receiver.
The serviceman is faced with shafts of every conceivable shape and size. There are round shafts; square shafts; shafts with holes, with slots, gronves and pins. This extremely wide variety of shapes of control shafts would be almost unbearable to the serviceman, were he without the universal features of the Yaxley line.
For your beneft, Yaxley pioneered the "Universal" plan and lt is in the field of auto radio control replacements that this plan of Universallty finds its full expression and assures you of being able to replace practically any control, regardless of its shaft.
A study of auto radio controls reveals that a $1 / 4^{\prime \prime}$ diameter shaft, with a longitudinal slot, the width of which is usually $3 / 32^{\prime \prime}$, is by far the most popular type. Therefore, we will first demonstrate the universal replacement features of the Yaxley line with this type shaft.
Figure 101 shows a type of slotted shaft which is often used with auto receivers. This type of shaft is usually required where the control is operated by means of a removable key. as this allows the locking of the receiver by removal of the key.

$$
\text { Figure } 101
$$

Yaxley supplies two controls equipped with this type shaft. These are:
SRP25i-2:0,000 ohms-No. 1 Left-Hand taper
SRI'25' - 500,000 ohms-No. 1 Left-Hand taper.
These controls have the Yaxley attachable switch frature. In addition THE SHAFT MAY BE CLT OFF FLUSH WITH THE BUSHING wherever the application requires a control having a slotted shaft which is flush with the bushing. Such controls are used by certain models of Arvin, Ford and RCA Auto Receivers.
For the replacement of the slotted type shaft where the length of the shaft lies between $1 / 4^{\prime \prime}$ and $2^{\prime \prime}$ (as measured from the bushing). Yaxley presents in 1 -igure 102 the type of shaft used in Yaxley con-trols-types:
UC:511-250,000 ohms-No. 1 Left-Hand taper. UC512- 500.000 ohms-No. 1 Ieft-Hand taper.
UC514-1 Meg.-No. 1 left-Hand taper.
TRP620-2 Meg.-Tapped at 1 meg . Special
TRP620-2 Meg.
Tapped Taper.
These controls will sumply a replacement for any automobile receiver requiring a slotted shaft less than $2^{\prime \prime}$ long.

Figure 102
Figure 102 shows that this shaft is equipped with a sleeve. When cutting the shaft it is advisable to cut through the sleeve, except in rare cases where it is necessary to have the sleeve project beyond the end of the shaft.

For replacing controls havind a slotted shaft over $2^{\prime \prime}$ in length, Yaxley presents the UC515 which is truly a Universal Control.

Figure 103
Figure 103 clearly reveals that Yaxtey Control Type UC. 15 of 500,000 ohms No. 1 Left-Hand taper will readily replace any control wherein the shaft length is not more than $51 / 2^{\prime \prime}$.
By cutting of the shaft and using the coupler to connect it to the control, you may casily and quickly make a replacement.
Because controls of values other than 500,000 ohms rarely are equipped with a slotted shaft greater than $2^{\prime \prime}$ in length, Yaxley has not found it necessary to furnish the above described type of control in values other than 500,000 ohms.
For your convenience, and to assure that you may replace most any control which may have a slotted shaft, Yaxiey supplies a Slotted Extension Shaft-RS245 as shown in Figure 104.

Figure 104

QUICK AND EASY REPLACEMENT OF CONTROLS

Replacement of controls in receivers will always be an easy and simple matter if the instructions outlined in this chapter are followed.
If the following tabulated procedure is followed, you will find a great saving in time and labor.

1. Before removing the control, or even unsoldering the leads TRACE OUT THE CIRCUIT and be sure to note the connections of the leads to the control. It is advisable to make a sketch so as to prevent confusion when attaching the leads to the new control.
2. Remove the control from the chassis.
3. Measure the overall resistance. If the control is burned out, it will be necessary to open it and measure the various remaining sections of the resistance, and from this total, calculate the amount of resistance which has been destroyed, so as to obtain the overall resistance value.
4. Ascertain the taper. To measure the taper, it is only necessary to set the movind arm of the control at the center of its arc of movement. It is not necessary to remove the cover to do this, inasmuch as the shaft of the control may be marked, its total travel ascertained from this mark by rotating the shaft, then set the mark at the center of the indicated travel. With the arm of the control at the center of its rotation, measure the resistance of the two halves of the control. When facing the shaft end of the control and with the terminals down or toward the operator, if the resistance between the center terminal and left-hand terminal is lower than the resistance between the center and right hand terminal, replace with a Yaxley No. 1 Left-Hand tapered control. If the resistance betweeri the center and left hand terminal is greater than that between the center and right hand terminal, the control should be replaced with a Yaxley No. 2 Right-Hand tapered control.

In case the resistance of the two halves of the control is equal, a Yaxley control of No. 4 taper should be used.
5. If the control is tapped, measure and note the resistance between the left hand terminal and the tap.
6. At this point, you have the following information which is to be used in selecting the correct Yaxley replacement control:
(a) Circuit.
(b) The overall resistance.
(c) The taper.
(d) Tap value (if control is tapped).
(e) Shape of shaft.

Procedure:
If shaft is of standard $1 / 4^{\text { }}$ diameter (regardless of milling [flat] on the shaft), proceed as follows: For purposes of explanation we will assume that we have the following information: $\mathbf{5 0 , 0 0 0}$ ohms resistance, left hand taper and no tap. Therefore. it is necessary to consult only a listing of Yaxley controls and select a control of 50.000 ohms No. 1 Left-Hand taper. which will be the Yaxles type K12.

However, if we are dealing with a tapped control, it is necessary to consult the table of Yaxley TRP controls, first looking for the TRP control having an overall resistance value nearest that of the original. Then choose the TRP control having the same overall resistance which is tapped at a value nearest that of the original. The above procedure is simple, isn't It? It will save you time and headaches. Try it and be convinced.

"A" N OTES

Explanation of "A" Control Notes
The following section of the MALLORY-YAX. LEY ENCYCLOPEDIA is without doubt the finest and most helpful compilation ever presented to servicemen.

This section of the encyclopedia enables you to have detalled instruction on replacement of controls. It also allows us to be perfectly frank with you. It permita the listing of receivers and information which will enable you to make a quick replacement.

WE STRONGLY ADVISE FOR YOUR OWN BENEFIT THAT YOU READ "A" NOTES. IT WILL SAVE YOU TIME, WORRY, AND MONEY

A1-Shape of shaft unknown; if slotted or tongue shaped see Yaxley UC511, UC.512, SIIP251 or adapter shafts RS245, RS246, etu. (See article "Auto Controls").
A2-This control used on some types of this chassis in place of the first mentioned control.
A3-Mechanics of control unknown; select proper Yaxley control having resistance and taper given, or if value is not given, see Note 5. If control is of two sections use a Yaxley dual. See Note 1.
A4-This control used on later type of this chassis.
A5-IResistance value unknown; measure the overall resistance; if control is burned out use the method given under heading "Determination of Taper," then select Yaxley control having an equivalent resistance of the taper suggested. If not suggested see the article, "Determination of Taper."
A6-Use Yaxley GG if there is sufficient space; if not change circuit to use (il2. See Circuit No. 6.
A7-Circuit was changed during production so as to use a 500 Ni control.

A8-This receiver was originally equipped with either a Yaxley wire control of 6M ohms, or a carbon control of 30 M ohms. Yaxley Type Y control will replace either of the originals. However, if you wish a wire control use the Yaxley F7.
As-Space available unknown; if not sufficient for the Yaxley DIPII9, change the circuit to the ordinary "Ant.- Hias" eircuit as shown in Circuit No. 6 and use the Yaxley G12 control; this will be both easy and satisfactory.
A10-Improved signal attenuation may be obtained by connecting the left-hand terminal of the control to the antenna. This gives the ordinary Bias and Antenna type of control circuit.
A11-Original control is in filament circuit. Change to Circuit No. 2 and use Yaxley type Gl2.
A12-AK receivers for which Yaxley SRP239 is specified may be serviced with the Yaxley silent carbon control type E12 by installing it in the original bakelite control housing. This is easily accomplished and gives a smooth, silent control. See note 30.
A13-See instructions on page 123 for use of Yaxley No. 7 Switch.
A14-Check original control or circuit to ascertain if the minimum hias resistor is included in the original control. If so use the Yaxley ninimum bias plate on the wire controls, or if a carbon is reconimended, use the adjustable resistor.
A15-Requires use of Yaxley shoulder nut A11260-12 and also the regular nut. Arrange so that control is set back from the panel wo as to clear the dial. Yaxley extension bushing EB247 might be used.
A16-May require use of Yaxley bracket R13248.
A17-Note: This replacement requires the expenditure of some mechanical ingenuity when installing the control; however, the control will be satisfactory in operation.
A18-Note: Some of these chassis use the Yaxley Type GG Dual Control.
A19-Note: Measure resistance between left-hand terminal and tap (when facing shaft, terminals at bottom), and select Yaxley TPP having same overall resistance and tapped at a value nearest that of the original. A20-Originally a dual control, this circuit is casily adaptable to the Yaxley Type G12 Control by using Circuit No. 6 as given in the schenatics. Refer to Note 14 when installing the control. If desired, Yaxley DRP119 is suitable for this circuit.
A21-This receiver may require a control with a portion of the shaft of smaller diameter to clear the dial; if so, use Yaxley SRP275.
A22-Note: Use Yaxley extension shafts RS242 and RS244. These shafts are at tached to the Type T Control and cut to the proper length, preferably by cutting the shaft of the Type T Control and the RS242 Shaft.
A23-Note: When using the Yaxley SRP185 with metal shaft, be sure to ground the shaft near the front of the set by means of a pigtail, if there is any tendency toward oscillation.

A24-Extension shaft required; use RS244 for $3 / 16^{\prime \prime}$ diameter. For $1 / 4^{\prime \prime}$ diameter use 11S242 or IIS24.3.
A25-Note: If shaft of UC.in 12 Control is not, of sufficient length use the Yaxley Type N Control and extension shaft IRS24.5.
A26-Note: Some of these chassis use a dual control; Yaxley $G(i$ is correct replacement.
A27-Used on first type of this chassis.
A28-Volume control for radio tuner section.
A29-Volume control for radio amplifier section.
A30-Note: This is a replacement strip to be installed in the original housing.
A31-Parallel the two sections of the Yaxley No. 7 Switch to prevent overload; see page 123 for instructions on the use and connections of the Yaxley No. 7 Switch.
A32-It is suggested that this receiver be changed to use type ' 36 tubes in place of the 24 and 26 types, and the 37 in place of the 01 A.
A33-Requires Nos. 203 and 212 washers.
A34-"Kennedy" made by Detrola; see Detrola Model 1000.
A35-Note: Controls SRP276 and SlRP277 are to be used together and neither is to be used with any other make of control.
A36-Note: Mechanical features unknown; we suggest Control SIRP276.
A37-The original values were 500 M and 100M. The change to Dual Control Type L.M (that is, 100 M and 250 M) will not be noticeable. Connect the front section of the control in the grid circuit of the 33 with the grid to center terminal, coupling condenser to right-hand terminal, left-hand terminal to bias supply. Connect rear section center terminal to grid (cap) of 146 , right-hand terminal to coupling condenser and left-hand terminal to bias supply. Note: Terminal order as viewed from shaft end with terminals down or toward operator. If switch is required use Yaxley No. 7.
A38-Note: The Antenna section of this control is wired as per schematic No. 4. The other section is wired as follows: the center terminal to type ' 30 plate. the right-hand terminal to "p" of the andio transformer, and the left-hand terminal to " 13 " positive. Yaxley (ik should make a satisfactory replacement. However, the Yuxley DIRI'243 wired with the rear section in the grid circuit of the lst A.F. ('30) as per schematic No. 1.7. and the front section wired as per schematic No. 2, will give better attenuation in arcas of high signal intensity.
A35-Note: Switch used on later types and model KDC only.
A40-Note: Switch used on volume control only on the chassis having a tone control.
A41-Connert left-hand terminal to chassis, center terminal to screen circuit, and righthand terminal to positive 67.5 volts. (View control from shaft end, terminals down or toward operator).
A2-Note: Cut off the shaft of the SRPest Control flush with bushing.

A43-Note: Original control was of the inductive type. Replacement with a variable resistance control is highly satisfactory. Conneet the left-hand terminal to the antenna and grid, and the center terminal to ground. (Control viewed from shaft end, terminals at bottom).

A44-Original control is a dual; however, only one section is to the used at any one time. The Yaxley $G 7$ is a perfect replacement for the Antenna Shunt section which is most commonly used.
A45-Note: When replacing the tone control, use Yaxley l3racket IZ3249, or file out the bole in the original mounting bracket. lhe sure to use only the left-hand and center terminals of the control.

A46-Original dual control is replaced with single Yaxley Y 100 MP , which is connected as follows: Center terminal to first audio plate, left terminal to tone condenser, and right terminal through 5,000 ohm resistor to 13 positive.
A47-If original control is wire and carbon, use Yaxley Dll P307. If original is carbon in both sections, use DRP244, with the front section (nearest the shaft) for the screen circuit and the rear section for the Antenna circuit.

A48-lkefer to schematic 14. The original control was in the filament circuit. We recommend a change as per Circuit No. 14 using a Yaxley Type "M" Control as a shunt across the detector grid coil.

A49-The DR1P222 Control was originally made with a short shaft for use in the chassis 180 (model 181), and requires the use of two IRS2. 12 extension shafts when used in the chassis 100 (model 101).

The DllP222 is now being made with a $75 / 32^{\prime \prime}$ shaft to fit the chassis 100 . When used in the chassis 180 this shaft should be cut off at a point $13 / 8^{\prime \prime}$ from the body of the control.

Note: The chassis 100 requires the use of three terminals on the rear (phono.) section and only the center and right-hand terminals of the front section.

In some cases better ratio of signal attenuation is ohtained by connecting the left-hand terminal of the front section to the Antenna so as to olstain a sigmal attenuation in addition to the bias increase.

A50-The DIRPl17 Control is an exact replacement for the Yaxley original. The DRP242 Control is an exact replacement for the control in the bakelite housing.

A51-Requires Yaxley FS251 flexible shaft. A52-Requires Yaxley FS252 flexible shaft.

A53-This control does not require the fixed resistor shunt.

A54-When installing the "CE"" control, connect the front section to the Antenna circuit and the rear section to the bias circuit. This is the reverse of the original but has been field checked and found to give satisfactory results.

A55-The Yaxley No. 14 Switch has four terminals which must the connected as follows: one terminal to chassis, one terminal to white lead and one to black lead with white tracer. Disconnect the 1,500 ohm resistor from the chassis and connect it between the remaining switch terminal and the remaining lead, which goes to C-9 volts and to the grid returns of the 1H4G and 1E7G.

A56-The Yaxley DRPlI4 has a 2.50 ohm front section for the bias control (Circuit 8) and a 5000 ohm rear section for the antenna control (Circuit 2). Original control may have had sections in reverse order.

A57-The original control is two megobms.
A58-Ieft-hand terminal (control viewed from shaft end, terminals down) must le grounded to chassis.

A59-Note: The original switch has three terminals, only two are actually used, the other is a "tie" point. When using the Yaxley switch, solder together and tape-the wires formerly connected to this "tie" terminal.
A60-May require use of Yaxley EB2 17 extension bushing.
A61-Can be replaced with Standard Yaxley Control. May require use of LRB248.

A62-Although the Yaxley control is of greater diameter than the original, it will satisfactorily replace it. Cut off the slotted shaft to the correct length, by sawing through the sleeve. File the slot in the shaft until it will fit over the driving shaft, then slightly crimp one end of the Ionger piece of Yaxley sleeve until it fits the driving shaft sougly. Push the sleeve, crimped end first, up on the driving shaft, then install the control (being sure to ground the left-hand terminal) and pull the sleeve down over the junction of the driving shaft and the slot over the control shaft; the result is a good permanent replacement with an casily obtained silent Yaxley control.

A63-This control may be replaced with a Standard 1112 Control if the knob is replaced with either a push on or set screw type.

A64-This control is easily replaced ly using a Yaxley ThP607, No. 6 Switch, EB2.47 Bushing, and FS250 Flexible Shaft. Use either the solid portion of the old shaft or any $1 / 4^{\prime \prime}$ shaft such as the $1 / 4^{\prime \prime}$ portion of a Vaxley RS242. This replacement is easily ncexmplished.
A65-For emergency replacement use SRP26.5 Control

A66-Wire the switch so that it is shorted when control is turned to extreme counterclock wise prosition. (See chapter on "Attachable Switches.")

A67-Disregard the tap in this replacement.
A68-File shaft to duplicate original.
A69-This control requires two Yaxley IRS242 Extension Shafts or the EC240 Coupler and a suitable length of $1 / 4^{\prime \prime}$ shaft.

A70-This replacement (I) requires a slot to be filed or sawed in the shaft of the " L," control, or change of the knol, to the standard Philco push-on type.
A71-Note: Requires a 100 M No. 1 Taper or "I." Control (subject to the insiructions in Note 70) for replacement. In some cases a UC.̄11 Control is satisfactory.
A72-The EC240 is a $1 / 4^{\prime \prime}$ shaft coupler having an internal sleeve to reduce the diameter to $3 / 16^{\prime \prime}$.
A73-For this replacement we advise a change in the volume control circuit, to orrespond to Circuit No. 8. Use an A3M1' Control and a 4,500 ohm Fixed Resistor in series, in place of the original tapped control.
A74-Due to the many variations in both circuit and control, we advise measuring the original control carefully and duplicating with similar Yaxley Control, or returning original to Yaxley for duplication.
A75-This replacement recommendation is applicable only when the customer does not desire tone control operation on the broadcast band.
A76-Inmproved operation may often be obtained by removing the shunt (6 M ohms) resistor across the control and using the Yaxley E Control. In extreme cases, use a Yaxley Fi 7 Control and connect as per Circuit No. 6.
A77-If original control has $3 / 16^{*}$ diameter shaft end, use Yaxley RS244 Extension Shaft.
A78-Replace with an A2MP Control and an EC. 240 and a portion of $1 / 4^{\prime \prime}$ shaft taken from the old control.
A79-If trouble with oscillation is encountered in this set, the addition of a 5 M ohm resistor, connected from antenna to ground will usually effect a cure.
A80-Be Sure to check the series resistor between the screen circuit and 13 positive! It it is not a full $\mathbf{2 0 , 0 0 0}$ ohms or if it is of the carlon type REPIACE it with a Wire Wound 20,000 ohm resistor. This will prevent the control being burned ont and the possibility of a dissatisfied custorner.
A81-Select a Yaxley TRP Control of 500,000 ohns total resistance having a tap at the same resistance value (as mexsured from left-hand terminal) and slot the shaft.
A82-The voltage applied across the SILP261 Control should not exceed a maximum of 170 volts. If the voltage excerods this value, the control will burn out. Imporiant: Be sure that the bias on the tubes is at the rated value when using the SRP261 Control as a plate voltage control.
A83-The Yaxiey DRP221 Control is an exact replacement for the dual control used on the 50, 60, and 70 Series receivers, although it was used interchangeably with the SRP261 Control in the earlier 50 and 60 series. In many cases a change of circuit to the antenna-bias type, and the use of the laxley H7 Control will give much better control action.
A84-Question as to available space. If suffieient for $11 / 2^{\prime \prime}$ diameter control use a Yaxley "Y" Control.

YAXLEY REPLACEMENT CONTROLS ACCESSORIES

Here is a volume control line designed by service men for your convenience and benefit. A completely UNIVERSAL replacement lineUniveral controls for 90% of your work, plus a minimum number of necessary special controls. Remember- 90% of the usual "special" controls on the market are merely equlpped with the correct length of shaft.
"UNIVERSAL." By thls is meant that all products are dellberately and carefully designed so that you may make a dependable repalr in the easiest and quickest manner.

EXCLUSIVE FEATURES OF YAXLEY CONTROLS

Three years of constant research and development have resulted in the best Volume Control ever known. Look at these features.

Silent operation. A new development-the result of design and engineering conducted for your benefit.

1. "The Roller That Does Not Roll." This exclusive Yaxley contact design maintains a constantly dust-free surface element and is further protected by Yaxley's dust-proof shield. The best type of contactor as recognized by leading contact engineers.

Yaxley engineers recognize the basic law of physics that there is friction between moving objects. Yaxley provides a firm pressure on the roller, but this is oprosed by a carbon element that can "take it." It does not require mollycoddling as on ordinary elements where the pressure must be kept low to prevent destruction of the element.
2. Pure Sllver Shortoute! Used for clean-cut. quick, positive switch action. Assure zero signal before switch action and a never failing contact between terminals and carbon on the element.
3. Silver to Silver Contacts! Used between all moving current carrying parts. Another Yaxley superiority. Silver oxide is a conductor. No trouble will ever be experienced due to oxide insulating films as would be the case with brass or copper,
4. Perfect Contact! Yaxley controls have perfect contact between moving arm and carbon element. A true and uniform area of contact is effected on the

element at all points. Notice the track. It does a real joh of contacting! Other methods only hit the high s:pts.
5. Perfect Smooth Taper! Controlled by geometric design; no sudden changes in resistance value. There is no guesswork, or "cut and try" method with "Geometric Design," Yaxley elements are sprayed by mathernatically designed methods. Tapers are featheredged to insure electrical smoothness and are applied in rapid succession to permit flow between joints. That provides perfect mechanical smoothness, Only Yaxley has such perfect control of taper.

6. New Sprind Wedge. Yaxley Wire Wound Controls are also new. They embody a new spring wedse design, which definitely eliminates any possibility of loose terminals. Expansion and contraction due to temperature changes are taken u_{p} by this patented spring which holds the element and terminals firmly in place.

Low Humidity Coefficient! Less than 15% resistance change when subjected to $110^{\circ} \mathrm{F}, 90 \%$ relative humidity for 100 hours. No need to fear "damp spots." Yaxley controls will work in all climates.

Nedllalble Voltape Coefficient! Yaxley controls are the same in all circuits, truly universal regardless of voltage. It is almost impossible to separate this coefficient from the temperature coefficient, but it will not exceed 4% or 5% per 100 volts.

Extremely Low Temperature Coefficient! Yaxley controls are not limited by climate. They give perfect performance everywhere. Temperature does not affect a Yaxley control. This coefficient does not exceed 5% for $80^{\circ} \mathrm{C}$, change and the combined temperature and voltage coefficients will not ordinarily exceed 5% for 100 volts and $80^{\circ} \mathrm{C}$. rise.

Highest Current Carrying Capacity of Any Carbon Control. Careful engineering has raised the dissipation factor of Yaxley carbon-type controls above the common one-watt rating.

Uniform Characteristics. All Yaxley controls are held to rigid, detailed specifications, and are manufactured for you to the same exacting specifications that are required by original equipment users. Inspection limits are rigidly enforced.

Long Life. 25,000 to 50,000 and over complete cycles, borne out in over 3 years testing. Yaxley controls have a longer operating life. Resistance changes 10% or less in 50,000 complete cycles, or 100,000 passes of the contactor.

Long Shelf Life. Yaxley controls will never go "stale." Age will not affect them nor in any way change their excellent characteristics.

Permanently Identified. A non-removable ink assures permanent identification for your convenience.

"UNIVERSAL SHAFT"

This long, specially designed, aluminum alloy shaft will save you time and labor, because it is so easy to cut (no saw required). Either type of push-on or any set-screw type of knob may be used without fillng. The long $3^{\prime \prime}$ length is ample for ordinary work, and, where necessary, a greater length is easily secured by using Yaxley Extension Shafts. The illustration shows the easy breaking feature.

"Just notch it, then break." Always cut the notch rather deeply, with either a file or a pocket knife, then hold the shaft near the cut with pliers, and bend back and forth once or twice, as shown. Simple, easy, and no burrs.

PUSH-ON KNOBS requiring a $1 / 32^{*}$ flat on the shaft (Phitco) are easily attached. Place the insert in the groove at the end of the shaft, and press on the knob. The $3 / 32^{\prime \prime}$ type of push-on knob (Crosley and RCA) is readily attachable. The edges of the groove should be scraped or cut away until level with the bottom of the groove. This is easily accomplished with a file, a knife, or with the edge of a screw driver.

THE ADJUSTABLE HIAS RESISTOR

This time, labor and money saver is exclusively Vaxley. All Yaxley carbon and wire controls for cathode or Antenna Bias circuits, are jrovided with a simple minimum bias resistor (an adjustable stop plate), easily and quickly adjusted to the proper value.
(Some manufacturers use a portion of the volume control element, as a resistor, to supply the correct minimum bias to the tubes at full volume position of the control.)

Figure 1

Figure 1 shows the Yaxley Stop Plate and the numerals 1 to 5 on the shell of the control.

Figure 2

Figure 2 illustrates the setting of the slate. Position 1-100 olms, position 2-200 ohms, position 3-300 ohms, position $4-100$ ohms, position 5-500 ohms, all with the usual commercial tolerance of approximately plus or minus 10%.

For resistance values other than the values given, the indicating bump may be filed off the plate and an adjustment made with an ohmmeter.

Figure 3
Figure 3 illustrates a method of locking the plate in its proper position while mounting the control. Some servicemen prefer to merely hold the plate in its proper position and let the mounting nut perform the dual function of mounting the control and holding the plate.

Vaxley carbon controls are equipped with a small easily adjusted external reslstor, which has a total resistance of 500 ohms, for use as the hlas resistor.

Figure 4
This unit is to be attached to the right-hand terminal of the control, as per figure 4 , and the clip attached at the correct soint and firmly clamped with ordinary slip-joint pliers, after which the unused portion may be climed off with "diagonal" or "side" cutters. The leal from the cathode circuit connects to the end of the resistor.

MAXLEY
 ATVIACHABLE SWITCIIES

SWITCH PROBLEMS CLARIFIED

Yaxley attachable switches are equipped with a bayonet and slot arrangement which assures a definite location and placement on the back of the control. This unique feature of Vaxley controls is furnished for all Universal replacement controls, both wire and carbon.

Controls are covered with a protective dust plate (Figure 5) which is easily removed.

Figure 5
To attach the switch. first remove the cover from the back of the control.

Second, bolding the shaft in your hand, turn the shaft as far as it will go in a clock wise direction. Third. make certain actuating arm in switch is in proper position as shown.

Fourth. insert the tongue of the switch into the slot from which the cover was removed.

Fifth, push up slightiy on the switch and it will snap into position, when it is again puslied down.

NOTE: If a switch does not fit properly, it is due to mishandling, and is easily restored to perfection by bending the tongue down into the switch by means of "small nosed" pliers.

Yazley Attachahle Switches:
No. 6-Single pole, single throw.
No. 7-Double pole, single throw.
No. 8-Single pole, double throw.
No. 13-Three pole, single throw, shorting.
No. 14-Four pole, single throw, shorting.

No. 6 is a heavy duty switch for general use on both battery and jower type receivers.

No. 2 is for use on battery receivers where it is necessary to break both the " A " and "B," or the " A " and " C " battery circuits.
In addition No. 7 may be paralleled to give a greater current handling ability than that of the No. 6; however, this is rarely necessary.

No. 7 may also be used as a Three pole, single throw shorting type of switch as illustrated in figure 6.

Figure fi

No. 8 is for use where it is desired to close one circuit during operation of a control, yet open this circuit and close another when the control is turned to the off position. This is usually found on radio-phonograph combinations. Figure 7 shows the proper connections of the No. 8 switch.

Figure 7

No. 13 is for use on battery receivers because it is often necessary to open the "A." "B." and "C" battery lines to prevent useless discharge of the batteries. Figure 8 shows connections.

Figure y
No. 14. Like the No. 13, this switch is for use on battery receivers. It allows one additional circuit to be opened and although there are only three battery circuits, the wiring of many late battery receivers is such that it is necessary to open four circuits. Figure 9 clearly shows the connections for this switch.

Figure 9

ACCESSORIES
 THAT QUICKEN AND EASE YOUR WORK

The few minutes spent in looking at the pictures of these parts and reading the clear explanation of their practical use will give you a tremendous advantage over your competitor. With this knowledge you can quickly estimate a repair. You will not be bothered with timewasting mental questions about how to do the job.

Yaxley Universal replacement controls are so designed that they will service at least 10% of all your work. The remaining 10% require either a "special" control or an adaptation which will enable you to do the job with a Universal control. For your benefit and to assure you that you can always make the repair with easily obtainable Yaxley parts, we have designed many accessories which enable you to make repairs quickly and easily and which therefore assure satisfled customers.

Yaxley accessories enable you to make profits quickly.

MOUNTING BRACKETS

When needed, there is no substltute. Use them to replace old type controls which were mounted by means of screws. Use them to relocate old controls, thereby shortening lead length and avoiding osclllation.
Experimental work is easy, particularly when the brackets are used to mount controls and other parts, elther on a breadboard or panel job. STUDY THE ILLUSTRATION.

Note, also, the use of Yaxley extension shafts. See how easy it is to bend the brackets to meet the different requirements. " A," "B," and "C" show the use of the RB248. "D," "E," and "F" show the use of the RB249. They're Inexpensive, to.

So useful. widely used and in great demand.
LOOK AT TIIIS PICTURE: See how every necessary tyme of shaft is made avaihable for your use.

In their order are: RS242, RS243, RS244, RS245, RS24t, each of which is explained. Notice Shaft Couphr ECC240.

RS242 with its $1 / 32^{\prime \prime}$ flat is used wherever a push-on knob of this type or a set-screw type of knob is to be used.

RS243 with its $3 / 32^{\prime \prime}$ flat is for the $3 / 32^{\prime \prime}$ type of push-on knob.

RS244 ! Look. Here is the answer to that $3 / 16^{\prime \prime}$ diameter shaft problem. Use the RS244 and a Universal Yaxley control whenever you meet a $3 / 16^{\prime \prime}$ shaft control.

RS245 for Auto Radio Control! Why wait for an exact control or rush around, losing time, hunting a replacement? RS2 45 with a Yaxley Universal control
has saved many dollars for servicemen. It's easy to use. If the length of the original control shaft is two (2) inches or less, cut off the Yaxley control shaft at $1 / 4^{\prime \prime}$ from the bushing. Then cut the RS- 24.5 to the proper length, attach it to the control and the job is done-and money in your pocket. If the original control shaft is over three inches long, either cut off (if necessary) the Yaxley control shaft or cut the RS245. so as to obtain the correct length. (See Figure 10).

Original Auto Radio Control

Figure 10

RS246 is also for Auto Radio Conerols and should be used where a tongue-shaped shaft is required.
The tongue is roughly finished because it is often necessary to file this shatt to the desired dimensions. This is easy because of the soft brass material.

EXPERIMENTERS will find that by inserting the RS246 within an RS245, they can obtain a positive drive in a rotary direction, yet be able to vary the length of the shaft at will. This gives a "push-pull" and rotary motion with one shaft.

EC240. This is a real shaft coupler, It is very useful to couple two $1 / 4^{\prime \prime}$ diameter shafts, or a $1 / 4^{\prime \prime}$ shaft to a $3 / 16^{\prime \prime}$ diameter shaft. Remember the Yaxley EC240 the next time you have such a problem. Look at the illustration on page 124.

EB247. A necessary accessory where the control must "set back" from the chassis so as to clear a dial or switch. Easy to use. Just screw it on the bushing of a Yaxley control and then install the control. The effective length is $5 / 8^{\prime \prime}$. If necessary. use two. Extremely useful when servicing Phitco receivers.

Yaxley Control with EB247

UB241. At last. A universal panel bushing! Now you can easily make that "gadget" for here is the necessary bushing.

NUTS : ! !

No, we are not sarcastic! We are speaking of "nuts" for controls, switches and other parts. look at this picture, here is every kind of a standard $3 / 8^{\prime \prime}$ nut that you will ever need.

There is the common flat hexagon nut No. 232 as supplied on Yaxley controls. No. 255 nut is for $1 / \mathrm{K}^{\prime \prime}$ panels.

SHORT SHOULDER nut No. A11260-12 for use on medium thick pancls and for jacks and other similar parts.

LONG SHOITLDER nut No. A112t0-2 for those thick panels. Will mount a control on a $3 / 4^{\prime \prime}$ panel. In addition it may be used as a "safety" to prevent tampering with the setting of a control or switch; just screw it on the lutushing with the hexagon end next to the panel. It looks nice, too.

FLEXIBLE SHAFTS

Here is something. Ute them to replace "wire shaft" controls. Use thein for your experimental work. Look at the pictures. See the different shaped ends. Look at the Yaxley control fitted with one so as to replace a "wire shaft' control.

Properly userd, these shafts will equal or locter the life of a "wire shaft" because they are net subject to steel "fatigue.

Made of special rubber compound surrounding a flexible copper wire core and covered with a varnish protected braid, they offer a very low "capacity" coupling between units.

Note: All types of flexible shafts are limited both as to the angle of the center lines of the driving and driven shafts and to the amount of "twist" or torque which may be anplied. The illustration (Figure 31) which may be applied. The illustration (Figure 31)
shows the practicallimits of these shafts as to angle of shows the practical limits of these shafts as to angle of
operation. The "load" should not exceed 50 "inch

Figure 31
onnces" terque, for the least "whip" (which is useless rotation). These shafts will readily operate a dual volume control with a line switch attached, or a light multiposition switch.

FS250 is for general use, where a flexible coupling is required between two $1 / 4^{\prime \prime}$ shafts.

FS251 has a $1.5 / 14^{\prime \prime}$ diameter hole, $1 / 2^{\prime \prime}$ deep with a transverse pin to be used with a L'niversal Yaxley control to replace Auto Radio (iontrols having a slotted end on the driving shaft, sach as used by Philco on their models 805,806 and others.

FS252 has a $5 / 32^{\prime \prime}$ diameter hole approximately $1,2 *$ deep and is equipped with two set screws orposite each other. It is for use with the proper Yaxley Control as a replacement for wire shaft controls which are used with a driving shaft having a small diameter round end, such as is used on Philco models D and $\mathrm{AC989}$ (122).

FS253 has a $1 / 1^{\prime \prime}$ diameter hole, $1 / 2^{\prime \prime}$ deep and is equipped with two set screws located at 90 degrees to each of her. It is for use with a Yaxley Control, to replace the original wire shaft such as is used on Chevrolet model 36-1111.

No. 178 Yaxley Volume (iontrol Wrench Is for all standard control hexagon nuts.

HARIDWARE

Yoar attention is directed to Yaxley hardware items:
Bakelite head tip jacks and sip plugs.
Bar knobs, Round knobs.
Cable-Plugs, Jacks, Jack Switches-Push
Button Switches-Gircuit openings switches.
Jewels.
Dial lights-Panel lights.
Many other useful items are all beautifully llustrated and deacribed in the new Yaxley catalorge. Look them over. You will find many uses for them.

SECTION
 CONDENSERS

THE "HOW AND WHY" OF CONDENSERS

A condenser, or as it is nore riglitly termed, a capacitor, consists of two conducting plates separated by a nonconducting medium cailed the dielectric.
The popular explanation of a condenser is, that it is an eiectrical device capable of storing a charde of current when voltage is applied to its terminals. Applying direct current to the condenser establishes astatle charge in the dielectric, the voltage of which is of oposite polarity to that of the charging or applied voltage. The value of the static charde rises until the voltape is equal to the charging voltage. When this point is reached the charging voltage is opposed by the voltage of the electrostatic charge in the condenser, and there can be no further "flow" of current unless THIF CIIARGING VOLTAGE EITIIER RISES OR FALLS.
Let us see what happens when the applied voltage rises or lowers in value in respect to the voltage of the established electrostatic charge:

First-If the charging voltage rises above the electrostatic voltage, additional current will "flow" through the condenser until the clectrostatic voltage again equals and opposes the applied voltage.

Second-If the applied voltage falls below the voltake of the establlshed electrostatic charge, CURRENT WILL FLOW FROM TIIE CONDENSER INTO TIIE CIRC:UIT until the electrostatic voltage again equals the anplied voltage.

SUMMARY OF TIIE ACTION TAKING IPLACE IN A CONDENSER

1. An electrostatic charge is established equal to, but of opfosite jolarity of the applied voltage.
2. Any rise of applied voltage causers the current to flow from the circuit into the condenser; i. e., "through" the condenser, and any fall in the applied voltage causes current to flow from the condenser into the carcuit.

This is a clatr explanation of the action of a condenser, esjecially so where it is used for filter circuits.

ELECTROLYTIC CONDENSERS

Condensers are classified according to the nature of the dielectric medium embloyed in their construction. Thus-an oil condenser is one in which oil is used as the dielectric; an air condenser is one in which air is used as the dielectric; a paper condenser is one in which naper is used as the dielectric.
From the description of the terminology applied to condensers, one might suppose that the electrolytic condenser uses an electrolyte-as the dielectric. This supposition, however, is inaccurate in that the electro-
lyte used in the electrolytic condenser is not the actual dielectric material but is one of the conducting "plates."
The dielectric material, or medium, in the electrolytic condenser consists of an extremely thin oxide "film" which is formed on the surface of the condenser anode or positive plate.
The nature and composition of the film which forms the dielectric in an electrolytic condenser is not defintitely known. The formation and action of this film is understood and can be explained in rather simple terms.
It is a preculiar characteristic of aluminum and a few other metals that when they are immersed in certain clectrolytic solutions, or electrolytes, and a current passed through the metal and electrolyte to arother electrode, a non-conducting film will be formed on the metal which will oppose the flow of current.

Thus, if we take two pieces of aluminum and immerse them in a suitable electrolyte and pass a current from one plate to the other, the current will be very high when first applied, but it will taper off until there is little, if any, current flowing in the circuit. This is termed "forming," which means the establishment of a film upon the surface of one of the plates. In the case of aluminum, the film is formed on that plate to which the positive wire is connected.
The formation of the film on the plate retards the flow of current. If the polarity is reversed; i.e., the polarity of the charging voltage, current will flow. Thus we see that the "film" acts as an insulator only as long as we maintain the same polarlty as was used in forming.

CAPACITY OE A CONDENSER

Capaclty is the term applied to a condenser which indicates the ratio of the quantity of the electrostatic charge, to the voltage. The quantity of the charge in a condenser is expressed in coulombs, or as it is usually expressed: $Q=C \times V$. Where D is coulombs, C is capacity in farads, and V is voltake. which gives us the fundamentals for stating that the which gives us the fundamentals for stating that the
capacity is equal to the quantity divided by the voltage, or $\mathrm{C}=\frac{\mathrm{O}}{\mathrm{V}}$
The capacity of a condenser is dependent upon:
First-The area of the plates.
Second-The thickness of the dielectric.
Third-The "Dielectric Constant."
The "Dielectric Constant" of a material is the ratio of the capacity of a condenser using this material, to the capacity of a condenser of equal plate arca, but using air as the dielectric. The usual formula for "Dielectric Constant" is $\mathrm{K}=\mathrm{Cs}$.
Where Cs is the capacity with the dielectric in question, Ca is the capacity when using air as the dielectric, and K is the "Constant."

The "Dielectric Constant" of a material is not constant in value, but varies with the frequency of the applied current, noisture content, temjerature, voltage apslied, and other factors.

The dielectric constant of the "film" in an electrolytic condenser varies with the "formation woltage." Thus-for "mul thate area, a condenser "formed" at low voltage will have a higher capacity than one of the same area formed at high voltage.

Another characteristic of the electrolytic condenser film is that it is dependent upnn the composition of the electrolyte, inasmuch as the composition of the electrolyte determines the maximum voltage at which the film can be formed or maintained. Thus, if an electrolyte is said to be a " 400 volt electrolyte," the meaning is, that if more than 400 volts is applied to a condenser using this electrolyte. the film will be punctured though not necessarily damaged. This is the reason why, when electrolytic condensers are rated at " 525 volts surge," it means that 525 volts is the maximum momentary voltage which can be applied to the plates without puncturine the dielectric film.

A characteristic of electrolytic condensers is that a constant DC: voltage when applied aids in maintaining the dielectric film, and because the film is not perfect, there will be a small amount of current continuously flowing through the condenser. This current is called the "leakage current," and for a good electrolytic condenser, it is very small. The value of the leakage current is determined by the condition of the film on the plate and the length of time it has been without a polarizing voltage; i. e., "on the shelf."

DRY ELECTROLYTIC CONDENSERS

In general, there are two types of electrolytic condensers: the "WET TYPE," which uses a liquid electrolyte, and the "DRY 'T'YPE" which uses a "PASTE" clectrolyte.
The "DRY" electrolyt ic condenser possesses many advantages. They will not spill or leak, may be mounted in any position, and in any type container. For instance, a carlboard carton. In addition. it is not necessary to provide for the escape of gas, a costly and inconvenient factor.

NECESSITY
 OF ELECTROLYTIC CONDENSERS

Previous to the development of high voltage "IDRY" electrolytic condensers, the Reneral design of radio receivers and amplifiers was considerably below present standards, duc to the fact that combletely filtered plate voltage supplies were practically unknown. This is obvious because:
(a) The terriffic expense of the necessary high capacity for filtering, if paper condensers were used, or-
(b) The restricted mounting and unsightly appearance of the early wet electrolytic condensers.
The lack of pure direct current for plate voltage supply caused serious difficultics with hum. In order to obviate this condition, it was necessary to deliberately design the receiver or amplifier, so that frequencies below 130 cycles would be "cut-off" and would not appear at the loud speaker. Note that the principal "hum frequency" is twice the frequency of the supply voltage; i. e., 120 cycles for a tio cycle supply current (except on a half-wave rectifier where the lum frequency is tio cycles). This "cut-off" of the all-important "Bass" notes meant that music would sound "shrill and tinny."

The introduction of the "Dry Electrolytic Con denser," with its numerous advantages, meant that here was a Jow cost, compact condenser of high capacity which would allow perfect filterind of the "B" supply current. Thus, with pure "DC" plate supply. the way was open for the design of recelvern having high fidelity of response, as it was no longer necessary to "cut-off" the bass notes in order to prevent hum.

CONDENSER CIRCUIT ACTION

There are two maln uses for Electrolytic condensers; the first and most important is in "Filter Circults," which are used to convert pulsating direct current into a smooth "DC" plate supply.
The second is as "By-Pass" unlts. In audio frequency circuits, this generally calls for a much higher capacity in relation to the voltage than is encountered in filter circuit work. However, the low voltage, in filter capacity electrolytic condenser is very amall in physical aize. In addition it is often used to "by-pass" very low values of resistance, which requires a very high capacity value. The high ratio of capacity to physical sixe of the low voltage electrolytic condenser, is of great advantage. in that it allows the use of the proper capacity value without requiring too much apace.

It is imperative that servicemen, as a group, should know more about condenser circuit action, because this knowledge will enable them not only to make a quick and easy repair, but also to diagnose those troublesome cases involving condensers and their actions upon associated circuits.

Because of the universal use of electrolytic condensers in filter circuits, and also because the filter circuit is of much more importance than the by-pass type of circuit, we will first discuss the action of filter circults. Before entering upon this discussion, it will be best to have an understanding of the different types of current which require "filtering."

RECTIFIERS

The usual current to be "filtered," is obtained by rectifying a high voltage alternating current. There are a number of different types of rectifiers. For high voltage " B " supply, the thermionic rectifier tube is universally used.

There are two types of rectifier circuits-"half-wave" and "full-wave."

HALF-WAVE RECTIFIER

We will first discuss the "half-wave" rectifier.

Figure 1 illustrates the connections of a "half-wave" rectifier. This circuit is seen to consist of a transformer and half-wave rectifier tube. The transformer serves to supply the necessary high voltage alternating current. One side of the high voltage winding connects to the plate of the tube and the other side to ground. The filament of the tube is lighted by the current obtained from the low voltage winding on the transformer. The high voltage winding of the transformer, as previously mentioned, supplies an alternating current. By alternating, we mean that the polarity, or direction of current flow, reverses itself periodically. First one side of the transformer is positive. then the other. The voltage will rise to a peak and then fall to zero, at which point the polarity reverses; i. e., the side which was positive will now be negative, and the voltage will again rise to a peak value and fall to zero. Thls completes one cycle of the current.

Figure 1
The keneral frequency of suptly current is 60 cycles per sccond.

Figure 2 slows the voltage applied to the plate during the half-cycle wherein the plate is positive in respect to ground.

Figure 2

Notice that the voltage gradually rises to a prak value and then falls to zero. If we should connect a voltmeter across the transformer it would not indicate the peak value, but rather the "RMS" value, which means-the root mean square voltage applied to the plate of the tube.

The action taking place in the tube follows: When the plate is positive, electrons are attracted from the filament. The electrons flowing from the filament to the plate constitutes a current, the value of which depends on the voltage applied to the plate. Therefore the current is seen to rise and fall with the voltage applied to the plate. When the plate of the tube is nedative in respect to the flament, there can he no current flow because the plate must be positive in order to attract electrons from the filament.

Figure 3 shows that during two cycles the plate will be positive for cestain periods of time and negative for equal periods.

Figure 3

From our previous explanation of the action in the tube, and from Figure 3, we see that during two cycles of the supply voltage, the tube will deliver current for two periods of time, which is equal to the length of time during which the plate is positive, and that there will be a lack of current during two periods of time in which the plate is negative. Thus-we see that for a half-wave rectifer we will have redular periods of current flow, each of which is followed periods of current flow, each of which is followed
by a period of time during which no current by a period of time during which no current
flows. This, of course, is far different from the steady "Direct Current" plate supply, which is required to give successful operation of a radio receiver. A voltmeter connected across points " A " and " B " of Figure I would show the average voltape existing across the load connected to points "A" and "B." This averade voltape would be far below the RMS voltage supplied by the transformer, because of volage supplied by the transormer, because of current flowing in the circuit.

Now, if bsísome means we could provide a reservolr, which would absorb current durina the periods of current flow, and then "feed" this stored current into the circult during the periods when current is not flowing from the tube into the circuit, we would be able to ralee our
average yoltage across the load. We would, in effect have a more continuous flow of current and therefore a higher "average" voltage across the load. A condenser provides just such a reservolr, and when connected across the load as in Figure 1, it will act exactly as the imaginary reservoir action described.

Figure 4
Figure 4 is a graph of the voltage across the load resistor shown in Figure 1, as plotted on the basis of time. The two heavy and dotted curves show the voltage supplied by the tube, and the slanting line shows the voltage which would be supplied to the circuit by a condenser connected from points "A" to "B." Notice that this condenser will act exactly as was described in the chapter headed "The How and Why" of Condensers. It will discharge current into the circuit during the period of time, wherein the charging voltare is falling, and that this discharge continues, until the condenser is either entirely diacharged or until a charging voltage is again applied to the circuit by the rectifier tube.

Inasmuch as the quantity of current is determined by the amount of load, it is easy to see that a very large condenser would be required to totally "fill in," or supply voltare to the circuit during the entire period of time in which the rectifier tube plate is negative.

In order to further smooth out the current, it will be necessary to provide some means whereby we can "hold down" the peake, so that we may take full advantage of the action; i. e., the "holding up" or maintenance of current supplied by the condenser. Before going into this matter, we will first discuss the "Full-Wave" rectifer.

FULL-WAVE RECTIFIER

The full wave rectifier operates in exactly the same manner as the half-wave rectifier, with the exception that the full-wave rectifier enables us to use hoth halves of each cycle of current.

It was pointed out and carefully explained in the deacription of the half-wave rectifler, that current flowed for a certain length of time and then was absent for an equal length of time, due to the second half of the cycle being of reversed polarity. However, the full-wave rectifier enables us to use the other "half" of the cycle, or, It enables us to "fill in holes" which exist in the output of the halfwave rectifier.

Figure 5
Figure 5 shows the circuit of a full-wave rectifier. This eircuit consists of a transformer which supplies the high voltage, to be rectified, and the low voltage for lighting the filament of the rectifier tube. Note that the hish voltage winding is tapped at its center. This center tap of the transformer provides a return path common to both sections of the high voltage winding.

The high voltage winding is arranged to supply a voltage between the two ends of the winding, which is twice the value of the voltage reguired across the load. The reason for this is that only half of the windink is used at a time; therefore, each half of the winding has to supply the desired output voltage.
Notice that the tube shown in ligure 5 has one more plate than the tube shown in Figure 1. However, the tube action is identical. Thus-current will flow from the filament to that plate which ls positive, but not to the plate which is negative.
For explanation, let us assume that plate No. 1 is positive. Therefore, plate No. 2, since it is connected to the other end of the high voltage winding, is nedative. Current will flow from the filament to plate No. 1 (but not to plate No. 2), and complete the circuit by leaving the center tap and going through the chassis and load, back to the filament. We will call this the "First Action."

In our previous study of the half-wave rectifier, it was pointed out that the current and voltaperises, to a peak, and falls to zero and reverses polarity, rises to a peak and again falls to zero, to complete one cycle. Therefore, in the "First Action," the voltage across the load (because of the current flowing through the plate No. 1), will gradually rise to a peak and then fall to zero. This is shown in Figure 6.

Figure 6
Remember that when the current supplied by the transformer reaches zero, the polarity reverses. Therefore, for the "Second Action," plate No. 2 of the rectifier tube, in Figure No. 5, will be positive and plate No. 1 will be negative.

Now, as the voltage rises and falls on plate No. 2, there will be a current flow from the filament of the rectifier tube to plate No. 2, and from the center tap of the high voltage winding through the chassis and load, back to the filament, thus completing the circuit.
The voltage across the load will gradually rise and fall. It flows in the same direction as the current obtained in the "First Action." Therefore, the voltage acrose the load will rise and fall in the same manner and with the same polarity as that obtained by the "First Action." This is shown in Figure 6.
By the use of a full-wave rectifier, we have a MORE CONTINUOUS CURRENT FLOW," or in other words, we have "filled in the holes" which we found to exist in the current supplied by the half-wave rectifier. This means that we will not have to depend upon an extremely larde condenser to pend upon an extremely larke condenser to maintain the flow of current in the load. In the
discussion of the "Half-Wave" rectifier, it was pointed discussion of the "Half-Wave" rectifier, it was pointed
out that the condenser would supply current to the load during the period of time when the voltage, from the rectifier, was "falling."
Refer to Figure 6 and note that we have a period of time, between each half cycle of the supply current, during which the voltage falls to zero. If a condenser is connected across the load, it will discharge current through the load as som as the applied voltage starts to "Fall," and it will continue this discharge of to rall, and it will continue this discharge of condenser voltage is opposed by the rising voltage of the second half of the cycle.

Figure 7 shows the meeting point between the discharge of the condenser and the increasing "charging voltage" of the second half of the cycle of current supplied by the rectifier.

Figure 7

Compare the shape of the curve, illustrating tise DC voltage existing across the load resistor, in Figure 6, with that of Figure 2, and note that we have twice the number of peaks of current per cycle of the supply current. It will require less capacity to "smooth out" the current dellivered hy the full-wave rectifier than is required hy the output of the half-wave rectifier. This is due to the fact that there are more "impulses" of current in the same length of time. A condenser of a given capacity will maintain a higher voltage level, in the load, with a full-wave circuit, than in the case of the half-wave rectifier circuit, because it needs supply current for much shorter periods of time between impulses of current. This is evident if you will compare Figure 7 with Figure 4.

The pulsating current obtained from a rectifier. even with a condenser connected to the circuit, is not sultable for " B " supply in a radio receiver or atmplifier, because the remaining pulsations or ripple would still give rise to a very stronk and ohjectionable hum in the loud speaker.

Increasing the capacity of the condenser connected across the load, at the output of the rectifier, will not decrease the hum below a certain value. inasmucl as the "charging voltare" applied to the condenser must fall to a certain extent before the condenser discharges its current into the circuit. Likewise, the "charging voltage" must rise to a certain extent before it can begin to replenish the change in the condenser. Thus-we see that we can reduce the "amplitude," which means the height from the lowest to the highest point of the voltage variation, or ripple, by the use of a condenser, but that above a certain value of capacity, depending upon the load and frequency of the supply voltage, there will be no further reduction in the amplitude of the ripple in the current supply. It will be necessary to use some means, in addition to the condenser, to entirely eliminate the ripple from the supply voltage, in order that there may be a pure direct current for use in either the receiver or amplifier. The most convenient means of doing this is by the use of a "choke."

ACTION OF CHOKES

The word "CHOK E" is applied to a piece of equipment properly termed an "Inductor." An "Inductor" is a piece of apparatus having an electrical property which is termed "Inductance." "Inductance" "Opposes" any sudden INCREASE of Current through an inductor, and "Delays" any Sudden Decrease of current through an inductor.

The explanation of the action which causes the property of inductance follows:

Any conductor carrying a current has a marnetic field at right angles to the longitudinal axis of the inductor. This magnetic field extends radially outward from the conductor, a certain distance, depending upon the intensity or amount of current flowing in the conductor. If the current through the conductor is increased, the masnetic field will expand. If the current is reduced, the mapnetic field will contract. Thus, we have a "Moving Magnetic Field." the direction and speed of motion of which is determined by the "Rate" of increase or decrease of current in the conductor. NOTE-There is no "motion" when the current is flowing at a steady rate.

A fundamental law of electricity is "when a moving magnetic field 'cuts through' a conductor, there will be a voltage induced in the conductor, the polarity of the inducted voltape depending upon the direction of motion of the marnetic field." If we take a straight conductor and coil it, we will have an arrangement whereby if we "inwe will have an arrangement whereby if we in-
crease or decrease" a current flowing through crease or decrease" a current flowing through
the coiled conductor, we will have "moving the colled conductor, we will have a "moving
magnetic field," which, due to the proximity of turns, will "cut through" several conductora; i. e., adjacent turns of the coil. If we increase or decrease the current flowing through a coll of wire, we will have a "self induced" current in the coil in addition to the "applied or driving" current. This "induced current" is of opposite polarity to the "applied or driving" current. Therefore, AN increase of Current through

AN INDUCTOR IS OPPOSED BY THE SELFINI)UCED (U URRENT IN TIIE (COIL, WHICHI IS usually called the "counter-elec-TROMOTIVE-FORCE."
In line with this explanation of the action taking place during an increase of current, it is easy to see that A DEGREASE IN CURRENT WILL (jENERATE A COUNTER-ELEGTROMOTIVEFORCE WIIICH WILL OPPOSE THE DECREASE IN CURRENT.
The amount of inductance in a coil of wire is dependent upon the number of turns and the nature of the material used for the core. Air is the poorest material, in that it is not a good magnetic conductor. If we use an iron core, the inductance will be much hipher, because iron is an excellent magnetic conductor.
In the diseussion of rectifier circuits, it was pointed out that it was necessary to find some means of "holding down" the peaks of the ripple in the current supplied by the rectifier, so as to obtain a steady flow of current for use as "B" supply in a receiver or amplifier; therefore, it appears that an inductor or choke is ideally suited for this action.

BASIC FILTER CIRCUIT ACTION

At this point we are ready to describe the action taking place in a "filter" circuit; i. e., a circuit composed of capacity and inductance which will "smoosed out" capacity and inductance which will "smooth out" the pulsating current delivered by a
rectifier; into the smooth pure direct current necessary rectificr: into the smooth pure direct current necessary
for " ${ }^{3}$ " supply. Figure 8 shows the connections of the iron cored inductor "choke," and two condensers which comprise the simplest and basic type of filter circuit.

figure 8
The letters " R " and " L " in Figure 8 indicate respectively, the rectifier and load. The condenser respectively, the rectifier and load. The condenser
at the "Input" has the same action upon the circuit at the "Input" has the same action upon the circuit
as the condenser described in the chapter on rectifiers. This condenser acts as a reservoir to supply current to the load during the zero current periods in the current supply from the rectifier.
The choke in the circuit of Figure 8 opposes any sudden Increase or decrease of current because of its inductance.

At this point in our explanation, we have a current supplied to a load (" 1, " in Figure 8) through a choke which opposes and prevents any sudden increase in the current, and we have a condenser at the rectifier output which will supply current when the rectifier can not. Thus, the choke prevents the "peak of the ripple" from retting in to the load, and the condenser "fills in the hollows" in the supply. Or, we may explain the action up to this point by saying that we have reduced the "amplitude" of the "ripple" in the current.

Inasmuch as the choke prevents any sudden increase in current, or in other words, maintains a steady current flow, it is necessary to provide a means of supplying current to meet any sudden demand for current made upon the filter. Without such an "auxiliary" current supply, we would be forced to "wait" for an Increase of current to come through the choke. We have in reality, a need for a "reservoir," and in the chapter "TIIE HOW AND WHY OF CONDENSERS," we learned that a condenser is just such an "electrical reservoir." Therefore, we see the reason for the condenser across the load side of the filter circuit shown in Figure 8.

Due to the fact that all chokes have more or less resistance (because of the natural resistance of the wire used to wind them), there is a voltape drop across the choke which subtracts from the effective voltage useful for plate aupply.

In addition to a tube requiring a plate voltage, it also requires a negative bias voltage which is applied to the grid. If we can obtain both our plate and bias voltages from, the " B " supply, or, in simpler words, make full use of the voltage from the " B " supply. wé will be effecting, an economy.

Inasmuch as the bias voltage must be negative in respect to the cathode of the tube, we can easily accomplish the action of obtaining both our " B " and "C" "bias" voltages in the following manner:

Due to the fact that it is convenient and economical to use the chassis as the negative side of the circuit, it is posilble to insert a resistance, between the center tap, of the high voltage winding on the power transformer, and the chassis. This will make the center tap of the transformer negative in respect to the chassis. If we connect the cathode, or filament center tap of our tubes directly to the chassis.tand connect the grids to the center tap of the transformer. the grid will be negative, In respect to the cathode, by the amount of voltage drop obtained acrose the resistance.

The voltage drop obtained across the resistance, as outlined in the previous paragraph, is caused by the current in the "load;" i. e., the sum of all the plate currents and "bleed" currents of the receiver. The voltage drop across the resistance is equal to the current times the resistance. For any given current, we can obtain any dealred negative voltage by selecting the proper value of resiatance.

Before proceeding further on this phase of the use of the choke in the negative side of the circuit, we wish to point out that it is not the only reason for placing the choke in the negative lead, inasmuch as there are other considerations in certain designs. Because bias voltage is the usual reason for using the choke in this position. we shall proceed with a further explanation of this usage.

The introduction of the dynamic speaker enabled designers to "kill two birds with one stone," in that the dynamic apeaker could be used as the choke. Inasmuch as the magnetic circuit of the field in a dynamic speaker must necessarily include a "gap" (for the movement of the voice coil), we have the makings of a choke, as we have a coil of wire on an iron core, and the core is provided with an air gap.

The use of the field of a dynamic speaker as a choke is economical as the saving in the cost of the choke offsets part of the cost of the speaker.

An additional advantage, is that inasmuch as the field of the speaker requires several watts for its proper excitation, there will be considerable voltage drop across it.

If the speaker field were placed in the positive lead. the voltage drop across the field would be suberacted from the voltage available from the rectifier, which voltage of course, would have to be raised to offset this. In addition, if a separate voltage dropping resistor were used, either at the tube or in the negative lead to the transformer, to secure the necessary bias voltage, the rectifier output voltage would of necessity have to be large enough to include this voltage. What could be more natural than to utilize the voltage drop across the field as the blas voltape, and thereby make a saving in the power transformer? The result of this is the use of the field in the negative lead; i. e., between the chassis and center tap of the power transformer.

Figure 13 shows the simplest type of filter circuit wherein the choke is in the negative lead.

Figure 13

Because the same filtering action can be obtained with the choke in the negative lead as is obtained with the choke in the positive lead, we can expect to find the same types of circuits as previously described, with the chokes in the negative side of the circuit instead of in the positive. See circuits 4, 5, and 26 on pages 142 and 143.

Due to the fact that the wattage required to be expended in the field coil may not be of such a value as to give a convenient voltage drop, it is sometimes necessary to adopt the expedient shown in Figure 14.

Figure 14
Here we see the same circuit as shown in Figure 13, except that there has been a resistance added in series with the choke; i. e., the field coll; In order that the voltage drop between the load and rectifier may besufficient for use as bias voltage. It is of no great importance as to which side, of the choke, the resistor is connected, inasmuch as the resistor offers an "impedance" to the ripple voltage, the same as would an inductive "reactance" of the same ohmic value. In case the voltage drop across the field is too great, a divider network is placed across the field so as to tap off the desired voltage.

RESONANT ELEMENT FILTER CIRCUITS

Our discussion to this point has been confined to the type of filter circuit vulgarly known as the "Brute Force"' type. However, there is another type of filter circuit wherein use is made of a resonant circuit.

Such a "resonant circuit" type of filter circuit is shown in Figure 15.

Figure 15

The circuit shown in Figure 15 is practically the same as that of Figure 11, with the exception of the small condenser C which is shunted across the first choke.

The capacity of the condenser " C " ' is so chosen that it "tunes" the choke to resonance with the "hum frequency." The result of tuning this choke is that a tuned circuit of this type offers a very high "impedance," or more simply, "opposition' to the hum frequency. The action of this tuned circuit is often described by saying that it "absorbs" the particular alternating current, in this case, the ripple current, which is applied to it.

The "tuned choke" type of filter circuit is nearly always used with the full-wave type of rectifier, although it is possible, but not convenient or advisable, to use it with the half-wave type of rectifier.

It is well to point out that all filter circuits described have been of the "Low Pass" type; i, e., CIRCUITS THAT WILL PASS ALL FREQUENCIES BELOW A CERTAIN VALUE and prevent all frequencies "above" this certain value from passing through the circuit.
The "cut-off" point; i. e., the frequency below which the filter is ineffective, must be below the frequency of the hum voltake, or ripple, and in sood design, it should be below the lowest frequency which will be handled by the audio amplifier recelving "B" supply current from the circuit. In addition, it is very important that the resonant frequency of the filter circuit should not be the same as the frequency of the supply current fed to the transformer.

In addition to the low pass type of filter circuit, there is a "high pass" filter cist. i ; i. e., one which prevents the pasar of BELOW the "cut-of"' polnt, but ALLOWS THE PASSAGE OF ALL FREQUENCIES ABOVE THE CUT-OFF POINT.
A combination of the high pass and low pass filter would be most effective for use as a " B " circuit filter. provided that the cut-off point of the high pass filter is ABOVE the ripple frequency and the cut-off point of the low pass filter is BELOW the ripple frequency. The most effective arrangement of such a combination circuit would be to have the high pass filter between the rectifier and the low pass filter.
An "absorption" type of filter next to the rectifier is shown in Figure 16.

Figure 16

In this circuit the field coill of a speaker is used as the inductance, which with the capacity of the series condenser, resonate at the ripple frequency. Inasmuch as it is a "seriea resonant" circuit, it offers a hort circuit for the ripple frequency current. This current is not suitable for use as a field supply. The resistor is shunted across the condenser in order to provide a path for the necessary DC current.

The resistor is of a much higher value than the value of the capacity reactance of the condenser at the frequency involved. The resistor does "broaden the peak of resistance" of the circuit and this offisets any slight discrepancy in capacity value of the condenser.

Figure 17 is a more practical, although more expensive, method of using a resonant circuit in a filter.

Figure 17

Tlus circuit shows the use of an inductance and an electrolytic condenser, the sole purpose of which is to "whort circuit" the hum frequency. In some instances, the two chokes shown in Figure 17 are in reality two windings on a common core. In other words, a transformer. There is a simpler and less expensive way of obtaining the same action. This method is shown in Figure 18.

Figure 18

The portion of the circuit in which we are interested in Figure 18, is the tapped choke in the negative lead. Note the condenser connected between the chassis and the tap on the choke. The action taking place in this circuit follows: The tapped inductance acts as an auto-transformer, the primary of
which is the whole winding, as the secondary is the circuit formed by a portion of the winding and the condenser connected from the tap to one end (through the chassis) of the winding. The "resonant period" of this "tuned secondary" is equal to the disturbing ripple, and therefore, it appears as a short circuit to the ripple frequency, which means that the energy of the ripple frequency is expended in this circuit.

Before taking up the more complex rectifier-filter circuits, we wish to call your attention to the fact that under certain conditions a resistor may be used in place of a choke in a filter circuit. This is shown in Figure 19.

Figure 19
This circuit is seen to consist of a resistor and two condensers arranged in the same manner as the simplest and the first described filter circuit. This type of circuit is not nearly as efficient as one using a choke. It is much cheaper, as there is a large difference in cost between the price of a resistor and that of a good choke.

The action in this circuit is rather simple, in that the resiator sets up a voltage drop in any current passing through it, the voltage drop being determined by the current flowing through the resistor. For use as a filter, there will be a greater voltage drop in the direct current than there will be in the ripple current, because of the fact that the $D C$ current is greater than that of the ripple current, or, we might state that the DC voltage applied to the resistor is much greater than the ripple voltage. It will require a rather large resis tor to sive appreciable drop in the ripple current flowing through the resistor, and for this reason, such a circuit can not be used except where the load on the filter is small. An additional disadvantage is that large capacitors must be used with such a circuit.
We now have a complete circuit consisting of a transformer, rectifier and filter, which enables us to draw a pure DC current from an alternating current source or supply. The true picture is not nearly so "rosy" as one might be led to believe by the description presented thus far. There are a number of factors which limit the efficiency of the various parts of our circuit, particularly the filter.

FILTER COMPONENT LIMITATIONS

In order to present a clear picture of the action of a filter circuit, we have deliberately avoided the introduction of any of the limiting factors which must be considered in the design, application and repair of a filter circuit, or parts thereof.

First, let us consider the limitations of our choke. A serious limitation in the action of a choke is that if too large a current is passed through it, the core material will become "saturated;" i. e., it cannot absorb or carry but a limited amount of magnetic lines of force. When this point is reached, a sudden Increase of current will be unopposed because the magnetic field cannot increase. There is a method of preventing this "saturation," and that is to leave a "gap" in the core. This is a limited blessing. for, although the gap will prevent, to a certain extent. "saturation" of the core, it also reduces the "inductance" of the choke, which means that the "smoothing effect" of the choke will be reduced. Here we have a choice between two evils-one of which is loss of inductance, and the other-loss of current capacity. We can secure some relief from the former by increasing our condenser capacity. There is a sharp limitation even to this.

Figure 9-Mallory Dry Electrolytic Condenser Voltage Ratings

DC Operating Volts	Maximum Surge	Maximum Peak AC Ripple Voltage at 120 Cycles							
		$\underset{1-3}{\mathrm{Mfd}}$	$\underset{4-5}{M(1)}$	$\begin{gathered} \text { Mfd. } \\ 6-9 \end{gathered}$	$\begin{gathered} \text { Mfd. } \\ 10-12 \end{gathered}$	Mfd. 13-16	$\begin{gathered} \mathrm{Mfd} . \\ 17-2.5 \end{gathered}$	Mfd. 26-35	Mfd. 36-50
25.	40	10	10	10	10	10	8	8	5
50.	75	15	15	15	15	10	8	8	5
100.	150	25	20	20	20	15	10	8	5
150.	200	25	20	20	20	15	10	8	5
200.	250	30	27	25	20	15	10	8	5
250.	300	30	27	25	20	1.5	10	8	5
300.	3.0	30	27	25	20	15	10	8	5
350.	400	30	27	25	20	15	10	8	5
450.	52.5	30	27	25	20	15	10	8	5
475.	525	30	27	25	20	15	10	8	5
500.	525	30	27	25	20	15	10	8	5

In our discussion of a condenser and its action, we have thus far omitted any reference to its limitations. One of these is resistance, which causes loss of power and heating of the condenser if it is not considered.

The effect of resistance in an electrolytic condenser is that it limits the amplitude (voltage variation) of the ripple which can be applied to the condenser. Remember-that this ripple must "flow through" the condenser, because it is an "increasing and decreasing"' or alternating current.

Figure 9 is a table which gives full information on this subject.

SURGE VOLTAGE

When first turned on, many radio receivers and amplifiers develop an unusually high "surge" voltage across the filter circuit, because there is little, if any, load on the filter. This is especially true where heater type tubes are used, with a rectifier of the filament type.

In order to explain the effects of surge voltage, and the reason that it is a limiting factor in the use of clectrolytic condensers, it is necessary to familiarize yourself with the chapter entitled "The How and Why" of Condensers.
In this article it was pointed out that an electrolytic condenser is limited in the amount of voltage which may be impressed upon it because of the puncturing of the dielectric film on the plate when the voltage exceeds the limitations imposed by the electrolyce.
The voltage at which the film of an electrolytic condenser starts to puncture is called the sunge voltage. The highest value generally obtained is approximately 525 volts. (Be sure to read "Mallory Replacement Condensers and Accessories", page 145).
Electrolytic condensers are correctly rated as follows:
Working voltage, 450; "'Surge" voltage, 525.
The meaning of this is that the condenser is designed to work continuously at a DC potential of $\mathbf{4 5 0}$ volts. Superimposed upon this is of course the ripple voltage. Figure 9 gives the practical limit for the ripple voltage which may be applied to different electrolytic condenser ratings.
The term "Peak Voltage" is relatively unimportant but refers to the total of the DC working voltage plus the AC ripple safe for continuous operation. This term is often misused for "Surge Voltage."
The "Surge Voltage" is usually consldered the maximum voltage that may be applied to the unit through some limiting resistance for a few seconds without damage. Continuously applied, it will generally ruin an ordinary condenser in a short time, because of the development of heat within the unit.

Few dry electrolytic condensers will withstand a surge greater than 525 volts. You will note in Figure 9 that the $\mathbf{4 5 0}, \mathbf{4 7 5}$, and $\mathbf{5 0 0}$ volt DC ratings all carry the same surge rating. For this reason it ts possible to replace 475 and 500 volt units with 450 volt Mallory units as far as the surge is concerned. We recommend this practice as Iong as the sunge does not exceed 525 volts and the continuous working vol tage does not exceed 450 volts.

MALLORY CONDENSERS OF THE 450-VOLT RATING HAVE BEEN PURPOSELY DESIGNED TO SOMEWHAT LIMIT THE SURGE VOLTAGE AT THEIR TERMINALS. THE LEAKAGE CURRENT CHARACTERISTIC OF THESE UNITS IS SLIGHTLY HIGHER THAN WHAT MIGHT BE EXPECTED BY COMPARISON WITH MALLORY 250-VOLT CONDENSERS. THE SPECIAL PROCESS INVOLVED PROVIDES A MAXIMUM OF USEFULNESS FOR GENERAL REPLACEMENT SERVICE. RELATIVELY HIGH LEAKAGE AT VOLTAGES ABOVE THE WORKING voltage in this case is therefore to BE DESIRED.
Apparently, some manufacturers used 475 or 500 volt units in original equipment rather than 450 volt units, believing this would reduce field trouble from surges. As a matter of fact, the 450 volt units are no more likely to break down from surges than the higher voltage units as they draw more current past their rating and help to hold the surge down. This is clearly shown in Figure 9A.

Figure 9A

MEASURING
 SURGE VOLTAGES

The best practical way to make this measurement is to disconnect all fllter condensers and Install a 1 mfd . paper condenser, at the output of the rectifier. A $1,000 \mathrm{ohm}$ per volt meter applied at the paper condenser terminals, will then indicate the voltage applied to the condensers during the heating cycle of the tubes. BE SURE THAT THE TUBES ARE COLD AND THE METER IS ATTACHED BEFORE THE SET IS TURNED ON. The maximum swing of the meter may then be taken as the maximum surge. The paper condenser may be connected to the terminals of the voltmeter if this is more convenient.
It will pay you to make this measurement where high surges are suspected as this initial sunge affects all the filter sections.

Surge voltage should always be measured wherever the line voltage is high; i. e., above the standard level of 110 volts, as in many localities the line voltage may rise to 125 volts or more.

Many servicemen are of the opinion that it is not necessary to measure the surge. This impression has probably been gleaned from statements that 'it is not necessary to measure the surge." Following the above reasoning, "it is not necessary to look to see if the train is coming." However, just as with surge, it is the safest thing to do.

Obviously, where the ordinary type of condenser is used, the speaker plug should never be removed while the set is on as this removes all load and may damage the first filter condenser. If there is a possibility of this happening, as on amplifiers, we suggest the use of Mallory Type HS Condensers.

Should a particular receiver give trouble due to repeated failure of condensers, we suggest using one of the Special Mallory High Surge units developed for this purpose. These condensers are especially designed to withstand any surge condition likely to be met in the field. Since they cost more than ordinary units they are recommended only for severe cases.

FILTER CIRCUIT ACTION

In the previous chapters we have discussed the actions which take place in each part and component and their limitations with respect to the simple type of filter circuit which is shown in Figure 8. There is one type of filter circuit which is not covered.

Figure 10
Figure 10 is a circuit wherein there is no condenser connected across the output of the rectifier. This circuit is commonly known as the "choke input" type of circuit. The choke, which is connected directly to the output of the rectifier, is often termed the "swinging choke."

Inasmuch as there is no "reservoir" action at the input to the filter, there will be a lower output voltage from the filter, because of the "h hl lows" In the current supply from the rectifier. Because we have an extra choke over that of the circuit shown in Figure 8, we will have a much smoother current.

The voltage output of the "choke input" type of filter circuit is smoother for lower values of load, than the corresponding capacity input type of filter. The voltage is lower except for higher loads. This type of circuit is useful where there is a large variation in load.

MULTIPLE CHOKE FILTER CIRCUITS

Due to the facts outlined in the chapter on "Limitations of Filter Circuits." it is often necessary to employ a filter circuit such as shown in Figure 11.

Figure 11

The circuit shown in Figure 11 is seen to consist of two chokes with condenser input and output, and in addition, a condenser from the point of connection of the two chokes to the negative side of the circuit. We have in reality two of the simple filter circuits placed end to end with the advantage that we can obtain a much better filtering action because we have two chokes and three condensers.

Since the introduction of the electrolytic condenser with its advantages of low cost and small size for an extremely large capacity, it is rare that one encounters a filter circuit of more than two "stages." In older receivers wherein the designers were forced to use paper condensers, which were uneconomical to use in capacity values greater than approximately 2 mfds., it was necessary to use a circuit as shown in Figure 12.

Figure 12

A three-section filter is shown in the circuit of Figure 12. This circuit is seen to consist of three chokes and four condensers. In other words, we have three of the common, or simple, filter circuits placed end to end.

Even with extremely low values of capacity, this circuit is capable of very good filtering, inasmuch as there is an over-abundance of inductance to counteract the usual lack of capacity which was pointed out in a previous paragraph on this circuit ; i. e., the use of low capacity paper condensers.

In the filter circuits so far discussed, you will have noticed that the chokes are all located in the positive lead of the circuit. This is because of the general use of the chassis as the negative part of the circuit. Just as good filtering can be obtained if the chokes are all in the negative aide of the circuit.

There are certain conditions of design whereln it would be advantageous to have the choke in the nedative side of the circuit, in order to make some use of the otherwise wasteful voltage drop caused by the resistance of the choke.

COMPLEX FILTER CIRCUITS

Present day filter circuit design is for the most part simple and direct. Several years ago, and in occasional cases, even today, one may encounter rather complex filter circuits. These circuits often are not as complicated as they may seem at first glance, as they are usually combinations of filter circuits and load distribution circuits with associated by-pass condensers, arranged in such a manner that the schematic of the whole circuit with all the various connections involved, appears to be extremely complex.

Study will enable one to disassemble such a complez circuit into lis various functions as to filter and load distribution. There are some complex and involved filter circuits designed to meet specific conditions existing in a receiver or amplifier. Even these more complex circuits are in reality made up of combinations of the circuits which we have discussed in the previous chapters. We will present two new circuits which have not been discussed. The first of these circuits is illustrated by Figure 20.

This circuit is seen to consist of the ordinary single section "Brtite Force" filter with a choke connected

Figure 20

across the filter input. The purpose of connecting a choke, or in reality a field coil, across the circuit at this point is to effect an economy in the filter design. The current supplied to the field coil does not need to be as ripple free as that which is supplied to the plates of the tubes. In addition, the current drawn by the field coil is rather large. If the field coll were connected across the output of the filter, It would increase the voltage drop across the choke, and In addition, would call for a much larger choke (in physical size) to obthin the necessary smoothness ir: the current to be applied to the load; i. e.. the tube plates. It is economical to place the field coil across the input to the filter, as this will enable the use of a smaller choke.

The principal use for such a circuit is in AC-DC receivers, wherein a half-wave rectifier is generally used. and inasmuch as a half-wave rectifier requires the use of large capacitors, and a good inductance, any unnecessary increase in these items would be uneconomical.

These is one point which must be borne in mind with such a circuit. The combination of inductance of the field coll, together with the capacity of the input condenser, should not be of such values as to form a tuned circuit resonant at the ripple frequency. Such a tuned circuit in this position would cause a high voltage to be developed across it.

The circuits shown in Figures 27 and 38 on page 142, are practically identical, except that the choke is in the negative lead. Note the unusual connection to the rectifier tube in the circuit of Figure 38. The two halves of the tube are in parallel. In addition, the tube is in the negative side of the circuit. This is unusual, as the tube is nearly always in the positive side of the circuit. The cube acts in the ordinary manner, in that current flows through the eatire circuit and the rectifier tube when the cathodes are nedative in respect to the plates. A mueh better circuit than that described is shown in Figure 21.

Figure 21

This circuit is really very simple. We have a rectifier tube which has two separate and distinct half-wave rectifiers within its envelope, such as the Type 2525 Tube. We have a half-wave rectifier and filter system to supply current to the load, and another half-wave rectlfier which supplies current to the field coil.

The condenser connected across the field coil is for the purpose of filtering the current flowing through it. Otherwise there would be quite a bit of hum due to the ripple current passing through; whereas, with the condenser in parallel with the field coil, the peak of the ripple is absorbed and the condenser discharges through the field coil during the period of no current flow from the rectifier. Steadier "average" current is maintained through the field coll.

The circuit illustrated in Figure 11, on page 142 is identical, except that it has the choke for the load filter in the negative lead.

VOLTAGE DOUBLER CIRCUITS

Although the principal and action of the voltage doubling type of rectifier-filter circuit was known for many years, it was not until the introduction of the popular AC-DC receivers that there was any commercial reason for using such a circuit.

A "voltage doubler" circuit is one which will deliver twice the voltage applied to it. Off hand, one might think that this is done with an ordinary transformer. The true voltage doubler circuit does not use a transformer, but rather obtains the voltage doubling by means of condenser action.

The circuit shown in Figure 22 is one of the simplest types of voltage doubling circuit. However, to those servicemen who are not "up on their toes" in regard to theory of current flow, it may be a little difficult to understand. We will present a clear picture and ask that you thoroughly study it.

Figure 22
In order to facilitate the explanation of this circuit. we present Figure 23, which is a break-down of the circuit showing the action that takes place in the first half of a single cycie of the alternating current supply.

IST HALF CrCLE UDDER PLATE
COS CONDENSEE A-B CMARGES

Figure 23

Notice the polarity marked on the supply line; i. e., positive at the top, and negative at the bottom.

In one of the earlier chapters devoted to rectifier action, it was explained that whenever the plate of the tube becomes positive, electrons are attracted to it from the cathode. THIS ELECTRON MOVEMENT CONSTITUTES AN ELECTRIC CURRENT regardless of whether it is a flow of electrons from cathode to plate, or whether it is a current flowing in a wire. Remember this rule-"An electric current is a movernent of electrons and is always in the direction of negative to positive polarity."

In Figure 23, we see that the upper plate is positive. Therefore, current is attracted. This current flows in from the nesative line throush the condenser to the cathode. This completes the circuit. The actual current flow is of very short duration, because it establishes an electrostatic charge in the condenser. The action taking place in the circuit on the first half of the cycle, is merely THE CIIARGING OF TIIE CONDENSER "AB." The direction of current flow during the first half of the cycle is indicated by the arrows.

The action which takes place in the second half of the cycle is shown in Figure 24.

Figure 24

At this point make sure that you clearly understand the explanation given so far. It is not necessary to consider the other tube elements in the action up to this point. It is also advisable that you be thoroughly familliar with all the subjects which have been treated in this article up to this point. Otherwise, you may find some difficulty in understanding the explanation of this voltage doubling circuit.

We now have condenser "AB' fully charged to 110 volts, and with a polarity as marked in Flgures 23 and 24.

Note that in the second half of the cycie of supply voltage, that the polarity shown in Figure 24 is opposite that shown in Figure 23. The bottom supply line is now positive, and the upper negative. The positive polarity of the bottom line attracts current which flows from the negative line through the load and choke to the lower cathode of the rectifier tube. Inasmuch as the lower plate of the tube is positive, because it is connected to the positive line through the condenser " $A B$," the current will flow from the cathode to the plate. It encounters the charge in condenser "AB."
We now have 110 volts applied to the circuit, and also 110 volts of charge in condenser "AB." NOTE TIIAT THE POLARITY OF THE CHARGE IN THE CONDENSER AND THE POLARITY OF THE CURRENT FROM THE LINE ARE ADdative; i. e., positive to negative, and NEGATIVE TO POSITIVE.

We have added two separate charges of 110 volts each tosether. Inasmuch as they are ADDATIVE, the resulting voltage is 220 . In reality. the voltage is equal to twice the "peak" voltage of the supply circuit. This exists only in an extremely low load, and is not true in practical use. The resulting voltage in such a circuit is usually equal, or very nearly so, to twice the RMS value of the applied voltage.

From the description of the voltage doubler circuit, it is easy to see that this circuit may only be used with an alternating current supply, and can not be used in an AC-DC receiver which may be operated on direct current, inasmuch as there is no reversal of polarity in a direct current circuit. Therefore, the circuit illustrated in Figure 22 cannot be used where the line supply is direct current.

Circuit 9 on page 142 is a voltage doubler circuit with slightly different connections, but with the same action as that of the circuit which we have just described and illustrated.

In order to provide for the operation of a receiver using a voltage doubler on either AC or DC sources of supply, it is necessary to provide some means of changing the circuit. Such a means is the switch shown in the circuit of Figure 45 , on page 144. A study of this circuit will reveal that when used on an AC supply, with the switch in the AC position, the circuit is a voltage doubler, b:at that when the receiver is to be used on a DC source of supply, the switch must be turned to the DC side and the circuit then acts as a common half-wave rectifier.

We sincerely hope that you have been patient and studious in reading this presentation on the action of filter circuits, Inasmuch as the knowledge which you can gain from this article will be of inestimable value to you in your work.

We sincerely regret that space limitations prohibit going into the deeper subject of engineering and design of these circuits. Because of the scope of these subjects, it is impossible to attempt it.

REIPLACEMENT OF

FILTER CONDENSERS

It is practically impossible to present exact details for the replacement of condensers in every circuit. The extremely wide range of capacities, circuit connections and combinations prohibit a thorough discussion of this subject.
We suggest that you study the circuits on pages 142 to 144 and read the notes on pages 136 to 141 , and familiarize yourself with customary condenser capacity values used in the various circuits in order that you may be thoroughly familiar with the entire subject in its practical aspects.

CAPACITY OF FILTER CONDENSERS

The capacity values assigned to condensers for filter circuit work is not extremely critical, and a shift of several mfds. in either direction will not introduce any observable changes, except in very rare instances, such as in replacing the capacity used to tune a filter choke or at the input to a filter eircuit (see Chapter "Easy Replacement of Unmarked Condensers"-page 135).
The Mallory Universal replacement" condenser line contains all the capacities or combinations of capacities necessary for replacement work, and in addition, the line is arranged FOR YOUR CONVENIENCE.

NON-POLARIZED CONDENSERS

There are quite a number of applications where it would be dangerous to use the usual DC electrolytic condenser. In cases where the polarity applied to the condenser may be reversed, the heat generated by the heavy current flowing through the condenser would severely damage, if not totally destroy the unit. This is due to the unidirectional property of the dielectric film which retards the current flow in one direction, film which retards the current flow in one direction.
but offers no resistance in the other or reversed but offers no resi
polarity direction.

Note that we say "usual DC condenser" in the above paragraph, because there is a simple means of providing an electrolytic condenser which may be used in any circuit wherein the polarity may be accidentally, or intentionally reversed. Such a condenser is called a non-polarized type.

Properly speaking, a non-polarized condenser is one in which there is no polarity; i i. e., either one of the terminals may be connected to the positive side of the potential source.

Such an electrolytic condenser is easily made by either one of two methods. The first method is to build the condenser with two "formed" plates, or secondto connect two electrolytic condensers together negative to negative, using the remaining positive terminals for connection to the circuit.

The most general use for non-polarized electrolytic condensers is in receivers to be operated from a DC line, although they are frequently used in receivers which are to be operated from batteries.

Inasmuch as there is not a very large number of direct current receivers in use, the demand for nonpolarized condensers is not sufficient to enable a distributor to stock them.

We present a sensible and economical method, whereby you may replace a non-polarized condenser, quickly and easily.

Figure 25

Figure 25 will clarify the method which is recommended for the replacement of non-polarized condensers.
Supposing you have need for a 4 mfl . non-polarized condenser in a round can to operate at 300 volts. The proper replacement is Type RN242. This condenser consists of two 8 mfd. units with a common negative lead.

To use the Type RN242, it is only necessary to connect the two red, i. e., positive, leads, to the circuit, and disregard the black negative lead. When making this installation, it is advisable to cut off the black negative lead and tape it, to prevent any accidental shorting.

The result of the foregoing procedure is clearly shown in Figure 25.

It should be noted that the capacity resulting from such an arrangement of condensers is equal to onehalf the capacity of elther section. In addition, BOTH SECTIONS OF A CONDENSER SO USED SHOULD BE OF THE SAME CAPACITYY.

The working voltage of the capacity resulting from the connections deacribed, and illustrated in Figure 25, is that of one section, and not twice the rating of the one section. Thus-two 450 volt condensers so connected will have a working voltage of 450 volts.
Although Type RN (common negative) type condensers were mentioned in the explanation of the method used to replace the non-polarized unit, we would like to point out that two single unit condensers may be so connected.

Where it is necessary, that the replacement should be in one container and above 4 mfd. rating, Type RM (Multiple separate section) type condensers may be used. For instance, the RM257 can easily be wired to replace an original 8 mfd . round can non-polarized unit, by connecting the two 8 mfd . non-polarized unit, by connecting the two 8 mid. sections in parallel and the negative leads of these
two sections to the negative lead of the 16 mfd . sectwo sections to the negative lead of the 16 mfd . sec-
tion. This will give two 16 mfd . sections with their negative leads jointed ogether, resulting in a nonpolarized capacity of 8 mfd .

The carton types corresponding to the round can types given for illustration, are as follows: CN152 sypes given
and UR191.

THEORY OF CONDENSER ACTION

The explanation of condenser action given in the opening chapter is so arranged as to bring out the action taking place when a condenser is used as a filter condenser. This explanation does not go into the real action which takes place in a condenser; therefore, let us see what does happen in a condenser.

A condenser consists of two conducting plates separated by a dielectric material. By "dielectric material" we mean a non-conducting material; i. e., one that will not serve as a conductor of electric currents. In order to thoroughly explain the action taking place in a condenser we refer first to Figure 26, which show a condenser, battery and switch.

The dielectric of this condenser is the cross-hatched block between the two plates.

Now, in order to thoroughly understand the action of a dielectric material, it is necessary to go into the structure of such a material.

The structure of all materials, including dielectrics, is as follows: A molecule is generally considered the smallest individual part of the material which has all the characteristics of the material. However, a molecule is made up of one or more atoms. An atom is the smallest possible particle of one of the known 92 elements, and an atom is composed of an arrangement of electrons and protons. It is sufficient to say that an of electrons and protons. It is sufficient to say that an electron is a negatively charged particle and a proton
is the positively charged particle of greater mass than an electron.

An atom is composed of a certain arrangement of protons and electrons. However, there may be more electrons than protons. In addition, some of the electrons, or in rare cases, even a proton, may not be firmly attached to the atomic structure, although in the main the arrangement of an atom and the balance of electrons and protons is something that cannot be disturbed. Thus-if by some means one of the loosely attached electrons is drawn away from the atom. the atom looses its "state of balance" and acquires an attractive power for any other "loose" electron which is in its immediate vicinlty.

At this point, we have shown that under cortain circumstances, an atom may lose an electron, and that when it loses this electron, it is immediately attractive to any other electron which is "free." This situation might be expressed by saying that if we remove a negatively charged particle from the atom, we destroy the balance, or, "neutrality;" i. e., neutral state, of the atom. Thus-since we have removed a negative particle; i. e., an electron, from our atom, it is no longer in the state of balance, or, neutrality, but is positive. Hy positive, we mean that it has an attraction for a negative particle; i. e., an electron.
We have previously explained that a molecule is the smallest particle of a material which has all the characteristics of that material, but that a molecule is made up of atoms. Thus-a molecule of steel will be composed of atoms of iron, carbon, and atoms of various other substances which go to make up the material known as steel. The same thing is true of a dielectric material such as paper.

Returning to Figure 26, note that if the switch is closed, there will be an electrical potential applied to two sides of the dielectric material. The result of such an action is that the free electrons existing in atomic structure of the dielectric material are attracted and drawn toward the positively charged plate, Those atoms in contact with the positive plate loose their free electrons, which travel from the plate to the battery, and around to the negative plate, thus creating a preponderance of electrons at the dielectric material in contact with the negative plate and a scarcity of electrons at the positive plate. The atoms which lose their free electrons to the positive plate now have a terrific attraction, or affinity, for electrons. However, the nature of the material; i. e., not conducting, prohibits the free motion of electrons from neighboring atoms deeper within the dielectric material. Thus-a greatly magnified cioss section of the dielectric material would reveal that on one side there is a positive affinity, and (progressing from the positive toward the negative side of the material), there is a decreasing intensity in the positive attraction until a point is reached where there is a state of balance.

Further progress along this same line of direction will reveal an ever increasing negative, or repulsive condition; i. e., the positive is attractive, and the negative is repulsive in nature. This repulsive; i. e., negative, intensity increases until its maximum is reached at the surface of the dielectric material which was in contact in the negative plate.

It is possible to plot a curve showing the lack of electrons on one side of the material, and the abundance of electrons on the other side of the material. When this is "plotted" with intensity on the vertical scale, and distance on the horizontal scale, the resulting curve will be that of the potential difference existing across a charged condenser.

The action so far described, is that which is known as "charging" a condenser, and, in a previous paragraph we abandoned the description with a full charge in the condenser.

Now, that we have a "charged" condenser, let us see what happens when the condenser discharges. This is shown in Figure 27.

Figure 27 shows the charged condenser, which is prevented from discharging by the open switch. Remember the situation existing In the dielectric material when the condenser was charged.

Before explaining what happens in the circuit when the switch in Figure 27 is closed, it is necessary to point out that the difference between a non-conpoint out that the difference between a non-con-
ducting and a conducting material is that the conducting material has such atomic structure that the free electrons are easily displaced. It electrons are removed from one end of a conductor, a corresponding number of electrons MUST ENTER THE OTHER END OF THE CONDUCTOR.

When the switch in the circuit of Figure 27 is closed, electrons are attracted from the positive plate
by the atoms in the dielectric material, which is in contact with the plate, remembering from our previous discussion, that these atoms had been robbed of their free elactrons, and therefore, they were attractive toward any free electrons in their immediate vicinity. Therefore, when the switch is closed, these atoms at tract the free electrons from the atoms composing the molecules of the positive plate, the atoms of which in turn attract the free electrons in the conducting path which extends around to the negative plate. Re member-That there existed an over abundance of electrons in the atomic structure of the dielectric material next to the negative plate. Therefore, the attraction for free electrons begins in the dielectric material next to the positive plate and extends around through the circuit to the negative plate, where there is an over-abundance of electrons. These "extra" electrons are enough to satisfy the attraction existing throughout the circuit. Therefore when the switch is closed, the dielectric material absorbs electrons from the plate, the plate from the conducting circuit, and the conducting circuit absorbs the free electrons in the negative side of the dielectric material. A dischange of a condenser in reallty ls the restoration of balance of electrons in the atomic structure of a dielectric material.

Figure 27

At this time, it is well to point out that the electron movement in the discharge circuit described and illustrated In Figure 27, is not of any great length; i. e., the electrons do not move from the negative plate around to the positive plate; they merely move from one atom to another. Thus-the flow of current which occurs through the circuit when a condenser is discharged, is nothing but the movement of electrons from one atom to an adjacent atom, which is a distance far too small to be conceived by the human mind.

An alternating current apparently flows through a condenser, but a direct current does not. To be more explicit, when a direct current potential is applied to the terminals of a condenser, there is a very small surge of current which flows through the circuit, but not through the condenser, because there is not a prodressive motion of electrons from one atom to another along the path of the circuit which is occupled by the dielectric.

If you do not understand this statement, read the description of the charge and discharge of a condenser.

When the statement is made that alternating current flows through a condenser, it is in the very strict sense of the word, not exactly so, because the dielectric material in a condenser offers no more conductance to an alternating current than it does to a direct current. However, due to the reversal of polarity which occurs in an alternating current circuit, the condenser charges and discharges on each half cycle of the applied current. Therefore, there is current flowing in the circuit, but not "through'" the condenser.

This statement may be "hard to swallow," but it is an absolutely true statement, because the dielectric material in the condenser is not a conductor. How, then, does alternating current flow through a circuit containing a condenser? the answer is to be found in the actions which take place in the charge and discharge of a condenser. When a condenser is charged, there is an abundance of electrons at the negative plate, and a scarcity of them at the positive plate. If the polarity of a circuit attached to a condenser is such that the positive side of the circuit is connected to the negative plate, and the nedative side of the circuit is connected to the positive plate of the condenser, the extra electrons existing at the negative plate of the condenser will move into the circuit, establishing an over-abundance of electrons in the circuit. The electrons leave the circuit to satisfy the deficiency of electrons existing at the positive plate of the condenser. WHEN THE ELECTRONIC BALANCE OF THE ATOMIC STRUCTURE FOR THE ENTIRE CIRCUIT IS RESTORED, THE POTENTIAL DIFEERENCE; I. E., VOLTAGE, 1S ZERO.

CONDENSER ACTION
 IN A. C. CIRCUITS

We are now ready for the explanation of the action of a condenser when used in an alternating current circuit. Remember, that the "apparent" flow of alternating current through a non-conducting material; i. e., dielectric of a condenser, is not possible in the atrict sense of the word. However, there is a flow of current in an alternating current circuit which includes a condenser.

In order to thoroughly explain this action, we must have recourse to illustrations. The first of these is Figure 28.

Figure 28

This illustration shows a condenser connected in a circuit with an alternating current generator. As the generator revolves, and starts a cycle, we will assume that the upper portion of the circuit is positive, and the lower part of the circuit is negative. The voltage rises from zero to a maximum, and then falls to zero, thus completing one-half of a cycle. At this point, thus completing one-half of a cycle. At this point,
the polarity of the circuit reverses; i. e., the top half of the polarity of the circuit reverses; i. e., the top, half of
the circuit becomes negative, and the bottom half positive, and again the voltage rises to a peak and falls back to zero, whereupon the polarity again reverses and becomes the same as at the start, that is, one cycle has been completed.

When the voltage rises on the first half of the cycle, the condenser is charged. After the voltage reaches the peak, it falls to zero (at the same rate at which it rose to the peak). We now have a condition wherein we have a changed condenser, and a conducting circuit from one plate of the condenser to the other (through the generator).

Remember-That a charged condenser will discharge, if there is a conducting path from one terminal of the condenser to the other.

Therefore, the condenser will discharge through the circuit. However, before this discharge is complete, the voltage from the generator is rising on the second half of the cycle.

The rising voltage of the second half cycle of the alternator is of such a polarity that it aids the completion of the discharge of the condenser, and then recharges the condenser (but with opposite polarity to that of the first charge). The voltage from the alternator again falls to zero, and of course, the condenser discharges through the circuit.

The peculiar part of this whole action of charge and discharge, is that THE CURRENT IN THE CIRCUIT "LEADS" THE VOLTAGE; i. e., the current in the circuit reaches its maximum intensity before the voltage reaches its highest value.

So far, our discussion has been centered around a perfect condenser; i. e., one in which there is no losses. In actual practice, all condensers have a certain amount of loss. These losses which occur in condensers are of two types; first, there is a "hysteriesis" loss which is due to molecular friction. Friction is generated in the molecules or molecular structure of the dielectric by the atoms attempting to rearrange themselves when under the stress of the applied voltage.
The second type of loss is that due to leakage in the dielectric. All insulating materials; i. e., dielectrics have a certain amount of conductance, that is. they are not perfect insulators but allow the passage of minute currents. We find that even the best insulating materials have a resistance of several megohms when measured by sensitive instruments. The first type of loss in a condenser is usually pictured by a symbol of a perfect condenser with a "series" resistor which represents the loss. This is illustrated in Figure 29.

CONDENSER WITH DIELECTRIC LOSS

Figure 29

The second type of loss in a condenser is pictured as a resistance in "shunt" with a condenser as shown in Figure 30.

CONDENSER WITH LEAKAGE

Figure 30

The result of these losses in a condenser is a decrease in efficiency; i. e., a loss of power. The efficiency of a condenser is expressed in the term "Power Factor." The meaning of this term is that if a condenser has a "power factor" of 2% that there is a loss of 2% of the applied power.

The power factor of a condenser (expressed in percentage) is equal to $W \times 106$ wherein W is the wattage wC V ${ }^{2}$
lost. "w' is twice "pi" or 6.28, C is the capacity (in microfarads). V^{2} is the voltage squared and 10^{6} is 10 to the sixth power or 1 million.

BY-PASS CONDENSER CIRCUITS

Many circuits in radio receivers or amplifiers carry both alternating and direct current. It is necessary to provide separate paths for the flow of these two different currents, in order to accomplish certain actions. A circuit may carry direct current for plate supply and an AC signal current at the same time. It is necessary to provide a path for the signal voltages so that they may be applied only to certain portions of the circuit. In other words. it is necessary to separate the direct current and the alternating signal current.
A convenient means of obtaining this separation is to use a condenser to provide a path for the alternating current, because the direct current does not flow through a condenser, therefore we can obtain the desired separation.
This action is perhaps best illustrated by Figure 31.

Figure 31

This circuit shows the use of a condenser to allow the passage of alternating signal current, from the screen circuit of a tube to ground, the resistor prohibits the $A C$ current from getting into the " B " supply where it might cause trouble; i. e., feed back and howls. In most instances the resistor is necessary to provide the correct voltage for the screen, therefore it readily serves two purposes.
The action of the condenser whereby it provides the path for the alternating current. is described in the chapter headed "Condenser Action in Alternating Current Circuits."

An additional illustration of the use of a condenser to provide a path for alternating current, is illustrated in Figure 32.

Figure 32

The action taking place in the circuit of Figure 32 follows: The resistor shown connected from the cathode of the tube to ground, is for the purpose of supplying a bias voltage for the grid of the tube. This resistor is usually of several thousand ohms resistance. and would offer an impedance of this value to the flow of the signal current. Such an impedance to signal currents at this point would introduce regeneration, and this is usually to be avoided. If we connect a condenser across the resistor. we will provide a path for the alternating current, which will not affect the required voltage drop across the resistor necessary for bias supply.

CAPACITY OF bY-PASS CONDENSERS

The capacity of a by-pass conderrser is regulated by the frequency of the current to be handled, and in addition, the resistance of the circuit to be by-passed. It is a general rule, that the capacitive reactance of a condenser should be approximately one-tenth, or less. the resistance value of the circuit to be by-passed.
Capacitive reactance is the "impedance;" i. e., opposition of a condenser to the flow of an alternating current. This reactance is expressed in ohms by the formula $X=1$, where w is $6.28, F$ is the frew FC
quency in cycles per second, and C is the capacity in Farads.
To those mathematically inclined, the above formula shows that for a given value of capacity, the reactance decreases with increasing frequency. For practical illustration, let us say that a 1 mfd . condenser has a reactance of 1592 ohms at 100 cycles, but that for 200 cycles, the reactance is only 796 ohms.

To find the correct capacity value to be used for by-pass condensers, it is only necessary to know the resistance of the circuit to be by-passed, and the lowest frequency which will appear in the circuit. Then find the capacity value, the reactance of which is approximately one-tenth or less of the resistance of the circuit to be by-passed, at the lowest frequency which appears in the circuit.

ELECTROLYTIC BY-PASS CONDENSERS

Inasmuch as many circuits to be by-passed are of very low resistance, or are carrying a low frequency current, it requires a large capacity to affect the proper by-passing action.

Previous to the introduction of the electrolytic condenser, large values of capacity were extremely expensive. However, in electrolytic condensers. particularly at low voltages, it is possible to obtain a very large value of capacity at low cost. and in a small space. For instance, the usual capacity required for by-pass in the circuit of Figure 32, is in the order of 20 mids. at a potential difference of approximately 25 volts or less.

An electrolytic condenser suitable for use in this circuit will occupy a space of only $7 / 8^{\prime \prime}$ diameter x $21 / 4^{*}$ long. These are the dimensions for the Type TS102, which has a capacity of 20 mfds ., and a work ing voltage of 25 volts. Such a capacity value in a paper condenser would occupy quite a few cubic inches of space.
Wherever a large capacity is required for a by-pass condenser, and where there is a DC voltage, it is advisable to use an electrolytic condenser. For very high frequencies, a paper condenser should be used, inasmuch as electrolytic condensers are not suitable for use as by-pass condensers at frequencies above several kilocycles.

Where a circuit to be by-passed carries both Audio and RF currents it is often advisable to use both an electrolytic condenser and a paper condenser. Such arrangements are found in many receivers.

EaSY REPLACEMENT OF UNMARKED CONDENSERS

Read this chapter and save yourself time and labor when it is necessary to replace a condenser which is not marked as to capacity and working voltage.
This easy, quick, step-by-step method requires quite a few words to explain, but is casy to follow and saves a lot of time in repairing a receiver.

First: Ascertain the working and surge vol tages. A method of doing this is outlined in the chapter "'Surge Voltage."

Second: With the voltage known, the condenser is semi-classified, and the replacement will necessarily fall in one of the three groups of condensers; i. e. 250 volts, 450 volts, of High Surge types.

The next most important step is to ascertain the capacity value.

PROCEDURE FOR FILTER CONDENSERS

A. FOR SINGLE UNIT CONDENSERS of either the can or carton type, use 8 mid . or larger, except at the input to a filter.
Note-When replacing original paper condensers. which rarely exceed 2 mfd ., it is advisable not to use more than 4 mid., as values above this may cause the out put voltage to rise to too high a value. On the other hand. half-wave rectifiers require a large capacity value at the input to the filter. In AC-DC receivers, the input capacity for half-wave rectifier is usually in the order of 25 mfd . (for further details refer to note at the end of this chapter).
B. FOR BLOCK OR MULTI-SECTION CONDENSERS.

First. Sketch the circuit and note the connection of the leads of the condensers and their color. For illustration, let us suppose you are working on an AC-DC receiver, and your sketch looks like this:

Figure 33
Second. Carefully open the condenser and trace and eketch the connections of the various unite. This will help you to ascertain the way in which the various sections are connected in the circuit.
Neat, sketch in the condenser connections to the various parts of the circuit as per Figure 34.

Figure 34

Now, refer to the condenser circuits given on pages 142 to 144 and find a circuit such as the one you have sketched. This turns out in this instance to be Circuit 11 (note the figures given beneath the circuit).
Now turn to the "Replacement" section and go up and down the "Circuit" column under the heading "Condensers," until you find this circuit number. When you have found this number, you will also find the correct replacement condenser, because it is given in the next column to the right of the circuit column. Forinstance. Circuit 11 will be found in the replacement section on page 97 (Zenith Model 710), where you will note that the URIS: is listed as the replacement.

With some circuit numbers you may have to search over several rages. This is advisable, because there are many combiuations of condensers which may be used as replacements. Thus, by consulting two or three pages of the replacement section. you may ascertain several different combinations which may be used as a replacement and from these select the types of condensers most suited to your particular job.

Note-The numbers given beneath the circuits on pages 142 to 144 refer to the " B " or condenser notes, given on pages 136 to 141. These notes not only state the replacement condenser, but also give detailed instructions for connecting the replacement condensers into the circuit.

Note-Filter input condensers regulate the output voltage of the filter. With full wave rectifiers, this is not so noticeable as with half wave rectifiers.

There is generally no harm in raising or lowering the input capacity 2 or 3 Mfds . but with half wave rec tifiers, too great a reduction in input capacity will cause a loss of voltage.

Figure 35 shows the relation between load and input capacity for various output voltages of a half-wave rectifier.

Figure 35

BY-PASS CONDENSER REPLACEMENT

Whon replacing by-pass condensers, follow the same procedure as is given in the preceding paragraphs devoted to filter condenser replacement. Note-Low voltage condensers may always be replaced with condensers of a higher voltage rating. Thus, a 5 mfd .20 volt condenser may be replaced by an 8 mfd. 450 volt condenser. Although the higher voltage condenser may cost a few cents more than the low voltage condenser, there are many times when such a replacement will save you much more than the difference in cost, in the time saved.

HOW TO USE THE "B" NOTES

The extreme right-hand column under the general heading "CONDENSERS" in the replacement section of the encyclopedia is the "NOTE COLUMN," in which is listed various numerals preceded by the letter "B," such as "B16."
"B16" refers to one of the notes on the following pages These notes pertain to the replacement of condensers, and enables us to tell you exactly WHAT TO DO AND HOW TO DO IT. These notes guide you so that you may make a quick and easy repair. They also enable us to warn you to watch for certain things, and most of all TELL YOU HOW TO WIRE IN A CONDENSER REGARIDLESS OF TIIE ORIGINAL COLOR CODE, CHANGE DURING MANUFACTURE, OR PREVIOUS REPAIR.

CONDENSERS			
Oripinal Part	Clir. cult	Corract Replacement	*Not*
8.8	1	See Note	B3

Here is an illustration of part of the replacement section. The meaning expressed in the apparently cryptic message is that the original condenser combination in the particular receiver is two 8 mid . units used in Circuit 1, as shown on page 142, and that you are to read "B" note No. 3, which states "B3-Physical characteristics are unknown. We suggest replacing with equivalent Mallory type of equal or higher capacity. Check voltage for higher rating." You are told that there are two 8 mfd . units used in Circuit 1, but you alone know whether there are two single 8 mid. units or a single unit containing two 8 mfd . sections. You also know the physical specifications; i. e., whether it is a round can or carton type of condenser, or, condensers.

You have the original before you in the receiver. You know the physical appearance and permissible size. We have given you the capacity and a achematic of the circuit. THIS IS ALL THE INFORMATION ONE COULD ASK TO MAKE A REPLACEMENT. You may now select the proper condenser. The voltage rating should not bother you, for-if the receiver is of an AC type using a transformer, a 450 volt condenser should be used. If the receiver is an AC-DC type, a 250 volt condenser should be used, inasmuch as even with a voltage doubler, the 250 volt rating is always sufficient.

Let us take a more complicated note, for example: No. B18, which states: "Refer to achematic No. 6 and connect UR182 as follows: Green, Brown and Black to points ' C,' and ' D,' Red to point ' A ,' Yellow and Blue to point ' B.' '"
Figure 37 shows Circuit 6 with the UR182 connected as per the instruction in Note No. B18.

Figure 37
Note the procedure. This is clear, direct and saves your time. No longer do you need to puzzle over the question as to which lead goes where.

Let us take up a still more complicated note; for example. No. B49. "Refer to schematic No. 9 and connect CM165 as follows: One Red to point 'A,' corresponding Black to point ' B,' and other tied to 'B,' correaponding Black to point 'C,' remaining Red to point ' D ' and Black to 'E.' Note-In 'aome cases there are two pig-tall resistors between the field and point ' E ' which is connected to the chassis."

Figure 38 shows a pictorial view of Circuit 9 with the CM165 installed as per instructions in note No. B49.

Figure 38
This illustration shows how simple and easy it is to make what would otherwise be a difficult installation. Think of the time you might lose in waiting for an exact duplicate which would be no better than the original, whereas, the readily obtainable Universal Mallory condenser is easily installed and gives you a profit quickly.

These "B" notes have been written by practical men for practical every-day use. USE MALLORY CONDENSERS AND BE SURE TO LOOK AT THE CIRCUITS AND READ THE NOTES.

"B" NOTES

B1-Originally equipped with paper condensers. Electrolytics of equal or greater capacity are O.K. for replacement. Check voltage to determine proper condenser rating.
B2-Input condenser may be paper type. In such cases we suggest the replacement be made with a paper condenser or Mallory HS or HD high voltage units, the choice being determined by the voltage requirements.
B3-Physical characteristics are unknown. We suggest replacing with equivalent Mallory type of equal or higher capacity. Check voltage for proper rating.
B4-Filter condensers may be of paper; if so, replace with Mallory HS or HD types. Working voltage, capacity and mounting will determine type.

B5-Use types Uli 188 or Uli 189 to replace a combination such as 16-12, 16-8, 12-12, etc. The dual mfd. low voltage units are intended for by-puss circuits and may be connected in parallel (Yellows toget her) to obtuin a single 10 mfd . section. Connect the two Red leads together to obtain the higher capacity filter section. The U/R188 and IJR189 contain the same capacities and voltage ratings. Select the unit which may be installed most conveniently.
B6-It is not necessary that the cathode by-pass condensers be in the same container as the filter condenser. Mallory TS units are easily installed within the chassis, the wire leads offering firm support.
B7-Originally equipped with paper condensers. Replace with combination of Mallory TP units of proper voltage and ca pacity.
B8-When a Mallory Multi-section condenser is recommended to replace an original single section condenser, connect the sections in parallel. This gives a capacity that is equal or greater than the original. Note: After going to press the RS216 was added to the Mallory Line. It may be used in place of the RN242 when replacing an original single section condenser.
B9-This condenser is enclosed in the original block and tunes the filter choke to the ripple frequency. Replace with Mallory TP unit or combination of units giving the same capacity as the original.
B10-This condenser is used only on the later type of this model.
B11-Requires a non-polarized type of electrolytic for replacement. To obtain a nonpolarized capacitor use a Mallory RN or CN type having the same capacity in both sections. Cut off the black lead close to the container and tape to prevent shorting against chassis. Use the two Red leads as the terminals of the condenser. The resulting capacity is equal to one-half the capacity of one section; i. e., CN1.50 will have an effective non-polarized capacity of 2 mfd at 450 volts. Thus to secure 4 mfd . non-polarized, it requires the use of a Mallory RN242 or CN152. (See Circuit 39 in the "B" condenser circuit section.) Note: the RM or C.M units may also be used by paralleling the sections and then connecting the negative leads together and taping as above.
B12-This additional capacity used on 25 cycle models only.
B13-This power pack is used in many early Mohawk models. Color code of the filter condensers are: Green 2 mfd ., Blue 2 mfd ., Yellow 1 mfd . In addition there is a .5 mfd . from B positive to B negative. See note BI . B14-These condensers are used across the secondary of the vibrator transformer. Replace with Mallory VB or OT type condensers of the same capacity value.
B15-Remove old condenser from can and place CN151 in can if desired.
B16-Mount in hole in chassis or use Mallory bracket No. 104-1.
B17-Refer to schematic No. 11 and connect UR182 as follows: Black and Brown to points "D" and "E," Red to point "A," Blue to point " B," Yellow to point " C ," and Green to point " F."

B18-Mefer to schematic No. 6 and connect UH182 as follows: Green, Brown and Black to points "C" and "D," Red to point "A," Yellow and Blue to point "B."
B19-For this replacement we suggest the use of three CS126 units.
B20-This condenser is used only on later models.
B21-Install beneath chassis and connect Red leads together to positive, Black to negative. Leave old unit in place if desired, but be sure to remove leads from it.
B22-Refer to schematic No. 9 and connect CM165 as follows: One Red to point "A," corresponding Black and another Red to point "B," remaining Red to point "D," remaining Blacks to points "C" and "E."
B23-When Mallory Stud type condensers such as the SR602, SR605, etc., are recommended to replace condensers of the ring clamp mounting type, the stud may be cut off flush with the top of the can. Be careful not to cut into the can.
B24-Connect RN241 or RN231, Blue to positive 4 mfd ., Red to positive 8 mfd ., Black to chassis. Connect positive óf TS101 to cathode of output tube, Iegative to chassis.
B25-Refer to schematic Nu. 4 and connect CM172 as follows: Red leads together and to points " A " and " B ," one Black to point "C," remaining Black to point "D."
B26-llefer to schematic No. 1 and connect RN241 as follows: Blue to point "A," Red to point "C," Black to chassis at points "B" and "D."
B27-Later type of Model 856 used a 16 mfd. condenser in place of the 8 mfd . No. 27585; in which case use the RS216.
B28-There were two types of filter circuits used in this model; the older type used a dual 4 mfd . as first and second filter with an 8 mfd. in the output. The later type used the same combination but with the 8 mfd . as the input condenser.
B29-Refer to schematic No. 1 and connect UH189 as follows: Blue to point "A," both Reds to point "B," Brown, Black and Green to chassis. Connect one Yellow to cathode of output tube, the other Yellow to cathode of detector tube.
B30-Mount the SR611 by means of the metal flange, cut off and disregard the Blue lead. Two CS133 units may be used if desired.
B31-Refer to schematic No. 11 and connect UR182 as follows: Yellow to point "A," Red and Blue to points " B " and "C," Green and Brown to points "D" and "E," Black to point " F " (chassis).
B32-Join two of the CM165 Red leads together and to B positive, one Red lead to Blue lead from switch, corresponding Black to plate of $25 \mathrm{Z5}$, remaining Black to chassis. B33-Refer to schematic No. 29 and connect CM162 as follows: one hed to point "A," corresponding Black and remaining Red to point "B," remaining Black to point "C." The additional 8 mfd . unit is beneath the chassis and connected Red to point "D," Black to point "E."
B34-Refer to schematic No. 1 and connect one Red to point "A," another Red to point " C ," remaining Red to cathode of output tube, Black to chassis.

B35-We suggest the use of I'R190 for this replacement. See note $B 89$.
B36-Refer to schematics Nos. 6 and 15 and connect UR189 as follows: Blue to point "A," both Reds to "B," Brown, Black and Green to chassis at points "C"' and "D," one Yellow lead to cathode of detector, remaining Yellow to cathode of output tube.
B37-May require use of condenser bracket No. 104-1.
B38-()n some chassis of the model 525 the condenser was in two cartons, the C525C ($5 \mathrm{mfd} .-25 \mathrm{mfd}$.) and the C525D (5 mfd .). We recommend the UR182 which replaces both of the units.
B3s-Install Mallory condenser in the old can or beneath the chassis.
B40-Use the BN type of by-pass condenser. B41-Install the RN245 in the chassis hole provided for the original wires. Discard the old condenser cover if desired.
B42-Refer to schematic No. 1 and connect the CN152 as follows: one Red to point "A," remaining Red to point "C," Black to chassis at points " B " and " D."
B43-An .05 condenser was used for buffer on first type only, value of second type unknown.
B44-Models using the F312 vibrator have a .005 mfd . buffer; those using the F221 vibrator have an .04 mfd . buffer.
B45-The original block No. P80902 contained two 4 mfd . condensers and a .1 mfd . paper. Replace with a CN140 and TP438 connected as follows: one Red of CN140 to screen circuit, remaining Red to first audio cathode, Black to chassis. Connect TP438 from RF screen to ground.
B46-Substitute TP441 for TP438 and connect as in note B45.
B47-Refer to schematic No. 29 and connect CM165 as follows: Red to point "A," corresponding Black to "B," another Red to point "B," corresponding Black to "C," remaining Red to "D," and Black to "E."
B48-Refer to schematic No. 4 and note that a resistor is used in place of the choke shown. The HM262 should be mounted in the chassis hole or by means of Mallory bracket No. 104-1; connect both Red leads to points " A " and " B," one Black to point "C," remaining Black to point "D" (chassis). B4s-Refer to schematic No. 9 and connect CM165 as follows: one Red to point "A," corresponding Black to point "B," another Red to "B," corresponding Black to point "C," remaining Red to point " D " and Black to "E." Note-In some cases there are two pigtail resistors between the field and point " E " which is connected to the chassis.
B50-Refer to schematic No. 23 and connect RM262 as follows: Blue and Red to points " A " and "B," Brown to point "C," and Black to point "D." If necessary use Mallory bracket No. 104-1.
B51-Refer to schematic No. 29 and connect CM165 as follows: one Red to point "A," corresponding Black to point "B," another Hed to point "B," corresponding Black to point "C," remaining Hed to point "D" and Black to "E." Note-In this receiver there may be a pigtail resistor between the field and point "E."
852-This condenser connects between points "A" and "C" on schematic No. 29.

B53-Hefor to whematic No. 29 and connect UR190 as follows: one Red of one of the independent sections to point " A," corresponding Black to point "B," Hed of the other independent section to point " B," corresponding Black to point "C," one lied of the common section to point " D," the other Red to 6A7 plate supply, Black to ground at point "E."
854-This chassis is the same as the Majestic 300, 300A.
B55-When using the UR 190 to replace a $16-16 \mathrm{mfd}$. unit, connect the Red leads of the independent sections together for positive of one 16 mfd ., and the corresponding Blacks together for the negative of this 16 , connect the two Reds of the common negative section together for the other 16 mfd.; the remaining Black is the negative.
B56-Refer to schematic No. 11 and connect RM259 and TS101 as follows: Green of RM259 to point "A," Yellow and Brown to points "D" and "E," Blue and Red to points "B" and "C," Black to "F." Connect TS101 positive to second detector cathode, negative to point "F."
B57-Connect Black leads to chassis; other lead connections are obvious.
B58-Refer to schematic No. 4 and connect RM265 as follows: Red and Blue to points "A" and "B," Black to point "C," Brown and Yellow to point "D," Green to screen circuit.
B53-Refer to schematic No. 1 and connect HM257 as follows: Red to point "A," Black to point " B," Blue and Green to point " C," Brown and Yellow to point "D."
B60-Connect one 8 mfd, section to rectifier side of choke, combine two sections and connect to speaker side of choke, the remaining section to voltage divider at output side of speaker field.
B61-Refer to schematic Nos. 1 and 15 and connect RN232 as follows: one Red to point "C," Black to "D," remaining Red to output cathode.
B62-Combine two of the RN235 Red leads to output screen, remaining Hed to detector plate resistor, Black to chassis; positive of TS101 to cathode of output tube, negative to chassis.
B63-Refer to schematic No. 1 and connect RM257 as follows: Brown, Yellow and Black together and tape, Red to choke at point "C," Blue and Green together to point "D," Note-It may be necessary to use two CS126 units installed beneath the chassis. See note B11.
B64-Refer to schematic No. 4 and connect UR182 as follows: Red, Blue and Green to points "A" and "C." Black and Brown to "B," Yellow to "D."
B65-Refer to schematics Nos. 6 and 15 and connect RM257 and TS101 as follows: connect Blue and Green (of RM257) together and to point " A," Brown and Yellow to point "C," Red to point "B," Black to point "D." Connect TSl0l positive to cathode of output tube, negative to point "D." B66-The capacity values given for this circuit are independent units, each of which is replaceable with the condenser given; thus 8-8-8...... HS213 means that three of the RS213 condensers are required for complete replacement of tilter.

B67-Refer (1) schematic No. 8 and connect 11.M259 as follows: (ireen to point "A," Red to point "B," Blne to point "C," Yellow, Brown and Black to points " D," "E," and "F."
B68-Refer to schematic No. 11 and connect RM259 as follows: Green to point "A," Yellow and Brown to points " D " and " E," Blue and Red to points " B " and "C," Black to point " F."
B6s-Refer to schematic Nos. 28 and 13 and connert RM265 as follows: Connect Red and Blue together and to point " B " in place of the original red, Black to point "E," Brown and Fellow to chassis at "F," Green to screens of power tubes.
B70-Refer to schematic Nos. 4 and 14 and connect RM265 as follows: Red and Blue to "A" and "B," Black to "C," Brown and Yellow to chassis at "D," Green to bleeder resistor.
B71-Refer to schematic No. 11 and connect the UR190 as follows: Connect the two Red leads (that exit from the same hole in the carton) together and to one of the other Red leads, then connect this assembly to the cathode of the rectifier at point "A;" the three Black leads connect to the line at points " D " and " E," the remaining Red lead connects to the rectifier cathode at point "B."
B72-Refer to schematic No. 29 and connect UR190 as follows: Combine two Reds (that exit from same hole in carton) and connect to print "A," corresponding Black lead to point "B," connect one other Red lead to point "B," corresponding Black lead to point "C," connect remaining Red lead to point "D" and remaining Black to point "E." Point "B" is connected to DC side of switeh.
B73-Refer to schematic No. 4 and connect HMン62 as follows: Red and Blue to points "A" and "B," Brown to "C" and Black to "D."
B74-Refer to schematics Nos. 1 and 15, and connect HM257 as follows: Blue to "A," (ireen to "13," Brown, Yellow and Black to chassis at " B " and "D." Red to cathode of output tube. If necessary, use Mallory 104-1 bracket.
B75-Refer to schematics Nos. 1 and 15, connect CM173 as follows: All three Black leads to ground at "B" and "D," one Red each to "A," "C" and cathode of output tube.
B76-Refer to schematics Nos. 1 and 15, and connect IRM257 as follows: Red to cathode of output tube, Blue to "A," Green to "B," Irown, Yellow and Black to chassis.
B7T-We suggest the use of two UR 190 condensers connected as follows: Both Red leads of the common section to cathode of 2525, the two other Red leads of this condenser together and to cathode of $12 \mathrm{Z3}$. On the other UR190, connect both Red leads of the common section to the output of the choke, one of the remaining hed leads to cathode of 6C6 and the other Red lead to the cathode of 43, all Black leads to negative line.
B78-See note 68 for installation instructions.
B79-Connect a TS102 from 6F6 cathode to chassis in addition to one section of the BN225.

880-This condenser is 8-8-12 mfd., and we suggest that either RM257 or UR190 be used for replacement; connect 16 mfd . across the filter output, and 8 mif. from 38 cathode to chassis, and 8 mfd . from screen circuit to ground.
E1-Most of these original condensers employ a Red and Yellow lead; the 8 mfd . section (Red) should be connected on the rectifier side of choke.
282-Condensers which are of unusual characteristics will be supplied on order. To avoid confusion, send in the original condenser, properly marked as to make and model number of the receiver, and shipment will be made promptly.
283-Refer to schematic No. 3 and connect one section of the MN277 to "A," connect two of the sections together and to point "B," connect the other section to point "C." 2:4-Refer to schematics Nos. 1 and 15, connect both Reds to point " A," Blue to "C,", Black, Brown and Green to chassis at "B" and "D." one Yellow to cathode of second detector and the other to cathode of output tube.
285-Mount the Mallory condenser in the original can.
Des-Refer to schematic No. 4 and connect HM261 as follows: Red and Blue to points " A " and "B," Brown to "C" and Black to "D."
207-Refer to schematic No. 1 and connect CN141 as follows: Blue to point "A," Red to point "B," Black to "C" and "D."
Be:-Refer to schematic No. 27 and connect CM165 as follows: All three Red leads to "A,"" "B"" and "C," two Black leads to "D," "E," remaining Black lead to "F."
Pes-Refer to schematic No. 6 and connect UR190 as follows: The two Red leads (having a common exit from the carton) to point "A," the other two Red leads to "B," all Black leads to "C" and "D."
E50-In case the RN232 is too long, try the SR605; cut off the mounting stud on the SR605 if necessary.
D91-Refer to schematic 1 No. 1 and connect RN241 as follows: Red to "A," Blue to " C ," Black to chassis at " B " and " D."
E92-Refer to schematic No. 1 and connect CN151 as follows: Red to "A," Blue to "C," Black to chassis at "B" and "D," mount by means of one flange, and cut off the other. If desired, cut off or bend the flanges and install in original can.
E93-Refer to schematic No. 4 and connect CM171 as follows: Red and Blue to "A" and "B," Black to "C," Brown to "D." Mount by one flange bent at right angle to support condenser in vertical position, cut off other flange. If preferred, mount condenser in original can.
IS4-Refer to schematic No. 27 and connect UR189 as follows: The two Red leads to " A " and "B," Blue to " C," Black to " F," Brown and Green to "D" and "E," Yellow leads together and to cathode of detector.
295-Refer to schematics Nos. 27 and 15 and connect the UR182 as follows: Red and Blue to "A," "B" and "C," Black and Green to chassis at " F," Brown to line at " D " and "E," Yellow to cathode of Detector (or in some cases the first AF stage).
ms-See Note B3; if round can unit can be installed we suggest RM259 for this installation.
B97-Refer to schematics Nos. 1 and 44, connect all Black leads of the UR190 to B-, the two Red leads (with common exit) together and to chassis, one of the remaining Red leads to each side of the choke.
BS8-Refer to schematics Nos. 6 and 15 and connect UR189 as follows: Both Red leads to "A," Blue to "B," Yellow leads to cathode of Detector and output tubes respectively, Brown, Black and Green to chassis.
E9-The chassis type number is the group prefixing the serial numbers. The first run of this chassis used schematic No. 27 with 16 mfd . from cathodes (in parallel) to line, 8 mfd . from cathodes to chassis and 4 mfd . from 6A8 plate supply to chassis, also a . 25 paper across the choke. For the first run, connect UR182 as follows: Refer to schematic No. 27, connect Blue to " A " and " B," Red to "C," Brown to line at "D," "E," Black and Green to chassis, Yellow to 6A8 plate supply. In the second run the cathodes of the $25 Z 5$ were separated thus changing the circuit to schematic No. 11 and the 25 mfd. condenser was removed from across the choke and a separate 4 mid. tubular connected across the field. For this circuit refer to schematic No. 11 and connect UR182 as follows: Blue to "B," Red to "C," Brown to line at "E";' Black and Green to chassis at "F," Yellow to 6A8 plate supply. Use an additional CS121 with Red to "A," Black to "D."
2100-Refer to schematic No. 27 and connect CM165 as follows: All Red leads to "A," "B," "C," two Black leads to "D," "E," one Black lead to chassis at "F."
D101-Replacement supplied on order (send sample) or use the following: One UR190 to replace the $16-16 \mathrm{mfd}$. section, all Black leads to chassis, two Red leads to each side of the choke. One CN141 to replace the 8-4 mid. section. Black to chassis, Red to screen of 6A7, Blue to cathode of 2525 supplying field. One TS101, positive to 43 cathode, negative to chassis.
E102-Use one UR190 and one UR183; refer to schematics Nos. 8, 13 and 15, and connect units as follows: Black leads of UR190 to chassis, two Red leads to each side of the choke. Black and Brown leads of the UR183 to chassis, Yellow to cathode of output tube, one Red to rectifier cathode supplying the field, one Red to 6A7 acreen supply.
B103-Refer to schematic No. 6 and connect two Red leads of the RN235 to point " A "" the remaining Red to "B," and Black to chassis at "C," "D."
E104-When AC-DC switch is in AC position the filter circuit is the same as schematic No. 8 with the exception that there is an additional choke connected at point "C." Connect UR182 as follows: Red to point "C," Black to point "F," Yellov to point "A," Blue to point "B," Green to the AC side of the AC-DC switch connected to the speaker field, and Brown to points "D" and "E."

210s-Refer to achematic No. 45 and connect UR190 as follows: One each of the two Red leads (having a common exit from the carton) to points " D " and " E," the Black of this section to chassis at " F," one of the remaining Red leads to point " A," corresponding Black connects to the remaining Red and to point "B," the remaining Black to the chassis at point "C."
E106-Refer to schematics Nos. 4 and 17 and connect RM265 as follows: Red and Blue to points " A " and "B," Black to "C," Brown and Yellow to "D," Green to filament center tap resistor.
D107-Connect CM173 as follows: One Red to junction of filter choke and RF choke, another Red to the screen of the first detector, remaining Red to " B " plus of the audio-transformer, and all Blacks to chassis.
E108-Refer to schematics Nos. 8 and 15 and connect RM259 as follows: Blue and Green together to point "C," Red to point "B," Black, Brown and Yellow to chassis at "E" and "F." Connect RN232 Black to chassis at "D," one Red to point "A," and remaining Red to cathode of output tube.
E10s-To replace RC501 refer to schematics Nos. 13 and 15, and connect CN152 as follows: one Red to osc. plate supply, remaining Red to cathode of output tube, and Black to chassis. For RC502 refer to schematics Nos. 13 and 14, and connect CN150 as follows: one Red to junction of 20 M ohms and 500 M ohms resistors in the first AF plate supply, remaining Red to first AF' screen, and Black to chassis.
B110-If the filter and by-pass condensers are all in one block, refer to schematics Nos. 6 and 15, and use UR182 connected as follows: Connect Blue to point " A," Yellow to point "B," Black, Green and Brown together to points "C" and "D," remaining Red to detector cathode.
2111-Refer to schematics Nos. 1 and 15, connect CN155 and TN111 as follows: Two Reds of CN155 to point "A," remaining Red to point "C," Black of CN155 and negative of TN111 to chassis (that is, points "B" and "D"). Connect one positive of TN111 to detector cathode, remaining positive to cathode of output tube.
2112-Refer to schematic No. 25 and connect CM172 and TS102 as follows: One Red of CM172 to point "A," corresponding Black to point "C," remaining Red to point "B," the other Black to point "D," connect TS102, positive to point " D," negative to point "C."
8113-Refer to schematic No. 4 and connect UR182 as follows: Red, Blue and Yellov to points " A " and " B," Green and Brown to point "C," Black to point "D." Some of these sets used a can type unit for which we recommend an RM259 connected as follows: Red, Blue and Green to points " A " and "B," Black and Brown to point "C'" Yellow to point "D."
E114-Refer to schematics Nos. 6 and 15 and connect UR182 and TS101 as follows: Blue to point "A," Red and Yellow to point "B," Black, Brown, Green and negative of TS101 to chassis. Positive of TS101 to cathode of output tube.

B115-Refer to schematic No. 27 and connect Ull 182 as follows: Red, Blue and Yellow to points " A," "B" and "C," Brown and Green to points " D " and " E," Black to chassis at point "F."
B115-Refer to schematics Nos. 3 and 14 and connect HS692 as follows: Red to point "A," Black to point "D." Connect UR191, the two Red leads (with comnon exit) together and to point "B," corresponding Black to point " E ," one of the two remaining Red leads to point " C ," the other to the 100 -volt tap on the voltage divider, both remaining Black leads to point "F."
B117-Refer to schematic No. 4 and connect CM165 as follows: All Hed leads together and to points "A" and "B," two Blacks to switch (point "C") and the remaining Black to chassis (point " D ").
B118-Refer to schematic No. 11 and connect UR182 as follows: Yellow to point "A,", Red and Blue together and to points " B " and "C," Green and Black together and to point " F," and Brown to point "E." This connection is not the same as the standard described in note 31. However, the wiring used in note 31 is applicable in some cases of noticeable hum.
B119-Refer to schematics Nos. 6 and 15 and connect CN145 and TS102 as follows: two Reds of CN145 to point "A," remaining Red to point "B," Black to point "C." Connect TS102 positive to output cathode, negative to point "D."
B120-Refer to schematics Nos. 2 and 13 and connect CN155 and CN142 as follows: Two Reds of CN155 to point "A," remaining Red to point "C," Black to chassis at points "C" and "D." Connect one Red of CN142 to terminal 6 of original block, remaining Red to original terminal 4, and Black to chassis.
B121-If receiver should be disconnected from the power pack the voltage rises to 900 volts for 9P6 and correspondingly for the other similar power packs; therefore, we advise the use of IIS (High Surge) units for replacement.

Schematic No. 47 gives a view of a replacement made with HS carton units.

The by-pass sections of the original may be replaced with larger capacity units of electrolytic type, thereby giving better filtering action at the by-pass point.

The illustration in schematic No. 47 shows an installation of two HS692 and two HS690 condensers replacing the original block.
B122-Mount CN145 and TS101 in the original can. Refer to schematics Nos. 6 and 15 and connect as follows: Two Reds of CN145 to point "A," remaining Red to point "B," and Black to points "C" and "D." Connect Positive of TS101 to output cathode, and negative to point "D."
B123-Mount CN151 and TS101 in the original can. Hefer to schematics Nos. 1 and 15 and connect as follows: Red of CN151 to point "A," Blue to point "C," and Black to points " B " and " D " (chassis). Positive of TS101 to output cathode, and negative to chassis.
B124-Refer to schematic No. 6 and connect CN145 as follows: Two Reds together and to point "A," remaining Red to point "B," and Black to points "C" and "D."

B125-Condenser supplied on order. Send sample or if this is not possible state part, make and model number of receiver.
B126-To replace P80956 refer to schematic 25 and connect RM262 and TS102 as follows: Red of RM262 to point "A," Black to point "C," Blue to point "B," and Brown to chassis. Connect TS102 negative to point "C," and positive to chassis. Duplicate condenser supplied on order. Give part, chassis and model number of receiver.
B127-To replace P80937 refer to schematics Nos. 14 and 15 and connect RN231 as follows: One Red to IF screen, the other Hed to second detector cathode, and Black to chassis. Duplicate condenser supplied on order. Give part, chassis and model number of receiver.
B128-Original is a dual 12 mfd . unit, physical characteristics unknown. If of the can type, an RN245 may be used. Combine two of the sections and connect to the input side of speaker field, the other section to the output side of the field, Black to chassis.

Although the CN152 will satisfactorily replace the original part (No. B166143) some may desire to use a CS133 and TS101, which is entirely satisfactory in every way.
B129-Since these condensers originally had a screw-socket base, we recommend replacement with a carton beneath the chassis.
B130-Refer to schematics Nos. 1 and 15 and connect CN151 and TS101 as follows: Blue of CN151 to point "A," Red to point "C," and Black to points "B" and "D." Connect TS 101 positive to AF output cathode, negative to chassis.
B131-Connect CN151 as directed in note 130. B132-Refer to schematic No. 1 and connect RN241 as follows: Blue to point "A," Red to point "C," Black to chassis at points "C" and "D."
E133-Original unit was combination of .25 mfd . and .5 mfd . paper, and 8 mfd . electro lytic. Replace with combination of TP420, TP432 and TS101 respectively.
E134-Refer to schematics Nos. 8 and 15 and connect UR189 as follows: Blue to point "A," one Hed to point "B," the other Red to point "C," Black, Brown and Green to points "D," "E" and " F," one Yellow to cathode of detector and output tube respectively.
B135-Refer to schematics Nos. 14 and 15 and connect CN152 and TP420 as follows: One Red of CN152 to oscillator plate supply, remaining Red to cathode of first audio tube, and Black to chassis. Connect TP420 to the junction of 25 M ohms and 250 M ohms resistors in the second Detector plate lead, and to the chassis.
B136-The original condenser had two . 25 mfd . and one .5 mfd . paper sections, and one 20 mfd . electrolytic. To replace electrolytic section, use TS102, connecting positive to cathode of output tube, negative to chassis. B137-Refer to schematics Nos. 13 and 14 and connect UR181 as follows: Red lug to driver plate supply, Blue lug to IF screen circuit, and Green lugs to first AF plate resistor.
B138-Refer to schematics Nos. 13 and 14 and connect UR181 as follows: Red lug to IF screen circuit, Blue lug to driver plate supply, Green lugs to plate resistor.

B139-Refer to schematics Nos. 1 and 19 and connect HN242 as follows: One Red to point "C," remaining Hed to chassis, Black to points "B" and "D."
B140-Hefer to schematic No. 49 and connect RN235 as follows: To replace first section, connect Red to point "A," two Reds to point "B," Black to point "C." To replace second section connect Red to point "D," two Reds to point "E," Black to point "F" (chassis).
E141-Refer to schematics Nos. 1 and 19 and connect RN245 as follows: One Red to point "A," one Red to point "C," remaining Red to chassis, Black to points "B" and "D." E142-Refer to schematic No. 13 and connect UR181 as follows: Red lug to anode grid supply of first detector, Blue lug to IF plate supply, Green lugs to screen circuit. B143-Refer to schematics Nos. 1 and 15 and connect RM259 as follows: Hed to point "A," Blue to point "C," Black, Brown and Yellow to chassis, Green to cathode of output tubes.
8144-We advise the use of two CS126 and one CN142 units connected as in schematics Nos. 41 and 15 as follows: Hed of one CS126 to point "A," Red of the other CS126 to point "B," one Red of CN142 to point "C," remaining Red to cathode of output tube, all Biacks to points "D," "E," and "F."
Note-The UR 190 may be used in place of the two CS126's.
B145-Refer to schematics Nos. 1 and 19 and connect RN245 as follows: Two Reds to point "A," one Red to chassis, Black to points " B " and "D."
B146-Refer to schematics Nos. 13 and 14 and connect UR181 as follows: Red lug to audio plate supply, Blue lug to IF screen circuit, Green lugs to anode grid supply of first detector.
B147-Refer to schematics Nos. 13 and 14 and connect UR181 as follows: Red lug to second detector plate supply, Blue to IF screen circuit, Green lugs to anode grid supply of first detector.
145-Refer to schematics Nos. 13 and 14 and connect UR181 as follows: Red lug to driver plate supply, Blue lug to IF screen circuit, one Green lug to first audio screen, remaining Green lug to oscillator plate supply.
E14s-Refer to schematics Nos. 13 and 14 and connect UR181 as follows: Red lug to first detector acreen, Blue lug to driver plate supply, one Green lug to second detector plate resistor, remaining Green lug to first detector anode grid supply.
E150-Refer to schematics Nos. 13 and 14, connect UR 181 : Red lug to IF screen circuit, Blue lug to first detector anode grid supply, Green lugs to driver plate supply.
B151-Refer to schematic No. 13 and connect UR181 as follows: Red and Blue lugs to first detector screen circuit, and Green lugs to second detector plate resistor.
152-Connect Red leads in place of original lugs, Black to chassis.
B153-Refer to schematics Nos. 13 and 14 and connect UR181 as follows: Red lug to oscillator plate supply, Blue lug to RF plate supply, one Green lug to second audio plate supply, and remaining Green lug to second detector plate resistor.

B154-Hefer to schematic No. 11 and connect UR182 and CSI21 as follows: Yellow of UR182 to point " A," Red and Blue to points " B " and "C," (ireen and Brown to points "D" and "E," Black of UR182 and CSI21 to point "F," Red of CS121 to osc. anode resistor.
B155-Refer to schematic No. 27 and connect UR182 as follows: Blue, Red and Yellow together and to points "A," "B," and "C," Brown to points "D," "le," and Black and Green together and to point " F."
B156-These two 4 mfd. sections are contained in the same unit with several small capacity condensers of the paper type. For the replacement of the filter section use a non-polarized unit as in note 1311. The 4 mfd. by-pass section may be replaced with TS105 installed at the socket.
B157-Refer to schematic No. 50 and connect RM257 as follows: Red to point "A," Black to point "C," Blue and Green together to point "B," Brown and Yellow to point "D."
B158-These condensers are contained in a capacitor block with several small paper condensers. To replace these units we recommend for external replacement a CM175 connected as follows: Two Reds to points " A " and " B," one Black to point " C," two remaining Blacks to point " D ," remaining Red to screens.
B159-Refer to schematics Nos. 6 and 15 and connect RM259 as follows: Red to point "A," Blue to point "B," Black, Brown and Yellow to points "C"' and "D," Green to cathode of output tube.
B160-The original block contained two 10 mfd. electrolytics and a .5 mfd . paper. Replace with CN152 and TP431. Connect one Red of the CN152 to the screen of output tubes, the remaining Red to the cathode of detector tube, Black to negative line. T1P431 replaces the coupling condenser between the 37 plate and the interstage transformer.
B161-Refer to schematics Nos. 13, 14, 1.5 and 19, and connect SH612 and TS101 as follows: One Red of SR612 to RF screen, remaining Red to driver plate supply, Black to HV. center tap, Blue to first audio callode (be sure to ground can). Connect TSIOI positive to driver cathode, negative to chassis.
B162-Refer to schematics Nos. 13, 14, 15 and 19 and connect Sli612 as follows: One hed to MF screen, remuining Red to the junction of the resistors in the first AF plate supply, Black to center tap of high voltage, and Blue to first AF cathode (be sure can is grounded).
B163-Refer to schematics Nos. 13, 14 and 19 and connect CN151 and TS101 as follows: Red of CN151 to RF sereen, Blue to first AF plate supply, Black to chassis. Positive of TS101 to chassis, negative to high voltage center tap.
B164-Refer to schematics 13 and 14, connect CN151 and TS101 as follows: Red of CN151 to RF screen, Blue to first AF plate supply, Black to chassis. Connect TSIOI positive to shield wire, negative to chassis. B165-Refer to schematics Nos. 15 and 19 and connect CMI62 as follows: One Black
to transformer center tap, corresponding Red to chassis, remaining lied to first $\mathbf{A F}$ cathode, Black to chassis.
B166-This block contains the filter condensers and the output choke and condenser. When replacing by seetion by sure to leave output assembly intuct.
B167-For replacement of this entire block, we recommend purchase of original block from manufacturer. However, in case of emergency, the block may be taken apart and replacement accomplished by using the CN150 unit or exterior application may be made. Precaution should be taken to preserve the original block wiring, not affected by the replacement.

B168-Refer to schematics Nos. 1, 14 and 15 and connect CN155 and TS101 as follows: One Red of CN155 to screen of AF output, another Red to RF screen, remaining Red to oscillator plate supply, Black to chassis. Connect TS101 positive to second detector cathode, negative to chassis.
B169-This condenser is contained in a block with several paper condensers and this replacement is suggested to replace this section only and the rest of the block must be left in the receiver as connected.
B170-Refer to schematics Nos. 27 and 19 and connect RM259 and TS101 as follows: Red, Blue and Green of R M259 together and to points "A," " B " and "C," Black and Yellow together and to points "I)" and "L,", Brown to point "F." Connect TS101 positive to output tube cathode, negative to resistor tap in output tube grid circuit.
B171-Refer to schematics Nos. 9 and 15 and connect UR190 and CM161 as follows: One lied of common negative section of URI 190 to point " B," remaining Red to point "A," Black to point "C," hed of one independent section to point " Λ," Black to point "B," remaining lied to point " D," Black to output cathode. Connect CNII61, Blue to point "D," Brown to point "E," Hed to output cathode, Black to point "E."
B172-Connect UR189 as follows: One Red to rectifier cathode, Green and Black to negative line, remaining Red to RF screens, Blue to output plate supply, Brown and both Yellow to output cathode.
B173-For replacenient of this entire block we advise purchase of a duplicate from the manufacturer. In case of emergency, the block may be taken apart and replacement accomplished by using the CN152 unit. Wiring to parts of the block not affected by the replacement should be left intact.
B174-This assembly contains an 8 mfd . electrolytic, a . .5 mfd . and a .25 mfl . paper condenser and the driver transformer. We advise the CS133 unit for external replacsment of the 8 mfd . section.
B175-Refer to schematics Nos. 1, 13 and 15 and connect CN151 and CN140 as follows: Hed of CN151 to point "C," Blue to anode grid supply of first detector, Black to chassis. One Red of CNI40 to RF screen, remaining Red to detector cathode, Black to chassis.
B176-Refer to schematics Nos. 13 and 1.5 and connect CN150 and CN141 as follows:

One Red of CN 150 to output plate supply, remaining Red to anode grid, Black to chassis. Red of CN141 to Det. cathode, Blue to screen supply, Black to chassis.
B177-Refer to schematics Nos. 13 and 15 and connect RN245 as follows: One Red to first $\mathbf{A F}$ plate supply, another Red to RF screen supply, remaining Red to first AF cathode and Black to chassis.

B178-Refer to schematics Nos. 14, 15 and 19 and connect RN231 and TS101 as follows: Red of RN231 to first Audio cathode, Blue to RF screens, Black to chassis. Pos. of TS101 to chassis, negative to power transformer HV. center tap.
B179-Refer to schematics Nos. 13, 14 and 19 and connect RN241 and TS106 as follows: Red of RN241 to screen circuit, Blue to second Det. plate supply, Black to chassis. Pos. of TS 106 to chassis, negative to power transformer HV. center tap.

B180-Refer to schematics Nos. 9 and 15 and connect C.M173, CM160 and TS102 as follows: One Red of CM173 to point "A," corresponding Black to point " B," another Red to point "B," remaining Black to point "C," remaining Red to point "A." Red of CM1160 to point "D," corresponding Black to cathode of output tube, remaining Red to RF screen circuit, Black to point "E." Pos. of TS 102 to output cathode at tube socket, negative to point "E."
B181-Refer to schematic No. 3 and connect CN151 as follows: Blue to point "B," Red to point " C ," and Black to " E " and " F ."

B182-The UR182 replacement has higher capacity values than the original. However, the Ul1182 will not cause any change in the operation of the set.
B183-Refer to schematics 12, 13 and 19 and connect CN142 and TS104 as follows: Onelled of CN142 to screen of AF output, remaining Red to RF screen, Black to chassis. Connect TS10.4 positive to chassis, negative to 13 minus.

B184-Substitute TS101 for TS104 and connect as in Note 183.

B185-Refer to schematic No. 9 and connect InM257 as follows: Blue to point "A." Red and Green to points " 13 " and "C," Black and Brown to points "D" and "E," Yellow to point "F."

B186-Refer to schematic No. 52 and connect RM259 and TS101 as follows: Red and Green of RM259 to point "A," Black and Yellow to point "D," Blue to point "B," Brown to point "E." Connect TS101 Positive to point " F," negative to point "D."
B182-Sinbstitute TS102 for TS104 and connect as in Note 18183.

B188-Substitute TS103 for TS104 and comect as in Note B183.

B189-Refer to schematics Nos. 24 and 15 and connect UR 189 as follows: Both Reds to point "A," Blue to point "B," Black, Brown and Green to points "C" and "D," one Yellow to output cathode, remaining Yellow to Det. cathode.

B190-The original condenser had three leads, Red-positive 10, Yellow-positive 20 and Black-common negative. Due to lack of circuit information we can give replacxment instructions for the oirginal only. I'se IR N245, and connect one lied to the original Red, the two remaining lieds to the original Yellow, and Black to the original Black. The Mallory bracket 104-1 should be used for installation.
B191-Refer to schematics Nos. 1 and 13 and connect RM259 as follows: Red to point "A," Black to point "B," Blue to point "C," brown to point "D," Green to original bypass lead, and Yellow to chassis.
B192-Refer to schematics Nos. 4 and 13 and connect R M265 as follows: IRed to point "A," Black to point "C," Blue to point "B," Brown to point "D," Green to oscillator plate supply, and Yellow to chassis. Use Mallory No. 104-1 mounting bracket for this installation.

B193-Refer to schematics Nos. 1 and 15 and connect RN245 and TS101 as follows: Two Reds of RN245 to point "A," remaining Red to point "C," Black of IRN245 and negative of TS 101 to "B" and "D," Pos. of TSl01 to output cathode.
B194-This model originally used two 8 mfd. carton type condensers. If both units are defective, CN152 affords an ideal replacement.
B195-The filter condenser for this receiver is contained in a block which is of the plug-in type. We advise replacing the defective sections with Mallory Carton type units of the same voltage and capacity beneath the chassis.
B196-When two units are sperified for a non-polarized replacement, connect the negative leads together and tape. Use the two positive leads for wiring into the circuit. Also see Note B11.
B197-Refer to schematics Nos. 6 and 15, and connect UR192 and TN111 as follows: Connect UR192, one lled to point "A," remaining Red to point "B," both Blacks to chassis. Connect TN111, one positive to detector cathode, remaining positive to output cathode and negative to chassis.
B198-Refer to schematic No. 25 and connect CM171 as follows: Blue to point "A," led to point " B ," Brown to point " C ," and Black to point "D."
B199-Refer to schematic No. 25 and conneet CM171 as follows: Red to point "A," Blue to point " B ," Black to point "C," Brown to point "D."
8200-Refer to schematics Nos. 30 and 14 and connect UR191 as follows: the two lied leads (having common exit) to points " A " and " B," and corresponding Black to points "D" and "E," one remaining Ihed to point "C," the other to the IF plate supply, both remaining Blacks to chassis at point "F."
B201-Hefer to schematics Nos. 3 and 13 and connect UR191 as follows: One IRed each to points " $\mathrm{A}, "$ " B ," and " C ," remaining Red to first AF plate supply, all Ilack leads to chassis (points "D," "E," and " F ").
B202-Refer to schematic No. 25 and connect CM171 and TS102 as follows: Hed of

CWI71 to point "A," Blue to point " 13 ," Black to point "C." and Brown to point "D." Connect TSIO2, positive to point "ID," and negative to point "C."
B203-Refer to schematic No. 57 and eonnect CN 155 as follows: (Ine lied to cach of the following perints: " 13 ," "D" and "(i." Black to point "II" (chassis).

B204-Refer to schematic No. 57 and connect CS131 and CN152 as follows: Red of CS131 to point " A ," one led of CN152 to point "C," remaining Red to points "E" and "F," all Blacks to points "II" (chassis). B205-Refer to schematic No. 56 and connect CM175 as follows: two IRed leads to point " A ," the two corresponding Black leads to point "C," remaining Red to point "B," remaining Black to point " D " (chassis). This unit may be installed in the original case.
8206-Refer to schematic No. 30 and connect CM175 as follows: One Red to point "A," corresponding Black to point "D," another Red to point " B ," corresponding Black to point "E,"' remaining led to point "C,' remaining Black to point "F" (chassis).
B207-Refer to schematics Nos. 8 and 15 and connect RM257 and TS101 as follows: Blue of IRM2.37 to point "A," lied to point "B," and Green to point "C." Connect Brown, Yellow and Black together and to points "D," "E"' and "F." Connect TS 101, positive to AF output cathode and negative to point " F ."
B208-To replace with C.M173 and TS107, connect as follows: Connect one lied of CM173 to center tap of output transformer, another Red to the driver plate supply, remaining Red to IF plate supply, all Blacks to chassis. Connect TS 107 positive to driver cathode, negative to chassis.
B209-Connect RN231, Blue to "B" plus 135 V ., Red to RF screen, and Black to chassis. Some models used a non-polarized filter condenser. RN231 is satisfactory for this replacement if the proper battery polarity is observed. Be sure to check this point, as a reversal of polarity may result in serious damage to the receiver.
B210-Refer to schematics Nos. 8 and 15 and connect U13182 and TS101 as follows: Connect Yellow of UlR182 to point "A," Blue to point "B," Red to point "C," Black, Brown and (ireen together and to points "D," "E" and "F." Connect TS101 positive to output tube cathode, negative to point "F."
B211-Refer to schematics Nos. 1 and 15 and connect RN245 as follows: One Red to point "A," another Red to point "C," remaining Red to oulput tube cathode, and Black to points "B" and "D" (chassis).
B212-l Refer to sclrematies Nos. 1, 13 and 15 and connect IRN2. 45 as follows: One lied to screen of output tule, another Red to the first detector plate supply, remaining lied to cathode of output tube, and Black to chassis.
B213-Refer to schematic No. 25 and conneet RM261 and TS102 as follows: Red of HM261 to point " A," Blue to point "B,"

Hack to proint "C." and Brown to point "1)." Connect TS 102 , positive to point "D," and negative to point "C."

B214-hefer to schematics Nos. 11 and 15 and conmect I/R182 and TS101 as follows: Conmect UR182, Yellow to point "A," Hlue and lied together and to points " B " and "C," Green and Brown together and to points " D " and " F," and Black to point "F." Connect TSI01 positive to detector cathode and negative to point "F."
B215-Refer to schematic No. 11 and connect IR \} 2 . 5 7 as follows: I Blue to point "A," Green and I Red to point "B," Black, Brown, and Yellow to points "D" and "E."
B216-In some cases this condenser is a single $\&$ mfd. unit; we recommend the use of IRS213 for these cases in place of RM262.
B217-Refer to schematics Nos. 13 and 15 and connect RN2.11 as follows: Blue to ascillator plate supply, Red to cathode of output tube, and Black to chassis.

B218-Refer to schematic No. 11 and connect RN235 as follows: One Red to point "A," t wo Reds to point "B," Black to point "D." To replace second condenser connect RN231, Red to point "C," Blue to osc. anode grid supply, Black to point "F."
B219-Refer to schematics Nos. 1 and 15 and connect Sl?611 as follows: One positive 8 mfd . lug to point "A." The other positive 8 mfd. lug to point " C ," Black lead to points "IB" and "D," Bhe lead to second AF cathode. It may be of assistance in installing if the leads of the old unit are cut close to the carton and these leads used for connecting the new unit.
B220-Refer to schematics Nos. 1 and 15 and connect CN1:52 and TN110 as follows: One lhed of CN 1.52 to point "A," remaining Ired to point "C," Black to points "B" and "D." One positive of TN110 to detector cathode, remaining positive to output cathode and negative to chassis.

MÁmLORY

The Dry Blectrolytic Condensers

 Sold by P. R. Mallory \& Co., Inc., are manufactured under one or more of the following U. S. Letters Patent:| $2,020,408$ | $1,891,207$ |
| :--- | :--- |
| $1,989,129$ | $1,891,206$ |
| $1,981,533$ | $1,774,455$ |
| $1,981,352$ | $1,715,789$ |
| $1,918,717$ | $1,714,191$ |
| $1,918,716$ | $1,710,073$ |
| $1,912,223$ | $2,052,962$ |
| $1,909,506$ | Re. 18,673 |

and other pending patents.

	14	Nntes 75, 111, 119, 134. 210	

$i \text { oxryict r }$	$\overline{\operatorname{FOC}}_{\mathrm{V}} \mathrm{t} \quad-{ }_{\underline{\nu}} \mathrm{d} 7$		

MAlow REPLACEMENT CONDENSERS AND ACCESSORIES

The Dry Electrolytic Condenser is the invention of Samuel Ruben, long an associate of the Mallory Co., and the pioneer patents in the field are the two Ruben Patents 1710073 and 1714191.

INTELLIGENT and systematic research is the backbone of all progress. Experience and common sense the medium for the successful application of any new development. P. R. Mallory \& Co., Inc., have for many years been the major supplier of original condenser equipment to radio receiver manufacturers. Representing the pioneer manufacturer in the dry electrolytic condenser field, it is not sur prising that the majority of worthwhile contributions to the art have been made by Mallory. These contributions were the direct result of extensive research, efficiently applied to the problems involved. For several years the need for a systematic and efficient replacement condenser program has been acknowledged by the Mallory management personnel. Time and again the thought of launching such a program was discussed-only to be shelved temporarily as not worthy of the standards of progress set by those who have led the Mallory Company to its present successful standing in the industry. Finally, after a diligent investigation of the requirements of the radio replacement field, and with the help of thousands of radio service engineers throughout the country, the Mallory Company announced the now famous "Universal Condenser Replacement Program." This announcement was made in January, 1936, just one year ago. 1t marked a new departure in the replacement ago. It marked a new departure in the replacement
field. The success of the Mallory program is now field. The success of the Mallory program is now
history, but it is gratifying indeed to review the outstanding acclaim it received and the precedents set. While imitation has been called the sincerest form of flattery, it is amusing to record the extent to which this has been attempted.
With pardonable pride we reveiw a few of the outstanding and revolutionary Mallory achievements in the replacement condenser field.

1. First Replacement Condenser Manual-the greatest assistance ever offered the service engineer.
2. First Complete Universal Condenser LineMade condenser servicing a pleasure and took it out of the penny profit class.
3. First Practical Mounting for Carton Type Condenser-The famous metal flange. Everyone wonders why it was never done before.
4. First Universal Mounting for Round Type Condensers-Astounding! But so simple and practical.
5. First Complete Line of Compact, SpaceSaving Condensers-Every condenser the right size for all applications.
6. First Internal Metal Seal for Carton Con-densers-Even the Pittsburgh flood failed to harm them.
7. First With Correct Size Lead Wirea-Not designed for 5 Horsepower motors, but for radio condenser replacements.
8. First Really High Surge Condensera-They can take it. If one didn't-we haven't heard about it.
9. FIrst With Cellophane Separators-Surge voltage breakdown? What is it?
10. First With the "Terminal Connector"Change a "haywire" job to a neat assembly.
In spite of these innovations, and many others. Mallory is still not satisfied. They are constantly striving to improve the original program.

Use Mallory and you'll save time, have success with your work, a healthy profit, and no regrets.

MALLORY CONDENSER TYPE CODE

CS
Carton Type Condensers Single Units.
Round Can Type Condensers Single Units
Carton Type Condensers Multiple Units Common Nergative

RN
Common Nope
Carton Type Condensers Multiple Separate Sections
RM
Round Can Type Condensers Multiple Separate Sections
TS Tubular Single Units
TN Tubular Dual Section Common Negative Units UR Universal Replacements
SR
HO
HS
MP

WC
WE

AG

VB
Vo
ular Units
ms Motor Starting AC Capacitors

SMALL SIZE PRECISION QUALITY

Small size without High Quality would defeat any practical advancement in this field. Mallory policy prohibits any sacrifice of quality. The introduction of new Mallory Replacement Condensers, all small in size, is in strict accordance with this policy. Every size is the right size!
Every Mallory condenser has equal or better characteristics, including life expectancy, to any unit offered heretofore.
Every unit is designed expressly for outstanding performance. Size was a secondary consideration.
Mallory Condensers must undergo a severe life test before release for sale is permitted. In this respect, not a few, but hundreds of units are placed on life test. This life test is not only conducted under actual conditions as experienced in the field but is much more severe. Besides subjecting condensers to is much more severe. Besides subjecting condensers to
their maximum DC working voltage on life test, an their marimum DC working voltage on life test, an
AC
component greater than ever present in field service is also imposed over and above the DC voltage.

Radio sets in general and Midget sets in particular produce relatively high internal temperatures. Therefore life tests run at room temperature have no significance. The Standard Mallory life test apeclcations call for the use of an industrial oven constantly maintained at $140^{\circ} \mathrm{F}$. for the duration of the test! A thousand hours in this oven under the severe voltage applied is equal to over a year's service in the field. No Mallory unit is acceptable for service if it shows any inclination to change appreciably in characteristics at this interval. All Mallory life teats are continued even after the 1,000 hour mark and several thousand hours life under these extreme conditions is the rule and not the exception.

GENERAI. CONSTRUCTION AND DESIGN

Mallory, to make the ideal condenser, has given a great deal of thought to design and constructional points that at first might seem relatively unimportant.
All Mallory carton type units utilize standard wax impresnated fibre-board exactly the same as used universally on large production orders for radio set manufacturers. This type of material is used because it actually impregnates better than coated types of board having a silver or gold finish. This was impregnation is highly important to the proper performance of the unit.
All Mallory carton units have square corners and sides that do not bulke. Besides adding to their appearance this indicates proper engineering. By designing the condenser correctly, no attempt to squeeze it into the carton is necessary.
The wire supplied on all Mallory units is especially selected tor ample insulation and ease of installation. For this reason, on all but the tubular units, stranded rush-back wire of the correct size and flexibility is used.
All Mallory replacement condensers are stamped with the necessary information directly on each container rather than on paper labels pasted to the container. This type of marking provides permanent identification. Paper label types are apt to become unglued and leave the unit without identity.
There are no common positive units in the Mallory line. These list at the same prices as the separate section type where each unit lias its own pair of leads. The separate section type may, of course, be connected, when installing, either with the positives or the negatives common as well as other combinations. In the interests of reduced stock, the common positive type was purposely omitted.

SEALED IN METAL IIUMIDITY-PROOF

Temperature is an extremely important factor. The use of Dry Electrolytic Condensers where high temperatures are involved may severely affect their life. All Mallory Condensers are designed to function in temperatures up to $140^{\circ} \mathrm{F}$. This is ample to cover the usual temperature rise to be expected in the field. Care should be taken, however, not to install the condenser next to, or between other components producing high temperatures in or on the radio chassis. This refers to rectifier tubes, power tubes and voltage divider resistances and transformers. In some Midget sets, it is impossible to make an ideal installation in this respect.
A certain amount of moisture is included in the electrolyte of all Dry Electrolytic Condensers. The proper operation of the condenser is greatly dependent upon this moisture. In unprotected condensers this moisture may be lost, or on the other hand, the condenser may absorb more moisture, affecting the balance originally provided. Mallory Condensers have been designed with this point in view. All units are effectively sealed including the cardboard carton types. This is accomplished in the latter case by the use of a metal seal of ingenious construction inside of the carton which has been found to stabilize this characteristic.

You will note from the above illustration that the metal seal completely seals the unit enclosed inside of the carton. This Mallory feature throws the burden of stabilized humidity on the metal seal and not the carton alone as in ordinary condensers. The carton is thoroughly impregnated in wax affording double protection against humidity.
Because of this metal seal, these units will perform satisfactorily in tropical climates.

CELLOPHANE SEPARATORS

Etehed Anodes-Stitched Anode Leads All recent important improvements pioneered or developed by Mallory-are incorporated into Mallory Condensera wherever they add to quality and utility.

MALLORY
 TERMINAL CONNECTOR

AGAIN MALLORY SOLVES A PROBLEM in a practical way

This device will prove a great help whether used with condensers or for other purposes.

Figure 1
The Mallory Terminal Connector (Figure 1) is designed to provide an anchorage for the lead wires from the condenser where ordinarily splicing would be necessary. For example, when replacing an original unit having soldering lugs, the leads from the replacement unit may be cut short and the Terminal Con. nector used to join them with the set wiring.

Figure 2
Solder (or bolt) the Connector strip to the chassis in an upright position as near as possible to the replacement condenser unit. Cut off the lead wires from the condenser to the proper length to reach the Terminal Connector and solder each one to a lug on the Connector as in Figure 2. (Note - All Mallory leads are push-back wire.) Now solder the circuit wires to the opposite lugs on the Terminal Connector in their proper order.
Obviously if more than three wiree are involved, it will be necessary to use more than one Terminal Connector or splice the remaining leads. Generally, the black or negative lead is soldered to the chassis and need not use a lug.
Should the Terminal Connector be too high for the depth of the chassis it may be bent over to reduce its height.

MALLORY UNIVERSAL MOUNTING FLANGES for Carton Types

The mounting of carton type condensers has always been a problem from a replacement standpoint. An almost unanimous appeal for something new and practical was noted in the response to the Mallory Service Question naire. Mallory Engineers have studied the problem from the service man's angle.

All Mallory carton type condensers are equipped with a new type of mounting flange-the first practical Universal mounting feature ever designed.

Since there are several ways in which it may be used, complete instructions are given:
A. The unit may be mounted by the use of nuts and bolts or self-tapping screws in the usual manner as in Figure 3.

Figure 3
B. One end may be pushed under any screw head on the chassis without removing the screw as in Figure 4. The other end may be left loose or soldered to the chassis as in Figure 5.

Figure 4
C. One flange or both fianges may be soldered to the chassis as in Figure 5. Tin the chassis first, then solder in place.
D. One half of the flange may be bent down as in Figure 6 and pushed through any convenient hole in the chassis. Bend back the flange after it is through the hole.

Figure 5

Figure 6
E. Both flanges may be bent flat against the side of the carton and the unit held in place by its wire leads. In bending the flanges, hold your thumb tightis on the part attached to the carton to prevent tearing the carton.

Mallory Universal Mounting flanges have been widely copied, proving their merit and worth to service men. Constant improvement may be expected from Mallory-as their leadership in the replacement parts field will be maintained.

MALLORY UNIVERSAL mounting features
 for Round Can Types RS, RN and RM

Round can condensers in general have been mounted by the use of one of five different methods, each varying enough to prohibit the use of any other type in making a replacement. This situation has now been overcome by the special features provided on all Mallory round can replacements. The universal nature of the newly designed units does away with the necessity of stocking duplicate ratings in several mounting types and consequently reduces the stock investment. It is the first practical universal mounting feature for round can type condensers.

The five methods of mounting referred to are:

1. Stud mountling having a $5 / 8^{*}$ neck.
2. Stud mounting having a $3 / 4^{\prime \prime}$ neck.
3. Stud mounting having a $7 / 8^{\prime \prime}$ neck.
4. RIng Clamp mountlng.
5. Spade bolt mounting.

STUD MOUNTING ${ }^{\text {' }}$

Types 1, 2 and 3 are so familiar they require no illustration. The originals having the $5 / 8^{\prime \prime}$ or $3 / 4^{\prime \prime}$ neck generally had but one lug or one or more flexible leads. The $7 / 8^{\prime \prime}$ neck was usually of the moulded composition type and was generally equipped with from one to three lugs. this type seldom being supplied with flexible leads.

Figure 7
Due to tneir reduced size many Mallory round can units are supplied with $5 / 8^{\prime \prime}$ necks and a few of higher ratings have $3 / 4^{\prime \prime}$ necks. There are no $7 / 8^{\prime \prime}$ necks in the Mallory Replacement Condenser line. Obviously no instructions are needed to mount a $5 / 8^{\prime \prime}$ neck type Mallory unit in a $5 / 8^{\prime \prime}$ hole. You will find, however, that the $5 / 8^{\prime \prime}$ neck may be also satisfactorily mounted in a $3 / 4^{\prime \prime}$ hole without special accessories by simply centering the unit as the mounting nut is tightened. This holds true for the $3 / 4^{\prime \prime}$ neck unit when mounting in a $7 / 8^{\prime \prime}$ hole.
If the $5 / 8^{\prime \prime}$ neck is to be mounted in a $7 / 8^{\prime \prime}$ hole Mallory Type 015-1 washer supplied with the unit should be used beneath the chassis to afford the lock nut a better grip on the chassis (See Figure 7). No washer is necessary on top of the chassis in this case. RING CLAMP MOUNTING
Where clamp mounting was used originally and the Mallory replacement is of the $13 / 8^{\prime \prime}$ can size it may be
mounted in the same way as the original (See Figure 8); the threaded neck portion will protrude when mounted.

Figure 8
In replacing a clamp mounted unit with a 1" Mallory can size use the special Mallory $13 / 8^{\prime \prime}$ washer Type No. A-017. (Not supplied with the unit-List price $\$ 0.05$). This washer is put on the unit and the nut tightened first, then fitted to the clamp as in Figure 9. The washer may be used with the flanged

Figure 9
side up or down according to the space available for the threaded neck portion of the condenser below the chassis. The washer is not supplied with the unit due to the relatively few cases in which they are required. Their cost is so nominal compared to the reduced stock affected that a supply should always be kept on hand.

In cases where a $11 / 2^{\prime \prime}$ unit was used originally, if the clamp will not contract enough to fit the $13 / 8^{\prime \prime}$ diameter of the replacement, pad the clamp with a small strip of cardboard. Mallory units are insulated from their containers. It is not necessary that the clamp make electrical contact to the unit.
These features are not provided in the lande $21 / 2^{\prime \prime}$ and $3^{\prime \prime}$ round can units. (See Type MN).

SPADE BOLT MOUNTING

Pictured in Figure 10. it should be noted that generally the holes punched in the chassia to accommodate this type were made with the same punch used for the wafer type tube sockets. The large center hole is about $1^{\prime \prime}$ in diameter but the Mallory $13 / 8^{\prime \prime}$ can units will mount satisfactorily using the Mallory Type No. 015-2 washer (supplied with the unit)

Figure 10

Figure 11
beneath the chassis similar to Figure 7. The unit should be centered, of course, when tightening the mounting nut.
The 1" can type units require two Mallory ${ }^{-1}$ Type No. 015-2 washers one above and one below the chassis to replace the spade bolt type (See Figure 11). These washers are not supplied with the $1^{\prime \prime}$ can units and list for $\$ 0.03$ each. We suggest that you save these washers when using $13 / 8^{\prime \prime}$ Mallory units in mountings not requiring them. (All $13 / 8^{\prime \prime}$ units are supplied with one of these washers.) These flat washers are not lock washers and since the nut is self-locking, need not be used except as stated.
All Mallory round can dry electrolytic replacement units are insulated internally so that the can is not the terminal in any case. A separate wire is always brought out for the cathode connection. It is never necessary to use insulating washers with Mallory round can dry electrolftic units. Thls does not apply to type MN.

Mallory Grid Bias Cell
 AN EXCLUSIVE MALLORY PRODUCT

Fssentally the Mallory Grid Bias Cell is an electro-chemical cell capable of producing indefinitely a potential of approzimately one volt. Its current supplying capacity is purposely made very amall; 1.e., less than one micro-ampere. Mechanically it is an acorn-shaped device, the outside cup or shell being the negative elect rode and the black disc being the positive electrode. The black disk is insulated from the outside shell and sealed in place by means of a rubber gasket around its edges. Suitable mounting brackets have been developed for this cell which usually consist of a cup into which the cell is which usually consist of a cup into which the cell is
plared, and a spring contactor which presses down plared, and a spring contactor which presses down position. Mounting brackets holding and connecting up to nine cells in series are available for applications requiring more than one volt.

The cell is widely used in radio circuits to supply the fired bias or negative voltage required by radlo tubes in amplifying circuits.

Since the cell is incapable of supplying current, its application is limited to Radio Frequency and Audio Amplifier stages where the grid is not driven positive so as to cause it to draw current.
Other methods of obtaining the fixed or residual biaa voltage are:

1. By insersing a resistance in series with the cathode of the tube to ground so that the voltage drop across it, due to the plate current flow, would provide the desired fixed bias. In RF circuits the disadvantages of this systers are that the tube cathodes are above ground to RF giving rise to unwanted coupling between stages, causing oscillations, motor-boating, etc., unless extreme preventative precautions are taken. In audio circuits the cathode resistor gives rise to the commonly known degenerative effects (unless the resistor is by-passed by an extremely high capacity condenser). causing decreased power out put, lack of low frequency response and introducing distortion. In high gain audio pre-amplifiers, catbode resistors
give rise to feed back, motor-boating and hum troubles which are difficult to overcome. By grid bias cells in series with the grid returns to ground, troubles caused by cathode resistor biasing can be eliminated, resultiag in improved performance. The tone quality and power output of small AC-1X sets for example can be remarkably improved by using bias cells to bias the first audio tube in place of the cathode resistor condenser combination.
2. By grounding the cathodes of the tubes and connecting the grid returns to a point the desired amount negatire with respect to ground. This arrangement requires a suitable filter, usually a resistance-capacity net work, to eliminate any hum which would otherwise be picked up by the grid circuit and amplified. Grid Bias Cells used in place of such circuits eliminate the grid filtering network and eliminate any hum or coupling difficulties often encountered with this method of obtaining bias.

Many manufacturers use Mallory grid bias cells in their late model receivers in order to effect a savings and to improve performance. In fact; there are several million Mallory Grid Bias Cells in use in the field giving an excellent service record over a period of the last two years. Practically all the field troubles encountered with the bias cells have been iound due to poor contacts between the mounting bracket terminal and the rivet in earlier type mounting brackets, instead of the cell itself. This is easily remedied by soldering the rivet connection and has been overcome in the later type mounting brackets by eliminating the rivet joint. In checking bias cells, they must be measured with a vacuum tube type voltmeter which drawa no current, since the cell is incapable of supplying the current necessary for operating a conventional type voltmeter and an erroneous reading would be oblained. When replacing a blas cell it is only necessary to sllp the old cell out of the mounting and allp in a new one, care beling taken to have appreciable spring tension between the spring arm and the black electrode surface. In mounting the bias cell it should be mounted so that the btack electrode suriace is either down or in a vertical plane.

The Grid Bias Cell is an exclusive Mallory-Yaxley Product and is covered by patents numbers 1920151, 2063524, et al.

CS (CARTON) OR RS (CAN) TYPE Single Unit	CN (CARTON) OR RN (CAN) TYPE Dual Triplo	CM (CARTON) OR RM (CAN) Dual Triple	SR 601 (CARTON) (Black)
SR602 (STUD MOUNTING CAN) (Black)	SR803 (CARDBOARD TUBE) $30 \mathrm{~m} / \mathrm{d}$. (a) 30 volts		SR605 (STUD MOUNTING CAN)
SR606 (CARDBOARD CARTON)		UR180 (CARTON)	
SR610 (CARTON)	SR611 (CARTON)		
		UR182 (CARTON)	
UR188 (SPADE BOLT MOUNTING) UR189 (CARTON)	UR190 (CARTON) (Black) (Black) (Black)		UR192 (CARTON) (Red) (Red) 20 mfd .20 mfd . (a) 150 v . (a, 150 v (Black) (Black)

Dry Eloctrolytic Pypass Uniss Cardboard Tubular Type TS-Single Section Type				
Capactry	Wkg.	Max. Surge	$A^{\text {Size }}{ }_{B}$	Calatoe
10 20 25 80	25 25 25 25 25	$\begin{aligned} & 40 \\ & 40 \\ & 40 \\ & 40 \end{aligned}$		
5 10 25 80	80 80 800 80	75 75 75 75 75		
TN-Dual Section Common Cathode Type				
Capacty	Wks.	Max	$A^{\text {Size }}{ }_{8}$	$\underset{\substack{\text { Catalot } \\ \text { Number }}}{ }$
$\begin{aligned} & \text { s-3 } \\ & \text { 10.10 } \\ & 5-3.5 \\ & 5-3 \end{aligned}$	$\begin{aligned} & 25 \\ & 25 \\ & 35 \\ & 50 \end{aligned}$	$\begin{aligned} & 40 \\ & 40 \\ & 50 \\ & 75 \end{aligned}$		TN10 TN11 TNH2 TNH3

Dry Eloctrolytic Filter Units Round Aluminum Con Type RS-SIngle Section Type					
Capectiy	Wh.	Max. Surge	$A^{\text {Sise }}{ }_{B}$		$\underset{\substack{\text { Caraloe } \\ \text { Number }}}{ }$
${ }_{12}$	230 250 250	300 300 300	29x ${ }^{2} \times 1$		RS2011 RS03 RS003
1 8 12 10	450 450 450 450	523 825 525 525	24×1 24 24 3% 3		RS211 RS213 $\mathbf{R S 2 5 1 5}$ $\mathbf{R S 2 1 8}$
RN-Multiple Section Common Cathode Type(Common Negative)					
Capecty	Wher	Max. Surge Surge	$A^{\text {Sise }}{ }_{8}$		Catalos Number
4.8 $8-8$ $8-88$	230 250 250	300 300 300			RN231 RN232 RN235
48.8 8.8 $8-8.8$	450 450 450	325 $\begin{array}{l}325 \\ 825\end{array}$ 25			RN241 RN22 RN2 $2+3$
RM-Multiple Separste Section Type					
Capacity	Wkg.	$\begin{aligned} & \text { Max. } \\ & \text { Syurie } \end{aligned}$	$A^{\text {Sive }}$ B		Catalos Number
4.8 8.8 8.8 8.8 $8-10-16$ 8.16	230 250 250 250 250 250	300 300 300 300 300 300			
$\begin{gathered} 4-8 \\ 8-8 \\ 8-8-8 \end{gathered}$	450 450 450	323 323 325			RM261 RM262
Accemeories for Round Gan Unita					
Dencription				Sise	Cat. No.
Washer for clamp mounting on 1° cans. Wather for $1 / \mathbf{1 月}^{\prime \prime}$ hole mountins on $1^{\text {c cans. }}$ Washer for spade bolt mounting both 1° and 136^{\prime} cans.					A-017 01511 $015-2$
				\%	105-1
Ring clamp for round can condenser Ring clamp for round can condenser Rins clamp for round can condenser Mounting bracket.				13	1001 $107-1$
				$2{ }^{2}$	108.1
				Rink elamp for round can condenser. Mounting bracket	

Dry Electrolytic Bypass Uniss
Round Can Aluminum Type

Dry Electrolytic Bypass Unirs Round Can Aluminum Typa BN-Dual Section Common Cathode Type (Common Neentive)				
Capacity	$\mathrm{wkg}_{\mathbf{v}}$	Max. Surge	$A^{\text {Sire }}{ }_{\text {B }}$	Catalog Number
10.10	50 50	${ }^{73}$	1\% ${ }_{6} \times 1$	
Dry Electrolytic Units Heavy Duty and High Surge Types HD-SIngle Section Type				
Cap.		$\begin{aligned} & \text { Con- } \\ & \text { tainer } \end{aligned}$	Sise	
8	500 500 500 500	$\begin{aligned} & \text { Carion } \\ & \text { Rd. Cn. } \\ & \text { Gd. } \end{aligned}$		HD880 HD81 H0888 HD683
His-SIngle Section Type				
Capacity		$\begin{aligned} & \text { Con- } \\ & \text { Cainer } \end{aligned}$	Size	Casalog Number
8	600 600 600 600	Carton Rdicn. Rartor Rd. Rn.		

Universal and Special Types UR Spectal Univeras) Unite				
Capacity	Wkg.	Container	Size	$\xrightarrow{\text { Cat. }}$
	250		1\% $\times 16 \times 2 \%$	UR180
${ }_{\text {cose }}^{3-2-1-1}$		Round		
		Carro	\%x16x2才	UR183
x-s ${ }^{\text {c- }}$	200.25	Card. Tube.	14x 3%	UR188
CR- -8.5	${ }_{250}^{200} 23$	Carton.	$10 \times 13 \times 3$	UR189
	230	Carton.		UR190 UR191
2020.	150.	Carton.	10x1\%x ${ }^{1}$	UR192
SR Spectal Univeraal Unite				
Capacity	Whe.	Conta	Size	
	300			
-	300-300-25.	Round Cas.	1382	SRR002 SR603
${ }_{3}^{8-30}$	${ }^{3000-300-12 .}$	Card. Tube		SR603
${ }_{8-8 .}$	${ }^{30} 500$.	Cound Can.	10, $\times 3 \%$	SR60S
	${ }^{350} 300-300-12$	Carton	110 $\times 1.6 \times 2 \%$	SR606 SR607
	${ }^{300-300-12}$	${ }_{\text {Carton }}^{\text {Card. Tube }}$	110 $\times 10 \times 2 \%$	SR607 SR 08 Ste
8 8.-25	400-400-25.	Round	13×26	SR808
${ }_{8}^{8-8.25}$	200-400-25:	Carton		SR610
${ }_{8,8,16-16 . .}$	350. 100...	Round Cain	16×4	${ }_{\text {SR612 }}$
10-30-16.		Carton.		SR613

Large Round Can Units Dry Electrolytic Type MN MN-Multiple Section Common Cathode Type (Common Negative) (All Cathodes to Can)				
Capecity	Wrg.	$\begin{aligned} & \text { Max. } \\ & \text { Surap. } \end{aligned}$ Surge.	$A^{\text {Sise }}{ }_{8}$	Catalog
	450 450 450 450 4.50 4	323 325 825 585 325		
Diy Electrolytic Oid Style Unils Original Large Size Single Section in Carton with Leade				
Capecity	Wikg.	Max. Surge	$\mathbf{C} \underset{\mathrm{B}}{\mathrm{Size}}$	Catake Number
$\stackrel{1}{8}$	450 40	${ }_{525}^{523}$		14450 18450
Dual Section In Carton with Four Lende				
Capacity	Wikg.	$\begin{aligned} & \text { Max. } \\ & \text { Surge } \end{aligned}$		$\begin{aligned} & \text { Catalog } \\ & \text { Number } \end{aligned}$
${ }_{8-8}^{4-8}$	450 40	${ }_{525}^{323}$		148450
Single Section in Round Can with One Lue and Nellative Terminal Grounded to Can				
Capacity	$\underset{\text { Wk. }}{\text { Wk. }}$	$\begin{aligned} & \text { Max. } \\ & \text { Surge } \end{aligned}$	$8^{\text {Size }}{ }_{A}$	$\begin{aligned} & \text { Catalod } \\ & \text { Number } \end{aligned}$
8	450	523	13/0 $=3 \%$	TM2-8
Single Section in Round Can wlith Two Leads Inaulated from Can				
Capacity	Wk.	Max. Surae	$8^{\text {Size }} \mathrm{A}$	$\begin{gathered} \text { Catalog } \\ \text { Number } \end{gathered}$
8	450	325	13941/4	M2.753
Dual Section In Round Can with Four Leads insulated from Can				
Capacity	$\mathbf{w w g}_{\mathbf{v g} .}$	Max. Sucge	${ }_{B}^{\text {Sine }}{ }_{A}$	$\underset{\substack{\text { Catalog } \\ \text { Numbry }}}{ }$
8-8	450	523	1158490	M2.585

Explanation of Abbreviations

(Used in Cont rol Listings, Pages 1 to 100)

AVC.	Automatic Volume Control.
Hand...	. Band Adjustment Control.
Batt.	. Battery Voltage Control.
BFO.	. Beat Frequency Ose. Control.
Bias....	. Bias Adjustment Control.
B. Tone	. Bass Tone Control.
Clr'ty..	Clarity Control.
Equal	Equalizer Control.
Exp.	Expander Control.
Exp. Bias.	.Expander Bias Adjustment Control.
Fid.	Fidelity Control.
Fidhy.	.Fidelity Control.
Fil.	Filament Control.
F.O.G	.Flashograph Adjustment Control.
Gain.	Gain Control.
II.F. Ton	High Frequency Tone Control.
Hum.	Hum Control.
L.F. Ton	Low Frequency Tone Control.
Loo'lar. .	Localizer Control.

Meter Mic.	. . Meter Adjustment Control. . . Microphone Adjustment Control.
Mike.	. Microphone Adjustment Control.
Mod.	. Modulator Control.
Mon.	Monitor Control.
M. Vol	Manual Volume Cont
Osc. Ad	. Oscillator Adjustment Contr
P.E. A	. Photo-Electric Cell Adjustment Control.
Phanto	. Phantom Tuning Control.
Phono	. Phonograph Pick-up Control.
Power	. Line Voltage Control.
Prima	. Primary Voltage Control.
QAVC:	Q.A.V.C. Adjustment Control.
Reg. .	.Regeneration Control.
lRegen	Regeneration Control.
IRelay	Relay Adjustment Control.
Screen	. Screen Voltage Control.
Scl.. .	Selectivity Control.

Supp....... Suppressor Control.
Tone...... . Tone Control.
Tone IB'm. ..Tone Beam Adjustment Control.
T. Tone.... Treble Tone Control.

Tunlgt..... . Tuning Light Adjustment Control.
Vol. Volume Control.
Voltage. . . . Plate Voltage Adjustment Control.
V. R........ Voltage Regulator Control.

EX $100 \ldots$. EX followed by a numeral indicates that an external resistor of the stated value must be connected between the control and the cathode circuit of the receiver.

Chart Showing Automobile Antenna and Battery Grounds

Car	1930	1931	1932	1933	193.	1935	1936	1937
Auburn	P...... No			I'......No	P...... Yes	P.....Yes	P..... Yes	P..... Yes
Austin		P.........	P.......No	${ }^{1} \times \ldots .$. No				
Buick	N......No	N......No	N...... No	N..... yes	N..... Yes	N.....Y Yes		N.... Yes
Cadillac.	P......No	P......No	$\mathrm{P}^{1} \ldots .$. No	P.....'es	P..... Yes	P..... Yes	P......No	N.... Yes
Chevrolet	N......No	N......No	N...... No	N..... Y's	N..... Y		N......No	N.... . No
Chrysler	P......No	P...... No	P......No	P.... ${ }^{\text {y }}$	P..... Yes	P.....Yes	P.....Yes	P....t†No
Continental	1......No	P.......No	P.......No		N......No			
Cunningham	N..... No	N......No	N.........	N.......No	N..... No		1.....) ¢es	P...... ${ }^{\text {es }}$
DeSoto......	P*.....No	P.......No	P...........	1P.....)	P....) les	ip.......es	ip.......es	i..........
Dodge	P......No	P.......No	P.........	P..... y es	P....ics	1 ${ }^{\text {a }}$..... Yes	P..... Yes	1,........No
Duesenberg	N......No	N...... No	N..... No	N......No	N......No	N...... No	N....... ${ }^{\text {No}}$	
Durant	N......Nio	N.......No	N...... No					
Ford	N...... No	N......No	$\underset{\text { N }}{ }+\ldots .$. No					
Pranklin	P............	p...........	p........No	p,No	p....... ${ }^{\text {reses }}$		P.....)es	P.......No
Graham	P.......No	P.........*o	P.......No	P \quad. No	1......) kies	ip......'res	jp..........	
Hudson	N..... No	N..... No	N......No	N..... No	1.....) Yes	1...... ${ }^{\text {ces }}$	p...........	
Hupmotile	P.......No	1-...... No	P...... No	1......Yes	1....... Yes	P...... Yes	p....... yes	
1 afayette					1,) ies	p..... Yes	p..........No	iP......... ${ }_{\text {No }}$
LaSalle.	P......No	I ${ }^{\text {a }}$. ${ }^{\text {a }}$	P...... No	P.... Yes	P..... Yex	P..... ${ }^{\text {res }}$	P...... No	N..... Yes
lincoln	N...... No	N..... No	N..... Yes	N.....) les	N.....) ${ }^{\text {ces }}$	N..... Yes	N..... Yes	N..... Yes
Niarmo	p.......No	1p....... ${ }^{\text {o }}$	P..........	P......No	p.....) No		io........	
*Nash	P..... No	P......No	P......No	1 ${ }^{\text {P. . . . }}$)	P....) ${ }^{\text {des }}$	P..... Yes	P.....tNo	1...... No
Oldsmoli	N......No	N....... N \%	N...... No	N....) ¢es	N..... les	N.... No	N..... *o	
Packard	P...... No	P..... * 0	P..... No		P..... Yes	1,.... ${ }^{\text {ces }}$	1 1...... yes	1......Yes
Pierce-Arrow			P.... l ¢	1)... ${ }^{\text {des }}$	P.... ${ }^{\text {des }}$	1 P....) Yes		
Plymouth	N..... No_{0}	1P........ ${ }^{\text {a }}$	P...... 入o	1. . . . Mes	1י.....)	p...... yes	p.....) ${ }^{\text {res }}$	
Pontiac	N...... No	N.... . No	N.....No	N.... Yes	N.... Yes	N.... No	N..... No	N...... No
Reo.	N.... No	N.... No	N..... No	N..... des	N...... ${ }^{\text {No }}$	N.....)	N..... Yes	
Rockne.			${ }_{p}^{\text {p. yes }}$	p.... ies	1			
Stut\%.	N,	N.......	N.......No	N.......No	N........ ${ }^{\text {cos }}$			$\xrightarrow{\text { P.........Nes }}$
Terraplane					P.....)	P..... Yes	P.......No	
Willys.	N...... No	N......No	N......No	N..... \dagger No		N...... ${ }^{\text {do }}$	N..... No	N...... No
*Sorne models have $\mathrm{N}-$ Negative batter P-Positive battery	unded to unded to chassia	Yes; Master,	\dagger Some Yes- No- No-	models have buil ar equippel wit not equipped	in antenna. built-in antema th built-in ante		how, Yes. Models, No; L	ge Models, Yes

SECTION

 VIBRATORS
SUCCESSFUL SERVICING OF VIBRATOR TYPE POWER PACKS

Vibrators for power packs, both the interrupter (tube-type) and synchronous-rectifying types, have for years been used almost exclusively in automobile and storage battery powered household radio re ceivers. The rellability of the vibrator has become wuch an established fact that it has been given a definlte place In aviation radio, where dependable communication is often a matter of llfe and death.
The successful servicing of the vibrator type power supply systems depends largely uppn how well the service man understands the fundamental circuit and is characteristics. When vibrators were first introduced, service men regarded them with suspicion and uncertainty. They were inclined to attribute many auto radio receiver troubles, such as unaccountable noises. low plate voltages, etc., to the vibrator when actually its operation was perfectly normal. The unquestionable proof of this statement lies in the fact that more than one-half of all vibrators returned us defective are perfectly good in every respect. During the past few years many service men have come to know the vibrator, its circuits and characteristics, and through this knowledge they work in confidence and increase their profits.
It seems that many men and organlzations would have this type of power supply cloaked with a shroud of mysticism. Therefore, only those service men who possess the rare ability to sift the solden nuggets of truth from the chaff have gained golden nuggets of truth from the chator circuits.
thorough understandind of are NO'T complicated. They are not difficult to service nor is there anything mysterious about them, except what has been artificially created. Let us tear aside the "mystic vell" and expose the simple truth.

INTERRUPTER (TUBETYPE) VIBRATORS

It is impossible to believe that there is a single successful radio service man who does not thoroughly understand the power circuit of the modern AC radio receiver. A typical circuit of this type is shown in Figure 1.

Figure 1
If an AC voltage is applied to the primary, in this circuit, there is a voltage developed in the secondary windings proportional to the turn ratio. The low voltage winding is used to light the "heater" of the tube. (A separate battery could be used just as effectively for this purpose.) The high voltage secondary is center-tapped and so connected that, through action
of the rectifier tebe, one-half of the secondary is deliv ering power on the first part of the cycle and the other half is delivering power on the last part of the cycle. In this manner the alternating current is converted to In this manner the alternating current is convertage is unipotential or DC voltage. Although this voltage is
unipotential, it is not constant; so a filter system must be used to obtain a constant DC voltage. So far we have explained only the simple action of the power supply system of a simple AC receiver.

"AITTERNATING" a dC VOLTAGE

Now if a DC voltage were applied to the primary of the transformer, there would be no flux change and, therefore, no transformation of power from the primary to the secondary. On the other hand, if the circuit could be so arranged as to "alternate" this same DC voltage, first in one direction and then in the other direction through the primary, there would be essentially an alternating current (AC) flowing, and the transformer would again operate the same as it did on conventional AC.
A theoretical circuit describing this method of "alternating" the DC is shown in Figure 2.

Figure 2
This type of automatic switch could be made in the form of a vibrator but it would be far too complicated and critical for economical manufacturing or commercial use. In order to simplify this switching circuit a second primary, identical to the first, is wound on the transformer. This may be in the form of two separate windings or one double winding centertapped. Figure 3 shows this revised circuit and simplified automatic pole changing switch.

Figure 3

Now the automatic switch connects to the DC first through one primary and then through the other which produces essentially an "alternating current" which can be transformed and rectified by the tube into high voltage DC.

When the contact connects and disconnects the DC from the primary of the transformer, there are certain power surges of current developed that must be "arrested" in order to prevent damage to the contact points. The "arresting" of these surges could be accomplished by connecting a condenser across the primary of the transformer but it would necessarily be so large and costly that its use would be prohibitive. be so large and costly that its use would be prohibitive. Since the capacity required to secure the same results
drops rapidly with an increase in voltage applied, a very small capacity high voltage condenser is connected across the secondary. The capacity in the secondary circuit is reflected directly into the primary so that exactly the same results are obtained as with a large primary condenser.

Let us simplify this by stating that the secondary 'buffer' condenser is used to control the surge voltages developed in the circuit.
Figure 4 shows the basic circuit in which the interrupter type vibrator "alternates" the DC in the primary of the transformer.

Figure 4

Interrupter type vibrators (commonly called tube type), are now clearly explained. What of the synchronous rectifying type?

SYNCHRONOUS
 (Rectifying Type) VIBRATORS

As explained, the purpose of the rectifier is to pass current in only one direction so that during the first part of the cycle, one-half of the secondary is delivering current. During the second part of the cycle the other kalf is delivering current in the same direction. If the sectifier tube were replaced with an automatic switch so arranged that it would "keep in step" with the automatic switch or vibrator in the primary circuit, the same rectifying action would be obtained as with the tube rectifier. The polarity of the DC output would depend on the polarity of the input. This need offer now problem since the reversing of the two wires of the transformer primary makes possible, the selection of polarity of output. Figure 5 shows how a circuit of of polarity of out put. Figure
this type might be arranged.

Figure 5
Since one side of the DC (6-volt battery) and Bare usually grounded, the circuit can be inverted and the polarity of the rectified current changed by reversing the primary wires to the vibrator. The 'double automatic switch" could then be arranged so both "blades" are grounded or connected together as slown in ligure 0 .

figure 6
Now that both "blades" of this "double automatic switch" or synchronous type vibrator are grounded they can be connected directly together or even made into one piece. In this manner they become economical to manufacture and practical to use.

The basic synchronous rectifying type vibrator circuit is shown in Figure 7 .

Figure 7
Two basic vibrator circuits have been shown: Figure 4 for interrupter type vibrators and Figure 7 for synchronous type vibrators.
Even with all the different lead and plug arrangements and all of the various sizes of containers that have been used, ONLY these TWO basic circuits have been used in the modern automobile and six-volt household radio receivers since 1933. There is a slight variation of the synchronous type as shown in Figure 6 where the reed is "split" into two parts but mechanically, not electrically. connected together. This is basically the trically, connected together. This is basically the
same as Figure 7. There is a slight difference in the same as Figure 7. There is a slight difference in the
method used to obtain the magnetic force to drive the vibrators; however, these are always incorporated in the vibrator internally and should not offer any problems to the service man.

CAUSES OF VIBRATOR TROUBLE

Vibrators can only be damaged by two causes: (1) Serious overloads from short circuits and or (2) Defective buffer condensers. Rarely, if ever, do power transformers give any trouble.

Vibrators should never need replacement until the contacts are worn to such an extent that the output of the power pack is unsteady or the vibrator fails to start properly on a very "low" (5.5 volts) 6 -volt battery. If this suggestion is followed it will save many unnecessary replacements and give more time to locate the real trouble.

"HASH" SUPPRESSION

Basic vibrator circuits have been clarified. Only one problem remains-that of radio frequency interference developed by the vibrator. This interference is commonly referred to as "hash." Hash is caused by transient voltage surges, at radio frequency. These surges cannot be controlled by a "buffer" condenser. The only known methods of suppressing hash are:

First-Shielding-Both magnetic and electrostatic.

Second-Proper grounds, and
Third-Proper RF filtering in the leads to and from the pack.
The amount of "hash suppresaion" depends mainly on:
First-The sensitivity of the receiver and
Second-the mechanical arrangement of the receiver.

Engineers do, as a rule, thoroughly design their receivers to have adequate shielding, proper grounds and a sufficient amount of RF filtering. They cannot be assured that screws holding the shielding. chassis, and case together will remain tight after hours of jolts and vibration in the automobile nor can they be assured of permanence of efficiency of the old style RF by-pass condensers under varying climatic conditions. Under these conditions it would seem that the only action that could be taken to eliminate hash in a only action that could be taken to eliminate hash in a
troublesome receiver would be to tighten all the troublesome receiver would be to tighten all the
screws and to replace all the by-pass condensers thought to be defective. Figure 8 shows a typical interrupter-type circuit with its associate hash suppression filters.

Figure 8

The circuit for synchronous vibrators is the same except the rectifier part of the vibrator replaces the tube rectifier as in Figure 7.
Through the combined efforts of the Mallory vibrator and condenser research engineers new types of RF condensers and RF chokes, which are far more efficient and permanent under widely varying climatic conditions have been perfected. 1t is now poss:ble to do something about the hash caused by ineflective filtering.
On Page 33 of the new Mallory-Yaxley General Catalog these condensers and chokes are listed.
Figure 9 shows the way they are to be used in the circuit.

Figure 9
The vibrator reed connection to ground, shown in dotted lines in Figure 9 should be removed, and connected to one of the double lugs on one end of the Mallory-Special low voltage RF By-Pass Condenser. The other double lug on the same end should be connected to ground as shown. The center tap of the transformer should be connected to one of the double lugs on the other end of the condenser and the RF choke connected to the other double lug on the same end of the condenser as shown in Figure 9. The original RF choke in the primary circuit should be replaced with one of the new Mallory high-efficiency, multiple pie-wound RF chokes. In most cases of slight "hash" the Mallory No. RF-481, . 5 mfd. 50 volt condenser will be sufficient. For other cases more pronounced, the Mallory No. RF-482, 1.0 mfd., 50 -volt condenser will be adequate. When severe cases are encountered it may be necessary to use either Mallory RF-582, 55 turn RF choke or the No. RF-581, 90 turn RF choke in addition to one of the two condensers mentioned above depending on the severity of the case. For the greatest amount of "hash" suppression Mallory No. RF-581. 90 turn RF choke and Mallory No. RF-482, 1.0 mfd . 50 volt RIF condenser should be used in the primary circuit and a 200-300 turn RF choke in the B + lead with a Mallory No. TP-418, .1 mfd. 600 volt by-pass condenser in the secondary circuit as shown in Figure 9.
Exactly the same methods are used for synchronous type vibrator circuits. In these circuits the "rectifier" part of the synchronous vibrator replaces the tube and the center tap of transformer secondary becomes $B+$ instead of ground." For the sake of simplicity no conventional filter circuits are shown.

The 200-300 turn RF choke can be obtained from most parts distributors if not in the set. The Mallory No. RF-583 55 turn RF choke is wound with No. 12 wire and should be used with high output power packs where space will permit.
This method of "hash" suppression is by no means a "Cure-all." It will not suppress "hash" caused by inadequate shielding or Improper grounds. If used intelligently, it will eliminate many cases of annoying chronic complaints.
These basic principles will prove to be a valuable aid in the successful servicing of vibrator-powered radio receivers. The problem of "hash" has been treated in a manner that it should no longer be a serious obstacle, yet other common troubles are of ten encountered.

ELIMINATING TROUBLE

If vibrator servicing problems are to be simplified, specific troubles and the recommended remedy must be shown. A list of these troubles is given along with the best way of determining the exact trouble and the method of elimination.

NO "B" VOLTAGE

If the vibrator is operating and still there is no " B " voltage, first disconnect the lead from the B+output of the filter. If the voltage becomes much higher than normal when this lead is disconnected, the trouble is in the radio receiver proper. The procedure for making receiver checks and repairs are outlined in other sections of the encyclopedia.
If, after disconnecting the $\mathrm{B}+$ lead, there is still no voltage. the trouble is in the power pack circuit.
The following list shows the probable defects, in the order of their importance:

1. Shorted Filter Condenser.
2. Shorted Buffer Condenser.
3. Shorted Rectifier Tube.
4. Shorted "B+" Bypass Condenser.
5. Grounded Filter Choke.
6. Shorted Transformer Secondary.
7. Ground in Wiring.

If the vibrator does not operate, remove the vibrator and check for the following defects:

1. Low Battery Voltage.
2. Blown Fuse.
3. Burned Switch.
4. Broken " A " Lead.

All of these points may be quickly checked by measuring the voltage between the center tap of the transformer primary and the REED terminal of the vibrator socket. This voltage should read 5.5 volts or more.

If the check is satisfactory, the vibrator should be tested for proper operation either in a vibrator tester or by the substitution of a new Mallory Replacement vibrator. Sticking or shorted vibrators are usually caused by "projections" being built up on the contact points. These "projections" (contact transfer) are the result of an unbalanced condition in the circuit. A careful check of the "buffer" condenser should be made. If this condenser is open or the capacity not as specified, it should be replaced with a Mallory Oil Filled Condenser, Type VB or OT having the specified capacity. NEVER CHANGE THE SPECIFIED CAPACITY OF THIS CONDENSER unless specifically instructed to do so.

LOW "B" VOLTAGES

Check the points given below as the cause for low
"B" voltage.

1. Battery Voltage Low.
2. Corroded Fuse Clips.
3. High Switch Resistance.
4. Weak Rectifier Tube.
5. Defective Buffer Condenser.
(Caution: See preceding instruction on buffer condenser replacement).
6. Defective Filter Condenser.
7. Worn Vibrator.
(Check in tester or substitute new Mallory Replacement Vibrator).
8. Check for troubles in radio which will cause low voltage such as shorted cathode resistor, by-pass condenser, shorted transformer, defective tubes, etc.

INTERMITTENT OPERATION

1. Generally caused by troubles in the recelver, such as defective antenna Insulation or connections, defective wiring, defective tubes, etc. Other sections of the encyclopedia specifically explain this method of servicing these troubles.
2. Intermittent vibrator operation usually caused by worn vlbrator nearing the end of its life.
3. Loose connections in the power pack.
4. Defective Rectifier Tube.

UNUSUAL
 MECHANICAL NOISE

Unusual mechanical noise from the vibrator may be caused by:

1. Vibrator touching other parts and vibrating against them or causing other parts to vibrate. Correct this trouble with a cardboard pad around the vibrator.
2. An old vibrator nearing the end of its life. 3. Loose case screwa, or loose parts in the radio set.

ELECTRICAL HUM FROM SPEAKER

Hum from the speaker is usually caused by:

1. Defective filter condensers (low capacity).
2. Microphonic Tubes.
3. Microphonic Condensers.
(Usually variable condenser).
4. Loose chassis acrews.
5. Poor Grounds in Radio.

DON'TS

1. Never change the SPECIFIED capacity of the bufter condenser.
2. Never attempt to repair a vibrator. Filing contacts or bendlng springs destroys the factory adjustment which has been carefully made with expensive instruments.
3. Never replace the vibrator until you are sure It is defective.
4. Never hesitate to write Mallory for specific information and help.

SELECTING UNLISTED VIBRATORS

If a Mallory replacemen: ibrator is needed for an unlisted set, refer to the "C" notes 6 or 8 . These notes simplify the selection of the proper vibrator. Any Mallory-Yaxley distributor will gladly assist in this selection. If an authentic replacement is desired, have selection. If an authentic replacement distributor send the original vibrator together with the NAME and MODEL NUMBER of the receiver, to the Mallory Factory. The proper Mallory Replacement Vibrator will be promptly supplied.
The mystic veil has been torn from the vibrator type power pack and specific service helps have been lifted. Service men should find that have been listed. Service men should find that
they can now work in an enlightened manner they can now work in an enlightened manner
that will pay dividends in satisfled customers and extra profits.

"C" NOTES

C1-Use Mallory Replacement Vibrator Type 312T in early models and Type 292 in late models of this receiver. See Note C3.

C2—Use Mallory Replacement Vibrator Type F312 in early models and Type F221 in late models of this receiver. See Note C3.
c3-When unusual vibrator troubles are experienced a thorough check should be made of all of the power pack parts and the circuit. It is especially important that the secondary buffer condenser, connected across the secondary of the transformer be in good operating condition and within plus or minus 10% of the specified capacity. Be Sure to Check Buffer Condenser. In some instances this condenser may be two condensers with the common lead grounded. In certain sets resistors have been used in series with these condensers. If the replacement of a buffer condenser is necessary use the Mallory Oil Filled, high voltage condenser, Type "OT" or "VI3" as required. NEVER SUBSTITUTE A DIFFERENT VALUE-USE ONLY THESPECIFIED CAPACITY.The wrong buffer capacity may cause serious damage to the vibrator in a very short time. See Condenser listing for specified capacity.

C4-Use Mallory Replacement Vibrator Type 312 T in early models and Type 225 in late models of this receiver. See Note C3.

C5-Use Mallory Replacement Vibrator Type 210-237 (210 Series) in both the "Standard 'and the "Master" models. See Note C3.

C6-These sets use an interrupter type (tube type) vibrator; however the size and method of connection are unknown. For an emergency selection of a replacement vibrator refer to the Vibrator Connection Charts, pages 156 to 158 . Select an interrupter type vibrator which is approximately the same size and has identically the same connection arrangement as the original. For plug-in vibrators the pin-base must have the same arrangement and connections. For lead type vibrator the reed lead is red and the interrupter contact leads (two) will be yellow. Any Mallory-Yaxley Distributor will gladly assist in making this selection. If an authentic replacement is desired, have your distributor send the original vibrator, together with the name and model of the receiver to the Mallory Factory. The proper Mallory replacement vibrator will be promptly supplied. See Note C3.
C7-No information available on this vibrator circuit. See Notes C6 or C8.

C8-These sets use a synchronous (selfrectifying) type vibrator; however, the size and method of connection are unknown. For the emergency selection of a replacement vibrator refer to the Vilbrator Connection Charts, pages 156 to 158 . Select a synchronous type vibrator which is approxi-
mately the same size and has identically the same connection arrangement as the original. If the original vibrator has condensers connected from the rectifier springs to the reed $B E$ SURE the selected replacement vibrator also has condensers. For plug-in type vibrators the pin-base must have the same arrangement and connections. For lead type vibrators refer to the Vibrator Connection CLa-ts, pages 156 to 1.58 , for the color of leads and connections. Any Mallory-Yaxley distributor will gladly assist in making this selection. If an authentic replacement is desired, have the distributor send the original vibrator, together with the name and model of the receiver, to the Mallory Factory. The proper Mallory Replacement Vibrator will be promptly supplied. See Note C3.
C9_-See Note C6. Two Types of Power l'acks are used: one with $25 \mathrm{Z5}$ and the other an 84. Suggest Type F221, F292, F294, F297. See Note C3.
C10-Use Mallory Replacement Vibrator Type F221. See Note C3.
C11-Early type with vibrator mounted on the power transformer uses an F220C, late or plug-in type uses an F294.
C12-The first series of this receiver used a carbon point vibrator for which there is NO replacement. Obtain a new transformer (latest type for this set) from the manufacturer. (Wells-Gardner Co., Chicago, Ill.) After the new transformer has been installed use the Mallory Replacement Vibrator Type 292. A small amount of "hash," which cannot be eliminated, will be experienced with this receiver. See Note C3.
C13-This Mallory Replacement Vibrator used in early models. See Note C3.
C14-This Mallory Replacement Vibrator used in late models. See Note C3.
C15-Use Mallory Cup Adapter with Mallory lieplacement Vibrator 'Type 273. See Note C3.
C16-12 Volt Receiver. See Note C3.
C17-Use Mallory Replacement Vibrator Type 285X for 1935 models. See Note C3. C18-Use Mallory Replacement Vibrator Type 245 for early 1936 models. See Note C3.
C19-Use Mallory Replacement Vibrator Type 245A for late 1936 models. See Note C3.
C20-Use Mallory Replacement Vibrator Type 296 for six prong socket and Type 294 for four prong socket. See Note C3.
C21-Disregard recommendation-Order from manufacturer. See Note C3.

C22-A few early models of this receiver used Mallory Vibrator Type 75X as original equipment. Use the Mallory Replacement Vibrator Type 275XS in these early models. Use the Mallory Replacement Vibrator Type $285 X S$ in all later models. See Note C3.
C23-Some production on this model used a plug-in type vibrator instead of the lead type. Select the proper Mallory Replacement Vibrator as outlined in C6. See Note C3.

TYPE F251-F253 SERIES	TYPE 253	TYPE G253	TYPE 25JT	TYPE 253Y
		Full Wave....... 4 Contacts Rectifier.......... Tubs Size......... dia. $\times 43 / 2^{\prime \prime}$. Prong Length... Standard Operating Voltage.... 12		
TYPE 27	TYPE 271-273 SERIE	TYPE 271HD	TYPE 273C	TYPE 2730
		Full Wave. \qquad 8 Contacts Rectifier. \qquad \qquad Synchronous Size. 2^{2} dia. $\times 41 / 2^{\prime \prime}$ Prong Length Standard Operating Voltage. 6		
TYPE 27	TYPE 275	TYPE	TYPE 281-285 SERIES	TYPE 289Y
Full Wave \qquad 8 Contacta Rectifior. \qquad \qquad 3ynehronous S128. . 2^{2} den $\times 41 / 6^{\prime \prime}$ Prong Length Standard Operating Voltage. ... 6	Full Wive. \qquad 8 Contacts Rectifer. \qquad \qquad $3 y$ nehronous Size. . 2 dia. x 43/2" Prong Lengh \qquad 114" Operating Voitage. ... 6	Pull Wave. 8 Contacts Rectifer \qquad \qquad 3ynchronous Slze. . \qquad $2^{2} \mathrm{dia} \times 41 / 2^{\prime \prime}$ Prong Length... Standard Operating Voltage. ... 6		
TYPE W285	TYPE 285XS	TYPE 286S-287M SERIES Full Wave. \qquad .8 Contacts Rectifier. \qquad Synchronous size. . \qquad " die. x $43 / \mathrm{r}^{\prime \prime}$ Prong Length.... Standard Operating Voltage.... 6	TYPE G286S-G287M SERIES Full Wave. \qquad . 8 Contacts Rectifiof. Synchronous S120. \qquad \qquad die. $\times 41 / 2^{\prime \prime}$ Prong Length Standard Operating Voltage.... 12	TYPE 292
TYPE 234	TYPE F294	TYPE 294SW	TYPE 296	TYPE 297

Chart of auto antenna performance

Mallory Replacement Vibrators

W
HEN it is realized that 2 out of 3 automohile radio and household battery receivers in service are equipped with Mallory Vibrators, it becomes apparent at once that Mallory is and always has been the leader in the vibrator field.

When you buy a Mallory Replacement Vibrator you are assured of the following benefits: 1. Lowest cost per hour of actual use. 2. Trouble-free long life. 3. Positive starting. 4. Easy installation. 5. Freedom from lead breakage. 6. Freedom from fail-
ures due to lead corrosion. 7. Absolute freedom from broken reeds.

Mallory Replacement Vibrators are built by the most highly specialized group of technicians in the vibrator industry. The majority of these employees have been with Mallory since the beginning of the vibrator industry. Such a highly trained personnel can only assure the highest quality of workmanship possihle.

Mallory pioneered vibrators for automohile radios and has always led in all new developments in the vibrator industry.

Because Mallory is the world's largest manufacturer of electrical contacts, you are assured the highest contact quality in vibrators. Outstanding quality construction features are: 1. Selected pure tungsten contacts. 2. Special high tensile reed. 3. The highest quality of bakelite insulation specially processed in the Mallory factory. 4. Sturdy construction. 5. Low loss of magnetic circuit. 6. Pure rubber insulated tubing. 7. Extra flexihle tinned copper lead wires. 8. High contact pressure. 9. Sealed tamper-proof condensers.

Mallory Replacement Vibrators for Auto Radios and Household Receivers

Catalog Number \quad 6-VOLT TYPES	Catalog Number	6-VOLT TYPES
2.50. See new replacement No. 500P	311 S	
2.33	312 T .	. .See No. 302S Series
253 T	500 P	
253Y	$501 P$	
270 B	503	
271HD	504 514	
271 ${ }^{273}$. $\}$............No. 271 Series	12-VOLT TYPES	
	G253	
273 D		
${ }_{275}^{275}$	$\mathrm{G} 287 \mathrm{M}$	
277 S	32-VOLT TYPES	
280	F204	No. F204 Series
\}…........No. 281 Series	F206	
	$\begin{aligned} & \mathrm{F} 211 \\ & \mathrm{~F} 220 \mathrm{C} \end{aligned}$	
282 B	F221. See F292 Series	
${ }^{282 P}$ P See 281 Series	$\mathrm{F}_{22} 3$	
${ }_{285}^{285}$........... . See No. 281 Series		
W285	F251 $\}$ ….......No. F251 Series	
............No. 286S Series	F292 $\}$...........No. F292 Series	
289 Y	$\begin{aligned} & \text { F294 } \\ & \text { F292 } \\ & \text { F312 } \\ & \text { F502P } \end{aligned}$	
292		
294 C		
294 SW		
296	Replacement Vibrators for Vibrator-Operated Inverters	
\}...........No. 302S Series	$\begin{aligned} & \text { H240 } \\ & \text { F290 } \end{aligned}$	

Alignment of Modern Radio Receivers

MANY VOLUM ES have been written on this subject, both from a technical and a serviceman's viewpoint, and justly, because improper alignment is one of the most common ailments encountered in service work today, especially in receivers of the allwave type. Many servicemen are somewhat afraid o make adjustments on receivers, as long as the set plays at all, because they are not familiar with the various functions and workings of modern receivers. This article is intended to help clarify to the serviceman who wishes to learn the why of such adjustments, how the various radio frequency circuits of a radio receiver function, and how to make practical adjust ments necessary in order to restore a set to its original factory performance and efficiency.
A vitally important part of a radio receiver is the small compensating condenser used to make adjustments of the various tuned circuits. These small ad justable condensers, usually called padders or trimmers, are constructed in various ways. They usually consist of two or more plates insulated from each other, one plate being made of spring material, so it will hold the adjustment or spacing given it by means of turning a screw or nut.
These condensers are used to obtain fine adjustment of the tuned circuits. so that they may be completely in resonance and perform at their highest efficiency. Since it is commercially impractical to construct coils or tuning condensers which would be accurate at every point on the dial, these trimmer condensers are placed across them so as to provide an accurate and easy means of making each circuit resonate at the proper dial position.

T. R. F. RECEIVERS

In a tuned radio frequency type of receiver the adjustments of these padders are usually made at the high frequency end of the dial using a signal generator or a station as a signal source, and adjusting the trimmers until maximum output is obtained. In some of the older type receivers, where the tuning coils were not properly impregnated, they absorbed moisture through exposure, which causes considerable losses or reduces their Q, and appreciably reduces the already none too abundant selectivity. Replacement or a baking and re-impregnating process is recommended for such cases before adjusting the trimmers.

In some of the older sets not using screen grid tubes, it is necessary to neutralize the circuits to prevent oscillations or howling, before the resonant circuit trimmer condensers are adjusted. Neutralization was usually accomplished by means of amall trimmer type condensers, which served to compensate for the grid to plate energy transfer due to the grid to plate capacity of the triode tubes then used.

SUPERHETERODYNES

The modern superheterodyne is considerably more complicated than these older type receivers and a brief review of the elementary theory involved in this type review of the elementary theory involved in this type of receiver is necessary, so that the importance of mak-
ing accurate adjustments on these receivers may be more fully appreciated. In this type of receiver circuit, the incoming R.F. signal is usually impressed across the primary of an antenna coil. The antenna coils' secondary is tuned over the desired frequency range by a variable condenser, which in turn is adjusted by means of the trimmer condenser connected across it. The signal usually goes from there into the grid of the The signal usually goes from there into the grid of the
first tube. In smaller sets the tube may be a detector first tube. In smaller sets the tube may be a detector
oscillator or in larger sets it may be the first R.F. tube. In other cases, the signal may be fed from the first coil into another coil which is also tuned over the range by a condenser across it. This is commonly called a band pass filter type circuit. The signal then goes to the first tube. In the circuits having a combination detector oscillator tube, the incoming signal is mixed with the local oscillator signal producing a beat note, or the frequency difference between the incoming R.F. signal and the local oscillator signal.
Some of the larger sets employ a separate oscillator tube and a separate first detector tube. In such cases, the oscillator tube generates the oscillator signal frequency which is combined with the R.F. signal in the first detector or modulator tube. In both cases the two
frequencies are mixed in the first detector tube, so as to produce another frequency, which is the difference between the two. When the circuits are operating correctly, this frequency difference is equal to the intermediate frequency (I.F.) of the set. The local oscil. lator and the R.F. sections of the set are both tuned by means of variable condensers and the circuits are so adjusted that the beat note produced by the mixing of the two frequencies is always equal to the I.F. frequency of the set throughout their tuning range.
Commercial design uses an oscillator frequency higher than the incoming R.F. signal, because it is more economical to build a set with less capacity and inductance (required to produce the higher osc. frequency) than when it is lower, requiring more capacity and inductance. Capacity and inductance values when higher oscillator frequencies are employed, are much lower than would be required if the oscillator frequency were lower than the incoming frequency quency were lower than the incoming frequency
(R.F.). When a gang type tuning condenser is em(R.F.). When a gang type tuning condenser is em-
ployed this requires that the capacity of the osciliator section be Iess than that of the R.F. sections. Commercially, this is done by either making all condenser sections alike and inserting a small padder type condenser in series with the oscillator section capacity across the oscillator coil, or by using a cut plate type oscillator section, which has the required reduced capacity. In either case, a small trimmer condenser is pacity. In either case, a small trimmer condenser is
also connected across the oscillator condenser so as to also connected across the oscillator condenser so as to
correctly adjust the minimum capacity of the combination or adjust the highest frequency end of the oscillator range.

The signal resulting from the mixing of the incoming R.F. signal and the local oscillator is fed into the intermediate frequency amplifier. The first 1.F. transformer serves to couple the output from the first detector into the grid circuit of the first I.F. amplifier tube. The the grid circuit of the first I.F. amplifier tube. The
signal is amplified by this tube and then passes through a second I.F. transformer, which may feed it into a second I.F. tube or the second detector tube, depending on the size of the set. I.F. transformers are designed so that their natural resonant frequercy is approximately the required I.F. frequency. In order to obtain maximum selectivity and sensitivity, both their primaries and secondaries are tuned to the exact I.F. frequency of the set by means of trimmer con1.F. freq
densers.

The advantages of this system are: that since it is easier to design an amplifier for lower frequencies, an 1.F. amplifier can be designed to operate at one fixed frequency much more efficiently, resulting in far higher amplification and increased sensitivity and select ivity than an amplifier designed to operate at higher frequencies and over a wide frequency range.

ADJUSTING COMPENSATING CONDENSERS

Adjustment of these condensers should be made when the set lacks selectivity or sensitivity after other possible sources of this trouble have been checked and eliminated; such as weak tubes, poor aerial, improper tube voltages, etc.

I. F. ALIGNMENT

The I.F. trimmer condensers should be adjusted before the R.F. section is adjusted. This is best done by using a signal generator with an audio modulated signal tuned to the exact 1.F. frequency of the set. The signal from the generator is fed into the grid of the first detector tube. In some cases it is desirable to "kill" the local set oscillator by placing a bypass condenser across the oscillator section of the tuning condenser to eliminate any erroneous beats which may be produced. An output meter should be connected from the plate of the last audio tube to ground or from plate to plate in case of push pull output.
If one owns a meter of sufficient sensitivity, it may be connected across the voice coil of the set. Sets using automatic volume control should be adjusted either by reducing the signal output of the service oscillator to a point where the AVC does not function, and using the output meter, or by inserting
a milliameter in series with the load resistor in the AVC network, or connecting a vacuum tube voltmeter across the AVC network, so as to read the AVC voltage developed.
If the set is provided with a resonance indicator such as the "Shadow Meter" or cathode ray "Magic Eye" this will provide an excellent indicator for ad justment purposes. After having made suitable provision for indicating resonance, the I.F. trimmer condensers should be adjusted for maximum out put, or so as to tune the $1 . \mathrm{F}$. circuits to their exact resonant frequency.
A signal generator should always be used for aligning the $1 . \mathrm{F}$. transformers. If a station signal is used. one is apt to get the entire I.F. system "off" frequency. although it may be set for maximum output, thus causing poor tracking of the oscillator and R.F. circuits, producing deadspots on the dial and in many cases whistles and birdies. In high fidelity sets where the fidelity is variable, it is usually advisable to set the fidelity control to the low fidelity or sharp tuning position of the I.F. circuits, and adjust the I.F. trimmers so as to produce an overall $1 . \mathrm{F}$. tuning curve mers so as to produce an overall l.F. tuning curve
with a "flat top." Possibly the most accurate method and easiest of adjusting such high fidelity sets is to use a cathode ray tube in conjunction with a frequency modulated test oscillator, so as to reproduce the entire tuning curve of the I.F. system on the screen of the tube. However, this is a subject requiring volumes for satisfactory explanation, and cannot be included in this article. Sets which are equipped with automatic frequency control should be adjusted with the A.F.C. control turned off. See article on A.F.C., page 161 .

After these adjustments have been made, the I.F. system of the set will respond to a signal which is exactly equal to a frequency for which the circuit has been adjusted.

In many modern superheterodynes, a wave trap is provided in series with the antenna circuit which is provided in series with the antenna circuit which is tuned to the I.F. frequency of the set, so as to prevent
any unwanted signals of this frequency from entering the set and getting to the first detector and coming on through the I.F. system. The proper adjustment of such a wave trap is to connect the signal generator to the antenna post of the set and then adjust it to the I.F. frequency. Then turn the generator to maximum out put. The trimmer condenser across the wave trap should be adjusted until minimum response is obtained in the output of the set.

R.F. ALIGNMENT

After the I.F. section of the set has been aligned to the proper frequency, the next job is to align the R.F. and oscillator sections. Compensating or trimmer condensers are connected across the R.F. and oscillator coils in order to provide a means of accurately adjusting these circuits.

The test oscillator should be connected to the antenna and ground terminals of the set and adjusted for a frequency close to the highest frequency portion of the range being adjusted. On the broadcast band, the adjustment is usually made at 1400 kc . Then adjust the R.F. trimmers for maximum output when the receiver dial is set at 1400 kc . The trimmer condenser provided across the oscillator condenser is for the purpose of making the oscillator track at the high frequency end of the dial.
For instance, in a superheterodyne with an I.F. frequency of 465 kc ., when the R.F. sections are tuned to 1400 kc ., the oscillator must oscillate at 1400 kc . plus 465 kc . or 1865 kc . This frequency difference must be maintained between the oscillator and R.F. sections throughout the tuning range of the set. In order to maintain this frequency difference at the low order to maintain this frequency difference at the low
frequency end of the dial, there is a compensating condenser placed in series with the oscillator gang.
On broadcast this adjustment is usually made at 600 kc . If the R.F. is set at 600 kc ., a set with a 465 kc. I.F. would have the oscillator oscillating at 600 kc . Dlus 465 kc ., or 1065 kc . Therefore, the high and low frequency padders prowide the necessary tracking adjustments for two points on the dial.

Modern receivers are designed for three point tracking, for instance, on the broadcast band at 1400 kc ., 900 kc. and 600 kc . The tracking at the third point, or 900 kc ., is determined by the oscillator coll inductance. Although this is entirely a matter of set design, occasionally a serviceman gets a set in which oscillator inductance trouble is suspected and in which case he usually tries to obtain a new one. Unfortunately, however, they are sometimes unobtainable at any price. so the only choice he has is to repair the one available. A few hints on how this can be done one available.
will be given.

TRACKING OSCILLATOR COIL WITH R. F. COILS

First, the local set oscillator should be killed by shunting a bypass condenser across the oscillator gang section, and the set operated as a T.R.F. set and the dial calibration checked at several points across the band. The R.F. should be adjusted so that the dial corresponds as nearly as possible with the R.F. tuning. Also, the extreme ends of the range should be noted. Say that they are 1500 kc . and 550 kc .
Second, connect the test oscillator so that it will beat with the local set oscillator into the first detector. The R.F. tubes should be taken out so as to prevent any unwanted signal coming through. A pair of bypassed ear phones in the oscillator plate or first detector plate circuit, will allow one to detect the beat between the two oscillators. Then set the dial exactly to the previously noted high position, say 1500 kc ., and set the test oscillator to 1965 kc . (I.F. frequency equals 465 kc . plus R.F. frequency). Then adjust the high frequency padder on s^{2}

Double responses or image interference is due to a lack of R.F. selectivity before the first detector tube. and is especially noticeable in the higher frequency bands. Very few manufacturers use more than one tuned R.F. stage ahead of the first detector on their high frequency bards, and some do not use any.
After the oscillator has been adjusted, the R.F. trimmers for the band being adjusted should be adjusted for maximum output. Then if there is a low frequency oscillator padder for the band concerned. it should be adjusted so as to make some known signal generator frequency near the low frequency end of the band come in at the correct dial setting.

Each band is adjusted in the same manner until the R.F. section of the set is completely adjusted. In some allwave sets, the circuit arrangement is such that there is an interlocking of adjustments between bands. In this case, the highest frequency band must be adjusted first, the next highest frequency band, and 80 on , until all bands have been adjusted, unless otherwise recommended by the set manufacturer. It is very helpful when adjusting allwave receivers to obtain a chassis lo.....s bowing location of all trimmer cone alignment process is attempted.

DJUSTING NAL GENERATOR

t that portable oscillators or sig1 radio service work be checked calibration.
ave compensating condensers 1 to correct for any shifting of ave occurred. Their adjustment involves:
roadcast station near the high he generator's band.
he generator to the antenna of gainst the station.
renerator's compensating conding obtained on the generator ds with the known station
same process for some known he low frequency end of the
generator's dial and adjusting the series padder condenser until zero beat is obtained between the station and the generator, until the calibration of the generator corresponds to the known station frequency.

Some signal generators are not provided with a means of making their generated frequency track with the dial at the low frequency ends of the various bands. In such cases nearly perfect tracking can be effected by arranging a means of varying the inductance of the oscillator coil. If the inductance is too high, it can be lowered by moving a copper penny on a screw into the coil, or if it is too low by moving a piece of R.F. iron on a screw into the coil. There is probably nothing more time-wasting in adjusting a set, than attempting to correctly adjust it with a senerator whose dial calibration is incorrect.

CHANGING

THE I. F. FREQUENCY
In some parts of the country interference is experienced from nearby powerful code stations operating on a frequency near that of the I.F. peak of the receiver. The first remedy for this trouble is to install a wave trap in the antenna circuit tuned to the frequency of the unwanted signal. If this does not reduce the interference to a negligible amount it may be necessary to shift the I.F. frequency slightly until the unwanted interference is eliminated. Another cause of interference in the form of whistles and birdies, sometimes on every station received. is two powerful local stations whose frequencies are such that the beat betweer. the two is nearly equal to the $1 . F$. frequency of the set. For example, powerful locals broadcasting on 1400 kc . and 1230 kc . would produce a beat frequency of $170 \mathrm{kc} .$, which is very close to 175 kc ., a commot I.F. frequency. Unless the set has an unusual amount of R.F. selectivity it will be full of unwanted whistles. This can usually be remedied by shifting the I.F. frequency up to approximately 200 kc . and retracking the oscillator to match the R.F. for maximum response over the band. It is also helpful in some extreme cases to install a wave trap in the antenna circuit tuned to one of the interfering signal frequencies.

omatic Frequency Control

control is probably the ut development of the year. t are employing it in their loyed by various manufac1. but basically they are
vary the frequency of the rmined range) so that the between the set oscillator Iways equal to the I.F. en takes care of improper 1. drift, tracking inaccually possible mechanical

I ate functions must be
rtot. The purpose of the frequency changes into ning 1.F. frequency is quency of the set. the oltage varying in one cquency is lower than
the resonant I.F. frequency of the set. the discriminator must produce a voltage varying in the opposite direction.

The second function is that of varying the frequency of the set oscillator. A separate tube known as the "Frequency Control"" performs this task. The frequency control must be arranged so that voltage variations in one direction tend to increase the frequency of the set oscillator, and voltage variations in the other direction tend to decrease the frequency of the set oscillator.

DISCRIMINATOR

As previously mentioned, the purjose of the discriminator is to change frequency variations from the resonant I.F. frequency into D.C. voltage variations. Figure 1 shows the essential parts of the discriminator circuit.

Figure II

The discriminator transformer is similar to the other I.F. transformers in the set, except the secondary is center-tapped and the high side of the primary is coupled to the secondary center-tap by means of \mathbf{C}_{1} $s 0$ that in addition to the usual magnetic coupling between coils, we have the primary voltage coupled to the center-tap of the secondary coil.
Supposing. in order to simplify the explanation of how this AFC transformer works, we consider for the moment that there is no magnetic coupling between the primary and secondary coils; therefore, there would be no induced voltage in the secondary coil and no current will flow in the tuned secondary circuitsee Figure II. However, the primary voltage is coupled to the secondary center-tap by C_{1}, which is large enough to have a negligible R.F. voltage drop across it, and both coils are tuned to the I.F. frequency of the set. If vacuum tube voltmeters were connected at points A and C to ground it would be found that the primary voltage E_{p} would appear at both points. and, when the incoming sigmal was varied above and below resonance the voltage would vary exactly as the resonance the
primary voltage E_{p}, rising to a peak at resonance and falling off on both sides. In other words, the primary voltage E_{p}, transferred by C_{1} would appear at points A and C.

Then. supposing we couple the coils magnetically so that the primary flux links with the secondary, inducing a voltage E_{s} in the secondary winding. This induced voltage will start a current flowing in the tuned
a push pull transformer or a full wave rectifier circuit. See Figure III.
Then, returning to Figure II again, and tracing the R.F. circuit from points A to ground or B+ (since B + is practically ground to R.F.) and from point C to ground, it is apparent that whatever voltage appears across the upper half of the coil, plus the primary voltage will appear at point A, and whatever voltage appears across the bottom coil plus the primary voltage, will be found from point B to ground.
Then assuming that the primary voltage E_{p} is equal to the voltages appearing across each half of the secondary coil E_{1} and E_{2}. we can draw the following vector diagrams to illustrate what happens at resonance. Since these voltages are not in phase they cannot be added directly but must be added vectorially as illustrated. See Figure IV.
From these vector diagrams we see that equal R.F. voltages will appear at each diode plate with respect to ground at resonance. The heavy lines show the to ground at resonance. The heavy lines show the
Then it follows that if equal R.F. voltages appear at each diode plate to ground, equal D.C. voltages will appear across AB and BC at resonance, Figure I. However, A will be positive with respect to B, and C will be positive with respect to B, therefore, the total D.C. voltage from A to C will be zero, and we will have no AFC control voltage developed when the incoming I.F. signal is at the resonant frequency of the AFC transformer.

Figure III
secondary tank circuit. Since the same flux produces both the induced secondary voltage E_{S} and the induced primary voltage E_{p}, these voltages will be in exact time phase.
Also, it follows that. since at resonance the secondary circuit offers only resistance impedance, the circulating secondary current will be in phase with the induced secondary voltage E_{s}. or the primary coil voltage E_{p} will be in phase with the circulating secondary current.
Since the circulating current in the secondary coil induces a voltage in the coil, which at resonance is quite large compared to the induced voltage \mathbf{E}_{5}, and this voltage $E_{S Y}$ across the coil is necessarily 90 electrical degrees ahead of the current producing it, the resonant voltage $E_{s \gamma}$ across the coil is 90 electrical degrees ahead of the primary voltage E_{p}. However, the secondary is center-tapped, so that the voltages developed across each half will be equal, but as seen from the center-tap will be 180° out of phase. This point is clarified when one reviews what happens in

BELOW RESONANCE

Now, supposing the incoming I.F. signal impressed on the AFC transformer is Lowereb. The induced secondary voltage E_{5} will still be in phase with primary voltage E_{p}. However, the circulating current in the secondary tank circuit will no longer be in phase with it, but will begin to lead.
This follows, because at frequencies lower than resonance in a series tuned circuit, the capacitive reactance is large and the inductive reactance small, so that most of the voltage drop is across the condenser. The circulating current leads the applied voltage E_{s}. depending on the amount off resonance of the incoming signal. This, in turn, causes the induced voltage Esr to lead the primary voltage $\mathbf{E}_{\boldsymbol{p}}$ by a like amount. or the voltages developed in each half secondary begin to shift as illustrated, with the result that the vector
sum of the primary and each half secondary voltages becomes unequal, the top diode (Figure 1) receiving a higher R.F. voltage than the bottom diode. For convenience, we have shown a phase shift of 30°.
Since the top diode receives more R.F. voltage than the bottom diode, the rectified D.C. voltage appearing across AB will be greater than that across BC. Also, since A will be positive with respect to B, the resulting D.C. voltage appearing across $A C$ will be a positive AFC control voltage.

ABOVE RESONANCE

Supposing now that the incoming I.F. signal frequency is higher than the resonant AFC frequency. The circulating secondary current will begin to lag the primary voltage, E_{p}.
This is because at higher frequencies, the inductive reactance is large and the capacitive reactance low. resulting in the circulating current lagging the induced secondary voltage E_{s}. or lagging the primary voltage E_{p}. This circulating current in turn induces the resonant voltage $E_{s r}$ in the coil, causing the secondary voltages E_{1} and E_{2} to lag the primary voltage E_{p} in our vector diagram. Figure VI, or to lag its original resonant position. For convenience a 30° phase shift is again shown.
From Figure VI. we see that the bottom dicde receives more R.F. voltage when the incoming I F., signal is
above resonance; therefore, more voltage will be developed across the bottom diode resistor than across the top and since B will be negative with respect to ground or C, this negative voltage will overpower the

Figure Vi
voltage from the top diode resulting in a negative AFC control voltage.
This varying voltage is then fed to the grid of the frequency control tube. A typical resonance curve of an AFC transformer showing AFC control voltage developed, vs. kc. off resonance is shown in Figure VII.

Figure VII

FREQUENCY CONTROL

Figure VIII shows the essential parts of the frequency control circuit.

To accomplish its purpose, that is, to provide some way of either increasing or decreasing the set oscillator frequency from normal, without changing the gang condenser position, we connect an imaginary inductance across the oscillator coil and provide a way of making this imaginary inductance either larger or smaller by means of the discriminator voltage. The imaginary inductance is the frequency control tube.

Reviewing elementary circuit theory, we find that the current in a condenser leads the voltage by 90°; also that the current in an inductance lags the voltage by 90°. We also find that when two inductances are connected in parallel, the resultant inductance is always less than that of the lowest of the two inductances.

WHY THE CONTROL TUBE ACTS AS AN INDUCTANCE

In order for the control tube to act as an imaginary inductance in shunt with the oscillator coil " L ." it must cause a lagging current to flow through coil "L" (Figure VIII) with respect to the oscillator voltage already across coil "L" since this is exactly what would

Figure Vill
happen if an induccance coil were connected in shunt happen if an
Supposing the control tube was connected across coil "L," but without any AC excitation on its grid. In this case, It would shunt the coil " L " with a definite resistance or impedance, the magnitude of which would depend on the bias voltage applied to the tube. Therefore, the tube would draw current from the coil "L". However, this current would be in phase with the oscillator voltage since the tube acts as a resistance and increasing or decreasing the bias on the tube would not affect the oscillator frequency. However the network R.C. is also connected across the oscil lator coil " L " and the voltage across " C " is applied to the grid of the control tube. This causes the tube o act as an jmaginary inductance, explanation as follows:

Looking at Fignre VIII we find a resistance " R " and a capacity " C_{1} " connected in series across the oscillator coil " L." The values of " R " and " C_{1} " are so chosen that the resistance of " R " is greater than the reactance of "C1." therefore, this combination has nearly unity power factor, or appears to the oscillator coil " 1 "' or oscillator voltage source as a resistance load. The current through R and C_{1}, therefore, is nearly in phase with the oscillator voltage. Then, since the current through condenser " C_{1} " is nearly in phase with the oscillator voltage across the coil "L." it follows (from the statement above) that the voltage appearing across a condenser lags the current through it by 90°. that the voltage appearing across condenset " C_{1} " is lagging the oscillator coil voltage by nearly 90°.

This voltage is then applied to the grid of the control tube. If the control tube is properly biased, plate current will flow in phase with the grid voltage (peak plate current with peak grid voltage). This means that the plate current will lag the voltage across coil "L" or oscillatory circuit by nearly 90°, making the tube act as an imaginary inductance.

HOW CONTROL VOLTAGE AFFECTS INDUCTANCE

Since the plate current of the control tube draws a lagging current with respect to the oscillator voltage across "L" and since the plate current can be varied by varying the amount of bias on the tube, we have in effect a variable inductance in shunt with the oscillator coil, the amount of which inductance is directly controlled by the discriminator control voltages.

A COMPLETE CYCLE

Referring to Figure I again, when the local oscillator is generating the correct signal to produce an I.F. aignal equal to the resonant I.F. frequency of the set there is no need of any further adjust ment. The differential voltage is zero across points A to C; Figure I therefore, there is no effect upon the control tube and oscillator circuit
However, on signals lower than the I.F. set frequencies. "A" becomes positive with respect to ground cuusing the "Frequency Control" tube $t \frac{d r a w ~ m o r e ~}{\text { dre }}$ plate current, or decreasing the effective inductance of the coil "L" causing the oscillator frequency to raise therefore rajsing the I.F. frequency produced until it equals the resonant I.F. frequency. On signals higher than the I.F. frequency, " A " becomes negative with
respect to ground, causing the "Frequency Control" tube to draw less plate current, and therefore increasing the oscillator coil's effective inductance and decreasing the oscillator frequency, until it is correct to produce the resonant I.F. frequency.

The action finally stops in either case, with about one volt as the differential voltage actually remaining. This action is quite rapid, taking place in less than 1 second of time. It is possible with this systern to correct the I.F. frequency to within 100 cycles of the I.F. frequency peak, if the receiver is mistuned as much as 10 kc . off resonance.

ALIGNMENT OF AFC-EQUIPPED SETS

First, the I.F. transformers of the set should be carefully aligned according to the standard practice as recommended by the manufacturer. (Usually it is a good practice to allow the set to warm up thoroughly before making any adjustments, so as to allow for inductance or capacity changes due to thermal expansion.) Then the test oscillator should be connected to the first detector or first I.F. stage and tuned to the exact I.F. frequency of the set, as determined by peak on an cutput meter. A vacuum tube voltmeter should be connected across the discriminator control voltage, points " A " and " C ", Figure I. Usually one diode cathode connects to ground or chassis, so it is only necessary to connect the V.T.V. to the chassis, and the other diode cathode.
Then the secondary trimming condenser of the AFC transformer (Figure I), should be backed out with alignment tool until trimmer is completely open.
Then adjust the primary trimmer condenser (Figure I), until maximum reading is obtained on the V.T.V. either positive or negative.
Then realign secondary trimmer until zero voltage reading is obtained on the V.T.V. Be sure that the test oscillator is not changed during this alignment. and that it is at the exact I.F. frequency. Do not readjust the primary trimmer, unless the entire operation as outlined is repeated.
Thead justment of the secondary trimmer condenser is critical in most AFC-equipped sets, and adjustment should not be attempted without proper equipment. After the secondary trimmer is adjusted to produce zero voltage across point "AC" (Figure 1), slowly increase the test oscillator frequency until the maximum voltage reading appears acrose "AC." Obtain this voltage reading, then slowly decrease the test oscillator frequency until the maximum voltage reading is obtained in the reverse direction. These two roltases should be closely the same. If not, readjust the secondary trimmer until they are. This completes the AFC alignment.
A cruick check of the functioning of the AFC circuit can be made as follows: Tune in a localstation without the AFC switch on. Then detune the set a measured amount off resonance, say 8 kc . Then turn the AFC control on. The AFC should lock in and tune the set to resonance. Then repeat the same test 8 kc . the opposite side of resonance and see if the AFC again locks in. tuning the set to resonance. The AFC should control an equal amount from either side of resonance when properly aligned. Also when the set is tuned to resonance on a weak signal with the AFC control off turning the AFC control on should not cause the set to be mistuned. If it does, the AFC control adjustments are not properly aligned.

Transformers

THE design of a reliable power transformer, having high efficiency, requires fairly elaborate calculations, and to take into account the d.c. which flows in a transformer secondary when a half-wave rectifier is used, some interesting equations have been derived.

A simple approximate-design method will be given, for the construction of single-phase low-powered transformers up to 180 voltamp., or 180 watts for approximately unity power factors. This design is especially suited to transformers which supply a full-wave rectifier and filament energy to an a.c. powered radio receiver, three factors making it possible to secure a satisfactory transformer without complicated design methods, these factors being:

1. There is no urgent need for high efficiency. An 80 per cent efficient transformer which takes 60 watts to supply 48 output watts is fairly satisfactory, if it can radiate the heat which it generates.
2. These transformers are operated at a fairly constant load. This improves the maintenance of the various output voltages as each secondary winding will have a constant IIf drop.
3. The load on the transformer secondary is nearly of unity power factor. The filament power load is essentially a resistance load, with unity power factor. The current supplied to the filter has slightly less than unity power factor, but this can be disregarded in low-powered transformers. The indirect heated receiving tubes, such as the 227 requires less than half as much d.c. power in their plate and grid circuits, as that which is needed to heat their cathodes. This would mean a unity power-factor heater supply and (assuming a series voltage divider) less than half as many additional watts for plate and grid supply, at a lower power factor. It is true that a power tube, such as 250 at its maximum rating, uses slightly over three times the wattage in its $B+C$ circuit than in its filament. It is rare, however, to have more than two power tubes in a receiver, and the assumption that the power factor of the secondary is unity is usually not over 20 per cent off. This means that the wire of the high-voltage secondary and of the primary should be increased to allow for this added current.

Small Transformer Details-Economy in a transformer is secured when the winding
encloses a maximum of core area with a minimum of wire, and the magnetic path should be as short as possible.

The core form of a small transformer can be of several shapes, but it is usual to use standard punchings shaped like capital letter E's. As a rule, two punchings are used, one having longer legs than the other so that the magnetic circuit "breaks joints" in stacking the iron. Another convention usually followed in small transformers is the use of a single-winding form, all secondaries and primary being on the middle leg of the \mathbf{E} core.
The spool form is usually an insulating tube, and side pieces may be fitted on which terminals are placed, or, if the coil is to be machine wound with interwoven cotton, the side pieces can be omitted, and flexible leads provided.

Ten Steps in Designing a Small Power Transformer-1. Determine the Volts and Amperes Needed for Each Secondary.
a. Find the total maximum
secondary watts $=W_{s}=E_{1} I_{1}+E_{2} I_{s}+\cdots$
(where $E \times I$ refers to the wattage in each secondary winding)
b. Find the total watts needed for primary (W_{p})
Assuming 90 per cent efficiency $W_{p}=$ $W_{s} / 0.9$. Where $W_{s}=$ Secondary watts.
c. Find primary amperes assuming 90 per cent power factor

$$
I_{p}=\frac{W_{p}}{E_{p} \times 0.9}=\frac{W_{s}}{0.81 E_{p}}
$$

where $E_{p}=110$ volts, $I_{p}=W_{s} / 89.1 \mathrm{amp}$.
2. Size of Wire. Knowing the current for each winding, the wire size is determined by the circular mils per ampere which it is desired to use. A safe rule is to use 1,000 cir. mils per ampere for transformers under 50 watts, and 1,500 cir. mils per ampere for higher powers-however, most commercial designs use 800 cir. mils per ampere.
3. Core Considerations. A curve showing core areas for different powers is Figure "A" which shows the area for 40 watts to be 1 sq. in., 70 watts, 1.5 sq . in., 120 watts, 2 sq. in. The area of the core is the same as the inside dimensions of the spool, making a 10 per cent allowance for stacking; for example, a spool 1 by 2 in . inside would enclose 2 sq . in., but, allowing for a 10 per cent loss, only 90 per cent or $0.9 \times 2=1.8 \mathrm{sq}$. in. is the net
core area. The core area is needed to determine the turns per volt.
4. Core-Ioss and Induction. The flux density at which the core is to be worked determines the iron (core) loss. Figure " 13 " gives several curves of different core materials, watts per pound being plotted against flux densities in kilolines per square inch. Sixty-five kilolines per square inch is an average value of the induction. The making of a curve such as Figure " B " depends largely on experimental data, not directly on a theoretical basis. For this reason, no definite value of the core loss can be given; it depends on the quality of core material which is available. Standard core material generally has a power loss of .86 watts per pound. It should be noted that better and better core material is constantly being made, having lower loss per pound, so that the use of higher flux densities is becoming possible. Up to 15 kilolines is not uncommon, but unusual for this application. The core loss increases with frequency, a typical curve being Figure "C."
5. Induced-voltage Equation, Turns per Voll. The elementary definition, that 10^{8} magnetic lines cut, per second, will induce one volt pressure, is the basis of the equation

$$
E=\frac{B A N f}{10^{8}} \times 4.44
$$

where E is the voltage, A the area of the core, B the flux density in the same units as A, f the cycles per second, and N the number of turns. A more useful working equation for small power transformers is obtained by solving for N / E in turns per volt:

$$
\frac{N}{E}=\frac{10^{8}}{B A f 4.44}
$$

Figure " D " is an alignment chart of this equation. The left column is B the flux density, in both kilolines per square inch and kilogausses (kilolines per square centimeter), the center column is the net core area in both square inches and square centimeters, the right column giving the turns per volt for both 25 and 60 cycles per second.
Using a flux density of 65 kilolines per square inch and the net core area mentioned in step 3 (1.8 sq. in.), the turns per volt for 60 cycles are found to be 3.1 turns per volt. Thus for each volt on the transformer, there must be 3.1 turns. It is customary to change the turns per volt to an even number so that the proper center taps can be made. In this case, by using 4 turns per volt, with the seme core area, the induction will be lower, with a corresponding lower core loss. It is also quite possible, and sometimes advisable,

to change the core area so that an even number of turns per volt is given．For ex－ ample，by increasing the core area to 2.8 sq．in． 2 turns per volt could be used，or decreased to 1.4 sq ．in．so that 4 turns per volt would be used．The reason for desiring the even numbers of turns per volt is to supply the $1 / 2$－volt steps for receiving tubes， such as $71 / 2$ volts，which would require an integral number of turns when the turns per volt are used．
The voltage drop in the Iransformer wind－ ing shonld be mentioned here．For instance， the load voltage at a tube filament is lower than the no－load voltage by the amount of

IR drop in the winding and the connecting wires to the tube．Thus，it may be that to secure $7 \mathrm{l} / 2$ volts at the tube filament，the transformer no－load voltage will have to be 8．In this case，any integral number of turns per volt，either odd or even，will suit the design．

6．Turns for Each Winding．In step 1 the desired voltages were given，E_{1}, E_{3} ，etc． Using the value of turns per volt in step 5， the total turns for each winding are found． For example，with 4 turns per volt，a 110 － volt winding should have $4 \times 110=410$ turns．

7．Winding Space Required．From the total turns for each winding，and the wire size， the total area of winding space is culculated． Different wires and insulations have definite turns per square inch．The method of insula－ tion，however，may have these values vary by factors of as much as three to one．That is，a 900 －turn coil wound in layers with enamel wire may take up one square inch of cross－section area．By interleaving thin in－ sulating paper between layers，only 600 turns can be wound in a square－inch area； and by using a certain size of cotton inter－ woven between turns，only 400 turns can be wound in a square inch．Thus，the space of winding depends to a large degree on the kind and thickness of insulation．Double cotton－covered wire takes up considerably more space than enameled wire．Yet，if the extra－needed insulating space for the inter－ layer protection is considered，the space ratio may not be so great．

After adding up the winding space of all the windings the area should be compared with that of the core．If the winding will go in the core space，this part of the design is finished．

If the wires will not go in the available space，the winding may be redesigned，or the
core area increased．Using thinner coverings for wire，fewer secondaries or fewer circular mils per ampere will decrease the space needed for the wire．A larger iron size or a thicker stack of the same sized iron will in－ crease the core area and allow a smaller number of turns per volt，thus decreasing the cross section of the winding．

8．Copper Loss．

a．Find the length of the mean（average） turns in feet．
b ．Find the length of each winding in feet by multiplying the number of turns by the mean turn length．
c ．From the following wire table find the ohms per 1,000 feet for the size wire used， and then from 8－b the actual ohms for this length．
d．Multiply the current squared for each winding by the ohms for that winding．
e．Add the $I^{2} R$＇s for each winding to get the copper loss L_{1} ．

9．Core Loss．The core loss in watts L_{2} is found from the weight of the core and flux density and kind of core used in step 4．A useful factor is that 4 per cent silicon steel weighs 0.27 lb ．per cubic inch．

10．The approximale percentage efficiency is W，$\times 100$

$$
W_{s}+\check{-1} L_{1}+L_{2}
$$

W_{s} being the secondary watts（see step 1 ）．
Note：If step 10 shows about 90 per cent efficiency， the design is complete．If much less than 90 per cent， step la must be modified，a new，larger value of Ip being used in finding a larger primary wire．This will not change the efficiency，but will prevent overloading the primary winding due to its carrying a greater current than that for which it was designed．It is desirable，as a rule，to keep the efficiency above 90 per cent，and this can be done by reducing L_{1} and L_{2} ， by using larger wires，or larger cores．

COPPER WIRE TABLE

Gauge B．\＆ 8	$\begin{gathered} \text { Diam. } \\ \text { in } \\ \text { Mils } \end{gathered}$	$\underset{\text { Mil }}{\text { Circular }}$ Area	Turns per Linear Inch ${ }^{2}$				Turns per Square Inch＇			Feel per lib．		$\begin{gathered} \text { Ohms } \\ \text { peer } \\ 1000 \mathrm{ft} . \\ 250 \mathrm{C} . \end{gathered}$	Correct Capacity 100 Ct ．M． per Amp．${ }^{3}$	Diam． in mm．
			Enamel	S．S．C．	$\begin{aligned} & \text { D.S.C. } \\ & \text { s.c.c.c. } \end{aligned}$	D．C．C．	S．C．C．	Enamel	D．C．C．	Bare	D．C．C．			
1	289.3	82690		－	－	－	－	－		3.947		． 1264	55.7	7． 3.48
2 3	257.6 229.4	$\mathbf{6} 633$ $\mathbf{5 2 6 4 0}$								4.977 6.276		． 1593	44.1 35.0	6.544 5.827
4	229．4	52640 41740		二		－	二			7.914	－	． 2533	27.8	5.189
5	181.9	33100		－	－		－			9.980		． 3195	22.0	4.621
6	16.0	26250	二	－	二	－				12.58 15.87	二	.4028 .5080	17.5	${ }^{4.165}$
$\stackrel{7}{8}$	144.3	20850 16510	7.6	二	7.6	7.1	二	－	－	20.01	19.6	.6405	11.0	3.264
9	114.4	13090	8.6		8.2	7.8				25.23	24.6	． 8077	8.7	${ }^{2} .9506$
10	101.9	10380	9.6		9.3	8.9	87.5	84.8	80.0 97.5	31.82 40.12	30.9 38.8	1.018	6.9 5.5	2.588 $\mathbf{2 . 3 0 5}$
112	90.74 80.81	8234 6530	10.7	二	10.3 11.5	9.8 10.9	110 136	105	127.5	40.12 56.59	38.8 48.9	1.284 1.619	5.5 4.4	2．053
13	71.96	5178	13.5	－	12.8	12.0	170	162	150	63.80	61.5	2.042	3.5	1.828
14	64.08	4107	15.0		14.2	13.8	211	198	183	80.44	77.3	2.575	2.7	1.628
15	57.07	3257	16.8		15.8	14.7	262	250 306	223	101.4	119.3	3．247	2.7	1.291
17	50.82	2583	18.9	18.9 21.2	17.9 19.9	18.4	321 397	372	329	161.3	150	5.163	1.3	1.150
18	45.26 40.30	1624	23.6	23.6	22.0	19.8	493	454	399	203.4	188	6.510	1.1	1.024
19	35.89	1288	26.4	26.4	24.4	21.8	592	553	479	256.5	237	${ }_{10}^{8.210}$	． 86	${ }^{9} 9116$
20	31.96	1022	29.1	29.4	27.0 29.8	23.8 26.0	775 940	725	625 754	323．${ }^{\text {407．}}$	298 370	10.35	． 68	． 8178
21	28.46 25.35	810.1 642.4	33.1 37.0	32.7 36.5	39.8 34.1	26.0 30.0	1150	895 1070	754 910	511.2	461	16.46	.43	． 64388
23	22.57	509.5	41.3	40.6	37.6	31.6	1400	1300	1080	6.88 .4	584	20.76	34	． 5733
2.4	20.10	404.0	46.3	45.3	41.5	35.6	1700	1570	1260	817.7	745	26.17	27	． 4547
25	17.90	320.4	51.7	50.4	45.6	38.6	2060	1910	1510	1031 1300	1903	33.00 41.62	． 17	4049
${ }_{27}^{26}$	15.94 14.20	201.5	58.0 64.9	55.6 61.5	50.2 55.0	41.8 45.0	3030	2780	2020	1639	1422	52.48	13	． 3606
28	12.64	159.8	72.7	68.6	60.2	48.5	3670	3350	2310	2067	1759	66.17	11	． 3211
29	11.26	126.7	81.6	74.8	65.4	51.8	4300	3900	2700	2607	2207	83.4	． 084	． 2859
30	10.03	100.5	90.5	83.3	71.5	55.5	5040	4660	3020	3287	2534	105.2	． 065	． 25468
31	8.928	79.70	101.	101．0	77.5 83.6	59.9 62.6	5920 7060	5280 6250		4145 5227	2768 3137	132.7 167.3	． 0442	． 2019
32	7.950 7.080	63.21 50.13	${ }_{127}^{113 .}$	101.	83.6 90.3	62.5 66.3	7060 6120	6250 7360		6591	4697	211.0	． 033	． 1798
34	6.305	39.75	143.	120.	97.0	70.0	9600	8310	－	8310	6168	266.0	． 026	． 1601
35	5.615	31.52	158.	132.	104.	73.5	10900	8700		10480	6737	335.0	． 021	． 1426
36	5.000	25.00	175.	143.	111.	77.0	12200	10700	－	13210	7877 9309	${ }^{423.0}$	． 017	． 11270
37 38	4.453 3.965	19.83 15.72	198.	15.4 166.	${ }_{126 .}^{118 .}$	80.3 83.6	二	二		16660 21010	9309 10666	533.4 672.6	． 010	． 11007
39	3.531	12.47	248.	181.	133.	86.6	－	－		26500	11907	848.1	． 008	． 0897
40	3.145	9.88	282.	194.	140.	89.7	－	－	－	33410	14222	1069	． 006	． 0799

[^0]${ }^{2}$ The figures given are approximate only，since the thick ness of the iusulation varies with different manufacturers．
${ }^{3}$ The current－carrying capacity at 1000 C．M．per ampere is equal to the circular－mil area（Columu 3）divided by 1000 ．

RESISTOR WATTAGE CHART

R M A Standard Color Coding for Resistors

Standardized coding for resistance value identification is confined to ten colors and figures as shown:

Figure	Color	Figure	Color
0	Black	5	(ireen
1	Brown	6	Blue
2	iled	7	Violet
3	Grange	8	(iray
4	Yellow	9	White

IATE TYPE MIDGET RESISTORS

The body (A) of the resistor is colored to represent the first figure of the resistance value. One end (B) of the resistor is colored to represent the second figure. A band, or $\operatorname{dot}(\mathrm{C})$ of color, representing the number of ciphers following the first two figures, is located within the body color. The two diagrams illustrate two interpretations of this standard method of coding resistance value.

Note: The problem of coding two resistors of the same nominal value when tolerances are different is solved in a practical manner by using the next higher or lower coded value for the unit with the larger tulerance. For example: if the nominal values of two resistors are 2,500 ohms, one with 10% tolerance and the other with 20%, the unit with 10% tolerance will be 2,500 ohms and be coded as such. The unit with 20% tolerance will be assigned a nominal value of either 2,400 ohms or $2,600 \mathrm{ohms}$ and be so coded.

Some of the larger radio set manufacturers employ mercury vapor lighting in their factories. Certain colors are hard to distinguish in this lighting and in order to overcome this difficulty, odd value of resistors are apparently used, such as 490,000 ohms. In every case where this is found, the next higher value of resistor may be used with success.

Value	Body	Tip	Dot
50Ω	(ireen	Black	Black
75Ω	Violet	Green	Black
100Ω	Brown	Black	Brown
150Ω	Brown	Green	Brown
200Ω	lied	Black	Brown
250Ω	Red	Green	Brown
304Ω	Orange	Black	Brown
350Ω	Orange	Green	Brown
400Ω	Yellow	Black	Brown
450Ω	Yellow	Green	Brown
500Ω	Green	Black	Brown
600Ω	Blue	Black	Brown
$750 \Omega 2$	Violet	Green	Brown
1,000 Ω	Brown	Black	Red
1,250 Ω	Brown	Red	Red
1,5100 $\Omega 2$	Brown	Green	Red
2,000 $\Omega 2$	Red	Black	Red
2,510 Ω	Red	Green	Red
$3,0(0) \Omega$	Oránge	Black	Red
$3,5(4) \Omega$	Orange	Green	Red
4,000 Ω	Yellow	Black	Red
5,010 Ω	Gireen	Black	Red
$7,500 \Omega$	Violet.	Green	Red
10,000 Ω	Brown	Black	Orange
12,0\%0 Ω	Brown	lied	Orange
15,000 S	Brown	Green	Orange
20,000 Ω	Red	Black	Orange
25,000 Ω	lied	Green	Orange
30,000 Ω	Orange	Black	Orange
40,000 Ω	Yellow	Black	Orange
50,000 Ω	Gireen	Black	Orange
60,000 Ω	Blue	Black	Orange
75,000 Ω	Violet	Green	Orange
100,000 Ω	Brown	Black	Yellow
120,000 Ω	Brown	Red	Yellow
150,000 Ω	Brown	Green	Yellow
200,000 Ω	Red	Black	Yellow
250,000 Ω	lied	Green	Yellow
300,000 Ω	Orange	Black	Yellow
$400,000 \Omega$	Yellow	Black	Yellow
$500,000 \Omega$	Green	Black	Yellow
600,000 Ω	Blue	Black	Yellow
750,000 Ω	Violet	Green	Yellow
$1 \mathrm{Meg} \Omega$	Brown	Black	Green
$11 / 2 \mathrm{Meg} \Omega$	Brown	Green	Green
$2 \mathrm{Meg} \Omega$	Red	Black	Green
$3 \mathrm{Meg} \Omega$	Orange	Black	Green
$4 \mathrm{Meg} \Omega$	Yellow	Black	Green
$5 \mathrm{Meg} \Omega$	Green	Black	Green
$6 \mathrm{Meg} \Omega$	Blue	Black	Green
$7 \mathrm{Meg} \Omega$	Viodet	Black	Green
$8 \mathrm{Meg} \Omega$	Gray	Black	Green
$9 \mathrm{Meg} \Omega$	White	Black	Green
$10 \mathrm{Meg} \Omega$	Brawn	Black	Blue

The Radio Spectrum

THE AUDIBLE SPECTRUM

$A_{3} B_{3} C_{3} D_{3} E_{3} F_{3} G_{3} A_{2} B_{2} C_{2} D_{2} E_{2} F_{2} G_{2} A_{1} B_{1} C_{1} D_{1} E_{1} F_{1} G_{1} A B C D E F G A^{1} B^{1} C^{1} D^{1} E^{1} F_{1} G^{2} A^{2} B^{2} C^{2} D^{2} E^{2} F^{2} G^{2} A^{3} B^{3} C^{3} D^{3} E^{3} F^{3} G^{3} A^{1} B^{4} C^{4} D^{4} E^{4}$

A Correct Table of Musical Frequencies, Pitch $A=440$

Antenna Design

TWO separate anti-noise antemnas are, theoretically, advisable if the Dest "allwave" reception is to be oltained:
A- A long antenna for use in the 550-1500 ke. broadcast band.
B-A special antenna for the shortwave region of $1500-15,000 \mathrm{kc}$.

This is not practical in most locations, nor does the average set user care to bother with a duat system. We must accordingly compromise between the needs of the two ranges.

In shaking down to a practical compromise let us see what noise-reduction depends ирко.
Noise can come from several sourees and can reach the set by a variety of roules. Let's take them one at a time.
Static can be combated only by listening to strong stations.
Self-generated noises, especially "shush" and irregular buzzing or humming, are present in many cheap "allwave" receivers due to defects of design, sometimes in the set, sometimes in the tubes. Some of the "prntaurid converters" seen to be bad offenders in this regard, though in carefully designed sets they work very acceptably.
If the set is noticeally noisier when switched to short waves, takeoff the antenna and repeat the test. If the noise persist.s (especially the "shush") bether try another set of the same make before fooling with the antenna.
Man-made electrical noise, apart. from that born in the receiver, can reach the set via the antenna, via the power line, or via a badly-placed ground connection. Therefore, noise must be reduced by:
1-An antenna that does not collect noise. 2-A ground lead that does not collert noise.

3-A set designed to keep noise from entering via the power line.
The purchaser is almost helpless as 10 point 3 and must rely on the set designer's skill. If different sets are compared for noise be sure that a tonally bad set does not get the best of the comparison. Sets sometimes seem quiet because the things have poor high-note reproduction. Noise is largely in the treble area, hence a set deficient in highs sounds quiet. Note whether the "s," " f " and "th" of spoken speech come through well. If not-the alleged noiselessness may be simply a poor audio system. A good audio system can always have its top end spoiled at will be means of the "tone control" when the static or the tenors are so severe as to require it.

Quiet Ground Leads-If anyone suggests the installation of an all-electrie short-
wave receiver withont a ground wire, or suggests rumbing a ground wire to an elecIrical outlet-shoos, or call the poslice. 'This man is a menace.

A set so installed has no ground connection except the main source of our radio noise. It is irrational to go to the hirthplace of noise when we wish to avoid noise. (f) course I realize that this sort of thing is usually due to overcrowiding by the boss, the poor devil of an installer being required to "get through and get out"-but it's bad.

The best ground connetion is probably one buried outside the honse, where it is definitely clear of all light wiring. For the small-town dweller 6 to 10 feet of rod or pipe driven down, or 50 feet of wire buried in a shallow trench, settles the grounding business for keeps if he uses a good-sized wire that will not corrode off.
For the city man it's not so simple and he is referred to the waterpipe, the steampipe and the gaspipe in the sequence mentioned. They become noisior as one goes higher up in the building, esperially if there be elevator controls aloft.

The Antenna-Having gotten rid of some 50 per cent of the noise sources we now go to the remaining one- the antenna itself. The principles of anti-noise antennas are simple enough. The general idea is:
a. To collect the signal in a noise-free space.
b. To avoid metallie connertion to things filled with noise.
c. To take advantage of any "polarization" of the rudio waves.

The Simple, Large Antenna-The very great advantage of merely lengthening an ordinary antenna seems to be little appreciated. This is the first thing to try in any case of moderately ball noise. The effect is that of bigure 1. In many instances nothing else is required to convert most annoying reception to very gord reception, especially

Figune 1 - Why a long outside antenna often increases signal-lo-noise ralio.
at short waves. The obvious lesson taught by the drawings is that noise often starts in the electrical wiring of the house-but doesn't travel far.

The Shielded Ieadin-Where the noise situation is very severe it no longer suflices to extend the antema out into a noisefree region; we must also prevent collection in the noisy region at the house. Apparently, the obvious way to do this is to shield the antonna when it gets near the house. If this is

Figure 2-Shielded leadins-poor (A); good (B).
done in the manner of Figure 2 A , reception will be quite poor for reasons that we need not worry alout here, but which have a good theoretical explanation.

This can be corrected for a narrow range of frequencies by means of a transformer placed at the end of the shielded leadin. (See 2B.) Such a transformer can be made to work over the $550-1500 \mathrm{kc}$. band very nicely indeed, and a number of good types are on the market. Note, however, that the shielded line is now only a power-transmission line. It is no longer a part of the antenna and collects no signal. The "top" of the antenna should therefore be somewhat longer than would be necessary for an ordinary unshielded antenna.

For Shortwaves-Most unfortunately we have not yot learned to make this sort of shielded antenna very eflicient at shortwaves, which is to say, in the frequencyrange of 1500 to $15,000 \mathrm{kc}$. (20 to 200 meters). Our transformers refuse to work well over so tremendous a range of frequencies, and the line losses are severe.

The Hertz Antenna-So far we have talked about antennas which use a ground connection. Marconi first used such antennas; accordingly we call them Marconi antennas. Observe (Figure 3) that there is always more or less "up and down" to them. They start at the earth and go up. Sometimes they go horizontally also, but invariably they go up. In a moment we shall show why that is important.

Figene: 3-Hert: (ungrounded) antenna lypes are becoming more and more popular for shortwave work.

Now the Hertz antenna uses no ground connection whatever. Accordingly it need not run up and down at all; we can make it a straight horizontal antenna if we feol like it. For the best shortwave reception we do feel like it, as you shall see.

A Small Dose of Theory-Near the radio transmitting station the waves are departing in the manner of Figure 4A. They are mainly vertical, and are best received by a vertical (or partly vertical) receiving an-tenna-an antenna that has some height. The Marconi antennas of Figure 3 will work best for such reception, as will the rertical Hertz type of Figure 3.

Figure 4-Why verlical receiving anlennas are best on locals, horizontal types OK for DX.

At a great distance we have a different picture. For reasons which would be very dreary and tiresome we find our shortwaves now arriving in the manner of Figure 413. It is at once apparent that this leaning of the waves ("polarization toward the horizontal") gives the horizonlal Hertz antenna a chance which it did not have on the nearby reception of 4Λ. For that reason the horizontal Hertz antenna is very useful in shortwave long-range reception.

But-that isn't all. Our noise comes from nearby sources and a goerl part of it is vertically polarized, hence docs not greatly disturl the tranquil meditations of the horizontal 1 Iertzian antenna.

The Practical Form-(ietting lack to things you can see, and have to pay for, let's see how such a thing looks in practice.

To get it out of the worst noise, and to keep it from being "shadowed" from incoming signals, we must of course put it up in the air as in 5A. Few people care to hang on the middle of an antema, with a receiver under one arm, hence we must somehow lead the collected signals down to the living

Figure 5-The theoretical ideal (A) and the
practical substitule (13). practical substilute (l).
room without allowing the leadin to collect either signals or noise and without shielding to produce the losses we talked about some paragraphs ago, and without Iransformers up in the air which are unwilling to work from 550 to $15,000 \mathrm{kc}$.

There is not as yet a perfect answer to this rather messy set of requirements. although we can provide very good answers for one frequency, sueh as the 49 meter (6100 kc .) broadeast group. The dilliculty in making a system work over a wide range of frequencies lies in the fact that we have no way of tuning the anterna because it is olf at the other end of a long power-transmission lime. (In the usual receiver the antema may not appear to be tuned lut since the antenna passes through the recerver it is indirectly tumed to some extont by the first tuned circuit.)

Figure 6-Two efficient transmission line systems using Hertz collectors.

One practical compromise is to use the form of antenna shown in Figure 6A. If we make the top about 70 or 75 feet long the best performance will appear in the 49 meter band just mentioned, but at other wavelengths the line no longer acts as a pure line; the upprer part participates in varying degree in the anterma action, and the losses vary materially with frequency. llowever, a theoretical shortcoming can often be toleraterl commercially, and the extreme simplicity of this arrangement must be evident to all beholders. Its anti-noise action leaves little to be desiref, it is ceasy to erect, the line can lo: of any convenient lengit upward of some 10 feet (be sure to use that much and coil up) any you don't need inside the set cabinet), and strong wind does little damage.

Of course there are limitations; the rubber covering of the two leads has to be of correct composition to withstand weather, of proper thickness to secure decent transmission down the line, and the braided covering must be of a form not favoring water-retention.

The Fly in the Ointment-The real shortcoming of this or any olher horizontal 1 lertz type lies in the relative ineffectiveness of such an antenna at 500 kcs ., that is "at the upper end of the dial." To make the antenna long enough to get around this difficinty results in preposterous clumsiness. Accordingly one must either accept reduced reception in the ordinary broadcast band for the salke of noiselessness (frequently a good exchange) or else one must use some arrangement for converting this antenna to another type for that band.

The "Folded Hertz" Antenna-In Figure 6B we have an antenna system which is commonly spoken of as having a tramsmission line. However, one can with greater correetness say that this is simply a long antenna folded up. The fact that the line is actually part of the antenna is demonstrated by the fact that tuning is possible at the lower end of the line with the same effects in kind and in degree as if the whole thing were straightened out.

If luned to the incoming signal such a system will in some cases give better prorformance than that of Figure 6A. If left at some fixed tune the system shows less advantage over that of rigure 6A. The greater complexily of such an antenna in practice is due to the necessity for using numerous insulators to keep the dual downlead separated loy several inches without allowing the two wires to rulb together. However, for the ardent "fan," willing to operate an extra control or two this antenna is "something."

Antenna Direction-If we look down at the top of various antennas we see the ideal directional efferts shown in Figure 7. These are modified materially by surroundings and must not be taken two seriously.

Figune 7-Directional effect is rarely audible bul here's the dope for "hair-splilters."

However, to a New Englander interested in shortwave reception, a Marconi antenna should theoretically point (free end) a little west of north if he is after YV3RC at Caracas, Veneruela, or about west for the best average European reception-but unless the antenna is 4 or 5 times as long as it is high nearly anything between the two will answer.

The Hertz type, for the same man, should run more or less SE to NW, tending toward a East-West rather than a North-South position for Venczuelan reception.

In another part of the country-look at the globe. The flat map is a liar on these things. And don't be too "finicky" about direction.

Height, and Length-As to height . . . get above the noise-making wires if you can. At any cost stay away from elevator penthouses and such like special infernos of noise.

Length has already been indicated for the Hertz 49 meter antenna, but overall lengths (tip to tip) of 60 to 75 feet will be found most desirable for shortwave work-the regular broadcast response going down with length unless one uses some conversion method as previously indicated. In an old set not equipped for conversion an external switch can be rigged up to tie the two leads together for ordinary broadcast reception, bringing both to the "Ant." post, and grounding the "Gnd." post as usual.

Where a pure Marconi antenna is to be used as an antenna, 25 or 30 feet is being publicised as a nice compromise-but it is pretty terrible from a noise standpoint, being so short as not to have even its nose out above the surface. (See Figure 1.) If noise is your problem use an antenna about 120 feet long and a receiver with enough tuned circuits so that such an antenna does not cause undue interference between stations.

Grounded Chassis-There is room for argument as to whether the receiver chassis should be designed for grounding on the regular groundlead, on a separate one, or not at all. However, that is a design problem. After the receiver is in the warehouse one has to use it as it 's unless one is given to tinkering.
Accordingly one simply has to run the dual downlead systems to the two posts that are provided, and remove the groundlead from one of them. In most cases the results are surprisingly good, though again this is not the ideal method.

Line Filters-A good noise-filter in the 110 -volt line which supplies power to the set is worth thinking about, and trying. A special antenna may not be necessary at alltry it and sec. However, do not pick a noise filter the size of a walnut when you have a bad noise situation.

Another Small Dose of Theory-In the old vaudeville houses it was customary to use a movie "short" to "run the audience out" before the next performance. 1et's use that idea by going back to some theory.

Impedance-matching devices are in order where narrow-band operation suffices. Such a device can be made a nd certainly does cut down the losses. 'The theory here is not complex. The antenna as "seen" by the line has a relatively high impedance. The line itself has a low one because it uses solid insulation and has its two conductors (the wire and the external shield) close together. Thus we need a small radio-frequency step-down transformer between the two. It is ordinarily made of a coil wound in either "scramble" or "universal" manner. All of the turns are placed in the antenna circuit, but only a part of them in the down-lead circuit. It therefore acts as a step-down auto-transformer, pro-
ducing in the line a slightly larger current and lower voltage than otherwise. Since the line losses were mainly in the rubber, these are thereby reduced-altogether aside from reflection losses. Replace this transformer annually.

At the Receiver-So far we have nimbly skipped over the input device at the receiver, that is, the device between the line and the receiver. This is ordinarily built in and hence a problem of the manufacturer. The set
having been finished we can only hang on an additional external device, or do some work inside the set. It is perfectly possible to do this, and it is easy enough by simple listening tests to determine whether the change caused an improvement. Not always do we find that an additional external transformer improves matters, since its losses may do as much harm as impedance matching does good.
Try it and see-and be sure to try it over the entire frequency range, for the results are not uniform.

Choosing an Antenna

Ground as Antenna-Fair reception on local broadcast stations in some homes. Seldom satisfactory in suburban areas and useless for shortwaves. Use only where other systems cannot readily be installed, or for temporary service.

Ordinary Outdoor System-Excellent on both broadcast and shortwave bands when building and vicinity are electrically quiet. Recommended for homes away from trol-ley-lines, high-tension wires, motors and busy roads.

Moulding-Strip-Good reception on local broadcast stations in all but extremely noisy buildings. Receives reasonably distant stations when used on upper fioors in electrically quiet areas. Rarely effective on
short waves and invariably noisy in large apartment houses.

Shielded Lead-In-Reduces noise pickup by downlead where this wire must pass through electrically disbroadcast band but not recommended for shortwaves. In common with other noise-reducing types must have antenna proper mounted out of noisy area for maximum benefit.
Built-In Wire-Good reception on local broadcast stations in all but extremely noisy buildings. Receives used on upper floors in electrically quiet areas. Rarely effective on shortwaves and invariably noisy in large apartment houses.
anoungro..

mpie Doublet-Reduces noise pickup by downlead where it must pass through noisy areas. Good reception on shortwave band and satisfactory for broadcast reception. Expecially efficient at certain frequencies. which may be those most quencies. whic
of ten desired.

TYPICAL MODERN ALLWAVE MATCHED TYPES

Matched to reduce losses in the transmission line between the antenna proper and the set and designed, also, to give good reception over the entire broadcast and shortwave range, or in those portions of the spectrum in which programs of major interest are found, these modern types and variations of them represent the last word in modern radio design.

Eleotric Socket "Adapter"
Aerial "Elimiaator" Telephone Connection

Grounding AC-DC Sete
Show this to your customer. It will convince him that a good antenna is a good investment.

Series Condenser-Parallel Resistors Chart

This chart enables you to find the equivalent resistance of two resistors in parallel and also the capacity of two condensers in series. Draw a straight line through the divisions on scale A_{1} and A_{s} representing the resistance in the two branches, and you will find the resultant resistance on scale A_{2}. To find the resistance of one branch
when the other branch and the total resistance are known, draw lines through the corresponding points on A_{1} and A_{2} and find the answer on A_{3}. When the resistance of the two branches is widely different, use the chart consisting of scales $\mathrm{B}_{1}, \mathrm{~B}_{2}$ and $\mathrm{B}_{3} . \mathrm{B}_{1}$ and B_{2} are for the unequal branches and the result is on B_{2}.

Chart A may be used to find:
(1) The reactance of a given inductance at a given frequency.
(2) The reactance of a given capacitance at a given frequency.
(3) The resonant frequency of a given inductance and capacitance.

In order to facilitate the determination of magnitude of the quantities involved to two or three significant figures the chart is divided into two parts. Chart A is to be used for rough calculations. Chart B,
which is a single decade of Chart A enlarged approximately 7 times, is to be used where the significant two or three figures are to be determined.

To Find Reactance-Enter the charts vertically from the bottom (frequency) and along the lines slanting upward to the right (inductance) or to the left (capacitance). Corresponding scales (upper or lower) must be used throughout. Project horizontally to the left from the intersection and read reactance.

To Find Resonant Frequency-Enter the slanting lines for the given inductance and capacitance. Project downward from their intersection and read resonant frequency from the bottom scale. Corresponding scales (upper or lower) must be used throughout.

Example: The sample point indicated (Chart A) corresponds to a frequency of about 700 kc . and an inductance of 0.5 benry, or a capacitance of $0.1 \mu \mu \mathrm{f}$, giving in either case a reactance of about $2,000,000$ ohms. The resonant frequency of a circuit containing these values of inductance and capacitance is, 700 kc . approximately.

Chart B is used to obtain additional precision of reading but does not place the decimal point which nust be located from a preliminary entry on Chart A. Since the chart necessarily requires two logarithmic decades for inductance and capacitance for every single decade of frequency and reactance, unless the correct decade for L and C is chosen, the calculated values of reactance and frequency will be in error by a factor of 3.16 .

Example: (Continued.) The reactance corresponding to 0.5 henry or $0.1 \mu \mu \mathrm{f}$ is $2,230,000 \mathrm{ohms}$ at 712 kc ., their resonant frequency.

Decibel Conversion Tables

ITT IS convenient in measurements and calculations on conmmuications systems to express the ratio between any two amounts of electric or acoustic power in units on a logarithmic scale. The decibel ($1 / 10$ th of the bel) on the briggsian or base- 10 scale and the neper on the napierian or base-e scale are in almost universal use for this purpose.
Since voltage and current are related to power by impedance, both the decibel and the neper can be used to express voltage and current ratios, if care is taken to account for the impedances associated with them. In a similar manner the corresponding acoustical quantities can be compared.

Table I and Table II on the following pages have been prepared to facilitate making conversions in either direction between the number of decibels and the corresponding power, voltage, and current ratios. Both tables can also be used for nepers and the mile of slandard cable by applying the conversion factors from the table "A" shown at right.

Decibel-The number of decibels N db corresponding to the ratio between two amounts of power P_{1} and P_{2} is

$$
\begin{equation*}
N d b=10 \log _{10} \frac{P_{1}}{P_{1}} \tag{1}
\end{equation*}
$$

When two voltages E_{1} and E_{2} or two currents I_{1} and I_{2} operate in the same or equal impedances,
and

$$
\begin{align*}
& N_{d b}=20 \log _{10} \frac{E_{1}}{E_{2}} \tag{2}\\
& N_{d b}=20 \log _{10} \frac{I_{1}}{I_{2}} \tag{3}
\end{align*}
$$

If E_{1} and E_{3} or I_{1} and I_{2} operate in unequal impedances,

$$
\begin{align*}
N d b= & 20 \log _{10} \frac{E_{1}}{E_{1}^{\prime}}+10 \log _{10} \frac{Z_{2}}{Z_{1}} \\
& +10 \log _{10} \frac{k_{2}}{k_{1}} \tag{4}
\end{align*}
$$

and

$$
\begin{gather*}
N d b=20 \log _{10} \frac{I_{1}}{I_{2}}+10 \log _{10} \frac{Z_{1}}{Z_{2}} \\
+10 \log _{10} \frac{k_{1}}{k_{2}} \tag{5}
\end{gather*}
$$

where Z_{1} and Z_{s} are the absolute magnitudes of the corresponding impedances and k_{i} and k_{z} are the values of power factor for the impedances. Note that Table I and Table II can be used to evaluate the impedance and power factor terms, since both are similar to the expression for power ratio, equation (1).
Neper-The number of nepers $N_{\text {nep }}$
corresponding to a power ratio $\frac{p_{1}}{p_{2}}$ is

$$
\begin{equation*}
N_{\text {nep }}=\frac{1}{2} \operatorname{loge} \frac{P_{1}}{P_{2}} \tag{6}
\end{equation*}
$$

For voltage ratios $\frac{E_{1}}{E_{2}^{\prime}}$ or current ratios $\frac{I_{1}}{I_{2}}$ working in the same or equal impedances,
and

$$
\begin{equation*}
N_{\text {nep }}=\log e \frac{E_{1}}{E_{2}} \tag{7}
\end{equation*}
$$

$$
N_{n e p}=\operatorname{loge} \frac{I_{1}}{I_{2}}
$$

When E_{1} and E_{2} or I_{2} and I_{2} operate in unequal impedances,

$$
\begin{equation*}
N_{n e p}=\operatorname{loge} \frac{E_{1}}{E_{2}}+\frac{1}{2} \operatorname{loge} \frac{Z_{2}}{Z_{1}}+\frac{1}{2} \operatorname{loge} e \frac{k_{2}}{k_{1}} \tag{8}
\end{equation*}
$$

and

$$
\begin{equation*}
N_{\text {nep }}=\operatorname{loge} \frac{I_{1}}{I_{2}}+\frac{1}{2} \operatorname{loge} \frac{Z_{1}}{Z_{2}}+\frac{1}{2} \log e \frac{k_{1}}{k_{2}} \tag{9}
\end{equation*}
$$

where Z_{1} and Z_{1} and k_{1} and k_{2} are as in equations (:) and (5).
178

TABLE "A"-Relations Between Decibels, Nepers,
and Miles of Standard Cable

Mulliply	By	To Find
decibels.	. 11.51nepers
decibrls......	1.0.36	miles of standard cable
miles of standard cable	. 947 decibels
miles of standard cable	. 109	. .nepers
nepers.	8.686	. .decibels
nepers.	9.175	miles of standard cable

To Find Values Outside the Range of Conversion Tables

Values outside the range of either Table I or Table II on the following pages can be readily found with the help of the following simple rules.

TABLE 1: DECIBELS TO VOLTAGE AND POWER RATIOS

Number of decibels positive (+):

Subtract +20 decibels successively from the given number of decibels until the remainder falls within range of Table I. To find the vollage ratio, multiply the corresponding value from the right-hand voltageratio column by 10 for each time you subtracted 20 db . To find the power ratio, multiply the corresponding value from the right-hand power-ratio column by 100 for each time you subtracted 20 db .
Example-Given: 49.2 db

$$
\begin{aligned}
& 49.2 \mathrm{db}-20 \mathrm{db}-20 \mathrm{db}=9.2 \mathrm{db} \\
& \text { Vollage radio: } 9.2 \mathrm{db} \rightarrow \\
& 2.88 . \mathrm{Cl} \times 10 \times 10=288.4 \\
& \text { Power ratio: } 9.2 \mathrm{db} \rightarrow \\
& 8.318 \times 100 \times 100=83180
\end{aligned}
$$

Number of decibels negative (-):
Add +20 decibels successively to the given number of decibels until the sum falls within the range of Table I. For the voltage ratio, divide the value from the left-hand voltage-ratio column by 10 for each time you added 20 db . For the power ratio, divide the value fron the left-hand power-ratio column by 100 for each time you added 20 db . Example-Given: - 19.2 db

$$
\begin{aligned}
& -.19 .2 \mathrm{db}+20 \mathrm{db}+20 \mathrm{db}=-9.2 \mathrm{db} \\
& \text { Vollage ratio: }-9.2 \mathrm{db} \longrightarrow \\
& .3167 \times 1 / 10 \times 1 / 10=.003167 \\
& \text { Power ratio: }-9.2 \mathrm{db} \xrightarrow{.} \\
& .1202 \times 1 / 100 \times 1 / 100=.00001202
\end{aligned}
$$

TABLE II: VOLTAGE RATIOS TO DECIBELS

For ratios smaller than those in table-Multiply the given ratio by 10 successively until the product can be found in the table. From the number of decibels thus found, subtract +20 decibels for each time you multiplied by 10 .
Example-Given: Voltage ratio $=.0131$

$$
\begin{aligned}
& .0131 \times 10=.131 \times 10=1.31 \\
& \text { From Table } 11,1.31 \longrightarrow \\
& 2.34 .5 \mathrm{db}-20 \mathrm{db}-20 \mathrm{db}=-37.655 \mathrm{db}
\end{aligned}
$$

For ratios greater than those in table-Divide the given ratio by 10 successively until the remainder can be found in the table. To the number of decibels thus found, add +20 db for each time you divided by 10 .

$$
\begin{aligned}
& \text { Example-Given: Voltage ratio }=712 \\
& 712 \times 1 / 10=71.2 \times 1 / 10=7.12 \\
& \text { From 'rable } 11,7.12 \longrightarrow \\
& 17.050 \mathrm{db}+20 \mathrm{db}+20 \mathrm{db}=57.050 \mathrm{db}
\end{aligned}
$$

TABLE I

Given: Decibels
 To Find: Power and $\left\{\begin{array}{c}\text { Voltage } \\ \text { Current }\end{array}\right\}$ Ratios

TO ACCOUNT FOR THE SIGN OF THE DECIBEL

For positive (+) values of the deeibel-Both voltage and power ratios are greater than unity. Use the two righthand columns.
For negative (-) values of the decibel-Both voltage and power ratios are less than unity. Use the two left-hand columns.

Example-Given: $\pm 9.1 \mathrm{db}$. Find:

	-db				$-d b+$					$-d b+$				
			,										-	
	Pourer Matio	$d b$	Vollage hatio	Pourer Ratio	Vollage Ratio	Pozer Ratio	$d b$	Vollage Ratio	Power Hatio	Vollage Hatio	Pourer Ratio	db	Vollage Ratio	Power Ratio
1.0000	1.0000	0	1.000	1.000	. 5012	. 2.512	6.0	1.995	3.981	. 2512	.06310	12.0	3.981	15.85
. 9886	. 9772	. 1	1.012	1.023	. 4955	.265.5	6.1	2.018	4.074	. 2483	. 06166	12.1	4.027	16.22
. 9772	. 9550	. 2	1.023	1.0 .47	. 4898	. 2899	6.2	2.042	4.169	. 2455	. 06026	12.2	4.074	16.60
. 9661	. 9333	. 3	1.035	1.072	. 48.42	.2314	6.3	2.065	4.266	. 2427	. 05888	12.3	4.121	16.98
. 9550	. 9120	. 4	1.047	1.096	. 4786	.2291	6.4	2.089	4.365	. 2399	. 05754	12.4	4.169	17.38
.9.441	. 8913	. 5	1.059	1.122	. 4732	. 2239	6.5	2.113	4.467	. 2371	. 05683	12.5	4.217	17.78
. 9333	. 8710	. 6	1.072	1.148	. 4677	. 2188	6.6	2.138	4.571	.23.41	. 05.495	12.6	4.266	18.20
. 9226	. 8511	. 7	1.084	1.175	. 4624	. 2138	6.7	2.163	4.677	. 2317	.05370	12.7	4.315	18.62
. 9120	. 8318	. 8	1.096	1.202	. 4571	.2089)	6.8	2.188	4.786	. 2291	. 05248	12.8	4.365	19.05
. 9016	. 8128	. 9	1.109	1.230	. 4519	. 2012	6.9	2.213	4.898	. 2265	.08129	12.9	4.416	19.50
. 8913	. 7943	1.0	1.122	1.259	. 4467	. 1995	7.0	2.239	5.012	. 2239	. 05012	13.0	4.467	19.95
. 8810	. 7762	1.1	1.135	1.288	. 4416	.19:5)	7.1	2.265	5.129	.2213	. 04898	13.1	4.519	20.42
. 8710	. 7586	1.2	1.148	1.318	. 4365	. 1905	7.2	2.291	5.218	.2185	. 047886	13.2	4.571	20.89
. 8610	. 7413	1.3	1.161	1.349	. 4315	. 1862	7.3	2.317	5.370	.216:3	.0.4677	13.3	4.624	21.38
. 8511	. 7244	1.4	1.175	1.380	. 4266	. 1820	7.4	2.344	5.495	.2138	. 04.571	13.4	4.677	21.88
. 841.4	. 7079	1.5	1.189	1.413	. 4217	. 1778	7.5	2.371	5.623	. 2113	. 0.4167	13.5	4.732	22.39
. 8318	. 6918	1.6	1.202	1.445	. 4169	. 1738	7.6	2.399	5.75 .4	. 2089	.04:365	13.6	4.786	22.91
. 8222	. 6761	1.7	1.216	1.479	. 4121	. 1698	7.7	2.127	5.888	. 2065	. 04266	13.7	4.8 .12	23.44
. 8128	. 6607	1.8	1.230	1.514	. 407.4	. 1660	7.8	2.455	6.026	. 2042	. 0.4169	13.8	4.898	23.99
. 8035	. 6457	1.9	1.245	1.549	. 4027	. 1622	7.9	2.483	6.166	. 2018	.0.307.4	13.9	4.955	24.55
. 7943	. 6310	2.0	1.259	1.585	. 3981	. 1588	8.0	2.512	6.310	. 1995	. 03981	14.0	5.012	25.12
. 7852	. 6166	2.1	1.27 .4	1.622	. 3936	. 15.49	8.1	2.511	6.157	. 1952	. 03890	1.4 .1	5.070	25.70
. 7762	. 6026	2.2	1.288	1.660	. 3890	. 1514	8.2	2.570	6.607	. 1950	.03302	1.4 .2	5.129	26.30
. 7674	. 5888	2.3	1.303	1.698	. 3846	. 1.479	8.3	2.600	6.761	. 1928	. 03715	14.3	5.188	26.92
. 7586	. 5754	2.4	1.318	1.738	. 3802	. 14.45	8.4	2.630	6.918	. 1905	. 03631	14.1	5.218	27.54
. 7499	. 5623	2.5	1.334	1.778	. 3758	. 1.113	8.5	2.661	7.079	.1884	. 03518	14.5	5.309	28.18
. 7413	. 5495	2.6	1349	1.820	. 3715	. 1380	8.6	2.692	7.2.4.	. 1862	. 03167	1.4 .6	5.370	28.84
. 7328	. 5370	2.7	1.365	1.862	. 3673	. 1349	8.7	2.723	7.413	. 1841	.03388	14.7	5.433	29.51
. 7244	. 5248	2.8	1.380	1.905	. 3631	1318	8.8	2.754	7.586	. 1820	.03311	14.8	5.495	30.20 30.90
. 7161	. 5129	2.9	1.396	1.950	. 3589	. 1288	8.9	2.786	7.762	. 1799	. 03236	14.9	5.559	30.90
. 7079	. 5012	3.0	1.413	1.995	. 3548	. 1259	9.0	2.818	7.943	. 1778	. 03162	15.0	5.623	31.62
. 6998	. 4898	3.1	1.429	2.0 .42	. 3508	.1230	9.1	2.851	8.128	. 1758	. 03090	15.1	5.689	32.36
. 6918	.4786	3.2	1.445	2.089	. 3467	. 1202	9.2	2.884	8.318	.1738	. 03020	15.2	5.754	33.11
. 6839	. 4677	3.3	1.462	2.138	. 3428	. 1175	9.3	2.917	8.511	.178	. 02951	15.3	5.821	33.88
. 6761	. 4571	3.4	1.479	2.188	. 3388	. 1148	9.4	2.951	8.710	. 1698	. 0288.1	15.1	5.888	34.67
. 6683	. 4467	3.5	1.496	2.239	. 3350	. 1122	9.5	2.985	8.913	. 1679	. 02818	15.5	5.957	35.48
. 6607	. 4365	3.6	1.514	2.291	. 3311	. 1096	9.6	3.020	9.120	. 1660	. 02754	15.6	6.026	36.31
. 6531	. 4266	3.7	1.531	2.3 .4	. 3273	. 1072	9.7	3.055	9.333	.1641	. 02692	15.7	6.095	37.15
. 6457	. 4169	3.8	1.5 .49	2.399	. 3236	. 10.47	9.8	3.090	9.550	. 1622	. 02630	15.8	6.166	38.02
. 6383	. 4074	3.9	1.567	2.455	. 3199	. 1023	9.9	3.126	9.752	. 1603	. 02570	15.9	6.237	38.90
. 6310	. 3981	4.0	1.585	2.512	. 3162	. 1000	10.0	3.162	10.000	. 1585	. 02512	16.0	6.310	39.81
. 6237	. 3890	4.1	1.603	2.570	. 3126	. 09782	10.1	3.199	10.23	. 15.67	. 02455	16.1	6.383	40.74
. 6166	. 3802	4.2	1.622	2.630	. 3090	. 09550	10.2	3.236	10.47	. 15.49	. 02399	16.2	6.457	41.69
. 6095	. 3715	4.3	1.641	2.692	. 3055	. 09333	10.3	3.273	10.72	. 1631	. 023.41	16.3	6.531 6.607	42.66 43.65
. 6026	. 3631	4.4	1.660	2.754	. 3020	. 09120	10.4	3.311	10.96	.1514	. 02291	16.4	6.607	43.65
. 5957	. 3548	4.5	1.679	2.818	. 2985	. 08913	10.5	3.350	11.22	. 1196	. 02239	16.5	6.683	44.67
. 5888	. 3467	4.6	1.698	2.884	. 2951	. 08710	10.6	3.388	11.48	. 1479	. 02188	16.6	6.761	45.71
. 5821	. 3388	4.7	1.718	2.951	. 2917	. 08511	10.7	3.428	11.75	. 1462	. 02138	16.7	6.839	46.77
. 5754	. 3311	4.8	1.738	3.020	. 2884	. 08318	10.8	3.467	12.02	. 1445	. 02089	16.8	6.918	47.86
. 5689	. 3236	4.9	1.758	3.090	. 2851	. 08128	10.9	3.508	12.30	. 1429	. 02042	16.9	6.998	48.98
. 5623	. 3162	5.0	1.778	3.162	. 2818	. 07943	11.0	3.548	12.59	. 1113	. 01995	17.0	7.079	50.12
. 5559	. 3090	5.1	1.799	3.236	. 2786	. 07762	11.1	3.589	12.88	. 1396	. 01950	17.1	7.161	51.29
. 5495	. 3020	5.2	1.820	3.311	. 275.4	. 07586	11.2	3.631	13.18	. 1380	. 01905	17.2	7.244	52.48
. 5433	. 2951	5.3	1.841	3.388	. 2723	. 07.113	11.3	3.673	13.49	. 1365	. 01862	17.3	7.328	53.70
. 5370	. 2884	5.4	1.862	3.467	. 2692	. 07244	11.4	3.715	13.80	. 1349	. 01820	17.4	7.413	54.95
. 5309	. 2818	5.5	1.884	3.548	. 2661	. 07079	11.5	3.758	14.13	. 1334	. 01778	17.5	7.499	56.23
. 5248	. 2754	5.6	1.905	3.631	. 2630	. 06918	11.6	3.802	14.45	. 1318	. 01738	17.6	7.586	57.54
. 5188	. 2692	5.7	1.928	3.715	. 2600	. 06761	11.7	3.816	14.79	.1303	. 01698	17.7	7.674	58.88
. 5129	. 2630	5.8	1.950	3.802	. 2520	. 06.607	11.8	3.890	15.14	. 1288	. 01660	17.8	7.762	60.26
. 5070	. 2570	5.9	1.972	3.890	.2541	. 116.1 .57	11.9	3.936	15.19	. 1274	.01622	17.9	7.852	61.66

TABLE I-continued

- 16														
<- -														
bollage Ratio	Pouer Ratio	db	Vollage Ralio	Power Ratio	Vollage Ratio	Pourer Ralio	$d b$	I'ollage Ralio	I'oucer Hatio	Vollage IRalio	Pourer Ratio	$d b$	Vollage Ratio	Power Ralio
. 12.39	. 01585	18.0	7.943	63.10	. 1122	. 01259	19.0	8.913	79.43		10^{-1}	10	3.162	
. 12.45	. 01549	18.1	8.035	64.57	.1109	. 01230	19.1	9.016	81.28	3.162×10^{-1}	10^{-8}	10 20	3.16210	10 10
.1230	.01511	18.2	8.128	66.07	. 1096	. 01202	19.2	9.120	81.28	3.162×10^{-2}	10^{-8} 10^{-8}	20 30	10 3.162×10	10^{2}
. 1216	. 01479	18.3	8.222	67.61	. 1084	. 01175	19.3	9.1226	83.18 8.7 .11	3.162×10^{-2} 10^{-2}	10^{-8} 10^{-4}	30 40	3.162×10	10^{8}
. 1202	. 01445	18.4	8.318	69.18	. 1072	. 01148	19.4	9.333	87.10	10^{-2}	10^{-}	40	10^{2}	10^{4}
. 1189	. 01413	18.5	8.414	70.79	.1059	. 01122	19.5	9.441	89.13	3.162×10^{-3}	10^{-5}	50	3.162×10^{2}	10^{5}
. 1175	. 01380	18.6	8.511	72.44	. 1047	. 01096	19.6	9.550	91.20	$3.162 \times 10^{10^{-3}}$	10^{-8}	60	10^{2}	10^{8}
. 1161	. 013.39	18.7	8.610	74.13	. 1035	. 01072	19.7	9.661	9.3 .33	3.162×10^{-4}	10^{-1}	70	3.162×10^{3}	10^{7}
. 1118	. 01318	18.8	8.710	75.86	. 1023	. 010.47	19.8	9.772	95.50	3.162×10^{-4}	10^{-8}	80	+104	10^{8}
. 1135	. 01288	18.9	8.811	77.62	. 1012	. 01023	19.9	9.886	92.72	3.162×10^{-5}	10^{-3}	90	3.162×10^{4}	10^{9}
					. 1000	. 01000	20.0	10.000	100.00	10^{-5}	10^{-18}	100	10^{5}	10^{16}

TABLE II

Given: $\left\{\begin{array}{l}\text { Voltage } \\ \text { Current }\end{array}\right\}$ Radio

To Find: Decibels

POWER RATIOS

To find the number of decibels corresponding to a given power ratio-Assume the given power ratio to be a voltage ratio and find the corresponding number of decibels from the table. The desired result is exactly one-half of the number of decibels thus found.
Example-Given: a power ratio of 3.41.
Find: 3.41 in the table:
$3.41 \rightarrow 10.655 \mathrm{db} \times 1 / 2=5.328 \mathrm{db}$

$\begin{aligned} & \text { Voll- } \\ & \text { age } \\ & \text { Ratio } \end{aligned}$. 00	. 01	. 02	. 03	. 04	. 05	. 06	. 07 .	. 08	. 09
1.0	. 000	. 086	. 172	. 257	. 341	.424	. 506	. 588	. 668	. 749
1.1	. 828	. 906	. 984	1.062	1.138	1.214	1.289	1.364	1.438	1.511
1.2	1.584	1.656	1.727	1.798	1.868	1.938	2.007	2.076	2.144	2.212
1.3	2.279	2.345	2.411	2.477	2.542	2.607	2.671	2.734	2.798	2.860
1.4	2.923	2.984	3.046	3.107	3.167	3.227	3.287	3.346	3.405	3.464
1.5	3.522	3.580	3.637	3.694	3.750	3.807	3.862	3.918	3.973	4.028
1.6	4.082	4.137	4.190	4.244	4.297	4.350	4.402	4.454	4.506	4.558
1.7	4.609	4.660	4.711	4.761	4.811	4.861	4.910	4.959	5.008	5.057
1.8	5.105	5.154	5.201	5.249	5.296	5.343	5.390	5.437	5.483	5.529
1.9	5.575	5.621	5.666	5.711	5.756	5.801	5.845	5.889	5.933	5.977
2.0	6.021	6.064	6.107	6.150	6.193	6.235	6.277	6.319	6.361	6.403
2.1	6.444	6.486	6.527	6.568	6.608	6.649	6.689	6.729	6.769	6.809
2.2	6.848	6.888	6.927	6.966	7.008	7.0.1.	7.082	7.121	7.159	7.197
2.3	7.235	7.272	7.310	7.347	7.384	7.421	7.458	7.495	7.532	7.568
2.4	7.604	7.640	7.676	7.712	7.748	7.783	7.819	7.854	7.889	7.924
2.5	7.959	7.993	8.028	8.062	8.097	8.131	8.165	8.189	8.232	8.266
2.6	8.299	8.333	8.366	8.399	8.432	8.465	8.498	8.530	8.563	8.595
2.7	8.627	8.659	8.691	8.723	8.755	8.787	8.818	8.850	8.881	8.912
2.8	8.943	8.974	9.005	9.036	9.066	9.097	9.127	9.158	9.188	9.218
2.9	9.248	9.278	9.308	9.337	9.367	9.396	9.426	9.455	9.484	9.513
3.0	9.542	9.571	9.600	9.629	9.657	9.686	9.714	9.743	9.771	9.799
3.1	9.827	9.855	9.883	9.911	9.939	9.966	9.994	10.021	10.049	10.076
3.2	10.103	10.130	10.157	10.184	10.211	10.238	10.26.	10.291	10.317	10.3.44
3.3	10.370	10.397	10.423	10.449	10.475	10.501	10.527	10.553	10.578	10.604
3.4	10.630	10.655	10.681	10.706	10.731	10.756	10.782	10.807	10.832	10.857
3.5	10.881	10.906	10.931	10.955	10.980	11.005	11.029	11.05:3	11.078	11.102
3.6	11.126	11.150	11.174	11.198	11.222	11.246	11.270	11.293	11.317	11.341
3.7	11.364	11.387	11.411	11.431	11.457	11.481	11.504	11.527	11.550	11.573
3.8	11.596	11.618	11.641	11.664	11.687	11.709	11.732	11.754	11.777	11.799
3.9	11.821	11.844.	11.866	11.888	11.910	11.932	11.954	11.976	11.998	12.019
4.0	12.041	12.063	12.085	12.106	12.128	12.149	12.171	12.192	12.213	12.234
4.1	12.256	12.277	12.298	12.319	12.340	12.361	12.382	12.403	12.424	12.444
4.2	12.465	12.486	12.506	12.527	12.547	12.568	12.588	12.609	12.629	12.649
4.3	12.669	12.690	12.710	12.730	12.750	12.770	12.790	12.810	12.829	12.849
4.4	12.869	12.889	12.908	12.928	12.948	12.967	12.987	13.006	13.026	13.045
4.5	13.064	13.084	13.103	13.122	13.141	13.160	13.179	13.198	13.217	13.236
4.6	13.255	13.274	13.293	13.312	13.330	13.349	13.368	13.386	13.405	13.423
4.7	13.442	13.460	13.479	13.497	13.516	13.53 .4	13.552	13.570	13.585	13.607
4.8	13.625	13.643	13.661	13.679	13.697	13.715	13.733	13.751	13.768	13.786
4.9	13.804	13.822	13.839	13.857	13.875	13.892	13.910	13.927	13.9 .45	13.962
5.0	13.979	13.997	14.014	14.031	14.049	14.066	14.083	14.100	14.117	14.134
5.1	14.151	14.168	14.185	14.202	14.219	14.236	14.253	14.270	14.287	14.303
5.2	14.320	14.337	14.353	14.370	14.387	14.403	14.420	14.436	14.453	14.469
5.3	14.486	14.502	14.518	14.535	14.551	14.567	14.583	14.590	14.616	14.632
5.4	14.648	14.664	14.680	14.696	14.712	14.728	14.744.	14.760	14.776	14.791
5.5	14.807	14.823	14.839	14.855	14.870	14.886	14.902	14.917	14.933	14.948
5.6	14.964	14.979	14.995	15.010	15.026	15.041	15.056	15.072	15.087	15.102
5.7 5.8	15.117	15.133	15.148	15.163	15.178	15.193	15.208	15.224	15.239	15.254
5.8 5.9	15.269	15.284	15.298	15.313	15.328	15.343	15.358	15.373	15.388	15.402
5.9	15.417	15.432	15.446	15.461	15.476	15.490	15.505	15.519	15.534	15.549

Vollage Ratio	. 00	. 01	. 02	. 03	. 04	. 05	. 06	. 07	. 08	. 09
6.0	15.563	15.577	15.592	15.606	15.621	15.635	15.649	15.664	15.678	15.692
6.1	15.707	15.721	15.735	15.7.49	15.763	15.778	15.792	15.806	15.820	15.834
6.2	15.818	15.862	15.876	15.890	15.904	15.918	15.931	15.945	15.959	15.973
6.3	15.987	16.001	16.014	16.028	16.042	16.055	16.069	16.083	16.096	16.110
6.4	16.124	16.137	16.151	16.164	16.178	16.191	16.205	16.218	16.232	16.245
6.5	16.258	16.272	16.285	16.298	16.312	16.325	16.388	16.351	16.365	16.378
6.6	16.391	16.40-4	16.417	16.430	16.443	16.456	16.469	16.483	16.496.	16.509
6.7	16.521	16.53-	16.547	16.560	16.573	16.586	16.599	16.612	16.625.	16.637
6.8	16.650	16.663	16.676	16.688	16.701	16.714.	16.726.	16.739	16.752	16.764
6.9	16.777	16.790)	16.802	16.815	16.827	16.840	16.852	16.865	16.877	16.890
7.0	16.902	16.914	16.927	16.939	16.951	16.964	16.976	16.988	17.001	17.013
7.1	17.025	17.037	17.050	17.062	17.074	17.086	17.098	17.110	17.122	17.135
7.2	17.147	17.150	17.171	17.183	17.195	17.207	17.219	17.231	17.243	17.255
7.3	17.266	17.278	17.290	17.302	17.314	17.326	17.338	17.349	17.361	17.373
7.4	17.385	17.396	17.408	17.420	17.431	17.443	17.455	17.466	17.478	17.490
7.5	17.501	17.513	17.524	17.536	17.547	17.559	17.570	17.582	17.593	17.605
7.6	17.616	17.628	17.639	17.650	17.66%	17.673	17.685	17.696	17.707	17.719
7.7	17.730	17.741	17.752	17.764	17.775	17.786	17.797	17.808	17.820	17.831
7.8	$17.8 \cdot 12$	17.853	17.86.	17.875	17.886	17.897	17.908	17.919	17.931	17.942
7.9	17.953	17.964	17.975	17.985	17.996	18.007	18.018	18.029	18.040	18.051
8.0	18.062	18.073	18.083	18.094	18.105	18.116	18.127	18.137	18.148	18.159
8.1	18.170	18.180	18.191	18.202	18.212	28.223	18.23.	18.244	18.255	18.266
8.2	18.276	18.287	18.297	18.308	18.319	18.329	18.340	18.350	18.361	18.321
8.3	18.382	18.392	18.402	18.413	18.423	18.434	18.44.4	18.455	18.465	18.475
8.4	18.486	18.496\|	18.506	18.517	18.527	18.537	18.547	18.558	18.568	18.578
8.5	18.588	18.599	18.609	18.619	18.629	18.639	18.649	18.660	18.670	18.680
8.6	18.690	18.700	18.710	18.720	18.730	18.740	18.750	18.760	18.770	18.780
8.7	18.790	18.800	18.810	18.820	18.830	18.840	18.850	18.860	18.870	18.880
8.8	18.890	18.900	18.909	18.919	18.929	18.939	18.949	18.958	18.868	18.978
8.9	18.988	18.998	19.007	19.017	19.027	19.036	19.046	19.056	19.066	19.075
9.0	19.085	19.094	19.104	19.114	19.123	19.133	19.143	19.152	19.162	19.171
9.1	19.181	19.190	19.200	19.209	19.219	19.228	19.238	19.247	19.257	19.266
9.2	19.276	19.285	19.295	19.304	19.313	19.323	19.332	19.342	19.351	19.360
9.3	19.370	19.379	19.388	19.398	19.407	19.416	19.426	19.435	19.441	19.453
9.4	19.463	19.472	19.481	19.490	19.499	19.509	19.518	19.527	19.536	19.545
9.5	19.554.	$19.56 \cdot 4$	19.573	19.582	19.591	19.600	19.609	19.618	19.627	19.636
9.6	19.645	19.654	19.664	19.673	19.682	19.691	19.700	19.709	19.718	19.726
9.7	19.735	19.714	19.753	19.762	19.771	19.780	19.789	19.798	19.807	19.816
9.8	19.825	19.833	19.842	19.851	19.860	19.869	19.878	19.886	19.895	19.904
9.9	19.913	19.921	19.930	19.939	19.948	19.956	19.965	19.974	19.983	19.991
Voltage Ratio	0	1	2	3	4	5	6	7	8	9
10	20.000	20.828	21.584	22.279	22.923	23.522	24.082	24.609	25.103	25.575
20	26.021	26.414	26.818	27.235	27.604	27.959	28.290	28.627	28.943	29.248
30	29.542	29.827	30.103	30.330	30.630	30.881	31.126	31.364	31.596	31.821
40	32.041	32.256	32.465	32.669	32.869	33.06 :	33.255	33.442	33.625	33.804
50	33.979	34.151	34.320	34.486	34.648	34.807	34.964	35.117	35.269	35.417
60	35.563	35.707	35.848	35.987	36.124	36.258	36.391	36.521	36.650	36.777
70	36.902	37.025	37.147	37.266	37.385	37.501	37.616	37.730	37.842	37.953
80	38.062	38.170	38.276	28.382	38.486	38.588	38.690	38.790	38.890	38.988
90	39.085	39.181	39.276	39.370	39.463	39.554	39.6 .45	39.735	39.825	39.913
100	40.000	-	-	-	-	-	-	-	-	-

Useful Servicing Formulas

AK NOW LEDGE of the elementary principles of electricity is necessary so that all the problems encountered in radio receiver servicing can be isolated and solved by the proper application of fundamental truths. Without further preamble, let us consider that statement upon which all forms and branches of electrical engineering is based:

OHMS LAW

Statement of Ohms Law: "Current flowing in a conductor will increase directly with an increase in voltage, and will decrease direr tly with an increase in resistance." In other words, voltage is the cause, while current is the effect; and the amount of the effect is directly dependent upon the amount of cause and inversely upon the amount of opposition offered to the effect.

Mechanical Analogy: Suppose that ly exerting a certain effort, a man is able to walk a certain distance on a smooth city road. With double the effort, he can walk double the distance on the same road. Assume that on a rough country road, with the same effort, he can walk only half this distance, or with double the effort, he can walk the original distance. Applying this analogy to electricity, a certain voltage causes a certain current to flow. Double the voltage will cause double the current to flow, if the resistance is the same. If the resistance is doubled, however, the same voltage will result in only half the current flow. With double the voltage and double the resistance, the same current will flow.

Ohms Law (Equation):

$$
\mathbf{I}=\frac{\mathrm{E}}{\mathbf{R}} ; \quad \text { Current }=\frac{\text { Voltage }}{\text { Resistance }}
$$

Where I, E, and R are expressed in amperes, volts, and ohms respectively. The terms of voltage, current and resistance are used with the understanding that the reader has some elementary knowledge of electricity. Inasmuch as the limitations of this book prevent a complete review of the fundamentals, reference can be made to books covering the subject of fundamentals in electrical engineering.

The equations below all mean the same thing, and serve to express in various forms the idea set forth above.
$\mathbf{E}=\mathbf{I} \times \mathbf{R} ; \quad$ Voltage $=$ Current \times Resistance

$$
\mathbf{R}=\frac{\mathbf{E}}{\mathbf{I}} ; \text { Resistance }=\frac{\text { Voltage }}{\text { Current }}
$$

The substitution of numerical values in place of names or letters will make the meaning clearer. It will be seen that if any two values are known, the third can be determined from these equations.

Problem: A choke used in the filter system of a "B" supply unit has a resistance of 100 ohms, and the voltage drop across the choke is 50 volts. What is the current flowing through the choke?

Using the first statement of Ohms Law, and substituting values for words: I equals 50 volts divided by 100 ohms. Thus, the current is . 5 ampere (Figure 1A).

Figure 113 shows another application of the law that can be solved by the third

Figure 1. Illustrating fundamental radio circuil calculntions which require familiarity wilh ohms law. (A) Solving for current flowing in a circuit; (B) the resistance required to effect a known vollage drop; (C) the vollage drop across a known value of resistance.
slatement. Note should be taken of the fact that the voltage across the resistor IR is not 300 volts, but the difference between the two voltages indicated, or 50 volts. Substituting in the equation:

$$
\mathrm{R}=\frac{\mathrm{E}}{\mathrm{I}} ; \quad \mathrm{R}=\frac{50}{.005}=10,000 \text { ohms. }
$$

In Figure 1C is shown a common calculation necessary in modern service work. Here we nust determine the value of the bias resistor for a particular tube. This value is easy to obtain, thus:
$\mathrm{E}=\mathrm{I} \times 1$; $\mathrm{E}=.005 \times 2,000=10$ volts.

$$
\begin{aligned}
& \quad \text { Ohms Law in a Nutshell } \\
& \frac{\mathrm{E}}{\mathrm{I} \times \mathrm{R}} \\
& \begin{array}{l}
\mathrm{E}=\text { Voltage } \\
\times=\text { Multiply by } \quad \mathrm{I}
\end{array}=\text { Current }
\end{aligned}
$$

Put your thumb over the unknown-or the synibol designating the value you want to know- thus to find voltage, cover \mathbf{E} and the answer is: multiply current by resistance.

Power

Definition. "I'ower is the rate of doing work." Thus, one man may perform a certain piece of work in a day, while another may do the same thing in an hour. The second man has expended more power. "Electrical power is the proluct of the voltage times the current," or in symbols:
$\mathrm{W}=\mathrm{E} \times \mathrm{I}$; Power (watts) $=$ Voltage (in volts) \times Current (in amperes).

Problem: In Figure 113, how many watts are dissipated in the resistor? Watts $=50$ volts $\times .005$ amperes $=.25 \mathrm{~W}$ att.

In many cases it is more convenient to find the electrical power loss in terms of resistance. 'Thins, the equation W equals E times I can le stated in terms of the circuit resistance and the current flowing through it.

Figure 2. A specific illustration of calculating the watlage rating of a resistor in a radio circuil.
$\mathrm{W}=\mathrm{I}$ times I times R; or $\mathrm{W}=\mathrm{I}^{2} \times \mathrm{R}$ or, in other words, watts equal current (amperes) times current (amperes) times resistance (ohms).

In Figure 2 there is a circuit with a resistor in series with the cathode and the ground of a '27 type tube. This resistor supplies the bias for the tube. If the resistance has a value of 2,000 ohms, what is the power loss in the resistor?
$W=.005 \times .005 \times 2,000=.05$ watt.
Another form of this equation states the power in terms of voltage and resistance.

$$
W=\frac{\text { voltage } \times \text { voltage }}{\text { resistance }} \text { or } W=\frac{E^{2}}{R}
$$

A tube has a DC plate resistance of 40,000 ohms and the voltage applied between plate and ground is 200 volts. What is the power lost in the plate circuit of the tube? See Figure 3.

$$
W=\frac{200 \times 200}{40,000}=1 \mathrm{Watt}
$$

Figune 3. Figuring the power or "walls" dissipated
in a radio circuil.

Kirchhoff's Laws

These laws depend on Ohms Law. They constitute a further application of Ohms Law to more complicated circuits.

In addition to simple electrical circuits, conductors may be connected in various complicated networks, all of which come under the heading of "divided circuits." By means of Kirchhof's Laws, the current in any part of a divided circuit may be found, if the resistances of the various parts, and the e.m.f.'s (volts) are known.

Kirchhoff's First Law: "Any current flowing to a point in any electrical circuit is equal to the sum of the currents flowing away from that point."

Kirchhoff's Second Law: "In any closed electrical circuit the sum of the impressed electromotive forces will equal the sum of the voltage drops." This statement reguires moxlification, in so far as "addition" of voltages is concerned. Voltages are added, provided that they are in the same direction,
but must be subtracted if in opposite directions.
An example of Kirchhoff's first law is seen in Figure 4 where the sum of the currents, 8 amperes and 4 amperes, flowing towards point A, is equal to the current, 12 amperes leaving point A.
Kirchhoff's second law is also numerically illustrated in Figure 4. Assume that the resistances of various parts of the circuit. are as marked, and that the total internal resistance of the battery is .06 ohm . Then according to the statement of the second law, if the impressed voltage is 7.12 volts:

Figotes 4. Illustrating Kirchhoff's first lau: "a current flowing into a circuil is the eqtal to the current leaving the circuiu.'
Impressed Voltage $=\mathbf{7 . 1 2}=$ total voltage drop through the lower circuit.
Impressed Voltage $=12 \times .1$ (C to 13) plus 4×1 (B to A in lower branch) plus $12 \times .1$ (A to D) plus $12 \times .06$ (D to C through battery).
Impressed Voltage $=$ total of 7.12 volts.
In a like manner, impressed voltage equals tolal voltage drop through the upper circuit.
$7.12=12 \times .1(\mathrm{C}$ to 13$)$ plus $8 \times .5$ (B to A through upper circuit) plus $12 \times .1$ (A to D) plus $12 \times .06$ (D to C through battery), a total of 7.12 volts.

Conduetors and Resistors

Materials are divided into two classes-conductors and non-conductors. Materials which offer a relatively easy path for the flow of electricity are called "conductors." In general, the pure metals are of this class, copper wire being nearly always used as a low-resistance conductor.
In reality there are no materials which are not conductors of electricity, but certain materials are such poor conductors that they may be classed as non-conduclors. When such non-conductors are used to reduce an electric current to a predetermined small velue, they are called "resistors."

Determining Resistance

(Excepting Temperature Change)
The material of which a conductor is composed has an important bearing upon its resistance. Thus a unit length and unit crosssection of aluminum has about one and onehalf times the resistance of copper having the same dimensions. Platinum has alout six times the resistance of copper.

The longer the conductor, the greater the resistance; while the greater the cross-sectional area, the less the resistance. The length of a conductor is usually expressed in feet, while the cross-sectional area is expressed in circular mils (equivalent to its diameter in thousandths of an inch, squared).

It can be conveniently remembered that No. 10 copper wire has a diameter of .1 of an inch (100 mils, or 10,000 circular mils), and
that 1,000 fret of such wire will have at rosistance of 1 ohm. It is possible to calculate the approximate resistances of copper wire (Brownand Sharpeor American Wire (iange) from the above. 'Thus, for wires larger than No. 10, the resistance is halved for every third number of larger wire. As an example, No. 7 wire has an approximate resistance of $1 / 2$-ohm par 1.000 ft . In a like manner, for wires smaller than No. 10, the resistance is doubled for every third number of smaller wire. The resistance of No. 13 is about 2 ohms per thousand feet; of No. 16, approximately 4 ohms per thousind feet, etc. The two numbers between every third may be calculated from the others, since the next smaller size has about 1.25 greater resistance, while the second smaller size has about 1.6 greater resistance. Thus the resistance of No. 11 wire is approximately 1×1.25 equals 1.25 ohms per thousand feet; and that of No. 14, approximately 1.6 ohms per thousand feet.

Effect of Temperalure on Resislance: The resistance of practically all electrical conductors increases with increase of temperiture. Carbon, practically the only exception, decreases in resistance with any substantial increase in temperature.

Two words synonymous with a resistance are "temperature coeflicient." The term "coefficient" refers to a number used as a nultiplier. The temperature coefficient is that multiplier which will give the increase in resistance per degree rise in temperature for each ohm of the naterial. For all pure metals, the temperature coefficient is approximately . 0023 (where temperature is measured in degrees Fahrenheit.). The figure .0023 is close enough for all ordinary work although the temperature coefficient is not constant for all initial temperatures.

Current Carrying Capacity

The allowable rise in temperature of the conductors or resistors in an electrical circuit is the final factor which determines its current carrying capacity. If the conductors or resistors are covered, the naximum allowable temperature of the insulation will impose the limitation, since the insulation or the enamel covering may crack, char, or even burn at high temperatures.

The temperature rise will be determined by the difference between the heat generated and the heat dissipated, or removed. Thus, a certain amount of electrical energy will be converted into heat and some of this heat will be carried away. The remaining heat will serve to increase the temperuture. Of course, th certain amount of heat energy will raise the temperature of some materials a great deal more than others. Hence, the material of the conductor will also have some bearing on the temperature rise, aside from its resistance.

The heat generated in an electrical circuit will depend upon the value of the current flowing and upon the resistance in the circuit. If the current is doubled, the heat generated will he quadrupled. If the resistance is doubled, the heat generated will simply be doubled (if the current is constant). Thus, an increase of current has a much greater elfect on the amount of heat generated than proportionate increase of resistance. Any-

Figune. 5. Illustrating the effect of resistances conmected in series. The tolal resistance is equal to the sum of the resistances in the circuit.
thing that will increase the resistance of a circuit will increase the amount of heat generated.

Safe Current Carrying Capacities: In cases of resistor replacement, it is wise to replace with a resistor that will dissipate at least three times the power to be wasted in the circuit.
Vollage Drop: There is a difference in voltage between any two points in a circuit between which there is resistance, and this difference in voltage is known as the vollage drop. The difference in the voltage is determined by the resistance between the two points and the current flowing. If we desire to know the value of the resistance to be placed in series with a 201A type tube in order to operate it from a 6 -volt storage battery, we must first determine the voltage drop required between the battery and the filament of the tube, namely 1 volt. Having determined the voltage to be dropped, and knowing the current required by the tube (.25 ampere), we can find the value of the resistance hy Ohms Law. Il equals E/I. Thus the resistor has a value of 4 ohms.
Circuits: Circuits can be classified into three general groups: Series, parallel, and series parallel. Examples of which will be covered in greater detail.
Circuits with Resislors in Series: If resistances are connected in series, the total resistance is the sum of all of the resistors in the circuit. See Figure 5. Thus the equation may be written R (eff.) equals R1 plus R2 plus H3 plus RI 4 plus R5, etc.

It will be noted on examination of the diagram that in series circuits the current is the same through all the resistors, but that the voltage drop across the resistors will depend upon the value of the individual resistor.

Circuits with Resistors in Parallel (equal value of resistance): In many circuits there

Figune 6. Illustrating the effect of paralleled resistances. The current divides intu parh resisfor so that the sum of the currents flowing in each equal that flowing out of the ballery or generalor.
are combinations of resistors in parallel: that is to say, the current path is divided through two or more resistors. If the numerical values of the resistors are equal, then the effective circuit resistance can be obtained from the following equation:

Il (eff.) equals I / N,
wherein R is the value of one of the resistors and \mathbf{N} is the number of resistors in the circuit.
Example: There are 6 resistors in a circuit and they are in parallel. The resistance of each one is 12 ohms. Then dividing 12 by 6 we have the effective resistance, which is 2 ohms.
The solution of equal values of resistors in parallel is an extremely simple operation, but it must be remembered that the formula is useful only when the resistors are equal in value.
A circuit with resistors in parallel is shown in Figure 6. Note that if the resistors are equal in value, the same current will flow through both resistors, and the same voltage drop will appear across them. The sum of the currents through the resistors will equal the total current flowing out of the battery, E.

Circuits with Resistors in Parallel (unequal values of resistance): Many times we will come across circuits with resistors in parallel which are unequal in value. This is shown in Figure 6. If there are but two resistors in the circuit, as shown, then we can use the following formula:

$$
R(\mathrm{eff} .)=\frac{R 1 \times R 2}{R 1+R 2}
$$

Example: We have two resistors in parallel of 5 and 10 ohms, respectively. What is the effective value of resistance? Now, 5 times 10 is $50 ; 5$ plus 10 is $15 ; 50$ divided by 15 gives the effective value of resistance which is 3.3 ohms .

Figure 7. The effect of a multiple number of resisiors in parallel in a circuil. See lext for full delails.
Note that in circuits with resistors in parallel, the same voltage will appear across the resistors, but that the current through the resistors will vary with the value of the individual resistor.
Circuil with Resistors in Parallel (two or more of unequal value): Fikure 7 shows a circuit in which there are four resistors in parallel and unequal in value. In this case we would use the formula commonly known as the "reciprocal of the sum of the reciprocals."
Thus:

$$
\mathrm{R}(\mathrm{eff})=\frac{1}{\frac{1}{\mathrm{R} 1}+\frac{1}{\mathrm{R} 2}+\frac{1}{\mathrm{R} 3}+\frac{1}{\mathrm{R} 4}} \text { etc.; }
$$

substituting:
R (eff.) $=\frac{1}{\frac{1}{10}+\frac{1}{6}+\frac{1}{5}+\frac{1}{7}} ;$
solving:

$$
\frac{1}{10}=.1 ; \frac{1}{6}=.166 ; \frac{1}{5}=.2 ; \frac{1}{7}=.14 ;
$$

adding:
.1 plus . 166 plus . 2 plus . 14 equals .606 ; Finding the reciprocal:

$$
\frac{1}{.606}=1.6 \text { ohms effective. }
$$

The sum of the currents in the branches of a parallel circuit will equal the total current flowing into the circuit. From an examination of the circuit, we find that the sum of the currents is $9.6+$ amperes.

The complete solution of the problem of Figure 7 has been carried out so that any one desiring to use these methorls of calculation can do wo. This solution will serve as a model and aid in studying just how the formula is to be handled. The author has gone to some lengths here in the solution of the problem but his experience indicates that there is never enough said on this subject as far as the average Service Man is concerned. Note that the same voltage appears across all the resistors and that the current through the individual resistors will be dependent on their value.
Resislance Networks (with resistors in series and in parallel): Circuits are encountered with resistors in series and in parallel. The solution of the effective value of resistance is obtained by breaking up the circuit into its local circuits, solving each portion consisting of parallel circuits, and then resolving them into simple series circuits. Figure 8 is an example along these lines.
Solution: The first thing to do is to solve all of the branch circuits. Circuit R1, R2, R3 has an effective resistance of 3 ohms .
Circuit R5, R6, R7 has a resistance of 2.2 ohms.

Circuit R8, R9 has a resistance of 2.2 ohms.
As the above parallel circuits are in series with resistor R., we find the effective value

Figures 8. A series circuil arrangement of paralleled resistors and how they affect the current fow. Refer to lext for melthod of calculating.
of resistance by adding 10, 3, 2.2 and 2.2 togetber. This totals 17.4 ohms.

Resistor R10 is connected across the voltage supply, and the effective value of the resistance network 121 and R9 is, in turn, connected across R10. Thus, 110 is in parallel to the 17.4 ohm resistance of the network.

Solving for parallel circuits $50 \times 17.4 / 50$ plus 17.7 we have the effective total circuit resistance of 12.8 ohms.

Knowing that the voltage applied across this network is 100 volts, and that the effective resistance is 12.8 ohms, then $100 / 12.8$ is 7.8 amperes, or the total current flowing in the circuit.
The reader may think that a problem of this type can hardly occur, but if he will study the circuit of Figure 9 he will see the need for some practical knowledge on the solution of similar problems. The circuit of Figure 9 is a receiver breakdown circuit of the RCA Madiola 80. Note that there are many small series circuits and that they are all in parallel across the power supply which takes the place of the battery E in all the problems set out above.

Formulas in Brief
 Resistances in Series

$\mathbf{R}_{\imath}=\mathbf{R}_{\mathbf{1}}+\mathbf{R}_{\mathbf{2}}+\mathbf{R}_{\mathbf{1}} \ldots \mathbf{R}_{\mathbf{n}}$
Where: R_{t} is the total value of all resistors connected in series.
$\mathbf{R}_{1}, \mathbf{h}_{2}$, etc., are the individual resistors.

Yigure 9. A typical radio receiving circuit, the Radiola 80, and how series and parallel resistors
are practically applied.

Resistances in Parallel
$R_{t}=\frac{1}{\frac{1}{R_{1}}+\frac{1}{R_{2}}}=\frac{R_{1} \times R_{2}}{R_{1}+R_{2}}$
Where: \mathbb{R}_{t} is the effective value of all the resistors connected in parallel.
$\mathbf{h}_{1}, \mathrm{H}_{2}$ are the individual resistors.
Example: What is the effective value of resistance of a circonit having resistors of 30,000 and 60,000 ohms connected in parallel?

$$
H_{t}=\frac{30,000 \times 60,000}{30,000+60,000}=20,000 \mathrm{ohms}
$$

Reactance (Inductive) of a Coil

$$
2 \pi \mathrm{fI}_{2}=\text { Reactance (ohms) }
$$

Where: $\pi=3.11$
$f=$ frequency in cycles per second.
$\mathrm{L}=$ inductance in henries.
Example: What is the reactance of a 20 henry choke at 50 cycles?
$6.3 \times 50 \times 20=6,300$ ohnms.

Reactance (Capacitative) of a Condenser

$$
\frac{10^{\circ}}{2 \pi f^{C}}=\text { Reactance (ohms) }
$$

Where: $\pi=3.14$
$f=$ frequency in cycles per second.
$C=$ cupacity in microfarads.
Example: What is the reactance of a 2 -mf. condenser at 50 cycles?

$$
\frac{10}{6.3 \times 50 \times 2}=1,590 \text { ohms }
$$

Wavelength

$$
\lambda=1,885 \sqrt{\mathrm{LC}}
$$

Where: $\lambda=$ wavelength in meters.
$\mathrm{L}=$ = inductance in microhenries.
$\mathrm{C}=$ capacity in microfarads (mf.).
Example: To what wavelength will a . $0005-\mathrm{nff}$. (500 mmf .) condenser, in parallel with a 180-microhenry coil, tune?
$1,885 \sqrt{180 \times 0.0005} 565$ meters

$$
\begin{gathered}
\text { Frequency } \\
\mathrm{f}=\frac{10}{2 \pi \sqrt{\mathrm{IC}}}
\end{gathered}
$$

Where: $f=$ frequency in cycles.
$\pi=3.14$
$\mathrm{L}_{4}=$ inductance in microhenries.
$\mathrm{C}=$ capacity in microfarads (mf.).
Example: 'To what frequency will a 0.0005 muf. (500 mmf .) condenser, in parallel with a 180-microhenry coil, tune?

$\frac{100}{6.3 \sqrt{180 \times 0.0005}}$	$=530,000$ cycles $=530$
kilocycles $=565$ ineters	

Impedance of a Circuit

When an inductance, capacity and a resistance are connected in series, the comhined effect is called the impedance of the circuit.
$Z=\sqrt{I u^{2}+\left(X_{1}-X_{c}\right)^{2}}$
Where: $Z=$ imperlance in ohms.
I
$\mathbf{X}_{1}=$ reactance of inductance in ohms.
$X_{c}=$ reactance of capacit y in ohns.

Ohms Law for A.C. (ircuits

$$
\mathrm{E}=\mathrm{IZ} \quad Z=\frac{\mathrm{E}}{\mathrm{I}} \quad \mathrm{I}=\frac{\mathrm{E}}{Z}
$$

Where: $\mathrm{Z}=$ impedance of circuit in ohms.
$E=$ potential difference in volts (V).
$I=$ current in amperes (A).

The Decibel

The number of decibels corresponding to a given power ratio is 10 times the common logarithm of the ratio.

$$
N=10 \log _{10} \frac{P_{2}}{P_{1}}
$$

Where: $\mathrm{N}=$ decibels.

$$
\frac{P_{2}}{P_{1}}=\text { power ratio }
$$

In the case of voltage or current the number of decibels corresponds to 20 times the common logarithm of the ratio.

Example: What gain in decibels will there be if the voltage in an amplifier rises to 7 times the normal level at a certain frequency?
$N=20 \log _{10} 7=20 \times 0.845=17$ decibels.

Color Code Chart for Fixed Condensers

First Dot	Second INot	Third Dot
Mlack....... . 0	Black...... 0	
13rown....... 1	Hrown..... 1	Mruwn. 0
Mred......... ${ }^{2}$	Hed. 2	Red. 00
Yeilow...... ${ }^{\text {a }}$	Yellow..... ${ }^{4}$	Yrange 0,000
Green....... 5	Green...... 5	(ircen. 000000
	Hlue. 6	Hhue.000,000
Purple...... . . 7	Purple. . . . 7	Purple. . $0,000,000$
Gray........ 8	Gray..... ${ }^{8}$	Ciray...00,000.000
White....... 9	White..... . 9	White 000,000,000

A. C. Volfage and Power

The Marimum Voltage Em is $1.414 \times$ the Effective Voltuge E.
The Effective Voltage E e is $0.707 \times$ the Marimum Voltage Em.
The Averate Voltage F_{e} is $0.6 .36 \times$ the Marimum Voltage Em .
The Power in an AC Circuit $W=$

$$
I \times E \times \frac{I}{Z}
$$

Where the Angle of Lag or lead, Φ and the Power Fuctor $\frac{\mathrm{l}}{\mathrm{Z}}=$ Cosine Φ,
Sine $\Phi=\frac{X}{Z}$, and Tangent $\Phi=\frac{X}{I T}$

Oscillafory Circuit Values

Where λ ("lambla") is the Wayelengath in Meters, $I_{\text {s }}$ is the Inductance in Mroohennies and C is the Capacity in Nicmofaliads.
The IResonant Piequency in Ciycles is:

$$
\begin{gathered}
\operatorname{Fr}=\frac{159,160}{\sqrt{L \times C}} \\
(\lambda=188.2 \sqrt{L \times C}
\end{gathered}
$$

The Decrement of a Circhit is ("Delta")

$$
\delta=\frac{\mathrm{R}}{2 \mathrm{frL}}=3.1416 \times \frac{\mathrm{R}}{\mathrm{xL}}
$$

Where the Power Facton is $\frac{\mathrm{I}}{\mathrm{xL}}$

Vacuum-Tube Formulas

Amplification constant ("mu") μ equals Change in Ilate Voltage (Es)
Change in (irid Voltage (Eg)
Plate Impedance (in ohms) rp equals Change in Ilate Voltage (E_{p})
Change in Plate Current (I_{p})
Mutual Conductance gm equals
Change in I'late Current (Ip)
Change in Cirid Voltage (Lig)
When the Plate Current is measured in Amperes; the Matual Condnctance
$g m$ in Micromios $=\frac{\mu}{r p} \times \mathbf{1 , 0 0 0 , 0 0 0}$
When Eig is the Input Voltage, $\mathrm{r} p$ is the Plate
Impodance and R_{p} is the External I'late
Impedance or Load Impedance, the
Voltage Amplification $=\frac{\mu \times \mathrm{E}_{g} \times \mathrm{K}_{p}}{\mathrm{r}_{p}+\mathrm{K}_{p}}$

Power Output

When Eg expresses the IRMS (Root-MeanSquare) Effective Value of the AC Input, the

$$
\text { Power OUTPUT }=\frac{\mu^{2} \times \mathrm{E}_{g^{2}} \times \mathrm{I}_{p}}{\left(\mathrm{r}_{p}+\mathrm{K}_{p}\right)^{2}}
$$

The Maximum Power Output is $\frac{\mu^{2} \times E g^{2}}{4_{r p}}$
The Maximum Undistonted Power Output

is

When Eg is the Maxmum (Peak) A. C. Input Value
The Maximum Undistorted Power Output is $\frac{\mu^{2} \times \mathrm{E}_{\boldsymbol{g}}{ }^{2}}{9_{r p}}$

Transformer Ratios

$\frac{\text { The Voltage across the Secondary }}{\text { The Voltage across the Primary }}$ equals
The Number of Secondary Turns
The Number of Primary Turns

Alternating Current

Where Z is the Impedance in Ohms, E is Effective Electromotive Force in Volts, and I is Current Intensity in Amperes, then

$$
I=\frac{E}{Z} \quad E=Z \times I \quad Z=\frac{E}{I}
$$

Where I, is the Inductance in Henries and C. the Capacity in Farads, f is the Frequency in Cyoles (per second), then in olmes,
The Inductive Reactance $\mathrm{X}_{\mathrm{L}}=6.283 \times \mathrm{fL}$ The Capacitative Reactance $\mathrm{Xc}=\frac{1}{6.283 \times f \mathrm{C}}$

$$
\text { The Resonant Frequency is } \frac{1}{6.283 \sqrt{\text { LC }}}
$$

The Impedance of a circuit consisting of a resistor and capacitor in series is:

$$
Z=\sqrt{I^{2}+X c^{2}}
$$

The Impedance of a circuit consisting of a resistor in parallel with a condenser is:

$$
Z=\frac{I R X c}{\sqrt{1^{2}+X c^{2}}}
$$

Measurement of Radio Components

MANY servicemen waste much time and effort in their daily work berause they are not adequately equipped to make measurements of the three leading electrical characteristics of receivers or amplifiers. That is, Resistance, Capacity and Inductance. While excellent nationally known and proven test equipment for every practical need is available to all-still there is a need for clear, simple, practical information with which these measurements should be made.

Before going into the subject, let us briefly consider the degree of accuracy which must be observed in making every-day measurements.

During a conversation we were informed that a bridge just purchased "was not accurate." Further questioning brought out the fact that the accuracy of the bridge was 2% plus or minus, and yet the owner thought the bridge was not sufficiently accurate. Such is far from being the case, because a tolerance of plus or minus 2% is insignificant when compared to the usual conmercial tolerance, which is usually plus or minus 10%, and in many cases plus or minus 20%.

Because all radio parts are subject to changes caused by humidity and temperature, it is necessary that there be an allowable tolerance from specified values. Such a variation does not introduce any appreciable errors in the operation of the receiver, because there are adjustments or balancing factors present that offset them.

Measuring Instruments

Practically all servicemen possess an ohmmeter and are thoroughly familiar with its use and time saving features. An ohmmeter is not as accurate as even a poor bridge. Very few ohmmeters have an error of less than 10%, because the meter is usually made to a 2% limit and the additional errors of calibration and reading increase the total error. In addition, the ohmmeter is useful only for measuring resistance values, and can not be used to measure inductance or capacity.

Inductance and capacity in large values can be measured at low frequencies by means of alternating current voltnieter and ammeters, or nilli-ammeters. Unfortunately, such AC meters are expensive and entirely too limited in their application to be of any real assistance to the servicenan in his daily work. Then, too, they are useless for the measurement of low values of inductance or capacity at the high frequencies employed in radio receivers.
There are two instruments which you can either buy or build that will save you as much time and effort as your ohmmeter. These two instruments are respectively the Alternating Current Bridge, and the Vacuum Tube Voltmeter.

Practical AC Bridge

Too many servicemen struggle along without the aid of an AC bridge, because it is a general opinion that a bridge is useful only where extremely accurate measurements need to be taken, and that a bridge is worthless unless its accuracy is of the "umpteenth" degree.

Where funds are lacking for the inumediate purchase of nationally known equipment, you can easily build a universal AC bridge which will be accurate within 4% or 5%, at very little cost or expenditure of time. With this bridge, you may accurately measure a wide range of inductance, capacity or resistance at practically any audio frequency. You will find this device to be a great time saver, because it will no longer be necessary to "guess" at the inductance of a tuning coil, or of a choke, or the capacity value of any condenser or circuit which you may encounter. In addition, impedance ratios are directly and quickly ascertained, which will assure you of a correct "match" when working on sound systems, multiple speaker installations or other such types of work.

Before entering upon the description of the universal AC bridge, it is well to briefly outline the action which takes place in a bridge circuit.

Figure 1 illustrates the common DC or Wheatstone bridge, consisting of four arms of resistance labeled A, B, C and D. When the ratio of resistance A to that of B is equal to the ratio of C to D, there will be no potential difference across the meter, or, in other words, the current will be divided equally across the arms of the hridge and it is said to be "balanced." For explanation, let us assume that A has the value of 10 ohms, and B a value of 2 ohms. If C is 10 ohms and D is 2 ohms, the bridge will be balanced.

Figure 1
To measure an unknown resistance, we can connect it into the bridge in place of arm C. Then by changing the values of the ratio A to B , or by leaving this ratio fixed and
changing the value of D until the meter reads zero (or as we say, the bridge is again balanced), it is easy to find the unknown resistance, because the ratio between the unknown resistance and the resistance of D is exactly equal to the ratio of \mathbf{A} to \mathbf{B}. The important point is that the ratio of A to 13 may be fixed, and the value of D varied to obtain balance, or, because it is easier to change the ratio of A to B, D may be a fixed value. It has been found convenient to make D a fixed whole number value such as 10 or 100 , and to change from one value to another by plugging-in or switehing. Then by varying the ratio $A B$, it is only necessary to consider that the unknown resistance, generally designated by X, bears the same relation to the known value of I) as A does to B. This is usually expressed by the formula:

$$
\mathrm{X}=\mathrm{D} \frac{\mathrm{~A}}{\mathbf{B}}
$$

In the AC bridge, a resistance must be compared with a resistance, and as a general rule, a capacitance with a capacitance, and similarly an inductance with an inductance. However, there are exceptions to this rule, but for sinuplicity's sake, it is usually more convenient to use an inductance standard for one arm of the bridge when measuring inductance, and similarly a standard capacitor for one arm of the bridge when measuring capacity. However, the ratio arins A and 13 may consist of pure resistance, regardless of whether we are measuring resistance, inductance or capacity.

One peculiarity of the AC bridge is that a separate means must be provided for balancing out the effects of stray capacity, which is not directly involved in the measurement, but which will cause erroneous readings if not compensated. The effect of these stray capacity currents is most noticeable in the region of impedance of 50,000 ohms and higher.

The usual form of compensation employed in the AC bridge is a potentiometer connected across the source of energy with the moving arm of the potentioneter connected to ground so that the stray capacities introduced may be balanced out. This system is usually referred to as the Wagner ground, or earth connection.

Another peculiarity of the AC bridge is that it measures capacity or inductance in terms of impedance; i.e., reactance.

The impedance of a capacitor or inductor is composed principally of capacitive or inductive reactance. Unfortunately, resistance is also present and will give a false reading if not compensated or balanced out. For instance, when measuring the inductance of a choke it is necessary to overcome the effects of the resistance of the winding in order to find the inductive reactance. It is also necessary to compensate for the capacity present in the winding, but this will be considered later.

Both the "standard" and unknown inductors possess resistance. We may balance these resistance values by means of a variable resistance and a switch arranged so that this resistance may be added in series with either the "standard" or unknown inductor. The variable resistor is usually referred to as the "Phasing Control" and is usually provided in a "coarse" and "fine" adjustment. After the resistance or "phase" is equalized the bridge may be balanced for the inductive reactance.
The capacitive reactance present in a choke or inductor and referred to as the "distributed capacity" may be determined in several ways, one of which is to shunt a condenser across the inductor and measure the impedance at a rather high frequency. Then make a second measurement at a frequency twice the first frequency. Then calculate the distributed capacity by means of commonly used formulas.
The "inductive reactance" present in condensers is usually too small to be measured except by means of special and complicated circuits. It is not necessary to consider this component in ordinary work.
Figure 2 illustrates the circuit of an easily built universal AC bridge.

$T J=Y A X L E Y T I P$ JACKS $P 3=Y A X L E Y$ CIOMP Pl=YAXLEY E1OMP P4 = YAXLEY C5MP
P2 = YAXLEY C10OP

$$
\begin{aligned}
& \text { S1=YAXLEY } 2003 \text { P B. SWITCH } \\
& \text { S2, S3=YAXLEY NO. } 11 \text { MIDGET SW } \\
& 1.365,3.366 \text { YAXLEY BAR KNOBS }
\end{aligned}
$$

Figure 2
The parts for this bridge should be assembled in a neat manner, preferably, but not necessarily, in a metal box with all the parts insulated from the box, with the exception of potentiometer P4, which may be mounted directly to the metal, and in addition should have the moving arm soldered to the box and connected to a binding post or pin jack for a ground connection.

It is hardly necessary to mention that the box should be of copper, aluninum or brass, as iron is not a good conductor. It is also advisable to enclose the metal box within a wooden box, as there may be times when it will be necessary to use the bridge at a fairly high potential to ground.

Notice-Potentiometer E10N1P is made to a commercial tolerance of plus or minus 10%. Check the potentiometer to be certain it is of 10,000 olims or more, rather than slightly below 10,000 ohms.
In addition to the list of parts given in Figure 2, it is necessary to procure precision resistors, capacitors and inductors.

It is advisable to procure three each of these precision units in the following values:

Of Resistors- 10 ohms, 1000 ohms, and 100,000 ohms-all three to be plus or minus 1% or less.
Of Capacitors-. $01 \mathrm{mfd} ., 1 \mathrm{mfd}$., and 5 nifd.
Of Inductors-1 each of 1 henry, 10 millihenries and I millihenry, or 1000 microhenries.
The resistors may be purchased from your distributor. When ordering, do not forget the 1000 and $10,000 \mathrm{ohm} 1 \%$ resistors for the ratio arm of the bridge.

The precision capacitors and inductors may be ordered from any one of several manufacturers of condensers or coils. The .01 and 1 mfl . standards are sold by RCA as their part numbers 11799 and 11790 respectively. The I henry, 10 millihenry, and 1 millihenry standards are RCA part numbers 11787, 11788 and 11789 respectively.
These units should be enclosed in a container equipped with pins so that they may be plugged into the pin tip jacks, or, if you prefer, you may mount them within the bridge and use a switch in place of the plugin arrangement.

For general use, it may be advisable to use the plug-in system, as the capital investment and time required for building will not be as great as it will be with the switching arrangement, which is quite complicated.

When measuring capacity it is necessary to reverse the position of the unknown and standard arms because the impedance of a condenser varies inversely with the capacity. The reversal of the standard and unknown capacitors allows the use of a linear direct reading scale for all three types of measurements.

Note-Any leads which may be connected to the "standards" should be short and direct so as to avoid the introduction of spurious capacity and resistance.

Construction of the Bridge

A recommended assentbly for the bridge circuit illustrated in ligure 2 is given in illustration No. 3.
\ln this illustration you will notice that the parts are marked. PI is the main variable resistor. P2 and P3 are "phasing controls" used to establish a balance between the resistance of an unknown capacitor or inductor and that of the standard. P4 is the Wagner ground. The two pin tip jacks on the left are the connections for the C arm of the bridge. The two on the right-hand side are the connections for the D arm of the bridge. The two pin tip jacks at the bottom of the panel are for the head-phones, galvanometer or vacuum tube voltmeter, depending upon which one of the three is to be used for a

Figure 3
resonance indicator. The two outer pin tip jacks at the top of the panel above the potentiometer P4 are for connection to the alternating current supply. The center one is for a ground connection.
Before assembly of the bridge, it is necessary to prepare the scales for use with the various potentiometers. The scale for Pl should be most accurate and is best made and calibrated in the following manner:
A disk $33 / 16^{\prime \prime}$ in diameter should be cut from a piece of drawing or bristol board and a $3 / 8^{\prime \prime}$ hole carefully cut or punched in its exact center. Then mount the control on the panel with this disk beneath the bar knob. Turn the bar knob to the full counter-clockwise position and mark this point zero. Then lay off the scale in thousand ohm divisions. Later sub-divide these into ten parts, or hundred ohm divisions. This can best be done by measurement; that is, dividing the space between the thousand ohm marks into 10 equal parts. Disregard the additional resistance above 10,000 ohms and be sure to allow for that small part of the rotation, at the counter-clockwise position, which is shorted out for the terminal connection.
This calibration should not be attempted with an ohnmmeter, because of the inaccuracies of such a meter. It is far better to use the volt-ammeter method, being sure to use separate meters and not attempt to make one meter do for both the voltage and current readings.
Another method which is fairly accurate is to ascertain the 10,000 ohnm point on the rotation of the control. Then divide the total number of degrees rotation between the full counter-clockwise or zero point, and the 10,000 ohm point, into 10 equal divisions, each of which can then be sub-divided into 10 divisions.

The scales for the other three potentioneters should be made in the same manner, except that the scale for $P 4$ should read zero at the center of its rotation.
Your attention is called to the black spaces at the ends of the scales on potentiometers 12 and P3. These black spaces indicate the terminal short-ont, or rotation wherein there is no resistance change.

The bridge should be: wired with heavy bus bar wire, and all parts rigidly secured against vilration. The leads should be as short and direct as possible. A suggested wiring arrangement is shown in Figure 4.

Figure 4
Before giving directions for using the bridge, it is necessary to provide both a source of audio frequency power supply, and to consider the means to be used to indicate resonance. We will first consider the current supply.

Current Supply for the Bridge

Inasmuch as we have an AC bridge, it will be necessary to provide an alternating current of suitable frequency with which to operate the bridge.
For measurements in audio work, it is customary to use a frequency of $\mathbf{4 0 0}$ cycles. Thus, when you read a description which contains a reference to the impedance of, say a magnetic loud speaker, it is assumed that. the value given is the impedance of the speaker at the usual standard frequency of 400 cycles.
For general measurement work, it would perhaps be best to use 1000 cycles as a froquency of the supply voltage.

Suitable sources of current for the bridge are the andiooscillator, or for temporary use, even a Buzzer or low voltage 60 cycle current may be used.
The audio oscillator should preferably be one that will give a sine wave. However, this is not absolutely necessary.

Any one of the numerous audio oscillators now on the market may be used to supply current for the bridge, or, if such an oscillator is not available, one may lre assembled as per Prigure 5.

One of these oscillators was built in our Laboratory using a type 19 tube and an RCA Transformer No. 11755. One section of the 19 was used as the oscillator and the other section as the amplifier-buffer which was driven by the pick-up coil on the transformer. With the secondary tuned by a capacity of .31 mfd. and with 45 volts (no R2) on both plates and 1.5 volts on the filament, the frequency was 1,000 cycles. With a capacity of .81 mfd a frequency of 410 cycles was obtained.
()ther makes of transformers may be used, lut it will be necessary to cut and try to get the correct value of the tuning capacity.
Thordarson gives directions for building an audio oscillator having 8 different frequencies and employing their transformer part No. T6125.

Notice-A coupling transformer should be provided between the oscillator and bridge because the "effective impedance" of the bridge to the oscillator is very low, especiully so when using low values of resistance and large values of capacity for "standards."
Some oscillators may stop because of the "short" presented by such a high load if a matching transformer is not used.
To ascertain the approximate transformer ratio, it is necessary to know the output impedance of the oscillator and the inpedance of the bridge. If the oscillator shown in Figure 3 is used, the output impedance will be approximately 10,000 ohnss, and the bridge impedance with a 10 chm standard will of course be 10 ohms or more, and for a capacity standard of 1 mfd . the loridge impedance will be approximately 150 ohms if the oscillator is tuned to 1,000 cycles. There-
fore, a speaker matching transformer might be just the answer.
Because many constructors will use different parts or oscillators, we regret that it is impossible to give exact details. However, first ascertain the impedance ratio and then select a transformer of the proper turns ratio, remembering that the turns or voltage ratio is equal to the square root of the impedance ratio.

Resonance Indicators

Some means must be employed to secure an indication of balance condition in the bridge. Perhaps the simplest, and for ordinary work the most convenient, would lee a pair of sensitive head-phones, especially if they are of the "crystal" variety.
For accurate work where a ratio of "standard" to unknown is greater than about three to one, it is advisable to use at least one stage of audio amplification between the bridge and the head-phones. Two stages will be excellent if they are tuned to resonance with the oscillator frequency to avoid the disturbing second harmonic of the oscillator which may be confusing because it is heard strongly when the bridge is balanced for the fundamental frequency.
A vacuum tube voltmeter, or the "Magic Eye" may be used to indicate resonance. The "Magic Eye" has been described so often that it is not necessary to explain it here. Both the "Magic Eye" and the vacuum tube volt meter may be used when using the bridge for DC measurement of coil resistance.

Checking the Bridge

Before considering the use of the bridge, it is well to test the bridge to deternine the aceuracy of calibration. To do this, it is necessary to have two precision resistors, or two resistors whose value is accurately known. Plug them into the C and D arms of the bridge, set the phasing coutrols P2 and P3 at their full counter-clock wise position, then plug in the head-phones and turn on the oscillator. Set the ratio switch to position 1 and vary the knob of P1 until the oscillator is no longer heard. The reading on the scale of P1 should be No. 10 if the two resistors are exactly alike. Ilowever, if it is definitely known that the two resistors are exactly alike, which is rarely the case, and the reading of Pl is not No. 10, it will be necessary to re-check the calibration of the scale of P'l and the wiring or the setting of the arm on Pl until the trouble is located and corrected.

Use of the Bridge

When the ratio switch is on position 1, the scale reads in tenths. Thus, number 1 on the scale of potentiometer PI is . 1 , and 2 is likewise, or .2, and so on up to No. 10, which of course is unity, or 1 . When the ratio switch is on position No. 10, the reading of the scale for potentiometer P1 is in units,
corresponding exactly to the scale, which makes the scale read $1,2,3,4,5$, and so on.

Thus, if the 100 ohm standard is being used and the ratio switch is in position 1 and the potentiometer P_{1} has a reading of 2 , the resistance of the unknown resistor is twotenths of 100 or twenty ohms. Similarly if the 1 mfd . standard is being used, a dial reading of 2 , when the ratio switch is in number 1 position, would indicate .2 mfd. as being the capacity of the condenser under test, whereas, if the ratio switch is on position 10 , the capacity would be 2 mfd . for a scale reading of 2 .
The phasing controls P2 (Fine) and P3 (Coarse) may be placed in either the C or D arms of the bridge by means of switch S2, and are necessary because otherwise it would be impossible to secure a definite null point when attempting to measure the capacity of a condenser having leakage or high contact resistance, or in the case of inductors, when measuring an inductor which is wound with wire of either more or less resistance than that of the standard inductor.
The Wagner ground adjustment P4 is necessary to secure a null point when measuring capacity or inductance of a component which is a part of a circuit.

If it is impossible to obtain a sharp, definite null point when measuring impedances in the order of $50,000 \mathrm{ohms}$ or more, it will be necessary to adjust the Wagner ground, especially so when the impedance to be measured is part of a receiver circuit. To make the adjustment, first obtain as close a null point as possible in the usual manner by adjusting Pl and the phasing controls. Then press the push button of switch Sl and adjust potentiometer P4 for minimum oscillator sound in the phones. Release the but ton and again attempt to find the null point on Pl by adjusting it and the phasing controls.
The two positions of the range switch allows the following values to be obtained with the respective standards.

The 10 ohm standard will give a range of from . 1 to 10 ohms on the low or No. 1 ratio, and a range of from 10 ohms to 100 ohms on the high or No. 10 ratio. The 1000 ohm standard will give a range on the low point of 100 to 1000 ohms, and on the high point a range of 1000 to 10,000 ohms. The $100,000 \mathrm{ohm}$ standard gives a range on the low point of 10,000 to 100,000 , and on the high point a range of 100,000 to 1 megohm.

The capacitor standard of .01 gives a low range of .001 to .01 , and a high range of .01 to. 1 . The 1 mfd . standard gives a low range of .1 to 1 mfd ., and a high range of 1 mfd . to 10 mfd . The 5 mfd . standard will give a low range of .5 mfd . to 5 mfd ., and a high range of 5 mfd . to 50 mfd .

The inductor standard of 1 millihenry has a range on the low point of 100 microhenries to 1 millihenry, and on the high point a range of 1 millihenry to 10 millihenries. The 10 millihenry standard gives a range on the low point of 1 millihenry to 10 millihenries, and on the high point a range of 10 millihenries to 100 millihenries. The'1 henry standard permits a range of 100 millihenries to 1 henry on the low ratio, and a range of 1 henry to 10 henries on the high ratio. An additional standard of approximately 10 henries would
give a useful range up to 100 henries on the high ratio.

Resistance Measurements

Resistance may be measured on the AC bridge provided that it is not the resistance of a coil or other component wherein capacity or inductance is combined with the resistance to be measured.

Resistance is measured by plugging the standard resistor into the D arm, i.e., right hand tip jacks and the unknown resistor into the C arm or left hand tip jacks.

With the headphones and oscillator connected and the phasing coutrols turned to the full counter-clockwise position, set the ratio switch S 3 to the number 1 position and turn the large bar knob of Pl from one end of the dial to the other. If the oscillator signal does not decrease it will be necessary to throw S3 to the number 10 position and again try Pl for a decrease in oscillator signal; should no such point be found, it will be necessary to try another value of standard resistor and repeat the previously described procedure.

When varying Pl a point should be found where the oscillator signal decreases sharply and if Pl is moved further the signal again becomes loud. The point of minimum oscillator signal is the null or balance point and the scale reading multiplied by the ratio setting, gives the ratio of the resistance value of the unknown resistor to the resistance value of the standard resistor.

When the ratio switch is in the number 1 position the scale of I'l reads in tenths, thus if the standard is 10 ohms and the scale reading is 2 the unknown resistance is 2 ohms, whereas if the ratio switch is in the number 10 position the resistance will be 20 ohms.

In order to secure a definite null point when measuring resistor values above approximately 1,000 ohms it is sometimes necessary to connect a small .00025 mfd . variable capacity across the standard resistor. If the null point is indistinct the condenser should be varied until the oscillator signal decreases, then readjust Pl to the best null point, i.e., the point of least signal.

Note: To measure the resistance of coils it is necessary to set up the bridge with a hattery in place of the oscillator as described under the heading "DC IResistance Measurements."

Measurement of Paper Capacitors

To measure the unknown capacity of a paper condenser, it is necessary to set up the bridge as shown in Figure 6.

Notice that the unknown condenser is connected in the D arm of the bridge and that the standard is applied to the C arm.

For purposes of illustration we will measure the capacity of a condenser which is marked . 1 mfd . Therefore, we will plug in our standard 1 mfd . condenser into the C arm and connect the unknown into the D arm of the bridge. Then connect the head-phones

and oscillator and set the ratio switch to position 1 and turn the phasing controls to their full counter-clockwise position. Now by swinging the large bar knob of potentioneter Pl back and forth, you will find a point where the volume of the AC signal drops. Set the arm to the center of this point. If there is a little signal heard at the center of the null point, ground your body by touching the ground connection at the upper center tip jack and in addition try the phasing controls.

With switch S2 thrown to the C or "unknown" arm of the bridge, carefully increase the resistance of the "fine" or P3 potentiometer. If the signal increases, throw the switch S2 to the D or "standard" arm. If this does not cause a slight decrease of the signal, return the knob of P 3 to zero and adjust the Wagner ground. Should the increase of l'3 with S2 in either arin cause the signal to drop, keep adding resistance in P3 until the lowest signal point is found, or when necessary use $\mathrm{P}^{4} 4$ if P 3 is not enough, and then readjust I'l to the null point. Continue this procedure until you secure the lowest possible amount of signal at one definite point on P1.

We will assume that this point is at 14 on the Pl scale, which means that .14 mfd . is the true value of the condenser which is labeled. 1.

We would like to call your attention to the fact that the tolerance of paper condensers such as are used for bypass and filter work, is rather large.

Therefore, do not be surprised if you measure a condenser which is marked .25 and find that it is really much closer to .5 , or, you may find that it is slightly less than the marked value. However, by the time you have measured several hundred paper condensers you will no longer be surprised at these discrepancies. Mallory paper condensers are held to strict tolerances and have less variance than those of inferior quality.

The standard capacitors recommended in the earlier part of this article give a range of .001 to 10 mfd . For larger capacity values it will be necessary to employ a larger standard, approximately 5 mfd ., which will enable you to read up to 50 mfd . The best way of obtaining the 5 mfd . unit is to purchase a 5 mfd. oil filled motor starting or running condenser such as is used on certain refrigerator motors.

WARNING: Use only mica, oil filled or paper condensers for bridge standards. Make sure that the 5 mfd . unit you purchase is of the oil filled type.

After purchasing the 5 mfd . condenser, measure its capacity using your 1 mfd. standard. It will probably turn out to be something less than a full 5 mfd . However, you may use it as a standard and multiply its exact capacity by the ratio of the bridge. Thus, if the measured capacity of your oil filled condenser is 4.2 mfd ., when it is used as a standard, a scale reading of 9 on the potentiometer P1, with the ratio switch in the high or No. 10 position, would indicate that the unknown capacitor has a value of 9 times 4.2, or 37.8 mfd . Such capacities will probally never be encountered except in electrolytic condensers.

Note- The procedure for measurement of electrolytic condensers will be covered in a later chapter.
For measuring sapacity values below .001, a standard of .001 or smaller may be used. However, it is best to use the substitution method. The substitution method of measuring capacity value below .001 mfd . is extremely accurate. The accuracy deperdsentirely upon the accuracy of the calibration curve of a standard variable condenser, and is independent of any bridge errors, since the bridge conditions do not change during the actual measurement of the capacity. The circuit for the substitution method of capacity measurement is shown in Figure 7.

Figure 7

In the circuit you will note that condenser $C V$ is variable, and that $C X$ indicates the unknown capacity, arranged to be connected across CV by means of a double pole low capacity switch, such as a small knife switch or other low capacity arrangement.

The capacity of the variable condenser CV can be of any convenient value such as .0005 , or .001 mfd ., and the capacity standard can be a .001 mica condenser.

Condenser CX is connected across CV and the bridge is brought to balance by variation of Pl and the phasing sontrols. When the bridge is balanced, CX s disconnected from CV and the dial of CV turned so as to increase the capacity sufficiently to restore the balance of the bridgs. The increase of capacity noted on the dial of CV is exactly equal to the unknown capacity.

Condenser CV might well be one of the older " 43 plate" straight line capacity condensers, provided that it has good bearings and insulation. You may calibrate the dial of this condenser by placing it in shunt with a fixed capacity of .001 and measure its capacity at several settings in the regular bridge set-up, then draw a curve of the capacity vs. dial reading on graph paper.

To Measure Inductance

To measure inductance, the bridge is set up as shown in Figure 8.

Figure 8
Note that the positions of the standard and unknown inductors are reversed from the positions given for the standard and unknown capacities. The unknown is connected in the C arm of the bridge, as is done in resistance measurements.

Sufficient explanation has been given to enable us to avoid details as to the procedure for measuring inductance, as it is carried out in exactly the same manner as the measurements for paper condensers.

The phasing controls will be found to be much more critical when measuring inductance values than when measuring capacity values. It is imperative that the phasing controls be carefully adjusted and in addition do not forget the use of the Wagner ground when making measurements of receiver components.

The largest inductor standard recommended for purchase was that of 1 henry. However, it is often necessary to measure inductance values much greater than the 10 henry range obtainable with this standard. Therefore, we advise that you either make or obtain a small iron cored coil having an inductance of approximately 10 henries. The inductance of this coil can be accurately measured and it can be used as a standard provided that it is of rugged construction and well sealed against the absorption of moisture. Such an inductance standard of 10 henries will allow a measurement of inductance values up to 100 henries.

For measuring small values of inductance, it is best to use a variable inductance along the same manner as outlined for the use of a variable capacity for the measurement of smatl capacity values. Such a variable inductance may well be one of the older variometers. However, it should be of good quality and of rugged construction with pig-tail connections to the rotor.

To Measure Capacity of Electrolytic Condensers

There are two methods for measuring the capacity of electrolytic condensers. The first method is to form the condenser by placing
it on its rated working voltage for 4 or 5 minutes. Then disconnect the condenser, discharge it and proceed in the same manner of measurement as given for paper condensers. This method is particularly advantageous when working upon a receiver, in that the receiver may be turned on for several minutes, then turned off and the condenser, or at least one side of it, disconnected from the receiver circuit, and the bridge connected by means of flexible leads and the capacity measured.
When measuring filter condensers, the phasing controls will probably have to be adjusted to balance the resistance between the standard and the unk nown capacitor. This is especially true when measuring old electrolytic condensers. The resistance of an old electrolytic condenser may run to a fairly high value, and the phasing controls will give a rather close check as to the resistance of the condenser, because their dials are calibrated and the standard condenser will probably have an insignificant amount of resistance. The lower the resistance of an electrolytic condenser, the better its condition.

The second method of measuring electrolytie capacitors requires the use of the application of a polarizing voltage during the measurement. This calls for a special set-up for providing the polarizing voltage.

WARNING: Be careful when using the arrangement shown in Figure 9. Make sure before turning on the high polarizing voltage that there can be no short to damage the equipment or to give you a shock.

Note the blocking condenser in series with the head-phones. This condenser is for the purpose of preventing the flow of the direct "polarizing" voltage through the headphones. The 1000 henry choke shown may be obtained from any one of the leading transformer manufacturers. It should be of such construction as to maintain a large value of inductance even when carrying a leakage current of as much as 10 or 20 milliamperes.
The procedure to be followed is to first connect the standard condenser, and then connect in the unknown capacitor and to gradually raise the polarizing voltage, keeping an eye on the leakage current which is indicated on the milliammeter.

Do not raise the polarizing voltage too fast, as the condenser may have a very high leakage which is especially true if the condenser has been on the shelf; i.e., not con-
nected to a polarizing voltage for some time. If such is the case, it will require a minute or two for the condenser to age down, and as the leakage current drops, the voltage may be increased until the full working voltage of the condenser is reached.

He very careful, as a shorted condenser, or one with too high a leakage might ruin your milliammeter. It is hardly necessary to point out that a high scale range should be chosen for the milliammeter until after the condenser has been aged down, or found to be in good condition at which time the milliammeter may be shifted to a lower range to ascertain the exact leakage current.

The procedure for measuring the capacity is the same as that outlined for paper condensers, except that the phasing controls may require careful adjustment.

Miscellancous Bridge Measurements

To ascertain the "impedance ratio" of a transformer, connect a known resistance across either the primary or secondary. Then connect the other winding to the C arm of the bridge and use a resistor, of the same value as that across the transformer, in the D arm of the bridge and adjust the bridge to the null point. The ratio which is shown on the bridge will be the impedance ratio of the transformer for the frequency at which the measurement was made. The voltage ratio of the transformer is the square root of the impedance ratio.

Another use of the bridge is to ascertain the match of an output transformer to a line or speaker, and in addition the impedance of various lines or speakers may be measured at different frequencies provided that a variable and calibrated oseillator is used with the bridge.

DC Resistance
 Measurement

The AC bridge cannot be used to measure the pure or DC resistance of coils. It is necessary to use a battery in place of the oscillator and a galvanometer or vacuum tube voltnieter in place of the head-phones when using the bridge to measure pure resistance values of coils. The connections of the standard and unk nown resistors is the same as for the AC resistance measurements, i.e., the standard in the D arm and the unknown in the C arm. The ratio and Pl scale readings remain the same as for the AC procedure.

Frequency Measurement

One of the most unusual measurements that can be made on the AC bridge is that of frequency measurement.

The universal bridge may be used over a range of approximately 20 to 20,000 cycles. The set-up for the measurement is shown in Figure 10.

The formula for balance of this bridge circuit is: when arm B is twice A the frequency is

$$
\mathrm{F}=\frac{\mathrm{l}}{6.28 \mathrm{Rd} \mathrm{Cd}}
$$

wherein Rd is resistance in ohms and Cd is expressed in farads. The two condensers must be of the same value and the two resistors must also le of the same value, thus the resistance of tooth Rc and Rd must be increased or decreased the same amount until Dalance or the null point is found. Λ single value of condenser capacity will allow a frequency range of ten to one to be covered will a suitable resistance change. It is not advisable to use a resistance value below 100 ohms. This circuit and formula is given for the advanced experimenter who can work out the required values of R and C for different ranges and carefully adjust and balance the bridge. An accuracy of 1% may be attained without extraordinary precision of parts. One should rementer that it is diflicult to distinguish between the fundamental frequency for which the bridge is balanced and the harmonics for which it is not balanced.

Vacuum Tube Voltmeter

The vacumm tube voltmeter is another very versatile and useful piece of equipment which is something every serviceman can well use to save time and lighten his work. A vacuum tube voltmeter nay be purchased from well known test equipment manufac-

Figule 11
turers, or one may be assembled that is quite accurate. Such a simple yet accurate vacunm tube voltmeter is shown in Figure 11.
The vacuum tube voltmeter illustrated is a useful and handy device for measuring DC or audio frequencies. It has a range of three to four volts which is easily multiplied by means of the voltage divider and therefore the useful range will extend up to twenty volts.

When measuring DC the switch S2 should be closed and the positive side of the circuit applied to the grid. An extra tap on the voltage divider switch will allow the reading of bias cell voltages which of conrse should never be undertaken with the voltage divider in the circuit.

This meter may not be sensitive enough for use with the loridge when reading DC resistance values.

Voltage gain and AVC voltages are easily checked with this meter. In addition, it may be hooked across the AVC circuit for use as an indicator when aligning the receiver.

The assembly should be placed in a neat box. If meters are scarce, we suggest that two 500 type pin tip jacks be used so that you may plug in your analyzer meter and avoid the expense of a separate meter. After assembly, turn on the switches and with the input shorted, the $15,000 \mathrm{ohm}$ potentioneter adjusted until the meter reads zero. Then by applying known measured voltages across the input and plotting the reading of the meter against the applied voltage, a curve may be established so that the true applied voltage may be read at any time. This neter will hold its calibration for long periods of time and is not alfected by falling of the battery voltage, because this is compensated by adjusting the $15,000 \mathrm{ohm}$ potentiometer.

Auto Radio Interference

ELIMINATING interference from auto receivers is a tedious and exasperating job. Quite often it is necessary to "hunt" for the trouble. When the noise or interference is noticed with the car standing still, it is a good st unt to use a noise locator consisting of a small metal ball or disc attached to an insulating rod and having a shielded lead attached to the ball or disc and plugged-in or attached to the antenna lead-in of the receiver. With this device one may ascertain the point on the car where the noise is loudascertain the point. on the car where the noise is loud-
est and in addition locate the various rods, wires and tubes which carry the noise to the antenna or to the receiver.

There is no "cure-all" for auto radio interference because each car, atthough of the same make, presents different problems. We suggest that you consult the following tabulated sources of troubles and cure.

CIIASSIS AND ANTENNA PICK-UP

Two classes of interference exist in auto radio, chassis (lead) pick-up and antenna pick-up. To determine which one exists, ground the antenna lead close to the receiver. If the interference is eliminated, it is antenna pick-up. If interference continues, it is chassis or lead pick-up.

CIIASSIS PICK-UP

If interference is found to be chassis pick-up, be sure that all ground connections are clean and tight, all cables, tubes and pipes are grounded and are not rubbing against metal body parts or the receiver itself. If receiver has been properly installed according to the manufacturer's specifications, as to suppressors, condensers, filters, and the receiver wires have been kept out of the motor compartment or have been properly shielded, there should be no chassis noise.

ANTENNA PICK-UP

If interference is antenna pick-up, be sure that the antenna lead is properly shielded from the receiver to the antenna and that it is well grounded. The antenna lead should be brought down the post nearest the receiver. It should never be brought down the same post with the dome light wires. If an under car aerial is used, a .5 mfd . cordenser should be put on the tail light and stop light wires to ground. In extremely bad cases, insert an R.F. choke in series. This choke consists of about fifty turns of No. 16 insulated wire on $3 / 4$-inch form. Keep antenna lead as far away from generator and starter as possible. If interference continues, then systematically check all parts and conditions that sometime cause noise.

ROTOR ARM OF DISTRIBUTOR

The rotor arm of the distributor should be peened to reduce the gap between it and the contacts in the distributor head. The gap between the arm and contacts should be about .004 inches maximum. Care must be taken that the rotor does not touch any of the contacts. After peening dress the rotor down with a file to its original shape. If the rotor is double ended, both ends should be treated in the same manner. One end should be completed before doing the other. It is better to peen the rotor than to build it up with solder, as solder soon burns away. It is now possible to purchase longer rotors. These are usually the same part number but with a suffix such as the letter A. Sometimes connecting a .002 to .006 mica condenser directly across the primary breaker points of the distributor helps eliminate stubborn cases of interference. Adjust spark plug points to a gap of approximately . 028 inches.

IGNITION NOISE-LOW TENSION

Remove the high tension wire between the coil and distributor, turn the ignition switch on and crank the car. If a click is heard in the speaker, it is an indication that at least part of the noise is from the distributor breaker points or the low tension circuit. In this case, replace the primary lead running from the ignition coil to the breaker points of the distributor with No. 14 shielded low tension cable. Ground this cable in two places with connections as short as possible. In some cases, it may be neeessary to replace the switch to ignition coil lead with No. 14 shielded low tension cable, making a good ground on the shielding. Be careful of the shielded leads so that the coil, switch or distributor connections are not grounded. In some distributor connections are not grounded. In some cases of persistent interference a small R.I. choke-
about 25 turns of No. $1 \$$ wire-in series with the priabout 25 turns of No. 14 wire-in series
mary distributor lead may be necessary.

IGNITION NOISE-HIGII TENSION

If, when making the click test, no clicking is heard in the speaker, then the interference is caused by the high tension secondary circuit of the ignition system. Low tension wires that are parallel or in the field of the high tension circuits act as carriers and should be moved at least 3 inches from them. Where the high and low tension wires are housed in the same manifold. removing the low tension wire is usually sufficient.

If the ignition coil is on the dash or under the cowl, one of two things must be done:

First, shield the high tension coil to distributor lead. This can be done by covering the lead first with flex ible loom and then with copper shielded loom. grounding one end to the coil frame and the other to the motor block or manifold. This lead should run as direct as possible from the coil to motor compartment even if it is necessary to drill a new hole in the dash even if it is necessary to drill a new hole in the dash,
In some cases, it may be necessary to shield the entire In some cases, it may be necessary to shield the entire
coil. This can be done by shielding the coil with a copper can and grounding it to the coil mounting. Second. it may be necessary in some cases to move the coil into the motor compartment because of the effect of the electro-magnetic field of the coil on the receiver. Mount the coil on the motor block as closely as possible to the distributor, making sure that yon have a sible to the distributor, making sure that yon have a
good ground connection. The nuw prinaty wirn should good ground connection. The new brimary wire should
be No. 14 shielded tow tension cable. Do not run be No. 14 shielded tow tension catble. Do not run
this wire close to the high tension leads and be sure this wire close to the high
the shield is well grounded.

DOME LIGIITS
The dome light is usually the greatest source of antenna pick-up interierence. 1 irst check the dome light by disconnecting the dome light connection back of dash and grounding the wire. This should eliminate the interference. If so, put a 1 mifd. cordenser from the dome light wire to ground at the corner post. It may also be necessary to rlace a small K.F. choke in series with the dome light wire. The condenser should be connected on the ammeter side of the choke coil. This choke coil consists of about 50 turns of No. 16 wire wound on about a $1 / 2$-inch wooden form.

LOOSE CONNECTIONS

Loose connections are a frequent cause of interference. Be sure light bulbs are tight in their sockets, that all Be sure light bulbs are tight in their sockets, that all
battery cable connections are tight and well grounded, that secondary leads at distributor and spark coil leads are making good tight contact. Ground all control cables and metal tubing that pass through the dash with a good short ground lead. Be sure that the generator brushes and commutator are clean and in good condition. Otherwise filtering will be a waste of time. Sometimes it is necessary to use a .5 mid. condenser Sometimes it is necessary to use a .5 mid. condenser
on the generator at the battery side in addition to the usual condenser.

ACCESSORIES

Accessories, such as lighters, electric motor heaters, horns, and light switches are often a source of interference. In these cases the procedure is to try a conference. In these cases the procedure is to try a con-
denser from ground to the various accessories until the interference is eliminated, then install the condenser in those places permanently. Spark intensifiers should not be used.

PASSENGER BODY PICK-UP

In some cars a person's body acts as a carrier of noise from the floor boards to the roof antenna. When this happens, shield the floor boards of the front seat by covering them with a copper screen and grounding it at several places to the frame.

OVERCOMING SOME NOISES

Radio spark plugs with built-in suppressors have been found very satisfactory, from both aprearance and service standjoints. A .5 mid. condenser from the low tension lead on the coil to ground has in some cases improved noisy recestion and in others it has increased the noise. Only by experimenting on each installation can you determine whether to use this or not. Never attach any condenser to the low voltage lead attach any condenser to the low voltage
Dirty and improperly spaced spark plug and distributor points are sure to cause noise. Clean and check them for proper gap and also check distributor condenser.

LOCAL INTERFERENCE

Interference picked up from powerlines and electrical equipment should not be confused with ignition noise. Electrical or outside interference will be heard whether car is funning or not. Ignition noise should be checked in a location that is free of outside disturbances.

BODY NOISE

Noise heard in the receiver when the car is in motion with the motor shut off my be body or wheel noise. with the motor shut off mmy be body or wheel noise.
It is heard most often when traveling over rough It is heard most often when traveling over rough
streets or roads. These noises are caused by loose parts streets or roads. These noises are caused by loose parts
and connections. To eliminate this form of interferand connections. To eliminate this form of interfer-
ence, tighten all chassis bolts and loose parts, ground all "floating" parts and parts that are poorly grounded. Also check all cables, tubes and shafts that might be coming in contact with some other metal part of the car or receiver.

WHEEL OR BRAKE NOISE

The front brakes sometimes accumulate static and cause interference due to a poor ground in the front wheels and a peculiarly constructed lining. If this condition is suspected, set the car ir motion, then with the motor shut off and the clutch disengaged, apply the brakes. If the interference is eliminated then the front wheels are the cause. To overcome this condition, use graphite grease or insert grounding springs in the internal hub caps. In the case of external brakes. it is necessary to ground the brake bands to the chassis.

STATIC NOISE

Tail light. stop light, head light or horn wires sometimes pick up static charges from the tires and cause times pick up static charges from the tires and cause
imerference. To determine if these arr at fauth, drive interferencl. To determine if these arr at fauth, drive
the car from a dry pavement onto a wet onc. If the the car from a dry pavement onto a wet onr. If the
wet pavement eliminates the noise, then the light wire wet pavement eliminates the noise, then the light wire
should be shielded and the shield grounded. Noise is
sometimes caused by the antenna being too close to body metal of car. Antenna should be checked for this condition. regardless of whether the car manufact urer or an individual has installed it.

CHOKES

It is necessary in a number of cases to use R.F. chokes in addition to bypass condensers in order to eliminate bad cases of noise. It may be necessary to use these chokes in any of the light wires, the "A" battery lead. or even the voice coil or field leads of the speaker, if the speaker is a separate unit. In some cases, it is neces:ary to ground the windshield wiper and the rain troughs. The hood of the car should be well grounded. This can best be done by looping the hood tape at several points with metal braid and then soldering the braid to the bulkhead or to the inside of the radiator shell. The hood should be scraped free of paint where it contacts the braid.
Storage batteries that test less than 5 volts with the set and all lights on should be inspected thoroughly. The battery acts as a large condenser that by-passes lot of interference and if the battery is in poor condition interference will be increased.

STATIC DISCIIARGE

Parts of a car that are poorly grounded or not grounded at all sometimes accumulate charges of groumded at all sometimes accumulate charges of static electricity which, from time to time. is dis-
charged to grounded jarts and causes interference. Friction between tire and road may cause this. To overcome this static, attach a commercial brass wiper under the retaining nut on the spindle so that it contacts the wheel hub or cajp. In cases of wooden wheels, it is necessary to ground the rim to the hub. On cars having floating nower, free wheeling, etc., a static discharge occurs whenever the motor is not delivering discharge occurs whenever the motor is not delivering brake being on the drive shaft. This interference may be eliminated by mounting a small carbon brush and holder so that the brush makes contact with the emergency brake drum between the ends of the brake bands. Then ground the brush holder,

SUMMARY

The Galvin Mig. Co. give the following suggestions in their "Motorola Service Mamal" for the suppression of ignition interference. These hints are given in the order of their imsortance.

1. Apply suppressors to spark plugs and distributor.
2. Apply gencrator condenser.
3. Reroute primary wire from coil to distributor, keeping it as far as possible away from ligh tennion wire.
4. Connect dome-light filter to dome-light wire at point where it enters front corner post.
5. Shicld high tension wire if coil is mounted on instrument panel.
6. Shield antenna lead-in wire from radio set to top of front corner post. Ground shield at both ends.
7. Shield primary wire from coil to distributor.
8. Connect a . 002 to . 006 ; high grade mica condenser directly across the primary breaker points of the distributor.
9. Bond the upper metal parts of the car body to one another and return a heavy copper bond from these points down to the bulkhead of the car. (This is usually necessary in cars using composite wood and metal body construction.)
10. Bond where necessary all control rods and pipes passing through the bulkhead.
11. Shield head of coil when mounted on instrument panel.
12. Cover floor boards of car with copper screening.
13. Adjust spark plug points to approximately . 028 of an inch.
14. Clean and adjust primary distributor breaker points.
15. In cars having rubber motor mountings. connect heavy bond from grounded side of battery directly to frame of car.
16. Connect a .5 to 1 mfd . condenser from hot primary side of ignition coil to ground.
17. If ignition coil is mounted on driver's side of bulkhead, move it to the motor compart ment side. using the same holes for mounting.
18. Clean ignition system wiring. Clean and brighten all connections. Replace any high tension wiring having imperfect insulation.
19. Ground metal sun visor and rain troughs if necessary.
20. Make sure hood of car is well grounded. Clean hold-down hasjs on both sides.
21. Ground instrument panel and steering column to bulkhead.
22. When under-car aerial is used, connect a .5 mfd . condenser to tail and stop light wires.

Transformer Turns-Per-Volt Chart

Knowing the flux density of the core area, the turns' per volt for either a primary or secondary may be determined by merely drawing a straight line from the flux density column through the core area column the extension of the line terminating in the turns per volt column.
Flux density is a quality of the kind of iron used. The flux density of different types of core material may be found by referring to any of the standard works on electricity.
For convenience, the flux density column is divided into kilolines per square inch and kilolines per square centimeter. The core area is also divided into square inches and square centimeters. The turns per volt column gives values for sixty cycle on the left of the column and for tweaty-five cycle on the right.

Coil Turns, Inductance and Diameter

Knowing the turns of a coil, its length of winding, and the diameter, the inductance may be found by using a straight-edge from the turns column to the ratio (length of winding) column, intersecting the axis column; then a second line from the intersection of the axis column to the diameter column. The inductance in microhenrys will be the point where the second line intersects the inductance column. In the above chart the first line is laid from 100 turns to 2.5 ratio (which is length of winding), this first line intersecting the axis at 3.8 on the scale. The second line is from 3.8 on the axis scale to the 2 inch diameter, intersecting the inductance column at 600 microhenrys.

Knowing the diameter, ratio and the inductance, the number of turns may be found by reversing the process. As shown in the chart, draw a line from 2 inch diameter through the 600 microhenrys intersecting axis at 3.8 on the scale; then run line from 3.8 on axis scale to 2.5 on ratio (length of winding), the extension of this line cutting the turns scale at 100 which is the number of turns.

After finding number of turns, consult wire table to determine size of wire which will permit given number of turns in a given length of winding.

Conversion

Factors for conversion-alphabetically arranged.

Multiply	By To Get	Multiply	By	To Get
Amperes....	1,000,000,000,000. .micromicroamperes	Micro-ohme	.000,00\%.	
Amperes....	1,000,000microamperes	Microvolts.	.000,001.	
Amperes....	1,000........... . .milliamperes	Microwatts.	.000,001.	
Cycles........	.000,001megacycles	Micromicrofar	.000,000,000,	
Cycles......	. 001. kilocycles	Micromicro-ob	.000,000,00	
Farads......	1,000,000,000,000 . .micromicrofarads	Milliamperes.	.001..	
Farads.	1,000,000 microfarads	Millihenrys.	. 001.	
Farads......	1,000 millifarads	Millimhos..	.001...	
Hearys.	1,000,000........ . microhearys	Milliohms.	. 001.	
Henrye......	1,000.......... .millihenrys	Millivolts. .	. $001 .$.	
Kilocycles. .	1,000eycles	Milliwatts.	. $001 \ldots$	
Kilovolts.	1,000........... volts	Ohms.....	1,000,000,0	micro-ohms
Kilowatts...	1,000...........watts	Ohms.....	1,000,000.	ohms
Megacycles.	1,000,000.........cycles	Ohms....	1,000.	bms
Mhos.	1,000,000micromhos	Volts......	1,000,000.	volts
Mhoe.	1,000. millimhos	Volts......	1,000..	olts
Microamperes.	.000,001 amperes	Watte....	1,000,000.	
Microfarads	.000,001........ .farads	Watts..	1,000.	
Microhenrya. .	. 000,001 henrys	Watts.......	. $001 . .$.	
Mieromhos...	. 000,001 mhos			

Conversion Table Frequency to Wavelength

Long-Wave Broadcast Band		Short Waves	
Frequency Kilocycles	Wavelength Meters	Frequency Megacycles	Wavelength Meters
550	545	1.5	200
600	500	1	150
650	481	3	100
700	429	4	75.0
750	400	5	60.0
800	375	6	50.0
850	3.53	7	42.9
900	333	8	37.5
950 1000	316 300	9	33.3
1000 1050	300 286	10	30.0 273
1100	273	12	25.0
1150	261	13	23.1
1200	250	14	21.4
1250	240	15	20.0
1300	231	16	18.8
1350 1400	222	17	17.6 16.7
1450	207	19	15.8
1.500	200	20	15.0

Characteristics of Receiving Tubes

THE time has long since passed when a serviceman, an amateur or an engineer could quote from memory the "basing" and all the "characteristics" of the available vacuum tubes. From a modest beginning, the number of types has increased to a total so great that not even the type designations can be memorized with assurance. The purpose of the consolidated tuhe charts shown on following pages, is to group the essential data on each type so that information may be had in a minimum of time.

Glass Octal Base Tubes

In studying the vacuum tubes available today, two groups can be formed. The first includes tubes of the conventional glass type manufactured prior to the introduction of the metal tube in April, 1935. The second group includes allmetal tubes and several classes of glass tubes designed to be interchangeable with metal tubes.
Glass tubes designed to be interchangeable with the allmetal types can be subdivided into two general classifications. First of these is the " $(\mathrm{i}$ " classification (or group) in which the tubes are glass but are equipped with the octal base first introduced on metal tubes. These " G " tubes, except for the base, appear to be exactly like certain of the conventional glass tubes and indeed they are. For example, type 6 K 7 G is a 78 with an octal base and type 6 A 8 G is type 6A7 with an octal base. When fitted with a "glove" shield, these tubes are practically interchangeable with the all-metal 6 K 7 and 6 A 8 types.

Metal-Glass Tubes

The second group includes the "metal-glass" tubes. These MG tubes are the conventional glass types which correspond in characteristics to the all-metal tubes but they are equipped with the octal-type base and are covered with a close-fitting sleeve cover of shield metal. In general they are designated with the same number used for the all-metal tubes followed by the suffix MG. In receivers of modern design, the MG tubes like those in the G classification can be substituted for all-metal tubes with small realignment adjustments. The smallest of the metalglass tubes are the "Coronet" type. These, except for height, correspond to the regular MG tubes, although they are designated with the same type numbers which apply to the all-metal tubes.

Present Numbering System

The application of type designations to vacuum tubes was a haphazard process until the Radio Manufacturers Association set up a committee of engineers from the radio tube industry to handle the numbering of tubes and associated problems connected with the new types. From this committee came the present numbering system of: a uumeral to indicate approximate filament or heater operating voltage; a letter to show the function of the tube, and a num-
eral to indicate the number of elements. Thus the 2575 tells by its first numeral group that the filament or heater operates at approximately 25 volts, by the letter Z; that the tube is a rectifier, and by the final numeral that the tube has five connected elements: i.e., two plates, two cathodes and one common heater. Reference to the charts will show that more than seventy-five tubes appear under the old numbering system of an arbitrary numeral. No doubt there are many more tubes in this class which for some reason (usually poor adaptability to circuits) were dropped by the manufacturer who introluced them.

Special Tubes

Among the special tubes listed in the charts are several of the "spray shield" type introduced by Majestic. The replacement tubes now furnished for them are no longer sprayed with metal in most cases, but are fitted with a "glove shield" soldered at the joints.

Socket Connections

The basing views shown with the tube charts are for the bottom of the tube base or the bottom of the socket. This arrangement provides the clearest picture of connections, since construction (or service) involves the bottom of the base in all cases. The pin numbering, looking at the bottom of the base or socket, runs clockwise. In the conventional base glass tubes, with the filament or heater pins toward the observer, the left-hand pin is number one. In the octal base tubes, lorking at the bottom of the base, the first pin in a clockwise direction from the key is the No. l pin. While this explanation is unnecessary in reference to the base diagrams shown, it is useful in checking the basing of new types where the pin numbers and their corresponding internal connections may be published without a diagram.

Plate Supply Voltage

The data given in the tube charts covers essential points of interest for each type. It should be noted that the plate supply voltage is indicated. In resistance-coupled amplifiers, the actual plate voltage will be considerably lower due to the drop in the plate resistor. In adjusting bias to the proper value, this lower plate voltage should be taken into account.

Internal Capacitance

The values of internal capacitance are useful in the design of radio-frequency circuits and in figuring shunt effect on high audio frequencies in high-gain, resistance-coupled amplifiers.
Filament voltages should be held within a few percent for the older thoriated, tungsten-filament tubes such as the 01A, \99 and X99. Oxide-coated filaments and the heaters for oxide-coated cathode tubes should be maintained within 10 percent of the rated values.

RECTIFIER TUBES														
TYPE AND DESCRIPTION					Fil.	Fil.	$\frac{\text { Max. A.C. Voltes }}{\text { Per Anode }}$	$\frac{\text { Max. D.C. Out. }}{\text { Curr. (Amps.) }}$	$\frac{\text { Max. Peak }}{\text { Inverse Volts }}$	$\frac{\text { Max. Peak }}{\text { Plate Current }}$	$\begin{array}{\|l} \hline \begin{array}{c} \text { Min. } \\ \text { Choke Before } \end{array} \\ \hline \text { Filter Cond. } \\ \hline \end{array}$	Max. Heater Cathocle Bias	Max. D.C. Volts Del. to Filter (Nom.)	
					$\overline{\text { Amps. }}$	Volts							Cond. Input	Choke Input
BA	Full Wave	($\mathrm{as}^{\text {a }}$	Col. 1	4 M .4 P .			350	0.350	1000	1.00				300
BII	Full Wave	(ias	Cold	4J M. 4 P .			350	0.125	1000	0.40				300
BR	Half Wave	Gas	Cold	411 M. 4 P .			300	0.050	850	0.20			300	
1 V	Half Wave	$\begin{gathered} \text { High } \\ \text { Vacuum } \end{gathered}$	Heater	$\text { Sm. }{ }_{4}^{4 \mathrm{G} \mathrm{Pin}}$	0.3	6.3	350	0.950	1000	0.20		500	400	
80	Full Wave	$\underset{\text { Vacuum }}{H \text { High }}$	Fil.	$\text { Med. }{ }_{4 \mathrm{C}}^{\mathrm{Pin}}$	2.0	5.0	350	0.125	1000	0.40			300	225
							400	0.110	1100	0.35			370	275
							550	0.135	1500	0.30	20 Henries			425
${ }^{1}$	Half Wave	$\begin{gathered} \text { High } \\ \text { Vacuum } \end{gathered}$	Fil.	$\text { Med. }{ }^{413} \mathrm{Pin}$	1.25	7.5	700	0.085	2000	0.60 Full Wave			750	550
${ }^{* 2}$	Full Wave	$\begin{gathered} \text { Mercury } \\ \text { Vapor } \end{gathered}$	Fil.	$\mathrm{Mad}_{4 \mathrm{C}}^{4 \mathrm{Pin}}$	3.0	2.5	500	0.125	1400	0.40			590	425
83	Full Wave	$\begin{gathered} \text { Mercury } \\ \text { Yapor } \end{gathered}$	Fil.	$\mathrm{Med.}_{4}^{4 \mathrm{C}} \mathrm{Pin}$	3.0	2.5	500	0.250	1400	0.80			530	400
83v	Full Wave	$\begin{gathered} \mathrm{High} \\ \text { Vacuum } \end{gathered}$	Heater	$\mathrm{Med} ._{4 \mathrm{Pin}}^{4 \mathrm{~L}}$	2.0	5.0	500	0.250	1400	0.80			510	385
OZ3	Full Wave	Gas	Cold	$5 \mathrm{~N}$			350	$\begin{aligned} & \text { 0.075 Max. } \\ & 0.030 \text { Min. } \end{aligned}$	1250	0.20			425	300
02. 4	Full Wave	Gas	Cold	$\begin{gathered} 4 \mathrm{Cctal} 4 \mathrm{Pin} \end{gathered}$			350	$\begin{aligned} & 0.075 \text { Max. } \\ & 0.030 \text { Min. } \end{aligned}$	1250	0.20			425	300
5×3	Full Wave	$\mathrm{Mifh}_{\text {acuum }}$	Fil.	$\begin{gathered} \text { SL } \\ \substack{\text { Octal Medi. } \\ \text { Shell S S Pin }} \end{gathered}$	2.0	5.0	Same as Type 80							
$5 \mathrm{L3}$	Full Wave	$\begin{gathered} \text { High } \\ \text { Vacuum } \end{gathered}$	Fil.	$\begin{gathered} 4 \mathrm{C} \\ \mathrm{Med} .4 \mathrm{Pin} \end{gathered}$	3.0	5.0	500	0.250	1400	0.70			480	360
$6 \mathrm{C4}$	Full Wave	$\underset{\substack{\mathrm{High} \\ \text { ncumm }}}{ }$	Heater	$\mathrm{Sm}_{5 \mathrm{Fin}}^{50}$	0.5	6.3	350	0.060	1000	0.20		500	425	300
84														
$12 \mathrm{Z3}$	Half Wave	$\begin{gathered} \text { Migh } \\ \text { Vacuum } \end{gathered}$	Heater	$\mathrm{Sm} .4 \mathrm{M} \text { in }$	0.3	12.6	250	0.060	700	0.30		350	310	
2525	Rectifier Doubler	$\xlongequal[\substack{\text { ligh } \\ \text { Vacuum }}]{ }$	\square	$\text { Sm. }{ }_{6}^{6 \mathrm{E}} \mathrm{Pin}$	0.3	25.0	125	0.200	700	0.40	Rectifier	350	120	
								0.100	700	0.20	Doubler	350	200	
METAL RECTIFIER TUBES														
5W4	Full Wave		Fil.	${ }_{\text {Sm. Oct. } 5 \text { Pin }}^{\text {SII }}$	1.5	5.0	350	0.110					370	
5 Z 4	Full Wave	$\begin{gathered} \mathrm{High} \\ \text { Vacuum } \end{gathered}$	Heater	$\text { Octal }_{5 \mathrm{~L}}^{\mathrm{Lin}}$	2.0	5.0	400	0.125	1100	0.50			425	275
6X5	Full Wave	$\begin{gathered} \mathrm{High} \\ \text { Vacuum } \end{gathered}$	Heater	${ }_{\text {Octal }}^{6} \text { Pin }$	0.6	6.3	350	0.075	1250	0.25		500	400	
2526	Hectifier Doubler	$\begin{gathered} \text { High } \\ \text { Vacuum } \end{gathered}$	Heater	$\text { octal }_{7}^{70} \mathrm{Pin}$	0.3	25.0	125	0.170	700	0.35	Rectifier	350	115	
								0.085	700	0.17	Doubler		225	

SPECIAL TUBES					
	FIIAMENT		HASING		CHaRACTEHISTICS
No.	Volts	Amps.	View	Shield Conn. to	USEANI) DIM ENSIONS
85/4S	2.5	1.35	5D	Cathode Pin	Approximately 40 Ma . on each Diode Plate at 50 volts D.C.; Duplex Diode Detector.
245	2.5	1.75	5F.	Cathode l'in	Same an 24A
ers	2.5	1.75	5E	Cathode I'in	Same as 27
35/515	2.5	1.75	5E	Cathode Pin	Same as 35
55.5	2.5	1.0	6G	Cathode I'in	Same as 55
56.5	2.5	1.0	5A	Cathode I'in	Same as 56
575	2.5	1.0	6F	Cathode Pin	Same as 57
sras	6.3	0.4	6 F	Cathode I'in	Same as 6C6 except Heater Amps.
585	2.5	1.0	6 F	Cathode P'in	Same as 58
5845	6.3	0.4	6 F	Cathode Pin	Same as 6D6 except. Heater Amps.
355	6.3	0.3	69	Cathode Pin	Same as 75
gSAS	6.3	0.3	6 G	Heater pin Adjacent to Cathode l'in	Similar to 85 except Arup. Factor $=20$; Mutual Cond. $=1250$; Plate Curr. $=$ 5.5 Ma.; Plate Votts $=250 \mathrm{~V}$; Grid Bias $=-9 \mathrm{~V}$.
188B	5.0	1.25	4 D	No Shield	Similar to 45 except Fil. Volts, Amp. Fact. $=5.0 ;$ Mutual Cond. $=1500$; Plate Curr. $=18 \mathrm{Ma}$.; PI. Volts $=250 \mathrm{~V}$; Gr. Bias $=-35 \mathrm{~V}$.
183	5.0	1.25	4D	No Shield	Similar to 45 except Fil. Volts; Amp. Fact. $=3.0$ Mut. Cond. $=1500$; Pl. Curr. $=20 \mathrm{Ma}$.; Pl. Volis $=250 \mathrm{~V}$; (ir. Bias $=-58 \mathrm{~V}$.
488	3.0	1.25	5A	No Shield	Similar to 27 except IIeater Volts; Amp. Fact. $=12.8 ;$ Mut. Cond. $=1300$; 1 II. Curr. $=5.2 \mathrm{Ma}_{\mathrm{a}}$; Pl. Volts $=180 \mathrm{~V}:$ Gr. Bias $=-10 \mathrm{~V}$.
\$80	2.0	0.12	5K	No Shield	Similar to 33 except Fil. Amps; Pl. Curr. $=7 \mathrm{Ma}$; Power Output $=0.45$ Watts; PI. \& Scr. volts $=135 \mathrm{~V}$; Max. Cont. Gr. Bias $=-16.5 \mathrm{~V}$.
RAFS	2.5 -	1.0	7C	Cathode Pin	Same as 2A7
$\frac{\mathrm{ezs}}{\mathrm{Gs} 4}$	2.5	1.5	4B	No Shield	Similar to 1V
6AFS	6.3	0.3	7C	Cathode Pin	Same 6A7
6B7s	6.3	0.3	7D	Cathode Pin	Same 6as 67
6C7	6.3	0.3	7 C	Separate Pin	Same as 85A-S
6D 7	6.3	0.3	711	Separate Pin	Same as 6C6
6ET	6.3	0.3	7 H	Same as 6D6	Same as 6D6
6F'7s	6.3	0.3	7E.	Cathode P'in	Same as 6F7
6Y5	6.3	0.8	6 J	Separate Pin	Similar to 624/84
6 ES	$\frac{12.6}{6.3}$	$\begin{aligned} & \hline 0.4 \\ & \hline 0.8 \end{aligned}$	6K	No Shield	Similar to 6Z4/84

COMPARISON CHART-Similar Characteristics

$\begin{gathered} \text { Oclal Base } \\ \text { Glass } \end{gathered}$	$\begin{aligned} & \text { Metal } \\ & \text { Glass } \end{aligned}$	Metal	Glass
5Y3	5Z4MG		80
6A8G	6A8MG	6 A8	6 A7
6C5G	6C5MG	6 C 5	
6F5G	6F5M9	6F5	TS Triode
6F6G	6F6MG	6F6	42
6H6G	6116M9	6146	
6J7G	6J7MG	6 J 7	77
6K79	6K7MG	6K7	78
6L7G	6L.7MG	6L. 7	
6N7G	6N7MG		6 A6
	6N6MG		6135
607G	6Q7MG	607	
6R7G	6R7MG	6117	
6X5G	6X5M9	6X5	
6B6	6136		75
6P7	6P7		6F7
25A69	25A6M ${ }^{\text {a }}$	2546	43
2576G	25Z6MG	25\%6	$25 / 5$

BASE CONNECTIONS - Octal Base 2-Volr Glass Tubes

$\left\lvert\, \begin{gathered} \text { Octal } \\ \text { Base } \\ \mathrm{Cl}^{\text {" }} \text { Types } \end{gathered}\right.$	Equiv. Types	1	2	3	4	5	6	7	8	${ }_{\text {Cop }}^{\text {Cop }}$
1C7\%	1 C 6	NC	+F	P	$\mathrm{G}_{2} \mathrm{G}_{5}$	G_{1}	${ }^{\text {a }}$	-	NC	G4
1D5G	1 A 4	NC	+F	P	G_{2}	NC	-	-F	NC	G_{1}
11)79	1 A6	NC	+	I	$\mathrm{Ci}_{2} \mathrm{G}_{5}$	G_{1}	G_{1}	- F	NC	Gs
1E56:	134	NC	+	${ }^{p}$	${ }^{(12}$	NC	-	-	NC	(${ }_{1}$
1 F5G	$1 F 4$	NC	+	P	${ }_{3}$	G_{1}	-	-r	NC	
11146	30	NC	+F	${ }^{2}$	NC	G_{1}	-	-F	NC	
11169	135/25S	NC	+F	${ }^{\text {P }}$	D(+)	1)(-1	;	-r	NC	-
1J69;	19	NC	+ F	p_{1}	G_{1}	f_{2}	\mathbf{P}_{1}	-F	NC	-

TABLE OF COMPARATIVE TYPES

$\begin{gathered} \text { Octal Base } \\ \text { Glauss } \end{gathered}$	Melal (ilass	Metal	Glass
5 V .4			83 V
61.6G		61.6	
$1 \mathrm{C}^{7} \mathrm{~F}$			1C6
11)59			1 A 4
1177			1 A6
1155			13.4
1F5G			1F4
1144G			30
1H6\%			185/25S
1 J 6 G			19

SOCKET CONNECTIONS-BOTTOM VIEW						

See pages 206, 207 and 208 for additional Socket Connections.

Type	DESCRIPTION		$\begin{gathered} \text { Basing } \\ \text { Seee } \\ \text { Socket } \\ \text { Conn. } \\ \text { Chart } \\ \text { on page } 206 \end{gathered}$	$\begin{gathered} \substack{\text { Cur. } \\ \text { Cur- } \\ \text { Amps. } \\ \text { Amps. }} \end{gathered}$	CAPACITANCFS Micro-Microfarads			OPERATING CONDITIONS AND CIIARACTERISTICS												
	Type	$\begin{gathered} \text { Cath- } \\ \text { ode } \end{gathered}$				Input		$\underset{\text { Used }}{\text { Wh }}$	hen	$\begin{aligned} & \text { Plate } \\ & \text { Supply } \\ & \text { Votis } \end{aligned}$	$\begin{gathered} \text { Screen } \\ \text { Grid } \\ \text { Volts } \end{gathered}$	$\begin{gathered} \text { Grid } \\ \text { Bias } \\ \text { Bolte } \\ \text { (Nog.) } \end{gathered}$	$\begin{aligned} & \text { Plate } \\ & \text { Curr. } \\ & \text { Ma. } \end{aligned}$	$\begin{aligned} & \text { Screen } \\ & \text { Curr. } \\ & \text { Ma. } \end{aligned}$	$\underset{\text { Factor }}{\text { Ampl. }}$	Plate Resist. Ohms	$\begin{gathered} \text { Mut. } \\ \text { Comi. } \\ \boldsymbol{\mu} \mathbf{M b r e x s} \end{gathered}$		$\begin{gathered} \text { Recomm. } \\ \text { Loadd. } \\ \text { Resist. } \\ \text { Ohims. } \end{gathered}$	$\begin{gathered} \text { Cut-Off } \\ \begin{array}{c} \text { Bias } \\ \text { Volts } \end{array} \end{gathered}$
6.3 VOLT A.C. OR D.C. DETECTOR AND AMPLIFIER TUBES (continued)																				
6L5G	Triode	Heater	${ }_{\text {Octal } 6 \text { Pin }}^{8 K}$	0.150	2.7	3.0	5.0	Amplifier		135		5.0	3.5		17	11300	1500			11
										250		9.0	8.0		17	9000	1900			20
6, 5	Cath. Hay	Heater	$\mathrm{Sm}^{6 \mathrm{~A}} \mathrm{~min}^{2}$	0.150				$\begin{aligned} & \text { Tuning } \\ & \text { Indicator } \end{aligned}$		Plate Supply 135 Volts Thru 0.25 Meg . Target 135 Volts $\mathrm{Ib}=0.5 \mathrm{Ma}$. \& Shadow $90^{\circ} \mathrm{For} \mathrm{Ec}=0$. Shadow 0° for $\mathrm{Ec}=-12 \mathrm{~V}$.										
6P7	Triode Pentote	Heater	$\mathrm{Octal}_{8 \mathrm{Pin}}^{8 \mathrm{~L}}$	0.300				Triode		100		3.0	3.5		8	18000	450			
								Pentode		250	100	3.0	6.5	1.5	900	. 85 Meg.	1100			50
606:	Sing. Dickle Triode	Heater	$\stackrel{8 \mathrm{M}}{\text { Octal } 6 \mathrm{Pin}}$	0.150	1.8	2.5	5.2	Amplifier		135		1.5	0.9		65	${ }^{.} 65$ Meg.	1000			
										250		3.0	1.2		65	. 62 Meg.	1050			
©S7:	$\begin{aligned} & \text { Var. Mu. Mu. } \\ & \text { Pentode } \end{aligned}$	IIeater	${ }^{8 N}$	0.150	$M_{\text {Max. }}^{.007}$	4.6	7.8	R.F. or I.F. Ampl.		135	67.5	3.0	3.7	0.9	850	. 68 Meg.	1250			2.3
										250	100	3.0	8.5	2.0	1100	. 63 Mes .	1750			38.5
9,54	$\stackrel{c}{a r n}$	IIeater	Special	0.150	0.007	3.0	3.0	A.F. or I.F. Ampl.		90	90	3.0	1.2	0.5	1100	1 Mex.	1160			
										250	100	3.0	$2.1)$	0.7	2000	1.5 Mef.	1100			
								Detector		250	100	6.0							0.25 Mex.	
95.5	$\begin{aligned} & \text { Acorn } \\ & \text { Trioxle } \end{aligned}$	Heater	Special	0.160	1.4	1.0	0.6	Cl. A Amplifier R.F. or A.F.		90		2.5	2.5		25	14700	1700			
										135		3.75	3.5		25	13200	1900			
										180		5.0	4.5		2.5	12500	2000	. 135	20000	
								Cl. C R.F Amplifier	$\begin{aligned} & \text { F. Power } \\ & \text { or Osc. } \end{aligned}$	180		35.0	7.0					0.5		
1603	$\begin{aligned} & \text { Low Micro- } \\ & \text { Phonic } \\ & \text { Peutode } \end{aligned}$	Heater	$\begin{gathered} 6 \mathrm{~B} \\ \mathrm{Sm} . \mathrm{Pin}^{2} \end{gathered}$	0.300	0.010	5.5	7.0	Pent. Ampl. Cl. A		100	100	3.0	2.0	0.5	118.5	1 Meg .	1185			
										250	100	3.0	2.0	0.5	1500	1.5 Meg .	1225			
					2.8	3.0	11.5	Triode Conn. Cl. A Amplifier		180		5.3	5.3		20	11000	1800			
										250		8.0	6.5		20	10500	1900			
2.5 VOLT A.C. OR D.C. POWER AMPLIFIER TUBES																				
2B6	$\begin{aligned} & \text { Dual } \\ & \text { Triode } \end{aligned}$	Heater	$\text { Med. }^{7 \mathrm{~A}} 7 \mathrm{Pin}$	2.25				Input Sec	ction	250		24	4		7.2		600		8000	
								Output Se	ection	250		+2.5	40		18		3500	4.0	5000	
6.3 VOLT A.C. OR D.C. POWER AMPLIFIER TUBES																				
6B4G	Triode	Fil.	${ }^{80}{ }^{80}{ }_{8 \text { Pin }}$	1.0	16	7	5	Sing. Cl. A Ampl.		250		45	60		4.2	800	5250	3.2	2500	
								$\begin{aligned} & \text { Push-Pull } \\ & \text { Class A } \end{aligned}$	Fixed Bias	325		68	$\operatorname{Per}^{40} \mathrm{Tu} \text { ute }$					Two 'Tubes	$\begin{array}{r} 3600 \\ \text { p tol } \end{array}$	
									Self Bias	325	Hias Resist. 750 Ohms		$\begin{array}{\|c\|} 40 \\ \text { Per Tulve } \end{array}$					Two Tubes	$\begin{array}{r} 5009 \\ P 109 \end{array}$	
								Single Cl.		275		40	31		4.7	2250	2100	1.4	7200	
605	Triode	Heater	Octal 6 Pin	0.7				Push-Pull	Cl. AB	300		50	${ }^{23} \mathrm{Per}^{3} \text { Tulse }$					5	$1,5360$	
6K6G	Pentode	Heater	${ }^{80} \mathrm{OCtal}^{8} \mathrm{Pin}$	0.4				Amplifier		180	180	13.5	18.5	3.0	150	81000	1850	1.5	9000	
										250	250	18.0	32	5.5	150	68000	220	3.4	7600	

6.3 VOLT A.C. OR D.C. POWER AMPLIFIER TUBES (continued)

SUPPLEMENTARY SOCKET CONNECTIONS BOTTOM VIEW

See pages 202, 207 and 208 for additional Socket Connections.

BIAS RESISTOR CALCULATIONS and GAIN-FORMULA

THE service man often finds it necessary to replace the grid bias resistor in receivers employing a self-biasing arrangement for obtaining the proper grid voltage. When the resistance value is not known, it may be calculated by dividing the grid voltage required (at the plate voltage at which the tube is operating), by the plate current in amperes, plus the screen current in amperes, times the number of tubes passing current through the resistor.
Under this rule, the grid bias resistor value is given by the following formula:

$$
\mathrm{R}=\frac{\mathrm{E}_{\mathrm{c}_{1} \times 1,000}}{\left(\mathrm{I}_{\mathrm{B}}+\mathrm{I}_{\mathrm{c}_{2}}\right) \mathrm{n}}
$$

where: $\mathrm{R}=$ Grid bias resistor value in ohms.
$\mathrm{E}_{c_{1}}=$ The grid bias required in volts.
$\mathrm{I}_{\mathrm{B}}=$ The plate current of a single tube in milliamperes.
$I_{02}=$ The screen grid current of a single tube in milliamperes.
n = The number of tubes passing current through the resistor.

Example-It is desired to determine the value of bias resistor used to obtain the proper value of grid bias on three type ' 35 tubes working in the radio frequency stages of a receiver. First, determine the plate and screen voltages employed in this set. Suppose, in this case, it is found that the plate supply voltage is 250 and the screen voltage is 90 . Looking in the characteristics chart on page 195, it is found that the proper grid bias for the ' 35 under these conditions is -3.0 volts. In addition, the plate current is 6.5 milliamperes. The screen current is 2.5 milliamperes. Substituting in the formula,

$$
\mathrm{R}=\frac{3.0 \times 1,000}{(6.5+2.5) 3}=111 \mathrm{ohms}
$$

The value of grid bias resistors can be calculated in this manner for any type and any number of tubes. In the case of triodes, the screen current term drops out entirely.

Be sure to determine the plate voltage at which the tubes are working, the number of tubes being supplied from the bias resistor, the screen voltage (if a tetrode or pentode), the correct value of grid bias voltage required
(whether the tube cathode is operated from A.C. or D.C. will affect the value of bias voltage), and the plate and screen current for the given plate voltage.

In the case of resistance-coupled amplifiers which employ high resistance in the plate circuit, it must be remembered that the plate voltage is equal to the plate supply voltage minus the voltage drop in the plate load resistance caused by the plate current. The net plate voltage alone determines the correct value of grid bias.
The foregoing methods of calculations apply to self bias only.
Size of Bias Resistors-In addition to having the proper resistance, a resistor should have sufficient size and heat dissipating ability to carry the current. The actual wattage dissipated in a resistor can easily be calculated from the following application of Ohms law:

$$
\text { Watts }=\frac{E^{2}}{R} \text { where } \begin{aligned}
& E=\text { voltage across resistors } \\
& R=\text { resistance in ohms }
\end{aligned}
$$

When selecting the proper resistor for a given application, the actual wattage given by the formula should be multiplied from two to ten times, depending upon such factors as air circulation, mounting position, and amount of heat which may be developed without injury to other parts. For a given dissipation, the larger the resistor, the
lower the operating temperature per unit of area.
Cut-Off Bias-Every serviceman should be familiar with the formula for calculating "cut-off." This is the point where plate current ceases to flow as the grid voltage is made increasingly negative. In volume control circuits, the control range should never be extended into the "cut-off" region, otherwise serious distortion will result. The formula for triodes is:

$$
\text { "Cut-off" voltage }=\frac{\text { Plate voltage }}{\mathrm{Mu}}
$$

"The cut-off" voltage for tetrodes, pentodes and variable mu tubes cannot be calculated from this simple formula, and should be obtained from the tube manufacturers tables.

The Gain or voltage amplification of resistance coupled audio stages can easily be calculated from the following formula:

$$
\text { Voltage Ampiification }=\frac{\mathrm{Mu} \times \mathrm{Rl}}{\mathrm{Rl}+\mathrm{Rp}}
$$

where $\mathrm{Mu}=$ Amplification constant of tube
R1 = Load resistance
Rp= Plate resistance
(See pages 202, 206 and 208 for other Sockel Connections)

QUICK REFERENCE CHART

Showing Tube Socket Connections - Both Tops and Bottoms

Some Servicemen Read TUBE SOCKET CONNECTIONS One Way; Some the Other. This New Chart Shows Both.

ACTUAL SOCKET VOLTAGES

Measured to Chassis with 1000-ohms-per-volt D.C. Instrument

Here's a new sérvice chart idea designed to speed up location of set trouble. $\mathbf{9 5 \%}$ of all receivers using the fubes illustrated apply voltages within the limits shown.

ACTUAL SOCKET VOLTAGES

Measured to Chassis with 1000-ohms-per-volt D. C. Instrument

Here's c new service chart idea designed to speed up location of set trouble. 95% of all receivers using the tubes illustrated apply voltages within the limits shown.

ACTUAL SOCKET VOLTAGES

Measured to Chassis with 1000-ohms-per-volt D. C. Instrument

Here's a new service chart idea designed to speed up location of set trouble. 95% of all receivers using the tubes illustrated apply voltages within the limits shown.

Mallory Replacement Rectifiers

Mallory Replacement Rectifiers for Chargers, Boosters, Eliminators and Speakers

Catalog Number	Replaces Old Types Number
41 AB	XB4
W8A3	4 A 3
12AIBY.	XP12. UP8
12 Cl .	X112. X12, U12
16 C 3.	X116, X16, ME16
16 C 3 B	XB16, M16
16CD3.	
$20 \mathrm{A1}$.	X20
W20AI	X20
W24A1.	
65-10..	

SECTION THROUGH SINGLE JUNCTION

 of Mallory Dry Dise Rectifier
1. Magnesium

5. Steel Washere
6. Copper Sulphide 6. Protective Covering
7. Non-Polarizing Backing
8. Alloy Stoel Spring Washer

TYPICAL APPLICATIONS OF MALLORY DRY DISC RECTIFIER

6-Volt Rattery Charger

The increasing use of Mallory Dry Disc Rectifiers by manufacturers of battery chargers, boosters, eliminators, public address $8 y s$ tems, pin game power packs and other DC apparatus operated from AC lines, opens up a new and profitable field for the serviceman. The same high quality and precision design has been built into a line of Mallory Replacement Rectifiers for this field as listed below.

The replacement reference contains the more popular applications for which Mallory Rectifiers are carried in stock. Mallory can supply replacement rectifiers made to order for many other applications not listed
here at slightly higher prices. When ordering supply name and make of unit giving all information on name plate and send in old rectifier if possible.

Mallory engineers are always anxious to work with servicemen on any rectifier application. Upon receipt of complete circuit specifications and load requirements, they will be pleased to advise the proper use of Mallory Rectifiers together with the proper transformer and other circuit components. Mallory engineers will welcome hearing from any serviceman concerning any unusual rectifier applications.

General Replacement Reference

Make	Application	Model	Use Mallory Rectifier Cat. No.
Acme.	Charger.		4A1B
Amervox	Speaker.		16C3B
Arvin.	Charger.	500	16C3
Arvin	Charger	600	16 C 3
Bernard	A Eliminator		16С3B
Bernard	Charger		4 AlB
Bosch.	Charger	250 H	16C3
Bosch	Charger.	2501.	16C3
Brach	A Eliminator		16C3B
Briggs-Stratton.	Charger		16C3B
Cadillac...	Bat. Booster	A1109.	16CD3
Cadillac.	Charger	A1180.	16CD3
Chevrolet	Charger.	250B.	16 C 3
Elkon.	A Eliminator		16 C 3 B
Elkon.	Charger.		4 AlB
Elkon.	Charger.		${ }^{12 \mathrm{Cl}}$
Elkon.	Charger.	T	4 AlB
Elkon.	Charger	3 Amp	16C3B
Elkon.	Charger	310	16C3
Elkon.	Rectifier	M16.	16C3B
Elkon.	Rectifier.	ME16.	16 C 3
Elkon.	Rectifier	U12	12C1
Elkon.	Rectifier.	UP8.	12A1BY
Elkon.	Rectifier	XP12	12A1BY
Elkon.	Rectifier	XB16..	16C3B
Fada.	A Eliminator		16C3B
Farrand	Speaker.		16C3B
General Motors	Charger	250	16C3
General Motors.	Charger.	600503.	16 C 3
Green-Brown	A Eliminator.		16C3B
Knapp.	A Eliminator.		16C3B
Knapp.	Bat. Booster.	No. 2	12 C 1
Knapp.	Bat. Booster.	No. 3.	W8A3
Lundy.	Charger.	${ }_{6}^{250}$	${ }^{16 \mathrm{C}} 3$
Lundy..	Charger....	600	16 CD 3
Majestic	A Fliminator.		$16 \mathrm{C3B}$
Mallory M-Eikon	Chat. Booster.	No. 3.	W8A3
Mallory-Eikon	Charger..	${ }^{2} 550$.	16 C 3
Mallory-Elkon	Charger.		16 CD 3
Mallory	Rectificr. Rectifier.	X84. $\times 12$.	${ }_{12 \mathrm{Cl}}^{4}$
Mallory	Rectifier.	X16.	16 C 3
Mallory	Rectifier.	X20	20A1
Mallory.	Rectifier.	X112.	12 Cl
Mallory	Rectifier.	X116	16C3
Metro.	A Eliminator		${ }_{4}^{16 C 3 B}$
National	Charger....		$4 \mathrm{A1B}$
Otwell.	Charger.	Safety-Super	${ }_{16 \mathrm{CD}}^{12}$
Packard	Charger.		16CD3
Philco..	A Eliminator.	(Elicon-Equipped)	$16 \mathrm{CB3}$
Philco.	A Eliminator (Replaces Philcotron A and	AA Jars)	12A1BY
Philco.	Combination A and B Elimina	tor. . . .	12A1BY
Philco.	Trickle Chargers.............		12A1BY
Precision	Charger.		4 AlB
Sentinel.	A Eliminator.		16 C 3 B
Silvertone	Charger.		${ }_{12 \mathrm{C}}^{12}$
Song Bird	Charger.		12 Cl
Stevens.	Speaker		16 C 3 B
Tobe Mayolian.	A Eliminator		16 C 3 B
Truetest..	Bat. Booster.		12 Cl
Truetest.	Charger.		W8A3
Vitaltone	Speakers...		16C3B
Webster	A Eliminator		${ }_{16 \mathrm{C} 3 \mathrm{~B}}$
WLS..	Charger.		12 Cl
SPECIAL APPLICA			
Pin Game.	Power Packs.		W16Al
Pin Gam	Power Packs.		W20A1
Pin Game	Power Packs.......		W24Al

RADIO DEFINITIONS*

"A" Power Supply. A power supply, device providing heating current for the cathode of a vacuum tube. Alternatlng Current. A current, the direction of which reverses at repularly recurring intervals, the algebraic average value being zero.
Ampllflcatlon Factor. A measure of the effectiveness of the grid voltage relative to that of the plate voltage in affecting the plate current.
Amplifler. A device for increasing the amplitude of electric current, voltages or power, through the control by the input power of a larger amount of powes supplied by a local source to the output circuit.
Anode. An electrode to which an electron stream flows.
Antenna. A conductor or a system of conductors for radiating or receiving radio waves.
Atmospherics. Strays produced by atmospheric conditions.
Attenuatlon. The reduction in power of a wave or a
current with increasing distance from the source of transmission.
Audio Frequency. A frequency corresponding to a normally audible sound wave. The upper limit ordi narily lics between 10,000 and 20,000 cycles.
Audio-Frequency Transformer. A transformer for use with audio-frequency currents.
Autodyne Receptlon. A system of heterodyne reception through the use of a device which is both an oscillator and a detector.
Automatic Volume Control. A self-acting device which maintains the output constant within rela tively narrow limits while the input voltage varies over a wide range.
"B" Power Supply. A power supply device connected in the plate circuit of a vacuum tube.
Baffle. A partition which may be used with an acoustic radiator to impede circulation between front and back.
Band-Pass Filter. A filter designed to pass currents of frequencies within a continuous band limited by an upper and a lower critical or cut-off frequency and substantially reduce the amplitude of currents of al frequencies outside of that band.
Beat. A complete cycle of pulsations in the phenomenon of beating.
Beat Frequency. The number of beats per second. This frequency is equal to the difference between the frequencies of the combining waves.
Beatlng. A phenomenon in which two or more periodic quantities of different frequencies react to produce a resultant having pulsations of amplitude.
Broadcastine. Radio transmission intended for general reception.
By-Pass Condenser. A condenser used to provide an alternating-current path of comparatively low impedance around some circuit element.
*"C" Power Supply. A power supply device connected in the circuit between the cathode and grid of a vacuum tube so as to apply a grid bias.
Capacltlve Coupllne. The association of one circuit with another by means of capacity cominon or mutual to boih.
Carbon Microphone. A microphone which depends for its operation upon the variation in resistance of carbon con'acts.
Carrier. A term broadly used to designate carrier wave, carrier ct rrent, or carrier voltage.
Carrier Frequency. The frequency of a carrier wave.
Carrier Suppression. That method of operation in which the carrier wave is not transmitted.
Carrier Wave. A wave which is modulated by a signal and which enables the signal to be transmit ted through a specific physical system.
Cathode. The electrode from which the electron stream flows. (See Filament.)
Choke Coll. An inductor inserted in a circuit to offer relatively large impedance to alternating current.
Class A Amplifier. A class A amplifier is an amplifier in which the grid bias and alternating grid voltages are such that plate current in a specific tube flows at all times.
Class AB Amplifier. A class AB amplifier is an amplifier in which the grid bias and alternating grid voltages are such that plate current in a specific tube fiows for appreciably more than half but less than the entire electrical cycle.

* Most of these definitions are based on I. R. E. standards.

Class B Amplifier. A class B amplifier is an amplifier in which the grid bias is approximately equal to the cut-off value so that the plate current is approximately zero when no exciting grid voltage is applied, and so that plate current in a specific tube flows for
approximately one-half of each cycle when an alterapproximately one-half of each
nating grid voltage is applied.
Class (: Ampllfier. A class C amplifier is an amplifier in which the grid bias is appreciably grcater than the cut-off value so that the plate current in each tube is zero when no alternating grid voltage is applied, and ciably less than one-half of each cycle when an alter. nating grid voltage is applied.
Note: To denote that grid current does not flow during any part of the input cycle, the suffix I may be added to the letter or letters of the class identification. The suffix 2 may be used to denote that grid current flows during some part of the cycle.
Condenser Loud Speaker. A loud speaker in which the mechanical forces result from electrostatic reactions.
Condenser Microphone. A microphone which depends for its operation upon variations in capacitance. Contlnuous Waves. Continuous waves are waves in which successive cycles are identical under steady which successive
state conditions.
Conversion Transconductance is the ratio of the magnitucte of a single beat-frequency component ($f_{1}+f_{2}$) or ($f_{1}-f_{2}$) of the output current to the magnitude of the in put voltage of frequency f_{1} under tude of the second input alternating voltage magnicude of the second input alternating voltage f a must an infinitesinal magnitude of the voltage of frean infinit
Converter (generally in superheterodyne receivers). A converter is a vaculum-tube which performs simultaneously the functions oscillation and mixing
Coupling.'The association of two circuits in such a way that energy may be transferred from ore to the other.
Cross Modulation. A type of intermodulation due to modulation of the carrier of the desired signal in a radio apparatus by an undesired signal.
Current Amplificatlon. The ratio of the alternating current produced in the out put circuit of an amplifier to the alternating current supplied to tbe input circuit for specific circuit conditions.
Cycle. One complete set of the recurrent values of a periodic phenomenon.
Damped Waves. Waves of which the amplitude of successive cycles, at the source, progressivcly diminishes. Decibel. The common transmission unit of the decimal system, equal to $1 / 10$ bel.

1 bel $=2 \log _{10} \frac{E_{1}}{E_{2}}=2 \log _{10} \frac{I_{1}}{I_{2}}$
(See Transmission Unit.)
Detection is any process of operation or a nodulated signal wave to obtain the signal imparted to it in the
modulation process.
Detector. A detector is a device which is used for operation on a signal wave to obtain the signal imparted to it in the modulation process.
Dlaphragm. A diaphragm is a vibrating surface which sroduces sound vibrations.
Diode. A type of thermionic tube containing two electrodes which passes current wholly or predominantly in one direction.
Direct Capitance (C) between two conductors-The tatio of the charge produced on one conductor by
the voltage between itand the other conductor, divided by this voltage, all other conductors in the neighborhood being at the potential of the first conductor.
Direct Coupling. The association of two circuits by having an inductor, a condenser, or a resistor common to both circuits.
Direct Current. A unidirectional current. As ordinarily used, the term designates a practically non-pulsating current.
Distortion. A change in wave form occurring in a transducer or transmission medium when the output wave form is not a faithful reproduction of the input
wave form. wave form.
Double Modulation. The process of modulation in which a carrier wave of one frequency is first modu-
lated by the signal wave and is then made to modulate lated by the signal wave and is then made to modulate a second carrier wave of another frequency.
Dynamic Amplifier. The RCA Dynamic Amplifier is a variable gain audio amplifier. the gain of which is proportional to the average intensity of the audio signal. Such an amplifier compensates for the con-
traction of volume range required because of recording or transmission line limitations.
1)ynamic Sensltivity of a Phototube. The alternat-ing-current response of a phototube to a pulsating light flux at specified values of mean light flux, frequency of pulsation, degree of pulsation, and steady tube voltage.
Electro-Acoustic Transducer. A transducer which is actuated by power from an electrical system and sup-
plies power to an acoustic system or vice versa. plies power to an acoustic system or vice versa.
Electron Emlssion. The liberation of electrons from an elnctrode into the surrounding space. In a vacuum tube it is the rate at which the electrons are emitted from a cathode. This is ordinarily measured as the
current carried by the electrons under the influence of a voltage sufficient to draw away all the electrons.
Electron Tube. A vacuum tube evacuated to such a degree that its electrical characteristics are due essentially to electron emission.
Emlssion Characteristic. A graph plotted between a factor controlling the emission (such as the temperaand the emission from the cathode as ordinates.
Facsinalle Transmission. The electrical transmission of a copy or reproduction of a picture, drawing or
Fading. The variation of the signal intensity received at a given location from a radio transmitting station as a result of changes occurring in the transmission path (see Distortion.)
Fidelity. The degree to which a system, or a portion of a system, accurately reproduces at its output the signal which is impressed upon it.
Filament. A cathode in which the heat is supplied by current passing through the cathode.
Filter. A selective circuit network, designed to pass quencies or direct current, and substantially reduce the amplitude of currents of undesired frequencies.
Frequency. The number of cycles per second.
Full-Wave Rectifier. A double element rectifier arranged so that current is allowed to pass in the same direction to the load circuit during each half cycle of the alternating-current supply, one element func tionirg during one-half cycle and the other during the next half cycle, and so on.
Fundamental Frequency. The lowest component frequency of a periodic wave or quantity.
Fundamental or Natural Frequency (of an antenna). The lowest resonant frequency of an apitenna, without added inductance or capacity.
Gas Phototube. A type of phototube in which a purpose of increasing its sensitivity.
Grid. An electrode having openings through which Grid. An electrode having
electrons or ions may pass.
Grid Bias. The direct component of the grid voltage.
Grid Condenser. A series condenser in the grid or control circuit of a vacuum tube.
Grid Leak. A resistor in a grid circuit, through which the grid current flows, to affect or determine a grid bias.
Grid-Plate Transconductance. The name for the plate current to grid voltage transconductance. (This has also been called mutual conductance.)
Ground System (of an antenna). That portion of the antenna system below the antenna loading devices or generating apparatus most closely associated with the ground and including the ground itself.
Ground Wire. A conductive connection to the earth.
Half-Wave Rectlfer. A rectifier which changes alternating current into pulsating current, utilizing only one-half of each cycle.
Harmonic. A component of a periodic quantity having a frequency which is an integral multiple of the fundamentad frequency. For example, a component the frequency of which is twice the fundamental fre quency is called the second harmonic.
Heater. An electrical heating element for supplying heat to an indirectly heated cathode.
Heterodyne Reception. The process of receiving radio waves by combining in a detector a received voltage with a locally generated alternating voltage. The frequency of the locally generated voltage is commonly different from that of the received voltage.
(Heterodyne reception is sometimes called beat reception.)
Homodyne Reception. A system of reception by the aid of a locally generated voltage of carrier frequency. (Homedyne reception is sometimes called zero-beat reception.)

Hot-Wire Ammeter, Expansion Type. An ammeter ependent for whent whe the current to be measured.
Indirectiy Heated Cathode. A cathode of a thermionic tube, in which heat is
Induction Loud Speaker is a moving coil loud speaker in which the current which reacts with the polarizing field is induced in the moving member.
Inductive Couplins. The association of one circui
with another by means of inductance common or mutual to both.
Interelectrode Capacitance. The direct capacitance between two electrodes.
Interference. Disturbance of reception due to strays, undesired signals, or oth
Intermediate Frequency In Superheterodyne Reception. A frequency between that of the carriet and the signal, whicheres and the locally generated frequency
Intermodulation. The production, in a non-linear circuit element, of frequencies corresponding to the sums and differences of the fundamentals and hat monics of two ot more frequencies which are trans mitsed to that element.
Interrupted Continuous Waves. Interrupted continuous waves are waves obtained by interruption a audio frequency in a substantially periodic manner of otherwise continuous waves
Kilocycle. When used as a unit of frequency, is a thousand cycles per second.
Lead-In. That portion of an antenna system which completes the electrical connection between the ele vated outdoor portion and the instruments or disconnecting switches inside the building.
Linear Detectlon. That form of detection in which the audio output voltage under consideration is substanthroughout the useful range of the detecting device.
loadind Coil. An inductor inserted in a circuit to in-
Loadind Coll. An inductor inserted in a circuit to increase its inducta
any other circuit.
Loud Speaker. A telephone receiver designed to radiate acoustic power into a room or open air
Mapnetic Loud Speaker. One in which the mechanical forces result from magnetic reactions.
Magnetic Microphone. A microphone whose electrical output results from the motion of a coil or conductor in a magnetic field.
Master Oscillator. An oscillator of comparatively low power so arranged as to establish the carrier frequency of the output of an amplifier
Mepacycle. When used as a unit of frequency, is a million cycles per second.
Mercury-Vapor Rectifier. A mercury-vapor rectifier is a two-electrode, vacuum-tube rectifier which conains a small amount of mercury. During operation, he mercury is vaporized. A characteristic of mercurywor rectifiers is the low-voltage drop in the tube.
Mircophone. A microphone is an electro-acoustic transe'icer actuated by power in an acoustic system and delivering power to an electric system, the wave form in the electric system corresponding to the wave orm in the acoustic system. This is also called a telephone transmitter.
Mixer Tube (generally in superheterodyne receivers.) A mixer tube is one in which a locally generated frequency is combined with the carrier-signal frequency o obtain a desired beat frequency.
Modulated Wave. A modulated wave is a wave of which either the amplitude, frequency, or phase is varied in accordance with a signal.
Modulation is the process in which the amplitude, requency, or pliase of a wave is varied in accordane frequency, or phase of a signal, or the result of that process.
Modulator. A device which performs the process of modulation.
Monochromatic Sensitivity. The response of a phototube to light of a given color, or narrow frequency range.
Moving-Armature Speaker. A magnetic speaker whose operation involves the vibration of a portion of the ferromagnetic circuit. (This is sometimes called an electromagnetic or a magnetic speaker.)
Moving Coll Loud Speaker. A moving coil loud speaker is a magnetic loud speaker in which the mechanical forces are developed by the interaction of currents in a conductor and the polarizing field in which it is located. This is sometimes called an Elec-tro-Dynamic or a Dynamic Loud Speaker.
Mu-Factor. A measure of the relative effect of the voltages on two electrodes upon the current in the circuit of any specified electrode. It is the ratio of the change electrode voltage, under the condition that a specified current remains unchanged.
Mutual Conductance. (See Grid-Plate Transconductance.)
Oscillator. A non-rotating device for producing alternating current, the out put frequency of which is defermined by the characteristics of the device.

Oscillatory Circuit. A circuit containing inductance and capacitance. such that a voltage impuise will produce a current which periodically reverses.
Pentode. A type of thermionic tube containing a plate, a cathode, and three additional electrodes. (Ordi-
narily the three additional clectrodes are of the nature of grids.)
Percentade Modulation. The ratio of half the difference between the maximum and minimum ampliades of modulated wave to the average amplitude expressed in per cent.
Phonograph Pickup. An electromechanical transducer actuated by a phonograph record and delivering power to an electrical system, the wave form in the the phonograph record.
Phototube. A vacuum tube in which electron emission is produced by the illumination of an electrode. (This has also been called photo-electric tube.)
Plate. A common name for the principal anode in a vacuum tube.
Power Amplification (of an amplifier). The ratio of the alternating-current power produced in the out put
circuit to the alternating-current power supplied to the input circuit.
Power Detection. That form of detection in which the power out put of the detecting device is used to supply a substantial amount of power directly to a device such as a loud speaker or recorder.
Pulsatind Current. A periodic current; that is, current passing through successive cycles, the algebraic average value of which is not alternating and a direct equivale.
Push-Pull Microphone. One which makes use of t functioning elements 180 degrees out of phase.
Radio Channel. A band of frequencies or wavelengths of a width sufficient to permit of its use for radio communication. The width of a channe depends upon the type of transmission. (See Band of Frequencies.)
Radio Compass.
tional purposes.
Radio Frequency. A frequency higher than those corresponding to normally audible sound waves. (See Audio Frequency.)
Radio-Frequency Transformer. A transformer for use with radio-frequency currents.
Radio Receliver. A device for converting radio waves into perceptible signals.
Radio Tranamisaion. The transmission of signals by means of radiated electromagnetic waves originating in a constructed circuit.
Radio Transmitter. A device for producing radiofrequency power, with means for producing a signal. Rectifier. A device having an asymmetrical conduction characteristic which is used for the conversion of an alternating current into a pulsating current. Such devices include vacuum-tube rectifiers, gas rectifiers, devices inciude vacuum-tube rectifiers, electrolytic rectifiers, etc.
Reflex Circuit Arrandement. A circuit arrangement
in which the signal is amplified, both before and after detection, in the same amplifier tube or tubes.
Regeneration. The process by which a part of the output power of an amplifying device reacts upon the input circuit in such a manner as to reinforce the initial power, thereby increasing the amplifi
Resistance Coupling. The association of one circuit
Resistance Coupling. The association of one circuit
with another by means of resistance common to both. with another by means of resistance common to both.
Resonance Frequency (of a reactive circuit). The frequency at which the supply current and supply voltage of the circuit are in phase.
Rheostat. A resistor which is provided with means for readily adjust ing its resistance.
Screen Grid. A screen grid is a grid placed between a control grid and an anode, and maintained at a fixed positive notential, for the purpose of reducing the electrostatic influence of the anode in
tween the screen grid and the cathode.
Secondary Emission. Electron emission under the influence of electron or ion bombardment.
Selectivity. The degree to which a radio receiver is capable of differentiating between signals of different caprier frequencies.
Sensitivity. The degree to which a radio receiver responds to signals of the frequency to which it is tuned.
Sensitivity of a Phototube. The electrical current response of a phototube, with no impedance in its external circuit, to a specified amount and kind of light. It is usually expressed in terms of the current for a given radiant flux, or for a given luminous flux. In general the sensitivity depends upon the tube voltage, fux intensity, and spectral distribution of the flux.
Service Band. A band of frequencies allocated to a given class of radio communication service.
Side Bands. The bands of frequencies, one on either side of the carrier frequency. produced by the process of modulation.
Signal. The intelligence, message or effect conveyed in Signal. The intelli
communication.
Single Side-Band Transmission. That method of operation in which one side band is transmitted, and the other side band is suppressed. The cansmitted or suppressed.

Static. Strays produced by atmospheric conditions. Static Sensltivity of a Phototube. The direct current resnonse of a phototube to a light flux of specified value.
Stopping Condenser. A condenser used to introduce a comparatively high impedance in some branch of a circuit for the purpose of limiting the flow of lowrequency alternating current or direct current without materially affecting the flow of high frequency alternating current.
Strays. Electromagnetic disturbances in radio recep tion other than those produced by radio transmitting systems.
Superheterodyne Reception. Supetheterodyne reception is a method of reception in which the received voltage is combined with the voltage from a local oscillator and converted into voltage of an interme diate frequency which is usually amplified and then detected to reproduce the original signal wave. (This is sometimes called double detection or supersonic reception.)
Swinging. The momentary variation in frequency of a received wave.
Telephone Receiver. An electro-acoustic transducer actuated by power from an electrical system and supplying power to an acoustic system, the wave form in the acoustic system corresponding to the wave form in the electrical system.
Television. The electrical transmission of a succession of images and their reception in such a way as to give a substantially continuous reproduction of the object or scene before the eye of a distant observer.
Tetrode. A type of thermionic tube containing a plate, a cathode, and two additional electrodes. (Ordinarily grids.)
Thermionic. Relating to electron emission under the influence of heat.
Thermionic Emission. Electron or ion emission under the influence of heat.
Thermionic Tube. An electron tube in which the elec tron emi
electrode.

Thermocouple Ammeter. An ammeter dependent for its indications on the change in thermo-electromotive force set up in a thermo-electric couple which is heated by the current to be measured.
Totai Emission. The value of the current carried by electrons emitted from a cathode under the influence
of a voltage such as will draw away all the electrons of a volta
Transconductance. The ratio of the change in the current in the circuit of an electrode to the change in the voltage on another electrode, under the condition that all other voltages remain unchanged.
Transducer. A device actuated by power from one system and supplying nower to another system. These me methical or acoustic
Tranamisaion Unit. A unit expressing the logarithmic ratios of powers, voltages, or currents in a transmission system. (See Decibel.)
Triode. A type of thermionic tube containing an anode, a cathode, and a third electrode, in which the current controlled by the voltage between the third electrode and the cathode.
Tuned Transformer. A transformer whose associated circuit elements are adjusted as a whole to be resonant at the frequency of the alternating current supplied to the primary, thereby causing the secondary voltage obtained.
Tunind. The adjustment of a circuit or system to secure optimum serformance in relation to a frequency; commonly
Vacuum Phototube. A type of phototube which is evacuated to such a degree that the residual gas plays negligible part in its operation.
Vacuum Tube. A device consisting of a number of electrodes contained within an evacuated enclosure.
Vacuum Tube Transmitter. A radio transmitter in which vacuum tubes are utilized to convert the applied electric power into radio-frequency power.
Vacuum Tube Voltmeter. A device utilizing the characteristics of a vacuum tube for measuring alternating voltages.
Voltape Amplification. The ratio of the alternating voltage produced at the output terminals of an am-
plifier to the alternating voltage impressed at the plifier to the al
input terminals.
Vol tage Divider. A resistor provided with fixed or movable contacts and with two fixed terminal contacts; current is passed between the terminal contacts, and a desired voltage is obtained across a portion of the resistor. (The term potentiometer is of ten erroneously used for this device.)
Wave a. A propagated disturbance, usually periodic,
b. A single cycle of such a disturbance, or
c. A periodic variation as represented by a graph.

Wavelength. The distance traveled in one period or cycle by a periodic disturbance.

ALIGNMENT OF RADIO RECEIVERS 160,161ANTENNA DESIGN.72-174
utomatic Frequency Control 61-163
Battery Ground Charts 150
Practical AC Bridg 185Current Supply for the BridgeMiscellaneous Bridge MeasurementsUse of the Bridge187, 188
Condensers.89. 190
Capacity Measu- 149
Action in AC Circuits 134
By-pass Replacements.135. 136
-B" Section, Condensers. 126-149
Capacity Ratings 126
Electrolytic Types. 126
Electrolytic By-pass Types135Filter Circuit Action.131
Filter Circuit. Multiple Choke 131
Filter Condensers, Replacemest of
188.
Measurement of Electrolytic Conde 121, 127132, 133
Reference Circuits of145-149
Internal Connections of 14.5
Mounting Accessories. 6, 147
Surge Voltages. 130
CONTROLS 00-125
115. 116
A Section, Controls. 150
Carbon Element Types. Advantages ofWire Wound Element Types, Disadvantages ofAutomotive TypesAncuitenna Control Circuitsiot-113
Antenna-Bias Control Circuits 106. 107
Antenna-RF Rheo. Dual Control Circuits.108. 109
Bias Control Circuits. 105, 106
Hum Control Circuits 112. 113Miscellaneous Control CircuitsRF Secondary (Shunt) Control CircuitScreen Voltage Control Circuits.107108
Toppe Control Circuits. 110. 111
Midget Types. Replacement ofReference Circuits of Controls.
Accessories.122-125
Adjustable Bias Resistor123. 124
Flexible Shafts. 125
Mounting Brackets.Mounting Nuts.Resistance Value.Determination of Taper102

I.F. Peaks, bs Receiver Manufacturer and
Model Numbers

Reactance or L C Charts.176. 177
Retifiers, Dry Disc Type, Malory............ 212
Ren
Tube Type Full Wave Rectifiers................... 27.128
Tube Type Half Wave Rectifiers...........
Controls, Condensers and Vibrators listed
Controls, Condensers and Vibrators listed
by Receiver Manufacturers and Model
by Receiver Manufacturers and Model
Numbers.................................... $1-99$
A.C. Dayton
Acme Electric \& Mig. Co.
Acratest Products.
Acratone.
(Also see Federated Purchaser). 26,27
Addison... ... 1
Admiral (See Continental). 14, 15
Advance Electric Co.......................... $\quad 1$
Aero Products (See Chas. Hoodwin)......... 37
Aero Products (See Chas. Hoodwins. 37
Aetna.
Aircastle.
Airline (See Montgomery-Ward). 48-52
All American Mohawk......................... 2
Allied Radio Corp... 2,3
Ameriean Hoech
(See United American Bosch).............. . 86-88
American Transformer Corp. ,
Amrad.
Amsley Radio Labs
Apex (See U. S. Radio \& Tel.)
Appel Henderson
Arborphone. 91 , 92
Argus
Ariel Radio.....................
Arvin (See Noblitt-Sparks)
Atchison Radio Mfg. Co.
Atwater Kent.
Audiola.. 7_{8}^{4-1}
(Also See Fairbanks-Morse). 26
Austin.
Autocrat..
Automatic.
Baird (See General Electronics Corp.)...............................
Baldwin
Balkeit
Barker Bres.
Bel Canto (See Amrad) ${ }_{9}^{9}$
Belmont Radio Corp............................... 10
Belmont Radio Corp.............................9. 10
Blackhawk.................................. . . 10
Blackhawl....
Bond Radio Co............................... 10
B.O.P. (See United Motors Service) 88,89
Bosch (See United American Bosch)..........86-88
Brandes.
Bremer Tully
Breting.
Browning Drake.
Browning Drake......
Brunswich R
Buckingham
Buick Motor
(Also See U................................... 11
(Also Sre United Motors Service). 88, 89
Bulova Watch.
11. 12
Bush and
.11 .12
CRC.
12
Cable Nelson (See Howard) 38
Cadillac
38.
128
$-\quad 12$
12
12
Cal
Capehart

Controls-Taper (contd.)	Pages
Types of Taper	101
Combination Taper (Yaxley No.	
Explanation of Taper	101
Left Hand Taper (Yaxley No. 1).	
Explanation of	
Left Hand Taper,	
Right Hand Taper (Yaxley No. 2)	
Explanation	
Right Hand Taper, Reference Ch	103
Linear Taper (Yaxley No. 4).............. 104	
Yaxley No. 7 Taper	
Conversion Tables, Miscellaneous. 192	
Copper Wire Table	
Decibel Conversion Tables.	
FILTER CIRCUITS	128-131
	28.
Resonant Element Type. 129, 130	
Filter Chokes, Action of	
FORMULAS, Useful Servicing. 181-184	
Frequency Measurement.	
Crid Bias Cells. Mallory 147	
How to Repair a Receiver.................IV. V. V1 HIOW TO USE THE ENCYCLOPEDIA. IV to VIII	
I.F. Peaks, br Receiver Manufacturer and Model Numbers. . $1-99$	
Inductance Measurement	
Measuring Instruments. 185	
Radio Components, Measurement	
Radio Definitions. 213, 214	213, 214
Keactance or L C Charts. 176. 177	
Rectifiers, Dry Disc Type, Mallory............ 212	
Tube Type Half Wave Rectifiers............ 127	
REPLACEMENT RECOMMENDATIONS	
Controls, Condensers and Vibrators listed by Receiver Manufacturers and Model	
Numbers.....	
C. Dayton	
Acme Electric \& M	
Acratest Products.	
Acratone. 20,1(Also see Federated Purchaser) 27	
Admiral (See Continental) \qquad	
Advance Electric Co........................ 1	
Aero Products (See Chas. Hoodwin). 37	
Aircastle.	
Airking \qquad (See Mont ... W \qquad 48-52	
All American Mohawk.......................... . . 2	
American Bosch (See United American Bosch).86-88	
American Transformer Corp. 3	
Amrad. 3, 4	
Ansley Radio Labs. Apex (See U. S. Radio \& Tel.)....... 90	
Appel Henderson............................ 4	
Arborphone. 91,92	
Argus. Ariel Radio	
Arkay (See R. K. Radio Labs.) 71	
Arvin (See Noblitt-Sparks).... 52, 53	
Atchison Radio Mig. Co........................ ${ }_{4-7}^{4}$	
Austin.	
Autocrat.	
Automatic. 8	
Aztec Radio Co. 8	
Baird (See General Electronics Corp.) 32	
Baldwin	
Balkeit.	
Barker Bres.. ${ }^{9}$	
Bel Canto (See Amrad) 3, 4	
Belmont Radio Corp....... 9. 10	
Blackhawk................................ 10 . 10	
B.O.P. (See United Motors Service) 88, 89	
Bosch (See United American Bosch)..... . . . 86-88	
Brandes . 10. 11	
Bremer Tully................................. ${ }^{\text {. }}$. 11	
Bronswick Radio.. 11	
Brunswich Radio Corp. 11	
Buckingham................................ 11	
Buick Motor. \qquad 88,89	
Bulova Watch..............................11. 12	
C R C. 12	
Cable Nelson (See Howard) 38. 38)	
Cadillac	
Calvert..................................... 12	

Replacement Recommendations-(contd.) Jackson Radio \& Television Co.
Jackson Research
Kadette (Sce International)
Karadio Corp.
Keller Fuller Mfg. Co. Ltd. "Radiette"
Kellogg Switchboard \& Supply Co...
Kelogg Switchboard \&
Colin B. Kennedy Corp.
Colin B. Kennedy
King Mfg. Corp.
(Mso See Sears, Roeluck).
Kingston Products Corp.
Knight.
(Also See Allied)
Kolster Radio. Inc
Krolter.
Kylectron (See United Reproducers)
R. E. Lecault

Lafayette Radio \& Television Co.
Lang Radio Co.
Larkin Co.
Lear-Wuerful Co.
C. R. Leutz Inc.

Lewol Mig. Co.
Lincoln Radio Corp.
Long Radio Corp.
R. H. Macy \& Co.

Majestic
Major Laboratories
P. R. Mallory \& Co.

Marti.
Master
McMillan Radio Co.
Midwest Radio Corp. "Miraco"
Mission Bell Radio Co

piges | 42 |
| :--- |
| 42 |

Monarch.
Montgomery-Ward \& Co. (Airline)
Moto-Meter Gauge \& Equipment Co.
Motorola (See Galvin Mfg. Co.)
William J. Murdock Co.
Musette
Nassau Radio
National Carbon Co. (Eveready)
The National Co.
National Transformer Co.
Noblitt-Sparks (Arvin)
Norco Mig. Co.
Nordon-Hauck, Inc.
Operadio Mfg. Co.
Orgatron (Everette Piano Co.)
Ozarka, Inc. (Viking)
Pacific Radio (Aetna, Kuight. Manchester, etc.)
Pacific Radio Exchange
Packard Bell Co.
Paramount Radio Co.
Patterson Radio Co.
Peerless (See United Reprollucers)
Perfectone, Inc.
Philco
Pierce-Arrow
(Also See De Wald)
Pilot
Plaza Music Co.
Precision
Radiette
(Also See Keller-Fuller)
Radiobar
Radio Chassis, Inc. (Marquette).
Radio Circular
Radiochron (See Clago)
R.C.A.

Radio Electric Service Co. (Resco)
R.P.C. (Radio IProlucts Corp.)

Radio Receptor Co.
Radio Trading Co.
Radiotrope.
(Also See U. S. Radio \& Tel.)
Radolek
Reliance
Remler
Republic Industries
RK Radio Laboratories
Rocke Internationat.
Roots Auto Radio.
Royal
Sargent.
Savil Radio Engineering
E. H. Scott Radio Lab.

Sears, Roebuck Co. "Silvertone"
(Also See Colonial)
Sentinel Kadio Corp.
(Also See Erla)
Shamrock
Silver King (See Appel Henderson)
Silver-Marshall.
Replacement Recommendations - (contd) Sonora.
............................77, 78
Sparton Withington (See Sparton)
Spencer (See Truevalue)
Splitdorf (See Thos. A. Edison)
Standard Radio Corp
Stand
Star Raider (See Continental Radio Corp.).
Steinite Radio Co.
Sterling Mfg. Co.
Stewart Radio Corp.
Stewart Warner Corp
Story \& Clark.
Stratfield (See Electric Specialty Export Co.
Stromberg-Carlson.
Studebaker Laboratories.
Sunglow
Supertone Products Co.. Inc.
Synchrophase (See A. H. Grebe \& Co.) 33,34
L'Tatro I'roducts Corp.
Teletone
Temple Corp.
Tiffany Tone (See Herbert H. Horn)
Tobe Deutschmann
Tom Thumb (See Automatic Radio).
Transformer Corp. (TCA) (Clarion).
Transitone (See Philco).
Trav-Ler Radio \& Television Corp.
Tropic-Aire
Troy Radio Mfg.
Truetone (See Western Auto Supply)
Truevalue........
Turner Company
Twinplex (See Radio Trading). .
Tyrman Electric Corp.
United Air Cleaner (See Sentinel)
United American Bosch
United Motors Service "Delco" (Buick. Chevrolet, Oldsmobile, I’ontiac)

Utah Products Company.
Victor (See R.C.A.)
Viking (See Ozarika)
Voco Radio Mfg. Co., Inc
Walgreen (See Aetna)
Walgreen
Walton Radio Corp
Ware Mfg. Corp...
Webster Co.. 9
Wells-Gardner \& Co. (Gulbransen, Truetone) 91.92
Western Auto Supply Co. (Wells-Gardner,
Truetone).
Western Radio Mfg. Co. .
Westinghouse
Westone Radio Corp.
Wextark Radio Corp (Ce All............... 93
(See Knight)
Wholesale Radio Service "Lafayette".
(Vlso See Wells-Gardner) 9
Wilcox-Gay
Wings (See Goodycar Service) 33
Rudolph Wurlitzer 9
(Also See All-American Molawk "Lyric")..
Zaney-Gill. 95

Zenith .
RESISTORS, R.M. Color Code 169
Resistor Wattage Chart 168
.. 169
Resistance Measurements . 188
Resistance Measurement, DC 190
Resistance Measurement, DC
Series Condenser and Parallel Resistor Chart 175
Spectrum, The Audio. 17
Spectrum The Radio
Spectrum, The Radio................................. 170
MRANSFORMERS, Design of 164,165
Transformers, Reference Circuits
164,167
166,16
TUBES, Types Used in Receivers Listed by
Receiver Manufacturer and Model
Numbers.
Tubes, Receiving, Characteristics of 193-211

Vibrators, List of
"C" Notes, Vibrators.
"C" Section, Vibrators. I51-159
Causes of Vibrator Trouble....................... 152
Elimination of Vibrator Trouble 152, 153
Connection Charts, Mallors 154-158
Connection Charts, Mallory 155-158
Connection Circuits. 154, 155
Hash Suppression.
154,155
$\ldots .152$
Interrupter (Tube Type) Vibrators
Synchronous (Self-Rectifying Type)
Vibrators
151. 152

Vibrator Power Packs, Servicing of
Silvertone (See Sears, Koebuck)
Simplex Radio Company
Sky Rover
Solar
Vibrator Power Packs, Servicing of
Voltage Doubler Circuits......
Vacuum Tube Voltmeter, Use and Construction of 190

[^0]: ＇A mil is $1 / 1000$（one thousandth）of an inch．

