
econed EDITION $\$ 3.00$

How to Use
The Encyclopedia

Listings-A to G
By Manufacturer
and Model

Listings-G to R
By Manufaciurer and Model

Listings-R to Z
By Manufacturer
and Model

Section "A"
Controls
AUDIO distribution

Compiled and Published by
P. R. M ALLORY
\& CO I N C.

INDIANAPOLIS, INDIANA
Automatic
Frequency Control
Section "B" Condensers

Section "C"
Vibrators

Transformers
Antenna Design

Alignment

Automatic Tuning

Audio Amplifier
Design and Use
Resistance Capacity
Audio Degeneration
Audio Distribution

Useful Servicing Formulas

Receiving Tube
Characteristics

Now, after fifteen months, the greatest proof of the value of the Encyclopedia lies in the fact that it is in daily use by tens of thousands of radio service engineers. Their world-wide testimony, evidenced by their enthusiastic letters of commendation,
bear witness to this fact. May we again remind you that in providing the financial aid of over $\$ 100,000$ which has made this service possible, we will be content and happy in rendering a service to you that will make your daily work more effective and more profitable.

Thus do we acknowledge a special debt of gratitude for generous, spontaneous, willing help, and permission to use articles, charts, and other information without which it would have been impossible to make this Second Edition of the Mallory-Yaxley Radio Service Encyclopedia complete.
Air-King Products Co., Inc.
Alliance Manufacturing Company
Automatic Radio Manufacturing Co., Inc.
Belmont Radio Corporation
Colonial Radio Corporation
Crosley Radio Corporation
Crowe Name Plate \& Manufacturing Co.
Delco Appliance Division,
General Motors Sales Corporation
Delco Radio Division,
General Motors Corporation
Detrola Corporation
Electrical Research Laboratories, Inc.
Electronics
Emerson Radio \& Phonograph Corporation
Fada Radio and Phonograph Corporation
Fairbanks, Morse \& Co.
Galvin Manufacturing Corporation
Garod Radio Corporation
General Electric Co.
General Household Utilities Company
General Radio Co.

Gilfillan Bros., Inc.
Gernsback Publications, Inc.
Herbert Horn Radio Co.
Howard Radio Company
Hygrade Sylvania Corporation
Ken-Rad Tube \& Lamp Corporation
McGraw-Hill Book Co., Inc.
Mission Bell Radio Mfg. Co., Inc.
Midwest Radio Corp.
Noblitt-Sparks Industries, Incorporated
Operadio Manufacturing Company
Pacific Radio Corporation
Pacific Radio Exchange, Inc.
Packard Bell Radio Company
Peter Pan Radio Corp.
Philadelphia Storage Battery Company
Radio Products Corporation
R C A Manufacturing Company, Inc.
Radio Engineering Handbook, by Keith
Henney (Copyright McGraw-Hill Book
Co., Inc.)

Radio Amateurs Handbook
Radio News
Radio Retailing
Radio Today
Sears-Roebuck \& Co.
The Sparks-Withington Company
Sprague Specialties Company
Stewart-Warner Corporation
Standard Transformer Corporation
Stromberg-Carlson Telephone
Manufacturing Company
Thordarson Electric Mfg. Co.
Trav-ler Radio \& Television Corporation
Troy Radio Mfg. Co.
United American Bosch Corporation
Utah Radio Products Company
Warwick Manufacturing Co.
Wells-Gardner \& Co.
Wholesale Radio Service Co. Inc.
Wilcox-Gay Corporation
Zenith Radio Corporation

For years it has been the Mallory-Yaxley pledge to retain leadership in furnishing constructive, helpful information, and assistance to the radio service fraternity-and to make that information worthy of its confidence. In this, the Second Edition of the Mallory-Yaxley Radio Service Encyclopedia, there is ample evidence of the continuance of this pledge.

To boast of the possession and maintenance of the largest service "morgue" or service library in the world means little. It does mean much; however, to boast of the thousands of friends in the radio service fraternity who, for over four years, have helped to "cut and try"-to reject and finally accept only those improvements which
were proven helpful and valuable. Their devotion and loyalty to an ideal-their friendship and their help has made the possession and constant maintenance of this service library possible. To them, we are deeply grateful.

In dedicating the Second Edition of the Encyclopedia to the radio service fraternity, we are also dedicating it to those who have made it possible.

You are always welcome at the Mallory factory, where you may review and witness the continued research and development work an activity which warrants your 100% confidence.
...TO MAKE YOUR WORE MORE EFFECTIVE
AND MOIEE PROFITARLE...

$$
\text { to } H_{\text {lels }} \text { You! }
$$

This book has one purpose-"to help you." It is designed to aid you in your daily workto save your valuable time-and to give you quickly the correct answer to any and every radio service problem. It is divided into three major sections-

> Section "A"-Controls Section "B"-Condensers Section "C"-Vibrators
-and supplemented by complete sections covering Tubes, Transformers, Condensers, Volume Controls, Automatic Tuning, Vibrators, Antenna Design, Rectifiers, Audio Distribution, Automatic Frequency Control, Alignment, Resistors, Reactance Charts, Audio Frequency Amplifiers, Audio Degeneration, Formulas, and much other vital information.

Its use is simple.

But now let's start to save your time. The best way is to show, through an actual case, how the Encyclopedia will help you to repair a set that has gone bad. We are assuming that everything has worn out. The set is in terrible shape. There are many problems. Let's repair it quickly with an expenditure of a minimum amount of your time.

This receiver is the Atwater Kent Model 666 auto radio pictured on the following two pages. Here is exactly what you would see if the set were on your service bench. The first view is from directly above the chassis, the second is from underneath the chassis, and the third is of the power supply unit (views are shown with the outer case and power supply case removed). Now, turn the page and let's actually service the set.

Look at page 23. You'll find complete replacement information listed for Atwater Kent Model 666.

CONTROLS

The volume control is found to be defective. Iooking at the chassis from directly above it, the control appears like this in Figure I (indicated by arrow "A" on the complete receiver layout, page 1).

Figure I
The circuit in which it is employed looks like this (Circuit 55, page 180).

In a few cases the circuits may be modified to lend themselves to a more universal application. The circuit shown differs from the original in that an R1F choke is substituted for the coupling resistor. The majority of models produced by this manufacturer employing circuits of this type, use the coupling resistor method. Since this factor has no direct bearing on the volume control action, it is not necessary to show the variation.
The replacement calls for a $500,000 \mathrm{ohm}$, left-hand tapered control, with a $3 / 3 z^{\prime \prime}$ slotted shaft-Type UC512.

Upon further examination of the control you see that a switch is included. The listing shows that it may be replaced by a No. 6 type. The attachable switch is assembled to the control, and the complete unit installed in the receiver in the manner shown in Figure II.

Figure II

CONDENSERS

Now let's see what can be done about replacing the electrolytic condensers. The first one we encounter is the filter condenser part number 26995 in the power supply unit proper. It is of the ring clamp mounting type and appears in the lower left hand corner of the power supply. Figure III illustrates it. (See arrow "B-l" in the complete receiver illustration on page 7.)

Figure III
Here is the filter circuit in which the condenser is used (Circuit 1, page 208).

The correct replacement is an $8-8 \mathrm{mfd}$., 350 working volt, can type condenser. In this case it is desirable that the replacement unit be equipped with lug terminals and that the can be used for the common negative connection, so an SR605 condenser is specified.

Upon glancing farther across the listing form we see that reference is made to a note B-23. Be sure to read this note before attempting to nake an installation. Note B23 page 201 reads as follows: "When Mallory stud type condensers such as the SR602, SR605, etc,, are recommended to replace condensers of the ring clamp mounting type, the stud inay be cut off flush with the top of the can. Be careful not to cut into the can." For replacement in this particular receiver, the stud should be cut off and the condenser installed as pictured in Figure IV.

Figure IV
A look at the under-side of the receiver chassis reveals another electrolytic condenser, part number 25397 with which we are having trouble. Figure V illustrates it. (Indicated by arrow " $3-2$ " on the receiver layout on page 7.)

Figure V
It is used as a cathode bypass condenser on the type 41 output tube. The circuit is shown. (See Circuit 15, page 208).

The correct replacement for this is a 10 mfd . 25 -volt tubular-type TS101. This one is really simple. Here's the proof in Figure VI.

Figure VI
Since this is a vibrator-powered auto radio our condenser listing includes the correct buffer capacity value for use in this model. The buffer condensers are not visible in the illustrations, but are located directly beneath the rectifier tube socket. If they are not of the specified capacity, or if they have any marked leakage tendency, they should be replaced.

VIBRATORS

Now we can devote our attention to the vibrator problem. The vibrator is plugged in directly above the filter choke and alongside the rectifier tube. Figure VII shows how it looks.

Figure VII
The vibrator leads connect into the plug as shown (vibrator connection circuit 37 on page 231).

The correct replacement vibrator must have an equivalent plug arrangement-type 296. Before installing, remember, read the notes. Note C3 listed for this replacement appears on page 228 and reads as follows:

C3-When unusual vibrator troubles are experienced a thorough check should be made of all of the power pack parts and the circuit. It is especially important that the secondary buffer condenser, connected across the secondary of the transformer be in good operating condition and within plus or minus
10% of the specified capacity. Be sure to check buffer condenser. In sone instances this condenser may be two condensers with the common lead grounded. In certain sets resistors have been used in series with these condensers. If the replacement of a buffer condenser is necessary use the Mallory Oil Filled, high voltage condenser, Type "OT"' or "VB" as required. Never substitute a different value-use only the specified capacily. The wrong buffer capacity may cause serious damage to the vibrator in a very short time. See Condenser Listing for specified capacity.

This note again warns you of the importance of checking the buffer condensers whenever extensive vilrator trouble is experienced. With the conclusion of this operation the new vilrator is plugged in as illustrated in Figure VIII.

Figure Vili

TUBES

The tubes are next. Under the column headed "Complete 'lube Complement" you find that the receiver uses 2-6D6, 1-6A7, 1-85, 1-11, and $1-81$ or 6Z1. (See arrow "D" on the complete receiver view, pages 6 and 7 .) In the first edition of this look all of the types used in the receivers were listed. Since publication we have had requests from servicemen asking that the number of each type used be included. We are happy to be able to comply with that request. If two or more tubes of any type are used, the superior figure indicates the number. The absence of any superior figure means that only one tube of that type is used. Now it is possible for you to carry with you to the jols, a stock of tubes

Complete Tube Complement
$\begin{array}{r} { }^{26 D 6} 6,6 A 7,85,41 \\ 6 Z_{4}-84, \ldots \end{array}$
558, $55.256,22 A 3,5$

that will be able to replace any or all tubes which the set may require. Just ask your customer for the model number of his re-
ceiver, select the proper types for replacement from this list, and save yourself time, gas, and mileage. Where there have been tube changes from one type to another during production, they are indicated by a hyphen or the word "or," i.e.: "6Z4-84," or "01A or 12A." On pages 318 to 332 of this book, entirely new and up-to-the-minute tube information is presented. The tube charts, arranged in simple, logical manner, provide authentic characteristic data, operating conditions, and pin arrangement layouts.

ALIGNMENT

l'erhaps the number of replacements made, or alterations performed during a previous repair, make it necessary to realign the receiver. The column headed "IF Peak" gives you the frequency at which the IF transformers are to be adjusted. See arrow "E" on page 6 .

As shown, the correct frequency for IF alignment in this case is 264 kilocycles. If there is any doubt in your mind as to the proper methods to use in any alignment problem you may encounter, consult the new align-
 ment article on pages 243-245. A really informative article written in a concise and usable manner. Any service engineer desirous of obtaining the best results on realignment of the high fidelity or variable fidelity receivers, will, we believe, benefit greatly by studying the portion of the text which explains the use of the oscilloscope and the frequency-modulated test oscillator for this purpose. In addition, wherever the alignment process is further complicated by the presence of Automatic Frequency Control in the receiver, you have a complete discussion of this feature available on pages 246-248. We urge you to use this material, for it is accurate, helpful, and timely.

TRANSFORMERS

Possibly the transformer is defective. Transformer Circuit No. 10 on page 273 shows the number of windings and their arrangement. A real help when you need it. And when you need it, is when it saves you time and makes your profit real. The transformer data and circuits on pages $236-239$ will be found most beneficial because they enable the purchase of a correct replacement and the "straightening out" of receivers on which the wiring has been changed. They also facilitate "rebuilding jobs."

GENERAL INFORMATION

PAPER BY-PASS UNITS

On page 198 you'll find a "honey" of an article headed "Bypass Condenser Circuits" followed by some real information in an article headed "Capacity of Bypass Condensers." These tell you how you can free yourself fronr depending on general sehe-matics-from failure to find the dope you want-and make you certain of getting the right answer always. Consult the MalloryYaxley general catalog for a complete description of the paper dielectric replacement items. There are types available for every replacenent use.

RESISTORS

On pages 280-282 there is an excellent article entitled "Resistor Theory and Practice." This discussion answers a long-felt need for really accurate instruction concerning resistor application. Information relative to the type of resistors to choose for power packs, bleeder systems, voltmeter multipliers, ete., is included.
The use of formulae to calculate resistance and wattage values for all of the above applications is fully explained. In addition, you'll find that the resistor wattage chart on page 279, the series condenser-parallel resistor chart on page 275, and the RMA Standard Color Coding explanation on page 278, will save you a lot of time by furnishing a rapid solution to your resistor calculations.

AUTOMATIC TUNING

Here is the only complete, authentic source of information on this newly developed and highly important phase of radio receiver design. It is the only article ever compiled which gives you all the information on any type of automatically tuned radio models.

The article, twenty-five pages in length (pages 219-271 inclusive), contains over one hundred illustrations, so that every function of the system is clearly portrayed and easily understandable. Mechanically operated manual types, motor-operated types, and tuned
circuit substitution types have been classified and a reference form similar to that of component part replacement listings established. This gives you the information you need with a minimum expenditure of time. Remember, if you are to successfully service receivers which incorporate automatic tuning systems you must know the "how and why" of their operation. Keep abreast of the current designs by a thorough study of this extremely valuable article, so that you will be in a position to offer intelligent service to your customers. This invariably results in increased service activity and prestige.

AUDIO AMPLIFIER DESIGN AND USE

Pages 286-306 are devoted to a diseussion of the design and usage of audio frequency amplifying systems. Composed of three major sections it deals with resistance-capacity coupled audio frequency amplifiers, audio degeneration, and andio freqpuncy distribution systems.

The first sertion concerns the performance charactoristics of resistance-capacity coupled amplifiers. It supplies data which will enable you to diagnose the causes of unsatisfactory operation as related to overall response, motorboating, inefficient use of the component parts, etc. It also includes some very useful design tables from which you may select the proper resistor load values and coupling condenser caparity ratings for a given tule application.
The serond section covers the design and application of audio degeneration. It shows the derivation of the basic degeneration formulae and includes full instructions for its use. The introduction of degeneration into some of the older receivers employing pentode power output tubes will often times result in a great improvement in the tonal quality of the repreduction.

The subject of audio distribution oreupies the third seetion. This disoussion is particularly recommended to those interested in sound systems and similar equipment. The article eovers in detail such major subjects as speakers, coupling transformerss, impedance-
matching in all forms of distribution circuits, the use and calculation of the various designs of attenuation networks, either fixed or variable, etc. When you have a problem which concerns any of the above subjects, or any subject which could be classified as relating to audio distribution, refer to this article for an accurate and rapid solution.

USEFUL SERVICING FORMULAS

Pages 312-317 are crammed full of formulas and tables of use in everyday service procedure. Here are simple guides for your calculations concerning many factors which are becoming increasingly more important due to the complexity of modern receiver circuit design. Voltage and resistance network breakdown explanations, frequency conversion table, series or parallel impedance formulas, a full page chart for casy calculation of the inductance of single layer coils (page 317) are only a few examples of the material contained in this reference section. We would also like to call your attention to the reactance charts on pages $282-285$. The use of these charts is very simple, and they provide rapid, accurate calculations without resort to complicated mathematical methods.

Now, just to be sure you understand, let's go over the whole arrangement again.
The encyclopedia is divided into three major sections: Section "A"-Controls

Section "B"-Condensers
section "C"-Vibiators
()ther important sections such as Antenna Design, Alignment, Automatic Frequency Control, Automatic Tuning, etc., are indexed in both the front and rear of this book.

To use the encyclopedia is simple. Learn to use it, then use it on every jol. Using it continually and faithfully will save your time, your lator, and will increase your profits.

Over $17,(\% N)$ different radio receivers are listed, and still there are some on which no records are available. Whether listed or not, information in the encyclopedia will enable you to effect a quick satisfactory repair.

ENCYCLOPEDIA-LISTINGS

MANUFACTURER AND MODEL
COIIN H. KENNED
STMCS-DC.
10..
20
22
26...
30, 32....
$34,38,40$
$4 \pm$ "Coronet".

Receivers are listed either by the manufacturer's name, or the trade-name, according to popular usage. A cross-index in the listings will help you locate the receiv-
er you are looking for.
Model numbers precede chassis numbers, with few exceptions. In these cases, model numbers are in parantheses and follow chassis numbers.

Vol.
Vol.
Vol.
Tone
Supp.
Vol.
Tone
Vol.
Tone

USE-Controls are listed with an abbreviation of their most common designation; i. e.,"Vol." $=$ volume control; "Supp." = Suppressor Control. A complete list of abbreviations is on page 157.

CIRCUIT-Numbers refer to "A" Control Circuits on pages 178 to 183. These schematic circuits enable you to check the receiver on which you are working to make sure the circuit has not been changed during a previous repair or during that particular model's life in its period of manufacture. Often it is advisable to change a circuit to obtain better performance. Complete instructions are given in Section "A" Con-trols-pages 158 to 189 .

CORRECT REPIACEMENT-Here are
listed recommended correct replacements. By referring to page 188 an " H " is immediately translated to read " 250,000 ohm carbon control with left-hand taper-universal shaft." Where a recommendation reads " $500 \mathrm{M}-\mathrm{No}$. 1 " or is not a definite recommendation, and is followed by a note in the Note Column, it means that the complete or partial value of a control is known. The note referred to gives comprehensive, clear, concise instructions to make a quick satisfactory replacement.
 switch which must be used with the recommended control is listed in this column. Referring to page 185 , replacement switch numhers are quickly translated; i. e., No. $6=$ single pole-single throw.

All carbon controls which may possibly be used in "hias" type circuits are provided with a separate adjustable resistor of 500 ohms total resistance. This may be adjusted to the value given in the "Bias" column. "EX350" means that the resistor is to be set at 350 ohms and wired between the right-hand terminal of the control and the cathode circuit. This is accurate and is not to be compared to the haphazard use of an arbitrary value of fixed resistance.

Wire-wound controls contain an adjustable section for this purpose. Where a wirewound control is sperified, the bias column will contain a numeral from 1 to 5 designating the correct setting for this adjustable section.

*NOTE-

hecause they tell what to do and how to do it. They tell how to make a quick and easy replacement when information is impossible to obtain. They permit the selection of a proper control either at your distributors, or to tell him by mail the correct resistance and the right taper which, with a sketch of the shaft that you will make, will enable you to receive the right control without delay, loss of time, or customer dissatisfaction.

The "Note" sections ("A" Controls, "B" Condensers, "C" Vibrators) of the encyclopedia are without doubt the finest and most helpful compilation ever printed.

We strongly advise, for your own benefit, that you read these "Note" sections. They will save you time and worry and will make money for you.
 the order of their importance. First, filter units, second, by-pass units. Filter units are in most instances listed in their respective order of installation, from the rectifier to the load.

8-8-8 means that there is one condenser with three 8 mfd . sections used in the circuit.
$8,8,8$ means that there are three 8 mfd . condensers used in the circuit.

CIRCUIT-The use of each condenser section is not given because this is clearly shown in the schematics of condensers circuits.
"B" (condenser) Circuits are shown on pages 208 to 211. A double number $1 / 13$ means that sections of the condenser are used in two different circuits; i. e., Circuit No. 1 and Circuit No. 13, both shown on page 208.

CORRECT REPLACEMENT-Here are listed recommended correct replacements. By referring to page 218 an RN232 is immediately translated to read-a dual 8 mfd .250 volt round can filter condenser. The word "Buffer" refers to the secondary or buffer condenser which is connected across the secondary of the vibrator power transformer, the value being given in the "original part" column.

*NOTE-

 because they tell you what to do and how to do it. They tell how to make a quick and easy replacement when information is impossible to obtain. They permit the selection of the right condenser withoul referring to original color coding which may have been obliteraled by age, by factory changes during production, or by a previous repair to the receiver. Quick, accurate and wonderfully easy condenser replacements will be effected by reading " B " (condenser) Noles.

The "Note" sections ("A" Controls, " B " Condensers, "C" Vibrators) of the encyclopedia are without doubt the finest and most helpful compilation ever printed.

We strongly advise, for your own benefit, that you read these "Note" sections. They will save you time and worry and will make money for you.

VIBR. CONN.-Vibrator connections are shown on pages 230 to 231 . They're easily understood for they show the appearance and the connections of all replacement units.

REPLACEMENT-Here the correct replacement is listed. No guess work for all have been field-tested just as has every other bit of information in the encyclopedia.

NOTE--Clear instructions for installation, or for the proper selection of a unit, are given in 23 concise notes on pages 228 and 229.

MAILORY GRID BIAS CELL

This exclusive Mallory development is described on page 214. The idea of providing a voltage device, incapable of delivering appreciable current and having an indefinite life, is the invention of Samuel Ruben, as well as the circuit in which the device is used and is covered by U. S. letters Patent $1,920,151$ and 2,063,524.

Mälory-yameley radio service encyclopedia

Mallory-Yaxaey radio service encyclopedia

Mallory-Yasmey radio service encyclopedia

Mallory-yamey radio service encyclopedia

Matlory-Yaseley radio service encyclopedia

MAILORY-YABELEY RADIO SERVICE ENCYClOPEDIA

MALIORY-YAXZEY RADIO SERVICE ENCYCIOPEDIA

MANUFACTURER AND MODEL	CONTROLS						CONDENSERS				VIbrators			Complete Tube Complement	I. F. Pbak	Trans. Circuit
	Use	Circuit	Cortect Replacement	Swltch	Bias	*Note	Original Part	Circuit	Correct Replacement	*Note	Vibr. Conn.	Replacement	*Note			
ANIHEA-Continued $81) 7$ (D7S).	Vol.		MR53				HC99.									
	Tone	127	$1 \mathrm{M}+1$				HC71.	25/13	RN242.						470	1
8 D 10 (1)108)	Yol.	121	11453	Mi26			HC113	${ }^{3}$	WE12.7					${ }^{2} 6 \mathrm{~K} 7 \mathrm{G}$, 6AA8G. 61169 \%		1
	Tone	22	M $\mathrm{H}+8$				UC111	${ }_{13}^{3}$	WER.47.					(${ }^{2}$		
							H1C15.	13/14	${ }_{\text {RS }} \mathrm{R} 2410$					5U4G, 665........	470	1
9D10 (D10L)......	Vol.	12.4	MR53.	M26			HICII3.	15 3	WE12i\%					${ }^{2} 6 \mathrm{~K} 7 \mathrm{G}, 6 \mathrm{ABG}, 6 \mathrm{II} 69$		
	Tone	22	M $\mathrm{H}+8$				HC114.	3	WE817.					6F5C, 6C5G, ${ }^{26 \mathrm{~V} 6 \mathrm{C}}$		
							HC115.	13/14	RN241.					5U4G, 6(65.........	470	1
10 D 10 (D10S)	Vol.Tone	124	$\begin{aligned} & \text { MR53. } \\ & \text { M } 1848 . \end{aligned}$				HC113.	15 3	TS106....							
							IICII.	3	WF817....							
							$\underset{\text { HC115. }}{\text { Hİ }}$	13/1-4	RN241.					5U4G, 6G5........	470	1
520 (UDSS). 521 (UI)5L)	Vol.	18	M1348.	M26				1/15	RM259....	.1143	+... 13	2.45....		6A7. 6D6, 75, 43,		
		12.457	$\begin{aligned} & \text { MR5S } \\ & \text { MLR } \end{aligned}$										C3		470	
616.617. 618 (D613)	Vol. Tone						IIC77....	13/14	1 M257. RN23:	. 1359					470	10
							HC119	15	TNIII.							10
620 (UD6S), 621 (UD6L).	Vol.	17	MR53.				.015-.015	1/15	Buffer.. RM259.	. 1314				A7, 78, 75, 25L6,		
$\begin{gathered} 1401.1_{1403}^{1405} \\ (\text { U1) } 14 \mathrm{~L}) \end{gathered}$							IIC75.	13	CSi30.					2575.............	470	
	Vol.	${ }_{12}^{12.4}$	$\begin{aligned} & \text { M1853. } \\ & \text { MR48. } \end{aligned}$	M26			$1 \mathrm{IC109}$.	1	RS207.					$26 \mathrm{K7G}$. 6A8G, 6116G,		
							IIC110.	1	RS208.					6 F5 5 , 6C5G		
							IIC116	15	RN232	138					470	
$\begin{aligned} & 1402.1404,1406, \\ & 1408,1410, \\ & \text { (UD14S)....... } \end{aligned}$								1	RM2S9						
	Vol. Tone	12422	$\begin{aligned} & \text { MR5s. . . . } \\ & \text { MR48. . . } \end{aligned}$	M26			HIC109	1	IRS207					K7C. 6A8Gf, 6II6G,		
							IIC110	1	RS208.					6F5C, 6C5i		
							IIC116	13	RN232.	138				$22516 \mathrm{x} .{ }^{225576(\mathrm{a}}$,	470	
							IIC11i	15	RT1259.						470	
ANSLEY RADIG LA B1.																
	Vol.	12	M.			A27	10	19	TS101	1320				1A6, 1A4, 32, 33 or		
	Tone	71	0			A4								1A6. 1A4, 1F't, 1131	456	
	Yol.	50					32-8-8	i	See Nol	133				25Z5.48, 7		
D1 (Rev.).	Hlum	51	A3M1													
	Yol.	6.3					H.	\cdots	See Not	133				26C6. 18.2585.		
	Tone	41														
D1, D1A (3rd type)	Vol.	圭.	ALS.					12	Order from	Mfr.				${ }^{26}(6,225 \mathrm{~L} 6,25 \% 5$		
	Tone	41												-6, -nL6, -̇z		
D3. D4, D6.	Vol.		Y500MD	M26												
		${ }_{6}$	Sh1P263.		Fí100		$\begin{aligned} & 16-8 \\ & 2-4 \end{aligned}$	$1 \frac{1}{2}$	$\begin{aligned} & \text { CNI5. } \\ & \text { TXIIO } \end{aligned}$	138	.			2585, 43, ${ }^{277}, 78$	175	
D9, D10..........	Vol. Tone	17	M1153				$32-2.1$	8	Order from	vifr..				6АВ¢, 6K7, 6izi,		
		57	M148.					15	'TN111.....					${ }^{25} \mathbf{A G G}$ or 2516,		
D12.	Yoi.	63	N				48-16-8	16	Soe Note.	133				276, ${ }^{2} 18,{ }^{2} 25 \% 5^{5}$	5	
	Tone	4						15	TS106.					,		
D16.	Limm	6.3					48	. \ddagger	See Note	B3				${ }^{26 C 6}, 248,22585$		
	'lone	41							,					-С6, -,		
D16 (Rev.)........	${ }_{\text {lum }}^{\text {Vum, }}$. \ddagger	A3M.				80	i2"	Order from	Mlir.				${ }^{26 \mathrm{Cb}}{ }^{2} 25 \mathrm{L6},{ }^{225 \% 5}$		
	Tous	41							Orer							
117, D18	Vol.	if	Y500M1' M 153.	M26			32-2.1-12			V1r.						
		57	M1188.	-126			$\begin{aligned} & 32-2 \cdot 1- \\ & 10-10 . \end{aligned}$	1.5	TNill	הir.				$25 A 6 G$ or 2516 .		
120.	Yol.	. \ddagger					80.	12	Order from	Mfr.				26C6,225L6,2525. . .	4.6	
	Tone	41														
D24, D25 (7152)1)26.	Yoi.	80	M1553....				32-24-12	6/12	Order from	Mfr..						
		80	M 1 48....	126			80.	12	Order from	Mifr..				6C5, $2514,6,25 \% 5 \ldots$	456	
	Sin.	7	Order from	Mrı.				1.5	TSL01....							
	bol.	. \ddagger	N.	6			32-24-12	1/13	Order from	117...				6C5, 25L6, 25\%6		
${ }^{129} 9$	Vol.	12						$\cdots{ }^{-} \cdot$	CN142....	. 1311				30, ${ }^{3} 32,714$.		,
U1 AC	Tone	$\stackrel{12}{21}$	M					3	CN155					24, 27,45, 80		...q..
U2 AC-DC	Yol.	8	K				4-8-2		М1 275...					336, 37, 38, 80		i
	Tone	23	11	6	-		${ }_{8}^{10} 8$	15	T'S1	13						
U3.	Tone	39	1	6			4.	15	Tsiol	. 13				3-,3,39,	175	1
U8.	bol.	12	1	6			4-4.	1	see Note.	133				37, 339, 80, 85, 889	. \ddagger.	i
110	Tone	39	M				10-10-2	15	See Note.	. 133						
	Vol.	${ }^{6}$,	2			16-16-16	1	See Nols. .	. 1137				6A7, 6C6, 6D6, 12Z3		
U10, U11 (Late)	Phono.	50 17	М1ヵ3	1126			${ }_{32-20-10}^{10}$	$\begin{array}{r}15 \\ 8 \\ \hline\end{array}$	See Note...	$i^{137}{ }^{17}$				43, 2575 6A8G, 6K7, 6Q7Ci,	456	
	Toue	57	Mll48.....				10-10	15	TNill					25A6G or 25L6.		
APEX-See U. S. Madi	o \& Tel.															
APPEL HenidersoAC. .n.																
				6	4		8-4-4.	3	See Note.	. 133				24, 27, 47,251, 80.	. \ddagger	1
DC Comb.	Tone		${ }_{1} 12$	6	\ldots			3	See Note.	. 18				24, 27, 47, 51, 80.	\cdots	1
	Yol.	$\stackrel{6}{2}$	${ }_{\text {G1 }}^{112}$	6	5		.5-1	\ddagger	See Note.	. 134				33,336,237	
4 Tule. 5 Tube Bait 5 Tube AC	vone	$\stackrel{29}{99}$												232, 33, 36		
	Vol.	40	See Nu			A5								232, 36,238		
	yol.	\%	(i7	6	4		4-8	1	See Note.	133						3
ARBORPIIONE	Vol.															
		10	E12........				2-2-2-2	1/14	See Note. .	. 131				'26, 27, ${ }^{271}$, 80...		11
ARCADIA-See Wells	Gurdner															
	$\begin{aligned} & \text { Yol. } \\ & \text { Yol. } \\ & \text { Sen. } \end{aligned}$															
			Mi... \ddagger.				8-8-8.	3	M 2175.					12,599, 13H.		1
8125..		16	M.		See No			\ddagger	See Note.	. 13				399, 10, 281		5
					See No	le 45										
ARIEL RADIS $101 .$	Vol.	3	Y. .				15	6	M N273.					4. ${ }^{227,245}$		3

MALLORY-YASELEY RADIO SERVICE ENCYCLOPEDIA

MALLORY-YABLEY RADIO SERVICE ENCYCLOPEDIA

MALLORY-YABLEY RADIO SERVICE ENCYCLOPEDIA

Matlory-yaxiey radio service encyciopedia

Mallory-Yaxeley radio service encyclopedia

MALLORY-YABIEY RADIO SERVICE ENCYCLOPEDIA

MALLORY-YAXELEY RADIO SERVICE ENCYCLOPEDIA

Mālory-yazeley radio service encyciopedia

Matlory-yarrey radio service encyciopedia

MALLORY-YABLEY RADIO SERVICE ENCYCLOPEDIA

MALLORY-YASEEY RADIO SERVICE ENCYClopedia

MANUFACTURER AND MODEL	CONTROLS						CONDENSERS				VIbrators			Complete Tube Complement	1. F. Peak	Trans. Clrcuit
	Use	Circuit	Correct Replacement	Switch	Bias	*Note	Original Part	Circuit	Correct Replacement	*Note	Vibr. Conn.	Replacement	*Note			
caperart-coutinlued																
CAPEILART-Contit103,104 (Cosmopolitan) Chassis Z.	Vol.	13	See Note.			A.	8-8-6..	3	See Note.	.133				8, 6A7, 75, 77, 237,		
	Tosie	2	See Note.			A:	8 8-8	1.4	Sre Note.	. 13				22A5, 80......	17.5	3
202..............	Yos.	4					8-8.	1:3/1.1	C.V152...	. 133					465	I
							5...........	$13 / 15$	TSlo5.						46.3	I
203 Tuner.	Yol.	17	N				4.	13	CS131.	.133				36K7, 6A8, 616	465	
203 (Amplifier).							8-8-4-2	$3 / 1.1$	Soe Note.	134				$36 \mathrm{~F} 5.26 \mathrm{~F} 6,5$		16
	Val.	15	i1				8-8-1-2	37	Sue Note.	. 133				$48,256,57,55,47,280$	180	3
400B..............	lone	${ }^{41}$	${ }^{1}$				${ }_{8-8-1-2-2}$	13	S18608. Ses Nole.	. 1133				558, $576,57,5.5,485$,		
	Tone	\pm	M					15	S11608..	-133				25z3.	180	7
400, 401, 62,	Sup.	8.47	Scen Noie			4.								4-11, $3.7,4.47,280$	180	3
	Touc	41	See Note.			A5										
$400 \mathrm{~B}, 402 \mathrm{~B}, 40 . \mathrm{B}$, Tuner.	Yn.	33	M				8-8	3	See Nor	133				2A7. 257, 55, 556,		
	'Jome Supp.	$\stackrel{4}{8}$	M				10	1.7	3608	. 133				42A5, 25%	180	
40013, 40213, 40.413 , All-Wave...... . 4001) Tuner	Supp. Yol.	15					8-8-1-2-2	3	Sme Note.	. 113						
	Tone	44						15	Sk608.	.133				25/3.	465	7
	Tup.	116	M.		see No	10) A	${ }_{8} 83$	13^{\prime}	cios?						465	
4001) Tumer.	${ }^{13}$ Tome	1.16	1				25.	15	TS103..					вки, 6цт,		
	${ }^{T} \mathbf{T}$ Tone	$\underset{\substack{146 \\ 8}}{\text { ¢ }}$														
400D Treb. Amp. 4001) Bass Amp. Standard Amp.							${ }^{8,8} 8$	1	Sce Note.	-134						1
							8-8-1-1	3	See Nute.	. 131						\ddagger
								$1:$	Shroib.	113						
Casp-Also see IJ. S.	Hadio d Vol.	Tel ${ }_{\text {\% }}$		6			A15313....	2.3	12S216.							
	Tone	3.4		\ldots			A15337-2...	2.	W1:124\%.					6F6, 80	262.5	l
701 (Chassis 16SME)	Yol.	118		6			A15333...	25						6176. 6A7. 6K7. 75, $6 \mathrm{C} 5,6 \mathrm{~F} 6,80$	262.5	
$\begin{array}{r} 801-802(\text { Chassis } \\ 27501 \text { : } \end{array}$	Tone			6			A1.5313	2.	11S 16.							
	Tone	34	UC	6			A15127	20	183216.					$75,605,42,80 \ldots$	262.5	1
$\begin{aligned} & 1001 \text { (Chassis } \\ & 19 \text { RSVE). } \end{aligned}$	Vol.	15		6			A15936.	25	WE254.							
				6			A153.3.....	梁,	W1:12 1						262.5	1
1050.	You.			6			${ }_{\text {A }} 15.5258 .5$	13/15	W18,3540.0.					6K7i, 61. 0 ¢, 65i,		
	Tone	12	UC502	6			135422....	1	WE16.17...							
1101.1102 (Chassis11018 ME .							13165.5-3.	15	TXILI.						1.56	l
	Vol.	4.5		6			A $15100 . .$.	56	W19545.					$=6 \mathrm{~K} 7.6 \mathrm{IL} .2^{26 \mathrm{C}} .6 \mathrm{II} 6$		
							A15101....	56	$\begin{aligned} & \text { W125.5 } \\ & \text { TSlo6. } \end{aligned}$					645, ${ }^{2} 6$ F6, $57.3 . .$.	262.5	1
12.50.							A15156....	13/14	T\111/9sis							
	Yol.	140	T13 610 .				1316613-2.	13	UR191					"6K74.61.74, 26C5		
	Tone	140					1316614-3.	13/15	CS123/T'S101					 	. 4.56	1
$\begin{gathered} \text { Civad.:IME } \\ 54 \end{gathered}$	Vol.	18	UM15.4		See N	(0) A\%	6-10	4	Sme Note.	133	35	29.4	C.3	6A7, 656, 75, 12, 8.4.	- \ddagger	10
									Buifer.....	1314			\ldots			1
	Vol.	18	1) M15.4.		See	to A ${ }^{\text {a }}$,	0-10	1	Serentor.	E33	35	29.4	© 3	${ }^{2}$ (1)6, 6А7, 75, 12, 81.	. \ddagger	10
				6				1	Sunfer...	${ }_{1}^{131.4}$				бА7, 606 $75.42,80$		
	vol.	18	U		Sen Nu	(i) A M	6-10-	4	Sre Note	133	35	291	8	26176, 6A7, 75, 42, 81	156	10
3511	Vol.	45	M	6			8-8.8.	1	${ }^{\text {Bupfer }}$ CN152.	${ }_{183}^{131.4 .}$	1.1	2156 :	C3	166, 31, 32, 33, 230.	156	6
							. 11 -. 01		Buffer.	1114	,		(.)	16, 3, , ,2, 3.3, 2.	,	6
CEviURy	Vol.	6														
1-78.....			G12 ${ }^{\text {gioe }}$	6	EX2(t)	${ }^{\text {A5 }}$	${ }_{8}^{8-8.8}$	1	Sere Note.	133				35, 2.1, 47. 89.		1
5	Voi.	6	See Note.	6		${ }_{\text {A }}$!		13.3				36, 388,289		1
	lol.	6	(12	6	EX200	A.		1	See Nole	133				3-4, 47, 80		I
	Vol.	6.1	N		See No	te A5		\ldots						237.238, ${ }^{3} 39$.		
	yot.	18	N				16-8-8	3	See Note.	.133				558,56, 46,24, 38.	175	3
"(queen".	Touse	2	h													
	Supp.	7 6		6	EX $\mathrm{X}^{2} 000$		8-1	1		.ins				57, 58, 47, 80	17.7	1
	Tone	2	Kiz		sue Xo	QAi		17	TSiot...					, ${ }^{\text {a }}$,	1.8	1
Clianiplon ir AC-I) C 5 T (3 band)																
	Vol.						16-12		Ste Note.	. 113						
	Vol.	18					8-1.	23	Stee Note.	. 133				$2 A 7,78,2 \Lambda 6,2 A 5,80$		
67° (3 band).															46.5	1
	Vol.	4.5					8-4	23	See Note.	. 133				6A8, 6K 7, 6H6, 6F\%, 6F6, 5Z4.	465	1
401, 4013M, 1015W, 40 DWM	Vol.	6	1112				8-4.	33	Sce Note.	133				6ID6, 6C6. 42, 80, or	4.8	
	Vol.	6								I33				${ }_{6} 6 \mathrm{~K}$		1
								1.5	Trenote.	. 13				58. 57, 2A5, 80...		1
52 (Early).........	Vol.	6	1112				4-1	1	See Note.	133				258, 57, 47, 80 or ${ }^{2616}$,		
52 (Late).........	Vol.	6	1 L				4	17	See Note	133				6A7, 6D6, $6 \mathrm{C6}, 42,80$	$\begin{aligned} & 456 \\ & 4: 56 \end{aligned}$	1
52lwG............								15	TSR Note. ${ }^{\text {S }}$					617 606 75, 43,		
	Sol.	18					16	4	See Note. . .	13,3					46.5	
500...............	Vol.	18	. \ddagger		Some ${ }^{\text {No }}$	to A3	8-8.	1	Sox Note.	. 1 B 3	3.5	29.4	C3	$\text { 6А7, } 6106,637,11$		
							10.-6;	1.5	TSilot...	.1311						
501.	Vol.	18	UM151.			A96	8-8.	4	See Nol	-133	35	29.	c 3	6A7, 6D0, 75, 41, 074	456	10
								18	TS105.							
558.	Vol.	6	H1				- 4 -1-1.0	1	Bulfer..... See Note..	$\begin{aligned} & 1311 \\ & 133 \end{aligned}$				257, 58, 47, 80.	456	1
600.									TS105....							
	Vol.	18	UM154.			A96	6-12	1	See Note.:	.13:3	3'5	294	C 3	2617, 6А7, $75,41,84$.	17.5	10
601.								15	TSill							
	Yo.		UM151.			A ${ }^{\prime}$	$8-8$.	4	Sume Note...	-1314	35	291	$\stackrel{1}{\mathrm{C}} 3$	26\% $7,6 \mathrm{~A}, 607,6 \mathrm{~F}$,		
	Tone	2	(12.				. 11		Bulfer.	. 131.4				0Z.4..............	17.5	10

Matlory-yascey radio service encyclopedia

MALLORY-YAXEEY RADIO SERVICE ENCYClopediA

Mâlory-Yascley radio service encyclopedia

Mallory-Yastey radio service encyclopedia

Mallory-Yasezey radio service encyclopedia

Mallory-yamey radio service encyclopedia

Mallory-Yamey radio senvice encyciópediá

MAllory-Yaxley radio service encyclopedia

Mallory-Yazeley radio service encyclopedia

Mallory-Yastey radio service encyclopedia

Mallory-yaxeley radio service encyclopedia

Matlory-yarcey radio service encyciopedia

Mallory-Yascey radio service encyclopedia

Matlory-Yabley radio sefvice encyciopedia

MANUFACTURER AND MODEL	CONTROLS						CONDENSERS				Vibrators			Complete Tube Complement	I. F. Peak	Trans. Circuit					
	Use	Circuit	Correct Replacement	Switch	Bias	*Note	Original Part	Circuit	Correct Replacement	*Note	Vibr. Conn.	Replacement	*Note								
ECIIOPIIONE-COnt180.................	inued																				
		\%	N	6			16.	11	CSIP6.					£..........	...t.						
	$\begin{aligned} & \text { Sol. } \\ & \text { Vol. } \end{aligned}$	18					${ }_{8}^{8}$	11	Sne Nole	. 13					456	1					
		18	N				81	1	Ses vote.	\%				2A7, 58, 2A6, 2A5, 80	456	I					
1800..............	- Vor.	6	SR109		Soc	- All	10.	13	T101.							i.					
							10	1.	rstor.												
7110.	Vol.	7	UC50\%		Sme Not	te Ala	10-3	$\because 1$	(v 142					\%7, $78,38,19 \%$							
7114.	Vol.	6	SR12963		See Nol	le AIT	${ }^{10-16} 5$	1.7	TN11..	1331											
		6	SRi-63.		See No:	le AT.									456						
7124	Yos.	$\xrightarrow{18}$					8.1 10.	1.5	CN151.					$258,57,56,2 A 6,2 A 5$, 80	456	1					
	Vol.Vol.Tone	-7	UC509		Sw	ie Ai	5-1-10-10.	$21 / 5$	See Nole.	13:				77,78, 38, 12733....	456	1.					
		18					8-4.......	-1	See Note..	.133				58, 2A7, 2A6, 2A5, ${ }^{\text {a }}$	4.56	i					
		$\because 2$						1.5	TS106....												
$\begin{aligned} & \text { EDISON-HELLL } \\ & 36 \ldots \ldots \end{aligned}$	$\begin{aligned} & \text { Vol. } \\ & \text { Tone } \\ & \text { Vol. } \end{aligned}$	12		6			8-8	4	Sre Note. .	. 133				24A, 258, ${ }^{2} 47,80$.		I					
		22																			
53.		6		6	EX200		16-3	-	Sowno.	113				26С6. $6106,43,25 \%$.	1%						
53 LW .		6		6	EX200		16-1	6	- N1.5.												
	- Vol						-4.	$1: 3$	TNilo.					25Z5	115						
55AlV.		17		6			16-16-1-1-2..	8/15	See Nole.	. 133				6A7, 61)6, 75, 43,							
	- Vol.	56		6			16-1	I	Sce Vote...	. 133				37,6А, 61)6, 75,43,	,						
$63 .$ 631 W	\checkmark bl.	18		6			4,4	1/15	Sow Vote..	. 133				${ }^{26525}$, $647 . \cdots \cdots$	175						
66 AW.							-4.	8/1.5	See Vole.	.133				$\begin{array}{r} { }^{26 D 6} 6 A^{\prime} \\ 2525 \ldots \end{array}$	115						
	Vol.	17		6			16-16-8-1-1..	11	Sce Noth.	. 133					456						
```TIIOMAS A. EDISO "Ahbey" Batlery (Splitdorf) "Abhey" Jr. Cl (SC) ....```																					
	N Vol.	14	SIRP278											301A, 71A.							
	Vol.   Vol.   Megen	1.4 10	-SRP278		(hear)	) A 3.5	$\frac{1-6}{2-2}$	${ }_{28}^{1}$	See Note.   Soe Nute.	. 131				496, 27, 71A, 80		11					
		10	S11Pこ6		(tron 1	(1) A 30															
$\begin{gathered} \text { C2, 1R1, } 122(\mathrm{Jr} ., \mathrm{Jc}, \\ 25 \mathrm{Cy}) \ldots . . . \end{gathered}$	Vil.   lеуее	10	Silpat		(Hear)	) A33	2-1	3	See Note.	. 11				426, 27, 50, 81.		8					
		10	S11P276		(1'ron ${ }^{\text {d }}$	1) A33								-6, 27, 50, 81.							
$\begin{gathered} \text { C } 2 \text { R1, 122, (Jr., Jc. } \\ 60 \text { Су.) } \end{gathered}$	Vol. Regen.	10	S11P277		(Rear)	, 133.3	2-1	4	Sce Note.	132				426, 27, 50, 81		22					
		10	Sllize6		(From	1) A 33															
Ct, 11, 125 (Chassis 7-11) 125, (DC)	Vol.	21							See Nute.							7					
	Yol.	21	$1111 \times 306$.				1-2-2	1	Ser Yole.	1311				- ${ }^{527,45,}$		7					
111, 125, (1)C) 18. 127.   (Splitdorf) M5		$\stackrel{20}{10}$	T11P607				1.5-1-1.5	3	See Vote.	131				324, ${ }^{327,245,} 80$							
	Vol. Vol. lieser	10	SRP277.		(Rear)	) 1 A35	2-1	4	Sce Note.	. 131				'26, 27, 50, 81.		22					
(Splitdorf) M	Vol.	10	Sld" ${ }^{\text {a }}$		(Rear)	) A 33	$25-503$	3	Sce Nole	132						23					
(Splitdorf) W-175 Splitdorf 1'Al). .	13.gen.	10	SIPP- 6		(From)	1) $\mathrm{A}_{3} 3$			S					-6, -7,							
	Vol.	10 10			Stee No	te A3m		4	See Jobe	${ }_{131}^{131}$				${ }_{4}^{4966,27, ~ 71 A . ~} 80$		11					
FIIEN RADIO LAB 5 Tule.	S. Hes.																				
		12			5		3-3	4	Sre Note.	133				6D6, 6C6, 76, 42, 84		1					
ELEC. AUTO LITE   No. 11																					
$\begin{aligned} & 062 \mathrm{~A}, 3622 \mathrm{~A} . . . \\ & 072 \mathrm{~A}, 3722 \mathrm{~A} . . \end{aligned}$	Vol.   'Tone   1.   'Tone	4.5						i.	Tsic		1	206	C3	${ }^{3} 39,36,{ }^{2}{ }^{2}{ }^{2},{ }^{2}, 41 .$.	262						
		21						\%					C3		202						
		18						12	crim		2	211		239, 36, 37, ${ }^{2}$	262						
E\& A (Electric \& Aut 4M.	$\begin{aligned} & \text { omotive } \\ & \text { Vol. } \end{aligned}$																				
IL-5. . . . . . . . . . . .	Vol.																				
	Vol.																				
SW-6	Vol.																				
25AW......	Vol.																				
30AW																					
	vo																				
35AW	vos																				
11.55	$V$																				
303.	Vol.																				
30	Vol.																				
	Vol.																				
3035 W .	Vol.																				
405 L W	Nol.																				
ELECTRONIC																					
							8-8-20.	1	W12190	. 1397	34	292	C3	81.							
							.02-.02.		Buffer.	. 1314											
332 3.V.							8-8-2.	$1 / 19$	012190	- 1314	37	F92	C3	$25 \% 5$.							
4 Tube Midget.				6	EX200		4-1	23	CM170...					58, 57, 47, 80..		1					
	Tone	$\stackrel{29}{56}$	Y.																		
7 Tule AW...	Sen.   Tone   Vul.   Tone	56		6			$\begin{aligned} & 8-8 . \\ & 1 . \end{aligned}$	$\frac{1}{15}$	Seo Nute. TSIO1..	133				55, 56, 57,258, 2A5, 80	465	I					
10, 15.		29																			
		$\underline{6}$	SR1263		$\begin{aligned} & \text { itx } 300 \\ & \text { See No } \end{aligned}$	te 14	4-1	23	CM170					58, 57, 47, 80.		1					
		22	Y.....		See No	te $\mathrm{A}_{4}$															

MAILORY-YAEXEY RADIO SERVICE ENCYCLOPEDIA


Mallory-Yaxezey radio service encyclopedia


Mallory-Yazezey radio service encyclopedia


Mallory-Yazley radio service encyclopedia


Mallory-yasiey radio service encyclopedia


Mallory-yarcey radio service encyclopedia


Matlory－yaxley radio service encyclopedia

MANUFACTURER AND MODEL	CONTROLS						CONDENSERS				VIBRATORS			Complete Tube Complement	I．F． Peak	Trans． Cir－ cuit
	Use	Cir－ cuit	Correct Replacement	Switch	Bias	＊Note	Original Part	Cir－ cuit	Correct Replacement	＊Note	Vibr． Conn．	Replace－ ment	＊Note			
$\begin{aligned} & \text { FADA } \\ & \text { KA60, } \\ & \text { KB }(81,82,84,86) \end{aligned}$																
	Vol．   Vol．   Sen．   Fol．	15	0				－	66／133	See Note．	131				324A，327， $2.45,80$		3
		15					2．5－2－1－2	3	See Note．	137				324， $327,871 \mathrm{~A}$ ．		
		12		13												
														230，21，32．		
	Vol． Vol．	24	DhP119．．				2－2－1－1．	30／14	Sce Note．	131				324，27，245， 80.		3
		8		6	See No	te A39	3－1301－M1S．	1	RS：13．					235，224，27，47， 80.	175	3
$\begin{aligned} & \text { KOC (171, 173) } \\ & 110 \text { V } 1 ; C \\ & \text { KU }(45,45 /) . \end{aligned}$	Vol． Vol． lol． F．O．G． Vol．	8		6			3－1313－．ıS．	1.							175	
		${ }^{7}$			See No	ie A40	3－1301－MS．	3	ทS913	Bio				$\begin{aligned} & 36,23,2 ; 38 \ldots \% \\ & 235,22,24,40 \end{aligned}$	175	3
KW（48，49）．．．		15		6	See No	to A85	3－1301－M1S．	，	1 LS 213					$327,45,24,80 .$	175	
$\begin{aligned} & \text { KX (61, 66) . . . . . . } \\ & \text { KY (66) Early, Lalt- } \\ & \text { NA (14) ............. } \end{aligned}$		42		6			3－1301－mis	4	iss213					235，24， 17.8		3
	Tol   Vol．   Tone Vol．   ＇lone Vol．   Fone lol． T＇one	61	0	6			－138．1－MS．	4	115213					2，4，	175	3
		61		6			5－1209－M5．	1	1s ${ }^{\text {a }}$－12					6А7，61）${ }^{\text {a }}$ ，3\％，42，$\%$ \％	1 \％	3
NE（151，152）		57 15	1.	6		$\mathrm{A}^{90}$	5－1209－MS．	15	13N206					$80 . . . . . . . . .$.	265	1
NF		57	M	6			－1343－MS．	15	$1 \mathrm{~N} \mathbf{N} 226$.					80，61）6，37，73，42，	65	
		17		6			4－1488－MS．	1	IN 242.						$\underline{125}$	1
		57	UC5				4－1314－MS．	15／19	TS101．							
RA（74，76，83， 88. 89）		${ }_{3}^{16}$		7			4－1380－M15．．		1 N 232		30	285	C3	334，1A ${ }^{3}, 3$	$\underline{20.5}$	$10{ }^{\circ}$
	Fol．	15		6			3－1473－MS．．	28	1 RS 213.					358，${ }^{356,247, ~ 80}$	175	3
		．$\ddagger$	Y25MP				3－1384－M15．．	28	118513．					－1，56，${ }^{\text {a }}$ ，		3
RC（ 78,79 ）	Vol． F．O．G： Sil． tol．						3－1313－M1s．．	15	TSloz．							
		寺	YN ${ }_{\text {Y }}$	6			3－1．173－M15．	28	$1 \mathrm{LS213}$						175	3
							3－1384－M15．	28	RS213．							
RE（ $73,75,85,98$ ）．		17		6			3－1381－M1S．	28	RSS213．					558， 53.56 to 80		
							3－1301－MS．	25	118213.					\％\％，ЈЈ， 06.	1.5	3
$\begin{aligned} & \text { RG }(55) \ldots, \\ & \text { RII }(74,76,83,87 \\ & 88,89,97) \ldots . . \end{aligned}$	Vol．	6	G12	6			${ }_{\text {3－1313－MS }}$	17	TS102．							
														a，	1.5	3
	Vol．	15		6			3－1．173－MS．．	$\because 8$	12S213．					556，${ }^{538}, 247,80$	175	3
		$\cdot \ddagger$	Y25M1				3－1331－M15．．	23	115 S 13.							
							3－1301－．115．	－18	TST132							
RK（101 Motoset）．．	Vol．	17	（／M154．	M26	See No	Le A96	4－125．4－MS．	1	CN152		4	－ 1	$\stackrel{\square}{\mathrm{C}} 3$	39，81，85， 29	175	10 ＂
RL（103 Fadaletle）．	V	6	（i12	6			4－13i－kis．	6	Buffer．	131						
							4－1314－315．	13	TS101．					\％．so，30，－3，		
RN（105，106，107）．．	Vol．	17		6												
							4－136－M15 4－134－M15	15	$\begin{aligned} & 1 \times 223 \\ & 13 N 206 \end{aligned}$	1310					470	
RP（102 Mutoset）．．	Vol． Tone	16 40	H／115．	126	See Nu	le A96	4－1251－M15	1	CN152		4	Si	C3	37，30，85，8\％，	175	i0＇
							－${ }_{\text {4－1366－M1S．}}^{4}$	$\frac{12}{15}$	CS133   TS101							
S（112）							． 01.		Buffer．	1314						
	Fol． Tone Vol． Tone	27		6			4－1362－M1S．	15	［12N23J．							
RU（131，132）		15	0	6			4－1450－MS．	4	$13125{ }^{\text {a }}$						470	
		22					t－1451－215	9	RS203．						265	
RV（10－43）Auto．．．．	Vol．	17	UM161	M26			4－1343－MS．．	15	${ }^{13} \mathrm{~N} 206$							
		17	UM161	M26		A96	4－125．4－MS．	$1 \frac{1}{5}$	CN15\％		4	221	C3	6A7，617，288，11， 84.	175	10
							4－1439－MS．．	15	TS101．							
$\begin{gathered} \text { RW, } \quad 78-10, \quad 79-10, \\ 97-10,133, \quad 134, \\ 135 . \ldots \end{gathered}$									utter	131						
	Yol．   Tone   fr．0． i. Vol．	17	${ }^{0}$	6			4－1488－MS．	28	R N2					36D6，${ }^{237}, 85,242,80$.	265	1
		21					4－149．4－MS．．	28	HS213							
RX 93， 95. RY（108，109，125）		17		6			3－1473－MS．	1	insel3					358，55，56，47． 80	125	3
		17		6			3－1384－MS	1	12sel3．							
S，26－36．   ＂ 7 AC ＂（475－UA or CA，472－1 A or CA．SF45／75－UA or CA，SF45／72－ UA or CA） E180， E 180 Z ． E420，1440Z M250，M2507．	Vos．						－1343－MS．	15	13 N 226	13103				$\begin{gathered} 6 A 7,78, \quad 6137, \quad 43 \\ 25 / 55 \ldots \end{gathered}$	470	
		25	1）131307．		See No	le A3								$324,227,245$		
	Vol．	14	SR1P356．			A3								0．27， 71		3
								1								3
	Vol．						1－2－3－1－5．		See Note．	.131						
		7	S11P257				1－2－3－4－5．	$\cdots$	See Note．	131				527， 45,80		3
M250，M2507． ＂Sperial A．C．   （262－UA or CA，   265－UA or CA，   MP－62－UA or CA．   H1P－65－U A or CA．   $10,10 Z, 11,11 Z$.   $15 \mathrm{M}, 15 \mathrm{MZ}$   $16,16 \%, 17$.																
	Vol．	14	Shlw 56.			A3										
	10.	1.1	S111256．					．								
	lol．	11	Ships7．				$1-2-1-5$	，	See Note．	131				127，2．4，2．4，${ }^{\text {a }}$		3
	1 l.	4	SH1256		（Early	A 27	1－2－4－5－6	F	See Note．	131				527，971，80．．		3
18DC．．．．．．．．．．	Yol．	8 4 4	S111257		（Late	A4										
20，20z．．．．．．．．．．．．．	Vol．	8	S11P257				1－2－4－5，6		See Note．	${ }_{1}^{137}$				$512 \mathrm{~A}, 271 \mathrm{~A}$ $527,71,80$		2
25，25Z．．．	Vol．	11	SRP257．				－2－4－5．6		See Note．	． 131				27， $24,245,80$.		3
30，30Z，31，31Z．	Yol．	$\begin{array}{r}35 \\ 8 \\ \hline\end{array}$	S11P256．				F	3	See Note．	． 131				527，71，80．．．．		2
3513	Vol．	－85	S11P2507．					$\pm$.	See Note．	． 131						2
35， $35 \%$	Vol．	12	1）12．．．．				－2－3．	韦．	I1S690．．							3 3 3
	Vol．	$\stackrel{25}{64}$			See No	ie A 4	－2－3．	F	$11 \$ 690$.							3
43.	Vol．	¢ 64					1－2－3－1－5		See Note．	． 131				3s24，${ }^{3} 27,245,80$		3
44.	Voi．	6.4					$\frac{1-2-3-4}{1-2-3-5}$	3／1．4．		． 131				$3.4 \mathrm{~A}, 27,245,80$ $324,27,245,80$		3 3
46． 47.	Vol．	64					1－2－3－4－5	星。	See Note．	.133				32，${ }^{3}$		3 3
	Vol．	$\pm$			Soe No	te A85			Sce No．					27， $35,247,80$		3
	F．O．G．															
		1	SR1256											927，271A， 80		
		$1 i$	Sin1256．				2－3－1	$\ddagger$	See Note	． 131				80		2
	Vol．   Fol．   tol．	12	Sl1P259											${ }_{324}{ }^{2} 227217^{8} 81$		
		12	S111257				$1-4-5-\frac{7}{4}$		Sce Note．．	． 131						$\stackrel{5}{\ddagger}$
	Vol．	6		6	EX200				See Note	． 131						
		6	UC509	6	EX200			$\frac{2.1}{15}$	CN141．					6D6，6C6，38，12Z3．		
									N10．，．．．							

Mallory-yaxcley radio service encyclopedia


Mallory-Yaseley radio service encyclopedia


Mallory-Yaseley radio service encyclopedia


Málory-yaxley radio service encyclopedia


MALLORY-YAXELEY RADIO SERVICE ENCYCLOPEDIA


MALLORY-YAZKEY RADIO SERVICE ENCYCIOPEDIA


Mallory-yazeley radio service encyclopedia


Mallory-Yarley radio service encyclopedia


MALLORY-YABELEY RADIO SERVICE ENCYCIOPEDIA


Mallory-Yaxerey radio service encyclopedia



Mallory-Yaxley radio service encyciopedia


MALLORY-YAXEEY RADIO SERVICE ENCYCLOPEDIA

$\ddagger$ Data not substantiated.

* IMPORTANT: Read Notes in Note Section if specified in Note Column.


## CROSS REFERENCE OF GENERAL ELECTRIC-RCA VICTOR MODELS

A-90-See RCA Victor M30	J85-See RCA Victor R12	K62-See RCA Victor R11
BX-See RCA Victor R17M	J86-See RCA Victor R72	K63-Sce RCA Victor 120
B40-See RCA Victor M34	J87-See IRCA Victor 1175 (17's)	K64-See RCA Victor 121
B52-See RCA Victor M116	J87A-Sce RCA Victor R75 (2A5's)	K61D-See RCA Victor 127
B81-See RCA Victor 142B	J88-See RCA Victor R 71	K65-See 1RCA Victor R38
B86-See RCA Victor 241B	J100-See RCA Victor R100	K65P-Sce R1CA Victor R138P
C30-See RCA Victor 91B	J105-See RCA Victor 1276	K66-See R1CA Victor 290
C41-See RCA Victor M105	J107-See IRCA Victor 1177	K60.M-See RCA Victor 222
C60-Sce RCA Victor M107	J109-See 1RCA Victor R12:81	K78-See RCA Victor 330
C61-Sce RCA Victor M123	J125-See RCA Victor Ri78	K79-Sce 1RCA Victor 331
C62-See RCA Victor 126B	J125A - Sce RCA Victor li78 (2)	K80-See RCA Victor 140 and 140 E
C67-See RCA Victor 223	JZ30-See R1CA Victor SW2	K 30 X -See RCA Victor 141 and l41E
C70-See RCA Victor 135B	JZ822-See RCA Victor R24	K82-GE K62 in clock cabinet
C75-See RCA Victor 235B	JZ822A-See RCA Victor R294 (17)	K85-See 1RCA Victor 2.40
D50-See RCA Victor M101	JZ826-See Victor R24	K88-See R1CA Victor 340
D51-See RCA Victor M104	JX828-J88 with SW adapter	K88X-See 12CA Victor 34E
D52-See RCA Victor M108	JZ835-See RCA Victor RO23	K105-See RCA Victor 261
D72-See RCA Victor M109	K.40-See RCA Victor 1227	K106-See RCA Victor R90
E52-See RCA Victor T5	K40A-See RCA Victor R18W	K106P-See RCA Victor R901P
1131-See Radiola 80	K41-See RCA Victor R17M	K107-See RCA Vietor R260
H32-See RCA Victor R50	K43-Sce RCA Victor 100	K126-See RCA \ietor 230
H51-See Radiola 82	K48-Sce RCA Victor 300	KZ-621'-See RCA Victor R1E18, RE18A
H51R-See Radiola 82R	K50-Sce RCA Victor R28	L50-See RCA Victor H22S
H71-See Radiola 86	K50P-See RCA Victor R28P	Ljul-See RCA Victor Resw
1171R-Sce Radiola 86R	K51-See RCA Victor R28	L52-See RCA Victor 112
H72-See RCA Victor RAE 59	K51P-Sce RCA Victor R28P	L52A-See RCA Victor112A
H91, H91R-See Previous Page	K52-See RCA Victor 110	L53-See IRCA Victor 114
J70-See RCA Victor R4	K53-See RCA Victor 111	M14--See RCA Victor 102
J72-See RCA Victor R70 and R70N	K53M-Sce RCA Victor 115	M14-See RCA Victor 101
J75-See RCA Victor R6	K54-See RCA Vietor Re40	M12-See RCA Victor 103
J80-See RCA Victor R8	K54P-See RCA Victor RE40P	M19-See RCA Victor 301
J82-See RCA Victor R71	K55-See RCA Victor 210	M50-See RCA Victor 117
J83-See RCA Victor R-73 with 47's	K58-See RCA Victor 310	M51-See RCA Victor 118
J83A-See RCA Victor R73 with 2A5's	K60-See RCA Victor 1137   K60P-Soe RCA Victor R33P	M51-See RCA Victor 118 (mod)

Mallory-Yaxiey radio service encyclopedia


Mallory-yameley badio service encyclopedia


MALLORY-YABELEY RADIO SERVICE ENCYCLOPEDIA


MAILORY-YASEEY RADIO SERVICE ENCYCLOPEDIA


MALIORY-YABELEY RADIO SERVICE ENCYCIOPEDIA


Mallory-yaseley radio service encyclopedia


MALLORY-YAXLEY RADIO SERVICE ENCYCLOPEDIA

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{MANUFACTURER AND MODEL} \& \multicolumn{6}{|c|}{CONTROLS} \& \multicolumn{4}{|c|}{CONDENSERS} \& \multicolumn{3}{|c|}{vibrators} \& \multirow[t]{2}{*}{Complete Tube Complement} \& \multirow[t]{2}{*}{\begin{tabular}{l}
I. F. \\
Peak
\end{tabular}} \& \multirow[t]{2}{*}{Trans. Circuit} \\
\hline \& Use \& Circuit \& Correct Replacement \& Switch \& Bias \& *Note \& Original Part \& Circuit \& Correct Replacement \& *Note \& Vibr. Conn. \& Replacement \& *Noto \& \& \& \\
\hline HMM.IRLDND-C.
"Comet Pro"
Dec. \(1931 . \ldots .\). \& \begin{tabular}{l}
ontinued \\
Vol. \\
Tone
\end{tabular} \& \(3{ }^{7}\) \& \& 6 \& \& \& 8.8.
8.6. \& 16 \& \[
\begin{aligned}
\& \text { RS2IS } \\
\& \text { TSIOL }
\end{aligned}
\] \& \& \& \& \& 224A, \({ }^{235,47,80,227 . . . ~}\) \& 465 \& 3 \\
\hline \[
\begin{gathered}
\text { "Comet 1ro"" } \\
\text { July } 1932 . .
\end{gathered}
\] \& Tol. \& \(3{ }^{7}\) \& \& 6 \& \& \& 8. 8. 8
8.7 \& 3
15 \& \({ }_{\text {l/ }}^{12} 51013\). \& \& \& \& \& \({ }^{22} 44,235,37,80,327\). \& 465 \& 1 \\
\hline \[
\begin{gathered}
\text { "Connet I'ro" } \\
\text { Feb. } 1932 .
\end{gathered}
\] \& \& + \({ }^{7}\) \& Hit \& 6 \& \& \& 8. 8, 8
\(8 . \ldots\) \& 188 \& HS213. \& \& \& \& \& 25:,458, 2A5, 80. \& 465 \& 1 \\
\hline \[
\begin{gathered}
\text { "Conet } \operatorname{Pr}_{\text {ro" }} " \\
\text { Sept. } 1932 .
\end{gathered}
\] \& Vol. \& \(3{ }^{7}\) \& II \& 6 \& \& \& 8.88
\(8 . \ldots\) \& 3
19 \& \(\xrightarrow{128213 .}\) \& \& \& \& \& 257, 58, 47, 80 \& 465 \& 1 \\
\hline \[
\begin{gathered}
" \text { Comet Irro" } \\
\text { Oct. } 1932 . .
\end{gathered}
\] \& \[
\begin{aligned}
\& \text { Fol. } \\
\& \text { Tone }
\end{aligned}
\] \& \(3{ }^{7}\) \& \[
\underset{6 i}{11}
\] \& 6 \& \& \& \(8.8,8\)
8.1 \& 3
19 \& TRS213. \& \& \& \& \& 257,458, 47, 80 \& 465 \& 1 \\
\hline \[
\begin{aligned}
\& \text { "Comet Pro" } \\
\& \text { Stundarl Model. }
\end{aligned}
\] \& yol. \& \(3{ }^{7}\) \& \[
11
\] \& 6 \& \& \& 8. 8, 8
8.1 \& 19 \& NSS213. \& \& \& \& \& 257,458, 2A5, 80. \& 465 \& 1 \\
\hline \[
\begin{gathered}
\text { "Comet I'ro" } \\
(\text { Crystul) }
\end{gathered}
\] \& \begin{tabular}{l}
Vol. \\
Tine
\end{tabular} \& \(3{ }^{3}\) \& \& 6 \& \& \& 8. 8. 8 \& 3
19 \& nS213.
TSiol. \& \& \& \& \& 257.458, 2A5, 80..... \& 465 \& 1 \\
\hline "Comel Pro" AVC Model. \& Vol. Gaill \& 15 \& \& 6 \& \& \& 8.8.8. \& 3
19 \& \[
\begin{aligned}
\& \text { HSO13. } \\
\& \hline \text { TSIO1. }
\end{aligned}
\] \& \& \& \& \& 257,458, 2B7, 2A5, 80. \& 465 \& 1 \\
\hline \begin{tabular}{l}
HAMMIARLUND RO \\
Hic) 30 AC \\
IIi() 30 Baltery \\
Hic) 301
\end{tabular} \& BEItTS (in). vil. Yol \& 12 \& \& \& \& \& \(\ddagger\) \& . \(\ddagger\) \& See Note. . \& . 131 \& \& \& \&  \& \& 7 \\
\hline Hiti 31 AC: \& Vil. \& 12 \& Iti \& \& \& \& \& \(\because \ddagger\) \& Sce Note. \& B1 \& \& \& \& 12.1. 27,2.15, 80. \& \& 3 \\
\hline \[
\begin{aligned}
\& \text { IIARIRIS } \\
\& 500 . \ldots
\end{aligned}
\] \& Yal \& 4.5 \& 11848. \& M26 \& \& \& 8-8 \& 4 \& CM1172. \& . 13 \& \& \& \& \(648,6 \mathrm{~K} 7,6 \mathrm{H6}, 6 \mathrm{C} 5\), \& \& \\
\hline \& Tone \& 11 \& 11139. \& \& \& \& \& 4 \& \& \& \& \& \& \({ }^{26 F 6.5 Z 4.1 .0 . ~}\) \& 465 \& 1 \\
\hline \multirow[t]{2}{*}{} \& lol. \& 4. \& (11218. \& 126 \& \& \& 8-8 \& 4 \& CM172 \& . 13 \& \& \& \&  \& 465 \& 1 \\
\hline \& fone \& 8. \& M1188. \& M26 \& \& \& 8-8 \& 4 \& CM172 \& . 13 \& \& \& \& 6A8, \(617.6116,6 \mathrm{C}\), \& 46 \& \\
\hline \& Toue \& 4 \& 11239

111488 \& M26 \& \& \& 8 8-8 \& 4 \& CM172 \& . 33 \& \& \& \&  \& 465 \& 1 <br>
\hline 700............... \& Tone \& 41 \& 11139. \& M2, \& \& \& \& - \& CMッ \& . ${ }^{\text {a }}$ \& \& \& \& ${ }^{26 \mathrm{~F} 6,5 \% 4 \ldots \ldots .}$ \& 465 \& 1 <br>

\hline \multirow[t]{2}{*}{$$
701 \mathrm{~W} .
$$} \& lol. \&  \& 111818. \& M26 \& \& \& 8-8 \& 4 \& CM172 \& 133 \& \& \& \& \[

$$
\begin{aligned}
& 6 \mathrm{AB} .6 \mathrm{K7} 7116,6 \mathrm{C} 5, \\
& 26 \mathrm{~F} 6,5 \mathrm{C} 4,
\end{aligned}
$$
\] \& 465 \& 1 <br>

\hline \& foil. \& 118 \& 11839 \& M26 \& \& \& 16-16-8 \& 63 \& See Note. \& 133 \& \& \& \& 6A8, 6K7, 6R7, 225A6, \& 465 \& <br>
\hline 800............... \& Tone \& 4 \& M11239
M1188. \& M26 \& \& \& 8-8 \& 4 \& CMIT \& 133 \& \& \& \&  \& 465 \& <br>
\hline \multirow[t]{2}{*}{900...............} \& Tol. \& ${ }_{41}^{4.5}$ \& M1139. \& \& \& \& \& 4 \& CM..... \& \& \& \& \& 26F6, 5Z4....... \& 465 \& I <br>
\hline \& Yol. \& 18 \& 11188 \& H26 \& \& \& 16-16-8 \& 63 \& See Note \& 113 \& \& \& \&  \& 465 \& <br>
\hline 1201 W \& Tone
Tol.
Tone \& 41
4.3
4.
4 \& M1134. . .
M118. \& M26 \& \& \& 8-8 \& 4 \& CM172 \& . 13 \& \& \& \& 6A8. 6K7, 6H6, 6C5, ${ }^{2} 6 \mathrm{~F} 6,5 \mathrm{Z} 4$ \& 465 \& 1 <br>
\hline \multirow[t]{2}{*}{HATRY R YOUN:} \& \multirow[b]{4}{*}{Sol. Suns. Sol. Soms. Vol. Serns.} \& 12 \& \& \& \& \& \& \& \& \& \& \& \& 324,327. \& 175 \& <br>
\hline \& \& $\stackrel{9}{13}$ \& \& \& \& \& \& 3 \& See Note \& . 11 \& \& \& \& 44,227, 45, 80 \& 175 \& 2 <br>
\hline \multirow[t]{2}{*}{} \& \& $\frac{12}{7}$ \& \& \& \& \& \& 3 \& See Note \& . 1 \& \& \& \& -4, ${ }^{\text {a }}$ \& \& <br>

\hline \& \& 12 \& $$
\frac{1}{k}
$$ \& \& \& \& \& \& \& \& \& \& \& 01A, ${ }^{2} 12 \mathrm{~A}, 322$. \& 175 \& <br>

\hline \multirow[t]{5}{*}{| HETRS |
| :--- |
| 6 Tube AC |
| 6 Tube AC-DC |
| 8 Tube Superhet |} \& \multirow[t]{5}{*}{| Vol. |
| :--- |
| Tone |
| Yol. |
| Tinne |
| lid. |
| Tone |} \& 17 \& V \& 6 \& \& \& \& 4 \& 12S213 \& \& \& \& \& 26D6, 6A7, 6B7, 42. \& 456 \& 1 <br>

\hline \& \& 3 \& \& 6 \& \& \& 10.0 \& ${ }_{6 / 15}^{15}$ \& UR182/TSİiol \& . 11114 \& \& \& \& 6A7, ${ }^{261) 6, ~ 6137, ~} 42$. \& 456 \& <br>
\hline \& \& 3.1 \& \& \& \& \& 10. \& 15 \& TS101. \& \& \& \& \& \& \& <br>
\hline \& \& 15 \& \& \& \& \& 629 \& 3 \& 16913. \& \& \& \& \&  \& \& <br>

\hline \& \& 41 \& \& 6 \& \& \& $$
\begin{aligned}
& 601 . \\
& 490
\end{aligned}
$$ \& 15 \& 1 T 242 \& \& \& \& \& \& 456 \& 1 <br>

\hline \multirow[t]{2}{*}{9 Tube Air Ace. . .} \& \multirow[t]{2}{*}{$$
\begin{aligned}
& \text { Yol. } \\
& \text { Tone }
\end{aligned}
$$} \& 18 \& \& 6 \& \& \& 30. \& 1 \& "1435i0. \& \& \& \& \& ${ }^{3} 6 \mathrm{D} 6,6 \mathrm{~A} 7,85,42,80$. \& 456 \& 1 <br>

\hline \& \& 4 \& \& \& \& \& \& 15 \& TSS16. \& \& \& \& \& \& \& <br>

\hline $$
\begin{gathered}
9 \text { Tube Air Ace } \\
\text { (Rev.) }
\end{gathered}
$$ \& Tone \& 188 \& Kig \& 6 \& \& \& \& ${ }_{15}^{15}$ \& \[

$$
\begin{aligned}
& \text { WESB40. } \\
& \text { RSI16. } \\
& \text { TSI01.. }
\end{aligned}
$$
\] \& \& \& \& \& ${ }^{3} 6 \mathrm{~K} 7,6 \mathrm{~A} 8,6 \mathrm{R7}, 6 \mathrm{C} 5$, ${ }^{26135,5} 53$ \& 456 \& 1 <br>

\hline \multirow[t]{2}{*}{6 LB, 6 SB. . . . . .} \& \multirow[t]{3}{*}{| Vol. |
| :--- |
| Tone |
| Viol. |} \& 18 \& N. \& \& \& \& \& \& \& \& \& \& \& 1С6, $34,1 \mathrm{B5}, 380$ \& 456 \& <br>

\hline \& \& 317 \& \& \& \& \& \& \& CNI45. \& \& \& \& \& 6A8, 6K7, 6Q7, 25A6, \& \& <br>
\hline \multirow[t]{2}{*}{Fi3 to F20.} \& \& 18 \& \& \& \& \& 16. \& 4 \& CSI26.... \& .133 \& \& \& \& 25Z5. ....... \& 456 \& <br>
\hline \& Yol. \& 80

80 \& $$
\begin{gathered}
\text { s00M No. } 1 \\
\text { N.......... }
\end{gathered}
$$ \& \& Sen No \& Le A19 \& 30.

61. \& 4 \& W183540...

WS $216 \ldots .$. \& \& \& \& \& $$
\begin{array}{r}
6 \mathrm{AB}, 6 \mathrm{~K} 7,6 \mathrm{Q} 7,26 \mathrm{~F} 6, \\
80 \ldots \ldots \ldots \ldots
\end{array}
$$ \& 456 \& 1 <br>

\hline \multirow[b]{2}{*}{F21 to F28.........} \& \& \& \& \& \& \& \& 15 \& \& \& \& \& \& \& \& <br>
\hline \& Yor \& 140
140 \&  \& \& See No \& 10 Al9 \& 124. \& $\stackrel{27}{27}$ \& CN145.
CSI26. \& .138 ${ }_{1}$ \& \& \& \& 6A8, 6K7,6Q7,25A6, 2576 \& 456 \& <br>
\hline \multirow[t]{2}{*}{22................} \& Yol. \& ${ }^{6}$ \& 110....... \& \& Ex200 \& \& 8-8 \& 1 \& See Note \& . 133 \& \& \& \& 358, 57, 2\% $17,56,80 .$. \& 115 \& i <br>
\hline \& 'Tone \& 98 \& $\stackrel{+}{1}$ \& \& \& \& 8 8-8 \& 1 \& See Note. \& . 133 \& \& \& \& 57,588, 55, $247,80 .$. \& 175 \& 1 <br>
\hline 31................ \& Tone \& 4.1 \& Y \& \& \& \& \& \& \& \& \& \& \& \& \& <br>
\hline \multirow[t]{2}{*}{${ }_{207}^{71 . \ldots . . . . . . . . . . . . . . . ~}$} \& Vol. \& 56

17 \& ${ }_{N}^{N}$ \& 6 \& \& \& ${ }_{623}^{10-25}$ \& 11 \&  \& \[
$$
\begin{aligned}
& 1331 \\
& .133
\end{aligned}
$$

\] \& \& \& \& \[

$$
\begin{aligned}
& 26 \mathrm{D}, \mathrm{~F}, 43,25 \angle 5 . \\
& 2 \mathrm{~A}, 58,2 \mathrm{~A}, 2 \mathrm{~A}, 80
\end{aligned}
$$
\] \& 4.56

456 \& $\mathrm{i}^{\prime}$ <br>
\hline \& , \& \& \& 6 \& \& \& 400 \& 15 \& TS101 .... \& \& \& \& \& \& \& <br>
\hline 209........... \& Vors. \& 17 \& \& 6 \& \& \& $69: 3$ \& 4 \& CM1172 \& 133 \& \& \& \& 2A7, 58, 2A6, 2A5, 80 \& 456 \& 1 <br>
\hline \multirow[t]{2}{*}{251..............} \& Yol. \& \& 1112 \& \& EX230 \& \& 428 \& 4 \& CM17i. \& .133 \& \& \& \&  \& \& 1 <br>
\hline \& Tone \& $\frac{23}{17}$ \& \& 6 \& \& \& 623. \& 4 \& C\1172 \& . 133 \& \& \& \& 2 A ( $58,246,2 \mathrm{~S}, 80$ \& 456 \& 1 <br>
\hline 257, 259,.......... \& \& \& \& \& \& \& 490 \& 15 \& T151..... \& \& \& \& \& \& \& <br>
\hline \multirow[t]{2}{*}{293} \& Vor. \& ${ }_{17}^{6}$ \& Y \& \& EX200 \& \& 2023. \& ${ }_{11}{ }^{1}$ \& CM164.... \& \& \& \& \&  \& 456 \& <br>
\hline \& Vol. \& 17 \& \& 6 \& \& \& 166.
490. \& 15 \& TS101. \& 1331 \& \& \& \& -6D6, $5,4.4,25 \% . .$. \& 456 \& <br>
\hline 297. \& Vol. \& 17 \& \& 6 \& \& \& 466. \& 11 \& U11882. \& 1331 \& \& \& \&  \& 436 \& <br>
\hline \multirow[b]{2}{*}{412, 466.} \& \& \& \& \& \& \& 190. \& 15. \& TS101 \& \& \& \& \& \& \& <br>
\hline \& Yol. \& 17
28 \& \& 6 \& \& \& ${ }_{6}^{659 .}$ \& 6/15 15 \& TiR182/TS101 \& 1314 \& \& \& \& ${ }^{26156,6 A 7, ~ 75, ~ 43, ~ 25 \% ~}$ \& 456 \& <br>

\hline \multirow[b]{6}{*}{| HIGH FREOUENC: |
| :--- |
| A. C. Special. |
| L. |
| "Masterione"," i920 |
| "Masterlone" Super |
| 10, 1931 |
| "Nine in Line".... |} \& \multirow[t]{6}{*}{\[

$$
\begin{gathered}
\text { LABS. } \\
\text { Vol. }
\end{gathered}
$$
\]} \& \& \& \& \& \& \& \& \& \& \& \& \& \& \& <br>

\hline \& \& \& \& \& \& \& \& \& See Note. . \& 131 \& \& \& \& 29,4,27, 71A. 80 \& . $\ddagger$. \& 3 <br>
\hline \& \& 7 \& 11. \& \& \& \& 1-4 \& 4 \& See Note.. \& 133 \& \& \& \& 24, 35, 47, 80 \& \& 1 <br>
\hline \& \& 12 \& Ki2 \& \& \& \& 5-15 \& 3 \& M ${ }^{2} 277$ \& . 160 \& \& \& \& 524, $327,245,80$ \& \& 7 <br>
\hline \& \& 12 \& \& \& \& \& 8-8-8. \& 3 \& See Note.. \& . 133 \& \& \& \& 52.4.227 2.45, 80. \& \& 3 <br>
\hline \& \& 33 \& M \& \& \& \& \& \& \& \& \& \& \& ${ }^{8} 01 \mathrm{~A}, 12 \mathrm{~A}$. \& 175 \& <br>
\hline
\end{tabular}

Mallory-yazeley radio service encyclopedia


Mallory-yarcey radio service encyclopedia

MANUFACTURER AND MODEL	CONTROLS						CONDENSERS				VIBRATORS			Complete Tube Complement	I. F. Peak	Trans Cir* cuit
	Use	Circuit	Correct Replacement	Switch	Bias	*Note	Original Part	Circuit	Correct Replacement	*Note	Vibr. Conn.	Replacement	*Note			
ILERBERT H. HIORN101....................	Contin	ued														
	Vol.	15 39	M.				$8-8$.	4	See Nute...	. 133				427,435, ${ }^{247,80}$	550SW	
	Tunlst.	. $\ddagger$	Aiomi.												550SW	3
1013, 10213........	Yol.	-		6			8-8	1	See Note	-133				204,427,35,297,80	175	3
109...............	Tunlgt.		AloMr													
	Tone	23	M1.				8-8	4	Soe Not	133				227, ${ }^{3} 1,147,80$	175	3
110.	Yol.	15 39	N				8-8	4	See Note.	13:3				4,35.947, 8	$\begin{aligned} & 175 \\ & 55056 \end{aligned}$	3
	Tunlgt.	+	Ai0ハil													3
112A.	Tol.	15   29   2					8-8-1	32	See Not	i33					175	1
156......	tone	5		6			$4-1$	23	See Note	. 13				2А̄, 2137, $58,2 \mathrm{~A} 5,80$	465	$\mathrm{i}^{\prime}$
156AW.....	Tone	- 59		6			4	23	Sec Note.	. 13				2A7, 58, 2137, $2 \mathrm{~A} 5,80$	465	1
158 (1933)..	Tone	$\underline{9}$						1	See	. 13				-AT, s, 2Bi,		
	Tone	21						1	See	. 13				${ }^{24} 8$.	465	1
535..............	Vol.	18					1-1	1	See Not	133	35	294	C3	6A7, 6D6, $75,42,84$.	465	10
536..............	Yol.	18	N				4	i	See Note.	:133	35	29.4	$\stackrel{1}{3}$	6A7, 616, $75,42,84$	465	10
537, 538...........	Tone	18	${ }^{\mathrm{K} 12} \mathrm{M} 188$				-008	23	Buffer... See Note.	${ }_{133}^{1314}$	35	294	C3			
	Tone	22	K12.				. 01		Buifer	1314					465	10
1934	Vol.	17 22					4-4	1	See Nole.	. 13				6A7, $78,6 \mathrm{~B}$	172	MG
$\begin{aligned} & \text { IIOWARI } \\ & \text { AA25.... } \end{aligned}$																
	Vol.	6	H12.		EX300		16-12		Sce	B3						
	Yol.	16		。	See No	te $\frac{15}{}$								55,256,588, ${ }^{\text {2 }}$ 42, $80 .$.	175	3
	Tone	41		6			1918. 2209.	3 3 3	18S21.3.							
							1976.	3	H2913.							
$\begin{aligned} & \text { ASW Converter.... } \\ & \text { AVII }(45,60) \ldots . . \end{aligned}$							1859	1	RS211.					22.i, 35,27		1
	Yoi.	9.4	N	0			1883	3	RN2450					327, 335, ${ }^{447}$,	175	7
A V O (35-A)	Yol.	3.5		6			1883	3	MN2.					${ }^{35}, 327,47$,	175	7
	Tone	31 6		0	\$reno	te As	2282	16	TS101.							
	Voi.	17					8-16-1	27	UR182.	.13115				6A7, 6C6, ${ }^{\text {6 }}$		
CC23, CC24. . . . .	Vol.	17					8-8	1	Sre Note.	. 13				${ }^{26156,75, ~} 25.51$	$\begin{aligned} & 456 \\ & 456 \end{aligned}$	1
I) 4 (Cahle-Nelson)..	Vol.	8		6	See No	te A5	${ }_{1869} 10$	15	TS101.							$\cdots{ }^{\prime}$.
							2209.	1	(sim3					, 2		I
	Yol.	19	T	6			300.4	93	RN242					-78, 6A7, 85, \%6, 42, 80	465	$\mathrm{i}^{\text {- }}$
	Tone	29					1918	23	RS213.							
EX (Dual Range)..	Sup.	${ }^{3}$			See No	te A5	1369	3	CS133					327,45,247	140	${ }^{1}$
E1.4. E107.   E57 (Long Wave) .	Tone	41	N	6			2209	3	Cs1:33.					-1.....		
	Vol.	118		6			8-4,	$\stackrel{9}{11}$	See Note CNILT.	:133					456	1
F.................							8816.	11	CSI23.	.133					456	
	Yol.	15	N				3288	1	CNİ2					6А7, $788,85,786,42,80$	465	i
	Tone	2	Y				3001	25	R $\mathrm{N}+12$							
F (with 45's).......	Sen.	$2{ }^{4}$			See No	te AJ	19.18. 17.48.	$\stackrel{2}{1}$	18S213.					324, 27, 45, 8		3
Series 1 (Grand)...	Tone	41	icisot	6	see No	(e As										
	Yol.	15					8-8	,	11 N 2					76.6С6,78, 80, 85, ${ }^{42}$		
	Tone llum	1.5 30	N10\%					24	18, ${ }^{\text {d }}$ 232					84, 5Z3	175	1
			Alos				${ }_{25}{ }^{2}$	\%	TS102....							
Series 2 ( (irand) ....	Yol.			6			- ${ }_{8}^{8-8} 8$	12								- $\cdot$. ${ }^{\text {a }}$
	Tone	15					8-8	2.4	1 N 232					5Z3, 80, 84.	465	- $\ddagger$
	Hum	30	A10:1].					15	"rios.							
								15	Sce Not							
"Green Diamond"   8 Mag. Speaker.	Vol.	1	112					. $\ddagger$	Sce Note	. 1.4				526, 27, ${ }^{271 A}$, 80.		11
"(ireen Diamond"   8 Dyn. Speaker...	Phono.	10	$k$													
	Vol.	1	112				P17	3	Sme Note	133				${ }^{3} 26,27,271 \mathrm{~A}, 80$.		11
$\begin{gathered} \text { "(ircen Diamond" } \\ \text { Dyn. Sicaker } 45 \end{gathered}$	Phono.	10					12172	3	See Note.	. 133						
	Vol.	II	112				SAIO	3	M N275.					${ }^{\text {26, }}$ 27, ${ }^{\text {245, }} 80$		11
	Plono.	10 6	112													
					EX300		${ }^{8-8} 10-10$	4	CNILI	. 133				39,		
11 (with 15's) (35, (1)	Yol.	8					1948.	.	1 S 213.					351,227,2.45, 80	175	3
11 (3, 40, 10) (with	Tone	41		6												
	Yol.	8					19.48.		HS213.					351,227,247, 80.	175	3
Auto (Series 1)....	Tone	41		6			1976	3	1 S 211.							
	$\xrightarrow{\text { Vol. }}$	18	1/1154	6	See No	te Ago	8-8.	1	CNIL2.	${ }_{1}^{1314}$	19	249	C3	$26176,76,75,42,617$	465	10
$\begin{aligned} & \text { IHA1 }(6,0 \mathrm{~A}) \ldots \\ & \text { HIA2 }(52,502) \ldots \end{aligned}$	vol.	17		6			1119-4	4	СМ172.		35	29.4	C3		i75	io ${ }^{\text {a }}$
	Vol.	18	UM1.54		See No	te A96	${ }^{\text {.01.8. }}$	4	${ }^{\text {Buffer }}$	:1131.4	34	292	C3	6А7, 61)6, $75,41,81$.	456	10
1143..............							10-10.	1.5	TNill							
	Vol.	17	1011.7		See No	te A)s	8-8.08-.008.	4	${ }^{13} \mathrm{Blfer}$	${ }_{183}^{1314}$	33	29.4	C 3	6A7, 61)6, 75, 41, 81.	4.5	10
							5-5.	15	TN110.							
HA4.	Vol.	18	UC.12		See N o	te ${ }^{3}$	8-8.3-.01.	4	${ }^{\text {Buffer }}$	${ }_{183}^{1814}$	3.	291	C3	26136, 6A7, 75, 41, 81.	175	10
							10.	15	Tsion.							
1I^6...............	Vol.	- $\ddagger$	UC512				(0).2-0	. $\ddagger$.	Buffer... See Note.	. 11314	19	249	C3	261)6, 6L7, 75, 76, 6135	46.5	io
HA7.............	Tone	$\underline{2}$	11139				.00\%		Buffer	1314						
	Vol.	18	UW1157-8si7				$20-266$	4	R11262	1316	35	294	C3			
H148	Vol.	18	UM157-S817				-007.	4	Buffer 1 VV 2	. 13146	35	$\underline{29.1}$	C3	6V619, 0Z4..   ${ }^{26 K 7 G}$ 6A $8 G 6027$	262	10
							00075		Butfer.	. 1314	3		co	6C5(i, 26 V6G, 0Z4.	262	10
1149..............	Vol.	18	UM1157-SS17				26-260	4	111262	. 1316	35	29.1	C3	${ }^{2} 6 \mathrm{~K} 7 \mathrm{G},{ }^{\text {6A8G, }}$ 6Q7G,		
"Highwayman"....	Vol.	17	UC:32	6			P10:3	4	Buffer $\mathrm{HM26}$,		37	296	C3		262	10
							.02.		Buffer	1314				818, $84 . \cdots$	175	10
	Vol.	8		6			${ }_{2}^{2178 .}$	12	CN150....					278, 77, 43, 8	456	1
							2177......	1.5	TNi10.							

Mallory－yastey radio service encyclopedia

MANUFACTURER AND MODEL	CONTROLS						CONDENSERS				VIbrators			Complete Tube Complement	$\begin{aligned} & \text { 1. F. } \\ & \text { Peak } \end{aligned}$	Trans． Cir－ cuit
	Uso	Cir－ cuit	Correct Replacement	Switch	Bias	＊Note	Original Part	Cir－ cuit	Correct Replacement	＊Note	Vibr． Conn．	Replace－ ment	＊Note			
$\begin{aligned} & \text { IIOWARI_Continuc } \\ & \mathbf{K}(400) \ldots \ldots . . . . . . \end{aligned}$																
	Vol．	13	$\underline{1}$	6			${ }^{18693}$.	$\stackrel{28}{28}$	CS133．．					${ }^{3} 56,57,588,{ }^{247}, 80$	175	7.
L（410）．．．．．．．．．	Vone	13	$\stackrel{1}{\mathrm{M}}$	6			－233．	$\begin{array}{r}-8 \\ \hline\end{array}$	Csi33．					55，3，6， $508,242,80$	175	7.
	Supp．	56	11				1869.	3	Csi33．					з．， $30,50,42,80$	115	7．．
M（420）．	Tone	${ }_{13}^{41}$	P	6			2335	3	－ 14					迷		
	Supp．	18	M	6				1	－s．					5，568．	，	7
O（20，25，30，32）．．．	Tone	41		6												
	Yol．	${ }^{8}$			mono	ir As	18538	1	11962					3，1， $27,47,80$	175	3
	Tone Vod．	$\underline{21}$	M		See No	teas	18.59 2303	$\pm 1$	CW131．					з $78,6 \mathrm{~A} 7$ ，76， $212 \mathrm{~A} 5,80$	70	i
189．．．．．．．．．．．．．．．．．	Tone	2	M	6			2127.	－8	Csis3．							1
	Vol．	15	M				2803.	3	（M172					ד6， $77,78,6137,29,30$	465	1
	Tone	22		6	See No	te A5	2127．	3	CSI31．							
	Vol．	24	DIRP24．											3．1． 27.		
							ploso．	3	MN273．					2．45， 80		3
	Yol．	$2{ }^{8}$					1713	，	12 S 213.					32， $7,27,45,80$		3
$\begin{aligned} & \text { SG "T"'.... } \\ & \text { So, st ist wype. } \end{aligned}$	Vol．	8		6	3		1868.	1	CNIS2．					251，24． 47,80		3
	Vol．	15		7	See No	teAs									175 465	
	Tone	22		6										20，${ }^{\text {a }}$ ，$, 58,21 . . .$.		
	Supl	8														
W 2nd Type．．．．．．．	Fol．	is												356，${ }^{4} 7,358$.	465	
	Tone Supp．	$\underline{29}$		6												
W 2nd Revision．．．．	Tungt．	＋	0.													
	toon	29		6				$\begin{aligned} & 13 \\ & 15 \end{aligned}$	$\begin{aligned} & \text { CSi33. } \\ & \text { TSiog. } \end{aligned}$	3				A，836，58，${ }^{\text {a }}$ A，831	465	7
W（Power Amplitier）	Sen．	8					－ 23 B i	$3 / 14$	tis692／UR191	13116				83 $3 \bigcirc$		
							2850 2427	15 15	CM162．．．．	116						
X2，X3，X8．．．．．．．	Vol．	17	N	6			10.48	3	$18 \times 213$.							
							1976	13	148213.					12A5， 80	175	1
Z4．	Vol．	15		6			19.18	＋ 3	13823．							
5B．．．．．．．．．．．．．．．．	Vol．						2209．	3	Cil33．					80	175	14
	Vo．	18		7			23－206	12	RSS201					C6．1At，1F6，1Ft， 1131	46.5	
613－A．．．．．．．．．．．．．	Yol．	12.		7			20－266	1	R13 V 235.		14	24.5 C	C3		46.5	
6B－T．．．．．．．．．．	Tone	12.4		7			${ }^{0.0105}$	1	Bu1fer．	． 131.4	14	－156	C3		465	10
	Tone	22					． 010.3		Bufter	． 1314	14	－80．		30，19．．．．．．．．．	46.5	10
$\begin{aligned} & 47 \mathrm{~A} \\ & \mathbf{5 0 S} \end{aligned}$	Vot．	6	1112	6	EX300		16－12	1	C1116．	． 13117				616，606． $3,258.3$		
							30103.	1.5	Tsiol．					－606．		
50 （Series 2）．．．．．	Vol．	6		6	EX300		16－12	1	C1165	13117				6D6，6J7，43，25z5．		
56. $\qquad$   57A，57AUS   58 （135） $\qquad$	Vol．	18	MR48．				16－12	4	Sce Note	133						
	Vot．	18		6				11	C－2．4．	． 13					46.5	
							8816	11		．133					4.56	
	Vol．	45		6			8812	27	CMiot	－1320				6А	46.5	
$\begin{aligned} & 60 \text { (Series 1) } \\ & 60 \text { (Short Wave). } \end{aligned}$															160	
	Vol．	18		6			8315.	11	Cids5．	． 113				6A7，6D6，6116，6F5，		
$67 . . . . . . . . . . . . .$.	Vol．	18		6			${ }_{8817}^{8816 .}$	11	（13）23：	． 133				43，25／3．．．．． 6 Bl 6 i	456	
				6			3003.	15	TS101．					6स゙ 66,42 ， $80 \ldots \ldots$	46.3	1
68．．．．．．．．．．．．．．．．	Yol．   Tone	$\underline{18}$	MR18	1126			3826	1	13 N2． 2					6Ā，6h7，607，6135，		
77C，77\％．．．．．．．．．	Voi．	18		6			3191	1							46.5	1
							881.	1.5	Csis1．					${ }^{6} \mathrm{~F} 6,5 \mathrm{Y} 3$.	465	
99C，99T．	Vol．	15	N	6			33003.	1.1	TSN24．					${ }^{36} 67.6 \pm 8.616,6055$		
	Tone	41					8814.	15	CS131．					26F6，5Z4．．．．．．．	465	1
118．．．．．．．．．．．．．．．	Vol．	4.5		6			3003 $17-266$	1.5	12S213．					${ }^{3} 6 \mathrm{K7}, 647.6116 .6 \mathrm{~F} 5$		
	Tone	22					8826．	1／13	1 N 2.						46.5	1
	Vol．	10	GK				P16034	3	See Note．	．132				ง26，27，10， $81 \ldots \ldots$.		5
	Vol．	＋10	L12						－152i3．							，
	13．Tone	$\ldots$	M1253．	iig			8.8	1／14	$12 \times 242$.					6116，665，${ }^{6} \mathbf{6 5 3}$		
				6			8－4．	14	Civili．					${ }^{26600} \times 280, \ldots$.	465	1
	Tone	22	$\stackrel{ }{\mathrm{N}}$	6			8826.	1／13	R， H 42.						46.5	1
225，S225．．．．．．．．．	Yol．	18					$28-$	1	$12 \times 24$					6A ${ }^{\text {a }}$ 6D6，75，41， 80.	165	1
	Tone	$\underline{29}$	M128．．．．	M26			28－20	i	13 N 24							
240－1．．．．．．．．．．．．	Tone	21	11188．	V196										ii， 80	46.3	1
240－2．．．．．．．．．．．	fot．	18	M1148．				28－2	1	13 C 42.					6．17，6D6，75，615，		
250，S250．．．．．．．．．	Tone	18	MR88．	N®			28－200	1	$13 \times 2$					6A7， $41.806 .75,11,80$	46， 405	31
	Tone	2	M148．．．	1126					IN－					6A7，606．＇S，11， 80		
259，${ }^{259595}$	Yol．	18	M148					1	Sre Note．	．13：3				6A7．606，75， 12.80	16.3	1
	Vol．	18	M1				40－10	6	see Note．	．133				6А7．6D6．6．6К末．   $25135,2525 \mathrm{~K} 21 \mathrm{~B}$.	465	
260，S260．．．．．．．．．．	Yol．						28－266．	1	18 N 24.					6А		
	Tone	$\frac{22}{45}$	11188．	1126 6			$24-266$	1／19	12 N 45	13141				41， 80	46.5	1
	Tone	22	Y				－		…．						46.3	1
268.	Yol．	45	N	6			19－206	1／13	13 N 245							
275， 280.	Tone	$\stackrel{29}{18}$	Mi18．				－9－266	1	13N－42						46.5	1
	Toue	21	M128．	1i\％			－－－66	1	16－to						46．	1
318.	Yol．	12．4	M1153．				888.4.							${ }^{3} 6 \mathrm{~K} 7.647 .60 .697 \mathrm{i},$		
325.	Tome	12.	11828. 11253.	1126			88829－5	1／13	Wratz					${ }^{3} 6 \mathrm{~K}$   $6 \mathrm{CJO}{ }^{2} 6 \mathrm{~B}^{6} 6 \mathrm{~B}, 130$	46.	1
	Tone	$\underline{120}$	M148	1i			8820	1／13	12 Na 48							
368.			M1153．				19－26	1／13	RNot．						46.5	1
	Tone	$\because 1$	M12．8．	V26										6V66，6U5，80．．．	16.5	1
368A（with Aut． Tuning）．．．．．	Vol． Tone	$\begin{array}{r} 124 \\ 21 \end{array}$	$\begin{aligned} & \text { M1R53. } \\ & \text { M18:8. } \end{aligned}$	1i6			19－266．	1／13	RN24．5					6A7．6A8．26К7，6116． 6U5，6F5G， 6 V 6 C ， 80	463	1

Māllory-Yastey radio service encyclopedia



MALLORY-YABCEY RADIO SERVICE ENCYClopedia


MALLORY-YABLEY RADIO SERVICE ENCYCLOPEDIA


MALLORY-YAYELEY RADIO SERVICE ENCYCLOPEDIA


MAILORY-YAZEXY RADIO SERVICE ENCYCLOPEDIA


Mállory-Yascey radio service encyclopedia


Mallory-yasley radio service encyclopedia


Mallory-Yarexey radio service encyciopedia


Mallory－yarzey radio service encyclopedia

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{MANUFACTURER AND MODEL} \& \multicolumn{6}{|c|}{CONTROLS} \& \multicolumn{4}{|c|}{CONDENSERS} \& \multicolumn{3}{|c|}{VIBrators} \& \multirow[b]{2}{*}{Complete Tube Complement} \& \multirow[b]{2}{*}{I．F． Peak} \& \multirow[b]{2}{*}{Trans． Cir－ cuit} <br>
\hline \& Use \& Cir－ cuit \& Correct Replacement \& Switch \& Bias \& ＊Note \& Original Part \& Cir－ cuit \& Correct Replacement \& ＊Note \& Vibr． Conn． \& Replace－ ment \& ＊Note \& \& \& <br>
\hline \multicolumn{17}{|l|}{MID－WEST－Continued} <br>
\hline Battery 8 （Super－2 Volt） \& Vol． \& 76 \& M． \& \& \& \& 24. \& 12 \& See Nole． \& ． B 3 \& \& \& \& 630.234. \& ．$\ddagger$ \& <br>
\hline \& Tone \& 76 \& M M \& \& \& \& \& $\cdots$ \& See No．e． \& \& \& \& \& 030．37． \& ． \& <br>
\hline ＂Imperial＂ \& Tone \& ．．声． \& NN．．．．．．．． \& Mfr \& \& \& \& $$
\begin{aligned}
& 3 \\
& 3 \\
& 3
\end{aligned}
$$ \& 18216.
HS213． \& \& \& \& \& ${ }_{6066}^{66 C 6} 86,6137$. \& \& <br>
\hline \multirow[b]{4}{*}{$$
\begin{aligned}
& \text { Miraco 1SG-226... } \\
& \text { Miraco } 16 \text { Tube ( } 32 \text { ) }
\end{aligned}
$$} \& Supp． \& is \& K12．．．．．．． \& ．1． \& \& \& 10 \& 15 \& CSI24． \& \& \& \& \& \& 156 \& 1.4 <br>
\hline \& At． \& －${ }^{5}$ ． \& Orider from \& Mrr \& \& \& 25. \& 1.5 \& TS103． \& \& \& \& \& \& \& <br>
\hline \& Vol． \& 15 \& \& 6 \& \& \& \& 3 \& See Noto \& 131 \& \& \& \& －4， $26.27 .271,80$ \& \& ii <br>
\hline \& Tone \& 22 \& Ki2 \& 6 \& \& \& \& 1 \& ${ }_{\text {117 }}^{10888}$ \& ${ }_{133}^{133}$ \& \& \& \& $55,556,57,758,42,26$.
$80,82, \ldots .6 .6$. \& 150 \& 1／2 <br>
\hline \multirow{4}{*}{Regal（1937）．．．．．．．} \& Supp． \& 7 \& UC500 \& \& \& \& \& 3 \& Ser Note \& 133 \& \& \& \& \& \& 1／8 <br>
\hline \& Vol． \& 18 \& V \& \& \& \& \& 13
3 \&  \& \& \& \& \&  \& \& <br>
\hline \& Tone \& ．$\ddagger$ ． \& \& \& \& \& 40 \& 3 \& W154045 \& \& \& \& \& 6L／7． $46 \times 6,{ }^{280}$ \& \& <br>
\hline \& \& \& \& \& \& \& \& 3
15 \& WS254． \& \& \& \& \& 22M2．．．．．．．．．．．．． \& 456 \& 1 <br>
\hline \multirow[t]{2}{*}{＂Royale＂．} \& Vol． \& 64 \& \& \& \& \& \& 13 \& WE1815 \& \& \& \& \& \& \& <br>
\hline \& Tone \& 133 \& \& \& \& \& 16， 16 \& 37 \& WE164\％
WE16t． \& \& \& \& \& $8_{6}{ }^{6} 6,3_{5} \mathrm{Y} 3$ or 354 \& 456 \& 1／1 <br>
\hline SW5－36（AC－DC）．． \& Vol． \& ${ }_{6}$ \& Oriler \& 6 \& See Not \& te As \& 20－12－5． \& 27／15 \& th182 \& 13221 \& \& \& \& $648,6 k 7,75,13$ \& \& <br>
\hline Z4 Short Wave Con－ verter． 6DC．（110 Yoll） \& Vol． \& 56 \& \& \& \& \& \& 1 \& See Note． \& ． 13 \& \& \& \&  \& 456

4 \& $\ldots$ <br>
\hline \multirow[t]{2}{*}{} \& Vol． \& 83 \& \& \& \& \& 4－4 \& 1 \& CNi．o． \& \& \& \& \& 258， $56,55,59,880$ \& 450 \& 1 <br>

\hline \& Vol． \& | 83 |
| :--- |
| 22 |
| 2 | \& Ki \& \& \& \& \& 1 \& 1ssi3． \& \& \& \& \& 2．58，2A7，2137，2A5，80 \& 450 \& 1 <br>


\hline \multirow[t]{3}{*}{| $6-37 .$ |
| :--- |
| 6－37（Auto） |} \& Vol． \& 18 \& \& 6 \& \& \& 20 \& 27 \& แทั\％ \& \& \& \& \& 6А7，6В6， \& \& <br>

\hline \& Tone \& 147 \& \& \& \& \& \& \& \& \& \& \& \& $2575 . . . . . . .$. \& 4.56 \& <br>
\hline \& Vol． \& 17

22 \& $$
\begin{aligned}
& \text { UM154-SS1 } \\
& \text { M139.... }
\end{aligned}
$$ \& M26 \& \& \& 8－8 \& 15 \& CN152． \& 133 \& 35 \& 20.4 \& C3 \& ${ }^{26 D 6,6 A 7, ~ 75, ~} 41,84$ \& 175 \& 10 <br>

\hline 7－36． \& Vol． \& 56 \& N \& \& \& \& 8，8． \& 25 \& Ruffer． \& 31.4 \& \& \& \& 558，56，55，2A5， 80 \& 456 \& i <br>
\hline \multirow[t]{2}{*}{7－36（AC－DC）．．} \& Tone \& $\underline{20}$ \& N \& 6 \& \& \& \& \& isco \& \& \& \& \& G17 \& \& <br>
\hline \& Tone \& 22 \& \& \& \& \& 12－9\％－̄－5 \& 63／15 \& LR 192／IN110 \& 1323 \& \& \& \&  \& \& <br>
\hline 7－36（Butt．）．．．．．．．． \& Vol． \& 45 \& N \& 6 \& \& \& 8－20．．．． \& 1 \& See Note．．． \& 1133 \& ii3 \& 24.5 \& © 3 \& 1C6， $33.4,30,19 . .$. \& 465 \& io＇ <br>
\hline 7－36（Metal Tule）．． \& Yol． \& 56 \& K \& 6 \& \& \& 8，8． \& 2.5 \& Mis213． \& \& \& \& \&  \& $4 \%$ \& 1 <br>
\hline \multirow[t]{2}{*}{} \& Tone \& 18 \& $\stackrel{N}{N}$ \& 6 \& \& \& 8， \& 25 \& HSel3 \& \& \& \& \&  \& \& <br>
\hline \& Tone \& 22 \& Ki2 \& \& \& \& \& \& \& \& \& \& \& 6\％${ }^{\text {a }}$ ， \& 4.56 \& 1 <br>
\hline 7－37（AC－DC）．．．．． \& Vol． \& 6.4 \& N \& 6 \& \& \& 20 \& 6 \& ルベ23 \& ． 138 \& \& \& \&  \& \& <br>
\hline \multirow[t]{2}{*}{7－37（Batt．）．．．．．．．．} \& Tone \& $\frac{22}{45}$ \& $\stackrel{N}{N}$ \& ．．．． \& \& \& \& 1.3 \& Ts101． \& \& \& \& \& ${ }^{254} 46.225 \% 6$ \& 456 \& <br>
\hline \& Tone \& $\because 2$ \& \& 6 \& \& \& \& 1.5 \& TSion． \& \& 13 \& 215 \& 13 \& 6А7，15， $66,19,6 \mathrm{fr}$ ， \& \& 10 <br>
\hline 7－38（AC－DC） \& Vol． \& 18 \& MH48 \& M26 \& \& \& 12－20 \& 4 \& Buffer
UR192． \& ． 131.4 \& \& \& \& \& \& <br>

\hline \multirow[t]{2}{*}{8－31（Batt．）．．．．．．．} \& Tone \& 1.17 \& M ${ }^{\text {M }}$ \& \& \& \& \& \& \& \& \& \& \& $$
\begin{gathered}
\mathrm{A} 8,6 \\
25,5,5
\end{gathered}
$$ \& 456 \& <br>

\hline \& Tone \& 129 \& M \& \& \& \& \& 19 \& RS103 \& ． 3.3 \& \& \& \& \& \& <br>
\hline 8－38（AC－DC）．．．．． \& Vol． \& 18 \& M1488． \& M126 \& \& \& 12－20 \& 4 \& iкig2 \& \& \& \& \&  \& \& <br>
\hline \multirow[b]{3}{*}{8－38（Batt．）．．．．．．．
$9-31$（3SG）．．．．．} \& Tone \& ${ }^{147}$ \& MR48 \& \& \& \& \& \& \& \& \& \& \& ${ }^{25186}$ ， 257. \& 456 \& <br>
\hline \& Tone \& $\stackrel{+9}{7}$ \& M1148． \& N0 \& \& \& \& 1.5 \& C101 \& \& 13 \& 24.5 \& C3 \&  \& 456 \& <br>
\hline \& Vol． \& $4{ }^{7}$ \& \& \& \& \& 6－2 \& 3 \& See Not \& is：3 \& \& \& \& 32， $4,37,245,8$ \& \& 10
3 <br>
\hline 9－32 \& Yol． \& 107 \& \& \& \& \& \& \& \& \& \& \& \& \& \& <br>
\hline \multirow[b]{2}{*}{9－34．} \& Tone \& 39 \& N \& \& \& \& \& 4 \& Caniz． \& ． 83 \& \& \& \& 35，22，3－6，217， 80 \& $1 \%$ \& 3 <br>
\hline \& Vol． \& ${ }_{23}^{33}$ \& \& \& \& \& 8， 8. \& i \& ixsis \& \& \& \& \& 5，56， $57,58,2 \mathrm{~s}, 80$ \& 456 \& i <br>

\hline \multirow{3}{*}{$$
\begin{gathered}
9-34 \text { (11TT9, ( } 99, \text { F9, } \\
\text { H9).............. }
\end{gathered}
$$} \& Tone \& $2 \frac{2}{7}$ \& \[

$$
\begin{aligned}
& \mathrm{K} 12.0 \\
& \mathrm{UC} 0
\end{aligned}
$$
\] \& \& \& \& \& \& \& \& \& \& \& \& \& <br>

\hline \& Vol． \& 83 \& \& \& \& \& 8．8 \& \& RSS13． \& \& \& \& \& 358，57，56，55，20， 5 5， 80 \& 456 \& <br>
\hline \& Tone \& 45 \& Kis． \& \& \& \& \& 12 \& CS130． \& ．133 \& \& \& \& \& ， \& 1 <br>
\hline 9－38（AC－IDC） \& Son． \& 18 \& M148 \& M \& \& \& $20-1$ \& 4 \& UR19 \& \& \& \& \& \& \& <br>
\hline \multirow[t]{2}{*}{10A－33－34．} \& Tone \& 39 \& M148 \& \& \& \& \& ， \& UR4 \& \& \& \& \& 20．5136， $5^{5} 75.5$. \& \& <br>
\hline \& Tol． \& 45 \& ${ }_{\mathrm{N} i 2}$ \& \& \& \& ${ }^{8} 8$ \& 1 \& RSS13． \& \& \& \& \& 356，458．${ }^{2} \mathrm{~A}$ 3， 80. \& 456 \& 1 <br>
\hline \multirow[b]{2}{*}{10－34．} \& Sene \& 22 \& V12． \& \& \& \& \& 12 \& CS130 \& ． 13 \& \& \& \& \& \& <br>
\hline \& Yol． \& 83 \& \& \& \& \& 8． 8 \& 1 \& MS 113. \& \& \& \& \&  \& 156 \& $i^{-}$ <br>
\hline \multirow[b]{2}{*}{10－35．} \& Tone \& 22 \& \& \& \& \& \& 13 \& CS130． \& ．133 \& \& \& \& \& \& I <br>
\hline \& Sen． \& 45 \& \& 6 \& \& \& \& 13 \& CS130． \& ．133 \& \& \& \& 36，588，22A5，80 \& 456 \& 1 <br>
\hline \& Tone \& 22 \& \& \& \& \& 16 \& 1 \& RSE16． \& \& \& \& \& ，6，50，2A5， \& ， \& 1 <br>
\hline \multirow[t]{2}{*}{10－37．} \& Sen． \& 7 \& UC500 \& \& \& \& \& 12 \& CS130． \& \& \& \& \& \& \& <br>
\hline \& \& 4.18 \& \& 7 \& \& \& 20. \& 12 \& RS207． \& \& \& \& \& ${ }^{26} 57,617,85,43$. \& \& <br>
\hline \multirow[b]{2}{*}{10－38（AC－I）${ }^{\text {C）}}$} \& Tone \& $\stackrel{4}{7}$ \& \& 6 \& \& \& 25－1 \& 6 \& UH182 \& 1318 \& \& \& \& \& 156 \& <br>
\hline \& Vol． \& 18 \& M1488 \& 129 \& \& \& $20-12$ \& 4 \& 14i92 \& \& \& \& \& 6А8，6K\％6i¢ 6G\％ \& \& <br>
\hline \multirow[t]{2}{*}{11－31．} \& Tone \& 39
107 \& N． \& \& \& \& 8，8 \& 4 \& nsel3 \& \& \& \& \&  \& 456 \& 3 <br>
\hline \& Tone \& 1.49 \& M \& \& \& \& \& \& \& \& \& \& \& \& \& 3 <br>
\hline \multirow[t]{3}{*}{11－36．} \& Yol． \& 45 \& N \& \& \& \& i6． \& i \& WE16\％ \& \& \& \& \& $4 \mathrm{~K}^{7} 76 \mathrm{C} 5,616,6 \mathrm{Fb}$ ． \& \& <br>
\hline \& Tone \& 21 \& K12 \& \& \& \& 8. \& 1 \& W bert \& \& \& \& \& 5Z4．．．．．．．．．．．．． \& 456 \& 1 <br>
\hline \& \& \& \& \& \& \& \& 1.4 \& CS130． \& \& \& \& \& \& \& <br>
\hline 11－37． \& Vol． \& 18 \& N \& 6 \& \& \& 12 \& 15
1 \& TS101． \& \& \& \& \& \& \& <br>
\hline \multirow[b]{2}{*}{11－37（AC－DC）．．．} \& Tone \& 21 \& \& 6 \& \& \& 40. \& 1 \& W E4045． \& \& \& \& \&  \& 456 \& 1 <br>
\hline \& Tol． \& 64
21 \& \& 6 \& \& \& 25. \& \& WE2545 \& \& \& \& \& \& \& <br>
\hline \multirow[t]{2}{*}{12－33．} \& Tone \& ${ }_{83}^{21}$ \& $\stackrel{N}{\mathrm{~N}}$ \& \& \& \& 80． \& 1
3 \& ${ }_{\text {WS } 213}$ \& \& \& \& \& 2525B6G， 5 2566．．． \& 456 \& <br>
\hline \& QAVC \& ${ }^{8}$ \& UĊ500 \& \& \& \& ${ }_{8-8}^{8.8}$ \& 3
3 \& RS213．
RN245． \& \& \& \& \& 658，55，57，${ }^{4} 42,80 .$. \& 450 \& 3 <br>
\hline 12－38（AC） \& Vol． \& ．．．ま． \& MR48 \& M26 \& \& \& ${ }_{24}{ }^{4}$. \& 15 \& TS105．． \& \& \& \& ．．．．． \& \& \& <br>
\hline \& \& \& \& \& \& \& 40. \& 1 \& WEt045 \& \& \& \& \& 36K7．61．7．26C5． 6116. $6 \mathrm{~J} 7,6 \mathrm{C8},{ }^{2} 6 \mathrm{~V} 6,80$ ． \& 456 \& 1 <br>
\hline 12－38（Batt．）．．．．．． \& Vol． \& ．．．$\ddagger$ \& TM230－SS 1 \& \& \& \& 10 \& 15 \& WS101 \& \& 13 \& 245 \& \&  \& \& <br>
\hline \multirow[b]{2}{*}{14－37．} \& \& \& \& \& \& \& 25. \& \& TSI03． \& \& 13 \& 24 \& C3 \& 6116．6N5．${ }^{26 \mathrm{~K}} 6 .$. \& 456 \& 10 <br>
\hline \& Vol． \& 18 \& \& 6 \& \& \& 16. \& 25 \& RS216．．． \& \& \& \& \& ${ }^{4} 6 \mathrm{K7}, 6116,6 \mathrm{C} 5,{ }^{5} 6 \mathrm{~F} 6,{ }^{\text {a }}$ \& \& <br>
\hline \& Tone \& 21 \& \& \& \& \& 20 \& 25 \& WE1847． \& \& \& \& \& 5Z3．．．．．．．．．．．．．．． \& 456 \& 1 <br>
\hline \multirow[b]{2}{*}{14－37A．．．．．．．．．．．．} \& \& \& \& \& \& \& \& 13 \& RS213．． \& \& \& \& \& \& \& <br>
\hline \& Vol． \& \& N \& 6 \& \& \& 25 \& 15
1 \& TS102．${ }_{\text {WE2545 }}$ \& \& \& \& \& ${ }^{4} 6 \mathrm{~K} 7,46 \mathrm{C} 5,6 \mathrm{I6}, 4 \mathrm{F6}$ ． \& \& <br>
\hline \multirow{5}{*}{16－33．} \& Tone \& 21 \& \& \& \& \& 40 \& 1 \& WE4045． \& \& \& \& \& 6KZ3C5，616，${ }^{\text {52F6．}}$ \& 456 \& <br>
\hline \& Vol． Tone \& 18

22 \& $$
\begin{aligned}
& \mathrm{Niz}
\end{aligned}
$$ \& \& \& \& 4. \& 3

3
3 \& H11681． \&  \& \& \& \& 8．58， $556,53,12.26,40,83$ \& 456 \& 1／7 <br>
\hline \& Sen． \& 22 \& K12 ${ }_{\text {U } 500}$ \& \& \& \& 8. \& 3
3 \&  \& ． 133 \& \& \& \& \& \& <br>
\hline \& \& \& \& \& \& \& 25. \& 15 \& TSIU2．．．． \& ． 13 \& \& \& \& \& \& <br>
\hline \& \& \& \& \& \& \& \& \& \& \& \& \& \& \& \& <br>
\hline
\end{tabular}

MALLORY-YABIEY RADIO SERVICE ENCYClopedia


Mailory-Yaseley radio service encyclopedia


Mallory-yascey radio service encyclopedia


Mallony-Yaxley radio service encyclopedia


MALLORY-YABLEY RADIO SERVICE ENCYCLOPEDIA


MAILORY-YAXELEY RADIO SERVICE ENCYCIOPEDIA


Mallory-Yaseley radio service encyclopedia


MALLORY－Yaseley radio service encyclopedia

MANUFACTURER AND MODEL	CONTROLS						CONDENSERS				VIBRATORS			Complete Tube Complement	1. F:Peak	Trans． Cir－ cuit
	Use	Cir－ cuit	Correct Replacement	Switch	Bias	＊Note	Original Part	Cir－ cuit	Correct Reptacement	＊Note	Vibr． Conn．	Replace－ ment	＊Note			
$\begin{gathered} \text { NOHLITY-SPARKS } \\ 618,618 \Lambda . . . . . . . . . \end{gathered}$	Contin	ued														
	Yol．	15	M1553．				1－－1．4001．	23	ISS 13.							
	Tone	$\because 2$	M1439．	능			17－1411．	23	WE817．					$6 \mathrm{FOG}, 5 \mathrm{Bi}$ ，6E5．	15．5	1
$\begin{aligned} & 61813, ~ \\ & 628,628 \mathrm{CS} \end{aligned}$	$\begin{aligned} & \text { Yol. } \\ & \text { Y:I. } \\ & \text { Tone } \end{aligned}$	$\underset{2}{i}$	$\begin{aligned} & \text { MR18 } \\ & \text { HR5 } \\ & M H 39 \end{aligned}$	M27			17－1．130 $17-14005$	238	TM12020．	． 110					4.56	
							1－1000	23	WS21：							
				\12\％			1\％－1．111．	23	W18817．					6F6¢， 5 Y 3 C ，6E5．	455	1
$\begin{aligned} & 62813 . \\ & 818 . . \end{aligned}$	$\begin{aligned} & \text { Yol } \\ & \text { Yol. } \\ & \text { Tone } \end{aligned}$		$\begin{aligned} & 11818 \\ & \text { TM1:30-s.si } \\ & 11139 . \ldots . \end{aligned}$	1127				$\stackrel{23}{19}$	！191020	． 1310					456	
							17－14001．	1	ハS－13：						\％	
				1126			17－1．1120．	I	WEIot．							
				－			1－－14121．	14	11s213．						45.	1
828．．．．．．．．．．．．．．．	Yol．	－	$\begin{aligned} & \text { TM230-ss } \\ & \text { Mis9..... } \end{aligned}$	1i26				15	TS10．1．							
							年－14126．	1	WE16．7\％							
							17－1154．	11	115213．						455	1
927.	$\xrightarrow{\text { Yol }}$	$\begin{aligned} & 17 \\ & 14 \end{aligned}$	TM230－Sst				1－－1123．	1.	TS10．							
				6			$17-11003$. $15-14062$.	3	WE3， HS 216.					$26 \mathrm{KG}, 6 \mathrm{ABG}, 6177 \mathrm{C}$, $6 \mathrm{CSG},{ }^{2} 6 \mathrm{NG}, 5 \mathrm{Y} 3$.		
							\％－41009．	3	M215．					665．．．．．．．．．．．．．	456	1
	Tol． Tone Supp．	$\begin{aligned} & 17 \\ & 21 \\ & \hline 1 \end{aligned}$	TM230－SSM1148．．．．．．		Sorn N	to A19	$17-11075$. $15-1003$.	15	WN111．							
1237，1247，12．7A．．					Sorso		衰－14001．	3	HST3．3．					$36 \mathrm{~N} 6(\mathrm{i}, 573,6 \mathrm{~F} 5$ ．	4.56	1
				6			た－11000．	3	18 Sels．							
							迷	1.	18820							
	Tone	4	TM230－SSt				15－1 10\％．	1.5	T111．							
							17－11002．	25	18216.					${ }^{3} 6 \mathrm{~K} 7 \mathrm{Ca}, 26 \mathrm{BAG}, 607 \mathrm{G}$ ．		
							17－11338．．	${ }^{2.5}$	Weisti					6J3Ci，6116G，6E5，	$455 /$	
							17－1 100．313．．		TS101．．					${ }^{26169,544 G . . . . . ~}$		$\ldots$
NORCO MFG，CO． 4 Super． 4 Combination （Dual Wave）．	Vol．	1.4		6			8－4	4	See Note．	133				257，47， 80	250	1
	Tol．	6	1112.	6			8－1	1	Seonote．	B3				58．24A，47． 80.		1
NOHIDEN－HAUCK， Super I）X－5A．		35												327		
＂Admirulty＂Super $12 . \ldots . . . . .$.	Yol．						2－2－2－2	3／11	See Nole．	131				12．1．527，${ }^{2.50}{ }^{2} 81$.		5
Super 1	Supp．	8							See Nore					－1．－6， 0 or		
	Sol．	$\stackrel{-3}{7}$					2－2－2－2	3／14	See Nole．	13．4				7．56，558，250．231		5
	Supi．	8														
	Ose．Adj．	7														
OPERADIU MFG．C $48.4,481 \mathrm{~A}, 48.1 \mathrm{~B}$ 478B，478A1I，2478A	$\begin{gathered} \text { O. } \\ \text { vol. } \\ \text { Vol. } \end{gathered}$	1515														
														864． 56.		
								2／25	WV8F\％	133				56，53，2A3，5Z3．		1
								15	TSHOI．							
								19	CN15	133						
								11	Slig08	B3						
ORGATRON（EVeret 1S． 2		Order		AI												
							Main and ${ }^{1}$	${ }_{\text {re－Am }}$	bis23．					56，53，4．5，33V		7／25
								$1: 5$	TS101．							
							Pocho Fimeld	Supply								
							8－3．	1	12013．							
							ire－Anplitie							二ぃr		
							${ }^{35} 8$.	13	1 nc					80， 833 V	1st	1
							25．．．．．．．．	${ }_{15}^{15}$	TS102．						－nt	
							Bain Ampli	fier．								
							30．．．．．．．．．	13	Wi\％350．							
							25.	15	TS10：							
								Y．．．								
							50．．．．．．．．	19	Sce Vote．	13125						
							Eeho Fielis	upply．								
							3－8	1	1K213．							
OZARKA，INC．（Viki																
V－16．．．．．．．．．．．．．．	Vol．	．$\ddagger$					$\ddagger$	4／85	Soe Note．．	B2				435， $727.345,2830$ ．	．$\ddagger$	$\ddagger$
	Vol．	4	812				1－1－6－2	1／11	Soe Note．	131				326． 27.12 A ， 80 ．		9
90.	Vol．	10	F12．				1－3－2．	1／1．4	See Note．	131				24，${ }^{5} 26,227,{ }^{2} 1.5,80$		9
91－Battery	Vol．	12														
$91 \mathrm{AC} . .$.	tol．	24			See No	1e As	－2－2		Sen Nute					i2i． $27.245,80$		3
＂Viking＂91AC	Vol．	12	A5M1．		－		8－31．	1	csi33．	．1129				321．27， 15,80		3
92 AC ．	Vol．	12	G12				8， 8.	1	12S23．					4244，27，45， 60		3
93－13atiery	Yol．	12			Sono	ie A5								2300， 3 32， 33.	$1 \%$	
	Tone	$\underline{29}$			Soe No	le 45										
93A，93B．	Fol．	58		6			3． 8	4	148213					2927．335，17， 80	175	1
94－A VC．	Yol．	－			sce No	促 ${ }^{\text {a }}$		4	See Note	B3					17.5	i
	Tone	2			See Nol	ce 45										
95－WD1．	vol．	24			See No	le A．	$2-2$	3	See Note．	． 131				1214， $27,45,80$ ．		3
	Ina，Kui	ght，M	anchester，etc	．）												
	Vol．	18	${ }_{\mathrm{N}}^{1112} \ldots \ldots$	6	163300		16－12	23	181257							
	Vol．	18			See No	10 AF	16－12	27	U11882	13\％				$6 A 7,616,75,13$	456	
37－321．	Yol．	18					3－1	23	Soe Note．	133				6A7，61D6． $75,42,80$		
	Tone	22			Seeno	ce A5								or 6A7，6K 7,75 ，		
37－6320．	Yol．	4.5					8－1．	23	See Note．	． 133					465	1
	Trone	34			See vio	10 A 5								6FO，\％	465	1
37－6．322．	Yol．	15			Seeno	te $A .5$	16－1	27	UR182	1395				6A7，6116， $66,6 \mathrm{~F}^{3}$ ，		
37－7370．	Tone	31			Soe Nor	to A5								43，6（i5，25\％5．．．	465	
37－14370．	Tone	31			Sceno	te A5＇	10－1．4．	15	See Cote．	133					46.5	1
	Vol．   Tone	4.5			See No	te A19	12.	25	188215.							
		3.4	－		See No	te As	18.	$\underline{3}$	1 S 210．					695，20F6，5\％．．．．	465	1
							8.	13	See Note．	133						
101.	Vol．	18	UMITS．．．	M26	See No	te A96	10．12．	19	TS106．	B3	31					10
				1126	see No	te A96		15	TStoi．	B3	3	29	C3	6A7，6106，617，41， 81	450	10
101B，101C．	Vol．	18	SRP281．．．．	6	See No	te A3	8－82－．02	4	${ }^{13} \mathbf{C u f f e r .}$	${ }_{131.4}^{1314}$	35	29.1	C3	6 67， $6136,75,41,084$	456	10
							． 01 －． 01		Buffer．	1311			C	6А7，61\％，${ }^{\text {a }}$		

MALLORY-YABELEY RADIO SERVICE ENCYClOPEDIA


MALLORY-YAXLEY RADIO SERVICE ENCYCLOPEDIA

MANUFACTURER AND MODEL	CONTROLS						CONDENSERS				VIBRATORS			Complete Tube Complement	$\begin{aligned} & \text { 1. F. } \\ & \text { Peak } \end{aligned}$	Trans. Circuit
	Use	Circuit	Correct   Replacement	Switch	Bias	*Note	Original Part	Circuit	Correct Replacement	*Note	Vibr. Conn.	Replacement	*Note			
$\begin{aligned} & \text { PATTERSON RADI } \\ & 75 \mathrm{AWA} . . . . . . . . . \end{aligned}$	0 co.	Contin	red													
	Vol.	114	M148.	M26			16.	1	RS216.					6A7, 6D6, 6B7, 6A6,		
	Tone	114	M1333				${ }_{8}^{8.8}$	1	HSS213...					${ }^{2} 42,80,80$	458	1
80AW, 84AW.....	Vol.	83 29 29	NC502	6			8 -8	1	See Nole.	B3				55, 56, 57, 258,259, 5\%,	262	
	Sen.	8	$1 / \mathrm{C} 500$													
85AW..............	Vol.	18	M148	M26			${ }_{8}^{8-8}$	1	1 M 24					3616, $6 \pm 7,75$, or 85,		
85AWA...........	Tone	149	${ }_{\text {K12 }}{ }^{\text {l }}$	126				1.1	RS2 16.					${ }^{242}, 573, \ldots \ldots \ldots$	432	1
	Tone	$\underline{2}$	M1433				8.	1	12S213.					219	458	1
87................	Vol.	124	M1488				${ }_{16 .}^{10 .}$	15	TSi01.							
	Tone	$\stackrel{.}{ }$	M14.8	1i26				15	TS101.					6F6, $5 \times 3$.	465	1
$\begin{aligned} & \text { 104AW ( } 46 \text { power } \\ & \text { tubes) } \\ & \text { 104AW }(59 \text { power } \\ & \text { tubes) } \end{aligned}$	Vol.	15		6			4-8-4	3	Sce Note.	B3				55,256, 57, ${ }^{358,2.46,83 .}$	262	1
	Yol.	15		6			8-8	35	See Note.	133				55, 256, 257,258,259, 82.	262	1
	Tone	2	UC502.		Sce No	te A5										
105AW...	Yol.	- 4.5	TM1230-SS1 M133....	1126				$\frac{7}{7}$	R1823:					31)6, $6 А 7,285,76,242$ 5/3		
	Tone	48	CıMP...					15	TSiol.						432	1
107   107 A W (withont rear fuse and cover)	Vol.		M1148 M1148	M26			16, i	1	129216.					${ }^{2} 6 \mathrm{~F} 6,5 \mathrm{X} 3$	465	
	Vol.	15	N.	6			8-1	15	See vote.	. 133				57. 258, 56, 55-W1m-		
	Tone	129	UC502.....				10.16	15	Tsiol   HSOL					derlicht 59, 82   ${ }^{3} 6 \mathrm{~K} 7,61 / 7,607,6 \mathrm{C} 5$.	262	1
	Tone	1	Y1000 ${ }^{\text {cipl. }}$											6 ${ }^{\text {G5, }}$, $\mathrm{F}^{6} 6,5 \mathrm{X} 4 \ldots$.	465	1
186AW	Sen.	15	NC500	6			16	4	RS216					647, 6B7, 6A6, ${ }^{2} 6176$,		
	${ }_{\text {Tone }}$	21	K12				10	19	TSlog.					${ }^{2} 42,5 \mathrm{Z3}$	458	1
207AW, 210AW (without rear fuse and cover)	Vil.	15		6			8-1	1	See Note.	. 133				55, 56, 57,258, 59, 82.	262	1
	Tone	22	UC502				10	1.5	TS101...							
286AW, 386AW....	Vol.	$\xrightarrow{15}$		6			16. 10	4	R18216.							
	Tone	21	K12.					19	TS106					242, 5Z3. . . . . . . .	458	1
507AW (wilh rear fuse and cover).	Yot.	15		6			8-8	35	See Vor	133				55, 56, 57, ${ }^{2} 58,59,82$.	262	1
508AW .	Tone	$\stackrel{29}{83}$	${ }_{\text {N }} \mathrm{C}$	6			${ }_{8-8}^{10}$	15	TSiOL Srever Nole	133						1
	Tone	22	リCSTO2							13.3				55, 56, 57,58,59, 58.3	262	1
$\begin{aligned} & 510 \mathrm{AW} \text { ( } 46 \text { power } \\ & \text { fule) . (59 power } \\ & 510 \mathrm{AW} \text { (ubes). } . . . . . . . \end{aligned}$	Sen.															
	Vol.	15		6			4-8-1	3	See Note.	13,3				55, $256,57,{ }^{3} 58,246,82$.	262	1
	Vol.	1.5		6			8 8-8	35	See Nore.	133				55,256,257,258,259, 82	262	1
	Tone	22	$1 \mathrm{C}^{\text {a }}$					19	CSI21..							
1106AW.	Supp.	${ }^{\text {¢ }}$	UC502 N.	6	See No	te As			n\$216.							
	Tone	21	K12.					19	TS106.						458	16
1126A	Sil.	15	N/E50	6												
2106 AW	Tone	21	K12	6			10	19	TS106					${ }^{2} 6$ A $3,5 \not 23,76$	458	16
	Yoi.	15		6			16	4	12 S 216.							
2126AW	Tone	21	K12				10	19	T'S106					76.2.42. $5 \% 3 \ldots \ldots$.	458	16
	Yoi.	15		6			16	4	1 S 216							
3106AW	Tone	21	K12				10	19	TS106						458	16
	Yo.	15		6			16.	4	1 S 216							
3126AW	Tione	21	Ki2				10.	19	TS106.					76,242, 5/3........	458	16
	Yoi.	1.5		6			16.	4	118216.							
	Tone Sil.	21	Ki2.   UC500				10.	19	TSIO6					376,26A3, 583 . . .	458	16
9507 AW (with rear fise and (over).										B3				55, 56, 57, 258, 59, 82.	262	1
	$\begin{aligned} & \text { folone } \\ & \hline \end{aligned}$	22	${ }_{\text {UC.Si }}^{\text {N }}$	6			$\begin{aligned} & 8-8 \\ & 10 . \end{aligned}$	1.5	$\begin{aligned} & \text { See Bote. } \\ & \text { Tsioj. } \end{aligned}$	B3				5.5, 56, .7, $58,50$.		
PEER LESS-Sce Unil	ed heproducers															
PERFECTONE, INC.   4 tube remiver.	Vol.	1.5			See No	te A3	10.	1.5	TS101.					2366. 41.		
$\begin{aligned} & \text { PIILLCO } \\ & \text { A (Packard)....... } \\ & \text { AC206 (Sturdebaker) } \end{aligned}$	$\begin{aligned} & \text { Yol. } \\ & \text { Yol. } \end{aligned}$															
		16 18		7							12	5001	C3		260 260	$\underset{10}{\text { M(1. }}$
				6			$\begin{aligned} & \text { 4-8-10 } \\ & .01 . \ldots \end{aligned}$	$1 / 15$	Buffer....	$1314$	12		C.			
AC206 cosle 122 (Studel buker)	Vol.	18	TliP605....	6	1*592	A52	4-8.	1	CNIS1.	. 13131	42	5001'	C3	${ }^{2} 41,647,75,42,84$.	260	10
							20.	1.5	Tsios.							
AC236 (Studebaker Je.).	Vol.															
		18		6	FS251	A51	4-8-10..	15	CV151.	. 13131	42	5001P	C3	24, 77, $75.42,814$.	260	10
							. 01		Buffer.	1314						
AC266 (ST3) (Stude- baker DeLuxe) ...	Vol.	17	TRP605..	6	FSS51	A51	4-8.		CN151.	.B131	42	500P	C3	36, 77, 44, 75, 42, 84.	260	10
AC989 (Nash).....	Vol.	19	TRP603	6	FS252	A52	10-10...	15	CN226.	B131	42	500P	C3	${ }^{244}, 6 \mathrm{~A}, 75,41,84, .$.	260	io
		19	TRP603	6				15	TS102.					-1, 6A, \%s, .1, в.		
$\begin{gathered} \text { AC989 (Code 122) } \\ \text { (Nash). . . . . . } \end{gathered}$							. 006		Buffer							
	Vol.	18	TRP605....	6	FS252	A52	4 4-8.	15	CN151.	. B131	42	500P	C3	244, 6A7, 75, 41, 84.	260	10
							20.6	15	TS102.							
AC1089 (Nash)....	Vol.	18		6			4-8-10.	1/15	CN151/TSioi	B130	42	5001	C3		260	io'
AC1289 (Nash Jr.).	Vol.	18		6	FS251	A51	4-81.	1	Buffer......	. ${ }_{\text {B131 }}$	42	500P	C3	244, 77, 75, 42, 84.	260	10
							10.	15	TS101.....							
	Vol.	16		7			4-81.		Buffer RN24i.....	. $1314{ }^{131}$	42	5001, ${ }^{\circ}$	C3	336, 85, 41, 84.	260	io ${ }^{\circ}$
		16	N..........		FSS2		.25-.5-8	14/15	See Note.	. 11133				-6, 8, 41, ${ }^{\text {a }}$		
$\begin{aligned} & \mathrm{B6} . . . \\ & \mathrm{C} \text { (Nash) }(\mathbb{\mathrm { A }} \mathrm{C} 989) . \end{aligned}$	Vol. Vol.					A52	. 006.		Buffer.	. $131+$						
		16 19	NRi\% ${ }_{\text {N }}$	$\begin{aligned} & 7 \\ & 6 \end{aligned}$			4-8.5-5.8.	11/15	See Note. CNI51...	. 13133	42	5001	C3		260 360	$\mathrm{Ma}_{10}^{\mathrm{Mg}}$
								15	TS102.							
							. 006		Buffer	1314						

MALLORY-YABLEY RADIO SERVICE ENCYClopedia


MALLORY-YAXIEY RADIO SERVICE ENCYCIOPEDIA


Mallory-Yazeley radio service encyclopedia

MANUFACTURER AND MODEL	CONTROLS						CONDENSERS				VIbrators			Complete Tube Complement	I. F. Paak	Trans. Circuit
	Use	Circuit	Correct Replacement	Switch	Blas	*Note	Original Part	Circuit	Correct   Replacement	*Note	Vibr. Conn.	Replacement	*Note			
PIILLCO-Continued   1.4 (Code 121 \& 122) (huns 1-4)......	Vol.	64	TRP605....	6			$\begin{aligned} & 8.8 \\ & 10.4 \\ & 1-1-2 \ldots \end{aligned}$	$\begin{gathered} 1 \\ 13 \\ 13 / 14 \end{gathered}$	$\begin{aligned} & \text { RS213. } \\ & \text { BN226. } \\ & \text { UR181. } \end{aligned}$	$\begin{aligned} & 138 \\ & : 13137 \end{aligned}$				278, 6A7, 37, 77, 342, 80	175	1
1.1 (Corles 121, 122) (Runs 5 Nafter).	Vol.	64	TRP605....	6				$1 / 19$	RS213. RN242. UR181.	.13139   .13137				278, 6A7, 37, 77, ${ }^{\text {42, }} 80$	175	1
11 (123).	Vol.	64	TRP605...	6			$1-1-2 \ldots \ldots$ $38.8 \ldots \ldots$ 10. $1-1-2$	(13/14 ${ }^{19} 1$	UR181.. RS213. IN226. U1181.	.13137 .138 .1813					175	1
14 (156-226).	Vol.	64	TRP605....	6			$1-1-2 \ldots \ldots$ $6,6 \ldots \ldots$ $8,6.6$	13/14	UR181 RS213 115213					24, 36, $37,{ }^{242}, 80$	200	$i^{-}$
15 (Early 221).	Vol.	64						1						337,44,242, 80	165	1
$\begin{aligned} & 15 \text { (1Garly } 223) 15 \\ & 16 \text { (ate............... } \end{aligned}$	Yol. Supp.	$\begin{aligned} & 61 \\ & 64 \\ & 12 \end{aligned}$	T12P605 T12P618 (il2	6	See No:	le $\begin{aligned} & \text { aib } \\ & \text { te A58 }\end{aligned}$	6,6 8.8 10.	1 1 1 19	HS 213. HS213. IID683 IEN226.	138					175 460	1
$\begin{array}{r} 16(\text { Cooles } 121,122, \\ 123) \end{array}$	Vol Supp.	$\begin{aligned} & 64 \\ & 12 \end{aligned}$	TIRP618. (il2.	6	Soe No 1	te A58		1/19	11 D683 IRN242	13139					460	1
16 (Codes 125, 126, 127)	Vol.	64	TR17618....	6	See No	10 A58	$8-10 . \ldots$ $8.10 . .$.	1 $1 / 19$ $13 / 14$	IN242... IID683 11242 111181 11188	130 13139 13149					460	1
	Vol.	6.4	TIRP60.1.... TR1'618	${ }^{6}$	$\left\|\begin{array}{l} \text { See No } \\ \text { See No } \end{array}\right\|$	$\left\|\begin{array}{ll} 1 \operatorname{la} A 2 z \\ \text { 1e } A t \end{array}\right\|$	$1-1-1-2 .$. 8.8 .2.		$\begin{aligned} & \text { II17883. } \\ & \text { IBN226. } \end{aligned}$	- 1818				6А7 237, $77,378,32$,	175	1
17 (Code 121).....	Supp. hel. lol. Supp.	6.9 6.1 6.1 .	Order from TMP604 TRP618. Order from		$\left\lvert\, \begin{aligned} & \text { See Nol } \\ & \text { See No } \end{aligned}\right.$		${ }_{8-10}^{8.10}$	$1 / 19$	$\begin{aligned} & \text { IID683. } \\ & \text { RN242. } \end{aligned}$	13139				378, 6A7, ${ }^{237},{ }^{3} 42,5 \mathrm{Zi}$	175	1
17. 17A (Codes 122 \& 123)	Vol. Vol. Supp.	$\begin{aligned} & 6.4 \\ & 6.4 \end{aligned}$	TRP604 TIRP618 Order from	$\begin{array}{r} 6 \\ 6 \\ \mathbf{~} \quad \text { fr. } \end{array}$	$\left\|\begin{array}{l} \text { Soe No } \\ \text { See No } \end{array}\right\|$	$\left\lvert\, \begin{array}{ll} \operatorname{le} A A_{2} \\ \operatorname{le} A \\ \hline \end{array}\right.$	${ }_{8}^{8} 10$	1/19	HD683.	13139				$\begin{gathered} 38,647,237,342.5 Z 3 \\ \text { or } 80 \ldots \ldots \ldots \ldots \ldots \end{gathered}$	. 175	1
18.	Supp.	18	Order from TRP605...	${ }^{\text {Mfr. }}$			8,8 10 10.2		$\begin{aligned} & \text { MS213 } \\ & \text { HN226 } \end{aligned}$	${ }_{1313} 13$				6A ${ }^{\text {, } 788,75,542,80 . . ~}$	260	1
18 (Corles 121 \& 122)	Vol.	18	T'11P603.	6			$1-1-2$ 8.10 $8-10$	$13 / 1.4$ $1 / 19$						6AT, ${ }^{2} 88,75,342,80$.	260	$\mathrm{i}^{\circ}$
18 (Code 12.4)	Vor.	18	T'11P605.				$1-1-2$ 8 $8-10$ $1-1-2$	$1: 3 / 1.4$ $1 / 19$ $1: 3 / 14$		11137 11139 1313					260	1
	tol.	18		6			6, 6 ,	1514	HS213.					1i, $36,-75042$ 80	260	$1{ }^{-}$
	Yol.	18	\%1iomit					I	RSS213.					$\begin{aligned} & =4,36,75,42,80 \\ & 36,24,75,42,819 \end{aligned}$	260 260	1
			D11P1		See Not	te A5\%	2-8-110.	1/13/19	RN245 See Nole	. 111				$324 \mathrm{~A}, 27 .{ }^{2} 11 \mathrm{~A}, 80$		$2{ }^{*}$
23 L	Yol	0.4	1,		See No	de Ast		1	STSN3.	.				34, 36, 37, 42, 80	260 260	1
	tol.	6.4 18	T111\%65	6	EB24		6.6 120 8	14	RS213.	131.41)					260 460	
$\left.1230^{2} \mathrm{X}\right)$	Vol.	18	T13P605.	6	EB2 17.		$8-8$ 6	${ }^{1 / 19}$	In N 245.	18141				6A7, $244,75,42,80 .$.	460	1
30	Vol.	15														
32	Voll.	18 18 18			See No see No	le A4\%	8, 8	25	RS213		11	F50:1		${ }^{2} 39,36,75,42,8.4$.	260	10
31. 314 A . 36	voil	18 43 4	N	13	See No										460 260	
33. $3518,36 . . . .$. .	Vol.	43			See $\begin{aligned} & \text { Sol } \\ & \text { See } \\ & \text { So }\end{aligned}$	le A5s								${ }^{3} 30,332,33,19 \ldots \ldots$	1260	
$\begin{array}{r} 37-10.37-11 \\ \text { (Comles 121-125).. } \end{array}$	Vol.	12.4	TM251-S85				$20-10$ 8.10 10.6	$\begin{gathered} 1 / 1^{0} \\ 12 \end{gathered}$							470	1
37-33.	Vol.	18	MR48.	M24				13	IRS20].					1D7(i, 1155G, 11146,   1 Ef	470	1
37-34.	Vol.	18	UM154-SS5				4-81	1		1314	15	246	(:3)	  $1114(\mathrm{~F}, \mathrm{1E7G}$	470	10
37-38.	Vol.	45	1/M154-Ss5					13	1/R181	11142					$470$	
37-60.	Vol.	18	()M154-Ss5					25   25   1.5	$1 / 8215$. 18213 18216.						470	1
37-61.	Vol.	18	UM154-SS					-						$6 F 6 \mathrm{C}, 5 \mathrm{Y} 4 \mathrm{i}$	470	1
37-62.	Vol.	18	Mll 18.	M126			${ }^{16} 8$	$1 / 19$	118216.					6H6G. 5 Y4G.	470	
37-84. Coxle 122	Vol.	18		6					MV241....						470	1
$37-89 .$	Vol.	18	1 Ni54-sis	…			12	-	118215....					26K7(i, 6A8G, 6(27 ${ }^{2}$, 6F6i, 5 Y4	470	1
37-93.	Vol.	56		6			8-8-10	1/19	11 N 245					6K7G, 6A8G, 6R7G, 6F6G, 5Y4G.	470	1
$\begin{gathered} 37-116(\text { Cordes } 121 \text {, } \\ \text { 122) ........... } \end{gathered}$	Vol. Exp. Hum.	17 15 37	TM251-SS5 UM154-SS: Order from	Mfr			8.10, 8-3-8. $2-3$	$\begin{gathered} 1 \\ 1 / 19 \\ 13 / 14 \end{gathered}$	RS:213. RN242. RN245..	13139				${ }^{6} 6 \mathrm{~K} 7 \mathrm{G},{ }^{3} 6 \mathrm{~J} 5 \mathrm{G}, 6 \mathrm{~L} 7 \mathrm{G}$, 6N7G, 6ABG, 6H6G, ${ }^{2} 6 \mathrm{~B} 4 \mathrm{G}$,		
37-600.	Vol.	6	UM121-SS12	M26			8-4	1	CN151	1392				$\begin{aligned} & 6 \mathrm{FGG}, 5 \mathrm{SHG} \\ & 6 \mathrm{ABG}, 6 \mathrm{GJ} \mathrm{G}, 6 \mathrm{~K} 6 \mathrm{G} \end{aligned}$ $5 \mathrm{Y} 4 \mathrm{G}$	470 470	16
37-602.	Vol.	18	UM154-SS12	M26			16-16-10.	1/15	RM259	B143				25A6G, 25Z6G	470	
37-604. .	Vol.	18	TM231-SS 1	M26	See No	te A64	16-16-10.8	1/15	See Nute.	13144				$\begin{aligned} & \text { 6A8G, } 6 \mathrm{~K}, 7 \mathrm{G}, 6 \mathrm{G} 7 \mathrm{G}, \\ & 25 \mathrm{~A} 6 \mathrm{G}, 2 \mathrm{Z} 6 \mathrm{G} . . \end{aligned}$	470	
$\begin{array}{r} 37-610 \text { (Codes 121, } \\ \text { 122) . . . . } \end{array}$	Vol.	17	TM251-SS5		See No	te A58		25 25 12	RS215. RS213 RN232.	B8				$\begin{aligned} & \text { 6A8G, 6K7G, 6Q7G, } \\ & \text { 6F6G,5Y4G..... } \end{aligned}$	470	1
$\begin{gathered} 37-610 \text { (Codes } \\ 125,126) \ldots . . \end{gathered}$	Vol,	124	TM251-SS5				12.		$\mathrm{HS}_{\text {RS213 }}$					$\begin{gathered} \text { 6A8G, } 6 \mathrm{KFGG}, 6 \mathrm{Q} 7 \mathrm{G}, \\ 6 \mathrm{~F} 6 \mathrm{G}, 5 \mathrm{Y} 4 \mathrm{G} . \ldots . . \end{gathered}$	470	1
37-611...	Vol.	124	TM251-SS5				$16 \ldots$ $16 .$. 16.10	192 2.5 2.315		.138				6ABG, $6 \mathrm{~K} 7 \mathrm{G}, 6 \mathrm{Q} 7 \mathrm{G}$, 25A6G, 25Z6G	. $\ldots$. 470	
37-620.	Vol.	18	TM251-8S5		Stee No,	te A 58	11-8. 12 8. $16 .$.	$13 / 12$   25   25   14	MN231.... RS215... MS213. HS216....					$26 \mathrm{KC}, 6 \mathrm{BG}, \mathrm{O} 7 \mathrm{G},$ $6 \mathrm{~F} 6 \mathrm{G}, 5 \mathrm{Y} 4 \mathrm{G}$	470	1

MÁLLORY-YABLEY radio service encyclopedia


Mallory-Yayzey radio service encyciopedia


Mallory-yascey radio service encyclopedia


MALLORY-YAXIEY RADIO SERVICE ENCYCLOPEDIA


MAILORY-YABIEY RADIO SERVICE ENCYClopedia


MALLORY-YAKLEY RADIO SERVICE ENCYCLOPEDIA


Matlory-Yastey radio service encyclopedia


Mallory-yaseley radio service encyclopedia


Mallory-Yayley radio service encyclopedia


Mallory-Yamey radio service encyclopedia


Mālory-yazciey radio service encyclopedia


MALLORY-YABLEY RADIO SERVICE ENCYCLOPEDIA


MALLORY-YABLEY RADIO SERVICE ENCYCIOPEDIA

MANUFACTURER AND MODEL	CONTROLS						CONDENSERS				VIBRATORS			Complete Tube Complement	f. F. Peak	Trans. Circuit	
	Use	Circuit	Correct Replacement	Switch	Bias	*Note	Original Part	Circuit	Correct Replacement	*Note	Vibr. Солл.	Replacement	*Note				
R. C. A.-Continued	$\begin{gathered} \text { Vol. } \\ \text { P.U.Volt } \\ \text { Vol. } \end{gathered}$	$\begin{array}{r} 15 \\ \cdots \\ \cdots \\ \hline \ddagger \end{array}$	Order from MR.t8. TRP603	Mfr. 6													
							112,31.	25	RSE25...						160	1	
M107.					See No	te A08	7776.	1	If ${ }^{\text {a } 241}$		20	23.3	C3'	26D6, 6A7, 75, 41, 82.	175	10	
					N		696.3	15	TNH11		20	(1253	C16				
M108.	Vol.	17	M.........	6	...... $\ldots .$.			$\begin{array}{r} i \\ 21 / 15 \end{array}$	- Buffer ${ }^{\text {RSJ. }}$	. 131.	$\begin{aligned} & 32 \\ & 32 \\ & 35 \end{aligned}$	$\begin{aligned} & 287 \mathrm{M} \\ & 1287 \mathrm{M} \end{aligned}$	$\underset{\mathrm{C} 16}{\mathrm{C} 3}$		175	10	
	Vol.	17	M.........				CN150/TSI01		26156, 6A7, 6B7, 76. 6A6. 8.4					175			
U109.				6				5051.		15	TSIol.						10
	Vol.	20	TRP624	6			$1+5: 31$	28	WE25is						$367.261,7,2657,2616 .$		
	P. Fid. Adj.	41	UC505. MR44.	7			11203. 11496.	$\stackrel{28}{28}$	RSP215.						460	14	
	Exp. bias	7					5212.	13	RSSD16.								
							1.1273 1.73 1	15	TS102/TS101								
110, 111...........	Vol. Tone	${ }_{34}^{8}$	$\begin{aligned} & \text { D. .......... } \\ & \text { L. ........... } \end{aligned}$	6	1	.......	12682	1.5	$\begin{aligned} & \text { RSO15..... } \\ & \text { Slf } \\ & \hline \end{aligned}$								
							75907589.	$1 / 1$							"175"		
$\begin{aligned} & 112,112 \mathrm{~A}(\mathrm{DC}- \\ & 220 \mathrm{~V}) \ldots \ldots \end{aligned}$	Vol.	8	A5MP.....				6728.	23/15	U11899.	. 3172				78, 6A7, 77, 43, 19\%3.	17.5		
114.	Vol.	8		6	1		6788.	9/15	UR190/CM 161	. 13171				78, 6A7, 73, 43, $25 \%$	17.5		
	Vol.	$3{ }^{7}$	A3M	6	${ }^{1}$		7590. 7589.	1/1.4	R8215. . .					58, 2A7, 57, 2A5, 30.		1	
M116.	Vol.   Tone	- ${ }^{\text {a }}$	$\begin{aligned} & \mathrm{L} \ldots \ldots . . . . . . . . \\ & \mathrm{M} . \ldots . . . . . . . . \end{aligned}$	...			6789..... 6738	(10	$\begin{gathered} 12 N-13 . . . . . \\ \text { RSS131....... } \\ \text { CS } \end{gathered}$	Mfr	$2 i$	273	${ }^{-15}$	78, 6 А7, 6В7,	175	10/25	
							6782. 6781.	$1{ }^{1}$									
117, 118, 119......	Vol.	19		6			3536.		TN13....					6А7, 6106, 613714	+60	$\cdots$	
			TRP603....			......	7790. 4428.		$\begin{aligned} & \text { RS215. } \\ & \text { RS213. } \end{aligned}$								
							7589.	13	SH627.....								
	Vol.   Tone   Vol.	19					7396. . . . .	15						2A7, 217.258, 2A5, 80	175	$\cdots$	
			TRP607...	${ }^{6}$			$7590 . . .$. $6487 . .$.	13/14									
121, 122..........		${ }_{34}^{19}$	TRP603....				$6571 . . . .$.6703879		$\begin{aligned} & \text { RS215..... } \\ & \text { CN155.... } \end{aligned}$					258, 2A і, 2Bı, 2A., 30	370	1	
	Vol.   Tone			6	$\left[\begin{array}{l} \cdots \\ \cdots \\ \text { See } \end{array}\right.$	te A68		$1 / 13$									
M123.	Vol.	18	M. ${ }_{\text {K12 }}$. $\ldots$.	6			$\begin{aligned} & 758 . \\ & 6963 . \end{aligned}$	15	Sce Note. TN111..	B173	$\mid \cdots \nmid$	$\mathfrak{2} \dot{2}$		20D6,6A7, - 41,79	${ }^{175}$	${ }^{10}{ }^{\circ}$	
					See No												
124	Vol.   Tone	$\begin{aligned} & 19 \\ & 34 \end{aligned}$	T1R1>607....   L...	66			7590.	${ }^{1}$	RS2is.						175	1	
							6187........	1/13	SR624....								
125.	Vol.	19	TRP603....				\%ion	11	18.15					6AT.361)6, 615, 41, 30	160	1	
12613	Vol.	9	Y50MP				${ }^{51349} 4$.	$1 / 12$	Soe Note.	. 3171				146. 3 5. 332.330	400		
	Vol.	19	TRP603				6986	12	11 11257.	.1311				${ }^{26116,6 A 7 . ~} 75.241$.	330		
	Tone	4.4		6			698.5	13	If N 231.								
128. 128E.	V	19	TRP963.				3796 7790	15	TS10\%					6166, 6А, 6132. 41, 81	400	1	
	Tone	34					4128.	1	11s213.								
							7589	13	S18637.								
1351 .	Vol.	45					4.108.	12	CSiz3.					$116.234,30,32,19$.	4(1)		
	Tone	41															
ACR136.	Vol.	18	T11P603				7790.	1	IST 15.					3606, 647, 6137, 41, 80	100	1	
	Tone	34 7	Sini				4198.	$1{ }_{1}^{1}$	R1820.3.								
							4527.	1.5	TS101.								
140, 141, 141	Vol.	19	TR1P6				6571.	1	RS215.					58. 2A7, 2137, 56, 53,			
	Tone	21		6			6609.	1	RSP16.						44.5	1	
140. 141. 141E (12e-							6626.	14/15	CSI21/TN111								
vised).........	Vol.	19	TRP603.				6889/6609	1	RS216.					258, 2A7, 2B7, 56, 53,			
	Tone	21 9	${ }^{\text {U }}$ Y $50 \mathrm{M1P}$,	6			${ }_{6}^{6626}$ 6......	13/15	CSI21/TN111					${ }_{23}^{80}{ }^{3}$.	14.5	1	
143.	Vol.	19	TRIP603				$7{ }^{7} 900$	I	1S215.								
	Tone	41		6			4626.	13/15	18N24.5.	13178				5.	460	1	
ACR175.	Sen.	17	UCS				${ }_{10}^{4619}$	15	TS101/Tl'4								
ACRI7s.	Sen.	17					18.	1	12S216.					$6 \mathrm{FF}, 6 \mathrm{~F} 6,5 \mathrm{Z} 4,615$	460	1	
210.				6	1		7590	11	RSS211.					58, 2A7, 57, 2A5, 30.	175	1	
	Tone	34					$7589 . . . . .$.	1/14	S12627.								
211, 214.	Vol.	19	'	6			7790 $4.928 . . . . . . . . ~$	1	12S215.					6A7, 61)6, 6B7, 41, 30	460	1	
							7589.	13	S11627.								
220.							3796	15	T'S10.5.					137, 2A5, 80	175	1	
	Tone	19	TI	6			6691.	13/15	SR626.					.s, 2Ni, 237, 2A.s, ,	-	1	
221.	Von.	19	TR1\%603	6			6571.	11	RS215.					258,2A7, 2137, $2 \mathrm{~A} 5,80$	370	1	
	Tone	34		6			6703	1/13	CNI55.								
222.	Vol.	19	TRP603....				6.571.	1	HS215.						175		
	Tone	3.4		6			6691.	13/15	S11626...								
223.	Vol.	19	T11P607.				6859	13/15	CNI50/CN141	. 13176	Order	from i	ir.	${ }^{261) 6,6 A 7, ~ 6 B 7, ~ 33, ~} 34$	175	10	
$224,224 \mathrm{E}$.	Vone	19	TRiP603....				7790	i	is ${ }^{\text {a }}$, 15.					2616, 6A7, 6137, 11,80	460	1	
	Tone	34					4428	1	RS213.								
							4525.	15	T's101.								
225.	Vol.	19	TRP603.	6			7790.	1	14815.					6А7, ${ }^{2} 1506137,41,30$	460	I	
							5101.	1/14	IRN245.								
226.	Vol.	19	TRP603....					$1$	$\mathrm{RSS}_{1215} \mathrm{~S} 213$.					${ }^{26156,6 A 7, ~ 6137, ~ 42, ~} 30$	460	1	
	Tone	44	L..				$\begin{aligned} & 4428 . \\ & 7589 . \end{aligned}$	$\begin{gathered} 1 \\ 13 / 14 \end{gathered}$	RS213.								
							4525	15	TS101.								
235B.	Vol.	45					4498.	12	CS133.					1C6, ${ }^{23} 4,{ }^{2} 310,32,19$.	460		
	Tone	41															
236 B .	Vol.	45					4498.	12	CS133.						460		
240.	Vol.	219	$\begin{aligned} & \text { TRP603..... } \\ & \text { O.......... } \end{aligned}$	6			6571. 6609.	1	$\begin{aligned} & \text { RS215. } \\ & \text { RS216. } \end{aligned}$						445	1	
				6			6626.		CS121/TNiii								
240 (Revised).	Vol.	19	TRP603				6889/6609.	1	RS216.					38, ${ }_{80}$ A7, 2B7, 56, 53.			
	Tone	21	UC505	6			6626......	14/15	CS121/TN111					${ }_{234530}^{80} \ldots \ldots \ldots .$.	445 175	1	
${ }_{242,243}^{241 B} . . .$	Vol.	9 19	Y50MP....				6548.	12	CS123.....						175		
242, 24.3	Tone	41	O. ${ }^{\text {che..... }}$	6			4626.	13/15	IRV25....	: 13177				$\begin{array}{ll} \mathbf{o}, 0 \\ 5 Z 3 \end{array}$	460	1	
	Sen.		JC500....				4619.	15/13	TSI01/T1'4 1								
260, 261.	V. Toue	100	TR1P622...				$\begin{aligned} & 6.433 \\ & 6 \end{aligned}$	$\text { / } 13$	RS315....	13169				4,58, $56,2 \times 45,80$	175	1	
	${ }_{\text {T }}$ T. Tone	41	YC505.. A5MP.				6.430.	1/13	Civiso.								
	Supp.	7	A5MP.														

MALLORY-YABLEY RADIO SERVICE ENCYCLOPEDIA


Mallory-Yaxiey radio service encyclopedia


Mallory-Yascey radio service encyclopedia


MALLORY-YABCEY RADIO SERVICE ENCYCIOPEDIA


MALLORY-YAXLEY RADIO SERVICE ENCYCLOPEDIA


MALLORYY-YABELEY RADIO SERVICE ENCYCLOPEDIA


Mallory-Yabley radio service encyclopedia


MAILORY-YAXIEY RADIO SERVICE ENCYCLOPEDIA


MALLORY-YABLEY RADIO SERVICE ENCYCLOPEDIA


Mallory-Yaxrey radio service encyclopedia


MAILORY-YABLEY RADIO SERVICE ENCYClopediA


MALLORY-YAZLEY RADIO SERVICE ENCYCIOPEDIA


Mallory-Yarrey radio service encyclopedia


MALLORY-YAXLEY RADIO SERVICE ENCYClopedia


Mallory-yaseley radio service encyclopedia


MALLORY-YAXLEY RADIO SERVICE ENCYCLOPEDIA


MALLORY-YABLEY RADIO SERVICE ENCYClopedia


Mallory-Yaremy radio service encyclopedia


Mallory-Yactey radio service encyclopedia


MALLORY-YAZELEY RADIO SERVICE ENCYCIOPEDIA


Māllory-Yaseley radio service encyclopedia


Mallory-Yasesey radio service encyclopedia


MALLORY-YABLEY RADIO SERVICE ENCYCLOPEDIA


Mallory－Yaseley radio service encyclopedia

MANUFACTURER AND MODEL	CONTROLS						CONDENSERS				VIBRATORS			Complete Tube Complement	I．F．   Peak	Trans． Cir－ cuit
	Use	Cir－ cuit	Correct Replacement	Switch	Bias	＊Note	Original Part	Cir－ cuit	Correct Replacement	＊Note	Vibr． Conn．	Replace－ ment	＊Note			
TRANSFORMER CO	$\mathrm{HPP}^{\text {V }}$－ Co	ntinue	${ }^{1}$													
AC61（25－61）．．．．．	Vol．	6	1112				1．5－1．5－1．	3	Sre Note．	131				324．${ }^{2}+5.80 .80$		1
АС $\mathrm{AC80} 81$.	Vol．	6 8 8	1112				1．5－1．5－1	2.3	Ser Note． HS21．3	B1				${ }^{324} 4.27 .45,80$,		I
AC81， 85.	Vol．	${ }_{8}^{8}$	${ }_{\text {G }}$				${ }_{2}^{2-2} 2$	28	See Note．	131					175	1
	Tone	31	111	6												1
88	Tol．	${ }^{84}$	112	6			2－2－2．5	28	Sue Note．	B1	．			51，27，241，47， 80.	175	1
$\underset{(2,-90,25-91)}{\mathrm{AC90}, 9 \mathrm{~A},}$	Yol．	8	A4001				8． 8.	28	13S213．					${ }^{3} 35.224 \mathrm{~A}, 27,47,80$.	175	3
92，AC04（25－94）．．．	Tomer	38	1112   41001   100	6				28								
	Toue	34	$\mathrm{HIP}^{1}$	6				28	HS213					27，${ }^{3} 1,224 \mathrm{~A}, 47,80$.	175	3
$\begin{aligned} & \text { AC100 Series } \\ & \text { 100A11. } \\ & 120-139 . \end{aligned}$	Yol．	15	$A^{\text {a M }}$	6			1－1－1	26	Srovot	Bi				25s 214.4780	175	1
	Yol．	15 8 8					－${ }_{2}^{\text {P－} 2767}$	${ }^{4} 8$	Cllize Sice Note．	B1	35	204			465 175	10
	Tone	34		6												
$\begin{gathered} \mathrm{ACl} 160(25-160) \\ 160 \mathrm{AVC} \end{gathered}$	Yol．	${ }_{8}^{8}$	$\mathrm{AlMP}^{\text {a }}$	6			8． 8	28	145213					551，27，294，47， 80.	175	3
AC220（25－220）	Tone	$\begin{array}{r}14 \\ 8 \\ 8 \\ \hline 8\end{array}$	A5Mb				1－1－1	26	See Note	131				335，57，47，24A， 80.	175	i
AC240）．	Tone	$\frac{22}{15}$	${ }_{116503}$	6			－－2． 5	28	Sce Note	B1						
	Tone	2		6			－－－2	28	Sce Note	B1				244，${ }^{251,56,58,27 .}$	400	1
2.41.	Yol．	45	14.503	6			2－2－2．5	28	See Notr．	31				251．25，27，47， 80	$1 \% 5$	1
AC260	lol．	$\stackrel{15}{15}$	1165	6				26	See Note．	133				51，5－，32，50， 476	175	1
AC280（25－280）	lane	15   15   10	UCSO3	6				26	See Note．	133				$251,327.57,56,46,80$	175	1
AC300．	Tone	$\underline{29}$	500311	6	See Nol	（e A19	6－8	31	See Note．	133					175	
	Tone	$\because 2$	${ }^{1}$	6										－38，56，46， 82	175	3
AC320AC 340	Supp．	$\underline{6}$	912				8－4	23	CM171	133				257，58，47， 80	175	1
	Yol．	15	1 C 03				P4514	23	CM175					258， $57,256,2.47,80$	$1: 5$	1
360	Tone	15	UCS． 03	6			P1514	23	CM175						175	3
	Tone	21		6										－3，st，${ }^{\text {a }}$		
$400 \mathrm{AC}-\mathrm{DC}$ ．	rol．	7					8 88	6	CNita					39，36，238，25\％5		
ACtion.	$\checkmark$ ol．	17	N				－${ }_{2}^{5-5}$	111	TN110 TR182	13：31						
		1					10.8	1.5	TS101．	B．3				（1）7，78，75，43，2575	$\ddagger$	
$422,423,425$	$\checkmark$ OI．	98					P4633	11	CS121					6А7，78，77，43， $25 \%$	465	
4.40							P4， P， 63	11	CS126							
	Voi．	98	J				P4509	11	Wh182	1331						
${ }^{450} 40.472$	Yol．	56 17	NC503				P4．33．	29	U1190．	1322				${ }^{2} 78.647,85.43, ~ 2525 . ~$	465	
	$\xrightarrow{\text { Tol．}}$	17 22	UC503				P4113	$\stackrel{9}{15}$	Cl1a					258．246，47，56．80．．．	465	1
480.	Vol．	1.5	UC503				P1514	34	C11\％					58， $550,590,573$	465	3
490.	Tone	21 12		6			P4．585	15	T Cl 13							
	Vol．	56	UCSios				［4061	28	CM173	133				$58,55,53,56,80$	175	3
500.	Vone	15	UCSO3													
	Tone	22												3． 1 Ab， 30,19	175	
TRANSITONE	Philco B	adio \＆	Television C ory．													
$\begin{aligned} & \text { TRAY-1,ER RIUDIO } \\ & \text { AC-SG-DX. } \end{aligned}$	x TEILE	V1510	CORP．				2－1－1	30								
	Screen	12	A5才p					30	See Note．	131				24入，45， 80		3
C.   K Sti－AC－Super	Yol．	12	${ }_{\text {A512 }}$				－1－1	3	Sar Viole．	111				921， 45,80		3
	yol．	$10{ }_{6}^{6}$	1.12					1	Ser Note．	．113						1
	Tome	41	N						Sep Note．					235，327．247，24， 80	．$\ddagger$	
	Vol．	8	Y50M1				8 8－8	3	Sce Note	आil						
	Yol．	6	${ }_{1} 112$					3	See Note	131				42．4A，45， 80		3
	Yot．	0	1.12				${ }_{\text {2－1－1 }}$	4 30	CM170．	131				${ }_{326,}^{51,24 A}, 47.80$		1
	Tone	34	12						Sce note．	13						
8 Super	Screer	12	A5111													
	¢ ${ }_{\text {Sol．}}$	${ }_{4}^{6}$	K12				8－8－2	30	See Note	B3				51，24A，27， 217,80	$\ddagger$	1
S8．	Yol．	8	${ }_{1}$				8－8	30	See Note	133				251，24A，${ }^{227,247,80}$	175	1
	Tone	41	心12						Se						1.5	1
	Yol．	100	$\stackrel{1}{\mathrm{~N}}$				4－2	4	See Note	131				${ }^{235} 327.247 .80$	175	1
50 A51.53.54.	Vol．	18	112				1612	27	HM257	133				OI）6，6C6， 43.35		
	Yol．	18 18	$N$				${ }_{\substack{18 \\ 6 \\ 6 \\ 180}}$	$\stackrel{23}{93}$	CM171	13.3					$\pm$	，
	Vol．	18	1visi		See No	is）A96	${ }_{6}{ }_{6} 12$	$\stackrel{1}{4}$	RM262．	．138	3.3	291	C3		4	10
${ }_{60}^{56 .}$							02		Buffer．	． 1314						
	Vol．	18					8－16－12	11	UR182	1331				$\left(\begin{array}{r} 234,32,33,151 \\ 6 A 5 \\ 60 \end{array}\right.$		
63 A	Vol．	18	N				8.8	23	HS213					952．5．${ }^{\text {93 }}$	4.56	
							8，8		HSE13．					6Ft，IZ 1 ，or 6A\％		
64.	Vol．	18	UM154．		See No	te A9，	6－10	4	Ser Note．	133	35	294	C3		456	10
76.	Vol．	18	N				${ }_{8-8}^{82}$ ．	i	$\xrightarrow{\text { Buifer }} \mathrm{CN} 12$	${ }_{113}^{1314}$	1.5		C3		46	
112		18					－828	$\cdots$	Butfer．	${ }_{1314}$	1．）	216	C3	34，135，1151，1C6． 30	$\pm$	10
	Vol．	15	11833	120			${ }_{8}^{8}$	16	AS213．					${ }^{6} \mathrm{~K} 7 \mathrm{G}, 6 \mathrm{LJCo} 6 \mathrm{C} 51$.		
115.							$\frac{25}{8-16}$	46 46,13	W1254． 11 N 24.					$6116 \mathrm{f}, 6 \mathrm{G} 5^{2} 6 \backslash 69$ ． ${ }^{25} \mathrm{Y} 3 \mathrm{~B}$	465	1
	Vol．	15	M1453．	196			8	46	118213					3676．6L7C， $6 \mathrm{CS5} \mathrm{\%}$		1
							2.5	46	1152045					6H64．6G5，6－6\％		
							$8-16$	46／13	12043					${ }^{2} 5 \mathrm{Y} 3 \mathrm{~B}$	40.5	1
136.	Vol．	18	MH48				7－32	13	${ }_{\text {CSI }}$					6A7．76，61）6，75， 41.		
137.	Vol．	18	MR18					1.5	Psiot．．．					$80, \ldots$	450	1
138.	Vol．	18					50	$\underline{27}$	Order from	Mifr．					56	
	Vol．	18		M26			8.	－	HS 213.					$647.76,6 \mathrm{D}, 85$		
								13						${ }^{26} 10 \mathrm{fr}, 80 \ldots . .$.	456	1
173	Vol．	45	MR48				8 88．	1	C $\backslash 152$	13.3	15	346	C3	1С6， $234,30,19$	4．5）	10
9.	Vol．	18	MR48						B3uffer．	B14						
								1.5	Tsiol．		3.	$\underline{9} 4$	C3	6D8G．6S7G，6T7G， ${ }^{2} 6 \mathrm{~L} 5 \mathrm{G}$ ． $6 / 7 \mathrm{G}$ ，		
							． $01-01$		Buffer．	B14				6KY5G．．．．．．．．．	456	10

Mallory-yasiley radio service encyclopedia


Mallory-Yasley radio service encyclopedia


MALLORY-YASELEY RADIO SERVICE ENCYCLOPEDIA


MALLORY-YASLEY RADIO SERVICE ENCYCLOPEDIA


Mallory-yameley radio service encyclopedia

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{MANUFACTURER AND MODEL} \& \multicolumn{6}{|c|}{CONTROLS} \& \multicolumn{4}{|c|}{CONDENSERS} \& \multicolumn{3}{|c|}{VIbrators} \& \multirow[b]{2}{*}{Complete Tube Complement} \& \multirow[b]{2}{*}{I. F. Peak} \& \multirow[b]{2}{*}{Trans Circuit} \\
\hline \& Use \& Circuit \& Correct Replacement \& Switch \& Bias \& *Note \& \[
\begin{aligned}
\& \text { Original } \\
\& \text { Part }
\end{aligned}
\] \& Circuit \& Correct Replacement \& *Note \& Vibr. Conn. \& Replacement \& *Note \& \& \& \\
\hline \multirow[t]{3}{*}{\begin{tabular}{l}
UNITED NIOTORS S \\
628 (Delco) \\
629 (Delco) (Below No. 40100) 629 (Delos) (Abiove No. 40100) 630 (500) (Delco).
\end{tabular}} \& \[
\left\lvert\, \begin{gathered}
\text { ERYICs: } \\
\text { Vol. } \\
\text { Tone }
\end{gathered}\right.
\] \& -Con
62
44 \& \begin{tabular}{l}
tinued \\
UC514. \\
L.
\end{tabular} \& \& \& \& \[
\begin{aligned}
\& 1209283 . \\
\& 1209284
\end{aligned}
\] \& \[
1 / 15
\] \& \[
\begin{aligned}
\& \text { RS215.5 } \\
\& \text { RS213/TNini }
\end{aligned}
\] \& . 15 \& 25 \& 273C \& \& 61)6, 6A7, 85, 6A6. \& 262 \& 10 \\
\hline \& Vol. \& 45 \& UC514..... \& \& \& \& 1209285 \& 1/15 \& 12N245.... \& \& 25 \& 273C \& \& 6F7, 6B7, 6D6, \(42 \ldots\) \& 262 \& 10 \\
\hline \& Vol. Vol. \& \& \begin{tabular}{l}
UC5ly \\
UC.514.
\end{tabular} \& \& \& \& 1209235.
1209806. \& 1/15 \&  \& \& \(\stackrel{25}{35}\) \& \({ }_{294}^{273 C}\) \& C3 \& 6F7, 6A7, 6R7, 42,
6A7, 6137, 61)6, 42, 8.4 \& 262
262 \& 10 \\
\hline 6.31 (Delco) ....... \& Vol. \& 18 \& UC514.... \& \multirow[t]{2}{*}{} \& \multirow[t]{2}{*}{} \& . . . . \& . \(01 \times 10\) \& , \& Bumfer. \& 1314 \& 35 \& 29.4 \& C3 \& 6A7, 6ВЗ7, 6D6, 6В \({ }^{\text {¢ }}\) \& \& \\
\hline \multirow[t]{2}{*}{\begin{tabular}{l}
631 A (Delco) \\
632 (Delco)
\end{tabular}} \& Vol. \& 73 \& UC511. \& \& \& \& 1051124 \& 4 \& Huffre \& 1314 \& 35 \& 294 \& \({ }_{C}{ }^{\circ}\) \& 86, 6A7, 6B7, 324 \& 262 \& 10 \\
\hline \& \multirow[t]{2}{*}{} \& \multirow[t]{2}{*}{126
21
12} \& \multirow[t]{2}{*}{\[
\begin{aligned}
\& \text { UC514.... } \\
\& 0 \\
\& 0
\end{aligned}
\]} \& \multirow[t]{3}{*}{} \& \multirow[t]{2}{*}{} \& \multirow[b]{2}{*}{. .'.} \& \multirow[t]{2}{*}{\[
\begin{aligned}
\& 1210215: \\
\& .005
\end{aligned}
\]} \& \multirow[t]{2}{*}{1} \& \multirow[t]{2}{*}{M13 2.12.....} \& \multirow[t]{2}{*}{1314} \& \multirow[t]{2}{*}{35} \& \multirow[t]{2}{*}{29.4} \& \multirow[t]{2}{*}{C3} \& \multirow[b]{2}{*}{\(26 \mathrm{D6}, 6 \mathrm{~A} 7,6 \mathrm{~B} 7,6135\),
84.2} \& \multirow[t]{2}{*}{-

262} \& \multirow[t]{2}{*}{$\cdots \cdots$
10} <br>
\hline \& \& \& \& \& \& \& \& \& \& \& \& \& \& \& \& <br>
\hline 633 (Delco)........ \& \multirow[t]{2}{*}{Vol. Tone} \& 126

21 \& \multirow[t]{3}{*}{| UC514 |
| :--- |
| 0. |
| UMi62-ssii |} \& \& \multirow[t]{3}{*}{} \& \multirow[t]{2}{*}{} \& \multirow[t]{3}{*}{\[

$$
\begin{aligned}
& 1210220 . \\
& 1003.0920
\end{aligned}
$$

\]} \& \multirow[t]{2}{*}{i} \& \& \multirow[t]{3}{*}{\[

$$
\begin{aligned}
& 1314 \\
& 13193
\end{aligned}
$$

\]} \& 35 \& 2 \& \multirow[t]{2}{*}{C3} \& \multirow[t]{3}{*}{| $\begin{array}{r}26186, \\ 84 \\ \hline\end{array}$ |
| :--- |
| ${ }^{2} 6 \mathrm{D} 6,6 \mathrm{~A} 7,85,2.41$ |} \& \multirow[b]{3}{*}{262

262} \& \multirow[t]{3}{*}{10
10
10} <br>

\hline \& \& $$
\begin{aligned}
& 21 \\
& 15
\end{aligned}
$$ \& \& \multirow[t]{2}{*}{} \& \& \& \& \& \multirow[t]{2}{*}{\[

$$
\begin{aligned}
& \text { Buffer } \\
& \text { IRN245/TS } 101
\end{aligned}
$$
\]} \& \& \& \& \& \& \& <br>

\hline 634 (Delco). \& Tone \& $\stackrel{15}{21}$ \& \& \& \& \& \& 1/15 \& \& \& 2. \& 3C \& \& \& \& <br>

\hline \multirow[t]{2}{*}{$$
\begin{aligned}
& 635 \text { (Delco).... . . . . } \\
& \text { R640 Delco. . . . . }
\end{aligned}
$$} \& \multirow[t]{2}{*}{Vol.} \& $\stackrel{1}{20}$ \& \multirow[t]{2}{*}{\[

$$
\begin{aligned}
& \text { MM242SSi } \\
& \text { TM15-SS14 }
\end{aligned}
$$

\]} \& - \& \& \& - $1210926 . .$. \& \multirow[t]{2}{*}{1/15} \& RN245/TSioi \& 1393 \& \multirow[t]{2}{*}{515} \& \multirow[t]{2}{*}{\[

$$
\begin{aligned}
& 273 C \\
& 2916
\end{aligned}
$$

\]} \& \multirow[t]{2}{*}{-3} \& \multirow[t]{2}{*}{| ${ }^{2} \mathrm{D} 6,6 \mathrm{~A} 7,85,8 \mathrm{~F} \mathbf{6}$ |
| :--- |
|  6F6C, 6X5G |} \& 262 \& 10 ${ }^{\circ}$ <br>

\hline \& \& ${ }_{22}^{18}$ \& \& \& \& \& 7230164. \& \& \& \multirow[t]{2}{*}{. 1314} \& \& \& \& \& 262 \& <br>

\hline \multirow[t]{2}{*}{R641 Delco.} \& \multirow[t]{3}{*}{| Vol. |
| :--- |
| Tone |
| Vol. |} \& \multirow[t]{2}{*}{18

22} \& \multirow[t]{3}{*}{\[
$$
\begin{aligned}
& \text { UM150 SSi- } \\
& \text { M1R39 } \\
& \text { TM24-SS }
\end{aligned}
$$

\]} \& \multirow[t]{2}{*}{} \& \&  \& .005 \& 4 \& | Buffer. |
| :--- |
| 1 1262 | \& \& si \& 29.10 \& \multirow[t]{2}{*}{\[

$$
\begin{array}{r}
6 \\
0
\end{array}
$$
\]} \& \multirow[t]{2}{*}{} \& \multirow[t]{2}{*}{202} \& \multirow[t]{2}{*}{10

10} <br>
\hline \& \& \& \& \& \multirow[t]{2}{*}{} \& \multirow[t]{2}{*}{$\cdots$} \& \multirow[t]{2}{*}{120} \& \& Buffer. \& 1314 \& \multirow[b]{2}{*}{51} \& \& \& \& \& <br>

\hline R642 Deles. \& \& 18 \& \& \multirow[t]{2}{*}{$\cdots$} \& \& \& \& 4 \& \[
$$
\begin{aligned}
& \text { RM261. } \\
& \text { Buffer... }
\end{aligned}
$$

\] \& \[

1314

\] \& \& \[

29.40:

\] \& - ${ }^{3}$ \& ${ }^{26 K 7}, 6 J 7,6 Q 7,6$ h 2, 6.5 \& 262 \& \[

10
\] <br>

\hline R643 Delco. \& Vol. \& 18 \& UM150-SS 11 \& \& \& \& 7231531 \& 4 \& MM202... \& \& $5 i$ \& 294 C \& Ci \&  \& \& 10 <br>

\hline R644 Delco \& Yone \& \multirow[b]{2}{*}{$$
\begin{aligned}
& 20 \\
& 22 \\
& 56
\end{aligned}
$$} \& \multirow[t]{3}{*}{\[

$$
\begin{aligned}
& \text { TMP41-S்Sii } \\
& \mathbf{M} 139 \ldots \ldots
\end{aligned}
$$
\]} \& \multirow[b]{3}{*}{6} \& \& \multirow[b]{2}{*}{} \& \& 1 \& Buffer \& B14 \& \multirow[t]{2}{*}{51} \& \multirow[t]{2}{*}{20.16} \& \multirow[t]{2}{*}{© 3} \& \& 262 \& \multirow{3}{*}{10} <br>

\hline \multirow[b]{2}{*}{1101 (Delco).......} \& \multirow[t]{2}{*}{Tone} \& \& \& \& \multirow[b]{2}{*}{. . . .} \& \& \multirow[t]{2}{*}{$$
\begin{aligned}
& 723160.7 \\
& 1205786 .
\end{aligned}
$$} \& \multirow[b]{2}{*}{ii/is} \& \multirow[t]{2}{*}{Buffer Order from} \& \multirow[t]{2}{*}{\[

$$
\begin{aligned}
& 1314 \\
& i 115 r .
\end{aligned}
$$
\]} \& \& \& \& \multirow[t]{2}{*}{} \& 262 \& <br>

\hline \& \& \& \& \& \& \& \& \& \& \& \& \& \& \& 181.5 \& <br>
\hline \multirow[t]{3}{*}{1104 (Delco) .......} \& \& \& \multirow[t]{2}{*}{$\mathrm{N}_{\mathrm{N} 12 \ldots \ldots . .}$} \& \multirow[t]{2}{*}{6} \& \multirow[t]{2}{*}{} \& \multirow[t]{2}{*}{.} \& 1208317. \& \& MS215. \& \& \& \& \& 6D6, 6A7, 6H7, 66 , \& \& <br>

\hline \& $$
\begin{aligned}
& \text { Tone } \\
& \text { Vol. }
\end{aligned}
$$ \& 22 \& \& \& \& \& 1208316

1208317 \& $4 / 1.4$ \& $1 \mathrm{MN}+4.5$ \& \& \& \& \& $$
42,80
$$ \& 456 \& 1 <br>

\hline \& Tone \& 34 \& \& 6 \& \& \& 1208.316 \& 4/14 \& MN2.5. \& \& \& \& \& 42, 80. \& 456 \& <br>
\hline 1105 \& Yol. \& 6 \& G12 \& 6 \& CX200 \& \& $8-6$. \& 1 \& RN242. \& \& \& \& \& 26D6, 70.6135, 80 \& 456 \& <br>
\hline \& Yol. \& ${ }_{22}^{18}$ \& \& 6 \& \& \& 12 \& 25 \& 115815. \& \& \& \& \& 6)6, 6AT, 75, 12, 80 \& 456 \& 1 <br>
\hline 1107 \& Vol. \& 15 \& \& 6 \& \& \& 8-8-8 \& $13 / 25$ \& 1\%20 \& \& \& \& \& 261)6, 6А7. 76, 42, 80. \& 456 \& <br>
\hline 1108. \& Vol. \& 18 \& T11'623 \& 6 \& \& \& 12. \& 4 \& 118215. \& \& \& \& \& 21)6, 64, $53,42,80$. \& 456/ \& <br>
\hline \& \& \& \& \& \& \& \& 4 \& 13 S216. \& \& \& \& \& \& 490 \& 1 <br>
\hline 1109. \& Vol. \& 20 \& THP'608 \& 6 \& \& \& 12 \& 13 \&  \& \& \& \& \& 1)6. 6A7, ${ }^{26} 6 \mathrm{C}_{2}{ }^{2} 6 \mathrm{F6}$ \& \& <br>
\hline \& \& \& \& \& \& \& 18. \& 1 \& HS216. \& \& \& \& \& \% \& 455 \& 1 <br>
\hline 1110. \& Vol. \& 15 \& TIP1'608. \& \& \& \& \& 131 \& RS205. \& \& \& \& \& 1)6, 6A7, 6K \& \& <br>
\hline \& \& \& \& \& \& \& 18 \& 31 \& 18 S216 \& \& \& \& \& 6F6, 24, 58.3 \& 4.55 \& 3 <br>
\hline \& \& \& \& \& \& \& 12-1 \& 1. \& Tvil1 \& \& \& \& \& \& \& <br>
\hline R1115. \& Vol. \& 7 \& \& 6 \& \& \& \& 1. \& TSVE410. \& \& \& \& \& \& \& <br>
\hline \& \& \& \& \& \& \& \& 1 \& RS213. \& \& \& \& \& or ${ }^{2} 6 \mathrm{D} 7 \mathrm{f}$. 6C5(i, \& \& <br>
\hline R1116. \& Vol. \& 45 \& TRP623. \& 6 \& \& \& 16. \& 23 \& RS216. \& \& \& \& \& 6AF6G, 6 ¢5G. \& 465 \& 1 <br>
\hline R1117. \& Tone \& 4.75 \& \& \% \& \& \& 16. \& 2 \& 118.15. \& \& \& \& \& ${ }_{6} \mathrm{FFSG}, 6 \mathrm{F6} 5 \% .4$ \& 456 \& 1 <br>
\hline \& Tone \& 57 \& \& 6 \& \& \& 16 \& 2: \& IS 216. \& \& \& \& \&  \& \& <br>
\hline R1118. \& \& \& T \& 6 \& \& \& 16. \& 2.5 \& 1 SN 216. \& \& \& \& \&  \& 456 \& 1 <br>
\hline \& Tone \& 41 \& \& \& \& \& 8. \& 13 \& 1世213. \& \& \& \& \& КK7, 6A8, 6116. 6C:5. ${ }^{2} 6 \mathrm{C} 5,{ }^{2} 6 \mathrm{~F}^{\prime} 6,5 \mathrm{~S} \cdot \mathrm{f}$ \& 4:56 \& 1 <br>
\hline \& \& \& \& \& \& \& \& 19 \& T'sio6. \& \& \& \& \& \& \& <br>
\hline H1119. \& Vol. \& 15 \& THP608. \& 6 \& \& \& 16, 1 \& 2 \& 1SS216. \& \& \& \& \&  \& \& <br>
\hline \& \& \& \& \& \& \& \& $1: 3$ \& 1RS21:3 \& \& \& \& \&  \& \& <br>
\hline \& \& \& \& \& \& \& 10 \& 19 \& T'siot \& \& \& \& \& \& 456 \& 1 <br>
\hline H1120 \& Vol. \& 18 \& \& 6 \& \& \& ${ }_{8}^{12}$ \& 15 \& TSNOH. \& \& \& \& \&  \& \& <br>
\hline \& \& \& \& \& \& \& 10. \& 11 \& TS106. \& \& \& \& \& 6K6́a, 5 Y4¢. \& 465 \& <br>
\hline 12125 R1126 \& Vol. \& 18 \& MR18
M148 \& 1126
126 \& \& \& 5-5 \& 23 \& 11M262 \& \& \& \& \& 6A7, 78, 75, 41, 80 \& 465 \& 1 <br>
\hline \& \& \& \& 1126 \& \& \& 8-8 \& 1 \& CNI52 \& \& \& \& \&  \& 465 \& 1 <br>
\hline R1127. \& Vol. \& 18 \& M1853 \& M26 \& \& \& ${ }_{8}^{30} 8$ \& 25
25 \& RS207. \& \& \& \& \& 6A8G, 6U7G, 6079
6K6G, 6U5, 5W4G \& 465 \& <br>
\hline \& \& \& \& \& \& \& \& 19 \& TS106. \& \& \& \& \& \& \& <br>
\hline R1128, R1129. \& Vol. \& 18 \& MR53. \& M26 \& \& \& 8,8 \& 23 \& IS213. \& \& \& \& \& 6L7 $607 \mathrm{G}, 6 \mathrm{G5}, 6 \mathrm{F6G}$, \& \& <br>
\hline R1130. \& Vol. \& 45 \& TM230-SS 1 \& 1126 \& \& \& \& 2.5 \& W|\%35.10 \& \& \& \& \&  \& 465 \& 1 <br>
\hline \& \& \& \& \& \& \& 1. \& 2.5 \& RSS13. \& \& \& \& \& 60:5G, 6U5, 6V6G, \& \& <br>
\hline \& \& \& \& \& \& \& 10. \& 19 \& TS106. \& \& \& \& \& 5 W 4 \& 465 \& I <br>
\hline R1131. \& Vol. \& 20 \& T'R1P608. \& 6 \& \& \& \& 25 \& WE3510.
RS216. \& \& \& \& \&  \& \& <br>
\hline \& \& \& \& \& \& \& 10.10 \& 1:3 \& \%111. \& \& \& \& \&  \& 465 \& 1 <br>
\hline R1132. \& Vol. \& 20 \& TRP611 \& \& \& \& 30 \& 1 \& WES3.40 \& \& \& \& \&  \& \& <br>

\hline \& \& \& \& \& \& \& \& 1.5 \& RSS213. \& \& \& \& \& $$
\begin{aligned}
& 6116,26 \mathrm{~V}, \quad 615, \\
& 5114 ; \text {. . . . }
\end{aligned}
$$ \& 456 \& 1 <br>

\hline \& \& \& \& \& \& \& 10-1 \& 15 \& TN11. \& \& \& \& \& \& \& <br>
\hline 2017, 2018 (Delcor. \& Vol. \& 25 \& GK. \& \& \& \& 1202264 \& 1 \& RS2 51. \& \& \& \& \& inia, 45, 80 \& \& 1 <br>
\hline \& Tone \& 22 \& G12 \& \& \& \& 1201400 \& 4 \& RS21:3. \& \& \& \& \& \& \& <br>
\hline 2035 (Revised). \& Yol. \& 17 \& U6512 \& 6 \& \& \& 1207584 \& 1 \& CN152 \& \& 4 \& 221 \& C 3 \& 36,239, 85, 89 \& 262 \& 10 <br>
\hline \& Tone \& 44 \& K \& \& \& \& 1207616. \& 1.5 \& ${ }_{\text {TS }} \mathrm{T} 105$. \& 1114 \& \& \& \& \& \& <br>
\hline R2050 \& Vol. \& 18 \& M128 \& \& \& \& \& \& \& 176 \& \& \& \& 1С6, 31, 1F6, 33,51 \& 465 \& <br>
\hline R2055 . 3202 - ( ${ }^{\text {clou }}$ \& Vol. \& 17 \& M \& \& \& \& \& \& \& \& \& \& \& 1C6, 34, 116, 33, 5E1 \& 465 \& <br>
\hline 3201,3202 (Below
800,000 )...... \& Vol. \& 17 \& \& 6 \& \& \& \& \& \& \& \& \& \& ${ }^{26} 5 \mathrm{D6}, 6 \mathrm{~A} 7,85,{ }^{2} 48 \ldots$ \& 262.5 \& <br>
\hline 3201,3202 ( D elco) \& \& \& \& \& \& \& \& \& \& \& \& \& \&  \& \& <br>
\hline (Above 800,000). . \& Vol. \& 17 \& N \& 6 \& \& \& \& \& \& \& \& \& \& 261)6, 6A7, 85.248. \& 456 \& <br>
\hline 3203, 3204 (Delco).. \& Vol. \& 15 \& \& \& \& \& 1208892 c \& \& \& \& 17 \& F24 \& C3 \& \& \& <br>

\hline \& Tone \& 4. \& $$
712
$$ \& 6 \& \& \& 1208891

1208890 \& $$
1 / 14
$$ \& \[

$$
\begin{gathered}
1 \mathrm{~N} 2+5 / \mathrm{TS} 101 \\
\mathrm{MS} 23 . . . .
\end{gathered}
$$

\] \& \& \& \& \& \[

24
\] \& 456 \& 10 <br>

\hline 3205. \& \& \& \& \& \& \& . 01. \& \& Buffer. \& 1314 \& \& \& \& \& \& <br>
\hline 3205. \& Sen. \& 17 \& 1 EL 2 \& 6 \& \& \& \& \& \& \& \& \& \& 20D6, 6A ${ }^{\text {, 85, }}$ 88 \& 456 \& <br>
\hline 3206, 3207. \& Vol. \& 18 \& M 1153 \& \& \& \& \& \& \& \& \& \& \& $26 \mathrm{D} 6,6 \mathrm{~A}, 85,76,48$ \& 465 \& <br>
\hline \& Tone \& 3.4 \& M1336. \& $\mathrm{H26}$ \& \& \& \& \& \& \& \& \& \& \& \& <br>
\hline \& Sen. \& 18 \& M1218. \& \& \& \& \& \& \& \& \& \& \& \& \& <br>
\hline R3208, R3209. \& Tol. \& 18
34 \& M1253.
M1236. \& M26 \& \& \& \& \& \& \& \& \& \& 26D6, 6A7, 85, 76, 418 \& 465 \& <br>
\hline \& Serr. \& 1 \& MR18 \& \& \& \& \& \& \& \& \& \& \& \& \& <br>
\hline R3210. \& $\xrightarrow{\text { Vol. }}$ \& $\stackrel{17}{22}$ \& M1488.
$\mathrm{MR33}$ \& \& \& \& \& \& \& \& \& \& \& 6D6, 6A7, 75, 76, ${ }^{2}$ \& 465 \& <br>
\hline \& Tone \& 22 \& MR33 \& M26 \& \& \& \& \& \& \& \& \& \& -0.6. \& \& <br>
\hline
\end{tabular}

Mallory-yascey radio service encyclopedia


MALLORY-YASREY RADIO SERVICE ENCYCLOPEDIA

MANUFACTURER AND MODEL	CONTROLS						CONDENSERS				VIBRATORS			Complete Tube Complement	${ }_{\text {Peak }}^{\text {I. F. }}$	Trans. Circuit
	Use	Clrcuit	Correct   Replacement	Switch	Bias	*Note	Original Part	Circult	Correct Replacement	*Note	Vibr. Conn.	Replacement	*Note			
UNITEI) MOTORS S983506 (Pontiae)...	EHVICE:	- Con	linued				1210528...	1/15	CN152/TN111		25	273C		${ }^{2} 6 \mathrm{D6}, 6 \mathrm{6A7}. \mathrm{85}, \mathrm{76}, \mathrm{6E6}$		
	tol.   Tone Vol. 'Tone Vol.	$\begin{aligned} & 17 \\ & 29 \\ & 17 \\ & 22 \\ & 20 \end{aligned}$	U.1160-SS3	.....												10
983507 (Pontiae). .			UMis4-ss3	$\ldots$	......	……	i2iosii...	1/15	CNi52/TS10i	…...	$\cdots 25$	- $27314 \times$		26D6, 6A7, $75,42 \ldots$	262	$\cdots$
983526 (Pontiae)...																
							- 1210548.	15	$\begin{aligned} & \text { CN152. } \\ & \text { TNil } \end{aligned}$		51	294C	C3	${ }^{2} 6 \mathrm{U} 7 \mathrm{G}, 6 \mathrm{~A} 8 \mathrm{G}, 6 \mathrm{~V} 7 \mathrm{G}$, 6J5G, 6N7G,		
983527 (Pontiae)...	Vol.	20	TM229-SS3.		.....	......	${ }_{1205}^{005} 11580 .$.	1/15	Buffer   CN152/TS101   Buffer	: Cl 14	51	294C ${ }^{\circ}$	${ }^{\text {C }}$	${ }^{26 U 7 G} \mathbf{6 X A B G}, 6 \ddot{\mathrm{Q}} \mathbf{7} \mathbf{G}$, 6F6G, 6X5G	...t.	10
983534 (Pontiae)	Vol.	20	TM241-SS. 4			…	$\begin{aligned} & 7203064 \\ & .005 \end{aligned}$	… 1	HN242   Buffer	B1.4	$\cdots 51$	$294 \mathrm{C}^{\circ}$	${ }^{\text {c3 }}$		…262	
983569 (Pontiae)	Vol.	17	TM229-SS4				$8-8-9-5-5 . .$				$\cdots{ }^{-1}{ }^{\circ}$			26K7G. 6A8G, 6Q7G, 6N6G, 6X5G.		10
				.......	......	......		1/13/15	CN145/TN110   Bufrer   R $1261 . .$.	$B 14$		294C	${ }^{\text {C }}{ }^{\text {c }}$	6J5G, 6N7G, 0Z4G ${ }^{2} 6 \mathrm{~K} 7 \mathrm{G}, 6 \mathrm{J7G}, 6 \mathrm{Q} \mathrm{G}$,	262	10
983570 (Pontiae)	vol.	18	T31229-Ss 4		See No	No te A3		4.		814 86.4   B14	51	294C	C3		262	10
985200 (Chevrolet).	Vol	20	1 Meg No. 1	$\ldots$.			$\begin{aligned} & 01-.01 \\ & \begin{array}{l} 138363 \\ .01 \ldots \ldots . . \\ 6-6 . \end{array} \end{aligned}$	$\cdots$	Huffer   I ${ }^{2} \mathbf{M} 255$   131ffer.		35	$294 *$	$\stackrel{C}{C}$	6D6, 6A7, 6B7, $\mathbf{7 6}$, 42,84	62	
985252 (Chevrolet)	Vol.	18	UM150-SS3	$\ldots .$		......		…	Buiffer   [1N2.42 Hufter	$814$	$\mathfrak{5 i}$	294 C	${ }_{\square}{ }^{\text {c }}$		262	10
985253 (Chevrolet)	Vol. Tone	${ }_{29}^{17}$	$\begin{aligned} & \text { TM1941-SS3 } \\ & \text { MI39. } \end{aligned}$			........	$\begin{aligned} & 6-6 . \\ & 805 \\ & 8-8 . \end{aligned}$			.1314	$\cdots{ }^{-}{ }^{\circ}$	$291 \mathrm{C}^{\circ}$				
							. 005 E . ${ }^{\text {a }}$. .	$\ldots{ }^{\text {.... }}$	Hufter   RN2. 2   Buffer	B14				6N6G. 6X5G.....	262	10
985254 (Chevrolet)	Yol.	17	T1299-SS3				-885	1	$\begin{aligned} & \text { CN } 152 \\ & \text { Buffer } \end{aligned}$	B14	51	294C	C3		262	0
985255 (Chevrolet).	Yol.	17	TV232-ss3				8-8-4-1	1/13/15	RN245/TSioi		$5 i$	294 C	C3	${ }^{26 K 7 G, 6 A 8 G, ~ 6 H 7 G, ~}$		
985283 (Chevrolet).	Tone	$\frac{22}{18}$	Mr4.				.005.		Buffer	. 11.4				${ }^{26 N 6 G} 6 \times 5 \mathrm{G}$	262	10
	Tone	22	MR44.....				1212313	$1 / 1.5$	RN242/TS10 TS105.		51	294 C		U7G, 6A8G, 6R7G, ${ }^{2} 6 \mathrm{~V} 6 \mathrm{G}, 0 \mathrm{Z} 4$	262.5	10
985284 (Chevrolet).	Vol.	18	TM219-SS3				$.01-01$ 723309 7231831	15	$\begin{aligned} & \text { Buffer. } \\ & \text { PN242, } \\ & \text { TS101. } \end{aligned}$	. 31.4	51	294C	C3	6J5G, 6N7G, 074G	262	10
985285 (Chevrolet).	Vol.		TM229-SS3				.01-.01	1/13	${ }_{\text {Ruffer }} \mathrm{CN} 145$	1.4	51	294 C	C3	U7G, 6A8G		
985300 (Chevrole)	Tone	22	M148.				. 005		Buffer	H14				6F6G, 074 C	262	0
	Tone	17 119	K12 ${ }^{\text {TM241-SS3 }}$				121085	1/15	CN152/TN110		26	273D		26D6, 6A7, 85, 76, 6A6	262	0
985301 (Chevrolet).	Vol.	20	TM24-ss3				12i167	1	CNisz		26	2̇3' ${ }^{\text {a }}$			262	10
	V	0	TMOA1-SS				1211166	15	TN11.							
1291341 (liuick).	Yol.	127	UM154-Ss3		E13217		120914	1/15	CNi52/TN110	1320	${ }_{25}^{26}$	$\stackrel{273 C}{273 C}$			262	10
1291345 (Butick)	Tone	415	K12 ${ }^{\text {a }}$		EB24 ${ }^{-}$		1209	1/15	C					6F7, 6A7, 6B7, 42	262	
1304873 (Buick)	Vol. \&															
	Tone	22/17	SMD50?				$\begin{aligned} & 8-8 \\ & 10-i 4 \end{aligned}$	15	$\begin{aligned} & \text { RN242. } \\ & \hline 1 \end{aligned}$		50	71.5	C3	$\begin{gathered} 26 \mathrm{K7G}, 6 \mathrm{ABG}, 6 \mathrm{R} 7 \mathrm{G}, \\ 6 \mathrm{~J} 5 \mathrm{G}, 6 \mathrm{~N} 7 \mathrm{i} . . . . \end{gathered}$	262	10
							.01-.0i		Bufter.	B1\%					262	1
UNHTFI REPRODU 20 Series. . . ........	$\underset{\text { Vol. }}{\text { CHiRS }}$	$\underset{35}{(0)}$	(Peerless)													
	Sen.	105			See No	Le As		60	See Note.	. 1 I				A, ${ }^{3} 7.2 .45,80$		$\ddagger$
45 (Artorphone)	1 lol	4						1/14	See Note	. 11				-26, $27.271 \mathrm{~A}, 80$		11
${ }^{6}$ Spkr.)	Vol.	7	UC50					1	See No	. 131				24A.227.245. 80, 99.		24
70 Series (71, 7	Vol.	6			See No	Ie 13		1	Sce Not	.131				$\cdots 4 \mathrm{~A}, 01 \mathrm{~A}, 27,245,80$.		. $\ddagger$
	Sen.	98			Sce No	le A3										
UNITED SCIENTIF	ICi.ABS	See	Dewald.													
UNIVEIRSAL Batte	IIY CO.															
5 tube 32 V	Yol.	18	M148						${ }^{\text {TS }}$ CN1.					$6 \mathrm{~A} 7,6 \mathrm{D6}, 75,76,48$	寺.	
6 tube 6 volt......		15	M H 48					1 1.5	CN145.	. 13	Orier	from Mr		6A7, 34,276, 75, 19...	,	10
							. $01-.01$		Buffer.	B114						
7 tube 6 volt .	Vol.	15	W178.				12-6.		CN145	133	Order	from Ms			$\ddagger$	$10^{\prime \prime}$
								15	TST01.							
50A6.	Vol.		M 188				4-81-0.	- 1	Buffer	1314	15			ID7G, iDsG, II		
	Tone	57	M148						Buffer.	1314				1116G, 1 F5G.	175	10
60	Yol.	18	$11115 \%$		See No	10 A96	18-203	$\ddagger$	CM175		35	294	C3	6K7. 6A8, 617, ${ }^{\text {c }}$ \%,	1.5	
	Toue	21			See No	e A5	. 10 5̄.		Buffer.	1314		29\%..	$\cdots$	41, 84.	262	10
61A6	Yor.	17 65	11488 11848					1	${ }_{\text {CS131. }}$		14	245C	C3	6D8G, 1D5G, 3144 G , 1 J 6 G	465	10
							. 01		Huffer.	. 314						
72A6	Vol.	17	M1848					1	$\mathrm{CSI}_{131}$		14	$\underline{245}$	C3	iD5G, $6 \mathrm{D} 8 \mathrm{G}, \mathrm{M} 1 \mathrm{G}$,		
	Tone	65	M1488					1	Csi26.	B14				${ }^{2} 1 \mathrm{H} 4 \mathrm{G}, 1 \mathrm{~J} 6 \mathrm{G}$.	465	10
613 V (32 Volt DC)	Yol.	18							-	1.				6А7, 6D6, 85, 6С6, 48	$465^{\circ}$	
636 V .	Yol.	15	M148					,	CS131		48	See Not	e C8	6D8G, 34, $30,19$.	. $\ddagger$.	10
	Tone							1	CS126							
802.	Vol.	18	U11154.		See No,	e A96	14	4	CM170		35	294	C3	6А7, $6 \mathrm{D} 6,75,42,84$.	456	10
803.	Vol.	18	UM154.		See No	c A 96	4	4	CM170		35	294	C3		456	10
5010	Vol.	18	MR.4				101.	4	Cunfer	114				6A8G 6K7G 6970		
							-16	4	CMI6					625A6G, 25Z 6 ( ${ }^{\text {a }}$.	465	
5032.	Vol.	18	1 R 48											6A8G, 6K7GG, 6Q7G,		
6110.	Vol.	18	48				8-8	23	RM262.						465	$\ldots$
														607G. 6F6G, 5 Y3..	456	1
6132.	Vol.	18	MR48											6A8G, 6K7G, 6Q7G,		
6310.	Vol.	18	MR48					23	RM262						465	$\ldots$
														607G, 6F6G, 5Y3..	456	1
7232	Vol.	15					12-6	1	See Note	. B 3	47	See Not	e C6	76, 6D6, 6C6, 6A7, 42	465	10
8210.	Vol.	18	MR48				8. 10	15 3	TS101					6J7G, $26 \mathrm{C} 5 \mathrm{G}, 6 \mathrm{~K} 7 \mathrm{G}$,		
								3	CS131					607G, 6G5, 6N6G;		
								15	TS101.		35	294	C3	6G5, $6 \mathrm{~J} 7 \mathrm{G}, 6 \mathrm{~F} 6 \mathrm{G}$,		
							. 01		Buffer	. 14				6X5G	465	10
									CSI31.					6Q7G, 6G5, 6N6G, 5Y3G	465	1
U. S. RADIO \& TELE	VISION		, Radiotrope)													
3.-(c)	Vol.	58	$\mathbf{F}$				8-8	4	See Note.	. 13				224A, 47, 80.		1
502)........	Vol.			6					CN152.					257. 58, 47,		
7 (AC).	Vol.	15					3366	28	(si31.					235, $24 \mathrm{~A}, 27,47,80$	262	3
	t.entar.	-	UC502				3529	28	CS131.							

MALLORY-YASEEY RADIO SERVICE ENCYCLOPEDIA


MALIORY-YABELEY RADIO SERVICE ENCYCLOPEDIA


MALLORY-YASIEY RADIO SERVICE ENCYCLOPEDIA


MALLORY-YAKLEY RADIO SERVICE ENCYCLOPEDIA


Mallory-yameley radio service encyciopedia

MANUFAGTURER AND MODEL	CONTROLS						CONDENSERS				VIBRATORS			Complete Tube Complement	I. F. Peak	Trans. Circuit
	Use	Circuit	Correct Replacement	Switch	Bias	*Note	Original Part	Circuit	Correct   Replacement	*Note	Vibr. Conn.	Replacement	*Note			
$\underset{\text { WU. }}{\text { WESTERNAUTO SU }} \mid$	$\begin{aligned} & \text { Vol. } \\ & \text { Tone } \end{aligned}$		UC502....	6	.....		P881028....	15	$\begin{aligned} & \text { CN152..... } \\ & \text { TN111..... } \end{aligned}$	$114$	20	253	C3	278, 77, 75, 41, 84. ...		10
670.	Vol.	17	M1453	6			iP103-2. 20.	15	Buffer $\ldots .$. RM262... TSI02....		37	296	C3		175	10
685, 686 Series.	Vol.   Tone   Vol.   Tone   Vol.   'Tone   Vol.	18		M26			${ }^{02}$	23	$\begin{aligned} & \text { Rurrer....... } \\ & \text { RS2 } 213 . . . . \end{aligned}$	$\begin{gathered} 1314 \\ \cdots \\ \cdots \end{gathered}$				$6 \mathrm{LF} 6 \mathrm{K7}, 6 \mathrm{CE}, 667,$	465	1
685, 686 Series.							P103-7.									
720, 732..		18	0.	6			103-6.	42	RS213.....					6L7, 6K7, 6C5, 607,		
		22	K12.				103-7	42	RS213.					6G5, 6F6, 5Y 3	465	1
786 Series A.		${ }_{22}^{18}$	M1153.	M26			${ }_{\text {P103-7. }}^{\text {P10. }}$	${ }_{23}^{23}$	RS213.							
1312 (R131).		$\frac{22}{17}$		6			${ }_{8.1829}{ }^{103} . .$.	$\stackrel{23}{4}$	RS213.						465	0
D692 (Truetone)...		$\begin{gathered} 124 \\ 1.14 \\ 18 \end{gathered}$	$\begin{aligned} & \text { THP621 } \\ & \text { UM181. } \\ & \text { A:MP. } \end{aligned}$	6			83803 83-03. .	15	TSI01......		35	294	${ }^{\text {c3 }}$.	278, 77, 75, 41, 84....	177.5	0
	$\begin{aligned} & \text { Yol. } \\ & \text { Tone } \\ & \text { Stane. } \end{aligned}$			128			3111... 3112		$\begin{aligned} & \text { Buffer. } \\ & \text { IID } 683 . \\ & \text { RS } 216 . \end{aligned}$	1314				-6K7. 6A7, 6116. 6(i5. 6C5, ${ }^{\mathbf{2 7}} \mathbf{7},{ }^{2} 42,80$	465	1
							3113.		WE1647							
D699.	Yobl	$\stackrel{18}{9}$	M1853....	1126167	.................		${ }_{103-6 .}$	441	$\begin{aligned} & \text { RSO2....... } \\ & \text { RSN13. } \\ & \text { RSNO21 } \end{aligned}$	B14	15	${ }^{206}$		$6 A 8,6$ K $7,607,6 C 5$, 26F6, 5Y3, 6G5	465	1
							103-14									
D706   D717.		18	M1R18....	1127			$\begin{aligned} & 119-32 . \\ & 100.32 \\ & 119-38 \end{aligned}$						C3	$\begin{aligned} & 26 \mathrm{SG}, 6 \mathrm{DBG}, 26 \mathrm{LE}, \\ & 6 \mathrm{~T} G, 19,6 \mathrm{~N} 5 . \\ & 6 \mathrm{~A}, 6 \mathrm{~K} 7,75,41,80 \end{aligned}$	$\begin{aligned} & 465 \\ & 465 \end{aligned}$	10
		18		M26					RN231   Buffer.   RM261							
D719.	vol.	18	M1853....				$4459$		คัシัธ9		13		C3	6D8G, 6S7G, 6T7(;) 1D5G		10
								24							456	
D734.	Vol.	17	UM15t-ssl3	N126			${ }^{119-33}$	4	RM259   Buffer.   RM261	B14	$35{ }^{\circ}$	$\underline{94}$	C3	6A8, 6K7, 6Q7, 6F6, 6×5......	465	10
$1) 743$.	Vol.	18	UM15L-SS1:	2126			119-37	4	RM261		35	294	C ${ }^{\text {c }}$	${ }^{26 K 7} 7.6 \mathrm{AB}, 6 \mathrm{Q} 7,41$,	465	10
D7.44	Tol.	18	U1147-SS13	1126	.......	…		4	RM261. Buffer.	$\begin{aligned} & 1314 \\ & .890 \\ & .1314 \end{aligned}$	35	294	C3   $\times \quad$.	$\begin{aligned} & \text { 26K7, 6A8, 6Q97, } 6 \mathrm{FF} 6 \\ & 6 \times 5 . \ldots \end{aligned}$	465	10
L7...															${ }_{4}^{262.5}$	
	Yol.	$\stackrel{4}{+}$		7		. $\cdot$.	. $011-01 \ldots .$.	${ }^{1}$	R ${ }^{\text {Buffer... }}$		14	245 C	C3	1C6, 19, ${ }^{3} 30,234 . . . .$.	${ }^{456}$	
S690, $\mathbf{N 6 9 1 .}$	Vone	$\cdots$	+1..........					$\begin{aligned} & 13 \\ & 15 \end{aligned}$	BuIfer.............CS121.TS105.....		i	206		$39,36,38 .$	262	
\$716. $8: 17$.	Yool	83					4-2-6							335,2i4, $27,47,80 .$.	175	3
			A5MP....	${ }^{6}$	EX300				CM172					${ }^{257} 35$	(6.)	
8721	Yol.	$\stackrel{6}{\ddagger}$	Shipzi				P80196.	4	RS213.					258, 357,47 ,	175	$\frac{1}{7}$
	Tone	34	${ }^{1 / C 502}$				P80878-C.	13	CS121.							
S724.	Vol.	97	${ }_{71}{ }^{\text {TRP617... }}$	14			145828.	12	CS121....					32, $34,30,19$	175	
	Tone	15 4	P/C50.....	6			P881039.	$\stackrel{2}{2 / 13}$	WE1647....					${ }^{46 D 6}{ }^{376}{ }^{245}$	456	7
S725. 8726	Vol.	56		6			181810.3	$\stackrel{23}{23}$	WE1847					${ }^{3} 6 \mathrm{D6}, 6137,76,42.80$	156	1
S732, S733.	Tome	34 17					P81032. P80965.	$\stackrel{23}{25}$	RS213.	13126	34	292	C12		262	10
							180937.	14/15	RN231.	13127	3			, $7,75,4$		
S735.	Vol.	17		6			P82002.	1/15	CMuffer.....	. 114	32	286 S .	C3		175	10
S740.	Vol.	18 22	UCSii.	6			${ }^{1881028 .}$	15 15	CNI52....		20		C3	778, 77, 75, 41, 8.4.	262	10
							P81021.		Ruffer.	B14						
S743.	Vol.	17		6			$81899^{\circ}$ 83803	4	CM171 TS101.		35	294	C3	278, 77, 75, 41, 84.	177.5	10
V672.	Vol.	17		6			-	25\%9	Buffer.... RM262/TSi02	1314 $B 126$	34	292	C 12		262	10
		17		6			P80937.	14/15	RN231....	${ }_{13127}^{181}$	34	292	C12	278, 74, 75, 41, 84.	262	\%
	Vol.	45	SRI	7			P391	1	Buffer. RN232.	B14 890	14	24	C3	1С6, 19, $30,32,34$	456	10
	Tome	4	L.				. $01-.11$		Buffer.	1314						
7.5.	Yob.	4.5	S131275	$\div$			11958.	1	RN232	1890	14	215 C	C3	1C6. 19,230, 32, 31.	456	10
Z6Z1.	Ther						1P80956.									$10{ }^{\circ}$
26\%1.				6			1880937..	-14/15	RN231....	$\begin{aligned} & .13126 \\ & .13127 \end{aligned}$	34	292	C12	278, 77, 75, 41. 81	262	1
							. $02 . .$.		Buffer..	. 1314						
WESTEHN IRADIO	$\underset{\text { MFi. }}{\mathrm{MFG}}$	$0_{12}$	Y50MI'..				8-8-8.	3	See Note.	. 83				${ }^{4} 24 \mathrm{~A}, 27,{ }^{245,80}$		3
WESTINiPhonse																
WR1-See Radiola																
WR5-Sce Radiola ${ }^{\text {d }}$	${ }_{30}^{30}$															
WR6-See Radiola	82															
Wh7-See Radiola	86															
Wh7R-See Hadiol at	${ }_{82}^{4} 86{ }^{81}$															
Wh8R-See Radiolla	828217 (mith	clock) oxl. for	vertical opera	tion.)												
Why-See 'rs																
Wh10-See IR (Sup	erette)															
Whio (1)C) Ser $\mathrm{H}^{7}$	7 (IDC)															
Wh12-See R9,																
WR19 (BC)-See H   WR13-Sec REIG	9 ( ${ }^{\text {CC) }}$															
Wh13A-Seer liElta	A															
Wh14-Gee 15   WRIT (DC)-See 12																
WR14CR-Se R5 X																
WR15-See 11110																
Wrib-See 11023																
Wh17-See 144																
Wh18-See 188																
Wh19-See R71																
WR20............	Vol.	6		6					CM161.					6D6, 6C6, 38, 1V..		
Wr21..............	Voi.	6	Y	6	Ex300		4-16-8	11	UR193.	1264				278, 77, 43. 258 Z	456	
WR23, wR $24 . \ldots$.	Vol.	18	N				8-8106665...	25	RM261/TS102	B213					456 456	1
	Tone	26	M.	6												
WR25............	Vol.	17	UM154.	M26		A96	7.C123	1	See Note.	. B	35	294	C20	778, 6A7, 75, 41, 84.	172.5	10
							IC43	15	TS101.		37	296	C20			
WR26..	Vol.	18	N	6			W ${ }^{\text {¢ }}$	4	CMIT2	. 14	35		$\bigcirc$		175	10
	Tone	2	N						Buffer	. 1314	37	296	C20			
	Vol.	6		6	EX250		WRIUC-93.		CM172.					6A7, 77, 42. 80	456	
WR28, WR29.....		128					Whor665...	25/19	RM261/TS102	. 3213				6A7,26D6, 75, 42, 80.	456	1
	Tone	121		6			WR07239...	13	RS213.							
-																



MAILORY-YAXIEY RADIO SERVICE ENCYCLOPEDIA


Mallory-yaseley radio service encyclopedia


Matlory-Yareney radio service encyclopedia


Mallory-yaxiey radio service encyclopedia


MĀLORY-YAXLEY RADIO SERVICE ENCYClopedia


Matlory-yascey radio service encyclopedia

manufacturer AND MODEL	CONTROLS						CONDENSERS				Vibrators			Complste Tube Complement	I. F. Peak	Trants Cir* cult
	Use	Circult	Correct Replacement	Switch	Blas	*Note	Original Part	Circult	Correct Replacement	*Note	Vibr. Conn.	Replacement	*Note			
$\underset{273}{\text { ZENITH—Continued }}$ (Chassis 2030).	Vol.															
	Tone	41	N......				22-169	15	TS106.					58,256, 57, ${ }^{3} 59,80$.	175	3
277 (Chassis 2056)..	Sen.	17		6	See No	te As	-29-20.	i	RN242.					$458,56,2 \mathrm{~A}, 59,80$	485	1
	Tone	34	K12				22-203	1.5	TS101.						485	1
278, 280, 281   (Chassis 2051)...																
	$\xrightarrow{\text { Vol. }}$	15		6			${ }_{\substack{22-204.4 \\ 22-203}}$		RN242.					458, 56, 55, 59, 80.	485	1
	Tone Sen.	34 7	K12				22-203.	15	TS101.							
281 (2nd)   (Chassis 2056) . . .	Vol.	17		6			22-204	1	HN242.					458, 56, 2A6, 59, 80.	485	1
	Tone	34	Ki2				22-203	15	TS101					15, 56, 2A6, 5,		1
288, 289   (Chassis 2051) . . .	Vol.	15		6			22-204.	1	RN242.					458, 56, 55, 59, 8	485	1
	Tone	34	Ki				22-203.	15	TS101.					58, 56, 55, 59,	485	1
$\begin{aligned} & 288 \text { (2nd) } \\ & \text { (Chassis 2056) } \ldots . \end{aligned}$	Sen.	7 17		6			22-204	$\ldots$	RN242.					458, 56, 2A6, 59, 80.	485	1
	Tone	34					22-203.	15	TS101.					-8, 56, 246, 5.,		1
291, 292   (Chassis 2022) . .	Vol.	7	A10MP	6			22-157	4	CS133.					258, 24,227, 47, 80	175	1
293 (Chassis 2056)..	Tone	34 17		6			$22-157$ $22-20$.	4	CSI33.					, 24, 27,	175	i
	Tone	34	Ki				22-203	15	TS101.					8, 56, 2A6, 59,	485	1
299 (Chassis 2031)..	Sen.	8		6			22-157	4	CSI33.						175	1
	Tone	34					22-156	4	CS133.					-58, 56, 24, 27, 47, 80.	175	1
	Vol.	11	SRP261..		See No	te A82								OiA, 714		
	Vol.	11	SRP261..		(ee No	te A82										
	vol.	11	SRP261.		See No	te Asz								327, 71 A		
	Vol.	11	SRP261.		See No	te A82								${ }^{5} 27,10$		
	Vol.	11	SRP261...		See No	te A82								${ }^{5} 27,26$		
	Vol.	11	SRP261..		See No	te A82								${ }^{527}$, 71A		
362, 362 $392,392 \mathrm{X}$	Vol.	11	SRP261.		See No	te A 82								${ }^{\text {27, }} 10$		
392, 392A.	Vol.	20	TRP'606...				22-167	28	CSi33.					558,256,259, 57,80	175	3
$\begin{aligned} & 412(414) \\ & 420 \ldots \ldots \end{aligned}$	Tone	41			See No	e A82	22-169	15	TS106.							
	Vol.	20	TRP606		See No		-22-167	28	ČSi33.						175	3
	Tone	41	$\stackrel{N}{\text { SRP }}$				22-169	15	TS106.							
422...............	Vol.	11	K12		See No	te A89								24, 27,		
430, 440, 441, $442 \ldots$	Vol.	20	TRP606				22-167 $22-169$	$28$	CS133.					556,257, $38,589,80$	175	7
	Sen.	$\pm$	A400				\|22-169		TS106.							
443 (Chassis 2030)..	Vol.		TR1'606.				$\frac{2-167}{2-169}$	28	${ }_{\text {HS }}$					358,56, $57,59,80$	i7s	3
	Tone	41			See No	te A5	22-169									
444 (Chassis 2033)..	Vol.	124	TR	6			$22-167$	28	AS213.					558, $\frac{156}{} 557,559,80$	175	7
	Tone	41	${ }_{\text {A }}^{\text {N }}$				22-169	15	TS106.							
460 (2047) (Auto) . .	Vol.	4.	${ }_{\text {N }} \mathrm{N}$				$22-183$	i 1	CNiSi		4	$\underline{2} 2$	$\mathrm{C}_{3}$	26D6, 85, ${ }^{289}$, 6 ¢ 4	485	10
	Tone	4					22-195	15	TS101.	B14						
462 (Chassis 2057)..	Vol.	17	UM15	M26	See Nö	Le A96	22-236	4/15	S116\%		4	221	${ }_{6}{ }^{3}$			
	Tone	34 15	K12.	6			${ }_{\text {22-173 }}$		${ }_{\text {ISuffer }}^{\text {CSI }}$	B14					252.5	10
470 (Chassis 2044)..	Tone	34		6			22-173	1	CS133					358, 56, 55, 59, $80 . .$.		
472 (Chassis 2031)..	Son.	8	SRP2	6			22-157		CS133					$558,5724^{327} 4780$		
	Tone	34					22.156	4	CS133.						175	
473 (Chassis 2030)..	Vol.	41	TRP606				22-167	28	nS213					358,256, 57, ${ }^{359,80}$	175	3
	Tone	41			See No	te A5	22-169	15	TS106.							
474 (Chassis 2053)..	Vol.	17		6			22-168	i	CNi52	B42				258, $55,259,56,80$	175	1
	Tone	41														
475 (Chassis 2054)..	Vol.	17		6			$22-168$	1	CNisz.						175	1
	Tone	41					22-169	15	TS105.							
476, 476A (Chassis 2032)	Sen.	7														
	Vol.	20		6			22-241	28	RN241.					${ }^{3} 56,257,{ }^{3} 58,{ }^{\text {a }} 59,80$.	175	7
	Tone	41	${ }_{\text {A }}$				22-240	28	RS213.							
476B (Chassis 2059)	Supp.	15	A400P N .1	6			22-230.	3	RN242.					${ }^{656,558,259, ~} 80$	175	1
	Tone	57	K1				${ }_{22-247}$	3	RS213.					-6, 5, 59,	17	
	Sen. Vol.	17	${ }_{\text {K }} \mathrm{K}$	6			22-225	15	TSI01.							
478 (Chassis 2056)..	Tone	34	Ki2				${ }_{22-203}^{22-204}$	15	RN242. TS101.					58, 56, 2A6, 59, 80.	485	1
	Sen.	7														
478 (2nd)   (Chassis 2051)...	Vol.	15	N	6			22-204.	1	R N 242.					458, 56, 55, 59, 80	485	1
	Tone	34	K				22-203	15	TS101							
479 (Chassis 2059)..	Sen.	${ }^{7} 5$	N	6										358,656,259, 80	175	
	Tone	57	Ki2				22-230	3	RN242.					58,56, ${ }^{\text {a }}$, 80	175	1
	Sen.	58					22-225.	15	TS101.							
500, 501, 503. 514, 515,516 (Chassis 2037). . . . . . . .																
	Vol.	15	$\stackrel{N}{N}$				22-173.	23	CS133.					56,257, ${ }^{3} 88,59,80 \ldots$	175	3
517, 518		34					22-172	23	CS130.							
(Chassis 2031) . .	Vol.	$3{ }^{8}$	Al0MP	6			$22-157$	4	$\mathrm{CSI}_{\text {CS33 }}$					258, 57, 24, ${ }^{2} 27,47,80$.	175	1
520, 521, 530, 531,	Tone	34					$22-156$	4	CS133.							
	Vol.	20	TR	6			22-167	28	CS133.					358,356,359,257, 80.	175	7
	Tone	41					22-169	15	TS106.					35,36,359,557, 0.	175	7
	Sen.	7	UC50													
558 (Chassis 2051)..	Vol.	15	$\stackrel{N}{N}$	6			$22-201$	i	TN242					58, $56,55,59,80$	485	1
	Tone	3.4	K				22-203	15	TS101							
$\begin{aligned} & 563 . \\ & 568 \text { (Chassis } 2051 \text { ). } \end{aligned}$	Vol.	11	SRP26i		See No	te A82	22-61.	3	M ${ }^{\text {N } 27 \%}$	В 883						
	Vol.	15		6			22-204	1	RN242.					458, $56,55,59,80$	$485^{\circ}$	1
	Tone	34	K12				22-203.	15	TS101.							
	Sen.	7														

Mallory-yaseley hadio service encyclopedia

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{MANUFACTURER AND MODEL} \& \multicolumn{6}{|c|}{CONTROLS} \& \multicolumn{4}{|c|}{CONDENSERS} \& \multicolumn{3}{|c|}{VIbrators} \& \multirow[b]{2}{*}{Complete Tube Complement} \& \multirow[b]{2}{*}{I, F. Peak} \& \multirow[t]{2}{*}{Trans. Clircuit} \\
\hline \& Use \& Circuit \& \begin{tabular}{l}
Correct \\
Replacement
\end{tabular} \& Switch \& Bias \& *Note \& Original Part \& Circuit \& Сотrect Replacement \& *Note \& Vibr. Conn. \& Replacement \& *Note \& \& \& \\
\hline \begin{tabular}{l}
ZENITH—Continued \\
577 (Chassis 2056).
\end{tabular} \& Vol.
Tone
Sen. \& 17
34
7 \&  \& 6 \& \& \& \[
\begin{aligned}
\& 22-204 . \\
\& 22-203 .
\end{aligned}
\] \& 15 \& \[
\begin{aligned}
\& \mathrm{RN} 242 . \\
\& \mathrm{TS} 101 .
\end{aligned}
\] \& \& \& \& \& 458, 56, 2A6, 59, 80... \& 485 \& 1 \\
\hline 578 (Chassis 2051).. \& Sen.
Yol.
Tone
Son \& 75
34
7 \& E.
N
Kı2
J \& 6 \& \& \& \[
\begin{array}{r}
2920 i \\
22-203
\end{array}
\] \& \[
15
\] \& \(\xrightarrow{\text { RN242. }}\) \& \& \& \& \& 558, 56, 55, 59, 80. \& 485 \& 1 \\
\hline 588 (Chassis 2056).. \& Sen.
Sol.
Tone
Tone
Sen. \& \(\begin{array}{r}17 \\ 3 \\ 3 \\ \hline\end{array}\) \&  \& 6 \& \& \& \[
\begin{aligned}
\& 22-20 i \\
\& 22-203
\end{aligned}
\] \& \[
15
\] \& \[
\begin{aligned}
\& \text { MN2.42 } \\
\& \text { TS } 101 .
\end{aligned}
\] \& \& \& \& \& 558, 56, 2A6, 59, 80. \& 485 \& 1 \\
\hline \begin{tabular}{l}
581.590 \\
(Chassis 2051)...
\end{tabular} \& Ser.
Vol.
Tone
Sen. \& 7
15
34
7 \& \[
\underset{\mathbf{K}, ~}{\mathbf{K}}
\] \& 6 \& \& \& \[
\begin{aligned}
\& 22-204 \\
\& 22-203
\end{aligned}
\] \& 15 \& \[
\begin{aligned}
\& \text { RN242. } \\
\& \text { TS101. }
\end{aligned}
\] \& \& \& \& \& 458, 56, 55, 59, 80. \& 485 \& \(\cdots\)
1
\(\cdots\) \\
\hline 593 (Chassis 2056).. \& Sen.
Sol.
Tone
Sen.
Ste \& \(\begin{array}{r}17 \\ 34 \\ \hline\end{array}\) \& N \& 6 \& \& \& 22-204 \& 15 \& RN242. \& \& \& \& \& 458, 56, 2A6, 59, 80 \& 485 \& \({ }^{1}\) \\
\hline \multirow[t]{2}{*}{\begin{tabular}{l}
600 (Chassis 2037). . \\
M601 (P51).......
\end{tabular}} \& Sen,
Vot.
Tone \& 7
15
34 \& M \& 6 \& \& \& 22-173
\(22-172\) \& \({ }_{23}^{23}\) \& \(\mathrm{CSI}_{133}\)
CS 130 \& \& \& \& \& 56,257,358, 59, 80. \& 175 \& 3 \\
\hline \& Tone \& 34
6 \& \(\mathrm{Ni}_{1}\) \& \& \& \&  \& 23
1
1 \& CS130
RS223.
HS213. \& \& \& \& \& 235, 24, 47, 80 \& \& \(\cdots \mathrm{i}\) \\
\hline \multirow[t]{2}{*}{\[
\begin{aligned}
\& 602 \\
\& 603 \\
\& \text { (Chassis } 2038) .,
\end{aligned}
\]} \& Vol. \& 12 \& SRP261 \& \& See No \& te A82 \& 22-61. \& \& MN277 \& B83 \& \& \& \& 324, \(27,7,45,80\) \& \& \\
\hline \& Yol.
Tone
Sen. \& 124
41
8 \& TRP606. \& 6 \& \& \& 22-167. \& 28
50 \& \({ }_{\text {TSS213 }}\) \& \& \& \& \& 358,36, \({ }^{3} 57,359,80\) \& 175 \& \(7^{\prime \prime}\) \\
\hline \[
\begin{aligned}
\& \text { 604, } 606 \\
\& \text { (Chassis 2037) . . }
\end{aligned}
\] \& Sen.
Vol. \& 8
15 \& \& 6 \& No \& te A5 \& 22-173 \& 23 \& CS133 \& \& \& \& \& 56, \({ }^{27}\), 358, 59, \& 175 \& 3 \\
\hline \multirow[t]{2}{*}{608 (Chassis 2035)..} \& Tone
Vol.
Tone \& 34
20
20 \& NHP606 \& 6 \& \& \& 22-172 \& \(\begin{array}{r}23 \\ 28 \\ \hline\end{array}\) \& CSI
HS213
TS13 \& \& \& \& \& 358,256, \(57,359,80\) \& 175 \& \({ }^{\prime}\) \\
\hline \& Tone \& 41 \& N. . \& \& See No \& te A5 \& 22-169 \& 15 \& TS106. \& \& \& \& \& \& \& \\
\hline 610 (Chassis 2031).. \& Yol.
Tone \& 15 \& \& 6 \& \& \& \(\xrightarrow[\substack{22-173 \\ 22-172}]{\substack{\text { 2- }}}\) \& 23
23 \& CS133

$\mathrm{CS130}$ \& \& \& \& \& 358, $56,257,59,80$ \& 175 \& $3^{*}$ <br>
\hline 611 (Chassis 2035).. \& ( ${ }_{\text {Yone }} \begin{aligned} & \text { Yol. } \\ & \text { Tone } \\ & \text { Son }\end{aligned}$ \& 30
41
4 \& NR19606 \& 6 \& \& \& 22-167 \& 28
28
15 \& CSI31.
HST13.
TS \& \& \& \& \& 358,256, 57,359, 80. \& 175 \& 3 <br>
\hline 612 (Chassis 2038).. \& Sen.
Sol
Tone
Sene
Sol \& 124
41

8 \& Tripot \& 6 \& See No \& | te A5 |
| :--- |
| $\cdots \cdots .$. |
| $\cdots$ A. |
|  | \& \[

$$
\begin{array}{r}
22-167 \\
22-169 .
\end{array}
$$

\] \& \[

$$
\begin{aligned}
& 28 \\
& 15
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& \text { MS213 } \\
& T S 106 .
\end{aligned}
$$
\] \& \& \& \& \& 358, ${ }^{356,257,559,80 .}$ \& 175 \& 7 <br>

\hline 613. \& Seri.
Yol.
Yol.
Tone \& 18
12
20
41 \& Sijpti
TRP606
N. \& 6 \& See No \& te A5 \& $22-61$.
$22-167$
$22-169$ \& 3
28

15 \& $$
\begin{aligned}
& \text { MN277 } \\
& \text { MS213. } \\
& \text { TS106. }
\end{aligned}
$$ \& . 383 \& \& \& \&  \& 175 \& 3 <br>

\hline \multirow[t]{2}{*}{616 (Chassis 2037)..} \& Sene
Vol.
Sole \& 15 \& \& 6 \& See No \& te 15 \& 22-173 \& 23 \& \& \& \& \& \& 56,257,588, 59, 8 \& 175 \& $3^{\prime \prime}$ <br>
\hline \& Tone \& 31 \& N \& \& \& \& ${ }_{22-172}^{22}$ \& $\stackrel{23}{23}$ \& CS130 \& \& \& \& \& -6, ${ }^{\text {, }}$ \& 1 \& <br>
\hline 617 (Chassis 2038).. \& Yol.
Tone
Son \& $\begin{array}{r}124 \\ 41 \\ \hline\end{array}$ \& THP'60 \& 6 \& \& \& -22-167 \& $\stackrel{28}{15}$ \& HS213.
TS106. \& \& \& \& \& 58, ${ }^{356,257,359,80}$ \& 175 \& 7 <br>
\hline 618 (Chassis 2037).. \& Sen. \& 8
15
34 \& M \& 6 \& See No \& te A5 \& 22-173 \& 23 \& ${ }_{C S}^{C S 133}$ \& \& \& \& \& 358, 56,257, 59, 80 \& 175 \& 3 <br>

\hline \multirow[t]{2}{*}{619 (Chassis 2033)..} \& Tone \& $\begin{array}{r}34 \\ 124 \\ \hline\end{array}$ \& ${ }_{\text {NRi }}$ \& 6 \& \& \& 22-172 \& | 23 |
| :--- |
| 28 |
| 15 | \& CSI30

HS213
TS13 \& \& \& \& \& 358, 356, 257, 5 59, 80 \& 175 \& 7 <br>
\hline \& Tone \& 41 \& \& \& \& \& 22-169 \& 15 \& TS106 \& \& \& \& \& \& \& <br>

\hline \multirow[t]{2}{*}{620 (Chassis 2038)..} \& Yol \& $\begin{array}{r}124 \\ 41 \\ \hline 8\end{array}$ \&  \& 6 \& \& \& - 22 22-167 \& \[
$$
\begin{aligned}
& 98 \\
& 15
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& \text { MS } 213 . \\
& \text { TSIO6. }
\end{aligned}
$$
\] \& \& \& \& \& 358,356,257,359, 80. \& 175 \& 7 <br>

\hline \& Sen.
Vol. \& ${ }_{12}^{8}$ \& SRPiti \& \& See No \& te A5 \& 22-61 \& 3 \& MN277 \& B83 \& \& \& \& 24, 37,245, 80 \& \& <br>
\hline 622. $\qquad$ \& Yol \& 124
41 \& TH1'606 \& 6 \& Sec No. \& \& 22-167
$22-169$ \& 28
15 \& \$18213. \& \& \& \& \& 358,556,257, ${ }^{3} 59,80$ \& $175^{\circ}$ \& $7^{\prime}$ <br>

\hline \multirow[t]{2}{*}{$$
\begin{aligned}
& \text { 642 i1D, } 651 \mathrm{HE}, \ldots \\
& 650 . \\
& 660 \mathrm{TD}, 661 \mathrm{TE} . . .
\end{aligned}
$$} \& Sen. \& 8

12 \& SRP' \& \& See No \& te A5 \& 22-6 \& ${ }^{3}$ \& MN2\% \& . 183 \& \& \& \& 324,327,245, \& \& <br>
\hline \& Yol. \& 17 \& \& \& \& \& 22-236 \& 4/15 \& SR628 \& \& 34 \& 292 \& C3 \& ${ }^{2} 6 \mathrm{D} 6,6 \mathrm{~F} 7,75,42,84$. \& 252.5 \& 10 <br>
\hline 663-4 (Chassis 5510) \& Vone \& 18 \& $\underset{\text { UMİ }}{\text { K1-Ssii }}$ \& M26 \& \& \& 22-388

$.01 .$. \& 4 \& CM171 \& $$
13253
$$ \& 36 \& 29+5W \& C3 \& 6A7, 61)6, 75, 41, 6\%4. \& 456 \& 10 <br>

\hline $$
\begin{gathered}
666,668 \text { (Chassis } \\
5616) \ldots . . . .
\end{gathered}
$$ \& Vol. \& 18 \& UM154. \& M26 \& \& A96 \& 22-347

01
20.61 \& 4 \& CM171.... \& R253 B14 \& 35 \& 294 \& C3 \& ${ }^{26} 6 \mathrm{D6}, 6 \mathrm{C6}, 75,42,84$. \& 252.5 \& 10 <br>

\hline $$
\begin{aligned}
& 672 . \\
& 680 \text { (Chassis } 5617 \text { ). }
\end{aligned}
$$ \& Vol.

Vol. \& 12 \& SRP261 \& M26 \& See No

RS2.45 \& $$
\begin{array}{r}
\text { te } \mathrm{A} 82 \\
\quad \mathrm{~A} 96 \\
\hline
\end{array}
$$ \& \[

$$
\begin{aligned}
& 22-61 \\
& 22-347 \\
& 01
\end{aligned}
$$
\] \& 3

4 \& MN277....
CM111...

Buffer \& - ${ }_{\text {P183 }}$ \& 35 \& 294 \& C3 \& $$
\begin{aligned}
& 324,245,27,80, \\
& { }^{2} 6 \mathrm{D} 6,6 \mathrm{C}, 75,42,84
\end{aligned}
$$ \& 252.5 \& 10 <br>

\hline \multirow[t]{2}{*}{701.................} \& Vol. \& 15 \& N \& 6 \& \& \& ${ }^{.01} 5$ \& 11 \& Buffer \& B14 \& \& \& \& ${ }^{26} 6 \mathrm{D6}, 75,43,2575 . \ldots$ \& 456 \& <br>
\hline \& vol. \& 17 \& \& 6 \& \& \& C525 \& 11 \& UR182 \& B31 \& \& \& \&  \& 465 \& <br>

\hline | 705, 706, 707 |
| :--- |
| (Chassis 2052) | \& Vol. \& 17 \& \& 6 \& \& \& 22-217 \& 15 \& RN242....

TS101. \& \& \& \& \& 57, 58, 56, 2A6, 59, 80 \& 485 \& 1 <br>
\hline  \& Vol.
Vol. \& 17 \& \& 6 \& \& \& \& 11 \& \& в31 \& \& \& \&  \& 465
485 \& $\cdots$ <br>
\hline \multirow[t]{2}{*}{712 (Early)....... .} \& vol. \& 12 \& \& 6 \& Singlo \& A82 \& ${ }_{\text {22-22-25 }}^{22}$ \& 15
3 \& RN242
TSIO1.
HS213. \& \& \& \& \& ( $\begin{array}{r}56,57,58,2 A 6,59,80 \\ 324.327,245, ~ 80, \ldots . . . . . ~\end{array}$ \& 485 \& 3 <br>
\hline \& Yol. \& 123
41 \& DRP221. \& \&  \& ${ }_{\text {te }} \mathrm{AB4}_{4}$ \& 22-73. \& 3 \& HS216. \& \& \& \& \& \& \& 3 <br>
\hline 715 (Chassis 2053).. \& Vone
Tone \& 17 \& \& 6 \& \&  \& 22-168 \& i \& CN152. \& \& \& \& \& 558, $55,59,56,80$ \& 175 \& 1 <br>
\hline \multirow[t]{2}{*}{22} \& Sen. \& 7 \& SRP262. \& \& \& \& \& \& \& \& \& \& \& \& \& <br>

\hline \& Vol. \& 123 \& SRP261. \& \& Single \& ${ }_{\text {A82 }}{ }^{\text {A83 }}$ \& $$
\begin{aligned}
& 22-72 \\
& 22-73
\end{aligned}
$$ \& 3

3 \& - \& \& \& \& \& 324,327,345, 80 \& \& 3 <br>
\hline \multirow[t]{3}{*}{} \& Tone \& 14
4
97 \& M. ${ }^{\text {THiboz }}$ \& \& See No \& te A4 \& \& \& \& \& \& \& \& \& \& <br>
\hline \& voi. \& 12 \& SRP261. \& \& \& \& 22-72 \& ${ }_{3}$ \& HS213 \& \& \& \& \& 324, $327,245,80$ \& \& 3 <br>
\hline \& Tol. \& 123

41 \& DRP1221. \& \& $$
\left\lvert\, \begin{gathered}
\text { Dual } \\
\text { See No }
\end{gathered}\right.
$$ \& ${ }_{\text {te }} \mathrm{A}^{883}$ \& \& 3 \& HS216. \& \& \& \& \& \& \& <br>

\hline \multirow[t]{2}{*}{735................} \& Vol. \& 97 \& TRir602.... \& \& \& \& \& 12 \& Csiz1 \& \& \& \& \& $19,30,32.34$ \& 175 \& <br>
\hline \& Tol. \& 15 \& OC502..... \& \& \& \& P80968 \& 12 \& CS121 \& \& \& \& \& 334, $330,10 \mathrm{AB}$ \& 175 \& <br>

\hline 750 (Chassis 2052).. \& vol. \& 17 \& \& 6 \& \& \& $$
\begin{aligned}
& 22-217 \\
& 22-225
\end{aligned}
$$ \& 15 \& \[

$$
\begin{aligned}
& \mathrm{MN} 242 \\
& \mathrm{TS} 101 .
\end{aligned}
$$
\] \& \& \& \& \& 56, 57, 58, 2A6, 59, 80 \& 485 \& 1 <br>

\hline $$
\begin{gathered}
\text { 755, } 756 \text { (Chassis } \\
\text { 2053) } \ldots . . . .
\end{gathered}
$$ \& Vol.

Tone
Sen. \& 17
4
7 \& N SRP262 \& \& \& \& 22-168. \& 1 \& CNI52. \& \& \& \& \& 358, 55,259, 56, 80. \& 175 \& 1 <br>
\hline 757 (Chassis 2054).. \& Yol,
Tone
Son \& 15
41

48 \& \& 6 \& \& \& $$
\begin{aligned}
& 22-168 \\
& 22-169
\end{aligned}
$$ \& \[

$$
\begin{array}{r}
1 \\
15
\end{array}
$$

\] \& \[

$$
\begin{aligned}
& \mathrm{CN} 152 . \\
& \mathrm{TS} 106 .
\end{aligned}
$$
\] \& \& \& \& \& 358,356,259, 80 \& 175 \& $\mathrm{i}^{*}$ <br>

\hline \[
$$
\begin{aligned}
& 760,765,767 \\
& \text { (Chas9is 2054) } \ldots
\end{aligned}
$$

\] \& | Sen. |
| :--- |
| Vol. |
| Tone Sen. | \& 58

17
41

7 \& | UC500 |
| :--- |
| N . UC500 | \& 6 \& \& \& \[

$$
\begin{aligned}
& 22-168 \\
& 22-169 .
\end{aligned}
$$

\] \& 15 \& \[

$$
\begin{aligned}
& \text { CN152. } \\
& \text { TS105. }
\end{aligned}
$$
\] \& \& \& \& \& 356,358,259, 80. \& 175 \& $\cdots$ <br>

\hline
\end{tabular}

Mallory-yaxley radio service encyciopedia

MANUFACTURER AND MODEL.	CONTROLS						CONDENSERS				VIBRATORS			Complete Tube Complement	$\begin{aligned} & \text { 1. F. } \\ & \text { Paak } \end{aligned}$	Trans. Circuit
	Use	Circuit	Correct Replacement	Switch	Blas	*Note	Original Part	Circuit	Correct Replacement	*Note	Vibr. Conn.	Replacement	*Note			
ZENITH—Continued(Chassis 2032).	Vol. Tone	20 41	$\underset{\text { TrP606... }}{\text { N }}$	6			22-2.410.	28	$\begin{aligned} & \text { RN2.41. } \\ & \text { RS213. } \end{aligned}$					358,356,257,359, 80. . . .	175	7
	Supp. Vol.	7 15	A4001 N	6			22-230	3	RN242.					358,656,259, 80	175	
770B (Chassis 2059)	Tone	57	$\mathrm{K}_{\mathrm{K}} \mathrm{i}$	6			22-2.17	3	RS213.					-5, $6,50,80$		
	Sen.	${ }^{7}$	K. ${ }_{\text {L }}$				${ }_{2}^{29} 2$	1.5	TS101.							
772....	Vol.	123	DR	6			22-72.	3 3 3	RS213. RS216.					324,327,245, 80........		3 .
775 (Chassis 2032)..	Vol.	20	TRP606.				22-2.41	${ }_{28}^{28}$	RN241					356,257, ${ }^{358,259,80}$	175	7
	Tone	41	N. ${ }_{\text {A }}$				22-240	28	RS213.							
775B (Chassis 2059)	Vol.	15	$\stackrel{\sim}{N}$	6			$22-230$	3	RN242					656,58,259, 80	175	1
	Tone Sen.	57					22-217	3 15	RS213.							
777...............	Vol.	12	Sipizi		single	A82	22-72	$\begin{array}{r}3 \\ 3 \\ \hline\end{array}$	RS213					34,327, 45		3
	vol.	123	DRP221		Inual	${ }_{\text {A }} 88$	22-73	3	RS216							
780 (Chassis 2032)..	Vol.	20	THiP606.	6		te A4	22-241	28	RN241					356,257, $358,59,80$	$17{ }^{\circ}$	7
	Tone	41					22-240	28	RS213.							
788 (Chassis 2059)..	Supp. Yol. Tone	$\begin{array}{r}75 \\ \hline 57\end{array}$		6			${ }_{\substack{22-217 \\ 22-230}}$	${ }_{3}^{3}$	RS213.					558,856,259, 80	175	1
	Tone	57   58   18	K12				- ${ }_{\text {22-230 }}^{22.253}$	$\begin{array}{r}3 \\ 15 \\ \hline\end{array}$	$\begin{aligned} & \text { RN2.42. } \\ & \text { TS101. } \end{aligned}$							
$\begin{aligned} & 801 .(C) . . \\ & 805 \text { (Chassis 5502)... } \\ & 806,807 \text { (Chassis } \\ & 5504,505) . \\ & 808.809(\text { Chassis } \\ & 5605,5607) \ldots . \end{aligned}$	Vol.	17	$\stackrel{N}{N}$	6			${ }^{\text {C5, }} 5$	11	UR182.	- ${ }_{\text {B31 }}$				6F66, 75, 43, 25\%, 6	456 2525	$\cdots{ }^{\prime}$
	vol.	18 18		6			22-125. 22-125.	23 23	RM262   RM262	. B 50				6F7, 6D6, 75, 42, 80. 6A7, 6D6, 75, 42, 80.	252.5 252.5	1
	Vol.	18	M.	6			$\begin{aligned} & 22-125 . \\ & 22-318 . \\ & 22-306 . \end{aligned}$	$\underset{13}{25}$	$\begin{aligned} & \text { RM262. } \\ & \text { RN241. } \\ & \text { CS130.. } \end{aligned}$	.B216				26D6, 6A7, 75, 42, 80.	252.5	1
810, 811 AC-DC   (Chassis 5609)	Vol.	18	11	6			22-307. 22-308 $22-195$.	11 11 15	$\begin{aligned} & \text { RM257 } \\ & \text { RN232. } \\ & \text { TS101.. } \end{aligned}$	$\begin{aligned} & \mathbf{1 2 2 1 5} \\ & . \mathbf{B 8}^{2} \end{aligned}$					252.5	.......
$\begin{gathered} 812 \text { (Chnssis 5608) } \\ \text { AC-1)C......... } \end{gathered}$	Vol.	18	M	6			${ }_{\text {22-308 }}^{22-307}$	11	RM257.	$. \mathrm{B215}$					125	
$\begin{gathered} \text { 814. } 815 \text { (Chassis } \\ 5611,5612 \text { ).... } \end{gathered}$	Vol.	18	M	6			22-125.	25/13	RM262.	. 3216				26D6, 6A7, 75, 42, 80.	125	1
816 (Chassis 56	Vol.	18	11	6			22-387. $22-308$ 2	${ }^{11} 1$	RM257. RN232.	188				$\begin{aligned} & i 6 \mathrm{D} 6,6 \mathrm{BA7}, 75,43, \\ & 2525, \ldots \end{aligned}$	125	
819 (Chassis 5608). .	Vol.	18	M.	6			$22-307$ $22-308$	11	RM257.	$18215$				$\begin{array}{r} { }^{26 D 6}, 6 \mathrm{DA} 7, \\ 25 \mathrm{Z5} \ldots \ldots, \\ \hline . . \end{array}$	125	
$\begin{gathered} 825,827 \\ \text { (Chassis 5701-2-3) } \end{gathered}$	Vol.	18	M.	6			${ }_{22-286}^{22-283}$	${ }_{23}^{23}$	CM172   CM175	. B 10				36D6, 75, 42, 37, 80...	485	1
S827 (Chassis $5701 \mathrm{R})$	Vol.	18		6			22-321.	25/13	$\begin{aligned} & \text { CSI33. } \\ & \text { RN242. } \end{aligned}$					36D6, 76, 75, 42, 80...	252.5	1
$\begin{gathered} 829 \text { (Chassis } \\ 5701-2-3) . \end{gathered}$	Vol.	18		6			$\xrightarrow{22-2836}$	$\stackrel{23}{23}$	$\begin{aligned} & \text { CM172. } \\ & \text { CM175. } \end{aligned}$					36D6, 75, 42, 37, 80...	485	1
$\begin{gathered} \text { S829 (Chnssis } \\ 5701 \mathrm{R}, 5702 \mathrm{R}, \\ 5703 \mathrm{R}) \ldots . . . \end{gathered}$	Vol.	18		6			22-321.	25/13	CS133.					36D6, 75, 42, 76, 80...	252.5	1
$\begin{gathered} 835 \text { (Chassis } 1001,^{1001 \text { A)........... }} \end{gathered}$	Vol.	18	TRP606..	6			22-331 $\begin{aligned} & 22-125 \\ & 22-255 \\ & 22-125\end{aligned}$	3 3 3 1.5	RS213. TS101.	. 1216					485 2525	1.
845 (Chinssis 5502). S847, 850 (Chnssis 5504, 5505) 860. 861 (Chassis 5605, 5607.	Vol.	18		6			22-125	23	RM262	. $\mathrm{B50}$				6F7, 6D6, 75, 42, 80.	252.5	,
	Vol.	18	M	6			22-125	23	RM262	. $B 50$				6A7, 6D6, 75, 42, 80.	252.5	1
	Vol.	18		6			$\begin{aligned} & 22-125 \\ & 22-318 \\ & \Omega \Omega \end{aligned}$	25/14	RM262.   RN241.   CS130	. 8216				26D6, 6A7, 75, 42, 80.	252.5	1
$\begin{gathered} 862 \mathrm{AC}-\mathrm{DC}(\text { Chassis } \\ \mathbf{5 6 0 9}) . . . . . . . . . . \end{gathered}$	Vol.	18		6			22-307. 22-318. $22-195$.	11 11 15	$\begin{aligned} & \text { RM257. } \\ & \text { RN232. } \\ & \text { TS101. } \end{aligned}$	${ }^{. B 215}$				${ }_{26 \mathrm{D} 6,}^{25 \mathrm{Z} 5} \ldots \ldots, \ldots . .$	252.5	
$\begin{gathered} 864 \text { (Chassis } 5611 . \\ \text { 5612) } . . . . . . . . \end{gathered}$	Vol.	18		6			${ }_{\text {22-318. }}^{22}$.	25/13	$\begin{aligned} & \text { RM262. } \\ & \text { RN241. } \end{aligned}$	. B 216				26D6, 6A7, 75, 42, 80.	125	1
865. 866 AC-DC (Chnssis 5609 )	Vol.	18	H.	6			22-307. 22-308. $22-195$.	11 11 15	RM257 RN232 TS101.	$.18215$					252.5	
$\begin{gathered} 870 \text { (Chassis } \\ 5701-2-3) \text {. } \end{gathered}$	Vol.	18	M.	6			22-283	${ }_{23}^{23}$	CM172. CM175.	. 110				30D6, 75, 42, 37, 80...	485	1
S870, S871 (Chassis $5701 \mathrm{R}, 5702 \mathrm{R}$, 5703H).	Vol.	18	M.	6			22-321.	${ }_{25 / 13}$	$\begin{aligned} & \text { CSI33. } \\ & \text { RN242. } \end{aligned}$					${ }^{3} 6 \mathrm{D} 6,75,42,76,80 \ldots$	252.5	1
880, 881 (Chassis 1001, 1001 A )..	Vol.	18	TRP606..	6			22-331. $\begin{aligned} & 22-125 . \\ & 22-225\end{aligned}$	3 3 15	$\begin{aligned} & \text { RS213. } \\ & \text { RM262. } \\ & \text { TS101. } \end{aligned}$	13216				$\begin{array}{r} { }^{3} 6 \mathrm{D} 6,{ }^{75}{ }^{3}{ }^{3} 42,76,573 \\ 6 \mathrm{~A} 7 \ldots \ldots . . . . \end{array}$	485	1
$\begin{aligned} & \text { 908, } 909 \text { (Chassis } \\ & \text { 5614). } \end{aligned}$	Vol. Tone	18	M50мі'	6			22-385	25/13	RM265.					26D6, 6A7, 75, 42, 80.	252.5	1
S908, S909 (Chassis 5618).	Vol. Tone	18	M $\mathbf{Y} \mathbf{5} \mathbf{M} \mathbf{M i P}$.	6			22-385	25/13	RM265.					${ }^{26 \mathrm{D} 6,6 A 7, ~ 75, ~ 42, ~} 80$.	252.5	1
935 (Chnssis 1001)	Vol.	124	TRP606.	6			$\xrightarrow{22-1251}$	3 3	$\begin{aligned} & \text { WF847 } \\ & \text { WE847 } \end{aligned}$						485	1
$\begin{aligned} & 945.950 \text { (Chassis } \\ & \mathbf{5 5 0 8}, 5509 \text { ).... } \end{aligned}$	Vol. Tone	$\stackrel{18}{22}$	Msomip.	6			22-125	2.5	R M262.	13216				6A7, 6D6, 75, 42, 80.	252.5	1
$\begin{array}{r} 960,961 \text { (Chassis } \\ \mathbf{5 6 1 4 )} \text {......... } \end{array}$	Vol.	18		6			22-385	25/13	IRM265.					26D6, 6A7, 75. 42, 80.	252.5	1
S961 (Chassis 5618).	Tone	18		6			22-385.	25/13	RM265.						252.5	1
	Tone	34	Ysomi'													
970,975 (Chassis $5902)$. . ........	Vol. Tone	$\begin{aligned} & 114 \\ & 11.4 \end{aligned}$		6			$\stackrel{22-125 .}{22-230 .}$	3 3	$\begin{aligned} & \text { RM262 . } \\ & \text { IRN242. } \end{aligned}$	B216				258, 2A7, 22A5, 366, 80.	175	1

Mallory-yastey radio service encyclopedia


Matlory-Yastey radio service encyclopedia


* IMPORTANT: Read Notes in Note Section if apecified in Note Column.


## Explanation of Abbreviations

(Used in Control Listings, Pages 13 to 157)

Att. . . . . . . . Attenuator Control.
AVC. . . . . . . Automatic Volume Control.
Band . . . . . . . Band Adjustment Control.
Bass. . . . . . . Bass Tone Adjustment Control.
Batt........ . Battery Voltage Control.
BFO . . . . . . . Beat Frequency Osc. Control.
Bias........ . Bias Adjustment Control.
B. Tone. . . . Bass Tone Control.

Clr'ty . . . . . . Clarity Control.
Equal. . . . . . Equalizer Control.
Exp. . . . . . . . Expander Control.
Exp. Bias. . .Expander Bias Adjustment Control.

Fid. . . . . . . . Fidelity Control.
FidIty. . . . . . Fidelity Control.
Fil. . . . . . . . . Filament Control.
F.O.G. . . . . . Flashograph Adjustment Control.
Gain. ....... . Gain Control.
H.F. Tone . High Frequency Tone Control.

Hum ....... . Hum Control.
L.F. Tone . . Low Frequency Tone Control.

Loc'Izr. . . . . Localizer Control.
Meter. . . . . . Meter Adjustment Control.
Mic.. . . . . . . Microphone Adjustment Control.

Mike
...... . Microphone Adjustment Control.
Mod. ....... . Modulator Control.
Mon. . . . . . . Monitor Control.
M. Vol...... Manual Volume Control.

NSC. . . . . . . Noise Suppression Control.
Osc. Adj.... Oscillator Adjustment Control.
P.E. Adj. . . .Photo-Electric Cell Adjustment Control.
Phantom.. Phantom Tuning Control.
Phono..... . Phonograph Pick-up Control.
Power. . . . . . Line Voltage Control.
Primary.... Primary Voltage Control.
P.U. Adj. . . .Pick-up Adjustment Control.
P.U. Volt. . . Pick-up Voltage Control.

QAVC...... .Q.A.V.C. Adjustment Control.
Reg. . . . . . . . Regeneration Control.
Regen. . . . . . Regeneration Control.

Relay. . . . . . Relay Adjustment Control.
Screen. . . . Screen Voltage Control.
Sel. . . . . . . . . Selectivity Control.
Sen........ . . Sensitivity Control.
Sil.......... . Silencing Control.
Supp. . . . . . .Suppressor Control.
Tone. . . . . . . Tone Control.
Tone B'm. ..Tone Beam Adjustment Control.
T. Tone . . . Treble Tone Control.

Tunlgt. . . . Tuning Light Adjustment Control.

Vol......... . Volume Control.
Voltage. . . .Plate Voltage Adjustment Control.
V. R........ Voltage Regulator Control.

EX 100.... EX followed by a numeral indicates that an external resistor of the stated value must be connected between the right hand terminal of the control and the cathode circuit of the receiver.

# "A" 

 CONTROLSRESISTANCE VALUE

One of the first points to be considered in the replacement of a defective control is the proper resistance value. Although actually of secondary importance as compared to the primary need of correct taper, the resistance value was usually the dominant factor in choosing a replacement control. This situation was entirely natural inasmuch as the listing of replacement controls with really complete taper information has been a comparatively recent innovation. Secondly, many servicemen were not familiar enough with the tremendous influence which taper has on the operation of any volume control. Finally, they were not aware of the permissible tolerance in the matter of control resistance value.
In many cases the tolerance range has been very wide. The tolerance specification in one particular instance was plus $40 \%$, and minus $25 \%$. This means that if the nominal value is 10,000 ohms, the control will be acceptable and will give good performance if its resistance is anywhere between 7500 ohms and 14,000 ohms inclusive. Nominal tolerance of carbon controls is plus or minus $20 \%$ from stated value. Yet many servicemen fear to use a 10,000 ohm control (of proper taper), to replace one of 11,000 ohms.
Always Remember-"RESISTANCE VALUE IS NOT CRITICAL BUT TAPER MUST NOT BE CHANGED." This rule will save time and worry because the resistance value need only be sufficient to give full control. Thus, it should be great enough that weak stations may be heard at their full streng th, and yet it should not be so great that difficulty is encountered on local stations.

Consider an actual case, wherein the specified value is 12,500 ohms. This is readily replaceable with a $15,000 \mathrm{ohm}$ control. Warning! Of the same taper.

In many instances this control is replaceable with a $10,000 \mathrm{ohm}$ control (of the same taper). To a certain extent, this is controlled by circuit action. (See "Circuit Action.'"-page 161.)

## DEFINITION OF TAPER

The word taper, as applied to controls, means that the resistance of the control does not change in a direct ratio with the rotation of the control. The term direct ratio or linear action means that the resistance value varies directly with the degree of rotation. That is, at $1 / 4 / 4$ rotation there is $1 / 4$ of the total resistance, similarly at $1 / 2$ rotation there is $1 / 2$ of the total resistance.

## IMPORTANCE OF TAPER

Since it is generally agreed that taper is the most important factor in control replacement work, an
understanding of the fundamentals of this subject is indispensable to the individual interested in service work. Many stubborn cases of volume control trouble may be quickly diagnosed. correct treatment or remedy prescribed, and a permanent cure effected by simple application of this knowledge. The subject of taper is not difficult to understand, on the contrary it is quite simple, yet there is more misinformation and lack of information on this subject than on any other subject of equal importance in the radio service field.

The following discussion is presented with a view of clarifying any confusion created by the wide circulation of complicated taper charts with little or no attendant explanation. For purposes of clarity and emphasis this discussion is presented in an informal and non-technical style.

## TYPES OF TAPER

There are only two basic types of taper, Left Hand (Yaxley No. 1) and Right Hand (Yaxley No. 2).
Popular usage has defined "Linear" as a "Taper," therefore it will be listed as such.
In addition to the two basic tapers, Yaxley lists the III (3), a combination of tapers I (1) and II (2), for "special" (SRP) controls. Also, the VII (7) taper (in wire wound controls only) for special use as a replacenent for Ant.-Bias circuits, or to replace shunt controls for circuits designed before it was possible to make logarithmic types of taper. The three remaining Yaxley tapers (4A,5, and 6) are modifications of the basic tapers. The Yaxley No. 5 taper is a general type of taper having a characteristic of approximately $20 \%$ of total resistance at $50 \%$ rotation. The curve of this taper varies according to the location of the tap. This


Figure 37
design is necessary because in circuits using tapped controls, the loss of the higher frequencies must be offset by shifting the taper curve to obtain an apparently even control in volume. It is not desirable to have a large and confusing array of slightly different tapers, hence the generalization of the No. 5 taper.
Yaxley tapers are controlled by a new and exclusive design as shown in Figure 37.

This views a tapered element (Yaxley No. 2 right hand taper, with switch) and shows the method of tapering a control by "Geometric Design," mathematically calculated and field checked. This is the only real solution to the problem of taper. Notice that the tails of each section fade into the next section (marked by the ball and arrows) and that the "Roller" which does not roll, contacts a gradually increasing or decreasing area of each section. This prevents any "step" or "jump" in resistance value and assures a smoothness unknown to any other method of tapering a control.

## WHY TAPER?

It is necessary to taper the resistance of a control in order to give an apparent linear control of the signal, thus when the control is turned to the "half-way on" position, one expects to hear a volume of signal which will be one-half that obtained at the full "on" position of the control.


## Figure 38

Let us suppose that the control in Circuit 16 (Figure 38) is in an amplifier and that we supply a certain measured value of signal, with the control at full "on" position, next we turn the control until the signal sounds only half as loud, and then measure the signal at the grid of the tube.

Our measurement shows that we have reduced the signal to approximately $1 / 10$ its former value.

The reason for this unusual action is that the human ear has a peculiar characteristic in that to double a given volume of sound requires an increase of approximately ten times the original intensity.

Or, more simply-if it requires a pressure of one pound per square inch to produce a certain volume of sound, it will require a pressure of ten pounds per square inch to double this volume. Sound pressures are not measured in the large quantities given. However, the explanation is plain.

# LEFT-HAND TAPER (Yaxley No. 1) 

The taper action shown in Circuit 16 (Figure 38) is that of the comnion or "Left-Hand" taper (Yaxley No. 1). Let us see why this is called a "Left-Hand" taper.
It is common practice to have volume controls wired so that when the knob is rotated all the way in a clockwise direction, or as we often say, "to the right," we will have our full volume position. Minimum volume or "off" position will be at the full counterclockwise, or "left hand" position of the knob.

In the explanation of taper action, we pointed out that at half volume or half rotation position of the control knob, we need only $1 / 10$ of the full volume voltage. Therefore, we need only $1 / 10$ of our total resistance between full "left" position and the "halfway" position of our knob. This is made clear in Figure 39.


TOTAL RESISTANCE 500,000 OHMS Figure 39

Note the position of the arm of the control and the resistance values of the two halves of the control.


Figure 41
Figure 40 shows the connections of the ohmmeter, and Figure 41 illustrates the plotting of the complete taper curve. See page 160 "How to find the taper of a control."

Note that the left hand half of the control has its resistance tapered out. This is the reason for calling this a "Left Hand" taper.

Always use a left hand taper (Yaxley No. 1) for all "Shunt" or "Short Out" circuits. (See the exceptions given in the chapter on "Circuit Action," page 161.) Refer to pages 178 to 183 and look at circuits numbered 1 to 6,10 to 16 to 20, (21), (22), 23, 33 to (36), 39 to 41,44 to $46,50,55$ to 57,60 to (67), (69), $72,73,76,77,79,80,81,83,85,87,93,94,96,(100)$. All these circuits require a left hand taper fundamentally. Those marked with parenthesis and a few others use a modified or combination taper. The reasons for this departure are given in the chapter on "Circuit Action." Note! Tone Controls are generally left hand taper. They usually have the "Bass" position at the left of the knob. When "Bass" position is at the right of the knob, a right hand taper is required. See the chapter on "Tone Controls," page 169.

A good general rule is, "When only the center and left hand terminals are used, use a left hand taper (Yaxley No. 1).
When replacing a control, always examine the circuit and check the taper of the original control. It is wise to question your customer in regard to the action of the control to learn if it was smooth or jerky in its action. Study the circuit and refer to the chapter on "Circuit Action" before replacing it. Often a slight change will give better volume control and a satisfied customer.

QUICK REFERENCE (Yaxley No. I) LEFT HAND   TAPERED CONTROLS			
Ohms Resistance	Catalog Number	Type	General Use
500	A	W. W.	Ant. Shunt
1000	B	W. W.	Ant. or Pri. Shunt
2000	C12	W. W.	Ant. or Pri. Slunt
3000	D12	W. W.	Ant. or Pri. Shunt
5000	E12	Carbon	Ant. or Pri. Shunt
7500	F12	Carbon	Ant. or Pri. Shunt
10,000	G12	Carbon	Ant. Shunt or Ant.Bias Tone
15,000	H12	Carbon	Ant. Shunt or Ant.Bias Tone
20,000	Y	Carbon	Ant. Shunt or Ant.Bias Tone
50.000	K12	Carbon	Screen Voltage, Tone
75,000	Z12	Carbon	Screen Voltage, Tone
100.000	1.	Carbon	AF or RF Shunt. Audio, Tone
150,000	UC502	Carbon	AF or RF Shunt, Audio, Tone
250,000	M	Carbon	AF or RF Shunt, Audio, Tone
250,000	UC511*	Carbon	Audio Control (Auto)
500,000	N	Carbon	Audio Control
500,000	UC512*	Carbon	Audio Control (Auto)
500,000	UCS15	Carbon	Audio Control (Auto)
750,000	UC503	Carbon	AF Shunt, Audio. Tone
1 Meg.	$\bigcirc$	Carbon	Audio, Tone
1 Meg .	UC514*	Carbon	Audio, Auto
2 Meg .	P	Carbon	Audio, Tone
3 Meg .	UC504	Carbon	Audio, Tone
4 Meg .	UCEO5	Carbon	Audio, Tone
5 Meg.	UC506	Carbon	Audio, Tone
9 Meg .	UC508	Carbon	Audio, Tone

*Slotted shaft for auto receivers.
In the "General Use" column are abbreviations of the use of the control; circuits follow:
Ant. Shunt-Circuits 1 to 5, 40, 60.
Pri. Shunt-Circuits 10, 81 (Plate control).
Ant.-Bias**—Circuits 6, 69.
Screen Voltage-Circuit 12.
Tone-Circuits $21,22,34,39,41,44,57,65,67,72$, 85, 101. 103.
AF Shunt-Circuits 15 to $18,33,76,96$
RF Shunt-Circuits $13,14,81$ (Grid).
Audio-Circuits 15 to $18,33,45,46,55,56,61,73$, $76,77,78,83,93,96$.
**Ant.-Bias circuits 6 and 69 often use a left hand tapered control where tubes of sharp cut off characteristics (such as type 24) are used: Yaxley No. 7 taper is excellent for this use.

WARNING! Be careful that the control for circuits 0 and 69 is not too large a resistance value that plate current "cut-off" occurs at or near minimum volume position. If cut-off is approached too closely distortion will occur. Read "Circuit Action" page 161.

## RIGHT HAND TAPER (Yaxley No. 2)

Right Hand Taper (Yaxley No. 2) is the designation applied to a control wherein the Right Iland half of the resistance is tapered out. Right Hand taper is used in series circuits.

We have explained the necessity of taper, because of the characteristics of the human ear. Right Hand taper is necessary because of the peculiar combination of circuit action and the action of the ear. Figures $42,43,44$ and 45 give a clear picture of the arrangement and measurement of Right Hand Taper.



Figure 43


Figure 44

Study these illustrations. They will help you understand taper. Let's take a common application of Right-Hand Taper (Yaxley No. 2) to see why it is necessary and how it works. The "graph" (Figure 46) plots the "resistance against rotation" versus the Mutual Conductance ( Gm ) of a tube of the remote "cut-off" type such as a 6D6. The control-Yaxley UC510-100,000 ohms No. 2 right-hand taper.
Reducing the Mutual Conductance ( Gm ) of a tube lowers the amplification, however, there is a limit to this reduction because if the plate current of the tube is reduced to the "cut-off" point, distortion will occur. Be sure to read the full particulars of this in "Circuit Action" page 161. Study the curve in Figure 46. Note that the "gain" is reduced to approximately $10 \%$ when this control is at the "middle" point of its rotation. This is necessary if we wish to have an apparent linear reduction of volume with rotation of the control. Right hand taper (Yaxley No. 2) is used in most "Series" circuits, such as plate voltage, screen voltage, cathode or "Bias" control and "series losser" types of circuits. Note the list of Right Hand tapered controls (Yaxley No. 2) and look at the circuits that are specified for each one.



Figure 40

QUICK REFERENCE (Yaxley No. 2) RIGITT HAND   TAPERED CONTROLS			
Ohms Resistance	Catalog Number	Type	General Use
1,000	UC500	w. w.	Bias
2,000	C*	W. W.	Bias
3.000	D*	w. W.	Bias
5.000	E*	w. W.	Bias
7.500	F*	W. W.	Bias
10,000	UC501*	Carbon	Bias, Losser
10,000	G*	W. W.	Bias, Losser
15,000	${ }^{\text {* }}$	W. W.	Bias, Losser
25,000	J*	Carbon	Bias
50.000	K*	Carbon	Bias, Plate, Screen
75.000	2*	Carbon	Bias, Plate. Screen
100,000	UC510*	Carbon	Bias, Ant.-Bias, Plate
250.000	UC509*	Carbon	Bias, Ant.-Bias. BiasAudio
500.000	UC513	Carbon	Bias, Ant.-Bias, BiasAudio
5 Meg .	UC507	Carbon	Screen

*Have exclusive Yaxley "adjustable fixed bias" feature.
Note: Nearly all low resistance "Blas" controls carry heavy current and are therefore wire wound type. Don't take a chance. Use Yaxley. In the "general use" column are abbreviations of the use of the control; Circuits follow:
Bias-Circuits 7, 8, 42, 47, 49, 58, 98.
Losser-Circuit 84.
Plate-Circuit 26.
Screen--Circuit 27.
*Ant.-Bias-Circuits 6, 69, 70 (See note). Bias-Audio-Circuit 88.

WARNING! Right Hand taper (Yaxley No. 2) is to be used for Ant.-Bias only with Variable Mu or Remote Cut-Off tubes. It is usually found in popular AC-DC receivers. Be sure to read "Circuit Action" page 161. Look at the taper curves for Yaxley No. 2 Right Hand taper and see the small curve at the left hand end. This curve gives smooth action in Ant.-Bias and Bias-Audio Circuits.


Yaxley No. 3 taper is a combination of left and right-hand tapers. It is necessary in only a few designs. Supplied in SRP (special) controls only.

MAXLEV NOB (III)TAPER


Figure 47

## LINEAR TAPER <br> (Yaxley No. 4)

A Linear control is not tapered, that is the resistance is equal in percentage to the percentage of rotation. At the center of rotation the resistance is equal in both halves of the control.


Figure 48
Note the ends of the "curve" are tapered off so that there will be no "hop off" on a weak signal.

## "LINEAR" CONTROLS

Ohms Res't.	Catalog No.	Type
400	A400P	WW
550.	A550P	. WW
1,000	A1MP	WW
2,000	A2MP*	WW
3,000	A3MP*	WW
5,000	A5MP*	WW
5,000	Y5MP	Carbon
10,000	A10MP*	. WW
10,000	Y10MP	Carbon
20.000	A20MP*	WW
25,000	Y25MP	Carbon
50,000	Y50MP	Carbon
100,000	Y100MP	Carbon
200,000	Y200MP	Carbon
250,000	Y250MP	Carbon
500.000	Y500MP	Carbon
1 Meg .	Y1000MP	Carbon

*Has exclusive Yaxley adjustable bias feature.
WW-Wire Wound.

YAXLEY No. 7 TAPER

MAXEFY NS 7 THPER


Figure 49
Yaxley No. 7 taper is almost a linear. Note that at the left hand terminal there is a small amount of resistance in the first few degrees of rotation. Yaxley No. 7 taper is for use in replacing older types of Wire Wound controls in Ant.-Bias circuits. The "spreadout" portion of resistance, at the left hand end of the control, gives a smooth control of the most powerful signals. Controls with this taper have the Adjustable Blas feature, explained on page 185.

## HOW TO FIND THE TAPER OF A CONTROL

To find the taper of a control, set the moving arm at the middle point or center of its arc of travel and then
(with the terminals "down" or toward you) (Figure 50) measure the resistance between the center terminal and the left hand terminal and compare this resistance value with the resistance between the center and right hand terminals.

ligure 50

If the left-hand half of the control (Figure 50) has a lower resistance than that of the right-hand half of the control (Figure 51), the taver is "Left-Hand" (Yaxley No. 1). If the resistance of the two halves are the same (or very nearly so), the control is a "linear" taper. If the right-hand half has the lowest resistance value, the control has a "right-hand" taper. (Figures 50 and 51 show a 100,000 ohm left-hand (Yaxley No. 1) tapered control Type "L").


Figure 51

To determine the taper of a control wherein there is an "open" in the resistance element proceed as follows:


Figure 52-53

Refer to Figure $52-53$ wherein there is a rear view of a wirewound control with an "open" at the point marked " X .

Although a wire wound control is shown, these instructions also apply to carbon type controls.

In Figure 52-53, note that the terminals bear the designations $R, C$ and $L$. By turning the control around and facing the shaft end, these would read properly; i. e., L, left hand; $C$, center, and $R$, right hand.

To determine the taper first place the moving arm in the center of its rotation as shown in Figure 52-53. Second, measure the resistance between terminal ' $R^{\prime \prime}$ and terminal " $C$ ' and make a note of this value. Third, measure the resistance between " C " and the edge of the "open" marked " $B$ " and make a note of this value.

Fourth, measure the resistance between terminal "L" and the edge of the "open" marked "D."
Fifth, add the vilue's obtained in steps three and four to obtain the resistance of right hand half of the control.

With the values of the two halves of the control known a comparison will quickly show the taper as explained earlier in this article.
If there is more than one "open" proceed as above with the exception that the value of resistance between the different"open" places will have to be obtained and added together so that it is possible to compare the resistance of the two halves of the control.

The foregoing method of deternining taper by comparing the right and left halves of the resistance element is a "rough and ready" method applicable in most cases. However, for those who wish to obtain the exact shape of taper curve employed in any control they may do so very readily by employing the 360 deg. scale.

This scale should be made on paper, cut out and pasted on a thin Bakelite or Wood panel with a $7 / 16^{\prime \prime}$ or $1 / 2^{\prime \prime}$ hole at the center for the volume control bushing.

To use this device mount the control on the rear of the panel and fasten with the usual mounting nut or one of the Yaxley shoulder nuts No. 11260-12 or 11260-2. Adjust the control so that when the knob is urned all the way to the left the dial reading is zero. Then turn the knob all the way to the right and read the total rotation in degrees and divide by ten to get the number of degrees for each $10 \%$ rotation. Attach an ohmmeter to the left hand terminal and to the center terminal of the control and with the control rotated all the way to the left take the first reading which in most instances will be zero.

Take a reading of the resistance every 10 percent of the rotation from left to right and plot the readings on graph paper.

## CIRCUIT ACTION

Many servicemen are somewhat afraid to make minor changes in a receiver, even though they know that the receiver is of earlier design and not suitable for satisfactory operation under present conditions. This statement does not intend any reflection on the older receivers. At the time of their production these receivers were capable of excellent reception, and a similar quality of reception can reasonably be expected now if minor changes are made to allow for the greatly increased power of broadcasting stations. In a number of the older receivers, this increased power has resulted in unsatisfactory control of volume on local stations. The most common complaints are:
a. A "jumpy" control action on local stations (one in which the increase or reduction in volume is not gradual).
b. An inability of the control to reduce the volume of local stations to an acceptable value. A thorough study of this section devoted to an analysis of each type of control circuit, will be of real assistance to the serviceman. In many cases it will enable him to make a highly satisfactory replacement in the matter of the older receivers. The creation of such customer good will contributes in a large measure to the success of any business.

## ANTENNA CONTROL CIRCUITS

The most simple type of control circuit is that generally called the "Antenna Control." This type of control came into popular use with the introduction of the AC Tube, the filament rheostat having been widely used as a volume control previous to that time.
The reason for using this type of circuit was not so much to gain "volume control" but was to allow single dial tuning because at this early date, antenna coil design had not been developed sufficiently to allow a tuned antenna circuit to "track" with the other tuned circuits. In addition the " AC " tube other tuned circuits. In addition the "AC' tube to give control of volume.
This type of "Antenna" control functions as a regulator, controlling the amount of signal fed to the grid of the first RF ampilfier. Circuits 1 to 5 , 40 and 60 on pages 178 to 183 , are variations of this type of control circuit. Circuit 1 (Figure 54), illustrates the simplest circuit of this type.


Figure 54

The antenna is directly connected to the right hand terminal of the control, the left hand terminal being connected to the ground, and the moving arm (center terminal) is connected directly to the grid of the first RF amplifier tube. This connection gives maximum volume when the control is turned to the right (clockwise).

Thus, we see that the full antenna voltage of all signals, affecting the antenna, is applied directly across the control and that any portion of this voltage may be applied to the grid of the first tube, depending upon the setting of the moving arm of the control. The resistance value of this type control varies from a minimum of 450 ohms (see the older Atwater Kent receivers) to a value of about 10,000 ohms maximum, inasmuch as a resistance value greater than this tends to isolate the grid of the tube, and causes hum.

TAPER-Refer now to the previous article on "Left Hand" taper and note that, here, we have the same conditions; i. e., a control shunted across the source of signal, therefore the same rules will apply to this or to any other circuit so connected, as apply to the circuit given as an illustration in that article.

The taper for the Antenna type control is, in general, of the left-hand, or Yaxley No. 1 type. Many of the earlier receivers used wire wound controls, which are difficult to make with logarithmic taper, and inasmuch as the antenna voltages developed by the earlier low-power transmitters were not of any great magnitude, it was not necessary to pay much attention to taper, although a slight amount of taper in the form of a low resistance winding, generally 10 to 25 ohms and spread over about $20 \%$ generally 10 to 25 ohms and spread over about $20 \%$
$(1 / 5)$ of the rotation, at the left hand side of the control, was often used.

It is found that this type circuit, using the earlier type wire control, does not glve good a ttenuation, because of the high antenna signal voltages developed by modern transmitters. This condition may be overcome by using a left-hand taper carbon control (Yaxley No. 1). This will allow smooth attenuation of powerful local signals. TROUBLES usually encountered with this type of circuit are: Poor attenuation or "hop off." that is, a sharp "cutting off" of the signal (usually on local stations), and generally poor control of all signals, as previously mentioned, a simple change from the original wire type control to the Yaxley No. 1 left-hand tapered carbon control will often cure the trouble. It has been reliably reported that a sure cure of this trouble will be had if a Yaxley DRP241 or DRP2 43 control is installed with the low resistance section connected as the original antenna control and the high resistance section connected as per Circuit 16 (Figure 38), so as to give a dual control of both the input signal and of the output. This overcomes chassis pick-up due to lack of, or poor shielding.

Circuit 2 (Figure 55), illustrates the second type of "Antenna" control circuit.


Figure 55

The connections of the Antenna to the control are the same as those in Circuit 1 (Figure 54) but that the primary of an RF transformer is connected to "ground" and to the moving contact (center terminal), of the control. When the control is at maximum volume position ( R -right-hand terminal) the total resistance of the control is in shunt with both the Antenna (Source) and the primary coil (Load). Varying the position of the control arm causes the resistance value of the shmat across the primary to vary over the full range of the resistance value of the control.

In view of this, the total resistance of the control must be of such a value so that, at "full volume" position, there will be but little loss of signal through the control. In other words, the total resistance of the control must be much greater than the impedance of the primary. In practice the resistance value of the control is usually not more than 4 or 5 times the value of the primary impedance, as higher ratios are not practical because of the shmeting action of the antenna impedance, which varies greatly becanse of the wide variety of Antennas.

Resistance value of the control for this type circuit may range from 2,000 to 20.000 ohms , dejending upon the receiver design which is, of course, dependent to a farge degree upon the impedance value of the primary coil of the RF transformer.
TAPER for this circuit is Left Hand, or Yaxley No. 1. Some receivers were built with very little taper in the control. The replacement control for the latter, may well be a Yaxley control of No. 4 (Litear) taper although a Yaxley No. I tapered (carbon type) control will sometimes be better, than the original linear control, depending on local conditions.
Tronbles with this type circuit are best overcome by the methods outlined for Circuit 1 (Figure 5.4), however, due to increased transmitter power, a lower resistance control will often work wonders without loss of signal strength even on the weaker stations. It is best to "cut and try" to ascertain the correct value

Circuit 3 (Figure 56) illustrates the third type of "Antenna" control.


Figure 56
In this circuit the Antenna is connected to the lefthand terminal of the control. The primary coil floats across the total resistance of the control.
, This change of connections causes the effective resistance in shunt with the antenna to vary with the setting of the moving contact of the control. The shunt resistance across the primary coil does not vary, to any great extent, with the position of the contact arm of the control. If anything, the shunt impedance rises slightly, with reduction of volume. This type of eirenit does not give as good results as that of Circuit 2 (Figure 55) or Circuit 4 (Figure 57).

TAPER and Resistance values for this circuit are the same as for the previously mentioned types except that the range of resistance is limited to a certain extent by the impedance of the primary coil.

Trouble-In case of attenuation trouble it might be advisable to change the connections to either that of Circuit 2 (Figure 55) or Circuit 4 (Figure 57) in addition to the information given previously.
Circuit 4 (Figure 57) is an illustration of a fourth type of "Antenna" control.


Figúre 57

The antenna is connected to the left-hand terminal and ground to the moving arm terminal. The righthand terminal is not used.
This type of circuit is often called a "Shunt" circuit, however, it is better to refer to it as a Short Out type however, it is better to refer to it as a short Out type
of circuit, inasmuch as the control "Shorts Out" the primary and simultaneously grounds the antenna.
Taper and Resistance Value of the controls for this type circuit is the same as for the circuits previously given.
Trouble is usually encountered with this type of circuit unless the chassis is thoroughly grounded. This is not so when the ground wire is connected to the antenna post, because this leaves the chassis at RF potential to ground.
If a good Antenna cannot be erected and it is necessary to use such an improvision for an Antenna, it may be advisable to change this circuit to that of Circuit 2 (Figure 55 ) or if possible use Circuit 6 (Figure 68).
Circuit 5 (Figure 58) is the fifth type of "Antenna" circuit.


Figure 58
This circuit is similar to that of Circuit 1 (Figure 54) except that an RF choke is connected from Grid to Ground.
The purpose of this choke may be to either give a "rising response" at the lewer frequency end of the broadcast band or to allow the use of a higher resistance value of control without hum trouble. In addition these chokes are often broadly peaked in the center of the broadcast band so as to get a slightly increased signal voltage from the Antenna. For all practical purposes there is little to gain from such design.
Taper and Resistance values for this circuit are much the same as for previous circuits except that the resistance of the control may be as high as 50,000 ohms.
This ends the discussion of "Antenna" type circuits and we will now consider the next most popular type of the older circuits, one that is widely used today for "Sensitivity," "Quiet" or "Silent Tuning" control.

## "BIAS" CONTROL CIRCLITS

This type of volume control circuit makes use of a variation of the bias voltage, applied to the tubes as a means of controlling the volume of a receiver. Increasing the bias of a tube lowers the Mutual Conductance (GM) of a tube and reduces the "Gain" of the stage.

Remember, there are two general types of tubes, those with "Sharp" cut-off and the Variable Mu or Remote cut-off types. This introduces a disturbing factor in that complete control cannot be had with Sharp cut-off types of tubes.
"Cut-off" means the cutting off of plate current by means of a bigh bias voltage. The Sharp Cut-Off type requires a rather small increase in bias voltage to completely cut off the plate current whereas the Remote Cut-Off type requires an enormous increase in bias voltage to bring the plate current down to "cut-off" and in some types of tubes the plate current cannot be completely cut off by the bias voltage.
As an illustration, the type 24A tube has a (GM) of 1050 at 3 volts bias, yet it requires only 9 volts to bring the plate current down to cut-off. This is an example of the sharp cut-off type of tube. The type 3.5 tube also has a (GM) of 1050 at the same plate. screen and bias voltages. It requires 40 volts to bring the plate current down to approximate cut-off. This is an example of the Remote Cut-Off type of tube. Incidentally, the useful range of control is 5 to 1 for the 24 and 70 to 1 for the 35 tubes respectively. Circuit 31 (Figure 59) is an illustration of the earliest Bias Type control.


Figure 59
This control was used on the early battery sets. It consists of a fairly high resistance potentioneter generally of 200 or 400 ohms total resistance shunted across the filament supply which was, of course, 6 volts. This control served to vary the bias on the R.F. amplifier tubes, and thereby gave control of the volume. On the whole, this circuit was not very satisfactory, as the range of control was not great and it was used mostly as a control to prevent oscillation,

Figure 00 (Circuit 7) illustrates the common Bias control circuit.


Figure 60
In this illustration dotted lines indicate that a portion of the control resistance may be retained to supply the minimum bias which is required by the tube at full volume. Also, the dotted lines show that one or more cathodes may be connected to the control and that there may. or may not be a bleed current through the control. For the present, we will consider that the circuit controls only one tube and does not have a bleed current. Although a triode tube is shown, this circuit is also used with tetrodes and pentodes. For the purpose of explanation, we give Figure 61, which shows the use of a 100,000 ohm Yaxley No. 2 right-hand taper control, Yaxley type UC509, with the resistance plotted against the (GM) Mutual Conductance of the tube and both curves against the rotation of the control.
Note that at $\mathbf{5 0 \%}$ rotation, we have introduced approximately $10 \%$ of the total resistance of the control (considering for the present the rotation from right to left) and that with this amount of resistance the Mutual Conductance has dropped to approximately $10 \%$ of its "full volume" value. Thus-by this curve we see that the Yaxley No. 2 right-hand taper is adhering to the laws laid down in the explanation of "taper." A study of this graph with its two curves will reveal that at the full resistance of the control, i. e., at full counter-clockwise position, the "Mutual Conductance" has not been reduced to absolute zero. However, it is down to such a value that no signals other than from powerful stations will be heard.


Figure 61

The graph in Figure 61 (page 162) illustrates the use of a bias type control on a remote cut-off type of tube. In fact, a 6D6 was used in this calculation. In practice, a straight Bias type control would hardly ever be used with this tube, but rather the combination Ant.-Bias circuit in order that locals may be fully attenuated.

The cathode bias type control was widely used with the type 27 tube which has a fairly remote cut-off. However, the increased power of modern broadcasting stations has resulted in poor control from this type of circuit. Therefore, it is sometimes necessary to change this circuit to the "Ant.-Bias" type circuit by connecting the risht-hand terminal, of the control, to the Antenna. Additional types of circuits similar to circuit 7 are circuits numbers 47 , 58 and 98 , see pages 178 to 183. The difference in these circuits is merely in the connections to the control and associate circuit, the control action remaining entirely the same.

A study of these circuits will reveal that the main difference is in the connection of the bias resistor which supplies the minimum bias necessary for correct operation of the tube or tubes at full volume position.

The Second Class of "Bias" control circuits, represented by Circuit 8 (Figure 62) and Circuit 42 (Figure 63) differs but little from the class just mentioned, the differeace being that the resistance value is lower and that a current is bled, from either the screen or plate supply, into the control so as to give a rapidly rising bias voltage, with rotation of the control.


Figure 63
In receivers using the lower values of control resistance, such as from 15,000 ohms down, the control used for these types of circuits will usually be found to be of linear taper.
Taper used for bias control is nearly always of the right-hand type (Yaxley No. 2), except in the instances mentioned, or in the third class of bias control circuit which we will now discuss.

The Third Class of "bias" control circuit is that in which the grid return connects to the arm of a variable resistance, which is connected across the source of bias voltage. This type of circuit is generally used in battery receivers and therefore the bias source is usually a "C" battery or "voltage dropping" network of resistors in the " $B$ " circuit. In this type of control circuit, the range of bias voltage applied to the tube, is dependent almost exclusively upon the voltage applied to the control, inasmuch as the grid does not draw any current from the control circuit. The resistance value of the control may bequite high in order to prevent unnecessary "drain" on the batteries.
Circuit 9 (Figure 64) is an illustration of one of the most common circuits of this type.


Figure 64

Note, that the left hand terminal of the control connects to the highest negative polarity of the " C " battery, as shown by the notation C -. The Right-Hand terminal of the control connects to a fixed resistor which is of such a value-that the current flowing through the control will cause a voltage dropacross it, equal to the required "minimum" bias of the tube. The rotating arm or "Center Terminal" of the control connects directly to the grid return. Thus, it will be seen that the bias may be varied over quite a range, depending upon the voltage of the " C " battery.
Circuit 54 (Figure 65), although a resistance coupled amplifier, is basically, identical to Circuit 9 (Figure 64) and clearly shows the full connections for this type of circuit.


Figure 65
Circuit 59 (Figure 66), is of the same type as that of Circuit 9 (Figure 64) and Circuit 54 (Figure 65). However, it is applied in this case to an "A.C." receiver.


Figure 66
This type of circuit is often used on the AVC tube for control of its action.

There is one remaining type of bias control in which the grid of the tube is biased by signal voltage developed across a diode rectifier Load, which in this case is the resistance of the control. Circuit 62 (Figure 67) illustrates a circuit of this type.


Figure 67
Usually, there is provision made for minimum bias of the controlled tube, which is not shown in this schematic. Study of this circuit will reveal that the bias on the controlled tube varies with the strength of the signal input, in addition to the position of the "arm" of the control, this type of circuit being used in "Quiet" AVC circuits.

Resistance for use in the third class of Bias type control circuits is usually of a range from about 20,000 to $100,000 \mathrm{ohms}$, with the following exceptions:

The control for use in Circuit 59 (Figure 66) is usually of a fairly low value ranging from 150 ohms to 10,000 ohms, whereas the resistance range for Circuit 62 (Figure 67) will be from 100,000 to $500,000 \mathrm{ohms}$ inclusive. The main consideration of resistance for this type of circuit is that the current flowing through the control should not be of such a large value that it will quickly exhaust the battery. In addition, where the voltage of the battery is much higher than that required to bring the tube or tubes down to cut-off, it is usually necessary to insert resistors in series with the control so as to limit the voltage drop across the control to the required value.

Taper of controls for the third class of Bias type of control circuit varies considerably. It depends upon the class of tube, that is, Sharp or Remote cut-off. In general, the taper is linear, although in some cases a slight left-hand taper is required, particularly where sharp cut-off types of tubes are employed.
Trouble encountered in "bias" type control circuits is usually "noisy"' controls, best overcome by replacing with a new control. In case the "range" of control is $t 00$ great (i. e., cut-off is obtained, even on the most powerful stations, at less than full rotation), it may be advisable to insert a resistor in series with the control to reduce the voltage drop across the control, and give a smoother action.
In laying out a battery receiver using this type of control, or in rebuilding an old receiver to a modern circuit, involving the use of this type circuit. It is advisable to carefully calculate the voltage drop which will be obtained across the control. It is imperative that the control circuit include means for obtaining the minimum blas.

## "ANT.-BIAS" CONTROL. CIRCUITS

The "Ant.-Bias" type of control circuit is probably the most widely used to date. However, it is indeed surprising that so many servicemen fail to have any knowledge concerning the action of this type circuit.
In this circuit, there are two distinct actions combined. The first is the control of volume by means of increasing the bias on the controlled tubes. The second action is the shorting out of the input signal at the Antenna.
Important-There are two basic types or classes of this circuit; i. e., that type employed with sharp cut-off tubes and that employed with remote cut-off tubes. In the first class, the control serves to increase the bias to reduce the ( Gm ) Mutual Conductance of the tube or tubes, to a slight extent, and simultaneously short out the input signal.
Note: The main function of the control in this case is really to short out the signal input and at the same time reduce the ( Gm ) Mutual Conductance of the tubes to a point where chassis pickup will not be bothersome. Chassis pick-up means the absorption of signal voltage from powerful stations by poorly shielded conductors within the receiver. This type of circuit is used where the straight antenna shunt or short-out type of circuit would fail to give full attenuation of powerful signals such as from local broadcasting stations, and was widely used in the days when the type 24 and sharp cut-off tubes were used as radio frequency amplifiers.
The second class of Ant.-Bias circuit operates in exactly the reverse manner, in that the main attenuation of signal is accomplished by increasing the bias to a high value, which reduces the (Gm) Mutual Conductance. This action will attenuate all but the most powerful local sisnals. These powerful signals are taken care of by the antenna short-out action. The resistance value of controls for the second type circuit is much greater than that for use in the first class.
Circuit 6 (Figure 68) is an illustration of the "An-tenna-Bias" type of circuit.


Figure 68
Your attention is called to the dotted lines on this schematic. The dotted line across the control indicates that a portion of the resistance may be retained for use as the minimum bias resistor to supply correct bias to the tube or tubes at full volume position.

The straight dotted line immediately below the tube indicates that other cathodes may be connected at this point. The dotted line resistor immediately below the last mentioned dotted line indicates that there may be a bleed current fowlng through the control.

The exclusive design of Yaxley controls provides an adjustable resistor for use when replacing controls wherein a portion of the resistance was set side for use as the minimum bias resistor. In wire type controls, this is a built-in variable resistor. In carbon type controls, it is a variable resistor supplied with the control for exterior application.
The bleed current mentioned is merely a current which is bled from either the screen or plate supply circuits. The purpose of this current is to stabilize the circuit and to provide a greater increase of bias per egree of rotation of the control, where it is necessary or desirable to use a fairly low resistance control.
Remember: That this is a very convenient way of controlling or improving the action of a volume control when used in this type circuit. There are many cases, especially in old receivers where the control will not "cut out" the local signals, in which case the addition of a slight amount of bleed current through the control will provlde for sufficient increase in bias, and thereby glve complete cut-off.

WARNING-Be very careful that the bleed current is not high enough to give complete cut-ofi as this will introduce distortion. The correct value of bleed current is best ascertained by the old reliable cut and try method.

Circuit 69 (Figure 69) is the same as Circuit 6 Figure 68) except for the untuned antenna circuit


Figure 69

A nother type of "Antenna-Bias" circuit is generally sed in battery receivers. Circuit 70 (Figure 70) given below, is an example of this type circuit.


Figure 70

Study this circuit. Note that the control varies the bias applied to the tube, and in the left-hand position shorts out the antenna. This latter action $s$ accomplished by reason of the condenser connected rom the antenna to the control. Signal current leakge, or by-pass in the full volume of the control is prevented by the resistance of the control, and by the resistor connected between "C"' and the junction of the condenser and left-hand terminal of the control.

Attention is called to the resistor connected between the right-hand terminal of the control and the switch. This is the minimum bias resistor.
Taper for use in this circuit is generally left-hand (Yaxley No. 1), although Yaxley No. 4 may be used, depending upon the type of tubes, as previously explained under "Bias Control Circuits.'

Trouble encountered in this type of circuit may be due to leakage of the antenna condenser, or in the by-pass condenser which is connected between moving arm of the control and ground. This condenser serves as an R.F. by-pass for the grid circuit. In addition, we wish to point out that a shorted tube would quickly exhaust the " C " battery, if the volume control should be in minimum volume position.

Oscillation and poor tuning may often be traceable to a poor by-pass condenser, inasmuch as the R.F. impedance of these condensers usually increases with age. It might be well to check this whenever servicing a receiver using this type of circuit.

General design of this type circuit calls for selecting the proper value of resistance for the control, for the minimum bias resistor, and in addition for the R.F. blocking resistor. The latter also serves to limit the value of bias voltage which may be applied to the tube, which, as has been previously mentioned, if too high, particularly with sharp cut-off tubes, will cause distortion.
The capacity value for the Antenna condenser should be rather large, inasmuch as it should offer but very little Capacitive Reactance to the lowest frequency signal voltage to be handled, and it will thus act so as to allow a complete short-out of the signal. The capacit y value of the by-pass condenser from the moving arm of the control to ground, is generally of a value of .05 mfd ., or .1 mfd

Circuit 97 (Figure 70A) is an illustration of another type Ant.-Bias circuit.


Observe that in this circuit the control is tapped. The purpose of this tap is to divide the action of the control into two separate and distinct parts. Thus-when the moving arm is to the right of the tap, the control is acting purely as a bias type control. When it is to the leftof the tap, the control acts onlyas an Antenna short-out type of control. This circuit is ingenious in this respect, as the two actions of the control are entirely separate. They do not conflict.
Resistance Value for this control is usually about 6,000 ohms with the tap located at approximately 2,500 ohms from the left-hand terminal.
Taper for this control is special. This need not be explained as Yaxley TRP600 replacement control is especially designed for this circuit

Trouble in this circuit is rare. A shorted antenna or tube will have little effect upon batteries.

## SUMMARY "ANT.-BIAS" CONTROL CIRCUITS

The Resistance Value of controls for the first type Ant.-Bias control circuit ranges from 1,500 to approximately 15,000 ohms, as the resistance value for use with sharp cut-off type tubes (type 24), can not very well be higher than these values, without introducing distortion due to cut-off. For the Remote cut-off type of tubes, the resistance will range from a minimum of 10,000 ohms to 250,000 ohms
AC-DC receivers quite often use the Ant.-Bias type of circuit. Because they usually contain but one RF amplifier tube, the resistance value for the control must be very high. The types of tubes suitable for use in these receivers are usually of the Variable Mu or Remote cut-off type, such as 6D6.
For use in this type of circuit, and especially in these receivers, Yaxley controls-UC509 of 250,000 ohms resistance, and UC510 of 100,000 ohms resistance will be found to be ideal.

Receivers using the lower resistance values of control, such as 1,500 ohms, usually employ a rather heavy "bleed" current, in order to obtain sufficient bias, and in addition to stabilize the current distribution of the receiver
For the intermediate values of resistance approximating 25,000 ohms, we advise the use of the Yaxley special control SRP263 (which is equipped with universal shaft), because this control is of the Yaxley No. 3 taper, which, incidentally, is the reason for it being listed as an SRP or special control.
Taper for use in Ant.- Bias type circuits has been explained to a certain extent. However, we would like
to call your attention to the use of the Yaxley controls having No. 7 taper, wire wound and of special design for use in Ant.-Bias circuits wherein the original control was wire wound, especially where a heavy bleed current is used. Yaxley No. I left-hand taper will be found to be excellent in most all cases where the resistance value is 20,000 ohms or less. As explained, intermediate resistance values above 20,000 ohms, can be serviced by Yaxley SRP263. In replacing controls having a resistance value above 50,000 ohms, we advise the use of Yaxley No. 2 right-hand taper, unless recommended otherwise.
Troubles in this type of circuit, are usually limited to failure to cut-off the signal. The most frequent cause of this trouble is that the receiver was originally designed for much lower signal strengths than are found today (because of the terrific increase in power of broadcasting stations). Increasing the bias voltage developed across the control will often effect a cure. However, we would again like to give you warning that this voltase should not be increased so far as to drive the Tube to plate current cut-off, due to the possibility of distortion.

## SCREEN VOLTAGE CONTROL CIRCUITS

Circuit 12 (Figure 71) is an illustration of the usual screen voltage control.


Figure 71
The action of this control is similar, in most respects, to the action obtained by controlling the bias of the tube. The ( Gm ) "Mutual Conductance" of the tube varies with the screen voltage.


Figure 72


Figure 73

The first graph (Figure 72) (page 164) shows the relation of Mutual Conductance to screen voltage. The second graph (Figure 73) shows the curve of "Mutual Conductance" versus the rotation of the Yaxley control and illustrates the use of left-hand taper in this circuit.
At this time, we would like to point out that circuit 27 , as given on page 179, is a rare type of screen voltage control, in which the control is in series with the screen. Taper for this control is Yaxley No. 2 righthand, and the resistance is 5 megohms total. Circuit 79 (Figure 74 ), is an illustration of a combined screen voltage and antenna short-out control circuit.


This control is used to a limited extent in battery receivers. A study of this circuit will reveal that the control simultaneously controls the screen voltage, and by that the ( Gm ) of the tube, and at the same time acts as an Antenna short-out.
This type control circuit is not recommended. Yaxley Silent Controls will give faultless service in this, or any other critical circuit.
General Design considerations for the screenvoltage type control circuit are that the voltage range should be such that the plate current of the tube is not reduced to too low a value, inasmuch as this will infroduce serious distortion. On the whole, the screen-voltage type of control circuit is not to be recommended wherever another type circuit could be used.
The screen-voltage type of control circuit is not recommended for Variable Mu tubes, as it is much better to employ the Bias type of control circuit for these tubes.

## TAPER AND RESISTANCE

For very low resistance values, 10,000 ohms or less, the taper of the volume control, for use in this circuit is generally linear. For values above 10,000 ohms, it is the general rule to use Yaxley No. 1 left-hand taper.
The most common value of resistance for this type control, with the exceptions noted above, is 100,000 hms. This value is replaceable with Yaxley type L control.

## PLATE VOLTAGE CONTROL CIRCUITS

Circuit 11 (Figure 75), is an illustration of the most common "Shunt Plate Voltage" volume control circuit.


Figure 75
The action in this circuit is similar to that of the "Screen Voltage" control circuit except that here the plate voltage is varied.
The Taper for use in this type circuit is nearly always left-hand. The resistance value is usually of the order of 50,000 to as much as 500,000 ohms.

The trouble usually encountered in this type circuit is noise, due to the rather heavy current and the possibility of the control developing minute "burned" spots, which cause a rapid variation in resistance with rotation. Of course, this would cause terrific noise in the receiver.

This type of control circuit is no longer used. If encountered in service work, we advise that the control circuits be rewired to a more modern type.
Before closing this chapter on "Plate Voltage Control Circuits," we would like to call your attention to Circuit 26 (Figure 76).


Figure 76
This circuit uses a series control which should be of right-hand taper Yaxley No. 2. We strongly advise that wherever this circuit is encountered, the receiver should be rewired to use a different type control circuit.

## RF (PRIMARY SIIUNT) CONTROL CIRCUITS

Circuit 10 (Figure 77), illustrates the connections of this type control circuit.


Figure 77
The dotted lines show connections that differ but little from each other, and may be encountered in the wiring of a control in a circuit of this type.

The action of this circuit is similar to that of the Ant.-Shunt type of circuit, in that the control is so arranged as to Short Out the primary of the RF transformer, and thereby prevent the transfer of RF current to the succeeding tubes in the receiver. This circuit was popular with the later battery and early AC receivers. It is totally unsuited for modern conditions.

An additional type of this circuit isshown in Circuit 81. on page 181, in which the plate connects to the moving arm of the control. The action in this circuit is similar to that of the ant.-shunt Circuit 3 (Figure 56), on page 162, or Circuit 40 on page 179.

Resistance range of controls used in the RF Pri-mary-Shunt type of control circuits is usually only a few thousand ohms, ranging from 1,000 to perhaps an upper limit of $10,000 \mathrm{ohms}$.
Many of the original controls in this type of circuit are wire wound. When encountered in your service work, we advise replacing the wire type controls with Yaxley wire wound controls, or in some cases, with the Yaxley carbon controls.

Taper used in this type of circuit where the original control was wire wound. is usually of the Yaxley No. 7 type. Where the original control was of the carbon type, it may be either Linear Yaxley No. 4, or LeftHand Yaxley No. 1.

## RF SECONDARY (SHUNT) CONTROL CIRCUITS

Circuit 13 (Figure 78), illustrates the usual connections for this type circuit.
Although the connections shown in circuit 14 on page 178 may sometimes be encountered, the latter circuit does not give quite as good control as that of Circuit 13 (Figure 78). The action of Circuit 13 (Figure 78) is similar to the action of Circuit 16 (Figure 38), page 158, illustrated and thoroughly explained in the chapter entitled Taper


## Figure 78

In Figure 78, we see the control shunted across a tuned RF transformer, with the left-hand terminal connected to the ground, and the righthand terminal to what would ordinarily be the grid side of the tuned circuit. The grid of the tube is connected to the moving arm of the control. Hence-Variation in the position of the contro. Hence-Variation in the position of the RF voltage impressed on the grid of the tube.
In common with all shunt type circuits, the resistance of the control should be of such a value that it will not present too great a load or by-pass of the RF voltage developed in the secondary circuit. Inasmuch as one might broadly state that the average impedance of a tuned circuit of this type is rarely more than 100,000 ohms, the lowest value possible to use would be 100,000 ohms. with usual values of 250,000 ohms and in some cases 500,000 ohms. An outstanding example of this circuit is that of the Bosch model 28, which, incidentally. uses Yaxley Control SRP179 of 125,000 ohms resistance.
Taper of the control for use in this type circuit is of the left-hand Yaxley No. 1 type, thoroughly explained in the chapter entitled Taper. This also applies to controls for use in Circuit 14, page 178.
This type control circuit was not very widely used, and has long since passed out of favor. The introduction of the control into an RF circuit causes broad tuning and other troubles which make it impractical.

## AF "SHUNT" <br> CONTROL CIRCUITS

Circuit 15 (Figure 79), is one of the two basic types of this circuit.


Figure 79
The AF "Shunt" control circuit is one in which the control is shunted across the Source of Audio frequency voltage, either as indicated in Circuit 15 (Figure 79), or as in the Short Out type of circuit as is shown in Circuit 33 (Figure 80).


Figure 80
Circuit 33 (Figure 80), is not recommended because of distortion caused by the variation of the "plate load" of the preceding tube. Returning to Circuit 15 (Figure 79), note that the lefthand terminal of the control is the low volume or ground connection of the control and that the signal is applied to the right-hand terminal through the coupling condenser, which also serves to block out the DC plate voltage of the preceding tube.

In this type of circuit the control ls actually part of the plate load of the preceding tube. This load is made up of the coupling condenser (capacitive reactance), the resistance of the control and the resistance of the plate coupling resistor, The input admittance of the tube must be considered. This is best determined by consulting tube manufacturers' data wherein you will often find a note: "When using resistance coupling, the grid reistor for thls tube should not exceed 'blank" ohens." This is one way of saying that the admit tance of the tube is rather low and that a high value of resistance (of the control) cannot be used.
Volumes have been published on the subject of "Impedance Matching' i. e., the relation of the load impedance to the impedance of the source or generator. We regret that space limitations do not allow more than a mention of this subject as applied to the above control circuits. The important point is that the resistance of the control is determined by the required plate load of the preceding tube, and by the admittance of the grid circuit of the tube. It Is also influenced by the coupling condenser and the plate resistor of the preceding tube. Thus we have a series parallel circult made up of these three elements and also the consideration of admittance of the tube. Truly a complicated subject. Entirely too broad to be presented here as gain distortion and other factors must be considered. Finally it is necessary to make a compromise of all these factors.
Circuit 16 (Figure 81) is an illustration of the second type of Audio Shunt control circuit.


Figure 81
In this circuit we have approximately the same connections as for Circuit 15 (Figure 79). Note that the control is connected across the secondary of an Audio transformer. This gives a different picture, in that the control resistance is determined to a certain extent by the lmpedance Ratio of the transformer in addition to the other factors, such as plate load and admittance, previously inentioned.

Circuit 96, page 181, is a peculiar reversed type of the Audio Shunt circuits. The same considerations, such as taper and resistance, also apply to this circuit.

Resistance Value of controls for this type of circuit usually range from 100,000 ohms to 2 megohms. In replacing controls the original resistance value should be approximated, thus for 200,000 ohms use 250,000 ; 350,000 ohms may be replaced with either 250,000 or $500,000 \mathrm{ohm}$ values.

Taper of controls for use in these circuits is always Yaxley No. 1 Left-Hand. These circuits give but little trouble.

## AUDIO CONTROL CIRCUITS

This designation is applied to any control which varies the Audio frequency voltage or current as a means of controlling the volume of a receiver. With one exception, they are mostly variations of the Shunt type of Audio circuits. The exception is Circuit 18 (Figure 82).


Figure 82
In this type of circuit the control acts as a Load Resistor, commonly referred to as the Load of a diode rectifier.
Study of this circuit will reveal the following actions. The signal current generated in the transformer secondary is applied to the diode plate or plates and to the resistance of the control.

The signal current is an alternating current, the same as our usual power and light supply. The frequency is deternined by the resonant point of the transformer, usually several hundred kilocycles. $i$. e.. 465,175 , or other frequencies. When the plate of the diode goes positive, in relation to the control, a current, the value of which depends on the voltage and load resistance, flows from the cathode to the plate, through the coil and resistance of the control and arrives back at the cathode, thus completing the circuit. The end of the control which is connected to the secondary is at a potential above the cathode. because: "There is a voltage drop across a resistor when a current is flowing through it." Incidentally the polarity of the voltage drop ls negative at the secondary end of the control, in respect to the cathode of the tube.

The voltage developed across the diode load (the control) is usually thought of as having two conlponents, first the DC voltage developed by the rectifying action of the diode and second, the Audio Frequency voltage. This is fully explained in the graph shown in Figure 83.


## Figure 83

This graph shows the voltage appearing across the diode load; i. e., the control.

This is the Audio Frequency voltage applied to the grid of the tube (through the control) and in addition, it is also applied to a "filter" from which it emerges as DC, the value of which (in voltage) is directly proportional to the signal voltage induced in the secondary coil. As the sisnal voltage rises in value, so does the DC. The DC can be used as a "bias" voltage. (Remember it is negative to the chassis) to sive Automatic Volume Control.

The Audio frequency component is taken off the control resistance and applied to the grid of the tube through the blocking condenser. In this circuit, the I)( component of the signal does not affect the Brid circuit of the tube.

In a certain type of this circuit, similar to Circuit 62 (Figure 177), there is no blocking condenser. The DC potential across the control is applied to the grid so that the bias on the grid varies with the signal intensity, therefore the tube is said to be "signal biased." This type of circuit is used in certain "Quiet" AVC circuits wherein the first andio stage is biased to "cut off" (with no signal). When a signal is applied to the diode, the DC component, appearing across the control, counteracts the bias appiied to the tube. When the signal is strong enough to overcome the "overblas" on the tube, the signal will be amplified and appear at the speaker.

Resistance value of controls for use in these types of circuits is from 250,000 to 500,000 ohms inclusive.

Tapers for controls for these circuits are Yaxley No. 1 Left-Hand for the first type and in most cases Yaxley No. 4 Linear for the second type, because of the common use of "Sharp Cut-Off" type tubes in this position.

## TAPPED CONTROL CIRCUITS

With rare exceptions, there are only three principal types of control circuits using a tapped control. By "tapped" control we mean a control having a tap brought out from some point on the resistance element. This type of control construction is so common that it is hardly necessary to go into any detailed description.

The three basic types of circuits using the tapped control are: first-where the control is tapped in order to provide dlfferent values of voltage, such as in an AVC circuit; and second-where the taj, is brought out so that automatic tone com-
pensation may be accomplished; thlrd-where it is desired to use one control to act upon two circuits; for example, to give either radio or phonograph control.

We will consider the explanation of the action in these three types of circuits in the order in which they have been given-


## Figure 84

Circuit 19 (Figure 84), is a circuit (of the first type) employing what might be termed the voltage type of tapped control, in that the tap is brought out so that two different values of Automatic Volume Control Voltage may be had.

Note that this control is used as a "diode load" type of control, the functions of which were explained in the chapter "Audio Controls."

A study of the connections of the control reveals that the maximum DC voltage, as developed across the control, is used for Automatic Volume Control in a portion of the preceding circuit. The design of the receiver is such that only a fraction of this voltage is required in certain parts of the circuit. The easiest and the best method of obtaining this fractional voltage, is toitap it off the control. This assures the correct relation between the two values of AVC voltage which might not be obtained by the use of a separate resistor net-work in parallel with the control, when one considers that the control resistance changes, with wear and age and in addition, the resistor net-work would add to the cost. Note that circuits using the net-work actually use a control circuit as shown in Circuit 15 (Figure 79).

This type of circuit and/or connections is perfectly satisfactory, except in a circuit such as Circuit 62. (Figure fi7), wherein the control is used as the diode load resistor, and furnishes signal bias to the succeeding tube.

The second type of tapped volume control circuit is that wherein the tap is used to obtain automatic tone compensation with rotation of the control; i. e., an increase in apparent bass response at the lower volume levels to'compensate for a deficiency of the ear.
Circuit 20 (Figure 85) illustrates most clearly the usual connections for the tone compensated type of tapped control circuit.


The action which takes place in this circuit follows: With the control arm at the Right-Hand (R) terminal, the signal is fed directly to the grid of the tube without being affected by the circuit. As the control arm is rotated toward the "Left-Hand" (L) terminal, the effect of the tap, with its associated circuit. consisting of the condenser and resistor connected from the tap to ground, becomes pronounced. The condenser, with or without a series resistor, as shown in the illustration, acts as a by-pass for the higher frequencies of the signal. When the arm is at the tapped position, or is at any position between the tap and the "Left-Iland" terminal, the higher frequencies of the signal are bypassed to ground. It appears to the ear as though the bass porfion of the signal had been increased.
The position of the tap, that is, the relation of the amount of resistance between the left-hand terminal and the tap, and the resistance between the tap and the right-hand terminal determines the signal level at which the tone compensation becomes effective.
Previous to the designing of the Yaxley tapped replacement control (TRP) the method of locating and attaching the tap to the resistor ele-
ment of the control was inaccurate, in that usually a rivet was driven through the resistor element at some pre-determined point based on the rotation of the control, or else an ear was made on the element to which the tap was attached. Both of these methods of tapping a control are, in our opinion, inaccurate, because the tap is mechanically fixed, and cannot be shifted from its position. This would not be quite so bad, were it not for the fact that the total resistance of a carbon type control element varies considerably in manufacturing, it being usual to allow a "toler" ance" of plus or minus $20 \%$ of the value of the control. This means that there can be a variation in the resistance of the control of plus or minus $20 \%$ of the stated value.
When Yaxley engineers started the development of the Yaxley "TRP" type controls, they determined to overcome these difficulties, and to so design the Yaxley TRP control that the tap could always be located in the correct ratio of resistance, regardless of the variation in total resistance.

Figure 86 shows the nethod used in "tapping" the Yaxley control


Figure 86

Note that underneath the resistor element is a silver-plated "ring," and that the actual tap connection is NOT at the terminal, but that the tap connection to the resistor element is made by means of the little clip which is indicated by the arrow. Observe that this clip may be attached at any point over the greater arc of the control element.

In building Yaxley TRP and TM controls the elements are first made and then the tap location is determined on the basis of the resistance ratio. This method of tapping a control is exclusively Yaxley. It assures you that the action of the tap will be correct at all times. This assurance cannot be had with any other method of tapping a control.

To return to the action of the tapped control circuit, the percentage of attenuation, of the higher frequencies of the signal, is determined by the capacity of the condenser, and where used, the value of the resistor. The resistor is employed to broaden the action of the condenser and to prevent a rather sharp attenuation of the higher frequencies.

We have covered the basic action, and although a great many varieties of circuits are used, the basic law rules all of them.

One of the latest developments in the use of (tone compensated) control circuits, is illustrated in Circuit 100 (Figure 87).


Figure 87
This shows a control circuit wherein there are two taps on the control, both used for tone compensation. The action in this circuit is basically the fame as the action in any tone compensated control circuit using a single tap, except that here we have the compensating action in two
phases. The first is not nearly so noticeable as the second. In simple words, when the control arm is in the full volume position, there is practically no compensation in the circuit, but as the signal value is reduced, there is a slight amount of compensation at the first tap, and a much greater amount at the second tap. The reason for this arrangement is to give a very gradual and smooth tone compensation, which is much more gradual than that to be obtained by the use of a single tap, particularly where it is desirable to have a rather large attenuation of the ligher frequencies or where two different bands are to be successiully attenuated.

The third type of tapped control circuit is illustrated in Circuit 82 (Figure 88).


TRP609

## Figure 88

In this circuit the control is center tapped and is made with two separate tapers which meet at the tap, so that in effect there are two separate controls. When the arm of the control is to the left of the tap the control acts as the radio control. When the arm is to the right of the tap it controls the phonograph signal Circuit 28, page 179, illustrates a slightly different circuit often used in amplifiers. The action is the same as described with the exception that, here, the sources of signal may be microphone and phonograph. Yaxley control number TRP609 is especially designed for these types of circuits.

Resistance Value of controls for use in tapped control circuits is roughly the same as for the audio control circuits.

Note: When replacins a tapped control, select a Yaxley TRP or TM control havind the same overall resistance as that of the original AND BE SURE that the resistance between the lefthand terminal and the tap (with terminals clown and facing the shaft side of the control) is duplicated within reasonable limite by the Yaxley control which you select.

NOTICE-Do not be confused by the fact that the Yaxley tap terminal may be in a different position from the other terminals than that of the original control. As we pointed out, the tap value of Yaxley controls is determined upon a acientific basis and not by the mechanical replacement of the tap.

Taper of controls for use in tapped volume control circuits is roughly the same as for audio control circuits. It is sometimes necrssary to distort what would othervise be a logarithmic taper, in order that the tone compensation will not occur at such a fast rate as to cause an apparent hop-off in the signal attenuation. Yaxley TRP and TM controls are properly designed with this feature in mind.

For the convenience of those who desire to know the methods for calculating the values of component parts in a bass compensation network, the following section includes a bass compensation design chart (Fig. 90) and an accompanying text which gives complete explanation as to its use.

## bass Compensation DESIGN CIIART

A direct method of cloosing the proper condenser and series resistance values in tapped-volume-control bass compensators to obtain the maximum degree of com-
pensation between 100 and 400 cycles.

To achieve the necessary bass response in radio receivers, resort is frequently made to bass-boost circuits. The most popular by far of these circuits is shown in Fig. 89. Resistors $R_{3}$ and $R_{1}$ constitute the usual tapped volume control. The resistor $R_{2}$ is inserted in the circuit in order that there will not be too great a loss in the higher audio-frequencies, and also to fix the output level of the receiver, when the
volume control arm is set at the tap, at which point maximum compensation occurs. The problem arises of finding the proper value for $C$ which will give the greatest attenuation ratio between two arbitrarily chosen frequencies. In most development laboratories these frequencies are usually chosen as 400 and 100 cycles.
In Fig. 89 looking into the network between points $A$ and $B$ (considering $R s$ open), the impedance between these two points will, at two different frequencies, reach a maximum ratio for a certain combination of $R_{1}, R_{2}$, and $C$. Now if terminals $A$ and $B$ are fed from a high impedance source, say through $R_{s}$, the ratio of voltages across $A$ and $B$, for two different impressed frequencies, will have the same ratio as the impedances at these two same frequencies. Of course, if the impedance across $A$ and $B$ were a pure capacitive reactance the ratio of reactances at 400 and 100 cycles would be 4 and there would be no point to our analysis. However, $R_{2}$ is always required to prevent the higher audio frequencies from being entirely lost. hence there will be a certain value of $C$ which will yield the maximum impedance or voltage ratio acress the terminals.

## Developing the Basic Equalion

If we then write the equation for the impedance at any arbitrary frequency $f_{a}$ across terminals $A$ and $B$,

$$
Z_{a}=\frac{R_{1}\left(R_{2}-j \frac{1}{\omega_{a} C}\right.}{R_{1}+R_{2}-j \frac{1}{\omega_{a} C}}
$$

and the equation for a certain reference frequency, $f_{r}$

$$
Z_{r}=\frac{R_{1}\left(R_{2}-j \frac{1}{\omega r C}\right.}{R_{1}+R_{2}-j \frac{1}{\omega_{r} C}}
$$

where $\omega_{a}=2 \pi f_{a}$ and $\omega_{r}=2 \pi f_{r}$.
If we now write $Z_{a} / Z_{r}$ and maximize with respect to $C$, set the resulting equation to zero and solve for $C$, we obtain,

$$
\begin{equation*}
C=\sqrt{\frac{1}{\omega a \omega r R_{2}\left(R_{1}+R_{2}\right)}} . \tag{1}
\end{equation*}
$$

This value of $C$ gives, therefore, a maximum ratio of the impedances at $f_{a}$ and $f_{r}$.
Writing Eq. 1 for $C$ in equations for $Z_{g}$ and $Z_{r}$, we obtain,

$$
\begin{equation*}
Z_{a}=\sqrt{\frac{A^{2}+R_{1} A B N}{B^{2}+N B R_{2}}} \tag{2}
\end{equation*}
$$

and

$$
\begin{equation*}
Z_{r}=\sqrt{\frac{N A^{2}+R_{1} B A}{B^{2} N+R_{2} B}} \tag{3}
\end{equation*}
$$

then,

$$
\begin{align*}
& K=\frac{E_{a}}{E_{r}}=\frac{Z_{a}}{Z_{r}} \\
& =\sqrt{\frac{\left(A+N B R_{1}\right)\left(N B+R_{2}\right)}{\left(A N+B R_{1}\right)\left(B+N R_{2}\right)}} \tag{4}
\end{align*}
$$

where $A$ is $R_{1} R_{2}, B$ is $\left(R_{1}+R_{2}\right)$ and $N$ is $f_{r} / f_{a}$. These equations are perfectly general. However because they are somewhat cumbersome the chart shown


Figure 80
Tepted-control bass-boost circmit

## Bass Compensation Design Chart


on Dage 168 has been constructed, for a range of values which covers most practical cases. The fre quency ratio, $N$ was taken as 400 cycles $/ 100$ cycles. $K$ is the ratio of the voltages at these two frequencies. Say that $K$ is chosen at 3 , and that $R_{1}$ (one of the resistors must be known or assumed) is 100,000 ohms. Then on lig. 90 follow $K$ over parallel to the abscissa. until it intersects $R_{1}$ at 100,000 ohms, then follow this point down, until it again intersects the $R_{1}$ line at 100,000 ohms, on the " $C$ " curves, then reading straight down from this point, $R_{2}$ is given as 10,000 ohms and reading straight across toward $C$, gives $C$ as $.024 \mu \mathrm{fd}$. The values of $C$ and $R_{2}$ thus derived will give maximum value for compensation with the chosen value of $R_{1}$. Increasing or decreasing either $R_{1}$ or $R_{2}$ will require a new value of $C$ for maximum compensation to be attained. Experimental checks of values derived from the chart show a high order of accuracy. It will be found that the use of the chart will save considerable effort and at the same time yield circuit constants of which one can be sure gives the maximum compensation. The addition of high frequency compensation networks across the volume control will not affect the values of $R_{1}, R_{2}$ and $C$ for maximum compensation.

## TONE CONTROL CIRCUITS

Tone controls are supplied with radio receivers so that the user may adjust the tone characteristics to suit a personal preference. Some people like a deep bass response while others prefer a high-pltched, or brilliant response.

The usual tone control consists of a condenser in series with a varlable resistance so connected that when the resistance of the control is zero, the higher frequencies of the signal will be attenuated; i. e., by-passed, and will not appear at the loud speaker.

There are many types of tone control circuits. Fundamentally, all of them act upon this principle. There are a few tone control circuits arranged to really boost the bass response of a receiver. There are certain circuits so arranged that when the control is turned in one direction, the higher frequencies are attenuated. When turned in the other direction, the lower frequencies are attenuated. This type circuit can only be successfully employed in a receiver having a flat response over the whole audio frequency spectrum.
Circuit 21 (Figure 91) illustrates what is popularly known as a "Grid circuit" tone control.


## Figure 91

This circuit is seen to consist of the condenser and the variable resistor. The action of the circuit follows: When the control arm is at the "Left-Hand" (L) terminal, the condenser is scen to be shorted directly from grid to ground. Inasmuch as the Capacitive Reactance of a Condenser decreases with an increase in frequency, it is easy to see that the resistance; i. e., "Capacative Reactance" of the condenser is much lower at the higher frequencies and that they are effectually short circuited and cannot influence the grid of the tube to any great extent. As the arm of the control is rotated toward the right hand terminal, resistance is gradually introduced into the circuit, in series with the condenser. This increasing resistance gradually adds to the resistance; i. e., Capacitive Reactance of the condenser. It will be seen that the variable resistance is a convenient means of reducing the Capacative Reactance of the condenser. Of course, the same action could be obtained by using a variable condenser. However, the space required by a variable condenser of a size suitable to obtain the desired action would be entirely prohibitive. Thereiore, a fixed condenser and a variable resistance is used to obtain the same action. In the design of a tone control circuit of this type, a control having a resistance value many times that of the "resistance"; i. e., "Capacitive Reactance" of the condenser (at the lowest frequency to be considered) is closen, in order that when the
moving arm of the control is at the right-hand terminal there will be very little, if any, attenuation of the higher frequencies of the signal.
Circuit 22 (Figure 92), illustrates the so-called "plate circuit" type of tone control circuit.


## Figure 92

The connections and action of this control circuit are practically the same as that of the previously discussed grid circuit type, with of course the exception that the condenser is connected to the plate of the tube.

There is one outstanding difference between the grid circuit and plate circuit types of tone control. That is the difference in impedance of these two circuits.

The impedance of the ordinary grid circuit is in the order of 100,000 ohms or more, whereas the impedance of the plate circuit, particularly of the output or power tubes, ranges from approximately 2,000 to 20.000 ohms. As tone controls are in "shunt" with the respective grid or plate circuits, it is easy to see that in a grid circuit. a small condenser and a large value in a grid circuit. a small condenser and a large value
of resistance must be used. In the plate circuit, a of resistance must be used. In the plate circuit, a
larger condenser and a lower value of resistance is required to give the same amount of tone control.

Another consideration in theaction of these two types of tone control circuits is the fact that there is little voltage, other than that of the signal, impressed upon the grid circuit type of control. In the plate circuit type of tone control the condenser is subject to the full plate voltage of the tube. When used in the plate circuit of a high-powered amplifier, the control must be able to dissipate considerable power.

Failure to take this factor into consideration has caused a good bit of prief to service men who have installed tone controls in power amplifiers, in that they forsot that the control might have to handle 4 or 5 watts of power when used in this position, with the result that they "Burned position, with the result that they "Burned
Out" the control, and were "mystified" because Out" the control, and were "mystified" because
the condenser failed to show leakage of the DC plate current. The "Grid Circuit" type of tone control may use an ordinary carbon control with safety.

Resistance Value of controls for use in tone control circuits ranges for the "Grid" type from 50,000 to 500,000 ohms inclusive. The resistance value of controls for the plate type ranges from 5,000 to 50,000 ohms, in some cases, to a nuximum of 150,000 olims. The exact value of the control is dependent upon the amount of high frequency attenuation desired. This is determined by the "Capacitive Reactance" of the condenser. We would again like to point out that the value of control resistance and capacity of the condenser is repulated by the impedance of the circuit in which it is used; i. e., high impedance for grid circuits, and a low impedance for plate circuit use.

Taper used in tone controls is generally of the Yaxley No. 1 Left-IIand type.

A simple rule, regarding taper, to be observed when replacing tone controls is: "WHEN THE BASS POSITION IS TO THE LEFT OF THE KNOB, USE A YAXLEY NO. 1 LEFT-IIAND TAPER, or, WHEN THE BASS POSITION IS AT TIE RIGHT-HAND SIDE OF THE KNOB, USE A YAXLEY NO. 2 RIGHT-IIAND TAPER.'

Another convenient rule to be applied when replacing tone controls is: "WHEN ONLY THE CENTER AND LEFT-IIAND TERMINALS OF CENTER AND LEFT-IAND TERMINALS OF
THE CONTROL ARE USED, USE YAXLEY NO. 1 LEFT-HANI TAPER, or, WHEN ONLY TIE CENTER AND RIGIIT-IIAND TERMINALS OF THE CONTROL ARE USED, USE YAXLEY NO. 2 RICHT-HAND TAPER.'

For the combination Bass and Treble control circuit where the control gives Bass attenuation when turned in one direction, and Treble in the other direction, use Yaxley No. 4 Lincar taper.
Trouble encountered in tone control circuits is usually in burning out of the control because of the break-down of the condenser. This occurs only in the plate circuit type of control. The
cure for this, of course, is to install a new condenser of the same value of the original before replacing or attempting to replace the control.

Additional tone control circuits of the grid type are illustrated by Circuits $39,41,57,65$, and 72 , appearing on pages 178 to 183. Additional tone controls of the plate type are illustrated in Circuits $34,44,80,85,95$, and 103, on pages 178 to 183.

## "LOSSER" TYPE CONTROL CIRCUITS

Losser type volume controls were at one time in fairly common use. The general development and improvement of circuits obsoleted this type of control circuit.
Circuit 84 (Figure 93), illustrates one common type of "Losser" control.
This control was employed in a receiver designed only a few ycars ago; in fact, one of the early receivers using AVC.


This circuit is an outstanding example of all "losser" type control circuits. The reason for the peculiar name applied to this type of circuit is that the control introduces a "loss" into a circuit. The word "losser" indicates that the control destroys the efficiency of the circuit.
To explain the action of this circuit it is necessary to briefly review the action of a tuned circuit.
The voltage developed across the tuned circuit; i. e., from grid to ground, is maximum when the impedance of the circuit is maximum; i. e., at resonance; as is shown by the formula $L / R C$. Where $L$ is the inductance, $R$ is the resistance and $C$ is the capacity.
This formula shows that an increase of $R$ will decrease the impedance of the circuit and lower the voltage applied to the grid of the tube.

When the control arm is at the Right-Hand terminal, the lower end of the coil is grounded. In this position the control has no effect on the tuned circuit. When the arm is rotated, resistance is introduced into the circuit. This is, of course, an increase of " $R$ " in the formula.
It will be seen from this formula and explanation, that as resistance is introduced into the circuit, the voltage applied to the grid of the tube is reduced, and from the explanation, it is clearly seen that any control which destroys the efficiency of a circult, can very aptly be termed a "losser" type control.

A characteristic of this type of control is that it tends to broaden the resonant peak, resulting in reduced selectivity.

Resistance Value of controls for "losser" type circuits is dependent upon the circuit with which they are used. In the example given, the resistance, for a circuit tuned to 175 kilocycles, is 10,000 ohms. This might be taken as an average value for this type of circuit.

Taper for controls used in a circuit as shown in Figure 93, is of the Yaxley No. 2 Right-Hand type, because the control is a Series Control, and as we have previously explained in the chapter on Taper, a series circuit requires the use of a Right-Hand taper.
Trouble in Circuit 84 (Figure 93), outside the general objections listed is noisy operation. This can best be cured by replacing the original control with a Yaxley No. 2 Right Hand taper control of approximately the same value as the original. It might be wise when servicing a receiver equipped with a control circuit of this type, to change the wiring of the receiver to use a more efficient and more modern control circuit.

## "DUUAL" <br> CONTROL CIRCUITS

The expression "Dual Control Circuits" is applied to all circuits using two controls driven by the same shaft.

The reason for using a dual control clrcuit is that it is often necessary to do this in order to obtain smooth, even and complete attenuation of all signals.
In the following paragraphs, we will discuss a few of the outstanding, or more common types of dual control circuits.
The first of these types to be discussed is one of the most common, illustrated by Circuit 23 (Figure 94).
This shows the use of a dual "Audio" control. This control is applied, in the circuit, to the grids of a pushpull amplifier. This is necessary as it would be quite impossible to control the volume on only one side of the circuit.
Study of the control connections in the illustration reveals that as the control is rotated, the arm moves from the center of the diagram, where the letter " $L$ " indicates the Left-Hand terminals of both sections of the control, outward toward the Right-Hand terminals of the control, which are indicated by the letter "R."


A control for use in this circuit would consist of two sections, each of the same resistance and taper.

In our previous study of the action in volume control circuits, we learn that an "Audio" control requires a Yaxley No. 1 Left-Hand taper, and that, in general, the resistance for such a circuit may range from 100,000 ohms to an approximate upper limit of 500,000 ohms.

Yaxley furnishes "Universal Dual" replacement controls, suitable for use in this circuit. These are "LL." "MM," and "NN." A dual megohm is not supplied because there is little or no demand for such a high resistance value, particularly in a circuit such as is given.

Before taking up other types of "dual" control circuitg, we wish to point out that Circuit 36 , on page 179 is, for all practical purposes, identical to the one explained above.
The second most common type of dual control circuit is Circuit 24 (Figure 95 ).


In this circuit we meet a combination of two entirely different circuits, which are controlled by means of a dual control.

A study of this circuit reveals that it is a combination of two rather common circuits. One section of the control acts as an antenna control of the ShortOut type, similar to that previously shown and discussed. (See Circuit 4, Figure 57). The other section of the control is of the Bias type. This section of this control circuit is identical to that described and illustrated in Circuit 7, Figure 60.

The action in the dual control circuit No. 24 (Figure 95 ) is a combination of the action of the two circuits controlled, in that as the control is rotated from right to left, the bias on the tube is increased and the signal is shorted out at the antenna.

The reason for using a dual control in this circuit, which is, as far as its action is concerned, the same as
that of Circuit 6 (Figure 68), is that the conditions in this particular design are such that neither one of the two sections of the circuit could be used for satisfactory control of the volume. Also Circuit 6 (Figure (i8) was not applicable at the time of design, because the sensitivity of the receiver was probably rather low, and every possible means had to be taken to get the most out of the receiver. The use of the single control Ant.-Bias circuit would probably reduce the input from the Antenna, whereas a special taper on the Antenna section of the dual control, assures the full possible input.
Circuit 24 (Figure 95), has not been used for several years, because the terrific increase in power by the broadcasting stations has made it possible for designers to use Circuit 6 (Figure 68) even in the lowest gain receivers. It is often practical to replace the original dual control with a Yaxley single control with, in many instances, an improvement in the control action.

Resistance Values for controls for use in Circuit 24 (Figure 95) usually range from a minimum value of 2,000 and 5,000 ohms to 10,000 and 50,000 ohms. l'axley DRPI 19 , of 3,000 and 10,000 ohm value, is widely used in this type of circuit, as is the DRPI69. 7.500 and 10,000 ohms. "Universal Dual" controls "CE," "GE," "GG" and "GK" are also widely used for this type dual control circuit.

Circuit 43 (Figure 96) illustrates another type of "Dual Control Circuit." This is one of the combination antenna Short-Out and Bias Control circuits.


Figure 96
Circuit 43 (Figure 96), is used in battery type receivers. A study of the circuit reveals that the action is identical to that of Circuit 24 (Figure 93).

In some cases it might be possible to replace this dual control with a single tapped control, by using Circuit 97, sce page 181.

## "ANTENNA-LOSSER", TYPE CONTROL, CIRCUITS

This type is illustrated in Circuit 38 (Figure 97), and is seen to consist of two sections, one of which is an antenna "Short-Out" type control. The other section serves to short out the RF signal at the plate of the first RF tube.


## Figure 97

This circuit is rather unique in its action, in that when the control is rotated to its full counter-clock wise position, the two arms of the control, as shown in Figure 97, would be at the top of the resistance. In this position the antenna would be connected to ground. Inasmuch as the "Capacitive Reactance" of the condenser (usually of rather large capacity value) is practically zero at the frequencies involved, the plate is effectively shorted to ground, thereby preventing the flow of RF current through the primary coil and transferring to the succeeding tubes.
This circuit was used to a limited extent in some of the earlier battery receivers, and it is rarely encountered in service work.

Resistance Values for the control for this circuit, for replacement purposes, should approximate the values of the original control.

A second type of "Antenna-Losser" circuit is illustrated in Circuit 102 (Figure 98).

The action in this circuit is standard for the antenna section. However, the losser section is unusual, in that the control forms a series circuit with a tertiary, or third coil, which is inductively coupled to the RF transformer between the second and third RF tubes.

The action of this losser control circuit is rather unique in that when the control is at maximum volume position, the full resistance value of the control is in series with the tertiary coil, and thus prevents this coil from absorbing energy from the RF transformer.


The antenna control arm, at full volume position, is at the right-hand terminal of the control. In this position it contacts the antenna. The signal is applied directly to the grid of the first RF tube.

When the control is turned so as to reduce the volume, the arm of the antenna section moves down the control, away from the antenna, reducing the RF input. At the same time the arm of the losser section of the control moves up on the resistance, reducing the amount of resistance in series with the tertiary coil. This reduction of resistance causes the tertiary coil to absorb energy from the transformer and reduces the amount of signal which reaches the grid of the third RF tube.
When the control is at the minimum volume position, the grid of the first RF tube is grounded. The resistance in series with the tertiary coil is at zero. Under this condition this coil will absorb practically all the RF energy present in the RF transformer Thus-it is seen that there will be no voltage at the grid of the third RF tube.
The reason for using this circuit was that the stralght single antenna control would be impractical in the high gain receiver in which the circuit was used. Due to the fact that filament heater Type 26 tubes, were used as the RF amplifier, it was impossible to use a bias type or combination "Ant-Blas" circult, because in creasing the bias on a "flament type" tube introduces a serious aniount of hum.

## "ANT.-RF RHEO"' DUAL CONTROL CIRCUITS

In some respects, an unusual type of dual control circuit to be discussed. One of the most unique ever designed. The schematic, Circuit 123, is shown in Figure 99.


Circuit 123 consists of two sections, each controlled by its own section of the dual control. One section is a more or less standard antenna centrol, discussed in the chapter headed Ant.-Controls. The other section act as an RF Rheostat which controls the amount of RF current flowing into the primary circuit of the RF transformer. This couples the plate of the first RV tube to the grid of the second RF tube.
A study of the connections of the above circuit wil] reveal that the primary of the RF transformer is tuned to resonance with the signal. The grimary is coupled to the secondary by means of a small coupling coil innmediately below. Inmediately below this coil is an RF choke which prevents the RF current from getting into the plate voltage supply of the receiver.

In order to complete the KF circuit, that is, in order that there may be a connection between the tuning condenser and the primary, there is a large condenser connected on one side to the junction of the couplins coil and the choke, and on the other to the right-hand terminal of the control.
Now, when the control is at the full volume position the path of the RF current is from the plate through the primary and coupling coil; then through the large condenser, inasmuch as the right-hand terminal of the control is grounded at full volume position to the chassis. The tuning condenser being connected from the plate of the tube to chassis is (at full volume posi(ion of the control) effectively connected across the primary.
As the control is turned to reduce the volume, resistance is introduced in series with the tuned primary circuit. The Antenna-Section acts exactly as outlined in a previous chapter and illustrated by Circuit 4 (Figure 57).
In addition, due to the decreased current flowing in the primary circuit (because of the resistance introduced into its path) there will be a reduction in signal transfer at the coupling coll. This signal transfer depends upon the amount of current flowing in the circuit.
While this action is taking place, the antenna section of the control has reduced the signal input to the grid of the tube.

The reason for using this peculiar and rather complicated circuit was because an "Antenna Type Control Circuit" (using a single control) would not have given satisfactory control of the volume. Also, the then popular screen voltage control (which was used on the same chassis in place of this control circuit) failed to give smooth and coniplete attenuation of signals, especially when the receiver was used in areas of high signal strength.
This dual control circuit may be replaced with the "Antenna-Bias Circuit," described in the chapter under that heading and illustrated by Circuit is (Figure 68).
Resistance and Taper of the dual control for use in Circuit 123 (Figure 99), are both special. A correct dual replacement control for the receivers using this circuit, is listed in the forepart of the encyclopedia.

## "IIUM" CONTROL CIRCUITS

As the title suggests, the type of circuit now explained is used to control hum in receivers.
Whenever "filament type" tubes are used, it is necessary that the grid return be connected (in effect) to the center tap of the filament. In other words the grid return must be connected to a neutral point in respect to the filament voltage. If the grid return is connected to either side of the filament, there will be an alternating voltage impressed upon the grid, which will cause an objectionable hum. An adjustable resistor is used to select the "neutral voltage" point in the filament circuit.
Athough this effect may be had by center tapping the filament winding on the transformer. in practice it has been found that there are disturbing factors which in most cases make it preferable to use the adjustable resistor.
The adjustable resistor used for hum control is a potentiometer, usually connected directly across the filament supply. In sonie designs hum control is effected by selecting a voltase equivalent to the disturbing or hum voltage, but "out of phase" with the hum voltage, and applying this "out of phase" voltage to the grid of the tube in such a manner as to counteract the effect of the voltage causing the hum.

The most common circuit for hum control is illustrated by Circuit 37 (Figure 100), which shows the control connected across the filament supply.


Figutre 100
The action in this circuit is simple, but rather difficult to explain. The simplest explanation is to consider that the filament supply of voltage reverses the polarity twice for each cycle of the supply voltage. The frequency at which this reversal occurs, is of course determined by the frequency of the filament supply current. ordinarily 60 cycies per second. meaning 120 reversals of polarity per second.

In receivers using a direct current for filament supply, as in old battery receivers, it is eustomary to connect the grid return to one side or the other of the filament, depending upon the polarity of bias desired, it being the usual practice to make the connection to the negative side of the filament. If this were attempted with an AC filament supply, the polarity applied to the grid would shift with the reversal of polarity in the filament circuit. This, of course, would give rise to a terrific hum.
Suppose that we theoretically "stop" or arrest the AC filament supply at such a point in its cycle so that we would have full voltage across the filament. If this were possible, we could take a voltmeter and find a point on the resistance element of the control at which the polarity of the voltage would be neutral. That is, it would be neither positive or negative. This neutral point does not shift with the frequency or the alternations of the filament supply voltage. If we connect our grid return to this point, there will be no alternating voltage impressed upon the grid, and no hum.
In practice the control is wired with the resistor element across the filament. The moving arm of the control is connected to the grid return circuit. This is ustally accomplished through the chassis. The control arm may be connected directly to the chassis. It is necessary to apply a bias voltage to the tube. As this control not only provides the return or completion of the grid circuit, but also for the plate circuit, there is often a resistor connected between the moving arm of the control and the chassis. This resistor, because of the plate current, causes a "voltage drop" between the filament and the chassis drop between the filament and the chassis (which is the grid return). This voltage developed
across the resistor, is the bias voltage, because, due to the polarity of the plate current, the chassis end of the resistor will be negative in polarity, in respect to the filament.
Resistance Values of controls for use in this circuit are usually of a very low value, because of the low voltage impressed across the control. In practice, the resistance usually ranges from 6 ohms for a $21 / 2$-volt circuit, to a value of probably several hundred ohms where high filament volts are used.
laxley "IIU" controls are especially designed for use in this type circuit.
Taper is not required in controls for these circuits, because of their use as a simple voltage divider.

Another type of hum control is illustrated in Circuit 30 (Figure 101 ).


Fitgure 101
In this circuit we see a center tapred control which is connected between the two halves of the secondary of an audio transformer which supplies signal to the grids of a push-pull amplifier.

The action taking place in the above circuit is that when the two tubes are exactly alike, the neutral point, obtained by the fixed center tapped resistor across the filament circuit, provides the correct adjustment for minimum hum. In this case the arm of the hum control would be at the center position of the control, which point is grounded.
Because tubes for use in this circuit are rarely exactly alike in their characteristics. and because of a slight difference in plate current, hum might develop, were it not for the fact that the control can be shifted to either side of the center tap to adjust the blas supplied to the tubes, and equalize the plate current and other factors causing the hum-
Another circuit, having the same action as Circuit 30, is shown in Circuit 66 on page 180. These circuits are practically identical, with the exception that Circuit 66 is applied to a resistance coupled type of amplifier.

Resistance of the control for use in Circuit 30 is usually one of three values i. e., 200,400 or 600 ohms. Yaxley supplies SRP controls Nos. 265, 253 and 266 for use in these circuits.
These hum-controlling circuits are usable to a certain extent to overcome distortion which might arise due to a lack of balance in the plate currents drawn by the tubes. These circuits perform a dual function, both controlled by one adjustment of the control. This could not be accomplished by the use of the first described type of hum control shown in Circuit 37 (Figure 100).
Circuit 51 (Figure 102), illustrates an unusual circuit which accomplishes the same results as that of the two circuits which have just been discussed.


Figure 102
A study of this circuit reveals that the control is connected from one screen to the other of the two tubes in a push-pull amplifier, usually the out put or power tubes.

The arm of the control is connected, in case of Circuit 51 to a choke. This has little bearing on the action of the control.

As explained, the action of this circuit is similar to that of Circuit 30 (Figure 101), and Circuit 66 (see page 180). In this case the control of the hum is accomplished by balancing the plate current of the two tubes by means of varying the screen voltage. As explained, balancing the plate current tends to minimize hum and to prevent distortion.
Resistance for this control should be rather low determined to a certain extent by the range of control desired, which in most cases need only be a few volts. The resistance value can be calculated by means of the screen current.

## MISCELLANEOUS CONTROL CIRCUITS

In addition to the control circuits discussed, there are others of relative unimportance. Gain, Sensitivity Silent Tuning and Suppressor, are subsidiary controls in that they are used to control the sensitivity of a receiver, and not the volume. Although many of these controls affect the volume of the receiver, they are provided so that the sensitivity may be reduced to the required level and thereby reduce the amount of noise or interference which would otherwise be objectionable.

All these controls will be found to use one of the control circuits previously discussed. For example, the most usual circuit for use as Gain or Sensitivity control, is the "Bias" control circuit.
When you encounter a circuit not mentioned, we advise that you carefully study the connections. In
practically all cases you will find that it will fall into one or another of the different types of control circuits which are illustrated on pages 178 to 183.

Occasionally a receiver will use a control, the circuit of which is peculiar and to be found only in that receiver.
A good example is the "Flash-O-Granh" control listed in the Encyclopedia with the abbreviation "F.O.G." This is a "trade name" for a tuning indicator used to indicate resonance of the receiver to incoming signals.
As signal intensity varies with each installation, it is necessary to provide a control so that the indication will be the same for all locations.
The proper control for use in this circuit is specified in the "Replacement Part" of the Encyclonedia. It is a simple voltage divider and should be replaced with a control of the same resistance value. Taper is not required.

Another control circuit of the same description is a simple voltage divider used to control the height of gas glow in a Neon tube used as a tuning indicator.
This circuit is listed in the "Replacement Part" of the Encyclopedia as "Tone Beam" with its proper replacement.

## CARBON OR WIRE CONTROLS

Many servicemen are of the opinion that only carbon type controls should be used. This is a mistake. Carbon and wire wound controls have their distinct individual advantages-advantages which are not alike. The wire wound control is the oldest type. Let us analyze its advantages and disadvantages first.

## advantages of WIRE WOUND CONTROLS

1. Absolute accuracy of resistance value maintained throughout the life of the control. Wire controls can be commercially made to within a tolerance of $2 \%$ plus or minus.
2. High current carrying ability. In the case of Yaxley wire wound replacement controls, dissijation of a full 5 watts is assured.
3. Low resistance values are obtainable with the wire wound type control. Yaxley wire wound controls start as low as one-half ohm.

## DISADVANTAGES OF WIRE WOUND CONTROLS

1. Difficulty of obtaining taper. Tapers in wire wound controls are rather abrupt.
2. A slight amount of noise is generated when the arm moves from one turn of wire to another. The cause of this noise is the "voltage drop" per turn of the resistance wire.
3. Limited resistance value. Because it is difficult to handle wire of less than $.001^{\prime \prime}$ diameter, controls of more than 150,000 ohms would be not only extremely difficult to wind. but would require a large amount of space.

## ADVANTAGES OF CARBON TYPE CONTROLS

1. Ease of tapering-A distinct advantage in that any taper "curve" may be easily obtained.
2. Silent operation, because the resistance change is progressive and not by means of minute steps as in the wire control.
3. Resistance values of carbon type controls may range into many megohms without bulkiness or undue difficulty of manufacture.

## DISADVANTAGES OF CARBON TYPE CONTROLS

1. Variation of resistance. The resistance value of a carbon control is influenced by humidity, heat, age and wear, in addition to the tolerance which must be allowed in order to obtain commercial production. (See page 184 for further data).
2. loow current handling capacity. The usual limit of dissipation for carbon type controls of approximately $11 / 2$ inch diameter is 1 watt. Yaxley carbon controls below 75,000 ohms will readily handle carbon controls below 75,000 ohms will readily handle
2 watts, or even nore for the lowest resistance values. 2 watts, or even nore for the lowest resistance values.
For midget control ratings see "Midget Controls."
3. Limited resistance value. It is alnost impossible, at this time, to successfully make carbon controls of less than approximately 500 ohms.

From this compilation, we see that each type of control has advantages which offset the disadvantages of the other type. Each type of control is limited in its application to the circuits or conditions requiring the particular advantages of its type.

In your service work, you are confronted with the replacing of controls of either type. It is our advice that you replace a wire control with a advice that you replace a wire control with a
wire control, and an original carbon type control with a carbon type control. By adhering to this rule, you will avoid customer dissatisfaction, loss of time and labor, which are distinct possibilities if one type control is substituted for the other.

For your convenience "Yaxley" provides both type controls in all necessary resistance values; and tapers in the range of resistance wherein either type may be used.

There are certain conditions where it might be desirable to change the type of control; i. e., use a carbon control to replace an original wire wound control This is a matter of discretion for the serviceman. The exchange should not be made unless the advantages to be gainted are NOT offset by the disadvantages of the particular type control. Quite often this can only be correctly ascertained by trial and error.
For your advantage, we list below a table showing the Yaxley wire wound and carbon types which are interchangeable as to resistance value and taper.

Wire	Carbon
E7.	E. 12
F7.	F12
G7.	G12
H7.	H12
	UC50

## MIDGET CONTROLS <br> (See Pages 174-175)

The introduction of the midget volume control brought a new problem to the servicing fraternity. The ramifications of shaft length and shape in the large size control has been duplicated in the midget. This has resulted in a difficult service condition which This has resulted in a difficult service condition which
in the past has had no effective solution. Before considering any methods for solution, let us review the midget situation.

The nidget control has been developed in response to a demand for smaller component parts for auto receivers, and the small AC -DC receiver types.

Due to its small size the midget control is not, as a general rule, suitable for use in circuits where the control is called upon to dissipate much more than onehalf watt. Therefore, it finds its widest field of use in those circuits generally classed as the "Audio Control Circuits" (such as circuits 15 to 20 inclusive on page 178).

However. some designers have used midget controls in current-carrying circuits of the Antenna-Bias type. where they may be overloaded. Although this is not likely to occur in the receivers made by nationally known concerns. it is a possible source of trouble, particularly in "off brand" or a few "trade name" receivers, where midget controls are often used even though there is sufficient space for the larger type control. If the original midget control is burned out and a check reveals that the failure is due to excessive current in the control, replace it with a large control if there is space available!
On the other hand. the midget may be used to replace the large control in the "audio" type of control circuits whenever this procedure tends to simplify a crowded installation.

LEFT IIAND TAPER CONTROLS (TAPER 1)
See pages $150-160$ for large size controls)

(Mnts Resist.	Catalog Numbers	Type	General Use
10 M	MRI8, UM118	Carbon	Antenna Shunt,
15M	MR21, UM121	Carbon	Ant.-Bias,
20 M	MR24, UM121	Carbon	Tone
50 M	MR33, UM133	Carbon	
75 M	MR36, UM137	Carbon	Tone
100M..	MR39, UM140	Carbon	RF or AF
100M..	UM 143 Clutch Type.	Carbon	Shunt, Tone
130M	MR42, UM144	Carbon	
250 M .	MR45. UM147	Carbon	Tone
3501.	UM151.	Carbon	RF or AF
500 M.	MR48, UM151	Carbon	Shunt,
500 M . .	UM157 Clutch Type.	Carbon	Tone
750M. .	MR51, UM158	Carbon	
1 Meg.	MR53, UM161	Carbort	
1 Meg.	UM162   Clutch Type.	Carbon	AF Shunt, Tone
2 Meg.	MR55. UM163	Carbon	
3 Mer. .	MR57, UM165	Carbon	

RIG111'11AND TAPER CONTROLS (TAPER 11) Yaxley Midget Controls

10.11	MR19, U.M119	Carbon	
15M	MR22. UM122	Carbon	
$23^{3} \mathrm{M}$	MR28, UM128	Carbon	Bias
50 M	MR34, UM134	Carbon	
75 M	MR37, UM138	Carbon	
100M. .	MR40, UM 141	Carbon	Bias, Antenna Bias (AC-D(')


LINEAR CONTROLS (TAPER IV)			
Yaxley Midget Controls			

## MIDGET REPLACEMENT CONTROLS <br> (See Pages 174-175)

Midget type controls have been in use for approximately three years. Although the greater majority fall in the taper and resistance values for audio circuits (usually 250,000 or 500,000 ohms and No. I left hand taper), there are some eight (8) or more basically different types of shafts for this group. This does not include the various lengths of each type, which if counted. would make the number of different shafts required extremely large. It is natural to expect a distributor to be able to supply any replacement part. but if he attempted to stock an exact replacement for every type of midget control, it would require an exceedingly large investiment and inventory.

## THE NEW YAXLEY LNIVERSAL <br> MIDCET DESIGN <br> (See Pages 174-175)

After careful consideration of all the requirements involved. Mallory-Yaxley presents a complete and outstanding new solution to the problems previously outlined. Yaxley midget controls embody the following salient features:

1. The revolutionary Plug-In Shaft-

This development results in a tremendous increase in the flexibility of control application. Only a few types of controls are required to service a large majority of receivers.
2. A ruggedly constructed, smoothly tapered element. built on the principle of the famous Vaxley Silent element. Again taper controlled by geometric design.
3. Pure silver to silver contact. Pure metallic silver on the element in contact with silver plating on the terminal.
4. Terminal anchorage; sprung into place and anchored by a permanent clamp. The terminal is flexible, yet it maintains lasting contact.
5. The Vaxley resistance ratio tap, again pure silver to silver contact, and correctly tapped by resistance ratio.
6. Floating silver plated moving contact arm.
7. Element perfectly centered and anchored in place with rivets.
8. A patented locking method, which rigidly clamps the shaft. When the shaft is inserted this part is sprung outward to give a perfect fit between the shaft and the receptacle, and the receptacle and the bushing. This eliminates any play or looseness in the shaft parts,

## AUTOMOHILE CONTROLS <br> (See Pages 174-175)

Here in a few words with clear distinct pictures is something new which will lighten your work tremendously. See the many ways provided for the replacement of Auto Radio Controls. The rapid development and wide spread use of auto radio receivers has brought about an annoying situation, in that it seems as though every designer strives to out-do all others in the mechanical design of the control shafts to be used in his receiver.
The serviceman is faced with shafts of every conceivable shape and size. There are round shafts; square shafts; slafts with holes, with slots, grooves and pins. This extremely wide variety of shapes of coutrol shafts would be almost unbearable to the serviceman, were he without the universal features of the Yaxley line.
For your benefit, Yaxley pioneered the "Universal" plan and it is in the field of auto radio control replacements that this plan of Universality finds its full expression and assures you of being able to replace practically any control, reqardless of its shaft.
A study of auto radio controls reveals that a $1 / 4^{\prime \prime}$ diameter shaft, with a longitudinal slot, the width of which is usually $3 / 32^{\prime \prime}$, is by far the most popular type. Therefore, we will first demonstrate the universal replacement features of the Yaxley line with this type shaft.
Figure 103 shows a type of slotted shaft which is often used with auto receivers. This type of shaft is usually required where the control is operated by means of a removable key, as this allows the locking of the receiver by removal of the key.


Figure 103
Yaxley supplies two controls equipped with this type shaft. These are:
SRP251-250,000 ohms-No. 1 Left-Hand taper.
SRP252-500,000 ohms-No. 1 Left-Hand taper.
These controls have the Vaxley attachable switch feature. In addition TIIE SHAFT MAY BE CUT OFF FLUSII WITII THE BUSIIING wherever the application requires a control having a slotted slaft which is flush with the bushing. Such controls are which is flush with the bushing. Such controls are
used by certain models of Arvin, Ford and RC. Auto Receivers.

For the replacement of the slotted type shaft where the length of the shaft lies between $1 / 4^{\prime \prime}$ and $2^{\prime \prime}$ (as measured from the bushing), Yaxley presents in Figure 104 the type of shaft used in Yaxley con-trols-types:
UC51I-250,000 ohms-No. 1 Left-Hand taper.
UC512- 000,000 ohms-No. 1 Left-Hand taper.
UC514-1 Meg.-No. 1 Left-Hand taper.
TRP620-2 Meg.-Tapped at 1 meg. Special
Tapped Taper.
These controls will supply a replacement for any automobile receiver requiring a slotted shaft less than $2^{\prime \prime}$ long.


Figure 104

Figure 104 shows that this shaft is equipped with a sleeve. When curting the shaft it is advisable to cut through the sieeve, except in rare cases where it is necessary to have the sleeve project beyond the end of the shaft.
For replacing controls having a slotted shaft over $\mathbf{2}^{\prime \prime}$ in length, Yaxley presents the UC515 which is truly a Universal Control.


## Figure 105

Figure 105 clrarly reveals that Yaxley Control Type UC515 of 500,000 ohms No. 1 Left-Hand taper will readily replace any control wherein the shaft length is not more than $51 / 2^{\prime \prime}$.
By cutting off the shaft and using the coupler to connect it to the control, you may easily and quickly make a replacement.
Because controls of values other than 500,000 ohms rarely are equipped with a slotted shaft greater than $2^{\prime \prime}$ in length. Yaxley has not found it necessary to furnish the above described type of control in values furnish the above describ 500,000 ohms.
For your convenience, and to assure that you may replace most any control which may have a slotted shaft, Yaxley supplies a Slotted Extension Shaft-RS245 as shown in ligure 106.


A tongue-shaped shaft, with a guiding sleeve, and equipped with a set screw attachment is catalogued as the RS246 and illustrated in Fig. 107.


## CLUTCII TYPE CONTROLS <br> (See Pages 174-175)

A large number of auto receivers are constructed so that the "On-Off" switch is located in or upon the control head in place of being attached to the volume control. This is shown in Fig. 108.


This arrangement requires a special type of control known as the "Clutch Type" because it contains a
clutch which permits the shaft to "slip," to allow the alignment of the rotation of the control with the knob indicator on the tuning head. Install the control and insert the driving shaft, then turn the control knob through its full rotation in both directions. The result is the proper alignment of the moving arm of the control with the driving knob so that the switch operates at the correct position.
Controls having this clutch feature are provided with a plain cover but with a proper portion of the resistance shorted out for the switch action. Midget controls having this feature are marked in the catalogue in the following manner: "UM143, 50M (ohms) Taper 1, Clutch." In addition the SRP282 (with shorttongue shaft) is a Clutch-Type control.

## QUICK AND EASY REPLACEMENT OF CONTROLS

Replacement of controls in receivers will always be an easy and simple matter if the instructions outlined in this chapter are followed.

1. Before removing the control, or even unsoldering the leads TRACE OUT THE CIRCUIT and be sure to note the connections of the leads to the control. It is advisable to make a sketch so as to prevent confusion when attaching the leads to the new control.
2. Remove the control from the chassis.
3. Measure the overall resistance. If the control is burned out, it will be necessary to open it and measure the various remaining sections of the resistance, and from this total, calculate the amount of resistance which has been destroyed, so as to obtain the overall resistance value.
4. Ascertain the taper. To measure the taper, it is only necessary to set the moving arm of the control at the center of its arc of movement. It is not necessary to remove the cover to do this, inasmuch as the shaft of the control may be marked, its total travel ascertained from this mark by rotating the shaft, then set the mark at the center of the indicated travel. With the arm of the control at the center of its rotation, measure the resistance of the two halves of the control. When facing the shaft end of the control and with the terminals down or toward the operator, if the resistance between the center terminal and left-hand terminal is Iower than the resistance between the center and right hand terminal, replace with a Yaxley No. 1 Left-Hand tapered control. If the resistance between the center and left hand terminal is greater than that between the center and right hand terminal, the control should be replaced with a Yaxley No. 2 Right-Hand tapered control.
In case the resistance of the two halves of the control is equal, a Yaxley control of No. 4 taper should be used.
5. If the control is tapped, measure and note the resistance between the left hand terminal and the tap.
6. At this point, you have the following information which is to be used in selecting the correct Yaxley replacement control:
(a) Circuit.
(b) The overall resistance.
(c) The taper.
(d) Tap value (if control is tapped).
(e) Shape of shaft.

## Procedure:

If shaft is of standard $1 / \mathbf{4}^{\prime \prime}$ diameter (regardless of milling [flat] on the shaft), proceed as follows: For purposes of explanation we will assume that we have the following information: $\mathbf{5 0 , 0 0 0}$ ohms resistance, left hand taper and no tap. Therefore, it is necessary to consult only a listing of Yaxley controls and select a control of 50,000 ohms No. 1 Left-Hand taper, which will be the Yaxley type K12, M R33, or UM133.
However. if we are dealing with a tapped control, it is necessary to consult the table of Yaxley TRP or TM controls, first looking for the TRP or TM control having an overall resistance value nearest that of the original. Then choose the TRP or TM control having the same overall resistance which is tapped at a value nearest that of the original.

# ADVANTAGES OF THE MALLORY-YAXLEY PLUG-IN SHAFT 



Figure 109 illustrates the new Yaxley Plug-In type controls, and a few of the replacement shafts available.
The connection between the shaft and receptacle is rigid and unfailing. It is accomplished by a novel design (patents pending) that does not require the use of tools to install. It is only necessary to line up the long axis of the ovular shaped lock ring with the slot in the receptacle and push in the shaft, after which, for safety, the lock ring is easily clinched with pliers. Should this clinching

be overlooked the possibility of the lock ring aligning itself with the slot is remote.

With the use of the Yaxley Plug-In shaft controls, it is possible to carry a small stock of five or six controls which are capable of replacing, both mechanically and electrically, over $90 \%$ of the midget requirements.

For complete coverage of midget control requirements, the Yaxley line includes 56 known basic controls. At the present time a total of 17 Plug-In Shafts provide all necessary types. Since the possible use of any one control is increased 17 times by the plug-in feature, it naturally follows that the complete line has a potential range equal to $952(17 \times 56)$ fixed shaft controls. This provides two results beneficial to servicemen. First, since the stock required is small, a distributor is able to carry a complete line, thereby assuring the serviceman of a reliable source of supply. Secondly, as pointed out before, a serviceman can carry a few popular or representative controls and shafts, and in this manner be able to service a large percentage of sets without immediate reference to his supplier.

The most common type of shaft is the ordinary $1 / 4^{\prime \prime}$ shaft with a milled flat. This has been standardized as either $1 / 32^{\prime \prime}$ or $3 / 2^{\prime \prime}$ in depth. The $1 / 52^{\prime \prime}$ flat is used either for a "set screw" knob or one type of the push-on knob, whereas the $3 / 2{ }^{\prime \prime}$ " flat is for the other type of push-on knob only.

The relation of the flat to the moving arm varies with different receivers and for convenience it is best to check this before plugging in the SS1 shaft, because this shaft
may be inserted either with the flat on the same side as the moving arm or on the opposite side. Figures 110 and 111 illustrate this point.


The use of the plug-in shafts is very simple as shown by Figures 112, 113, and 114.


Figure 115

## The Plug-In (5S) Shafts

Ten (10) of the shafts are of such shape or design that their length is necessarily fixed but the other seven (i) are so designed that they will exactly fit many receivers by sawing them off at the required length. This is easy to do. The cutting may be done either before or after plugging in the shaft, though preferably before, as it is easier to handle. Figure 115 illustrates the method of ascertaining the correct length of shaft.
The chart (Fig. 116) illustrates the complete line of Yaxley Plug-In Shafts,

## Yaxley Standard (MR) Midget Controls

These controls have the same constructional details as the Universal Midget types with the exception of the Plug-In Shaft feature. The same high quality is incorporated in the MR types, but their use is of course limited to fixed shaft application.

## Attachable Switches

Similar to the large control, the Yaxley Midget Control is designed for a snap-on switch.

The line switches for the Yaxley Midget Controls are necessarily smaller than the switches for the large Yaxley controls. They are of rugged construction. For your convenience the connections of the various switches are shown in Figures M26, M27, M28, M23, M24. The M27 may be used in place of the M23 as shown in Fig. M27 (3-pole closing).


How to Cut "Plug-In^» Shaft


Figure 117
The uluminum funmel shaft guide for use with slotted shafts is casily cut to the proper length with a file or knife as illustrated.

Yaxley Midget Attachable Switches


M-23




M-27 (3 Pole, Closing)
M-28

## Explanation of " $A$ " Control Notes

The following section of the MALLORY-YAXLEY ENCYCLOPEDIA is without doubt the finest and most helpful compilation ever presented to servicemen.

This section of the encyclopedia enables you to have detailed instruction on replacement of controls. It also allows us to be perfectly frank with you. It permits the listing of receivers and information which will enable you to make a quick replacement.

WE STRONGLY ADVISE FOR YOUR OWN BENEFIT THAT YOU READ "A" NOTES. IT WILL SAVE YOU TIME, WORRY, AND MONEY.

A1-Shape of shaft unknown; if slotted or tongue shaped see Yaxley UC511, UC512, SRP251 or adapter shafts RS245, RS246, etc. (See article "Auto Controls").
A2-This control used on some types of this chassis in place of the first mentioned control.
A3-Mechanics of control unknown; select proper Yaxley control having resistance and taper given, or if value is not given, see Note 5. If control is of two sections use a Yaxley dual. See Note 1.
A4-This control used on later type of this chassis.
A5-Resistance value unknown; measure the overall resistance; if control is burned out use the method given under heading "Determination of Taper," then select Yaxley control having an equivalent resistance of the taper suggested. If not suggested see the article, "Determination of Taper."
A6-Use Yaxley GG if there is sufficient space; if not change circuit to use G12. See Circuit No. 6.
A7-Circuit was changed during production so as to use a 500 M control.
A8-This receiver was originally equipped with either a Yaxley wire control of 6 M ohms, or a carbon control of 30 M ohms. Yaxley Type Y control will replace either of the originals. However, if you wish a wire control use the Yaxley F7.
A9-Space available unknown; if not sufficient for the Yaxley DRP119, change the circuit to the ordinary "Ant.-Bias" circuit as shown in Circuit No. 6 and use the Yaxley G12 control; this will be both easy and satisfactory.
A10-Improved signal attenuation may be obtained by connecting the left-hand terminal of the control to the antenna. This gives the ordinary Bias and Antenna type of control circuit.
A11-Original control is in filament circuit. Change to Circuit No. 2 and use Yaxley type G12.
A12-AK receivers for which Yaxley SRP239 is specified may be serviced with the Yaxdey silent carbon control type El2 by installing it in the original bakelite control housing. This is easily accomplished and gives a smooth, silent control. See note 30.

A13-See instructions on page 123 for use of Yaxley No. 7 Switch.
A14-Check original control or circuit to ascertain if the minimum bias resistor is included in the original control. If so use the Yaxley minimuin bias plate on the wire controls, or if a carbon is recommended, use the adjustable resistor.
A15-Requires use of Yaxley shoulder nut A11260-12 and also the regular nut. Arrange so that control is set back from the panel so as to clear the dial. Yaxley extension bushing EB247 might be used.
A16-May require use of Yaxley bracket [RB248.

A17-Be sure to check the coupling condenser before replacing the control.
A18-Note: Some of these chassis use the Yaxley Type GG Dual Control.
A19-Note: Measure resistance between left-hand terminal and tap (when facing shaft, terminals at bottom), and select Yaxley TRP having same overall resistance and tapped at a value nearest that of the original.
A20-Originally a dual control, this circuit is easily adaptable to the Yaxley Type Gl2 Control by using Circuit No. 6 as given in the schematics. Refer to Note 14 when installing the control. If desired, Yaxley DRP119 is suitable for this circuit.

A21-This receiver may require a control with a portion of the shaft of smaller diameter to clear the dial; if so, use Yaxley SRP275.
A22-Note: Use Yaxley extension shafts RS242 and RS244. These shafts are attached to the Type T Control and cut to the proper length, preferably by cutting the shaft of the Type T Control and the RS242 Shaft.
A23-Note: When using the Yaxley SRP185 with metal shaft, be sure to ground the shaft near the front of the set by means of a pigtail, if there is any tendency toward oscillation.
A24-Extension shaft required; use RS244 for $3 / 16^{\prime \prime}$ diameter. For $1 / 4^{\prime \prime}$ diameter use IRS242 or RS243.
A25-Note: If shaft of UC5l2 Control is not of sufficient length use the Yaxley Type $N$ Control and extension shaft RS245.
A26-Note: Some of these chassis use a dual control; Yaxley GG is correct replacement.
A22-Used on first type of this chassis.
A28-Volume control for radio tuner section.
A29-Volume control for radio amplifier section.
A30-Note: This is a replacement strip to be installed in the original housing.
A31-Parallel the two sections of the Yaxley No. 7 Switch to prevent overload; see page 123 for instructions on the use and connections of the Yaxley No. 7 Switch.
A32-It is suggested that this receiver be changed to use type ' 36 tubes in place of the 24 and 26 types, and the 37 in place of the 01 A .
A33-Requires Nos. 203 and 212 washers.
A34-"Kennedy" made by Detrola; see Detrola Model 1000.

A35-Note: Controls SRP276 and SRP277 are to be used together and neither is to be used with any other make of control.
A36-Note: Mechanical features unknown; we suggest Control SRP276.
A38-Note: The Antenna section of this control is wired as per schematic No. 4. The other section is wired as follows: the center terminal to type ' 30 plate, the right-hand terminal to " P " of the audio transformer, and the left-hand terminal to " B " positive. Yaxley GK should make a satisfactory replacement. However, the Yaxley DRP243 wired with the rear section in the grid circuit of the 1st A.F. ('30) as per schematic No. 15, and the front section wired as per schematic No. 2, will give better attenuation in areas of high signal intensity.

A39-Note: Switch used on later types and model KDC only.
A40-Note: Switch used on volume control only on the chassis having a tone control.
A41-Connect left-hand terminal to chassis, center terminal to screen circuit, and righthand terminal to positive 67.5 volts. (View control from shaft end, terminals down or toward operator).
A42-Note: Cut off the shaft of the SRP251 Control flush with bushing.

A43-Note: Original control was of the inductive type. Replacement with a variable resistance control is highly satisfactory. Connect the left-hand terminal to the antenna and grid, and the center terminal to ground. (Control viewed from shaft end, terminals at bottom).
A44-Original control is a dual; however, only one section is to be used at any one time. The Yaxley G7 is a perfect replacement for the Antenna Shunt section which is most commonly used.
A45-Note: When replacing the tone control, use Yaxley Bracket RB249, or file out the hole in the original mounting bracket. Be sure to use only the left-hand and center terminals of the control.
A46-Original dual control is replaced with single Yaxley Y100MP, which is connected as follows: Center terminal to first audio plate, left terminal to tone condenser, and right terminal through 5,000 ohm resistor to B positive.

A47-If original control is wire and carbon, use Yaxley DRP307. If original is carbon in both sections, use DRP244, with the front section (nearest the shaft) for the screen circuit and the rear section for the Antenna circuit.
A48-Refer to schematic 14. The original control was in the filament circuit. We recommend a change as per Circuit No. 14 using a Yaxley Type "M" Control as a shunt across the detector grid coil.

A49-The DRP222 Control was originally made with a short shaft for use in the chassis 180 (inodel 181), and requires the use of two RS242 extension shafts when used in the chassis 100 (model 101).

The DRP222 is now being made with a $75 / 32^{\prime \prime}$ shaft to fit the chassis 100 . When
used in the chassis 180 this shaft should be cut off at a point $13 / 8^{\prime \prime}$ from the body of the control.

Note: The chassis 100 requires the use of three terminals on the rear (phono.) section and only the center and right-hand terminals of the front section.

In some cases better ratio of signal attenuation is obtained by connecting the left-hand terminal of the front section to the Antenna so as to obtain a signal attenuation in addition to the bias increase.

A50-The DRP117 Control is an exact replacement for the Yaxley original. The DRP242 Control is an exact replacement for the control in the bakelite housing.
A51-Requires Yaxley FS25l flexible shaft.
A52-Requires Yaxley FS252 flexible shaft.
A53-This control does not require the fixed resistor shunt.

A54-When installing the "CE" control, connect thefront section to the An tenna circuit and the rear section to the bias circuit. This is the reverse of the original but has been filed checked and found to give satisfactory results.

A55-The Yaxley No. 14 Switch has four terminals which must be connected as follows: one terminal to chassis, one terminal to white lead and one to black lead with white tracer. Disconnect the $1,500 \mathrm{ohm}$ resistor from the chassis and connect it between the remaining switch terminal and the remaining lead, which goes to C-9 volts and to the grid returns of the 1 H 4 G and 1 E 7 G .

A56-The Yaxley DRP114 has a 250 ohm front section for the bias control (Circuit 8) and a 5000 ohm rear section for the antenna control (Circuit 2). Original control may have had sections in reverse order.

A57-The original control is two megohms.
A58-Left-hand terminal (control viewed from shaft end, terminals down) must be grounded to chassis.
A59-Note: The original switch has three terminals, only two are actually used, the other is a "tie" point. When using the Yaxley switch, solder together and tape-the wires formerly connected to this "tie" terminal.
A60-May require use of Yaxley EB247 extension bushing.

A61-Can be replaced with Standard Yaxley Control. May require use of RB248.

A65-For emergency replacement use SRP265 Control.
A66-Wire the switch so that it is shorted when control is turned to extreme counterclockwise position. (See chapter on "Attachable Switches.")
A67-Disregard the tap in this replacement.
A68-File shaft to duplicate original.
A69-This control requires two Yaxley RS242 Extension Shafts or the EC240 Coupler and a suitable length of $1 / 4^{\prime \prime}$ shaft.

A70-This replacement ( L ) requires a slot to be filed or sawed in the shaft of the " $L$ " control, or change of the knob to the standard Philco push-on type.
A71-Note: Requires a 100 M No. 1 Taper or "L" Control (subject to the instructions in Note 70) for replacement. In some cases a UC. 511 Control is satisfactory.
A72-The EC240 is a $1 / 4^{\prime \prime}$ shaft coupler having an internal sleeve to reduce the diameter to $3 / 16^{\prime \prime}$.

A73-For this replacement we advise a change in the volume control circuit, to correspond to Circuit No. 8. Use an A3MP Control and a $4,500 \mathrm{ohm}$ Fixed Resistor in series, in place of the original tapped control.

A74-Due to the many variations in both circuit and control, we advise measuring the original control carefully and duplicating with similar Yaxley Control, or returning original to Yaxley for duplication.
E75-If tone control on the broadcast band is not desired, an $L$ control with No. 7 switch may be used. If tone control is desired, use the SRP284 with No. 7 switch. The short wave band will then be switched on at the extreme right end of rotation. If present circuit leaves dead end of coil open, rewire to short unused portion of coil.

A76-Improved operation may often be obtained by removing the shunt ( 6 M ohms) resistor across the control and using the Yaxley $\mathbf{E}$ Control. In extreme cases, use a Yaxley E7 Control and connect as per Circuit No. 6.
A77-If original control has $3 / 16^{\prime \prime}$ diameter shaft end, use Yaxley RS244 Extension Shaft.
A78-Replace with an A2MP Control and an EC240 and a portion of $1 / 4^{\prime \prime}$ shaft taken from the old control.

A79-If trouble with oscillation is encountered in this set, the addition of a 5 M ohm resistor, connected from antenna to ground will usually effect a cure.

A80-Be Sure to check the series resistor between the screen circuit and $B$ positive! It it is not a full 20,000 olıms or if it is of the carbon type REPIACE it with a Wire Wound 20,000 olim resistor. This will prevent the control being burned out and the possibility of a dissatisfied customer.
A81-Select a Yaxley TRP Control of 500,000 ohms total resistance having a tap at the same resistance value (as measured from left-hand terminal) and slot the shaft.

A82-The voltage applied across the SRP261 Control should not exceed a maximum of 170 volts. If the voltage exceeds this value, the control will burn out. Important: Be sure that the bias on the tubes is at the rated value when using the SRP261 Control as a plate voltage control.

A83-The Yaxley DRP221 Control is an exact replacement for the dual control used on the 50,60 , and 70 Series receivers, although it was used interchangeably with the

SRP261 Control in the earlier 50 and 60 series. In many cases a change of circuit to the antenna-bias type, and the use of the Yaxley H7 Control will give much better control action.

A84-Question as to available space. If sufficient for $11 / 2^{\prime \prime}$ diameter control use a Yaxley "Y" Control.
R85-Because of a tendency toward noisy operation with the present volume control circuit, we recommend a change to circuit 15 using a Yaxley "O" control. Connect a 500 M ohm fixed resistor between the leads that were soldered to the outside terminals of the original control. Take out the one megohm resistor connected between the grid of the first audio tube (type 27) and the chassis. Install the " $O$ " control as follows: The right hand terminal to the coupling condenser, the center terminal to the first audio grid, and the left hand terminal to the chassis. (Control viewed from shaft end, terminals at bottom.)

H86-The tone control as connected in circuit 130 has its maximum treble response in the extreme counter-clockwise or normal "off" position.

K87-If control is single section type, use Yaxley UC504.

R88-Ground the cover of the control for this installation.

R89-This control when wired as in the specified circuit has its maximum bass response and switch action (if switch is included) at the extreme counter-clock wise or left position.
n90-Refer to specified circuit and reverse "L" and "R" terminals.

A91-The recommended control requires shunting of its outside terminals with a 1500 ohm resistor such as the Yaxley 71500 to duplicate the resistance value of the original control.

R92-May require use of shoulder nut for mounting.
n93-The Yaxley MN control may be used for this replacement. Use the 500 M ohm section in place of the one megohm section of the original. The lower resistance value will not affect the performance of the receiver.
K94-To save yourself time and trouble we advise the use of the Yaxley RS244 conversion shaft which allows the use of the old $3 / 16$ " knob with an easily obtainable Yaxley Universal Control. Where the original has a short $3 / 16$ " shaft, either drill out the knob or use the later $1 / 4^{\prime \prime}$ type which may be obtained from the set manufacturer.

E95-The original volume control had a 5000 ohm resistor connected between the two actuating arms of the switch. This or similar resistor must be connected in the same manner on the Yaxley No. 7 replacement switch.

R96-Select proper replacement shaft. See replacement shaft (SS types) description, page 174.





(



$\downarrow 9$


(...
CS (1)


19


SS
$\frac{g_{3}}{\boldsymbol{5}}$







## YAXLEY

 REPLACEMENT CONTROLS ACCESSORIESYaxley volume controls are designed for the purpose of furnishing the utmost convenience to the serviceman. A completely Universal line. Universal Controls apply in $90 \%$ of the service cases. A minimum number of special controls for application where the particular requirement. because of unorthodox mechanical or electrical features, renders Universal types unsatisfactory.

## EXCLUSIVE FEATURES OF YAXLEY CONTROLS

Yaxley volume controls represent a culmination of years of intensive research and engineering development. The Yaxley "Silent Element" is one of the major improvements this research has contributed. Attention should be called to several other noteworthy features of these controls.


1. "The Roller That Does Not Roll." This exclusive Yaxley contact design maintains a constantly dust-free surface element and is further protected by Yaxley's dust-proof shield. The best type of contactor as recognized by 'eading contact engineers.

Yaxley engineers recognize the 1,asic law of physics that there is friction between moving objects. Yaxley provides a firm pressure on the roller, but this is opposed by a carbon element that can "take it." It does not require mollycoddling as on ordinary elements where the pressure must be kept low to prevent destruction of the element.
2. Pure Silver Shortouts! Used for clean-cut. quick, positive switch action. Assure zero signal before switch action and a never failing contact between terminals and carbon on the element.
3. Silver to Silver Contacts! Used between all moving current carrying parts. Another Yaxley superiority. Silver oxide is a conductor. No trouble will ever be experienced due to oxide insulating films as would be the case with brass or copper.
4. Perfect Contact! Yaxley controls have perfect contact between moving arm and carbon element. A true and uniform area of contact is effected on the

element at all points. Notice the track. It does a real job of contacting! Other methods are likely to hit only the high spots.
5. Perfect Smooth Taper! Controlled by geometric design; no sudden changes in resistance value. Yaxley elements are sprayed by mathematically designed methods. Tapers are feather-edged to insure electrical smoothness and are applied in rapid succession to permit flow between joints. That provides perfect mechanical smoothness. Only Yaxley has such perfect control of taper.

6. New Spring Wedge. Yaxley Wire Wound Controls are also new. They embody a new sprims wedge design, which definitely eliminates any possibility of loose terminals. Expansion and contraction due to temperature changes are taken up by this patented spring which holds the element and terminals firmly in place.
Low Humidity Coefficient! Less than $15 \%$ resistance change when subjected to $110^{\circ} \mathrm{F}$. $90 \%$ relative humidity for 100 hours. No need to fear "damp spots." Yaxley controls will work in all climates.
Negligible Voltage Coefficient! Yaxley controls are the same in all circuits. truly universal regardless of voltage. It is almost impossible to separate this coefficient from the temperature coefficient, but it will not exceed $4 \%$ or $5 \%$ per 100 volts.

Extremely Low Temperature Coefficient! Yaxley controls are not limited by climate. They give perfect performance everywhere. Temperature does not affect a Yaxley control. This coefficient does not exceed $5 \%$ for $80^{\circ} \mathrm{C}$. change and the combined temperature and voltage coefficients will not ordinarily exceed $5 \%$ for 100 volts and $80^{\circ} \mathrm{C}$. rise.

Highest Current Carrying Capacity of Any Carbon Control. Careful engineering has raised the dissipation factor of Yaxley carbon-type controls above the common one-watt rating.

Uniform Characteristics. All Yaxley controls are held to rigid, detailed specifications, and are manufactured for you to the same exacting specifications that are required by original equipment users. Inspection limits are rigidly enforced.

Long Life. 25,000 to 50,000 and over complete cycles, borne out in over 3 years testing. Yaxley controls have a longer operating life. Resistance changes $10 \%$ or less in 50,000 complete cycles, or 100,000 passes of the contactor.

Long Shelf Life. Yaxley controls will never go "stale." Age will not affect them nor in any way change their excellent characteristics.

Permanently Identified. A non-removable ink assures permanent identification.

## "UNIVERSAL SHAFT"

This long, specially designed, aluminum alloy shaft will save you time and labor, because it is so easy to cut (no saw required). Either type of push-on or any set-screw type of knob may be used without filing. The long $3^{\prime \prime}$ length is ample for ordinary work, and, where necessary, a greater length is easily secured by using Yaxley Extension Shafts. The illustration shows the easy breaking feature.

"Just notch it, then break." Always cut the notch rather deeply, with either a file or a pocket knife, then hold the shaft near the cut with pliers, and bend back and forth once or twice, as shown, Simple, easy, and no burrs.

PUSH-ON KNOBS requiring a $1 / 32^{\prime \prime}$ flat on the shaft (Philco) are easily attached. Place the insert in the groove at the end of the shaft, and press on the knob. The $3 / 32^{\prime \prime}$ type of push-on knob (Crosley and RCA) is readily attachabie. The edges of the groove should be scraped or cut away until level with the bottom of the groove. This is easily accomplished with a file, a knife, or with the edge of a screw driver.

## TIE ADJUSTABLE BIAS RESISTOR

This time, labor and money saver is excl, sively Yaxley. All Yaxley carbon and wire controls for cathode or Antenna liias circuits, are provided with a simple minimum bias resistor (an adjustable stop plate), easily and quickly adjusted to the proper value.
(Some manufacturers use a portion of the volume control element, as a resistor, to supply the correct minimum bias to the tubes at full volume position of the control.)


Figure: 1

Figure 1 shows the Yaxiey Stop Plate and the numerals 1 to 5 on the shell of the control.


Figuke 2

Figure 2 illustrates the setting of the plate. Position 1-100 ohms, position 2-200 ohms, position 3-300 ohms, position 4- 400 ohms, position $5-300$ ohms, all with the usual commercial tolerance of approximately plus or minus $10 \%$.

For resistance values other than the values given, the indicating bump may be filed off the plate and an adjustment made with an ohmmeter.


Figune 3

Figure 3 illustrates a method of locking the plate in its proper position while inounting the control. Some servicemen prefer to merely hold the plate in its proper position and let the mounting nut perform the dual function of mounting the control and holding the plate.

Yaxley carbon controls are equipped with a small easily adjusted external resistor, which has a total resistance of $\mathbf{5 0 0} \mathbf{~ o h m s , ~ f o r ~ u s e ~ a s ~ t h e ~}$ bias resistor.


Figurle 4
This unit is to be attached to the right-hand terminal of the control, as per figure 4 , and the clip attached at the correct point and firmly clamped with ordinary slip-joint pliers, after which the unused portion may be clipped off with "diagonal" or "side" cutters. The lead from the cathode circuit connects to the end of the resistor.

## YAXLEY <br> ATTACIABLE SWITCHES

## SWITCII PROBLEMS CLARIFIED

Yaxley attachable switches are equipred with a bayonet and slot arrangement which assures a definite location and placement on the back of the control. This unique feature of Yaxley controls is furnished for all Universal replacement controls, both wire and carbon.

Controls are covered with a protective dust plate (Figure is) which is easily removed.


Figure 5
To attach the switch, first remove the cover from the back of the control.


Second, holding the shaft in your hand, turn the shaft as far as it will go in a clockwise direction. Third, make certain actuating arm in switch is in proper position as shown.


Fourth. insert the tongue of the switch into the slot from which the cover was removed.


Fifth, push up slightly on the switch and it will snap into position, when it is again pushed down.


NOTE: If a switch does not fit properly, it is due to mishandling, and is easily restored to perfection by bending the tongue down into the switch by means of "small nosed" pliers.

Yaxley Attachable Switches:
No. 6 -Single pole, single throw.
No. 7-Double pole, single throw.
No. 8-Single pole, double throw.
No. 13-Three pole, single throw, shorting.
No. 14-Four pole, single throw, shorting.


No. 6 is a heavy duty switch for general use on both battery and power type receivers.


No. 7 is for use on battery receivers where it is necessary to break both the " A " and " B ," or the " A " and "C" battery circuits.

In addition No. 7 may be paralleled to give a greater current handling ability than that of the No. 6; however, this is rarely necessary.

No. 7 may also be used as a Three pole, single throw shorting type of switch as illustrated in Figure 6.


No. 8 is for use where it is desired to close one circuit during operation of a control, yet open this circuit and close another when the control is turned to the off position. This is usually found on radio-phonograph combinations. Figure 7 shows the proper connections of the No. 8 switch.


Figure 7

No. 13 is for use on battery receivers because it is often necessary to open the " A ." " B ," and "C" battery lines to prevent useless discharge of the batteries. Figure 8 shows connections.


Figure 8

No. 14. Like the No. 13, this switch is for use on battery receivers. 1t allows one additional circuit to be opened and although there are only three battery circuits, the wiring of many late battery receivers is such that it is necessary to open four circuits. Figure 9 clearly shows the connections for this switch.


Figure 9

## ACCESSORIES THAT SIMPLIFY SERVICE WORK

A knowledge of the proper use of these accessories will be of genuine assistance to the serviceman. A real advantage of these accessories lies in their ability to speed up or clarify an apparently difficult installation.

## MOUNTING BRACKETS


ilustration shows the many uses to which the RB248 and RB249 mounting brackets may be adapted. These brackets may also be used to relocate old controls, allowing shorter lead lengths and curing tendencies toward oscillation. The RB248 and RB249 brackets are helpful in experimental work, when it is desirable to mount controls or similar parts on a breadboard layout.

Note, also, the use of Yaxiey extension shafts. See how easy it is to bend the brackets to meet the different requirements. " $A$," " $B$," and " $C$ " show the use of the RB248. "D," " $E$," and " $F$ " show the use of the RB249.

Note the new Universal Mounting Bracket RB254. It is ideal for baseboard or rear support mounting for all Yaxley circuit selector switches. Yaxley Volume controls, jacks, or in fact any device having a standard $3 / 8^{\prime \prime}$ bushing requiring a supporting bracket for mounting at right angles to a baseboard.

The height is especially convenient for mounting circuit selector switches in building short wave receivers, because of easy accessibility to the underneath terminals, or actual mounting of coils beneath the switch. The drawing fully describes this useful product.


## EXTENSION SHAFTS

Helpful, widely used and in great demand.
This picture shows clearly how every necessary type of shaft is made available for your use.


In their order are: RS242, RS243, RS244, RS245, RS246, each of which is explained. Notice Shaft Coupler EC240.


RS242 with its $1 / 32^{\prime \prime}$ flat is used wherever a push-on knob of this type or a set-screw type of knob is to be used.


RS243 with its $3 / 32^{\prime \prime}$ flat is for the $3 / 32^{\prime \prime}$ type of push-on knob.


RS244. The solution to any $3 / 16^{\prime \prime}$ diameter shaft problem, Use the RS244 and a Universal Yaxley control whenever you need a $3 / 16^{\prime \prime}$ shaft control.


RS245 for Auto Radio Control. Use RS245 with Universal Controls for automotive type replacements. If the length of the original control shaft is two (2) inches or less, cut off the Yaxiey control shaft at 1/4" from the bushing. Then cut the RS245 to the proper
length, attach it to the control and the job is done. If the original control shaft is over three inches long, either cut off (if necessary) the Yaxley control shaft or cut the RS245, so as to obtain the correct length. (See Figure 10.)


Figure 10

RS246 is also for Auto Radio Controls and should be used where a tongue-shaped shaft is required.
The tongue is roughly finished because it is often necessary to file this shaft to the desired dimensions. This is easy because of the soft brass material.


EXPERIMENTERS will find that by inserting the RS246 within an RS245, they can obtain a positive drive in a rotary direction, yet be able to vary the length of the shaft at will. This gives a "push-pull" and rotary motion with one shaft.

For complete descriptions of the Plug-In Shaft (SS type) accessories for use with UM and TM controls. see page 174.


EC240. This shaft coupler is very useful to couple two $1 / 4^{\prime \prime}$ diameter shafts, or a $1 / 4^{\prime \prime}$ shaft to a $3 / 16^{\prime \prime}$ diameter shaft. Remember the Yaxley EC240 the next time you have such a problem. See the illustration on page 186.
EB247. A necessary accessory where the control must "set back" from the chassis so as to clear a dial or switch. Easy to use. Just screw it on the bushing of a Yaxiey control and then install the control. The effective length is $5 / 8^{\prime \prime}$. If necessary, use two. Extremely useful when servicing Philco receivers.


Yaxley Control with EB247


UB241. A universal panel bushing for experimental and repair work.

## mounting nuts

These accessories facilitate panel mounting of controls, switches, and jacks or any other parts of similar nature.


There is the common flat hexagon nut No. 232 as supplied on Yaxley controls. No. 255 nut is for $1 / 8^{\prime \prime}$ panels.
SHORT SHOULDER nut No. All260-12 for use on medium thick panels and for jacks and other similar parts.

LONG SHOULDER nut No. A11260-2 for thick panels. Will mount a control on a 3/4" panel. In addition it may be used as a "safety" to prevent tampering with the setting of a control or switch; just screw it on the bushing with the hexagon end next to the panel.

## FLEXIBLE SHAFTS

The FS Flexible Shafts may be used to replace wire shaft controls or for experimental work. Fig. 30 illustrates their use.


Figure 30
Properly used, these shafts will equal or better the life of a "wire shaft" because they are not subject to steel "fatigue."

Made of special rubber compound surrounding a flexible copper wire core and covéred with a varnish protected braid, they offer a very low "capacity" coupling between units.
Note: All types of flexible shafts are limited both as to the angle of the center lines of the driving and driven shafts and to the amount of "twist" or torque which may be applied. The illustration (Figure 31) shows the practical limits of these shafts as to angle of operation. The "load" should not exceed 50 "inch


Figure 31
ounces" torque, for the least "whip" (which is useless rotation). These shafts will readily operate a dual volume control with a line switch attached, or a light multiposition switch.


FS250 is for general use, where a flexible coupling is required between two $1 / 4^{\prime \prime}$ shafts.


FS251 has a $15 / 64^{\prime \prime}$ diameter hole, $1 / 2^{\prime \prime}$ deep with a transverse pin to be used with a Universal Yaxley control to replace Auto Radio Controls having a slotted end on the driving shaft, such as used by Philco on their models 805, 806 and others.


FS252 has a $5 / 32^{\prime \prime}$ diameter hole approximately $1 / 2^{\prime \prime}$ deep and is equipped with two set screws opnosite each other. It is for use with the proper Yaxley Control as a replacement for wire shaft controls which are used with a driving shaft having a small diameter round end, such as is used on Philco models D and AC089 (122).


FS253 has a $1 / 4^{\prime \prime}$ diameter hole, $1 / 2^{\prime \prime}$ deep and is equipped with two set screws located at 90 degrees to each other. It is for use with a Yaxley Control, to replace the original wire shaft such as is used on Chevrolet model 364441.


No. 178 Yaxley Volume Control Wrench is for all standard control hexagon nuts.

## HARDWARE

Your attention is directed to Yaxley hardware items:

Bakelite head tip jacks and tip plugs.
Bar knobs, Round knobs.
Cable-Plugs, Jacks, Jack Switches-Push
Button Switches-Circuit opening switches. Jewels.
Dial lighte-Panel lights.
Many other useful items are all beautifully illustrated and described in the new Yaxley catalogue. Look them over. You will find many uses for them.

Yaxley Universal Single Controls

Ohms   Resistance	Taper	General Use	Type Element	Catalog Number
2	IV	Filament	W.W.	0
${ }^{6}$	IV	Filament	w.w.	R
10 20	IV	Filament	w.w.	$\stackrel{+}{1}$
30	IV	Filament	W.w.	T
${ }^{60}$	IV	Filament	w.w.	V
100	IV	Misc.	w.w.	w
200	IV	Misc	W.w.	X
400	IV	Misc	w.w.	A4001)
500 550	IV	Ant.-Shun	W.w.	
5 M	IV	Voltage Divider ( Bias ) $^{\text {Bias }}$	W.W.	A550P ${ }^{\text {P }}$
1 M	I	Ant. or Pri. Shunt...	W.W.	${ }_{\text {A }}{ }^{\text {AlMP }}$
1M	II	Bias.....	w.w.	UC500
2 M	IV	Voltage Divider (Bias)	w.w:	* A MP
2 M	I	Ant. or Pri. Shunt . .	w.w.	* ${ }^{\text {C }} 12$
2 M	IV	Bias....	w.w.	${ }^{*} \mathrm{C}$
3 M $\mathbf{3 M}$	IV	Voltage Divider	W.W.	*A3MP
3 M	II	Ant. or Pri. Sh	W.W.	${ }_{\text {* }{ }_{\text {I }}{ }^{\text {d }} \text { 12 }}$
3M	VII	Ant.-Bias	$\mathbf{W} . \mathbf{w}$.	*1) 7
5 M	IV	Voltage Divider	w.w.	* ${ }^{\text {A } 5 \mathrm{MP}}$
5 M	IV	Voltage Divider (Bias. screen)	Garbon	Y5M P
5 M	11	Ant.-Shunt or Ant.-Bias	Carbon	${ }_{*}^{*}{ }^{\text {E }}$ E 12
5 M	VII	Ant.-Bias	w.w.	* E 7
7500		Ant.-Shunt or Ant,-Bias	Carbon	* ${ }_{*} 12$
7500 7500	VII	Bias.-Bias	W.W.	${ }_{*}^{*}{ }_{*}^{\text {F }}$ - 7
10 M	IV	Voltage Divider (isias, Screen)	W.w.	*A10MP
10 M	IV	Voltage Divider (Bias, Screen)	Carbon	* C (19p
10 M	11	Ant.-Shunt or Ant.-Bias, Tone	Carbon	* ${ }^{\text {che }} 12$
10 M	11	Bias.	W.W.	
10 M	VII	Ant.-Bias	W.w.	${ }_{*} \mathrm{G}^{\text {7 }}$
15 M		Ant.-Shunt or Ant.-Bias, Tone	Carbon	${ }^{*} \mathrm{H} 12$
15 M	111		W.W.	
15 M 20 M	VIV	Ant.-Bias Voltage Divider (Bias)	W.W.	* H7 ${ }^{\text {* }}$ ( ${ }^{\text {P }}$
20 M	IV		W.W.	* ${ }^{\text {Y }} 20 \mathrm{MP}$
25 M	1 V	Voltage Divider (Screen)....	Carbon	Y25MP
25 M	IV	Bias..	Carbon	
50 M 50 M	IV	Batt. Bias, Screen.	( ${ }^{\text {arlon }}$	Y50M ${ }^{\text {P }}$
50M	II	Screen Voltage. Ton	Carbon	K12
75 M	I	Screen Voltage,	carbon	${ }^{*} \mathrm{~K} 12$
75M	$!$	Bias.	Carbon	
100 M	IV	Voltage Divider (Bias, Screen)	carlon	Y 100 MP
100 M	I	RF or AF Shunt, Screen, Tone	Carbon	
100 M	II	Bias or Ant.-Bias (AC-I)C).	Carbon	*ÚC510
1500M		Tone, RF or Ab Shunt	Carbot	UC502
250M	IV	Voltage Divider, Misc	Carton	Y'200MP'
250 M	1	Audio Tone, RF or AF Shunt.	Carbon	$\mathrm{M}^{250 \mathrm{MP}}$
250 M	1	Audio (Automobile) - ${ }^{\text {a }}$ ( ${ }^{\text {a }}$. ${ }^{\text {a }}$.		
250 M	IV	Bias, Ant.-Bias (AC-I) ${ }^{\text {C) }}$	Carbon	- UC509
500 M	IV	Voltage Divider. Misc...	Carbon	Y 500 MP
500 M	I	Audio, RF or Ais Shun	Carbon	
500 M	I	Audio (Automobile)	Carbon	$\dagger$ UC512
500 M	11	Audio (Automobile)-A - Ant.-Bias, Bias-Audio	Carbon	t+UC515
750 M	IV	Tone, Audio. Audio Shunt.	Carlon	
1 Meg .	IV	Misc. . . . . . . . . . .	Carbon	F1000 MP
1 Meg .	I	Audio. Audio Shunt, Tone	Carion	
1 Meg .	1	Audio (Automobile).	Carton	+UC514
2 Meg .	I	Audio. Audio Shunt. Tone	Carbon	
4 Meg.	1	Tudio Shunt. Tone	Carbon	UC504
5 Meg .	I	Audio Shunt	Carbon	UC506
5 Meg .	11	Series Screen Control	Carbon	UC507
9 Meg .	I	Audio Shunt . .	Carbon	UC508

*Wire Wound Controls have exclusive Yaxley Adjustable Bias Feature. Carbon Controls $\dagger$ Has Slotted Shaft for Automobile Receivers.
$\dagger$ Has Slotted Shaft for Automobile Receivers.
$\dagger \dagger$ Has long. adjustable Slotted Shaft for Automobile Receivers and Special Shaft Coupling
Yaxley Universal Dual Controls

Ohms   Resistance		Taper		Type Element		General Use	Cat. No.
Front 2M	Rear	Front	Rear	Front	Rear		
10 M	5M	VII	IV	w.w.	W.W.	Ant. Shunt and Bias. . . .	CE
10 M	10 M	VII	IV	w.w.	w.w.	Ant.-Shunt Bias or crreen	-GE
10 M	50 M		IV	Carbon	Carbon	Ant.-Shunt Btas or Screen	GK'
50 M	50 M	IV	IV	Carbon	Carbon	Grid Shunt and Cathode (ontroi.	†KK
100 M	100 M	I	I	Carbon	Carbon	Audio Shunt in Push-1'ull. . .	LL
100 M	250 M	1	1	Carbon	Carbon	Audio Shunt. Tone. Screen or Rf	
250 M	250M	I		Carbon	Carbon	Audio Shunt in Push-iplil	$\stackrel{\mathrm{Mm}}{\mathbf{M}}$
250 M	500M	I	I	Carbon	Carbon	Audio Shunt and Tone Compen-	
500 M	500 M	I	I	Carbon	Carbon	Audio Shunt in Push-i'uli	MN

Yaxley Universal Tapped (TRP) Controls

Catalog Number	Total Ohms Resistance	Tapped at Ohms	$\begin{aligned} & \text { Usedl } \\ & \text { As } \end{aligned}$	Catalog   Number	Total Ohms Resistance	Tapped Oht	$\begin{gathered} \text { Usedl } \\ \text { As } \end{gathered}$
TRP600	6 M	2500	Vol.	TRI'613	2 Meg .	400000	Vol.
TRP601	30 M	6000	Vol.	TRP614	350 M	75000	Vol.
TRP602	63 M	3000	Vol.	TRP615	3 Meg	1 Meg .	Vol.
TRP603	250 M	125000	Vol.,	TRP1616	500 M	50000	Vol.
TRP604	350 M	25000	Yhono. Vol.	TR P'617	60 M	10000	Vol.
TRP605	350 M	75000	Vol.,	TRI'618	2 Meg .	200 M	Vol.
			Phono.	TRI'619	500 M	100 M	Vol.
TRP606	500 M	100000 25000	Vol.	TRP620	2 Meg .	300 M 1 Meg.	Vol.
TRP608	1 Meg .	200000	Vol.	- TR P'621	$21 / 2 \mathrm{Meg}$.	250 M .	Vol.,
TR P609	1 Meg .	500000	Vol.,			500 M	Phono.
TRP610	1 Meg.		Phono.	TRP622	44 M	7000 14000	Vol.
TRP611	1 Meg .	170000	Vol.	TRP623	250 M	50 M	
TRP612	2 Meg .	25000	Vol.	TRP624	$21 / 2 \mathrm{Meg}$.	$\begin{aligned} & 250 \mathrm{M} \\ & .500 \mathrm{M} \end{aligned}$	Vol.   Phono

No provision for attachable switch. If desired use TRP624

Yaxley Universal Midget Controls
UM TYPES (PLUG-IN SHAFT)
For correct Plug-In Shaft (Types 'SS') to use with 'UM Controis, reier to recommen dation in listings on pages 13 to 157 inciusive, for any given application

Ohms Resistance	Taper	General Use	Type Element	Catalog Number
5 M	IV-A	Antenna, Antenna-Bias	Carbon	UM114
10 M	1	Antenna Shunt, Ant--Bias, Tone	Carbon	UM118
10 M	11	Bias. ${ }^{\text {as }}$	Carbon	UM119
10 M	IV	Ant.-Bias, Voltage Divider (Low (Uurent)	Carbon	UM 120
15 M 15 M	11	Antenna Shunt, Ant.-Bias, Tone . . . . . . . . ${ }_{\text {B }}$ (ias. ...	Carbon	UM 121
20 M	1	Antenna Shunt, Ant.-Bias	Carbon	UM124
25 M	11	Bias...	Carbon	UM 128
25 M	IV	Voltage Divider (Low Current)	Carbon	UM 129
50 M	1	Tone..	Carbon	UM133
50 M	11	Bias.	Carbon	UM134
50 M	IV	Voltage Divider (Low Current)	Carbon	UM135
75 M	1	Tone	Carbon	UM137
75 M 100 M	1	Bias. . AF Sh	Carbon	UM138
100 M 100 M	11	Rias, Ant.-Bias (AC-DC)	Carbon	IMM141
100 M	IV	Voltage Divider (Low Current)	Carbon	UM142
* 100 M	I	RF or AF Shunt, Tone (Clutch Type)	Carbon	UM143
150 M	,	Tone.	Carbon	UM 144
250 M	1	RF or AF Shunt Tone	Carbon	UM 147
250M	IV	Vodage Divider (Low Current) - ${ }^{\text {a }}$ ( ${ }^{\text {a }}$	Carbon	UM 149
*250M	I	RF or AF Shunt, Tone (Ctutch Type)	Carbon	UM 150   IJM151
$350 \mathrm{M}$		RF or AF Shunt, Tone	Carbon   Carbon	$\begin{aligned} & \text { UM151 } \\ & 115154 \end{aligned}$
500 M	IV	Voltage Divider (Low Current)	Carbon	UM 156
* 500 M	,	RF or AF Shunt, Tone (Clutch Type)	Carbon	UM157
750 M	1	AF Shunt, Tone	Carbon	UM158
1 Meg -	I	AF Shunt, Tone.	Carbon	UM161
*1 Mez.	I	AF Shunt, Tone (Clutch Type)	Carbon	UM162
3 Meg .	I	AF Shunt, Tone	Carbon	UM165
+100M	Spec.	Tone, AF Shunt	Carion	UM 180
$\dagger 2$ Meg.	Spec.	Tone. AF Shunt	Carlon	IM 181

and is actuated by the control shaft to the receiver chassis.
$\dagger$ These controls are constructed so that switch action occurs at the full "on," or extreme clockwise position of the moving arm

## Yaxley Tapped Midget Controls

TM TYPES (PLUG-IN SHAFT)
For correct Plug-In Shaft (Types "SS") to use with "TM" Controls, refer to recommen dations in listings on pages 13 to 157 inclusive, for any given application.

Catalot Number	Total Ohme Resistance	Tapped at Ohms	Taper	Used $\mathrm{As}^{\text {a }}$
* TM219	250 M	50 M	V	Vol.
TM220	${ }_{250 \mathrm{M}}^{250 \mathrm{M}}$	50 M $\mathbf{5 0 5}$ $\mathbf{1 2 5}$	V	Vol.
- TM222	250 M	125 M	V	Vol.
TM225	350 M	75 M	V	Vol.
TM228	500 M	5M	VI	Vol.
- M 229	500 M	125 M	V	Vol.
TM230	500 M	1250M	$\checkmark$	Vol.
- TM232	500 M	250 M	V	Vol.
TM240	1 Meg .	200 M	$V$	Vol.
*TM241	1 Meg.	200 M	V	Vol.
* TM242	1 Meq.	550 M	V	Vol.
TM245	2 Meg .	5 M	$\checkmark$	Vol.
TM246	2 Meg .	25 M	V	Vol.
TM247	2 Meg .	500M	V	Vol.
TM248	${ }_{2} 2 \mathrm{Meg}$.	300 M	$\stackrel{\mathrm{V}}{\mathrm{V}}$	Vol.
TM251	2 Meg .	1 Meg .	$\checkmark$	Vol.
*TM252	${ }_{2}{ }^{\text {Mex. }}$	1 Meg .	V	Vol.
TM253	2 Meg.	5 M 500 M	Spec.	Vol.
TM257	3 Mex.	1 Meg .	1 V	Vol.

"SS" TYPE PLUG-IN SHAFTS
Nos. SS1 to SS17 inclusive. For details see page 174 .
Yaxley Standard Midget Controls
MR TYPES (FIXED SHAFT)

$\begin{gathered} \text { Ohms } \\ \text { Resistance } \end{gathered}$	Taper	General Use	Iype Element	Catalog   Number
5M	IV-A	Antenna, Antenna-Bias	Carton	M K14
10 M	1	Antenna Shunt, Antenna Bias, Tone	Carbon	M R18
10 M	IV	Bias. ${ }^{\text {Ant- }}$ ias Voltave Livider (Low Current)	Carbon	MR19
10 M	IV	Ant.-Bias Sholtage Sivider Low (torrent)	Carbon	MR21
15 M	11	Bias	Carbon	M $\mathrm{K22}$
20 M	1	Antenna Shunt, Antenna-Bias	Carlon	M R24
25 M	11	Bias...	Carbon	MR28
25 M	IV	Voltage Divider (Low (urrent)	Carbon	MR29
50M	11	Tone	Carlon	M1233 $\mathrm{MR34}$
50 M	IV	Voltage Divider (Low Courrent)	Carbon	MR35
75 M	1	Tone..... . . . .	Carbon	M P 36
75 M	11	Bias.	Carbon	MR377
100 M	1	RF or AF Shunt, Tone	Carbon	M 239
100 M	11	Bias, Antenna-Bias (AC-DC)	Carbon	MR40
100 M	1 V	Voltage Divider (Low Current)	Carbon	MR41
150 M 250 M	I		Carbon	MR42 $\mathrm{MR45}$
250 M 500 M	1	RF or AF Shunt, Tone	Carbon	MR48
500 M	IV	Voltage Divider (Low Current)	Carbon	MR50
750 M	1	AF Shunt. Tone..............	Carbon	MR51
1 Meg.	I	AF Shunt. Tone	Carbon	MR53
2 3 Meg. Meg.	I	AF Shunt. Tone	Carbon	M 257

Yaxley Special Dual Midgets

Catalog Number	Ohms Resistance		Type Element		Used As
	Front	Rear	Front	Kear	
$\begin{aligned} & \text { *SMD500 } \\ & \text { *SMD501 } \end{aligned}$	2 Meg.   2 Meg. Tap	$\begin{aligned} & 2 \text { Meg. } \\ & 1 \mathrm{Meg} . \end{aligned}$	Carbon Carbon	Carbon Carbon	Vol. and Tone   Vol. and Tone
*SMD502	at ${ }^{550 \mathrm{M}}$	I Meg. Tap at 250 M	Carbon	Carbon	Vol, and Tone

[^0]YAXLEY
STANDARD POTENTIOMETERS AND RHEOSTATS

## "C" Type Variable Resistor

Dissipates 2 Watta-Grounded Contact Arm
The Yaxley "C"' Type Variable Resistor is the smallest wire wound control manufactured, finding its greatest application where space is at a premium. The contact arm is grounded to the shart.

"C' TYPE POTENTIOMETERS			' $\mathrm{C}^{\prime \prime}$ ' TYPE RHEOSTATS		
$\underset{\text { Kesistance }}{\text { Ohms }}$	Carrying $\underset{\text { Capacity }}{\text { in Amperes }}$	Catalog Number	Olims Resistance	Carrying Capacity in Amperes	Catalog Number
6	. 58	C6P		. 58	
10	. 45	$\mathrm{C}^{10 \mathrm{P}}$	10	. 45	$\mathrm{C}_{1} 10 \mathrm{R}$
15 20	. 36	${ }_{\text {C12 }}$	15 20	.36	C15R
30	-25	C30P	30	. 25	$\mathrm{C}_{\mathrm{C} 30 \mathrm{R}}$
40 50	.22	$\mathrm{Cl}_{\text {C50P }}$	40 50	${ }^{22}$	C 40 R C 50 R
100	.14	C100P		. 14	
200 400	.1	${ }^{2} 200 \mathrm{P}$			
${ }^{40} 1 \mathrm{M}$	.045	C1MP			
3 M	:025	${ }^{\text {C3MP }}$			
${ }_{5}^{5 \mathrm{M}}$	. 012	${ }^{5} 5 \mathrm{MP}$			
10 M	. 0.014	C10MP			
15M	. 011	C15MP			

"M" Type Variable Resistor
Dissipates 4 Watts-Insulated Contact Arm

"M" TYPE POTENTIOMETERS			"M"' TYPE RHEOSTATS		
Ohms Resistance	Carrying   Capacity   in Amperes	Catalog Number	Ohms Resistance	Carrying   Capacity   in Amperes	Catalog Number
15	. 57	M15P		2.75	M05R
20	. 50	M20	1	2.2	M1R
$\frac{25}{30}$	. 4.4	M25P	2	1.5	M 2 R M 3 R
40	.35	M 40 P	4	1.1	M4R
50	. 32	M 50 P	6	. 9	M6R
${ }_{75}^{60}$	.29	M 60 P M 75 P	10 15	. 7	M10R
100	.22	M ${ }_{\text {M }}$	15 20	. 5	M 20 R
200			25	. 45	M25R
400	.11	M 400 P	30	. 40	M 30 R
${ }^{600}$	. 097	M600P	40	. 35	M ${ }_{\text {M }}$
2 M	. 0.04	M2MP	60	. 29	M60R
3 M 4	. 04		75	. 25	M75R
${ }_{5}{ }_{5} \mathrm{M}$	.03,	M5MP			
10 M	. 012				
15 M 20 M	. 01015	M15MP'			
25 M	. 014	M25MP			
70 M	.0085	M 70 Mi '			

"E'/ Type Potentiometers
Dissipates 9 Watts-Contact Arm Grounded

Ohms Resistance	Carrying   Capacity   in Amperes	Catalos Number	$\underset{\text { Resistance }}{\text { Ohms }}$	Carrying Capacity in Amperes	Catalog
$\begin{aligned} & 5 \mathrm{M} \\ & 10 \mathrm{M} \\ & 20 \mathrm{M} \\ & 25 \mathrm{M} \\ & 50 \mathrm{M} \end{aligned}$	$\begin{aligned} & .042 \\ & .03 \\ & .021 \\ & .019 \\ & .0135 \end{aligned}$		$\begin{aligned} & 75 \mathrm{M} \\ & 100 \mathrm{M} \\ & 125 \mathrm{M} \\ & 150 \mathrm{M} \end{aligned}$	$\begin{aligned} & .011 \\ & .0095 \\ & .0085 \\ & .008 \end{aligned}$	E75MP E 100 MP E 1250 MP E 150 MP

Yaxley Attenuators-Type "T" and "L' Pads

YAXLEY "T" PADS		YAXLEY 'LL" PADS	
Resistance Value	Catalog   Number	$\begin{aligned} & \text { Resistance } \\ & \text { Value } \end{aligned}$	Catalog   Number
6 Ohns	$1-6$	6 Ohms	1
8 Ohnis	1-8	15 Ohms	1.15
${ }^{15} 50 \mathrm{Ohms}$	T-50	( 500 Ohms	${ }^{\text {L- }} 200$
200 Ohms	T-200	${ }^{5000}$ Ohms	L-500
500 Ohms 2000 Ohms	${ }_{\text {T-500 }}^{\text {T } 2000}$	2000 Ohms	L-2000

Matched Yaxley Dial Plates
Specially designed to match rotation of Yaxley controls, rheostats, and potentiometers.

Type of Control	$\begin{gathered} \text { Correct } \\ \text { Yaxley } \\ \text { Dial Plate } \end{gathered}$
For all Yaxley Silent Carbon controls with switch type cover	No. 398
For all Yaxley Silent Carbon controls with plain cover.	No. 397
For all Yaxley Wire Wound controls with switch type cover,	No. 396
For all Yaxley Wire Wound controls with plain cover, also "M" type rheostats and potentiometers.	No. 395
For all Yaxley "C. type rheostats and potentioneters...............	No. 393
For all Yaxley "E" type (') Watt) potentipmeters	No. 399
	No. 369 No. 391

# SECTION <br> <br> CONDENSERS 

 <br> <br> CONDENSERS}

## THE "IIOW AND WHY" OF CONDENSERS

A condenser, or as it is more rightly termed, a capacitor, consists of two conducting plates separated by a nonconducting medium called the dielectric.
The popular explanation of a condenser is, that it is an electrical device capable of storing a charge of current when voltage is applied to its terminals. Applying direct current to the condenser establishes a static charge in the dielectric, the voltage of which is of opposite polarity to that of the charging or applied voltage. The value of the static charge rises until the voltage is equal to the charging voltage. When this point is reached the charging voltage is opposed by the voltage of the electrostatic charge in the condenser, and there can be no further "flow" of current unless TIIE CHARGING VOLTAGE EITHER RISES OR FALLS.
Let us see what happens when the applied voltage rises or lowers in value in respect to the voltage of the established electrostatic charge:
First-If the charging voltage rises above the electrostatic voltage, additional current will "flow" through the condenser until the electrostatic voltage again equals and oproses the applied voltage.
Second-If the applied voltage falls below the voltage of the established electrostatic charge, CURRENT WILL FLOW FROM THE CONDENSER INTO THE CIRCUIT until the electrostatic voltage again equals the applied voltage.

## SUMMARY OF THE action taking place IN A CONDENSER

1. An electrostatic charge is established equal to, but of opyosite polarity of the applied voltage.
2. Any rise of applied voltage causes the current to flow from the circuit into the condenser; i.e., "through" the condenser. and any fall in the applied voltage causes current to flow from the condenser into the circuit.
This is a clear explanation of the action of a condenser, especially so where it is used for filter circuits.

## ELECTROLYTIC CONDENSERS

Condensers are classified according to the nature of the dielectric medium employed in their construction. Thus-an oil condenser is one in which oil is used as the dielectric; an air condenser is one in which air is used as the dielectric; a paper condenser is one in which paper is used as the dielectric.
From the description of the terminology applied to condensers, one might suppose that the electrolytic condenser uses an electrolyte-as the dielectric. This supposition, however, is inaccurate in that the electro-
lyte used in the electrolytic condenser is not the actual dielectric material but is one of the conducting "plates."
The dlelectric material, or medium, in the electrolytic condenser consists of an extremely thin oxide "film" which is formed on the surface of the condenser anode or positive plate.
The nature and composition of the film which forms the dielectric in an electrolytic condenser is not definitely known. The formation and action of this film is understood and can be explained in rather simple terms.

It is a peculiar characteristic of aluminum and a few other metals that when they are immersed in certain electrolytic solutions, or electrolytes, and a current passed through the metal and electrolyte to another electrode, a non-conducting film will be formed on the metal which will oppose the flow of current.
Thus, if we take two pieces of aluminum and immerse them in a suitable electrolyte and pass a current from one plate to the other, the current will be very high when first applied, but it will taper off until there is little, if any, current flowing in the circuit. This is termed "forming," which means the establishment of a film upon the surface of one of the plates. In the case of aluminum, the film is formed on that plate to which the positive wire is connected.
The formation of the film on the plate retards the flow of current. If the polarity is reversed; i.e., the jolarity of the charging voltage, current will flow. Thus we see that the "film" acts as an insulator only as long as we maintain the same polarity as was used in forming.

## CAPACITY OF A CONDENSER

Capacity is the term applied to a condenser which indicates the ratio of the quantity of the electrostatic charge, to the voltage. The quantity of the charge in a condenser is expressed in coulombs, or, as it is usually expressed: $Q=C \times V$. Where $Q$ is coulombs, C is capacity in farads, and V is voltage, which gives us the fundamentals for stating that the capacity is equal to the quantity divided by the voltage, or $\mathrm{C}=\frac{\mathrm{Q}}{\mathrm{V}}$
The capacity of a condenser is dependent upon:

First-The area of the plates.
Second-The thickness of the dielectric.
Third-The "Dielectric Constant."
The "Dielectric Constant" of a material is the ratio of the capacity of a condenser using this material, to the capacity of a condenser of equal plate area, but using air as the dielectric. The usual formula for "Dielectric Constant" is $\mathrm{K}=\mathrm{Cs}$.

Where Cs is the capacity with the dielectric in question, Ca is the capacity when using air as the dielectric, and K is the "Constant."
The "Dielectric Constant" of a material is not constant in value, but varies with the frequency of the applied current, moisture content, temperature. voltage applied, and other factors.
The dielectric constant of the "film" in an electrolytic condenser varies with the "formation voltage." Thus-for equal plate area, a condenser "formed" at low voltake will have a higher capacity than one of the same area higher capacity than
formed at high voltage.

Another characteristic of the electrolytic condenser film is that it is dependent upon the composition of the electrolyte, inasmuch as the composition of the electrolyte determines the maximum voltage at which the film can be formed or maintained. Thus, if an electrolyte is said to be a " 400 volt electrolyte," the meaning is, that if more than 400 volts is applied to a condenser using this electrolyte, the film will be punctured though not necessarily damaged. This is the reason why, when electroiytic condensers are rated at " 525 volts surge," it means that 525 volts is the maximum momentary voltage which can be applied to the plates without puncturing the dielectric film.

A characteristic of electrolytic condensers is that a constant DC voltage when applied aids in maintaining the dielectric film, and because the film is not perfect, there will be a small amount of current continuously flowing through the condenser. This current is called the "leakage current," and for a good electrolytic condenser, it is very small. The value of the leakage current is determined by the condition of the film on the plate and the length of time it has been without a polarizing voltage; i. e., "on the shelf."

## DRY ELECTROLYTIC CONDENSERS

In general, there are two types of electrolytic condensers: the "WET TYPE," which uses a liquid electrolyte, and the "DRY TYPE" which uses a "PASTE" electrolyte.
The "DRY" electrolytic condenser possesses many advantages. They will not spill or leak, may be mounted in any position, and in any type container. For instance, a cardboard carton. In addition, it is not necessary to provide for the escape of gas, a costly and inconvenient factor.

## NECESSITY OF ELECTROLYTIC CONDENSERS

Previous to the development of high voltage "DRY" electrolytic condensers, the general design of radio receivers and amplifiers was considerably below present standards, due to the fact that completely filtered plate voltage supplies were practically unknown. This is obvious because:
(a) The terriffic expense of the necessary high capacity for filtering, if paper condensers were used, or-
(b) The restricted mounting and unsightly appearance of the early wet electrolytic condensers.
The lack of pure direct current for plate voltage supply caused serious difficulties with hum. In order to obviate this condition, it was necessary to deliberately design the receiver or amplifier, so that frequencies below 130 cycles would be "cut-of'" and would not appear at the loud speaker. Note that the principal "hum frequency" is twice the frequency of the supply voltage; i. e., 120 cycles for a 60 cycle supply current (except on a half-wave rectifier where the hum frequency is 60 cycles). This "cut-off" of the all-important "Bass" notes meant that music would sound "shrill and tinny."

The introduction of the "Dry Electrolytic Condenser," with its numerous advantages, meant that here was a low cost, compact condenser of higlı capacity which would allow perfect filtering of the "B"' supply current. Thus, with pure "DC" plate supply, the way was open for the design of receivers having high fidelity of response, as it was no longer necessary to "cut-off" the bass notes in order to prevent hum.

## CONDENSER CIRCUIT ACTION

There are two main uses for Electrolytic condensers; the first and most important is in "Filter Circuits," which are used to convert pulsating direct current into a smooth " DC " plate supply.

The second is as "By-Pass" units. In audio frequency circuits, this generally calls for a much higher capacity in relation to the voltage than is encountered in filter circuit work. However, the low voltage, high capacity electrolytic condenser is very small in physical size. In addition it is often used to "by-pass" very low values of resistance, which requires a very high capacity value. The high ratio of capacity to physical size of the low voltage electrolytic condenser, is of great advantage, in that it allows the use of the proper capacity value without requiring too much space.

It is imperative that servicemen, as a group, should know more about condenser circuit action, because this knowledge will enable them not only to make a quick and easy repair, but also to diagnose those troublesome cases involving condensers and their actions upon associated circuits

Because of the universal use of electrolytic condensers in filter circuits, and also because the filter circuit is of much more importance than the by-pass type of circuit, we will first discuss the action of filter circuits. Before entering upon this discussion, it will be best to have an understanding of the different types of current which require "filtering."

## RECTIFIERS

The usual current to be "filtered," is obtained by rectifying a high voltage alternating current. There are a number of different types of rectifiers. For high voltage " $B$ " supply, the thermionic rectifier tube is universally used.

There are two types of rectifier circuits-"half-wave" and "full-wave."

## HALF-WAVE RECTIFIER

## We will first discuss the "half-wave" rectifier.

Figure 1 illustrates the connections of a "half-wave" rectifier. This circuit is seen to consist of a transformer and half-wave rectifier tube. The transformer serves to supply the necessary high voltage alternating current. One side of the high voltage winding connects to the plate of the tube and the other side to ground The filament of the tube is lighted by the current obtained from the low voltage winding on the transformer. The high voltage winding of the transformer, as previously mentioned, supplies an alternating current. By alternating, we mean that the polarity, or direction of current flow, reverses itself periodically. First one side of the transformer is positive, then the other. The voltage will rise to a peak and then fall to zero, at which point the polarity reverses; i. e., the side which was positive will now be negative, and the voltage will again rise to a peak value and fall to zero. This completes one cycle of the current.


Figure
The general frequency of supply current is to cycles per second.

Figure 2 shows the voltage applied to the plate during the half-cycle wherein the plate is positive in respect to ground.


## Figure 2

Notice that the voltage gradually rises to a peak value and then falls to zero. If we should connect a voltmeter across the transformer it would not indicate the peak value, but rather the "RMS"' value, which means-the root mean square voltage applied to the plate of the tube.

The action taking place in the tube follows: When the plate is positive, electrons are attracted from the filament. The electrons flowing from the filament to the plate constitutes a current, the value of which depends on the voltage applied to the plate. Theretore the current is seen to rise and fall with the voltage applied to the plate. When the plate of the tube is negative in respect to the filament, there can be no current flow because the plate must be positive in order to attract electrons from the filament.

Figure 3 shows that during two cycles the plate will be positive for certain periods of time and negative for equal periods.


## Figure 3

From our previous explanation of the action in the tube, and from Figure 3, we see that during two cycles of the supply voltage, the tube will deliver current for two periods of time, which is equal to the length of time during which the plate is positive, and that there will be a lack of current during two periods of time in which the plate is negative. Thus-we see that for a half-wave rectifier we will have reqular perlods of current flow, each of which is followed by a period of time during which no current flows. This. of course, is far different from the steady 'Direct Current" plate supply, which is required to give successful operation of a radio receiver. A voltmeter connected across points " $A$ " and "B" of Figure 1 would show the average voltage existing across the load connected to points "A" and "B." This average voltage would be far below the RMS voltage supplied by the transformer, because of the periods of time during which there is no current flowing in the circuit.

Now, if by some means we could provide a reservoir, which would absorb current during the periods of current flow, and then "feed" this stored current into the circuit during the periods when current is not flowing from the tube into the circuit, we would be able to raise our
average voltage across the load. We would, in effect have a more continuous flow of current and therefore a higher "average" voltage across the load. A condenser provides just such a reservoir, and when connected across the load as in Figure 1, it will act exactly as the imaginary reservoir action described.


## Figure 4

Figure 4 is a graph of the voltage across the load resistor shown in Figure 1, as plotted on the basis of time. The two heavy and dotted curves show the voltage supplied by the tube, and the slanting line shows the voltage which would be supplied to the circuit by a condenser connected from points "A" to "B." Notice that this condenser will act exactly as was described in the chapter headed "The How and Why" of Condensers. It will discharge current into the circuit during the period of time, wherein the charging voltage is falling, and that this discharge continues, until the condenser is either entirely discharged or until a charging voltage is again applied to the circuit by the rectifier tube.

Inasmuch as the quantity of current is determined by the amount of load, it is easy to see that a very large condenser would be required to totally "fill in," or supply voltage to the circuit during the entire period of time in which the rectifier tube plate is negative.
In order to further smooth out the current, it will be necessary to provide some means whereby we can "hold down'" the peaks, so that we may take full advantage of the action; i. e., the "holding up' or maintenance of current supplied by the condenser. Before going into this matter, we will first discuss the "Full-Wave" rectifier.

## FULL-WAVE RECTIFIER

The full wave rectifier operates in exactly the same manner as the half-wave rectifier, with the exception that the full-wave rectifier enables us to use both halves of each cycle of current.
It was pointed out and carefully explained in the description of the half-wave rectifier, that current flowed for a certain length of time and then was absent for an equal length of time, due to the second half of the cycle being of reversed polarity. However, the full-wave rectifier enables us to use the other "half" of the cycle, or, it enables us to "fill in holes" which exist in the output of the halfwave rectifier.


## Figure 5

Figure 5 shows the circuit of a full-wave rectifier. This circuit consists of a transformer which supplies the high voltage, to be rectified, and the low voltage for lighting the filament of the rectifier tube. Note that the high voltage winding is tapped at its center. This center tap of the transformer provides a return path common to both sections of the high voltage winding.

The high voltage winding is arranged to supply a voltage between the two ends of the winding, which is twice the value of the voltage required across the load. The reason for this is that only half of the windind is used at a time; therefore, each half of the winding has to supply the desired output voltage.
Notice that the tube shown in Figure 5 has one more plate than the tube shown in Figure 1. However, the tube action is identical. Thus-current will flow from the filament to that plate which is positive, but not to the plate which is negative.

For explanation, let us assume that plate No. 1 is positive. Therefore, plate No. 2, since it is connected to the other end of the high voltage winding, is negative. Current will flow from the filament to plate No. 1 (but not to plate No. 2), and complete the circuit by leaving the center tap and going through the chassis and load, back to the filament. We will call this the "First Action."

In our previous study of the half-wave rectifier, it was pointed out that the current and voltage rises, to a peak, and falls to zero and reverses polarity, rises to a peak and again falls to zero, to complete one cycle. Therefore, in the "First Action," the voltage across the load (because of the current flowing through the plate No. 1), will gradually rise to a peak and then fall to zero. This is shown in Figure 6.


Figure 6
Remember that when the current supplied by the transformer reaches zero, the polarity reverses. Therefore, for the "Second Action," plate No. 2 of the rectifier tube, in Figure No. 5, will be positive and plate No. 1 will be negative.

Now, as the voltage rises and falls on plate No. 2 , there will be a current flow from the filament of the rectifier tube to plate No. 2, and from the center tap of the high voltage winding through the classis and load, back to the filament, thus completing the circuit.

The voltage across the load will gradually rise and fall. It flows in the same direction as the current fall. It fows in the same direction as the current
obtained in the "First Action." Therefore, the voltage across the load will rise and fall in the same manner and with the same polarity as that obtained by the "First Action." This is shown in Figure 6.
By the use of a full-wave rectifier, we have a MORE CONTINUOUS CURRENT FIOW, or in other words, we have "filled in the holes" which we found to exist in the current supplied by the half-wave rectifier. This means that we will not have to depend upon an extremely large condenser to maintain the flow of current in the load. In the discussion of the 'Half-Wave'" rectifier, it was pointed out that the condenser would supply current to the load during the period of time when the voltage, from the rectifier, was "falling."
Refer to Figure 6 and note that we have a period of time, between each half cycle of the supply current, during which the voltage falls to zero. If a condenser is connected across the load, it will discharge current through the load as soon as the applied voltage starts to "Fall," and it will continue this discharge of current until its voltage falls to zero, or until the condenser voltage is opposed by the rising voltage of the second half of the cycle.
Figure 7 shows the meeting point between the discharge of the condenser and the increasing "charging voltage" of the second half of the cycle of current supplied by the rectifier.


Figure 7

Compare the shape of the curve, illustrating the DC voltage existing across the load resistor, in Figure 6, with that of Figure 2, and note that we have twice the number of peaks of current per cycle of the supply current. It will require less capacity to "smooth out" the current delivered by the full-wave rectifier than is required by the output of the half-wave rectifier. This is due to the fact that there are more "impulses" of current in the same length of time. A condenser of a given capacity will maintain a higher voltage level, in the load, with a full-wave circuit, than in the case of the half-wave rectifier circuit, because it needs supply current for much shorter periods of time between impulses of current. This is evident if you will compare ligure 7 with Figure 4.
The pulsating current obtained from a rectifier, even with a condenser connected to the circuit, is not suitable for " $B$ " supply in a radio receiver or amplifier, because the remainind pulsations or ripple would still give rise to a very strong and objectionable hum in the loud speaker.

Increasing the capacity of the condenser connected across the load, at the output of the rectifier, will not decrease the hum below a certain value, inasmuch as the "charging voltage" applied to the condenser must fall to a certain extent before the condenser discharges its current into the circuit Likewise, the "charging voltage" must rise to a certain extent before it can bexin to replenish the charge in the condenser. Thus-we see that we can reduce the "amplitude," which means the height from the lowest to the highest point of the voltage variation, or ripple, by the use of a condenser, but that above a certain value of capacity, depending upon the load and frequency of the supply voltage, there will be no further reduction in the amplitude of the ripple in the current supply. It will be necessary to use some means, in addition to the condenser, to entirely eliminate the ripple from the supply voltage, in order that there may be a pure direct current for use in either the receiver or amplifier. The most convenient means of doing this is by the use of a "choke."

## ACTION OF CIIOKES

The word "CIOKE" is applied to a piece of equipment pronerly terned an "Inductor." An "Inductor" is a piece of apparatus having an electrical property which is termed "Inductance." "Inductance""Opposes" any sudden INCREASE, of Current through an inductor, and "Delays" any Sudden Decrease of current through an inductor.

The explanation of the action which causes the property of inductance follows:

Any conductor carrying a current has a magnetic field at right angles to the longitudinal axis of the inductor. This magnetic field extends radially outward from the conductor. a certain distance, depending upon the intensity or amount of current flowing in the conductor. If the current rent fowing in the conductor. If the current
through the conductor is increased, the magnetic field will expand. If the current is reduced, the magnetic field will contract. Thus, we have a "Moving Magnetic Field," the direction and speed of motion of which is determined by the "Rate" of increase or decrease of current in the conductor. NOTE-There is no "motion" when the current is flowing at a steady rate.

A fundamental law of electricity is "when a movins magnetic field 'cuts through' a conductor, there will be a voltage induced in the conductor, the polarity of the induced voltage depending upon the direction of motion of the magnetic field." If we take a straight conductor and coil it, we will have an arrangement whereby if we "increase or decrease" a current flowing through the coiled conductor, we will have a "moving magnetic field," which, due to the proximity of turns, will "cut through" several conductors; i. e., adjacent turns of the coil. If we increase or decrease the current flowing through a coil of wire, we will have a "self induced"' current in the coil in addition to the "applied or driving" current. 'This "induced current" is of opposite current. This "induced current" is of opposite
polarity to the "applied or driving" current. Therefore, AN INCREASE OF CURRENT THROUGH

AN INDUCTOR IS OPPOSED BY TIIE SELFINIUUCED CURRENT IN THE COIL, WHICH IS USUALLY CALLED THE "COUNTER-ELEC-TROMOTIVE-FORCE."

In line with this explanation of the action taking place during an increase of current, it is easy to see that A DECREASE IN CURRENT WILL generate a counter-electromotiveFORCE WHICH WILL OPPOSE THE DECREASE IN CURRENT,

The amount of inductance in a coil of wire is dependent upon the number of turns and the nature of the material used for the core. Air is the poorest material, in that it is not a good magnetic conductor. If we use an iron core, the inductance will be much higher, because iron is an excellent magnetic conductor.
In the discussion of rectifier circuits, it was pointed Out that it was necessary to find some means of "holding down" the peaks of the ripple in the current supplied by the rectifier, so as to obtain a steady flow of current for use as " $B$ " supply in a receiver or amplifier; therefore, it appears that an inductor or choke miffer; therefore, it appears that
is ideally suited for this action.

## BASIC FILTER CIRCUIT ACTION

At this point we are ready to describe the action taking place in a "filter" circuit; i. e., a circuit composed of capacity and inductance which will "smooth out" the pulsating current delivered by a rectifier; into the smooth pure direct current necessary for " $B$ "' supply, ligure 8 shows the connections of the iron cored inductor "choke," and two condensers which comprise the simplest and basic type of filter circuit.


Figure 8
The letters " $R$ " and " $L$ " in Figure $s$ indicate respectively, the rectifier and load. The condenser at the "Input" has the same action uson the circuit as the condenser described in the chapter on rectifiers. This condenser acts as a reservoir to supply current to the load during the zero current periods in the current supply from the rectifier.
The choke in the circuit of Figure 8 opposes any sudden increase or decrease of current because of its inductance.
At this point in our explanation, we have a current sumplied to a load (" $L$ " in Figure 8) through a choke which opposes and prevents any sudden increase in the current, and we have a condenser at the rectifier out put which will supply current when the rectifier can not. Thus, the choke prevents the "peak of the ripple" from getting into the load, and the condenser "fills in the hollows" in the supply. or, we may explain the action up to this point by saying that we have reduced the "amplitude" of the "ripple" in the current.
Inasmuch as the choke prevents any sudden increase in current, or in other words, maintains a steady current flow, it is necessary to provide a means of supplying current to meet any sudden demand for current made upon the filter. Without such an "auxiliary" current supply, we would be forced to "wait" for an increase of current to come through the choke. We have in reality, a need for a "reservoir," and in the chapter "THE HOW AND WIIY OF CONIDENSERS," we learned that a condenser is just such an "electrical reservoir." Therefore, we see the reason for the condenser across the load side of the filter circuit shown in Figure 8.
Due to the fact that all chokes have more or less resistance (because of the natural resistance of the wire used to wind them), there is a voltage drop across the choke which subtracts from the effective voltage useful for plate supply.

In addition to a tube requiring a plate voltage，it also requires a negative bias voltage which is applied to the grid．If we can obtain both our plate and bias voltages from the＂ 13 ＂supply，or，in simpler words， make full use of the voltage from the＂$B$＂supply， we will be effecting an economy．

Inasmuch as the bias voltage must be negative in respect to the cathode of the tube，we can easily ac－ complish the action of obtaining both our＂$B$＂and ＂C＂＂bias＂voltages in the following manner：
Due to the fact that it is convenient and economical to use the chassis as the negative side of the circuit． it is possible to insert a resistance，between the center tap，of the high voltage winding on the power transformer，and the chassis．This will make the center tap of the transformer negative in respect to the chassis．If we connect the cathode， or filament center tap of our tubes directly to the chassis，and connect the grids to the center tap of the transformer，the grid will be negative，in respect to the cathode，by the amount of voltage drop obtained across the resistance．

The voltage drop obtained across the resistance，as outlined in the previous paragraph，is caused by the current in the＂load；＂i．e．，the sum of all the plate currents and＂bleed＂currents of the receiver．The voltage dron across the resistance is equal to the current times the resistance．For any given current， we can obtain any desired negative voltage by selecting the proper value of resistance．

Before proceeding further on this phase of the use of the choke in the negative side of the circuit，we wish to foint out that it is not the only reason for placing the choke in the negative lead，inasmuch as there are other considerations in certain designs．Because bias voltage is the usual reason for using the choke in this position，we shall proceed with a further explamation of this usage．

The introduction of the dynamic speaker enabled designers to＂kill two birds with one stone，＂in that the dynamic speaker could be used as the choke． Inasmuch as the magnetic circuit of the feld in ： dynamic speaker must necessarily include a＂gap＂ （for the movement of the voice coil），we have the makings of a choke，as we have a coil of wire on an iron core，and the core is provided with an air gap．

The use of the field of a dynamic speaker as a choke is economical as the saving in the cost of the choke offsets part of the cost of the speaker．

An additional advantage，is that inasmuch as the field of the speaker requires several watts for its： proper excitation，there will be considerable voltage drop across it．

If the speaker field were placed in the positive lead． the voltage drop across the field would be subtracted from the voltage available from the rectifer，which voltage of course，would have to be raised to offset this．In addition，if a separate voltage dropping re－ sistor were used，either at the tube or in the negative lead to the transformer，to secure the necessary bias voltage，the rectifier output voltage would of necessity have to be large enough to include this voltage． What could be more natural than to utilize the voltage drop across the field as the blas voltage， and thereby make a saving in the power trans－ former？The result of this is the use of the field in the negative lead；i．e．，between the chassis and center tap of the power transformer．

Figure 13 shows the simplest type of filter circuit wherein the choke is in the negative lead．


Because the same filtering action can be obtained with the choke in the negative lead as is obtained with the choke in the positive lead，we can expect to find the same types of circuits as previously de－ scribed，with the chokes in the negative side of the circuit instead of in the prositive．See circuits 4，5，and 20 on pages 208 and 209.

Due to the fact that the wattage required to be ex－ pended in the field coil may not be of such a value as to give a convenient voltage drop，it is sometimes neces－ sary to adopt the expedient shown in Figure 14.


$$
\text { Ficitre } 14
$$

Here we see the same circuit as shown in Figure 13 ． except that there has been a resistance added in series with the choke；i．e．，the field coil；in order that the voltage drop between the load and rectifier may be sufficient for use as bias voltage． It is of no great importance as to which side，of the choke，the resistor is connected，inasmuch as the re－ sistor offers an＂impedance＂to the ripple voltage，the same as would an inductive＂reactance＂of the same ohmic value．In case the voltage drop across the field is too great，a divider network is placed across the field so as to tap off the desired voltage．

## RESONANT ELEMENT FILTER CIRCUITS

Our discussion to this point has been confined to the type of filter circuit vulgarly known as the＂Brute Force＂type．However，there is another type of filter circuit wherein use is made of a resonant circuit．
Such a＂resonant circuit＂type of filter circuit is shown in Figure 15.


The circuit shown in Figure 1．j is practically the same as that of Figure 11，with the exception of the small condenser $\mathbf{C}$ which is shunted across the first choke．

The capacity of the condenser＂$C$＂is so chosen that it＂tunes＂the choke to resonance with the ＂hum frequency．＂The result of tuning this choke is that a tuned circuit of this type offers a very high＂impedance，＂or more simply，＂opposi－ tion＇to the hum frequency．The action of this tuned circuit is often described by saying that it ＂absorbs＂the particular aiternating current，in this case，the ripple current，which is applied to it．
The＂tuned choke＂type of fiter circuit is nearly always used with the full－wave type of rectifier，al－ though it is possible，but not convenient or advisable． to use it with the half－wave type of rectifier．

It is well to point out that all filter circuits described have been of the＂Low Pass＂type； i．e．，circuits that will pass all fre－ OUENGIES BELOW A CERTAIN VALUE and prevent all frequencies＂above＂this certain value from passing through the circuit．

The＂cut－off＂point；i．e．，the frequency below which the filter is ineffective，must be below the frequency of the hum voltage，or ripple，and in good design，it should be below the lowest fre－ quency which will be handled by the audio am－ plifier receiving＂$B$＂supply current from the circuit．In addition，it is very important that the resonant frequency of the filter circuit should not be the same as the frequency of the supply current fed to the transformer．

In addition to the low pass type of filter circuit， there is a＂high pass＂filter circuit；i．e．．one which prevents the passage of all frequencies BELOW the＂cut－off＂point，but ALLOWS THE PaSSAGE OF ALL FREQUENCIES ABOVE THE CUT－OFF POINT．
A combination of the high pass and low pass filter would be most effective for use as a＂$B$＂circuit filter， provided that the cut－off point of the high pass filter is ABOVE the ripple frequency and the cut－off point of the low pass filter is BELOW the ripple frequency．The most effective arrangement of such a combination circuit would be to have the high pass filter between the rectifier and the low pass filter．

An＂absorption＂type of tilter next to the rectifier is shown in Figure 1 fi ．


FIG：CRE Ji！
In this circuit the field coil of a speaker is used as the inductance，which with the capacity of the series condenser，resonates at the ripple frequency．Inasmuch as it is a＂series resonant＂ circuit，it offers a short circuit for the ripple frequency current．This current is not suitable for use as a field supply．The resistor is shunted across the condenser in order to provide a path for the necessary： 1）C current．

The resistor is of a much higher value than the value of the capacity reactance of the condenser at the frequency involved．The resistor does＂broaden the peak of resistance＂of the circuit and this offsets any slight discrepancy in capacity value of the condenser．

Figure 17 is a more practical，although more ex－ pensive，methor of using a resonant circuit in a filter．


トはじくに 17
This circuit shows the use of an inductance and an electrolytic condenser，the sole purpose of which is to＂short circuit＂the hum frequency．In some instances，the two chokes shown in Figure 17 are in reality two windings on a common core．In other words，a transformer．There is a simpler and less expensive way of obtaining the same action．This method is shown in Figure 1 s ．


## Figure 18

The portion of the circuit in which we are interested in Figure 18，is the tapped choke in the negative lead． Note the condenser connected between the chas－ sis and the tap on the choke．The action taking place in this circuit follows：The tapped inductance acts as an auto－transformer，the primary of
which is the whole winding, as the secondary is the circuit formed by a portion of the winding and the condenser connected from the tap to one end (through the chassis) of the winding. The "resonant period" of this "tuned secondary' is equal to the disturbing ripple, and therefore, it appears as a short circuit to the ripple frequency, which means that the energy of the ripple frequency is expended in this circuit.
Before taking up the more complex rectifier-filter circuits, we wish to call your attention to the fact that under certain conditions a resistor may be used in slace of a choke in a filter circuit. This is shown in Figure 19.


Figure 19
This circuit is seen to consist of a resistor and two condensers arranged in the same manner as the simplest and the first described filter circuit. This type of circuit is not nearly as efficient as one using a choke. It is much cheaper, as there is a large difference in cost between the price of a resistor and that of a good choke.

The action in this circuit is rather simple, in that the resistor sets up a voltage drop in any current passing through it, the voltage drop being determined by the current flowing through the resistor. For use as a filter, there will be a greater voltage drop in the direct current than there will be in the ripple current, because of the fact that the DC current is greater than that of the ripple current, or, we might state that the DC voltage applied to the resistor is much greater than the ripple voltage. It will require a rather large resistor to give appreciable drop in the ripple current flowing through the resistor, and for this reason, such a circuit can not be used except where the load on the filter is small. An additional disadvantage is that large capacitors must be used with such a circuit.

We now have a complete circuit consisting of a transformer, rectifier and filter, which enables us to draw a pure DC current from an alternating current source or supply. The true picture is not nearly so "rosy" as one might be led to believe by the description presented thus far. There are a number of factors which limit the efficiency of the various parts of our circuit, Iarticularly the filter.

## FILTER COMPONENT LIMITATIONS

In order to present a elear picture of the action of a filter circuit, we have deliberately avoided the introduction of any of the limiting factors which must be considered in the design, application and repair of a filter circuit, or parts thereof.

First, let us consider the limitations of our choke. A serious limitation in the action of a choke is that if too large a current is passed through it, the core material will become "saturated;" i. e., it cannot absorb or carry but a limited amount of magnetic lines of force. When this point is reached, a sudden increase of current will be unopposed because the magnetic field cannot increase. There is a method of preventing this "saturation," and that is to leave a " $\& a p$ " in the core. This is a limited blessing, for, although the gap will prevent, to a certain extent, "saturation" of the core, it also reduces the "inductance" of the choke, which means that the "smoothing effect" of the choke will be reduced. Here we have a choice between two evils-one of which is loss of inductance, and the other-loss of current capacity. We can secure some relief from the former by increasing our condenser capacity. There is a sharp limitation even to this.

DC Operating Volts	MaximumSurge	Maximum Peak AC Ripple Voltage at 120 Cycles							
		$\begin{gathered} \text { Mfd. } \\ 1-3 \end{gathered}$	$\underset{4-i}{\mathrm{Mfl}}$	$\underset{\substack{\mathrm{Mffl} \\ \hline}}{\substack{\text { ( } \\ \hline}}$	$\begin{gathered} \mathrm{Mfd} \\ 10-12 \end{gathered}$	$\begin{gathered} \mathrm{Mfd} \\ 13-16 \end{gathered}$	Mfl.	$\underset{26-3 .}{\mathrm{Mfd}}$	$\begin{aligned} & \text { Mfut. } \\ & 3!-i, 0 \end{aligned}$
25.	40	10	10	10	10	10	8	*	5
50.	75	15	15	15	15	10	*	8	5
100.	150	25	20	20	20	1.5	10	8	5
150.	200	25	20	20	20	15	10	8	5
200.	250	30	27	25	20	15	10	8	5
250.	300	30	27	25	20	15	10	8	5
300.	350	30	27	25	20	15	10	8	5
350	400	30	27	2.5	20	15	10	8	5
450.	525	30	27	25	20	15	10	8	5
475.	525	30	27	25	20	1.5	10	8	5
500.	525	30	27	25	20	15	10	8	5

In our discussion of a condenser and its action, we have thus far omitted any reference to its limitations. One of these is resistance, which causes loss of power and heating of the condenser if it is not considered.
The effect of resistance in an electrolytic condenser is that it limits the amplitude (voltage variation) of the ripple which can be applied to the condenser. Remember-that this ripple must "flow through" the condenser, because it is an "increasing and decreasing" or alternating current.
Figure 9 is a table which gives full information on this subject.

## SURGE VOLTAGE

When first turned on, many radio receivers and amplifiers develop an unusually high "surge" voltage across the filter circuit, because there is litte, if any, load on the filter. This is especially true where heater type tubes are used, with a rectifier of the filament type.

In order to explain the effects of surge voltage, and the reason that it is a limiting factor in the use of electrolytic condensers, it is necessary to familiarize yourself with the chapter entitled "The How and Why" of Condensers.
In this article it was fointed out that an electrolytic condenser is limited in the amount of voltage which may be impressed upon it because of the puncturing of the dielectric film on the plate when the voltage 'xceeds the limitations imposed by the electrolyte.
The voltage at which the film of an electrolytic condenser starts to puncture is called the surge voltage. The highest value generally obtained is approximately 525 volts. (Be sure to read "Mallory Replacement Condensers and Accessories," page 212.)
Electrolytic condensers are correctly rated as follows:

Working voltage, 450; "Surge" voltage, 525.
The meaning of this is that the condenser is designed to work continuously at a DC potential of 450 volts. Superimposed upon this is of course the ripple voltage. Figure 9 gives the practical limit for the ripple voltage which may be applied to different electrolytic condenser ratings.

The term "Peak Voltage" is relatively unimportant but refers to the total of the DC working voltage plus the AC ripple safe for continuous operation. This term is often misused for "Surge Voltage."

The "Surge Voltage" is usually considered the maximum voltage that may be applied to the unit through some limiting resistance for a few seconds without damage. Continuously applied, it will generally ruin an ordinary condenser in a short time, because of the development of heat within the unit.

Few dry electrolytic condensers will withstand a surge greater than 525 volts. You will note in Figure 9 that the 450, 475, and 500 volt DC ratings all carry the same surge rating. For this reason it is possible to replace 475 and 500 volt units with 450 volt Mallory units as far as the surge is concerned. We recommend this practice as long as the surge does not exceed 525 volts and the continuous working voltage does not exceed 450 volts.

MALLORY CONDENSERS OF TIIE 450-VOLT RATING HAVE BEEN PURPOSELY DESIGNED TO SOMEWIIAT LIMIITIIE SURGE VOLTAGE AT TIIEIR TERMINALS. TIIE LEAKAGE CURRENT CIIARACTERISTIC OF TIIESE UNITS IS SLIGIITLY HIGIIER TIIAN WIIAT MIGIIT BE EXPECTED BY COMPARISON WITHI MALLORY 250-VOLT CONDENSERS. TIIE SPECIAL PROCESS INVOLVED PROVIDES A MAXIMUM OF USEFULNESS FOR GENERAL REPLACEMENT SERVICE. RELATIVELY IIIGII LEAKage at voltages above the working Voltage in this case is tilerefore to BE DESIRED.

Apparently, some manufacturers used 175 or 500 volt units in original equipment rather than 450 volt units, believing this would reduce field trouble from surges. As a matter of fact, the 450 volt units are no more likely to break down from surges than the higher voltage units as they draw more current past their rating and help to hold the surge down. This is clearly shown in Figure 9i.


Fiture 9a

## MEASURING SURGE VOLTAGES

The best practical way to make this measurement is to disconnect all filter condensers and install a 1 mfd . paper condenser, at the output of the rectifier. A 1,00 olm mer volt meter applied at the paper condenser terminals, will then indicate the voltage applied to the condensers during the heating cycle of the tubes. BE SURE TIIAT TIIE TUBES ARE COLD AND THE METER IS ATTACIIED BEFORE TIIE SET IS TURNED ON. The maximum swing of the meter may then be taken as the maximum surge. The paper condenser may be connected to the terminals of the voltmeter if this is more convenient.
It will bay you to make this measurement where high surges are suspected as this initial surge affects all the filter sections.

Surge voltage should always be measured wherever the line voltage is high; $i$. $e$. , above the standard level of 110 volts, as in many localities the line voltage may rise to 125 volts or more.

Many servicemen are of the opinion that it is not necessary to measure the surge. This impression has probably been gleaned from statements that "it is not necessary to measure the surge." Following the above reasoning, "it is not necessary to look to see if the train is coming." However, just as with surge, it is the safest thing to do.

Obviously, where the ordinary type of condenser is used, the speaker plug should never be removed while the set is on as this removes all load and may damage the first filter condenser. If there is a possibility of this happening, as on amplifiers, we suggest the use of Mallory Type HS Condensers.
Should a particular receiver give trouble due to repeated failure of condensers, we suggest using one of the Special Mallory High Surge units developed for this purpose. These condensers are especially designed to withstand any surge condition likely to be met in the field. Since they cost more than ordinary units they are recommended only for severe cases.

## FILTER CIRCUIT ACTION

In the previous chapters we have discussed the actions which take place in each part and component and their limitations with respect to the simple type of filter circuit which is shown in ligure 8. There is one type of filter circuit which is not covered.


Figure 10
1 igure 10 is a circuit wherein there is no condenser connected across the out jut of the rectifier. This circuit is commonly known as the "choke input" type of circuit. The choke, which is connected directly to the output of the rectifier, is often termed the "swinging choke."

Inasmuch as there is no "reservoir" action at the input to the filter, there will be a lower output voltage from the filter, because of the "hollows' in the current supply from the rectifier. Because we have an extra choke over that of the circuit shown in ligure 8, we will have a much smoother current.

The voltage output of the "choke input" type of filter circuit is smoother for lower values of load, than the corresponding capacity input tyse of filter. The voltage is lower except for higher loads. This type of circuit is useful where there is a large variation in load.

## MULTIPLE CIIOKE FILTER CIRCUITS

Due to the facts outlined in the chapter on "Limitations of Filter Circuits," it is often necessary to employ a filter circuit such as shown in Figure 11.


Figure 11

The circuit shown in Figure 11 is seen to consist of two chokes with condenser input and output, and in addition, a condenser from the point of connection of the two chokes to the negative side of the circuit. We have in reality two of the simple filter circuits placed end to end with the advantage that we can obtain a much better filtering action because we have two chokes and three condensers.

Since the introduction of the electrolytic condenser with its advantages of low cost and small size for an extremely large capacity, it is rare that one encounters a filter circuit of more than two "stages." In older receivers wherein the designers were forced to use paper condensers, which were uneconomical to use in capacity values greater than approximately 2 mfds ., it was necessary to use a circuit as shown in Figure 12.


A three-section filter is shown in the circuit of Figure 12. This circuit is seen to consist of three chokes and four condensers. In other words, we have three of the common, or simple, filter circuits placed end to end.

Even with extremely low values of capacity, this circuit is capable of very good filtering, inasmuch as there is an over-abundatice of inductance to counteract the usual lack of capacity which was nointerl out in a previous paragraph on this circuit; i. e., the use of low capacity parer condensers.

In the filter circuits so far discussed, you will have noticed that the chokes are all located in the positive lead of the circuit. This is because of the general use of the chassis as the negative part of the circuit. Just as good filtering can be obtained if the chokes are all in the negative side of the circuit.

There are certain conditions of design wherein it would be advantageous to have the choke in the negative side of the circuit, in order to make some use of the otherwise wasteful voltage drop cansed by the resistance of the choke.

## COMPLEX FILTER CIRCUITS

Present day filter circuit design is for the most part simple and direct. Several years ago, and in occasional cases, even today, one may encounter rather complex filter circuits. These circuits often are not as complicated as they may seen at first glance, as they are usually combinations of filter circuits and load distribution circuits with associated by-pass condensers, arranged in such a manner that the schematic of the whole circuit with all the various connections involved, appears to be extremely complex.

Study wiil enable one to disassemble such a complex circuit into its various functions as to filter and load distribution. There are some complex and involved filter circuits designed to meet specific conditions existing in a receiver or amplifier. Even these more complex circuits are in reality made up of combinations of the circuits which we have discussed in the previous chanters. We will present two new circuits which have not beren discussed. The first of these circuits is illustrated by Figure 20.

This circuit is secen to consist of the ordinary single section "Brute Force" filter with a choke connected


Figure 20
across the filter input. The purpose of connecting a choke, or in reality a field coil, across the circuit at this point is to effect an economy in the filter design. The current supplied to the field coil does not need to be as ripple free as that which is supplied to the plates of the ulues. In addition, the current drawn by the field coil is rather large. If the field coil were connected across the output of the filter, it would increase the voltage drop across the choke, and in addition, would call for a much larger choke (in physical size) to obtain the necessary smoothness in the current to be applied to the load; i. e., the tube plates. It is economical to place the field coil across the input to the filter, as this will enable the use of a smaller choke.

The principal use for such a circuit is in AC-DC receivers, wherein a half-wave rectifier is gencrally used, and inasmuch as a half-wave rectifier requires the use of large capacitors, and a good inductance, any unnecessary increase in these items would be uneconomical.

There is one point which must be borne in mind with such a circuit. The combination of inductance of the field coil, together with the capacity of the input condenser, should not be of such values as to form a tuned circuit resonant at the ripple frequency. Such a tuned circuit in this position would cause a high voltage to be developed across it.

The circuits shown in liigures 27 and 38 on page 209, are fractically identical, except that the choke is in the negative lead. Note the unusual connection to the rectifier tube in the circuit of Figure 38. The two halves of the tube are in parallel. In addition, the tube is in the negative side of the circuit. This is umusual, as the tube is nearly always in the positive side of the circuit. The tube acts in the ordinary manner, in that current flows through the entire circuit and the rectifier tube when the cathodes are negative in respect to the plates. A nuch better circuit than that described is shown in Figure 21.


This circuit is really very simple. We have a rectifier tube which has two separate and distinct half-wave rectifiers within its envelope, such as the Type 252: Tube. We have a half-wave rectifier and filter system to supply current to the load, and another half-wave rectifier which supplies current to the field coil.

The condenser connected across the field coil is for the purpose of filtering the current flowing through it. Otherwise there would be quite a bit of hum due to the ripple current passing through; whereas, with the condenser in parallel with the field coil, the peak of the ripple is absorbed and the condenser discharges through the field coil during the period of no current flow from the rectifier. Steadier "average" current is maintained through the field coil.

The circuit illustrated in Figure 11, on page 208 is identical, except that it has the choke for the load filter in the negative lead.

## VOLTAGE DOUBLER CIRCLITS

Although the principal and action of the voltage doubling type of rectifier-filter circuit was known for many years, it was not until the introduction of the popular AC-DC receivers that there was any commercial reason for using such a circuit.

A "voltage doubler" circuit is one which will deliver twice the voltage applied to it . Off hand, one might think that this is done with an ordinary transformer. The true voltage doubler circuit does not use a transformer, but rather obtains the voltage doubling by means of condenser action.

The circuit shown in Figure 22 is one of the simplest types of voltage doubling circuit. However, to those servicemen who are not "up on their toes" in regard to theory of current flow, it may be a little difficult to understand. We will present a clear picture and ask that you thoroughly study it.


Pigure 22

In order to facilitate the explanation of this circuit, we present Figure 23, which is a break-down of the circuit showing the action that takes place in the first half of a single cycle of the alternating current suppls.


## Figure 23

Notice the polarity marked on the supply line; i. e., positive at the toy, and negative at the bottom.

In one of the earlier chapters devoted to rectifier action, it was explained that whenever the plate of the tube becomes positive, electrons are at tracted to it from the cathode. TIIIS ELEC: TRON MOVEMENT CONSTITUTES AN ELEC: TRIC CURRENT regardless of whether it is a flow of electrons from cathode to plate, or whether it is a current flowing in a wire. Remember this rule-"An electric current is a movement of electrons and is always in the direction of negative to positive polarity."

In Figure 23, we see that the upper plate is positive. Therefore, current is attracted. This current flows in from the negative line through the condenser to the cathode. This completes the circuit. The actual current flow is of very short duration, because it establishes an electrostatic charge in the condenser. The action taking place in the circuit on the first half of the cycle, is merely TIIE CIIARGING OF TIIE CONDENSER "AB." The direction of current flow during the first half of the cycle is indicated by the arrows.

The action which takes place in the second falf of the cycle is shown in Figure 24.


## Figure 24

At this point make sure that you clearly understand the explanation given so far. It is not necessary to consider the other tube elements in the action up to this point. It is also advisable that you be thoroughly familiar with all the subjects which have been treated in this article up to this point. Otherwise, you may find some difficulty in understanding the explanation of this voltage doubling circuit.
We now have condenser "AB" fully charged to 110 volts, and with a polarity as marked in Figures 23 and 24.
Note that in the second half of the cycle of supply voltage, that the polarity shown in Figure 24 is opposite that shown in Figure 23. The bottom supply line is now positive, and the upper negative. The positive polarity of the bottom line attracts current which flows from the negative line through the load and choke to the lower cathode of the rectifier tube. Inasmuch as the lower plate of the tube is positive, because it is connected to the positive line through the condenser "AB," the current will flow from the cathode to the plate. It encounters the charge in condenser "AB."
We now have 110 volts applied to the circuit, and also 110 volts of charge in condenser "AB." NO'TE TIIA'T TIIE POLARITY OF THIE CHARGE IN TIIE CONDENSER AND TIIE POLARITY OF TIIE CURRENT FROM TIIE LINE ARE ADDATIVE: I. E., POSITIVE TO NEGATIVE, AND Negative to positive.
We have added two separate charges of 110 volts each together. Inasmucli as they are AD. DATIVE, the resulting voltage is 220 . In reality, the voltage is equal to twice the "peak" voltage of the supply circuit. This exists only in an extremely low load, and is not true in practical use. The resulting voltage in such a circuit is usually equal, or very nearly so, to twice the RMS value of the applied voltage.
From the description of the voltage doubler circuit it is easy to see that this circuit may only be used with an alternating current supply, and can not be used in an AC-DC receiver which may be operated on direct current, inasmuch as there is no reversal of polarity in a direct current circuit. Therefore, the circuit illustrated in Figure 22 cannot be used where the line supply is direct current.
Circuit 9 on page 208 is a voltage doubler circuit with slightly different connections, but with the same action as that of the circuit which we have just described and illustrated.

In order to provide for the operation of a receiver using a voltage doubler on either AC or DC sources of supply, it is necessary to provide some means of changing the circuit. Such a means is the switch shown in the circuit of Circuit 45, on page 210 . A study of this circuit will reveal that when used on an ACsupply, with the switch in the AC position, the circuit is a voltage doubler, but that when the receiver is to be used on a DC source of supply, the switch must be turned to the DC side and the circuit then acts as a common half-wave rectifier.
We sincerely hope that you have been patient and studious in reading this presentation on the action of filter circuits, inasmuch as the knowledge which you can gain from this article will be of inestimable value to you in your work.
We sincerely regret that space limitations prohibit going into the deeper subject of engineering and design of these circuits. Because of the scope of these subjects, it is impossible to attempt it.

## REPLACEMENT OF FILTER CONDENSERS

It is practically impossible to present exact details for the replacement of condensers in every circuit. The extremely wide range of capacities, circuit connections and combinations prohibit a thorough discussion of this subject.

We suggest that you study the circuits on pages 208 to 211 and read the notes on pages 200 to 207 , and familiarize yourself with customary condenser capacity values used in the various circuits in order that you may be thoroughly familiar with the entire subject in its practical aspects.

## CAPACITY OF FILTER CONDENSERS

The capacity values assigned to condensers for filter circuit work is not extremely critical, and a shift of several mfds. in either direction will not introduce any observable changes, except in very rare instances, such as in replacing the capacity used to tune a filter choke or at the input to a filter circuit (see Chapter "Easy Replacement of Unmarked Condensers"-page 199).
The Mallory Universal replacement condenser line contains all the capacities or combinations of capacities necessary for replacement work, and in addition, the line is arranged FOR YOUR CONVENIENCE.

## NON-POLARIZED <br> CONDENSERS

There are quite a number of applications where it would be dangerous to use the usual DC electrolytic condenser. In cases where the polarity applied to the condenser may be reversed, the heat generated by the heavy current flowing through the condenser would severely damage, if not totally destroy the unit. This is due to the unidirectional property of the dielectric film which retards the current flow in one direction, but offers no resistance in the other or reversed polarity direction.
Note that we say "usual DC condenser" in the above paragraph, because there is a simple means of providing an electrolytic condenser which may be used in any circuit wherein the polarity may be accidentally, or intentionally reversed. Such a condenser is called a non-polarized type.
Properly speaking, a non-polarized condenser is one in which there is no polarity; i. e., either one of the terminals may be connected to the positive side of the potential source.
Such an electrolytic condenser is easily made by either one of two methods. The first method is to build the condenser with two "formed" plates, or secondto connect two electrolytic condensers together negative to negative, using the remaining positive terminals for connection to the circuit.
The most general use for non-polarized electrolytic condensers is in receivers to be operated from a DC line, although they are frequently used in receivers which are to be operated from batteries.
Inasmuch as there is not a very large number of direct current receivers in use, the demand for nonpolarized condensers is not sufficient to enable a distributor to stock them.
We present a sensible and economical method, whereby you may replace a non-polarized condenser, quickly and easily.


Figure 25 will clarify the method which is recommended for the replacement of non-polarized condensers.

Supposing you have need for a 4 mfd . non-polarized condenser in a round can to operate at 300 volts. The proper reblacement is Type RN 242 . This condenser consists of two 8 mfd . units with a common negative lead.
To use the Type RN242, it is only necessary to connect the two red, i. e., positive, leads, to the circuit, and disregard the black negative lead. When making this installation, it is advisable to cut off the black negative lead and tape it, to prevent any accidental shorting.

The result of the forcgoing procedure is clearly shown in Figure 2.

It should be noted that the capacity resulting from such an arrargement of condensers is equal to onehalf the capacity of either section. In addition, BOTH SECTIONS OF A CONDENSER SO USED SHOULD BE OF THE SAME CAPACITY.

The working voltage of the capacity resulting from the connections described, and illustrated in Figure 25, is that of one section, and not twice the rating of the one section. Thus-two 450 volt condensers so connected will have a working voltage of 450 volts.
Although Type RN (common negative) type condensers were mentioned in the explanation of the method used to replace the non-polarized unit, we would like to point out that two single unit condensers may be so connected.

Where it is necessary, that the replacement should be in one container and above 4 mfd . rating, Type RM (Multiple separate section) type condensers may be used. For instance, the RM257 can easily be wired to replace an original 8 mfd . round can non-polarized unit, by connecting the two 8 mfd . sections in parallel, and the negative leads of these two sections to the negative lead of the 16 mfd . section. This will give two 16 mfd . sections with their negative leads jointed ogether, resulting in a nonpolarized capacity of 8 mfd .
The carton types corresponding to the round can types given for illustration, are as follows: CN152 and UR191.

## THEORY OF CONDENSER ACTION

The explanation of condenser action given in the opening chapter is so arranged as to bring out the action taking place when a condenser is used as a filter condenser. This explanation does not go into the real action which takes place in a condenser; therefore, let us see what does happen in a condenser.

A condenser consists of two conducting plates separated by a dielectric material. By "dielectric material' we mean a non-conducting material; i. e., one that will not serve as a conductor of electric currents. In order to thoroughly explain the action taking place in a condenser we refer first to Figure 26, which shows a condenser, battery and switch.

The dielectric of this condenser is the cross-hatched block between the two plates.

Now, in order to thoroughly understand the action of a dielectric material, it is necessary to go into the structure of such a material.

The structure of all materials, including dielectrics is as follows: A molecule is generally considered the smallest individual part of the material which has all the characteristics of the material. However, a molecule is made up of one or more atoms. An atom is the smallest possible particle of one of the known 92 elements, and an atom is composed of an arrangement of electrons and protons. It is sufficient to say that an electron is a negatively charged particle and a proton is the positively charged particle of greater mass than an electron.

An atom is composed of a certain arrangement of protons and electrons. However, there may be more protons and electrons. However, there may of the electrons, or in rare cases, even a proton, may not be firmly attached to the atomic structure, although in the main the arrangement of an atom and the balance of electrons and protons is something that cannot be disturbed. Thus-if by some means one of the loosely attached electrons is drawn away from the atom, the atom looses its "state of balance" and acquires an attractive power for any other "loose" electron which is in its immediate vicinity.

At this point, we have shown that under certain circumstances, an atom may lose an electron, and that when it loses this electron. it is immediately attractive to any other electron which is "free." This situation might be expressed by saying that if we remove a negatively charged particle from the atom, we destroy negatively charged particle from the atom, we destroy
the balance, or, "neutrality;" i. e., neutral state, of the atom. Thus-since we have removed a negative particle; i. e., an electron, from our atom, it is no longer in the state of balance, or, neutrality, but is positive. By positive, we mean that it has an attraction for a negative particle; i. e., an electron.

We have previously explained that a molecule is the smallest particle of a material which has all the characteristics of that material, but that a molecule is made up of atoms. Thus-a molecule of steel will be composed of atoms of iron, carbon, and atoms of various other substances which go to make up the material known as steel. The same thing is true of a dielectric material such as paper.


Figure 26
Returning to Figure 26, note that if the switch is closed, there will be an electrical potential applied to two sides of the dielectric material. The result of such an action is that the free electrons existing in atomic structure of the dielectric material are attracted and drawn toward the positively charged plate. Those atoms in contact with the positive plate loose their free electrons, which travel from the plate to the battery, and around to the negative plate, thus battery, and around to the negative plate, thes
creating a preponderance of electrons at the dielectric material in contact with the negative plate and a scarcity of electrons at the positive plate. The atoms which lose their free electrons to the positive plate now have a terrific attraction, or affinity, for electrons. However, the nature of the material; i. e., not conducting, prohibits the free motion of electrons from neighboring atoms deeper within the dielectric material. Thus-a greatly magnified cross section of the dielectric material would reveal that on one side there is a positive affinity, and (progressing from the positive toward the negative side of the material), there is a decreasing intensity in the positive attraction until a point is reached where there is a state of balance.
Further progress along this same line of direction will reveal an ever increasing negative, or repulsive condition; i. e., the positive is attractive, and the negative is repulsive in nature. This repulsive; $i$. e., negative, intensity increases until its maximum is reached at the surface of the dielectric material which was in contact in the negative plate.
It is possible to plot a curve showing the lack of electrons on one side of the material, and the abundance of electrons on the other side of the material. When this is "plotted" with intensity on the vertical scale, and distance on the horizontal scale, the resulting curve will be that of the potential difference existing across a charged condenser.
The action so far described, is that which is known as "charging" a condenser, and, in a previous paragraph we abandoned the description with a full charge in the condenser.
Now, that we have a "charged" condenser, let us see what happens when the condenser discharges. This is shown in Figure 27.
Figure 27 shows the charged condenser, which is jrevented from discharging by the open switch. Remember the situation existing in the dielectric material when the condenser was charged.
Before explaining what happens in the circuit when the switch in Figure 27 is closed, it is necessary to point out that the difference between a non-conducting and a conducting material is that the conducting material has such atomic structure that the free electrons are easily displaced. If electrons are removed from one end of a conductor, a corresponding number of electrons MUST ENTER THE OTHER END OF THE CONDUCTOR.
When the switch in the circuit of Figure 27 is closed, electrons are attracted from the positive plate
by the atoms in the dielectric material, which is in contact with the olate, remembering from our previous discussion, that these atoms had been robbed of their free electrons, and therefore, they were attractive toward any free electrons in their immediate vicinity. Therefore, when the switch is closed, these atoms attract the free electrons from the atoms composing the molecules of the positive plate, the atoms of which in turn attract the free electrons in the conducting path which extends around to the negative plate. Re-member-That there existed an over abundance of electrons in the atomic structure of the dielectric material next to the negative plate. Therefore, the attraction for free electrons begins in the dielectric material next to the positive plate and extends around through the circuit to the negative plate, where there is an over-abundance of electrons. These "extra" electrons are enough to satisfy the attraction existing throughout the circuit. Therefore, when the switch is closed, the dielectric material absorbs electrons from the plate, the plate from the conducting circuit, and the conducting circuit absorbs the free electrons in the negative side of the dielectric material. A discharge of a condenser in reality is the restoration of balance of electrons in the atomic structure of a dielectric material.


At this time, it is well to proint out that the electron movement in the discharge circuit described and illustrated in Figure 27, is not of any great length; i. e., the electrons do not move from the negative plate around to the positive plate; they merely move from one atom to another. Thus-t he flow of current which occurs through the circuit when a condenser is discharged, is nothing but the movement of electrons from one atom to an adjacent atom, which is a distance far too small to be conceived by the human mind.
An alternating current apparently flows through a condenser, but a direct current does not. To be more explicit, when a direct current potential is applied to the terminals of a condenser, there is a very small surge of current which flows through the circuit, but not through the condenser, because there is not a progressive motion of electrons from one atom to another along the path of the circuit which is occupied by the dielectric.

If you do not understand this statement, read the description of the charge and discharge of a condenser. When the statement is made that alternating current flows through a condenser, it is in the very strict sense of the word, not exactly so, because the dielectric material in a condenser offers no more conductance to an alternating currene than it does to a direct current. However, due to the reversal of polarity which occurs in an alternating current circuit, the condenser charges and discharges on each half cycle of the applied current. Therefore, there is current flowing in the circuit, but not "through" the condenser.
This statement may be "hard to swallow," but it is an absolutely true statement, because the dielectric material in the condenser is not a conductor. How, then, does alternating current flow through a circuit containing a condenser? the answer is to be found in containing a condenser? the answer is to be found in
the actions which take place in the charge and disthe actions which take place in the charge and dis-
charge of a condenser. When a condenser is charged, there is an abundance of electrons at the negative plate, and a scarcity of them at the positive plate. If the polarity of a circuit attached to a condenser is such that the positive side of the circuit is connected to the negative plate, and the negative side of the circuit is connected to the positive plate of the condenser, the extra electrons existing at the negative plate of the condenser will move into the circuit, establishing an over-abundance of electrons in the circuit. The electrons leave the circuit to satisfy the deficiency of electrons existing at the positive plate of the condenser. WHEN THE ELECTRONIC BALANCE OF THE ATOMIC STRUCTURE FOR THE ENTIRE CIRCUIT IS RESTORED, THE POTENTIAL DIFFERENCE; I. E., VOLTAGE, IS ZERO.

## CONIDENSER ACTION IN AC CIRC.UITS

We are now ready for the explanation of the action of a condenser when used in an alternating current circuit. Remember, that the "apparent" flow of alternating current through a non-conducting material; i. e., dielectric of a condenser, is not possible in the strict sense of the word. However, there is a flow of current in an alternating current circuit which includes a condenser.

In order to thoroughly explain this action, we must have recourse to illustrations. The first of these is Figure 28.


Figure 2s
This illustration shows a condenser connected in a circuit with an alternating current generator. As the generator revolves, and starts a cycle, we will assume that the upper protion of the circuit is positive, and the lower part of the circuit is negative. The voltase the lower part of the circuit in negative. The vero to a maximum, and then falls to zero,
rise thus completing one-half of a cycle. At this point. the polarity of the circuit reverses; i. e., the top half of the circuit becomes negative, and the bottom half positive, and again the voltage rises to a peak and falls back to zero, whereupon the polarity again reverses and becomes the same as at the start, that is, one cycle has been completed.
When the voltage rises on the first half of the eycle. the condenser is charged, After the voltage reaches the peak, it falls to zero (at the same rate at which it rose to the peak). We now have a condition wherein we have a charged condenser, and a conducting circuit from one plate of the condenser to the other (through the generator).
Remember-That a charged condenser will dis. charge, if there is a conducting path from one terminal of the condenser to the other.
Therefore, the condenser will discharge through the circuit. However, before this discharge is complete, the voltage from the generator is rising on the second half of the cycle.
The rising voltage of the second thalf cycle of the alternator is of such a polarity that it aids the conpletion of the discharge of the condenser, and then recharges the condenser (but with opposite polarity to that of the first charge). The voltage from the alternator again falls to zero, and of course, the condenser discharges through the circuit.
The peculiar part of this whole action of charge and discharge, is that TIIE CURRENT IN TIIE CIRCUIT ''LEAIS'" TIIE VOLTAGE; i. c., the current in the circuit reaches its maximum intensity before the voltage reacles its highest value.
So far, our discussion has been centered around a perfect condenser; $i$. e., one in which there is no losses. In actual practice, all condensers have a certain amount of loss. These losses which occur in condensers are of two tymes; first. there is a "hysteriesis" loss which is due to molecular friction. Friction is generated in the molecules or molecular structure of the dielectric by the atoms attempting to rearrange themselves when under the stress of the applied voltage.

The second type of loss is that due to leakage in the dielectric. All insulating materials; i. e.. dielectrics have a certain amount of conductance, that is, they are not berfect insulators but allow the bassage of minute currents. We find that ceren the best insulating materials have a resistance of several megohms when measured by sensitive instruments. The first type of loss in a condenser is usually pictured by a symbol of a perfect condenser with a "series" resistor which represents the loss. This is illustrated in Figure 29.


CONDENSER WITH DIELECTRIC LOSS

## Figuri: 29

The second type of loss in a condenser is pictured as a resistance in "shunt" with a condenser as shown in rigure 30.


CONDENSER WITH LEAKAGE

## Figatere: 30

The result of these losses in a condenser is a decrease in efficiency; i. e., a loss of power. The efficiency of a condenser is expressed in the term "I'ower Factor," The meaning of this term is that if a condenser has a "power factor" of $2 \%$ that there is a loss of $2 \%$ of the applied power.
The power factor of a condenser (expressed in percentage) is equal to $\mathrm{WV}^{\times 1} \times 10^{6}$ wherein $\mathrm{WV}^{\prime}$ is the wat tage wC V ${ }^{2}$
lost, "w" is twice "pi" or 6.2S, C is the capacity (in microfarads), $V^{2}$ is the voltage squared and $10^{6}$ is 10 to the sixth power or 1 million.

## BY-PASS CONIDENSER CIRCLITS

Many circuits in radio receivers or amplifiers carry both alternating and direct current. It is necessary to provide separate paths for the flow of these two different currents, in order to accomplish certain actions. A circuit may carry direct current for plate supply and an AC signal current at the same time. It is necessary to movide a path for the signal voltages so that they may be applied only to certain portions of the circuit. In other words, it is necessary to separate the direct current and the alternating signal current.

A convenient means of obtaining this separation is to use a condenser to provide a path for the alternating current, because the direct current does not flow through a condenser, therefore we can obtain the desired separation.

This action is perhajes best illustrated by Figure 31 .


This circuit shows the use of a condenser to allow the passage of alternating signal current, from the screen circuit of a tube to ground, the resistor probibits the $A C$ current from setting into the " $B$ " supply where it might cause trouble; i. e.., feed back and howls. In most instances the resistor is necossary to provide the correct voltage for the serecn, thereforit readily serwes two purposes.
The action of the condenser whereby it provides the moth for the alternating current, is described in the chapter headed "Condenser Action in Alternating Current Circuits."

An additional illustration of the use of a condenser to provide a path for alternating current, is illustrated in Figure 32.


## Figlere 32

The action taking place in the circuit of Figure 32 follows: The resistor shown connected from the cathode of the tube to ground, is for the purpose of supplying a bias voltage for the grid of the tube. This resistor is usually of several thousand ohms resistance, and would offer an impedance of this value to the flow of the signal current. Such an impedance to signal currents at this point would introduce regeneration. and this is usually to be avoided. If we connect a condenser across the resistor, we will provide a path for the alternating current, which will not affect the required voltage drop across the resistor necessary for required vol

## CAPACITY OF BY-PASS CONDENSERS

The canacity of a by-pass condenser is regulated by the frequency of the current to be handled, and in addition, the resistance of the circuit to be by-passed. It is a general rule, that the capacitive reactance of a condenser should be approximately one-tenth, or less, the resistance value of the circuit to be by-passed.

Capacitive reactance is the "impedance;" i. e., opposition of a condenser to the flow of an alternating current. This reactance is expressed in ohms by the formula $X=\frac{1}{w F C}$, where $w$ is $6.28, F$ is the frequency in cycles per second, and C is the capacity in Farads.

To those mathematically inclined, the above formula shows that for a given value of capacity, the reactance decreases with increasing frequency. For practical illustration, let us say that a 1 mfd. condenser has a reactance of 1592 ohms at 100 cycles, but that for 200 cycles, the reactance is only 796 ohms.

To find the correct capacity value to be used for by-pass condensers, it is only necessary to know the resistance of the circuit to be by-passed, and the lowest frequency which will appear in the circuit. Then find the capacity value, the reactance of which is approximately one-tenth or less of the resistance of the circuit to be by-passed, at the lowest frequency which appears in the circuit.

## ELECTROLYTIC BY-PASS CONDENSERS

Inasmuch as many circuits to be by-passed are of very low resistance, or are carrying a low frequency current, it requires a large cajacity to affect the proper by-passing action.

Previous to the introduction of the electrolytic condenser, large values of capacity were extremely expensive. However, in electrolytic condensers, particularly at low voltages, it is possible to obtain a very large value of capacity at low cost, and in a small space. For instance, the usual capacity required for space. For instance, the usual capacity required for
by-pass in the circuit of Figure 32 , is in the order of 20 infds. at a potential difference of approximately 25 volts or less.

An electrolytic condenser suitable for use in this circuit will occupy a space of only $7 / 8^{\prime \prime}$ cliameter $\times 21 / 4^{\prime \prime}$ long. These are the dimensions for the Type TS102, which has a capacity of 20 mfds ., and a working voltage oi 25 volts. Such a capacity value in a paper condenser would occupy quite a few cubic inches of space.

Wherever a large capacity is required for a by-pass condenser, and where there is a DC voltage, it is advisable to use an electrolytic condenser. For very high frequencies, a paper condenser should be used, inas much as electrolytic condensers are not suitable for use as by-pass condensers at frequencies above several kilocycles.

Where a circuit to be by-passed carries both Audio and RF currents it is often advisable to use both an electrolytic condenser and a paper condenser. Such arrangements are found in many receivers.

## EASY REPLACEMENT OF UNMARKED CONDENSERS

Read this chapter and save yourself time and labor when it is necessary to replace a condenser which is not marked as to capacity and working voltage.
This easy, quick, step-by-step method requires quite a few words to explain, but is easy to follow and saves a lot of time in repairing a receiver.

First: Ascertain the working and surge voltages. A method of doing this is outlined in the chapter "'Surge Voltage."
Second: With the voltage known, the condenser is semi-classified, and the replacement will necessarily fall in one of the three groups of condensers; i. e., 250 volts, 450 volts, or High Surge types.
The next most important step is to ascertain the capacity value.

## PROCEDURE FOR FILTER CONDENSERS

A. FOR SINGLE UNIT CONDENSERS of either the can or carton type, use 8 mfd. or larger, except at the input to a filter.
Note-When replacing original paper condensers. which rarely exceed 2 mfd ., it is advisable not to use more than 4 mfd ., as values above this may cause the output voltage to rise to too high a value. On the other hand, half-wave rectifiers require a large capacity value at the input to the filter. In AC-DC receivers, the input capacity for half-wave rectifier is usually in the order of 25 mfd . (for further details refer to note at the end of this chapter).
B. FOR BLOCK OR MULTI-SECTION CONDENSERS.

First. Sketch the circuit and note the connection of the leads of the condensers and their color. For illustration, let us suppose you are working on an AC-DC receiver, and your sketch looks like this:


Figure 33
Second. Carefully open the condenser and trace and sketch the connections of the various units. This will help you to ascertain the way in which the various sections are connected in the circuit.
Next, sketch in the condenser connections to the various parts of the circuit as per Figure 31.


## ITigure 34

Now, refer to the condenser circuits given on pages 208 to 211 and find a circuit such as the one you have sketched. This turns out in this instance to be Circuit 11 (note the figures given beneath the circuit).
Now turn to the "Replacement" section and go up and down the "Circuit" column under the heading "Condensers," until you find this circuit number. When you have found this number, you will also find the correct replacement condenser, because it is given in the next column to the right of the circuit column. For instance, Circuit 11 will befound in the replacement section on page 15.4 (Zenith Model 710 ), where you will note that the UR182 is listed as the replacement.


With some circuit numbers you may have to search over several pages. This is advisable, because there are many combinations of condensers which may be used as replacements. Thus, by consulting two or three jages of the replacement section, you may ascertain several different combinations which may be used as a replacement and from these select the types of condensers most suited to your particular job.

Note-The numbers given beneath the circuits on pages 208 to 211 refer to the " $B$ " or condenser notes, given on pages 200 to 207 . These notes not only state the replacement condenser, but also give detailed instructions for connecting the replacement condensers into the circuit.

Note-Filter input condensers regulate the output voltage of the filter. With full wave rectifiers, this is not so noticeable as with half wave rectifiers.

There is generally no harm in raising or lowering the input capacity 2 or 3 Mfds . but with half wave reetifiers, too great a reduction in input capacity will cause a loss of voltage.

Figure 3 i shows the relation between load and input caracity for various output voltages of a half-wave rectifier.


Figure 35

## BY-PASS CONDENSER REPLACEMENT

When replacing by-pass condensers, follow the same procedure as is given in the preceding paragraphs devoted to filter condenser replacement. Note-Low voltage condensers may always be replaced with condensers of a higher voltage rating. Thus, a 5 mfd .20 volt condenser may be replaced by an 8 mfd .450 volt condenser. Although the higher voltage condenser may cost a few cents more than the low voltage condenser, there are many times when such a replacement will save you much more than the difference in cost. in the time saved.

## HOW TO USE THE "B" NOTES

The extreme right-hand column under the general heading "CONDENSERS' in the replacement section of the encyclopedia is the "NOTE COLUMN," in which is listed various numerals preceded by the letter "B," such as "B16."
"B16" refers to one of the notes on the following pages. These notes pertain to the replacement of condensers, and enables us to tell you exactly WHAT TO DO AND HOW TO DO IT. These notes guide you so that you may make a quick and easy repair. They also enable us to warn you to watch for certain things, and most of all TELL YOU HOW TO WIRE IN A CONDENSER REGARDLESS OF THE ORIGINAL COLOR CODE, CHANGE DURING MANUFACTURE, OR PREVIOUS REPAIR.

CONDENSERS			
Original   Part	Cir-   cult	Correct   Replacement	*Note
$8.8 \ldots$	1	See Note	B3

Here is an illustration of part of the replacement section. The meaning expressed in the apparently cryptic message is that the original condenser combination In the particular receiver is two 8 mfd . units used in Circuit 1, as shown on page 208, and that you are to read " $B$ " note No. 3, which states "B3-Physical characteristics are unknown. We suggest replacing with equivalent Mallory type of equal or higher capacity. Check voltage for higher rating." You are told that there are two 8 mfd . units used in Circuit 1, but you alone know whether there are two single 8 mfd . units or a single unit containing two 8 mfd. sections. You also know the physical specifications; i. e., whether it is a round can or carton type of condenser, or, condensers.

You have the original before you in the receiver. You know the physical appearance and permissible size. We have given you the capacity and a schematic of the circuit. TIIIS IS ALI, THE INFORMATION ONE COULD ASK TO make a replacement. Vou may now select the proper condenser. The voltage rating should not bother you, for-if the receiver is of an AC type using a transformer, a 4,50 volt condenser should be used. If the receiver is an AC-DC type, a 2.50 volt condenser should be used, inasmuch as even with a voltage doubler, the 250 volt rating is always sufficient.

Let us take a more complicated note, for example: No. B18, which states: "Refer to schematic No. 6 and connect UR182 as follows: Green, Brown and Black to points ' $C$,' and ' $D$,' Red to point ' $A$,' Yellow and Blue to point ' $B$.' "

Figure 37 shows Circuit 6 with the UR182 connecter] as per the instruction in Note No. BIS.


Figure 37
Note the procedure. This is clear, direct and saves your time. No longer do you need to puzzle over the question as to which lead goes where.
Let us take up a still more complicated note; for example, No. B49. "Refer to schematic No. 9 and connect CM165 as follows: One Red to point ' $A$ ', corresponding Black to point ' $B$,' and other Red to 'B,' corresponding Black to point ' $C$.' remaining Red to point ' $D$ ' and Black to ' $E$.' Note-In some cases there are two pig-tail resistors between the field and point ' $E$ ' which is connected to the chassis.'
Figure 38 shows a pictorial view of Circuit 9 with the CM165 installed as per instructions in note N . B4.


Figure 38
This illustration shows how simple and easy it is to make what would otherwise be a difficult installation. Think of the time you might lose in waiting for an exact duplicate which would be no better than the original, whereas, the readily obtalnable Universal Mallory condenser is casily installed and gives you a profit quickly.
These " $B$ " notes have been written by practical men for practical every-day use. USE MAL LORY CONDENSERS AND BE SURE TO LOOK at THE CIRCUITS AND READ THE NOTES.

## AC MOTOR STARTING CAPACITORS General Design and Use

Millions of AC Dry Electrolytic motor starting capacitors are now in use.

Starting capacitors are used on motors where high starting torque is required and where the power supply is single phase. In such cases, the capacitor, due to phase displacement, permits the design of a twophase starting winding in the motor, thereby gaining high torque characteristics. (See Fig. 39.) Since electrolytic capacitors should not be left on AC continuously, such motors are provided with an automatic switch which disconnects the capacitor when the motor has reached a given speed. The motor then operates as a single phase motor.


Figure 39

The average starting cycle of refrigerator motors (less than one second, two to five times per hour) obviously represents a rather light service condition and should not affect the life of the capacitor.

The major causes for capacitor failures in this field are stalled rotors (due to defective mechanical mechanism), sticking switches (due to contact difficulties) and actual capacitor defects. Stalled rotors or sticking switches allow the capacitor to remain on the line until destroyed by the internal heat generated.

Defective capacitors are usually short or open circuited or have lost their effective capacity. A quick check to determine that the capacitor is definitely defective is to charge it with direct current (through a limiting resistor if necessary). If no discharge is evident on immediate short circuit the capacitor can be assumed to be open or short circuited, or to have lost its effective capacity. Note: If AC only is available, repeat charging cycle several times to be sure capacitor actually has a chance to charge.

When servicing motors where the capacitor failed, always inspect the switch and be sure it is operating properly before making replacement. Also test starting winding as this may have burned out due to abnormal heat caused by failure of motor to start.
There are two kinds of switches in general usecentrifugal and magnetic. Centrifugal switches cut out as the motor reaches a given speed-magnetic switches when the starting current has reduced to a predeternined value. Since the value of capacity changes the anount of current in the starting winding, care should be taken to use the correct capacity for replacement where maknetic switches are employed. This is not so important where centrifugal switches are used.

## TERMINAL IDENTIFICATION

Some capacitors are equipped with four terminals marked "T," "TL," "L," and one unmarked terminal. These letters refer to "Thermostat," "Thermostat and Line," and "Line." "T" and "TL" are dummy terminals being used merely as an anchorage point for the inotor connections. The capacitor is connected to the "L" and the unmarked terminal. See Fig. 40.


## Special Notice

Capacitors were originally rated in a single round figure such as 100 mfd ., 115 mfd ., etc. Capacitors are now rated with their minimum and maximum value, such as $108-120 \mathrm{mfd} ., 124-138 \mathrm{mfd}$. etc. All charts give both the new and old ratings for convenience. Old ratings may be converted approximately by multiplying by $120 \%$ for the maximum rating and deducting $10 \%$ of this figure for the mininum rating.
Most round capacitors have a protective metal end cap at each end. Generally these may be used on the replacement capacitor. If they are loose on the replacement capacitor, they may be squeezed or padded with paper. If too tight, it will be necessary to purchase Mallory end caps. This is due to the use in the past of various insulation thicknesses.
Ring capacitors, because they must be internally insulated, are not guaranteed by the Mallory Company. A bank of standard round capacitors totalling the same capacity as the original is suggested for replacement whenever they may be conveniently mounted near the motor.
For replacement information on motor starting capacitors, see pages 211 and 217.
"1"

## NOTES

B1-Originally equipped with paper condensers. Electrolytics of equal or greater capacity are O.K. for replacement. Check voltage to determine proper condenser rating.
B2-Input condenser may be paper type. In such cases we suggest the replacement be made with a paper condenser or Mallory HS or HD high voltage units, the choice being determined by the voltage requirements.
B3-Physical characteristics are unknown. We suggest replacing with equivalent Mallory type of equal or higher capacity. Check voltage for proper rating.
B4-Filter condensers may be of paper; if so, replace with Mallory HS or IID types. Working voltage, capacity and mounting will determine type.
B5-Use types UR 188 or UR189 to replace a combination such as 16-12, 16-8, 12-12, etc. The dual mfd. low voltage units are intended for by-pass circuits and may be connected in parallel (Yellows together) to obtain a single 10 mfd . section. Connect the two Red leads together to obtain the higher capacity filter section. The UR188 and UR189 contain the same capacities and voltage ratings. Select the unit which may be installed most conveniently.
B6-It is not necessary that the cathode by-pass condensers be in the same container as the filter condenser. Mallory TS units are easily installed within the chassis, the wire leads offering firm support.
BT-Originally equipped with paper condensers. Replace with combination of Mallory TP units of proper voltage and capacity.
B8-When a Mallory Multi-section condenser is recommended to replace an original single section condenser, connect the sections in parallel. This gives a capacity that is equal or greater than the original.
B9-This condenser is enclosed in the original block and tunes the filter choke to the ripple frequency. Replace with Mallory TP unit or combination of units giving the same capacity as the original.
B10-This condenser is used only on the later type of this model.
B11-Requires a non-polarized type of electrolytic for replacement. To obtain a nonpolarized capacitor use a Mallory RN or CN type having the same capacity in both sections. Cut off the black lead close to the container and tape to prevent shorting against chassis. Use the two Red leads as the terminals of the condenser. The resulting capacity is equal to one-half the capacity of one section; i. e., CN150 will have an effective non-polarized capacity of 2 mfd . at 1.50 volts. Thus to secure 4 mfd. non-polarized, it requires the use of a Mallory RN242 or CN152. (See Circuit 39 in the "B" con-
denser circuit section.) Note: the RM or CM units may also be used by paralleling the sections and then connecting the negative leads together and taping as above.
B12-This additional capacity used on 2.5 cycle models only.
B13-This power pack is used in many early Mohawk models. Color code of the filter condensers are: Green 2 mfd., Blue 2 mfd ., Yellow 1 mfd . In addition there is a .5 mfd . from B positive to B negative. See note B1.
B14-These condensers are used across the secondary of the vibrator transformer. Replace with Mallory VB or OT type condensers of the same capacity value.
B15-Remove old condenser from can and place CN151 in can if desired.
B16-Mount in hole in chassis or use Mallory bracket No. 104-1.
B17-Refer to schematic No. 11 and connect UR182 as follows: Black and Brown to points "D" and "E," Red to point "A," Blue to point "B," Yellow to point "C," and Green to point "F."
B18-Refer to schematic No. 6 and connect UR182 as follows: Green, Brown and Black to points "C" and "D," Red to point "A," Yellow and Blue to point "B."
B19-For this replacement we suggest the use of three CS126 units.
B20-This condenser is used only on later models.
B21-Install beneath chassis and connect Red leads together to positive, Black to negative. Leave old unit in place if desired, but be sure to remove leads from it.
B22-Refer to schematic No. 9 and connect CM165 as follows: One Red to point "A," corresponding Black and another Red to point "B," remaining Red to point " $D$," remaining Blacks to points "C" and "E."
B23-When Mallory Stud type condensers such as the SR602, SR605, etc., are recommended to replace condensers of the ring lamp mounting type, the stud may be cut off flush with the top of the can. Be careful not to cut into the can.
B24-Connect RN241 or RN231, Blue to positive 4 mfd ., Red to positive 8 mifd., Black to chassis. Connect positive of TS101 to cathode of output tube, negative to chassis.
B25-Refer to schematic No. 4 and connect CM172 as follows: Red leads together and to points "A" and "B," one Black to point "C," remaining Black to point "D."
B26-Refer to schematic No. 1 and connect RN241 as follows: Blue to point "A," Red to point "C," Black to chassis at points " $B$ " and "D."
B2T-Later type of Model 856 used a 16 infd. condenser in place of the 8 mfd . No. 27585; in which case use the RS216.
B28-There were two types of filter circuits used in this model; the older type used a dual 4 mfd . as first and second filter with an 8 mfd. in the output. The later type used the same combination but with the 8 mfd . as the input condenser.

B29-Refer to schematic No. 1 and connect UR189 as follows: Blue to point "A," both Reds to point "C," Brown, Black and Green to chassis. Connect one Yellow to cathode of output tube, the other Yellow to cathode of detector tube.
B30-Mount the SR611 by means of the metal flange, cut off and disregard the Blue lead. Two CS133 units may be used if desired.
B31-Refer to schematic No. 11 and connect UR182 or UR193 as follows: Yellow to point "A," Red and Blue to points "B" and "C,", Green and Brown to points " $D$ " and " $E$," Black to point " $F$ " (chassis).
B32-Join two of the CM165 Red leads together and to B positive, one Red lead to Blue lead from switch, corresponding Black to plate of 25 Z 5 , remaining Black to chassis. B33-Refer to schematic No. 29 and connect CM162 as follows: one Red to point "A," corresponding Black and remaining Red to point "B," remaining Black to point "C." The additional 8 mfd . unit is beneath the chassis and connected Red to point "D," Black to point "E."
B34-Refer to schematic No. 1 and connect one Red to point "A," another Red to point "C," remaining Red to cathode of output tube, Black to chassis.
B35-We suggest the use of UR190 for this replacement.
B36-Refer to schematics Nos. 6 and 15 and connect UR189 as follows: Blue to point "A," both Reds to "B," Brown, Black and Green to chassis at points " $C$ " and " $D$," one Yellow lead to cathode of detector, remaining Yellow to cathode of output tube.
B37-May require use of condenser bracket No. 104-1.
B38-On some chassis of the model 525 the condenser was in two cartons, the C525C ( $5 \mathrm{mfd} .-25 \mathrm{mfd}$.) and the C525D ( 5 mfd .). We recommend the UR182 which replaces both of the units.
B39-Install Mallory condenser in the old can or beneath the chassis.
B40-Use the BN type of by-pass condenser. B41-Install the RN245 in the chassis hole provided for the original wires. Discard the old condenser cover if desired.
B42-Refer to schematic No. 1 and connect the CN152 as follows: one Red to point "A," remaining Red to point "C," Black to chassis at points "B" and "D."
B43-An . 05 condenser was used for buffer on first type only, value of second type unknown.
B44-Models using the F312 vibrator have a .005 mfd . buffer; those using the F22l vibrator have an .04 infd. buffer.
B45-The original block No. P80902 contained two 4 mfd . condensers and a 1 mfd . paper. Replace with a CN140 and TP438 connected as follows: one Red of CN140 to screen circuit, remaining Red to first audio cathode, Black to chassis. Connect TP438 from LF screen to ground.
B46-Substitute TP441 for TP438 and connect as in note B4.3.
B47-Refer to schematic No. 29 and connect CM165 as follows: Red to point "A," corresponding Black to " B ," another Red to
point " B, " corresponding Black to " C ,", remaining Red to "D," and Black to "E."
B48-Refer to schematic No. 4 and note that a resistor is used in place of the choke shown. The RM262 should be mounted in the chassis hole or by means of Mallory bracket No. 104-1; connect both Red leads to points " $A$ " and " $B$," one Black to point "C," remaining Black to point "D" (chassis).
B49-Refer to schematic No. 9 and connect CM165 as follows: one Red to point "A," corresponding Black to point "B," another Red to "B," corresponding Black to point "C," remaining Red to point "D" and Black to "E." Note-In some cases there are two pigtail resistors between the field and point " $E$ " which is connected to the chassis.
B50-Refer to schematic No. 23 and connect RM262 as follows: Blue and Red to points " $A$ " and " $B$," Brown to point " $C$," and Black to point "D." If necessary use Mallory bracket No. 104-1.
B51-Refer to schematic No. 29 and connect CM165 as follows: one Red to point "A," corresponding Black to point "B," another Red to point " B ," corresponding Black to point " $C$," remaining Red to point " $D$ " and Black to "E." Note-In this receiver there may be a pigtail resistor between the field and point "E."
B52-This condenser connects between points "A" and "C" on schematic No. 29.
B53-Refer to schematic No. 29 and connect UR190 as follows: one Red of one of the independent sections to point "A," corresponding Black to point " $B$," Red of the other independent section to point " $B$," corresponding Black to point " C ," one Red of the common section to point " $D$," the other Red to 6A7 plate supply, Black to ground at point "E."
B54-This chassis is the same as the Majestic 300, 300A.
B55-Connect RN245 and CN151 as follows: Blacks to high voltage center tap; two Reds of RN245 to output side of filter choke; other Red to screen of first detector. Red of CN 151 to cathode of output tube, Blue to first AF plate supply.
B56-Refer to schematic No. 11 and connect RM259 and TS101 as follows: Green of RM259 to point "A," Yellow and Brown to points " $D$ " and " $E$," Blue and Red to points "B" and "C," Black to "F." Connect TSi01 positive to second detector cathode, negative to point " $F$."
B57-Connect Black leads to chassis; other lead connections are obvious.
B58-Refer to schematic No. 4 and connect RM265 as follows: Red and Blue to points "A" and "B," Black to point "C," Brown and Yellow to point "D," Green to screen circuit.
B59-Refer to schematic No. 1 and connect RM257 as follows: Red to point "A," Black to point "B," Blue and Green to point "C," Brown and Yellow to point "D."
B60-Connect one 8 mfd . section to rectifier side of choke, combine two sections and conneet to speaker side of choke, the remaining section to voltage divider at output side of speaker field.

B61-Refer to schematic Nos, 1 and 1.5 and connert HN 232 as follows: one Hed to point. "C," Black to "D," remaining hed to output cathode.
B62-Combine two of the $\mathrm{RN} \mathbf{N} 35$ Red leads to output sereen, remaining Red to detector plate resistor, Black to chassis; positive of TSI01 to cathode of output tube, nerative to chassis.
B63-lefer to schematic No. 1 and conenet Il \I9.77 as follows: Brown, Yellow and Black together and tape, lied to choke at point "C," Blue and (ireen together to print "I)," Note-It may be necossary to use two CS126 units installed beneath the chassis. See note 1311 .
B64-Refer to schematic No. $\mathbf{t}$ and conned URI93 as follows: Red, Blue and (ireen to points " $A$ " and " $B$," Black and Brown to "C," Yellow to "D."
B66 - Refer to schematies I and 13 and connect RN24.5 and CSI31 as follows: two lied leads of RN 245 to point " A "; remaining hed lead to point "C"; Black lead of ISN24. together with Black lead of CSI31 to point: "I3" and "D"; and hed lead of CSIB31 to oscillator plate supply.
B67-Refer to schematic No. 8 and conneet RM2:9 as follows: (ireen to point "A," Red to point "B," Blue to point "C," Yellow, Brown and Black to points "D," "E," and "F."
B68-Refer to schematic No. 11 and connect RM1259 as follows: (ireen to point "A," Yellow and Brown to points "D" and "E," Blue and lled to prints " 13 " and "C," Black to point "F."
B69-Refer to schematic Nos. 28 and I:3 and connect R1 126.5 as follows: Conmet Red and Blue together and to point " 3 " in place of the original red, Black to point "E," Brown and Yellow to chassis at "F", (ircen to screms of power tules.
B70-Refer to sehematic Yos. 4 and It and connect R W20.5 as follows: Red and Blue to " $A$ " and "B," Black to "C," Brown and Yellow to chassis at "1)," (ircen to blecder resistor.
B71-Refer to schematic No. 11 and connect the UR190 as follows: Connect the two lied leads (that exit from the same hole in the carton) together and to one of the other Red leads, then connect this assembly to the cathode of the rectifier at point " $\lambda$;" the three Black leads connect to the line at points "D" and "E," the remaining Hed lead connerts to the rectifier callonde at print "B."
B72-Refer to schematic No. 29 and conned UR190 as follows: Combine two Reds (that exit from same hole in carton) and connert to point "A," corresponding Black lead to point " 13 ," connet one other Riad lead to point "B," corresponding Black lead to point "C," ronnect remaining lied lead to point "D" and remaining Black to point "E." Point "B" is connected to IDC side of switch.
B73-Refor to solematic No. 4 and connmet RM202 as follows: Red and Blue to points " $A$ " and " 13, " Brown to "(:" and Black to "D."
B74-Refer toschematies Nos. 1 and 1.5 , and connect il: 12.5 .7 as follows: Blue to "A," (ireen to "B3," IBrown, Yellow and Black to
chassis at. "I3" and "I)." Red to cathode of output tube. If neressary, use Mallory 10.1-1 lracket.
B75-Refer to schematies Nos. 1 and 15, connect C.117:3 as follows: All three Black leads to ground at " 13 " and "D," one Red each to " A, " "C." and cathode of output tube.
B76-Refer to schematies Nos. 1 and I.5, and connect RND.3. as follows: Red to cathode of output tube, Blue to " A ," (ireen to "C," Brown, Yellow and Black to chassis.
B77-We suggest the use of two UR190 condensers connected as follows: Both Red leads of the common section to cathode of $2.5 \% .5$. the two other Red leads of this condenser together and to cathode of $12 Z 3$. On the other $1 / 12190$, connect hoth lied leads of the common section to the output of the choke, one of the remaining hed keads to rathode of 6 C 6 and the other Red lead to the cathode of 43 , all Black leads to negative line.
B78-See note 68 for installation instructions.
B79-Connect a TSI02 from 6F6 cathode to chassis in addition to one section of the B N 22 s .

B80-Refer to sehematios 1 and 1.5 and connect RME:5as follows: Red lead to point "C"; Blue lead to If" sercen; (ireen lead to cathode of output tube; Brown, Yellow and Black leads together and to points " 13 " and "D" (chassis).
B81 - Most of these original condensers employ a Red and Yellow lead; the 8 mfd . section (Red) should be connected on the rectifier side of choke.
B82-Connect R N242 as follows: Black to chassis; one lied to output sereen; other Hed to tuming eye target. Connect TS101 at sooket of audio driver; plus to cathode; negative to chassis. Connect TSlon plas to cathode of output tubr; nogative to chassis.
B83-liefer to solematic No. 3 and connect one section of the M V 277 to " A ," connect two of the sections together and to point " 3 ," connert the other section to point "C."
B84-Refer to schematies Nos. 1 and 1.5, comner both leds to point "A," Blae to "C," Black, Brown and (ireen to chassis at " 13 " and "IS," one Yollow to cathode of second delector and the other to cathode of output tube.
B85- Woum the Mallory condenser in the original can.
B86-Refer to schematic No. 4 and connect RMOGI as follows: Red and Blue to points "A" and "B," Brown to "C" and Black 10"D."
B87-Refer to sehematic No. 1 and connect CNIH as follows: Blue to point "A," IRed to point "( $\because, "$ Black to "I 3 " and "I)."
B88-Refer toschematic No. 2 -2 and connert CMllo. as follows: All three Red leads to " 1 ," " 13 " and "C," two Black loads to "I)," "IS," remaining Black laad to "F."
B89- Roplace with a Uh190 mounted bemath the ehassis. Refer to selnematic No. 29 and connect as follows: one of two Red leads having common exit to point " 13 "; other Reds together and to points "A" and "D"; Black opposite iheds having common exit to
print "C"; one other Black to point " 13 "; remaining llack to point "E."
B90-In case the R V 232 is toolong, try the SR60.5; cut off the mounting stud on the SR605 if necessary.
B91-Refer to sehematic No. 1 and connect. RN2. 11 as follows: Red to "A," Blue to "C," Black to chassis at "I 3 " and "ID."
B92-Refer to sehematic No. 1 and connect CNisl as follows: Red to " $A$," Blue to "C," Black to chassis at "B" and "D," mount by means of one flange, and cut off the other. If desired, cut off or bend the flanges and install in original can.
B93-Refer to schematic No. 4 and connect CM171 as follows: Red and Blue to " A " and "B," Black to "C," Brown to "D." Mount by one flange bent at right angle to support condenser in vertical position, cut off other flange. If preferred, mount condenser in original can.
B94-Refer to schematic No. 27 and connect UR189 as follows: The two Red leads to " $A$ " and "B," Blue to "C," Black to " $F$," Brown and Green to " D " and " L ," Yellow leads together and to cathode of detector.
B95-Refer to schematics Nos. 27 and 15 and connect the UR182 as follows: Red and Blue to " $A$," " $B$ " and " $C$," Black and Green to chassis at " $F$," Brown to line at " $D$ " and "E," Yellow to cathode of Detector (or in some cases the first AF stage).
B96-See Note 133; if round can unit can be installed we suggest li 120.9 for this installation.
B97-Refer to schematics Nos. 1 and 44, connect all Black leads of the DR190 to B-, the two Red leads (with common exit) together and to chassis, one of the remaining lied leads to each side of the choke.
B98-Refer to schematios Nos. 6 and 1.5 and connect UR189 as follows: Both Red leads to "A," Blue to "B," Yellow leads to cathode of Detector and output tubes respectively, Brown, Black and (ireen to chassis.
B99-The chassis type number is the group prefixing the serial numbers. The first run of this chassis used schematic No. 27 with 16 mfd. from cathodes (in parallel) to line, 8 mfd . from cathodes to chassis and 4 mfd . from 688 plate supply to chassis, also a 25 paper across the choke. For the first run, conneet URI93 as follows: Refer to sehematic No. 27, conmect Blue to "A" and "B," lhed to "C," Brown to line at "D," "E," Black and (ireen to chassis, Yellow to 6A8 plate supply. In the second run the cathodes of the 25 ZS were separated thus changing the circuit to schematic No. 11 and the .25 unfd. condenser was removed from arross the choke and a separate 1 mfd. tubular conneted across the field. For this cirenit refer to schematic No. 11 and connect UR193 as follows: Blue to "B," Red to "C," Brown to line at "le", Black and (ireen to chassis at "F," Yellow to $6 \times 8$ plate supply. Use an additional. CS121 with Hed to "1," Black to "D."
B100-Refer to schematic No. 27 and connect C. 116.5 as follows: All Red leads to "A," "B," "C," two Black Hads to "D," "E," one Black lead to chassis at "F."

B101-Use the following: one CM164 to replace the 16-16 mfd. section, all Black leads to chassis, one Red lead to each side of the choke. One CN 141 to replace the $8-4$ mfd. section. Black to chassis, Red to screen of 6A7, Blue to cathode of 25 Z 5 supplying field. One TSIO1, positive to 43 cathode, negative to chassis.

B102-Use one CM16t and one UR183; refer to schematics Nos. 8, 13 and 15, and connect units as follows: Black leads of C. 11164 to chassis, one Red lead to each side of the choke. Black and Brown leads of the UR183 to chassis, Yellow to cathode of output tube, one Red to rectifier cathode supplying the field, one Red to 6A7 screen supply.
B103-Refer to schematic No. 6 and connect two Red leads of the RN23.) to point "A," the remaining Red to "B," and Black to chassis at "C," "D."
B104-When AC-DC switch is in AC position the filter circuit is the same as schematic No. 8 with the exception that there is an additional choke connected at point "C." Connect Uh182 as follows: lied to point "C," Black to point "F," Yellow to point "A," Blue to point "B," (ireen to the AC side of the AC-DC switch connected to the speaker field, and Brown to points "D" and "E."

B105-Refer to schematic No. 4.5 and conneet UR190 as follows: One each of the two Red leads (having a common exit from the carton) to points "D" and "E," the Black of this section to chassis at " $F$," one of the remaining Red leads to point "A," corresponding Black connects to the remaining Red and to point " $B$," the remaining Black to the chassis at point "C."
B106-Refer to schematics Nos. 4 and 17 and connect 11M26.5 as follows: Red and Blue to points "A" and "B," Black to "C," Brown and Yellow to "D," Green to filament center tap resistor.
B107-Connect C.M173 as follows: One Red to junction of filter choke and RF choke, another Red to the screen of the first detector, remaining Red to " 1 " plus of the audio-transformer, and all Blacks to chassis.
B108-Refer to schematics Nos. 8 and 1.5 and connect RIM2.59 as follows: Blue and (Green together to point "C," Red to point "B," Black, Brown and Yellow to chassis at "E" and "F." Connect RN232 Black to chassis at " D ," one Red to point " A ," and remaining Red to calhode of output tule.
B109-To replace RC. 501 refer to sehematics Nos. 13 and 15, and connect C.N1:51 as follows: Blue to osc. plate supply, Red to cathode of output tule, and Black to chassis. For RC502 refer to schematics Nos. 13 and 14, and connect CNI.50 as follows: one Red to junction of 20 M olms and 500 M ohms resistors in the first AF plate supply, remaining Red to first AF sereen, and Black to chassis.

B110-If the filter and by-pass condensers are all in one block, refer to schematics Nos. 6 and 15, and use UR182 connected as follows: Connect Blue to point " $A$," Yellow to
point "B," Black, (ireen and Brown together to points "C" and "D," remaining Reft to detector cathote.
Bll1-Refer to schematies Nos. 1 and 15, connect CN15\% and TVill as follows: Two Reds of CN1.5.5 to point "A," remaining Red to point "C," Black of CN1.5.5 and negative of TN111 to chassis (that is, points " 3 " and "ID"). Connect one positive of TN1ll to detertor cathode, remaining positive to cathode of output tube.
B112-Refer to schematic No. 2.5 and connect CM172 and TS102 as follows: One Red of CMII2 to point " A ," corresponding Black to point " C ," remaining Red to point "B," the other Black to point "D," connect TS102, positive to point " $D$," negative to point "C."
B113-Refer to schematic No. 4 and connect SR620 as follows: Red to points "A" and " 13 "; Yellow to point "C"; Black to point "D." Some of these sets used a can type unit for which we recommend an R 11259 connected as follows: Red, Blue, and Green to points " $A$ " and "B"; Black and brown to point "C"; Yellow to point "D."
B114-Refer to schematics Nos. 6 and 1.5 and connect UR182 and TS101 as follows: Blue to point " A ," Red and Yellow to point "B," Black, Brown, Green and negative of TS101 to chassis. Positive of TS101 to cathode of output tube.
B115-Refer to schematic No. 27 and connect as follows: Red, Blue and Yellow to points " $A$," " $B$ " and " $C$," Brown and Green to points "D" and "E," Black to chassis at point "F."
B116-Refer to schematics Nos. 3 and 14 and connect IIS692 as follows: Red to point "A," Black to point "D." Connect UR191, the two Red leads (with common exit) together and to point " $B$," corresponding Black to point " $E$," one of the two remaining Ihed leads to point " C ," the other to the 100 -volt tap on the voltage divider, both remaining Black leads to point "F."
B117-Refer to schematic No. 4 and connect C.116.5 as follows: All Red leads together and to points " $A$ " and " 13, " two Blacks to switch (point "C") and the remaining Black to chassis (point "D").
B118-Refer to schematic No. 11 and conneet IIR182 as follows: Yellow to point "A,", Hed and Blue together and to points " 13 " and "C," (ireen and Black together and to point " $F$," and Brown to point " $E$.," This connection is not the same as the standard described in note 31. However, the wiring used in note 31 is applicable in some cases of noticeable hum.
B119-Refer to schematics Nos. 6 and 1.5 and connect CNI4. and TSIO2 as follows: two heds of C.vit:, to proint "A," remaining Red to print "B," Black to proint "C.." Connect Tsi 02 positive to output cathode, negative to point "D."
B120-Refer to schematies Nos. 2 and 13 and connect C.V15.5 and CV142 as follows: Two Reds of CN1.55 to point "A," remaining Red to point "C," Black to chassis at points " 13 " and "D." Connect one Red of CN142 to terminal 6 of original block, re-
maining Red to original terminal a, and Black to chassis.
B121-If receiver should be disconnected from the power pack the voltage rises to 900 volts for 91 '6 and correspondingly for the other similar power packs; therefore, we advise the use of IIS (IIigh Surge) units for replacement.
Schematic No. 47 gives a view of a replacement made with IIS carton units.
The by-pass sections of the original may be replaced with larger capacity units of electrolytic type, thereby giving better filtering action at the by-pass point.
The illustration in schematic No. 47 shows an installation of two IIS692 and two HIS690 condensers replacing the original block.
B122-Mount CN145 and TS101 in the original can. Refer to schematics Nos. 6 and 15 and connect as follows: Two Reds of CN145 to point "A," remaining Red to point " $B$," and Black to points " C " and "D." Connect Positive of TS101 to output cathode, and negative to point "D."
B123-Mount CN151 and TS101 in the original can. Refer to schematics Nos. 1 and 15 and connect as follows: Red of CN151 to point " $A$," Blue to point " $C$," and Black to points "B" and "D" (chassis). Positive of TS101 to output cathode, and negative to chassis.
B124-Refer to schematic No. 6 and connect CN14.5 as follows: Two Reds together and to point "A," remaining Red to point "B," and Black to points "C" and "D."
B125-Condenser supplied on order. State part, make and model number of receiver. B126-To replace 1880956 refer to schematic 25 and connect RM262 and TS102 as follows: Red of RXM262 to point "A," Black to point " C ," Blue to point " 13 ," and Brown to chassis. Connect TS102 negative to point "C," and positive to chassis.
B127-To replace 180937 refer to schematics Nos. 14 and 15 and connect RN231 as follows: One Red to IF screen, the other Red to second detector cathode, and Black to chassis.
B128-Original is a dual 12 mfd . unit, physical characteristics unknown. If of the can type, an RN245 may be used. Conbine two of the sections and connect to the input side of speaker field, the other section to the output side of the field, Black to chassis.

Although the CNI.52 will satisfactorily replace the original part (No. B166143) some may desire to use a CS133 and TSIO1, which is entirely satisfactory in every way.
B129-Since these condensers originally had a screw-socket base, we reconmend replacement with a carton beneath the chassis.
B130-Refer to schematics Nos. 1 and 1.5 and connect CN151 and TSIO1 as follows: Blue of CNI.sl to point "A," Red to point "C," and Black to points " 3 " and "D." Connect TS101 positive to AF output cathode, negative to chassis.
B131-Connect CN1.51 as directed in note 130.

B132-Refer to schematic No. 1 and connect RN241 as follows: Blue to point "A," Red to point "C," Black to chassis at points "B" and "D."

B133-Original unit was combination of .2., mfd. and .5 mfd . paper, and 8 mfd . electrolytic. Replace with combination of TP420, TP432 and TS101 respectively.
B134-Refer to schematics Nos. 8 and 1.5 and connect UR189 as follows: Blue to point "A," one Red to point " 13 ," the other Red to point "C." Black, Brown and (ireen to points " $D$," " $E$ " and " $F$," one Yellow to cathode of detector and output tube respectively.
B135-Refer to schematics Nos. 14 and 15 and connect CN 152 and TP420 as follows: One Red of CN1:52 to oscillator plate supply, remaining Red to cathode of first audio tube, and Black to chassis. Connect TP 420 to the junction of 2.3 M ohms and 2.50 M ohms resistors in the second Detector plate lead, and to the chassis.
B136-The original condenser had two .2.) mfd. and one .5 mifd. paper sections, and one 20 mfd electrolytic. To replace electrolytic section, use TS102, connecting positive to cathode of output tube, negative to chassis. B137-Refer to schematics Nos. 13 and 14 and connect UR 181 as follows: Red lug to driver plate supply, Blue lug to IF screen circuit, and Green lugs to first AF plate resistor.
B138-Refer to schematics Nos. 13 and 14 and connect UR181 as follows: Red lug to IF screen circuit, Blue lug to driver plate supply, Green lugs to plate resistor.
B139-Refer to schematics Nos. 1 and 19 and connect RN242 as follows: One Red to point "C," remaining Red to chassis, Black to points " $B$ " and " $D$."
B140-Refer to schematic No. 49 and connect RN235 as follows: To replace first section, connect Red to point "A," two Reds to point "B," Black to point "C." To replace second section connect Red to point "D," two Reds to point " $E$," Black to point " $F$ "' (chassis).
B141-Refer to schematics Nos. 1 and 19 and connect RN24.5 as follows: One lied to point " $A$," one Red to point " $C$," remaining Red to chassis, Black to points "I3" and "D." B142-Refer to schenratic No. 13 and connect URI81 as follows: Red lug to anode grid supply of first detector, Blue lug to IIF plate supply, Green lugs to screen circuit. B143-Refer to schematics Nos. 1 and 1., and connect RM259 as follows: Red to point. "A," Blue to point "C," Black, Brown and Yellow to chassis, Green to cathode of output tubes.
B144-We advise the use of two CSI26 and one CN142 units connected as in schematics Nos. 41 and 1.5 as follows: Red of one CSI26 to point " $\Lambda$," Red of the other CS126 to point "B," one Red of CN142 to point "C," remaining Red to cathode of output tube, all Blacks to points " $D$," "E," and "F."
Note-The CM16.t may be used in place of the two CS126's.
B145-Refer to schematics Nos. 1 and 19 and connect RN245 as follows: Two Reds to point "A," one Red to chassis, Black to points " B " and " D ."
B146-Refer to schematics Nos. 13 and 14 and connect UR181 as follows: Red lug to audio plate supply, Blue lug to IF screen circuit, Green lugs to anode grid supply of first detector.

B147-Refer to schematics Nos. 13 and 14 and connect UR181 as follows: Red lug to second detector plate supply, Blue to IF screen circuit, Green lugs to anorle grid supply of first detector.
B148-Refer to schematics Nos. 13 and 14 and connect UR181 as follows: Red lug to driver plate supply, Blue lug to IF screen circuit, one Green lug to first audio screen, remaining Green lug to oscillator plate supply.
B149-Refer to schematics Nos. 13 and 14 and connect UR181 as follows: Red lug to first detector screen, Blue lug to Iriver plate supply, one Green lug to second detector plate resistor, remaining Green lug to first detector anode grid supply.
B150-Refer to schematics Nos. 13 and 14, connect UR181: Red lug to IF screen circuit, Blue lug to first detector anode grid supply, Green lugs to driver plate supply.
B151-Refer to schematic No. 13 and connect Ulil81 as follows: Iled and Blue lugs to lirst detector screen circuit, and Green lugs to second detector plate resistor.
B152-Connect Red leads in place of original lugs, Black to chassis.
B153-Refer to schematics Nos. 13 and 14 and connect UR181 as follows: Red lug to oscillator plate supply, Blue lug to RF plate supply, one Green lug to second audio plate supply, and remaining (ireen lug to second detector plate resistor.
B154-Refer to schematic No. 11 and connect UlR182 and CSI21 as follows: Yellow of UR 182 to point " $A$," Red and Blue to points " B " and " C ," (Green and Brown to points "D" and "E," Black of UR182 and CSI21 to point "F," Red of CSIII to osc. anode resistor.
B155-Refer to schematic No. 27 and connect UR182 as follows: Blue, Red and Yellow together and to points "A," " 13 ," and "C," Brown to points "D," "E," and Black and Green together and to point " $F$."
B156-These two 4 mfd. sections are contained in the same unit with several small capacity condensers of the paper type. For the replacement of the filter section use a non-polarized unit as in note BII. The 4 mfd. by-pass section may be replaced with TS10.5 installed at the socket.
B157-Refer to schematic No. 50 and connect R 11257 as follows: Red to point "A," Black to point "C." Blue and (ireen together to point " $B$," Brown and Yellow to point "D."
B158-These condensers are contained in a capacitor block with several small paper condensers. To replace these units we recommend for external replacement a CMIL7., connected as follows: Two Reds to points " $A$ " and "B," one Black to point "C," two remaining Blacks to point "D," remaining led to screens.
B159-Refer to schematics Nos. 6 and 15 and connect R MI2.59 as follows: Red to point " A, " Blue to point " $\mathrm{B}^{\text {," Black, Brown and }}$ lellow to points " $C$ " and " $D$," Green to cathode of output tube.
B160-The original block contained two 10 mfd. electrolytics and a .5 mifd . paper. Re-
place with CN152 and TP43I. Connect one lied of the CN1.52 to the screen of output tubes, the remaining Red to the cathode of detertor tube, Black to negative line. TP431 replaces the coupling condenser between the 37 plate and the interstage transformer.
B161—Refer to schematics Nos. 13, 14, 1. and 19, and connect SR612 and TS101 as follows: One Red of SR612 to RF screen, remaining Red to driver plate supply, Black to HV. center tap, Blue to first audio cathode (be sure to ground can). Connect TS101 positive to driver cathode, negative to chassis.
B162-Refer to schematics Nos. 13, 14, 15 and 19 and connect SR612 as follows: One lied to RF screen, remaining Red to the junction of the resistors in the first AF' plate supply, Black to center tap of high voltage. and Blue to first $\mathbf{A F}$ cathode (be sure can is grounded).
B163-Refer to schematics Nos. 13, 14 and 19 and connect CN1.51 and TS101 as follows: Red of CN 151 to RF screen, Blue to first AF plate supply, Black to chassis. Positive of TS101 to chassis, negative to high voltage center tap.
B164-Refer to schematics 13 and 14, connect CN151 and TS101 as follows: Red of C.N 1.51 to RF screen, Blue to first AF plate supply, Black to chassis. Connect TS101 positive to shield wire, negative to chassis. B165-Refer to schematics Nos. 15 and 19 and connect CM162 as follows: One Black to transformer center tap, corresponding Red to chassis, remaining Red to first AF cathode, Black to chassis.
B166-This block contains the filter condensers and the output choke and condenser. When replacing by section be sure to leave output assembly intact.
B167-For replacement of this entire block, we recommend purchase of original block from manufacturer. However, in case of emergency, the block may be taken apart and replacement accomplished by using the CN150 unit or exterior application may be made. Precaution should be taken to preserve the original block wiring, not affected by the replacement.
B169-This condenser is contained in a block with several paper condensers and this replacement is suggested to replace this section only and the rest of the block must be left in the receiver as connected.
B170-Refer to schematics Nos. 27 and 19 and connect RM259 and TS101 as follows: Red, Blue and Green of RTI259 together and to points " A ," " B " and " C ," Black and Yellow together and to points "D" and "E," Brown to point "F." Connect TS101 pesitive to output tube cathode, negative to resistor tap in output tube grid circuit.
B171-Refer to schematics Nos. 9 and 1.5 and connect UR190 and CM161 as follows: One Red of common negative section of UR190 to point "B," remaining hed to point " A ," Black to point " C ," Red of one independent section to point "A," Black to point "B," remaining Red to point "D," Black to output cathode. Connect CM161, Blue to point "D," Brown to point "E," Red to output cathode, Black to point "E."

B172-Connect IR189 as follows: One Red to rectifier cathode, Green and Black to negative line, remaining hed to IRF screens, Blue to output plate supply, Brown and both Yellow to output cathode.
B173-For replacement of this entire block we advise purchase of a duplicate from the manufacturer. In case of emergency, the block may be taken apart and replacement. accomplished by using the CN152 unit. Wiring to parts of the block not affected by the replacement should be left intact.
B174-This assembly contains an 8 mfd . electrolytic, a . 5 mfd. and a .2.5 mfd. papar condenser and the driver transformer. We advise the CSI33 unit for external replacement of the 8 mfd . section.
B175-Refer to schematics Nos. 1, 13 and 1.5 and connect CN1.51 and CN140 as follows: Red of CN151 to point "C," Blue to anode grid supply of first detector, Black to chassis. One Red of CNI 40 to RFF screen, remaining Hed to detector cathode, Black to chassis.
B176-Refer to schematics Nos. 13 and 1.5 and connect CN1.50 and CN141 as follows: One Red of CN150 to output plate supply, remaining Red to anote grid, Black to chassis. Red of CN141 to Det. cathode, Blue to screen supply, Black to chassis.

B177-Refer to schematics Nos. 13 and 1.5 and connect R N245 as follows: One Red to first AF plate supply, another Red to IRF screen supply, remaining Red to first AF cathode and Black to chassis.

B178-liefer to schematics Nos. 14, 15 and 19 and connect 13N231 and TS101 as follows: Red of R N231 to first Audio cathode, Blue to RF screens, Black to chassis. Pos. of TS101 to chassis, negative to power transformer HV. center tap.
B179-Refer to schematics Nos. 13, 14 and 19 and connect RN241 and TS106 as follows: Red of RN241 to screen circuit, Blue to second Det. plate supply, Black to chassis. Pos. of TS106 to chassis, negative to power transformer HV. center tap.

B180-Refer to schematics Nos. 9 and 1.5 and connect C.1173, C 11160 and TS102 as follows: One Red of C 11173 to point " A ," corresponding Black to point "B," another Red to point " $B$," remaining Black to point "C," remaining Red to point "A." Red of CM160 to point "D," corresponding Black to cathode of output tube, remaining Red to RF screen circuit, Black to point "E." los. of TS102 to output cathode at tube socket, negative to point "E."

B181-Refer to schematic No. 3 and connect CN151 as follows: Blue to point "B," Red to point "C," and Black to " $E$ " and " $F$."
B182-The UR182 replacement has higher capacity values than the original. However. the UR182 will not cause any change in the operation of the set.

B183-Refer to schematics 12,13 and 19 and connect CN142 and TS104 as follows: One Red of CN142 to screen of AFoutput, remaining led to IZF screen, Black to chassis. Connect TS104 positive to chassis, negative to B minus.

B184-Substitute TS101 for TS104 and connect as in Note 183.

B185-liefer to schematic No. 9 and conneet R M12.57 as follows: Blue to point "A," Red and Green to points " B " and " C ," Black and Brown to points "D" and "E.," Yellow to point "F."
B186-Refer to schematic No. 32 and connect R.12.99 and TS101 as follows: led and (ireen of RM2.59 to point "A," Black and Yellow to point " $D$," Blue to point " $B$," Brown to point "E," Connect TSIO1 Positive to point " $F$," negative to point "D."

B187-Substitute TS102 for TS104 and connect as in Note B183.
B188-Sulstitute TS103 for TS104 and connect as in Note 13183.

B189-Refer to schematics Nos. 24 and 1.5 and connect I:R189 as follows: Both Reds to point " 1 ." Blue to point "B," Black, Brown and (ireen to points "C" and " D ," one Yellow to output cathode, remaining Yellow to Det. cathode.

B190-The original condenser had three leads, Red-positive 10, Yellow-positive 20 and Black-common negative. Due to lack of circuit information we can give replacement instructions for the oirginal only. Ise Il N245 and connet one Red to the original Red, the two remaining Reds to the original Yellow, and Black to the original Black. The llallory bracket 104-1 should be used for installation.

B191-Refer to sehematics Nos. 1 and 13 and connect lial2:59 as follows: Red to point "A." Black to point "B," Blue to point "C," Brown to point "ID," Green to original bypass lead, and Yellow to chassis.
B192-Refer to schematics Nos. 4 and 13 and connect R M26.) as follows: Red to point "A." Black to point "C," Blue to point "B," Brown to point "D," (ireen to oscillator plate supply, and Yellow to chassis. Use Dlallory No. 101-1 mounting bracket for this installation.

B193-Refer to schematics Nos. 1 and 1.5 and connect R N24.5 and TS101 as follows: Two Reds of RN24.5 to point "A," remaining Red to pmint "C," Black of R.N245 and negative of TS101 to "B" and "D," Pos. of TS101 to output eathode.

B194-This model originally used two 8 mfd. carton type condensers. If both units are defective, CVIS2 affords an ideal replacement.
B195-The filter condenser for this receiver is contained in a block which is of the plug-in type. We advise replacing the defertive sections with Mallory Carton type units of the same voltage and capacity bencath the chassis.

B196-When two units are specified for a non-polarized replacement, connect the negative leads together and tape. Use the two positive leads for wiring into the circuit. Also see Note B11.

B197-Refer to schematics Nos. 6 and 1.5, and connect UR192 and TNill as follows: Connect UII192, one Red to point " A, " re-
maining Red to point " B ," both Blacks to chassis. Connect TN111, one positive to detector cathode, remaining positive to output cathode and negative to chassis.
B198-Refer to schematic No. 25 and conneet CM171 as follows: Blue to point "A," lied to point "B," Brown to point "C," and Black to point "D."
B199—Refer to schematic No. 2.5 and connect CM171 as follows: Red to point "A," Blue to point "B," Black to point "C," Brown to point "D."

B200-Refer to schematics Nos. 30 and 14 and connect UR191 as follows: the two Red leads (having common exit) to points "A" and "B," and corresponding Black to points " $D$ " and " $E$," one remaining Red to point "C," the other to the IF plate supply, both remaining Blacks to chassis at point "F."
B201—Refer to schematies Nos. 3 and 13 and connect UR191 as follows: One Red each to points "A," "B," and "C," remaining Hed to first AF plate supply, all Black leads to chassis (points " $D, "$ " $E$," and " $F$ ").
B202-Refer to schematic No. 25 and connect CM171 and TS102 as follows: Hed of CW171 to point "A," Blue to point "B," Black to point "C," and Brown to point "D." Connect TS102, positive to point "D," and negative to point "C."
B203-Refer to schematic No. 57 and conneet CN15.5 as follows: One Red to each of the following points: "B," "D" and "G." Black to point "H" (chassis).
B204-Refer to schematic No. 57 and connect CS131 and CN152 as follows: Red of CS131 to point "A," one lied of CN152 to point "C," remaining Red to points " $E$ " and "F," all Blacks to points " $H$ " (chassis).
B205-Refer to schematic No. 56 and connect CM17.5 as follows: two Red leads to point "A," the two corresponding Black leads to point "C," remaining Red to point "B," remaining Black to point "D" (chassis). This unit may be installed in the original case.
B206-Refer to schematic No. 30 and connect CM175 as follows: One Red to point "A," corresponding Black to point "D," another Red to point " $B$," corresponding Black to point "E," remaining Red to point "C," remaining Black to point " $F$ " (chassis).
B207-Refer to schematics Nos. 8 and 1.5 and connect R.M2.5 and TS101 as follows: Blue of RM257 to point "A," Red to point "B," and Green to point "C." Connect Brown, Yellow and Black together and to points "D," "E" and "F." Connect TS101, positive to AF output cathode and negative to point "F."
B208-To replace with CM173 and TS107, connect as follows: Connect one Red of C.11173 to center tap of output transformer, another Red to the driver plate supply, remaining Red to IF plate supply, all Blacks to chassis. Connect TS107 positive to driver cathode, negative to chassis.
B209-Connect RN231, Blue to "B" plus 135 V ., Red to RF screen, and Black to chassis. Some models used a non-polarized filter condenser. RN231 is satisfactory for
this replacement if the proper battery polarity is observed. Be sure to check this point, as a reversal of polarity may result in serious damage to the receiver.
B210-Refer to schematics Nos. 3 and 15 and connert UR182 and TS101 as follows: Connect Yollow of UR182 to point " $A$," Blue to point "B," lied to point "C," Black, Brown and (ireen together and to points "D," "E" and "F." Connect TS101 positive to output tulse cathode, negative to point "F."
B211-Refer to schematies Nos. 1 and 15, and connect RN245 as follows: One lied to point " $A$," another Red to point " C ," remaining led to output tube cathode, and Black to points " 13 " and "D" (chassis).

B212-liefer to schematics Nos. 1, 13 and 1.5 and conneet R.N245 as follows: One Red to sereen of output tube, another Red to the first detector plate supply, remaining Red to cathode of output tube, and Black to chassis.
B213-Refer to schematic No. 25 and connect R 11261 and TS 102 as follows: lied of IRM261 to point "A," Blue to point "B," Black to point "C," and Brown to point "D." Connect TS102, positive to point "D," and negative to point "C."
B214-liefer to schematics Nos. 11 and 1.5 and connect UR182 and TSLOI as follows: Connect I'R182, Yellow to point " A ," Bhue and Red together and to points " 13 " and "C," Green and Brown together and to points "D" and "F," and Black to point "F"." Connert TS101 positive to detector cathode and negative to point " $l$."
B215-Refer to sehematic No. 11 and conneet IIM257 as follows: Blue to point " $\Lambda$," Green and Red to point "B," Black, Brown, and Yellow to prints "I)" and "E.."
B216-In some cases this condenser is a single 8 mfd. unit; we recommend the use of 1RS213 for these cases in place of R1.21262.
B217-liefer to schematies Nos. 13 and 1:\% and connect RN241 as follows: Blue to oscillator plate supply, Hed to cathode of output tulee, and Black to chassis.
B218-Refer to schematic No. 11 and conneet RN23.5 as follows: One Red to point "A," two Reds to point "B," Black to point "1)." To replace second condenser connect RN231, Red to point " C ," Blue to osc. anode grid supply, Black to proint "F."
B219-Refer to schematics Nos. 1 and 1:5 and connect Sh6il as follows: One positive 8 mfd . lug to point "A." The other positive 8 mfd . lug to point "C," Black lead to points "B" and " 1 )," Blue lead to second AF cathode. It may be of assistance in installing if the leads of the old unit are cut close to the carton and these leads used for connecting the new unit.
B220-Refer to schematics Nos. 1 and 1: and connet CN1.52 and TN110 as follows: One Red of CN152 to proint " A ," remaining Red to point "C,"" Black to points "IB" and "I)." (One positive of TiNilo to detector cathode, remaining positive to output cathode and negative to chassis.

B221-Refer to schematics 27 and 15 and connect ITK182 as follows: Red and Blue leads together and to points "A," "B," "C." Brown lead to points "D," "E." Black and (ireen leads together and to point "iv" (chassis) and Yellow lead to detector cathode.
B222-Refer to schematic 27 and connect 1R112.57 as follows: Red, (ireen and Blue leads together and to points "A," "B3," "C"; Black lead to points "D," "E," Brown and Yellow leads together and to point "F" (chassis).
B223-Refer to schematics 63 and 1.5 and connect UR192 and TN110 as follows: One lied lead of L:R192 to point "B," remaining lied lead to point "C," and both Blacks to points "I)," "E" (chassis). Connect TN110, one positive lead to the 1AF cathode, remaining positive lead to the output tube cathode and negative lead to chassis.
B224-Refer to sehematios 13 and 1.5 and connect CS123 and TS103 as follows: Hed lead of CSI23 to IF screen; Black lead to chassis; Positive lead of TS103 to first audio cathode; Negative lead to chassis.
B225-Mount the C.W164 unit on the rear side of the chassis support (immediately in back of the origimal unit). There are two holes already drilled in the chassis that serse nicely for mounting use. Refer to schematic 27 and connect as follows: Both Reds together and to points " $A$," " $B$," "C"; one Black to points "I)," "L;", and remaining Black to point "IF" (chassis).

B226-The use of two URI82 condensers is recommended for this replacement. Refer to schematies 61 and connect as follows: Both Bhe leads and one Red lead to point " $A$ "; remaining lhed lead to point " 13 "; both Yellow leads to point "C"; looth Brown leads and both (ireen leads to point "I)"; and both black loads to point "E." The following color conde replacement is applicable to the Detrola Model 1200 . Both Yellow leads together rephace the original Yellow lead. Both Green leads and looth Brown leads together replace the original Black lead. Both Blue leads together replace the original Red lead. The two Red leads replace the two original lugs marked +8 . Both Black leads together replace the original lug marked - (neg). The Mallory terminal connector A-016 is helpful for case of installation.
B227-lnstall the MN278 unit with the 9 mfd. sections in parallel, and wire in as a three section condenser.
B228-IRefer to schenatic No. 4 and connect C.W17.5 as follows: All lied leads together and to points "A" and " B ," one Black lead to point " C ," and the two remaining llack leads to point "D."

B229-1kefer to schematics No. 26 and 1.1 and connect UR191 as follows: One of the two Iled leads having common exit to the IF sereen, the remaining lied lead of the common section together, with the red leads of the independent sections to points " 1 ," "13," and "C." Commect the Black lead of the common section to point. "F," and the rentaining Black leads to points "D" and "E."

B230-This unit contains a 16 mfd. electrolytic and two paper dielectric sections. Ileplacentent of the electrolytic seetion with a Nallory TSio2 mounted at the output tube soeket is recommended.
B231-hefer to schematic No. 1 and conneet CN15.5 as follows: Two Red leads to point "A," remaining lied lead to point " C " and Black lead to points "l3" and "D" (chassis).
B232-Athough the original unit is of unusual shape, replacement may be accomplished ly using the Mallory CN155 condenser, mounted in any convenient position.
B233-lkefer to schematic No. 59. The condenser connected between points " $\Lambda$ " and "D" is a 4 mfd . paper, the condenser connected between points " $B$ " and " 15 " is an 8 mfd. electrolytic. There are two condensers connected in paralled between points "C" and "F", an 8 mfd. electrolytic and a 4 mfd. paper. We recommend replacement of the t wo 4 mfd. sections with a CN 1.50 unit. 'The 8 mfd . electrolytics are easily replaced with CSI33 units.
B234-Refer to schematic No. 57 and connect CS131 and C.V1.52 as follows: Red lead of CS131 to point "A," Black lead to point "H," one Red lead of C.VLSe to point "C," remaining led lead to point "E," "F" and Black lead to point "II."
B235-Refer to schematic; 65 and connect HN257 as follows: Red lead to point "A," Black, Brown and Yellow leads together and to point "B," (ireen and Blue leads together and to point "C."
B236-Refer to schematic No. 1 and connect 11 N 27.5 as follows: one terminal to point "A," remaining two terminals together and to point "C." In some cases a $21 / 2$ " diameter can with $\overline{5}$ and 15 mfd . sections may have bern used. Replace this unit with the Mallory type MN273.
B232-Refer to schematic No. 28 and conHect Rallog: as follows: Red lead to point "A," Blue lead to point "B," (ireen lead to point "C," Black lead to point "D," Brown lead to point "E" and Yellow lead to point "F."
B238-Refer to sehematies No. 1 and 19 and connect CM1171 and TSiol as follows: Red lead of CW171 to point "A," Blue lead to point "C," Black and Brown leads and the negative lead of the TSiol to points "B" and "D," and positive of TS101 to chassis.
B239-Refer to schematics 1 and 19 and connect CM1Li and TSi01 as follows: Blue lead of CM11:1 to point " A ," Hed lead to "C," Black and Brown leads of C. 1171 point together with negative lead of TS101 to proints " 13 ," "1)" and positive lead of TSIO1 to chassis.
B240-Sulnstitute TS102 for TSS101 and connect as directed in note 13239 .
B241-Refer to schematics 1 and 15 and connect C.V15.5 and TS101 as follows, one Hed lead of CN15.5 to point " A ," the two remaining Red leads to point "C," and Black lead to points "B," "I)." Connedt positive of TSiol to output tule cathode and negative lead to chassis.

B242-Refer to schematics 1, 13, and 15 and connect RN24.5 and TS101 as follows: one Red lead of R.N24.5 to point "A," another Red lead to point "C," the remaining Red lead to the oscillator plate supply and the Black lead to points "B," "D." Connect TS101, positive to output tube cathode and negative to chassis.
B243-When this condenser was used originally as a two-section condenser by paralleling the two lower capacity sections, replace with an RN242 condenser. If the original has all three sections in parallel (for 25 cycle use) replace with a single RS216. If the original is used as a three-section unit, replace with an RN245.
B244-Refer to schematics 1 and 15 and connect RN24.5 and TS101 as follows: Two Red leads of RN245 to point " A ," remaining Red lead to point "C" and Black lead to points "B," "D." (Caution: this lead is not to chassis). Connect the positive lead of TS101 to the output tube cathode and the negative to the Black lead of the RN245.
B245-Refer to schematic No. 3 and connect RN245 as follows: two Red leads to point " $A$," remaining Red lead to point " $B$ ", and Black lead to points " $D$, " "E," and "F."

B246-These filter sections are contained in a block with several small paper dielectric by-pass sections. We recommend external replacement of the defective filter section or sections, with CS type units of the proper capacity, or the purchase of a complete block from the original manufacturer.

B247-The filter condensers are in a large plug-in type block with connections as follows: (starting with the large pin opposite the grounding pin and procceding in a clockwise direction). Pin No. 1-negative 16 mif . second filter and negative 8 mfd . power tube bias by-pass; Pin No. 2-positive 4 mfd .350 V . 1 AF plate filter; l'in No. 4positive 8 mfd . 100 V first detector cathode by-pass; lin No. 5 -common negative to all pins except Nos. 2 and 8; l'in No. 6-positive 4 mfd . 100 V 1 AF cathode by-pass; l in No. ${ }^{7}$-positive 4 mfd . 100 V driver tube cathode by-pass; and Pin No. 8-positive 16 mifd. second filter. In 2.5 cycle models Pin No. 8 is positive 20 mfd . In an emergency individual sections may be replaced with Mallory carton type units of proper capacity and voltage ratings mounted beneath the chassis. However for complete replacement we recommend the purchase of an entire block from the set manfuacturer.
B248-Filter capacitors are in a large plug-in block with connections as follows: Pin No. $1-8$ mifd. 4.50 V first filter; Pin No. 2-4 mfd. 4.50 V power screen by-pass; Pin No. 3 -4 mfd .4 .50 V ( 60 cycle ) or 12 mfd .450 V (2.) cycle) filter output; l'in No. 4-8 mfd. 20 V IF cathode by-pass; lin No. 5 common negative; l'in No. 6-4 mfd. 20 V 5.5 cathode by-pass; Pin No. $7-4 \mathrm{mfd} .4 .50 \mathrm{~V}$ second filter. In an emergency individual sections may be replaced with Mallory carton type units of the proper voltage and capacity ratings mounted beneath the chassis. Llowever, for complete replacement we recommend the purchase of an entire block from the set manufacturer.

B249-These condensers are contained in a large plug-in type block. The connections are as follows: (starting with the large pin opposite the grounding pin and proceeding in a clockwise direction)-lin No. 1 negative 16 mfd .4 .50 V and negative 8 mfd .100 V ; lin No. 2 -positive 4 mfd. 3.00 V 1AF plate filter; l'in No. 3-positive 16 mfd .4 .50 V third filter; Pin No. 4 -positive 8 mfd . 100 V IF cathode by-pass; Pin No. 5-common negative for all pins except Nos. 2 and 8; l'in No. 6-positive $4 \mathrm{mfd} .100 \mathrm{~V}, 1 \mathrm{AF}$ cathode by-pass; Pin No. 7 -positive 4 mfd . 250 V driver bias bypass; P'in No. 8 -positive 16 mfd. 4.50 V , second filter. In an emergency individual sections may le: replaced with Mallory carton type units of proper voltage and capacity ratings mounted beneath the chassis. llowever, for complete replacement we recommend the purchase of an entire block from the set manufacturer.
B250-Refer to schematic No. 4 and connect CM1175 as follows: one Red to point "A"; corresponding Black to point "C"; remaining lied leads to point " B "; and remaining Black leads to point "D."
B251-Refer to schematics 3 and 14 and connect R 11265 as follows: Red to point " $B$ "; Black to point " $E$ "; Blue to point " $C$ "; Brown to point " $F$ "; connect Green wire to IF screen supply; Yellow to chussis.
B252-Refer to schematics 1 and 1.5 and connect RN231 and TS101 as follows: Blue of RN231 to point " A "; Red to point " C "; and Black to points "B" and "D." Connect TS101 positive to output tube cathode, negative to ground (chassis).
B253-Refer to schematic No. 4 and connect CM1171 as follows: Red and Blue to points " A " and " 13 "; Brown to point " C "; Black to point "D."
B254 Refer to schematies 1 and 15 and connect IRNe. 4 and TSi01 as follows: Blue to point "A"; Red to point "C"; Black to chassis at points "B" and "D." Connect TSIOL positive to cathode of ontput tube; negative to chassis.
B255-Connect two lied leads together and to output screens; remaining Red lead to IF screen; Blaek to chassis.
B256-Refer to sehematies 24 and 15 and connect UR189 and CSI26 as follows: Reds of L1R189 to point " $\Lambda$ "; Black, Brown and Gireen to chassis at "C"' and "D." Blue to screen of 43 ; one Yellow to cathode of 6 C 6 ; other Yellow to cathode of 43. Connect Red lead of CSI26 to point " 13 "; Black to chassis.
B257-Refer to schematic 40 and comect R $\mathbf{2 1 2 6 . 3}$ as follows: Red, Blue and Green to points " $A$ " and " $B$ "; Black to point " $C$ "; Brown and Yellow to point "D."
B258-hefer to schematics 4 and 13 and connect UR182 as follows: Blue and Red leads to points "A" and "B"; Brown lead to point " C "; Black and Gircen leads to point "D"; and Yellow to detector sereen supply.
B259-Refor to schematics 4 and 13 and connect Wh182 as follows: Blue and Red leads to points "A" and "B"; Brown lead to point "C'; Black and Gireen leads in point "D"; and Yellow to detector calhonle.

B260-Refer toschematic No. 11 and connect RNM2.77 as follows: Blue to point " $\Lambda$ "; Green and led to points " 13 " and " C "; Brown and Black to points " $D$ " and "E"; Yellow to point " $F$."
B261-Refer to schematic 23 and connect as follows: Red and Green to point " A "; Blue to point " 13 "; Black and Yellow to point "C'; Browir to point "D."
B262-Refer to schematics 8 and 15 and connect SIR630 as follows: Green and Black to point " $F$ "; Red and Yellow to point " $C$ "; Blue to output cathode.
B263-Refer to schematic 27 and connect R M M2.5:5 as follows: Red, Blue and Green to points " 13 " and " C "; Black and Brown to point "E", Yellow to point " $F$."
B264-Refer to schematic No. 11 and connect UlR 193 as follows: Yellow to point " $\Lambda$ "; Red and Blue to points " $B$ " and " $C$ "; (ireen and Brown to points " $D$ " and "E"; Black to point " F ."
B265-Refer to schematics 11 and 13 and connect UR193 and CS121 as follows: Red and Blue of UR193 to points " $B$ " and "C"; Brown to point "E"; Black and Green to point " $F$ "; Yellow to oscillator anode return. Connect CS121 Red to point " A "; Black to point "D."
B266-Refer to sehematics 75 and 1.5 and connect RM2.59 and TNILI as follows: Red of R M 12.59 to point " A "; Blue and Green to point " $B$ "; Black, Brown, and Yellow together and to points "D" and "F." Conneet negative of TN1ll to chassis; positives to cathodes of AF amplifiers. Conneet ISS207 lied to point "C"; Black to point "E."
B267-Connect one Red of CM164 to 25Z5 eathode; Blacks to chassis; remaining Red to output of filter choke. Red of CNI41 to RF sereen; Blue to cathode supplying field exitation; Black to chassis; positives of TNIIO to cathodes of audio tubes; negative to chassis.
B268--Refer to schematics 24 and 15 and connect UR182 as follows: Blue to point " A "; Red to point " 13 "; Brown, Black and Green to points "C" and "D"; Yellow to cathode of audio tube.
B269-Refer to schematics 1 and 13 and connect UR182 as follows: Blue to point "A"; Red to point "C"; Brown, Black and Gireen to points " $B$ " and "D"; Yellow to cathode of audio tube.
B270-Refer to schematic No. 40 and connect C $\mathbf{1 1} 175$ as follows: Blacks to points " $\Lambda$ " and " B "; one Red to point " C "; other two Reds to point "D."
B271-Refer to schematic No. 1 and connect R12.59 as follows: Red to point " A "; Black, Brown, and Yellow to points "B" and "D"; Blue and Green to point "C."

[^1]| $1$ |  |  |  |
| :---: | :---: | :---: | :---: |
|  |  |  |  |
|  |  |  | 12 |
|  | 14 |  |  |
|  |  |  |  |


		Nete 50	
Notes ${ }^{-12,198,199,} 213$		Notes 88, 94, 155, 170	


42			



## AC CAPACITOR REPLACEMENT INFORMATION

It is entirely possible to make satisfactory replacement of defective units without necessarily using new units of exactly the same characteristics or plysical appearance.

In the interests of economy and prompt service, Mallory, therefore, recommends that consideration be given the carefully selected Replacment types shown.
it is essental that the information or general desig:l and use be studied before attempting to make any capacitor replacement.


Figure:
Because of electrical requirements involved. it is generally poor practice to substitute lower capacities than originally specified by the motor manufaeturer.

However, higher capacitfes, even $40 \%$ more than the original, may be ased in most cases. Motors with centrifugal switches are not critical as to capacity excess but care should be taken on magnetic switch types to see that over-capacity does not effect the opening of the switch.
Round type Mallory .AC capacitors, Fig. 1, are equipged with an oucside insulating tube. They may be mounted in the origina! clamp or housing aytached to the motor. When the capacitor diameter is less than that of the clamp or housing, sufficient padding with corrugated board should be used.

Mallory round type AC capacitors may be 1 sed to replace rectangular types by mounting and padding inside the original housing, or by mounting elsewhere on the motor, or other convenient place. Protective end cap and a special mounting bracket are arailable for this purpose. (Note: Bracket not generally required on $13 / 8^{\prime \prime}$ diameter units.) Fig. 2 shows a round unit mounted alongside of the original rectangular housing by means of the strap.
Some original cipacitors have fou: terminals marked "T," "T1," "L" and an unmarked terminal, as previously explaimed, " $\Gamma$ " and "TL" being dummy terminals as far as the capacitor is concerned.


Frecre:

The uriginal capacitor may be left in the housing and the capacitor mourted autside. In such cases, disconnect the leads from the unmarked and "L" terminals and splice capacitor leads to them, not disturbing the other connections.

If the replacement capacitor is to be mounted in place of the original inaide the housing, connect one lead from the replacement capacitor to the original wire attacheft to the unmarked terminal. Connect the other lead to both wires originally connected to the "L" terminal. Both wires originally connected to the "T" terminal must be spliced together, and likewise, both wires originally connected to the "TL" terminal. All splices strould be carefuily taped.

See page :20 for a complete listing of Mallory AC capacit,ors. Where the end cup ind clampare required, they m.sy be ordered senarateiy.

# MAlLIORY REPLACEMENT CONDENSERS AND ACCESSORIES 

The Dry Electrolytic Condenser is the invention of Samuel Ruben, long an associate of the Mallory Co., and the pioneer patents in the field are the two Ruben Patents 1710073 and 1714191.

I
NTELLIGENT and systematic research is the backbone of all progress. Experience and common sense the medium for the successful application of any new development. P. R. Mallory \& Co., Inc., have for many years been the major supplier of original condenser equipment to radio receiver manufacturers. Representing the pioneer manufacturer in the dry electrolytic condenser field, it is not surprising that the majority of worthwhile contributions to the art have been made by Mallory. These tions to the art have been made by Mallory, These
contributions were the direct result of extensive recontributions were the direct result of extensive re-
search, efficiently applied to the problems involved. For several years the need for a systematic and efficient replacenent condenser program has been acknowledged by the Mallory management personnel. Time and again the thought of launching such a program was discussed-only to be shelved temurarily as not worthy of the standards of progress set by those who have led the Mallory Company to its present successful standing in the industry. Finally, after a diligent investigation of the requirements of the radio replacement field, and with the help of thousands of radio service engineers throughout the country, the Mallory Company announced the now famous "Universal Condenser Replacement Program." This announcement was made in January, 1936, just one year ago. It marked a new departure in the replacement field. The success of the Mallory program is now history, but it is gratifying indeed to review the outstanding acclaim it received and the precedents set. While initation has been called the sincerest form of flatery, it is amusing to record the extent to which this has been attempted.
With pardonable pride we reveiw a few of the out. standing and revolutionary Mallory achievements in the replacement condenser field.

1. First Replacement Condenser Manual-the greatest assistance ever offered the strvice engineer.
2. First Complete Universal Condenser LineMade condenser servicing a pleasure and took it out of the penny profit class.
3. First Practical Mounting for Carton Type Condenser-The famous metal tlange. Everyone wonders why it was never done before.
4. First Universal Mounting for Round Type Condensers-Astounding! But so simple and mractical.
5. First Complete Line of Compact, SpaceSaving Condensers-Every condenser the right size for all applications.
6. First Internal Metal Seal for Carton Con-densers-Even the l'ittsburgh flood failed to harn them.
7. First With Correct Size Lead Wires-Not designed for 5 Horsepower motors, but for radio condenser replacements.
8. First Really High Surge Condensers-Thes can take it. If one didn't-we haven't heard about it.
9. First With Cellophane Separators-Surge voltage breakdown? What is it?
10, First With the "Terminal Connector"Change a "haywire" job to a neat assembly.
In spite of these innovations, and many others, Mallory is still not satisfied. They are constantly striving to improve the original program.
Use Mallory and you'll save time, have success with your work, a healthy profit, and no regrets.

## MALLORY CONDENSER TYPE CODE



## SMALL SIZE PRECISION QUALITY

Small size without High Quality would defeat any practical advancement in this field. Mallory jolicy prohibits any sacrifice of quality. The introduction of new Mallory Replacement Condensers, all small in size, is in strict accordance with this policy. Every size is the right size!

Every Mallory condenser has equal or better characteristics, including life expectancy, to any unit offered heretofore.
Every unit is designed expressly for outstanding performance. Size was a secondary consideration. Mallory Condensers must undenio a severe life test before release for sale is permitted. In this respect, not a few, but hundreds of units are placed on life test. This life test is not only conducted under actual conditions as experienced in the field but is much more severe. Besides subjecting condensers to their maximum DC working voltage on life test, an AC component greater than ever present in field service is also imposed over and above the DC voltage.

Radio sets in general and Midget sets in particular produce relatively high internal temperatures. There-
fore life tests run at room temperature have no significance. The Standard Mallory life test specications call for the use of an industrial oven constantly maintained at $140^{\circ} \mathrm{F}$. for the duration of the test! A thousand hours in this oven under the severe voltage applied is equal to over a year's service in the field. No Mallory unit is acceptable for service if it shows any inclination to change appreciably in characteristics at this interval. All Mallory life tests are continued even after the 1,000 hour mark and several thousand hours ${ }^{\circ}$ life under these extreme conditions is the rule and not the exception.

## GENERAL CONSTRUCTION AND DESIGN

Mallory, to make the ideal condenser, has given a great deal of thought to design and constructional points that at first might seem relatively unimportant. All Mallory carton type units utilize standard wax impregnated fibre-board exactiy the same as used universally on large production orders for radio set manufacturers. This type of material is used because it actually impregnates better than coated types of board having a silver or gold finish. This war impregnation is highly important to the proper performance of the unit.

All Mallory carton units have square corners and sides that do not bulge. Besides adding to their appearance this indicates proper engineering. By designing the condenser correctly, no attempt to squeeze it into the carton is necessary.
The wire supplied on all Mallory units is especially. selected for ample insulation and case of installation. For this reason, on all but the tubular units, stranded push-back wire of the correct size and flexibility is used.
All Mallory replacement condensers are stamped with the necessary information directly on each container rather than on paper labels pasted to the container. This type of marking provides permanent identification. Paper label types are apt to become unglued and leave the unit without identity.

There are no common nositive units in the Mallory line. These list at the same prices as the separate section type where each unit has its own pair of leads. The separate section type may, of course, be connected, when installing, either with the positives or the negatives common as well as other combinations In the interests of reduced stock, the common positive type was purposely omitted

## SEALED IN METAL HUMIDITY-PROOF

Temperature is an extremely important factor. The use of Dry Electrolytic Condensers where high temseratures are involved may severely affect their life. All Mallory Condensers are designed to function in temperatures up to $140^{\circ} \mathrm{F}$. This is ample to cover the usual temperature rise to be expected in the field. Care should be taken, however, not to install the condenser next to, or between other components producing high temperatures in or on the radio chassis. This refers to rectifier tubes, power tubes and voltage divider resistances and transformers. In some Midget sets, it is impossible to make an ideal installation in this respect

A certain amount of moisture is included in the electrolyte of all Dry Electrolytic Condensers. The
proper operation of the condenser is greatly dependent upon this moisture. In unprotected condensers this moisture may be lost, or on the other hand, the condenser may absorb more moisture, affecting the balance originally provided. Mallory Condensers have been designed with this point in view. All units are effectively sealed including the cardboard carton types. This is accomplished in the latter case by the use of a metal seal of ingenious construction inside of the carton which has been found to stabilize this characteristic.


You will note from the above illustration that the metal seal completely seals the unit enclosed inside of the carton. This Mallory feature throws the burden of stabilized humidity on the metal seal and not the carton alone as in ordinary condensers. The carton is thoroughly impregnated in wax affording double protection against humidity.

Because of this metal seal, these units will perform satisfactorily in tropical climates.

## CELLOPIIANE SEPARATORS

Etched Anodes - Stitched Anodc Leads All recent important improvements pioneered or developed by Mallory-are incorporated into Mallory Condeneers wherever they add to quality and utility.

## MALLORY TERMINAL CONNECTOR

## AGAIN MALLORY SOLVES A PROBLEM IN A PRACTICAL WAY

This device will prove a great help whether used with condensers or for other purposes.


Ficure 1
The Mallory Terminal Connector (Figure 1) is designed to provide an anchorage for the lead wires from the condenser where ordinarily splicing would be necessary. For example, when replacing an original unit having soldering lugs, the leads from the replacement unit may be cut short and the Terminal Con nector used to join them with the set wiring.


Figure 2
Solder (or bolt) the Connector strip) to the chassis in an upright position as near as possible to the replacement condenser unit. Cut off the leal wires from the condenser to the proper length to reach the Terminal Connector and solder each one to a lug on the Connector as in Figure 2. (Note-All Mallory leads are push-back wire.) Now solder the circuit wires to the opposite lugs on the Terminal Connector in their proper order.
Obviously if more than three wires are involved, it Obviously if more than three wires are involved, it
will be necessary to use more than one Terminal Con-
nector or splice the remaining leads. Generally, the black or negative lead is soldered to the chassis and need not use a lug.
Should the Terminal Connector be too high for the depth of the chassis it may be bent over to reduce its height.

## MALLORY UNIVERSAL mounting flanges for Carton Types

The mounting of carton type condensers has always been a problem from a replacement standpoint. An almost unanimous appeal for something new and practical was noted in the response to the Mallory Service Questionnaire. Mallory Engineers have studied the problem from the service man's angle.

All Mallory carton type condensers are equipped with a new type of mounting flange-the first practical Universal mounting feature ever designed.

Since there are several ways in which it may be used, complete instructions are given:
A. The unit may be mounted by the use of nuts and bolts or self-tapping screws in the usual manner as in litigure 3.


Ficure 3
B. One end may be pushed under any screw head on the chassis without removing the screw as in Figure 4. The other end may be left loose or soldered to the chassis as in Figure 5.


Figure 4
C. One flange or both flanges may be soldered to the chassis as in Figure i. Tin the chassis first, then solder in place.


Figure 6
D. One half of the flange may be bent down as in Figure 6 and pushed through any convenient hole in the chassis. Bend back the flange after it is through the hole.
E. Both flanges may be bent flat against the side of the carton and the unit held in place by its wire leads.
In bending the flanges, hold your thumb tightly on the part attached to the carton to prevent tearing the carton.
Mallory Universal Mounting flanges have been widely copied, proving their merit and worth to service men. Constant improvement may be expectec from Mallory-as their leadership in the replacement parts field will be maintained.

## MALLORY UNIVERSAL mounting features for Round Can Types RS, RN and RM

Round can condensers in general have been mounted by the use of one of five different methods, each varying enough to prohibit the use of any other type in making a replacement. This situation has now been overcome by the special features provided on all Mallory round can replacements. The universal nature of the newly designed units does away with the necessity of stocking duplicate ratings in several mounting types and consequently reduces the stock investment. It is the first practical universal mounting feature for round can type condensers.

The five methods of mounting referred to are:

1. Stud mounting having a $5 / 8^{\prime \prime}$ neck.
2. Stud mounting having a $3 / 4^{\prime \prime}$ neck.
3. Stud mounting having a $7 / 8^{\prime \prime}$ neck.
4. Ring Clamp mounting.
5. Spade bolt mounting.

## STUD MOUNTING

Types 1,2 and 3 are so familiar they require no illustration. The originals having the $5 / 8^{\prime \prime}$ or $3 / 4^{\prime \prime}$ neck generally had but one lug or one or more flexible leads. The $7 / 8^{\prime \prime}$ neek was usually of the moulded composition type and was generally equipped with from one to three lugs, this type seldom being supplied with flexible leads.


Figure 7
Due to their reduced size many Mallory round can units are supplied with $5 / 8^{\prime \prime}$ necks and a few of higher ratings have $3 / 4^{\prime \prime}$ necks. There are no $7 / 8^{\prime \prime}$ necks in the Mallory Replacement Condenser line. Obviously no instructions are needed to mount a $5 / 8^{\prime \prime}$ neck type Mallory unit in a $5 / 8^{\prime \prime}$ hole. You will find, however, that the $5 / 8^{\prime \prime}$ neek may be also satisfactorily mounted in a $3 / 4^{\prime \prime}$ hole without special accessories by simply centering the unit as the mounting nut is tightenerl. This holds true for the $3 / 4^{\prime \prime}$ neck unit when mounting in a $7 / 8^{\prime \prime}$ hole.

If the $5 / 8^{\prime \prime}$ neck is to be mounted in a $7 / 8^{\prime \prime}$ hoic Mallory Type 015-1 washer supplied with the unit should be used beneath the chassis to afford the lock nut a better grip on the chassis (See Figure 7). No washer is necessary on ton of the chassis in this case

## RING CLAMP MOUNTING

Where clamp mounting was used originally and the Mallory replacement is of the $13 / 8^{\prime \prime}$ can size it may be mounted in the same way as the original (See Figure 8 ); the threaded neck portion will protrude when mounted.


Figure 8
In replacing a clamp mounted unit with a $1^{\prime \prime}$ Mallory can size use the special Mallory $13 / 8^{\prime \prime}$ washer Type No. A-017. (Not supplied with the unit-List price $\$ 0.05$ ). This washer is put on the unit and the nut tightened first, then fitted to the clamp as in Figure 9. The washer may be used with the flanged

side up or down according to the space available for the threaded neck portion of the condenser below the chassis. The washer is not supplied with the unit due to the relatively few cases in which they are required. Their cost is so nominal compared to the reduced stock affected that a supply should always be kept on hand.
In cases where a $11 / 2^{\prime \prime}$ unit was used originally, if the clamp will not contract enough to fit the $13 / 8^{\prime \prime}$ diameter of the replacement, pad the clamp with a small strip of cardboard. Mallory units are insulated from their containers. It is not necessary that the clamp make electrical contact to the unit.
These features are not provided in the large $21 / 2^{\prime \prime}$ and $3^{\prime \prime}$ round can units. (See Type MN).

## SPADE BOLT MOUNTING

Pictured in Figure 10, it should be noted that generally the holes punched in the chassis to accommodate this type were made with the same punch used

for the wafer type tube sockets. The large center hole is about $1^{\prime \prime}$ in diameter but the Mallory $13 / 8^{\prime \prime}$ can units will mount satisfactorily using the Mallory Type No. 015-2 washer (supplied with the unit) beneath the chassis similar to Figure 7. The unit should be centered, of course, when tightening the mounting nut.

The $1^{\prime \prime}$ can type units require two Mallory Type No. 015-2 washers one above and one below the chassis to replace the spade bolt type (See Figure 11). These washers are not supplied with the $1^{\prime \prime}$ can units and list


Figure 11
for $\$ 0.03$ each. We suggest that you save these washers when using $13 / 8^{\prime \prime}$ Mallory units in mountings not requiring them. (All $13 / 8^{\prime \prime}$ units are supplied with one of these washers.) These flat washers are not lock washers and since the nut is self-locking, need not be used except as stated.
All Mallory round can dry electrolytic replacement units are insulated internally so that the can is not the terminal in any case. A separate wire is always brought out for the cathode connection. It is never necessary to use insulating washers with Mallory round can dry electrolytic units. This does not apply to type MN.


UNIVERSAL MOUNTING BRACKET
The Universal Mounting Bracket No. 104-1 is for mounting threaded neck round can units on chassis originally provided with ring clamp or spade bolt mountings. The Mallory Ring Clamp, available in 5 sizes, is for mounting all types of round can condensers.


# Modern Methods of Obtaining Bias <br> mallory bias cells 

One of the most perplexing problems faced by the radio design engineer las been the method of obtaining bias for various tubes. Unless large by-pass condensers are used with a filter network, cathode bias. or bias derived from the voltage drop in the negative lead of the power supply system, has many disadvantages. Common impedance, and voltage fluctuations with signal in the power supply circuit causes a continuous variation of bias voltage. The bias voltage variation is responsible for many undesirable effects. such as instability, loss of bass note amplification, and distortion. As previously explained, the by-passing efficiency of a condenser varies with the frequency: At the low frequencies where the by-passing action is most needed, the efficiency of the condensers is the lowest. Condensers of sufficient size to prevent objectionable bias variation are both bulky and expensive. Cathode bias has the further disadvantage of placing the cathode at a different potential from the heater, so that electronic emission from the heater will frequently cause an objectionable amount of hum.

In the past the only alternative methods of obtaining bias were through the use of separate " C " bias nower supply, requiring a separate rectifier tube, choke and filter condensers, or by using a common " C " battery. It will be generally agreed that a " C " battery has little place in a modern AC receiver, transmitter. or PA amplifier as such batteries have a tendency to become noisy and develop high resistance with age, and frequently fail when most needed.
Stated briefly what was needed was an independent source of " C " bias that was inexpensive, compact,
absolutely quiet, and having a life equal to the other components of the circuit-the tubes, resistors, and condensers. It was unnecessary for the bias supply to furnish current or power because no appreciable grid current flows in an amplifier tube orerated under Class "A" operating conditions.

After many years of research the problem was successfully solved by the design of the Mallory Grid Hias Cell. Over three million Mallory Bias Cells are now in use. They are standard original equipment in most modern reccivers.

## WHAT IS A BIAS CELL?

## CHARACTERISTICS

Physicially, the Mallory Grid Bias Cell is a small acorn-shaped device $5 / 8^{\prime \prime}$ in diameter and $11 / 32^{\prime \prime}$ deep. The black disc is the positive electrode, the metal container is the negative electrode.

## VOLTAGE

Mallory Bias Cells are produced in two types: the standard 1-volt cell, and the new $11 / 4$-volt cell. The two types may be distinguished by the fact that the $11 / 4$-volt cell has indentations or concave depressions in the electrodes, while the 1-volt type is smooth.


For experimental applications the choice between the two types of cells should be made on the basis of the voltage that is required. When making repairs on commercial receivers, replace with the type of cell that was used as original equipment.

CURRENT-(DC)
The cell is strictly a potential, or voltage, cell and should not be used in circuits in which currents of over one microampere or .000001 ampere is drawn from the cell.

## CURRENT-(AC)

The characteristics of the cell are unaffected by superimposed AC as high as 360 microamperes of any frequency.

## TEMPERATURE

The cells may be used in ambient temperatures from $40^{\circ}$ below zero to $120^{\circ} \mathrm{F}$. The voltage of the cell remains reasonably constant throughout this wide temperature range. It is recommended. however, that wherever possible the bias cell be placed in the coolest location.

## HUMIDITY

The cell exhibits no change in characteristics when exposed to a relative humidity of $90 \%$ at $120^{\circ} \mathrm{F}$.

## IMPEDANCE

The Mallory Grid Bias Cell is non-reactive at audio frequencies and the DC resistance ranges between 11,000 and 50,000 ohms.

## NOISE

The cell does not cause the develomment of any noise.

## GENERAL

Under no circumstances should the Mallory Grid Bias Cell be checked with an ordinary voltmeter, regardless of the sensitivity of the meter. If for any reason it is desired to read the voltage of the cell, a vacuum tube voltmeter similar to that shown in Figure 1 should be used. An ordinary voltmeter plus a dry battery and voltage divider may be used to calibrate the vacuum tube voltmeter by substituting the voltage obtained from the dry cell for the voltage of the Grid Bias Cell, as shown by the dotted lines in Figure 1.

## RECOMMENDED TEST METHOD



Figure 1
Since the Mallory Bias Cell potential is affected by a load as high as 10 megohms, it is necessary to use a device which draws no current when measuring cell potentials.

A vacuum tube voltmeter, which has no resistance connected to the grid but obtains its bias through the source it is measuring and thus indicates DC voltage, may be used to measure the bias cell potential.
A vacuum tube indicator, which compares the cell potential with an accurate low resistance voltmeter as shown in Figure 1, is very convenient for use in checking bias cells.
A list of parts suitable for making the Mallory Bias Cell test set is given. Any type of medium mu triode such as $27,56,37,76,30,6 \mathrm{C} 5,6 \mathrm{C} 5 \mathrm{G}, 6 \mathrm{~J} 5,6 \mathrm{~J} 5 \mathrm{G}$, 1 H 4 G or 6 L 5 G may be used.

## RESISTOR LIST

## Part

Calibrating Potentiometer
$\mathrm{R}_{2}$
$\mathrm{R}_{2}$
$\stackrel{\mathrm{R}_{4}}{\mathrm{~S}_{1}}$
Mallory-Yaxley Part No.
C15MP
C15MP
$10.000 \mathrm{ohm}, 1$ watt
$10,000 \mathrm{ohm}, 1$ watt
No. 2006 Push Button Switch

## PERFORMANCE ADVANTAGES

The curves show the extent to which low frequencies are reduced by a small cathode by-pass condenser If good low-frequency amplification is required, a Mallory Bias Cell is more economical than a suffciently large by-pass. The curves were taken with a type 6F5 tube, but similar results would be obtained with other types of tubes such as the 75, 2A6, and 6Q7.

Typical applications and circuits using Mallory Grid Bias Cells are given in the following diagrams. Service engineers should study these closely since these hook-ups are used in many modern receivers and amplifiers.

Figure 2 shows the use of Mallory Bias Cells for biasing the first audio stage of a superheterodyne receiver, and for furnishing residual bias to the AVC system. This is a very satisfactory circuit and is to be recommended to experimenters who build their own receivers. The AVC action is exceptionally smooth and the tone quality is superb.


Figure 2
Figure 3 shows a slight modification of Figure 2, in that the bias cell is connected "above ground," between the grid leak and grid.


Figure 3
Figure 4 shows the use of Mallory Bias Cells in a high-gain Microphone Amplifier. Radio amateurs frequently apply this same circuit to twin triode tubes such as the 79, 6A6, 6N7, and 6Y7G, to obtain a high-gain two-stage amplifier that is very compact because it uses only a single tube. By grounding the cathode and using separate sets of bias cells for each grid, any tendency toward motorboating and instability is eliminated. The twin elements of the tube are of course operated in cascade.


## PRECAUTIONS

To insure complete satisfaction from the use of the Mallory Bias Cells, the following simple precautions hould be observed

1. Bias cells should not be used to bias oscillators, power output tubes, or amplifier tubes in which grid current may exist.
2. The new $11 / 4$-volt Mallory Bias Cells may be mounted in any position.

The standard Mallory 1 -volt bias cells may be mounted in any position except with the black electrode in a horizontal plane at the top of the cell.
3. To avoid accidental short-circuiting of the cell, keep it in its envelope. Do not permit cells to be carried loose in a pocket with metal objects such as coins and keys.
4. When soldering bakelite insulated holders use care not to over-heat connections or loose terminals will result.
5. Many of the new model receivers and amplifiers are using $11 / 4$-volt Mallory Bias Cells, mounted in wire spring-type clips.
Should it be desired to replace these cells, care should be taken not to deform the clip, or to bend it so far that inadequate contact pressure will be maintained on the electrodes. The wire clips can best be spread by using a special tool that is made for the purpose; lacking this, a pair of long-nose pliers can be employed if the outer faces of the jaws are notched slightly to prevent slipping.


CS (CARTON) OR RS (CAN) TYPE   Single Unit	CN (CARTON) OR RN (CAN) TYPE   Dual   Triple	CM (CARTON) OR RM (CAN)	SR 601 (CARTON)   (Bleck)
SRB02 (STUD MOUNTING CAN)   (Black)	SR603 (CARDBOARD TUBE)   30 mfd . © 30 volts	SR 604 (CARTON)	SR805 (STUD MOUNTING CAN) $\begin{array}{cccc} 8 \mathrm{mfd} .(14) \\ 350 \mathrm{v}_{0} & (\text { Red }) & \text { (Red) } & + \\ + & { }_{350} \mathrm{mfd} \text {. (4) } \end{array}$
SR808 (CARDBOARD CARTON)			SR610 (CARTON)
SRBII (CARTON)			(Black)   (Yollow)
			SRE18 (CARTON)   (Green)   (Black)
SR819 (CARTON)   (Bleck)	SR820 (CARTON)	SR821 (TUBE)	SRE22 (CARTON)   (Bieck)


SR623 (CARDBOARD TUBE)   (Black)	SR624 (CARTON)	SR825 (CARTON)	SR626 (CARTON)
		SR629 (CARTON)	SR630 (CARTON)
SR831 (CARTON)	SR832 (TUBE)	SR633 (TUBE)	UR180 (CARTON)
	UR182 (CARTON)		UR188 (SPADE BOLT MOUNTING) UR189 (CARTON)
UR190 (CARTON)   (Black) (Black) (Black)	UR191 (CARTON)	UR192 (CARTON)   (Red) (Red)   $20 \mathrm{mfd} . \quad 20 \mathrm{mfd}$.   (a) 150 v , (a) 150 v.   (Black) (Black)	UR193 (CARTON)   (Green) (Brown) (Black)
UR194 (TUBE)    200 v . 200 v .   (Bleck)   (Brown)			

Dry Electrolytic Filter Condensers CARDBOARD CARTON TYPES CS－Single Type


CN－Common Cathode Type				
4－4	250	300	$5 / 8 \times 1 \times 238$	CN140
$4-8$	250	300	$5 / 8 \times 1 \times 258$	CN141
$8-8$	250	300	$8 \times 118 \times 258$	CN142
8－8－8	250	300	7／8x11／4×3	CN145
4－4	450	525	$3 / 4 \times 11 / 8 \times 28 / 8$	CN150
4－8	450	525	\％$\times 1111 \times 258$	CN151
8－8	450	525	$7 / 8 \times 11 / 4 \times 28$	CN152
8－8－8	450	525	$11 / 2 \times 11 / 4 \times 3$	CN155

CM－Separate Section Type

4－4	250	300	$8 / 6 \times 11 / 8 \times 25 / 8$	CM160
$4-8$	250	300	$8 / 4 \times 118 \times 25$	CM161
8－8	250	300	7／8x11／4x ${ }^{5} / 8$	CM162
8－8－8	250	300	$1 \frac{18}{6 \times 1} \times 3$	CM165
16－16	250	300	$18 / 3 \times 1 \times 25 / 6$	CM164
4－4	450	525	3／611／8×25／6	CM170
4－4－4	450	525	119 $\times 11 / 4 \times 3$	CM173
4－8	450	525	7／6x11／4×28／8	CM171
8－8	450	525	$18 / 8 \times 1 \times 25$	CM172
8－8－8	450	525	$11 / 2 \times 11 / 4 \times 3$	CM175


ROUND ALUMINUM CAN TYPES RS－Single Type				
Capacity	$\begin{gathered} \text { Wkg. } \\ \text { V. } \end{gathered}$	Max． Surge	$\mathrm{A}^{\text {Size }}{ }_{\mathrm{B}}$	$\begin{aligned} & \text { Cat. } \\ & \text { No. } \end{aligned}$
50	25	40	23／4x1	RS200
4	250	300	$23 / 4 \times 1$	RS201
8	250	300	$2 \frac{1}{4} \times 1$	RS203
12	250	300	$23 / 181$	RS205
25	250	300	$31 / 2 \times 1$	RS207
50	300	350	$3818 \times 18 / 8$	RS208
4	450	525	$21 / 10{ }^{1}$	RS211
8	450	525	2\％x1	RS213
12	450	525	$23 / 181$	RS215
16	450	525	$31 / 2 \times 1$	RS216

RN－Common Cathode Type

$4-8$	250	300	3	$\times 1$	RN231
8－8	250	300	3	$x 1$	RN232
8－8－8	250	300	3	$\times 13 / 8$	RN235
4－8	4.50	525	3		RN241
8－8	450	525	3	$\times 18 / 8$	RN242
8－8－8	450	525		x $18 / 8$	RN245

RM－Separate Section Type

$4-8$	250	300	3	$\times 18$	RM251
8－8	250	300	3	$\times 18$	RM252
8－8－8	250	300		$\times 18$	RM255
8－8－16	250	300	3	x 1\％	RM257
8－16－16	250	300	3	x 18 ／8	RM259
4－8	450	525	3	$\mathrm{x}^{-18}$	RM261
$8-8$	450	525	3	x 18	RM262
8－8－8	450	525	4	x 1818	RM265

Dry Electrolytic Bypass Condensers CARDBOARD TUBULAR TYPES TS－Single Type

Capacity	$\begin{aligned} & \text { Wkg. } \\ & \text { V. } \end{aligned}$	Max． Surge	$A_{B}^{\text {Size }}$	$\begin{aligned} & \text { Cat. } \\ & \text { No. } \end{aligned}$
10	25	40	$18 / 4 \times 8$	TS101
20	25	40	$21 / 8$	TS102
$\stackrel{25}{50}$	25	40	$21 /{ }^{1 / 8}$	TS103
50	25	40	$23 / 4 \times 1$	TS104
5	50	75	13／18 ${ }^{1 / 4}$	TS105
10	50	75	$21 / 4 \times 8$	TS106
${ }_{50}^{25}$	50	75	$2311 \times 1$	TS107
50	50	75	$31 / 8 \times 11 / 8$	TS108
TN－Common Cathode Type				
5－5	25	40	$13 / 6$ 8／4	TN110
10－10	25	40	214x	TN111
$5-5$	35 50	50	1314 ${ }^{13}$	TN112
5－5	50	75	214x ${ }^{1 / 8}$	TN113

Dry Electrolytic Bypass Condensers
ROUND AlUMINUM CAN TYPE BN

Capacity	Wkg．	Max．   Surge	Catalog   No．
$10-10$	50	7.5	BN225
$10-10$	50	75	BN226


Large Round Can Condensers   DRY ELECTROLYTIC TYPE MN   MN－Mulitple Section Common Cathode Type （Common Negative）   （All Cathodes to Can）		
Capacity	$A^{\text {Size }} \mathrm{B}$	$\begin{aligned} & \text { Catalog } \\ & \text { Number } \end{aligned}$
$\begin{gathered} 8-8 \\ 5-15 \\ 8-8-8 \\ 8-8-8-8 \\ 9-9-18-18 \\ \hline \end{gathered}$	$41 / 8 \times 21 / 2$ $41 / 8 \times 21 / 2$ $418 \times 3$ $418 \times 3$ $41 / 8 \times 3$	MN272 MN273 MN275 MN277 MN278

Old Style Condensers
DRY ELEGTROLYTIC
Original Large Size

Capacity	$\begin{gathered} \text { Wkg. } \\ \hline \text { V. } \\ \hline \end{gathered}$	Max． Surge	A	$\begin{gathered} \text { Size } \\ \mathrm{B} \end{gathered}$	C	$\begin{aligned} & \hline \text { Cat. } \\ & \text { No. } \\ & \hline \end{aligned}$
Single Unit in Carton with Two Leads						
4	$\begin{aligned} & 450 \\ & 450 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 525 \\ & 525 \\ & \hline \end{aligned}$		$\begin{aligned} & x 18 / 82 \\ & \times 18 / 8 \\ & \hline \end{aligned}$		$\begin{aligned} & 14450 \\ & 18450 \\ & \hline \end{aligned}$

Dual Unit in Carton with Four Leads

$\begin{aligned} & \hline 4-8 \\ & 8-8 \\ & \hline \end{aligned}$	450 450	$\begin{aligned} & \hline 525 \\ & 525 \\ & \hline \end{aligned}$	$48 / 3 \times 11 / 2 \times 13 / 4$ $48 \times 11 / 2 \times 2$	$\begin{aligned} & 148450 \\ & 188450 \\ & \hline \end{aligned}$
Single Unit in Round Can with One Lug				
8	450	525	$3 \frac{1}{4} \times 18 / 8$	TM2－8

Single Unit in Round Can with Two Leads

8	450	525	$47 / 6 \times 128$	M2－753
Dual Unit in Round Can with Four Leads				
8－8	450	525	$47 / 68 \times 11 / 2$	M2－585

Wet Electrolytic Condensers TYPE WE

Capacity	Wkg． V．	Peak V．	$\mathrm{B}^{\text {Size }}{ }_{\mathrm{A}}$	$\begin{aligned} & \text { Cat. } \\ & \text { No. } \end{aligned}$
4	450	475	$1 \times 2{ }^{13} 16$	WE447
8	450	475	$1 \times 37$ 但	WE847
8	450	475	$18 / 8 \times 3{ }^{15}$ 的	WE847A
12	450	475	$18 / 8 \times 31 / 0$	WE1247
16	450	475	$18 / 8 \times 3{ }^{15}$	WE1647
18	450	475	$18 \% \times 3150$	WE1847
25	450	475	$18 \% \times 4{ }^{15}$	WE2545
35	450	475	$18 \% \times 47$	WE ${ }^{\text {W }}$［40
40	450	475	$18 / 8 \times 4{ }^{15}$	WE4045

Heavy Duty and High Surge Types

Capac．	Container	Size	Cat．No．
	Carton．．．．	$5 / 8 \times 1 \times 2^{7 / 16}$	HD680
$\stackrel{4}{8}$	Round Can．		HD681 HD682
8	Round Can．	$1 \times 310$	HD683

HS－600 Working Volts DC


Hardware and Accessories

DESCRIPTION	$\begin{gathered} \text { Catalog } \\ \text { No. } \end{gathered}$
Mallory Terminal Connector	A－016
Washer for Clamp Mounting $1^{\prime \prime}$ Cans	A－017
Washer for $3 / 8^{\prime \prime}$ Hole Mounting $1^{\prime \prime}$ Cans．	015－1
Washer for Spade Bolt Mounting $1^{\prime \prime}$ and $1^{2 / 6^{n}}$ Cans．	
Ring Clamp for $1^{\prime \prime}$ Round Unit	105－1
Ring Clamp for $18 \%^{\prime \prime}$ Round Unit	106－1
Ring Clamp for $1^{1 / 2}$＂Round Unit	107－1
Ring Clamp for ${ }^{2}{ }^{\prime \prime} 2^{\prime \prime}$ Round Unit	108－1
Special Mounting Bracket．．．．．	104－1

## Universal and Special Types

UR－SPECIAL UNIVERSAL UNITS

Capacity	Wkg．V．	Container	Size	Catalog No．
8－8．	250－300．	Carton．	．．．11／8 $\times 11 / 8 \times 21 / 4$.	UR180
3－2－1－1．	450	Round Ca		
5－25－10	150	Carton．		UR182
4－4－4．	．150．	Carton．．．．．．．．	$\cdots{ }^{81 / 81140214 .}$	UR183
${ }_{8}^{8} 88-8,8,5-5$	200， 2.5	Cardboard Tube		UR188 UR189
8－8－8－8．．．	$250 .$.	Carton	－．．114x11／2x3．	UR190
$8-8-8-8$	450	Carton		UR191
$20-20$	150	Carton		UR192
5－8－16	150	Carton	$\cdots 1 \times 11 / 1 \times 21 / 2$	UR193
16－12	200	Cardboard Tube	$\ldots 18$ x $31 / 4 .$.	UR194


Capacity	Wkg．V．	Container	Size	Catalog No．
8－12．	300.	Carton．	$11 / 4 \times 17 / 8 \times 28 / 8$	SR601
6－4－6	300－300－25	Round Can．	…18／8x $2 \frac{5}{8} \times .$.	．．．．．SRR602
$8-30 .$	$300-30$	Cardboard Tub	$\cdots 11 / 4 \times 458$	．．．．SR603
3-5-6	$300-300-12$	Carton．		…SR603
$8-8 .$	$350 \text {. }$	Round Can	‥ $18 \times 31 / 8 . .$.	...SR605
$\begin{aligned} & 6-6 . \\ & 6-4-6 \end{aligned}$	$\begin{aligned} & 350 \\ & 300-300-12 \end{aligned}$	Carton．	$\cdots 110 \times 1610 \times 278$.	...SR606
$6-4-6$	$\begin{aligned} & 300-300-12 \\ & 30 \ldots \end{aligned}$	Carton．${ }^{\text {Cardboard Tube }}$	$\cdots 1^{1 / 16} \times 1910 \times 27 / 8$.	．．．SR607
8－8－25	400－400－25．	Round Can．．．	$\cdots 18 / 8 \times 23$	．．．．SR609
8－8－25	400－400－25．	Carton．．．	－1900 19 釈 $\times 28$	．．．．SR610
$8-8-25$	$350-300-25$	Carton．	$\cdots 2 \times 2 \times 21 / 2$	．．．．SR611
$8-8,16-16$	$3.50,100$.	Round Can	．$\times 18 / 8 \times 48 / 4 . .$.	．．．．．SR612
$16-30-16$	200.	Carton．．．	$\cdots 184 \times 1{ }^{15}$ 价 $\times 4$	－．．．．SR613
$8,8-8,12-12$	450，250， 25.	Carton．	$\cdots 17 / 8 \times 23 / 4 \times 2^{13}$ 化．	．．．．．．SR614
8－8－8．．．．．	450－450－350	Round Can．	$\cdots 18$ x $21 / 4 . .$.	－．．．．SR615
8－8－8	450－450－350	Round Can．	．．．1388 $\mathrm{x}^{3} 1$	．．．．${ }^{\text {．}}$ SR616
16－16－10	$150-150-25$.	Round Can	$\ldots 18 / 8 \times 23 / 4$	．．．．．SR617
5－20－10， 5	150－150－150－25	Carton．	$\ldots 1^{11} 16 \times 1{ }^{1 / 60 \times 27 / 4}$	．．．．．SR618
$\begin{aligned} & 5-5.10 \\ & 30 \end{aligned}$	$35 .$	Carton．	$\cdots 8 / 4 \times 8 / 4 \times 11 / 2$	．．．．．SR619
$30-10$	150－200－50－50	Carton．．．．．．．．	$\cdots{ }^{2} / 4 \times 18 / 8 \times 31 / 2$	- . SR620
$8-16-5-5$	，200－200－50－50	Cardboard Tube	‥138 ${ }^{3} 81 . .$.	．．．．SR621
$8-8-12 .$	$350-350-25 .$	Carton．	‥1s／8x 18 8x ${ }^{\text {s }}$／8	…SR622
$16-2-2-25$	$4.50-450-450-25$	Cardboard Tube	$\cdots 11 / 2 \times 31 / 2$	．．．．．SR623
$4-4-10-4$	$300-300-150-25$	Carton．	$\cdots 19$ ¢ $\times 186 \times 3{ }^{18}$	．．．．．．SRR624
8－8－5－5．	450－450－50－50．	Carton．	$\cdots 17 \% \times 11$ 价 $41 / 8$.	．．．．．SR625
8－4－4－12	450－300－150－25．	Carton．	．．．1910 $\times 18 / 8 \times 37 \%$	SR626
$4-4$	450－150．	Carton．．．．．	$\cdots 1 \times 1916 \times 3814$	. . . .SR627
$8-8-10 .$	$300-300-25 .$	Round Can（Stud）	$\cdots 112 \times 28$	: ...SR627
$6-4-10$	$350-300-25$	Carton	$\cdots 11 / 1 \times 18 \times 41 / 2$	:-SR629
16－8－10．	150－150－25．	Carton．	$\cdots 11 / 6 \times 11 / 2 \times 4$.	...SKR630
$4-12-16$	$150-350-95$	Carton	$\cdots 11 / 4 \times 11 / 1 \times 281 / 4$	…SR631
$\begin{aligned} & 6-4-16 \\ & 6-6 \ldots \end{aligned}$	$\begin{aligned} & 350-350-25 . \\ & 250 \ldots \end{aligned}$	Cardboard Tube	$\cdots 11 / 3^{3 / 1} \ldots .$.	SR632 SR633
6-6.	250.	Cardboard Tube	$\ldots 11 / 4 \times 31 / 4$	SR633

Compact Type BB
DRY ELECTROLYT1C
METAL CASED TUBULAR CONDENSER Mallory Type BB tubulars are extremely small in size and excellent for general service applications．Smali size without loss of quality is accomplished through the use of Mallory FP anodes instead of the usual etched foil construction．Available in the following newly standardized ratings：


Tubular Paper Dielectric Condensers TYPE TP－WAX IMPREGNATED			Catalog
Capacity	A		

Type TP－600 Volts			
． 00001	$1{ }^{1 / 10} \times{ }^{5}$	10	${ }^{\text {TP401 }}$
${ }^{.000025}$	11\％x ${ }_{1}$	10 10	${ }_{\text {TP403 }}$
． 001	$110 \times 5$	10	TP404
．002		10	TP405
． 004	$110 \times 5$	10	${ }^{\text {TP407 }}$
． 005	${ }^{110 \times}$	10	${ }^{\text {TP4488 }}$
． 0101	110x ${ }^{1010}$	10	TP410
． 02	$13 \%$ x ${ }^{1 / 4}$	10	$\mathrm{TP412}^{2}$
． 03	$13 \times 1 / 8$	10	TP413
． 04		10	${ }_{\text {TP415 }}$
． 06	$11 / 2{ }^{1} \times 10$	10	TP416
	$111 / \mathrm{max}^{8 / 8}$	10	TP418
.$_{2}^{15}$	${ }_{2}^{2} \times 1{ }^{11 / 1 / 0}$	10	${ }_{\text {TP419 }}$
． 25	${ }_{2} \times 110$	10	${ }^{\text {TP420 }}$
． 5	${ }^{2} / 1 / 81$	5	${ }_{\text {TP4432 }}$
1.0	21／2 $\times 1 / 4$		TP33
Type TP－1000 Volts			
． 01		10	${ }_{\text {TP4 }}$
． 02		10	${ }_{\text {TP }}$ T37
$\ldots$	${ }_{2} \times 1380$	10	TP439

DUAL CONDENSERS Type TP－ 400 Volts DC

$\begin{aligned} & .01-.01 \\ & .05-.05 \\ & .1-.1 \\ & \hline \end{aligned}$		5 5 5	$\begin{aligned} & \text { TP446 } \\ & \text { TP447 } \\ & \text { TP448 } \end{aligned}$
Type TP－200 Volts DC			
．25－． 25	$21 / 2 \times 3 / 4$	5	TP449
Type TP－200 Volts			
． 05	$18 / 8 \times 8$	10	TP436
． 1	$18 / 8 \times 8$ \％	10	TP438
． 25	$2 \times 5 / 8$	10	TP440
． 5	21 后× 8／8	10	TP441
1.0	21／8×1	5	TP443
Type TP－ 400 Volts			
． 01	$11 / 168$	10	TP421
． 02	$11 / 4$ \％	10	TP423
． 03	$11 / \mathrm{x}$ 1／2	10	TP424
． 04	11／x \％	10	TP425
． 05	1818x	10	TP426
． 06	$18 / 8 \times 1 / 2$	10	TP427
.1	$18 \% \mathrm{x}$ 960	10	TP428 TP429
.2	$18 / 8 \times 11 / 6$	10	TP429 TP430
． 25	$2 \times 1 / 8 \times 1100$	10 10	TP430 TP431
1.0	$21 / 2 \times 1$	5	TP422

TYPE OW－OIL IMPREGNATED，WAX FILLED

Capacity	$\mathrm{A}^{\text {Size }} \mathrm{B}$	$\begin{aligned} & \text { Catalog } \\ & \text { No. } \\ & \hline \end{aligned}$
Type OW－1200 Volts DC		
． 0025	$1 \% 8 \times 1 / 8$	OW331
． 005	$18 / 8 x$	OW332
． 0075	$18 / 8 x$	OW333
． 01	$18 / 8 \mathrm{x}$ \％ 10	OW334
． 015	$18 / 8 \times 5$	OW335
． 02	$15 / 8 \times 8$	OW336
． 03	$2{ }^{2} \times$	OW337
． 04	$2^{3}$ 16 $\times 8$	OW338   OW339
． 05	23 伯 $\times 1810$	OW339

TYPE OT－OIL IMPREGNATED，OIL FILLEI）

Capacity	$A^{\text {Size }} B$	Catalog No．
Type OT－ 1600 Volts DC：		
． 005	$13 / 4 \times 8$	OT371
． 0075	$11 / 4 \times$	OT372
． 01	$10 \times 10$	OT373
． 0125		OT374
． 02		OT376
Type OT－ 2000 Volts DC．		
． 0025	19 何 ${ }^{3}$	OT458
． 05	$15 / 8 \times 8$	OT459
． 0075	$210 \times 3$	OT460
． 012125	${ }_{2}^{2100} \times$	OT462
． 015	2500	OT463
． 02	$29.9 \times 14$	OT464
． 03	29，0x $\times 150$	OT465
． 04		OT467

Auto Radio Condensers
PAPER DIELECTRIC TYPE VB


Transmitting Condensers
rectangular type tx


Trimmer and Padding Condensers

Capacity in Mmid．		Fig．	Catalog No．
Min．	Max．		
3	30		BT961
3	30	2	BT962
3	30	3	BT963
3	30	4	BT964
3	30	5	CT959
20	100	6	CTX954
60	240	6	CTX955
180	560	6	CTX956
480	1640	6	CTX957
660	2100	6	CTX958
18	100	7	CTD951
60	230	7	CTD952
240	670	7	CTD953

Mica Condensers
TYPE MC

$\begin{gathered} \text { Capacity } \\ \text { Mfd. } \end{gathered}$	Fig．	Catalog No．
．000005	A	MC831
． 00000075	A	MC832
． 00001	A	MC833
． 000025	A	MC834
． 000003	A	MC835
． 000004	A	MC836
． 00005	A	MC837
．000075	A	MC838
． 0001	A	MC839
． 000015	A	MC840
． 000025	A	MC842
． 0003	A	MC843
． 0004	A	MC844
． 0005	A	MC845
． 001	A	MC846
． 0015	A	MC847
． 002	B	MC848
． 0025	B	MC849
． 003	B	MC850
． 004	B	MC851
． 0005	${ }_{\text {B }}$	MC852 MC 853

## Cased Bypass Condensers

Cap．	A	$B^{\text {Siz }}$	C	D	Fig．	$\begin{gathered} \text { Catalog } \\ \text { No. } \end{gathered}$
600 Volts DC						
					1	CB313
． 25	$12 / 1$				1	CB314
． 5			7／8		1	CB315
$2 \times 1$	2	13\％${ }^{\text {x }}$	瘜	23\％	2	${ }_{C}{ }^{\text {CB316 }}$

400 Volts DC

． 1	15／4x $7 / 8 \times 8 / 4 \times 21 / 8$	1	C 8301
． 25	$18 / 4 \times 7 / 8 \times 8 \times 21 / 8$	1	CB302
． 5	$2 \times 18 / 4 \times 1 / 8 \times 2$ \％	1	CB303
1.0	$2 \times 2 \times 1 \times 23 / 8$	1	CB304
2.0	$2 \times 2 \times 11 / 4 \times 2$ \％	1	CB305
$2 \times .1$	$13 / 6 \times 1 \times 7 / 8 \times 21 / 8$	2	CB306
$2 \times .25$	$2 \times 18 \times 1 / 6 \times 238$	2	CB307
$2 \times .5$	$2 \times 2 \times 1 \times 288$	2	CB308
$3 \times 1$	$18 / 6 \times 11 / 4 \times 7 / 8 \times 21 / 8$	2	CB309
$3 \times .25$	$2 \times 2 \times 1 \times 2 / 8$	2	CB310
$3 \times .5$	$2 \times 2 \times 11 / 8 \times 2$ \％ 6	2	CB311
$4 \times 1$	$2 \times 11 / 4 \times 8 \times 28 / 8$	3	CB312

Uncased Condensers
TYPE UB

Capacity	$\begin{array}{ccc}  & \begin{array}{c} \text { Size } \\ \mathrm{B} \end{array} & \mathrm{C} \\ \hline \end{array}$	$\begin{gathered} \text { Catalog } \\ \text { No. } \\ \hline \end{gathered}$
1000 Volts DC		
$\stackrel{1}{2}$		$\begin{aligned} & \text { UB362 } \\ & \text { U } 8363 \\ & \hline \end{aligned}$
800 Volts DC		
${ }_{2}^{1}$		$\begin{aligned} & \text { UB360 } \\ & \text { UB361 } \\ & \hline \end{aligned}$
600 Volts DC		
.5 1 2		UB357 UB358 UB359


400 Volts DC		
1	$21 / 8 \times 196$	UB354
2		UB355
200 Volts DC		
1	$21 / 8 \times 18 \times 8$	UB351
2	$21 / 8 \times 1{ }^{110} 0^{11 / 6}$	UB352
4	$21 / 8 \times 21 / 0 \times 11 / 8$	UB353

## MALLORY CAPACITORS FOR AC MOTOR STARTING

Round Can Type

Cap．Rating		$\underset{\text { Volts }}{\Delta C}$	Fig．	Size			Type
New	Old			A	B	C	
26－30	25	110	R	18／8	＋3／4		MSR860
26－30	25	110	R	1	$2^{3}$ 伯		MSR861
38－42	35	110	R	$18 / 8$	$41 / 8$		MSR862
53－60	50	110	R	$13 / 8$	$23 / 4$		MSR863
53－60	50	110	R	$18 / 8$	43／4		MSR864
53－60	50	110	R	2	$41 / 8$		MSR865
53－60	50	110	R	2	is $1 / 4$		MSR869
64－72	G0	110	R	2	$41 / 8$		MSR867＊
70－78	65	110	12	$23 / 8$	$31 / 8$		MSR868
70－78	65	110	R	2	$41 / 8$		MSR869
75－84	70	110	R	$13 / 8$	31／8		MSR870
75－84	70	110	R	$21 / 2$	$41 / 8$		MSR871
75－84	70	110	R	2	$41 / 8$		MSR872＊
86－96	80	110	R	2	$41 / 8$		MSR873＊
86 －96	80	110	R	$21 / 2$	$41 / 8$		MSR874＊
86－96	80	110	R	21／2	53／4		MSR875
86－96	80	110	R	$11 / 8$	$31 / 8$		MSR876＊
86－96	80	110	R	$13 / 8$	43／4		MSR877
97－107	90	110	R	13／6	$31 / 8$		MSR878
108－120	100	110	R	$13 / 8$	$31 / 8$		MSR879＊
108－120	100	110	R	，	$41 / 8$		MSR880＊
108－120	100	110	R	$21 / 2$	$41 / 8$		MSR881＊
108－120	100	110	R	$21 / 2$	$51 / 4$		MSR882
108－120	100	110	R	3	$41 / 8$		MSR883
108－120	100	110	R	13／8	$41 / 4$		MSR884
124－138	110	110	（a）	，	$41 / 8$		MSR885＊
124－138	115	110	R	$21 / 2$	$41 / 8$		MSR886＊＊
124－138	115	110	R	2	$51 / 8$		MSR887＊
124－138	115	110	R	2	$41 / 8$		MSR888＊
124－138	115	110	R	18／8	31／8		MSR889＊
124－138	11.5	110	R	3	$41 / 8$		MSR890＊
145－162	135	110	R	$13 / 8$	$41 / 4$		MSR891
145－162	135	110	R	21／2	41／8		MSR802＊
161－180	150	110	R	2	31／4		MSR893
161－180	150	110	R	$21 / 2$	41／8		MSR894＊
161－180	150	110	R	$21 / 2$	53／4		MSR895
161－180	150	110	R	13／4	33／4		MSR891；
161－180	150	110	R	$13 / 8$	43／4		MSR897
194－216	180	110	R	18／4	43／4		MSR898
216－240	200	110	R	$21 / 2$	53／4		MSR899
216－240	200	110	R	2	$31 / 4$		MSR900
216－240	200	110	R	13／4	41／4		MSR901
216－240	200	110	R	3	$51 / 8$		MSR902
270－300	250	110	R	3	48／8		MSR！03
324－360	300	110	R	$21 / 2$	51／4		MSR004
378－420	3.50	110	＋	2	$41 / 8$		MSR905
378－420	350	110	R	2	58／8		MSR906
485－540	450	110	R	$31 / 4$	51／8		MSR907
108－120	100	125	R	13／8	41／4		MSR908
14－15．5	13	220	R	2	7		MSR909
20－24	20	220	R	21年	53／4		MSR910
$20-24$	20	220	R	2	$41 / 8$		MSR911
26－30	25	220	R	$21 / 2$	53／4		MSR912
26－30	25	220	R	$21 / 2$	$41 / 8$		MSR913
32－36	29	220	R	$21 / 2$	41／3		MSR914
38－42	35	220	R	$21 / 2$	43／3		MSR915
43－48	40	220	R	$21 / 2$	41／8		MSR91\％
53－60	50	220	R	$28 / 4$	$41 / 2$		MSR917

（a）Has stud mounting．
$\dagger$ Has five studs．
＊Represents items of most popular demand．

Rectangular Can Type

Cap．Rating		$\underset{\text { Volts }}{\text { AC }}$	Fig．	Size			Type
New	Old			A	B	C	
81－90	75	110	D	$41 / 2$	$41 / 2$	11／4	MSD920
86 －96	80	110	D	$41 / 2$	$41 / 2$	11／4	MSD921
$86-96$	80	110	D	31／2	$31 / 2$	2	MSD922＊
86 －96	80	110	E	$41 / 2$	$31 / 2$	11／4	MSE923
97－107	90	110	C	$31 / 2$	$31 / 2$	2	MSC924＊
97－107	95	110	C	$31 / 2$	4	2	MSC949＊
108－120	100	110	C	$31 / 2$	$31 / 2$	2	MSC925＊
108－120	100	110	C	$41 / 2$	$41 / 2$	$11 / 4$	MSC926
108－120	100	110	D	$31 / 2$	$31 / 2$	2	MSD927＊
124－138	115	110	C	$31 / 2$	$31 \frac{1}{2}$	2	MSC028＊
124－138	115	110	D	$31 / 2$	$31 / 2$	2	MSD929＊
124－138	115	110	D	$41 / 2$	$41 / 2$	$13 / 4$	MSD930
124－138	115	110	E	35／8	$41 / 8$	21／8	MSE931
161－180	150	110	D	$41 / 2$	$41 / 2$	15／8	MSD032
161－180	150	110	E	35／8	$41 / 8$	$21 / 8$	MSE933
161－180	150	110	E	5	41／2	－	MSE934
161－180	150	110	C	$31 / 2$	41／8	2	MSC935
189－210	175	110	D	$41 / 2$	$41 / 2$	17／1	MSD936
224－240	200	110	E	$41 / 4$	41／2	$11 / 2$	MSE937
161－180	1.50	175	E	6	$41 / 2$	$31 / 2$	MSE938
10－12	10	220	E	43／4	41／4	11／2	MSE939
20－24	20	220	E	43／4	43／4	11／2	MSE940
20－30	25	220	E	43／4	41／4	11／2	MSE941
26－30	25	200	C	$31 / 2$	31／2	2	MSC942
32－36	29	220	C	$31 / 2$	$31 / 2$	2	MSC943
32－36	29	220	E	41／2	$41 / 2$	13／4	MSE944
32－36	30	220	E	41／2	43／4	$11 / 2$	MSE945
43－48	40	220	C	31／2	41／8	$21 / 8$	MSC046
53－60	50	220	E	$41 / 2$	41／4	$11 / 2$	MSE947
64－72	60	220	C	$31 / 2$	4	2	MSC94\％

## Toroidal Type

86－96	80	110	T	23／2	41／2	17／6	MST970
108－120	100	110	T	21／2	41／2	1758	MST971
124－138	115	110	T	$21 / 2$	$41 / 2$	$17^{176}$	MST972
189－210	175	110	T	31／4	53／8	21／16	MST974
230－256	225	110	T	$31 / 4$	5 3 \％$/ 8$	21价	MST975
243－270	225	110	T	31／4	63／8	$2^{1 / 16}$	MST976
324－360	300	110	T	31／4	$53 / 8$	$2{ }^{1 / 16}$	MST977
324－360	300	110	T	31／4	63／3	$2^{1 \text { 伯 }}$	MST978
$460-510$	425	110	T	31／4	638	21／16	MST980
5－40－600	500	110	T	31／4	68／8	$2^{1 \text { ќ6 }}$	MST981

## Ring Type

$161-180$	150	110	0	$71 / 2$	2	$32 / 4$	MSO982
$270-300$	250	110	0	$71 / 2$	2	$32 / 4$	MSO983
$324-360$	300	110	0	$93 / 4$	2	4	MSO984
$432-480$	400	110	0	$93 / 4$	2	4	MSO985
$432-480$	400	110	0	$101 / 8$	2	4	MSO986
$540-600$	500	110	0	$01 / 4$	2	4	MSO987
$590-660$	550	110	0	$101 / 8$	2	4	MSO988
$750-840$	700	110	0	$101 / 8$	2	4	MSO989

End Caps and Mounting Straps for Round Capacitors

	Size	Cat．No．		Size	Cat．No．
End Caps	$13 / 8{ }^{\prime \prime}$	115－1			
End Caps	$2_{21 / 2 \prime \prime}$	116－1	Mounting Strap．	$21 / 2^{\prime \prime}$	110－1

## SECTION

## THE PRACTICAL SERVICING AND TESTING OF VIBRATORS

The vibrator is literally the heart of every batteryoperated radio receiver. The silent throbbing of this heart, whether in the air, on land, or at sea, furnishes the all-essential plate current necessary to give intelligence and life to an otherwise inanimate object. The endless entertainment of drama, music and news, pouring forth from the automobile and rural household radios, rely on its unfaltering rhythmic beat. Its dependable power has been the means of bringing aid to stricken, isolated communities during great emergencies. The protection of lives and property and the reduction of crime are being aided greatly in the ceaseless pulsations of the ever-vigilant police radio. Yes, the vibrator-like the heart-is all-essential.

Because of the importance of the vibrator in the modern battery-powered radio, servicemen should be thoroughly familiar with the functions of the DC power supply system. The millions of automobile and rural home radios which are in use, have given the serviceman a chance to expand and increase his income. In general the radio circuits of these reccivers are much the same as other receivers, but here the similarity ends. The automobile radio must be compact, well shielded, and all leads must be well filtered to exclude the interference from the motor. The power pack is of extreme imsortance and a thorough understanding of its operation will make the servicing of these radios easier and much more profitable.
With the last year, many volumes relative to the Operating Principals of the Vibrator have been written. To gain a working knowledge of the vibrator circuits from these books, many hours of tedious reading and study are required. DC power supply systems, while extremely important, are in reality comparatively simple. A thorough explanation of their working functions can be completely covered in a few paragraphs. Since the DC power system is so closely related, the AC principles can be used very effectively to explain its operation.

## AC ANALOGY

It is impossible to believe that there is a single successful radio service engineer who does not thoroughly understand the power circuit of the modern AC radio receiver. A typical circuit of this type is shown in Figure 1.


Figure 1
If an AC voltage is applied to the primary, in this circuit, there is a voltage developed in the secondary windings proportional to the turn ratio. The low
voltage winding is used to light the "heater" of the rectifier tube. (A separate battery could be used just as effectively for this purpose.) The high voltage secondary is center-tapped and so connected that through action of the rectifier tube, one-half of the secondary is delivering power on the first part of the cycle, and the other half is delivering power on the tast part of the cycle. In this manner the alternating current is converted to unipotential or DC voltage. Although this voltage is unipotential, it is not constan so a filter system must be used to obtain a constant DC voltage. Since filter systems are more or less standard, and their action is common knowledge, no further reference to them will be made. So far we have explained only the simple action of the power supply system of an AC receiver, which is of course understood by every service engineer.

## "ALTERNATING" DC VOLTAGE

If a DC voltage were applied to the primary of this transformer, there would be no flux change in the transformer core, and, therefore, no transformation of frower from the primary to the secondary. However, if the circuit could be so arranged as to "alternate" this same DC voltage, first in one direction and then in the other direction through the primary, there would be essentially an alternating current (AC) flowing, and the transformer would again operate somewhat the same as it did on AC.

A theoretical circuit describing this method of "al(ernating" the IDC is shown in Figure 2.


Figure: 2
In this circuit, a double pole double throw switch is so connected in the prinary circuit that, if the switch were rapidly thrown from one position to the other the direct current would "alternate" in the primary winding of the transformer.

This type of switch could be made in the form of a vibrator but it would be far too complicated and critical for economical manufacturing or commercial use In order to simplify this switching circuit a second frimary, identical to the first, is wound on the transformer. This may be in the form of two separate windings or one continuous winding center-tapped. Figure 3 shows this revised circuit in which a simplified single role double throw switch is substituted for the


Figure 3
more complicated double pole double throw switch. Now the switch connects the DC first through one primary and then through the other which produces essentially an "alternating current" which can be transformed and rectified, by the tube, into high voltage DC. With this form of switch, it now becomes possible to make it in the form of a vibrator that is economical to manufacture and reliable in operation,

## INTERRUPTER (TUBE TYPE) VIHRATOR

The single pole double throw switch using the simplified switching circuit may be made in the form of a magnetically-driven switch or vibrator as shown in


Figure 4
Figure 4. In this arrangement the coil is shunted across the contacts so that when current is applied to the vibrator, the coil is energized. pulling the armature toward the magnet. As the armature approaches the nagnet, the contact points short the coil, destroying the magnetic force and the armature returns past its normal position and makes contact with the opposite contact point. This operation is rapidly repeated at 115 cycles per second. This method of energizing the vibrator reed is known as the shunt type driver sustem.
Figure 5 shows a different method of obtaining the magnetic force to energize the vibrator reed.


Figure 5
In this circuit the entire battery voltage is applied to the driver coil when the current is turned on causing the armature to be attracted toward the magnet and opening the extra set of driver contacts. The opening of the driver circuit destroys the magnetism in the coil. The reed has gained sufficient momentum at this woint that it travels somewhat farther to make contact with one of the interrupter contact points but since the magnetism has been destroyed, it returns past its original position to make contact with the opposite contact point, thus completing the cycle. The operations are periodically repeated at fairly high frequency. This method of energizing the vibrator reed is known as the series driver system.

When the contacts connect and disconnect the DC from the primary of the transformer, there are certain power surges of current developed which must be "arrested" in order to prevent damage to the contact points. The "arresting" of these surges can be accomplished by connecting a condenser across the primary of the transformer, but since the capacity required to secure the same result drops rapidly with an increase in voltage applied, a comparatively small capacity high voltage condenser can be connected across the secondary to accomplish the same purpose. The capacity in the secondary circuit is reflected directly into the primary so that substantially the same results are obtained as with a large primary condenser.
Let us simplify this by stating that the secondary "buffer" condenser is used to control the surge voltages developed in the circuit.
A more detailed explanation of transformers and buffer condensers will be given later in this text.

Figure 6 shows the basic circuit in which the interrupter type vibrator "alternates" the DC in the primary of the transformer, the transformer steps up the alternated DC to high-voltage $A \mathrm{C}$ and the rectifier tube converts the AC to high-voltage unidirectional or direct current.


Figure 6
The basic operation of the interrupter type vibrator (commonly called tube type) is now clearly explained.

## SYNCHRONOUS OR SELF-RECTIFYING TYPE VIBRATOR

The purpose of the rectifier as explained is to pass current only in one direction. It is so connected that during the first part of the cycle, one-half of the secondary is delivering current and during the second part of the cycle, the other half of the secondary is delivering current. In the tube rectifier this action is entirely automatic and is controlled by the electronic characteristics of the tube.

If the rectifier tube were replaced by a single pole double throw switch so constructed to operate simultaneously with the single pole double throw switch in the primary circuit, substantially the same rectifying action would take place. Figure 7 shows a theoretical circuit of such an arrangement.


Figure 7
The polarity of the DC output, unlike the tube type, would depend on the polarity of the DC input. Correcting for polarity offers no problem, however, since the interchanging of the two secondary wires to the contacts of the "rectifier" section of the switch will give the desired polarity of output.

Since one side of the DC ( 6 -volt battery) and $B-$ are usually grounded, the circuit can be inverted and the polarity of the rectified current changed by reversing the primary wires to the vibrator. The "switch" could then be arranged so bot $h$ "blades" are grounded or connected together as shown in Figure 8.


Figleres 8
Now that both "blades" of this switch are grounded, they can be connected directly together or even made into one piece as in ligure 9.


Figure 9

By using this arrangement all of the common interrupter and rectifier contacts may be installed on a single reed and thus made to operate synchronously. With this type of construction, a practical synchronous, or self-rectfying. vibrator may be made economically; incorporating long life and reliable operation. Synchronous vibrators eliminate the energy consumed by the rectifier tube, thereby increasing the overall efficiency of the system.

The basic synchronous rectifying type vibrator circuit is shown in Figure 10.


Figure 10

Two basic vibrator circuits have been shown. Figure 6) for interrupter type vibrators and Figure 10 for synchronous type vibrators.

Even with all the different lead and plug arrangements and all of the varions sizes of containers that have been used, ONLY these TWO basic circuits have been used in the modern automobile and 6 -volt household radio receivers since I033. There is a slight variation of the synchronous type, as shown in Figure $\mathcal{8}$, where the reed is "split" into two parts which are
nechanically (not electrically) connected together. but otherwise this is basically the same as Figure 10.

The foregoing explanation of vibrator power systems has given a picture of the operation of the vibrator, yet to give a complete story, it is in order to touch briefly on transformer and circuit design. Trans formers and circuit components are, as a rule, carefully designed and matched by radio set engineers, in co-operation with vibrator engineers. Generally speak ing, nothing can be gained by attempting to change these designs and values. Occasionally it is impossible to obtain a vibrator having the same frequency and time efficiency characteristics as the original or per haps an unknown brand of radio might not be as carefully designed as it might have been. Under these conditions it is well for the service engineer to know how to properly adjust the timing capacity for troublefree vibrator operation. In rare cases where it might be necessary to replace the transformer, a knowledge of transformer design will be of great help in selecting the most suitable design.

## POWER SUPPLY DESIGN CONSIDERATIONS

In the design of vibrator-operated power supplies, engineers are faced with a considerably larger number of factors and problems that must be taken into account than are encountered in the design of an equivalent AC power supply. No one component in the supply can be divorced from the rest, since its function and design depends upon the design and operation of the other components. Therefore, the Vibrator, Transformer, Timing Capacity (commonly called the "buffer condenser"), Battery Voltage, "A" Lead Resistance, and the " $A$ " Current of the Speaker Field and Heaters, all must be considered as a unit when the power supply is to be designed. Knowing the nominal battery voltage, i,e., 4,6 , 12 , or 32 volts, the approximate lead, volage, i,e., 6,12 , or 32 volts, the approximate lead, drain of the tube heaters and speaker field, and the variation in battery voltage encountered in service because of charging and temperature, the problem resolves itself into correlating the three important items of the supply, namely the Vibrator, Trans former, and Timing Capacity.

In the design of $A C$ power supplies the designer is considering mainly, Economy of Manufacture, Heating, Regulation, and Output. All of these factors must also be considered in the design of a vibrator-operated power supply, and in addition, size and primary current drain are of paramount importance. Size because of the fact that this type of supply is usually used for auto receivers and other applications where space is at a premium, and primary current drain because of the limitation of battery drain and also the more important factor of vibrator life which is largely determined by the loading applied to the contacts.

Since it is necessary to operate this type of power supply in a multitude of receiver designs having varying values of " $A$ " lead resistance and " $A$ " current, it is customary now to rate the nower supply as furnishing the required output at an input voltage of 6.3 volts as measured from the center-tap of the transformer primary to the reed-terminal of the vibrator socket. When this is not done, it is necessary that the "centertap" voltage be specified at which the required output is to be secured. Since it is also necessary to operate this power supply on a battery whose state of charge is variable, and whose rate of charge from an auto generator or "wind charger" varies from zero to thirty amperes or more, it is necessary to so design the power supply components that they will perform safely with applied voltages to the system varying between 5.75 and 9.0 volts at the battery in the case of a nominal is-volt battery. Voltages at the center-tap will vary considerably depending upon whether a "starting" condition or a "running" condition is being considered; this voltage may range from 5.25 volts to 8.5 volts, or a $62 \%$ variation. This compares to the $24 \%$ maximum variation ( 105 to 130 volts) encountered in the design of AC power supplies. In addition, since heater-type tubes are now used for practically all applications involving vibrator-operated power supplies, a "no load" condition for the supply is present every time the receiver is turned on and this must be considered fully in the design since a vibrator is not only a mechanical device, but is limited by transient conditions arising from unusual operating circumstances.

## VIBRATOR CHARACTERISTICS

Complete knowledge of the vibrator operating characteristics is the first necessity in starting a design of a power supply's electrical characteristics. These vary power supplys electrical characteristics. These vary
somewhat between various manufacturers, especially somewhat between various manufacturers, especially
in those units manufactured prior to I $937-38$. Prior to this time, modern full-wave vibrators were manufactured with frequencies of $85,90,100,115,135$, and 165 cycles per second. Mallory has pioneered in establishing a frequency of 115 cycles per second, adopt ing this now generally-used frequency in 1935. In addition to the item of frequency variations, considaddition to the item of frequency variations, consid-
erable variation also occurs in the mechanical "time" erable variation also occurs in the mechanical "time
efficiency" of the vibrator. Time efficiency refers to the percentage of the total time of one cycle that the power contacts are held in contact, although it is usually more important to determine this for each half of the cycle in order to measure the balance between of the two swings of the vibrator reed mechanism. Values the two swings of the vibrator reed mechanism. Values
of time efficiency in the past have varied from $70 \%$ of time efficiency in the past have varied from $70 \%$
to $90 \%$, but at the present time are mainly held within the range of $85 \%$ to $90 \%$ average.


Referring to Fig. A, time efficiency of the vibrator is illustrated as an electro-mechanical waveform trace plotted against time in seconds. At 1 on the diagram the power contacts are closing on one direction of swing of the reed, connecting the primary of the transswing of the reed, connecting the primary of the transformer, in effect, to the positive terminal of the bat-
tery. The contacts remain closed until point 2 , this length of time being $t_{1}$, where the reed has started its return swing and has opened this pair of power contacts. The reed now requires a length of time to to continue this return swing to the point where the opposite pair of power contacts close at 3 on the diagram, connecting the primary of the transformer, in effect. connecting the primary of the transformer, in effect.
to the negative terminal of the battery. These contacts remain together for the length of time $t_{3}$, when the reed has reversed its direction of motion again and has continued its return swing (in same direction as at 1) far enough to open the second set of power contacts at 4. The reed then requires a length of time $t_{4}$ to travel between the second set of power contacts at 4 travel between the second set of power contacts at
and the original set at 1 where the cycle ends and a new one begins. Current can only flow from the battery while the power contacts are touching, or during the time periods $t_{1}$ and $t_{3}$. Since this power, in effect, is reversed on each half-cycle, alternating voltage is applied to the primary of the waveform shown. The RMS value of this voltage is, of course, dependent RMS value of this voltage is, of course, dependent
upon the percentage of time the contacts remain upon the percentage of time the contacts remain
closed during each cycle, or in other words, upon the time efficiency. Time efficiency is, therefore,

$$
\frac{t_{1}+t_{3}}{t_{0}}=\frac{t_{1}+t_{3}}{t_{1}+t_{3}+t_{3}+t_{4}}
$$

## THE TRANSFORMER

Knowing the characteristics of the type of vibrator to be used, the next step is the design of the transformer to be used with the vibrator to increase the primary alternating current voltage to a higher voltage of a sufficient magnitude such as to produce the desired rectified direct current. Since it can be shown that the value of timing capacity required in the primary circuit for correct matching of the vibrator and transformer depends directly upon the magnetizing
current (maximum value) of the transformer required for the voltage of operation and upon the operating characteristics of the vibrator outlined in the preceding paragraph, it is of exceeding importance in the design of the transformer to consider first the range of flux density and also the maximum flux density to be encountered. This is because the magnetizing currentflux density relationship, commonly known as the magnetization or $13-\mathrm{H}$ curve, of the iron to be used in the transformer core is not a straight line, but is a curve which begins to deviate greatly from a straight line in most irons at a flux density of about 65.000 to 70.000 lines per square inch. Because it is necessary to operate the final design upon applied voltages covering a range of 6 to 9 volts. it would be desirable to limit the operating range of flux densities to the comparatively straight-line portion of the curve. However, this range is limited, and would be rather uneconomical except in the cases of some portable, or home receivers. where current drain is paramount. Therefore, it is usually satisfactory to set the upper limit (for maximum voltage) of $\mathbf{6 5 , 0 0 0}$ lines per square inch. Where the sacrifice of operating perfection and efficiency is required in order to secure economy, a maximum flux density of $7 \bar{i}, 000$ lines per square inch is permissible. The following diagram. Figure B, illustrates the appproximate characteristics of a grade of iron often used for vibrator transforiners.


Figure 13
This grade of iron is used, not only because of the low power lost as core losses. but because the variation between minimum and maximum limits of production runs of this grade are held to narrow limits. This enables a rather accurate determination in advance of the timing capacity necessary to give good vibrator performance. On those grades of iron with wide properformance. On those grades of iron with wide pro-
duction limits. exceedingly variable results will be duction limits. exceedingly variable results will be
obtained in a production run of receivers using a supposedly identical transformer to the sample approved,
Knowing the limiting flux density, and the fixed vibrator constants. the clesign is now controlled by the balance between primary turns and the cross-section of iron in the center-leg of the shell-t ype of transformer usually used in this type of application. The biggest difference between the physical appearance of an AC transformer design and that of one for vibrator operation lies in the use of a dual primary on the vibrator transformer. As explained above, this is required to obtain the AC voltage effect. Also, on low battery voltages, such as 4,6 , and 12 volts, the wire size required for the primary is rather large, giving a rather inefficient winding space factor and almost always requiring that the primary be wound over the secondary. It is quite ordinary to find small power transformers for AC operation operating at a flux density of 90,000 to 100,000 lines per square inch as against the 65,000 to 75,000 lines per square inch for a vibrator transformer. Because of the need for the additional primary winding, the size of a vibrator transformer will always be considerably larger than for an AC transformer to furnish the same power output. The turns per volt are usually kept rather low for high output units, approximating + to 5 . This is primarily done to reduce the leakage inductance of the trans done to reduce the leakage inductance of the translamination and large wire size works out best under this arrangement. the core being stacked thicker in order to adjust the flux density. Since the load currents must be increased or decreased through this leakage inductance, it acts as a burden on the contacts and therefore is more detrimental the higher this inductance is made. This leakage inductance burden has been demonstrated experimentally and in practice as being one of the biggest causes of rapid contact erosion, or wear. It is general practice to interleave the laminations 2X2, although $1 \times 1$ and $3 \times 3$ are often used. Interleaving 2 X 2 permits a lap joint between each lamination (as does 1 Xi interleaving), whereas $3 \times 3$ or higher allows only a butt joint be-
tween all but the outside laminations in each group. Since the magnetic flux sprays from the core to a certain extent in all transformers, and this flux is modulated by any "hash" frequencies present in the electrical circuit, it is universally necessary to provide a comparatively heavy magnetic shield completely surrounding the transformer in order to provide a "hash"-free power supply. Of course, this is quite often enlarged to include the other components effectively.

## TIMING CAPACITY (BUFFER CONDENSER)

With the transformer design arrived at, the magnetizing currents for the nominal and the maximum flux densities (corresponding to the nominal and maximum battery voltages), are calculated from the B-H curve and the length of magnetic path of the lamination used. These values of current are the average theoretical values used in determining the theoretical timing capacity required to give the proper voltage waveform for best vibrator operation. This is known as circuit matching. A timing capacity, or buffer condenser, is required in order to protect the circuit during the time that the reed is moving from one set of contacts to the other, in other words, $t_{2}$ and $t_{4}$ in Figure A. If no capacity were used, when the contacts opened at 2 in this same figure not only would the battery voltage present on the contacts need to be "broken," but an exceedingly high voltage of the opposite polarity would be induced in the transformer because of the collapse of the sustaining magnetizing current (and therefore flux) which would also have to be "broken." This would cause severe arcing and failure of the vibrator unless some other component suffered voltage breakdown first. Also, when the contacts closed at 3 the full battery voltage would be applied directly across the contacts, causing a spark to jump the gap just before the contacts closed, which is also detrimental to good contact hife. By connecting a condenser across either of the windings of the transformer, and adjusting the capacity to the predetermined value, the oscillographic waveform trace illustrated in Figure A can be changed to that shown in 1;igure C following,


We now notice that the "off contact" intervals of time, $t_{2}$ and $t_{4}$, are no longer horizontal lines but are sloping, closing the gaps between points 2 and 3 and points 4 and 1. This is the "ideal" waveform for an interrupter-type vibrator, or a self-rectifying type vibrator operating on no-load.

## SELECTING PROPER TIMING CAPACITY

The condenser has become a "tank" in which we store energy during the "on contact" intervals $t_{1}$ and $t_{3}$, and which discharges into the transformer winding during the "off contact" intervals ty and ta to supply energy to the transformer. This discharge is in the form of a damped oscillation in the circuit formed by the transformer winding inductance and the condenser; however, the first one-quarter cycle is never completed before the next pair of contacts close. The "ideal" waveform shown in Figure C can be secured experimentally, but is not practical in production, because of the variations in the several components
used in the circuit. Also, as a vibrator's contacts erode, or wear away, the spacing between those contacts increases, increasing in turn the "off contact" time intervals $t_{2}$ and $t_{4}$ during which the reed must move from one set of contacts to the other. Because of this fact, a larger timing capacity is theoretically required with an old vibrator than with a new, and the additional capacity that is required to prevent "overclosure" of the voltage waveform must be included in the original design. Therefore, the desirable oscillographic waveform for an average condition for a new vibrator would appear as in Figure D.


Figure D
With the circuit adjusted as described above, the "closure" of the waveform shown in Figure D is between $60 \%$ and $70 \%$. That is, the distance vertically between the points where the contacts oren and close, 2 and 3 , is about $60 \%$ of the total distance between the two horizontal lines $\mathrm{t}_{1}$ and $\mathrm{t}_{2}$, with the same conditions holding true for the points 4 and 1. This would also hold true, again, for the self-rectifying-type of vibrator operating on no-load. "No-Load" does not mean the removal of the first filter condenser, also.

The waveform picture of a properly adjusted selfrectifying vibrator operating under load is shown in Figure E , following.


Figure E

The short, regular peaks shown at the start and finish of the time intervals $t_{1}$ and $t_{3}$ are profer and do not create "hash" or circuit difficulties if they appear approximately as shown. These peaks are caused by the increased voltage drop in all of the " $A$ " circuit when the secondary, or " 13 " load is connected, since the vibrator is so adjusted that the interrumter contacts close before the rectifier contacts and open after the rectifier contacts. In other words, the rectifier contacts are spaced slightly wider than the interrupter contacts, the load thus being broken at high voltage and low current instead of at low voltage and high current.

## IMPROPER TIMING CAPACITY

Correctly shaped waveforms have been pictured, but it is advisable to also illustrate al few of the nore common mismatches found. It can readily be understood that should a modern 115 -cycle vibrator with a time efficiency of $90 \%$ be used to replace an original equipment vibrator which originally was operating at 85 cycles and a time efficiency of $80 \%$, a decided mismatch would occur. The new frequency being higher, the flux-density would be retuced by $26 \%$, while because the new time efficiency is higher also, the flux density will in turn be increased by $13 \%$. This is a net decrease of $13 \%$ in flux density, and correspond-
ingly an even greater decrease in magnetizing current because of the curvature in the $1 \mathrm{~B}-\mathrm{H}$ curve of the iron. Because of the increase in time efficiency as well as in frequency, the "off contact" intervals $t_{2}$ and $t_{4}$ are considerably shorter (in seconds). Therefore, with les magnctizing current required by the transformer, and a shorter time interval in which to dissipate the stored energy, the timing caracity originally in the circuit s now too large, and the waveform pictured in Figure $F$ results.


FIGURE F

Since the modern Mallory Replacement Vibrator would easily outperform the original under prover circuit matching, and because it is universally available, should this type of condition arise, it is advisable to replace the timing capacity incorporated in the receiver and install a Mallory Type OT condenser of value which will approach the waveform shown in Figure D.

Should a mismatch occur in which the reverse, or partial reverse, of the above be found, or a condition be found in which the original capacity chosen was too small, waveform pictures such as shown in Figures $C$ and $H$ will result.


Figure II

Figure G illustrates a case of "overclosure" of the waveform with the load applied to the rectifier tube in an interrupter type power supply. This condition is not often noticed since it can be mistaken for bouncing of the contacts at the "inake." However, if the load is removed, or the rectifier tube removed from its socket, the picture will change to that shown in Figure H , if overclosure is present. Naturally the cure for this condition will be the addition of nore capacity to the original, or better still, to replace the original with a new Mallory Type OT of the correct capacity. Condensers age in much the same manner as springs, and it is frequently advisable to replace such hardworked types as are used in vibrator power supplies every few years at least, or every 1000 hours of operation.

In the case of a self-rectifying vibrator, overclosure will evidence itself in much the same manner as in

Figure H, except that very sharp and usually ragged peaks will result instead of the comparatively round oncs ilhustrated. These are exceedingly dangerous and will undoubtedly cause the vibrator or other components to "break down," since the transient voltages are usually much higher than the value observed upon the oscillograph screen, and are multiplied by the transformer turn ratio when applied to the secondary or rectifier circuit. It should be noted that all of the above oscillographic pictures are to be observed with the vertical plates of the oscillograph connected across the entire primary of the transformer. The picture given in Figure A cannot be secured with a transformer, but can be illustrated by the use of a centertapped resistor of 10 ohms total replacing the primary of the transformer. In this case a separate-driver type of vibrator should have the nominal battery voltage applied, but a shunt type of vibrator should have double this value applied.
All of these oscillograph waveform checks should be made not only at the nominal battery voltage of operation, but also at the maximum voltage under which the receiver may be called upon to operate. Since many automobiles are now being sold equipped with charging voltayc-regulators which maintain a voltage at the ammeter of approximately 7.8 to 8 volts, it is essential that a cheek be made with 4 cells of battery in order to reach the required level of voltage. The higher the voltage applied, the greater the teadency for the waveform to "overclose."

A condition such as "single-footing," the operation of the vibrator mainly on one contact set only, is quite prevalent with old and even with some comparatively new vibrators, and a waveform illustrating this condition is shown in Figure 1.


Ficure I

Here is shown the condition where more than one cycle of the oscillatory discharge of the timing condenser has taken place before the one set of contacts closes at 3 , whereas on the other set of contacts comparatively good operation is still secured although this will be found to have a short time interval $t_{1}$, since the reed amplitude will be low. This is usually overcome in slipshod engineering practice by use of additonal timing capacity. However, this involves the acceptance of a wiveform such as that in Figure $\mathbb{F}$, which is not desirable.

## EFFECTS OF BOUNCING CONTACTS

Bouncing or chatter of the vibrator contacts is illustrated in Figures J and K , where J illustrates this

condition when operating upon a center-tapped resistor, and K when operating upon a transformer-condenser set-up.


Figure K

## "HASI" SUPPRESSION

Basic vibrator circuits have been clarified. Only one problem remains-that of radio frequency interference developed by the vibrator. This interference is commonly referred to as "hash." Hash is caused by transient voltage surges, at radio frequency. These surges cannot be controlled by a "buffer" condenser. The only known methods of suppressing hash are:

First-Shielding-Both magnetic and electrostatic.

Second-Proper grounds, and
Third-Proper RF filtering in the leads to and from the pack.

The amount of "hash suppression" depends mainly on:

First-The sensitivity of the receiver and
Second-the mechanical arrangement of the receiver.

Engineers do, as a rule, thoroughly design their receivers to have adequate shielding, proper grounds and a sufficient amount of RF filtering. They cannot be assured that screws holding the shielding, chassis, and case toget her will remain tight after hours of jolts and vibration in the automobile nor can they be assured of permanence of efficiency of the old style RF by-pass condensers under varying climatic conditions. Under these conditions it would seem that the only action that could be taken to eliminate hash in a troublesome receiver would be to tighten all the screws and to replace all the by-pass condensers thought to be defective. Figure 11 shows a typical interrupter-type circuit with its associate hash suppression filters.


Figure 11
The circuit for synchronous vibrators is the same except the rectifier part of the vibrator replaces the tube rectifier as in Figure 10.
Through the combined efforts of the Mallory vibrator and condenser research engineers new types of RF condensers and RF chokes, which are far more efficient and permanent under widely varying climatic conditions have been perfected. It is now possible to do something about the hash caused by ineffective filtering.
On page 31 of the new Mallory-Yaxley General Catalog these condensers and chokes are listed.
Figure 12 shows the way they are to be used in the circuit.

The vibrator reed connection to ground, shown in dotted lines in Figure 12 should be removed, and con-


Figure 12
nected to one of the double lugs on one end of the Mallory-Special low voltage RF By-Pass Condenser. The other double lug on the same end should be connected to ground as shown. The center tap of the transformer should be connected to one of the double lugs on the other end of the condenser and the RF choke connected to the other double lug on the same end of the condenser as shown in Figure 12. The original RF choke in the primary circuit should be replaced with one of the new Mallory high-efficiency, nultiple pie-wound RF chokes. In most cases of slight "hash" the Mallory No. RF-481, .5 mfd. 50volt condenser will be sufficient. For other cases more pronounced, the Mallory No. RF-482, 1.0 mfd., 50 -volt condenser will be adequate. When severe cases are encountered it may be necessary to use either Mallory RF-582, 55 turn RF choke or the No. RF-581, 90 turn RF choke in addition to one of the two condensers mentioned above depending on the severity of the case. For the greatest amount of "hash" suppression Mallory No. RF-581, !0 turn RF choke and Mallory No. RF-4s2, 1.0 mfd . 50 volt RF condenser should be used in the primary circuit and a $200-300$ turn RF choke in the $\mathrm{B}+$ lead with a Mallory No. TP-41s, 1 mfd . 600 volt by-pass condenser inthe secondary circuit as shown in Figure12.

Exactly the same methods are used for synchronous type vibrator circuits. In these circuits the "rectifier" part of the synchronous vibrator replaces the tube and the center tap of transformer secondary becomes B+ instead of ground." For the sake of simplicity no conventional filter circuits are shown.

The 200-300 turn RF choke can be obtained from most parts distributors if not in the set. The Mallory No. RF-583 55 turn RF choke is wound with No. 12 wire and should be used with high output power packs where space will permit.

This method of "hash" suppression is by no means a "Cure-all." It will not suppress "hash"" caused by inadequate shielding or improper grounds. If used intelligently, it will eliminate many cases of annoying chronic complaints.
These basic principles will prove to be a valuable aid in the successful servicing of vibrator-powered radio receivers. The problem of "hash" has been treated in a manner that it should no longer be a serious obstacle, yet other common troubles are of ten encountered.

## CAUSES OF VIBRATOR TROUBLES

When vibrators were first introduced. servicemen regarded them with suspicion and uncertainty. They were inclined to attribute many auto radio troubles, such as unaccountable noises, low plate voltage, etc., to the vibrator, when actually its operation was perfectly normal. The unquestionable proof of this statement lies in the fact that until recently, more than one-half of all vibrators returned as defective, were perfectly good in every respect.
Vibrators can only be damaged by two causes:

1. Serious overloads from short circuits and/or 2. Defective buffer condensers.

Rarely if ever do power transformers give any trouble.

## ELIMINATING TROUBLE

If vibrator servicing problems are to be simplified, specific troubles and the recommended remedy must be shown. A list of these troubles is given along with the best way of determining the exact trouble and the method of elimination.

## NO "B" VOLTAGE

If the vibrator is operating and still there is no " $B$ " voltage, first disconnect the lead from the $B+$ output of the filter. If the voltage becomes much higher than normal when this lead is disconnected, the trouble is in the radio receiver proper. The procedure for making receiver checks and repairs are outlined in other sections of the encyclopedia.

1f, after disconnecting the $B+$ lead, there is still no voltage, the trouble is in the power rack circuit.
The following list shows the probable defects, in the order of their importance:

1. Shorted Filter Condenser.
2. Shorted Buffer Condenser.
3. Shorted Rectifier Tube.
4. Shorted "B+" Bypass Condenser.
5. Grounded Filter Choke.
6. Shorted Transformer Secondary.
7. Ground in Wiring.

If the vibrator does not operate, remove the vibrator and check for the following defects:

1. Low Battery Voltage.
2. Blown Fuse.
3. Burned Switeh.
4. Broken "A" Lead.

All of these points may be quickly checked by measuring the voltage between the center tap of the transformer primary and the REED terminal of the vibrator socket. This voltage should read 5.5 volts or more.

If the check is satisfactory, the vibrator should be tested for proper operation either in a vibrator tester or by the substitution of a new Mallory Replacement vibrator. Sticking or shorted vibrators are usually caused by "projections" being built us on the contact points. These "projections" (contact transfer) are the result of an unbalanced condition in the circuit. A careful check of the "buffer" condenser should be made. If this condenser is open or the capacity not as specified, it should be replaced with a Mallory Oil Filled Condenser, Type VB or OT having the specified capacity. NEVER GIIANGE TIIE SPECIFIED CAPAGITY OF TIIIS CONDENSER unless specifically instructed to do so.

## LOW "ß" VOLTAGES

Check the points given below as the cause for low "B" voltage.

1. Battery Voltage Low.
2. Corroded Fuse Clips.
3. High Switch Resistance.
4. Weak Rectifier Tube.
5. Defective Buffer Condenser.
(Caution: See preceding instruction on buffer condenser replacement).
6. Defective Filter Condenser.
7. Worn Vibrator.
(Check in tester or substitute new Mallory Replacement Vibrator).
8. Check for troubles in radio which will cause low voltage such as shorted cathode resistor, by-pass condenser, shorted transformer, defective tubes, etc.

## INTERMITTENT OPERATION

1. Generally caused by troubles in the receiver, such as defective antenna insulation or connections, defective wiring, defective tubes, etc. Other sections of the encyclopedia specifically explain this method of servicing these troubles.
2. Intermittent vibrator operation usually caused by worn vibrator nearing the end of its life.
3. Loose connections in the power pack.
4. Defective Rectifier Tube.

## UNUSUAL <br> MECHANICAL NOISE

Unusual mechanical noise from the vibrator may be caused by:

1. Vibrator touching other parts and vibrating against them or causing other parts to vibrate. Correct this trouble with a cardboard pad around the vibrator.
2. An old vibrator nearing the end of its life. 3. Loose case screws, or loose parts in the radio set.

## ELECTRICAL HUM FROM SPEAKER

Hum from the speaker is usually caused by:

1. Defective filter condensers (low capacity).
2. Microphonic Tubes.
3. Microphonic Condensers.
(Usually variable condenser).
4. Loose chassis screws.
5. Poor Grounds in Radio.

## DON'TS

1. NEVER CHANGE THE SPECIFIED CAPACITY OF THE BUFFER CONDENSER (unless circuit matching is carefully checked with oscillograph).
2. NEVER attempt to repair a vibrator. liiling contacts or bending springs destroys the factory adjustment which has been carefully made with expensive instruments.
3. NEVER replace a vibrator until you are sure it is defective.
4. NEVER hesitate to write Mallory for specific information and help.

## SELECTING UNLISTED REPLACEMENT VIBRATORS

If a Mallory replacement vibrator is needed for an unlisted set, refer to the " $C$ " notes 6 or 8 . These notes simplify the selection of the proper vibrator. Any Mallory-Yaxley distributor will gladly assist in this selection. If an authentic replacement is desired, have the distributor send the original vibrator together with the NAME and MODEL NUMBER of the receiver, to the Mallory Factory. The proper Mallory Replacement Vibrator will be promptly supplied.
The mystic veil has been torn from the vibrator type power pack and specific service helps have been listed. Servicemen should find that they can now work in an enlightened manner that will pay dividends in satisfied customers and extra profits.


A practical vibrator test, which will give the service engineer as good an indication of the vibrator condition as the tube tester does of tubes, will probably be of extreme interest to many in the service profession. Many inquiries have been received for information, which would outline the proper method of using an oscillograph for testing a vibrator. The use of an oscillograph for testing vibrators is much less valuable than the dynamic characteristics or the mutual conductance method would be in testing tubes. The English reading emission tester has become by far the most popular method of testing tubes.
There are a good many vibrator testers available but a simplified test would enable the service engineer to find out easily and rapidly the very things he needs to know about a vibrator. Earlier this article pointed out that vibrators should never need replacement until the contacts are worn to such an extent that the output of the power supply is unsteady or the vibrator fails to start at about $51 / 2$ volts.

The goodness of a vibrator may be tested by the value of the starting voltage the same as the goodness of a tube may be checked by the value of electronic emission from the cathode.

Phrasing a vibrator test into English reading indications, vibrators which will start at 5.2 volts or less are "good" vibrators and will give many more hours of satisfactory service. Vibrators that start between 5.2 and 5.6 volts are "doubtful" vibrators and may be expected to fail in the near future, Vibrators that only start above 5.6 volts are "bad" vibrators and may be expected to give immediate trouble, usually when the car battery is low and not being charged by the generator.

After the starting tests are made, the vibrator should be operated on 6 to $61 / 2$ volts with a voltmeter connected in the output circuit. If the voltage fluctuates over a fairly wide range, the vibrator is definitely bad, but a fairly steady output voltage indicates a good vibrator. This test is equivalent to the "Short's test" of tube testers.
Vibrators which have been subjected to these two tests may be properly classified and the good ones used with confidence.
Figure 13 shows a typical circuit of a tester which will provide the above tests.
The vibrator is first placed in the proper socket The voltage is then adjusted by the potentiometer with Switch $S_{1}$ held in a closed position, to 5.2 volts. Switch $S_{2}$ is then closed. If the vibrator starts, the starting voltage is 5.2 volts or less, indicating a good vibrator. If it fails to start, open Switch2 and readjust the potentiometer to 5.6 volts and again close Switch 2 By adjusting the voltage to various values and opening and closing Switche the exact starting voltage of the vibrator and its corresponding condition may be obtained.
After the starting voltage of the vibrator has been obtained, adjust the potentiometer so that the voltage is between 6 and $61 / 2$ volts, then observe the output meter for smooth flow of secondary power. The output meter can be calibrated in "good" and "bad" readings by using known good and bad vibrators.
Vibrator testers of this type will prove invaluable since the true condition of the vibrator may be quickly. easily and accurately determined.

# Auto Radio Installation and Interference Elimination 

The great majority of vibrators are used in automobile radio receivers, Therefore, a treatise on vibrators would scarcely be complete without some mention of Installation and Interference elimination. The proper installation of the radio in the automobile is all-important. Follow carefully the radio set manufacturer's installation instructions. Be sure to properly install the suppression equipment (condensers, sup)pressors, etc.) where specified. Above all, scrape the paint off of the metal around the holes used for mounting the set, to insure good grounds. If installations are made with this exacting care, it may require a few more minutes than a slip shod job, but it will repay you many times. Quite often many hours are spent in locating interference and when it is finally located, a good connection, a better ground, or a condenser in an out-of-the-way place, installed carefully according
to the manufacturer's instructions, would have saved all the extra time. That lost time is worth money to you. Then, too, a slip shod job is seldom ever entirely satisfactory to the customer.
It is, therefore, to your advantage to make the best possible installation.
Usually, if the manufacturer's instructions are followed carefully, the operation of the radio will be entirely satisfactory. This is especially true on the entirely satisiactory

## CHOOSING AND LOCATING

## THE ANTENNA

Before the all-steel top, the problem of antenna choice did not exist. There was, in most cases, from fi to 16 feet of ideal antenna area available by simply tapping in to it.

An ideal antenna is one having the largest possible area and greatest separation between itself and ground An auto radio must be very sensitive because in no case is the ideal from an antenna standpoint approached. The first introduction of antennas for the steel top cars were of the under-car type. Beneath the car is not the best place for an antenna as it satisfies nothing of the ideal and has several disadvantages. First, it is located near a number of sources of interference, such as wheel static, mechanical noise, etc It represents a large capacity to chassis and is hard to keep well-insulated from it. It is difficult to keep in place, as ruts, stones and vibration all tend to tear it from its mountings.

The best antennas available today are those of the rod or strip type. Most customers do not object to a rod on top of the car or one located possibly on the door hinge. The higher the antenna is located, the better it will be as it is farther from interference and the car chassis. A single rod 4 or 5 feet in length on the top of the car is much better than an equal number of square feet located close to the ground.

## INTERFERENCE

Occasionally, in new cars, and quite often in older cars, unusually troublesome cases of interference are encountered. When such troubles are encountered, it is best to just roll up your sleeves and go to work, for there are no hard and fast rules or cure-all methods of interference elimination. First determine the tyie of interference.

## CHASSIS AND ANTENNA PICK-UP

Two classes of interference exist in auto radio, chassis (lead) pick-up and antenna pick-up. To determine which one exists, ground the antenna lead close to the receiver. If the interference is eliminated, it is antenna pick-up. If interference continues, it is chassis or lead pick-up.

## CHASSIS PICK-UP

If interference is found to be chassis pick-up, be sure that all ground connections are clean and tight, all cables, tubes and pipes are grounded and are not rubbing against metal body parts or the receiver itself. If receiver has been properly installed according to the manufacturer's specifications, as to suppressors, condensers, filters, and the receiver wires have been kent out of the motor compartment or have been properly shielded, there should be no chassis noise.

## TYPES OF ANTENNA PICK-UP

## GENERATOR INTERFERENCE

Generator interference is clue to the sparking between the brushes and the commutator and is radiated from the car wiring to the antenna. Usually a condenser installed at the generator, in accordance with the installation instructions, will eliminate this trouble. If the installation of the condenser is not sufficient to completely eliminate this interference, it will be necessary to clean the commutator and possibly install new brushes. Figure 14 shows the proper method of installing the generator condenser.


Figure 14

## ADJUSTMENT OF GENERATOR

## AFTER INSTALLATION OF RADIO

Quite often it is necessary to 'set-up' --or increase the generator output after installing the radio to take care of the increased current consumption. In many cases the service engineer has set the generator to a point where the armature is "burned up" after a short period of use.

Before setting up the generator it is advisable to consult the instruction book supplied with the car to ascertain its maximum output. Never exceed this value. If no instruction book is available, 20 amps . in winter and 15 amps . in summer should be considered maximun. If the generator does not keep the battery fully charged at this maximum setting, the customer should purchase one of the small home chargers which
may be put on once or twice a week and left on overnight, thus assuring a good, hot battery at all times. One burned out armature will pay for the cost of the charger. The use of the charger will prevent overtaxing the generator and at the same time is useful, as a well-charged battery is necessary for starting, especially in the winter season.

## HIGH TENSION IGNITION NOISE

This type interference is created between the coil and the spark plugs. Usually, with the newer cars and radios, a distributor suppressor is sufficient to reduce this type noise to an acceptable value. If the low tension leads are carried close to the high tension leads, it is advisable to reroute these leads so that they are as far apart as possible. Spark plug suppressors should not be used unless absolutely necessary. Quite often the condenser located at the distributor points will be found defective in which case it will be necessary to replace it. If the car has been in service for some time, inspect the gap between the rotor arm and points. If it is found that the contacts are too wide or burned, peen the rotor contact so that the gap is approximately .005 inches. Care should be taken not to crack the bakelite on the arm or peen it out so much that it will touch the points. Spark plug interference may be introduced into the radio through the oil pressure gauge tubes, windshield wiper, tube, etc. Tubes should be securely bonded to the bulkhead with a piece of heavy braid grounded securely. Keep the antenna lead as far from the high tension system as possible. Install the radio at a distance from the coil, so that it is not in the field of the secondary winding. In one make of radio, a mechanism is incorporated which introduces ignition noise $180^{\circ}$ out of phase, which when adjusted properly, will eliminate a large portion of the interference. Never attach any colldenser to the low voltage lead running from the coil to the distributor.

## CAR BODY INTERFERENCE

While this type of interference is less frequent, it is by far the most baffling to locate and effect a cure. If the car has been in service for considerable time, it is advisable to go over the entire car, tightening all body bolts and screws which make contact with the metal parts of the car. One loose bolt, by making interrupted contact, may caluse a noise which makes reception totally unsatisfactory while the car is in motion.
In automobiles using rubber-floated motors, a large portion of the noise may be eliminated by bonding the motor to the frame with a very heavy piece of flexible braid, Leave a little slack in the braid to prevent breaking from vibration. When bonding these parts, make sure all points are scraped clean and a good tight joint is made. Where there is a possibility of the muffler making contact with the frame from vibration ground the exhaust pipe to the frame at the muffler.

## WIIEEL STATIC

Wheel static may be determined by allowing the radio to operate while the car is coasting (ignition off) over a dry concrete street. Cars that are equipped with wood wheels seem to be the worst offenders. To eliminate this interference, springs should be installed at the wheel hubs. Some of the modern cars have these installed so that there will be no trouble from this source. The brakes may also cause a noise similar to wheel static if they drag slightly, the noise stopping completely, or getting worse as the brakes are applied. In this case a heavy bond should be installed between the brake shoe and chassis. Wheel static may be carried to the radio through light wires, horn wires or accessory leads, in which case they should be byyassed with a .1 mfd . paper condenser. In some cases it is very necessary that the hood make good contact with the frame. Small pieces of metal should be installed at the moulding which goes around the edge of the hood. In extreme cases of noise, radio frequency chokes such as the Mallory RF581, RF582, or RF583 may be necessary in addition to the condensers used.

## INTERFERENCE FROM APPLIANCES

Cigar lighters, windshield defrosters, heater fans, etc., cause or may carry interference from an offending source to the radio. An ammetgr condenser should be installed bet ween one of the terminals and the chassis Be sure to scrape all paint away from the chassis where the condenser is grounded. Ammeter type condensers will be satisfactory for any of these appliances when installed close to the source of interference. When using these by-pass condensers, make the leads as short as possible. Electric oil and temperature gauges may cause noise, in which case by-pass condensers should be installed at the controlling mechanism. This remedy also applies to electric gas gauges. Spark intensifiers should not be used.

DOME LIGHTS
In older cars the dome light is usually the greatest source of antenna pick-up interference. First check the dome light by disconnecting the dome light connection back of dash and grounding the wire. This should eliminate the interference. If so, install a Mallory dome light filter type DL445, as directed in the instruction sheet enclosed with each unit. Be sure this is installed as far up into the corner post of the automobile as possible. Make all grounds secure.

## LOOSE CONNECTIONS

Loose connections are a frequent cause of interference Be sure light bulbs are tight in their sockets, that al battery cable connectionsare tight and well grounded that secondary leads at distributor and spark coil leads are making good tight contact.

## PASSENGER BODY PICK-UP

In some older cars a person's body acts as a carrier of noise from the floor boards to the roof antenna. When this happens, shield the floor boards of the front seat by covering thein with a copper screen and grounding it at several places to the frame.

## LOCAL INTERFERENCE

Interference picked up from powerlines and electrical equipment should not be confused with ignition noise. Electrical or outside interference will be heard whether car is running or not. Ignition noise should be checked in a location that is free of outside disturbances.

As explained at the beginning, there is no cure-all for interference and these suggestions have been given only as an aid in the elimination of motor car interference.

Read the "C" section of this Encyclopedia over again and again until you thoroughly understand the underlying principles of $D C$ power circuits. The increased knowledge gained will pay you big dividend in more satisfied customers, served in less time.

## VIBRATOR POWER SUPPLY UNITS


"Vibrapack," a copyright Mallory trade name idenifies a group of Vibrator Power Supply units, designed for universal application with radio receivers, ransmitters, automobile P.it. systems, as well as for other uses.
There are five types:

Cat. No.	Type	Nominal Output Voltage	Nomina Input Voltage
VP-551	Self-Rect.	125-150-175-200	6.3
VP-552	Self-Rect.	225-250-275-300	6.3
VP-553*	Tube Rect.	125-150-175-200.	6.3
VP-5i4*	Tube Rect.	225-250-275-300	6.3
VP-G556	Self-Rect.	225-250-275-300	12.6

*Tube rectifier types required only for applications where B - cannot be at ground potential.

VP-G556 is similar in construction to VP-552 except that it is designed for use with a 12 -volt storage battery and is thus especially adapted for use on airplanes, boats, and busses where a 12 -volt electrical system is employed.

All Vibrapacks are equipped with a convenient tap switch so that a selection of four output voltages, in 25 -volt steps can be made, as desired.

Vibrapacks are equipped with complete, built-in noise suppression equipment, but do not include high voltage filter. The high voltage filter requirements are similar to equivalent AC power packs, the design depending on the application.
Radio servicemen and amateurs have long recognized the advantages provided by Vibrator-type power supplies. As a means of obtaining " $B$ " voltage from a storage battery, such supplies have no equal from the standpoint of efficiency, economy, dependability and compactness. It is these qualities that have lead to the universal adoption of Vibrator supply systems in automobile receivers.
Many experimenters have attempted to construct home-made vibrator power supplies, and have found to their sorrow that their units were most unsatisfactory. A "B" power unit for 100 -volt AC operation can be constructed from parts selected at random. As long as the individual parts are capable of handling the desired power, satisfactory results will be secured
However, a vibrator power supply cannot be built in this manner. Unless a perfect electrical match is maintained between the various components, the circuit conditions may be such that a high current exists at the vibrator contact points at the time when they are "making" or "breaking." and under such conditions vibrator life and efficiency may be disappointing.
There has always existed a real and active demand for a thoroughly reliable vibrator power supply; a power supply which would be flexible in application and which would maintain its efficiency and vibrator life under a wide range of load conditions. Laboratory research developed the Vibrapack for all electronic applications requiring DC voltages up to and including 300 volts at 100 milliamperes. Within their rated load limits, proper matching and synchronism of the components occur so that long vibrator life and economical operation is assured. Any amateur, radio service engineer or experimenter who can hook-up and apply a common AC power supply can install a Vibrapack.

## WHICH TYPE OF VIBRAPACK TO USE

The choice between synchronous or self-rectifying Vibrapack types V1-551 or VP-552, and the tube rectifying types VP-5.53 or VP-5.54 should be made on the basis of circuit requirements. If the filter chokes may be in the positive ( + ) lead, and B - may be connected to one side of the filament circuit, use the smaller synchronous or self-rectifying Vibrapacks, types VP-551 or VP-552. On the other hand, if it is necessary for B - of the power supply to be above ground in potential-if a resistor or choke is incorporated in the negative circuit to provide bias voltage-a tube rectifier type Vibrapack, V1-553 or VP-55t should be used. There is no objection, of course, to using the larger Vibrapacks, types V1'-553 or VP' ${ }^{1} 554$, with $B-$ grounded.
In all applications, however, Vibrapacks will have satisfactory vibrator life, providing the maximum current rating is not constantly and continually exceeded.

## INSTALLATION DATA

Location-The selection of the position for mounting the Vibrapack is important. Care should be exercised to locate this position at the maximum distance from the RF circuits of the receiver, or input to the amplifier, so as to eliminate as much as possible the introduction of "hash" radiation to poorly shiclded high-gain circuits, and to minimize possibilities of magnetic coupling from the Vibrapack transformer. In heavy-duty applications such as radio transmitters, public address systems where the Vibrapack will be worked close to its maximum rating, it is especlally desirable to keep the wires between the battery and the Vibrapack as short as possible. In airplane installations, for example, it may be desirable to place the Vibrapack close to the storage battery, opening and closing the primary circuit with a relay. In most applications, however, the Vibrapack will be mounted directly on the amplifier, transmitter or receiver chassis in the same position that would be used for an equivalent $A C$ power pack.

Mounting-Mounting is accomplished by drilling four $1 / 2^{\prime \prime}$ holes which line up with spade bolts attached to chassis of the Vibrapack. The rubber grommets furnished are inserted in these holes and the Vibrapack mounted thereon, with the cup washers placed on both sides of the grommets for distribution of the load, before the nut is placed on the spade bolt. This insulates the Vibrapack from the chassis both elecinsulates the Vibrapack $f$
trically and mechanically.

## HOW TO CONNECT THE VIBRAPACK

The connections made to the Vibrapack are "A HOT," "A GROUND," "B B, ," and "B-." Provision is made for correct operation of all types of Vibrapacks on battery grounds of either positive or negative polarity. Special patented synchronous vibrators on types VP-551 and VP-552 are reversible. Hy determining the polarity of the grounded side of the battery and following label directions. the " $1 B^{\prime}$ " voltage will be properly polarized. Special Vibrators on types VP-553 and VP- 554 do not require polarization of output. On types VP-551,VP-552, and VP-G55f, " A " ground and " $\mathrm{B}-$ " must be connected to the chassis itself, as they are common and at ground potential. On types VP-5.53 and VP-554, only " $A$ " ground must be connected to the chassis, as "B-" may float if desired on these types.
Grounding of the Vibrapack chassis is best accomplished by soldering a heavy strip of stranded braid on the chassis and grounding the other end to the Vibrapack chassis at the screw located directly under the terminal board. The length of this lead must be kept at a minimum for best results.
Ground Only at One Point-The leads from the battery to the set and the Vibrapack must be as short and as large in cross-section as is conveniently possible. No. 14 wire is satisfactory if 10 feet total or less is used, but for longer leads, nothing smaller than is used, but for longer leads, nothing smaller than
No. 12 should be employed. It is preferable to use seprarate leads for the Vibrapack and the tube fitaments or heaters. The efficiency and output of the Vibrapack depends upon the maintenance of a low voltage drop in the connecting leads. These leads to the battery should be twisted together and should be removed from the proximity of the antenna lead.
The off-on switch used for operating the Vibrapack must be of high current carrying capacity and low voltage drop characteristics. A high current toggle switch having a rating of at least 10 amps ., is recommended. THE VIBRAPACK MUST BE PROTECTED WITH A $15-A M P$. FUSE. While it is rossible to successfully use an automotive type fuse, the standard screw type household fuse is recomthe standard screw type household fuse
nended because of the low voltage drop.
Filter Requirements-The " $B+$ " lead must be filtered for low frequency or audio hum. The filter is not included with the Vibrapack. This permits the components to be selected by the purchaser to meet the particular requirements of the installation. The filter must be of the capacitor input type and have about 8 mfd . in the first condenser. The capacity of the condenser may vary, depending upon the filtering desired, ranging from 4 to 24 mfd. with a 5 to 15 henry choke. The DC resistance of this choke should be as low as practical to secure maximum output voltage from the Vibrapack. For types VP- 552 , VP-5.54 and VP-G. 556 (high output units) 100 to 200 ohms is suggested, For types VP-551 and VP-553, not over 400 ohms should be used, depending upon the " $B$ " current.
Use Capacitors having a rating of 450 working volts with Vibrapack types VP-int and VP-554, or having a rating of either 450 or 250 working volts with Vibrapack types VP-5.51 and VP-553.
Sensitive radio receivers may require the use of a .5 or 1.0 mfd . RF condenser (Mallory types RF481 or RF482) connected from "A HOT" to ground in the radio receiver. It may also be necessary to use a .1 mfd. Mallory TP 418 condenser connected between " $B+$ " and Ground in the radio receiver. On installations using Vibrapack VP-.553 and VP-554, it may be necessary to use a .25 mfd . Mallory type TP440 condenser connected between " $\mathrm{B}-$ " and Ground in the radio receiver.
If any difficulty is experienced with vibrator "hash" when using a Vibrapack to operate a regenerative, or super-regenerative short wave receiver, by-pass the "hot" sides of the filaments or heaters to the chassis, mounting the by-pass condensers close to the tube sockets. One-half infd. 200 -volt tubular paper by-pass condensers Mallory type RF481, are recommended.

These by-pass condensers are required to eliminate any remaining traces of RF (hash) interference that is subject to pick-up by receivers of unusual sensitivity. Adjusting the Output-It is advisable that the Vibrapack be turned off when any adjustment is made on the voltage control switch. The lower output is obtained at position No. 1 and the voltage increased over the range in steps of 25 volts each to the highest output at position No. 4. Should a variation occur in the voltage of the battery, the output voltage will vary in direct proportion to the input voltage variations. Vibrapacks may be operated satisfactorily through a range of applied voltage from 5.5 to 8.0 volts. This range normally occurs in a 6 -volt, 3 -cell storage battery during the cycles of charge and discharge.
It must be remembered, however, that the maximum life from the vibrator, tube and other components will be secured when the voltage is near the rated value of 6.3 volts.
Special Precautions-Do not exceed 32.5 watts as total output from Vibrapacks VP- 5.52 and VP- 554 , or 16.5 watts from Vibrapacks VP-551 and VP-553, when operating with 6.3 volts at the Vibrapack terminals.
Vibrators and tubes identical to the original supplied must be used for replacement. Do not attempt to use type 0Z4 tube with Vibrapack VP-553 in place of type 6X5 tube, unless " $B$ " current of more than 40 ma . is to be drawn from this pack. For load currents below 35 ma. the $6 Z \mathrm{Y} 5 \mathrm{G}$ rectifier may be substituted for lower heater consumption than the 6X5 requires.
The VP-G556 Vibrapack should not be operated under conditions where the charging rate of the generator is such as to raise the potential of the battery above 15 volts.

## " CN " NOTES

C1-Use Mallory Replacement Vibrator Type 312T in early models and Type 292 in late models of this receiver. See Note C3.
C2-Use Mallory Replacement Vibrator Type F312 in early models and Type F221 in late models of this receiver. See Note C3.
C3-When unusual vibrator troubles are experienced a thorough check should be made of all of the power pack parts and the circuit. It is especially important that the secondary buffer condenser, connected across the secondary of the transformer be in good operating condition and within plus or minus $10 \%$ of the specified capacity. Be Sure to Check Buffer Condenser. In some instances this condenser may be two condensers with the common lead grounded. In certain sets resistors have been used in series with these condensers. If the replacement of a buffer condenser is necessary use the Mallory Oil Filled, high voltage condenser, Type "OT" or "VB" as required. NEVER SUBSTITUTE A DIFFERENT VALUE-USE ONLY THESPECIFIED CAPACITY.The wrong buffer capacity may cause serious damage to the vibrator in a very short time. See Condenser listing for specified capacity. C4-Use Mallory Replacement Vibrator Type 312T in early models and Type 225 in late models of this receiver. See Note C3. C5-Use Mallory Replacement Vibrator Type 210-237 (210 Series) in both the "Standard"and the "Master" models. See Note C3.
C6-These sets use an interrupter type (tube type) vibrator; however the size and method of connection are unknown. For an emergency selection of a replacement vibra-
tor refer to the Vibrator Connection Charts, pages 232 to 234. Select an interrupter type vibrator which is approximately the same size and has identically the same connection arrangement as the original. For plug-in vibrators the pin-base must have the same arrangement and connections. For lead type vibrator the reed lead is red and the interrupter contact leads (two) will be yellow. Any Mallory-Yaxley Distributor will gladly assist in making this selection. If an authentic replacement is desired, have your distributor send the original vibrator, together with the name and model of the receiver to the Mallory Factory. The proper Mallory replacement vibrator will be promptly supplied. Sce Note $\mathbf{C 3}$.
C7-No information available on this vibrator circuit. See Notes C6 or C8.
C8-These sets use a synchronous (selfrectifying) type vibrator; however, the size and method of connection are unknown. For the emergency selection of a replacement vibrator refer to the Vibrator Connection Charts, pages 232 to 234. Select a synchronous type vibrator which is approximately the same size and has identically the same connection arrangement as the original. If the original vibrator has condensers connected from the rectifier springs to the reed BE SURE the selected replacement vibrator also has condensers. For plug-in
type vibrators the pin-base must have the same arrangement and connections. For lead type vibrators refer to the Vibrator Connection Charts, pages 232 to 234, for the color of leads and connections. Any Mallory-Yaxley distributor will gladly assist in making this selection. If an authentic replacement is desired, have the distributor send the original vibrator, together with the name and model of the receiver, to the Mallory Factory. The proper Mallory Replacement Vibrator will be promptly supplied. See Note C3.
C9-See Note C6. Two Types of Power Packs are used: one with 25Z5 and the other an 84. Suggest Type F221, F292, F294, F297. See Note C3.
C10-Use Mallory Replacement Vibrator Type F221. See Note C3.
C11-Early type with vibrator mounted on the power transformer uses an F 220 C , late or plug-in type uses an F294.
C12-The first series of this receiver used a carbon point vibrator for which there is NO replacement. Obtain a new transformer (latest type for this set) from the manufacturer. (Wells-Gardner Co., Chicago, Ill.) After the new transformer has been installed use the Mallory Replacement Vibrator Type 292. A small amount of "hash," which cannot be eliminated, will be experienced with this receiver. See Note C3.

C13-This Mallory Replacement Vibrator used in early models. See Note C3.
C14-This Mallory Replacement Vibrator used in late models. See Note C3.
C15-Use Mallory Cup Adapter with Mallory Replacement Vibrator Type 273. See Note C3.
C16-12 Volt Receiver. See Note C3.
C17-Use Mallory Replacement Vibrator Type 285X for 1935 models. See Note C3.
C18-Use Mallory Replacement Vibrator Type 245 for early 1936 models. See Note C3.
C19-Use Mallory Replacement Vibrator Type 245A for late 1936 models. See Note C3.
C20-Use Mallory Replacement Vibrator Type 296 for six prong socket and Type 294 for four prong socket. See Note C3.
C22-A few early models of this receiver used Mallory Vibrator Type 75X as original equipment. Use the Mallory Replacement Vibrator Type 275XS in these early models. Use the Mallory Replacement Vibrator Type 285 XS in all later models. See Note C3.
C23-Some production on this model used a plug-in type vibrator instead of the lead type. Select the proper Mallory Replacement Vibrator as outlined in C6. See Note C3.

Chart Showing Automobile Antenna and Battery Grounds

\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Car \& 1931 \& 1932 \& 1933 \& 1934 \& 1935 \& 1936 \& 1937 \& 1938 <br>
\hline Auburn \& \& P.......No \& P...... No \& P......Yes \& P.....Yes \& P.....Yes \& P.....Yes \& <br>
\hline Austin \& P.......No \& P......No \& ${ }^{\text {P }}$....... No \& ${ }_{\mathrm{N}}^{\mathrm{P}}$. $\ldots . . \mathrm{Yes}$ \& \& \& \& <br>
\hline Buick.. \& N..... . ${ }^{\text {P }}$ No
No. \&  \& N.....Yes \& N.....Yes
$\mathrm{P} . . . . \mathrm{Yes}$ \& N......Yes \& $\xrightarrow{\text { N. }} \mathrm{P}$........N ${ }^{\text {No }}$ \& N..... Yes \& $$
\begin{aligned}
& \text { N......Yes } \\
& \text { P }
\end{aligned}
$$ <br>
\hline Chevrole \& N.......No \& N........No \& N......Yes \& N......YYes \& N.......*** \& N.......No \& N...... No \& <br>
\hline Chrysler \& P.......No \& P.......No \& P.....Yes \& P..... Yes \& P.....Yes \& P.....Yes \& P.... $\dagger \dagger$ No \& P.......No <br>
\hline Continent \& \& P...... ${ }^{\text {No }}$ \& N......
Po

N \& \& \& P..... Yes \& P.....Yes \& <br>
\hline Cunningham \& N.......No \& N.......No \& N....... No \& N......No \& \& \& \& <br>
\hline DeSoto.. \& P......No \& P $\quad$...... ${ }^{\text {No }}$ \& P..... Yes \& P.....Yes \& P.....Yes \& P..... Yes \& P....... ${ }^{\text {No }}$ \& P......No <br>
\hline Dodge. \& \& P ${ }^{\text {P }}$. $\cdot .$. No \& P.....Yes \& P.....Yes \& P. . . . Yes \& P.....Yes \& P....... ${ }^{\text {No }}$ \& P...... ${ }^{\text {No }}$ <br>
\hline Duesenberg \& N..... . No \& N...... ${ }^{\text {No }}$ \& N...... ${ }^{\text {No }}$ \& N......No \& N.......No \& N...... ${ }^{\text {No }}$ \& \& <br>
\hline Durant. \& N..... . No \& N......No \& \& \& \& \& \& <br>
\hline Fssex \& N...... ${ }_{\text {No }}$ \& $\underset{\mathrm{p}}{\mathrm{N} . . . . . .}$ No \&  \& P..... Yes \& P.....Yes \& P.....Yes \& P.......No \& P.......No <br>
\hline Franklin \& P.........No \& p........No \& p.......... ${ }^{\text {a }}$ \& P.....Yes \& \& \& \& <br>
\hline Graham \& P.......No \& P.......No \& P.......No \& P.....Yes \& P.....Yes \& P.......No \& P........§ \& P......No <br>
\hline Hudson \& N..... . No \& N..... ${ }^{\text {No }}$ \& N......No \& P.....Yes \& P.....Yes \& P......No \& P....... No \& <br>
\hline Hupmobile \& P...... ${ }^{\text {No }}$ \& P.......No \& P..... Yes \&  \& P.....Yes \& $\underset{\mathrm{p}}{\mathrm{p}}$. \& \& <br>
\hline Lafayette \& \& \& \& \& \& P...... ${ }^{\text {Po }}$ \& \& <br>
\hline LaSalle. \& $\stackrel{\text { P }}{\mathbf{N} . . . . . . . . . ~}{ }^{\text {No }}$ \& P....... Y ( ${ }^{\text {N }}$ \& $\stackrel{\mathrm{P}}{\mathrm{N} . . . . . .) Y e s}$ \& $\stackrel{\text { P. }}{\text { N.....YYes }}$ \& $\stackrel{\text { P. . . . . Y Yes }}{\text { N }}$ \& ${ }_{\text {P }}^{\text {N....... }}$ Yos \& N......) Yes \& $\stackrel{\mathrm{P}}{\mathrm{N}, \ldots . .} \mathrm{Y}$ Yes <br>
\hline Marmo \& P.......No \& P.......No \& P...... ${ }^{\text {No }}$ \& P.......No \& \& \& \& <br>
\hline *Nash \& P.........No \& P...... ${ }^{\text {No }}$ \& P..... Yes \& P.....Y Yes \& P.....Yes \& P.....tNo \& P.......No \& P......No <br>
\hline Oldsmobil \& N..... ${ }^{\text {No }}$ \& N...... ${ }^{\text {No }}$ \& N..... Yes \& N..... Yes \& N......No \& N......No \& N......No \& <br>
\hline Packard \& P.......No \& P......No \& P.....Yes \& P.....Yes \& P..... Yes \& P..... Yes \& P.....Yes \& $\underset{\mathrm{p}}{\mathrm{P}} . . . . . \mathrm{Yes}$ <br>
\hline Pierce-Arro \& \& P.....Yes \& P..... Yes \& P.....Yes \& P..... Yes \& P.....Y Yes \& \& <br>
\hline Plymouth \& P.......No \&  \& $\stackrel{\text { P..... Yes }}{\text { N....Yes }}$ \& $\stackrel{\text { P. . . . }}{\text { N }}$. ${ }^{\text {Yes }}$ \&  \& P......) Y (es \& N.......No ${ }_{\text {No }}$ \& $\stackrel{\text { P...... }}{\text { No }}$ <br>
\hline Reo \& N...... No \& N......No \& N..... Yes \& N...... No \& N..... Yes \& N..... Yes \& \& <br>
\hline Rockne \& \& P.....Yes \& P.....Yes \& \& \& \& \& <br>
\hline Studebaker

Stutz. \& \& P. ${ }_{\text {N. . . . . . }}$ Yos \& P.....Yes \& P..... Yes \& P.....Yes \& $\stackrel{\text { P }}{\mathrm{N}}$. \& $$
\begin{aligned}
& \text { P. . . . Yes } \\
& \text { N. . . . }
\end{aligned}
$$ \& P.....Yes <br>

\hline Stutz. ${ }^{\text {Teraplane. }}$ \& \& \& \& P......Yes \& P......Yes \& P.......No \& \& P...... ${ }^{\text {No }}$ <br>
\hline Willys... \& N...... No \& N...... No \& N..... $\dagger$ No \& \& N...... No \& N...... No \& N...... ${ }^{\text {No }}$ \& N...... No <br>

\hline *Some models hav N-Negative batte $\mathbf{P}$-Positive batter \& **Stand unded to chas nded to chassis. \& Yes; Master, \& | $\dagger$ Some |
| :--- |
| Yes |
| No | \& equipped with not equipped \& built-in antenn ith built-io ante \& \& w, Yes. Models, No; \& rge Models, Yes. <br>

\hline
\end{tabular}







Avoid Grief-Insist on Mallory 8-Contact Replacement Vibrators

When you buy a Mullory 8-Contact Replacement Vibrator you are assured of these benefits: 1. Lowest cost per hour of actual use. 2. Trouble-free long life. 3. Positive starting. 4. Easy installation. 5. Freedoni from lead breakage. 6. Freedom fromfailures due to lead corrosion. 7. Absolute freedom from broken reeds.

Mallory 8 -Contact IReplacement Vibrators are built by the most highly specialized group of technicians in the vibrator industry. The majority of these employees have been with Mallory since the beginning of the vibrator industry. Such a highly trained personnel can only assure the highest quality of workmanship possible. Mallory pioneered vibrators for auto-
mobile radios and has always led in all new developments in the vibrator industry.

Because Mallory is the world's largest manufacturer of electrical contacts, you are assured the highest contact quality in vibrators. Outstanding quality construction features are: 1. Selected pure tungsten contacts. 2. Special high tensile reed. 3. The highest quality of insulation specially processed in the Mallory factory. 4. Sturdy construction. 5. Low loss of magnetic circuit. 6. Pure rubber insulated tubing. 7. Extra flexible tinned copper lead wires. 8. High contact pressure. 9. Sealed tamper-proof condensers.



## Avoid Grief-Insist on Mallory 8-Contact Replacement Vibrators

When you buy a Mallory 8 -Contact Replacement Vibrator you are assured of these benefits: 1 . Lowest cost per hour of actual use. 2. Trouble-free long life. 3. Positive starting. 4. Easy installation. 5. Freedom fromlead breakage. 6. Freedom fromfailures due to lead corrosion. 7. Absolute freedom from broken reeds.

Mallory 8-Contact Heplacement Vibrators are built by the most highly specialized group of technicians in the vibrator industry. The majority of these employees have been with Mallory since the beginning of the vibrator industry. Such a highly trained personnel can only assure the highest quality of workmanship possible. Mallory pioneered vibrators for auto-
motile radios and has always led in all new developments in the vibrator industry.

Because Mallory is the world's largest manufacturer of electrical contacts, you are assured the highest contact quality in vibrators. Outstanding quality construction features are: 1. Selected pure tungsten contacts. 2. Special high tensile reed. 3. The highest quality of insulation specially processed in the Mallory factory. 4. Sturdy construction. 5. Low loss of magnetic circuit. 6. Pure rubber insulated tubing. 7. Extra flexible tinned copper lead wires. 8. High contact pressure. 9. Sealed tamper-proof condensers.

# Mallory Vibrator Type Number Cross Reference Chart 

In many instances original equipment Mallory Vibrators will be found to bear the Mallory number listed under the first column. Refer to third column for correct current Mallory Replacement Vibrator to employ.


## Transformers

TIIE design of a reliable power transformer, having high elliciency, requires fairly elaborate calculations, and to take into account the d.e. which flows in a transformer secondary when a half-wave rectifier is used, some interesting equations have been derived.

A simple approximate-design method will be given, for the construction of single-phase low-powered transformers up to 180 voltamp., or 180 watts for approximately unity power factors. This design is especially suited to transformers which supply a full-wave rectifier and filament energy to an a.c. powered radio receiver, three factors making it possible to secure a satisfactory transformer without complicated design nethorls, these factors being:

1. There is no urgent need for high efficiency. An 80 per cent eflicient transformer which takes 60 watts to supply 48 output watts is fairly satisfactory, if it can radiate the heat which it generates.
2. These transformers are operated at a fairly constant load. This improves the maintenance of the various output voltages as each secondary winding will have a constant $I R$ drop.
3. The load on the transformer secondary is nearly of unity power factor. The filament power load is essentially a resistance load, with unity power factor. The current supplied to the filter has slightly less than unity power factor, but this can be disregarded in low-powered transformers. The indirect heated receiving tubes, such as the 227 requires less than half as much d.c. power in their plate and grid circuits, as that which is needed to heat their cathodes. This would mean a unity power-factor heater supply and (assuming a series voltage divider) less than half as many additional wat ts for plate and grid supply, at a lower power factor. It is true that a power tube, such as 250 at its maximum rating, uses slightly over three times the wattage in its $B+C$ circuit than in its filament. It is rare, however, to have more than two power tubes in a receiver, and the assumption that the power factor of the secondary is unity is usually not over 20 per cent off. This means that the wire of the high-voltage secondary and of the primary should be increased to allow for this addled current.
Small Transformer Details-Econony in a transformer is secured when the winding
encloses a maximum of core area with a minimum of wire, and the magnetic path should be as short as possible.
The core form of a small transformer can be of several shapes, but it is usual to use standard punchings shaped like capital letter E's. As a rule, two punchings are uscd, one having longer legs than the other so that the magnetic circuit "breaks joints" in stacking the iron. Another convention usually followed in small transforners is the use of a single-winding form, all secondaries and primary being on the nuiddle leg of the $E$ core.

The spool form is usually an insulating tube, and side pieces may be fitted on which terminals are placed, or, if the coil is to be machine wound with interwoven cotton, the side pieces can be omitted, and flexible leads provided.

Ten Steps in Designing a Small Power Transformer-1. Delermine the Volls and Amperes Needed for Each Secondary.
$a$. Find the total maximum
secondary watts $=W_{s}=E_{1} I_{1}+E_{2} I_{2}+\cdots$ (where $E \times I$ refers to the wattage in each secondary winding)
$b$. Find the total watts needed for primary ( $W_{p}$ )
Assumink 90 por cent efficiency $W_{p}=$ $\boldsymbol{W}_{s} / 0.9$. Where $\boldsymbol{W}_{s}=$ Secondary watts.
c. Find primary amperes assuming 90 per cent power factor

$$
I_{p}=\frac{W_{p}}{E_{p} \times 0.9}=\frac{W_{s}}{0.81 L_{p}}
$$

where $E_{p}=110$ volts, $I_{p}=W_{s} / 89.1 \mathrm{amp}$.
2. Size of Wire. Knowing the current for each winding, the wire size is determined by the circular mils per ampere which it is desired to use. A safe rule is to use 1,000 cir. mils per ampere for transformers under 50 watts, and 1,500 cir. mils per ampere for higher powers-however, most commercial designs use 800 cir. mils per ampere.
3. Core Considerations. A curve showing core areas for different powers is Figure "A" which shows the area for 40 watts to be 1 sq. in., 70 watts, 1.5 sq. in., 120 watts, 2 sq . in. The area of the core is the same as the inside dimensions of the spool, making a 10 per cent allowance for stacking; for example, a spool 1 by 2 in . inside would enclose 2 sq. in., but, allowing for a 10 per cent loss, only 90 per cent or $0.9 \times 2=1.8 \mathrm{sq}$. in. is the net
core area. The core area is needed to determine the turns per volt.
4. Core-Ioss and Induction. The flux density at which the core is to be worked determines the iron (core) loss. Figure "B" gives several curves of different core materials, watts per pound being plotted against flux densitios in kilolines per square inch. Sixty-five kilolines per square inch is an average value of the induction. The making of a curve such as Figure " 13 " depends largely on experimental data, not directly on a theoretical basis. For this reason, no definite value of the core loss can be given; it depends on the quality of core material which is available. Standard core material generally has a power loss of .86 watts per pound. It should be noted that leetter and better core material is constantly being made, having lower loss per pound, so that the use of higher flux densities is becoming possible. Up to 15 kilolines is not unconmon, but unusual for this application. The core loss increases with frequency, a typical curve being Figure "C."
5. Induced-voltage Equation, Turns per Volt. The elementary definition, that $10^{8}$ magnetic lines cut, per second, will induce one volt pressure, is the basis of the equation

$$
E=\frac{B A N f}{10^{8}} \times 4.44
$$

where $E$ is the voltage, $A$ the area of the core, $B$ the flux density in the same units as $A$, $f$ the cycles per second, and $N$ the number of turns. A more useful working equation for small power transformers is obtained by solving for $N / E$ in turns per volt:

$$
\frac{N}{E}=\frac{10^{8}}{B .1 f 1.41}
$$

Figure " $D$ " is an alignment chart of this equation. The left column is $B$ the flux density, in both kilolines per square inch and kilogausses (kilolines per square centimeter), the center column is the net core area in both square inches and square centimeters, the right column giving the turns per volt for both 25 and 60 cycles per second.
Using a flux density of 65 kilolines per square inch and the net core area mentioned in step 3 ( 1.8 sq . in.), the turns per volt for 60 cycles are found to be 3.1 turns per volt. Thus for each volt on the transformer, there must be 3.1 turns. It is customary to change the turns per volt to an even number so that the proper center taps can be made. In this case, by using 4 turns per volt, with the same core area, the induction will be lower, with a corresponding lower core loss. It is also quite possible, and sometimes advisable,

to change the core area so that an even number of turns per volt is given．For ex－ ample，by increasing the core area to 2.8 sq．in． 2 turns per volt could be used，or decreased to 1.4 sg ．in．so that 4 turns per volt would be used．The reason for desiring the even numbers of turns per volt is to supply the $1 / 2$－volt steps for receiving tubes， such as $71 / 2$ volts，which would require an integral number of turns when the turns per volt are used．
The voltage drop in the transformer wind－ ing should be mentioned here．For instance， the load voltage at a tube filanent is lower than the no－load voltage by the amount of


IR drop in the winding and the connecting wires to the tube．Thus，it may be that to secure $71 / 2$ volts at the tube filament，the transformer no－load voltage will have to be 8．In this case，any integral number of turns per volt，either odd or even，will suit the design．

6．Turns for Each Winding．In step 1 the desired voltages were given，$E_{1}, E_{2}$ ，etc． Using the value of turns per volt in step 5 ， the total turns for each winding are found． For example，with 4 turns per volt，a $110-$ volt winding should have $1 \times 110=4.10$ turns．

7．Winding Space Required．From the total turns for each winding，and the wire size， the total area of winding space is calculated． Different wires and insulations have definite turns per square inch．The method of insula－ tion，however，may have these values vary by factors of as much as three to one．That is，a 900 －turn coil wound in layers with enamel wire may take up one square inch of cross－section area．By interleaving thin in－ sulating paper between layers，only 600 turns can be wound in a square－inch area； and by using a certain size of cotton inter－ woven between turns，only 400 turns can be wound in a square inch．Thus．the space of winding depends to a large degree on the kind and thickness of insulation．Double cotton－covered wire takes up considerably more space than enameled wire．Yet，if the extra－needed insulating space for the inter－ layer protection is considered，the space ratio may not be so great．

After adding up the winding space of all the windings the area should be compared with that of the core．If the winding will go in the core space，this part of the design is finished．

If the wires will not go in the available space，the winding nay be redesigned，or the
core area increased．Using thinner coverings for wire，fewer secondaries or fewer circular mils per ampere will decrease the space needed for the wire．A larger iron size or a thicker stack of the same sized iron will in－ crease the core area and allow a smaller number of turns per volt，thus decreasing the cross section of the winding．

## 8．Copper Loss．

a．Find the length of the mean（average） turns in feet．
$b$ ．Find the length of each winding in feet by nultiplying the number of turns by the mean turn length．
$c$ ．From the following wire table find the ohns per 1,000 feet for the size wire used， and then from $8-b$ the actual ohms for this length．
d．Multiply the current squared for each winding by the ohms for that winding．
$e$ ．Add the $I^{2} R$＇s for each winding to get the copper loss $L_{1}$ ．
9．Core Loss．The core loss in watts $L_{2}$ is found from the weight of the core and flux density and kind of core used in step 4．A useful factor is that 4 per cent silicon steel weighs 0.27 lb ．per cubic inch．

10．The approximate percentage efficiency is $W_{s} \times 100$

$$
\overline{W_{s}+L_{1}+L_{2}}
$$

Ws being the secondary watts（see step 1 ）．
Note：If step 10 shows about 90 per cent efficiency， the design is complete．If much less than 90 per cent， step $1 a$ must be modified，a new，larger value of $I p$ being used in finding a larger primary wire．This will not change the efficiency．but will prevent overloading the primary winding due to its carrying a greater current than that for which it was designed．It is desirable，as a rule，to keep the efficiency above 90 per cent，and this can be done by reducing $L_{1}$ and $L_{2}$ ， by using larger wires，or larger cores．

COPPER WIRE TABLE

Gauge   B．\＆ S	$\begin{gathered} \text { Diam. } \\ \text { in. } \\ \text { Milss } \end{gathered}$	$\begin{gathered} \text { Circular } \\ \text { Mil } \\ \text { Мrea } \end{gathered}$	Turns per Linear Inch ${ }^{2}$				Turns per Square Inch ${ }^{2}$			Feet per Lb．		$\begin{aligned} & \text { Ohms } \\ & \text { per } \\ & 1000 \mathrm{ft} . \\ & 250 \mathrm{C} . \end{aligned}$	Correct Capacity at 1000 C．M． per Amp．${ }^{3}$	Dinm． in mm．
			Enamel	S．S．C．	$\begin{aligned} & \text { D.S.C. } \\ & \text { S.O.C. } \end{aligned}$	D．C．C．	S．C．C．	Enamel	D．C．C．	Bare	D．C．C．			
1	289.3	82690	－	－	一	一	－	一	一	3.947	－	．1264	55.7	7．3．18
$\underline{3}$	257.6	66.370			－	－	－	二		4.975	－	． 15903	41.1	6． 51.4
3	29.4	$5 \times 640$					二	二	二	6.236	－	． 2009	35.0	${ }_{5}^{5.827}$
4	201.3 181.9	11710 33100	－	－	－	－	－	二	－	7.91 .4 9.980	二	．25333	27.7 22.0	5.189 4.621
5 6	181.9 162.0	33100   26250	二	二	－	二	－	二	二	9.980 12.58	二	． 4028	17.5	4.115
7	14．3．3	20820	－	二	二	－	二	二	二	15.87	－	． 5080	13.8	3.665
8	128.5	16.510	7.6		7.4	7.1	－			20.01	19.6	． 6405	11.0	3.264
9	114.4	13090	8.6	二	8.2	7.8				25.23	24.6	． 8077	8.7	${ }_{2}^{2.906}$
10	101.9	10380	9.6		9．3	8.9	87.5	105．8	80.0	31.82	30.9 38.8	1.018 1.284	6.9 5.5	2.588 2.305
11	80.71	823.4 $65: 30$	10.7 12.0	二	10.3	9.8 10.9	110 $1: 36$	105	${ }_{127.5}$	40.12 50.59	38.8 48.9	1.284 1.619	5.5 4.4	2.305 2.053
13	71.96	5178	13.5	二	12.8	12.0	170	162	150	63.80	61.5	2.042	3.5	1．828
14	64.08	4107	15.0	－	14.2	13.8	211	198	183	80.44	77.3	2.575	2.7	1.628
15	57.07	32．57	16.8	－	15.8	14.7	262	250	223	101.4	97.3	3.247	2.2	1.450
16	50.82	2583	18.9	18.9	17.9	16.4	321	306	271	127.9	119	4.09 .4	1.7	1.291
17	45.26	2018	21.2	21.2	19.9	18.1	397	372	329	161.3	150	5.163	1.3	1．150
18	40.30	162.4	23.6	23.6	22.0	19.8	493	45.	399	203.4	188	6.510	1.1	1.024
19	35.89	1288	26.1	26.4	24.4	21.8	592	553	479	256.5	237	8.210	． 86	．9116
20	31.96	1022	29.4	29.4	27.0	23.8	75	725	625	323.4	298	10.35	． 68	． 8118
21	28.46	810.1	33.1	32.7	29.8	26.0	9.40	895	754	407.8	370	13.05	． 54	． 7230
22	25.35	6.42 .4	37.0	36.5	34.1	30.0	11.50	1070	910	51.4 .2	461	16.46	． 43	． 6.438
23	22.57	509.5	41.3	40.6	37.6	31.6	1.400	1300	1080	6.18 .4	581	20.76	． 34	． 5733
2.4	20.10	404.0	46.3	45.3	41.5	35.6	1700	1570	1260	817.7	745	26.17	．${ }^{27}$	． 5106
95	17.90	320.4	51.7	50.4	45.6	38.6	2060	1910	1510	1031	903	33.00	． 21	． 4547
26	15.94	25．1． 1	58.0	55.6	50.2	41.8	2500	2300	1750	1300	1118	41.62	． 17	． 40.49
27	14.20	201.5	64.9	61.5	55.0	45.0	3030	2780	2020	1639	1.422	52.48	.13	． 3606
28	12.64	159.8	72.7	68.6	60.2	48.5	3670	3350	2310	2067	1759	66.17	． 11	． 3211
29	11.26	126.7	81.6	74.8	65.4	51.8	4300	3900	2700	2607	2207	83.44	． 084	． 2859
30	10.03	100.5	90.5	83.3	71.5	55.5	50.40	4660	3020	3287	2534	105．2	． 067	． 2546
31	8.928	79.70	101.	92.0	77.5	59.2	5920	5280		4145	2768	132.7	． 053	． 2268
32	7.950	63.21	113.	101.	83.6	62.6	7060	6250	－	5227	3137	167.3	． 042	． 2019
33	7.080	50.13	127．	110.	90.3	66.3	8120	7360	－	6591	4697	211.0	． 033	． 1798
34	6.305	39.75	143.	120.	97.0	70.0	9600	8310	－	8310	6168	266.0	． 026	． 1601
35	5.615	31.52	158.	132.	104.	73.5	10900	8700		10480	6737	335.0	． 021	． 1426
36	5.000	25.00	175.	143.	111.	75.0	12200	10700	－	13210	7877	423.0	． 017	． 1270
37	4.453	19.83	198.	154.	118.	80.3	－			16660	9309	533.4	． 013	． 1131
38	3.965	15.72	224.	166.	126.	83.6	－	二	二	21010		672.6	． 010	． 10007
39	3.531	12.47	248.	181.	133.	86.6	二	二	二	26500 33410	11907 14222	${ }_{1069} 8$	． 008	． 08897
40	3.145	9.88	282.	194.	140.	89.7	－	－	－	33410	14222	1069	． 006	． 0799

${ }^{1}$ A mil is $1 / 1000$（one thousandth）of an inch．
${ }^{2}$ The ligures given are approximate only，since the thickness of the insulation varies with different manufacturers．
${ }^{3}$ The current－carrying capacity at 1000 C．M．per ampere is equal to the circular－mil area（Columa 3）divided by 1000.


	8			$\frac{\frac{82^{\frac{1}{2}}}{85}}{\frac{85}{85}} \frac{20}{\frac{8}{8}}$	
		\% $110 \cdot 3$			
		(10v ${ }^{3}$	$\frac{61 \frac{1}{2}}{8}$ $\frac{81 \frac{1}{2}}{81 \frac{1}{2}}$ $87 \frac{1}{2}$ 8 $8 H \cdot V$ 8		
			39 $8=5$ 8 8 8 8 8 8		

## Antenna Design

IF ONE were to really understand all the technical problems to be considered in producing an ideal antenna installation, intensive study of complete treatises on the subject would be necessary. Such a process is recommended if the individual desires the finest possible performance. However, since the number of locations where it is convenient to erect such an antenna would represent only a fraction of a percent of radio users, and also because it is possible to achieve quite acceptable results with the more common types of antennas, this discussion is purposely limited to the generally practical receiving types. A study of the advantages and disadvantages of each type is presented with no thought of prejudice against or promotional effort for any particular type which may be commercially available.

The frequency coverage of the all-wave receivers ranges from .55 megacycles to 15 megacycles. For purposes of antenna design requirements this wide coverage is roughly divided into two sections. The first section extends from .55 megacycles to 1.5 megacycles (the present broadcast band) and the second section from 1.5 megacycles to 15 megacy cles (police, aircraft, amateur and foreign transmissions). The major requirements of these two sections as to physical location to obtain the largest possible signal energy, the most favorable signal to noise ratio, and the methods for conveying the signal energy to the receiver are very similar.

Probably the most common types of receiving antennas in use at the present time are still the "old faithful" single wire " T " and inverted " L " types, illustrated in Figure 1.


These antennas are used in the Marconi sustem, that is, installations employing ground as an essential part. The " $T$ " and inverted " L " types are convenient to install and generally satisfactory in operation. No better testimonial need be given than the one usually included on the installation instructions of a newly purchased receiver. From an antenna standpoint the instructions read somewhat as follows: "satisfactory results may usually be obtained with an antenna of 25 to 75 feet in Iength, suspended as high as possible."

The directional characteristics of these antennas for broadcast band use are shown in Figure 2.


Two illustrations are given for the "L" type because the length of the flat top (FT) as compared to the length of the lead-in ( L ) has a bearing on the directional effect. If, as in Figure 2, the lead-in ( $\mathrm{L}_{1}$ ) has more length than the flat top ( $\mathrm{FT}_{1}$ ), the reception pattern is found to be almost uni-directional (equally effective in any direction). Figure 2 also shows the reception pattern when the lead-in $\left(\mathrm{L}_{2}\right)$ is shorter than the flat top ( $\mathrm{FT}_{2}$ ).

The directional effects noted are characteristic of an antenna erected over an open plain. In actual practice the pattern is greatly distorted by the presence of nearby metallic objects such as metal roofing, telephone and electric wires, gutters, down spouts, etc. In prac tical applications this means that if reception is poor from a desired direction, the situation can be improved by shifting one end of the antenna. Sometimes moving or rotating an antenna only a few feet will make a decided difference in its performance on the reception of more distant stations. The effects noted are more pronounced on the short wave bands.

A third type of antenna is one in which the wire is suspended in a vertical manner. This type antenna has uni-directional reception pattern. When the average person thinks of a vertical antenna, he immediately visions large supporting masts, difficult installation, and prohibitive cost. However, this picture is not necessarily true. If the operation of the "T" an tenna previously described is analyzed, it will be found that this system operates mainly on the ability of the lead-in wire to pick up the signal for the receiver. If the " $T$ " type antenna has its lead-in attached at the electrical center, the two halves formed effectively counteract eacl other with the result that little or no signal is fed to the lead-in. It naturally follows that it is possible to erect a vertical antenna in much the same manner. However, if no masts are used, the only other logical way to support the vertical antenna is by fairly close mounting to a building or similar object. This, of course, destroys the antenna's uni-directional properties and much of its pick up efficiency since it is effectively shielded in one or more directions by the absorption qualities of the supporting object.

Before proceeding with a discussion of the noise reducing types, let us see just what improvements can be made by alterations in the designs previously described.

One of the most obvious methods of improving a short outside antenna (almost completely in the noise area created by household appliances and utilities) is by increasing its length in a direction so that a major part of it is in a comparatively noise free location as shown in Figure 3.

The same remedy may be applied to an indoor installation. While this method does not actually decrease the noise pickup, it increases the noise-free pickup and results in a more favorable signal to noise ratio. However, there is one factor to be considered especially in the case of all-wave receivers, before installing a very large antenna.

Any wire has a certain amount of inductance. It also has a certain distributed capacity with relation to surrounding objects and to ground. As in the case of any tuned circuit, at some definite frequency the


Figure 3-I'hy a long oulside antenna often increases signal-to-noise ratio.
inductive and capacitive reactances will be equal and opposite, resonance will occur, and maximum efficiency realized. The larger the antenna, the larger the inductance and associated capacity, and the lower the frequency at which the antenna system is naturally resonant. The very large antenna tends to have its resonant point either in or near the broadcast band.
It should be remembered that the lead-in wire of the " T " and " L " types of antennas also functions as a pickup medium. When any calculations are made, the lead-in length should be included as an integral part of the antenna.

Since the ordinary lead-in wires are capable of intercepting signals, they are also capable of receiving noise impulses. Though the antenna itself may be located in a noise free area, the lead-in, forced to pass through the noise field to the receiver, may contribute heavily to the noise level. (See Figure 3.)

The fact that any vertical pickup medium is especially prone to intercept waves of vertical polarization makes conditions even worse, since most man-made interference is radiated in vertically polarized waves.

Several methods have been designed to eliminate the property of the lead-in to intercept either signal or noise impulses, and make it more suitable for its true purpose, that of conducting the energy accumulated by the antenna to the input circuit of the receiver.
One such method uses a completely shielded lead-in wire. Although it is possible to make this system perform in a fairly satisfactory manner on the broadcast band, it is practically useless for short wave reception unless a proper matching network is employed. The energy loss at broadcast frequencies due to the relatively high capacity bet ween the lead-in and the shield is serious enough even considering the tremendous power of some of the popular broadcasting stations. Keeping in mind that this energy loss will increase with any increase in frequency it is easily understood why this method is not generally recommended. Most of the short wave stations are of relatively low power as compared to average broadcast band transmitting stations, and any appreciable loss in signal energy to be delivered to the receiver should be avoided. Figure $\$$ illustrates this point.


Figure 4-Shielded lead-ins-poor (A); good (B).
A second, and extremely popular method, is that of using a transmission line to transier the signal energy from the antenna to the receiver with minimum signal pickup by the transmissicn line. Since this development has come about largely as a result of the demand for noise reduction on the short wave bands of commercial all-wave receivers, it would seem in order to discuss the basic antenna requirements of these allwave receiving sets.
In the short wave spectrum a new condition arises in that the physical dimensions of a half wave length antenna are small enough (for given frequencies) that its length is within the restrictions of the practical installation. Antenna systems designed on this principle are capable of delivering a much stronger signal to the receiver in the frequency ranges for which they are designed.

The signal voltage that is generated in the antenna is due to the fact that the antenna is cut by magnetic lines of force created by the incoming signal. The value of tre voltage generated in the antenna is somewhat proportional to the length of the antenna until this length approaches a half wave length with respect to the frequency of the signal under consideration. At this point the antenna becomes resonant. The voltage or power built up in the antenna itself at or near this frequency is much larger than it would be if the antenna length was not a half wave length or some multiple thereof,

This explanation may seem a bit involved and unnecessary but it should be understood that this basic action or principle is incorporated in the design of almost all of the commercially available all-wave antenna systems. These include such types as the doublet, double-doublet. "V" doublet, the staggered doublet (one having uneven flat top sections), the selective beam type, and the combination web types.
Up to this point it seems that the design for the standard broadcast range (.55 to 1.5 megacycles) has been somewhat neglected in the all-wave antenna design. This is true to a certain extent. In the first place both transmission and reception are more stable in the broadcast band frequency range. This band is not nearly as much affected by fading, skip distance, and unusual refraction properites peculiar to high frequency signals. Secondly, the power of the average broadcast band transmitter is much greater than a corresponding short wave station. As a result, if any compromise must be made in the antenna design, it should favor the short wave design so that the listener may have a performance on the higher frequency stations similar to the performance he expects and gets on the broadcast band.

In the third place, manufacturers of all-wave antenna systems have made it possible either through ingenious design of the matching transformer at the set, or by a simple switching arrangement, to convert the antennas into the equivalent of an ordinary single wire antenna of equal length for broadcast band use.

# DOUBLET ANTENNA DESIGN 

As previously pointed out, doublet antennas are usually designed to give maximum efficiency when used upon a certain predetermined frequency band or bands. It is well to remember that any section or combination of sections in the doublet systems can operate not only at the given frequency or frequencies but may also be operated quite efficiently at some harmonic of the fundamental design.

All of the doublet types use some form of a transmission line (either shielded, twisted, or transposed). This line under ordinary conditions will not have any tendency to pick up signal or noise impulses. Such a system provides the very useful advantage of allowing the antenna proper to be as much as several hundred feet from the receiver. In many cases this permits the antenna installation to be made in a noise free area. The addition of large amounts of like transmission tine should produce little or no change in the impedance match at the transformer,
In the matter of locating the noise-reducing antenna types the following precautions should be observed.


Beam Type Doublet Figure 5

The prime need is of course to get the antenna as high as possible. Locate the antenna as far above and away from any noise radiating utility wires as is practical. At any cost stay away from elevator penthouses and any rotary electrical equipment.

In the matter of directional characteristics, the average double system has what is termed a broadside reception pattern. This means that the antenna is most effective when it is located at a right angle ( $90^{\circ}$ ) with relation to the desired direction. If two doublets are located at right angles to each other, the result is a uni-directional pattern inasmuch as one or the other section can always produce an essentially broadside effect to any desired signal. See Figure 5.

So far we have talked mostly about antennas which use a ground connection. Marconi first used such antennas; accordingly we call them Marconi antennas. Observe (Figure 1) that there is always more or less "up and down" to them. They start at the earth and go up. Sometimes they go horizontally also, but invariably they go up. In a moment we shall show why that is important.


Figure 6-Heriz (ungrounded) antenna types are becoming more and more popular for short wave work

The Hertz antenna uses no ground connection whatever. Accordingly it need not run up and down at all; it is possible to make it a straight horizontal antenna if so desired. For the best short wave reception, this feature is very desirable.

## VERTICAL OR HORIZONTAL

Near the radio transmitting station the waves are departing in the manner of Figure 7A. They are mainly vertical, and are best received by a vertical (or partly vertical) receiving antenna-an antenna that has some height. The Marconi antennas of Figure 6 wilt work best for such reception, as will the vertical Hertz type of Figure 6.


Figure 7-Why vertical receiving antennas are best on locals, while horizontal types favor distance.
At a great distance we have a different picture. We find that short waves arrive in the manner of Figure 7 B . It is at once apparent that this leaning of the waves ("polarization toward the horizontal") gives the horizonial Hertz antenna a chance which it did not have on the nearby reception of 7A. For that reason the horizontal Hertz antenna is very useful in short wave long-range reception. Figure 8 shows the best theoretical and practical locations of antenna and receiver to keep the antenna out of the noise area and also to keep it from being shadowed by surrounding objects.


Figure 8-The theoretical ideal (A) and the practical substitute ( $B$ ).


Figure 9-Two efficient transmission line systems using Hertz collectors.

One of the most popular forms of doublet antenna systems is shown in Figure 9. If we make the top about 70 or 75 feet long the best performance will appear in the 49 meter band, but at other wave lengths the line no longer acts as a pure line; the upper part participates in varying degree in the antenna action, and the losses vary materially with frequency. However, a theoretical shortcoming can often be tolerated commercially, and the extreme simplicity of this arrangement is evident. Its anti-noise action leaves little to be desired, it is easy to erect, the line can be of any convenient length upward of some 40 feet (be sure to use that much and coil up any you don't need inside the set cabinet), and strong wind does little damage.

The real shortcoming of this or any other horizontal Hertz type lies in the relative ineffectiveness of such an antenna near 500 kcs . To make the antenna long enough to get around this difficulty results in preposterous clumsiness. Accordingly one must accept reduced reception in the ordinary broadcast band for the sake of a more favorable signal to noise ratio in the short wave range.
The importance of a good RF ground cannot be over-emphasized. This statement may seem contradictory to the explanation of the doublet systems designed to operate with no ground. However, the purpose of the ground in such cases is to prevent chassis pickup and possible pickup from the light line. The ground in these cases has no function in the signal pickup design of the antenna system. A separate ground for the radio set other than water pipes, etc., is recommended for the best possible results. A good noise-filter in the 110 -volt line which supplies power to the set may be of assistance when the noise condition is extremely bad.

Figure 10 shows the correct method of installing the lightning arrestors on a two-wire transmission line.


Figure 10

In Figure 11 we have a modification of the original doublet system. This design is sometimes known as the staggered doublet because its sections are unequal in length. The staggered system is used for the purpose of providing resonance properites on the higher frequencies.


Figure 11
Figure 12 shows another type doublet known as the " $V$ " doublet. In this system, the tapered " $V$ " at the center has the property of effectively matching a relatively high impedance antenna to a low impedance line.


Figure 12
In the " $V$ " doublet, Figure 12, the length of sections A and B are equal. Sections C, D and E should form an equilateral triangle.

The effect of systems employing two doublets mounted at right angles to each other has been previously discussed and is illustrated in Figure 5.

Another widely used design is shown in Figure 13. This particular design represents not only a combination of the resonance properties of its possible sections. but also has the additional factor of improvement where wave polarization is considered.


Figure 13

Figure 14 shows the web type of antenna. A thorough explanation of this somewhat complicated design would be very long. This system has roughly the same properties as the type shown in Figure 13.


Figure 14

A final point to be considered lies in the choice of an antenna for a receiver of a given manufacturer. In every case it is well to follow the manufacturer's recommendations as to the type antenna to be used with his particular receiver, inasmuch as he specifies the one which has the best matching properites for his set design.

## Choosing an Antenna

"No Radio Can Be Better Than Its Antenna"


Ground as Antenna-Fair reception on local broadenst stations in some homes. Seldom satisfactory in suburban areas and useless for shortwaves. Use only where other systems cannot readily be installed, or for temporary service.


Ordinary Outdoor System-Excellent on both broadcast and shortwave bands when building and vicinity are electrically quiet. Recommended for homes away from trol-ley-lines, high-tension wires, motors and busy roads.


Built-In Wire-Good reception on local broadcast stations in all but extremely noisy buildings. Receives reasonably distant stations when reason on upper floors in electrically quiet areas. Rarely effective on shortwaves and invariably noisy in large apartment houses.


Shielded Lead-In-Reduces noise pickup by downlead where this wirc must pass through electrically disturbed areas. Good reception on broadcast band but not recommended for shortwaves. In common with other noise-reducing types. must have antenna proper mounted out of noisy area for maximum benefit.


Moulding-Strip-Good reception on local broadcast stations in all but ontremely noisy buildings. Receives extremely noisy buildings. Receives
reasonably distant stations when reasonably distant stations when
used on upper floors in electrically quiet areas. Rarely effective on quiet areas. Rarely effective on
shortwaves and invariably noisy in large apartment houses.


Simple Doublet-Reduces noise pickup by downlead where it must pass through noisy areas. Good reception on shortwave band and satisfactory for broadcast reception. Expecially efficient at certain frequencies, which may be those most often desired.

## TYPICAL MODERN ALLWAVE MATCHED SETS

Matched to reduce losses in the transmission line between the antenna proper and the set and designed, also, to give good reception over the entire broadcast and shortwave range, or in those portions of the spectrum in which programs of major interest are found, these modern typers and variations of then represent the last word in modern radio design.


Show this to your customer. It will convince him that a good antenna is a good investment.

# Alignment of Modern Radio Receivers 

MANY VOLUM ES have been written on this subject, both from a technical and a serviceman's viewpoint, and justly, because improper alignment is one of the most common ailments encountered in service work today, especially in receivers of the allwave type. Many servicemen are somewhat afraid to make adjustments on receivers, as long as the set plays at all, because they are not familiar with the various functions and workings of modern receivers. This article is intended to help clarify to the serviceman who wishes to learn the why of such adjustments, how the various radio frequency circuits of a radio receiver function, and how to make practical adjustments necessary in order to restore a set to its original factory performance and efficiency.
A vitally important part of a radio receiver is the small compensating condenser used to make adjustments of the various tuned circuits. These small adjustable condensers, usually called padders or trimmers, are constructed in various ways. They usually consist of two or more plates insulated from each other, one plate being made of spring material, so it will hold the adjustment or spacing given it by means of turning a screw or nut.
These condensers are used to obtain fine adjustment of the tuned circuits, so that they may be completely in resonance and perform at their highest efficiency. Since it is commercially impractical to construct coils or tuning condensers which would be accurate at every point on the dial, these trimmer condensers are placed across them so as to provide an accurate and easy means of making each circuit resonate at the proper dial position.

## T. R. F. RECEIVERS

In a tuned radio frequency type of receiver the adjustments of these padders are usually made at the high frequency end of the dial using a signal generator or a station as a signal source, and adjusting the trimmers until maximum output is obtained. In some of the older type receivers, where the tuning coils were not properly impregnated, they absorbed moisture through exposure, which causes considerable losses or reduces their $Q$, and appreciably reduces the already none too abundant selectivity. Replacement or a baking and re-impregnating process is recommended for such cases before adjusting the trimmers.

In some of the older sets not using screen grid tubes, it is necessary to neutralize the circuits to prevent oscillations or howling, before the resonant circuit trimmer condensers are adjusted. Neutralization was usually accomplished by means of small trimmer type condensers, which served to compensate for the grid to plate energy transfer due to the grid to plate capacity of the triode tubes then used.

SUPERHETERODYNES


Figure 1
The modern superheterodyne is considerably more complicated than these older type receivers and a brief review of the elementary theory involved in this type of receiver is necessary, so that the importance of making accurate adjustments on these receivers may be more fully appreciated. In a superheterodyne, Figure 1, the incoming RF signal is usually impressed across the primary of an antenna coil, the secondary of which the primary of an antenna coin, the secone by a variable is tuned over the desired frequency range by a variable
condenser. The signal usually goes from the first tuned
circuit into the grid of the first RF amplifier tube. In many sets the RF stage is omitted in which case the signal is impressed on the grid of the first detector tube or the signal grid of a combination first detector and oscillator tube. In other designs the signal may be fed from one tuned circuit to another before going to the first tube. This arrangement is usually spoken of as a band pass filter type circuit. Some sets employ several stages of RF amplification before impressing the signal on the first detector grid, in order to obtain a more favorable signal to noise ratio and eliminate spurious responses.

In the first detector tube the incoming signal is mixed with an unmodulated signal generated by a local oscillator in the set, so as to produce a new frequency, namely the difference between the oscillator and RF signal frequencies. This frequency difference is commonly called the intermediate frequency of the set. The oscillator and RF circuits are so designed that the same frequency difference between the two signals is maintained throughout the tuning range of the receiver.

Commercial design uses an oscillator frequency higher than the incoming RF signal by an amount equal to the IF because it is more economical to build a set with less capacity and inductance (required to produce the higher oscillator frequency) than when it is lower, requiring more capacity and inductance. Capacity and inductance values when higher oscillator frequencies are employed, are much lower than would be required if the oscillator frequency were lower than the incoming frequency (RF). When a gang type tuning condenser is employed this requires that the capacity of the oscillator section be less than that of the RF sections. Conmercially, this is done by either making all condenser sections alike and inserting a small padder type condenser in series with the oscillator section capacity across the oscillator coil, or by using a cut plate type oscillator section, which has the required reduced capacity. In either case, a small trimmer condenser is also connected across the oscit lator condenser so as to correctly adjust the minimum capacity of the combination or adjust the highest frequency end of the oscillator range, the padding or series condenser being used to adjust for variations occurring towards the maximum capacity end of the range. In the case of the cut plate type condenser there is no adjustment other than plate bending for variations at the maximum capacity end of the oscillator section.

The signal resulting from the mixing of the incoming RF signal and the local oscillator is fed into the intermediate frequency amplifier. The first IF transformer serves to couple the out put from the first detector into the grid circuit of the first IF amplifier tube. The signal is amplified by this tube and then passes through a second IF transformer, which may feed it into a second IF tube or the second detector tube, depending on the size of the set. In order to obtain maximum selectivity and sensitivity, both primary and second ary coils are tuned to the exact IF frequency of the set by means of trimmer condensers or by moving an RF iron core in or out of the coil so as to change its inductance.

The second detector serves to rectify or demodulate the $I F$ signal, the audio components being fed to the succeeding audio amplifier stages, and so on to the speaker.
The advantages of this system are: that since it uses an amplifier designed for operation at one fixed low frequency, enormous gain and selectivity can be realized over that of an RF amplifier designed to operate at higher frequencies and over a wide frequency range.


Adjustment of these condensers should be made when the set lacks selectivity or sensitivity, or if the dial
reads incorrectly, after other possible sources of trouble have been checked and eliminated; such as weak tubes, poor aerial, improper tube voltages, etc. Adjustments should be made only after the set has been allowed to warm up for approximately a 30 minute period, so as to allow for capacity changes due to thermal effects.

## I. F. ALIGNMENT

The IF trimmer condensers should be adjusted before the RF section is adjusted. This is best done by using a signal generator with an audio modulated signal tuned to the exact IF frequency of the set. The signal from the generator is fed into the grid of the first detector tube. In some cases it is desirable to "kill" the local set oscillator by placing a bypass condenser across the oscillator section of the tuning condenser to eliminate any erroneous beats which may be produced. An output meter should be connected from the plate of the last audio tube to ground or from plate to plate in case of push pull output.

If one owns a meter of sufficient sensitivity, it may be connected across the voice coil of the set. Sets using automatic volume control should be adjusted either by reducing the signal output of the service oscillator to a point where the AVC does not function, and using the output meter, or by inserting a milliameter in series with the plate voltage supply lead to the IF stages, or connecting a vacuum tube voltmeter across the AVC network, so as to read the AVC voltage developed.

If the set is provided with a resonance indicator such as the "Shadow Meter" or cathode ray "Magic Eye" this will provide an excellent indicator for adjustment purposes. After having made suitable provision for indicating resonance, the $1 F$ trimmer condensers should be adjusted for maximum output, or so as to tune the $I F$ circuits to their exact resonant frequency.
A signal generator should always be used for aligning the IF transformers. If a station signal is used, one is apt to get the entire IF system "off" frequency, although it may be set for maximum output. thus causing poor tracking of the oscillator and RF circuits, producing dead spots on the dial and in many cases whistles and spurious responses. In high fidelity sets where the fidelity is variable, it is usually advisable to set the fidelity control to the low fidelity or sharp tuning position of the $1 F$ circuits, and adjust the $1 F$ trimmers for maximum output. The most accurate method and easiest of adjusting such high fidelity sets is to use a cathode ray tube in conjunction with a frequency modulated test oscillator, so as to reproduce the entire tuning curve of the IF system on the screen of the tube. The use of such equipment is explained in a following paragraph (page 248.) Sets which are equipped with automatic frequency control should be adjusted with the AFC control turned off. See article on AFC, page 248.

After these adjustments have been made, the IF system of the set will respond to a signal which is exactly equal to a frequency for which the circuit has been adjusted.
In many modern superheterodynes, a wave trap tuned to the IF frequency of the set, is provided in series with the antenna circuit, so as to prevent any unwanted signals of this frequency from entering the set and getting to the first detector and coming on through the IF system. The proper adjustment of such a wave trap is to connect the signal generator to the antenna post of the set and then adjust it to the IF frequency. Then turn the generator to maximum output. The trimmer condenser across the wave trap should be adjusted until minimum response is obtained in the output of the set.

## R.F.ALIGNMENT

After the IF section of the set has been aligned to the proper frequency, the next job is to align the RF and oscillator sections.

## DIAL ALIGNMENT

The setting of the receiver dial with respect to the condenser shaft position should be checked before making RF alignments. A number of receiver manufacturers have an index position at the low frequency dial position which corresponds to the maximum capacity condenser setting. In this case the condenser should be completely meshed and the dial set to the index position, and the set screws tightened, care being taken to prevent the dial or shaft from slipping, then tightening the set screws. In other cases no index position is provided so that it is usually necessary to determine a point, say 600 kc ., at which the oscillator and RF sections are in resouance by the condenser rocking method and the dial set to correspond with the resonant set frequency at this point.

## OSCILLATOR ADJUSTMENTS

Oscillator circuit adjustments are by far the most important, since the oscillator frequency determines whether the beat frequency between oscillator and incoming signal produced in the first detector is above. below, or exactly at the IF frequency. Improper oscillator adjustment affects the sensitivity, selectivity, and dial calibration considerably. The RF and first detector stage adjustments do not affect the performance as much, since their tuning is fairly performance as much, since their tuning is fairly
broad in comparison to the sharp tuning of the IF system.
Ordinarily the oscillator trimmer condenser adjustment at the high frequency end of the band is made first. The signal generator is tuned to some frequency near the high end of the band, say 1500 kc ., and the signal picked up on the set. If the set is far out of adjustment the signal will not be received at 1500 kc . but somewhere near on either side. The oscillator trimmer is readjusted then to make the signal come in at the $1: 500 \mathrm{kc}$. dial setting with maximum output. in at the 1500 kc . dial setting with maximum output.
Following this adjustment the RF and first detector trimmer condensers should be adjusted until maximum output is obtained. Usually these trimmers are located on the tuning condenser gang. However, in many of the newer type sets they are located on the RF and oscillator coils instead. It is very helpful and time saving if a chart showing the locations of all trimmers is obtained before attempting any adjustments.

As the high frequency oscillator adjustment determines the tracking and performance at that end of the band so the low frequency padder determines the low frequency performance. Adjustment of the oscillator padder is usually done in a manner called "rocking." This adjustment is made by tuning the signal generator and the receiver to a point near the low frequency end of the band, say 600 kc . The signal may not be received at the 600 kc . calibration point on the dial. However, this is not of immediate interest. The set should be tuned so as to receive the 600 kc . signal with maximum output and the output reading noted. The gang condenser should then be turned slightly one way or the other and the oscillator padder condenser readjusted so as to again receive the signal with maximum output. If the output has increased with maximum output. If the output has increased,
this procedure should be followed until it begins to this procedure should be followed until it begins to
fall off again; if it has diminished, the gang condenser should be turned slighty in the opposite direction from that first tried. In this manner the RF and first detector circuits can be made to tune exactly to the signal, and the oscillator to a frequency higher than the signal by an amount equal to the IF frequency. If the dial setting does not coincide with the signal frequency. the dial should be turned on the condenser shaft until it does. This adjustment is necessary because most receivers do not provide any means of adjusting the RF and first detector circuits at the low frequency portion of the band. On sets which do provide such adjustments, the dial should be pre-set to the index point with respect to the condenser setting the index point with respect to the con
Usually after making the low frequency oscillator adjustment, it is necessary to slightly readjust the receiver at the high frequency portion of the band as previously explained.

## ADJUSTMENTS OF R.F. CIRCUITS IN ALLWAVE RECEIVERS

Adjustment of allwave receivers is somewhat more involved than a broadcast band receiver due to the multiplicity of circuits involved and consequent increase in number of necessary adjustments. Before adjusting any allwave set, it is good practice to allow the set to warm up for approximately 30 minutes to allow for thermal expansion of the parts.

Each band of an allwave receiver must be adjusted separately in the same fashion as an ordinary broadcast receiver is adjusted; that is, connect the signal generator to the set's antenna and ground (usually doublet antenna-equipped sets shouid have the two antenna posts connected together), and adjust the generator to some frequency near the high frequency portion of the band. Note: In some cases it is extremety important that a dummy antenna be provided. Such an antenna usually consists of a 100 or 200 mfd . condenser or 400 ohm resistor connected in series with condenser or 400 ohm resistor connected in series with
the high side of the generator, as directed by the set manufacturer for the particular band being adjusted.

Then the oscillator trimmer (shunt) condenser should be adjusted until the generator's signal comes in at the desired point on the dial. It is important that the oscillator trimmer be adjusted to the fundamental and not the image frequency. This can be assured by backing the trimmer screw entirely out, then slowly turning it in, until a maximum peak occurs. Turning the condenser slightly beyond this point will bring in another peak somewhat weaker than the first which is the image frequency. In some cases only one peak may be obtained because the trimmer's range is not large enough to reduce the oscillator frequency to the peak below the signal frequency.

Another check is to set the trimmer on the fundamental and leaving the generator at the same frequency, rotate the gang condenser to a lower frequency position until the image signal is heard. This signal should be lower in frequency than the generator frequency by twice the value of the set's IF frequency.

After the oscillator setting is made, the RF and first detector trimmer condensers should be adjusted so as to obtain maximum output at this end of the band.
Some of the first allwave receivers did not provide for any adjustment of the low frequency ends of their bands, either on the oscillator or RI coils. Most of the later receivers, however, provide an oscillator padder to make the tuning of the oscillator track with the dial; and some of the better receivers provide both RF and oscillator padders so that the circuits can be made to track exactly with the dial at all points.

Sets without series oscillator padders on the high frequency bands are of course not adjustable, except possibly by bending the oscillator gang condenser plates. However, this also changes the broadcast band adjustment. Usually it will be found that when the correct setting of the dial on the condenser shaft is obtained (as determined by rocking the condenser on the broadcast band), the other bands will track fairly closely with the dial calibrations.

Sets which provide for adjustment of the oscillator coils only, shoutd first have the oscillator trimmer condenser adjusted at the high frequency end of the band as previously explained. Next the padding condenser should be adjusted to make a signal near the low frequency end of the band come in at the proper point on the dial.

Sets which provide RF and first detector adjustments for both ends of the bands should first be adjusted at the high frequency end of the band as explained previously, then the signal generator and the set tuned to some frequency near the low frequency portion of the band. The oscillator padding condenser should now be adjusted to make the signal come in at the correct dial calibration. Finally the RF and first the correct dial calibration. Finally the RF and first
detector padders should be adjusted until the signal is received with maximum amplitude.

In some allwave receivers there is an interlocking of adjustments from one band to another, in which case the alignment sequence as recommended by the manufacturer must be closely followed.

## ADJUSTING THE SIGNAL GENERATOR

It is highly important that portable oscillators or signal generators used in radio service work be checked frequently for correct calibration.
Most generators have compensating condensers which can be adjusted to correct for any shifting of calibration that may have occurred. Their adjustment is simple, since it only involves:
First, tuning in a broadcast station near the high frequency portion of the generator's band.

Second, connecting the generator to the antenna of the set and beating it against the station.

Third, adjusting the generator's compensating condenser until the dial reading obtained on the generator at zero beat corresponds with the known station frequency.
Fourth, repeating the same process for some known station frequency near the low frequency end of the generator's dial and adjusting the series padder condenser until zero beat is obtained between the station and the generator, until the calibration of the generator corresponds to the known station frequency.
Some signal generators are not provided with a means of making their generated frequency track with the dial at the low frequency ends of the various bands. In such cases nearly perfect tracking can be effected by arranging a means of varying the inductance of the oscillator coil. If the inductance is too high, it can be lowered by moving a copper penny on a screw into the coil, or if it is too low by moving a piece of R.F. iron on a screw into the coil. There is probably nothing more time-wasting in adjusting a set, than attempting to correctly adjust it with a generator whose dial calibration is incorrect.

## CHANGING THE I. F. FREQUENCY

In some parts of the country interference is experienced from nearby powerful code stations operating on a frequency near that of the I.F. peak of the receiver. The first remedy for this trouble is to install a wave trap in the antenna circuit tuned to the frequency of the unwanted signal. If this does not reduce the interference to a negligible amonnt it may be necessary to shift the I.F. frequency slightly until the unwanted interference is eliminated. Another cause of interference in the form of whistles and birdics, sometimes on every station received, is two powerful Iocal stations whose frequencies are such that the beat between the two is nearly equal to the I.F. frequency of the set. For example, powerful locals broadcasting on 1400 kc . and 1230 kc . would produce a beat frequency of 170 kc ., which is very close to 175 kc ., a common I.F. frequency.Unless the set has an unusual amount of R.F. selectivity it will be full of unwanted whistles. This can usually be remedied by shifting the I.F. frequency up to approximately 200 kc ., and retracking the oscillator to match the R.F. for maximum response over the band. It is also helpful in some extreme cases to install a wave trap in the antenna circuit tuned to one of the interfering signal frequencies.

## ALIGNMENT WITH CATHODE RAY OSCILLOSCOPE

Through the development of frequency modulated signal 'generators or wobbulating devices, it has become possible to observe on the oscilloscope screen the radio frequency response curve of the individual IF stages or the entire radio frequency amplifier section of the receiver.
Numerous schemes of wobbulating an oscillator have been developed. The most common of these is the use of a motor driven condenser connected across the oscillator tuning condenser in order to periodically
vary the oscillator frequency over approximately a 30 kc . band at a rate fast enough to make the image appear stationary on the screen.
In the past such curves were made manually by plotting output vs. frequency, output measurements being taken at several points either side of resonance. See Figure 2.


Figure 2
Service and factory adjustments were made with the view of obtaining maximum output at the resonant frequency, with little regard for band width.

It is common knowledge that in order to preserve the original fidelity of the transmitted program the receiver must be selective enough to reject interference from adjacent stations 10 kc . away on either side and must pass with equal gain signals 5 kc . either side of resonance, the ideal tuning curve being as illustrated in Figure 3 for 5,000 cycle audio fidelity.


Figure 3

Unfortunately tuned circuits tend to produce more rounded and sharply peaked curves, illustrated by dotted lines in Figure 3. In order to produce tuning curves more nearly like the ideal, overcoupled and staggered tuned circuits are being used.
Figure 4, A-B-C-D-E-F-G, shows the result of changing the coupling between two IF coils; the coils being tuned to resonance with the input signal at the start of the test, this adjustment being unchanged throughout the test, and a constant input signal voltage being maintained across the primary of the IF transformer, and the overall tuning curve being shown on an oscillograph.


Figure 4
From Figure 3, A to D , it is seen that the band width does not change appreciably. However, increasing the coupling results in considerable increase in gain. Further increase of coupling produces a reaction between the primary and secondary tuned circuits causing a double hump to appear in the tuning curve, and a marked increase in band width. This curve more nearly approaches the ideal tuning characteristic. The reaction between the primary and secondary coils, due to close coupling, produces two peaks at different frequencies instead of one peak. This causes the tuning of the primary circuit to be definitely infuenced by the secondary circuit tuning, making alignment using an ordinary output meter difficult and impractical.

Figure 5 illustrates the metliod of connecting an oscilloscope and associated equipment to visually observe the response curve of a receiver. If the overall tuning characteristic is desired, the frequency wobbulated signal generator is connected to the antenna; if the IF system alone is desired, it is connected to the grid of the IF tube.


Figure 5
Assume the apparatus is connected as in Figure 5 and that an overall response curve on the broadcast band is desired. The signal generator would be set at say 1000 kc . and allowed to generate a 1000 kc . unmodulated signal. Since the signal is unmodulated there will be no audio output. Therefore, the vertical plates of the cathode ray tube must be connected across the plate load resistor of the second detector tube to measure the strength of the test signal as amplified by the receiver. A diode detector has been used as an illustration. Suppose the wobbulator is connected across the signal generator so that it will vary the frequency of the generator about 15 kc . each side of the 1000 kc . setting. This will in turn cause the voltage developed across the diode load resistor, and therefore, the voltage across the vertical plates of the oscilloscope, to vary in amplitude as the resonant voltage changes as the response of the receiver under test varies during the 15 kc . spread either side of resonance.
Then suppose the dial movement of the wobbulator or frequency vernier is translated into a voltage which is connected to the horizontal oscilloscope plates. Turning the frequency vernier or variable condenser will then cause the oscilloscope spot to trace out the picture of the selectivity curve of the receiver on the screen. If the vernier is caused to rotate at a steady speed of 15 or more times per second, the image will appear stationary on the screen, due to the persistence of vision of the eye. The advantages of such a system for set slignment is apparent, since the serviceman can instantly see the result of each little change made during the adjustment process,

## ADJUSTING OLDER TYPE RECEIVERS FOR HIGH FIDELITY

It is possible to improve the tone quality of older type receivers having sharply tuned IF stages by realigning the IF transformers to provide a flat-topped resonance curve. This is accomplished by first peaking each IF transformer to exact resonance, then slightly readjusting each IF trimmer so that the resonance peaks will fall alternately on each side of the exact IF frequency. This process causes some loss in gain, but this is usually unimportant, compared with the improved tone quality obtained.

## ADJUSTING RECEIVERS WITH VARIABLE FIDELITY

Perhaps the most practical solution to the entire problem of receiver fidelity vs. selectivity is found in a great number of recent receiver developments. These designs allow the customer to choose between fidelity and selectivity as his particular reception conditions dictate. Figure 6 illustrates the two conditions.


It is usually desirable to first adjust the set with the fidelity control turned to the selective position for maximum selectivity and gain, then readjust the last IF trimmers for wave symmetry with the selectivity control turned to the high fidelity position as shown in Figure 6.

## USING OSCILLOSCOPE FOR 600 KC ALIGNMENT

One of the most difficult adjustments in the field is the aligning of the low frequency oscillator padding condenser. Rocking of the main tuning condenser is necessary while making the low frequency oscillator adjustment in order to bring the oscillator to the correct frequency when the RF and first detector circuits are exactly resonant with the incoming signal. The relations for ideal alignment are shown by Figure 7.


Figure 7

For example, if the RF and first detector circuits are tuned to 600 kc . and the IF frequency is 465 kc ., the oscillator frequency must be 1065 kc . for correct alignment. Supposing, however, the RF circuits were tuned to 620 kc . when the oscillator was oscillating at 1065 kc ., due to the resonant response of the IF system the 600 kc . signal would still be received. However, the overall set response would be poor due to the misalignment as illustrated in Figure 8.


Figure 8
It would then be necessary to turn the gang condenser to bring the circuits to proper alignment. However, changing the gang condenser setting also changes the oscillator frequency so that it remains out of alignment. Proper adjustment, therefore, requires that the gang condenser be rocked continuously back and forth while the oscillator padding condenser is adjusted for maximum out put. The receiver dial should then be set to coincide with this adjustment.

## USING FREQUENCY MODULATED TEST OSCILLATOR AND OSCILLOSCOPE

The same results can be accomplished by setting the receiver to receive the 600 kc . signal. and instead of rocking the gang condenser while adjusting the padder, use the frequency modulator with the signal generator to automatically sweep the incoming signal over a 30 kc . band. The oscillator padder may now be set for maximum output or height of the tuning curve as seen on the oscilloscope screen. The image seen on the screen will be the resultant curve of the combined RF, first detector, and IF resonant characteristics; and their exact alignment will be indicated by maximum image amplitude.

## Automatic Frequency Control



THHE purpose of AFC is to vary the frequency of the set oscillator (over a predetermined range) so that the frequency difference or beat between the set oscillator and signal frequencies is always equal to the IF of the set. This then takes care of improper tuning adjustment, oscillator drift, tracking inaccuracies, and makes commercially possible mechanical stop-dial type tuning.
In AFC circuits, two separate functions must be performed.
First, there is the discriminator. The purpose of the discriminator is to convert IF frequency changes into voltage variations. If the incoming IF frequency is higher than the resonant IF frequency of the set, the discriminator must produce a voltage varying in one direction. If the incoming IF frequency is lower than the resonant IF frequency of the set, the discriminator must produce a voltage varying in the opposite direction.
The second function is that of varying the frequency of the set oscillator. A separate tube known as the "Frequency Control" performs this task. The frequency control must be arranged so that voltage variations in one direction tend to increase the frequency of the set oscillator, and voltage variations in the other direction tend to decrease the frequency of the set oscillator.

## DISCRIMINATOR

As previously mentioned, the purpose of the discriminator is to change frequency variations from the resonant IF frequency into DC voltage variations. Figure I shows the essential parts of the discriminator circuit. The discriminator transformer is similar to the other IF transformers in the set, except the secondary is center-tapped and the high side of the primary is coupled to the secondary center-tap by means of $C_{1}$ so that in addition to the usual magnetic coupling between coils, we have the primary voltage coupled to the center-tap of the secondary coil.
Supposing, in order to simplify the explanation of how this AFC transformer works, we consider for the moment that there is no magnetic coupling between the primary and secondary coils; therefore, there would be no induced voltage in the secondary coil and no current will flow in the tuned secondary circuitsee Figure II. However, the primary voltage is coupled
to the secondary center-tap by $C_{1}$, which is large enough to have a negligible RF voltage drop across it, and both coils are tuned to the IF frequency of the set. If vacuum tube voltmeters were connected at points $A$ and $C$ to ground it would be found that the primary voltage $E_{p}$ would appear at both points, and, when the incoming signal was varied above and below resonance the voltage would vary exactly as the primary voltage $\mathbf{E}_{p}$, rising to a peak at resonance and falling off on both sides. In other words, the primary voltage $E_{p,}$ transferred by $C_{1}$ would appear at points $A$ and $C$.

Then, supposing we couple the coils magnetically so that the primary flux links with the secondary, inducing a voltage $E_{S}$ in the secondary winding. This induced voltage will start a current flowing in the tuned secondary tank circuit. Since the same flux produces both the induced secondary voltage $E_{S}$ and the induced primary voltage $E_{p}$, these voltages will be in exact time phase.

Also, it follows that, since at resonance the secondary circuit offers only resistance impedance, the circulating secondary current will be in phase with the induced secondary voltage $E_{s}$, or the primary coil voltage $E_{p}$ will be in phase with the circulating secondary current.

Since the circulating current in the secondary coil induces a voltage in the coil, which at resonance is quite large compared to the induced voltage $E_{S}$, and this voltage $E_{s r}$ across the coil is necessarily 90 electrical degrees ahead of the current producing it, the resonant voltage $E_{s r}$ across the coil is 90 electrical degrees ahead of the primary voltage $E_{p}$. However, the secondary is center-tapped, so that the voltages developed across each half will be equal, but as seen from the center-tap will be $180^{\circ}$ out of phase. This point is clarified when one reviews what happens in a push pull transformer or a full wave rectifier circuit. See Figure III.

Then, returning to Figure II again, and tracing the RF circuit from points $A$ to ground or $B+$ (since $B+$ is practically ground to $R F$ ) and from point $C$ to ground, it is apparent that whatever voltage appears across the upper half of the coil, plus the primary voltage will appear at point $A$, and whatever voltage appears across the bottom coil plus the primary voltage, will be found from point $B$ to ground.
Then assuming that the primary voltage $E_{p}$ is equal to the voltages appearing across each half of the secondary coil $E_{1}$ and $E_{2}$, we can draw the following vector diagrams to illustrate what happens at resonance. Since these voltages are not in phase they
cannot be added directly but must be added vectorially as illustrated. Sce Figure IV.


From these vector diagrams we see that equal RF voltages will appear at each diode plate with respect to ground at resonance. The heavy lines show the resultant voltage wave when $E_{p}$ is added to $E_{1}$ and $E_{2}$

Then it follows that if equal RF voltages appear at each diode plate to ground, equal DC voltages will appear across $A B$ and $B C$ at resonance, Figure I. However, A will be positive with respect to $B$, and $C$ will be positive with respect to $B$, therefore, the total will be positive with respect to $B$, thercfore, the total
$D C$ voltage from $A$ to $C$ will be zero, and we will have no AFC control voltage developed when the incoming IF signal is at the resonant frequency of the AFC transformer.

## BELOW RESONANCE

Now, supposing the incoming IF signal impressed on the AFC transformer is LowERED. The induced secondary voltage $E_{s}$ will still be in phase with primary voltage $E_{p}$. However, the circulating current in the secondary tank circuit will no longer be in phase with it, but will begin to lead.

This follows, because at frequencies lower than resonance in a series tuned circuit, the capacitive reactance is large and the inductive reactance small, so that most of the voltage drop is across the condenser. The circulating current leads the applied voltage $E_{S}$, depending on the amount off resonance of the incoming signal. This, in turn, causes the induced voltage Fsr to lead the primary voltage $E_{p}$ by a like amount, or the voltages developed in each half secondary begin to shift as illustrated, with the result that the vector sum of the primary and each half secondary voltages becomes unequal, the top diode (Figure V) receiving a higher RF voltage than the bottom diode. For convenience, we have shown a phase shift of $30^{\circ}$.
Since the top diode receives more RF voltage than the bottom diode, the rectified $D C$ voltage appearing across AB will be greater than that across BC. Also, since $A$ will be positive with respect to $B$, the resulting DC voltage appearing across AC will be a positive AFC control voltage.


Figure II


## ABOVE RESONANCE

Supposing now that the incoming IF signal frequency is higher than the resonant AFC frequency. The circulating secondary current will begin to lag the primary voltage, $E_{p}$.
This is because at higher frequencies, the inductive reactance is large and the capacitive reactance low, resulting in the circulating current lagging the induced secondary voltage $\mathrm{E}_{S}$, or lagging the primary voltage $\mathrm{E}_{p}$. This circulating current in turn induces the resonant voltage $E_{S r}$ in the coil, causing the secondary voltages $E_{1}$ and $E_{2}$ to lag the primary voltage $E_{p}$ in our vector diagram. Figure VI, or to lag its original resonant position. For convenience a $30^{\circ}$ phase shift is again shown.
From Figure VI, we see that the bottom diode receives more RF voltage when the incoming IF signal is above resonance; therefore, more voltage will be developed across the botton diode resistor than across the top and since $B$ will be negative with respect to ground or C, this negative voltage will overpower the voltage from the top diode resulting in a negative AFC control voltage.


This varying voltage is then fed to the grid of the frequency control tube. A typical resonance curve of an AFC transformer showing AFC control voltage developed, vs. kc. off resonance is shown in Figure VII.


Figure vili

## FREQUENCY CONTROL

Figure VIII shows the essential parts of the frequency control circuit.
To accomplish its purpose, that is, to provide some way of either increasing or decreasing the set oscillator frequency from normal, without changing the gang condenser position, we connect an imaginary inductance across the oscillator coil and provide a way of making this imaginary inductance either larger or smaller by means of the discriminator voltage. The smaller by means of the discriminator voltage. The
imaginary inductance is the frequency control tube.

Reviewing elementary circuit theory, we find that the current in a condenser leads the voltage by $90^{\circ}$; also that the current in an inductance lags the voltage by $90^{\circ}$. We also find that when two inductances are connected in parallel, the resultant inductance is always less than that of the lowest of the two inductances.

## WIIY TIIE CONTROL TUBE ACTS AS AN INDUCTANCE

In order for the control tube to act as an imaginary inductance in shunt with the oscillator coil "L," it must cause a lagging current to flow through coil "L" (Figure VIII) with respect to the oscillator voltage already across coil " $L$ " since this is exactly what would happen if an inductance coil were connected in shunt with coil " 1 .."
Supposing the control tube was connected across coil 'LL,' but without any AC excitation on its grid. In this case, it would shunt the coil " $L$ " with a definite resistance or impedance, the magnitude of which would depend on the bias voltage applied to the tube. Therefore, the tube would draw current from the coil "L". However, this current would be in phase with the oscillator voltage since the tube acts as a resistance and increasing or decreasing the bias on the tube would not affect the oscillator frequency. However, the network RC is also connected across the oscillator coil " $L$ " and the voltage across " $C$ " is applied
to the grid of the control tube. This causes the tube to act as an imaginary inductance, explanation as follows:

Looking at Figure VIII we find a resistance " R " and a capacity " $\mathrm{C}_{1}$ " connected in series across the oscillator coil " L ." The values of " R " and " $\mathrm{C}_{1}$ " are so chosen that the resistance of " $R$ " is greater than the reactance of " $\mathrm{C}_{1}$," therefore, this combination has nearly unity power factor, or appears to the oscillator coil " L " or oscillator voltage source as a resistance load. The current through $R$ and $C_{1}$, therefore, is nearly in phase with the oscillator voltage. Then, since the current through condenser " $\mathrm{C}_{1}$ " is nearly in phase with the oscillator voltage across the coil "L," it follows (from the statement above) that the voltage appearing across a condenser lags the current through it by $90^{\circ}$, that the voltage appearing across condenser " $\mathrm{C}_{1}$ " is lagging the oscillator coil voltage by nearly $90^{\circ}$. This voltage is then applied to the grid of the control tube. If the control tube is properly biased, plate current will flow in phase with the grid voltage (peak plate current with peak grid voltage). This means that the plate current will lag the voltage across coil "L" or oscillatory circuit by nearly $90^{\circ}$, making the tube act as an imaginary inductance.

## HOW CONTROL VOLTAGE AFFECTS INDUCTANCE

Since the plate current of the control tube draws a lagging current with respect to the oscillator voltage across "L" and since the plate current can be varied by varying the amount of bias on the tube, we have in effect a variable inductance in shunt with the oscillator coil, the amount of which inductance is directly controlled by the discriminator control voltages.

## A COMPLETE CYCLE

Referring to Figure 1 again, when the local oscillator is generating the correct signal to produce an $1 F$ signal equal to the resonant IF frequency of the set, there is no need of any further adjust ment. The differential voltage is zero across points A to C; Figure I, therefore, there is no effect upon the control tube and oscillator circuit.

However, on signals lower than the IF set frequencies, "A" becomes positive with respect to ground causing the "Frequency Control" tube to draw more plate current, or decreasing the effective inductance of the coil " $L$ "' causing the oscillator frequency to raise, therefore raising the IF frequency produced until it equals the resonant IF frequency. On signals higher than the IF frequency, " $A$ " becomes negative with respect to ground, causing the "Frequency Control" tube to draw less plate current, and therefore increasing the oscillator coil's effective inductance and decreasing the oscillator frequency, until it is correct to produce the resonant IF frequency.
The action finally stops in either case, with about one volt as the differential voltage actually remaining. This action is quite rapid, taking place in less than 1 second of time. It is possible with this system to correct the IF to within 100 cycles of the IF peak, if the receiver is mistuned as much as 10 kc . off resonance.

## COMMERCIAL AFC CIRCUITS

The previous discussion outlines in general the manner in which AFC circuits function, as commercially applied in receivers. However, there are several interesting variations, which are used to effect certain desired performances, that are well worth mentioning and explaining.

## AFC IN TRIPLE DETECTION SUPERHETERODYNES

Figure IX is a block diagram which will serve to illustrate how this system functions.
For example, suppose a 1000 kc . signal is being received by the antenna. This signal is tuned and amplified by the RF amplifier circuits and is passed on to the first detector. In the first detector tube this 1000 kc . signal is mixed with a 1455 kc . oscillator frequency in order to produce a 455 kc . 1 F . A 6 A 8 tube serves as both the first detector and oscillator. The 455 kc . IF signal is passed on through an IF transformer into a second detector. At the second detector, the 455 kc . signal is mixed with a fixed 355 kc . oscillator frequency to produce a 100 kc . IF . This 100 kc . frequency is then amplified by a 100 kc . 1 F amplifier and is passed on to a third detector, which serves to rectify the signal. The audio components are passed on to the audio amplifier and then to the speaker. The second oscillator frequency ( 355 kc .) is chosen below the signal frequency of 455 kc . instead of above it, since a 555 kc. oscillator frequency, necessary to produce the 100 kc . IF, would fall in the lower limit of the broadcast band and tend to cause beat notes with broadcast signals. While it is true that the harmonics of the 355 kc. oscillator produce beat notes with broadcast signals, the effect is not as troublesome as in the case of a fixed oscillat or frequency of 555 kc .
Referring again to Figure IX, we see that the oscillator control tube, 6 J 7 , works only on the fixed 355 kc . oscillator. Any change in the frequency of the 355 kc . oscillator directly affects the second IF. For example, say a 1000 kc . signal is being received and the gang condenser is incorrectly tuned by 5 kc ., or to 1005 kc . This will cause the IF produced by mixing the first oscillator and RF, to be 400 kc . instead of 455 kc . As a result the signal produced by the mixing of the second oscillator and second detector will be 105 kc . instead of 100 kc ., which causes serious distortion of the signal. To compensate for this, the second oscillator must be changed in frequency by the control tube action, to 360 kc . This action in turn produces the 100 kc . IF and corrects for the original mistuning situation. The important thing about this is to note that the AFC is accomplished by varying the frequency of an oscillator which operates near a fixed frequency. In the previously described system the control tube must vary the frequency of an oscillator operating over extremely wide ranges. This gives rise to poor AFC action on the short wave ranges and varying action over the broadcast band; whereas in the triple detection system the control is equally effective on all frequency ranges, since it merely varies a fixed frequency oscillator. Any error caused by mistuning, drift in the RF section, or gang condenser tuned circuits, which might cause the signal going to the second detector to vary from 455 kc ., would be compensated for by a change in the fixed 355 kc . oscillator frequency. In this manner the 100 kc . IF signal is accurately maintained.

Figure $\mathbf{X}$ illustrates the double superheterodyne and AFC circuits as employed in the chassis 1237-D. 12-tube Arvin receiver. This set was chosen as a typical example of the triple detection type receiver. as the design principles employed here are general.
Referring to Figure X, we note that the 100 kc . IF signal is fed into a limiter amplifier stage. This serves to amplify the 100 kc . signal before it goes into the discriminator, and also serves the important function of providing a nearly constant amount of signal to the discriminator. On weak signals the full gain of the amplifier is available to bring up the amount of signal going to the discriminator. On strong signals the grid current through the 1 megohm grid resistor increases the bias, thus decreasing the gain. This causes the output of the amplifier to level off, and provides uniform output to the discriminator regardless of signal intensity. In the Arvin receiver mentioned this a mplified signallevelsoff when a 10 microvolt signal is applied to the antenna, and remains substantially constant for inputs beyond this value.

The discriminator circuit functions in the same manner as the one previously described and will not
receive further attention here. The oscillator control tube, however, receives its $90^{\circ}$ out of phase voltage in a manner that has not been previously explained. Referring to Figure $\mathbf{X}$, we see that the control tube grid gets its RF voltage from the voltage drop across a 100 ohm resistor, which is in series with the oscillator tuned circuit, the low end of the 100 ohm resistor being grounded to RF by the .05 mfd . condenser. Since the reactance of the 100 ohm resistor is low in comparison to that of the oscillator coil, the current through the resistor is substantially in phase with the coil current. However, the voltage across the coil, or the oscillator voltage, is $90^{\circ}$ ahead of the coil current. The voltage across the resistor is in phase with the current. Therefore, the voltage across the resistor lags the coil voltage by $90^{\circ}$ and in turn causes the control tube to act as an inductance in shunt with the oscillator coil; the value of the inductance varying with the polarity and magnitude of the control voltage received from the discriminator.

## ALIGNMENT OF AFC-EQUIPPED SETS

First, the IF transformers of the set should be carefully aligned according to the standard practice as recommended by the manufacturer. (Usually it is a good practice to allow the set to warm up thoroughly before making any adjustments, so as to allow for inductance or capacity changes due to thermal expansion.) Then the test oscillator should be connected to the first detector or first IF stage and tuned to the exact IF frequency of the set, as determined by peak on an output meter. A vacuum tube voltmeter should be connected across the discriminator control voltage, points "A" and "C," Figure I. Usually one diode cathode connects to ground or chassis, so it is only necessary to connect the vacuum tube voltmeter to the chassis, and the other diode cathode.

Then the secondary trimming condenser of the AFC transformer should be backed out with alignment tool until it is nearly open.

This is done in order to insure ease of aligning the primary trimmer. Practically no change would result if the secondary happened to be set for zero discriminator voltage, regardless of the amount of adjusting that was given the primary trimmer. Thus an inac curate setting would result. Adjust the primary trimmer condenser for maximum discriminator voltage either positive or negative.

Then adjust the secondary trimmer for exactly zero voltage across the discriminator network points "A" and "C," Figure 1.
The adjustment of the secondary trimmer is critical in most AFC-equipped sets and must not be attempted without proper equipment. Usually there are three points at which zero discriminator voltage is ob tained; namely, when the trimmer is all out; in about the middle; and when it is completely closed. The correct point is the center adjustment, or where a very slight change in adjustment causes a rapid change in discriminator voltage. After the zero voltage setting is made, the test oscillator frequency should be varied until the maximum positive and maximum negative discriminator voltages are developed, and the meter readings noted. The readings should be closely the same. A wide discrepancy in readings indicate misalignment of the primary trimmer or a defective discriminator transformer. In such case the primary trimmer should be readjusted slightly until equal readings are obtained. Do not readjust the secondary trimmer to make them equal, since this would cause the zero voltage to be developed at some frequency other than the resonant IF, and cause the set to mis tune every station when the AFC is functioning.

A quick check of the functioning of the AFC circuit can be made as follows: Tune in a local station with the AFC switch off. Then detune the set a measured amount off resonance, say 8 kc . Then turn the AFC control on. The AFC should lock in and tune the set to resonance. Then repeat the same test 8 kc . the opposite side of resonance and see if the AFC again locks in, tuning the set to resonance. The AFC should control an equal amount from either side of resonance when properly aligned. Also when the set is tuned to resonance on a weak signal with the AFC control off. thrning the AFC control on should not cause the set to be mistuned. If it does, the AFC control adjustments are not properly aligned.


Figure IX


Figure X

## AUTOMATIC TUNING

THE past radio season has witnessed the widespread adoption of automatic tuning systems by practically every radio receiver manufacturer. The appeal of this feature to the public has been fostered by intensive sales promotion and advertising campaigns which have established it as a necessary adjunct to a modern receiver. It presents to the radio service engineer a unique opportunity for the establishment of closer customer contact since the original setup of selected stations as well as the maintenance of continued satisfactory automatic operation is a function which he alone is technically capable of rendering.

As everyone acquainted with radio receiver details will realize, automatic station selection is not a new development but rather a refinement and perfection of principles which have been in use for the past eight years. 1t is interesting to note that the continued progress towards the ideal of simplification of the tuning requirements of radio receivers has been the result of a series of cycles in which improvements in mechanical design have in every case followed and been initiated by the introduction of new radio circuits. In the present case the development of automatic frequency control of superheterodyne oscillators, stabilization of drifts due to temperature and humidity and the expansion of IF amplifier circuits have simplified the design of automatic tuning devices by allowing considerable latitude in the mechanical and electrical precision of selectors.

The present article presents a descriptive review of the various methods of accomplishing automatic tuning. The subject at first glance appears to be bewilderingly complex. Upon closer study it is found that the various systems used are inter-related and that it is possible to classify them. Certain devices and circuit elements have been found to be common between the various systems and their description will be presented by the use of sections devoted to them. In general automatic tuning systems may be divided into three main groups:

## I. Mechanically Operated Manual Types

## II. Motor Operated Types

## III. Tuned Circuit Substitution Types

These main headings may be further subdivided into individual variations. To classify the receivers and explain the many details of automatic station selection employed, a system has been adopted similar to that used elsewhere in this manual for the listing of service components. This system of manufacturer listing followed by individual detail sections allows the presentation of an immense amount of material in condensed form and has been found extremely helpful. Careful study of the automatic tuning classification outline which follows together with the manufacturer model listings under general types will make the use of this system apparent.

## CLASSIFICATION OUTLINE

## I. MECHANICALLY OPERATED MANUAL TYPES

The tuning condenser is turned to the desired station reception position by direct mechanical effort of the person operating the receiver. Four general divisions of this type have appeared:
A-Linear (Typewriter key motion).
B-Rotary (Telephone dial motion).
C-Indent (Spot tuning).
D-Flash (Light indicator tuning).
A. Linear (Typewriter Key Motion)

Straight line motion of a key in a direction parallel to the tuning panel rotates the gang condenser by means of cams or levers whose position is pre-set to the desired station. Examples: Belmont (Belmonitor), Crowe (Cromatic).
B. Rotary (Telephone Dial Motion)

This type of mechanism which appeared in late 1935 and in 1936 receivers has found widespread use and has been subject to many mechanical re-
finements. Gearing between dial mechanism and tuning condenser is arranged to allow almost $360^{\circ}$ of dial movement.

1. Button or Indexing Adjustment.
a. By splines or serrations on plunger co-operating with similar shaped grooves in an opening on a die-cast dial plate. Examples: Colonial, Emerson, Fairbanks-Morse, Philco.
b. By locking nut on threaded plunger shaft.
(1) Rotary adjustment of location of pin on radius about center of equally spaced buttons. Example: Wilcox-Gay, G. H. U.
(2) Sliding adjustment in annular slot or series of overlapping slots around periphery of dial. Examples: Erla (Sentinel), Trav-ler, Philco (Cone-centric), G. H. U. (Teledial).
2. Stop or "lock-in" device.
a. Latch Gate-A spring operated double gate allows depressed station pin to enter from either side but immediately locks after the pin enters to prevent rotation in either direction. Examples: Colonial, Fairbanks-Morse, G H. U., Philco (Magnetic tuning).
Note: In most instances the latch gate operates switching of $\triangle F C$ and audio silencing circuits. The latch gate principle is also employed in some motor-tuned systems. See II-Cl under "Motor Operated Types."
b. Slot in metal plate co-operating with depressed pin. Example: Wilcox-Gay.
c. Floating Vane Stop-Vane is moved sideways by the depressed pin until it strikes fixed stops. Pin centers at same position when moved from either direction. Examples: Emerson, Trav-ler.

## C. Indent (Spot Tuning)

Hardened steel ball is pressed into threaded groove in soft brass cylinder to provide indents to assist manual tune. Example: Galvin (Motorola Syot Tuning).
D. Flash (Light Indicator Tuning)

As set is tuned manually, with audio system silenced, a light flashes to indicate when tune to the desired station has been accomplished. Receiver "muting" is removed as station tune point is reached.

1. Operated by latch gate switching. Example: Stromberg-Carlson (Flash Tuning).
2. Operated by sliding contacts on dial and "muting" relay. Example: Noblitt-Sparks and Erla.

## II. MOTOR OPERATED TYPES

See Pages 250-251

The rotation of the variable gang tuning condenser to a position corresponding to a desired station tuning point is accomplished by means of an electric motor. The system usually includes: an electric tuning motor, a station selector switch or group of selector buttons, a selecting commutator or other device for stopping the motor at the desired point, an audio silencing and AFC release circuit operating during the tuning cycle and a transfer device to change from manual to automatic tune. Each of these functions will be covered more completely under individual headings. Motor tuning methods may be broadly divided into three main groups:

A-Motor drive by scanning switch.
B-Electrical push button switch with selecting commutator.
C-Mechanically interlocked station plunger and selecting mechanism.
A. Motor Drive by Scanning Switch.

A scanning or motor reversing switch is operated by a knob concentric with the manual tuning knob. The operation of the motor brings the tuning condenser position close to the desired point after which the tuning operation is completed manually. Examples: Crosley and Zenith.
B. Electrical Push Button Switch with Selecting Commutator.
The selecting commutator or stop device is mechanically connected to the gang condenser and electrically connected to the station selector switch and motor. Examples: Crosley, Detrola, General Electric, Gilfillan, Galvin(Motor car set), Midwest, Packard Bell, Pacific Radio, Radio Products, Stromberg-Carlson.
C. Mechanically Interlocked Station Plunger and Selecting Mechanism.
The selecting buttons and the stop device are combined in one unit with some type of mechanical latching at the instant of stop. This type may be pre-set for stations from the front of the receiver since the stop devices are part of the dial mechanism.

1. Circular arrangement of fixed buttons which lock rotation by latching. Examples: Galvin (Motorola household sets), United American Bosch, Westinghouse.
2. Straight line arrangement of fixed buttons with mechanical interlock to disc or cam selectors. Examples: Stewart-Warner, Wells-Gardner.

## III. TUNED CIRCUIT SUBSTITUTION TYPES

## See Page 252

A latching or ladder type push button switch selects pre-calibrated tuned circuits which are substituted for the usual variable condenser tuned input and oscillator circuits. In general two types of pre-set circuits are used:
$\Lambda$-Trimmer condenser tuning.
B-Iron core tuning.
A transfer switching means to change from manual tuning is used in all cases except in those models which operate on selected broadcast stations only and do not have a gang tuning condenser.
A. Trimmer Condenser Tuning.

1. Ground side switching with push button switch. The low potential or ground side of the trimmers are connected to the switch.
a. Two trimmer circuits (no RF stage). Examples: Garod, Howard, Pacific Radio (Chicago), Wilcox-Gay.
B. Three trimmer circuits (RF stage, detector input and oscillator). Examples: NoblittSparks, Sparks-Withington.
2. High side switching with push button switch. The push button switch is connected on the high potential or grid side of the RF circuit. This allows transfer switching to gang tuning by one button of the switch.
a. With transfer switching by other means than selector switch. Examples: Pacific Radio (Los Angeles), Stromberg-Carlson
b. With transfer switching on push button station selector switch. Examples: Air King, Erla, General Electric, Warwick.
3. No gang condenser-selected broadcast only. Examples: Howard, Sparton, Wilcox-Gay.
4. Rotary type station selector switch. Examples: Fada, Radio Products (Motor Car Touch-OMatic).
B. Iron Core Tuning.

Screw adjusted iron core varies the inductance of pre-set coil units. This type of tuning is used in the oscillator circuit of some receivers due to less frequency drift with temperature. Examples: Automatic Electric, R.C.A.

## I. MECIIANICALLY OPERATED MANUAL TYPES

As briefly covered in the classification outline this method of automatic tuning includes all of the devices

TABLE I-MECHANICALLY OPERATED MANUAL TYPES

(Notes given on pages 253 to 271 )
which permit the gang tuning condenser to be directly adjusted to tunc on the desired station by mechanical effort of the person tuning the receiver. The column of the following listing headed "Type" refers to the main subdivisions of the foregoing outline. With the exception of the linear type listed as IS, all of the details of a given receiver may be determined by reference to the section notes under the various section headings.
The linear or typewriter key motion type of mechanism is separately described on page 271.

## II. MOTOR OPERATED TYPES

As indicated in the main outline, motor tuned systems in general include:

1. An electric tuning motor.
2. A selecting commutator.
3. An audio silencing and AFC release device.

A typically motor tuned system is illustrated pictorially in Figure 1, with its corresponding schematic wiring diagram in Figure 2. A description of this system will serve to familiarize the reader with motor
tuned operation. Variations from this typical system will be covered in the notes listed in Table Il.

The tuning motor drives the variahle gang condenser through a train of gears to which the motor is mechanically coupled by a quick-acting clutch.

When the motor is not energized the armature is positioned slightly out of the center of the magnetic field. It is held in this position by a flat phosphorbronze spring which also acts as part of a jack spring switch assembly. When the windings of the motor are energized the rotor is drawn into the magnetic field, closing the separated parts of the cluteh and actuating the jack spring switch. The clutch performs a dual function in that it relieves the driving system of the load of the motor during manual tuning and it allows the motor to coast to a stop, permitting instant cessation of gang condenser rotation when the selecting commutator opens the motor circuit. The selecting commutator is directly coupled to an extension of the variable gang condenser shaft by means of a universal coupling. In the case illustrated it consists of a series of metal discs which are electrically connected to the shaft and are driven by means of cupped friction washers. In the periphery of each dise is a short insulated section which serves to open a circuit when the disc has revolved to such a point that a contacting finger is resting upon the insulation. These discs may be rotated with respect to their drive shaft to allow them to be set to positions corresponding to desired station tuning points. This is done by locking the disc against rotation with an indexing pin while the station

TABLE II-MOTOR OPERATED TYPES

MANUFACTURER AND MODEL	Name of Automatic Feature	No. of Selected Stations	$\begin{gathered} \text { Type } \\ \text { See } \\ \text { Page } 249 \end{gathered}$	See Sction A Page 253 Button or Indexing Adjustment See Note.	See   Section B Page 256 Stop or Lock-In Mechanism See Note	See   Section C   Page 257   Transfer   Device Manual to Automatic See Note	See   Section D Page 261 Audio Silencing Circuit   See Note	See Section E Page 264 AFC Release During Tune See Note	See   Section $\mathbf{F}$   Page 264   Tuning   Motor   See Note	See   Section G Page 266 Push Button Station Selector Switch See Note	See   Section H   Page 270 Station Selecting Commutator Device See Note
$\begin{gathered} \hline \text { CROSLEX } \\ 6171127 . \\ 1137 \ldots \ldots \end{gathered}$	Dynatrol Drive . Prestotune.....	. 8.	...I1A.				..D7		..F6..	$\begin{gathered} \ldots \mathrm{G4} \\ \ldots \mathrm{G} 1 . \end{gathered}$	H4
DETROLA   175, 183, $185 .$.   191, 192, 193.	Electric Automatic Tuning.   Electric Automatic Tuning	... 8 .					..D7....		..FF2.... $\ldots . . F 2 \ldots .$.	G1.	H3.   H3
GALVIN   10Y1, 12Y, 12Y1........   Motor Car Models 8-60, 8-80.	Electric Automatic Radio.   Press Button Tuning	$\ldots .19 . .$. $\ldots . .6 . .$.	...IIC1.   .IIB.	..A2....	$\ldots$ B7..... $\ldots 89 \ldots . .$.	..C3.....		E2.....	$\begin{gathered} \ldots F 3 \ldots \\ \ldots F 4 \ldots \end{gathered}$	G3 G1	
GENERAL ELECTRIC   F107, F109, F137..	Touch-Tuning	. 13	...11B..	(See Speci tion. pa	al Descrip-	...C4 ..	. . D5 .	...E3.....	. F1....	...G2.	. . H2 . . .
GILFILLAN BROS. 13C8-E.............	Automatic Electric Motor Tuning.	.....8...	...11B..			...Cl.....	..D8....		...F2....	. . G2 .	...H3....
HERBERT H. HORN IIA.		. .... 8	...11B.			...C4.....	. . D8....	...EA.....	$\ldots$...F2,...	. . G2 .	. . H3 . . .
HOWARD RADIO CO. 400 A and 425 A .	Motor Automatic.	.... 8.	..IIB...			...C4.....	..D8. .		..F2.....	. . G2 . .	...H3. . .
$\begin{aligned} & \text { MIDWEST } \\ & \text { VT16, VT18, VT20. } \end{aligned}$	Motorized Automatic.	..... 8.	...11B..			...C6....	..D3....	........	...F4...	...G1. .	. . $\mathrm{H} 3 . .$.
$\begin{aligned} & \text { PACKARD-BELL } \\ & 160 \ldots \ldots \ldots \ldots . . \end{aligned}$	Automatic Tuning	.... 8	...IIB..			...C5 ...	...D8....		. .F2....	...G2....	...H3. .
R.C.A.   $811 \mathrm{~K}, 812 \mathrm{~K}, 813 \mathrm{~K}, 816 \mathrm{~K}$.	Electric Tuning...	. . . 8 .	. 118.			..C1....	...D8....	...E4.....	...F3....	. . G2	. $\mathrm{H} 1 . .$.
RADIO PRODUCTS 930-16R. 925-16R. 935-11S, 940-11S	Touch-O-Matic.	. 8.	...IIB..			...C4....	. . D8	.E4.....	..F2....	. . G2....	. $\mathrm{H} 3 . .$.
STEWART-WARNER R184, R185, R186	Magic Keyboard	. . . 15	. .1IC2.	(See Speci	al Descripti	on. page 27	2.).......				
STROMBERG-CARLSON $\mathbf{7 0 , 7 2}, 74 \ldots . . . . . . . . . . . . . . . . ~$	Te-Lek-Tor.	. 8	..IIB..			...C7....	. D8 . .		.F2....	.G1.	...H3. . .
$\begin{aligned} & \text { UNITED AMERICAN } \\ & \text { BOSCH } \\ & 850.860 \ldots \ldots \ldots \ldots \end{aligned}$	Automatic Electric Tuning	....14.	...11C1.	. A 2	. . $188 . .$.	...C1.....	..D6.		..F4.	. . G3	
WELLS-GARDNER A1, A2. A3	Electric Drive....	... 8.	...IIC2.	(See Speci	i al Descripti	on, page 27	3.)				
$\begin{aligned} & \text { ZENITH } \\ & \text { S905 ( } 7 \text { models), } 1204 \\ & \text { ( } 7 \text { modelsels }) 1501 \text { ( } 6 \\ & \text { models). . . . . . . . } \end{aligned}$	Electric Automatic Tuning, Robot Dial		IIA						F5.	G4	

(Notes given on pages 253 to 271 )



Figure 2-Schematic Diagram of Typical Motor-Tuned System.

TABLE III-TUNED CIRCUIT SUBSTITUTION TYPES

MANUFACTURER and MODEL	Name of Automatic Feature	No. of Selected Stations	$\begin{gathered} \text { Type } \\ \text { See } \\ \text { Page } 249 \end{gathered}$	Sec   Section C Page 257 Transfer Device Manual to Automatic Sce Note	See   Section G   Page 266 Push Button Station Selector Switch See Note
$\begin{gathered} \text { AIR KING } \\ 910 \ldots \ldots \\ 911 \ldots \ldots \end{gathered}$		$\begin{aligned} & .5 \text { and } \mathrm{T}^{*} . \\ & .5 \text { and } \mathrm{T} . \end{aligned}$	$\begin{gathered} . .111 A 2 b . \\ \cdots \text { II1A2b. } \end{gathered}$	$. \mathrm{C}_{\mathrm{C}}^{\mathrm{C}} . . .$	$\begin{aligned} & \mathrm{G} 2 \\ & . \mathrm{G} 2 \end{aligned}$
AUTOMATIC ELECTRIC 855, 892		(6.	..111B....	...C2..	G2
$\begin{gathered} \text { ERLA } \\ \hline \end{gathered}$		. 5 and T*.	...111A2b...	..C4....	. .G2 . . .
$\begin{array}{r} \text { FADA } \\ 368 . \end{array}$	Flashomatic	. 6.	..IIIA4..	...,C2....	.G5.....
$\begin{aligned} & \text { GAROD } \\ & 782,782-1 \end{aligned}$	Prestomatic.....	....6.	.. illala.	...C2.	.G2....
$\underset{\text { F96................... }}{\text { GENERAL }}$	Touch-Tuning	. 6 and T*.	$\ldots$...IIIA2b...	. $\mathrm{C} 4 . .$.	. G2
GILfillan bros. 5T8.................	Automatic Touch Tuning.	. 6 and ${ }^{\text {T* }}$.	...IIIA2b...	.C4.....	.G2....
	Automatic Tuning.	$8 \text { and } \mathrm{T}^{*}$	$\begin{gathered} . . \text { IILA3.. } \\ \cdots \\ \hline \text {.IIA1... } \end{gathered}$	Spec. note	$\begin{gathered} . \mathrm{G} 2 \\ . \mathrm{G} 2 \end{gathered}$
$\begin{gathered} \text { NOBLITT-SPARKS } \\ 1237,1247,1247 \mathrm{~A} . \\ 1+27, \ldots \ldots \end{gathered}$	Phantom Tuning	io.	$\begin{gathered} . . \text { IIIA1b.. } \\ \cdots \text { IIAAb. } \end{gathered}$	$\because C 2$	$\text { G2 } .$
PACIFIC (CHICACO) Converter Unit.	Selectro-Matic	. ${ }^{\text {a and } \text { T. } . .}$	...II1A1a.	. $\mathrm{C} 4 . . .$.	. . G2
$\begin{aligned} & \text { PACIFIC (LOS ANGELES) } \\ & 37,37 \mathrm{~A} \end{aligned}$		. 6 and T*.	..IIIA2...	...C4.....	..G2....
R.C.A.	Automatic Electric Tuning.	....6.	..IIIB...	. .C2.....	..G2....
RADIO PRODUCTS   Motor Car Conversion Unit..	Touch-O-Matic	. 5 and T.	..I11A4..		.G1....
SPARKS-WITHIINGTON 1068, 1268, 1288, 1568. 738	Selectronne.	.	$\mathrm{FIIIA}_{\mathrm{ZIIA}}$	. . C1..	$\begin{aligned} & \text { G2 } \\ & \hline \text { G2 } \\ & \hline \end{aligned}$
STROMBERG-CARLSON	Electrical Flaslı Tuning	. . . . . . 6.	...IILA2a.	..C1....	.G2....
$\begin{gathered} \text { WARWICK } \\ 645 \ldots . . . . \end{gathered}$		. 5 and T*.	...IIIA2b...	...C4...	...G2...
$\begin{aligned} & \text { WILCOX-GAY } \\ & \text { A48, 7S5...... } \end{aligned}$		6	...Illa3...		. .G2....

[^2]
## III. TUNED CIRCUIT SUBSTITUTION TYPES

These types, of which the Sparton "Selectronne" was the first to be introduced in this country, function by substituting pre-set tuned circuits for the usual variable condenser tuning circuits. Control is shifted from the variable condenser to pre-set trimmer condensers (or iron core tuned circuits) mounted adjacent to the switch terminal of a push button selector switch. The transfer may be accomplished in a variety of ways described in detail in section C. One outstanding advantage of this type of system is its instantaneous action. Response to a desired station occurs immediately upon depressing the station button.

## DESCRIPTION OF CONDENSER TUNED SYSTEM

A typical condenser substitution systern is shown in pictorial fashion in Figure 3, with the schematic diagram of the rear wave switch section shown in Figure 4. The various parts are separated in these illustrations in such a manner as to show the operation to advantage and do not necessarily represent the actual placement of the parts in a receiver.

The circuit illustrated is that of a two-band receiver with both push button and continuous tuning on the broadcast band. The wave change switch has been given an extra or extreme counter clockwise position to transfer the circuit connections from manual to antomatic tuning. In this position the switch terminal connected to the gang condenser stator is open and the grid, broadcast secondary and push button selected trimuner condenser are all connected in parallel. The upper bank of condensers serve to tune the oscillator grid circuit, while the lower bank of condensers are used to tune the detector input circuit. The circuit illustrates ground side switching with the high potential side of the trimmer condensers connected in parallel. In this case the shoe holders of the sliding contact shoes on the push button switch are made of metal and serve to connect the low potential sides of the selected condensers to frame or ground as shown in the schematic diagram of Figure 4.

## DESCRIPTION OF IRON CORE TUNED SYSTEM

The use of adjustable iron cores as a means of presetting tuned circuits was described briefly in the general outline.
In Figure 5 is shown the schematic wiring diagram of one of the recent models employing compression tuned (trimmer) input circuits and iron core tuned

oscillat or circuits. Figure 'bi shows an "under-chassis" view of this receiver. As in the previous diagram a josition of the wave clange switch has been used to transfer from manual to antomatic ofxration. The portions of the circiut used in automatic tuning have been shown by darker lines than the remainder of the diagram. The iron core trimmed coils are individually connected in parallel with an auxiliary secondary coil coupled to the broarcast oscillator plate winding. This coil tuned by condenser $C$ is resonant to a frequency below the broadcast band so that when it is paralleled by the iron core winding the frequency is increased to the desired point in the band. The condenser is of special construction and utilizes a ceramic dielectric whicl has a negative temperature coefficient to compensate the positive tenmerature drift of coil and tube.


In all of the mechanically operated manual types and a few of the motor driven types the station selecting button itself provides the adjustment of the indexing pin which arrests rotation of the gang condenser at the proper point for station tunc. In most models the pin or lever is attached to the opposite end of the push button plunger and is held away from the dial mechanism by a coiled or flat spring. The series of button plungers are usually attached to a dial plate which in turn drives the gang condenser through a gear train so proportioned as to allow almost $3600^{\circ}$ of dial plate rotation. This constitutes the familiar "telephone" dial type of drive mechanism. As the plunger is depressed and the dial rotated in the same operation the indexing pin moves forward and is arrested in its rotary motion by some type of stop or lock-in device (See Section B). The precise position at which the condenser rotation stops is adjustable, by one of the following methods described, to allow set-up of the receiver to a group of desired stations after which the adjustment is locked in place.

## Note Al

The splined, serrated or straight knurl type of indexing adjustment has probably been employed in more of the manually tuned sets than any other type. Its action can be understood from a study of Figures 6,7 , and 8 . The grooves on the plunger slide freely


Figure 4-Schematic Diagram of Rear Switch Section of Figure 3.


Figure 5-Iron Core Tuned .System (R.C.A.).
in co-operating grooves in the dial plate so that the plunger may be readily pushed into the opening in the dial plate but may not be rotated unless unlocked in some manner for adjustment.


Figure 6-Colonial Indexing Adjustment.
COLONIAL-Figure 6 shows by means of a line drawing cutaway view the action of the Colonial indexing adjustment. The dial locking lever when rotated a few degrees toward the left unlocks the mechanism and allows the die cast plungers to be pushed in until the serrated portion clears the grooves in the aperture of the dial plate. When this is done the plungers may be rotated so that the actuating pin can be correctly located for station tune. A reverse rotation of the locking lever prevents subsequent motion of the plunger beyond the serrations.


Figure 7-Emerson Indexing Adjustment.


EMERSON—Figure 7 shows a similar serrated type of adjustment. In this case the outer ornamental dial plate is removed during setup operations. Its place is taken by a thin metal disc held in place by the knurled face nut. This disc has a single semi-circular notch in its periphery which may be adjusted to allow any one button to be moved forward while holding the rest of the buttons in place. Thus a button under the action of its spring will move forward sufficiently to allow its serration to clear those of the housing after which it may be rotated so that the button pin is in the correct position for station tune.


Figure 8-Philco Automalic Dial.
PHILCO-Figure 8 shows a line drawing of the detials of the Philco Automatic Dial. A diecast plunger similar to those previously described operates in grooves in the rear of the housing. The method of adjustment differs from the foregoing in that the plunger may readily be moved from one groove to another after the front plate has been removed by depressing it against the action of its spring until the serrations clear the opening in the rear of the housing. This may be done with a screw driver since the head of the plunger has a slot to receive the screw driver.

Similar mechanisms employing serrated plungers may be found in the mechanical models of FairbanksMorse, General Household Utilities, and WellsGardner.

## Note A2

An alternate method of locking the station selecting button is by means of threaded lock nuts on the plunger shaft.
WILCOX-GAY-Figure 9 shows one of the simplest of automatic dial assemblies. The station buttons are located at the ends of radial flat spring members which are so shaped as to hold the button away from contact


IÍgure 9-IVilcow-Gay Automalir Dial Assembly.
with a slotted plate on the front of the receiver These radial members are attached to the dial drive shaft. Each of the buttons carries a cam at whose end is a ball-shaped depression which engages a fixed slot in a stationary plate attached to the chassis. The cam may be unlocked and allowed to rotate around the button center by unscrewing the button itself which acts as a lock nut.

The Galvin Household, United American Bosch, and Westinghouse motor-driven systems employ the lock nut principle of adjusting station plungers.

## Note $\mathrm{A}_{3}$

This method of pre-setting the position of the station button plungers employs the screw locking principle of Note A2 in combination with annular shaped slots in the dial plate concentric with the dial center. ERLA-The Erla "Push Button Dial" and "Auto matic Tune Wheel" dial have the station plungers and tabs locked in a slot around the outer rim of the dial as shown in Figures 10 and 11 by means of a lock nut sliding within the dial rail.
PIIILCO - The "Cone-centric" tuning system employs small metal cones which are locked in place in a circular slot as shown in line drawing 12 . Two small holes near the apex of the cone allow the insertion of a special tool through the hollow center of the tuning
knob. This permits the cones to be loosened, moved along the slot and tightened in the desired position in a single operation as the dial is adjusted to tune on a desired station. Subsequent selection of the station is accomplished with accuracy by centering the conical depression of the tuning arm over the desired station cone.


Figure 13-Trav-ler Annular Slot and Lock-Nut System.


Figure 13a-Trav-ler Dial.
TRAV-LER-Figures 13 and 13A illustrate the simple use of the annular slot and lock nut for setting of button fositions. In this case stations may be set even on adjacent channels since the buttons are arranged on two radii with an overlap of range.

## Note A 4

In the flash tuning systems of Erla and NoblittSparks the station indicator adjustments operate in annular slots in a fixed member or plate while an electrical contactor is carried by the moving dial mechanism causing an indicator light to flash as each of the desired stations are successively tuned in. Audio silencing which is operative between stations is removed as the contacts are made. Audio silencing details of these systems are covered more fully in Section D.
NOBLITT-SPARKS-Figures 14 and 14A show rear and front views of the "Phantom" tuning dial of the Arvin models which employ the flash tuning principle. Contacts are movable along the annular slots shown and as the station prositions are successively passed in manually tuning the receiver the lights in panels along either side of the dial indicate the station to which the receiver is tuned. Adjustment of position of the contactors is accomplished by unlocking them by means of their screw thread and subsequently relocking them in the required positions.
ERLA-The Erla Flash Tuning dial employs a similar system except that station tabs are employed which are set along a circular guide rail at the edge of the dial. Rapid and Flash tuning are accomplished by a lever which operates independently from the conventional rotary vernier tuning knob.


Figure 10-Erld-Sentinel Push-Button Dial.


Figlure 11-IErla-Sentind ". 1 utomatic Tune I'heel" Dial.

## Note F 5

An alternative system of "Flash" tuning of novel design is that offered by Stromberg-Carlson. This system employs a series of thin discs or contactors which operate in conjunction with an electrical gate as shown in Figures 15 and $1 \overline{5} \mathrm{~h}$. When the large knurled clamping nut is released, a contactor dise may be located in the center of the electrical gate while a station is tuned manually. The knurled nut is then tightened while the contactor clamping frame is held rigidly to prevent accidental rotation of either the gang condenser or the contactor disc. The contactor dises are insulated from the frame and individually connected to station indicator lamps one of which is illuminated as each contactor disc centers in the electrical gate. Audio silencing and AFC release functions are performed by contacts in the electrical gate (see Sections D and E).

## Note A6

A unique application of mechanical automatic station selection to motor car receivers has been made available in several Motorola models. This device, known as "Spot Tuning," is illustrated in Figures 10; and 16 A . It consists of a compact mechanism in a cylindrical housing attached to the exterior of the motor car receiver by means of the mounting plate. It constitutes a link in the driving system between the flexible shaft from the control head and the gang condenser driving gear system. Since it is connected directly adjacent to the gang condenser it is not subject to back-lash difficulties. Its operation is as follows: A soft brass cylinder carries a double V thread and is surrounded by a spring steel sleeve of cylindrical form having a longitudinal slot. This slot serves as a guide to retain a hardened steel ball in one of the threads. As the flexible shaft is rotated in tuning the receiver the steel ball is caused to "walk" along the thread. If



Figure 14-Noblitt-Sparks (Arvin) "Phantom Tuning"-Kear View.


Figure 14A-Noblitt-Sparks (Arvin) "Ihuntom Tuning"-liront of Dial.
after a station is accurately tuned to resonance, pressure is applied to the steel ball and sleeve at points AA (see Figure 16) with a pair of gas-pliers, an indent is produced in the brass cylinder which subsequently will act as a mechanical indexing point for automatic tuning. In this manner all of the desired automatic station points are set up in turn. In the event that an error is made in the location of one of these points use can be made of the other thread in the doublethreaded cylinder by rotating the tuning condenser to the end of this range at which point the steel ball will drop into the next thread channel and present a new, clear groove for station set-up. Alternatively the double thread may be employed for two separate sets of automatic station selections as in two separate localities between which the car owner frequently travels.

## SECTION B- <br> MECIIANICAL STOP OR LOCK-IN MECIIANISM

All of the indexing pin arrangements described in Section A operate in conjunction with some type of stop or latch mechanism. As the dial is rotated with an indexing pin extended a fixed stop must be provided to arrest the motion of the pin at the desired tune point. In many cases this stop also functions to remove the automatic frequency control bias momentarily and thus allow control to be regained on the desired station. Stop nechatisms are employed on all of the mechanically operated manual types and also on a few of the mutor driven types in which case they replace the electrical commutation device normally used.

## Note B1

One of the most popular types of lock-in mechanisms is the latch gate, illustrated in Figures 6 and 8 . This consists of a pair of hinged gates normally held closed by a spring mechanism. As the extended plunger pin approaches the gate it strikes one of the pair of plates causing it to move invard until the pin passes the edge of the plate. As soon as the pin has passed the edge of the plate, the latter returns to its closed position. At this point the pin strikes the edge of the oprosite open plate and is thus locked from rotation in either direction. Figure 6 shows one of the plungers with its pin engaged in the latch gate.
Examples of use of the latch gate are: Colonial, Fairbanks-Morse, G. H. U., Philco, and WellsGardner.

## Note $B 2$

In the Stromberg-Carlson "Flash Tuning" receiver the latch gate, whose contactor mechanism was described in Note A5, the gate mechanism does not lateh the end of the contactor disc against further rotation but merely arrests motion by interposing additional friction as shown in Figure 15. This detent principle which indicates the point of tune without preventing further rotation is also employed in the Motorola "Spot Tuning" as described in Note A6.


Figure 15-Stromberg-Carlson "Flush-Tuning" System.


Figure 15A-Stromberg-Carlson
"Flash-Tuning" System.

## Note B3

The Philco "Cone-centric" latching principle is a novel method of assuring accuracy of location of the tuning drive. The approximate location of desired local stations are printed upon the dial (a separate dial scale is available for each of the principal sales centers of the country). By means of the station indication the dial is quickly turned to the approximate location of the station. Upon depressing the tuning lever it will be found that a conical shaped end of the lever will center itself over the cone which has been accurately located by the dealer or service engineer as indicated in Note A3 and Figure 12.

## Note B4

A method of station stop which permits of very simple construction employs a floating vane operating between fixed stops.
EMERSON-The Automatic Dial mechanism illustrated in Figure 7 clearly delineates the action of the foating vane stop. The stop is so shaped that the center of the pin will be located on a line drawn ver-
tically through the center of the dial when the pin pushes the vane against either stop. In other words the shape of the vane and its thickness are such that independent of the position of the pin it will be centrally located when approaching the stop from either direction. Note-In using this type of mechanism the operator should be instructed to withdraw the finger from the button directly and thus prevent motion of the dial away from the stop since the vane arrests motion in one direction only.
TRAV-LER-The Trav-ler mechanism is similar to the Emerson type previously described with the exception that the stop occurs on the tuning hub rather than on two symmetrically spaced stops as in the former mechanism. This will be evident from an inspection of Figure 13.

## Note B5

A simple positive lock-in mechanism is employed in the Wilcox-Gay receiver whose button adjustment has been described in Note A2 and illustrated in Figure 9 . The end of the cams attached to the button have a hemispherical detent which drops into a vertical slot when the dial is rotated toward the index or bottom position. When this occurs, further motion in either direction is not possible. Upon removing the finger from the button, the spring arm to which the button and cam are attached withdraws the detent from the notch.

## Note B7

The Motorola "Electric Automatic Tuner" of the motor-driven type, shown in Figure 17, employs a method of locking a depressed station button which is very similar to that used in some of the ladder type push button switches. The button plunger has a groove and shoulder running around its circumference. This serves to lock a button "in," when it is pressed. The button is held by a locking plate which drops behind this shoulder. The locking mechanism consists of three flat plates, the center of which is the locking plate. The three plates have a series of round holes through which the button plungers extend. The center or locking plate is under spring tension with respect to the other two which tends to keep the holes out of line. When a button is pressed the shoulder on the plunger forces the holes into aligninent which releases any previously held button and locks the button selected into place. A rotating mechanism carrying a slotted latch gate, locks upon the stop arm of the button, forming a mechanical stop. At the same time the electrical circuits of the motor are opened by jack spring contacts within the slotted latch gate.

## Note $B 8$

In the United American Bosch and Westinghouse receivers the latch gate is carried on a rotating member driven by the tuning dial. This latch locks upon the end of the tuning lever of a depressed button in a manner similar to that described in Note B7.

## Note B9

The Motorola "Press-Button Tuning" magnetic latch differs in so many respects from other latching


Figure 16-Galvin (Motorola) "Spot Tuning" Mechanism.


Figure 16a-Galvin (Motorola) "Spot Tuning"-Exterior.
systems as to merit special consideration. Its operation is illustrated in Figures 18 and 19, and circuit diagram 20. In Figure 18 is shown a cutaway drawing


Figure 18 -Galvin (Motorola) "Press Button Tuning" System
of the magnetic latching systern as used in the Motorola motor-tuned motor car receivers. A moving latch system attached to a large drive gear is caused to stop and lock at desired station tune positions by selectively energized magnets. The magnets are mounted by means of threaded studs in a circular slot with their pole faces directly above the path of an iron armature. A phosphor bronze member, fashioned as a two-prong fork is interposed between the armature and the magnet pole face. The spacing of this bronze latch and the armature from the pole faces of the magnets is accurately held by means of the spacing post and spacing cones shown in Figure 18 . Reference to the sequence diagram shown in Figure 19 and the schematic circuit of Figure 20 will assist in clarifying


Figure: 19-Galvin (Motorola)
"Press Button Tuning"-Action Diakram.
the operation of the device. " $A$ " of Figure 19 shows a cross-section view of the inagnet, locknut, armature and bronze latch gate. This view represents the condition before the tuning cycle is initiated. Pressing a dosired station button (see Figure 20) close's the switeli by first connecting a desired latching magnet to the plus A supply followed by the completion of the A supply through the reversing switch and tuning motor. As the motor starts driving the large gear which carries the armature and latch bar, the armature approaches the position of the desired station locking magnet as shown in " 13 " of Figure 19 . The magnet attracts the armature. As the armature carries with it the latching suring, this is depressed and drovs ov'r the fole face of the magnet. "C" of figure 19 shows the condition which exists as the arnature is held against the magnet pole face with two sides of the fork firmly pressed against the pole facr and preventing further rotation of the armature and consequently of the gang condenser. When the operator's finger is withdrawn from the push button the motor contacts break, thus prevent ing further rotation of the gang condenser. Then the magnet supply circuit is broken, allowing both the armature and latch spring to be pulled away from the magnet as shown in " $D$ " of Figure 19 . This leaves the system clear and ready to move, on the next stationselecting impulse. Details of motor reversal and audio muting relay action will be covered more completely in their respective sections.

## SECTION C- <br> TRANSFER DEVICES AND CIRCLITS FROM MANUAL TO AUTOMATIC TUNING

The circuits, switches, and mechanical devices employed to transfer operation from manual or continuous tuning to automatic tuning display more varia-


Figure 17-Galvin (Mutorola) IElectric Ahomatic Tuncr.
tron and are inter-related with more diverse circuit functions than any of the other clements of allomalic tuning. The transfer operation in some receivers is handled by a separate switch, in others by a separate position on the wave bind switch and in still another group by the use of one of the switches of the push button selector switch. In many receivers a number of functions are performet by the transfer switch such as the removal of automatic frequency control operathon when in the manuel josition, addition of transier to phonograph operation, or removal of audio muting The circuit diagrams used in iflustrations of transfer switching will in some cases also serve to illustratp details to be covered usder the headings of jush button station selector switches, audio silencing and IFC release

## Note C1

The use of a separate transfer switch for changing from manual to automatic tuning is found in receivers of all three classifications of automatic tuning. The transfer switcl: is found to handle RF, AF, notor or cial lighting circuits and in many cases, combinations of these circuits.
COLONIAL-Figure 21 shows the interconnection tetween three semarate switching groups employed in some of the Colonial (Sears-Silvertone) receivers. The three-point switch shown at the right in Figure 21
rovides for normal or manuat tuning in its first posiion, automatic tuning in its second position and phonograph operation in its third position. It consists of hree seplate sections. The upner group serve to connect the audio grid to cither the detector or the ,honograph pick-up. The middle group interconnects with the wave band and dial switches to provide the elease of AFC and audio muting when in the broadcast manual position, using these functions in the atomatic position and the short circuit of the detector output when in phonograjh operation. The lower switch serves to connect an imficator lamp while in the utomatic tumine bosition. The wave band switch carries contacts which disconnect the $A F C$ system on both of the short wave positions as well as rendering the audio muting circuits inoperative in short wave positions.
GILFILLAN BROS.-This model (circuit diagram shown in Figure 22) combines the operation of transfer with that of selectivity control. The three-position switch when in its connter-cli+ckwise position provides for automatic tuming by completing the motor supply circuit and at the same time operates on the coupling of the IF transformer to branden its response. In the center position the receiver is used for manual tuning with the IF coupling adjusted for sharp response, the motor circuit open and the sensitivity of RF amplifier and converter altered by change in bias. The third


Figure 20-Galvin (Motorola) "Press Button Taning"-Circuil Dheram.
or clockwise position provides for manual operation with broad response of the IF amplifier. In this position the bias has been returned to the same condition as in position one but the motor circuit is open to prevent the use of the automatic tuning function. An additional interconnection of the motor circuit through the broadcast position of the band switch jrevents the use of automatic tuning when the switch is in either of the short wave positions.

NOBLITT-SPARKS-Figure 23 shows the use of the transfer switch in connection with a band-widening circuit and a relay controlled muting circuit. This latter circuit is covered in greater detail in section D. When on the manual tuning psoition, both intermediate frequency stages are in the narrow or sharp position and the muting relay is held open. In automatic tuning both IF stages have increased coupling for broad response and audio muting is controlled by station contacts on the dial. The use of broad response in the automatic tuning position obviates the necessity of automatic frequency control.

Note-the change from sharp to broad tuning when in the automatic position is used in a number of nakes of receivers on the theory that automatic selection is used for high level or local programs only. In this case it is not only desirable to have high fidelity response but also broad tuning to cover slight inaccuracies incidental to automatic tuning.

PIIILCO-In Philco models employing the "auto matic dial tuning system" transfer from allomatic to manual tuning is accomplished by a two-pole switch which grounds both AFC discriminator cathodes when in manual tuning to render the antomatic frequency control system inoperative.
R.C.A.-In R.C.A. receivers of the motor-tuned type the transfer switch serves the additional function of selecting pither autonlatic operation at the receiver or at a remote point. Indicator lights for manual or electric tuning are selected by the transfer switch as is also the removal of AlC control while on the manual position (see Figure 24).


Figure 21 -Colonial (Sears-Silverionc) Transfer Switching Iiagram.


Figure 22-Gilfillan Bros.-Transfer, Switching and Selectivity Control.


Figure 23-Noblitt-Sparks (Arvin) 'Phantom Tuning'-Circuit Diagram.

FADA-Figure 31 shows the use of a wave band switch for the dual functions of transfer to automatic tune and IF band widening when on the automatic position. An auxiliary switch is provided to narrow the IF band width during the alignment of the pre-set station trimmers. This precaution assures accuracy of adjustment and compensation for slight drift of tune in use since the receiver is always set for wide band reception when in the automatic tuning position.
GAROD-A simple switching sequence is used on the wave band switch of the Garod 'Prestomatic' receivers to connect the circuits for pre-set trimmer tuning as shown in the schematic wiring diagram of ligure 32.
NOBLITT-SPARKS-Several models of the Arvin line employ wave band transfer switching to trimmer tuned circuits. The first or counterclockwise position of the band switch is used to connect the broadcast coils to the pre-set trimmer units by a switching arrangement similar to that shown in Figure 4, page 253.
R.C.A.-The schematic diagram of an "Automatic Electric Tuning" model with iron core trimmed oscillator circuits is illustrated in Figure 5, page 253. In this diagram the wave band switch which consists of two sections has been shown pictorially to clarify the various switching positions. It is shown in position No. 1, or automatic tune, with the circuits in use shown in heavy lines. It will be noted that in the next position of the switch the units of the gang condenser will be connected and the input trimmer condensers and iron core oscillator units disconnected.

## Note C3

In the Motorola electric automatic tuner whose latching system was described in Note B7, transfer to manual tune is assigned to one of the push buttons known as a release button. This release button operates a series of jack spring contacts which open the motor circuit, release or cut-out the AFC and open the audio muting. Thus when this button is depressed any of the latch buttons are released and circuits set up for manual tuning. This circuit is shown in Figure 33.

## Note C4

A popular method of transfer from manual to automatic tuning in both the motor and tumed circuit substitution types is the utilization of one of the buttons oi the push button station sclector switch. This type of switch will be covered in greater detail in section $G$. In the majority of cases the switch is of the latehing or ladder type. The latch locks a button in place and releases any previously selected button. When the transfer switch is part of sucli a unit the receiver will be held in the manual tune position until it is desired to operate it automatically. In this case the selection of a particular station button transfers operation by the single motion of depressing the button rather than by two operations as would be necessary in all of the transfer devices previously described with the exception of Note C3, which may be regarded as similar to the type under discussion.

In the receivers listed in Table III, push button switch contacts are connected directly to the trimmer condensers and are part of the radio frequency circuits of the receiver. Two methods have been used for transfer as illustrated in Figures 34A and 34B. In Figure $34 . A$ a group of $L$-shaped terminals are used to produce a series switching sequence. When button one is depressed the grid and coil circuit is connected to gang condenser " $G$." When any other button is selected the gang condenser is disconnected and a pre-set trimmer condenser " T "' tunes the coil. Figure 34 B shows a similar type of transfer switching with the exception that the trimmers are connected to a common bus when a station button is depressed. Figures 35 and 35 A illustrate the use of both of the above switching circuits in the same receiver.

Receivers introduced by Air King, Erla, Pacific (Los Angeles), and Warwick employ transfer switching of this type.

The manual button of this class of receivers may be regarded as an additional selected station button since the gang condenser may be set to a desired station other than those of the selected push button group.
GENERAL ELECTRIC - The General Electric "Touch-Tuning" Model F96, features a push button switch in which the manual tune or transfer button combines a group of functions. Reference to schematic diagram Figure 36 shows a similar switching sequence to that described in Note C1 and Figure 28. Four separate units are actuated by the manual plunger which in common with the switches attached to the other plungers employ wave band type terminals. S1 and S2 serve to transfer the antenna circuit from


Figure 24-R.C.A. Motor-Tuning System-Wiring Diagram.


Figure 25-Sparton ".Selectronne"-Transfer .Switch Assembly.


Figure 26-Sparton "Selectronne"-Schematic Wiring Diagram.
the RF tube to the converter when on the push button position. At the same time the preselected trimmer is substituted for the gang condenser unit. This operation drops the RF stage when on push button tuning. Switch S3 serves the dual function of grounding the interconnecting link between switches S 1 and S 2
when the RF stage is operative on manual tuning and changing the recciver sensitivity by grounding a tap on the bias resistor of an IF tube when on the push button position. Switch Si transfers the oscillator grid circuit from gang condenser to pre-set trimmer condensers.


Figure 27-Stromberg-Carlson "Plectric Flash Tuning"-Shuttlecock Transfer. Suitch Assembly.


Figure 28-Stromberg-Carlson "Electric Flash Tuning"-Circuit Diagram.


Figure 29-Automatic Radio Iron Core System-Circuit Diagram.

GILFILLAN BROS.- The Automatic "Touch-Tuning" Model 5 T 8 selects the gang condenser as the first position of the push button switch in the same manner in which the trimmer condensers are selected. This is possible since the receiver is designed to operate on the broadcast band only.
HOWARD-Howard Radio models employing trimmer type station selection make use of a separate converter tube for the automatic tuning input and oscillator circuits. This allows the complete automatic unit to be plugged into receptacles on the chassis so that a model may be available with or without automatic tuning with no other change. It also permits the selector switch to have grounded contactor shoes since transfer switching may be accomplished in the B supply circuit as shown in Figure 37. Other versions of this type of unit convert older type receivers to automatic tuning and employ a transfer switch which operates in the cathode circuit.

PACIFIC (Chicago)-The Pacific "Selectro-matic" conversion unit is so designed that its input and oscillator trimmer units may be connected in parallel with the respective gang condenser sections. The gang condenser is set at its minimum capacitance during automatic operation. Transfer to mamual tuning is accomplished by the simple expedient of opening the common bus to each of the trimmer banks by a doublepole single-throw switch controlled by the transfer button.
Several motor-driven models listed in Table II use transfer switching buttons in the push button group. Examples are: General Electric, Herbert Horn, Iloward Radio, and Radio Products.
GENERAL ELECTRIC-The General Electric mo-tor-driven "Touch-Tuning" models make use of a latching type push button switch with jack spring type contacts. lecause of the rather invelved switching a description of this system has been reserved for special consideration on page 271 . The schematic wiring diagram showing the manual transfer wiring is illustrated in rigure 41 , page 263.
HOWARD-The Howarl "Motor Automatic" models 400.1 and 425.4 provide manual tuning transfer by the simple expedient of opening the motor circuit with an off button which intermupts the series connected switching sequence.
RADIO PRODUCTS-The Admiral "Touch-OMatic' circuit, Figure 38, combines several circuit operations on its transfer button shown on the left hand end of the group and labeled OFF. In the released or automatic tuning position the grounded contactor shoe connects the motor supply circuit to ground and allows automatic operations by depressing any one of the eight series-connected push button circuits. In the actuated mosition this transfer button removes $A F C$ by grounding the discriminator cathode and also connects the motor circhit to a lower voltage through an iudicator light whose function will be described in section 1 . When this off button is pressed it will unlateh any station button thereby breaking the series circuit to the motor. The Tiffany Tone Model IIA manufactured by Herbert H. Horn employs a similar transfer and motor circuit.

## Note C5

In Packard-Bell motor-tuned receivers two of the buttons of the push button bank are made non-latching. The shape of the cams on the plutgers are such that the latch bar is released when they are depressed thus unlocking any mreviously selected button. The circuit connections of these plungers are such as to allow their use for "scanning" or motor operation for


Figure 30-Erla-Sentinel Muting and AFC Release Circuit Diagram.
continuous tuning. A sccondary use is that of releasing the push button control when mamual tuning is desired.

## Note C6

The Midwest "Motorized Automatic" circuit diagram shown in Figure 39, makes use of the tone control switch for the combined functions of tone control, transfer to manual tuning and release of AFC while in the manual tuning position. It is an eight-position switch. The first four prositions provide for motor tuning with four selections of audio tone control, including volume expansion on one of the positions, and audio muting on all positions. The next four positions open the audio muting and motor supply circuits and provide for the same four tone control selections with the tuning controlled manually.

## Note C7

Stromberg-Carlson "Te-Lek-Tor" remote control systems as employed in the 70 series receivers make use of a mechanical clutch for shifting control from manual to automatic operation. The entire motor drive unit with its controlling commutator is declutched from an extension of the gang tuning condenser shaft by axial movement of the fidelity control knob. In manual tuning the mechanical drag of the motor drive system is removed by this cluteling system.

## SECTION DAUDIO SILENCING; DURING THE AUTOMATIC TUNING CYCLE

In practically all of the mechanical and motor-tutued systems provision is made for silencing or muting the audio system of the receiver as the tuning mechanism is being changed from one station selection to another. This is necessary since, if it were not done, a bedlam of annoying sounds would issue from the receiver as tuning progressively passed intervening broadcast channels. The methods employed from a circuit or electrical operation standpoint may be divided generally into six types:

1. Short circuiting the moving coil of the dynamic speaker or the output transformer primary.
2. Short circuiting the ouput of the audio diode detector to ground.
3. Grounding to classis frame of an audio grid whose circuit is normally returned 10 ground.
4. Grounding the uninverted grid of a phase inverter driving system.
5. Biasing an audio tube to cut off by the application of high negative bias.
6. Applying high negative bias to the RF converter and IF amplifier tubes to reduce the receiver sensitivity.
The methods of accomplishing the muting operation have been varied and will be covered in detail in the following notes.

## Note D1

In the manually operated mechanical dials of the rotary or "telephone" type muting of the audio system is usually accomplished by the use of a metal ring of annular shape insulated from frame ground and connected to the point in the audio system which it is desired to ground. When the plungers are depressed in station selection a flange or other portion of the plunger strikes this ring and holds the ring grounded until the plunger returns to its normal position as the operator's finger is removed from it. Examples of this type of mechanisn are to be found in amples of this type of mechanisnn are to be found in Wilcox-Gay receivers.

Similar types of dial operated muting devices with detail variations are to be found in the Colonial and P'hilco "Automatic Tuning Dials."

PIILLCO "AUTOMATIC DIAL"-An audio silencing switch is housed within the hub of the autornatic station tuning lever. This switch is normally held open by the spring which returns the lever to its unoperated position. In making a station selection the switch closes as the lever is pressed downward upon the desired plunger (see Figure 8, page 251).


Figure 31-Fada Automatic Tuning-Schematic IIiring Diagram.


Figure 32-Garod'P'restomaic"-ichemalic Wiring Diagram.


Figure 33-Galvin (Motorola) Eleciric Automalic Tuning-Wiving Diagram.


Figure 34a-"L"-shaped Terminals Used to Produce Series Switching Sequence.


Figure 34-Transfer Switching wilh Trimmers Connected to a Common Bus Bar When a Stalion Bullon is Depressed.


Figure 35-Warwick Transfer Switching as Illustrated in Figures 34.4 and 9413.


Figure 36-General Electric "Touch-Tuning'-Circuil Diagram.


Figure 38-Admiral " 7 such-O-Matic" Circuil Diagram.

PHILCO "CONE-CENTRIC"-Two muting circuits are connected in series to provile for manual tuning without muting and automatic selection with audio muting by selected position of the tuning lever handle. Within the diecast housing (see Figure 12, page 255), is an insulated switch operated by axial position of the knob. This switch is connected in series with the contact on the dial disc. If either of these switches are open the receiver audio system is operative. In the manual tuning position of the knob the switch in the housing is open. In the automatic tuning position both switches are closed until the knob is pressed upon the desired cone. As this is done a lever is operated which lifts the contactor from the dial segment.

## Note D2

The Belmont lever actuated system (see page 271), accomplishes audio silencing during tune by short


Figure 35A-Warwick Under-Chassis IVew.
circuit of the speaker moving coil by means of contacts actuated by the tuning levers (Figure 40).

## Note D3

The Midwest "Motorized Automatic" models in which the motor drive system is controlled by momentary contact push buttons without the latching feat ure are silenced during tune by a pair of contacts on each button which grounds the uninverted driver grids during the tuning cycle as shown in schematic drawing Figure 39.

## Note D4

The Erla "lilash Tuning Dial" carrics a pair of contacts on a moving dial arm which light an indicator


IIoward Automatic Tuning Circuil Diagram.
light and at the sane time return the bias of the RF and IF amplifiers to normal. During the tuning cycle these amplifiers have been subjected to high negative bias which renders them inoperative (Figure 30).

## Note D5

In a number of receivers the audio silencing or muting is accomplished by the use of a magnetic relay. This is of advantage from a design standpoint when it is desired to perform the muting at a remote point as in automobile receivers or when muting is removed as a pair of contacts or circuits close rather than open. Receivers of Galvin, Noblitt-Sparks and General Electric employ muting relays.

GALVIN MOTOROLA "PRESS BUTTON TUNING"-Figure 20 shows the use of a relay whose contacts are connected in parallel with the speaker
moving coil. The contacts are closed whenever the tuning motor is running since the relay is operated by a voltage drop across the motor armature. This circuit eliminates the necessity of extra wires in the cable between the receiver and the push button switch.

NOBLITT-SPARKS-The Noblitt-Sparks schematic diagram ligure 23 illustrates the use of a closed circuit to hold a muting relay circuit open. When using the antomatic tuning feature, with the transfer switch on position " A ," a circuit is established through the muting relay, and the selected station dial light when the movable contact on the dial (see ligure 14) reaches the desired fixed contact. When this occurs the muting relay opens the circuit which has been silencing the audio system. With the transfer switch in position " $M$ " for manual tune a circuit is established through the contacts of the switch and a resistor of the same value as one of the indicator lamps. This circuit continues to hold the muting relay open as long as the receiver is being used for conventional manual tuning.

GENERAL ELECTRIC-In the GeneraI Electric "Touch Tuning" motor-driven models a relay is made to serve as a control element for a number of functions. One of these is the release of audio nuting as shown in Figure 41. The details of this circuit are described on page 271 .


Figure 40-Belmont "Belmonilor" Audio Silencing Unit-Circuit.

## Note D6

In Bosch and Westinghouse models employing motor-driven electric tuning, muting is accomplished by a pair of contacts associated with a moving lateh which locks on a station plunger pin. The circuit is unusual in that muting is secured by biasing the converter tube to a condition of non-operation. Muting is removed by shorting the resistor whose drop is furnishing this bias. The Stromberg-Carlson "Flash Tuning" models also employ muting contacts operating within the latch gate. (See Figure 28.)


Figure 42-Detrola Audio Silencing L'nilCircuil Diagram.

## Note D7

An effective and ingenious method of securing audio silencing in receivers employing low voltage AC tuning motors is by the rectification of the motor voltage to furnish a DC bias voltage with which to cut off the plate current of an audio tube. The voltage drop across the motor winding or across an anxiliary winding coupled to the motor ficld is applied to a diode plate and the resulting rectified voltage drop fed to a tube in the audio system through an appropriate resistor network. In this manner as long as the motor


Figure 39-Midwest "dotorized Automatic" Circuil Diagram.

is rumning the receiver output will be silenced. The instant that the motor stops, as controlled by the selecting commutator, the audio bias returns to normal and the receiver is once more operative. lixamples of the use of this circuit are to be found in the receivers of Crosley, Detrola, and Galvin. Typical circuits are found in schentatic diagrams, Figures 42 and 43 . The former illustrates the use of what would normally be an unused diode plate to furnish a voltage with which to bias to cut-off the grid section of a high mut diode-triode. ligure 43 shows a further extension of the use of rectified motor voltage since in this case the RF and 1 F amplifier is rendered inoperative by high bias as well as the audio system. Thus during the tuning cycle the antomatic frequency control system does not function due to absence of signal and is allowed to regain control when the amplifier once more becomes sensitive as the bias returns to normal.


Figure 44-Zenith Electric Automatic Tuning Wiring Diagram.


Figure 45-Zenith Motor Drive-Phantom View.

## Note $D 8$

One of the earliest methods of silencing the audio system of motor-driven sets was the use of jack spring switches oferated by axial movement of the motor shaft. This action has been explained in the short description of the operation of a typical motor-driven system on page 250 , and will be illustrated in the section on motors. Figures 1, 24, and 38, pages 251, 259, and 262 , illustrate the action of this type of switch.

## Note 19

The scanning system of rapid tuning employing electric motor drive to be found in Zenith "Electric Automatic Tuning" models is accompanied by the silencing of the audio system with a group of comtacts on the center return spring switch which controls the motor. These contacts short the input to the audio grids during the tuning cycle as shown in Figures 44 and 45.

## SECTION EAUTOMATIC FREQUENCY CONTROL, RELEASE DURING TUNE

As has been frequently mentioned in preceding sections practically all automatic tuning systems employ the automatic frequency control princigle. It has been the use of this principle which has made selected station automatic control possible. A description of the operation of automatic frequency control will be found on pages 246 to 218 of this encyelonedia. The necessity for providing some means of rendering the AFC system inoperative during the automatic tuning cycle is obvious from a consideration of its action as the tuning knob is moved. Depending on the width of control as determined by the design of the discriminator system a strong local station will continue to hold the AFC for a few channels beyond its point of tune, thus preventing the system to "lock" on the stations of any of the intervening channels. This makes it necessary either to remove AFC action during the automatic tuning cycle or to remove it for an instant as tune is establislied on a desired station. It is also desirable to render the $A F C$ system inoperative during manual tuning for the same reason. In general four methods have been applied to accomplish AFC release.

## Note E1

In the mechanically operated manual types and in a few of the motor-driven types, which make use of the latch gate princigle of stopping the motion by
locking. on a plunger controlled pin, use has been made of this latel gate to control a switch whose function is to short to ground the AFC voltage for an instant before the pin locks in the gate. This type of action is possible since the sides of the gate move inward under the pressure of the pin and return to their normal positions to constitute a lock when the pin has passed the edge of the gate. Figures 8 and 15 , jages 254 and 256 will serve to illustrate this action. This switch attached to the latch gate is often conneeted in parallel with contacts on the transfer switch so that AFC action may be removed when manual control of tuning is desired. Such a contuection is shown in Figures 21 and 33, pages 2.5 and 261 . In the Stromberg-Carlson "Flash Tuning" models removal of $A F C$ is accomplished by a mechanical link of the transfer control to the latch gate switch as shown in Figure 15, page 256 .

## Note E2

The use of high negative bias on amplifier tubes to render the receiver insensitive during the automatic tuning cyele is described in Notes D4 and D7. This accomplishes the desired result since the signal voltage at the discriminator is below the threshold of action even for strong local signals. Bias is returned to normal at the completion of the tuning cycle. Figure 30 , page 260, and Figure 43, page 263, illustrate this action.

## Note $\mathrm{E}_{3}$

Relay contacts control the AFC circuits in the General Flectric motor-driven "Touch Tuning" receivers. See description, page 271.

## Note E4

AFC circuit control by movement of the motor drive shaft has been mentioned in the description of the motor-driven system on page 200 as well as in Note D8. Hllustrations of such a switch are found in Figure 1, page 251, Figure 24, page 259, and Figure 38 , page 202.

## SECTION FELECTRIC TUNING MOTORS

An analysis of the motors in use for the control of automatic tuned radio receivers discloses three main types which in turn have several sub-classes.

1. Induction motors
A. Split phase
2. Phase splitting by the use of a capacitor.
3. Phase splitting by difference in inductance or impedance of windings.
B. Shaded pole
4. Pole shading coils in parallel with main field winding.
5. Pole shading coils in series with main field winding.
6. Series wound commutator type or "Universal."
7. Impulse type.


FItt're $46 \mathrm{~A}-\mathrm{B}-\mathrm{C}-$ "Squirrel Cage" Rotor A ssembly.

## 1. INDUCTANCE MOTORS

Since induction motors use the same type of rotor assembly known as "squirrel cage" and operate by means of a rotating magnetic field, it seems advisable to start by an explanation of the manner in which a "squirrel cage" rotor follows a rotating magnetic field.

The "squirrel cage" rotor consists of a stack of round laminations stamped from thin sheets of a similar grade of iron as that found in power and audio transformers. These laminations have a central hole to fit the rotor shaft and a series of equally spaced holes around their periphery as shown in Figure 46A Round copper rods are inserted in each of these outer holes and extend beyond the cylindrical stack. Copper laminations are placed over the ends and the rods staked and soldered to them so that each bar or rod is short circuited to all of the others at each end. An exploded view of such a rotor assembly is shown in ligure 46 B , While for the sake of simplicity the rods have been shown parallel to the shaft in Figure 46 , in many designs they will be found to be "skewed" or at an angle to the shaft. When this rotor assembly is threaded by a changing magnetic field the current generated in the short circuited loops will produce a magnetic field of its own which will magnctize the portion of the stack of laminations lying within the short circuited loop.

For a simple explanation of the manner in which such a rotor assembly will follow a moving magnetic field refer to Figure 46 C . As the magnet is moved, its magnetic flux cuts the shorted loop and gives rise to an induced current by transformer action. Reforence to Lenz's law of the direction of induced electric currents in any standard text will amplify this explanation. The current in the shorted loop causes a magnetic field which reacts on the field from the moving magnet so as to tend to force the loop to follow the magnet. The shorted loop can never attain the speed of the moving magnet, for if it were to do this there would be no relative motion between the two and therefore no cutting of flux to produce current. The loop current would become zero and no torque would be developed which would immediately result in the loop speed dropping to below that of the magnet. The velocity of rotation of the magnetic fields of all of the tuning motors in use is 3600 revolutions per minute. The speed of the rotor depends upon the load or amount of work which the magnetic field is called upon to perform and may be as high as 3000 revolutions per minute although it is usually much less than that.

In the motors under discussion, the effect of the moving magnet previously discussed is produced by the movement of magnetic flux across the pole faces of a field structure. The field consists of a stack of laminations with pole faces extending toward the rotor and encircling it. The poles are so sjaced that when they are alternately energized by the alternating current flowing through their windings the effect of a rotating magnetic ficld is produced.

The split phase motor shown in Figure 47 produces a rotating field of the time-phase type. Considering opposite windings 1 and 3 which are directly connected to the $A C$ supply as reaching maximum magnetic flux at a given time, it can readily be seen that windings 2 and 4 whose current flows through the impedance " $Z$ " must reach their maximum flux at some other time. The impedance " $Z$ " may be a resistance, inductance ot capacitance. If it is an inductance


Figure 47-Split I'hase Motor Wiring Iiagram.
or capacitance the phase angle may approach $90^{\circ}$. In this case the magnetic flux at pole 1 would be passing through zero as the magnetic flux at pole 2 is reaching its maximum. This sequence continnes to follow around from pole 2 to jrole 3 and thus a rotating magnetic field is produced. The rotor will follow this field with a slip or time lag depending upon the load. Such a motor possesses its maximum torque as the phase relations between the two field systems approaches $90^{\circ}$. It can be made very close to this ideal in the capacitor type motor. An example of the ca-


Figure 48 -General Electric Capacitor Motor-litiring Diagram.
pacitor type motor is shown in schematic Figure 48 and Figure 49. This motor manufactured by the General Electric Company is used in their "Touch Tuning" models described on page 271. Reversal of direction is obtained by shifting the phase splitting capacitor from one set of field windings to the other. Its characteristics are identical for either direction of rotation.


Figure 49 -General IEleciric Capacitor Split-Phase Motor.

Another methol of producing a rotating magnetic field is by means of pole shading. Figure 50 illustrates this principle in diagram $A$. It will be seen that the tip of each field pole is notched and carries an additional winding. The windings on either pole may be alternately short circuited as in Figure 5013 . When the main field jole is building up in tlux density some of the lines of force cut the shorted turns of the shading winding and cause current to flow in them. This current produces a magnetic field which tends to oppose the action of being generated and therefore does not allow the tip of the pole to become magnetized as quickly as the main pole of which it is a part. On the diminishing part of the half cycle these shorted turns are again being threaded by the collapsing flux and
consequently oppose this action also with the result that the magnetism does not die out in the shaded tif at the same time that it does in the main field but lasts a short time longer. This difference in time between the main field flux and the tip causes a rotating field across the face of the pole which in turn causes the rotor to move. The direction of rotation depends upon which tip of the main field is being shaded. The direction of rotation is always from the main field pole towards the shaded portion since the flux in the shaded portion always lags the main flux. Motors produced by Alliance and Barber-Coleman are of this type,

If the pole tip windings are connected to the same source of alternating current as the field, a rotating magnetic field is produced in practically the same manner as that described for the split phase motor. In this case the phase displacement to produce the time shift of magnetic flux is due to the difference in impedance of the pole tip winding which usually is


Figure 50-Pole Shading Operation.


Figure 51-Shaded Pole Induction Motor (Ulah)-IWiring Diagram.
wound with a far different number of turns and hence a different inductance. The torque produced by this type of connection is greater than for the pole shading type since windings on both poles are active in producing rotation.

Another version of the split phase type which depends for its operation on the difference of impedance of simultaneously operating coils energizes its reactive winding by connecting it from a center tap on the field winding across either half of the field depending upon the direction of rotation desired. Examples of this type of induction motor are to be found in models offered by Delco, Robbins-Meyer and Speedway. See schematic Figures 24,33 , and $\mathbf{4 3}$.
A type of shaded pole induction motor developed by the Utah Products Company is illustrated in diagram Figures 51 and 52. This motor is furnished complete with built-in integral automatic clutch permitting instant stop of driven load when power is cut off; a built-in thermostatic cut-out switch for protection if operated continuously on overload and an AFCmuting switch operated by end thrust of the rotor shaft. Speed reduction gearing with approximately 35.1 ratio is furnished as shown in Figure 52 so that the drive system of the receiver may operate by belt connection to the pulley shown on the large shaft with the shaft itself acting as the manual drive. In nising this for manual drive the clutel is automatically disengaged relieving the load of the motor.


Figure 52-Exterior ViewUtah Shaded Pole Induction Motor.

In this motor the wiring and placement of shaded poles makes possible reversal of direction by means of a single-pole double-throw switch. Unlike the pole shading types previously described which used only two poles with shaded tips, this motor places the shaded sections on two additional poles midway between the unshaded sections as indicated in the figure. The pole shading is accomplished by the use of heavy copper shading "coils" which are in reality large single short circuited turns. The shading poles each have two separate sets of magnetizing coils of opposite polarity which are alternately connected with the winding on the unshaded poles by a " $T$ " circuit. Thus either set of windings on the shaded sections may be used in series with the unshaded section.

To explain the operation of reversing this motor, assume that the external circuit is closed so as to apply current to the common terminal "C" and the directional terminal " R " (right). At a given instant assume the current to flow in the direction shown by the arrows. The current passing through coils 1 and 3 will make the corresponding unshaded pole section have polarities " S '" and " N ," respectively. Continuing through the windings on pole sections 2 and 4 as indicated by solid lines, magnetic polarities " Si " 4 and "N'," respectively are produced, which due to the shading rings of solid copper reach maximusn intensity after unshaded sections 1 and 3.

Thus the maximum flux of polarity " S " occurs first at pole section 1 and then later at pole section 2. The " $N$ " flux simultaneously shifts from tole section 3 to 4. This causes the rotor to turn in a clockwise direction as indicated by the solid curved arrow on the rotor.

To run the motor in the other direction, the electrical connection is made to terminal " $L$ " (left) instead of "R" (right). At a given instant, pole sections 1 and 3 will be " $S$ " and " $N$ " polarity as before but by following the dotted line windings now used on pole sections 2 and 3 it will be seen that their polarities are now reversed, being " $N$ "" and " S "" respectively, as shown in the dotted letters. The maximum flux now shifts from pole section 1 to 4 , turning the rotor counterclockwise, as shown by the dotted curved arrow.

The motor is rated for continuous operation at 12 volts although it may be safely overloaded several hundred percent for the short intervals of time involved in tuning a radio receiver since it is protected by the thermostatic cut-out. Its performance characteristic at various percentages of rated load are shown in the graph of Figure 53 .


Figure 53-Performance Characteristics of Utah Shaded Pole Induction Motor.

## 2. SERIES WOUND COMMUTATOR TYPE OR "UNIVERSAL"

The wound armature series connected universal motor is such a well known device as to require no detailed explanation. This type of motor ordinarily requires a double-pole double-throw switch for reversal of direction. In the types developed for the present requirements of automatic tuning a change in construction and wiring has permitted a simpler type of reversal switching. Figure 54 shows the Delco Products 3 -wire construction whose wiring diagram is shown in Figure
understood by reference to Figure 56, a line drawing of the Crosley "Dynatrol." On the motor shaft are two drums around which are wrapped flexible belts having cork friction surfaces cemented to that portion of the belt which surrounds the drum. One end of the belt is connected to the armature and the other end to an adjustable screw supported by a rubber grommet. The action of the belt in producing rotation is as follows: First, as the armature is attracted towards the magnet the belt becomes tightened and the cork friction surface wraps tightly on the smooth surface of the drum. Second, the further motion of the armature causes the belt to move a short distance until the rubber grommet and stretch of the belt prevent further motion. This slight motion advances the drum a fraction of a revolution. This entire action has occurred during the first quarter cycle of the sixty cycle alternating current. As the armature leaves the pole face under the action of its restoring spring during the decay of voltage the relieved pressure on the belt releases the cork friction surface from the drum. The inertia of the moving drum and friction of the system prevents reverse rotation as the belt tension is released. During the second half cycle this sequence of "grab, turn. and release" is repeated and so on at a rate of one hundred and twenty times per second. In this manner due to the frequency of operation the drum appears to move continuously as long as an alternating voltage is impressed on the coil. A duplicate system is used for operation in the reverse direction. The two operate independently of one another since no friction exists between the cork surface and the drum excent when the magnet is energized. Close adjustment of armature motion and tension are required. This type of motor develops a surprising amount of torque due to the short motion of each cycle of operation acting through the lever arm of the radius of the drum.


Figure 54-Delco Universal Tuning Molor-Assembly.
55. By dividing the field winding into two parts the direction of the magnetic field of the armature with respect to the field may be reversed by the use of a single-sole double-throw switch.
This type of motor is adaptable to either the operation of AC household receivers or 6-volt DC notor car sets. Schenatic diagrams of receivers employing this type of motor are shown in Figures 20 and 39.

## 3. IMPULSE TYPE MOTORS

In this type of motor the rotation is not continuous but is intermittent as determined by a series of pulses. An electro-magnet operating on low voltage alternating current is used to obtain rectilinear notion from a hinged pole shoe normally held away from the magnet by a spring. The operation of such a motor can be


Figure 55-Delco Motor Wiring Diagram.

## Note $\mathbf{F 1}$

Capacitor type split phase, see description under split phase motors.

## Note F 2

Series connected shaded jrole types, see description of shaded pole motors.

## Note ${ }^{2} 3$

Split phase with reactive winding in parallel with part of field, see description of split phase and shaded pole motors.


Figure 56-Crosley "Dynatrol" Tuning Motor.

## Note F4

Series wound commutator type with tapped field, see description and Figures int and 50.

## Note 15

Pole tip windings on separate supply, see Figure 44 and description in text.

## Note $\mathbf{F 6}$

Impulse type motor, see description Crosley "Dynatrol" motor, Figure 56.

## SECTION GSTATION SELECTOR SWITCHES

Station selection switches are used as a method of accomplishing desired station tune in all of the receivers listed in Table III (Tuned Circuit Substitution Types), and in all but a few of the receivers listed in Table II (Motor Operated Tyjes). In general the push button type of switch has met with widest acceptance although a few models employ rotary selector switches of the familiar wave band type. The push button idea has also been used in combination with the stop mechanism in a few receivers (see Notes B7, B8, and G3.)

Push button switches may be classified into two main groups: (Momentary) in which the button does not lock down but is held down by the operator until the tuning cycle has been completed and, (Latching) in which the button locks in position and remains locked until released by the act of depressing another button.

## Note 61

The momentary type of push button selector switch is employed in many receivers because of the facility with which it lends itself to remote control operation. Since buttons are not locked in place, the contacts of the remote switch may be connected in parallel with those of the switch at the receiver without any conflict of operation or the necessity of unlocking the switch at the receiver before making a remote selection. The necessity of holding the button depressed until the tuning cycle has been completed. a seeming disadvantage of this type of switching, has been rendered less objectionable by speeding up the duration of the tuning cycle to the point that action is almost instantaneous.

CROSLEY-The Crosley "Prestotune" models use two switch groups of four units each. One is shown in Figure 57 . The switch is similar in construction to that shown in Figure 66, but with the latch bar removed to make each unit independent and non-latching.


Figure 57-Crosley "Prestotune" Showing Station Selecting Commutator and I'ush Bullon Switch.

DETROLA-The Detrola "Electric Automatic Tuning" models use the momentary type single circuit push button switch. A split ring commutation device directs the motor as covered in Section H. Certain models have provision for remote control by parallel connection of an additional switch of the same type.

GALVIN-The "Press Button" motor car radio colltrol system, whose latching system was described in Notes B9 and D5, employs a momentary type switch as an integral part of the "Acoustinator" unit. This unit may be mounted below the instrument panel or on the stecring column. Illustrated in Figure 58 is the push button "Acoustinator" unit with its six illuminated station buttons. The unit is equipped with an extension cord to which is attached a twelve pin plug for connection to the radio receiver. The wiring of the push button circuits is shown in Figure 20. Each button actuates three contacts which are connected together in the sequence described in Note B9. The contacts themselves are of silver riveted to phosphor bronze springs. The motor circuit contacts are of generous size to break the current of the stalled motor (approximately 10 amperes).


Figure 58-Galvin (Motorola) Combined Push Button Switch and "A coustinator."

MIDWEST-The Midwest "Motorized Automatic" receivers are controlled by a push button switch of the momentary type which also operates the audio silencing circuit. The circuit connections of this switch are shown in Figure 39. The switch is mounted on the top of the cabinet and is connected to the receiver by cables and plugs as shown in Figure 59. The momentary type push button switch shown behind the receiver has ten buttons of which nine are used for station selection and the tenth to turn the receiver off. Pressing any station button turns the receiver on by means of an AC line switch mounted in such a fashion that a pin on the dial engages the actuator of the switch as the tuning motor starts rotating the dial. A "keep alive" motor transformer is connected to the AC line at all times and draws a small no-load exciting current. This transformer allows the push button switch to be used for complete control since the motor is at all times ready to receive an impulse which will select a desired station and turn the receiver on in the same operation. The "off" button turns the condenser to one end, thus tripping the line switch and turning the receiver off.


Figure 59-Midwest "Motorized Automatic" Showing Push Bulton and Selector Commutator Details.


Figure 60-Admiral "Touch-O-Matic" Motor Car Conversion Unit-Circuil Diagram.

RADIO PRODUCTS CO.-The Admiral "Touch-OMatic" conversion unit for motor car radio receivers employs a momentary type push button switch in combination with a stepping system for the remote selection of tuned circuit elements. This unit shown in schematic diagram Figure 60 may be attached to any two gang motor car radio receiver and allow the selection of five favorite stations by means of a push button box attached to the steering column and connected to the unit at the receiver by means of a ind cable The push button box as shown in the an diagram contains six switch units. The first of these units is used for the purpose of transfer to the norma manual control. Each button serves to close two circuits when depressed. The first of these circuits shorts the moving coil of the loud speaker or the output ransformer primary winding thus silencing the re ceiver during the tuning cycle. The second switch clects a circuit for one of the desired station sclec tions. The operation of the conversion unit follows: A multi-section wave change switch is rotated by a stepping device in which a toothed wheel is advanced by a magnetic armature with breaker points similar in action to an electric door bell. As long as the circuit is complete through this device it will continue to vibrate and move the toothed wheel one notch or tooth at each vibration. The first section of the switch is used to stop this motion at the desired points. How this is accomplished will be obvious from an inspection of the circuit shown in Figure 60 . It will be noticed that two circuit opening notches diametrically opposite one another as well as two rotor projections on each of the trimmer selector switches corresponding with the notches on the circuit opening section make it unnecessary for the rotor to revolve more than one hundred and eighty degrees to select any station. The two trimmer selector switches are connected in parallel with the oscillator and input sections of the gang condenser respectively. The gang condenser is turned to its mininum stop when using the automatic station
buttons. Thus the "off" button accomplishes transfer by opening these two circuits.

STROMBERG-CARLSON-The 70 series "Te-LekTor" remote control "key" box contains twenty momentary type push buttons for complete control of the receiver. In addition to the selection of eight preset stations, the unit has push button control of on and off functions, the increase or decrease of volume, scanning or continuous tume to higher or lower channels, automatic operation of the automatic recordplaying phonograph and selection of four speakers. These operations are accomplished by the use of separate motors for the tuning and volunte control operations and relays for the control of off-on and radio-to-phonograph switching.

## Note G2

Under this note number are classed all of the latching or ladder type push button switches. Most recent


Figure 61-Mallory-Yaxley
Multiple Push Butlon Latching Type Switch.


Firure 62-Mallory-V'axley Mulliple I'ush Bulton Latching Type Switch-Sectional V'iew.
receivers have employed this type of switch. Design trends seem to indicate its use will shortly be extended to inclucle other control operations in addition to the original application of station selection. Before describing the circuit applications of push button type selector switches it is believed that a short description of the constructional details of typrical switches of the latching type will be of interest. ligure 61 shows the front view of such a switch together with its escutcheon plate with openings for station call letter cards. The switch illustrated is an eight-button unit with a double terninal row allowing each plunger to actuate two isolated circuits. Figure 62 is a sectionalized view of the same type of switch as viewed from the rear. The rear terminal board and latch bar have been cut away to show the construction and inter-rela-


Figure 63-Side View of Actuating Mechanism-Mallory-Yaxley Switch.
tion of parts. Figure 63 is a side view of one of the plungers with the side bracket removed. The operation of the switch can readily be understood from a study of this view. It will be scen that the plunger has two notches and as it is pushed forward the latch bar is lifted and then dropped into the second notch. The lateh bar is held firmly against the plunger by means of the phosphor bronze lateh bar spring. The plunger spring forces the holding notch against the edge of the lateh bar which locks the plunger in place. Upon pressing another plunger the latch bar will rise sufficiently to allow the plunger spring of the previously lateled plunger to return to its normal position. In this manner any plunger that is depressed completes a new circuit and opens previously held circuits.
The plungers carry contactor shoe holders which may be of bakelite thus insulating the shoe from the frame; or of metal if it is desired to connect the sliding shoe to the frame. This particular switch which has proved to be very popular with radio receiver designers can accommodate a maximum of three terminals on one side of the terminal strip or six terminals if the double row construction shown in Figures 61 and 62 are employed. Several combinations of these terminals are possible, as shown in Figure 64.


Figere fit-Tirminal Combinutions of Mallory-Y'uxley Switch.

A terminal arrangement frequently used in which the connection proceeds in series from one end of the switch is shown in Figures 65 A and 65 BB . The L -shajed terminals bridge adjacent shoes in such a manner that when any plunger is in its released position connection is made to the switch on the adjacent plunger. This type of switching is of advantage in the motor-driven type of receiver in that if " $A$ " represents the supply terminal, and if two plungers are bushed in simultancously the plunger closest to terminal " A " will determine the station selected and the system will not run continuously as it would if the two selected circuits were connectel in parallel as in a switch having a common bus bridging all units.

This series operation principle also finds application in some of the tuned circuit substitution tybes as explained in Note C.t and illustrated in Figure 3.4.
Several structural variations of the latching type switch are in use. The switcl described above and


Figure 65a-r-Series Operation Principle in Mallory-Yaxley Switch.
illustrated in Figures 61, 62, 63, 64 and 65, is known as the Mallory Yaxley Type 3S and has been widely used in receivers of both the motor drive and tuned circuit substitution types.
Another latching type switch, known as Mallory Yaxley Type 3SJ is shown in Figure 66. It was developed in response to the request for a switch for motordriven receivers which would occupy less depth than the Type S3. Its total depth, beyond terminals, is slightly over one inch.


Figure 66-Mallory-Yaxley Junior Type Multiple Push Button Switch.

Several of the tuned circuit substitution type receivers employ a switch in which the trimmer conclensers are an integral hart of the switch design. The switch structure is arranged to provide shielding between the circuits. An example of the use of such a ween the circuits. An example of the use of such a
switch is that employed in the Sparton "Selectronne," switch is that employed in the Sparton "Selectronne,"
illustrated in Figure 26. A shielding box with partitions as indicated by dotted lines separates the individual groups of trimmers. Shielded cables of a low capacity type connect thrse trimmer groups to the input, detector, and oscillator transfer switches as described in Note CI.


Figure 67-Sprague Switch and Trimmer Condenser Bank-Front View.


Figure 68-Sprague Switch and Trimmer Condenser Bank-Rear View.

Figures 67 and 68 show the front and rear views of the Sprague combination latching type switch and trimmer condenser bank. The unit illustrated is adapted for rear adjustment of the trimmers which are mounted directly on a metal back plate. Since the connection of a desired pair of trimmers is accomplished on the grid or ligh side of the circuit, this back plate constitutes a common ground for all the trimmer circuits and therefore one set of the trimmer plates may be riveted directly to the metal support plate. A common comb shown in Figure 67 is connected to the desired trimmer as the plunger is depressed by sliding a small metal contact shoe carried by a bakslite strip between a terminal on the comb and a terminal connected to the high side of the trimmer. In the unit illustrated, the trimmers of two circuits are selected in this manner. Similar type switches are in use with the trimmer units mounted on the front of the assembly for adjustment through holes in the escutcheon plate. Another variation of this unit provides for three rows of back-adjusted trinımers.


Figure 69a-Pocific "Selectromalic" UnilV'icw from Top.

A somewhat different latch assembly is a feature of the "Selectromatic" unit shown in Figures 69A and 69 B . This unit whicl is intended for use in converting existing two gang receivers to push button operation


Figure 698-Pacific "Selectromatic "UnilWiring Diagram.
employs a side acting bar for holding and releasing the plungers. This design is similar to the one in use in apartment house telephone systems. The plungers are turned from round rod stock and have coneshaped locking grooves which co-operate with round holes in the latch bar. The latch bar is forced to one side by a spring which causes its hole to overlap the edge of the cone, thus preventing the cone from returning to its released position. When a plunger is depressed, its cone aligns the hole in the latch bar causing the latch bar to move sideways. As the cone moves through the hole in the bar, the bar is in such a position that any previously held plunger cone will pass through it thereby releasing the previously selected circuit. In use the individual sections of this switch are paralleled across units of the gang condenser. When the release button is pressed these circuits are opened allowing the receiver to be tuned manually by the gang condenser. When using the automatic unit the gang condenser is turned to its minimum capacity stop.

The Howard push button switch is used as shown in ligure 70 in a separate conversion unit as described in Note Ct and ligure 37 A feature of this switch is the use of silver-plated setel wire loops for terminals These loops are connected to ground by the actuated plunger which itself is silver-plated. Since the unit contains its own converter tube it constitutes the entire pre-amplifier oscillator and detector of a superheterodyne The addition of a rectifier and filter makes possible in the type 211 converter a unit which may be used for remote control purposes with the radio receiver to which it is attached tuned to a frequency below the broadcast band ( 540 kc ) and acting as an IF amplifier.
AIR KING-Trimmer condenser switching is employed with the series or "L," terminal. This allows one of the push button positions to be used for the selection of the gang condenser. See ligure $34 A$ and Note C4.
AUTOMATIC ELECTRIC-Iron core tuning is employed in the oscillator circuit of several models with switching accomplished on the ground side of the circuit. Note C2 and Figure 24 cover the details of circuit connections.
ERLA - The series operating or " $L$ " terminal circuit is used as illust rated in Figure 34 A . Transfer switching to gang condenser is accomplished on the push button switch. A feature of this circuit is the use of fixed condensers having a negative drift of capacitance with densers having a negative drift of capacitance with
temperature to compensate for the positive drift tendency of the trimmers, coil, and tubes.
GAROD-The Garod "Prestomatic" receivers employ ground side switching for the connection of dual trimmers. See Figure 32.
GENERAL EI.ECTRIC-General Electric receivers employ two distinct typers of latching switches in touch tuning models of the motor-driven and capacitor substitution varicties. The motor-driven model actuates "jack spring pile-up" switching as described on bage 271 . The trimmer condenser models use a latching type switeh as shown in Figure 36). This switch employs wave band type terminals with contactor shoes carried by strips of thin bakelite. Connection is made to the high potential side of the circuit. Further details of the switching as regards the transfer button are described in Note Ct, prage 259.
GILFILLAN BROS.-Models of this company employ latching switches in both motor driven and trimmer substitution types. The motor-driven model incorporates a novel feature in the push button switch as shown in Figure 22. This comprises the use of two as shown in Figure 22 . This comprises the use of two
buttons at the center of the switch which are nonlatching but which have a release cam so that the act of depressing either of them releases any previously latched plunger. These buttons are used for continuous scanning in either direction as shown and are employed when it is desired to rapidly tune across the broadcast band for the purpose of selecting a desired type of program. One of the buttons is connected to run the motor in the clockwise direction and the other to run it in the opposite or counterclockwise direction. Skillful manipulation of these plungers enables them to be used in lieu of the manual tuning knob.

In the automatic "Touch Tuning" models, condenser substitution is employed with transfer switching in one of the push button units as described in Note C4,
HERBERT HORN-Herbert Horn motor-driven models employ a circuit similar to that shown in Figure 38.
HOWARD-The motor-driven models use a latching type push button switch with series connection (see Figures 65 and 34 ). The transfer switch opens this series circuit to prevent operation of the motor while on manual tuning.


Tuned circuit substitution models amploy a separate converter tube as described and illustrated in Figures 37 and 70.
NOBLITT-SPARKS-In these reccivers $\mathfrak{a}$ double row construction switch similar to that illustrated in Figures 61 and 62 is employed to connect three sets of trimmer condensers. A shield is interposed between the switch terminals to prevent couplings between circuits which might result in instability. The method of mounting the trimmer condensers and connecting them to the switch terminals is shown in Figutes 71, $71 A, 72$, and $72 A$. In this switch the sliding contactor shoe is grounded and switching is jerformed between the low or rotor side of the trimmers and the frame or ground. Transfer from manual to automatic tuning is performed by the wave change switch whose counter clockwise position transfers coil circuits to trimmer tuning as described in Note C2.
PACIFIC RADIO (Chicapo)-The "Selectromatic" tuning unit has been described in the introduction. PACIFIC (Los Angeles)-Several models employ condenser substitution with the push button switch in the high side of the circuit. The first or gang tuning position connects the gang condenser in the same manner in which the other positions select trimmers. A transfer position to manual tuning is used on the wave band switcl.


Figure 71-Noblitl-Sparks (Arvin: Ten-Station Selector Switch-Top View.

PACSKARD-BELL-The Packard-Bell , "Automatic Tuning" motor-driven model uses a series connected switch with two non-latching buttons for scanning geration as discussed above.
R.C.A.-"Electric Tuning" motor-driven models inake use of a latching type switch. The circuit connections are shown in Figure 24. An optional feature (f the system is the use of a switch similar to that incorporated in the recoiver as a remote tuning unit. Shift to remote operation is controlled by a transfer switch as shown in the circuit.

The "Automatic Electric Tuning" models use condenser tuned input circuits and iron core trimmed oscrillator circuits as shown in Figure 5, page 253. The switch. of double row construction, is of the high side connection type.
RADIO PRODUCTS - "Touch-O-Matic" tuning roblels of the Admiral line use a series-connected "L," terminal switch whose wiring is shown in Figure 38 . Dimeration of the "off" or transfer button is described in Note C4.
SPARKS-WITIIINGTON - The Sparton "Selectronne" switching unit scrves to ground three indepe:zlent sets of trimmers as shown in Figure 26, and deacribed in the introduction to this section.
WARWICK-The Warwick push button switch com-


Figure 71a-Noblitt-Sparks (Arvin) Six-Station Selector Swilch-Top View.


Figure 72-Nobith-Sparks (Arvin) Ten-Station Selector Switch-Rear View.


Figure 72a-Noblitt-Sparks (Arvin) Six-Station Setector Sizitch-Rear View.
bines series and farallel contnections on separate sides on the same unit as shown in ligure 35.
WILCOX-GAY-Models A48 ${ }^{7}$ and 755 which feature the choice of six selected stations without gang condenser tuning, use an insulated shoe construction in which the contact arm connects three terminals together. One of these terminats is the grid, another the coil and a third the selected trimmer. By using a tap on the coil it is possible to restrict the range of the trimmers without restricting frequency coverage of the receiver. In at particular locality in which it might be desired to have more than the usual number of selected stations toward one end of the broadeast band, a simple shift of these coil connections could be made by the service engineer.

## Note G3

As noted in the introduction a few of the motordriven receivers employ electro-mechanical latching of a station button which also acts as a station stop) position. These buttons are latched in place in a fashion similar to that described under Note G2 although they are not strictly push button switches.
GALVIN-"Electric Automatic Radio" models described in Note 137 and illustrated in Figure 17, combine the functions of a latching push button with an electrical station stop.
UNITED AMERICAN BOSCII--Several automatic tuning models employ a button latching principle in connection with the station stop mechanism.

## Note G4

Certain Crosley and Zenith receivers use a motor clrive to assist manual tune and rapidly turn the tuning mechanism to the desired station recention point. The tuning operation is then completed with the manual tuning knob. The switch controlling the motor in this case has its shaft concentric with that of the manual tuning shaft and the switch is of the center spring recurn type. Rotation of the switch knob toward the right causes the motor to turn in that direction. Conversely the motion of the knob to the left produces motor rotation in the opposite direction. Figures 44 and 45 illustrate this method of control.

## Note 65

In the Fada "IFlashomatic" models a rotary sclector switch is used as shown in Figure 31 to connect pre-set trimmer condensers and indicate the station tuned by lighting an individual dial lamp.

## SECTION H— STATION SELECTING COMMUTATOR DEVICES

The motor-driven models which make use of electrical Jush button switches all have some type of selective device driven by the gang condenser for the purprose of stopring the motor system at the correct point for station tune. With the exception of General Electric "Touch Tuning" these devices open the motor circuit to stop the tuning operation. The General Electric system is different in this regard since a contact is made rather than broken to cause the system to stop. This is described on page 271.

In general these electrical station stop devices may be divided in two classes: 1. A single-pole type which does not select direction of rotation of the motor and may therefore run to one end of the tuning range and throw a reversing switch before stopping on the desired station. 2. A single-pole double-throw type which by its position determines the correct direction of rotation of the tuning motor and therefore requires no reversing switch. Several mechanical designs of widely different appearance have been developed, of which the most common is the split ring type although the multiple disc type as described in the introduction in connection with a typical motor-tuned system has been used in the receivers of some of the larger manufacturers.

## Note H1

The single grounded dise selecting device is shown in Figures 1, 24, and 73. As previously described this
commutator is set by locking the disc against rotation by means of the selector adjusting key while the receiver is manually tuned to the desired station. Friction washers between the discs allow the commutator to rotate while the dise remains locked. After the adjusting pin is withdrawn the disc will remain in correct relative position to the shaft by which it is driven through the friction discs.

## Note H2

As previously mentioned the General Electric commutating device reverses the usual procedure and makes contact of a moving grounded arm to movable insulated points for station selection. See description of G.E. "Touch Tuning" system, page 271.

## Note H3

The split disc commutator may be considered as a single-pole double-throw switch. The single pole is the selected contact point which can rest upon either one of two rings or discs or upon an insulated break between them. The motor will start to run in such a direction as to move the disc or ring towards the break. Figures 22, 38, 39, and 59, illustrate this principle. An interesting phenomenon occurs in some of these sets as the break reaches the selected contact: inertia of the system may cause over-drive past the insulated break so that contact is established with the other dise or ring. This causes the motor to start in the opposite direction and several oscillations of motion may occur about the position of the insulated break. The accuracy of this type of commutator depends upon the width of the break, speed of the system and shape of the contact.

An interesting feature has been added to a number of the receivers employing this type of commutator in the form of an indicating light for assistance of correct station set-up. The Detrola, Gilfillan and Radio Products receivers employ this light. Since the circuit connections for the operation of this light differ slighty in the models of these companies an individual brief description follows.

DETROLA-The"Detrola tuning system employs a selector druin type of mechanism in which the two rings mentioned take the form of half cylinders and the contacts are pins which may be shifted around the periphery of these cylinders in two parallel slots. This arrangement allows two stations on adjacent channels to be selected by using pins on the separate slots for the desired stations. A lamp is connected between ground and a flexible lead which may be held upon the selector pin being adjusted. While it is so held the station is accurately tuned manually and the pin moved until the light is extinguished. This indicates that the pin is resting on the insulated section of the commutator which is the correct point for automatic operation when selecting that station.
GILFILLAN BROS.-Reference to Figure 22, page 258, will illustrate the operation of the adjustment light in connection with the commutator setting. A


Figitete 73-R.C.A. Motor and Commutator Details.
switch at the point marked X is provided to connect the light with it f protective resistor between the common bus and the frame. With the transfer switch in the manual-sharp position, a station is cuned in by means of the usual manual tuning drive. The contactor point closest to the break is chosen for this station and with the indicator light switch closed and the station selector switch button latched in place, this selector point is moved until the light is extin guished. Suppose that the station desired was placed on button number 4 (Figure 22). It will be noted that when number 4 button is locked in place, the circuit from the 24 -volt source, tuning motor, commutator, and resistor light to ground is broken at the commuta tor. The resistor and light reduces the current sufficiently so that there is no tendency of the motor to rotate while this adjustment is being made.
RADIO PRODUCTS-In adjusting the Radio Products Admiral "Touch-O-Matic' system illustrated in Figure 38, the following sequence is observed: The "off" button and the desired station button are simultaneously locked in. Under these conditions the automatic tuning indicator light is connected in series with the voltage supply to the motor from a 6-volt tap on the 24 -volt supply winding. The voltage supply to the motor through the indicator light is insufficient to permit rotation of the motor, and the receiver may be controlled manually. If, when adjusted for exact resonance with the desired station, the indicator lamp is extinguished this indicates that the required contactor is resting on the insulated break of the station selecting commutator. If this is not the case and the light still glows, adjustment of the position of the contact point on the commutator can readily be made. A check of the correctness of commutator setting can be obtained at any time by locking in the required button and the "off" button. During the adjustment cycle described above the automatic frequency control system has been rendered inoperative by contacts controlled by the "off" button.

## Note M4

The Crosley "Prestotune" household receivers and Chevrolet motor car radio sets employ a combination of disc and toggle switch action as illustrated in Figures 57,74 , and 75 . Referring to Figure 7.4 it will be noted that the discs are similar as regards station set-up to the type described in Note H1. It will be noted, however, that instead of an insulated break, the disc itself carries no electrical connection, but has a pin fastened to its periphery which engages a toggle. This toggle throws a single-pole double-throw switch in one direction or the other, depending on the direction of motion of the disc. As the station is selected and the discs all start to rotate the pins of the unwanted station discs will throw their respective toggles as they pass them, in such a direction that when they are subsequently chosen the switches will have been thrown in the jroper manner to start rotation towards the desired station. It will be noted that adjustment screws are provided to limit the throw of the toggle switch. Careful adjustment of these screws makes it possible for the spacing of contacts to compensate for back-lash of the driving system. In the Chevrolet commutator shown in Figure 75 the contact arm and toggle are combined in one " $T$ "-shaped picce. A screw at each position permits adjustment of the angular width of the break.

## SPECIAL DESCRIPTION OF RECEIVERS NOT INCLUDED IN GENERAL OUTLINE

Certain receivers differ in so many respects from those listed and described in the various preceding sections that it appeared advisable to describe their operation separately. These include the Belmont "belmonitor" which employs the "linear" or "typewriter" type of direct control of the gang condenser; the General Electric motor-driven "Tonch Tuning" system, the Stewart-Warner "Magic Keyboard," and the WellsGardner "Electric Drive."

## BELMONT "BELMONITOR"

This device consists of a series of "heart-shaped" cams stacked on a shaft attached directly to the gang condenser. These cams are individually adjustable since they can be unlocked from the drive shaft by a tapered expansion sleeve which is controlled by a screw. Figure 76 shows a front view of the tuning system. The levers shown at the front of the unit move through a distance of approximately $11 / 4$ inches and in doing


Figure 74-Crosley "Prestotune" Commutator Details.


Figure 75-Cherrolet Station Selecting Commutator.
this turn the cams until the two lobes of the cam are aligned against the lever. This is the position corresponding to station turie. To set-up stations the screw at the end of the shaft is loosened, the button depressed to the end of its travel and while holding it down the station is accurately tuned in manually. This operation is repeated for each of the desired stations on separate levers. The screw is re-tightened after this procedure.

Figure 77 shows the appearance of this type of mechanical tuner from the front of the cabinet.

Note-Devices of this type controlled by push button type motion as well as the lever action described, are currently attracting the attention of receiver designers. It seems likely that several variations of the direct mechanical tuner will appear in receivers in the near future.

## GENERAL ELECTRIC MOTOR OPERATED "TOUCH TUNER"

The General Electric "Touch Tuning" system involves the application of so many features not found in the
other receivers described that a complete explanation of the operation of the system has been reserved for special consideration. Some of the individual components have been mentioned briefly in the sections devoted to them with reference to this note.

Sixteen push buttons in a latching type switch control the operation with provision for an eight-button remote unit as an additional accessory if desired.

Of these sixteen buttons, thirteen are used for station selection, one for scanning. one for transfer to manual operation, and the last to turn the receiver off.

Referring to schematic diagram 41 it will be noted that the off button controls an AC line switch. This turns the receiver on whenever any of the other buttons of the switch are pressed since the line switch is in its "on" position when its plunger is released or out. To turn the receiver off it is merely necessary to jress this button.

The heart of the control system is a combination relay and mechanical stop. This is shown at the center of the diagram. The armature of this relay engages a


Figure 76-Belmont "Belmonitor" Tuning System—Froni l'iew.


Figure 77-Belmont "Belmonitor" Tuner-Front of Cabinet.
two-fingered friction clutch which acts as the connecting link between the split phase capacitor type motor and the gang condenser driving system. When the relay closes the end of the armature causes an instant stop of the drive system in addition to ofening three circuits by means of contacts on six jack springs as shown.

The first pair of contacts control the release of automatic frequency control, the second pair of contacts control the motor current and the remaining pair of contacts control the audio silencing circuit.

The relay winding is energized when the station commutator on the gang condenser shaft makes contact with the adjustable contact pin to which the desired station button is connected.

Pressing the manual button releases any depressed button. Thus the relay coil circuit is opened and the relay field coil cannot be energized. When the manual button is locked in, the motor circuit is open, and the grounding of output grids and $A F C$ circuit removed. This allows a separate manual AFC switch to be used at will when the manual button is in.

With the receiver set for manual operation depression of the scan button closes the motor circuit by shunting the open motor contacts of the manual switch allowing continuous motor operation and dial travel. As the motor drives to the limits of the dial on either end, the reversing switch operating at the end of travel is automatically thrown, cansing reversal of motor rotation. Since the scan button is non-latching, it does not unlock the manual tune button as it is depressed. The audio system is silenced by a pair of
contacts on the scan button which avoids reception of unwanted stations or inter-station noise when this button is used.
Since the system stops on contact, the connection of the remote control unit is somewhat different than in systems of the open circuit type. One of the receiver station selector buttons is chosen as the remote tune transfer button, The remote tune switch is connected


Figure 79-Stewarf-W'arner "Magic Keyboard"W゙iring Diagram.
with the lead which would normally run from this butzon to the commutator now serving the purpose of a common connection in the remote switch. In this way the remote button serves to connect the remote switches to the relay coil and allow parallel operation of seven positions at the remote point with any seven selections at the receiver. The eighth button at the remote point is used to silence the receiver whenever desired for such occasions as answering the phone.
STEWART-WARNER "MAGIC KEYBOARD"
This mechanism combines mechanical and electrical features to produce a system requiring no transfer means to change from manual to automatic tuning other than the act of turning the tuning knob for manual operation or depressing a button for automatic operation. An additional feature not found in other systems is the dual use of the tuning knob for mechanically unlocking the station set-up cants.

Figure 78 is a photograph of the "Magic K"eyboard" unit. Figures 79 and so show electrical details of the naster and auxiliary switches.

The keyboard itself consists of fifteen station-selecting plungers arranged in two rows. These plungers serve to engage mawls with the surface of cams. Each cam has a high and low side separated by a tapered notch. When a station plunger is depresserd, it causes its corresponding pawl to drop on the high or low side of the station cam debendine ulon the position of the tuning condenser at the time it is pressel. The position of the pawl controls the inaster switch operating cam shown in Figure 79.
If the pawl is resting on the high side of a cam the switel contacts will be in the fossition shown in Figure 80 A . It will be noted that all contacts of the master switeh are closed thereby actuating the motor, muting the recoiver and releasing the AlC circuit. The motor reversal switch is closed in such a direction as to cause the motor to drive the station selector cam in the shortest direction for the extension on the pawl to drop into the notch.


Figure 78-Stewart-Warner "Magic Keyboard."

If the pawl is resting on the low side of a cam when the station plunger is depressed the sequence of Figure 80 B will occur which is identical with that described except that the reversing switch is thrown in the oprosite direction to cause a reversed direction of motor operation. This means that the motor must run in the opposite direction for the tip of the pawl to drop into the notch
When the notch is reached the switch operating cam changes position to that of Figure 80 C which stops the motor, releases audio silencing and renders the AFC system operative.

The mechanism whereby these station selector cams are set in the proper physical relation to the gang condenser for station selection is as follows: The tuning knob shown in Figure 78 is removed by pulling it directly off the shaft. When removed, an auxiliary knob will be found which can be used to unlock a clamp holding the station selector cams in relation to their shaft. After unlocking the cams any one of them may be held firmly in position by depressing a station button while the receiver is tuned manually. After the entire group of cams are set up in this way, they are locked in place with the knob mentioned, the tuning knob replaced, leaving the receiver ready for automatic station selection.
Transfer to manual tuning is accomplished by a kickout arm and spring which interconnects the latch bar of the plunger group with a star wheel on the manual tuning shaft. As the manual tuning shaft is turned in either direction the star wheel will kick out the latch bar. releasing any latched station plunger and operate the auxiliary switch over the tuning shaft. This switch then changes the indicator lights from automatic to manual and removes AFC control. Depressing an automatic selection button reverses the sequence of operation by resetting the side switch over the tuning shaft, changing the indicator light and removing the AFC slort circuit.

WELLS-GARDNER "ELECTRIC DRIVE"
The Wells-Gardner "Electric Drive" is a combination of mechanical and electrical interlocks which allows station "set-up" from the front of the receiver. The station stop mechanism consists of a series of discs which are geared to the condenser drive system and are encircled by brake shoes having notches whicl co-operate with stop levers as shown in the sequence of drawings of Figure 81.

Above cach station tuning button is a setting button used only when it is desired to change the pre-set tuning choice. The station tuning buttons are interlocked by means of a side-acting latch in such a manner that the act of depressing a station button wil move the latch and release any previously held button. This side-acting latch or locking plate is also actuated by the manual-electric transfer control.

Figure 81A shows the system of rocker arms and stops in position corresponding to a released plunger It will be seen that all parts of the stop system are clear of the brake shoe and will allow its free rotation. Figure 81 B shows the tuning button depressed with the stop lever bearing against the outer periphery of the brake shoe. The ball on the end of the switch lever is depressing the switch plunger causing the motor to run. The motor will run the system until the stop lever drops into the notch and allows the switch lever ball to leave the switch, thus stopping the motor with the setting disc firmly locked in place, as shown in Figure 81 C .

Figure 82D shows the manner in which the setting disc is released from the brake drum to allow it to be set at the correct point for station tune. The station is tuned in manually with the system as shown in Figure 81D. The brake drum turns freely within the setting disc until it is clamped in place by the cams on the drum release and auxiliary lever, as the setting button is withdrawn. Study of the position of the various parts as shown in Figure 81 will disclose the sequence of operation.

Audio silencing is obtained by a switch operated by axial movement of the motor shaft.


Figure so-Stewart-W'arner "Magic Keyboard"-Posilion of Liwitch Contacts.

-Setting Disc-Off Position

-Setting Diss-Stop Lever in Norch
Figure 81-11ells-Gardner "Electric Drive" Details,

## SUGGESTIONS FOR SERVICING AUTOMATIC TUNED RECEIVERS

The purpose of this presentation of the subject of automatic tuning has been to give the service engineer a broad and comprehensive review of the various systems in use and their inter-relation.
Several general suggestions are offered as applicable to all makes of receivers and worthy of consideration:

1. Make certain that the alignment of IF and RF circuits is precise since quality of reception and satisfactory signal to noise ratio are dependent on precision of resonance. This is especially true in models which are not equipped with automatic frequency control.

If band widening circuits are employed in the IF amplifier it is highly desirable to use visual means of alignment. Some receivers have band widening on the automatic position and not on the manual position. In these it is highty desirable to observe whether the band widens without shifting of the center of tune when changing from manual to automatic positions by the transfer means. The electric tuning eye of the receiver is not always an accurate indication of this condition since the sensitivity of the amplifier may
be changed by the band widening circuits. A cathode ray oscilloscone alignment method should be used whenever possible.

Although at first thought it might not seem strictly necessary to have the radio frequency circuits accurately tracked when employing $A F C$, a moment's consideration will show that the oferation is impaired by mistracking. The AFC control of the oscillator only assures that the IF signal is of proper frequency If the RF amplifier is off tune very seriously, the quality, sensitivity, and signal-to-noise ratio will be impaired. Adjacent channel interference may be objectionally high with a mistuned RF system in an Al'C set.
2. In making a choice of the stations to be pre tuned it is important to select only those which are sufficiently above the noise level as to furnish satis factory entertainment at all times. An interesting bit of owner psychology is involved in the consequences of improper choice of stations. The purchaser of a new automatic tuned radio receiver is not acquainted with the phenomena of drift of tune due to temperature, mechanical aging of parts, humidity drift, frequency drift due to voltage instability, etc. Nor is he apt to be sympathetic with the vagaries of fading signals and adjacent channel "monkey chatter." When his new receiver fails to produce pure and unadulterated music as every automatic push button is pressed, he feels that he is not receiving his money's worth of radio performance or that the receiver has been improperly adjusted. Even a demonstration that no better recep-
ion of the particular station is possible by manual tune is apt to be too late to be convincing
3. Allow the receiver to operate for at least fifteen minutes before making the station selector adjustments. This will allow the radio chassis to assume normal operating temperature with voltages at their final values. During this period the oscillator frequency gradually drifts as tuned circuit elements and tubes warm up, and their component parts expand. This precaution is particularly true with respect to the tuned circuit substitution types of receivers not equipped with AFC. As mentioned previously, certain parts of the receiver cause the oscillator to have a positive drift of frequency with increasing temperature and other parts cause the frequency to decrease with increasing temperature. These two effects unfortunately are not balanced. In some of the recent receivers as well as the band spread types, compensation is provided. In spite of this feature, it is wise to allow a reasonable warm-up time to elapse before making final adjustments.
4. Make a check-up trip to the customer after a few days have elapsed to correct any drift tendencies which may have made themselves evident due to mechanical and long-time aging effects. After this second adjustment most receivers will have reached a final condition of operation which will continue to give satisfactory performance. By providing a periodic check-up service, the customer will learn that he can expect continued satisfaction from his automatictuned radio receiver.


ATIIIS goes to press, Mallory-Yaxley announces a new type of push-button, station-selection and wave-change switch. The editors feel fortunate in having the opportunity to present a brief description and illustration of this switch.

As indicated in Section C, pages 257-261, of the preceding article on automatic tuning, a trend toward the employment of other than station-selection functions on the push-button switch seemed evident. By the inclusion of band switching, station-selection and AC line switch circuits on the push-button switch itself, a simplified completely interlocked system is possible.

The AC line switch is actuated by the first plunger and is so coupled to the plunger that the receiver is turned "on" whenever this plunger is in its released position; thus the receiver may be turned off and any previously depressed button released merely by pushing the AC line switch button. If any other button is depressed such as a wave-change switch or selected station, the return of the AC line switch plunger to its released position will automatically turn the receiver on as wave-band or station is selected.

To accomplish this type of switching, it became necessary to develop a push-button switch more nearly resembling a wave-change switch in flexibility of circuit combinations than the switches described on pages 266-270. The basic design as shown in illustration,

Figure 82, consists of two spaced bakelite terminal boards on either side of the plungers carrying double rows of terminals. These terminals contact movable shoes attached to sliding bakelite inembers which in turn are driven by the plunger. Each terminal board has four rows of terminals disposed on either side of the sliding member, thus eight terminals are provided for each plunger on both sides of the switch, or a total of sixteen possible terminals per plunger. Switching combinations may use any or all of these terminals, or any terminal may be omitted when not required. The design is such as to keep the capacitance between terminals, and of the terminals to the frame, at a minimum, thus reducing HF losses and allowing the switch to be used for wave-band switching functions.

The sliding shoes are available in four different shapes and allow terminals to be connected together either on the same side or on opposite sides of the sliding bakelite piece. Switching combinations up to 4 -pole double-throw plus 2 -pole single-throw per plunger are possible. The sliding contact shoes may be of either the shorting type, which maintain contact between successive terminals during operation, or of the non-shorting type which open the circuit before making contact with the succeeding terminal. The shorting type switch is conmonly used in radio circuit applications in which an open circuit during switching might produce a transient noise, and the non-shorting type is required in meter or instrument switching.

## Series Condenser-Parallel Resistors Chart

This chart enables you to find the equivalent resistance of two resistors in parallel and also the capacity of two condensers in series. Draw a straight line through the divisions on scale $A_{1}$ and $A_{3}$ representing the resistance in the two branches, and you will find the resultant resistance on scale $\mathbf{A}_{2}$. To find the resistance of one branch
when the other branch and the total resistance are known, draw lines through the corresponding points on $A_{1}$ and $A_{2}$ and find the answer on $A_{3}$. When the resistance of the two branches is widely different, use the chart consisting of scales $B_{1}, B_{3}$ and $B_{3} . B_{1}$ and $B_{3}$ are for the unequal branches and the result is on $B_{2}$.


## Mallory Vitreous Enameled Fixed Resistors

Conservatively rated, rugged and dependable, Mallory Fixed Vitreous Resistors, tybe HJ, provide a standard unit for all receivers, anplifier, transmitter, and industrial applications, The small-sized resistors 1 HJ ( 10 -watt) and 2 HJ (20-watt) are furtion. The larger resistors, HJ ( 50 -wati) 10 HJ ( $100-$ watt) he har 20 HJ (200 , ont ) (hove connecting lues only and are supplied with convenient mounting brackets Mallory Vitreous Enameled Resistors can be depended on to provide long, uninterrupted service.
$\dagger 10$ Wat Rating ( 1 On Values to $10,000 \mathrm{Ohms}$ ) Size: $5 / 8 \times 13 / 4$ Tube

Resistance Ohms	Current Milliamperes	Volts   Max.	Catalog   Number
1	3150	3	1 HJ 1
2	2200	4.5	1 HJ 2
3	1800	5.3	1 HJ 3
5	1400	7	1HJ5
7.5	1150	8.5	1HJ7.5
10	1000	10	1 HJ 10
15	812	12	1HJ15
20	707	14	1 HJ 20
25	630	16	1 HJ 25
35	530	19	1HJ35
00	447	22	$1 \mathrm{HJ50}$
75	360	27	1HJ75
100	315	31	$1 \mathrm{HJ100}$
125	280	35	1 HJ 125
150	260	39	1 HJ 150
200	220	4.4	1 HJ 200
250	200	50	1 HJ 250
300	150	55	1 HJ 300
400	158	63	1 HJ 400
500	141	70	$1 \mathrm{HJ500}$
600	130	77	11 J 600
750	115	85	1 HJ 750
1000	100	100	1 HJ 1000
1250	89	111	1 HJ 12.50
1500	81	122	1 HJ 1500
2000	70	111	1 HJ 2000
2500	63	158	1HJ2500
3000	5f;	173	1 HJ 3000
3500	53	185	1 HJ 3500
4000	50	200	1 HJ 4000
4500	47	212	1 HJ .4500
5000	45	224	1 HJ 5000
10000	40	2.40	$1 \mathrm{HJ6000}$
7500	36	270	$1 \mathrm{HJ7500}$
10000	32	316	11 J 10000
12000**	17	204	1HJ 12000
15000*	15	225	1 HJ 15000
20000*	13	260	1HJ20000
2,000*	12	300	11 H 25000
30000*	11	330	111530000
40000*	9	360	111 J 40000
50000*	$s$	400	$1 \mathrm{HJ50000}$

20 Wat Rating
( $\dagger$ On Values to 12,500 Ohms) Size: $1 / 2 \times 2$ Tube

Resistance Ohms	Current   Milliamperes	Volts   Max.	Catalog Number
5	2000	10	2HJ5
10	1.15	14	2 HJ 10
25	895	22	2HJ25
50	63.3	31	2 HJ 50
75	517	38	$2 \mathrm{HJ75}$
100	447	44	2 HJ 100
150	365	54	2HJ1:0
200	316	63	$2 H J 200$
300	258	77	$2 H J 300$
400	224	90	2115400
500	200	100	2 HJ 500
750	163	122	2HJ750
1000	141	141	2HJ1000
1250	126	157	2HJ1250
1500	115	173	2HJ1500
1750	107	187	2HJ1750
2000	100	200	2 HJ 2000
2250	94	211	2 HJ 2250
2500	89	222	2 HJ 2500
27.00	85	235	2 HJ 2750
3000	81	21.3	2 HJ 3000
3500	75	262	21153500
4000	71	28.4	$2 \mathrm{IJJ4000}$
4500	66	300	2 HJ 4500
5000	63	315	2HJ5000
6000	57	345	2HJ6000
7500	51	387	2 HJ 7500
10000	44	440	2 HJ 10000
12500	40	500	2 HJ 12500
15000*	23	346	2 HJ 15000
20000**	20	400	2 HJ 20000
25000*	18	447	2 HJ 25000
35000*	15	529	2 HJ 35000
40000*	14	566	2 HJ 40000
50000*	13	632	2 HJ 50000
75000*	10	773	2 HJ 75000
100000*	9	894	$2 \mathrm{HJ100000}$

*Low temperature enamel is used on these sizes because it affords better protection to the small diameter values.

$\dagger 50$ Watt Rating   ( $\dagger$ On Values to $\mathbf{2 5 , 0 0 0} \mathrm{Ohms}$ )   Size: $3 / 1 \times 41 / 2$ Tube			
Resistance Olims	Current Milliamperes	Volts Max.	Catalog Number
10	2240	22	5 HJ 10
25	1.415	35.4	5HJ25
50	1000	. 70	5 HJ 50
100	707	70	5 HJ 100
2.5	4.7	111	5 HJ 200
500	316	1.58	5 HJ 500
750	258	192	5 HJ 750
1000	29.4	22.4	5 HJ 1000
1:500	183	275	5 HJ 1500
2000	1.8	316	5 HJ 2000
2500	141	354	5 HJ 2500
5000	100	500	5 HJ 5000
7500	81	610	5 HJ 7500
10000	70	700	5 HJ 10000
12500	133	790	5 HJ 12500
15000	57	850	5 HJ 10000
20000	50	1000	5HJ 20000
25000	44	1100	5 HJ 25000
30000*	24	774	5 HJ 30000
4000)*	22	894	5 HJ 40000
50000*	20	1000	$5 \mathrm{HJ50000}$
75000*	16	1223	5 HJ 70000
100000*	14	1414	5 HJ 100000
*Low temperature enamel is used on these sizes because it affords better protection to the small diameter wire that must be used to make the higher resistance values.			
$\dagger 100$ Watt Rating   ( $\dagger$ On Values to $\mathbf{5 0 , 0 0 0} \mathbf{O h m s}$ )   Size: $11 / 8 \times 61 / 2$ Tube			
Resistance Ohms	Current   Milliamperes	Volts   Max.	Catalog   Number
25	2000	50	10HJ25
50	$1 \pm 1.4$	70	10HJ50
75	1150	8.5	10HJ75
100	1060	100	10 HJ 100
150	\$15	120	10 HJ 150
250	1332	158	$10 \mathrm{HJ250}$
500	$4 \cdot 4$	220	$10 \mathrm{HJ5} 50$
7.0	315	27.5	10HJ750
1000	316	315	10HJ 1000
1500	258	385	10 HJ 1500
2000	223	447	10 HJ 2000
2500	200	500	10HJ2500
5000	$1 \cdot 11$	700	$10 \mathrm{HJ5000}$
7500 10000	115	8865	10 HJ 7500
10000	100	1000	10 HJ 10000
1.5000	S1	1200	10 HJ 15000
20000	70	1100	101150000
25000	4.3	1580	10HJ25000
30000	57	1791	1011 300000
40000	511	3000	1011510000
50060	41	2300	1011550000
780 MO 1000	? 93	1732	$10 \mathrm{HJ75000}$
100000*	20	2000	10HJ 100000

*Low temperature enamel is used on these sizes because it affords better jrotection to the small diameter wire that must be used to make the higher resistance values.

$\dagger 200$ Watt Rating   ( $\dagger$ On Values to $\mathbf{7 5 , 0 0 0}$ Ohms)   Size: $11 / 8 \times 101 / 2$ Tube			
Resistance Ohans	Current Milliamperes	Volts Max.	Catalog   Number
25	28:30	70	20HJ25
50	2000	100	201550
75	1633	120	$20 \mathrm{HJ7}$
100	1414	1.40	20 HJ 100
250	894	220	20 HJ 250
500	1332	315	20 HJJO
750	515	385	$20 \mathrm{HJ750}$
1000	4.47	447	20 HJ 1000
1500	361	541	20HJ 1500
2000	316	630	2015 L 2000
2500	283	705	20 HJ 2500
3000	258	770	20 HJ 3000
5000	200	1000	20HJ5000
7500	163	1200	20 HJ 7500
10000	141	1400	20 HJ 10000
20000	100	2000	20 HJ 20000
30000	81	2400	20 HJ 30000
40000	70	2800	20 HJ 40000
50000	63	3150	20 HJ 50000
75000	51	3820	20 HJ 75000
100000*	28	2828	20 HJ 100000

*Low temperature enamel is used on these sizes because it affords better protection to the small diameter wire that must be used to make the the small diameter values.

Mallory Variohm Adjustable Resistors
Mallory Variohm Adjustable Resistors, type AV, incorporate all the quality features of the Mallory HJ type of fixed resistors. Because of their adjustable feature these resistors are valuable for replacing volt age dividers in radio receivers, for use in radio transinitter power supplies and general experimental work.

The adjustable clip supplied with each resistor is specially designed for ease of adjustment, and to prevent injury to the resistance wire while providing proper electrical contact. Additional clips are available. Two convenient mounting brackets are supplied with each variohm resistor.
$\dagger 25$ Watt Rating
( $\dagger$ On Values to $12,000 \mathrm{Ohms}$ )
Size: $5 / 8 \times 21 / 2$ Tube)

Resistance Ohms	Current Milliamperes	Volts Max.	Catalog   Number
1	5000	5	2 AV 1
3	2890	8.6	2 2V3
5	2240	11	$2 \mathrm{AV5}$
10	1.580	15	2AV10
15	1290	19.3	2 AV15
25	1000	25	2 AV 25
50	707	35	2 AV 50
75	575	43	2 AV75
100	500	50	2AV100
150	400	60	2AV150
200	353	70	2 AV 200
250	316	79	2 AV 250
300	288	86	2 AV 300
400	200	100	2 AV 400
500	221	112	2 AV500
750	182	137	2 AV 750
1000	158	158	2 AV 1000
1250	141	176	2 AV 1250
1500	129	19.4	2 AV 1500
2000	112	224	2 AV 2000
2500	100	250	2 AV 2500
3000	91	27.4	2 AV 3000
3500	84	291	2 AV3500
4000	$7!$	316	$2 . \mathrm{AV} 4000$
5000	71	3 F 4	2 AV 5000
6000	64	384	2 aV6000
7500	57	431	$2.1 V 7500$
10000	50	500	2 AV 10000
12000	44	537	2 AV12000
15000*	26	387	2 AV15000
20000*	22	447	2 AV20000
25000*	20	500	2 AV 2 0 000

*Low temperature enamel is used on these sizes because it affords better protection to the small diameter wire that must be used to make the higher resistance
$\dagger 50$ Watt Rating
( $\dagger$ Ont Values to $40,000 \mathrm{Ohms}$ )
Size: $5 / 8 \times 41 / 2$ Tube)

Resistance Ohms	Current Milliamperes	Volts Max.	Catalog Number
5	3160	15	5 AV 5
10	2230	22	5 AV10
25	1410	3.5	5.4 V 25
50	1000	50	5 SV 50
75	816	61	SAV75
100	707	70	5AV100
150	577	80	biv 150
200	500	100	5 5V200
250	447	111	5AV250
300	408	122	SAV300
400	354	140	5 SV 400
500	316	157	5 SV500
750	258	192	5 SV750
1000	22.4	224	$5.4 V 1000$
1500	182	275	5 AV1500
2000	158	315	5AV2000
2500	141	350	5 SV 2500
3000	129	387	5 AV3000
4000	112	448	5 AV4000
5000	100	500	5 SV 5000
7500	81	610	5 5V7500
10000	70	700	5AV10000
12000	64	768	5 SV 12000
15000	57	855	5AV15000
20000	50	1000	5AV20000
25000	44	1100	5AV25000
30000	41	1240	5AV30000
40000	35	1415	5 AV40000
50000**	20	1000	5 SV50000
60000*	18	1080	5 5 V60000
75000*	17	1275	5AV75000
80000*	16	1265	5AV80000
100000*	14	1414	5AV100000

*Low temperature enamel is used on these sizes because it affords better protection to the stnall diameter wire that must be used to make the higher resistance
$\dagger 80$ Watt Rating
（ $\dagger$ On Values to $\mathbf{4 0 , 0 0 0}$ Ohms） Size： $5 / 8 \times 61 / 2$ Tube

Resistance Ohms	Current Milliamperes	Volts   Max．	Catalog Number
10	2830	28.3	8AV10
15	2310	34.6	8AV15
25	1790	44.8	8 8V25
50	1265	63.2	8AV50
100	894	89.4	8 8V100
$2: 0$	566	141.5	8 AV 2.5
300	517	155	8 8V300
400	495	178	8.15400
． 500	400	200	8AV500
750	327	2.45	8.4 V 70
1000	283	283	8．AV1000
1500	231	346	8AV1500
2000	200	400	8 AV 2000
2500	179	448	8 AV2500
3500	152	530	8AV3500
5000	126	632	8AV：000
7500	103	775	8 AV7500
10000	89	894	8 8． 110000
15000	73	1092	8 AV15000
20000	63	1270	8AV20000
2：5000	57	1414	8 AV25000
30000	51	1530	8 AV 30000
40000	44	1790	8 8， 40000
50000＊	25	1265	8AV50000
600000＊	23	1385	8 AV60000
75000＊	21	1575	8 AV75000
$80000^{*}$	20	1600	8 AV80000
100000＊	18	1789	8AV100000

＊Low temperature enamel is used on these sizes be－ cause it affords better protection to the small diameter wire that must be used to make the higher resistance values．

$\dagger 100$ Watt Rating   （ $\dagger$ On Values to $\mathbf{5 0 , 0 0 0} \mathbf{O h m s )}$   Size： $11 / 8 \times 61 / 2$ Tube			
Resistance Ohins	Current Milliamperes	Volts Max．	Catalog   Number
50	1413	71	10AV50
100	1000	100	10 AV100
500	447	223	10AV500
1000	316	316	10 AV1000
2000	223	447	10 A V2000
3000	182	547	10 AV 3000
4000	158	6.33	10.1 V 4000
5000	141	707	10AV5000
7500	115	860	$10 \mathrm{AV7500}$
10000	100	1000	10AV10000
1：5000	81	1200	10AV15000
20000	70	1400	10AV20000
25000	63	1380	10AV2．000
30000	57	1700	10AV30000
3：000	53	$18: 50$	10AV3：000
40000	50	2000	10AV40000
50000	4.4	2200	10AV50000
75000＊	23	1732	10AV75000
100000＊	20	2000	10AV100000

＊L ow temperature enamel is used on these sizes be－ cause it affords better protection to the small diameter wire that must be used to nake the higher resistance values．

200 Watt Rating   Size： $11 / 8 \times 101 / 2$ Tube			
Resistance Ohms	Current   Milliamperes	Volts   Max．	Catalog   Number
50	2000	100	$20.4 V 50$
100	1414	140	20 AV 100
500	632	315	20 VV500
1000	47	447	$20 \wedge V 1000$
1500	361	541	$20 \mathrm{AV1500}$
2000	316	$6: 32$	$20 \wedge$ V2000
2500	283	700	20 AV 2.500
5000	200	1000	20AV5000
10000	141	1414	20AV 10000
20000	100	2000	$20 A V 20000$
2：5000	89	2225	20AV25000
30000	81	2437	20AV30000
50000	63	3150	20 AV50000
75000	51	3825	20AV75000
100000＊	28	2828	20 AV 100000

＊low temperature enamel is used on these sizes be cause it affords better protection to the small diancter wire that must be used to make the higher resistance values．

## Extra Adjustable Clips

Type No． 3 V －lor 25,50 ，and 80 －Watt Variohms． Type No． $4 V$－For 100 －Watt $1^{1 "}$ dia．Variohm
Type No． 5 V －For 200 －Watt $11 / 4^{n}$ dia．Variohm． Type No．6V－For 100 and 200－Watt $11 / 8^{\prime \prime}$ Variohms．

## Mallory Truvolt Resistors

Because of their unique design and merit．Truvolt resistors have long been a favorite of servicemen and experimenters．Truvolt construction provides：

1．Greater radiating surface．
2．Cooler operation．
3．Better distribution of heat because of the heat conducting copper core．
4．Larger wire size for a given resistance value．
5．Negligible inductancr at broadcast frequencies．
$\dagger 10$ Watt Rating－ 1000 Volt Insulation （ $\dagger$ On Values to $\mathbf{1 5 , 0 0 0} \mathrm{Ohms}$ ） Size： $3 / 8 \times 18 / 4$ Tube

$\dagger 10$ Watt Rating－ 1000 Volt Insulation   （†On Values to $\mathbf{1 5 , 0 0 0} \mathrm{Ohms}$ ）   Size： $8 / 8 \times 18 / 4$ Tube			
Resistance Ohms	Current Milliamperes	Volts Max．	Catalog   Number
． 5	4500	2.2	A．005
1	31：0	3	A． 01
2	2200	4.5	A．02
3	1800	5.5	A． 03
5	1400	7	A． 05
7.5	1150	8.5	A． 075
10	1000	10	A． 1
15	815	12	A． 15
20	700	$1 \cdot 1$	A． 2
25	630	16	A． 25
30	570	17	A． 3
50	4.50	22	A．5
75	360	27	A． 75
100	315	31	A1
200	220	45	A2
300	180	55	A3
400	158	63	A4
500	141	70	A5
750	115	$8{ }^{6}$	A7．5
800	112	89	A8
1000	100	100	A 10
1500	81	112	A15
2000	70	141	A20
2500	63	158	A25
3000	56	173	A30
4000	50	200	A40
5000	45	222	Ai0
7500	36	27.4	A75
10000	31	316	A100
15000	26	388	A150
20000	20	395	A200
25000	16	400	A250

$\dagger 25$ Watt Rating－
1000 Volt Insulation
（ $\dagger$ On Values to $\mathbf{4 0 , 0 0 0} \mathbf{O h m s \text { ）}}$ Size ${ }^{11}$ 化 $\times 2$ Tube

$\dagger 25$ Watt Rating－ 1000 Volt Insulation   （ $\dagger$ On Values to $\mathbf{4 0 , 0 0 0} \mathbf{O h m s}$ ）   Size ${ }^{11}$ 伯 $\times 2$ Tube			
$\begin{aligned} & \text { Resistance } \\ & \text { Ohms } \end{aligned}$	Current Milliamperes	Volts   Max．	Catalog   Number
2	3500	7	B． 02
\％	2200	11.4	B． 05
10	1580	15.8	B． 1
25	1000	25	13.25
\％	719	35	13.5
75	575	43.5	8.75
100	500	50	131
200	335	71	132
300	28.9	86.5	B3
500	2.50	100	B5
750	182	137	B7．5
1000	158	158	B10
1.500	$12!$	194	1315
2000	112	223	B20
2500	100	250	B2：5
3000	91	275	1330
4000	79	316	B40
8009	71	352	13：0
$7 \mathbf{7 0 0}$	58	430	175
10000	50	8100	B100
15000	41	610	13150
20000	35	715	13200
25000	32	780	13250
30000	29	860	13300
40000	25	1000	B400
50000	22.5	1000	13500

The end terminals of Mallory Truvolt Resistors are adjustable．permitting the use of standard value re－ sistors for the replacement of odd value original equip－ ment resistors in amplifiers and receivers．A removable full－length fiber insulation guard protects each resistor

Type B Truvolt Resistors are provided with one mounting bracket．Types C and D Truvolt Resistors are provided with two mounting brackets．One extra adjustable clip is supplied with types C and D －addi－ tional clips for all types are available．

Resistance Ohms	Current   Milliamperes	Volts   Max．	Catalog Number
25	1420	35	C． 25
50	1000	50	C．is
100	700	70	C 1
200	500	100	C2
300	406	123	C3
400	353	142	C4
500	316	158	C 5
750	258	193	C7．5
1000	224	223	C10
1500	182	274	C15
2000	158	316	C20
2500	141	353	C25
3000	129	386	C30
4000	112	446	C40
5000	100	500	C50
7500	82	612	C75
10000	71	707	C100
15000	58	865	C150
20000	50	1000	C200
22000	45	1000	C250
30000	41	1000	C300
40000	35	1000	C400
50000	32	1000	C500
80000	25.	1000	${ }_{C}^{C 800}$
100000	22.5	1000	C1000

$\dagger 75$ Watt Rating－ 1000 Volt Insulation （ $\dagger$ On Values to $\mathbf{1 0 , 0 0 0}$ Ohms） Size：${ }^{11}$ 后 $\times 6$ Tube

Resistance Ohms	Current Milliamperes	Volts   Max．	Catalog   Number
50	1220	61.5	D． 5
100	86\％	87	D1
200	610	123	D2
300	500	150	D3
400	432	174	D4
500	387	194	D5
750	316	237	D7．5
1000	274	274	D10
1500	224	335	D15
2000	194	387	D20
2500	173	434	D25
3000	158	475	D 30
3500	146	814	D35
4000	137	550	D40
4500	129	582	D45
5000	122	615	Dio
7500	100	750	D75
10000	86	865	D100
15000	71	1000	D150
20000	61	1000	D200
2：000	53	1000	D250
30000	50	1000	D300
50000	39	1000	D．500
80000	31	1000	D800
100000	27	1000	D1000

## Extra Truvolt Adjustable Clips

Type 1V－For Truvolt Type A．
Type 2V－For Truvolt Tyges B，C，and D．

Standardized coding for resistance value identification is confined to ten colors and figures as shown:

Figure	Color	Figure	Color
0	l3lack	5	Cireen
1	IBrown	6	Blae
2	IRed	7	Violet
3	Orange	8	Gray
4	Yellow	9	White


Value	Body	Tip	Dot
$50 \Omega$	Green	Black	Black
$75 \Omega$	Violet	Green	Black
$100 \Omega$	Brown	Black	Brown
$150 \Omega$	Brown	Green	Brown
$200 \Omega$	Red	Black	Brown
$250 \Omega$	Red	Creen	Brown
$300 \Omega$	Orange	Black	Brown
$350 \Omega$	Orange	Green	Brown
$400 \Omega$	Yellow	Black	Brown
$450 \Omega$	Yellow	Gireen	Brown
$500 \Omega$	(ircen	Black	Brown
$600 \Omega$	Hue	Black	Brown
750 S	Violet	Green	Brown
1,000 $\Omega$	Brown	Black	Red
1,250 $\Omega^{2}$	Brown	lied	Red
1,500 $\Omega$	Brown	Green	Red
2,000 $\Omega$	Red	Black	Red
2,500 $\Omega$	Red	Green	Red
3,000 $\Omega$	Orange	Black	Red
3,500 $\Omega$	Orange	Green	lied
$4,000 \Omega$	Yellow	Black	Red
5,000 $\Omega$	Green	Black	Red
$7,500 \Omega$	Violet	Green	
10,000 $\Omega$	Brown	Black	Orange
12,000 $\Omega$	Brown	Red	Orange
15,000 $\Omega$	Brown	Green	Orange
20,000 $\Omega$	Red	Black	Orange
25,000 S	Ried	Green	Orange
30,000 $\Omega 2$	Orange	Black	Orange
40,000 $\Omega$	Yellow	I3lack	Orange
$50,000 \Omega$	Green	Black	Orange
60,000 $\Omega$	Blue	Black	Orange
$75.000 \Omega$	Violet	Green	Orange
$100,000 \Omega$	Brown	Black	Yellow
$120,000 \Omega$	Brown	Red	Yellow
150,000 $\Omega$	Brown	Green	Yellow
200,000 $\Omega$	Red	Black	Yellow
$250,000 \Omega$	lied	Green	Yellow
$300,000 \Omega$	Orange	Black	Yellow
$400,000 \Omega$	Yellow	Black	Yellow
500,000 $\Omega$	Gireen	Black	Yellow
$600,000 \Omega$	Blue	Black	Yellow
$750,000 \Omega$	Violet	Green	Yellow
$1 \mathrm{Meg} \Omega$	Brown	Black	Green
$11 / 2 \mathrm{Meg} \Omega$	Brown	Green	Green
$2 \mathrm{Meg} \Omega$	Red	Black	Green
$3 \mathrm{Meg} \Omega$	Orange	Black	Gireen
$4 \mathrm{Meg} \Omega$	Yellow	Black	Green
$5 \mathrm{Meg} \Omega$	Cireen	Black	(ircen
$6 \mathrm{Meg} \Omega$	Blue	Black	Gireen
$7 \mathrm{Meg} \Omega$	Violet	Black	Green
$8 \mathrm{Meg} \Omega$	Giray	Black	Green
$9 \mathrm{Meg} \Omega$	White	Black	Green
$10 \mathrm{Meg} \Omega$	Brown	Black	Blue

R M A Standard Color Coding for Resistors


The body ( A ) of the resistor is colored to represent the first figure of the resistance value. One end (B) of the resistor is colored to represent the second figure. A hand, or dot (C) of color, representing the number of ciphers following the first two figures, is located within the body color. The two diagrams illustrate two interpretations of this standard methorl of coding resistance value.

Note: The problem of coding two resistors of the same nominal value when tolerances are different is solved in a parctical manner by using the next higher or lower coded value for the unit with the larger tolerance. For example: if the nominal values of two resistors are 2,500 ohms, one with $10 \%$ tolerance and the other with $20 \%$, the unit with $10 \%$ tolerance will be 2,500 ohms and be coded as such. The unit with $20 \%$ tolerance will be assigned a nominal value of either 2,400 ohms or 2,600 ohms and be so coded.

Some of the larger radio set manufacturers employ mercury vapor lighting in their factories. Certain colors are hard to distinguish in this lighting and in order to overcome this difficulty, odd value of resistors are apparently used, such as 490,000 ohms. In every case where this is found, the next higher value of resistor may be used with success.

In addition to the above color code there is a later type of coding for resistors, particularly for odd values of resistance, such as 27,000 ohms. In this later coding the color lands are read consecutively thus:

RESISTOR WATTAGE CHART


## Resistor Theory and Practice

IN practically every industry fortunes have been spent to reduce the effects of friction. The radio industry, on the other hand, has spent millions of dollars and employed some of the best engineers in the country in doing just the opposite; that is, in developing more and better sources of friction. Taken literally, a resistor is a device which limits the passage of current through it, by exerting a certain amount of friction to its flow. In a manner quite similar to mechanical friction, heat must be generated when a resistance is present in a circuit in which current is flowing. This is always true. The a mount of heat generated depends on the value of resistance in the circuit and on the current flowing. Since Ohm's law gives the relationship between voltage, current, and resistance, it is possible to express the dissipated heat in terms of any two constants of the circuit. When the voltage across a resistor and the current passing through it are known, the power dissipated in the resistor may be computed as follows: (chart shown on page 279).

## E multiplied by $\mathrm{I}=\mathrm{W}$

Example-A resistor having a potential of 20 volis across it, and a current of 2 amperes flowing through it, would be dissipating 40 watts of power. E(20) times $I(2)=W(40)$.
When the resistance value and the voltage across the resistance is known, the dissipation is computed in the following manner:

$$
\frac{E^{2}}{R}=W
$$

Example-A resistor of 10 ohms having a potential of 20 volts across it would be dissipating 40 watts of power.

$$
\frac{E^{2}(400)}{R(10)}=W(40)
$$

When the resistance value and the current flowing through it is known, the computation is:

## $\mathbf{1}^{\mathbf{2}}$ multiplied by $\mathbf{R}=\mathbf{W}$

Example-A resistor of 10 ohms having a current of 2 amperes flowing through it would be dissipating 40 watts of power. $1^{2}(4)$ times $R(10)=W(40)$.
In all of the above formulae, notential is expressed in volts, resistance in ohms, and current in amperes. If the current is known in milliamperes, it may be converted to a mperes by dividing by 1000 , or by moving the decimal point three places to the left, i.e., 50 . milliamperes $=.050$ amperes.

There are two general types of resistors in use, those which use some metal alloy having a high resistivity as their resistance element, and those which use as their active resistance element either carbon in some form, or various compounds of metal. This latter group almost invariably has its resistance material held together by some type of binder and depends for its resistance property upon the limited area of contact between adjacent particles. Where extreme stability, dependability, and permanence are required, the wire wound resistor has no equal. When wattages greater than the two watts must be dissipated, the wire wound resistor is used almost exclusively. For resistors dissipating less than 2 watts, a carbon or composition resistor may be used in the majority of cases. A knowledge of the various types and of their advantages and limitations is useful and indispensable to the service engineer.

## WIRE WOUND TYPES

Practically all wire wound resistors use some nickel chrome alloy as their resistance element. This element takes the form of wire for all except the very lowest value of resistor (below 1 ohm ) in which case the element is frequently formed as a ribbon. In the fixed,
or semiadjustable types, resistance wire is wound around a cylindrical ceramic tube and the whole is coated with a protective coating which insulates the unit electrically, prevents mechanical damage, and in some cases guards against corrosion and humidity effects. The protective coating should also serve to increase the effective hot surface, and therefore cause the resistance wire to operate at a lower temperature. The protective coating is generally a vitreous enamel of some type, although there are numerous resistors on the market which use a cement or varnish for this purpose.

## VITREOUS TYPES

The vitreous glaze used on vitreous enamel units is composed of about twenty different chemicals and minerals, each one contributing some desirable quality to the finished product. The exact formulae for this glaze have been carefully guarded by the trade. The vitreous enamel is ground to a fine powder and mixed with a liquid. The paste thus formed is applied to the resistor unit and after air drying, is fired in huge electric furnaces at a temperature of above $1000^{\circ} \mathrm{F}$. At that high temperature the vitreous powder melts and flows together, forming a very smooth and glossy coat. The advantages of this type of enamel are its relatively high thermal conductivity, its hardness, its durability, and its electrical insulation quality. The thermal conductivity of the insulating coating is very important. By thermal conductivity is meant the ability of a substance to conduct heat readily. The heat generated by a current flowing through the resistance wire heats only the wire itself. Since the wire covers only a portion of the entire resistor only a small portion of the total tube surface would be utilized as a radiating surface if it were not for the enamel. Therefore, for a given resistance and current flow, the temperature of the wire would be much higher and consequently the life of the resistor would be considerably shortened. Most resistance allos's although substantially non-corrosive under ordinary conditions, tend to corrode when operated at high temperatures in contact with air or mositure. Under such circumstances, and with air or mositure. Under such circumstances, and
especially in the case of very fine resistance wire, the wire is eaten away until it finally opens. The various coatings on resistors of this type are used to prevent this corrosion. Vitreous enamel resistors can be operated at very high temperatures and still not affect the character and properties of the protective coating. In addition, where appearance is important, the beautiful lustre and smoothness of this type of protective coating appeals strongly to the eye. Vitreous enamel units have a large application in industrial apparatus, and in the better radio receivers and associated equipment. Large numbers of them are used in transmitting stations and special equipment where resistors must liandle tremendous power and operate for long periods under the most trying conditions without the slightest under the most trying conditions without the slightest
change in resistance. In radio receivers they are used

Power Rating (Watts)	Outside   Diameter	Length
10.	.. ${ }^{5} /{ }^{*}{ }^{\prime \prime}$	. .184"
20.	... $1 / 2^{\prime \prime}$.	.... $2^{\prime \prime}$
25.	. $814{ }^{4}$.	.....21/2"
40.	. $844^{\prime \prime}$	.... $31 / 2^{\prime \prime}$
50.	. 88/4	.... $41 / 2^{\prime \prime}$
so.	8/4"	.....61/2"
100.	. $11 / 8^{\prime \prime}$	.....61/2"
160.	. $1118{ }^{\text {a }}$	.... $81 / 2^{\prime \prime}$
200.	. $11188^{\prime \prime}$	.... $10{ }^{1 / 2}$

Note: When a varnish or organic coating is used, the wattage rating of the various tube sizes are reduced to one-third those given in the above table.

Figure 1
as bias resistors on power tubes, bleeder resistors, in power packs, and in all positions where a large wattage must be dissipated in a small space. For a given size of tube a vitreous enamel resistor will dissipate approximately three times the wattage that a tube of the same size would dissipate if it were coated with a varnish or bakelite.

The wattage rating of a vitreous resistor can be estimated by referring to the chart (Figure 1) showing the most common sizes of tubes in use at the present time.

The fairly ligh heat conductivity of the insulating coating increases the effective radiating surface of the resistor. By increasing the radiating surface we increase the number of cubic inches of air which are available for conducting away the heat generated in the unit. When a material having a low conductivity is used as a protective coating, the portions of the insulation between adjacent turns of wire are fairly cool as compared to the wire iteslf. Since the amount of heat which is imparted to the air depends on the difference in temperature between the air and the hot surface, it is obvious that little heat will be imparted to the layer of air next to the resistor at the points between turns.

When a resistor is to be used in a confined space, it should be chosen with a safety factor so as not to overheat the unit. A similar reasoning shows that if the resistor is used in a draft or in a position where air is constantly moving past the resistor, it is possible to use a smaller unit and still not overload it. The temperature of the surrounding air is also important when determining the size of resistor to be used. In a confined space next to a hot transformer or rectifier tube, it is obvious that since the surrounding air is probably hotter than $104^{\circ} \mathrm{F}$., the next larger size unit should be chosen. As a specific case, let us say that 200 milhamperes are flowing through a resistance of 250 ohms, the wattage, which is easily calculated from the formula previously given, is 10 watts. A vitreous enamel resistor which is $13 / 44^{\prime \prime}$ long and $3 /$ bon $^{\prime \prime}$ in diameter will suit this requirement nicely. If, however, this resistor were to be placed between two resistors dissipating 40 or 50 watts each and in a confined space such as the under-side of a radio chassis; it would be logical and common sense to choose a $1 / 2^{\prime \prime} \times 2^{\prime \prime}$, that is, a 20 -watt size for this application. Quite frequently one hears the expression, "This resistor gives off too much heat!" Since we know that the amount of heat which is given off from a resistor is dependent upon the current, and also upon the value of resistance in ohms, it is obvious that if we substitute a resistor of 100 times the size of the first resistor, an identical amount of heat would be given off. It is true that less heat would be given off per square inch of surface, hence, the unit would be cooler; but when one adds up heat loss in each square inch of surface, the result would be the same whether a huge resistor or only a single strand of fine wire were used. -

## ADJUSTABLE VITREOUS ENAMELED RESISTORS

Resistors of this type consist of a vitreous enamel resistor with a small portion of each turn of resistance wire along its entire length exposed so that lugs can be adjusted to secure a number of desired resistance values. This type of resistor is valuable where the service engineer desires an adjustable resistance, or in places where several taps are required, as in the bleeder circuit or voltage divider across the output of a power pack.

## TRUVOLT ADJUSTABLE RESISTORS

In the Truvolt resistor, the resistance wire is wound around a $1 / 10^{\prime \prime}$ core of asbestos and this core is then wound in a spiral manner on a ceramic tube. This unit is probably the most satisfactory wire wound resistor for high frequency work. The inductance is negligible and the distributed capacity need not be considered
except for the very highest frequencies. This is due to the fact that the diameter of the core is very small and adjacent turns on this asbestos core are widely separated so that the coefficient of coupling between adjacent turns is very slight. Due to the unique manner used in winding this resistor, a much greater length of wire is utilized. Consequently, greater area of wire is exposed to the air and the unit operates at a cooler temperature. For a given resistance value it is also possible, due to this greater length, to use a larger wire size, thus making the unit more dependable and rugged. Adjustable sliding clips permit the selection of any part of the total resistance value. Over a thousand volts can be applied to the Truvolt resistor (provided that the current rating is not exceeded) without danger of sparking over between adjacent turns.

## PRECISION RESISTORS

In applications where the power dissipation is less than $13 / 2$ watts and where extreme precision and accuracy are required, the precision wire wound resistor finds wide application. These units are especially adapted for voltmeter multipliers, ohmmeter range extenders, and for other instrument applications. This unit meets the requirement for an accurate, dependable resistor with a minimum of inductance and distributed capacitance. The Mallory precision resistor is wound in pies, each succeeding section having its direction of winding reversed. In this manner the inductance of one section is partially neutralized by the mutual inductance existing between it and the succeeding section. These resistors are adjusted individually on a highly sensitive and accurate Wheatstone bridge and are impregnated with a special compound having good insulation properties.

## APPLICATION OF FIXED AND SEMI-FIXED TYPES

In many cases it is desired to obtain a small current at a constant voltage. This may be accomplished by connecting a fixed resistor across the output of a power supply, and circulating enough cur rent through this resistor so that any fluctuations in load (either across the whole resistor, or across a section of it) do not affect the voltage of the supply source.


Figure 2

If a current of 10 milliamperes is passed through a resistor as shown in Figure 2, and if the current at a certain tap varies from 1 milliampere to 2 milliamperes, it is obvious that this small current flowing through the resistor is not going to change the voltage appreciably. An additional advantage of a bleeder is that it connects a steady load across the power supply at all times and tends to keep the voltages on the filter condensers at a safe value during the period in which the tubes are heating up. In usual bleeder circuit
design, the bleeder current is approximately $10 \%$ of the total current drawn from the power supply. If a voltage of 250 volts is available at the output of a filter, and the load of the various circuits is 100 milliamperes, the bleeder resistor should draw 10 milliamperes, or $10 \%$ of 100 . Since the voltage across it is 250 volts, the value of resistance is easily calculated by Ohms law. That is, dividing 250 volts by .01 amperes ( 10 milliamperes), gives a value of 25,000 ohms. The wattage this resistor must be capable of dissipating is $250 \times .01$ amperes, or $2 \frac{1}{2}$ watts. Where greater stability is required, the bleeder current may be as high as $25 \%$ of the total current.

When several values of voltage are required, the bleeder is tapped at several points. If the current drawn at any one of these taps is greater than a small proportion of the bleeder current (in this case 10 milliamperes), then the additional current must be considered in determining the wattage of the resistor.


Let us consider a bleeder circuit such as shown in Figure 3. The section of the bleeder resistor between the 250 volt B plus lead and tap 1 must be capable of carrying not only the current drawn by tap 1 and the current drawn by tap 2, but also the bleeder current which circulates through the entire bleeder resistance. If we desire a bleeder current of 10 milli amperes, while tap 1 must supply 20 milliamperes and tap 2,5 milliamperes, then the section between the $B$ plus 250 volts and tap 1 must be able to carry 35 milliamperes. If the voltage required at $\operatorname{tap} 1$ is 150 volts, then the voltage drop in the bleed resistor between $B$ plus and tap 1 must be $250-150$, or 100 volts.

The resistance value will therefore be $100^{-}$divided by , 035 amperes ( 35 milliamperes), or 2860 ohms. The wattage rating of this section of the bleeder should be $100 \times .035$, or 3.5 watts. The section between tap 1 and tap 2 must carry the bleeder current of 10 milliamperes plus the 5 milliamperes drawn by tap 2 , or 15 milliamperes total. Since the voltage at tap 2 must be 90 volts, there will have to be a drop of $150-90$, or 60 volts in this section of the bleeder. The resistance of this portion therefore will be 60 divided by .015 , or 4000 ohms. The wattage required of this section will be $60 \times .015(\mathrm{E} \times 1)$, or .9 watts. The remaining portion of the bleeder resistor will carry only the 10 milliampere bleeder current and will have a resistance of 90 divided by .01 , or 9000 olims with a wattage capacity of .9 watt. The wattage of the total bleeder resistance would be calculated by assuming that 35 milliamperes flowed through the entire resistance, that is ( $2860+4000+9000) \times$ $(.035)^{2}$. or 19.4 watts. The nearest stock size would be a Truvolt $\mathrm{B}-200$. This is a 20,000 ohm unit which would allow for the shorting effect of 2 extra lugs. The calculation is simplified greatly by consulting the resistor tables on pages 275 and 276 wherein the maximum current-carrying capacities of various resistor sizes are given. The important point in bleeder design is that the wattage of the unit should be chosen on the basis of the maximum current which flows through any section of it.

## VOLTMETER MULTIPLIERS

When extending the range of a DC voltmeter, the resistance which must be connected in series with the meter is easily calculated; provided that either the
internal resistance of the voltmeter in ohms, or the resistance in ohms per volt is known. If the resistance is given in ohms per volt, the total resistance of the voltmeter may be found by multiplying the ohns iver volt by the scale reading of the meter.

If it is desired to extend the range of the meter by 10 times, the resistance of the voltmeter is multiplied by $10-1$, or 9 . As a specific eximple, let us assume that the voltmeter in question has a sensitivity of 1000 ohms per volt and a full scale deflection of 100 volts. It is desired to increase the range to 500 volts. The range, therefore, is to be increased by 5 or

## (500) <br> (100)

The resistance of the voltmeter is $1000 \times 100$, or 100,000 ohms. It is necessary, therefore, to multiply 100,000 by one less than 5 . or 4 . The resistance necessary in series with the voltneter is 400,000 ohms. In terms of a simple formula:

$$
\mathrm{I}_{s}=\mathrm{R}_{m} \times \frac{\left(\mathrm{V}_{2}\right)}{\mathrm{V}_{1}}-1
$$

where $\mathrm{R}_{m}$ is the resistance of the voltmeter in ohms, or the number of ohms per volt times the maximum scale reading of the voltmeter prior to the change. $V_{1}$ is the original range of the voltmeter; $V_{2}$ is the new maximum range desired and $\mathrm{K}_{s}$ the fixed external resistor which must be connected in the circuit. The wattage required of this resistor is generally less than $1 \frac{1}{2}$ watts, which is the rating of the average precision resistor. In special cases where very large meters are used, whose sensitivity is very low, the wattage dissipated in the external precision resistor may be greater than 1.5 watts. In this case two or more precision resistors should be connected in series, the value of each resistor being the resistance required divided by the number used in series. The wattage dissipated in the external resistors is calculated by dividing the maximum range of the meter squared $\left(V_{2}\right)^{2}$, by the sum of the external resistors plus the resistance of the meter, that is, $\left(\mathrm{R}_{m}-\mathrm{R}_{s}\right)$.

Figure 4 shows a switching arrangement which provides a choice of several extension ranges. For illustration let us use the voltmeter mentioned in the preceding paragraph. This has a range of 100 volts and a resistance of 100,000 ohms. In Figure 4 this range is

liciuke
available at the number 1 position of the switch. If we desire a 500 -volt range at the number 2 position, the multiplier resistance may be calculated by using the formula:

$$
\mathrm{R}_{s}=\mathrm{R}_{m}(100,000) \times\left(\frac{\mathrm{V}^{2}(500)}{\mathrm{V}_{1}(100)}-1\right)-400,000
$$

In a similar manner we arrive at a value of 900,000 ohms as the correct multiplier for a 1000 -volt range at position number 3. However, we already have a resistance of 400,000 ohms for the 500 -volt range, so we merely add 500,000 ohms in series with that resistor to obtain our second multiplier value. An accuracy of $1 \%$ is generally satisfactory for these resistors unless a very high precision meter is used. The general types of meters encountered in service work are only accurate to $\pm 2 \%$ so that it is useless and wasteful to use a resistor with an accuracy of better than $\pm 1 \%$.

## To Change Over a DC Milliameter to a DC Voltmeter

Often it is necessary to convert a DC milliameter to a voltmeter, either permanently or by means of a switching arrangment, so as to use the same instrument for the combined purposes of reading current and voltage. Since the internal resistance of most milliameters is very low (in comparison to the external multiplier which must be connected when making this change), it can be neglected without serious error. The resistance which is to be connected in series with the milliameter is calculated by dividing the voltage range which is desired by the current range of the milliameter expressed in amperes. If the maximum current reading on the milliameter scale is given in milliamperes, then the voltage range desired is multiplied by 1000 and then divided by the current range of the milliameter in milliamperes.

Expressed by a simple formula, this is

$$
\mathbf{R}_{s}=\frac{V \times 1000}{I_{m}}
$$

where V is the voltage range desired, $I_{m}$ the current in nilliamperes necessary to give the meter a full scale deflection before the change, and $\mathrm{R}_{s}$ the series resistance required in ohms.
To extend the range of a DC milliameter when the resistance of the milliameter is known, the shunt resistor which must be connected across the terminals of the meter is calculated very simply by dividing the resistance of the meter by ( $\mathrm{K}-1$ ) where K is equal to the ratio of the desired maximum reading to the original reading of the meter. This is given as

$$
\begin{aligned}
\mathrm{R}_{s h} & =\frac{\mathrm{R}_{m}}{(\mathrm{~K}-1)} \text { when } \\
\mathrm{R}_{m} & =\text { resistance of meter } \\
K & =\frac{\mathrm{I}_{2}=\text { range desired in milliamperes }}{\mathrm{I}=\text { original range in milliamperes }}
\end{aligned}
$$

## $\mathbf{R}_{\text {sh }}=$ value of shunt resistor

If the resistance of the meter is unknown, it may be measured by the half deflection method. Referring to Figure 5, a variable high resistance $R_{1}$ is connected in series with the meter, and the meter adjusted to exactly full scale deflection. $\mathrm{R}_{2}$ is then connected in the circuit and adjusted to make the meter read half scale. $\mathrm{R}_{2}$ is then equal to the meter resistance and may be measured by any of the usual methods, Never attempt to measure the meter itself by either the ohmmeter or the bridge method.


Figure 5

It will usually be found advisable, when making a multi-range milliameter, to increase the meter resistance 5 to 10 times. This may be done by connecting a series resistor outside the meter. The shunt is then figured using as the meter resistance, the combined resistances of the meter and the series resistor. The series resistor serves two purposes. First, it allows the shunt to be of more reasonable value, thus decreasing errors due to contact resistance or to slight miscalculation. Second, in case of momentary overload, the resistor acts as a ballast slowing down the meter action and in many cases saving a meter which might otherwise be ruined,


Figure 6

Probably the best multi-range milliameter circuit is a modification of the "Universal shunt" type. This is shown in Figure 6. This circuit has several advantages over the usual circuit. First, contact resistance of the switch has absolutely no effect on the accuracy of the meter. The usual circuit has the contact resist ance in series with the shunt and thus makes the total shunt resistance inaccurate. If the switch contact should happen to be defective in the usual circuit, the meter would be ruined. Second, with the usual circuit the switch can not be operated while the meter is in the circuit. With the universal shunt arrangement the switch may be operated at any time without damage to the meter,

Though at first glance it would seem to be more difficult to calculate the resistance values for a uni versal shunt, actually it is quite simple. First we add the series resistor R4 (Figure 6) to bring the meter plus series resistance to a value of approximately 200 ohms. The total shunt resistance is now figured by formula I to make the meter read full scale for the first desired range ( 5 or 10 milliamperes). The other resistances are figured by the formula as shown in Figure 6:

$$
\mathrm{x}=\frac{\mathrm{A}+\mathrm{B}}{\mathrm{~K}}
$$

II and it is evident that familiarity with the selection of the proper type and values is absolutely necessary to the service engincer who is eager to outstrip his competition.

## Reactance Charts

THE simplifications embodied in the charts on pages 283,284 , and 285 should make them more useful than those heretofore available. The frequency range covered comprises the frequency spectrum from 1 cycle per second up to 1000 megacycles per second. All of the scales involved are plotted in actual magnitudes so that no computations are required to determine the location of the decimal point in the final result.

To make these conditions possible the frequency spectrum has been divided into three parts:
CHART I (page 283)-Covers the range from 1 cycle to 1000 cycles.
CHART II (page 28.) -From 1 kilo ycle to 1000 kilocycles.

CIIART III (page 285)-Prom I megacycle to 1000 megacyeles.

Inductance, capacitance, reactance and frequency have been plotted so that the reactance offered by an inductance or capacitance at any frequency may be readily determined by placing a straight-edge across the proper chart so as to connect the known quantities.

Since $\mathrm{XL}=\mathrm{XC}$ at resonance in most radio circuits, the charts may also be used to find the resonant frequency of any combination of L and C .
To illustrate with a simple example, suppose the reactance of a 0.01 mfd . condenser is desired at a frequency of 400 cycles. Place a straight-edge across the proper chart so as to connect the points 0.01 mfd . and 400 cycles per sec. The quantity desired is the point of intersection with the reactance scale which is 10,000 ohms. The straight-edge also intersects the inductance scale at 15.8 henries indicating that this value of inductance likewise has a reactance of 40,000 ohms at 100 cycles per sec, and furthermore, that these values of L and C produce resonance at this frequency.

There are many practical uses for these charts. The radio service engineer should find them helpful in the rapid solution of many reactance problems. Unusual care was exercised in laying out the various scales in order to secure a high degree of accuracy for the charts. Results should be obtainable which are at least as accurate as might be secured if computations were made with a good ten-inch slide rule.



## Resistance-Capacity Coupled Audio Frequency Amplifiers

THIS discussion has been prepared in an effort to clarify the causes of unusual or unsatisfactory operation of audio amplifiers of the resistance coupled type.

A conventional circuit selected as a typical example, is shown in Figure 1. For reference purpose, the dotted line divides the illustration into two stages.


Figure: 1
In this discussion it is assumed that stage two is operated with sufficient negative bias so that there is a negligible flow of grid current at all times. The grid resistance of the tube used in stage two in this case amounts to several megohms, and may be neglected in these calculations, since it is very large compared to the grid load resistance $\mathrm{R}_{g}$.

In general, it is not good practice to operate a resistance-coupled amplifier into a low impedance load. The value of the grid resistor $\mathrm{R}_{\mathrm{g}}$ is determined by the characteristics of the particular tube used in stage 2, and also upon the method used to obtain bias for the tube (fixed or self bias types). If tube two is of the high vacuum type, such as types 6F5, BC5, or 6J5, and is operated with self bias, the grid resistor $\mathrm{R}_{g}$ may be one megohm or greater. Output tubes which contain small amounts of gas, and are subject to grid emission due to the high operating temperature (2A3, 6L6, BV6, 25L6), should use a grid resistance of one-half megohm or less if operated with fixed bias. Whenever a tube is operated with fixed bias, a smatler value of grid resistor should be used than when the same tube is operated with self bias. When high resistance grid leaks are used in output tubes, the small amounts of gas and grid emission currents flow through the grid leak in a direction to reduce the negative bias. Consequently, the tube draws an abnormally high plate current which shortens the tube life and may result in damage to associated parts in the circuit.
There are three important considerations in the choice of the coupling condenser "C." It must be large enough to have only a small impedance compared with $R_{g}$ at the lowest frequencies to be amplified. it should not be any larger than necessary. If its value is too large, the amplifier may have a tendency to motorboat. Finally, the direct current leakage of the condenser should be as low as possible. Capacity values of " C " ranging from .06 to .001 mfd . may produce reasonably uniform gain down to 100 cycles. Commonly used values in commercial receivers vary from .02 to .05 mfd ., depending upon the particular tubes used and the conditions under which they are operated. The effectiveness of coupling condenser " C " is determined by the plate resistance ( $\mathrm{R}_{L}$ ) of stage one, the grid resistance ( $\mathrm{R}_{\mathrm{g}}$ ) of stage two, and the internal plate resistance of tube one. If a very large value is used for " C " considerable time will be required to charge and discharge the condenser, which, together with the internal impedance and regulation of a power supply common to two or more stages, may cause motorboating. It is therefore desirable to make the capacity of condenser " $C$ " no larger than the amount required to obtain the necessary low frequency response, in order to simplify the design of the power supply as much as possible. Precautions
necessary in the design of the power supply to prevent motorboating will be discussed later.

If the coupling condenser " C " has a high DC leakage, direct current will flow through the plate resistor ( $\mathrm{R}_{\mathrm{L}}$ ), the coupling condenser, and the grid resistor ( $\mathrm{R}_{\mathrm{g}}$ ) to produce a DC voltage across $\mathrm{R}_{\mathrm{g}}$ which will reduce or even change to positive values, the bias on tube two. If tube two is operated with a low or positive bias, grid current causing low power output and high distortion will result. A high-grade paper dielectric condenser is usually satisfactory. However, if very low frequencies are to be amplified a mica condenser may be necessary.
The value of the plate load resistor $R_{L}$ resolves itself into a compromise between a low resistance which linits the gain, and a high resistance which makes it necessary to use very low values of grid bias. The tables on pages 288 to 240 show operating conditions for several values of plate load resistances $\left(\mathrm{K}_{L}\right)$ for a given type of tube. Operating conditions for additional values of $\mathrm{R}_{L}$ mas be obtained from plate characteristic curves of the particular tube used.

It is well known that in order to make a tube operate as a low distortion class "A" amplifier, the grid voltage must be reduced with the plate voltage so that the tube operates over a linear portion of the characteristic curve. If the value of the plate load resistor ( $\mathrm{R}_{L_{2}}$ ) is made very large, the effective plate voltage of the tube is materially reduced because of the voltage drop across $\mathrm{R}_{L}$. Therefore the grid voltage must be reduced proportionately. The grid voltage, however, cannot be reduced below approximately' 0.4 volt plus the peak signal voltage because of contact potential, which produces an effective positive grid bias varying from zero to as high as one volt. in most cases the contact potential is less than 0.6 volts. The contact potential, therefore, limits the minimum grid bias and the maximum allowable value of the plate load resistance $\mathrm{K}_{L}$.

The maximum value of $R_{L}$ is further limited by the value of the grid load resistor of the succeeding stage $\left(\mathrm{R}_{\mathrm{g}}\right)$. Generally speaking, the resistance value of the plate load resistance should not be larger than onehalf the value of the associated grid resistor ( $\mathrm{R}_{\mathrm{g}}$ ). If the resistance of $\mathrm{R}_{L}$ is made larger than one-half the value of $\mathrm{Rg}_{\mathrm{g}}$, the effective plate voltage of tube one is sreatly reduced without a proportionate increase in AC load impedance. This load impedance is the parallel combination of $\mathrm{R}_{L}$ and $\mathrm{R}_{g}$.

The cathode bias resistor ( $\mathrm{R}_{\mathrm{C}}$ ) value may be cal culated by dividing the required grid bias by the corresponding plate current, or it may be chosen from the tables on pages 288 to 990 which give the direct values of $\mathbb{R}_{c}$ for most of the commonly used tubes. If conditions other than those shown in the table are required, the grid bias and plate current may be calculated from plate characteristic curves as supplied by the tube manufacturers. In another method, the optimum value of cathode resistance may be determined experimentally by an harmonic analysis of output voltage for various values of cathode resistance.
The cathode by-pass condenser " $\mathrm{C} c$ " may vary from 0.2 nufd. to 10 mfd . The impedance of the cathode by-pass, at the lowest frequency to be amplified, should not be greater than one-fourth the impedance of the cathode bias resistor ( $\mathrm{R}_{C}$ ). If a large capacity value is assigned to " $\mathrm{C}_{c_{1} \text { " " he frequency response will }}$ be fairly uniform, with a gradual reduction in gain below 1,000 cycles. If a very small capacity value is used for " $\mathrm{C}_{c}$," the gain will be reduced over the entire audio spectrum, due to degeneration. Degeneration is the process of feeding a certain amount of audio frequency plate voltage back into the grid circuit in such a phase relation as to oppose the signal voltage to the grid. An impedance in the cathode circuit is common to both grid and plate circuits, and consequently can produce degeneration. If the cathode impedance consists of a condenser in parallel with a biasing resistance, it reduces the gain more at low frequencies than it does at high frequencies. This condition occurs because the parallel impedance of the cathode circuit is greater at low frequencies.
The tables on pages 288 to 290 give the capacity value of cathode by-pass condensers ( $\mathrm{C}_{c}$ ) which result in a ten percent reduction in gain at 100 cycles. The
ten percent reduction at this frequency is chosen as an arbitrary value which would probably be unnoticeable in a listening test. It is generally desirable to use larger values of cathode by-pass condensers than the values given in the tables on pages 288 to 290 in order to reduce hum. Although capacity values as large a 50 mfd . are sometimes used, the effect of the DC leakage, which tends to reduce the DC potential across the cathode bias resistor, should be considered for the particular circuit involved.
In addition to the components in the circuit there exists a shunting capacity ( $\mathrm{C}_{s}$ ) consisting of the rated output capacitance of tube one, the stray capacity of the parts (especially that of the coupling condenser $C_{c}$ ) and wiring, and the effective input capacity of tube two.
The effective input capacity of tube two may be calculated by using the following formula:

## Effective input capacity $=\mathrm{C}_{g}+(1+A) \mathrm{C}_{g p}$

 where$\mathrm{C}_{g}=$ rated input capacity of tube two
i = amplification or gain of the stage
$C_{g p}=$ rated grid to plate capacity of tube two.
The various tube capacity ratings may be obtained from the tube sheets (pages 318 to 332 ). The capacity of the wiring and parts may be measured but it does not often effect the frequency response if wiring and rarts are spaced a reasonable distance from the chassis. The shunting capacity ( $C_{s}$ ) has the effect of reducing the load impedance and consequently reduces the gain at high frequencies. However, the effect of the shunting capacity is usually not serious in the audio frequency range, and can be minimized by choosing tubes with low interelectrode capacities and by keeping the capacity of the wiring as low as rossible. "Cs" also includes any by-pass condenser on the plate of tube one or on the grid of tube two. These bypasses are often used in superheterodyne receivers to slunt intermediate frequencies to ground.
The gain at medium atudio frequencies, approximately 1,000 cycles (since the reactance of " C " mas then be neglected) can be calculated from the simplified circuit shown in Figure 2 and the formula

$$
A_{m}=\mu \frac{R_{1}}{r p+\mathrm{R}_{1}}, \text { where } \mu \text { is the rated ampli- }
$$

fication factor obtained from tube data, and $r p$ is the internal plate resistance of the tube under conditions of operation also obtained from tube data, and $R_{1}$ is the load resistance consisting o $\mathrm{R}_{L}$ and $\mathrm{R}_{g}$ in parallel. $\mathrm{R}_{1}$ may be calculated from the formula

$$
\mathrm{R}_{1}=\frac{\mathrm{R}_{L}}{\mathrm{R}} \times \mathrm{R}_{\mathrm{g}}
$$



Figure 2

The calculation of Am is based on the assumption that the reactance of "C $c$ " and " C " are negligible and that " $\mathrm{C}_{s}$ " has no appreciable shunting effect.

At frequencies from 1 to 1,000 cycles the gain is reduced by the impedances of the coupling condenser ("C"' Figure 1) and the cathode by-pass condenser (" $\mathrm{C}_{c}$ " Figure 1). If we first consider " $\mathrm{C}_{c}$ " to be very large, then the circuit of Figure 1 can be reduced to the simple circuit shown in Figure 3.


Figure 3

The ratio of amplification at some low frequency (AL) to that at medium frequency may be calculated from the formula
$\frac{\mathrm{A}_{L}}{\mathrm{~A}_{M}}=\frac{1}{\sqrt{1-\left(\frac{\mathrm{X}_{C}}{\mathrm{R}_{2}}\right)^{2}}}$

$$
\text { where } \mathrm{X}_{c}=\frac{1}{2 \pi f c} \text { and }
$$

$\mathrm{R}_{\mathrm{z}}=\mathrm{R}_{g}+\frac{r p \times \mathrm{R}_{L}}{r p+\mathrm{R}_{L}}$
$\mathrm{X}_{C}=$ the reactance of the coupling condenser "C," and $\mathrm{K}_{2}$ equals the resistance of the grid leak, in series with the internal and external plate resistances in parallel.
At high audio frequencies the amplifier circuit may be simplified as shown in Figure 4. This figure assumes that at high frequencies the effect of the coupling condenser is negligible and that reduction in gain is due to $\mathrm{C}_{5}$.


Figure 4
The ratio of gain at high frequencies ( $\mathrm{A} H$ ) to that at medium frequencies may be calculated from the formula
$\frac{\mathrm{A}_{I I}}{\mathrm{~A}_{M}}=\frac{1}{\sqrt{1-\left(\mathrm{R}_{3} \times \mathrm{X}_{s}\right)^{2}}}$ where $\mathrm{X}_{5}=\frac{1}{\sqrt{2 \pi f \mathrm{C}_{s}}}$

$$
\text { and } \mathrm{R}_{\mathrm{a}}=\frac{\mathrm{R}_{L} \mathrm{~K}_{g} \gamma p}{\left(\mathrm{R}_{g} \mathrm{R}_{L}\right)+\left(\mathrm{R}_{g \gamma p}\right)+\left(\mathrm{R}_{L r p}\right)}
$$

$$
\mathrm{X}=\text { reactance of capacity " } \mathrm{C}_{s} \text { " }
$$

This calculation indicates that small values are desirable for $\mathrm{R}_{L} . \mathrm{R}_{\mathrm{g}}, r p$, and $\mathrm{C}_{s}$, to obtain uniform gain at high frequencies.

Figure 5 shows a circuit diagram of a typical resistance coupled amplifier using a pentode tube.


Figure 5
The circuit is similar to that for a triode except for the addition of $R_{d}$ and $C_{d}$ which supply DC voltage to, and by-pass the audio frequency from, the screen. The screen voltage and current are both small to permit operation over a linear part of the tube characteristic curve. $\mathrm{R}_{d}$ is therefore a high resistance and sometimes reaches a value of 3 megohms. It is, as a result, necessary that $C_{d}$ should have a small DC leakage, in addition to a low AC impedance to prevent degeneration at low frequencies. Table I shows values of $\mathrm{R}_{d}$ and $\mathrm{C}_{d}$ for the most commonly used pentode amplifiers. The value of $\mathrm{C}_{d}$ given is arbitrarily chosen to give a ten percent reduction in gain at 100 cycles. Larger values will improve the low frequency response.

If an audio frequency amplifier of two or more stages is operated from a common power-supply, motorboating may result due to the common impedance. The common impedance can be reduced by increasing the capacity of the final filter condenser in the power-supply unit. If motorboating still persists it may be necessary to use separate filter chokes for each stage, and at the same time reduce the resistance of the rectifier tube and the impedance of the power transformer. Separate resistance-capacity filters in the plate supply of each stage may be effective in stopping motorboating as well as in reducing hum. If motorboating cannot be stopped by any other
means two or more entirely separate power supplies may be required.

The frequency response of a multi-stage amplifier is often different than would be expected from a consideration of each individual stage due to regeneration or degeneration between input and output stages. The stray coupling causing regeneration may take the form of capacity coupling between circuit or tube elements, magnetic coupling bet ween component parts and leads, and impedance of the power supply. An arrangement of stages in a straight line tends to reduce regeneration. Using the chassis as ground return leads, often results in stray couplings between any and all circuits. This may not be serious in the last stage of the amplifier, but could easily produce distortion and oscillation if it occurred in a stage followed by considerable amplification.
A large percentage of audio amplifiers are operated from conventional power packs which rectify alternating current and smooth it out to make the AC ripple as low as possible. In all cases, however, these power units supply DC voltages which produce a certain amount of hum in the amplifier. This may not cause hum in the output stage. However, preceding stages are more seriously affected by AC ripple, in proportion to the gain which follows them. It is therefore desirable to use multi-stage filter units which reduce the hum to very low values in the high voltage supply to the early amplifier stages. This can usually be done with resistance capacity filters since only small currents are required.

There is a certain phase shift between the inputvoltage to, and the output voltage from, an audio amplifier. This is not serious because the ear is very little, if at all, sensitive to phase shifts.

FREQUENCY CHARACTERISTIC OF SINGLE-STAGE RESISTANCE-COUPLED TRIODE AMPLIFIER

A. Condensers C and $\mathrm{C}_{c}$ have been chosen to give output voltages equal to $0.8 \mathrm{E}_{o}$ for $f_{1}$ of 100 cycles. For any other value of $f_{1}$, multiply values of C and $C_{c}$ by $100 / f 1$.
In the case of condenser $C_{c}$, the values shown are for an amplifier with DC heater excitation. When AC is used, depending on the character of the associated circuits, the gain, and the value of $f_{1}$, it may be necessary to increase the value of $\mathrm{C}_{c}$ to minimize humdisturbances. It may also be desirable to have a DC potential difference of approximately 10 volts between heater and cathode.
B. $f_{2}=$ frequency at which high-frequency response begins to fall off.
C. The voltage output at $f_{1}$ for $n$ like stages equals $\left(0.8 \mathrm{E}_{\mathrm{o}}\right)^{n}$.
D. Decoupling filters are not necessary for two stages or less.
E. For an amplifier of typical construction, the value of $f_{2}$ is well above the audio-frequency range for any value of $\mathrm{R}_{\mathrm{L}}$.
F. Always use highest permissible value of $\mathrm{R}_{\mathrm{g}}$.
G. A variation of $\pm 10 \%$ in values of resistors and condensers has only a slight effect on performance. See Figure 1

FREQUENCY CIIARACTERISTIC OF SINGLE-STAGE RESISTANCE-COUPLED PENTODE AMPLIFIER

A. Condensers $\mathrm{C}, \mathrm{C}_{c}$, and $\mathrm{C}_{d}$ have been chosen to give output voltages equal to $0.7 \mathrm{E}_{0}$ for $f_{1}$ of 100 cycles. For any other value of $f_{s}$, multiply values of $C_{,} C_{c}$. and $\mathrm{C}_{d}$ by $100 / \mathrm{f}_{1}$.
In the case of condenser $C_{C}$, the values shown are for an amplifier with DC heater excitation. When AC is used, depending on the character of the associated circuits, the gain, and the value of $f_{1}$, it may be necessary to increase the value of $\mathrm{C}_{c}$ to minimize hum disturbances. It may also be desirable to have a DC potential difference of approximately 10 volts bet ween heater and cathode.
B. $f_{2}=$ frequency at which high-frequency response begins to fall off.
C. The voltage output at $f_{1}$ for $n$ like stages equals ( $\left.0.7 \mathrm{E}_{0}\right)^{n}$.
D. Decoupling filters are not necessary for two stages or less.
E. For an amplifier of typical construction, approximate values of $f_{2}$ for different values of $\mathrm{R}_{L}$ are:

|  |  | RL |
| :--- | :--- | ---: |$\quad f_{2}$.

F. Always use highest permissible value of $\mathrm{R}_{\mathrm{g}}$.
G. A variation of $\pm 10 \%$ in values of resistors and condensers has only slight effect on performance.

## See Figure 5

TWIN-TRIODE DIAGRAM WITH LEGEND


## FREQUENCY CHARACTERISTIC OF RESISTANCE-COUPLED TWIN-TRIODE AMPLIFIER



The diagram given above is for Phase-Inverter Service. The signal input is supplied to the grid of the left-hand triode unit. The grid of the right-hand unit obtains its signal from a tap ( P ) on the grid resistor ( $\mathrm{R}_{\mathrm{g}}$ ) in the output circuit of the left-hand triode unit. The $\operatorname{tap}(\mathrm{P})$ is chosen so as to make the voltage output of the right-hand unit equal to that of the left-hand unit. Its location is determined from the voltage gain values given in the Chart. For example, if the value of voltage gain is 20 (from the Chart), ( P ) is chosen so as to supply $1 / 20$ of the voltage across ( $\mathrm{R}_{\mathrm{g}}$ ) to the grid of the right-hand triode,

For phase-inverter service, the cathode resistor ( $\mathrm{R}_{C}$ ) should not be by-passed by a condenser. Omission of the condenser in this service assists in balancing the output voltages. The value of $\mathrm{R}_{c}$ is specified on the basis that both units are operating simultaneously at the same values of plate load and plate voltage.

# Resistance-Coupled Amplifier Chart for Pentodes 

## TABLE I

PLATE-SUPPLY VOLTMGE (Ebt) - Volts ${ }^{1}$	90									180								
PLATE RESISTOR (RL) - Megonms	0.1			0.25			0.5			0.1			0.25			0.5		
GRIO RESISTOR (Rg) - Megonms ${ }^{\text {z }}$	0.1	0.25	0.5	0.25	0.5	1	0.5	1	2	0.1	0.25	0.5	0.25	0.5	1	0.5	1	2
SCREEM RESISTOR (Ra)- Megotims	0.37	0.44	0.44	1.1	1.18	1.4	2. 18	2.6	2.7	0.44	0.5	0.5	1.1	1. 18	1.4	2.45	2.9	2.7
CATHODE RESISTOR (Re) - Ohms	1200	1100	1300	2400	2600	3600	4700	5500	5500	1000	750	800	1200	1600	2000	2600	3100	3500
SCREEN OY-Pass COnOEnSER (Cd)- $\mu$ (	0.05	0.05	0.05	0.03	0.03	0.025	0.02	0.05	0.02	0.05	0.05	0.05	0.04	0.04	0.04	0.03	0.025	0.02
Cathooe eropass conoenser ( Ce ) $=\mu$ (	5.2	5.3	4.8	3.7	3.2	2.5	2.3	2	2	6.5	6.7	6.7	5.2	4.3	3.8	3.2	2.5	2.8
- LOCXING CONDENSER ( C ) - $\mu$ +	0.02	0.01	0.006	0.008	0.005	0.003	0.005	0.0025	0.0015	0.02	0.01	0.006	0.008	0.005	0.0035	0.005	0.0025	0.0015
voltage output (E0)-Peak volis ${ }^{\text {s }}$	17	22	33	23	32	33	28	29	27	42	52	59	41	60	60	45	56	60
VOLTAGE GAIN ${ }^{4}$	41	55	66	10	85	92	93	120	140	51	69	83	93	118	140	135	165	165
	PENTODE									57								
PLATE-SUPPLY VOLTAGE (E bbl - Volts ${ }^{1}$	300									600 (man, )								
PLATE RESISTOR (RL) - Megohme	0.1			0.25			0.5			0.1			0.25			0.5		
GRIO RESISTOR (Rg) - megohme ${ }^{\text {z }}$	0.1	0.25	0.5	0.25	0.5	1	0.5	1	2	0.1	0.25	0.5	0.25	0.5	1	0.5	1	2
SCREEN RESISTOR (Ra) - Megohme	0.44	0.5	0.53	1.18	1.18	1.45	2.45	2.9	2.95	0.48	0.53	0.53	1.18	1.18	1.45	2.5	2.94	3
CATHOOE RESISTOR (Re) - OMms	500	450	600	1100	1200	1300	1700	2200	2300	200	250	300	500	800	800	1050	1400	1500
SCREEN BY-PASS COMDEMSER (Ca)- C (	0.07	0.07	0.06	0.04	0.04	0.05	0.04	0.04	0.04	0.09	0.08	0.08	0.05	0.05	0.05	0.05	0.05	0.05
Cathode by-pass COndenser (Ce)- $\mu$ (	8.5	8.5	8	5.5	5.4	5.8	4.2	4.1	4	11.5	11.1	10.5	8.2	7.2	7	5.7	5.6	4.5
ELOCKING COnoEnser (C) - Mr	0.02	0.01	0.006	0.008	0.005	0.005	0.005	0.003	0.0025	0.02	0.01	0.006	0.008	0.005	0.005	0.005	0.003	0.002
WOLTAGE OUTPUT (EO) - Peak volte ${ }^{\text {a }}$	55	81	96	81	104	110	75	97	100	90	140	150	125	200	180	140	185	165
VOLTMGE GAIN *	61	82	94	104	160	185	161	350	240	77	100	112	136	171	210	198	435	350


Plate-supply voltage iE bbi - Volte	90									180								
PLATE RESISTOA (RL) - Magohme	0.1			0.25			0.5			0.1			0.25			0.5		
GRIO RESISTOR (Rg) - Megohas ${ }^{\mathbf{2}}$	0.1	0.25	0.5	0.25	0.5	1	0.5	1	2	0.1	0.25	0.5	0.25	0.5	1	0.5	1	2
SCREEN RESISTOR (Ra)- Megohime	0.59	0.65	0.7	1.5	1.6	1.7	3.2	3.5	3.7	0.58	0.68	0.71	1.6	1.8	1.9	3.3	3.6	3.8
CATHODE RESISTOR (Re) - Onme	870	900	910	1440	1520	1560	2620	2800	3000	530	540	540	850	890	950	1410	1520	1600
SCREEN EY-PASS CONDENSER $\{$ Cal - $\mu$ (	0.065	0.061	0.057	0.044	0.044	0.043	0.029	0.03	0.031	0.073	0.07	0.055	0.05	0.044	0.046	0.041	0.037	0.031
Cathooe by-pass Conoenser (Cel- $\mu$ (	5.1	5	4.58	3.38	3.23	3.22	2.04	1.95	1.92	7.2	6.9	6.6	4.6	4.7	4.4	3.5	3	2.9
BLOCKING CONDENSER (C) - Mi	0.018	0.01	0.007	0.007	0.0055	0.004	0.004	0.0026	0.0024	0.017	0.01	0.0063	0.0071	0.005	0.0037	0.0041	0.003	0.0024
voltage output (Eo)- peak voless	16	20.5	22.5	13.7	18	19	12	15.4	16.4	33	43	48	32.5	37.5	44	30	37.5	41.5
voltage gain ${ }^{4}$	33.3	46.5	53.5	55.5	66.5	77	59.5	84	93.5	47.4	66	75	79	104	118	109	134	147

## PENTODE TYPE 6S7-G

PLATE-SUPPLY VOLTAGE IE DOI- Volts ${ }^{\text {a }}$	300								
PLATE RESISTOR (RL) - Megonme	0.1			0.25			0.5		
GRIO RESISTOR (Rg) - megohme ${ }^{2}$	0.1	0.25	0.5	0.25	0.5	1	0.5	1	2
SCREEN AESISTOR (Rd)- Megohms	0.59	0.67	0.71	1.7	1.95	2.1	3.6	3.9	4. 1
CATHODE RESISTOR (RE) - Ohme	430	440	440	620	650	700	1000	1080	1120
SCREEM EY-PASS COMOEmSER (Cal- $\mu$ (	0.077	0.071	0.071	0.058	0.057	0.055	0.04	0.041	0.043
Cathooe drapass Condenser (Ce)- $\mu$ (	8.5	8	8	6	5.8	5.2	4.1	3.9	3.8
blocking Conoenser (C) - $\mu$ (	0.0167	0.01	0.0066	0.0071	0.005	0.0036	0.0037	0.0029	0.0023
voltage output (Eo) - Peak volte 3	57	75	82	54	66	76	52	66	73
voltage galn	57	78	97	98	122	136	136	162	174


PLATE-SUPPLY VOLTAGE (EbD)- Volts ${ }^{1}$	90									180								
PLATE RESISTOR IRLI - megonas	0.1			0.25			0.5			0.1			0.25			0.5		
GRIO RESISTOR (Rg)- Megohme ${ }^{\text {E }}$	0.1	0.25	0.5	0.25	0.5	1	0.5	1	2	0.1	0.25	0.5	0.25	0.5	1	0.5	1	2
SCREEN RESISTOR (Ra) - Megohms	0.37	0.5	0.6	1.18	1.1	1.35	2.6	2.8	2.9	0.44	0.5	0.6	1.18	1.2	1.5	2.6	2.8	3
CATHODE RESISTOR (Rel - Ohme	2000	2200	2000	3500	3500	3500	5000	6000	6200	1000	1200	1200	1900	2100	2200	3300	3500	3500
SCREEN EY-PASS CONOENSER (Cal - $\mu$ (	0.07	0.07	0.06	0.04	0.04	0.04	0.04	0.04	0.04	0.08	0.08	0.07	0.05	0.06	0.05	0.04	0.04	0.04
Cathooe by-Pass conoenser (Ce)- $\mu$ (	3	3	2.8	1.9	2.1	1.9	1.5	1.55	1.5	4.4	4.4	4	2.7	3.2	3	2.1	2	2.2
BLOCKIMG CONOENSER (C) - $\mu$ ( -	0.02	0.01	0.006	0.008	0.007	0.003	0.004	0.003	0.003	0.02	0.015	0.008	0.01	0.007	0.003	0.005	0.003	0.002
voltage output (Eo) - Peak Volts	19	28	29	26	33	32	22	29	27	30	52	53	39	55	53	47	55	53
VOLTAGE GAIM *	24	33	37	43	55	65	65	85	100	30	41	46	55	69	83	81	115	116
DUPLEX-DIODE PENTODE TYPES:287:687,6B8																		
PLATE-SUPPLY VOLTAGE (EBS) - Volts	300									600 (max.)								
PLATE RESISTOR (RL) - Megohas:	0.1			0.25			0.5.			0.1			0.25			0.5		
GR10 RESISTOR $\{$ Rg $\}$ - Megohms ${ }^{\text {2 }}$	0.1	0. 25	0.5	0.25	0.5	1	0.5	1	2	0.1	0.25	0.5	0.25	0.5	1	0.5	1	2
SCREEM RESISTOR (Ra) - Megonims	0.5	0.55	0.6	1.2	1.2	1.5	2.7	2.9	3.4	0.45	0.6	0.65	1.2	1.35	1.5	2.7	3	3.4
CATHODE RESISTOR (Re) - Onme	950	1100	900	1500	1600	1800	2400	2500	2800	350	500	350	1000	1100	1000	1500	1800	2000
SCREEN BY-PASS CONDENSER (Cd)- $\mu$ (	0.09	0.09	0.08	0.06	0.06	0.08	0.05	0.05	0.05	0.1	0.1	0.1	0.08	0.08	0.09	0.06	0.06	0.08
CATHOOE BY-PASS COMOENSER (Ce) - $\mu$ (	4.6	5	4.8	3.2	3.5	4	2.5	2.3	2.8	6.6	7	7	4	4.4	4.6	3.5	3	3.6
BLOCKING CONDENSER (C) - $\mu$ (	0.025	0.015	0.009	0.015	0.008	0.004	0.006	0.003	0.0025	0.03	0.02	0.01	0.015	0.01	0.004	0.006	0.0425	0.002
vOLTAGE OUTPUT $\left\{E_{0}\right.$ ) - Peak volts	60	89	86	70	100	95	80	120	90	72	130	120	135	175	150	145	170	190
VOLTAGE GAIN *	36	47	54	64	79	100	96	150	145	43	59	67	76	95	110	111	170	

```
C= RLOCKIMG CONOENSER I\mu')
```

TYPES: 6CS (TRIODE), AND 6C6,6J7,57 (AS TRIODES)

Etb ${ }^{2}$	90									180									300									
RL	0.05			0.1			0.25			0.05			0.1			0.25			0.05			0.			0.25			
$\mathrm{R}_{9}{ }^{2}$	0.05	0.1	0. 25	0.1	0.25	0.5	0.25	0.5	1	0.05	0.1	0.25	0.1	0.25	0.5	0.25	0.5	1	0.05	0.1	0.25	0.1	0.25	0.5				
Re	2800	3600	3800	4800	6400	7500	11400	14500	17300	2200	2700	3100	3900	5300	6200	9500	12300	14700	2100	2600	3100	3800	5300	6000	9600	12300		
$c_{c}$	2	1.62	1.3	1.12	0.84	0.66	0.52	0.4	0.33	2.2	2.1	1.85	1.7	1.25	1.2	0.14	0.55	0.47	3.16	2.3	2.2	1.7	1.3	1.17	0.9	0.59		
c	0.05	0.025	0.01	0.c. ${ }^{\sim}$	0.01	0.005	0.01	0.006	0.004	0.055	0.03	0.015	0.035	0.015	0.008	0.015	0.008	0.004	0.075	0.04	0.015	0.035	0.015	0.008	0.015	0.008	0.003	$\mathrm{E}_{0}:$
E $0^{3}$	14	17	20	16	22	23	18	23	26	34	45	54	41	54	55	44	52	59	57	70	83	65	84	88	13	8	14	E. ${ }_{\text {c. }}{ }^{4}$
v.G. ${ }^{\text {a }}$	9	9	10	10	11	12	12	12	13	10	11	11	12	12	13	13	13	13	11	11	12	12	13	13	3	1		v.G.

TRIODE TYPE 6L5-G

Ebt ${ }^{2}$	93									180									300									Ebo
RL		0.05			0.1			0.25			0.05			0.1			0.25			0.05			0.1			0.25		
$\mathrm{Rg}^{2}$	0.05	0.1	0.25	0.1	0.25	0.5	0.75	0.5	1.0	0.05	0.1	0.25	0.1	0.25	0.5	0.25	0.5	1.0	0.05	0.1	0.25	0.1	0.25	0.5	0.25	0.5	1.0	
Rc	2120	2500	2900	3510	4620	5200	8050	10.500	12100	1810	2200	2660	3180	4200	4790	7100	9290	10930	1740	2160	2600	3070	4140	4700	6900	9100	10750	Rec
Cc	2.3	1.85	1.65	1. 36	1.08	1	0.61	0.49	0.42	2.9	2.2	1.8	1.46	1.1	1	0.7	0.54	0.46	2.91	2.18	1.82	1.64	1.1	0.81	0.57	0.46	0.4	$\mathrm{Ce}_{6}$
c	0.05	0.03	0.014	0.03	0.015	2.0cs	c ciss	0.109\%	- 0055	0.06	0.03	0.014	0.03	0.0145	0.009	0.014	0.009	0.0055	0.06	0.032	0.015	0.032	0.014	0.0075	0.0 .13	0.0075	0.005	
Eo 3	14	17.8	21	16	21.5	23	17.5	21.5	23.6	32	41	46	36	45.5	50	38	46	52	56	68	79	60	79	89	64	80	88	
v.G. ${ }^{5}$	9.3	10.4	10.9	11	11.7	12	118	11.9	12	10.4	11.1	11.5	11.6	12.1	12.3	12.1	12.4	12.5	10.9	11.6	11.9	12.1	12.7	12.9	13	12.9	12.8	V. G. ${ }^{6}$

DUPLEX-DIODE TRIODE TYPE 607

Ebb ${ }^{1}$	90									180									300									
AL	0.1			0.25			0.5			0.1			0.29			0.5			0.1			0.25			0.5			
$\mathrm{Rag}^{2}$	0.1	0.25	0.5	0.25	0.5	1	0.5	1	2	0.1	0.25	0.5	0.25	0.5	1	0.5	1	2	0.1	0.23	0.5	0.25	0.5	1	0.5	1	2	
Rc	4000	4200	4300	1200	7600	8000	11500	12300	13700	1000	1900	2100	3400	4000	4500	6000	7100	7900	1200	1800	1700	2600	3000	3600	4600	5500	6200	
Cc	2.07	1.7	1.5	1.17	1.2	0.9	0.72	0.6	0.45	3	2.5	2.3	1.6	1.3	1.05	0.86	0.76	0.63	4.4	3.6	3.05	2.4	1.66	1.45	1.2	0.9	0.9	$\mathrm{C}_{6}$
c	0.02	0.01	0.005	0.01	0.006	0.003	0.006	0.003	0.0015	0.02	0.01	0.005	0.01	0.005	0.003	0.006	0.003	0.002	0.03	0.015	0.007	0.015	0.007	0.004	0.007	0.004	0.002	
E. ${ }^{3}$	5	8	9	${ }^{0}$	11	13	9	13	17	19	26	29	25	31	37	30	36	41	35	52	53	43	52	62	47	60	66	
V.G.*	23 *	$28^{\circ}$	$x^{\circ}$	$31^{\circ}$	32	33	31	33	37	28	33	35	36	$: 3$	40	* 9	40	4	34	39	40	42	45	45	45	46	47	V.G.*

DUPLEX-DIODE HIGH-MU TRIODE TYPE 6T7-G

Ebt ${ }^{2}$	90									180									300									Ebe
RL		0.1			0.25			0.5			0.1			0.25			0.5			0.1			0.25			0.5		
R9	0.1	0.25	0.5	0.25	0.5	1	0.5	1	2	0.1	0.25	0.5	0.25	0.5	1	0.5	1	2	0.1	0.25	0.5	0.25	0.5	1	0.5	1	2	
Re	4350	4750	5050	7500	8300	9000	12500	14200	15500	2420	2830	3090	4410	5220	5920	7250	9440	10850	1950	2400	2640	3760	4560	5220	6570	3200	600	Rc
Ce	1.8	1.5	1.43	1.12	1	0.88	0.67	0.6	0.54	2.55	2.25	2	1.5	1.25	1.11	0.91	0.74	0.6	2.85	2.55	2.25	1.57	1.35	1.23	1.02	0.82	0.7	Cc
c	0.023	0.012	0.007	0.012	0.0075	0.005	0.0065	0.0045	0.0035	0.023	0.0135	0.008	0.012	0.008	0.005	0.007	0.0045	0.0035	0.0245	0.0135	0.008	0.012	0.0075	0.005	0.008	0.0055	0.0	
	5.6		8.5	7.1	10.2	11.5	9.4	12.3	13.2	21	28.5	31.6	27	33.8	38.5	31	39	42.6	43.7	58	64	57	69	80	62	76.5	85.5	
V.G*	$20.3^{e}$	$24^{4}$	25	$28.2{ }^{\text {f }}$	30	31.6	30.5	32.9	34.2	23.7	29.4	30.6	33.7	36.4	38	38.4	0.5	41	26.5	31.9	33.2	36.6	40	41	41.5	43	44	V.G

DUPLEX-DIODE TRIODE TYPE 6R7

Eb0 ${ }^{1}$	90									180									300									Ebr ${ }^{2}$
Rt		0.05			0.1			0.25			0.05			0.1			0.25			0.05			0.1			0.25		
$\mathrm{R}_{9}{ }^{2}$	0.05	0.1	0.25	0.1	0.25	0.5	0.25	0.5	1	0.05	0.1	0.23	0.1	0.23	0.5	0.25	0.5	1	0.05	0.1	0.25	0.1	0.25	0.5	0.23	0.5	${ }_{10500}$	
Rec	2300	2600	2900	3500	4400	5000	7600	9800	11300	1700	2100	2500	3000	100	4600	6700	8800	10000	1600	2000	2400	2900	3600	4400	6300	8400		
Ce	2	1.1	1.27	1.2	0.9	0.77	0.54	0.42	0.38	2.3	1.9	1.5	1.3	0.9	0.8	0.54	0.4	0.33	2.6	2	1.6	1.4	1.1	1	0.7	${ }_{0}^{0.5}$		
c	0.05	0.03	0.01	0.03	0.01	0.006	0.015	0.001	0.003	0.05	0.03	0.01	0.03	0.01	0.006	0.01	0.006	0.003	0.035	0.03	0.015	${ }^{1} .03$	0.015					C ${ }_{\text {c }}{ }^{\text {a }}$
EO ${ }^{3}$	14	18	20	15	19	21	15		21		40		35	${ }^{43}$	46	33 10	40	47	${ }_{9} 9$	62	11 10	52 10	66 10	10	10		11	V.G. ${ }^{4}$

DUPLEX-DIODE TRIODE TYPES:55.85


DUPLEX-DIODE TRIODE TYPES: 2A6.75

Ebi ${ }^{2}$	90									100									300									$\begin{array}{\|l\|} \hline \text { Ebo } \\ \hline R_{1} \\ \hline \end{array}$
R ${ }^{\text {RL }}$	0.1			0.25			0.5			0.1			0.25			0.5			0.1			0.25			0.5			
	0.1 6300	0.25 6600	0.5 6700	0.25 10000	0.5 1000	0	0.5	1600	2	0.1	0.25	0.5	0.25	0.5	$\therefore$	0.5	0.5	${ }^{2}$	0.1	0.23	0.5	0.25	0.5	1	0.5	0.5	2	$\mathrm{Rg}^{8}$
Re $C_{c}$	6300 2.2	6600 1.7	6700 1.7	10000 1.24	11000 1.07	11500 0.9	16200 0.75	16600 0.7	17400 0.65	2600 3.3	2900 2.9	3000 2.7	4300 2.1	4800 1.8	5300 1.5	1000 1.3	8000 1.1	8800	1900	3200	2300	3300	3900	4200	5300	6100	2000	Rc
c	0.02	0.01	0.006	0.01	0.006	0.003	0.005	0.003	0.0015	0.025	0.015	0.007	0.015	0.007	0.004	0.007	0.006	0.002	0.03	3.5 0.015	0.007	0.015	${ }_{0}^{2}$	1.8	1.6 0.007	1.3 0.004	1.2	${ }_{\mathrm{C}}^{\mathrm{c}}$
E。		5	6	5	1	10	7	10	13	16	22	23	21	20	33	25	33	38	31	41	45	42	51	60	47	62	67	$\mathrm{C}_{0}$ ¢
V.G. ${ }^{4}$	23 d	$29^{\circ}$	315	$34{ }^{\circ}$	$40^{\text {c }}$	40	39	44	48	20	36	37	43	50	53	52	57	58	31	39	42	48	33	56	58	60	63	V.G. ${ }^{4}$

TRIODE TYPE 6F5

Eto ${ }^{\text {a }}$	90									180									300									E bos ${ }^{\text {a }}$
$\frac{R_{6}}{R_{9}}{ }^{2}$	0.1			0.25			0.5			0.1			0.25			0.5			0.1			0.25			0.5			
$\mathrm{Rg}_{\mathrm{g}}{ }^{\text {a }}$	0.1	0.25	0.5	0.23	0.5	1	0.5	1	2	0.1	0.25	0.5	0.28	0.5	1	0.5	1	2	0.1	0.25	0.5	0.25	0.5	1	0.5	1	2	$\mathrm{Rg}^{2}$
Rc	4400	4800	5000	0000	8000	9000	12200	13500	14700	1800	2000	2200	3500	4100	4500	6100	6900	7100	1300	1600	1700	2800	3200	3300	4500	5400	6100	Rc
Cc	2.5	2.1	1.8	1.33	1. 18	0.9	0.76	0.67	0.58	4.4	3.3	2.9	2.3	1.8	1.7	1.3	0.9	0.83	5	3.7	3.2	2.5	2.1	2	1.5	1.2	0.93	$\mathrm{C}_{6}$
	0.02	0.01	0.005	0.01	0.005	0.003	0.005	0.003	0.0015	0.025	0.015	0.006	0.01	0.006	0.004	0.006	0.003	0.0015	0.03	0.01	0.006	0.01	0.007	0.004	0.006	0.004	0.002	
	4	5	6	6	7	10	$\theta$	10	12	16	23	23	21	26	32	24	33	37	33	43	48	41	54	63	50	62	70	E* ${ }^{3}$
V.G. ${ }^{\text {a }}$	${ }^{8}{ }^{\text {d }}$	$34^{\circ}$	$35^{6}$	39	$43^{6}$	44	43	46	48	37	4	46	48	53	57	53	63	66	42	49	52	56	63	67	65	10	70	v.G.*

TWIN-TRIODE TYPES: 6A6.6N7.53 (ONE TRIODE UNIT)

Etb ${ }^{1}$	90									180									300									Eto ${ }^{2}$
$\frac{R_{L}}{R_{G}{ }^{2}}$		0.1			0.25			0.5			0.1			0.23			0.5			0.1			0.25			0.5		R RL
Rg ${ }^{\text {R }}$	0.1	0.23	0.5	0.25	0.5	0	0.5	1	2	0.1	0.25	0.5	0.25	0.5	1	0.5	1	2	0.1	0.25	0.5	0.33	0.5	1	0.5	1	2	$\mathrm{Rg}^{2}$
$R_{c}{ }^{*}$ $C$	1900 0.025	2250 0.01	2500 0.006	4050 0.01	4950 0.006	5400 0.003	7000	${ }^{8500}$	9650	1300	1700	1950	2950	3800	4300	5250	6600	1650	1150	1500	1750	2350	3400	4000	4850	6100	1150	Re
E. ${ }^{\text {a }}$	${ }^{13}$	19	20	${ }^{16}$	0.006 20	0.003 24	${ }_{0}^{0.006}$	0.003 23	0.0015 26	0.03 35	0.015	0.007 50	0.015 20	0.007 50	0.0035 57	0.007	0.0035 54	0.002 61	0.03	0.015	0.007	0.015	0.0055	0.003	0.0055	0.003	0.0015	
v.G.4	16	19	20	20	22	23	22	23	23	19	21	22	23	50 24	51 24	24	54 29	61 25	60 20	23 22	86 23	75 23	97 24	100 24	76 23	94 24	104 24	E. ${ }_{\text {E. }}{ }^{4}$

TWIN-TRIODE TYPE 79 (ONE TRIODE UNIT)

Ebt ${ }^{1}$	90									180									300									Ebt ${ }^{1}$
RL		0.1			0.35			0.5			0.1			0.23			0.5			0.1			0.25			0.5		Rt
Rgs ${ }^{\text {R }}$	0.1	0.23 2200	0.5	0.25	0.5	650	0.5	1	300	0.1	0.25	0.5	0.25	0.5	1	0.5	1	2	0.1	0.25	0.5	0.25	0.5	1	0.5	1	2	$\mathrm{Rg}_{\mathrm{g}}{ }^{2}$
Rc ${ }_{\text {c }}$	2050 0.04	2200 0.015	2350	4000	4250	4650	6150	6850	7300	1050	1850	1350	2050	2450	2750	3450	4100	4650	800	1000	1100	1650	2050	2350	2850	3600	4450	Rc
C ${ }_{\text {c }}{ }^{\text {a }}$	0.04 5.8	0.015	0.009 9.5	0.015 7.1	0.006 9.7	0.004 12	0.006	0.004 12	0.002 15	0.04 21	0.02 27	0.009 31	${ }^{0.02}$	0.01 34	0.005 40	0.009	0.0035	0.002	0.03	0.01	0.006	0.01	0.0055	0.003	0.0055	0.003	0.0015	c
v.G. ${ }^{4}$	$23^{\circ}$	$29{ }^{\text {c }}$	29	$31{ }^{\text {c }}$	33	35	34	38	40	27	31	34	37	34 41	4	40	${ }_{4} 3$	4	40	37 34	60 36	36 39	66	17 4	61	15 46	82	

TRIODE TYPES: 56,76

Ebb ${ }^{2}$	90									180									300									$\begin{array}{\|l\|} \hline \text { Ebos } \\ \hline \mathrm{RL} \\ \hline \end{array}$
RL	0.05			0.1			0.25			0.05			0.1			0.25			0.05			0.1			0.25			
Rg	0.05	0.1	0.25	0.1	0.25	0.5	0.25	0.5	1	0.05	0.1	0.25	0.1	0:23	0.5	0.25	0.5	1	0.05	0.1	0.25	0.1	0.25	0.5	0.25	0.5	1	$\mathrm{Rg}^{8}$
Re	2500	3200	3800	4500	6500	7500	11100	15100	18300	2400	3000	3700	4500	6500	7600	10700	14700	17700	2400	3100	3800	4500	6400	7500	11100	15200	18300	$\mathrm{Rc}_{6}$
Cc	2	1.6	1.25	1.05	0.82	0.68	0.48	0.36	0.32	2.5	1.9	1.65	1.45	0.97	0.0	0.6	0.45	0.4	2.8	2.2	1.8	1.6	1.2	0.98	0.69	0.5	0.4	$\mathrm{C}_{6}$
c	0.06	0.03	0.015	0.03	0.015	0.007	0.015	0.007	0.0035	0.06	0.035	0.015	0.035	0.015	0.008	0.015	0.007	0.0045	0.08	0.045	0.02	0.04	0.02	0.009	0.02	0.009	0.005	c
E 0	16	21	23	19	23	25	21	24	28	36	48	55	45	55	57	49	59	64	65	80	95	7	95	104	02	96	108	$\mathrm{E}_{0}{ }^{\text {b }}$
V.G.4	7	7.7	0.1	- 1	8.9	9.3	9.4	9.7	9.8	7.7	8.2	9	9.3	9.5	9.8	9.7	10	10	8.3	8.9	9.4	9.5	10	10	10	10	10	v.G. ${ }^{\text {a }}$

${ }^{2}$ voltage at plate equals plato-supply voltage minus voltage drop in RL and Rc. For ot hor zupply voltages differ-
 multiplied by
${ }^{2}$ for following stage isee Circuit Diagrans pages 286-287).

- see notes uncor twin-tridoe diagram
${ }^{3}$ voltage ecross $R g$ ot grid-current point.
Voltage Gain et 5 volts lemsl output unfess index letter indicates otherwise. $\begin{array}{ll}\text { bit } 2 \text { volts (fus) output. } & \text { at } 3 \text { volts (Rms) output. }\end{array}$ on page 287.


## Audio Degeneration

MUCH has been written and published concerning the merits of degeneration in audio amplifiers but the use of these circuits has been confined to a relatively few applications. The data contained herein shows operating characteristics of typical output systems using degeneration. The circuits are such as can be used in the small household and automobile receiver without incurring too much additional cost. Charts are included with which degeneration calculations are facilitated.

In general it is now well known that the results of degeneration are:

1. Power output and efficiency remain constant.
2. Distortion is decreased.
3. Much improvement in frequency response results.
4. The signal voltage with degeneration is usually several times that required without degeneration.
5. "Fuzz Frequencies" that result from transients developed in the voice coil circuit as a result of mechanical resonance or shock excitation are minimized.

Inasmuch as power tubes of the beam-power variety, having high power output and efficiency with low distortion, are now available, the practical results of degeneration are:

1. Increase in frequency response.
2. Reduction of transients and "fuzz frequencies."

These two characteristics are highly desirable and in most cases can be obtained with the addition of one resistor and one condenser. The results of degeneration are easily calculable and the overall improvement in quality and resulting selling features more than offset the additional costs.

Although feedback either in the positive or negative sense is not new to the radio industry, the general effects of using negative feedback in audio amplifiers have not been fully appreciated.

Negative feedback can be obtained in a number of ways and consists of the feeding back a part of the output voltage to the input so that it is out of phase with the input signal. The feedback path may be such as to include several tubes in the circuit but is usually confined to one or two tubes. This is done because with a number of tubes in the path, the small phase shifts encountered in coupling circuits are accumulative and may be of sufficient magnitude to shift the phase of the voltage fed back so that it will be in phase with the signal instead of out of phase. If the magnitude of the voltage fed back is great enough and is in plase with the signal, oscillation will be experienced. With negative feedback applied on only one or two stages the phase shift is usually small and large values of voltage may be fed back without difficulty.

Figures 1 to 4 inclusive show methods of obtaining negative feedback in single and push-pull circuits.

Figure 1 is a basic circuit that illustrates simply how feedback is obtained. This particular circuit is not practical for most applications because of the prohibitive cost of the isolation transformer. The feedback


$$
K=\frac{R_{1}}{R_{1}+R_{2}}
$$

Figure 1
voltage developed across $\mathrm{R}_{1}$ is fed back in series with the grid. The voltage fed back is $\frac{\mathrm{R}_{1}}{\mathrm{R}_{1}+\mathrm{R}_{2}}$ eo. In the
discussion to follow the factor $k$ will be introduced and will represent the ratio of the voltage fed back to
the total output voltage eo. In this case $K=\frac{\mathbf{R}_{\mathbf{1}}}{\mathbf{R}_{\mathbf{1}}+\mathbf{R}_{\mathbf{2}}}$.
An analysis of this circuit will show that the voltage in the output load is out of phase with the signal voltage and that if part of the output is added to the signal as shown, degeneration results.

The circuit of Figure 2 shows another method of obtaining negative feedback. Degeneration results from the fact that the voltages developed in the cathode resistor are out of phase with the signal and if the cathode by-pass condenser is omitted, these voltages appear on the grid. A disadvantage of this circuit lies in that the impedance effected by the tube in shunt with the primary of the transformer is greater than the $\mathrm{R}_{p}$ of the tube, whereas with the circuit of Figure 1 , the impedance is very much lower than the $\mathrm{R}_{\mathrm{p}}$. This type of degeneration, however, will lower the distortion generated within the tube.


Figure 2

The circuit of Figure 3 is recommended for resistance coupled input systems. The value of K is readily calculable and is approximately

$$
K=\frac{\mathrm{R}_{1} \mathbf{R}_{p}}{\mathrm{R}_{1} \mathrm{R}_{p}+\mathrm{R}_{1} \mathrm{R}_{2}+\mathrm{R}_{2} \mathrm{R}_{p}}
$$

This circuit has been used satisfactorily with both pentode and triode drivers, the former proving superior because with the high $R_{p}$ of the pentode the value of resistor $\mathrm{R}_{2}$ may be kept high thus minimizing the shunting effect of the network on the driver tube.


Figure 4 shows a typical push-pull output system with degeneration. The double-secondary input trans-
former is commonly used for this type of service and thus does not represent much of an additional cost.


Figure 4
Degeneration may be used for the reduction of distortion but in most cases it is used to improve the frequency response and to dampen the speaker by lowering the effective impedance in shunt with the primary of the output transformer. In the latter case the circuit engineer usually has a fixed value of shunting impedance that is optimum or he may know shunting impedance that is optimum or he may know
through experience that certain low $R_{p}$ tubes produce through experience that certain low $\mathrm{R} p$ tubes produce
satisfactory damping. Given the shunting impedance it is then desirable to have an equation with which to calculate K or the ratio of voltage fed back to the total output voltage. It can be shown that for any tube

$$
* \mathrm{~K}=\frac{1}{\mathrm{~S}_{m} Z_{p}}-\frac{1}{\mu}
$$

Where $S_{m}=$ Mutual conductance.

$$
\begin{aligned}
Z_{p} & =\text { Shunting impedance desired. } \\
\mu & =\text { Amplification factor. }
\end{aligned}
$$

For high plate resistance tubes such as pentodes and beam-power amplifiers this equation becomes

$$
\mathbf{K}=\frac{1}{\mathbf{S}_{m} \mathbf{Z}_{p}}
$$

With K calculated for the desired shunting impedance it follows that the ratio of the new signal voltage to the signal voltage with degeneration is

$$
\frac{e_{1}}{e_{g}}=1+K \mu^{\prime}
$$

Where

$$
\begin{aligned}
& \mathbf{e}_{\mathbf{1}}=\begin{array}{r}
\text { Signal for full output with degenera- } \\
\text { tion. }
\end{array} \\
& \mathbf{e}_{\mathbf{g}}=\begin{array}{c}
\text { Signal for full output without degen- } \\
\quad \text { eration. }
\end{array} \\
& \mathbf{K}=\text { As previously defined. } \\
& \boldsymbol{\mu}^{\prime}=\text { Voltage amplification. }
\end{aligned}
$$

Since $\mu^{\prime}$ can be determined from manufacturers' published conditions the equations given can be used to calculate driver requirements.

It is interesting to consider the limiting cases for $K$ in the equation

$$
K=\frac{1}{S_{m} Z_{p}}-\frac{1}{\mu}
$$

With no degeneration

$$
\begin{aligned}
& K=0 \text { and } Z_{p}=\frac{\mu}{S_{m}} \\
& Z_{p}=R_{p}
\end{aligned}
$$

With the maximum value of degeneration, $K=1$

$$
z_{p}=\frac{\mathrm{R}_{p}}{1+\mu}
$$

Since $\mu \gg 1 Z_{p}=\frac{\mathrm{R}_{p}}{\mu}=\frac{1}{\mathrm{~S}_{m}}$
The equation for $Z_{p}$ in terms of $S_{m}$ and $K$ and the equation for $e_{1} / \mathrm{eg}$ in terms of K and $\mu^{\prime}$ are plotted on page 292. These charts should facilitate calculations on degenerative stages. $\mu^{\prime}$ on the bottom chart
*Refer to Appendix I
**Refer to Appendix II

Audio Amplifier Design and Use
is obtained from published ratings and characteristics on output tubes. The rated load resistance and power output are used to calculate the RMS output voltage. The ratio of the peak output voltage to the bias is assumed to be the gain or $\mu^{\prime}$.

Many circuit designers like to make calculations of performance from published plate current families. To those familiar with this type of calculation the following method of converting pentode or tetrode plate current families to a new composite family in terms of peak signal volts will be especially attractive. Referring to Figure 9, the plate current fanily is that of the beam-power type 6 V 6 . This family when converted using a value for $K$ of, 1 , looks like the triode family in Figure 10 on gage 293, with which power output and distortion may be calculated.

Conventional plate current families are measured by varying the plate voltage and reading plate current. The grid bias and screen voltage are held constant. With degeneration a composite characteristic can be developed if when running any bias curve the bias will be increased or decreased with the plate voltage. The bias change will be equal to the factor K times the plate voltage change.

Assume a K of .1. The operating point on the 6 V 6 curve is with $\mathrm{E}_{c I}=-12.5$ and $\mathrm{E}_{b}=250$. This point is indicated as $Q$ on both the tetrode and the converted family shown in Figure 10, page 293. Individual curves on the tetrode family are marked showing the value of bias. On the converted family it is more convenient to mark the curves in terms of the peak signal volts using the operating bias of -12.5 as zero. The point R on the tetrode curve is on the $\mathrm{E}_{a c}=0$ curve because the plate voltage has been changed in the negative direction by 25 volts. An increase in bias of 2.5 volts must result and the new joint is then at the intersection of the $\mathrm{E}_{C 1}=-15$ curve and the $\mathrm{E} b=225$ plate voltage line. Similar points are developed by ncreasing the bias .1 of the plate voltage change. Points $R, S$, and $T$ are indicated on both families.

The complete plate current family shown in Figure 10, on page 293, was developed in this manner. The curves are similar to those of a triode having a mutual conductance of 4200 micro-mhos, an amplification factor of 10.5 and a plate resistance of 2500 ohns. These values are all measured at the operating point. An analysis of the family shows that the individual lines are equally spaced. Although the curves are similar to a triode they have characteristics peculiar to a converted tetrode family. It will be noted that all lines are drawn to the static value of $\mathrm{F}_{\mathrm{Cl}}=\mathbf{0}$. These plate current lines are all terminated because this line represents the start of grid current. Operation on any load line drawn through " $Q$ " must be restricted to values of signal within the zero-bias line. This indicates that the optimum load insofar as maximum power output is concerned is the same with or without degeneration. The values of AC grid swing corresponding to $+12.5,+17.5$ and so forth are in a region that would be in positive grid regionst on a conventional triode family. Thus it can be said that triode characteristics are obtained with pentode efficiency because of the increased grid swing in the normally positive grid direction.

These data suggest the possibility of matching the the internal impedance of the output tube to the load resistance with which maximum power output is obained. Under these conditions best performance will result. Using this suggestion most pentodes should be degenerated so that the inmedance looking back into the tube will be approximately 7000 ohms. Beampower tubes such as the 6 V 6 should be degenerated so that their imjedance will be apjroximately 5000 ohms. These values should be sufficiently low to insure adequate damping of the speaker voice coil.

The curves in Figures 11 and 12 show power output versus load resistance, for several values of signal voltage as measured on a type 6 V 6 with and without degeneration. The curves in Figure 11 are without degeneration and those in Figure 12 with degeneraton. These data are useful in the following manner Most speakers offer a resistive load to an output tube at only one frequency. At higher frequencies the reflected load is an inductive reactance whose value increases with frequency. Thus an output tube op erates into a variable load and to anticipate its oper ation characteristics the power output versus load resistance characteristics should be studied. The 6 V 6 if operated at the rated load of 5000 ohms as shown in Figure I 1, will have a rising bower output versus frequency characteristic. This type of output tube will therefore accentuate high frequencies. This ac-


Figere 7


Figuta 8



Figiree 10


Figure 11

counts for the apparent "brilliancy" of most pentode and tetrode output systems. The curves in Figure 12 are those of a 6 V 6 degenerated so that the impedance looking back into the tube is approximately 500 ohms. It can be seen that the power output versus load resistance curve is essentially flat for medium values of signal voltage. With this connection the frequency characteristic will be excellent and overall performance improved.

The use of more degeneration, that is, a higher value of $K$, is illustrated by the curve in Figure 13 page 294 . The power output maximizes at a load resistance of approximately 2000 olims. Using this value of deseneration and a load resistance of approximately 5000 ohms the amplifier would be given a rising characteristic at the low frequency end of the audio spectrum.

The distortion characteristics of the 6V6 with degeneration and without degeneration are shown in Figures 1.4 and 15 on page $2!4$. A study of these curves shows that, in general, with higher values of $K$ the distortion is nuch lower. For example. the third harmonic with a load resistance of 5000 ohms is, $4.5 \%$ with $\mathrm{K}=0,3.3 \%$ with $\mathrm{K}=.04$, and $2.4 \%$ with $\mathrm{K}=.1$. The slope of the third harmonic curve with increase in load resistance is also very much reduced. The second harmonic curve minimizes (as would be expected) at the same value of load resistance for each value of K . This results from the fact that the operation is restricted within the regions of negative instantaneous grid voltage. It should be noted that the signal voltage for each of these curves is adjusted for the start of erid current. This accounts for the non-linearity of the power output versus load resistance curve.

Two typical circuit diagrams slowing the use of a single output tube with degeneration driven with a resistance-coupled driver are given on page 295. The circuit in Figure 17 on page 295 illustrates the use of the diode-pent ode driver. The full-out put characteristics with and without degeneration are tabulated just under the circuit. It can be seen that with degeneration the distortion values are substantially reduced. With the value of $K$ indicated the impedance in shunt with the output transformer has been reduced from 52,000 olims, approxinuately, to 2,000 ohms, approximately. Values of K intermediate to these two will give slightly different distortion values and a shunt impedance as calculated with the chart (Figure 7) on page 202.

The circuit in Figure 18 shows the use of the 607 as a driver. With this system little is gained insofar as the reduction of distortion is concerned because of the distortion resulting from the increased signal to the 6Q7. However, the reduction of the shunting impedance from 52,000 to 2,000 should merit its use. The signal voltage of 0.650 RMS should be easily obtained in most applications. With values of K somewhat smaller than . 1 the driver distortion should be low enough that the overall harmonic content will be less than obtained with no degeneration.

APPENDIX I
Assume the case of a tube working into a speaker load, The transformer has unity coupling witl the primary turns equal to the secondary turns. The grid is returned to the tap at $R_{1}$ and $K$ is $R_{1} /\left(R_{1}+R_{2}\right)$.


Figure 5
$R_{L}$ is the voice coil impedance. $e$ is an e.m.f. developed in the voice coil.

This circuit can he simplified to:


Audio Amplifier Design and Use
$\mathrm{R}_{1}$ and $\mathrm{R}_{2}$ are made sufficiently high that they dissipate negligible power and the current through $R_{1}$ and $\mathrm{R}_{2}$ can then be neglected.

$$
K=\frac{R_{1}}{R_{1}+R_{2}} \text { and } K=\frac{e_{2}}{e^{\prime}}
$$

Where:

$$
e^{\prime}=e-i R_{L}
$$

$$
i=\frac{e^{\prime}+\mu e_{z}}{R_{p}}
$$

$$
\begin{aligned}
& Z_{p}=\frac{e^{\prime}}{i} \\
& Z_{p}=\frac{e^{\prime} R_{p}}{e^{\prime}+\mu e_{2}}
\end{aligned}
$$

$$
\text { Since } \mathbf{e}_{2}=\mathrm{K}^{\prime} \mathrm{e}^{\prime}
$$

$$
\mathrm{Z}_{p}=\frac{\mathrm{e}^{\prime} \mathrm{R}_{p}}{\mathrm{e}^{\prime}+\mathrm{e}^{\prime} \mathrm{K}_{\mu}^{\prime}}
$$

or

$$
Z_{p}=\frac{R_{p}}{1+K_{\mu}}
$$

or

$$
\mathrm{K}=\frac{\mathrm{R}_{p}}{\mu \mathrm{Z}_{p}}-\frac{1}{\mu}
$$

$$
K=\frac{1}{S_{m} Z_{p}}-\frac{1}{\mu}
$$

For pentodes or tetrodes

$$
K=\frac{1}{S_{m} Z_{p}}
$$

Note: In the above equations
$\mathrm{R}_{\boldsymbol{p}}=$ Plate Resistance.
$\mu=$ Amplification Factor.
$\mathrm{S}_{m}=$ Mutual Conductance.

## APPENDIX II

The equivalent circuit is similar to the circuit used for calculating $Z_{j}$.


As before the transformer is assumed to have unity coupling with $T_{p}$ equal to $T_{s}$. $e_{1}$ is the input signal and $e_{g}$ the effective grid signal.

$$
\mathrm{K}=\frac{\mathrm{R}_{1}}{\mathrm{R}_{\mathrm{t}}+\mathrm{R}_{2}}=\frac{\mathrm{c}_{2}}{\mathrm{c}_{0}}
$$

Then

$$
c_{1}=c_{g}+c_{2}
$$

Since $\mathrm{e}_{2}=\mathrm{Ke}_{O}=\mathrm{K}^{\prime} \mu^{\prime} \mathrm{e}_{\mathrm{g}}$
$\mathrm{et}=\mathrm{eg}+\mathrm{K} \mu^{\prime} \mathrm{eg}_{\mathrm{g}}$
$\mathrm{e}_{1}=\mathrm{e}_{\mathrm{g}}\left(1+\mathrm{K}^{\prime} \mu^{\prime}\right)$
$\frac{\mathrm{e}_{1}}{\mathrm{e}_{\mathrm{g}}}=1+\mathrm{K}^{\prime} \mu^{\prime}$
Note: In the above equations $\mu^{\prime}=$ voltage amplification of the tube.



Figure 16


Figure 17


## AMPLIFIER CLASSIFICATIONS

Vacuum tubes are operated under varyingconditions of bias, grid drive, and load resistance. These various operating conditions are conveniently classified in the following manner:

## CLASS A AMPLIFIER

An amplifier in which the grid bias and the exciting grid voltage are such that the plate current through the tube flows at all times.
The ideal Class A amplifier is one in which the alternating component of the plate current is an exact reproduction of the form of the alternating grid voltage, and the plate current flows during the 360 elec trical degrees of the cycle.
The characteristics of a Class A amplifier are low efficiency and output.

## CLASS AB AMPLIFIER

An amplifier in which the grid bias and the exciting grid voltage are such that the plate current flows during appreciably more than 180 electrical degrees but less than 360 electrical degrees of the cycle. This has been called Class "A prime."

A Class AB amplifier stage operates under conditions intermediate between Class A and Class B. The grid bias is fixed at a value between that for Class A operation and cut-off and plate current flows in each plate circuit for less than one complete cycle but for more than one half-cycle of the signal voltage. If the normal maximum peak value of the signal voltage does not exceed the grid bias and no grid current flows during any part of the input cycle, the amplifier may be designated as Class AB1. If grid current flows during any portion of the input cycle the amplifier may be designated as Class AB2. The characteristics of power output, plate current, plate efficiency and plate current fluctuations with signal and driving power are intermediate between those of Class A and Class B operation. The idle plate current and attendant dissipation may be made substantially less than is possible with Class A amplifiers.

## CLASS B AMPLIFIER

An amplifier in which the grid bias is approximately equal to the cut-off value so that the plate current is approximately zero when no exciting grid voltage is applied, and so that the plate current in each tube flows during approximately one-half of each cycle when an exciting grid voltage is present.
The ideal Class B amplifier is one in which the alternating component of plate current is an exact replica of the alternating grid voltage for the half cycle when the grid is positive with respect to the bias voltage. and the plate current flows during 180 electrical degrees of the cycle.

The characteristics of a Class B amplifier are medium efficiency and output.

## CLASS BC AMPLIFIER

An amplifier in which the grid bias and the exciting grid voltage are such that the plate current flows during less than 180 electrical degrees but yet for a considerable part of the cycle.

The characteristics of a Class BC amplifier are efficiency and output intermediate to those of a Class B and a Class C amplifier. Class BC amplifiers are not in general use.

## CLASS C AMPLIFIER

An amplifier in which the grid bias is appreciably beyond the cut-off so that the plate current in each tube is zero when no exciting grid voltage is present, and so that the plate current flows in each tube for appreciably less than one-half of each cycle when an exciting grid voltage is present.

Class C amplifiers find application where high platecircuit efficiency is a paramount requirement and where departures from linearity between input and output are permissible. Class C amplifiers are primarily used for RF applications.

The characteristics of a Class C amplifier are high plate-circuit efficiency and high power output.

# Audio Frequency Distribution Systems 

THERE are but few phases of radio which have as little written matter available as the problems of audiof requency distribution. By "audiof requency distribution" we mean the factors involved in the installation of multi-speaker systems, the control of audio levels on such speakers and associated lines, the general considerations of impedance matching and the effects of various mismatches on distortion and power transfer. It is the purpose of this article to give a clear understanding not only of these terms and what they signify but also the general method of procedure in solving the various problems with which these factors are associated.

The chief source of audio frequency power is obtained by the use of power amplifier vacuum tubes. Common types of power tubes are triodes, pentodes and beam tubes. Two power tubes connected in pushpull or four tubes connected in a paralleI push-pull arrangement are often used where considerable power is required. The plate voltage of a power tube must have, as nearly as possible, the same wave form as the voltage driving its grid, and this must be true over the entire audio frequency sjectrum. The wave form requirement is necessary in order that the amplifier may do its part in supplying to the listener, a true reproduction of sounds made in the studio or from a recording, without distortion. Of course, the amplifier alone cannot prevent distortion. Any jart of the system is a possible source of distortion and it is, therefore, necessary that every part of the equipment from the studio or recording room through the loud speaker be free of distortion.

A tube supplying nower, therefore, has more rigid requirements than a 60 cycle generator and, in addition to this, the tube has a large internal (plate) intpedance compared to that of a power generator and is more critical to load impedance. In fact, for any one particular set of conditions a tube can operate for optimum perfornance into one certain load resistance only. It is possible to get fair results with loads varying from one-laalf to twice the rated value but best results are obtained if rated loads are used.

The rated, or optimum, load resistance for any tube is determined by the grid, plate and screen voltages if any, and the tube's construction. All leading tube manufacturers publish recommended conditions of operations for every type of tube which they make. and these should be followed as closely as possible. It is, of course, possible to operate tubes under a large number of conditions with good results but, unless the reader is familiar enough with tube characteristic curves to determine desired operating regions from them or has suitable equipment for measuring harmonic distortion (harmonic analyzer) and power output, the best results will be obtained by using the recommended values.

Best results are obtained if a tube operates into a pure resistance load and all values given in a tube data book assume this condition. This, however, is never completely attained in actual practice as the transformer or choke supplying DC current to the plate of the tube has an inipedance which, although it may be very large compared to the total plate load, still contributes a certain reactive load on the tube This will be discussed further under "Transformers."

In most cases triodes and beam thibes require a relatively low plate load resistance; pentodes require a relatively high plate load. Low powertubes, especially battery-operated tubes, work best with comparatively high plate loads, even up to 20,000 ohms in some cases.

The optimum load resistance is that value which results in maximum output power with only a certain maximum allowable total distortion of approximately five percent for most tubes. If the plate load resistance is other than optimum, either increased distortion or decreased power will result. If the power tube is badly mismatched, it may not "be possible to obtain any power without considerable distortion.

## LOUD SPEAKERS

The ultimate purpose of all audio frequency equipment is to produce motion in air near the listener which will give him the same sensation as if he were in the studio listening to the program. It is, therefore, necessary to have aparatus which will change this audio frequency power back into the original sound. This sound, originating in the studio, is picked up by a microphone, amplified and perhaps transformed in many ways until it is finally converted to audio frequency power at the receiver. Such a unit, called a Ioud speaker, may take one of several forms. Speakers which have been commonly used are diaphragm or headphone, magnetic, inductor, dynamic and horn types. The most commonly used speakers at present are of the dy'namic or horn types. Many other types have been experimented with but seldom, if ever, used.
The diaphragm type of speaker consists essentially of a thin diaphragm held at right angles to a permanent magnet or electromagnet, as shown in Figure 1.


Figure I
This diaphragnı vibrates in response to electrical currents flowing through the coils which are wound around the magnet. The vibrations of the diaphragm are comunicated through the air to the listener by wave notion set up in the air. The action which occurs is briefly as follows: The magnetic circuit is completed through the magnetic diaphragm so that any variattions in the current throush the winding will either attract or repel the diaphragm. If no permanent masnet were present, the diaphragm would vibrate at every impulse or double the frequency of the signal. In other words, it would be attracted whenever the current in the coils is at maximum, which occurs twice during every cycle of the signal. In order to prevent this distortion a permanent magnet or, in some cases, an electromagnet is introduced. The amount of distortion decreases as the magnet is made more powerful.


Figure :
The lever type of speaker, shown in Figure 2, consists essentially of a flat reed suspended similarly to a cantilever, one end-of which is held a short distince from the pole pieces of the magnet. This reed is con-
nected to a cone type diaphragm. When a signal current flows through the coils, the magnetic field in the air gap between the reed and the pole faces fluctuates correspondingly. Since the attractive force on the reed depends upon the strength of the field and since the strength of the field varies according to the signal in the coils, the reed will vibrate and drive the cone.

The inductor type of loud speaker operates essentially on the same principle as the lever type except that the attractive force of the magnet operates on at section of a piston arrangement which is located in the air gap of the magnet.

The inductor, lever and diaphragm types of speakers in general have impedances of from 72 to $\mathbf{1 5 , 0 0 0}$ ohms. When connecting a number of these types of speakers, they should be so arranged that the load they present to the output stage is that recommended by the tube manufacturer. Blocking condensers and a shunt feed choke should be used to keep the DC plate current out of the speaker system. If this is impossible a transformer should be inserted so as to present the proper load to the amplifier. If individual volume control is required at each speaker, instructions for connecting "an "L" pad are given in the section on "H," "L.," and "T" pads later in this article.
The moving coil dynamic speaker is not by any means a new device since it was first suggested by Sir Oliver Lodge in 1808. Approximately $90 \%$ of all receivers manufactured at present use this type of speaker. A sectional view is shown in Figure 3


Figure: 3

A coil of wire is wound on a hollow circular form which in turn is attached to the paper cone. The coil is so placed in the magnetic field in the permanent magnet or electromagnet that the magnetic lines of force pass through it in traversing the air gap from the outer pole to the central pole. When a signal current flows through the coil, the resulting magnetic field causes it to nove either in or out, according to the direction of the current flow.

Moving coil speakers are essentially low impedance devices having voice cuil impedance in most cases of from 1.5 to 15 ohms.
Commercial horn type speakers consist of a diaphragin at the base of a horn driven by accill moving in a magnetic field similar to a dynamic speaker. The diaphragm throat and horn of the speaker may be designed to give good frecuency response with an efficiency approximately ten times that of the dynamic speaker. They are usually used in theaters and large public address systems where space is available. Horn speaker size makes it unsatisfactory for radio receivers.
The impedance of loud speakers varies with frequency and, therefore, a tube amplifier cannot be matched perfectly to a loud speaker at all audio frequencies by a simple transformer. Since a tube will operate into impedances slightly lower or higher than optimum without scrious distortion, and since the commonly used moving coil speakers have less impedance change with frequency than other types, the situation is not as serious as it might be. If a magnetic type of speaker is used or if the best possible performance is desired from a moving coil speaker, an equalizing net work connected across the plate of the output tube may be used. The value of this compensating network is determined by the load impedance of the tube and the characteristics of the loud sjeaker. A method of checking the loud speaker impedance will be explained under "Measurements." The equalizer network slould be chosen to keep this impedance constant.
The impedance of a moving coil speaker is usually measured at 400 cycles for matching purposes and at this frequency the load is practically resistive. A rough approximation can be made by measuring the DC resistance of the voice coil with a bridge or ohmmeter and multiplying this value by 1.5 .

The impedance of a speaker is a combination of clectrical and acoustical components and depends upon the motion of the diaphragm, the way in which he diaphragm vibrates, that is, as a unit or in segments, the cabinet in which the speaker is mounted and other factors. The value of the impedance increases steadily with increasing frequency, and at the low frequency resonance point of the speaker rises sharply in the region of 50 to 150 cy cles, depending on the size and construction of the speaker.
The effect of the tube upon the speaker is not nearly so serious as the speaker upon the tube, but it is not entirely negligible. If we consider a speaker driven by one short impulse from power supplied to the voice coil, it is evident there will be a tendency for the cone to move after the driving power has stopped due to the inertia of the cone. This inertia of the cone actually generates energy which is dissipated back through the plate circuit of the tube. Therefore, the lower the impedance of the power amplifier plate, the greater will be the load on the voice coil, and the sooner the vibration of the cone will be damped out. If the cone vibrations are damped out quickly, the speaker output will sound clear and crisp, but if a very high plate impedance allows cone vibrations to die down slowly after the driving force is removed the extraneous sound produced by the speaker will affect the signal which is being supplied to it. This effect is a function of the speaker design as well as the internal plate impedance of the power tube.

## TRANSFORMERS

Having decided upon the 400 cycle impedance of the speaker to be driven by a given power tube, it is evident that something must be done to make the few ohms of the speaker look like several thousand (2000 to 20,000 ohms) to the tube. The device which changes audio nower from one impedance to another is called a transformer. It consists of a laminated iron core which forms the common path for the magnetic flux. The magnetic flux, in turn, links two windings, one called the primary and the other the secondary.

If we assume an ideal transformer, then the following conditions exist:

$$
\frac{E_{1}}{E_{2}}=\frac{N_{1}}{N_{2}}=\frac{1_{2}}{l_{1}}
$$

where
$\mathrm{E}_{1}=$ Primary voltage $\mathrm{E}_{2}=$ Secondary voltage
$N_{1}=$ Primary turns $\quad N_{2}=$ Secondary turns
$I_{1}=$ Primary curront $\quad I_{2}=$ Secondary current
then it is also true that

$$
\frac{R_{1}}{R_{2}}=\left(\frac{N_{1}}{N_{2}}\right)^{2}
$$

where
$R_{2}=$ Resistance load across the secondary
$R_{1}=$ Resistance across the primary which has the same effect as load $R_{2}$ across the secondary.

The transformer ratio can then be determined when the impedances between it must work, are known. For example, suppose it is required to match a 5 ohm speaker to a tube with a recommended plate load of 7000 olims. Then


It is also necessary to know the primary reactance of the transformer in order to tell how it will perform in the circuit in which it is to be used. Calculation of the primary reactance is rather difficult since it is a function of the size and characteristic of the iron used, the air gap in the iron (if any), the number of primary turns, and the direct current flowing in the primary (if any). The effect of direct current cancels in the primary of a push-pull output transformer. Primary reactance can best be measured as explained in the section entitled "Measurements." Primary reactance should be approximately three times the matching load resistance for pentode and beam tubes and approximately twice the internal plate resistance for triodes at the lowest frequency to be amplified. A low primary reactance tends to shunt the plate load, thus wasting power and reducing the power output especially at low frequencies. It also increases distortion because the tube is not working into its optimum resistive load.

Not all of the flux in a transformer links both primary and secondary windings. Flux which links only one of the windings is called leakage reactance. There is also a certain capacity between layers of winding and between winding and core. A series of these small capacities forms an effective shunt capacity across capacities forms an effective shunt capaci

The leakage reactance and distributed capacity resonate at some frequency which determines the upper limit of frequency at which the transformer will work efficiently. At higher frequencies than this the response falls off. A method of determining the point at which high frequency amplification is reduced will be explained later.
It is also necessary to know the power handling capacity of a transformer to apply it correctly. This means that the primary and secondary wire size must be large enough to carry the primary and secondary currents without overheating. The currents can be estimated from the power to be transformed and the input and output impedances. If, for instance, 5 volts is to be delivered to a resistor of two ohms which has been substituted for a voice coil of that impedance, a current must fow equal to

$$
\mathrm{I}=\mathrm{k} \sqrt{\frac{\mathrm{~W}}{\mathrm{R}}}
$$

where $I=$ Currents in amperes

## $\mathrm{w}=$ Power in watts

$\mathrm{K}=$ Resistor replacing voice coil
$K=$ For ordinary dynamic speaker $K=1.5$
or

$$
1=\sqrt{\frac{5}{2}} \times 1 . \overline{5}=2.4 \text { amperes for above } \text { case. }
$$

The primary current can then be determined by multiplying the value found above by the turns ratio. It is general practice to use a wire size which has approximately 500 circular mils per ampere, but it is preferable to use a wire having 1000 circular mils per ampere if possible. The iron in the transformer may be overloaded due to saturation caused by high current and resulting in distortion. The saturation of the iron occurs most readily at low frequencies and may be determined by checking the wave form of the secondary as a variable 60 cycle voltage is applied to the primary: As the voltage is increased, the point at which distortion begins can readily be noted.

The last, but not least, thing to be considered in the choice of a transformer is efficiency: Possibly, the fact that a transformer is generally considered to have high efficiency has led to the use of small output transformers which have efficiencies as low as $50 \%$. In order to have good efficiency the resistance of the primary and secondary windings and the losses in the iron must be small. An approximate estimate of transformer efficiency should be made under the conditions of actual use. First, apply a constant known signal to the grid of the input tube at 400 cycles ; second, measure the voltage across the secondary loaded by a resistor equal to $.82 \times$ the voice coil impedance; third. calculate the out put power from the formula

$$
\mathrm{W}=\frac{\mathrm{F}}{\mathrm{R}}
$$

where
$\mathrm{W}=$ Output in watt.
$\mathrm{E}=$ Voltage across the roice coil
$\mathrm{R}=$ Secondary load resistor $=.82 \times$ voice coil resistance
and fourth, replace the transformer in the plate of the tube by . $82 \times$ voice coil impedance choke of high inductance and low resistance. Two or more chokes may be used in series if necessary but the resistance should be such that the DC voltage measured at the plate of the power tube is the same as it was with the transformer; fifth, connect a resistance in parallel with the choke or chokes having the value recommended by the tube manufacturer for plate load at the particular conditions of operation; sixth, measure the DC voltage across the load resistance with a vacuum tube voltmeter or other high resistance meter; seventh, calculate the power input to the transformer from the same formula as used for the secondary except use the plate load resistance for " R " and the voltage across plate load resistance for " $R$. $E$." The cfficiency may' then be easily" calculated:

## Efficime: $=\frac{\text { Output watts }}{\text { Input watts }}$

Output transformers are usually purchased to work between given loads such as a certain tube and voice
coil impedance. After checking a few transformers, it will soon be possible to tell approximately the characteristics of a unit from inspection or a few simple checks.

## IMPEDANCE MATCHING IN DISTRIBLTION CIRCUITS

In general, the conditions which determine the value of a load impedance for a vacuum tube circuit are those which make the distortion in the system at minimum and at the same time uransfer as much power to the out put circuit as possible. In transmitting this power to a speaker system, however, the distortion is negligible if certain fundamental precatutions are taken. The general! problem is to secure those conditions which will result in the maximum transfer of power from the input to the output of such a transmission system. In order to better explain the problen let us consider the circuit shown below in Figure 4.


FIGORE 4
In Figure 4, " E " is the open circuit voltage of the input circuit, that is, the voltage under no load conditions, $Z_{g}$ is the input circuit impedance and $Z_{L}$ is the impedance of the load. The problem is to find which value of $Z L$ will enable the generator to deliver the reatest amount of power to the external load. If we make $Z_{L}$ large in comparison with $Z_{g}$ most of the voltage, $E$, will be lost across $Z_{L}$, but the total impedance of the circuit $\left(Z_{g}+Z_{L}\right)$ will be high. The current which flows through the circuit will, therefore, be small. Inasmuch as the power delivered to the load is a function of the product of the voltage across it and the current through it, the total power dissipated across $Z_{I}$, will be small. If, on the other hand, we make $Z L$ very small the current through the entire circuit will be large but most of the voltage will be lost across $Z_{g}$, and thus most of the power will be dissipated in the input circuit. Somewhere between these two extreme values of $Z_{L}$ is a value which will give us the most power dissipation across $Z_{L}$. This can be found by assuming a value for $\mathrm{Z}_{\mathrm{g}}$ and calculating the power across the load for various values of $Z_{L}$. If this is done it will be found that when $Z_{L}$ is equal to $Z_{g}$ the maximum possible power is utilized across $Z_{L}$. If the phase angle of the load can be adjusted, the condition for inaximum power transfer is obtalined when the resistance component of the load is edual to the resistance component of the source, and the reactance componont of the load is of the same magnitude but of oppont of the load site kind to that of the source. An illustration of this case is when a source or generator has a resistance of
10 olmms and a capacitiec reactance of 20 ohms, then the conditions for maximum energy transfer would occur when the load had a pure resistance of 10 ohms and an inductive reactance of 20 ohms. However, it is generally impossible to adjust the reactive components of the load. The next best condition can be shown to prevail when the total impedance of the output or load is equal to the total impedance of the input.
An interesting case which arises quite frequently in practice is where a line can be natched either to a value of impedance lower than the ideal match or to a value higher by the same amount. Such a case might occur if a 500 ohm line were available, but the transformer was designed for either a 400 or 600 ohm inatch. Which, under these conditions, should be used? In this event the higher of the two should be chosen since the curve for power output versus load impedance drops off less rapidly for values of load impedances higher than the input impedance. This curve is shown in Figure 5.

From the foregoing discussion we gat her that, in order to have the maximum power transfer from one circuit to another, definite impedance relationships should exist between the two circuits.


## Figure 5

A mismatch in impedance may result in several difficulties. There may be a reflection from the end of the line with resulting frequency and phase distortion or it may result in poor economy due to the major portion of the power being expended internally at the source of the signal. An analysis of the operation of a transformer will disclose the fact that, if the impedance of the load is much lower than the value for which the transformer is designed, the response at the high frequency end will be lowered while there may be a slight increase in low frequency response. The major disadvantage, however, is shown by the curve of Figure 5, wherein we see that a lower impedance will result in a considerable decrease in the power delivered to the load.
In the case where a mismatch occurs due to the impedance of the load being higher than that for which the transformer was designed, we have a different effect. The peak at which the secondary winding is resonant will be very high and apt to cause singing or feedback at that frequency. The low frequency loss due to the by-pass effect of the primary inductance will be much greater and consequently that system will be unbalanced and sound "tinny." The power output will also be decreased since the current in the circuit will be limited by the high impedance of the load. The importance of properly matching the output of an amplifier to the speaker network is quite evident.

## MULTI-SPEAKER INSTALLATIONS

When several speakers are required at remote points it is generally customary to use a 500 ohm line. A 500 ohm line is selected usually as the best compromise between the inherent disadvantages of high impedance and low impedance lines. If an 8 ohm line is run for a considerable distance, there will be an appreciable loss in the line. If 50 watts are impressed on an 8 ohm line which has a resistance of 6.5 ohms, the current will be 2.5 amperes for peak powers. The power loss in this 8 ohm line would then be over 22 watts. The selection of a 500 ohm line of the same resistance would result in a power loss in the line of only .64 watt. The disadvantage of using low impedance lines to feed remote speakers is, therefore, easily understood. One might ask whether it would be wise under these conditions to use a very high impedance line, say of 10,000 ohms. We would then be confronted with the fact that one conductor at least would have a high impedance above ground and extraneous noises and cross-talk would be induced in this line. In addition, the effects of the small capacity between conductors would be deleterious and result in the by-passing of the higher audio frequencies. The table below gives, approximately, the longest cable lengths which should be used if the power loss in the line is not to exceed 1 D.B.

Ohms	Gauge	Feet
500	18	4000
125	16	1600
36	14	700
16	14	325
8	14	160
4	12	125
2	12	65
1	10	50

These values are calculated only for the actual power distribution of the line. The actual capacity between wires may be too great to enable the transmission of high audio frequencies over more than 2000 feet unless single spaced wires are used. In general, the following rules may be observed for conditions not covered in the above table:
(1) If the length of the cable to be used is only onehalf that shown in the table for certain impedances, the gauge of the wire can be three sizes smaller.
(2) If the cable length to be used is to be twice as long as that shown in the table for a given impedance, the gauge of the wire should be three sizes larger.
(3) If the line impedance is one-half of any value shown in the table, the cable length should never be over one-half that listed.
(4) If a smaller wire size than that shown in the table is desired for a given line impedance, the cable length should be halved for every three sizes decrease in the gauge of the wire.
When the audio distribution systems involve the use of lines longer than those given in the above table, then the surge impedance of the line should be calculated and so chosen as to match the impedance of the input source. The surge impedance is calculated by finding the impedance of the line by means of an impedance bridge for the two conditions when the far end of the line is opened and when it is short circuited. When these values have been measured they are multiplied together and the square root of the product is extracted. This is the value of the surge impedance.

## METHOD OF COUPLING SEVERAL SPEAKERS TO AN AUDIO DISTRIBUTION LINE

In general, when several speakers must be connected to a single transmission line the following procedure should be followed:
Determine the impedance of each voice coil by multiplying its DC resistance by 1.5 , the number of speakers to be attached to the line, and the desired distribution of power at each speaker. If uniform distribution of volume is required, select the transformer ratio for each speaker from the chart that follows. Thus, for three speakers each with different voice coil impedance, select the transformer ratios under each voice coil impedance in the line designated for three speaker outlets. These three transformers are then connected with their primaries in parallel across the 500 ohm line. For half-volume on two duplicate speakers and full volume on a third speaker with the same or different impedance, find the transformer

Which will feed the two half-volume speakers by selecting the transformer ratio in the column for twospeaker outlets and under a voice coil impedance equal to one-half that of one speaker. This case is treated as if it had only two speaker outlets since the two half-volume speakers are fed from one outlet. The full volume speaker transformer is selected opposite the two outlet column. The two half-volume speaker voice coils are then connected in parallel.
As an illustration, let us suppose that two 8 ohm voice coil speakers are to be worked at half-volume and one 20 ohm speaker at full volume. Then the transformer which feeds the two half-volume speakers is chosen to work into 4 ohnıs ( 8 ohnns in parallel with 8 ohms) and since we will have two outlets we find the transformation ratio opposite the two speaker outlet and under the 4 ohm impedance, which gives us a value of 16.

For the other, or full volume speaker, we find the transformation ratio opposite the two speaker outlet listing and under 20 ohms, giving us a value of 7 . The two half-volume speakers are then connected with their voice coils in parallel across the secondary of the transformer with the 16 to 1 transformation ratio. The full volume speaker is connected across the secondary of the 7 to 1 transformer and both transformer primaries are connected across the 500 ohm line in parallel.

## Method of Individual Speaker Volume Control on a Transmission Line

An individual " $T$ " pad, capable of dissipating the same audio power as the speaker is expected to handle, should be connected between the transmission line and the indlividual speaker's transformers. The following table gives the size " $T$ " pad for each speaker on the various transmission lines.

Total Number of Spkr.	Desired value of line impedance (Figures in squares $=$ constant resistance of " $T$ " pad in ohms)				
	125	250	500	750	1,000
1	125	250	500	750	1,000
2	250	500	1,000	1,500	2.000
3	375	750	1,500	2,2.50	3.000
4	500	1,000	2,000	3.000	4,000
5	62\%	1,250	2.500	3,750	5,000
(i)	7.50	1,500	3,000	4,500	6,000
7	875	1,750	3,500	5,250	7,000
8	1,000	2,000	4.000	6,000	8,000
9	1,12\%	2,250	4,500	6,750	9,000
10	1,250	2,500	5,000	7,500	10,000

## Chart for Matching Speaker Voice Coils to Standard Transmission Lines

Assuming a $\mathbf{5 0 0}$-Ohm Line Circuit, Figures in Squares = Correct Transformer Ratio

Total of Spkr. Outlets	Voice Coil Impedance in Ohms (1.5 $\times$ DC Resistance)														
	1	2	3	4	5	6	7	8	9	10	12	14	16	18	20
1	22	16	13	11	10	9	8	8	7	7	7	6	6	5	5
2	33	22	18	16	1.4	13	12	11	11	10	9	8	8	7	7
3	39	27	22	19	17	16	14	14	13	12	11	10	10	9	9
4	45	33	26	22	20	18	17	16	15	14	13	12	11	11	10
5	50	36	29	25	22	20	19	18	17	16	15	13	13	12	11
6	55	39	33	28	25	22	21	19	18	17	16	15	14	13	12
7	59	42	3.4	30	27	24	22	21	20	19	17	16	15	14	13
8	64	45	37	33	29	26	24	22	21	20	18	17	16	15	14
9	67	48	39	3.4	30	28	26	24	22	21	19	18	17	16	15
10	71	50	41	36	33	29	27	25	24	22	20	19	18	17	16

## "T," "H," "L" <br> AND MISCELLANEOUS ATTENUATION NETWORKS

As we have seen from the discussion of the previous section, it is necessary to maintain an impedance match between any input circuit and an output circuit, in order to secure the maximum power transfer and also to prevent distortion. Frequently, as in the case where the volume of a loud speaker must be verified, it is necessary to introduce a loss between the input and output. To secure attenuation and at the same time avoid the introduction of distortion, various types of resistance networks are used.


The simplest of these is called an " L " pad and is shown in Figure 6. This pad, or attenuator, consists of two resistance units on a common shaft, so arranged that as the resistance of one is increased, the resistance of the second decreases, thus presenting the same value of impedance to the input source for all degrees of attenuation. This "L" pad is used extensively in speaker installations. These " $L$ " pads are fairly inexpensive and are available in various ranges of impedance as listed in the Mallory-Yaxley general parts catalog. Quite frequently a constant impedance must be presented both to the input source and to the output source. In this case, a " T ", pad is used. A typical " $T$ " pad circuit is shown in Figure 7.


Figure 7

As $R_{1}$ and $R_{2}$ increase, $R_{s}$ approaches zero, so that for the condition of maximum attenuation (minimum volume) $R_{1}$ is equal to the impedance of the input source while $R_{3}$ is equal to zero. When the pad is designed to work between equal impedances, that is, where the impedance of the input circuit is equal to that of the output circuit, $\mathrm{R}_{1}$ and $\mathrm{R}_{2}$ are equal at all points in the rotation of the shaft. "T" pads can also be supplied to match unequal impedances, such as a 250 -ohm input source to a 100 -ohm output load. It must be remembered, however, that in all cases where resistors are used to match unequal impedances, there will be a certain loss in the circuit, depending upon


Figure 8
the ratio of the inequality of input and output impedances. The minimum loss necessary for various ratios of input and output impedances is given in the table at the right of Figure 10 under the heading of "Minimum Loss Pad."

In special cases where a transmission line must be balanced with respect to ground, the " $T$ " pad is modified to form a balanced " H " pad, shown in Figure 8. The center point, " $G$ " is grounded and in this manner, disturbances induced on each side of the line will be at the same potential to ground and will, therefore, cancel out at the output terminals. A more common use of the " H " pad circuit is shown in Figure 9.


Figure 9

This does not have the center point of the shunt resistance connected to ground, but it does, however, introduce the same amount of resistance in both sides of the line.

## TIIE DESIGN OF FIXED PADS

When designing various types of fixed attenuation pads, it is usually desired to accomplish one or more of three purposes: First, in a balanced network (one with equal input and output impedance) to introduce a given loss or attenuation; second, to match, by means of a pad, two networks of unequal impedances in which case the amount of loss is required to be a minimum; third, to match two networks whose impedances are unequal and at the same time introduce an attenuation greater than the minimum loss required to match these circuits. To design various pads from a mathematical angle necessitates considerable familiarity with the subject. The use of the chart, shown in Figure 10, simplifies any of the above problems, so that they can be solved quickly and with sufficient accuracy for all ordinary applications. The procedure in determining any of these networks is outlined at the right of Figure 10. For elucidating the general procedure, a few examples are worked below.

EXAMPLE 1-To introduce an attenuation of 10 db . into a matched network of 200 ohms input impedance and 200 ohms output impedance (Figure 11).


Figure 11
a. The value of $R_{c}$, the shunt resistance, is found by drawing a line from the point on Scale $A$ equal to the line mpedance $Z_{1}$ ( 200 ohns) through the point on Scale $C$ equal to the desired attenuation ( 10 db .) to Scale F. The reading on Scale $F$ at this point gives the value of the shunt resistance $R_{C}$ ( 142 ohms).
$b$. The value of the series resistance $R_{a}$ is found by drawing a line from the point on Scale $A$ equal to the line impedance $Z_{1}$ ( 200 ohms ) through the point on Scale D equal to the desired attenuation ( 10 db .). The value where this line crosses Scale $F$ gives the value of the series plus shunt resistance ( $\mathrm{R}_{a}+\mathrm{R}_{c}=$ 240 ohms). Subtracting the value of $R_{a}$, already found, leaves the value of $R_{d}$ required ( 98 ohms).
c. $\mathrm{R}_{b}-\mathrm{R}_{a}$ (08 ohms).

EXAMPLE 2-To match a $\mathbf{2 0 - o h m}$ line to a $\mathbf{6 0 0}$ ohm line and keep the attenuation at a minimum (Figure 12).


Ftgure 12
a. To find the minimum attenuation to balance the network, draw a line from the point on Scale $F$ equal to the lower line impedance $Z_{1}$ ( 20 ohms ) to the point on Scale A equal to the higher line impedance $Z_{2}$ ( 600 ohms ). Where this line crosses Scale E, the value of the minimum loss is read ( 20.7 db.$)$.
$b$. Find the $\sqrt{Z_{1} Z_{2}}$ (the mean value of the two line impedances) by drawing a line from the point on Scale F equal to the lower line impedance $Z_{1}$ ( 20 ohms) through the point on Scale B equal to the higher line impedance $Z_{2}$ ( 600 ohms ) to Scale A. The value on Scale $A$ at this point gives the value of $\sqrt{Z_{1} Z_{2}}=110$ ohms.
c. The value of the shunt resistance $R_{C}$ is found by drawing a line from the point on Scale A equal to $\sqrt{Z_{1} Z_{2}}$ ( 110 ohms) through the point on Scale $C$ equal to the minimum loss ( 20.7 db .). The reading where this line crosses Scale $F$ gives the value of $R_{c}$ (20.5 ohms).
d. The value of the series resistance $\mathrm{R}_{d}$ is next found by drawing a line from the point on Scale $A$ equal to the higher line impedance $Z$ : ( 600 ohms) through the point on Scale $D$ equal to the minimun loss ( 20.7 db .) and continue this line to meet Scale $F$, the value of the series plus shunt resistance $\mathrm{R}_{b}+\mathbf{R}_{c}$ is equal to 600 ohms. Subtracting the value of the shunt resistance ( $R_{C}$ equal 20 ohms) leaves the value of the series resistance ( $\mathrm{R}_{b}$ equal 580 ohms).

EXAMPLE 3-To match two unequal impedances, a $\mathbf{2 0 - o h m}$ line to a $\mathbf{6 0 0}$-ohm line, and introduce at the same time a total loss of 30 db . into the circuit (Figure 13).


## Figure 13

a. Find $\sqrt{Z_{1} Z_{2}}$ by drawing a line from the point on Scale $F$ equal to the lower line impedance ( $\mathrm{Z}_{1}=20$ ohms) through the point on Scale $B$ equal to the higher line impedance ( $Z_{2}=600$ ohms) and extend this line to meet Scale A, giving the desired value of $\sqrt{Z_{1} Z_{2}}$ ( 110 ohms).
b. To find the value of the shunt resistance $\mathrm{R}_{C}$ draw a line from the point on Scale $A$ equal to $\sqrt{Z_{1} Z_{2}}$ ( 110 ohms ) through the point on Scale C equal to the desired loss ( 30 db .) and extend this line to meet Scale F , giving the value of $\mathrm{R}_{c}$ ( 7 ohms ).
c. To find the value of the series resistance $\mathrm{R}_{b}$, draw a line from the point on Scale A equal to the line impedance $Z_{2}$ ( 600 ohms ) through the point on Scale D equal to the attenuation ( 30 db .), continuing this line to meet Scale F gives the value of $\mathrm{R}_{b}+\mathrm{R}_{c}$ ( 100 ohms ). Subtracting the value of $R_{c}$ leaves the value of $\mathrm{R}_{b}$ ( 503 ohms ).
d. To find the value of $\mathrm{R}_{a}$ (the other series resistance) the line impedance $Z_{1}$ ( 20 ohms ) is used on Scale $A$ and the value of $R_{a}+R_{c}$ is found as in (c) to be 20 ohms. Subtracting $R_{a}$ from this value leaves $\mathrm{R}_{c}=13$ ohms.
In some cases, as mentioned before, a balanced " H " pad is required so as to offer a neutral or ground point for the network, in which case this can be done simply as follows:

The valuesare calculated for the "T"pad corresponding to the attenuation and matching impedances involved, after which each series resistor is divided by two and one-half placed in each branch of the circuit. The shunt resistance is center tapped and this middle point is grounded, As an assembly, the " H "


Figure 14
pad in Figure 14 is electrically equivalent to the " $T$ " pad of Figure 11. When the line impedances involved are of such magnitude that they fall outside the range of the chart. they may be found by dividing or multiplying the impedances by a multiple of ten and subsequently dividing or multiplying the final results by the same number.

There is a general misconception that the use of a constant impedance attenuator will always yield better results than an ordinary potentiometer circuit. This is not necessarily the case and there are applications where the use of a constant impedance attenuator is not only uneconomical, but needless. For example, when working into the grid of a Class $A$ amplifier tube, the input impedance of the grid circuit is so high that it is impractical to attempt an impedance match. Practical considerations limit the highest impedance of a " $T$ " or an " $H$ " pad that can be manufactured. to a value of approximately 50,000 ohms. If we refer to Figure 15 A , we can easily realize the absurdity of the application of a constant impedance pad to this circuit.


Figure 15 ( $A$ and $B$ )

Since the grid does not draw current in a practical sense. the voltage at the junction of the " $T$ " pad, $E_{1}$, will be equal to $\mathrm{E}_{2}$. There is no current flowing through the resistor or tube (since when the current is zero. the voltage drop will be zero between any two points of a resistor). Therefore, the circuit degenerates to the equivalent shown in Figure I5B which is an ordinary potentiometer circuit. It is obvious from this discussion that when volume controls are used in the grid circuit of a vacuum tube operated as a Class A amplifier, or in circuits where the output impedance is very high compared with the impedance of the input circuit, a potentiometer circuit should be used.

## MEASUREMENT

The turns ratio of a transformer can be measured by connecting approximately 50 volts to the primary and measuring the voltage across the primary and secondary as shown below in Figure 23.


Figure 23

The turns ratio is calculated from $\frac{N_{p}}{N_{s}}=\frac{E_{p}}{E_{s}}$
The impedance of a transformer primary is reduced by the DC plate current flowing through the winding. It is, therefore, necessary to measure the impedance with the $D C$ plate current flowing in the winding to obtain that value which is actually effective in operation. This can be accomplished with the circuit shown in Figure 24. A 60-cycle power supply will probably be most convenient. (Continued on page \$02.)

## PRACTICAL APPLICATIONS OF '"Tי' ANI) "I," PADS

The figures which follow show the connections of the " $T$ " and " $L$ " pads and various arrangements in which they are used.


Illustrating possible connections for distribution of power where speakers must operate at different levels. See article on "Audio Distribution Systems" and Tables 1 and 2 for proper selection of transformer. The " $T$ " pads should be selected to operate between the secondary impedance of the transformer and the input impedance of the speaker. (Continued on page 302.)



The 60 -cycle voltage impressed in the measuring circuit is controlled by $\mathrm{R}_{\mathrm{ac}}$. The direct current flowing through $\mathrm{L}_{x}$ is supplied by the battery and measured by the DC milliammeter. The meter should be a type which does not respond to alternating current and may be by-passed by a paper or oil condenser if the pointer vibrates. The direct current is changed by varying either $\mathrm{R}_{d c}, \mathrm{R}_{a c}$, or R . It will, therefore, be necessary to make several adjustments of each resistance before a measurement can be made at the desired
direct current. The indicator is any device which will indicate AC voltage and draw very little current from the circuit to which it is connected. It does not need to be calibrated. It may be a cathode ray oscillograph, an amplifier followed by an indicating device, such as a vacuum tube voltmeter, or a high-resistance AC voltmeter.
The measurement is made as follows:
Adjust $\mathrm{R}_{a c}$ to give a suitable supply voltage; 50 to 100 volts may usually be used. Switch indicator to No. 2 and note reading; switch indicator to No. 1 and adjust R to give same reading. Adjust $\mathrm{R}_{d c}$ to give desired direct current. It may be necessary to repeat the above adjustments one or two times to obtain the value of $R$. When the indicator reads the same at No. 1 and No. 2, the value of $R$ is equal to the impedance of $L_{x}$. The inductance may be calculated from the impedance and the formula:

$$
\mathrm{L}=\frac{\mathrm{Z}}{6.28_{f}} \text { henries }
$$

where $Z=$ impedance or $R$ as measured above
$f=$ frequency in cycles
or $L=\frac{Z}{377}$ henries if the measurement is made at

The preceding formulae neglect the resistance which is usually small compared to the reactance.
The impedance of a loud speaker may be measured in the same manner as explained for $\mathrm{L}_{x}$. Since no direct current flows through the voice coil $\mathrm{R}_{d c}$, the DC milliammeter, and battery may be replaced by a connection from A to B . In order to obtain the impedance of the voice coil under actual operating conditions, this measurement should be made with a voltage equal to the square root of the DC resistance across it. The impedance of a speaker varies with the cabinet or baffle on which it is mounted and the frequency at which it is measured. To obtain a true picture, the speaker should be mounted in the manner which it is to be used and its impedance measured at several frequencies.

The leakage reactance of a transformer may be measured on a 1000 -cycle bridge or the above circuit supplied from a 1000 -cycle source. Shorting the secondary terminals of the transformer and measuring the impedance across the primary terminals, the value of leakage reactance referred to the primary is obtained.

The resonant frequency of an audio frequency transformer may be determined with the use of a variable audio frequency oscillator and a vacuum tube voltmeter as shown below in Figure 25.


Increasing the frequency of the constant audio frequency input voltage will result in a sharp increase of vacuum tube voltmeter reading at some frequency. The frequency at which this peak is noted is the highest frequency at which uniform amplification may be expected.

Decibels-Watts Output Levels

DB.	Watts	DB.	Watts
-20	0.00006	20	0.600
-19	0.00007	21	0.759
-18	0.00009	22	0.948
-17	0.00011	23	1.185
-16	0.00015	24	1.518
-14	0.00023	26	2.371
-13	0.00030	27	3.036
-12	0.00039	28	3.795
-11	0.00047	29	4.743
-10	0.0006	30	6.000
-9	0.00076	31	7.590
-8	0.00095	32	9.487
-7	0.00119	33	11.859
- ${ }^{3}$	0.00152	34	15.180
-5	0.00190	35	18.975
-4	0.00237	36	23.718
-3	0.00303	37	30.360
-2	0.00397	38	37.950
-1	0.00474	39	47.43
0	0.006	40	60.00
1	0.0076	41	75.90
2	0.0095	42	94.87
3	0.0119	43	118.59
4	0.0153	44	151.8
6	0.0237	46	237.18
7	0.0305	47	303.60
8	0.0380	48	379.50
9	0.0474	49	474.37
10	0.060	50	600.00
11	0.0759	51	759.00
12	0.0948	52	948.75
13	0.1187	53	1185.94
14	0.1518	54	1518.00
15	0.1898	55	1897.50
16	0.2372	56	2371.88
17	0.3037	57	3036.00
18	0.3795	58	3795.00
19	0.4744	59	4743.75
		60	6000.00

# Decibel Conversion Tables 

IT IS convenient in measurements and calculations on communications systems to express the ratio between any two amounts of electric or acoustic power in units on a logarithmic scale. The decibel ( $1 / 10$ th of the bel) on the briggsian or base- 10 scale and the neper on the napierian or base-e scale are in almost universal use for this purpose.

Since voltage and current are related to power by impedance, both the decibel and the neper can be used to express voltage and current ratios, if care is taken to account for the impedances associated with them. In a similar manner the corresponding acoustical quantities can be compared.

Table I and Table II on the following pages have been prepared to facilitate making conversions in either direction between the number of decibels and the corresponding power, voltage, and current ratios. Both tables can also be used for nepers and the mile of slandard cable by applying the conversion factors from the talle "A" shown at right.

Decibel-The number of decibels $N d b$ corresponding to the ratio between two amounts of power $P_{1}$ and $P_{2}$ is

$$
\begin{equation*}
N d b=10 \log _{10} \frac{P_{1}}{P_{2}} \tag{1}
\end{equation*}
$$

When two voltages $E_{1}$ and $E_{2}$ or two currents $I_{1}$ and $I_{2}$ operate in the same or equal impedances,
and

$$
\begin{align*}
& N d b=20 \log _{10} \frac{L_{1}^{\prime}}{V_{2}^{\prime}}  \tag{2}\\
& N d b=20 \log _{10} \frac{I_{1}}{I_{2}} \tag{3}
\end{align*}
$$

If $E_{1}$ and $E_{3}$ or $I_{1}$ and $I_{2}$ operate in unequal impedances,

$$
\begin{align*}
N d b= & 20 \log _{10} \frac{E_{1}}{E_{2}}+10 \log _{10} \frac{Z_{2}}{Z_{1}} \\
& +10 \log _{10} \frac{k_{2}}{k_{1}}  \tag{4}\\
N d b= & 20 \log _{10} \frac{I_{1}}{I_{2}}+10 \log _{10} \frac{Z_{1}}{Z_{2}} \\
& +10 \log _{10} \frac{k_{1}}{k_{2}} \tag{5}
\end{align*}
$$

and
where $Z_{1}$ and $Z_{2}$ are the absolute magnitudes of the corresponding impedances and $k_{1}$ and $k_{2}$ are the values of power factor for the impedances. Note that Table I and Table II can be used to evaluate the impedance and power factor terms, since both are similar to the expression for power ratio, equation (1).

Neper-The number of nepers $N_{n e p}$
corresponding to a power ratio $\frac{P_{1}}{P_{2}}$ is

$$
\begin{equation*}
N n e p=\frac{1}{2} \operatorname{loge} \frac{P_{1}}{P_{2}} \tag{6}
\end{equation*}
$$

For voltage ratios $\frac{E_{1}}{E_{2}}$ or current ratios $\frac{I_{1}}{I_{2}}$ working in the same or equal impedances,

$$
\begin{align*}
& N_{\text {nep }}=\operatorname{loge} \frac{E_{1}}{E_{2}}  \tag{7}\\
& N_{\text {nep }}=\operatorname{loge} \frac{I_{1}}{I_{2}}
\end{align*}
$$

and
When $E_{1}$ and $E_{2}$ or $I_{1}$ and $I_{2}$ operate in unequal impedances,
and

$$
\begin{equation*}
N \text { nep }=\log e \frac{E_{1}}{E_{2}}+\frac{1}{2} \log e \frac{Z_{2}}{Z_{1}}+\frac{1}{2} \log e \frac{k_{2}}{k_{1}} \tag{8}
\end{equation*}
$$

$$
\begin{equation*}
N_{n e p}=\log e \frac{I_{1}}{I_{2}}+\frac{1}{2} \log e \frac{Z_{1}}{Z_{2}}+\frac{1}{2} \log e \frac{k_{1}}{k_{2}} \tag{9}
\end{equation*}
$$

where $Z_{1}$ and $Z_{2}$ and $k_{1}$ and $k_{3}$ are as in equations (1) and (5).

Multiply	By	To Find
decibels.	. 11.51	. . . . . nepers
decibels...	1.0.96	miles of standard cable
miles of standard calle	. 947	......decibels
miles of standard cable	. 109	...... nepers
nepers. . . . . . .	8.686	. . . . . decibels
nepers.......	9.175	niles of standard cable

## To Find Values Outside the Range of Conversion Tables

Values outside the range of either Table I or Table II on the following pages can be readily found with the help of the following simple rules.

## TABLE I: DECIBELS TO VOLTAGE AND POWER RATIOS

## Number of decibels positive ( + ):

Subtract $+\boldsymbol{2 0}$ decibels successively from the given number of decibels until the remainder falls within range of Table I. To find the vollage ratio, multiply the corresponding value from the right-hand voltageratio column by 10 for each time you subtracted 20 db . To find the power ratio, multiply the corresponding value from the right-hand power-ratio column by 100 for each time you subtracted 20 db .
Example-Given: 19.2 db

$$
\begin{aligned}
& \text { 19.2 } \mathrm{db}-20 \mathrm{db}-20 \mathrm{db}=9.2 \mathrm{db} \\
& \text { Voltage ratio: } 9.2 \mathrm{db} \longrightarrow \\
& 2.88 \mathrm{t} \times 10 \times 10=288.4 \\
& \text { Power ratio: } 9.2 \mathrm{db} \longrightarrow \\
& 8.318 \times 100 \times 100=83180
\end{aligned}
$$

Number of decibels negative ( - ):
Add +20 decibels successively to the given number of decibels until the sum falls within the range of Table I. For the vollage ratio, divide the value from the left-hand voltage-ratio column by 10 for each time you added 20 db . For the power ratio, divide the value from the left-hand power-ratio colunn by 100 for each time you added 20 db . Example-Given: - 19.2 db

$$
\begin{aligned}
& -19.2 \mathrm{db}+20 \mathrm{db}+20 \mathrm{db}=-9.2 \mathrm{db} \\
& \text { Vollage ralio: }-9.2 \mathrm{db} \longrightarrow \\
& .3167 \times 1 / 10 \times 1 / 10=.003 .467 \\
& \text { Power ratio: }-9.2 \mathrm{db} \longrightarrow \\
& .1202 \times 1 / 100 \times 1 / 100=.00001202
\end{aligned}
$$

TABLE II: VOLTAGE RATIOS TO DECIBELS
For ratios smaller than those in table-Multiply the given ratio by 10 successively until the product can be found in the table. From the number of decibels thus found, subtract +20 decibels for each time you multiplied by 10 .
Example-Given: Voltage ratio $=.0131$

$$
\begin{aligned}
& \quad .0131 \times 10=.131 \times 10=1.31 \\
& \text { From Table II, } 1.31 \longrightarrow \\
& 2.345 \mathrm{db}-20 \mathrm{db}-20 \mathrm{db}=-37.655 \mathrm{db}
\end{aligned}
$$

For ratios greatet than those in table-Divide the given ratio by 10 successively until the remainder can be found in the table. To the number of decibels thus found, add +20 db for each time you divided by 10 .
Example-Given: Voltage ratio $=712$
$712 \times 1 / 10=71.2 \times 1 / 10=7.12$
From Table II, $7.12 \longrightarrow$
$17.050 \mathrm{db}+20 \mathrm{db}+20 \mathrm{db}=57.050 \mathrm{db}$

## TABLE I

Given: Decibels

## TO ACCOUN'T FOR TIIE SIGN OF TIIE DECIBEI.

For positive ( + ) values of the decibel-Both voltage and power ratios are greater than unity. Use the two righthand columns.

Example-Given: $\pm 9.1 \mathrm{db}$. Find:

	$\begin{aligned} & \text { Poater } \\ & \text { Ratio } \end{aligned}$	$\begin{aligned} & \text { 1'ollage } \\ & \text { Ratio } \end{aligned}$
${ }_{-9.1}^{+9.1 \mathrm{db}} \mathrm{db}$.	$\begin{aligned} & 8.12 x \\ & 0.1230 \end{aligned}$	3.851 0.3508

and power ratios are less than unity. Use the two left-hand columns.

$4 \underbrace{-d b+}$					$\int_{-\infty}^{-d b+}$					$-d b+$									
								-											
Vollage IRatio	Potrer Ratio	db	Tollage Ratio	I'ower Ratio						Voltage Ratio	Pouer Ratio	db	Voltage Ratio	Pourer Ratio	Vollage Ratio	rouer Ratio	(b)	Vollage Ratio	Iourer Ratio
1.0000	1.0000	0	1.000	1.000	.5012	. 2512	6.0	1.995	3.981	. 2512	. 06310	12.0	3.981	15.88					
. 9886	. 9772	. 1	1.012	1.023	. 4955	2.455	6.1	2.018	4.074	.2483	. 06166	12.1	4.027	16.22					
. 9772	. 95.50	.2	1.023	1.0 .47	. 1898	2399	6.2	2.042	4.169	. 2455	. 06026	12.2	4.084	16.611					
. 9661	.9333	. 3	1.035	1.072	. 48.42	. 2344	6.3	2.065	4.266	. 2127	. 05888	12.3	4.121	16.98					
. 9550	. 9120	1	1.047	1.096	. 4786	. 2291	6.4	2.089	4.365	. 2399	.05754	12.1	4.169	17.38					
. 9441	. 8913	.	1.059	1.122	. 4732	2239	$6 . .5$	2.113	4.467	.2371	.05623	12.)	4.217	17.78					
. 9333	. 8710	. 6	1.072	1.148	. 4677	2188	6.6	2.138	4.571	. 2314	. 0.8 .495	12.6	4.266	18.20					
.9226	.8511	. 7	1.084	1.175	. 1624	.2138	6.7	2.163	4.677	.2317	. 05370	12.7	4.31.	18.62					
. 9120	.8318	. 8	1.096	1.202	. 4571	2089	6.8	2.188	4.786	. 2291	. 05218	12.8	+.365	19.05					
. 9016	. 8128	.9	1.109	1.230	. 4519	. 2042	6.9	2.213	4.898	. 2265	. 05129	12.9	4.416	19.50					
. 8913	. 7913	1.0	1.122	1.259	. 4467	. 1995	7.0	2.239	5.012	. 2239	. 05012	13.0	4.467	19.95					
. 8810	. 7262	1.1	1.135	1.288	4416	. 1950	7.1	2.265	5.129	. 2213	. 04898	13.1	4.519	20.42					
. 8710	. 7586	1.-	1.1.48	1.318	. 4365	. 1905	7.2	2.291	5.248	. 2188	. 04786	13.2	4.571	20.89					
. 8610	. 7413	1.3	1.161	1.349	. 4315	. 1862	7.3	2.317	5.370	. 2163	. 04675	13.3	4.62 .1	21.38					
.8511	.724	1.1	1.175	1.380	. 4266	.1820	7.4	2.34 .4	5.495	. 2138	. 04.4571	13.4	1.675	21.88					
. 8414	. 70.9	$1 . .3$	1.189	1.413	. 4217	.1788	7.5	2.371	5.623	.2113	. 04467	13.5	4.732	22.39					
.8318	.6918	1.6	1.202	1.4.45	. 1169	. 1738	7.6	2.399	5.754	. 2089	. 04365	13.6	-4. 286	22.91					
.8222	. 6761	1.7	1.216	1.459	. 1121	. 1698	7.7	$\underline{2.427}$	5.888	. 2065	. 04266	13.7	4.812	23.44					
. 8128	. 66007	1.8	1.230	1.514	. 4074	. 1660	7.8	-. 455	6.026	.20.42	. $0.416,9$	13.8	1.898	23.99					
. 8035	. 6.457	1.9	1.245	1.549	. 4027	. 1622	7.9	2.483	6.166	. 2018	. 04071	13.9	4.955	21.55					
.7943	. 6310	2.0	1.259	1.585	. 3981	. 1585	8.0	2.512	6.310	. 1995	. 03981	1.4 .0	5.012	25.12					
. 88.52	. 6160	2.1	1.274	1.622	. 3936	. 1549	8.1	2.541	6.457	. 1972	. 03890	14.1	5.070	25.70					
-76\%	(6026	2	1.288	1.660	. 3890	. 1514	8.2	2.570	6.607	. 1950	. 03802	11.2	5.129	26.30					
. 7674	. 3888	2.3	1.303	1.698	. 38.46	. 1479	8.3	2.600	6.761	. 1928	. 03715	14.3	5.188	26.92					
. 7586	.5754	2.4	1.318	1.738	. 3802	. 1445	3.4	2.630	6.918	. 1905	. 03631	14.1	5.248	27.54					
. 7.499	.5623	2.5	1.334	1.778	. 3758	. 1413	8.5	2.661	7.079	.188-4	.03548	11.3	5.309	28.18					
. 7113	.5145	2.1	1349	1.820	. 3715	. 1380	8.6	2.692	7.24 .1	. 1862	.03.167	11.6	8.370	28.84					
. 7328	.5:3:0	$\because 7$	1.365	1.862	. 3673	.13.19	8.7	2.723	7.413	. 18.11	.03388	11.7	5.13:3	20.51					
.724-4	. 5218	2.8	1.380	1.905	. 3631	. 1318	8.8	2.75-4	7.586	. 1820	. 03311	11.8	5.195	30.20					
. 7161	.5129	2.9	1.396	1.950	. 3.889	. 1288	8.9	2.786	7.762	. 1799	. 032336	11.9	5.559	30.90					
. 7079	. 5012	3.0	1.413	1.995;	. 3548	. 1259	9.0	2.818	7.943	. 1778	. 03162	15.0	5.623	31.62					
. 6998	. 1808	3.1	1.429	2.042	. 3508	. 1230	9.1	2.851	8.128	. 17.88	. 03000	15.1	5.689	32.36					
. 6918	.1786	3.2	1.4.45	2.089	. 3.467	1202	9.2	2.88 .4	8.318	.1738	. 03020	15.2	5.551	33.11					
.6839	. 1675	3.3	1.462	2.138	. 3428	. 1175	9.3	2.917	8.511	. 1718	. 02951	15.3	5.821	33.88					
. 6761	.4571	3.4	1.479	2.188	. 3388	. 11.48	9.4	2.951	8.710	. 1698	. 02884	15.4	5.888	3.4.6:					
. 6683	. 4167	3.5	1.496	2.239	. 3350	. 1122	9.5	2.985	8.913	. 1679	. 02818	15.7	5.957	35. 48					
. 6607	. 43665	3.6	1.514	2.291	. 3311	.1096	9.6	3.020	9.120	. 1660	. 02754	15.6	6.1026	36.31					
. 6531	. 4266	3.7	1.531	2.344	. 3273	. 1072	9.7	3.055	9.333	. 16.41	. 02692	15.7	6.095	37.15					
. 6457	. 4169	3.8	1.5 .49	2.399	. 32336	. 1047	4.8	3.090	9.550	. 1622	. 026330	15.8	6.166	38.02					
. 6383	. 10.4	3.9	1.567	2.455	. 3199	.1023	9.9	3.126	9.772	. 1603	.025\%0	15.9	6.237	38.90					
. 6310	. 3981	4.0	1.585	2.512	. 3162	. 1060	10.0	3.162	10.000	. 1585	. 02512	16.0	6.310	39.81					
. 6237	. 3830	4.1	1.603	$\underline{0.570}$	. 3126	. 01872	10.1	3.199	10.23	. 1567	. 02455	16.1	6.383	40.4 .4					
. 6166	. 3802	1.2	1.622	$\bigcirc .630$	. 3090	. 09555	10.2	3.236	10.47	. 15.19	. 02399	16.2	6.457	41.69					
. 6095	. 3715	1.3	1.6 .41	2.692	. 3055	. 010333	10.3	3.273	10.72	. 1531	.023.4	16.3	6.531	42.66					
. 6026	. 3631	1.4	1.660	2.75 .4	. 3020	. 09120	10.4	3.311	10.96	. 151.4	. 02291	16.4	6.607	43.6.3					
. 5957	. 3514	4.5	1.679	2.818	. 2985	. 08913	10.5	3.350	11.22	. 1496	.02239	16.5	6.683	41.67					
. 3888	. 3467	4.6	1.698	$\bigcirc .88 .4$	. 2951	. 08710	10.6	3.388	11.48	. 1479	. 02188	16.6	6.761	45.71					
. 58821	. 3388	4.7	1.718	2.951	. 2917	. 08511	10.7	3.428	11.75	. 1462	. 02138	16.7	6.839	46.77					
.5754 .5689	. 3311	4.8	1.738	3.020	. 2884	. 08318	10.8	3.467	12.02	. 1445	. 02089	16.8	6.918	47.86					
. 5689	. 3236	4.9	1.758	3.090	. 2851	. 08128	10.9	3.508	12.30	. 1429	. 02042	16.9	6.998	48.98					
. 5623	. 3162	5.0	1.778	3.162	. 2818	. 07943	11.0	3.548	12.59	. 1413	. 01995	17.0	7.079	50.12					
. 5559	. 3090	5.1	1.899	3.236	. 2786	. 07762	11.1	3.589	12.88	. 1396	. 01950	17.1	7.161	51.29					
. 5.495	. 3020	5.2	1.820	3.311	. 2754	. 07586	11.2	3.631	13.18	. 1380	. 01905	17.2	7.244	52.48					
. 5433	. 2951	5.3	1.841	3.388	. 2723	. 07413	11.3	3.673	13.49	. 1365	. 01862	17.3	7.328	53.70					
. 5370	. 2884	5.4	1.862	3.467	. 2692	. 07244	11.4	3.715	13.80	. 1349	. 01820	17.4	7.413	54.95					
. 5309	. 2818	5.5	1.884	3.548	. 2661	. 07079	11.5	3.758	14.13	. 1334	. 01778	17.5	7.499	56.23					
. 5248	. 2754	5.6	1.905	3.631	. 2630	. 06918	11.6	3.802	14.45	. 1318	. 01738	17.6	7.586	57.54					
. 5188	. 2692	5.7	1.928	3.715	. 2600	. 06761	11.7	3.846	14.79	. 1303	. 01698	17.7	7.674	58.88					
. 5129	. 2630	5.8	1.950	3.802	. 2570	. 06607	11.8	3.890	15.14	. 1288	. 01660	17.8	7.762	60.26					
.5070	. 2570	5.9	1.972	3.890	.25.41	. 06457	11.9	3.936	15.49	.12i.4	. 01622	17.9	7.852	61.66					

To find decilel values outside the range of this table, see preceding page

TABLE I—continued

Vollage Ralio	Pourer   Ratio	dt	Vollage Hatio	Pouver   Halio	Vollage Ratio	Power   Malio	(1b	Vollage Hatio	Pover   Ratio	Vollage Ratio	Pouser Ratio	db	Yoltage Ralio	Pouer Ratio
. 1259	. 01585	18.0	7.943	63.10	. 1122	. 01259	19.0	8.913	79.43	$3.162 \times 10^{-1}$	$10^{-1}$	10	3.162	10
. 1245	.015.9	18.1	8.035	64.57	. 1109	. 01230	19.1	9.016	81.28	-10 $0^{-1}$	$10^{-2}$	20	10	$10^{2}$
.1230	.01514	18.2	8.128	66.07	. 1096	.01202	19.2	9.120	83.18	$3.162 \times 10^{-2}$	$10^{-3}$	30	$3.162 \times 10$	$10^{3}$
. 1216	.01479	18.3	8.222	67.61	. 1084	. 01175	19.3	9.226	85.11	$10^{-2}$	$10^{-4}$	40	$10^{2}$	$10^{4}$
. 1202	.01415	18.4	8.318	69.18	. 1072	. 01148	19.4	9.333	87.10					
. 1189	. 01413	18.5	8.414	70.79	. 1059	.01122				$3.162 \times 10^{-3}$ $10^{-3}$	$10^{-8}$ $10^{-6}$	50 60	$3.162 \times 10^{2}$ $10^{3}$	108 $10^{6}$
. 1175	. 013880	18.6	8.511	72.4	. 1017	. 01006	19.6	9.550	91.20	$3.162 \times 10^{-1}$	${ }^{10} 0^{-}$	6	$3.162 \times 10^{3}$	$10{ }^{6}$ 1
. 1161	. 013.49	18.7	8.610	74.13	. 1035	. 01002	19.7	9.661	93.33	$\bigcirc 10^{-1}$	$10^{-8}$	8	$3.162 \times 10^{4}$	$10^{8}$
. 11148	. 013188	18.8	8.710	75.86	.1023 .1012	.010 .4 .01023	19.8 19.9	9.772 9.886	95.50 97.72	$3.162 \times 10^{-5}$	$10^{-8}$	90	$3.162 \times 10^{4}$	$10^{9}$
. 1135	. 01288	18.9	8.811	77.62	.1012 .1000	.01023 .01000	19.9 20.0	9.886 10.000	97.72 100.00	$10^{-5}$	$10^{-10}$	100	$10^{5}$	$10^{10}$

## TABLE II

## Given: $\left\{\begin{array}{l}\text { Voltage } \\ \text { Current }\end{array}\right\}$ Ratio

To Find: Decibels

## POWER RATIOS

To find the number of decibels corresponding to a given power ratio-Assume the given power ratio to be a voltage ratio and find the corresponding number of decibels from the table. The desired result is exactly one-half of the number of decibels thus found.
Example-Given: a power ratio of 3.41.
Find: 3.41 in the table:
$3.41 \rightarrow 10.65 .5 \mathrm{db} \times 1 / 2=5.328 \mathrm{db}$

$\begin{gathered} \text { Folt- } \\ \text { age } \\ \text { IRatio } \end{gathered}$	. 10	. 11	. 02	113	. 0.4	. 05	. 06	. 07	. 18	. 09
1.0	. 0000	. 086	. 172	. 257	. 341	. 424	. 504	. 588	. 668	7.19
1.1	. 828	. 906	. 98.4	1.062	1.138	1.214	1.289	1.364	1.4:38	1.511
1.2	1.584	$1.65 \%$	1.727	1.798	1.868	1.938	2.007	2.076	2.1 .4	2.212
1.3	2.279	2.35	2.111	2.475	2.512	2.605	2.681	2.73.4	2.798	2.860
1.4	2.923	2.98.	3.0 .16	$3.10{ }^{\circ}$	3.167	3.227	3.287	3.316	3.405	3.464
1.5	3.522	3.580	3.6 .37	3.69 .1	3.750	3.807	3.862	3.918	3.973	4.028
1.6	4.182	4.137	4.190	4.21.4	4.295	4.350	4.402	1.45-1	4.306	4.558
1.7	1.609	4.6611	1.711	4.761	1.811	1.1661	4.910	4.959	5.008	5.057
1.8	5.10 .5	5.151	5.201	5.249	5.296	5.36 .3	8.390	5.4:3	5.183	5.529
1.9	5.575	5.621	5.660	5.711	5.756	5.801	5.845	5.889	5.93:	5.977
2.0	6.021	6.06 .1	6.107	6.150	6.19 .3	6.235	6.277	6.319	6.361	6.403
2.1	6.14	6.186	6.518	6.568	6.6088	6.619	$6.68{ }^{\prime}$	6.724	6.769	6.809
2.2	6.848	6.888	6.927	6.960	7.008	7.0.44	7.082	7.121	7.159	7.197
2.3	7.235	7.272	7.310	7.347	7.384	7.101	7.458	7. 745	7.532	7.568
2.4	7.604	7.640	7.676	7.712	7.748	7.783	7.819	7.85 .4	7.889	7.92 .1
2.5	7.959	7.993	8.028	8.062	8.097	8.131	8.16.)	8.189	8.232	8.266
2.6	8.299	8.333	8.366	8.309	8.4.32	8. 16.5	8.198	8.5130	8.5603	8.595
2.7	8.627	8.659	8.691	8.723	8.7.3	8.787	8.818	8.850	3.881	8.912
2.8	8.94 .3	8.971	9.005	9.0336	9.1166	9.109	9.127	9.1 .58	9.188	4.218
2.9	9.248	9.278	9.308	9.337	9.367	9.396	9.426	9.455	9.4811	9.513
3.0	9.542	9.571	9.600	9.629	9.657	9.686	9.714	9.743	9.771	9.799
3.1	9.827	9.855	9.888	9.911	9.930	9.906	9.944	10.021	10.0149	10.076
3.2	10.103	10.130	10.15\%	10.181	10.211	10.238	10.261	10.291	10.317	10.344
3.3	10.370	10.397	10.123	10.119	10.475	10.501	10.527	10.5.5:	10.578	10.60 .4
3.4	10.630	10.653	10.681	10.706	10.731	10.756	10.782	10.807	10.832	10.857
3.5	10.881	10.906	10.931	10.955	10.980	$11.000^{-1}$	11.029	11.053	11.078	11.102
3.6	11.126	11.150	11.171	11.198	11.222	11.246	11.270	11.990:3	11.317	11.341
3.7	11.361	11.387	11.411	11.834	11.457	11.481	$11 . .50 .1$	11.507	11.550	11.53:3
3.8	11.596	11.618	11.641	11.664	11.685	11.709	11.732	11.75	11.758	11.799
3.9	11.821	11.84	11.866	11.888	11.910	11.932	11.954	11.966	11.998	12.019
4.0	12.041	12.063	12.085	12.106	12.128	12.149	12.171	12.192	12.213	12.23.4
4.1	12.256	12.278	12.298	12.319	12.3.10	12.361	12.382	12.103	12.424	12.414
4.2	12.165	12.486	12.506	12.527	12.547	12.568	12.588	12.6019	12.690	12.619
4.3	12.669	12.690	12.710	12.730	12.750	12.770	12.790	12.810	$1 \underline{2} 829$	12.8 .49
4.4	12.869	12.889	12.908	12.928	12.948	12.967	12.987	13.006	13.026	13.045
4.5	13.064	13.084	13.103	13.122	13.141	13.160	13.179	13.198	13.217	13.236
4.6	13.255	13.274	13.293	13.312	13.330	13.349	13.368	13.386	13.405	13.423
4.7	13.442	13.460	13.479	13.497	13.516	13.334	13.552	13.570	13.589	13.607
4.8	13.625	13.643	13.661	13.679	13.69 -	13.715	13.73:3	13.751	13.768	13.786
4.9	13.804	13.822	13.839	13.85	13.875	13.392	13.910	13.925	13.9 .15	13.962
5.0	13.979	13.997	14.014	14.031	14.049	14.1066	14.083	14.100	14.117	14.134
5.1	14.151	1.4.168	14.185	14.202	14.219	14.236	1.4 .253	14.270	14.287	14.303
5.2	14.320	14.337	14.353	14.370	14.387	14.403	14.420	14.436	14.453	1.1.469
5.3	14.486	14.502	14.518	14.535	14.551	14.567	14.583	14.599	11.616	1.1.632
5.4	14.648	14.664	14.680	14.696	14.712	14.728	14.744	14.760	1-1.7.76	14.791
5.5	14.807	14.823	11.839	11.855	14.870	14.886	14.902	14.917	11.933	14,918
5.6	14.96. ${ }^{1}$	14.979	14.995	15.010	15.020	15.011	15.056	15.072	15.08	15.102
5.7	1.5.117	15.133	15.148	15.163	15.178	15.193	15.208	15.22.1	15.234	15.25.4
5.8	1.5.269	15.28 .4	15.298	15.313	15.328	15.3.33	15.358	15.373	15.388	15.102
5.9	15.117	15.4.32	15.446	15.461	15.166	15.190	15.505	15.519	15.534	15.519

## THE AUDIBLE SPECTRUM


$A_{3} B_{3} C_{3} D_{3} E_{3} F_{3} G_{3} A_{2} B_{2} C_{2} D_{2} E_{2} F_{2} G_{2} A_{1} B_{1} C_{1} D_{1} E_{1} F_{1} G_{1} A B C D E F G A^{1} B^{1} C^{1} D^{1} E^{1} F^{1} G^{1} A^{2} B^{2} C^{2} D^{2} E^{2} F^{2} G^{2} A^{3} B^{3} C^{3} D^{3} E^{3} F^{3} G^{3} A^{4} B^{4} C^{4} D^{4} E^{4}$


A Correct Table of Musical Frequencies, Pitch $A=440$

	0	1	2	3	4	5	6	7
C	16.35	32.70	65.40	130.81	261.62	523.26	1046.52	2093.04
C	17.32	34.64	69.29	138.59	277.18	554.36	1108.72	2217.44
D	18.35	36.70	73.41	14683	293.67	587.34	1174.68	2349.36
D*	1944	38.89	77.78	155.56	311.13	622.26	1244.52	2489.0
E	20.60	41.20	82.41	164.82	329.63	659.26	1318.52	2637.02
$F$	21.82	43.65	87.30	174.61	349.23	698.46	1396.92	2793.82
F*	23.12	46.24	92.49	18499	369.99	739.98	1479.96	2959.95
G	24.49	48.99	97.99	195.99	39199	783.98	1567.96	3135.96
G*	2595	51.91	103.82	207.65	415.31	830.62	1661.24	3322.48
A	27.50	55.00	110.00	220.00	440.00	880.00	1760.00	3520.00
A*	29.13	58.27	116.54	233.08	466.17	932.34	1864.68	3729.36
B	30.86	61.73	123.47	246.94	493.88	987.76	1975.52	3951.04
	32 CYCLES ${ }^{\text {C }} 65$ CYCLES							

## Rectifiers

EXPRESSED in the simplest language a rectifier is a device for clanging an alternating current of electricity to direct current. The utility of rectifiers will be appreciated when it is realized that a large number of our most useful devices will operate only on direct current, while the common source of electric power is alternating current, used by the power and light companies because of its low transmission losses.
With this wide range of application there are naturally many types of rectifiers. High vacuum thermionic rectifiers are used in every alternating current operated radio receiver to provide direct current for the plate circuits of the amplifying tubes. The voltages of such direct current supply systems range from one hundred to several hundred volts, and the currents are conveniently measured in milliamperes. However, there are many applications for rectifiers where the currents range from one-half to lundreds of amperes and the potentials are in the order of a few volts. In this classitication are nower supplies for battery charging, filament heating, electroplating, the operation of railroad signal devices, relays, motion picture arc lights, talking picture exciter lamps, electric time clocks-thousands of commercial and industrial devices that contribute to the comfort, efficiency, and pleasure of modern life.
This article will treat the low voltage, medium and high current rectifiers described in the preceding paragraph.

## DIFFERENT FORMS OF RECTIFIERS

1. Motor generator sets
2. Mechanical and vibrating reed rectifiers.
3. Thermionic rectifiers:
(a) High vaculum
(b) Mercury arc
(c) Tungsten-argon
4. Eilectrolytic rectifiers
(a) Aluminum-lead-amm onium carbonat (b) Tantalum-lead-sulphuric acid.
5. Dry plate metal rectifiers
(a) Copper-cuprous oxide
(b) Magnesium-cupric sulphicle
(c) Selenium-iron-tin

Of these various types, the dry plate metal variety is the most widely used and is rapidly replacing other types now in service. Principal reasons for this are:

1. High efficiency
2. Low initial cost
3. Low maintenance cost
4. Dependability and long life
5. Sinaller space required
6. No liquids to spill. no bulbs to break, no moving parts to get out of order

Dry plate metal rectifiers are made in many different forms, shapes and types. This discussion will be limited to the magnesium-cupric sulphide variety.

## MAGNESIUM-CUPRIC-SULPIIIDE RECTIFIERS

In 1924 Samuel Ruben discovered that when a properly treated magnesium-dise was brought together into proper contact with a disc of copper sulphide, and a current passed between the two dises so that a reaction took place at the boundaries ill contact, an asymmetrical conducting, or unidirectional film was formed. This film had the property of offering a low resistance to a current flowing in one direction and a high resistance to a current flowing in the other direction. Since 1924 considerable time and effort has been spent on the further development of the rectifying couple. Many basic patents have been issued to Mr. couple. Many basic patents have becn issued to Mr. under the Ruben patents.

In the short space of it years, the copper subphide
rectifier has emerged from a laboratory development to a commercial rectifier which today is being applied to electroplating, arc welding, motion pieture projector arc power supplies, railway car and industria truck battery charging, as well as to a number of smaller applications which include: automobile storage battery chargers. coin machine power supplies, automobile radio demonstrators, model and toy raitroad power supplies and control, along with a number of other applications which are too lengthy to list. Copper sulphide rectifiers are adaptable to most any application requiring low voltage at medium or high current.

Copper sulphide rectifiers are made in heavy-duty types for single and polyphase service, both convectional and forced cooling.

## LOW COST

Comper sulphite rectifiers are noted for their ability to rectify heavy currents. This characteristic results in a lower equipment cost per watt of rectified power.

## OPERATING LIFE AND TEMPERATURES

The operating life of any dry dise rectifier is directly related to the temperature at which the rectifier is normally ofrrated. Copper sulphide rectifiers are distingulsized by their ability to operate continuously at a relatively high temperature without destroying those characteristics essential to long operating life.

Fxtensive tests conducted over a period of ten years indicate that. when properly applied, the life of the rectifier is practically unlimited.

For maximum life the rectifier should be operated at a temperature not greater than $85^{\circ} \mathrm{C}\left(185^{\circ} \mathrm{F}\right)$.
For applications where the longest possible operating life is not a requisite, a safe operating temperature of $130^{\circ} \mathrm{C}\left(26.5^{\circ} \mathrm{F}\right)$ is permissible. Many rectifier installations, operating continuously at this temperature, have been in operation for periods in excess of 10,000 hours. Copper sulphide rectifiers have been operated at overload currents creating temperatures as high as $3.50^{\circ} \mathrm{C}$ ( $6.60^{\circ} \mathrm{F}$ ) for brief intervals without failure. Although not practical nor recommended, this fact proves that copper sulphide rectifiers may he overloaded many times without failure should abnormal conditions or emergencies arise. This is an outstanding characteristic of copper sulphide rectifiers.

## AMBIENT TEMPERATURES

Another outstanding feature of copper sulphide rectifers is the fact that they may be operated continu susly at ambient temperatures as low as $40^{\circ}$ below zero (Centigrade and Fahrenheit) and at ambient temperatures higher than will ever be normally encountered, with little or no change in their output or efficiency.

The DC ampere ratings listed in Tables B and C on pages 305 and 310 are the maximum ratings recommended for continuous operation under conditions of average ambient temperatures, not in excess of $40^{\circ} \mathrm{C}\left(101^{\circ} \mathrm{F}\right)$, with the surfaces of the radiator plates in vertical planes and with the flow of air througl the rectifier being entirely free and unobstructed by other objects.

Information on operating rectifiers under conditions of restricted ventilation will be given on request.

## IIUMIDITY

The rectifier assemblies are sealed by a special compound, which thoroughly protects the rectifier against external conditions. high humidity, acid and alkal fumes. This special compound is applied in several heavy coats to insure thorough protection. It is baked at a temperature much higher than that at which the rectifier is rated to operate.

## COMPACTNESS

The ability of copper sulphide rectifiers to be operated siffely at high temperatures makes it possible to build a compact unit per watt of DC output. (See Dimensions in Tables B and C, pages 309 and 310.) This is a desirable feature because space is limited in most applications.

VOLTAGE OVERLOAD AND SELF-IIEALING;
If an abnormal AC voltage surge were applied to the rectifier, such as might be caused by lightning striking a power line, the rectifying film may break down for an instant but will re-form almost immediately because of the self-healing characteristics of the rectifying junction.

## REGULATION

Copper sulphide rectifiers have a low internal resistance in the conducting direction. In fact, for the same unit area, the internal resistance of the rectifier is considerably lower than any other dry plate metal rectifier. This characteristic results in excellent regulation of the rectifier output voltage over a wide range of load conditions. With the correct type of transformer (secondary voltage regulation $15 \%$ or less), it makes possible automatic tapering or modified constant potential battery charging.

## SEASONING

Any rectifier will tend to "age" or "season" and change in internal resistance. Unlike other types of dry disc rectifiers, which experience an appreciabic change in characteristics as a result of apeing. the output of copper sulphide rectifiers decreases only $10 \%$ on the average. All of this change takes place within a few hundred hours of the initial installation of the rectifier. In an application where even this minor change is a factor, voltage compensating provisions can be made in the design of the transformer or in other equipment associated with the rectifier. In practically every instance, ageing adjustments have been unnecessary when using copper sulphide rectifiers.
Throughout their life, and also over wide ranges of load and of ambient and operating temperatures, the efficiency of copper sulphide rectifiers remains practically constant. This superior characteristic is of considerable importance in those applications where a material decrease in efficiency, either during life or at light loads or at low temperatures, is undesirable.

## MALLORY REPLACEMENT AND ORICINAL EQUIPMENT RECTIFIERS

Mallory "Replacement" and "Standard" rectifiers are constructed from similar parts. Mallory "Replacement" rectifiers are carried by most Mallory-Yaxley Radio Parts Distributors. Mallory "Standard" rectifiers are assembled to order from standard stock comfonents, shipment being made within a few days after the receipt of the order.

## TYPE CODE

Every Mallory Rectifier has a type number constituting a code. This code explanation follows:

1. When insulated stud or bolt mounting is desired (insulated foot mountings are not standard, although supplied on certain replacement rectifiers) the letter "I" should prefix the entire TypNumber explained as follows. This prefix should not be used if grounded stud or bolt is satisfactory.
II. First letter to be added in front of the type numbers listed in Tables B and C on pages 309 and 310, represents the style ot mounting.
(I) " S "-Stud Mounting. Available on all sizes of rectifiers.
(2) "B"-Bolt Mounting. Available on all Series $B$ rectifiers from 4 to 12 junctions inclusive, and 4 to 24 junctions inclusive on Series C rectifiers. Not available on rectifiers using No. 11 radiator plates.
(3) "F"-Foot Mounting. Available on all rectifiers using No. 1, No. 3, and No. 7 radiator plates. Not available on rectifiers using No. ! and No. 11 radiator plates.
When the style of mounting is not specified, rectifiers will be supplied with foot mounting where No. 1, No. 3, and No. 7 radiator plates are used. and stud mounting where No. 9 and No. 11 radiator plates are used.
III. A number in some multiple of 4 up to 30 represents the total number of junctions in any one rectifier. Mallory Standard Rectifiers are not made with more than 30 junctions.
IV. Series designation:
" $B$ "-One rectifying junction per radiator flate (characteristics listed in Table B).
"C"-Two rectifying junctions per radiator plate (characteristics listed in Table C).
" G "-No radiator plates used in these rectifiers (for replacement use only).
" H "-No radiator plates used in these rectifiers (for replacement tise only).
" L "-No radiator plates used in these rectifiers (for replacement use only).
When more than two series designations are included in the type number, this means a special mechanical arrangement, in which certain sections of the rectifier are constructed in accordance with one of the series designations and other sections of the rectifier constructed in accordance with the other series designation.
$V$. The last digit or digits, designates the size of the radiator and terminal plates as follows:
No. 1
$11 / 4$ " Square
No. 3.
No. 7....
No. 9.
13/4" Square
11 . . . . . . . . . . . . . . . . . . . $31 / 1^{2 \prime \prime}$ Square
See dimensions in Tables B and C for length of terminal tabs.
VI. When no suffix is used, it designates a singlephase, full-wave bridge rectifier.
" $B$ " indicates that the rectifier is mounted on a Bakelite base.
" $M$ " represents a rectifier with certain mechanical variations from standard construction. All variations cannot be listed in this discussion. Rectifiers with " $M$ " prefixed are for replacement use only and can only be described by detailed drawings.
" $P$ " indicates that the rectifier is so stacked that the center terminal is plus and the end terminals, or mounting feet, are minus. In other words: reverse polarity. Standard polarity rectifiers may be used to replace reverse polarity rectifiers, of course, by alternating the DC wires to the rectifier and for this reason, reverse polarity rectifiers ate not listed.
" $Y$ " indicates a half-wave, single-phase rectifier assembly.

## CONNECTIONS

Figure 1 shows the correct connections for a standard Mallory rectifier used in a full-wave bridge circuit. The center lug or terminal of the rectifier is the negative ( - ) DC output connection. The two adjacent AC terminals connect to the secondary winding of the power transformer. Except in the insulated types the mounting foot, bolt, or stud provides the positive ( + ) DC output connection. On insulated types the positive ( + ) DC connection is made to the two end terminal lugs.
When replacing rectifiers of other manufacture with Mallory rectifiers, care should be taken that the DC wires are properly connected. Be sure to check the polarity of the old rectifier and tag the DC connecting wires $(+)$ and $(-)$. If the polarity of the original rectifier differs from that of the Mallory replacement, correction for polarity can be made by simply reversing the DC wires, and connecting as described in the preceding paragraph.


## RECTIFIER ENGINEERING SERVICE

P. R. Mallory and Company is eager to co-operate with all users and prospective users of rectifiers. Ask for the special "Rectifier Catalog and Technical Bulletin" Form R-610; and the "Rectifier Application Questionnaire," supplied for convenience in describing proposed operating conditions. The Mallory Rectifier Engineering depart ment will be glad to make specific recommendations for any installation on receipt of the necessary information as to operating conditions and requirements.

## TABLES " ${ }^{\prime \prime}$ " AND " ${ }^{\prime}$ "

Ratings shown are based on maximum AC voltage conditions which may be encountered. When used on commercial power lines with normal line voltage variations, ratings shown should be used with transformers designed to supply the recommended voltages at the highest line voltage. Past experience indicates that power lines rated at $110-115$ volts will frequently deliver as high as 130 volts.
A resistive load is any load which does not contain a battery, appreciable inductance, or capacity.
Where a filter is used between rectifier and load, reference should be made to the explanation and description of the various types of loads described in booklet R-tilo on Mallory Standard Rectifiers. A loud speaker field or relay system operated without a shunt capacitor should be considered as an inductive load. Information on capacitor shunted loads should be obtained from our Rectifier Engineering Department.

## MALLORY STANDARD RECTIFIER DIMENSIONS SEE TABLES B and $C$



TABLE B
MALLORY STANDARD SERIES B SINGLE-PHASE FULL-WAVE BRIDGE RECTIFIERS
Ratings are maximum under conditions of continuous operation at ambient temperatures of $40^{\circ} \mathrm{C}\left(104^{\circ} \mathrm{F}\right)$ or lower with unrestricted ventilation. Battery load ratings are based on half ( $1 / 2$ ) charged unloaded lead-acid storage batteries only.

Available Mounting(Prefix to Type)	TypeNumber(Soe NoteBelow)	$\begin{gathered} \text { Max } \\ \text { No Load } \\ \text { AC } \\ \text { Voltage } \end{gathered}$	RESistive load				LEAD-ACID BATTERY LOAD							inductive load				Approximate Dimension to Nearest $1 / 1 /{ }^{\prime \prime}$										
			Max. AC OperatingVolts	$\begin{gathered} \hline \text { Apprax. } \\ \text { AC } \\ \text { Input } \\ \text { Amps. } \end{gathered}$	Approx. DC OutputVolts	Max.DC Output Amps.	Max. AC Input Volts	Approx. AC Input   Volts	Approx. AC Input Amps.	Approx. Battery Volts	Max.DC ChargAmps.	No. of Cells		Max. ACOper-OtingavitsVolt	$\begin{gathered} \text { Approx. } \\ \text { AC } \\ \text { Input } \\ \text { Amps. } \end{gathered}$	$\begin{aligned} & \text { Approx. } \\ & \text { Dutput } \end{aligned}$Volts	Max.DC Output	A	B	c	D	E	F	G	H		$J$ K	
												$\begin{aligned} & \text { Lead } \\ & \text { Acid } \end{aligned}$	Nickel Iron													1		
FBS	${ }_{4}{ }^{\text {B1 }}$	3.75	3.3	6.0	1.7	4.5	3.3	3.17	6.7	2.23	4.5	1	1	3.3	5.1	1.48	4.5		13/6	$\stackrel{2}{2}$	13/8	17/8	13/8	13/8	$11 /$		21/4	3
FBS	$4 \mathrm{B3}$	3.75	3.3	8.0	1.7	6.0	3.3	3.19	7.7	2.24	5.0	1	1	3.3	6.8	1.45	6.0	7	13/8	2	11.		$21 / 8$	21/8	13/4		21/4	3
FBS	$4 \mathrm{B7}$	3.75	3.3	12.0	1.7	9.0	3.3	3.24	10.8	2.25	7.0	1	1	3.3	10.2	1.38	9.0	\% 8	13\%	2	1\%/4	21/2	$31 / 4$		$21 / 8$	3	21	3
BS	$4 \mathrm{B9}$	3.75	3.3	16.0	1.6	12.0	3.3	3.3	15.3	2.27	10.0	1	1	3.3	13.5	1.34	12.0	7/8	138						$31 / 2$	41/6	$21 / 4$	3
S	$4 \mathrm{B11}$	3.75	3.3	26.0	1.6	20.0	3.3	$3.3^{*}$	28.0	2.22	18.0	1	1	3.3	22.5	1.25	20.0	11/8	17/8							$61 / 2$		$31 / 2$
FBS	881	7.5	6.6	6.0	3.4	4.5	6.6	6.34	6.7	4.46	4.5	2	${ }_{2}$	6.6	5.1	2.95	4.5	17/8	${ }^{21 / 2}$	23/4	$21 / 4$	$23 / 4$	13/6	15/8	11/4		$31 / 2$	
FBS	${ }^{883}$	7.5	6.6	8.0	3.3	6.0	6.6	6.38	7.7	4.48	5.0	2	$\stackrel{2}{2}$	6.6	6.8	2.9	6.0	13\%	$21 / 2$	$23 /$	2\%	$2{ }^{27}$	$21 / 8$	21/8	13/1		319	4
$\underset{\text { BS }}{ }$	887 889	7.5	6.6	12.0	3.3	9.0	6.6	6.48	10.8	4.5	7.0	${ }_{2}^{2}$	$\stackrel{2}{2}$	6.6	10.2	${ }_{2}^{2.76}$	9.0	13/3	$2{ }^{21 / 2}$	2 $1 / 4$	23/4	31/8	31/4		$21 / 5$		$331 / 2$	4
S	8 B 11	7.5	6.6	16.0	${ }_{3.2}$	${ }_{20.0}^{12.0}$	6.6 6.6	${ }_{6}^{6.6}{ }^{6.6}$	10.3 28.0	4.54	10.0 18.0	$\stackrel{2}{2}$	${ }_{2}^{2}$	6.6 6.6	13.5 22.5	${ }_{2.5}^{2.68}$	12.0 20.0		2\% ${ }_{\text {2 }}^{4}$						${ }_{5}^{31 / 2}$	41142		$411 / 4$
FBS	12B1	11.25	9.9	6.0	5.1	4.5	9.9	9.5	6.7	6.7	4.5	3	3-4	9.9	5.1	4.45	4.5											
FBS	12B3	11.25	9.9	8.0	5.1	6.0	9.9	9.6	7.7	6.7	5.0	3	3.4	9.9	6.8	4.35	6.0	2\% 6	3\%	33	31/4	$33 /$	21\%	21/8	13		$41 / 4$	43
FBS	$12 \mathrm{B7}$	11.25	9.9	12.0	5.0	9.0	9.9	9.7	10.8	6.8	7.0	3	3.4	9.9	10.2	4.15	9.0	2\%	3\%	$3^{3} 4$	$31 / 2$	41/8	31/4		${ }^{21,1}$		$41 / 4$	43
BS	12B9	11.25	9.9	16.0	4.9	12.0	9.9	9.9	15.3	6.8	10.0	3	$3-4$	9.9	13.5	4.0	12.0	23/8	33/8						31/2	41/3		43/6
S	12B11	11.25	9.9	26.0	4.9	20.0	9.9	$9.9{ }^{*}$	28.0	6.65	18.0	3	3.4	9.9	22.5	3.75	20.0		33/4							$61 / 2$		51/4
FS	${ }^{1681}$	15.00	13.2	6.0	6.8	4.5	13.2	12.7	6.7	8.9	4.5	4	5	13.2	5.1	5.9	4.5	312	41/8	41/2	31/8		$15 / 8$	13/8	114			53/
FS	$16 \mathrm{B3}$	15.00	13.2	8.0	6.8	6.0	13.2	12.8	7.7	8.9	5.0	4	5	13.2	6.8	5.8	6.0	31,		415	41/8	45/8	21/8	$21 / 8$				
FS	16B7	15.00	13.2	12.0	6.6	9.0	13.2	13.0	10.8	9.0	7.0	4	5	13.2	10.2	5.5	9.0	31/2	41	$41 / 2$	4\% ${ }^{4}$		31/4		$21 / 1$			$53 / 8$
S	16B9	15.00	13.2	16.0	6.6	12.0	13.2	13.2	15.3	9.1	10.0	4	5	13.2	13.5	5.3	12.0	31/2	41						$31 / 2$	4114		53
S	16B11	15.00	13.2	26.0	6.4	20.0	13.2	13.2*	28.0	8.9	18.0	4	5	13.2	22.5	5.0	20.0	37/8	4\%						5	$61 \frac{1}{2}$		61/4
FS	$20 \mathrm{B1}$	18.75	16.5	6.0	8.5	4.5	16.5	15.8	6.7	11.2	4.5	5	6	16.5	5.1	7.4	4.5	43/8		51/4					$11 / 6$			
FS	$20 \mathrm{B3}$	18.75	16.5	8.0	8.5	6.0	16.5	16.0	7.7	11.2	5.0	5	6	16.5	6.8	7.3	6.0	43\%	$51 / 8$	$51 / 4$		$51 / 2$	21/8	$21 / 8$	13			615
FS	$20 \mathrm{B7}$	18.75	16.5	12.0	8.3	9.0	16.5	16.2	10.8	11.3	7.0	5	6	16.5	10.2	6.9	9.0	4\%	51/8	$51 /$	51/4	57/8	$31 /$		23.			615
S	2089	18.75	16.5	16.0	8.2	12.0	16.5	16.5	15.3	11.4	10.0	5	6	16.5	13.5	6.7	12.0	4\%	5118						31/2	41/6		$61 / 2$
S	20B11	18.75	16.5	26.0	8.1	20.0	16.5	$16.5^{*}$	28.0	11.1	18.0	5	6	16.5	22.5	6.2	20.0	47\%	5\%\%						5	61/2		$71 / 2$
FS	$24 \mathrm{B1}$	22.50	19.8	6.0	18.2	4.5	19.8	19.0	6.7	13.4	4.5	6	7.8	19.8	5.1	8.9	4.5	51/8	53/6	61/4			15/6	15\%	$11 / 4$			$71 / 2$
${ }_{\text {FS }}$	${ }_{24}^{24}{ }^{24} 8$	${ }_{22}^{22.50}$	19.8	8.0	10.3	6.0	19.8	19.2	7.7	${ }^{13.5}$	5.0	6	7.8	19.8	6.8	8.7	6.0	51/8	$57 / 8$	61/6	53/4	61/4	$21 / 8$	$21 / 8$				$71 / 3$
FS	${ }^{2487}$	22.50	19.8	12.0	10.0	9.0	19.8	19.5	10.8	13.6	7.0	6	7.8	19.8	10.2	8.3	9.0	51/8	$57 / 8$	61/4			31/4		${ }^{21 / 2}$			$71 /$
S	$24 \mathrm{B9} 9$	22.50	19.8	16.0	9.9	12.0	19.8	19.8	15.3	13.6	10.0	6	7.8	19.8	13.5	8.0	12.0	51/8	57						$31 / 2$	41/6		713
S	$24 \mathrm{B11}$	22.50	19.8	26.0	9.7	20.0	19.8	19.8*	28.0	13.3	18.0	6	7.8	19.8	22.5	7.5	20.0	5\%	65\%						5	61/2		$81 / 2$
FS	$28 \mathrm{B1}$	26.25	23.1	6.0	11.9	4.5	23.1	22.2	6.7	15.7	4.5	7	9	23.1	5.1	10.3	4.5	6	65/8	7	63/8	67/8	13/8	13/8	11/4			
FS	$28 \mathrm{B8}$	26.25	23.1	8.0	12.0	6.0	23.1	22.4	7.7	15.8	5.0	7	9	23.1	6.8	10.1	6.0	6	63/4	7	6\% ${ }^{\text {\% }}$	71/8	21/8	21/8	134			$81 / 2$
FS	28B7	26.25	23.1	12.0	11.7	9.0	23.1	22.7	10.8	15.8	7.0	7	9	23.1	10.2	9.7	9.0	6	63	7	$67 / 8$	71/2	31/4		$21 / 2$	3		$81 / 2$
S	28B9	26.25	23.1	16.0	11.5	12.0	23.1	23.1	15.3	15.9	10.0	7	9	23.1	13.5	9.3	12.0		634						$31 / 2$	41/2		$81 /$
S	28 B 11	26.25	23.1	26.0	11.3	20.0	23.1	23.1*	28.0	15.6	18.0	7	9	23.1	22.5	8.7	20.0	67/8	75\%						5	61/2		91/2
FS	$32 \mathrm{B1}$	30.00	26.4	6.0	13.6	4.5	26.4	25.4	6.7	17.9	4.5	8	10	26.4	5.1	11.8	4.5		73/8	8		758			11/4			
FS	32 B 3	30.00	26.4	8.0	13.7	6.0	26.4	25.5	7.7	18.0	5.0	8	10	26.4	6.8	11.6	6.0	63	711	8	$7 \%$	7\%	21/8	21/8	13			0
FS	$32 \mathrm{B7}$	30.00	26.4	12.0	13.3	9.0	26.4	25.9	10.8	18.1	7.0	8	10	26.4	10.2	11.0	9.0	63\%	71/6	8	73/4	81/4	31/4		212			9
S	$32 \mathrm{B9}$	30.00	26.4	16.0	13.2	12.0	26.4	26.4	15.3	18.2	10.0	8	10	26.4	13.5	10.7	12.0	633	$71 / 2$						312	41/4		9
S	32B11	30.00	26.4	26.0	13.0	20.0	26.4	26.4*	28.0	17.8	18.0	8	10	26.4	22.5	10.0	20.0	7\%	81/2						5	61/2		10
FS	$36 \mathrm{B1}$	33.75	29.7	6.0	15.3	4.5	29.7	28.5	6.7	20.1	4.5	9	${ }^{11-12}$	29.7	5.1	13.2	4.5	75/8	83/4				15/6					10
FS	${ }^{3683}$	33.75	29.7	8.0	15.4	6.0	29.7	28.7	7.7	20.2	5.0	9	11.12	29.7	6.8	13.0	6.0			$81$	811	88	$21 / 8$	21/8	13			10
FS	${ }^{3687}$	33.75	29.7	12.0	15.0	9.0	29.7	29.2	10.8	20.3	7.0	9	${ }^{11.12}$	29.7	10.2	12.4	${ }^{9.0}$	$73 \%$	8\%\%	81/2	83/8	91/8	31/4		$21 /$			10
S	3689 36811	33.75 33.75	29.7	16.0	14.8	12.0	29.7	${ }^{29.7}$	15.3	${ }_{2}^{20.4}$	10.0	9	${ }^{11-12}$	29.7	${ }^{13.5}$	12.0	12.0 200	${ }^{7318}$	838 918						$31 / 2$	$41 / 3$		
S	36B11	33.75	29.7	26.0	14.6	20.0	29.7	29.7*	28.0	20.0	18.0	9	11-12	29.7	22.5	11.2	20.0	81/2	91/4							6\%		11

[^3]MALLORY STANDARD SERIES C SINGLE-PHASE FULL-WAVE BRIDGE RECTIFIERS
Ratings are maximum under conditions of continuous operation at ambient temperatures of $40^{\circ} \mathrm{C}\left(104^{\circ} \mathrm{F}\right)$ or lower with unrestricted ventilation. Battery load ratings are based on half ( $1 / 2$ ) charged unloaded lead-acid storage batteries only.


NOTE: When stud or bolt (not foot) is to be insulated from assembly prefix type number with " 1, " add $1 / \mathrm{s}^{\prime \prime}$ to dimension $\mathbf{B}$.
dimensions and ratings subiect to change without notice

Note: For higher outputs, Rectifiers may be connected in series, parallel, or series-parallel, subject to the conditions outlined in Rectifier Catalog Form R-6l0.

## Mallory Replacement Rectifiers

The widespread use of dry disc rectifiers provides the serviceman with an additional source of profit. The following tables list the Mallory Rectifiers commonly used for replacements and show their application. Recommendations as to the proper replacement rectifier for unlisted devices can be made on receipt of complete information on the original equipment.
Replacement Table—Battery Chargers, Boosters, "A"Eliminators and Speaker Power Supplies

| Make | Model | Use Mallory <br> Rectifier <br> Cat. No. |
| :---: | :---: | :---: | :---: | :---: | :---: |$\quad$ Make | Model |
| :---: | | Use Mallory |
| :---: |
| Rectifier |
| Cat. No.* |

BATTERY CHARGERS

Acme		4A1B
Arvin	400	B8C3M
Arvin	500-600	F16C3M
American Television \& Radio	400.	1B12C1M
American Television \& Radio	600	F16C83
Bernard.		4A1B
B-L	2-4 amp.	IB12ClM
B-L	4-6 amp.	IF12C7P
Blackstone		IF12ClM
Bosch.	250H-250J.	F16C3M
Briggs-Stratton		F16C3MB
Cadillac.......	Al109-A1180	F16CB3
Chevrolet	250B	F16C3M
Chrysler		IB12C1M
Elkon. .	B-T	4A1B
Elkon.	E.	IB12ClM
Elkon.	3 amp .	F16C3MB
Elkon.	310	F16C3M
Elkon.	Battery Booster.	IB12C1M
Evans.		IB12C1M
General Motors	250-600503	F16C3M
Hudson	2-4 amp.	IB12C1M
Jordan		IB12C1M
Kingston		IB12C1M
Kingston	Auto Battery	B8C3M
Knapp.	No. 2.	IB12C1M
Knapp	No. 3	B8C3M
K R W		IB12C3P
Lundy.	250	F16C3M
Lundy .	600.	F16CB3
Mallory	No. 3	B8C3M
Mallory	No. 2	IB12ClM
Mallory	5535	F16CB3
Mallory	5535A	IF16CB7M
Mallory	3C.	IB12C1M
Mallory-Elkon	250.	F16C3M
Mallory-Elkon	5535	F16CB3
National. . . .		4A1B
Newman		IB12ClM
Otwell	Safety-Super.	F16CB3
Packard		F16CB3
Philco.		F12G1Y
Precision		4A1B
Sears-Roebuck	2-4 amp.	IB12C1M
Sears-Roebuck	4-6 amp.	IF12C7P
Silvertone		IB12ClM
Song Bird		IB12C1M
Truetest	Battery Booster.	IB12ClM
Truetest		B8C3M
United Motor Service.	4017	IB12C3P
United Motor Service.		IB12C1M
Utah.		1B12C3P
Utah-Carter		IB12C3P
Wards (Montgomery-Ward).	2-4 amp.	1B12C1M
Wards (Montgomery-Ward)	4-6 amp.	1F12C7P
WLS.		IB12ClM

LOUD SPEAKER POWER SUPPLIES



# Useful Servicing Formulas 

AKNOWLEDGE of the elementary principles of electricity is necessary so that all the problems encountered in radio receiver servicing can be ssolated and solved by the proper application of fundamental truths. Without further preamble, let us consider that statement upon which all forms and branches of electrical engineering is based:

## OIIMS LAW

Statement of Ohms Law: "Current flowing in a conductor will increase directly with an increase in voltage, and will decrease directly with an increase in resistance." In other words, voltage is the couse, while current is the effect; and the amount of the effect is directly dependent upon the amount of cause and inversely upon the amount of opposition offered to the effect.

Mechanical Analogy: Suppose that by exerting a certain eflort, a nan is able to walk a certain distance on a smooth city road. With double the effort, he can walk double the distance on the same road. Assume that on a rough country road, with the same effort, he can walk only half this distance, or with double the eflort, he can walk the original distance. Applying this analogy to electricity, a certain voltage causes a certain current to flow. Double the voltage will cause double the current to flow, if the resistance is the same. If the resistance is doubled, however, the same voltage will result in only half the current flow. With double the voltage and double the resistance, the same current will flow.

## Ohins Law (Equalion)

$$
\mathrm{I}=\frac{\mathrm{E}}{\mathrm{R}} ; \quad \text { Current }=\frac{\text { Vol:age }}{\text { Resistance }}
$$

Where I, le, and It are expressed in amperes, volts, and ohms respectively. The terms of voltage, current and resistance are used with the understanding that the reader has some elementary knowledge of electricity. Inasmuch as the limitations of this book prevent a complete review of the fundamentals, reference can be made to books covering the subject of fundamentals in electrical engineering.

The equations below all mean the same thing, and serve to express in various forms the idea set forth above.
$\mathrm{E}=\mathrm{I} \times \mathrm{R} ; \quad$ Voltage $=$ Current $\times$ Resistance

$$
\mathrm{R}=\frac{\mathbf{E}}{\mathbf{I}} ; \text { Resistance }=\frac{\text { Voltare }}{\text { Current }}
$$

The substitution of numerical values in place of names or letters will make the meaning clearer. It will be seen that if any two values are known, the third can be determined from these equations.

Problem: A choke used in the filter system of a " $B$ " supply unit has a resistance of 100 ohms, and the voltage drop across the choke is 50 volts. What is the current flowing through the choke?

Using the first statement of Ohms Law, and substituting values for words: I equals 50 volts divided ly 100 ohms. Thus, the current is .5 ampere (Figure 1 A ).

Figure 1B shows another application of the law that can be solved by the third


Figune I. Illistraling fandamental radio circuit calculalions which require familiarily with ohms law. (A) Solving for current flowing in a circuit: (B) the resistance required to effecl a known wollage drop; (1)) the voltage drop across a known value of resistance.
statement. Note should the taken of the fact that the voltage across the resistor I is not 300 volts, but the difference between the two voltages indicated, or 50 volts. Substituting in the equation:

$$
K=\frac{E}{I} ; \quad R=\frac{.50}{.005}=10,000 \text { ohms } .
$$

In Figure 1C is shown a common calculation necessary in modern service work. Here we must determine the value of the bias resistor for a particular tube. This value is easy to obtain, thus:
$\mathrm{E}=1 \times \mathrm{R} ; \mathrm{H}=.005 \times 2,000=10$ volts.

$$
\begin{aligned}
& \text { Ohms Law in a Nutshell } \\
& \qquad \begin{array}{l}
\mathrm{E} \times \mathrm{K}
\end{array} \\
& \begin{array}{l}
\mathrm{E}=\text { Voltage } \times \mathrm{I} \\
\times=\text { Multiply by }
\end{array} \quad \mathrm{I}=\text { Current }
\end{aligned}
$$

Put your thamb over the unknown-or the symbol designating the value you want to know-thus to find voltage, cover $E$ and the answer is: multiply current by resistance.

## Iower

Definition. "lower is the rate of doing work." Thus, one man may perform a certain piece of work in a day, while another may do the same thing in an hour. The second man has expended more power. "Electrical power is the product of the voltage times the current," or in symbols:

II $=\mathrm{E} \times \mathrm{I}$; Power (watts) $=$ Voltage (in volts) $\times$ Current (in amperes).
Problcm: In Figure 1B, how many watts are dissipated in the resistor? Watts $=50$ volts $\times .005$ amperes $=.25 \mathrm{~W}$ att.

In many cases it is more convenient to find the electrical power loss in terms of resistance. Thus, the equation W equals $\mathbf{E}$ times I can be stated in terms of the circuit resistance and the current flowing through it.


Disgune: 2. A sperific illustration of calculating the
ualtage ruting of a resistor in a radio circuil.
$\mathrm{W}=\mathrm{I}$ times I times R ; or $\mathrm{W}=\mathrm{I}^{2} \times \mathrm{R}$ or, in other words, watts equal current (amperes) times current (amperes) times resistance (ohms).

In Figure 2 there is a circuit with a resistor in series with the cathode and the ground of a '27 type tube. This resistor supplies the hias for the tube. If the resistance has a value of 2.000 ohms, what is the power loss in the resistor?
$W=.005 \times .005 \times 2,000=.05$ watt.
Another form of this equation states the power in terms of voltage and resistance.

$$
W=\frac{\text { voltage } \times \text { voltage }}{\text { resistance }} \text { or } W=\frac{\mathbf{E}^{2}}{K}
$$

A tube hats a DC plate resistance of 10,000 ohms and the voltage applied between plate and ground is 200 volts. What is the power lost in the plate cireuit of the tube? See Figure 3.

$$
\mathrm{W}=\frac{200 \times 200}{40,000}=1 \mathrm{~W} \mathrm{att} .
$$



Figure: 3. Figuring the power or "watts" dissipated in a radio circuil.

## Kirchhoff's Laws

These laws depend on Ohms Law. They constitute a further application of Ohms Law to more complicated circuits.
In addition to simple electrical circuits, conductors may be connected in various complicated networks, all of which come under the heading of "divided circuits." By means of Kirchholl's. Laws, the current in any part of a divided cirenit may be found, if the resistances of the various parts, and the e.m.f.'s (volts) are known.

Kirchhoff's First Lau': "Any current flowing to a point in any electrical cirenit is cqual to the sum of the currents flowing anay from that point."

Kirchhof's second Lun: "In any closed electrical circuit the sum of the intressed electromotive forces will equal the sum of the voltage drops." This statement requires modification, in so far as "addition" of voltages is concerned. Voltages are added, provided that they are in the same direction,
but nust be subtracted if in opposite directions.

An example of Kirchhofl's first law is seen in Figure 4 where the sum of the currents, 8 amperes and 4 amperes, flowing towards point $A$, is equal to the current, 12 amperes leaving point A .

Kirchhofl's second law is also numerically ilhustrated in Figure 1. Assume that the resistances of various parts of the circuit are as marked, and that the total internal resistance of the battery is .06 ohm. Then according to the statement of the second law, if the impressed voltage is 7.12 volts:


Fisume 4. Illustraling Kirchhoff"s first lam: "a current flowing into a circuit is the equal to the cotrent leaving the circuit."

Impressed Voltage $=7.12=$ total voltage drop through the lower circuit.
Impressed Voltage $=12 \times .1(\mathrm{C}$ to B$)$ plus $4 \times 1$ ( $B$ to $A$ in lower branch) plus $12 \times .1$ ( A to D ) plus $12 \times .06$ ( D to C through battery).
Impressed Voltage $=$ total of 7.12 volts.
In a like inanner, impressed voltage equals total voltage drop through the upper circuil.
$7.12=12 \times .1($ C to B) plus $8 \times .5$ (Is to A through upper circuit) plus $12 \times .1$ (A to D) plus $12 \times .06$ (D to C through battery), a total of 7.12 volts.

## Conductors and Resistors

Materials are divided into two classes-conductors and non-conductors. Materials which offer a relatively easy path for the flow of electricity are called "conductors." In general, the pure metals are of this class, copper wire being nearly always used as a low-resistance conductor.

In reality there are no materials which are not conductors of electricity, but certain materials are such poor conductors that they may be classed as non-conductors. When such non-conductors are used to reduce an electric current to a predetermined small value, they are called "resistors."

## Determining Resistance

(Excepting Temperature Change)
The material of which a conductor is composed has an important bearing upon its resistance. Thus a unit length and unit crosssection of aluminum has about one and onehalf times the resistance of copper having the same dimensions. Platinum has about six times the resistance of copper.
The longer the conductor, the greater the resistance; while the greater the cross-sectional area, the less the resistance. The length of a conductor is usually expressed in feet, while the cross-sectional area is expressed in circular mils (equivalent to its diameter in thousandths of an inch, squared).
It can be conveniently remembered that No. 10 copper wire has a diameter of 11 of an
inch ( 100 mils, or 10,000 circular mils), and that 1,000 fed of such wire will have a resistance of 1 ohm. It is possible to calculate the approximate resistances of copper wire (Brown and Sharpe or American Wire Gauge) from the above. Thus, for wires larger than No. 10, the resistance is halved for every third number of larger wire. As an example, No. 7 wire has an approximate resistance of $1 / 2$-ohm per 1.000 ft . In a like manner, for wires smaller than No. 10, the resistance is doubled for every third nomber of smaller wire. The resistance of No. 13 is about 2 ohms per thousand fere: of $\mathbf{N o}$. 16, approximately 4 ohms per thousand fert, etc. The two numbers between every third may be calculated from the others, since the next smaller size has about 1.25 greater resistance, while the second smaller size has about 1.6 gr gater resistance. Thus the resistance of No. 11 wire is approximately $1 \times 1.25$ equals 1.25 ohms per thousand feet; and that of No. 14, approximately 1.6 ohms per thousand feet.
Effect of Temperature on Resistance: The resistance of practically all electrical conductors increases with increase of temperature. Carbon, practically the only exception, decreases in resistance with any substantial increase in temperature.
Two words synonymous with a resistance are "temperature coefficient." The term "coefficient" refers to a number used as a multiplier. The temperature coeflicient is that multiplier which will give the increase in resistance per degree rise in temperature for each ohm of the material. For all pure metals, the temperature coofficient is approximately 00023 (where temperature is measured in degrees Fialrenheit). The figure .0023 is close enough for all ordinary work although the temperature coellicient is not constant for all initial temperatures.

## Current Carrying Capacity

The allowable rise in temperature of the conductors or resistors in an electrical circuit is the final factor which determines its current carrying capacity. If the conductors or resistors are covered, the maximum allowable temperature of the insulation will impose the limitation, since the insulation or the enamel covering may crack, char, or even burn at high temperatures.
The temperature rise will be determined by the difference between the heat generated and the heat dissipated, or removed. Thus, a certain amount of electrical energy will be converted into heat and some of this heat will be carried away. The remaining heat will sorve to increase the temperature. Of course, a certain amount of heat energy will raise the temperature of some materials a great deal more than others. Hence, the material of the conductor will also have some bearing on the temperature rise, aside from its resistance.
The heat generated in an electrical circuit will depend upon the value of the current flowing and upon the resistance in the circuit. If the current is doubled, the heat generated will be quadrupled. If the resistance is doubled, the heat generated will simply be doubled (if the current is constant). Thus, an inerease of current has a much preater effect on the amount of heat generated than


Figune 5. Illustrating the effect of resistances connecled in series. The total resislance is equal to the sum of the resistances in the circuit.
proportionate increase of resistance. Anything that will increase the resistance of a circuit will increase the amount of heat generated.
Safe Current Carrying Capacities: In cases of resistor replacement, it is wise to replace with a resistor that will dissipate at least three times the power to be wasted in the circuit.

Vollage Drop: There is a difference in voltage between any two points in a circuit between which there is resistance, and this difference in voltage is known as the vollage drop. The difference in the voltage is determined by the resistance between the two points and the current flowing. If we desire to know the value of the resistance to be placed in series with a 201A type tube in order to operate it from a 6 -volt storage battery, we must first determine the voltage drop required between the battery and the filament of the tube, namely 1 volt. Having determined the voltage to be dropped, and knowing the current required by the tube (. 25 ampere), we can find the value of the resistance by Ohms Law. R equals E/I. Thus the resistor has a value of 4 ohms.
Circuits: Circuits can be classified into three general groups: Series, parallel, and series parallel. Examples of which will be covered in greater detail.

Circuils with Resistors in Series: If resistances are connected in series, the total resistance is the sum of all of the resistors in the circuit. See Figure 5. Thus the equation may be written R (eff.) equals H 1 plus R 2 plus R3 plus R4 plus R5, etc.

It will be noted on examination of the diagram that in series circuits the current is the same through all the resistors, but that the voltage drop across the resistors will depend upon the value of the individual resistor.


Figune 6. Illustrating the effect of paralleted resistances. The current divides into each resistor so that the sum of the currents flowing in each equal that flowing out of the

Circuils with Resistors in Parallel (equal value of resistance): In many circuits there are combinations of resistors in parallel: that is to say, the current path is divided through two or more resistors. If the numerical values of the resistors are equal, then the effective circuit resistance can be obtained from the following equation:

$$
\text { R (eff.) equals } \mathrm{R} / \mathrm{N} \text {, }
$$

wherein $R$ is the value of one of the resistors and $\mathbf{N}$ is the number of resistors in the circuit.
Example: There are 6 resistors in a circuit and they are in parallel. The resistance of each one is 12 ohms. Then dividing 12 by 6 we have the effective resistance, which is 2 ohms.
The solution of equal values of resistors in parallel is an extremely simple operation, but it must be remembered that the formula is useful only when the resistors are equal in value.
A circuit with resistors in parallel is shown in Figure 6. Note that if the resistors are equal in value, the same current will flow through both resistors, and the same voltage drop will appear across them. The sum of the currents through the resistors will equal the total current flowing out of the battery, E .

Circuils with Resistors in Parallel (unequal values of resistance): Many times we will come across circuits with resistors in parallel which are unequal in value. This is shown in Figure 6. If there are but two resistors in the circuit, as shown, then we can use the following formula:

$$
R(e f f .)=\frac{R 1 \times R 2}{R 1+R 2}
$$

Example: We have two resistors in parallel of 5 and 10 ohms, respectively. What is the effective value of resistance? Now, 5 times 10 is $50 ; 5$ plus 10 is 15 ; 50 divided by 15 gives the effective value of resistance which is 3.3 ohms.


Figlar 7. The effect of a mulliple number of resistors in parallel in a circuit. See text for full details.

Note that in circuits with resistors in parallel, the same voltage will appear across the resistors, but that the current through the resistors will vary with the value of the individual resistor.

Circuil with Resistors in Parallel (two or more of unegual value): Figure 7 shows a circuit in which there are four resistors in parallel and unequal in value. In this case we would use the formula commonly known as the "reciprocal of the sum of the reciprocals."

Thus:

$$
\mathrm{R}(\mathrm{eff} .)=\frac{1}{\frac{1}{\mathrm{R} 1}+\frac{1}{\mathrm{R2} 2}+\frac{1}{\mathrm{R} 3}+\frac{1}{\mathrm{R} 4}} \text { ete.; }
$$

substituting:

$$
I\left(\cdot+f f_{.}\right)=\frac{1}{\frac{1}{10}+\frac{1}{6}+\frac{1}{5}+\frac{1}{7}}
$$

solving:
$\frac{1}{10}=.1 ; \frac{1}{6}=.166 ; \frac{1}{5}=.2 ; \frac{1}{7}=.14 ;$ adding:
.1 plus .166 plus .2 plus .11 equals .606 ; Finding the reciprocal:

$$
\frac{1}{.606}=1.6 \text { ohns effective. }
$$

The sum of the currents in the branches of a parallel circuit will equal the total current flowing into the circuit. From an examination of the circuit, we find that the sum of the currents is $9.6+$ amperes.

The complete solution of the problem of Figure 7 has been carried out so that any one desiring to use these methods of calculation can do so. This solution will serve as a model and aid in studying just how the formula is to be handled. The author has gone to some lengths here in the solution of the problem but his experience indicates that there is never enough said on this subject as far as the average Service Man is concerned. Note that the same voltage appears across all the resistors and that the current through the individual resistors will be dependent on their value.

Resislance Networks (with resistors in series and in parallel): Circuits are encountered with resistors in series and in parallel. The solution of the effective value of resistance is obtained by breaking up the circuit into its local circuits, solving each portion consisting of parallel circuits, and then resolving them into simple series circuits. Figure 8 is an example along these lines.
Solution: The first thing to do is to solve all of the branch circuits. Cireuit R1, R2, R3 has an effective resistance of 3 ohms .


Figuae 8. A series circuit arrangement of paralleled resistors and how they affect the current flow. Refer to lext for method of calculating.

Circuit R5, $\mathrm{R} 6, \mathrm{R} 7$ has a resistance of 2.2 ohins.

Circuit R8, 129 has a resistance of 2.2 ohms.
As the above parallel circuits are in series with resistor IRI, we find the effective value of resistance by adding $10,3,2.2$ and 2.2 together. This totals 17.4 ohms.

Resistor R10 is connected across the voltage supply, and the effective value of the resistance network R1 and R9 is, in turn, connected across IR10. Thus, R10 is in parallel to the 17.4 ohm resistance of the network.

Solving for parallel circuits $50 \times 17.4 / 50$ plus 17.7 we have the effective total circuit resistance of 12.8 ohms .

Knowing that the voltage applied across this network is 100 volts, and that the effective resistance is 12.8 ohms , then $100 / 12.8$ is 7.8 amperes, or the total current flowing in the circuit.

The reader may think that a problem of this type can hardly occur, but if he will study the circuit of Figure 9 he will see the need for some practical knowledge on the solution of similar problems. The circuit of Figure 9 is a receiver breakdown circuit of the RCA Radiola 80. Note that there are many small series circuits and that they are all in parallel across the power supply which takes the place of the battery $E$ in all the problems set out above.


Figure 9. A typical radio receiving circuit, the Radiola 80, and how series and parallel resistors are practically applied.

## AC Voltage and Power

Where $Z$ is the Impedance in Olms, E is Effective Electromotive loorce in Volts, and I is Current Intensity in Amperes, then

$$
1=\frac{E}{Z} \quad \mathrm{E}=Z \times 1 \quad Z=\frac{E}{1}
$$

The Maximum Voltage E m is $1.414 \times$ the Effective Voltage Eic.
The Effective Voltage Ee is $0.700^{-} \times$the Maximum Voltage Em.
The Arerage Voltage Lee is $0.636 \times$ the .Maximum Voltage Em.
The Pouer in an AC circuit $W=$

$$
\mathrm{I} \times \mathrm{E} \times \frac{\mathrm{R}}{\mathrm{Z}}
$$

Where the Angle of Lag or lead, $\Phi$ and the Power Factor $\frac{R}{Z}=$ Cosine $\Phi$,
Sine $\Phi=\frac{X}{Z}$, and Tanyent $\Phi=\frac{X}{R}$

Reactance (Inductive) of a Coil $\mathrm{X}_{L}=\mathbf{2} \boldsymbol{\pi} \mathrm{fl}$,
Where $\pi=3.11$
$\mathrm{f}=$ frequeney in cyeles per second
$\mathrm{L}_{4}=$ inductance in henries
Example: What is the reactance of a 20 henry choke at 50 cycles?

$$
6.3 \times 50 \times 20=6,300 \text { ohms }
$$

## Reactance (Capaeitative)

 of a Condenser$$
\mathrm{X} c=\frac{10^{6}}{2 \pi \mathrm{fC}}
$$

Where: $\pi=3.14$

$$
f=\text { frequency }
$$

$\mathrm{C}=$ capacity in microfarads
Example: What is the reactance of a $2-\mathrm{mf}$. condenser at 50 cycles?

$$
\frac{10^{6}}{6.3 \times 50 \times 2}=1,590 \mathrm{ohms}
$$

Conversion Table   Frequency to Wavelength			
$300,000$			
$\left.\begin{array}{c} \text { Wavelength } \\ \text { in } \\ \text { Meters } \end{array}\right\}=\begin{gathered} \text { Frequency in Kilocycles } \\ \text { or } \\ 300 \end{gathered}$			
Frequency in Megacycles			
Long-IVave Broadcast Band		Short Waves	
Frequency Kilocycles	Wavelength Meters	Frequency Megacycles	Wavelength Meters
550	245	1.5	200
-100	\%160	$\frac{2}{3}$	$1: 0$ 100
700	129	4	7 7 .0
750 800	-160\%	\%	(00.0
850	333	7	12.9
9900	33,3 314 316	8	${ }_{33.3}^{37.5}$
1000	300	10	30.0
1050 1100	- 276	11	27.3 27.0
1150	2611	13	23.1
1200 1250	-250	1.1	21.4 20.0
1300	231	117	18.8
1350 1400	222	17	17.6 16.7
1450	207	19	15.8
1500	200	20	15.0

## Impedance of a Circuit

The impedance of a cirenit consisting of a resistor and catparitor in series is:

$$
Z=\sqrt{1^{2}+X c^{2}}
$$

The impedance of a circuit consisting of a resistor in parallel with a condenser is:

$$
Z=\frac{\mathrm{RX} \boldsymbol{c}}{\sqrt{\mathbf{R}^{2}+\mathrm{X} c^{2}}}
$$

## Equivalent Impedance of a Series Circuit

When an inductance, caparity and a resistance are connected in series, the combined effect is called the impedance of the cirenit.

$$
Z o=\sqrt{\mathbf{R}_{L}-(\mathrm{X}-\mathrm{Xc})^{2}}
$$

Where: $\mathrm{Z}=$ impedance in ohms
$1 R=$ resistance in ohms
$\mathbf{X} L=$ reactance of inductance in ohms
$X c=$ reactance of capacity in ohms

## Greek Alphabet

Name	1.etters		Commonly used to designate
	( 'ap.	small	
Apha. .	A	l	Angles. Coefficients. Arca.
Beta....	I3	[)	Angles. Coefficients.
Cramma	I'	$y$	Specific gravits. Conductivity.
Delta	1	$\delta$	Decrements. Variation. Density.
Epsilon	I*	$\varepsilon$	E.m.f. Base of hyperbolic logarithms.
Zeta..	7/	$\overline{5}$	Impedance. Co-ordinates.
Eta.....	II	1	Hysteresis coefficient. Efficiency.
Theta...	$\Theta$	d	Angular phase displacement. Time constant.
lota..	I	1	Current in amperes.
Kapma	K	$\%$	Dielectric constant. Susceptibilits. Kilo. Visibility.
l.ambeia.	1	$\lambda$	(Small) Wave length.
Mu.	,	I	Permeability. Amplification factor. Prefix micro-
Nu.	N	$v$	Reluctivits.
Xi	E	$\xi$	
Omicron	()	0	
Pii.	II	T	Circumference divided by diameter, 3.1416.
Rho	I'	0	Resistivity.
Sigma	こ	$\sigma$	(Cap) Sign of summation.
Tau	'T'	$\tau$	Time constant. Time-phase displacement.
Upsiton	Y	$v$	
Plii.	(1)	$\varphi$	Flux. Angle of lag or lead.
Chi.	X	$\%$	Reactance.
Psi	I'	リ'	Angular velocity in time. Phase difference. Dielectric flux.
Omega	()	(1)	Resistance in ohms. Resistance in megohms. $2 \pi F$. Angular velocity.

Conversion
Factors for conversion-alphabetically arranged.


## Equivalent lmpedance of a Parallel Circuit

When an inductance, capacity and resistance are connected in parallel the equivalent impedance

$$
\mathrm{Z} o=\frac{\mathrm{RX} X_{L} \mathrm{X}_{c}}{\sqrt{\left(\mathrm{RX}_{L}-\mathrm{RX} c\right)^{2}+\mathrm{X}_{L}{ }^{2} \mathrm{X} c^{2}}}
$$

## Kesonant Frequency

Where $L$ is the Inductance in henries and $C$ the Capacity in farads, $f$ is the Frequency in cycles (per second), then in ohms,
The Inductive Reactance $\mathrm{X}_{L}=6.283 \times \mathrm{fL}$
The Capacitative Reactance $\mathrm{X} c=\frac{1}{6.283 \sqrt{\mathrm{LC}}}$

## Frequency

Where: $\mathrm{f}=$ frequency in cycles
$\pi=3.14$
$\mathrm{L}_{\mathrm{C}}=$ inductance in microhenries
$\mathrm{C}=$ capacity in microfarads (mf.)

$$
\mathrm{f}=\frac{10^{6}}{2 \pi \sqrt{\mathrm{LC}}}
$$

Example: To what frequency will a 0.0005 mf. ( 500 mmf .) condenser, in parallel with a 180-microhenry coil, tune?
$\frac{10^{6}}{6.3 \sqrt{180 \times 0.0005}}=530,000$ cycles $=530$
kilocycles $=565$ meters

## Dissipation Factor $Q$

The ratio Q of reactance to resistance is generally used as the factor of merit of a coil or condenser and is called the dissipation constant.

$$
\text { For a coil } \mathrm{Q}=\frac{\omega_{L}}{\mathrm{R}}
$$

For a condenser $Q=\frac{1}{\omega R C}$

## Filter Design


$\mathrm{Fc}=$ cut-off frequency
$1 \mathrm{k}=$ resistance of the load
The cut-off frequency $F c$ should be lower than the ripple frequency which for 60 -cycle supply is 60 cycles for a half-wave rectifier and 120 cycles for a full-wave rectifier. The lower the frequency of cut-off, the better the filtering of the ripple frequency. Preferably
the cut-off frequency should be below the lowest frequency to be handled by the amplifier with which the filter is associated.

## Capacity of Parallel Plates

When two conducting plates are parallel, close toget her, and of large area, the capacity is given by

$$
C=0.0885 \text { times } \frac{k S}{t}
$$

Where $C=$ capacity in micromicrofarads
$\mathrm{K}=$ dielectric constant
$S$ = area of one plate in square centimeters
$t=$ distance between plates in centimeters

Power Factor of a Condenser

$$
\mathrm{If}=\frac{\mathrm{R}}{\sqrt{11^{2}+\left(\frac{1}{\omega \mathrm{C}}\right)^{2}}}
$$

Where: $1 \mathrm{l}=$ the resistance of the condenser $\stackrel{\omega}{\mathrm{C}}=6.28$ times the frequency
$\stackrel{\omega}{\mathrm{C}}=$ capacity in farads
On a bridge the resistance ( R ) is determined by dividing the reading of the series resistance ( $\mathrm{R} s$ ) by the ratio of $\mathrm{A} / \mathrm{B}$ (where the resistance of $\mathrm{C} s$ is negligible).


$$
\begin{gathered}
\text { Resistances in Scries } \\
R_{t}=R_{1}+R_{2}+R_{\partial} \ldots R_{n}
\end{gathered}
$$

Where: $R_{t}$ is the total value of all resistors connected in series.
$\mathbf{R}_{1}, \mathrm{I}_{2}$, etc., are the individual resistors.

$$
\begin{gathered}
\text { Resistanees in Parallel } \\
\mathrm{R}_{t}=\frac{1}{\frac{1}{\mathrm{R}_{1}}+\frac{1}{\mathrm{R}_{2}}}=\frac{\mathrm{R}_{1} \times \mathrm{R}_{2}}{\mathrm{R}_{1}+\mathrm{R}_{2}}
\end{gathered}
$$

Where: $R_{t}$ is the effective value of all the resistors connected in parallel.
$\mathrm{R}_{1}, \mathrm{H}_{2}$ are the individual resistors.
Example: What is the effective value of resistance of a circuit having resistors of 30,000 and 60,000 ohms connected in parallel?

$$
R_{t}=\frac{30,000 \times 60,000}{30,000+60,000}=20,000 \text { ohms }
$$

Color Code Chart for Fixed Condensers
(Total Indicates mmf.)

First Dot	Second Dot	Third Dot
Black........ 0	Black.... . . 0	
Brown....... 1	Brown..... 1	Brown. . . . . . . . 0
Red. . . . . . . . 2	Red. . . . . . . 2	Red. . . . . . . . . 00
Orange. . . . . 3	Orange..... 3	Orange. . . . . . 000
Yelow..... . . 4	Yellow. . . . . 1	Yellow . . . . 0,000
Green. . . . . 5	Green...... 5	Green . . . . 00,000
Blue........ 6	Blue...... 6	Blue. . . . 0000000
Purple. . . . . . 7	Purple . . . . 7	Purple. . $0,000,000$
Gray . . . . . . 8	Gray . . . . . 8	Giray.. . 00,000,000
White...... 9	White.... . . 9	White 000,000,000

## Vacuum-Tube Formulas

Amplification constant ("mu") $\mu$ equals

$$
\frac{\text { Change in Plate Voltage ( } \mathrm{E}_{\mathrm{p}} \text { ) }}{\text { Change in Grid Voltage }\left(\mathrm{E}_{\mathrm{g}}\right)}
$$

Plate Impedance (in ohms) $\mathrm{r}_{p}$ equals
Change in Plate Voltage ( $\mathrm{E}_{\mathrm{p}}$ )
Change in Plate Current ( $l_{p}$ )
Mutual Conductance gm equals

$$
\frac{\text { Change in Plate Current ( } \mathrm{I}_{\mathrm{p}} \text { ) }}{\text { Change in Grid Voltage (E.g) }}
$$

When the Plate Current is measured in Amperes; the Mutual Conductance
gm in Micromios $=\frac{\mu}{r_{p}} \times 1,000,000$
When $\mathbf{E}_{g}$ is the Input Voltage, $\mathrm{r} p$ is the Plate
Impedance and $\mathrm{h}_{\boldsymbol{p}}$ is the External Plate
Impedance or Load Impedance, the
Voltage Amplification $=\frac{\mu \times \mathbf{E}_{g} \times \mathbf{R}_{p}}{\mathrm{r}_{p}+\mathbf{R}_{p}}$

## The Decibel

The number of decibels corresponding to a given power ratio is 10 times the common logarithin of the ratio.

$$
N=10 \log _{10} \frac{P_{2}}{P_{1}}
$$

Where: $\mathrm{N}=$ decibels.

$$
\frac{P_{2}}{P_{1}}=\text { power ratio }
$$

In the case of voltage or current the number of decibels corresponds to 20 times the common logarithm of the ratio.
Example: What gain in decibels will there be if the voltuge in an amplifier rises to 7 times the normal level at a certain frequency?
$\mathrm{N}=\mathbf{2 0} \log _{10} 7=\mathbf{2 0} \times 0.8 .15=17$ decibels.

## Transformer Ratios

$\frac{\text { The Voltage across the Secondary }}{\text { The Voltage across the Primary }}$ equals
The Number of Secondary Turns
The Number of Primary Turns

## Power Output

When Eg expresses the RMS (Root-MeanSquare) Effective Value of the AC Input,

$$
\text { PowER OUTPUT }=\frac{\mu^{2} \times \mathbf{E}_{g^{2}} \times \mathbf{R}_{p}}{\left(\mathrm{r}_{p}+\mathrm{R}_{p}\right)^{2}}
$$

The Maximum Power Output is $\frac{\mu^{2} \times \mathrm{Eg}^{2}}{4_{r p}}$
The Maximum Undistorted Power Output
is

$$
\frac{2 \mu^{2} \times \mathrm{E} g^{2}}{9_{r p}}
$$

When $\mathrm{E} g$ is the Maxnum (Peak) A. C. Input Value
The Maximum Undistorted Power Output is

$$
\frac{\mu^{2} \times \mathrm{E} g^{2}}{9 r p}
$$

## Inductance of Single Layer Coils



COIL TURNS, INDUCTANCE AND DIAMETER

Knowing the turns of a coil, its length of winding, and the diameter, the inductance may be found by using a straight-edge from the turns column to the ratio (diameter - length) column, intersecting the axis column; then a second line from the intersection of the axis column to the diameter column. The inductance in microhenries will be the point where the second line intersects the inductance column. In the above chart the first line is laid from 100 turns to 2.5 ratio, this first line intersecting the axis at 3.8 on the scale. The second line is from 3.8 on the axis sabe to the 2 -inch dianeter, intersecting the inductance column
at 600 microhenries.
Knowing the diameter, ratio and the inductance. the number of turns may be found by reversing the process. As shown in the chart, draw a line from 2 inch diameter through the 600 microhenries intersecting axis at 3.8 on the scale; then run line from 3.8 on axis scale to 2.5 on ratio, the extension of this line cutting
the turns scale at 100 wher
wire table to determine size of wire which will permit given number of turns in a given length of winding.

## RECEIVING TUBE CHARACTERISTICS

IN THE radio service field, one of the most rapid methods of trouble shooting is by an analysis of voltage or resistance values taken at the various pins of a tube. This procedure, using the tube pins as convenient test points, usually indicates which cirenit or circuits are oflending. A complete knowledge of the pin arrangements of all tube types is necessary. Since there is a large variety of pin arrangements in use, it is almost impossible for any serviceman to remember each particular type. Therefore, one of the first requirements of any tube table or chart is to provide complete and authentic base layout information.

If the particular trouble is not in the associated circuits, but in the tube itself, it is desirable to have a quick reference to the characteristic data and operating conditions of the tube in question. The ability of a tube chart to give accurate characteristic information in a clear, concise manner, places a second evaluation on its worth.

## PRESENT NUMBERING SYSTEM

The application of type designations to vacuum tubes was a haphazard proce'ss until the Radio Manufacturers Association set up a committe of enginers from the radio tube industry to handle the numbering of tubes and ascoriated problems connerted with the new types. From this committee came the present numbering system: a numeral to indicate approximate tilament or heater opcrating voltage; a letter to show the function of the tube, and a numeral to indicate the number of elements. Thus the 25\%.5 tells by its lirst numeral group that the filament or heater operates at approximately 25 volts, by the letter $Z$ that the tule is a rectifier; and by the final numeral that the tute has five connected elements, i.e., two plates, two cathodes and one common heater. Heference to the charts will show that more than seventy-five tubes appear under the ohl numbering system of an arbitrary numeral. No doubt there are many more tubes in this class which for some reason (usually poor adaptability to circuits) were dropped by the manufacturer who introduced them.

The tendency to designate equivalent tubes among glass, metal, and metal-glass types has not been entirely satisfactory. It is true that the equivalent or cross references system does establish the general characteristic identity more quickly. The confusion arises from the fact that the pin arrangements may differ, the difference in interelectrode capacities may create alignment difficulties, and in the case of rectifier types maximum current ratings are sometimes ultered to allow for a variance in dissipation properties.

It has been popular in the past to group certain filament or heater voltage values of tubes. This method of listing was very helpful until the number of types in nse becane
so large that any attempt at extensive grouping resulted in confusion rather than the simplicity intended. To prevent any such condition, and to facilitate reference work the new tube charts included in this encyclopedia are presented in only four divisions, namely:
(a) The original number types ( $01 \mathrm{~A}, 1 \mathrm{n}$, $21,27,35$, etc.).
(b) The newer letter typers (IA I, IJT, 2A7, 6K7, 6F8(i, etc.).
(c) The complete rectilier types (.3Z3, 5W 1, 6X5, 80, etc.).
(d) The special tubes, i.e., those manufactured for a special application, or exclusive use by a certain manufacturer.
The decision to use this new method of listing was reached only after a conprehensive survey of opinions representing a majority of the servicing profession. We believe this system to be the most logical and easy to use reference method.

## BIAS RESISTOR CALCLLATIONS

The serviceman often finds it necessary to replace the grid bias resistor in receivers employing a self-hiasing arrangement for obtaining the proper grid voltage. When the resistance value is not known, it may be calculated by dividing the grid voltage required (at the plate voltage at which the tube is operating), by the plate current in amperes, plus the screen current in amperes, times the number of tubes passing current through the resistor.

Under this rule, the grid hias resistor value is given by the following formula:

$$
\mathbf{R}=\frac{\left.E c_{1} \times 1,000\right)}{\left(\mathbf{I B}+I \boldsymbol{c}_{2}\right) \mathbf{n}}
$$

where: $\mathrm{R}=$ (irid bias resistor value in ohms. $E_{e 1}=$ The grid bias required in volts.
$I_{\mathrm{B}}=$ The plate current of a single tube in milliamperes.
$\mathbf{I}_{c 2}=$ The screen grid current of a single tube in milliamperes.
$\mathbf{n}=$ The mumber of tubes passing current through the resistor
Example-It is desired to determine the value of bias resistor used to obtain the proper value of grid bias on three type ' 35 tules working in the radio frequency stage. of a receiver. First, determine the plate and screen voltages employed in this set. Suppose, in this case, it is found that the plate supply voltage is $\mathbf{2 . 5 0}$ and the screen voltage is 90 . Looking in the characteristics chart on page 319 , it is found that the proper grid bias for the ' 35 under these conditions is -3.0 volts. In addition, the plate current is 6.5
milliamperes. The screen current is 2.5 milliamperes. Substituting in the formula,

$$
\mathrm{R}=\frac{3.0 \times 1,000}{(6.5+2.5) 3}=111 \mathrm{ohms}
$$

The value of grid lias resistors can be calculated in this manner for any type and any number of tubes. In the case of triodes, the screen current term drops ont entirely.

Be sure to determine the plate voltage at which the tubes are working, the number of tubes being supplied from the bias resistor, the screen voltage (if a tetrode or pentode), the correct value of grid bias voltage required (whether the tube cathode is operated from AC or DC will allect the value of bias voltage), and the plate and sereen current for the given plate voltage.
In the case of resistance-coupled amplifiers which employ high resistance in the plate circuit, it nust be remembered that the plate voltage is equal to the plate supply voltage minus the voltage drop in the plate load resistance caused by the plate current. The net plate voltage alone determines the correct value of grid bias.

The foregoing methods of ealculations apply to self bias only.

Size of Bias Resistors-In addition to having the proper resistance, a resistor should have sulficient size and heat dissipating ability to carry the current. The actual wattuge dissipated in a resistor can easily be calculated from the following application of Ohms law:

$$
\begin{gathered}
\text { Wiatts }=\frac{\mathrm{E}_{2}}{\mathrm{H}} \\
\text { Where } \mathrm{E}=\text { volage across resistors } \\
\mathrm{R}=\text { resistance in ohms }
\end{gathered}
$$

When selecting the proper resistor for a given application, the actual wattage given by the formula should be multiplied from two to ten times, depending npon such factors as air circulation, mounting position, and amount of heat which may be developed without injury to other parts. For a given dissipation, the larger the resistor, the lower the operating temperature per unit of area.

Cut-Off Bias-Every serviceman should be familiar with the formula for calculating "cut-oll." This is the point where plate current ceases to flow as the grid voltage is made increasingly negative. In volume control eircuits, the control range should never be extended into the "cut-ofl"" region, otherwise serious distortion will result. The formula for triodes is:

$$
\text { "Cut-off" voltage }=\frac{\text { Plate voltage }}{\mathrm{Mu}}
$$

"The cut-off" voltage for tetroles, pentodes and variable mu tubes cannot be calculated from this simple formula, and should be obtained from the tube manufacturers' tables.

COMPLETE TUBE CHART



[^4]




$\begin{aligned} & \text { Type } \\ & \text { No. } \end{aligned}$	DESCRIPTION		BasingSeceSocketConnectionChart onPages 327-329	$\begin{gathered} \text { Fil. } \\ \text { Curr. } \\ \text { Amps. } \end{gathered}$	CAPACITANCES Micro-Microfarads			OPERATING CONDITIONS CHARACTERISTICS												
	Type	Cathode			Miate	Input	Output	$\begin{aligned} & \text { When } \\ & \text { Used As } \end{aligned}$	Plate Supply Volts	Screen Grid Volts	$\begin{gathered} \text { Grid } \\ \text { Bias } \\ \text { Yolts } \\ \text { (Neg.) } \end{gathered}$		late	Screen Current Ma.	${ }_{\text {Factor }}$	Plate Resist. Ohms	$\begin{gathered} \text { Mut. } \\ \text { Cond. } \\ \mu \text { Mhos. } \end{gathered}$		Recomm. Load Resist. Ohms	$\begin{gathered} \text { Cut-Off } \\ \text { Bias } \\ \text { Yolts } \end{gathered}$
6ACsG	Triode	$\begin{aligned} & \text { Heater } \\ & 6.3 \mathrm{~V} \end{aligned}$	$\stackrel{60}{\text { Octal } 6} \mathrm{Fin}$	0.4				Dynamic Coupled	250		+13		32		125	36,700	3,400	3.7	7,000	
								Class B	250		0		2.5 (Zer	ro signal curr	ent, per tube)			8.0	10,000	(P. to P.)
6B4G	Triode	$\begin{gathered} \text { Fil. } \\ 6.3 . \end{gathered}$	${ }^{5 S}$	1.0	16	7	5	Amplifer	Identical to	6 A 3.										
685	$\begin{aligned} & \text { Direct } \\ & \text { Coupled } \\ & \text { Twin- } \\ & \text { Triode } \end{aligned}$	$\begin{aligned} & \text { Heater } \\ & 6.3 \mathrm{~V} \end{aligned}$	${ }_{\text {Medium }} 6 \text { Pin }$	0.80				Dynamic Coupled Amplifier	- $\begin{array}{r}300 \\ \text { each }\end{array}$		0	$\begin{gathered} \text { In- } \\ \text { put } \\ 8 \end{gathered}$	$\begin{aligned} & \text { Out- } \\ & \text { put } \\ & 45 \end{aligned}$		58	24,100	2,400	4.0	7,000	
									325 ea.		0	9	51					5.2	7,000	
								Pu	325 ea.		0	9	51					13.5	10,000	(P. to P.)
6B6G	Duplex Diode Triode	$\begin{aligned} & \text { Heater } \\ & 6.3 \mathrm{~V} \end{aligned}$	$\stackrel{7 V}{\text { Octal } 7 \mathrm{Pin}}$	0.3	$\begin{aligned} & 1.7 \\ & \text { (Triol } \end{aligned}$	de Sec	$\left(\begin{array}{c} 4.5 \\ \text { tion } \end{array}\right.$	Diode Detector Triode Amplifier	See Date on	75										
$6 \mathrm{B7}$	Duplex Diode Pentode	$\begin{aligned} & \text { Heater } \\ & 6.3 \mathrm{~V} \end{aligned}$	${ }^{7 \mathrm{D}} \mathrm{Pman}$	0.3	$\begin{gathered} 0.007 \\ \text { (Pent } \end{gathered}$	$\begin{gathered} 3.5 \\ \text { ode } \end{gathered}$	$\begin{gathered} 9.5 \\ \text { ction } \end{gathered}$	RF Ampl.	100	100	3.0		5.8	1.7	285	300,000	950			17
									250	100	3.0		6.0	1.5	800	800,000	1,000			17
								AF Ampl.	250	50	4.5		0.65						250,000	
688	Duplex Diode Pentode	$\begin{aligned} & \text { Heater } \\ & 6.3 \mathrm{~V} \end{aligned}$	$\stackrel{8 \mathrm{E}}{\mathrm{E}}_{\text {Octal } 8 \mathrm{Pin}}$	0.3	0.005	6.0	9.0	RF Ampl.	250 Max .	125 Max.	3.0		0.0	2.3	800	600,000	1325			21
6B8G					0.007	3.3	9.5		See characte	ristics of 6B7.										
6 C 5	Triode	$\begin{aligned} & \text { Heater } \\ & 6.3 \mathrm{~V} \end{aligned}$	$\begin{gathered} 6 Q \\ \text { Octal } 6 \text { Pin } \end{gathered}$	0.3	1.8	4.0	3.0	Amplifer	250		8.0		8.0		20	10,000	2,000			
6CsG					1.9	4.4	10.4													
${ }_{6} 6$	Pentode	Heater 6.3 V	${ }^{6 \mathrm{~F}} \underset{\text { Smal }}{6 \mathrm{Pin}}$	0.3	0.007	5.0	6.5	Amplifier	250	100	3.0		2.0	0.5	1500	1.5M	1225			7
								Triode Amplifier	250		8.0		6.5		20	10,000	1900			
								Detector	250	100	4.3								250,000	
6C8G	$\begin{aligned} & \text { Twin } \\ & \text { Triode } \end{aligned}$	Heater$6.3 \mathrm{~V}$	${ }_{\text {Octal }}^{8 G} 8 \mathrm{Pin}$	0.3	$\begin{aligned} & 2.4 \\ & \mathrm{Topcc} \\ & \hline \end{aligned}$	$\begin{gathered} 2.5 \\ \mathrm{ap} \\ \mathrm{sec} \end{gathered}$	ction	Class A One Triode	250		4.5		3.1		38	26,000	1450			
					$\begin{aligned} & 2.5 \\ & \text { Base } \end{aligned}$	$3.4$	ction	Phase Inverter	250		3.0		1.0 (Co	mmon Catho	de Realistor 15	00 ohms)			100,000	
6D6	$\begin{aligned} & \text { Variable Mu } \\ & \text { Pentode } \end{aligned}$	$\begin{aligned} & \text { Heater } \\ & 6.3 \mathrm{~V} \end{aligned}$	$\begin{gathered} 6 \mathrm{~F} \\ \text { Small } 6 \text { Pin } \end{gathered}$	0.3	0.007	4.7	6.5	Amplifer	100	100	3.0		8.0	2.2	375	250,000	1500			40
									250	100	3.0		8.2	2.0	1280	800,000	1600			40
6D8G	Pentagrid Converter	$\begin{aligned} & \text { Heater } \\ & 6.3 \mathrm{~V} \end{aligned}$	${ }^{8 \mathrm{~A}} \mathrm{Actal}_{8 \mathrm{Pin}}$	0.150	1.0	7.0	6.0	Oscillator	250	(Through 20,000 ohm) (dropping resistor)			4.5							
					0.3	8.0	11.0	Mixer	250	100	3.0		3.0	3.5		320,000	500	(Conversion	Conductance)	40
$6 E 6$	Tuning Indicator	$\begin{aligned} & \text { Heater } \\ & 6.3 \mathrm{~V} \end{aligned}$	$\stackrel{6 \mathrm{R}}{\mathrm{Smal}} 6 \mathrm{Pin}$	0.3				Tuning Indicator	250 V through $1 \mathrm{M} \Omega$. $\mathrm{Ip}=.25 \mathrm{mg}$. Target current 3.0 ma . $\mathrm{Eg}=0$, Shadow Angle $=90^{\circ}$. $\mathrm{Eg}=8.0 \mathrm{~V}$. Shadow Angle $=0^{\circ}$.											
$6 E 6$	Twin Triode	$\begin{aligned} & \text { Heater } \\ & 6.3 \mathrm{~V} \end{aligned}$	${ }_{\text {Medium }}^{7 B} 7 \text { Pin }$	0.60				Class A   (Both Sections)	180		20.0		Section $11.5$		6	$\begin{gathered} \text { Per Section } \\ 4,300 \end{gathered}$	1400	0.750	15,000	(P. to P.)
									250		27.5		$\begin{aligned} & \text { Section } \\ & 18 \end{aligned}$		6	$\begin{aligned} & \text { Per Section } \\ & \mathbf{3 , 5 0 0} \end{aligned}$	1700	1.600	14,000	(P. to P.)
6 F 5	High-Mu Triode	Heater 6.3 V	${ }_{\text {Octal } 5}^{5 \mathrm{M}} \text { in }$	0.30	2.0	6.0	12.0	Amplifier	250		2.0		1.1		100	66,000	1500			
6F5G					2.0	3.5	11.0		250		1.3		to. 4						.25M M	
656	Pentode	Heater 6.3 V	$\text { Octal }{ }^{78} \mathrm{Pin}$	0.70					250	250	16.5		34	7.5	185	79,000	2350	3.0	7,000	
								Single Pentode	315	315	22.5		4	8.5	260	100,000	2600	5.0	7,000	
								Single Triode	250		20		31		7	2,700	2600	0.85	4,000	
6FEG								AB Triode	350		38		22.5	(Zero signal	urrent, per tu	be)		18.0	6,000	(P. to P.)
								AB Pentode	375	250	26		17	(Zero signal	urrent, per tu	be)		19.0	10,000	(P. to P.)
								AB Pentode	375	250	$300 \Omega$		27	(Zero signal	urrent, per tu	be)		19.0	10,000	(P. to P.)
${ }^{6 F 7}$	Triode Pentode	$\begin{aligned} & \text { Heater } \\ & 6.3 \mathrm{~V} \end{aligned}$	${ }^{7 \mathrm{~F}} \mathrm{E} \text { Pill } 7 \text { Pin }$	0.30	2.0	2.5	3.0	Triode	100 Max.		3.0		3.5		8.5	16,200	525			
					. 008	3.2	12.5	Pentode	250	100	3.0		6.5	1.5	900	850,000	1100			35
								Converter	250	100	10.0		2.8	0.6		2 Ma	300	(Conversion	Conductance)	



(2)
(2)
(


Rectrite mast charts			
$\overbrace{4 c}^{8+a^{8}}$	$a_{46}=e^{2}$	$8$	
$\theta_{42}^{2}$			
$x_{6,5}$	$\frac{9}{\theta_{6 K}^{2}}$		



## RADIO DEFINITIONS*

" $A$ " Power Supply. A power supply device providing heating current for the cathode of a vacuum tube.
Alternating Current. A current, the direction of which reverses at regularly recurring intervals, the algebraic average value being zero.
Amplification Factor. A measure of the effectiveness of the grid voltage relative to that of the plate voltage of the grid voltage recting the plate current.
Amplifier. A device for increasing the amplitude of electric current, voltages or power, through the control by the input power of a larger amount of nower supplied by a local source to the output circuit.
Anode. An electrode to which an electron stream flows.
Antenna. A conductor or a system of conductors for radiating or receiving radio waves.
Atmospherics. Strays produced by atmospheric con-
ditions. ditions.
Attenuation. The reduction in power of a wave or a current uith increasing distance from the source of ransmission.
Audio Frequency. A frequency corresponding to a normally audible sound wave. The upper limit ordinarily lies between 10,000 and 20,000 cycles.
Audio-Frequency Transformer. A transformer for use with audio-frequency currents.
Autodyne Reception. A system of heterodyne reception through the use of a device which is both an
Automatic Volume Control. A self-acting device
which maintains the output constant within relawhich maintains the output constant within rela-
tively narrow limits while the input voltage varies tively narrow limits while the input voltage varies
over a wide range. over a wide range.
"B"' Power Supply. A power supply device connected in the plate circuit of a vacuum tube.
Baffle. A partition which may be used with an acoustic radiator to impede circulation between front and
back. Bank.
Band-Pass Filter. A filter designed to pass currents of frequencies within a continuous band limited by an upper and a lower critical or cut-off frequency and
substantially reduce the amplitude of currents of all substantially reduce the amplitude of currents of all
frequencies outside of that band.
Beat. A complete cycle of pulsations in the phenomenon of beating.
Beat Frequency. The number of beats per second. This frequency is equal to the difference between the
frequencies of the conbining waves. frequencies of the combining waves.
Beating. A phenomenon in which two or more periodic quantities of different frequencies react to produce a resultant having pulsations of amplitude.
Broadcasting. Radio transmission intended for general
reception. reception.
By-Pass Condenser. A condenser used to provide an alternating-current path of comparatively low im-
pedance around some circuit element.
"C" Power Supply. A nower supply device connected in the circuit between the cathode and grid of a vacuum tube so as to apply a grid bias.
Capacitive Coupling. The association of one circuit with another by means of capacity common or mutual to both.
Carbon Microphone. A microphone which depends for its operation upon the variation in resistance of carbon contacts.
Carrier. A term broadly used to designate carrier wave, carrier current, or carrier voltage.
Carrier Frequency. The frequency of a carrier wave.
Carrier Suppression. That method of operation in wich the carrier wave is not transmitted.
Carrier Wave. A wave which is modulated by a signal
and which enables the signal to be transmitted througli and which enables the signal to be transmit ted through a specific physical system.
Cathode. The electrode from which the electron stream flows. (Sce Filament.)
Choke Coil. An inductor inserted in a circuit to offer
relatively large impedance to alternating current relatively large impedance to alternating current.
Class A Amplifier. A class A amplifier is an amplifier in which the grid bias and alternating grid voltages are such that plate current in a specific tube flows at all times.
Class AB Amplifier. A class AB amplifier is an ampliages are such that plate current in a specific voltflows for appreciably more than half but less than the entire electrical cycle.
*Most of these definitions are based on I. R. E. standards.

Class B Amplifier. A class B amplifier is an amplifier cut-off value so that is approximately equal to the cut-oft value so that the plate current is approxi-
mately
zero when no exciting grid voltage is and so that plate current in a specific tube flows for a proxoxinately one-half of cach cycle when an alternating grid voltage is applied.
Class $C$ Amplifier. A class $C$ amplifier is an amplifier in which the grid bias is appreciably greater than the cut-off value so that the plate current in each tube is zoro when no alternating grid voltage is applied, and so that plate current flows in a specific tube for apprenating grid voltage is applied cycle when an alterNote: To denote that grid.
during any part of the input cyrrent does not flow be added to the letter or letters of the class identif. cation. The suffix 2 may be used to denote that grid current flows during some part of the cycle.
Condenser Loud Speaker. A loud speaker in which the mechanical forces result from electrostatic reactions.
Condenser Microphone. A microphone which de-
pends for its pends for its operation upon variations in capacitance. Continuous Waves. Continuous waves are waves in
which successive cycles are identical under steady which successive cycles are identical under steady
state conditions. state conditions.
Conversion Transconductance is the ratio of the magnitude of a single beat-frequency component ( $f_{1}+f_{2}$ ) or ( $f_{1}-f_{2}$ ) of the output current to the magnitude of the in put voltage of frequency $f_{1}$ under the conditions that all direct voltages and the maxnitude of the second input alternating voltage fa must remain constant. As most preciscly used, it refers to an infinitesimal magnitude of the voltage of fre-
quency $f_{1}$.
Converter (generally in superheterodyne receivers). A converter is a vacuum-tube which performs simultaneously the functions of oscillation and mixing (first detection) in a radio receiver.
Coupling. The association of two circuits in such a way that energy may be transferred from one to the other. Cross Modulation. A type of intermodulation due to
modulation of the carrier of the desired signal in a modulation of the carrier of the desired signal in a
radio apparatus by an undesired signal Curreat apparatus by an undesired signal.
Current Amplification. The ratio of the alternating
current produced in the output circuit of an amplifier current produced in the output circuit of an amplifier to the alternating current supplied to the input circuit for specific circuit conditions.
Cycle. One complete set of the recurrent values of a periodic phenomenon.
Damped Waves. Waves of which the amplitude of successive cycles, at the source, progressively diminishes. Decibel. The common transmission unit of the decimal system, equal to $1 / 10$ bel.
1 bel $=2 \log _{10} \frac{E_{1}}{E_{2}}=2 \log _{10} \frac{I_{1}}{\mathbf{1}_{2}}$
(Sce Transmission Unit.)
Detection is any process of operation on a modulated signal wave to obtain the signal imparted to it in the
modulation process. Detector. A detector is a device which is used for operation on a signal wave to obtain the signal imparted to it in the modulation process.
Diaphradm. A diaphragm is a vibrating surface which produces sound vibrations.
Diode. A type of thermionic tube containing two electrodes which passes current wholly or predominantly
in one direction.
Direct Capitance (C) between two conductors-The ratio of the charge produced on one cortductor by by this yoltage. all other conductors in the rueighiborby this voltage, all other conductors in the reighb
hood being at the potential of the first conductor.
Direct Coupling. The association of two circuits by having an inductor, a condenser, or a resistor conimon to both circuits.
Direct Current. A unidirectional current. As ordinarily used, the term designates a practically non-pulsating current.
Distortion. A change in wave form occurring in a transducer or transmission medium when the output wave form is not a faithful reproduction of the input
wave form.
Double Modulation. The process of modulation in Which a carrier wave of one frequency is first modulated by the signal wave and is then made to modulate a second carrier wave of another frequency.
Dynamic Amplifier. The RCA Dynamic Amplifier is a variable gain audio a mplifier, the gain of which is proportional to the average intensity of the audio signal. Such an amplifier compensates for the con-
traction of volume range required because of recording or transmission line limitations.
Dynamic Sensitivity of a Phototube. The alternat-ing-current response of a phototube to a pulsating light flux at specified values of mean light flux, frequency of pulsation, degree of pulsation, and steady tube voltage.
Electro-Acoustic Transducer. A transducer which is actuated by power from an electrical system and supplies power to an acoustic system or vice versa.
Electron Emission. The liberation of electrons from an electrode into the surrounding space. In a vacuum from a cathode. at which the electrons are emitted from a cathode. This is ordinarily measured as the of a voltage sufficient to draw away all the influence
Electron Tube. A vacuum tube evacuated to such a degree that its electrical characteristics are due essendially to electron emission.
Emission Characteristic. A graph plotted between a factor controlling the emission (such as the tempera-
ture, voltage, or current of the cathode) as abscissas ture, voltage, or current of the cathode) as abscissas,
and the emission from the cathode as ordinates and the emission from the cathode as ordinates.
Facsimile Transmission. The electrical transmission of a copy or reproduction of a picture, drawing or
document. (This is also called picture transmission)
Fading. The variation of the signal intensity received at a given location from a radio transmitting station as a result of changes occurring in the transmission path (see Distortion.)
Fidelity. The degree to which a system, or a portion of a system, accurately reproduces at its output the signal which is impressed upon it.
Filament. A cathode in which the heat is supplied by current passing through the cathode.
Filter. A selective circuit network, designed to pass
current within a continuous band or hands of frequencies or direct current, and substantially reduce the amplitude of currents of undesired frequencies.
Frequency. The number of cycles per second.
Full-Wave Rectifier. A double element rectifier arranged so that current is allowed to pass in the same direction to the load circuit during each half cycle of the alternating-current supply, one element functioning during one-half cycle and the other during
the next half cycle, and so on.
Fundamental Frequency. The lowest component frequency of a periodic wave or quantity.
Fundamental or Natural Frequency (of an antenna). The lowest resonant frequency of an antenna, without added inductance or capacity.
Gas Phototube. A type of phototube in which a quantity of gas has been introduced, usually for the purpose of increasing its sensitivity.
Grid. An electrode having openings through which electrons or ions may pass.
Grid Bias. The direct component of the grid voltage. Grid Condenser. A series condenser in the grid or control circuit of a vacuum tube.
Grid Leak. A resistor in a grid circuit, through which the grid current flows, to affect or determine a grid
Grid-Plate Transconductance. The name for the plate current to grid voltage transconductance. (This has also been called inutual conductance.)
Ground System (of an antenna). That portion of the antenna system below the antenna loading devices or generating apparatus most closely associated with the ground and including the ground itself.
Ground Wire. A conductive connection to the earth. Half-Wave Rectifier. A rectifier which changes alternating current into pulsating current, utilizing only one-half of each cycle.
Harmonic. A component of a periodic quantity having a frequency which is an integral multiple of the fundamental frequency. For example, a component the frequency of which is twice the fundamental frequency is called the second harmonic.
Heater. An electrical heating element for supplying
heat to an indirectly heated cathode. heat to an indirectly heated cathode.
Heterodyne Reception. The process of receiving radio waves by combining in a detector a received voltage frequency of the locally generated voltage is come monly different from that of the received voltage. (Heterodyne reception is sometimes called beat reception.)
Homodyne Reception. A system of reception by the (Homodyne reception is sometimes called requency. reception.)
lot-Wire Ammeter, Expansion Type. An ammeter dependent for its indications on a change in dimen sions of an element which is heated by the current to be measured.
Indirectly Heated Cathode. A cathode of a thermionic tube, in which heat is supplied from a source other than the cathode itself.
Induction Loud Speaker is a moving coil loud speaker in which the current which reacts with the polarizing field is induced in the moving meinber.
Inductive Coupling. The association of one circuit with another by means of inductance common or mutual to both.
Interelectrode Capacitance. The direct capacitance between two electrodes.
Interference. Disturbance of reception due to strays, undesired signals, or other causes; also, that which produces the disturbance.
Intermediate Frequency in Superhetcrodyne Reception. A frequency between that of the carrier and the signal, which results form locally generated of the carr
frequency.
Intermodulation. The production, in a non-linear circuit element, of irequencies corresponding to the sums and differences of the fundamentals and harmonics of two or more frequencies which are transmitted to that element.
Interrupted Continuous Waves. Interrupted continuolls waves are waves obtained by interruption at audio frequency in a substant
Kilocycle. When used as a unit of frequency, is a thousand cyeles per second.
Lead-In. That portion of an antenna system which completes the electrical connection between the elevated outdoor portion and the instrum.
Linear Detection. That form of detection in which the audio output voltage under consicleration is substantially proportional to the modulation envelope throughout the useful range of the detecting device.
Loading. Coil. An inductor inserted in a circuit to increase its inductan
Loud Speaker. A telephone receiver designed to ratliate Loud Speaker. A telephone receiver desig
acoustic power into a room or open air.
Magnetic Loud Speaker. One in which the mechanical forces result from magnetic reactions.
Magnetic Microphone. A microphone whose electrical output results from the motion of a coil or conductor in a magnetic field.
Master Oscillator, An oscilhator of comparatively low power so arranged as to establish the carrier freduency of the output of an amplifier.
Mesacycle. When used as a unit of frequency, is a miliion cycles jer second.
Mercury-Vapor Rectifier. A mercury-vapor rectifier is a two-electrode, vacuum-tube rectifier which contains a small anount of merciry. During operation, the mercury is vajorized. I characteristic of inercurs: vapor rectifiers is the low-voltage drop in the tube. transducer actuated by power in an acouslic s.esturn and delivering power to an electric system, the wave form in the electric system corresponding to the wave form in the acoustic systrin. This is also citled at telephone transmitter.
Mixer Tube (generally in superheterolyne receivers.) A mixer tube is one in which a locally generaterl frequency is combined with the earriar-sighal frequency que obtain a desired beat frequency.
Modulated Wave. A molulated wave is a wave of which either the ampsitude, frequency, or phase is which either the ampsitures, requil.
varied in accordance with a signal.
Modulation is the process in which the amplitude, requency, or phase of a wato is tariod in accordance frequency, or thase of a wasnal, or the result of that process.
Modulator. A device which performs the process of modulation.
Monochromatic Sensitivity. The response of a photo tube to light of a given color, or narrow frequetey range.
Moving-Armature Speaker. A magnetic speaker whose operation involies the vibration of a portion of the ferromagnetic circuit. (This is sometimes called an electromagnetic or a magnetic speaker.)
Moving Coil Loud Speaker. A moving coil loud speaker is a magnetic lout suraker in which the mechanical forces are developed by the interaction of currents in a conductor and the jolarizing field in which it is located. Thus is sometimes calle
tro-Dynamic or a Dynamic Loud Speaker.
Mu-Factor. A measure of the relative effect of the voltages on two electrodes upon the current in the circuit of any specified electrode. It is the ratio of the change in one electrode voltage to a change in the other electrode voltage, under the condition that a specified current remains unctanged.
Mutual Conductance. (Sere Grid-Plate Transennductance.)
Oscillator. A notherotating device for producing alterRatine current the untult ireguence of which is detuating current. the dathot intioghed by the chateristics of thevice.

Oscillatory Circuit. A circuit containing inductance and capacitance. such that a voltage impulse will produce a current which periodically reverses.
Pentode. A type of thernionic tube containing a plate, a cathode, and three idditional electrodes. (Ordinarily the three additional elect rodes are of the nature of grids.)
Percentage Modulation. The ratio of half the difference brween the maximum and minimum ampli expressed in per cent.
Phonodraph Pickup. An electromechanical transducer actuat ed by a phonograph record and delivering power to an electrical system, the wave form in the electrical system corresponding to the wave form in the phonograple record.
Photot ube. A vacuum tube in which electron emission is produced by the illumination of an electrode. (This has also been called photo-electric tube.)
plate. A common name for the principal anode in a vacuum tube.
Power Amplification (of an amplifier). The ratio of the alternating-current fowar produced in the output circtit to the al
Power Detection. That form of detection in which the power out put of the detecting device is used to supply a substantial antount of power directly to a clevice such as a loud speaker or recorder.
Pulsating Current. A periodic current ; that is, current passing through successive cycles, the algebraic average value of which is not zaro. A pulsating current is equivalent to the sum of ant altertating and a direct current.
Push-Pull Microphone. One which makes use of two functioning elements 180 degrees out of phase.
Radio Channel. A band of frequencies or wavelengths of a width sufficient to pernuit of its use for radio communication. The widt th of a channel depends upon the type of transmission. (See Band of lerequencies.)
Radio Compass. A direction finder used for navigational purposes.
Radio Frequency. A frequency higher than those corresponding to normally audible sound waves. (See corresponding to no
Audio lrequency.)
Radio-Frequency Transformer. A transformer for use with radio-frequency currents.
Radio Receiver. A device for converting radio waves into perceptible signals.
Radio Transmission. The transmission of signals by means of radiated electromaghetic watros origitating in a constructed circuit.
Radio Transmitter. A device for producing radiofrequency power, with means for producing a signal. Rectifier. A device having an asymmetrical conduction characteristic which is used for the conversion of an alternating current into a mulsating current. Such oxide rectifiers, electrolytic rectifiers, et c .
Reflex Circuit Arrangement. A circuit arrangement in which the sigmal is amplified, both before and after detection, in the same amplifier tube or tubes.
Repeneration. The process by which a part of the out put power of an amplifying device reacts urion the input circuit in sucli a manner as to reinforce the initial power, thereby increasing the amplification (Sometimes called "fcedback" or "reaction.")
Resistance Coupling. The association of one circuit with another by means of resistance common to both. Resonance Frequency (of a reactive circtit). The frequency at which the supply current and supply voltage of the circuit are in phase.
Rheostat. A resistor which is provided with means for readily adjusting its resistance.
Screen Grid. A screen gridl is a grid placed between a control grid and am amode. and ntaintained at a fixed positive potential. for the purpose of reducing the plectrostatic influme of the amole in the space be tween the screen grid and the cathode.
Secondary Emission. Electron emission under the influence of electron or ion bombardinent.
Selectivity. The degree to which a radio receiver is capable of differentiatitg between signals of different carrier frequencies.
Sensitivity. The degree to which a radio receiver re sponds to signals of the frequency to which it is tuned
Sensitivity of a Phototube. The electrical current resuonse of a phototube, with no impedance in its exernal circuit. to a sixecified amount and kind of light. $t$ is usuatly expressed in terus of the current for a aren radiant flux, or for a given luminous flux. In genflux intensity, and suectral distribution of the flux.
Service Band. A band of frequencies allocated to given class of radio communication service.
Side Bands. The bands of frequencies, one on either side of the carrier frequency, produced by the process of modulation.
Signal. The intelligence, message or effect conveyed in conmantication.
Single Side-lBand Transmission. That method of operationt in which onfe side band is transmitted, and may be either transmitted or suppressed.

Static. Strays produced by atmospheric conditions.
Static Sensitivity of a Phototube. The direct current response of a phototube to a light flux of specified value.
Stopping Condenser. A condenser used to introduce a comparatively high impedance in some branch of a circuit for the purpose of limiting the flow of lowfrequency alternating current or direct current without materially affecting the flow of high frequency alternating current.
Strays. Electromagnetic disturbances in radio reception other than those produced by radio transmitting systems.
Superlieterodyne Reception. Superheterodyne reception is a method of reception in which the received voltage is combined with the voltage from a local oscillator and converted usually amplified and diate frequency which is usually amplified and (This letected to reproduce the original signal wave. (This is sometim
reception.)
Swinging. The momentary variation in frequency of a received wave.
Telephone Receiver. An electro-acoustic transducer actuated by power from ant electrical system and supplyitg power to an acoustic system, the wave form in the acoustic system corresponding to the wave form in the electrical system.
Pelevision. The electrical transmission of a succession of images and their reception in such a way as to give a substantially continuous reproduction of th
Tetrode. A type of thermionic tube containing a plate, a cathode, and two additional electrodes. (Ordinarily a cathode, and two additional electrodes. (Ordinarily the tw
grids.)
Thermionic. Relating to electron emission under the intluence of heat.
Thermionic Emission. Electron or ion emission under the influence of heat.
I'hermionic Tube. An electron tube in which the electron enission is produced by the heating of an electrode.
lhermocouple Ammeter. An ammeter dependent for its indications on the change in therno-electromotive by the current to be incasured.
lotal Emission. The value of the current carried by electrons entitted from at cat hode under the influence of a voltage such as will draw away all the elfectrons emitted.
I'ransconductance. The ratio of the clange in the current in the circuit of an electrole to the change in the voltage on another electrode, under the condition that all other voltages remain unchanged.
'I'ransducer. A device act uated by power from one system and supplying power to another system. These systems may be electrical, mechanical, or acoustic.
'l'ransmission Unit. A unit expressing the logarithmic ratios of powars. voltages, or currents in a transmission system. (See Decibel.)
'lriode. A type of thermionic tube containing an anode, a cathode, and at third electrode, in which the current thowing between the anode and the cathorle may be
controlled by the voltage between the third electrode controlled by the
Tuned Transformer. A transformer whose associated circuit elements are adjusted as a whole to be resonant at the frequency of the alternating current supplied to the primary, thereby causing the secondary voltage to build up to higher values than would otherwise be obtainet.
Tuning. The adjust ment of a circuit or system to secure ontimum performance in relation to a frequefty;
commonly, the adjustment of a circuit or cirdutito commonly,
Vacuum Phototube. A type of phototube which is evacuated to such a degree that the residual gas plays a negligible part in its operation.
Vacuum Tube. A device consisting of a number of electrodes contained within an evacuated enclosure.
Vacuum Tube Transmitter. A radio transmitter in which venum tubes are utilized to convert the applied electric power into radio-frequency power.
Vacuum Tube Voltmeter. A device utilizing the characteristics of a vacuum tube for measuring alter nating voltages.
Voltage Amplification. The ratio of the alternating voltage produced at the output terminals of an amwlifier to the alternating voltage impressed at the nput terminals.
Voltage Divider. i) resistor provided with fixed or movable contacts and with two fixed terminal contacts, current is passed between the terminal contacts, and a desired voltage is obtained across a portion of the used for this device.)
Wave a. A propagated disturbance, usually periodic, as an electric ware or sound wave,
b. A single cycle of such a disturbance, or,

Wavelength. The distance traveled in one period or cycle by a periodic disturbance.

## -INDEX-





How to Use The Encyclopedia

Listings - A to G
By Manufacturer and Model

Listings-G to $R$
By Manufacturer and Model

Listings $-R$ to $Z$
By Manufacturer and Model

Section "A" Controls

Section "B" Condensers

Transformers
Antenna Design

Alignment

Automatic Frequency Control

11 Automatic Tuning

Audio Amplifier
Design and Use Resistance Capacity Audio Degeneration Audio Distribution

Useful Servicing Formulas

Receiving Tube
Characteristics


[^0]:    concentric shafts.

[^1]:    The Dry Electrolytic Condensers sold by
    P. R. Mallory \& Co., Inc., are manufactured under one or more of the following $U$. S. Letters Patents:
    2,020,408
    2,052,962
    $1,989,129$
    $1,591,206$
    1,714,191
    1,981,352
    1,918,716
    1,918,717
    2,080,390
    2,041, $\mathbf{2} \mathbf{7 i}$
    1,891,207
    And other
    pending patents

[^2]:    *When gang is tuned to desired station the transfer button ( T ) becomes an additional selected station. (Notes given on pages 253 to 271 )

[^3]:    Indicaten $1 / 1 /$ charged battery only. NOTE: When stud or bolt (not foot) is to be insulated from aseembly prefix type number with " I ," add $1 / 8$ " to dimension B .

[^4]:    Receiving Tube Characteristics MALLORY-YaxCEEY RADIO SERVICE ENCYCLOPEDIA

