PHILCO UHF TUNER-ADAPTOR UT-26 SERVICE MANUAL

Introduction

Philco UHF tuner-adaptor UT-26 provides for reception of UHF signals on television channels 14 through 83 . It consists of a UHI tuner, Adaptor cables and plugs, a planetary tuner driving assembly and mounting hardware.

The UT-26 is designed for installation on Philco "C. line television receivers using either the TV-301, TV-350, TV-354, or TV- 100 chassis and is installed on CU models.

The VHF tuners of the above chassis incorporate a VHF-UHI: change-over switch as part of the VHF tuner assembly. which places the UHF tuner in operation when the VHF channel selector knob is placed in the UHF position.

Circuit Description

The R-F stage of the tuncr selects the desired UHF channel signal, which is fed to the mixer stage, where it heterodynes with the UHF tuner oscillator signal to produce an output signal at the intermediate frequency of the television receiver.

The incoming UHF signal is coupled through the antenn. input line and the antennd inductor $\mathrm{T}-5$ to the antenna R-F tank. Sce figures 6 and 8. The antenna tank is coupled to the mixer tank by the mutual coupling of T-4 and T-3 plus the associated stray capacitance existing between the tank assemblics. The desired signal, selected by tuning the antenna tank and the mixer tank to the correct frequency, is then inductively coupled to the mixer circuit through ' -3 and T-2. The local - oscillator signal is generated by a 6 AF 4 tube, V_{1}, and the associated circuit. The oscillator circuit is coupled to the crystal mixer circuit by the mutual inductance of T-1 and T-2. The R-F signal and the oscillator signal are mixed in the crystal mixer circuit to produce a 45.75 - mc. video i-i carrier signal. This signal, which is the output signal from the mixer stage is coupled to the VHF tuner through X-2, a coaxial cable and the UHF input jack on the VHF tuner.

In UHF operation, the local oscillator of the VHF tunce is rendered inoperative by the switching arrangement, and the r-f amplifier and mixer lubes of the VHF tuner operate as I-F amplifiers.

The two tanks of the UHF tuner, the antenn, tank and mixer tank, not only select the desired UHF signal hut also are a means to prevent the I-F and oscillator signals from feeding back to the antenna and interfering with other receivers. The two tuned tanks pass incoming signals readily, but do not pass the I-F or oscillator signals.

UHF-VHF Crossover Network Panel

When a single antenna lead-in is employed for both UHF and VHF signal reception, antenna panel, part number 76-9042, should be used, see figure 1. The antenna panel, containing partially printed circuits, consists of a UHF-VHF crossover network with separate contacts to which the leads from the VHF and UHF tuncr inputs are connected.

The circuits of the crossover network provide a highpass filter to the UHF tuner-adaptor input for the UHF channel sign.als and a low-pass filter to the VHF tuner input for the VHF channel signals. The input circuits of both tuners, although isolated from each other, are effectively connected to the antenna lead-in and the need for an antenna UHFVHF change-over switching arrangement is eliminated.

Operational Check

In view of the extreme simplicity of electrical design of the UT- 26 tuner-adaptor, the operational check points are limited to one internal and two external check points. Refer to figure 8.

The operation of the crystal mixer stage can be checked, at the test point TP-2, for the output crystal current. Remove the small metal shield, which covers both the test point and the crystal and which is held in place by two screws in the side of the tuner chassis. Unsolder the lead from the coaxial output cable to the test point symbolized by TP-2, and connect an ammeter in series with the lead and the test point if the tuner is being checked while installed in the television receiver. If the tuner has been removed from the chassis and is being checked with only the necessary power supply connections, the ammeter should be inserted between the test point and ground. The mixer output current should be within a range of .5 to 3.5 miliamperes. Should the crystal be defective, it is easily accessible for removal and replacement.

The B + supply voltage to the plate of the oscillator tube may be checked on the top of the tuner at the feed-through connection symbolized by $\mathrm{C} 2-2$. The voltage reading, from the test point to ground, should be approximately 80 volts.

A third check, internal, can be made in order to determine normal oscillator operation. A vacuum tube voltmeter applied to the grid of the oscillator tube, pins 2 or 6 of the tube socket, should indicate a negative voltage of between -2.5 and -8 volts for normal operation.

Replacing the oscillator tube with a new one may detune the tuner. The service technician, in order to avoid the necessity of realigning the tuner, may try a number of tubes until the most satisfactory substitute for the original is found.

Tuner Alignment Procedures

The UHF tuner should first be given an operational check, before alignment is attempted, to assure that the unit is operating properly. Tuner alignment also requires adequate test equipment. The test equipment described in the following paragraphs or equivalent equipment should be used.

The Philco G-8002 automatic leveling UHF sweep generator provides sweep frequencies in the entire UHF band and has adjustable sweep width.

A UHF marker generator which contains accurate calibration features is required.

An oscilloscope should be employed, which has good band-pass characteristics and stability, such as the Philco Model 7021 oscilloscope.

The VHF marker generator employed should be capable of being accurately calibrated, such as the Philco Model 7070 signal generator.

It is necessary to use an oscilloscope preamplifier, when the UHF tuner-adaptor is removed from the TV chassis for service, since very few service oscilloscopes provide sufficient gain.

If the UHF unit is removed from the television chassis, it also will be necessary to provide a power supply source of $\mathrm{B}+$ and filament voltages.

A 72 ohm to 300 ohm matching unit, or Balun, Philco Part No. 45-1983, with built-in external leveling, is required for proper impedance match of the sweep generator output to the UHF tuner-adaptor input.

A detector jig is necessary for detection of the output of the UHF tuner-adaptor to the oscilloscope input through the scope preamplifier. The required detector jig is illustrated in figure 2. The unit is constructed in a small metal

FIGURE 3-Test Equipment Arrangement
case with shielded connectors. The unit further is constructed so that it mounts physically on the UHF tuner output for close proximity.

The method of connecting the various pieces of test equipment to the UHF unit under test is illustrated in figure 3. The UHF output of the UHF sweep generator is fed to the external leveler with a portion of the signal being fed back from the leveler to the monitor jack of the UHF sweep generator. The signal from the output of the leveler is then fed through the Balun or matching unit to the input of the UHF unit being aligned.

The UHF marker generator, necessary for alignment of the oscillator, is connected also to the input of the UHF tuner; and the oscilloscope jack of the UHF sweep generator is connected to the scope horizontal input.

The detector jig is connected to the output of the UHF tuner at the feed-through insulator, and the VHF marker generator, which supplies the i-f markers, is also connected to the detector jig. The output of the detector jig is fed through the scope amplifier to the oscilloscope vertical input, through a SPDT switch. A connection is made from the sweep generator monitor jack to the SPDT switch, the purpose of which is to permit checking of the leveling voltage. The leveling voltage should be relatively flat as the UHF sweep generator is rotated through its entire range. See figure 4.

Alignment chart No. 1 should be followed for alignment of the oscillator. During alignment of the oscillator it is necessary to open the ground connection at the feed through connection TP-1, on the outside of the tuner chassis, in order to obtain an undistorted response curve. After completion of oscillator alignment, and before beginning r-f alignment, restore the ground connection.

Part of the procedure for alignment of the r-f sections of the tuner may require repositioning or "winging" the r-f rotor plates of the tuner. Since this is a critical adjustment, it should be performed carefully to avoid any damage to the plates. Only a slight movement of the rotor plates in either direction is necessary. A metal probe should be used to provide a means of adding capacitance to the r-f tuning gang, and thus indicating in which direction the response curve must be shifted in frequency with respect to the markers. The probe should be laid next to the segments of the rotor in the r-f tuning gang and the effect noted on the response curve. This procedure should be followed for each of the segmented rotor plates in the r-f sections. The plate which shows the most effect on the response curve should be adjusted or winged. Each rotor plate should be checked and the service technician should not attempt to make all of the corrective adjustments with only one rotor plate or rotor plate segment. If the response curve is high with respect to the i-f markers, the capacitance of the gang should be increased, and the slotted rotor plate segment or segments should be moved closer to the stator. If the response curve is low in frequency, with respect to the i-f markers, the capacitance should be decreased and the rotor plate segment or segments should be moved away from the stator. For r-f alignment of the tuner refer to the alignment chart No. 2 and figure 5.

Chart No. 1 - Oscillator Alignment

STEP	UHF TUNER DIAL SETTING	UHF SWEEP GENERATOR	UHF MARKER GENERATOR	I-F MARKER GENERATOR		ADJUST	REMARKS
				\# 1	\#2		
1	Low end of Dial - Plates Fully closed	Approx. 467 mc .	470 mc.	41 mc.	46.5 mc .	P-1	Adjust for zero beat between 470 me . R-F marker and 41 mc . I-F marker.
2	High end of Dial $=250^{\circ}$ Rotation	Approx. 893 mc .	896 mc.	41 mc.	46.5 mc .	P-2	Adjust for zero beat between 896 mc . R-F marker and 41 mc . I-F marker.

Chart No. 2-R.F. Alignment

STEP	UHF TUNER DIAL SETTING	$\begin{aligned} & \text { UHF } \\ & \text { SWEEP } \\ & \text { GENERATOR } \end{aligned}$	MARK	ATOR	ADJUST	REMARKS
			\# 1	\# 2		
1	high end of dial 250° Rotation	approx. 893 mc .	$\begin{gathered} 41 \\ \mathrm{mc} . \end{gathered}$	46.5 mc.	P-3 and P-4	Adjust both trimmers for symmotrical band pass with markers in proper position. Figure 5.
2	Ist slot - RF Rotor Plates 225° Rotation	approx. 850 mc .	$\begin{gathered} 41 \\ \text { me. } \end{gathered}$	$\begin{aligned} & 46.5 \\ & \text { me. } \end{aligned}$	*ist segments RF Rotor Plates	Use metal probe - note effect on response curve. Compensate in proper direction.
3	2nd slot - RF Rotor Plates 157.5° Rotation	approx. 735 mc .	$\begin{gathered} 41 \\ \mathrm{mc} . \end{gathered}$	$\begin{aligned} & 46.5 \\ & \text { mc. } \end{aligned}$	*2nd segments RF Rotor Plates	Repeat step \#2
4	3rd slot - RF Rotor Plates 112.5° Rotation	approx. 658 mc .	$\begin{gathered} 41 \\ \mathrm{mc} . \end{gathered}$	$\begin{aligned} & 46.5 \\ & \mathrm{mc} . \end{aligned}$	*3rd segments RF Rotor Plates	Repeat step \#2
5	4th slot - RF Rotor Plates 67.5° Rotation	approx. 582 mc .	$\begin{gathered} 41 \\ \text { mc. } \end{gathered}$	$\begin{gathered} 46.5 \\ \mathrm{mc.} \end{gathered}$	*4th segments RF Rotor Plates	Repeat step \#2
6	5th slot - RF Rotor Plates 22.5° Rotation	approx. 505 mc .	$\begin{gathered} 41 \\ \mathrm{mc} . \end{gathered}$	46.5 me.	*5th segments RF Rotor Plates	Repeat step \#2
7	Fully closed 0° Rotation	approx. 467 mc.	41 mc.	$\begin{aligned} & 46.5 \\ & \mathrm{mc} . \end{aligned}$	*Last segments RF Rotor Plates	Repeat step \#2
* NOTE: T		on of the resp the corrections	$\text { ny } \mathrm{ON}$	with	R-F section seg	DO NOT attempt to

FIGURE 6-Schematic Diagram-Philco UHF Tuner Adaptor UT-26

FIGURE 7-Base Layout, UT-26 UHF Tuner Adaptor

Dial Tracking Procedure

A calibrated scale may be used as a means of calibrating the correct degrees of rotation of the tuner rotor with respect to the channel frequencies. Figure 8. A pulley, Philco Part Number 56-9641-1 in addition to an extension shaft with a coupler attached, available through most parts supply houses, is ideal as a means of attaching the calibrated scale to the unit under test. A small piece of wire can be used as a pointer. It is important, when using the scale, that the pointer be set at 360° when the tuning gang is fully closed. The degrees of rotation with respect to the approximate frequency is shown in the following chart.

DEGREES RO'TATION	APPROX. FREQUENCY MC.
360	467
337.5	505
292.5	582
247.5	658
240	675
202.5	735
135	850
110	. 893

APPROX. FREQUENCY MC.467292.5582240675135850
110 893

Installation Instructions For UT-26 UHF Tuner Kit, Part No. 43-7146 THE TUNER KIT CAN BE INSTALLED WITHOUT REMOVING THE CHASSIS OR CABINET BACK

To install the UHF tuner, proceed as follows:

1. Lay a soft cloth on the floor; then turn the cabinet so that the bottom is accessible and lay the cabinet on the cloth. Make sure power is turned off to the receiver.
2. Loosen the screws that secure the cover plate to the bottom of the cabinet, slide the cover plate forward, lift up at rear to clear the rear screw heads, and then rotate the plate to provide access to chassis.
3. Preset the UHF dial that is mounted on the chassis by rotating the UHF dial shaft counterclockwise (as viewed from front of receiver) until it stops.
4. Rotate the VHF FINE TUNING knob counterclockwise until the UHF dial pulley stops, and then turn clockwise if necessary, to align the slotted openings on the pulley so that it is in line with the edge of the bracket on which it is mounted. See figure 9.
5. Remove the UHF tuner from the packing in the kit; then rotate the tuner drive assembly by turning the pointed end bracket counterclockwise (as viewed from front) until it stops.

NOTE: If, during rotation, the assembly suddenly seems to require more pressure to turn, this is
due to the dual-speed drive action of the UHF tuner.
6. Remove the UHF antenna lead from under the dress lug at the point shown, dress the lead through the slot on the panel at the rear of the UHF tuner as shown in the illustration, and slide the UHF antenna-lead plugs onto the pins on the panel. After removing the UHF antenna lead, make sure that the rest of the leads that were under the dress lug are replaced.
7. Position the tuner for mounting so that the cables will come out through the bottom; then insert the tuner as follows:
A. Tilt the tuner so that the tube and tube shield may be inserted through the chassis opening.
B. Push the tuner through the opening until it is properly centered, then push the tuner toward the rear of the chassis so that the pointed ends of the bracket on the UHF tuner may be lined up with the rubber grommets on the pulley assembly.
C. Push the unit forward until the flats on the shaft are properly seated, see illustration.

FIGURE 9-UHF Assembly as Viewed through Bottom of Cabinet

FIGURE 10-Antenna Lead Connections for Common VHF and UHF Operation

NOTE: To align the flat on the UHF dial drive shaft with the flat on the UHF tuner shaft, it may be necessary to rotate the dial drive shaft slightly.
8. When the flats on both the pulley assembly and drive assembly are properly seated, secure the rear of the tuner to the chassis with the two self-tapping screws supplied. If the holes on the UHF tuner mounting bracket will not align with the holes in the chassis sub-base, this indicates that the flats are not seated properly.
9. Insert the power cable of the UHF tuner into the socket located on the rear mounting bracket at the bottom

FIGURE II—Antenna Lead Connections for Separate VHF and UHF Antenna Operation
of the VHF tuner; then connect the coaxial output cable of the UHF tuner to the jack at the rear of the VHF tuner.
10. Place the UHF dial pilot-lamp assembly on the tab located under the UHF tuner dial, and place the dial-lamp cable under the dress lug, as shown.
11. After making sure that all the cables are connected, turn the receiver on, place the CHANNEL SELECTOR to the UHF position, and adjust the pilot-lamp assembly by pushing the assembly in and out until the dial numbers are properly projected on the center of the UHF dial screen across the complete range. It may be necessary to rotate the housing slightly to obtain the best focus.

CAUTION: While adjusting the pilot-lamp, be careful that no contact is made with high-voltage points on the chassis.
12. Mount the antenna crossover network panel to the cabinet back by proceeding as follows:

Insert the mounting grommets into the square holes provided in the cabinet back; position the grommets so that their long dimensions are vertical. Position the crossover network as shown, and using the screws provided, secure the network to the cabinet back by driving the screws through the mounting holes and into the grommets. The screws, when tightened, will spread the grommets and secure the assembly to the cabinet back.
13. Take up the excess slack in the UHF tuner lead by pulling the lead outward from the outside of the cabinet back.
14. If one antenna is to be used for both VHF and UHF, refer to figure 2 and proceed as follows:
A. Connect the leads of the outside or built-in antenna to the screw lugs on the crossover panel.
B. Connect the antenna lead of the VHF tuner to the pins on the side of the crossover panel marked "VHF".
C. Connect the antenna lead (yellow) of the UHF tuner to the pins on the side of the crossover panel marked "UHF".

If separate antennas are to be used for VHF and UHF, do not make any connections on the crossover panel, see figure 3. Connect the VHF antenna transmission line to

FIGURE 12-An Exploded View of Dial Cord Arrangement. Dial Cord length: 22 inches, from the inside of the two loop knots.
the screw terminals on the VHF antenna connector and insert the metal tips of the VHF tuner leads into the metal clips of the VHF antenna connector. Connect the UHF antenna transmission line to the screw terminals on the UHF antenna connector, and insert the metal tips of the UHF tuner leads (yellow) into the metal clips on the UHF tuner antenna connector.

Replacement Parts List

Reforonce Symbol	Description	Service Part No.
X-2	coil, output, i-f	32-4558-1
X-1	choke, cathode decoupling	32-4550-6
T-2	coil, injector and mixer coupling	32-9668
R-2	resistor, plate feed	66-2224340
R-1	resistor, grid leak	66-2688340
R-5	resistor, B plus dropping	66-2565340
R-6	resistor, B plus dropping	66-2565340
R-7	resistor, pilot dropping	66-9393360
Cl-1	capacitor, heater feed through	30-1245-6
C2-1	capacitor, plate feed through	30-1245-6
C-3	capacitor, 1.0 mmld . temp. comp.	30-1224-107
C-5	capacitor, 3 mmid. temp. comp.	.30-1224-122
P2	padder oscillator high end	56-9601-4
P1	padder oscillator low end	56-9601-3
	MISCELLANEOUS	
Electrical Parts		
	cable, i-f	41-3754-56
B-1F	antenna coil and panel assembly	76-9147
XTL-1	crystal	34-8026
	cable, power	41-4141-8
PL-1	socket assembly, pilot lamp	76-2142-6
PL	pilot lamp	32-2064
	connector, antenna	L3517FA 1
	crossover, network	76-9042

Reference Symbol	Description	Service Part No
Mechanical Parts		
	tuner assembly	76-9017
B-2	panel, crystal mounting	76-8809
	cover, tuner	56-9619-5
	shield tube	56-5629-9
	pulley	76-9036
S1	socket. tube	27-6288
	oscillator stator	28-9933
	oscillator stator opp. hand	28-9933-1
	oscillator tank	76-8899
	spring, ground	28-9947
	spring, ground	28-10136
	bearing, rear	56-9609
	nut, rear lock	56.9599
	bearing plate front	28-9842-1
	ball bearings (9) used	W2510-5
	screw, padding	28-10028
	shield cup, tuner	28-9993
	shaft and rotor assembly	76-9029
	pulley stationary	54-9247
	bracket and pulley assembly	76-9054
	"E" washer, retaining	60980 FE7
	spring, drive cord	56-3167

Printed in U.S.A.

PRODUCTION CHANGES IN R-194 R-F CHASSIS

REASON FOR CHANGE	DESCRIPTION OF CHANGE	NEW OR ADDED PART NO.	old or removed PART NO.	$\begin{aligned} & \text { RUN } \\ & \text { NO. } \end{aligned}$
To facilitate production.	* 1000 .ohm, 7 -watt resistor, in series with R212, was removed. Resistor R212 was changed from 2 K to 3.3 K . Note: Early production used a 1000 -ohm, 7.watt resistor in series with R212 (2 K) to make up the required amount of resistance (approx. 3K) for R212.	33-3446-10	33-3446-8	2
To prevent video oscillation.	B-plus lead to screen grid of 2 nd video i-f tube (V), was dressed outside of i.f shield (away from crystal detector).			3
To prevent video oscillation.	All Run 1 and 2 chassis were reworked to include new lead dress of 2 nd video i.f screengrid B-plus lead, outside of i-f shield.			$\begin{gathered} \text { 1X } \\ \text { and } \\ 2 \mathrm{X} \end{gathered}$
To improve sound gain, reduce sync buzz, and improve sync performance.	Resistor R601 was changed from 27 K to 15 K . Resistor R304 was removed. Condenser C406 was changed from $150 \mu \mu$ f. to $330 \mu \mu \mathrm{f}$. Condenser C401 was chang ${ }^{\text {d }}$ from $18 \mu \mu \mathrm{f}$. to $10 \mu \mu \mathrm{f}$. Condenser C402 was changed from 01 ff . to $.0022 \mu \mathrm{f}$. Wiring on lugs of sound take-off coil, L400, were reversed.	66-3158340 62-133001001 62.010409001 30-1650.54	66.3278346 66.3478346 62-115001011 62.018409011 30.4671-41	4

*This change was incorporated into Service Manual PR-2522.

PRODUCTION CHANGES IN D-204 DEFLECTION CHASSIS

REASON FOR CHANGE	DESCRIPTION OF CHANGE	NEW OR ADDED PART No.	old or removed PART NO.	RUN NO.
To eliminate picture bend.	Condenser C 803 was changed from $.001 \mu \mathrm{f}$. to $.002 \mu$.	30.1238 .12	30.1238.3	2
To prevent burning of 12B4. tube cathode-resistor due to operational tube failure.	Wattage rating of resistor R 709 was increased from 1 watt to 2 watts.	$66 \cdot 14753.40$	66.1174340	

PRODUCTION CHANGES IN R-204 R-F CHASSIS

REASON FOR CHANGE	DESCRIPTION OF CHANGE	NEW OR ADDED PART NO.	ORD OR REMOVED PART NO.	RUN NO.	
To improve fringe area per. formance.	Condenser $33 \mu \mu \mathrm{f}$.	C226 was changed from $18 \mu \mu \mathrm{f}$. to	62.033409011	$62-018409011$	2

PRODUCTION CHANGES IN D-208 DEFLECTION CHASSIS

REASON for change	DESCRIPTION OF CHANGE	NEW OR ADDED PART NO.	old or removed PART NO.	$\begin{aligned} & \text { RUN } \\ & \text { NO. } \end{aligned}$
To reduce buzz.	*A $680 \cdot \mathrm{ohm}$ damping resistor was added, across secondary of vertical output transformer, T701.	66.1688340		2
To eliminate picture bend.	*Condenser C803 was changed from $001 \mu \mathrm{f}$, to . 002μ.	30-1238-12	30-1238.3	3
To increase picture width.	*Condenser C 813 was changed from $68 \mu \mu \mathrm{f}$. to $82 \mu \mu$.	30-1246.6	30-1246.5	
To improve vertical retrace suppression.	Condenser C705 was changed from $01 \mu \mathrm{f}$. to . 033μ f.	30-4650-44	30-4650-41	4
To reduce buzz.	Resistor R705 was removed.		66-1688340	
To increase picture width.	All Run 1, 2, and 3 chassis were reworked by changing condenser C813 from $68 \mu \mu$. to 82 $\mu \mu$.	30-1246-6	30-1246.5	$\begin{aligned} & 1 \mathrm{Z}, \\ & 2 \mathrm{Z}, \\ & \text { and } \\ & 3 Z \end{aligned}$
To reduce Barkhausen oscillation.	A . $002 \mu \mathrm{f}$. condenser was added, from screen grid of 6(CD6G: tule (V19) to ground.	30.1238.12		5
To prevent possible breakdown of B-plus boost condenser.	One lead of condenser C812 was removed from ground and rewired to B plus.			6
To prevent possible break. down of B-plus boost condenser.	All available Run 1Z, 27, and 37 chassis were reworked by removing one lead of condenser C812 from ground and rewiring to B plus.			$\begin{gathered} \text { 1ZY, } \\ \text { 2ZY, } \\ 3 Z \mathrm{Y}, \\ 4 \mathrm{Y}, \\ \text { and } \\ 5 \mathrm{Y} \end{gathered}$
To eliminate Barkhausen oscillation.	An r.f choke was added, in filament circuit of 6CD6G tube (V19).	32.4112.51		7

*These changes were incoryorated in Service Manual PR-2527.

PRODUCTION CHANGES IN R-207 R-F CHASSIS

REASON FOR CHANGE	DESCRIPTION OF CHANGE	NEW OR ADDED PART NO.	OLD OR REMOVED PART NO.	$\begin{aligned} & \text { RUN } \\ & \text { NO. } \end{aligned}$
To prevent overload of contrast control.	An $1800-\mathrm{ohm} \pm 10 \%$, l-watt resistor was added, in series with video output tube (V8) screen supply.	$66 \cdot<181340$		2

PRODUCTION CHANGES IN D-181 DEFLECTION CHASSIS

REASON FOR CHANGE	DESCRIPTION OF CHANGE	NEW OR ADDED PART NO.	old or removed PART NO.	RUN NO.
To improve vertical retrace suppression.	Resistor R 720 was changed from 22 K to 15 K .	66.3158340	66-3228346	5
To improve range of width control.	Width control, R817, was changed from 10 K to 12.5 K . Resistor R816 was changed from 4200 ohms to 5000 ohnis.	$\begin{aligned} & 33-55+6 \cdot 51 \\ & 33-1335-118 \end{aligned}$	33-5546-41 $33 \cdot 1335 \cdot 101$	6
To improve range of brightness control.	Resistor R818 was changed from 12 K to 8200 ohms.	66-2828340	66-3128346	7
To increase rectifier life.	Selenium rectifiers CR100 and CR101 were changed.	34-8003-7	34-8003-16	8
To eliminate picture bend.	Condenser C802 was changed from $001 \mu \mathrm{f}$. to . $002 \mu \mathrm{f}$.	30-1238-12	30-1238-3	9
To center range of vertical hold control.	Resistor R 706 was changed from 510 K to 390 K .	66-4398310	66-4518240	10
To reduce 1B3GT tube filament voltage.	Resistor R103 was changed from 4.7 ohns to 5.6 ohms.	66.9563240	66-9473340	11
To increase rectifier life.	Selenium rectifiers CR100 and CR101 were changed from $350-\mathrm{ma}$. to $\mathbf{4 5 0} \mathrm{ma}$. rating.	31-8003-8	34-8003-7	12
To increase range of height control.	Resistor R 710 was changed from 270 K to 390 K .	66-1398340	66-4278340	13

PRODUCTION CHANGES IN R-181 R-F CHASSIS

$\begin{aligned} & \text { REASON } \\ & \text { FOR CHANGE } \end{aligned}$	DESCRIPTION OF CHANGE	NEW OR ADDED PART NO.	OLD OR REMOVED PART NO.	RUN No.
To improve range of contrast control.	Resistor R302 was changed from 390 ohms to 470 ohms.	$66 \cdot 1478340$	66-13983 16	16
To improve vertical retrace suppression.	Resistor R310 was changed from 10 K to 15 K .	66-3158340	66.3108346	17
To reduce Channel 5 picture beat.	Terminal board B9 was changed from 2-lug to $3 \cdot$ lug type. Additional series peaking coil (L215A) was added. Revised wiring of video detector circuit using additional peaking coil.	321112-50		18
To improve range of brightness control.	Resistor R311 was changed from 22 K to 27 K .	66-3278340	66-3228346	19

Copyright, 1953, PHILCO CORPORATION

PRODUCTION CHANGES IN D-201 DEFLECTION CHASSIS

REASON FOR CHANGE	description of change	NEW OR ADDED PART NO.	old or removed PART NO.	RUN NO.
	First production.			5
To improve operation of vertical oscillator.	Vertical-oscillator (V15) tube socket was rotated 180° in chassis subbase. Tube pins l, 2, and 3 are now used for phase splitter, and pins 6,7 , and 8 are used for vertical oscillator.			6
To improve range of width control.	Width control, R815, was changed from 10 K to 12.5 K .	33.5546 .51	33-5546-41	
To eliminate possible shorts.	Condensers C705, C706, and C819 were moved from rear to front of chassis subbase.			7
To eliminate picture bend.	Condenser C803 was changed from 001μ f. to $.002 \mu$.	30-1238-12	30-1238-3	8
To reduce 1B3GT tube filament voltage.	Resistor R103 was changed from 4.7 olims to 5.6 ohms.	66-9563240	66.9473340	9
To prevent burning of 12B4tube cathode.resistor due to operational tube failure.	Wattage rating of resistor R709 was increased from 1 watt to 2 watts.	66-175310	66.1494310	10

PRODUCTION CHANGES IN R-20I R-F CHASSIS

REASON FOR CHANGE	DESCRIPTION OF CHANGE	NEW OR ADDED PART NO.	OLD OR REMOVED PART NO.	$\begin{aligned} & \text { RUN } \\ & \text { NO. } \end{aligned}$
To improve operation and to improve video transient response.	*First video i-f transformer, T201, was changed. *Toleranec of C302, . $015 \mu \mathrm{f}$., was changed from $\pm 20 \%$ to $\pm 10 \%$.	$\begin{aligned} & 32.4598 .5 \\ & 30.4651-21 \end{aligned}$	$\begin{aligned} & 32.4518-28 \\ & 30.4650-25 \end{aligned}$	2
To eliminate possibility of video oscillation at minimum contrast.	* A $3300 \cdot 0 \mathrm{hm} \pm 10 \%, 1 / 2$ watt resistor was added, across video series peaking coil, L306.	66.2338340		3
To prevent overload of contrast control.	An $1800 \cdot \mathrm{ohm} \pm 10 \%$, 1-watt resistor was added, in series with video output tube (V8) screen supply.	66.2184340		4
To improve fringe area performance.	Condenser C206 was changed from $18 \mu \mu \mathrm{f}$. to $33 \mu \mu$.	62-033009001	62.018.409011	5

PHILCO TELEVISION SERVICE MANUAL FOR UHF TUNER SUB-ASSEMBLY T-24 PART NO. 76-8806 USED IN UHF TUNER ADAPTOR UT20B

INTRODUCTION

The T-24 UHF Tuner Sub-assembly, Part No. 78-8806 is used interchangeably with the T-20 Tuncr Sub-assembly, Part No. 76-7595, as employed in the UT20B UHF Tuner-Adaptor installed in Philco television receivers with chassis codes 141 or 150 . The sub-assembly contains the $r-f$, oscillator and mixer stages of the UHF TunerAdaptor.

CIRCUIT DESCRIPTION

The incoming UHF signal is coupled through the antenna input line, two 12 mmfd . condensers and an antenna coupling inductance L1 to the first r-f tank of the tuner. See figures 5 and 6. The first r-f tank, or antenna tank, is coupled to the mixer tank by means of the mutual coupling of L2 and L3 and the stray capacitance existing between the two tank assemblies. The desired signal is selected by tuning the antenna tank and the mixer tank to the correct frequency, and the signal is then coupled to the crystal mixer circuit by means of the inductive coupling of L3 and L4. A 6AF4 tube, V1, and its associated circuit pro-
vide the local oscillator signal. The oscillator circuit is coupled to the crystal mixer circuit by L5 and L6. In the crystal mixer circuit, the r-f signal and the oscillator signal are mixed to produce a $45.75-\mathrm{mc}$. video i-f carrier signal. The signal is then coupled to the VHF tuner through L8, a coaxial cable and J500 on the VHF tuner. In UHF operation, the local oscillator of the VHF tuner is inoperative, and the r-f amplifier and mixer tubes of the VHF tuner operate as i-f amplifiers.

In order to prevent the i-f and oscillator signals from feeding back to the antenna and interfering with other receivers, two tanks, the antenna and mixer tanks, are employed. The two tanks readily pass incoming signals, but do not pass the i-f or oscillator signal.

The tuning condensers for the antenna, mixer and oscillator tanks are ganged on a single tuning shaft, part of a planetary drive assembly, which permits both fine and coarse tuning by means of a single control knob.

PROCEDURE FOR OSCILLATOR ALIGNMENT OF THE T-24 UHF TUNER SUB-ASSEMBLY

Figure 1-6DB Pad

Figure 2-UHF Test Equipment Connections

TEST EQUIPMENT AND PRELIMINARY INFORMATION

Proper alignment of the T-24 UHF Tuner Sub-assembly requires adequate test equipment. The test equipment should include a Philco Model 7008 sweep generator and oscilloscope, a Philco Model G-8000 VHF to UHF signal generator adaptor or an equivalent UHF sweep and marker generator, an oscilloscope, a 6 DB pad, and a television chassis as a source of power for the UHF unit under test.

The output cable of the model 7008 is fed to the model G-8000 with the shortest possible cable in order to reduce standing wave ratio. The output of the Model G-8000 adaptor is fed through a 6 DB pad to the UHF tuner input. The construction of the 6 DB pad is illustrated in figure 1. The oscilloscope input of the Model 7008 is connected to the mixer test point of the VHF tuner on the television chassis through a series isolating resistor of $100,000 \mathrm{ohms}$. In figure 2 the hook up of the test equipment is illustrated.

Calibration of the test equipment is necessary for accurate check of the UHF units. The response curve of the VHF tuner should be checked

Figure 3-Position of Marker Frequency
first in accordance with alignment specifications to eliminate possible false indications from this source.

In order to calibrate the Model 7008, set the function switch to "Calibrate" position, with the marker band switch to " B " position and calibrate the marker at the 43.333 megacycle crystal check point.

Turn the function switch to "Marker" position Next, turn the sweep generator portion of the 7008 to the "A" band, with the sweep control to 43 megacycles.
The calibration of the G-8000 can be simply performed by plotting it against a UHF tuner or performed by plotting it against a UHF tuner or
converter that is known to be good. The G-8000 converter that is known to be good. The G- 8000 ends of the UHF band and also at the point where the local UHF stations occur.

This calibration can be performed by either beating the outputs of the G-8000 and the "stan-
dard" UHF adaptor together or by feeding the Model G-8000 adaptor output to the standar unit and checking for maximum indication with an oscilloscope or meter at the output of the stan dard unit.
Note: Replacing the oscillator tube with a new one may detune the tuner. If this occurs a number of tubes should be tried, unti the most satisfactory substitute for the original is found.
To proceed with the alignment refer to the oscillator alignment chart.

Figure 4—Response Through UHF Channels 14 to 83
OSCILLATOR ALIGNMENT CHART

STEP	VHF TUNER Channel selector	UHF TUNER dial setting	6.8000(or equivalent) dIAL SETTING	7008 (or equiv.)		ADJUST	Remarks
				Marker	Sweop		
1	UHF	Tuning Gang fully closed	Low Freq. Cal. Point	43.333	Approx. 44 Mc .	TC-4	Center Marker on Response curve (See fig. 3).
2	UHF	Tuning Gang fully open	High Freq. Cal. Point	43.333	Approx. 44 Mc .	TC-3	Center Marker on Response curve (See fig. 3).
3	UHF	Tune Through Entire Range	Tune Through Entire Range	43.333	Approx. 44 Mc .	None	UHF tuner and G-8000 are Tuned through range simultaneously. Marker should not fall below the top 10 percent of the response curve.

NOTE: When tuning through the entire range of UHF channels, a drop in amplitude will be noticed between approximately channel 30 and chan el 60. See fig. 4. This effect is due to the characteristics of the test equip ment, UHF unit and lead terminating impedances and does not necessarily indicate trouble with the unit under test

(XOI HONOYHL NOSZ) +8
SIDE PANEL \qquad 2

INSIDE VIEW
Figure 6-Base Layout

REPLACEMENT PARTS LIST

REEERENCE SYMBOL	description	SERVICE. PART No.
C1 and C2	Condensers, antenna input, 12uuf.	Part of antenna coil \& panel assembly.
C3	Condenser, tuning	
C3A	Rotor, r-f, r.h.	. Part of shaft and rotor assembly
C3B	Rotor, r-f, l.h.	. Part of shaft and rotor assembly
C3C	Rotor, oscillator, r.h.	. Part of shaft and rotor assembly
C3D	Rotor, oscillator, l.h.	. Part of shaft and rotor assembly
C3E	Stator, oscillator, r.h.	.28-9933
C3F	Stator, oscillator, l.h.	. 28-9933-1
C4	Condenser, temperature compensating, .3uuf.	. 30-1224-122
C5	Condenser, temperature compensating, 1uuf.	.30-1224-107
C6	Condenser, 220uuf. Part of oscillator tank assembly
C7	Condenser, capacity between osc. tank halves	Part of oscillator tank assembly
C8	Condenser, filament by-pass, 500uuf.30-1245-6
C9	Condenser, plate by-pass, 500uuf.30-1245-6
C10	Condenser, crystal by-pass, 30uuf.	Part of panel assembly crystal mtg.
TC-1	Tuning core, first r-f tank	.28-10028
TC-2	Tuning core, second r-f tank	28-10028
TC-3	Tuning core, oscillator, high end	. 56-9601-4
TC-4	Tuning core, oscillator, low end	56-9601-3
R1 and R2	Resistors, antenna input, 470,000 ohms	Part of antenna coil \& panel assembly
R3	Resistor, plate load, 2200 ohms, 1 watt	.66-2224340
R4	Resistor, grid leak, 6800 ohms , $1 / 2$ watt	66-2688340
L1	Inductor, antenna coupling	Part of antenna coil \& panel assembly
L2 and L3	Inductors, r-f stage	Part of tuner sub-assembly
L4 and L5	Inductor, injection and mixer coupling	32-9668
L6 and L7	Inductors	Part of oscillator tank assembly
L8	Coil, i-f output	32-4558-1
L9	Choke, cathode decoupling	32-4550-6
CD1	Crystal, mixer	32-8026
	1	
CELLANEOUS		

Electrical Parts

Panel assembly, crystal mounting	76-8809
Tank assembly, oscillator	76-8899
Cable assembly, i-f output	41-3754-56
Antenna coil and panel assembly	6-8803

Mechanical Parts	
Tuner shaft and rotor assembly	76-8910
Ball, bearing (9)	W2510-5
Bearing, plate front	28-9842
Nut, rear lock	56-9599
Bearing, rear	56-9609
Spring, rotor shaft grounding	28-9947
Pulley	28-9090-1
Socket, 7 pin miniature	27-6288
Shield, 6AF4 tube	56-5629-9

SERVICE REEERENCE CHART AND CABINET
 PARTS LIST FOR PHILCO "C" LINE TELEVISION RECEIVERS

TELEVISION

SERVICE	Reference chart	FOR PHIL	"C"	LINE	TELEVISION	RECEIVERS
иоDel	code	chassis			$\underset{\text { Picture }}{\text { Tuse }}$	sphyicr MANGAL
22 24010	130	R181, D181, D182	76.7664.2		$2{ }^{2}$ WP4	Pr-2506
2224010	131	R181, D192	76.7664.2		$21 \times \mathrm{P} 4$	PR.2506 \& Pr.2807
22840105	130	R181, D181, 1882	${ }^{76.766+2}$		${ }^{21 \text { WP4 }}$	Pr.2005
22640105	${ }_{131}$	R131, D182	${ }_{76.7664 .2}$		$2_{21 \times P 4}$	PR.2506 \& PR.207
22 24012	130	R181, D181	76.7664.2		${ }^{21}$ WPP4 $^{\text {a }}$	Pr.2506
22 C4012	131	R181, D181, D182	26.7664.2		$21 \times \mathrm{P} 4$	PR-2506 \& PR.207
2224014	$\{1313$				${ }_{21}^{21 W^{2} P_{P 4} A}$	${ }_{\text {PR }}^{\text {PR } 28007}$
22 C4016	${ }_{350}$	${ }_{350}$	76.9966-2		${ }_{212748}$	PR-2898
$22 \mathrm{CaO16L}$	350	${ }_{35}$	76.996-2		${ }^{212748}$	PR-2808
22 C4020	400	400	7.9996.3		${ }^{2127848}$	PR-2809
22 C419	300	300	76.996-1		21×84	PR-2812
22 C4120	300	300	76.996-1		$21 \mathrm{YP4A}$	PR.2812
22C4120L	300	300	76.8946-1		21 PP 4 A	PR-2812
${ }^{22} \mathrm{CH122}$	$\{1310$				${ }_{21217 \times 9}^{2178}$	
22 C4123	300	${ }^{300}$	76.996-1		21 YP4A	PR-2812
${ }^{22 C 4124}$	\{300	${ }^{300}$			${ }_{2}^{2117 Y_{4} A}$	${ }_{\text {Pr }}^{\text {PR.2880 }}$
${ }^{22 \mathrm{CaH} 424 \mathrm{~L}}$	$\{3500$	${ }_{3}^{350}$	${ }_{76,98966.1}^{76.29}$		${ }_{21212784}^{218}$	
${ }^{22} \mathbf{C 4 1 2 6}$	${ }^{350}$	${ }_{350}$	76.946-2		${ }^{217848}$	PR.2808
$22 \mathrm{CH1265}$	${ }_{350}$	${ }_{350}$	76.9946.2		${ }^{217848}$	PR-2808
${ }_{22 C 4128}$	400	400	${ }_{76.9946-3}$		${ }^{2127 P 4}$	${ }^{\text {PR } 2809}$
$22 \mathrm{CH132L}$	400	400	76.9946-3		${ }^{217748}$	PR-2809
22 C 1310	300	300	76.896-1		${ }_{21 \mathrm{YP} 4 \mathrm{~A}}$	PR-2812
$22 \mathrm{Ca3101}$	${ }^{300}$	${ }^{300}$	${ }^{76.9946-1}$		${ }^{21 Y P 4, ~}$	${ }^{\text {Pr }}$-2812
22 C4312	${ }^{350}$	${ }^{350}$	76.9946-2		$21 \times 1 \times 4$	PR R2808
${ }_{22 C 43122}$	${ }^{350}$	${ }_{350}$	76:996-2		${ }^{217848}$	Pr.2808
${ }^{24} 66010$	${ }^{354}$	${ }^{354}$	${ }^{76.9946 .2}$		${ }^{24 \mathrm{VPP} 4 \mathrm{~A}}$	PR.2808
2468109	${ }^{354}$	${ }^{354}$	7.6846-2		24 PP 4 A	${ }^{\text {PR-2008 }}$
24661095	${ }^{354}$	${ }^{354}$	76.936-2		24 VP ¢ ${ }^{\text {a }}$	${ }^{\text {PR 2808 }}$
${ }^{246610}$	${ }^{354}$	${ }^{354}$	76.8946-2		${ }^{24 \mathrm{VPP} 4}$	PR-2808
24661100	${ }_{354}$	${ }_{354}$	76:896-2		${ }_{24 \mathrm{4VP4A}}$	Pr-2008
${ }^{2466112}$	${ }^{354}$	${ }^{354}$	${ }_{76.8346 .2}$		24 VPLA	PR-2809
2466310 220410	${ }^{354}$	${ }^{354}$	70.9946-2		${ }^{219844}$	${ }^{\text {PR } 2888}$
${ }^{22 C 4410}$						

CABINET PARTS LIST FOR PHILCO "C" LINE TELEVISION RECEIVERS

Description:	$\begin{array}{r} 22 \mathrm{C} 4010 \\ \text { Code } 130 \end{array}$	$\begin{array}{r} 22 \mathrm{C} 4012 \\ \text { Code } 130 \end{array}$	$\begin{gathered} \text { 22C4014 } \\ \text { Code } 131 \end{gathered}$	$\begin{aligned} & 22 \mathrm{C} 4016 \\ & \text { Code } 350 \end{aligned}$	$\begin{gathered} 22 \mathrm{C} 4122 \\ \text { Code } 130 \end{gathered}$	$\begin{aligned} & \text { 22C4016L } \\ & \text { Code } 350 \end{aligned}$	$\begin{aligned} & 22 \mathrm{C} 4124 \\ & \text { Code } 350 \end{aligned}$	$\begin{aligned} & \text { 22C4124L } \\ & \text { Code } 350 \end{aligned}$
Cois		32-4560	32-4560	32-4560	32-4560	32-4560	32-4560	32-4560
Foil (above rear of RF chassis or front of deflection chassis).		56-9790	56-9790	56-9790	56-9790	56-9790	56-9790	56-9790
Foil (above rear of deflection chassis of front of RF chassis)		56-9790-1	56-9790-1	56-9790-1	56-9790-1	56-9790-1	56-9790-1	56-9790-1
Light (L)				11052-1		11060-1
Mahogany				11052			11060	
Mahogany (Masonite and Wood).		11059-1	11041-6	11053			
Ebony (Masonite and Wood)	11059		
Back	54-9209-9	54-9209-9	54-9209-8	54-9267	54-9209-7	54-9267	54-9267-1	54-9267-1
Bar Asm'Y., Ofer Knobs				76-9148		76-9148-1	76-9148	76-9148-1
Bracket and Cord	76-8887-2	76-8887-2	76-8887-1	76-9149	76-8887-2	76-9149	76-9149	76-9149
Cup	54.9187-1	54-9187-1	54-9207	54-9187-2	54-9187-1	54-9187-2	54-9187-2	54-9187-2
Foot			
Dome	27-4911-1	27-4911-1	27-4911-1	27-4911-1	45-6190	27-4911-1	3363-2	3363-2
Knob, Brightneas			54-61140-1		54-6140-3	54-6140-1	54-6140-3
Knob, Brightness and Vertical	54-4768-2	54-4768	54-4799		54-4799			
Knob, Channel Selector	76-6863-32	76-6863-30	76-6863-30	76-9118	76-6863-30	76-9118-1	76-9118	76-9118-1
Knob, Contrast			76-6213-6		76-6213-6	76-6213-6	76-6213-6
Knob, Contrast and Horizontal	54-4797-9	54-4797		
Knob, Fine Tuning	54-4803-3	76-6104	76-6104	76-6104-5	76-6104	76-6104-5	76-6104-5	76-6104-5
Knob, Horizontal Hold				54-6140-1		54-6140-3	54-6140-1	
Knob, Fringe Switch				54-6140		54-6140-2	54-6140	54-6140-2
Knob, Vertical Hold			54-6140-1		54-6140-3	54-6140-1	54-6140-3
Knob, Vol. OFF-ON (TV)	54-4804-4	54-4804-3	76-6166	54-6137	76-6166	54-6137-1	54-6137	54-6137-1
Mask	28-9931-1	28-9931-5	28-99331-3	28-10075-2	28-9931-4	28-10075-3	28-9376-12	28-9376-13
Nameplate			76-8536-1				
Window	54-9213-32	54-9213-32	54-9213-33	54-9213-36	54-9213-34	54-9213-36	54-9213-37	54-9213-37
Cable, Speaker	41-4082-7	41-408-7	41-4082-7	41-4208-1	41-408-7	41-4208-1	41-4208-1	41-4208-1
Connector Antenna	L3517FA1	L3517FA1	L3517FAl	L3517FAl	L3517FAl	L3517FA1	L3517FAl	L3517FAl
Screw, Connector Mounting	1W10913FA3							
Tuner Shaft Insulator	54-6071	54-6071	54-6071		54-6071			
Tuner Shaft Insulator Spring	56-9181	56-9181	56-9181		56-9181		
Shield, Light			54-9234	54-9234		54-9234	54-9234	54-9234
Speaker	36-1639-12	36-1639-12	36-1639-12	36-1639-9	36-1651	36-1639-9	36-1651-5	36-1651-5
Bezel and Scale (and prism as required)			76-8293-2
Plate, Background		54-9059
Knob	54-6073-1	54-6073	76-8292	54-6073
Washer, Light	54-8273	54-8273	54-8273	54-8273	54-8273	54-8273
UHF Vernier Disc	54-6106	54-6106-1	54-6105-1
Clip, Back Plate	28-9606
Crossover Metwork	76-9042	76-9042	76-9042	76-9042
Arm and Magnet, Picture Tube	76-6594	76-6594	76-6594	76-6594	76-6594	76-6594	76-6594	76-6594
Beam, Bender, Picture Tube	76-6077-2	76-6077-2	76-6077-2	76-6077-2	76-6077-2	76-6077-2	76-6077-2	76-6077-2
Cable Deflection	41-4086-25	41-4086-25	41-4086-25	41-4146-23	41-4086-25	41-4146-23	41-4146-23	41-4146-23
Frame Ass'y., Picture Tube	318-3550	318-3550	318-3550	
Focus Assembly	76-6126-4	76-6126-4		76-9014	76-6126-4	76-9014	76-9014	76-9014
Lead Assembly, Focus Pin	41-4099-2	
Magnet, Short, Picture Tube	76-8389	76-8389	76-8389	76-8389	76-8389	76-8389	76-8389	76-8389
Magnet, Centering		76-8998		
Ring, Picture Tube, Metal	56-7869-2	56-7869-2	56-7869-2	56-7869-2	56-7869-2	56-7869-2	56-7869-2	56-7869-2
Ring, Picture Tube, Plastic	54-4939	54-4939	54-4939	54-4939	54-4939	54-4939	54-4939	54-4939
Yoke, Dellection	22-9648	32-9648	32-9648	32-9670	32-9648	32-9670	32-9670	32-9670

CABINET PARTS LIST FOR PHILCO "C" LINE TELEVISION RECEIVERS (Continued)

Description	$\begin{aligned} & \text { 22C4120 } \\ & \text { Code } 300 \end{aligned}$	22C4120L Code 300	$\begin{gathered} 22 \mathrm{C} 4126 \\ \text { Code } 350 \end{gathered}$	$\begin{aligned} & \text { 22C4126L } \\ & \text { Code } 350 \end{aligned}$	$\begin{gathered} 22 \mathrm{C} 4312 \\ \text { Code } 350 \end{gathered}$	$\begin{aligned} & \text { 22C4312L } \\ & \text { Code } 350 \end{aligned}$	24 C 6012 Code 354
Coil	32-4560	32-4560	32-4560	32-4560	32-4560	32-4560	32-4617
Foil (above rear of RF chassis or front of deflection chassis)	56-9790	56-9790	56-9790	56-9790	56-9790	56-9790	
Foil (above rear of deflection chassis or front of RF chassis)	56-9790-1	56-9790-1	56-9790-1	56-9790-1	56-9790-1	56-9790-1	
Light (L)	11072-1	11098-1	11070-1
Mahogany	11072	11098		11070
Metal	11055
Back	54-9267-12	54-9267-12	54-9267-1	54-9267-1	54-9267-7	54-9267-7	54.9309
Bar Ass'y., Over Knobs	54-6164	54.6164	76-9148	76-9148-1	76-9148	76-9148-1	76-9148-1
Bracket and Cord	76-9149-1	76-9149-1	76-9149	76-9149	76-9149	76-9149	76-9149-2
Cup	54-9187-3	54-9187-3	54-9187-2	54-9187-2	54-9187-2	54-9187-2	54-9187-2
Foot					W2570-1
Bullet Catch				.	45-6002	45-6002	
Dome	3363	3363	3363-2	3362-2	45-6190	45-6190	
Doors (Matched Pair)		424-0001	424-0001-1	
Door Pull, L.H. or Top		76-9322	76-9322-1	
Door Pull, R.H. or Middle		76-9322	76-9322-1
Window, Channel Sel.		54-6161
Clip, Window						28-10312
Hinge, Ėnife, L.H.					56-9922-1	56-9922-3	
Hinge, Knife, R.H.					56-9922	56-9922-2	
Knob, Brightness	54-6157-1	54-6157-1	54-6140-1	54-6140-3	54-6140-1	54-6140-3	54-6140-3
Knob, Channel Selector	76-9118-1	76-9118-1	76-9118	76-9118-1	76-9118	76-9118-1	76-9118-1
Knob, Contrast	54-6157-1	54-6157-1	76-6213-6	76-6213-6	76-6213-6	76-6213-6	76-6213-6
Knob, Fine Tuning	76-6104-9	76-6104-9	76-6104-9	76-6104-9	76-6104-9	76-6104-9	76-6104.9
Knob, Horizontal Hold	54-6157-1	54-6157-1	54-6140-1	54-6140-3	54-6140-1	54-6140-3	54-6140-3
Knob, Fringe Switch			54-6140	54-6140-2	54.6140	54-6140-2	54-6140-2
Knob, Vertical Hold	54-6157-1	54-6157-1	54.6140-1	54-6140-3	54-6140-1	54-6140-3	54-6140-3
Enob, Vol. OFF-ON (TV)	76-9237-2	76-9237-2	54-6137	54-6137-1	54-6137	54-6137-1	54-6137-1
Mask	28-10075-4	28-10075-4	28-9376-12	28-9376-13	28-9376-12	28-9376-13	54.9033-7
Strike Plate					45-6003	45-6003	
Window	54-9213-40	54.9213-40	54-9213-37	54-9213-37	54-9213-37	54-9213-37	54-9213-38
Glass Rail Ass'y.			76-9170-2	76-9170-2	76-9170-2	76-9170-2
Cable Speaker	41-4208-1	41-4208-1	41-4208-1	41-4208-1	41-4208-1	41-4208-1	41-4208-1
Connector, Antenna	L3517FA 1	L3517FA 1	L3517FA 1	L3517FAl	L3517FA 1	L3517FAl	L3517FA1
Screw, Connector Mounting	1W10913FA3	1W10913FA3	IW10913FA3	1W10913FA3	1W10913FA3	IW10913FA3	1W10913FA3
Line Cord, A.D.	41-3865	41-3865	41-3865	41-3865	41-3865	41-3865	41-3865
Shield, Light	54-9234	54-9234	54-9234	54-9234	54-9234	54-9234	54-9366
Speaker	45-9736	45-9736	36-1651-11	36-1651-11	36-1651-11	36-1651-11	45-9735
Dial and Film Ass'y.	76-9048	76-9048	76-9048	76-9048	76-9048	76-9048	76-9048
Washer, Light	54-8293	54-8273	54.8273	54-8273	54-8273	54-8273	54-8273
Crossover Network	76-9042	76-9042	76-9042	76-9042	76-9042	76-9042	76-9042
UHF Plate	28-10277	28-10277				
UHF Window	54-9330	54-9330	-
Arm and Magnet, Picture Tube	76-6594	76-6594	76-6594	76-6594	76-8474-1
Beam, Bender, Picture Tube	76-6077-2	76-6007-2	76-6077-2	76-6077-2	76-6077-2	76-6077-2	76-6077-4
Cable Deflection	41-4146-23	41-4146-23	41-4146-23	41-4146-23	41-4146-23	41-4146-23	41-4146-23
Focus Assembly		76-9014	76-9014	76-9014	76-9014	76-9014-1
Lead Assembly, Focus Pin	41-4099-2	41-4099-2
Magnet, Short, Picture Tube		76-8389	76-8389	76-8389	76-8389	
Magnet, Centering	76-8998	76-8998 ${ }^{\text {a }}$
Ring, Picture Tube, Metal	56-7869-2	56-7869-2	56-7869-2	56-7869-2	56-7869-2	56-7869-2
Ring, Picture Tube, Plastic	54-4939	54-4939	54-4939	54-4939	54-4989	54-4939
Yoke, Deflection	32-9680	32-9680	32-9670	32-9670	32-9670	32-9670	32-9663-1
Aetuator, Hi-Voll. Door	28-10278
Magnet Ass'y.	76-8897
Magnet Ass'y.		76-8897-1

CABINET PARTS LIST FOR PHILCO "C" LINE TELEVISION RECEIVERS (Continued)

Description	$\begin{aligned} & 24 \mathrm{C} 6110 \\ & \text { Code } 354 \end{aligned}$	$\begin{aligned} & 24 \mathrm{C} 6112 \\ & \text { Code } 354 \end{aligned}$	22C4128 Code 400	22 C 4310 Code 350	$\begin{array}{r} 22 \mathrm{C} 4020 \\ \text { Code } 400 \end{array}$	22C8119 Code 300	$\begin{aligned} & \text { 24C6110L } \\ & \text { Code } 354 \end{aligned}$	$\begin{aligned} & \text { 24C6310 } \\ & \text { Code } 354 \end{aligned}$
Coil	32-4560	32-4560	32-4560	32-4560	32-4560		32-4560	32-4560
Foil (above rear of RF chassis or front of deflection chassis)	56-9790	56-9790	56-9790	56-9790	56-9790		56-9790	54-9790
Foil (above rear of deflection chassis or front of $\mathbf{R F}$ chassis)	56-9790-1	56-9790-1	56-9790-1	56-9790-1	56-9790-1		56-9790-1	56-9790-1
Light (L)			4*****		11066-1	
Knob		76-7710	76-7710	
Shaft			54-4974	54-5974	
Switch		42-1979	42-1979		
Mahogany	11066	11069	11068	11677	11057-1	11072-2		11078
Back	54-9267-6	54-9267-4	54-9267-5	54-9267-1	54-9267-10	54-9267-12	54-9267-6	54-9267-16
Bar Ass'y., Over Knobs	76-9148-1	76-9148	76-9148-2	54-6164-1	76-9148-2	54-6164-3	76-9148-1	76-9148
Bracket and Cord	76-9149-2	76-9149-2	76.9149	76-9149-1	76-9149	76.9149-1	76-9149-2	76-9149-2
Cup	54-9187-2	54-9187-2	54-9187-2	54-9187-3	54-9187-2	54-9187-2	54-9187-2	54-9187-2
Foot					56-7778-1			
Bullet Catch				45-6002				
Dome	45-6190		3363-2	3363-3	27-4911-1	3363	45-6190	
Soors (Marched Pair)				424-0001-2				
Hinge, Krife, L.H.				56-9922-1				
Hinge, Kiife, R.F.				56-9922				
Knob, Brightress	54-6140-3	54-6140-1	54-6140-1	54-6157	54-6140-1	54-6157	54-6140-3	54-6140-1
Knob, Channel Seloctor	76-9118-1	76-9118	76-9118	76-9118	76-9118	76-9118-5	76-9118-1	76-9118
Rnob, Contrast	76-6213-6	76-6213-6	76-6213-6	54-6157	76-6213-6	54-6157	76-6213-6	76-6213-6
Rnob, Fine Tuning	76-6104-9	76.6104-9	76-6104-9	76-6104-9	76-6104-9	54-4825-6	76.6104-9	76-6104-9
Knob, Horizontal Hold	54-6140-3	54-6140-1	54-6140-1	54-6157	54-6140-1	54-6157	54-6140-3	54-6140-1
Knob, Fringe Switch	54-6140-2	54-6140				54-6140.2	54-6140
Knob, Tone			54-6140-1		54-6140-1			
Knob, Vertical Hold	54-6140-3	54-6140-1	54-6140-1	54-6157	54-6140-1	54-6157	54-6140-3	54-6140-1
Knob, Vol. OFF-ON (TV)	54-6137-1	54-6137	54-6137	76-9237-1	54.6137	76-9237-3	54-6137-1	54-6137
Mask	54-9033-7	54-9033-8	28-9376-12	28-10075-5	28-10075-1	28-9931-9	54-9033-7	54-9033-8
Strike Plate				45-6003				
Window	54-9213-38	54-9213-39	54-9213-37	54-9213-40	54-9213-36	54-9213-41	54-9213-38	54-9213-39
Glass Rail Ass'y.		76-9170-3	76-9170-4	76-9170-5	76-9170-6			76-9170-3
Cable, Speaker	44-4208-1	41-4208-1	41-4208-1	41-4208-1	41-4208-1	41-4208-1	41-4208-1	41-4208-1
Connector. Antenna	L3517FAl	L3517EA1	L3517EAl	L3517FA]	L3517FA1	L3517FAl	L3517FAl	
Screw, Connector Mounting	1W10913FA3	1W10913FA3	1W10913FA3	1W10913FA3	IW10913FA3	1W10913FA3	1W10913FA3	
Line Cord, A.D.	41-3865	41-3865	41-3865	41-3865	41-3865	41-3865	41-3865	41-3865
Shield, Light	54-9234	54-9234	54-9234	54-9234	54-9234		54-9234	54-9234
Speaker	36-1651-11	36-1651-11	36-1651-11	45-9736	$45 \cdot 9733$	45-9736	36-1651-11	36-1651-11
Dial and Film Ass'y.	76-9048	76-9048	76-9048	76-9043	76-9048	76-9048	76-9048	76-9048
Washer, Light	54.8273	54-8273	54-8273	54-8273	54-8273	54-8273	54-8273	54-8273
Crossover Network	76-9042	76-9042	76.9042	76-9042	76.9042	76-9042	76-9042	
UHF Plate	28-10277				28-10277-3	28-10277	
UHE Window	54-9330					54-9330	54-9330	
Arm and Magnet, Picture Tube	76.8474-1	76-8474-1	76-6594	76-6594		76.8474-1	76-8474-1
Beam, Bender, Picture Tube	76-6077-4	76-6077-4	76-6077-2	76-6077-2	76-6077-2	76-6077-2	76-5088-4	76-6077-4
Cable Deflection	41-414E-23	41-4146-23	41-4146-23	41-4146.23	41-4146-23	41-4146-23	41-4146-23	41-4146-23
Focus Assembly	76-9014-1	76-9014-1	76-9014		76-9014		76-9014-1	76-9014-1
Lead Assembly, Focus Pin			41-4099-2		41-4099-2		
Magnet, Short, Picture Tube			76-8389		76-8389			
Magnet, Centering			76-8998		76-8998		
Ring, Picture Tube, Metal	56-7869	56-7869-2	56-7869-2	56-7869-2	
Ring, Picture Tube, Plastic	54-4339	54-4939	54-4939	54-4939		
Yoke, Deflection	32-9663-1	32-9663-1	32.9670	32-9680	32-9670	32-9680	32-9663-1	32-9663-1
Magnet Ass'y.	76-8897	76-8897				76-8897	76-8897
Magnet Ass'y.	76-8897-1	76-8897-1				76-8897-1	76-8897-1
Actuator, Hi-Volt. Door	28-10278	28-10278			28-10278	28-10278
Metal			
Window, Channel Selector	 \cdot. \cdot. ${ }^{\text {a }}$			
Clip, Window						
Dial							76-9048	76-9048

SUPPLEMENT TO SERVICE CHART AND CABINET PARTS LIST FOR PHILCO "C" LINE TELEVISION RECEIVERS

TELEVISION

SERVICE REFERENCE CHART FOR PHILCO "C" LINE TELEVISION RECEIVERS (INCLUDING SPEAKER, PICTURE TUBE AND ASSOCIATED DEFLECTION COMPONENTS)

CABINET PARTS LIST FOR PHILCO "C" LINE TELEVISION RECEIVERS

Page Two

CABINET PARTS LIST FOR PHILCO "C" LINE TELEVISION RECEIVERS (Continued)

Description Cod	$\begin{aligned} & 22 C 4020 \\ & \text { Code } 400 \end{aligned}$	$\begin{gathered} 22 \mathrm{C} 4011 \\ \text { Code } 300 \end{gathered}$	$\begin{gathered} 22 \mathrm{C} 4119 \\ \text { Code } \\ 301 \end{gathered}$	$\begin{array}{r} 24 \mathrm{C} 6310 \\ \text { code } 354 \end{array}$	22C4124 Code 300	$\begin{aligned} & 22 \mathrm{C4013L} \\ & \text { Code } 300 \end{aligned}$	$\begin{aligned} & 22 \mathrm{C} 4013 \\ & \text { Code } 300 \end{aligned}$	$\begin{aligned} & 22 \mathrm{C} 4015 \\ & \text { Code } 300 \end{aligned}$
Knob, Channel Selector	76.9118	76-9118-10	76-9118-5	76.9118	76.9118	76-9118-4	76.9118-4	76.9118 .7
Knob, Contrast	76-6213-6	54.6157	54.6157	76-6213-6	54.6157	54.6157.1	54-6157-1	54.6157
Knob, Fine Tuning.	76-6104.9	54-4825-6	54-4825-6	76-6104-9	76-6104.9	76-6104-7	76.6104.7	76.6104-9
Knob, Horizontal Hold	54-6140-1	54-6157	54-6157	54.6140 .1	54-6157	54.6157.1	54.6157.1	54.6157
Knob, Fringe Switch				54.6140				
Knob, Tone-	54-6140-1						54-6157-1	
Knob, Vertical Hold Knob, Vol-OFF-ON	54-6140-1	54-6157	54.6157	54-6140-1	54.6157	54-6157.1	54.6157.1	54.6157
(TV) --...............	54-6137	76-9237-3	76-9237-3	54.6137	76.9237.1	76-9237-2	76-9237-2	76-9237-1
Mask	28-10075-2		28-9931-9	28-9033-8	28-9376-12			28-10075-10
Strike Plate				45.6003				
Window	54-9213-47	54-9213-40	54-9213-40	54.9213-45	54-9213.43	54-9213.46	54-9213-46	54-9213-46
Glass rail assembly	76-9170-6			76-9170-3	76-9170-2			76-9170.5
Cable, Speaker .-.....	41-4208-1	41-4208-1	41-4208-1	41-4208-1	41-4208-1	41-4208-1	41-4208-1	41-4208-1
Connector, Antenna Screw, Connector	L3517FA1	L3517FAl	L3517FA1	[3517FA1	L3517FAl	L3517FAI	L3517FA1	L3517FA1
Mounting	1W10913FA3 $41-3865$	1W10913FA3	$\begin{aligned} & \text { IW10913FA3 } \\ & 41.3865 \end{aligned}$	IW10913FA3 41-3865	$\begin{aligned} & \text { IW10913FA3 } \\ & 41-3865 \end{aligned}$	$\begin{aligned} & \text { IW10913FA3 } \\ & 41.3865 \end{aligned}$	$\begin{aligned} & \text { IW10913FA3 } \\ & 41-3865 \end{aligned}$	$\begin{aligned} & \text { IW10913FA3 } \\ & 41-3865 \end{aligned}$
Line Cord, A. C. .-....	41-3865	41.3865	41.3865	41-3865				
Radio-Tuner Parts: Shield, Light	54-9234	54.9417		54-9234	$54-9234$	54.9417	54.9417	54.9234
	45-9733	36-1639-9	45-9736	36-1651-11	36-1651-5	36.1639-9	36-1639-9	36-1639.9
UHF Parts:								
Dial \& Film ass'y. .-.	76.9048 54.8273	$76-9048$ 54.8273 .4	$76-9048$ $54-8273-4$	$\begin{aligned} & 76-9048 \\ & 54-8273 \end{aligned}$	$\begin{aligned} & 76-9048 \\ & 54-8273 \end{aligned}$	76-9048	76-9048	$\begin{aligned} & 76-9048 \\ & 54-8273 \end{aligned}$
Washer, Light Crossover Network	54.8273 76.9042	54-8273.4 76.9042	54-8273-4 76.9042	$\begin{aligned} & 54-8273 \\ & 76.9042 \end{aligned}$	$\begin{aligned} & 54-8273 \\ & 76.9042 \end{aligned}$	76.9042	76.9042	$\begin{aligned} & 54-8273 \\ & 76.9042 \end{aligned}$
Window, plastic, UHF		54.6161	54.9330	54-6161	54-6161	
Plate, UHF			28-10277.3		- - --.-.-.	--------.--	...-....---
Cathode Ray Tube Assem	mbly:							
Picture Tube	76-6594			76-8474-1	----.--.---	--.-.......-	-..-.....--	------...--
Beam Bender, Picture Tube	76.6077-2	76-6077-2	76-6077-2	76.6077 .4	76.6077-2	76-6077-2	76.6077-2	$76.6077 .2$
Cable Deflection ...	41.4146-23	41-4146-23	41.4146.23	41-4146-23	41-4146-23	41-4146-23	41-4146-23	41-4146-23
Frame Ass'y., Picture Tube	318.3550	318-3550	318.3550	318.3489	318-3550	318-3550	318-3550	318-3550
Focus Assembly	76-9014		76-9014	76-9014-1				
Magnet, Short, Picture Tube	76.8389							
Magnet, Centering		76-8998		.- --..-. -	76.8998	76-8998	76-8998	76.8998
Ring, Picture Tube, Metal	56.7869-2	56.7869 .2	56-7869-2		56-7869.2	56-7869-2	56-7869-2	56-7869-2
Ring, Picture Tubs, Plastic \qquad	54-4939	54.4939	54-4939		54-4939	54.4939	54-4939	54.4939
Yoke, Deflection	32.9670	32.9680	32-9680	32-9663-1	32.9680	32.9680	32-9680	32.9680
Magnet assembly	-.. --...-.	. .-.- ---	.-..-.------	76-8897-.---	..-.-......-	...----- .--	-.. -.-- .-.
Magnet assembly		---....--	76-8897-1	-.---------	..---.-...--	-----.-..--	..---.... .-
Actuator -..........				28-10278		.-... -...-	--.--- ---	
Description	22C4011 Code 301	22C4119 Code 302	$22 \mathrm{C4127}$ Code 300	$22 C 4410$ Code 300	$\begin{array}{r} \text { 22C4013X } \\ \text { Code } 300 \end{array}$	$22 C 4119$ Code 303	$\begin{aligned} & \text { 22C4119X } \\ & \text { Code } 300 \end{aligned}$	22C4124L Code 300
Built-in aerial parts:								
Coil	32-4617		32.4617	32-4617	32.4617			32.4617
Foil (right)--- -...-	56.9790	56.9790	56-9790	---- --- --	. .-	56-9\%90
Foil (left)			56-9790-1	56-9790-1	56.9790 .1	-----------		56.9790-1
Cabinets:								
Light (L)					--------.--			11060-1
Mahogany		11072 -3	$11060 \cdot 6$	11098.4		11072-3	11072-7	--.--....--
Mahogany (Masonite and Wood)		-. --.-...--	--.---------	11071-4	-.-.-.-....--	...-..-- .--
Metal	11085	-.........-	-----------	------ .-.--......	.. ---.....	-. .-..-----	-------..-
Cabinet Hardware and								
Back Bar Ass'y., Over	54-9309-2	54-9267-12	54-9267-18	54.9433	54-9267-8	54-9267-12	54.9267-12	54-9267-18
Knobs	54.6164-3	54.6164-3	54-6164-1	54-6164-1	54.6164-1	54-6164-3	54-6164-3	54.6164
Bracket and Cord	76.9149-1	76.9149.1	76.9149	76.9149	76.9149-1	76.9149.1	76.9149.1	76.9149
Cup	54-9187-3	54.9187-3	54-9187-2	54-9187-2	54-9187-3	54-9187-3	54-9187-2	54-9187-2
Foot	W2570-1		.-.-.......		-.........---	---........-	-....... ...
Continuous Hinge, Record Changer	- --.- .			56-3627-21				
Dome-.......		3363	3363 -2	3363-2	27-4911-1	3363	3363	3363 -2
Knob, Brightness Knob, Channel	54.6157	54.6157	54.6157	54.6157	54.6157	54-6157	54-6157	54-6157-1
Selector --.	76-9118.10	76-9118-10	76.9118 .7	76.9118 .7	76.9118-7	76-9118-10	76-9118-10	76-9118-1
Knob, Contrast	54.6157	54-6157	54.6157	54-6157	54.6157	54.6157	54.6157	54.6157.1
Knob, Fine Tuning Knob, Horizontal	54-4825-6	54-4825-6	76.6104.9	76.6104.9	76-6104-9	54-4825-6	54-4825-6	76.6104-9
Hold	54-6157	54.6157	54.6157	54.6157	54-6157	54-6157	54.6157	54-6157-1
Knob, Vertical Hold Knob, Vol-Off.ON	d 54.6157	54-6157	54.6157	54-6157	54.6157	54-6157	54-6157	54-6157-1
(TV) .------....	76.9237.3	76-9237.3	76.9237.1	76-9237-1	76.9237-1	76-9237-3	76.9237-3	76.9237-2
Mask-.............	-. .-..-...---	28-10075-12	2 28-9376-12	28-9376-12	28-10075-12	28-10075-12	28-9931-9	28-9376-13

Page Three

CABINET PARTS LIST FOR PHILCO "C" LINE TELEVISION RECEIVERS (Continued)

Description	$\begin{aligned} & 22 \mathrm{C} 4011 \\ & \text { Code } 301 \end{aligned}$	$\begin{array}{r} 22 \mathrm{C} 4119 \\ \text { Code } 302 \end{array}$	$\begin{aligned} & 22 \mathrm{C} 4127 \\ & \text { Code } 300 \end{aligned}$	$\begin{aligned} & 22 \mathrm{C4410} \\ & \text { Code } 300 \end{aligned}$	$\begin{array}{r} 22 \text { C4013X } \\ \text { Code } 300 \end{array}$	$\begin{aligned} & 22 \text { C4119 } \\ & \text { Code } 303 \end{aligned}$	$\begin{aligned} & \text { 22C4119X } \\ & \text { Code } 300 \end{aligned}$	$\begin{aligned} & 22 \mathrm{C4124L} \\ & \text { Code } 300 \end{aligned}$
Sleeve (RecordChanger Mtg.)				54.7798	-..........-	--.-.------	-...........
Tane Arm Clamp Spring				56-8554				
Window .. -........ .-	54.9213.41	54-9213-41	54.9213 .43	54.9213-43	54.9213-46	54.9213.40	54.9213 .41	54-9213.43
Glass rail ass'y. Slide Assembly	-- --.-.-.-.		76.9170-2	76.9170.2		----.-......	76-9170-2
record changer				76.6742				
Cable, Speaker	41-4208-1	41-4208-1	41-4208-1	41-4208.1	41-4208-1	41-4208-1	41-4208-1	41-4208-1
Connector, Antenna	L3517FAI	[3517FAl	L3517FAl	L3517FAI	L3517FAl	L3517FAI	L3517FAI	L3517FAI
Ecrew, Connector Mounting	IW10913FA3	1W10913FA3	1W10913FA3	IW10913FA3	1 W10913FA3	1W10913FA3	1W10913FA3	IW10913FA3
line Cord, A. C.	41-3865	41-3865	41.3865	41.3865	41-3865	41-3865	41-3865	41-3865
Radio-Tuner Parts: Knob, Function								
Switch	- .. .-	-		54-4773-14	----.......-	-...	----	---
Knob, Tuning				54-4978-11		--.......
Knob, OFF-ON, tone, volume				54.4773.12				
Scale				28-10481		.-.-..........		
Shield, Light	54.9417		54-9234	54.9234	54.9234			54.9234
Speaker	36.1639-9	45.9736	36-1651-5	36-1651-11	36-1639-9	45.9736	45.9736	36.1651-5
UHF Parts:								
Dial \& Film Ass'y. .-	76-9048	76.9048	76.9048	76.9048	76-9048	76-9048	76-9048	76.9048
Washer, Light	54-8273-4	54-8273-4	54.8273	54.8273	54.8273	54.8273-4	54-8273-4	54.8273
Crossover Network	76-9042	76-9042	76.9042	76.9042	76.9042	76-9042	76-9042	76.9042
Window, UHF	54.6161	54.9330-	... -.......	54.9330	54.9330	54.9330	-.-.-.-...--
Plate, UHF		28-10277-3			28-10277.4	28-10277-3	28-10277-3	
Cathode Ray Tube Assem								
Arm and Mognet, Picture Tube	76.6594					76-6594		
Beam, Bender, Picture Tube	76-6077-2	76-6077.2	76.6077.2	76.6077-2	76-6077-2	$70-6594$ $76.6077-2$	76-6077-2	76.6077-2
Cable Deflection	41.4146.23	41.4146.23	41-4146-23	41.4146 .23	41.4146.23	41.4146.23	41-4146-23	41-4146.23
Frame Ass'y., Picture Tube	318.3482	318-3550	318-3550	318-3550	318-3550	318-3482	318-3550	318-3550
Focus Assembly	76.9014					76-9014	-....-- --.	
Magnet, Short, Picture Tube	76.8389					76-8389		
Magnet, Centering	--.........	76.8998	76-8998	76-8998	76-8998		76-8998	76-8998
Ring, Picfure Tube, Metal	56.7869.2	56-7869-2	56-7869-2	56-7869-2	56-7869-2	56-7869-2	56-7869-2	56.7869-2
Ring, Picture Tube, Plastic	54-4939	54.4939	54.4939	54-4939	54-4939	54-4939	54-4939	54.4939
Yoke, Deflection	32.9670	32.9880	$32-9680$	32.9680	32-9680	32.9670	32.9680	32.9680
Spring, chgr. mtg.			--..	56-7059FA9				
Spring, chgr. mig. ..	-..........	-.....-.-.-.	56-7059-1FCP--	-.------.--
Speed nut, chgr. mtg				W2554				
Spindle, 45 RPM				W2554				
adaptor	-....... ----...-	-..........	425.0010---

Description	$\begin{gathered} 22 \mathrm{C} 4125 \mathrm{HM} \\ \text { Code } 300 \end{gathered}$	$\begin{gathered} \text { 22C4311HM } \\ \text { Code } 300 \end{gathered}$	Description	$\begin{gathered} 22 \mathrm{C} 4125 \mathrm{HM} \\ \text { Code } 300 \end{gathered}$	$\begin{gathered} \text { 22C4311 HM } \\ \text { Code } 300 \end{gathered}$
Built-in aerial parts:			Knob, Vertical Hold	54.6157-1	54.6157-1
Coil	32.4617	32-4617	Knob, Vol-OFF-ON (TV)	76.9237-2	76.9237-2
Foil (right)	56.9790	56.9790	Mask	28-10075.11	28.10075-12
Foil	56-9790-1	56-9790-1	Strike Plate		45.6003
Cabinets:			Window	54.9213 .47	54.9213-46
Honey-Maple (HM)	11065-2	11095	Glass rail assembly	76.9170	76.9170.5
Cabinet Hardware and Parts:			Cable, Speaker	41-4208-1	41-4208-1
	54-9267.19	54-9267-13	Connector, Antunna	L3517FAI	L3517FA1
Bar Ass'y., Over Knobs	54.6164	54.6164	Screw, Connector Mounting	IW10913FA3	1W10913FA3
Bracket and Cord	76.9149.1	76.9149.1	Line Cord, A. C.	41.3865	41-3865
Cup	54-9187-3	54.9187-3	Radio-Tuner Parts:		
Bullet Catch		45.6002	Shield, Light	54.9234	54.9234
Dome	45.6190	3363 -3	Speaker	36-1651.5	36-1641-20
Doors (Matched Pair)	424-0001.7	Uhf Parts:		
Door Pull, L. H.		56.9850	Dial \& film assembly	76.9048	76.9048
Door Pull, R. H.		56.9851	Washer, Light	54.8273	54-8273
Door Pull	-..----. -	56.9852	Cathode Ray Tube Assembly:		
Hinge Knife, L. H.		28-10489.1	Beam, Bender, Picture Tube	76-6077-2	76.6077-2
Hinge, Knife, R H.		28-10489	Cable Deflection	41.4146 .23	41-4146-23
Knob, Brightness	54-6157-1	54-6157-1	Frame Ass'y., Picture Tube	318.3550	318.3550
Knob, Channel Selector	76.9118-8	76.9118-8	Magnet, Centering	76.8998	76.8998
Knob, Contrast	54-6157-1	54-6157-1	Ring, Picture Tube, Metal	56-7869-2	56.7869-2
Knob, Fine Tuning	76.6104.9	78.6104.9	Ring, Picture Tube, Plastic	54.4939	54-4939
Knob, Horizontal Hold	54.6157.1	54-6157-1	Yoke, Deflection	32-9680	32.9680

TELEVISION

PHILCO TELEVISION REMOTE CONTROL UNIT RC-3

INIRODUCTION

Philco Television Remote Control Unit RC-3 is standard equipment with certain models of Phatco Television Receivers and Television-Radio-Phonograph combinations. This Uait makes it possible for the viewer to tone and adjust the Television Receiver from any point up to a distance of thirty feet. The adjustments are made by operating switch levers on a simple control box that fits the hand. The control box is connected to the control mechanism in the Receiver through an eight-conductor flat cable.

Philco Television Remote Control Unit RC-3 is similar to Philco Remote Control Unit RC-1. Improvements in the RC-3 permit the servicing of either chassis of the dual-chassis receiver without removing both chassis. The volume control drive system in the $\mathrm{RC}-3$ is composed of a drive rack and pinion, which is a part of the RC-3 unit, and a VOLUME control rack and pinion, which is a part of the deflection
chassis. These two racks are coupled by means of a machine serew and washer combination. Removing the machine serew and washer permits the uncoupling and removal of either chassis from the cabinet independently of the other chassis. When the VOLUME control is in the OFF position, the machine screw, which is located at the front, between the two television chassis, is accessible from the back of the cabinet.

The RC-3 Philco Television Remote Control Unit is composed of three major components:

Control Box and Cable Assembly.
Clutch and Gear Assembly, with Solenoid Coils. Motor Assembly.

DESCRIPTION OF MAJOR COMPONENTS

Brief descriptions of the major components of the Remote Control Unit are given below, to aid in understanding the operation of the Unit.

Figure 1. Control Box and Cable Assembly

Figure 2. Exploded View of Clutch Assembly

Control Box and Cable Assembly

Thirty feet of eight-conductor flat cable, Part No. 41-4148, is used to connect the Control Box to the Remote Assembly. A plug is provided on the end of the cable, for insertion into the remote control socket in the back of the cabinct. A wooden cable holder and a metal housing are provided, to receive the cable and Control Box when it is desired to store them at the cabinet. The Control Box contains four self-centering switches (d.p.d.t.), two Part No. 42-1950 and two Part No. 42-1950)-1. These switches control the following Receiver controls: DARK-LIGHT, VOL-OFF, FINE TUNING, and STATION (chamel) selector.

Clutch and Gear Assembly

This assembly comprises the various gears, driving mechanisms, and associated parts that are used, in conjunction with the Motor Assembly, to perform the mechanical functions of turning the Television Receiver controls in accordance with the setting of the switches on the Control Box. It includes three ClutchGear Assemblies, Part No. 76-6424-2, one for each Receiver control except the CHANNEL SELECTOR. The CHANNEL SELECTOR uses one Clutch-Gear Assembly, Part No. 76-6424-3. The CHANNEL SELECTOR clutch-gear operates the double-pole, single-throw, cut-off switch, Part No. 42-195.3. The Clutch and Gear Assembly also includes the DrivingGear Assembly, Part No. 76-6413, the Intermediate Pulley and Gear, Part No. 56-8736-1, the Shaft and Gear Assembly, Part No. 76-7687, and six pinions (see parts list for part numbers). In addition, there is a Driver Assembly for each Receiver control. Two types of Driver Assemblies are used. One type used for direct driving, Part No. 76-6475, is used for only the CHANNEL SELECTOR. The other type, the Safety Driver, Part No. 76-6585, is used for all controls except the CIIANNEL SELECTOR. The

Chitch-Gear Assembly also includes four Solenoid Coil Assemblies, Part No. 76-6416, one for each control.

Motor Assembly

The Motor Assembly, Part No. 35-1465-1 or $35-1485-1$, is driven from a 24 -volt, ate source. In conjunction with the motor, a belt, Part No. 54-8318, is used to transmit rotary power to the gears. A capacitor, Part No. $30-2355-3$, is also used with the motor, to control the direction of motor rotation.

DESCRIPTION OF OPERATION

Motor Assembly

The shaft of the motor turns in either a clockwise or a counterclockwise direction, depending upon which of the two field windings is placed in series with the capacitor. The voltage is applied and the motor direction is determined by moving any one of the switch levers on the Control Box to either of the two off-center positions.

Gear Assembly

The motor belt drives the Intermediate Pulley and Cear Assembly, which, in turn, moves the DrivingGear Assembly. See figure 6. This gear transmits the rotary motion for the whole system of gears. It turns the gear on the VOLUME Control Shaft and Gear Assembly, which, in turn, moves the pinion gears. The pinion gears pass on the rotary motion to the other gear assemblies.

Clutch and Driver Assembly

The individual Clutch and Gear Assemblies and their associated bushings are one-piece units, and will

Figure 3. Exploded View of Tuner
revolve as long as the motor shaft is turning. Figure 2 shows the Clutch-Gear Assembly without the washer that operates the cut-off switch. This washer is required only on the CHANNEL SELECTOR drive, although it is furnished with all replacement clutches. When a solenoid coil is energized, the armature in the assembly is attracted by the magnetic force, and is pulled against the pole face of the solenoid. The magnetic force overcomes the pressure supplied by a return spring. When the armature is attricted, the Clutch, which is a part of the assembly, moves forward and engages the Driver, causing the control shaft to rotate. A Satety Driver is attached to all controls except the CHANNEL SELECTOR. This safety feature prevents the gears from locking and causing damage when a control is rotated to its extreme clockwise or counterclockwise position. The Driver tooth is equipped with a toggle spring, which maintains enough pressure to make the Driver turn the control in normal operation; when the control is rotated to the end of its range, the spring tension is overcome, and the Driver slips off the Clutch tooth, with an accompanying clicking noise, until the voltage is removed from the solenoid or until the control is made to turn in the opposite direction. This safety feature is unnecessary for the Driver used by the CHANNEL SELECTOR, since this control cam be rotated continuously.

Clutch and Switch Assembly (CHANNEL SELECTOR)

The Clutch Assembly for the CHANNEL SELECTOR works in conjunction with a series CHANNEL SELECTOR "cut-off" switch, Part No. 42-1953, which uses one section of the double-pole, single-
throw switch in the Solenoid Switch Assembly. The cut-off switch is open when remote control is not being used, and thus prevents the application of voltage to the motor when the Receiver CHANNEL SELECTOR is turned manually. It is closed by the motion of the armature when the solenoid is energized.

Cycling Switch and Detent Assembly

When the STATION selector switch is operated, the CHANNEL SELECTOR solenoid and the motor are energized; this, the CHANNEL SELECTOR Driver is engaged, and the tumer shaft starts to rotate. The roller fastened on the centering lever is subjected to an upward force as well as a lateral force by the star wheel. The centering pin prevents any upward motion until the centering lever has traveled a certain distance sideways. This action closes the cycling switch. See figures 3 , 4 , and 5 . The cyeling switch is in series with the CHANNEL SELECTOR cut-off switch, which is activated by the CHANNEL SELECTOR Clutch Assembly, and these switches together parallel the STATION selector switch in the Remote Control Box; therefore, during the time the roller is riding on the star wheel and the cycling switch is connected, the drive shaft continues to turn, even though the STATION selector switch on the Control Box is released. This cycling action continues until the roller dips into the bottom of the next star wheel depression; this takes the pressure off the detent spring, returning the centering lever to the center of the cycling switch, and opening the switch. When the cycling switch opens, all voltage is removed from the solenoid and motor, and the armature then returns to the free position, disengaging the CHANNEL SELECTOR clutch and gear and opening the CHANNEL SELECTOR cut-off switch.

Figure 4. Oblique View of Tuner ${ }^{\text {TPO-1573-B }}$

ELECTRIC WIRING

If the STATION selector switch on the Control Box is moved either to the left or right, the hot side of the 24 -volt a-c supply circuit is connected to the solenoid winding and to the motor. See figure 7. The armature is drawn forward, and closes the CHANNEL SELECTOR cut-off switch. As the tuner shaft starts to rotate, the centering lever is thrown off center, closing the cycling switch. Now, even though finger pressure is released from the STATION selector switch on the Control Box, voltage is still supplied to the solenoid through the cycling switch, in series with the CHANNEL SELECTOR cut-off switch. Voltage is applied until the cycle is completed, at which time the detent roller falls into a depression in the star wheel, returning the centering lever to center and opening the cycling switch. This cuts off voltage to the solenoid and motor, which, in turn, causes the armature to spring back and disengage the clutch from the driver on the control shaft, and open the CHANNEL SELECTOR cut-off switch. During manual operation, the cycling switch is closed by the to the motor tuner shaft, but no voltage is applied LECTOR cut-off switch, since the CHANNEL SEswitch, remains open.
In order to mute the Receiver sound while the CHANNEL SELECTOR is being rotated through the channels by remote control, the other section of the double-pole, single-throw switch on the Solenoid Switch Assembly is used as a muting switch. When closed, this switch shorts out the speaker voice coil. It is closed only during the time that the CHANNEL SELECTOR solenoid is energized, since the switch is closed by the pressure of the armature when it is
attracted by the solenoid.

ADJUSTMENTS Clutch Teeth

The clutch teeth should be free from the engaging ?ortion of the driver by $1 / 32^{\prime \prime}$ when the coil is not
energized. This proper spacing may be obtained by bending the driver.

Solenoid Switch

The solenoid switch should not be fully closed until the last $1 / 64^{\prime \prime}$ of movement of the armature assembly. The switch may be adjusted for this condition by positioning the switch bracket.

Driving-Gear Assembly

To disassemble the driving-gear assembly and driving pinion, use a knock-out pin of a diameter smaller than the hole in the driving pinion; insert the pin into the hole, and strike it sharply with a small hammer.

Motor Belt

The motor-belt tension should be so adjusted that, when the large pulley (which is driven by the belt) is held stationary, the motor shaft is slowed down until it is barely turning (approximately 15 r.p.m.). The belt must be kept absolutely free of oil and grease.

Figure 5. Rear View of Tuner

Shaft Assembly (Side of Tuner)

The shaft along the side of the tuner must be so aligned that it is completely free to rotate, and has end play of not more than $1 / 32^{\prime \prime}$ to the CHANNEL SELECTOR clutch shaft. The CHANNEL SELECTOR clutch shaft must also be completely free to rotate, with $.005^{\prime \prime}$ to $.015^{\prime \prime}$ end play. The same alignment and end play conditions also apply to the FINE TUNING gear shaft and the shaft and gear driving the VOLUME control rack.

Idler Gear-FINE TUNING Shaft

The idler gear driving the FINE TUNING shaft must be so adjusted that there is no binding between the gear train and the gear on the FINE TUNING, shaft, through the entire range of rotation of the FINE TUNING shaft.

VOLUME Control Racks

The VOLUME control rack and gear assembly must be so positioned that, when the VOLUME control OFF-On switch is OFF, the Switch Actuator camnot be turned more than $1 / 16^{\prime \prime}$ (with a tolerance of plus $1 / 32^{\prime \prime}$ and minus $1 / 64^{\prime \prime}$) before the switch actuator contacts the OFF-On switch. The rack and gear must be so positioned that the entire volume range can be covered when the control is actuated by the rack and gear.

To connect the free ends of the racks, first join the racks by lifting the free ends upward and feeding the guide ears on the drive rack into the guide slots in the VOLUME control rack. Then position the racks, by sliding them, so that the VOLUME control rack is in the off position and the drive rack is pulled out to the extreme end position toward the On-Off switch. Fasten the racks together with the clamping screw, and check to see that the entire volume range is covered.

Wire Dressing and Repair

All wiring must be dressed clear of moving parts. When the flat conductor cable is replaced, the ends of the new cable should be cut diagonally, to aid in individual wire identification. There is an extra wire in the cable which can be used as a replacement when one of the wires breaks.

When repairing the conductor, skin the cable insulation by cutting it on an angle with a razor blade; cut down to the wires on both sides of the cable, taking care to avoid damaging the fine wires. Strip the insulation from the cable with the fingernails or a pair of side cutters.

SERVICE HINTS

Failure of Gear Teeth on Clutch Assembly To Slide Freely on Bearings

Burrs or lack of lubrication may cause this trouble.

Buzzing

Buzzing is caused ly the armature seating improperly on the pole-piece face. A pole piece which has burrs on it, or which is not mounted squarely with relation to the fastening nut, or which has foreign matter between the armature and the pole piece, will cause buzzing. Buzzing may also be caused by an uneven surface on the inside of the armature, or by engagement of the CHANNEL SELECTOR solenoid switch hefore the last $1 / 64^{\prime \prime}$ movement of the armature.

Binding of Armature on Clutch Assembly

Foreign matter or hurrs may cause the armature to bind on its bearing when the solenoid coil is energized.

Failure To Rotate Tuner

Failure to rotate tuner may be caused by low line voltage. For satisfactory operation, the line voltage should be at least 105 volts. Failure may also be caused by a faulty motor capacitor, transformer, or motor.

Inoperative Solenoids

In cases where a solenoid fails to operate, the trouble may be due to loosening of the ground contact in the solenoid winding. Check for continuity with an ohmmeter, and replace the faulty solenoid.

Gear Noise

Gear noise can be reduced to a minimum by adjusting the mesh between the driving-gear assembly and the driving pinion. This can be done by adjusting the eccentric stud. See figure 6. After this adjustment, belt tension must be checked, and readjusted if necessary. (The test for correct belt tension is given under Motor Belt.)

Defective Cable

The red and brown leads of the 8 -conductor cable are comnected in parallel to the same points. One of these leads may be disconnected and used as a replacement lead if any of the other leads are broken within the cable.

Removing Detent Plate Assembly

When removing this assembly, it is necessary to depress the centering lever link upward, to disengage the indexing roller from the star wheel.

LUBRICATION

Lubricants

OIL-Philco Part No. 60320-1, SAE-20.
GREASE-Texaco Motor Cup Grease, or equivalent.

Parts Not To Be Lubricated

Motor belt.
Motor-belt-pulley driving surfaces.

Parts To Be Greased

Intermediate pulley and gear stud.
Shaft to driving gear assembly.

All gear teeth.
Engaging tooth and bearing surface of safety-clutch toggle.

Teeth of clutch assembly.
Drive racks.

Parts To Be Oiled

Bearing surface and threads of the four solenoid bushings.

Motor bearings.
Idler-pinion studs.
Shaft of VOLUME control pulley assembly.
Shaft of FINE TUNING drive assembly.
Studs of FINE TUNING drive links.
Bearings of tuner drive shaft.

REPLACEMENT PARTS LIST

Description	Service Part No.
Washer, flat	1W52904FAl
Rack, VOLUME control	.56-9748
Screw, adjusting	...1W51648FA]
Washer	IW52219FAI
CIIANNEL SELECTOR "cut-of" switch	42-1953
Niut	56-8614-1
Lock washer	IW44438
Spring	.56-9175FE15
Stud, adjustable	56-8753
Driver assembly	76-6475
Driver assemhly (safety)	...76-6585
Clutch, driver	.56-8806
Screw	IW15843FAI
Nut	56-7042FA3
Spring, toggle	.56-8989FE15
Toggle	56-9245
Resistor 1.7 ohmis, 10 watts	.33-3448-1
MECHANICAL PARTS FOR REMOTE CONTROL TUNER (PART NO. 76-7830)	
Description	Service Part No.
bracket assembly, bottom	76-6419
Centering-lever assembly	76-6421
Detent plate assembly	76-6420
Pinion, idler (l req.)	56-8628
Roller, detent	.56-8597
Spring, detent	..56-8817
Spacer, bushing, centering lever	...56-8604
Spring, shaft grounding	56-8023
Switeh, cycling	42-1950
Switch-handle bushing	56-8592
Washer, "E," pinion mounting	W6097FE7
Washer, brass, centering lever56-8603
Washer, steel, detent assembly56-8812
Compler	...54-4912-I

TP2. 1505
Figure 6. Details of Remote Assembly

PHILCO TELEVISION SERVICE MANUAL FOR CUSTOM 400 CHASSIS

SPECIFICATIONS - TV-400 CHASSIS

CONTENTS	
	Page
Specifications	1
Tube Complement	1
Video Peaking Adjustments	2
Circuit Description	1, 2
Horizontal Oscillator Adjustment	3
Television Alignment	3
Jigs and Adapters Required	3, 4
Tuncr Buad Pass Alignment	4
I'uner Ostillator Alignment	5
V1E Aligament	7
Oscilloscope Wave Forms	8
Sound IF Alignment	9
Base Layout (top view)	9
Base Layout (bottom view)	10
Tuner Wiring	10
Schematic	1,12
Replacement Parts L.ist	3, 14

CIRCUIT DESCRIPTION

The TV-400 is the deluxe receiver of the new line employing a single chassis. The VHF tuner used is a 12 channel, 13 position tuner mounted on a separate sub-chassis. The thirteenth position is used for the reception of UHF signals in conjunction with a UT-26 UHF tuner. The R.F. amplifier is a 6BZ7 tube, while the local oscillator and mixer stages use a type 6 X 8 tube. The pentode section of the 6 X 8 is used for mixing, while the triode is used as a local oscillator.

The output of the mixer, a $40-\mathrm{MC}$ signal, is link coupled to four stagger tuned video I-F stages employing four (6CB6 tulies.

This I-F system is an improved I-F, in that it contains additional trapping to improve the adjacent channel interference. In the grid circuit of the first I-F, we have the $47.25-\mathrm{MC}$ adjacent channel sound trap, and the $41.25-\mathrm{MC}$ accompanying sound trap. In the grid circuit of the third Video I-F, we have an additional $47.25-\mathrm{MC}$ adjacent sound trap along with a 39.75 MC adjacent channel picture trap. This $39.75-\mathrm{MC}$ adjacent channel picture trap is something we have not used in quite a long period of time, and the adjustment of this trap along with the other traps is of primary importance in achieving the top performance built into our TV- 100 chassis.

A IN64 crystal diode is used as a video detector. Following the video detector is a video amplifier consisting of two stages. The first stage uses the pentode section of the 6AX8 and the output stage uses a 6AQ5 which drives the grid of the picture tube.

Sound I-F (intercarrier) is obtained by utilizing the beat frequency produced when the $45.75-\mathrm{MC}$ video carrier and the $41.25-\mathrm{MC}$ sound carrier are mixed in the video detector. The beat frequency $4.5-\mathrm{MC}$ is the difference between $45.75-\mathrm{MC}$ and $41.25-\mathrm{MC}$ and contains the FM sound signal. This $4.5-\mathrm{MC}$ signal contains only a negligible amount of the video AM amplitude modulation, provided that the amplitude of the 41.25MC signal is considerably lower than that of the 45.75 -MC signal. The proper relative amplitude of the two carriers is established in the alignment of the receivers. There is sound output only when both the video and sound carriers are present.

A-G-C voltage for the video I-F system and the R-F amplifier is obtained from a keyed a-g-c system which uses a GAUG tube, as the a-g-c gate. Composite video from the video-amplifier plate circuit through a cathode follower, is fed to the grid of the a-g-c gate tube, while a gating or keying pulse, obtained from a winding on the horizontal-output transformer, is applied to the plate. The sync-pulse polarity applied to the grid of S12 is positive; therefore, the a-g-c gate can conduct in proportion to the amplitude of the sync-pulse tips if the gating or keying pulse occurs at the same time as the sync. Because the keying or gate pulse is a constant amplitude, approximately 500 volts peak, the amplitude of the sync pulse will determine the amount of conduction in the gate tube. The plate current of the keyed a-g-c gate tube flows through a resistor network, developing a voltage which is negative with respect to the chassis and whose amplitude is proportional to the plate current. This negative voltage is used to control the gain of the receiver. Since conduction cannot occur in the a-g-c gate tube unless the sync pulse and gating pulse occur at the same time, noise disturbances that occur between sync-pulse intervals cannot affect the a-g.c voltage.

Composite video for the sync circuits is taken from the plate of the first video amplifier. The output is fed to a cathode follower which delivers the information into the noise inverter circuit. The noise inverter is operated with a low value of plate voltage and high bias which keeps the tube beyond cutoff. When the composite video signal is applied to the grid of the noise inverter the sync appears as positive pulses: noise which could affect the sweep circuits also appears as positive pulses. Harmful noise pulses usually have amplitudes far greater than the sync pulses, and therefore, drive the grid of the noise inverter positive sufficiently to allow conduction in the noise-inverter plate circuit.

The output of the noise inverter consists of negative-going noise pulses. It should be noted that the noise pulses which exceed the sync level have been passed and their polarity reversed by the noise inverter. The output of the noise inverter is now mixed with the composite video and fed to the grid of the sync separator, the triode section of the 6AX8 tube.

Since the composite video fed to the grid of the sync separator has positive sync polarity, the positive noise pulses carried with the composite video would be passed by the sync separator; however, the output of the noise inverter consists of these same noise pulses, but they are of opposite polarity; thus, the noise pulses are cancelled. The output of the sync separator contains only the sync pulses which are fed to the vertical and horizontal circuits. The vertical pulses are fed from the plate of the sync separator to the vertical oscillator through an integrator circuit. The vertical oscillator employs a $12 \mathrm{AU7}$ tube as a cathode coupled multivibrator. A variable resistor in the grid circuit of the second triocle adjusts the oscillator frequency and serves as the hold control. A variable resistor in the plate circuit of the same tube provides vertical height adjustment. The vertical output stage employs a 12B4 tube. A variable resistor in the cathode circuit provides adjustment of the vertical linearity. A vertical retrace suppression circuit is connected from one side of the vertical output transformer to the picture tube cathode. The vertical sync is separated from the horizontal sync by the integrator circuit, and is fed to the grid of the vertical oscillator. The output of the vertical oscillator is amplified by the vertical-output amplifier, using a 12B4 tube, and the output of the amplifier is applied to the vertical-deflection coils through the vertical-output transformer.

Horizontal sync information is fed into the phase comparer circuit which controls the frequency of the horizontal oscillator. A 6AL5 tube is employed as the phase comparer in the horizontal circuits. The plate of one diode is grounded, the cathodes of both diodes are tied together and, from a winding on the horizontal output transformer, a pulse is fed, through a shaping network to the plate to the other diode. The horizontal sync pulses from the sync separator are fed to the cathodes. If the incoming sync pulse is not in phase with the pulse from the horizontal output transformer, a difference voltage occurs in the output of the phase comparer which is fed to the horizontal oscillator and is used to control its frequency. A cathode coupled multivibrator using a 12AU7A tube provides the horizontal oscillator signal. Two variable resistors in series to the grid of the second triode section of the oscillator are employed as the horizontal hold control and horizontal hold centering control. With these controls, the horizontal oscillator frequency is adjusted within the range of the phase comparer control voltage.

When the voltage is delivered to the horizontal oscillator grid by the phase comparers circuit is positive, it increases the frequency of the oscillator; when the voltage is negative, it reduces the frequency of the oscillator. This control voltage holds the horizontal oscillator in phase with the sync signal. The HORIZ. HOLD control, adjusts the horizontal oscillator to the proper frequency, so that it may be controlled by the phase comparer. The output of the horizontal oscillator is fed to the horizontal-output amplifier, which uses a 6CU6 tube, V19.

The second anode voltage for the picture tube is furnished by a high-voltage winding of the horizontal-output transformer, and is rectified by a B3GT high-voltage rectifier tube.

VIDEO PEAKING-COIL ADJUSTMENT - TV-400

The peaking coil, T5, is adjusted at the factory for proper transient response of the video circuits. Ordinarily, this coil will require no further adjustment by the serviceman. On any station where excessive overshoot or excessive smear is present, a slight adjustment of Ts may improve the picture quality on that station; however, this adjustment may sacrifice the quality on other channels. If T5 is replaced in servicing, adjustment will be required.

Before adjusting T5, check the tuner alignment and I-F alignment. (Never adjust T5 until the alignment of a receiver is correct.) Then tune in a station and adjust Ts until there
are no trailing whites or smear in the picture. Turning $T 5$ clockwise reduces trailing whites and overshoot; turning T5 counterclockwise reduces picture smear and increases trailing whites. The proper position is the point where no smear or trailing whites appear in the picture.
The above procedure for adjustment of T5 applies to a particular station exhibiting smear or overshoot. After Ts is adjusted, reception on all the other stations should be checked, to make certain that the adjustment has not impaired the picture quality.

TELEVISION ALIGNMENT

General

The alignment procedure follows the general pattern of first checking the tuner response with an FM sweep generator and oscilloscope, comparing the response curve with that given in the manual, and aligning the tuner if necessary. After it is established that the tuner is in correct alignment, the video I-F channel is aligned by tuning each coil to its assigned pole frequency, using an AM signal, and then feeding in a sweep signal at the antenna terminals and retouching the I-F adjustments to obtain the desired pass band. Finally, the sound channel is aligned, using an AM signal, by tuning the sound take-off coil and the I-F and ratio-detector transformers.

The over-all response curve ($\mathrm{r}-\mathrm{f}, \mathrm{i}-\mathrm{f}$) of the circuits from the antenna terminals to the video detector, after the I-F stages have been aligned, should appear essentially the same, regardless of the channel under test. If not, the tuner should be aligned.
The video-carrier intermediate frequency is 45.75 mc ., and the sound intermediate (intercarrier) frequency is 4.5 mc . Alignment of these circuits requires careful workmanship and good equipment. The following precautions must be observed:

1. There must be a good bond between the receiver chassis and the test equipment. This is most easily obtained by having the top of the workbench metallic. The receiver chassis should be placed tuner-side down on the bench. If the bench has no metallic top, the test equipment and chassis can be bonded by a strip of copper about 2 inches wide. The section of the chassis nearest the tuner should rest on the strip.
2. Do not disconnect the picture tube yoke while the receiver is turned on.
3. Allow the receiver and test equipment to warm up for 15 minutes before starting the alignment.
4. The marker (AM) signal generator should be calibrated accurately to the frequencies used and to the sound and video r-f carriers of each channel used during alignment. If model 7008 is used, the built-in crystal calibrator provides an excellent means of calibration. An alternate method for calibrating the signal generator to the sound and video r-f carrier frequencies is to zero-beat the signal generator with the received signals.

For further information regarding calibration, refer to Philco Lesson PR-1745 (J) entitled "Television Service in the Home."

HORIZONTAL-OSCILLATOR ADJUSTMENT - TV-400

To adjust the horizontal-oscillator circuit, tune in a station and proceed as follows:

1. Decenter the picture until blanking can be observed at the right-hand side.
2. Increase the BRIGHTNESS control setting until the blanking becomes visible This will appear as a dark vertical bar on each side of the picture.
3. Connect a .1 mf condenser from the test point, to ground. (The plate side of the horizontal ringing coil, T6, is connected to the test point.)
4. Set the HORIZONTAL HOLD control to the approximate center of its mechanical rotation.
5. Adjust the HORIZONTAL HOLD CENTERING control until equal portions of the blanking bar appear on both sides of the picture.
6. Remove the .1 mf condenser from the test point.
7. Adjust the horizontal ringing coil until equal portions of the blanking bar again appear on both sides of the picture.
8. Rotate the HORIZONTAL HOLD control through its range. The picture should fall out of sync on both sides of the center of its rotation. If the picture does not fall out of sync on both sides, readjust the HORIZONTAL HOLD CENTERING control.
9. Rotate the HORIZONTAL HOLD control through its range, and observe the number of diagonal blanking bars that appear just before the picture pulls into sync. The pull-in should occur with from 1 to 2 diagonal bars when the sync position is approached from either direction. If proper pullin is not obtained, repeat the above procedure.

JIGS AND ADAPTERS REQUIRED - TV-400

Anfenna-Input Matching Nefwork

An impedance-matching network for coupling the signal generator to the antenna input terminals of the receiver is shown in figure 1. This network, which is designed to have an input impedance of 75 ohms and an output impedance of 300 ohms is used to match a 75 -ohm generator to a $\mathbf{3 0 0}$-ohm antenna-input circuit. The resistors used in this network should be of carboncomposition construction, and should be chosen from a group, to obtain values within ten percent of those indicated. The resistors should be placed in a shield can, to prevent variable effects. An antenna-matching jig, Philco Part No. 45-1736, which consists of a matching transformer and connecting box, may be used in place of the resistor network.

Video I-F Alignment Jig

(Video Test Jack Adapter No. 1)
The alignment jig used at TS1 and shown in figure 2, should be used during the i-f alignment, to apply the proper bias to the a-g-c bus, and to provide a convenient oscilloscope connection. This adapter consists of a five-pin plug, two $\mathbf{1 0 , 0 0 0}$ ohms resistors, and a 1500 mmf condenser for isolation of the bias supply. To isolate the oscilloscope from the receiver circuits, a $15,000-o \mathrm{hm}$ resistor, by-passed by a 1500 mmf . condenser, is used. A suggested method of fabricating the jig is also shown in figure 2. This jig should not be used to observe the composite video from the video detector output.

Fig. 2. Video I-F Alignment Jig (Video Test Jack Adapter No. 1).

JIGS AND ADAPTERS REQUIRED (Continued)

Sound I-F Input Alignment Jig

(Video Test Jack Adapter No. 2)
To observe the composite video, at TS1, a jig may be made with a five-pin plug and a 2200 ohm resistor. (See figure 3.) The 2200 ohm resistor should be connected to pin 2 of the plug. A ground lead should be connected to pin 3. To observe the composite video, connect the oscilloscope to the 2200 ohm resistor and the ground lead. This jig is also used for injection of the 4.5 mc . signal during s -i-f alignment.

Fig. 3. Sound I-F Input Alignment Jig
(Video Test Jack Adapter No. 2).

TUNER BAND PASS ALIGNMENT

(See Table No. 2 on Page 6)

Fig. 4. Television tuner response curve, showing bandpass limits.

Fig. S. Television tuner response curve, showing tracking compensation.

TUNER OSCILLATOR ALIGNMENT

TABLE NO. 1

AM GENERATOR: Connect to receiver antenna-input terminals. (No matching network is required.) Use unmodulated r-f output.
OSCILLOSCOPE: Connect the vertical-input lead, in series with a 1000 ohm resistor, to the mixer grid test point.

Connect the scope ground lead to the chassis, near the test point.
RECEIVER CIRCUIT ALTERATIONS: Disconnect tuner a.g-c (pink tracer) lead from main chassis, and connect a 1.5 volt bias battery, with negative terminal to white lead from tuner, and positive terminal to chassis.

STEP	AM GENERATOR dIAL SETTING	RECEIVER TUNING	ADJUST	REMARKS
1	257 mc .	channel 13	T2 for zero beat on scope.	a. If regeneration occurs, inject bias; bias may be increased up to 3 volts, if necessary at pin 1 video test jack - TS 1. b. Preset fine tuning adjustment so that it is in the middle of its range.
2	251 mc .	channel 12	VC8 for zero beat on scope.	
3	245 mc .	channel 11	VC7 for zero beat on scope.	
4	239 mc .	channel 10	VC6 for zero beat on scope.	
5	233 mc .	channel 9	VCs for zero beat on scope.	
6	221 mc .	channel 7	VC4 for zero beat on scope.	
7	64.5 mc .	channel 6	T7 for zero beat on scope.	2nd harmonic gives 129 mc .
8	113 mc .	channel 4	Ts for zero beat on scope.	
9	101 mc .	channel 2	T3 for zero beat on scope.	

Fig. 6. Tuner Layout.

TUNER BANDPASS ALIGNMENT - TABLE 2

SWEEP (FM) GENERATOR: Connect to receiver antennainput through Antenna-input Matching Network. (See figure 1.)
OSCILLOSCOPE: Connect the oscilloscope to the junction of R518(15K,1W) and the tuner red lead. Clip ground lead of scope to chassis.

RECEIVER CIRCUIT ALTERATIONS: Disconnect tuner a-g-c (white) lead from main chassis and connect a 1.5 -volt bias battery; negative terminal to white lead from tuner, and positive terminal to chassis. Disconnect tuner coupling link leads, and connect a 40 - to $70-\mathrm{ohm}$ carbon resistor across the open end of the lead, from the tuner.

STEP	SWEEP (FM) GENERATOR		RECEIVER TUNING	ADJUST	REMARKS
	Sweep Dial Setting	Marker Dial Setting			
1	Channel 13 (213 mc ., with 10-mc. sweep width.)	Set first to 210 mc . and note position of marker on response curve. Set to 216 mc . and note position of marker on response curve.	Channel 13		Oscilloscope gain as high as possible with respect to hum level and "bounce". Pips fix channel limits on curve. Response curve to be flat between limits (see figure 4). If not, proceed with step 2.
2	Channel 13	213 mc .	Channel 13	T8 counterclockwise until single peak appears.	CAUTION: Care must be taken not to unscrew core far enough to make it drop out of the coil.
3	Channel 13	213 mc .	Channel 13	T15 until peak falls on 213 mc . marker.	Sweep Generator output may have to be increased.
4	Channel 7 (177 mc ., with $10-\mathrm{mc}$. sweep width.)	Set first to 174 mc . and note position of marker on response curve. Set to 180 mc . and note position of marker on response curve.	Channel 7		Note curve with respect to tilt and center frequency. Curve should be centered in pass-band and symmetrical. If not, proceed with step 5.
5	Channel 7	$\begin{aligned} & 174 \mathrm{mc} . \\ & \text { and } \\ & 180 \mathrm{mc} . \end{aligned}$	Channel 7	VC3 and VC2 to get correct tilt on top of curve.	VC3 and VC2 compensate for the tuning effect of Channel 13 adjustment upon Channel 7. (Sce figure 5.)
6	Channel 13	213 mc .	Channel 13	Retouch T15 and T8 for symmetrical response centered about 213 mc . marker.	To retouch, only turn cores slightly.
7	Channel 7	117 mc .	Channel 7	Repeat step 5.	Check response curve for correct center frequency and symmetry.
8				Repeat steps 6 and 7.	Repeat Channel 13 and Channel 7 adjustments, alternately, until favorable curves are obtained on both.
9	Channel 6 (85 mc . with $10-\mathrm{mc}$. sweep width.)	Set first to 82 mc . and note position of marker on response curve. Set to 88 mc . and note position of marker on response curve.	Channel 6		Curve should be symmetrical and centered in pass-band. If not, proceed with step 10.
10	Channel 6	85 mc .	Channel 6	T14 counterclockwise until single peak appears.	CAUTION: Care must be taken not to unscrew core far enough to make it drop out of the coil.
11	Channel 6	85 mc .	Channel 6	T21 until peak falls on 85 -mc. marker.	Sweep Generator output may have to be increased.
12	Channel 6	85 mc .	Channel 6	T27 for maximum curve height and symmetry of single peak.	After adjusting T27 recheck as in step 9. If necessary, reduce Sweep Generator output to avoid overloading.
13	Channel 6	85 mc .	Channel 6	Retouch T21 and T14 for symmetrical response centered about $85-\mathrm{mc}$. marker.	To retouch, only turn cores slightly.
14	43.5 mc . (with $10-\mathrm{mc}$. sweep width.)	Set first to 45.75 mc . and note position of marker on response curve. Set to 41.25 mc . and note position of marker on response curve.	$\begin{gathered} \text { UHF } \\ \text { (Channel } 1 \\ \text { position.) } \end{gathered}$		Disconnect sweep (FM) generator from antenna-input terminals and connect to 40 mc. input jack TP1, using a matching network. Curve should be symmetrical and flat-topped. Markers should fall along flat-topped portion of curve. If not, proceed with step 15.
15	$\begin{aligned} & 43.5 \mathrm{mc} \text {. } \\ & \text { (with } 10 \cdot \mathrm{mc} \text {. } \\ & \text { sweep width.) } \end{aligned}$	43.5 mc .	$\begin{gathered} \text { UHF } \\ \text { (Channel } 1 \\ \text { position.) } \end{gathered}$	T9 for most symmetrical flat-topped response curve, centered about 43.5 mc . marker.	Recheck band-pass as in step 14, and repeat adjustment if necessary.

VIDEO I-F ALIGNMENT

AM GENERATOR: Connect to mixer test point, TP-2, through a mixer jig, and adjust the generator for approximately 30 percent modulation at 400 cycles. Adjust the output of the generator during alignment, to keep the output at the second detector below 4 volts peak to peak.

SWEEP (FM) GENERATOR: After step 9, connect to antenna-input circuit through antenna-input matching network. (See figure 1).

OSCILLOSCOPE: Connect the vertical-input lead to the 15,000 -ohm resistor of the video i-f alignment jig. Connect scope ground lead to the ground lead of the jig. (See figure 2). Plug jig into TS-1.

PRESET: Contrast and Brightness controls fully counterclockwise, and channel selector to channel 4.

BIAS: Apply 10 volts of negative bias, through $10,000-$ ohm resistor, to pin 1 of video I-F alignment jig; ground positive side of bias supply to pin 3 of jig. (See figure 2).

NOTE: If the i-f shield has been removed fro repairs, it must be replaced before proceeding with the alignment.

Fig. 7. Over-all R-F, I-F response curve, showing tolerance limits.

STEP	AM generator dIAL SETTING	SWEEP (F)	GENERATOR	ADJUST	REMARKS
		Sweep Dial Setting	$\begin{aligned} & \text { Marker Dial } \\ & \text { Settind } \end{aligned}$		
1	47.25 mc .	not used	not used	VC3 and VC8 for minimum indication on scope.	
2	41.25 mc .	not used	not used	VC9 for minimum indication on scope.	
3	39.75 mc .	not used	not used	VC4 for minimum indication on scope.	It is necessary to keep the generator output sufficiently high that a null indication may be observed on the oscilloscope; however, avoid overloading of the receiver by excessive signal.
4	42.7 mc.	not used	not used	T1 for maximum indication on scope.	Ti located on tuner. Adjust the output of the AM generator when necessary, to keep the output at the second detector below 4 volt, peak to peak. (For convenience, the oscilloscope may be calibrated for this purpose beforehand.)
5	43.1 mc.	not used	not used	VC1 for maximum indication on scope.	
6	44.4 mc.	not used	not used	VC2 for maximum indication on scope.	
7	42.0 mc .	not used	not used	VC6 for maximum indication on scope.	
8	45.0 mc .	not used	not used	VC5 for maximum indication on scope.	
9	45.7 mc.	not used	not used	VC7 for maximum indication on scope.	
10	not used	Channel 469 mc., with 6 mc., width.)	Run marker along curve checking against the curve limits given in figure 8.	If necessary, retouch T1, VC6, VC7, VC5 and VCl as directed in REMARKS column. CAUTION: Do not touch the setting 1, 2 and 3.	Set fine tuning cam to middle of range. If response curve does not fall within limits shown in figure 7, retouch VC5 and $\mathrm{VC1}$ alternately. $\mathrm{T}, \mathrm{VC} 5$ and VCl affect dip of curve and VC2 affects tilt of curve. Adjust VC6 for proper slope at 42.0 mc ., side of curve, and VC7 for proper level of curve, at video carrier frequency. If curve still does not fall within the limits, a slight readjustment of VCl is permissible. CAUTION: To retouch, only turn the adjustments slightly.

Fig. 8. Video Detector Output, Pin 2 of T\$1. 3.5 rolts, 60 c.p.s.

Fig. 9. Video Detector Output, Pin 2 of TS1. 3.5 volts, 15,750 c.p.s.

Fig. 12. Sync Separator Plate, Pin 1, 20 volis, 15,750 c.p.s.

Fig. 15. Vertical-Output Plate, Pin 9, 1100 velts, 60 c.p.s.

Fig. 18. Morizontal-Oscillator Cathode, Pins 3 and 8, 15 volts, 15,750 c.p.s.

OSCILLOSCOPE WAVEFORM PATTERNS

These waveforms were taken with the receiver adjusted for an approximate peak-to-peak output of 3.5 volts at the video detector. The voltages given with the waveforms are approximate peak-to-peak values. The frequencies shown are those of the waveforms - not the sweep rate of the oscilloscope. The waveforms were taken with an oscilloscope having good high-frequency response. With oscilloscopes having poor high-frequency response, the sharp peaks of the horizontal waveforms will be more rounded than those shown, and the peak-to-peak voltages will differ from those shown.

Fig. 10. Video Amplifier Plate, Pin 6, 40 volts, 60 c.p.s.

Fig. 13. Vertical-Oscillator Grid, Pin 2, .34 voles, 60 c.p.s.

Fig. 16. Phase Comparer, Pin 2, 11 volts, 15,750 c.p.s.

Fig. 19. Morizontal-Oscillator Grid, Pin 2,60 tolts, 15,750 c.p.s.

Fig. 11. Sync Separator Grid, Pin 9, 30 volts, 60 c.p.s.

Fig. 14. Vertical-Output Grid, Pin 2, 140 volts, 60 c.p.s.

Fig. 17. Horizontal Oscillator, 40 volts, 15,750 c.p.s. test point.

Fig. 20. Horizontal-Output Grid, Pin 5, 160 volts, 15,750 c.p.s.

SOUND I-F ALIGNMENT
 TABLE 4

AM GENERATOR: Connect "hot" lead through a 2200-ohm resistor to pin 2 of TS1, using the sound i-f alignment jig. (Figure 3.) Connect ground lead of generator to ground lead of jig.

VOLTMETER: Use v.t.v.m. or 20,000 ohms-per-volt voltmeter.
Connect to sound test point and ground.
OSCILLOSCOPE: Connect through crystal probe to grid (pin 2) of picture tube.

BIAS: -15 V into AGC system.

STEP	AM GENERATOR DIAL SETTING	ADJUST	REMARKS
1	4.5 mc .	T1 primary (bottom of T-1) for maximum indication on voltmeter.	Remove 1 st video i-f tube, and adjust the Volume control for moderate speaker output.
2	4.5 mc .	T2 secondary (top of T2) for maximum indication on voltmeter.	
3	4.5 mc .	T2 primary (bottom) for maximum indication on voltmeter.	
4	4.5 mc .	T3 for maximum indication on voltmeter and minimum speaker output.	
5	4.5 mc .	T4 for minimum indication on oscilloscope.	If scope and crystal probe are not available, T4 may be adjusted for minimum beat pattern on picture tube, using station signal.
6	Use Station Signal	T1 top (secondary) for minimum AM (noise or buzz), using speaker output for indication.	Replace 1 st video i-f tube, and tune in a station, setting fine tuning control to obtain a crisp picture, with a small amount of beat.

Fig. 21. Base Layout, Top view-TV-400.

Fig. 22. Wiring Diagram, Bottom view-TV-400.

Fig. 23. Tuner Apparatus Layout Drawing.

Fig. 24. Schematic Diagram-TV-400 Chassis.

Fig. 25. Dial Cord Stringing Arrangement.
REPLACEMENT PARTS LIST
TV-400 CHASSIS

CHASSIS - ELECTRICAL
ne

Desstription	${ }_{\text {Sart }}^{\text {Serlice }}$ No.
Cable CRT socket	${ }^{11-3964.20}$
Cable plilot light	
Resistor, , nde viD plate	33-1335-97
1 staudio plate	${ }_{\text {cker }}^{66.43383830}$
Audio output	
Audio output srid	${ }_{66-5.5158340}$
Ist sif plate (220)	
Iw. 6 ctu	
-	
Disc... resistor (270)	66-127
SIF grid (100 K)	
Noise invoplate (1.0 meg.)	66-5108330
ortal autput grid (1.0 meg.)	${ }_{66-5108340}$
${ }_{6}^{10002,2 \mathrm{l}}{ }^{2 \mathrm{w}}$.	
Andio output cathode (180)	${ }_{\text {6 }}^{6-11224340}$
51200 , Coth res of 6×8	
${ }_{4}^{4 t \mathrm{t}} \mathrm{VIF}$ Vip prite	
Noise inv. grid (22 K)	
Yerrical decoupler (1000)	
rizontai feed (39	${ }_{\text {66-3394340 }}^{60}$
${ }_{\text {AGC }}^{\text {AGC gate gate grreen }}$ grio $(170 \mathrm{~K})$	$66-3120340$ $66-417340$
cathode (18)	${ }_{\text {ck }}^{66.41883840}$
3rd vir plate (5500)	$\underset{.}{66-2564340}$
${ }_{68}{ }^{\text {st }} \mathrm{K}$ VID plate (3300)	-66-2338340
Cathode Boisi ${ }^{\text {doil }}(222 \mathrm{~K}$)	
${ }_{3}{ }^{\text {rad }} \mathrm{VF}$ V cathode	${ }_{66-11583340}$
	(666-2939340
1 Ist VID plate (4)	${ }_{66-2478340}$
Horizontal oscillator decoupling (66.2478340
Vertical peak (10 K)	-66-3103300
${ }^{2 \text { nd }}$ VIF platid (12	${ }_{66-2128340}$
${ }_{\text {RGC }}$ Sate cathode	$\underset{\substack{6-4518340}}{664883}$
tical output gric	${ }_{66.5228330}$
d damping 2 VIF	
rital sync div. (22 K)	${ }_{\text {cose }}^{66-3228340}$
Vertical int (82000)	$\underset{\text { cke-2828340 }}{ }$

REPLACEMENT PARTS LIST - Continued
TV-400 CHASSIS

CHASSIS - ELECTRICAL (Continued)

CHASSIS - ELECTRICAL (Continued) ${ }^{\text {Referentel }}$

${ }_{\frac{\mathrm{E}}{\mathrm{E}} \mathrm{E}^{2}}$

. 0022 filter. PH comp. output	
AFC filler (0.01)	
Horizonal ${ }^{\text {HV }}$ (${ }^{(82)}$	${ }_{\text {coser }}^{60.00893595437}$
Horizontal screen div.	
${ }_{\text {Adect.. }}^{\text {Adi. }}$ C	
Sound disc.	
Elect., input	
${ }_{\text {Electio }}{ }^{\text {Prysiol }}$ can	

TUNER - MECHANICAL

TUNER - ELECTRICAL

	Description
	${ }_{270 \mathrm{~K}}^{22 \mathrm{~K}} \mathrm{AGC}$ G. decoupling
	8200 mixer decoupling12 K oscillator plate feed
	${ }^{8} 8200$ mixer screen
	${ }^{220}$ ohm decoupling
	${ }^{4700}$
	mmit. 1 -F primary
	F channel coil, tuner
	Coil, I.F prima
	Antena Coil
	Capacitor, AGC decoupling
	R-F heater, oscillator hea
	hode tuning.

SUPPLEMENT TO PHILCO TELEVISION SERVICE MANUAL FOR TV-300 AND TV-301 CHASSIS

CONTENTS

Revisions and additions to the TV-300 and TV-301 service manual.

Revisions and additions to the parts lists.
Voltages on the TV-300 and TV- 301 chassis.
Run change information up to and including run three.

REVISIONS AND ADDITIONS TO THE TV-300 and TV-301 SERVICE MANUAL

1. On page three under tuner oscillator alignment the reference symbols under the adjustment column, are in error. These reference symbols should read as follows: Step 1, VC4; step 2, VC5; step 3, VC6; step 4, VC7; step 5, VC8; step $6, V C 10 ;$ step $7, V C 11 ;$ step $8, V C 12 ;$ and step 9 , VC13.
2. Under tuner oscillator alignment section on page 3, starting with oscilloscope; the mixer test point is referred to as TP2 and it should be TP4.
3. On page four, table two, under sweep (FM) generator; the antenna-input matching network is illustrated in figure one.
4. On page five, table three, tuner bandpass alignment, the adjustment column, refer to the tuner wiring diagram rather than the tuner adjustment layout diagram. A cross reference of these adjusting points are as follows:

FIGURE 5
Tuner W'iring Diagram
T8
T15
VC3
VC2 T14 T27

FIGURE 4
Location of Adjustment
TC504
TC502
507
512
TC505
TC503
TC50:
5. On page six, figure four, channel eight is shown as having a local oscillator adjustment. This adjusting screw has been removed.
6. On page seven, figure seven, showing hase layout top view of the TV- 300 chassis, $\mathrm{S}-12$, the 12 AZ 7 tube is listed as a llorizontal Sweep and Sync separator tube. Remove horizontal sweep.
7. Add I-F frequencies to figure six: sound 41.25 mc : video 45.75 mc .
8. On page eight, figure seventeen, horizontal oscillator, junction of 1800 and R806, 43 volts, 15,750 c.p.s., should read horizontal oscillator, junction of T 1 and R 17 .
9. On page ten, replacement parts list, VR4 in the horizontal hold control. VRG in the brightness control.
10. Figure 21, schematic-the vertical hold control improperly labeled UR5 . . . should be VRs,
11. Figure seven, base layout, top view, tube S 3 should be labeled vertical osciitator and verical output.

RUN CHANGE INFORMATION
 ON THE TV-300 - TV-301 CHASSIS

Run 2: Change 470 K (66.4478540) (R13) in grid of vertical oscillator to 680K (66-46883.40).
Reason: To improve vertical centering.
Run 3: The AVC filter condenser 30-4651-31 (C3) . 15 mfd . was replaced by $30-4650-32.22 \mathrm{mfd}$. The AVC resistor $66-4568340$ (R34) 560 K was replaced by $66-4478340470 \mathrm{~K}$ Resistor $66-5158240 \quad 1.5$ megohm (R59) was replaced by $66-51083401$ megohm.
Reason: To increase overload level.

SUPPLEMENT TO REPLACEMENT PARTS LIST ON TV-300 and TV-301 CHASSIS

Reference Symbol	Tuner Mechanical Description	Part No.
Change 56-9859	Hairpin, switch assembly to	56-9858
	Cbassis Mecbanical	
Add:	Socket, tube (6W6)	27-6174
	Socke1, tube (6 AX4GT)	27-6174-7
	Socket, tube (12AU7)	- 27-6203-16
	Socket, tube (12BH7)	27-6203-17
	Socket and base, tube (6CB6)	. 27-6203-14
	Socket, tube (6AU6) Socket and base, tube (6T8)	$\begin{array}{r} 27-6203 \\ 27-6203-18 \end{array}$
	Connector, interlock	27-6240-3
	Holder (5U4)	56-4125FA3
	Clip (pilot lamp)	56-3545-5
	Tube shield (3) (6CB6)	56-5629FA3
	Dial and film ass'y. (UHF)	76-9048

SUPPLEMENT TO REPLACEMENT PARTS LIST ON TV-300 CHASSIS

Tuner Electrical

Change	76.8956
Change	$76-8955$
Add	C-10
Add	C.
Add	C-7
Change	T1
Add	$32-4629$
Add	X5
Add	X4

RF wiring assy. switch assy. to	76-9349
Grid wiring assy. switch assy. to	76.9327
Connector, tuner	57-0590-2
Capacitor 5 mmf . I-F primary	30-1224-28
Capacitor 27 mmf . mixer grid coup	0.1224-126
Coil I-F primary to	32-4629-1
Coil UHF channel, grid side	32-4623-55
Coil UHF channel	32-4623-56

Chassis Electrical

Add	OT
Add	VOT
Add	FC
Add	VOST
Change	VR-1
Change	33-5572-16
Add	VR-4
Add	PT
Add	X6
Change	T4 32-4463-10
Change	T7 32-4463-2
Add	
Add	
Add	R55
Add	R40
Add	R46
Add	R1
Add	R22
Add	R24
Add	R3
Add	R4
Add	745
Add	R15
Add	R56
Add	R38
Add	R19

Transformer (audio output)	$32-8674$
Transformer vertical output	32-8658
Choke (filter)	32.8675
Transformer vertical oscillator	32-8676
Vertical lin. from 67-0025 to	67-0025-6
To Read Brightness control	
Horizontal hold	572-8
Power transformer	32-8673
Video grid coil	32.4480-4
Sound take off to	32.446314
4.5 MC trop to	32-4463-11
Cable, CRT socket	41-4147-1
Cable, pilot lamp	27-6233-4
Resistor, 15K sync coupling	66-3158340
Resistor, 27 K SIF screen	66-3278340
Resistor, 1 meg. audio output grid	66-5108340
Resistor, 560 ohm yoke camper	66-1568340
Resistor, 4.7 meg. SS coupling	66-5478340
Resistor, 47K 2nd VIF damping	66-3478340
Resistor, 56 K retrace suppression	66-3568340
Hesistor, 56 K retrace suppression	66-3568340
Resistor, 220 audio output cathode	66-1224340
Resistor, 8200 vertical integrator	66.2828340
Resistor, 6800 CRT cathode damper	66-2688340
Resistor, 6800 video grid damping	66-2688340
Resistor, 180K horizontal osc. plate	$66-4188340$

Add	C5
Change	C6
Add	C45
Add	C13
Add	$\mathrm{C}_{2} 1$
Add	$\mathrm{C4}$
Add	$\mathrm{C}_{20} 0$
Add	$\mathrm{E}-2$

VOLTAGES ON THE TV-300 -TV-301 TElEVISION CHASSIS

LINE VOLTAGE - 115 V

VOLTMETER - VTVM

	1	2	3	4	5	6	7	8	9
S-1 (5U4)		280		280		280		\ldots	\ldots
S-2 (6AX4)		-	360	260		\ldots	\ldots	\ldots
S-3 (12BH7)	-	0/-3	10/35	F	F	70/260	-30/-100	0	F
S-4 (12AU7A)	140	-10/-17	8	F	F	160	2	8	\ldots
S-5 (6BQ6)	\ldots	F	135	120/140	-30		F	Gnd.	\ldots
S-6 (6CB6)	1	F	F	110	110	Gnd.		\ldots
S-7 (6CB6)		1	F	F	115	115	Gnd.	\ldots
S-8 (6CB6)	\ldots	1.5	F	F	120	120	Gnd.	
S-9 (6AU6)		. .	F	F	58	58	Gnd.	\ldots	\ldots
S. 10 (6T8)		\ldots	. .	. \cdot.	-		Gnd.		90
S-11 (6W6)	140	F	255	260	140	230	F	150	
S-12 (12AZ7)	50	\ldots	\ldots	F	F	2.2		2.4	\ldots
S-13 (12BY7)	1.6		Gnd.	F	F	Gnd.	200	90
6BQ7A	230	110	115	Gnd.	Fil.	115		Gnd.	Gnd.
6X8	Gnd.	-1.5/-3.0	$\begin{gathered} 80 \mathrm{~V} \\ \mathrm{UHF} 30 \mathrm{~V} \end{gathered}$	Gnd.	Fil.	Gnd.	-1.5/-3.0	$\text { UHF }_{130}^{150}$	170

- DO NOT MEASURE

PHILCO TELEVISION SERVICE MANUAL FOR TV-300 AND TV-301 CHASSIS

THE TV-300 AND TV-301 DIFFERENCE

The TV-301 is similar to the TV-300, the difference being in the picture tube us.d and the shorting out of one resistor in the TV- 300 to make the TV-301 chassis.

The TV- 300 chassis uses a 21 XP 4 A picture tube which is an electrostatic focus tube. When this tube is used the 27 ohm resistor in the high voltage transformer is necessary for proper electrical centering of the picture

The TV-301 chassis uses a 21WP4A picture tube which is an electromagnetic focus picture tube. When this picture tube is used the 27 ohm resistor is shorted out and the chassis is called the 301.

This is the only difference between these two chassis.

TUBE COMPLEMENT - TV-300 CHASSIS

CONTENTS

The TV-300 and TV-301 Difference
Tube Complement
Page
Specifications 1
Circuit Description 1
Television Alignment 2
Horizontal Oscillator Adjustment 2
Jigs and Adapters Required 3
Tuncr Oscillator Alignment Table 3
Video I-F Alignment Table 4
Tuner Bandpass Alignment 4
Tuner Bandpass Alignment TableTuner Adjustment Iocations6
Tuncr Wiring Diagram 6
Response Curve, Overall I-F, R-F 7
Sound Alignment Table 7
Base Layout, Top View, TV-30\% 7
Oscilloscope Waveform Patterns 8
Replacement Parts List 9
Schematic, TV-300 11, 12
Wiring Diagram, Bottom View, TV-300 13
Dial Cord Stringing Arrangement 13

The TV-300 receiver contains a 13 position incremental type VHF tuner, covering VHF channels 2 through 13 with a UHF position. Power and filament voltage for the UHF tuneradapter are supplied through a switch built into the rear of the VHF tuner. The output of the VHF tuner is a 40 Mc ., IF signal which is inductively coupled to three stagger tuned IF stages. A 1 N 64 crystal serves as the diode detector for the output of the IF stages.
The output of the video detector, a negative phase, compositevideo detected signal, is fed through a single video amplifier to the cathode ray tube. Since a single output amplifier is employed a positive going signal is being applied to the picture tube and therefore, is fed to the picture tube cathode.

AGC voltage is developed in the output stages of the viden detector and through the bias on the grid of the sync separator. A delay voltage applied to the tuner AGC is effectively clamped by the diode portion of the GT8 first audio amplifier stage, to prevent the RF grid being driven too far positive under weak signal conditions.

The 4.5 Mc ., intercarrier IF sound is taken from the output circuit of the crystal video detector. The 4.5 Mc ., sound signal is the resulting difference signal from the beat between the video carrier, 45.75 Mc ., and the 41.25 Mc ., sound carrier when they are mixed in the video detector. In order for the 4.5 Mc ., resultant signal to contain the FM sound with only a negligible amount of video modulation, the sound carrier must be con-
siderably lower than the video. The proper ratio of the two signals is established during alignment of the receiver.

The intercarrier sound IF signal is fed through a sound IF amplifier stage to the ratio detector. A GAUG tube is employed in the sound IF stage. The ratio detector employs the duo-diode section of a 6T8 tube and the detected signal is fed to the triode section of the same tube as the first audio amplifier. A 6W6GT tube serves as the audio output stage which drives the speaker. B plus voltage, approximately 260 volts, is fed to the screen grid and plate circuits of the 6W6GT, while a second B plus voltage through a resistor divider network is applied to the grid. The cathode of this tube is connected through the cathode resistor and through decoupling circuits to the plates and screen grids of all of the IF stages and to the screen grids of the video output tube and the horizontal output tube. Thus, the 6W6GT tube is effectively in series with the tubes mentioned and the necessary B plus voltage for these tubes develops due to the current flow through the 6W6GT cathode circuit. The 6W6GT tube since it is in series with the IF tubes, and screen grids of the video output and horizontal output stages, from B plus to ground, forms a large voltage divider network across the power supply, and acts as a voltage regulator for these stages. The voltage drop across the GW6GT remains approximately 120 volts.
A portion of the composite video signal is taken from the video output circuits to the grid of the sync separator, one half of a $12 \mathrm{AZ7}$ duo-triode tube. The bias of this tube is such that negative going composite sync pulses appear at the plate. The vertical integrator circuit feeds the vertical sync pulses to the vertical blocking oscillator, a 12 BH 7 tube.

The vertical blocking oscillator requires a positive pulse for triggering purposes and the incoming sync pulse is negative. consequently, the incoming pulse is fed into the cathode lead tap of the oscillator transformer. The action of the transformer circuit causes a large positive overshoot to occur on the sync pulse at the cathode and grid. The grid pulse being larger than that at the cathode, will cause this positive overshoot to trigger the oscillator.

The second half of the 12 BH 7 duo-triode is used as the vertical output amplifier and the vertical signal is fed to the deflection coils through the vertical output transformer. A retrace suppression circuit from the vertical output transformer to the grid of the picture tube effectively removes vertical retrace lines.

From the plate of the sync separator the horizontal pulses are fed to the cathode circuit of the phase comparer, one-half of a $12 \mathrm{AZ7}$ tube. At the same time, a pulse is taken from a winding on the horizontal output transformer, and fed to the phase comparer plate through a shaping network. The grid of the phase comparer is grounded and the circuits of this stage are such that if the incoming signal and the signal taken from the horizontal output transformer are not in phase a difference voltage results in the plate circuit which is fed to the grid of the horizontal oscillator and controls its frequency.
The horizontal oscillator is a conventional multivibrator type employing a duo-triode 12AU7A tube. The horizontal hold control is placed in the grid circuit of the second triode section of the multivibrator and provides the means of manually adjusting the frequency of the oscillator so that its frequency is within the control range of the phase comparer.

A 6BQ6GT tube is employed as the horizontal output tube. Horizontal width is adjustable by means of a variable resistor in the screen grid circuit. The horizontal output transformer contains a 27 ohm resistor inserted in the center windings to provide electrical centering of the raster. High voltage rectification is performed by a 1B3GT tube, while a 6AX4G tube serves as a damper tube.
A transformer power supply provides B plus voltage. A 5U4G tube is employed in full wave rectification of the B plus voltage. A . 7 ampere slow-blow fuse is inserted in the B minus center tap lead of the transformer and is located in the high voltage cage on top of the chassis for easy access.
The picture tube employed with the TV- 300 chassis is either the electrostatic fixed focus type with the focus anode returned to ground or the electromagnetic type. The electrostatic employs ring type permanent magnets for centering of the raster.

TELEVISION ALIGNMENT

General

The alignment procedure follows the general pattern of first checking the tuner response with an FM sweep generator and oscilloscope, comparing the response curve with that given in the manual, and aligning the tuner if necessary. After it is established that the tuner is in correct alignment, the video I-F channel is aligned by tuning each coil to its assigned pole frequency, using an AM signal, and then feeding in a sweep signal at the antenna terminals and retouching the I-F adjustments to obtain the desired pass band. Finally, the sound channel is aligned, using an AM signal, by tuning the sound take-off coil and the I-F and ratio-detector transformers.
The over-all response curve (r-f, i-f) of the circuits from the antenna terminals to the video detector, after the 1-F stages have been aligned, should appear essentially the same, regardless of the channel under test. If not, the tuner should be aligned.

The video-carrier intermediate frequency is 45.75 mc ., and the sound intermediate (intercarrier) frequency is 4.5 mc . Alignment of these circuits requires careful workmanship and good equipment. The following precautions must be observed:

1. There must be a good bond between the receiver chassis and the test equipment. This is most easily obtained by having
the top of the workbench metallic. The receiver chassis should be placed tunet-side down on the bench. If the bench has no metallic top, the test equipment and chassis can be bonded by a strip of copper about 2 inches wide. The section of the chassis nearest the tuner should rest on the strip.
2. Do not disconnect the picture tube yoke, or speaker while the receiver is turned on.
3. Allow the receiver and test equipment to warm up for 15 minutes before starting the alignment.
4. The marker (AM) signal generator should be calibrated accurately to the frequencies used and to the sound and video r-f carriers of each channel used during alignment. If model 7008 is used, the built-in crystal calibrator provides an excellent means of calibration. An alternate method for calibrating the signal generator to the sound and video r-f carrier frequencies is to zero-beat the signal generator with the received signals.

For further information regarding calibration, refer to Philco Lesson PR-1745 (J) entitled "Television Service in the Home."

HORIZONTAL OSCILLATOR ADJUSTMENT

1. Center horizontal hold control.
2. Adjust T-1 until the picture comes into sync.

JIGS AND ADAPTERS REQUIRED

Mixer Jig

Connections to the grid of the mixer tube may be made through the alignment jack provided for this purpose. To connect the generator to this point, a mixer-grid jig, Philco Part No. 45-1739, and a connecting cable, Philco Part No. 45-1635, may be used. As an alternate, a Philco alligator-clip adapter, Part No. 45-1636, with as short a ground lead as possible, may be used to connect the alignment jack. The ground lead should be connected as close as possible to the mixer tube. It is essential that the signal-generator output lead be terminated with a 68 -ohm resistor (carbon), so that regeneration, caused by connection of the lead to the mixer, is held to a minimum.

Antenna-Input Matching Network

An impedance-matching network for coupling the signal generator to the antenna input terminals of the receiver is shown in figure 1. This network, which is designed to have an input impedance of 75 ohms and an output impedance of 300 ohms is used to match a 75 -ohm generator to a 300 -ohm antenna-input

Fig. 1. Antenna-Input Matching Network.
circuit. The resistors used in this network should be of carboncomposition construction, and should be chosen from a group, to obtain values within ten percent of those indicated. The resistors should be placed in a shield can, to prevent variable effects. An antenna-matching jig, Philco Part No. 45-1736, which consists of a matching transformer and connecting box, may be used in place of the resistor network.

TUNER OSCILLATOR ALIGNMENT

table 1

AM GENERATOR: Connect to the receiver antenna-input terminals. (No matching network is required.) Use in modulated R-F output.

OSCILLOSCOPE: Connect the vertical-input lead, in series with a 1000 -ohm resistor, to the mixer plate test point,

TP-2. Connect the scope ground lead to the chassis, near TP-4.

RECEIVER CIRCUIT ALTERATIONS: Disconnect tuner AGC (white) lead from main chassis, and connect a 1.5 -volt bias battery, with negative terminal to white lead from tuner, and positive terminal to chassis.

STEP	AM GENERATOR DIAL SETTING	RECEIVER tUNING	ADJUST	REMARKS
1	257 mc.	channel 13	TC-506 for zero beat on scope.	a. If regeneration occurs, increase bias; bias may be increased up to 4 or 5 volts, if necessary. b. Preset fine tuning control to center of its range.
2	251 mc.	channel 12	TC-507 for zero beat on scope.	
3	245 mc .	channel 11	TC-508 for zero beat on scope.	
4	239 mc .	channel 10	TC-509 for zero beat on scope.	
5	233 mc .	channel 9	TC-510 for zero beat on scope.	a. To adjust channel 8 use channel 9 tuning core, then recheck channel 9.
6	221 mc.	channel 7	TC-511 for zero beat on scope.	a. Repeat steps 1 thru 6 and readjust if necessary until channels are within 500 kc . of proper frequency.
7	129 mc .	channel 6	TC-512 for zero beat on scope.	
8	113 mc .	channel 4	TC-513 for zero beat on scope.	
9	101 mc .	channel 2	TC-514 for zero beat on scope.	

VIDEO I-F ALIGNMENT
 TABLE 2

A.M. GENERATOR: Connect to mixer test point, TP.2, through a mixer jig, and adjust the generator for approximately 30% modulation at 400 cycles. Adjust the output of the generator during alignment to keep the output at the CRT cathode below 40 volts peak to peak.
SWEEP (FM) GFNERATOR: After step 5 connect to antennainput circuit through antenna-input matching network (see figure ?)

OSCILLOSCOPE: Connect vertical-input lead to pin No. 11 at the cathode ray tube.
PRESET: Contrast control full on. Channel selector to channel position No. 1.
BIAS: Apply 5.0 volts of negative bias into TP-1 (AGC system).
NOTE: I-F shield must be in place.

STEP	am generator dIAL SETTING	SWEEP (FM) GENERATOR		ADJUST	REMARKS
		SWEEP DIAL SETTING	marker dial SETTING		
1	45.5 mc .			TT' for naximum indication on scope.	The scope level must not be permitted to exceed 40 volts peak to peak or overloading will occur.
2	43.1 mc.			VC-1 for maximum indication on scope.	
3	42.7 mc .			T-2-IF for maximum indication on scope.	
4	45.0 mc .			T6-IF for maximum indication on scope.	
5	44.4 mc .			T3-IF for maximum indication on scope.	
6		Channel 4 (69 mc. with 6 mc . sweep width).	Run marker along curve checking against curve limits given in figure 6.	If necessary retouch TT, VC1, T2-IF, T6-IF, T3-IF.	Adjust carrier level with TT and T6 level curve with T-3. Position 42.5 mc . slope with VC-1 and T-2. CAUTION: Retouch only slightly.

Fig. 2. Television tuner response curve, showing bandpass limits.

Fig. 3. Television tuner response curve, showing tracking compensation.

TUNER BANDPASS ALIGNMENT

TABLE 3

SWEEP (FM) GENERATOR: Connect to receiver antennainput circuit through antenna-input matching network (see figure 1).
OSCILLOSCOPE: Same as in Chart 1.

RECEIVER CIRCUIT ALTERATIONS: Bias same as Chart 1. Disconnect the tuner coupling link leads and connect a 40. to $70-\mathrm{ohm}$ carbon resistor across the open end of the lead from the tuner.

STEP	SWEEP (FM) GENERATOR		RECEIVER TUNING	ADJUST	REMARKS
	$\begin{aligned} & \text { SWEEP } \\ & \text { DIAL } \\ & \text { SETTING } \end{aligned}$	$\begin{aligned} & \text { MARKER } \\ & \text { DIAL } \end{aligned}$ SETTING			
1	Channel 13 (213 mc ., with 10-mc. sweep width.)	Set first to 210 mc . and not position of marker on response curve. Then set to 216 mc . and note position of marker on response curve.	Channel 13		Use oscilloscope gain as high as possible with respect to hum level and "bounce". Pips fix channel limits on curve. Response curve should be flat between limits (see figure 2). If not, proceed with step 2.
2	Channel 13	213 mc .	Channel 13	T-8 - WS2 counterclockwise until single peak appears.	CAUTICN: Care must be taken not to un screw core far enough to make it drop out of the coil.
3	Channel 13	213 mc .	Channel 13	T-15-WS3 until peak falls on $213-\mathrm{mc}$. marker.	It may be necessary to increase sweep. generator output.
4	Channel 7 (177 mc ., with $10-\mathrm{mc}$. sweep width.)	Set first to 174 mc . and note position of marker on response curve. Set to 180 mc . and note position of marker on response curve.	Channel 7		Note curve with respect to tilt and center frequency. Curve should be centered in pass band and symmetrical. If not, proceed with step 5.
5	Channel 7	174 mc .8180 mc .	Channel 7	VC- 3 and VC- 2 to obtain correct tilt on top of curve.	VC3 and VC2 compensate for the tuning effect of Channel 13 adjustment upon Channel 7. (See figure 3.)
6	Channel 13	213 mc .	Channel 13	Retouch T-15 of WS3 and T. 8 - WS2 for symmetrical response, centered about $213-\mathrm{mc}$. marker.	To retouch, only turn cores slightly.
7	Channel 7	117 mc .	Channel 7	Repeat step 5.	Check response curve for correct center frequency and symmetry.
8				Repeat steps 6 and 7.	Repeat Channel 13 and Channel 7 adjustments, alternately, until favorable curves are obtained on both.
9	Channel 6 (85 mc ., with $10-\mathrm{mc}$. sweep width.)	Set first to 82 mc . and note position of marker on response curve. Then set to 88 mc . and note position of marker on response curve.	Channel 6		Curve should be symmetrical and centered in pass band. If not, proceed with step 10.
10	Channel 6	85 mc .	Channel 6	T-14 of WS2 counterclockwise until single peak appears.	CAUTION: Care must be taken not to unscrew core far enough to make it drop out of the coil.
11	Channel 6	85 mc .	Channel 6	T-21-WS3 until peak falls on $85-\mathrm{mc}$. marker.	It may be necessary to increase sweepgenerator output.
12	Channel 6	85 mc .	Channel 6	T-27 - WS5 for maximum curve height and symmetry of single peak.	After adjusting TC501, recheck as in step 9. If necessary, reduce sweep-generator output to avoid overloading.
13	Channel 6	85 mc .	Channel 6	Retouch T-21 - WS3 and T-14 - WS2 for symmetrical response, centered about $85-\mathrm{mc}$. marker.	To retouch, only turn cores slightly.

Fig. 4. Tuner layout showing locations of adjustments.

Fig. S. Tuner Wiring Diagram.

SOUND ALIGNMENT

TABLE 4
A.M. GENERATOR: Connect the "hot" lead through a 2200 ohm resistor to the junction of $\mathrm{C}-24, \mathrm{X} 3$ and the xtal det. Adjust generator for 400 v . modulation at approximately 30% modulation.

VOLTMETER: Use V.T.V.M. on 20,000-ohms-per-volt voltmeter. Connect through a crystal probe to pin No. 11 of the picture tube in step 1 and to pin No. 3 of the 6W6 audio output tube in the remainder of the steps.

STEP	$\begin{gathered} \text { AM } \\ \text { GENERATOR } \\ \text { DIAL } \\ \text { SEITING } \end{gathered}$	ADJUST	REMARKS
1	4.5 mc . modulated	T7-IF for minimum indication.	Voltmeter through xtal probe. Plate of video amplifier.
2	4.5 mc . modulated	T5 top for maximum indication.	a. Volume control full on. b. Voltmeter thru
3	4.5 mc . modulated	Ts bottom for maximum indication.	c. Keep generator level low to prevent overload.
4	4.5 mc . modulated	T4-IF for maximum indication.	

Fig. 6. Over-all R-F, I-F response curve, showing tolerance limits.

Fig. 7. Base Layout - Top View - TV-300 Chassis.

Fig. 8. Composite Signal, Pin 2 of $12 B Y 7,6$ volts, 60 c.p.s.

OSCILLOSCOPE WAVEFORM PATTERN - TV-300

These waveforms were taken with the receiver adjusted for an approximate peak-to-peak output of 6 volts at the video detector. The voltages given with the waveforms are approximate peak-to-peak values. The frequencies shown are those of the waveforms - not the sweep rate of the oscilloscope. The waveforms were taken with an oscilloscope having good high-frequency response. With oscilloscopes having poor high-frequency response, the sharp peaks of the horizontal waveforms will be more rounded than those shown, and the peak-to-peak voltages will differ from those shown.

Fig. 10. Video Amplifier Plate, 83 volts, 60 c.p.s.

Fig. 13. Vertical-Oscillator Grid, Pin 7, 140 volts, 60 c.p.s.

Fig. 16. Phase Comparer, Pin 6, 7 volts, 15,750 c.p.s.

Fig. 19. Horizontal-Oscillator Grid, Pin 2,40 volts, 15,750 c.p.s.

Fig. 11. Sync Separator Grid, Pin 2, 90 volts, 60 c.p.s.

Fig. 14. Vertical-Output Grid, Pin 2, 72 volts, 60 c.p.s.

Fig. 17. Horizontal Oscillator, junction of L800 and R806, 43 volts, 15,750 c.p.s.

Fig. 20. Horizontal-Output Grid, Pin 5, 120 volts, 15,750 c.p.s.

Fig. 18. Horizontal-Oscillator Cathode, Pins 3 and 8,18 volts, 15,750 c.p.s.

REPLACEMENT PARTS LIST TV-300 CHASSIS

Reference Symbol

TUNER - MECHANIC Description	Service Part He.
Tuner (T36A)	76-8948-1
Tube shield	56-5829-5
Stud	W2235-7FA9
Connector	27-6273-11
Antenna coil box assembly	78-9204
Washer, switch assembly 56.9351
Washer, switch assembly	1W60980FE5
Retaining ring, switch assembly1W61043
Hairpin, switch assembly	56-9859
Ball, detent, switch assembly	58-8020
Spring, shaft, switch assembly	...56-8023
Pulley \& shaft, switch assembly	-....76-9026
Bearing, switch assembly	54.9244
Spring, switch assembly	...28-9088
Rotor \& shaft, switch assembly76-9025
Spring, detent, switch assembly	56-9158
Washer, switch assembly	W2556-5
Tube cap, switch assembly	54-9242
Sleeve cap, switch assembly	28-10283
Shaft assembly, switch assembly	-76-6914-6
Shaft extension, switch assembly	...56-8358-7
Coupling, shaft, switch assembly	- 54-4912
socket, tube	27-6203-21

TUNER - ELECTRICAL Description	Reference Symbel
capacitor, r.f. heater; oscillator heater62-122001001	Cl
	C2
capacitor, r.f. grid by-pass62-115001001	C3
capacitor, r.f heater; oscillator heater62-122001001	C5
capacitor, oscillator grid block; oscillator grid tank (12 mmf .)	C6
capacitor, injection coupler30-1224-127	C7
capacitor, interstage coupler ...-.	C8
capacitor, oscillator grid block; oscillator grid tank (12 mmf .) ...224-28	$\mathrm{C9}$ ClO
capacitor, r.f. grid coup. .-62-033409011	Cll
capacitor, IF by-pass ..30-1239-2	C12
capacitor, mixer grid coup. .- ${ }^{\text {a }}$ 30-1224-126	Cls
IF trap coil, antenna assombly .- 32-4552-1	C16
capacitor, feed thru, heater by-pass 	C17
capacitor, feed thru, heater by-pass 	C 19 C 22
resistor, mixer grid (100 K)6-4103340	C23
resistor, oscillator grid leak; AGC decoupling (22 K) .66-3228340	C24
resistor, r.f. grid ...wnernew	C25
resistor, oscillator grid leak; AGC decoupling (22 K) 66-3228340	C 26 C 27
resistor, r.f. grid section II (470K)66-4478240	C28
resistor, mixer decoupling (8200)66-2825340	C29

TUNER - ELECTRICAL (Continued) serie	
resistor, mixer screen (8200)	.68-2828340
renistor, damper (680)	
resistor, antenna assembly (470K)	.66-4478340
coil, IF primary	32-4629
antenna coils (ant. assy.)	32-4432-3
antenna coils (ant. assy.)	32-4432-3
capacitor, var., r.f. plate; mixer grid (. 5 to 3.0 mmf .)	31-6520-3
capacitor, var., r.f. plate; mixer grid (. 5 to 3.0 mmf .) $31-6520-3$	
oscillator wiring assembly, switch assy. - 76-9231	
ant. wafer wiring assy., switch assy.	
grid wiring assembly, switch assy.76-8955	
RF wiring assembly, switch assy. .-.	
auxiliary antenna wiring assy., switch assy. -...76-8985	
coil, mixer zcreen ..32-4623-57	
coil, plate-cathode	32-4623-50

CHASSIS - MECHANICAL
Deseription
CRT socket \ldots
pilot lamp
tube shield
socket, hi-voltage
Pervice
Pant

CHASSIS - ELECTRICAL Description	Service Pert No.
line by-pass --2 (0.01)	30-4650-58
line by-pass -2 (0.01)	30-4650-58
AGC (0.15)	30-4650-48
sawtooth form (0.0033)	30-4650-55
vertical oscillator plate (0.01)	30-1238-2
horizontal oscillator (82 mmi .)	60-00825347
horizontal oscillator (0.01)	30-1238-2
horizontal output grid (0.001)	...30-1238-3
boost voltage filter (0.47)	...30-4650-45
vertical oscillator coupling (0.01)	30-4650-47
vertical oscillator grid (0.0068)	. 30-4650-57
sawtooth coupling (0.001)	30-1238-3
horizontal oscillator (390 mmi .)	60-10395437
horizontal oscillator (390 mmf .)	60-10395417
horizontal ringing (2200 mmf.)	60-20225434
sound take off (18 mmf.)	62-018300001
2nd V.J.F. (0.002)	30-1238-12
detector (10 mmf .)	62-010409001
1st audio grid (0.005)	30-1238-1
lst V.I.F. screen bY-pass (680 mmf .)	.62-168001011
3rd V.I.F. screen by-pass (680 mmf .)	.62-168001011
1st V.I.F. by-pass (0.002)	30-1238-12
2nd V.I.F. screen by-pass (680 mmf .)	62-168001011

REPLACEMENT PARTS LIST - Continued TV-300 CHASSIS

Reference Symbol	HASSIS - ELECTRICAL (Continued)	Reference Symbol
C30	3rd V.I.F. by-pass (0.002) .	R29
C31	video by-pass (0.002) ..30-1238-12	R30
C32		R31
C33		R33
C34	SIF (0.004) ...30-1239	R34
C35	audio output plate (0.01) .-.	R35
${ }_{C 36}$	audio coupler (0.002) ...30-1238-2	R36
C37	video coupling (0.47)	R37
C38	video output cathode by-pass30-1238-16	R41
C39	phase comp. cathode (180 mmi.) .- ${ }^{\text {a }}$ (10185417	R42
C40		R43
C41	SS output (150 mmi.$)$.......................................62-115001001	R44
C42		R48
C_{4}		R49
C44		R50
048	cont. tap (150 mmf .)an.	R51
	adj., 1-5 mmf. V.I.F. ...31-6520-9	R52
		R53
E3	$\left\{\begin{array}{l} 20 \mathrm{mf} \\ 10 \mathrm{mf} \\ 5 \mathrm{mf} \\ \mathrm{mf} \\ \mathbf{Q} \text { 150V. } \end{array}\right\} \cdots \cdots$	R54
	(5 mf @ 150V.)	R57
		R58
E1	$\left\{\begin{array}{rr} 40 \mathrm{mf} . @ 300 \mathrm{~V} . \\ 100 \mathrm{mf} \text { @ } 200 \mathrm{~V} . \\ 25 \mathrm{mf} @(0) \end{array}\right\} \quad 30-2584-47$	R59
	crystal 1N64	R61
	pilot lamp	R62
Fl	fuse	R63
HT	transformer, horizontal output32-8677	R65
	shield corona ...6-9684	T1
		T2
	pulley assy., driving	T3
	shaft, dial ...28-10011	T4
	28-10	T5
R2	line to chassis (100R.)66-4105340	T7
R5	boost (5600) ...66-2565340	VR1
R6	boost (38R.) ..66-3395340	VR2
R7	boost (4700) ..66-2485340	VR3
R8	height (1 meg.) ..66-5108340	VR5
R10	horizontal oscillator cathode (1000) ...).	VR6
R11	horisontal output grid (1 meg.)66-5108340	VR7
R12	sawtooth form (56K.) ...36-3564340	VR8
R13	vertical oscillator grid (820K.)66-4828340	X2
R14	vertical integrator (33X.)66-3338340	X3
R16	horizontal oscillator grid (220K.)68-4228340	X4
R17	horizontal oscillator plate (15K.) ...-	X5
R18	horizontal oscillator grid (56K.)66-3568340	X8
R20	borizontal oscillator plate (47 K.)86-3478340	X9
R21	vertical oscillator grid (2.2 meg.)66-5228340	R22
R23	de-emph (47K.) ...- ${ }^{\text {a }}$	R56
R25	2nd V.I.F. cathode (47 ohms)6-0478340	
R26	discriminator (120 ohms)66-1128340	R9
R27	diode plate (33K.) ..66-3338340	R15
R28	AGC (1000) ...6-2108340	

Fig. 22. Wiring Diagram, Bottom V'ieu'- TV'300.

SPECIFICATIONS - TV-350 CHASSIS

INTERMEDIATE FREQUENCIES

Video Carrier Sound (intercarrier)	$\begin{aligned} & 45.75 \mathrm{mc} . \\ & 4.5 \mathrm{mc} . \end{aligned}$
TRANSMISSION LINE	300-ohm, twin-wire lead
OPERATING VOLTAGE	110 to 120 volts, 60 cycles, a.c.
POWER CONSUMPTION	without UHF, 185 w . with UHF, 190 w .

VHF TUNINC

UHF TUNING (if provided) Continuous tuning, covering UHF Television
Twelve channel, 13-position incremental tuner, covering VHF Television channels 2 through 13; plus UHF position, and fine tuning of local oscillator. Channels 14 through 83.

TUBE COMPLEMENT - TV-350 CHASSIS		
Reference Symbol	Tube Type	Function
S2	$6 \mathrm{BZ7}$	RF Amplifier
St	$6 \mathrm{X8}$	Oscillator-mixer
S10, S11	6DE6	Video I-F amplifiers
S12	6CB6	Video I-F amplifiers
Stis	12BY7	Video output
S 13	6AU6	Sound Amplifier
S9	6AL5	Ratio Detector
S8	6AT6	First Audio and AGC Delay
St	6V6 GT/G	Audio Output
S14	6CS6	Sync Separator
S7	12AU7.	Vertical Oscillator
S6	6S4	Vertical Output
S4	6AL5	Phase Comparer
S2	12AU7A	Horizontal Oscillator
S3	6CU6, 6BQ6GT, or 6BQ6GTA	Horizontal Output
S5	6AX4GT	Horizontal Damper
S16	1B3GT	High Voltage Rectifier
S17.	5AW4, or 5U4GB	Low Voltage Rectifier
S18	21ZP4B	Picture tube

CIRCUIT DESCRIPTION - TV-350 CHASSIS

The RF amplifier, oscillator and mixer are contained in a separate tuner sub chassis. The RF amplifier uses a twin triode type 6BZ7 tube. The oscillator is $1 / 26 \times 8$ and uses the triode side of the tube. The other side of the 6 X 8 , the pentode side, is used for mixing.

The VHF tuner when placed in UHF position is tuned automatically to i-f frequency in the RF amplifier stage as well as the mixer stage. Thus, when this set is used in UHF position it has five I-F stages. The VHF oscillator is made inoperative in the UHF position.

The output of the mixer stage is inductively coupled to the i-f amplifier system. The I-F system consists of three stages, and is stagger tuned, and 40 megacycles, using two 6DE6 tubes and one 6CB6 tube. A type IN64 crystal diode is used for the video detector. The output of the video detector is amplified by a single stage video amplifier using a type 12BY7 tube. The picture tube is cathode driven due to the single video amplifier stage. The grid of the picture tube is returned to ground through a 470 K resistor R 32 . A blanking pulse, taken from the vertical output stage is applied to the grid of the picture tube for suppression of the vertical retrace.

Sound I-F (intercarrier) is obtained by utilizing the beat frequency produced when the 45.75 mc . video carrier and the 41.25 mc sound carrier are mixed in the video detector. The 4.5 mc difference signal contains the FM sound. This 4.5 mc signal contains only a negligible amount of video amplitude modulation, provided that the amplitude of the 41.75 mc . signal is considerably lower than that of the 45.75 mc . signal. The proper ratio of the two signals is established during the alignment of the receiver. Sound is present only when the video and sound carriers are transmitted.

The oscillator is tuned primarily to receive the best picture, since the 4.5 mc difference signal is established at the transmitter. The 4.5 mc sound I-F signal is taken from the plate of the video tube and is further amplified in a 4.5 mc tuned amplifier, type GAU6. The signal is then applied to a ratio detector using a tube type 6AL5. The output of this ratio detector is applied to the triode section of a GAT6. The output of the 6AT6 drives a 6VGGT which is the power output tube.

A portion of the video signal appearing at the output of the video amplifier is applied to grid 3 (pin 7) of the 6CS6 sync separator. Since grid leak bias is used on grid 3, the tips of

CIRCUIT DESCRIPTION (Continued)

the sync pulses are clamped to zero, and the video components swing in a negative direction from zero. Because of the cut-off characteristics of grid 3, the video components are eliminated, and only negative-going sync pulses appear in the plate circuit of the sync separator. At the same time, however, a signal is taken from the video detector and applied to grid 1 (pin 1) of the 6CS6 tube. This grid leak is returned to B plus, and the bias is maintained close to zero, because of a small grid-current flow. Since the signal applied to grid 1 is composite video with negative-going sync, any noise modulation present in the signal appears in the form of sharp spikes, driving in a negative direction. The circuit constants are chosen to allow grid 1 to cut off plate current whenever the signal goes more negative than the sync pulses. The series grid resistance and low grid impedance when the tube is drawing current greatly reduces the amount of video appearing at the grid and therefore the plate of the sync separator. A-G-C voltage is also developed in the sync separator circuit in the following manner: on tips of the sync pulses, grid 3 (pin 7) of the 6CS6 tube draws current which flows downward through the network R64, R62, R76 and R79, causing capacitors C50, C51, and C52, to assume negative charges proportional to the amount of peak signal applied to grid 3. The tuner a-g-c voltage is delayed by means of a resistor divider network which applies a small positive voltage to the tuner a-g.c circuit. This positive voltage prevents a-g-c action from lowering the tuner gain on weak signals. To prevent the delay voltage from driving the tuner a-g-c voltage positive on weak signals, a diode clamp (part of 6AT6) is connected across C52.

The I-F strip also has an A-G-C delay network which allows the i-f strip to operate more efficiently under conditions of weak signals. To prevent the delay voltage from driving the I-F grids positive a diode clamp (part of 6AT6) is connected across C61.
This receiver is equipped with a three position range switch. These positions are referred to as strong signal, normal signal and fringe signal. Under conditions of strong signal, G1 of the 6CS6 sync separator tube is grounded. When this grid is grounded G3 to K looks like a good diode with the result that a maximum A-G-C is developed by grid leak action at G3.
In the normal signal position a slight bias is applied to G1 of this tube and noise will not disturb the bias developed. G3 to K then looks like a rectifier of less efficiency. Under conditions of fringe signal, G1 of the 6CS6 is operating on grid leak bias and the efficiency of rectification is very poor with the result that very little, if any, grid leak bias is developed at G3.

The range switch also changes the tuner and I-F delay.
Proper triggering of the vertical oscillator requires negative synchronizing pulses. The vertical sync signal is separated from the horizontal sync signal by the integrator circuit, and is fed to the grid of the vertical oscillator, a cathode-coupled multivibrator. The output of the vertical oscillator is amplified by a type 6 S4 tube which is employed as the vertical output amplifier. The output of the amplifier is applied to the verticaldeflection coils through the vertical-output transformer.

The horizontal sweep circuits require both posiitve and negative sync pulses. The phase-comparer circuit uses a 6AL5 tube. Positive sync pulses are applied to the plate of S4, and negative sync pulses are applied to the cathode of S4. A sawtooth voltage is fed to the plate of S4 and to the cathode of S4, for comparison of the sync and horizontal sweep voltages. When the saw-tooth and sync signals are exactly in phase, no voltage is developed across R16, but when the two signals are out of phase, either a positive or a negative voltage is developed, depending upon whether the horizontal-oscillator frequency is lower or higher than the sync-pulse frequency. The grid circuit of the horizontal oscillator, a 12 AU 7 (S-2) cathode-coupled multivibrator, is connected to R17 through a filter network; when the voltage at this point goes in a positive direction, the frequency of the horizontal oscillator is increased, and when the voltage swings negative, the frequency of the oscillator is decreased. In this manner the frequency of the horizontal oscillator is controlled over the lock-in range of the circuit. The horizontal oscillator hold control adjusts the horizontaloscillator frequency so that it is within the control range of the phase comparer. The output of the horizontal oscillator is fed to the horizontal output amplifier, which makes use of a 6CU6 tube. The screen voltage for the horizontal amplifier is supplied from a voltage-divider network. The horizontal amplifier feeds the deflection coils through the horizontal output transformer. A 6AX4GT tube is used as the horizontal damper.

The second-anode voltage for the picture tube is supplied by a 1B3GT high-voltage rectifier. The B plus voltage is supplied by a power transformer and a full wave rectifier, type SAW4. All of the filament voltage is supplied from a filament winding on the transformer with the exception of the high voltage rectifier which is supplied by a winding on the horizontal output transformer.

Bias voltage is supplied by isolating the center tap of the secondary of the power transformer away from ground by means of a 1.2 henry choke.

HORIZONTAL-OSCILLATOR ADJUSTMENT

To adjust the horizontal-oscillator circuit, tune in a station and proceed as follows:

1. Reduce the width of the picture until approximately 1 inch of blank screen appears at the right-hand and left-hand sides of the picture.
2. Increase the BRIGHTNESS control setting until the blanking becomes visible. This will appear as a dark vertical bar on each side of the picture.
3. Connect a .1 mf condenser from the test point to ground. (The plate side of the horizontal ringing coil, T 1 , is connected to the test point.)
4. Set the HORIZONTAL HOLD control to the approximate center of its mechanical rotation.
5. Adjust the HORIZONTAL HOLD CENTERING control until equal portions of the blanking bar appear on both sides of the picture.
6. Remove the .1 mf condenser from the test point.
7. Adjust the horizontal ringing coil, $T 1$, until equal portions of the blanking bar again appear on both sides of the picture.
8. Rotate the HORIZONTAL HOLD control through its range. The picture should fall out of sync on both sides of the center of its rotation. If the picture does not fall out of sync on both sides, readjust the HORIZONTAL HOLD CENTERING control.
9. Rotate the HORIZONTAL HOLD control through its range, and observe the number of diagonal blanking bars that appear just before the picture pulls into sync. The pull-in should occur with from 1 to 2 diagonal bars when the sync position is approacied from either direction. If proper pull-in is not obtained, repea the above procedure.

VIDEO PEAKING-COIL ADJUSTMENT

The peaking coil, T6, is adjusted at the factory for proper transient response of the video circuits. Ordinarily, this coil will require no further adjustment by the serviceman. On any station where excessive overshoot or excessive smear is present, a slight adjustment of T6 may improve the picture quality on that station; however, this adjustment may sacrifice the quality on other channels. If T6 is replaced in servicing, adjustment will be required.

Before adjusting T6, check the tuner alignment and I-F alignment. (Never adjust T6 until the alignment of a receiver is correct.) Then tune in a station and adjust T6 until there are
no trailing whites or smear in the picture. Turning T6 clockwise reduces trailing whites and overshoot; turning T6 counterclockwise reduces picture smear and increases trailing whites. The proper position is the point where no smear or trailing whites appear in the picture.
The above procedure for adjustment of T6 applies to a particular station exhibiting smear or overshoot. After T6 is adjusted, reception on all the other stations should be checked, to make certain that the adjustment has not impaired the picture quality.

TELEVISION ALIGNMENT

General

The alignment procedure follows the general pattern of first checking the tuner response with an FM sweep generator and oscilloscope, comparing the response curve with that given in the manual, and aligning the tuner if necessary. After it is established that the tuner is in correct alignment, the video I-F channel is aligned by tuning each coil to its assigned pole frequency, using an AM signal, and then feeding in a sweep signal at the antenna terminals and retouching the I-F adjustments to obtain the desired pass band. Finally, the sound channel is aligned, using an AM signal, by tuning the sound take-off coil and the I-F and ratio-detector transformers.

The over-all response curve ($r-f, i-f$) of the circuits from the antenna terminals to the video detector, after the I-F stages have been aligned, should appear essentially the same, regardless of the channel under test. If not, the tuner should be aligned.

The video-carrier intermediate frequency is 45.75 mc ., and the sound intermediate (intercarrier) frequency is 4.5 mc . Alignment of these circuits requires careful workmanship and good equipment. The following precautions must be observed:

1. There must be a good bond between the receiver chassis and the test equipment. This is most easily obtained by having the top of the workbench metallic. The receiver chassis should be placed tuner-side down on the bench. If the bench has no metallic top, the test equipment and chassis can be bonded by a strip of copper about 2 inches wide. The section of the chassis nearest the tuner should rest on the strip.
2. Do not disconnect the picture tube yoke, or speaker while the receiver is turned on.
3. Allow the receiver and test equipment to warm up for 15 minutes before starting the alignment.
4. The marker (AM) signal generator should be calibrated accurately to the frequencies used and to the sound and video r-f carriers of each channel used during alignment. If Philco Alignment Generator Model 7008 is used, the built-in crystal calibrator provides an excellent means of calibration. An alternate method for calibrating the signal generator to the sound and video i-f carrier frequencies is to zero-beat the signal generator with the received signals.

For further information regarding calibration, refer to Philco Lesson PR-1745 (J) entitled "Television Service in the Home."

JIGS AND ADAPTERS REQUIRED

Mixer Jig

Connections to the grid of the mixer tube may be made through the test point provided for this purpose. To connect the generator to this point, a mixer-grid jig, Philco Part No. 45-1739, and a connecting cable, Philco Part No. 45-1635, may be used. As an alternate, a Philco alligator-clip adaptor, Part No. 45-1636, with as short a ground lead as possible, may be ued to connect the alignment jack. The ground lead should be connected as close as possible to the mixer tube. It is essential that the signal-generator output lead be terminated with a 68 -ohm resistor (carbon), so that regeneration, caused by connection of the lead to the mixer, is held to a minimum.

Fig. 1. Antenna-Input matching network.

Antenna-Input Matching Network

An impedance-matching network for coupling the signal generator to the antenna input terminals of the receiver is shown in figure 1. This network, which is designed to have an input impedance of 75 ohms and an output impedance of 300 ohms is used to match a 75 -ohm generator to a 300 -ohm antenna-input circuit. The resistors used in this network should be of carboncomposition construction, and should be chosen from a group, to obtain values within ten percent of those indicated. The resistors should be placed in a shield can, to prevent variable effects. An antenna-matching jig, Philco Part No. 45-1736, which consists of a matching transformer and connecting box, may be used in place of the resistor network.

Video I-F Alignment Jig

(Video Test Jack Adapter No. 1)
The alignment jig used at TS1 and shown in figure 2, should be used during the i-f alignment, to apply the proper bias to the a-g-c bus, and to provide a convenient oscilloscope connection. This adapter consists of a five-pin plug, two 10,000 ohm resistors, and a 1500 mmf condenser for isolation of the bias supply. To isolate the oscilloscope from the receiver circuits, a $15,000-\mathrm{ohm}$ resistor, by-passed by a 1500 mmf . condenser, is used. A suggested method of fabricating the jig is also shown in figure 2. This jig should not be used to observe the composite video from the video detector output.

Fig. 2. Video I-F Alignment Jig (Video Test Jack Adapter No. I).

JIGS AND ADAPTORS REQUIRED (Continued)

Sound I-F Input Alignment Jig

(Video Test Jack Adapter No. 2)
To observe the composite video, at TS1, a jig may be made with a five-pin plug and a 2200 ohn resistor. (See figure 3.) The 2200 ohm resistor should be connected to pin 2 of the plug. A ground lead should be connected to pin 3. To observe the composite video, connect the oscilloscope to the 2200 ohm resistor and the ground lead. This jig is also used for injection of the 4.5 mc . signal during s-i-f alignment.

Fig. 3. Sound I-F Input Alignment Jig (Video Test Jack Adapter No. 2).

TUNER BAND PASS ALIGNMENT
(See Table No. 2 on Page 6)

Fig. 4. Teletision thner response curve, shouing bandpass limits.

Fig. 5. Telcrision tuner response curve, showing tracking compensation.

TUNER OSCILLATOR ALIGNMENT
 table NO. 1

AM GENERATOR: Connect to receiver antenna-input terminals. (No matching network is required.) Use unmodulated $x-f$ output.

OSCILLOSCOPE: Connect the vertical-input lead, in series with a 1000 -ohm resistor, to the mixer grid test point.

Connect the scope ground lead to the chassis, near the test point.
RECEIVER CIRCUIT ALTERATIONS: Disconnect tuner a.g.c (white) lead from main chassis, and connect a 1.5 volt bias battery, with negative terminal to white lead from tuner, and positive terminal to chassis.

STEP	AM GENERATOR dial setting	RECEIVER TUNING	ADJUST	REMARKS
1	257 mc .	channel 13	VC4 for zero beat on scope.	a. If regeneration occurs, inject bias; bias may be increased up to 3 volts, if necessary at pin 1 video test jack - TSi. b. Preset fine tuning adjustment oo that it is in the middle of its range.
2	251 mc .	channel 12	VCs for zero beat on scope.	
3	245 nic.	channel 11	VC6 for zero beat on scope.	
4	239 mc .	channel 10	VC 7 for zero beat on scope.	
5	233 mc .	channel 9	VC8 for zero beat on scope.	
6	227 mc .	channel 8	VC) for zero beat on scope.	
7	221 mc.	channel 7	VC10 for zero beat on scope.	
8	64.5 mc .	channel 6	VC11 for zero beat on scope.	2nd harmonic gives 129 mc .
9	113 mm.	channel 4	VC12 for zero beat on scope.	
10	101 mc .	channel 2	VC13 for zero beat on scope.	

Fig. 6. Twner Layout.

TUNER BANDPASS ALIGNMENT
 TABLE NO. 2

SWEEP (FM) GENERATOR: Connect to antenna-input circuit through antenna-input matching network (See figure 1). OSCILLOSCOPE: Connect the ve:tical-input lead, in series with a 1000 -ohm resistor, to the mixer plate test point, TP4. Connect scope ground lead to the chassis, near TP4.

RECEIVER CIRCUIT ALTERATIONS: Disconnect tuner a-g.c (white) lead from main chassis, and connect a 1.5 volt bias battery, with negative terminal to white lead from tuner, and positive terminal to chassis. Disconnect tuner link from terminal board, B-9, and connect a 40 to 70 -ohm carbon resistor across the link.

STEP	SWEEP (FM) GENERATOR		RECEIVER TUNING	ADJUST	REMARKS
	SWEEP DIAL SETTING	MARKER DIAL SETTING			
1	channel 13 (213 mc . with 10-nic. sweep width.)	Set first to 210 mc . and note position of marker on response curve. Then set to 216 mc . and note position of marker on response curve.	channel 13		Lise oscilloscope gain as high as possible with respect to hum level and "bounce". Pips fix channel limits on curve. Response curve should be flat between limits (see fig. 5). If not, proceed with step 2.
2	channel 13	213 mc .	channel 13	TC502 counterclockwise until single peak appears.	CAUTION: Care must be taken not to unscrew core far enough to make it drop out of the coil.
3	channel 13	21.3 mc.	channel 13	TC504 until peak falls on 215 mc. marker.	It may be necessary to increase sweep-generator output.
4	channel 6 (85 mc . with 10 -mc. sweep width.)	Set first to 82 mc . and note position of marker on response curve. Then set to 88 mc . and note position of marker on responsc curve.	channel 6		Curve should be symmetrical and centered in pass band. If not, proceed with step 5.
5	channel 6	85 mc .	channel 6	TC.503 counterclockwise until single peak appears.	CAUTION: Care must be taken not to unscrew core far enough to make it drop out of the coil.
6	channel 6	85 mc .	channel 6	TC505 until peak falls on 85 mc . marker.	It may be necessary to increase sweep-generator outpur.
7	channel 6	85 mc .	channel 6	TC503 for maximum curve height and symmetry of single peak.	After adjusting TC503, recheck as in step 4. If necessary, reduce sweep-generator output to avoid overloading.
8	channel 6	85 mc .	channel 6	Retouch TC503 and TC505 for symmetrical response, centered about 85 mc . marker.	To retouch, only turn cores slightly.
9	$\begin{aligned} & \text { channel I } \\ & \text { (UHF) } \end{aligned}$	4 mm .	channel 1 (UHF)	Retouch TC503 and TC505 for symmetrical response centered about 44 mc .	After this adjustment recheck channel 6 and be sure it is within limits.

NOTE: On channel 7, observe the tilt and center frequency of the response curve. The curve should be centered on the pass band and should be symmetrical. If it is not symmetrical, and appears unbalanced, as in figure 6, adjust C507 and C512 (figure 5) to obtain a response curve which is in the mirror image
(tilt in the opposite direction) of the original: for example, if channel 7 response curve appears as in figure 6A, adjust C507 and C512 until the curve appears as in figure 7B. This adjustment over-compensates to make allowance for the effect of channel 13 adjustments upon channel 7 response.

VIDEO I-F ALIGNMENT

AM GENERATOR: Connect to mixer test point, TP2, through a mixer jig, and adjust the generator for approximately 30 percent modulation at 400 cycles. Adjust the output of the generator during alignment, to keep the output at the second detector below 4 volt, peak to peak.
SWEEP (FM) GENERATOR: After step 7, connect to antennainput circuit through antenna input matching network. (See figure 1.)
OSCILIOSCOPE: Connect the vertical-input lead to the 15 K resistor of the video i-f alignment iig. Connect scope
ground lead to the ground lead of the jig. Plug jig into TS 1.
PRESET: Contrast and Brightness controls fully counterclock. wise, and channel selector to channel 4. Adjust AGC switch to normal position.
BIAS: Apply -14 volts of negative bias to pin 1 of video i-f aligament jig; ground positive side of bias supply to pin 3 of jig. (See figure 2.)
NOTE: If the i-f shield has been removed for repairs, it must be replaced before proceeding with the alignment.

Page Six

VIDEO I-F ALIGNMENT (Continued)
 TABLE NO. 3

STEP	am generator DIAL SETTING	SWEEP (FM	GEMERATOR	ADJUST	REMARKS
		SWEEP DIAL SETTING	MARKER DIAL SETTING		
1 2	47.25 41.25	not used not used	not used not used	VCl for minimum indication on scope. VC2 for minimum indication on scope.	It is necessary to keep the generator output sufficiently high that a null indication may be observed on the oscilloscope; however, avoid overloading of the receiver by excessive signal.
3 4	45.4 45.4	not used	not used not used	TT for maximum indication on scope. T2 for maximum indication on scope.	Adjust the output of the AM generator, to keep the output at the second detector below 4 volt, peak to peak. (For convenience, the oscilloscope may be calibrated for this purpose before-
5	43.0	not used	not used	VC3 for maximum inclication on scope.	hand.)
6	42.7	not used	not used	T3 for maximum indication on scope.	
7	44.4	not used	not used	T'4 for maximum irdication on scope.	
8	not used	channel 4 (69 mc. , with (r-mc. sweep width)	Run marker along curve, checking against the curve limits given in fig. 7.	If necessary, retoucn $\mathrm{T} 1, \mathrm{~T} 2, \mathrm{~T} 3$, \& T4 as directed in REMARKS column. CAUTION: Do not touch settings of VCl and VC 2 .	Set Fine Tuning Cam to reference point previously made in step 1 of Table 1. If response curve does not fall within limits shown in fig. 7 , retouch T1 \& T2 for proper level of curve at video carrier frequency; adjust T4 to level top of curve and T3 for proper slope of low-frequency side of curve. CAUTION: To retouch, only turn the adjustments slightly, particularly T2.

SOUND IF ALIGNMENT

AM GENERATOR: Connect "bot" lead through a 2200 ohm resistor to pin 2 of TSi, using the video i-f alignment jig. Connect ground lead of generator to ground lead of jig.

Fig. 7. Over-all R-F, I-F response curve, showing tolerance limits.

VOLTMETER: Use v.t.v.m. or $\mathbf{2 0 , 0 0 0}$ ohms-per-volt voltmeter. Connect to sound test point.
OSCILLOSCOPE: Connect through crystal probe to cathode (pin 11) of picture tube.

STEP		ADJUST	REMARKS
1	4.5 mc .	T7 for maximum indication on voltmeter.	Remove 1st video i-f tube, and adjust the volume control for moderate speaker output.
2	4.5 mc .	T5 primary (bottom of T) for maximum indication on voltmeter.	
3	4.5 ma.	T5 secondary (top of T5) for maximum indication on voltmeter and minimum speaker output.	The point of maximum meter indication for TC5 should also be the point of minimum speaker output.
4	4.5 mc .	T8 for minimum indication as view on the oscilloscope.	
5	station signal	Ts primary (bottom of T5) for minimum AM (noise or buzz), using speaker output for indication.	Replace 1 st video i-f tube, and tune in a station, setting fine tuning control to obtain a crisp picture, with a small amount of beat.

Fig. 8. Video Detector Output, Pin 2 of TS1, 3.5 volts, 60 c.p.s.

Fig. 9. Video Detector Output, Pin 2 of TS1, 3.5 voles, 15,750 c.p.s.

Fig. 12. Sync Separator Plate, Pin 5, 41 volts, 15,750 c.p.s.

Fig. 15. Vertical Output Plate, Pin 9, 1100 volts, 60 c.p.s.

Fig. 18. Horizontal-Oscillator Catbode, Pins 3 and 8, 18 volts, 15,750 c.p.s.

OSCILLOSCOPE WAVEFORM PATTERNS

These waveforms were taken with the receiver adjusted for an approximate peak-to-peak output of 3.5 volts at the video detector. The voltages given with the waveforms are approximate peak-to-peak values. The frequencies shown are those of the waveforms - not the sweep rate of the oscilloscope. The waveforms were taken with an oscilloscope having good high-frequency response. With oscilloscopes having poor high-frequency response, the sharp peaks of the horizontal wavetorms will be more rounded than those shown, and the peak-to-peak voltages will differ from those shown.

Fig. 10. Video Amplifier Plate, Pin 7, 83 volts, 60 c.p.s.

Fig. 13. Vertical-Oscillator Grid, Pin 2, .34 volts, 60 c.p.s.

Fig. 16. Phase Comparer, Pin 2, 11 volts, 15,750 c.p.s.

Fig. 19. Horizontal-Oscillator Grid, Pin 2, 65 volts, 15,750 c.p.s.

Fig. 11. Sync Separator Grid, Pin 7, 38 volts, 60 c.p.s.

Fig. 14. Vertical-Output Grid, Pin 6, 80 voles, 60 c.p.s.

Fig. 17. Horizontal Oscillator, 43 volts, 15,750 c.p.s. test point.

Fig. 20. Horizontal-Output Grid, Pin 5, 160 volts, 15,750 c.p.s.

TV-350
REPLACEMENT PARTS LIST

REPLACEMENT PARTS LIST - TV-350 (Continued)

SPECIFICATIONS - TV-354

(if provided)

Twelve channel, 13-position incremental tuner, covering VHF Television channels 2 through 13; plus UHF position, and fine tuning of local oscillator.

Continuous tuning, covering UHF television channels 14 through 83.

NTERMEDIATE FREQUENCIES

CIRCUIT DESCRIPTION OF TV-354

The TV-354 is the same as the TV- 350 with the following exceptions. The vertical output tube has been changed from a 654 to a 6CM6. The horizontal output tube from a 6BQ6 to a 6CD6. The damper tube in the TV- 350 is a 6 AX 4 , while the
damper tube in the TV-354 is a 6AU4GT. The power supply in the TV-354 contains two 5U4G rectifiers. These changes have been made in the TV-354 to accommodate the larger picture tube.

TUBE COMPLEMENT - TV-354		
S1	6V6GT/G	audio output
S2	12AU7A	horizontal oscillator
S3	6CD6G	horizontal output
S4	6AL5	phase comparer
S5	6AU4GT	horizontal damper
S6	6CM6	vertical output
S7.	12AU7	vertical oscillator
S8	6at6	1st audio and A.G.C. delay
S9	6ALs	ratio detector
S10	6DE6	1 st video I.F.
S11	6DE6	2nd video I.F.
S12	6CB6	3rd video I.F.
S13	6AU6	sound I.F.
S14	$6 \mathrm{CS6}$	sync separator
S15	$12 \mathrm{BY7}$	video amplifier
S16	1B3GT	high voltage rectifier
S17	5U4G	low voltage rectifier
S18	5U4G	low voltage rectifier
S19	$24 \mathrm{VP4A}$	picture tube
S20	$6 \mathrm{BZ7}$	R.F. amplifier
S21	6 X 8	osc.-mixer

TV-354
 REPLACEMENT PARTS LIST

TUNER - MECAANICAL	Service Part No.
tuner assembly (T36)	76-8946
Spring, detent, tuner	56-9158
Wasker, spring grip, tuner	W2556-5
Tube cap., tuner	54-9242
Sleeve cap., tuner	28-9990
Washer, tuner	56-9351
" E " washer, tuner (2 used)	1W60980FE5
Hairpin, tuner	36-9858
Ball, detent, tuner	56-8020
Spring, shaft, tuner (2 used)	56-8023
Shaft assembly, tuner	76-8953
RF wiring cossembly, tuner	76-8956
Grid wiring assembly, tuner	76-8955
Orcillating wiring assembly, tuner	76-8960
Aux. antenna wiring assembly, tuner	76-8965
Antenna wiring assembly, tuner	76-9000
Drive pulley and fine tuning shaft assembly, tuner	76-9026
Bearing, tuner	54-9244
Spring, tuner	28-9088
Rotor and fine tuning shaft assembly, tuner	76-9025
Socket, tube, tuner (2 used)	27-6203-21
Connector, UHF input, tuner	57-0590-2

	TUNER - ELECTRICAL
Reference Symbol	Description $\begin{gathered}\text { Service } \\ \text { Part No. }\end{gathered}$
R	100K mixer grid ...66-4108540
R2	10 oscillctor disabling ..66-0108340
R3	22K oscillator grid leak ..66-3228340
R4	
R5	10 parasitic suppression .-
R6	8200 mixer screen ...66-2828340
R7	
R8	
R 9	
R10	8200 mixer decoupling ...66-2825340
R19	470 K discherge66-4478540
Cl	220 R.F. capacitor ...62-122001001
C2	150 R.F. grid bypass capacitor $62-115001001$
C3	150 R.F. grid bypass capacitor6.62-115001001
C4	220 oscillator heater capacitor62-122001001
C5	2.7 oscillator grid tank ...30-1224-125
C6	2.2 injection coupling ..1221-6
C8	0.56 interstage coupling ...30-1221-11
C9	12 oscillator grid block capacitor30-1224-102
C10	7.5 IF primary ...30-1224-37
Cll	33 mmf . R.F. grid coupling62-033409011
C12	680 mixer screen62-168001011
C19	
	27 mixer grid coupling ...30-1224-126
	.01 IF bypass capacitor30-1238-2

Reference Symbol	Description $\quad \begin{gathered}\text { Serrice } \\ \text { Part No. }\end{gathered}$
VC2	. 05 to 3.0 mixer-grid .. $31-6520-3$
VC3	. 05 to 3.0 RF plate ...6520-3
X1	RF heater
X 2	plate-cathode (6BZ7) .
X3	
X4	UHF channel, gnd. side ... 32-4550-11
X5	
X6	
L11	AGC decoupling ...
	shield, tube tuner (2 used) 56 -5629-5
	stud, trimount, tuner (5 used) ${ }^{\text {W235-7FA9 }}$
	connector, tuner 27-6273-11
TT	IF primary ...-3359-16
T28	antenna coils32-4432-3
T29	antenna coils32-4432-3
CX1	
	antenna coil assy. ..7659

REPLACEMENT PARTS LIST - (Mechanical)

Reference Symbol	Description Part No.
	12AU7A socket assembly76-6115-1
	6CM6 socket assembly76-6115-2
	6CS6 socket6-6203-12
	6AU6 socket 27-6203
	6CB6 socket ...27-6203-14
	6DE6 socket (2 used) ... 27-6203-14
	12BY7 socket 27-6203-16
TS-1	test connector ..77-6273-8
LC	interlock connector ...27-6240-3
OT	cudio output transformer ...-32-8684
V	vertical output transformer ..32-8667
F.C.	
B1	fuse holder
CL-11	clip, pilot lamp ..
	fuse ... AD2246-15 $^{\text {a }}$
	transformer, horizental output .-................. 32-8666
	sucket, hi-volt 27-6290-3
	shield, corona56-9684
	82mmi. capacitor, horizontal yoko bal.30-1246-4
	12 K resistor, horizontal yoke bal.66-3128340
	pulley assy., driving76-9037
	grommet (2 used)
	spring, dial cord28-10029

REPLACEMENT PARTS LIST - TV- 354 (Continued)

Reference Symbol	Description $\quad \begin{gathered}\text { Serrice } \\ \text { Part No. }\end{gathered}$
R1	audio output grid (470K) - - - - - - - - - - - - -
R3	
R4	resistor, vertical output cathode (330)66-1334340
H5	C filter (l meg.) ..66-5108340
R6	audio output cathode (270 ohms) 66-1274340
R7	1st audio plate (220K) \quad - \quad 66-4228340
R8	horizontal oscillator plate (47K) .-....................66-3478340
R9	horizontal oscillator cathode (1200)66-2128340
R11	horizontal output grid (1 meg.)-..................66-5108340
R12	vertical damp. .
R12	line to chassis (100K) .-. ${ }^{\text {a }}$)
R13	resistor, tuner B plus (15K) .-..........................66-3155340
R14	horizontal oscillator decoupling (4700)66-2478340
R15	horizontal oscillator plate (15K) -................. 66-3158340
R17	phase comparer (1 meg.) .-................................ 66.5108340
R18	phase comparer (1 meg.)66-5108340
R19	phase comparer output (220K) .- .
R20	phase comparer filter (4.7 meg.) -...-...-. . 66 -5478340
R21	bias divider (4.7 meg .) .-
R23	vertical oscillator cathode (680)66-1688240
R24	boost divider (47K) \quad 66-3475340
R24A	horizontal feed (47K) .-
R248	bias divider (180K) (
R26	vertical oscillator plate (1 meg.)66-5108340
R27	vertical oscillator grid (1.8 meg.)66-5188340
R28	vertical oscillator plate (180K) ...
R29	vertical integrator (8200) .-.....................................66-2828340
R30	vertical output grid (3.3 m3g.)66-5338340
R31	vertical oscillator grid (1 meg.) $\quad 66-5108340$
R31A	boost divider (100 K) -
R32	CRT grid (470K) ...)
R34	vertical integrator (8200)66-2828340
H35	
R36	discriminator output (33K)
R37	
R38	2nd VIF AGC (1000) .- ${ }^{\text {a }}$ -
R39	2nd VIF cathode (68)66-0688340
R40	3rd VIF cathode (220)66-1228340
R41	discriminator (270) ...
R42	discriminator (47) - -
R43	1st VIF grid (12K)66-3128340
R44	1st VIF cathode (47)e.e.
R45	2nd VlF grid (12K)66-3128340
R46	1st VIF plate (220)66-1228340
H47	2nd VIF plate (220) .
H47	2nd video IF screen (220) 66-1228340
R48	3rd VIF plate (220)
H49	discriminator filter (22 K)66-3228340
R50	2nd IF plate (12K) . 20.
R51	B plus decoupling (220)
R52	detector damping (6800) ${ }^{\text {a }}$ -
R54	SIF cathode (330) -n.66-1338340
R55	SS grid (27 K) .3.0.66-3278340
R56	detector load (3900 ohms)66-2398340
H57	SIF drop (15K)66-3158340
R58	fringe switch (470K) 66-4478340
R59	SS grid …66-4398340
R60	
R61	AGC tuner delay (l meg.) 66-5108240
R62	AGC (1 meg.)
R63	SS screen (8200) 66-2828340
R64	SS grid (680 K) 66 -4688340
R65	SS plate (220K) . 66 -4228340
R67	tuner AGC (1000) .-.. 66.2108340
R68	SS screen (12K)66-3125340
789	SS grid (150K)
R70	video cathode (22) . .a. \quad - \quad -
R71	video grid (1 meg.) ...
R72	video plate divider (39K) 66-3398340
R73	video plate divider (47K)66-3478340
R74	video screen (33K) 66.3335340
R75	AGC tuner delay (10 meg.)-. 66-6108240
R76	fringe switch (10 meg.) .. 66-6108340
R77	fringe switch (510K) 68-4518240
R78	fringe switch (5GK) 66-3568340
R79	fringe switch (220K) 66-4228340
R80	fringe switch (180K)66-4188340
R81	brightness comp. (a200) 66 -2828340
R818	brightness comp. (22K) - .-....
R82	CRT cathode (150K) $66-4158340$
R83	CRT cathode (5600) 66-2568340
R64	bass comp. (10K)66-3108340
R85	
Cl_{1}	audio plate (.022)30-4650-60
C2	qudio coupling (.005)30-1238-1
C3	vertical damp. (.047) ...-
C4	AFC filter (.01) \quad - \quad - \quad -
C5	horizontal m.v (390) .-........-
C6	horizontal m.v.60-00825437
C7	C filter (.47) ...
C8	line bypass (.01)
C9	
C10	horizontal charge (390)60-10395417

Fig. 23. Wiring diagram, bottom vieu - TV-350 chassis.

Fig. 24. Dial cord stringing arrangement (TV. 350 \& TV.354).

PHILCO Factory-Supervised Service

PALMER RADIO and T V

J. A. (Jack) G R. D. (Bob) PALMER, Partners

359 Hughson Avenue - Phone Hughson 113
Hughson, California
P. O. Box 427

2. Humpe oonnetor at base of picture tabe (in 6) 40 not cut vire.
2. Discomect wixe from yoke housting and uplice on a 24" section.
3. Reoonnect connoeter to pin (6) on pleture tule moniont. and boot tho now Luas wire tot tho p-base of the Television cot. This an be dow by rancinc the wire though the Chauls vitht the ORT ouble and hooting it to the flitar condenser rial. which is 80 nge.

Tonporary "FIX" rer poos 11mourity of 24" 354 Chande seto

1. Iscomect wire at In 1 of 6at mibe.
2. maort 1 mets 390 oh rectstas in aerleo wh the load and Mn 1.
3. Fr paet pin 1 to cavend thangh 20ned 300 vol eleotrolytice
4. Tomporary fix a per factary wire.
tha 9 han thie fir incorporated.

$$
\text { DULTHEDE } 00 .
$$

Notes
The slightest similiarity. of the above. to protencional wort ie morvir conincidentel.

Service

TELEVISION

PHILCO

TELEVISION SERVICE MANUAL
FOR
R-F CHASSIS 84 AND
DEFLECTION CHASSIS H-4

TP2-1969

TABLE OF CONTENTS
 TABLE OF CONTENTS

Circuit Description
A-C Line Isolation
Specifications
Tube Complement
B Supply Fuse Replacement
Horizontal-Oscillator Adjustment
Video-Detector Peaking-Coil Adjustment
Television Alignment
General
Test Equipment Required
Jigs and Adapters Required
Mixer Jig
Antenna-Input Matching Network
Video I-F Alignment Jig
Sound I-F Alignment Jig
Television Tuner Alignment
Oscillator Alignment
General
Procedure Using Signal Generator
Procedure Using Station Signal
Bandpass Alignment
General
Procedure
Video I-F Alignment
Preliminary
Procedure
Sound I-F Alignment
Oscilloscope Waveform Patterns
Chassis Bottom Views, Showing Voltages at Socket Pins
2

Television Tuner Base Layout
Television Tuner Schematic Diagram
Base Layouts and Schematic Diagrams of Television Chassis
Replacement Parts List

CIRCUIT DESCRIPTION

The Philco 1953, Code 123 television receivers make use of a dual chassis arrangement, one chassis containing the r-f, i-f, video, and sync circuits, and the other chassis containing the power and deflection circuits.

Since these chassis are not isolated from the 60 -cycle power line, all protruding shafts and mounting feet are insulated from the chassis.

CAUTION: See A-C LINE ISOLATION.

A separate subchassis contains the r-f amplifier, the oscillator, and the mixer. The r-f amplifier uses a 6BZ7 or a 6BQ7 tube, V1. The oscillator and mixer each use one-half of a 12 AZ 7 tube, V2. The output of the mixer is fed to a three-stage, stagger-tuned, i-f amplifier system employing three 6CB6 tubes, V3, V4, and V5. A type 1 N 64 crystal diode is used for the video detector, the output of which is amplified by a singlestage video amplifier utilizing a type 12BY7 tube, V6. The connections at the detector are such as to produce a composite video signal with negative-going sync pulses. The signal, which is subjected to a 180 -degree phase shift through the video amplifier, is applied to the cathode of the picture tube; therefore, the sync pulses at this point are positive-going. The grid of the picture tube is returned to ground through a resistor (R309). A blanking pulse, taken from the verticaloutput stage, is applied across R309, for suppression of the vertical retrace.

Sound i-f (intercarrier) is obtained by utilizing the beat frequency produced when the $26.6-\mathrm{mc}$. video carrier and the $22.1-\mathrm{mc}$. sound carrier are mixed in the video detector. The $4.5 \cdot \mathrm{mc}$. beat frequency is the difference between $26.6 \cdot \mathrm{mc}$. and $22.1-\mathrm{mc}$., and contains the FM sound signal. This $4.5-\mathrm{mc}$. signal contains only a negligible amount of video amplitude modulation, provided that the amplitude of the $22.1-\mathrm{mc}$. signal is considerably lower than that of the $26.6-\mathrm{mc}$. signal. The proper relationship between the two carriers is established during the alignment of the receiver. There is sound output only when both the video and sound carriers are present.

The oscillator is tuned primarily to obtain the best picture, since the $4.5-\mathrm{mc}$. relationship always exists between the two carriers. The $4.5-\mathrm{mc}$. sound i-f (intercarrier), which is taken from the plate circuit of the video amplifier, is passed through a $4.5-\mathrm{mc}$. sound $\mathrm{i}-\mathrm{f}$ stage using a 6AU6 tube, V7, and then applied to the FM detector, which utilizes two diode sections of a 6T8 tube, V8. The triode section of the 6T8 is used as the first audio amplifier. The power amplifier uses a 6L6GA tube, V9.

A portion of the video signal appearing at the grid of the video amplifier is applied to the pentode section of a GU8 tube, V10A, which operates as a sync amplifier. The output of this stage is composite video with positive-going sync, and is applied to grid 3 (pin 7) of the 6BE6 sync separator, V11. Since gridleak bias is used on grid 3, the tips of the sync pulses are clamped to zero, and the video components swing in a negative direction from zero. Because of the cutoff characteristics of grid 3, the video components are eliminated, and only negative-going sync pulses appear in the plate circuit of the sync separator. At the same time, however, composite video signal is taken from the video detector and applied to grid 1 (pin 1) of the 6BE6 tube. This grid is returned to B plus, and the bias is maintained close to zero, because of a small
grid-current flow. Since the signal applied to grid 1 is composite video with negative-going sync, any noise modulation present in the signal appears in the form of sharp spikes, driving in a negative direction. The circuit constants are so chosen that grid 1 cuts off plate current whenever the signal goes more negative than the sync pulses. A series grid-limiting resistor (R614) is also incorporated, to prevent the video components from appearing in the plate circuit of the sync separator. A-G-C voltage is also developed in the sync separator circuit, in the following manner: On the tips of the sync pulses, grid 3 (pin 7) of the 6BE6 tube, draws current, which flows downward through the network consisting of R609, R610, R611, R211, and L214, causing condensers C604, C602, and C603 to assume negative charges proportionate to the amount of peak signal applied to grid 3. The tuner a-g-c voltage is delayed by means of a resistor divider network, which applies a small positive voltage to the tuner a-g.c circuit. This positive voltage prevents a-g-c action from lowering the tuner gain on weak signals. To prevent the delay voltage from driving the tuner a-g.c voltage positive on weak signals, a diode clamp (part of V8B) is connected across C602.

The negative-going sync pulses appearing in the plate circuit of the sync separator are fed to the sync inverter stage, V10B (triode section of the 6U8 tube). This stage acts as a phase splitter circuit; positive sync pulses appear in the plate circuit, and negative sync pulses are taken from the cathode. Both positive and negative sync pulses are fed through the inter-chassis cable into the deflection chassis.

Proper triggering of the vertical oscillator requires positive synchronizing pulses. The vertical sync signal is separated from the horizontal sync signal by the integrator circuit, and is fed to the grid of the vertical blocking oscillator tube, which uses one half of a 12BH7, V12. The output of the vertical blocking oscillator is amplified by the other half of the 12 BH 7 tube, which is employed as the vertical-output amplifier. The output of the amplifier is applied to the vertical-deflection coils through the vertical-output transformer.

The horizontal-sweep circuits require both positive and negative sync pulses. The phase comparer circuit uses a 6AL5 tube, V13. Positive sync pulses are applied to the plate of V13A, and negative sync pulses are applied to the cathode of V13B. A saw-tooth voltage is fed to the plate of V13B and to the cathode of V13A, for comparison of the sync and horizontal sweep voltages. When the saw-tooth and sync signals are exactly in phase, no voltage is developed across R800, but when the two signals are out of phase, either a positive or a negative voltage is developed, depending upon whether the oscillator frequency is lower or higher than the sync-pulse frequency. The grid circuit of the horizontal oscillator, a 12AU7 tube, V14, operating as a cathode-coupled multivibrator, is connected to R800 through a filter network; when the voltage at this point goes in a positive direction, the frequency of the horizontal oscillator is increased, and when the voltage swings negative, the frequency of the oscillator is decreased. In this manner the frequency of the horizontal oscillator is controlled over the lock-in range of the circuit. The horizontal hold control (R811) adjusts the horizontal-oscillator frequency so that it is within the control range of the phase comparer. The output of the horizontal oscillator is fed to the hori-zontal-autput amplifier, which makes use of a 6BQ6 tube, V15. This amplifier feeds the deflection coils
through the horizontal-output transformer. A 6AX4GT tube, V16, is used as the horizontal damper.
The second-anode voltage for the picture tube is supplied by one 1B3GT high-voltage rectifier tube, V17. The B plus voltage for the receiver is supplied by two selenium rectifiers, CR100 and CR101, in a fullwave voltage-doubler circuit, operating directly from the power line. Bias voltage is obtained from across the filter choke, which is in series with the negative side of the B plus supply. When a $\mathrm{p}-\mathrm{m}$ speaker is used, the filter choke is mounted on the speaker; with an e-m speaker, the field coil is used as the filter choke. The B plus boost voltage, derived from the horizontaldamper circuit, supplies higher B plus voltage to the vertical amplifier, the vertical oscillator, and the first anode of the picture tube. Filament voltage for all the tubes except the high-voltage rectifier is supplied by a step-down transformer. Filament voltage for the highvoltage rectifier is supplied by a winding on the hori-zontal-output transformer.

IMPORTANT A.C LINE ISOLATION

CAUTION: One side of the a-c line is connected to the chassis through C101 and L100. The other side of the a-c line is connected to the chassis through R100, CR100, and C103, in series. Grounding the chassis will result in a short-circuit across one or the other of these two branches in the voltage-doubler circuit. During servicing and alignment it is desirable that an a-c line isolation transformer capable of handling at least 225 watts (Philco Part No. 45-9600) be used. Failure to use an isolation transformer will greatly increase the shock hazard, and may result in damage to the test equipment or receiver, or both.

SPECIFICATIONS

CHANNEL TUNING position incremental oscillator	Twelve-channel, 12 fine tuning of local
FREQUENCY RANGE through 13	Television Channels 2
INTERMEDIATE FRE	IES
Video Carrier	26.6 mc
Sound	4.5
TRANSMISSION LINE	00-ohm, twin-wire lea
OPERATING VOLTAGE	20 volts, 60 cycles, a.c.
POWER CONSUMPTIO	190 watt

TUBE COMPLEMENT RF-84 CHASSIS

REFERENCE SYMBOL	TUBE TYPE	FUNCTION
V1	6BZ7 miniature	R-F Amplifier
V2	$12 \mathrm{AZ7}$ miniature	Oscillator, Mixer
V3, V4, V5	6CB6 miniature	Video I-F Amplifiers
V6	12BY7 miniature	Video-Output Amplifier
V7	6aU6 miniature	Sound I-F Amplifier
v8	6 T 8 miniature	Ratio Detector, First Audio, and Tuner A-G-C Clamp
V9	6L6GA octal	Audio Output
V10	6U8 miniature	Sync Amplifier, Sync Inverter
V11	6BE6 miniature	Sync Separator, A.G.C.
V18	$\begin{aligned} & 17 \mathrm{YP} 4,20 \mathrm{DP} 4 \mathrm{~A}, \\ & \text { or } 21 \mathrm{EP} 4 \mathrm{~A} \end{aligned}$	Picture Tube

H-4 DEFLECTION CHASSIS

REFERENCE SYMBOL	TUBE TYPE	FUNCTION
V12	12 BH 7 miniature	Vertical Oscillator, Vertical Amplifier
V13	GAL5 miniature	Horizontal Phase Comparer V14 Vorizontal Oscillator V15
12AU7 miniature		
V17	GA6GT	Horizontal Amplifier Horizontal Damper High-Voltage Rectifier

B SUPPLY FUSE REPLACEMENT

The B supply protective fuse, F100, is wired into the low-voltage section, and is in series with the selenium rectifiers. For replacement, use a 1.6 -ampere delayed-action-type fuse, Philco Part No. 45-2656-23.

CAUTION: Discharge the circuit before replacing the fuse.

HORIZONTAL-OSCILLATOR ADJUSTMENT

To adjust the horizontal oscillator, tune in a station and proceed as follows:

1. Reduce the width of the picture until approximately 1 inch of blank screen appears at the right-hand and left-hand sides of the picture.
2. Increase the BRIGHTNESS control setting until the blanking becomes visible. This will appear as a dark, vertical bar on each side of the picture.
3. Connect a $.1-\mu$. condenser from pin 9 of the chassis-connecting power socket, J101, to ground. (The plate side of the horizontal ringing coil, L800, is connected to pin 9 of J101.)
4. Set the HORIZONTAL HOLD control to the approximate center of its mechanical rotation.
5. Adjust the HORIZ HOLD CENTERING control until equal portions of the blanking bar appear on both sides of the picture.
6. Remove the $.1-\mu \mathrm{f}$. condenser from the chassisconnecting socket.
7. Adjust the horizontal ringing coil, L800, until equal portions of the blanking bar again appear on both sides of the picture.
8. Rotate the HORIZONTAL HOLD control through its range. The picture should fall out of sync on both sides of the center of rotation. If the picture does not fall out of sync on both sides, readjust the HORIZ HOLD CENTERING control.
9. Rotate the HORIZONTAL HOLD control through its range, and observe the number of diagonal blanking bars that appear just before the picture pulls into sync. The pull-in should occur with from 1 to 2 diagonal bars when the sync position is approached from either direction. If proper pull-in is not obtained, repeat the above procedure.

VIDEO-DETECTOR PEAKING-COIL ADJUSTMENT

The video-detector peaking coil, L214, is adjusted at the factory for proper transient response of the video circuit. Ordinarily, this coil will require no further adjustment by the serviceman. On any station where excessive overshoot or excessive smear is present, a slight adjustment of 1214 may improve the picture quality on that station; however, this adjustment may
sacrifice the quality on other channels. If L214 is replaced in servicing, adjustment will be required.

Before adjusting L214, check the tuner alignment and i-f alignment. (Never adjust L214 until the alignment of the receiver is correct.) Then tune in a station and adjust L214 until there are no trailing whites or smear in the picture. Turning TC.206 clockwise reduces trailing whites and overshoot; turning TC206 counterclockwise reduces picture smear and increases trailing whites. The proper position is the point where no smear or trailing whites appear in the picture.

The above procedure for adjustment of TC206 applies to a particular station exhibiting smear or overshoot. After TC206 is adjusted, reception on all the other stations should be checked, to make certain that the adjustment has not impaired the picture quality.

TELEVISION ALIGNMENT

General

The alignment consists of tuning each i-f coil to a given frequency, using an AM signal, then feeding in a sweep signal at the antenna terminals and touching up the adjustments to obtain the desired pass band.

The over-all response curve (r-f, i-f) of the circuits from the antenna terminals to the video detector, after the i-f stages have been aligned, should appear essentially the same, regardless of the channel under test. If not, the tuner should be aligned.

The video-carrier intermediate frequency is 26.6 mc ., and the sound intermediate (intercarrier) frequency is 4.5 mc . Alignment of these circuits requires careful workmanship and good equipment. The following precautions must be observed:

1. There must be a good bond between the receiver chassis and the test equipment. This is most easily obtained by having the top of the workbench metallic. The receiver chassis should be placed tuner-side down on the bench. If the bench has no metallic top, the test equipment and chassis can be bonded by a strip of copper about 2 inches wide. The section of the chassis nearest the tuner should rest on the strip.
2. Do not disconnect the picture tube, picture-tube yoke, or speaker while the receiver is turned on.
3. Allow the receiver and test equipment to warm up for 15 minutes before starting the alignment.
4. The marker (AM) signal generator should be calibrated accurately to the frequencies used and to the sound and video r-f carriers of each channel used during alignment. If Model 7008 is used, the built-in crystal calibrator provides an excellent means of calibration. An alternate method for calibrating the signal generator to the sound and video r-f carrier frequencies is to zero-beat the signal generator with the received signals.

For further information regarding calibration, refer to Philco Lesson PR-1745 (J) entitled "Television Service in the Home."

Test Equipment Required

The following test equipment is recommended for aligning the receiver:

1. Philco Precision Visual Alignment Generator for Television and FM, Model 7008, or equivalent.
2. Vacuum-tube voltmeter, or 20,000 -ohms-per-volt voltmeter.
3. R-F Probe, Philco Part No. $76-3595$ (for use with Model 7008 generator).

Jigs and Adapters Required Mixer Jig

Connections to the grid of the mixer tube may be made through the alignment jack provided for that purpose. To connect the generator to this point, a mixer-jig, Philco Part No. 45-1739, and a connecting cable, Philco Part No. 45-1635, may be used. As an alternate, a Philco alligator-clip adapter, Part No. 45-1636, with as short a ground lead as possible, may

Figure I. Antenna-Input Matching Network
be used to connect the alignment jack. The ground lead should be connected as close as possible to the mixer tube. It is essential that the signal-generator output lead be terminated with a $68-\mathrm{ohm}$ resistor (carbon) so that regeneration, caused by connection of the lead to the mixer, is held to a minimum.

Antenna-Input Matching Network

Figure 1 shows an impedance-matching network for coupling the signal generator to the antenna-input terminals of the receiver. This network, which is designed to have an input impedance of 75 ohms and an output impedance of 300 ohms , is used to match a 75 -ohm generator to a 300 -ohm antenna-input circuit. The resistors used in this network should be of carboncomposition construction, and should be chosen from a group, to obrain values within 10% of those indicated. The resistors should be placed in a shield can, to prevent variable effects. An antenna matching jig, Philco Part No. 45-1736, which consists of a matching transformer and connecring box, may be used in place of the resistor network.

Video I-F Alignment Jig (VIDEO TEST Jack Adapter)

The alignment jig shown in figure 2 should be used during the i-f alignment, to apply the proper bias to the a-g-c bus, and to provide a convenient oscilloscope connection. This jig consists of a 5 -prong plug, a $10,000 \cdot \mathrm{ohm}$ potentiometer, a $2200-\mathrm{ohm}$ isolating resistor, and $71 / 2$-volt battery. A suggested method of fabricating the jig is also shown. It is suggested that the bias battery and potentiometer be mounted in a metal box of convenient size.

The potentiometer and switch are connected across the $71 / 2$-volt battery. The switch is used to disconnect the potentiometer, to prevent the discharge of the battery while not in use. The 10,000 -ohm resistor in series with the arm of the control will prevent rapid discharge of the battery if the leads are accidentally shorted.

Figure 2. Video I-F Alignment Jig

Sound I-F Alignment Jig (FM TEST Jack Adapter)

Figure 3 shows the jig that should be used to connect the voltmeter and oscilloscope to the FM TEST socket, J402. A suggested method of fabricating the jig is also shown.

TELEVISION TUNER ALIGNMENT

After the tuner is serviced, or if an i-f alignment is required, the tuner alignment should be checked by observing the tuner response curve, as given under Bandpass Alignment. If the response curve does not fall within the limits shown in figure 5, the tuner should be realigned. If realignment is necessary, use the procedure given below.

Since the frequency of the local oscillator affects the tuner response, the local-oscillator alignment should be made first.

Oscillator Alignment General

Tuning cores are provided in the oscillator coils at
channels $13,11,9,7,6$ and 4. By adjusting these tuning cores, all channels may be placed on frequency. This procedure should be carried out with the highestfrequency channel first, since the alignment of each channel affects the alignment of all the channels below it in frequency. The channel adjustments are so arranged that, with one exception, each adjustment corrects the tuning of more than one channel. The coverage of the various adjustments is as follows:

Channel Adjustment

13
11

Channels Corrected by Adjustment

13 and 12
11 and 10
9 and 8
7 only
6 and 5
4,3 , and 2

The FINE TUNING cam should be preset for all adjustments by placing the stop on the FINE TUNING cam between Channel 7 and 8 holes on the front plate of the tuner. See figure 4.

Procedure Using Signal Generator

An r-f signal (unmodulated), at the oscillator frequency, is fed into the antenna input from an AM sig. nal generator, and the oscillator tuning cores are adjusted for zero beat. The r-f signal frequency should be accurately determined. It is preferable that the signal be taken from a crystal-controlled source; if this is not available, the signal generator may be calibrated against the television station.

1. Connect the hot lead of the oscilloscope to the mixer plate test point, G2, through a 1000 -ohm resistor, and connect the ground lead of the oscilloscope to the chassis, near the test point. (High oscilloscope gain may be necessary to obtain a visual beat. In this instance, base-line hum may be ignored.)
2. Connect the AM (marker) generator to the 300 ohm antenna-input terminals. For this purpose the antenna-input matching network is not required.
3. Disconnect the white lead from the tuner, and connect it to the negative terminal of a 1.5 -volt battery. Ground the positive terminal. If regeneration is observed, the bias may be increased to 4 or 5 volts, to reduce the regeneration.
4. Mechanically preset the fine-tuning cam as shown in figure 4.
5. Feed in an r-f signal (unmodulated), at the oscil-

Figure 3. Sound I-F Alignment Jig

Figure 4. Television Tuner, Showing Locations of Adjustments
lator frequency for Channel 13, with the CHANNEL SELECTOR set for Channel 13.
6. Adjust the tuning core for Channel 13 (see figure 4).
7. Reset the signal-generator frequency and the CHANNEL SELECTOR, and adjust the tuning cores for Channels 11 and 9, respectively.
8. Repeat steps 5, 6, and 7 until Channels 13, 11, and 9 are within plus or minus 500 kc . of the correct frequency.
9. Feed in r-f (unmodulated) signals, at the oscillator frequencies for Channels 7, 6, and 4, consecutively (see NOTE below), and adjust the respective tuning cores (see figure 4).

NOTE: The exact position of the FINE TUNING cam should be marked when Channel 4 is correctly aligned. This position is to be used in step 4 of the i-f alignment procedure.

Procedure Using Station Signal

The following simplified procedure may be used to align the oscillator when the television i-f alignment is satisfactory and a station signal is available:

1. Mechanically preset the FINE-TUNING cam to the center of its range (see figure 4).
2. Tune in the highest-frequency channel to be received.
3. Adjust the tuning core for that channel, or the next highest channel for the best picture; that is, starting with sound in the picture, turn the tuning core until the sound disappears. Repeat for each channel received in the area.

Bandpass Alignment General

The bandpass alignment consists of aligning the tuner at Channels 13 and 6 and then making it track down to Channels 7 and 2, respectively.
During the alignment, a fixed bias of 1.5 volts is applied to the r-f amplifier tube.
An FM (sweep) signal is applied to the antennainput circuit, and an oscilloscope is connected to the mixer plate circuit. The oscilloscope gain should be as high as possible, consistent with hum level and "bounce" conditions. Hum conditions will cause dis-
tortion of the time base and response. Bounce conditions, which are caused by poor line regulation, will cause the response and time base to jump up and down. The use of too high an oscilloscope gain aggravates these conditions, whereas the use of too low a gain necessitates increasing the generator output to a point where the tuner may be overloaded. Overload may be checked by changing the generator output while observing the shape of the response curve; any change in the shape of the curve indicates overload, in which case a lower generator output and higher oscilloscope gain must be used. The tuner coupling link should be disconnected from the i-f section and a $40-$ to 70 -ohm resistor connected across the open end of the link, to eliminate the absorption effect of this coil on the response curve.

1. Disconnect the white (a-g-c) lead from the tuner, and connect it to the negative terminal of a 1.5 -volt battery. Ground the positive terminal.
2. Disconnect the tuner link at terminal board B11-7 and B11-8 (see figure 34), and connect a 40 - to 70 -ohm carbon resistor to the two leads of the link.
3. Connect a 1000 -ohm resistor in series with the hot lead of the oscilloscope. Connect the other end of the resistor to the mixer plate test point, G2, and connect the ground lead of the oscilloscope to the chassis, near the test point.
4. Connect the FM (sweep) generator to the 300 ohm antenna input through an antenna-input matching network. See figure 1.

Procedure

1. Set the CHANNEL SELECTOR and FM (sweep) generator to Channel 13 (213 mc .). Adjust the generator for sufficient sweep to show the complete response curve.
2. Establish the channel limits (see figure 5) by using the marker (AM r-f) signal generator to produce marker pips on the response curve. (Set the marker generator first to 210 mc ., then to 216 mc .)

TP9.512B-1
Figure 5. Television Tuner Response Curve, Showing Bandpass

TPO-1174
Figure 6. Television Tuner Response Curve, Showing Tracking Compensation

The curve should be reasonably flat between the limits shown in figure 5.
3. Adjust TC502 and TC504 (figure 4) for a symmetrical, approximately centered pass band. Set the marker generator to 213 mc . Detune TC504 counterclockwise until a single peak appears. Adjust TC502 until the peak falls on the 213 -mc. marker. It may be necessary to increase the output of the generator during this adjustment. Then adjust TC500 for maximum curve height and symmetry of the single peak. The antenna circuit is now tuned for the high-frequency channels.
4. Readjust TC502 and TC504 for a symmetrical response, centered about 213 mc ., and falling within the limits shown in figure 5.
5. Set the CHANNEL SELECTOR and FM generator to Channel 7 (177 mc .).
6. Establish the channel limits by using the marker generator to produce marker pips on the response curve. (Set the generator first to 174 mc ., then to 180 mc .) The curve should be reasonably flat between the limits.
7. On Channel 7, note the response curve, with respect to tilt and center frequency. The curve should be centered in the pass band, and should be symmetrical.
8. If the curve is not symmetrical, and appears unbalanced, as shown in figure 6, leave the generator and tuner set to Channel 7 and adjust C507 and C512 (see figure 4) to obtain a response curve which is the mirror image (tilt in the opposite direction) of the original. This is a form of overcompensation, to allow for the effect of Channel 13 adjustment on Channel 7. For example, if the Channel 7 response appears as in figure 6A, then the trimmer should be adjusted to obtain the response shown in figure 6B.
9. Reset the CHANNEL SELECTOR and generators to Channel 13. Readjust TC502 and TC504 for a symmetrical and centered band pass. See step 4.
10. Set the CHANNEL SELECTOR and generators to Channel 7, and check the response for center frequency and symmetry. Repeat steps 8 and 9 as many times as necessary to obtain the most symmetrical and centered response curves on Channels 13 and 7. Channels 7 through 13 are now correctly aligned.
11. Set the CHANNEL SELECTOR and sweep generator to Channel 6 (85 mc .).
12. Establish the channel limits, using the marker generator to produce marker pips on the response curve. (Set the generator first to 82 mc ., then to 88 mc .)
13. Adjust TC503 and TC505 for a symmetrical,
approximately centered pass band. Set the marker generator to 85 mc . Detune TC505 counterclockwise until a signal peak appears.

CAUTION: Do not turn TC505 excessively, or it will fall out of the coil.

Adjust TC503 until the peak falls on the 85 -mc. marker. It may be necessary to increase the output of the generator during this adjustment. Then adjust TC501 for maximum curve height and symmetry of the single peak. The antenna circuit is now tuned for

TP2-2241
Figure 7. R-F Chassis 84, Top View, Showing Alignment Points

Channels 2 through 6. To prevent overloading, the output of the generator should be reduced after this adjustment is completed.
14. Readjust TC503 and TC506 for a symmetrical response, centered about 85 mc .

VIDEO I-F ALIGNMENT PRELIMINARY

Before proceeding with the alignment or making an alignment check, observe the following preliminary instructions:

1. Preset the CONTRAST and BRIGHTNESS controls to the maximum counterclockwise position.
2. Preset the CHANNEL SELECTOR to Channel 4.
3. Insert the video i-f alignment jig into J200.
4. Connect the oscilloscope to the 2200 -ohm resistor from the video i-f alignment jig. Connect the ground lead of the oscilloscope to the ground lead of the jig.
5. Connect a 5 -volt bias, by means of the video i-f alignment jig; connect the negative terminal of the bias battery to the bias lead of the jig, and the positive terminal to the ground lead.
6. Connect the AM generator to the mixer test point, G-1, through a mixer jig, and adjust the generator for approximately 30 percent modulation at 400 cycles. Adjust the output of the generator during alignment, to keep the output at the second detector below . 6 volt, peak to peak.

NOTE: If the i-f shield has been removed for repairs, it must be replaced before proceeding with the alignment.

PROCEDURE

1. Tune the AM generator to 28.1 mc ., and adjust TC200 (see figure 7) for minimum output, as observed on the oscilloscope.
2. Tune the AM generator to 22.1 mc ., and adjust

TP2-2202
Figure 8. Over-all R-F, I-F Response Curve, Showing Tolerance Limits

TPO-1150
Figure 9. Wiring Diagram of Crystal Defector
TC203 for minimum output, as observed on the oscilloscope.

NOTE: In steps 1 and 2 it is necessary to keep the generator output sufficiently high that a null indication may be observed on the oscilloscope; however, avoid overloading of the receiver by excessive signal.
3. Tune the AM generator to the frequencies indicated below, and adjust the tuning cores for maximum output.
a. 24.0 mc ., adjust TC512.
b. 25.7 mc., adjust TC201.
c. 23.6 mc ., adjust TC202.
d. 26.4 mc ., adjust TC204.
e. 24.5 mc ., adjust TC205.
4. Connect the sweep generator and r-f marker generator to the antenna terminals through a matching jig. (If a separate oscilloscope is used, connect the sweep output of the generator to the horizontal input of the oscilloscope.) Set the CHANNEL SELECTOR to Channel 4, and tune the sweep generator for output on Channel 4. After the equipment is properly connected, adjust the FINE TUNING control to the mark previously made (see NOTE under Oscillator Alignment).
5. If the response curve does not fall within the limits shown in figure 8, the adjustment of the tuning cores may be touched up slightly while observing the response curve with the sweep generator. Do not touch the setting of TC200. and TC203. To adjust the curve, adjust TC201 and TC204 for proper video carrier level. The top of the curve may be leveled by adjusting TC205, and the low-frequency side of the curve may be adjusted by adjusting TC202. By means of these adjustments the response curve should be brought within the limits shown in figure 8.

CAUTION: Do not turn any of the tuning cores excessively. To retouch, only turn the tuning cores slightly. This caution applies particularly to TC202.

SOUND I-F ALIGNMENT

1. Remove the Ist v-i-f tube, and connect a v.t.v.m. or a 20,000 -ohms-per-volt voltmeter to the sound i-f alignment jig. Adjust the VOLUME control for moderate speaker output.
2. Feed in an accurately calibrated $4.5-\mathrm{mc}$. AM signal through the 2200 -ohm resistor in the Video I-F Alignment Jig, to pin 2 of J200.
3. Tune TC400, TC401, and TC402 for maximum indications on the meter. The point of maximum meter indication for TC402 should also be the point of minimum speaker output.
4. Tune TC402 for minimum speaker output.
5. Connect an r-f probe or crystal detector to the grid (pin 2) of the picture tube. See NOTE below.
6. Tune TC300 for minimum indication on oscilloscope. (If a crystal detector is not available, TC300 may be adjusted for minimum beat pattern, as observed on the picture tube, with a station picture present.)
7. Replace the 1 st v-i-f tube. Tune in a station and use the speaker output as an indication.
8. Turn the FINE TUNING control clockwise to obtain a slightly fuzzy picture.
9. Tune TC402 for minimum AM (noise) output.

NOTE: The R-F Probe, Part No. 76-3595, is used as a detector of the $4.5-\mathrm{mc}$. signal, and the oscilloscope is used as an indicating device. An alternate crystal detector may be made up as shown in figure 9 .

OSCILLOSCOPE WAVEFORM PATTERNS

These waveforms were taken with the receiver adjusted for an approximate peak-to-peak output of 3 volts at the video detector. The voltage given with the waveforms are approximate peak-to-peak values. The frequencies shown are those of the waveforms-not the sweep rate of the oscilloscope. The waveforms were
taken with an oscilloscope having good high-frequency response. With oscilloscopes having poor high-frequency response, the sharp peaks of the horizontal waveforms are more rounded than those shown, and the peak voltages differ from those shown.

TP2-787
Figure 10. Video Defector Oułput, Pin 2 of J200
3 volts, 60 c.p.s.

TP2-790
Figure 13. Sync Amplifier Plate, Pin 6
66 volts, 60 c.p.s.

TP2-791
Figure 16. Sync Inverter Plate, Plin 1
20 volts, 15,750 c.p.s.

TP2-786
Figure 11. Video Detector Oułput,
Pin 2 of J200
3 volts, 15,750 c.p.s.

TP2-790
Figure 14. Sync Separator Grid, Pin 7
50 volts, 60 e.p.s.

TP2.793
Figure 17. Sync Inverter Cathode, Pin 8
6.8 volts, 15,750 c.p.s.

TP2-788
Figure 12. Video Amplifier Plate, Pin 7 66 volts, 60 c.p.s.

TP2-792
Figure 15. Syne Separator Plate, Pin 5
19.8 volts, 15,750 c.p.s.

TP2.643
Figure 18. Vertical-Oscillator Grid, Pin 2 165 volts, 60 c.p.s.

TP2-697
Flgure 19. Verfical-Oscillator Plate, Pin 1
130 volts, 60 e.p.s.

TP2-641
Figure 22. Phase Comparer Plate, Pin 2
10 volts, 15,750 c.p.s.

TP2-646
Figure 25. Horizontal Oscillator, Junction of L800, R806, and C806 35 volts, 15,750 c.p.s.

TP2.649
Figure 28. Horizontal-Output Grid, Pin 5
130 volts, 15,750 c.p.s.

TP2-644
Figure 20. Vertical-Output Grid, Pin 7
120 volis, 60 c.p.s.

TP2-642
Figure 23. Phase Comparer Cathode, Pin 1
10 volts, 15,750 c.p.s.

TP2-647
Figure 26. Horizontol-Oscillator Cathode, Pins 8 and 3
16 volts, 15,750 e.p.s.

TP2-645
Figure 21. Vertical-Output Plate, Pin 6
450 volts, 60 c.p.s.

TP2-652
Figure 24. Phase Comparer, Pins 5 and 6 6 volts, 15,750 c.p.s.

TP2-648
Figure 27. Horizontal-Oscillator Grid, Pin 2
38 volts, 15,750 c.p.s.

TP2-650
Figure 29. Horizontal-Deflection
Yoke, *Pin 7 of 1800
3000 volts, 15,750 c.p.s.
*See CAUTION note below.
*CAUTION: High-voltage pulses are present in the horizontal-output circuit. The waveform in figure 29 was taken with the alligator clip of the oscilloscope lead clipped over the insulation of the lead connected to pin 7 of J800. (To prevent puncture of the insulation of the lead, file off the teeth of the alligator clip, and wrap friction tape around the clip.) Connection to other points in the horizontal-output circuit is dangerous, because of the high voltages present. The peak-to-peak voltage shown for figure 29 is the actual voltage present; however, the amplitude of the scope presentation de-

Figure 30. R-F Chassis 84, Bottom View, Showing Voltages at Socket Pins

TP2.2236
Figure 31. Deflection Chassis H-4, Bottom View, Showing Voltages at Socket Pins

Figure 34. R-F Chassis 84, Base Layouł

REPLACEMENT PARTS LIST (Cont.)

R-F CHASSIS 84 (Cont.)

SECTION 4-SOUND (Cont.)

$\begin{gathered} \text { Reference } \\ \text { Symbol } \end{gathered}$	Description	Service Part No.
C410	Condenser, filter, 2μ f.	30-2417.7
C414	Condenser, plate by-pass, 3300 $\mu \mu \mathrm{f}$., 1000v	45-3505-89
C415	Condenser, filter, $60 \mu \mathrm{f}$.	Part of C208
J400	Socker, volume control	27-6273*
J401	Socket, speaker	27-4785-22
J402	Socket, discriminator test	27-6273*
L400	Coil, audio take-off	32-4463-10
$\begin{aligned} & \text { L401, L402, } \\ & \text { and L403 } \end{aligned}$	Coils, discriminator	Part of Z400
L404	Coil, filament choke	32-4112-15
PL400	Plug, volume control	Part of cable and plug ass'y. (See Misc. A)
PL401	Plug, speaker	Part of speaker cable ass'y (See cabinet parts)
R 401	Resistor, screen dropping, 27,000 ohms, 1 watt	66-3274340*
R 409	Resistor, cathode bias, 180 ohms, 2 watts	66-1185340*
R412	Potentiometer, VOLUME and TONE CONTROLS	33-5563-44
R412A	Potentiometer, VOLUME CONTROL, 2 megohms	Part of R 412
R412B	Potentiometer, TONE CON. TROL, 5 megohms	Part of R412
Z 400	Transformer, ratio detector	32-4450-5
T400	Transformer, audio output	32-8579

SECTION 6-SYNC		
Reference Symbol	Description	Service Part No.
C600	Condenser, by-pass, $330 \mu \mu \mathrm{f}$.	62-133001001
R603	Resistor, voltage dropping. 22,000 ohms, 2 watts	66-3225340*
R618	Resistor, voltage divider, 8200 ohms, 1 watt	66-2824340*
R620	Resistor, decoupling, 18,000 ohms, 2 watts	66-3185340*

MISCELLANEOUS B	
Description	Service Part No.
Cable and plug ass'y., chassis connecting	41-4146-3
Cable and socket ass'y., picture tube	41-4147
Cable and socket ass'y., pilor light	27-6233-6*
Shield, tube, 6 T8	56-5629.5
Shield, tube, 6CB6	56-5629FA3
Shield, pilot light	56-9074-2FA3
Socket and base ass'y., 6CB6	27-6203-14
Socket and base ass'y., 6T8	.26-6203-18
Socket, tube, 7-pin miniature	27-6203
Socket, tube, 9-pin miniature	27-6203-6*
Socket, octal	.27-6174

REPLACEMENT PARTS LIST (Cont.)

TV TUNER, PART No. 76-7664 (Cont.)

SECTION 5—R.F. (Cont.)

$\begin{gathered} \text { Reference } \\ \text { Symbol } \end{gathered}$	Description	Service Part No.
WS500B(F) and		
WS500B(R)	Switch, wafer, r-f plate	76-7656
WS500C(F)		
WS500C(R)	Switch, wafer, mixer grid	76-7658
WS500D(F)		
and		
WS5500D(R)	Switch, wafer, oscillator	76-7660
Z500	Tapered line assembly	76-7661

Description	Service Part No.
Cam and shaft, fine tuning	76-6936
Coupling, fine tuning shaft	54.4912
Detent, ball	56-8020
Front panel ass'y.	76-6928-2
Hairpin, plunger grounding	1W42704FA3
Hairpin, plunger	56-9858
Pivot pin, lever	56-9149
Lever, plunger	56-9148
Plunger	56-8034-1
Retaining ring	16661043
Shaft	76-6914.3
Shaft, extension	56-8358
Shield, tube, 9-pin miniature	56-5629-5
Socket, tube, 9-pin miniature	27-6203-21
Spring, shaft .	56-8023
Spring, plunger	56-9628

MISCELLANEOUS C (Cont.)

Description	Service
Spring, rotor index, detent	56-9158
Terminal panel, antenna	76-5504-2
Washer	56-9351
Washer, fiber	27-4109-13
"E" washer	1W60980FE5
Washer, spring	56-9157

For Service Part No. refer to cabinet parts list in Philco Service Bulletins.

REPLACEMENT PARTS LIST

IMPORTANT

General replacement items commonly stocked by the serviceman are omitted from this parts list. All condensers are molded-bakelite Philco condensers, with a 600 -volt rating, and all resistors are $1 / 2$ watt, unless otherwise indicated. Parts are listed accord ing to chassis type, and should be ordered in this way rather than by model number. A list of miscellaneous parts is given at the end of the parts list for each chassis type. All parts are symbolized in the schematic diagram and base layout, for identification purposes.
NOTE: Part numbers identified by an asterisk (*) are general replacement items. These numbers may not be identical with those on factory parts. Also, the electrical values of some replacement items may differ from the values indicated in the schematic diagram and parts list. The values substituted in any case are so chosen that the operation will either be unchanged or improved. When ordering replacements, use only the "Service Part No."

DEFLECTION CHASSIS H-4

SECTION 1—POWER SUPPLY

Reference Symbol	Description	Service Part No.
$\begin{aligned} & \text { C100 and } \\ & \text { C101 } \end{aligned}$	Condensers, electrolytic filter, 120μ f., 150v	30-2568.51
C103	Condenser, electrolytic filter, $80 \mu \mathrm{f}$., 300v	30-2584-20
CR100 and		
CR101	Rectifiers, selenium, 300 ma .	34-8003-7
F100	Fuse, line, 1.6 amperes	45-2656-23
F101	Fuse, heater protective link	Piece of No. 26 wire
J100	Socker, chassis connecting	27-6274-1
J101	Socket, a-c line	27-6240-3
J102	Socket, radio-phono interconnecting	27-6274-4
L100	Choke, 60 ohms	Speaker field
PL 100	Plug and cable ass'y., chassis connecting	(See Misc. B)
PL101	Plug, a-c line	Part of a-c line cord ass'y. (See Misc. A)
R100	Resistor, current limiting, 5 ohms, 10 watts	33-3448-5
R102	Resistor, voltage dropping	41-4149
R103	Resistor, voltage dropping, 2.7 ohms, 1 watt	66-9274360
S100	Switch, off-on	Part of R412
T100	Transformer, filament	32-8586

SECTION 7—VERT. SWEEP

Reference Symbol	Description	Service Part No.
L700 and L701	Coils, vertical deflection	Part of deflec. tion yoke (See Misc. A)
R705	Potentiometer, VERT HOLD control, 250,000 ohms $\ldots . . .$.	Part of R811

SECTION 7—VERT. SWEEP—Cont.

Reference Symbol	Description	Service Part No
R709	Potentiometer, HEIGHT control, 2.5 megohms	33-5565-31
R711	Potentiometer, VERT LIN control, 1 megohm	33-5565-42
T700	Transformer, vertical oscillator.	32.8431-2*
T701	Transformer, vertical output	32-8577.1

SECTION 8-HORIZONTAL SWEEP

$\begin{gathered} \text { Reference } \\ \text { Symbol } \end{gathered}$	Description	Sertice Part No.
C805	Condenser, by-pass, $82 \mu \mu \mathrm{f}$.	60-00825317
C807	Condenser, coupling, $390 \mu \mu \mathrm{f}$.	60-10395417
C808	Condenser, saw-tooth forming, $390 \mu \mu \mathrm{f} \text {. }$	60-10395417
C810	Condenser, by-pass, $100 \mu \mu \mathrm{f}$.	60-10105417
C813	Condenser, damping, $68 \mu \mu \mathrm{f}$.	30-1246-1*
C814A	Condenser, electrolytic, $10 \mu \mathrm{f}$., 300 v	Part of Cl03
C814B	Condenser, electrolytic, $40 \mu \mathrm{f}$., 475v	Part of C103
J800	Socket, deflection yoke connector	27-6274.7
L800	Coil, horizontal stabilizing, 30 to 80 mh .	32-4557
L801	Coil, r-f choke, horiz. output plate	Part of T800
$\begin{array}{\|l\|} \text { L802 and } \\ \text { L803 } \end{array}$	Coils, horizontal deflection	Part of deflection yoke (See Misc. A)
L804	Coil, r-f choke, damper cathode	32-4112-24
L805	Coil, r-f choke, damper plate	32-4112-24
R810	Potentiometer, HORIZ HOLD CENTERING control, 250,000 ohms	33-5565-17
R811	Potentiometer, HORIZ HOLD control, 50,000 ohms	33-5563-50

REPLACEMENT PARTS LIST (Cont.)

DEFLECTION CHASSIS H-4 (Cont.)

SECTION 8-HORIZONTAL SWEEP
(Cont.)

Reference Symbol	Description	Service Part No.
R815	Potentiometer, WIDTH control	33-5546-41
R816	Resistor, screen supply divider, 4200 ohms, 5 watts	33-1335-101
R817	Resistor, feedback coupling, 68,000 ohms, 1 watt	66-3684340
R818	Resistor, voltage dropping, 22,000 ohms, 2 watts	166-3225340
R819	Resistor, volting dropping, 6500 ohms, 5 watts	33-1335-99
R822	Resistor, feedback coupling, 68,000 ohms, 1 watt	66-3684340
T800	Transformer, horiz. output	32-8572

MISCELLANEOUS A

Description	Service Part No.
Arm and magnet ass'y, picture tube	76-6594
Beam bender	76-6077.2
Cable ass'y., volume control	41-4136-2
Cable ass'y., high voltage.	41-4064-6*
Cable and plug ass'y., deflection	41-4086-25
Cord, a-c line	41.3865
Deflection yoke ass'y.	32-9648
Focus ass'y., p-m	76-6126-4
Insulator, condenser mounting	27-9508-1
Shock-mount, 9-pin miniature, and spring.	76-6115-2
Socker, octal	27.6174
Socker, 7-pin miniature	27.6203-12
Socker, 1B3GT	27-6290-1
Socket, 6AX4GT	27.6174-7
Socket, spring, picture-tube ass'y.	56.9733

R-F CHASSIS 84

SECTION 2-I.F.			SECTION 2-I.F. (Cont.)		
Reference Symbol	Description	Service Part No.	Reference Symbol	Description	Service Part No.
C200	Condenser, d-c blocking, $47 \mu \mu \mathrm{f}$.	62.00475317	R207B	Resistor, voltage dropping,	
C201	Condenser, trap, $18 \mu \mu \mathrm{f}$.	62-018400021		400 ohms, 2.6 watts ...	Part of R207
C204	Condenser, fixed trimmer, $22 \mu \mu \mathrm{f}$.	62-022009001	T200	Transformer, video i.f input	32-4548-29
C205	Condenser, d-c blocking, $100 \mu \mu \mathrm{f}$.	62-110409001	T201	Transformer, 2nd video i.f	32-4486-29
C208	Condenser, electrolytic30-2584-24	T202	Transformer, 3rd video i-f	32-4486-33
C208A	Condenser, filter, $40 \mu \mathrm{f}$.	Part of C208	SECTION 3—VIDEO		
C208B	Condenser, decoupling filter, $10 \mu \mathrm{f}$.	Part of C208			
C211	Condenser, detector by-pass, $5 \mu \mu \mathrm{f}$.	30-1224-5	Reference Symbol	Description	Service Part No
CD200	Crystal, video detector, in64	34-8022	C301	Condenser, 4.5 -mc. trap, $27 \mu \mu \mathrm{f}$.	62-027409011
1200	Pilot light	34-2068	C302	Condenser, filter, $10 \mu \mathrm{f}$, 300 v .	Part of C208
J200	Socket, video rest and fringe switch	27-6273*	L300	Coil, 4.5 -mc. trap	32-4463-7
			L301	Coil, series peaking, $250 \mu \mathrm{~h}$.	32-4480-4
L201	Coils, tuner coupling	Part of T200	L302	Coil, series peaking, $60 \mu \mathrm{~h}$.	32-4480-11
L202	Coil, lst i-f grid ...	32-4486-32	R301	Potentiometer, CONTRAST	
L203	Coil, 28.1-mc. trap	32-4486-27	R305	control, 2500 ohms Resistor, plate load, 3900 ohm	Part of R307
L204	Coil, 1st i.f plate Coil, 22.1-mc. trap	${ }^{32-4486-30}$	R305	Resistor, plate load, 3900 ohms, 7 watts	33-1335-116
L206	Coil, filament choke	${ }_{32-4112-15}$	R307	Porentiomerer, BRIGHTNESS	
L207 and	Coils, coupling			control, 5 megohms	33.5563-53
$\begin{aligned} & \mathrm{L} 208 \\ & \mathrm{~L} 209 \text { and } \end{aligned}$		Part of T201	SECTION 4-SOUND		
L210	Coils, coupling	Part of T202			
L211	Coil, series peaking, $40 \mu \mathrm{~h}$. Coil, series peaking, $4 \mu \mathrm{~h}$.	$\begin{aligned} & 32-4143-16 \\ & 32-4143-23 \end{aligned}$	$\begin{gathered} \text { Reference } \\ \text { Symbol } \end{gathered}$	Description	Service Part No.
L213	Coil, shunt peaking, $125 \mu \mathrm{~h}$.	32-4480-8	C400	Condenser, coupling, $2.2 \mu \mathrm{ff}$,	30-1221-6
L214	Coil, variable, video peaking, 175 to $500 \mu \mathrm{~h}$.		C401	Condenser, fixed trimmer, $18 \mu \mu \mathrm{f}$.	62.018400021
		32-4467-13	C404	Condenser, fixed trimmer	Part of Z400
R202	Resistor, filter, 330 ohms, 1 watt	66-1334340*	C405	Condenser, fixed trimmer	Part of Z400
R207	Resistor, voltage dropping	33-3446-5	C406	Condenser, detector balancing,	
R20\% A	Resistor, voltage dropping, 2500 ohms, 6.2 watts	Part of R207	C409	$150 \mu \mu \mathrm{f}$. Condenser, r-f by-pass, $330 \mu \mu \mathrm{f}$.	62-115001011 62-133001001

PHILCO
TELEVISION SERVICE MANUAL FOR
R-F CHASSIS 94 AND DEFLECTION CHASSIS J.4

TABLE OF CONTENTS
Circuit Description
A-C Line Isolation
Specifications
Tube Complement
B Supply Fuse Replacement
Horizontal Oscillator Adjustment
Video Peaking Coil Adjustment
Television Alignment Procedure General
Test Equipment Required
Jigs and Adapters Required Mixer Jig
Antenna-Input Matching Network
Video 1-F Alignment Jig
Sound I-F Input Alignment Jig
Sound I-F Output Alignment Jig
Television Tuner Alignment
Oscillator Alignment
General
Procedure Using Signal Generators
Procedure Using Station Signal
Tuner Band-Pass Alignment
General
Procedure
Video I-F Alignment
Preliminary
Procedure
S-I-F Alignment
Adjustment of $4.5-\mathrm{mc}$ Trap
Oscilloscope Waveform Patterns
Chassis Bottom Views Showing Voltages at Socket Pins
Television Tuner Base Layout
Television Tuner Schematic Diagram
Base Layouts and Schematic Diagrams of Television Chassis 17
Replacement Parts List.

Copyright, 1952, PHILCO CORPORATION
Permission is granted to reprint brief excerpts or references from rhis publication if due credit is given.

CIRCUIT DESCRIPTION

The Philco 1953, Code 126, Television Receivers use two chassis-the r-f chassis, containing the r-f, video, audio, and sync circuits, and the deflection chassis, containing the power and deflection circuits. Radio-television, phono-television and radio-phonotelevision combination models use r-f chassis 94 and deflection chassis J-4, while television only models use $\mathrm{r}-\mathrm{f}$ chassis 91 and deflection chassis J-1. Service information for the 91 and J-l chassis is given in Service Manual PR-2200, and service information for the 94 and J - 4 chassis is given in this manual.

Since these chassis are not isolated from the 60 -cycle power line, all protruding shafts and mounting feet are insulated from the chassis.

CAUTION: See A-C Line Isolation.

The r-f amplifier, oscillator, and mixer section is built on a separate subchassis. The r-f amplifier uses a $6 \mathrm{BZ7}$ or 6 BQ 7 tube, V1. The oscillator and mixer each use one half of a 12 AZ 7 tube, $V 2$. The output of the mixer is fed to a four-stage i-f amplifier system employing four 6CB6 tubes, V3, V4, V5, and V6. A 1N64 crystal diode is used for the video detector. One half of a 6 U 8 tube, V7A, is used as the first video amplifier, which feeds into a 6AQ5 video output amplifier, V8.

Sound i-f (intercarrier) is obtained by utilizing the beat frequency produced when the $45.75-\mathrm{mc}$. video carrier and the $41.25-\mathrm{mc}$. sound carrier are mixed in the video detector. The beat frequency, 4.5 mc ., is the difference between 45.75 mc . and 41.25 mc ., and contains the FM sound signal. This $4.5-\mathrm{mc}$. signal contains only a negligible amount of the video amplitude modulation, provided that the amplitude of the $41.25-\mathrm{mc}$. signal is considerably lower than that of the $45.75 \cdot \mathrm{mc}$. signal. The proper relative amplitude of the two carriers is established in the alignment of the receiver. There is sound output only when both the video and sound carriers are present.

The oscillator is tuned primarily to obtain the best picture, since the $4.5-\mathrm{mc}$. relationship always exists between the two carriers. The $4.5-\mathrm{mc}$. sound $\mathrm{i} \cdot \mathrm{f}$ (intercarrier), which is taken from the video detector, is amplified by a 6BA6 tube, V9, and a 6AU6 tube, V10, and is fed to the FM detector, which utilizes two diode sections of a 6T8 tube, V11A. The triode section of the 6 T 8 tube, V 11 B , is used as the first audio amplifier. The power amplifier uses a 6L6GA tube, V12.

A-G-C voltage for the video i - f system and the r-f amplifier is obtained from a keyed a-g-c system which uses a 6AU6 tube, V13, as the a-g-c gate. Composite video from the video amplifier plate circuit, V7A, is fed to the grid of the a-g-c gate tube, while a gating or keying pulse, obtained from a winding on the horizontal output transformer located on the deflection chassis, is applied to the plate. The sync-pulse polarity applied to the grid of V13 is positive; therefore, the a-g.c gate can conduct in proportion to the amplitude of the sync-pulse tips if the gating or keying pulse occurs at the same time as the sync. Because the keying or gate pulse is of constant amplitude, approxi-
mately 500 volts peak, the amplitude of the sync pulse determines the amount of conduction in the gate tube. The plate current of the keyed a-g-c gate tube flows through R220, R219, and R218, developing a voltage which is negative in respect to chassis and proportional to the plate current. This negative voltage is used to control the gain of the receiver. Since conduction cannot occur in the a-g-c gate tube unless the sync pulse and gating pulse occur at the same time, noise disturbances that occur between syncpulse intervals cannot affect the a-g-c voltage.

Composite video for the sync circuits is taken from the plate circuit of the video amplifier, V7A. The plate load of the video amplifier consists of two equal sections, R302 and R303. The full output of the amplifier is fed to the grid of the noise inverter, one half of a 12 AU 7 tube, V14B, and the output developed across R303 only is fed to the grid of the sync separator, one half of a 6U8 tube, V7B. The noise inverter is operated with a low value of plate voltage and with high bias (applied to the cathode by a voltage-divider network), which keeps the tube beyond cutoff. When the composite video signal is applied to the grid of the noise inverter through C601, the sync appears as positive pulses, and noise which could affect the sweep circuits also appears as positive pulses. Harmful noise pulses usually have amplitudes far greater than the sync pulses and, therefore, drive the grid of the noise inverter positive sufficiently to allow conduction in the noise inverter plate circuit. To prevent the noise inverter from conducting during the sync pulse interval the gated leveler, using one half of a 12AU7 tube, V14A, is used to clamp the sync pulses below the conduction level of the noise inverter. The gated leveler conducts only when the syn- pulses and gating pulse occur at the same time, thus leveling the noise inverter input to the sync-pulse level.

The output of the noise inverter consists of negativegoing noise pulses. It should be noted that the noise pulses which exceed the sync level have been passed and their polarity reversed by the noise inverter. The output of the noise inverter is now mixed with the composite video and fed to the grid of the sync separator. Since the composite video fed to the grid of the sync separator has positive sync polarity, the positive noise pulses carried with the composite video would be passed by the sync separator; however, the output of the noise inverter consists of these same noise pulses, but of opposite polarity. Thus, cancellation of the noise pulses is effected. The output of the sync separator contains only the sync pulses, which are fed to the deflection chassis through the connecting cable.
The phase splitter, using one half of a 12AU7 tube, V15A, inverts the sync polarity for proper triggering of the vertical oscillator. The vertical sync is separated from the horizontal sync by the integrator circuits and fed to the grid of the vertical blocking oscillator, using one half of a 12AU7 tube, V15B. The output of the vertical oscillator is amplified by the vertical-output amplifier, using a 12BH7 tube, V16. The output of this amplifier is applied to the vertical-
deflection coils through the vertical-output transformer.

In addition to the vertical sync output, two horizontal sync outputs are taken from the phase splitter, one from the cathode, and the other from the plate circuit. These two outputs are of opposite polarity, and are fed to the two diodes of the phase comparer, a 6AL5 tube, V17. The negative pulses are fed to the cathode of $V 17 B$, and the positive pulses are fed to the plate of V17A. A portion of the horizontal sweep output voltage is taken from the horizontaloutput transformer, and is fed to the plate of V17B and the cathode of V17A, for comparison of the horizontal sync and horizontal sweep voltages. When the sweep and sync are in phase, no voltage is developed across R800, but when the two signals are out of phase a voltage is developed across R800. This voltage will increase the frequency of the horizontal oscillator (a 12AU7 tube V18) if it is positive, and will reduce the frequency of the oscillator if it is negative, thus acting to hold the horizontal oscillator in phase with the sync signal. The horizontal hold control, R811, adjusts the horizontal oscillator frequency so that it may be controlled by the phase comparer. The output of the horizontal oscillator is fed to the horizontal-output amplifier, which uses a 6BQ6G'T tube, V19. The horizontal-output tube feeds the deflection coils through the horizontal-output transformer. A 6AX4GT tube, V20, is used as the horizontal damper.

The second-anode voltage for the picture tube is supplied by a 1B3GT high-voltage rectifier tube, V20. The B-plus voltage for the receiver is supplied by two selenium rectifiers, CR100 and CR101, in a full-wave voltage-doubler circuit, operating directly from the power line. Bias voltage is obtained across the speaker field coil (used as a filter choke), which is in series with the negative side of the B-plus supply. The B-plus-boost voltage derived from the horizontal damper circuit supplies higher B-plus voltage to the vertical amplifier, vertical oscillator, and the first anode of the picture tube. Filament current for all the tubes except the high-voltage rectifier is supplied by a 117 volt, 60 -cycle step-down transformer. Filament current for the high-voltage rectifier is supplied by a winding on the horizontal-output transformer.

IMPORTANT A-C LINE ISOLATION

CAUTION: One side of the a-c line is connected to the chassis through C102 and L100. The other side of the a-c line is connected to the chassis through R102, CR100, and C103, in series. Grounding the chassis will result in a short circuit across one or the other of these two branches in the voltage-doubler circuit. During servicing and alignment, it is desirable that an a-c line isolation transformer capable of handling at least 225 watts (Philco Part No. 45-9600) be used. Failure to use an isolation transformer will greatly increase the shock hazard, and may result in damage to the test equipment or receiver, or both.

SPECIFICATIONS

CHANNEL TUNING
Twelve-channel, 13position, wafer-switch incremental tuner; fine tuning of local oscillator
FREQUENCY RANGETelevision Channels 2 through 13 and U-H-F position
INTERMEDIATE FREQUENCIES
Video carrier
45.75 mc .

Sound (intercarrier)
4.5 mc .

TRANSMISSION LINE
300-ohm, twin-wire lead

OPERATING VOLTAGE

110 to 120 volts, 60 cycles, a.c.
POWER CONSUMPTION
215 watts
TUBE COMPLEMENT
R-F CHASSIS 94

Reference Symbol	Tube Type	Function
V1	6BQ7 or 6BZ7miniature	R-F amplifier
V2	12AZ7-miniature	Oscillator, mixer
V3, V4, V5, V6	6CB6-miniature	Video i-f amplifiers
V7	6U8-miniature	Video amplifier, sync separator
V8	6AQ5-miniature	Video output
V9	6BA6-miniature	First sound i-f amplifier
V10	6AUG-miniature	Second sound i-f amplifier
V11	6T8-miniature	FM detector, first audio amplifier
V12	6L6GA-octal	Audio output
V13	6AU6-miniature	A-G-C gate
V14	12AU7-miniature	Gated leveler, noise inverter
V22	21EP4A	Picture tube

DEFLECTION CHASSIS J-4

Reference Symbol	Tube Type	Function
V15	12AU7-miniature	Phase splitter, vertical
V16	12BH7-miniature	oscillator
Vertical output		
V17	6AL5-miniature	Phase comparer
V19	12AU7-miniature	Horizontal oscillator
V20	6BQ6GT-octal	Horizontal output
V21	6AX4GT-octal	Damper

B SUPPLY FUSE REPLACEMENT

The B supply protective fuse, F100, is wired into the low-voltage section, and is in series with the selenium rectifiers. For replacement, use a 1.6 -ampere delayed-action-type fuse, Philco Part No. 45-2656-23.

CAUTION: Discharge the circuit before replacing the fuse.

HORIZONTAL-OSCILLATOR ADJUSTMENT

To adjust the horizontal-oscillator circuit, tune in a station and proceed as follows:

1. Reduce the width of the picture so that approximately one inch of blank screen appears at the righthand and left-hand sides of the picture.
2. Increase BRIGHTNESS control setting so that the blanking time becomes visible. This appears as a dark, vertical bar at the right-hand and left-hand sides of the picture.
3. Connect a $.1-\mu \mathrm{f}$. condenser from pin 2 of the gate pulse socket, J801, to ground.
4. Set the HORIZ. HOLD control to the center of its mechanical rotation.
5. Adjust the HORIZ. HOLD CENTERING control to bring the picture into the center of the blanking bars. When the picture is centered in the blanking bars, the bars at the left-hand and right-hand sides of the picture will be of equal width.
6. Remove the $.1-\mu \mathrm{f}$. condenser from the gate pulse socket. (See step 3.)
7. Adjust the horizontal ringing coil, L800, until the picture is again centered in the blanking bar.
8. Rotate the HORIZ. HOLD control through its range. The picture should fall out of sync to both sides of the center of its rotation. If the picture does not fall out of sync to both sides, readjust the HORIZ. HOLD CENTERING control to obtain fall-out to either side of sync.
9. Rotate the HORIZ. HOLD control through its range, and observe the number of diagonal blanking bars just before the picture pulls into sync. The pullin should occur with from 1 to 2 diagonal bars when the sync position is approached from either direction. If proper pull-in is not obtained, repeat the above procedure.

VIDEO PEAKING-COIL ADJUSTMENT

The video peaking coils, L305 and L307, are adjusted at the factory for proper transient response of the video amplifiers. Ordinarily these coils will require no further adjustment by the serviceman except if tampered with, or if their replacement becomes necessary. Under normal circumstances, when just alignment of the tuner or i-f stages is undertaken, the video peaking coils should not require adjustment.

Before adjusting L305 and L307, check both the tuner and i-f alignment. (Never adjust L305 and L307 until the alignment of the receiver is correct.) Then tune in a station and adjust the receiver to give a picture of best obtainable quality with medium contrast. Turn the fine-tuning control clockwise until a very slight beat appears in the picture. Carefully observe the appearance of the picture regarding smear or overshoot (trailing whites).

A small amount of overshoot may be desirable to produce a sharper picture. Conversely, in weak-signal areas, a small amount of smear may be desirable to reduce the harsh appearance of "snow". The adjustments of L305 and L307, and their effects on the picture, are as follows:

1. The amount of overshoot may be reduced by turning both TC302 and TC303 counterclockwise.
2. The amount of smear may be reduced by turning both TC302 and TC303 clockwise.

Normally the point of proper adjustment is where minitutum smear and trailing whites appear in the picture; however, a compromise adjustment may be made to suit prevailing conditions. As a rule, when properly adjusted, the adjustment screws (TC302 and TC303) should protrude approximately $1 / 2$ inch to $3 / 4$ inch from the chassis.

TELEVISION ALIGNMENT PROCEDURE

Ceneral

The alignment consists of tuning each i-f coil to a given frequency, using an AM signal, then feeding in a sweep signal at the antenna terminals and touching up the adjustments to obtain the desired pass band.

The over-all response curve ($\mathrm{r}-\mathrm{f}, \mathrm{i}-\mathrm{f}$) of the circuits from the antenna terminals to the video detector, after the i-f stages have been aligned, should appear essentially the same, regardless of the channel under test. If not, the tuner should be aligned. Before aligning the tuner, refer to the CAUTION given under TUNER BANDPASS ALIGNMENT.

The video-carrier intermediate frequency is $\mathbf{4 5 . 7 5}$ mc ., and the sound intermediate (intercarrier) frequency is 4.5 mc . Alignment of these circuits requires careful workmanship and good equipment. The following precautions must be observed:

1. There must be a good bond between the receiver chassis and the test equipment. This is most easily obtained by having the top of the workbench metallic. The receiver chassis should be placed tuner-side down on the bench. If the bench has no metallic top, the test equipment and chassis can be bonded by a strip of copper about 2 inches wide. The section of the chassis nearest the tuner should rest on the strip.
2. Do not disconnect the picture tube, picture-tube yoke, or speaker while the receiver is turned on.
3. Allow the receiver and test equipment to warm up for 15 minutes before starting the alignment.
4. The marker (AM) signal generator should be calibrated accurately to the frequencies used and to the sound and video r-f carriers of each channel used during alignment. If Model 7008 is used, the built-in crystal calibrator provides an excellent means of calibration. An alternate method of calibrating the signal generator to the sound and video r-f carrier frequencies is to zero-beat the signal generator with the received signals.

For further information concerning calibration, refer to Philco Lesson PR-1745 (J) entitled "Television Service in the Home."

Test Equipment Required

The following test equipment is recommended for aligning the receiver:

1. Philco Precision Visual Alignment Generator for Television and FM, Model 7008, or equivalent.
2. Vacuum-tube voltmeter, or 20,000 -ohms-per-volt voltmeter.
3. R-F Probe, Philco Part No. 76-3595 (for use with Model 7008 generator).

Jigs and Adapters Required

Mixer Jig

Connections to the grid of the mixer tube may be made through the alignment jack provided for that purpose. To connect the generator to this point, a mixer-grid jig, Philco Part No. 45-1739, and a connecting cable, Philco Part No. 45-1635, may be used. As an alternate, a Philco alligator-clip adapter, Part No. 45-1636, with as short a ground lead as possible, may be used to connect the alignment jack. The ground lead should be connected as close as possible to the mixer tube. It is essential that the signalgenerator output lead be terminated with a 68 -ohm resistor (carbon), so that any regeneration caused by connection of the lead to the mixer is held to a minimum.

Antenna-Input Matching Network

An impedance-matching network for coupling the signal generator to the antenna-input terminals of the receiver is shown in figure 2 on page 5 of PR-2170. This network, which is designed to have an input impedance of 75 ohms and an output impedance of 300

TP2-1507
Figure 1. Video I-F Alignment Jig

TP2-1519
Figure 2. Sound I-F Input Alignment Jig
ohms, is used to match a $75-\mathrm{ohm}$ generator to a 300 ohm antenna-input circuit. The resistors used in this network should be of carbon-composition construction, and should be chosen from a group, to obtain values within 10% of those indicated. The resistors should be placed in a shield can, to prevent variable effects. An antenna matching jig, Philco Part No. 45-1736, which consists of a matching transformer and connecting box, may be used in place of the resistor network.

Video I-F Alignment Jig (VIDEO TEST Jack Adapter)

The alignment jig shown in figure 1 should be used during the i-f alignment to apply the proper bias to the a-g-c bus, and to provide a convenient oscilloscope connection. This adapter consists of a 5 -prong plug, two $10,000-$ ohm resistors, and a $1500-\mu \mu \mathrm{f}$. condenser for isolation of the bias supply. To isolate the oscilloscope from the receiver circuits, a 15,000 -ohm resistor, by-passed by a $1500-\mu \mu \mathrm{f}$. condenser, is used. A suggested method of fabricating the jig is also shown in figure 1. This jig should not be used to observe the composite video from the video-detector output.

Sound I-F Input Alignment Jig (VIDEO TEST Jack Adapter)

To observe the composite video, a jig may be made with a 5 -pin plug and a 2200 -ohm resistor. (See figure 2.) The 2200 -ohm resistor should be connected to pin 2. A ground lead should be connected to pin 3. For convenience in applying bias to the a-g-c circuits, a lead should be connected to pin 5. To observe the composite video, connect the oscilloscope to the 2200 -

TP2-1508
Figure 3. Sound I-F Output Alignment Jig
ohm resistor and the ground lead. This jig is also used for injection of the $4.5-\mathrm{mc}$. signal during sound i-f alignment.

Sound I-F Output Alignment Jig (FM TEST Jack Adapter)

Figure 3 shows the adapter that should be used to connect the voltmeter to the FM detector test socket, J402. Pins 1 and 5 are removed from a 5 -pin plug, Part No. 27-4785-3, because a 3-pin plug with proper spacing is not readily available. The two 15,000 -ohm resistors should be of 5% tolerance. They should be selected to be as nearly equal in resistance as possible, and connected to pins 2 and 3 on the plug. The free ends of the resistors are joined, so as to form a voltage divider across the discriminator tank condenser, C413. Leads should be brought out from pins 2 and 4, as shown in figure 3.

TELEVISION TUNER ALIGNMENT

After the tuner is serviced, or if an i-f alignment is required, the tuner alignment should be checked. If realignment is necessary, use the procedure given below.

Since the frequency of the local oscillator affects the tuner response, the local-oscillator alignment should be made first.

Oscillator Alignment General

It is possible to place each channel exactly on frequency by adjusting the tuning core of each coil. The adjustment procedure should be carried out with the highest-frequency channel (13) first, since the alignment of each channel will affect the alignment of the channels below it in frequency. The FINE TUNING control should be preset for all adjustments by placing the stop on the fine-tuning cam at the Channel 8 oscillator tuning core. See figure 4.

Procedure Using Signal Generators

An r-f signal (unmodulated), at the video carrier frequency of the channel, is fed into the antenna input, and an i-f signal, at the i-f carrier frequency, is fed to the first i-f amplifier. Two AM signal generators are used to supply the above signals. An oscilloscope is connected to the video detector output. The oscillator core is then adjusted for zero beat on each channel. The two generators should be accurately calibrated, as described in Philco Lesson PR-1745(J).

To align the oscillator, proceed as follows:

1. To observe the zero beat, connect the oscilloscope to the video-detector output through the video i-f
alignment jig. See figure 1. Bias the tuner and i-f a-g.c circuits with 1.5 volts, and remove the Gate Pulse Plug, PL801, from the socket, J801. To apply bias to the tuner, connect the battery to the white lead which comes out of the top of the tuner. On later runs of this tuner, the white a-g-c lead connects to a feedthrough condenser on top of the tuner. To make certain that good connection is made to the tuner a-g-c circuit, remove the glyptol coating on this condenser terminal before connecting the bias battery.
2. To feed in the i-f comparison signal, remove the shield from the first v-i-f tube and wrap several turns of insulated copper wire around the tube. Connect the output leads of the v -i-f signal generator to the two ends of the wire loop, and set the generator for unmodulated output at 45.75 mc .
3. To feed in the signal representing the channel frequency, set the r-f signal generator to the video carrier frequency of Channel 13, and connect the output to the antenna terminals of the receiver, through the proper matching jig.
4. Mechanically preset the fine-tuning cam, as shown in figure 4, and set the CHANNEL SELECTOR to Channel 13.
5. Adjust the Channel 13 tuning core for zero beat, as indicated by the oscilloscope.
6. Retune the r-f signal generator and the CHANNEL SELECTOR for Channels 12, then 11, etc., each time adjusting the respective tuning core for zero beat. The tuning cores should be adjusted progressively from the highest-frequency channel to the lowest, because the higher channel adjustments will affect the lower channels.

Procedure Using Stotion Signal

The following simplified procedure may be used to align the oscillator when the television i-f alignment is satisfactory and a station signal is available. If this procedure is used in the service shop, signals from all

Figure 4. Television Tuner, Showing Locations of Adjustments
stations which the customer can receive must be available in the service shop.

1. Mechanically preset the fine-tuning cam to the center of its range. (See figure 4.)
2. Tune in the highest-frequency channel to be received, and adjust the tuning core for that channel for the best picture; that is, starting with sound in the picture; turn the tuning core until the sound in the picture just disappears.
3. Repeat step 2 for each channel received in the area, starting with the highest-frequency channel and finishing with the lowest.

Tuner Bandpass Alignment

General

The bandpass alignment consists of aligning the tuner at Channel 13 and 6, and then making it track properly.

During the alignment, a fixed bias of 1.5 volts is applied to the r-f amplifier tube through the white a-g-c lead.

An FM (sweep) signal is applied to the antenna input circuit through the proper matching jig, and an oscilloscope is connected through a 100,000 -ohm resistor to the mixer grid test point. The oscilloscope gain should be as high as possible, consistent with hum, level and "bounce" conditions. Hum conditions will cause distortion of the time base and response. Bounce conditions will cause the response and the time base to jump up and down, and is caused by poor line regulation. The use of too high an oscilloscope gain aggravates these conditions, whereas the use of too low a gain necessitates increasing the generator output to a point where the tuner may be overloaded. The scope controls should be adjusted so that the width of the presentation is 2 times the height. Overload may then be checked by changing the generator output while observing the shape of the response curve. When the generator output is changed the vertical gain of the oscilloscope should be readjusted to keep the scope presentation amplitude the same. Do not readjust the horizontal gain control. Any change in the shape of the curve indicates overload, in which case a lower generator output and higher oscilloscope gain must be used.

The signal-generator output must be properly matched to the antenna input of the tuner. The antenna input matching network shown in figure 2 of PR-2170 or the Philco Antenna Matching Jig, Part No. 45-1637, may be used for this purpose. Correct alignment cannot be obtained without the use of a suitable matching jig.

Regeneration in the test setup will also make it impossible to obtain correct alignment. To check for regeneration, move the hand along the generator cable,
after all equipment is connected, and observe the response curve on the oscilloscope screen. If the response curve changes as the hand is moved along the cable, regeneration is indicated. A check for regeneration may also be made by adjusting the volume control until noise can be heard from the speaker. If the level of the noise changes as the hand is moved along the generator cable, regeneration is indicated. The symptoms which indicate regeneration may also be caused by failure to use the proper matching jig, as described above.

CAUTION: When comparing the response curves from channel to channel, maintain the 2-to-1 width-to-height relationship in the oscilloscope presentation, as described above.

Procedure

1. Connect the FM (sweep) and AM marker generators to the 300 -ohm antenna input through an antenna-input matching jig.
2. Connect the oscilloscope to the mixer-grid test point through a $100,000-\mathrm{ohm}$, one-half watt resistor, as shown in figure 7. Connect the ground lead of the oscilloscope as close to the mixer tube as possible.
3. Apply 1.5 volts bias to the white tuner a-g-c lead.
4. Disconnect the tuner coupling link at wiring panel B-13 terminals 1 and 4, and solder a $68-0 h m$, one-half watt carbon resistor to the open link coming from the tuner. See figure 7. Remove the first i-f tube from the socket.
5. Set the CHANNEL SELECTOR and FM (sweep) generator to Channel 13 (213 mc .). Adjust the generator for sufficient sweep width to show the complete response curve.
6. Establish the channel limits (see figure 5) by using the marker (AM r-f) signal generator to produce marker pips on the response curve. (Set the marker generator first to 210 mc ., then 216 mc .) The response should be reasonably flat between the limits.
7. Adjust TC502 and TC504 (figure 4) for a symmetrical, approximately centered pass band. Set marker generator to 213 mc . Detune TC504 counterclockwise until a single peak appears. Adjust TC502 until the peak falls on the 213 -mc. marker. (It may be necessary to increase the output of the generator during this adjustment.) Then adjust TC500 for maximum curve height and symmetry of the single peak. The antenna circuit is now tuned for the high band channels.

NOTE: On later runs of the tuner, L506 is not tunable and TC500 is omitted; therefore the adjustments in step 7 should be confined to TC502 and TC504 when later run tuners are encountered.
8. Readjust TC502 and TC504 for a symmetrical response, centered about 213 mc ., and falling within the specifications, as shown in figure 5.

TP9-512B-1
Figure 5. Television Tuner Response Curve, Showing Bandpass Limits
9. Set the CHANNEL SELECTOR and FM generator to Channel 7 (177 mc .). Establish the channel limits by using the marker signal generator to produce marker pips on the response curve. (Set the marker generator first to 174 mc ., then to 180 mc .) The curve should be reasonably flat between the limits.
10. On Channel 7, observe the tilt and center frequency of the response curve. The curve should be centered in the pass band and should be symmerrical. If it is not symmetrical and appears unbalanced, as in figure 6, adjust C507 and C512 (figure 4) to obtain a response curve which is the mirror image (tilt in the opposite direction) of the original; for example, if Channel 7 response curve appears as in figure 6A, adjust C506 and C514 until the curve appears as in figure 6B. This adjustment overcompensates to make allowance for the effect of Channel 13 adjustments (to be made in step 11) upon Channel 7 response.
11. Reset the CHANNEL SELECTOR and generators to Channel 13, and repeat steps 8 through 10 as many times as necessary to obtain the most symmetrical and centered response curves on Channels 13 and 7 . Channels 7 through 13 are now correctly aligned.
12. Set the CHANNEL SELECTOR and sweep generator to Channel $6(85 \mathrm{mc}$.) .
13. Establish the channel limits, using the marker generator to produce marker pips on the response curve. (Set the marker generator first to 82 mc ., then to 88 mc .)
14. Adjust TC503 and TC505 for a symmetrical, approximately centered pass band. Set the marker generator to 85 mc . Detune TC505 counterclockwise until a single peak appears. Adjust TC503 until the
peak falls on the $85-\mathrm{mc}$. marker. It may be necessary to increase the output of the generator during this adjustment. Then adjust TC501 for maximum curve height and symmetry of the single peak. The antenna circuit is now tuned for channels 2 through 6.
15. Readjust TC503 and TC506 for a symmetrical response, centered about 85 mc ., and falling within the specifications, as shown in figure 5. Channels 2 through 6 are now correctly aligned.

VIDEO I-F ALIGNMENT

Preliminary

Before proceeding with the i-f alignment or making an alignment check, observe the following preliminary instructions:

1. Preset the CONTRAST and BRIGHTNESS controls to the maximum counterclockwise position.
2. Preset the CHANNEL SELECTOR to Channel 4.
3. Insert the VIDEO TEST jack adapter into J200.
4. Connect the oscilloscope to the 15,000 -ohm resistor from the video i-f alignment jig. Connect the ground lead of the oscilloscope to the ground lead from the jig.
5. Connect a 7.5 -volt battery to the a-g-c test jack, with the negative terminal to the bias lead and the positive terminal to the ground lead.
6. Connect the AM generator to the mixer test point, G1, through a mixer jig, and adjust the generator for approximately 30 percent modulation at 400 cycles.

NOTE: If the i-f shield has been removed for repairs it must be replaced before proceeding with alignment.

Procedure

1. Tune the AM generator to 39.75 mc ., and adjust C518 (see figure 7) for minimum output, as observed on the oscilloscope.
2. Tune the AM generator to 47.25 mc ., and adjust C201 for minimum output, as observed on the oscilloscope.
 C203 for minimum output, as observed on the oscilloscope.

Figure 6. Television Tuner Response Curve, Showing Tracking Compensation

figure 7. R-F Chassis 94. Top View, Showing Rocations of Adjustments

NOTE: In steps 1, 2, and 3 it is necessary to keep the generator output sufficiently high so that a null indication may be observed on the oscilloscope. However avoid over
the receiver by excessive signal.
4. Tune the AM generator to the frequencies indicated below, and adjust the trimmers for maximum output.
a. $\quad 42.7 \mathrm{mc}$.-adjust C514
b. $\quad 45.4 \mathrm{mc}$.-adjust C20
c. 42.0 mc -adjust C206
d. 45.0 mc .-adjust C210
e. 44.4 mc .-adjust C215
f. $\quad 43.0 \mathrm{mc}$-adjust C 218
5. Connect the sweep generator and r-f marker generator to the antenna terminals through a match ing jig. (If a separate oscilloscope is used, connect the sweep output of the generator to the horizontal input of the oscilloscope.) Set the CHANNEL SE for output on Channel 4 Tune the r-f marker gen for output on Channel 4. Tune the r-f marker gen (67.25 mc .) , and tune the i.f marker generator (con nected to mixer grid) to 45.75 mc . Note that two marker generators are used for this procedure. The r-f marker generator is connected to the antenna ter minals, while the i-f marker generator is connected to the mixer grid test point, G1. A jig constructed from a piece of fiber tubing, with $3 / 16$ inch inside diameter, and a brass machine screw which fits tightly into the tubing, is used to connect the generator to the test test point by approximately $1 / 64 \mathrm{inch}$. The outpu cable of the marker generator is connected to the head of the brass screw in the iig and to chassis near the mixer tube. Both marker generators should be adjusted for the minimum output required to make the markers barely visible. Failure to observe this precaution, or the use of excessive output from the sweep generator, will cause misleading results. After th equipment is properly connected, adjust the FINE

Figure 8. Overall R-F, I-F Resporser P2-1511

IUNING control for zero-beat of the two markers as observed on the oscilloscope. When zero beat is btained remove the i-f marker
6. If the response curve does not fall within the limits, as shown in figure 8, the adjustment of the trimmers may be touched up slightly, while observing the response curve with the sweep generator. Do not retouch the setting of C518, C201, C203, or C206. To until maximum improvement has been thernately C215 affects the tilt of the curve and C218 affects the dip of the curve. After C215 and C218 have been adjusted, adjust C514 for proper slope at the $42.25-\mathrm{mc}$. side of the curve, then adjust C204 and C210 for proper level at the video carrier (45.75 mc .)

CAUTION: Do not turn any of the trimmers excessively. To retouch, only turn the trimmers slightly.

SOUND I-F ALIGNMENT

The sound i-f system may be aligned by means of the station signal or by using an accurately calibrated signal generator as the signal source. If the station signal is used, tune the fine-tuning control for the best picture, regardless of sound. It will be necessary to reduce the signal input to the receiver so that tween pins 2 and 3 of J 400 , is kept as measured bemaximum, and preferably below 5 volts. In strongsignal areas this may require shorting of the antenna terminals and the application of bias to the a-g-c circuit. The signal input to the receiver may be adjusted by varying the length of the shorting lead. The bias may be applied to the a-g-c circuit by means of the jig shown in figure 2. The sound i-f output alignment jig shown in figure 3 should be used, for tector output. ctor output.
When a signal generator is used, bias should be applied to the a-g-c circuit, to aid in the reduction of
circuit noises from the i-f system. The receiver should be adjusted to a channel on which no station can be received. The generator should be connected to pin 2 of J200 through the 2200 -ohm resistor in the sound i-f input alignment jig. The generator should be adjusted for unmodulated output at 4.5 mc .
After the above conditions have been met, proceed as follows:

1. Connect the 20,000 -ohms-per-volt meter to the leads from pins 2 and 3 of the sound i-f output alignment jig, negative terminal to pin 2 and positive terminal to pin 3.
2. Adjust TC300, TC400, TC401, and TC402 for maximum output, as indicated on the meter. If the output exceeds 10 volts, reduce the signal input to the receiver.
3. Connect the meter to the junction of the two 5,000 -ohm resistors in the sound i-f output alignment jig and to pin 3. Adjust TC403 for zero cross-

Figure 9. R-F Probe for Sound-Trap Adjustment
over. Zero crossover is indicated by a zero indication on the meter; when TC403 is turned in one direction from this zero point, the meter will swing positive, and when it is turned in the opposite direction, th meter will swing negative. (To aid in reading a pos tive and negative swing of the meter, set the pointer by means of the zero-adjust screw, to a convenient cali bration mark on the scale before connecting to the circuit.)

ADJUSTMENT OF 4.5-MC. TRAP

To adjust the $4.5 \cdot \mathrm{mc}$. trap in the plate circuit of the first video amplifier, proceed as follows:

1. Connect the output of an AM r-f signal gener ator to the lead from pin 2 (lead "A") of the sound i-f input alignment jig (see figure 2). Adjust the generator for $4.5-\mathrm{mc}$., 400 -cycle modulated output Set the output attenuator for maximum output from the generator.
2. Connect the input of r-f probe, shown in figure 9, to the grid of the picture tube, and connect the out put of the probe to the vertical input of the oscillo maximum. Adjust the horizontal sweep of the oscillo scope for 400 cycles.
3. Adjust TC301 for minimum indication on the oscilloscope. (The normal setting for TC301 is with the screw approximately $5 / 8$ inch out from the chassis.)
An alternate method for adjustment of TC301 may e used if a $4.5-\mathrm{mc}$. generator is not available. adjust TC301 without the generator, proceed as fol
4. Tune in a strong station signal.
5. Turn the FINE TUNING control in the clock wise direction until a fine beat pattern appears in the picture.
6. Adjust TC301 until the beat disappears or is a a minimum. When correctly adjusted, the screw wil be out from the chassis approximately $5 / 8$ inch.
7. If more than one station is available, check the setting of TC 301 on all stations.

OSCILLOSCOPE WAVEFORM PATTERNS

The waveforms were taken with the receiver adjusted for an approximate peak-to-peak output of 2 volts at the video detector. The voltages given with
the waveforms are approximate peak-to-peak values. The frequencies shown are those of the waveformsnot the sweep rate of the oscilloscope. The waveforms
were taken with an oscilloscope having good highfrequency response. With oscilloscopes having poor high-frequency response, the sharp peaks of the hori-
zontal waveforms will be more rounded than those shown, and the peak voltages will differ from those shown.

Figure 16. Noise Inverter $\begin{gathered}\text { TP2-658 } \\ \text { Pin } \\ \text { Cathode, }\end{gathered}$
Wave shape anditude vary with
noise 11

Figure 11. Cate Pulse Plug, Pin 4
500 volts, 15,750 c.p.s.

Figure 14. Gated Leveler Crid, Pin 2

$$
\begin{gathered}
\text { Figure } \\
\text { 17. Sync } \\
\text { Pin } \\
\text { Peparator Plate, } \\
17 \text { volts, } 60 \text { c.p.s. }
\end{gathered}
$$

Figure 12. A-C-C Cate Crid. Pin 1

 Junction of rits, 15,750 c.p.s.

Figure 18. Syncer Separator Plate, 17 volts. 15.750 c.p.s.

Figure 20. Phase Splitter Plate. $\begin{gathered}\text { TP2-640 }\end{gathered}$ 30 volts. 60 c.p.s.

Figure 23. Vertical Output Grid, 23. $\begin{aligned} & \text { Pertical } 2 \text { and } 7 \\ & 120 \text { volts, } 60 \text { c.p.s. }\end{aligned}$ Pin 1
130 volts, 60 c.p.s.

12

[^0]

Figure 21. Vertical Oscillator Grid, 165 volts, 60 c.p.s.

Figure 24. $\begin{gathered}\text { Vertical Output Plate. } \\ \text { Pins } 6 \text { and } \\ \text { TP }\end{gathered}$ 24. Pins 6 and $\begin{aligned} & \text { a } \\ & 450 \text { volts. } 60 \text { c.p.s. }\end{aligned}$.

TP2-646
Figure 28. Horizontal Oscillator, lunction of 4800 , R806, and C806 35 volts, 15,750 c.p.s.

TP2-649
Figure 3:. Horizontal Output Grid, Pin 5
130 volts, 15,750 c.p.s.

TP2-647
Figure 29. Horizontal Oscillator Cathode, Pins 8 and 3 16 volts, 15,750 c.p.s.

TP2-650
Figure 32. Horizontal Deflection Yoke. "Pin 7 of 1800 3000 volits, 15,750 c.p.s. *SEE CAUTION below.

TP2-648
Figure 30. Horizontal Oscillator Crid, Pin 2
38 volts, 15,750 c.p.s.

TP2-651
Figure 33. Cate Pulse Socket, Pin 4 of 1801 500 volts, 15,750 c.p.s.
*CAUTION: High-voltage pulses are present in the horizontal-output circuit. The waveform in figure 32 was taken with the alligator clip of the oscilloscope lead clipped over the insulation of the lead connected to pin 7 of J800. (To prevent puncture of the insulation of the lead, file off the teeth of the alligator clip and wrap friction tape
around the clip.) Connection to other points in the horizontal-output circuit is dangerous, due to the high voltages present. The peak-to-peak voltage shown for figure 32 is the actual voltage present, however the amplitude of the scope presentation depends upon the degree of coupling.

TP2-2243
Figure 34. R-F Chassis 94, Bottom View, Showing Voltages at Socket Pins

TP2-2244
Figure 35. Deflection Chassis J-4, Bottom View. Showing Voltages at Socket Pins

$$
8151-Z d 1
$$

REPLACEMENT PARTS LIST

IMPORTANT

General replacement items commonly stocked by the serviceman are omitted from this parts list. All condensers are molded-bakelite Philco condensers, with a 600 -volt rating, and all resistors are $1 / 2$ watt, unless chassis type and should be ordered in this way rather than by model number. A list of miscellaneous parts is given at the end of the parts list for each chassis type. All parts are symbolized in the schematic diaram and base layout, for identification purposes.

NOTE: Part numbers identified by an asterisk (*) are general replacement items These numbers may not be identical with those on factory parts. Also, the electrical values of some replacement items may differ from the values indicated in the schematic diagram and parts list in that so so tion will either be unchanged or improved When ordering replacements, use only the "Service Part No""

DEFLECTION CHASSIS J-4
SECTION 1—POWER SUPPLY

Reference Symbol	Description $\quad \begin{gathered}\text { Service } \\ \text { Part No. }\end{gathered}$
$\begin{aligned} & \text { C100 and } \\ & \text { C101 } \end{aligned}$	Condenser, filter, electrolytic, $120 \mu \mathrm{f}, 150 \mathrm{v}$..................30-2568-51*
C102	Condenser, filter, electrolytic, $10 \mu \mathrm{f}, 25 \mathrm{v}$ 30-2417-3
C103	Condenser, filter, electrolytic, $80 \mu \mathrm{f}, 300 \mathrm{v}$.....................30-2584-20
$\begin{gathered} \text { CR100 } \\ \text { and } \end{gathered}$	
CR101	Rectifier, selenium, 350 ma .
F100	Fuse, line, 1.6 amperes 45-2656-23
J100	Socket, a-c line 27-6240-3
J101	Socket, television chassis connecting 27-6274-1
J102	Socket, radio chassis connecting 27-6274-4
L100	Choke, 1 henry (part of EM speaker $)$ Speaker field
L100	Choke, 1 henry (used with PM speaker)32-8605
PL100	Plug, a-c line Part of line cord ass'y.
PL101	Plug and cable ass'y., television chassis connecting (See Misc. "B")
PL102	Plug and cable ass'y., radio chassis connecting . See parts list of radio tuner used
R100	Resistor, current limiting, 5 ohms, 33-3448-5 10 watts
R101	Resistor, filter, 47,000 ohms, 1 watt 66.3474340
R102	Resistor, voltage dropping .24 ohm 41-4149
R103	Resistor, voltage dropping, 2.7 ohms, 1 watt '66-9274360
S100	Switch, off-on Part of volume contr
T100	Transformer, filament32-85

SECTION 7-VERTICAL SWEEP

$\begin{gathered} R e \\ S_{1} \end{gathered}$	Description $\quad \begin{gathered}\text { Service } \\ \text { Part No. }\end{gathered}$
$\mathrm{L} 700 \text { and }$	Coils, vertical deflection Part of deflection yoke
R701	Potentiometer, VERT. HOLD control, $\mathbf{2 5 0 , 0 0 0}$ ohms Part of R81
R704	Potentiometer, HEIGHT control, 2.5 megohms\ldots 33-5565-31
R708	Potentiometer, VERT. LIN. control, 2.5 megohms33-5565-31
T700	Transformer, vertical oscillator …3 32-8431-2,
T701	Transformer, vertical output32-8

SECTION 8-HORIZONTAL SWEEP

Reference Symbol	Description $\quad \begin{gathered}\text { Service } \\ \text { Part No. }\end{gathered}$
C803	Condenser, by-pass, .005 μ f. 30-1238-1
C804	Condenser, grid blocking, . $01 \mu \mathrm{f}$. . 30-1238-2
05	Condenser, by-pass, $100 \mu \mu \mathrm{f} ., \pm 5 \% \quad 60.10105417 *$
C807	Condenser, d-c blocking, $390 \mu \mu \mathrm{f}$., $\pm 5 \%$ 60-10395417
C808	Condenser, charging, $390 \mu \mathrm{ff}$. . 60-10395417
C8	Condenser, screen by-pass, $100 \mu \mu \mathrm{f}$. 60.00825317
C813	Condenser, anti-ringing, $56 \mu \mu \mathrm{f}$. . 30-1243-5
C815	Condenser, electrolytic Part of C103
C815A	Condenser, by-pass, $10 \mu \mathrm{f} . \ldots$ Part of C103
C815B	Condenser, by-pass, $40 \mu \mathrm{f.}, \mathrm{475v} \mathrm{..} .\mathrm{Part} \mathrm{of} \mathrm{C103}$
J800	Socket, deflection 27-6274.7
J801	Socket, gate pulse 27-6273
L800	Coil, stabilizing, $30-80 \mathrm{mh}33^{3-4557}$
L801	Coil, r-f choke, horizontal-output plate Part of T800
1802	Coils, horizontal de-
1803	flection........ Part of deflection yoke (See Misc. "A")
L804	Coil, r-f choke, damper cathode ... 32-4112-24
1805	Coil, r-f choke, damper plate … 32-4112-24
PL800	Plug, gate pulse …..... Part of cable ass'y. (See Misc. "B")
PL801	Plug, deflection Part of cable ass'y. (See Misc. "A")
R810	Potentiometer, HORIZ. HOLD CENTERING
R811	Potentiometer, HORIZ. HOLD con- trol, 200,000 ohms33-5563-50
R815	Potentiometer, WIDTH control, 10,000 ohms, 2 watts $.33-5546-4$
R816	Resistor, screen voltage dropping, 3900 ohms, 2 watts66-2395340
R817	Resistor, feedback, 47,000 ohms, $1 \quad 66-3474340$ watt
R818	Resistor, voltage divider, 22,000 ohms, 2 watts $66 \cdot 3225340$
R819	Resistor, voltage divider, 3900 ohms, 2 watts onc.........66395340
T800	Transformer, horizontal output32-8565

REPLACEMENT PARTS LIST (Cont.)

DEFLECTION CHASSIS J-4 (Cont.)

MISCELLANEOUS "A"

Description	$\begin{aligned} & \text { Service } \\ & \text { Part No. } \end{aligned}$
Arm and magnet ass'y., picture tube	76.6594
Beam bender	76.6077.2
Cable assembly, high voltage, picture tube	41-4664-6*
Cable and plug assembly, deflection	41-4086-25
Cable and plug assembly, volume control	41-4136-2
Cord, line	41.3865
Focus assembly	76-6126-4
Insulator, electrolytic condenser mounting	27-9508-1

MISCELLANEOUS "A" (Cont.)

Description	Service Part No.
Shield, corona	56-9684
Socket, damper tube	27-6174-7
Socket, high-voltage rectifier	27-6290-1
Socket, miniature, 7 pin	27.6203*
Socker, miniature, 9 pin	27-6203.6*
Socket, octal	27.6174
Socket, 12BH7 and 12AU7 tubes	76-6115
Yoke, deflection	

R-F CHASSIS 94

SECTION 2—VIDEO I.F.

$\begin{gathered} \text { Reference } \\ \text { Symbol } \end{gathered}$	Description $\begin{gathered}\text { Service } \\ \text { Part No. }\end{gathered}$
C200	Condenser, 47.25 -mc. rrap, $10 \mu \mu \mathrm{f}$. 60000105417
C201	Condenser, trimmer, $\mathbf{4 7 . 2 5 - m c}$. trap, 1 to $5 \mu \mu \mathrm{f}$.
C202	Condenser, 41.25 -mc. trap, $5 \mu \mu \mathrm{f}$. $30-1224-28$
C203	Condenser, trimmer, $41.25-\mathrm{mc}$. trap, 1 to $5 \mu \mu$ f. $31-6520-9$
C204	Condenser, trimmer, 1 to $5 \mu \mathrm{ff} \quad 31-6520-$.
C205	Condenser, d.c blocking, $12 \mu \mu \mathrm{f}$. . 31-6520-9
C206	Condenser, trimmer, 1 to $5 \mu \mu \mathrm{f}$. . 31-6520-9
C209	Condenser, a-g.c by-pass, $680 \mu \mu \mathrm{f}$. 62-168001001*
C210	Condenser, trimmer, 1 to $5 \mu \mu \mathrm{f}$. . 31-6520-9
C211	Condenser, screen by-pass, $680 \mu \mu \mathrm{f}$. 62-168001001*
C212	Condenser, by-pass, $680 \mu \mu \mathrm{f}$. 62-168001001*
C215	Condenser, trimmer, 1 to $5 \mu \mu \mathrm{f}$. $\quad 31.6520-9$
C217	Condenser, screen by-pass, $200 \mu \mu \mathrm{f}$. $\quad 31-6520-9$
C	Condenser, trimmer, 1 to $5 \mu \mu \mathrm{f}$. . . 31-6520-9
C219	Condenser, detector by-pass, $5 \mu \mu \mathrm{f}$. 3 30-1224-28
C220	Condenser, by-pass, $680{ }_{\mu \mu \mathrm{f}}$ f . . 62-168001001
C221	Condenser, by-pass, $680 \mu \mu \mathrm{f}$. . 62-168001001
C223	Condenser, a-g.c filter, $2 \mu \mathrm{f}$. . . . 30-2417-7
C224	Condenser, electrolytic 30-2584-24
C224A	Condenser, filter, 40μ f. . . . Part of C224
C224B	Condenser, filter, $10 \mu \mathrm{f}$. . . Part of C224
C224C	Condenser, filter, $10 \mu \mathrm{f}$. Part of C224
CD200	Crystai, video detector, $1 \mathrm{~N} 64 \times 34.8022$
J200	Socket, video test 27-6273*
L200 and	Coils, tuner coupling Part of T200
L202	Coil, 47.25 mc . trap $\quad 32.4548 .15$
L203	Coil, 41.25 -mc. trap …e. 32-4112-31
L204	Coil, 1st i-f grid . 32-4112.31
$\begin{aligned} & \text { L205 and } \\ & \text { L206 } \end{aligned}$	Coils, coupling Part of T201
${ }_{\text {L207 }} \mathrm{L} 208$ and	
L208	Coils, coupling Part of T202
L209	Coils, filament choke32-4112-15
$\begin{aligned} & \mathrm{L} 210 \text { and } \\ & \mathrm{L} 211 \end{aligned}$	Coils, coupling Part of T203
$\begin{aligned} & \mathrm{L} 212 \text { and } \\ & \mathrm{L} 213 \end{aligned}$	Coils, coupling Part of T204

SECTION 2—VIDEO I.F. (Cont.)

Reference Symbol	Description	$\begin{aligned} & \text { Service } \\ & \text { Part No. } \end{aligned}$
L214	Coil, series peaking, $10 \mu \mathrm{~h}$.	32-4422-27
L215	Coil, series peaking, $3 \mu \mathrm{~h}$.	32-4143-22
L216	Coil, shunt peaking, $400 \mu \mathrm{~h}$.	32-4480-5
217	Coil, filament choke	32-4112-15
R224	Resistor, voltage dropping	33-3446-8
R224A	Resistor, 2000 ohms, 7 watts	Part of R224
R224B	Resistor, 400 ohms, 26 watts	Part of R224
T200	Transformer, video i.f input	32.4548-23
T201	Transformer, first video i-f	32-4548-24
T202	Transformer, second video i.f	32-4548-25
T203	Transformer, third video i-f	32-4548-26
T204	Transformer, fourth video i.f	32-4548-18

SECTION 3_VIDEO

Reference Symbol	Description $\quad \begin{gathered}\text { Service } \\ \text { Part No. }\end{gathered}$
C300	Condenser, audio take-off, $2.2 \mu \mu \mathrm{f}$. . 30-1221-6
C301	Condenser, by-pass, $18 \mu \mu \mathrm{f}$. $\ldots .662 .018400021$
C302	Condenser, screen by-pass, $33 \mu \mu \mathrm{f}$. 62.033009001
C303	Condenser, by-pass, $27 \mu \mu \mathrm{f}$. $\ldots .66$-027409001
C304	Condenser, by-pass, $33 \mu \mathrm{ff}$. . ${ }^{\text {a }}$, 32-4463-7
L301	Coil, peaking, video amplifier grid, $180 \mu \mathrm{~h}$. $32.4480-9$
L302	Coil, 4.5 -mc. trap 32-4463-9
L303	Coil, series peaking, $250 \mu \mathrm{~h}$. 32-4480-4
L304	Coil, shunt peaking, 170 to $700 \mu \mathrm{~h} . \quad 32 \cdot 4467-11$
L305	Coil, series peaking, $180 \mu \mathrm{~h} .1$. 32-4480-9
L306	Coil, shunt peaking, 50 to $170 \mu \mathrm{~h} . \ldots 32-4467-7$
R308	Potentiometer, CONTRAST control, 2000 ohms
R311	$\begin{gathered}\text { Resistor, plate load, } 2500 \text { ohms, } 7 \\ \text { watts }\end{gathered} \quad 33-1335-93$
R313	Potentiometer, BRIGHTNESS con- trol, 100,000 ohms $\ldots \ldots$ Part of R308
R316	Resistor, grounding, 1 watt 470,000 ohms, 66.4474340

TELEVISION SERVICE MANUAL

REPLACEMENT PARTS LIST (Cont.)
R-F CHASSIS 94 (Cont.)
SECTION 4-AUDIO

Service

TELEVISION

PHILCO
TELEVISION SERVICE MANUAL FOR
R-F CHASSIS 44
DEFLECTION CHASSIS G-4

TABLE OF CONTENTS

CIRCUIT DESCRIPTION

The Philco 1953, Code 125 , television receivers use two chassis-one containing the r-f, video, audio, and sync circuits, the other containing the power and deflection circuits.

Since these chassis are not isolated from the $60-$ cycle power line, all protruding shafts and mounting feet are isolated from the chassis. CALTION: See A-C Line Isolation.

A separate subchassis contains the r-f amplifier, the oscillator, and the mixer. The r-f amplifier uses a $6 \mathrm{BZ7}$ or a 6 BQ 7 tube. The oscillator and mixer each use one-half of a l2AV7 tube. The output of the mixer is fed to a four-stage, stagger-tuned, i-f amplifier system employing three 6AL6 tubes and one 6CB6. One-half of a 12AU7 is used as a video detector and a-g-c rectifier; the cathode and grid are used for the video detection, and the cathode and plate for the a-g-c rectification. A delay voltage, obtained from a voltage divider consisting of CONTRAST control R305 and resistor R408, is applied to the cathode to prevent a-g-c action on weak signals, where maximum gain is required. The maximum delay voltage is obtained when the CONTRAST control is in a fully clockwise position, as is the case when the receiver is adjusted for weak signals. The a-g-c voltage is applied to the first three i-f stages, to hold the output of the video detector essentially constant in spite of large variations in input signal levels. The a-g-c voltage for the r-f amplifier is obtained from the voltage divider in the sync separator circuit. As the voltage is dependent upon signal strength, it controls the gain of the r-f amplifier in proportion to the received signal. To prevent the a-g-c circuit of the tuner from going positive, one diode section of a 6T8 tube is used as a clamp.

Sound i-f (intercarrier) is obtained by utilizing the beat frequency produced when the $26.6-\mathrm{mc}$. video carrier and the $22.1-\mathrm{mc}$. sound carrier are mixed in the video detector. The $4.5-\mathrm{mc}$. beat frequency is the difference between 26.6 mc . and 22.1 mc ., and contains the FM sound signal. This $4.5-\mathrm{mc}$. signal contains only a negligible amount of the video amplitude modulation, provided that the amplitude of the 22.1mc. signal is considerably lower than that of the $22.6-\mathrm{mc}$. signal. The proper relationship between the two carriers is established during the alignment of the receiver. There is sound output only when both the video and sound carriers are present.

The oscillator is tuned primarily to obtain the best picture, since the $4.5-\mathrm{mc}$. relationship always exists between the two carriers. The $4.5-\mathrm{mc}$. sound i-f (intercarrier), which is taken from the video detector, is amplified by one-half of a 12AU7 and a 6AU6, and is fed to the FM detector, which utilizes two diode sections of a 6 T 8 tube. The triode section of the 6 T 8 is used as the first audio amplifier. The power amplifier uses a 6Y6G tube.

One-half of a $12 A V 7$ tube is used as the first video amplifier, which feeds into a 6AQ5 video output amplifier. The plate load of the first video amplifier is made up of two resistors, R302 and R303. To obtain higher voltage for synchronization, the composite signal used for sync purposes is taken from across both R302 and R303, but the composite video for the video output stage is taken across R303 only. C302 is used to by-pass high-frequency video around R302. The plate load of the video output amplifier consists
of L302 and R309. L302 is an adjustable peaking coil, and is set at the factory for best video response.

The sync circuit consists of a first sync separator, a variable diode noise gate, a second sync separator, and a sync inverter. The composite vidco is fed to the first sync separator, one-half of a 12AV7 tube, and the output from the cathode is applied to the cathode of the noise gate, one-half of a 12AU7 tube. A positive voltage, obtained from a voltage divider made up of R606 and R607, is applied to the diode plate, and the sync signal, of positive polarity, is applied to the cathode. The diode will pass the sync signal as long as the cathode remains negative with respect to the plate, and the value of plate voltage is chosen so that this condition obtains for all normal sync signals. However, when a noise signal greater than the sync signal is received, the cathode of the diode is driven positive with respect to the plate, the diode is cut off in consequence, and the noise is not permitted to pass to the second sync separator.

The positive voltage applied to the plate of the diode is made proportional to the strength of the signal being received by obtaining it from the load side of a dropping resistor, R 419 , in the $\mathrm{B}+$ line that supplies plate and screen voltages to the i-f stages. The current through R419, therefore, depends upon the amount of current drawn by the i-f stages. When a stronger signal is received, the a-g-c voltage increases; this decreases the current drawn by the i-f stages, and decreases the voltage drop across R419. Since the result is an increase in the voltage applied to the plate of the noise-gate diode, the level at which the diode will gate out the noise is raised. When a weaker signal is received, the opposite effect is obtained. The second sync separator, one-half of a 12AU7 tube, removes all remaining video information from the composite signal. The output of the second sync separator is fed to the deflection chassis through the power connecting cable. A sync inverter, one-half of a 6 SN 7 GT tube, reverses the polarity of the sync pulses for proper triggering of the sweep oscillators.

The vertical sync pulses are separated from the horizontal pulses in an integrating network and are applied to the grid of the vertical blocking oscillator, which uses one-half of a 6SN7GT tube. The output of the blocking oscillator is amplified by the 6AH4GT vertical output tube, and is applied to the verticaldeflection coils.

The horizontal sync pulses are applied to the grid of a phase comparer, one-half of a 6SN7GT tube, through a capacitive voltage divider. Within the lockin range, the phase relationship between the horizontal sawtooth and the sync pulses at the grid of the phase comparer determines the frequency of the horizontal blocking oscillator. The blocking oscillator employs one-half of a 6SN7GT tube. A 6BQ6GT tube is used as the horizontal amplifier. The screen voltage for the horizontal amplifier is supplied through a voltage-divider network. R817, the WIDTH control, and R303B, the BRIGHTNESS control, are parts of this divider. R817 varies the voltage applied to the screen, thus adjusting for proper picture width. Adjusting R308B for brightness varies the bias on the picture tube. The change in hias causes a change in beam current and would tend to result in a change in picture width and variation in the second-anode voltage. However, because R308B is also a part of the voltage-divider network in the screen circuit of the horizontal amplifier, the sereen voltage is automatical-
ly altered to compensate for any tendency of beam current change to affect the width. The output of the horizontal amplifier is fed to the horizontal-deflection coils through the horizontal output transformers. A 6 V 3 tube is used as the horizontal damper tube.

The second-anode voltage for the picture tulse is supplied by one 1B3GT high-voltage rectifier tube. The B-plus voltage for the recciver is supplied by two selenium rectifiers, CR100 and CR101, in a full-wave voltage-doubler circuit, operating directly from the power line. Bias voltage is obtained across the speaker field coil (used as filter choke), which is in series with the negative side of the B-plus supply. The B-plus boost voltage, derived from the horizontal damper circuit, supplies high B plus to the horizontal amplifier, vertical oscillator, and first anode of the picture tube. Filament current for all the tubes except the high-voltage rectificr is supplied by a 60 -cycle step-down transformer. The filanent current for the high-voltage rectifier is supplied by the horizontal output transformer.

IMPORTANT

A-C LINE ISOLATION
CAUTION: One side of the a-c line is connected to the chassis through C102 and 1.100 . The other side of the a-e line is connected to the chassis through R102, CR100, and C103, in series. Grounding the chassis will result in a short circuit across one or the other of these two branches in the voltage-doubler circuit. During servicing and alignment it is desirable that an a-e line isolation transformer capable of handling at least 225 watts (Philco Part No. 459600) be used. Failure to ase an isolation transformer will greatly increase the shock hazard and may result in damage to the equipment.

SPECIFICATIONS

CHANNEL TUNING

Twelve channel, wafer switch incremental tuner, fine tuming of local oscillator.
FREQUENCY RANGE
Television Channels 2 through 13.
INTERMEDIATE FREQUENCIES
Video Carrier
26.6 nic.

Sound (Interearrier) 4.5 me.
TRANSUISSION LINE 300 ohm, twin-wire lead
OPERATING VOLTAGE. 110-120 volts, 60 cycles, a.c. POW'ER CONSUMPTION. 230 watts

TUBE COMPLEMENT
 R-F CHASSIS 42

V No.	TUBE TYPE	FUNCTION
V1	$\underset{\text { or } 6 \mathrm{BZ7}}{\substack{\text { 6BO7-miniature }}}$	R.F amplifier
V2	12AV7-miniature	Oscillator, mixer
V3. V4, V5	6ad6-miniature (3)	V Video i-f amplifier
$\checkmark 6$	6C136-miniature	Video i-f amplifier
V_{7}	12AU7-miniature	Video detector, a-g.c rectifier, first sound i.f amplifier
V 8	6AU6-miniature	Second sound i.f amplifier
v9	6T8-miniature	FM detector, first audio amplifier, a-g.c clamp
V10	6Y6GT-octal	Audio output
V11	12AV7-miniature	First video amplifier, first syne separator

TUBE COMPLEMENT (Continued)
R-F CHASSIS 42 (Cont.)

V No.	TUBE TYPE	FUNCTION
V12	12AU7-miniature	Noise gate, second sync separator
V13	6AQ5-miniature V20	Video output $21 E P 4 A$
		Pieture tulse

DEFLECTION CHASSIS G-4

V No.	TUBE TYPE	FUNCTION
V14	6SN7GT-octal	Sync inverter, vertical oscillator
V15	6AH4GT-octal	Vertical output Phase comparer, hori- Zontal oscillator
V17	6SN7GT-octal	6BQ6GT-octal Horizontal output
V18	6V3-niniature	
Vorizontal damper		
High-voltage rectifier		

B-SUPPLY FUSE REPLACEMENT

The B-supply protective fuse, $\mathbf{F 1 0 0}$, is wired into the low-voltage section, and is in series with the selenium rectifiers. For replacement, use a 1.6 ampere delayed-action type fuse, Philco Part No. 45-2656-23.

CAUTION: Discharge the circuit before replacing the fuse.

HORIZONTAL SWEEP ADJUSTMENT

Adjustment of HORIZONTAL OSCILLATOR frequency Control and Horizontal Lock-in Trimmer

The range of the HORIZ. HOLD control potentiometer is sulficient to compensate for normal variations in the frequency of the horizontal oscillator, and no other adjustment is ordinarily required. Howcver, if the tube or other components are replaced in the horizontal-oscillator circuit, it may be necessary to reset the HORIZONTAL OSCILLATOR FREQUENCY control and horizontal lock-in trinmer as directed helow, in order to obtain proper synchronism athd deflection. (These controls are located on the back and side of the chassis.)

1. Turn the HORIZ. HOLD control fully clockwise.
2. Adjust the HORIZ. OSC. FREQ. control until four diagonal black bars appear, sloping to the right.
3. Turn the HORIZ. HOLD control counterclockwise until the picture comes in, then goes out of sync. Then turn the HORIZ. HOLD control slowly clockwise again, counting the number of black (blanking) bars, sloping down to the left, just before the picture pulls into sync. Adjust the horizontal lock-in trimmer, C804, until there are two or two and onehalf hars just before the picture pulls into sync. If the receiver does not lose sync when the IIORIZ. HOLD control is fully counterclockwise, renove the signal momentarily to interrupt the syne, then proceed as above.

Adjustment of Horizontal-Oscillator Transformer

CAUTION: Do not adjust tuning cores
TC800 and TC801 in the horizontal-oscillator transforiner, T800, unless it is absolute-

TPI-1089-8
Figure 1. Horizontal-Oscillator Waveshape, Showing Correct Adjustment of T800

> ly necessary. These cores are preset at the factory with special equipment. The tuning cores in replacement transformers are also preset, and do not require adjustment after installation in the chassis. Condenser C807 is matehed to T800, and must be replaced when T800 is replaced. Horizontal-oscillator transformer T800 and condenser C807 are supplied as a unit.

If for some reason it becomes necessary to adjust TC800 and TC801, proceed as follows:

1. Tune in a station, and adjust the HORIZ. HOLD control until the picture is synchronized. If the picture cannot be synchronized, adjust the HORIZ. FREQ. control. If it is impossible to obtain synchronization by adjustment of the HORIZ. HOLD and HORIZ. FREQ. controls, adjust the oscillator core TC801.
2. Connect an oscilloscope to the cathode (pin 6) of the horizontal oscillator, using a $15-\mu \mu \mathrm{f}$. condenser in series with the scope lead. Adjust the stabilizer core, TC800, until the wave shape resembles that in figure 1. The "average line" in figure 1 is established by shorting the input leads of the scope. Keep the picture synchronized while adjusting TC800.
3. Turn the HORIZ. HOLD control fully clockwise. Ad just the HORIZ. FREQ. control until four diagonal black bars appear, sloping to the right.
4. If four diagonal black bars cannot be obtained by adjusting the HORIZ. FREQ. control with the HORIZ. HOLD control in the clockwise position, adjust the oscillator core, TC801.

VIDEO-OUTPUT PEAKING COIL ADJUSTMENT

The video-output peaking coil, L302, is adjusted at the factory for proper transient response of the video amplifiers. Ordinarily this coil will require no further adjustment by the serviceman. On some stations, however, where excessive overshoot or excessive smear is present, a slight adjustment of L302 may improve the picture quality on that station, but at a possible sacrifice of quality on other channels. If L302 is replaced in servicing, adjustment will be required.

Before adjusting L302, check the tuner and i-f alignment. (Never adjust L302 until the alignment of the receiver is correct.) Then tune in a station and adjust L302 so there are no trailing whites or smear in the picture. Turning TC301 clockwise reduces trailing whites and overshoot; turning TC301 counterclockwise reduces picture smear and increases trail-
ing whites. The proper position is the point where no smear or trailing whites appear in the picture.

The above procedure for adjustment of TC301 applies to -a particular station exhibiting smear or overshoot. After TC301 is adjusted, reception on all the other stations should be checked, to nake certain that the adjustment has not impaired the picture quality.

TELEVISION ALIGNMENT

General

The alignment consists of adjusting each tuned circuit to a given frequency, using an AM signal, then feeding in a sweep signal at the antenna terminals and touching up the adjustments to obtain the desired pass band.

The over-all response curve (r-f, i-f) of the circuits from the antenna terminals to the video detector, after the i-f stages have been aligned, should appear essentially the same regardless of the channel under test. If not, the tuner may require alignment. Before aligning the tuner, check the receiver and test equipment to make certain that the variation in response is not due to regeneration or improper matching of connecting leads, and that the a-g-c bias is the same on each channel.

The video-carrier intermediate frequency is 26.6 me., and the sound intermediate (intercarrier) frequency is 4.5 mc . Alignment of these circuits requires careful workmanship and good equipment. The following precautions must be observed:

1. There must be a good bond between the receiver chassis and the test equipment. This is most easily obtained by having the top of the workbench metallic. The receiver chassis should be placed on its side with the tuner side down on the bench. If the bench does not have a metallic top, the test equipment and chassis can be bonded by a strip of copper about 2 inches wide. The section of the chassis nearest the tuner should rest on the strip.
2. Do not disconnect the picture tube, picture-tube yoke, or speaker while the receiver is turned on.
3. Allow the receiver and test equipment to warm up for 15 minutes before starting the alignment.
4. The marker (AM) signal generator should be calibrated accurately to the frequencies used and to the sound and video r-f carriers of each channel used during alignment. If Model 7008 is used, the built-in crystal calibrator provides an excellent means of calibration. An alternate method for calibrating the signal generator to the sound and video r-f carrier frequencies is to zero-beat the signal generator with the received signals.

For further information regarding calibration, refer to Philco Lesson PR-1745(J) entitled "Television Service in the Home."

Test Equipment Required

The following test equipment is recommended for aligning the receiver:

1. Philco Precision Visual Alignment Generator for Television and FM, Model 7008, or equivalent.
2. Vacuum-tube voltmeter, or 20,000 -ohms-per-volt voltmeter.
3. R-f probe, Philco Part No. 76-3595 (for use with Model 7008 generator).

Jigs and Adapters Required Mixer Jig

Connections to the grid of the mixer tube may be made through the alignment jack provided for that purpose. To connect the generator to this point, a mixer-grid jig, Philco Part No. 45-1739, and a connecting cable, Philco Part No. 45-1635, may be used. As an alternate, a Philco alligator-clip adapter, Part No. 45-1636, with as short a ground lead as possible, may be used to connect to the alignment jack. The ground lead should be connected as close as possible to the mixer tube. It is essential that the signal-generator output lead be terminated with a 68 -ohm resistor (carbon) so that regeneration, caused by connection of the lead to the mixer, is held to a minimum.

Antenna-Input Matching Network

An impedance-matching network for coupling the signal generator to the aerial-input terminals of the receiver is shown in figure 2 of PR2170. This network, which is designed to have an input impedance of 75 ohms and an output impedance of 300 ohms, is used to match a 75 -ohm generator to a $300-\mathrm{ohm}$ antenna input circuit. The resistors used in this network should be of carbon-composition construction, and should be chosen from a group, to obtain values within 10% of those indicated. The resistors should be placed in a shield can, to prevent variable effects. An antenna matching jig, Philco Part No. 45-1736, which consists of a matching transformer and connecting box, may be used in place of the resistor network.

ALIGN TEST Jack Adapter

The ALIGN TEST jack adapter, shown in figure 3 of PR2170, should be used during the i-f alignment to apply the proper bias to the a.g-c bus, and to provide a convenient oscilloscope connection. This adapter consists of a 5 -prong plug, a $10,000 \cdot \mathrm{ohm}$ potentiometer, a 2200 -ohm isolating resistor, and 3 -volt battery. A suggested method of fabricating the adapter is also shown. It is suggested that the bias battery and potentiometer be mounted in a metal box of convenient size.

The potentiometer and switch are connected across the 3 -volt battery. The switch is used to disconnect the potentiometer, to prevent the discharge of the battery while not in use. The 1000 -ohm resistor in series with the arm of the control will prevent rapid discharge of the battery if the leads are accidentally shorted.

FM TEST Jack Adapfer

The FM TEST jack adapter that should be used to connect the voltmeter and oscilloscope to the FM detector test socket, J402, is shown in figure 4 of PR2170. A suggested method of fabricating the adapter is also shown. Pins 1 and 5 are removed from a five-pin plug, 27-4785-3, because a three-pin plug with proper spacing is not readily available.

TELEVISION TUNER ALIGNMENT

After the tuner is serviced, or if an i-f alignment is required, or if a replacement tube does not exactly meet the requirements described under TUNER TUBE REPLACEMENT, the tuner alignment should
be checked; if realignment is necessary, use the procedure given below.

Since the frequency of the local oscillator affects the tuner response, the local-oscillator alignment should be made first.

Oscillator Alignment General

Beginning with channel 13 , every other coil is tunable, so that by adjusting the tuning cores, it is possible to place either of two adjacent channels exactly on frequency; that is, either channels 13 or 12,11 or 10,9 or 8 , etc. The foregoing is based on the assumption that the oscillator has previously been tracked, and that it is desired to compensate for small tracking errors on several different channels. This adjustment procedure should be carried out with the highest channel first, since the alignment of each channel will affect the alignment of the channels below it in frequency. The FINE TUNING control should be preset for all adjustments, by placing the stop on the fine-tuning cam at the center of the channel 6 oscillator tuning core. See figure 2.

Procedure Using Signal Generator

An r-f signal (unmodulated), at the oscillator frequency, is fed into the antenna input from an AM signal generator, and the oscillator tuning cores are adjusted for zero beat. The r-f signal should be accurate, preferably from a crystal source, or calibrated against the television station. Proceed as follows:

1. Connect a 3300 -ohm resistor in series with the red lead from the tuner. Connect the "hot" lead of the oscilloscope to the junction of the red lead and the $3300-o h m$ resistor, and connect the ground lead to chassis. High oscilloscope gain may be necessary to obtain a visual beat. In this instance, base-line hum may be ignored.
2. Connect the AM (marker) generator to the 300 ohm antenna input terminals. For this purpose the aerial-input matching network is not required.
3. If the tuner has been removed from the chassis and is being aligned outside the chassis, connect the white lead to the negative terminal of a 1.5 -volt battery. Ground the positive terminal.
4. Mechanically preset the fine-tuning cam as shown in figure 2.
5. Feed in an r-f signal (unmodulated) at the oscillator frequency for channel $13(237.85 \mathrm{mc}$.) , with CHANNEL SELECTOR set for channel 13.
6. Adjust the tuning core for channel 13 (see figure 2).
7. Adjust the tuning cores for channels 11 and 9, in the order given with the channel selector set for channels 11 and 9 , respectively.
8. Check the channel 8 oscillator frequency with CHANNEL SELECTOR set for channel 8. If it is too high, turn C527 several turns clockwise; if the frequency is too low, turn the trimmer counterclockwise (see figure 5).
9. Repeat steps $5,6,7$, and 8 until channels 13 , 11,9 , and 8 are within $\pm 500 \mathrm{kc}$. of the correct frequency.
10. Feed in an r-f (unmodulated) signal, at the oscillator frequency for channels 7, 6, 4, and 2, consecutively (see NOTE below), and adjust the respective tuning cores with CHANNEL SELECTOR set for the appropriate channel (see figure 2).

TPI-2217
Figure 2. Television Tuner, Oblique View, Showing Location of Adjustments

NOTE: The exact position of the FINE TUNING shaft should be marked when channel 2 is correctly aligned. This position is to be used in step 6 of the i-f alignment procedure.

Procedure Using Station Signal

The following simplified procedures may be used to align the oscillator when the television i-f alignment is satisfactory and a station signal is available.

1. Mechanically preset the fine-tuning cam to the center of its range (see figure 2).
2. Tune in the highest-frequency channel to be received.
3. Adjust the tuning core in that channel, or in next highest channel, for the best picture; that is, starting with sound in the picture, turn the tuning core until the sound disappears. Repeat for each channel received in the area.

Band-Pass Alignment

General

The band-pass alignment consists of aligning the tuner at channels 13 and 6, and then making it track down to channels 7 and 2 respectively.

During the alignment, a fixed bias of 1.5 volts is applied to the r-f amplifier tube.

An FM (sweep) signal is applied to the antennainput circuit, and an oscilloscope is connected to the
mixer plate circuit. The oscilloscope gain should be as high as possible, consistent with hum level and "bounce" conditions. Hum conditions cause distortion of the base and response. Bounce conditions cause the response and time base to jump up and down, and are caused by poor line regulation. The use of too high an oscilloscope gain aggravates these conditions, whereas the use of too low a gain necessitates increasing the generator output to a point where the tuner may be overloaded. Overload may be checked by changing the generator output while observing the shape of the response curve; any change in the shape of the curve indicates overload, in which event a lower generator output and higher oscilloscope gain must be used.

A 330 -ohm resistor is shunted across the first i-f coil, to eliminate the absorption effect of this coil on the response curve. Proceed as follows:

1. Disconnect the white (a-g-c) lead from the tuner, and connect it to the negative terminal of a 1.5 -volt battery. Ground the positive terminal of the battery.
2. Connect a 3300 -ohm resistor in series with the red lead from the tuner. Connect the "hot" lead of the oscilloscope to the junction of the red lead and the 3300 -ohm resistor.
3. Connect a 330 -ohm resistor from the green lead to ground.
4. Connect the FM (sweep) generator to the 300 ohm aerial input through an aerial-input matching network.

Procedure

1. Set CHANNEL SELECTOR and the FM (sweep) generator on channel 13 (213 mc .). Adjust the generator for sufficient sweep to show the complete response curve.
2. Establish the channel limits (see figure 3) by using the marker (AM r-f) signal generator to produce marker pips on the response curve. (Set the generator first on 210 mc ., then on 216 mc .) The curve should be reasonably flat between the limits shown in figure 3.
3. Adjust TC505 and TC507 (figure 2) for a symmetrical, approximately centered pass band. Set marker generator to 213 mc . Detune TC507 counterclockwise until a single peak appears. Adjust TC505 until the peak falls on the $213-m \mathrm{c}$. marker. It may be necessary to increase the output of the generator during this adjustment. Then adjust TC503 for maximum curve height and symmetry of the single peak. The antenna circuit is now tuned for the high channels. Be sure to reduce the generator output upon completion of this step.
4. Readjust TC505 and TC507 for a symmetrical response, centered about 213 mc . and falling within the limits shown in figure 3.
5. Set CHANNEL SELECTOR and the FM generator on channel $7(177 \mathrm{mc}$.).
6. Establish the channcl limits by using the marker signal generator to produce marker pips on the response curve. (Set the generator first on 174 mc ., then on 180 mc .) The curve should be reasonably flat between the limits.
7. On channel 7 note the response curve, with respect to tilt and center frequency. The curve should be centered in the pass band, and should be symmetrical.

TP9.5128-1
Figure 3. Television Tuner Response Curve, Showing Band-Pass Limits
8. If the curve is not symmetrical, and appears unbalanced as shown in figure 4, leave the generator and tuner set on channel 7 and adjust C506 and C515 (see figure 5) to obtain a response curve which is the mirror image (tilt in the opposite direction) of the original. This is a form of overcompensation to

Figure 4. Television Tuner Response Curve, Showing Tracking Compensation
allow for the effect of channel 13 adjustment on channel 7. For example, if the channel 7 response appears as in figore 4A, then the trimmer should be adjusted to ohtain the response shown in figure 4 B .
9. Reset CHANNEL SELECTOR and generators on channel 13. Readjust TC505 and TC507 for a symmetrical, centered pass hand. (See step 4.)
10. Set CHANNEL SELECTOR and the generators on channel 7, and check the response for center frequency and symmetry. Repeat steps 8 and 9 as many times as necessary to obtain the most symmetrical, best-centered response curves on channels 13 and 7 . Channels 7 through 13 are now correctly aligned.
11. Set CHANNEL SELECTOR and the sweep gencrator on channel 6 (85 mc .).
12. Establish the channel limits, using the marker gencrator to produce marker pips on the response curve. (Set the generator first for 82 mc ., then for 88 mc .)
13. Adjust TC504 and TC506 for a symmetrical, approximately centered pass hand. Set the marker generator for 85 mc . Detune TC506 counterclockwise until a single peak appears.

CAUTION: Do not turn TC506 excessively, or it will fall out of the coil.

Adjust TC504 until the peak falls on the $85-\mathrm{mc}$. marker. (It may be necessary to increase the output of the generator during this adjustment.) Then adjust TC502 for maximum eurve height and symmetry of the single peak. The antenna circuit is now tuned for channels 2 through 6.
14. Readjust TC504 and TC506 for a symmetrical response, centered about 85 mc .

VIDEO I-F ALIGNMENT

Preliminary

Before proceeding with the i-f alignment or making an alignment check, observe the following preliminary instructions:

1. Connect the oscilloscope to the 2200 -ohm resistor from the ALIGN TEST jack adapter.
2. If additional attenuation of the marker signal is required when using Visual Alignment Generator Model 7008 , insert a $10,000-\mathrm{ohm}$ resistor in series with the output lead, or use a second harmonic of band A, which will give a marker of lower amplitude.
3. Preset the television controls as follows:
a. CONTRAST control fully counterclockwise.
b. BRIGHTNESS control to give a dim raster.
c. Function switch to TV position.
4. Insert the FM TEST jack adapter into J402.
5. Insert the ALIGN TEST jack adapter into J200.

Procedure

1. Preset TC201 and TC203 fully counterclockwise. (See figure 5.) Preset TC200 and TC202 to the center of their ranges.
2. Connect the oscilloscope to J200, pin 2, through the 2200 -ohm resistor from the ALIGN TEST jack adapter, and connect the AM generator to Gl (mixer grid on tuner).
3. Feed in a 28.1-me. AM signal, and tune TC201 for minimum output (use first minimum). Use zero bias during this adjustment.
4. Feed in a $21.85-\mathrm{me}$. AM signal, and tune TC203

TP2-1328

Figure 5. Top View of R-F Chossis, Showing Location of Adjustmeats

for minimum output (use first minimum). Use zero bias during this adjustment.
5. Tune TC205, TC204, TC202, TC200, and TC507 for maximum output at the frequencies indicated in figure 5. Use 3 volts of bias, and attenuate the generator to keep the output below the level that will give 0.6 volt output at the video detector with 30% amplitude modulation.
6. Feed in sweep and marker signals to channel 2 through the antenna-input terminals. The tuner pass band should be checked, and the tuner aligned, if

TP1.734
Figure 6. Over-all R-F, I-F Response Curve, Showing Toleronce Limits
necessary; the local oscillator should be set at its correct frequency (81.85 mc . for channel 2). Refer to step 10 of Procedure Using Signal Generator, under Oscillator flignment. The response should fall within the limits shown in figure 6. The ideal response curve is shown in figure 7. The frequencies shown in figures 6 and 7 are for channel 2. To convert these response curves for channels 3 through 13 , refer to the chart of Television-Carrier, Oscillator, and Check-Point Frequencies, on page 4 of PR2170, and substitute the proper frequencies at points A, B, and C. Touch up TC205, TC204, TC202, TC200, and TC507. See NOTE below.

IMPORTANT: Do not turn any of the i-f tuning cores excessively after they have been set in approximate position by the use of the AM signal generators; to do so may cause poor transient or phase response, resulting in trailing whites or smear. If a response within the limits shown cannot be obtained by a slight adjustment, carefully repeat the AM adjustments, and, if necessary, troubleshoot the i-f system. It is preferable to get a response curve within the tolerance range without touching the adjustments made with the AM signals at the specified frequencies, rather than to attempt to obtain the ideal curve.
NOTE: TC205 rocks top of curve. TC202 controls level of carrier. TC204 controls dip or peak on carrier side. TC200 controls dip or peak on sound side.

S-I-F ALIGNMENT

1. Remove the first i-f tube, and connect a v.t.v.m. or a 20,000 -ohms-per-volt voltmeter to the FM TEST jack adapter. Adjust the VOLUME control for moderate speaker output.

TPI. 735
Figure 7. Ideal Over-all R-F, I-F Response Curve
2. Feed in an accurately calibrated $4.5-\mathrm{mc}$. AM signal through the 2200 -ohm resistor in the ALIGN TEST jack adapter to pin 2 of J200.
3. Tune TC300, TC400, TC401, and TC402 for maximum indications on the meter. The point of maximum meter indication for TC402 should also be the point of minimum speaker output.
4. Tune TC402 for minimum speaker output.
5. Connect an r-f probe or crystal detector to the grid (pin 2) of the picture tube. See NOTE below.
6. Tune TC300 for minimum indication on oscilloscope. If a crystal detector is not available, TC300 may be adjusted for minimum beat pattern, observed on the picture tube, with a station picture present.
7. Replace the first i-f tube. Tune in a station and use the speaker output as the indicator for step 9.
8. Turn the FINE TUNING control clockwise to obtain a slightly fuzzy picture.
9. Tune TC402 for minimum AM (noise) output.

NOTE: The r-f probe, Part No. 76-3595, is used as a detector of the $4.5-\mathrm{mc}$. signal, and the oscilloscope as an indicating device. An alternate crystal detector may be made up as shown in figure 8.

Figure 8. Wiring Diagram of Crystal Detector

OSCILLOSCOPE WAVEFORM PATTERNS

TPI-1200-A
Figure 9. Video-Dełector Oułpuł Pin 2 of J200
2 Volts 60 C.P.S.

TPI-1092
Figure 12. Video-Detector Output Pin 2 of $\mathbf{J 2 0 0}$
2 Volts 15,750 C.P.S.

TPI-1091
Figure 15. Second Sync-Separator Plate, Pin 6
10 Volts 15,750 C.P.S.

TPI-1097
Figure 18. Verłical-Oscillator Plate Pin 2
130 Volts 60 C.P.S.

TPI-1200-B
Figure 10. Video-Amplifier Plate Pin 6 28 Volts 60 C.P.S.

TP1. 1203
Figure 13. First Sync-Separator Cathode, Pin 3
10 Volts 60 C.P.S.

TPI-1087
Figure 16. Sync-Inverter Plate Pin 5
30 Volts 60 C.P.S.

TPI. 1100
Figure 19. Vertical-Amplifier Grid Pin 1
125 Volts 60 C.P.S.

iP1-1200-A
Figure 11. CRT Grid, Pin 2 118 Volts 60 C.P.S.

TPI-1090

Figure 14. Second Sync-Separator Plate, Pin 6 10 Volts 60 C.P.S.

TFI-1202
Figure 17. Vertical-Oscillator Grid Pin I
90 Volts 60 C.P.S.

TPI-1099
Figure 20. Vertical-Amplifier Plate Pin 5
750 Volts 60 C.P.S.

TPI-1088
Figure 21. Wase-Comparer Grid Pin 1
20 Volts 15,750 C.P.S.

TPi-1205
Figure 24. Horizontal-Oscillator Grid, Pin 4*
190 Volhs 15,750 C.P.S.

TPI-1094
Figure 22. Phase-Comparer Grid Pin I, with Pin 4 Grounded 6 Volts 15,750 C.P.S.

TPI-1098
Figure 25. Horizontal-Oscillator Piate, Pin 5*
140 Volts 15,750 C.P.S.

TPI-1089-A
Figure 23. Horizontal-Oscillator Cathode, Pin 6 * 20 Volts 15,750 C.P.S.

TPI-1095
Figure 26. Horizontal-Amplifier Grid, Pin 5*
110 Volts 115.750 C.P.S.

Figure 27. Horizontal-Amplifier Tlate,** See CAUTION 5000 Volts 15,750 C.P.S.

Figure 28. Horizontal-Damper
Cathode,** See CAUTION 3500 Volts 15,750 C.P.S.

The waveforms were taken with the receiver adjusted for normal picture and an approximate peak-to-peak output of 2 volts of composite video signal at the video detector. The voltages given with the waveforms are approximate peak-to-peak values. The frequencies shown are those of the waveform-not the sweep rate of the oscilloscope. The waveforms were taken with an oscilloscope having good high-frequency response. With oscilloscopes having poor highfrequency response, the sharp peaks of the horizontal waveforms will be more rounded than those shown below, and the peak voltages will differ from the values shown.
"Connect a $15-\mu \mu$ f condenser in series with the oscilloscope lead. The oscilloscope shonld be calibrated with the $15-\mu \mu \mathrm{f}$ condenser in the circuit.
*"CAUTION: High-voltage pulses are present at these points. Do not connect the oscilloscope directly to these tubes. The waveforms may be taken with the alligator clip of the oscilloscope lead clipped over the insulation of the tube-cap leads. (To prevent puncture of the insulation of the cap leads, wrap friction tape around the leads and file off the teeth of the alligator clip.) The peak-to-peak voltage shown is the actual voltage present, however the amplitude of the scope presentation depends upon the degree of coupling.

CHASSIS TYPES 44, ©.4
television service manual

teevision service manual.

CHASSIS Trpes 44, 6.4
replacement parts list
important

DEFLECTION CHASSIS G.4

television service manua

SECTION 2-VIIDEO -.F				Decripion	为
	Deerripion	${ }_{\substack{\text { Sen }}}^{\substack{\text { Senive } \\ \text { Panto }}}$	${ }^{\text {ama }}$		
${ }^{\text {c2a }}$		2100000	${ }_{\text {r3as }}$		
	dind		${ }^{\text {r30 }}$	Pomben	
			R399		
	, bry		8,	comolel	
$\begin{aligned} & 12200 \\ & 1200 \end{aligned}$		32,488	${ }^{3}$	rommol	
	crep			and	
${ }^{12023}$		${ }^{324888}$	${ }^{\text {nas16 }}$		${ }_{66+172}$
	Coil sidi, treoratay	Pmorat			
	Stion	${ }^{322488}$		N-A	
$\stackrel{\substack{1228 \\ 1209}}{129}$			${ }_{\text {R }}^{\text {Remmal }}$	Deceripion	${ }_{\text {cosem }}^{\text {Somice }}$
${ }^{12212}$	Coil fimmert totece	,	${ }^{\text {cino }}$		
\%				Comememe	0.10395
			(10	边	
	SECTION 3-VIIEO		(144	Condine	
	Iripion				\% ${ }^{\text {c2a }}$
		E2asaspeul	${ }^{\text {C220 }}$	Condeatesisen brpes	
$\begin{array}{r}\mathrm{C} 302 \\ \\ \hline\end{array}$				Comen	
C305	Comederer catadee bypar		J 400	Soseate. olum	
	Colt, sme		Inipl	Sorate, pratere	
		,	10.04	Chate fimmen	

television service manual

P2-1330

PHILCO

TELEVISION

PHILCO TELEVISION SERVICE MANUAL FOR AM RADIO TUNER RT-9 AND TV-PHONO SWITCH UNIT USED IN 1953 PHILCO TELEVISION RECEIVERS

RADIO ALIGNMENT

GENERAL

Remove the receiver from the cabinet by disconnecting all receiver cables and removing the securing bolts. After the receiver has been removed from the cabinet, reconnect all cables. (On those sets incorporating a phonograph, the phono connection need not be made during alignment.) Before starting the radio alignment, allow the receiver to warm up for 15 minutes.

TEST EQUIPMENT REQUIRED

The following equipment is recommended for aligning the radio section:

1. Philco Signal Generator Model 7170, or equivalent.
2. Output indicator (either a 20,000 -ohms-per-volt voltmeter or an oscilloscope).

RADIO ALIGNMENT PROCEDURE

Follow the procedure in the alignment chart, and also observe the following instructions:

1. Set the function switch to the AM position.
2. Set the volume control for maximum output.
3. During the alignment, set the signal-generator output at such a level as to keep the output at the speaker below 1 volt, peak-to-peak.

STEP	SIGNALGENERATOR CONNECTION	OUTPUTINDICATOR CONNECTION	SIGNALgenerator SETTING	$\begin{aligned} & \text { RADIO-DIAL } \\ & \text { SETTING } \end{aligned}$	ADJUSTMENT INSTRUCTIONS
1	Connect signal generator through . $1-\mu \mathrm{f}$. condenser to grid (pin 6) of converter tube. Connect low side of generator to B -	Connect vertical input of oscilloscope (or meter leads) to voice-coil terminals of speaker.	Set signal generator (modulated) to 455 kc .	Condenser fully meshed.	Adjust TC902, TC901, TC903, and TC900 (see figure 1) respectively, for maximum output indication.
2	Same as step 1.	Same as step 1.	Set signal generator (modulated) to (mi30 kc.	$\begin{aligned} & \hline 1630 \mathrm{kc}{ }^{\circ} \\ & \text { (See figure 1.) } \end{aligned}$	Adjust C901 for maximum output indication.
3	Coupling loop. (See NOTTE below)	Same as step 1.	Set signal generator (modulated) to mod kc.	Tune receiver to generator signal (1500 kc .).	Adjust C902 for maximum output indication.
4	Same as step 3.	Same as step 1.	Set signal generator (modulated) to $580 \mathrm{kc}$.	Tune receiver to generator signal (580 kc.).	Adjust TC904 for maximum output indication.
5	Repeat steps 3 and 4 until maximum output is obtained at the high and low ends of the band.				

For proper adjustment of the oscillator trimmer, fully open the tuning gang and insert a $.006-\mathrm{inch}$, nonmetallic shim between the heel of the rotor and the top of the stator plates. Close the tuming gang sufficiently to hold the shim in place, and then remove the
shim without disturbing the gang setting.
COIL REPLACEMENT: If it should ever become necessary to replace oscillator transformer T901 or antenna transformer T900, the adjustments given in steps 2 through 5 should be made.

NOTE

The adjustment of C902 and TC 904 should be made with the loop aerial connected. The signal generator should be coupled to the receiver by means of a radiating loop. This loop should be about 6 inches in diameter, made up of 6 or 8 turns of insulated wire. Connect the radiating loop to the signal generator, and place the loop a minimum distance of 1 foot from the loop aerial of the receiver.

REPLACEMENT PARTS LIST

IMPORTANT

General replacement items commonly stocked by the serviceman are omitted from this parts list. All condensers not otherwise identified are molded-bakelite Philco condensers, with a 600 -volt rating, and all resistors are $1 / 2$ watt, unless otherwise indicated. All parts are symbolized in the schematic diagram and base layouts, for identification purposes.

\begin{tabular}{|c|c|c|c|c|}
\hline Reference Symbol \& Description \(\quad \begin{gathered}\text { Service } \\ \text { Part No. }\end{gathered}\) \& Reference Symbol \& Description \& Service Part No. \\
\hline C900A and \& Condenser, tuning gang, \& C916 \& Condenser, i-f trimmer, fixed \& Part of Z901 \\
\hline C900B \& 2-section .l......................31-2770 \& C917 \& Condenser, i-f by-pass \& Part of Z901 \\
\hline C901 \& Condenser, trimmer, oscillator Part of C900B \& C918
19900 \& Condenser, i-f by-pass
Lamp, pilot \& \[
\begin{array}{r}
\text { Part of Z901 } \\
34-2064
\end{array}
\] \\
\hline C902 \& \begin{tabular}{l}
Condenser, trimmer, \\
r-f grid
\end{tabular} \& J900

J 901 \& Socket, antenna
Socket, volume control \& $\begin{array}{r}27-6252-3 \\ \hline 7-6273\end{array}$

\hline C 903 \& | Condenser, oscillator grid, $47 \mu \mu$ f. |
| :--- |
| 60-00475420 | \& J 902

J 903 \& | Socket, phono input |
| :--- |
| Socket, phono power and | \& 27-6273

\hline C904 \& Condenser, screen by-pass, $.005 \mu \mathrm{f}$.30-1238-1 \& L. 900 and \& Coil, antenna \& Part of T900

\hline C905 \& Condenser, compensating, $120 \mu \mu \mathrm{f}$. \quad 60-10125237 \& $$
\begin{aligned}
& 1.901 \\
& L .902 \text { and } \\
& \mathrm{L} .903
\end{aligned}
$$ \& Coil, oscillator \& Part of T901

\hline C907 \& Condenser, screen by-pass,
$.005 \mu \mathrm{f}$. \& R910 \& Resistor, voltage dropping, 10,(000 ohms, 5 watts \& 33-1335-21

\hline C909 \& Condenser, phono coupling, $.005 \mu \mu$. \& R913 \& Resistor, filament voltage-dr 54 inches of No. 26 copp \& pping er-weld wire

\hline C912 \& | Condenser, i-f trimmer, |
| :--- |
| fixed, $7.5 \mu \mu$. 30-1224-65 | \& T900

T901 \& Transformer, antenna \& $32-4519$
$32-4453-4$

\hline C913 \& Condenser, i-f trimmer, fixed Part of Z900 \& Z900 \& Transformer, first i-f \& 32-4161A

\hline C914 \& Condenser, i-f trimmer, fixed Part of Z900 \& Z901 \& Transformer, second i-f \& 32-4240-3A

\hline C915 \& Condenser, i-f trimmer, fixed Part of Z 901 \& WS900 \& Wafer-switch assembly \& 42-1980

\hline
\end{tabular}

MISCELLANEOUS

Description

Service Part No.

Cable-and-plug ass'y., audio	41-3974-6
Cable-and-plug ass'y., power	41-4086-24
Mount, rubber	27-4596
Pilot-lamp ass'y.	27-6233-6
Shaft, tuning	56-9795
Socket, Loktal	27-6207
Socket, miniature	27-6265
Socket, miniature	27-6265-2
Spring, tension	28-8751-2
Spring, condenser drive	56-2617
Spring, hairpin	56-9868

Figure 4. Drive Cord Installation Details for AM Rádio Tuner RT-9

Figure 5. Schematic Diagram of TV-Phono Switch, Used in Television-Phonograph Combinations

PHILCO SEcters.soerined SERVICE Service TELEVISION

PHILCO TELEVISION SERVICE INFORMATION FOR R-F CHASSIS \(\begin{aligned} \& 41
\& 44\end{aligned}\) DEFLECTION CHASSIS \(\begin{aligned} \& D-1
\& D. 4\end{aligned}\)

CABINET PARTS LIST FOR MODELS
52-T2110, 52-T2144, 52-T2182, 52-T2182L, ALL CODE 121; 52-T2145X, CODE 125

DUAL TV CHASSIS FOR
1952 MODELS, CODES 121 AND 125

TP1-2323
MODEL 52-T2110
CODE 121

MODEL 52-T2144 CODE 121

TP1-1826
MODEL 52-T2182
CODE 121

CIRCUIT DESCRIPTION

The Philco 1952, Codes 121 and 125 , television receivers use two chassis-one chassis containing the r-f, video, audio, and sync circuits, the other chassis containing the power and deflection circuits. The 41 and 44 r-f chassis are similar except for audio power output. The D-1 and D- 4 chassis are similar except for AM radio provisions in the $\mathrm{D}-4$ chassis.

Since these chassis are not isolated from the 60 -cycle power line, all protruding shafts and mounting feet are insulated from the chassis.

The r-f amplifier, oscillator, and mixer section is built on a separate subchassis. The r-f amplifier uses a 6BQ ${ }^{7}$ tube. The oscillator and mixer each use onehalf of a $12 \mathrm{AZ7}$ tube. The output of the mixer is fed to a four-stage i-f amplifier, employing three 6AUG tubes and one 6CB6 tube. One-half of a 12AU7 is used as a video detector, a-g-c rectifier. The cathode and grid are used for video detection, while the cathode and plate are used for a-g.c rectification. A delay voltage obtained from a voltage divider, consisting of the CONTRAST control, R305 and R408, is applied to the cathode to prevent a-g-c action on weak signals, where maximum gain is required. The maximum delay voltage is obtained when the CONTRAST control is in the fully clockwise position, as is the case when the Receiver is adjusted for weak signals. The a-g-c voltage is applied to the r-f amplifier and the first three i-f stages, to hold the output of the video detector essentially constant with large variations in input signal levels.

Sound i-f (intercarrier) is obtained by utilizing the beat frequency produced when the $26.6-\mathrm{mc}$. video carrier and the $22.1-\mathrm{mc}$. sound carrier are mixed in the video detector. The beat frequency, 4.5 mc ., is the difference between 26.6 mc . and 22.1 mc ., and contains the FM sound signal. This $4.5-\mathrm{mc}$. signal contains only a negligible amount of the video amplitude modulation, provided that the amplitude of the $22.1-\mathrm{mc}$. signal is considerably lower than that of the $22.6 \cdot \mathrm{mc}$. signal. The proper relationship between the two carriers is established in the alignment of the Receiver. There is sound output only when both the video and sound carriers are present.

The oscillator is tuned primarily to obtain the best picture, since the $4.5-\mathrm{mc}$. relationship always exists between the two carriers. The $4.5 \cdot \mathrm{mc}$ sound $\mathrm{i} \cdot \mathrm{f}$ (intercarrier), which is taken from the video detector, is amplified by one-half of a 12 AU7 and a 6AU6, and are fed to the FM detector, which utilizes two diode sections of a 6T8 tube. The triode section of the 6 T 8 is used as the first audio amplifier. The power amplifier uses a 7C5 tube in the 41 chassis, and a 6Y6G tube in the 44 chassis.

One-half of a 12 AV 7 tube is used as the first video amplifier, which works into a 6AQ5 video output amplifier. The plate load of the first video amplifier is made up of two resistors. R302 and R303. To obtain higher voltage for synchronization, the composite - signal for sync purposes is taken from across both R302 and R303, while the composite video for the video output is taken from across R303 only. C302 is used to by-pass high-frequency video around R302.

The plate load of the video output amplier consists of L302 and R309. L302 is an adjustable peaking coil, and is adjusted at the factory for best video response.

The sync circuit consists of a first sync separator, a variable diode noise gate, a second sync separator, and a sync inverter. The composite video is fed to the first sync separator, one-half of a 12AV7 tube. The output of the first sync separator is taken from the cathode and applied to the cathode of the noise gate, one-half of a 12AU7 tube. A positive voltage, which is obtained from a voltage divider made up of R606 and R607, is applied to the diode plate, while the sync signal, of positive polarity, is applied to the cathode. The diode will pass the sync signal as long as the cathode remains negative with respect to the plate. The value of plate voltage is chosen so that this condition exists for all normal sync signals. However, when a noise signal greater than the sync signal is received, the cathode of the diode is driven positive with respect to the plate, and the diode is cut off, thus preventing the noise from passing on to the second sync separator.

The positive voltage applied to the plate of the diode is made proportional to the strength of the signal being received by obtaining it from the load side of a dropping resistor, R 419 , in the $\mathrm{B}+$ line that supplies plate and screen voltages to the i-f stages. The current through B419, therefore, depends upon the amount of current drawn by the i-f stages. When a stronger signal is received, the a-g-c voltage increases; this decreases the current drawn by the i-f stages, and decreases the voltage drop across R419. Since this results in an increase in the voltage applied to the plate of the noise-gate diode, the level at which the diode will gate out the noise is raised. When a weaker signal is received, the opposite effect is obtained. The second sync separator, one-half of a 12AU7 tube, removes all remaining video information from the composite signal. The output of the second sync separator is fed to the deflection chassis through the power connecting cable. A sync inverter, one-half of a 7 N 7 tube, reverses the polarity of the sync pulses for proper triggering of the sweep oscillators.

The vertical sync pulses are separated from the horizontal pulses in an integrating network and applied to the grid of the vertical blocking oscillator, which uses one-half of a 7N7 rube. The output of the blocking oscillator is amplified by the 6BQ6GT vertical output tube, and is applied to the verticaldeflection coils.

The horizontal sync pulses are applied to the grid of a phase comparer, one-half of a GSN7GT tube, through a capacitive voltage divider. Within the lock-in range, the phase relationship of the horizontal sawtooth and the sync pulses at the grid of the phase comparer determines the frequency of the horizontal blocking oscillator. The horizontal blocking oscillator employs one-half of a 6SN7GT tube. A 6CD6G tube is used as the horizontal amplifier, and a 6 V 3 is used as the horizontal damper.

The high voltage for the picture tube is supplied by one 1B3 and one 1X2 rectifier. The B-plus voltage is developed by two selenium rectifiers in a full-wave voltage-doubler circuit, operating from the power
line. Bias voltage is supplied by a selenium rectifier which rectifies the output of one of the secondaries of the power transformer. The other secondaries of the transformer supply the heater currents.

SPECIFICATIONS

$\left.\begin{array}{|c|l|c|c|c|c|c|c|}\hline \text { MODEL } & \text { DESCRIPTION } & \begin{array}{c}\text { R-F } \\ \text { CHASSIS }\end{array} & \begin{array}{c}\text { DEFLEC- } \\ \text { TION } \\ \text { CHASSIS }\end{array} & \begin{array}{c}\text { PICTURE } \\ \text { TUBE }\end{array} & \begin{array}{c}\text { POWER } \\ \text { RADIO } \\ \text { TUNER }\end{array} & \begin{array}{c}\text { PHONO }\end{array} & \begin{array}{c}\text { AUDIO } \\ \text { OUTPUT } \\ \text { (WATTS) }\end{array} \\ \text { (WONSUMP- } \\ \text { TION }\end{array}\right]$

SPECIFICATIONS COMMON TO ALL MODELS

CHANNEL TUNING Twelve-channel, waferswitch incremental tuner; fine tuning of local oscillator.

FREQUENCY RANGE Television Channels 2 through 13.

INTERMEDIATE FREQUENCIES

Video carrier 26.6 mc . Sound (intercarrier)
4.5 mc .

AERIAL Built-in broad-band dipole; provisions for external aerial, if necessary.
TRANSMISSION LINE (TELEVISION) 300-ohm, twin-wire lead.
OPERATING VOLTAGE ... $110-120$ volts, 60 cycles, a.c.

SPECIFICATIONS, AM RADIO TUNER RT-6
FREQUENCY RANGE 540 to 1620 kc . INTERMEDIATE FREQUENCY 455 kc . AERIAL Built-in loop aerial

TUBE COMPLEMENT

41 CHASSIS AND 47 CHASSIS	
TUBE TYPE	FUNCTION
6BQ7-miniature	R-F amplifier
12AZ7—miniature	Oscillator, mixer
6AU6—miniature (3)	Video i-f amplifier
6CB6—miniature	Video i-f amplifier
12AU7—miniature	Video detector, a-g-c rectifier, first
	sound i-i amplifier

TUBE COMPLEMENT (Cont.)

TUBE TYPE	FUNCTION
6AU6-miniature 6T8-miniature 7C5-loktal 6Y6G-ocial 12AV7-miniature 12AU7-miniature 6AQ5-miniature	Second sound i-f amplifier FM detector, first audio amplifier Audio output (41 chassis) Audio output (44 chassis) First video amplifier, first sync separator Noise gate, second sync separator Video output
D-1 CHASSIS AND D-4 CHASSIS	
TUBE TYPE	FUNCTION
7N7-loktal 6BQ6GT-octal 6SN7GT-octal 6CD6G-octal 6V3-miniature 1B3-octal 1X2—miniature	Sync inverter, vertical oscillator Vertical output Phase comparer, horizontal oscillator Horizontal output Horizontal damper High-voltage rectifier High-voltage doubler
AM RADIO TUNER RT-6	
TUBE TYPE	FUNCTION
7A8-loktal 6BA6-miniature 6AV6-miniature	Convertar I-F amplifier Second detector. phono preamplifier

B SUPPLY FUSE REPLACEMENT

The B supply protective fuse is wired into the low-voltage section, and is in series with the selenium rectifiers. For replacement, use a 1.6 -ampere delayedaction type fuse, Philco Part No. 45-2656-23.

CAUTION: Discharge the circuit before replacing the fuse.

TUNER TUBE REPLACEMENT

Whenever a tube is replaced, it is suggested that, if possible, several be tried, to obtain a tube which has approximately the same interelectrode capacitance as that of the original tube, to avoid changing the tuner alignment. The picture quality and oscillator fine-tuning range should be observed while selecting tubes.

IMPORTANT

A-C LINE ISOLATION

CAUTION: One side of the a-c line is connected to the chassis through C102, and the other side of the a-c line is connected to the chassis through R102 and CR 101, in series. Grounding the chassis will result in a short circuit across one or the other of these two branches in the voltage-doubler circuit. During servicing and alignment it is desirable that an a-c line isolation transformer capable of handling at least 225 watts (Philco Part No. 45-9600) be used. Failure to use an isolation transformer will greatly increase the shock hazard and may result in damage to the equipment.

HORIZONTAL SWEEP ADJUSTMENT

Adjustment of Horizontal Frequency Control and Horizontal Lock-in Trimmer

The range of the HORIZ. HOLD control potentiometer is sufficient to compensate for normal variations in the frequency of the horizontal oscillator, and no other adjustment is ordinarily required. However, if the tube or other components are replaced in the horizontal oscillator circuit, it may be necessary to reset the horizontal frequency control and horizontal lock-in trimmer as follows, in order to obtain proper synchronism and deflection:

1. Turn the HORIZ. HOLD control fully clockwise.
2. Adjust the horizontal frequency control until four diagonal black bars appear, sloping to the right.
3. Turn the HORIZ. HOLD control counterclockwise until the picture comes in, then goes out of sync. Then turn the HORIZ. HOLD controls slowly clockwise again, counting the number of black (blanking) bars, sloping down to the left, just before the picture pulls into sync. Adjust C804 until there are three bars just before the picture pulls into sync. If the receiver does not lose sync when the HORIZ. HOLD control is fully counterclockwise, remove the signal momentarily to interrupt the sync, then proceed as above.

Adjustment of Horizontal-Oscillator Transformer

CAUTION: Do not adjust tuning cores TC800 and TC801 in the horizontal-oscillator transformer. T800, unless it is absolutely necessary. These cores are preset at the factory with special equipment. The tuning cores in replacement

TP1-1089-B
Figure 1. Horizontal-Oscillator Waveshape, Showing Correct Adjustment of T800
transformers are also preset, and do not require adjustment after installation in the chassis. Condenser C807 is matched to T800, and must be replaced when T800 is replaced. Horizontaloscillator transformer T800 and condenser C807 are supplied as a unit.
If for some reason it becomes necessary to adjust TC800 and TC801, proceed as follows:

1. Tune in a station and adjust the HORIZ. HOLD control until the picture is synchronized. If the picture cannot be synchronized, adjust the HORIZ. FREQ. control. If is is impossible to obtain synchronization by adjustment of the HORIZ. HOLD and HORIZ. FREQ. controls, adjust the oscillator core TC801.
2. Connect an oscilloscope to the cathode (pin 6) of the horizontal oscillator, using a $15-\mu \mu \mathrm{f}$. condenser in series with the scope lead. Adjust the stabilizer core, TC800, until the wave shape resembles that in figure 1. The "average line" in figure 1 is established by shorting the input leads of the scope. Keep the picture synchronized while adjusting TC800.
3. Turn the HORIZ. HOLD control fully clockwise. Adjust the HORIZ. FREQ. control until four diagonal black bars appear, sloping to the right.
4. If four diagonal black bars cannot be obtained by adjusting the HORIZ. FREQ. control with the hold control in the clockwise position, adjust the oscillator core TC801.

VIDEO-OUTPUT PEAKING COIL ADJUSTMENT

The video-output peaking coil, L302, is adjusted at the factory for proper transient response of the video amplifiers. Ordinarily this coil will require no further adjustment by the serviceman. On some stations, however, where excessive overshoot or excessive smear is present, a slight adjustment of L302 may improve the picture quality on that station, but at a possible sacrifice of quality on other channels. If L302 is replaced in servicing, adjustment will be required.

Before adjusting L302, check the tuner alignment and i-f alignment. (Never adjust L302 until the alignment of the receiver is correct.) Then tune in a station and adjust L302 so there are no trailing whites or smear in the picture. Turning TC301 clockwise reduces trailing whites and overshoot; turning TC301
counterclockwise reduces picture smear and increases trailing whites. The proper position is the point where no smear or trailing whites appear in the picture.

The above procedure for adjustment of TC301 applies to a particular station exhibiting smear or overshoot. After TC301 is adjusted, reception on all the other stations should be checked, to make certain that the adjustment has not impaired the picture quality.

CHECKING AND ADJUSTING THE BUILT-IN AERIAL TUNING NETWORK

By adjusting the AERIAL TUNING control, it should be possible to tune the built-in aerial system to resonance at the video-carrier frequency of each channel.

To check the built-in aerial system, follow the procedure given below:

1. Connect a dipole through a $\mathbf{7 2}$-ohm coaxial cable to the output of a signal generator which has a band range covering the television channels.
2. Connect a 20,000 -ohms-per-volt voltmeter to pin 3 of the ALIGN TEST jack, J200.
3. Set the CHANNEL SELECTOR to Channel 2, and the FINE TUNING control to the middle of its range.
4. Place the dipole near the back of the Receiver, and set the signal generator to the video-carrier frequency of Channel 2. Adjust the signal-generator attenuator for an output that just gives an indication on the meter.
5. Adjust the AERIAL TUNING control for a maximum reading on the voltmeter. The peak reading should be obtained with the AERIAL TUNING control well within its range (not in either its maximum clockwise or maximum counterclockwise position).
6. Repeat the steps above for Channels 3 through

Figure 2. Aerial-Input Matching Network
13. For all channels, the peak readings should be well within the range of the AERIAL TUNING control.

If a satisfactory peak reading cannot be obtained on each channel in the low-frequency band, the long section of the loop assembly, to which the 300 -ohm line is attached, may be pushed together or bowed out, to obtain peaking. If a satisfactory peak cannot be obtained on each channel in the high-frequency band, the two loops adjacent to the AERIAL TUNING condenser may be pushed toward each other or fanned out, to obtain peaking. If these adjustments do not give peaking on all channels, well within the range of the AERIAL TUNING control, the AERIAL TUNING condenser should be replaced.

FM TRAP ADJUSTMENT

The FM trap is adjusted at the factory to resonate at 100 mc ., and normally requires no further adjustment unless an FM station with a frequency other than 100 mc . causes interference. In such cases, the interference may be reduced by tuning in the television station on which the interference occurs, and adjusting TC500 for minimum interference. See figure 36 or 40.

If the FM station is not on the air, the FM trap may be adjusted as follows:

1. Connect the output of the AM signal generator, through the aerial-input-matching network (figure 2) to TB500. Make sure that the tuner is wired for 300 -ohm input.
2. Connect the input of an r-f probe or crystal detector (figure 3) to the lead from the tapered line, Z500, to the wafer switch, WS500D(F). Connect the output of the r-f probe or crystal detector to the vertical input of an oscilloscope. Use the highest possible oscilloscope gain.
3. Turn the CHANNEL SELECTOR to the channel with which the FM station is interfering.
4. Set the signal generator (modulated) to the station carrier frequency of the FM station causing the interference.
5. Adjust TC500 until the indication on the oscilloscope is at minimum.

Figure 3. Wiring Diagram of Crystal Detector

TELEVISION ALIGNMENT
 TELEVISION-CARRIER, OSCILLATOR, AND CHECK-POINT FREQUENCIES

CHAN NEL	CHANNEL LIMITS (me.)	VIDEO-CARRIER CHECK-POINT (A) FREQUENCY (me.)	```100% CHECK-POINT (B) FREQUENCY (mc.)```	10% CHECK-POINT (C) FREQUENCY (mc.)	SOUND-CARRIER FREQUENCY (me.)	LOCAL- OSCILLATOR FREQUENCY (me.)
2	54-60	55.25	57.35	59.35	59.75	81.85
3	60-66	61.25	63.35	65.35	65.75	87.85
4	66-72	67.25	69.35	71.35	71.75	93.85
5	76-82	77.25	79.35	81.35	81.75	103.85
6	82-88	83.25	85.35	87.35	87.75	109.85
7	174-180	175.25	177.35	179.35	179.75	201.85
8	180-186	181.25	183.35	185.35	185.75	207.85
9	186-192	187.25	189.35	191.35	191.75	213.85
10	192-198	193.25	195.35	197.35	197.75	219.85
11	198-204	199.25	201.35	203.35	203.75	225.85
12	204-210	205.25	207.35	209.35	209.75	231.85
13	210-216	211.25	213.35	215.35	215.75	237.85

GENERAL

The alignment consists of tuning each i-f coil to a given frequency, using an AM signal, then feeding in a sweep signal at the aerial terminals and touching up the adjustments to obtain the desired pass band.

The over-all response curve ($r-f, i-f$) of the circuits from the aerial terminals to the video detector, after the i-f stages have been aligned, should appear essentially the same regardless of the channel under test. If not, the tuner should be aligned.

The video-carrier intermediate frequency is 26.6 mc ., and the sound intermediate (intercarrier) frequency is 4.5 mc . Alignment of these circuits requires careful workmanship and good equipment. The following precautions must be observed.

1. There must be a good bond between the Receiver chassis and the test equipment. This is most easily obtained by having the top of the workbench metallic. The Receiver chassis should be placed tuner-end down on the bench. If the bench has no metallic top, the test equipment and chassis can be bonded by a strip of copper about $2^{\prime \prime}$ wide. The section of the chassis nearest the tuner should rest on the strip.
2. Do not disconnect the picture tube, picturetube yoke, or speaker while the Receiver is turned on.
3. Allow the Receiver and test equipment to warm up for 15 minutes before starting the alignment.
4. The marker (AM) signal generator should be calibrated accurately to the frequencies used and to the sound and video r-f carriers of each channel used during alignment. If Model 7008 is used, the built-in crystal calibrator provides an excellent means of calibration. An alternate method for calibrating the signal generator to the sound and video r-f carrier frequencies is to zero-beat the signal generator with the received signals.

For further information regarding calibration, refer to Philco Lesson PR-1745 (J) entitled "Television Service in the Home."

TEST EQUIPMENT REQUIRED

The following test equipment is recommended for aligning the Receiver:

1. Philco Precision Visual Alignment Generator for Television and FM, Model 7008, or equivalent.
2. Vacuum-tube voltmeter, or 20,000 -ohms-pervolt voltmeter.
3. R-f probe, Philco Part No. 76-3595 (for use with Model 7008 generator).

JIGS AND ADAPTERS REQUIRED Mixer Jig

Connections to the grid of the mixer tube may be made through the alignment jack provided for that purpose. To connect the generator to this point, a mixer-grid jig, Philco Part No. 45-1739, and a connecting cable, Philco Part No. 45-1635, may be used. As an alternate, a Philco alligator-clip adapter, Part No. 45-1636, with as short a ground lead as possible may be used to connect to the alignment jack. The ground lead should be connected as close as possible to the mixer tube. It is essential that the signalgenerator output lead be terminated with a 68 -ohm resistor (carbon) so that regeneration, caused by connection of the lead to the mixer, is held to a minimum.

Aerial-Input Matching Network

Figure 2 shows an impedance-matching network for coupling the signal generator to the aerial-input terminals of the Receiver. This network, which is
designed to have an input impedance of 75 ohms and an output impedance of 300 ohms , is used to match a 75 -ohm generator to a 300 -ohm aerial-input circuit. The resistors used in this network should be of carboncomposition construction, and should be chosen from a group, to obtain values close to those indicated. The resistors should be placed in a shield can, to prevent variable effects. An aerial matching jig, Philco Part No. 45-1736, which consists of a matching transformer and connecting box, may be used in place of the resistor network.

ALIGN TEST Jack Adapter

THE ALIGN TEST jack adapter, shown in figure 4, should be used during the i-f alignment to apply the proper bias to the a-g.c bus, and to provide a convenient oscilloscope connection. This adapter consists of a 5 -prong plug, a 10,000 -ohm potentiometer, a 2200 -ohm isolating resistor, and a 3 -volt battery. A suggested method of fabricating the adapter is also shown. It is suggested that the bias battery and potentiometer be mounted in a metal box of convenient size.

The potentiometer and switch are connected across the 3 -volt battery. The switch is used to disconnect the potentiometer, to prevent the discharge of the battery while not in use. The 1000 -ohm resistor in series with the arm of the control will prevent rapid discharge of the battery if the leads are accidentally shorted. See NOTE below.

FM TEST Jack Adapter

Figure 5 shows the adapter that should be used to connect the voltmeter and oscilloscope to the FM detector test socket, J402. A suggested method of fabricating the adapter is also shown. Pins 1 and 5 are removed from a five-pin plug, 27-4785-3, because

TPO-1441
Figure 4. ALIGN TEST Jack Adapter
a three-pin plug with proner spacing is not readily available. SEE NOTE below.

NOTE: The test jacks are numbered COUNTER. CLOCKWISE as viewed from the lug end. This differs from the system used in previous models, where numbering was in the clockwise direction.

TELEVISION TUNER ALIGNMENT

After the tuner is serviced, or if an i-f alignment is required, or if a replacement tube does not exactly meet the requirements described under TUNER TUBE REPLACEMENT, the tuner alignment should be

Figure 5. FM TEST Jack Adapter
checked; if realignment is necessary, use the procedure given below.

Since the frequency of the local oscillator affects the tuner response, the local-oscillator alignment should be made first.

OSCILLATOR ALIGNMENT

General

Beginning with Channel 13, every other coil is tunable, so that by adjusting the tuning cores, it is possible to place either of two adjacent channels exactly on frequency; that is, either Channels 13 or 12,11 or 10,9 or 8 , etc. The foregoing is based on the assumption that the oscillator has previously been tracked, and that it is desired to compensate for small tracking errors on several different channels. This adjustment procedure should be carried out with the highest channel first, since the alignment of each channel will affect the alignment of the channels below it in frequency. The FINE TUNING control should be preset for all adjustments, by placing the stop on the fine-tuning cam at the center of the Channel 6 oscillator tuning core. See figure 6.

Procedure Using Signal Generator

An r-f signal (unmodulated), at the oscillator frequency, is fed into the aerial input from an AM signal generator, and the oscillator tuning cores are adjusted for zero beat. The r-f signal should be accurate, preferably from a crystal source, or calibrated against the television station.

1. Connect a 3300 -ohm resistor in series with the red lead from the tuner. Connect the "hot" lead of the oscilloscope to the junction of the red lead and the $3300-\mathrm{ohm}$ resistor. (High oscilloscope gain may be necessary to obtain a visual beat. In this instance, base-line hum may be ignored.)
2. Connect the AM (marker) generator to the 300 -ohm aerial-input terminals. For this purpose the aerial-input matching network is not required.
3. If the tuner is being aligned out of the chassis, connect the white lead to the negative terminal of a 1.5 -volt battery. Ground the positive terminal.
4. Mechanically preset the fine-tuning cam as shown in figure 6.
5. Feed in an r-f signal (unmodulated), at the oscillator frequency for Channel $13(237.85 \mathrm{mc}$.) , with the CHANNEL SELECTOR set for Channel 13.
6. Adjust the tuning core for Channel 13 (see figure 6).
7. Adjust the tuning cores for Channels 11 and 9 , in the order given.
8. Check the Channel 8 oscillator frequency. If it is too high, turn C527 several turns clockwise; if the frequency is too low, turn the trimmer counter. clockwise (see figure 36 or 40).

TPO-2217
Figure 6. Television Tuner, Oblique View, Showing Location of Adjustments
9. Repeat steps 5, 6, 7, and 8 until Channels 13, 11, 9 , and 8 are within plus or minus 500 kc . of the correct frequency.
10. Feed in an r-f (unmodulated) signal, at the oscillator frequency for Channels 7, 6, 4, and 2, consecutively (see NOTE below), and adjust the respective tuning cores. (See figure 6.)

NOTE: The exact position of the FINE TUNING shaft should be marked when Channel 2 is correctly aligned. This position is to be used in step 6 of the i-f alignment procedure.

Procedure Using Station Signal

The following simplified procedure may be used to align the oscillator when the television i-f alignment is satisfactory and a station signal is available.

1. Mechanically preset the fine-tuning cam to the center of its range (see figure 6).
2. Tune in the highest-frequency channel to be received.
3. Adjust the tuning core for that channel, or the next highest, for the best picture; that is, starting with sound in the picture, turn the tuning core until the sound disappears. Repeat for each channel received in the area.

BAND.PASS ALIGNMENT

General

The band-pass alignment consists of aligning the tuner at Channels 13,6 , and 4 and then making it track down to Channels 7 and 2 , respectively.

During the alignment, a fixed bias of 1.5 volts is applied to the r-f amplifier tube.

An FM (sweep) signal is applied to the aerial-input circuit, and an oscilloscope is connected to the mixer
plate circuit. The oscilloscope gain should be as high as possible, consistent with hum level and "bounce" conditions. Hum conditions will cause distortion of the time base and response. Bounce conditions will cause the response and time base to jump up and down, and is caused by poor line regulation. The use of too high an oscilloscope gain aggravates these conditions, whereas the use of too low a gain necessitates increasing the generator output to a point where the tuner may be overloaded. Overload may be checked by changing the generator output while observing the shape of the response curve; any change in the shape of the curve indicates overload, in which case a lower generator output and higher oscilloscope gain must be used. A 330 -ohm resistor is shunted across the 1st i-f coil, to eliminate the absorption effect of this coil on the response curve.

1. Disconnect the white (a-g-c) lead from the tuner, and connect it to the negative terminal of a 1.5 -volt battery. Ground the positive terminal.
2. Connect a 3300 -ohm resistor in series with the red lead from the tuner. Connect the "hot" lead of the oscilloscope to the junction of the red lead and the 3300 -ohm resistor.
3. Connect a 330 -ohm resistor from the green lead to ground.
4. Connect the FM (sweep) generator to the 300 ohm aerial input through an aerial-input matching network. See figure 2.

PROCEDURE

1. Set the CHANNEL SELECTOR and FM (sweep) generator to Channel $12(213 \mathrm{mc}$.). Adjust the generator for sufficient sweep to show the complete response curve.
2. Establish the channel limits (see figure 7) by using the marker (AM r-f) signal generator to produce marker pips on the response curve; set the generator first to 210 mc ., then to 216 mc .
3. Adjust TC505 and TC507 (figure 6) for a symmetrical, approximately centered pass band. Set marker generator to 213 mc . Detune TC507 counterclockwise until a single peak appears. Adjust TC505 until the peak falls on the 213 -mc. marker. It may be necessary to increase the output of the generator during this adjustment. Then adjust TC503 for maximum curve height and symmetry of the single peak. The aerial circuit is now tuned for the high channels.
4. Readjust TC505 and TC507 for a symmetrical response, centered about 213 mc .
5. Set the CHANNEL SELECTOR and FM generator to Channel 7 (177 mc .) .
6. Establish the channel limits by using the marker signal generator to produce marker pips on the response curve; set the generator first to 174 mc ., then to 180 mc .
7. Note the response curve, with respect to tilt and center frequency. The curve should be centered in
the pass band, and should be symmetrical. If not, it will be necessary to make the adjustments given in step 8. However, when making these adjustments, the effect of Channel 13 adjustments on Channel 7 must be taken into consideration. This is done by over-compensating with the trimmers, so that, when Channel 13 is adjusted, Channel 7 is nearly correct.
8. Adjust C506 and C515 (see figure 36 or 40) to obtain a response curve which is the mirror image (tilt in the opposite direction) of the original. This is the overcompensation mentioned in step 7. For example, if the Channel 7 response appears as in figure 8 A , then the trimmer should be adjusted to obtain the response shown in figure 8B.
9. Set the CHANNEL SELECTOR to Channel 13, and retune the generators. Readjust TC505 and TC507 for a symmetrical and centered band pass.
10. Set the CHANNEL SELECTOR and generators to Channel 7, and check the response for center frequency and symmetry. Repeat steps 8 and 9 as many times as necessary to obtain the most symmetrical and centered response curves on Channels 13 and 7. Channels 8 through 12 are now correctly aligned.
11. Set the CHANNEL SELECTOR and sweep generator to Channel $6(85 \mathrm{mc}$.) .
12. Establish the channel limits, using the marker generator to produce marker pips on the response curve; set the generator first to 82 mc ., then to 88 mc .
13. Adjust TC504 and TC506 for a symmetrical, approximately centered pass band. Set the marker generator to 85 mc . Detune TC506 counterclockwise until a single peak appears.

TP9-512B-1
Figure 7. Television-Tuner Response Curve, Showing Band-Pass Limits

TPO-1174
Figure 8. Television-Tuner Response Curve, Showing Tracking Compensation

CAUTION: Do not turn TC506 excessively, or it will fall out of the coil.

Adjust TC504 until the peak falls on the 85 -mc. marker. It may be necessary to increase the output of the generator during this adjustment. Then adjust TC502 for maximum curve height and symmetry of the single peak. The aerial circuit is now tuned for Channels 5 and 6.
14. Readjust TC504 and TC506 for a symmetrical response, centered about 85 mc .

TELEVISION I-F ALIGNMENT

 PRELIMINARYBefore proceeding with the i-f alignment or making an alignment check, observe the following preliminary instructions:

1. Connect the oscilloscope to the 2200 -ohm resistor from the ALIGN TEST jack adapter.
2. If additional attenuation of the marker signal is required when using Visual Alignment Generator Model 7008, insert a 10,000 -ohm resistor in series with the output lead, or use a 2nd harmonic of Band A, which will give a marker of lower amplitude.
3. Preset the television controls as follows:
a. CONTRAST control fully counterclockwise.
b. BRIGHTNESS control to give a dim raster.
c. Function switch to TV position.
4. Insert the FM TEST jack adapter into J402.
5. Insert the ALIGN TEST jack adapter into J200.

I-F ALIGNMENT PROCEDURE

1. Preset TC201 and TC203 fully counterclockwise. See figure 36 or 40 . Preset TC200 and TC202 to the center of their ranges.
2. Connect the oscilloscope to J200, pin 2, through the 2200 -ohm resistor from the ALIGN TEST jack adapter, and connect the AM generator to G1 (mixer grid on tuner).
3. Feed in a $28.1-\mathrm{mc}$. AM signal, and tune TC201 for minimum output (use first minimum). Use zero bias during this adjustment.
4. Feed in a $21.85-\mathrm{mc}$. AM signal, and tune TC203 for minimum output (use first minimum). Use zero bias during this adjustment.
5. Tune TC205, TC204, TC202, TC200, and TC507 for maximum output at the frequencies indicated in figure 36 or 40 . Use 3 volts of bias, and attenuate the generator to keep the output below 2 volts, peak to peak.
6. Feed in sweep and marker signals to Channel 2 through the aerial-input terminals. The tuner pass band should be checked, and the tuner aligned, if necessary; the local oscillator should be set to its correct frequency (81.85 mc . for Channel 2). Refer to step 10 of Procedure Using Signal Generator, under OSCILLATOR ALIGNMENT. The response should fall within the limits shown in figure 9. The ideal response curve is shown in figure 10. The frequencies shown in figures 9 and 10 are for Channel 2. To convert these response curves for Channels 3 through 13, refer to the chart of Television-Carrier, Oscillator,
and Check-Point Frequencies and substitute the proper frequencies at points A, B, and C. Touch up TC205, TC204, TC202, TC200, and TC507. See NOTE below.
IMPORTANT: Do not turn any of the i-f tuning cores excessively after they have been set to the approximate position by the use of the AM signal generators; to do so may cause poor transient or phase response, resulting in trailing whites or smear. If a response within the limits shown cannot be obtained by a slight adjustment, carefully repeat the AM adjustments, and, if necessary, trouble-shoot the i-f system. It is preferable to get a response curve within the tolerance range WITHOUT touching the adjustments made with the AM signals at the specified frequencies, rather than to attempt to obtain the ideal curve.

NOTE: TC205 rocks top of curve.
TC202 controls level of carrier.
TC204 controls dip or peak on carrier side.
TC200 controls bandwidth (sound side).
TC507 controls dip or peak on sound side.

S-I-F ALIGNMENT PROCEDURE

1. Remove the first i-f tube, and connect a v.t.v.m. or a $\mathbf{2 0 , 0 0 0}$-ohms-per volt voltmeter to the FM TEST

Figure 9. Over-all R-F, I-F Response Curve, Showing Tolerance Limits
jack adapter. Adjust the VOLUME control for moderate speaker output.
2. Feed in an accurately calibrated $4.5-\mathrm{mc}$. AM signal through the 2200 -ohm resistor in the ALIGN TEST jack adapter to pin 2 of J200.
3. Tune TC400 and TC402 for maximum indications on the meter. The point of maximum meter indication for TC402 should also be the point of minimum speaker output.
4. Tune TC402 for minimum speaker output.
5. Connect an r-f probe or crystal detector to the grid (pin 2) of the picture tube. See NOTE below.
6. Tune TC300 for minimum indication on oscilloscope. If a crystal detector is not available, TC300 may be adjusted for minimum beat pattern, observed on the picture tube, with a station picture present.
7. Replace the lst i-f tube. Tune in a station and use the speaker output as an indication.
8. Turn the FINE TUNING control clockwise to obtain a slightly fuzzy picture.
9. Tune TC402 for minimum AM (noise) output. NOTE: The r-f probe, Part No. 76-3595, is used as a detector of the $4.5-\mathrm{mc}$. signal, and the oscilloscope as an indicating device. An alternate crystal detector may be made up as shown in figure 3.

Figure 10. Ideal Over-all R-F, I-F Response Curve

OSCILLOSCOPE WAVEFORM PATTERNS

The following waveforms were taken with the Receiver adjusted for normal picture and an approximate peak-to-peak output of 3 volts at the video detector. The voltages given with the waveforms are approximate peak-to-peak values. The frequencies shown are those of the waveform-not the sweep rate of the oscilloscope. The waveforms were taken with
an oscilloscope having good high-frequency response and an input impedance of 1 megohm, shunted by a capacitance of $40 \mu \mu \mathrm{f}$. With oscilloscopes having poor high-frequency response, the sharp peaks of the horizontal waveforms will be more rounded than those shown below, and the peak-to-peak voltages will differ from the values shown.

Figure 11
Video-Detector Output
Pin 2 of J200

Figure 12
Video-Amplifier Plate Pin 6

Figure 13
CRT Grid Pin 2

Figure 14
Video-Detector Output Pin 2 of J 200

Figure 15
First-Sync-Separator Cathode Pin 3

TPI 1200-A
3 VOLTS 60 C.P.S.

TPI-1200-B 30 VOLTS 60 C.P.S.

TPI-1200-A 80 VOLTS 60 C.P.S.

TP 1-1092
3 VOLTS
15.750 C.P.S

TPI-1 203 10 VOLTS 60 C.P.S

Figure 16
Second-Sync-Separator Plate Pin 6

Figure 17
Second-Sync-Separator Plate Pin 6

Figure 18
Sync-Inverter Plate
Pin 6

Figure 19
Vertical-Oscillator Grid
Pin 4

Figure 20
Vertical-Oscillator Plate Pin 3

OSCILLOSCOPE WAVEFORM PATTERNS (Cont.)

Figure 21
Vertical-Amplifier Grid Pin 5

Figure 22
Vertical-Amplifier Plate Plate Cap

Figure 23
Phase-Comparer Grid Pin 1

Figure 24
Phase-Comparer Grid Pin 1 with Pin 4 grounded

Figure 25
Horizontal-Oscillator Cathode Pin 6

TPI-1100
30 VOLTS 60 C.P.S.

TP1-1099
250 VOLTS 60 C.P.S.

TPI-1088 20 VOLTS

15,750 C.P.S.

TP1-1094
6 VOLTS
15,750 C.P.S.

TP1-1089-A
25 VOLTS
15,750 C.P.S.

Figure 26
Horizontal-Oscillator Grid Pin 4 *

Figure 27
Horizontal-Oscillator Plate
Pin 5 *

Figure 28
Horizontal-Amplifier Grid Pin 5 *

Figure 29
Horizontal-Amplifier Plate See CAUTION **

Figure 30
Horizontal-Damper Cathode See CAUTION **

- Connect a $15-\mu \mu$. condenser in series with the oscilloscope lead.
- CAUTION: High-voltage pulses are present at these points. Do not connect the oscilloscope directly to these tubes. The waveforms may be taken with the alligator clip of the oscilloscope lead clipped over the insulation of the tube-cap leads. (To prevent puncture of the insulation of the cap leads, wrap friction tape around leads.)

RADIO ALIGNMENT

GENERAL

Before starting the radio alignment, allow the Receiver and test equipment to warm up for 15 minutes.

TEST EQUIPMENT REQUIRED

The following equipment is recommended for aligning the radio section:

1. Philco Signal Generator, Model 7170, or equivalent.
2. Output indicator (either a 20,000 -ohms-per-volt voltmeter or an oscilloscope).

RADIO ALIGNMENT PROCEDURE

Follow the procedure in the alignment chart. Also observe the following instructions:

1. Insert a . $1-\mu \mathrm{f}$. condenser in series with the signalgenerator lead.
2. Set the VOLUME control to obtain suitable volume level from speaker. Set the function switch to the correct position.
3. During the alignment, attenuate the signal generator to hold the output at the speaker jack below 1 volt, peak to peak.

Figure 31. AM Radio Tuner RT-6, Bottom View,
Showing Location of Adjustments
TPI-1814

RADIO ALIGNMENT CHART (AM RADIO TUNER RT-6)

STEP	SIGNAL-GENERATOR CONNECTION	OUTPUTINDICATOR CONNECTION	SIGNAL-GENERATOR SETTING	RADIO-DIAL SETTING	ADIUSTMENT INSTRUCTIONS
1	Connect signal generator through . $1-\mu$ f. condenser to grid (pin 6) of converter tube.	Connect vertical input of oscilloscope (or meter leads) to voice-coil terminals of speaker socket J401.	Set signal generator (modulated) to 455 kc .	Condensers fully meshed.	Adjust TC900, TC901, TC902, and TC903 (see figure 32) for maximum output indication.
2	Connect signal generator through $.1-\mu$. condenser to pin 1 of antenna socket, J900.	Same as step 1.	Set signal generator (modulated) to 1620 kc .	1620 kc. (See figure 33.)	Adjust C901 for maximum output indication.
3	Same as step 2. (See NOTE below.)	Same as step 1.	Set signal generator (modulated) to 1500 kc .	Tune receiver to generator signal (1500 ke.)	Adjust C902 for maximum output indication.

Steps 4 and 5 should be performed only it the antenna coil, T900, is replaced.

4	Same as step 2.	Same as step 1.	$580 \mathrm{kc}$.	Tune receiver to gen- erator signal.	Adjust TC904 for maxi- mum output indication. Rock tuning gang.
5	Repeat steps 3 and 4 until maximum output is obtained at the high and low ends of the band.				

RADIO ANTENNA COL (T900) REPLACEMENT-lit it should ever become necessary to replace the antenna coil, T900. the adjustrnent given in steps 4 and 5 of the RADIO ALIGNMENT CHART above should be made.
NOTE: The final adjustment of C902 should be made with the chassis in the cabinet and the loop aerial connected. The signal generator should be coupled to the Receiver by means of a radiating loop. This loop should be made up of six to eight turns of insulated wire in a 6 .inch-diameter loop. Connect the signal generator to the radiating loop. and place the radiating loop near the loop aerial of the Receiver.

Figure 32. Drive-Cord Installation Details for AM Radio Tuner RT-6

Figure 33. AM Radio Tuner RT-6, Base Layout

REPLACEMENT PARTS LIST

IMPORTANT

Ceneral replacement items commonly stocked by the serviceman are omitted from this parts list. All condensers not otherwise identified are molded-bakelite Philco condensers, with a 600 -volt rating, and all resistors are $1 / 2$ watt, unless otherwise indicated. All parts are symbolized, as usual, in the schematic diagram and base layouts, for identification purposes.

DEFLECTION CHASSIS D-1 AND D-4	
	SECTION 1-POWER SUPPLY
Reference Symbol	$\begin{aligned} & \\ & \text { Description } \begin{array}{c}\text { Service } \\ \text { Part No. }\end{array}\end{aligned}$
C100A	Condenser, electrolytic, filter, 10μ f., 50 v45-3018-19
C1008	Condenser, electrolytic, filter, 10 ... C 100
$\begin{aligned} & \mathrm{ClO1} \text { and } \\ & \mathrm{ClO2} \end{aligned}$	Condenser, electrolytic, filter, 120μ f., 150v \qquad 30.2570-66
C103	Condenser, electrolytic, filter, 100μ., 300v \qquad 30-2584-7
C104 and $\mathrm{ClO5}$	Condenser, high voltage filter, $500 \mu \mu$ i.30-1229-4
CR100 and CRIOl	Rectifier, selenium, 450 ma.30-8003-8
CR102	Rectifier, selenium, bias, $5 \mathrm{ma}34-8003-9$
F100	
$\begin{aligned} & \text { F101 and } \\ & \text { F102 } \end{aligned}$	Fuse, heater protective linkPiece of No. 26 wire
1100	Socket, chassis connecting27-6274-1
1101	Socket, c-c line ..27-6240-3
1102	Socket, power connecting, radio chassis27-6274-4
1103	Socket, remote control power connecting27-6214.5
L100	Choke, power-supply filter, $2.5 \mathrm{~h} ., 450 \mathrm{mar}32-8514$
R102	Resistor, 7.5 ohms, 7 watts33-3448
$\begin{aligned} & \text { R106 and } \\ & \text { R107 } \end{aligned}$	Resistor, high-voltage return, 2 megohms (17" picture tube) \qquad $.76-6751$
$\begin{aligned} & \text { R106 and } \\ & \text { R107 } \end{aligned}$	Resistor, high-voltage return, 2 megohms (20" picture tube) \qquad $.33-1351-7$
T100	Transformer, filament, D-1 chassis32-8512
T100	Transformer, filament, D-4 chassis32-8519

SECTION 6-SYNC

| Reference
 Symbol | Description |
| :---: | :---: | :---: |
| C601 | Service
 Part No. |
| Condenser, d-c blocking, $180 \mu \mu f$. (on r-f | |
| chassis) ..60-10185417 | |

SECTION 7—VERTICAL SWEEP

Reference Symbol	Description $\begin{array}{r}\text { Service } \\ \text { Part No. }\end{array}$
C704	Condenser, electrolytic, screen by-pass, $20 \mu \mathrm{f}$. . 200v \qquad
$\begin{aligned} & \text { L700 and } \\ & \text { L701 } \end{aligned}$	Vertical-deflection coilsPart of deflection yoke
R701	Potentiometer, VERT. HOLD, 250,000 \qquad

SECTION 8—HORIZONTAL SWEEP

Relerence Service
Symbol Description Part No.

C800
C804

Condenser, voltage divider, $120 \mu \mu \mathrm{f}$.60-10125237
Condenser, horizontal lock-in, 45 to $370 \mu \mu$. .31-6473-32
Condenser, d-c blocking, $270 \mu u f . \pm 5 \%$..60-10275337
Condenser, drive, $330 \mu \mu \mathrm{f}$. $\pm 5 \%$..............60-10335417
Condenser, damping, $68 \mu \mu \mathrm{f}$.30-1243-4
Condenser, filter, electrolytic, 10μ.. 450v ...Part of Cl03
Condenser, filter, electrolytic, 20μ f., 300v
.Part of ClO3
Horizontal-deflection coilsPart of deflection yoke
Choke, antiringing, $180 \mu \mathrm{~h}$................................32-4480
R-i choke, damper cathode32.4112-24
R-f choke, damper plate32-4112-24
Potentiometer, horizontal frequency adjustment, 50,000 ohms ..33-5565-30
Potentiometer, HORIZ. HOLD, 75,000 ohms ..33-5563-43
Resistor, horizontal-oscillator filter, 12,000 ohms, 2 watts ..66-3125340
Resistor, horizontal output screen, voltage divider, 10,000 ohms, 2 watts66-3105340

Resistor, horizontal output screen, voltage divider, 5100 ohms, 5 watts33-1335-18
Potentiometer, horizontal width, 20,000 ohms, 4 watts \qquad
Resistor, voltage divider, 68,000 ohms, 1 watt
.66-3684340
Resistor, antiringing, 27,000 ohms, 2 watts.. 66 -3275340
Transformer, horizontal oscillator
.32.8551
Transformer, horizontal output
.32-8533

MISCELLANEOUS

Service Part No.Arm-and-magnet assembly (20" picture tube) 76.6594

REPLACEMENT PARTS LIST (Cont.)

DEFLECTION CHASSIS D-1 AND D-4 (Cont.) MISCELLANEOUS (Cont.)

Description	Service Part No.
Cable and plug assembly, deflection (20" picture tube)...41-4086-13	
Cable assembly, high voltage	41-4064
Cable assembly, pilot light	27-6233-6
Cable, volume control. D-1 chassis	41-3974
Cable, volume control, D-4 chassis	41.3974.9
Cap and lead assembly, 183 plate	76-5664-6
Cap and lead assembly, 6V3 plate	76-5664
Cord, line	41-3865
Deflection-yoke assembly (20" picture tube	76-7188
Focus assembly, PM ...76-6126-4	
Insulator, stand-off, 1B3 socket ..54-7309-6	
Insulator, stand-off, 1X2 socket ..54-7309-8	
Insulator, stand-off, R106 and R10754-7309-5	
Shell, remote control power socket ...66-1146	
Shield, corona, 9-pin socket ..56-7877FAl	
Shock mount. 6SN7 socket and spring76-6119	
Shock mount, 6BQ6GT socket and spring76-6119	
Socket, deflection27-6274-6	
Socket, loktal	27.6207
Socket, octal	27-6174
Socket, 1B3GT	27-6174.5
Socket. 1X2	27-6254-2
Spring, CRT assembly	56-9115

Reterence Symbol	Description $\begin{gathered}\text { Service } \\ \text { Part No. }\end{gathered}$
C400	Condenser, d-e blocking, $56 \mu \mu \mathrm{f}$.62-056409011
C406	Condenser, detector, balancing. $390 \mu \mu \mathrm{f}$...60-10395417
C409	Condenser, r-f by-pass, $330 \mu \mu \mathrm{f}$.62-133001001
C410	Condenser, filter, 2μ., 50v30-2417-7
C414	Condenser, plate by-pass, . $0068 \mu \mathrm{f}$., $1000 \mathrm{v} \text {..45-3505-93 }$
C415A	Condenser, screen by-pass, $10 \mu f ., 300 \mathrm{v}$ (41 chassis) \qquad Part of C303
C415B	Condenser, filter, $30 \mu \mathrm{f} .300 \mathrm{v}$ (41 chassis) Part of C303
C420	Condenser, electrolytic (44 chassis)30-2584-10
C420A	Condenser, cathode by-pass, $10 \mu \mathrm{f}$. . 50 v \qquad Part of C420
C420B	Condenser, screen by-pass, 20 uf. 300v) ...Part of C420
C421	Condenser, electrolytic (44 chassis)30-2584-9
C421A	Condenser, filter, $40 \mu \mathrm{f}, \mathrm{3} 300 \mathrm{v}$...............Part of C421
C421B	Condenser, filter, 30μ f., 300vPart of C421
J400	Socket, volume control27-6273
J401	Socket, speaker ...27-4785-22
J402	Socket, discriminator test27-6273
L404	Choke, filament ..32-4112-15
R404	Resistor, screen dropping, 12,000 ohms, 1 watt ...66.3124340
R405	Resistor, voltage divider, 22,000 ohms, 2 watts ...66-3225340
R414	Resistor, cathode bias, 270 ohms, 1 watt (41 chassis) \qquad 66-1274340

REPLACEMENT PARTS LIST (Cont.)

R-F CHASSIS 41 AND 44 (Cont.)	
	SECTION 4-AUDIO (Cont.)
Reference	Service
Symbol	Description Part No.
R415	Resistor, cathode bias, 180 ohms, 1 watt (44 chassis) 66-1184340
R416	Potentiometer, volume control, 2 megohms (41 chassis) \qquad
R416	Potentiometer, dual, 2 megohms and 5 megohms (44 chassis)33-5563-44
R416A	Potentiometer, volume control, 2 megohms ..Part of R416
R416B	Potentiometer, tone control, 5 megohms..Part of R416
R419	Resistor, voltage dropping, 1550 ohms, 12 watts ...33-3435-34
R420	Resistor, voltage divider, 33,000 ohms. 2 watts ..66-3335340
R421	```Resistor, voltage divider, 5600 ohms, 2 watts ...66-2565340```
R422	Resistor, voltage divider, 18,000 ohms, 2 watts ..66-3185340
R423	Resistor, speaker field, 1000 ohms, 7 watts (PM speaker only)33-1335-89
T400	Transformer, audio output (41 chassis).......32-8242-11
T400	Transformer, audio output (44 chassis)32-8522
2400	Transformer, 1st sound i-f assembly32-4449A
2401	Transformer, FM detector32-4450-5

MISCELLANEOUS

Description
Service Part No.
Cable assembly, chassis connection, power (41 chassis)...41-4086-1
Cable assembly, chassis connection, power (44 chassis)....41-4086-2
Cable assembly, CRT socket ..41-3964-15
Cable assembly, pilot light ...27-6233-6
Shield, miniature tube, 7-pin ..56-5629FA3
Shield, miniature tube, 9-pin ..56-5629-5FA3
Socket and base 6CB6 ..29-6203-14

Socket, miniature tube, 9-pin ..27-6203-5

TV TUNER, PART NO. 76-7070
 SECTION 5

Reference	Service
Symbol	Description Part No.
AD500	Aerial element (built-in broad-band dipole)56-7635
C500	Condenser, fixed trimmer, $20 \mu \mu$ f.62-020309011
C503	Condenser, d-c blocking, 150 !uf.62-115001011
C504	Condenser, grid by-pass, 220 ц.14.30-1225-11
C505	Condenser, a-g-c decoupling, . $01 \mu \mathrm{f}$.Part of R503
C507	
C508	Condenser, grid by-pass, . 02 !14.30-1238-5
C509	Condenser, d-c blocking, 150 ب14.62-115001011
C5 10	Condenser, plate decoupling. $150 \mu \mu \mathrm{f}$....62-115001011
C512	Condenser, coupling, 1.2 ! / f.30-1221-7

REPLACEMENT PARTS LIST (Cont.)

	JNER, PART NO. 76-7070 (Cont.) SECTION 5 (Cont.)
Reference Symbol	$\begin{aligned} & \\ & \text { Description } \text { Service } \\ & \text { Part No. }\end{aligned}$
$\begin{aligned} & \text { WS500B(F) } \\ & \text { and } \\ & \text { WS500B(R) } \end{aligned}$	Switch wafer section (mixer grid) with coils. 76 -7098
$\begin{aligned} & \text { WS500C(F) } \\ & \text { and } \\ & \text { WS500C(R) } \end{aligned}$	Switch water section (r-i plate) with coils.......76.6895
$\begin{aligned} & \text { WS500D(F) } \\ & \text { and } \\ & \text { WS500D(R) } \end{aligned}$	Switch waler section (r-f grid) with coils76-7077
2500	Tapered-line assembly76-7071

MISCELLANEOUS

Description	Service Part No.
Ball bearing (2 used)	56-8020
Cam-and-shaft assembly (FINE TUNING)	76-5846-4
Insulator, tuner shaft	54-4912
Lock washer, trimmer-condenser mtg.	W-1775-3
Plate-and-bracket assembly, front	76-5924-3
Plunger, FINE TUNING condenser	...56-8034
Screw, trimmer-condenser core	2W10617
Shaft	56-8018-6
Shield, tube	56-5629-5
Spring, cam shaft	...56-8254
Spring detent	..56-8019-1
Spring-and-bracket assembly. FINE TUNING grounding	$\begin{aligned} & \text { denser } \\ & \text {...............76-5961.1 } \end{aligned}$
Spring, plunger (FINE TUNING condenser)56-8035-1
Spring, tuner-shaft insulator56-9181
Washer, 'C', shaft retaining	...56-8061

Reference Symbol	$\begin{array}{cc}\text { Description } & \begin{array}{c}\text { Service } \\ \text { Part No. }\end{array}\end{array}$
C913	Condenser, filter, 10μ i., 300v30-2417.11
C914	Condenser, i-i trimmer, fixedPart of Z900
C915	Condenser, i-i trimmer, fixedPart of $\mathbf{z 9 0 0}$
C916	Condenser, i-f trimmer, fixedPart of 2901
C917	Condenser, i-i trimmer, fixedPart of $\mathbf{Z 9 0 1}$
C918	Condenser, i-f by-passPart of 2901
C919	Condenser, i-f by-passPart of 2901
1900	Lamp, bin ...34-2064
1901	Lamp, pilot ..34-2068
J900	Socket, antenna ..27-6252-3
1901	Socket, volume control27-6273
1902	Socket, phono input27-6273
J903	Socket, phono power and bin lamp27-6182
$\begin{aligned} & \text { L900 and } \\ & \text { L901 } \end{aligned}$	Coil. antenna ..Part of T900
$\begin{aligned} & \text { L902 and } \\ & \text { L903 } \end{aligned}$	Coil, oscillator ..Part of T901
R910	Resistor, voltage dropping, 10,000 ohms, 5 watts ..33-1335-21
R913	Resistor, filament voltage dropping, . 68 ohms, 1 watt ..66-8684340
T900	Transformer, antenna32-4519
T901	Transformer, oscillator32-4263
2900	Transformer, first i-f32-4160A
2901	Transformer, second i-i32-4240-3A
WS900	Wafer-switch assembly42-1964

MISCELLANEOUS

Description	Service Part No.
Backplate assembly, dial76-6325
Cable and plug assembly, audio	41-3974-6
Cable and plug assembly, power	41-4086
Mount, rubber	27-4596
Pilot-lamp assembly	27-6233-4
Shaft, tuning	56-7931-2
Socket, loktal	27-6207
Socket, miniature	...27-6265
Spring, condenser drive	.56-2617

Figure 35. Television Tuner, Base Layout

CABINETS AND CABINET PARTS

DESCRIPTION	MODEL				
	$\begin{aligned} & 52-T 2110 \\ & \text { CODE } 121 \end{aligned}$	$\begin{aligned} & 52-T 2144 \\ & \text { CODE } 121 \end{aligned}$	$\begin{gathered} 52-T 2145 X \\ \text { CODE } 125 \end{gathered}$	$\begin{aligned} & 52-T 2182 \\ & \text { CODE } 121 \end{aligned}$	$\begin{aligned} & 52-\text { T2182L } \\ & \text { CODE } 121 \end{aligned}$
Cabinet	'10869.2	10882	10882.8	10885	10885.1
Cabinet Hardware and Parts					
Bullet catch		45.6002	45-6002	45.6002	45.6002.1
Cable and plug assembly, phono power				41-4079-1	41-4079.1
Cable and plug assembly, speaker	41-4082.8	41-4082-8	41-4082-13	41-4082-13	41.4082.13
Coupler, cerial tuning	54-4748	54-4748	54.4748	54-4748	54-4748

CABINETS AND CABINET PARTS (Cont.)

DESCRIPTION	MODEL				
	$\begin{aligned} & 52-T 2110 \\ & \text { CODE } 121 \end{aligned}$	$\begin{aligned} & 52-T 2144 \\ & \text { CODE } 121 \end{aligned}$	$\begin{aligned} & 52-\text { T2145X } \\ & \text { CODE } 125 \end{aligned}$	$\begin{aligned} & 52-T 2182 \\ & \text { CODE } 121 \end{aligned}$	$\begin{aligned} & 52-T 2182 L \\ & \text { CODE } 121 \end{aligned}$
Dome	27.4911-1	45-6190	45-6190	45.6190	45-6190
Doors, matched pair		45.6701	45.6702	45.6704	45.6710
Hinge, knife, r. h.		56.7873.2	56.7873-2	$\begin{gathered} 56.7873 .2 \\ \text { and } \\ 56.8479 .1 \end{gathered}$	$\begin{gathered} 56.7873-6 \\ \text { and } \\ 56.8479-3 \end{gathered}$
Hinge, knile, l. h.		56-7873.3	56.7873-3	$\begin{gathered} 56.7873 .2 \\ \text { and } \\ 56.8479 \end{gathered}$	$\begin{aligned} & 56.7873 .7 \\ & \text { and } \\ & 56.8479 .2 \end{aligned}$
Knob, AERIAL TUNING	54.4750	54.4750	54-4750	54.4750	54.4750-3
Knob, BRIGHTNESS	54.4799	54.4799	54.4799	54.4799	54.4799
Knob, CHANNEL SELECTOR	76.6046	76.6046	76.6046	76.6046	76.6046.1
Knob, CONTRAST	76-6048	76-6048	76.6048	76.6048	76-6048-1
Knob, FINE TUNING	76-6104	76.6104	76.6104	76-6104	76-6104
Knob, HORIZONTAL HOLD	76.6048	76.6048	76.6048	76.6048	76-6048.1
Knob, TV.-BC.-PH.				54.4798-4	54.4798-5
Knob, TONE			76.6213	76.6213	76-6213-3
Knob, TUNING RADIO				54-4798	54.4798-1
Knob, VERTICAL HOLD	54.4799	54.4799	54.4799	54.4799	54.4799
Knob, VOLUME.ON-OFF, TV.	76-6581-1	76.6581.1	54.4799	54.4799	54-4799
Mask	56-8578-9	56-8578.8	54.8573.1	56.8578.11	56-8578.11
Pull, doos		56-9281	54.4901	56.9164	56.9164.1
Shaft, aerial tuning	54.4747-19	54-4747.1	54-4747-1	54-4747.1	54-4747-1
Shield, pilot light		54-8228	54-8228.1	54.8228	54.8228
Speaker	36.1641-1	36-1610-9	36.1610.9	36.1610 .9	36.1610 .9
Strike plate		45.6003	45-6003	45-6003	45.6003-1
Window	54.7943.40	54.7943 .49	54.7943.49	54.7943.51	54.7943-51

Figure 36. R-F Chassis 41, Base Layout

3

television service manual

Fizure 41. R.F Chassis 44, Schematic Diagram

Figure 43. Deflection Chassis D-4, Base Layout

TELEVISION

PHILCO TELEVISION SERVICE MANUAL FOR R-F CHASSIS 42 DEFLECTION CHASSIS G-2

TABLE OF CONTENTS

Circuit Description 2
A-C Line Isolation 3
Specifications 3
Tube Complement 3
B Supply Fuse Replacement 3
Horizontal Sweep Adjustment 3
Adjustment of HORIZ. OSC. FREQ. Control and Horizontal Lock-in Trimmer 3
Adjustment of Horizontal-Oscillator Transformer 4
Video-Output Peaking-Coil Adjustment 4
Television Alignment 4
Television Carrier, Oscillator, and Check-Point Frequencies 4
General 5
Test Equipment Required 5
Jigs and Adapters Required 5
Mixer Jig 5
Aerial-Input Matching Network 5
ALIGN TEST Jack Adapter 5
FM TEST Jack Adapter 6
Television Tuner Alignment 6
Oscillator Alignment 6
General 6
Procedure Using Signal Generator 6
Procedure Using Station Signal 7
Bandpass Alignment 7
General 7
Procedure 8
Video I-F Alignment 9
Preliminary 9
Procedure 9
Sound I-F Alignment 9
Oscilloscope Waveform Patterns 10
Replacement Parts List 19

CIRCUIT DESCRIPTION

The Philco 1952, Code 125 television receivers use two chassis. One chassis contains the r-f, video, audio, and sync circuits; the other chassis contains the power and deflection circuits.
Since these chassis are not isolated from the 60 -cycle power line, all protruding shafts and mounting feet are isolated from the chassis. CAUTION: See A-C Line Isolation.
The r-f amplifier, oscillator, and mixer section is built on a separate sub-chassis. The r-f amplifier uses a 6 BZ7 or a 6BQ7 tube. The oscillator and mixer each use one half of a 12AV7 tube. The output of the mixer is fed to a four-stage, stagger-tuned i-f amplifier system employing three 6AU6 tubes and one 6CB6 tube. One half of a $12 A U 7$ is used as a video detector, a-g-c rectifier. The cathode and grid are used for video detection, while the cathode and plate are used for a-g-c rectification. A delay voltage, obtained from a voltage divider consisting of the CONTRAST control, R305 and R408, is applied to the cathode to prevent a-g-c action on weak signals, where maximum gain is required. The maximum delay voltage is obtained when the CONTRAST control is in the fully clockwise position, as is the case when the receiver is adjusted for weak signals. The a-g-c voltage is applied to the first three i-f stages to hold the output of the video detector essentially constant with large variations in input signal levels. A-G-C voltage for the r-f amplifier is obtained from the voltage divider in the sync-separator circuit. Because the voltage is dependent upon signal strength, it controls the gain of the r-f amplifier in proportion to the received signal. To prevent the a-g-c circuit of the tuner from going positive, one diode section of a 6T8 tube is used as a clamp.

Sound i-f (intercarrier) is obtained by utilizing the beat frequency produced when the $26.6-\mathrm{mc}$. video carrier and the $22.1-\mathrm{mc}$. sound carrier are mixed in the video detector. The $4.5-\mathrm{mc}$. beat frequency is the difference between 26.6 mc . and 22.1 mc ., and contains the FM sound signal. This $4.5-\mathrm{mc}$. signal contains only a negligible amount of the video-amplitude modulation, provided that the amplitude of the 22.1mc . signal is considerably lower than that of the 22.6 mc . signal. The proper relationship between the two carriers is established in the alignment of the receiver. There is sound output only when both the video and sound carriers are present.

The oscillator is tuned primarily to obtain the best picture, since the $4.5-\mathrm{mc}$. relationship always exists between the two carriers. The $4.5-\mathrm{mc}$. sound i-f (intercarrier), which is taken from the video detector, is amplified by one half of a 12AU7 and a 6AU6, and is fed to the FM detector, which utilizes two diode sections of a 6 T8 tube. The triode section of the 6T8 is used as the first audio amplifier. The power amplifier uses a 7C5 tube.

One half of a 12AV7 tube is used as the first video amplifier, which feeds into a 6AQ5 video-output amplifier. The plate load of the first video amplifier is made up of two resistors, R302 and R303. To obtain higher voltage for synchronization, the composite signal for sync purposes is taken from across both R302 and R303, while the composite video for the
video output is taken from across R303 only. C302 is used to by-pass high-frequency video around R302. The plate load of the video-output amplifier consists of L302 and R309. L302 is an adjustable peaking coil, and is adjusted at the factory for best video response.

The sync circuit consists of a first sync separator, a variable diode noise gate, a second sync separator, and a sync inverter. The composite video is fed to the first sync separator, one half of a 12AV7 tube. The output of the first sync separator is taken from the cathode and applied to the cathode of the noise gate, one half of a 12AU7 tube. A positive voltage, which is obtained from a voltage divider made up of R606 and R607, is applied to the diode plate, while the sync signal, of positive polarity, is applied to the cathode. The diode will pass the sync signal as long as the cathode remains negative with respect to the plate. The value of plate voltage is chosen so that this condition exists for all normal sync signals. However, when a noise signal greater than the sync signal is received, the cathode of the diode is driven positive with respect to the plate, and the diode is cut off, thus preventing the noise from passing on to the second sync separator.

The positive voltage applied to the plate of the diode is made proportional to the strength of the signal being received by obtaining it from the load side of a dropping resistor, R419, in the B+ line that supplies plate and screen voltages to the i-f stages. The current through R419, therefore, depends upon the amount of current drawn by the i-f stages. When a stronger signal is received, the a-g-c voltage increases; this decreases the current drawn by the i-f stages, and decreases the voltage drop across R419. Since this results in an increase in the voltage applied to the plate of the noise-gate diode, the level at which the diode will gate out the noise is raised. When a weaker signal is received, the opposite effect is obtained. The second sync separator, one half of a 12AU7 tube, removes all remaining video information from the composite signal. The output of the second sync separator is fed to the deflection chassis through the power-connecting cable. A sync inverter, one half of a 6SN7GT tube, reverses the polarity of the sync pulses for proper triggering of the sweep oscillators.

The vertical sync pulses are separated from the horizontal pulses in an integrating network and applied to the grid of the vertical blocking oscillator, which uses one half of a 6SN7GT tube. The output of the blocking oscillator is amplified by the 6AH4GT vertical output tube, and is applied to the verticaldeflection coils.

The horizontal sync pulses are applied to the grid of a phase comparer, one half of a 6 SN 7 GT tube, through a capactive voltage divider. Within the lockin range, the phase relationship of the horizontal sawtooth and the sync pulses at the grid of the phase comparer determines the frequency of the horizontal blocking oscillator. The blocking oscillator employs one half of a 6SN7GT tube. A 6BQ6GT tube is used as the horizontal amplifier. The screen voltage for the horizontal amplifier is supplied through a voltagedivider network. R817, the WIDTH control, and

R308B, the BRIGHTNESS control, are a part of this divider. R817 varies the voltage applied to the screen, thus adjusting for proper picture width. Adjusting R308B for brightness varies the bias on the picture tube. This change in bias causes a change in beam current which would tend to result in a change in picture width and high voltage. However, because R308B is also a part of the voltage-divider network in the screen circuit of the horizontal amplifier, the screen voltage is automatically altered to compensate for any tendency of a beam-current change to affect the picture width. The output of the horizontal amplifier is fed to the horizontal deflection coils through the horizontal-output transformer. A 6 V 3 tube is used as the horizontal damper tube.
The second anode voltage for the picture tube is supplied by one 1B3GT high-voltage rectifier tube. The B-plus voltage for the receiver is supplied by two selenium rectifiers, CR100 and CR101, in a fullwave voltage-doubler circuit, operating directly from the power line. Bias voltage is obtained across the speaker field coil (used as filter choke) which is in series with the negative side of the B-plus supply. The B-plus boost voltage derived from the horizontaldamper circuit supplies higher B-plus to the horizontal amplifier, vertical oscillator, and first anode of the picture tube. Filament current for all the tubes except the high-voltage rectifier is supplied by a step-down transformer.

IMPORTANT

A-C LINE ISOLATION

CAUTION: One side of the a-c line is connected to the chassis through C102 and L100. The other side is connected to the chassis through R102, CR100, and C103 in series. Grounding the chassis will result in a short circuit across one or the other of these two branches in the voltage-doubler circuit. During servicing and alignment it is desirable that an a-c line isolation transformer capable of handling at least 225 watts (Philco Part No. $45-9600$) be used. Failure to use an isolation transformer will greatly increase the shock hazard, and may result in damage to the equipment.

SPECIFICATIONS

CHANNEL TUNING

Twelve-channel, wafer-switch incremental tuner; fine tuning of local oscillator.
FREQUENCY RANGE
Television Channels 2 through 13 INTERMEDIATE FREQUENCIES

Video carrier $\quad 26.6 \mathrm{mc}$.
Sound (intercarrier) $\quad 4.5 \mathrm{nc}$.
TRANSMISSION LINE $\quad 300$-ohm, twin-wire lead OPERATING VOLTAGE

110-120 volts, 60 cycles, a.c.
POWER CONSUMPTION
200 watts

TUBE COMPLEMENT

42 R-F CHASSIS

REF. SYMBOL	TUBE TYPE	FUNCTION
V1	6BQ7-miniature	$\mathrm{R}-\mathrm{F}$ amplifier
V2	12AV7-miniature	Oscillator, mixer
V3, V4, V5	6AU6-miniature (3)	Video i-f amplifier
V6	$6 \mathrm{CB6}$-miniature	Video i-f amplifier
V7	12AU7-miniature	Video detector, a-g-c rectifier, first sound i-f amplifier
V8	6AU6-miniature	Second sound i-f amplifier
V9	6T8-miniature	FM detector, first audio amplifier, a-g-c clamp
V10	7C.5-Loktal	Audio output
V11	12AV7-miniature	First video amplifier, first sync separator
V12	12AU7-miniature	Noise gate, second sync separator
V13	6AQ5-miniature	Video output
V20	17JP4, 20DP4A, or 20EP4A	Picture tube

G-2 DEFLECTION CHASSIS

REF.	TUBE TYPE	FUNCTION
SYMBOL		
V14	6SN7GT-octal	Sync inverter, vertical oscillator V15
6AH4GT-octal	Vertical output	
V16	6SN7GT-octal	Phase comparer, horizontal
V17	6BQ6GT-octal	Hoscillator
V18	6V3-miniature	Horizontal output
V19	1B3GT-octal	High-voltage rectifier

B SUPPLY FUSE REPLACEMENT

The B supply protective fuse, F 100 , is wired into the low-voltage section, and is in series with the seleniun rectifiers. For replacement, use a 1.6 -ampere delayed-action-type fuse, Philco Part No. 45-2656-23.

CAUTION: Discharge the circuit before replacing the fuse.

HORIZONTAL SWEEP ADJUSTMENT

ADJUSTMENT OF HORIZ. OSC. FREQ. CONTROL AND HORIZONTAL LOCK-IN TRIMMER

The range of the HORIZ. HOLD control potentioneter is sufficient to compensate for normal variations in the frequency of the horizontal oscillator, and no other adjustment is ordinarily required. However, if the tube or other components are replaced in the horizontal-oscillator circuit, it may be necesssary to reset the HORIZ. OSC. FREQ. control and horizontal lock-in trimmer as follows, in order to obtain proper synchronism and deflection (these controls are located on the back and side of the chassis):

1. Turn the HORIZ. HOLD control fully clockwise.
2. Adjust the HORIZ. OSC. FREQ. control until four diagonal black bars appear, sloping to the right.
3. Turn the HORIZ. HOLD control counterclockwise until the picture comes in, then goes out of sync. Then turn the HORIZ. HOLD control slowly clockwise again, counting the number of black (blanking) bars, sloping down to the left, just before the picture pulls into sync. Adjust the horizontal lock-

P1-1089-B
Figure 1. Horizontol-Oscillotor Waveshope, Showing Correct Adjustment of T800
in trimmer, C804, until there are two or two and one-half bars just before the picture pulls into sync. If the receiver does not lose sync when the HORIZ. HOLID control is fully connterclockwise, remove the signal momentarily to interrupt the sync, then proceed as above.

ADJUSTMENT OF HORIZONTALOSCILLATOR TRANSFORMER

CAUTION: Do not adjust tuning cores TC800 and TC801 in the horizontal-oscillator transformer, T800, unless it is absolutely necessary. These cores are presct at the factory with special equipment. The tuning cores in replacement transformers are also preset, and do not require adjustment after installation in the chassis. Condenser C807 is matched to T800, and must be replaced when T 800) is replaced. Horizontal-oscillator transformer T800 and condenser C807 are supplied as a unit.

If for some reason it becomes necessary to adjust TC 800 and TC801, proceed as follows:

1. Tune in a station and adjust the HORIZ. HOLID control until the picture is synchronized. If the picture cannot be synchronized, adjust the HORIZ. OSC. FREQ. control. If it is impossible to obtain synchronization by adjustment of the HORIZ. HOLD and

HORIZ. OSC. FREQ. controls, adjust the oscillator core, TC801.
2. Connect an oscilloscope to the cathode (pin 6) of the horizontal oscillator, using a $15-\mu \mu \mathrm{f}$. condenser in series with the scope lead. Adjust the stabilizer core, TC800, until the wave shape resembles that in figure 1 . The "average line" in figure 1 is established by shorting the input leads of the scope. Keep the picture synchronized while adjusting TC800.
3. Turn the HORIZ. HOLD control fully clockwise. Adjust the HORIZ. OSC. FREQ. control until four diagonal black bars appear, sloping to the right.
4. If four diagonal black bars cannot be obtained by adjusting the HORIZ. OSC. FREQ. control with the hold control in the clockwise position, adjust the oscillator core, TC801.

VIDEO-OUTPUT PEAKING-COIL ADJUSTMENT

The video-output peaking coil, L302, is adjusted at the factory for proper transient response of the video amplifiers. Ordinarily, this coil will require no further adjustment by the serviceman. On some stations, however, where excessive overshoot or excessive smear is present, a slight adjustment of L302 may improve the picture quality on that station, but at a possible sacrifice of quality on other channels. If L302 is replaced in servicing, adjustment will be required.
Before adjusting L302, check the tuner alignment and i-f alignment. (Never adjust L302 until the alignment of the receiver is correct.) Then tume in a station and adjust L302 so there are no trailing whites or smear in the picture. Turning TC301 clockwise reduces trailing whites and overshoot; turning TC301 counterclockwise reduces picture smear and increases trailing whites. The proper position is the point where no smear or trailing whites appear in the picture.

The above procedure for adjustment of TC301 applies to a particular station exhibiting smear or overshoot. After TC301 is adjusted, reception on all the other stations should be checked, to make certain that the adjustment has not impaired the picture quality.

TELEVISION ALIGNMENT

TELEVISION-CARRIER, OSCILLATOR, AND CHECK-POINT FREQUENCIES

CHAN- NEL	CHANNEL LIMITS (mc.)	```VIIDEO-CARRIER CHECK-POINT (A) FREQUENCY (me.)```	$\begin{gathered} 100 \% \\ \text { CHECK-POINT } \\ \text { (B) } \\ \text { FREQUENCY } \\ \text { (mc.) } \end{gathered}$	$\begin{gathered} 10 \% \\ \text { CHECK-POINT } \\ \text { (C) } \\ \text { FREQUENCY } \\ \text { (mc.) } \\ \hline \end{gathered}$	SOUND-CARRIER FREQUENCY (mc.)	LOCALOSCILLATOR FREQUENCY (mc.)
2	54-60	55.25	57.35	59.35	59.75	81.85
3	60-66	61.25	63.35	65.35	65.75	87.85
4	66-72	67.25	69.35	71.35	71.75	93.85
5	76-82	77.25	79.35	81.35	81.75	103.85
6	82-88	83.25	83.35	87.35	87.75	109.85
7	174-180	175.25	177.35	179.35	179.75	201.85
8	180-186	181.25	183.3.5	185.35	185.75	207.85
9	186-192	187.25	189.35	191.35	191.75	213.85
10	192-198	193.25	195.35	197.35	197.75	219.85
11	198-204	199.25	201.35	20:3.35	203.75	225.85
12	204-210	205.25	207.35	209.35	209.75	231.85
13	210-216	211.25	213.35	215.35	215.75	237.85

Figure 2. Aerial-Input Matching Network

GENERAL

The alignment consists of tuning each i-f coil to a given frequency, using an AM signal, then feeding in a sweep signal at the aerial terminals and touching up the adjustments to obtain the desired pass band.

The over-all response curve (r-f, i-f) of the circuits from the aerial terminals to the video detector, after the i-f stages have been aligned, should appear essentially the same regardless of the channel under test. If not, the tuner should be aligned.

The video-carrier intermediate frequency is 26.6 mc ., and the sound intermediate (intercarrier) frequency is 4.5 mc . Alignment of these circuits requires careful workmanship and good equipment. The following precautions must be observed:

1. There must be a good bond between the receiver chassis and the test equipment. This is most easily obtained by having the top of the workbench metallic. The receiver chassis should be placed tunerside down on the bench. If the bench has no metallic top, the test equipment and chassis can be bonded by a strip of copper about 2 inches wide. The section of the chassis nearest the tuner should rest on the strip.
2. Do not disconnect the picture tube, picture-tube yoke, or speaker while the receiver is turned on.
3. Allow the receiver and test equipmnet to warm up for 15 minutes before starting the alignment.
4. The marker (AM) signal generator should be calibrated accurately to the frequencies used and to the sound and video r-f carriers of each channel used during alignment. If Model 7008 is used, the built-in crystal calibrator provides an excellent means of calibration. An alternate method for calibrating the signal generator to the sound and video r-f carrier frequencies is to zero-beat the signal generator with the received signals.

For further information regarding calibration, refer to Philco Lesson PR-1745 (J) entitled "Television Service in the Home."

TEST EQUIPMENT REQUIRED

The following test equipment is recommended for aligning the receiver:

1. Philco Precision Visual Alignment Generator for Television and FM, Model 7008, or equivalent.
2. Vacuum-tube voltmeter, or 20,000 -ohms-per-volt voltmeter.
3. R-F Probe, Philco Part No. 76-3595 (for use with Model 7008 generator).

JIGS AND ADAPTERS REQUIRED

 Mixer JigConnections to the grid of the mixer tube may be made through the alignment jack provided for that purpose. To connect the generator to this point, a mixer-grid, jig, Philco Part No. 45-1739, and a connecting cable, Philco Part No. 45-1635, may be used. As an alternate, a Philco alligator-clip adapter, Part No. 45-1636, with as short a ground lead as possible, may be used to connect the alignment jack. The ground lead should be connected as close as possible to the mixer tube. It is essential that the signal-generator output lead be terminated with a 68 -ohm resistor (carbon) so that regeneration, caused by connection of the lead to the mixer, is held to a minimum.

Aerial-Input Matching Network

Figure 2 shows an impedance-matching network for coupling the signal generator to the aerial-input terminals of the receiver. This network, which is designed to have an input impedance of 75 ohms and an output impedance of 300 ohms , is used to match a 75 -ohm generator to a 300 -ohm aerial-input circuit The resistors used in this network should be of carboncomposition construction, and should be chosen from a group, to obtain values within 10% of those indicated. The resistors should be placed in a shield can, to prevent variable effects. An aerial matching jig, Philco Part No. 45-1736, which consists of a matching transformer and connecting box, may be used in place of the resistor network.

ALIGN TEST Jack Adapter

The ALIGN TEST jack adapter, shown in figure 3, should be used during the i-f alignment to apply the proper bias to the a-g-c bus, and to provide a convenient oscilloscope connection. This adapter consists of a 5 -prong plug, a 10,000 -ohm potentiometer, a

TP1-1827
Figure 4. FM TEST Jack Adapter

2200 -ohm isolating resistor, and a 3 -volt battery. A suggested method of fabricating the adapter is also shown. It is suggested that the bias battery and potentiometer be mounted in a metal box of convenient size.
The potentiometer and switch are connected across the 3 -volt battery. The switch is used to disconnect the potentiometer, to prevent the discharge of the battery while not in use. The 1000 -ohm resistor in series with the arm of the control will prevent rapid discharge of the battery if the leads are accidentally shorted.

FM TEST Jack Adapter

Figure 4 shows the adapter that should be used to connect the voltmeter and oscilloscope to the FM detector test socket, J402. A suggested method of fabricating the adapter is also shown. Pins 1 and 5 are removed from a five-pin plug, 27-4785-3, because a three-pin plug with proper spacing is not readily available.

TELEVISION TUNER ALIGNMENT

After the tumer is serviced, or if an i-f alignment is required, or if a replacement tube does not exactly meet the requirements described under TUNER TUBE REPLACEMENT, the tuner alignment should be checked; if realigmment is necessary, use the procedure given below.

Since the frequency of the local oscillator affects the tuner response, the local-oscillator alignment should be made first.

OSCILLATOR ALIGNMENT

General

Beginning with Chamel 13, every other coil is tunable, so that by ardiusting the tuning cores, it is possible to place either of two adjacent chamels exactly on frequency; that is, either Channels 13 or 12,11 or 10,9 or 8 , etc. The foregoing is based on the assumption that the oscillator has previously been tracked, and that it is clesired to compensate for small tracking errors on several different chamels. This adjustment procedure should be carried out with the highest chamel first, since the aligmment of each
chanmel will affect the alignment of the channels below it in frequency. The FINE TUNING control should be preset for all adjustments, by placing the stop on the fine-tuning cam at the center of the Channel 6 oscillator tuning core. See figure 5.

Procedure Using Signal Generator

An r-f signal (ummodulated), at the oscillator frequency, is fed into the aerial input from an AM signal generator, and the oscillator tuning cores are adjusted for zero beat. The r-f signal should be accurate, preferably from a crystal source, or calibrated against the television station.

1. Connect a 3300 -ohm resistor in series with the red lead from the tumer. Connect the "hot" lead of the oscilloscope to the junction of the red lead and the 3300 -ohm resistor. (High oscilloscope gain may be necessary to obtain a visual beat. In this instance, base-line hum may be ignored.)
2. Connect the AM (marker) generator to the 300 -ohm aerial-input terminals. For this purpose the aerial-input matching network is not required.
3. If the tuner is being aligned out of the chassis, connect the white lead to the negative terminal of a 1.5 -rolt battery. Ground the positive terminal.
4. Mechanically preset the fine-tuning cam as shown in figure 5.
5. Feed in an r-f signal (unmodulated), at the oscillator frequency for Channel 13 (237.85 mc .), with the CHANNEL. SELECTOR set for Channel 13.
6. Adjust the tuning core for Channel 13 (see figure 5).
7. Adjust the tuning cores for Channels 11 and 9 , in the order given.
8. Check the Channel 8 oscillator frequency. If it is too high, turn C527 several turns clockwise; if the frequency is too low, turn the triminer counterclockwise (see figure 32).
9. Repeat steps 5, 6, 7, and 8 until Chamels 13, 11, 9 , and 8 are within plus or minus 500 ke . of the correct frequency.
10. Feed in an r-f (unmodulated) signal, at the oscillator frequency for Channels $7,6,4$, and 2 , consecutively (see NOTE below), and adjust the respective tuning cores. (See figure 5.)

Figure 5. Television-Tuner, Oblique View, Showing Location of Adiustments

NOTE: The exact position of the FINE TUNING shaft should be marked when Chamnel 2 is correctly aligned. This position is to be used in step 6 of the i-f aligmment procedure.

Procedure Using Station Signal

The following simplified procedure mily be used to align the oscillator when the television i-f alignment is satisfactory and a station sigual is available:

1. Mechanically preset the fine-tuning cam to the center of its range (see figure 5).
2. Tune in the highest-frequency chamel to be received.
3. Adjust the tuming core for that channel, or the next highest, for the best picture; that is, starting with sound in the picture, turn the tuning core until the sound disappears. Repeat for each chamnel recoived in the area.

BANDPASS ALIGNMENT

General

The bandpass alignment consists of aligning the tuner at Chamels 13 and 6 and then making it track down to Chamels 7 and 2 , respectively.

During the alignment, a fixed bias of 1.5 volts is applied to the r-f amplifier tube.

An FM (sweep) signal is applied to the aerial-input circuit, and an oscilloscope is comnected to the
mixer plate circuit. The oscilloscope gain should be as high as possible, consistent with hum level and "bounce" conditions. Hum conditions will cause distortion of the time base and response. Bounce conditions, which are caused by poor line regulation, will canse the response and time base to jump up and down. The use of too high an oscilloscope gain aggravates these conditions, whereas the use of too low a gain necessitates increasing the generator output to a point where the tuner may be overloaded. Overload may be checked by changing the generator output while observing the shape of the response curve; any change in the shape of the curve inclicates overload, in which case a lower generator output and higher oscilloscope gatin must be used. A $3: 30$-ohm resistor is shonted across the lst i-f coil, to eliminate the absorption effect of this coil on the response curve.

1. Disconnect the white (a-g-c) lead from the tuner, and connect it to the negative terminal of a 1.5-volt battery. Ground the positive terminal.
2. Connect a 3300 -ohm resistor in series with the red lead from the tuner. Connect the "hot" lead of the oscilloscope to the junction of the red lead and the 3300 -ohm resistor.
3. Connect a 330 -ohm resistor from the green lead to ground.
4. Connect the FM (sweep) generator to the 300 -ohm aerial input through an aerial-input matching network. See figure 2.

Procedure

1. Set the CHANNEL SELECTOR and FM (sweep) generator to Channel 13 (213 mc .). Adjust the generator for sufficient sweep to show the complete response curve.
2. Establish the channel limits (see figure 6) by using the marker (AM r-f) signal generator to pro-
duce marker pips on the response curve. (Set the generator first to 210 mc , then to 216 mc .) The curve should be reasonably flat between the limits shown in figure 6.
3. Adjust TC505 and TC507 (figure 5) for a symmetrical, approximately centered pass band. Set marker generator to 213 mc . Detune TC507 counterclockwise until a single peak appears. Adjust TC505 until the peak falls on the $213-\mathrm{mc}$. marker. It may be necessary to increase the output of the generator during this adjustment. Then adjust TC503 for maximum curve height and symmetry of the single peak. The aerial circuit is now tuned for the high channels.
4. Readjust TC505 and TC507 for a symmetrical response, centered about 213 mc . and falling within the limits as shown in figure 6.
5. Set the CHANNEL SELECTOR and FM generator to Channel 7 (177 mc .).
6. Establish the Channel limits by using the markersignal generator to produce marker pips on the response curve. (Set the generator first to 174 mc ., then to 180 mc .) The curve should be reasonably flat between the limits.
7. On Channel 7, note the response curve, with respect to tilt and center frequency. The curve should be centered in the pass band, and should be symmetrical.
8. If the curve is not symmetrical and appears unbalanced as shown in figure 7 leave the generator and tuner set to Channel 7 and adjust C506 and C515 (see figure 32) to obtain a response curve which is the mirror image (tilt in the opposite direction) of the original. This is a form of overcompensation to allow for the effect of Channel 13 adjustment on Channel 7. For example, if the Channel 7 response

appears as in figure 7A, then the trimmer should be adjusted to obtain the response shown in figure 7B.
9. Reset the CHANNEL SELECTOR and generators to Channel 13. Readjust TC505 and TC507 for a symmetrical and centered band pass. (See step 4.)
10. Set the CHANNEL SELECTOR and generators to Channel 7, and check the response for center frequency and symmetry. Repeat steps 8 and 9 as many times as necessary to obtain the most symmetrical and centered response curves on Channels 13 and 7. Channels 7 through 13 are now correctly aligned.
11. Set the CHANNEL SELECTOR and sweep generator to Channel 6 (85 mc .).
12. Establish the channel limits, using the marker generator to produce marker pips on the response curve. (Set the generator first to 82 mc ., then to 88 mc .)
13. Adjust TC504 and TC506 for a symmetrical, approximately centered pass band. Set the marker generator to 85 mc . Detune TC506 counterclockwise until a single peak appears.

CAUTION: Do not turn TC506 excessively, or it will fall out of the coil.
Adjust TC504 until the peak falls on the $85-\mathrm{mc}$. marker. It may be necessary to increase the output of the generator during this adjustment. Then adjust TC502 for maximum curve height and symmetry of the single peak. The aerial circuit is now tuned for Channels 2 through 6.
14. Readjust TC504 and TC506 for a symmetrical response, centered about 85 mc .

VIDEO I-F ALIGNMENT

 PRELIMINARYBefore proceeding with the i-f alignment or making an alignment check, observe the following preliminary instructions:

1. Connect the oscilloscope to the 2200 -ohm resistor from the ALIGN TEST jack adapter.
2. If additional attenuation of the marker signal is required when using Visual Alignment Generator Model 7008, insert a 10,000 -ohm resistor in series with the output lead, or use a 2nd harmonic of Band A, which will give a marker of lower amplitude.
3. Preset the television controls as follows:
a. CONTRAST control fully counterclockwise.
b. BRIGHTNESS control to give a dim raster.
4. Insert the FM TEST jack adapter into J402.
5. Insert the ALIGN TEST jack adapter into J200.

PROCEDURE

1. Preset TC201 and TC203 fully counterclockwise. See figure 32. Preset TC200 and TC202 to the center of their ranges.
2. Connect the oscilloscope to J200, pin 2, through the 2200 -ohm resistor from the ALIGN TEST jack adapter, and connect the AM generator to G1 (mixer grid on tuner).
3. Feed in a $28.1-\mathrm{mc}$. AM signal, and tune TC201 for minimum output (use first minimum). Use zero bias during this adjustment.
4. Feed in a $21.85-\mathrm{mc}$. A.M signal, and tune TC203 for minimum output (use first minimum). Use zero bias during this adjustment.
5. Tune TC205, TC204, TC202, TC200, and TC507 for maximum output at the frequencies indicated in figures 32 and 33 . Use 3 volts of bias, and attenuate the generator to keep the output below the level that will give a .6 -volt output at the video detector with 30% amplitude modulation.
6. Feed in sweep and marker signals to Channel 2 through the aerial-input terminals. The tuner pass band should be checked, and the tuner aligned, if necessary. The local oscillator should be set to its correct frequency (81.85 mc . for Channel 2). Refer to step 10 of Procedure Using Signal Generator, under OSCILLATOR ALIGNMENT. The response should fall within the limits shown in figure 8. The ideal response curve is shown in figure 9 . The frequencies shown in figures 8 and 9 are for Channel 2. To convert these response curves for Channels 3 through 13, refer to the chart of Television-Carrier, Oscillator, and Check-Point Frequencies and substitute the proper frequencies at points A, B, and C. Touch up TC205, TC204, TC202, TC200, and TC507. See NOTE below.

IMPORTANT: Do not turn any of the i-f tuning corres excessively after they have been set to the approximate position by the use of the AM signal generators; to do so may cause poor transient or phase response, resulting in trailing whites or smear. If a response within the limits shown cannot be obtained by a slight adjustment, carefully repeat the AM adjustments, and, if necessary, troubleshoot the i-f system. It is preferable to get a response curve within the tolerance range WITHOUT touching the adjustments made with the AM signals at the specified frequencies, rather than to attempt to obtain the ideal curve.
NOTE: TC205 rocks top of curve.
TC202 controls level of carrier.
TC204 controls dip or peak on carrier side.
TC200 controls dip or peak on sound side.

SOUND I-F ALIGNMENT

1. Remove the first i-f tube, and connect a v.t.v.m. or a 20,000 -ohms-per volt voltmeter to the FM TEST jack adapter. Adjust the VOLUME control for moderate speaker output.
2. Feed in an accurately calibrated $4.5-\mathrm{mc}$. AM signal through the 2200 -ohm resistor in the ALIGN TEST jack adapter to pin 2 of J200.
3. Tune TC400 and TC402 for maximum indications on the meter. The point of maximum meter indication for TC402 should also be the point of minimum speaker output.
4. Tune TC402 for minimum speaker output.
5. Connect an r-f probe or crystal detector to the grid (pin 2) of the picture tube. See NOTE below.
6. Tune TC300 for minimum indication on oscilloscope. If a crystal detector is not available, TC300 may be adjusted for minimum beat pattern, observed on the picture tube, with a station picture present.
7. Replace the lst i-f tube. Tune in a station and use the speaker output as an indication.
8. Turn the FINE TUNING control clockwise to obtain a slightly fuzzy picture.

Figure 9. Ideal Over-all R-F, I-F Response Curve
9. Tune TC402 for minimum AM (noise) output. NOTE: The R-F Probe, Part No. 76-3595, is used as a detector of the $4.5-\mathrm{me}$. signal, and the oscilloscope as an indicating device. An alternate crystal detector may be made up as shown in figure 10 .

Figure 10. Wiring Diagram of Crystal Detector

OSCILLOSCOPE WAVEFORM PATTERNS

The waveforms were taken with the receiver adjusted for normal picture and an approximate peak-to-peak output of 2 volts at the video detector. The voltages given with the waveforms are approximate peak-to-peak values. The frequencies shown are those of the waveform-not the sweep rate of the oscilloscope. The waveforms were taken with an oscilloscope having good high-frequency response. With oscilloscopes having poor high-frequency response, the sharp peaks of the horizontal waveforms will be more rounded than those shown, and the peak voltages will differ from the values shown.

Figure 11. Video-Detector OUTput
Pin 2 of J200
2 Volts, 60 C.P.S.

TP1-1200-B
Figure 12. Video-Amplifier Plate Pin 6
28 Volts, 60 C.P.S.

TPI-1200.A
Figure 13. CRT Grid Pin 2 118 Volts, 60 C.P.S.

TP1.1090
Figure 6. Second-Sync-Separator Plate Pin 1
10 Volts, 60 C.P.S.

TP)-1202
Figure 19. Vertical-Oscillator Grid Pin 4 90 Volts, 60 C.P.S.

TP1-1091
Figure 17. Second-5ync-Separator Plate Pin 1
10 Volts, 15,750 C.P.S.

TP 1-1097
Figure 20. Vertical-Oscillator Plate Pin 2 130 Volts, 60 C.P.S.

Figure 23. Phase-Comparer Grid Pin 1 20 Volts, 15,750 C.P.S.

TP1-1203
Figure 15. First-Sync-Separator Cathode Pin 2
10 Volts, 60 C.P.S.

TP1-1087
Figure 18. Sync-Inverter Plate Pin 5
30 Volts, 60 C.P.S.

Figure 24. Phase-Comparer Grid Pin 1 with Pin 4 Grounded 6 Volts, 15,750 C.P.S.

- Connect a $15-\mu \mu \mathrm{f}$ condenser in series with the oscilloscope lead. The oscilloscope should be calibrated with the $15-\mu \mu \mathrm{f}$. condenser in the circuit.
© CAUTION: High-voltage pulses are present at these points. Do not connect the oscilloscope directly to these tubes. The waveforms may be taken with the
the alligator clip of the oscilloscope lead clipped over the insulation of the tubecap leads. (To prevent puncture of the insulation of the cap leads, wrap friction tape around the leads and file off the teeth of the alligator clip.) The peak-to-peak voltage shown is the actual voltage present; however, the amplitude of the scope presentation depends upon the degree of coupling.

Figure 32. R-F Chassis 42, Base Layout

CHassis rppes 42, G-2
tevision service manual

replacement parts lis
important

tetevison service manual

R-F CHASSIS 4

PHILCO
 TELEVISION

PHILCO television service manual FOR R-F CHASSIS 91 DEFLECTION CHASSIS J-I

TABLE OF CONTENTS
Circuit Description. 2
A-C Line Isolation. 3
Specifications 3
Tube ComplementB Supply Fuse Replacement
Horizontal Oscillator Aljustment3Television Alignment
General.
Test Equipment RequiredJigs and Adapters Required
Mixer JigAntenna-Input Matching Network.4
Video I-F Alignment Jig (VIDEO TEST Jack Adapter)Sound Output Alignment Jig (FM TEST Jack Adapter).
Television Tuner Alignment4
Sound Input Alignment Jig (VIDEO TEST Jack Adapter)Oscillator Alignment.
General
Procedure Using Signal Generators
Procedure Using Station Signal5
Tuner Bandpass Alignment 6
General6
Procedure 6
Video I-F Alignment. 7
Preliminary 7
Procedure 8
S-I-F Alignment 8
Oscilloscope Waveform Patterns. 9
Replacement Parts List. 20

CIRCUIT DESCRIPTION

The Philco 1953, Code 126, television receivers use two chassis-the r-f chassis 91 containing the r-f, video, audio, and sync circuits, and the deflection chassis $\mathrm{J}-1$ containing the power and deflection circuits.

Since these chassis are not isolated from the 60-cycle power line, all protruding shafts and mounting feet are insulated from the chassis.

CAUTION: See A-C Line Isolation.

The r-f amplifier, oscillator, and mixer section is built on a separate subchassis. The r-f amplifier uses a 6BZ7 tube, V1. The oscillator and mixer each use one half of a $12 \mathrm{AZ7}$ tube, V2. The output of the mixer is fed to a four-stage i-f amplifier system employing four 6CB6 tubes, V3, V4, V5, and V6. A 1 N64 crystal diode is used for the video detector. One half of a 6 U 8 tube, V7A, is used as the first video amplifier, which feeds into a 6AQ5 video output amplifier, V8.

Sound i-f (intercarrier) is obtained by utilizing the beat frequency produced when the $45.75-\mathrm{mc}$. video carrier and the $41.25-\mathrm{mc}$. sound carrier are mixed in the video detector. The beat frequency, 4.5 mc ., is the difference between 45.75 mc . and 41.25 mc ., and contains the FM sound signal. This $4.5-\mathrm{mc}$. signal contains only a negligible amount of the video amplitude modulation, provided that the amplitude of the $41.25-\mathrm{mc}$. signal is considerably lower than that of the $45.75-\mathrm{mc}$. signal. The proper relative amplitude of the two carriers is established in the alignment of the receiver. There is sound output only when both the video and sound carriers are present.

The oscillator is tuned primarily to obtain the best picture, since the $4.5-\mathrm{mc}$. relationship always exists between the two carriers. The $4.5-\mathrm{mc}$. sound i-f (intercarrier), which is taken from the video detector is amplified by a 6BA6 tube, V9, and a 6AU6 tube, V10, and is fed to the FM detector, which utilizes two diode sections of a 6 T 8 tube, V11A. The triode section of the 6 T 8 tube, V11B, is used as the first audio amplifier. The power amplifier uses a 7C5 tube, V12.

A-G-C voltage for the video i-f system and the r-f amplifier is obtained from a keyed a-g-c system which uses a 6AU6 tube, V13, as the a-g-c gate. Composite video from the video-amplifier plate circuit, V7A, is fed to the grid of the a-g-c gate tube, while a gating or keying pulse, obtained from a winding on the horizontal output transformer located on the deflection chassis, is applied to the plate. The sync-pulse polarity applied to the grid of V13 is positive; therefore, the a-g-c gate can conduct in proportion to the amplitude of the sync-pulse tips if the gating or keying pulse occurs at the same time as the sync. Because the keying or gate pulse is of constant amplitude, approximately 500 volts peak, the amplitude of the sync pulse will determine the amount of conduction in the gate tube. The plate current of the keyed a-g-c gate tube flows through R220, R213, and R212, developing a voltage which is negative in respect to chassis and proportional to the plate current. This negative voltage is used to control the gain of the receiver. Since conduction cannot occur in the a-g-c gate tube unless the sync pulse and gating pulse occur at the same time, noise disturbances that occur between sync-pulse intervals cannot affect the a-g-c voltage.

Composite video for the sync circuits is taken from the plate circuit of the video amplifier, V7A. The plate load of the video amplifier consists of two equal sections, R302 and R303. The full output of the amplifier is fed to the grid of the noise in-
verter using one half of a $12 \mathrm{AU7}$ tube, V14B, and the output developed across R303 only, is fed to the grid of the sync separator using one half of a 6U8 tube, V7B. The noise inverter is operated with a low value of plate voltage and high bias (applied to the cathode by a voltage divider network) which keeps the tube beyond cut-off. When the composite video signal is applied to the grid of the noise inverter through C601, the sync appears as positive pulses; noise which could affect the sweep circuits also appears as positive pulses. Harmful noise pulses usually have amplitudes far greater than the sync pulses and, therefore, drive the grid of the noise inverter positive sufficiently to allow conduction in the noise-inverter plate circuit. To prevent the noise inverter from conducting during the sync-pulse interval, the gated leveler using one half of a 12AU7 tube, V14A, is employed to clamp the sync pulses below the conduction level of the noise inverter. The gated leveler will conduct only when the sync pulses and gating pulse occur at the same time, thus leveling the noise-inverter input to the: sync-pulse level.

The output of the noise inverter consists of nega-tive-going noise pulses. It should be noted that the noise pulses which exceed the sync level have been passed and their polarity reversed by the noise inverter. The output of the noise inverter is now mixed with the composite video and fed to the grid of the sync separator. Since the composite video fed to the grid of the sync separator has positive sync polarity, the positive noise pulses carried with the composite video would be passed by the sync separator; however, the output of the noise inverter consists of these same noise pulses, but they are of opposite polarity; thus, the noise pulses are cancelled. The output of the sync separator contains only the sync pulses which are fed to the deflection chassis through the connecting cable.

The phase splitter, using one half of a 12AU7 tube, V15A, inverts the sync polarity for proper triggering of the vertical oscillator. The vertical sync is separated from the horizontal sync by the integrator circuit and fed to the grid of the vertical blocking oscillator, using one half of a 12AU7 tube, V15B. The output of the vertical oscillator is amplified by the vertical output amplifier using a 12BH7 tube, V16. The output of the amplifier is applied to the vertical deflection coils through the vertical output transformer.

The phase splitter also supplies horizontal sync to the phase-comparer diodes, using a 6AL5 tube, V17. Two horizontal sync outputs are taken from the phase splitter, one from the cathode, the other from the plate circuit. These two outputs are of opposite polarity and are fed to the two diodes of the phase comparer, the negative pulses to the cathode of V17B and the positive pulses to the plate of V17A. A saw-tooth voltage is fed to the plate of V17B and cathode of V17A for comparison of the sync and horizontal sweep voltages. When the sweep and sync are in phase, no voltage will be developed across R800, but when the two signals are out of phase a voltage will be developed across R800. The voltage across R800 will increase the frequency of the horizontal oscillator, using a 12AU7 tube, V18, if it is positive and the same voltage will reduce the frequency of the oscillator if it is negative, thus acting to hold the horizontal oscillator in phase with the sync signal. The HORIZ. HOLD control, R811, adjusts the horizontal oscillator to the proper frequency so that it may be controlled by the phase comparer. The output of the horizontal oscillator is fed to the horizontal output amplifier using a 6BQ6GT
tube, V19. The horizontal output tube feeds the deflection coils through the horizontal output transformer. A 6AX4GT tube, V20, is used as the horizontal damper.

The second anode voltage for the picture tube is supplied by a 1B3GT high-voltage rectifier tube, V20. The B-plus voltage for the receiver is supplied by two selenium rectifiers, CR100 and CR101, in a full-wave voltage-doubler circuit, operating directly from the power line. Bias voltage is obtained across the speaker field coil (used as a filter choke), which is in series with the negative side of the B-plus supply. The B-plus boost voltage derived from the horizontal damper circuit supplies higher B-plus voltage to the vertical amplifier, vertical oscillator, and the first anode of the picture tube. Filament current for all the tubes except the high-voltage rectifier is supplied by a 110 -volt, 60 -cycle stepdown transformer. Filament current for the high-voltage rectifier is supplied by a winding on the horizontal output transformer.

IMPORTANT
 A-C LINE ISOLATION

CAUTION: One side of the a-c line is connected to the chassis through C102, and L100. The other side of the a-c line is connected to the chassis through R102, CR100, and C103, in series. Grounding the chassis will result in a short circuit across one or the other of these two branches in the voltage-doubler circuit. During servicing and alignment, it is desirable that an a-c line isolation transformer capable of handling at least 225 watts (Philco Part No. 45-9600) be used. Failure to use an isolation transformer will greatly increase the shock hazard, and may result in damage to the equipment.

SPECIFICATIONS

CHANNEL TUNING Twelve-channel, 13-position, wafer-switch incremental tuner; fine tuning of local oscillator
FREQUENCY RANGE Television Channels 2 through 13 and U.H-F position
INTERMEDIATE FREQUENCIES
Video carrier
45.75 mc .

Sound (intercarrier)
4.5 mc .

TRANMISSION LINE
OPERATING VOLTAGE
300 ohm, twin-wire lead
110 to 120 volts, 60 cycles, a.c.
POWER CONSUMPTION 200 watts

TUBE COMPLEMENT
 R-F 91 CHASSIS

REFERENCE SYMBOL	TUBE TYPE	FUNCTION

J-I DEFLECTION CHASSIS

REFERENCE SYMBOL	TUBE TYPE	FUNCTION
V15	12AU7-miniature	Phase splitter, ver- tical oscillator
V16	12BH7-miniature	Vertical output Phase comparer V17
V18	6AL5-miniature	
V19	Gorizontal oscil-	
V20	6BQ6GT-miniature	lator
V21	6AX4GT-octal	Horizontal output Damper
	1B3GT-octal	High-voltage rec- tifier

B SUPPLY FUSE REPLACEMENT

The B supply protective fuse, F 100 , is wired into the low-voltage section, and is in series with the selenium rectifiers. For replacement, use a 1.6 -ampere delayed-action-type fuse, Philco Part No. 45-2656-23.

CAUTION: Discharge the circuit before replacing the fuse.

HORIZONTAL OSCILLATOR ADJUSTMENT

To adjust the horizontal oscillator circuit, tune in a station and proceed as follows:

1. Reduce the width of the picture so that approximately one inch of blank screen appears on the right and left sides of the picture.
2. Increase BRIGHTNESS control setting so that the blanking time becomes visible. This appears as a dark bar to the right and left sides of the picture.
3. Connect a $.1-\mu$. condenser from pin 2 of the gate pulse socket, J801, to ground.
4. Set the HORIZ. HOLD control to the center of its mechanical rotation.
5. Adjust the HORIZ. HOLD CENTERING control to bring the picture into the center of the blanking bars. When the picture is centered in the blanking bars, the bars on the left and right sides of the picture will be of equal width.
6. Remove the $.1-\mu \mathrm{f}$. condenser from the gate pulse socket. (See step 3.)
7. Adjust the horizontal ringing coil L800 until the picture is again centered in the blanking bar.
8. Rotate the HORIZ. HOLD control through its range. The picture should fall out of sync to both sides of the center of its rotation. If the picture does not fall out of sync to both sides, readjust the HORIZ. HOLD CENTERING control to obtain fall out to either side of sync.
9. Rotate the HORIZ. HOLD control through its range and observe the number of diagonal blanking bars just before the picture pulls into sync. The pull-in should occur with from 1 to 2 diagonal bars when the sync position is approached from either direction. If proper pull-in is not obtained, repeat the above procedure.

TELEVISION ALIGNMENT

General

The alignment consists of tuning each i-f coil to a given frequency, using an AM signal, then feeding in a sweep signal at the antenna terminals and touching up the adjustments to obtain the desired pass band.
The over-all response curve (r-f, i-f) of the circuits from the antenna terminals to the video detector, after the i-f stages have been aligned, should appear essen-
tially the same regardless of the channel under test. If not, the tuner should be aligned. Before aligning the tuner, refer to the CAUTION given under Television Tuner Alignment Procedure.
The video-carrier intermediate frequency is 45.75 mc., and the sound intermediate (intercarrier) frequency is 4.5 mc . Alignment in these circuits requires careful workmanship and good equipment. The following precautions must be observed:

1. There must be a good bond between the receiver chassis and the test equipment. This is most easily obtained if the top of the workbench is metallic. The receiver chassis should be placed tuner side down on the bench. If the bench has no metallic top, the test equipment and chassis can be bonded by a strip of copper about two inches wide. The section of the chassis nearest the tuner should rest on the strip.
2. Do not disconnect the picture tube, picture-tube yoke, or speaker while the receiver is turned on.
3. Allow the receiver and test equipment to warm up for 15 minutes before starting the alignment.
4. The marker (AM) signal generator should be calibrated accurately to the frequencies used and to the sound and video r-f carriers of each channel used during alignment. If Model 7008 is used, the built-in crystal calibrator provides an excellent means of calibration. An alternate method of calibrating the signal generator to the sound and video r-f carrier frequencies is to zero-beat the signal generator with the received signals.
For further information regarding calibration, refer to Philco Lesson PR-1745 (J) entitled "Television Service in the Home."

Test Equipment Required

The following test equipment is recommended for aligning the receiver:

1. Philco Precision Visual Alignment Generator for Television and FM, Model 7008, or equivalent.
2. Vacuum-tube voltmeter, or 20,000 -ohms-per-volt voltmeter.
3. R-F Probe, Philco Part No. $76-3595$ (for use with Model 7008 generator).

Jigs and Adapters Required Mixer Jig

Connections to the grid of the mixer tube may be made through the alignment jack provided for that purpose. To connect the generator to this point, a mixer-grid jig, Philco Part No. 45-1739, and a connecting cable, Philco Part No. 45-1635, may be used. As an alternate, a Philco alligator-clip adapter, Part No. 45-1636, with as short a ground lead as possible, may be used to connect the alignment jack. The ground lead should be connected as close as possible to the mixer tube. It is essential that the signal-generator output lead be terminated with a $68-\mathrm{ohm}$ resistor (carbon) so that regeneration, caused by connection of the lead to the mixer, is held to a minimum.

Antenna-Input Mafching Nełwork

An impedance matching network for coupling the signal generator to the aerial input terminals of the receiver is shown in figure 2 on page 5 of PR-2170. This network, which is designed to have an input impedance of 75 ohms and an output impedance of 300 ohms, is used to match a 75 -ohm generator to a 300 ohm antenna-input circuit. The resistors used in this network should be of carbon-composition construction, and should be chosen with a group to obtain values
within ten percent of those indicated. The resistors should be placed in a shield can to prevent variable effects. An antenna-matching jig, Philco Part No. 45 1736, which consists of a matching transformer and connecting box, may be used in place of the resistor network.

Video I-F Alignment Jig IVIDEO TEST Jack AdapterI

The alignment jig, shown in figure 1 , should be used during the i-f alignment to apply the proper bias to the a-g-c bus, and to provide a convenient oscilloscope connection. This adapter consists of a five-pin plug, two $10,000-$ ohm resistors and a $1500-\mu \mu \mathrm{f}$. condenser for isolation of the bias supply. To isolate the oscilloscope from the receiver circuits a 15,000 -ohm resistor bypassed by a $1500-\mu \mu \mathrm{f}$. condenser is used. A suggested method of fabricating the jig is also shown in figure 1. This jig should not be used to observe the composite video from the video detector output.

S-I-F Inpuł Alignment Jig (VIDEO TEST Jack Adapter)

To observe the composite video a jig may be made with a five-pin plug and a 2200 -ohm resistor. (See figure 2.) The 2200 -ohm resistor should be connected to pin 2. A ground lead should be connected to pin 3. For convenience in applying bias to the a-g-c circuits, a lead should be connected to pin 5. To observe the

TP2-1507
Figure 1. Video I-F Alignment Jig (VIDEO TEST Jack Adapter)

Figure 2. Sound I-F Input Alignment Jig (VIDEO TEST Jock Adapter)
composite video, connect the oscilloscope to the 2200ohm resistor and the ground lead. This jig is also used for injection of the 4.5 mc . signal during s-i-f alignment.

S-I-F Output Alignment Jig (FM TEST Jack Adapter)

Figure 3 shows the adapter that should be used to connect the voltmeter to the FM detector test socket, J402. Pins 1 and 5 are removed from a five-pin plug, Part No. 27-4785-3, because a three-pin plug with proper spacing is not readily available. The two $15,000-$ ohm resistors should have a tolerance of five per cent and should be selected to be as nearly equal in resistance as possible and connected to pins 2 and 3 on the plug. The free ends of the resistors are joined to form a voltage divider across the discriminator tank condenser C413. Leads should be brought out from pins 2 and 4 as shown in figure 3.

Figure 3. Sound I-F Output Alignment Jig (FM TEST Jock Adapter)

TELEVISION TUNER ALIGNMENT

After the tuner is serviced, or if an i-f alignment is required, or if a replacement tube does not exactly meet the requirements, the tuner alignment should be checked. If realignment is necessary, use the procedure given below.

Since the frequency of the local oscillator affects the tuner response, the local oscillator alignment should be made first.

Oscillator Alignment General

It is possible to place each channel exactly on frequency by adjusting the tuning core of each coil. The adjustment procedure should be carried out with the highest Channel (13) first, since the alignment of each channel will affect the alignment of the channels below it in frequency. The FINE TUNING control should be preset for all adjustments by placing the stop on the fine-tuning cam at Channel 8 oscillator tuning core. See figure 4.

Procedure Using Signal Generators

An r-f signal (unmodulated), at the video carrier frequency of the channel, is fed into the antenna input, and an i-f signal, at the i-f carrier frequency, is fed to the first i-f amplifier. Two AM signal generators are used to supply the above signals. An oscilloscope is connected to the video detector output. The oscillator core is then adjusted for zero beat on each channel. The signals from the two generators should be accurately calibrated as described in Philco Lesson Series, PR-1745J.
To align the oscillator, proceed as follows:

1. To observe the zero beat, connect the oscilloscope to the video detector output through the video i-f alignment jig. See figure 1. Bias the tuner and i-f a-g-c circuits with one and one half volts and remove the gate pulse plug PL801, from the socket J801. To apply the bias to the tuner connect the battery to the white lead which comes out of the top of the tuner. On later runs of this tuner, the white a-g.c lead connects to a feed through condenser on the top of the tuner. To make certain that good connection is made to the tuner a-g-c circuit remove the glyptol coating on this condenser terminal.
2. To feed in the i-f comparison signal, remove the shield from the first v-i-f tube and wrap several turns of insulated copper wire around the tube. Connect the output leads of the v -i-f signal generator to the two ends of the wire loop, and set the generator for unmodulated output at 45.75 mc .
3. To feed in the signal representing the channel frequency, set the r-f signal generator at the video

Figure 4. Television Tuner, Showing Locotion of Adjusfments
carrier frequency of Channel 13 , and connect the output to the aerial terminals of the receiver, through the proper matching jig.
4. Mechanically preset the fine-tuning cam, as shown in figure 4 , and set the CHANNEL SELECTOR to Channel 13.
5. Adjust the Channel-13 tuning core for zero beat, as indicated by the oscilloscope.
6. Retune the r-f signal generator and the CHANNEL SELECTOR for Channels 12, then 11, etc., each time adjusting the respective tuning core for zero beat. The tuning cores should be adjusted progressively from the highest to lowest channel, because the higher channel adjustments will affect the lower channels.

Procedure Using Station Signal

The following simplified procedure may be used to align the oscillator when the television i-f alignment is satisfactory and a station signal is available. If this procedure is used in the service shop, signals from all stations which the customer can receive must be available in the service shop.

1. Mechanically preset the fine-tuning cam to the center of its range. (See figure 4.)
2. Tune in the highest-frequency channel to be received, and adjust the tuning core for that channel for the best picture; that is, starting with sound in the picture; turn the tuning core until the sound in the picture just disappears.
3. Repeat step 2 for each channel received in the area, starting with the highest channel and finishing with the lowest channel.

Tuner Bandpass Alignment
 General

The bandpass alignment consists of aligning the tuner at Channels 13 and 6 and then making it track properly.
During the alignment, a fixed bias of 1.5 volts is applied to the r-f amplifier tube through the white a-g-c lead.

An FM (sweep) signal is applied to the antennainput circuit through the proper matching jig, and an oscilloscope is connected through a 100,000 -ohm resistor to the mixer-grid test point. The oscilloscope gain should be as high as possible, consistent with "hum" level and "bounce" conditions. Hum conditions will cause distortion of the time base and response. Bounce conditions, a result of poor line regulation, will cause the response and the time base to jump up and down. The use of too high an oscilloscope gain aggravates these conditions, whereas the use of too low a gain necessitates increasing the generator output to a point where the tuner may be overloaded. The scope controls should be adjusted so that the width of the presentation is double the height. Overload may then be checked by changing the generator output while observing the shape of the response curve. When the generator output is changed, the vertical. gain of the oscilloscope should be readjusted to keep the scope presentation amplitude the same. Do not readjust the horizontal gain control. Any change in the shape of the curve indicates overload, in which case a lower generator output and higher oscilloscope gain must be used.

The signal generator output must be properly matched to the antenna input of the tuner. The An-tenna-Input Matching Network, shown in figure 2 of PR2170, or Philco Antenna Matching Jig, Part No. 45-1637, may be used for this purpose. If a matching
jig is not used, the result obtained will be extremely unreliable.

Regeneration in the test setup will also cause poor and unreliable results. To check for regeneration move the hand along the generator cable after all equipment is connected, and observe the response curve on the oscilloscope screen. If the response curve on the oscilloscope changes as the hand is moved along the cable, regeneration is indicated. A check for regeneration may also be made by adjusting the VOLUME control until the noise in the speaker can be heard. If the level of the noise changes as the hand is moved along the generator cable, regeneration is indicated. The symptoms which indicate regeneration may also be caused by failure to use the proper matching jig as described above.

Procedure

CAUTION: When comparing the response curves from channel to channel, maintain the 2 to 1 width to height relationship in the oscilloscope presentation as described above.

1. Connect the FM (sweep) and AM marker generators to the 300 -ohm aerial input through an aerialinput matching jig.
2. Connect the oscilloscope to the mixer-grid test point through a $100,000-\mathrm{ohm}$, one-half watt resistor, as shown in figure 4. Connect the ground lead of the oscilloscope as close to the mixer tube as possible.
3. Apply 1.5 volts bias to the white tuner a-g-c lead.
4. Disconnect the tuner coupling link at wiring panel B-13 terminals 1 and 4, and solder a 68 -ohm, one-half watt carbon resistor to the open link coming from the tuner. See figure 7. Remove the first i-f tube from its socket.
5. Set the CHANNEL SELECTOR and FM (sweep) generator to Channel 13 (213 mc .). Adjust the generator for sufficient sweep width to show the complete response curve.
6. Establish channel limits (see figure 5) by using the marker (AM r-f) signal generator to produce

Figure 5. Television Tuner Response Curve, Showing Bandpass Limits

Figure 6. Television Tuner Response Curve, Showing Tracking Compensation
marker pips on the response curve. (Set the marker generator first to 210 mc ., then 216 mc .) The response curve should be reasonably flat between the limits.
7. Adjust TC502 and TC504 (figure 4) for a symmetrical, approximately centered pass band. Set marker generator to 213 mc . Detune TC504 counterclockwise until a single peak appears. Adjust TC502 until the peak falls on the $213-\mathrm{mc}$. marker. (It may be necessary to increase the output of the generator during this adjustment.) Then adjust TC500 for maximum curve height and symmetry of the single peak. The antenna circuit is now tuned for the high band channels.

NOTE: On later runs of the tuner, L506 is not tunable and TC500 is omitted, therefore, the adjustments in step 7 should be confined to TC502 and TC504 when later-run tuners are encountered.
8. Readjust TC502 and TC504 for a symmetrical response, centered about 213 mc . and falling within the specifications as shown in figure 5.
9. Set the CHANNEL SELECTOR and FM generator to Channel 7 (177 mc .). Establish the channel limits by using the marker-signal generator to produce marker pips on the response curve. (Set the marker generator first to 174 mc ., and then to 180 mc .) The curve should be reasonably flat between the limits.
10. On Channel 7, observe the tilt, and center frequency of the response curve. The curve should be centered in the pass band and should be symmetrical. If it is not symmetrical and appears unbalanced, as in figure 6, adjust C507 and C512 (figure 4) to obtain a response curve which is the mirror image (tilt in the opposite direction) of the original; for example, if Channel 7 response curve appears as in figure 6A, adjust C 506 and C 514 until the curve appears as in figure 6B. This adjustment overcompensates to make allowance for the effect of Channel 13 adjustments (to be made in step 11) upon Channel 7 response.
11. Reset the CHANNEL SELECTOR and generators to Channel 13, and repeat steps 8 through 10 as many times as necessary to obtain most symmetrical and centered response curves on Channels 13 and 7. Channels 7 through 13 are now correctly aligned.
12. Set the CHANNEL SELECTOR and sweep generator to Channel 6 (85 mc .).
13. Establish the channel limits, using the marker generator to produce marker pips on the response curve. (Set the marker generator first to 82 mc ., then to 88 mc .)
14. Adjust TC503 and TC505 for a symmetrical, approximately centered pass band. Set the marker gen-
erator to 85 mc . Detune TC505 counterclockwise until a single peak appears. Adjust TC503 until the peak falls on the $85-\mathrm{mc}$. marker. It may be necessary to increase the output of the generator during this adjustment. Then adjust TC501 for maximum curve height and symmetry of the single peak. The antenna circuit is now tuned for Channels 2 through 6.
15. Readjust TC503 and TC506 for a symmetrical response, centered about 85 mc . and falling within the specifications as shown in figure 6 . Channels 2 through 6 are now correctly aligned.

VIDEO I-F ALIGNMENT

Preliminary

Before proceeding with the i-f alignment or making an alignment check, observe the following preliminary instructions:

1. Preset the CONTRAST and BRIGHTNESS controls to the maximum counterclockwise position.

TP2.1510
Figure 7. R-F Chassis 91, Top View, Showing Location of Adjustments
2. Preset the CHANNEL SELECTOR to Channel 4.
3. Insert the video i-f alignment jig into J200.
4. Connect the oscilloscope to the 15,000 -ohm resistor from the video i-f alignment jig. Connect the ground lead of the oscilloscope to the ground lead from the adapter.
5. Connect a 7.5 -volt battery to the a-g-c test jack, with the negative terminal to the bias lead and the positive terminal to the ground lead.
6. Connect the AM generator to the mixer test point, G1, through a mixer jig, and adjust the generator for approximately 30 per cent modulation with 400 cycles. Adjust the output of the generator during the alignment to keep the output at the second detector below . 6 volt peak-to-peak.

NOTE: If the i-f shield has been removed for repairs, it must be replaced before proceeding with alignment.

Procedure

1. Tune the AM generator to 39.75 mc . and adjust C518 (see figure 7) for minimum output as observed on the oscilloscope.
2. Tune the AM generator to 47.25 mc . and adjust C201 for minimum output as observed on the oscilloscope.
3. Tune the $\mathbf{A M}$ generator to 41.25 mc . and adjust C203 for minimum output as observed on the oscilloscope.

NOTE: In steps 1,2 , and 3 it is necessary to keep the generator output sufficiently high so that a null indication may be observed on the oscilloscope; however, avoid overloading of the receiver by excessive signal.
4. Tune the AM generator to the frequencies indicated and adjust the trimmers for maximum output.
a. 42.7 mc . adjust C514
b. 45.4 mc . adjust C204
c. 42.0 mc . adjust C206
d. 45.0 mc . adjust C210
e. 44.4 mc . adjust C215
f. 43.0 mc . adjust C218
5. Connect the sweep generator and r-f marker generator to the antenna terminal through a matching jig. (If separate oscilloscope is used, connect the sweep output of the generator to the horizontal input of the oscilloscope.) Set the CHANNEL SELECTOR to Channel 4 and tune the sweep generator for output on Channel 4. Tune the r-f marker generator for the video carrier frequency of Channel 4 (67.25 mc .) and tune the i-f marker generator (connected to mixer grid) to 45.75 mc . Note that two marker generators are used for this procedure. The r-f marker generator is connected to the antenna terminals while the i-f marker generator is connected to the mixer grid test point, G1. A jig constructed from a piece of fiber tubing, with $3 / 16$ inch inside diameter, and a brass machine screw which fits tightly into the tubing is used to connect the generator to the test point. The screw is adjusted so that it clears the test point by approximately $1 / 64$ inch. The output cable of the marker generator is connected to the head of the brass screw in the jig and to chassis near the mixer tube. Both marker generators should be adjusted for the minimum output required to make the markers barely visible. Failure to observe this precaution or the use of excessive output from the sweep generator will cause misleading results. After the equipment is properly connected, adjust the FINE TUNING control for zero-beat of the two markers, as observed on the oscilloscope. When zero beat is obtained, remove the i-f marker.

Figure 8. Overall R-F, I-F Response Curve
6. If the response curve does not fall within the limits as shown in figure 9, the adjustment of the trimmers may be touched up slightly, while observing the response curve with the sweep generator. Do not retouch the setting of C518, C201, C203, or C206. To adjust the curve, first adjust C215 and C218, alternately until maximum improvement has been obtained. C215 affects the tilt of the curve and C218 affects the dip of the curve. After C215 and C218 have been adjusted, adjust C514 for proper slope at the 42.25 mc . side of the curve, then adjust C204 and C210 for proper level at the video carrier (45.75 mc .) .

CAUTION: Do not turn any of the trimmers excessively: To retouch, only turn the trimmers slightly.

S-I-F ALIGNMENT

The sound i-f system may be aligned by means of the station signal or an accurately calibrated signal generator as the signal source. If the station signal is used, tune the FINE TUNING control for the best picture regardless of sound. It will be necessary to reduce the signal input to the receiver so that the d-c output at the sound detector, as measured between pins 2 and 3 of J 400 , is kept below 10 volts maximum and preferably below 5 volts. In strong signal areas this may require shorting of the antenna terminals and the application of bias to the a-g-c circuit. The signal input to the receiver may be adjusted by varying the length of the shorting lead. The bias may be applied to the a-g-c circuit by means of the jig shown in figure 2. The s-i-f output alignment jig shown in figure 3 should be used for convenient connection of the meter to the sound detector output.

When an accurately calibrated signal generator is used, bias should be applied to the a-g-c circuit to aid in the reduction of circuit noises from the i-f system. The receiver should be adjusted to a channel on which no station can be received. The generator should be connected to pin 2 of J200 through the 2200 ohms resistor in the sound i-f input alignment jig. The generator should be adjusted for unmodulated output at 4.5 mc .

After the above conditions have been met, proceed as follows:

1. Connect the 20,000 ohms-per-volt meter to the leads from pins 2 and 3 of the sound i-f output alignment jig, negative terminal to pin 2 and positive terminal to pin 3.
2. Adjust TC300, TC400, TC401, and TC402 for maximum output as indicated on the meter. If the output exceeds 10 volts, reduce the signal input to the receiver.
3. Connect the meter to the junction of the two $15,000-\mathrm{ohm}$ resistors in the sound i-f output alignment jig and to pin 3. Adjust TC403 for zero crossover. Zero crossover is indicated by a zero indication on the meter, and when TC403 is turned in one direction from this zero point, the meter will swing positive; turning TC403 in the opposite direction will cause a negative swing. (To aid in reading a positive and negative swing of the meter, set the pointer by means of the zero adjust screw to a convenient calibration mark on the scale before connecting to the circuit.)

OSCILLOSCOPE WAVEFORM PATTERNS

The waveforms were taken with the receiver adjusted for an approximate peak-to-peak output of 2 volts at the video detector. The voltages given with the waveforms are approximate peak-to-peak values. The frequencies shown are those of the waveformsnot the sweep rate of the oscilloscope. The waveforms
were taken with an oscilloscope having good highfrequency response. With oscilloscopes having poor high-frequency response, the sharp peaks of the horizontal waveforms are more rounded than those shown, and the peak voltages differ from those shown.

TPI-1200-A
Figure 9. Video-Detector Output, Pin 2 of J200
2 volts 60 C.P.S.

TP2-656
Figure 12. Gate-Pulse Plug, Pin 3
10 Volts 15,750 C.P.S.

TP2-658
Figure 15. Noise-Inverter Cathode,
Pin 8
Waveshape and amplitude vary with noise

TP2.654
Figure 10. Gate-Pulse Plug,
Pin 4
500 Volts 15,750 C.P.S.

TP2-655
Figure 13. Gated-Leveler Grid, Pin 2
2.5 Volts 15,750 C.P.S.

TP2-659
Figure 16. Sync-Separator Plate, Pin 1
17 Volts 60 C.P.S.

TP2-653
Figure 11. A-G-C Gate Grid, Pin 1
22 Volts 60 C.P.S.

TP2-657
Figure 14. Noise-Inverter Plate, Junction R605, C602 and C603 23 Volts 15,750 C.P.S.

TP2-660
Figure 17. Sync-Separator Plate, Pin 1
17 Yolts 15,750 C.P.S.

TP2-639
Figure 18. Phase-Splitter Grid, Pin 7
14 Volts 60 C.P.S.

TP2-641
Figure 24. Phase-Splitter Plate, Junction of R614, R615 and C800 10 Valts 15,750 C.P.S.

TP2-697
Figure 21. Vertical-Oscillator Plate, Pin 1
130 Volts 60 C.P.S.

TP2.640
Figure 19. Phase-Splitter Plate, Pin 6
30 Volts 60 C.P.S.

TP2.644
Figure 22. Vertical-Output Grid. Pins 2 and 7
120 Volts 60 C.P.S.

TP2-642
Figure 25. Phase-Splitter Cathode, Pin 8 10 Volts 15,750 C.P.S.

TP2.643
Figure 20. Vertical-Oscillatar Grid, Pin 2
165 Volts 60 C.P.S.

T32.646
Figure 27. Horizontal Oscillator, Junction of L800, R8Cb, and C806 35 Volts 15,750 C.P.S,

TP2-6,49
Figure 30. Horizontal-Output Grid, Pin 5
130 Volts 15,750 C.P.S.

TP2-647
Figure 28. Horizontal-Oscillator Cathode, Pins 8 and 3 16 Volts 15,750 C.P.S.

Figure 31. Herizontal-Deflection Yoke, *Pin 7 of J800 3000 Valts 15,750 C.P.S.

TP2.648
Figure 29. Horizontal-Oscillator Grid, Pin 2
38 Volts i5,750 C.P.S.

Figure 32. Gate-Pulse Socket, Pin 4 of J 801
500 Volts 15.750 C.P.S.
*CAUTION: High-voltage pulses are present in the horizontal-output circuit. The waveform in figure 33 was taken with the alligator clip of the oscilloscope lead clipped over the insulation of the lead connected to pin 7 of J800. (To prevent puncture of the insulation of the lead, file off the teeth of the alligator clip and wrap friction tape around the clip.) Connection to other points in the horizonial output circuit is dangerous because of the high voltages present. The peak-to-peak voltage shown for figure 33 is the actual voltage present; however, the amplitude of the scope presentation depends upon the degree of coupling.

Figure 33. $\begin{gathered}\text { R-F Chassis } 91 \text {, Bottom View, Showing } \\ \text { Voltages at Socket Pins }\end{gathered}$

Figure 34. Deffection Chassis J.1, Bottom View,
Showing Voltages of Socket Pins

TELEVISION

PHILCO
ALIGNMENT CHART SUPPLEMENT
IO
\section*{TELEVISION SERVICE MANUAL}
FOR
R-F CHASSIS R-191 AND
DEFLECTION CHASSIS D-191

TABLE OF CONTENTS

Table 1-Tuner Oscillator Alignment 2Page
Table 2-Tuner Bandpass Alignnent
Table 3-Video I-F Alignment 5
Table 4-Sound I-F Alignment 6

TABLE 1—TUNER OSCILLATOR ALIGNMENT

AM GENERATOR: Connect to receiver antenna-input terminals. (No matching network is required.) Use unmodulated r-f output. OSCILLOSCOPE: Connect the vertical-input lead, in series with a 1000 -ohm resistor, to the mixer plate test point, G2. Connect the scope ground Iead to the chassis, near G2. RECEIVER CIRCUIT ALTERATIONS: Disconnect tuner a-g-c (white) lead from main chassis, and connect a 1.5 -volt bias battery, with negative terminal to white lead from tuner, and positive terminal to chassis.				
Step	am generator dial setting	RECEIVER TUNING	ADJust	remarks
1	238.15 mc .	Channel 13	TC506 for zero beat on scope.	a. If regeneration occurs, increase bias; bias may be increased up to 4 or 5 volts, if necessary. b. Preset and mark position of Fine Tuning Cam as shown in figure 4. (Position cam-stop between Channels 7 and 8 , and mark for use in step 8 of video i.f alignment.)
2	226.15 mc .	Channel 11	TC507 for zero beat on scope.	
3	214.15 mc .	Channel ${ }^{\text {, }}$	TC508 for zero beat on scope.	
4	238.15 mc .	Channel 13	TC506	Repeat steps 1, 2, and 3 until Channels 13, 11, and 9 are within 500 kc . of their correct respective frequencies.
	226.15 mic.	Channel 11	TC507	
	214.15 mc .	Channel 9	TC508	
5	202.15 mc .	Channel 7	TC509 for zero beat on scope.	
6	110.15 mc .	Channel 6	TC510 for zero beat on scope.	
7	94.15 me .	Channel 4	TC511 for zero beat on scope.	

NOTE: The symbols and figures referred to in the charts are those given in Service Manual PR-2507.

TABLE 1—TUNER OSCILLATOR ALIGNMENT

AM GENERATOR: Connect to receiver antenna-input terminals. (No matching network is required.) Use unmodulated r-f output. OSCILLOSCOPE: Connect the vertical-input lead, in series with a 1000 -ohm resistor, to the mixer plate test point, G2. Connect the scope ground lead to the chassis, near G2. RECEIVER CIRCUIT ALTERATIONS: Disconnect tuner a-g.c (white) lead from main chassis, and connect a l.5-volt bias battery, with negative terminal to white lead from tuner, and positive terminal to chassis.				
STEP	AM GENERATOR dial setting	RECEIVER TUNING	ADJUST	REMARKS
1	257 mc .	Channel 13	TC506 for zero beat on scope.	a. If regeneration occurs, increase bias; bias may be increased up to 4 or 5 volts, if necessary. b. Preset and mark position of Fine Tuning Cam as shown in figure 4. (Position cam-stop between Channel 7 and 8 , and mark for use in step 8 of video i.f alignment.)
2	245 mc .	Channel 11	TC507 for zero beat on scope.	
3	233 mc .	Channel 9	TC508 for zero beat on scope.	
	257 mc .	Channel 13	TC506	
4	245 mc .	Channel 11	TC507	Repeat steps 1 , 2, and 3 until channels 13 , 11, and 9 are within 500 kc .
	233 mc .	Channel 9	TC508	
5	221 mc .	Channel 7	TC509 for zero beat on scope.	NOTE*
6	129 mc .	Channel 6	TC510 for zero beat on scope.	VISION SERVICE MANUAL FOR R-F CHASSIS R-191 AND DEFLECTION CHASSIS D-191, PR-2520-C. It is suggested that this corrected
7	113 mc .	Channel 4	TC51l for zero beat on scope.	

NOTE: The symbols and figures referred to in the charts are those given in
Service Manual PR-2507.

TABLE 2—TUNER BANDPASS ALIGNMENT

SWEEP (FM) GENERATOR: Connect to receiver antenna-input circuit through antenna-input matching network. (See figure 1.)

OSCILLOSCOPE: Connect the vertical-input lead, in series with a 1000 -ohm resistor, to the mixer plate test point, G2. Connect scope ground lead to the chassis, near G2.
RECEIVER CIRCUI'I ALTERATIONS: Disconnect tuner a-g-c (white) lead from main chassis, and connect a 1.5 -volt bias battery, with negative terminal to white lead from tuner, and positive terminal to chassis. Disconnect tuner plug, PL500, and connect a 40 to $70-\mathrm{ohm}$ carbon resistor across plug.

sTEP	SWEEP (FM) GENERATOR		RECEIVER TUNING	ADJUSt	remarks
	$\begin{gathered} \text { Sweep } \\ \text { Diai } \\ \text { Setring } \end{gathered}$	Marker Diai Setting			
1	Channel 13 (213 mc , with 10-mc. sweep width.)	Set first to 210 mc . and note position of marker on response curve. Then set to 216 mc . and note position of marker on response curve.	Channel 13		Use oscilloscope gain as high as possible with respect to hum level and "bounce". Pips fix channel limits on curve. Response curve should be flat between limits (see figure 5). If not, proceed with step 2.
2	Channel 13	213 mc .	Channel 13	TC504 counter. clockwise until single peak appears.	CAUTION: Care must be taken not to unscrew core far enough to make it drop out of the coil.
3	Channel 13	213 mc .	Channel 13	TC502 until peak falls on 213-mc. marker.	It may be necessary to increase sweepgenerator output.
4	Channel 7 ($177 \mathrm{mc}_{\mathrm{c}}$, with $10-\mathrm{mc}$. sweep width.)	Set first to 174 mc . and note position of marker on response curve. Set to 180 mc . and note position of marker on response curve.	Channel 7		Note curve with respect to tilt and center frequency. Curve should be centered in pass band and symmetrical. If not, proceed with step 5.
5	Channel 7	174 mc. and 180 mc .	Channel 7	C508 and C512 to obtain correct tilt on top of curve.	C508 and C512 compensate for the tuning effect of Channel 13 adjustment upon Channel 7. (See figure 6.)

table 2 (Cont.)

STEP	SWEEP (FM) GENERATOR		RECEIVERTUNMNG	adjust	remarks
	$\begin{gathered} \hline \text { Sweep } \\ \text { Diai } \\ \text { Setting } \end{gathered}$	$\begin{aligned} & \text { Marker } \\ & \text { Dial } \\ & \text { Seffing } \end{aligned}$			
6	Channel 13	213 mc .	Channel 13	Retouch TC502 and TC504 for symmetrical response, centered about 213 -mc. marker.	To retouch, only turn cores slighty.
7	Channel 7	117 mc .	Channel 7	Repeat step 5.	Check response curve for correct center frequency and symmetry.
8				Repeat steps 6 and 7.	Repeat Channel 13 and Channel 7 adjnst ments, alternately, until favorable curves are obtained on both.
9	Channel 6 (85 mc , with 10-mc. sweep width.)	Sel first to 82 mc . and note position of marker on response curve. Then set to 88 mc . and note position of marker on response curve.	Channel 6		Curve should be symmetrical and centered in pass band. If not, proceed with step 10.
10	Channel 6	85 mc .	Channel 6	TC505 counterclockwise until single peak appears.	CAUTION: Care must be taken not to unscrew core far enough to make it drop out of the coil.
11	Channel 6	85 mc .	Channel 6	TC503 until peak falls on 85 -mc. marker.	It may be necessary to increase sweepgenerator output.
12	Channel 6	85 mc .	Channel 6	TC501 for maximum curve height and symmetry of single peak.	After adjusting TC501, recheck as in step 9. If neressary, reduce sweep-generator output to avoid overloading.
13	Channel 6	85 mc .	Channel 6	Retouch TC503 and TC505 for symmetrical response, centered about 85 -mc. marker.	To retouch, only turn cores slighty.

NOTE: The symbols and figures referred to in the charts are those given in Service Manual PR-2507.

TABLE 3—VIDEO I-F ALIGNMENT

AM GENERATOR: Connect to mixer test point, G1, through a mixer jig, and adjust the generator for approximately 30 percent modulation at 400 cycles. Adjust the output of the generator during alignment, to keep the output at the second detector below 6 volt, peak to peak.
SWEEP (FM) GENERATOR: After step 7, connect to antenna-input circuit through antenna-input matching network. (See figure 1.)
OSCILLOSCOPE: Connect the vertical-input lead to the 15,000 -ohm resistor of the video i.f alignment jig. Connect scope ground lead to the ground lead of the jig. (See figure 2.) Plug jig into J200.
PRESET: Contrast and Brightness controls fully counterclockwise, and Channel Selector to Channel 4
BIAS: Apply 6 volts of negative bias, through $10,000-\mathrm{ohm}$ resistor, to pin 1 of video i-f alignment jig; ground positive side of bias supply to pin 3 of jig. (See figure 2.)
NOTE: If the i-f shield has been removed for repairs, it must be replaced before proceeding with the alignment.

Step	am generator dial setting	SWEEP (FM) GENERATOR		ADJust	remarks
		Sweep Diol Setting	Morker Diol Setting		
1		Not used.	Not used.	Preset C526 counterclockwise (minimum capacitance).	It is necessary to keep the generator output sufficiently high that a null indication may be observed on the oscilloscope; however avoid overloading of the receiver by excessive signal. Adjust the output of the AM generator, when necessary, to keep the output at the second detector below 6 volt, peak to peak. (For convenience, the oscilloscope may be calibrated for this purpose beforehand.)
2	47.25 me .	Not used.	Not used.	C200 for minimum indication on scope.	
3	45.7 mc .	Not used.	Not used.	C526 for maximum indication on scope.	
4	42.6 mc .	Not used.	Not used.	C202 for maximum indication on scope.	
5	45.0 mc .	Not used.	Not used.	C206 for maximum indication on scope.	
6	43.2 mc .	Not used.	Not used.	C210 for maximum indication on scope.	
7	44.3 mc .	Not used.	Not used.	C212 for maximum indication on scope.	
8	Not used.	Channel 4 (69 mc ., with 6-me. sweep width.)	Run marker along curve, checking against the curve limits given in figure 8.	If necessary, retouch C206, C212, C210, C526, and C202 as directed in REMARKS column. CAUTION: Do not touch the setting of C200.	Set Fine Tuning Cam to mark previously made in step 1 of Table 1. If response curve does not fall within limits shown in figure 8, retouch C206 and C212 alternately. C206 affects dip of curve, and C212 affects tilt of curve. Adjust C210 for proper slope at $42.5-\mathrm{mc}$. side of curve, and C526 for proper level of curve at video carrier frequency. If curve still does not fall within the limits, a slight readjustment of C202 is permissible. CAUTION: To retouch, only turn the adjustments slightly.

NOTE: The symbols and figures referred to in the charts are those given in Service Manual PR-2507.

TABLE 4-SOUND I-F ALIGNMENT

AM GENERATOR: Connect "hot" lead through a 2200 -ohm resistor to pin 2 of J 200 , using the video i-f alignment jig. Connect ground lead of generator to ground lead of jig.
VOLTMETER: Use v.t.v.m. or 20,000 -ohms-per-volt voltmeter. Connect to sound i-f alignment jig. (See figure 3.) NOTE: In this procedure, disregard the oscilloscope connections shown in figure 3.
OSCILLOSCOPE: Connect through crystal probe to grid (pin 2) of picture tube.

STEP	AM GENERATOR DIAL SETTING	ADJUST	REMARKS		
1	4.5 mc.	TC400 for maximum indication on voltmeter.	Remove lst video i-f tube, and adjust the Volume control for moderate speaker output.		
2	4.5 mc.	TC401 for maximum indication on voltmeter.	TC402 for maximum indication on voltmeter and minimum speaker output.		The point of maximum meter indication for TC402 should also
:---					
be the point of minimum speaker output.					

NOTE: The symbols and figures referred to in the charts are those given in Service Mantal PR-2507.

PHILCO

PHILCO

Service

television

PHILCO
 TELEVISION SERVICE MANUAL FOR R-F CHASSIS R-191 AND DEFLECTION CHASSIS D-191

TABLE OF CONTENTS
Circuit Description 2
A-C Line Isolation 3
Specifications 4
Tube Complement
4
B Supply Fuse Replacement 4
Horizontal-Oscillator Adjustmen
Horizontal-Oscillator Adjustmen
4
Video Peaking-Coil A
Television Alignment 4
General5
Test Equipment Required
5
Jigs and Adapters Required 5
Mixer Jig
Mixer Jig 5
5
5
Amtenna-Input Matching Network
5
Video I-F Alignment Jig 6
Television Tuner Alignment 6
Oscillator Alignment 6
General 6
7
7
Procedure Using Signal Generator 7
Bandpass Alignment 7
General 7 9
Procedure
ProcedureVideo I-F Alignment
Preliminary 9
Procedure 9
Sound I-F Alignment 12
Oscilloscope Waveform Patterns 12
Voltage Measurements
15
15
Chassis Bottom Views, Showing Voltages at the Sockets 16
Television Tuner Base Layout
17
17
Television Tuner Schematic Diagram
Television Tuner Schematic Diagram
18-22
18-22
Base Layouts and Schematic Diagrams of Television Chassis
Base Layouts and Schematic Diagrams of Television Chassis
23
23
UHF Tuner-Adapter
UHF Tuner-Adapter
23
23
Circuit Description
Circuit Description
24-26
24-26 27
Base Layouts and Schematic Diagram
Base Layouts and Schematic Diagram
Replacement Parts List 31

CIRCUIT DESCRIPTION

Philco "B" line, Code 140, Television Receivers use two chassis-the r-f chassis R-191, containing the r-f. video. audio, and sync circuits, and deflection chasis D-191, containing the power and deflection circuits. Since these chassis are not isolated from the 60 -cycle power line, all protruding shafts and mounting feet are insulated from the chassis.

CAUTION: Sec A-C LINE ISOLATION

A sparate subchassis contains the r-f amplifier, the oscillator, and the mixer. The r-f amplifier uses a type $6 B / 7$ tube, Vl. The oscillator and the mixer use a type 6 N 8 tube, V 2 , the pentode section of the tube being used for the mixer, and the triode section for the oscillator. The output of the mixer is fed to a threc-stage, stayger-tuned, i-f amplifier system employing thrce type 6CB6 tubes, V3, V4, and V5. A type 1 N64 erystal diode, CD200. is used for the video detector, the output of which is amplified by a twostare video amplifier utilizing a type 6AU6 tube, V6, and a type $6 A Q 5$ output tube, V7. The connections at the detector are such as to produce a composite video signal with nequtive-going sync pulses. The sirnal, which is sulojecterl to a 360 -degrec phase shift throurh the video amplifier, is applied to the grid of the pieture tube. V19; therefore the sync pulses at this point are negative-going. A positive-going blanking pulse, taken from the vertical-output stage, is applied to the cathode of the picture tube for suppression of the vertical retrace.

Sound i.f. (intercarrier) is obtained by utilizing the lecat frequency produced when the $45.75-\mathrm{mc}$. video earrier and the $41.25-\mathrm{mc}$. sound carrier are mixed in the video detector. The $4.5-\mathrm{mc}$. beat frequency is the difference between 45.75 nic. and 41.25 me.. and contains the FM sound signal. This $4.5-\mathrm{me}$. signal contains only a negligible amount of video amplitude modulation, provided that the amplitude of the $41.25-\mathrm{me}$. sienal is considerably lower than that of the $45.75-\mathrm{mc}$. sienal. The proper relationship betwen the two carriers is established during the alignment of the recciver. There is sound output only when hoth the video and sound carricrs are present.

The oscillator is tuned primarily to obtain the best picture. since the 4.5 -me. relationship always exists between the two carriers. The 4.5 -me. sound i.f. (intercarrier), which is taken from the plate circuit of the villoo amplifier, is passed through a $4.5-\mathrm{me}$. sound i-f stage using a 6AU6 tube, V8, and is then applied to the F\I detector, which utilizes two diode sections of a 6 T 8 tube, V9A. The triole section of the 6 T 8 , V9B, is used as the first audio amplifier. The power amplifier uses a type 6V6GT tube, V10.

A portion of the video signal appearing at the output of the first video amplifier is applied to grid 3 (pin 7) of the 6 CS 6 sync separator, V11. Since gridleak hias is used on grid 3 , the tips of the sync pulses are clamped to zero, and the video components swing in a negative direction from zero. Because of the cutoff characteristics of grid 3 , the video components are eliminated, and only negative-going sync pulses appear in the plate circuit of the sync separator. At the same time, however, a signal is taken from the video detector and applied to grid 1 (pin 1) of the 6CS6 tube. This grid is returned to B plus, and the bias is maintained close to zero, because of a small grid-current flow. Since the signal applied to grid 1 is composite video with negative-going sync, any noise modulation present in the signal appears in the form of sharp spikes, driving in a negative direction. The circuit constants are chosen to allow grid 1 to cut off plate current whenever the signal goes more negative than the sync pulses. A series grid-limiting resistor, R608, is also incorporated to prevent the video components from appearing in the plate circuit of the sync separator. A-G-C voltage is also developed in the sync separator circuit in the following manner: On tips of the sync pulses, arid 3 (pin 7) of the 6CS6 tube draws current which flows downward through the network R602, R603, R604, R211, and L214, causing capacitors C605, C602, and C603, to assume negative charges proportional to the amount of peak signal applied to grid 3. The tuner a-g-c voltage is delayed by means of a resistor divider network which applies a small positive voltage to the tuner a-g-c circuit. This positive voltage prevents a-g-c action from lowering the tuner gain on weak siqnals. To prevent the delay voltage from driving the tuner a-y-c voltage positive on weak signals, a diode clamp (part of V9B) is connected across C602.

The negrative-roing sync pulses appearing in the plate circuit of the sync separator are fed to one half of a 12 AU 7 tube, V12A, connected as a phase-splitter circuit; positive sync pulses appear in the plate circuit, and negative sync pulses are taken from the cathode.

Proper triggering of the vertical oscillator requires positive synchronizing pulses. The vertical sync signal is separated from the horizontal sync signal by the vertical integrator circuit, and is fed to the grid circuit of the vertical blocking oscillator, one half of a l2AU7 tube (V12B). The output of the vertical oscillator is amplified by a type 12B4 tube, V13, which is employed as the vertical-output amplifier. The output of the amplifier is applied to the vertical-deflection coils through the vertical-output transformer.

The horizontal-sweep circuits require both positive and negative sync pulses. The phase-comparer circuit uses a 6AL5 tube, V14. Positive sync pulses are applied to the plate of V14A, and negative sync pulses are applied to the cathode of V14B. A sawtooth voltage, taken from the horizontal-output circuit, is fed to the plate of V14B and to the cathode of V14A, for comparison of the sync and horizontal sweep voltages. When the saw-tooth and sync signals are exactly in phase, no voltage is developed across R800, but when the two signals are out of phase, either a positive or a ncgative voltage is developed, depending upon whether the horizontal-oscillator frequency is lower or higher than the sync-pulse frequency. The grid circuit of the horizontal oscillator, a type 12AU7 tube, V15, operating as a cathodecoupled multivibrator, is connected to R800 through a filter network. When the voltage at this point goes in a positive direction, the frequency of the horizontal oscillator is increased; when the voltage swings negative, the frequency of the oscillator is decreased. In this manner the frequency of the horizontal oscillator is controlled over the lock-in range of the circuit. The horizontal hold control, R811, adjusts the horizontal-oscillator frequency so that it is within the control range of the phase comparer. The output of the horizontal oscillator is fed to the horizontal output amplifier, which makes use of a type 6 BQ 6 GT tube, V16. The screen voltage for the horizontal amplifier is supplied from a voltage-divider network. The network includes R818, R816 (the WIDTH control), R817, R315 (the BRIGHTNESS control), and R316. R816 varies the voltage applied to the screen, thus adjusting for proper picture width. Adjusting R315 for brightness varies the bias on the picture tube. The change in bias causes a change in beam current, and would tend to result in a change in picture width and a variation in the second-anode voltage. However, when the control arm of the BRIGHTNESS control, R315, is moved toward ground, a smaller part of the controi is shunted by the 22,000 olim resistor, R316, and the total resistance of the voltage divider is increased. This increase in resistance results in a decrease in the current through the divider, and the screen voltage on the horizontal amplifier is increased proportionally, thus compensating automatically for the increase in beam current in the picture tube. The horizontal amplifier feeds the deflection coils through the horizontal-output transformer. A 6AX4GT tube, V17, is used as the horizontal damper.

The second-anode voltage for the picture tube is supplied by one lB3GT high-voltage rectifier tube,

V18. The B plus voltage for the receiver is supplied by two selenium rectifiers, CR100 and CR101 in a full-wave, voltage-doubler circuit, operating directly from the power line. Bias voltage is obtained from across a filter choke, which is in series with the negative side of the B plus supply. The B plus boost voltage, derived from the horizontal damper circuit, supplies higher B plus voltage to the vertical oscillator, first audio stage, and the first anode of the picture tube. Filament voltage for all the tubes except the high-voltage rectifier is supplied by a step-down transformer. Filament voltage for the high-voltage rectifier is supplied by a winding of the horizontaloutput transformer.

IMPORTANT

A-C LINE ISOLATION

CAUTION: One side of the a-c line is connected to the chassis through ClOl and L405. The other side of the a-e line is connected to the chassis through F100, R100, CK100, and C103, in series. Grounding the chassis will result in a short circuit across one or the other of these two branches in the voltage-doubler circuit. During servicing and alignment it is desirable that an a-c line isolation transformer capable of handling at least 225 watts (Philco Part No. 45-9600) be used. Failure to use an isolation transformer will greatly increase the shock hazard, and may result in damage to the test equipment or receiver, or both.

SPECIFICATIONS

VHF TUNING Twelve channel, 12 -position incremental tuner, covering VHF Television Channels 2 through 13; fine tuning of local oscillator

UHF TUNING (if provided) Continuous tuning, covering UHF Television Channels 14 through 83; fine and coarse tuning

INTERMEDIATE FREQUENCIES

Video Carrier . 45.75 mc. Sound (intercarrier) 4.75 mc .

TRANSMISSION LINE . . . $300-\mathrm{ohm}$, twin-wire lead OPERATIVG VOLTAGE 110 to 120 volts, 60 cycles, a. c.
POWER CONSUMPTION. . without UHF, 175 watts; with UHF, 180 watts

TUBE COMPLEMENT

R-F CHASSIS R-191

REFERENCE SYMBOL	TUBE TYPE	FUNCTION
V1	6BZ7 miniature	R.F Amplifier
V2	6X8 miniature	Oscillator-Mixer
V3, V4, V5	6CB6 miniature	Video I-F Amplifiers
V6	6AU6 miniature	Video Amplifier
V7	6AQ5 miniature	Video Output Amplifier
V8	6AU6 miniature	Sound I-F Amplifier
V9	6 T 8 miniature	Ratio Detector, First Audio, and Tuner A-G-C Clamp
V10	6V6GT octal	Audio Output
V11	6CS6 miniature	Sync Separator
V19	17YP4 or 21ZP4A	Picture Tube

DEFLECTION CHASSIS D-191

REFER- ENCE SYMBOL	TUBE TYPE	FUNCTION
V12	12AU7 miniature	Phase Splitter, Vertical Oscillator V13
12B4 miniature	Vertical-Output Amplifier	
V14	6AL5 miniature	Horizontal Phase Comparer
V15	12AU7 miniature	Horizontal Oscillator V16 6BQ6GT octal
Horizontal-Output Amplifier		
V17	6AX4GGT octal	Horizontal Damper Vigh-Voltage Rectifier

B SUPPLY FUSE REPLACEMENT

The B supply protective fuse, F 100 , is wired into the low-voltage section, and is in series with the selenium rectifiers. For replacement, use a 1.6 ampere delayed-action-type fuse, Philco Part No. 45-2656-23.

CAUTION: Discharge the circuit before replacing the fuse.

HORIZONTAL-OSCILLATOR ADJUSTMENT

To adjust the horizontal-oscillator circuit, tune in a station and proceed as follows:

1. Reduce the width of the picture until approximately 1 inch of blank screen appears at the righthand and left-hand sides of the picture.
2. Increase the BRIGHTNESS control setting until the blanking becomes visible. This will appear as a dark vertical bar on each side of the picture.
3. Connect a $.1 \mu \mathrm{f}$. condenser from the test point, adjacent to TC800, to ground. (The plate side of the horizontal ringing eoil, L800, is connected to the test point.)
4. Set the HORIZONTAL HOLD control to the approximate center of its mechanical rotation.
5. Adjust the HORIZ HOLD CENTERING control until equal portions of the blanking bar appear on both sides of the picture.
6. Remove the $.1-\mu \mathrm{f}$. condenser from the test point.
7. Adjust the horizontal ringing coil, L800, until cqual portions of the blanking bar again appear on both sides of the picture.
8. Rotate the HORIZONTAL HOLD control through its range. The picture should fall out of sync on both sides of the center of its rotation. If the picture does not fall out of sync on both sides, readjust the HORIZ HOLD CENTERING control.
9. Rotate the HORIZONTAL HOLD control through its range, and observe the number of diagonal blanking bars that appear just before the picture pulls into sync. The pull-in should occur with from 1 to 2 diagonal bars when the sync position is approached from either direction. If proper pull-in is not obtained, repeat the above procedure.

VIDEO PEAKING-COIL ADJUSTMENT

The video peaking coil, L303, is adjusted at the factory for proper transient response of the video circuits. Ordinarily, this coil will require no further adjustment by the serviceman. On any station where excessive overshoot or excessive smear is present, a slight adjustment of L303 may improve the picture quality on that station; however, this adjustment may sacrifice the quality on other channels. If L303 is replaced in servicing, adjustment will be required.
Before adjusting L303, check the tuner alignment and i-f alignment. (Never adjust L303 until the alignment of the receiver is correct.) Then tune in a station and adjust L303 until there are no trailing whites or smear in the picture. Turning TC301 clockwise reduces trailing whites and overshoot; turning TC301 counterclockwise reduces picture smear and increases trailing whites. The proper position is the point whire no smear or trailing whites appear in the picture.
The above procedure for adjustment of TC301 applies to a particular station exhibiting smear or overshoot. After TC301 is adjusted, reception on all the other stations should be checked, to make certain that the adjustment has not impaired the picture quality.

TELEVISION ALIGNMENT

GENERAL

The alignment procedure follows the general pattern of first checking the tuner response with an FM sweep generator and oscilloscope, comparing the re-
sponse curve with that given in the manual, and aligning the tuner if necessary. After it is established that the tuner is in correct alignment, the video i-f channel is aligned by tuning each coil to its assigned pole frequency, using an AM signal, and then feeding in a sweep signal at the antenna terminals and retouching the i-f adjustments to obtain the desired pass band. Finally, the sound channel is aligned, using an AM signal, by tuning the sound take-off coil and the i-f and ratio-detector transformers.
The over-all response curve (r-f, i-f) of the circuits from the antenna terminals to the video detector, after the i-f stages have been aligned, should appear essentially the same, regardless of the channel under test. If not, the tuner should be aligned.

The video-carrier intermediate frequency is 45.75 inc., and the sound intermediate (intercarrier) frequency is 4.5 mc . Alignment of these circuits requires careful workmanship and good equipment. The following precautions must be observed:

1. There must be a good bond between the receiver chassis and the test equipment. This is most easily obtained by having the top of the workbench metallic. The receiver chassis should be placed tuner-side down on the bench. If the bench has no metallic top, the test equipment and chassis can he bonded by a strip of copper about 2 inches wide. The section of the chassis nearest the tuner should rest on the strip.
2. Do not disconnect the picture tube, picture-tube yoke, or speaker while the receiver is turned on.
3. Allow the receiver and test equipment to warm up for 15 minutes before starting the alignment.
4. The marker (AM) signal generator should be calibrated accurately to the frequencies used and to the sound and video r-f carriers of each channel used during aliynment. If Model 7008 is used, the built-in erystal calibrator provides an excellent means of calibration. An alternate method for calibrating the signal generator to the sound and video r-f carrier frequencies is to zero-beat the signal generator with the received signals.

For further information regarding calibration, refer to Philco Lesson PK-1745 (J) entitled "Television Service in the Home."

TEST EQUIPMENT REQUIRED

The following test equipment is recommended for aligning the receiver:

1. Philco Precision Visual Alignment Generator for Television and FM, Model 7008, or equivalent.
2. Vacuum-tube voltmeter, or $\mathbf{2 0 , 0 0 0}$-ohms-per-volt voltmeter.

TPO-1179
Figure 1. Antenna-Input Matching Network
3. R-F Probe, Philco Part No. 76-3595 (for use with Model 7008 generator).

JIGS AND ADAPTERS REQUIRED

Mixer Jig

Connections to the grid of the mixer tube may be made through the alignment jack provided for that purpose. To connect the generator to this point, a mixer jig, Philco Part No. 45-1739, and a connecting cable, Philco Part No. 45-1635, may be used. As an alternate, a Philco alligator-clip adapter, Part No. 45.1636, with as short a ground lead as possible, may be used to connect the alignment jack. The ground lead should be connected as close as possible to the mixer tube. It is essential that the signal-generator output lead be terminated with a 68 -ohm resistor (carhon), so that regeneration, caused by connection of the lead to the mixer, is held to a minimum.

Antenna-Input Matching Network

Figure 1 shows an impedance-matching network for coupling the signal generator to the antennainput terminals of the receiver. This network, which is designed to have an input impedance of 75 ohms and an output impedance of 300 ohms, is used to match a 75 -ohm generator to a 300 -ohm antennainput circuit. The resistors used in this network should be of carbon-composition construction, and should be chosen from a group to obtain values within 10% of those indicated. The resistors should be placed in a shield can, to prevent variable effects. An antenna matching jig, Philco Part No. 45-1736, which consists of a matching transformer and connecting box, may be used in place of the resistor network.

Video I-F Alignment Jig

(Video Test Jack Adapter)
The alignment jig shown in figure 2 should be used during the i-f alignment, to apply the proper bias to the a-g-c bus, and to provide a convenient oscilloscope connection. This jig consists of a 5 -prong plug, a $10,000-\mathrm{ohm}$ potentiometer, two isolating resistors (one 10,000 -ohm and one 15,000 -ohm), two 1500 -

Figure 2. Video I-F Alignment Jig.
micromicrofarad capacitors, two $71 / 2$-volt batteries and switch. A sugrested method of fabricating the jitr is also shown. It is suggested that the bias batteries and potentiometer be mounted in a metal box of convenient sizc.

The potentiometer and switch are connected across the two $71 / 2$-volt batteries. The switch is used to disconnect the potentiometer, to prevent the discharge of the battery while not in use.

Sound I-F Alignment Jig

Figure 3 shows the jig that should be used to connect the voltmeter and oscilloscope to the VOLUME CONTROL socket, J400.

TELEVISION TUNER ALIGNMENT

After the tuner is serviced, or if an i-f alignment is required, the tuner alignment should be checked by observing the tuner response curve, as given under Bandpass Alignment. If the response curve does not fall within the limits shown in figure 5 , the tuner should be realigned. If realignment is necessary, use the procedure given below.

Since the frequency of the local oscillator affects the tuner response, the local-oscillator alignment should be made first.

Oscillator Alignment
 General

Tuning cores are provided in the oscillator coils at channels $13,11,9,7,6$, and 4. By adjusting these tuning cores, all channels may be placed on frequency. This procedure should be carried out with the highest-frequency channel first, since the alignment of each channel affects the alignment of all the channcls below it in frequency. The channel adjustments are so arranged that, with one exception, each adjustment corrects the tuning of more than one channel. The coverage of the various adjustments is as follows:

CHANNEL ADJUSTMENT	CHANNELS CORRECTED BY ADJUSTMENT
13	13 and 12
11	11 and 10
9	9 and 8
7	7 only
6	6 and 5
4	4,3, and 2

Figure 3. Sound IFF Alignment Jig

Figure 4. Television Tuner, Showing Locations of Adjustments

The FINE TUNING eam should be preset for all adjustments by placing the stop on the FINE TUNING cam between the Channel 7 and 8 holes on the front plate of the tuncr. Sce figure 4.

Procedure Using Signal Generator

An r.f siznal (ummodulated), at the oseillator frequency. is fed into the antenna input from an AM signal qenerator, and the oseillator tuning cores are adjusted for zero beat. The r-f signal frequeney should be accurately determined. It is preferable that the signal be taken from a crystal-controlled source; if this is not available, the signal generator may be calibrated ayainst the television station.
I. Conneet the hot lead of the oscilloscope to the miver plate test point, G2, through a 1000 -ohm resistor, and conncet the ground lead of the oscilloscope to the chassis, near the test point. (High oscilloseope gain may be necessary to obtain a visual beat. In this in-tance. base-line hum may be ignored.)
2. Connet the All (marker) generator to the 300 -ohm antenna-input terminals. For this purpose the antenna-input matching network is not required.
3. Disconncet the white lead from the tuner, and comnet it to the negative terminal of a $11 / 2$-volt battery. Ground the positive terminal. If regeneration is observed, the bias may be increased to 4 or 5 volts, to reduce the regencration.
4. Weehanically preset the fine-tuning eam stop as shown in figure 4.
5. Feed in an r-f signal (unmodulated), at the oscillator frequency for Channel 13, with the CHANNEL SELECTOR set for Channel 13.
6. Adjust the tuning core for Channel 13 (see figure 4).
7. Reset the signal-generator frequeney and the

CHANNEL SELECTOR, and adjust the tuning cores for Channels 11 and 9, respectively.
8. Repeat steps 5, 6, and 7 until Channels 13, 11, and 9 are within plus or minus 500 kc . of the correct frequency.
9. Feed in r-f (unmodulated) signals, at the oscillator frefuencies for Channels 7, 6 , and 4 , consecutively (see NOTE below), and adjust the respective tuning cores (sec figure 4).

NOTE: The exact position of the FINE TUNING eam should be marked when Channel 4 is correctly aligned. This position is to be used in step 4 of the i-f alignment procedure.

Procedure Using Station Signal

The following simplified procedure may be used to align the oscillator when the television i-f alignment is satisfactory and a station signal is available:

1. Mechanically preset the FINE TUNING cam to the center of its range (sec figure 4).
2. Tune in the highest-frequency channel to be received.
3. Aljust the tuning core for that channel, or the next higher channel, for the best pieture; that is, starting with sound in the picture, turn the tuning core until the sound disappears. Repeat for each channel received in the area.

Bandpass Alignment

General

The bandpass alignment consists of aligning the tuncr at Channels 13 and 6 , and then making it track down to Channels 7 and 2, respectively.

During the aliznment, a fixed bias of $11 / 2$ volts is applied to the r-f amplifier tube.

An FM (sweep) signal is applied to the antennainput circuit, and an oscilloseope is connected to the mixer plate eircuit. The oseilloscope gain should be as hich as possible, consistent with hum level and "bounce" conditions. Hum conditions will cause distortion of the time base and response. Bounce conditions, which are caused by poor line regulation, will cause the response and time lase to jump up and down. The use of too high an oseilloseope gain aqgravates these conditions, whereas the use of too low a gain necessitates increasing the generator output to a point where the tuner may be overloaded. Overload may be ehecked by ehanging the generator output while observing the shape of the response curve; any change in the shape of the curve indicates overload, in which case a lower generator output and higher oseilloscope gain must be used. The tuner coupling link should be disconnected from the

Figure 5. Television Tuner Response Curve, Showing Bandpass

i-f section liy removing the plug, PL500, and a 40 - to 70 -ohm carlon resistor shoulil be connected across the open end of the plug. This is done to eliminate the absorption effect of the tuner link coil, L200, on the response curve.

Procedure

1. Disconnect the white (a-g-c) lead, from the tuner, and connert it to the negative terminal of a $11 / 2$-volt battery. Ground the positive terminal.
2. Disconnect the tumer plag, PL500, at terminal board B13 (see figure 33), and connect a 40- to 70 -ohm carbon resistor across the plug.
3. Connect a 1000 -ohm resistor in series with the hot leal of the oscilloscope. Connect the other end of the resistor to the mixer plate test point, G2, and connert the $\underline{\text { ground lead of the oscilloscope to the chassis, }}$ near the test point.
4. Connect the FW (swecp) generator to the 300ohm antenna-input terminals through an antennainput matching network. See figure 1 .
5. Sot the CHANNEL SELECTOR and FM (swecp) generator to Channel 13 (213 mc.). Adjust the generator for sufficient sweep to show the complete response curve.
6. Establish the channel limits (see figure 5) by using the marker (AM r-f) signal generator to produce marker pips on the response curve. (Set the marker gencrator first to 210 mc ., then to 216 mc .) The curve should be reasonably flat between the liniits shown in figure 5.
7. Adjust TC502 and TC504 (figure 4) for a symmetrical, approximately centered pass band.
8. Set the CHANNEL SELECTOR and FM genrator to Channel 7 (177 mc .).
9. Estalolish the channel limits by using the marker senerator to produce marker pips on the response curve. (Set the renerator first to 174 mc ., then to 180 mc .) The curve should be reasonably flat between the limits.
10. On Channel 7 , note the response curve, with respect to tilt and centor frequency. The curve should be contered in the pass band, and should be symmetrical.
11. If the curve is not symmetrical, and appears unbalanced, as shown in figure 6, leave the generator and tuner set to Channel 7, and adjust C508 and C512 (see figure 4) to obtain a response curve which is the mirror image (tilt in the opposite direction) of the oriyinal. This is a form of overcompensation, to allow for the effect of Channel 13 adjustment on Channel 7. For example, if the Channel 7 response appears as in firure 6A, then the trimmer should be adjusted to obtain the response shown in figure 6B.
12. Reset the CHANNEL SELECTOR and gencrators to Channel 13. Readjust TC502 and TC504 for a symmetrical and centered band pass. Sec step 4.
13. Set the CHANNEL SELECTOR and generators to Chamel 7, and check the response for center frequency and symmetry. Repeat steps 8 and 9 as many times as is necessary to obtain the most synmetrical, contered response curves on Channels 13 and 7. Channels 7 through 13 are now correctly aligned.
14. Set the CHANNEL SELECTOR and sweep qenerator to Clannel 6 (85 mc .) .
15. Establish the channel limits, using the marker wenerator to produce marker pips on the response curve. (Set the generator first to 82 mc ., then to 88 me.)
16. Adjust TC503 and TC505 for a symmetrical, approximately centered pass band. Set the marker yenerator to 85 mc. Detune TC505 counterclockwise until a single peak appears.

CAUTION: Do not turn the core of TC505 excessively, or it will fall out of the coil.
Adjust TC503 until the peak falls on the 85-nic. marker. It may be necessary to increase the output of the generator during this adjustment. Then adjust TC501 for maximum curve height and symmetry of the single peak. The antenna circuit is now tuned for Channels 2 through 6. To prevent overloading, the output of the generator should be reduced after this adjustment is completed.
17. Readjust TC503 and TC505 for a symmetrical response, centered about 85 mc .

Figure 6. Television Tuner Response Curve, Showing Tracking Compensation

VIDEO I-F ALIGNMENT

Preliminary

Before proceeding with the i-f alignment or making an alignment check, observe the following preliminary instructions:

1. Preset the CONTRAST and BRIGHTNESS controls to the maxinum counterclockwise position.
2. Preset the CHANNEL SELECTOR to Channel 4.
3. Insert the video i-f alignment jig (figure 2) into J200.
4. Connect the oscilloscope to the 15,000 -ohm resistor from the video i-f alignment jig. Connect the ground lead of the oscilloscope to the ground lead from the adapter.
5. With a voltmeter connected across the points shown in figure 2, set the potentiometer to furnish -6 volts of bias.
6. Connect the AM generator to the mixer test point, Gl, through a mixer jig (described in step 4 of procedure given below), and adjust the generator for approximately 30 percent modulation with 400 cycles. Adjust the output of the generator during the alignment to keep the output at the second detector helow 6 volt, peak to peak.

NOTE: If the i-f shield has been removed for repairs, it must be replaced before proceeding with the alignment.

Procedure

1. Preset condenser C526 for minimum capacitance (turn screw counterclockwise).
2. Tune the AM generator to 47.25 mc ., and adjust C200 for minimum output, as observed on the oscilloscope. See figure 7.

NOTE: It is necessary to keep the generator output sufficiently high that a null indication may be observed on the oscilloscope; however, avoid overloading of the receiver by excessive signal.
3. Tune the AV generator to the frequencies indicated below, and adjust the trimmers for maximum output, as observed on the oscilloscope.
a. 45.7 mc .-adjust C526
b. 42.6 me.-adjust C202
c. 45.0 me--adjust C206
d. 43.2 me.-adjust C210
e. 44.3 mc--adjust C212
4. Connect the sweep generator and r-f marker gencrator to the antenna terminals through a matching jig. (If a separate oscilloscope is used, connect the sweep output of the generator to the horizontal input of the oscilloscope.) Set the CHANNEL SELECTOR to Channel 4 , and tune the sweep generator for output on Channel 4. Tune the r-f marker generator to the video carrier frequency of Channel 4 (67.25 mc .),

TP3-905
Figure 7. R-F Chassis R-191, Top View, Showing Locations of Adjustments
and tune the i-f marker generator (capacitively coupled to the mixer grid) to 45.75 mc . Note two marker generators are used for this procedure. The r-f marker generator is connected to the antenna terminals, while the i-f marker generator is coupled capacitively to the mixer grid test point, Gl. A jig constructed from a piece of fiber tubing, with $3 / 16$-inch inside dianeter, and a brass machine screw which fits tightly into the tubing, is used to couple the generator capacitively to the test point. The screw is adjusted so that its tip clears the test point ly approximately $1 / 1 / \pm$ inch. The output cable of the
marker generator is connected to the head of the brass screw in the jig and to the chassis near the mixer tube. Both marker generators should be adjusted for the minimum output required to make the markers barcly visible. Failure to observe this precaution, or the use of excessive output from the sweep gencrator, will cause misleading results. After the equipment is properly connected, adjust the FINE TUNING control for zero beat of the two markers, as observed on the oscilloscope. When zero beat is obtained, remove the i-f marker.
5. If the response curve does not fall within the limits shown in figure 8, the adjustment of the trimmers may be touched up slightly, while observing the response curve. Do not retouch the setting of C202 at this point. To adjust the curve, first adjust C206 and C212, alternately, until maximum improvement has been obtained. C212 affects the tilt of the curve, and C206 affects the dip of the curve. After C212 and C206 have been adjusted, adjust C210 for proper slope at the $42.5-\mathrm{mc}$. side of the curve, then adjust C526 for proper level at the video carrier fre'fuency (45.75 mc .). After these adjustments have been made, if the response curve still does not fall within the limits shown in figure 8, a slight readjustment of C202 is permissible.

CAUTION: Do not turn any of the trimmers excessively. To retouch, turn the trimmers only slightly.

SOUND I-F ALIGNMENT

1. Renove the lst v-i.f tube, and connect a v.t.v.m. or a 20,000 -ohms-per-volt voltmeter to the sound i-f alignment jig (figure 3). Adjust the VOL[ME control for moderate speaker output.
2. Feed in an accurately calibrated $4.5-\mathrm{mc}$. AM signal, through the 2200 -ohm resistor in the video i.f alignment jig, to pin 2 of J200.
3. Tune TC400, TC401, and TC402 for maximum indications on the meter. The point of maximum meter indication for TC402 should also be the point of minimum speaker output.
4. Tune TC402 for minimum speaker output.
5. Connect an r-f probe or crystal detector to the grid (pin 2) of the picture tube. See NOTE below.
6. Tune TC300 for minimum indication on oscilloscope. (If a crystal detector is not available, TC300 may be adjusted for minimum beat pattern, as observed on the picture tube, with a station picture present.)
7. Replace the lst v.i.f tube. Tune in a station,

Figure 8. Over-All, R-F, I-F Response Curve, Showing Tolerance Limits
using the speaker output as an indication of correct tuning.
8. Turn the FINE TUNING control clockwise to obtain a slightly fuzzy picture.
9. Tune TC402 for minimum AM (noise) output.

NOTE: The R-F Prohe, Part No. 76-3595, is used as a detector of the $4.5-\mathrm{mc}$. signal, and the oscilloscope is used as an indicating device. An alternate crystal detector may be made up as shown in figure 9.

Figure 9. Wiring Diagram of Crystal Detector

OSCILLOSCOPE WAVEFORM PATTERNS

These waveforms were taken with the receiver adjusted for an approximate peak-to-peak output of 2 volts at the video detector. The voltages given with the waveforms are approximate peak-to-peak values. The frequencies shown are those of the waveformsnot the sweep rate of the oscilloscope. The waveforms

Figure 10. Video Detector Output, Pin 2 of 1200
2 volts, 60 c.p.s.

Figure 12. Video Amplifier Plate, Pin 5 50 volts, 60 c.p.s.

Figure 14. Sync Separator Plate,
26 volts, 15,750 c.p.s.
were taken with an oscilloscope having good highfrequency response. With oscilloscopes having poor high-frequency response, the sharp peaks of the horizontal waveforms will be more rounded than those shown, and the peak-to-peak voltages will differ from those shown.

TP2-786
Figure 11. Video Detector Output,
Pin 2 of 1200
2 volts, 15,750 c.p.s.

Figure 13. Sync Separator Grid,
Pin 7
40 volts, 60 c.p.s.
TP2-790

Figure 15. Phase-Splitter Grid,
Pin 2
28 volts, 60 c.p.s.

TP2-640
Figure 16. Phase-Splitter Plate, Pin 1
44 volts, 60 c.p.s.

TP2-697A
Figure 18. Vertical-Dscillator Plate,
Pin 6
260 volts, 60 c.p.s.

TP2-645
Figure 20. Vertical-Output Plate,
Pin 9
450 volts, 60 c.p.s.

TP2-642
Figure 22. Phase-Splitter Cathode, Pin 3
10 volts, 15.750 c.p.s.

Figure 17. Vertical-Oscillator Grid,
Pin 7
390 volts, 60 c.p.s.

Figure 19. Vertical-Output Crid,
Pin 2
120 volts, 60 c.p.s.

TP2-64
Figure 21. Phase-Splitter Plate, Junction of R613, R614, and C800
13 volts, 15,750 c.p.s.

TP2-652
Figure 23. Phase Comparer,
Pins 5 and 7
8 volts, 15,750 c.p.s.

TP2-2852
Figure 24. Horizontal Oscillator, Junction of $\mathbf{L 8 0 0}$ and R806 34 valts, 15,750 c.p.s.

TP2-648
Figure 26. Horizontal-Oscillator Crid, Pin 2
34 volts, 15,750 c.p.s.

TP2-647
Figure 25. Horizontal-Oscillator Cathode,
Pins 3 and 8
12 volts, 15,750 c.p.s.

TP2-649
Figure 27. Horizontal-Output Grid, Pin 5
150 volts, 15,750 c.p.s.

Figure 28. Horizontal-Deflection Yoke,
*Pin 7 of 1800
2800 volts, 15,750 c.p.s.

* See CAUTION.
* CAI TION: High-voltage pulses are present in the horizontaloutput circuit. The waveform in figure 28 was taken with the alligator clip of the oscilloscope lead clipped over the insulation of the lead connected to pin 7 of J800. (To prevent puncture of the insulation of the lead, file off the teeth of the alliwator clip, and wrap friction tape around the clip.) Connection
to other points in the horizontal-output circuit is dangerous, berause of the high voltages present. The peak-to-peak voltage shown for figure 28 is the actual voltage present; however, the amplitude of the scope presentation depends upon the degree of coupling.

VOLTAGE MEASUREMENTS

The voltages given here and on the schematics were taken with a 20,000 -ohms-per-volt voltmeter, with a line voltage of 117 volts, and no signal input to the receiver. Since voltage readings taken in the video i-f stages vary widely with different test equipment setups, voltage measurements for these stages are omitted from the diagrams.

* VOLTAGE MEASURED WITH 47,000 OHM ISOLATING RESISTOR IN SERIES WITH METER PROBE

- * Voltage varies with horiz holo control setting ** VOLtage Varies with vert hold control setting

TP3-907
Figure 30. Deflection Chassis D-191, Showing Voltages at Socket Pins

Figure 32. Television (VHF) Tuner, Part No. 76-8400, Schematic Diagram

Figure 33. R-F Chassis R-191, Base Layout

UHF TUNER-ADAPTER UT22, PART NO. 43-6703, FOR RECEIVERS USING R-F CHASSIS R-191

UHF Tuner-Adapter UT22, Part No. 43-6703, will provide for the reception of UHF Channels 14 through 83. It is designed for installation in Philco B line television receivers, and is installed on all BU models. These receivers use r-f chassis R-191.

The Tuner-Adapter consists of a UHF tuner, a change-over switch, adapter cables and plugs, a planetary tuncr driving asscmbly, and mounting hardware.

CIRCUIT DESCRIPTION

The incoming UHF signal is coupled through the antenna input line to blocking condensers Cl and C 2 , leakaye resistors R 8 and K 9 , an i-f trap, C5-Ll, C6-L2, and a 150 -ohm transmission line, to the antenna tank of the tuner. See figure 37. The antenna tank is coupled to the mixer tank ly means of the mutual coupling of L2 and L3 and the stray capacitance, C5. The desired signal is selected hy tuning the antenna tank and the mixer tank to the correct frequency; this is accomplished by tuning condenser6 C3A, C3B, C3C, and C3D. These condensers, plus C3E and C3F, located in the oscillator tank circuit, form the manual tuning gang.

The signal is then fed to the crystal mixer circuit by means of the mutual coupling of L4 and L5. The local-oscillator signal is generated by a 6AF4 tube, V1, and its associated circuit. The frequency of oscillation is maintained at 45.75 mc . above the signal frequency in the antenna and mixer tank, in order to effect a $\mathbf{4 5 . 7 5 - \mathrm { mc } \text { . video carrier intermediate frequency }}$ when the two signals are subsequently mixed in the crystal mixer tank.

The output signal from this local oscillator is introduced into the crystal mixer circuit through a $300-$ ohm, miniature transmission line and the mutual coupling of L 7 to L 5 and L 8 to L6. These four printed inductances, in aldition to C 7 , form the mixer board assembly. The signal is fed into a $6 \mathrm{BQ}^{7}$ preamplifies stage, then to the video i.f circuits, and through the UHF change-over switch, by means of a coaxial connection. Un VHF operation, a 150,000 -ohm resistor is placed in series with the UHF oscillator plate, rendering this oscillator inoperative.

The two tanks of the UHF tuner, the antenna tank and the mixer tank, are used to prevent the i-f signal from feeding back to the antenna and interfering with other receivers. These two tanks pass incoming signals very readily, but do not pass the i-f signal.

CHANGE-OVER SWITCH

The change-over switch supplied with the TunerAdapter is used to switch from VHF 10 UHF, and vice versa. It is installed on the back of the VHF tumer. and is operated by an actuator mounted on the VHF tuner shaft. When the Channel Selector of the VHF tuner is turned to the UHF position, the clangeover switcll makes proper connection for UHF op cration. In this position. the switch places a 150,000 ohm resistor in scries with the VHF B-plus lead, which drops the B-plus voltage applied to the VHF tuncr. The antenna is connected to the UHF tuner, the VHF pilot light is turned off. and the UHF pilot lights are turned on: the output of the UHF tuner is connected to the video i-f input circuit.
When the VHF Channel Selector is turned to any VHF position. the change-over switch places a 150.000)-ohm resistor in srries with the UHF localoseillator plate circuit, which drops the voltage applich to the plate, and disables the oscillator. The witch also connects the antenna to the VHF tuner turns of the UHF pilot lights, and turns on the VHF pilot light.

ADAPTER CABLES AND PLUCS

The allapter pluss shown in the schematic diagram are not used in factory-installed units; the cables are wired directly into the chassis at the proper places The plurs are used only in field-installed units. (Refer to the installation instructions for the proper method of inserting and connecting all plugs and cables.)

PLANETARY DRIVE

The UHF tuner is tuned by means of a 3-gang tuning condenser, which is driven through a specially designed planetary drive. The planetary drive is con structed so that fine tuning and coarse tuning can be accomplished with a single control knols. The tuning shaft is coupled to the driving shaft through threc steel balls. which form a planetary drive that produces a slow rotation for fine tuning. See figure 38. After rotating 180 degrees with the tuning shaft, a pin engages the driving shaft, and the two shafts are direct-coupled. for coarse tuning. To re-engage the planetary drive for fime tuning. it is only necessary to reverse the direction of the rotation. The dial pointer

Figure 37. Philco UHF Tuner-Adapter UT22, Part No. 43-6703, Schematic Diagram

TP3-760
Figure 44. Change-Over Switch, Switch Actuator, and Lead-Dress Details
is connected to the tuning gang through a cord drive, and indicates the channel number to which the tuner is tuned.

ALICNMENT AND REPAIRS

The frequencies at which the Tuncr-Adapter opprates are extremely high; therefore, it is necessary that the utmost care be taken to safeguard against upsetting the delicate adjustments of the tuner. It is recommended that the serviceman make only minor repairs to the tuner, such as replacement of the tube or crystal and the wiring of external leads. The

Figure 45. Rear View of VHF Tuner
Tuner-Adapter should be returned to the factory for alignment or major repairs, unless the serviceman is properly equipped to perform these jobs. In gencral, a good rule to follow is not to remove the cover of the Tuner-Adapter, unless so equipped.

NOTE: Replacing the tube with a new one may detune the tuner. If this occurs, try a number of tubes until one is found that will provide the most satisfactory performance.

INSTALLATION INSTRUCTIONS

To install the UHF Tuner-Adapter on the r-f chassis, proceed as follows:

1. Remove the cabinet back and r-f chassis from the cabinet; then remove the nameplate on the control panel by pushing it out from insidle the cabinet.
2. Insert the dial scale and bezel assembly into the hole provided in the cabinet. Fasten the assembly in place with the two nuts provided.
3. Remove the UHF tuner assembly from the mounting board with which it was shipped. Kcep the three screws for mounting the tuner in the cabinet.
4. Remove the coaxial cables from the two sockets at the side of the VHF tuner. Remove the bracket and socket assembly ($\mathrm{J500}$) and J 201) from the back of the VHF tuner, and discard them.
5. Place the switch-actuator assembly on the shaft extending from the rear of the VHF tuner so that the switch-actuator stud points away from the tuner. See figure 44. Place the spacers on the mounting studs

TP3-795
Figure 46. Change-Over Switch Mounting Details and Lead-Dress Details
and attach to the rear of the VHF tuner on the r-f chassis. See figure 45.
6. Remove the screw on the side of the VHF tuner, as shown in figure 41. Place the switch assembly on the two mounting studs, and fasten it in place with the flat wasliers, lock washers, and nuts provided. See figure 46. Fasten the upper switch bracket in place as shown in figure 46.
7. Put the VHF Channel Selector in the Channel 2 position. Rotate the switch actuator clockwise (as vicwed from the rear of the VHF tuner) on the tuner shaft until the actuator touches the fiber cam on the change-over switch. Fasten the switch actuator in this position. Rotate the Channel Selector to the UHF position. Check the switch operation to make sure that the switcll is thrown properly. Rotate the Channel Selector to Channel 13 position and check the switch operation to make sure that the switch is not thrown in this position. Fasten the lower switch bracket to the side of the VHF tuner with the screw removed in step 6 . Labrieate the switch-actuator stud and switch cam with cup grease.
8. Remove the allidio-output tube from its socket, and insert the adapter plug into the soeket. Insert the tube into the adapter. Sec figure 46.
9. Insert the coaxial cable from the VHF tuner into the bottom socket on the change-over switch. Insert the coaxial cable from the r-f chassis into the top socket on the switch. See figure 46.
10. Pull the orange lead from the VHF tuner up out of the r-f chassis, and cut it off at the point where it comes throngh the chassis. Skin the orange lead attached to the VIIF tuner, and solder it to the lug on the change-over switcl, as shown in figure 44.

CAUTION: The orange lead supplies B plus to the VHF tuner. Tape the loose end to prevent shorting to the chassis.
11. Remove the pilot lamp from the r-f chassis pilot-light socket. Cut the pilot-light lead from the r-f chassis where it passes through the chassis, and discard the socket and lead. Tape up the lead to prevent the possibility of a slort circuit. Mount the new pilot-light socket from the change-over switch with the drive screw provided, as shown in figure 47. Insert the pilot light in the socket, and install the shield provided over it.
12. Remove the antenna lead from the VHF tuner, and solder the short lead from the UHF-VHF changeover switeh to the VHF tuner terminals from which the antenna lead was removed. Slide the folded fiber lead holder over the tapered-line coil assembly on the VHF tuner, and dress the twin-wire antenna leads through the holder. See figure 44. The fiber holder will prevent the twin-wire leads from touching the tules on the r-f chassis.
13. Place the UHF tuner in the cabinet between the r-f and deflection chassis, and fasten the UHF

Figure 47. Pilot Light Mounting Details
tuner to the chassis shelf with the three screws removed in step 3. It is important that these screws be tiphtened securely, so as to hold the UHF tuner in place on the chassis shelf. Turn the UHF tuning shaft to its extreme counterclockwise position, and check the pointer position on the scale. The pointer should lie positioned just below the Channel 14 mark on the scale. If the pointer is not properly positioned, loosen the three mounting bolts and move the UHF tuner

TP3-792
Figure 48. UHF Tuner, Showing Location of Ground Lead and Coaxial Socket

TP3-794
Figure 49. Rear View of VHF Tuner, Showing Lead Dress
assembly to properly position the pointer; then fasten the assembly with the three mounting screws.
14. Fasten the ground lead and the dress lugs to the r-f chassis with drive screws. See figure 46. Install the chassis in the cabinet, and fasten the ground strap under the screw on the UHF tuner as shown in figure 48 . Fasten the r-f chassis with the original mounting bolts. Place the original knobs on their shafts, and the felt washer and knob supplied on the UHF tuning shaft.
15. Insert the coaxial plug from the change-over switch into the socket.on the UHF tuner. See figure 48. Insert the 5 -pin plug from the UHF tuner into the socket on the bracket at the rear of the VHF tuncr. Dress the leads under the dress lug as shown in figure 46.
16. Replace the fiber antenna-lead holder with the new holder provided. Fasten the new holder with the nails provided (or screws for metal cabinets), and then pass the twin-wire leads through the holes as shown in figures 49 and 50. Pull the leads through

Figure 50. Antenna-Lead Holder

TP2-3170-1
Figure 51. Antenna-Lead Connections, Common Built-In Antenna
the holder until they are tight, making certain that the leads do not contact the tubes or the chassis. Wrap tape around the yellow-marked twin-wire leads with the spade-luy ends, to prevent the leads from passing back through the fiber holder.
17. Fasten the antenna terminal board provided as shown in the illustrations above (figures 51 to 55). Replace the cabinet back, and make the connections as illustrated, according to the type of antenna installation being used.
18. Paste the label provided over the outsideantenna instructions on the cabinet back.

TP2-3172-1
Figure 52. Antenna-Lead Connections, Common External Antenna

TP2-3174-1
Figure 53. Antenna-Lead Connections, Separate

Figure 54. Antenna-Lead Connections, VHF Built-In and UHF External Antennas

Figure 55. Antenna-Lead Connections, VHF External and UHF Built-In Antennas

Figure 34. R-F Chassis R-191, Schematic Diagram

Figure 38. Planetary Assembly, Exploded View, Showing Mechanical Layout

TELEVISION SERVICE MANUAL

Figure 40. Oscillator and Mixer Board Layouts

Figure 41 Base View of Preamplitier ${ }^{\text {TP3-883 }}$ Figure 41. Base View of Preamplifier Assembly of
UHF Tuner-Adapter UT22, Part No. 43-6703

Figure 43. Top View and Base View of TP3-895
Tuner-Adapter UT22, Part No. 43-6703, apter UT22, Part No.
With Board Assemblies

Figure 42. Side View and Base View of UHF Tuner-Adapter UT22, Part No. 43-6703. 26

REPLACEMENT PARTS LIST

IMPORTANT

General replacement items commonly stocked by the serviceman are omitted from this parts list. All condensers are molded-bakelite Philco condensers, with a 600 -volt rating, and all resistors are $1 / 2$ watt, unless otherwise indicated. Parts are listed according to chassis type, and should be ordered in this way rather than by model number. A list of miscellaneous parts is given at the end of the parts list for each chassis type. All parts are symbolized in the schematic diagram and base layout, for identification purposes.
NOTE: Part numbers identified by an asterisk (*) are general replacement itcms. These numbers may not be identical with those on factory parts. Also, the electrical values of some replacement items may differ from the values indicated in the schematic diagram and parts list. The values substituted in any case are so chosen that the operation will be unchanged. When ordering replacements, use only the "Service Part No."

DEFLECTION CHASSIS D-191

- SECTION I-POWER SUPPLY

Reference Symbol	Description	Service Part No.
$\begin{aligned} & \mathrm{C100} \text { and } \\ & \mathrm{C} 101 \end{aligned}$	Condensers, electrolytic filter, $120 \mu \text { f., } 150 \mathrm{v} \text {. }$	30.2568-51
$\mathrm{Cl03}$	Condenser, electrolytic filter, 80μ f., 300v	30.2584-35
CR100 and	Rectifiers, selenium, 350 ma .	34-8003-16
F100	Fuse, line, 1.6 amperes	45-2656.23
F101	Fuse, heater protective link..	Piece of No. 26 Whre
J100	Socket, a-c line	27-6240-3
J101	Socket, chassis connecting ...	27.6274-1
PL100	Plug, chassis, a-c line	Part of ace line cord ass'y. (see Misc. *A")
PL101	Plug and cable ass'y., chassis connecting	(See Misc. "B")
R100	Resistor, current limiting, 5 ohms, 10 watts	33.3448 .5
R102	Resistor, voltage dropping, 4.7 ohms, 1 watt	66.9474340
S100	Switch, off-on	Part of R414
T100	Transformer, filament	32.8590

SECTION 7—VERTICAL SWEEP

Reference Symbol	Description	Service Part No.
C708	Condenser, electrolytic, 20μ.	Part of Cl03
$\begin{aligned} & \text { L700 and } \\ & \text { L701 } \end{aligned}$	Coils, vertical deflection	Part of deflec. tion yoke (see Misc. "A")
R704	Potentiometer, VERT. HOLD control, 250,000 ohms	Part of R811
R707	Potentiometer, HEIGHT control, 2.5 megohms	33.5565-32
R708	Potentiometer, VERT. LIN. control, 5 megohms	33.5565.31
R712	Resistor, vertical output decoupling, 2200 ohms, 5 watts	33.1335.97
T700	Transformer, vertical oscillator \qquad	32.8431.2
T701	Transformer, vertical output..	32-8625

SECTION 8-HORIZONTAL SWEEP

Reference Symbol	Description	Service Part No.
C805	Condenser, plate by-pass, 82 $\mu \mu \mathrm{f}$.	60.00825317
C807	Condenser, coupling, $390 \mu \mu \mathrm{f}$.	60-10395417
C808	Condenser, saw-tooth forming, $390 \mu \mu \mathrm{f}$.	60-10395417
C813	Condenser, damping, $68 \mu \mu f_{\text {, }}$ $2000 v$.	30.1246.1*
C815A	Condenser, electrolytic, $10 \mu \mathrm{f}$., 300v	Part of C103
$\mathrm{C815B}$	Condènser, electrolytic, $20 \mu \mathrm{f}$, 475v	Part of C103
J800	Sopket, deflection-yoke connector	27-6274-8
L800	Coil, horizontal stabilizing, 30 to 80 mh .	32.4557
$\begin{aligned} & \text { L801 and } \\ & \text { L802 } \end{aligned}$	Coils, horizontal deflection ..	Part of deflection yoke (see Misc. "A")
L803	Coil, r.f choke, damper cathode	32-4112-24
L804	Coil, r-f choke, damper plate	32-4112.24
L805	Coil, r.f choke, horizontaloutput plate	Part of T800
R810	Potentiometer, HORIZ. OSC. FREQ. control, 250,000 ohms	$33.5565 .17$
PL800	Plug and cable ass'y, deflec. tion (17" picture tube) (21" picture tube)	$\begin{array}{r} 41-4086-18 \\ 414086.25 \end{array}$
R812	Resistor, feedback coupling, 39,000 ohms, 1 watt	66.3394340
R811	Potentiometer, HORIZ. HOLD control, 50,000 ohms	33.5563-50
R818	Resistor, screen-supply divider, 5000 ohms, 5 watts	33.1335.101
R816	Potentiometer, WIDTH control, 12,500 ohms, 2 watts. .	33-5546-41
R819	Resistor, screen-supply divider, 82,000 ohms, 1 watt	66-3824340
R820	Resistor, B plus boost, filter, 47.000 ohms, 1 walt	66.3474340
R822	Resistor, feedback coupling, 39,000 ohms, 1 watt	66.3394340
T800	Transformer, horizontal output	32-8624

REPLACEMENT PARTS LIST (Cont.) DEFLECTION CHASSIS D-191 (Cont.)
 MISCELLANEOUS "A"

Description	Service Part No.
Arm and magnet ass'y., picture tube	76-6594
IReam bender	76-6077.2
Cahle assemhly, volume control	41-4136-3
Cahle and plug ass'y., deflection (17" picture tube)	41-4086-18
Cable and plug ass'y., deflection (21" picture tube)	41-4086-25
Cable, high voltage	AD. 2631
Cord, a-c line	41-3865
Deflection-yoke ass'y.	32.9648
Focus ass'y., p.m.	76-6126-4

Description	Service Part No.
Insulator, electrolytic condenser mtg.	27-9508-1
Shield. h.v. corona	56.9684
Socket, damper (6AX4GT)	27-6174-7
Socket, high-voltage rectifier (IB3GT)	27-6290.1
Sorket, horizontal oscillator (12AU7)	76.6115-1
Socket, horizontal output (6BQ6GT)	27.6174
Socket, horizontal phase comparer (6AL5)	27-6203-12
Sorket, vertical oscillator-phase splitter (12AU7)	27-6203-16
Socket, vertical output (12B4)	76-6115.2
Spring, high-voltage cable	28.9137

R-F CHASSIS R-191

SECTION 2—VIDEO I.F.

Reference Symbol	Description	Service Part No.
C200	Condenser, trimmer, 1-5 \quad ¢ f .	31-6520.9
C201	Condenser, trap, $5 \mu \mu \mathrm{f}$.	30-1224-28
C202	Condenser, Ist i.f tuning, $1-5$ $\mu \mu \mathrm{f}$.	31.6520 .9
C204	Condenser, cathode by-pass, $470 \mu \mu \mathrm{f} . \mathrm{}.$.	30-1225-18
C205	Condenser, a-g.c decoupling, $470 \mu \mu \mathrm{f}$.	30-1225-18
C206	Condenser, 1 st i-f plate tuning, l-5 $\mu \mu$ f.	31-6520.9
C209	Condenser, electrolytic	30.2584-33
C209 A	Condenser, filter, $40 \mu \mathrm{f} ., 300 \mathrm{v}$	Part of C209
C209B	Condenser, decoupling, filter, $10 \mu \mathrm{f}$., 300 v	Part of C209
C210	Condenser, 2nd i-f plate tuning, $1-5 \mu \mu$.	31-6520-9
C211	Condenser, screen by-pass, 680 $\mu \mu \mathrm{f}$.	62.168001001
C212	Condenser, 3rd i-f plate tuning, $1-5 \mu \mu$.	31-6520-9
C213	Condenser, screen by-pass, 560 $\mu \mu \mathrm{f}$.	62-156001011
C215	Condenser, detector by-pass, 5 $\mu \mu$.	30-1224-28
CD200	Crystal, video detector 1N64..	34-8022
J200	Socket, video test	27-6273
J201	Socket, tuner to i-f coupling. .	Part of connec. tor ass'y. (see Mise. "C")
$\begin{aligned} & \mathrm{L} 200 \text { and } \\ & \mathrm{L} 201 \end{aligned}$	Coils, tuner coupling	Part of T200
L202	Coil, trap	32-4597-2
L203	Coil, lst i.f grid	32-4548-12
$\begin{aligned} & \mathrm{L} 204 \text { and } \\ & \mathrm{L} 205 \end{aligned}$	(ioils, coupling	Part of T201
L206	Coil, filament choke	32-4112-15
$\begin{aligned} & \mathrm{L} 207 \text { and } \\ & \mathrm{L} 208 \end{aligned}$	Coils, coupling	Part of T202
$\begin{aligned} & \mathrm{L} 209 \text { and } \\ & \mathrm{L} 210 \end{aligned}$	Coils, coupling	Part of T203

SECTION 2—VIDEO I.F. (Cont.)

Reference Symbol	Description	Service Part No.
L.211	Coil, series peaking, $10 \mu \mathrm{~h} .$.	32-4422-27
L212	Coil, series peaking, $3 \mu \mathrm{~h} . \mathrm{C}$	
L. 213	Coil. series peaking, $125 \mu \mathrm{~h}$. .	32-4480-8
L. 214	Coil, video peaking, $250 \mu \mathrm{~h}$.	32-4480-4
PL201	Plug, tuner link	Part of cable and plug ass'y. (see Misc. "B")
R212	Resistor, voltage dropping, 3300 ohms, 6.2 watts	33.3446-11
T200	Transformer, video i-f input.	32-4599-1
T201	Transformer, lst video i.f plate \qquad	32-4598-4
T202	Transformer, 2nd video i-f plate	32-4598
T203	Transformer, 3rd video i-f plate	32-4598-2

SECTION 3—VIDEO

Reference Symbol	Description	Service Part No.
C302	Condenser, $4.5-\mathrm{mc}$. trap, 68 $\mu \mu \mathrm{f}$.	62-068409001
C303	Condenser, screen by-pass, 330 $\mu \mu \mathrm{f}$.	62-133001001
C304	Condenser, by-pass, $100 \mu \mu \mathrm{f}$. .	62-110409001
L.300	Coil, 4.5-me. trap	32.4463 .2
L301	Coil. series peaking, $250 \mu \mathrm{~h}$. .	32-4480-4
L. 302	Coil. shunt peaking, $250 \mu \mathrm{~h}$. .	$32-4480-4$
L.303	Coil, variahle video peaking, (6) $-240 \mu h$.	32-4467-18
I. 304	Coil. series peaking, $40 \mu \mathrm{~h} .$. .	
L310	Potentiometer, CONTRAST, 2500 ohms	Part of R315
R311	Resistor, plate load, 3000 ohms, 10 watts	33-1335-121
R313	Resistor, picture-tube grounding, 470,000 ohms, 1 watt ..	66-4474340
R315	Potentiometer, BRIGHTNESS, 100,000 ohms	33-5563-51

REPLACEMENT PARTS LIST (Cont.)

R-F CHASSIS R-191 (Cont.)

SECTION 4-SOUND

Reference Symbol	Description	Service Part No.
C400	Condenser, coupling, $2.2 \mu \mu \mathrm{f}$.	30-1221-6
$\mathrm{C401}$	Condenser, fixed trimmer, 18 $\mu \mu \mathrm{f}$.	62-018400021
C404	Condenser, fixed trimmer ...	Part of Z400
C405	Condenser, fixed trimmer ...	Part of Z400
C406	Condenser, detector balancing, $150 \mu \mu \mathrm{f}$.	62.115001011
C409	Condenser, r-f by-pass, 330 $\mu \mu \mathrm{f}$.	62-133001001
C410	Condenser, filter, 2μ f.	30-2417.7
C413	Condenser, plate by-pass, 6800 $\mu \mu \mathrm{f}$., 1000v	30-4650-91
1400	Pilot light	34-2068
J400	Socket, volume control	27-6273
J401	Socket, speaker	27-4785-22
L400	Coil, audio take-off	32-4463.9
L401, L402, and L403	Coils, ratio detector	Part of Z400
L404	Coils, ratio detector	32-4112-15
L405	Filter choke, 1 henry, 39 ohms	32.8617
PL400	Plug, volume control	(Part of cable and plug ass'y. (see Misc. "A")
PL401	Plug, speaker	Part of speaker cable ass'y. (see cabinet parts)
R400	Resistor, cathode bias, 390 ohms, 1 watt	66-1394340
R402	Resistor, screen dropping, 12,000 ohms, 1 watt	66-3124340*
R407	Resistor, voltage dropping, 18,000 ohms, 2 watts	66-3185340
R413	Resistor, cathode bias, 390 ohms, 1 watt	66.1394340
R414	Potentiometer, VOLCME control, 2 megohms	33-5564-14
T400	Transformer, audio output ..	32.8629
Z400	Transformer, ratio detector ..	32-4450.6A

Reference Symbol	Description	Service Part No.
C600	Condenser, by-pass, $220 \mu \mu \mathrm{f}$. .	62-122001001
R606	Resistor, voltage divider, 6800 ohms, 1 watt	66-2684340
R607	Resistor, decoupling, 12,000 ohms, 2 watts	66-3125340
R613	Resistor, voltage divider, 1 megohm, $1 / 2$ watt, $\pm 5 \%$	66.5108240

MISCELLANEOUS "B"

| Description | Service
 Part No. |
| :--- | :--- | :--- |
| Cable and plug ass'y., chassis connecting.. | $41-4146-10^{*}$ |
| Cable and plug, i.f. to tuner | $41-3754-55$ |
| Cable and socket ass'y., picture tube.... | $41-3964-19$ |
| Cable and socket ass'y., pilot light $\ldots . .$. | $27-6233-6^{*}$ |

MISCELLANEOUS "B" (Cont.)

Description	Service Part No.
Insulator, CONTRAST and BRIGHTNESS control	54-8488
Shield, tube (6T8)	56-5629.5
Shield, tube (6CB6)	56-5629FA3
Shield, pilot light	56.9074-2FA3
Socket and base ass'y. (6CB6)	27-6203-14
Sorkel and base ass'y. (6T8)	27-6203-18
Socket, tube, 7-pin miniature	27.6203
Socket, tube, 7-pin miniature (6AQ5)	27-6294
Socket, tube, 9-pin miniature	27-6203.6*
Socket, tube, octal .	27.6174

TV TUNER, PART No. $\mathbf{7 6 - 8 4 0 0}$

Reference Symbol	Description	Service Part No.
$\begin{aligned} & \text { C500 and } \\ & \text { C501 } \end{aligned}$	Condensers, antenna isolating, $470 \mu \mu \mathrm{f}$.	30-1225-18
C502	Condenser, FM trap, $20 \mu \mu \mathrm{f}$.	30-1251-4
C503	Condenser, grid coupling, 39 $\mu \mu \mathrm{f}$.	62-039403011
C505	Condenser, a-g-c by-pass, 220 $\mu \mu \mathrm{f}$.	62-122001011
C506	Condenser, grid by-pass, 680 $\mu \mu$ f.	62-168001011
C507	Condenser, decoupling, $01 \mu \mathrm{f}$.	30-1238-6
C508	Condenser, trimmer, r.f plate, .5-3 $\mu \mu$ f.	31-6520-3
C509	Condenser, by-pass, $150 \mu \mu \mathrm{f}$. .	62-115001011
C510	Condenser, coupling, . $68 \mu \mu \mathrm{f}$.	30-1221-11
C511	Condenser, coupling, $15 \mu \mu \mathrm{f}$.	62-015409011
C512	Condenser, trimmer, mixer grid, . 5 - $3 \mu \mu$.	31-6520-7
C513	Condenser, oscillator coupling, $2.2 \mu \mu$ f.	30-1221-6
C514	Condenser, grid blocking, 15 $\mu \mu \mathrm{f}$.	30-1224.113
C515	Condenser, fixed trimmer, 3.3 $\mu \mu \mathrm{f}$.	30-1224-114
C516	Condenser, FINE TUNING, plastic tube	76-6935-1
C517	Condenser, by-pass, $3.3 \mu \mu \mathrm{f}$. .	30-1224-58
C518	Condenser, output coupling, $680 \mu \mu \mathrm{f}$.	62.168001021
C519	Condenser, screen by-pass, 680 $\mu \mu \mathrm{f}$.	62-168001011
C520	Condenser, filament by-pass, $220 \mu \mu \mathrm{f}$.	62-122001011
C521	Condenser, filament by-pass, $800 \mu \mu$ f.	30.1238-7
C.522	Condenser, coupling, $3.9 \mu \mu \mathrm{f}$.	30.1221.14
C523	Condenser, coupling, . $82 \mu \mu \mathrm{f}$.	30-1221-10
C524	Condenser, filament by-pass, $220 \mu \mu \mathrm{f}$.	62.122001011
C525	Condenser, by-pass, $800 \mu \mu \mathrm{f}$. .	30-1238-7
C 527	Condenser, i-f trap, $22 \mu \mu \mathrm{f}$. .	Part of L527

REPLACEMENT PARTS LIST (Cont.)

R-F CHASSIS R-191 (Cont.)

TV TUNER, PART No. 76-8400 (Cont.)

Reference Symbol	Descriprion	Service Part No.
J500	Socket, tuner link	Part of Con. nector ass'y., tuner to i.f (see Misc. "C")
$\begin{aligned} & \text { L500, L501, } \\ & \text { L502, and } \\ & \text { L503 } \end{aligned}$	Coils, tapered line	32-4432-3
L504	Coil, FM trap	32-4550-3
$\begin{aligned} & \text { L505 to } \\ & \text { L511 incl. } \end{aligned}$	Coils, antenna tuning	Part of WS500A
L512	Coil, r.f coupling	312.5145.22
$\begin{aligned} & \text { L513 to } \\ & \text { L519 incl. } \end{aligned}$	Coils, r.f plate tuning	Part of WS500B
$\begin{aligned} & \text { L520 to } \\ & \text { L526 incl. } \end{aligned}$	Coils, mixer grid tuning . . .	Part of WS500C
L527	Coil, i.f trap	32-4552.1
L528	Coil, mixer plate	312-5151-10
L530	Coil, filament choke	32-4550.1
L531	Coil. filament choke	32-4550-11
$\begin{aligned} & \mathrm{L} 532 \text { to } \\ & \text { L538 incl. } \end{aligned}$	Coils, oscillator tuning	Part of WS500D
PL500	Plug, tuner link	Part of Cable and Plug ass'y. (see Misc. "C")
R508	Resistor, osrillator feed, $\mathbf{3 3 , 0 0 0}$ ohms	66.3334340
R510	Resistor, mixer plate feed, $\mathbf{1 0}$, 000 ohms, 1 watt	66.3104540
$\begin{aligned} & \text { WSS00A (F) } \\ & \text { and } \\ & \text { WS500A (R) } \end{aligned}$	Switch, wafer, antenna	76-8410
$\begin{aligned} & \text { WS500B (F) } \\ & \text { and } \\ & \text { WS500B (R) } \end{aligned}$	Switch, wafer, r.f plate	76-8409
$\begin{aligned} & \text { WS500C(F) } \\ & \text { and } \\ & \text { WS500C(R) } \end{aligned}$	Switch, wafer, mixer grid ...	76-8408
$\begin{aligned} & \text { WS500D (F) } \\ & \text { and } \\ & \text { WS500D (R) } \end{aligned}$	Switch, wafer, oscillator	76-8407
Z500	Tapered line ass'y.	76-8417

Description	Service Part No.
Cam and shaft, fine tuning	76-6936-3
Cable and plug, tuner to i.f	41-3754.55
Connector ass'y., tuner to i.f	76-8521
Coupling, fine tuning shaft	54-4912-2
Detent, ball	56-8020
"E" Washer, detent (in back of fine tuning cam)	1W60980FA3

MISCELLANEOUS "C" (Cont.)

Description	Service Part No.
Front panel ass'y.	76-8395
Hairpin, plunger grounding	56-9858
Hairpin, plunger-pivot lever-pin	1W42704FA3
Pivot pin, lever .	56-9149
Lever, plunger	56-9148
Plunger .	56-8034-1
Retaining ring	1W61043
Shaft	76.6914-4
Shaft extension	56-8358
Shield, tube, 9-pin miniature	56.5629 .5
Socket, tube, 9-pin miniature	27-6203.21
Spring, shaft	56.8023
Spring, plunger	56.9628
Spring, detent index	56.9158
Terminal panel, antenna	76.5504.2
Washer, detent (in back of fine tuning cam)	56.9351
Washer, fiber, fine tuning plunger	27-4109.13
Washer, spring, plunger lever	56.9157

CONNECTING CABLES, PLUCS, AND SOCKETS

[^1]
REPLACEMENT PARTS LIST (Cont.)

UHF TUNER-ADAPTER UT22, PART No. 43-6703

Reference Symbol	Description	Service Part No.
Cl and C2	Condenser, antenna input, 680 $\mu \mu$.	Part of panel filter
C3	Condenser, tuning: Shaft and rotor ass'y.	76.74814
C3A	Stator, r.f, l.h.	56.9595
C3B	Stator, r.f, r.h.	56-9595.1
C3C	Stator, r-f, l.h.	56.9595
C3D	Stator, rf, r.h.	56-9595.1
C3E	Stator ass'y, oscillator	76.7479
C3F	Stator ass'y., oscillator	76.7479
C4	Condenser, padder ass'y, r-f.	76.7472
C5	Condenser	Stray capacitance
C6	Condenser, padder ass'y, r.f.	76.7472
C7	Condenser, mixer tank, $30 \mu \mu \mathrm{f}$.	Part of board ass'y, mixer
C8	Condenser, temperature compensating, $4 \mu \mu \mathrm{f}$.	30-1224-109
C9	Condenser, oscillator trimmer	31-6525
C10	Condenser, oscillator tank, 2.5 $\mu \mu \mathrm{f}$.	Part of tank ass'y. osc.
C11	Condenser, by-pass	Part of tank ass'y., osc.
C12	Condenser, grid by-pass, 500 $\mu \mu \mathrm{f}$.	30-1245.3
C13	Condenser, feedback, $1.0 \mu \mu \mathrm{f}$.	30-1238-2
C14	Condenser, heater by-pass, 500 $\mu \mu \mathrm{f}$.	30.1245-3
C15	Condenser, plate by-pass, 500 $\mu \mu$ f.	30-1245-3
C16	Condenser. input coupling, 8 $\mu \mu$.	30-1224-46
C17	Condenser, neutralizing, 680 $\mu \mu \mathrm{f}$.	62.168001001
C18	Condenser, decoupling, 680 $\mu \mu \mathrm{f}$.	62.168001001
C19	Condenser, cathode by-pass, $680 \mu \mu \mathrm{f}$.	62-168001001
C20	Condenser, filament by-pass, $470 \mu \mu \mathrm{f}$.	62-147001011
C21	Condenser, cathode tuning, $680 \mu \mu \mathrm{f}$,	62-168001001
C22	Condenser, grid by-pass, 680 $\mu \mu \mathrm{f}$.	62-168001001
C23	Condenser, plate tuning, $\mathbf{l}-5$ $\mu \mu \mathrm{f}$.	31-6520-10
C26	Condenser, grid by-pass, . 01 $\mu \mathrm{f}$.	30-1238-2
C27	Condenser, decoupling. 680 $\mu \mu \mathrm{f}$.	62-168001001
C28	Condenser, output coupling. $680 \mu \mu \mathrm{f}$.	62-168001001
$\begin{aligned} & \mathrm{C} 29 \text { and } \\ & \mathrm{C} 30 \end{aligned}$	Condenser, antenna input, 100 $\mu \mu$ f.	30-1225-13
C31	Condenser, grid tuning, 1-5 $\mu \mu \mathrm{f}$.	31-6520-10
CD1	Crystal detector, mixer circuit	34-8026
11 and I3	Lamps, pilot, UHF	34-2068
12	Lamp, pilot, VHF	34-2068
L1	Inductor, r-f, l.h.	Part of C3AStator

Reference Symbol	Description	Service Part No.
L2	Inductor, r-f, r.h.	Part of C3B. Stator
L3	Inductor, r-f, l.h.	Part of C3C. Stator
L4	Inductor, r-f, r.h.	Part of C3D. Stator
L5 and L6	Inductors, crystal mixer	Part of board ass'y., mixer
L7 and L8	Inductors, oscillator coupling	Part of board ass'y., mixer
L9 and L10	Inductors, oscillator	Part of board ass'y.. osc.
L11 and L12	Inductors, oscillator	76.7627
L13	Choke. heater decoupling ...	32-4556.3
L14	Choke, heater.cathode decoupling	32-4556-4
L15	Choke. plate decoupling	32-4556.2
L.16	Coil, input tuning, primary ..	32.4597 .7
L17	Coil, input tuning. secondary.	$32-4597.9$
L18	Coil. neutralizing	32-4597.4
L19	Choke, cathode tuning	32-4597.5
L22	Choke, plate decoupling	32-4556-2
$\begin{aligned} & \mathrm{L} 23 \text { and } \\ & \mathrm{L} 24 \end{aligned}$	Coils, i-f trap	Part of panel filter
R2	Resistor, damping, 220 ohms	66.1228340
R3	Resistor, $\left.\begin{array}{c}\text { decoupling. } 6800 \\ \text { ohms }\end{array}\right]$	66.2688340
R4	Resistor, decoupling, $\quad 220$ ohms ….........................	Part of Ll3
R5		Part of L15
R6	Resistor, cathode bias, 1000 ohms	66-2104240
R7	Resistor, cathode bias, 68 ohms	66-0688340
R8 and R9	Resistor, antenna input, 470,000 ohms \qquad	Part of panel filter
R10	Resistor, grid loading, 8200 ohms	66-2828340
R11	Resistor, pilot light, 3.9 ohms	66.9398340
R12	Resistor, B+ dropping, 10,000 ohms, 10 watts	33.1336-58
R13	Resistor, a-g-e decoupling, 10,000 ohms \qquad	66.3108340
R14	Resistor, bias divider, 1.5 megohms \qquad	66.5158340
R15	Resistor, damping, 10 ohms	66.0108340
R16	Resistor, damping, 470 ohms.	66-1478340
R17	Resistor, plate load, 3300 ohms	66.2338340
$\begin{aligned} & \text { R18 and } \\ & \text { R19 } \end{aligned}$	Resistor, tuner disabling, 150,000 ohms	664158340
R20	Resistor, bias divider, 1.5 megohms \qquad	66.5158340
R21	Resistor, pilot light, 10 ohms. Roard ass'y., mixer Board ass'y., oscillator Panel, filter \qquad Tank ass'y., oscillator	$\begin{aligned} & 66-0108340 \\ & 76-7475-4 \\ & 76.7480 \\ & 76-8078 \\ & 76.7627 \end{aligned}$

REPLACEMENT PARTS LIST (Cont.)

UHF TUNER-ADAPTER UT22, PART No. 43-6703 (Cont.)

MISCELLANEOUS ELECTRICAL PARTS		MECHANICAL PARTS (Cont.)		
Description	Service Part No.	Reference Symbol	Description	Service Part No.
Adapter cable	41-4120	Nut. insert		W1679.1FA3
Connector, twin lead	54.5181	Spring, cen		56.9490
Cable ass'y., pilot light	27-6233-6	Switch Moun		
Padder ass'y. (L11 and L12 tuning adjustment)	76-8193	Collar stud		28.9126.1
Panel, antenna, UHF .	76.7097	Lock wash		1W24515FA1
Switch	42.2008	Nut \#8 sp		1W20506FA3
		Spacer 5/16		1W29155FA3
MECHANICAL PARTS		Washer. fib		27-4109-29
		Mounting Hardware:		
Description	Service Part No.	Stud. trimount (6)		$\begin{aligned} & 27.9437 \\ & \text { W2235.7FA9 } \end{aligned}$
Planetary Assembly:		Additional		
Ball, $1 /$ " $^{\prime \prime}$..		Clip. back		28.9462
Ball, $3 / 10^{\prime \prime}$.	$56-8020$	Foot and i		76.8505
Ball, 7/32"	56-8020-1	Gronimet.		27.4707
Planetary drive	76.8507	Grove pin		1W41033FA3
Housing drive	76.8485	Knob		54-8508
Pulley ass'y.	76.8465	Pilot-light		27.6233-103
Ring. retaining, idler shaft	IW60977FE7	Pointer		$56.5630 .59$
Ring, retaining, shaft drive	IW60982FE7	Pointer gu		76.8504
Shaft, inner end	28.9176	Power-inpu		41-4141.5
Shaft, outer	28-9069-1	Pulley, tur		28.9090
Shaft and pin ass'y., inner	76-8300.1	Ring, retai	shaft	1 W60977FE7
Screw, adjusting	28.9094	Scale, beze	ism ass'y.	76-8524-1
Spring	28.9174	Screw, poi		1W32694FA3
Shaft and Rotor Assembly:		Shield. tub	lifier	56.5629.5
Batl, bearing (10)	W2510.5	Slield, tub		56.5629.9
Bearing, front	56.9593	Socket. 9-p		27.6203.21
Bearing, rear	56.9609	Spring (3)		28.9490
Nut, front bearing	56.9594	Switch ate		76-8189.1
Nut. rear bearing	56.9599	Tuner-prea	ss'y.	76.8499

\qquad
\qquad \longrightarrow
\qquad
\qquad
\qquad
\qquad

World Radio History

Service

PHILCO
 TELEVISION SERVICE MANUAL FOR R-F CHASSIS R-201 DEFLECTION CHASSIS D-201 UHF TUNER-ADAPTER UT20B

TABLE OF CONTENTS
Circuit Description 2
A.C Line Isolation 4SpecificationsTube Complement4
B Supply Fuse Replacement 4
Horizontal-Oscillator Adjustment 4
Video Peaking Coil Adjustment 4
Television Alignment
General
Test Equipment Required
Jigs and Adapters Required 55
5
Mixer Jig 5
Antenna-Input Matching Network 6
Video I-F Alignment Jig 6
Sound I-F Alignment Jig 6
Television Tuner Alignment 7
Oscillator Alignment 7
General 7
Procedure Using Sigmal Gemerators 8
Procedure Using Station Signal 8
Bandpass Alignment 8
General 8
Procedure 9
Video I-F Alignment 10
Preliminary 10
Procedure 10
Sound I-F Alignment 12
Adjustment of 4.5-mc. Trap 13
Oscilloscope Waveform Patterns 13
Voltage Measurements 17
Clhassis Bottom Views. Showing Voltages at the Sockets 17
Television Tuner Base Layout 18
Television Tuner Schematic Diagram 19
Base Layouts and Schematic Diagrams of Television Chassis 20-24
UHF Tuner-Adapter UT20B 25
Circuit Description 25
Base Layouts and Schematic Diagram 27, 28
Installation Instructions
Installation Instructions 29
Replacement Parts List 33
Copyright, 1953. PHILCO CORPORATION

CIRCUIT DESCRIPTION

The Philco " B " line, Code 150 television receivers use two chassis, the r-f chassis, R-201, containing the r-f, video, audio, and sync circuits, and the deflection chassis, D-201, containing the power and deflection circuits.

Since these chassis are not isolated from the 60 cycle power line, all protruding shafts and mounting feet are insulated from the chassis.

CAUTION: See A-C Line Isolation.
The r-f amplifier, oscillator, and mixer section is built on a separate subchassis. The r-f amplifier uses a 6BZ7 tube, V1. The oscillator and mixer each use one half of a 12AZ7 tube, V2. The output of the mixer is fed to a four-stage, stagger-tuned, i-f amplifier system employing four 6CB6 tubes, V3, V4, V5, and V6. A 1 N64 crystal diode is used for the video detector. One half of a 6U8 tube, V7A, is used as the first video amplifier, which drives a 6AQ5 video output amplifier, V8.

Sound i.f. (intercarrier) is obtained by utilizing the beat frequency produced when the $45.75-\mathrm{mc}$. video carrier and the $41.25-\mathrm{mc}$. sound carrier are mixed in the video detector. The beat frequency, $4.5-\mathrm{mc}$., is the difference between $45.75-\mathrm{mc}$, and $41.25-\mathrm{mc}$., and contains the FM sound signal. This 4.5-mc. signal contains only a negligible amount of the video amplitude morlulation, provided that the amplitude of the $41.25-\mathrm{mc}$. sirnal is considerably lower than that of the $45.75-\mathrm{mc}$. signal. The proper relative amplitudes of the two carriers are established in the alignment of the recciver. There is sound output only when both the vidco and sound carriers are present.

The oscillator is tuned primarily to obtain the best picture, since the 4.5 -mc. relationship always exists between the two carriers. The $4.5-\mathrm{mc}$. sound i-f (intercarrier), which is taken from the video detector, is amplified by a 6BA6 tube, V9, and a 6AU6 tube, V10, and is fed to the FM detector, which utilizes two diode sections of a 6 T 8 tube, V1lA. The triode section of the 6T8 tube, V11B, is used as the first audio amplifier. The power amplifier uses a 6V6GT tube, V12.

A-G-C voltage for the video i-f system and the r-f amplifier is obtained from a keyed a-g-c system which uses a 6AU6 tube, V13, as the a-g-c gate. Composite video from the video-amplifier plate circuit, V7A, is fed to the grid of the a-g-c gate tube, while a gating or keying pulse, obtained from a winding on the horizontal-output transformer, located
on the deflection chassis, is applied to the plate. The sync-pulse polarity applied to the grid of V13 is positive; therefore, the a-g-c gate can conduct in proportion to the amplitude of the sync-pulse tips if the gating or keying pulse occurs at the same time as the sync. Because the keying or gate pulse is of constant amplitude, approximately 500 volts peak, the amplitude of the sync pulse will determine the amount of conduction in the gate tube. The plate current of the keyed a-g-c gate tube flows through R216, R220, R219, and R218, developing a voltage which is negative with respect to the chassis and whose amplitude is proportional to the plate current. This negative voltage is used to control the gain of the receiver. Since conduction cannot occur in the $a-g-c$ gate tube unless the sync pulse and gating pulse occur at the same time, noise disturbances that occur between sync-pulse intervals cannot affect the a-g-c voltage.

Composite video for the sync circuits is taken from the plate circuit of the video amplifier, V7A. The output of the amplifier is fed to the grid of the noise inverter, one half of a 12 AU 7 tube, V14B, and to the grid of the sync separator, one half of a 6 U 8 tube, V7B. The noise inverter is operated with a low value of plate voltage and high bias (applied to the cathode by a voltage-divider network), which keeps the tube beyond cutoff. When the composite video signal is applied to the grid of the noise inverter through C601, the sync appears as positive pulses; noise which could affect the sweep circuits also appears as positive pulses. Harmful noise pulses usually have amplitudes far greater than the sync pulses, and, therefore, drive the grid of the noise inverter positive sufficiently to allow conduction in the noise-inverter plate circuit. To prevent the noise inverter from conducting during the sync-pulse interval, the gated leveler, using one half of a 12AU7 tube, V14A, is employed to clamp the sync pulses below the conduction level of the noise inverter. The gated leveler will conduct only when the sync pulses and gating pulse occur at the same time, thus leveling the noise-inverter input to the sync-pulse level.

The output of the noise inverter consists of negativegoing noise pulses. It should be noted that the noise pulses which exceed the sync level have been passed and their polarity reversed by the noise inverter. The output of the noise inverter is now mixed with the composite video and fed to the grid of the sync separator. Since the composite video fed to the grid of the sync separator has positive sync polarity, the positive noise pulses carried with the composite video
would be passed by the sync separator; however, the output of the noise inverter consists of these same noise pulses, but they are of opposite polarity; thus, the noise pulses are cancelled. The output of the sync separator contains only the sync pulses which are fed to the deflection chassis through the connecting cable.

The phase splitter, using one half of a 12AU7 tube, V15A, inverts the sync polarity for proper triggering of the vertical oscillator. The vertical sync is separated from the horizontal sync by the integrator circuit, and is fed to the grid of the vertical blocking oscillator, one half of a 12 AU 7 tube, V15B. The output of the vertical oscillator is amplified by the vertical-output amplifier, using a 12B4 tube, V16. The output of the amplifier is applied to the verticaldeflection coils through the vertical-output transformer.

The phase splitter also supplies horizontal sync to the phase-comparer diodes, using a 6AL5 tube, V17. Two horizontal sync outputs are taken from the phase splitter, one from the cathode, the other from the plate circuit. These two outputs are of opposite polarity, and are fed to the two diodes of the phase comparer, the negative pulses to the cathode of V17B, and the positive pulses to the plate of V17A. A sawtooth voltage is fed to the plate of V17B and the cathode of V17A for comparison of the sync and horizontal-sweep voltages. When the sweep and sync are in phase, no voltage is developed across R800, but when the two signals are out of phase, a voltage is developed. This voltage controls the frequency of the horizontal oscillator, a 12 AL 7 tube, V18. When the voltage is positive, it increases the frequency of the oscillator; when the voltage is negative, it reduces the frequency of the oscillator. This control voltage holds the horizontal oscillator in phase with the sync signal. The HORIZ. HOLD control, R811, adjusts the horizontal oscillator to the proper frequency, so that it may be controlled by the phase comparer. The output of the horizontal oscillator is fed to the horizontal-output amplifier, which uses a 6BQ6GT tube, V19.

The screen voltage for the horizontal amplifier is supplied from a voltage-divider network. R816, R815 (the WIDTH control), R822, R313 (the BRIGHTNESS control), and R314 are parts of this divider. R815 varies the voltage applied to the screen, thus adjusting for proper picture width. Adjusting R313 for brightness varies the bias on the picture tube. The change in bias causes a change in beam current, and would tend to result in a change in picture width
and variation in the second-anode voltage. However, when the control arm of the BRIGHTNESS control, R313, is moved toward ground, a smaller part of the control is shunted by the 22,000 -ohm resistor, R314, and the total resistance of the voltage divider is increased. This increase in resistance results in a decrease in the current through the divider, and the screen voltage on the horizontal amplifier is increased proportionately, thus compensating automatically for the increase in beam current in the picture tube. The horizontal amplifier feeds the deflection coils through the horizontal-output transformer. A 6AX4GT tube, V20, is used as the horizontal damper.

The sccond anode voltage for the picture tube is furnished by a high-voltage winding of the horizontaloutput transformer, and is rectified by a 1B3GT highvoltage rectifier tube, V21. The B-plus voltage for the receiver is supplied by two selenium rectifiers, CR100 and CR101, in a full-wave voltage-doubler circuit, operating directly from the power line. Bias voltage is obtained from across a filter choke, mounted on the speaker, which is in series with the negative side of the B-plus supply. The B-plus boost voltage, derived from the horizontal damper circuit, supplies higher B-plus voltage to the vertical oscillator and the first anode of the picture tube. Filament voltage for all the tubes except the high-voltage rectifier is supplied by a filament transformer, operating from the power line. Filament voltage for the 1B3GT high-voltage rectifier tube is supplied by a winding on the horizontal-output transformer.

IMPORTANT

A-C LINE ISOLATION

CAUTION: One side of the a-c line is connected to the chassis through C 101 and L406. The other side of the a-c line is connected to the chassis through F100, R100, CR100, and C103, in series. Grounding the chassis will result in a short circuit across one or the other of these two branches in the voltagedoubler circuit. During servicing and alignment, it is desirable that an a-c line isolation transformer capable of handling at least 225 watts (Philco Part No. 45-9600) he used. Failure to use an isolation transformer will greatly increase the shock hazard, and may result in damage to the equipment.

SPECIFICATIONS

VHF TUNING
Twelve channel, l3-position incremental tuner, covering VHF Television Channels 2 through 13 and UHF position; fine tuning of local oscillatur

UHF TUNING Continuous tuning, covering UHF Television Channels 14 through 83 ; fine and coarse tuning
INTER MEDIATE FREQUENCIES
Video carrier . 45.75 mc.
Sound (intercarrier) 4.5 mc .
TRANSMISSION LINE . . . $300 \cdot o h m$, twin-wire lead OPERATING VOLTAGE 110 to 120 volts, 60 cycles, a. c.

POWER CONSUMPTION. . without UHF, 200 watts; with UHF, 205 watts

TUBE COMPLEMENT

REFER- ENCE SYMBOL	TUBE TYPE	

B SUPPLY FUSE REPLACEMENT

The B supply protective fuse, F100, is wired into the low-voltage section, and is in series with the selenium rectifiers. For replacement, use a l.6-ampere delayed-action-type fuse, Philco Part No. 45-2656-23.

CAUTION: Discharge the circuit before replacing the fuse.

HORIZONTAL-OSCILLATOR ADJUSTMENT

To adjust the horizontal-oscillator circuit, tune in a station and proceed as follows:
l. Reduce the width of the picture so that approximately one inch of blank screen appears on the right-hand and left-hand sides of the picture.
2. Increase BRIGHTNESS control setting so that the blanking time becomes visible. This appears as a dark bar along the right-hand and left-hand sides of the picture.
3. Connect a $. l-\mu f$. condenser from pin 2 of the gate-pulse socket, J801, to ground.
4. Set the HORIZ. HOLD control to the center of its mechanical rotation.
5. Adjust the HORIZ. HOLD CENTERING control to bring the picture into the center of the blanking bars. When the picture is centered in the blanking bars, the bars on the left and right sides of the picture will be of equal width.
6. Remove the $.1-\mu \mathrm{f}$. condenser from the gate-pulse socket. (See step 3.)
7. Adjust the horizontal ringing coil, L800, until the picture is again centered in the blanking bar.
8. Rotate the HORIZ. HOLD control through its range. The picture should fall out of sync on both sides of the center of its rotation. If the picture does not fall out of sync to both sides, readjust the HORIZ. HOLD CENTERING control to obtain fall-out to either side of sync.
9. Rotate the HORIZ. HOLD control through its range and observe the number of diagonal blanking bars just before the picture pulls into sync. The pull-in should occur with from 1 to 2 diagonal bars when the sync position is approached from either direction. If proper pull-in is not obtained, repeat the above procedure.

VIDEO PEAKING COIL-ADJUSTMENT

The video peaking coils, L305 and L307, are adjusted at the factory for proper transient response of the video amplifiers. Ordinarily, these coils will require no further adjustment by the serviceman except in cases where they have been tampered with, or where replacement becomes necessary. Under normal circumstances, when alignment of the tuner or i-f stages is undertaken, the video peaking coils should not require adjustment.

Before adjusting L305 and L307, check both the tuner and i-f alignment. (Never adjust L305 and L307 until the alignnent of the receiver is correct.) Then tune in a station and adjust the receiver to give a picture of the best obtainable quality, with medium contrast. Turn the fine tuning control clockwise until a very slight beat pattern appears in the picture. Carefully observe the appearance of the picture regarding smear or overshoot (trailing whites). A small amount of overshoot may be desirable, to produce a sharper picture. Conversely, in weak-signal areas, a small amount of smear may be desirable, to reduce the harsh appearance of "snow." The adjustments of L305 and L307, and their effects on the picture are as follows:

1. The amount of overshoot may be redueed by turning both TC302 and TC303 counterclockwise.
2. The amount of smear may be reduced by turning both TC302 and TC303 clockwise.

Normally, the point of proper adjustment is where minimum smear and trailing whites appear in the picture; however, a compromise adjustment may be made to suit prevailing conditions. As a rule, when properly adjusted, the adjustment screws (TC302 and TC303) should protrude from the chassis by approximately $1 / 2$ to $3 / 4$ inch.

TELEVISION ALIGNMENT

GENERAL

The alignment consists of tuning each i-f coil to a given frequency, using an AM signal, and then feeding in a sweep signal at the antenna terminals and touching up the adjustments to obtain the desired pass band.

The over-all response curve (r-f, i-f) of the circuits from the antenna terminals to the video detector, after the i-f stages have been aligned, should appear essentially the same, regardless of the channel under test. If not, the tuner should be aligned. Before aligning the tuner, refer to the CAUTION given under TELEVISION TUNER ALIGNMENT.
The video-carrier intermediate frequency is 45.75 mc ., and the sound intermediate (intercarrier) frequency is 4.5 mc . Alignment of these circuits requires careful workmanship and good equipment. The following precautions must be observed:

1. There must be a good bond between the receiver chassis and the test equipment. This is most easily obtained if the top of the workbench is metallic. The
receiver chassis should be placed tuner-side-down on the bench. If the bench has no metallic top, the test equipment and chassis can be bonded by a strip of copper about two inches wide. The section of the chassis nearest the tuner should rest on the strip.
2. Do not disconnect the picture tube, picturetube yoke, or speaker while the receiver is turned on.
3. Allow the receiver and test equipinent to warm up for 15 minutes before starting the alignment.
4. The marker (AM) signal generator should be calibrated accurately to the frequencies used and to the sound and video r-f carriers of each channel used during alignment. If the Philco Model 7008 is used, the built-in crystal calibrator provides an excellent means of calibration. An alternate method of calibrating the signal generator to the sound and video r-f carrier frequencies is to zero-beat the signal generator with the reccived signals.

For further information regarding calibration, refer to Philco Lesson PR-1745 (J), entitled "Television Service in the Home."

TEST EQUIPMENT REQUIRED

The following test equipment is recommended for aligning the receiver:

1. Philco Precision Visual Alignment Generator for Television and FM, Morlel 7008, or equivalent.
2. Vacuum-tube voltmeter, or 20,000 -ohms-per-volt voltmeter.
3. R-F Probe, Philco Part No. 76-3595 (for use with Model 7008 generator).

JIGS AND ADAPTERS REQUIRED

Mixer Jig

Connections to the grid of the mixer tube may be made through the alignment jack provided for this purpose. To connect the generator to this point, a mixer-grid jig, Philco Part No. 45-1739, and a connecting cable, Philco Part No. 45-1635, may be used. As an alternate, a Philco alligator-clip adapter, Part No. 45-1636, with as short a ground lead as possible, may be used to connect the alignment jack. The ground lead should be connected as close as possible to the mixer tube. It is essential that the signalgenerator output lead be terminated with a 68 -ohm resistor (carbon), so that regeneration, cansed by connection of the lead to the mixer, is held to a minimum.

Figure 1. Antenna-Input Matching Network

Antenna-Input Matching Network

An impedance-matching network for coupling the signal generator to the antenna input terminals of the receiver is shown in figure l. This network, which is designed to have an input impedance of 75 ohms and an output impedance of 300 ohms , is used to match a 75 -ohm generator to a 300 -ohm antennainput circuit. The resistors used in this network should be of carbon-composition construction, and should be chosen from a group, to obtain values within ten percent of those indicated. The resistors should be placed in a shield can, to prevent variable effects. An antenna-matching jig, Philco Part No. 45-1736, which consists of a matching transformer and connecting box, may be used in place of the resistor network.

Video I-F Alignment Jig

(Video Test Jack Adapter No. 1)
The alignment jig used at $\mathbf{J} 200$, and shown in figure 2 , should be used during the i-f alignment, to apply the proper bias to the a-g-c bus, and to provide a convenient oscilloscope connection. This adapter consists of a five-pin plug, two $10,000-\mathrm{ohm}$ resistors, and a $1500-\mu \mu \mathrm{f}$. condenser for isolation of the bias supply. To isolate the oscilloscope from the receiver circuits, a 15,000 -ohm resistor, by-passed by a $1500-\mu \mu \mathrm{f}$. condenser, is used. A suggested method of fabricating the jig is also shown in figure 2. This jig should not be used to observe the composite video from the video detector output.

S-I-F Input Alignment Jig

(Video Test Jack Adapter No. 2)

To observe the conposite video, at J200, a jig may be made with a five-pin plug and a 2200 -ohm resistor. (See figure 3.) The 2200 -ohm resistor should be connected to pin 2 of the plug. A ground lead should be connected to pin 3. To observe the composite video, connect the oscilloscope to the 2200 -ohm resistor and the ground lead. This jig is also used for injection of the $4.5-\mathrm{mc}$. signal during s-i-f alignment.

TP2-1507-B
Figure 2. Video I-F Alignment Jig (Video Test Jack Adapter No. I)

Figure 3. Sound I-F Input Alignment lig (Video Test Jack Adapter No. 2)

TP2-3263-A
Figure 4. Sound I-F Output Alignment Jig (FM Test Point and Volume Control Jack Adapter)

S-I-F Output Alignment Jig

(FM Test Point and Volume Control Socket Adapter)

Figure 4 shows the adapter that should be used to connect the voltmeter to the FM detector through the volume control socket (J401) and FM test point (J 400). The adapter should be inserted into the volume control socket, and the clip lead from the adapter connected to the FM test point. The volume control cable and plug (PL401) is inserted into the socket on top of the adapter.

TELEVISION TUNER ALIGNMENT

After the tuner is serviced, or if an i-f alignment is required, the tuner alignment should be checked. If realignment is necessary, use the procedure given below.
Since the frequency of the local oscillator affects the tuner response, the local-oscillator alignment should be made first.

Oscillator Alignment
 General

If it is possible to place each channel exactly on frequency by adjusting the tuning core of each coil, the adjustment procedure should be carried out
with the highest channel (13) first, since the alignment of each channel will affect the alignment of the channels below it in frequency. The FINE TUNING control should be preset for all adjustments by placing the stop on the fine-tuning cam at Channel 8 oscillator tuning core. See figure 5.

TP3-942
Figure 5. Television Tuner, Showing Locations of Adjustments

Procedure Using Signal Generators

An r-f signal (unmodulated), at the video carrier frequency of the channel, is fed into the antenna input, and an i-f signal, at the i-f carrier frequency, is fed to the first i-f amplifier. Two AM signal generators are used to supply these signals. An oscilloscope is connected to the video detector output. The oscillator core is then adjusted for zero beat on each channel. The signals from the two generators should be accurately calibrated as described in Philco Lesson PR-1745(J).

To align the oscillator, proceed as follows:

1. To observe the zero beat, connect the oscilloscope to the video detector output through the video i-f alignment jig. See figure 2. Bias the tuner and i-f a-g-c circuits with $11 / 2$ volts, and remove the gate-pulse plug, PL801, from the socket, J801. To apply the bias to the tuner, connect the battery to the white lead which comes off the feed-through condenser at the top of the tuner. To make certain that good connection is made to the tuner a-g-c circuit, remove the glyptol coating on this condenser terminal.
2. To feed in the i-f comparison signal, remove the shield from the first v-i-f tube and wrap several turns of insulated copper wire around the tube. Connect the output leads of the v-i-f signal generator to the two ends of the wire loop, and set the generator for unmodulated output at 45.75 mc .
3. To feed in the signal representing the channel frequency, set the r-f signal generator to the video carrier frequency of Channel 13 , and connect the output to the antenna-input terminals of the receiver, through the proper matching jig.
4. Mechanically preset the fine-tuning cam, as shown in figure 5 , and set the CHANNEL SELECTOR to Channel 13.
5. Adjust the Channel 13 tuning core for zero beat, as indicated by the oscilloscope.
6. Retune the r-f signal generator and the CHANNEL SELECTOR for Channel 12, then 11, etc., each time adjusting the respective tuning core for zero beat. The tuning cores should be adjusted progressively from the highest-frequency channel to the lowest, because the higher channel adjustments will affect the lower channels.

Procedure Using Station Signal

The following simplified procedure may be used to align the oscillator when the television i-f alignment is satisfactory and a station signal is available. If this procedure is used in the service shop, signals
from all stations which the customer can receive must be available in the service shop.

1. Mechanically preset the fine-tuning cam as shown in figure 5.
2. Tune in the highest-frequency channel to be received, and adjust the tuning core for that channel for the best picture; that is, starting with sound in the picture; turn the tuning core until the sound in the picture just disappears.
3. Repeat step 2 for each channel received in the area, starting with the highest-frequency channel and finishing with the lowest channel.

Tuner Bandpass Alignment General

The bandpass alignment consists of aligning the tuner at Channels 13 and 6, and then making it track properly.

During the alignment, a fixed bias of $1 \frac{1}{2}$ volts is applied to the r-f amplifier tube through the white a-g-c lead.

An FM (sweep) signal is applied to the antennainput circuit through the proper matching jig, and an oscilloscope is connected to the junction of R518 and the tuner red lead. The oscilloscope gain should be as high as possible, consistent with "hum" level and "bounce" conditions. Hum conditions will cause distortion of the time base and response. Bounce conditions will cause the response and the time base to jump up and down, and is caused by poor line regulation. The use of too high an oscilloscope gain aggravates these conditions, whereas the use of too low a gain necessitates increasing the generator output to a point where the tuner may be overloaded. The scope controls should be adjusted so that the width of the presentation is double the height. Overload may then be checked by changing the generator output while observing the shape of the response curve. When the generator output is changed, the vertical gain of the oscilloscope should be readjusted to keep the scope presentation amplitude the same. Do not readjust the horizontal gain control. Any change in the shape of the curve indicates overload, in which case a lower generator output and higher oscilloscope gain must be used.

The signal-generator output must be properly matched to the antenna input of the tuner. The antenna-input matching network shown in figure 1, or Philco Antenna Matching Jig, Part No. 45-1637, may be used for this purpose. If a matching jig is not used, the result obtained will be extremely unreliable.

Regeneration in the test setup will also cause poor and unreliable results. To check for regeneration, move the hand along the generator cable after all equipment is connected, and observe the response curve on the oscilloscope screen. If the response curve changes as the hand is moved along the cable, regeneration or misınatch is indicated. Another check may also be made with the volume control advanced until noise can be heard from the speaker. If the level of the noise changes as the hand is moved along the generator cable, regeneration or mismatch is indicated. The symptoms which indicate these conditions may also be caused by failure to use the proper matching jig, as described above.

Procedure

CAUTION: When comparing the response curves from channel to channel, maintain the 2-to-l width-to-height relationship in the oscilloscope presentation, as described above.

1. Connect the FM (sweep) and AM marker generators to the 300 ohm antenna input terminals through an antenna-input matching jig.
2. Connect the oscilloscope to the junction of R518 ($15 \mathrm{k}, \mathrm{lw}$) and the tuner red lead.
3. Apply $11 / 2$ volts of bias to the white tuner a-g-c lead.
4. Disconnect the tuner coupling link at wiring panel B-14 terminals 1 and 4, and solder a 68 -ohm, one-half watt carbon resistor to the open link coming from the tuner. See figure 8. Remove the first i-f tube from its socket.
5. Set the CHANNEL SELECTOR and FM (sweep) generator to Channel 13 (213 mc .). Adjust the generator for sufficient sweep width to show the complete response curve.
6. Estalblish channel limits (see figure 6) by using the marker (AM r-f) signal generator to produce marker pips on the response curve. (Set the marker generator first to 210 mc ., then 216 mc .) The response curve should be reasonably flat between the limits.
7. Adjust TC502 and TC504 for a symmetrical response, centered about 213 mc . and falling within the specifications, as shown in figure 6.
8. Set the CHANNEL SELECTOR and FM (sweep) generator to Channel 7 (177 mc .). Establish the channel limits by using the marker-signal generator to produce marker pips on the response curve. (Set the marker generator first to 174 mc ., and then to 180 mc .) The curve should be reasonably flat between the limits.

TP3-1213-1
Figure 6. Television Tuner Response Curve, Show-
ing Bandpass Limits
9. On Channel 7, observe the tilt and center frequency of the response curve. The curve should be centered on the pass band and should be symmetrical. If it is not symmetrical, and appears unbalanced, as in figure 7, adjust C507 and C512 (figure 5) to obtain a response curve which is the mirror image (tilt in the opposite direction) of the original; for example, if Channel 7 response curve appears as in figure 7A, adjust C507 and C512 until the curve appears as in figure 7B. This adjustment over-compensates to make allowance for the effect of Channel 13 adjustments (to be made in step 10) upon Channel 7 response.
10. Reset the CHANNEL SELECTOR and generators to Channel 13 , and repeat steps 7 through 9 as many times as is necessary, to obtain the most sym. metrical and centered response curves on Channels 13 and 7. Channels 7 through 13 are now correctly aligned.
11. Set the CHANNEL SELECTOR and sweep generator to Channel 6 (85 mc .).
12. Establish the channel limits, using the marker generator to produce marker pips on the response curve. (Set the marker generator first to 82 mc ., then to 88 mc .).
13. Adjust TC503 and TC505 for a symmetrical, approximately centered pass band. Set the marker generator to 85 mc . Detune TC505 counterclockwise until a single peak appears. Adjust TC503 until the peak falls on the 85 -mc. marker. It may be necessary
to increase the output of the generator during this adjustment. Then adjust TC501 for maximum curve height and symmetry of the single peak. The antenna circuit is now tuned for Channels 2 through 6.
14. Readjust TC503 and TC506 for a symmetrical response, centered about 85 mc . and falling within the specifications, as shown in figure 6. Channels 2 through 6 are now correctly aligned.

VIDEO I-F ALIGNMENT

Preliminary

Before procecding with the i-f alignment or making an alignment check, observe the following preliminary instructions:

1. Preset the CONTRAST and BRIGHTNESS controls to the maximum counterclockwise position.
2. Preset the CHANNEL SELECTOR to Channel 4.
3. Insert the video i-f alignment jig into $\mathbf{J} 200$.
4. Connect the oscilloscope to the 15,000 -ohm resistor from the video i-f alignment jig. Connect the ground lead of the oscilloscope to the ground lead from the adapter.
5. With a voltmeter connected across the points shown in figure 2, set the potentiometer to furnish -14 volts of bias.
6. Connect the $A M$ generator to the mixer test point, Gl, through a mixer jig, and adjust the gencrator for approximately 30 percent modulation at 400 cycles. Adjust the output of the generator during the alignment to keep the output at the secord detector below .6 volt, peak to peak.

NOTE: If the i-f shield has been removed for repairs, it must be replaced before proceeding with the alignment.

Procedure

1. Tune the $A M$ generator to 47.25 mc ., and adjust C201 for minimum output, as observed on the oscilloscope.
2. Tune the AM generator to 41.25 mc ., and adjust C203 for minimum output, as observed on the oscilloscope.

NOTE: In steps 1 and 2 , it is necessary to keep the renerator output sufficiently high that a null indication may be observed on the oscilloscopc; however, avoid overloading of the receiver by excessive signal.

Figure 7. Television Tuner Response Curve, Showing Tracking Compensation

TP3-943
Figure 8. R-F Chassis R-201, Top View, Showing Locations of Adjustments
3. Tune the AM generator to the frequencies indicated below, and adjust the trimmers (see figure 8) for maximum output.
a. 42.7 mc .-adjust C514
b. 44.75 mc .-adjust C204
c. 45.7 mc .-adjust C 210
d. 44.4 mc --adjust C215
e. 43.0 mc .-adjust C 218
f. 42.0 mc .-adjust C206
4. Increase the bias (by means of the potentionster) until the scope presentation of step f, above, is reduced to 50 percent of its previous amplitude, and retouch C206 for maximum indication on the oscilloscope.
5. Connect the sweep generator and r-f marker generator to the antenna terminals through a matching jig. (If a separate oscilloscope is used, connect the sweep output of the generator to the horizontal input of the oscilloscope.) Set the CHANNEL SELECTOR to Channel 4, and tune the sweep generator for output on Channel 4. Tune the r.f marker generator for the video carrier frequency of Channel 4 (67.25 mc .), and tune the i-f marker generator (connected through jig to mixer grid) to 45.75 mc . Note that two marker generators are used for this procedure. The r-f marker generator is connected to the antenna terminals, while the i-f marker generator is connected capacitively to the mixer grid test point, G1. A jig constructed from a piece of fiber tubing, with $3 / 1 ;$ inch inside diameter, and a brass machine screw which fits tightly into the tubing, is used to connect the generator capacitively to the test point. The screw is adjusted so that it clears the test point by approximately $1 / 6 \pm$ inch. The output cable of the marker generator is connected to the head of the brass screw in the jig and to chassis near the mixer tube. Both marker generators should be adjusted for the minimum output required to make the markers barely visible. Failure to observe this precaution, or the use of excessive output from the sweep generator, will cause misleading results. After the equipment is properly connected, adjust the FINE TUNING control for zero-beat of the two markers, as observed on the oscilloscope. When zero beat is obtained, remove the i-f marker.
6. If the response curve does not fall within the limits, as shown in figure 9 , the adjustment of the trimmers may be touched up slightly, while observing the response curve. Do not retouch the setting of C201, C203, or C206. To adjust the curve, first adjust C215 and C218 alternately until naximum inprovement has been oltained. C215 affects the tilt

Figure 9. Over-all R-F, I-F Response Curve
of the curve, and C218 affects the dip of the curve. After C215 and C218 have been adjusted, adjust C514 for proper slope at the $42.25-\mathrm{mc}$. side of the curve, and then adjust C204 and C210 for proper level at the video carrier frequency (45.75 mc .).

CAUTION: Do not turn any of the trimmers excessively. To retouch, only turn the trimmers slightly.

SOUND I-F ALIGNMENT

The sound i-f system may be aligned by the use of a station signal or an accurately calibrated signal gencrator, for the signal source. If the station signal is used, tune the FINE TUNING control for the best picture, regardless of sound. It will be necessary to reduce the signal input to the receiver, so that the d-c output at the sound detector, as measured with the aid of the sound i-f output alignment jig (between point " B " and ground), is kept below 5 volts, maximum, and preferahly below 3 volts. To establish this level in strong signal areas, it may be necessary to short the antenna terminals and to apply bias to the a-g.c circuit. The signal input to the receiver may be adjusted by varying the length of the shorting lead.

The bias may he applied to the a-g-c circuit by means of the jig shown in figure 3. The sound i-f output alignment jig shown in figure 4 should be used for convenient connection of the meter to the sounddetector output.
When a signal generator is used, bias should be applied to the a-g-c circuit, to avoid any possibility of regeneration, using the sound i-f input alignment jig (figure 3). In addition, the first video i-f tube should be removed, to aid in the reduction of circuit noises from the i-f system.

1. Connect the generator through the $\mathbf{2 2 0 0} 0 \mathrm{ohm}$ resistor, in the sound i-f input alignment jig, to pin 2 of J200. The generator should be adjusted for unmodulated output at 4.5 mc .
2. Insert the sound i-f output alignment jig into the volume-control socket (J401), and insert the volume-control plug (PL401) into the top of the jig. Connect the clip lead to the FM test point (J400) ; connect a 20,000 -ohms-per-volt voltmeter between point " B " and the ground lug of the jig, with the negative lead of the meter going to point "B."
3. Adjust TC300, TC400, TC401, and TC402 for maximum output, as indicated on the meter. If the

TP2-2670
Figure 10. R-F Probe for Sound-Trap Adjustment
output exceeds 5 volts, reduce the signal input to the receiver.
4. Shift the positive lead of the meter to point "C" on the sound i-f output alignment jig, and adjust TC403 for zero crossover. Zero crossover is indicated by a zero indication on the meter. When TC403 is turned in one direction from this zero point, the meter will swing positive; turning TC403 in the opposite direction will cause a negative swing. (To aid in reading a positive and negative swing on the meter, set the pointer, by means of its zero-adjustment screw, to a convenient calibration mark on the scale, before connecting the meter to the circuit.)
5. Replace the first video i-f tube, and tunc in a station on the receiver. Turn the FINE TUNING control to obtain a slightly fuzzy picture, and retouch TC403 for minimum AM (noise), using the speaker output as an indication.

ADJUSTMENT OF 4.5-MC. TRAP

To adjust the $4.5-\mathrm{mc}$. trap in the plate circuit of the first video amplifier, proceed as follows:

1. Connect the output of the signal generator to the lead from pin 2 of the sound i-f input alignment jig (see figure 2). Adjust the generator for 4.5 mc ., with 400 -cycle modulated output. Set the output attenuator for maximum output from the generator.
2. Connect the input of the r-f probe, shown in figure 10 , to the grid of the picture tube, and connect the output of the probe to the vertical input of the oscilloscope. Adjust the vertical gain of the oscilloscope to maximum.
3. Adjust TC30I for minimum indication on the oscilloscope. (The normal setting for TC301 is with the screw approximately $5 / 8$ inch out from the chassis.)

An alternate method for adjustment of TC301 may be used if a $4.5-\mathrm{mc}$. generator is not available. To adjust TC301 without the generator, proceed as follows:
l. Tune in a strong station signal.
2. Turn the FINE TUNING control in the clockwise direction until a fine beat pattern appears in the picture.
3. Adjust TC.30] until the beat disappears or is at a minimum. When correctly adjusted, the serew will be out from the ehassis approximately $5 / 8$ inch.
4. If more than one station is available, cherk the setting of TC301 on all stations.

OSCILLOSCOPE WAVEFORM PATTERNS

The waveforms were taken with the receiver adjusted for an approximate peak-to-peak output of 2 volts at the video detector. The voltages given with the waveforms are approximate peak-to-peak values. The frequencies shown are those of the waveformsnot the sweep rate of the oscilloscope. The waveforms

TP1-1200-A
Figure 11. Video Detector Output, Pin 2 of J200
2 volts, 60 c.p.s.
were taken with an oscilloscope having good highfrequency response. With oscilloscopes having poor hiyh-frequency response, the sharp peaks of the horizontal waveforms are more rounded than those shown, and the prak voltages differ from those shown.

TP2-654
Figure 12. Cate-Pulse Plug, Pin 4
500 volts, 15,750 c.p.s.

TP2-653
Figure 13. A-C-C Gate Grid,
Pin 1
22 volts, 60 c.p.s.

TP2-655
Figure 15. Gated-Leveler Grid,
Pin 2
2.5 volts, 15,750 c.p.s.

TP2-658
Figure 17. Noise-Inverter Cathode, Pin 8
(Wave shape and amplitude vary with noise)

TP2-660
Figure 19. Sync Separator Plate, Pin 1
17 volts, 15,750 c.p.s.

TP2-656
Figure 14. Gate-Pulse Plug, Pin 3
10 volts, 15,750 c.p.s.

TP2-657
Figure 16. Noise-Inverter Plate, Junction of R605, C602, and C603 23 volts, 15,750 c.p.s.

TP2-659
Figure 18. Sync Separator Plate,
Pin 1
17 volts, 60 c.p.s.

TP2-639
Figure 20. Phase-Splitter Grid,
Pin 7
14 volts, 60 c.p.s.

TP2-640
Figore 21. Phase-Splitter Plate,
Pin 6
30 volts, 50 c.p.s.

TP2-697-A
Figure 23. Vertical-Oscillator Plate,
Pin 1
130 volts, 50 c.p.s.

TP2.-645
Figure 25. Vertical-Oulput Plate, Pin 9 800 volts, 60 e.p.s.

TP2-642
Figure 27. Phase-Spliteer Cathode, Pin 8
8 volts, 15,750 c.p.s.

TP2-643
Figure 22. Vertical-Oscillator Crid, Pin 2
165 volts, 60 c.p.s.

TP2-644-A
Figure 24. Vertical-Output Crid, Pins 2 and 7 120 volts, 60 c.p.s.

TP2-641
Figure 26. Phase-Spiitter Plate, Junction of R614, R615, and C800 8 volts, 15,750 c.p.s.

TP2-652
Figure 28. Phase Comparer, Pins 5 and 7
6 volts, 15,750 c.p.s.

TP2-2852
Figure 29. Horizontal Oscillator,
Pin 2 of Gate-Pulse Socket J801 20 volts, 15,750 c.p.s.

TP2-648
Figure 31. Horizontal-Oscillator Grid, Pin 2
38 volts, 15,750 c.p.s.

TP2-650
Figure 33. Horizontal-Deflection Yoke, *Pin 7 of 1800
3000 volts, 15,750 c.p.s.
*See CAUTION.

* CAljTION: High-voltage pulses are present in the horizontaloutput circuit. The waveform shown in figure 33 was taken with the alligator clip of the oscilloscope lead clipped over the insulation of the lead connected to pin 7 of J800. (To prevent puncture of the insulation of the lead, file off the teeth of the alligator clip, and wrap friction tape around the

TP2-647
Figure 30. Horizontal-Oscillator Cathode,
Pins 8 and 3
16 volts, 15,750 c.p.s.

TP2-649
Figure 32. Horizontal-Output Grid, Pin 5
130 volts, 15,750 e.p.s.

TP2-654
Figure 34. Gate-Pulse Socket,
Pin 4 of 1801
500 volts, 15,750 c.p.s.
clip.) Connection to other points in the horizontal-output circuit is dangerous, because of the high voltages present. The peak-to-peak voltage shown for figure 33 is the actual voltage present; however, the amplitude of the scope presentation depends upon the degree of coupling.

VOLTAGE MEASUREMENTS

The voltages given here and on the schematics werc taken with a 20,000 -ohms-per-volt voltmeter, with a line voltage of 117 volts, and no signal input to the receiver. Since voltage readings taken in the video i-f stages vary widely with different test equipment setups, voltage measurements for these stages are omitted from the diagrams.

Figure 35. R-F Chassis R-201, Bottom View, Showing Voltages at the Sockets

TP3-946
Figure 36. Deflection Chassis D-201, Bottom View, Showing Voltages at the Sockets

Figure 38. Television Tuner, Part No. 76-7600-3, Schematic Diagram

Figure 39. R-F Chassis R-201, Base Layout

Figure 40. R-F Chassis R-201, Schematic Diagam

UHF TUNER-ADAPTER UT2

television service manual

UHF TUNER-ADAPTER UT2OB

television service manual

TP3-480-A
Figure 49. VHF-UHF Change-Over Switch, Mounting Details

Tuner-Adapter should be returned to the factory for alignment and major repairs, unless the serviceman is properly equipped to perform these jobs. In general, a good rule to follow is not to remove the cover of the Tuner-Adapter.

NOTE: Replacing the tube with a new one may detune the tuner. If this occurs, a number of tubes should be tried, until the most satisfactory suhstitute for the original is found.

INSTALLATION INSTRUCTIONS FOR UHF TUNER-ADAPTER UT2OB

To install the UHF tuner-adapter, proceed as follows:

1. Remove the cabinet back and r-f chassis from the cabinet; then remove the nameplate on the control panel by pushing it out from inside the cabinet.
2. Insert the dial scale and bezel assembly into the hole provided in the cabinet. Fasten the assembly in place with the two $10-32$ nuts provided.
3. Remove the tuner assembly from the mounting board with which it was shipped. Keep the three screws for mounting the tuner in the cabinet.
4. Place the spacers on the mounting studs and attach the bracket and socket assembly to the rear of the VHF tuner on the r-f chassis. See figure 49.
5. Place the switch-actuator assembly on the shaft extending from the rear of the VHF tuner so that the switch actuator stud points away from the tuner. See figure 49.
6. Place the switch assembly on the two mounting studs, and fasten it in place with the flat washers, lock washers, and nuts provided. See figure 49.
7. Put the VHF Channel Selector in the Channel 2 position. Rotate the switch actuator clockwise on the tuner shaft until the actuator touches the fiher cam on the change-over switch, and fasten the switch actuator in this position. Rotate the VHF Channel Selector to the UHF position. Check the switch operation, to make sure that the switch is thrown properly. Rotate the VHF Channel Selector to Channel 13 position, and check the switch operation, to make sure that the switch is not thrown in this position. Lubricate the switch-actuator stud and switch cam with cup grease.
8. Remove the pilot lamp from the r-f chassis pilot-light socket. Remove and discard the pilot-light socket and cable assembly from the r-f chassis. Insert the plug from the change-over switch into the socket on the r-f chassis from which the pilot-light cable was removed. Mount the new pilot-light socket from the change-over switch as shown in figure 50. Insert the pilot light in the socket, and install the shield provided over it.

TP3-755
Figure 50. Pilot-Light Socket, Mounting Details
9. Remove the antenna lead from the VHF tuner, and solder the short lead from the UHF-VHF changeover switch to the VHF tuner terminals from which the antenna lead was removed. Slide the folded fiber lead holder over the tapered-line coil assembly on the VHF tuner, and dress the twin-wire antenna leads through the holder. See figure 51. The fiber holder will prevent the twin-wire leads from touching the tubes on the r-f chassis.
10. Place the UHF tuner in the cabinet between the r-f and deflection chassis, and fasten the UHF tuner to the chassis shelf with the three screws removed in step 3. It is important that these screws be tightened securely, so as to hold the UHF tuner in place on the chassis shelf.
11. Fasten one end of the ground lead to the r-f chassis with the drive screw. See figure 52. Install the chassis in the cabinet, and fasten the other end of the ground lead to the UHF tuner with the $8-32 \times 1 / 4$ inch hex-head machine screw. Fasten the r-f chassis with the original mounting bolts. Place the original knobs on their shafts, and the knob provided on the UHF tuning shaft.
12. Insert the plug from the UHF tuner into the socket on the bracket installed in step 4.
13. Insert the coaxial cable into the jack on the VHF tuner. See figure 52.
14. Replace the fiber antenna-lead holder with the new holder provided. Fasten the new holder with the

TP3-756
Figure 51. Folded Fiber Lead Holder and VHF-UHF Change-Over Switch, Mounting Details
nails provided, and then pass the twin-wire leads through the holes as shown in figure 53. Pull the leads through the holder until they are tight, making certain that the leads do not contact the tubes or the chassis. Wrap tape around the yellow-marked twinwire leads with the spade lug ends, to prevent the leads from passing back through the fiber holder.
15. Fasten the antenna terminal board provided as shown in figures 54 through 58 . Replace the cabinet back and make the connections illustrated for the type of antenna installation being used.
16. Paste the label provided over the outsideantenna instructions on the cabinet back.

TP3-757
Figure 52. UHF Tuner-Adapter and R-F Chassis, with Lead Dress Details

TP2-3169
Figure 53. Fiber Lead Holder, with Lead Dress Details

Figure 54. Antenna-Lead Connections, Common Built-In Antenna

TP2-3172
Figure 55. Antenna-Lead Connections, Common External Antenna

TP2-3174
Figure 56. Antenna-Lead Connections, Separate External Antennas

Figure 57. Antenna-Lead Connections, VHF BuiltIn and UHF External Antennas

Figure 58. Antenna-Lead Connections, VHF External and UHF Built-In Antennas

REPLACEMENT PARTS LIST

IMPORTANT

General replacement items commonly stocked by the serviceman are omitted from this parts list. All condensers are molded-bakelite Philco condensers, with a 600 -volt rating, and all resistors are $1 / 2$ watt, $\pm 10 \%$, unless otherwise indicated. Parts are listed according to chassis type, and should be ordered in this way rather than by model number; in addition, a miscellaneous listing will be found at the end of the parts list for each chassis type. All parts are symbolized in the schematic diagram and base layout, for identification purposes.

DEFLECTION CHASSIS D. 201

SECTION I—POWER SUPPLY

Reference Symbol	Description	Service Part No.
$\begin{array}{\|l} \text { C100 and } \\ \text { C101 } \end{array}$	Condenser, filter, electrolytic. $120 \mu \mathrm{f}$., 150 v	30-2568-51
C102	Condenser, filter, electrolytic. $10 \mu f_{c, 5} 50 \mathrm{v}$	$30-2417 \cdot 3$
C103	Condenser, filter, electrolytic: $100 \mu \mathrm{f}$., 300v	30-2584-27
$\begin{aligned} & \text { CR100 and } \\ & \text { CR101 } \end{aligned}$	Rectifier, selenium, $350 \mathrm{ma} .$.	34-8003.7
F100	Fuse, line, 1.6 amperes	45-2656-23
J100	Socket, a-c line	27-6240-3
J101	Socket, chassis connecting ...	27.6274.1
PL100	Plug, a-c line .	Part of a-c line cord ass'y. (See Misc. "A")
PL101	Plug and cable ass'y., chassis connecting	(See Misc. "B")
R100	Resistor, current limiting 5 ohms, 10 watts	33-3448-5
R101	Resistor, filter, 47,000 ohms, 1 watl	66-3474340
R102	Resistor, voltage dropping ..	20 inches No. 24 wire
R103	Resistor, voltage dropping, 4.7 ohms, 1 watt	66.9474340
5100	Switch, off-on	Part of volume control
T100	Transformer, filament	32-8574.1

SECTION 7—VERTICAL SWEEP

Reference Symbol	Description	Service Part No.
C707	Condenser, cathode by-pass, $100 \mu \mathrm{f}$., 25v	Part of Cl03
$\begin{aligned} & \text { L700 and } \\ & \text { L701 } \end{aligned}$	Coils, vertical deflection .	Part of deflection yoke (See Misc. "A")
R701	Potentiometer, VERT. HOLD control, 250,000 ohms	Part of R811
R704	Potentiometer, HEIGHT control, 2.5 megohms	33-5565-32
R708	Potentiometer, VERT. LIN. control, 5 megohms	33.5565 .31
T700	Transformer, vertical oscillator	32-8431-2
T701	Transformer, vertical outpnt .	32-8539

SECTION 8-HORIZONTAL SWEEP

Reference Symbol	Description	Service Part No.
C803	Condenser, filter, . $001 \mu \mathrm{f}$. ...	30-1238-3
C804	Condenser, grid blocking, 01 $\mu \mathrm{f}$.	$30 \cdot 1238.2$
C805	Condenser, by-pass, $82 \mu \mu \mathrm{f}$. .	60.00825317
C806	Condenser, ringing, . $0022 \mu \mathrm{f}$. $\pm 10 \%$	60.20225004
C807	Condenser, d-c blocking, 390 $\mu \mu \mathrm{f}$.	60-10395417
C808	Condenser, charging, $390 \mu \mu \mathrm{f}$.	60-10395417
C813	Condenser, anti-ringing, 68 $\mu \mu \mathrm{f}$.	30-1246-1
C814	Condenser, horizontal a-f-c feedback, . 01μ f.	30-1238-2
C815	Condenser, electrolytic	Part of Cl03
C815A		Part of Cl03
C815B		Part of Cl 03
C818	Condenser, yoke blocking, . 47 $\mu \mathrm{f}$., 100v	30-4651-16
J800	Socket, deflection	27-6274-8
J801	Socket, gate pulse	27.6273
L800	Coil, stabilizing, $30-80 \mathrm{mh}$. .	$32-4557$
L801	Coil, r-f choke, horizontal. output plate	Part of T800
$\begin{aligned} & \text { L802 and } \\ & \text { L803 } \end{aligned}$	Coils, horizontal deflection ..	Part of deflection yoke (See Misc. "A")
L804	Coil, r-f choke, damper cathode	32-4112-24
L805	Coil, r-f choke, damper plate	32-4112-24
PL800	Plug, deflection	Part of cable ass'y. (See Misc. "A")
PL801	Plug, gate pulse	Part of cable ass'y. (See Misc. "A")
R810	Potentiometer, HORIZ. HOLD CENTERING	33-5565-17
R811	Potentiometer, HORIZ. HOLD control, 200,000 ohms	33-5563-50
R815	Potentiometer, WIDTH control, 12,000 ohms, 2 watts ..	33-5546.51
R816	Resistor, screen voltage drop. ping, 4200 ohms, 5 watts ...	33.1335.101
R817	Resistor, feedback, $\quad \mathbf{4 7 , 0 0 0}$ ohms, 1 watt	66-3474340

REPLACEMENT PARTS LIST (Cont.)

SECTION 8—HORIZONTAL SWEEP (Cont.)

Reference Symbol	Description	Service Part No.
R818	Resistor, voltage divider, 82, 000 ohms, 1 watt	66-3824340
R819	Resistor, voltage divider, 47, 000 ohms, 1 watt	66.3474340
T800	Transformer, horizontal output	32.8607

MISCELLANEOUS "A"

Description	Service Part No.
Cable assembly, high voltage $\ldots \ldots \ldots$. Cable and plug assembly, deflection $\ldots \ldots$	AD2631
$41-4086-25$	

MISCELLANEOUS "A" (Cont.)

Description	Service Part No.
Cable and plug assembly, volume control.	414136-4
Cord, line .	41.3865
Insulator, electrolytic, condenser mounting	27-9508-1
Shield, corona	56.9684
Socket, damper tube	27-61 74-7
Socket, high-voltage rectifier	27-6290-1
Socket, miniature, 7-pin	27-6203.12
Socket, miniature, 9-pin	27-6203.6
Socket, octal	27.6174
Socket, 12AU7	76-6115-1
Socket, vertical output, 12B4	76-6115-2

R-F CHASSIS R-201

SECTION 2-VIDEO I.F.

Reference Symbol	Description	Service Part No.
C200	Condenser, 47.25-mc. trap, 5 $\mu \mu \mathrm{f}$.	30-1224-28
C. 201	Condenser, $47.25-\mathrm{mc}$. trap, 1 to $5 \mu \mu$ f.	$31-6520.9$
C202	Condenser, $41.25-\mathrm{mc}$. trap, 5 $\mu \mu \mathrm{f}$.	30-1224-28
C203	Condenser, $41.25-\mathrm{mc}$. trap, 1 to $5 \mu \mu$.	31-6520.9
C204	Condenser, trimmer, 1 to 5 $\mu \mu \mathrm{f}$.	31-6520.9
C205	Condenser, d-c blocking, 100 $\mu \mu \mathrm{f}$.	30-1224-18
C206	Condenser, trimmer, 1 to 5 $\mu \mu \mathrm{f}$.	31-6520-9
C207	Condenser, screen by-pass, $1500 \mu \mu \mathrm{f} . \mathrm{}.$.	62-215001011
C208	Condenser, cathode by-pass, $680 \mu \mu \mathrm{f} . \mathrm{F}$.	62-168001001
C209	Condenser, a-g-c by-pass, 680 $\mu \mu \mathrm{f}$.	62-168001001
C210	Condenser, trimmer, 1 to 5 $\mu \mu \mathrm{f}$.	31-6520.9
C211	Condenser, screen by-pass, $680 \mu \mu \mathrm{f}$,..................	62-168001001
C212	Condenser, a-g-c by-pass, 680 $\mu \mu \mathrm{f}$.	62-168001001
C215	Condenser, trimmer, 1 to 5 $\mu \mu \mathrm{f}$.	31-6520.9
C218	Condenser, trimmer, 1 to 5 $\mu \mu \mathrm{f}$.	31-6520.9
C219	Condenser, detector by-pass, $10 \mu \mu \mathrm{f}$.	62-010409001
C220	Condenser, by-pass, $680 \mu \mu \mathrm{f}$. .	62-168001001
C221	Condenser, by-pass, $680 \mu \mu \mathrm{f}$. .	62-168001001
C223	Condenser, a-g-c filter, $2 \mu \mathrm{f}$. .	30.2417 .7
C224	Condenser, electrolytic	30-2570-57
C224A	Condenser, filter, $40 \mu \mathrm{f}$.	Part of C224
C224B	Condenser, filter, $10 \mu \mathrm{f}$.	Part of C224

SECTION 2—VIDEO I.F. (Cont.)

Reference Symbol	Description	Service Part No.
C224C	Condenser, filter, 10μ f.	Part of C224
C226	Condenser, cathode by-pass. $18 \mu \mu \mathrm{f}$.	62.018400021
CD200	Crystal, video detector	34-8022
I200	Lamp, pilot	34-2068
J200	Socket, video test	27.6273
J201	Socket, pilot light	27-6273
$\begin{aligned} & \text { L200 and } \\ & \text { L201 } \end{aligned}$	Coils, tuner coupling	Part of T200
L202	Coil, 47.25-me. trap	32-4597-2
L203	Coil, 41.25-me. trap	32-4112.31
L204	Coil, lst i.f grid	32-4597-3
$\begin{aligned} & \text { L205 and } \\ & \text { L206 } \end{aligned}$	Coils, coupling	Part of T201
$\begin{aligned} & \mathrm{L} 207 \text { and } \\ & \mathrm{L} 208 \end{aligned}$	Coils, coupling	Part of T202
L209	Coil, filament choke	32-4112-15
$\begin{aligned} & \text { I. } 210 \text { and } \\ & \text { L211 } \end{aligned}$	Coils, coupling	Part of T203
$\begin{aligned} & \mathrm{L} 212 \text { and } \\ & \mathrm{L} 213 \end{aligned}$	Coils, coupling	Part of T204
L214	Coil, series peaking, $10 \mu \mathrm{~h}$. .	32-4422-27
L215	Coil, series peaking, $1.7 \mu \mathrm{~h}$. .	32-4480-17
L216	Coil, shunt peaking, $180 \mu \mathrm{~h}$. .	32-4480-9
L217	Coil, filament choke	32-4112-15
R208	Resistor, voltage dropping. 5600 ohms, 1 watt	66.2564340
R224	Resistor, B+ dropping, 2000 ohms, 7 watts	33-3446-7
T200	Transformer, video i-f input .	32-4599.2
T201	Transformer, lst video i-f ...	32-4598-5
T202	Transformer, 2nd video i-f ..	32-4598-3
T203	Transformer, 3rd video i-f ..	32-4548-26
T204	Transformer, 4th video i-f ..	32-4548-27

REPLACEMENT PARTS LIST (Cont.)

R-F CHASSIS (Cont.)

SECTION 3-VIDEO

Reference Symbol	Description	Service Part No.
C300	Condenser, audio take-off, 2.2 $\mu \mu \mathrm{f}$.	30-1221-6
C301	Condenser, by-pass, $18 \mu \mu \mathrm{f}$. . .	62-018400021
C303	Condenser, by-pass, $68 \mu \mu \mathrm{f}$.	62.068409011
C304	Condenser, by-pass, $33 \mu \mu \mathrm{f}$.	62-033009001
C309	Condenser, screen by-pass, 220 $\mu \mu \mathrm{f}$.	60.10225417
L300	Coil, audio take-off	32-4463-9
L301	Coil, video-amplifier grid, peaking, $150 \mu \mathrm{~h}$.	32-4480-18
L302	Coil, 4.5 -mc. trap	32-4463-2
L305	Coil, shunt peaking, $60-230$ $\mu \mathrm{h}$.	32-4467-20
L306	Coil, picture-tube grid peaking, $40 \mu \mathrm{~h}$.	324480.1
L307	Coil, shunt peaking, $60-230$ $\mu \mathrm{h}$.	32-4467.19
R308	Potentiometer, CONTRAST control, 2500 ohms	33-5563-51
R311	Resistor, plate load, 2500 ohms, 7 watts	33-1335-93
R313	Potentiometer, BRIGHTNESS control, 100,000 ohms	Part of R308
R316	Resistor, grounding, 470,000 ohms, 1 watt \qquad	66-4474340

SECTION 4—AUDIO

Reference Symbol	Description	Service Part No.
C405	Condenser, by-pass, $56 \mu \mu \mathrm{f}$. .	30-1224-25
C409	Condenser, detector balancing, $330 \mu \mu \mathrm{f}$.	62-133001001
C412	Condenser, r-f by-pass, 330 $\mu \mu \mathrm{f}$.	62-133001001
C413	Condenser, filter, $2 \mu \mathrm{f}$.	30.2417-7
C416	Condenser, plate by-pass, 6800 $\mu \mu \mathrm{f}$., 1000 v	30-4650.91
C418	Condenser, filter, 20μ f.	Part of C224
J400	Socket, discriminator test ...	27-6273
J401	Socket, volume control	27-6273
J402	Socket, speaker	27-4785-22
L405	Coil, filament choke	32-4112-15
L406	Coil, filter choke	32.8617
R406	Resistor, voltage divider, 12,000 ohms, 1 watt	66-3124340
R412	Resistor, cathode bias, 120 ohms, 1 watt	66-1124340
R418	Potentiometer, dual	33-5563-44
R418A	Potentiometer, TONE control, 5 megohms	Part of R418
R418B	Potentiometer, VOLUME control, 2 megohms	Part of R418
T400	Transformer, audio output ..	32-8582
Z400	Transformer, 1st sound i.f ..	32-4497A
Z401	Transformer, FM detector ...	32-4450.6A

SECTION 6-SYNC

Reference Symbol	Description	Service Part No.
C604	Condenser, by-pass, $470 \mu \mu$ f. .	$30-1225-18$

MISCELLANEOUS "B"

Description	Service Part No.
Cable and plug assembly, chassis connecting	41-4146-4
Cable and plug assembly, gate pulse	414141
Cable and socket assembly, picture tube ..	41-3964.19
Cable and socket assembly, pilot light	41.4176
Shield, tube, 6CB6	56-5629FA3
Shield, tube, 6T8	56-5629-5
Socket and base assembly, 6CB6 tube	27-6203-14
Socket and base assembly, 6T8 tube	27-6203-18
Socket, miniature, 6AU6, 6AQ5, and 6BA6 tubes	27-6203
Socket, miniature, 9-pin	27-6203-6
Socket, octal	27-6174

SECTION 5—R.F.
(T.V. TUNER, PART No. 76-7600-3)

Reference Symbol	Description	Service Part No.
C500	Condenser, FM trap, $20 \mu \mu$. .	62.020309011
C501 and	Condenser, antenna isolating,	
C502	$470 \mu \mu \mathrm{f}$.	30-1225-18
C503	Condenser, i-f trap, $22 \mu \mu$ f.	Part of L505
C504	Condenser, r-f coupling, 39 $\mu \mu \mathrm{f}$.	62.039409011
C505	Condenser, neutralizing, 220 $\mu \mu \mathrm{f}$.	62-122001001
C506	Condenser, a-g-c decoupling, $1000 \mu \mu \mathrm{f}$.	30-1245-1
C507	Condenser, r.f trimmer, 0.5 to $3.0 \mu \mu \mathrm{f}$.	31-6520-3
C508	Condenser, r-f by-pass, 680 $\mu \mu \mathrm{f}$.	62-168001001
C509	Condenser, grid by-pass, 0.1 $\mu \mathrm{f}$.	30-1238-2
C510	Condenser, coupling, . $59 \mu \mu \mathrm{f}$. .	311-5050-3
C511	Condenser, neutralizing, 220 $\mu \mu \mathrm{f}$.	62-122001011
C512	Condenser, mixer-grid trim. mer, 0.5 to $3.0 \mu \mu$ f.	31-6520-3
C513	Condenser, by-pass, $7.5 \mu \mu \mathrm{f}$. .	30.1224-13
C514	Condenser, trimmer, 1 to 5 $\mu \mu \mathrm{f}$.	31-6520.11
C515	Condenser, i-f link coupling, $680 \mu \mu \mathrm{f}$.	62-168001021
C516	Condenser, by-pass, $680 \mu \mu$ f. .	62-168001021
C517	Condenser, filament decou. pling, $220 \mu \mu \mathrm{f}$.	62-122001011
C518	Condenser, filament by-pass, $1000 \mu \mu \mathrm{f}$.	30-1245-1

REPLACEMENT PARTS LIST (Cont.)
 UHF TUNER-ADAPTER UT20B,
 PART No. 43-6701

SECTION 5-R.F. (Cont.)

Reference Symbol	Description	Service Part No.
C519	Condenser, filament decoupling, $220 \mu \mu$ f.	62-122001011
C 520	Condenser, by-pass, $1000 \mu \mu \mathrm{f}$.	30-1245.1
C521	Condenser, oscillator injection	30-1221-8
C522	Condenser, oscillator plate, 12 $\mu \mu \mathrm{f}$.	30-1224-57
C523	Condenser, grid blocking, 5 $\mu \mu \mathrm{f}$.	30-1224-35
C 524	Condenser, mixer-grid block. ing, $39 \mu \mu$.	62.039409011
C525	Condenser, by-pass, $150 \mu \mu \mathrm{f}$. .	30.1238.9
C528	Condenser, fine tuning, (bakelite tube)	76.6935-1
J500	Connector, 40-me. input .	57-0590.2
L500	Coil, FM trap	32-4550-3
L501, L502, L503, and L504	Coils, tapered-line assembly	32-4432-3
L505	Coil, i-f trap (44.75 mc .)...	32-4552-1
L.506 to L512 inclusive	Coils, r-f grid tuning	Part of WS500E
L513	Coil, 40 -mc. channel	312.5146-16
L514	Coil, 40-mc. channel	312-5146-19
L515	Coil, r-f amplifier neutralizing	32-4548-13
L516	Coil, r-f coupling	312-5146-22
L. 517 to L524 in. clusive	Coil, r-f plate tuning	Part of WS500C
L525 to L532 in. clusive	Coil, mixer grid	Part of WS500B
L533	Coil, mixer neutralizing	32-4551-1
L534	Coil, mixer plate	312.5146 .8
L535	Coil, i-f primary	312.5151 .6
L537 to L543 inclusive	Coil, oscillator tuning	Part of WS500A
$\begin{aligned} & \text { L.544 and } \\ & \mathrm{L} 545 \end{aligned}$	Coils, r-f choke	32-4550-1
R518	Resistor, $B+$ dropping, 15,000 ohms, 1 watt	66.3154340
$\begin{aligned} & \text { WS500A(F) } \\ & \text { and } \\ & \text { WS500A(R) } \end{aligned}$	Switch, wafer, oscillator	76.7604
$\begin{aligned} & \text { WS500B(F) } \\ & \text { and } \\ & \text { WS500B(R) } \end{aligned}$	Switch wafer, mixer grid	76.7606
$\begin{aligned} & \text { WS500C(F) } \\ & \text { and } \\ & \text { WS500C(R) } \end{aligned}$	Switch wafer, r-f plate	76.7608
$\begin{aligned} & \text { WS500D(F) } \\ & \text { and } \\ & \text { WS500D(R) } \end{aligned}$	Switch wafer, r-f grid	76.7612
$\begin{aligned} & \text { WS500E(F) } \\ & \text { and } \\ & \text { WS500E(R) } \end{aligned}$	Switch wafer, rff grid	76.7610

MISCELLANEOUS "C"

Descripfion	Service Part No.
Coupling, fine tuning shaft	54-4912
Detent, ball	56-8020
Front plate ass'y.	76.8395
Hairpin, plunger grounding	1W42704FA3
Hairpin, plunger	56.9858
Plunger	56-8034-1
Retaining ring (2 used)	1W61043
Shaft ass'y.	76.6914-4
Shaft, extension	56-8358
Cam and shaft, fine tuning	76-6936.3
Shaft, spring	56.8023
Shield, tube, 9-pin miniature	56.5629.5
Socket, tube, 9-pin miniature	27-6203.21
Spring, detent	56.9158
Spring, plunger	56.9628
Tapered line ass'y.	76.7602
Terminal panel, antenna	76-5504-2
Washer	56.9351
Washer, fiber	27-4109.13
Washer, detent spring	W2556-5
"E" washer	1W60980FE5

Reference Symbal	Description	Service Part No.
C 1 and C2	Condenser, antenna coupling. $680 \mu \mu \mathrm{f}$.	Part of Panel, filter
C3	Condenser, tuning: Shaft and rotor ass'y.	76.7481-4
C3A	Stator, r-f, l.h.	56.9595
C3B	Stator, r-f, r.h.	56.9595-1
C3C	Stator. r-f, l.h.	56.9595
C3D	Stator, r-f, r.h.	56.9595-1
C3E	Stator ass'y., oscillator	76.7479
C3F	Stator ass'y., oscillator	76.7479
C4	Condenser, padder ass'y., r-f .	76.7472
C.5	Condenser	Stray capacitance
C6	Condenser, padder ass'y., r.f .	76-7472
C7	Condenser, crystal, mixer tank, $30 \mu \mu \mathrm{f}$.	Part of Board ass'y., mixer
C8	Condenser, temperature compensating, 4 $\mu \mu \mathrm{f}$.	30-1224-109
C9	Condenser, oscillator trimmer	31-6525
C10	Condenser, oscillator tank, 2.5 $\mu \mu \mathrm{f}$.	Part of Tank ass'y., osc.
Cll	Condenser, by-pass	Part of Tank ass'y., osc.
C.12	Condenser, grid by-pass, 500 $\mu \mu \mathrm{f}$.	30-1245.3
Cl3	Condenser, temperature compensating, $1.0 \mu \mu$ f.	30-1224-107

REPLACEMENT PARTS LIST (Cont.)

UHF TUNER-ADAPTER UT20B (Cont.)

Reference Symbol	Description	Service Part No.
C14	Condenser, filament by-pass, $500 \mu \mu \mathrm{f}$.	30-1245-3
Cl5	Condenser, plate by-pass, 500 $\mu \mu \mathrm{f}$.	30-1245-3
C16 and Cl7	Condenser, 45.75-mc. i-f trap .	Part of Panel, filter
CDI	Crystal detector, mixer circuit	34-8026
I1 and I2	Lamp, pilot, UHF	34.2068
Ll	Inductor, ref, l.h.	Part of C3A Stator
L2	Inductor, r-f, r.h.	Part of C3B Stator
L3	Inductor, r-f, l.h.	Part of C3C Stator
L4	Inductor, r-f, r.h.	Part of C3D Stator
L5	Inductor, crystal mixer	Part of Board ass'y.. mixer
L6	Inductor, crystal mixer	Part of Board ass'y., mixer
L7	Inductor, oscillator coupling .	Part of Board ass'y., mixer
L8	Inductor, oscillator coupling .	Part of Board ass'y., mixer
L9	Inductor, oscillator coupling .	Part of Board ass'y.. osc.
L. 10	Inductor, oscillator coupling .	Part of Board ass'y., osc.
L11	Inductor, oscillator	Part of Tank ass'y., osc.
L12	Inductor, oscillator	Part of Tank ass'y., osc.
L13	Choke, r-f, heater decoupling	32-4556-3
L14	Choke, r-f, cathode decoupling	32-4556-4
L15	Choke, rff, plate decoupling .	32-4556.2
L16 and L17	Coils, 45.75 -mc. i-f trap	Part of Panel, filter
L18	Coil, i-f output	32-4558
R1	Resistor, damping, 1000 ohms	66-2108340
R2	Resistor, damping, 220 ohms.	66.1228340
R3	Resistor, grid leak, 6800 ohms	66-2688340
R4	Resistor, filament decoupling. 220 ohms	Part of Ll3
R5	Resistor, plate decoupling, 10 000 ohms	Part of L15
R6	Resistor, balancing, 470 ohms	66.1478340
R7	Resistor, balancing, 10 ohms.	66.0108340
R 8 and R9	Resistor, B+ dropping, 150, 000 ohms	66-4158340
R10	Resistor, pilot-light dropping. 10 ohms	66.0108340
R11	Resistor, pilot-light dropping. 3.9 ohms	66-9138340
R12	Resistor, B+ dropping, 10,000 ohms, 10 watts	33-1336-58
R13 and R14	Resistor, antenna coupling. 470,000 ohms	66.4478340
	Board ass'y., mixer	76.7475.1
	Board ass'y., oscillator	76.7480
	Panel, filter, i-f trap	76.8078
	Tank ass'y., oscillator	76.7627

MISCELLANEOUS ELECTRICAL PARTS

Description	Service Part No.
Adapter cable	41-4171.2
Cable ass'y., i-f	41-4143
Cable, power input	41-4141-4
Cable, pilot light, UHF (2)	27-6233-6
Cable, pilot light, VHF	27-6233-103
Padder, osc. (Lll and L12 tuning adjust. ment)	76.8193
Panel, antenna, UHF	76.7097
Socket, oscillator	27-6288
Switch	42-1996-6

MECHANICAL PARTS

Description	Service Part No.
Tuner-shaft and rotor mounting:	
Ball, bearing (10)	W2510.5
Bearing, front	56.9593
Bearing, rear	56.9609
Nut, front bearing	56.9594
Nut, rear bearing	56.9599
Spring, center (2)	56.9590
Spring, end (2)	56.9591
Switch mounting:	
Switch-actuator ass'y.	76.8189 .1
Collar stud (2)	28.9126.1
Lock washer (2)	1W24515FAl
Nut, \#8, special (2)	1W20506FA3
Spacer, 3/8" (2)	1W29155FA3
Washer, fiber (4)	27-4109-29
Planetary assembly:	
Ball, 1/8"	5W2017
Ball, $3 / 16^{\prime \prime}$	56.8020
Ball, $7 / 32^{\prime \prime}$ (3)	56.8020.1
Housing, drive	76.8485
Ring, retaining, shaft	1W60982FE7
Screw, adjusting	28.9094
Shaft, inner end	28.9176
Shaft, outer, drive	28-9069-1
Shaft and pin ass'y., inner	76-8300.1
Spring	28.9174
Clip, background plate (2)	28-9462
Background plate .	54.8993
Bracket and connector ass'y.	76.8425
Block, spring	28.9175
Dial scale, prism and bezel assembly	76-8506-2
Rear mounting foot and insulator	76.8505
Grommet, feed-through	27-4707
Insulator, tuning shaft	27.9437
Knob	76.8508
Lock washer, antenna panel mounting	1 W24515FA1
Nut, antenna panel mounting	1W19982FA3
Pulley, tuner shaft	28.9090
Shield, tube	56-5629.9

REPLACEMENT PARTS LIST (Cont.)

UHF TUNER-ADAPTER UT2OB (Cont.)

Description	Service Part No.
Spring, drive cord, pointer	28.9088
Spring, drive cord, tuner	28.9490
Tuner, and planetary ass'y., complete	76.7595-3
Planetary drive assembly	76.8507
Pointer	56.5630-59
Pointer guide ass'y.	76-8504
Ring, retaining, idler shaft	1W60977FE7
Screw, pointer guide mounting (2)	1W19920FA3
Screw, drive housing, mounting (3)	1W61075FA3
Screw, foot mounting (2)	1W32694FA3

MECHANICAL PARTS (Cont.)

Description	Service Part No.
Screw, drive housing insulator mounting (3)	1W19907FA3
Screw, antenna panel mounting (2)	1W10583FA3
Screw, tuner mounting (3)	1W19907FA3
Screw, pilot-light mounting	1W19670FA3
Shaft and pulley, idler	76.8465
Spacer, drive housing mounting (3)	54-8994
Washer, insulator, drive housing mounting (3)	54-8544
Washer, fiber, pointer guide mounting (2)	27-4109.29

PHILCO

PHILCO TELEVISION SERVICE MANUAL FOR R-F CHASSIS 97 AND DEFLECTION CHASSIS J.7

TP2.2831

TABLE OF CONTENTS

Circuit Description
A-C Line Isolation
Specifications
Tube Complement
Removing and Replacing 27LP4 Tube Assembly
Adjusting 27LP4 Tube Assembly
B Supply Fuse Replacement
Horizontal-Oscillator Adjustment
Video Peaking Coil Adjustment
Television Alignment Procedure General
Test Equipment Required
Jigs and Adapters Required
Mixer Jig
Antenna-Input Matching Network
Video I-F Alignment Jig
Sound I-F Input Alignment Jig
Sound I-F Output Alignment Jig
Television Tuner Alignment
Oscillator Alignment
General
Procedure Using Signal Generators
Procedure Using Station Signal
Tuner Bandpass Alignment
General
Procedure
Video I-F Alignment
Preliminary
Procedure
Sound I-F Alignment
Adjustment of $4.5-\mathrm{mc}$. Trap
Oscilloscope Waveform Palterns
Replacement Parts List
Chassis Bottom Views, Showing Voltages at Socket Pins
Television Tuner Schematic Diagram

CIRCUIT DESCRIPTION

Philco 1953, Code 127, Television Receivers use two chassis-the r-f chassis 97 , containing the r-f, video, audio, and sync circuits, and the deflection chassis J-7, containing the power and deflection circuits.
Since these chassis are not isolated from the 60 -cycle power line, all protruding shafts and mounting feet are insulated from the chassis.

CAUTION: See A.C Line Isolation.

The r-f amplifier, oscillator, and mixer section is built on a separate subchassis. The r-f amplifier uses a 6BZ7 or 6BQ7 tube, V1. The oscillator and mixer each use one half of a $12 \mathrm{AZ7}$ tube, V2. The output of the mixer is fed to a four-stage i-f amplifier system employing four 6CB6 rubes, V3, V4, V5, and V6. A 1N64 crystal diode is used for the video detector. One half of a 6 U 8 tube, V7A, is used as the first video amplifier, which feeds into a 6AQ5 video output amplifier, V8.
Sound i-f (intercarrier) is obtained by utilizing the beat frequency produced when the $45.75-\mathrm{mc}$. video carrier and the $41.25-\mathrm{mc}$. sound carrier are mixed in the video detector. The beat frequency, 4.5 mc ., is the difference between 45.75 mc . and 41.25 mc ., and contains the FM sound signal. This $4.5-\mathrm{mc}$. signal contains only a negligible amount of the video amplitude modulation, provided that the amplitude of the $41.25-\mathrm{mc}$. signal is considerably lower than that of the $45.75-\mathrm{mc}$. signal. The proper relative amplitude of the two carriers is established in the alignment of the receiver. There is sound output only when both the video and sound carriers are present.

The oscillator is tuned primarily to obtain the best picture, since the $4.5-\mathrm{mc}$. relationship always exists between the two carriers. The $4.5-\mathrm{mc}$. sound i.f. (intercarrier), which is taken from the video detector, is amplified by a 6BA6 tube, V9, and a 6AU6 tube, V10, and is fed to the FM detector, which utilizes two diode sections of a 678 tube, V11A. The triode section of the 6 T 8 tube, V11B, is used as the first audio amplifier. The power amplifier uses a 6L6GA tube, V12.

A-G-C voltage for the video i-f system and the r-f amplifier is obtained from a keyed a-g-c system which uses a 6AU6 tube, V13, as the a-g-c gate. Composite video from the video amplifier plate circuit, V7A, is fed to the grid of the a-g-c gate tube, while a gating or keying pulse, obtained from a winding on the horizontal-output transformer located on the deflection chassis, is applied to the plate. The sync-pulse polarity applied to the grid of V13 is positive; therefore, the a-g-c gate can conduct in proportion to the amplitude of the sync-pulse tips if the gating or keying pulse occurs at the same time as the sync. Because the keying, or gate pulse, is of constant amplitude (approximately 500 volts peak), the amplitude of the sync pulse determines the amount of conduction in the gate tube. The plate current of the keyed a-g-c gate tube flows through R220, R219, and R218, developing a
voltage which is negative with respect to the chassis, and is proportional to the plate current. This negative voltage is used to control the gain of the receiver. Since conduction cannot occur in the a-g-c gate tube unless the sync pulse and gating pulse occur at the same time, noise disturbances that occur during the intervals between sync pulses cannot affect the a-g.c voltage.
Composite video for the sync circuits is taken from the plate circuit of the video amplifier, V7A. The plate load of the video amplifier consists of two sections, R304 and R305. The full output of the amplifier is fed to the grid of the noise inverter, one half of a 12AU7 tube, V14B, and to the grid of the sync separator, one half of a 6U8 tube, V7B. The output developed across R305 only is fed to the grid of the a-g.c gate, a 6AU6 tube, V13. The noise inverter is operated with a low value of plate voltage and with high bias (applied to the cathode by a voltage-divider network), which keeps the tube beyond cutoff. When the composite video signal is applied to the grid of the noise inverter through C601, the sync appears as positive pulses, and noise which could affect the sweep circuits also appears as positive pulses. Harmful noise pulses usually have amplitudes far greater than that of the sync pulses and, therefore, drive the grid of the noise inverter positive sufficiently to allow conduction in the noise inverter plate circuit. To prevent the noise inverter from conducting during the sync pulse interval, the gated leveler, using one half of a 12AU7 tube, V14A, is used to clamp the sync pulses below the conduction level of the noise inverter. The gated leveler conducts only when the sync pulses and gating pulse occur at the same time, thus leveling the noise inverter input to the sync-pulse level.
The output of the noise inverter consists of negativegoing noise pulses. It should be noted that the noise pulses which exceed the sync level have been passed and their polarity reversed by the noise inverter. The output of the noise inverter is now mixed with the composite video and fed to the grid of the sync separator. Since the composite video fed to the grid of the sync separator has positive sync polarity, the positive noise pulses carried with the composite video would be passed by the sync separator; however, the output of the noise inverter consists of these same noise pulses, but of opposite polarity. Thus, cancellation of the noise pulses is effected. The output of the sync separator contains only the sync pulses, which are fed to the deflection chassis through the connecting cable.

The phase splitter, using one half of a 12AU7 tube, V15A, inverts the sync polarity for proper triggering of the vertical oscillator. The vertical sync is separated from the horizontal sync by the integrator circuits, and is fed to the grid of the vertical blocking oscillator, which uses one half of a 12 AU 7 tube, V13B. The output of the vertical oscillator is amplified by the vertical-output amplifier, which uses a 6BQ6GT tube,

V16. The output of this amplifier is applied to the vertical-deflection coils through the vertical-output transformer.

In addition to the vertical-sync output, two hori-zontal-sync outputs are taken from the phase splitter, one from the cathode, and the other from the plate circuit. These two outpurs are of opposite polarity, and are fed to the two diodes of the phase comparer, a 6AL5 tube, V17; the negative pulses are fed to the cathode of V17B, and the positive pulses, to the plate of V17A. A portion of the horizontal sweep output voltage is taken from the horizontal-output transformer, and is fed to the plate of V17B and the cathode of V17A, for comparison of the horizontal-sync and horizontal-sweep voltages. When the sweep and sync are in phase, no voltage is developed across R800, but when the two signals are out of phase, a voltage is developed across R800. When this voltage is positive, it increases the frequency of the horizontal oscillator (a 12AU7 tube, V18); when the voltage is negative, it reduces the frequency of the oscillator. This action holds the horizontal oscillator in phase with the sync signal. The horizontal hold control, R811, adjusts the horizontal-oscillator frequency so that it may be controlled by the phase comparer. The output of the horizontal oscillator is fed to the horizontal-output amplifier, which uses a 6CD6G tube, V19. The horizontal-output tube feeds the deflection coils through the horizontal-output transformer. A 6V3 tube, V20, is used as the horizontal damper.

The second-anode voltage for the picture tube is supplied by two 1B3GT high-voltage-rectifier tubes, V21 and V22, connected in a voltage-doubler circuit. The B-plus voltage for the receiver is supplied by two selenium rectifiers, CR100 and CR101, in a full-wave voltage-doubler circuit, operating directly from the power line. Bias voltage is obtained across the filter choke which is in series with the negative side of the B-plus supply. The B-plus-boost voltage derived from the horizontal-damper circuit supplies higher B-plus voltage to the first anode of the picture tube. Filament current for all the tubes except the high-voltage rectifiers is supplied by a 117 -volt, 60 -cycle step-down transformer. Filament current for the high-voltage rectifiers is supplied by two windings on the horizontal-output transformer.

NOTE: The J-7 Chassis incorporates a protective high-voltage shorting switch (located on the rear of the high-voltage cage), which shorts the output of the 1B3GT high-voltage doubler-rectifier (V22) to ground when the cabinet back is removed. Do not attempt to operate the receiver with the cabinet back removed without first disabling this shorting switch. The switch can be disabled temporarily for service work by removing the two self-tapping screws at the bottom edge of the rear cover of the high-voltage cage, and propping up the rear cover.

IMPORTANT

A-C LINE ISOLATION

CAUTION: One side of the a-c line is connected to the chassis through C101, L100, and R104, in series. The other side of the a-c line is connected to the chassis through R100. F100, CR100, and C103. in series. Grounding the chassis will result in a short circuit across one or the other of these two branches in the voltage-doubler circuit. During servicing and alignment, it is desirable that an a-c line isolation transformer capable of handling at least 250 watts (Philco Part No. 45-9600) be used. Failure to use an isolation transformer will greatly increase the shock hazard, and may result in damage to the test equipment, or receiver, or both.

SPECIFICATIONS

CHANNEL TUNING Twelve-channel, 13 position, wafer-switch incremental tuner; fine tuning of local oscillator
FREQUENCY RANGE Television Channels 2 through 13 and U-H-F position
INTER MEDIATE FREQUENCIES Video carrier 45.75 mc . Sound (intercarrier) 4.5 mc .

TRANSMISSION LINE
OPERATING VOLTAGE

POWER CONSUMPTION

TUBE COMPLEMENT

R-F 97 CHASSIS

Reference Symbol	Tube Type	Function
V1	6BQ7 or 6BZ7 miniature	R-F amplifier
V2	12AZ7-miniature	Oscillator, mixer
V3, V4,		
V5, V6	6CB6-miniature	Video i.f amplitiers
V7	6U8-miniature	Video amplifier, sync separator
V8	6AQ5-miniature	Video output
V9	6BA6-miniature	First sound i-f amplifier
V10	6AU6-miniature	Second sound i-f amplifier
V11	6T8-miniature	FM detector, first audio amplifier
V12	6L6GA-octal	Audio output
V13	6AU6-miniature	A-G-C gate
V14	12AU7-miniature	Gated leveler, noise inverter
V23	27LP4	Picture tube

J-7 DEFLECTION CHASSIS

Reference Symbol	Tube Type	Lunction
V15	12AU7-miniature	Phase splitter, vertical oscillator
V16	6BQ6GT-octal	Vertical output V17
6AL5-miniature	Phase comparer	
V18	12AU7-miniature	Horizontal oscillator
V19	6CD6G-octal	Horizontal output
V20	6V3-miniature	Damper
V21,V22	IB3GT-octal	High-voltage rectifier

Figure 1. 27LP4 Picture-Tube Assembly

REMOVING AND REPLACING 27LP4 PICTURE TUBE

GENERAL

The Philco 27LP4 picture tube is designed for a maximum of safety. Moreover, when properly mounted in the frame assembly, the picture tube is supported in such a manner as to provide a maximum of protection against breakage. Therefore, it is important that the tube be properly installed in its supporting frame. It is suggested that the service technician protect his eyes and the exposed parts of his body when handling all picture tubes. The removal and installation of the 27LP4 picture tube is quite safe if the procedure given below is followed.

CAUTION: Because of the bulkiness and increased weight of the 27LP4 tube, as compared with that of the smaller picture tubes, replacement of the 27 LP4 requires two men. These tubes are not delicate when handled in the proper manner; however, care must be taken not to mar the glass in any way, as surface scratches and chips weaken a glass structure considerably. Also, because of its weight, do not attempt to handle this tube by the neck.

PROCEDURE FOR REMOVING 27LP4 TUBE

1. Kemove both the deflection chassis and the r-f chassis from the cabinet.
2. Lay the cabinet face-down on the floor, taking precautions against marring the cabinet.
3. Remove the four nuts and washers that secure the mounting feet of the assembly to the front of the cabinet.
4. Remove the two wood screws that secure the rear supporting struts of the tube assembly to the cabinet.
5. Remove the rube assembly (one man on each side of the cabinet).
6. Place the tube assembly face-down on a soft, protective cloth or mat, and slip the beam-bender magnet off the rear end of the tube. Referring to figure 1 , locsen clamp ring (A) by means of clamp screw (B), unhook the four clips securing the web straps to the mounting feet, and lift the deflection-yoke housing and strap assembly (containing the deflection yoke and focus assembly) off the neck of the tube.
7. Mark the positions of the four mounting feet on the front band with a pencil or scriber (this is necessary because the mounting feet are free to slide, once the front band is loosened).
8. Loosen the two Allen head clamping screws (C) and (D) with a $\%$ ioinch Allen wrench, and remove the front band assembly.

PROCEDURE FOR INSTALLING 27LP4 TUBE

1. Place the picture tube face-down on a soft, protective cloth or mat, and position the front band assembly over the tube so that the lateral indentation in the band coincides with the welded seam around the outer edge of the tube's face plate.

Take up slack in the band, tightening both clamping screws (C) and (D) by hand.

NOTE: If the front band is positioned correctly, the distance from the bottom edge of each mounting foot to the surface on which the tube is resting will be $17 / 8$ inches, as shown in figure 1.
2. Position the mounting feet, on the front band, to coincide with the marks previously made on the front band.
3. Tighten both clamping screws (C) and (D) alternately, using a $5 / 1$;-inch Allen wrench.

NOTE: Take up on clamping screws (C) and (D) as tightly as possible. As can be seen from figure 1 , the separation between the ends of the bands must be less than $1 / 8$ inch, when tightened.
4. Slip the deflection-yoke housing and strap as sembly (containing the deflection yoke and focus as. sembly) over the neck of the tube, and position it so that clamp screw (B) on clamp ring (A) is on the side of the tube opposite the anode button.
5. Place the clips (on the web straps) over the hooks on the four mounting feet, and tighten clamp ring (A) by means of clamp screw (B).
6. With the cabinet face-down on the floor, place the tube assembly in the cabinet (one man on each side of cabinet), and replace the four nuts and washers that secure the mounting feet to the front of the cabinet.
7. Replace the two wood screws that secure the rear supporting struts of the tube assembly to the cabinet.
8. Stand the cabinet upright, and install the r-f chassis, deflection chassis, and beam-bender magnet.

ADJUSTING 27LP4 PICTURE-TUBE ASSEMBLY

1. Mechanically center the focus assembly, over the neck of the tube, by adjusting the centering plate. It is important that the focus assembly and yoke be concentric with the tube neck for best focus and shadow clearance.
2. Set the HORIZ. CENTERING control (R824) to its extreme counterclockwise position, and set the BRIGHTNESS control for maximum brightness of the picture.
3. Adjust the beam bender for maximum brightness of the picture.
4. If necessary, loosen the wing nuts and rotate the deflection yoke, to correct for picture tilt. Make certain that the deflection yoke is as far forward as possible, and tighten the wing nuts.
5. Adjust the centering plate so that neck shadow is just eliminated on the right-hand side of the screen, at the same time keeping the picture centered vertically. Do not attempt to center the picture horizontally by means of the centering plate.
6. Adjust the FOCUS control (on focus assembly). Set the CONTRAST control for the proper level, and readjust the FOCUS control for the best over-all focus.
7. Repeat steps 3 and 5 , if necessary.
8. Adjust the HORIZ. CENTERING control (R824) for proper horizontal centering of the picture.
9. Turn the BRIGHTNESS control slowly toward the minimum position, checking that shadow does not appear at any brightness level. If shadow does appear, repeat steps 5 and 8 , and recheck.

B SUPPLY FUSE REPLACEMENT

The B supply protective fuse, F100, is wired into the low-voltage section, and is in series with the selenium rectifiers. For replacement, use a 1.6 -ampere delayed-action-type fuse, Philco Part No. 45-2656-23.

CAUTION: Discharge the circuit before replacing the fuse.

HORIZONTAL-OSCILLATOR ADJUSTMENT

To adjust the horizontal-oscillator circuit, tune in a station and proceed as follows:

1. Reduce the width of the picture so that approximately one inch of blank screen appears at the righthand and left-hand sides of the picture.
2. Increase the BRIGHTNESS control setting so that the blanking time becomes visible. This appears as a dark vertical bar at the right-hand and left-hand sides of the picture.
3. Connect a $\cdot 1-\mu$ f. condenser from Test Point J802 to ground.
4. Set the HORIZ. HOLD control to the center of its mechanical rotation.
5. Adjust the HORIZ. HOLD CENTERING control to bring the picture into the center of the blanking bars. When the picture is centered in the blanking bars, the bars at the left-hand and right-hand sides of the picture will be of equal width.
6. Remove the $.1-\mu \mathrm{f}$. condenser from the Test Point. (See step 3.)
7. Adjust the horizontal ringing coil, L800, until the picture is again centered in the blanking bar.
8. Rotate the HORIZ. HOLD control through its range. The picture should fall out of sync to both sides of the center of rotation. If the picture does not
fall out of sync to both sides, readjust the HORIZ. HOLD CENTERING control to obtain fall-out to either side of sync.
9. Rotate the HORIZ. HOLD control through its range, and observe the number of diagonal blanking bars that are visible just before the picture pulls into sync. The pull-in should occur with from 1 to 2 diagonal bars when the sync position is approached from either direction. If proper pull-in is not obtained, repeat the above procedure.

VIDEO PEAKING COIL ADJUSTMENT

The video peaking coils, L305 and L307, are adjusted at the factory for proper transient response of the video amplifiers. Ordinarily, these coils will require no further adjustment by the serviceman except in cases where they have been tampered with, or where replacement becomes necessary. Under normal circumstances, when alignment of the tuner or i-f stages is undertaken, the video peaking coils should not require adjustment.

Before adjusting L305 and L307, check both the tuner and i-f alignment. (Never adjust L305 and L307 until the alignment of the receiver is correct.) Then tune in a station and adjust the receiver to give a picture of the best obtainable quality, with medium contrast. Turn the fine tuning control clockwise until a very slight beat pattern appears in the picture. Carefully observe the appearance of the picture regarding smear or overshoot (trailing whites). A small amount of overshoot may be desirable, to produce a sharper picture. Conversely, in weak-signal areas, a small amount of smear may be desirable, to reduce the harsh appearance of "snow". The adjustments of L305 and L307, and their effects on the picture, are as follows:

1. The amount of overshoot may be reduced by turning both TC302 and TC303 counterclockwise.
2. The amount of smear may be reduced by turning both TC302 and TC303 clockwise.

Normally the point of proper adjustment is where minimum smear and trailing whites appear in the picture; however, a compromise adjustment may be made to suit prevailing conditions. As a rule, when properly adjusted, the adjustment screws (TC302 and TC303) should protrude from the chassis by approximately $1 / 2$ inch to $3 / 4$ inch.

TELEVISION ALIGNMENT PROCEDURE CENERAL

The alignment consists of tuning each i-f coil to a given frequency, using an AM signal, then feeding in a sweep signal at the antenna terminals and touching up the adjustments to obtain the desired pass band.

The over-all response curve (r-f, i-f) of the circuits from the antenna terminals to the video detector, after the i-f stages have been aligned, should appear essen-
tially the same, regardless of the channel under test. If not, the tuner should be aligned. Before aligning the tuner, refer to the CAUTION given under TUNER BANDPASS ALIGNMENT.

The video-carrier intermediate frequency is 45.75 mc ., and the sound intermediate (intercarrier) frequency is 4.5 mc . Alignment of these circuits requires careful workmanship and good equipment. The following precautions must be observed:

1. There must be a good bond between the receiver chassis and the test equipment. This is most easily obtained by providing the workbench with a metallic top. The receiver chassis should be placed tuner-sidedown on the bench. If the bench has no metallic top, the test equipment and chassis can be bonded by a strip of copper about 2 inches wide. The section of the chassis nearest the tuner should rest on the strip.
2. Do not disconnect the picture tube, picture-tube yoke, or speaker while the receiver is turned on.
3. Allow the receiver and test equipment to warm up for 15 minutes before starting the alignment.
4. The marker (AM) signal generator should be calibrated accurately to the sound and video r-f carriers of each channel used during alignment. If Model 7008 is used, the built-in crystal calibrator provides an excellent means of calibration. An alternate method of calibrating the signal generator to the sound and video r-f carrier frequencies is to zero-beat the signal generator with the received signals.

For further information concerning calibration, refer to Philco Lesson PR-1745 (J), entitled "Television Service in the Home."

Test Equipment Required

The following test equipment is recommended for aligning the receiver:

1. Philco Precision Visual Alignment Generator for Television and FM, Model 7008, or equivalent.
2. Vacuum-tube voltmeter, or 20,000 -ohms-per-volt voltmeter.
3. R-F Probe, Philco Part No. $76-3595$ (for use with Model 7008 generator).

Jigs and Adapters Required
 Mixer Jig

Connections to the grid of the mixer tube may be made through the alignment jack provided for this purpose. To connect the generator to this point, a mixer-grid jig, Philco Part No. 45-1739, and a connecting cable, Philco Part No. 45-1635, may be used. As an alternate, a Philco alligator-clip adapter, Part No. 45-1636, with as short a ground lead as possible, may be used to connect the alignment jack. The ground lead should be connected as close as possible to the mixer tube. It is essential that the signal-generator output lead be terminated with a $68-\mathrm{ohm}$ carbon resistor (used with alligator-clip adapter only), so that any regeneration caused by connection of the lead to the mixer is held to a minimum.

TP2-1507-A
Figure 2. Video I-F Alignment lig IVIDEO TEST lack Adapter No. 11

Antenna-Input Matching Network

An impedance-matching network for coupling the signal generator to the antenna-input terminals of the receiver is shown in figure 2 on page 5 of Service Manual PR-2170. This network, which is designed to have an input impedance of 75 ohms and an output impedance of 300 ohms , is used to match a $75-\mathrm{ohm}$ generator to a 300 -ohm antenna-input circuit. The resistors used in this network should be of carboncomposition construction, and should be chosen from a group, to obtain values within 10% of those indicated. The resistors should be placed in a shield can, to prevent variable effects. An antenna-matching jig, Philco Part No. 45-1736, which consists of a matching transformer and connecting box, may be used in place of the resistor network.

Video I-F Alignment Jig (VIDEO TEST Jack Adapter No. 1)

The alignment jig shown in figure 2 should be used during the i-f alignment, to apply the proper bias to the a-g-c bus, and to provide a convenient oscilloscope connection. This adapter consists of a 5 -prong plug, two $10,000 \cdot 0 \mathrm{hm}$ resistors, and a $1500-\mu \mu \mathrm{f}$. condenser for isolation of the bias supply. To isolate the oscillo-

TP2-3265
Figure 3. Sound I-F Input Alignment Jig (VIDEO TEST Jack Adapter No. 2
scope from the receiver circuits, a $15,000-$ ohm resistor, by-passed by a $1500-\mu \mu$ f. condenser, is used. A suggested method of fabricating the jig is also shown in figure 2. This jig should not be used to observe the composite video from the video-detector output.

Sound I.F Input Alignment Jig (VIDEO TEST Jack Adapter No. 2)
To observe the composite video, a jig may be made with a 5 -pin plug and a 2200 -ohm resistor. See figure 3. The 2200 -ohm resistor should be connected to pin 2 of the plug. A ground lead should be connected to pin 3. For convenience in applying bias to the a-g-c circuits, a lead should be connected to pin 5 . To observe the composite video, connect the oscilloscope to the 2200 -ohm resistor and the ground lead. This jig is also used for injection of the $4.5-\mathrm{mc}$. signal during sound i-f alignment.

Sound I-F Output Alignment Jig (FM Test Point and Volume Control Socket Adapter)

Figure 4 shows the adapter that should be used to connect the voltmeter to the FM detector through the Volume Control socket (J401) and FM Test Point (J403). The adapter should be inserted into the Volume Control socket, and the clip lead from the adapter connected to the FM Test Point. The Volume Control cable and plug (PL401) is inserted into the socket on top of the adapter.

TELEVISION TUNER ALIGNMENT

After the tuner is serviced, or if an i-f alignment is required, the tuner alignment should be checked. If realignment is necessary, use the procedure given below.
Since the frequency of the local oscillator affects the tuner response, the local-oscillator alignment should be made first.

Figure 5. Television Tuner, Showing Location of Adjustments

OSCILLATOR ALIGNMENT

General

It is possible to place each channel exactly on frequency by adjusting the tuning core of each coil. The adjustment procedure should be carried out with the highest-frequency channel (13) first, since the alignment of each channel will affect the alignment of the channels below it in frequency. The FINE TUNING control should be preset for all adjustments by placing the stop on the fine-tuning cam at the Channel 8 oscillator tuning core. See figure 5.

Procedure Using Signal Generators

An r-f signal (unmodulated), at the video carrier frequency of the channel, is fed into the antenna input, and an i-f signal, at the i-f carrier frequency is fed to the first i-f amplifier. Two AM signal generators are used to supply the above signals. An oscilloscope is connected to the video detector output. The oscillator core is then adjusted for zero beat on each channel. The two generators should be accurately calibrated, as described in Philco Lesson PR-1745(J).

To align the oscillator, proceed as follows:
l. To observe the zero beat, connect the oscilloscope to the video-detector output through the video i-f alignment jig. See figure 2. Bias the tuner and the i-f a-g-c circuits with 1.5 volts, and remove the Gate Pulse Plug, PL801, from the socket, J801. To apply bias to the tuner, connect the battery to the white lead which comes out of the top of the tuner. On later runs of this tuner, the white a-g-c lead connects to a feedthrough condenser on top of the tuner. To make certain that good connection is made to the tuner a.g.c circuit, remove the glyptol coating on this condenser terminal before connecting the bias battery.
2. To feed in the i-f comparison signal, remove the
shield from the first v-i-f tube and wrap several turns of insulated copper wire around the tube. Connect the output leads of the v-i-f signal generator to the two ends of the wire loop, and set the generator for unmodulated output at 45.75 mc .
3. To feed in the signal representing the channel frequency, set the r-f signal generator to the video carrier frequency of Channel 13 , and connect the output to the antenna terminals of the receiver, through the proper matching jig.
4. Mechanically preset the fine-tuning cam, as shown in figure 5, and set the CHANNEL SELECTOR to Channel 13.
5. Adjust the Channel 13 tuning core for zero beat, as indicated by the oscilloscope.
6. Retune the r-f signal generator and the CHANNEL SELECTOR for Channels 13, then 11, etc., each time adjusting the respective tuning core for zero beat. The tuning cores should be adjusted progressively from the highest-frequency channel to the lowest, because the higher channel adjustments will affect the lower channels.

Procedure Using Station Signal

The following simplified procedure may be used to align the oscillator when the television i-f alignment is satisfactory and a station signal is available. If this procedure is used in the service shop, signals from all stations which the customer can receive must be available in the service shop.

1. Mechanically preset the fine-tuning cam to the center of its range. See figure 5 .
2. Tune in the highest-frequency channel to be received, and adjust the tuning core for that channel for the best picture; that is, starting with sound in the picture, turn the tuning core until the sound in the picture just disappears.
3. Repeat step 2 for each channel received in the area, starting with the highest-frequency channel and finishing with the lowest.

TUNER BANDPASS ALIGNMENT

General

The bandpass alignment consists of aligning the tuner at Channels 13 and 6, and then making it track properly.

During the alignment, a fixed bias of 1.5 volts is applied to the r-f amplifier tube through the white a-g.c lead.

An FM (sweep) signal is applied to the antennainput circuit through the proper matching jig, and an oscilloscope is connected through a 100,000 -ohm resistor to the mixer-grid test point. The oscilloscope gain should be as high as possible, consistent with hum level and "bounce" condition. Hum conditions will cause distortion of the time base and response. Bounce conditions will cause the response and the time base to jump up and down, and is caused by poor line regulation. The use of too high an oscilloscope gain aggravates these conditions, whereas the use of too low a

TP9.5128-1
Figure 6. Television Tuner Response Curve, Showing Bandpass Limits
gain necessitates increasing the generator outpur to a point where the tuner may be overloaded. The scope controls should be adjusted so that the width of the presentation is 2 times the height. Overload may then be checked by changing the generator output while observing the shape of the response curve. When the generator output is changed, the vertical gain of the oscilloscope should be readjusted, to keep the scope presentation amplitude the same. Do not readjust the horizontal gain control. Any flattening of the curve indicates overload, in which case a lower generator output and higher oscilloscope gain must be used.
The signal-generator output must be properly matched to the antenna input of the tuner. The antenna-input matching network shown in figure 2 of Service Manual PR-2170, or the Philco Antenna Matching Jig, Part No. 45-1637, may be used for this purpose. Correct alignment cannot be obtained without the use of a suitable matching jig.
Regeneration or a mismatch in the test setup will also make it impossible to obtain correct alignment. To check for these conditions, move the hand along the generator cable, after all equipment is connected, and observe the response curve on the oscilloscope screen. If the response curve changes as the hand is moved along the cable, regeneration or mismatch is indicated. Another check may also be made with the volume control advanced until noise can be heard from the speaker. If the level of the noise changes as the hand is moved along the generator cable, regeneration or mismatch is indicated. The symptoms which indicate these conditions may also be caused by failure to use the proper matching jig, as described above.

TPO-1174
Figure 7. Television Tuner Response Curve, Showing Tracking Compensation

CAUTION: When comparing the response curves from channel to channel, maintain the 2-to-l width-to-height relationship in the oscilloscope presentation, as described above.

Procedure

1. Connect the FM (sweep) and AM marker generators to the 300 -ohm antenna input through an antenna-input matching jig.
2. Connect the oscilloscope to the mixer-grid test point through a 100,000 -ohm, one-half watt resistor, as shown in figure 5. Connect the ground lead of the cscilloscope as close to the mixer tube as possible.
3. Apply 1.5 volts bias to the white tuner a-g.c lead.
4. Disconnect the tuner coupling link at wiring panel B-13, terminals 1 and 4, and solder a 68 ohm, one-half watt carbon resistor to the open link coming from the tuner. See figure 7. Remove the first i-f tube from the socket.
5. Set the CHANNEL SELECTOR and FM (sweep) generator to Channel 1.3 (213 mc .). Adjust the generator for sufficient sweep width to show the complete response curve.
6. Establish the channel limits (see figure 6) by using the marker (AM r.f) signal generator to produce marker pips on the response curve. (Set the marker generator first to 210 mc ., then to 216 mc .) The response curve should be reasonably flat between the limits.
7. Adjust TC502 and TC50f (figure 5) for a symmetrical, approximately centered pass band. Set the marker generator to 213 mc . Detune TC50.4 counterclockwise until a single peak appears. Adjust TC502 until the peak falls on the $213-\mathrm{mc}$. marker. (It may be necessary to increase the output of the generator during this adjustment.) Then adjust TC500 for maximum curve height and symmetry of the single peak. The antenna circuit is now tuned for the highband channels.

NOTE: On later runs of the tuner, L506 is not tunable and TC500 is omitted; therefore, the adjustments in step 7 should be confined to TC502 and TC504 when later run tuners are encountered.
8. Readjust TC502 and TC504 for a symmetrical response centered about 213 mc , and falling within the specifications, as shown in figure 6 .
9. Set the CHANNEL SELECTOR and FM generator to Channel 7 (177 mc .). Establish the channel limits by using the marker signal generator to pro-

Figure 8. R-F Chassis 97, Top View, Showing
duce marker pips on the response curve. (Set the marker generator first to 174 mc ., then to 180 mc .) The curve should be reasonably flat between the limits. 10. On Channel 7, observe the tilt and center frequency of the response curve. The curve should be centered on the pass band, and should be symmetrical? figure 7, adjust C507 and C512 (figure 5) to obtain a response curve which is the mirror inage (tilt in the opposite direction) of the original; for example, if Channel 7 response curve appears as in figure 7A, adjust C506 and C51.f until the curve appears as in figure 7B. This adjustment overcompensates, to make allowance for the effect of Channel 13 adjustments (to be made in step 11) upon Channel 7 response.
11. Reset the CHANNEL SELECTOR and generators to Channel 13, and repeat steps 8 through 10 as many times as necessary to obtain the most sym. metrical and centered response curves on Channels 13 and 7. Channels 7 through 13 are now correctly aligned.
12. Set the CHANNEL SELECTOR and sweep generator to Channel $6(85 \mathrm{mc}$.)
13. Establish the channel limits, using the marker generator to produce marker pips on the response to 88 mc .)
14. Adjust TC503 and TC505 for a symmetrical, approxinately centered pass band. Set the marker gencrator to 85 mc . Detune TC505 counterclockwise until a single peak appears. Adjust TC503 until the peak falls on the $85-\mathrm{mc}$. marker. It may be necessary to increase the output of the generator during this adjustment. Then adjust TC501 for maximum curve height and symmetry of the single peak. The antenna circuit is now tuned for Channels 2 through 6.
15. Readjust TC503 and TC506 for a symmetrical response, centered about 85 mc ., and falling within the specifications, as shown in figure 6. Channels 2 through 6 are now correctly aligned.

VIDEO I-F ALIGNMENT

PRELIMINARY

Before proceeding with the i-f alignment or making an alignment check, observe the following preliminary instructions:

1. Preset the CONTRAST and BRIGHTNESS controls to the maximum counterclockwise position.
2. Preset the CHANNEL SELECTOR to Channel 4
3. Insert the video i-f alignment jig into J200. sistor from the video i-f alignment jig. Connect the sistound lead of the oscilloscope to the ground lead from ground lead of the adapte
4. Connect a 6 -volt battery to the a-g-c test jack, with the negative terminal to the bias lead and the 6. Connect the AM gen
5. Connect the AM generator to the mixer-grid
rest point, Gl , through a mixer jig , and adjust the gen erator for approximately 30 percent modulation at 400 cycles.

NOTE: If the i-f shield has been removed for repairs, it must be replaced before proceeding with the alignment

PROCEDURE

1. Tune the AM generator to 39.75 mc ., and adjust C518 (see figure 8) for minimum output, as ob .
2. Tune the AM generator to 47.25 mc ., and adjust C201 for minimum output, as observed on the oscilloscope.
3. Tune the AM generator to 41.25 mc ., and adjust C203 for minimum output, as observed on the oscilloscope.

NOTE: In steps 1, 2, and 3, it is necessary to keep the generator output sufficiently high that a null indication may be observed on the oscilloscope. However, avoid overloading
of the receiver by excessive signal.
of the receiver by excessive signal.
4. Tune the AM generator to the frequencies indicated below, and adjust the trimmers for maximum output.
a. 42.7 mc .-adjust C514
b. 45.4 mc --adjust C20
c. 42.0 mc .-adjust C20
d. 45.0 mc --adjust C210
e. 44.4 mc --adjust C215
f. 43.0 mc -adjust C 21
5. Connect the sweep generator and r-f marker gen erator to the antenna terminals through a matching jig. (If a separate oscilloscope is used, connect the

12 Figure 9. Over-all R-F, I-F Response Curve
sweep output of the generator to the horizontal input of the oscilloscope.) Connect a 7.5 -volt battery to the $\mathrm{a}-\mathrm{g}-\mathrm{c}$ test jack, with the negative terminal to the bias lead and the positive terminal to the ground lead. Set the CHANNEL SELECTOR to Channel 4 , and
tune the sweep generator for output on Channel 4. Tune the r-f marker generator for the video carrier frequency of Channel $4(67.25 \mathrm{mc}$.) , and tune the i-f marker generator (connected to mixer grid) to 45.75 mc . Note that two marker generators are used for this procedure. The r-f marker generator is connected to the antenna terminals, while the i-f marker generator is connected to the mixer-grid test point, G1. A jig constructed from a piece of fiber tubing, with $3 / 1 ;$ inch inside diameter, and a brass machine screw which fits tightly into the tubing, is used to connect the generator to the test point. The screw is adjusted so that it clears the test point by approximately $1 / 0$. inch. The output cable of the marker generator is connected to the head of the brass screw in the jig and to the chassis near the mixer tube. Both marker generators should be adjusted for the minimum output equred to mike the markers barely visible. Failure out from the precaucion, or the use of excessive our results. After the equipment is properly connected, adjust the FINE TUNING control for zero beat of the two markers, as observed on the oscilloscope. When zero beat is obtained, remove the i-f marker.
6. If the response curve does not fall within the
limits, as shown in figure 9, the adjustment of the trimmers may be touched up slightly. Do not retouch the setting of C518, C201, C203, or C206. To adjust the curve, first adjust C215 and C218 alternately, until maximum improvement has been obtained. C215 affects the tilt of the curve, and C218 affects the dip of the curve. After C215 and C218 have been adjusted, adjust C514 for the proper slope at the 42.25 -mc. side of the curve, then adjust C204 and C210 for the proper level at the video carrier frequency (45.75 mc .).

CAUTION: Do not turn any of the trim-
mers excessively. To retouch, make only a
mers excessively.

SOUND I-F ALIGNMENT

The sound i-f system may be aligned by the use of a station signal or an accurately calibrated signal gen erator, for the signal source. If the station signal is used, tune the FINE TUNING control for the best picture, regardless of sound. It will be necessary to reduce the signal input to the receiver, so that the d-c output at the sound detector, as measured with the aid of the sound i-f output alignment jig (between point B and ground), is kept below S volts maximum, and preferably below 3 volts. To establish this level in strong signal areas, it may be necessary to a.g.c circuit. The signal input to the receiver may b
adjusted by varying the length of the shorting lead The bias may be applied to the a-g-c circuit by means alignment iig shown in figure 4 should be used for convenient connection of the meter to the sound detector output. detector output.
When signal

When signal generator (accurately calibrated) is used, bias should be applied to the a-g-c circuit, to avoid any possibility of regeneration, using the sound i-f input alignment jig (figure 3). In addition, the first video i-f tube should be removed, to aid in the reduction of circuit noises from the i-f system.

1. Connect the generator through the 2200 -ohm resistor, in the sound i-f input alignment jig, to pin 2 of J 200 . The generator should be adjusted for unmodulated output at 4.5 mc .
2. Insert the sound i-f output alignment jig in the volume-control socket (j 401), and insert the volume control plug (PL401) in the top of the jig. Connec the clip lead to the FM Test Point (J403); connect a 20,000 -ohms-per-volt voltmeter between point " B " and the ground lug of the jig, the negative lead of the meter going to point "B."
3. Adjust TC300, TC400, TC401, and TC402 for maximum output, as indicated on the meter. If the output exceeds 5 volts, reduce the signal input to the receiver.
4. Shift the positive lead of the meter to point " C " on the sound i-f output alignment jig, and adjust by a zero indication on the meter. When TC403 is by a zero indication on the meter. When TC403 is will swing positive; turning TC403 in the opposite direction will cause a negative swing. (To aid in reading a positive and negative swing on the meter set the pointer, by means of its zero-adjustment screw, to a convenient calibration mark on the scale, before connecting the meter to the circuit.)
5. Replace the first video i-f tube, and tune in a station on the receiver. Turn the FINE TUNING control to obtain a slightly fuzzy picture, and tune TC403 for minimum AM noise, using the speaker output as an indication.

OSCILLOSCOPE WA

The waveforms shown below were taken with the receiver adjusted for an approximate peak-to-peak out put of 2 volts at the video detector. The voltages given with the waveforms are approximate peak-to-peak values. The frequencies shown are those of the wave forms-not the sweep, rate of the oscilloscope. The waveforms were taken with an oscilloscope having good high-frequency response. With oscilloscopes having poor high-frequency response, the sharp peaks of the horizontal waveforms will be more rounded than those shown, and the peak voltages will differ from those shown
"CAUTION: High-voltage pulses are pres
ent in the horizontal-output circuit. The

Figure 10. R-F Probe for Sound-Trap Adjustment

ADJUSTMENT OF 4.5-MC. TRAP

To adjust the 4.5 mc . trap in the plate circuit of the first video amplifier, proceed as follows:

1. Connect the output of the signal generator to lead "A" from pin 2 of the sound i-f input alignment ig (see figure 3). Adjust the generator for 4.5 mc ., 400 -cycle modulated output. Set the output attenuator for maximum output from the generator.
2. Connect the input of the r-f probe, shown in figure 10 , to the grid of the picture tube, and connect the output of the probe to the vertical input of the oscilloscope. Adjust the vertical gain of the oscilloscope to maximum. Adjust the horizontal sweep of the oscilloscope for 400 cycles.

Adjust TC301 for minimum indication on the oscilloscope. (The normal setting for TC301 is with
An alternate method for adjustment of TC301 may be used if a $4.5-\mathrm{mc}$. generator is not available. To adjust TC301 without the generator, proceed as fol. owst
lows:
. Tune in a strong station signal
2. Turn the FINE TUNING control in the clockwise direction until a fine beat pattern appears in the picture
3. Adjust TC301 until the beat disappears or is at minimum. When correctly adjusted, the screw will be out from the chassis by approximately $5 / 8$ inch. f. If more than one station is available, check the setting of TC301 on all stations.
waveform in figure 33 was taken with the alligator clip of the oscilloscope lead clipped over the insulation of the lead connected to pin 7 of J800. (To prevent puncture of the insulation of the lead, file off the teeth of the alligator clip and wrap friction tape around the clip.) Connection to other points in the horizontal-output circuit is dangerous, due to the high voltages present. The peak-topeak voltage shown for figure 33 is the actual voltage present; however, the amplitude of the scope presentation depends upon the degree of coupling.

TP2-658 igure 17. Noise-Inverter Cathode Wave shape and amplitude vary with

TP2-639
Figure $20 \begin{gathered}\text { Phase- Splitter Grid, Pin } 7 \\ i 6 \\ \text { volts, } 60 \text { c.p.s. }\end{gathered}$ 14

TP2-654 Figure ${ }_{500}^{12 .} \begin{gathered}\text { valts, } 15,750 \\ \text { c.p.s. }\end{gathered}$

TP2-655
Figure 15. Cated-Leveler Grid, 3 volts, ${ }^{\text {Pin }} \mathbf{1 5 , 7 5 0} \mathbf{2}$ c.p.s.

TP2-659
igure 18. Sync-Separator Plate 17 volts, 60 c.p.s.

TP2-640
Figure 21. Phase-Splitter Plate Pin 6
35 volts, 60 c.p.s.

TP2-653
Figure ${ }^{13 .} 22$ A-C-C Gatts, 60 c.p.s. Grid, Pin 1

TP2-657
Figure 16. Noise-Inverter Plate,
Junction of R605, C 602 , and C 603 23 volts, 15,750 c.p.s.

TP2-660
Figure 19. Sync-Separator Plate 17 volts, 15,750 c.p.s.

Figure 22. Vertical-Oscillator Grid, 170 volts, 60 c.p.s

TP2-697
Figure 23. Vertical-Oscillator Plate,
Pin 1
130 voits, 60 e.p.s.

TP2-641
Figure 26. Phase-Splitter Plate, anction of R614, R615, and C800 13 volts. 15,750 c.p.s.

TP2-2852
Figure 29. Horizontal Ostillator, Junction of L800, R806, and C806 20 volts, 15,750 c.p.s.

TP2-64.9
Figure 32. Horizontal-Output Grid, Pin 5
120 volts, 15.750 c.p.s.

TP2-644
Figure 24. Vertical-Output Grid, Pin 5
40 volts, 60 c.p.s.

TP2-642
Figure 27. Phase-Splitter Cathode, Pin 8
9 volts, 15,750 c.p.s.

TP2-647
Figure 30. Morizontal-Oscillator Cathode, Pins 8 and 3
12 volts, 15,750 c.p.s.

TP2-650
Figure 33. Horizontal-Deflection Yoke, PPin 7 of 1800 5600 volts, 15.750 c.p.s.
See CAUTION above.

TP2-545
Figure 25. Vertical-Output Plate,
Plate Cap
450 volts, 60 c.p.s.

TP2-552
Figure 28. Phase Comparer, Pins 1 and 2
6 volts, 15,750 c.p.s.

TP2-548
Figure 31. Horizontal-Oscillator
Grid, Pin 2
34 volts, 15,750 c.p.s.

TP2-651
Figure 34 . Cate-Pulse Socket, Pin 4 of 1801
400 volts, 15,750 c.p.s.

REPLACEMENT PARTS LIST
 IMPORTANT

General replacement items commonly stocked by the serviceman are omitted from this parts list. All condensers are molded-bakelite Philco condensers, with a 600 -volt rating, and all resistors are $1 / 2$ watt, unless otherwise indicated. Parts are listed according to chassis type and should be ordered in this way rather than by model number; in addition, a miscellaneous listing will be found at the end of the parts list for each chassis type. All parts are symbolized in the schematic diagrams and base layouts, for identification purposes.
NOTE: Part numbers identified by an asterisk (*) are general replacement items. These numbers may not be identical with those on factory parts. Also, the electrical values of some replacement items may differ from the values indicated in the schematic diagram and parts list. The values substituted in any case are so chosen that the operation will either be unchanged or improved. When ordering replacements, use only the "Service Part No."

DEFLECTION CHASSIS J-7

SECTION 1—POWER SUPPLY

Reference Symbol	Description	Service Part No.
$\mathrm{C100}$ and	Condenser, filter, electrolytic, 120μ f., 150 v	30-2568.51*
C 101		
C102	Condenser, filter, electrolytic, 10μ f., $50 v$	0-2417-3
C103	Condenser, filter, electrolytic, 100μ f., 300 v	$30-2417.3$ $30-2584-7$
C107 and	Condenser, $500 \mu \mu \mathrm{f}$., 20,000v	$\begin{aligned} & 30-2584-7 \\ & 30-1229-6 \end{aligned}$
C108		
CR100 and	Rectifier, selenium, 450 ma.	34-8003.8
F100	Fuse, line, 1.6 amperes Socket, a-c line	45-2656-23$27.6240-3$
J100		
J101	Socket, a-c line Socket, television chassis connecting Socket, radio chassis connecting	$\mathrm{F} \begin{array}{r}27 \cdot 6240 \cdot 3 \\ 27.6274-1\end{array}$
J102		27.6274-4
L100	Socket, radio chassis connecting Choke, 1.5 henrys	32-8600
PL100	Plug, a-c line (See	Part of line cord assy. e Misc. "A")
PL101		
PLI01	Plug and cable ass'y., television chassis connecting See Misc. "B"	
PL102	Plug and cable ass'y., radio chassis connecting	S See Parts
		List of Radio Tuner used
R100	Resistor, current limiting, 5 ohms, 20 watts	33-3448-18
R102	Resistor, voltage dropping, .24 ohm Resistor, special	41-4149-2
R104		33-1354
R105,	Resistor, high voltage, 1.5 megohms	33-1352-2
R106, and		
R107	Switch, off-on Transformer, filament	
S100		lume control
T100		32.8597

SECTION 7—VERTICAL SWEEP

| Reference
 Symbol | Description | Service
 Part No. |
| :--- | :--- | :--- | ---: |
| C702 | Condenser, 10μ f., 450 v | Part of C103 |
| C707 | Condenser, by-pass, 20 $\mu \mathrm{ff}$., 200v | Part of C103 |

SECTION 7—VERTICAL SWEEP (Cont.)

SECTION 8-HORIZONTAL SWEEP

Reference Symbol	Description $\begin{gathered}\text { Service } \\ \text { Part No. }\end{gathered}$
C805	Condenser, by-pass, $80 \mu \mu \mathrm{f} ., \pm 5 \% \quad 60-00825317$
C807	Condenser, d-c blocking, $390 \mu \mu \mathrm{f}$., $\pm 5 \%$
C808	Condenser, charging, $270 \mu \mu \mathrm{f}$., $\pm 5 \%$ $60-10275417$
C813	Condenser, anti-ringing, $100 \mu \mu \mathrm{f}$., $\quad 30-1246-2$ 4000 v
C815	Condenser, by-pass, 20μ f., 300v Part of C103
J800	Socket, deflection 27-6274.7
J801	Socket, gate pulse 27.6273
L800	Coil, stabilizing, 30 to 80 mh 32.4557
L801	Coil, r-f choke, horizontal output plate Part of T80C
L802 and	Coils, horizontal deflection Part of deflection
L803	yoke (See Misc. "A")
L804	Coil, r-f choke, damper cathode Part of T800
L805	Coil, r.f choke, damper plate 32-4112-24
PL800	Plug, deflection $\quad \begin{gathered}\text { Part of cable ass'y. } \\ \text { (See Misc. " } \mathbf{A}^{\prime \prime} \text { ") }\end{gathered}$
PL801	$\begin{array}{lr}\text { Plug, gate pulse } & \begin{array}{c}\text { Part of cable ass'y. } \\ \text { (See Misc. "B") }\end{array}\end{array}$
	(Continued on page 25)

TP2-3183
Figure 35. R-F Chassis 97, Bottom View, Showing Voltages at Socket Pins

Figure 36. Deflection Chassis 1-7, Bottom View, Showing Voltages at Socket Pins

Figure 38. Television Tuner, Part No. 76-7600, Schematic Diagram

Figure 39. R-F Chassis 97, Base Layout

REPLACEMENT PARTS LIST (Cont:)
DEFLECTION CHASSIS 1.7 (Cont.)

					ctersmbeic	Descripition	Seme	seritioun					
				TUNER, PART NO. 76-7600 SECTION 5-R.F.									
	TION 2												${ }_{\text {Sext }}^{\text {pert }}$
		Senion 2-viotil				SECTION 4-AUVIO							
deterect				Pomin		Decretion							
					${ }_{\text {cose }}^{\text {cias }}$								
${ }^{\text {c201 }}$	cmitiseme		as, copping					cios $\substack{\text { cos } \\ \text { coio }}$					
	Stem		as, fimpeneme			M \quad f., 1000 vCondenser, filter, $60 \mu \mathrm{f}$.Lamp, pilot	cosem						
	Corememe		, couping										
coict			Coils										
(cas	${ }_{\text {cora }}$	$\underbrace{}_{\substack { \text { che } \\ \begin{subarray}{c}{1216 \\ \text { R20 }{ \text { che } \\ \begin{subarray} { c } { 1 2 1 6 \\ \text { R20 } } }\end{subarray}}$											
	${ }_{c}$		\%			Control Resistor, voltage dropping,							
${ }_{\substack{\text { cil } \\ \text { cil }}}$	${ }_{\text {coon }}$		fres				$\begin{array}{ll}\begin{array}{ll}\text { 27,000 ohms, 1 watt }\end{array} & 66.3274 \\ \begin{array}{c}\text { Resistor, cathode bias, } 180 \text { ohms, } \\ \text { 2 watts }\end{array} & 66-1185\end{array}$				Condenser, by-pass, $680 \mu \mu \mathrm{f}$.		
${ }_{\text {cli }}$													
						ded		${ }_{\text {coser }}^{\substack{\text { c22 }}}$					
${ }_{\text {cher }}^{\text {c2i }}$										30.1245			
			Duererition	Some	$\underset{\substack { \text { Tzao } \\ \begin{subarray}{c}{\text { zano }{ \text { Tzao } \\ \begin{subarray} { c } { \text { zano } } }\end{subarray}}{\substack{\text { and }}}$								
			asiont										
						SECTION 6-STNC							
			come			ex. brpasas 90							
	${ }^{23} \mathrm{~mm}$		Cill										

REPLACEMENT PARTS LIST (Cont.)

television

PHILCO
TELEVISION SERVICE MANUAL FOR
R-F CHASSIS 81
DEFLECTLONCHASSIS H-1

TP2.795
TABLE OF CONTENTS
Circuit Description
A-C Line Isolation
Specifications
Tube Complement
B Supply Fuse Replacement
Horizontal Oscillator Adjustment
Video-Detector Peaking-Coil Adjustment
Television Alignment
General
Test Equipment Required
Jigs and Adapters Required
Mixer Jig
Antenna-Input Matching Network
Video I-F Alignment Jig (Video Test Jack Adapter)
Sound I-F Alignment Jig (FM Test Jack Adapter)
Television Tuner Alignment
Oscillator Alignment
General
Procedure Using Signal Generator
Procedure Using Station Signal
Bandpass Alignment
General
Procedure
Video I-F Alignment
Preliminary
Procedure
Sound I-F Alignment
Oscilloscope Waveform Patterns
Chassis Bottom Views, Showing Voltages at Socket Pins
Base Layours and Schematic Diagrams
Replacement Parts List

Permission is granted to reprint brief excerpts or references from this publication if due credit is given.

CIRCUIT DESCRIPTION

The Philco 1953, Code 123 television receivers make use of a dual chassis arrangement, one chassis containing the r-f, i-f, video, and sync circuits, and the other chassis containing the power and deflection circuits.

Since these chassis are not isolated from the a-c power line, all protruding shafts and mounting feet are insulated from the chassis.

CAUTION: See A-C LINE ISOLATION.

A separate subchassis contains the r-f amplifier, the oscillator, and the mixer. The r-f amplifier uses a 6BZ7 or a 6BQ7 tube, V1. The oscillator and mixer each use one half of a 12 AZ 7 tube, V2. The output of the mixer is fed to a three-stage, stagger-tuned, i-f amplifier system employing three 6CB6 tubes. A type IN64 crystal diode is used for the video detector, the output of which is amplified by a single-stage video amplifier utilizing a type 12BY7 tube, V6. The connections at the detector are such as to produce a composite video signal with negative-going sync pulses. The signal, which is subjected to a 180 -degree phase shift through the video amplifier, is applied to the cathode of the picture tube; therefore, the sync pulses at this point are positive-going. The grid of the picture tube is returned to ground through a resistor (R309). A blanking pulse, taken from the vertical output stage, is applied across R309, for suppression of the vertical retrace.

Sound i.f. (intercarrier) is obtained by utilizing the beat frequency produced when the $26.6-\mathrm{mc}$. video carrier and the $22.1-\mathrm{mc}$. sound carrier are mixed in the video detector. The $4.5-\mathrm{mc}$. beat frequency is the difference between 26.6 mc . and 22.1 mc ., and contains the FM sound signal. This $4.5-\mathrm{mc}$. signal contains only a negligible amount of video amplitude modulation, provided that the amplitude of the $22.1-\mathrm{mc}$. signal is considerably lower than that of the $26.6 \cdot \mathrm{mc}$. signal. The proper relationship between the two carriers is established during the alignment of the receiver. There is sound output only when both the video and sound carriers are present.

The oscillator is tuned primarily to obtain the best picture, since the $4.5-\mathrm{mc}$. relationship always exists between the two carriers. The $4.5-\mathrm{mc}$. sound i.f. (intercarrier), which is taken from the plate circuit of the video amplifier, is passed through a $4.5-\mathrm{mc}$. sound i-f stage using a GAU6 tube, V7, and is then applied to the FM detector, which utilizes two diode sections of a 6T8 tube, V8. The triode section of the 6T8 is used as the first audio amplifier. The power amplifier uses a 6K6GT tube, V9.

A portion of the video signal appearing at the grid of the video amplifier is applied to the pentode section of a 6U8 tube which operates as a sync amplifier, V10A. The output of this stage is composite video with posi-tive-going sync, and is applied to grid 3 (pin 7) of the 6BE6 sync separator, V11. Since grid-leak bias is used on grid 3, the tips of the sync pulses are clamped to zero, and the video components swing in a negative direction from zero. Because of the cutoff characteristics of grid 3, the video components are eliminated, and only negative-going sync pulses appear in the plate circuit of the sync separator. At the same time, however, a signal is taken from the video detector and applied to grid 1 (pin 1) of the 6BE6 tube. This grid is returned to B plus, and the bias is. maintained close
to zero, because of a small grid-current flow. Since the signal applied to grid 1 is composite video with nega-tive-going sync, any noise modulation present in the signal appears in the form of sharp spikes, driving in a negative direction. The circuit constants are chosen to allow grid 1 to cut off plate current whenever the signal goes more negative than the sync pulses. A series grid-limiting resistor (R 614) is also incorporated, to prevent the video components from appearing in the plate circuit of the sync separator. A-G-C voltage is also developed in the sync separator circuit in the following manner: On the tips of the sync pulses, grid 3 (pin 7) of the 6BE6 tube draws current, which flows downward through the network R609, R610, R611, R211, and L214, causing capacitors C604, C602, and C603 to assume negative charges proportionate to the amount of peak signal applied to grid 3. The tuner a-g-c voltage is delayed by means of a resistor divider network which applies a small positive voltage to the tuner a-g-c circuit. This positive voltage prevents a-g.c action from lowering the tuner gain on weak signals. To prevent the delay voltage from driving the tuner a-g-c voltage positive on weak signals, a diode clamp (part of V8B) is connected across C602.

The negative-going sync pulses appearing in the plate circuit of the sync separator are fed to the sync inverter stage, V10B (triode section of the 6U8 tube). This stage acts as a phase-splitter circuit; positive sync pulses appear in the plate circuit, and negative sync pulses are taken from the cathode. Both positive and negative sync pulses are fed through the inter-chassis cable into the deflection chassis.

Proper triggering of the vertical oscillator requires positive synchronizing pulses. The vertical sync signal is separated from the horizontal sync signal by the integrator circuit, and is fed to the grid of the vertical blocking oscillator tube, one-half of a 12BH7, V12. The output of the vertical blocking oscillator is amplified by the other half of the 12BH7 tube, which is employed as the vertical output amplifier. The output of the amplifier is applied to the vertical-deflection coils through the vertical output transformer.

The horizontal sweep circuits require both positive and negative sync pulses. The phase-comparer circuit uses a 6AL5 tube, V13. Positive sync pulses are applied to the plate of V13A, and negative sync pulses are applied to the cathode of V13B. A saw-tooth voltage is fed to the plate of V13B and to the cathode of V13A, for comparison of the sync and horizontal sweep voltages. When the saw-tooth and sync signals are exactly in phase, no voltage is developed across R800, but when the two signals are out of phase, either a positive or a negative voltage is developed, depending upon whether the horizontal-oscillator frequency is lower or higher than the sync-pulse frequency. The grid circuit of the horizontal oscillator, a 12AU7 (V14) cathode-coupled multivibrator, is connected to R800 through a filter network; when the voltage at this point goes in a positive direction, the frequency of the horizontal oscillator is increased, and when the voltage swings negative, the frequency of the oscillator is decreased. In this manner the frequency of the horizontal oscillator is controlled over the lock-in range of the circuit. The horizontal hold control (R811) adjusts the horizontal oscillator frequency so that it is within the control range of the phase comparer. The output of the horizontal oscillator is fed to the horizontal output amplifier, which makes use of a 6BQ6 tube, V15. This amplifier feeds the deflection coils
through the horizontal output transformer. A 6AX4GT tube, V16, is used as the horizontal damper.

The second anode voltage for the picture tube is supplied by one 1B3GT high-voltage rectifier tube, V17. The B plus voltage for the receiver is supplied by two selenium rectifiers, CR100 and CR101, in a fullwave voltage-doubler circuit, operating directly from the power line. Bias voltage is obtained from across the speaker field coil (used as a filter choke), which is in series with the negative side of the B plus supply. The B plus boost voltage, derived from the horizontal damper circuit, supplies higher B plus voltage to the vertical amplifier, vertical oscillator, and the first anode of the picture tube. Filament voltage for all the tubes except the high-voltage rectifier is supplied by a stepdown transformer. Filament voltage for the high-voltage rectifier is supplied by a winding on the horizontal output transformer.

IMPORTANT
 A-C LINE ISOLATION

CAUTION: One side of the a-c line is connected to the chassis through C101 and L100. The other side of the a-c line is connected to the chassis through R100, CR100, and C103, in series. Grounding the chassis will result in a short circuit across one or the other of these two branches in the voltage-doubler circuit. During servicing and alignment it is desirable that an a-c line isolation transformer capable of handling at least 225 watts (Philco Part No. 45-9600) be used. Failure to use an isolation transformer will greatly increase the shock hazard, and may result in damage to the test equipment or receiver, or both.

SPECIFICATIONS

CHANNEL TUNING position incremental oscillator	Twelve Channel, 12 er; fine tuning of local
FREQUENCY RANGE through 13	Television Channels 2
INTERMEDIATE FREQ	CIES
Video Carrier	26.6 mc.
Sound (intercarrier)	4.5
TRANSMISSION LINE	$300 \cdot \mathrm{ohm}$, twin-wire lead
OPERATING VOLTAG	120 volts, 60 cycles,
POWER CONSUMPTIO	175 w

TUBE COMPLEMENT RF-81 CHASSIS

REFERENCE SYMBOL	TUBE TYPE	FUNCTION
V1	6BZ7 miniature	R-F Amplifier
V2	12AZ7 miniature	Oscillator-Mixer V3, V4, V5
6CB6 miniature	Video I-F Amplifiers	
V6	12BY7 miniature	Video Output Amplifier
V7	6AU6 miniature	Sound I-F Amplifier
V8	6T8 miniature	Ratio Detector, First Audio, and Tuner A-G-C Clamp
V9	6K6GT	Audio Output
V10	6U8 miniature	Sync Amplifier, Sync Inverter
V11	6BE6 miniature	Sync Separator, A-G-C
V18	17YP4, 20DP4A,	
	or 21EP4A	Picture Tube

H-1 DEFLECTION CHASSIS

| REFERENCE |
| :---: | :--- | :--- |
| SYMBOL |\quad TUBE TYPE $\quad c \quad$ FUNCTION

B SUPPLY FUSE REPLACEMENT

The B supply protective fuse, $F 100$, is wired into the low-voltage section, and is in series with the selenium rectifiers. For replacement, use a 1.6 -ampere delayed-action-type fuse, Philco Part No. 45-2656-23.

CAUTION: Discharge the circuit before replacing the fuse.

HORIZONTAL-OSCILLATOR ADJUSTMENT

To adjust the horizontal-oscillator circuit, tune in a station and proceed as follows:

1. Reduce the width of the picture until approximately 1 inch of blank screen appears at the right-hand and left-hand sides of the picture.
2. Increase the BRIGHTNESS control setting until the blanking becomes visible. This will appear as a dark vertical bar on each side of the picture.
3. Connect a $.1-\mu f$. condenser from pin 9 of the chassis-connecting power socket, $J 101$, to ground. (The plate side of the horizontal ringing coil, L800, is connected to pin 9 of J101.)
4. Set the HORIZONTAL HOLD control to the approximate center of its mechanical rotation.
5. Adjust the HORIZ HOLD CENTERING control until equal portions of the blanking bar appear on both sides of the picture.
6. Remove the $.1-\mu \mathrm{f}$. condenser from the chassisconnecting socket.
7. Adjust the horizontal ringing coil, L800, until equal portions of the blanking bar again appear on both sides of the picture.
8. Rotate the HORIZONTAL HOLD control through its range. The picture should fall out of sync on both sides of the center of its rotation. If the picture does not fall out of sync on both sides, readjust the HORIZ HOLD CENTERING control.
9. Rotate the HORIZONTAL HOLD control through its range, and observe the number of diagonal blanking bars that appear just before the picture pulls into sync. The pull-in should occur with from 1 to 2 diagonal bars when the sync position is approached from either direction. If proper pull-in is not obtained, repeat the above procedure.

VIDEO-DETECTOR PEAKING-COIL ADJUSTMENT

The video-detector peaking coil, L214, is adjusted at the factory for proper transient response of the video circuit. Ordinarily, this coil will require no further adjustment by the serviceman. On some stations, however, where excessive overshoot or excessive smear
is present, a slight adjustment of L214 may improve the picture quality on that station, but at a possible sacrifice of quality on other channels. If L214 is replaced in servicing, adjustment will be required.
Before adjusting L214, check the tuner alignment and i-f alignment. (Never adjust L214 until the alignment of the receiver is correct.) Then tune in a station and adjust L214 until there are no trailing whites or smear in the picture. Turning TC206 clockwise reduces trailing whites and overshoot; turning TC206 counterclockwise reduces picture smear and increases trailing whites. The proper position is the point where no smear or trailing whites appear in the picture.

The above procedure for adjustment of TC206 applies to a particular station exhibiting smear or overshoot. After TC206 is adjusted, reception on all the other stations should be checked, to make certain that the adjustment has not impaired the picture quality.

TELEVISION ALIGNMENT

GENERAL

The alignment consists of tuning each i-f coil to a given frequency, using an AM signal, then feeding in a sweep signal at the antenna terminals and touching up the adjustments to obtain the desired pass band.

The over-all response curve ($\mathrm{r}-\mathrm{f}, \mathrm{i}-\mathrm{f}$) of the circuits, from the antenna terminals to the video detector, after the i-f stages have been aligned, should appear essentially the same, regardless of the channel under test. If not, the tuner should be aligned.

The video-carrier intermediate frequency is 26.6 mc ., and the sound intermediate (intercarrier) frequency is 4.5 mc . Alignment of these circuits requires careful workmanship and good equipment. The following precautions must be observed:

1. There must be a good bond between the receiver chassis and the test equipment. This is most easily obtained by having the top of the workbench metallic. The receiver chassis should be placed tuner-side down on the bench. If the bench has no metallic top, the test equipment and chassis can be bonded by a strip of copper about 2 inches wide. The section of the chassis nearest the tuner should rest on the strip.
2. Do not disconnect the picture tube, picture-tube yoke, or speaker while the receiver is turned on.
3. Allow the receiver and test equipment to warm up for 15 minutes before starting the alignment.
4. The marker (AM) signal generator should be calibrated accurately to the frequencies used and to the sound and video r-f carriers of each channel used during alignment. If Model 7008 is used, the built-in crystal calibrator provides an excellent means of calibration. An alternate method for calibrating the signal generator to the sound and video r-f carrier frequencies is to zero-beat the signal generator with the received signals.
For further information regarding calibration, refer to Philco Lesson PR-1745 (J) entitled "Television Service in the Home."

TEST EQUIPMENT REQUIRED

The following test equipment is recommended for aligning the receiver:

1. Philco Precision Visual Alignment Generator for Television and FM, Model 7008, or equivalent.
2. Vacuum-tube voltmeter, or 20,000 -ohms-per-volt voltmeter.
3. R-F Probe, Philco Part No. 76-3595 (for use with Model 7008 generator).

JIGS AND ADAPTERS REQUIRED

Mixer Jig

Connections to the grid of the mixer tube may be made through the alignment jack provided for that purpose. To connect the generator to this point, a mixer-grid jig, Philco Part No. 45-1739, and a connecting cable, Philco Part No. $45-1635$, may be used. As an alternate, a Philco alligator-clip adapter, Part No. 45-1636, with as short a ground lead as possible, may be used to connect the alignment jack. The ground lead should be connected as close as possible to the mixer tube. It is essential that the signal-generator output lead be terminated with a 68 -ohm resistor (carbon), so that regeneration, caused by connection of the lead to the mixer, is held to a minimum.

TPO. 1179
Figure 1. Antenna-Input Matching Network

Antenna-Input Matching Network

Figure 1 shows an impedance-matching network for coupling the signal generator to the antenna-input terminals of the receiver. This network, which is designed to have an input impedance of 75 ohms and an output impedance of 300 ohms, is used to match a 75 -ohm generator to a 300 -ohm aerial-input circuit. The resistors used in this network should be of carboncomposition construction, and should be chosen from a group, to obtain values within 10% of those indicated. The resistors should be placed in a shield can, to prevent variable effects. An antenna matching jig, Philco Part No. 45-1736, which consists of a matching transformer and connecting box, may be used in place of the resistor network.

Video I-F Alignment Jig (Video Test Jack Adapter)

The ALIGN TEST jack adapter, shown in figure 2, should be used during the i-f alignment to apply the proper bias to the a-g-c bus, and to provide a convenient oscilloscope connection. This adapter consists of a 5 -prong plug, a 10,000 -ohm potentiometer, a 2200 -ohm isolating resistor, and a 3 -volt battery. A suggested method of fabricating the adapter is also shown. It is suggested that the bias battery and potentiometer be mounted in a metal box of convenient size.

The poteniometer and switch are connected across the 3 -volt battery. The switch is used to disconnect the poteniometer, to prevent the discharge of the battery while not in use. The 1000 -ohm resistor in series with the arm of the control will prevent rapid discharge of the battery if the leads are accidentally shorted.

Figure 2. Video I-F Alignment Jig

Sound J-F Alignment Jig (FM Test Jack Adapłer)

Figure 3 shows the adapter that should be used to connect the voltmeter and oscilloscope to the VOLUME CONTROL socket, J400. A suggested method of fabricating the adapter is also shown.

TELEVISION TUNER ALIGNMENT

After the tuner is serviced, or if an i-f alignment is required, the tuner alignment should be checked by observing the tuner response curve as given under BANDPASS ALIGNMENT. If the response curve does not fall within the limits shown in figure 5, the tuner should be realigned. If realignment is necessary, use the procedure given below.

Since the frequency of the local oscillator affects the tuner response, the local-oscillator alignment should be made first.

OSCILLATOR ALIGNMENT

General

Tuning cores are provided in the oscillator coils at channels $13,11,9,7,6$, and 4 . By adjusting these tuning cores all channels may be placed on frequency. This
procedure should be carried out with the highestfrequency channel first, since the alignment of each channel affects the alignment of all the channels below it in frequency.

The channel adjustments are so arranged that, with one exception, each adjustment corrects the tuning of more than one channel. The coverage of the various adjustments is as follows:
Channel
Adjustment
13
11
9
7
6
4

Channels Corrected By Adjustment

13 and 12
11 and 10 9 and 8
7 only
6 and 5
4,3 , and 2

The FINE TUNING cam should be preset for all adjustments by placing the stop on the FINE TUNING cam between Channel 7 and 8 holes on the front plate of the tuner. See figure 4.

Procedure Using Signal Generator

An r-f signal (unmodulated), at the oscillator frequency, is fed into the antenna input from an AM signal generator, and the oscillator tuning cores are adjusted for zero beat. The r-f signal frequency should be accurately determined. It is preferable that the signal be taken from a crystal-controlled source; if this is

TP2-2201
Figure 4. Television Tuner, Showing Location of Adjustments

Figure 3. Sound I-F Alignment Jig
not available, the signal generator may be calibrated against the television station.

1. Connect the hot lead of the oscilloscope to the mixer plate test point, G2, through a 1000 -ohm resistor, and connect the ground lead of the oscilloscope to the chassis, near the test point. (High oscilloscope gain may be necessary to obtain a visual beat. In this instance, base-line hum may be ignored.)
2. Connect the AM (marker) generator to the $300-$ ohm antenna-input terminals. For this purpose the antenna-input matching network is not required.
3. If the tuner is being aligned out of the chassis, connect the white lead to the negative terminal of a 1.5 -volt battery. Ground the positive terminal.
4. Mechanically preset the FINE TUNING cam, as shown in figure 4.
5. Feed in an r-f signal (unmodulated), at the oscillator frequency for Channel 13, with the CHANNEL SELECTOR set for Channel 13.
6. Adjust the tuning core for Channel 13 (see figure 4).
7. Reset the signal-generator frequency and the CHANNEL SELECTOR, and adjust the tuning cores for Channels 11 and 9, respectively.
8. Repeat steps 5, 6, and 7 until Channels 13, 11, and 9 are within plus or minus 500 kc . of the correct frequency.
9. Feed in r-f (unmodulated) signals, at the oscillator frequencies for Channels 7, 6, and 4, consecutively (see NOTE below), and adjust the respective tuning cores. (See figure 4.)

NOTE: The exact position of the FINE TUNING cam should be marked when Channel 4 is correctly aligned. This position is to be used in step 4 of the i-f alignment procedure.

Procedure Using Station Signal

The following simplified procedure may be used to align the oscillator when the television i-f alignment is satisfactory and a station signal is available:

1. Mechanically preset the FINE TUNING cam to the center of its range (see figure 4).
2. Tune in the highest-frequency channel to be received.
3. Adjust the tuning core for that channel, or the next highest channel, for the best picture; that is, starting with sound in the picture, turn the tuning core until the sound disappears. Repeat for each channel received in the area.

BANDPASS ALIGNMENT General

The bandpass alignment consists of aligning the tuner at Channels 13 and 6, and then making it track down to Channels 7 and 2, respectively.

During the alignment, a fixed bias of 1.5 volts is applied to the r-f amplifier tube.
An FM (sweep) signal is applied to the antennainput circuit, and an oscilloscope is connected to the mixer plate circuit. The oscilloscope gain should be as high as possible, consistent with hum level and "bounce" conditions. Hum conditions will cause distortion of the time base and response. Bounce conditions, which are caused by poor line regulation, will cause the response and time base to jump up and down. The use of too high an oscilloscope gain aggravates these conditions, whereas the use of too low a gain necessitates increasing the generator output to a point where the tuner may be overloaded. Overload may be
checked by changing the generator output while observing the shape of the response curve; any change in the shape of the curve indicates overload, in which case a lower generator output and higher oscilloscope gain must be used. The tuner coupling link is disconnected from the i-f section and a 40 - to $70-\mathrm{ohm}$ resistor connected across the open end of the link, to eliminate the absorption effect of this coil on the response curve.

1. Disconnect the white (a-g-c) lead from the tuner, and connect it to the negative terminal of a 1.5 -volt battery. Ground the positive terminal.
2. Disconnect the tuner link at terminal board B11-7 and B11-8 (see figure 34), and connect a 40- to 70-ohm carbon resistor to the two leads of the link.
3. Connect a 1000 -ohm resistor in series with the hot lead of the oscilloscope. Connect the other end of the resistor to the mixer plate test point, G2, and connect the ground lead of the oscilloscope to the chassis, near the test point.
4. Connect the FM (sweep) generator to the 300 ohm antenna input through an antenna-input matching network. See figure 1 .

Procedure

1. Set the CHANNEL SELECTOR and FM (sweep) generator to Channel 13 (213 mc .). Adjust the generator for sufficient sweep to show the complete response curve.
2. Establish the channel limits (see figure 5) by using the marker (AM r-f) signal generator to produce marker pips on the response curve. (Set the marker generator first to 210 mc ., then to 216 mc .) The curve should be reasonably flat between the limits shown in figure 5.
3. Adjust TC502 and TC504 (figure 4) for a symmetrical, approximately centered pass band. Set marker generator to 213 mc . Detune TC504 counterclockwise until a single peak appears. Adjust TC502 until the peak fadls on the $213-\mathrm{mc}$. marker. It may be necessary to increase the output of the generator during this adjustment. Then adjust TC500 for maximum curve height and symmetry of the single peak. The antenna circuit is now tuned for the high-frequency channels.
4. Readjust TC502 and TC504 for a symmetrical

Figure 5. Television Tuner Response Curve Showing Bandpass Limits

Figure 6. Television Tuner Response Curve, Showing Tracking Compensation
response, centered about 213 mc . and falling within the limits shown in figure 5 .
5. Set the CHANNEL SELECTOR and FM generator to Channel 7 (177 mc .).
6. Establish the channel limits by using the markersignal generator to produce marker pips on the response curve. (Set the generator first to 174 mc ., then to 180 mc .) The curve should be reasonably flat between the limits.
7. On Channel 7, note the response curve, with respect to tilt and center frequency. The curve should be centered in the pass band, and should be sym. metrical.
8. If the curve is not symmetrical and appears unbalanced, as shown in figure 6 , leave the generator and runer set to Channel 7 and adjust C507 and C512 (see figure 4) to obtain a response curve which is the mirror image (tilt in the opposite direction) of the original. This is a form of overcompensation, to allow for the effect of Channel 13 adjustment on Channel 7. For example, if the Channel 7 response appears as in figure 6A, then the trimmer should be adjusted to obtain the response shown in figure 6B.
9. Reset the CHANNEL SELECTOR and generators to Channel 13. Readjust TC502 and TC504 for a symmetrical and centered band pass. (See step 4.)
10. Set the CHANNEL SELECTOR and generators to Channel 7, and check the response for center frequency and symmetry. Repeat steps 8 and 9 as many times as necessary to obtain the most symmetrical and centered response curves on Channels 13 and 7. Channels 7 through 13 are now correctly aligned.
11. Set the CHANNEL SELECTOR and sweep generator to Channel 6 (85 mc .).
12. Establish the channel limits, using the marker generator to produce marker pips on the response curve. (Set the generator first to 82 mc ., then to 88 mc .)
13. Adjust TC503 and TC505 for a symmetrical, approzimately centered pass band. Set the marker generator to 85 mc . Detune TC505 counterclockwise until a single peak appears.

CAUTION: Do not turn TC505 excessively, or it will fall out of the coil.
Adjust TC503 until the peak falls on the $85-\mathrm{mc}$. marker. It may be necessary to increase the output of the generator during this adjustment. Then adjust TC501 for maximum curve height and symmetry of the single peak. The antenna circuit is now tuned for Channels 2 through 6.
14. Readjust TC503 and TC506 for a symmetrical response, centered about 85 mc .

VIDEO I-F ALIGNMENT

PRELIMINARY

Before proceeding with the alignment or making an alignment check, observe the following preliminary instructions:

1. Preset the CONTRAST and BRIGHTNESS controls to the maximum counterclockwise position.
2. Preset the CHANNEL SELECTOR to Channel 4.
3. Insert the video i-f alignment jig into J200.
4. Connect the oscilloscope to the 2200 -ohm resistor from the video i-f alignment jig. Connect the ground lead of the oscilloscope to the ground lead of the jig.
5. Connect a 3 -volt bias battery to the video i-f alignment jig, with the negative terminal of the battery to the bias lead of the jig, and the positive terminal to the ground lead.
6. Connect the AM generator to the mixer test point, G-1, through a mixer jig, and adjust the generator for approximately 30 percent modulation with 400 cycles. Adjust the output of the generator during alignment to keep the output at the second detector below .6 volt, peak to peak.

NOTE: If the i-f shield has been removed for repairs, it must be replaced before proceeding with alignment.

PROCEDURE

1. Tune the AM generator to 28.1 mc ., and adjust TC200 (see figure 7) for minimum output, as observed on the oscilloscope.
2. Tune the AM generator to 22.1 mc ., and adjust TC203 for minimum output, as observed on the oscilloscope.

NOTE: In steps 1 and 2 it is necessary to keep the generator output sufficiently high that a null indication may be observed on the oscilloscope; however, avoid overloading of the receiver by excessive signal.
3. Tune the AM generator to the frequencies indicated below, and adjust the tuning cores for maximum output.
a. 24.0 mc .-adjust TC512. d. 26.4 mc .-adjust TC204. b. 25.7 mc .-adjust TC201. e. 24.5 mc .-adjust TC205. c. 23.6 mc .--adjust TC202.
4. Connect the sweep generator and r-f marker generator to the antenna terminal through a matching jig. (If a separate oscilloscope is used, connect the sweep output of the generator to the horizontal input of the oscilloscope.) Set the CHANNEL SELECTOR to Channel 4, and tune the sweep generator for output on Channel 4. After the equipment is propertly connected, adjust the FINE TUNING control to the mark, as indicated in the NOTE under OSCILLATOR ALIGN. MENT.
5. If the response curve does not fall within the limits shown in figure 8, the adjustment of the tuning cores may be touched up slightly, while observing the response curve with the sweep generator. Do not retouch the setting of TC200 and TC203. To adjust the curve, adjust TC201 and TC204 for proper video carrier level. The top of the curve may be leveled by adjusting TC205, and the low-frequency side of the curve may be adjusted by adjusting TC202. By means of these adjustments the response curve should be brought within the limits shown in figure 8.

CAUTION: Do not turn any of the tuning cores excessively. To retouch, only turn the tuning cores slightly.

Figure 7. R-F Chassis 81, Top View, Showing Location of Adjustments

SOUND I-F ALIGNMENT

1. Remove the first i-f tube, and connect a v.t.v.m. or a 20,000 -ohms-per-volt voltmeter to the FM TEST jack adapter. Adjust the VOLUME control for moderate speaker output.
2. Feed in an accurately calibrated in the video i-f nal through the $2200-0 h m$ res
3. Tune TC400, TC401, and TC402 for maximum indication on the meter. The point of maximum meter indication for TC402 should also be the point of minimum speaker output.
4. Tune TC402 for minimum speaker output.
5. Connect an r-f probe or crystal detector to the grid (pin 2) of the picture tube. See NOTE below.

Figure 8. Over-all R-F, I-F Response Curve, Showing Tolerance Limits
6. Tune TC 300 for minimum indication on oscilloscope. If a crystal detector is not available, TC300 may be adjusted for minimum beat pattern, observed on the picture tube, with a station picture present.
7. Replace the first i-f tube. Tune in a station and use the speaker output as an indication.
8. Turn the FINE TUNING control clockwise to obtain a slightly fuzzy picture.
9. Tune TC402 for minimum AM (noise) output.

NOTE: The R-F Probe, Part No. 76-3595, is used as a detector of the $4.5-\mathrm{mc}$. signal, and the oscilloscope as an indicating device. An alternate crystal detector may be made up as shown in figure 9.

1P0-1150
Figure 9. Wiring Diagram of Crystal Detector OSCILLOSCOPE WAVEFORM PATTERNS
The waveforms shown on pages 9 and 10 were taken with the receiver adjusted for an approximate peak-topeak output of 3 volts at the video detector. The voltages given with the waveforms are approximate peak-to-peak values. The frequencies shown are those of the waveforms-not the sweep rate of the oscilloscope. The waveforms were taken with an oscilloscope having good high-frequency response. With oscilloscopes having poor high-frequency response, the sharp peaks of the horizontal waveforms are more rounded than those shown, and the peak voltages differ from those shown.

TP2-787
Figure 10. Video-Detector Outpit, Pin 2 of $\mathbf{J 2 0 0}$
3 velts, 60 c.p.s.

TP2-790
Figure 13. Sync Amplifier Plate, Pin 6
66 welts, 60 c.p.s.

TP2-791
Figure 16. Sync Inverter Plate, Pin i
20 volts, 15,750 c.p.s.

TP2-697
Figure 9. Vertical-Oscillator Plate, Pin 1
130 volts, 60 c.p.s.

TP2-786
Figure 11. Video-Detector Outpuł, Pin 2 of J200
3 volts, 15,750 c.p.s.

TP2-790
Figure 14. Sync Seperator Grid, Pin 7
50 volts, 60 c.p.s.

Figure 17. Syuc Inverter Cathode Pin 8
6.8 volts, 15.750 c.p.s.

TP2-6:4
Figure 20. Vertical-Output Grid, Pin 7
120 volts, 60 c.p.s.

TP2-78B
Figure 12. Video Amplifier Plate, Pin 7
66 volts, 60 c.p.s.

TP2-792
Figure 15. Syec Seperefor Prote,
Pin 5
19.8 volts, 15,750 c.p.s.

TP2.643
Figure 18. Verticul-Oscilletor Grid, Pin 2
165 volts, 60 c.p.s.

TP2-645
Figure 21. Vertical-Output Plefe, Pin 6
450 volts, 60 c.p.s.

TP2.64I
Figure 22. Phase-Comparer Plate, Pin 2
10 volłs, 15,750 c.p.s.

TP2.646
Figure 25. Horizontal Oscillator Junction of L800, R806, and C806 35 volts, 15,750 c.p.s.

TP2.642
Figure 23. Phase-Comparer Cathode, Pin 1
10 volts, 15,750 c.p.s.

TP2-647
Figure 26. Horizontal-Oscillator Cathode, Pins 8 and 3
16 volts, 15,750 c.p.s.

TP2. 652
Figure 24. Phase Comparer, Pins 5 and 6 6 volts, 15,750 c.p.s.

TP2-648
Figure 27. Horizontal-Oscillator Grid, Pin 2
38 volts, 15,750 c.p.s.

TP2.649
Figure 28. Horizontal-Output Grid, Pin 5
130 volts, 15,750 c.p.s.

TP2-650
Figure 29. Horizontal-Deflection
Yoke, *Pin 7 of J800
3000 volts, 15,750 c.p.s.
*See CAUTION below.

CAUTION: High-voltage pulses are present in the horizontal-output circuit. The waveform in figure 29 was taken with the alligator clip of the oscilloscope lead clipped over the insulation of the lead connected to pin 7 of J800. (To prevent puncture of the insulation of the lead, file off the teeth of the alligator clip and wrap friction tape around the clip.) Connection to other points in the horizontal-output circuit is dangerous, because of the high voltages present. The peak-to-peak voltage shown for figure 29 is the actual voltage present; however, the amplitude of the scope presentation depends upon the degree of coupling. Radionlisior

Figure 30. R-F Chassis 81, Bołtom View, Showing Voltages af Socke† Pins

Figure 31. Deflection Chassis H-1, Bottom View, Showing Voltages at Socke† Pins

Figure 33. Television Tuner, Parł No. 76-7664, Schematic Diagram

Figure 34. R-F Chassis 81, Base Layouł

replacement parts list

ower supat			SECTION 8-HORIZONTAL SWEEP			
			Rymmic		Some	
${ }_{\text {Rjfumac }}^{\text {Remol }}$	Deartipion	${ }_{\text {comem }}^{\text {Pemine }}$	cicos	Comademe		
			${ }_{\text {chaid }}$		coide	
$\begin{aligned} & \mathrm{c} 101 \\ & \text { cion } \end{aligned}$	(ind		${ }_{\text {cisen }}^{\text {cita }}$	Comel	${ }_{\text {are }}$ Pat octios	
$\begin{aligned} & \text { ckion ad } \\ & \text { friod } \\ & \text { friot } \end{aligned}$			jaso		${ }^{27.6274 .7}$	
		Sictio.				
joo	Sodeteremsis. conaccins....		${ }_{\text {Ligos }}^{12002}$	Cois,		
	Cobets		citios			
01				Coill		
				Comple		
${ }_{\text {R102 }}$	Reidiostaruen inimins,	cose	${ }_{8815}^{8816}$	poamoiomeme	,imisk	
$\begin{aligned} & \text { R103 } \\ & \substack{\text { sion } \\ \text { rioo }} \end{aligned}$				Reidiof		
		. Part of R4 12	${ }^{\text {R8, }}$			
section 7 -vertical sweep			$\begin{aligned} & \text { R819 } \\ & \text { R822 } \\ & \text { T800 } \\ & \hline \end{aligned}$		66.3233540	
	Deseripom			scellaneous		
${ }^{\text {ctoo and }}$				mamemy		
	Somer frri holp			边	coile	
R709					coicle	
R711				为		
-		cois			66.733	

replacement parts list (Cont.)

Figure 35. r.F Chassis 81. Schematic Diagran
Figure 36. Deffection Chassis -1 I, Schemetici Diagram
replacement parts list
CHASSIS TYPES $81 . \mathrm{H}_{1}$

SECTION 1-Power sim			Ection e-horizontal sweep			
${ }_{\text {Remmmer }}^{\text {Refreme }}$		${ }_{\substack{\text { a }}}^{\text {Smaticta }}$				
$\begin{gathered} \substack { c \\ \begin{subarray}{c}{\text { coo and } \\ \text { coos } \\ \text { cois }{ c \\ \begin{subarray} { c } { \text { coo and } \\ \text { coos } \\ \text { cois } } } \end{gathered}$	Coneaseses, elecraysic filuer,					
	Condereme			cind		
${ }_{\text {crineo }}^{\text {criond }}$						
$\underbrace{\text { cio }}_{\substack{\text { fiod } \\ \text { fiod }}}$			cis			
	Socket, chasisis conectig.,					
	Socket, chassis connecting Socket, a-c line.............		${ }_{\substack{1802 \\ 1802}}$			
		Plug a cictioe.		R81		
			${ }^{\text {R815 }}$		Pommioneit hioiziz ioiD	
$\xrightarrow{\text { Siog }}$	2.7 ohms, 1 watt.....Switch, off-onTransformer, filament.	66-9274360.Part of R4 12				
	section 1-vertica					
			dems omm imimit			
				laneous a		
				, 3		
				.		
				picuurewibeses,		

REPLACEMENT PARTS LIST (Cont.)

[^0]: Figure 26. Phase Splitter Cathote
 re 26. Phase Splitter Cathode 10 volts, 15,750 c.p.s.

[^1]: ** NOTE: The length of this cable varies with cabinet and speaker size. For Service Part No. refer to cabinet parts list.

