

PHILCO HOME RADIO MODELS

D-592, D-593, D-595, D-598, D-727, D-728, D-730 and D-736

PHILCO MODEL D. 592

PHILCO MODEL D.593

PHILCO MODEL D. 595

PHILCO MODEL D-598

PHILCO MODEL D.727

PHILCO MODEL D. 728

PHILCO MODEL D. 730

PHILCO MODEL D. 736

Factory-Supervised Service

SPECIFICATIONS

CabinetD.SS2, D-593, D.595, D.727. D. 728 and D. 730 - molded plastic: D. 598 and D. 736 wood table model.

Circuit
Fous tube superheterodyne (plus rectifier).

Frequency Range 540 KC to 1620 KC .
Audio Output Watt
Operating VoltageD.592, D.593, D-595 and D-598-105 to 120 volts. AC or DC: D.727, D.728, D730 and D.736-105 to 120 volts AC only.

Power Consumption
30 Walts
Aerial
Self Contained Magnacore
Intermediate Frequency \qquad .455 KC

Philco Tubes12BE6 ConverterOscillator, 12BA6 I-F Amplifier, 12AV6 Detector - lst Audio, 35CS Audio Output and 35W4 Rectifier.

Clock Features D. 727 - Sessions movement, radio alarm.
D-728 - Sessions movement. radio alarm.
D-730 - Sessions movement radio and buzzer alarm.
D-736 - Sessions or Tele chron (C99S) movement, radio and buzz alarm

Pilot Lamp
................Model D. 598 employs a neon lamp as an oft on indicatos.

Phono. Input Model D-598 incor porates a phono-input jack a variable tone control and a "radio-phono" switch.

ALIGNMENT PROCEDURE

RADIO CONTROLS - Set volume control to maximum. Set tuning control as indicated in chart.

OUTPUT METER - Connect across voice-coil terminals.

SIGNAL GENERATTOR - Connect generator and set frequency as indicated in chart. Use modulated output.
OUTPUT LEVEL - During alignment, adjust signal-generator output to hold output-meter reading below .5 volts.

ALIGNMENT CHART

STEP	SIGNAL GENERATOR		RADIO		ADJUST
	CONNECTION TO RADIO	DIAL SETTING	DIAL SETTING	SPECIAL INSTRUCTIONS	
1	Ground lead to B-: output lead through a .1 mf . condenser to grid (pin 7) of 12BE6.	455 KC	Tuning gang fully open.	Adjust tuning cores, in order given, for maximum output. TCl and TC3 are located at top of transformers.	TC4-2nd i-f sec. TC3-2nd i-1 pri. TC2—lst i-f sec.
2	Radiating loop (See note below).	1620 KC	1620 KC *	Adjust trimmer for maximum output.	Cl-B-osc.
3	Same as Step 2.	1500 KC	1500 KC	Adjust trimmer for maximum output.	Cl-A-aerial

NOTE: Make up a 6-8 turn, 6 inch diameter loop from insulated wire, connect to signal-generator leads, and place near radio loop.
For proper adjustment of the oscillator trimmer, fully open the tuning gang and insert a . 006 inch non-metallic shim between the heel of the rotor and the top of the stator plates. Close the tuning gang sufficiently to hold the shim in place, and then remove the shim without disturbing the gang setting.

Composite Photo of Printed Panel Showing Parts Layout

REPLACEMENT PARTS LIST

SCHEMATIC OF MOOELS D-592. D-593 AND D-595 FOR MODELS D-727. D-728. D-730 AND D-736 REFER TO CLOCK CIRCUIT IN INSERT

PHILCO PORTABLE RADIO MODELS D-664 AND D-665, CODE 124 AND D-665, CODE 126

MODEL D. 665

ALIGNMENT PROCEDURE

General - Allow set and test equipment to warm up for fifteen minutes before starting the alignment.
Dial Indicator - Before alignment, the dial knob should be set as follows: with the condenser gang plates fully meshed, the first knob marking (past the 550 KC point) should be in line with the gold spot.

Output Indicator - Connect a 1000 -ohms-per-volt a-c voltmeter or an oscilloscope across the voice-coil terminals.
Signal Generator - Use an AM r-f signal generator. Connect the ground lead to B-, and connect the output lead as indicated in the alignment charc.

Output Level - Attenuate the signal-generator output throughout the alignment so as to maintain the output below .4 volts.
Radio Controls - Set the volume control to maximum. Set the tuning control as indicated in the alignment chart. It is recommended that a-c power be used when aligning the radio.

MODEL D. 664

SPECIFICATIONS

Circuit - Four tube superheterodyne (plus selenium rectifier).
Audio Output - AC or DC operation 150 milliwatts.
Battery operation - 75 milliwatts.
Supply Voltage - 117 volts, AC or DC. 3.0 volt "A" supply and 75 volt "B" battery.
Power Consumption - AC or DC operation, 11 watts; battery operation, 10 MA from " B ", 130 MA from " A ".
Antenna - Magnecor, high-impedance loop.
Intermediate Frequency - 455 KC .
Pbilco Tubes - 1R5 Converter, 1U4 I-F amplifier, 1 S 5 detector - A.V.C. - 1 audio, 3 V 4 output.
Battery Types - P. 144 "B" battery, (2) P-77 "A" batteries.

ALIGNMENT CHART

STEP	SIGNAL GENERATOR		RADIO			ADJUST
	CONNECTION TO RADIO	DIAL SEITING	DIAL SETTING	SPECIAL INSTRUCTIONS		
1	Connect signal generator through a . 1 mfd condenser to pin 6 (converter grid) of IR5	455 kc.	Tuning gang fully open.	Adjust for maximum der given.	oupput in or-	TC4-2nd 1.F sec. TC3-1st J-F sec. (top Z1) TC2-1st I-F pri. (bot Z1)
2	Use radiating loop (5ee note one below).	1620 kc.	1620 kc. (5ee note 2 below).	Adiust for maximum.		CIB-osc. trimmer
3	Same as step 2.	1400 kc .	1400 kc. (Tune for signal.)	Adjust for maximum.		ClA-ant. trimmer
4	Same as step 2.	600 kc.	600 kc. (Tune for signal.)	Adiust for maximum funing gang while adjustment.	output. Rock making this	TC-1-Osc. core
5	Repeat steps 2, 3, and 4 until no further improvement is noted.					

[^0]

BASE VIEW

Schematic for Models D-664, D-665-124, D-665-126

PHILCO HOME RADIO

PHONOGRAPH MODELS D-1337, D-1339, D-1344 and D-1346

PHILCO

Factory-Supervised

Service

SPECIFICATIONS

Circtat - Two tuhe amplifier plus rectifier. Andic Output - 1.0 watt.
Operating Voltage - $105-125$ volts, 60 cy cles, A.C.
Pouer Comsumption - 55 watts.
Recond Changer - Model D-1337, first proiduction uses M-24A; later production uses M-26.
Models D-1339, D-1344 and D-1345 use M-26. For service information on M-24A or M-26 refer to service manual PR-2178.
Cabinets - Leatherette covered wood portable. Speakers - Models D. 1337 and D-1339, one 4" pm.
Model D-1344, two 4" pm.
Medel 1)-1346, two 6" pm.

Model D.134s

REPLACEMENT PARTS LIST

Copyright, 1955, PHILCO CORPORATION
Reproduction of any material within this publication is prohibited without the written consent of the copyright owner, PHILCO CORPORATION

PHILCO RECORD PLAYER

MODELS D-1331, D-1333 AND D-1335

SPECIFICATIONS

CABINET
CIRCUIT
AUDIO OUTPUT
OPERATING VOITAGES
POWER CONSUMPTION.
PHILCO TUBE
MOTOR

REFERENCE
 SYMBOL

D-1331—Metol, D-1333 \& D-1335—Wood (Plostic Covered) One iube (plus Selenium Rectifier) Audio Amplifier 1 Wott 105 Valts to 125 Volts, 60 cycle, o.c. 35 Wotts of 117 Volts, 60 cycle, o.c. 25L6GT 90 Volts, 3 Speed ($331 / 3,45$ and 78 RPM.)

REPLACEMENT PARTS LIST

	(ELECTRICAL)
Cl	Conderser, phono-coupling, $01 \mathrm{mfd}{ }_{\text {a }}$...........................30-1238-2
C2	
C3	Conderiser, electrolytic, $80-20 \mathrm{mfd} / 150 \mathrm{~V}$......................30-2575-42
CR1	Selenimm Rectifier ...-8-8003-23
LS1	Speaker ..66-1654-4
R1	Volume Control, 500,000 ohins, plus switeh.................33-5566-69
R2	Resistor, cathode bias, 120 ohms.....................................66-1128340
123	liesistor, $\mathrm{B}+\mathrm{filter}, \mathrm{10,000} \mathrm{olims....................................66-3108340}$
R4	Resistor, current limiting, 60 ohms....................................33-1334-18
Tl	Transformer, audio output ${ }^{\circ}$..32-8310-3
IV1	Line Cord ...

a NOTE-Output transformer is mounted on speaker. Transformer listed may not fit all suppliers' speakers.

(RECORD PLAYER)

Motor, 90 volts	1515
Idler Wheel, motor	76-9325
Tone Arm Assembly	35-2735
Cartridge and Needle assembly	425-0012
Needic, 78 RPM	325-0091
Need'e, $33^{1 / 3}$ and 45 RPM	25-0091-1
Pickup Knob and sct screw	76-9380
Retaining Ring, tone arm	IW42296
Rest, tone arm, rubber	54-9672
Shaft Assembly, tone arm	76-9443
Spring, pickup detent	28-10461
Spring, needle pressure	28-10460
Spring tone arm bushing	28-10376
Washer, tone arm	28-10377
Turntable	35-2734
45 RPM adaptor	54-6172
Spring, 45 RPM adaptor	28-10382

(MISCELLANEOUS)
Model D-1331

Model D-1333
Carring case, Ginger ..11122

Feet, 4 used ..-56765
Handle ...54-5210

Model D-1335

Cork and Sierra Brown ...1122-4

Feet, 4 used
Handle, Antique White, Carribean Green and Patina Green........54-5210-2
llandle, Cork and Sierra Brown
54-5210-3
llinge, 2 used 28-10595
Knob, volume 54-4842-14

MODEL D-1333

FIGURE 1-Tone Arm Assembly Mounting

FIGURE 2-Lubrication

FIGURE 3-Base View, Components Layout

Schematic Diagram, Models
D-1331, D-1333 and D-1335

HOME RADIO

SERVICE BULLETIN FOR PHILCO THREE-SPEED CUSTOM AUTOMATIC RECORD CHANGER M-25

CARTRIDGE AND NEEDLE CHANGE PROCEDURE

If loss of sensitivity, distortion, mistracking, or excessive record wear occur, the needle and cartridge should be checked and, if necessary, replaced.

Defective or worn needles may canse mistracking, distortion, and excessive record wear. Since most needles are composed of very hard. brittle materials, they are subject to chipping if carelessly landled. A chipped needle will act as a chisel and cut away the impressed variations in the record grooves, thereby destroying the recorl. This action is usually indicated by a deposit of fine dust on the surface of the record after the record lias been played. A worn needle will sometimes reault in mistracking and usually in the loss of the higher frequencies.

Occasionally poor connections to the cartridge contacts, corroded contacts, or defective leads may create the suspicion that the cartridge itself is defective. Therefore, check for these conditions before assuming that the cartribge must be replaced.

Cartridge Replacement

To replace a defective cartridge, or to exchange one type of cartridge for another, perform the following steps:

Figure 1

1. Hold the tone arm rigidly on the tone-arm rest with the right hand, and press the lower exposed side of the cartridge to the right with the forefinger of the left hand, as shown in figure 1. Then press downward lightly on the SFLEETOR SWITCH in the top of the tone arm, using the thmmb of the left hand, until the end of the switch lever disappears below the top surface of the tone-arm head. The cartridge can then he removed completely from underneath the head.
2. With the tone arm on the tone-arm rest, insert the cartridge into the head of the tone arm so that the guide channel (see figure 2) on the cartridge is facing inside, toward the turntable. Position the lever on the cartridge in the center of the tone-arm hearl, and gently push upuard on the cartridge until it snaps into position.

When the cartridge is in the carrect position, the lever will extend slightly above the head. When properly installed, the cartridge cannot lie pushed out by pressure on the top of the lever.

The dual-needle cartridge, when properly installed, should move freely forward and hackward to enable the selection of either Standard Play or Microgroove. The "Phonorami" cartridge is automatically locked into the 45 -LP position when properly installed.

Figure 2

The replacement dual-needle cartridge (dual needle included) may be ordered by Part No. 45-9785.

The replacement "Phonorama" cartridge ("Phonorama" needle included) may be ordered by Part No. 45-9792.

Needle Replacement

To replace a needle in the cartridge, perform the following steps:

1. Remove the cartridge from the tone-arm head as explained above. (Do not altempt to replace the needle with the cartridge in the tone-arm head.)
2. Gently remove the needle liy pulling straisht out, using tweezers or a knife blade under the heel of the needle. See figure 3.
3. Before installing a new needle, observe that the keyway in the needle socket will allow the needle to be inserted only one way. See figure 4. After properly

Figure 3
aligning the needle, press on the sliaft of the needle to seat it firmly in the cartridge.

CAUTION: Do not press upon any part of the needle except the shaft. Also, do not twist or turn the needle in any way that may cause damage to the crystal within the cartridge.

The replacement dual needle may be ordered by Part No. 45-9784.

The replacement "Phonorama" needle may be ordered loy Part No. 45-9793 for the Philco SapphireTipperl Needle, or Part No. 45-1993-1 for the Philco Diamond-Tipped Needle.

PARTS LIST CHANGE FOR M-25 SERVICE MANUAL, PR-2557

The part number for lifter lever spring, Part No. 28-9626, should be changed to Part No. 28-9929. The part should be ordered liy this new number.

Figure 4

Mfg: Admiral
Chassis No. 19F1A
Card No. AD19F1A-1
Section Affected: Raster
Symptom: No raster, no H.V.
Cause: Defective component.
What To Do:
Replace: C411B (10-160 $\mu \mu \mathrm{f}$), which is shorted.

Mfg: Admiral
Chassis No. 19F1A
Card No. AD19F1A-2
Section Affected: Raster and sound.
Symptom: No B+
Cause: Defective component.
What To Do:
Replace: Entire speaker; field is open.

Mfg: Admiral
Chassis No. 19FIA
Card No. AD19F1A-3
Section Affected: Sound.
Symptom: No sound.
Cause: Defective component.
What To Do:
Repair or replace: L201 (4.5 mc trap) which is open.

Mfg: Admiral
Chassis No. 19FIA
Card No. AD19F1A-4
Section Affected: Pix.
Symptom: Not enough brightness.
Reason For Change: Modification to increase brightness.

What To Do:
Change: R330 (470K) to 180 K ; also C316 (. $01 \mu \mathrm{f}$) to $.22 \mu \mathrm{f}$.

Mfg: Admiral
Chassis No. 19FIA
Card No. AD19FIA-5
Section Affected: Pix
Symptom: Stations drift off frequency.
Cause: Defective component.
What To Do:
Replace: C108 (10 $\mu \mu \mathrm{f}$), which has changed value.

Mfg: Admiral
Chassis No. 19FIA
Card No. AD19FIA-6
Section Affected: Pix and sound.
Symptom: No B+ to first and second video if.
Cause: Defective component.
What To Do:
Replace: R337 (4.5 K), which is open.

Mfg: Admiral
Chassis No. 19B1
Card No. AD 19B1-1
Section Affected: Pix and raster
Symptom: Ripples on left side of pix
Cause: Open yoke condenser

What to Do:
Replace: Open condenser C425, 47 uuf

Mfg: Admiral
Chassis No. 19B1
Card No. AD 19B1-2
Section Affected: Pix
Symptom: Trailing ghosts in pictures
Cause: Defective peaking coil

What to Do:

Replace: Peaking coil L305

Mfg: Admiral

Chassis No. 19B1
Card No. AD 19B1-3
Section Affected: Pix and sound Symptom: No sound or picture

Cause: Shorted bypass condenser
What to Do:
Replace: C302, . 001 uf condenser
Check: Associated resistors

Mfg: Admiral
Chassis No. 19B1
Card No. AD 19B1-4
Section Affected: Raster
Symptom: Fold over on right side of raster

Cause: Defective horizontal deflection coils
What to Do:
Replace: Deflection yoke, T403

Mfg: Admiral
Chassis No. 19Bl
Card No. AD 19B1-5
Section Affected: Sound
Symptom: Buzz in Audio
Cause: Defective tuning core in sound take-off coil

What to Do:

Replace: Sound take-off coil if another core is not available

Mfg: Admiral
Chassis No. 19B1
Card No. AD 19B1-6
Section Affected: Raster
Symptom: Vertical linearity compressed at top of pix

Cause: Increased resistor value

What to Do:

Replace: Resistor R417 820 ohms

Mfr: Admiral
Chassis No. 17XP3
Card No: AD 17XP3-1
Section Affected: Pix
Symptom: Blooming when brightness control is advanced.
Reason for Change: To improve high voltage regulation.
Note: This change is included in all 17XP3 receivers starting with Run 2.

What to Do:

Replace: Horizontal Out. Trans. part No. 79C60-4, having a $1-\mathrm{tu}: \mathrm{n}$ filament winding for 1 X 2 B with part No. $79 \mathrm{C} 60-5$ having a 2 turn winding.

Connect: 4.7 ohm, $1 / 2 \mathrm{~W}$ resistor in series with 1X2B filament leads.
Note: Before replacing transformer try another 1X2B.

Mfr: Admiral

Chassis No. 17XP3

Card No: AD 17XP3-2

Section Affected: Pix

Symptom: RF interference (rotating "bars" on Channel 5).

Cause: 3 rd harmonic if radiation at certain settings of fine tuning control usually under weak signal conditions.
Note: This change is included in all 17XP3 receivers starting with Run 2.

What to Do:

Connect: Capacitor-C314 (6.8 $\mu \mu \mathrm{f}$ ceramic, part No. 65B28-068) from pin 8 of V3035AM8 to chassis ground.

Mfr: Admiral
Chassis No. 17XP3
Card No: AD 17XP3-3
Section Affected: High voltage.
Symptom: Corona discharge present at cap of 1X2B.
Reason for Change: Reduce corona discharge. Note: This change included in later production models.
What to Do:
Replace: Spring type clip with insulated type tube cap. Also, slip one inch length of heavy polyethelyne tube over tube cap.

Mfr: Admiral
Chassis No. 17XP3
Card No: AD 17XP3-4
Section Affected: Pix
Symplom: Unstable Pix
Cause: IF Regeneration.
Note: This change is included in all 17XP3 receivers starting with Run 5.
What to Do:
Install: C328 (. $005 \mu j-450 \mathrm{~V}$ ceramic-part number $65 \mathrm{C} 10-5$) between junction of pin 5 --V304 (5AN8) and chassis ground.

Mfr: Admiral
Chassis No. 17XP3-17SX3
Card No: AD 17XP3-5
Section Affected: Raster and possibly sound.
Symptom: No raster, sound may or may not be present. 12AX46TA Damper gets red hot; $R 441$ burns up; horizontal deflection yoke overheats or burns up.
Cause: Shorted horizontal sweep by-pass condenser.
Note: This condenser was increased from a 600 V to a 1000 V rating in all 17 XP 3 chassis beginning with Run 9 and all 17SX3 chassis beginning with Run 5 .

What to Do:

Replace: C429 (. $047 \mu \mathrm{f}-600 \mathrm{~V}$) with $.047 \mu \mathrm{f}-$ 1000 V condenser. Also. R441-15 ohm 1 W with 15 ohm 2 W resistor
Note: Some early production receivers employ two $1 \mathrm{kf}-600 \mathrm{~V}$ condensers in series, which is OK.

Mfr: Admiral
Card No: AD 17XP3-6
Section Affected: Sync
Symptom: Horizontal frequency out of range. When V403-3AL5, the horizontal sync discriminator, is removed, horizontal frequency, though out of sync, comes back into range.
Cause: Discriminator load resistor changed in value.
What to Do:
Replace: $R 427$ or $R 428$ ($100 \mathrm{~K}-5 \%$).

Radio-TV Service Dealer Videa Speed Serwicing Systemso Data Sheets

Mfr: Arvin
Card No: AR276-1
Section Affected: Sound
Symptom: Buzz in speaker with volume control at minimum

Reason for Change: Reduce vertical sync pickup through chassis

What to Do:

Remove: Ground side of C178 and connect to junction of T-111 and R200 (1 K)

Mrr: Arvin
Chassis No. TE 276
Card No: AR276-2
Section Affected: Sync
Symptom: White horizontal band at top of pix, and touchy vertical hold

Reason for Change: Damp out parasitics What to Do:

Add: 2.2 meg resistor across primary of T110 (vertical blocking oscillator transformer)

Mfr: Arvin
Card No: AR276-3
Section Affected: Sound
Symptom: Buzz in sound on strong signals
Reason for Change: Circuit improvement What to Do:

Replace R157 (120K) with 75 K resistor

Mfr: Arvin
Chassis No. TE 276
Card No: AR276-6
Section Affected: Pix
Symptom: Vidco overload on normal contact control setting
Cause: Leaky coupling condenser
What to Do:
Replace: C145 (33 $\mu \mu \mathrm{f}$)

Card No: ANVL16-1
Section Affected: Pix
Symptom; Pix smeared and weak
Cause: Plate load resistor increased in value What to Do:

Replace: R30 (3.3K)

Mfr: Andrea
Model No. T-VL16
Card No: ANVL16-2
Section Affected: Raster
Symptom: Blooming
Cause: High voltage string resistors increase in value

What to Do:
Replace: R90, R91, R92 (all 470 K)

Mfr: Andrea
Model No. T-VL16
Card No: ANVL16-3
Section Affected: Sound
Symptom: Noise in sound
Cause: Sound discriminator transformer shorts intermittently

What to Do:

Replace: Sound discriminator transformer

Mfr: Andrea
Model No. T-VL16
Card No: ANVL16-4
Section Affected: Sound
Symptom: Loud hum in sound
Cause: Open or leaky output filter condenser
What to Do:
Replace: C98B ($30 \mu \mathrm{f}$)

Mfr: Andrea
Model No. T-VL16
Card No: ANVL16-5
Section Affected: Raster
Symptom: No vertical sweep
Cause: Shorted primary to secondary of vertical blocking transformer

What to Do:
Replace: T6 vertical blocking transformer

Mfr: Andrea
Model No. T-VLL 16
Card No: ANVL16-6
Section Affected: Sync
Symptom: Horizontal frequency drift
Cause: Leaky coupling condenser
What to Do:
Replace: C55 (. $002 \mu \mathrm{f}$)

Radio-TV Service Dealer Videa Speed Seruicing Systemso Data Sheets

Mfr: Capehart
Chassis No. CX-38S
Card No: CA 38-1
Section Affected: Sync
Symptom: No horizontal or vertical sync
Cause: Defective sync component

What to Do:

1-Check by substitution: 6CS6 (V401) sync separator; also, 12AU7 (402) phase splitter; also. C402 ($1500 \mu \mu \mathrm{f}$) ceramic and C403 (. 047μ f- 600 V tubular)

2-Check by measurement: R225 (10K), R404 (560 K), R424 (3.9 K), R426 (10K), R413 (3.9K)

Mfr: Capehart
Chassis No. CX-38S
Card No: CA 38-2
Section Affected: Sync
Symptom: Jittery horizontal sync
Cause: Defective phase detector component
What to Do:
Check by substitution: 12AU7 (V402B) phase detector; also, C607 (. $0022 \mu \mathrm{f}-200 \mathrm{~V}$) Check by measurement: R604 (82K), R605 (82 K), R607 (2.2 meg)

Mfr: Crosley Chassis No: 402, -1, -2, -3 , etc.
Card No: CR 402-1
Section Affected: Pix and Raster.
Symptom: Arcing at focus control.
Reason for Change: Circuit modification (This is a manufacturer's circuit change).
What to do:
Connect: $470 \mathrm{~K}, 1 / 2$ watt resistor between center tap of focus control and pin=6 of picture tube.

Mfr: Crosley Chassis No. 402, -1, -2, -3 , etc.
Card No: CR 402-2
Section Affected: Pix and raster.
Symptom: Horizontal line on screen.
Cause: Component failure. Cathode bypass condenser has shorted.
What to do:
Replace: C139 (. $005 \mu \mathrm{f}, 500 \mathrm{~V}$. ceramic).

Mfr: Crosley Chassis No. 402, -1, -2, -3, etc.
Card No: CR 402-3
Section Affected: Pix and Raster.
Symptom: No vertical deflection.
Cause: Component failure. Condenser in wave shaping circuit has shorted.

What to do:

Replace: C140C (30 $\mu \mathrm{f}-150 \mathrm{~V}$ electrolytic).

V105B
1/2 6SNT/GT
SYNC. OUTPUT

Mir: Crosley Chassis No. 402, -1, -2, -3, etc.
Card No: CR 402-4
Section Affected: Pix
Symptom: No horizontal sync.
Cause: Component failure. Defective resistor and or condenser in afc circuit.
What to Do:
Replace: R164 (4.7 meg, $1 / 2 \mathrm{~W}$), and or C153 (. $003 \mu \mathrm{f}, 600 \mathrm{~V}$).

Mfr: Crosley Chassis No. 402, -1, -2, -3 , etc. Card No: CR 402-5
Section Affected: Pix and Raster.
Symptom: No vertical deflection.
Cause: Component failure. Open resistor and/or shorted capacitor in wave shaping circuit.
What to Do:
Replace: R150 (47.7K- 1/2W) and/or C138 (. $047 \mu \mathrm{f}, 600 \mathrm{~V}$).

Mfr: Crosley Chassis No. 402, -1, $-2,-3$, etc.
Card No: CR 402-6
Section Affected: Pix
Symptom: Loss of vertical synchronization.
Cause: Component failure. Coupling condenser to integrator network has opened.

What to Do:

Replace: C133 (. $0047 \mu \mathrm{f}, 600 \mathrm{~V}$).

Chassis No. 431-3, 432-3
Card No: CR 431-3-1
Section Affected: Pix
Symptom: Unsatisfactory focus
Possible Cause: Incorrect focus anode voltage What to Do:

Try connecting Focus Anode (pin 6 of CRT) to various points other than $\mathrm{B}+150 \mathrm{~V}$ such as: chassis ground, $\mathrm{B}+260 \mathrm{~V}$ (pin $\overline{5}$ of damper VIII-12AX 4 GTA) $\mathrm{B}+300 \mathrm{~V}$ (pin 10 of picture tube), and $\mathrm{B}+495 \mathrm{~V}$ ($\mathrm{B}+$ Boost-Term. $=2$ of horizontal output transformer)

Mfr: Crosley
Chassis No. 431-3. 432-3
Card No: CR 431-3-2
Section Affected: Pix
Symptom: Slight compression at top of pix out of range of linearity and height controls
Cause: Combination of characteristic of V110B - $1 / 2$ 12BH7A vertical output tube and T107 (vertical output transformer) affects waveshape in vertical output circuit. See Card No. CR 431-3-3.

What to Do:

Try connecting in or out of circuit R158 (68 K) by clipping off jumper across this resistor Note: This operation alters waveshape of voltage applied to grid of V110B thereby introducing a slight amount of compensating spread in the output

Mfr: Crosley
Chassis No. 431-3. 432-3
Card No: CR 431-3-3
Section Affected: Pix
Symptom: Vertical spreading out of range of linearity and height controls.
Cause: Combination of characteristics of V110B $-1,2$ BH7A vertical output tube and T107 (vertical output transformer) affects waveshape in vertical output circuit. See Card No. CR 431-3-2

What to Do:

Connect: $.01 \mu f-600 \mathrm{~V}$ condenser in series with $150 \mathrm{~K}-1 \mathrm{~W}(10 \%)$ resistor from plate to ground in vertical output stage
Note: These changes are designed to int roduce a slight amount of negative peaking and affect the current waveshape in the yoke in a manner designed to introduce a slight amount of compression

Mfr: Crosley
Chassis No. 431-3, 432-3
Card No: CR 431-3-4
Section Affected: Raster
Symptom: Insufficient width
Reason for Change: Provide increased horizontal output tube gain.
Note: This change was included in chassis 431-3 Code D and 432-3 Code E, and con tinued in later chassis

What to Do:
Change: R171 (12K) to 8.2 K

Mfr: Crosley
Chassis No. 431-3, 432-3
Card No: CR 431-3-5
Sertion Affected: Pix
Symptom: Picture stability could be improved
Reason for Change: To improve picture stability
Note: This change was begun in chassis 431-3 Code F and $432-3$ Code H .

What to Do:

Change: C140B from $30 \mu \mathrm{f}-150 \mathrm{~V}$ to $100 \mu \mathrm{f}$ 150 V by shunting with $70 \mu \mathrm{f}-150 \mathrm{~V}$ condenser (observe polarity)
Remove: Low side of C135 ($20 \mu f-500 \mathrm{~V}$) from $B+150$ and connect to arm of vertical linearity control
Remove: Low side of C134 (. $047 \mu \mathrm{f}-600 \mathrm{~V}$) from arm of vertical linearity control and connect to chassis ground
Remove: R149 (470K)

Mfr: Crosley
Chassis No. 431-3, 432-3
Card No: CR 431-3-6
Section Affected: Sound
Symptom: Buzz or distortion that cannot be corrected by realignment. Peaks and nulls when realigning sound may be hard to find.
Possible Cause: Reversed connections on primary of L109 (sound take-off coil)

What to Do:
Reverse: Connections on the primary of L109

Mfr: Du Mont
Chassis No. RA 312/313
Card No. DM 312-1
Section Affected: Raster
Symptom: No raster
Cause: Open resistor
What To Do:
Replace: R292 (1.5K) and/or open.
Check: Yoke for leakage.

1.5 K

Mfr: Du Mont
Chassis No. RA 312/313
Card No. DM 312-2
Section Affected: Raster
Symptom: Top half of raster brighter than bottom half. Also possible loss of vertical size.
Cause: Open boost capacitor
What To Do:
Replace: C287A ($20 \mu \mathrm{f}$) and/or C289 ($20 \mu \mathrm{f}$).

Mfr: Du Mont
Chassis No. RA 312/313
Card No. DM 312-3
Section Affected: Pix and sound
Symptom: Poor sync, buzz in sound, weak video
Cause: Leaky condenser

What To Do:

Replace: C229 (2.2 $\mu \mu \mathrm{f}$).

Mfr: Du Mont
Chassis No. RA 312/313
Card No. DM 312-4
Section Affected: Pix
Symptom: Video smear
Cause: Open choke
What To Do:
Replace: L204; or repair.

Mfr: Du Mont
Chassis No. RA 312/313
Card No. DM 312-5
Section Affected: Raster
Symptom: No raster; no high voltage
Cause: Shorted condenser
What To Do:
Replace: C259 (. $001 \mu \mathrm{f}$).

Mfr: Du Mont
Chassis No. RA $312 / 313$
Card No. 312-6
Section Affected: Pix
Symptom: Weak, negative pix
Cause: Open choke
What To Do:
Replace: L206; or repair.

Card No: DM 312-1
Section Affected: Sync
Symptom: Critical vertical and horizontal hold. Picture jitters and pulls horizontally.
Cause: Open filter condenser in $\mathrm{B}_{\top} 150 \mathrm{~V}$ line.
What to Do:
Replace: C286B ($40 \mu f-350 \mathrm{~V}$).

Mfr: Du Mont
Chassis No. RA 312/313
Card No: DM 312-2
Section Affected: Pix and sync.
Symptom: Dark vertical bars in raster (5 or 6), widest and most pronounced on left side. Contrast control adjustment changes intensity and width of bars.
Also, washed out pix.
Also, critical vertical and horizontal hold.
Cause: Open filter condenser in B 235 V line.
What to Do:
Replace: C286A ($80 \mu \mathrm{f}-350 \mathrm{~V}$).

Mif: Du Mont
Chassis No. RA 312/313
Card No: DM 312-3
Section Affected: Pix
Symptom: No raster; sound-OK, HV-OK.
Cause: Shorted video coupling condenser to CRT cathode.

What to Do:
Replace: C220 (. $22 \mu \mathrm{f}-400 \mathrm{~V}$).

Mfr: Du Mont
Chassis No. RA 312-4
Card No: DM 312-4
Section Affected: Pix
Symptom: Poor vertical linearity and loss in size which cannot be properly adjusted with normal adjustment of vertical size and linearity controls.

Canse: Open condenser in eathode of vertical deflection amplifier.

What to Do:
Replace: C287D ($10 \mu \mathrm{f}-50 \mathrm{~V}$).

Mfr: Du Mont
Chassis No. RA $312 / 313$
Card No: DM 312-5
Section Affected: Pix
Symptom: Weak and washed out pix. Sound normal except for strong buz\%.

Cause: Open resistor in plate circuit of video amp.

What to Do:
Replace: R224 (5K-10 W).

Mfr: Du Mont
Chassis No. R.\ 312/313
Card No: DM 312-6
Section Affected: $P i x$ and sync
Symptom: Pix overload and loss of vertical and horizontal hold on strong or average signals. When weak signal is obtained overload does not occur but excessive loss of contrast occurs accompanied by severe horizontal pull and jitter.

Cause: Leaky screen bypass condenser in video amplifier.
What to Do:
Replace: C286D (4 $\mu \mathrm{f}-350 \mathrm{~V}$).

Mfg: Emerson
Chassis No. 120162-A
Card No. EM162-1
Section Affected: Raster
Symptom: Vertical jumps.
Cause: Defective component.
What To Do:
Replace: R67 (vertical linearity control 5K ohms), which is arcing.

Mfg: Emerson
Chassis No. 120162-A
Card No. EM162-2
Section Affected: Raster
Symptom: H.V. Ticking.
Cause: Defective component.
What To Do:
Replace: C-69 ($500 \mu \mu \mathrm{f}$), which is breaking dawn.

Mfg: Emerson
Chassis No. $120162-\mathrm{A}$

Card No. EM162-3
Section Affected: Raster
Symptom: Intermittent raster and intermittent H.V.

Cause: Defective component.
What To Do:
Replace: R86 (100 ohms), which opens intermittently.

Mfg: Emerson
Chassis No. 120162-A
Card No. EM162-4
Section Affected: Pix and sound.
Symptom: No pix and sound.
Cause: Defective component.
What To Do:
Replace: R35 (1.2K), which is open.

Mfg: Emerson
Chassis No. 120162-A
Card No. EM162-5
Section Affected: Pix and sound.
Symptom: No video, no sound.
Cause: Defective component.
What To Do:
Replace: C6 ($1500 \mu \mu \mathrm{f}$), which is shorted, and $R 9$ (470 ohms), which is burned.
$V-12 B$
$1 / 2^{12 A U 7}$
VERT. SYNC. SEP.

Mfg: Emerson
Chassis No. 120162-A
Card No. EM162-6
Section Affected: Sync.
Symptom: Horizontal pulling, and vertical rolling.

Cause: Defective component.
What To Do:
Replace: C40 ($47 \mu \mu \mathrm{f}$), which is leaking.

Mir. Emersar
Chassis No. 120292
Card No. EM292-1
Section Affected: Pix and raster
Symptoms: Insufficient height.
Cause: Component failure. The series plate feed resistor from the height control has increased in value, reducing the plate voltage to the vertical oscillator tube.

What To Do:
Replace: (R80) 1.5 megohms.

Mir. Emerson
Chassis No. 1.20292
Card No. EM292-2
Section Affected: Pix
Symptoms: Snowy, weak pictures in semi-fringe and fringe areas.

Cause: Component failure. The B plus feed resistor has increased in value, supplying insufficient positive voltage to the local distance control. with the result that correct voltage is not applied to the age line to the tuner. Sound is sometimes pronouncedly affected. also.

What To Do:
Replace: R30. 22 K ohms one watt.

Mfr. Emerson
Chassis No. 120292
Card No. EM292-3
Section Affected: Pix
Symptoms: Critical horizontal hold, vertical hold normal.

Cause: Component failure. The sawtooth feedback condenser has developed a leak, altering the bias as applied to the grid of the horizontal control tube, 6CG7.

What To Do:

Replace: C39 (82 $\mu \mu \mathrm{f}$).

Mir. Emerson
Chassis No. 120292
Card No. EM292-5
Section Affected: Pix and raster
Symptoms: Insufficient width and high voltage.
Cause: Component failure. The cathode resistor has increased in resistance, biasing back the horizontal output tube and preventing proper amplification of the grid signal.

What To Do:

Replace: R69 (100 ohm) with a two watt size.

Mir. Emerson
Chassis No. 120292
Card No. EM292-6
Section Afferted: Audio
Cause: Component failure. The B plus feed resistor supplying 270 volts to the primary of the audio output transformer has increased in resistance so that plate voltage is low.

What To Do:
Replace: R41 (1.5K) with a 2 watt size.

Mfr: Emerson
Card No. EM 140-1

Chassis No. $120140-\mathrm{B}$
Model No. 680D
Section Affected: Sync
Symptom: Critical horizontal and vertical hold
Cause: Leaky condenser

What to Do:

Replace: C56 (. $047 \mu \mathrm{f}$)

Mfr: Emerson
Chassis No. $120140-B$
Card No. EM 140-2 Model No. 680D
Section Affected: Pix and sound
Symptom: No pix or sound
Cause: Open resistor

What to Do:
Replace: R52 (1K)

Mifr: Emerson
Chassis No. $120140-\mathrm{B}$
Card No. EM 140-3
Model No. 680D
Section Affected: Raster
Symptom: Flashes in pix
Cause: Arcing condenser

What to Do:

Replace: C91 ($18 \mu \mu \mathrm{f}$)

Mrr: Emerson
Chassis No. 120140-B
Card No. EM 140-4 Model No. 680D
Section Affected: Pix
Symptom: Sound bars in pix
Cause: Leaky filter condenser

What to Do:
Replace: C35 ($40 \mu \mathrm{f}$)

Mfr: Emerson
Card No. EM 140-5 Model No. 680D
Section Affected: Sync
Symptom: Critical vertical hold and horizontal wiggle

Cause: Leaky filter condenser

What to Do:
Replace: C48 ($80 \mu \mathrm{f}$)

Mfr: Emerson
Card No. EM 140-6

Chassis No. 120140-B
Model No. 680D
Section Affected: Pix
Symptom: Cannot reduce height properly
Cause: Vertical control changed in value

What to Do:
Replace: R74 (2 meg.)

Section Affected: Raster
Symptom: White vertical lines on left side and horizontal linearity

Cause: Open resistor in damper circuit What To Do:

Replace: R94 (7.5K)

Mir: Emerson
Chassis No. 120066B
Card No. EMO66-2 Model No. 571
Section Affected: Sync.
Symptom: Vertical hold out of range
Cause: Leaky Condenser
What To Do:
Replace: C51 (. $003 \mu \mathrm{f}$)

Mrr: Emerson
Card No. EMO66-4 Model No. 571
Section Affected: Sync
Symptom: Horizontal tearing
Cause: Defective component
What To Do:
Replace: C71 (. $005 \mu \mathrm{f}$)-Leaky
Also R97 (470K) -probably increased in value and burned

Mir: Emerson
Chassis No. 120066 -B
Card No, EMO66-5
Model No. 571
Section Affected: Sync
Symptom: Horizontal Frequency far out of range
Cause: Leaky condenser
What To Do:
Replace: C52 ($8 \mu \mathrm{f}$)

Mir: Emerson
Chassis No. 120066 - B
Card No. EMO66-6 Model No. 571

Section Affected: Raster
Symptom: No raster
Cause: Open filter condenser
What To Do:
Replace: C40 ($80 \mu \mathrm{f}$)

Radio-TV Service Dealer Videa Speed Seruicing Syitemso Data Sheets

Mfr: Fada
Card No: S4C20-1
Section Affected: Raster
Symptom: No high voltage
Cause: Shorted condenser

What To Do:
Replace: C52 (. $01 \mu \mathrm{f}$)
Model No. S4C20

Mfr: Fada
Model No. S4C20
Card No: S4C20-2
Section Affected: Raster
Symptom: Intermittent high voltage
Cause: Defective resistor

What To Do:
Replace: R83 (8. 2K)

Mfr: Fada
Model No. S4C20

Card No: S4C20-3
Section Affected: Pix
Symptom: Video Overload
Cause: Leaky condenser

What To Do:
Replace: C4 (120 $\mu \mu \mathrm{f}$)

Radio-TV Service Dealer Videa Speed Seruicing Surtemso Data Sheets

Model S1055
Card No: FAS55-1
Section Affected: Raster
Symptom: No high voltage
Cause: Shorted condenser in horizontal discharge circuit

What to Do:

Replace: C49 ($390 \mu \mu \mathrm{f}$)

Mfr: Fada
Model S1055
Card No: FAS55-2
Section Affected: Pix
Symptom: No video
Cause: Shorted video screen condenser What to Do:

Replace: C20C ($10 \mu \mathrm{f}$)

Mfr: Fada
Model S1055
Card No: FAS55-4
Section Affected: Pix
Symptom: Video overload on normal contrast control settings
Cause: Leaky coupling condenser
What to Do:
Replace: C4 (120 $\mu \mu \mathrm{f}$)

Mfr: Fada
Model S1055
Card No: FAS55-5
Section Affected: Sync
Symptom: Vertical hold drifts out of range
Cause: Vertical oscillator resistor increases in value

What to Do:
Replace: R56 (1.5 meg)

Mfr: Fada
Model S1055
Card No: FAS55-6
Section Affected: Sound \& pix
Symptom: No sound or pix
Cause: Open voltage divider
What to Do:
Replace: R87 (1750 ohms-20W)

Card No. GE 21C119-1
Section Affected: Pix and Raster
Symptom: No control over brightness
Cause: Shorted condenser
What to Do:
Replace: C170, . 1 uf

Card No. GE 21C119-2
Section Affected: Raster
Symptom: Intermittent vertical sweep
Cause: Intermittently open transformer What to Do:

Replace: T201, vertical output transformer

Mfg: G. E.
Model No. 21C119
Card No. GE 21C119-4
Section Affected: Sync
Symptom: Critical horizontal hold with horizontal jitter

Cause: Shorted coupling condenser What to Do:

Replace: C254, 180 uuf

Mig: G. E.
Model No. 21C119
Card No. GE 21C119-5
Section Affected: Sound
Symptom: No audio
Cause: Open coupling condenser
What to Do:
Replace: Open condenser C304, 47 uuf

Mfg: G. E.
Model No. 21 C 119
Card No. GE 21C119-6
Section affected: Picture and sync
Symptom: Pix overdriven with sync pulling
Cause: Leaky condenser
What to Do:
Replace: Leaky condenser C252, . 0047 uf

MIr: Majestic
Model No. 121B
Card No. MAJ 121-1
Section Affected: Raster
Symptom: No high voltage
Cause: Defective component

What to Do:

Replace: R94 (5K, 5 watt)-open

Mfr: Majestic
Model No. 121B
Card No. MAJ 121-2
Section Affected: Sound
Symptom: No sound
Cause: Defective component
What to Do:
Replace: C18 (. $005 \mu \mathrm{f}$)—shorted

Mfr: Majestic
Model No. 121B
Card No. MAJ 121-4

Section Affected: Raster

Symptom: Vertical foldover at bottom
Cause: Defective component

What to Do:
Replace: C59 (0.1 μf) -leaky

Mfr: Majestic
Model No. 121 B
Card No. MAJ 121-5
Section Affected: Raster
Symptom: No control of brightness
Cause: Defective component

What to Do:

Replace: C.32 (.05 μf) -shorted

Mfr: Majestic
Model No. 121B
Card No. MAJ 121-6
Section Affected: Sync
Symptom: IIorizontal fiequency drift
Cause: Defective component

What to Do:
Replace: C60 (.002 $\mu \mathrm{f})$-leaky

Mfr. Majestic
Model No. 21 C 31
Card No. MAJ 21C31-1 Chassis No. 110
Section Affected: Sync
Symptoms: Horizontal oscillator drifts out of locked-in frequency

Cause: Leaky condenser
What to Do:
Replace: C102, $330 \mu \mu f$ condenser.

Mfr. Majestic
Model No. 21 C 31
Card No. MAJ 21C31-2 Chassis No. 110
Section Affected: Audio
Symptoms: No sound
Cause: Audio output transformer primary, open

What to Do:

Replace: Audio output transformer, T11

\qquad

Mfr. Majestic
Model No. 21C31
Card No. MAJ 21C31-3 Chassis No. 110
Section Affected: Sync
Symptoms: Critical horizontal lock-in action
Cause: Leaky condenser

What to Do:

Replace: Condenser C62, $68 \mu \mu f$

Mfr. Majestic
Model No. 21C31
Card No. MAJ 21C31-6 Chassis No. 110
Section Affected: Raster and Pix
Symptoms: Flashing and tearing in raster and picture

Cause: High voltage filter condenser breaking down

What to Do:

Replace: C113, $500 \mu \mu f$ 20KV condenser

Mfg: Motorola
Chassis No. TS-326B
Card No. MO326-1

Section Affected: Raster
Symptom: Insufficient width, buzz, and vertical roll.

Cause: Defective component.
What To Do:
Replace: C256A (200), which is leaking.

Mfg: Motorola
Chassis No. TS-326B
Card No. MO326-2
Section Affected: Raster
Symptom: Vertical jumps.
Cause: Defective component.
What To Do:
Replace: R264 (5 meg.), vertical size control; arcing.

Mfg: Motorola
Chassis No. TS-326B
Card No. MO326-3
Section Affected: Raster
Symptom: Bad vertical sweep.
Cause: Defective component.
What To Do:
Replace: R265 (8.7K), which is open.

Mfg: Motorola
Chassis No. TS-326B
Card No. MO326-4
Section Affected: Sync.
Symptom: Critical vertical and horizontal hold.
Cause: Defective component.
What To Do:
Replace: C260 (.05 $\mu \mathrm{f}$), which is leaking.

Mfg: Motorola
Chassis No. TS-326B
Card No. MO326-5
Section Affected: Sync.
Symptom: Critical horizontal sync.
Cause: Defective components
What To Do:
Replace: R275 (150K), R276 (150K), which have increased in value.

Mfg: Motorola
Chassis No. TS-326B
Card No. MO326-6
Section Affected: Raster
Symptom: Insufficient width and sound distorted
Cause: Defective component.
What To Do:
Replace: C256B ($5 \mu \mathrm{f}$), which is shorted

Mfr: Motorola
Chassis No. TS23B
Card No. MO23-1
Model No. 12 VT 13
Section Affected: Raster and Pix
Symptom: Poor vertical linearity-not enough height

Cause: Defective component
What To Do:

Replace: C47C ($100 \mu \mathrm{f}$) -opens up

Mfr: Motorola
Cird No. MO23-2

Chassis No. TS: 23 B

Section Affected: Sync
Symptom: Vertical and horizontal instability
Canse: Defective component
What To Do:
Replace: C63 (.001 μf) -leaky

Mrr: Motorola
Card No. MO23-4
Scction Affected: Raster
Symptom: Verticail shrinking
Cause: Defective component
What To Do:
Replace: Vertical output transformer (T4)

Mfr: Mototola Chassis No. TS23B
Card No. MO23-5
Model No. 12VT13
Section Affected: Raster
Symptom: Intermittent raster
Cause: Defective component
What To Do:
Replace: R85 (47 ohm-1/2 W) with 47 ohm1 watt; opens intermittently

Mfr: Motorola
Card No. MO23-6

Chassis No. TS23B
Model No. 12 VT 13
Section Affected: Pix
Symptom: No pix
Cause: Defective component
What To Do:
Replace: Contrast control R26A (250 ohms)opens up

Chassis No. TS-525
Card No: MO525-1
Section Affected: Pix and Sound
Symptoms: Excessive TVI
Reason for Change: Circuit improvement

What to Do:
Change: $R 9$ from 330 K to 10 K also, $R 11$ from 330 K to 220 K

Mfr: Motorola
Chassis No. TS-525
Card No: MO525-2
Section Affected: Pix
Symptoms: Horizontal Pulling
Cause: Component Failure

What to Do:

Change: 3 rd if tube $(6 C B 6)$ or video detector crystal (CR1)

Mfr: Motorola
Chassis No. TS-525
Card No: MO525-4
Section Affected: Pix
Symptoms: Horizontal Jitter
Reason for Change: Circuit Improvement

What to Do:
Add: 10 microhenry chokes in plate and cathode leads of damper tube

Mir: Motorola
Chassis No. TS-525
Card No: MO525-5
Section Affected: Pix
Symptoms: Horizontal jifter and hunting
Reason for Change: Circuit improvement

What to Do:
Add: 22 K to 47 K across horizontal osc. coil

Mir: Motorola
Chassis No. TS-525
Card No: MO525-6
Section Affected: Pix
Symptoms: Critical horizontal lock-in
Reason for Change: Circuit improvement

What to Do:
Check: Horizontal hold control
Add: 82 K in series with hor. hold control Also: 150 K in shunt with hor. hold control

Mfr. Olympic
Card No. OLTK-1

Model No. 17K41
Chassis No. TK

Section Affected: Raster
Symptoms: No high voltage
Cause: Width coil internally shorted

What to Do:
Replace: Width coil, L19

Mfr. Olympic
Card No. OLTK-2

Model No. 17K41
Chassis No. TK
Section Affected: Raster
Symptoms: No high voltage
Cause: Open 6W4 Filament winding on power transformer

What to Do:
Add: 115 volt 6.3 volt filament transformer to operate the 6 W 4 tube

Model No. 17K41
Chassis No. TK
Section Affected: Raster and Picture Symptoms: Visible retrace lines

Cause: Open condenser
What to Do:
Replace: C44, $.02 \mu \mathrm{f}$ condenser

Mfr. Olympic
Card No. OLTK-4
Model No. 17K41
Chassis No. TK
Section Affected: Picture and raster
Symptoms: Inability to center raster without corner shadows.

Cause: Defective raster centering assembly What to Do:
Replace: Raster centering Assembly

Mfr. Olympic
Card No. OLTK-5
Section Affected: Audio
Symptoms: Frying noise in sound
Cause: Resistor burning

What to Do:

Replace: R12, 390 ohm resistor
Check: C11-50 $\mu \mathrm{f}$ for short

Mfr. Olympic
Card No. OLTK-6

Model No. 17K41
Chassis No. TK

Section Affected: Sync
Symptoms: Very unstable horizontal hold
Cause: Leaky condenser

What to Do:
Replace: C53, $100 \mu \mu \mathrm{f}$ condenser

Mfr: Philco
Chassis No. TV-400
Card No: PH 400-1
Section Affected: Sound
Symptom: Intermittent Audio
Cause: Component failure. Replace FM detector transformer which has become intermittently defective internally.

What to Do:

Replace: FM detector transformer, T1, which is Pt $\ddagger 32-4450-6$. The New transformer, Pt $\pm 32-4633$ is preferable when making this replacement, in which case condenser $C 9$, $3.3 \mu \mu f$ and resistor $R 10,47$ ohms are removed.

Mfr: Philco
Chassis No. TV-400
Card No: PH 400-2
Section Affected: Pix
Symptom: Transient response occurring in the picture as trailing small ghosts on certain small edges.

Reason For Change: To improve transient response of circuit so as to to eliminate above symptoms.

What to Do:
Replace: C24 from . $0022 \mu f$ to $.0015 \mu f$.

Mrr: Philco
Chassis No. TV-400
Card No: PH 400-3
Section Affected: Pix and Sound
Symptom: The receiver adjusts to best picture and sound at two points of fine tuner range

Reason for Change: To improve circuit so that best picture and sound occurs between these two mentioned points. This condition is most prevalent under weak signal conditions.

What to Do:
Replace: C48 condenser from $470 \mu \mu f$ to 1500 $\mu \mu \mathrm{f}$. This condenser is located in 2nd Video if and is the cathode by-pass.

Mfr: Philco
Chassis No. TV-400
Card No: PH 400-4
Symptom: Insufficient width, intermittent raster or no high voltage
Cause: Failure of the width control, in that it may have burned, become spotty or intermittently bad. It should be checked for resistance and rough spots when rotated.

What to Do:

Replace: Width potentiometer, VR2, 12.5 K ohm, 2 watt.
Note: In case of insufficient width not due to the above cause the high voltage transformer can be changed from Pt. $\# 32-8662$ to $\# 32-8662-1$. This new transformer has been incorporated in chassis of run \#3 or later.

Mir: Philco
Chassis No. TV-400

Card No: PH 400-5

Section Affected: Audio

Symptom: Hum in sound when channel selector has been turned off channel or volume control rotated to minimum volume position
Cause: Failure of filter condenser in B minus supply, C76, $10 \mu \mathrm{f}$

What to Do:

Replace: Condenser C76, $10 \mu f$ with a $25 \mu f$ condenser of 25 volt rating or better.

Mfr: Philco

Chassis No. TV-400

Card No: PH 400-6

Section Affected: Pix
Symptom: Horizontal pulling throughout the picture caused by video innformation passing into the sync circuits

Cause: Component failure. C27 has developed a leak changing the bias at the grid of sync separator tube.

What to Do:

Replace: Condenser C27, $4700 \mu \mathrm{f}$.
Note: Resistor R37, 2.2 megohms may be changed to 5.6 megohms for better circuit action in completely preventing video from passing through the stage.

Mfg: Philco
Chassis No. TV-354
Card No. PH 354-1
Section Affected: Audio
Symptoms: Mechanical hum emanating from components such as yoke, vertical output transformer, or power transformer.

Reason For Change: To improve, reduce or eliminate mechanical hum.
What to do:
Install rubber grommets at the item causing the hum. If it is associated with the yoke. install rubber grommets under the CRT support brackets. The cabinet side and top is acting as a sounding board for the buzz transmitted through the metal brackets.
If the vertical output transformer is causing the hum install the grommets under the mounting brackets of the transformer.
If the power transformer is the cause of the hum due to loose laminations correct by tightening cover and core holding screws.

Mfg: Philco
Chassis No. TV-354
Card No. PH 354-2
Section Affected: Pix
Symptoms: Trailing edges in certain portions of the picture due to undesirable oscillation.

Reason For Change: To improve the transient response of the video amplifier stage.

What to do:

Replace: X10, 240 microhenry coil with a 400 microhenry coil.
R70, 22 ohm resistor wtih a 33 ohm resistor.

Mfg: Philco
Chassis No. TV-354

Card No. PH 354-3

Secton Affected: Audio

Symptoms: No sound or distorted sound
Cause: Component failure. The cathode resistor has increased in value or opened.

What to do:

Replace: R6, 270 ohm resistor. This resistor should be 2 watts.

Mfg: Philco
Chassis No. TV-354
Card No. PH 354-4
Section Affected: Raster and Pix
Symptoms: Insufficient width and poor horizontal linearity.

Reasons For Change: To improve circuit and make available a greater range of width control with better horizontal linearity.

What to do:
Change: WR-2 from 8200 ohms, 7 watts to 6500 ohms, 7 watts.
Note: This has been incorporated in chassis after run 6.

Mfg: Philco
Chassis No. TV-354
Card No. PH 354-5
Section Affected: Pix and Raster
Symptoms: No vertical deflection
Cause: Component failure. Resistor R24 burned open or increased very high in value. This resistor can also be the cause of vertical shrinkage if it increases in value as the receiver warms up.

What to do:
Change: $R 24$, from 56 K to two resistors, 33 K and 22 K in series each having a wattage dissipation rating of 2 watts.

Mfg: Philco
Chassis No. TV-354
Card No. PH 354-6
Section Affected: Pix and Raster
Symptoms: Vertical shrinkage and squeezing at bottom of picture.
Reason For Change: To increase decoupling of B plus supply, provide additional filtering and effectively make the screen 10 volts higher.
What to do:
Add: 330 ohm resistor, one watt and $20 \mu \mathrm{f}$ condenser, 400 volts
Note: Under low line voltage conditions or in a hot climate the bottom of the picture may shrink up during the first three hours of operation. This is very frequently due to an increase in resistance in the yoke as its temperature increases.
If shrinkage still persists change yoke to part No. 32-9689-1.
If shrinkage is still objectionable change Vertical Output Transformer to 32-8686 from 32-8667.

Radio-TV Service Dealer Videa Speed Servicing Systemso Data Sheets

Mfr: Philco

Card No: PH1600-1

Model No. 50-T1600, 51-T1600, etc.

Code No. 121 and 122

Section Affected: Sync
Symptom: Critical sync action under difficult reception conditions

Reason for Change: Circuit improvement
What to Do:
Remove: $6.8 \mathrm{~K}, 1.2 \mathrm{meg}$ resistors as shown also $100 \mu \mu \mathrm{f}, .047 \mu \mathrm{f}$ and $330 \mu \mu \mathrm{f}$ condensers as shown
Install: Parts and rewire as shown in Card No. PH1600-2
(continued on Card No. PH 1600-2)
(continued from Card No. Ph 1600-1)
Mfr: Philco
Model No. 50-T1600, 51-T1600, etc.

Card No: PH1600-2 Code No. 121 and 122
Section Affected: Sync
Symptom: Critical sync under difficult reception conditions

Reason for Change: Circuit improvement
What to Do:
Install: $39 \mathrm{~K}, 180 \mathrm{~K}, 270 \mathrm{~K}, 6.8 \mathrm{~K}, 100 \mathrm{~K}$, resistors as shown
Also, $015 \mu \mathrm{f}, 120 \mu \mu \mathrm{f}$ condensers as shown
Rewire: As shown

Mfr: Philco
Model No. 50-T1600, 51-T1600, etc.

Card No: PH1600-3
Code No. 121 and 122
Section Affected: Raster
Symptom: No raster, no high voltage; R104 (4.7K) resistor burns

Cause:.C86 ($40 \mu \mathrm{f}$) is open, causing horizontal $r f$ energy to flow completely through R104 (4.7K) which burns up.

What to Do:
Replace: C86 ($40 \mu f$) Also R104 (4.7K)

Mir: Philco
Model No. 50-T1600, 51-T1600, etc.

Card No: 50T-1600-4 Code No. 121 and 122
Section Affected: Audio
Symptom: Intercarrier buzz
Cause: Insufficient AM rejection
What to Do:
Remove: 4.7 meg resistor
Add: $680 \mu \mu \mathrm{f}$ condenser
Also, $100 \mu \mu \mathrm{f}$ adjustable condenser and 1.8 K resistor

Mfr: Philco
Model No. 50-T1600, 51-T1600, etc.

Card No: PH50T1600-5 Code No. 121 and 122
Section Affected: Pix
Symptom: Poor Horizontal linearity
Cause: Open condenser
What to Do:
Replace: C90 (. $1 \mu \mathrm{f}$)

Mir: Philco
Model No. $50-\mathrm{T} 1600$, 51-T1600, etc.

Card No: PH1600-6
Section Affected: Raster
Symptom: Intermittent raster, bias on 6BQ6GT intermittent

Cause: Defective drive capacitor (mica cracked) What to Do:

Check: C102 (horizontal drive control), note condition of mica and replace

Mfr: Raytheon
Chassis No. 24T3
Card No: RA 24T3-1
Section Affected: Sound
Symptom: Horizontal multivibrator squeal interference in "PH" position.

Reason for change: Circuit modification to elimıinate horizontal multivibrator squeal interference in "PH" position.

What to do:
Add: R472 (3.3 megohm, $1 / 2$ watt). (Chassis so modified are coded 133).

Mfr: Raytheon
Chassis No. 24T3
Card No: RA 24T3-2
Section Affected: Raster \& Pix
Symptom: Insufficient width and high voltage.
Reason for Change: Circuit modification to provide more width and maintain high voltage.

What to do:

Change: R505 (33K-2W) to $6.8 \mathrm{~K}-2$ watt, and wire to pin 4 of the power plug. (Fig. A).
Change: R507 (10 -ohm-1 W) to 6.8 ohm1 W . (Fig. B).
Change: C443 ($4.7 \mu \mu \mathrm{f}$) to $22 \mu \mu \mathrm{f}$. (Fig. C).
Rewire: Pin 4 of power socket to Bt 220 volts (Fig. A) at Phono-TV Switch. (Chassis so modified are coded 333)

Mfr: Raytheon
Chassis No. 24T3
Card No: RA 24T3-3
Section Affected: Raster and/or Pix
Symptom: Insufficient brightness.
Reason for Change: Circuit modification to increase brightness.

What to do:
Change: C406, (.033 $\mu \mathrm{f}$) to $.047 \mu \mathrm{f}$. Reconnect brightness control to 300 volt. (Chassis so modified are coded 433).

Mfr: Raytheon
Chassis No. 24T3
Card No: RA 24T3-5
Section Affected: Pix
Symptom: Poor vertical and horizontal sync.
Reason for Change: Circuit modification to im prove vertical and horizontal sync.

What to do:
Add: L502 choke coil to pin 6 of power plug as shown, (obtain from man-ufacturer-part $=16 \mathrm{~A}-23165$)

Change: C507 (. $005 \mu \mathrm{f}$) to $.22 \mu \mathrm{f}$.
(Chassis so modified are coded 043)

Mir: Raytheon
Chassis No: 24 T 3
Card No: RA 24T3-6
Section Affected: Pix
Symptom: Smear in pix.
Cause: Open screen by-pass capacitors in video amplifier circuit.

What to do:

Change: C401A (10 $\mu \mathrm{f}, 300$ volt) and/or C402 (5000 $\mu \mu \mathrm{f}$).

Mfr. RCA
Chassis No. KCS97
Card No. RC 97-1
Section Affected: Sound
Symptoms: No audio, picture and raster normal.
Cause: Component failure. B plus feeding resistor supplying voltage to the audio output and amplifier system has opened.

What To Do:

Replace: R1i3 (3300 ohm) 2 watt resistor.

Mir. RCA

Chassis No. KCS97
Card No. RE 97-2
Section Affected: Pix and sound
Symptoms: No picture or sound, raster normal.
Cause: Component failure. Open B plus feeding resistor from 265 volts to terminal E of printed circuit panel and third if circuit.

What To Do:
Replace: R221 (4200 ohm) 7 watt resistor.

Mfr. RCA
Chassis No. KCS97

Card No. RC 97-3

Section Affected: Pix
Symptoms: Jittery or poor horizontal and vertical sync, picture and sound otherwise normal.

Cause: Component failure. Coupling condenser from $1 \mathrm{~s}^{t}$ sync amplifier to sync output circuit has shorted.

What To Do:

Replace: Coupling condenser C141 (. $033 \mu \mathrm{f}$).

Mir. RCA
Chassis No. KCS97
Card No, RC 97-4
Section Affected: Pix and raster
Symptoms: Insufficient height with possible slight vertical foldover. - ${ }^{-1}$

Cause: Component failure. Leakage in condenser Cl6fi $1 \mathrm{\mu f}$ condenser has reduced B plus voltage to plate circuit of vertical oscillator so that insufficient voltage is applied to circuit producing small deflection voltage.

What To Do:
Replace: C165 (.1 $\mu \mathrm{f}$)
Check: C163 (.1 $\mu \mathrm{f}$) for excessive leakage.

Mir. RCA
Chassis No. KCS97
Card No. RC 97-5
Scction Affected: Pix and raster
Symptoms: No high voltage, picture or raster, sound normal.

Cause: Component failure. Boost charging condenser C168 has developed sufficient leakage to reduce the boost voltage below a point that will enable the generation of high voltage and sufficient amplitude horizontal deflection pulses in the transformer.

What To Do:

Replace: Boost charging condenser. C168 (.047 $\mu f)$.

Mrr. RCA
Chassis No. KCS97
Card No. RC 97-6

Section Affected: Pix and raster

Symptoms: Trapezoidal picture and raster due to improper deflection system.

Cause: Component failure. Damping condenser across one horizontal deflection coil has shortcd. A shorted deflection coil will produce the same symptoms.

What To Do:
Replace: C171 (150 uuf)
Substitute or replace: Deflection coils.

Mfg: RCA
Chassis No. KCS-72
Card No. RC 72-1
Section Affected: Pix and sound
Symptom: No picture, No sound or weak sound. Brightness Okay.

Cause: Component Failure. Transformer T105 shorted primary to secondary

What to do:
Check: For a positive voltage on agc line; if so:
Replace: IF transformer, T105

Mf: RCA
Chassis No. KCS-72
Card No. RC 72-2
Section Affected: Pix and Sound
Symptoms: No picture or sound on channel. Snow off-channel

Cause: Component failure. Open C136, $220 \mu \mu f$ condenser

What to do:
Replace: C136, $220 \mu \mu \mathrm{f}$ condenser, 22000 volt rating.

Mfg: RCA
Chassis No. KCS-72
Card No. RC 72-3
Section Affected: Pix and raster
Symptoms: No brghtness or raster. High voltage normal.

Cause: Component failure. Condenser C158, . 1 $\mu \mathrm{f}$ shortec.

What to do:
Check: Voltage variation at pin 2 of picture tube socket.
Replace: C158, . $1 \mu \mathrm{f}$ condenser.

Mfg: RCA
Chassis No. KCS-72
Card No. RC 72-4
Section Affected: Pix and raster
Symptoms: Insufficient vertical deflection. Low voltage on plate of V113, 6 J 5 vertical oscillator tube.

Cause: Component failure. Condenser C183, . 1 μf shorted.

What to do:
Replace: Condenser C183, $1 \mu \mathrm{f}$.

V113
615

$B+260 \mathrm{~V}$.

Mfg. RCA
Chassis No. KCS-72
Card No. RC 72-6
Section Affected: Pix and raster
Symptoms: Insufficient width. Width may shrink during operation.

Cause: Component failure. Screen dropping resistor has changed to higher resistance value or changes with operation. (R203)

What to do:
Replace: Resistor R203, 6.8 K ohms, 2 watts.

Mfr: RCA Chassis No. KCS 81

Card No: RC81-1
Section Affected: Sound
Symptom: Raspy sound
Cause: Leaky Condenser
What to Do:
Replace: C117 (. $01 \mu \mathrm{f}$)

If: RCA
Chassis No. KCS 81
Card No: RC81-3
Section Affected: Sync
Symptom: Critical horizontal and vertical sync
Cause: Shorted condenser

What to Do:

Replace: C170 (. $01 \mu \mathrm{f}$)

Mfr: RCA
Chassis No. KCS 81
Card No: RC81-4
Section Affected: Raster
Symptom: Insufficient height

Cause: Resistor increases in value

What to Do:
Replace: R194 (220K)

Mfr: RCA
Chassis No. KCS 81
Card No: RC81-5
Section Affected: Audio
Symptom: No Audio
Cause: Shorted condenser; and resistor changed in value caused by shorted condenser

What to Do:

Replace: C105B (. $01 \mu \mathrm{f}$)
Also, R104 (IK)

$\mathrm{Mfr}: \mathrm{RCA}$
Card No: RC81-6
Section Affected: Sound \& pix; V108, V109
Symptom: No sound, no pix
Cause: Open filament choke

What to Do:
Replace: L101 (filament choke)

Mrr: Stromberg-Carlson Model No. 521 Series Card No: SC 521-1

Section Affected: Sync
Symptom: Loss of vertical and horizontal sync.
Cause: Shorted capacitor
What To Do:
Replace: C170 (. $01 \mu \mathrm{f}$)

\square

Mir: Stromberg-Carlson Model No. 521 Series Card No: SC 521-2

Section Affected: Raster
Symptom: No vertical sweep
Cause: Shorted capacitor
What To Do:
Replace: C182 (.1 $\mu \mathrm{f}$)

Mfr: Stromberg-Carlson Model No. 521 Series Card No: SC $521-4$

Section Affected: Sound and pix
Symptom: Intermittent video and sound
Cause: Intermittent capacitor short
What To Do:
Replace: C72 (. $005 \mu \mathrm{f}$)

Mfr: Stromberg-Carlson Model No. 521 Series Card No: SC 521-5

Section Affected: Sound and pix
Symptom: No sound or video
Cause: Shorted capacitor
What To Do:
Replace: C14 ($47 \mu \mu \mathrm{f}$) and $R 14$ (1.5 K)

Mfr: Stromberg-Carlson Model No. 521 Series
Card No: SC 521-6
Section Affected: Pix
Symptom: No video
Cause: Open contrast control
What To Do:
Replace: $R-113-A$ and $R-113-B(1 \mathrm{~K})$ dual control (S.C. Part-145 140 brightness and contrast controls)

Mfr: Sylvania
Chassis No. 1-533-1, 2
Card No: SY533-1
Section Affected: Pix
Symptom: Sound in pix
Reason for Change: To improve trap rejection
(These revisions included in chassis beginning with serial number 533101-, 533201-).

What to Do:

Remove: Peaking Coil L205
Connect: Bottom of $R 224$ (2.7 K) to ground

Mfr: Sylvania
Chassis No. 1-533-1, -2
Card No: SY533-2
Section Affected: Pix
Symptom: Picture bending
Reason for Change: To reduce picture bending
(These revisions included in chassis beginning with serial numbers 533102 -, 533202).
What to Do:
Change: C116 (82 $\mu \mu \mathrm{f}$ to $47 \mu \mu \mathrm{f}$ and reconnect between pin 1 of V7(A) 12AU7A and pir 8 of V16A 6AN8.
Also. R305 (18 K) to $4.7 \mathrm{~K}, R 306$ (2.7 K) to $3.9 \mathrm{~K}, R 307$ (8.2 K) to $2.2 \mathrm{~K}, R 309$ (33 K) to $100 \mathrm{~K}, R 310$ (470 K) to $220 \mathrm{~K}, R 311$ (39 K) to 33K

Mfr: Sylvania
Chassis No. 1-533-1, -2
Card No: SY533-3
Section Affected: Pix
Symptom: Pix ringing
Reason for Change: Circuit improvement
(This change was included in chassis beginning with serial numbers 533103-, 532203 -).
What to Do:
Replace: $R 416$ (4.7 K) with 6.8 K resistor.

Mfr: Sylvania
Chassis No. 1-533-1, -2
Card No: SY533-4
Section Affected: Sound
Symptom: Maximum sound sensitivity not utilized
Reason for Change: Circuit improvement
(This change was included in chassis beginning with Serial No. 533104-, 533204).
What to Do:
Remove: C214 (4.7 $\mu \mu \mathrm{f}$)

Mfr: Sylvania Chassis No. 1-533-1,-2
Card No: SY533-5
Section Affected: Pix
Symptom: Shading in Pix
Reason for Change: Vertical blanking circuit improvement.
(This change was included in chassis beginning with Serial No. 533106-, 533206-).
What to Do:
Replace: R331 (33K) with 56 K resistor.

Mfr: Sylvania
Chassis No. 1-533-1, -2
Card No: SY533-6
Section Affected: Sync
Symptom: Vertical stability could be improved.
Reason for Change: Circuit improvement.
(This change was included in chassis beginning with Serial No. 533106-, 533206-).
What to Do:
Replace: R306-1 (3.9K) with 3.3 K (Fig. A), R318 (220K) with 150 K (Fig. B), R323 (1.5 Meg) vertical hold control with 1 meg control (Fig. B).
Add: 1.5 meg resistor (R 339) across R 323 (Fig. B).

Mfg: Silvertone
Chassis No. 128-16
Card No. SI128-1
Section Affected: Raster
Symptom: Intermittent ticking noise in sound and in raster.

Cause: Defective component.
What To Do:
Replace: C72 (330 ${ }_{\mu \mu \mathrm{f}}, 12.5 \mathrm{KV}$), which is breaking down.

Mfg: Silvertone
Chassis No. 128-16
Card No. SI128-2
Section Affected: Sync.
Symptom: Vertical hold drifts out of range.
Cause: Defective component.
What To Do:
Replace: R33 (1 meg.), which has increased in value.

Mfg: Silvertone
Chassis No. 128-16
Card No. SI128-3
Section Affected: Sound
Symptom: No sound and R66 is burned.
Cause: Defective component.
What To Do:
Replace: C56 (. $01 \mu \mathrm{f}$), which is shorted and $R 66(1 \mathrm{~K})$, which is burned.

V6B
6SR7

40

Mfg: Silvertone
Chassis No. 128-16
Card No. SI128-4
Section Affected: Sync.
Symptom: Horizontal frequency drifts intermittently.

Cause: Defective component.
What To Do:
Replace: C45 (. $047 \mu \mathrm{f})$, which is leaky.

Mfg: Silvertone
Chassis No. 128-16
Card No. SI128-5
Section Affected: Sync.
Symptom: Poor vertical and horizontal hold.
Cause: Defective component.
What To Do:
Replace: C21 (. $047 \mu \mathrm{f}$), which is leaky.

Mfg: Silvertone
Chassis No. 128-16
Card No. SI 128-6
Section Affected: Pix
Symptom: Video overload.
Cause: Defective component.

What To Do:

Replace: C92 ($270 \mu \mu \mathrm{f}$), which is leaky.

Mfr: Silvertone
Model No. 173-16
Card No: SI 173-1
Section Affected: Raster
Symptom: Width collapses intermittently
Cause: Resistors change in value

What To Do:

Replace: R68 (4.7 K), R70 (4.7 K),

Mfr: Silvertone
Model No. 173-16
Card No: SI 173-2
Section Affected: Sound and raster
Symptom: No sound, no raster (no B +)
Cause: Open resistor in B - circuit

What To Do:
Replace: R29 (60 ohms)

Mfr: Silvertone
Model No. 173-16
Card No: SI 173-3
Section Affected: Sound and Pix
Symptom: No sound, no pix
Cause: Open resistor on $B+$ circliit

What To Do:
Replace: R31 (2.5 K)

Mfr: Stewart Warner Model No. 21-9300 Series Card No. SW 9300-1

Section Affected: Raster
Symptom: Intermittent or no vertical height. Vertical linearity control and 390 ohm resistor burned out.
Cause: Shorted 6AH4 vertical output tube

What To Do:

Replace: Vertical linearity control, also 390 ohm resistor, also 6AH4 vertical output tube.

Mfr: Stewart Warner Model No. 21-9300 Series
Card No. SW 9300-2
Section Affected: Sync
Symptom: Horizontal instability
Cause: Open by-pass condenser
What To Do:
Replace: . $22 \mu \mathrm{f}$ bypass condenser connected between pin 8 of 6 BQ 6 GT and ground.

Mfr: Stewart Warner Model No. 21-9300 Series
Card No. SW 9300-3

Section Affected: Sync

Symptom: Pix loses sync after a short time
Cause: Unstable capacitor

What To Do:

Replace: $200 \mu \mu$ capacitor connected between terminal " F " of syncroguide transformer and pin 4 of V8B, horizontal oscillator.

Mfr: Stewart Warner Model No. 21-9300 Series
Card No. SW 9300-4
Section Affected: Sync
Symptom: Loss of horizontal sync and weakening of vertical hold.

Cause: Open condenser
What To Do:
Replace: . $047 \mu \mathrm{f}$ condenser connected between pin 7 of 6 BE 6 sync separation and 18 K resistor.

Mfr: Stewart Warner Model No. 21-9300 Series
Card No. SW 9300-5
Section Affected: Sound and pix
Symptom: Loss of sound and pix on one or more channels

Cause: Shorted condenser

What To Do:

Replace: $120 \mu \mu f$ condenser connected between plate of V19-6J6 mixer-oscillator, and pin 1 of V1-6CB6 1st if amp.

Mfr: Stewart Warner Model No. 21-9300 Series
Card No. SW 9300-6
Section Affected: Sync and pix
Symptom: Loss of sync and blurred pix. AGC may fail as contrast control is increased.

Cause: Defective crystal detector
What To Do:
Replace: Crystal detector.

Mfr: Westinghouse
Chassis No. V2150-101
Card No. WE2150-1
Section Affected: Raster
Symptem: No raster, no sound, 5U4's get red
Cause: Shorted condenser
What To Do:
Replace: C422 (.1 $\mu \mathrm{f}$)

Mfr: Westinghouse Chassis No. V2150-101
Card No. WE:2150-2
Section Affected: Raster
Symptom: Horizontal flashes-L 401 burning
Cause: L 401 arcs internally
What To Do:
Replace: L 401

Mir: Westinghouse
Chassis No. V2150-101
Card No. WE2150-3
Section Affected: Raster
Symptom: No hi-roltage
Cause: Shorted condenser
What To Do:
Replace: C506 (. 05 f) also, R502 (68 ohms) burned

Mfr: Westinghouse
Chassis No. V2150-101

Card No. WE2150-4

Section Affected: Sync
Symptom: Critical horizontal sync

Cause: Resistors increased in value

What To Do:

Replace: $R 453$ and $R 454$ (both 220 K)

Mfr: Westinghouse Chassis No. V2150-101
Card No. WE2150-5
Section Affected: Sound

Symptom: No sound-R210 burned

Cause: Shorted condenser

What To Do:
Replace: C215 (.1 $\mu \mathrm{f}$)

Mfr: Westinghouse Chassis No. V2150-101
Card No. WE2150-6

Section Affected: Sync

Symptom: No vertical and horizontal hold
Cause: Shorted condenser
What To Do:

Replace: C416 (. $05 \mu \mathrm{f})$

PHILCO SERVICE

Nem Product News RADIO

PLASTICS IN RADIO

FIGURE 1
Plastics are the universally accepted modern materials. In recent years many diverse plastics have come into use in all forms of fabrications as replacements for wood and metal. This swing to the use of plastics has been brought about by the development of materials that are lighter, cheaper, easier to work, less affected by the elements, and more permanencly and attractively colored than the woods and metals which they replace. The most obvious examples of this usage are in the modern table model radio cabinet such as is shown in Figure 1 and the portable cabinet shown in Figure 2. The cabinet, knobs and dial scale are the only plastic parts which are familiar as parts of a radio. However, plastics play a very important role throughout the construction of a radio. Some of the uses to which the plastic family has been put and the reasons for their choice are as follows:

Beauty - Colored, polished plastics are eyecatching. The color can be blended throughout the material for lasting appearance. Their sheen

and sparkle are more attractive than any painted surface.

Light ueight - Comparing equal volumes, plastics will weigh from $1 / 2$ to $1 / 10$ that of wood or metal.

Insnlation - Plastics are more easily formed than glass or porcelain and withstand mechanical abuse far better. Various plastics exhibit excellent resistive properties and very small moisture absorption. Plastics do not deteriorate as does rubber.

Moisture proofing - Plastics are used as coatings and impregnations to prevent moisture absorption by electrical components such as condensers, resistors, transformers and coils.

Resistance to deterioration - Plastics can be chosen that resist moisture, salt water, corrosive gases, acids, bases, solvents, oil and grease, fading of color in sunlight, cracking in cold, hardening through age and heat. No one plastic is resistant to all the above conditions but as with other materials one is picked which will stand up best under the expected conditions of its use.

Sound Reduction - It is often necessary to use plastic parts in mechanical devices to eliminate noise caused either by contact while operating or by vibration when in a static position. Along with the sound control idea it was found that a plastic tone arm provided better accoustics and less vibrational transfer than the formed or die cast metal ones previously used. Plastics are also used as dampers to cushion and prevent mechanical vibration. An example of this is the pyralin damper used in the M-20 tone arm.

Light conduction - Several materials such as polystyrene and methyl-methacrylate exhibit the property of conducting light, from a unit source at an edge, evenly through its volume and glowing at any point on the surface where the smooth finish is broken, as etched or molded designs and numerals on dial scales. This edge lighting has the advantage that the pilot lamp acting as the light source may be placed where convenient, and shielded when necessary so as to eliminate effects of heat, hum or light leakage from unwanted points.

Strength - Materials displaying either one or more of the following properties of hardness, elasticity, resilience, toughness, resistance to impact, etc., may be selected for a given application. As an example, nylon is used for the core of dial cords because it is unaffected by moisture, has great tensile strength and resistance to elongation (high elasticity). Where necessary, metal parts may be molded in to increase rigidity and improve fastenings. This is, in many cases, superior to using rivets or other mechanical fastenings, installed by hand, during assembly.

Cost reduction - All plastics are not inexpensive. In fact, many are considerably more expensive than the wood, glass or metal that they replace. However, in many applications a plastic is the best material and a saving in production cost is often attained, even when the plastic runs dearer than wood or metal, due to:

1. Fewer parts - Some plastics may be molded in very complex forms, thus saving time of assembly.
2. Longer mold or die life - initial cost saving, since plastics, being softer than metals, require fewer replacements of molds or dies.
3. Less material - Where a plastic is superior in mechanical properties in comparison to an alternate material.
4. Parts molded in - such as pins, fasteners, and ornaments - saves operation.
5. Complete coloring - saves an operation as painting, lowers assembly damage, and lowers customer replacement.
6. Good die or mold finish.
7. Does not corrode - saves plating.
8. Light weight saves shipping cost.

PRODUCTION AND MOLDING

Plastics may be divided into two general classifications:

Thermosetting - Those materials which set or harden upon heating and which cannot be reformed or reused. Once set heat has no temporary effect, such as softening, but will, when the temperature reaches a given point, break down the plastic, changing both its chemical and physical properties.

Thermoplastic - Those which soften or become plastic when heated and when cool, gain their physical properties with no change, either when heated or upon recooling, of the original chemi-

cal properties. These plastics can be reused and reformed.

The plastics are normally produced by a chemical or plastics company and then sold to the molder in the form of powder or granules. A block diagram, Figure 3, illustrates the processes required to manufacture phenol formaldehyde molding powder. In the case of the thermoplastics, such as polystyrene, the material, although ground, is finished as far as the material properties are concerned. However, the thermosetting plastics, such as phenol, or urea formaldehyde, are only partly polymerized. The remainder of the polymerization reaction, which is the reaction causing the formation of the plastic material, takes place in the mold itself under the heat and pressure used. This delayed completion of the reaction is necessary because once set, the plastic cannot be molded or reused.

The following is a brief description of the most used forming processes for making plastic parts used in radio manufacture.

Compression molding, (Figure 4) is performed by inserting a weighed charge of molding material (or a preformed brick, cake, pellet, etc. of the necessary weight) into a heated mold (between 280 and 350° F.) and then closing the mold under this heat and a pressure that may be from 2 to 4 tons. The part is then allowed to become rigid by heat polymerization when using thermosetting compounds or by cooling when using thermoplastic compounds. This method is most used for the thermosetting plastics. An average production cycle is about five minutes.

Injection molding, (Figure 5), is accomplished by feeding the material from a hopper, in measured quantities, to a heated cylinder and then forcing by hydraulic pressure the now viscous plastic through the sprues and gates into a closed mold. The presses used in this type of molding are usually automatically controlled and include means for closing the mold, holding it closed for a definite time, opening the mold, and ejecting the parts. The pressure and temperature normally used when injection molding the two commonily used plastics (polystyrene for portable cabinets, and methyl methacrylate for some dial scales) is between 10,000 and 30,000 pounds per square inch pressure and a temperature between 325 500 degrees Fahrenheit. This method lends itself to mass production due to an automatic press and the lack of curing time, since the piece is set in a matter of seconds.

EIGURE 4
Extrusion is the process used to coat wires with a plastic insulation such as vinyltchloride-acetate. The material is fed and heated as for injection molding, then forces out of an orifice through which the wire is running. This places a continuous coating of equal thickness over the wire.

Lamination is a process whereby sheets of paper or cloth are impregnated and/or layered with plastic under heat and pressure. The bakelite wiring panels and terminal boards are examples of this type of forming. Laminated sheets can be formed into tubes which are often used as coil forms. Where good strength of laminated sheets is required, a linen base is often used.

PLASTIC PARTS AND THEIR MATERIALS

The following table, on Page Four, gives an idea of the number of plastics used in radio construction and the variety of parts made from them. This is by no means complete as it is meant only as an illustration of the diversity of uses to which these modern materials can be placed.

FIGURE 5

PART	MATERIAL	TRADE NAME(S)
$\text { Cabinet - } \begin{array}{r} \text { Table } \\ \text { Portable } \end{array}$	Phenol formaldehyde Polystyrene	Bakelite
Knobs	Cellulose acetate butyrate	Tenite Tenite II
	Methyl-methacrylate	Plexiglas Lucite
Windows, dial	Polyvinyl-butyral (formed)	Vinylite
Dials	Polystyrene	
	Methyl-methacrylate (occasionally)	
Insulating members wire covering	(extruded)	Vinylite
tube bases tube socket	Wood filled except for hi-frequency which is Mica	Bakelite
Wiring panels terminal boards switch wafers coil forms	Paper or linen base laminates	Bakelite
Hi-Freq. coil forms		Acrylid-Lucite
Resistor coating Condenser coating	Fillers to suit moisture and temperature considerations	Bakelite
Mechanical members bushings pulleys gears fingers	Linen base laminates	Bakelite

CARE OF PLASTICS (cabinets, dial scales, etc.)
Most plastic table model cabinets are made of bakelite. This material is hard and not easily scratched. It takes an average amount of scuffing but care should be taken that it does not receive a hard shock or blow as the material tends to be brittle. This is being overcome in some of our new cabinets by the use of a cotton flock filler. These cabinets can be cleaned with a cloth dampened with soap (such as Ivory Soap) and water, or a good furniture polish such as the Philco Furniture Polish, Part number 45-6584. When using polish, be very careful not to get it on the knobs or dial scale if they are plastic. Do not use any abrasive substance such as powdered cleansers, especially on painted ivory cabinets nor should any compound be used that contains organic solvents, or any of the aromatic solvents.

When cleaning Polystyrene parts such as portable cabinets and dial scales, great care should be taken that no abrasives or solvents are used. Most of the organic solvents will attack the finish, or on clear parts will cause fogging. A damp cloth with a little mild soap will do a good job of cleaning
the surface without damaging the finish. There are a number of "anti-Static" solutions on the market for cleaning polystyrene parts. Some of these use isopropyl alcohol as the solvent. These should not be used as they will tend to dull the gloss finish. Some may be of such consistency as to be difficult to wipe off. For proper action, the preparation should be a solution with the same appearance, viscosity, and ease of handling as water. The preparation used in the Philco factory as an "antiStatic Cleaning solution for use on Clear Plastics and Glass" contains 99.4% distilled water by weight. To the water 0.5% Armac T (Armour Chemical Div.) and 0.1% Antarox A- 180 (Antaro Products Div. of General Aniline \& Film Corp.) are added. The Armac T is the anti-static component and the Antarox A-180 acts as a wetting agent to insure even and complete coverage, ease of wiping, and elimination of streaks. The material should be wiped over the object with a damp cloth and then wiped dry with a clean, soft, lint-free cloth. This preparation is useful for the treatment of plastic cabinets, dial scales, television windows, picture tube faces, and phonograph records.

Shop Practices and Service Techniques TELEVISION

SIGNAL SUBSTITUTION IN BENCH SERVICING

PART ONE

FIGURE 1

Many times the serviceman is puzzled by a particularly difficult television receiver trouble. He often suspects an individual stage, and in one way or another he is able to go through a trouble-shooting procedure which will isolate the stage suspected. This procedure of trouble isolation in many instances can be accomplished quite easily, but in other cases this isolation procedure may be much more difficult. Why not a simple system of substituting a known good signal from a test receiver so that a signal of the correct type can be furnished in place of one which is doubtful?

A bench setup where a receiver is wired to furnish the test signals is shown in Figure 1. The various signals are wired from the test receiver as shown in Figure 2, and connected to their respective jacks.

The jack on the extreme left hand side of the board is the point where the composite video signal may be obtained so that a complete video amplifier may be tested. An average value of 2 volts peak-to-peak is available at this point. The amplitude of the signal may be checked with a calibrated scope. For a complete description of oscilloscope calibration see the section at the end of this article next month.

SIGNAL SUBSTITUTION BENCH

The back of the jack panel showing the wiring and cabling is shown in Figure 3. Notice that in this particular set-up a 50-T1400 type of television chassis was used. For the test picture tube a 14 CP 4 was used. This tube was picked because it can be mounted easily and is most adaptable as a universal type of test tube. Plugs and sockets are used for all the cabling so that the panel may be easily removed for service. The tuner test power supply is shown mounted on the right hand side of the bench. The AC power for this power supply may be switched on or off independently. A galvanized metal plate is used to cover the bench surface to provide a good common ground return.

The following jack and sockets are used:
J1-Composite Video Signal (Negative as wired to Video Detector. A positive signal may be obtained from the first video amplifier plate.)
J2_VIDEO IF Signal
J3—HOR. \& VERT. SYNC Signal

FIGURE 2

J5—HORIZ. SWEEP
J6—HI. VOLT.
J7—SPEAKER TEST
J8-AUDIO TEST
J9—BIAS VOLT.
J10-6.3V AC (Fil.)
J11-200V DC
J12-150V DC
S1—DEFLECTION SOCKET
S2_CRT SOCKET
Figure 4 shows a simplified schematic of the take off points in the chassis used. The following is a discussion of the individual jacks and their use.

JI-COMPOSITE VIDEO

The composite video signal is tapped off from the video detector output, which is easily available at pin \#1 of the Align Test Jack.

With the chassis used in this article, a 50-T1400, a video signal of 2 volts peak-to-peak is available at the video detector. This level of signal produces a normal useable picture on the screen. However in the present dual chassis series, a signal level of about 6 volts should be expected at the video detector output for normal operation. If a dual chassis model is used as the bench receiver, and an older chassis is subjected to test, the input
signal from the video detector should be attenuated to prevent overloading the video amplifier stage in the receiver under test. By the same token the 2 volt signal when injected into a dual chassis model cannot be expected to produce a high contrast level.

Since the signal from the video detector is normally of a negative polarity, if it is fed into a stage where the input is normally positive a reversed picture will result. As an added feature in this respect an extra jack may be wired to the first video amplifier plate circuit in the bench receiver. This will provide a video test signal of a positive polarity. It is suggested that this be done by dividing the first video plate load resistor into two sections so that approximately 2 volts of video will be obtained. The suggested values are shown in Figure 5.

J2-VIDEO IF

Using an IF signal as a test source might seem a little far fetched and difficult to accomplish, however the IF test signal may be easily tapped off from the cathode of the video detector through a 150 mmfd . condenser. It will be noticed that when a lead is connected to this point the IF strip will act like a miniature transmitter. This is due to the high level of signal that is available at this

FIGURE 3
point, however this will not upset any of the indications since enough of the IF signal will enter the IF stage under test to give a good indication of IF amplification. It will be noticed that any of the 4 IF stages may be checked in the receiver under test. It should be borne in mind that the picture quality obtainable with this IF signal injection is not as good as a normal picture by any means; however, the picture obtained does give a good idea of the amplification of the stages involved.

J3-HORIZONTAL AND VERTICAL SYNC

The amplified sync pulses are tapped off from the plate of the sync amplifier in the receiver through a .1 mfd . condenser. It should be remembered that the sync pulses at this point are of a positive polarity thus they should not be used to test sync stages which normally have a negative input, (for example, the sync amplifier stage). For testing the effects of the sync pulses on the sweep systems the pulses are injected by connecting to the sync amplifier plate of the receiver under test.

J4-VERTICAL SWEEP INPUT

In order to test the vertical output circuit and vertical deflection coils of a receiver under test, a test vertical saw tooth may be tapped off from the grid of the vertical output tube through a 47 K resistor. It will be noticed that some loading of the vertical circuits occurs when the lead is connected to the test receiver, however enough of the input saw tooth is still available so that a relative test can be made of the amplification of the vertical

FIGURE 4
system under test. If it is desired to vary the vertical input in order to get more or less saw tooth, the height control may be varied. It should be remembered that this is not a qualitative test but merely an amplification test. For cases of poor vertical linearity this test will not show up the cause or causes of the poor linearity.

FIGURE 5

J5-HORIZONTAL SAW TOOTH INPUT

In order to check the horizontal sweep system of a receiver, a horizontal saw tooth may be tapped off from the grid of the horizontal output tube. The horizontal oscillator tube of the receiver under test should be removed. Having this type of input signal available is invaluable in cases of tough horizontal circuit problems. The B supply voltages in the deflection circuits in our present series are dependent on the damper (boost) voltage, therefore the horizontal system must be working before any voltage is available. Supplying a test signal to the grid of the output tube will immediately determine if the trouble is in front of the
grid of the output tube or past it. Caution: The drive trimmer in the receiver under test must be turned out at least three turns counterclockwise. If the trimmer is in too far the input signal is divided down so far that the output circuit cannot operate correctly. A short warmup period should also be allowed before a raster will be noticed on the screen.

J6-HIGH VOLTAGE

In order to facilitate testing of picture tubes the second anode supply voltage is wired to a test jack. It should be remembered that using the receiver in this article, a $50-\mathrm{T} 1400$, about 8000 volts second anode voltage is available. In most cases 8000 volts is sufficient to test any picture tube, however normal brilliance and focus should not be expected when testing tubes larger than twelve inch. If another receiver is used as the signal source (a dual chassis model), the second anode voltage may be too high to test small size (10 in . and 12 in .) picture tubes safely. In this case the voltage may be reduced by rotating the drive trimmer clockwise, and measuring the voltage. Caution: A red button or tag should be placed around this jack (J6) for safety purposes.

J7-SPEAKER TEST

In order to facilitate testing of speakers a jack is wired to the hot side of the voice coil in the bench receiver.

This jack may be used to test speakers of all types whether in television or AM broadcast receivers.

J8-AUDIO TEST

In order to facilitate testing of audio systems a jack is wired to the hot side of the volume control in the bench receiver.

The audio signal available at this jack may be used to test not only television receiver audio circuits, but also record players, AM broadcast receivers, and even P.A. systems. To test audio circuits in television receivers the test signal may be fed to the 1 st audio grid of the receiver under pest.

PART TWO OF THIS ARTICLE WILL APPEAR IN AUGUST ISSUE

Page Four

PHILCO DUAL STANDARD ADAPTOR

FIGURE 1

Philco's advanced design engineering has built into the Philco duplex chassis a reserve of power and efficiency which permits ready adaptation to the sweep rates required for reproduction of pictures transmitted on CBS Color Standards. This means that customers who have purchased any of Philco's '51 or '52 duplex chassis television receivers will be able to continue to enjoy black and white reception at very small added expense if and when transmissions on CBS Standards are commonplace. Adaptation of Philco duplex chassis to operate on either the present television standards or the standards authorized for the CBS field sequential color system is accomplished by installing an inexpensive adaptor which is illustrated separately in Figure 1 and is shown installed in Figure 2.

The present television standards for high definition black and white are that pictures will consist of 525 lines which are divided into odd and even fields, each consisting of $2621 / 2$ lines. The fields occur at the rate of sixty times per second so the complete pictures are complete

FIGURE 2
at the rate of thirty times per second. The present standards therefore result in a horizontal sweep rate of 15,750 cycles per second, and a vertical sweep rate of sixty cycles per second. The standards authorized for the CBS field sequential system are pictures consisting of 405 lines which are divided into alternating fields of 202.5 lines which thus present complete pictures at the rate of twenty-four times per second. The CBS television standards therefore result in a horizontal sweep rate of 29,160 cycles per second and the vertical sweep rate of 144 cycles per second. In order to work on CBS Standards a receiver must therefore be able to have its sweep system converted to operate on the higher sweep frequencies. Since the transmission of pictures in accordance with CBS Standards are limited at the present time to a few hours per week over only one station in any one city, the adaptation of television receivers to the new standards is not something which is to be expected over night.

We naturally would like to see a compatible system used so that consumers would not be required to spend money just to continue to receive black and white pictures of lower definition. On the other hand it is comforting to know, in the interest of the customer, that Philco receivers can be adapted easily and at little expense because of the extra care which has gone into the engineering of the Philco chassis. All Philco receivers produced to date would, without adaptation, continue to give high definition black and white if and when a compatible color television system is released and authorized for use.

The adaptability of the Philco duplex chassis to the new high sweep frequencies is made possible chiefly by the reserve of power available in the sweep system and the low loss components such as the horizontal sweep output transformer and the deflection yoke. These two components both use low loss cores of Ferrite, a ceramic bonded finely divided high permeability alloy. This means that increasing the sweep rates does not overload the sweep output system nor is there difficulty in sweeping the full width and height of the picture tube. The circuit changes effected by the adaptor kit are straightforward and can be followed easily from the step by step description and schematic given below.

HORIZONTAL CIRCUIT

1. The oscillator transformer is switched to one of a higher frequency.
2. The width coil is shorted out.
3. The horizontal output tube blocking condenser is changed to 390 mfd .
4. A 120 mfd . condenser is connected from the "E" tap of the horizontal output transformer to the horizontal output tube grid.

That's all that is done in the horizontal circuit. This quick conversion is possible only because of the present versatile design. This quick easy conversion has the following advantage over other switched systems:

1. No change of borizontal output transformer is required.
2. No change of width, or linearity coils are required.
3. The brilliance remains the same due to maintenance of sufficient flyback energy.
4. The overall linearity is not affected.

VERTICAL DEFLECTION SYSTEM

1. A 3300 ohm resistor is connected from the $6 S 4$ vertical output tube cathode to ground.
2. The resistance in series with the vertical charging condenser is changed to a 3300 ohm and 6800 ohm resistor in series.
3. A 360 K resistor is switched to parallel the existing vertical hold pot. and series resistor.
4. The existing height control is disconnected and a new control is switched in.

The vertical switching is accomplished with a minimum of parts, no change of oscillator transformers or output transformers. In short the vertical switching is accomplished easily and quickly with no loss in vertical height or linearity. Figure 4 shows the wiring connections for the dual standard adaptor. Notice that all the switching is accomplished by a four section wafer switch. To mount the kit, it is placed on top of the high voltage assembly and secured with one-quarter inch metal screws. The horizontal oscillator tube is removed and the octal plug is plugged into the tube socket. The tube is then plugged into the octal socket on the kit assembly. The three prong plug is plugged into the horizontal test jack.

A total of eleven wire connections are made to connect the unit into the chassis. Figure 3 shows a photo of the wiring looking at the back of the adaptor kit.

To sum up what the dual standard adaptor consists of and what it does. The dual standard adaptor is a small

figure 1

auxiliary unit which is mounted on top of the high voltage subassembly on the power chassis. It performs the task of switching in the correct circuit constants to enable the sweep circuits to operate at the higher rates required by the CBS Standard. After the adaptor is installed two separate controls are provided on the adaptor chassis to control independently, the picture height in black-and-white standard and color standard reception. All front controls remain exactly the same in either posi-
tion. This is a terrific advantage in uncomplicating the job of customer control.

In order to allow easy accessibility for customer control the Black and White Standard-Color Standard function switch is turned by means of an extension shaft and coupling. The extension shaft is inserted through a hole in the cabinet back, and a knob and label is placed on the shaft and back respectively. Figure 5 shows the shaft mounting details.

Shop Practices and Service Techniques
 RADIO

JULY, 1951

figure 1

Sooner or later every radio service man is confronted with the problem of having to handle the repair to a cabinet where the finish has been scratched, marred, burnt or otherwise damaged necessitating a touchup or a complete refinish.

Most repairs are not difficult to do but like all service work there are three requisites:

The right tools and materials.
The know how.
Experience.
Fortunately all three items are easy to obtain.

THE TOOLS

An alcohol lamp, sterno heater, or electric hot plate.

Burn-in-knife

Felt rubbing block ($2^{\prime \prime} \times 1^{\prime \prime}$)
Brushes (1 pencil point touch-up brush No. 6) (1 free flow lacquer brush $1^{\prime \prime}$ width)

Spray gun and air supply (If complete refinishing is done)

MATERIAL

Rubbing compound
Rubbing Oil
Sandpaper-wet or dry (No. 320)
Sealer
Stain
Clear lacquer (Brushing and, or, spraying)
Varnish remover
Lacquer thinner
Lacquer sealer
Burn-in-wax sticks (assorted shades)
Steel wool (Grade 4/0)
Spirit powders-nigrosene black, bismark
brown, chrome orange
Shellac (white)
Cheesecloth (Soft or fine mesh)

The items on page one are those desirable for doing a complete refinishing or touch-up job of any kind. After reading this article, however, you may decide to engage only in certain phases of finish repair such as touching up, repairing scratches, etc.; therefore, the items purchased need only be those required for that phase of the work.

EXPERIENCE

The experience needed to make a satisfactory repair can be had by practicing on an old cabinet. It will be found that a little experimenting on your part with the various types of repair following these instructions will result in your being able to do a satisfactory job.

THE PROCEDURE

Mixing Pouder Stains

Most radio cabinets are finished in either mahogany or walnut. For touchup work any shade of these two finishes can be produced by mixing spirit powders such as nigrosene black, bismark brown, chrome orange, etc., in right proportions with white shellac until the desired shade is produced. The stains are generally used to match the finish around sections of the cabinet that have been worn thru to the wood, matching the burn-in wax of filled in sections, or touching up small and inconspicuous injuries to the finish.
To produce any shade of brown walnut, place a small pinch of "chrome orange" powder on a piece of paper. Now, wet a pencil brush in shellac and dip it in the "bismark brown" powder. Then mix this color with the "chrome orange" powder on the paper until the desired shade is obtained. The small quantity that adheres to the brush when dipped in the powder should be sufficient for mixing. When mixing any of these powders use a very small quantity.
To obtain brown mahogany finish, the "nigrosene black" powder should be mixed with the "chrome orange" powder.

TOUCHING UP BARE EDGES

To touch up edges of a cabinet that have become worn through, mix some powder stains as de-
scribed above for the type of wood and color to match. Thin this mix with shellac to a working consistency. Apply to the worn edges smoothly with a pencil brush.

RENOVATING DULL FINISHES

In order to remove handling marks, slight packing marks and other surface imperfections due to objects being placed on surface proceed as follows:

Place a small amount of rubbing compound on a clean soft cloth. Rub the finish with the grain. Do not rub the edges of the cabinet too briskly, as it is easy to remove the finish from these points which would require retouching. Rub the surface until a smooth finish is obtained then wipe all traces of compound off the surface.

METHOD FOR USING BURN-IN WAX AND KNIFE

Materials required: Assorted shades of burnin wax; burn-in knife; alcohol torch; Sterno heater or an Electric Hot Plate.

The first step in filling holes, scratches and dents is to select the shade of burn-in wax that matches as closely as possible the color of the finish to be repaired. Do not select a stick of burnin wax that is darker in color than the finish to be repaired. Always use a lighter wax, as it can be stained to match the finish.

To burn-in any injury, proceed as follows:

1. Heat the burn-in knife on the alcohol lamp. At the same time, hold the stick of shellac near the flame in order to warm it up, as it will then flow more freely when the knife is applied.
2. When the knife is hot, apply it to the stick wax and remove a small quantity of the wax.
3. Fill the spot to be repaired with the wax, pressing it in well and then smooth it out evenly. The knife may have to be reheated during the process. Care should be taken that the knife does not become too hot, as it will blister the finish around the spot being repaired and will also blister the wax.
4. After filling the section with wax and smoothing it as much as possible with the hot knife, the
surface should be rubbed down with fine sandpaper (320) then rubbing compound until the surface is smooth and level with the rest of the finish.
5. After filling a spot the wax may have to be grained to match the grain of the wood. To put a grain on the wax, mix a little "Bismark Brown" with "chrome orange" powder using a little brushing lacquer for mixing. These colors can be mixed to get the proper shade of brown to match the finish. The stain can then be put on the wax with a pencil brush to match.

SCRATCHED SURFACES

Scratched finishes can be divided into two classes; i.e., "Deep" and "Surface" scratches. The procedure for repairing such damages differ.

DEEP SCRATCHES

This type of scratch is one which goes through to the wood. To repair this type of damaged surface:

1. Fill up the scratch with burn-in wax using the matching shade of wax stick. (See Fig. 2.)
2. After the wax surface is smoothed with the hot knife, place some rubbing compound on the filled section and rub down with fine sandpaper. Caution: When rubbing with sandpaper, it is ad-
visable to wrap the paper around a block of wood or felt to rub evenly.
3. Wipe repaired surface clean and polish with Phico polish. In the event that the scratch is very wide and deep, apply a coat of lacquer. Allow two hours drying time and apply a second coat.
4. After last coat of lacquer has dried for 24 hours, rub the area with sandpaper until the surface is level.
5. Clean, apply polish, and rub until a high luster is obtained.

SURFACE SCRATCHES

This type of scratch is one in which the surface of the finish is not damaged deeply. To refinish this type of surface:

1. Rub the surface with rubbing compound until scratches on the surface are removed.
2. Clean, apply Philco polish and rub until a high luster is obtained.

SCALED OR PEELING FINISHES

This type of finish trouble is generally found on the edges of panels and bases of cabinets. To repair such damages:

1. Sandpaper old finish off and wipe dust from surface with a clean cloth.
2. Stain surface with liquid stain (not powder stain) light or dark as required.
3. Apply one coat of sealer. Let dry for 3 hours.
4. Sand surface lightly with fine sandpaper.
5. Apply two coats of lacquer allowing 2 hours time between coats and 24 hours drying time after 2nd coat.
6. Sand with sandpaper and rub down with rubbing compound.
7. Clean and polish.

CHECKED OR CRACKED LACQUER

This type of finish trouble may be described as one in which small cracks appear in the lacquer finish along the grain of the wood, or seams of the matched veneer panel sections. This trouble may be corrected and repaired as follows:

1. Sand down the entire section with No. 320 dry sandpaper. Always sand with the general run
of the grain of the wood. Sand until a smooth even base is obtained for the application of new lacquer finishing coats. Be careful not to sand through to the filler coat.
2. Wipe off the surface thoroughly with a clean dry cloth.
3. Apply a coat of spraying or brushing lacquer covering the entire section of the cabinet surface on which the checking has developed.
4. Allow the lacquer to dry for one full hour, and then again sand down lightly with dry sandpaper.
5. Again carefully wipe the cabinet surface clean and apply a second coat of lacquer.
6. Allow the second coat of lacquer to dry for 48 hours before sanding and rubbing. Saturate a clean cloth with rubbing oil and thoroughly wet the surface of lacquer to be sanded. With sandpaper and felt or wooden block, lightly sand the lacquered surface in the direction of the grain of the wood, the surface being kept wet by wiping with rubbing oil.
Caution: When sanding cabinet surface, extreme care should be taken to have the finish sanded evenly. Sometimes low spots in the wood will cause the lacquer to sink to a lower level. These spots will appear pitted and shiny when the surface is wiped clean and dry. These areas should be sanded until the shiny spots are removed. When sanding any wood surface or cabinet finish, always sand in the direction of the grain of the wood.
7. After sanding, wipe the cabinet surfaces with a clean cloth, then apply rubbing compound and rub down with a felt block until a smooth surface finish is obtained.
8. When the surface is smooth, use a clean cloth to remove all traces of rubbing compound, then polish to a high lustre.

LACQUER SHRINKAGE

Lacquer shrinkage is due to the lacquer sinking into the pores of the wood. This type of finish trouble can be identified by the pitted appearance of the finish. The lacquer on a cabinet surface of this type, however, does not break and should not
be confused with a "checked" or cracked finish surface. In a "checked" or cracked finish surface, small breaks occur in the lacquer, whereas lacquer shrinkage merely sinks into the pores of the wood without breaking.

To refinish a lacquer shrinkage surface, proceed as follows:

1. Spread a small quantity of rubbing compound on the finish of the affected section of the cabinet and rub the surface evenly with the grain of the wood. Use the felt rubbing block moistened with cabinet or wax-base furniture polish. The rubbing operation should be continued until the surface finish appears smooth when the compound is wiped off.
2. Wipe the finish surface clean of the compound and then apply the polish, rubbing briskly to obtain a high lustre.

USE OF THE SPRAY GUN

The most satisfactory way to apply sealer or lacquer is with a spray gun. It distributes the finish evenly, there are no brush marks to rub out, and the job can be done quickly. There are a few precautions to keep in mind that will help you learn to do a good job.

1. Adjust the gun for the right mixture of air and finish so that the spray is well atomized for the material used.
2. The material to be sprayed should be thin enough to atomize satisfactorily so it does not come out in beads instead of a mist. Suitable thinner should be added to the lacquer if too thick until the right consistency is reached.
3. Keep the gun in motion and held at right angles to the work so that the spray is applied evenly across the cabinet. Do not prescribe an "arc" by tilting the gun at each end of the stroke or the finish will be thin at each end. Also, not moving the gun will result in a spot becoming "flooded" and "runs" will start.
4. Spraying should be done in as dust-free an area as possible so that the finish can set without dust particles lodging in it while wet.

PHILCO SERVICE

Nem Product Nems RADIO

AUGUST, 1951

NON-RADIATING FM TABLE MODEL

FIGURE 1. Philco Rodio Model 52.944
Philco has just announced a new table model AM-FM receiver, Model 52-944 (Figure 1) that has several new quality features. In keeping with our policy of continual leadership, this new set has been consideratly improved sensitivity wise. The new models sensitivity is two microvolts better than the preceding comparable model. This will be of particular advantage to fringe area users. However, the tig advantage of this set is that the radiation from the FM local oscillator has been kept at an exceedingly low level. While this radiation can be measured with laboratory equipment, for all practical purposes this set does not radiate. It causes no interference to television reception nor to any of the other radio services. The radiation is well within the limits, proposed by the Federal Communications Commission, covering the allowable local oscillator radiation of receiving equipment.

The minimum radiation characteristic of this model has been accomplished by very careful engineering design. The factors contributing to the accomplishment of the non-radiating FM receiver are both electrical and mechanical. Shielding of under-chassis components is taken care of by the mounting of a metal base plate covering the entire length and width of the chassis. The oscillator tube is shielded to prevent any radiation from the tube itself and the tuning gang is completely enclosed to prevent any radiation from the associated oscillator circuits. The FM antenna tuning is both electrically and physically removed from the gang to prevent any coupling between the FM local oscillator and the antenna circuit so that the oscillator signal cannot appear on the FM antenna. The tuning of the antenna circuit is accomplished by means of a variable iron core geared to the gang but shielded from it. This is shown in Figure 2. The rotor shaft of the variable condenser tuning gang is grounded and the frame is bonded to chassis at several points. The absence of radiation from the radio is also effected by the careful selection of ground points and it should be noted that these grounds are critical. Whenever servicing this model or replacing parts, particular attention should be paid to maintaining the original lead length, lead dress, placement of components, and use of ground points. The appearance of the FM oscillator signal on the AM antenna is prevented by the strategic placement of an R-F choke, L8, between the loop and the AM antenna section of the tuning gang. It was also found necessary to add filtering in the $B+$ lead which goes above
chassis to the output transformer. This is done by a 220 MMF ceramic condenser, C44, in parallel with the electrolytic filter section. The reduction of radiation is further helped by by-passing both sides of the AC line to chassis ground by 100 MMF condensers at the point of entry of the line.

It is very interesting to note that, in spite of the shielding and by-passing required to maintain the non-radiating feature, both the sensitivity and the signal-to-noise ratio have been improved. This has been done by increasing the antenna stage gain by increasing the positive feedback between the cathode and the control grid. The cathode bypass condenser, C 5 , has been lowered in value from a normal 100 MMF to 22 MMF. This value represents an optimum between gain and stability. From this established value, there are two possible effects, depending on whether the capacitance is increased or decreased. If the condenser value is decreased, the feedback will increase to a point where regeneration (and accompanying instability) begins. If, however, the condenser value is increased, the feedback is decreased so that the effective input voltage is also decreased with no improvement in stability. By using the value of 22 MMF for the cathode by-pass condenser a higher effective input voltage is attained (than when using a higher capacity cathode by-pass) which also raises the effective input impedance and Q of the antenna coil. In this way the antenna
stage gain is increased which accounts for the improvement in FM sensitivity. By the same manner, anything which increases the input signal strength will increase the signal-to-noise ratio. This is of importance in maintaining the quality expected of FM reception.

FIGURE 2

RADIO-APPLIANCE CLOCK MODELS 51-538 and 52-544

Philco is now offering a radio-clock which not only supplies the features of a sensitive 5 -tube superhetrodyne radio, an accurate electric clock, and automatic control of the radio by the clock, but also the additional convenience of automatic control of such external electric appliances as toasters, lamps, coffee-makers, heaters, television receivers, etc. The clock may be pre-set to turn on the radio (or an appliance if desired) at any selected time; it also has a delayed "off" feature which can be set to shut off the power at any other desired time up to sixty minutes. These automatic control features may be used singly or in combina-
tion, as for example: to turn the radio on automatically to avoid missing a favorite program, or to turn the radio off after the listener has retired and turn it on again at any desired time.

The appliance may be turned off and on in the same manner as the radio, simply by plugging the appliance cord into the receptacle provided on the rear of the radio. The radio covers the full broadcast band from 540 kilocycles (kc .) and is designed for operation on a power supply of 115 volts, alternating current (a.c.). The appliance receptacle has a maximum current-carrying capacity of 10 amperes (1100 watts).

FIGURE 3. Philco Radio Model 52-944, Schematic Diagram

FIGURE 4

TO OPERATE THE RADIO MANUALLY

1. Turn the AUTO-OFF-ON control to the ON position.
2. After the OFF-ON indicator is illuminated, wait a short time for the tubes to warm up.
3. Turn the VOLUME control to the right (clockwise) about half way through its range.
4. Rotate the STATION SELECTOR to obtain the desired station.
5. Turn the VOLUME control to the left (counterclockwise) until the station can just be heard.
6. Adjust the STATION SELECTOR for the best tone quality and the least background noise.
7. Readjust the VOLUME control for the desired level of sound. If there is a slight hum when the volume is turned low, reverse the powercord plug. NEVER USE THE STATION SELECTOR TO ADJUST THE VOLUME. If the above procedure is not followed, poor tone quality, increased noise, or station interference may result.

AUTOMATIC OPERATION

If the radio is to be controlled, set the STATION SELECTOR and VOLUME control to the positions of the radio station and volume desired. If any appliance also is to be controlled, insert the appliance power-cord plug into the receptacle on the rear of the radio; if radio sound is not desired, turn the VOLUME control to the left (fully coun-
terclockwise). After setting radio controls or connecting appliance, automatic-control operation is as follows:
To automatically turn on the radio or appliance at a preset time, set the clock controls as follows:

1. Set the AUTO-SET control for the desired time.
2. Turn the AUTO-OFF-ON control to AUTO. NOTE
For radio-alarm operation it is advisable to select a local station, because of the wide variation between daytime and night time reception.
To automatically turn off the radio or appliance within any time interval up to 60 minutes, set the clock controls as follows:
3. Set the AUTO-OFF-ON control to OFF.
4. Turn the DELAYED-OFF control to the right (clockwise) for the desired period of time. (for example: halfway for 30 minutes, fully clockwise for 60 minutes.)
To automatically turn off the radio or appliance within any interval of time up to 60 minutes, and then on again at a preset time, set the clock controls as follows:
5. Set the AUTO-OFF-ON control to AUTO.
6. Turn the DELAYED-OFF control to the right (clockwise) for the desired time interval.
7. Set the AUTO-SET control for the time at which it is desired to turn the radio or appliance on again.

PHILCO
 PHILCO
 Factory-Supervised Service

Shop Practices and Service Techniques

RADIO
SEPTEMBER, 1951

Following last month's discussion of basic oscillator theory, an attempt will be made in this article to cover as many problems as possible that arise involving these circuits.

Fig. 1 shows two typical oscillator circuits used in recent models. The first, Fig. 1-A, is a parallel fed Hartley using one half of a 7 F 8 dual triode as the oscillator tube. The second, Fig. 1-B, is a tuned grid using two grids of a multi-grid converter tube, a 1R5, as the oscillator tube elements. Not only are these two oscillators dissimilar in circuit but they also differ in regards to method of injecting the oscillator voltage to the mixer. It is, of course, known that where two signals, differing in frequency, are fed into an amplifier, the output will contain the two original signals, the sum frequency, and the difference frequency. Thus, to obtain the IF of a superhetrodyne receiver, it is only necessary to mix with the incoming signal a frequency that is either the IF above or below it, selecting the IF or difference frequency from the mixer output by a tuned circuit. In circuit 1-A the mixing action is accomplished by tying the cathodes of the oscillator and mixer sections together, thus modulating the mixer cathode with the oscillator signal while
feeding the incoming signal to the control grid. In circuit $1-B$ the oscillator uses two grids of a common tube. The control grid, which carries the incoming signal, lies between the two sections of the grid which acts as the oscillator plate. In this manner the tube current is then controlled by both signals as before.

Therefore, from the operation of the oscillator mixer, several quick and easy checks can be made to determine if the oscillator is working. If the static and noise level seems normal in tuning across the band, although there are no stations heard, and if an IF signal is passed by the mixer section with proper gain, the oscillator is immediately suspected. Also when the oscillator is operating properly, there will be a negative voltage developed at the grid across the grid leak resistor, Rg. This is the check for oscillator operation; using a suitable range, such as $0-10$ volts dc , and connecting the positive lead to the cathode and the negative lead through a 100,000 ohm resistor to the oscillator grid, a negative voltage should be indicated for all positions of the tuning gang.

The causes of oscillator failure are as numerous as the components of the circuit. The tube may be at fault

figure 1
even though the mixer section works (in such tubes as the dual triode 7 F) and the tube tests good in a tube tester. The best test for a tube used in an oscillator circuit is whether or not it works in the circuit. Oscillator tubes are best checked by substituting one known to be good. The other circuit components can be checked by the usual voltage, resistance, and substitution methods. Having determined that the oscillator is not functioning, the following test can be made. Measure the $B+$ supply voltage and the oscillator plate voltage to see if there is a voltage drop across the decoupling network, thus showing that the tube is drawing current. The
cathode voltage (or absence of it) will also indicate whether or not the tube is conducting. An absence of plate voltage indicates an open in the plate $B+$ circuit. No cathode voltage would be caused by either an open in the cathode circuit, such as open coil or resistor, or a faulty tube. A continuity check (in case of Fig. 1-A) from cathode to ground will establish if the trouble is in the tube or the circuit. The rest of the circuit may be checked in a similar way.

The following chart outlines some of the possible types of faulty oscillator operation with the common causes of each.

TROUBLE		REMARKS	CAUSE
Drift	Initial	All sets drift to some degree after initial turn on.	Change of tube spacing and component values coming up to operating temperature.
	Operational	An excessive amount of drift which lasts for longer than is necessary for the set to heat up. This can be caused by blocking the ventilation holes, by a tube overheating, or by components of the tank being subjected to too much heat.	Heat causes continuing change of value in coil and condenser components of tank. Replace, or if none-add, temperature compensating condenser.
	Long Term	Usually sufficient to realign. If tube shows a reduction in emission-replace. Clean plates of variable condenser.	Tube aging and change in value o tuning condensers due to dirt or of coil due to aging of form or insulation.
Partial Operation		This condition may be coupled with either a reduced or high ossillator vo!tage in the portion of the band that works. If the injection voltage is too high the tube will block-this is accompanied by low mixer gain in the operative portion of the band. Moisture or leakage in the coil is often accom. panied by shift in frequency.	Tube may fail to operate at particular frequencies. Leakage in coil, con densers, or leads. Over or under coupling between grid and plate coils. Low emission of tube caused by either poor tube or low filament voltage.
Motor Boating		Oscillator starts and stops. The on-off cycle is quite rapid and normally regular.	Open grid return or increased grid capacitator. The time constant of Rg Cg is too large to allow the complete dis charge of Cg during a cycle thus build. ing up a charge which cuts the tube off.
Shift of Frequency		This is usually accompanied by a drop in sensitivity and poor tracking.	Shorled turns. Leakage in coil or condenser. Open condenser in tank.

Oscillator drift (a changing of oscillator frequency which results in a shifting of dial calibration) can be caused by either purely mechanical changes or expansion due to thermal changes. Any oscillator of the type normally used in receivers will exhibit drift to some extent immediately following the initial turn-on. This is thermal drift and is caused by the mechanical changes through which all the associated parts pass before reach-
ing their stable state of operating temperature. Following the turn-on the various supply voltages will, from an initial high value, decrease, due to the tubes increasing conduction as the filaments' temperature rises to normal thus raising the cathode's temperature and emission. The rising tube temperature also affects the spacing of the tube elements thus changing the various interelectrode capacitances. As the tube itself is reaching its final
temperature, the electrical components are then being heated both by current flow through them (as in the case of resistors and coils) and by radiation from the tubes. For good operation this drift should not last for more than a few minutes and should not affect the oscillator frequency by more than approximately 5 KC at the high end. An example of mechanical drift is relaxation of the trimmer's plates. This can be caused by a gradual loss of the spring tension or by the plates having attained a "set" from a previous position and then tending to return to the original setting.

Thermal drift can be minimized by various methods such as reducing the heat within the cabinet and chassis by improving ventilation, relocating the effected parts to a cooler and more thermally stable position in the chassis, and by adding a negative coefficient condenser across that portion of the oscillator tank (whether coil or gang) that suffers the value change due to heat. These ceramic, temperature compensating condensers are the easiest and most common means of combating thermal drift. Their value of capacitance must be large enough to provide adequate compensation, and yet not so large as to shift the trimmer's setting outside of its usable range.

The coefficient of change versus temperature rise must be of such value as to stabilize the circuit without overcompensating and thus causing the circuit to drift in the opposite direction. These condensers should be wired directly across the terminals of the part being compensated so as to receive as nearly as possible an equal temperature variation.

Loss of calibration over a long period of time can be caused by tube aging, by accumulated dirt on the trimmer or gang, by gain or loss of moisture in the insulation of the condensers or coils, or by changes in position of the trimmer or gang plates caused by lessening of spring tension. These changes are usually small and can be corrected by realignment.

Motorboating is a condition where the oscillator alternately starts and stops in rapid and usually regular fashion. The cause of this trouble is either an open or greatly increased grid resistor or a grid condenser that has increased in value. As explained in last month's article, the grid condenser charges negatively on the positive portion of the grid swing thus limiting the positive swing and the grid current. During the rest of the cycle, this negative charge leaks off across the grid resistor. If, for any reason, this charge does not completely disappear before the next positive swing of the grid, the residual charge will add to the charge normally acquired during the cycle. This is continually additive until the charge across Cg equals cutoff. The tube is then blocked and oscillations cease until the charge leaks
off. The oscillator then starts, only to cut off again. It can be seen that the action at the oscillator grid is dependent upon the time constant of the combination of Cg and Rg .

Ocasionally, an oscillator will work for a period of time and then quit. There are several possible causes of this action; some part in the oscillator circuit may open, short, or change value sufficiently to prevent oscillation after warming up through operation, or the filament voltage may drop to such an extent as to lower emission below the value necessary to sustain oscillation.

These two possible causes are easily separated by applying the following tests. If the trouble is caused by component breakdown it will show up by supplying full rated supply voltage (or slightly more - such as 120 V . A.C. from a rheostat to supply an A.C. set which normally operates on 115 V .) and possibly adding heat to the suspected parts with a lamp or soldering iron. If the set is suspected to fail due to low filament voltage, the supply voltage can be reduced; the set should then quit. Measure the A.C. supply voltage at which the set just fails to operate to be sure that it is within the expected range of the service in the locality. The filament voltage should then be measured to ascertain if the voltage is below the level at which the tube should work or if the tube is at fault by requiring at least full filament voltage due to low emission. If the voltage across the oscillator tube is low, the voltage drop should be measured across the other tubes in series (in an AC-DC set) and any other components such as filament dropping resistors. This is a point to remember when portable radios require a new battery at very frequent intervals. Often the high voltage tubes will drop more than their share of the filament voltage. This may be caused by the tube itself or by a filament bypass that is leaking causing a higher current flow through one or more of the tubes.

Partial operation of the oscillator is characterized by reception of signals in only a portion of the tuning range. When a condition of this type exists, the oscillator voltage should be measured while tuning across the band. This voltage should be reasonably constant. Occasionally, a tube which checks good will refuse to oscillate on all or a portion of the band. If the oscillator voltage falls to zero or to a very low value in the portion of the tuning range that is inoperative, the trouble may be an open grid condenser, leakage in the coil, lowered oscillator plate current, or insufficient coupling between the grid and plate coils.

Overcoupling between the grid and plate sections of the oscillator transformer can also cause the circuit to be inoperative or partially so. This is due to the oscillator supplying sufficient injection voltage so that the mixer

Page Three
blocks. This can be checked by measuring the oscillator voltage and also by measuring the mixer stage gain. The oscillator and mixer work together to such an extent that a rise of oscillator injection voltage raises the bias on the mixer which lowers the mixer gain. A final check can be made when this condition is suspected by checking the mixer stage gain, lowering the oscillator voltage by some means such as reducing the $B+$ voltage applied to the plate section of the coil, and then rechecking for improved mixer gain and continuous operation across the band.

Stoppage of the oscillator in a portion of the band may be due to nicks or foreign matter in the plates of the variable condenser. Moisture or leakage across the coil or the insulation of the variable condenser may cause increased power consumption in the tuned circuit to such an extent that the oscillator feedback will not make up the loss, thus causing the circuit to fail to oscillate. Cases of moisture absorption in the tank components are often accompanied by a change in frequency.

The following paragraphs deal with the checking of auto sets which intermittantly blow fuses. Much of the information may be applied to the servicing of home sets as well. The check of operation using abnormal voltages (voltages which represent the high and low limits at which the set can be expected to operate) is very useful in any form of radio servicing. Many localities experience periods of high voltage (such as late at night when the load is least) and low voltage (such as the evening hours in residential neighborhoods or during the day in industrial locations). It will be noticed that often what appears to be an intermittant trouble is merely an inability on the part of the set to operate on other than normal voltage from the lines. As an example, the customer may complain that the radio shuts off for several minutes at irregular intervals during the evening. This may be a case of low supply voltage (or low oscillator emission) which is further lowered, below the set's operating point, by the added load of an electric refrigerator.

It is well known to all service stations and car dealers that a blown fuse is the complaint in a high percentage of auto radio repairs. A large number of these cases are remedied by the location and removal of a direct short to ground caused by a bit of solder or wire in the high voltage or $\mathrm{B}+$ section or the replacement of a shorted filter section. Usually, these troubles will cause fuses to blow consistently as soon as voltage is applied.

Occasionally, however, a set will come in with a blown fuse and operation on the bench will be perfectly normal. At this point a great many servicemen make the mistake of replacing the vibrator and returning the set as repaired. This is laying themselves open for a subsequent
identical complaint and irritation on the part of the customer. The car dealer and customer both begin to have suspicions as to the competence of the serviceman which may soon lead to curtailment of his business.

During normal vibrator operation, the voltage to the set may vary from 5.2 volts to as high as 8 volts, depending on the condition of the car battery, the setting of the voltage regulator and the resistance in the car wiring. This is a variation of 2.8 volts and can cause the voltage at the secondary to range between 200 and 310 volts on a normal power supply designed to furnish 250 volts at 6.3 volts input.

In order to locate power supply troubles (as well as oscillator failure, regeneration and high voltage breakdown) it is of tremendous advantage to be able to simulate input voltage fluctuations between the above limits. As this cannot be done with a common storage battery, it is highly advisable to equip the test bench with a manually variable low voltage, DC power supply.

In bench testing a set which has blown a fuse, the input voltage should be set to the nominal value as given by the manufacturer (usually 6.3 volts) and the input current noted. If the current is more than 1 ampere greater than that set forth in the specifications, the set should be thoroughly checked before being returned.
a. Replace temporarily the rectifier tube and sec whether the current is reduced to normal.
b. Check the secondary buffer condenser and replace if necessary, using a capacity voltage rating, and type as recommended by the manufacturer.
c. Check by-pass condensers for shorts or leakage especially in screen grid circuits.
d. Check feed-through condenser on " A " circuit and hash condenser between $B+$ and ground if they are used.
e. Check electrolytic condensers.
f. Check all tubes, especially output tubes, for shorts or abnormal consumption of current.
If the current is normal at 6.3 volts, the voltage should be raised slowly meanwhile watching the input current for signs of a rapid increase indicating a breakdown. When this has been established, it is easy to check the set as previously outlined. I)O NOT EXCEED 8 VOLTS INPUT!

When replacing vibrators and buffers, it is wise to remember that the capacitance of the buffer condenser and the inductance of the secondary plus the reflected inductance of the primary form a resonant circuit which must be matched to, or track with, the cycling period of the particular type of vibrator used in the circuit. Thus, it can be seen that proper buffer values are extremely important, as the life of a vibrator can be shortened by as much as 50% by incorrect buffing.

Page Four

PHILCO SERVICE Service

Nem Product Nems
SEPTEMBER, 1951
TELEVISION

PHILCO TELEVISION ALIGNMENT JIGS AND THEIR USE

Alignment of the Television Receiver has always seemed mysterious and extremely difficult to many a Television Serviceman. As the expression goes: "Its only in the mind." For all practical purposes television alignment consists of injecting a signal of a known frequency and type, into a certain point and examining how the receiver amplifies the signal at some output point. Although the preceding statement sounds simple and is simple to accomplish, many servicemen are confused by the fact that apparently a good connection to the output and input spots in the receiver seems difficult to attain. The Philco Television Alignment Jigs are specifically designed to make this part of the job of alignment easy. An initial investment in a complete set of television alignment jigs will yield rich dividends in accurate and correctly aligned Philco Television Receivers accomplished (excuse the pun) in jig time.

A good positive connection at the input points takes the guess work out of television alignment. There is nothing more disconcerting than trying to align a receiver and having something go wrong with the connections every few minutes. Another good point to remember is that a good positive connection will minimize the tendency for instability in a Television Receiver during alignment. The following is a discussion of the Philco Television Alignment Jigs sold through your distributor, plus a discussion of a jig (the Bias Box), which may be pre-fabricated out of several ordinary parts.

FIGURE 1

FIGURE IA

PHILCO TELEVISION ALIGNMENT JIGS
Philco Television Antenna Jigs - Antenna Jig Part No. 45-1736 (See Figures 1 and 1A)

When a signal generator which normally has an output impedance of approximately 72 ohms is connected to the aerial input terminals of a television receiver which usually has a 300 ohm impedance; an impedance matching device must be used. The reason for matching the output impedance of the generator to the input terminals of the receiver can be understood when referring to Figure 2. In Figure 2, the effects of a mismatch can be seen. Notice that there are standing waves around the connecting cable, thus this cable in common terms is said to be "hot". This means touching the cable at any point and introducing hand capacity, changes the positioning of the standing waves and upsets all alignment results. When using a sweep generator the effects of mismatch can be very easily seen since it can easily be noticed that the response curve shape changes when the connecting cable is touched.

Figure 2

The antenna jig, Part No. 45-1736 uses 150 ohm line elevator coils which step the 72 ohm generator output impedance up to the 300 ohm receiver input impedance. In addition, an attenuator pad, having a loss of approximately 60 DB , is incorporated in the circuit to level off any slight mismatch which might occur due to variations in input impedance between individual television receivers. This impedance matching network is mounted in a compact metal case. It can be used with any type of television receiver since it fits either the present two screw terminal type of aerial input, or with a short piece of 300 ohm line and 4 prong plug it will fit the earlier 4 prong antenna sockets. This jig has a threaded, female, Jones receptacle for connecting to the cable assembly Part No. 45-1635.

Figure 3

FIGURE 3A

Antenna Jig, Part No. 45-1637
 (See Figures 3 and 3A)

The antenna jig, part no. 45-1637 is an earlier type of jig which serves the same purpose as the 45-1736 jig and was used originally with the '48 and ' 49 series of receivers. However, impedance matching is effected by the use of carbon resistors instead of coils. The impedance matching network is mounted inside of a metal can, and a 4 prong antenna plug is mounted on one side. For more universal use the jig can be equipped with a braided ground lead and alligator clip. With a short piece of 300 ohm line and 4 pin antenna socket as shown in Figure 3A, it may be used with all Philco Television Receivers.

PHILCO TELEVISION IF JIGS

IF Jig, Part No. 45-1670 (See Figures 4 and 5)

The IF Jig, Part No. 45-1670 provides a positive connection to the mixer grid of the present day tuners, $76-5747$ and $76-6440-1$. It may be used for this application by slipping the jig over the mixer-oscillator tube and letting the spring loaded contact come up against the mixer grid connection. See Figure 5. It should be noted that on the $76-6440-1$ type of tuner, there are 2 types of tube socket and tube shields used for the mixer

Page Two

FIGURE 4

FIGURE 5
oscillator tube. If a tuner using a projection type socket and larger diameter tube shield is encountered, it is necessary to remove the larger tube shield and insert a smaller tube shield that will fit into the $45-1670 \mathrm{jig}$. Ground connection is made by the shield contacting the inner surfaces of the projection socket. See Figure 5.

This jig may also be used to contact the connection to the video i-f amplifier grids which are accessible from the top of the chassis through small holes near the i-f tube shields. This application can be used in those receivers in the 49-1150, 1450 series.

FIGURE 6

FIGURE 6 A

IF Jig Supplement, Part No. 1740
 See Figures 6 and 6A

The IF Jig Supplement, Part No. 45-1740 consists of a tube shield to which a prong has been fastened. This part when used with Part No. 45-1670 as shown in Figure 6A, makes a jig to provide easy comnection to the mixer grids of such tuners as the 76-5411, 76-5433, 76-4402.

The IF Jig Part No. $45-1670$ when combined with 45-1740 modified as explained previously makes a jig which can be used to inject signals into the mixer grid of all Philco television receivers, except the ' 48 eight channel tuner type. For all practical purposes it is a must in alignment equipment.

FIGURE 7

IF Jig - Part No. 45-1739 (See Figure 7)

The IF Jig, Part No. 45-1739 can be used in place of the $45-1670$ to contact the mixer grids of the newer tuners, 76-5747, 76-6440-1. It can be also used to contact the i-f grid test points which are of the button type and protrude above the chassis; (in some models of the $50-\mathrm{T} 1600$ series).

FIGURE 8

FIGURE 8A

Pre-Fabricated Jigs - "The Bias Box"

 (See Figures 8 and 8A)Perhaps the most useful jig which can be made is the "Bias Box". This jig has proven to be a very versatile piece of equipment. The plug part
of the jig may be connected to the Video Test Jack of Philco receivers using either a 3 or 4 pin test jack. The plug fits both sockets because one of the pins is clipped off leaving 2 whole pins. On 3 pin test jacks the plug is inserted with the cut-off pin to the front. On 4 pin test jacks the plug is inserted with cut-off pin to the extreme right. See Figures 8 and 8A. The jig provides a lead from the video detector output, (Blue lead), and also provides access to the AGC bus (brown lead) so that various negative voltages can be applied.

A six volt battery is used so that the six volts can be used to simplify troubleshooting the AGC circuits as covered in the March, 1951 issue of Philco Shop Practices and Service Techniques Publication.

The parts required to make the Bias Box Jig are as follows: (See figure 9).

1. A 6 position switch - Philco Part No. 42-1594 (this is an 8 position switch, only 6 positions are used).
2. A 3 prong plug - Part No. 27-4787.
3. A metal shell for plug - Part No. 56-1146.
4. An alligator clip.
5. 4 small pen-lite batteries (1.5 volts).
6. A metal case of the following approximate dimensions. (The exact dimensions are not important since only a box of convenient size large enough to house the parts is required.)

$$
\begin{aligned}
& \text { LENGTH }-6 \text { inches } \\
& \text { WIDTH }-4 \text { inches } \\
& \text { DEPTH }-2 \text { inches }
\end{aligned}
$$

The batteries may be securely fastened in place by using a thin metal strip (about $3 / 8^{\prime \prime}$) that is secured by metal screws on each side.

It is suggested that an insulating material such as thin cardboard be placed around the inside of the case near the batteries in order to minimize the likelihood for shorting out.

FIGURE 9

PHILCO SERVICE

Shop Practices and Service Techniques TELEVISION

TAKING THE MYSTERY OUT OF SYNC Part One

The purpose of this article is to illustrate and explain ways and means of tracking down sync troubles accurately and quickly. We know that most servicemen can lick any trouble eventually but we also know that the serviceman earns more money at less cost to the consumer when he knows the fastest service procedures.

It is not the purpose of this article to explain the sync signal in detail or how we happen to have the type of sync signal now in use. We will, however, briefly state the television standards so that we can have a beginning for our discussion of the composite video signal, the factors which affect this signal, the separation of sync from this signal, and the factors which are important in this process.

This article assumes that you know that television pictures are not transmitted all in one piece. Television pictures are created by sending thirty complete pictures per second consisting of 525 horizontal strips or lines, so that your eye has the illusion of continuous motion. The thirty complete pictures or frames are further divider into sixty fields of $262^{1} / 2$ lines. Each field is made up of alternate lines; that is, the first field is the even lines and the second field is the odd lines. The division of pictures into sixty fields is done in order to prevent flicker which would be objectionable to many people if the complete picture were repeated at the relatively slow rate of thirty times per second.

Having divided the picture into elements which can be transmitted over an electrical system we know that it is necessary to send along decoding information in the form of sync pulses which will permit the receiver to reassemble the picture with each element placed in the correct position on the proper line in the right field of the complete frame. See Figure 1. The electrical signal representing the picture elements and the sync pulses is known as the composite video signal. The video or picture element information is necessary to reproduce the picture in its original form. You, as an outstanding serviceman, can obtain more complete mastery of Television TroubleShooting by thoroughly understanding the composite video signal and the factors affecting its faithful transmission and reproduction. In this article we are specifically interested in the faithful transmission, reproduction, and separation of the sync signal.

To summarize then we have the video signal, the sync signal, and the combination or composite video signal. Since the composite video is distributed over the reception area by a transmitter we are also interested in the graphical representation of the transmitter carrier modulated by the composite video.

Another aspect of the transmitter signal is of interest because it enters into explanations of the important factors affecting the faithfulness of transmission and reproduction of the transmitter signal. The transmitter signal consists of two "carriers" - one for the picture signal, the other for the sound signal. Both of the carriers have associated with them a number of sidebands which represent the modulation or information part of the signal. Unless these sidebands are transmitted and reproduced faithfully the composite video signal delivered to the receiver system will not be an accurate reproduction of the original. See Figure 2.

FIGURE 2

The transmitter signal travels from the transmitter aerial through the ether to the receiver aerial, down the transmission line to the receiver. In the receiver the signal is amplified, converted to a lower frequency, and amplified again; still as a carrier modulated with composite video. Next it is detected; that is, the composite video signal is recovered from the carrier. The composite video signal is then amplified and applied to the picture tube to modulate the intensity of the electron beam. At the same time a portion of the composite signal is amplified and then the sync is separated to lock-in or synchronize the travel of electron beam across the screen to place the picture elements in the right position. The motion of the beam is imparted by horizontal and vertical sweep oscillators and amplifiers which are controlled by the sync signal.

The path traveled by the signal from the transmitter to receiver aerial is the first hurdle to be overcome. Multi-path transmission resulting from the signal traveling two or more different paths to reach the receiver aerial can result in distortion or cancellation of the signal. Ghosts and airplane flutter are every day examples of the multi-path transmission. Multi-path transmission is seldom more than a temporary cause of sync trouble (airplane flutter) but it is possible to install an aerial in a critical position such that the signal is distorted or cancelled. This type of difficulty is usually avoided by aerial orientation during installation but must nevertheless be remembered as a possible cause of sync instability.

High gain aerials with their limited pass-band can lead to sync problems if they are not cut and adjusted properly to the channel being received. This type of trouble is most likely to occur if the receiver is tuned to the next lower channel so that aerial response is low at the carrier frequency and sidebands near the carrier. See Figure 3. Non-uniform response to the television carrier and sidebands will lead to distortion of the received signal. The serviceman should keep aware of the trouble which can be introduced by a sharply tuned aerial operated outside of the proper channel or improperly tuned. The variation in operation from one channel to another should help point to the trouble spot.

The aerial lead-in or transmission line can be a very troublesome source of sync trouble as a result of mismatching and poor installation. An aerial

FIGURE 3
lead-in which is mismatched will become sensitive to motion with respect to surrounding objects. The picture may vary violently as the lead is moved or touched. Distortion or cancellation of the signal results in this case due to reflection of the signal up and down the transmission line which may not react as a uniform impedance for the many sidebands making up the television signal. Trouble caused by the lead-in can usually be detected by noticing the sensitivity of the leadin to the touch. In all cases where the transmission line is the least bit sensitive, special care should be taken to fasten it securely.

Uniform amplification of the modulated RF signal must be maintained throughout the amplifier stages. As in the case of aerials and transmission lines incorrect frequency response can cause loss or distortion of sync information by discriminating against significant sideband frequencies. Correct alignment can be checked using regular procedures prescribed in Philco Television Service Manuals. Circuit misalignment severe enough to cause sync trouble will usually produce a very poor picture. Sync troubles associated with poor picture quality should suggest a check of alignment.

Amplifiers have signal level characteristics as well as pass band characteristics. A given amplifier design is expected to handle signals within a limited range of signal levels. Too large a signal can be applied to an amplifier causing overloading and distortion of the amplified signal. A signal of high amplitude may cause the amplifier tube to be cut-off and/or saturated at extremes of the signal excursion. The net effect of operating an amplifier at the wrong point on its ampli-
tude characteristics is a loss or clipping of part of the sync information because sync always represents the highest amplitude of the signal.

Circumstances leading to operation of the amplifier beyond its characteristic are the most common and likely causes of sync trouble. The major part of our interest is centered on methods for quickly and accurately locating troubles which result in clipping of sync information.

Let us examine some of the sync troubles which have occurred in the Philco Duplex models and what was done to correct the troubles.

FIGURE 4

FIGURE 5

One of the major complaints of sync trouble was a rubbery or jittery effect under strong signal conditions. This condition was caused in most instances by some form of sync clipping.

In an otherwise normal receiver, the signal strength may be of sufficient amplitude to cause overloading. In Figure 4, B shows the Ip -Eg characteristic curve of a typical amplifier, with video signal amplitudes such as those sometimes present at the 4 th video i-f stage, when the receiver is used in a strong signal area. It can be seen from the curve that the sync pulses are being clipped due to plate saturation. The circuit of the amplifier is shown at A. In current Philco Duplex models, the tendency of this stage toward overloading can be reduced by changing the plate load resistor from 6800 ohms to 5600 ohms. This change increases the plate voltage so that the saturation point is higher. The bias should also be increased by changing the cathode bias resistor from 150 ohms to 220 ohms. These changes lower the operating point on the Ip-Eg curve, as shown in Figure 5.

It was also found that even though the signal at the video detector output was normal, the first video amplifier might become overloaded under strong signal conditions. In order to correct this condition cathode bias was added by means of a 100 ohm resistor bypassed by a 4700 mmfd . condenser. The plate voltage was increased by changing one of the plate load resistors to 2700 ohms, and the shunting capacity was changed from 220 mfd . to 56 mfd . to improve the high frequency response. See Figure 6.

FIGURE 6

Continued Next Month

INTRODUCTION: This publication contains information regarding clock radio clock parts replacement. Data contained herein covers all models manufactured since 1945. Features of this manual are:

1. A CROSS REFERENCE between radio model numbers and their reapective clock assembly catalog numbers. These clock assemblies are manufactured by the Telechron division of the General Electric Company and bear G.E. and Telechron Catalog numbers. The clock parts, however, are listed under Telechron Catalog numbers only, with a few exceptions.
2. A GROUP OF PHOTOGRAPHS needed for identification purposes.
3. A PARTS LIST for each clock assembly. Grouped on these pages are two series of clock assemblies used. The first section is concerned with the C51 timers which have no "sleep" feature. The second section deals with the C57 timers which have a "sleep" feature. Bracketed () items refer to production changes which are elaborated upon at the end of each parts section.

Symbol numbers in the parts list refer to symbol numbers in the parts identification photographs.
4. CLOCK RADIO CABINET REPLACEMENT GUIDE. This section is devoted to data regarding cabinet considerations for late model clock radios which underwent production changes. Consult this section before attempting any clock radio cabinet replacements.

Inasmuch as radio parts and clock parts procurement procedures differ, we suggest that you contact your General Electric Distributor for assistance. In general, The Telechron service stations will be able to supply all clock parts as may be required for replacement purposes. However the complete clock asiemblies are available from the General Electric Company as well as those few clock parts which are listed with G.E. catalog numbers only.

All clock assemblies are for 60 cycle, $105-125$ volt operation unless otherwise noted.

CLOCK AND CLOCK RADIO CROSS REFERENCE LISTING

The following is a cross reference listing of Telechron Clocks used in G.E. radio receivers, including appearance item color identification.

G. E. Clock No.	Telechron Model No.	Used on Radio Models	Dial	Outer Ring or Bezel	Hour 8 Minute Honds	Sweep Second Hond	Alarm Disc	Knabs
RZC-001	C51 G2	G.E. 50	Ivory	Gold	Gold	Gold	Ivory	Ivory
RZC-003	C51 G2 (50 cycles)	G.E. 50 (50 cycles)	Ivory	Gold	Gold	Gold	Ivory	Ivory
RZC-005	C51 G4	G.E. 60, 62, 66, 67	Blue	Red	Ivory	Ivory	Maroon	Ivory
RZC-006	C51 G4 (50 cycles)	G.E. 60, 62 (50 cycles)	Blue	Red	Gold*	Gold*	Maroon	Ivory
RZC-009	C57 G2	G.E. 64, 65, 505, 506, 507, 508, 530, 515, 516, 517. 521, 522 and early production 515F, 516 F , 517F, 521F, 522F (brasa bezel)	Bluegrey	Gold	Luminous	Gold	Maroon	Ivory
RZC-010	C51 G7	G.E. 500, 501	Bluecrey	Gold	Luminous	Gold	Maroon	Ivory
RZC-011	C57 G9	G.E. 509, 511, 518F	BlueErey	Chrome	White	Chrome	Maroon	White
RZC-012	C51 G10	G.E. 510, $511,510 \mathrm{~F}, 511 \mathrm{~F}$	Ivory	Gold	Maroon	Red	Gold	Ivory
RZC-013	C57 G22	G.E. 535	Grey	Gold	Luminous	Red	Ivory	Fawn
RZC-014	C51 G16	G.E. 512F	Purple	Fawn	Ivory	Red	Maroon	Fawn
RZC-015	C51 G17	G.E. 513F	Ivory	Ivory	Cold	Red	Maroon	Ivory
RCZ-017	C57 G31	G.E. 515F, 516F, 517F, late production (plastic bezel)	Blue. grey	Gold	Luminous	Gold	Maroon	Ivory
RZC-018	C57 G36	G.E. 518F late production (plaatic bezel)	Grey	Silver	Luminous	Chrome	Maroon	White
RZC-019	C57 G38	Late 535 (sprayed steel bezel)	Grey	Fawn	Luminous	Red	Ivory	Fawn

*RZO.006 Hands may be supplied in either sold or ivory. When ordering, specify color.

Fig. 1. Front View of Clacks-"'No Sleep' Faature (C5I Series)

Fig. 2. Front View of Clocks with "Sleep" Feature (C57 Series)

G.E. CAT. NO. RZC-001 (60 CYCLE) \& RZC-003 (50 CYCLE) TELECHRON CAT. NOS. C5IG2 \& C51G2 (50 CYCLE)
 For Rodio Model 50 (50 \& 60 Cycle)

Description	Cat. No.	Symbol	Description	Cat. No.	Symbol
APPEARANCE ITEMS			MOVEMENT PARTS (Cont'd)		
			Field a coil-50 cycle (1113 Hole) (A).		
Cryatal 2fif" square	58×15		Field \& coil- 50 cycle (.128 Hole) (A).	45×210	23
Dial ${ }_{\text {Alarm disc. }}$	${ }_{55 \times 3} \mathbf{6 0 \times 7 0 7}$		Front plate ass'y. (.113 Hole) (A)....	34×181 34×229	16
Hour ar minute hands-gold	32×129		Hour hand sleeve... ${ }^{\text {a }}$.	13×11	18
Sweep second hand-gold.	31×26		Intermediate gear ass'y	40×87	27
Alarm set knob-ivory (Threaded) (A)	4×5		Minute Hand sleeve...	14×17	19
Alarm set knob-ivory (Slotted) (A)..	59×716		Rotor unit (60° cycle).	44×38	22
Switch knob-ivory... Time set knob-bronze	59×716 3×49		Rotor unit (50 cycle)	44×39	22
Time set knob-bronze	3X49		Screw-front plate... Screw-field	64X117	24 13
MOVEMENT PARTS			Spreader post.	40×201	14
			Sweep second hand shaft Switch contact ass'y. (C1)	16×14 40×76	20
			Switch contact ass 'y. (1)	40×16 40×187	3
			Switch contact ass Y (${ }^{\text {S }}$ S 3).	40×185	8
Alarm set sleeve (O.id style) (B)	15×3 11×8	17	Switch index spring (C2)	40×88	12
Alarm set shaft (Threaded) (A)	11×11	30	Switch shaft ass'y. (C1).	59×699	6
Alarm set shaft (Slotted) (A)	11×41	31	Switch shaft ass'y. (C2).	59×723	7
Base plate ass'y. (Friction) (C1)	35×39	21	Switch shaft ass'y. (C3)	59×776	8
Base plate ass'y. (Friction) (C2)	35×62	21	Switch shaft spacer.	40×275 10×115	5
Cam shaft ass'y.............	${ }_{40 \times 10}$	26 25	Time set shaft...........	10×115 40×22	11 9
Cam shaft washer Field \& coil- 60 cycle (113 Hole) (A)	40×252 45×73	25 23	Time set shaft spacer-long, Time set shaft spacer-short	40×222 40×219	10
Field \& coil-60 cycle (.128 Hole) (A)	45X209	23	Wire lead.......	59×707	

G.E. CAT. NO. RZC-005 (60 CYCLE) \& RZC-006 (50 CYCLE)
TELECHRON CAT. NOS. C51G4 \& C51G4 (50 CYCLE) TELECHRON CAT. NOS. C5IG4 \& C5IG4 (50 CYCLE)

For Radio Models 60, 62, 66, 67, 60 (50 Cycle) \& 62 (50 Cycle)

*RZC-006 hands available in either ivory or gold-specify when ordering.

G.E. CAT. NO. RZC-010 TELECHRON CAT. NO. C51G7
 For Radio Models 500, 501

Description	Cat. No.	Symbol	Description	Cat. No.	Symbol
APPEARANCE ITEMS			APPEARANCE TIMES (Cont'd)		
Bezel-numeral, gold Bezel color ring-red.	$\begin{aligned} & 53 \times 128 \\ & 59 \times 769 \end{aligned}$		Crystal 28"\# round	$\begin{aligned} & 58 \times 16 \\ & 61 \times 941 \end{aligned}$	

G.E. CAT. NO. RZC-010 (Cont'd) TELECHRON CAT. NO. C51G7

For Radio Models 500, 501

Description	Cat. No.	Symbol	Description	Cat. No.	Symbol
APPEARANCE ITEMS (Cont'd)			MOVEMENT PARTS (Cont'd)		
Alarm disc.	55×15				
Hour \& minute hands-luminous Sweep second hand-gold	32×199 31×26		Front plate ass'y. (128 Hole) (A)	34×139 13×11	16
Sweep second hand-gold (headed) (A)	31×26 4×5		Hour hand sleeve.......	13×11 40×87	18
Alarm set knob-ivory (Slotted) (A)..	59×716		Minute hand sleeve...	40×87 14×17	27 19
Switch knob-ivory.................	59×716		Rotor unit, 60 cycle	14×38	12
Time set knob-bronze	3×36		Screw-Front plate.	64×1	24
MOVEMENT PARTS			Spreader post.	${ }_{40 \times 201}^{1 \times 117}$	13
			Sweep second hand shaft. Switch contact ass'y. (2)	${ }^{16 \times 14}$	20
			Switch contact ass y. (C2).	40×187 40×322	3 4
Alarm set sleeve (Alarm set shaft (hreaded) (A)	15×3	17 30	Switch lever ass'y... (ciz)	40×88 59×723	12
Alarm set shaft (Slotted) (A)	11×41	31	Switch shaft ass'y. (C3)	59×723 59×776	8
Base plate asa'y. (Friction) (C2)	35×62	21	Switch shaft spacer....	40x275	5
Cam shaft ass'y.	17×10	26	Time set shaft	10×129	11
Cam shaft washer. ${ }_{\text {Field }}$ \& coil 60 cycle (113 Hole) (A)	40×252 45×73	25	Time set shaft spacer-long.	40×222	9
Field \& coil, 60 cycle ($(113$ Hole) (A$)$ Field \& coil, 60 cycle (128 Hole) (A)	45×73 45×209	23 23	Time set shaft spacer-short Wire lead..............	40×219 59×707	10

G.E. NO. RZC-012, TELECHRON NO. C51G10

For Radio Models 510, 511, 510F ond 51IF

G.E. NO. RZC-014, TELECHRON NO. C51G16

For Radia Model 512F

G.E. NO. RZC-015, TELECHRON NO. C51G17
 For Radio Model 513F

Description	Cat. No.	Symbol	Description	Car. Na.	Symbol
APPEARANCE ITEMS			MOVEMENT PARTS (Cont'd)		
Crystal-bezel combination	58×129		Front plate ass'y (A)	34×235	16
Dial Dial apacer.	61×958 59×772		Hour hand sleeve....'	13×11	18
Dial spacer Alarm disc.	59X772		Intermediate gear ass'y ${ }^{\text {a }}$ (io... Minute hand sleeve (Friction).	40×87 14×32	27 19
Hour \& minute hands.	32×258		Rotor unit 60 -cycle ${ }^{\text {a }}$.	44X38	22
Sweep second hands-red ...	31×81		Screw-front plate.	64×1	24
Alarm set knob-ivory (Slotted) (A)	59X716		Screw field.........	1×117	13
Switch-ivory	59×716 3×36		Screw-awitch contact	64×1 40×201	14
			Sweep second hand shaft	16×14	20
MOVEMENT PARTS			Switch contact ass'y (C2)	40×187	3 4
			Switch contact asiy (C3).	40X185	$\begin{array}{r}48 \\ \hline\end{array}$
			Switch lever ass'y -	40×88	12
			Switch shaft ass'y (C3)	59X782	8
Alarm set shaft (Slotted)	$11 \mathrm{X} 43$	31	Switch shaft spacer....	40×275	5
Base plate ass'y (Less friction) Cam shaft ass'y	35×101 17×10	21 26	Time set shaft	10×158 40×22	11 9
Cam shaft ass'y...	17×10 40×252	26	Time set shaft spacer (Long) Time set shaft spacer (Short)	40×222 40×219	10
Field $\mathrm{s}^{\text {c coil }} \mathbf{0 0 - c y c l e ~ (A) ~}$	45X209	23	Wire lead.	59X707	

C51 PRODUCTION CHANGES

(A)

On 1951 production of C51 timers a slotted alarm set shaft will replace the present threaded one. This change will affect the following parts:
Alarm Set Shaft Assembly
Alarm Set Knob
Front Plate Assembly
Coil and Field Assembly
The alarm set shaft and knob will be slotted instead of threaded. The hole accommodating the alarm set shaft on the front plate and field bracket will be enlarged from .113 to . 128.
(C1-2)
In 1948 the original switch shaft and switch contact assembly were redesigned to improve the switch indexing. The old style switch contact assembly (C-1) featured a bumped switch bracket which established contact with the copper locating springe on the switch shaft (C-1). The new style contact assembly. (C-2) has a smooth surface switch bracket. A bronze index spring seated on the two base plate posts which support the switch

\#Sitch Shaft	New (C-2)	Old (C-1)
Switch Contact	59×723	59×699
Switch Index Spring	40×187	40×76
Base Plate	40×185	

bracket. provides contact with the new switch shaft assembly (C-2). The following parts were affected:

(C-3)

In 1951 still further changes were made affecting the various switch shafts and switch contact assemblies. The composition cam on the switch shaft was redesigned and reduced to $\frac{1}{16}$ in. thickness or less than $1 / 2$ of the original size. The original composition cam was of black bakelite, the replacing cam of white nylon. The fibre arm of the switch contact assembly was redesigned to correspond with the cam change on the switch shaft.

The various combination of parts affected by all changes in switch indexing are shown below. (C-1) refers to the original assemblies which featured copper locating springs on switch shaft assemblies. (C-2) indicates the first change in indexing wherein a nickel cam replaced the locating springs on the switch shaft assemblies. The composition cams on these switch shafts were black bakelite. (C-3) indicates those parts affected by recent changes as outlined above. The reduced composition cams on the switch shaft assemblies are currently manufactured of white nylon. Parts affected by these changes are:

	C1	C2	C3
*Switch Shaft	59×699	59×723	59×776
Switch Contact	40×76	40×187	40×322
Base Plate	35×69	35×62	
Index Spring		40×185	

*Catalos number will vary in accordance with ahaft length.

C57 SERIES

G.E. CAT. NO. RZC-009, TELECHRON NO. C57G2

For Radio Models 64, 65, 505, 506, 507, 508, 530, 515, 516, 517, 521, 522, and Early Production 515F, 516F, 517F, 521F, and 522F

\begin{tabular}{|c|c|c|c|c|c|}
\hline Description \& Cat. No. \& Symbal \& Description \& Cat. No. \& Symbol

\hline \multicolumn{3}{|l|}{APPEARANCE ITEMS} \& \multicolumn{3}{|c|}{MOVEMENT PARTS (Cont'd)}

\hline Bezel-numeral, gold \& 53×117 \& \& Field \& coil 60 -cycle (128 hole) (A) \& 45×209 \& 25

\hline Bezel-outer gold... \& 54×31 \& \& Field screw ${ }^{\text {a }}$ \& 1×117 \& 12

\hline Bezel color ring-red \& ${ }_{58 \times 16}$ \& \& Front plate asa'y (113 hole) (A)
Front plate asa'y (
(128 hole) \& 34×173
34×221 \& 16
16

\hline Dial.............. \& 61×937 \& \& \& ${ }^{34 \times 221}$ \& 26

\hline Alarm disc. \& 55×15 \& \& Hour hand sleeve \& 13×11 \& 18

\hline Hour \& minute hands (Luminous) \& 32×199 \& \& Intermediate gear ass'y \& 40X87 \& 29

\hline Sweep second hand-goldjed \& 31×26 \& \& Minute hand sleeve... \& 14×32 \& 20

\hline Alarm set knob-ivory (Threaded) (A)
Alarm set knob-ivory (Slotted) (A) \& 3

59×716 \& \& Rotor unit 60 -cycle \& 14×38
40×277
40×20 \& 24
35

\hline Alarm set knob-ivory (Slotted) (A) \& 59×716
59×716 \& \& Sleep switch shaft \& 40×277
40×302 \& 35
31

\hline Radio switch-ivory. \& + 59×716 \& \& Steep awitch booster apring \& 40×302
40×194 \& 31
30

\hline Time setbronze. \& 3×36 \& - \& Sleep awitch friction ass'y \& 40×196 \& 34

\hline \multicolumn{3}{|l|}{\multirow{3}{*}{MOVEMENT PARTS}} \& Sweep second hand shaft \& 16×14 \& 22

\hline \& \& \& Switch contact ass'y (Old) (A) \& 40×198
40×322 \& 6
7

\hline \& \& \& Switch contact screw \& ${ }_{40 \times 185}$ \& 5

\hline Alarm set sleeve \& 15X3 \& 17 \& Switch lever ass'y. \& 40×197 \& 4

\hline Alarm set shaft (Threaded) (A) \& 11×11 \& 32 \& Switch shaft ass'y (Old) (A) \& 59×723 \& 2

\hline Alarm set shaft (Slotted) (A).. \& ${ }_{11 \times 41}$ \& 33 \& Switch shaft ass'y (New) (B) \& 59×776 \& 3

\hline Base plate ass'y.........
Camm shaft ass'y... \& 35×93
17×10 \& 23
28 \& Switch shaft spacer....... \& 40×275
10×144 \& 1
8

\hline Cam shaft washer \& ${ }^{17 \times 10}$ \& 28
27 \& Time set shaft \& 10×144
40×276 \& 8
9

\hline Field \& coil 60 -cycle (ii3 hole) (A) \& 45×73 \& 25 \& Wire lead \& 59X707 \& 15

\hline
\end{tabular}

G.E. NO. RZC-011, TELECHRON NO. C57G9

For Radio Modals 509, 518 and 518F

Description	Cat. No.	Symbol	Description	Cat. No.	Symbol
APPEARANCE ITEMS			MOVEMENT PARTS (Cont'd)		
Bexel-chrome numeral	53×134		Field \& coil $60-\mathrm{cycle}$ (128 hole) (A$)$		
Bezel-outer chrome.	53×134 59×750		Field screwili hole) (A)	1×117 34×173	12 16
Bezel color ring-white Crystal 2rim round.	59×750 58×16		Pront plate ass'y (.113 hole) (A)	34×173 34×221	16
Dial.	61×946		Front plate screw	64×1	26
Alarm disc..	55×15		Hour hand sleeve.	13×11	18
Hour o minute hands white	32×227		Intermediate gear ass'y	40×87 14×32	29
Sweep second hand-chrome.	31×70 3×53		Minute hand sleeve.	14×32 44×38	24
Alarm set knob-white (Threaded) (A)	3×53 59×751		Rotor unit 60-cycle	${ }^{44 \times \times 277}$	35
Slerm setteh-white.	59x751		Sleep switch booster spring	40×302	31
Radio switch-white..	59×751		Sleep switch lever ass'y ${ }^{\text {S }}$,	40×194 40×196	30 34
Time set knob-bronze	3X36		Sleep switch friction ass'y Spreader post (2).....	40X196	34 13
MOVEMENT PARTS			Sweep second hand shaft	16×14	22
			Switch contact ass'y (old) (A) Switch contact asa'y (new) (B)	40×198 40×322	6 7
			Switch contact screw	64×1	5
Alarm set sleeve	15×3	17	Switch lever ass'y.	40×197	4
Alarm set shaft (Threaded) (A)	11×11	32	Switch shaft ass'y (old) (A)	59×723	2
Alarm set thaft (Slotted) (A)..	${ }_{3}^{11 \times 41}$	33 23	Switch shaft ass'y (new) (B)	59X776	3 1
Bame plate ases'y.	35×93 17×10	23 28	Switch shaft spacer	10×141	8
Cam shaft washer.	${ }_{40 \times 252}$	$\begin{array}{r}27 \\ \hline 25\end{array}$	Time set shaft spacer	40×276	9
Field as coil 60 -cycle (.1i3 hole) (A)	45×73	25	Wire lead.	59×707	15

G.E. CAT. NO. RZC-013, TELECHRON NO. C57G22

Early Model 535

G.E. NO. RZC-017, TELECHRON NO. C57G31

For Radio Models 515F, 516F, 517 F (Late Productions)

G.E. NO. RZC-018, TELECHRON NO. C57G36

For Radio Model 518F (Late Production)
The C57G36 timer is similar to the C57G31 with the exception of the bezel which is chrome finished plastic. This bezel number is 53×158.

G.E. CAT. NO. RZC-019, TELECHRON CAT. NO. C57G38

Lale Model 535

The C57G38 timer is similar to the C57G22 timer (RZC-013) with the exception of the polished brass bezel which was replaced by one of sprayed fawn, Catalog number 53X159.

C57 PRODUCTION CHANGES

(A \& B)

In 1951 the original switch shaft and switch contact assembly were redesigned. The original switch shaft (A) utilized a black bakelite cam, whereas the new switch shaft cam is made of white nylon. The cam on the new shaft (B) was reduced to $\frac{3}{16}$ in. thickness or less than one half the original size. The fibre arm on the switch contact assembly was redesigned to correspond with the cam change on the switch shaft.

The parts affected by the above are:

	(A)	(B)
*Switch shaft	S9X723	59X776
Switch contact	40×198	40×322

* Catalog number will vary in accordance with shaft length.

CABINET CONSIDERATIONS FOR VARIOUS TYPES OF CLOCKS

Some of the catalogued items are listed below for clarification and others are added, to conform with receiver production changes in regard to the clock assembly employed. Late production receivers use clocks RZC-017 and RZC-018 employing an outer bezel and numeral bezel molded in a one piece plastic unit, while earlier receivers use clocks RZC-009 and RZC-011 (listed in ER-S-510F) using separate items of brass for the outer clock mounting bezel and numeral bezel. It is to be noted that the detail in the clock mounting hole in the original cabinet for
each receiver model was also changed to accommodate the later clock using the plastic bezel. Therefore, the listing below should be carefully consulted for selection of the replacement part, in regard to the proper combination of cabinet and clock. All four clocks are 60 -cycle, $105-125$-volt assemblies having a round face and arabic numerals and employ an automatic alarm and sleep control.

Exercise care in removal of plastic bezels to prevent breakage of plastic tabs.

Cot. No.	Description	Cot. No.	Description
RAU-338	CABINET-Color, brown mottle; for Models 515, 515 F ; use brass bezel clock RZC-009	RAU-359	use plastic bezel clock, RZC-017 CABINET-Color, white; for Model 518F; use
RAU-339	CABINET-Color, ivory; for Models 516, 516F; use brass bezel clock, RZC-009	RZC-009	plastic bezel clock, RZC-018 CLOCK-With polished brass bezels; for
RAU-340	CABINET-Color, maroon; for Models 517, 517F; use brass bezel clock, RZC-009		Models $515,515 \mathrm{~F} ; 516,516 \mathrm{~F} ; 517,517 \mathrm{~F}$, using cabinets RAU-338, RAU-339, RAU-340
RAU-341	CABINET-Color, white; for Models $518,518 \mathrm{~F}$; use chrome finish brass bezel clock, RZC-011	RZC-011	CLOCK-With chrome finished brass bezels; for Models 518, 518F using cabinet RAU-341
RAU-356	CABINET-Color, brown mottle; for Model 515F; use plastic bezel clock, RZC-017	RZC-017	CLOCK-With gold finished plastic bezel; for Models 515F, 516F, 517F using cabinets RAU.
RAU-357	CABINET-Color, ivory; for Model 516F; use plastic bezel clock, RZC-017	RZC-C18	356, RAU-357, RAU-358 CLOCK-With silver finished plastic bezel; for
RAU-358	CABINET-Color, maroon; for Model 517F;		Model 518F using cabinet RAU-359

ALARM AND SWITCH ADJUSTMENTS

1. Turn Wake-Up Manual shaft to WAKE UP position.
2. Slowly rotate Time Set shaft clockwise until the contacts of the Switch Assembly close.
3. Set all Hands so that they indicate 12 o'clock. Set figure 12 of the alarm dial to index with the smaller pointer of the hour hand. Make sure all Hands and Alarm Dial are tight on their respective shafts. Replace Dial Face.
4. With Alarm Set knob pulled out, continue to rotate Time Set shaft clockwise and note that the Alarm vibrator arm drops
against field core approximately $7-10$ minutes later. 5. Set alarm at some other selected position and make sure mechanism actuates within limits (± 1 minute).
5. Check alarm tone of vibrator. This can be adjusted by either bending vibrator arm nearer or farther away from field core. Bend arm near anchor point.
NOTE: When removing gears or other internal parts of clock mechanism, always start the disassembly process from the front (face) side of clock and work toward the rear.

Fig. 3. Back View of C51 Clocks

Fig. 5. Back View C57 Clocks

Fig. 4. Front View of C5I Clocks-Front Plote Removed

Fig. 6. Front Viow C57 Clocks-Front Plote Removed

Fig. 7. Exploded View of C51 Series Clock Movement

GENERAL ELECTRIC COMPANY
RECEIVER DEPARTMENT
ELECTRONICS PARK
SYRACUSE, NEW YORK, U.S.A. PRINTED IN U.S.A.

PHILCO SERVICE

Shop Practices and Service Techniques

TELEVISION
NOVEMBER, 1951

TAKING THE MYSTERY OUT OF SYNC
 Part Three

To illustrate let us review quickly the waveforms which we should expect to see at key points in a typical television chassis: See Figure 13.
A. Video Detector
B. Video Amplifier Stages
C. First Sync Separator
D. Noise-Gate
E. Sync Separator Plate
F. Sync Inverter Plate
G. Vertical Oscillator Grid
H. Horizontal Control Tube Grid (Phase Comparer)

The normal wave-forms become a key to rapid localizing of sync troubles only after they have become familiar to you on your oscilloscope. Do not expect too much success the first time you use a new oscilloscope on a new chassis.

It is assumed during the tests which follow that a signal comparable to the signal at the operating location is used.

In the majority of sync problems the decision must be made as to whether the trouble occurs before or after the video detector. We therefore recommend that the first test with an oscilloscope be made at the video detector load resistor. In Philco receivers this point is brought out to a convenient test jack. A check of a normal indication at the detector jack requires that the effect of changing signal level on the wave-form be observed. There might be a defect in the ampli-
fier stages which might not produce a noticeable distortion of the composite video and yet by varying the signal level a change in the ratio of sync to video could be observed. In Philco sets where the contrast control has some effect on RF amplifier bias varying the contrast control while observing the wave-form is a good test method.

If an abnormal indication is obtained at the video test jack we would have to track down the cause by indirect methods since the oscilloscope cannot be used at the high radio frequencies of the IF system. Since faulty tubes are a common cause of clipping in the RF and IF amplifiers it would seem logical to substitute tubes, one at a time, as the first step. Our experience does not recommend this procedure because it results in many recalls. The serviceman in some instances thinks he has found a defective tube and replaces it only to have the same trouble recur after the tube has been in use for a short time.

The following method is recommended for checking the RF and IF stages for failure of the

AGC system and tubes: See Figure 14.
Trouble-shooting AGC circuits can be greatly simplified by use of the following procedure.

1. Trouble in the AGC system may give several effects. It may give the appearance of a very black picture with very bad horizontal tearing.

In severe cases the picture may even have a negative appearance, that is the blacker portions of the picture appear very white and the white portions look grayish. A voltmeter check at the AGC test point may or may not indicate the trouble. To readily isolate the AGC trouble to a stage, it is possible to substitute for the AGC voltage a fixed bias source. This procedure is done in the following sequence:
2. Turn the receiver off and connect a 6 volt battery; positive to the chassis and negative to the AGC test point (output of AGC rectifier). Remove AGC Rectifier tube.
3. Connect meter to any one of IF grids and check for negative voltage. The meter used should be a vacuum tube voltmeter having an input resistance of 10 megohms or more. If a negative voltage is present on the grids with the set off possibility of a dead short or open component in the grids to AGC bus is eliminated. If a short or an open component were present negative voltage would not be measured at the grids.
4. If negative voltage is measured, leave battery and meter connected and watch meter reading. If bias voltage goes down or disappears as the set warms up an IF or RF tube with a grid-short-afterheating is at fault. To isolate the tube remove one $F \quad$ at a time.
5. If bias voltage remains normal with set turned on, the trouble is definitely in the AGC stage itself. Ohm-meter tests will show up the defective part.

Remember although a ceramic coupling condenser may leak slightly that plate voltage drop is negligible, it still might feed enough positive voltage over to the next IF control grid to cancel out the AGC voltage.

The above system is entirely independent of an external signal to provide a test AGC voltage; however, normal operation of the receiver while using this external bias method should not be expected.

Page Two

FIGURE 14

AGC SYSTEM CHANGES

In the Philco RF chassis employing the Colorado Tuner there have been several changes in the AGC system. The original AGC system applied AGC voltage to the 6BQ7 RF amplifier from the same bus which supplied the IF amplifier stages. The second system modified the AGC circuit to provide an extra delay for the AGC supplied to the tuner. This was accomplished by connecting a small positive voltage from the contrast control through a 1.5 megohm resistor to the AGC feed point for the tuner. At this point the negative AGC voltage was connected through a 680,000 ohm resistor. The second circuit had the advantage that tuner sensitivity was maintained at maximum up to a signal level above 300 microvolts. As a result the signal to noise ratio of the tuner was kept high resulting in less snow in the picture.

The AGC system now being used in current sets provides the tuner AGC control voltage from the final sync separator rather than from the AGC rectifier in the video circuit. The latest AGC system has the advantage that it permits the receiver to operate without overloading in areas of very high signal strength. Signals of the order of .5 volts on the antenna leads will produce normal pictures without any signs of clipping or excessive contrast.

If you are servicing a receiver which suffers from either excessive snow on signals of approximately 300 microvolts or overloads on strong signals then you would want to examine the circuit and revise the AGC system to the tuner so as to correct either or both of these troubles. If the first problem is present it is only necessary to provide the delay voltage for the tuner from the contrast control. If the second trouble is present then it will be necessary to change the source of the tuner AGC voltage as well.

The changes made on the tuner AGC system are illustrated in figure 1 A and B , and Figure 3. These show the original AGC circuit, the circuit with delay voltage added, and AGC control voltage supplied from the final sync separator. It is suggested that reference be made to the base layouts on pages 2 and 3 of PR-1928 and page 24 of PR-1943 and the associated schematics of the chassis using the Colorado Tuner.

NOTE: Slight variations of the physical layout of individual components may be encountered in different models. It is recommended that the wiring as outlined in this article be followed as close as possible.

FIGURE 1

AGC CHANGES (SEE FIGURES 2 and 3)

1. Remove 6.8 meg. resistor R604.
2. Remove wire connected from term 2 of B-5 to pin 6 of 12AU7 sync separator noise gate.
3. Remove connection of R602 at term 2 of B-5 and reconnect to pin 6 of 12 AU 7 sync separator noise gate.
4. Remove connection of wire, which feeds sync signal to sync invertor in power chassis, from term 2 of B-5 and reconnect to pin 6 of 12AU7 sync separator noise gate.
5. Install a 1.2 meg. resistor between term 2 and 4 of B-5.
6. Install a 5.6 meg. resistor between term 2 of B-5 and pin 6 of 12AU7 sync separator noise gate.
7. Remove 680 K resistor R 223 and 1.5 meg . resistor R222. Remove wire connected from lug 3 of B-6 and lug 8 of B-7.
8. Install 3.3 meg. between term 8 of B-7 and term 3 of the 3 lug term panel adjacent to tuner.
9. Install 330 K resistor between lug 4 and 8 of B-7.

FIGURES 2 and 3
10. Install . 068 ufd condenser between lug 8 of B-7 and ground.
11. Connect AGC lead (white) from tuner to lug 8 of B-7.
12. Connect lead from lug 3 of the 3 lug term panel to lug 2 of B-5.
13. Connect lead from lug 4 of B-7 to pin 6 of 6 T8 tube. Install 330 ufd condenser from pin 6 of 6 T 8 to a convenient ground point.
14. Replace the 470 uufd DC blocking condenser, connected from the mixer plate coil to the Ist IF grid, with a 100 uufd condenser, or add 150 uufd in series with the 470 uufd.
15. Install a 40 microhenry choke, part \#32-4143-1, in parallel with the 15 k grid load resistor of the first IF amplifier tube GAU6.

NOTE: A slight touch up of the IF alignment may be necessary.

pHILCO
 SERVICE

Nem Product Nems
 TELEVISION

PHILCO LINE-CONNECTED DUPLEX CHASSIS Part One

FIGURE 1 - Line Connected chassis in cabinet (back view)

Early in 1950 Philco introduced the first of its famous line of duplex television chas is in the Model 1600 . Since that time the Philco television chassis has become the standard of high performance - a goal which competitors have tried to reach.

It is the purpose of this article to discuss those circuit features of Philco's latest line-connected duplex chassis which will be of interest and value to servicemen. The new chassis are marked 41, and 44 for the RF and D1 and D4 for the power unit. See figure 1 and 2.

The logical place to start a discussion of a new chassis is the block diagram of the receiver.

A quick look at the block diagram (figure 3) will show you that the sequence and number of stages remains the same as used in the 1951 series of duplex chassis models. The sound system is the intercarrier
type. The changes which have taken place have occurred in the individual stages and in the physical arrangement of components. We will trace the signal path through the block diagram very quickly and will point out changes to be explained in detail later.

The television signal from the aerial transmission line is connected into the $R F$ amplifier stage through a tapered line matching transformer as has been done in previous models. The RF tuner in this chassis is improved in performance and has lower local oscillator radiation than previous Philco tuners.

The amplified RF signal passes from the RF stage to

FIGURE 2 - Line Connected chassis out of cabinet

FIGURE 3 - Block Diagram
the mixer stage where it beats with the local oscillator to produce the IF frequencies which are applied to the common IF amplifier.

There are four tuned stages in the common IF amplifier providing high gain and wide-band response resulting in good picture quality and high sensitivity.

Output from the common IF is applied to the combined second detector and AGC tube.

At the output of the detector signals are selected for the 4.5 mc . sound IF and for the video amplifier. The 4.5 mc . signal is amplified, detected and then amplified again to provide the sound signal at the speaker.

The video signal passes through a 4.5 mc . filter, is amplified and applied to the picture tube grid to modulate the electron beam.

Going back now to the plate of the first video amplifier, a portion of the video signal is picked-off and applied to the first sync-separator or cathode follower. The signal with part of the video separated is then passed through a noise-gate diode to clip off noise pulses before applying the signal to the final syncseparator. Negative sync pulses from the sync separator are next passed through the sync-inverter to provide positive sync for both the horizontal and vertical sweep systems.

Positive sync pulses from the sync inverter are passed through an integrating network to the vertical oscillator, thus locking it in step with the transmitter signal. The vertical oscillator drives the new pentode vertical sweep output stage directly and this stage in turn sup-
plies driving current to the vertical coils of the deflection yoke.

The same positive pulses, from the sync inverter, are connected through a differentiating network to the grid of the phase-comparer. By comparing the sync pulses with the horizontal sweep voltage a voltage is obtained for controlling the phase of the horizontal oscillator and thus keeping it in step with the transmitter signal. A horizontal oscillator circuit with a new stabilization circuit is used. The saw tooth voltage from the horizontal oscillator drives the output tube which supplies current to the horizontal windings of the deflection yoke. A new type damper diode is connected across the deflection yoke to increase the efficiency of the deflection system. High voltages for the picture tube second anode is obtained by rectifying high voltage pulses from an auxiliary winding on the sweep transformer.

An outstanding feature of the new chassis is the power supply. Filament power and bias voltage are supplied through a step-down transformer but high $\mathbf{B}+$ voltage is obtained through a dry disc voltage doubler circuit which has a return path through the power line. Both filament and $\mathrm{B}+$ circuits are fused.

Having very briefly covered the block diagram illustrating the sequence and interconnection of stages we will next discuss the individual circuit features.

In external appearance the tuner used looks practically identical to the Philco Colorado Tuner made famous by previous Philco models. Circuit wise this tuner differs

FIGURE 4 - New Tuner
in the neutralization circuit used in the RF stage, in the use of parallel tuned rather than series tuned circuit at the first grid, and in the oscillator circuit. Figure 4 shows quite clearly that the circuits are easily accessible for testing and repair.

A simplified schematic of the tuner is given in figure 5.
Signal from the aerial is coupled through a taperedline transformer, Z500 to a parallel tuned circuit which resonates with the input capacity of the RF amplifier first triode section.

This first triode acts as an impedance transformer to match the relatively high impedance of the tuned circuit to the low cathode impedance of the second triode section, which is a grounded-grid voltage amplifier.

A special transformer, T500 is connected between the plate of the first triode and the cathode of the second section to neutralize the amplifier. This neutralization is fixed and is made to improve the signal to noise ratio of the amplifier; it is not needed to prevent instability. The special transformer is actually a section of 150 ohm, open wire, transmission line wound on a coil form. Neutralization is obtained because attenuation through the line in a forward direction is low since the line is terminated by the low cathode impedance of the second section. Attenuation in the reverse direction would be high because the plate impedance of the first triode would be relatively high resulting in a mismatch for transmission in that direction.

The amplified RF signal is next applied to the mixer section of a 12 AZ 7 , dual triode, and combined with the local oscillator voltage from the other section of the 12 AZ 7 . The 12 AZ 7 is a high amplification factor, dual triode. It is approximately equivalent to the 12 AT 7 but employs a higher heater current which provides ample cathode emission for good performance at high frequencies.

The 12 AZ 7 permits the use of a new oscillator circuit with the plate at RF ground potential and the feedback path from grid to cathode. The higher amplification factor of the 12 AZ 7 makes it practical to operate the local oscillator at a lower level and still get sufficient local oscillator voltage for efficient conversion in the mixer. An important dividend of this circuit is that it greatly reduces local oscillator radiation which might

FIGURE 5 - Simplified Schematic of New Tuner

FIGURE 6 - Response Curve IF Strip
otherwise interfere with reception on other television receivers nearby. This tuner has a noise figure equal to the theoretical limit of signal to noise ratio on many channels and on some channels it actually exceeds the theoretically perfect tuner.

The output of the mixer is coupled through autotransformer, L526, to the first IF amplifier grid.
The common IF amplifier used in the new duplex chassis is characterized by wide-band response. See figure 6. The bandwidth at the 50% response point averages about 3.8 mc . Rejection of adjacent channel signals is high as indicated by the high attenuation at 28.1 mc . Of special interest to the serviceman is the response in the vicinity of 22.1 mc ., the sound carrier frequency. By use of a 21.85 mc . trap of the right characteristics in the second IF stage plate circuit a shelf is created in the response so that response at 22.1 mc ., sound carrier, will increase if the local oscillator fine tuning control is adjusted to move the picture carrier high on the response curve. This action is desirable to prevent loss of sound output when the picture carrier is tuned high on the IF response curve as is normal in low signal areas.
The sound shelf shown in figure 6 will not be seen during normal visual alignment procedures because the
response at 22.1 mc . is very low and will normally be lost in the baseline. If there is any suspicion that response at the sound carrier is incorrect the sweep generator c.an be returned slightly and the scope gain increased.

The sound shelf should show up clearly in this case.
The stages are shown in Figure 7.
The 28.1 mc ., adjacent sound trap, is in the plate of the first stage and the 21.85 mc . trap for the sound shelf is in the plate of the second stage.
A small amount of degeneration is provided by 68 ohm, un-bypassed, resistors in the cathodes of the i-f stages. 6AU6 tubes with separate supressor grid leads are used for maximum freedom from regeneration. AGC voltage is applied to both of these stages.

An overcoupled transformer, Z 200 is used between the third and fourth stages. Although this transformer has two maximum response points as in any over-coupled transformer, only the peak at 26.25 mc . is used. The second peak falls outside the IF band. The transformer provides a low impedance DC path in the grid of the fourth IF stage and thus tends to suppress noise pulses which would otherwise produce white noise specks by momentarily blocking the amplifier. Blocking produces white noise because minimum carrier signal corresponds to white picture elements.
Bias and plate voltage are so chosen in the 4th IF stage that noise pulses above the sync level are clipped off. This tends to minimize the deliterious effects of noise on sync performance.
Continued Next Month

FIGURE 7 - Simplified Schematic IF System
Four

PHILCO

Shop Practices and Service Techniques

SETTING DISCRIMINATOR TO EXACT CENTER FREQUENCY

There are two methods of using Model 7008 to set the discriminator to its proper center frequency. The first method described is recommended, for its more accurate and easily observed results. It consists of applying a modulated r-f signal of the correct centerfrequency to the discriminator, and adjusting the discriminator secondary until the modulation disappears. In this method the modulation disappears because the output of the discriminator is zero at the center frequency. In the second method, a marker pip is made to appear on the discriminator response curve, and is set for the crossover point at the center frequency. However, the second method is less effective, because the marker pip disappears at the center frequency so that the center frequency is actually determined by noting when the marker disappears and where it reappears, and, because of the difficulty in observing the exact points of appearance of this pip, it sometimes leads to inaccurate results.

To employ the first method, connect the output of Model 7008 to the grid of the last i-f tube, and the oscilloscope input through the scope input leads to the sound-detector output (FM test jack in FM receivers). Set the MARKER FREQUENCY control for the correct center frequency, and the MASTER OSC. APPROXIMATE CENTER FREQ. control to the center frequency (MASTER OSC. BAND SWITCH to Band A). Adjust the HORIZ. GAIN control for a horizontal trace of about 20 crosshatch divisions, with the SWEEP WIDTH control at 1. Turn the FUNCTION switch to the AM RF position. Set the OUTPUT MULTIPLIER and the MASTER OSC. ATTEN. controls for a response curve covering at least 10 vertical crosshatch divisions, with the VERT. GAIN at position 2. Set the FUNCTION ATTEN. control to position 10.

If the discriminator secondary trimmer is correctly adjusted to the proper center frequency, only a typical S-shaped curve will appear. If it is not adjusted to

Figure 1. - Discriminator Center-frequency Pattern
the correct frequency, but close to it, a pattern similar to that in figure 1 will appear. Regardless of which pattern appears, adjust the secondary trimmer until figure 1 pattern appears, then vary the trimmer slowly in one direction, and then in the other direction, until the 400 -cycle portion of the pattern disappears and then reappears with a further movement of the trimmer. Set the trimmer to the point at which the 400 -cycle portion disappears and will reappear if the trimmer is moved slightly in either direction.
NOTE: The setting of the FUNCTION ATIEN: control is critical in this application. Too much marker signal input will make the center frequency hard to find.

The user should note that the MASTER OSC. ATTEN. controls the height of the discriminator curve, while the FUNCTION ATTEN. controls the height of the 400 -cycle pattern, and the OUTPUT MULTIPIII:R and VERT. GAIN controls affect the height of both the curve and the 400 -cycle pattern. This check should be performed a few times to enable the user to become familiar with the setting of controls.

To employ the second method, using the marker pip on the response curve, connect Model 7008 as outlined above. Control settings are the same, except that the FUNCTION switch should be set to the MKR position.

Figure 2. - Use of Marker for Locating Discriminator Center Frequency

Set the MARKER FREQUENCY control slightly off the center frequency, and adjust the controls until the marker pip is visible on the discriminator response curve. See figure 2. Then set the marker pip for the correct center frequency, and set the discriminator secondary trimmer until the pip disappears at the crossover point in the center of the response curve.
It will be found helpful to use the blanking circuit in hoth of the above checks, so that the crossover point can be easily determined. To use the blanking circuit, first adjust the PHASING control for a single image, then turn the BLANKING control clockwise until a single inage appears with a horizontal line through the full width of the pattern retuning the MASTER OSC. APPROXIMATE CENTER FREQ. control slightly if necessary, to center the image on the scope. See figure 3.

Figure 3. - Diseriminator Curve-BLANKING Control Properly Set

Aligning R-F and Oscillator Stages

1. Connect the output cable of Model 7008 to the aerial terminals of the FM receiver, using an appropriate matching network if the input impedance is other than 75 ohms. I.eave the oscilloscope input cable connected to the output of the detector (FM test jack).

NOTE

If the radio is equipped with an external, allpurpose aerial-matching transformer, remove this transformer and feed the signal directly into the ANT. coil.
2. Set the MASTER OSC. APPROXIMATE CENTER FREQ. control and the FM radio dial for 105 mc ., and set the SWEEP WIDTH control for a total deviation of approximately 200 kc .
3. Adjust the shunt (high-frequency) trimmer of the oscillator circuit for maximum output.
4. Set the FM radio dial to 88 mc ., and adjust the MASTER OSC. APPROXIMATE CENTER FREQ. control to 88 mc . Use a tuning wand and observe the oscilloscope pattern. If the signal amplitude decreases when either end of the wand is inserted in the oscillator coil, the tracking is satisfactory. If the output increases with the brass end of the wand inserted, spread the turns of the oscillator coil; if the output increases with the iron end of the wand inserted, compress the turns of the coil.

NOTE

Do not bend the coil excessively, as only a slight physical change is necessary at this frequency.
5. Repeat steps 3 and 4 until no further change is noted. The last adjustment made should be that of the shunt (high-frequency) trimmer.
6. Set the radio dial and Model 7008 to 105 mc ., and adjust the shunt trimmer of the mixer grid circuit for maximum output. If an r-f stage is employed, also adjust the shunt trimmer of the r-f stage for maximum output.
7. Set the radio dial and Model 7008 to 92 mc., and check the tracking of the mixer and r-f grid circuits with the tuning wand. If the output increases with the brass end inserted in the coil, spread the coil turns; if the output increases with the iron end inserted, compress the coil turns. If the output decreases when either end is inserted, the tracking is correct. Do this for both the mixer and r-f coils.
8. Repeat the foregoing adjustments of the r-f and mixer circuits, both at 105 mc . and 92 mc ., until no further improvement is noted. Make the $105-\mathrm{mc}$. adjustments last.

CHECKING R-F AND MIXER RESPONSE

The response of the r-f and mixer sections of an FM receiver may be observed with Model 7008. Connect the output of Model 7008 to the receiver aerial input through an appropriate matching network, if the input impedance of the receiver is other than 75 ohms. Con-
nect the oscilloscope input of Model 7008 through the scope input leads to the mixer plate decoupling filter. Be sure to remove first i.f. tube. If a decoupling network is not supplied, connect the oscilloscope through the high-frequency probe to the plate of the mixer.

Set the MASTER OSC. APPROXIMATE CENTER FREQ. control to the center-channel frequency, and the FUNCTION switch to the MKR position. Adjust the SWEEP WIDTH control for the desired deviation (between 0 and 1 for FM receivers). Set the OUTPUT MULTIPLIER and MASTER OSC. ATTEN. controls for the desired pattern height, with the VERT. GAIN control at position 2. Use the MARKER FREQUENCY control to vary the marker pip along the response curve, to determine the cutoff points; the FUNCTION ATTEN. control determines the amplitude of the marker pip.
In some instances, it may be necessary to set the VERT. GAIN control to another position; it is generally good practice to keep this control near position 2, and adjust the output from Model 7008 so that the pattern is of a satisfactory height.

FM receivers will have a front-end response similar to figure 4. It will be found, generally, that the width of this front-end response curve will be from 150 to 200 kc ., since it is more or less fixed by the " Q " of the circuit; that is, while alignment may change the shape of the response curve, it can vary considerably in amplitude and appear as a high narrow, peaked curve, and yet retain the band width for which it was designed.

Therefore, any adjustments of front-end response should be attempted with due consideration for both the r-f and $\mathrm{i}-\mathrm{f}$ over-all response, rather than that of the r-f response alone, since it is only necessary that the frequencies within the i-f band pass are passed. The main purpose of the r-f stage is to provide good image rejection and to minimize any spurious responses which

Figure 4. - R-F and Mixer Response of FM Receiver
can occur. It is important, however, that the r-f response be wide enough to prevent chopping off any signal; this can be easily checked by observing the frontend response curve, and running the marker along the curve to determine the cutoff points.

MODERN RATIO DETECTOR

While the "locked-in" oscillator system, such as the Philco Advanced FM Detector, accomplishes FM detection without the necessity of first transforming the signal to AM, it has several limitations. It is sensitive to impulse noise to the extent that a noise pulse will upset the circuit for a short period until the oscillator can adjust itself. This effect by the AM pulse lasts only a portion of the total duration of the noise but is a factor that detracts from its performance.

There is a minimum signal (or threshold) value below which the locked-in oscillator slips out of control and returns to its free-running frequency. This is a good feature in view of the elimination of inter-station noise but its disadvantage lies in the failure to receive weak stations. However, this loss of weak stations was not a detriment to operation several years ago because the systems then in use gave rather noisy reception on weak signals.

Because of the additional oscillator, the circuit is that much less stable; such conditions as tube aging and temperature variations upset the circuit balance, causing noisy or distorted operation and requiring re-alignment. Trouble is sometimes encountered by a mis-matched tube and transformer - the circuit being critical enough that if the two components tend toward opposite ends of their allowable tolerances, the circuit either will not tune properly or will not stay in alignment over a long period. The alignment itself is considerably more critical than that of the now commonly used FM detector circuits.

At the time of its conception, the Advanced FM Detector offered several advantages over the balanced discriminator and the ratio detector. However, the action of the ratio detector has been improved to such an extent that it is now almost universally used as an FM detector.

The ratio detector circuit remains about the same as for the 1946 sets as shown in last month's article. The advancements are not readily apparent from the schematic since they are mostly in the design of the component parts. Noise rejection has been greatly improved by careful design of both the detector circuit and the discriminator transformer. The liniarity of the discriminator response curve has been improved by the design and use of tubes having superior diode characteristics. The transformers require no loading networks when aligning, as the bandpass characteristics are de-
signed into the single peaked units. All that is required is the adjustment of the primary and secondary slugs (powdered iron cores) for maximum.

A typical, modern, ratio detector circuit is shown in Figure 5. To understand how this circuit operates, it is necessary to review the operation of the standard ratio detector. The two diodes are connected in series and a controlling voltage is established in the circuit which is dependent upon the average value of the incoming carrier. Due to the long time constant of the R-C filter in the network, instantaneous changes in signal amplitude are prevented from affecting the audio output voltage. Furthermore, this control voltage sets the limit to the maximum audio voltage that can be obtained. Thus, if a small condenser is connected in series with each tube, the voltage appearing across each will depend upon the input frequency. However, at all times, their sum is equal to the control voltage. Changes in signal frequency will merely alter the ratio of their voltages. Since the audio output is taken from across one of these condensers, the audio can vary in amplitude from zero to the value of the control voltage.

In the modified form of the above, see Fig. 5, the same control voltage is maintained, but the two condensers are replaced by one which is in series with both tubes. In order to understand the operation of the circuit without C_{1}, it must be kept in mind that the voltage across C_{2}, is determined by:

1. The potential of $R \& C$. This in turn, is fixed by the average amplitude of the incoming FM signal.
2. The frequency of the incoming signal.
3. The relative currents flowing through V_{1} and V_{2}. This, of course, depends upon \#2 above.

Referring to Figure 5, the voltage applied to V_{2} is the vector sum of $E_{L_{4}}$ and E_{3}. Similarly, the voltage active across V_{1} is composed of $E_{L_{4}}$ and from the mid-IF value at which point the voltages of V_{1} and V_{2} are E_{2}. As the frequency shifts equal and opposite in response to modulation, the total voltages at V_{1} and V_{2} will follow suit.

Consider, now, the current paths for each of the tubes. V_{1} is part of the complete path AFEDCBA. Its current can also flow through the path AFEDGBA. For V_{2}, the two paths are: GBAFEDG and ABCDG. In other words, currents from each tube can flow around the outer path (GBAFEDG) or part of each can be diverted through L_{4} and C_{2} of the center path.

When the total voltages applied to each tube are equal (at mid-frequency), no current flows through L_{4} and C_{2} because of equal and opposite currents. This is true of all ratio detectors. At points other than midfrequency the current of one tube is greater and a portion of it does pass through L_{4} and C_{2}. Hence, the voltage across C_{2} will be a function of frequency. Due to the fact that each tube is connected into the circuit in an opposite manner, their currents (from V_{1} and V_{2}) flowing through L_{4} and C_{2} will likewise be opposite. Therefore EC_{2} will possess one polarity for frequencies above resonance and the opposite polarity for frequencies below resonance. An audio voltage is then obtained from across C_{2}.

FIGURE 5.
Page Four

New Praduct News RADIO

ALIGNMENT OF RECEIVERS

FM RECEIVER ALIGNMENT

The following article is a discussion of the alignment of FM receivers using a sweep generator and an oscilloscope. A Philco Visual Alignment Generator, Model 7008 will be used to indicate the ease of operation of this unit. A complete alignment will be made to show the proper sequence of adjustments. This information can also be applied to the use of other comparable equipment.

There are three types of FM detectors that are in general use; other special types which are not generally used will not be discussed. The three general types are the limiter-type detector, the ratio detector, and the Philco Advanced FM Detector; the type of detector determines the procedure to be followed.

Model 7008 possesses high signal output and unusual oscilloscope sensitivity, together with more than sufficient sweep deviation. Therefore, it is not necessary in most cases to align the i-f stages before aligning the discriminator; instead, the discriminator may be aligned first, and the remainder of the set aligned to the discriminator. Since the effect of the adjustments are visible at all times, no guess work is involved. Regardless of whether the stages are single or double peaked, the adjustments are easily made for symmetrical response. While it may be found that the visual alignment produces less audio output than other previously employed methods of alignment, it will also be found that, after visual alignment for true symmetry, better sound quality and noise reduction are obtained.

The r-f (marker) generator should be used to check the maximum and minimum points of the response curve, but it is not good practice to leave it set to one of these points, because insertion of the marker signal produces some distortion of the response curve. Use the crosshatch screen as a graph, locating the desired change points at some easily determined crosshatch line. For example, the center or crossover point may be located at the intersection of the heavy horizontal and vertical crosshatch lines in the middle of the screen, and the peaks of discriminator response can be located 5 divisions either side of center. Thus true symmetry can be detarmined by counting the number of divisions to the right and left and above and below the center lines.

Use the blanking circuit to furnish a reference line, being certain to first adjust the PHASING control for a single image with the BLANKING control in the

OFF position, and to turn the BLANKING control clockwise until a single image with base line appears.

Adjust the SWEEP WIDTH and VERT. GAIN controls to keep the image on the c-r tube at a convenient size. Figure 1 shows insufficient sweep width, while

Figure 1. - SWEEP WIDTH Control Set Too Low

Figure 2. - SWEEP WIDTH Contral Set Too High
figure 2 shows too great a sweep width. As a general rule, changes in symmetry may be more easily determined when the response curve is large than when it is small. Once proper sweep setting is obtained, blanking must be removed and the PHASING control reset for curve coincidence.

Connect the output cable of Model 7008 to the stage ahead of the one being checked, through a $.01-\mathrm{mf}$. blocking condenser, and connect the input through the scope leads to the detector audio output (FM test jack in Philco receivers). Where it is desired to check individual stages ahead of the detector, connect the input of

Model 7008 through the high-frequency probe to the grid of the stage following the one being checked.

NOTE

Before starting the actual alignment, allow Model 7008 and the FM receiver to warm up for a period of at least 15 minutes.

Limiter-Type Detector

1. Referring to figure 3, connect the output cable of Model 7008 between test point B and ground; connect the input through the scope input leads between test point A and ground.
2. Set the MASTER OSC. APPROXIMATE CENTER FREQ. control to the desired center frequency; set the MASTER OSC. BAND SWITCH to position A.
3. Set the SWEEP WIDTH control for approximately 200 kc . total deviation, and adjust the discriminator primary condenser C 2 for a curve of maximum amplitude, which will appear somewhat S -shaped if the secondary is not too far detuned. It will be necessary to keep the OUTPUT MULTIPLIER and MASTER OSC. ATTEN. controls set for an output below that at which limiting occurs.
4. Adjust the discriminator secondary trimmer condenser C1 for an S-shaped symmetrical response curve set to exact center frequency (see SETTING DISCRIMINATOR TO EXACT CENTER FREQUENCY).
5. Retune C2 for a symmetrical response curve with greater amplitude than in step 4, if possible.
6. Connect the output cable of Model 7008 to the grid of the last i-f stage preceding the limiter stage, and adjust trimmer C 3 for a symmetrical response curve of maximum amplitude.
7. Connect the output cable of Model 7008 between the grid of the mixer tube and ground, and, if the output can be kept below the receiver limiting point, adjust each i-f secondary and primary in order, proceeding from the last i-f back to the first i-f stage, for a symmetrical response curve of maximum amplitude. Should limiting occur, that is, no change in amplitude occur as trimmers are adjusted, connect the input of Model 7008 through the high frequency probe between test point B and ground, and adjust each i-f stage as stated. Then, when C3 is reached, connect the scope input leads
to test point A, move the output cable of Model 7008 to the grid of the stage preceding C3, and adjust C3 and the discriminator as directed in step; 1 through 5 above.

NOTE

As each i-f trimmer is adjusted, the MASTER OSC. ATTEN., OUTPUT MULTIPLIER and VERT. GAIN controls should be retarded to keep the pattern within the limits of the screen.
8. Align the r-f and oscillator circuits as explained in the "Shop Practices and Techniques" of this month (r-f alignment is similar for all types of detectors).

Philco Advanced FM Detector

This type of FM detector requires that the i-f stages be adjusted first; then the detector is adjusted to the i-f center frequency. Any other procedure is not recommended.

1. Referring to figure 4, connect the output cable of Model 7008 to the grid of the last i-f stage, test point B ; connect the oscilloscope input through the scope input leads to the detector output (FM test jack) test point A.
2. Set the MASTER OSC. APPROXIMATE CENTER FREQ. control to 9.1 mc., the MASTER OSC. BAND SWITCH to Band A, and the FUNCTION switch to the MKR position.
3. Short pin 2 of the FM1000 tube to ground, to render the oscillator inoperative. Set the SWEEP WIDTH control for approximately 200 kc . total deviation, and the OUTPUT MULTIPLIER, MASTER OSC. ATTEN., and VERT. GAIN controls for a pattern of desired height on the c-r tube.
4. Adjust the last i -f secondary trimmer C 2 for a symmetrical i-f response curve of maximum amplitude and then adjust the last i-f primary trimmer C 3 for a similar response. Move the output cable to the grid of the preceding i-f stage, and adjust the secondary and primary trimmers in order. Continue to move the output cable to the preceding stage and adjust each i-f transformer until all i-f transformers have been aligned.
5. Remove the short from pin 2 of the oscillator tube, and adjust trimmer condenser Cl for a hooked curve, as shown in figure 5.

Figure 3. - Limiter-Type Detector Schematic
Page Two

Figure 4. - Philco Advanced FM Detector Schematic

Figure 5. - Primary Set To Center Frequency

Figure 6. - Tuning Core Requires Turning In

Figure 7. - Tuning Core Requires Turning Out NOTE
It will be necessary to decrease the receiver input to threshold value to secure the hooked curve. Be certain that the curve is symmetrical about the center.
6. Increase the output of Model 7008 until the hooked curve straightens out and becomes an almost straight line (see figures 6 and 7), then adjust the secondary tuning core TC (figure 4) for a straight line. Figures 8 and 9 indicate incorrect primary adjustments, while figures 6 and 7 indicate incorrect secondary adjustments.

NOTE

If the c-r tube pattern is not observed directly from the front of the oscilloscope, it is possible to adjust for what appears to be a straight line, which when checked with a straight-edge is found to be bowed. If the blanking circuit is used, be sure to first adjust the PHASING control for a single image with the blanking circuit off, and then adjust the BLANKING control for a base line along the full width of the pattern.

Figure 8. - Primary Set Below Center Frequency

Figure 9. - Primary Set Above Center Frequency

Figure 10. - Ratio Defector Schematic

Ratio Detector

1. Referring to figure 10 , connect the output cable of Model 7008 between test point B and ground; connect oscilloscope input through the scope input leads between test point A and ground.
2. Set the MASTER OSC. APPROXIMATE CENTER FREQ. control to the desired center frequency (9.1 mc. for Philco FM receivers, and 22.1 mc . for Philco television receivers); set the MASTER OSC. BAND SWITCH to position A.
3. Set the SWEEP WIDTH control for approximately 600 kc . deviation for TV receivers. Adjust the discriminator primary trimmer condenser $C 2$ for a response curve of maximum amplitude; the curve will be Sshaped if the secondary trimmer is near the proper adjustment.
4. Adjust the discriminator secondary trimmer condenser C 1 for an S -shaped symmetrical response curve set to the exact center frequency (see SETTING DIS. CRIMINATOR TO EXACT CENTER FREQUENCY).
5. Remove the output cable from test point B, and advance it one stage toward the mixer, tuning the secondary and then the primary of the last i-f transformer for a symmetrical S-shaped response curve of greater amplitude than in step 4.
6. Proceed to adjust each i-f stage in order until the mixer is reached, adjusting the OUTPUT MULTIPLIER, MASTER OSC. ATTEN., and VERT. GAIN controls to retain the pattern on the screen.
7. Align the r-f and oscillator stages as explained in this month's "Shop Practices and Techniques."

For a further discussion of FM alignment covering the RF and oscillator stages and the setting of the discriminator to exact center frequency; see this month's "Shop Practices and Techniques".
Page Four

Shop Practices and Service Techniques RADIO

PRINCIPLE AND SERVICE OF PHILCO SCRATCH ELIMINATOR

Although the Philco scratch eliminator is no longer used in Philco radio-phonographs, a description of its operation and service proceedures will be in order, since this circuit was used in the deluxe models of a few years ago. Due to the quality of the sets incorporating the device, it is reasonable to expect that service men will be called upon to handle these models for many years to come.

The Philco scratch eliminator is designed to eliminate the scratch noise inherent in ordinary phonograph reproduction. Basically, this device is, in effect, a variable condenser across the audio circuit or phonograph input into which the pickup is operated.

USES SIMPLE PRINCIPLE

Because the impedance of a capacitor decreases with an increase in frequency, or in other words, because a condenser offers less impedance to high frequencies than it does to low frequencies, the condenser across the audio line will tend to bypass the higher frequencies to ground. Generally speaking, by varying the capacitance of this condenser across the line, we can control the high frequency response of the amplifier into which the audio line feeds.

Since scratch, in common with most other forms of noise, is of a relatively high-frequency nature, it was determined that if a variable capacitance could be designed to vary with the amplitude and high-frequency content of the input signal, it
could effectively eliminate scratch without noticeably imparing the high frequency response.

By referring to the block diagram, Figure 1, we can follow the signal through a high-pass filter consisting of a resistor-condenser network, into an audio frequency amplifier - then into another high-pass filter, and to another amplifier. The third high-pass filter removes all remaining low frequencies, before the signal is rectified, to produce a d-c control voltage. The schematic of this circuit is shown in Figure 2.

This control voltage varies with, and is proportional to, the amount of high frequencies in the input signal, since the high-pass filters remove all except the high frequencies. In other words, as the high frequency content of the input signal increases, the control voltage increases. This control voltage is negative, since it is developed from a diode plate, and acts as a variable bias. The bias is applied to the variable capacitance, and as the

FIGURE 1

FIGURE 2
voltage increases negatively (as the bias voltage increases), the effective value of the capacitance decreases, or becomes smaller, and allows more high frequencies to pass through the line to the audio amplifier.

LESS HF - LESS BIAS

Conversely, as the high-frequency content of the input signal decreases, the amount of bias voltage developed becomes smaller, and the capacitance increases in value.

This variable capacitance is nothing more than a variable - mu pentode acting as a reactance tube, controlled by the variable bias. At low volume, when needle scratch is noticeable, the bias is small, causing the capacity to increase, and by-passing the scratch noise to ground. At high volume, the bias is great, causing the capacity to decrease, since there is no need for by-passing as the input signal tends to swamp the scratch noise.

VARIABLE Mu NECESSARY

The thing that actually happens when a variable bias is applied to the grid of the tube is that the amplification factor (mu) of the tube is varied.

It is interesting to see how this takes place. The grid of a variable-mu tube is wound with varied spacing of the grid wires. The wires are spaced closely together at the top of the tube, and the spacing gradually increases toward the bottom. This means that each part of the grid has a different controlling effect on the electron flow between the cathode and the plate. Each part of the grid may be cut off, that is, the electron flow may be stopped, by a different value of negative bias applied to the grid, as shown in Figure 4.

BIAS CONTROLS TRANSCONDUCTANCE

When the bias is zero, the entire grid acts, and has the greatest control over the flow of electrons to the plate. When the bias is increased to a point where part of the grid is cut off, the balance of the grid, because the average spacing between the wires is greater, has less control over the electron flow. In other words, it requires a greater change in grid voltage to cause a given change in plate current.

Considering the tube factors given above under varying bias conditions, we will notice that, as the bias increases, the transconductance decreases. Transconductance is the ratio of the increments of change of plate current to bias voltage. Therefore, transconductance is an indication of stage gain, since stage gain, M, is equal (approximately) to transconductance, gm, times the load resistance, \mathbf{R} (Load); ($\mathbf{M}=\mathrm{gm} \mathbf{R L}$). When the entire grid has been cut off, the transconductance becomes zero,

FIGURE 4
since no plate current flows and $\mathrm{gm}=\frac{d i(\text { plate })}{d e(g r i d)}$ Going back to the calculation of stage gain, $M=0$ when $\mathrm{gm}=0$.

INPUT "'REFLECTS'" LOAD

The character of the input impedance of a tube is determined by the character of the output (load) impedance of the tube. When the load impedance of the tube is an inductance or a capacity, the input impedance will be equivalent to that of a capacitance and a resistance in parallel from grid to cathode. When the load impedance is a resistance, the input impedance is a capacity.

In the case of the scratch eliminator, the load impedance is a resistance.

MILLER EFFECT USED

The "Miller Effect", determined by a Mr. J. M. Miller in 1919, is that the input capacity (between grid and cathode) of a tube is not equal to just the internal (or inter-electrode) capacity between grid and cathode. It was found that the input capacity is equal to the grid-cathode capacity plus the stage gain times the grid-plate capacity. This is shown in the equation:
C input $=\mathbf{C}$ (grid-cathode) $+(M+1) C($ grid-plate $)$
Thus, by varying the value of the stage gain we have an effective means of varying the value of the shunt capacitance across the phono input as shown in Figure 5. This value of shunt capacitance will, under conditions of strong high-frequency input, approach the value of the grid-
cathode inter-electrode capacity which at audio frequencies has no appreciable effect; while with no high-frequency input the shunting effect is sufficient to by-pass all scratch, leaving the reproduced music free of noise.

SERVICING THE PHILCO SCRATCH ELIMINATOR

The following chart will be found helpful in testing and repairing the scratch eliminator. Included with the trouble-shooting chart is a base view identifying the parts replacement. The symbolization is correlated with the schematic shown in Figure 2.

SCRATCH-ELIMINATOR TESTS

Set the tone control fully counterclockwise. Turn the band (wafer) switch to the phono position. For all steps except $1(b)$, set the volume control to maximum; for this step, adjust the volume control as directed in the chart.

Turn the scratch eliminator on or off as indicated in the chart. (The scratch eliminator is on when the two-position switch is turned clockwise.)

Connect an output meter across the primary of the output transformer.

FIGURE 5

IMPORTANT! For all steps except step 4, use the 0 - 10 -volt output meter range; for step 4 only, use the $0-50$-volt range. If the proper ranges are not used, erroneous readings will result.

Connect the ground lead of an audio signal generator to the chassis, test point C , and connect the output lead through a $.1-\mathrm{mf}$. condenser to the test points indicated in the chart. Set the generator for 5000 cycles. Adjust the generator output as directed in the chart.

NOTE: For steps 2, 3, and 4, connect the positive

lead of a 20,000 -ohms-per-volt, d-c voltmeter to the chassis, test point C; connect the prod end of the negative lead through a 100,000 -ohm isolating resistor to the "VOLTMETER" test points indicated in the chart.

STEP	TEST POINT	SIG. GEN. OUTPUT	VOLT- METER	SPECIAL INSTRUCTIONS	POSSIBLE CAUSE OF ABNORMAL INDICATION
$1(a)$ $l(b)$	F	Adjust for 10 v outputmeter reading, with scratch eliminator off. Same as for 1 (a).		Turn scratch eliminator on; output voltage should drop to 6.5 v (approx.). Reduce volume control to obtain output-meter reading of lv . Increase generator output for out-put-meter reading of 10 v . Turn scratch eliminator on: output voltage should not drop below 8.8v (approx.).	Trouble in scratch-eliminator circuits. Isolate by the following tests.
2	G	See SPECIAL IN. STRUCTIONS.	H	With scratch eliminator on, increase generator output for voltmeter reading of 8.8 v , negative; failure to obtain this value indicates trouble.	Defective: 7F7. 7E7 (diode section), WS-3(R). Open R224, R222, R226. R228. C217, S200.
3	G	Same setting which produced 8.8 v reading in step 2. with scratch eliminator on.	J	With scratch eliminator on, voltage at point J should be 2 v . negative.	Open: R220, R219, R217. Shorted: C213. C214. C212.
4	F	Same as step 2.	H	With scratch eliminator on, voltage at point H should be approx. 28v, negative.	Defective: 7F7. Open C210, C216, R214, R215, R223. Shorted or leaky: C216.
5	F	Adjust for 10 v output. meter reading, with scratch eliminator off.		Turn scratch eliminator on; output voltage should drop to 6.5 v (approx.).	Defective: 7E7 (pentode section). Open: R221, R216, R218, C211, C212. S horted: C211, C212.

It is not a coincidence that you are missing two copies of New Product News for 1951. We have been working on information which we feel is so important that we have compiled these two missing months into this bulletin which, we are sure, you will find very valuable to have with your reference library.

A few months ago, we had returned to us one of our "Mystery Control" radios that we made before the war. The customer arbitrarily shipped the radio to us because he said none of his local radio repaimen knew anything about the set, and he could not find anyone that could service it. W'e were amazed to find upon checking his statement that this was true, and we also found that in checking with various Philco Distributors that experience on this model was decidedly lacking among a good many radio servicemen. We, therefore, felt it was very important to give you all the information possible on the models that we made prior to the war.

The reason for this is that first, a customer who bought this radio had made quite an investment, and, therefore, should be in a position to obtain service on this instrument as long as he continued to use it; second, we felt that this is one of the finest radios that was ever made, and we know that very few people who ever bought one have disposed of it so that many of these radios are still gracing the fine homes of America; third, there are no remote control radios being manufactured at the present time and these sets, therefore, provide a service which a customer cannot presently replace.

The operation of the remote control set is very simple. There are two components - one, the wircless remote control unit which is basically an oscillator that is used as a selector and the receiver which translates these impulses received from the transmitter into motion. This oscillator emits pulses of signal at a given frequency which triggers a thyraton tube in the radio proper thus putting into operation motors which regulate the volume control, the selection of stations or will turn off the radio. In the radio, the impulses operate the motors by means of what we call a stepper unit. With each impulse received, the stepper unit advances an armature one point - each point being a particular operation in the receiver. At the end of the complete cycle or number of points stepped up, the remote control returns to zero position.

Complete specifications for the Model 40-205 and 40-216 are listed below along with Schematics, Adjustment Procedure, Production Changes and other pertinent information for these two models. There were five other "Mystery Control" sets - Model 39-55, 39-116, 40-215, 40-217 and 41-316. Technically, they were quite similar as far as information on the remote control equipment is concerned.

The parts list gives the number of the stepper unit as a replacement part. It is no longer available, but we have a repair exchange plan thru your Philco Distributor at a reasonable price where service on this part is required.

WIRELESS REMOTE CONTROL SPECIFICATIONS

MODEL 40-205

Type Circuit: Model 40-205, code 121, is a 12 -tube wireless remote control and dial tuned receiver employing a superheterodyne circuit for reception of standard broadcast stations. Eight broadcast stations can be automatically tuned in from the renote control unit. The wireless remote control unit also increases and decreases volume and turns off the set without any connections between the receiver and the control unit.

MODEL 40-216

Type Circuit: Model 40-216, code 121, is a 14 -tube wircless remote control and dial tuned receiver employing a superheterodyne circuit with three tuning ranges for reception of standard and short wave broadcast stations. Eight broadcast stations can be automatically tuned in from the remote control unit. The wireless remote control unit also increases and decreases volume and turns off the set without any connections between

SPECIFICATIONS-(Cont'd.)

MODEL 40.205

Pbilco Built-In Super Aerial System: A new type aerial system which eliminates an outside aerial is also incorporated in this model. Included in the built-in super aerial system is a statically shielded loop for broadcast band reception. The feature of the built-in broadcast band statically shielded loop is that it may be turned to the position in which it picks up a minimum amount of interference or if interference is not present, the loop may be set in the position where best reception is obtained.

In addition, other features of design are automatic volume control, continuously variable tone control, base compensation, degenerated push-pull pentode audio output.

Power Supply: 115 Volts, 50 to 60 Cycles, A. C.
Power Consumplion: 180 watts.
Tuning Ranges: 540 to 1600 K. C.
I. F. Frequency: 470 K. C.

Pbilco Tubes Used: Receiver-7C7, F. R. Amplifier; 6J8G, First Detector Oscillator; 78, 1. F. Amplifier; 6Q7G, Second Detector A. V. C. and First Audio; two (2) 42 Audio Output, and one 80 Rectifier.

Wireless Remote Control Amplifier - 78, First Control Amplifier; 6J7G, Second Control Amplifier, A. V. C.; 6ZY5G, A. V. C. and a 2A4G Thyratron Rectifier.

Schematic and Parts List: The Schematic Diagram and Replacement Parts List for Model 40-205 will be found on pages 9 and 4 respectively.

MODEL 40-216

the receiver and the control unit. A Philco wireless record player can also be set up for use with this receiver.

Pbilco Built-In Super Aerial System: A new type aerial system which eliminates an outside aerial is also incorporated in this model. Included in the built-in super aerial system is a statically shielded loop for broadcast band reception and a short wave receiving loop. The feature of the built-in broadcast band statically shielded loop is that it may be turned to the position in which it picks up a minimum amount of interference or if interference is not present, the loop may be set in the position where best reception is obtained.

In addition other features of design are automatic volume control, continuously variable tone control, base compensation, degenerated push-pull pentode audio output. Outside acrial connections are also provided for remote localities where station signal strength is exceptionally weak.

Pou'er Supply: 115 Volts, 50 to 60 Cycles, A. C.
Power Consumption: 190 watts.
Tuning Ranges: 540 to 1600 K.C., 1.6 to 4.5 M.C., 6.0 to 18.0 M.C.
I. F. Frequency: 470 K. C.

Pbilco Tubes Used: Receiver - 6J7G, R. F. Amplifier; 6A8G, Converter; 78, I. F. Amplifier; 6Q7G, Second Detector, A. V. C. and First Audio; 37, Phase Inverter; two 42 Audio Output, and one 80, Rectifier.

Wireless Remote Control Amplifier - 78, First Control Amplifier; 6J7G, Second Control Amplifier; 6J5G, A. V. C., 6ZY5G and 2A4G, Rectifier.

Wireless Remote Control Unit - 1 type 30 tube.
Audio Output: 10 watts.

Cabinet Dimensions:	Height	Width	Depth	
Console$~$	$36!$		
Wireless Remote Control	..	$5 \frac{1}{2}$	$7!$	$14 \frac{1}{4}$
$\frac{1}{8}$				

ADJUSTING WIRELESS REMOTE CONTROL FOR RECEPTION OF STATIONS

The procedure for setting up stations on the wireless remote control receivers is similar to the procedure in setting up Philco electric automatic tuning models. The eight push buttons, however, are autonatically dialed by the remote control unit instead of by pushing buttons. To set up stations on these models for best reception, a signal generator, Philco Model 7070 and a vacuum tube voltmeter Philco Model 7001 should be used. With this equipment proceed as follows:

1. Select and remove the desired eight station call letters from the large station tab card supplied with the receiver. Insert the station tabs in the apertures (windows) of the bezel. The lowest frequency station is placed in the first window on the left and the remaining station tabs in the order of increasing frequency. Turn "on" power switch.
2. Remove from the small call letter card the tab of
the first low frequency station. Insert the tab in the third aperture on the right side of the bezel on the remote control unit dial. Transparent tabs are also supplied to be placed over each call letter. The remaining call letter tabs are then placed in the order of increasing frequency around the bezel from right to left (counter clock-wise).
3. Insert the loud and soft tabs in the first and second windows respectively on the right hand side of the bezel.
4. Connect the negative terminal of the vacuum tube voltmeter through a 2 meg. resistor to the grid of the 78 I. F. tube. The resistor must be connected directly to the grid of the tube and the voltmeter attached to the resistor at this point. Connect the positive terminal to the chassis ground terminal.
5. Attach a loop consisting of a few turns of wire to the output terminals of the Model 7070 signal generator.

Turn the signal generator modulation control to "mod on". 'Turn the receiver range selector switch to "Broadcast" and manually tune in the lowest frequency station desired. This station should be between 540 and 1030 K. C. The signal generator is then tuned to the frequency of the station being received. A beat note should then be heard when the volume control is turned on.
6. Turn the range selector disc of the receiver to "remote". Dial first low frequency station on the right side of the bezel of the remote control unit.
7. Using a padding screw driver, adjust the first 540 to 1030 K . C. "Osc" padder (bottom row of holes) at the left rear of the chassis, until the station identified by the modulated signal of the generator is tuned in to maximum on the vacuum tube voltmeter. Next adjust the first 540 to $1030 \mathrm{~K} . \mathrm{C}$. "Ant" padder (top row of holes) for maximum indication on the voltmeter.
8. Turn the signal generator off the station frequency and readjust the "Ant" and "Osc" padders with the station signal for maximum reading on the voltmeter. This should be done with the volume control of the receiver adjusted for low volume. This procedure is repeated for each of the remaining stations to be set up. The next station to be set up should be within the frequency range of 540 to $1030 \mathrm{~K} . \mathrm{C}$. of the second set of padders. The third station is tuned in by the third set of padders and should be within a frequency range of 670 to $1160 \mathrm{~K} . \mathrm{C}$. The remaining stations are then set up in the order of increasing frequency.

PRODUCTION CHANGES

When operating the model $40-216$ on 25 cycle power supply, the volume control motor assembly, motor condenser and wave switch link must be changed in addition to the parts shown in Service Bulletin for 25 cycle operation. Part numbers of these parts are as follows:

115 V., 25 cyc.
Volume Control Motor (80)
35-1152
Motor Condenser (88) 30.
Wave Switch Link
56-1295
In addition a resistor Part No. $33-3368$ is connected in series with the low side of the Choke Coil (96) in the plate of the 2A4G tube and the Stepper Unit Coil (81).
(See Figures 1, 2, 3 and 4 for location of parts)

REPLACEMENT PARTS - MODEL 40-216 (See Figures 1, 2, 3 and 4 for location of parts)		
$\underset{\text { No. }}{\text { SCHE. }}$	RIPTION	$\begin{aligned} & \text { PART } \\ & \text { NAO. } \end{aligned}$
	Loop Assy. (Broadcast)	
1 A	Resistor (10,000 ohms, $1 / 2$ watt)	33-310339
13	Mica Cond. (250 mmid .)	61.0033
2	Loop Assy. (Short Wave)	38.9933
2 A	Compensator	31-6326
3	Ant. Series Trans. (Broadcast)	32-3291
3 X	Compensator	31-6212
	Ant. Series Trans. (Short Wave)	32-3293
5	Ant. Trans. (Police Shunt)	32-3292
6	Mica Cond. (250 mmid .)	61-0033
7	Resistor (2.0 meg., $1 / 2$ watt)	33-520339
8	Tubular Cond. (05 mfd .)	30.4123
9	Resistor (150,000 ohms, $1 / 2$ watt)	33-415339
10	Resistor (12,000 ohms, 1/2 watt)	33-312339
11	Tubular Cond. (05 mfd .)	30.4123
12	R. F. Trans. (Broadzast, Pushbutton and Police	32.3230

$\begin{gathered} \text { SCHE. } \\ \text { NO. } \end{gathered}$	DESCRIPTION	$\begin{aligned} & \text { PART } \\ & \text { No. } \end{aligned}$
12X	Mica Condenser (35 mmfd)	30-1141
13	R. F. Trans. (Broadcast Manual)	32-3227
13X	Compensator	31-6212
14	R. F. Trans. (Short Wave)	32-3046
14X	Mica Cond. (5 mmid.)	30-1097
15	Tubular Cond. (. 1 mfd .)	$30-4455$
16	Tubular Cond. (05 mfd .)	30.4519
17	Tubular Cond. (1 mfd .)	30.4455
18	Resistor (51,000 ohms, 1/2 watt)	33-351339
19	Oscillator Trans. (Broadcast)	32-3231
20	Ossillator Trans. (Police)	32-3294
21	Oscillator Trans. (Short Wave)	32-3051
22	Compensator (3 section, oscillator)	31.6266
23	Compensator (Broadcast, Low Frequency)	31.6230
24	Tracking Cond. (1230 mmid .)	31-6262
25	Tracking Cond. (3425 mmid.)	31.6263
26	Mica Cond. (250 mmfd.)	61.0033
27	Resistor (32.000 ohms, 1/2 watt)	33-332339
28	Resistor (10,000 ohms, $1 / 2$ watt)	33-310339
29	Resistor (18,000 ohms, 1/2 watt)	33.318339
30	Resistor (5.000 ohms, 2 watt)	33-250539
31	Eleztrolytic Cond. (4 mfd., 250 V.)	30-2334
32	Nica Cond. (250 mmid .)	61.0033
33	Ist I. F. Trans. Assy.	32-3089
34	Tubular Cond. (01 mfd .)	30.4572
35	Resistor (1.0 meg., 1/2 watt)	33.510339
36	Resistor (330.000 ohms, 1/2 watt)	33-433339
37	Resistor (330,000 ohms, $1 / 2$ watt)	33-433339
38	2nd I. F. Trans. Assy.	32-2645
39	Mica Cond. (110 mmfd.)	30-1031
39X	Tubular Cond. (.004 mid.)	30-4578
40	Tubular Cond. (. 01 mfd .)	30-4479
41	Mica Cond. (50 mmfd .)	30-1029
42	Volume Control	$33-5300$
43	Resistor (70,000 ohms, 1/2 watt)	33.370339
44	Tubular Cond. (.004 mfd .)	30-4334
45	Resistor (2.0 meg., $1 / 2$ watt)	33-520339
46	Tubular Cond. (015 mid .)	30-4529
47	Resistor (1.0 meg., $1 / 2$ watt)	33-510339
48	Tubular Cond., (.1 mid.)	30.4527
49	Resistor (99,000 ohms, 1/2 watt)	33-399339
50	Tubular Cond. (01 mfd .)	30-4169
51	Resistor (490,000 ohms, 1/2 watt)	33.449339
52	Resistor (5.000 ohms, 1/2 watt)	33-250339
53	Resistor (45,000 ohms, 1/2 watt)	33.345339
54	Tubular Cond. (02 mfd .)	30-4481
55	Tone Control (3.0 meg .	33-5287
56	Tubular Cond. (. 01 mfd .)	30.4572
57	Tubular Cond. (01 mfd)	30-4572
58	Resistor (51,000 ohms, 1/2 watt)	33.351339
59	Resistor (490,000 ohms, $1 / 2$ watt)	33.449339
60	Resistor (490,000 ohms, 1/2 watt)	33-449339
61	Resistor (240,000 ohms, 1/2 watt)	33-424339
62	Tubular Cond. (.1 mid.)	30-4499
63	Tubular Cond. (01 mfd .)	30.4501
64	Output Trans.	32-7996
65	Cone and Voice Coil Assy. (Spkr. Part No. 36-1450-2) (Spkr. Part No. 36-1450-4)	$\begin{aligned} & 36-4089 \\ & 36-4111 \end{aligned}$
66	Tubular Cond. (01 mfd .)	30.4501
67	Resistor (3,000 ohms, 1/2 watt)	33-230339
68	Resistor (1.0 meg., $1 / 2$ watt)	33.510339
69	Electrolytic Cond. ($25 \mathrm{mfd} ., 300 \mathrm{~V}$.)	30-2360
70	Electrolytic Cond. (18 mfd., 475 V.)	30-2200
71	Field Coil (Replace Spkr. Part No. 36-1450)	
72	Resistor (Wirewound, Bias)	33-3364
73	Power Trans. (ll5 V., 50-60 cycles)	32-8001
	Power Trans. (115 V., 25-40 cycles)	32.8017
74	Bypass Cond. (. $05 \mathrm{mfd} . .110$ V. Plug)	30-4576
75	Pilot Lamp (Bullseye)	34-2210
76	Pilot Lamp Resistor (16 ohms)	33-016331
77	Pilot Lamps (Dial)	34-2064
78	Filament Trans. (115 V., 50-60 cycles)	32.7993
	Filament Trans. (115 V., 25-40 cycles)	32-8016
78X	Choke Coil	32-1281
79	Motor Trans. (115 V., 50-60 cycles)	32.7990
	Motor Trans. (115 V., 25-40 cycles)	32.8015

Fig. I-Internol Wiring of Stepper Unit. Numbers Correspond to Schematic, Poges $6 \& 7$.

Fig. 2—Model 40-216 Part Locations, Underside of Chassis.

* To operate this model on 220 volt, 60 cycle zurrent, use Stepdown Transformer, Part No. 32-8035.

Fig. 3-Wireless Remote Control Schematic Diagram.

SCHE. No.	DESCRIPTION	PART No.
15	Mica Cond. (110 mmid .)	30-1031
16	Resistor (2.0 meg. $1 / 2$ watt)	33-520339
17	Resistor (1.0 meg., $1 / 2$ watt)	33-510339
18	Tubular Cond. (01 mid .)	30-4479
19	Mica Cond. (50 mmfd .)	30-1029
20	Resistor (70,000 ohms, 1/2 watt)	33-370339
21	Volume Control (2.0 meg.)	33-5300
22	Tubular Cond. (004 mfd .)	30-4334
23	Resistor (1.0 meg., $1 / 2$ watt)	33-510339
24	Tubular Cond. (015 mfd .)	30-4358
25	Tone Control ${ }^{(3.0} \mathrm{meg}$.)	33.5287
26	Tubular Cond. (02 mfd .)	30-4481
27	Resistor (99,000 ohms, 1/2 watt)	33-399339
28	Resistor (330,000 ohms, 1/2 watt)	33-433339
29	Resistor (490.000 ohms, $1 / 2$ watt)	33-449339
30	Tubular Cond. (03 mfd .)	30-4517
30X	Tubular Cond. (. 006 mfd .)	30-4445
31	Tubular Cond. (. 01 mfd .)	30.4501
32	Resistor (3500 ohms, 1/2 watt)	33-235339
33	Tubular Cond. (. 01 mfd.)	30-4501
34	Output Trans.	32.7997

SCHE. No.	DESCRIPTION	PART No.
35	Cone and Voice Coil Ass	
	(Spkr. Part No. 36-1450-2)	36-4089
	(Spkr. Part No. 36-1450-4)	36-4111
36	Tubular Cond. (.01 mid.)	30-4501
37	Resistor (3000 ohms, 1/2 watt)	33.230339
38	Tubular Cond. (.1 mid.)	30-4499
39	Resistor (1.0 meg., $1 / 2$ watt)	33-510339
40	Electrolytic Cond. (25 mid., 300 v.)	30-2360
41	Bias Resistor (Wirewound)	33.3361
42	Electrolytic Cond. (18 mfd., 475 v.)	30-2200
43	Field Coil (Replace Spkr. Part No. 36-1450)	
44*	Power Trans. (115 v., 50-60 cycles)	32-7999
	Power Trans. (115 v., $25-40$ cycles)	32-8013
45	Condenser (. 05 mfd .115 v. Plug)	30-4576
46	Pilot Lamp (Bullseye)	34-2210
47	Pilot Lamp Resistor (16 ohms, 1 watt)	33-016431
48	Filament Trans. (115 v., 50-60 cycles)	32-7993
	Filament Trans. (115 v., 25-40 cycles)	32.8016
48X	Choke Coil	32-1281
49	Pilot Lamps (Dial)	34-2064
50	Motor Trans. (115 v., 50-60 cycles)	32-7990
	Motor Trans. (115 v., $25-40$ cycles	32.8015
51	Volume Control Motor Assy.	35-1151
52	Rotary Switch	42-1468
53	Bias Resistor (Wirewound, 10 ohms)	33-3363
54	Pilot Lamps (Station Indicator)	34-2064
55	Resistor (150 ohms, 1/2 watt)	33-115339
56	Volume Control Switch (Motor Control)	42-1469
57	Tubular Cond. (.1 mid.)	30-4499
58	Tubular Cond. (.1 mfd.)	30-4499
58X	Electrolytic Cond. ($30 \mathrm{mfd} .30 \mathrm{v}$.)	30-2361
59	Stepper Unit Complete	38-9689
60	Compensator Strip (Pushbutton)	31-6264
60A	Compensator No. 1	
60B	Compensator No. 2 $540-1030$ K.C., Part of 60	
60C	Compensator No. 3	
60D	Compensator No. 4 670-1160 K.C. . Part of 60	
60E	Compensator No. 5	
60F	Compensator No. 6 $900-1470$ K.C. . Part of 60	
60G	Compensator No. 7	

(Continued on Page Eight)

Fig. 5-Internol Wiring of Stepper Unił. Numbers Correspond to Schematic, Page 9.

ALIGNING OF COMPENSATING CONDENSERS

MODELS 40-205, 40-216

EQUIPMENT REQUIRED

(1) Sighal Generator. In order to properly adjust this receiver a calibrated signal generator such as Philco Model 7070 is required. This signal generator covers a frequency range of $100 \mathrm{~K} . \mathrm{C}$. to $110 \mathrm{M} . \mathrm{C}$.
(2) Indicating Derice. To obtain maximum signal strength and accurate adjustment of the padders a vacuum tube voltmeter and circuit tester such as Philco Model 7001 is recommended. This tester also contains an audio output meter which may be used as an indicating device.
(3) Aligning Tool. Fiber handle screw driver Philco Part No. 45-2610.

CONNECTING ALIGNING INSTRUMENTS

vacuum tube voltmeter: To use the vacuum tube voltmeter as an aligning indicator it should be connected to the A.V.C. circuit as follows:

1. Connect the negative (一) terminal of the voltmeter through a 2 meg . resistor to the converter grid (6J8G) Model 205; (GA8G) Model 216. The resistor must be connected directly to the grid of the tube and the voltmeter wire attached to the resistor.

Fig. 7-Model 40-205. Locations of Parts. Underside of Chassis.
2. Connect the positive $(+)$ terminal to the chassis ground terminal.
audio output meter: If this type of meter is used as an aligning indicator, it should be connected to the plate terminals of the 42 tubes. Adjust the meter for the 0 to 30 volt A.C. scale.

After connecting the aligning meter, adjust the compensators in the order as shown in the tabulation below. Locations of the compensators are shown on page 12. If the output meter pointer goes oft scale when adjusting the compensators, reduce the strength of the signal from the generator.
signal. generator: W'hen adjusting the I.F. padders, the high side of the signal generator is connected through a .1 mfd . condenser to terminal No. 1 of the loop terminal panel at the rear of the chassis. The ground or low side of the signal generator is connected to the chassis of the receiver.

Fig. 8-Dial Pointer and Cable Arrangement, Models 40-205, 40-216.

When aligning the R.F. padders a loop antenna is made from a few turns of wire and connected to the signal generator output terminals; the loop is then placed two or three feet from the loop in the cabinet. Do not remove the receiver loop from the cabinet. It is necessary when adjusting the padders, that the receiver be left in the cabinet.

Notes Below Refer to Tables on Next Page

notre a - Dial Calibration: In order to adjust the receiver correctly the dial must be aligned to track properly with the tuning condenser. To adjust the dial, proceed as follows: With the tuning condenser closed (maximum capacity), set the dial pointer on the extreme left index line at the low frequency end of the broadcast scale. The arrangement of the drive cable and dial pointer is shown in Fig. 8.
note b - See page 12 for Remote Control Amplifier adjustments.
NOTE C - If two peaks (signals) are observed on the aligning meter when adjusting the oscillator padder No. 22A tune the padder to the second peak from the maximum capacity position (screw all the way in).
NOTE D- If two peaks (signals are observed on the aligning meter when adjusting the R.F. and loop padders 124 A and 2 A , tune the padders to the first peak signal from the maximum capacity position (screw all the way in). When adjusting the padders to this first peak roll the tuning condenser (rock) slightly back and forth to obtain the maximum readings on the aligning meter.

RECEIVER CIRCUIT ADJUSTMENTS - MODEL 40-216

Operation	SIGNAL GENERATOR		RECEIVER			SPECIAI. instrictions
	Output Connections to Receiver	İal Setting	Dial Setting	Control Setting	Adjust Compensators	
1	78 I. F. Grid	470 K.C.	580 K.C.	Vol. Max. Range Switch "Brdcst"	38A, 38B	Turn out 3313 Full
2	6A8G Det. Osc. Grid	470 K.C.	580 K.C.	Vol. Max. Range Switch "Brdcst"	33C, 33A, 33H	Note A
3	Use Loop on Generator	18.0 M.C.	18.0 M.C.	Vol. Max. Range Switch "Short Wave"	22B, 124A, 2A	Note C, Note D
4	Use Loop on Generator	1500 K.C.	1500 K.C.	Vol. Max. Range Switch "Brdcst"	22, 13X, 3X	Note A
5	Use Loop on Generator	580 K.C.	580 K.C.	Vol. Max. Range Switch "Brdest"	23	Roll Gang
6	Use Loop on Generator	1550 K.C.	1550 K.C.	Vol. Max. Range Switch "Brdcst"	22	
7	Use Loop on Generator	3.5 M.C.	3.5 M.C.	Vol. Max. Range Switch "Police"	22A	Note B

RECEIVER CIRCUIT ADJUSTMENTS - MODEL 40-205

Operation	SIGNAI. GENERATOR		RECEIVER			speciat. instrictions
	Output Connections to Receiver	Dial Setting	Dial Setting	Control Setting	Adjust Compensators	
1	78 Grid	170 K.C.	580 K.C.	Vol. Max. Range Switch "Brdcst"	14A, 14B	Turn out 13B Full
2	6J8G Grid	$470 \mathrm{K.C}$.	580 K.C.	Vol. Max. Range Switch "Brdcst"	13A, 13C. 13B, 14A	
3	loop	1500 K.C.	1500 K.C.	Vol. Max. Range Switch "Brdcst"	95B, 95A	Note A
4	Loop	580 K.C.	580 K.C.	Vol. Max. Range Switch "Brdest"	7	Roll Gang when Adjusting Padder
5	loop	1500 K.C.	1500 K.C.	Vol. Max. Range Switch "Brdest"	95B, 95A	Note B

ADJUSTMENT OF WIRELESS REMOTE CONTROL CIRCUITS

MODELS 40-205, 40-216

ADJUSTING CONTROL FREQUENCY AMPLIFIER

The wireless remote control models are shipped with 5 different control frequencies which range from 350 to $400 \mathrm{~K} . \mathrm{C}$. These frequencies are identified by code numbers appearing on the serial number ticket and on the rear of the chassis. The code numbers and frequencies are as follows: Code $5-355 \mathrm{~K} . \mathrm{C} . ;$ Code $6-367 \mathrm{K.C}$.; Code 7-375 K.C.; Code 8-383 K.C.; Code 9—395 K.C.

The purpose of the different control frequencies is to prevent interaction between two or more wireless remote control models which are on the same floor or exception-
ally close together. When several wireless remote control models are to be located close together, it will be necessary to use different control frequencies. These frequencies should be $20 \mathrm{~K} . \mathrm{C}$. apart. For example, if three models are to be operated at the same time and are closely situated, it will be advisable to adjust the control frequency of the first set to $355 \mathrm{~K} . \mathrm{C}$., the second set to 375 K.C., and the third set to 395 K.C.

In order to realign or change the control frequency of these models, the following equipment is required:

1. Philco Model 7070 signal generator with a loop attached to the output terminal. (A few turns of wire 12 inch in diameter).
2. Philco wireless remote control aligning adapter. Part No. 45-2769.
3. Philco aligning screw driver. Part No. 45-2610.

With this apparatus the control frequency is adjusted as follows:

1. Remove the 2 A 4 G control tube from its socket and replace with the aligning adapter. Connect the red lead of the aligning adapter to the positive terminal of the vacuum tube voltmeter. The black lead of the adapter is connected to the negative terminal of the vacuum tube voltmeter.
2. Remove the 78 control amplifier tube, its shield and the shield of the 6J7G tube. Apply power to the set and turn the range selector disc to "remote".
3. Attach the "high" side of the signal generator output to the grid of the 6J7G tube. Set the generator modulation control to "mod on" and turn the attenuator control about one-fourth on.
4. The control frequency to which the control amplifier is tuned can now be determined by tuning the signal generator between 350 and $400 \mathrm{~K} . \mathrm{C}$. When the signal generator is tuned to the control frequency, the vacuum tube voltmeter will show maxinum deflection. If this frequency is to be used, leave the signal gencrator at this point or turn the indicator to any other frequency desired between 350 and 400 K.C.
5. After the control frequency has been found or changed, compensators (103A), (103B) Model 40-216; and (74A), (74B) Model 40-205 are adjusted for maximum indication on the vacuum tube voltmeter.
6. After adjusting this circuit, replace the 78 tube and shields in their sockets and remove the signal generator lead from the grid of the 6J7G tube.
7. Place the small loop mentioned above into the "high" and "ground" of the signal generator output terminals and place the signal generator near the secondary inductor loop in the bottom of the cabinet. When doing this, do not disturb the setting of the signal generator indicator. Turn the sensitivity control located on the right rear of the chassis toward the position marked "extreme" then adjust compensators (119), (115) Model 40-216; (90), (85) Model 40-205 for maximum reading on the vacuum tube voltmeter.
8. Next adjust the secondary inductor loop compensator (121) in the Model 216 and (92) Model 205 located in the bottom of the cabinet. This compensator is encased in a cardboard container that is attached to one corner of a loop. Extreme care should be used in adjusting the compensator to the exact point of resonance as the secondary inductor is a very sharply tuned circuit.
9. If the vacuum tube voltmeter pointer goes off scale when adjusting the compensators, turn the attenuator control of the signal generator toward the "off" position. After these compensators are adjusted to maximum, the control amplifier is tuned to the frequency selected.

ADJUSTING WIRELESS REMOTE CONTROL UNIT

The wireless remote control unit is now adjusted to the control frequency of the amplifier as follows:

1. Turn off the signal generator, then dial any one of the stations indicated on the remote control unit by pulling the selectors to the stop position; release the selector and at the same time press the stop down and hold it in this position.
2. Now bring the wireless remote control unit close to the receiver. Using a padding wrench, Philco Part No. 7696, tune the compensator (127) Fig. 3, located on the bottom of the remote control unit until a maximum voltage is indicated on the vacuum tube voltmeter. When tuning this compensator, it should be done very slowly so as not to pass over the frequency to which the control amplifier is tuned.

Fig. 9-Locations of Compensators, Model 40-205.
3. After adjusting the compensator with the sensitivity control on the receiver in the "extreme" position, the remote control unit is adjusted for maximum sensitivity by setting the sensitivity control in the "near" position and placing the remote control unit a few fect away from the receiver. The compensator (127) Fig. 3, is then adjusted again for maximum voltage reading of the vacuum tube voltmeter.
4. After making these adjustments, remove the aligning adapter from the socket and replace the 2 A 4 G tube. The wircless remote control unit should now be adjusted to the same frequency as the control frequency in the receiver.

Fig. 10-Locations of Compensators, Model 40-216.

PHILCO Nem Product News RADIO

ELIMINATING RADIO NOISE INTERFERENCE

KINDS OF NOISE INTERFERENCE:

The class of noise interference with which we are concerned in this booklet is man-made static. This is the type of radio interference which is produced by any kind of electrical apparatus which causes sparking. This might be a motor, a defective light, or faulty electrical wiring, either within the house or on the street. When going after an interference problem, the serviceman must bear in mind the various other types of noises similar to manmade static which can also produce faulty radio reception. Natural static is usually evident, and we need not give detailed consideration to this type of interference. An internal noise within the radio set can often produce interference which is sometimes hard to distinguish from outside man-made static. Such a noise can be readily detected, however, by disconnecting the aerial from the set and shorting the aerial post to the ground post. If the intensity of the noise decreases, it can be safely assumed that the source is external to the radio set. If the noise remains the same, or is still evident, it is being produced in all probability by a faulty part or connection within the chassis. The exact location of the noise within the set must be determined by a process of elimination as follows:

1. Remove the second detector tube or in AC-DC sets kill the detector. If the noise continues it will be known that the trouble is in the audio or speaker circuit. If the noise stops-
2. Disconnect the control grid from the first detector. If the noise continues, it will be known that the trouble is in the first detector or I. F. portion of the chassis. If the noise stops-
3. The source of trouble is in the R. F. end of the chassis.

INTERFERENCE PRODUCING DEVICES:

Most man-made static is produced by small motors or defective electrical wiring. Electrical devices such as vacuum cleaners, electric fans, oil burners, mixers, automatic heaters, and irons are the worst offenders. Defective electrical wiring is of ten a source of noise, and it is usually possible to locate a loose fuse or a loose wire contact in a socket or plug of some of the household fixtures or switches.

Larger motors often cause interference in those cases where the radio set is located in the neighborhood of a tactory or any large building containing heavy electrical equipment.

Electric power lines and equipment, and trolley lines and cars are also bad offenders in many cases.

TRANSMISSION OF INTERFERENCE:

Man-made static is carried from the source of disturbance to the radio receiver in two ways: part of it is radiated in exactly the same way that a radio signal is radiated from a transmitting station; another part is carried along the electrical wiring which is common to the source of interference and to the receiver. In addition to the interference being carried along the line in this manner, the line also acts as a radiating antenna so that interference is radiated from the line which carries the interference, as well as being transmitted directly on the line itself. For example: if an aerial is run parallel to heavy electrical power lines in which interference is present, the interference will be picked up in the aerial. A certain amount of the interference will be carried through the step-down transformer on the pole and along the line into the house on the regular house wiring circuit, but the built-in line filter condenser of the radio set will usually eliminate this incoming noise. When the aerial is run at right angles to the interfering iines, and is placed back as far as possible away from them, the amount of interference picked up will be a minimum.

Since interference is radiated from the electric lines which go to the source of interference, the only correct way to establish complete elimination is to kill the interference at its source. For example: if the interference is being produced by an electric fan, small interference condensers should be connected to the fan at the motor. If the interference eliminating condensers are connected across the two wires at the baseboard plug, interference will be radiated from the power line between the baseboard and the motor itself. For this reason, we do not recommend the use of interference eliminating devices which for convenience are connected at the baseboard plug instead of immediately at the source of interference. This is one of the most important facts to remember when doing interference elimination work of all kinds.

NATURE OF INTERFERENCE AND HOW IT IS ELIMINATED

Man-made static is a radio signal which has no particular basic frequency, but is broad over a large portion of the broadcast and short wave bands. Different sources of interference may cover comparatively large bands, but might not cover the entire band. For example, a small motor may be heard louder at the high frequency end of the broadcast band than at the low frequency end. Another small motor may be located sufficiently far away from the receiver so that it does not produce any interference on the broadcast band, but might be heard on a portion of the short wave band. In general, manmade static interference is stronger on the short wave band than on the standard broadcast band.

The noise signal is a complicated radio frequency disturbance made up of R. F. and audio components. Like any high frequency electrical current, it can be carried off from a given point through condensers. The circuits in Figures 1 and 2 show how interference can be corrected. Also, a single condenser may be connected across the terminals of a motor which is producing interference. Interference which would normally be carried out through the lines, finds an easy path through the condenser, and thus circulates around through the condenser and motor windings instead of going out into the lines. This simple filter is often used on small appliances for noise elimination, a .1Mfd tubular condenser such as employed in radio sets can be used.

In Figure 1, there are two condensers employed with their common center point connected back to the frame of the motor. In this type of circuit, the path of the interference is from one motor terminal through one condenser back to motor frame and from the other motor terminal, through the other condenser and back to frame. This type of interference-eliminating circuit has been found to be more satisfactory than a single condenser, because it has a better effect of confining the interference to the source. The size of the condenser units to be used is dependent upon the intensity of the interference.
An R. F. choke is connected in one side of the line from the motor. Remembering that interference is principally an R. F. signal, it is evident that a choke, which merely impedes the passage of R. F. will tend to stop the interference signal from going out through the line.

If this choke is connected immediately at one of the terminals, there will be little radiation from the line. If another choke is connected in the other side of the line, there will likewise be no radiation from this line. It is, therefore, recommended that one of these chokes be used in each side of the line. The size and current rating is dependent upon the type of motor used.

FIGURE 2
In Figure 2, we have a combination of condensers and twin chokes to eliminate interference. The condensers provide an easy path for the interference and make it possible to hold down the signal to the source, which is the motor itself. A certain amount of the interfering noise may still go beyond the condensers however, in which case the effect of the chokes is to block this additional interference, and thus afford more positive noise elimination.

NECESSARY EQUIPMENT FOR NOISE ELIMINA. TION WORK:

A good assortment of filters and condensers is the first requisite for interference elimination work. As stated above, the exact type of filter to use for any given case of interference must be determined experimentally. In general, the twin condenser arrangement with center point grounded to the frame of the interfering equipment will produce satisfactory interference elimination. In many other cases, however, chokes in addition to the condensers must be employed.

In addition to the filters, it is desirable to have a portable battery operated receiver for locating the interference. A Philco portable receiver is highly suitable for this purpose. A receiver of this kind will enable the serviceman to locate practically any kind of radio interference, including that which may be present in public utilities equipment.

A loop aerial having approximately 20 turns of stranded hook-up wire and a cross sectional diameter of 15 inches should be constructed and mounted on the end of a wood pole $1 / 2$ inch in diameter and 3 feet long. A piece of twisted pair aerial transmission line 8 feet long, inserted within flexible shielding is then connected to the two ends of the loop and the opposite end of the transmission line connected to the loop antenna terminals on the battery receiver. The shielding over the transmission line should be grounded to the chassis.

HOW TO LOCATE NOISE INTERFERENCE:

The interference locating receiver described above can be used to advantage in practically all cases for locating the source of interference. One of the first things to do is to determine if the interference is inside the house or outside. This can be done by placing the interference receiver in operation, and then pulling the main switch at the fuse box. Any interference which is present within the house will immediately stop as soon as all power has been disconnected. If the interference continues, then it is known that the source is external.

Two actions are necessary in determining the source of external interference. The first is to get a general idea from which direction the noise is coming. The second is to locate the apparatus causing the noise after having determined the general location of the offending apparatus. The PHILCO battery operated receiver works out very nicely in both these respects.

A pair of headphones may be connected through two . 5 Mfd. Condensers, Part No. 45-3500-10 to the plate of the Output Tube. The Speaker is unnecessary for this type of work.

With the receiver and loop aerial connected in this manner, tune the receiver to the point on the dial that gives maximum interference with a given setting of the volume control. Then rotate the loop aerial until a point of maximum interference is indicated. By drawing an imaginary line horizontally through the loop, this line will point in two directions. Follow this line in one direction for a short distance and observe if the intensity of the interference increases. If it increases, you are proceeding in the right direction. If it decreases, go in the opposite direction.

When the general location of the interference source is reached, the loop aerial will have very little directional effect. It will then be necessary to replace the loop with a small coil. The coil consists of 6 turns of wire wound on a piece of bakelite tubing 2 inches in diameter. This coil may be mounted separately on a 3 foot pole in the same manner as the loop, if desired, having the same type of shielded twisted pair lead-in down the pole. With this arrangement to change from one to the other it would only be necessary to disconnect the one in use, at the set, and connect the other.

After the pick-up coil has been connected to the set, the next action will be to explore around the power apparatus and power wires in the vicinity. If this equipment is radiating interference, the noise will be indicated by a gradual intensity increase when the pick-up coil is brought near the offending apparatus or wiring. The motor or power apparatus may be turned off, noting the change in noise picked up by the receiver. If the noise ceases when the apparatus is turned off, it is evident that the source has been located.

In the case of interference which is traced to electric
power wiring on the street, the cooperation of the local electric light and power company should be secured. It will be found in all cases that the public utilities companies will be glad to cooperate. Radio interference makes people shut off their radio sets, and this means that the electric company is not selling power to these consumers, hence, it is to the advantage of the utility company to do everything possible to eliminate interference, from the sales standpoint, and it is also to their advantage from a maintenance economy standpoint. The important thing to bear in mind when going after an electric company or trolley company is to be sure you are right in your deductions that the interference is coming from the utilities equipment.

HOW TO ELIMINATE INTERFERENCE FROM HOUSEHOLD APPLIANCES:

(a) Small motors, automatic electric heaters AND IRONS: The great majority of interference which originates in household appliances can be eliminated by connecting the twin condenser-type filter across the line to the interfering equipment, and connecting the common center point or case back to the frame of the equipment. The leads from the motor terminals to the condenser should be as short as possible. The condenser interference eliminator should be mounted inside the motor frame, if possible, or at least on the outside of the frame. The center point of the condensers is connected to the case.

The necessary capacity of the condensers will be determined by the strength of interference which is present. In the case of small equipment, a small twin condenser filter will be satisfactory, but for larger equipment, a larger twin filter condenser of greater capacity and power rating should be used. In the case of small Universal motors, which are sparking badly, it may be desirable to first clean the commutator with fine sand-paper in order to reduce the sparking to a minimum. Connection of the filter across the terminals of the motor will then eliminate all of the residual interference. Remember in all cases that the filter leads must be kept as short as possible and must be connected directly at the motor terminals and not across the line at a distance from the motor.

In some appliances, it will be found necessary to use the combination of condensers and choke in order to fully eliminate all interference. Included in this general classification of appliances would be such items as electric fans, electric mixers, vacuum cleaners, washing machines, sewing machines.

In some cases it may be desirable to employ an actual ground connection to the motor frame for improved noise elimination or for the sake of removing the A.C. voltage (low current) which is present because of the condenser being connected to the line.
(b) electric refrigerators: Most A.C. operated electric refrigerators employ an induction motor which does not ordinarily introduce interference except when starting. In occasional cases, however, it may be found that one side of the line to the motor or inside the motor will be grounded to the frame. In this event, it will be necessary to eliminate the grounded line before this interference can be corrected. This ground may be of comparatively high resistance or it may be a direct ground. Care must be observed not to blow fuses when experimenting. In some cases, induced interference may be present in an electric refrigerator frame, in which case condenser filters should be connected experimentally:
(1) Twin condenser filter across the motor terminals with common point (case) mounted on the frame;
(2) One condenser .5 Mfd . from the frame to a water pipe ground;
(3) One condenser .5 Mfd . from one side of the line to the frame.
In the case of an electric refrigerator which is operated on 110 volts direct current, the line can be filtered by means of the condenser and choke filter unit connected across the terminals of the motor and mounted on the frame near the motor. In extreme cases, particularly on D.C. motors, the use of the heavy duty filter may be required.
(c) defective fixtures and wiring: Loose wire contacts in a lamp socket or plug will often cause interference. Likewise, a loose contact in a wall switch will cause trouble. The various circuits should be checked by a process of elimination until the particular source of interference is located. This can be done simply by turning on all of the lights, switches and fixtures at one time; then start turning them off until the particular circuit is located where the interference stops as the circuit is turned off. An old electric light bulb which is about ready to burn out will often cause an extremely loud noise.

HOW TO ELIMINATE INTERFERENCE FROM VIOLET RAY MACHINES AND THERAPEUTIC EQUIPMENT:

In most cases, violet ray machine interference can be eliminated at the source by means of small condensers across the power line. In the case of some of the more elaborate therapeutic equipment used by doctors, it may
be necessary, in addition to having the various line filters, to use complete shielding of the equipment. Most equipment of this type is large, and the entire wiring as well as the body of the patient becomes a radiating antenna for the interference. The only effective way to eliminate this interference entirely is to provide a completely shielded room made of carefully bonded copper screening grounded at various points.

HOW TO ELIMINATE INTERFERENCE FROM NEON SIGNS AND FLASHING SIGNS:

Neon signs offer the serviceman one of the hardest problems in noise elimination. The elimination of interference from this source is comparatively simple, however, once the cause of this disturbance is understood.

The usual Neon sign installation has a step-up transformer connected to a series of glass tubes that are filled with the Neon gas. The voltage necessary to illuminate the gas in these tubes will vary from 5,000 to 20,000 volts, the exact value depending on the size of the sign. A leakage termed "Corona discharge" usually exists in this high voltage circuit causing the radiation of a continual buzzing noise. This noise is radiated in two ways; through the transformer, out into the power line, and from the high voltage circuit itself. A leakage in the high voltage circuit can exist at either or both of two places, the first being leakage between the high voltage leads coming out of the transformers, and the case; the second, leakage between the tubes of a letter where they cross. For example: If a tube is folded into the letter "O", there will be a crossing of the tubing at the bottom of the letter. The spacing between the tubes at this cross is only about $1 / 8$ inch, which in high voltage circuits would permit a corona leakage to exist. In extreme cases where the spacing between the tubes crossing is this close, the serviceman should contact the neon sign people and have them heat the tubing and separate it at least $1 / 4$ inch.

Care should be taken in the installation of supports for Neon signs since any leakage will result in the terrific noise mentioned above. To prevent the noise from going out into the power lines and radiating from them, it will be necessary to install a twin condenser filter in the 110 -volt line circuit as near the transformer as possible.

Interference from flashing type signs can be eliminated by connecting twin condensers across the line with the common center (case) of the filter connected to the frame.

Model E. 748

SPECIFICATIONS

Cabinet	E. 748 - Plastic Table Model with Slide-Rule Dial Scale. E-818-Wood Table Model (plastic front panel) with One- Way, Mirror, Slide-Rule Dial Scale. Dial Lighting in both Models.
Circuit	. 6 Tube Superheterodyne (including rectifier).
Frequency Range	540KC to 1620 KC .
Intermediate Frequ	455 KC .
Audio Output	1.2 watts from push-pull audio output circuit.
Operating Voltage	E-478-105 to 125 volts, 60 cycle, A.C. E-818-105 to 125 volts, A.C./ D.C.
Aerial	High Impedance Loop mounted on cabinet back.
Pbono Input	A Phono Input Jack is niounted in the rear.
Tone Compensation	A tone switch (bass-treble) is incorporated in Model E-818.
Timer	E. 748 - A fully automatic Telechron (type C99S) internal timer and clock. Includes SleepSwitch, Timed Appliance Outlet, Buzzer Alarm, Lighted Clock Dial and "Lullaway" Slow Shut-Off.
Pbilco Tubes	12BE6 Converter-Oscillator, 12BA6 I-F Amplifier, 12 AVG 2nd Detector - AVC - 1st Audio, (2) 25F5 Audio Output and 35W4 Rectifier.
Speakers	E-748 employs one 4 -in. pm speaker. E. 818 employs two 4×6-in. oval pm speakers.

RUN CHANGE - MODEL E-748

RUN 2 - R8, the feedback resistor was changed in value to 2200 ohms, part number $66-2228340$. This change was made to improve the audio feedback characteristics. When replacing, use the new value, 2200 ohms.

SPEAKER PHASING (Model 818 Only)

When replacing or reconnecting the two paralleled speakers, it is possible that an out-of-phase condition may exist. This is readily apparent by weak output and serious distortion. To correct, interchange the leads to one of the speakers.

CHASSIS REMOVAL - MODEL E-748

1. Remove knobs. Remove (2) 1/4-in. hex head drive screws from cabinet back. Disengage A.C. interlock. Remove back by freeing clock time set shaft and then swivel back around left side.
2. Remove (2) $1 / 4$-in. hex head drive serews from top corners of dial back plate.
3. Remove (2) $1 / 4$-in. hex head drive screws from cabinet bottom.
4. Remove (2) 1/4-in. hex head drive screws from rear bottom of chassis frame.

CHASSIS REMOVAL - MODEL E-818

1. Remove knobs. Remove (6) Phillips head wood sciews from back. Disengage A.C. interlock. Remove back by swiveling soward left.
2. Remove (2) $1 / 4$-in. hex head screws and washers holding A.C. interlock bracket.
3. Unsolder the two leads, from receiver panel, from the right hand speaker.
4. Remove (4) 1/4-in. hex head drive screws that mount set to cabinet front from the chassis bracket.

ALIGNMENT PROCEDURE

Radio Controls - Set volume control to maximum. Set tuning control as indicated in chart.
Output Meter - Connect across voice coil terminals.
Signal Generator - Connect generator and set frequency as indicated irr chart. Use modulated output, 30%.
Output Level - During alignment, adjust signal-generator output to hold output-meter reading below 5 volts.

REPLACEMENT PARTS LIST

Reference Symbol	Description $\begin{gathered}\text { Service } \\ \text { Part } \mathrm{Na} \text {. }\end{gathered}$	Reference Symbal	Description	Service Part No.	
C1	Condenser, tuning, E-748 -- 31-2735-8	R4	Volume control, 500,000 ohms, E-748	33-5565-49	
	Condenser, tuning, E-818 ..31-2735-12		Volume control, 500,000 ohms, E-818	33-5566-10	
C2	Condenser, A-V-C by-pass, . 047 mfd30-4685-45	R5	Resistor, output cathode bias, 100 chms,1 watt		
C3	Condenser, oscillator coupling, . 01 mfd , disk $\mathbf{3 0 - 1 2 6 2}$			66-1104340	
C4	Condenser, osc. temp. compensaling, 7.5 mfd , N2200, ceramic \qquad 30-1224-83	R6	Resistor, output plate, tone compensation, E-818, 6800 ohms	66-2688340	
C5	Condenser, output grid by-pass, 220 mmf . ceramic disk		Res.stor, output plate, tone compensation, E-748, 8200 ohms	66-2828340	
C6	Condenser, tone compensation, E-748, .047 mid 30-4650-62	R7	Resistor, feedback output grid, 2200 ohms Resistor, feedback, E-818, 1500 ohms	66-2228340	
	Condenser, tone compensation, E-818, .1 mfd 30-4650-64	R8		$.66-2158340$$.66-2228340$	
C7			Resistor, feedback, E-818, 1500 ohms Resistor, feedback, E.748, 2200 ohms		
	Condenser, line by-pass, E-818, . 047 mid , vertical moulded \qquad 30-4685-45	R9	Resistor, B+ filter, 3300 ohms Resistor, B+ filter, 2200 ohms Resistor, parasitic suppression, output grid. 100,000 ohms	66-2338340 .66-2228340	
		R10			
C8	Condenser, electrolytic, 3 section, 50/40/30 mfe, 150 WVDC	R11		.66-4108340	
		R12	Resistor, tone control, Model E-818 only. 2200 ohms		
11				..66-2228340	
	Pilot lamp, E-818, 7 watts, 115V	31	Switch, tone control, Model E-818 only	42-1796-11	
12	Pilot lamp, clock lighting, type 43, 2.5 volts -	S2	Switch, clock light on-off switchTransformer, oscillator	- 42-2055	
J1	Phono input jack .-. 27-6149-2				
LA1	Loop antennaart of Back and Loop Assy.	T1	Transformer, oscillator .-.		
LS 1		T2	Transformer, audio output, E-748Transformer, audio output, E-818		
N1	Resistor-condenser network, audic coupling30-6006-1	W1	Line cord, E.748Line cord, E-818		
R1	Resistor, oscillator grid return, 22,000 ohms .-. . . 66-3228340				
R2	Resistor, I-F cathode bias, 68 ohms .-..............6688340	21			
R3	Resistor, A-V-C filter, 2.2 megohms66-5228340	Z2	Transfbrmer, 2nd I-F ...32-4583-13		

CABINET PARTS LIST

Description
MODEL E-8 18

ALIGNMENT CHART

STEP	SIGNAL GENERATOR		RADIO		ADJUST
	CONAECTION TO RADIO	$\begin{gathered} \text { DIAL } \\ \text { SETTING } \end{gathered}$	$\begin{aligned} & \text { DIAL } \\ & \text { SETTING } \end{aligned}$	SPECIAL INSTRUCTIONS	
1	Ground lead to 8--: output lead through a .1 mf condenser to grid (pin 7) of 12BL6.	455 kc.	Tuning gang fully open.	Adjust tuning cores, in order given, for maximum output. TCl and TC3 are located on top of transformers.	TC4—2nd i.f sec. TC3-2nd i-f pri. TC2-lst i-f sec. TCl-lst i-f pri.
2	Radiating loop. (See note below).	1620 kc .	1620 kc.	Adjust for maximum output.	Cl-B-osc.
3	Same as Step 2.	1500 kc .	1500 kc .	Adjust for maximum output.	Cl.A-derial.

Dial Cord Stringing - Model E-748
Dial Cord Stringing - Model E-818

Composite Base View - Models E-748 and E-818

Tif Luf Ne. E-748 Connection

E-818 Connection

A-G-C to Ant. and Gang
Not used
Detector Output to II
Arm of Volume Control
Volume Control Return to B-
Set side of A.C Switch, one side of Pilot Lamp, and Black lead from T2
A.C line

Not used
Red lead to T2, Output Transformer
Brown lead to T2
Blue lead to T2
Yellow lead to T2
Oscillator section of Gang
Ant. and Ant. section of Gang

Schematic Diagram - Models E. 748 and E.818

PHILCO SERVICE SUPERVISOR

FUBLISHED MONTHLY BY THE PHILCO CORPORATION, SERVICE DIVISION, IN THE INTERESTS OF INDEPENDENT FHILCO SERVICEMEN THROUGHOUT THE NATION

September, 1952

Philco Rushes TV Training
Facilities to Denver
Cover and Pages 2, 20

Home Radio - Screen-Room
Construction Page 3

Refrigeration - A Closer Look At The Model G-928

Page 8

Auto-Radio - Checking For Ignition Interference

Page 12

Electric Range - Review of Changes and Materials
. . . Page 13

Television - AGC and Noise Inverter Circuits . . . Page 16

PHILCO RUSHES TELEVISION TRAINING FACILITIES TO DENVER!

Members of the Philco Television Service School in Denver working "in tandem" as they learn the intricacies of Television servicing through actual bench work.

Less than five months after FCC approval of new TV station construction became effective, Denver, Colorado, became the first new area telecasting on its assigned VHF relevision frequency.

Introduction of television to Denver paves the way for a situation that will undoubtedly set the pattern in hundreds of new 'TV markets soon to be open to new vistas of entertainment - 25 of thenl during the next two month.

PHILCO RUSHES TV TRAINING FACILITIES TO DENVER!

Continued from Front Couer

Bush Clinton, Philco Service Representative, taking some of the mystery out of Television servicing for the first class of the Philco Television Service School neld in Denver, Colorado.

Denver, "The Mile High City" has become a postfreeze sounding board for community reaction to the introduction of television communications. Already Denverites are clamoring for more and more television receivers. Everywhere in the area TV aerials are emerging skyward on every street to pluck the signals from the air. The impact of new cultural and entertainment possibilities has been unprecedented.

In Denver today and in the immediate future in areas from Maine to California, electrical appliance servicemen are faced with a dilemma. These new stations will literally create boom conditions for service technicians . . . men who are trained in the latest methods for servicing television. However, in most of these communities there are few servicemen available to meet the forthcoming demand by the public for television scrvicing. For example, in Denver the majority of servicing dealers and independent servicemen were equipped to handle radio service calls but were not familiar with television procedures. It was imperative that this group learn quickly and thoroughly the art of television servicing in order that they be prepared for the influx of service calls to come.

While negotiations were still being made on station construction in Denver, PHILCO FACTORY-SUPERVISED SERVICE Headquarters was preparing television service school facilities for the radio servicemen in Colorado. And this school inaugurated its first lesson just as the Denver station KFEL went on the air!

Thus, during the first hectic days of TV reception, Denver's Philco Factory-Supervised Servicemen were
laying the ground work for future business opportunities - wisely preparing themselves for a big share of the vast new potential television has created.

Philco's first Television Training School was welcomed enthusiastically by all members in the Colorado area. They have come from as far north as Cheyenne to enroll and enough classes have been set up to insure Coloradans of an adequate pool of qualified, efficient television technicians.

Denver servicemen are participating in practical, down-to-earth training in every detail of television servicing they will possibly encounter in the field. The entire technical staff of Walter Slagle Co., Philco Distributor in Colorado, is working with enrollees of the school. It is through this close supervision while working on receivers in actual operation that members are trained in the latest and best factory methods of repair. This comprehensive on-the-spot training course in television servicing conducted by PHILCO FAC-TORY-SUPERVISED SERVICE is another important contribution to the servicemen of America by Philco.

What has happened in Denver can well happen in every one of the innumerable cities that will follow with Television. Public acceptance will be quick and enthusiastic. The sale of receivers will be tremendous as television blankets every section a signal can reach. Then the service calls will start pouring in! And the services of only the farsighted, alert serviceman who gets in on the ground floor will be in constant demand.

Continued on Page Twenty

SHOP PRACTICES AND SERVICE TECHNIQUES-HOME RADIO

SCREEN-ROOM CONSTRUCTION

By Frederick S. Mohr
Headquarters Technical Slafj, TechRep Division

A discussion of the theory and important construction details involved in building a shielded room.

l'he principles of shielding are not new to the electronics industry, as practically every piece of electronic equipment employs some form of shielding. At times, though, it is necessary to place a shield around the operating area of the equipment, either for the purpose of performing tests on the equipment or to confine the r-f field radiated by the equipment (figure 1). This article deals with shielded roons built for testing and aligning radio, television and communication receivers.

Since the purpose of such a shielded room is to provide a space free from external electromagnetic fields, the theory underlying the methods of doing this might well be briefly considered. The shield eliminates the electromagnetic field by reflection and by attenuation. Electromagnetic waves tend to be reflected when they strike a medium that has an impedance different from the impedance of the medium through which the waves have been traveling. Some waves are thus reflected when they strike the metal shield, while others tend to penetrate the metal, and, in doing so, are attenuated. Since the waves which seek to penetrate the shield constitute the larger percentage, the effectiveness of a shielded room primarily depends upon how much attenuation the shielding provides.

Ideally, the greatest attenuation would be provided by plates of copper, but, for reasons of economy, rooms are not so constructed. Instead, copper foil or copper screen, such as is used for door or window screens, is used to provide the shielding; this is a compromise between optimum attenuation and economical construction. The use of screen greatly simplifies the problems of ventilating and lighting the room, keeping the costs of these items down. Whereas the use of only one shield might provide an attenuation of 50 db , due to the thickness of the wire, a second shield placed approximately 4 inches from the first will double the attenuation. Therefore, rooms are usually constructed with an inner and an outer shield. In cases of excessive interference, modifications are made to the basic room to meet the special conditions.

Maximum attenuation results if the two shields are not connected at any point. Since it is generally necessary to provide a duct through which power lines can be run into the room, the next best condition is obtained if connection between the shields is limited to this one point. Connecting the two shields at more

FIGURE ONE—Shielded Room Provides an Interference-Free Area for Performing Tests, or Confines an R-F Field
than one point would lower the total attenuation provided by the shields because reflection from the inner shield would be reduced (any currents flowing on the inner surface of the outer shield would also flow on the outer surface of the inner shield). However, attenuation of the electromagnetic waves, caused by flow through the metal, would still be present, and since the thickness of metal is greater when two shields are used, the total attenuation of a two-shielded room is therefore greater than that of a room employing only one shield. This principle is used in screen rooms employing cell-type construction. Cell-type screen rooms
are so named because they are made up of a number of sections, or cells, bolted together to form a room (figure 2). Each cell is usually 4 inches thick, 32 inches wide and of a length equal to the height or width of the completed room (figure 3). The inner and outer screens of each cell are lapped around the sides so that when two cells are bolted together, four screens are in contact. Care must be taken to see that the bolts draw the two sections together tightly enough so that no gap is left between the screens of each section. The advantage of this type of room is that it may be easily assembled or disassembled, and it can therefore be moved from one location to another without any difficulty.

DESIGN FACTORS

In the construction of any shielded room, certain basic factors must regularly be considered. These factors include shielding material, access, lighting, ventilation, and power-supply filtering.

The use of foil or of solid metal plate for shielding complicates the lighting and ventilation factors; for this reason, copper screen is the most commonly used material. When selecting the screen to be used, a mesh should be selected which is small compared to the thickness of the metal surrounding the hole. An electromagnetic field sets up currents which flow in parallel lines on the surface of the metal. If the mesh is large, the holes will interrupt the current flow, and cause it to flow around the surface of the break to the other face of the screen, where a new field will be set up by re-radiation. This, of course, reduces the effectiveness of the room. A screen between a 16 -mesh and a 22 mesh will give good results; a 22 -mesh screen is preferred.

FIGURE TWO-Diagram showing how cells make up a Shielded Room

FIGURE THREE-Construction of a typical cell

Another factor to be considered is that of providing adequate access to the room. If the room is to serve the purpose for which it was constructed, it must be possible to move tools, equipment, and test instruments in and out of the room easily. This requires a door of adequate size, but a door means a discontinuity in the shield, and a consequent reduction in the attenuation of the interfering field. This difficulty, however, may be overcome by providing contacts around the edges of the door so that when it is closed, the inner and outer screens of the door make contact with the respective shields of the room. Strips of phosphor bronze or of copper weather-stripping are ideal for this purpose.

Adequate filtering of the power lines entering the room is very necessary. These lines will have a voltage induced in them by the fields outside the shield, and, if adequate filtering is not provided, similar fields will be established inside the room by re-radiation. Each power line will require a pi-type filter inserted into the line immediately before it enters the room (figure 4). These filters should be capable of handling the power requirements of the equipment in the room, and should be designed to attenuate the interference. Equally important is the proper shielding of the filter, and of the lines as they enter the room. This shielding of the lines must make direct connection with each screen through which it passes, if the effectiveness of the shielding is to be maintained (figure 5).

CONSTRUCTION

Before starting the actual construction of the room, there are several things to be decided, such as how much space is available for the room, whether the test area is to be used solely for testing one type of equipment or for many types, and whether the screen room is to be a permanent or a temporary fixture.

FIGURE FOUR-Typical Power-Line Filter

FIGURE FIVE-Paths taken by interference when Ducł for Power Line is soldered to both shields

Upon these decisions will depend the type of room that is built. If the installation is to be permanent, and there is adequate space available, the conventional double-shield type of room is best. However, if it is desirable to move the room occasionally, even though adequate space exists, then the cell-type room is best.

One point which often bothers the technician who has never built a screen room is the choice of the size of the room. Size of the screen room is not critical. This point is well illustrated by the many different sizes which have been built in the past. One radio-compass manufacturer specifies a room 12 feet 8 inches long, 9 feet wide, and 12 feet high. A company that sells screen rooms provides them in three different heights, two widths, and in a variety of lengths. The "poor man's screen room" (figure 6), which is a fairly new type designed for situations where space cannot be made available for the usual screen room, is only 4 feet long, 2 feet wide, and 2 feet 6 inches high. All of these rooms provide good attenuation of unwanted interference. The main point is to provide sufficient room for all equipment required, plus sulficient working space, without having excess space.

In designing the screen room, the space available will dictate the maximum possible dimensions. This is particularly true of the height, as many shops may not have a 12 foot ceiling. Also to be considered is the layout of all of the equipment involved in the tests. If the length and width chosen are multiples of the screen width, extra work can be avoided in cutting the screening material. A suggested screen room for testing radio compasses is one which is 12 feet long, 9 fect wide, and, if possible, 12 feet high.

The framework of the room should be constructed of well-seasoned, 2-by 4 -inch white-pine lumber. This lumber will provide a sturdy frame for the room, and maintain a 4 -inch space between the two screens, which is desirable (figure 7). In building a double-shielded room, normal room-construction practices are followed in setting up the framework. When nails or screws are used in construction, care should be taken to see that there is no possibility of shorts between inner and outer screens, and that any nails or screws which pierce either screen are soldered to the screen.

Once the framework is built, the screen is cut to fit the various sides of the room. Panels for the walls are cut to fit vertically from the ceiling to the floor. For the ceiling or floor, the panels are cut to fit across the width of the room. The individual panels are then laid out on the shop floor to form a large panel for each wall, floor, and ceiling. This makes soldering much easier, and a better job results. Each section of screen should overlap the next section by $1 / 4$ of an inch. If it is necessary to use soldering flux, a noncorrosive flux should be used, and all excess flux should be carefully cleaned off to prevent any possible corrosion.

Angles made from strips of sheet tin greatly facilitate making joints between each wall, floor, and ceiling. Cut the tin into strips $31 / 2$ inches wide, the width of each panel, and bend them into right angles $13 / 4$ inches on each leg. The angles are then carefully soldered to the top and bottom ends of each wall panel (figure 8).

When this has been done, each wall panel is rolled up, carried into the room, and the metal angle on the outside of the roll is tacked to the top edge of the framework. The roll is then unrolled, and the bottom edge is also tacked down. It may be advisable to tack the screen at several other points on the framework. Every tack head must be soldered to the screen; otherwise radiation will leak through at these points. The angles are then soldered to the ceiling and floor panels, and additional angles are used to connect each wall to the adjacent walls. Of course it is possible to erect the screen without using the angles, but they have been found to simplify the job greatly, and to insure a room with no holes through which the interference field may leak.

The door should be located in the center of one end wall. It is important that, when the door is closed, good contact is made between the screens on both faces of the door and the respective screens of the room. Any discontinuity of the shields will allow interference to leak through, and will lower the total attenuation factor of the room. As mentioned before, copper weatherstripping can be used for the purpose of connecting the shields on the door to the room shields.

THE DOOR LATCH

A means of latching, the door should be provided which fulfills the following requirements. The latch should be operable from either side of the door, it should force the door closed, compressing the metal contact strips between door and frame and it should be easily operated. One type of latch which answers the above requirements is shown in figure 9 . This may be constructed from scraps of rod and strap stock obtained from a local metal working company.

FIGURE SIX—Poor Man's Screen Room

FILTERING THE POWER SUPPLY

One of the most difficult parts in the construction of a good screen room is the bringing of the necessary power into the enclosed area (figure 10). It will be necessary to bring 110 -volt 60 -cycle power, 110 -volt 400 -cycle power, and 28 -volt d-c power into the room. Each of these power lines should have a suitable lowpass filter inserted into each side of the line. Commercial filters can be purchased for this purpose, or filters can be made from parts on hand. If the filters are constructed in the shop, be sure that the chokes are made of wire large enough to carry the power used in the room.

These filters should be mounted next to the point of entry of the power lines into the room. A suitable metal box with a tight-fitting hinged cover should be provided for shielding these filters. The size of the box will depend upon the size of the filters used; ample

figure elght-Tin Strip Fastened to End of Screen Panel

FIGURE NINE
room should be provided for making the electrical connections without undue crowding. It should also be kept in mind when designing the box that the duct carrying the wires into the screen room should also enter the box.

The duct may be any suitable metal pipe, conduit, or waveguide. When the length of the duct is a least three times its diameter, the duct will attenuate all frequencies below its cut-off frequency. The formula for determining the cut-off frequency is $f=\frac{6820}{d}$, where f is the frequency in mc., and d is the diameter expressed in inches. Ducts which have cut-off frequencies higher than the interference frequencies are also useful for the entrance of various services, such as compressed air, water, or gas, that might be needed in the room. These ducts are also a means of providing ventilation in rooms having solid walls.

GROUNDING

If the room has been well constructed, the addition of an external ground will not affect the attenuation of the room. This is because the shielding provided by the room occurs as a result of reflection and attenuation of the waves by the metal of the shields. Additional attenuation of the interference field by grounding the
shield is difficult to provide over a wide range of frequencies. Such attenuation is only provided when a low-impedance path is provided to ground. (When the distance between a point and ground is an odd multiple of a quarter wavelength, a high-impedance path is shown, and no additional attenuation results.) However, the "poor man's room" requires an external ground for best results. The point at which to attach this ground is found experimentally by sliding the ground connection over the bottom of the cage until a point of minimum noise is found. Usually this point will be located at the center of the bottom panel.

Even though an external ground is not essential for attenuation purposes, it should be used to prevent the screen's rising from above a-c ground owing to the power-line filters. A No. 6 (AWG), or larger, wire should be fastened to the screen, preferably near the power-line filters, and to either a cold-water pipe or to a pipe driven into the ground adjacent to the room.

SUMMARY

The most important points to remember to insure the maximum shielding when building a screen room are to practice good workmanship, to make sure there are no breaks or gaps in the shields, and to filter and shield the power lines completely at the point of entry into the room. If these precautions are followed, an attenuation of at least 100 db can be reasonably expected from a double-shield room.

FIGURE TEN-Details of power entrance to Screen Room

A CLOSER LOOK AT THE MODEL G-928

The model G-928 is the latest addition to the 1952 Philco Refrigerator line. This refrigerator is a single door automatic defrost model, with the recessed space in the door utilized by the Philco Dairy Bar. It has a storage capacity of 8.7 cubic feet; freezer compartment and cold storage temperature are maintained through the use of a $1 / 6$ horse power sealed unit assembly, part number 5250-292. The automatic defrost is timer controlled. All controls are conveniently located on the cabinet top breaker strip for ease of adjustment, as can be seen in figure 1.

The automatic defrost equipment in the model G-928 is similar to that used in the duplex models, but the operation is slightly different. At approximately 1:00 A.M. each night the clock-operated timer switch opens the motor compressor control circuit, and at the same time energizes the automatic defrost circuit. With heaters energized and the evaporator temperature set at a predetermined level, the heater thermostat opens the heater circuit and immediately operates the refrigeration system.

This refrigerator has been engineered with the serviceman in mind. The major portion of the electrical components utilize spade type connectors in place of screws and eyelets to secure the defrost components and the wiring harness to the various terminals. The heater thermostat and the timer mechanism are incorporated into a single unit. Power is supplied to the sealed unit assembly and the individual circuits of the refrigerator through a central wiring panel, which is located on the rear side of the evaporator inner cover plate. (Figure 2). When checking the leads at this terminal strip, there is no chance of making an error for the strip is coded "Y"-yellow, "B"-black, "R"—red, "W"white; and all leads are coded with a colored dot which corresponds to the terminal to which they are to be secured.

The thermal damper, which is a food compartment heater consists of a length of heater wire taped to the rear of the food comparment liner immediately below the rear evaporator cover plate cut-out. This thermal damper makes the mechanical damper more efficient. It is connected in parallel with the temperature control, so that it is energized only when the refrigeration unit is not operating. The thermal damper, when energized, sets up an air hlock immediately under the

figure one
rear portion of the evaporator. The purpose of this air block is to cause a greater temperature differential between the freezer and the food compartment. This permits the freezer to operate at a colder temperature without the possibility of foods freezing in the refrigerator compartment. Therefore, it can be seen that this thermal damper would not be effective for this purpose if it were located in any other place on the food liner.

The heater thermostat, which is an integral part of the timer clock assembly, has been designed to better control the termination of the automatic defrost heat

figure two

FIGURE THREE
cycle. Formerly, the feeler tube of the heater thermostat made contact with a few inches of the rear portion of the evaporator. The new control feeler tube is dressed down the left hand side wall and along twothirds of the leading edge on the bottom plate of the evaporator, as can be seen in figure 3. This feeler tube is temperature sensitive over its entire length, and is in contact with approximately twenty-two inches of evaporator surface; so it will not activate the heater thermostat cut-off switch until all frost formations have been melted.

The defrost timer thermostat has been preset at the factory for the thermostat to open at a temperature 50° to 55° Fahrenheit at sea level. For each 1000 feet in elevation, the thermostat will open and close at one degree lower than the rated values. To compensate for altitude differences, there is a five point adjustment on the front of the timer thermostat housing. Fach point is a 1000 foot adjustment. A number " 3 " or " 4 " Allen set screw wrench should be used to make this adjustment. The timer knob shaft has a ratchet gear and stop to prevent the customer from turning the control

FIGURE FOUR
in a clockwise direction. This timer shaft turns I revolution every twenty-four hours in a counter-clockwise direction.

When the evaporator is cleared of all ice formations and the temperature rises to 50° to 55° the heater thermostat trips the timer operated switch to supply power to the sealed unit assembly. The temperature control then maintains the normal cooling cycle until the next defrost period.

G-928 ELECTRICAL SYSTEM

A ground for the refrigerator electrical system is necessary due to the added electrical devices. This ground lead is provided as the third wire in the appliance service cord - one end of it is secured to the relay bracket screw. The other end of the lead, which protrudes from the molded rubber male plug, is connected to wall receptacle mounting screw.

To gain access to the various electrical components for check purposes is quite simple. The sealed unit assembly is similar to the units used in the standard models. Remove the condenser mounting screws and the unit mounting screws. The sealed unit assembly may be partially removed from its mounting cavity to remove the motor compressor terminal box cover.

To gain access to the refrigerator wiring panel, remove all the screws from around the edge of the cabinet rear cover plate. Take out all the insulation that seals off the evaporator inner cover plate (figure 4). The no-oxide cloth may now be removed from the terminal panel.

The timer mechanism and temperature control may be exposed for service by removing the three uppermost mounting screws from the two cabinet side breaker moldings. Remove the top molding and then extract the escutcheon mounting screws. The side breaker strips and trim molding may now be pressed in a fraction of an inch to allow clearance to slide the top breaker strip down and out. Figure 5 illustrates the complete breakdown of this assembly.

As previously mentioned, the electrical circuit of this refrigerator is quite similar to that of the double door models. By referring to figure 6, the difference may be noted. For example, the heater thermostat does not show in the electrical circuit, for it is a mechanical device that operates the timer switch, which is common to the timer and the heater thermostat.

The wiring panel, which is the distribution point for current supplied to all components of the refrigerator, is shown as the blocked out portion of figure 6. The source voltage is supplied through the service cord and unit wiring harness to terminals " B " (black) and " W "" (white). Power is taken directly off of these two ter-
minals for the timer clock motor and the cabinet light circuit. Power is supplied from terminal "W" through terminals 3 and 4 of the timer switch when it is in the unit position. From there it passes through the temperature control to terminal "Y" (yellow) of the wiring panel, and on to the starting relay of the motor compressor. It then passes through the motor windings to return to the source.

When the timer switch is in the defrost position, current flows from terminal "W" through the timer switch terminals 3 and 2 to binding post " B " (black) of the terminal strip. From there on through the temperature limiter, at which point the current takes a parallel path through the upper and lower defrost heaters. On leaving the heaters, the path is through terminal " R " of the wiring panel and back to the source.

The food compartment heater (thermal damper) is connected to terminals " Y " and " W " of the wiring panel. This effectively places the cabinet heater in parallel with the refrigerator temperature control. Therefore, this heater element is only energized when the temperature control contacts are open.

TEST AND INSPECTION OF THE DEFROST TIMER THERMOSTAT

To determine if the timer motor is operating, its motion may be observed through the inspection window, which is located in the front right hand corner of the
top panel. The direction of rotation is counter-clockwise.

To check the switch action, a wattmeter may be plugged into the power outlet and with the refrigerator drawing power through the wattmeter, manually rotate the timer indicator knob in a counter-clockwise direction. As the timer passes through the period of $1: 00$ A.M. the wattmeter will show a large wattage reading of between 750 and 1000 watts. Continuing the rotation, the switch will be tripped to the unit position, which will be indicated on the wattmeter by a reading of between 175 and 225 watts. If the sealed unit is in the "off" cycle, the wattmeter will read approximately 15 watts for the cabinet heater will be drawing current.

The gear train may be checked by noting the position of the timer indicator knob, and then permitting the timer to operate for a short period to check the knob movement. No movement would indicate a defective drive train or an inoperative motor. Therefore, the timer assembly would have to be replaced.

A bench check of the timer may be made by connecting a 115 volt supply to terminals 1 and 3 in order to operate the timer. Connect two 115 volt lamps to terminals 3 to 2 and 3 to 4, respectively, as indicators of operation. To check the timer switch, turn the knob slowly in a counter-clockwise direction. Lamp 3-2, which represents heater operation, will light at approximately 1:00 A.M. Continue turning the indicator knob slowly until lamp 3-2 goes out and lamp 3-4, which

FIGURE FIVE
is the unit circuit, is illuminated. This lamp will be lighted for approximately nine-tenths of the rotation. To check for accuracy, the timer dial rotation should be checked against a standard clock. This check should be made over a period of at least 24 hours.

DEFROST HEATERS

Insert the refrigerator power cord into a wattmeter that has been connected to the wall outlet. Turn the temperature control to position 1. Rotate the timer indicator knob in a counter-clockwise direction until 12:00 P.M. is reached and read the wattage. The wattage, which indicates correct motor operation, should be shown. This wattage will be between 175 and 225 watts. The timer should then be rotated to $1: 00$ A.M. The motor compressor should continue to operate with no appreciable change in wattage. Continue to rotate the timer knob towards 2:00 A.M. until the unit stops and the heaters are energized. This will be evident by a large increase in wattage. After the heaters have been operating for a few minutes there should be a wattage indication of approximately 750 watts. If the meter reads 600 watts, it would show that the top heater is inoperative. A reading of 150 watts would show an open bottom heater. After the check is completed, set the timer indicator to the correct time of day.

CHECKING THE TEMPERATURE LIMITER

The temperature limiter is incorporated in the defrostheater circuit to open the circuit if the temperature of the evaporator becomes excessive. It is a mechanical
circuit breaker which resets itself after a short cooling interval, and should remain closed during the normal defrost period. To check the temperature limiter, proceed as follows:

1. Connect a wattmeter to measure the power used by the refrigerator.
2. Set the temperature control to position 1, and allow the unit to operate until it stops automatically.
NOTE: Step 2 may be omitted if the evaporator temperature is sufficiently cold (below 20°) to assure that the heater-thermostat contacts are closed.
3. Remove all but the four corner screws on the outer cover plate, so that the cover may be quickly removed when desired.
4. Turn the clock indicator knob in a counter-clockwise direction until the defrost heaters are energized (as indicated by a large increase in wattmeter readings).
5. As soon as the defrost-heater circuit is opened by the thermostat, take out the remaining cover mounting screws, and remove the cover.
6. Disconnect the leads from the limiter, and check for continuity. The limiter contacts should be closed at defrost temperature. If the limiter is found to be open, or otherwise defective, remove it by taking off the two speed nuts, one at each end of the limiter.
The limiter is adjusted at the factory to open its contacts at a temperature between 80° Fahrenheit and 95° Fahrenheit.

CHECKING FOR IGNITION INTERFERENCE

Checking for causes of reception of ignition interference with the auto radio chassis itself is not usually a standard practice when servicing an auto radio, but should a customer complain of noisy performance that could be interpreted as ignition interference, two circuits of the auto radio should always be checked. These circuits are the input electrical sources through which ignition interference may be fed into the radio. Unfortunately, also the components may be defective, as far as spark suppression is concerned, yet will have no effect on the operation of the radio that would bring their condition to your attention.

1. The circuit including the antenna choke as shown in figure 1.

This choke is usually of special design in order to be most effective at the peak frequency known to be produced by the ignition system of the automobile. It, therefore, is self-tuned to a definite frequency and anything changing this frequency response by the choke will, therefore, make it less effective.

While equipment is not usually available to determine that the choke is actually 3 micro-henries or similar figure, a rough determination can be made with an ohmmeter as the impedance is usually about 3 ohms. Therefore, if there is a great variance from this figure,

FIGURE ONE
say to less than one ohm, the choke should be considered defective and must be replaced.

Again considering the purpose and design of this coil it is important that replacement be made with the same part number coil, not with a similar coil, or it will not be effective.
2. 'The "A" lead by-pass condenser and choke circuit shown in figure 2. The condenser is sometimes referred to as a "spark plate" from the style of its construction.
Most condensers of this type have the case, as one plate of the condenser, riveted to the auto radio housing -the other plate being "fed through" the case. Poor grounding of the condenser case, such as loose riveting, etc., will make the condenser ineffective. This is sometimes abused if the radio is picked up by the " A " lead as a convenient handle. Even though anchored it may move the condenser internally some - to the extent of changing capacity and could result in a shorted " A " lead.

Due to the heavy construction of the choke about all that generally happens to it is a secondary result of an internal short causing so much current to flow that the coil heats up and chars the insulation. Watch for this condition and replace the choke if this has happened.

FIGURE TWO

REVIEW OF CHANGES AND MATERIALS

FIGURE ONE-Rear View af Philco Electric Range, Madel 428

Our 1952 line of Philco lilectric Ranges have been on the market for over seven months and we feel that any minor problems have been ironed out in our production at the factory in Mount Clemens, Michigan. A review of the changes we have made and of the material that is available to you will complete your 1952 service files.

It is a fact that all of the service information concerns those electric ranges that include a Jiffy Griddle. Figure 1 shows you the back of a model 428 range and points out the parts that are involved in the article to follow.

We have never been able in our tests at the factory to duplicate a condition that we know exists in the field, that is, the buckling Jiffy Griḍde spring sheath.

When this condition occurs, the buckled sheath prevents the Jiffy Griddle from sliding all the way back into its storage position. This in turn prevents the oven door from closing properly. When we do find this condition in the field, there is usually a badly connected spring sheath terminating wire. Proper fastening will prevent this problem from reoccurring.

We recommend that the spring sheath be replaced and that the replacement be fastened to the back of the range as shown in figure 2 . It is important that the sheath be hung as indicated and that the part which is fastened to the screw is lined up as shown.

In addition to the spring sheath difficulty, Philco Electric Range customers might have had another difficulty with their range "Jiffy Griddle" operation, as in-
cluded in models B-417 and B-418, and in early production of models C-4231), C-425, C-427, and C-428. Production since February has included this part. It occurs because of the fact that constant heating and cooling of the oven causes the griddle contacts to lose their temper or spring and, therefore, fail to hold the griddle terminal block and female receptacle together when the griddle is in the "use" position. In other words, when the griddle is pulled out the power to the broil unit is cut off.

Here's how to correct this condition:
Order one part number 3403-8 Jiffy Griddle terminal block retaining clip from Philco.

To install the retaining clip, see figure 3. follow the steps listed below:

1. Disconnect range from power source.
2. Remove broil glass.
3. Remove Jiffy Griddle.
4. Remove broil unit.
5. From the rear of the range, pull back female receptacle so that contact housing can be removed.
6. Remove contact housing cover.
7. Pull out housing and contacts from the rear.
8. Examine contacts and wire for burning and replace if necessary.
9. Reassemble but leave two securing nuts loose.
10. Insert clip on the bottom of contact housing between the nuts and the back of the receptacle. See figure 4.
11. Tighten two nuts.

FIGURE TWO-Proper Alignment of Jiffy Griddle Spring Sheath
12. Reassemble housing cover, replace broil unit, griddle, broil glass and check to see that retaining clip is performing its function. It should slide up under front of terminal block and prevent terminal block and its receptacle from parting.
13. Show customer how to remove broil unit so that she will be able to clean oven.

We have also found that steam leaks out of the back of the range through the Jiffy Griddle spring sheath opening in the back of the oven when that oven is being used for roasting or baking moist food. The stean leakage condenses on the back of the control panel glass surface making it difficult to read the indicators. To correct this, a kit has been devised which prevents this escape of stem. It was answered in your May mailing of the "Philco Serviceman." The installation directions will be found there and when or if you order

FIGURE THREE_-Jiffy Griddle Retaining Clip (Part No. 3403-8) Mounted on Receptacle

FIGURE FOUR—Retoining Clip in Position
these parts from your Philco Distributor please ask for the following:

$$
\begin{aligned}
& 1-208530 \text { Baffle } \\
& 1-208540 \text { Baffle } \\
& 1 \text {-solid wire } 5 \text { inches long } \\
& 1-8653-5 \text { wire nut }
\end{aligned}
$$

In an effort to get our customers better service with respect to repairing or exchanging oven control clocks, we are changing our policy on this item.
Up to this time these clocks have been sent back directly to General Electric at Somersworth, New Hampshire.

In the future all oven control clocks which become defective, should be sent transportation charges prepaid to the Philco Distributor in your area.

The clock should be tagged with a standard PR-1126 tag, properly filled out. Special attention should be paid to the length of time the clock has been in use. Clocks should be returned in adequate packing so that they will not be damaged in transit.

The clocks will be repaired or exchanged free of charge if they are in warranty. If not, then a charge will be made.

Another bit of valuable information is found in the fact that the surface units are now sealed against the possibility of grease or other foreign matter getting up into the unit, through the terminal block and, in turn, causing shorts.

A compound of silicon and rubber is placed between the two halves of the terminal block before it is fastened together by the two nuts and bolts. The com-

FIGURE SIX-The Surface Unit Terminal Block Is Now Sealed
pound stays soft until it is cured by the heat of the unit and experience shows that it takes about a week's use before it will harden, see figure 6 .

You will find that if you are aware of the few service techniques applicable to the Philco Electric range, then you will be adequately equipped to handle the jobs you will encounter. All of the other servicing jobs on Philco ranges are handled in a straightforward way with no special skill or information necessary.

FIGURE FIVE-Oven Control Clock

AGC AND NOISE INVERTER CIRCUITS

FIGURE ONE
"Gated $\mathrm{A}(\mathrm{CC}$ " and the "noise inverter" are two of the new circuits included in the TV-90 receiver. For complete understanding of these circuits and their operation it will be well to start circuit description with the video detector circuit.

The output from the fourth video II stage is detected in the crystal video detector circuit. The video detector is direct coupled to the first video amplifier. The output of the first video amplifier feeds several circuits, the video output tube, the gated leveler, the sync separator. The first video amplifier and first sound IF tubes are connected in series creating a voltage divider network. This supplies a regulated source of voltage to be applied to the AGC gate tube. The current path through this divider network is from the cathode of the video amplifier to the plate, through the plate load resistors and the cathode resistor of the sound IF and on to $B+$ from the plate of the first sound IF tube.

A 10 K resistor has been placed in the screen grid circuit of the AGC gate tube to prevent damage to the circuit components in the advent of failure of the 1 st sound IF tube. This tube failing would cause all bias to be removed from the AGC gate tube permitting it to conduct heavily. During line time when there is no plate voltage on the gate tube an excessive current would flow through the 1 st video amplifier tube and on through the screen grid circuit of the gate tube. This 10 K resistor limits the current flow thus protecting the circuit components.

The video dectector is a 1 N64 crystal and is direct coupled to the lst video amplifier tube. The composite video signal is of negative polarity as it is fed to the grid of the video amplifier tube. Thus, all variations in grid voltage will be from zero volts toward a negative direction. 'The GUX tube, which is used as the video amplifier, has characteristics such that with certain operating voltages on the plate and screen, variations of the grid voltage near zero volts will produce no change in plate current. This would result in compression of the white portion of the composite video signal. To eliminate any possibility of this, a resistor has been inserted into the cathode circuit of this tube to maintain a minimum bias above this point.

In order to supply the noise inverter circuit with sufficient amplitude of signal for efficient operation a special voltage divider network has been inserted in the grid circuit of the AGC gate tube.

When the receiver is first turned on, there is no AGC developed and the large amplitude of composite video signal applied to the grid of the 1 st video amplifier tube cuts this tube off. Because of no current flowing through the tube the plate voltage of this tube will rise to $B+$ value. The cathode of the AGC gate tube has a fixed voltage of 125 volts while the grid voltage varies from this 125 volt value depending upon the current flowing through the plate load resistor of the 1 st video amplifier as these two tubes are direct coupled. With the plate voltage of the video amplifier at $B+$

FIGURE TWO
value and, therefore, the gate tube grid at $\mathrm{B}+$ value, the gated AGC tube conducts heavily developing AGC voltage. The gain of the receiver is cut back and the 1st video amplifier tube is brought out of cut-off allowing plate current to flow reducing the plate voltage, hence, the gated AGC tube grid voltage. This action continues until a state of equilibrium is reached. When equilibrium is reached, the $A G C$ gate tube is operating just above cut-off developing the required AGC voltage. At this time, the sync tips of the composite video signal on the plate of the video amplifier tube occur at approximately 15 volts below $\mathrm{B}+$ value, thus permitting the circuit to pass noise pulses up to 15 volts in amplitude at the video amplifier. The cut-off level of the 6AU6 AGC gate tube is a negative 5 volts and would normally operate the system with the sync tips at 5 volts below B+ level at the plate of the video amplifier so it is necessary to introduce a corrective voltage which will increase this distance between the sync tips and B+ level. This corrective voltage is obtained by the voltage divider network in the grid circuit of the AGC gate tube. A 560 K resistor is tied from the $\mathrm{B}+$ supply to the grid of the AGC gate tube and a 47 K resistor is tied from the grid to the plate load resistor of the video amplifier tube. This resistor network results in an approximate 10 volt drop across the 47 K resistor. This 10 volt added to the normal 5 volt operating condition will result with a 15 volt difference between sync tip level and $\mathrm{B}+$.

To understand the manner by which the sync tips of the composite video signal at the plate of the video am-
plifier tube are maintained at approximately 15 volts below B + level, examine these circuits again. With a very large signal input from the video detector to the video amplifier grid the video amplifier tube would be cut off because its grid is driven very negative. This would result in no plate current through the tube and the plate would assume $\mathrm{B}+$ potential. See figure 5 .

If the signal input was reduced in amplitude so as not to drive the video amplifier to cut-off, the plate of this tube would not reach $\mathrm{B}+$ value. See figure 6.

Therefore, the distance that the sync tips lie from $\mathrm{B}+$ is determined by the input to the video amplifier stage and input to the video amplifier is determined by the gain of the preceding stages which are controlled by AGC. Thus by predetermining the level at which the AGC gate tube functions, the distance from $\mathrm{B}+$ that the sync pulses will occur, can be set.

The gated AGC system provides an AGC voltage completely independent of, or affected by changes in the video leveler or by insertion of noise.

The plate of the AGC gate tube obtains its voltage from a pulse developed in a special winding on the horizontal output transformer. This pulse is approximately 500 volts peak to peak in amplitude and occurs at a rate of 15,750 times per second. That is, they occur during horizontal sync pulse time. Hence, the AGC gate tube conducts only when plate voltage is present on the tube which is during horizontal sync pulse time. The relative bias on the AGC gate tube at this time will determine the amount of conduction of the tube

FIGURE THREE

FIGURE FOUR
and, therefore, the amount of AGC voltage developed. Since this conduction takes place only during horizontal sync pulse time, any variation of bias on the AGC gate tube during line time has absolutely no affect on the AGC voltage developed. The possibility of noise occuring repeatedly at horizontal sync time is so remote and the RC time constant in the AGC filter network so chosen that any chance of this causing an upset to the AGC can be completely disregarded. The current flow for the AGC system is through the AGC tube and down through the AGC resistor network to ground. This produces a negative voltage that can be utilized to control the gain of the RF and IF stages.

The composite video signal from the 1 st video amplifier tube is coupled through a coupling condenser to the plate of the gated leveler tube and the grid of the noise inverter stage which are direct coupled. The gated leveler tube could be referred to as a gated DC restorer circuit. Its purpose is to adjust the DC level of the incoming composite video signal so that the sync tips are at approximately zero voltage, thus, any signal greater than sync tip level would drive the grid of the noise inverter tube positive.
When the receiver is first turned on, the DC zero level of the signal on the grid of the noise inverter tube is at the mean average between the positive and negative extremes of the signal. The positive portion of this signal, when applied to the plate of the gated leveler tube, will cause it to conduct causing a voltage to be developed across the noise inverter grid resistor and charging the coupling condenser. This action will continue until the coupling condenser has charged up to a sufficient value that the sync tips just slightly exceed
the negative charge. Thus, the gated leveler has changed the DC zero reference level from the mean average position to approximately sync tip level. The gate pulse that is applied to the plate of the AGC gate tube is also fed through a voltage divider network resulting with a pulse output from 2 to 3 volts peak to peak. This pulse is applied to the grid of the gated leveler tube. The gated leveler, therefore, will only function during horizontal sync time and variation in signal amplitude, during line time, will not upset or change the zero level position in respect to the composite video signal.

The noise inverter tube has a fixed cathode bias supply of 8 volts. The cut-off level of this tube is approximately 3.5 volts. This means that the grid must go 4.5 volts positive before the tube will conduct. Actually, the sync tips rise approximately one volt above the zero level due to some voltage being necessary to maintain a stabilized condition in the gated leveler circuit. Therefore, any signal, such as noise pulses, greater than 3.5 volts in amplitude above the sync tips will cause the noise inverter tube to conduct. The noise pulses that reach above the cut-off level will be amplified and inverted by the noise inverter stage. This amplified signal is mixed with the composite vidoo signal as it enters the 1 st sync separator tube and being inverted and greater in amplitude will completely cancel out all noise present in the signal at the grid of the sync separator.
What of noise pulses less than 3.5 volts above sync tip level? This condition rarely occurs but if it should the sync separator circuit has a certain immunity to noise and therefore there would be no detrimental affect to sync stability.
The trouble shooting procedures for the noise inverter and gated AGC circuits are relatively simple.

figure five

FIGURE SIX
The easiest and most efficient method of trouble shooting these circuits is by use of an oscilloscope. The noise inverter circuit has one key check point. 'That is the cathode of the noise inverter tube. With noise present in the received signal to the receiver and the oscilloscope connected to the cathode of the noise inverter tube, noise information should appear on the face of

the oscilloscope if the noise inverter circuit is functioning normally. If no signal is present at the cathode, the noise inverter circuit is abnormal. Change the tube and use the voltohmmeter method of trouble shooting.

For the AGC gate circuit, check the wave form at the plate of the AGC gate tube. This should be a pulse approximately 500 volts peak to peak and a frequency of $15,750 \mathrm{cps}$. Present on the grid of the gate tube should be the composite video signal. For isolating trouble within the AGC gate circuit, apply a fixed bias to the AGC buss so that the remainder of the receiver can function normally. 'Then use the voltohmmeter method of trouble shooting this circuit. Remember that the gate tube obtains its bias from the series set up of the first sound IF and first video amplifier tubes. Trouble in these circuits can upset the divider network.

figure seven

PHILCO RUSHES TELEVISION TRAINING FACILITIES TO DENVER!

Continued from Page Two

Wherever new station construction is being planned today Philco Distributors in co-operation with Philco Service Headquarters are assembling the facilities, the personnel and the knowledge to conduct television service schools on behalf of their PHILCO FACTORY. SUPERVISEI) SERVICE: Members.

If you have not had television experience, upon enrollment you will be classified as an Associate Member of PHHLCO IFACTORY-SUPERVISED SERVICE for Television and will begin a concentrated period of study under the auspices of your local Philco Distributor. The Distributor's staff of servicing experts conducts this phase of training in new Television markets, and the Philco Television Service School maintains a schedule of eight hours a day, five days a week. This concentrated study you will undergo is a combination of 80 hours film and recorded lectures, plus practice through actual bench work.

At your disposal will be the finest facilities available in television today; a complete line of test equipment, bench facilities and television receivers for the application of all theory and visual aids presented throughout the course. Philco's scientists and engineers have worked endlessly on a theory for rapid instruction in this complex field, and have produced a formula for training second to none. This course is the most modern, hard-hitting, extensive training program available to you today!

Never before in the entire history of radio and television have you been offered an opportunity to participate in a program of this type. Not only do you benefit by increased knowledge of television servicing, but your business and profits will expand immeasurably through these efforts.

Philco extends an invitation to you, the independent serviceman, to become part of one of the world's leading television servicing organizations. Philco Distributors all over the country are eager to acquaint you with the complete details concerning this program - contact the one in your territory!

An instructor and two Denver servicemen solve a tough circuit problem using the bench facilities provided for Philco's Television Service School by Distributor - Walter Slagle Company.

SUEERVISOR

Factory-Supervised

Service

DECEMBER, 1956

COLOR TELEVISION

Frequency Interleaving
2

TELEVISION

Oscilloscope Waveforms
of Television Chassis

HOME RADIO
Servicing M-39
Automatic
Record Changer . 9

Published monthly by Service Heodquarters of the Philco Corporotion for independent service technicians who render high quolity product service...the world over.

Copyright 1956.
PHILCO CORPORATICN
Reproduction of any material within this publication is prohibited without the written consent of the copyright owner. Philca Corporation.

FREQUENCY INTERLEAVING IN COLOR TV

Frequency interleaving is an essential factor in color television transmission. Therefore, its basic principles should be understood.

All of the brightness and chroma information, for color television, must be transmitted within the frequency limits of the monochrome television channel. The brightness signal requires a full 4.2 megacycle band-width, which is the same frequency width allocated for video information. The chroma signal is combined with the brightness sig. nal and shares a portion of this 4.2 megacycle band.

Frequency interleaving is made possible by the fact that the monochrome system is inefficient in its use of the frequency spectrum and many gaps are caused to exist, in which no information is transmitted. The reason for these gaps is in the scanning process used.

In the method used for scanning, video signals are caused to group about the horizontal and vertical scanning frequency harmonics. This grouping, about the harmonics of the horizontal frequency, is of particular importance. In figure 1, the second through the fifth harmonic, is illustrated, with their associate side frequencies. From this illustration the unoccupied region between the groupings of energy can be noted. These spaces are used for transmission of the chrominace signal by frequency interleav. ing. So as to obtain the most efficient use of these spaces, the F.C.C. has revised the Television Signal Standards for color and monochrome transmission to provide a horizontal sweep frequency of 15.734 cps and a vertical frequency of 59.94 cps . The operation of the monochrome

Figure 1
receiver is not affected by this slight change, as it is within tolerance.

For ease of explanation and comprehension, the signal components to follow, will be expressed in terms of half the horizontal line frequency as the reference point ($7,867 \mathrm{cps}$).

It can now be observed in figure 2, that the video information signals fall in groups of even multiples of half the horizontal line frequency, $450 \mathrm{th}, 452 \mathrm{nd}, 454 \mathrm{th}$, 456th, 458th, etc. The unoccupied spaces fall at the odd multiples of half the horizontal line frequency, 451 st , 453 rd , 455 th, 457 th, etc. The chrominace carrier is of a specific frequency (3.579545 mc .) so that the color information consists of an odd multiple of half the line frequency and is, therefore, interleaved between the monochrome information.

In order to thoroughly understand why the video sig. nal information groups about the harmonic frequencies of these horizontal and vertical scanning frequencies, the derivations of a rectangular and sawtooth wave will be reviewed.

Within a rectangular wave there is contained a multitude of sinusoidal waves. The fundamental or lowest frequency component included in a rectangular wave is determined by the repetition rate of the wave. Each succeeding higher frequency component is a harmonic of the fundamental frequency. Theoretically, a perfect rectangular wave contains all harmonics of the fundamental frequency. Illustrated in figure 3, is a fundamental fre-

Figure 2

Figure 3
quency and the result of five of its harmonics. Examination will reveal the fact that if more harmonics are added to the resultant wave in figure 3, its sides would become steeper and its top flatter.

Illustrated in figure 4, is a sawtooth wave and the results of five of its harmonics. Its fundamental frequency, as in a rectangular wave, is its repetition rate. Examination shows that a sawtooth wave contains all harmonics of the fundamental frequency.

Of primary interest at this time is the horizontal scanning rate. Assuming that a vertical black bar centered on a white field, as in figure 5 - A , is being scanned. The video voltage developed when scanning one line of this scene is plotted in figure $5-\mathrm{B}$. This video voltage is a rectangular

Figure 4

Figure 5
wave. Since the same shaped video voltage is developed for each horizontal scanning line and has a repetition rate of 15.734 cps, the output signal contains a series of rectangular waves which have a repetition rate of the scanning frequency. This repetition rate is considered the fundamental frequency of the rectangular wave. Thus, the video information frequency components for this recur at $15,734 \mathrm{cps}$ and its harmonics.

Assuming next, that a gradual shading of from white through gray to black is being scanned, as illustrated in figure 6-A. The video voltage developed during one horizontal scanning line, of this scene, is a sawtooth wave, and is plotted in figure 6.B. Video voltage for each scanning line will be of a similar wave form. Therefore, the

Figure 6
video information will consist of a series of sawtooth waves with a repetition rate or fundamental frequency of $15,734 \mathrm{cps}$. Since the frequency components of a sawtooth wave are the fundamental frequency and its harmonics, the video voltage of this scene contains frequencies of $15,734 \mathrm{cps}$, and all harmonics of $15,734 \mathrm{cps}$.

The more complexed wave shapes occurring in the video modulation are comprised of the basic rectangular wave and the sawtooth wave. Therefore, due to the method of line scanning used in television, it can be stated that all video modulation has a fundamental frequency of $15,734 \mathrm{cps}$. It is now evident why the video signal is illustrated as appearing at $15,734 \mathrm{cps}$ intervals in figure 1.

The side frequencies, which are above and below the harmonics of the horizontal scanning frequency, are spaced 59.94 cycles apart. These are the result of the changes in video information from one field to the next. These field changes are occurring at the vertical scanning rate, thus resulting in frequencies that are harmonics of the vertical scanning frequencies. A small quantity of energy is produced at the vertical frame rate, but is so small that it is disregarded.

In an average telecast, portions of the picture are moving, developing any frequency within the video spectrum. Thus, the fundamental frequency of the video information may vary around 15,734 cps. This variation is proportional to the rapidity of the motion. This will cause some interference between the interleaved monochrome and chroma signals by a slight discontinuity along the edges of the moving portion of the scene. However, this effect is negligible.

Figure 7
The chroma signal which is varying about the brightness signal and is modulating each horizontal scanning line, is inverted 180 degrees with each frame. By inverting this signal, the chroma subcarrier is prevented from producing an objectionable black and white interference pattern throughout the picture. This inversion of the chroma signal occurs because it passes through a whole number, plus one-half cycles each frame. A portion of one modulated horizontal scanning line is illustrated in figure 7-A. 525 horizontal lines or $1 / 30$ th of a second later (the corresponding line in the next frame), the modulation is inverted 180 degrees as in figure 7-B. These two signals being equal and opposite, essentially cancel each other as in figure $7-\mathrm{C}$. This apparent cancellation is due to the persistence of the human vision, by which the eye retains the brightness sensation of the horizontal scanning line from one frame to the next.

SERVICE NOTES

Correction to the October issue of the Electronic Supervisor:
On page four of the October issue of the Electronic Supervisor, figure 5 has been incorrectly drawn.
Illustrated below, is the corrected diagram.

OSCILLOSCOPE WAVEFORMS OF THE 7 LL 40 AND 7 L 70 TELEVISION CHASSIS

Figure 1

The complex circuit arrangement used in television circuitry may make servicing difficult unless the proper servicing techniques are employed. Of these techniques, the proper use of an oscilloscope and by knowing what waveforms and amplitudes to expect, can save the technician hours of servicing time.

On printed wire panels, such as Philco has employed on their 1957 "E" line, 7L40 and 7L70 chassis, servicing can be simplified if advantage is taken of the available test points and connections for obtaining scope and meter readings. Also, defective components can more readily be found and replaced, by the fact that all component parts

are mounted on one side of the chassis. When servicing either of these chassis, standard servicing procedure should be followed.

It is hoped that this article will more thoroughly familiarize the technician with the test points, connections, voltages and waveforms that may be found in the 1957 television chassis. Also included are instructions for removing the chassis and picture tube from the cabinet.

To be described first, from an oscilloscope viewpoint, will be the 7 L 71 chassis, illustrated in figure 1. By referring to this illustration, the physical location of test points and connections, to be mentioned, may be observed.

The diode portion of the 3rd I-F tube is employed as the video detector and its output may be checked at point L1S. Figures A and B illustrate the composite video signal, with negative sync, that should be seen at this point. This signal should be approximately 2.5 volts P/P and any undesirable oscillation or sync clipping which may be occurring in the tuner or I-F section will cause distortion in the waveshape and isolate the possible trouble to one of these stages. Assuming this waveform is undistorted, the composite video signal can be traced in steps, directly to the picture tube, by placing the scope lead, first at the plate, pin 6 , of the first video amplifier and observing its waveform and amplitude. This should be similar to figures A and B except it will be inverted and approximately 30 volts \mathbf{P} / P. The next point to check is at the plate, pin 5, of the video output tube. Here the negative sync waveforms, as in figures A and B should be seen, but at 100 volts P/P. Next, the scope lead can be placed at point L12L, which is connected directly to the grid of the picture tube. The same waveform as on the video output plate should be observed. The over-all gain, for the two stages of video amplification should be approximately 40 .

The sync take-off point, in the plate circuit of the first video amplifier, applies the composite signal to the noise inverter and the sync separator. A normal signal is bypassed around the inverter to the separator. Only on large
noise pulses will the inverter operate, as it is biased to conduct only above synct tip level. At the plate, pin 1, of the inverter the waveforms as in figures C and D , should appear, while on pin 9 , the grid, figure E. may be observed (with the range switch in a normal position). All of these waveforms are between 28 and 30 volts P/P.
The grid of the sync separator, pin 2 or $\mathbf{L} 9 \mathrm{~J}$, is the next point from which observation of a waveform might be helpful. This waveform, figure \mathbf{F}, should be approximately 17 volts \mathbf{P} / \mathbf{P} and have good clean sync pulses of positive polarity. Normal sync separation takes place within this stage and its output may be observed at its plate, pin. 1. At this point, only negative sync pulses of approximately 40 volts P / P, figure G, should be seen. From here, the sync signals are fed to their respective circuits.
The pulses fed to the vertical oscillator are applied through an integrator circuit, which permits only the vertical sync pulses to activate the multivibrator type oscillator. At the first plate, pin 1, of the oscillator, an 82 volts \mathbf{P} / \mathbf{P} pulse will appear, figure 4 , and a 105 volt P / P sawtooth wave, figure J , should be seen at the output plate, pin 6 , when this oscillator is functioning properly. The next point of observation is the junction of the coupling capacitor (C3J) and the grid limiting resistor ($\mathrm{R1J}$). At this junction " A " of figure 1, peaking is added and the result is the 45 volts \mathbf{P} / P waveform, as in figure K . This waveform is fed to the vertical output circuit, which is located on a shelf with the horizontal ouput and damper circuits. Pin 9, the plate of the vertical output tube will produce, on the scope, a 1490 volts P/P waveform, as in figure L , which is coupled by the vertical output transformer to the vertical deflection coils.

The first point in the horizontal circuits from which observation of a waveform would be helpful, is the cathode, pin 8, of the phase comparer. Here, the sync pulses and a sampling of the horizontal oscillator are compared and if a phase difference between the two exists,

Figure 2
a DC correction voltage is applied to the horizontal oscillator to correct the frequency. The waveform which will appear at the phase comparer cathode is illustrated in figure M and is approximately 8 volts P / P. Tracing the signal further, the first plate, pin 1 , of the horizontal multivibrator will show a 68 volts P / P waveform, figure N , which is coupled to the grid of the output section. On the output plate, pin 6, of this oscillator will appear a 200 volts P / P sawtooth wave, as in figure O, which is coupled to the output tube. To observe the results of the output tube, loosely couple the scope lead to the plate cap. Figure \mathbf{P} should be seen at this point.

Normal B plus voltage after filtering should be approximately 270 volts and the voltage applied to the I-F section and tuner is reduced to 140 volts. In the damper circuit a B plus boost voltage of 550 volts is developed and used as the 1 st anode voltage, which is an important factor in the decatron video system.

The 7 L 40 series chassis, figure 2, is very similar in appearance to the 7 L 70 chassis with the major differences between the two chassis in the video and sweep circuits.

Using a scope in the same manner as on the 7 L 70 chassis, the first waveform is obtained from the output of the video detector at point L 1 S . This will be a composite video signal, with negative sync, as in figure AA, and will be approximately 4 volts P / P. This signal is coupled to the one stage of video amplification and produces a 90 volts P/P signal at its plate, pin 9, as in figure BB. With the scope lead placed on the center arm of the contrast control, this same signal should vary from 20 volts, P / P minimum to a maximum of 90 volts P / P. From here, the signal is coupled to the cathode of the CRT.

Figure CC illustrates the video signal, as it should appear at the grid of the sync separator. This is a 55 volts P/P signal. At point L3T on the video PW panel or L4P

on the oscillator PW panel, the sync separator output may be checked. This waveform, as in figure DD, is of 40 volts P / P and is fed to its respective circuits.

The vertical sync is fed to the center tap of the vertical oscillator transformer where large positive overshoots are formed on this signal, figure EE, and coupled to the grid, pin 2. These overshoots are approximately 310 volts \mathbf{P} / \mathbf{P}. The output of this oscillator is coupled to the grid, pin 3, of the vertical output tube, which is one half of the twin triode, 6CS7. From this point, a 120 volts P / P saw should be obtained. At point L2P, the result of the output stage may be checked, figure FF. These pulses are fed to the vertical output transformer and then to the vertical deflection coils.

A dual selenium diode is employed in this chassis, as the phase comparer and its operation is exactly the same as the vacuum tube in the 7 L 70 chassis. At the input of this selenium, the center lead, a waveform of 9 volts, P/P should be received as in figure GG. Its output is fed through an R.C network to the grid of the horizontal multivibrator. On the first plate of this oscillator there should be 60 volts P / P pulses, similar to figure HH. In checking the output of the oscillator, point L10P which connects directly to the grid of the horizontal output stage, there should be a sawtooth wave of approximately 180 volts, P/P, as in figure JJ.

The last check point is the plate cap on the output tube. By loosely coupling the scope lead to this point, figure KK, a high voltage pulse should be seen. This is coupled to the high voltage rectifier and also to the horizontal deflection coils by the fly-back transformer.

The filtered B plus voltage on this chassis is approximately 260 volts. At the cathode of the damper a B plus boost voltage of 580 volts is developed and applied to both the horizontal and vertical output plates. The cathode of the audio output tube is designed as a bleeder network from which 140 volts is obtained and applied to the I-F amplifier plates and tuner.

The next step is to remove the four screws holding the chassis to the cabinet. Two of these screws are located underneath the cabinet while the other two are on the side of the chassis near the top. The chassis can now be removed from the cabinet.

At times, removal of the picture tube is also necessary. This is accomplished by removing the four nuts holding the picture tube frame to the front of the cabinet. This frame is securely tightened around the front edge of the picture tube.

When taking the chassis out of the cabinet in both the 7L40 and 7L70 series, remove the front escutcheon plate, all control knobs and the back cover. With the chassis now exposed, remove all the external leads coming to the chassis, such as the speaker leads, yoke leads and on models containing top-touch-tuning, the stepper unit leads. For ease of servicing, these leads connect to the chassis either by pin connections or plugs. The second anode lead and the picture tube socket must be disconnected at the picture tube, as these wires are soldered to the chassis.
It is recommended that the lower two nuts be removed first and then supporting the neck of the picture tube with one hand, proceed to remove the top two nuts. When returning the tube to the cabinet, these top two nuts should be tightened up first. This procedure will help prevent possible damage.

SERVICING THE M-39 AUTOMATIC RECORD CHANGER

Due to mishandling or after years of continued use, some readjustment or replacement of parts may become necessary on the Model M-39 four speed record changer, figure 1 . When this need for service occurs, the technician should have the knowledge and ability to correct the defect and return the unit in proper working order, in a minimum of time.

In order for the technician to become familiar with some of the possible service needs of this unit. a summary has been made of the symptoms which will occur, their cause and their remedies. Also included are the major adjustment instructions.

The operation cycle, of the record changer, may be obtained from the November issue of the Service Supervisor.

Figure 1

TROUBLE ANALYSIS

Intermittent sound may be caused by a loose wire or cold solder joint. The most efficient way to remedy this trouble is to check all wires for possible breaks and by touching all solder joints with a hot iron.

A worm or defective stylus, insufficient stylus pressure or a defective cartridge will cause distortions in the sound output. The stylus pressure should be checked as per adjustment instructions. If the pressure is normal, replace the stylus. If output is still distorted, replace the cartridge.

No sound output from the changer may possibly be caused by any of the previously mentioned troubles and also by an incorrectly installed stylus. By disconnecting
the leads from the cartridge lugs, the output may be checked directly at the cartridge. When the output is normal, the trouble is in the wiring and can be located by a continuity check. Where there is no output from the cartridge, the stylus should be checked and that it is riding in the grooves of the record. If these are in proper working order, the cartridge should then be replaced.

In a case where the tone arm slides, that is the needle will engage the record lead-in groove, but will jump grooves either forward or backward while the record is being played, may be caused by an incorrect stylus tip, defective stylus or insufficient stylus pressure. Check stylus pressure first and if condition still exists replace

Figure 2
stylus. This trouble may also cause the change cycle to begin too soon and should be handled by the above procedure.

A defective microswitch, motor. line cord or plug may be cause for the motor not starting. If this trouble is suspected, place the control knob in the " N " position and lift the tone arm from the tone arm rest and place it on the turntable near the spindle. In doing this, the microswitch is closed and will permit a continuity check to be made of the electrical circuit. When the a-c power is supplied separately to the changer, the unit will be wired as in figure 2-A. Illustrated in figure 2-B, is the schematic of the unit when the amplifier and the record changer are wired together, with the microswitch con-
trolling the a-c power to both units. This will be found in the Phonorama III, Model E-1766.

In not all cases must there be an open circuit for the motor not to start. This trouble may also be caused by the microswitch plunger not being released, when the reject knob is depressed. If this trouble is suspected, manually lift the tone arm from its rest and swing it towards the spindle. At this point the motor should start. If not, check-out the circuitry as outlined previously. Assuming the motor does start when the tone arm is swung towards its spindle, the tone arm should then be returned to its rest and the microswitch action, as the reject knob is depressed, should be observed. This should reveal that the microswitch is not being pushed out from under the stop plate and allowing the plunger to be released. To correct this trouble, check the tone arm assembly and then adjust this assembly as per instructions.

When the motor does not shut off, a bent switch bracket, a loose or defective tone arm assembly, a defective switch or a defective torsion spring (on the switch bracket shaft) may be the cause. Leaving the line voltage applied to the changer, place the tone arm on its rest and observe the position of the stop plate over the switch plunger. If the switch plunger is depressed by the stop plate, but the turntable continues to rotate, a check for a defective switch or short circuit should be made. When the switch plunger is not depressed, check for a missing or broken torsion spring. If there is spring tension, the tone arm assembly is the next thing to check. If this is assembled correctly and is tight, but the switch plunger is directly beneath the stop plate and not making contact, bend the switch bracket upward sufficiently so as to permit the stop plate to depress the plunger. Caution should be used in this step, as excessive bending of the switch bracket will prevent the switch plunger
from being disengaged from the stop plate when the tone arm is raised, and thus preventing the motor from starting. For the location of the switch bracket and its related parts refer to figure 3.

Slow or erratic turntable speeds may be caused by a defective motor or idler wheel and also by dirt, grease or oil on the idler wheel or drive shaft. Using alcohol, the idler wheel, drive shaft and turntable rim should be wiped clean, also check the idler wheel for a shiny surface which may cause slippage. A very fine sandpaper may be used to remedy this shiny surface, if not, replace the idler wheel. If the above does not correct the trouble, check the idler wheel's position against the drive shaft. If the wheel is tilted so that only the edge is pressing against the drive shaft, the idler wheel stud may be bent, and should be straightened so that the entire surface of the idler wheel rim is contacting the drive shaft. If slow or erratic speeds are still encountered, replace the motor.

A loose set screw in the speed selector link or binding in the speed change mechanism of the motor assembly may possibly be the cause for the selector-reject knob not to select the proper speeds. Check the speed selector link and set screw, to make certain that it does not slip as the reject control shaft is turned. Binding of a part, or parts, in the speed change mechanism may be located by careful observation when the selector-reject knob is turned, and then the trouble is eliminated by an adjustment or replacement of the part which caused the binding.
Correct spindle pressure is important. With insufficient pressure, the record will drop on the tone arm as the arm moves toward the spindle, during the change cycle, and possibly damage the stylus. To increase this pressure, turn the spindle adjusting nut (refer to figure 3) counterclockwise. Excessive pressure will drop the record on the tone arm as the arm moves away from the spindle during

Figure 3
the change cycle. To decrease this pressure, turn the adjusting nut clockwise.

Improper or erratic indexing will result from a misadjusted or defective semaphore or a loose semaphore link. In correcting this trouble, check the semaphore for nicks or warpage and replace if necessary. If this is not the trouble or doesn't relieve the trouble, check the semaphore adjustment.

If the tone arm sets down on its rest during the change cycle, even when a stack of records is on the spindle, it may possibly be caused by a defective tone arm assembly, dirt, oil or grease in the lockout mechanism or by a defective or missing tension spring, in the lockout mechanism. Check the tension spring and make certain the lockout lever pivots freely about its rivet, if not, clean the mechanism with alcohol. If the lockout lever is operating satisfactorily, check the tone arm assembly to make certain it is assembled properly. Refer to fig. ure 3, for the position of the lockout lever mechanism.

After the last record is played, the Model M-39 should automatically shut off. When the trouble arises where the last record keeps repeating, binding of the over-arm plate at the maximum outward swing of the tone arm may be the cause. Remove all records from the spindle and lift and release the overarm in the play position (across the turntable). If overarm does not set down on the overarm housing, check for a bent shaft or dirt inside the shaft housing. Check the lockout lever to see that is not setting on the pivot bracket lever. Also, check the action of the lockout pawl during the change cycle. If the lockout pawl does not disengage the stop plate during the outward swing of the tone arm, check the tone arm assembly. If it is correct, check the tab of the stop plate. This should be bent sufficiently to permit the lockout pawl to drop down and engage the edge of the stop plate.
A bent overarm or defective spindle causes the dropping of more than one record. If the overarm holds the records in a tilted position (not parallel with main plate) try bending the overarm back to its original position or replace the overarm. If the spindle is found defective, it should be replaced and the new spindle adjusted for the correct pressure.

When the automatic speed mechanism does not change speed from 45 to $331 / 3 \mathrm{rpm}$, a possible cause may be the screw holding the shift link and extension together, is loose. To correct this trouble, set the selector-reject knob at the 45 rpm position. Adjust the shift link and extension to the maximum length and tighten the screw. Depress selector-reject knob and rotate the turntable, by hand, one cycle of operation. Keep decreasing the length of the shift link and extension until the selector-reject knob turns automatically to the $331 / 3 \mathrm{rpm}$ position and the turntable revolves at $33^{1 / 3} \mathbf{~ r p m}$.

ADJUSTMENT INSTRUCTIONS

To check or to correct the adjustment of the velocity trip mechanism proceed in the following manner: Place the tone arm on its rest and remove the turntable. Then move the slide plate lever backwards, away from the stop, as far as possible and rotate the trip bracket until its bottom portion (under main plate) contacts the reject trip lever. In this position, the clearance between the top portion of the trip bracket and the slide plate ear should be $1 / 8$ inch. If this spacing is incorrect, bend the reject trip lever (attached vertically to the end of the switch bracket) until the proper clearance is obtained. After this adjustment, check the movement of the trip bracket to make sure that it does not rub against the main cam or the main plate. Refer to figure 4 for the above parts location.

To adjust the semaphore, loosen the set screw in the semaphore link and permit the link to ride on top of the record size bracket. Hold the semaphore firmly against the overarm housing and rotate the record size bracket so that its stop ear is tightly pressed against the size bracket stop. At this time, lift the semaphore link until it is raised to within $1 / 64$ inch of the underside of the main plate and tighten the set screw securely to the semaphore shaft. Refer to figure 5 for this adjustment.

NOTE: This link must not be tightened against the main plate as this will cause binding and prevent free movement of the semaphore during the change cycle.

When adjusting the tone arm for its set down position, place the selector-reject knob in the " N " position and place a 7 -inch record on the turntable. Depress the reject knob and rotate the turntable manually, thereby starting the change cycle, and observe the needle set down point. If the needle tends to set down outside of the record. turn the adjusting screw (located in the tone arm assembly) in a counter-clock wise motion. This will move the tone arm towards the spindle. A clockwise rotation, will

Figure 4

Figure 5
move the tone arm towards the edge of the record when the set down is in other than the lead-in groove.

The stylus pressure, unless otherwise stated by the cartridge manufacturer, should be between 8 and 11 grams for maximum efficiency. This pressure is adjusted by inserting a thin steel rod or spline key in the mounting stud hole and rotating the stud in an up or down rotation. This stud is located on the lower portion of the tone arm hinge assembly. By rotating the stud upward, the pressure is decreased and a downward rotation for an increase in pressure. When adjusting this pressure, an accurate pressure gauge should be used.

Note: A slight rotation in either direction of the stud has a relatively large effect on the stylus pressure.

The operation of the changer mechanism depends largely upon the correct assembly of the tone arm shaft parts and their adjustment. The improper positioning of these parts will cause troubles which might be misleading and cause the adjusting of other assemblies and serve only to further misadjust the changer.

Of all the parts assembled on the tone arm shaft, figure 6, only the stop plate assembly (A) is securely fastened to the shaft (B), by using a set screw (C). Therefore, any up or down or lateral movement of the stop plate is transferred to the tone arm. All the other parts assembled

Figure 6
on the shaft, rotate freely. The position and height at which the stop plate assembly is fastened to the tone arm shaft is of great importance. Improper positioning of this assembly could result in many of the troubles that have been mentioned previously.

To simplify the correct positioning of the stop plate assembly, a small indentation has been drilled into the tone arm shaft. It is important, that when tightening the set screw, the screw engage with the identation securely.

LUBRICATION

The Model M-39 record changer should be lubricated, under normal conditions, after approximately one year, or 1000 hours of operation. However, under extreme conditions of dust or heat the unit may require lubrication more frequently.

The following parts should be lubricated with one drop each, of a light machine oil:

Motor Bearings	Main Cam Bearings
Overarm Shaft	Turntable Bearing Race

A high temperature, non-fluid grease should be applied to the following parts:

Main Cam Groove "Steps" on Cam \& Pin Assy. Further information and part numbers may be obtained from the Service Manual, PR-3056, which covers this unit.

PHILCO RADIO-CLOCK MODELS 52-543, 52-545, 52-547, AND 52-550

Figure 1. Model 52-550, Base View, Showing Symbolized Chassis

Copyright. 1952, PHILCO CORPORATION
Permission is granted to reorint brief excerpts or reference from this publication if due credit is given.

PRELIMINARY INFORMATION

Models 52-543, 52-545, 52-547, and 52-550 are electrically similar to Model 52-544, but they are housed in different style cabinets, and incorporate certain circuit refinements over Model 52-544.

The following diagrams and the Service Information and Parts List given on page 4 of this Service Manual are for Models 52-543, 52-545, 52-547, and 52-550 only. For Alignment Procedure and the basic Schematic Diagram and Parts List for all models, refer to PR-1950.

Figure 2. Model 52-550, Drive-Cord Installation Details

Figure 3. Model 52-550, Top View, Showing Trimmer Locations

Figure 4. Models 52-543, 52-545,-and TP2.1335 52-547, Output Circuit

Figure 5. Model 52-550, Output Circuit

Figure 6. Model 52-543, Power and Clock Circuits

Figure 7. Models 52-545, 52-547, and 52-550, Power and Clock Circuits

SERVICE INFORMATION

MODELS 52-543, 52-545, 52-547, AND 52-550
Dual condenser, C9 and C10, Part No. 30-1239-4, used for audio coupling (. $007 \mu \mathrm{f}$.) and grid by-pass ($220 \mu \mu \mathrm{f}$.) respectively. Output tube changed from 50 L 6 GT to a 35 L 6 GT .
Isolating condenser, C7, Part No. 61-0113; from 7A8 converter-tube cathode to ground, was changed from a $.2 \mu \mathrm{f}$. condenser to a $.1 \mu \mathrm{f}$. condenser.
MODELS 52-543, 52-545, AND 52-547
Pilot light and bracket are mounted on rear of clock cover.
MODEL 52-543
Clock is nonautomatic; has TIME SET control only.

Appliance receptacle on rear of chassis is connected directly to a-c line. Appliance capacity is 1100 watts. OFF-ON switch is part of VOLUME control, R6.
MODEL 52-547
Loop assembly, LAl, is Part No. 32-4052-64.

MODEL 52-550

Included with this model is Philco Private Listening unit receptacle, J3, Part No. 42-1975-2. A shunt resistor, R16, has been provided from J3 to ground. This shunt resistor reduces volume to level required for Private Listening. R16 is a 3.3 -ohm resistor, Part No. 66-9334540.
Loop assembly, LAl, is Part No. 32-4052-64.
Speaker, p.m., LSl, is Part No. 36-1627-11.

REPLACEMENT PARTS LIST

FOR MODELS 52-543, 52-545, 52-547, AND 52-550

For all parts not listed in this Service Manual, refer to PR-1950.

MISCELLANEOUS

Description
TIMC SET
VOLUME
Models 52-550M and 550L
AUTO SET
AUTO-OFF-ON
DELAYED OFF
TUNING
TIME SET
VOLUME No.

ALIGNMENT PROCEDURE

RADIO CONTROLS-Set volume control to maximum. Set tuning control and band switch as indicated in chart.

OUTPUT METER-Connect across voice-coil terminals.

SIGNAL GENERATOR-Connect generator and set frequency as indicated in chart. Use modulated output. OUTPUT LEVEL-During alignment, adjust signalgenerator output to hold output-meter reading below 1.25 volts.

Figure 2. Top View, Showing Trimmer Locations

ALIGNMENT CHART

STEP	SIGNAL GENERATOR		RADIO			ADJUST
	CONNECTION TO RADIO	DIAL setting	$\begin{aligned} & \text { DIAL } \\ & \text { SETTING } \end{aligned}$	BAND SWITCH SETTING	SPECIAL INSTRUCTIONS	
1	Ground lead to B-; output lead through a $.1-\mu f$. condenser to grid (pin 7) of 12BE6.	455 kc .	Tuning gang fully open	Broadeast	Adjust tuning cores, in order given, for maximum output. (TCl and TC. 3 are located at top of transformers.)	TC4-2nd i-f sec. TC:3-2nd i-f pri. TC2-1st i-f sec. TCl-lst i-f pri.
2	Radiating loop (See note below).	1620 kc .	${ }^{\circ} 1620$ kc.	Broadcast	Adjust trimmer for maximum output.	C1-B-osc.
3	Same as step 2.	1500 kc .	1500 kc .	Broadcast	Adjust trimmer for maximum output.	Cl-A-aerial (broadcast)
4	Same as step 2.	3200 kc .	3200 kc .	Special Services	Adjust trimmer for maximum output.	C21-aerial (special services)

NOTE: Make up a 6-8 turn, 6-inch-diameter loop from insulated wire; connect to signal-generator leads, and place near radio loop.
${ }^{\circ}$ For proper adjustment of the oscillator trimmer, fully open the tuning gang and insert a . 006-inch, nonmetallic shim between the heel of the rotor and the top of the stator plates. Close the tuming gang sufficiently to hold the shim in place, and then remove the shim without disturbing the gang setting.

MODELS 53-702, 53-706, AND 53-707

REPLACEMENT PARTS LIST

NOTE: Part numbers identified by an asterisk (${ }^{\circ}$) are general replacement items. These numbers may not be identical with those on factory parts. Also, the electrical values of some replacement items may differ from the values indicated in the schematic diagram and parts list. The values substituted in any case are so chosen that the operation will be either unchanged or improved. When ordering replacements, use only the "Service Part No."

Reference Symbol	$\begin{array}{ll}\text { Description } & \begin{array}{l}\text { Service } \\ \text { Part No. }\end{array}\end{array}$
CI	Condenser, tuning gang31-2751-14
CIA	Condenser, r-f trimmerPart of Cl
C1B	Condenser, oscillator trimmer Part of C1
C2	Condenser, aerial series tracker, $944 \mu \mu \mathrm{f}$.. ...30-1220-65
C3	Condenser, oscillator grid, $47 \mu \mu \mathrm{f}$.30-1230-4
C4	Condenser, a-v-c by-pass, . $05 \mu \mathrm{f}$.30-4650-45 ${ }^{\circ}$
C5	Condenser, drift compensation, $7.5 \mu \mu \mathrm{f}$. ..30-1224-833
C6	Condenser, sereen by-pass, . $0.5 \mu \mathrm{f}$.30-4650-45 ${ }^{\circ}$
C7	
C8	Condenser, i-f tuningPart of 71
C9	
C10	
C11	Condenser, detector filtering Part of 72
C 12	Condenser, detector filtering Part of 72
C13	Condenser, audio coupling, . $005 \mu \mathrm{f}$.30-1238-1 ${ }^{\circ}$
C14	Condenser, plate by-passPart of PCI
C15	Condenser, audio coupling, $005 \mathrm{\mu f}$.Part of PC1
C16	Condenser, compensatingPart of PCI
C17	Condenser, tone compensation, $.022 \mu$ f. ...
C 18	Condenser, electrolytic, 3 -section30-2573
C18A	
C18B	Condenser, filter, $25 \mu \mathrm{f}$. , 150v.Part of C18
C 1	
C19	Condenser, line by-pass, . $047 \mu \mathrm{f}$.30-4650-45 ${ }^{\circ}$
C20	Condenser, B minus to chassis, .1 μ f. ..30-4650-47 ${ }^{\circ}$
C21	Condenser, trimmer, special services.........31-6473-29
C22	Condenser, a-v-c decoupling, $220 \mu \mu \mathrm{f}$. \qquad 62-122001001 ${ }^{\circ}$
11	Lamp, pilot ..34-2068
J1	
J2	Jack, appliance receptacle, a-c76-3931
L1	Coil, aerial, special services32-4561-3
L2	Coil, oscillator shuntan*) 32-4562-2
LA1	Loop, antennaPart of back-and-loop ass'y
LS1	Speaker, p-m ..36-1627-8
PC1	Coupling network ...30-6001
PL1	Plug, clock assembly64-4878-2
121	Resistor, oscillator grid, 22,00) ohms ...66-3228340 ${ }^{\circ}$
R2	Resistor. i-f screen dropping, 4700 ohms \qquad $66-2478340^{\circ}$
R3	Resistor, a-v-c filter, 2.2 megohms66-5228340 ${ }^{\circ}$
R4	Resistor, volume control, . 5 megohm
	Model 707 ...33-5566-49
R5	Ressistor, diode load, 47,000 ohms66-3478340 ${ }^{\circ}$
R6	Resistor, grid return, 10 megohms66-6108340 ${ }^{\circ}$
R7	Resistor, plate load, 500,000 ohnsPart of PCI
R8	Resistor, grid return, 500,000 ohmsPart of PC1
R9	Resistor, cathode bias, 150 ohms66-1158340 ${ }^{\circ}$
R10	Resistor, B plus filter, 220 ohms, 1 watt... $66-1224340^{\circ}$
R11	Resistor, B plus filter, 1000 ohms...........66-2108340 ${ }^{\circ}$
1812	Resistor, tube saver, 100 ohms33-1343-3
SI	Switch, off-onPart of R4
SW1	Switch, broadcast-special services42-1796-2
T1	
T2	Transformer, output-
W1	
Z1	Transformer, 1st i-f32-4161A
Z2	

Reference Symbol	Description	Service Part No.
MISCELLANEOUS		
	PARTS COMMON TO ALL MODELS	

	MODEL 53-706
Cabinet Mahoginy	

Mahogany
Blond
Knobs
Mahogany
Clock (3)

Tuning and volune ...-44-4557-7

Poin

Shaft, tuning

PHILCO RADIO MODELS 53-950, 53-952, AND 53-954

Figure 1. Drive-Cord Installation Details

ALIGNMENT PROCEDURE

GENERAL

RADIO CONTROLS-Set volume control for maximum output and tuning control as given in the alignment chart. Set band switch to broadcast position for first 5 steps, and to special services position for steps 6 and 7 .
OUTPUT INDICATOR-Connect output indicator (either on oscilloscope or a 1000 -ohms-per-valt, a-c voltmeter) across voice-coil terminals.

SIGNAL GENERATOR-Use an AM r-f generator, connected as indicated in the alignment chart.
OUTPUT LEVEL-During alignment, attenuate signal-generator output to maintain output indication below 1 volt.
DIAL POINTER-Before the alignment is started, the dial pointer should be set to coincide with the dial scale mark to the left of " 55 " when the tuning gang is fully meshed.

ALIGNMENT CHART

	SIGNAL GENERATOR		RADIO		
StEP	CONNECTION TO RADIO	DIAL SETTING	DIAL SETTING	SPECIAL INSTRUCTIONS	ADJust
1	Ground lead to B -. Output lead through a $.01-\mu \mathrm{f}$. condenser to pin 7 (mixer grid) of 12BE6, converter.	455 kc .	Tuning gang fully open.	Adjust, in order given in next column, for maximum output.	TC5-2nd i-f sec. TC4-2nd i-f pri. TC3-1st i-f see. TC2-lst i-f pri.
2	Radiating loop. See Note l below.	1620 kc .	1620 kc . See Note 2 below.	Adjust for maximum output.	ClC-osc. trimmer
3	Same as step 2.	1520 kc	Tune radio to generator signal.	Adjust for maximum output. (Higli-frequency adjustment)	C1B-mixer-grid trimmer C1A-r-f trimmer
4	Same as step 2.	580 kc .	Same as step 3.	Adjust for maximum output. (Low-frequency adjustment)	TC1-r-f transformer
5	Repeat steps 3 and 4 until no further improvement is obtained.				
6	Same as step 2.	3200 kc .	Sume as step 3.	Adjust for maximum output.	C5-special-services mixer-grid trimmer C2-special-services r-f trimmer
7	Same as step 2.	1800 kc .	Same as step 3.	Adjust for maximum output.	C3-special-services r-f padder

NOTE 1: Make up a 6-8 turn, 6-inch-diameter loop from insulated wire; connect to signal-generator leads and place near radio loop antenna. The loop antenna must be connected to the radio.

NOTE 2: To set the tuning gang to 1620 kc ., place a piece of $6-\mathrm{mil}$ flat shim stock beneath the heel of the rotor, and turn the rotor until it holds the shim firmly in place. Then remove the shim.

Figure 2. Top View, Showing Tuning Adjustments

TP2-2653
Figure 3. Base View, Model 53-950, Showing Parts Placement

Figure 4. Base View, Models 53-952 and 53-954, Showing Parts Placement

REPLACEMENT PARTS LIST

NOTE: Part numbers identified by an asterisk $\left({ }^{\circ}\right)$ are general replacement items. These numbers may not be identical with those on factory parts. Also, the electrical values of some replacement items may differ from the values indicated in the schematic diagram and parts list. The values substituted in any case are so chosen that the operation will be either unchanged or improved. When ordering replacements, use only the "Service Part No."

Reference	Description	Service Symbol

C1	
C1A	Condenser, trimmer, antennaPart of Cl
CIB	Condenser, trimmer, r-fPart of Cl
C	Condenser, trimmer, oscillatorPart of CI
C2	Condenser, trimmer, special services r-f \qquad Part of CA1
C3	Condenser, padder, special services r-f \qquad Part of CAI
C4	Condenser, r-f by-pass, $.05 \mu$ f. ...30-4650-45 ${ }^{\circ}$
C5	Condenser, trimmer, special services mixer-grid …...............Part of CA1
C6	Condenser, $\mathrm{a}-\mathrm{v}-\mathrm{c}$ by-pass,
C7	Condenser, fixed trimmer, $7.5 \mu \mu \mathrm{f}$. .-ה.
C8	Condenser, d-c blocking, $47 \mu \mu \mathrm{f}$. \qquad 60-00475420
C9	Condenser, screen by-pass, $.05 \mu \mathrm{f} . \quad,-\cdots$
C10	Condenser, special, B- to chassis, $2 \mu \mathrm{f}$.30-4644
CII	Condenser, i-f coupling, $220 \mu \mu \mathrm{f}$.. . . .
C12	Condenser, screen by-pass, $.002 \mu \mathrm{f} . . .)_{-}$

Reference Symbol	Description	Service Part No.

C13 Condenser, audio coupling $.005 \mu \mathrm{f}$. 30-1238-1 ${ }^{\circ}$
C14 Condenser, d-c blocking, $.005 \mu \mathrm{f}$.
.Part of PCl
C15 Condenser, tone compensation, $.022 \mu \mathrm{f}$.30-4650-43
C16 Condenser, electrolytic filter30-2575-27
C16A Condenser, filter, 30μ f., 150 vPart of C16
C16B Condenser, filter, $30 \mu \mathrm{f}$., 150 vPart of C16
C16C Condenser, filter, 40μ f., 150 vPart of C16
Condenser, line by-pass, $.047 \mu \mathrm{f}$.
.30-4650-45 ${ }^{\circ}$
C18 Condenser, fixed padder, $865 \mu \mathrm{f}$.

30-1220-68
CA1 Condenser assembly, trimmer31-6477-17
11
L1 Coil, special services r-f.......................32-4561-4
L2 Coil, special -services mixer-grid ...32-4561-4
L3 Coil, oscillator shunt32-4562-1
PCI Printed circuit60-601
R1 Resistor, screen dropping, 10,000 ohms

66-3108340 ${ }^{\circ}$
R2 Resistor, a-v-c load,
4.7 megohms
..66-5478340 ${ }^{\circ}$
R3 Resistor, a-v-c load, 2.2 megohms \qquad $66-5228340^{\circ}$
R4 Resistor, B - to chassis, 150,000 ohms $66-4158340^{\circ}$

REPLACEMENT PARTS LIST (Continued)

Reference Symbol	Description $\begin{gathered}\text { Service } \\ \text { Part No. }\end{gathered}$
R5	Resistor, grid leak, 22,000 ohms \qquad 66-3228340*
R6	Resistor, grid leak, 2.2 megohms \qquad $.66-5228340^{*}$
R7	Resistor, a-v-c load, 2.2 megohms \qquad $.66-5228340^{*}$
R8	Resistor, cathode bias, 180 ohms \qquad 66-1188340*
R9	Resistor, screen dropping, 2200 ohms ...66-2228340*
R10	Resistor, i-f filter, 47,000 ohms ...66-3478340*
R11	Volume control, 500,000 ohms Models 53-950, 53-95433-5566-43 Model 53-952 .33-5566-46
R12	Resistor, grid leak, 10 megohms \qquad 66-6108340*
R13	Resistor, plate load, 500,000 ohms .. ${ }^{\text {Part }}$ of
R14	Resistor, grid leak, 500,000 ohms \qquad Part of PC1
R15	Resistor, cathode bias, 150 ohms, 1 watt \qquad $66-1154340^{*}$
R16	Resistor, B+ filter, 1200 ohms ...66-2128340*
R17	Resistor, B+ filter, 220 ohms, 1 watt \qquad
R18	Resistor, tube saver, $100 \mathrm{ohms} . . .33-1343-3$
S1	Switch, off-onPart of R11
S2	Switch, broadcast-special services Model 53-950 Model 53-9..-42-1893-3 Model 53-954
T1	Transformer, oscillator32-4453-2
T2	Transformer, output32-8310-3
W1	Line cord ..-2183 ${ }^{\circ}$
Z1	Transformer, r-f-43-439-7A
Z2	Transformer, 1st i-f32-4160A
Z3	Transformer, 2nd i-f32-4240A

MISCELLANEOUS

PARTS COMMON TO ALL MODELS

Description	Service Part No.

PHILCO RADIO MODEL 53－956

SPECIFICATIONS

Figure 1．Drive－Cord Insitlation Details

AM ALIGNMENT PROCEDURE

Make aligmment with loop aerial connected to radio. The AM alignment should be completed before the FM alignment is made.
IDIAL POINTER-With tuning-condenser plates fully meshed, adjust pointer to coincide with index mark at low-frequency end of dial backplate.
RADIO CONTROLS-Set volume control to maximum, set band switch for broadcast reception, and set tuning control as indicated in chart.

OUTPUT METER-Connect across voice-coil terminals.
SIGNAL GENERATOR-Use AM r-f signal generator, with modulated output. Connect generator and set frequency as indicated in chart.

OUTPUT LEVEL-During alignment, signal-generator output must be attenuated to hold output-meter reading below 1.25 volts.

AM ALIGNMENT CHART

STEP	SIGNAL GENERATOR		RADIO		AdJUST
	CONNECTION TO RADIO	$\begin{aligned} & \text { DIAL } \\ & \text { SETTING } \end{aligned}$	$\begin{aligned} & \text { DIAL } \\ & \text { SETTING } \end{aligned}$	SPECIAL INSTRUCTIONS	
1	Ground lead to chassis. Output lead through a $1-\mu \mathrm{f}$. condenser to junction of LA1 and L8.	455 kc .	Gang fully open.	Adjust for maximum output, in order given.	TC1()-2nd AM i-f sec. TC9-2nd AM i-f pri. TC4-1st AM i-f sec. TC.3-1st AM i-f pri.
2	Radiating loop (see note below).	1620 kc .	$\begin{aligned} & 1620 \mathrm{kc} \text {. } \\ & \text { (2nd index mark } \\ & \text { from right). } \end{aligned}$	Adjust for maximum output.	C1C-osc. trimmer.
3	Same as step 2.	1500 kc .	1500 kc .	Adjust for maximum output.	C1A-acrial trimmer.

RADIATING LOOP: Make up a six-to-eight turn, 6-inch-diameter loop from insulated wire; connect to generator terminals, and place near radio loop acrial. Radio loop aerial must be connected.

FM ALIGNMENT PROCEDURE

Make AM alignment first

RADIO CONTROLS-Set volume control to maximum, set band switch for FM reception, and set tuning control as indicated in chart.

OSCILLOSCOPE-Connect ground lead to chassis. Connect vertical input to FMI TEST jack, J2; connect horizontal input to horizontal sweep output of sweep generator. (Oscilloscope is used for steps 1 and 2.)

SWEEP GENERATOR-Use FM r-f sweep signal generator. Connect output lead as given in chart. Set frequency and sweep width as indicated in chart.

OUTPUT METER-Connect across voice-coil terminals.
NOTE: Before starting FM alignment, allow radio and signal generator to warm up for 15 minutes.

Figure 2. Characteristic Curve of FM Detector

FM ALIGNMENT CHART

STEP	SIGNAL GENERATOR			RADIO	
	CONNECTION TO RADIO	DIAL SETTING	DIAL SETTING	SPECIAL INSTRUCTIONS	

REPLACEMENT PARTS LIST (Cont.)

Reference Symbol	Description Port No.
R25	Resistor, cathode bias, 150 ohms66-1158340 ${ }^{\circ}$
R26	Resistor, filter, 470 ohms, 1 watt.........66-1474340 ${ }^{\circ}$
[27	Resistor, filter, 150 ohms, 2 watts66-1155360 ${ }^{\circ}$
'28	Resistor, current limiting, 22 ohms, 2 watts \qquad $.66-0225360^{\circ}$
9	Resistor, current limiting, 100 ohms.....33-1343-3
10	Resistor, grid return, 2.2 megohms......66-5228340 ${ }^{\circ}$
	Switch, off-on ...Part of R21
	Transformer, AM oscillator32-4569-1
	Transformer, outputPart of LS1
	Line cord ..41-3865-3
	Cable, FM aerial, $72-\mathrm{ohm}$ twin lead..........41-3987
	Switch, band, 2-wafer42-1924-1
	Transformer, FM, 1st i-f32-4518A
	Transformer, AM, 1st i-f32-4516A
	Transformer, FM, 2nd i-f32-4518-1A
	Transformer, FM, detector32-4310-4A
	Transformer, AM, 2nd i-f32-4517A

MISCELLANEOUS

Description | Service |
| :---: |
| Port No. |

MISCELLANEOUS (Cont.)

Description	Service Part No.
Fastener, back mtg. (4)	...W-2235-FA9
Dial scale54-4987
Knob, FM-AM	54-4774-28
Knob, tuning	.54-4774-26
Knob, volume-off-on54-4774-27
Clip, pilot lamp	.56-3545-FA3
Drive cord, 25 -foot spool45-8750 ${ }^{\circ}$
Pointer	56-9906
Shaft, drive	56-7931FA11
Spring, gang drive	..56-2617
Spring, pointer drive	56-3167
Rubber mount, speaker (2)	.54-4651-1
Socket, 12BA6 (i-f ampl.)	.27-6265
Socket, 12AU6 (i-f ampl.)	27-6265
Socket, 12AU6 (r-f ampl.)	27-6275-1
Socket, 12AT7	27-6203-6
Socket, $19 \mathrm{V8}$	27-6203-6
Socket, 35C5	27-6203-12
Shield, tube (2)	56-5629-3
Shield, tube base (1)	.56-3978-1FA3
Shield, tube base (2)56-5628-1FA3
Socket, assembly, pilot lamp	27-6233-21
Spring, hairpin 28 -8610

Figure 5. Base View, Showing Parts Placement

Figure 3. Top View, Showing Trimmer Locations

FM ALIGNMENT CHART (Cont.)

STEP	SIGNAL GENERATOR		radio		ADJUST
	CONNECTION TO RADIO	$\begin{aligned} & \text { DIAL } \\ & \text { SETIING } \end{aligned}$	$\begin{aligned} & \text { DIAL } \\ & \text { SETTING } \end{aligned}$	SPECIAL INSTRUCTIONS	
2	Ground lead to chassis. Output lead through a $.01-\mu \mathrm{f}$. condenser to FM tuning gang stator lug, junction of C1 and pin 4 of L2.	Same as step 1.	Same as step 1.	Adjust for maximum indication on scope, as shown in figure 2.	$\begin{array}{\|l} \hline \text { TC6-FM 2nd i-f } \\ \text { sec. } \\ \text { TC5-FM 2nd i-f } \\ \text { pri. } \\ \text { TC2-FM lst i-f } \\ \text { sec. } \\ \text { TC1-FM lst i-f } \\ \text { pri. } \end{array}$
3	Ground lead to lug 3 of TB1. Output lead to lug 2 of TB1. See note 1 below.	108.5 mc .	108.5 mc . (lst index mark from right).	Adjust for maximum indication on output meter.	C18-FM osc.
4	Same as step 3.	88 mc .	88 mc . (lst index mark from left).	Adiust for maximum indication on output meter. See note 2 below.	L5-FM osc.
5	Same as step 3.	105 mc .	105 mc . (3rd index mark from right).	Adjust for maximum indication on output meter while rocking tuning condenser.	C1B-FM r-f.
6	Same as step 3.	105 mc .	105 mc .	Adjust for maximum indication on output meter.	C4-FM aerial.
7	Same as step 3.	92 mc .	92 mc . (3rd index mark from left).	Adjust for maximum indication on output meter. See note 3 below.	L2-FM r-f coil.
If FM aerial coil, L1, is replaced, it should be adjusted as directed in step 8, below.					
8	Same as step 3.	92 mc .	92 mc .	Adjust for maximum indication on output meter.	TC11-FM aerial.

NOTE 1: For accurate results, the signal-generator output impedance must be 300 ohms , to match the input impedance of TB1. If the generator impedance is less than 300 ohms, a resistor of the proper value may be used in series with the output lead to make the impedance correct. For example, if the output impedance is 150 ohms, place a 150 -ohm resistor in series with the output lead.
NOTE 2: If oscillator does not tune as low as 88 mc ., compress the turns on the oscillator coil. If uscillator tunes too low, spread the turns slightly. After coil is adjusted, repeat step 3.
NOTE 3: Check resonance of coil L2 by inserting end of a tuning wand, such as Philco Part No. 56-6100, in the coil. If output increases when iron end is placed in coil, compress turns slightly. If output increases when brass end is placed in coil, spread the turns. If output decreases when either end is placed in coil, no adjustment is necessary. After the coil is adjusted, readjust trimmer C1B and repeat steps 3 through 8 until no further improvement is obtained.

REPLACEMENT PARTS LIST

NOTE: Part numbers identified by an asterisk $\left({ }^{\circ}\right)$ are general replacement items. These numbers may not be identical with those on factory parts; also, the electrical values of some replacement items may differ from the values indicated in the schematic diagram and parts list. The values substituted in any case are so chosen that the operation of the radio will be either unchanged or improved. When ordering replacements, use only the "Service Part No."

Reference		Service	Reference	Part No.

PHILCO

PHILCO RADIO－CLOCK MODEL 53－804

SPECIFICATIONS

CABINET ．Molded plastic
CIRCUIT ．．．．Five－tube superheterodyne（plus rectifier） FREQUENCY RANGE

Broadcast
Special Services AUDIO OUTPUT OPERATING VOLTAGE POWER CONSUMPTION ANTENNA INTERMEDIATE FREQUENCY

540 kc ，to 1620 kc 1700 kc．to 3400 kc ． 1 watt 105－120 volts，a．c． 30 watts PHILCO TUBES ．．．．．6BJ6 r－f ampl．；12BE6 converter； 6BJ6 i－f ampl．；6AQ5 detector，a．v．c．， 1 st audio；35C5 output； 35 W 4 rectifier

MODEL 53－804

Figure 1．Drive－Cord Installation Details
Copyright，1952，PHILCO CORPORATION

ALIGNMENT PROCEDURE

GENERAL

RADIO CONTROLS-Set volume control for maximum output and tuning control as given in the alignment chart. Set band switch to broadcast position for first 5 steps, and to special services position for steps 6 and 7.
OUTPUT INDICATOR-Connect output indicator (either on oscilloscope or a 1000 (-ohms-per-volt, a-c voltmeter) across voice-coil terminals.

SIGNAL GENERATOR-Use an AM r-f generator, connected as indicated in the alignment chart.
OUTPUT LEVEL-During alignment, attenuate signal-generator output to maintain output indication below 1 volt.
DIAL POINTER-Before the alignment is started, the dial pointer should be set to coincide with the dial scale mark to the left of " 55 " when the tuning gang is fully meshed.

ALIGNMENT CHART

	SIGNAL GENERATOR		RADIO		
STEP	CONNECTION TO RADIO	dIAL setting	$\begin{aligned} & \text { DIAL } \\ & \text { SETTING } \end{aligned}$	SPECIAL INSTRUCTIONS	ADJUSt
1	Ground lead to B -. Output lead through a . $01-\mu$ f. condenser to pin 7 (mixer grid) of 12BE6, converter.	455 kc .	Tuning gang fully open.	Adjust, in order given in next column, for maximum output.	TC5-2na i-f sec. TC4-2nd i-f pri. TC3-lst i-f see. TC2-1st i-f pri.
2	Radiating loop. See Note l below.	1620 kc .	1620 kc . See Note 2 below.	Adjust for maximum output.	ClC-osc. trimmer
3	Same as step 2.	1520 kc .	Tune radio to generator signal.	Adjust for maximum output. (High-frequency idjustment)	C1B-mixer-grid trimmer ClA-r-f trimmer
4	Same as step 2.	580 kc .	Same as step 3.	Adjust for maximmon output. (Low-frequency adjustment)	TCl-r-f transformer
5	Repeat steps 3 and 4 until no further improvement is obtained.				
6	Same as step 2.	3200 kc .	Same as step 3.	Adjust for maximum output.	C.5-special-services mixer-grid trimmer C2-special-services r-f trimmer
7	Same as step 2.	1800 kc .	Same as step 3.	Adjust for maximum output.	C3-special-services r-f padder

NOTE 1: Make up a 6-8 turn, 6-inch-diameter loop from insulated wire; connect to signal-generator leads and place near radio loop antenna. The loop antema must be connected to the radio.

NOTE 2: To set the tuning gang to 1620 kc ., place a piece of 6 -mil flat shim stock beneath the heel of the rotor, and turn the rotor until it holds the shim firmly in place. Then remove the shim.

Figure 4. Philco Radio Model 53-804, Schematic Diagram

Figure 2. Top View, Showing Tuning Adjustments

Figure 3. Base View, Showing Parts Placement

REPLACEMENT PARTS LIST

NOTE: Part numbers identified by an asterisk $\left({ }^{\circ}\right)$ are general replacement items. These numbers may not be identical with those on factory parts. Also, the electrical values of some replacement items may differ from the values indicated in the schematic diagram and parts list. The values substituted in any case are so chosen that the operation will be either unchanged or improved
When ordering replacements, use only the "Service Part No."

Reference Symbol	Description $\begin{aligned} & \text { Service } \\ & \text { Part No. }\end{aligned}$	Reference Symbol	Description $\begin{gathered}\text { Service } \\ \text { Part No. }\end{gathered}$
C1	ection	R11	51
C1A	Condenser, trimmer, antenna ... \quad - Part of $^{\text {Cl }}$	R12	Resistor, grid leak, 10 megohms $66-6108340^{\circ}$
Clb	Condenser, trimmer, r-f ...	Ri3	Resistor, plate load, 500,000 ohms Part of PC1
CIC		R14	Resistor, grid leak, 500,000 ohms Part of PC1
C2	Condenser, trimmer, special services r-f \qquad Part of CA1	R15	Resistor, cathode bias, 150 ohms, 1 watt \qquad 66-1154340 ${ }^{\circ}$
C3	Condenser, padder, special services r-f...Part of CA1	R16	Resistor, B+ filter, 1200 ohms ... \quad 66-2128340 ${ }^{\circ}$
C4	Condenser, r-f by-pass, $05 \mu \mathrm{f}$. . \quad - ${ }^{\text {a }}$-4650-45 ${ }^{\circ}$	R17	Resistor, B+ filter, 220 ohms, 1 watt $. .66-1224340^{\circ}$
C5	Condenser, trimmer, special services mixer-grid Part of CA1	$\underset{\mathrm{S} 18}{\substack{\text { n }}}$	Resistor, tube saver, 100 ohms ……............33-1343-3 Switch, band, broadcast-special services 42-1893-3
C6	Condenser, a-v-c by-pass, . $05 \mu \mathrm{f}$.	T1	
C7		T2	
C8	Condenser, d-c blocking, $47 \mu \mu \mathrm{f}$. $\mathrm{I}^{\text {a }}$. $60-00475420$	w1	Line cord - .xax
C9	Condenser, screen by-pass, . $05 \mu \mathrm{f}, \ldots \ldots \ldots 30-4650-45^{\circ}$	z1	
C	Condenser, special, B-to chassis, . $2 \mu \mathrm{f}$. \ldots 30-4644	z2	Transformer, 1st i-f $\times \square \times$ - ${ }^{\text {a }}$ 32-4160
C11	Condenser, i-f coupling, $220 \mu \mu \mathrm{f}$. ...6-62-122001001 ${ }^{\circ}$	z3	Transforner, 2nd i-f -(-x
C12	Condenser, screen by-pass, $002 \mu \mathrm{f}$. \quad - $30-1238-8^{\circ}$		
C13	Condenser, audio coupling, . $005 \mu \mathrm{f}$. $\mathrm{H}^{\text {a }}$ 30-1238-1 ${ }^{\circ}$		
C14			MISCELLANEOUS
C15	Condenser, tone compensation, $.022 \mu \mathrm{f}$, .	Description	
C16	Condenser, electrolytic filter		
C16A			
C 1	Condenser, filter, $30 \mu \mathrm{f}$., 150v . . Part of C16	Bezel, radio	io . 3 त
C16C		Ring, be	ezel ...7.
C17	Condenser, line by-pass, $047 \mu \mathrm{f}$. ... ${ }^{\text {a }}$ 30-4650-45 ${ }^{\circ}$	Cabinet	
C18	Condenser, fixed padder, $865 \mu \mu \mathrm{f}$. \quad - \quad 30-1220-68	Back and	
11	Condenser assembly, trimmer	Cable asse	embly, clock $\square \times \square \times \square \times$ - 41-3909-4
11		Clamp, ele	ectrolytic condenser $\times \square \times \square \times$ - \triangle 56-1466
J1	Connector, clock cable, female	Clock	41-2044-1
J2		Cover an	nd bracket assembly, clock ...]
L1	Coil, special services r-f	Dial scale	and backplate assembly
L2	Coil, special services mixer-grid32-4561-4	Drive cord	d, $25-\mathrm{ft}$. spool .-x>
L3	Coil, oscillator shunt $\times \square \times$ 32-4562-1	Spring,	drive-cord
PC1	Printed circuit \times - ${ }^{\text {a }}$	Gasket, spe	ceaker .-.73
PL	Connector, clock cable, malePart of clock cable	Grille	54-6023
R1	Resistor, screen dropping, 10,000 ohms $66-3108340^{\circ}$	Knob (2) Knob, band	
R2	Resistor, a-v-c load, 4.7 megohms66-5478340 ${ }^{\circ}$	Pointer	.7-4891-2
R3	Resistor, a-v-c load, 2.2 megohms66-5228340 ${ }^{\circ}$	Rubber mo	
R4	Resistor, B - to chassis, 150,000 ohms ...66-4158340 ${ }^{\circ}$	Shaft, tuni	
R5	Resistor, grid leak, 22,000 olms ... \quad. $66-3228340{ }^{\circ}$	Spring,	
R6	Resistor, grid leak, 2.2 megohms .-...66-5228340 ${ }^{\circ}$	Shield, tub	
R7	Resistor, a-v-c load, 2.2 megohns66-5228340 ${ }^{\circ}$	Socket ass	
R8	Resistor, cathode bias, 180 ohms66-1188340 ${ }^{\circ}$	Socket, tub	
R9	Resistor, screen dropping 2200 olms66-2228340 ${ }^{\circ}$	Socket, tub	
R10	Resistor, i-f filter, 47,000 ohms	Speak	36-1627-21

PHILCO TELEVISION SERVICE MANUAL
FOR
AM RADIO TUNER RT-8
USED IN 1953 PHILCO TELEVISION RECEIVERS

TUBE COMPLEMENT

NUMBER OF TUBES	TUBE TYPE	FUNCTION
1	6BA6, miniature	R-F amplifier
1	7A8	Converter
1	6AU6, miniature	I-F amplifier
1	6AV6, miniature	Detector, phono preamplifier

RADIO ALIGNMENT

GENERAL

Remove the receiver from the cabinet by removing the securing bolts. It is not necessary to remove the cables from the chassis in order to remove the chassis from the cabinet. Before starting the alignment, allow the receiver to warm up for fifteen minutes.

TEST EQUIPMENT REQUIRED

The following equipment is recommended for aligning the radio:

1. Philco Signal Generator Model 7170, or equivalent.
2. Output indicator (either a 20,000 -ohms-per-volt voltmeter or an oscilloscope).

RADIO ALIGNMENT PROCEDURE

Follow the procedure in the alignment chart, and also observe the following instructions:

1. Set the function switch to the AM position.
2. Set the volume control for maximum output.
3. During the alignment, adjust the signal generator to keep the output indication below 1 volt peak-to-peak.

ALIGNMENT CHART

STEP	SIGNAL-GENERATOR CONNECTION	OUTPUT-INDICATOR CONNECTION	SIGNAL-GENERATOR SETTING	RADIO-DIAL SETTING	ADJUSTMENT INSTRUCTIONS
1	Connect signal generator through a $.1-\mu \mathrm{f}$. condenser to pin 6 of 7 A8.	Connect vertical input of oscilloscope (or meter leads) to voice-coil terminals of speaker.	Set signal generator (modulated) to 455 kc .	Condenser fully meshed (540 kc .).	Adjust TC904, TC905, TC903, and TC902 for maximum output indication.
2	Same as step 1.	Same as step 1.	Set signal generator (modulated) to 1630 kc .	Set radio dial to 1630 kc. (See NOTE 3.)	Adjust C903 for maximum output indication.
3	See NOTE 1.	Same as step 1.	Same as step 2.	Same as step 2.	Adjust C901 and C902 for maximum output indication.
4	Same as step 3.	Same as step 1.	Set signal generator (modulated) to 580 kc .	Tune radio to 580 kc .	Adjust TC900 and TC901 for maximum output indication.
5	Repeat steps 3 and 4 until no further improvement is observed.				

NOTE 1: The adjustments given should be made with the loop aerial connected to the receiver. The signal generator should be coupled to the receiver by means of a radiating loop. This radiating loop should be made up of 6 to 8 turns of insulated wire formed into a 6 -inch-diameter loop. Connect the signal generator to the radiating loop, and place the radiating loop near the loop aerial of the receiver.

NOTE 2: If it should ever become necessary to replace the antenna transformer, T900, step 4 should be performed.
NOTE 3: The radio dial can be set to 1630 kc . by opening the condenser gang until the rotor rests against a piece of 6 -inch flat shim stock temporarily placed between the stationary and movable sections of the tuning gang. Remove the shim.

Figure 1. AM Radio Tuner RT-8, Bottom View, Showing Location of Tuning Adjustments

P2-2043

Figure 2. AM Radio Tuner RT-8, Base Layout

replacement parts list

IMPORTANT

General replacement items commonly stocked by the servicemen are omitted from this parts list. These include Philco molded-bakelite condensers with a rating of 600 volts or less, and $1 / 2$-watt resistors with a 10% or 20% tolerance rating. All parts (whether included in this parts list or not) are symbolized in the schematic diagram and base layouts, for identification purposes.

REFERENCE SYMBOL	description	service PART NO.	REFERENCE SYMBOL	description	SERVICE PART NO.
C900	Condenser, tuning gang, 3-section	.31-2766-1	J902	Connector, phono power, female,	
C900A	Condenser, tuning, antenna	Part of C900		chassis type.	27-6273
C900B	Condenser, tuning, r-f grid.	Part of C900	L900	Coil, antenna primary	Part of 9900
C900C	Condenser, tuning, oscillator	Part of C900	L901	Coil, antenna secondary	Part of 9900
C901	Condenser, trimmer, antenna	Part of C900A	L902	Coil, r.f primary	Part of T901
C902	Condenser, trimmer, r-f.	Part of C900B	L903	Coil, r.f secondary	Part of 7901
C903	Condenser, trimmer, oscillator	Part of C900C	L904	Coil, oscillator secondary	Part of 7902
C904	Condenser, screen by-pass, . $005 \mu \mathrm{f}$.	30-1238-1	L905	Coil, oscillator primary	.Part of 9902
C905	Condenser, fixed trimmer, $22 \mu \mu \mathrm{~m}$.	.62-022009001	1906	Coil, 1st i.f primary	Part of 2900
C907	Condenser, fixed trimmer, $7.5 \mu \mu \mathrm{~m}$.	.30-1224-65	L907	Coil, 1st i.f secondary	Part of 7900
C908	Condenser, oscillator grid, $47 \mu \mu \mathrm{~m}$.	60-00475420	1908	Coil, 2nd i-f primary	Part of 2901
C909	Condenser, screen by-pass, . $005 \mu \mathrm{~L}$.	.30-1238-1	1909	Coil, 2nd i.f secondary	Part of 2901
C910	Condenser, fixed trimmer, list i.f.	Part of 2900	PL102	Connector, interchassis.	See Misc.
C911	Condenser, fixed trimmer, lst i-f	Part of 2900	PL401	Connector, volume control.	See Misc.
C912	Condenser, fixed trimmer, 2nd i-f	Part of 7901	R915	Resistor, B+ dropping, 5000 ohms,	
C913	Condenser, fixed trimmer, 2nd i.f	Part of 7901			.33-1335-118
C914	Condenser, i-f by-pass.	Part of 7901	R916	Resistor, filament dropping, 4 oh	46 inches of
C915	Condenser, i-f by-pass	Part of Z 901			No. 26 copper
C916	Condenser, plate by-pass, . $005 \mu \mathrm{~s}$.	30-1238-1	T900	Translormer, antenna	32-4519
C921	Condenser, d-c blocking, $005 \mu \mathrm{f}$.	30-1238-1	T901	Transtormer, r-f.	32-4572-1
1900	Lamp, pilot.	34-2064	T902	Translormer, oscillator	32-4453-4
J401	Connector, volume control, female, chassis type	27-6273	2900	Transtormer, 1st i-f...	.32-4537A
1900	Connector, antenna, male, chassis type	54-4878-8	2901	Transformer, 2nd i-f.	32-4517-1 A
1901	Connector, phono input, female, chassis type	27-6273			

miscellaneous

DESCRIPTION	SERVICE PART NO.
Band, rubber.	54-4064
Cable-and-plug ass'y., audio	41-3974-11
Cable-and-plug ass' y., power.	.41-4146-7
Lever ass' y ., switch operating	.76-8049
Lever, switch.	.56-9999
Mount, rubber	27-4596
Shaft, tuning	.56-10004
Socket, tube, Loktal	.27-6207
Socket, tube, 7-pin miniature	.27-6265
Spring, drive-cord	.56-2617
Switch, wave (WS900)	42-1992
Ring, retaining, "E"	.1W60980FE5

TP2-2045
Figure 4. AM Radio Tuner RT-8, Drive-Cord Installation Details

television

SERVICE BULLETIN 52-T3
 SERVICING PHILCO TELEVISION RECEIVERS

table of contents

SERVICE REFERENCE CHART FOR 1953 PHILCO TELEVISION RECEIVERS 2
CABINET PARTS LIST FOR 1953 PHILCO TELEVISION RECEIVERS 3
PRODUCTION CHANGES IN 1952 AND 1953 TELEVISION RECEIVER CHASSIS 8
41 R-F CHASSIS 8
42 R-F CHASSIS 8
44 R-F CHASSIS 8
71 R-F CHASSIS 9
D-1 AND D-1A DEFLECTION CHASSIS 10
G-1 DEFLECTION CHASSIS 10
G-2 DEFLECTION CHASSIS 11
G-4 DEFLECTION CHASSIS 11
J-I DEFLECTION CHASSIS 11
REVISIONS TO PHILCO TELEVISION RECEIVER SERVICE MANUALS 11

SERVICE REFERENCE CHART FOR 1953 PHILCO TELEVISION RECEIVERS

MODEL NO.	$\begin{aligned} & \text { CODE } \\ & \text { NO. } \end{aligned}$	$\begin{gathered} \text { R-F } \\ \text { CHASSIS } \\ \text { TYPE } \end{gathered}$	deflection CHASSIS tYPE	TV TUNER PART NO.	RADIO TUNER TYPE	RECORDChanger MODEL	Picture. tube TYPE	SERVICE manual
53-T1824	123	81	H-1	76-7664	-	-	17YP4	PR-2374
53-T1825	123	81	H-1	76-7664	-	-	17YP4	PR-2374
53-T1826	123	81	H-1	76-7664	-	-	17YP4	PR-2374
53-T 1852	123	81	H-1	76-7664	-	-	17YP4	PR-2374
53-T1852-L	123	81	H-1	76-7664	-	-	17YP4	PR-2374
53-T1852-L	124	71	G-1	76-7427	-	-	17YP4	PR-2105
53-T1854	123	81	H-1	76-7664	-	-	17YP4	PR-2374
53-T 1883	123	84	H-4	76-7664	-	M-24	$17 \mathrm{YP4}$	PR-2402
53-T 1884	123	84	H-4	76-7664	RT-9	M-24	17YP4	PR-2402
53-T1886	123	84	H-4	76-7664	RT-9	M-24	17YP4	PR-2402
53-T2 125	123	81	H-1	76-7664	-	-	20DP4A	PR-2374
53-T2125	124	71	G-1	76-7427	-	-	20DP4A	PR-2 105
53-T2 125-L	123	81	H-1	76-7664	-	-	20DP4A	PR-2374
53-T2125-L	124	71	G-1	76-7427	-	-	20DP4A	PR-2 105
53-T2152	123	81	H-1	76-7664	-	-	20DP4A	PR-2374
53-T2152-L	123	81	H-1	76-7664	-	-	20DP4A	PR-2374
53-T2152-L	124	71	G-1	76-7427	-	-	20DP4A	PR-2105
53-T2183	123	84	H-4	76-7664	RT-9	M-24	20DP4A	PR-2402
53-T2227	123	81	H-1	76-7664	-	-	21EP4A	PR-2374
53-T2228	126	91	J-1	76-7600	-	-	21EP4A	PR-2200
53-T2260	123	81	H-1	76-7664	-	-	21EP4A	PR-2374
53-T2264	123	81	H-1	76-7664	-	-	21EP4A	PR-2374
53-T2266-L	126	91	J-1	76-7600	-	-	21EP4A	PR-2200
53-T2272	123	81	H-1	76-7664	-	-	21EP4A	PR-2374
53-T2272-L	123	81	H-1	76-7664	-	-	21EP4A	PR-2374
53-T2285	126	94	J-4	76-7600	RT-8	M-24	21EP4A	PR-2395
53-T2285-L	126	94	J-4	76-7600	RT-8	M-24	21EP4A	PR-2395
53-T2286	126	94	J. 4	76-7600	RT-8	M-24	21EP4A	PR-2395
53-T2287	126	94	J-4	76-7600	RT-11	M-24	21EP4A	PR-2395

CABINET PARTS LIST FOR 1953 PHILCO TELEVISION RECEIVERS

CABINET PARTS LIST FOR 1953 PHILCO TELEVISION RECEIVERS (Cont.)

DESCRIPTION	53-71883 Code 123	53-T1884 Code 123	$\begin{aligned} & 53-\mathrm{T} 1886 \\ & \text { Code } 123 \end{aligned}$	$\begin{aligned} & 53-\mathrm{T} 2125 \\ & \text { Code } 123 \end{aligned}$	$\begin{aligned} & 53-\mathrm{T} 2125 \\ & \text { Code } 124 \end{aligned}$	$\begin{aligned} & \text { 53-T2125-L } \\ & \text { Code } 123 \end{aligned}$	$\begin{aligned} & \text { 53-T2125-L } \\ & \text { Code } 124 \end{aligned}$
Built-in Aorial Parts:							
Coil	32-4560	32-4560	32-4560	32-4560	32-4560	32-4360	32-4560
Foil.	56-9790	56-9790	56-9790	56-9790	56.9790	56-9790	56.9790
Foil	56-9790-1	56-9790-1	56-9790-1	56-9790-1	56-9790-1	56-9790-1	56.9790-1
Knob and Bracket ass'y	76.7710	76.7710	76.7710	76.7710	76.7710	76-7710	76-7710
Shatt.	54-4974	54-4974	54-4974	54.4974	54.4974	54.4974	54.4974
5 witch	42-1979	42-1979	42-1979	42-1979	42-1979	42-1979	42-1979
Cabinet, light (L .						10943-1	10943-1
Cabinat, Mahogany (M)	10933-2	10933-3	10915-2	10943	10943-3		
Cabinet, Metal							
Cabinet, Birch (B).							
Cabinet Doors (matched pair)			45-6721				
Cabinat Hardware and Parts:							
Bullet Catch.			45.6002				
Casters (4).	76.7143	76.7143	76.7143				
Casler Sockel (4)	56.9288	56-9288	56-10017				
Castor Washer (4)	27-7467	27-7467	27-7467				
Channel, Rubber							
Clip, Light.	56-3545-6	56-3545-6					
Dome	45-6190	45-6190	45-6190	27-4911-1	27-4911-1	27-4911-1	27-4911-1
Door Cotch, Record Changar	56-9719	56-9719	56-9719				
Door Pull (LH).			56-9915.1				
Door Pull (RH).			56-9915				
Door Pull, Record Changer			56-8496				
Frame Ass'y., Picture Tube	318-3370	318-3370	318-3370	76.6530	76-6530	76-6530	76-6530
Frame, Record Changer.			76-6600				
Hinge, Buth							
Hinge, Knife (LH)			56-9922-1				
Hinge, Knife (RH).			56-9922				
Knob, Brightness	54-4799	54-4799	54-4799	54-4799	54-4799	54-4799-2	54-4799-3
Knob, Channel Selector	76-6863-18	76-6863-18	76-6863-14	76-6863-18	76-6863-18	76-6863-19	76-6863-15
Knob, Contrast	54-4797	54-4797	54.4799	54.4797	54-4797	54.4797-1	76.6048-1
Knob, Fine Tuning	76-6104	76-6104	76-6104	76-6104	76-6104	76-6104	76-6104
Knob, Function Switch	$\begin{aligned} & 54-4799 * \\ & 54-4797-6 \dagger \end{aligned}$	54-4799-12	54-4799-12				
Knob, Horizontal Hold	54-4797	54-4797	54-4799	54-4797	54-4797	54-4797-1	76-6048-1
Knob, Tone	76-5794-2	76-6213	76-6213				
Knob, Tuning, Radio		76-6048.3	76-6048.3				
Knob, Vertical Hold	54-4799	54-4799	54-4799	54-4799	54-4799	54-4799-2	54-4799-3
Knob, Vol-Of-On (TV)	54-4817-1	54-4799	54-4799	76.6166	76.6166	76-6166-1	76-6581-2
Mask	54-8645-5	54-8645-5	54-8645-4				
Mounting Foot.							
Strike Plate			45-6003				
Strike Plate, Record Changer			56-9720				
Window	54-7943-60	54-7943-60	54-7943-59	54-7943-61	54-7943-61	54-7943-61	54-7943-61
Cable and Plug ass'y., Speaker	41-4082-7	41-4032-7		41-4082-8	41-4082-8	41-4082-8	41-4082-8
Continuous Hinge, Record Changer	56-3627-12	56-3627-12	56-3627-12				
Line Cord, A.C.	41-3865	41-3865	41-3865	41-3865	41-3865	41-3865	41-3865
Shield, Pilot Lamp				54-8228-2	54-8228-2	54-8228-2	54-8228-2
Speaker	36-1651	36-1651		36-1641-10	36-1641-10	36-1641-10	36-1641-10

CABINET PARTS LIST FOR 1953 PHILCO TELEVISION RECEIVERS (Cont.)

DESCRIPTION	53-T2152 $\text { Code } 123$	$\begin{gathered} \text { 53-T2152-4 } \\ \text { Code } 123 \end{gathered}$	$\begin{gathered} \text { 53-T2152-L } \\ \text { Code } 124 \end{gathered}$	$\begin{aligned} & 53-\mathrm{T} 2183 \\ & \text { Code } 123 \end{aligned}$	$\begin{aligned} & 53-\text { T2227 } \\ & \text { Code } 123 \end{aligned}$	53-T2228 Code 126	53-T2228-R $\text { Code } 126$
Built-in Aerial Parts:							
Coil	32-4560	32-4560	32-4560	32-4560	32-4560	32-4560	32-4560
Foil.	56-9790	56-9790	56-9790	56-9790	56-9790	56-9790	56-9790
Foil	56-9790-1	56-9790-1	56-9790-1	56-9790-1	56-9790-1	56-9790-1	56-9790-1
Knob and Bracket ass'y	76-7710	76.7710	76-7710	76-7710	76-7710	76-7710	76.7710
Shaft	34-4974	54-4974	54-4974	54-4974	54-4974	54-4974	54-4974
Switch.	42-1979	42-1979	42-1979	42-1979	42-1979	42-1979	42-1979
Cabinet, Light (L)		10930-1	10930-1				
Cabinat, Mahogany (M)	10930			10934	10955	10956	10936
Cobinet, Metal.							
Cobinet, Birch (B).							
Cabinet Doors (motched pair)							
Cabinet Hardware and Parts:							
Bullet Cateh.							
Castors (4)				76.7143			
Caster Sockel (4)				56-9288			
Caster Washer (4)				27.7467			
Chonnel, Rubber.							
Clip, Light.	56-3545-6	56-3545-6	56-3545-6	56-3545-6	56-3545-6	56-3545-6	56-3545-6
Dome.	45.6190	45-6190	45-6190	45-6190	27-4911-1	27-4911-1	27-4911-1
Daor Catch, Record Changer.				56-9719			
Door Pull (LH)							
Door Pull (RH)							
Door Pull, Record Changer.							
Frame Ass'y., Picture Tube	76-6530	76-6530	76-6530	76-6530	318-3345	318-3345	318-3345
Frame, Record Changer				76-6600			
Hinge, Bun							
Minge, Knife (LH).							
Hinge, Knife (RH).							
Knob, Brightness	54-4799	54-4799-3	54-4799-3	54-4799	54-4799	54-4799	54-4799
Knob, Channel Selector	76-6863-14	76-6863-15	76-6863-15	76-6863-14	76-6863-18	76-6863-12	76-6863-26
Knob, Contrast.	54-4797	76-6048-1	76.6048-1	54-9797	54-4797	76-6048	76-6048
Knob, Fine Tuning	76-6104	76-6104	76-6104	76-6104	76-6104	76-6104	76-6104
Knob, Function Switch				54-4799-12			
Knob, Morizontal Mold	54-4797	76-6048-1	76-6048-1	54-4797	54-4797	76-6048	76-6048
Knob, Tane.				76-6213		76-6213	76-6213
Knab, Tuning, Rodio				76-6048-3			
Knob, Vertical Hold	54-4799	54-4799-3	54-4799.3	54-4799	54-4799	54-4799	54-4799
Knob, Vol-Off-On (TV).	76-6166	76-658 1-2	76-6581-2	54-4799	76-6166	54-4799	54-4799
Mask.		54-8567-7	54-8587.7	54.8567.7	54-8573-12	54-8573-1	54-8573-1
Mounting Foot							
Strike Plate.							
Strike Plate, Record Changer				56-9720			
Window	54-7943-38	54.7943-38	54-7943-38	54-7943-38	54.7943-49	54-7943-49	54-7943-49
Cable and Plug ass'Y., Speaker	41-4082-11	41-4082-11	41-4082-7	41-4082-7	41-4082-7	41-4082-7	41-4082-7
Continuous Minge, Record Changer				56-3627-12			
Line Cord, A.C.	41-3865	41-3865	41-3865	41-3865	41-3865	41-3865	41-3865
Shield, Pilot Lamp						54-8228-1	54-8228-1
Speaker.	36-1646-6	36-1646-6	36-1646-5	36-1646-6	36-1641-10	36-1641-10	36-1641-10

CABINET PARTS LIST FOR 1953 PHILCO TELEVISION RECEIVERS (Cont.)

DESCRIPTION	$\begin{aligned} & \text { 53-T2260 } \\ & \text { Code } 123 \end{aligned}$	$\begin{aligned} & 53-T 2264 \\ & \text { Code } 123 \end{aligned}$	$\begin{gathered} \text { 53-T2266-L } \\ \text { Code } 126 \end{gathered}$	$\begin{gathered} \text { 53-T2266-R } \\ \text { Code } 126 \end{gathered}$	$\begin{gathered} \text { 53-T2269-R } \\ \text { Code } 126 \end{gathered}$	53-T2270-R Code 126	$\begin{aligned} & \text { 53-T2271-R } \\ & \text { Code } 126 \end{aligned}$
Built-in Aerial Parts:							
Coil	32-4560	32-4560	32-4560	32.4560	32-4560	32-4560	32-4560
Foil	56-9790	56-9790	56-9790	56-9790	56-9790	56.9790	56.9790
Foil	56-9790.1	56-9790.1	56-9790.1	56-\$\$90-1	56-9790.1	56-9790-1	56-9790.1
Knob and Bracket ass'y	76-7710	76-7710	76-7710	76-7710	76-7710	76-7710	76.7710
Shaft	54-4974	54-4974	54-4974	54-4974	54-4974	54-4974	54-4974
Swilch.	42-1979	42.1979	42.1979	42.1979	42-1979	42-1979	42-1979
Cabinel, Light (L)			10923-2				
Cabinet, Mahogany (M)	10916	10922		10923	10951	10947	
Cabinel, Melal							
Cabinet, Birch (B)							10935
Cabinet Doors (matched pair)		45.6720			45-6723	45-6724	45-6725
Cabinel Hardware and Parts:							
Bullet Catch.		45-6002			45-6002	45-6002	45.6002
Castors (4)	76-7143	76-7143	76.7143	76.7143	76.7143	76-7143	76-7143
Caster Sockel (4)	56.9288	56-9288	56-9288	56-9288	56-9288	56-9288	56-9288
Caster Washer (4)	27.7467	27.7467	27-7467	27-7467	27-7467	27-7467	27.7467
Channel, Rubber							
Clip, Light	56-3545-6	56-3545-6	56-3545-6	56-3545-6	56-3545-6	56-3545-6	56-3545-6
Dome	45-6190	45.6190	45-6190	45.6190	45-6190	45-6190	45-6190
Door Catch, Record Changer							
Door Pull (LH)		56-9730			56-9916	56-9159	56-9827 !
Door Pull (RH)		56.9730			56-9916	56-9159.1	56-98288 56-98298
Door Pull, Record Changer							
Frame Ass'y., Picture Tube	318-3345	318-3345	318.3345	318-3345	318-3345	318-3345	318-3345
Frame, Record Changer							
Hinge, Buth							
Hinge, Knife (LH)		56-9922.1			56-9922-1	56-9922-1	56-9922-3
Hinge, Knife (RH)		56.9922			56-9922	56.9922	56-9922-2
Knob, Brightness	54-4799	54-4799	54-4799.3	54-4799	54-4799	54-4799	54.4799
Knob, Channel Selector	76-6863-14	76-6863-14	76-6863-13	76-6863-26	76-6863-26	76-6863-26	76-6863.26
Knob, Contrast	76-6048	76-6048	76-6048-1	76-6048	76-6048	76-6048	76-6048
Knob, Fine Tuning	76-6104	76-6104	76-6104	76-6104	76-6104	76-6104	76-6104
Knob, Function Switch							
Knob, Horizontal Hold	76-6048	76-6048	76-6048-1	76-6048	76-6048	76-6048	76-6048
Knob, Tone			76-8213.3	76-6213	76-6213	76-6213	76-6213
Knob, Tuning, Radio							
Knob, Vertical Hold	54-4799	54-4799	54-4799-3	54-4799	54-4799	54-4799	54-4799
Knob, Vol-Off-On (TV)	76-6581-1	76-6581-1	54-4799-3	54-4799	54-4799	54.4799	54-4799
Mask	54-8573-6	54-8573-11	54-8573-11	54-8573-11	54-8573-1	54-8573-1	54-8573-1
Mounting Foot							
Strike Plate		45-6003			45-6003	45-6003	45-6003-1
Strike Plate, Record Changer							
Window	54.7943-56	54-7943-56	54-7943-56	54-7943-56	54-7943.49	54-7943-49	54-7943-49
Cable and Plug ass'y, Speaker.	41-4082-11	41-4082-11	41-4082-11	41-4082-11	41-4082.11	41-4082.11	41-4082-11
Continuous Hinge, Record Changer.							
Line Cord, A.C.	41.3865	41.3865	41.3865	41.3865	41-3865	41-3865	41-3865
Shield, Pilot Lamp	54-8228-1	54-8228.1	54-8228-1	54-8228.1	54-8228-1	54-8228-1	54-8228-1
Speaker.	36-1646-6	36-1646-6	36-1646-6	36-1646-6	31-1646-6	31-1646-6	31-1646-6

\ddagger Main door. $\$$ Center rail.

CABINET PARTS LIST FOR 1953 PHILCO TELEVISION RECEIVERS (Cont.)

DESCRIP TION	$\begin{aligned} & 53-12272 \\ & \text { Code } 123 \end{aligned}$	$\begin{gathered} \text { 53-T2272-L } \\ \text { Code } 123 \end{gathered}$	$\begin{aligned} & 53-\mathrm{Y} 2285 \\ & \text { Code } 126 \end{aligned}$	$\begin{aligned} & 53-\mathrm{r} 2285-\mathrm{L} \\ & \text { Code } 126 \end{aligned}$	$\begin{aligned} & \text { 53-T2286 } \\ & \text { Code } 126 \end{aligned}$	$\begin{gathered} \text { 53-12286-R } \\ \text { Code } 126 \end{gathered}$	$\begin{aligned} & \text { 53- } 12287 \\ & \text { Code } 126 \end{aligned}$	$\begin{gathered} \text { 53-T2287-R } \\ \text { Code } 126 \end{gathered}$
Buill-in Amial Parts:								
Coil	32-4360	32-4560	32-4560	32-4560	32-4560	32-4560	32-4560	32-4560
Foil	56-9790	56-9790	56-9790	56-9790	56-9790	56.9790	56-9790	56.9790
Foil	56-9790-1	56-9790-1	56-9790-1	56-9790-1	56-9790-1	56-9790-1	56-9790-1	56-9790-1
Knob and Brackel ass'y	76-7710	76-7710	76-7710	76-7710	76-7710	76.7710	76.7710	76-7710
Shatt	54.4974	54.4974	54-4974	54.4974	54.4974	54-4974	54-4974	54.4974
Swith	42.1979	42-1979	42-1979	42-1979	42-1979	42-1979	42-1979	42-1979
Cabinet, Light (t)		10948-1		10931-1				
Cabinat, Mahogany (M)	10948		10931		10958	10958	10957	10957
Cabinet, Matal								
Cobinet, Birch (B)								
Cobinet Doors (matched poir)			45-6730	45-6731	45-6733	45.6733	45-6732	45-6732
Cobinet Hordware and Parts:								
Buliet Catch	45-6002	45-6002-1	45-6002	45-6002-1			45-6002	45-6002
Casters (4)	76-7143	76-7143	76-7143	76-7143	76-7143	76-7143	76-7143	76-7143
Caster Socket (4)	56-9288	56-9288	56.9288	56.9288	56-9288	56-9288	56.9288	56-9288
Caster Washer (4)	27.7467	27.7467	27.7467	27.7467	27-7467	27.7467	27-7467	27.7467
Channel, Rubber								
Clip, Light	54-3545-6	56-3545-6	56-3545-6	56-3545-6	56-3545-6	56-3545-6	56-3545-6	56.3545-6
Dome.	45-6190	45-6190	45-6190	45-6190			45-6190	45-6190
Door Catch, Record Changer			56-9719	56-9719.1				
Door Pull (LH)	56-9896			56-9916			56-7062	56.7062
Door Pull (RH)	56-9896			56.9916			56-7062	56-7062
Door Pull, Record Changer							56.9965	56-9965
Frame Ass'y., Picture Tube	318-3345	318.3345	318-3345	318.3345	318-3345	318-3345	318-3345	318.3345
Frame, Record Changer			76-6600	76-6600				
Hinge, Buth							56-6491	56-6491
Hinge, Knife (LH)	56-9909	56-9909-1	56-9922-1	56-9922-3			56-9922-1	56-9922-1
Hinge, Knife (RH)	56-9909	56-9909.1	56-9922	56-9922-2			56-9922	36-9922
Knob, Brightness	54-4799	54-4799-3	54-4799	54-4799-3	54-4799	54.4799	54-4799	54-4799
Knob, Channel Selector	76-6863-14	76-6863.15	76-6863.12	76-6863-13	76-6863-12	76-6863.26	76-6863-12	76-6863-26
Knob, Contrast.	76-6048	76-6048.1	76-6048	76-6048-1	76-6048	76-6048	76-6048	76-6048
Knob, Fine Tuning	76-6104	76-6104	76-6104	76-6104	76-6104	76-6104	76-6104	76-6104
Knob, Function Switch			54-6022	54.6022-1	54-6022	54-6022	54-4798-20	54-4798-20
Knob, Horizontal Hold	76-6048	76-6048-1	76-6048	76-6048-1	76-6048	76-6048	76-6048	76-6048
Knob, Tane			76-6213	76-6213-3	76-6213	76-6213	76-6213	76-6213
Knob, Tuning, Radio			54-4798.9	54.4798-10	54-4798.9	54-4798-9	54-4798-19	54-4798-19
Knob, Verticol Hold	54-4799	54-4799.3	54.4799	54-4799.3	54-4799	54-4799	54-4799	54-4799
Knob, Vol-Off-On (TV)	76-6581-1	76-6581-2	54-4799	54-4799-3	54-4799	54-4799	54-4799	54-4799
Mask	54-8573-1	54-8573-1	54-8573-11	54-8573-11	54-8573-1	54-8573-1	54.8573-11	54-8573-11
Mounting Foot								
Strike Plate	45-6003	45-6003-1	45-6003	45-6003-1			45-6003	45-6003
Strike Plate, Record Changer			56.9720	56-9720-1				
Window	54.7943-49	54.7943-49	54.7943-56	54-7943-56	54-7943-49	54-7943-49	54-7943-56	54-7943-56
Cable and Plug ass'y., Speaker	41-4082-11	41-4082-11	41-4082-7	41-4082-7	41-4082-7	41-4082.7	41-4082.7	41.4082 .7
Continuous Hinge, Record Changer			56-3627-12	56-3627-13				
Line Cord, A.C.	41.3863	41-3865	41-3863	41-3865	41.3865	41.3865	41-3865	41-3865
Shield, Pilot Lamp	54-8228-1	54-8228-1		54-8228-1	54-8228-1	54-8228-1		
Speaker	36-1646-6	36-1646-6	36-1646-9	36-1646-9	36-1646-9	36-1646-9	36-1630	36.1650

PRODUCTION CHANGES

IN 1952 AND 1953 PHILCO TELEVISION MODELS

Since the printing of Service Bulletin 52-T1 (PR-2153), the production changes given in the following charts were made on the chassis types listed. For run changes preceding those given in the charts, and for model numbers of the television receivers in which these chassis were used, refer to the charts in Service Bulletin 52-T1 and in this Bulletin.

PRODUCTION CHANGES IN 41 R-F CHASSIS

$\begin{aligned} & \text { REASON } \\ & \text { FOR CHANGE } \end{aligned}$	DESCRIPTION OF CHANGE	NEW OR ADDED PART NO.	OLD OR REMOVED PART NO.	RUN NO.
To provide for verticol retrace suppression.	A lead was odded in the chassis interconnecting cable (pin 10 of PL100 to the picturetube cothode).	41-4086-19	41-4086-1	9
To facilitate production.	C406, ratio detector buzi by-pass condensef, was changed from $390 \mu \mu$ f., mica, to $330 \mu \mu$ f., ceromic type.	62-133001001	60-10395417	10
To improve picture-tube cutoff.	R314, picture-tube cothode resistor, was changed from $82 \mathrm{~K}, 1 / 2 \mathrm{w}$., $1068 \mathrm{~K}, 1 \mathrm{w}$. R313, picture-iube cathode resistor, was changed from $120 \mathrm{~K}, 1 / 2 \mathrm{w}$., to $100 \mathrm{~K}, 1 / 2 \mathrm{w}$.	66-3684340 $66-4108340$	$\begin{aligned} & 66-3828340 \\ & 66-4128340 \end{aligned}$	11
To improve strong-signal low percentage sync performance.	Noise-gate divider resistor, R606, was changed from 240K to 180K. Noise-gate divider resistor, R607, was changed from 220K to 39K.	$\begin{aligned} & 66-4188240 \\ & 66-3398240 \end{aligned}$	$\begin{aligned} & 66-4248240 \\ & 66-4228240 \end{aligned}$	12

PRODUCTION CHANGES IN 42 R-F CHASSIS

REASON FOR CHANGE	DESCRIPTION OF CHANGE	NEW OR ADDED PART NO.	OLD OR REMOVED PART NO.	RUN NO.
To improve strong-signal low percentage sync performance.	Noise-gale divider resistor, R606, was changed from 240K to 180K. Noise-gale divider resistor, R607, wos changed from 220K to 39K.	$\begin{aligned} & 66-4188240 \\ & 66-3398240 \end{aligned}$	$\begin{aligned} & 66-4248240 \\ & 66-4228240 \end{aligned}$	2

PRODUCTION CHANGES IN 44 R-F CHASSIS

REASON FOR CHANGE	DESCRIPTION OF CHANGE	NEW OR ADDED PART NO.	OLD OR REMOVED PART NO.	$\begin{aligned} & \text { RUN } \\ & \text { NO. } \end{aligned}$
To provide for vertical retrace suppression.	A lead was added in the chassis interconnecting cable (pin 10 of PL 100 to the picturetube cathode).	-	-	5
To facilitate production.	C406, ratio detector buzz by-pass condenser, was changed from $390 \mu \mu \mathrm{f}$., mica, to $330 \mu \mu \mathrm{f}$, seramic type.	62.133001001	60-10395417	
To improve picturetube cutoff.	R314, piclure-lube cothode resistor, was changed from $\mathbf{8 2 K}, 1 / 2 \mathrm{w}$., $1068 \mathrm{~K}, 1 \mathrm{w}$. R313, picture-lube cathode resisior, was changed from $120 \mathrm{~K}, 1 / 2 \mathrm{w}$., 10 100K, $1 / 2 \mathrm{w}$.	66-3684340 66-4108340	$\begin{aligned} & 66-3828340 \\ & 66-4128340 \end{aligned}$	
To improve strong-signal low percentage sync performance.	Noiso-gate divider resistor, R606, was changed from 240K to 180K. Noise-gate divider resistor, R607, was changed from 220 K to 39 K .	$\begin{aligned} & 66-4188340 \\ & 66-3398340 \end{aligned}$	$\begin{aligned} & 66-4248340 \\ & 66-4228340 \end{aligned}$	6

PRODUCTION CHANGES IN 71 R-F CHASSIS

REASON for change	description of change	NEW OR ADDED PART NO.	OLD OR REMOVED PART NO.	RUN NO.
To eliminate possible shock hozard due to breakdown in lapered line ass'y.	Two 470- $\mu \mu$ f. blocking condensers, C522 and C523, were odded, in series with 300 ohm antenna leads (in tapered line ass'y.). Two 1-megohm resistors, R512 and R500, were added, one from each side of antenna input to ground.	62-147001001 66.5108340	-	6
To facilitate production.	Electrolytic filter condenser, C418, was changed.	30-2570-57	30-2570-70	7
To provide increosed capacitance required to peak 47.25 me. trop.	Volue of trimmer condenser, C203, was changed from . 5 to $3 \mu \mu \mathrm{f}$. to 1 to $5 \mu \mu \mathrm{f}$.	31-6250-9	31.6250-5	
To improve syne pefformonce under heavy duty cyele noise.	a. 6ATO noise-gate tube, V12, was replaced with type 6BF6 tube. b. Plate supply of 6BF6 tube was reduced from 240 V to 200 V (pin 7 of V 12 reconnected to junclion of C309, R306, and R311). c. Bias on 6BF6 tube, V12, was chonged by disconnecting 3.3-megohm resistor, R600, from junction of R609, R605, and R606, and recannecting it to junction of R604, R605, C602, and C603.	SBFG fube -	6ATS tube	8
To provide for vertical retrace suppression.	A lead wos added in the chassis inferconnecting cable (pin 10 of PL100 to the picfuretube cothode).			
To focilitato production.	C409, ratio detector buzz by-pass condenser, was changed from $390 \mu \mu$., mica, to $330 \mu \mu$ f., ceramic type.	62-133001001	60-10395417	
To improve video amplifer operation.	Video output bias resistor, R309, was changed from 1.2 megohms to 680 K .	66-4688340	66-5128340	10
To improve picture-tube cutoff.	Picture-tube cathode resistar, R313, was changed from $\mathbf{8 2 K}, 1$ w., to $68 \mathrm{~K}, 1 \mathrm{w}$. Picture-fube cathode resistor, R314, was changed from 120K, $1 / 2 \mathrm{w}$., to $100 \mathrm{~K}, 1 / 2 \mathrm{w}$.	$\begin{aligned} & 66-3684340 \\ & 66-4108340 \end{aligned}$	$\begin{aligned} & 66-3824340 \\ & 66-4128340 \end{aligned}$	11
To improve frequency response.	Video defector peoking cail, L210, was changed from $180 \mu \mathrm{~h}$. to $220 \mu \mathrm{~h}$.	32-4480-15	32-4480-9	12
To reduce sound buzz and beat in picture.	a. Sound i-f screen resistor, R401, was changed from $12 \mathrm{~K}, 1 \mathrm{w}$., $1033 \mathrm{~K}, 1 \mathrm{w}$. Screen supply was reduced by disconnecting R401 from junction of C418C and R403, and reconnecting it to junction of R411, R417, and C418A. b. Sound i-f screen by-pass condenser, C404, was removed. c. Sound i-f plate resistor, R402, was removed.	66-3334340	66-3124340 62-215001001 66-1108556	13
To improve fringe-area performance,	A 120K, $1 / 2 \mathrm{w}$. resisfor was added, from pins 3 and 6 (plates) of noise-cole tube, V12, to lug 4 of video test socket, $\mathbf{J 2 0 0}$.	66.4128340	-	14
To facilitote production.	Second video i-f limmer, C208, was changad from lug type to lead type.	31.6520-10	31-6520-9	

PRODUCTION CHANGES IN D-I AND D-IA DEFLECTION CHASSIS

REASON FOR CHANGE	DESCRIPTION OF CHANGE	NEW OR ADDED PART NO.	OLD OR REMOVED PART NO.	RUN NO.
To improve horizontol sync performance.	Horizontol oscillator grid blocking condenser, C808, was reconnected between the green lead from T800 and pin 4 of the horizontal osciltator fube. The white lead from T800 is now grounded.	-	-	9
To provide for vertical retrace suppression.	High-vollage oss'v. was changed.	76.6850 Run 4	76-6850 Run 3	10
	A .022-pf. condenser was odded, from pin 11 of J 800 to pin 10 of J 100.	30-4650-43	-	

PRODUCTION CHANGES IN D-I AND D-IA DEFLECTION CHASSIS (Cont.)

REASON for change	DESCRIPTION OF CHANGE	NEW OR ADDED PART No.	OLD OR REMOVED PART NO.	RUN NO.
To facilitate production.	Volue of current-limiting resistor, R102, was changed from 7.5 ohms, 15 w., 105 ohms, 16 w .	33-3448-5	33-3448	11
To improve horizontal-oscillo. tor performance and recenter horizontal-oscillator frequency control.	Value of horizontal phase comporer voltage-divider resistor, R809, was changed from 390 K to 330 K . Value of horizontal-os cillator grid blocking condenser, C808, was changed from 270 $\mu \mu \mathrm{f}$. to $\mathbf{3 9 0} \mu \mu \mathrm{f}$.	66-4338240 60-10395417	66-4395244 60-10275337	12
To eliminote hum pickup from the a-c leads.	The harizontal lockin trimmer, C804, was relacated, from the rear to the side of the chassis.	-	-	13

PRODUCTION CHANGES IN G-I DEFLECTION CHASSIS

REASON for change	DESCRIPTION OF CHANGE	NEW OR ADDED PART NO.	OLD OR REMOVED PART No.	RUN NO.
To remeve horizontal foldover.	A $27 \mathrm{~K}, 1 / 2 \mathrm{w}$, resistor was inserted in series with R804 to the junction of C800 and C803. An $\mathbf{8 2 - \mu \mu f}$. condenser was added, from the junction of the above port and R804 to ground.	$66-3278340$ $60-00825317$		4
To recenter horizantal-oscillafor frequency control.	Value of horizontol phose comporer voltoge-divider resistor, R809, was changed from 390 K to 330 K .	66.4338240	66.4395244	5
To improve interlace.	C701 and C702 were interchonged. Value of C700 was chonged from $.033 \mu \mathrm{f}$. to $.022 \mu \mathrm{f}$. Value of R703 wos changed from 8200 ohms, $1 / 2 \mathrm{w}$., to 3300 ohms, $1 / 2 \mathrm{w}$. Value of R700 was changed from $220 \mathrm{~K}, 1 / 2 \mathrm{w}$., to $180 \mathrm{~K}, 1 / 2 \mathrm{w}$. NOTE: These changes were incorporated in Run 6 chassis only.	$\begin{aligned} & 30-4650-43 \\ & 66-2338340 \\ & 66-4188340 \end{aligned}$	$\begin{gathered} - \\ 30-4668-27 \\ 68.2828340 \\ 66-4228340 \end{gathered}$	6
To imprave vertical lineority.	A 680-1/2 w . resistor was added from the junction of R704 ond C703, to the center lug of the vertical linearity control (R707).	66-4688340	-	7
To improve horizontal sync performance.	Horizontal-oscillator grid blecking condenser, C808, was reconnecled between the green lead from T800 and pin 4 of the horizontal-oscillator lube. The white lead from T800 is now grounded.	-	-	8
To provide for verticol retroce suppression.	A .022- $\mu \mathrm{f}$. condenser was added, from pin 11 of 1800 to pin 10 of 1100 . Chassis morking G-IA identifies the use of a 500K volume control in place of the 2-megohm tapped control. Also, G-1A does not use bass compensation (R408 and C413).	30-4650-43	-	9
To remove vertical white lines from picture.	220K resistor, R814, was removed. Value of R803 was changed from $\mathbf{2 . 2}$ megohms to 680 K .	$\underset{66-468 \dot{3} 340}{-}$	$\begin{aligned} & 66-4228346 \\ & 66-5228340 \end{aligned}$	$9 P$ ond 10

PRODUCTION CHANGES IN G-2 DEFLECTION CHASSIS

REASON FOR CHANGE	DESCRIPTION OF CHANGE	NEW OR ADDED PART NO.	OLD OR REMOVED PART NO.	RUN NO.
To remove vertical white lines from picture.	220K resistor, Re14, was removed. Value of R803 was chonged from 2.2 megohms to 680K.	$\begin{aligned} & 66-4683346 \\ & 68-4688340 \end{aligned}$	$\begin{aligned} & 66-4228346 \\ & 66-5228340 \end{aligned}$	2

PRODUCTION CHANGES IN G-4 DEFLECTION CHASSIS

$\begin{aligned} & \text { REASON } \\ & \text { FOR CHANGE } \end{aligned}$	DESCRIPTION OF CHANGE	NEW OR ADDED PART NO.	OLD OR REMOVED PART NO.	$\begin{aligned} & \text { RUN } \\ & \text { NO. } \end{aligned}$
To improve operation of width control.	Value of width control, R817, was changed from 20K, $4 \mathrm{w} .$, to $10 \mathrm{~K}, 4 \mathrm{w}$.	33-5546-49	33-5546-43	2

PRODUCTION CHANGES IN J-1 DEFLECTION CHASSIS

REASON FOR CHANGE	DESCRIPTION OF CHANGE	NEW OR ADDED PART NO.	OLD OR REMOVED PART NO.	$\begin{aligned} & \text { RUN } \\ & \text { NO. } \end{aligned}$
Toeliminate shadow on 21 -inch tubes.	A. 5 - μ. condenser was added, in series with horizonial yoke winding (between terminal 1 of T800 and pin 8 of J800).	$61-0137$	-	2
To improve insulation of 1B3GT tube socket.	The black phenolic 1 B3 sockel was replaced with a melomine (light-colored) socket.	-	-	22
To reduce possibility of port failure.	The iwo 3900 -ohm, 2 w . resistors, R819 and R820, were replaced with a single $8200-\mathrm{hm}, 7 \mathrm{w}$. unit.	33-1335-119	66-2395346	3 and $3 Y$
To reduce possibility of part follure.	The 3900 -ohm, 2 w . resistor, R816, was replaced with either a wire-wound 4200 ohm, 5 w . unil, of two $\mathbf{7 2 0 0}$-ohm, 2 w . resistors in porallel.	33-1335-101	66-2395346	4
To remove picture distortion.	A 470-ohm resistor was added, ocross the .5-uf. horizontol yoke blocking condenser.	66-1478340	-	5

REVISIONS TO PHILCO TELEVISION RECEIVER SERVICE MANUALS

CORRECTIONS TO SERVICE MANUAL PR-1908

On page 13 of Service Manual PR-1908, Replacement Parts List, the part number for R 101 is listed as 33-3435-3. The correct number for this part is 33-3445-3.

CORRECTIONS AND ADDITIONS TO SERVICE MANUAL PR-2200

On page 21 of Service Manual PR-2200, under Miscellaneous A, the part number of Cable Assembly, high voltage, 41-4664-6* should be $41-4064-6 *$.

On page 2, 13 lines up from bottom of left-hand column, R213 and R212 should be R219 and R218, respectively.

In the Replacement Parts List, Section 2-Video I.F., the following item should be listed:

CD200 Crystal, video detector-type 1N64, Service Part No. 34-8022.

At the time of printing of Service Manual PR-2200, L801 was supplied as part of T800, Horizontal output transformer. L801 is now available separately under Service Part No. 32-4112-43.

PHILCO TELEVISION SERVICE MANUAL FOR DEFLECTION CHASSIS J-2 AND J-5 USED IN ALL 1953 CODE 128 TELEVISION RECEIVER MODELS (SUPPLEMENT TO PR-2200 AND PR-2395)

GENERAL INFORMATION

The Philco 1953 Code 128 television receivers use two sets of chassis: the r-f chassis 91 and deflection chassis J-2 in the models having 3 watts audio output, and the r-f chassis 94 and deflection chassis $\mathrm{J}-5$ in the models having 5 watts audio output.

The r-f chassis contain the r-f, video, audio, and sync circuits, and the deflection chassis contain the power and deflection circuits.

All information concerning the circuit description, adjustment, alignment, parts lists, etc., for the 91 chassis may be found in service manual PR-2200, and for the 94 chassis in service manual PR-2395.

The J-2 and J-5 deflection chassis are similar to the $\mathrm{J}-1$ and J-4 chassis, respectively, except for some small circuit changes. The circuit description and the adjustment and alignment procedures remain the same as that for the J-1 and J-4 chassis and may be found in PR- 2200 for the J- 2 chassis, and in PR-2395 for the J-5 chassis.

This supplement includes the parts lists and schematic diagrams for the $\mathrm{J}-2$ and the $\mathrm{J}-5$ deflection chassis.

REPLACEMENT PARTS LIST IMPORTANT

General replacement items commonly stocked by the serviceman are omitted from this parts list. All condensers are molded-bakelite Philco condensers, with a 600 -volt rating, and all resistors are $1 / 2$ watt, unless otherwise indicated. Parts are listed according to chassis type and should be ordered in this way rather than by model number. A miscellaneous listing is given at the end of the parts list for each chassis type. All parts are symbolized in the schematic diagram and base layout, for identification purposes.

NOTE: Part numbers identified by an asterisk $\left({ }^{*}\right)$ are general replacement items. These numbers may not be identical with those on factory parts. Also, the electrical values of some replacement items may differ from the values indicated in the schematic diagram and parts list. The values substituted in any case are so chosen that the operation will either be unchanged or improved. When ordering replacements, use only the "Service Part No."

DEFLECTION CHASSIS J-2

SECTION 1—POWER SUPPLY

Reference Symbol	Description $\begin{array}{c}\text { Service } \\ \text { Port No. }\end{array}$
C100 and	
C101	Condenser, filter, electrolytic, $120 \mu \mathrm{f} ., 150 \mathrm{v}$.. 30.2568 .51
C102	Condenser, filter, electrolytic, $10 \mu \mathrm{f} ., 25 \mathrm{v}$, 30-2584.27
C103	Condenser, filter, electrolytic, $100 \mu \mathrm{f}, \mathrm{}, \mathrm{300v}$. Part of C102
$\begin{aligned} & \text { CR100 and } \\ & \text { CR10l } \end{aligned}$	Rectifier, selenium, 350 ma 34.8003 .7
F100	Fuse, line, 1.6 amperes 45.2656 .23
J100	Socket, a-c line . 27-6240.3
3101	Socket, chassis connecring 27.6274 .1
L. 100	Choke, 1 henry Speaker field
PL100	Plug, a-c line .. Part of a-c line cord ass ${ }^{\text {y }}$. (See Misc.)
PL101	Plug and cable ass y y , chassis connecting .. (See Misc.)
R100	Resistor, current-limiting, 5 ohms, 10 watts . . 33.3448 .5
R101	Resistor, filrer, 47.000 ohms, ${ }^{\text {d watt }}$. 66.3474340
R102	Resistor, voltage dropping (J-2 chassis) 20 inches No. 24 wire
R103	Resistor, voltage dropping, 4.7 ohms, 1 watt . 66.9473340
\$100	Switch, offen Part of VOLUME control
T100	Transformer, filament (J.2 chassis) $32.8574 .1\left(\begin{array}{l}32.8573 .1) \\ \text { (Optional) }\end{array}\right.$

SECTION 7—VERTICAL SWEEP

Reference Symbol	Description $\begin{array}{r}\text { Service } \\ \text { Port No. }\end{array}$
$\begin{aligned} & L 700 \text { and } \\ & L 701 \\ & R>01 \end{aligned}$	```Coils. vertical deflection Part of deflection yoke (See Misc.) Potentiometer, VERT HOLD control,```
R 70.4	Potentiometer. HEIGHT control, 2.5 megohms $33.5565 .32$
R 708	Potentiometer, VERT LIN control. 5 megohms
T700	Transformer, vertical oscillator $32.8431 .2^{\text {* }}$
T701	Transformer, vertical output 32.8539

SECTION 8-HORIZONTAL SWEEP

REPLACEMENT PARTS LIST (Continued)

SECTION 8—HORIZONTAL SWEEP (Continued)

Reference Symbol	Description $\quad \begin{gathered}\text { Service } \\ \text { Port No. }\end{gathered}$
C807	Condenser, d-c blocking, 390 m μ f. 60-10395417
C808	Condenser, charging, 390 unf. 60-10395417
C810	Condenser, screen by-pass, $100 \mu \mu \mathrm{f}$.60-10105417*
C813	Condenser, anti-ringing, $56 \mu \mu \mathrm{f}3 .30-1243.5$
C815	Condenser, electrolytic. 300. Part of C102
C815A	Condenser, by-pass, 100 uf., 300v Part of C102
C815B	Condenser, by-pass, 10 ¢f., 475 v Part of C102
J800	Socket, deflection . 27 -6274.7
J801	Socket, gate pulse . 27.6273
1800	Coil, stabilizing, $30-80 \mathrm{mh}32 .4557 ~$
1801	Coil, r-f choke, horizontal-output plate ...Part of $\mathbf{T} 800$
$\begin{aligned} & \mathrm{L802} \text { and } \\ & 1803 \end{aligned}$	Coils, horizontal deflection Part of deflection yoke (See Misc.)
$L 804$	Coil, r-f choke, damper cathode.... 32-4112-24
1805	Coil, r.f choke, damper plate 32.4112 .24
PL800	Plug, deflection Part of cable ass y. (See Misc.
PL801	Plug, gate pulse
R810	Potentiometer, HORIZ. HOLD CENTERING . 33-5565-17
R811	Potentiometer, HORIZ. HOLD control, 200,000 ohms 33.5563.50
R815	Porentiomerer, WIDTH control, 10,000 ohms, 2 watts . 33.5346 .41
T800	Transformer, horizontal output 32-8565

MISCELLANEOUS

DEFLECTION CHASSIS J-5

SECTION 1—POWER SUPPLY

Reference Symbol	Description $\quad \begin{gathered}\text { Service } \\ \text { Port No. }\end{gathered}$
C100 and C101 Condenser, filter, electrolytic, 120 ff., 150 v . . 30-2568-51*	
C103	Condenser, filter, electrolytic, 100μ f., 300v. Part of C102
CR100 and	Rectifier, selenium, 350 ma. 34.8003 .7
F100	Fuse, line, 1.6 amperes 45 -2656-23
J 100	Socket, a-c line . $27 \cdot 6240 \cdot 3$
J101	Socket, television chassis connecting27.6274-1
J102	Socket, radio chassis connecting 27.6274 .4
1100	Choke, 1 henry (part of EM speaker) Speaker field
1100	Choke, 1 henry (used with PM speaker) ... 32-8605
PL100	Plug, a-c line . . . Part of line cord assiy. (See Misc.)
PL101	Plug and cable ass y., television chassis connecting (See Misc.)
PL102	Plug and cable ass'y., radio chassis
R100	connectingSee parts list of radio tuner used Resistor, current limiting, 5 ohms. 10 watts . 33.3448 .5
R101	Resistor, filter, 47,000 ohms, 1 watt 66.3474340

SECTION 1—POWER SUPPLY (Continued)

Reference Symbol	Description	Service Port No.
R102	Resistor, voltage dropping, 24 ohm	1.4149
R103	Resistor, voltage dropping, 4.7 ohms, 1 watt	
$\begin{aligned} & \text { S100 } \\ & \text { T100 } \end{aligned}$	Switch, off-on Transformer, filament..................................$~$	Econtrol

SECTION 7-VERTICAL SWEEP

Reference Symbal	Description	Service Port No.
$\begin{aligned} & L 700 \text { and } \\ & 1701 \end{aligned}$	Coils, vertical deflection Part of deflection yoke	(See Misc.
R701	Potentiometer, VERT, HOLD control, 250,000 ohms	Part of R811
R704	Potentiometer, HEIGHT control, 2.5 megohms	$33.5565 .32$
R708	Potentiometer, VERT. LIN. control, 5 megohms	$.33 .5565 .31$
T700	Transformer, vertical oscillator	.32-8431-2 ${ }^{\text {\# }}$
T701	Transformer, vertical output	. 32.8539 .1

SECTION 8-HORIZONTAL SWEEP

Reference Symbol	Description $\begin{gathered}\text { Service } \\ \text { Part No. }\end{gathered}$
C803	Condenser, by-pass, . 005 رf. 30
C804	Condenser, grid blocking, . 01 mf. 3 30-1238-2
C805	Condenser, by-pass, $100 \mu \mu \mathrm{f}, \pm 5 \%$...... .60-10105417*
C807	Condenser, d-c blocking, $390 \mu \mu \mathrm{f}$. $\pm 5 \%$. . 60-10395417
C808	Condenser, charging, $390 \mu \mu \mathrm{f}$. 60-10395417
C810	Condenser, screen by-pass, 100 ндf. 60.00825317
C813	Condenser, anti-finging, $56 \mu \mu \mathrm{f}$, 3 30-1243-5
C815	Condenser, electrolytic Part of C102
C815A	Condenser, by-pass, 100 uf.Part of C102
C815B	Condenser, by-pass, 10 رf., 475v Part of C102
J800	Socket, deflection . 27.6274 .7
J801	Socket, gate pulse . 27.6273
1800	Coil, stabilizing, $30-80 \mathrm{mh}$. $32-4557$
1801	Coil, r-f choke, horizontal-output plate ... Part of T800
$\begin{aligned} & \mathrm{LBOL}_{203} \text { and } \end{aligned}$	Coils, horizontal deflection Part of deflection yoke (See Misc.)
1804	
L805	Coil, r-f choke, damper plate 32.4112 .24
PL800	Plug, gate pulse Part of cable ass'y. (See Misc.)
PL801	Plug, deflection ${ }^{\text {a }}$ (Part of cable ass'y. (See Misc.
R810	Potentiometer, HORIZ. HOLD CENTERING $33.5565 .17$
R811	Potentiometer, HORIZ. HOLD conerol, 200,000 ohms
R815	Potentiometer, WIDTH control, 10.000 ohms, 2 watts $33.5546 .41$
T800	Transformer, horizontal output32-8565

MISCELLANEOUS

Description	Service Port No.
Arm and magnet ass y., picture tube	76.6594
Beam bender	6-6077.2
Cable assembly, high voltage, picture tube	41.4664.6*
Cable and plug assembly, deflection	41-4086.25
Cable and plug assembly, VOLUME control	41-4136-2
Cord, line	41-3865
Focus assembly	
Insulator, electrolytic condenser mounting	08.1
Shield, corona	56.9684
Socket, damper tube	27-6174.7
Socket, high-voltage rectifier	7.6290-1
Socket, miniature, 7-pin	27-6203*
Socket, miniature, 9-pin	7.6203.6*
Socket, octal	27.6174
Socket, 12BH7 and 12AU7 tubes	76.6115
Yoke, deflection	32.9648
Cable and plug assembly, television chassis conn	41.4146.5
Cable and plug assembly, gate pulse	41.4141
Cable and socket assembly, picture tube	41.3964.19
Cable and socket assembly, pilot light	27.6233.5*
Shield, 6CB6 tube	56.5629FA3
Shield, 6T8 tube	56.5629-5
Socket and base assembly, 6CB6 tube	27-6203.14
Socket and base assembly, 6T8 tube	27-6203-18
Socket, miniature, 6AU6, 6AQ5, and 6BA6 tubes	27.6203

PRODUCTION CHANGES IN D-194 DEFLECTION CHASSIS

REASON FOR CHANGE	DESCRIPTION OF CHANGE	NEW OR ADDED PART NO.	OLD OR REMOVED PART NO.	$\begin{aligned} & \text { RUN } \\ & \text { NO. } \end{aligned}$
To eliminate picture bend.	Condenser C803 was changed from . $001 \mu \mathrm{f}$. to $.002 \mu$ f.	30.1238.12	30-1238-3	2
To center range of vertical hold control.	Resistor R703 was changed from $220 \mathrm{~K} \pm 10 \%$ to $240 \mathrm{~K} \pm 5 \%$.	66-4248240	66-42283 40	
To eliminate hum in radio operation.	Two $.047-\mu \mathrm{f}$., 600 -volt condensers were added, one across each rectifier, CR100 and CR101.	30.4650.62		3
To eliminate hum in radio operation.	All chassis were reworked to add two $.047-\mu \mathrm{f}$., 600 volt condensers, one across each rectifier, CR100 and CR101.	30-4650.62		$\begin{gathered} 1 Z \\ \text { and } \\ 2 Z \end{gathered}$
To increase rectifier life.	Selenium rectifiers CR100 and CR101 were changed from 350 -ma. to 450 ma. rating.	34.8003 .8	34.8003.7	4
To reduce 1B3GT tube filament voltage.	Resistor R102 was changed from 4.7 olims to 5.6 ohms.	66.9563240	66.9473310	5

Copyright, 1953 , PHILCO CORPORATION

PHILCO

ALIGNMENT CHART SUPPLEMENT

TO
TELEVISION SERVICE MANUAL
FOR
R-F CHASSIS R-181 AND
DEFLECTION CHASSIS D-181

TABLE OF CONTENTS

Page

Table 1—Tuner Oscillator Alignment .. $\mathbf{2}$

Table 3—Video I-F Alignment ... 5
Table 4-Sound I-F Alignment ... 6

TABLE 1—TUNER OSCILLATOR ALIGNMENT

AM GENERATOR: Connect to receiver antenna-input terminals. (No matching network is required.) Use unmodulated r-f output.

OSCILLOSCOPE: Connect the vertical-input lead, in series with a 1000 ohm resistor, to the mixer plate test point, G2. Connect the scope ground lead to the chassis, near G2.

RECEIVER CIRCUIT ALTERATIONS: Disconnect tuner a-g-c (white) lead from main chassis, and connect a 1.5 -volt bias battery, with negative terminal to white lead from tuner, and positive terminal to chassis.

STEP	AM GENERATOR DIAL SETTING	RECEIVER TUNING	ADJUST	REMARKS
1	257 me .	Channel 13	TC506 for zero beat on srope.	a. If regeneration occurs, increase bias; bias may be increased up to 4 or 5 volts, if necessary. b. Preset and mark position of Fine Tuning Cam as shown in figure 4. (Position cam-stop between Channel 7 and 8, and mark for use in step 8 of video i.f alignment.)
2	245 mc .	Channel 11	TC507 for zero beat on scope.	
3	233 mc .	Channel 9	TC508 for zero beat on scope.	
4	257 mc .	Channel 13	TC506	Repeat steps 1,2 , and 3 until channels 13,11 , and 9 are within 500 kc . of their correct respective frequencies.
	245 mc .	Channel 11	TC507	
	233 mc .	Channel9	TC508	
5	221 mc .	Channel 7	TC509 for zero beat on scope.	
6	129 mc .	Channel 6	TC510 for zero beat on scope.	
7	113 me .	Channel 4	TC51l for zero beat on srope.	

NOTE: The symbols and figures referred to in the charts are those given in Service Manual PR-2506.

TABLE 2—TUNER BANDPASS ALIGNMENT

SWEEP (FM) GENERATOR: Connect to antenna-input circuit through antenna-input matching network. (See figure l.)
OSCILLOSCOPE: Connect the vertical-input lead, in series with a 1000 -ohm resistor, to the mixer plate test point, G 2 . Connect scope ground lead to the chassis, near G2.
RECEIVER CIRCIUIT AL'TERATIONS: Disconnect tuner a-g-c (white) lead from main chassis, and connect a 1.5 -volt lias battery, with negative terminal to white lead from tuner, and positive terminal to chassis. Disconnect tuner link from terminal board B-11, and connect a 40 to $70-\mathrm{ohm}$ carbon resistor across the link.

STEP	SWEEP (FM) GENERATOR		receiver TUNING	ADJust	remarks
	$\begin{aligned} & \text { Sweep } \\ & \text { Dial } \\ & \text { Detting } \end{aligned}$	Marker Dial Setting			
1	Channel 13 (213 mc ., with 10-mic. sweep width.)	Set first to 210 mc . and note position of marker on response curve. Then set to 216 mc . and note position of marker on response curve.	Channel 13		Use oscilloscope gain as high as possible with respect to hum level and "bounce". Pips fix channel limits on curve. Response curve should be flat between limits (see figure 5). If not, proceed with step 2.
2	Channel 13	213 mc .	Channel 13	TC504 counterclockwise until single peak appears.	CAUTION: Care must be taken not to unscrew core far enough to make it drop out of the coil.
3	Channel 13	213 mc .	Channel 13	TC502 until peak falls on 213 -mc. marker.	It may be necessary to increase sweepgenerator output.
4	Channel 13	213 mc .	Channel 13	TC500 for maximum curve height and symmetry of single peak.	After adjusting TC500, recheck as in step 1.
5	Channel 7 (177 mc ., with 10 mm. sweep width.)	Set first to 174 mc . and note position of marker on response curve. Then to $\mathbf{1 8 0} \mathbf{m c}$. and note position of marker on response curve.	Channel 7		Note curve with respect to tilt and center frequency. Curve should be centered in pass band and symmetrical. If not, proceed with step 6.

TABLE 2 (Cont.)

STEP	SWEEP (FM) GENERATOR		RECEIVERTUNING	ADJust	remarks
	$\begin{aligned} & \text { Sweep } \\ & \text { Dial } \\ & \text { Serting } \end{aligned}$	Marker Dial Setting			
6	Channel 7	174 me. and 180 mc .	Channel 7	C508 and C512 to obtain correct tilt on top of curve.	C508 and C512 compensate for the tuning effect of Channel 13 adjustment upon Channel 7. (See figure 6.)
7	Channel 13	213 mc .	Channel 13	Retouch TC502 and TC504 for symmetrical response, centered about 213 -mc. marker.	To retouch, only turn cores slightly.
8	Channel 7	117 mc .	Channel 7	Repeat step 6.	Cherk response curve for correct center frequency and symmetry.
9				Repeat steps 7 and 8.	Repeat Channel 13 and Channel 7 adjustments, alternately, until favorable curves are obtained on both.
10	Channel 6 (85 mc ., with $10-\mathrm{mc}$. sweep width.)	Set first to 82 mc . and note position of marker on response curve. Then set to 88 mc . and note position of marker on response curve.	Channel 6		Curve should be symmetrical and centered in pass band. If not, proceed with step 11.
11	Channel 6	85 mc .	Channel 6	TC505 counter. clockwise until single peak appears	CAUTION: Care must be taken not to unscrew core far enough to make it drop out of the coil.
12	Channel 6	85 mc .	Channel 6	TC503 until peak falls on 85 -mc. marker.	It may be necessary to increase sweep. generator output.
13	Channel 6	85 mc .	Channel 6	TC501 for maximum curve height and symmetry of single peak.	After adjusting TC501, recheck as in step 10. If necessary, reduce sweep-generator output to avoid overloading.
14	Channel 6	85 mc .	Channel 6	Retouch TC503 and TC505 for symnetrical response, centered about 85-mc. marker.	To retouch, only turn cores slighty.

NOTE: The symbols and figures referred to in the charts are those given in

TABLE 3—VIDEO I-F ALIGNMENT

AM GENERATOR: Connect to mixer test point, Gl, throtgh a mixer jig, and adjust the generator for approximately 30 percent modulation at 400 cycles. Adjust the output of the generator during alignment, to keep the output at the second detector below 6 volt, peak to peak.
SWEEP (FM) GENERATOR: After step 7, connect to antenna-input circuit hirough antenna-input matching network. (See figure 1.)
OSCILLOSCOPE: Connect the vertical-input lead to the 2200 -ohn resistor of the video i-f alignment jig. Connect scope ground lead to the ground lead of the jig. (See figure 2.) Plug jig into J200
PRESET: Contrast and Brightness controls fully counterclockwise, and Channel Selector to Channel 4.
BIAS: Apply 3 volts of negative bias to pin 1 of video i.f alignment jig; ground positive side of bias supply to pin 3 of jig. (See figure 2.)
NOTE: If the if shield has been removed for repairs, it must be replaced before proceeding with the aligmment.

STEP	AM generator	SWeep (fm) generator		adjust	remarks
		Sweep Dial Setting	Marker Dial Seffing		
1	28.1 mc.	Not used.	Not used.	TC200 for minimum indication on scope.	It is necessary to keep the generator output sufficiently high that a null indication may be observed on the oscilloscope; however,
2	22.1 mc .	Not used.	Not used.	TC203 for minimum indication on scope.	avoid overloading of the receiver by exces sive signal.
3	24.0 mc .	Not used.	Not used.	TC512 for maximum indication on scope.	Adjust the output of the AM generator, when necessary, to keep the output at the second detector below 6 volt, peak to peak.
4	25.7 mc .	Not used.	Not used.	TC201 for maximum indication on scope.	(For convenience, the oscilloscope may be calibrated for this purpose beforehand.)
5	23.6 mc .	Not used.	Not used.	TC202 for maximum indication on scope.	
6	26.4 mc .	Not used.	Not used.	TC204 for maximum indication on scope.	
7	24.5 mc .	Not used.	Not used.	TC205 for maximum indication on scope.	
8	Not used.	Channel $\&$ (69 mc . with 6.me. sweep width.)	Run marker along curve. checking against the curve lintits given in figure 8.	If necessary, retourh TC201. TC204, TC205, and TC202 as directed in RE. MARKS column. CAUTION: Do not touch settings of TC200 and TC203.	Set Fine Tuning Cam to mark previously made in step 1 of Table 1. If response curve does not fall within limits shown in figure 8, relouch TC201 and TC204 for proper level of curve at video carrier frequency; adjust TC205 to level top of rurve. and TC202 for proper slope of low.frequency side of curve. CAUTION: To retouch, only turn the adjustments slightly, particularly TC202.

NOTE: The symbols and figures referred to in the charts are those given in Service Manual PR-2506.

TABLE 4-SOUND I-F ALIGNMENT

AM GENERATOR: Connect "hot" lead through a 2200 -ohm resistor to pin 2 of J200, using the video i-f alignment jig. Connect ground lead of generator to ground lead of jig.
VOLTMETER: Use v.t.v.in. or 20,000 -ohmis-per-volt voltmeter. Connect to sound i-f alignment jig. (See figure 3.) NOTE: In this procedure, disregard the oscilloscope connections shown in figure 3
OSCILLOSCOPE: Connect through crystal probe to cathode (pin 11) of picture tube.

STEP	am generator dial setting	adjust	remarks
1	4.5 mc .	TC400 for maximum indication on voltmeter.	Remove lst video i.f tube, and adjust the Volume control for moderate speaker output.
2	4.5 mc .	TC401 for maximum indication on voltmeter.	
3	4.5 mc .	TC402 for maximum indication on voltmeter and minimum speaker output.	The point of maximum meter indication for TC402 should also be the point of minimum speaker output.
4	4.5 mc .	TC300 for minimum indication on oscilloscope.	If scope and crystal probe are not available, TC300 may be adjusted for minimum beat pattern on picture tube, using station signal.
5	Use station signal.	TC402 for minimum AM (noise or buzz), using speaker output for indication.	Replace lst video i.f tube, and tune in a station, setting fine tuning control to obtain a crisp picture, with a small amount of beit.

NOTE: The symbols and figures referred to in the charts are those given in Service Manual PR-2506.

[^0]: NOTE 1: Use a 6- to 8 -turn, 6 inch diameter loop made up of insulated wire. Connect to generator terminals, and place about one foot from radio loop.
 NOTE 2: The tuning condenser can be set to the proper frequency for the oscillator odiustment as follows: Fully open the tuning gong and insert a . OOS non-metallic shim between the heel of the rotor and the top of the stotor plates. Close follows: Fully open the tuning gang and insert a . Oos
 remove the shim without disturbing the gang setting.

