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Preface

HE purpose of this volume is to present the basic material of radio
required for all types of radio work, both civil and military. The
authors have covered each topic in such a way as to make clear the func-
tioning of a complete radio system, and they have also laid the foundation
for a more advanced study of the subject.

The reader need have only an clementary knowledge of algebra, which
is reviewed briefly in Chapter 1. This chapter and the two following
on direct and alternating current may be omitted if desired and used for
later reference when the need arises. The remainder of the book has been
written to give basic physical descriptions with a minimum of mathematics.

Technical radio work may be divided into operation, maintenance,
development, and manufacture. An individual can operate some machines
without knowing how they work, but if he wishes to maintain them, he
must know the fundamental principles on which their operation is based.
In the operation of the more complex radio systems, a knowledge of the
equipment and the behavior of radio waves is essential in order to obtain
the best results. A still greater understanding is needed on the part of the
person who is to contribute to development and research.

W. L. EvERITT
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CHAPTER 1

Mathematics of Radio

Need for Mathematics in Radio. Radio, like most of life itself, asks the
questions, “How much?”’ or “How many?’ How tall should the tower
of a broadcasting station be? How long should a radio antenna be? What
size of wire is needed on a radio receiver coil? Answers to these and many
other questions are given (at least in part) by mathematics.

What is mathematics? Mathematics may be defined as a shorthand
system which uses easy words (actually letters or other symbols) to simplify
difficult ideas. In addition, rules are set up so that everyone may
use these words or symbols in the correct way. One result is that the
action of a certain piece of radio equipment may be predicted under given
conditions because the way it acted under similar conditions at another
time is known.

Understanding radio is easier when some of the rules of mathematics
are known, The starting point of a system of mathematics is a set of
numbers.

Our number system uses ten symbols or digits, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9.
The symbol 3 always means three: three men, three radio sets, or three of
whatever is being counted. The symbol 9 indicates nine objects, and so
forth. If more than nine objects are to be counted it is necessary either
to use other symbols or else to agree that the place of the symbol or digit
in the number shall have a special meaning. The fact that place value is
used makes our system better than most other systems man has tried.
Thus the number 1,492 means 1 thousand + 4 hundreds + 9 tens 4 2
units. The place of the digit in the number shows whether it means
thousands, hundreds, tens, units, or something else. We say we “take”
9 tens, 4 hundreds, 2 units and 1 thousand. There is no limit to the size—
large or small—of numbers that can be written in this way; distances
Letween the stars in the sky are examples of the possible range in one
direction.

The digit 0 (zero) is & number like the rest and plays an important part
in the system. For example, in the number five hundred and two, no
tens are to be taken; this fact is indicated by a zero in the tens place: 502,

No more than three digits are needed to write any number from 1 to 999;
each digit shows how many hundreds, tens, or units to take by its place in

the number; zero indicates that none are to be taken where it occurs.
1



2 MATHEMATICS OF RADIO fChap. 1

Besides the saving of time in writing numbers in such a manner, the opera-
tions which may be performed with numbers are made much easier or,
indeed, possible.

Positive and negative numbers also are needed. Of course, positive
numbers alone are enough to count persons or objects, but everyone knows
of temperatures above and below zero, distances above and below sea level,
profits and losses, and even bank balances which people sometimes try to
overdraw, that is, to get below zero. Positive numbers are those which
extend on one side of zero; they are greater than zero. Negative numbers
are those on the other side of zero; they are less than zero. A diagram,
Fig. 1-1, will help to make this clear. Distances along a line are marked

-5 -4 =3 -2 =1 0 +1 +2 +3 +4 +5

I O O O

Fia. 1-1. Graph Showing Positive and Negative Numbers.

with numbers that correspond to the length of the line from zero. For
each number there is a certain length. Distances measured to the right
of a convenient point, marked 0, are called positive; distances measured
to the left are negative. Thus, + 1, + 2, 4 3, + 4, + 5, + 6, and so on,
are positive numbers, and — 1, — 2, — 3, — 4, — 5, — 6, and so0 on, are
negative numbers. If no sign is written before a number it is understood
to be positive. The absolule value of a positive or a negative number is the
value of the number without the positive or negative sign.

The Four Fundamental Operations. As long as whole objects only are
to be counted, the natural numbers or ¢ntegers are enough; that is, 1, 2, 3,
4,5,6,7,8,9 10, 11, and so on. These numbers and others are used in
the four fundamental operations of addition, subtraction, multiplication,
and division.

Addition is needed when two groups of things are to be combined. Of
course, each group might be counted and then the combined group counted
again, but a trial will show that instead of the objects themselves being
counted, the numbers representing them may be added in a manner that
never varies. That is, 20 apples added to 15 apples, 20 radios and 15
radios, or 20 objects of any kind combined with 15 objects of the same
kind always amount to 35 objects in the whole group. Two conclusions
follow from this process: (1) operations with numbers themselves, rather
than with the objects they represent, may be performed; (2) if the opera-
tions are correctly carried out, the results are always right. Taking
advantage of the properties of the system of numbers, it is necessary only
to memorize sums of digits like 1 plus 1 equals 2, 1 plus 2 equals 3, and
other basic combinations in order to add any numbers whatsoever.

Subtraction is the opposite or inverse of addition. If a television set
has 35 tubes and a deluxe radio receiver has 24, the difference between the
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numbers of tubes is 11, which is obtained by subtracting 24 from 35. To
check the correctness of the work, add the difference, 11, to the smaller
number, 24, and the larger number, 35, is obtained.

Multiplication may be thought of as continued addition. If troops
march past four abreast they may be counted as 4 + 4+ 4 + 4 =16 if
there happen to be four ranks. This is the same as counting the four
ranks only and multiplying by the number in each rank: that is, 4 times
4 cquals 16.

Division is the inverse of multiplication, just as subtraction is the inverse
of addition. Thus, if 60 is divided by 12 the result is 5; the inverse opera-
tion, 12 multiplied by 5, gives 60. Division by zero (0) is not possible
because there is no number which, when multiplied by zero, will give any
number except zero itself.

All of the ideas discussed are well known and are easy to understand;
but they must be stated here as a foundation for other ideas, no more
difficult to learn, ideas needed for an understanding of radio.

To save time in writing mathematics, certain symbols of operation are
used. Among these are:

For addition: the plus sign (+). 21 4 12 = 33.

For subtraction: the minus sign (—). 18 — 8 = 10.

For multiplication: the multiplication sign (X), sometimes the dot (-);
sometimes the quantitics to be multiplied are simply written side by side.
5X6=300r56=30; 4 Xa=4a

For division: the division sign + , the bar ——, or the mark /. Thus
28 +7=4,% =4,28/T=4

Sometimes, to avoid confusion, a complicated expression must be en-
closed in parentheses (), brackets [], or braces { }. For example, consider
15 X 5 —2. Does it mean 75 — 2 or 15 X 3? By using parenthesey
confusion is avoided: (15X 5)—-2=75—-2=T73, 15 X (6 —2) =
15 X 3 = 45. When we use parenthesecs in a multiplication we can omit
the X sign: 15(5 — 2) means the same as 15 X (5 — 2), (5)(6) means the
same as 5 X 6 or 5-6.

Exercise 1-1. Perform the indicated operations.

1184644 = 7.35+ 7= 12, 3XB X8 _
2.37T—5= 8. 42/6 = 2X3 X4
3.30+6—10 = lg- Zéo: 13. (200)(0)(5) =
4.256—-54+156—-3 = '20+5 B
5'5x9X2= 11.3—_*_2—= 140(4+3)(2+5)—
6.3 X0X7= (Note: Add first.) 15. 84+0@3 +1) =

Fractions. As long as the objects to be counted are whole units, like
tubes in a radio set, the natural numbers will do for counting; but if the
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problem is to divide one apple pie among three boys, the pie must be cut
into slices. These slices will be fractions of the pie; each will be

the whole pie _ 1

three slices 3

Thus, if one integer (natural number), called the numerator, is divided by
another integer, called the denominator, the result is called a fraction. If
the numerator is smaller than the denominator, the fraction is said to be a
proper fraction; if the numerator is the larger, the fraction is said to be an
improper fraction. Thus, 4, 4, §, &4 are proper fractions; $, §, 1&, 28 are
improper fractions, The latter are frequently reduced to the sum of an
integer and a proper fraction: §=3+4=1}; R =§+5=14;
2 = 46+ 3 = 245,

The four fundamental operations may be applied to fractions as well as
to integers, but some care is necessary. For example, to add 3 and # they
must be reduced to a common denominator, thus:

3,2 3X5 ,2XT7T _15+14 29
it Txs Y Txs =~ " ~ %
The same process is needed in subtracting fractions; to subtract § from §,
proceed as follows:
7 4_7TX9 4X8_63-—32_31
8§ 90 8X9 8X9 T 72 72
Fractions may be written in several forms which mean the same thing;
thus } is the same as $, since upon dividing the numerator and denominator
of the latter by 2 the original } is obtained.

Multiplication of fractions may be done without reducing to a common

denominator; for example, § times § becomes

3,5 _3X5_15
4778 4Xx8 32
Division of fractions is easy if one rule is used: invert the divisor (frac-
tion divided into another) and then multiply. Thus, dividing £ by §,

L%+g= &g—2= &%xgxg=
4é_;= &gxg= miii:

Note: In No. 12, perform addition, then division.
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The above are called common fractions. Another type of fraction is
the decimal fraction, which utilizes the place values of the number system
to better advantage.

Jf the numerator and denominator of  be multiplied by 25, the fraction
becomes 4%, which also equals % + y§y. This may be written 0.25, by
extending the idea of place values discussed on p. 1. Any common frac-
tion may be converted to a decimal fraction by dividing the numerator by
the denominator. For example, § = 0.875; 4} = 0.171875; 3 = 0.333 - - -,
the dots indicating that no matter how long the division is continued, there
will be still more digits.

As soon as common fractions have been converted to decimal fractions,
they may be added, subtracted, multiplied, and divided just like integers.
The following examples show the process.

0.875 4 0.125 = 1.000 0.21 X 0.3 = 0.063
0.625 — 0.0625 = 0.5625 15+ 05=30

It will be seen that in adding or subtracting, the periods or decimal points
are always lined up with one another; in multiplying, the number of
decimal places (digits to the right of the decimal point) in the result or
product i3 the sum of the number of decimal places in the numbers multi-
plied together; in dividing, the decimal point may be located by setting
the decimal point to the right in both the divisor and the dividend (number
divided into) until the divisor is no longer a fraction, and locating the
decimal point in the result at this place. An example will show how this
is done.
To divide 1.728 by 0.12, write the figures either

0.12)1.728( or  0.12)1.728

Move the decimal point to the right in both numbers until the divisor
(0.12) is no longer a fraction, thus:

14.4
12)172.8(144 or  12J1728
12 12
52 52
48 48
48 48
48 48

Exercise 1-3.

1. Change to decimal fractions: §, §, &, 4, 3%, 4, 3.

2. Prepare a table of decimal equivalents of fractions of an inch in
au~inch steps; that is, 4, &, &, ¥, and so on.

3. Add: 0.125, 0.791, 0.345, 1.403, 7.142.

4, 0.784 — 0.038 == 5. 3.142 X 7.553 = 6. 1.173 + 142 =
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Accuracy and Significant Figures, Most of the numbers used in radio
work are obtained by measurement of one sort or another. It is necessary,
therefore, to look at the amount of accuracy which may be expected from
these measurements, and especially how many decimal places should be
used in the calculations based upon these measurements.

Many small instruments, or meters, have an accuracy stated as “Maxi-
mum error 3%, of full-scale reading.” This means that with a full-scale
reading of 100 v*, for example, the actual voltage when the meter reads full
scale is between 97 v and 103 v, 3 v being 3%, of the full-scale read-
ing. Unfortunately, the same 3-v error may also happen at lower scale
readings, and if this instrument reads 10 v, the actual voltage may be
between 7 v and 13 v,

To see what else this may lead to, relative error and percentage of error
must be considered. Suppose that a meter reads 16.0 v and the reading
should be 16.2 v. The error is 16.2 — 16.0 = 0.2 v, and the relative error is

error 0.2 1
true value 16.2 81

Multiplying the last figure by 100 to convert it to percentage gives a
percentage of error which is about 119%. If another meter, used on a power
line, read 16,000 volts when the correct reading was 16,200 volts, the error
would be 16,200 — 16,000 = 200 v. The relative error would be

200 1

16,200 ~ 81

or about 119, again. The position of the decimal point or the size of the
quantities involved have nothing to do with the relative error.

The diameter of the earth has been carefully measured by accurate
instruments. However, its average diameter is often stated as 8,000 miles,
which is accurate only to the nearest thousand miles. A more accurate figure
would be 7,900 miles, accurate to the nearest hundred miles; or 7,930 miles,
accurate to the nearest ten miles; or even, 7,927, accurate to the nearest
mile. Yet 8,000 miles is a useful expression if it is remembered that only
the 8 in the thousands place means very much, that the zeros are just
there to keep the 8 in its place. Another way of saying this is that 8 is
the significant figure, the zeros not being significant. It is agreed that
the significant figures shall be only those digits determined by measure-
ment. In the expression 7,930 miles for the earth’s diameter, only the
figures 7,93 are significant; in 7,927, all figures are significant. When we
are paying attention to significant figures, zeros following the last of the
other digits do not count unless it is so stated. TFor example, the following
numbers have two significant figures: 17,000; 0.00057; 95; 23,000,000.
With certain instruments measurements may be made which are accurate
to five significant figures, such as 60,103. If the instrument had read

* Volts is abbreviated v.

= 0.0123,
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60,100, the last two zeros would not count as significant figures unless the
fact was expressly so stated. Measurements and calculations in radio
seldom are carried to more than three significant figures.

Now if two numbers which represent quantities obtained by measure-
ment, each with three significant figures, are multiplied together, the
product may consist of as many as six digits, such as 32.4 X 41.4 = 1341.36.
There is nothing in the process of multiplying which will increase the accu-
racy of the original measurements; therefore, the product is accurate only
to three significant figures and should be written 1340.

In general, the result of a calculation should be rounded off to the number
of significant figures in the least accurate of the measured values used in
the calculation. In rounding off numbers it is usual to take the next
larger number if the last digit is greater than 5; to take the next smaller
number if the last digit is less than 5; and if the last digit is 5 the preceding
digit is increased by 1 if it is odd and left unaltered if it is even. Thus,
124 would be rounded off to 120 with two significant figures; 127 would be
rounded off to 130; and 125 to 120; but 135 would be rounded off to 140.

Exercise 1-4. State the number of significant figures in the following.

1. 24,000. 5. 0.0000543. 9. 0.0809007500.
2. 5,280. 6. 0.00000006. 10. 0.142857.

3. 186,230. 7. 0.08735.

4. 3.141597. 8. 50,000.21.

Scientific Notation. Many very large and very small numbers are used
in radio. Two schemes are used to get around the difficulty of writing the
large number of digits required to express such numbers in ordinary place
notation.

‘The first plan is to write the figure as a number less than 10 and then
multiply by ten as many times as necessary to locate the decimal point
correctly. Instead of writing out the tens, an exponent shows how many
times ten is to be taken. For example, 102 means ten taken twice or 10 X
10 = 100; 10* means ten taken three times or 10 X 10 X 10 = 1,000; the
(%) and the (®) arc called exponents. A table showing powers of ten and their
exponents follows,

TABLE 1-1
Large Numbers Small Numbers
10t = 10 1°=1 10t=0.1
102 = 100 102 = 0.01
10?3 = 1,000 10— = 0.001
10¢ = 10,000 104 = 0.0001
10 = 100,000 10-% = 0.00001

10¢ = 1,000,000 10-¢ = 0.000001
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It is easy to see that when 1 is added to the exponent of a number to the
left of an equal sign in this table, the number to the right of the sign is
multiplied by 10; when 1 is subtracted from the exponent of 2 number to
the left, the number to the right is divided by ten. Any number on the
right of an equal sign might be represented by the corresponding number
on the left; that is, for 100 write 102, for 1,000 write 10 and so forth.
When used this way, the 10 is called the base.

To write 2,500 in this shorthand, consider that 2,500 is 2.5 times 1,000 or
2.5 X 10%. Likewise, 2,500,000 is 2.5 times 1,000,000. From the table
1,000,000 = 10%. So 2,500,000 is written 2.5 X 10%, which avoids writing
a lot of zeros.

To write 0.0025 in a similar way, remember that 0.0025 is 2.5 times 0.001.
From the table 0.001 = 10—2, Therefore 0.0025 is written 2.5 X 10~2 in
scientific notation. For 0.0000025 the system works even better to reduce
the number of zcros. This number is 2.5 times 0.000001; from the table
0.000001 = 10-%; therefore 0.0000025 = 2.5 X.10~%, Now for a rule
use the following:

RULE FOR WRITING NUMBERS IN SCIENTIFIC NOTATION. To write a
given number in scientific notation, (1) move the decimal point to the
right of the first digit which is not 0 (counting from the left of the given
number) which will give a new number between 1 and 10; (2) multiply
this new number by 10 with an exponent numerically equal to the number
of places the decimal point has been moved; (3) make the exponent positive
if the decimal point was moved to the left and negative if the decimal point
was moved to the right.

The rule operates in reverse to change from scientific notation to ordinary
place notation: Move the decimal point (to the right if the exponent is
positive, to the left if negative) as many places numerically as indicated
by the exponent of 10, supplying zeros as necessary. For example, 2.56 X
102 = 256; 1.86 X 10°® = 186,000; 7.853 X 10— = 0.007853; 2.4 X 10—
= 0.000024.

Exercise 1-5., Express in scientific notation.
1. 605,000,000,000,000,000,000,000.
. The age of the earth, estimated as about 694,000,000,000 days.
. One light-year, about 5,870,000,000,000 miles.
. The distance from earth to the sun, about 93,000,000 miles.
. The thickness of an oil film on water, 0.0000002 inch.
6. 0.00000000000000000000003.

Exercise 1-6. Express in ordinary place notation.
1. The diameter of the sun, about 8.6 X 105 miles.
2. The mass of the earth, about 6.6 X 10* tons.
3. Diameter of red corpuscle in blood, about 3 X 10~% inch.
4. 6.4 X 1072 5. 1.20 X 10°. 6. 6.28 X 108,

Db W N
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Besides being easily and quickly written, numbers in scientific notation
are handy when multiplying and dividing. Suppose that 2.2 X 10% is to
be multiplied by 3 X 102  First multiply 2.2 by 3, which gives 6.6. For
the 10’s, consider that 10* = 1,000 and 102 = 100. 1,000 X 100 =
100,000 = 10° (from the table). But 10® equals 10%*3. Rewriting the
solution gives

(2.2 X 103 X 10%) = (2.2 X 3)(10* X 10?)
= 6.6 X 10+ = 6.6 X 10.%

RULES OF OPERATION WITH EXPONENTS. For any given base, such as 10,
the following rules apply:

To multiply, add exponents: 104 X 102 = 10¢+2 = 108,
To divide, subtract exponents: 10¢ = 102 = 1042 = 102

Exercise 1-7. Perform the indicated operations.

1. (1.86 X 10%)(3.6 X 10?) =

2. (9.3 X 10") = (1.86 X 10%) =

3. If a true value is 4.3225 X 10%, what is the relative error in using the
value 4.33 X 10%?

The second method of writing very large or small quantities is to use
large or small units. These units are named from the ordinary units by
adding prefixes. A table of such prefixes follows.

TABLE 1-2

milli- | micro-

Muitiply the known
micro-| micro-

number of —» mega-| kilo- | unit | centi- | milli- | miero-

by | by by | by | by by | by | by
to obtain the unknown I ! 1 1 ! ! 1 1
number of -1

1073 | 107 | 107% | 10— | 10712 | 10~ | 10~8
1 107 | 10=% [ 10— { 10~° | 10™2 | 10~
102 1 1072 | 107 } 10~* | 10~ | 10~

108 107 1 107t [ 10~¢ | 107 | 1010

108 108 10 1 10 | 10~ | 10~
mMiCro-................. 10 | 10° 10° 10¢ 102 1 10=% | 10—
millimicro-............. 10 | 1012 | 10? 107 10¢ 108 1 10—
micromicro-... ........ 10 | 10 [ 10 | 10 | 10° 108 10° 1

For example, & kilocycle is one thousand cycles; a megacycle is a million
cycles; a microfarad is one millionth of a farad; a millihenry is one thou-
sandth of a henry; and so on. The meanings of cycles, farads, and henries
will be explained later.

To use the table, find the standard unit in the top row; proceed down
this column to the line containing the desired unit; the number at this
point multiplied by the standard unit gives the desired unit. For example,
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to convert millihenries into microhenries, find milli- at the top of the table,
go down this column to the line marked micro-, and find 10®. Therefore,
multiply millihenries by 1,000 to get microhenries.

Symbols of Algebra. Algebra is a special form of language, which uses
symbols in place of words to express ideas. Just as the word “tree” brings
to mind certain objects, the letter z in algebra represents certain ideas.
There are many sorts of trees: large or small in size, slender or bushy in
shape, light green or dark green in color; but the idea of a tree will not be
confused with the idea of a building, or a boat. In the same way, an
algebraic symbol may represent different numbers at various times but
will generally be used for the same sort of numbers, subject to the same
rules of operation.

Symbols are used in mathematics so that ideas may be put down on
paper and talked about easily; using words for the same purpose would
often cause confusion. What method shall be used to choose these sym-
bols? First, symbols must be as brief as possible; second, their meaning
must be generally agreed upon by those who use them. One choice is to
use the initial letter of a word, like R for resistance, C for capacitance, w for
width, P for pressure. Somectimes symbols for certain things have been
used so long they are accepted almost universally; for example, I for
current, E for voltage, L for inductance, and so on. (The meaning of
these terms will be explained later.) Other symbols generally indicate
numbers; such as z, y, z (last few letters of the alphabet), which usually
mean quantities unknown or variable; a, b, ¢ (first letters of alphabet) often
stand for known or unvarying quantities. Mathematics packs much mean-
ing into one symbol to make the symbol useful where words or numbers
would not serve.

The symbols used in mathematics are precise in meaning; words also
are used with meanings more precise and more limited than they may have
in everyday conversation, and sometimes these meanings are different
from the common ones. Some definitions of such words follow.

An algebraic expression is any combination of numbers, letters used for
numbers, and signs of operation written according to the rules of algebra;
like 10z, ¢ + ¢, mz -+ b. Note that 10z means 10 times z; this is a product
and the 10 and the z are the two factors. Factors of a product are the
numbers which, when multiplied together, form the product. In algebra
numbers and letters or combinations of letters written together without
signs of operation are to be multiplied; zy means z times y, 102 means 10
timesa. Inthe product 10a, 10 is the numerical coefficient or factor and a is
the literal (letter) coefficient or factor. When z is written alone, the co-
efficient 1 is understood; z means 1 times z. A term is any expression like
10z, t, mz, b, 5r, and so forth. Simtlar terms are those with the same letter
or letters, such as 10z and mz. If terms do not have the same letters (or
literal coefficients) they are dissimilar terms. Similar terms may be com-
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bined by adding the numerical coefficients; remember that subtracting is the
same as adding a term with a minus sign ahead of it. For example,

3z +4r =3+ 4)z = Tx; 3a—2¢=B3—2)a=1la=a.

Exercise 1-8. Combine the following terms.

1. 10m + 8m + 6m = 5. §e — Je =

2. 400 — 300 = 6. 9.5z — 7.2z =
3. 90 + 50¢ — 40g = 7. 19k — 1.73k =
4.3b+3b= 8 1lh+ 12k — h =

Some Laws of Algebra. In addition terms may be combined or grouped
in any order. Thatis,a4+b=b+canda+bdb+c=@@+bd +tc=
a4 (b +c). If dissimilar terms occur, they may be combined in groups
of similar terms; for example, 50a + 986 4+ 5a +3b 4+ a = (50 + 5+ 1)a
+ (98 4 3)b = 56a + 101b.

Multiplication and division are carried out with the coefficients of similar
terms, like 7 X 2a = 14q; % X 10w = 5w; !%'=5z; 2(61:—3—312
18z _

o = 3 (a number only).

= 2z;

Exercise 1-9. Perform the indicated operations.

1.4a+6b+5a+70+a= 7 gpg=

2. 6.2¢ 4+ 8.9d + 7.8¢ + 10.2d = T4
3.18X 2 = 8. 3-28"=

4. 20 X §z = 9. 45d + 1.5d =
5. 10 X 9.2y 10 3a +4x+2y
6. 2.5 X 6z = . 2 =

Just as 10 X 10 = 10%,a X a = a%,anda X @ X a = @¢*. Similar terms
with the same exponents may be combined; that is, 3a? 4 4a® = 7a2.
Expressions containing several terms are called polynomials, for example
3z + 422 — 5z + 2, which is a polynomial in descending powers of z.
Polynomials may be added by combining similar terms as follows:

3+ 42 -5z + 2
- 22— 2248z —-1
2 +324+3x+1

Exercise 1-10.

1. Add 2a? — 3ab -} 4b? to 6a? — 2ab — 4b2,

2. Add 2* — 42 + 10 to 2 — 62 — 222

3. Add r* 4 3rs — 5s%, 2r2 + 7s% and — 5r2 — rs — 5s2,
4. Subtract — 2a? — 8a + 14 from a? — 4a + 4.
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To make the step from arithmetic to algebra easier, here is another
example worked out. Suppose 2,565 is to be added to 5,331. In the
positional and scientific notation these numbers can now be written

2X1004+5X1024+6X10+5
5X1004+3 X 10243 X104+ 1

7X1004+8X1024+9X1046

Incidentally, numbers are usually read in this form: seven thousand,
eight hundred, and ninety-six. The additions of the digits are done from
memory and the 10’s with exponents are carried through without change.
Now if z be substituted for 10, the resulting algebraic expression may be
added in the same way.

222 + 522+ 6z + 5
522 4+ 322+ 3x+ 1
7r*+ 822+ 9z + 6
Now any other number, such as 2 or 3, may be put in place of z and the

result will still be correct. The z stands for any number.
The same rules for exponents apply as stated earlier for the base 10;

. a?
that is, a*X a*=a? =qaf; — =a"!; (a?)®=a® X a®Xa®=a¥
a

at Xat=a=VvaXVa a=+Ve
RuLk oF sions.  In multiplying or dividing, if the terms have like signs
the result is positive (has plus sign); if the terms have unlike signs the
result is negative (minus sign).
()X (+W) =+ab (+a) +(+b=+7
(—a) X (=b)=+ab (—a)—:-(—b)=+§
(X (~b)=-ab (+a)+(-b=~—

(—OX (D) =—ab (—a)+(+b=-

= R~~~

Ezample.
(+3a%) X (= 2a%%) = (+ 3)(— 2)(a?)(a®)(B)(B?)(c) = — 6ab.

Exercise 1-11. Perform the indicated operations,

1. (2x%)(3z%) = 7. (—3a%)2 =

2. k(= B) = 8. — (3a*)* =

3. (- 5dp = 9. e(86%)(— 1e®) =

4. (5E)(— 3E%)(— 2E?) = 10. (— 2nd)(— 3n)(— 4d?) =
5. — (20 = 11, (— 2% =

6. 5y(— 3z%) = 12, (2dc%)* =
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Removal of parentheses (and of other signs of grouping) from expressions
is easy if certain rules are followed. These signs of grouping are often
used to indicate multiplication of terms, and in the course of solving a
problem it may be necessary that they be removed systematically. There-
fore:

(1) Apply the rule of signs (above).
Ezample:

Also,

2(a+b—¢) =22+ 2b — 2.

— 3a(a® — 3a + 5) = — 3a® 4+ 9a? — 15a.

(2) If no coefficient is indicated for the group, consider the coefficient
to be 1.
Ezample:

Also,

(@a+b) =1c+b =a+b

—z—-2p=—-1z—-2y) = —z+ 2.

(3) Perform indicated multiplications or divisions first; then addition
or subtraction.
Ezample:
5 —3(a+ 2b) =5 — 3a — 6b.
This does not equal 2(a 4 2b).

(4) Remove signs of grouping one set at & time, starting with the inner-
most set.

Ezample:

— 3cla + 2b(b — )] = — 3c[a + 2b% — 2bc] = — 3ac — 6b% + 6bc2.

Exercise 1-12. Remove parentheses and signs of grouping and com-
bine similar terms (that is, simplify).

1. 426+ 3) -7 =

2.4n — 4(n 4+ 8) =

3. —36d—4)+12=

4. 4a(2a +b —¢) + Tac =

S.68—3(r+s+8)+ (2r—s+3t) =

6. —(8d—3)+(—3d+4) =

7. 6n2 — 3n 4+ 2) + 2a(n — 5) =

8. 52n — 6(n+2)] -3n + 8 =

9. 3a[6 4+ 2(a — 3)] + 10a? =

10. 8{s — 2(3 — 5s) + 7} — 252 =

11, 2z - 3[2z — 3(z — 5)] =

12. 4y + 29[8y — (5 — y) + 6] =

13, 8 — [7 — 2(3r — 5)] =

14. 922 4+ 3z + 222 — Sz(z — 1) — 10] — (222 + 7z) =
15. 19z - 3[z — 3(z — 2{4y + 3} — 2y) + 32] — y* =
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In the multiplication of algebraic expressions certain combinations
oceur s0 often that they need special study, so that they may be known
and the answers obtained quickly. These combinations are often called
spectal products. If the special product is recognized, its factors may
often be found by inspection. Factoring is defined as the process of finding
two or more expressions whose product is a given expression.

The simplest sort of factoring is dividing out a common factor. For
example, to factor

324 — 923 4 1222
it is possible to divide out a 3, an z? ora 3z2.  The latter, being the largest,
is usually the factor desired; thus,
3zt — 92 + 1222 = 3(z* — 32® + 42?)
= z%(322 — 9z + 12)
= 3z%(z? — 3z + 4).

Exercise 1-13. Factor the following.

1. Txy — 14zz = 4, 8zy* — 16zy 4+ 12z =
2, 5a% — 25ab? = S. a%? — 3ab® 4 4a% — 12ab =
3. 271 + 2arh = 6. 24m™n — 6mn?® + 36m:n? — 42m3 =

Another product which occurs frequently is the product of two binomials
(expressions having two terms). By multiplication, like that used with
numbers, it is found that

22+ 6
z— b
2z2 4+ 6z
— 10z — 30
2z — 4z — 30
or
2z +6)(z — 5) = 222 — 4x — 30
T 111
A BC D

From this example it may be scen that (1) the product usually will have
three terms; (2) the first term is the product of the first terms in the bi-
nomials; (3) the second term is the sum of the products of the two outer
terms and the two inner terms, that is, (A)(D) + (B)(C); (4) the last
term is the product of the last terms of the binomials. The rule of signs
must be applied at all times.

Exercise I-14. 'Write out the following products according to the four
steps above.

1 (n 4 3)(n +2)

2. @a—-5)a+2

3. (p—4H(p -9

4. (a + b)(a + 2b)

5. (2 — 4)(z® — 12)
6. (th + 7)(th — 12)
7. Bz + 1Bz — 3) =
8. (z2 — 11y¥)(z? 4 5y =

g
1
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This method may be used in reverse; that is, given the product the
factors may be found. For example, to factor 9z2 + 18z + 5, two bi-
nomials are needed having their first terms factors of 9z2, having their
second terms factors of 5, and having 18z as the sum of the product of the
two outer terms plus the product of the two inner terms of the trial fac-
tors (A)(D) + (B)(C). The correct factors are found by trying out differ-
ent combinations until the right ones are obtained. Several possible
combinations may be set down, but only one meets the third requirement.

Trial factors Second term Conclusion
First attempt........... (x + 5)(9z + 1) z -+ 45z = 46z No good.
Second attempt......... (z + 19z 4 5) 5z +9x = ld4r No good.
Third attempt.......... 3z + 1)(3z 4+ 5) 15z 4+ 3r = 18z Correct.

Practice, of course, will help in finding the right combination.

Exercise 1-15. Factor the following.

1. 224 5n 4+ 6 = 5. 22+ 3zy + 2% =
2. 22— 06z+ 5= 6. 15a2 + 22a + 8 =
3.a2 -9+ 20 = 7. 24 7z + 522 =

4. n2+n—2= 8. a* — 6a?? — 55b =

Certain binomials occur often as equal factors of squares. These are
of the type (a + b) or (@ — b). The square of either of these consists of

je———a+b—

jt——— 3 ———de-h >

axXb b* | <

aXb

Fia. 1-2. Illustrating Binomial Squares by Areas.

the sum of three terms: (1) the square of the first term in the binomial;
(2) twice the product of the two terms of the binomial; (3) the square of
the second term of the binomial. That is,

(a +b)?= (a+ b)(a+b) = a? + 2ab + b?;
(@ — b2 = (a — b)a — b) = a? — 2ab + b2
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This process is sometimes used with numbers as a short-cut method to
find their squares. For instance,
(23)? = (20 + 3)t = (20)* + 220)(3) + 3
= 400 + 120 + 9 = 529;
(29)? = (30 — 1) = (30)* — 2(30)(1) + 1*
=900 — 60 + 1 = 841,
Using the formulas for these squares is easier than multiplying out the us-
ual way. Diagrams illustrating the binomial squares are shown in Fig. 1-2.

Exercise 1-16. Perform the following operations.

1. (z+3)?= 5 (2z —3)r= 9. (5r* + ")t =
2, (z— 5= 6. (3a + 5)t = 10. (a® + 12)? =
3. (z+ 6y = 7. (a -3 = 1. (h— D=

4 (a — o) = 8. (3k*— 1) = 12. (Ra + 1b)? =

It i3 easy to factor expressions of this sort; simply take the square root
of the first and the last terms and write the sign of the middle term between

them. For example,
a4+ 6a+9 = (a+3),
4z — 12z + 9 = (2z — 3)*
Note: Be sure that the middle term is twice the product of the square
roots of the first and last terms.

Exercise 1-17. Factor the following expressions.

1. 22— 122+ 36 = 2. 16z — 40xy 4 25y =
3. 25a¢ 4 120a?? + 144H* =

Another useful combination is the result of multiplying the sum and

difference of the same two terms. Thus,
(@ +b)(a —b) = a? — b2
Factoring the difference of two squares is done by taking the square root
of each square and making the factors the sum and difference of these roots.
4n? — 36 = (2n + 6)(2n — 6)

This special product may also be used in arithmetical problems. If the
product of 31 and 29 be desired, it may be considered as the product
(30 + 1) X (30 — 1) = 900 — 1 = 899.

Exercise 1-18. Perform the operations indicated.

L. z4+yiz—-19 = S. — 81v? + 25u? =
2. (10 - a)(10 + a) = 6. 12¢¢ — 3¢ =

3. (4a + 3b)(4a — 3b) = 7. 63 X 57 =

4, 36r? — 52 = 8. 75 X 45 =

Solving Equations. It is very fortunate that the behavior of the equip-
ment and devices used in radio is rather uniform; that is, if a circuit be-
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haves in a certain fashion at one time it will behave the same way at some
other time. This uniformity permits the writing of equations or formulas
to forecast the behavior of radio circuits. Some formulas are simple and
others look complicated; but after the equation has been arranged in a
useful form, values (numbers) may be placed in it and the equation solved
or evaluated. The usual result is information about the action of the
circuit under particular conditions. So it is necessary to get some practice
in working with equations.

As usual, there are definitions and rules. The two parts of the equation
separated by the equality sign are usually called the members; either left-
hand and right-hand member or first and second member, respectively.
Any operation of algebra may be performed on one member of an equation
as long as the same operation is performed on the other member.* That
is, the laws of operation state that if equals are added to, or subtracted
from, or multiplied by, or divided by equals, the results are equal. For

example, suppose an equation
= 300,000

f
is given and X (read lambda) is given as 600; how may f be found?
Solution: First multiply by f on both sides of the equal sign,
300,000
=200,
and then divide both members of the equation by A:
7 = 300,000 L.

L I_
buti— landf— 1, so
300,000
f = .—)‘ .
Substitute the value of A = 600 in this equation and obtain
300,000
J= 600 = 500.

An important formula in radio is Ohm’s Law, usually written in symbols
as F = IR. The meaning of the symbols will be explained later, but this
equation will serve as another example of the operations which may be
performed on an equation.

Following the laws of operation, let both sides be divided by I. That is,

E IR _E

'I— = T = R, or R = 1—"
Again, let both sides be divided by R, and obtain

E IR E

Tﬁ = 'Tc' = I, or I = R'

* Division by 0 is not possible.
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Still another change may be made; suppose both sides of the equation are
multiplied by I; then
EI = (I)(IR) = I*R.

E

Just above, it is shown that I = 7 substituting this value for I in the last
equation makes it &
_E_ p_
E E=R = I’R = EI.

The rule for the last operation is that things equal to the same thing are
equal to each other,

Exercise 1-19.

1. Given R = 20, I = 5, find E.

2. Given E = 246, R = 600, find I.

3. Given E =1,1 =2 X 107%, find R,
4. Given E = 115, I = 2.8, find I’R.

Sometimes it is not possible to evaluate an equation exactly because
some factors in it arec not exact; for example, a formula containing
= = 3.1416 (approximately), such as
. 1
XL = 27I‘fL or ;\c = '——'21‘7.0'

In this case, the number used for = should have the same number of sig-
nificant figurcs as the rest of the data; 6.28 is often used for 2.

Exercise 1-20. Perform the following calculations, using the appropri-
ate formula above.

1. Given f = 60, L = 1, find X,.

2. Given f = 1.5 X 10%, L = 5.5 X 107¢, find X,.

3. Given f = 500, C = 2 X 10~¢, find X.

4. Given f = 3.105 X 108, C = 0.85 X 1078, find X,.

5. Given X = X, — X¢, f=10%, L =14 X 104, C =18 X 10-1°,
find X.

Clearing fractions is often necessary in solving equations. Consider

the equation
1

1, 1°

BT

The first step is to place the denominator over its own common denomi-
nator:

R =

-1 .
TR+ R
Rle

R
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Finally, the denominator is inverted and multiplied by the numerator,
which in this case is 1:
R = R\R, RiR,

ey RO Rl ey 24

Exercise 1-21. Perform the following operations, based on the formula
above.

1. Given R, = 175, R; = 362, find R.
2. Work out a formula for Ry, given R and R,.

Quadratic Equations. An equation of the type
a2+ bz +c=0

is called a quadratic equation. The coefficients a, b, ¢ are any numbers,
positive or negative, and z is a variable whose value is to be found. Special
equations of this type have already been considered on pp. 14-15, but
sometimes it is difficult to find the necessary factors. To solve the quadratic
equation, that is, to find a formula which will always give the correct value
of z, first divide the entire equation by a, the coefficient of z?, to give

b c
2 o —_
T +aa:+a 0.

Now subtract the terms from both sides of the equation:

b c
2 i = —
=+ a” a
From the discussion on p. 15, it will be seen that the third term in a perfect
square is the coefficient of = divided by 2 and then squared. Performing

this operation, and adding this term to both sides of the equation, we get
b? br ¢

da® " 4a* " @

The square root of both sides may now be taken. The left-hand side has
now been made into a perfect square, so it may be factored; on the right-
hand side the operation can only be indicated. Since both + and —
quantities have the same sign when squared (rule of signs), both signs must
be used before the square-root sign or radical (/) on the right. So

b b2 — 4ac
’”’“5&‘*! 4a? !

— b4+ Vb2 — dac —b— Vb — dac
z = oa and T = % .

The process used to work out this formula is known as “completing the
square.” Now an example of its use will be given,

x’+£x+

or
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Consider the equation
4z* 4 12z 4+ 9 = 0.

This is a quadratic form, with 2 = 4, b = 12, and ¢ = 9. Putting these
figures in the formula.

_ —12 = VI2F —40)®

2(4)
_—12=ViA—14_ _12_ 3
- 8 TTET Ty

Since equations do not always yield a solution as readily as the one
above, consider another example. Given the equation
21 + 5z — 12 =0,
it is seen that ¢ = 2, b = 5, ¢ = — 12. Substituting these values in the
formula
~5+ V5 —24)(—12) _ —5=+ VI +06

T = =

2(2) 4

With the plus sign,

With the minus sign,
—5—-11_—16
4 T4

As a check on the result, substitute each of the values of z in the given
equation:

= —4,

T =

z=—4 z=11=3
2(— 4+ 5(—4)—-12=0 23)*+53)—-12=0
2(16) —20—-12=0 2+ —-12=0
32-32=0 12-12=0
0=0 0=0

Exercise 1-22. Solve the following quadratic equations.

1l.224+2x—-3=0 6. 522 — 11z +2=10

2.2 -8 +15=0 7. 122+ 25y + 12 =0
3.22-92-22=0 8. 22+ 19 = 20z

4. 222 -9z +4=0 9. 224 2r = 48

5.6 —5z+1=0 10, 2 4+ 2ax — 3a2 =0

Trigonometry. Trigonomeiry is that branch of mathematics which
deals with the propertics of triangles. Actually, the ideas of trigonometry
have been extended to solve many problems in radio, as will be seen later.



Chap. 11 MATHEMATICS OF RADIO 21

A right triangle is a triangle in which one of the angles is a right angle
or 90°, like the. triangle in Fig. 1-3. For convenience, the angles are
marked with the capital letters A, B,

C (with C at the right angle) and the
side opposite each angle is marked pypotenuse ¢

with the corresponding small letter a_::’gelgipome
a, b, c.

In geometry it is shown that the b = side adjacent to
sum of the angles in any triangle is angle A
180°; that is, A + B4 C = 180°.  Fia. 1-3. Right Triangle with Parts
But since ¢ = 90°, A + B = 180° — Labeled.

C = 180° — 90° = 90°.  Therefore
A and B each must be less than 90° (acute angles) and the following re-
lations must be true:

A+B=90° A=90°—B; B=090"°—A.

Now consider two triangles like ABC and AB’C’ in Fig. 14, one of which
is larger than the other. In geometry it is shown that these two tri-
angles, ABC and AB'C’, are stmi-
B’ lar, that is, their angles are equal
and their sides are proportional
B to one another. Therefore, it may
be said that
BC_ BC
AC — AC
A No matter what the size of triangle
c C’ AB'C’,aslong as the shape is the
Fio. 14. Triangles ABC and AB'C’ are  82Me a8 that of the triangle ABC
Similar. this ratio will be true. If the an-
gles were changed, the ratio would
change also. There is a definite relation between an acute angle of a right
triangle and the ratios of the sides.
To talk about these ratios, it is handy to name them according to the
following definitions, which refer to Fig. 1-3.
If A is an acute angle in any right triangle, then by definition:

= a constant.

. _ length of side opposite angle A _ ., _ a,
sine of 4 = length of hypotenuse =sind = ¢’
cosine of 4 = length of side adjacent to angle A = cos A = Q;
length of hypotenuse ¢
__length of side opposite angle A _a,
tangent of 4 = length of side adjacent to angle A tan 4 = b
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The abbreviations sin, cos, and tan are commonly used in place of the
corresponding complete names sine, cosine and tangent. Other ratios may
be formed but are not needed here. It is important to remember that
these ratios depend only upon the angle in the right triangle and not
upon the size of the triangle; the ratios are numbers.

It may be shown that in any right triangle the square on the hypotenuse
is equal to the sum of the squares on the two sides; this generalization is
called the hypotenuse rule or the Theorem of Pythagoras. That is,

a?+ b = c%
a =V —p? and b=Vct—al

Values for the ratios or trigonometric functions may be worked out for
certain angles quite easily. Consider a triangle with three equal sides,
each one unit in length. Since the sides are equal the angles opposite
them must be equal. The sum of the three equal angles is 180° and so
each angle must be 60°, as shown in Fig. 1-5. A line drawn from the top
of the triangle to the center of the lower side will divide the lower side (or
base) into two portions, each } unit long, and will divide the triangle into
two portions, each of which is a right triangle. Taking one portion of the

From which,

8
¢/ |a
(i

A b C

(a)
F1a. 1-56. Equilateral Triangle and 30°-80° Triangle.

(c)

triangle (Fig. 1-5¢) and lettering the angles and sides as stated at the first
of this section, the ratios can be evaluated for the angles in this triangle.
From the hypotenuse rule the side a is

a=vc2—bz=vlz—(g)z=x/1—}=V§=‘L§=o.87.

From the definition,

sind=%=2%_ 087 = V3 _ gnece.
c 1 2

From the definition,

cosA=2=—-:—l=0.50=00360°.
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Likewise,

mnA=g=—{§--'—}-"‘“\/§=l.73=tan60°-

From the fact that angle A = 60° it is found that sin 60° = 0.87, cos 60° =
0.50, and tan 60° = 1.73.

The same triangle may be used to get the values for the trigonometric
ratios or functions for 30°. The side b is opposite angle B and the side a is
adjacent to angle B; angle B is 30°. From the definition,

sin B = sin 30° = g = 0.50;
also,

cos B = cos 30° = :—: = 0.87;
and

tan B = tan30° =

Exercise 1—23.

1. Draw a right triangle whose sides are 3 inches and 4 inches long;
find the length of the hypotenuse.

2, The smaller acute angle in the right triangle of sides 3 inches and 4
inches is about 37°. From this triangle find sin 37°, cos 37°, and tan 37°,
approximately.

3. What is the relation between sin 30° and cos 60°? Between sin 60°
and cos 30°?

4. For the triangles studied, is this a true statement: sin (90° — 4) =
cos A?

It is not necessary to calculate all of the values needed to solve problems,
because tables like Table 1-3 (p. 25) are available.

To use the table, proceed as follows.

(1) To find the functions of 37°, go down the left-hand column to 37°
and on this line find sin 37° = 0.6018, cos 37° = 0.7986, and tan 37° =
0.7536.

(2) To find the angle whose cosine is 0.8988: go down the column of
cosines until 0.8988 is found and then proceed to the left on this line to
find 26°; thus cos 26° = 0.8988.

(3) To find cos 16.5° (16°30’). This cosine is not listed, but since 16.5°
lies .5 or one half the interval between 16° and 17°, the cosine of 16.5° may
be assumed to lie .5 of the interval between cos 16° and cos 17°. To calcu-
late cos 16.5° it is necessary to subtract the proportional part of the
difference from the value of cos 16° because the cosines decrease as the
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angle increases. This operation is called interpolation, and is performed
as follows:

(a) cos 16° = 0.9613 (d) cos 16° = 0.9613
b) cos 17° = 0.9563 (e) 0.5 X 0.0050 = 0.0025

(c) Difference = 0.0050 3] cos 16.5° = 0.9588

(4) To find tan 35.66° (35°40’). Since the tangent of an angle increases
as the angle increases, the proportional part of the difference is added to the
value of tan 35° to give tan 35.66°.

(a) tan 36° = 0.7265 d) tan 35° = 0.7002
(b)  tan 35° = 0.7002 (e) 0.66 X 0.0263 = 0.0175

(¢) Difference = 0.0263 (f) tan 35.66 = 0.7177

(5) Find angle A if sin A = 0.6626. From the table it is seen that A
lies between 41° and 42°.
(a) sin 42° = 0.6691 (d) sin 4 = 0.6626
(b) sin 41° = 0.6561 (e) sin 41° = 0.6561
(c) Difference = 0.0130 (f) Difference = 0.0065

. . ° o — 41° W °
() Since A isbetween 41°and 42°, 4 = 41° + 5oras X 1°

(h) A = 41° 4 0.5° = 41.5° or 41° 4 30’ = 41°30'.

Exercise 1-24. Find the following functions and angles from the table.

1. sin 45° 7. cos 88.6°

2. cos 45° 8. sin 79.25%

3. tan 45° 9. Angle 4, if sin A = 0.9135
4, sin 90° 10. Angle 4, if tan 4 = 0.2035
S. cos 15.5° 11. Angle 4, if cos A = 0.9310
6. tan 75° 12. Angle 4, if sin A = 0.9995

These functions of trigonometry are used to solve many problems in
radio work. First, however, an illustration based on the action of me-
chanical forces will be discussed.

Consider the ordinary boys’ slingshot (Fig. 1-6a), which consists of a
forked stick with a rubber band fastened to the ends. When a small stone
is placed in the loop and pulled back, the stone flies straight ahead when
released. If the angles shown in Fig. 1-6b are assumed, the forces on the
stone and in the rubber bands may be found, siace these forces are propor-
tional to the lengths of the sides of the triangle ABD or BCD. Half the
force on the stone will be supplied by cach half of the rubber band. For
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TABLE 1-3
Sines, CosINES, AND TANGENTS
Sine Cosine | Tangent Sine Cosine Tangent
Degrees m) adj. ( PP, ) Degrees om’.) adj. ) (opp
hyp. hyp. hyp. kyp.
0 .0000 1.0000 0000 45 7071 7071 1.0000
1 0175 .9998 0175 46 7193 6947 1.0355
2 0319 9994 .0349 47 7314 .6820 1.0724
3 10523 .9986 .0524 48 7431 6691 1.1106
4 .0698 .9976 0699 49 7647 .6561 1.1504
5 .0872 .9962 .0875 50 7660 .6428 1.1918
[ 1045 9945 .1051 51 771 6293 1.2349
7 1219 9925 1228 52 .7880 6157 1.2799
8 .1392 .9903 1405 53 7986 .6018 1.3270
9 1564 9877 1584 54 .8090 .5878 1.3764
10 .1736 9848 1763 55 .8192 .5736 1.4281
11 .1908 .9816 1944 56 8290 .5592 1.4826
12 2079 9781 2126 57 .8387 .5446 1.5399
13 2250 9744 2309 58 .8480 .5299 1.6003
14 2419 9703 .2493 59 8572 5150 1.6643
15 2588 9659 2679 60 .8660 .5000 17321
16 2756 9613 2867 61 .8746 .4848 1.8040
17 2924 9563 3057 62 .8829 4695 1.8807
18 .3090 9511 3249 63 .8910 4540 1.9626
19 .3256 9455 .3443 64 .8988 4384 2.0503
20 .3420 9397 3640 65 9063 4226 2.1445
21 3584 9336 3839 66 9135 4087 2.2460
22 3746 9272 4040 67 9205 .3907 2.3559
23 .3907 9205 4245 68 9272 3746 2.4751
24 4067 9135 4452 69 .9336 .3584 2.6051
25 4226 9063 4663 70 9397 3420 2.7475
26 4384 .8988 4877 71 9455 3256 2.9042
27 4540 .8910 5095 72 9511 .3090 3.0777
28 4695 .8829 5317 73 .9563 2924 3.2709
29 4848 8746 5543 74 .9613 2756 3.4874
30 .5000 .8660 5774 75 9659 .2588 3.7321
31 .5150 8572 6009 76 9703 2419 4.0108
32 .5299 8480 16249 77 9744 2250 4.3315
33 .5446 8387 6494 78 9781 .2079 4.7046
34 .5592 8290 6745 79 9816 .1908 5.1446
35 .5736 8192 7002 80 0848 1736 5.6713
36 .5878 .8090 7265 81 9877 .1564 6.3138
37 .6018 .7986 7536 82 .9903 1392 7.1154
38 .6157 .7880 7813 83 9925 1219 8.1443
39 .6293 a1 8098 84 9945 1045 9.5144
40 .6428 .7660 8391 85 9962 0872 11.4301
41 6561 7547 .8693 86 .9976 .0698 14.3007
42 .6691 7431 9004 87 .9986 .0523 19.0811
43 .6820 7314 9325 88 9994 .0349 28.6363
44 6947 7193 9657 89 .9998 .0175 57.2900
45 7071 7071 1.0000 90 1.0000 0000 | .....
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example, if the rubber band is stretched so that each half or each side
exerts a force of 1 unit (which may be called Fg) in line with itself,

Fy= Force on
Stone

Fp=Force Exerted
by Rubber Band

(b)

Fia. 1-8. Slingshot and Force Diagram.
what is the force exerted on the stone (represented as Fg)? From the

triangle, cos 45° = %-2 or % ¢ =d cos 45°. Since each side of the band

supplies half the force on the stone, then
4 Fy = Fr X c0345° = 1 X 0.7071 = 0.7071.
The total force on the stone will be twice this, or 1.4142 units.

Vector Addition. Some relationships to be explained later are indicated
in the triangle in Fig. 1-7.

§=coso R=2Zcosh Z=%so
z
X }%:sine X =2Zsino Z=§i§—o
8 __ X
R i’ Z=+vVR{X? tanf =g
Fia. 1-7. 1 Tri-
angll:wi:h Pan:xn &eg:::; " The symbol ¢ is the Greek letter theta.

Exercise 1-25.
1. Given R = 8, X = 6, find 6.
2. Given Z = 10, 6 = 45°, find R and X.

Suppose it is stated that R = 8 and X = 6, which are to be combined
to give Z = 10. Certainly these cannot be added by arithmetic because
this would make the sum 8 + 6 = 14. Quantities which have a definite
direction as well as size, such as R, X, Z, are called veclors and are added by
vector addition. To add R to X in this fashion, place them as shown in the
triangle (the arrowhead indicating the direction of each) and draw a line
from the beginning of R to the end of X. This will be Z, the vector
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sum of R and X, and its length is Z = VR? + X? = V8 + 62 =10, as
required.

It is customary to set vectors in boldface type. In writing, a short bar,
as T, over the vector distinguishes it from nonvector expressions, as z.

Another system for finding the values of the trigonometric functions is
to draw a curve of sines. Suppose a circle is drawn whose radius is 1 unit
long (Fig. 1-8), with center at A. Then draw a diameter AD and con-
tinue this line to E; draw another line at a right angle to the diameter and
to the end of the radius (CB). The triangle ACB is a right triangle and

CB

sin @ = iB

Fi16. 1-8. Construction for Sine Curve.

But AB =1 (unity in length) and so sin § = CB. If the radius were
drawn in another position (AB’), the line from B’ to the diameter at C’
will again be sin 6 = C’B’, and so on, no matter what the angle 6 happens
to be. If the entire circle be divided into parts (say 24) and the radius
considered as if moving, in a direction opposite to that of the clock hands,
it will occupy each of these positions in succession. Divisions are marked
on the line DE with the numbers of degrees corresponding to the positions
of the radius. By drawing lines horizontally from the end of the radius in
the various positions to the vertical lines as shown, a curve of sines, or a
stne curve, will be formed when the points are joined by a smooth curve.
Other information may be obtained from such a diagram. Following
the lines used in making the diagram, it may be seen that sin 120° =
sin 60°, sin 150° = sin 30°, and so on. This suggests a general statement
that sin (180° — 4) = sin A. Many similar rules have been worked out.

Exercise 1-26. Compare the height of several points on the curve
with values in Table 1-3 for the same angles.

In Fig. 1-8, cos § = AC. If the radius were again rotated, and the
lengths AC, AC’, and so forth, plotted vertically above the degree marks
on DE, a cosine curve would be obtained. The two curves may be com-
pared; the shape is cxactly the same, but when the sine curve is zero the
cosine curve has the value 1, and so on.
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Exercise 1-27. Compare the values of several points on the sine curve
with the values of cosines in Table 1-3. Could the relation sin (90° — A)
= cos A be used to plot a curve of cosines?

For some purposes it is convenient to use a special unit to measure
angles instead of the usual degrees. If the radius of a circle is bent around.

the circumference of the circle like a

& flexible rule, it will fit 2r times with-

%P  9=1radian Out overlapping (r = 3.1416, ap-

‘ X_ =573° proximately). That is, 2x radii

will be needed to make a curved

line as long as the circumference.

The relation is true no matter what

the size of the circle. The radius,

Fio. 1-0. Measure of Angle in Radians, WIapped around the circle, will be

the curved edge of a piece of pie,

with an angle at the center (Fig. 1-9). This angle is called a radian.

One radian is about 57.3°. There will be 2r radians in the whole cir-

cumference or 360°. To convert degrees to radians, divide the number of

degrees by 57.3; to convert radians to degrees, multiply the number of
radians by 57.3.

Exercise 1-28.

1. Convert the following angles to radians: 45°, 60°, 90°, 180°, 120°,
135°, 22.5°, 200°, 3,000°,
x 3r © Tr 20w

2. Convert the following angles to degrees: =, 4, 55, =~ 0.98x.

Graphs and Curves. A fairly reliable aid in predicting the future is the
experience of the past. To this end information is collected about the
number of automobiles built, number of babies born, temperatures in
various cities, prices on the market, 80
and many other things. This infor-
mation may be listed in the form of
tables or shown on graphs. A graph
of the average daily temperature in
some locality is shown in Fig. 1-10,
which is plotted from Table 1-4.

TABLE 1—4 ok

Temperature,
Date degrees

May 1 51

May 2 58 50
May 3 68 0
May 4 55 Date

May 5 69 Fi1o. 1-10. Chart of Daily Temperature
May 6 74 for May.

701

Temperature
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The gradual rise in temperature at this time of year and the drop of tem-
perature on May 4 are easily seen on the graph.

Sometimes important decisions are made on the basis of information
obtained from graphs. For example, if a power company plotted the
power output of its plants over a long period of time the curve might be
extended toward future dates by observing its shape, amount of bending,
steepness, and so forth. From this extended curve the company might
tell when the power required would be greater than their plants could
furnish, and this would be the date when new generators should be put
into operation (Fig. 1-11).

" 15|

3

x 7

S0l — £ Present Plant Capacity

S Install New Capacity

8

§

S05F

s

D

&
0 1 1 1 !
1920 1930 1940 1950 1960

Year
Fia. 1-11. Output of Plant, by Years.

Another use for graphs has already been shown—a curve of sines may
be used as a table of sines of angles. The curves for cosines, tangents, and
other trigonometric functions may be constructed and used in the same
way.

Logarithms. It has already been shown (pp. 7-9) that very large or
very small numbers are best written in scientific notation. A similar plan

may be used to simplify multiplying, dividing,

and other operations. 10° = 1000
Consider again the table showing powers of 102 = 100

10 and their equivalents in place notation. It 10t = 10

is seen that 10° = 1 and 10! = 10. A number 10 = 1

between 1 and 10 must be represented by 10 10t= 0.1

raised to some power between 0 and 1. Tables 102=  0.01

have been prepared to show what this power 10-* = 0.001

is, and Table 1-5 is this kind of a table for the ete.

base 10.
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TABLE 1-5
LOGARITHMS

N 0 1 2 3 4 5 6 7 8 9
10 0000 | 0043 | 0086 | 0128 | 0170 | 0212 | 0253 | 0204 | 0334 | 0374
11 0414 | 0453 | 0492 | 0531 | 0569 | 0607 | 0645 | 0682 | 0719 | 0755
12 0792 | 0828 | 0864 | 0899 | 0934 | 0969 | 1004 | 1038 | 1072 | 1106
13 1139 | 1173 | 1206 | 1239 | 1271 | 1303 | 1335 | 1367 | 1399 | 1430
14 1461 | 1492 | 1523 | 1553 | 1584 | 1614 | 1644 | 1673 | 1703 | 1732
15 1761 | 1790 | 1818 | 1847 | 1875 | 1903 | 1931 | 1959 | 1987 | 2014
16 2041 | 2068 | 2095 | 2122 | 2148 | 2175 | 2201 | 2227 | 2253 | 2279
17 2304 | 2330 | 2355 | 2380 | 2405 | 2430 | 2455 | 2480 | 2504 | 2529
18 2553 | 2577 | 2601 | 2625 | 2648 | 2672 | 2695 | 2718 | 2742 | 2765
19 2788 | 2810 | 2833 | 2856 | 2878 | 2000 | 2023 | 2045 | 2967 | 2089
20 3010 | 3032 | 3054 | 3075 | 3096 | 3118 | 3139 | 3160 | 3181 | 3201
21 3222 | 3243 | 3263 | 3284 | 3304 | 3324 | 3345 | 3365 | 3385 | 3404
22 3424 | 3444 | 3464 | 3483 | 3502 | 3522 | 3541 | 3560 | 3579 | 3598
23 3617 | 3636 | 3655 | 3674 | 3692 | 3711 | 3729 | 3747 | 3766 | 3784
24 3802 | 3820 | 3838 | 38506 | 3874 | 3892 | 3909 | 3927 | 3945 | 3962
25 3979 { 3997 | 4014 | 4031 | 4048 | 4065 | 4082 | 4099 | 4116 | 4133
26 4150 | 4166 | 4183 | 4200 | 4216 | 4232 | 4249 | 4265 | 4281 | 4298
27 4314 | 4330 | 4346 | 4362 | 4378 | 4393 | 4400 | 4425 | 4440 | 4456
28 4472 | 4487 | 4502 | 4518 | 4533 | 4548 | 4564 | 4579 | 4594 | 4609
29 4624 | 4639 | 4654 | 4669 | 4683 | 4698 | 4713 | 4728 | 4742 ( 4757
30 4771 | 4786 | 4800 | 4814 | 4829 | 4843 | 4857 | 4871 | 4886 | 4900
31 4914 | 4928 | 4042 | 4955 | 4069 | 4983 | 4997 | 5011 | 5024 | 5038
32 5051 | 5065 | 5079 | 5092 | 5105 | 5119 | 5132 | 5145 | 5159 | 5172
33 5185 | 5198 | 5211 | 5224 | 5237 | 5250 | 5263 | 5276 | 5289 | 5302
34 5315 | 5328 | 5340 | 5353 | 5366 | 5378 | 5391 | 5403 | 5416 | 5428
35 5441 | 5453 | 5465 | 5478 | 5490 | 5502 | 5514 | 5527 | 5539 | 5551
36 5563 | 5575 | 5587 | 5589 | 5611 | 5623 | 5635 | 5647 | 5658 | 5670
37 5682 | 5604 | 5705 | 5717 | 5720 | 5740 | 5752 | 5763 | 5775 | 5786
38 5798 | 5809 | 5821 | 5832 | 5843 | 5855 | 5866 | 5877 | 5888 | 5899
39 5911 | 5922 | 5933 | 5944 | 5955 | 5966 | 5977 | 5988 | 5999 | 6010
40 6021 | 6031 | 6042 | 6053 | 6064 | 6075 | 6085 | 6096 | 6107 | 6117
41 6128 | 6138 | 6149 | 6160 | 6170 | 6180 | 6191 | 6201 | 6212 | 6222
42 6232 | 6243 | 6253 | 6263 | 6274 | 6284 | 6294 | 6304 | 6314 | 6325
43 6335 | 6345 | 6355 | 6365 | 6375 | 6385 | 6395 | 6405 | 6415 | 6425
44 6435 | 6444 | 6454 | 6464 | 6474 | 6484 | 6493 | 6503 | 6513 | 6522
45 6532 | 6542 | 6551 | 6561 | 6571 | 6580 | 6590 | 6599 | 6609 | 6618
46 6628 | 6637 | 6646 | 6656 | 6665 | 6675 | 6684 | 6693 | 6702 | 6712
47 6721 | 6730 | 6739 | 6749 | 6758 | 6767 | 6776 | 6785 | 6794 | 6803
48 6812 | 6821 | 6830 | 6839 ( 6848 | 6857 | 6866 | 6875 | 6884 | 6893
49 6902 | 6911 | 6920 | 6928 | 6937 | 6946 | 6955 | 6964 | 6972 | 6981
50 6990 | 6998 | 7007 | 7016 | 7024 | 7033 | 7042 | 7050 | 7059 | 7067
51 7076 | 7084 | 7093 | 7101 | 7110 | 7118 | 7126 | 7135 | 7143 | 7162
52 7160 | 7168 | 7177 | 7185 | 7193 | 7202 | 7210 | 7218 | 7226 | 7235
53 7243 | 7251 | 7259 | 7267 | 7275 | 7284 | 7292 | 7300 | 7308 | 7316
54 7324 | 7332 | 7340 | 7348 | 7356 | 7364 | 7372 | 7380 | 7388 | 7396
N 0 1 2 3 4 5 6 7 8 9
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TABLE 1-5 (Continued)
LOGARITHMS

N 4] 1 2 3 4 5 6 7 8 9
55 7404 | 7412 | 7419 | 7427 | 7435 | 7443 | 7451 | 7459 | 7466 | 7474
56 7482 | 7490 | 7497 | 7505 | 7513 | 7520 { 7528 | 7536 | 7543 | 7551
57 7559 | 7566 | 7574 | 7582 | 7589 | 7597 | 7604 | 7612 | 7619 | 7627
58 7634 | 7642 | 7649 | 7657 | 7664 | 7672 | 7679 | 7686 | 7694 | 7701
59 7709 | 7716 | 7723 | 7731 | 7738 | 7745 | 7752 | 7760 | 7767 | 7774
60 7782 | 7789 | 7796 | 7803 | 7810 | 7818 | 7825 | 7832 | 7839 | 7846
61 7853 | 7860 | 7868 | 7875 | 7882 | 7889 | 7896 [ 7903 | 7910 | 7917
62 7924 | 7931 | 7938 | 7945 | 7952 | 7959 | 7966 | 7973 | 7980 | 7987
63 7993 | 8000 | 8007 | 8014 | 8021 | 8028 | 8035 | 8041 | 8048 | 8055
64 8062 | 8069 | 8075 | 8082 | 8089 { 8096 | 8102 | 8109 | 8118 | 8122
65 8129 | 8136 | 8142 | 8149 | 8156 | 8162 { 8169 | 8176 | 8182 { 8189
66 8195 | 8202 | 8209 | 8215 | 8222 | 8228 | 8235 | 8241 | 8248 | 8254
67 8261 | 8267 | 8274 | 8280 | 8287 | 8293 | 8209 | 8306 | 8312 | 8319
68 8325 | 8331 | 8338 | 8344 | 8361 | 8357 | 8363 | 8370 | 8376 | 8382
69 8388 | 8395 | 8401 | 8407 | 8414 | 8420 | 8426 | 8432 | 8439 | 8445
70 8451 | 8457 | 8463 | 8470 | 8476 | 8482 | 8488 | 8494 | 8500 | 8506
71 8513 | 8519 | 8525 | 8531 | 8537 | 8543 | 8549 | 8555 | 8561 | 8567
72 8573 | 8579 | 8585 | 8501 | 8597 | 8603 | 8609 | 8615 | 8621 | 8627
73 8633 | 8639 | 8645 | 8651 | 8657 | 8663 | 8669 | 8675 | 8681 | 8686
74 8692 | 8698 | 8704 | 8710 | 8716 | 8722 | 8727 | 8733 | 8739 | 8745
75 8751 | 8756 | 8762 | 8768 | 8774 ( 8779 | 8785 | 8791 | 8797 | 8802
76 8808 | 8814 | 8820 | 8825 | 8831 | 8837 | 8842 | 8848 | 8854 { 8859
77 8865 | 8871 | 8876 | 8882 | 8887 | 8893 | 8809 | 8904 | 8910 | 8915
78 8921 | 8927 | 8932 | 8938 | 8943 | 8949 | 8954 | 8360 | 8965 | 8971
79 8976 | 8982 | 8987 | 8993 | 8998 | 9004 | 9002 | 9015 | 8020 | 9025
80 9031 | 9036 | 9042 | 9047 | 9053 | 9058 | 9063 | 9069 | 9074 | 9079
81 9085 | 9090 | 9096 | 9101 | 9106 | 9112 | 9117 | 9122 | 9128 | 9133
82 9138 | 9143 | 9149 | 9154 | 9159 | 9165 | 9170 | 9175 | 9180 | 9186
83 9191 | 9196 | 9201 | 9206 [ 9212 | 9217 | 9222 | 9227 | 9232 | 9238
84 0243 | 9248 | 9253 | 9258 | 9263 | 9269 | 9274 | 9279 | 9284 | 9289
85 9294 | 9299 | 9304 | 9309 | 9315 | 9320 | 9325 | 9330 | 9335 | 9340
86 9345 | 9350 | 9355 | 9360 | 9365 | 9370 | 9375 | 9380 | 9385 | 9390
87 9395 | 9400 | 9405 | 9410 | 9415 | 9420 | 9425 | 9430 | 9435 | 9440
88 9445 | 9450 | 9455 | 9460 | 9465 | 9469 | 9474 | 9479 | 9484 | 9489
89 9494 | 9499 | 9504 | 9509 | 9513 | 9518 | 9523 | 9528 | 9533 | 9538
90 9542 | 0547 | 9552 | 9557 | 9562 | 9566 | 9571 | 9576 | 9581 | 9586
91 9590 | 9595 | 9600 | 9605 | 9609 | 9614 1 9619 | 9624 | 9628 | 9633
92 8638 | 0643 | 9647 | 9652 | 9657 | 9661 | 9666 | 9671 | 9675 | 9680
93 9685 | 9689 | 9694 | 9699 | 9703 | 9708 | 9713 | 9717 | 9722 { 9727
94 9731 | 9736 | 9741 | 9745 | 9750 | 9754 | 9759 | 9763 | 9768 | 9773
95 9777 | 9782 | 9786 | 9791 | 9795 | 9800 | 9805 | 9809 | 9814 | 9818
96 9823 | 9827 | 9832 | 9836 | 9841 | 9845 | 9850 | 9854 | 9859 | 9863
87 9868 | 9872 | 9877 | 9881 [ 9886 | 9890 | 9894 | 9899 ( 9903 | 9908
98 9012 | 9917 | 9921 | 9926 | 9930 | 9934 | 9939 | 9943 | 9948 | 9952
Y 0956 | 9961 | 9965 | 9969 | 9974 | 9978 | 9983 [ 9987 | 9991 | 9996
N 0 1 2 3 4 S 6 7 8 9
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Before using the table consider that 2, for example, lies between 1 and
10; it may be represented by 10%3%° in which the exponent lies between
0and 1. Also it is possible to write 3 as 10471, Since the 10 (the base)
occurs in all cases, it is convenient to change the name of the exponent to
logarithm and not to write the base at all. The logarithms of the numbers
from 1 to 10 are the following (logarithm is abbreviated ‘“log”):

log 1 = 0.0000 log 4 = 0.6021 log 7 = 0.8451
log2 =03010 log5=0.6990 log 8 = 0.9031
log 3 = 04771 log 6 = 0.7782 log 9 = 0.9542

Now from the table of powers of 10 the exponent (or logarithm) of
numbers between 10 and 100 must lie between 1 and 2. But 20 is the same
fraction of the distance from 10 to 100 that 2 is from 1 to 10. Therefore
the logarithm of 20 is 1.3010 and similarly

log 200 = 2.3010
log 2,000 = 3.3010

The part of the logarithm to the right of the decimal point remains the
same as long as the digits in the original number remain the same; the
part to the left of the decimal point changes by 1 whenever the number is
multiplied or divided by 10.

The decimal fraction or right-hand part of the logarithm is given in
the table to four decimal places and is called the mantissa. The integral
part to the left of the decimal point is called the characteristic and is found
in the following way:

(&) Move the decimal point in the number until the number remaining
is between 1 and 10.

(b) Count the number of places the decimal point has been moved and
call this number the characteristic.

(¢) Make the characteristic positive if the decimal point was moved
to the left and negative if it was moved to the right.

(d) A negative characteristic is written as a positive one, with 10 sub-
tracted from the entire log.

Ezample: Find log 4,570 in the table.

(a) Find 45 in the left-hand column of Table 1-5 and move across
this line to the column headed by 7 to find 6599. Write this as 0.6599.

(b) Move the decimal point to the left three places to give 4.570, a
number between 1 and 10. The characteristic is 3 and positive.

(¢) The complete logarithm is 3 + 0.6599 = 3.6599.

Ezample: Find log 0.00121.
(a) Find 12 in the left-hand column, go across this line to the column
headed 1 and find 0.0828.
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(b) Move the decimal point to the right three places, to give 1.21.
The characteristic is 3 and negative, but is written 7, - 10.
(¢) log 0.00121 = — 3 4 .0828 = 7.0828—10.

Exercise 1-29.

1. Check the following: (a) log 207 = 2.3160; (b) log 8,500 = 3.9294;
(c) log 0.667 = 9.8241—10; (d) log 91.9 = 1.9633.
2. Find logs of these numbers: 206, 75,400, 8,300, 92.8, 0.00026.

The number corresponding to a given logarithm is called the antilogarithm
and is found as follows:

(a) Find the mantissa of the logarithm in the body of the table. Move
acress to the left-hand column for the first two figures of the antilog and
note the column heading which is the third figure; consider the result as a
number between 1 and 10.

(b) Move the decimal point to the right as many places as the char-
acteristic when the latter is positive and to the right when it is negative.

Ezample: Find antilog 2.5877,

(&) Find 0.5877 in line 38 and column 7; consider this as 3.87.

(b) Move the decimal point 2 places to the right, which gives 387, the
required antilog.

Ezample: Find antilog 7.3243—10.

(a) Find 0.3243 in line 21, column 1; consider this as 2.11.
(b) The characteristicis7 — 10 = — 3. Therefore, move the decimal
point 3 places to the left to get 0.00211 as the required antilog.

If the exact value cannot be found in the table, take the value nearest to
it; or interpolate as follows:

Ezample: Find antilog 0.4208.

log 2.64 = 0.4216 log 2.64 = 0.4216
log 2.63 = 0.4200 given log = 0.4208
Difference = 0.0016 Difference = 0.0008

Since 0.0008 =+ 0.0016 = 0.5, the required antilog must lie 0.5 of the
way from 2.63 to 2.64, or 2.635. The characteristic is zero so the decimal
point does not have to be moved.

Exercise 1-30.

1. Check the following: (a) antilog 1.8169 = 65.6; (b) antilog
7.9325--10 = 0.00856; (c) antilog4.4814 = 30,300; (d) antilog3.5711
= 3725; (e) antilog 8.8766—10 = 0.07527.

2. Find the antilogs of the following: (a) 2.9274; (b) 9.9533—10;
(¢) 3.5441; (d) 0.6196; (e) 6.6169—10.
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Logarithms may be used to make multiplication and division easier.
The rules are the same as those stated for exponents. That is, o multiply,
add the logarithms of the numbers and look up the antilogarithm of the
result. The work of multiplying 479 by 89 may be arranged as follows:

log 479 = 2.6803
log 89 = 1.9494
log of product = 4.6297
antilog 4.6297 = 42,630.
To divide, subltract logs; to divide 479 by 890, arrange thus:
log 479 = 12.6803 — 10
log 890 = 2.9494
log of quotient = 9.7309 — 10
antilog 9.7309 — 10 = 0.538.

Since the difference of the logs is a negative number here, 10 is added
at the left and subtracted to the right of log 479 (this does not alter its
value) and the log of the quotient shown is obtained.

Exercise 1-31. Perform the operations indicated, using logs.

1.3 X7 5. 87.5 +- 37.7

2. 746 X 0.567 6. 0.685 -+ 9.75

3. 5.556 X 637. 7. 3.14 + 272

4. 0.0495 X 0.0267 8. 0.0385 =+ 0.00146

Logs are very useful in finding higher powers and roots of numbers.
Suppose that 24° is needed. This could be found exactly by multiplying
24 X 24 X 24 X 24 X 24, but logs make the operation much easier. Thus:

log 24 = 1.3802
multiply by 5
log (5 X 24) = 6.9010

antilog 6.9010 = 7,962,000.

Others powers are also easy: for example, 205 = 2t = V2,
log 2 = 0.3010
multiply by 0.5
log 2°5 = 0.1505
antilog 0.1505 = 1.414
This is actually the process of extracting a square root, because
205 % Q05 — Q05HLE — 1 — 9,
Logarithms may be plotted graphically, and the resulting curve may be

used as a table or otherwise. Instead of using equal divisions on the paper
in plotting this graph, it is handier to use paper which is divided according
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to the logarithms of the numbers, as shown in Fig. 1-12. Entering the
chart at 2, on the bottom, proceed upward to the line and then to the left
to find 0.3, which is log 2. To find antilog 0.8, enter the chart at 0.8 on
the left, proceed horizontally to the line, and then down to 6.4 as required.

1.0

09

03

0.2

01 A

00

1 2 3 4 5 6 7 8910
N = Number

F1a. 1-12. Curve Showing Logarithms of Numbers,

Exercise 1-32. Compare the values of logs found on the chart with
values from the table.

Besides the use of logarithms for calculating, there are other reasons for
understanding their use. The human ear acts in a manner that is of
logarithmic nature. What we hear depends upon where we are, among
other things. As everyone knows, it is harder to make another person
hear what is being said in a noisy location (such as city traffic) than in a
quiet place. The reason is that the increase of sound necessary to give the
impression of a change in sound intensity is governed not only by the
actual change of sound intensity but also by the amount of other sound
present. By selecting a unit of sound intensity which is of the same sort
as the action of the ear, the communication enginecers simplify discussion
of this action and make it easier to set control dials to correet values.

The unit of sound level used is called the decibel (abbreviated db) and is
defined by the equation

b = 10 log I’i,‘,
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where db is the number of decibels, P, is the larger amount of power, and P;
the smaller amount of power (or sound) being compared. If one sound is
twice as loud as another (twice as much power), then the ratio P;/P; = 2;
log 2 = 0.3010, and therefore the number of decibels is 10 X 0.3010 = 3.
This may be seen from the chart showing the relation between power ratio
and decibels, Fig. 1-13. If the output power in a given system is greater
than the input power, the system is said to have a gain; if the output is
less than the input, the system is said to have a loss, or the gain is expressed
in negative decibels. By assigning a figure to the zero level, the power
output of amplifiers and other equipment may be rated in decibels, as is
often done.

Exercise 1-33. 1. From the chart find the number of decibels corre-
sponding to the following power ratios: 2, 4, 10, 100, 1,000, 3, 50, 600.
2. Find the power ratios corresponding to the following decibel gains
(or losses): 2, 6, 35, 20, 10.

As has been shown, charts may be made with divisions which are log-
arithmic. For some purposes it is more convenient to use simply a scale
which is divided into parts proportional to the logarithms of numbers, such
as Fig. 1-14. It is seen that the point marked 2 is about 0.3 of the length
of the scale from the left-hand end; 4 is located 0.6 of the length from the
left, and 80 on. Other divisions are marked according to the following
system. Considering the 1 at the left-hand end of the scale (called the
index) to represent 100, the main divisions will be 1, 2, 3, - - -, to represent
100, 200, 300,---. Between 1 and 2 are other divisions marked from
1 to 9, which represent 110, 120, 130, + + .. These are further divided with
a third set of marks which do not have numbers but represent 101, 102,
103- - -, to 199. Between the 2 and 4 the subdivisions with the longest
lines represent 210, 220, 230,. - -, which are again divided to represent
202, 204, 206,- - - etc. The smallest divisions here represent numbers
twice as large as those in the portion of the scale marked 1 to 2. From 4 to
the right-band end of the scale the major divisions are also by 10's (410,
420, 430 - - -) but the smallest division represents only 5; that is, 405, 415,
425, - « - with 10’s divisions between. In Fig. 1-15 is a scale with the
following points marked: A 365, B 327, C 263, D 1,745, E 1,347, F 305,
G 207, H 1,078, I 435, J 427.

Fia. 1-15. Logarithmic Scale with Certain Points Marked.
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Exercise 1-34. Verify the above readings on the scale and locate the
following points: 445, 463, 772, 255, 279, 1,850, 1,763, 1,941, 1,005.

The numbers at either end of the scale (called the left-hand and right-
hand indez, respectively) may be multiplied or divided by any power of
10; that is, the left-hand index may represent 1.0, 100, 10%, 0.001, and all
other points on the scale will have the same multiplier. This property and
other properties of logarithms permit two such scales as have been described
to be used for multiplication, division, and other operations with numbers
except addition and subtraction.

If the scale marked C (Fig. 1-14) be cut out on line zy, the C scale
may be matched with the D scale or moved to any position along the latter.
For example, if the 1 on the C scale (called C for brevity) be placed oppo-
site 2 on D, 2 on C will be opposite 4 on D, 3 opposite 6, and so on. But
48 2 X 2, and actually log 2 on C has been added mechanically to log 2 on
D and the result, quite properly, islog 4. This process (adding logarithms
mechanically) is the basis of the slide rule, which makes tedious calcula-
tions much easier.

Division may be performed with equal ease. For example, to divide
9 by 3, set 3 on C over 9 on D and read 3, the answer, under the left-hand
index (1) on C.

This same setting also gives the result of dividing 6 by 2, 7.5 by 2.5,
36 by 12, and many other combinations. This property may be used to
work problems in proportion, such as

3:9 =z:42,

finding the answer 14 above 42 on the D scale.

The location of the decimal point may be found by rules like those used
for logarithms, but is often located by inspection. Thus, in multiplying
195 by 24, an approximate calculation (made mentally) with 200 X 20
shows that the answer should be somewhere near 4,000, and actually is
4,680.

Common fractions are easily converted to decimal fractions on these
scales, by dividing the numerator by the denominator. That is, to convert
1 to a decimal fraction, set 16 on C over 1 on D and find 0.0625 on D
under the right-hand index of C.

The relation between the divisions on the D scale and the logarithms of
nuinbers may be seen by finding the logarithms on the scale of equal parts,
marked L. For example, opposite 2 on D find 0.301 on L, opposite 3 on
D find 0.477 on L, and so forth.

Exercise 1-35. Perform the following operations with the sliding
scales.

1. Multiply: 3 X 5, 8.05 X 5.17, 556 X 634, 743 X 0.0567,
0.0495 X 0.0267.
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2. Divide: 87.5 + 37.7, 0.685 + 8.93, 1,029 -+ 9.70, 0.00377 =+ 5.29.

3. Solve the proportion: 2:3 = z : 7.83.

4113 17 193

5 16 32 348 1,095

Compare values of logarithms found on the L scale with those in Table
1-5.

4. Convert to decimal fractions:

Answers to Exercises

I-1, (1) 28; (2) 32; (3) 26; (4) 32; (5) 90; (6)0; (7) 5; (8) 7
(9) this operation not possible; (10) 2; (11) 5; (12) 5; (13) 0; (14) 49;
(15) 32,

1-2. ()1 D1 @) 4% D% B F O 45 )4 @) o1
(9) ; (10) 13; (11) §3; (12) §3%.

1-3. (1) 0.75, 0.625, 0.5625, 0.265625, 0.9, 0.666 .-, 0.764 - - -;
(2) see machinist’s or other handbook; (3) 9.806; (4) 0.746; (5) 23.731526;
(6) 0.826.

4. 12 23 G5 W7, G)3 OL M4 BT O7;
(10) 6.

1-5. (1)6.05 X 10%; (2)6.94 X 10"; (3) 5.87 X 10**; (4) 9.3 X 107;
(3) 2 X 1077 (6) 3 X 105,

1-6. (1) 860,000; (2) 6,600,000,000,000,000,000,000; (3) 0.00003;
(4) 0.064; (5) 1,200,000,000; (6) 0.00000628.

1-7. (1) 6.7 X 107; (2) 5 X 10%; (3) 0.00174.

1-8. (1) 24m; (2) 10v; (3) 100g; (4) b; (5) de; (6) 2.3z; (7) 17.27k;
(8) 22h.

1-9. (1) 10a + 13b; (2) 7.8¢ + 19.1d + 6.2¢; (3) 36f; (4) 16z;
(5) 92y; (6) 15z; (7) 5a; (8) .92r; (9) 3; (10) 3a + 2z + y.

1-10. (1) 8a? — 5ab; (2) —2% — 10z +12; (3) —2r* 4 2rs — 3s%;
(4) 3a? + 4a — 10.

1-11. (1) 6x7; (2) —R'; (3) —1254%; (4) 30E®%; (5) —8; (6) —152%7%;
(7) 9a°2; (8) —9a%?; (9) —6¢°; (10) —24n2d3; (11) —z%y'8; (12) 4d%'°.

1-12. (1) 8+ 5; (2) —32; (3) —15d + 24; (4) 8a® + 4ab + 3ac;
(5) ~r+2s; 6) —11d+7; (7) 812 — 13n — 2; (8) —23n — 52; (9)
16a?; (10) 9s2 4+ s; (11) 5z — 45; (12) 8y* + 6y; (13) 14r — 17; (14)
—322 4 10z — 20; (15) 16z — 90y — y* — 54.

1-13. (1) Tz(y — 22); (2) 5ab(a — 5b); (3) 2xr(r + h); (4) 42(2y* —
4y + 3); (5) ab(ab — 3b + 4a? — 12); (6) 6m(4mn — n® + 6mn® — Tm?).
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1-14. (1) i+ 5n+6; (2) a2 —3e¢—10; (3) p*— 9p + 20; (4)
a? 4 3ab + 2b%; (5) z* — 1622 + 48; (6) *h? — 5th — 84; (7) 92 — 6z
—3; (8) z* — 6z%?® — 55y4.

15, 1) (n+3)(n+2); (2 -5 —1; 3) (a—4)(a—~5);
4) 2n—1En4+2); G) + 2 +y); (6) Ba+2)Ga+4); ()
@+ 52) (1 +2); (8) (a2 — 11b%)(a? + 5b%).

1-16. (1) z2+62+9; (2) 22— 10z + 25; (3) z* + 12zy + 36%;
(4) a? — 2ac + ¢%; (5) 422 — 122 4+ 9; (6) 9a + 30a + 25; (7) a* — 6ab +
9b%; (8) Okt — 6k2+ 1; (9) 25r¢ + 10,2 + s%; (10) a® + 24a® + 144;
(11) k* — 3k + 5; (12) §a* + 4ab + J0%

1-17. (1) (z — 6)%; (2) (4= — 5y)%; (3) (5a® + 12b%)%

1-18. (1) 22 — »*; (2) 100 — a®; (3) 16a® — 9b%*; (4) (6r + s)(6r —
8); (8) (—9v+ 5u)(9v 4+ 5u); (6) 3c(2c — 1)(2c+ 1); (7) (60 + 3)
(60 — 3) = 3,600 — 9 = 3,591; (8) (60 4 15)(60 — 15) = 3,375.

1-19. (1) 100; (2) 0.41; (3) 50; (4) 322.
1-20. (1) 377; (2) 51.9; (3) 159; (4) 0.603; (5) 0.
1-21. (1) 118; (2) (RR:)/(R: — R).

1-22. Nz=-3, +1; (2 z=+43, +5;, @) z=+11,—-2; 4)
z=4%} B z=%41} ©z=21 Ny=-% -4 ®z=19,1;
(9)z = —8, +6; (10) z = —3a, +a.

1-23. (1) 5inches; (2) 0.6, 0.8, 0.75; (3) sin 30° = cos 60°, sin 60° =
cos 30°; (4) yes.

1-24. (1) 0.7071; (2) 0.7071; (3) 1.0000; (4) 1.0000; (5) 0.9636;
(6) 3.7321; (7) 0.0245; (8) 0.9824; (9) 66°; (10) 11.5%; (11) 21.5% (12)
88.25°.

1-25. (1) 37°; (2) R = 7.07, X = 7.07.
1-27. Yes.

1-28. (1) 0.785, 1.047, 1.571, 3.142, 2.094, 2.356, 0.398, 3.491, 52.36;
(2) 60°, 135°, 2.5°, 210°, 1,200°, 176.4°.

1-29. (2) 2.3139, 4.8774, 3.9206, 1.9675, 6.4150 — 10.
1-30. (2) (a) 846; (b) 0.898; (c) 3,500; (d) 4.16; (e) 4.14 X 10-4.

1-31. (1) 21; (2) 422; (3) 3,530; (4) 1.32 X 10-%; (5) 2.32; (6) .0702;
(7) 1.155; (8) 26.4.

1-33. (1) 3, 6, 10, 20, 30, 4.7, 16.9, 27.8; (2) 1.6, 4, 3,200, 100, 10.

1-35. (1) 15, 15.8, 3,520, 42.1, 1.32 X 10-3; (2) 2.32, 7.68 X 10-2, 106,
7.13 X 10-4; (3) 5.22; (4) 0.8, 0.688, 0.094, 4.88 X 10-2, 0.176.



CHAPTER 2
D.C. Circuits

Introduction. Radio is the name given to the science of communication
and control by means of electromagnetic vibrations in space. It is the
problem of the designers and operators of radio equipment to set up vibra-
tions at the propeér frequencics, and of sufficient power so that they can be
detected by electric circuits tuned to respond to these particular vibrations.
The proper care and manipulation of the complicated radio apparatus of
the present time requires an extensive knowledge of electric circuits,
vacuum tubes, and other equipment. The basis of all work in radio is an
understanding of the character of electric phenomena, particularly the
manner in which electric circuits respond to electric impulses.

One hundred years ago electricity was thought to be some peculiar kind
of fluid which flowed in wires very much as water or oil flows in pipes.
This idea permitted scientists to explain many of their experiments with
electricity. Asmore and more new experiments were tried, the fluid theory
did not continue to explain all of the results that were obtained and the new
theories that were used to explain the results became more and more compli-
cated. At the present time so many different experiments have been tried,
and the theories used to explain them have become so complicated, that
much study involving higher mathematics is required to understand these
advanced theories. Fortunately it is necessary for the electrical technician
to understand only the more elementary of them in order to work
effectively.

The old belief that electric current is a fluid flow caused by an electric
pressure and opposed by a resistance in the wire is still very effective in
solving many of the problems of the electrician and the radio operator.
It is now known, however, that electric current is not a true fluid but that
it consists of the drift of millions of negatively charged particles along a
wire. These negatively charged particles are called electrons and are so
extremely small that they flow through the spaces between the atoms of
the conductor.

In most metals a few electrons in the outer portion of the atom are very
loosely bound to the nucleus of the atom. As a result large numbers of
these electrons are frec to drift about in the interatomic space. Metals

of this type are called conductors. If the electrons are attracted by con-
41
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necting the conductor to a battery they will accelerate owing to the force
of attraction but the speed attained by any individual electron will be
relatively small because it will bump into one of the many atoms be-
fore it has gone very far and bounce off in another direction. The energy
which the electron had absorbed by reason of its acceleration is given up
to the atom and appears in the form of heat. Some substances have a
molecular structure in which the electrons are so closely bound to the
molecule that a very high electric pressure is required to tear them away.
Substances of this type are called insulalors and are used in electric cir-
cuits to keep the electron flow restricted to paths desired by the designer.

Although it is interesting to know that electrons float about inside metal
conductors, a complete understanding is not essential to a workable knowl-
edge of electric circuits. Occasional reference may be made to the above
statements to give a clearer explanation of physical occurrences. The
simple fluid theory, however, will be the basis for most of the development.

Electrical Quantities. In order to discuss electrical phenomena in-
telligently, it is necessary to define some electrical quantities and specify
the units in which these quantities are measured. Four of these quantities
and the units in which they are measured are given below. Other defini-
tions will be added as the need arises.

THE couromB. The unit of electrical charge or the quantity of excess
electrons is called the coulomb. It is the charge which would be obtained
by collecting approximately 6,300,000,000,000,000,000 (6.3 X 108) free
electrons on a single charged body. This is a large unit and is seldom used
in elementary radio calculation. It is important, however, as a basis for
other units.

THE AMPERE. The unit of electric flow is called the ampere. If one
coulomb of charge passes a given point on a wire in one second, then one
ampere is said to flow. In other words, the ampere is a special name given
to a coulomb per second. It is specified by international agreement as
the constant current which will deposit silver at the rate of 0.0001118 g
per second, as this definition gives a means by which a standard may be
obtained anywhere, while the counting of the electrons would be difficult.

THE ouM. The unit of resistance to electric flow is called the ohm and
it is specified by international agreement as the resistance which at a
temperature of 0°C is offered to the flow of current by a column of
mercury of uniform cross section, of & length of 106.3 c¢m, and having a
mass of 14.45 g. The magnitude of the cross section so specified is essen-
tially a square millimeter.

THE vour. The unit of electric pressure is the volt and is the pressure
which will force one ampere to flow through a resistance of one ohm.

It is often difficult to visualize the magnitude of these units from the
formal definitions so the following information may be of aid to the begin-
ning student. Some idea of the size of the coulomb may be gained from
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the fact that if a charge of 6.8 millionths of & coulomb were placed one foot
from a similar charge there would be a repelling force of one pound acting
between them. The ampere is most easily visualized by referring to a
100-watt electric light which takes about one ampere of current. The
favorite comparison for the volt is that an ordinary dry cell has 1.5 v. The
normal pressure for domestic electric service is 120 v. The resistance of
an electric toaster or flat iron is about 25 ohms. These statements may
assist the novice in visualizing these quantities.

Ohm’s Law. In order to obtain a better understanding of electrical
circuits, use will be made of the old but still useful fluid analogy. In Fig.
2-1 a pump is shown driven by a motor. This pump is used to circulate

\'

\

Y \'

\‘

\V

Resistance

Motor Voltmeter
3 -':—.[ Battery
T Ammeter
/ "\ Pump Meter
(a) (c)
b) (d)
P re Flow Prossure Electric Electric Volts

ressu A —_—_ pressure flow —_—
(Ib/in?) (gal./min.) Flow (volta) (amperes) Amperes

20 1.6 12.5 8.0 0.92 8.7

35 28 12,5 12,0 1.38 8.7

75 6.0 12.5 16.8 1.93 8.7

100 8.0 12,5 22.4 2.57 8.7

150 12.0 12.6 47.0 5.40 8.7

F19. 2-1. Analogy Between Hydraulic and Electric Circuita.

oil* through a cooling coil of small copper tubing. A gauge is connected
to the ends of the copper tubing to measure the difference in pressure
across the coil and a flow meter is inserted in the pipe to measure the rate
at which the oil flows through the tubing.

If the speed of the pump is changed and if readings are taken of the
pressure gauge and flow meter at each pump speed, a set of data will be
obtained as shown in the table in Fig. 2-1b. It is important to observe
that at each pump speed the pressure divided by the flow gives the same

* Qil is used instead of water because it is a liquid of high viscosity and will obey the
Okm’s Law of the hydraulic circuit.
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result. In this case that value is 12.5. The flow at any pressure can, of
course, be found by dividing the pressure by 12.5. If the flow is desired
at some pressure other than those tested it might also be obtained by
dividing the pressure by 12.5.

Ezample: What is the flow at 50 Ib per square inch pressure?
According to the relation stated above,

pressure _ 50
125 125

pressure being in pounds per square inch. The constant 12.5* is charac-
teristic of this particular size and length of tubing and so can be called
the resistance of the coil of tubing.

To the right of this simple hydraulic circuit is shown a similar electric
circuit. A battery supplies the electric pressure that causes an electric
current to flow through a coil of copper wire indicated diagrammatically
as B. The meter used to measure the electric pressure in volts is called a
voltmeter. The meter used to measure the current in amperes is called an
ammeter. If taps are arranged on the battery so that different voltages
may be applied to the coil of wire, then a set of readings of volts and corre-
sponding amperes can be made. These readings would be comparable to
the pressure and flow readings of the hydraulic circuit. In the electric
circuit the voltmeter reading divided by the ammeter reading is always
8.7 and this constant is called the resistance. It is seen by this analogy
that in the electric circuit also it is possible to predict the current flow with
any given voltage. For instance, if the current corresponding to 65 v
were desired, then

flow = = 4 gallons per minute,

E _ 65

=87 87

E being in volts. This value of 8.7 is a characteristic of the wire and
is called the resistance. It is measured in the unit which has previously
been defined as the ohm. The formal statement of the relationship
observed above is as follows:

The current in amperes is equal to the pressure in volis divided by the restst-
ance in ohmas.

This statement is known as Ohm’s Law and is the basis for a large por-
tion of electrical circuit theory. It may be expressed mathematically in
the three forms below:

-2, r=2

A word of caution should be given at this time, for although this is the
general rule of behavior of electrical circuits, there are many exceptions.

* This constant depends also upon the viscosity of the fluid. In electricity the
variable corresponding to viscosity does not occur.

1 = 7.5 amp,

E = RI.
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Many of these cases of unusual behavior are the basis of the operation of
important commercial equipment. No great worry should, therefore,
be caused the student when he later meets with these exceptions.

Series Circuits. Electrical conductors may be connected following one

another so that any current flowing through one must flow through the
other. This is shown in Fig. 2-2. When

circuits are connected in this manner the R R>
resistances are said to be connected in series.
The combined or equivalent resistance of Ry 4y —
and R, connected as in Fig. 2-2 is IE'

Rtom = Rl + Rz-

Fr1a. 2-2. Series Resistances.
The electrical pressure across R; when

added to the electrical pressure across R, will equal the total battery
pressure.

According to Ohm’s Law the pressure or voltage across R, is R,I and
the voltage across R; is R»I. Since the current is the same in both resist-
ances, the voltage across the individual resistances will be proportional to
their resistances. Also, the proportion of the total voltage across R, will
be Ry/(R, + R;). This relationship is used many times in radio, and
such a combination of resistances to give a reduced voltage is known as a
polentiometer or vollage divider,

Ezample: If a resistance of 100,000 ohms is connected in series with a
resistance of 5,000 ohms across a 90-v B battery, (a) what current will
flow? (b) if the voltage across the 5,000-ohm resistor is used to control
& vacuum tube, what would this voltage be?

Solution: The equivalent resistance of the two resistances in scries is

Ry = 100,000 + 5,000 = 105,000 ohms.
By Ohm’s Law, the current will be,

E 90
I= —R~ = m = 0.00086 amp.
The voltage across the 5,000-ohm resistance is,

R, 5,000

E = Ebnwry Rl + Rz =90 105’000 =428 v.

Exercise 2-1. A vacuum-tube filament takes 0.9ampat 6.3v. (2) What
is the resistance? (b) What additional resistance would be required if
the filament were to be supplied from a 12-v battery?

Exercise 2-2. 'The heaters of five vacuum tubes are to be supplied in
series. They require a current of 0.3 amp and each has a resistance of
21 ohms. What is the total resistance and what voltage must be used to
supply the necessary current?
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Exercise 2-3. How much resistance would be placed in series with
a 50,000-ohm resistor to obtain a voltage of 8.4 across the 50,000-ohm
resistor when a 45-v battery is the source of pressure?

Parallel Circuits. Resistances in electric circuits may be connected in
parallel as shown in Fig. 2-3. When resistances are connected in this
manner it will be noted that the

R battery voltage is impressed across
‘\R/,\' each resistance just as if the other
—A/N resistance were not there. ‘The cur--
gt ,f;\' rent in each resistance is determined
= by Ohm'’s Law as,
Fig. 2-3. Parallel Resistances. Iy = %, I; = % and I;= %;.

The total current in the circuit is the sum of the currents in the individual
resistances, so
Iym=L+I=1Is

_E
=%
1 1 1

~E(gtmtm)
The quantity 1/R is a constant called the conductance and is indicated by
the symbol G. It is that characteristic of a resistance which when
multiplied by the voltage gives the current. The unit of conductance is
called the mho. This is recognized as the ohm spelled backwards and the
name was chosen to be a reminder that the mho was the reciprocal of the
ohm. Since the sum of the currents is equal to the total current, then the

sum of the conductances in a parallel circuit is equal to the total con-
ductance.

E E
+§2+E;

G =G+ G+ G+...

The proportion of the total current which is flowing in any one resistor is
the conductance of that circuit element divided by the total conductance
of the circuits which are in parallel. Expressed mathematically, this is

no_ EG, _ Gy
Tow EG+G+Git-) GitG+tGt

Ezample: Determine the equivalent resistance of the following four
resistances connected in parallel. What proportion of the current will
flow through the 8-ohm resistance?

R, = 20 ohms R, = 25 ohms
Ry = 12 ohms R, = 8 ohms
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Solution:
G1=*=.050 G,:*:,MO
Gy = g7 = .084 Gi=} =.125

Total conductance is
Guow =G+ G+ Gy + Gy = 299
Equivalent resistance is

1

RQ =356 = 3.34 ohms.
Proportion of current flowing through the 8-ohm resistance is
G, 125

Lo = G Gt GG, = 255 = 418 = 418%.

It is of interest to call attention to the special case where only two re-
sistances are connected in parailel. This is so very common that it prob-
ably constitutes the majority of the problems in parallel circuits. In this
special case,

Lew=h+h=1+%

-5 )= 2(5555)
.. E

RR:
Ry 4+ R,
Therefore,
_ _RiRy
R = Ry + R

This equivalent resistance will act in every way just as the two resistances
in parallel, and so it is very common for engineers to refer to the equivalent
resistance of two resistances in parallel as the product of the resistances
divided by the sum of the resistances. It should be remembered, however,
that this particular formula applies only to the case of two resistances in
parallel.

Exercise 2-4. Two resistances, one of 50 ohms and one of 20 ohms,
are connected in parallel across a 100-v line. What is the total current
and the equivalent resistance?

Exercise 2-5. 'Two circuit elements are connected in paralle]l across a
240-v line. One has a conductance of .0063 mho and the other a con-
ductance of .0172 mho. What current will be taken from the line? What
proportion of this current will flow through the clement having a con-
ductance of .0172 mho?
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Exercise 2-6. A 90-v battery supplics a total current of 0.134 amp to
two parallel resistance elements. If one of the resistance elements takes
0.039 amp, what is the resistance of each element?

Exercise 2-7. Five resistances are connected in parallel. It is desired
to know the total current and the proportion of this current going through
R; when a potential of 24 v is applied. The resistances are: R, = 4 ohms,
Ra = 7 ohms, Ry = 22 ohms, R = 10 ohms, Ry = 65 ohms.

Series-Parallel Circuits. Many times it is desirable to use combinations
of series and parallel arrangements of resistances in radio equipment. The
procedure used to solve circuits of this type is to combine the parallel
resistances into equivalent series resistances and then determine the total
current produced by the impressed voltage. This total current will divide
in a parallel circuit in proportion to the conductances and so the current
in any one of the resistances may be found.

Ezample: In the circuit shown in Fig. 24, determine the current in
the 7-ohm resistance.

R,= 10 OHMS

Solution:
Ry=3 OHMS
G: = Yy = 0.100
+ G:= } =0.142
_T45 Volts R.= 12 OHMS G‘ = Ilg' = 0.083
Equivalent conductance is
F1a. 2-4. Recsistances in Series and
Parallel. Geq = 0.100 + 0.142 4 0.083 = 0.325.
Equivalent resistance is
) 1
Ry = 0395 = 3.08.

Total resistance is
R, = 3.08 + 3 = 6.08.
Total current is

Current in 7-ohm resistance is

_ G, 0142 3

I1.°m - (TOQ‘I; = 0_325 X 7-40 b 3.23 Bmp.
An alternate method of obtaining the current in any branch of a parallel
circuit is to determine the voltage across the circuit from the equivalent
IR drop and then divide this voltage by the resistance to obtain the current

in that circuit element.
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Ezample: In the circuit shown in Fig. 2-5 determine the current in

15 OHMS

the 10-ohm resistance.

Solution: Equivalent resistance
of parzallel circuit is

_1l0x15 150 _ =T 110 Volts
R = 15315~ 25 — 6 ohms. T

Fia. 2-5. A Series-Parallel Circuit.
Total resistance of circuit is

R.= 5+ 6 = 11 ohms.

Total current is
E 110

I‘ =-1—?¢—_—1T=103mp.

Volts across parallel resistances are
E,=1IR, =10 X 6 = 60

Current through 10-ohm resistance is

=B _60_
Ilo-ohm—m—l = 6 amp.

20 OHMS

16 OHMS
5 OHMS v Exercise 2-8. Determine

the total current and the
80 OHMS current in the 5-ohm resistor
v of the circuit of Fig. 2-6.

100, +|
Volts =]

Fia. 2-6. Circuit for Exercise 2-8.

125 Volts

Exercise 2-9. Determine
the total current and the
current in the 25-ohm re-
sistance of the circuit shown
in Fig. 2-7.

25 OHMS

Fia. 2-7. Circuit for Exercise 2-9.
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220 Volts
{1

D.C. CIRCUITS

1}
23 OHMS

Determination of Resistance.

NV

130HMS

20 OHMS

F1e. 2-8. Circuit for Exercise 2-10.

63 OHMS

85 OHMS

[Chap. 2

Exercise 2-10. What is the differ-
ence of potential across ab and across
be of the circuit shown in Fig. 2-8.

Since copper wire is used so extensively
in radio circuits it is important to know the resistance of various sizes of
wires. In Table 2-1 not only the resistance but several other items of
information are given for various sizes of copper magnet wire.

TABLE 2-1
ProPERTIES OF COoPPER MAGNET WIRE

Size of Ohms ?er Pounds | Diameter | Diameter | Diameter
wire Diameter per C E EC§
(A.W.G.) (mils*) at. 20" 1000 ft in mils in mils in mils
0000 460.0 0490 | 640.5 468.
000 409.6 0618 | 507.9 418.
00 364.8 0779 | 4028 375.
0 324.9 L0983 | 319.5 333.
1 289.3 .1239 | 253.3 207.
2 257.6 .1563 | 200.9 266.
3 229.4 .1970 159.3 237.
4 204.3 2485 | 126.4 212,
6 162.0 3951 79.46 170.
8 128.5 .6282 49.97 134. 131. 136.
10 101.9 9989 31.43 107. 104, 109.
12 80.81 1.588 19.77 85.8 83.0 88.0
14 64.08 2.525 12.43 69.1 66.1 71.1
16 50.82 4.016 7.818 55.8 52.6 57.6
18 40.30 6.385 4.917 45.3 42.0 47.0
20 31.96 10.15 3.092 37.0 33.5 38.0
22 25.35 16.14 1.542 29.4 26.8 31.3
24 20.10 25.67 1.223 24.1 21.3 25.8
26 15.94 40.81 7692 19.9 17.0 21.5
28 12.64 64.90 4837 16.6 13.6 17.6
30 10.03 103.2 3042 14.0 10.8 14.8
32 7.950 164.1 .1913 12.0 8.75 12.8
34 6.305 260.9 .1203 10.3 7.01 11.0
36 5.000 414.8 0757 9.00 5.60 9.60
38 3.965 659.6 0476 7.97 4.47 8.47
40 3.145 1049.0 0299 7.16 3.55 7.55

* 1 mil = 0.001 in.
1 C means single cotton covered.

-

E means ennmeled.
EC means enameled with single cotton covering.
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Occasionally materials other than copper are used, and if the resistance
relative to that of copper is known, the resistance of wires of these other
materials may be found by multiplying the resistance of copper wire of
the same size by the relative resistance. A list of relative resistances is
given in Table 2-2.

TABLE 2-2
RESISTANCES OF METALS: RATIO OF RESISTANCE OF METAL TO RESISTANCE OF COPPER
Resistance Resistance
Pure metals relative to Alloys relative to
copper copper
TIron.................. 5.80 Radiohm.... 77
Zinc.................. 3.43 Nichrome. .. 65
Tungsten.............. 3.20 Advance. . 28
Aluminum............. 1.55 High brass 4.8
Gold.................. 1.40 Lowbrass............ 3.8
Silver................. 843 Commercial bronze. . .. 2.4

The resistances here given are at normal or room temperature and are
satisfactory for most use. It is well to remember that in most cases the
resistance of metals increases with temperature and if the temperature is
very high or if very accurate results are required, temperature effects
must be considered.

Kirchhoff’s Laws. Two rules or laws known as Kirchhoff’s Laws are
important in solving complicated electric circuits. These laws were
implied in the solutions of series and parallel circuits but are stated ex-
plicitly as follows:

(1) The current flowing inlo any junclion of an electric circuit is equal
lo the current flowing out of that junction.

(2) The sum of the batlery or generator voltages around any closed circutt
18 equal to the sum of the voltage drops in reststances around the same circuit.

Ezample: The use a 20HMS p  6OHMS
of these laws is illus- MW W
trated by determining + Iab Icb +
the current flow in the 12Volts = lbdl 10 OHMS =210 Volts
10-ohm resistance of I

Fig. 2-9. The cur- e d
rents are shownas I,  Fig. 2-9. Circuit Illustrating Use of Kirchhoff’s Laws.
meaning that the cur-
rent specified is the current flowing from a to b, I, the current flowing
from ¢ to b, and I, the current from b to d.

Using Kirchhoff’s first law at the point b,

I@+I@= IM.
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Using Kirchhoff’s second law around circuit eabd,
21, + 101 = 12.

Using Kirchhoff’s second law around the circuit fcbd,
61, -+ 101 = 10.

The above three equations have three unknown currents I, I, and Ipg.
Since I, =.Is — I, the second equation may be written as,

2Ihe — 215 + 100 = 12

121, — 2I, = 12.

Multiplying both sides by 3 and adding to the third equation of the set of
three above,

or

361,y — 61, = 36

10y + 61, = 10

4614 = 46
I = 1 amp.

Method of Superposition. Another method of obtaining the solution for
a circuit having several voltages is based on a principle often used in elec-
trical theory. It states that the current in a wire is the sum of the currents
produced by each vollage acting by itself and with the other voltages shorted out.

Ezample: In Fig. 2-9, I, can be obtained due to the 12-v battery
with the 10-v battery shorted.

The equivalent resistance of the 5-ohm and 10-ohm resistances in parallel
is (6 X 10)/15 = 3.33. This is in series with the 2-ohm resistance, so
that the total current is
_12
" 533

One third of this current goes through the 10-ohm resistance, so the current
contributed by the 12-v battery is 2.25/3 = .75 amp. The current due
to the 10-v battery can be found by shorting out the 12-v battery. The
equivalent parallel resistance is

2X10 20
m = 12 = 1.66 ohms.

This is in series with the 5-ohm resistance, so that the total current is

10
'6T6' =15 amp.
Only one sixth of this current will go through the 10-ohm resistance
Hence, the contribution of the 10-v battery is

1.5
5= 0.25 amp.

I = 2.25 amp.
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The total current is, then,
0.75 + 0.25 = 1.0 amp.

The answer by this method is, of course, the same as that obtained by the
use of Kirchhoff’s Laws.

Exercise 2-11. Determine the voltage across ab of Fig. 2-10 by using
both Kirchhoff’s Laws and by the method of superposition.

R, a Ry
AAAAY VWA

E, = 120 volts E; = 60 volts
E +} R, R, = 10 chms Ry = 20 ohms
= Ry = 5ohms Ry = 7 chms

+ Ry = 8 ohms Ry = 2ohms

FE
A AAAY T VVAAA
Re b Rs

F1a. 2-10. Circuit for Exercise 2-11.

Exercise 2-12. A three-wire distribution system is supplied with two
125-v generators connected in series as shown in Fig. 2-11. Determine
the voltage across

each load if the dis- l«—400 Ft: 300 Ft—>

tribution wire is all A )

No. 2 AW.G. cop-

per wire, 125 Volts %h‘ %“3 Iy = 40 amp
Power and En- [/ I, = 65 amp

ergy. The manner + I, = 35 amp

of electron flow 125 Volts “z

through conductors

was discussed in the -

introduction of this | 600 Ft.

chapter. The agi- F1a. 2-11. Circuit for Exercise 2-12.

tation or the in-
crease in the random movement of the molecules owing to the fact that
they are being continuously hit or bumped into by the drifting electrons
was noted, and it was stated that this resulted in an increase in tempera-
ture. The passage of current through a conductor having resistance is
always associated with such a generation of heat. The relation between
the current, voltage, and resistance of the circuit and the conversion of
electric energy into heat is an important element in the study of electric
circuits.

Referring again to the hydraulic circuit of Fig. 2-1, it is known that
for constant flow the energy put into the circuit by the pump will be doubled
if the pressure is doubl