REFERENCE DATA for RADIO ENGINEERS

Federal Telephone and Radio Corporation 17 Brose Street
 Now York, N. Y:

REFERENCE DATA for RADIO ENGINEERS

Published by the
Federal Telephone and Radio Corporation an I. T. \& T. Associate
67 Broad Street New York, N. Y.

Copyright 1943 by
Federal Telephone and Radio Corporation
Printed in the U. S. A.
First Edition

First Printing August, 1943
Second Printing October, 1943

FOREWORD

Appreciating the present special need for radio reference data in compact, convenient form, the Federal Telephone and Radic Corporation presents "Reference Data for Radio Engineers" as an aid to radio research, development, production and operation. In selecting material for the book, the aim was to provide for the requirements of the engineer as well as the practical technician. Hence, more fundamental data are included than is usually found in a concise radio handbook in order to fill a gap that has existed in the past between the handbook and the standard radio engineering text book. Special effort also was directed to making the material useful both in the laboratory and in the field.

The present book was compiled under the direction of the Federal Telephone and Radio I aboratories in collaboration with other associate companies of the International Telephone and Telegraph Corporation. This group of companies (including their predecessors) possesses experience gained throughout the world over a period of many years in the materialization of important radio projects.

In the United States the Federal Telephone and Radio Corporation and its predecessor companies have pioneered in radio and its allied fields. Following several years of development consummated in 1911, commercial radio telegraph services were inaugurated, making practical use for the first time in America of Poulsen's high efficiency arc generator for the production of sustained or undamped waves. Dr. Lee de Forest, while employed by Federal as Consulting Engineer and Physicist during the years 1911-12-13, did much of his work on fundamental applications of his invention of the three element vacuum tube. During the period 1912-1918, Federal supplied many high power transmitters to the U.S. Navy, including the 1000 -kw installation at Bordeaux (France). Commercial development of the Marine Radio Direction Finder was completed in 1924 and, in 1937, the RC-5 Radio Compass, which was the first automatic direction finder with 360° indication ever installed in an airplane, was introduced into the I'nited States.

A radio airplane landing system, variously designated as the Civil Aeronautics Administration, Indianapolis, or I. T. \& T. Instrument Landing System, has been adopted as standard for important airports throughout the country. Additional contributions in the short and ultra-short wave field comprise radio ranges, highly efficient FM and other ultra-high frequency antennas, and the design of a short wave broadcast transmitter powered at 200 kw .

Achievements of special present significance, originating from basic research in fields allied to communications, include the introduction into the United States in 1938 of the Selenium Rectifier; the development of high tension and high frequency "Intelin" cables; and a process for the thin case hardening of metals utilizing energy in the megacycle frequency range.

For the initiation, proposal, development and delivery of a completely integral marine radio equipment for cargo and passenger vessels, in the form of a Marine Radio Unit, the Maritime Commission in 1942 awarded the Maritime " M " to the Radio Division of the Federal Telephone and Radio Corporation. In 1943, for great accomplishment in the development of war equipment, the Laboratories Division of the Federal Telephone and Radio Corporation was awarded the Army-Navy " E ".

In countries other than the United States, contributions by International Telephone and Telegraph associates also are numerous. Mention should be made of single-sideband short wave radiotelephony, demonstrated as early as $1930-31$ between Buenos Aires and Madrid, and between Madrid and Paris. In 1931, transmissions on approximately 1600 mc (18 cm wavelength) with very sharp beams were achieved across the English Channel; shortly thereafter, the Anglo-French Micro-Ray Link was established commercially. Prominent among medium and short wave broadcasters of the highest powers are the $120-\mathrm{kw}$ Prague transmitter and one of the most recent BBC Empire transmitters rated at 100 kw to 130 kw , as well as the Paris $30-\mathrm{kw}$ Eiffel Tower television transmitter.

Acknowledgement is gratefully made to another International Telephone and Telegraph associate company, Standard Telephones and Cables, Ltd., London, for its book, "Reference Data for Radio Engineers", distribution of which was warmly welcomed in Great Britain. The present book partly parallels the British reference but contains considerable additional data and material specifically selected for the use of American engineers.

For advice and suggestions in connection with the present book, acknowledgement is due to members of the technical staff of I. T. \& T. System companies in New York City and Newark, N. J., particularly to E. M. Deloraine, Director of Federal Telephone and Radio Laboratories, and to Haraden Pratt, Vice President and Chief Engineer of Mackay Radio. Others who made valuable contributions include A. Alford, H. Busignies, G. Chevigny, D. D. Grieg, A. G. Kandoian, E. Labin and E. M. Ostlund of the F. T. \& R. Laboratories, C. V. Litton, W. W. Macalpine, G. T. Royden, A. J. Warner and J. E. Yarmack, of the F. T. \& R. Corporation, C. E. Scholz of Mackay Radio, A. M. Stevens of the I.T. \& T. Corporation, and G. H. Gray and F. J. Mann of the International Standard Electric Corporation.

H. H. Buttner
Chairman, Radio Reference Book Committee Vice-President, Federal Telephone and Radio Corporation

H. T. Kohlhaas, Editor
Editor of Electrical Communication

CONTENTS

Foreurord
General Engineering Tables
Conversion Table 11
Fractions of an Inch with Metric Equivalents 12
Copper Wire Table 13
Copperweld Wire: Mechanical and Electrical Properties 14
Standard Stranded Copper Conductors 15
Screw Head Styles and Method of Length Measurement 15
Standard Machine Screw Data-Chart for Hole Sizes 16
Engineering and Material Data
Insulating Materials 17
Plastics: Trade Names 18
Physical Constants of Various Metals 19
Fusing Currents of Wire 21
Melting Points of Solder 21
Temperature Chart of Heated Metals 22
Spark Gap Voltages 2.3
Thermocouples and Their Characteristics 24
Characteristics of Typical Thermocouples 25
Head of Water and Approximate Discharge Rate 26
Wind Velocities and Pressures 27
Weather Data 27
Temperature Extremes 27
Precipitation Extremes 27
World Temperatures 28
World Precipitation 29
Principal Power Supplies in loreign Countries 30
Audible Spectrum 3.3
Ether Spectrum 34
Radio Frequency Classifications 34
Audio and Radio Design-General
Condenser Color Code 35
Resistor Color Code 36
Standard Color Coding for Resistors 37
Inductance Charts for Single Layer Solenoids 39
Copper Wire Coil Data 42
Reactance Charts 4.3
Time Constants for Series Circuits 47
Impedance Formulas 50
Network Theorems 54
Electrical Circuit Formulas 55
Attenuators 65
Filter Networks 70
Rectifiers
Special Connections and Circuit Data for Typical Rectifiers 72
Selenium Rectifiers 75
Vacuum Tubes and Amplifiers
Vacuum Tube Design 79
Nomenclature. 79
Coefficients 80
Terminology 80
Formulas 81
Electrode Dissipation Data 82
Filament Characteristics 83
Ultra-High Frequency Tubes 84
Vacuum Tube Amplifier Design 88
Classification 88
General Design 88
Graphical Methods 92
Resistance Coupled Audio Amplifier Design 101
Negative Feedback 102
Distortion 103
Army and Navy Preferred List of Vacuum Tubes 103
Cathode Ray Tubes, Approximate Formulas 104
Telephone Transmission
Power Ratio, Voltage Ratio, Decibel Table 106
Transmission Line Data and Constants 107
Radio Frequency Transmission Lines
Transmission Line Data 113
Surge Impedance of Uniform Lines 114
Transmission Line Types and Their Characteristic Impedance 116
Impedance Matching with Shorted Stub 117
Impedance Matching with Open Stub 117
Wave Guides and Resonators 118
Radio Propagation and Antennas
Field Strength of Radiation from an Antenna 127
Field Strength from an Elementary Dipole 127
Ultra-Short Wave Propagation 131
Line of Sight Transmission Distance 132
Reflection Coefficient of Plane Radio Waves from Surface of the Sea 132
Distance Ranges of Radio Waves 133
Radio Transmission and the Ionosphere 139
Time Interval between Transmission and Reception of Reflected Signal 142
Linear Radiators 143
Maxima and Minima of Radiation-Single-Wire Radiator 144
Antenna Arrays 144
Radiation Pattern of Several Common Types of Antennas 147
Radiation Pattern of Multi-Element Linear Broadside Array 148
Radiation Pattern of Multi-Element Binomial Broadside Array 149
Frequency Tolerances 150
Noise and Noise Measurement
Wire Telephony 153
Radio 156
Non-Sinusoidal Waveforms
Relaxation Oscillators 157
Electronic Differentiation Methods 159
Fourier Analysis of Recurrent Waveforms 160
Analyses of Commonly Encountered Waveforms 165
Dimensional Expressions 171
Greek Alphabet 171
Mathematical Formulas and General Information
Miscellaneous Data 172
Mensuration Formulas 172
Formulas for Complex Quantities 173
Algebraic and Trigonometric Formulas 173
Approximations for Small Angles 175
Quadratic Equation 175
Arithmetical Progression 175
Geometrical Progression 175
Combinations and Permutations 175
Binomial Theorem 175
Maclaurin's Theorem 175
Trigonometric Solution of Triangles 176
Complex Hyperbolic and Other Functions 176
Great Circle Calculations 179
Mathematical Tables
Logarithms of Numbers and Proportional Parts 181
Natural Trigonometric Functions for Decimal Fractions of a Degree 183
Logarithms of Trigonometric Functions for Decimal Fractions of a Degree 187
Exponentials (e^{n} and $\mathrm{e}^{-\mathrm{n}}$) 191
Natural or Naperian Logarithms 192
Hyperbolic Sines 194
Hyperbolic Cosines 195
Hyperbolic Tangents 196
Bessel Functions 197

CONVERSION TABLE

To Convert	Into	Multiply by	Conversely Mulliply by
Acres	Square feet	43,560	2.296×10^{-5}
Almospheres	Cmin of mercury	76	0.01316
Atmospheres	Inches of mercury	29.92	0.03342
Atmospheres	Kilograms per sq. meter	10,332	9.678×10^{-5}
Atmospheres	Pounds per sq. inch	14.70	0.06804
B.T.U.	Foot-pounds	777.97	0.0012854
Caloriss (large)	Kilogram-meters	426.85	0.00234
Contigrade	Fahrenheir	$\left(C^{\circ} \times 9 / 5\right)+32$	(F0-32) $\times 5 / 9$
.Cubic inches	Cubic centimeters	16.39	6.102×10^{-7}
Cubic inches	Cubic feet	5.787×10^{-4}	1728
Cubic inches	Cubic meters	1.639×10^{-8}	61,023
Cubic inches	Cubic yards	2.143×10^{-6}	46,656
Cuble inchos	Gallons	4.329×10^{-8}	231
Dynos	Poundals	7.233×10^{-6}	13,826
Eros	Foot-pounds	7.3756×10^{-8}	1.3558×10^{0}
Gailons (U.S.)	Gallons (British)	0.83268	1.20094
Grams	Dynes	980.665	0.0010197
Grams	Groins	15.432	0.0648
Grams	Kilograms	10^{-8}	10^{8}
Grams	Ounces (avoir.)	0.03527	28.35
Grams	Poundals	0.07093	14.10
Grams	Pounds	2.205×10^{-3}	453.6
Groms per centimeter	lbs. per in.	5.600×10^{-1}	178.6
Groms per c.c.	Lbs. per cu, in.	0.03613	27.680
Groms per sq. cm.	Lbs. per sq. ff.	2.0481	0.4883
Horsapower	8.T.U. per min.	42.40	0.02357
Horsepower	Foor-pounds per min.	33,000	3.030×10^{-3}
Horsopower	Kg . colories per min.	10.68	0.09358
inches	Contimeters	2.540	0.3937
Inches	Feet	8.333×10^{-3}	12
Inches	Miles	1.578×10^{-3}	6.336×10^{4}
Inches	Mis	10^{3}	10^{-2}
Inches	Yords	2.778×10^{-2}	36
Inches of mersury $\left(0^{\circ} \mathrm{C}\right.$.)	tbs. per sq. in.	0.49116	2.0360
Joules	Ergs	10^{7}	10-7
Kilogroms	Tons (2000 lbs.)	0.001102	907.185
Kilometers	Miles	0.62137	1.6094
Kilowath-hours	B.T.U.	3413	2.930×10^{-4}
Kilowath-hours	Foot-pounds	2.656×10^{6}	3.766×10^{-1}
Kilowatthours	Horsepower-hours	1.341	0.7455
Kilowatt-hours	toules	3.6×10^{8}	2.778×10^{-7}
Kilowatthours	Kilogram-calories ${ }^{\text {a }}$	860	1.163×10^{-1}
Kilawatt-hours	Kilogram-meters	3.672×10^{3}	2.723×10^{-4}
Liters	Cubic centimeters	10^{3}	10^{-8}
Liters	Cubic inches	61.02	0.0164
Liters	Cubic mefors	10^{-8}	10^{8}
Liters	Cubic yards	1.308×10^{-8}	764.6
Liters	Gallons (U.S.)	0.26418	3.783
Liters	Pints (liq.)	2.1134	0.4732
Moters	Centimeters	100	0.01
Metors	Feet	3.2808	0.3048
Maters	Inches	39.37	0.0254
Maters	Kilometers	10^{-8}	10^{8}
Maters	Miles	6.214×10^{-4}	1.609×10^{3}
Meters	Yards	1.094	0.9144
Meters per min.	Centimoters per sec.	1.667	0.6000
Maters per min.	Feot per min.	3.281	0.3048
Meters pormin.	Kilometers per hour	0.06	16.67
Meters permin.	Miles per hour	0.03728	26.82
Milea (noutical)	Feot	6080.2	1.6447×10^{-1}
Miles (noutical)	Miles (statute)	1.1516	0.86836
Mlles (statute)	Feot	5280	1.894×10^{-1}
Milas (statute)	Yards	1760	5.682×10^{-4}

CONVERSION TABLE-Continued

To Convert	Into	Multiply by	Conversely Multiply by
Miles per hour	Feet per min.	88	0.01136
Miles per hour	Feet per sec.	1.467	0.6818
Miles per hour	Knots	0.8684	1.152
Poundals	Pounds (waight)	0.03108	32.174
Square inches	Circulor mils	1.273×10^{6}	7.854×10^{-1}
Square inches	Square centimeters	6.452	0.1550
Square inches	Square feet	6.944×10^{-8}	144
Square inches	Square mils	10^{6}	10^{-6}
Square inches	Square yards	7.716×10^{-4}	1296
Square meters	Square foet	10.7639	0.0929
Square miles	Square kilometers	2.590	0.3861
Tonnes	Tons (2000 lbs.)	1.1023	0.9072
Watts	B.T.U. per minute	0.05688	17.58
Wats	Eras per second	10^{1}	10^{-7}
Watts	Foot-pounds per min.	44.27	0.022597
Waths	Horsopower	1.341×10^{-3}	745.7
Wotts	Kilogram-calories per min.	0.01433	69.77

FRACTIONS OF AN INCH WITH METRIC EQUIVALENTS

Fractions of an lnch		Decimals of an Inch	mm.			Decimals of an Inch	mm.
, !		. 0156	0.397		${ }^{3}$. 5156	13.097
! ${ }^{\prime}$. 0313	0.794	${ }^{17} 8$. 5313	13.494
$3{ }^{4}$. 0469	1.191		${ }^{35}$. 5469	13.891
$1 / 4$. 0625	1.588	? ${ }^{6}$. 5625	14.288
\cdots		. 0781	1.984		${ }^{87}$. 5781	14.684
3		. 0938	2.381	1912		. 5938	15.081
? 4		. 1094	2.778		${ }^{31} 4$. 6094	15.478
1/8		. 1250	3.175	5/8		. 6250	15.875
?		. 1406	3.572		${ }^{41}$. 6406	16.272
$3{ }_{3}$. 1563	3.969	21任		. 6563	16.669
${ }^{11}$. 1719	4.366		4^{43}	. 6719	17.066
1/18		. 1875	4.763	${ }^{11}$. 6875	17.463
${ }^{18} \mathrm{H}$. 2031	5.159		${ }^{4} \cdot 4$. 7031	17.859
$7{ }^{7}$. 2188	5.556	${ }^{21} / 2$. 7188	18.256
15,4		. 2344	5.953		${ }^{4} \mathrm{H}$. 7344	18.653
$1 / 4$. 2500	6.350	$3 / 4$. 7500	19.050
- 17-4		. 2656	6.747		${ }^{4} \cdot \mathrm{H}$. 7656	19.447
8/8		. 2813	7.144	${ }^{25} 9$. 7813	19.844
18 19,4		. 2969	7.541		${ }^{31} 4$. 7969	20.241
S/x		. 3125	7.938	${ }^{18} \times$.8125	20.638
21.4		. 3281	8.334		${ }^{33}$. 8281	21.034
$11 / 8$. 3438	8.731	27.6		. 8438	21.431
${ }^{23} \cdot 4$. 3594	9.128		${ }^{33} .4$. 8594	21.828
3/8		. 3750	9.525	7/8		. 8750	22.225
3 c		. 3906	9.922		${ }^{56}$. 8906	22.622
$18 / 80$.4063	10.319	796		. 9063	23.019
${ }^{28}{ }^{29} 4$. 4219	10.716		33 m	.9219	23.416
${ }^{7}$.4375	11.113	${ }^{15} 9$. 9375	23.813
${ }^{29}{ }_{4}^{4}$. 4531	11.509		${ }^{61} 4$. 9531	24.209
1/8,		. 4688	11.906	81/2		. 9688	24.606
		. 4844	12.303		${ }^{83}$. 9844	25.003
		. 5000	12.700	-		1.0000	25.400

COPPER WIRE TABLE \dagger

Amer. Wire Gauge A.W.G. (B\&S)	Birm. Wire Gauge B.W.G.	Imperial or British Std. S.W.G.	ENGLISH UNITS			METRIC UNITS		
			Diam. in Inches	Weight Lbs. per Wire Mile	Resist. Ohms per Wire Mile $20^{\circ} \mathrm{C}\left(68^{\circ} \mathrm{F}\right)$	Diam. in mm.	Weight Kg. per Wire Km.	Resist. Ohms per Wire Km. $20^{\circ} \mathrm{C}$
-	-	-	. 1968	618	1.415	5.0	174.0	. 879
	-	-	. 1940	600	1.458	4.928	169.1	. 905
		6	. 1920	589.2	1.485	4.875	166.2	. 922
-	-	-	. 1855	550	1.590	4.713	155.2	. 987
			. 1819	528.9	1.654	4.620	149.1	1.028
	7		. 1800	517.8	1.690	4.575	146.1	1.049
-	-	-	. 1771	500	1.749	4.5	141.2	1.086
		7	. 1762	495.1	1.769	4.447	140.0	1.098
-	-	-	. 1679	450	1.945	4.260	127.1	1.208
	8		. 1650	435.1	2.011	4.190	123.0	1.249
6			. 1620	419.5	2.086	4.115	118.3	1.296
		8	. 1600	409.2	2.139	4.062	115.3	1.328
-	-	-	. 1582	400	2.187	4.018	113.0	1.358
	-	-	. 1575	395.3	2.213	4.0	111.7	1.373
7	9		. 1480	350.1	2.500	3.760	98.85	1.552
			. 1443	332.7	2.630	3.665	93.78	1.634
		9	. 1440	331.4	2.641	3.658	93.40	1.841
-	-	-	. 1378	302.5	2.892	3.5	85.30	1.795
	-	-	. 1370	300	2.916	3.480	84.55	1.812
	10		. 1341	287.0	3.050	3.405	80.95	1.893
8			. 1285	263.8	3.317	3.264	74.37	2.061
		10	. 1280	261.9	3.342	3.252	73.75	2.077
-	-	-	. 1251	$\underline{250}$	3.500	3.180	70.50	2.173
-	-	-	. 1181	222.8	3.930	3.0	62.85	2.440
-			. 1144	209.2	4.182	2.906	58.98	2.599
	-	-	. 1120	$\underline{200}$	4.374	2.845	56.45	2.718
-	12		. 1090	189.9	4.609	2.768	53.50	2.862
		12	. 1040	172.9	5.063	2.640	48.70	3.144
*10			. 1019	165.9	5.274	2.588	46.77	3.277
-	-	-	. 0984	154.5	5.670	2.5	43.55	3.520
	-	-	. 0970	150	5.832	2.460	42.30	3.620
	* 14		. 0830	110.1	7.949	2.108	31.03	4.930
*12			. 0808	104.4	8.386	2.053	29.42	5.211
		14	. 0801	102.3	8.556	2.037	28.82	5.315
	-	-	. 0788	99.10	8.830		27.93	5.480
* 13			. 0720	82.74	10.58	1.828	23.33	6.571
*14			. 0841	65.63	13.33	1.628	18.50	8.285
*13			. 0508	41.28	21.20	1.291	11.63	13.17
*19			. 0359	20.58	42.51	. 912	5.802	26.42
*22			. 0253	10.27	85.24	. 644	2.894	52.96
*24			. 0201	6.46	135.5	. 511	1.820	84.21
*27			. 0142	3.22	271.7	. 360	. 908	168.9

[^0]* When used in cable, weight and resistance of wire should be increased about 3% to allow for increase due to twist.
SOLID COPPERWELD WIRE—MECHANICAL AND ELECTRICAL PROPERTIES

$\begin{aligned} & \text { Size } \\ & \text { AWG } \end{aligned}$	Diam. Inch	Cross sect. area		WEIGHT			RESISTANCEOHMS $/ 1000^{\prime}$ AT 68° F.		breaking load, lbS.		$\begin{aligned} & \text { ATTENUATION-DB } \\ & \text { PER MHLE* } \end{aligned}$				CharacteristicImpedance	
		Cir. Mils	Square inch	$\begin{array}{\|l\|l} \text { Lbs } \mathrm{p}^{2} \\ 1000^{2} \end{array}$	$\begin{aligned} & \text { Lbs. per } \\ & \text { Mile } \end{aligned}$	Feet per lb.	40\%	30\%	$\begin{gathered} \text { 40\% } \\ \text { Conduct. } \end{gathered}$	$\begin{gathered} 30 \% \\ \text { Conduct. } \end{gathered}$	40\% Cond.		30\% Cond.			
											Dry	Wet	Dry	Wet	10\%	30\%
4	2043	41,740	. 03278	115.8	611.6	8.63	. 6337	. 8447	3,541	3.934 3.250					-	
5	.1819 1620	33,100 26,250	. 0202600	91.86 72.85	485.0 384.6	10.89 13.73	. 7.0998	1.343	2,433 2,481	${ }^{3} \mathbf{2}, 680$. 078	. 086		. 109	650	688
7	. 1443	20,820	. 01635	57.77	305.0	17.31	1.270	1.694	2.011	2,207	. 0933	. 100	. 122	. 127	685	732
8	. 1285	16,510	. 01297	45.81 3633	241.9	21.83 27.52	1.002 2.020	2.156 2.69	1, 1.368	1,491	$\bigcirc 132$. 138		. 174	776	${ }_{852}$
	- 1144	3,090 10380	. .008158	36.81 28.81	152.1	34.70	2.547	3.396	1,130	1,231	. 156	. 161	. 196	. 200	834	920
11	. 0907	8,234	. 006467	22.85	120.6	43.76	3.212	4.28	896	975	. 183	. 188	. 228	. 233	910	1013
12	. 0808	${ }^{6,530}$. 005129	18.12	95.68	55.19	4.05	5.40	711	770 530	. 216	. 220	. 262	. 266	1000	1120
13	. 0720	5.178	. 00404067	14.37	75.88	69.59 8775	5.11	${ }_{6}^{6.81}$	490	530						
14	. 06471	4,107	. 0003225	${ }_{9}^{11.40}$	60.17 47.72	110.6	${ }_{8.12}$	10.83	300	330						
15	.0571	${ }^{3,587}$. 00020288	7.167	37.84	139.5	10.24	13.65	250	270						
17	. 0453	2,048	. 001609	5.684	30.01	175.9	12.91	17.22	185	205						
18	. 0403	1,624	. 001276	4.507	23.80	221.9	16.28	21.71	153	170						
19		1,288	. 001012	3.575	${ }^{18.87}$	${ }^{279.8}$	20.53	27.37	122	130						
20	. 0320	${ }^{1,022} 810.1$.0008823	2.835 2.248	11.87	352.8 44.8	32.65	4.5	73.2	18.1						
2	. 0285	642.5	. 0005046	1.783	9.413	560.9	41.17	54.88	58.0	64.3						
23	. 02226	509.5	. 0004001	1.414	7.465	707.3	51.92	69.21	46.0	51.0						
24	. 0201	404.0	. 0003173	1.121	5.920	$1{ }^{891.9}$	65.46 88.55	${ }^{87} 1{ }^{87.0}$	38.9 28.9	32.1						
25	. 0179	320.4 254.1	. 00001996	. 785	4.723	1,118	104.1	138.8	23.0	25.4						
27	. 0142	201.5	. 0001583	. 559	2.953	1,788	131.3	175.0	18.2	20.1 15.9						
28	. 0126	159.8 1268	. 000000996	. 343	1.857	2,843	${ }^{108.7}$	278.2	11.4	12.6						
30	. 0100	100.5	. 0000789	. 279	1.473	3,586	${ }^{263.2}$	350.8	9.08	10.0						
31	. 0089	79.70	. 00000626	. 221	$\begin{array}{r}1.168 \\ \hline 196\end{array}$	4,701	331.9 418.5	442.4 557.8	5.71	7.95 6.30						
32	${ }^{.0080}$	63.21 50.13	. 00000394	.139	.734	7,189	527.7	703.6	4.53	5.00						
34	. 00063	39.75	. 0000312	. 110	. 582	19,065	${ }_{839.4}^{665.4}$	1118.0	3.89	3.97					.	
35 36	. 00056	31.52 25.00	. 000000196	. 068	. 366	14,410	1058	1410	2.26	2.49						
37	. 0045	19.83	. 0000156	. 055	. 290	18,180	1334	1778	1.79	1.98						
38	. 0040	15.72	. 00000123	.044	. 238	22,920	1682 2121	${ }^{22828}$	1.42	1.24						
40	:0031	9,89	:00000777	. 027	. 145	36,440	2675	3566	. 893	. 986						

[^1]
STANDARD STRANDED COPPER CONDUCTORS A.W.G. GAUGE

Circular Mils	A.W.G. Gauge	Number of Wires	Individual Wire Dia. Inches	Cable Dia. Inches	Area Square Inches	Weight Lbs. Per 1000 Ff .	Weight Lbs. Per Mile	$\begin{gathered} \text { *Maximum } \\ \text { Resist. } \\ \text { Ohms/1000 } \\ \text { At } 20^{\circ} \mathrm{C} \end{gathered}$
211,600	4/0	19	. 1055	. 528	0.1662	653.3	3,450	. 05093
167,800	3/0	19	. 0940	. 470	0.1318	518.1	2.736	. 06422
133,100.	2/0	19	. 0837	. 419	0.1045	410.9	2,170	. 08097
105,500	1/0	19	. 0745	. 373	0.08286	325.7	1,720	. 1022
83,690	1	19	. 0664	. 332	0.06573	258.4	1,364	. 1288
66,370	2	7	. 0974	. 292	0.05213	204.9	1,082	. 1624
52,630	3	7	. 0867	. 260	-0.04134	162.5	858.0	. 2048
41,740	4	7	. 0772	. 232	0.03278	128.9	680.5	. 2582
33,100	5	7	. 0688	. 206	0.02600	102.2	539.6	. 3256
26,250	6	7	. 0612	. 184	0.02062	81.05	427.9	. 4105
20,820	7	7	. 0545	. 164	0.01635	64.28	339.4	. 5176
16,510	8	7	. 0486	. 146	0.01297	50.98	269.1	. 6528
13,090	9	7	. 0432	. 130	0.01028	40.42	213.4	. 8233
10,380	10	7	. 0385	. 116	0.008152	32.05	169.2	1.038
6,530	12	7	. 0305	. 0915	0.005129	20.16	106.5	1.650
4,107	14	7	. 0242	. 0726	0.003226	12.68	66.95	2.624
2,583	16	7	. 0192	. 0576	0.002029	7.975	42.11	4.172
1,624	18	7	. 0152	. 0456	0.001275	5.014	26.47	6.636
1,022	20	7	. 0121	. 0363	0.008027	3.155	16.66	10.54

* The resistance values in this table are trade maxima for saft or annealed copper wire and are higher than the overage values for commercial cable. The following values for the conductivity and resiativily of copper of 20° centigrade were used:

Conductivity in terms of Infernational Annealed Copper Standard 98.16%
Resistivity in lbs. per mile-ohm
891.58

The resistance of hard drawn copper is slightly greater than the values given, being about 2% to 3% greater for sizes from 4/0 to :20 AWG.

STANDARD MACHINE SCREW DATA AND CHART FOR HOLE SIZES*

INSULATING MATERIALS

Material	Dielectric Constant at 1 Megacycle	Dielectric Strength kv/mm*	Resistivity Ohms-cm $25^{\circ} \mathrm{C}$.	Power Foctor of 1 Megacycle	Material	Dielectric Constant at 1 Megacycle	Dielectric Strength kv/mm*	Resistivity Ohms-cm $25^{\circ} \mathrm{C}$.	Power Factor at 1 Megacycte
Aniline formaldehyde resin Bokelite	3.38	>24	$>10^{12}$	0.006	Marble, Italion Methy' Methacrylate	2.8-3.3	$\overline{20}$	1011 1015	0.015-0.03
					Mico ${ }^{\text {Ma }}$	2.5-7	50-220	2×10 ${ }^{17}$.01-.06
Bakelite	4.5	6-16	$10^{10}-10^{13}$.02-.08	Micanite (non-flexible grade) Mycalex	8.5	-	3×10^{9}	Poor
cotton fabric base glass fabric base	3.7-4.5$4.5-20$	18-26	109-1011	. $.01-.02$				3x19 1013	Poor 0.0018
mineral filler		10-16	103-1011	. 00050.1	(3.6	16-21	10^{19}	0.022
macerated fabric	4.5-6	6-18	103-1011	.04-0.1		2.2-4.7			
no filler	4-5.5	16-19	1.5×10^{12}	. 01 5-.04	Ozokerite	2.2	$4-6$	4.5×10^{14}	-
paper base (laminated)	3.6-5.5	10-23	$10^{10} 010^{18}$. $02-.08$	Paper-paraffined	2.0-2.6	50		
wood flour filler	4.5-8	12-19	$10^{10}-10^{12}$.035-0.1	Paper-varnished		10-25		
Casein	6.15-6.8	16-28		0.052	Paraffin	2.1-2.5	-	1013-1019	900 cycles) 0.0006 0.0005 .0002-. 0004
Cellulose Acetate (high acetyl content)	$\begin{aligned} & 4.4-5.3 \\ & \text { (} 80 \text { cycles) } \end{aligned}$	14-18		$\begin{aligned} & 0.01-0.02 \\ & (80 \text { cycles }) \end{aligned}$	Polyethylene Polyisobutylene				
						2.5		10^{16}	
Cellulose Acetate moulding	3.2-6.2	14-36			Polystyrene Polyvinyl Chloride (plasticized)	2.5-2.6	20-28	$10^{17}-10^{20}$	
			.7-1.4×1012	. $01-.05$.8-2.6×10 ${ }^{14}$	
Celluse Acerote	3-5	12-32	(5-30) $\times 10^{12}$.04-.09		(at 60 cycles)			(at 60 cycles)
Cellulose Acelobutyrate	3.2-6.2	10-16	. $7-1.4 \times 10^{12}$	0.01-0.05	Porcelain	5.5-7	-	5×10^{8}	.005-.015
Chlorinated Rubber	3 (60 cycles)	90	2.5×10^{19}	0.006					Rises rapidly
Dilectene 100	3.6-3.7	16-25		. 006					of H.F.
Ebonite	2.8	30-110	10^{16}	. 0062	Porcelain Unglazed	- ${ }^{-}$		3×10^{14}	
Empire Cloth		8-30	$1^{102} 10^{8}$	Poor	Quartz			$10^{14-10^{18}}$. 00015
Ethyl Celluose	2.0-3.0		10^{15}	0.007-0.03	Rubber	2-3:5	16-50		
Fibre-Red	2.5-5	2	$5 \times 10^{\prime}$	Po	Rubber, Hard		10-35	${ }_{1012}^{1010} 10^{15}$.003-. 008
Fibre-Phenol Fuller (or Press) Boord		4-30	Varies	Poor	Shelloe	2.9-3.7	-		
Fuller (or Press) Boord Glass	3-5 5.4-9.9	$\begin{gathered} 4-30 \\ 30-150 \end{gathered}$		-	Slate	$6-7.4$ 6.1	二	- $10^{146-10^{15}}$	Poor .002
Glass Plate			2×10^{13}		Trolitul (German polystyrene)	2.2-2.3	20-28	10^{20}	. 0002
Glass Pyrex	4.5		10^{14}	. 00017	Urea-formaldehyde Resin				
Gutta Percha	3.1-4.9 (at	8-20	5×10^{14} or ${ }^{15}$. $01-.03$ (at	(cellulose filled)	6.6-7.7	28-29	1012-1012	0.027-0.035
Halowax (saturant) Intelin IN4S Isolantite		10-14	10 $0^{13}-10^{14}$ Above 10^{15} 2.75×10^{14}	$\begin{aligned} & 1000 \text { eycles) } \\ & .0005-.002 \\ & .0007 \\ & .0018 \text { After } \\ & \text { conditioning } \\ & \text { in water } \end{aligned}$	Urec Molamine Formaldehyde Resin (cellulose filled) Vinyl Chloride-acetate (Vinylite) no filler Vinylidene Chloride	$\left\lvert\, \begin{gathered} 11.5-11.6 \\ (\mathrm{at} 60 \text { eycles }) \\ 3.0-3.4 \end{gathered}\right.$	$\begin{gathered} 1.3 \\ 10-20 \end{gathered}$	-	$\left(\begin{array}{c} 0.15-0.17 \\ \text { (at } 60 \text { cycles) } \\ 0.01-0.02 \end{array}\right.$
								>1014	
merized Rubber	$\left\lvert\, \begin{gathered} 2.7 \\ (\cot 60 \text { cycles) } \\ 8 \end{gathered}\right.$	-	$\left\{\begin{array}{l} 5-7 \times 10^{16} \\ 2 \times 10^{3} \\ 10^{6}-10^{88} \end{array}\right.$			$\begin{gathered} 3.5 \\ 2.5-7.7 \\ \square \\ = \end{gathered}$	20	$\left.{ }^{1016}\right]^{1016}$	0.03-0.05
					Wood Wood, Paraffined Mahog. Wood, Bakelized Wood, Teak (waxed-oiled)			4×10^{12}	-
Ivory							-	7×10^{4} 10	Poor
Marble								$10^{2}-10^{3}$	

*To convert kilovolts per millimeter to volts per mil, multiply by 25.4

PLASTICS: TRADE NAMES

Trade Name Composilion	Trade Name Composition
Acryloid. Methacrylate Resin	Melmac. Melamine Formoldehyde
Alvor Polyvinyl Acetol	Micorto. . Phenol Formaldehyde (Lamination)
Amerith Cellulose Nitrate	Monsonto Cellulase Nitrote
Ameroid. Cosein	Monsonto. Polyvinyl Acetals
Bokelite. Phenal Formaldehyde	Monsonto. Cellulose Acetate
Bakelite. Urea Formaldehyde	Monsonto. Phenol Formoldehyde
Bokelite. Cellulose Acetate	Nitron. Cellulose Nitrate
Bokelite. Polystyrene	Nixonoid Cellulase Nitrote
Beetle Ureo Farmaldehyde	Nixonite Cellulose Acetote
Butocite.................. . . Palyvinyl Butyral	Nylon. Super Polyamide
Butvor. Palyvinyl Butyral	Opalan. Phenal Formaldehyde
Cotalin. Phenol Formaldehyde-Cast	Ploskon. Ureo Formaldehyde
Cellulaid. Cellulose Nitrote	Plostocele. Cellulase Acetote
Crystalite. . Acrylate and Methocrylote Resin	Plexiglos. : . Acrylate and Methocrylate Resin
Dilectene 100....... Aniline Formaldehyde Synthetic Resin	Plioform Rubber Derivotive
Distrene..... Polystyrene	Protectaid. Cellulose Acetate
Durez Phenol Farmaldehyde	Prystol. Phenol Formaldehyde
Durite. Phenal Farmaldehyde	Pyrolin. Cellulase Nitrate
Durite. Phenolic Furfurol	Resinox.... Phenal Formaldehyde
se	Rezogloz. Polystyrene
Ethe	Rhodolene M. Polystyrene
	Ronillo L. Palystyrene
Fibestos.llulose Acetate	Saflex.. Polyvinyl Butyrol
Formica Phenal Formoldehyde (laminotion)	Saron..... Polyvinylidene Chloride
hyde (Lominotion)	Styroflex. Polystyrene
Formvor. Polyvinyl Formal	Styron. Palystyrene
Gelvo. Polyvinyl Acetote	
Gemstione. Phenol Formaldehyde	
Heresite. Phenal Formoldehyde	
Indur. Phenal Formoldehyde	Textali
Intelin IN 45 Polystyrene	
Koroseol. Modifled Polyvinyl Chloride	Tornesin. Rubber Derivative
Laolin. Polystyrene	styren
Lucite Methyl Methacrylate Resin	Vec. Polyvinylidene Chloride
Lumarith. Cellulose Acetate	Victron. Polystyrene
Lumarith X. Cellulase Acetote	Vinylite A. Polyvinyl Acetate
Lustron. Polystyrene	Vinylite Q............... Polyvinyl Chlaride
Mokolot Phenol Farmaldehyde	Vinylite V.Vinyl Chloride-Acetote Copolymer
Morblette Phenol Formoldehyde-Cast	Vinylite X Polyvinyl Butyra

PHYSICAL CONSTANTS OF VARIOUS METALS*

Annealed Copper $=10.4$ ohms, circular mils per foot at $20^{\circ} \mathrm{C}$
The absolute resistivity of
copper in both c.g.s. and $=1.7241 \times 10^{-6}$ ohm-cm at $20^{\circ} \mathrm{C}$., or English system of units is 1 ohm-cm $=6.02 \times 10^{6} \mathrm{ohm}$ circular mils per foot. given in two equations.

Moterial	Relative Resistance	Temp. Co-eff. of Resistivity α $1 /{ }^{\circ} \mathrm{C}$	Specific Grovity	Co-efficient of Thermal Cond. K $\mathrm{cal} / \mathrm{sec} /{ }^{\circ} \mathrm{C} / \mathrm{cm}$.	$\begin{aligned} & \text { Speciftc } \\ & \text { Heat. } \\ & \text { sol/gm/ }{ }^{\circ} \mathrm{C} \end{aligned}$
Copper annecled hard drawn	1.00 1.03	. 00393	8.89	. 918	. 0921
Advance	28.45	.00001	8.90		
Aluminum	1.64	. 0034	2.70	0.5	. 214
Antimony	24.21	. 0036	6.6	. 04	. 05
Arsenic	19.33	. 0042	5.73		. 078
Bismuth	69.8	. 004	9.8	. 018	. 029
Brass	4.06	. 002	8.6	. 204	. 092
Cadmium	4.41	. 0038	8.6	. 22	. 055
Calido	58.1	. 0004	8.2		
Climax	50.5	. 0007	8.1		
Cobalt	5.70	. 0033	8.71		. 100
Constantan	28.45	. 00001	8.9	. 054	. 100
Eureka	28.45	. 00001	8.9		
Excello	53.4	. 00016	8.9		
Gas Carbon	2900	-. 0005			. 204
German Silver 18% Nickel	19.17	. 0004	8.4	. 07	. 095
Gold	1.416	. 0034	19.3	. 70	. 0312
Ideal	28.45	. 00001	8.9		
Iron, pure	5.81	. 005	7.8	. 161	. 107
Lead	12.78	. 0039	11.4	. 083	. 0306
Magnesium	2.67	. 004	1.74	. 376	. 246
Manganin	25.6	. 00001	8.4	. 152	. 096
Mercury	55.6	. 00089	13.55	. 015	. 0333
Molybdenum drawn	3.31	. 004	9.0	.346	. 065
Monel metal	24.4	. 002	8.9		
Nichrome	58.1	. 0004	8.2		
Nickel	4.53	. 006	8.9	. 142	. 105
Palladium	6.39	. 0033	12.2	. 168	. 053
Phosphor-Bronze	4.52	. 0018	8.9		
Platinum	5.81	. 003	21.4	. 166	. 0324
Silver	0.924	. 0038	10.5	1.00	. 056
Steel E.B.B.	6.05	. 005	7.7	. 115	.110
Steel B.B.	6.92	. 004	7.7	.115	. 110
Steel, Siemens Martin	10.45	. 003	7.7	.115	.110
Steel, manganese	40.6	. 001	7.5	.115	.110
Tantalum	9.00	. 0031	16.6	. 130	. 036
Therlo	27.3	. 00001	8.2		
Tin	8.72	. 0042	7.3	. 155	. 054
Tungsten, drawn	3.25	. 0045	19	. 476	. 034
Zinc	3.36	. 0037	7.1	. 265	. 093

[^2]
DEFINITIONS OF PHYSICAL CONSTANTS IN PRECEDING TABLE

The preceding table of relative resistances gives the ratio of the resistance of any material to the resistance of a piece of annealed copper of identical physical dimensions and temperature.
I. The resistance of any substance of uniform cross-section is proportional to the length and inversely proportional to the cross-sectioned area.
$R=\frac{\rho l}{A}$, where $\rho=$ resistivity, the proportionality constant,
$L=$ length, $A=$ cross-sectional area, $R=$ resistance in ohms.
If L and A are measured in centimeters, ρ is in ohm-centimeters.
If L is measured in feet, and A in circular mils, ρ is in ohm-circular mils per foot.
II. The temperature co-efficient of resistivity gives the ratio of the change in resistivity due to a change in temperature of $1^{\circ} \mathrm{C}$ relative to the resistivity at $20^{\circ} \mathrm{C}$. The dimensions of this quantity are ohms per ${ }^{\circ} \mathrm{C}$ per ohm or $1 /{ }^{\circ} \mathrm{C}$.

The resistance at any temperature is:-
$R=R_{0}(1+\alpha T)$.
$R_{0}=$ resistance at 0° in ohms.
$T=$ temperature in degrees centigrade.
$\alpha=$ temperature co-efficient of resistivity $1 /{ }^{\circ} \mathrm{C}$.
III. The specific gravity of a substance is defined as the ratio of the weight of a given volume of the substance to the weight of an equal volume of water.

In the c.g.s. system, the specific gravity of a substance is exactly equal to the weight in grams of one cubic centimeter of the substance.
IV. Co-efficient of thermal conductivity is defined as the amount of heat in calories transferred across the face of a unit cube in one second when the temperature difference between the opposite faces is maintained at one degree centigrade.

$$
H=\frac{K A \Delta T \Delta t}{l}
$$

$H=$ total transferred heat in calories
$A=$ area of cross-section in $\mathrm{sq} . \mathrm{cm}$.
$l=$ length in cm .
$\Delta T=$ change in temperature in ${ }^{\circ} \mathrm{C}$.
$\Delta t=$ time interval in seconds.
$K=$ co-efficient of thermal conductivity in $\mathrm{cal} / \mathrm{sec} /{ }^{\circ} \mathrm{C} / \mathrm{cm}$.
V. Specific heat is defined as the number of calories required to heat one gram of a substance one degree Centigrade.
$H=\mathrm{ms} \Delta T$ or change in heat. $m=$ mass in grams.
$\Delta T=$ temp. change ${ }^{\circ} \mathrm{C} . \quad s=$ specific heat in cal $/ \mathrm{gm} /{ }^{\circ} \mathrm{C}$.

FUSING CURRENTS OF WIRE

Table giving the diameters of wires of various materials which will be fused by a current of given strength.

Amperes	DIAMETERS OF WIRES, Inches								
	Copper	Aluminum	Platinum	Germon silver	Platinoid	Iron	Tin	Tin-lead alloy	Lead
1	0.0021	0.0026	0.0033	0.0033	0.0035	0.0047	0.0072	0.0083	0.0081
2	0.0034	0.0041	0.0053	0.0053	0.0056	0.0074	0.0113	0.0132	0.0128
3	0.0044	0.0054	0.007	0.0069	0.0074	0.0097	0.0149	0.0173	0.0168
4	0.0053	0.0065	0.0084	0.0084	0.0089	0.0117	0.0181	0.021	0.0203
5	0.0062	0.0076	0.0098	0.0097	0.0104	0.0136	0.021	0.0243	0.0236
10	0.0098	0.012	0.0155	0.0154	0.0164	0.0216	0.0334	0.0386	0.0375
15	0.0129	0.0158	0.0203	0.0202	0.0215	0.0283	0.0437	0.0506	0.0491
20	0.0156	0.0191	0.0246	0.0245	0.0261	0.0343	0.0529	0.0613	0.0595
25	0.0181	0.0222	0.0286	0.0284	0.0303	0.0398	0.0614	0.0711	0.069
30	0.0205	0.025	0.0323	0.032	0.0342	0.045	0.0694	0.0803	0.0779
35	0.0227	0.0277	0.0358	0.0356	0.0379	0.0498	0.0789	0.089	0.0864
40	0.0248	0.0303	0.0391	0.0388	0.0414	0.0545	0.084	0.0973	0.0944
45	0.0268	0.0328	0.0423	0.042	0.0448	0.0589	0.0909	0.1052	0.1021
50	0.0288	0.0352	0.0454	0.045	0.048	0.0632	0.0975	0.1129	0.1095
60	0.0325	0.0397	0.0513	0.0509	0.0542	0.0714	0.1101	0.1275	0.1237
70	0.036	0.044	0.0568	0.0564	0.0601	0.0791	0.122	0.1413	0.1371
80	0.0394	0.0481	0.0621	0.0616	0.0657	0.0864	0.1334	0.1544	0.1499
90	0.0426	0.052	0.0672	0.0667	0.0711	0.0935	0.1443	0.1671	0.1621
100	0.0457	0.0558	0.072	0.0715	0.0762	0.1003	0.1548	0.1792	0.1739
120	0.0516	0.063	0.0814	0.0808	0.0861	0.1133	0.1748	0.2024	0.1964
140	0.0572	0.0798	0.0902	0.0895	0.0954	0.1255	0.1937	0.2243	0.2176
160	0.0625	0.0763	0.0986	0.0978	0.1043	0.1372	0.2118	0.2452	0.2379
180	0.0676	0.0826	0.1066	0.1058	0.1128	0.1484	0.2291	0.2652	0.2573
200	0.0725	0.0886	0.1144	0.1135	0.121	0.1592	0.2457	0.2845	0.276
225	0.0784	0.0958	0.1237	0.1228	0.1309	0.1722	0.2658	0.3077	0.2986
250	0.0841	0.1028	0.1327	0.1317	0.1404	0.1848	0.2851	0.3301	0.3203
275	0.0897	0.1095	0.1414	0.1404	0.1497	0.1969	0.3038	0.3518	0.3417
300	0.097	0.1161	0.1498	0.1487	0.1586	0.2086	0.322	0.3728	0.3617

From "Overhead Systems Handbook," N.E.L.A., 1927.
melting points of SOlder

Pure Alloys			Melting Points	
Per Cent Tin		Per Cent Lead	Degrees Centigrode	Degrees Fohrenheil
$\begin{array}{r} 100 \\ 90 \\ 80 \\ 70 \end{array}$		10 20 30	232 213 196 186	450 415 385 367
65 60 50 40		35 40 50 60	181 188 212 238	358 370 414 460
$\begin{aligned} & 30 \\ & 20 \\ & 10 \end{aligned}$		$\begin{array}{r} 70 \\ 80 \\ 90 \\ 100 \end{array}$	257 290 302 327	496 554 576 620

TEMPERATURE CHART OF HEATED METALS

THERMOCOUPLES AND THEIR CHARACTERISTICS

Compiled from "Temperature Meawrement and Control" by R. L. Weber, pages 68-71.
CHARACTERISTICS OF TYPICAL THERMOCOUPLES

head of water in feet and approximate discharge rate
table I
For other pipe lengths see

Head of fall in Feet	discharge In Gallows per minute											
	1/2*	2/4"	1*	11/4*	11/2"	2"	21/2"	3*	31/2"	4*	5 "	6 "
1	. 19	. 54	1.11	1.96	3.09		11.07					
2	. 28	. 77	1.59	2.76	4.36	8.96	15.61	24.62	25.58 36.15	35.79 50.56	62.57 88.39	98.72 139.31
6	. 48	1.09 1.33	2.25 2.75	3.92 4.78	6.17	12.73	22.10	34.95	51.28	71.58	184.39	198.31
9	. 59	1.33 1.63	2.75 3.36	4.78	7.55	15.49	27.02	42.63	62.69	87.67	152.52	241.39
12	. 68	1.89	3.90	6.87	9.26 10.69	19.09	33.27	52.36	76.98	107.48	187.35	295.43
16	79	2.17	4.48	8.87	12.37	21.98 25.34	38.43 44.31	60.53	88.87	123.70	216.17	342.27
20	. 89	2.44	5.02	8.74	13.81	28.34	44.318	69.77	102.56	142.91 15973	249.80	395.11
25	. 98	2.73	5.61	9.78	15.50	31.70	59.48	77.94 87.19	114.57 127.30	159.73 178.94	279.82 312.24	440.74
30	1.08	2.98	6.14	10.71	16.93	34.59	S0.65	87.19 95.47	127.30 139.31 162.1	178.94 19575	312.24 342	493.59
40	1.25	3.46	7.10	12.37	19.58	40.23	70.65	95.47 110.49	139.31 162.13 180.1	195.75	342.27	540.42
50	1.39	3.86	7.94	13.81	21.86	44.92	78.30	112.48	162.13	225.78 252.20	395.11	624.49
75	1.71	4.72	9.73	16.93	26.78	54.88	78.30 95.96	122.50	180.14	252.20 309.84	441.95	697.75
100	1.98	5.46	11.23	19.58	30.81	63.41	110.72	174.14	220.97	309.84 35788	541.62	855.07
150	2.44	6.71	13.81	23.90	37.83	77.94	139.19				625.69	987.17
200	2.80	7.71	15.85	27.62	43.59		156.12	246.19	314.65 361.48	439.54 505.60	765.00 883.89	1,214.15
250	3.13	8.65	17.77	30.81	48.88	100.52	175.34	276.22 2768	361.48 404.72	505.60 565.64	883.89 989.57	1,394.29
500	4.43	12.25	25.10	43.71	69.05	141.71		270.22 390.31	571.65	801.03	989.57 1.397 .89	1,564.82

TARLE II
Multiplication factor to be applied to Table I for pipe lengths other than $1,000 \mathrm{ft}$.

length in feet													
Factor....		4.47	3.16	150 2.58	200 2.237	300 1.827	400 1.580	500 1.414		4			
length in te		1,750	2,000	2,500	3,000						${ }_{5}^{1.0}$. 8895	5.817
Facto		. 756	. 707	. 633	. 577	$\begin{array}{r} 4,000 \\ .500 \end{array}$	$\begin{array}{r} 0,000 \\ .447 \end{array}$				5 mi ,	10 mi .	50 mi .
	Example:	Required \therefore			$\begin{aligned} & \text { of pi } \\ & 1,000 \\ & 75 \times .4 \end{aligned}$	" bore ine from 87.5		under gallons	oot head minute.		or from	1110.4	
		Where											

WIND VELOCITIES AND PRESSURES

		CYIINDRICAL SURFACES	flat surfaces
Miles per Hour V_{i}	Miles per Hour v_{0}	Pressure Lbs. per Sq. Ft. Projected Areas $P=0.0025 \mathrm{~V}_{\mathrm{a}}{ }^{3}$	$\begin{aligned} & \text { Pressure Lbs. per } \\ & \text { Sq. Ft. } \\ & P=0.0042 \mathrm{~V}{ }^{2} \end{aligned}$
10	9.6	0.23	0.4
20	17.8	0.8	1.3
30	25.7	1.7	2.8
40	33.3	2.8	4.7
50	40.8	4.2	7.0
60	48.0	5.8	9.7
70	55.2	7.6	12.8
80	62.2	9.7	16.2
90	69.2	12.0	20.1
100	76.2	14.5	24.3
110	83.2	17.3	29.1
120	90.2	20.3	34.2
125	93.7	21.9	36.9
130	97.2	23.6	39.7
140	104.2	27.2	45.6
150	111.2	30.9	51.9
160	118.2	34.9	58.6
170	125.2	39.2	65.7
175	128.7	41.4	69.5
180	132.2	43.7	73.5
190	139.2	48.5	81.5
200	146.2	53.5	89.8

*As measured with a cup anemameter, these being the average maximum for a period of five minutes

WEATHER DATA

Compiled from "Climate and Man", Yearbook of Agriculture, U. S. Dept. of Agriculture. U, S. Govt. Printing Otfice, Washington, D. C., 1941.

TEMPERATURE EXTREMES

United Stepes

Lowest Temperafure Highest Temperature

Alaske:
Lowest Temperature $\quad-78^{\circ} \mathrm{F} . \quad$ Fart Yukon (Jan. 14, 1934)
Highes! Temperoture

Werld

Lowest Temperature	$-90^{\circ} \mathrm{F}$.	Verkhoyansk, Siberia (Feb. 5 and 7, 1892)
Highest Temperature	$136^{\circ} \mathrm{F}$.	Azizia, Libyo, North Africo (Sept. 13, 1922)
lowest Mean Temperature (anmal)	$-14^{\circ} \mathrm{F}$.	Framheim, Antartica
Highest Mean Temperature (annual)	$86^{\circ} \mathrm{F}$.	Massawa, Eritrea, Africa

Highest Temperature

 Highest Mean Temperature (annual)- 66° F. Riverside Range Station, Wyoming (Feb. 9, 1933)
$134^{\circ} \mathrm{F}$. Greenland Ranch, Death Valley, Collfornio (July 10, 1933)
$100^{\circ} \mathrm{F}$. Fort Yukon
-90° F. Verkhoyansk, Siberia (Feb. 5 and 7.1892)
$136^{\circ} \mathrm{F}$. Azizio, Libyo, North Africo (Sept. 13, 1922)
$16^{\circ} \mathrm{F}$. Framheim, Antartica

PRECIPITATION EXTREMES

Lovisiana-average annual rainfall 55.11 in .
Nevada-pverage annual rainfall 8.81 in .
New Smyrna, Fla., Oct. 10, 1924-23.22 in. in 24 hours
Bagdad, Calif., $1909.1913-3.93$ in. in 5 years
Greenland Ranch, Calif.- 1.35 in . annual average

Cherrapunfi, India, Aug. 1841 -241 in. in 1 month
(Average annual rainfall of Cherrapunji is 426 in.)
Qogul, Luzan, Philippines, July $14.15,1911-46 \mathrm{in}$. in 24 howrs
Wadi Halfa, Anglo-Egyption Sudan and Awan, Egypt are in the "rainless" area; average annual roinfall is too small ta be meosured.

WORLD TEMPERATURES

	Max.	$\stackrel{\text { Min. }}{\substack{\text { ¢ }}}$
NORTH AMERICA		
Canada .	100 103	-78 -70
Conal Zone	97	-63
Greenland	86	-46
Moxico	118	11
U. S. A..	134	-66
West Indies	102	45
SOUTH AMERICA		
Argentina.	115	-27
Bolivia	82	25
Brazil .	108 08	21
Chile ${ }_{\text {Voneruela }}$.	99 102	19
EUROPE		
British Islos	100	4
France. .	107	-14
Germony	100	-16 -6
$\xrightarrow{\text { Incoland }}$ Italy.	114	-6
Norway:	. 95	-26
Spain.	124	10
Turkey	+92	-49
Turkey	100 110	17 -61
ASIA		
Arabia	114	53
China .	111	-10
East Indies : . .	101	60
French Indo-China	113	33
	123	-19
Japan : . . .	101	-7
Molay Stales .	97	${ }^{66}$
Philippine Islands	101	58
Siam	106 85	52
Tibat. .	85 111	-20 -22
U. S. S. R..	109	-90
AFRICA		
Algeria, . .	133	1
Anglo-Egyplian Sudan	126	28 33
Angola Belgion Congo.	91	33 34
Egypt	124	31
Ethiopia	111	32
French Equatorial Africa	118	46
French West Africa Italian Somaliland .	122 93	41 61
Libyo	136	35
Mогосяо	119	5
Rhodesia	103	25
	122	28 21
AUSTRALASIA		
Australia :	127	19
Howaii ${ }_{\text {Nealand }}$:	91 94	51 23
	96	61
Solomon Islands	97	70

WORLD PRECIPITATION

TERRITORY	highest average				LOWEST AVERAGE				yEARIY Average In.
	Jan. In.	$\begin{aligned} & \text { April } \\ & \text { ln. } \end{aligned}$	$\begin{aligned} & \text { July y } \\ & \text { In. } \end{aligned}$	Oct. In.	Jan.	$\begin{aligned} & \text { April } \\ & \text { An } \end{aligned}$	$\begin{aligned} & \text { July } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { Ott. } \\ & \text { ln. } \end{aligned}$	
Alaska	13.71 8.40	10.79 4.97	8.51 4.07	22.94 6.18	. 15	. 13	1.93	. 37	43.40 26.85
Canal Zo	3.74	4.30	16.00	15.13	. 91	2.72	7.28	10.31	97.54
Greenlond	3.46	2.44	3.27	6.28	. 35	. 47	. 91	. 94	24.70
Mexico	1.53	1.53	13.44	5.80	. 04	. 00	. 43	. 35	29.82 29.00
West Indies	4.45	6.65	5.80	6.89	. 92	1.18	1.53	5.44	49.77
Argentina Bolivia	6.50 6.34	4.72	2.16	3.35 1.42	3.86	. 1.46	. 16	. 1.30	16.05 24.18
Brazil	13.26	12.13	10.47	6.54	2.05	2.63	. 01	. 05	55.42
Chile	11.78	11.16	16.63	8.88	. 00	. 00	. 03	. 00	46.13
Venezuela	2.75	6.90	6.33	10.44	. 02	. 61	1.87	3.46	40.01
EUROPE									
British Isles	5.49	3.67	3.78	5.57	1.86	1.54	2.38	2.63	36.16
France	3.27	2.64	2.95	4.02	1.46	1.65	. 55	2.32	27.48
Germany	1.88	2.79	5.02	2.97	1.16	1.34	2.92	1.82	26.64
Iceland	5.47	3.70	3.07	5.95	5.47	3.70	3.07	5.59	52.91
Italy	4.02	4.41	2.40	5.32	1.44	1.63	. 08	2.10	29.74
Norway	8.54	4.13	5.79	8.94	1.06	1.34	1.73	2.48	40.51
Spain	2.83	3.70	2.05	3.58	1.34	1.54	. 04	1.77	22.74
Sweden	1.52	1.07	2.67	2.20	. 98	78	1.80	1.60	18.12
Turkey	3.43	1.65	1.06	2.52	3.43	1.65	1.06	2.52	28.86
U. S. S. R.	1.46	1.61	3.50	2.07	. 49	. 63	. 20	. 47	18.25
ASIA									
Arabia	1.16	. 40	. 03	. 09	. 32	. 18	. 02	. 09	3.05
China	1.97	5.80	13.83	6.92	. 15	. 61	5.78	. 67	-50.63
East Indies	18.46	10.67	6.54	10.00	7.48	2.60	. 20	. 79	78.02
French Indo.China	. 79	4.06	12.08	10.61	. 52	2.07	9.24	3.67	65.64
India	3.29	33.07	99.52	13.83	. 09	. 06	. 47	. 00	75.18
Iraq	1.37	. 93	. 00	. 08	1.17	. 48	. 00	. 05	6.75
Japan	10.79	8.87	9.94	7.48	2.06	2.83	5.02	4.59	70:18
Malay States	9.88	7.64	6.77	8.07	9.88	7.64	6.77	8.07	95.06
Philippine Islands	2.23	1.44	17.28	10.72	. 82	1.28	14.98	6.71	83.31
Siam	. 33	1.65	6.24	8.32	. 33	1.65	6.24	8.32	52.36
Turkey	4.13	2.75	1.73	3.34	2.05	1.73	. 21	. 93	25.08
U. S. S. R.	1.79	2.05	3.61	4.91	. 08	. 16	.10	. 06	11.85
AFRICA									
Algeria	4.02	2.06	. 35	3.41	. 52	. 11	. 00	. 05	9.73
Anglo-Egyptian Sudan	. 08	4.17	7.87	4.29	. 00	. 00	. 00	. 00	18.27
Angola	8.71	5.85	. 00	3.80	. 09	. 63	. 00	. 09	23.46
Belgian Congo	9.01	6.51	. 13	2.77	3.69	1.81	. 00	1.88	39.38
Egypt	2.09	. 16	. 00	. 28	. 00	. 00	. 00	. 00	3.10
Ethiopia	. 59	3.42	10.98	3.39	. 28	3.11	8.23	. 79	49.17
Fr. Equatorial Africa	9.84	13.42	6.33	13.58	. 00	. 34	. 04	. 86	57.55
Fronch West Africa	. 10	1.61	8.02	1.87	. 00	. 00	. 18	. 00	19.51
Italian Somaliland	. 00	3.66	1.67	2.42	. 00	3.60	1.67	2.42	17.28
Libya	3.24	. 48	. 02	1.53	2.74	. 18	. 00	. 67	13.17
Moroceo	3.48	2.78	. 07	2.47	1.31	. 36	. 00	. 23	15.87
Rhodesia	8.40	. 95	. 04	1.20	5.81	. 65	. 00	. 88	29.65
Tunisia	2.36	1.30	. 08	1.54	2.36	1.30	. 08	1.54	15.80
Union of South Africa	6.19	3.79	3.83	5.79	. 06	. 23	. 27	. 12	26.07
AUSTRALASIA									
Australia	15.64	5.33	6.57	2.84	. 34	. 85	. 07	. 00	28.31
Hawaii	11.77	13.06	9.89	10.97	3.54	2.06	1.04	1.97	82.43
New Zealand	3.34	3.80	5.55	4.19	2.67	2.78	2.99	3.13	43.20
Samoan Islands	18.90	11.26	2.60	7.05	18.90	11.26	2.60	7.05	118.47
Solomon Isiands	13.44	8.24	6.26	7.91	13.44	8.24	6.26	7.91	115.37

PRINCIPAL POWER SUPPLIES IN FOREIGN COUNTRIES

NOTES

Where both a-c and d-c are available, an asterisk (*) indicates the type of supply and voltage predominating. Where approximately equal quantities of a-c and d-c are available, an asterisk precedes each of the principal voltages. Voltages and frequencies are listed in order of preference.

The electrical authorities of Great Britain have adopted a plan of unifying electrical distribution systems. The standard potential for both a-c and d-c supplies will be 230 volts. Systems using other voltages will be changed over. The standard a-c frequency will be 50 cycles.

CAUTION

The listings in these tables represent types of electrical supplies most generally used in particular countries. For power supply characteristics of particular cities of foreign countries, refer to the country section of "World Electrical Markets", a publication of the U. S. Department of Commerce, Bureau of Foreign and Domestic Commerce, Washington, D. C. In cases where definite information relative to specific locations is necessary, the Electrical Division of the above-named Bureau should be consulted.

TERRITORY	D. C. VOLTS	A. C. VOLTS	frequency
NORTH AMERICA			
Alaska		110,220	60
British Honduras	110		
Canada	110	*110, 150, 115, 230	60, 25
Costa Rica	110	* 110	
Cubo	110,220	*1 10, 220	60
Dominican Republic	110	* 110, 220	60
Guotemala	220, 125	* 110,220	60, 50
Haiti		110,220	60, 50
Monduras	110, 220	*110,220	60
Mexico	110,220	*110, 125, 115, 220, 230	60, 50
Newfoundland		110,115	50, 60
Nicaragua	110	*110	80
Panama (Republic)		110,220	60, 50
Panama (Canal Zone)		110	25
Puerto Rico	110,220	* 110	60
Salvador	110,220	*110	60
Virgin lslands	110,220		

PRINCIPAL POWER SUPPLIES IN FOREIGN COUNTRIES-Cont'd

TERRITORY	- D. C. VOLTS	A. C. VOLTS	FREQUENCY
ASIA			
Arabia		230	50
British Malaya			
Fed. Malay States		230	50,60,40
Non-Fed. Malay States	230		
Straits Settlements	*230	230	50
North Borneo		110	60
Ceylon	220	230	50, 60
China	220, 110	* $110,200,220$	50, 60, 25
Hawaii		110,220	60, 25
India	220, 110, 225, 230, 250	230, 220, 110, others	50, 25
Fr. Indo Chino	110, 120, 220, 240	* $120,220,110,115,240$	50
Iran (Persia)	220, 110	220	50
Iraq	* 220,200	220, 230	50
Japon	100	* 100,110	50, 60
Monchurio		110	$60,50,25$
Polestine		220	50
Philippine lstands		220	60
Syria		110, 115, 220	50
Siam		100	50
Turkey	220, 110	*220, 110	50
AF RICA			
Angole (Port.)		110	50
Algeria	220	*115, 110, 127	50
Belgian Congo		220	60
British West Africa	*220	230	50
British East Africa	* 220	240	50
Canary lisands	110	*127. 110	50
Egypt	220	200, 110, 220, 110	50, 40
Ethiopia (Abyssinia)		220, 250	50
Itolion Africo Cyrenoica	150	*110, 150	50
Eritrea		127	50
Libya (Tripoli)		125, 110,270	50, 42, 45
Somatiland	120	* 230	50
Moroceo (Fr.)	110	115,110	50
Morocco (Spanish)	200	* 127, 110,115	50
Madagoscar (fr.)		120	50
Senegal (Fr.)	230	120	50
Tunisio		110	50
Union of South Africa	220, 230, 240, 110	*220, 230, 240	50
OCEANIA			
Australia			
Naw South Woles	*240	* 240	50
Victoria	230	* 230	50
Queensland	220, 240	*240	50
South Australia	200, 230, 220	* $200,230,240$	50
West Austrolia	*220, 110, 230	250	40
Tosmanio	239	* 240	50
New Zealand	230	*230	50
Fiji lslands	240, 110,250		
Society Islands		120	60
Samoa		110	50

SLJ3SNI to dylHJ 'xV3NOS 8000 - -- -- 000'91
SNOSy3d 43070 yOd 9NI甘V3H 50 LIWI7
SLN3MOULSNI TVOISOW JO SOINOW\&VH 甘3ddn

$000^{\circ} 01$

Compiled from Electronics Spectrum Chart.
The ETHER SPECTRUM

* Official FCC designation, March 2, 1943.

CONDENSER COLOR CODE

Radia Manufacturers Association Standard

Color	Significant Figure	Decimal Multipliar	Tolerance \%	Voltoge Rating (Volts)
Black.	0	1	-	-
Brown.	1	10	1	100
Red.	2	100	2	200
Orange	3	1000	3	300
Yallow.	4	10,000	4	400
Gruen.	5	100,000	5	500
Blue.	6	1,000,000	6	600
Violot	7	10,000,000	7	700
	8	100,000,000	8	800
White.	9	1,000,000,000	?	900
Gold.	-		5	1000
Silver	-	0.01	10	2000
Na Color.	-		20	500

If one row of three colored markers appears on the capacitor, the voltage rating is 500 volts and the capacitance is expressed to two significant figures in micromicrofarads as follows, usual tolerance being $\pm 20 \%$:

First dot on left, first significant figure
Second dot, second significant figure
Third dot, decimal multiplier
Example:

1st Dot	2nd Dop	3rd Dot	Cop. $\mu \mu^{\prime}$
Brown Red Oronge	Black Graen Block	Brown Brown Red	$\begin{array}{r} 100 \\ 250 \\ 3000 \end{array}$

If two rows of three colored markers appear on the capacitor, then the top row represents the significant figures, read from left to right; the bottom row indicates the decimal multiplier, tolerance, and voltage rating, read from right to left. Capacitance is in micromicrofarads.
Example:

If the capacitor is approximately circular two groups of colored bands are used, one group made up of wide bands and the other of narrow bands. When the capacitor is viewed with the wide bands on the right, the wide bands indicate the significant figures read from left to right; the narrow bands indicate the decimal multiplier, tolerance, and voltage rating, from right to left, respectively.
Example:

RESISTOR COLOR CODE

Radio Manufacturers Association Standard

Color	Significant Figure	Decimal Multiplier	Tolerance
Black.	0	1	-
Brown...	1	10	-
Red.	2	100	-
Orange....	3	1000	-
Yellow.	4	10,000	-
Green.	5	100,000	-
Blue .	6	1,000,000	-
Violet.	7	10,000,000	-
Gray	8	100,000,000	-
White.	9	1,000,000,000	-
Gold.	-	0.1	$\pm 5 \%$
Silver.	-	0.01	$\pm 10 \%$
No Color. . .	-	-	$\pm 20 \%$

RADIAL LEADS

RADIAL LEADS	AXIAL LEADS	COLOR
Body A	Band A	indicates first significant flgure of resistance value in ohms.
End B	Band B	indicates second signiflicant figure.
Band C or Dor	Band C	indicates decimal multiplier.
Band D	Band D	if any, indicates tolerance in per cant about nominal resistance value. If no color appears in this position, tolerance is $\mathbf{2 0 \%}$.

STANDARD COLOR CODING FOR RESISTORS

STANDARD COLOR CODING FOR RESISTORS-continued

INDUCTANCE CHARTS FOR SINGLE-LAYER SOLENOIDS \dagger

Two charts are used for determining the number of turns and the size of wire to be used in order to obtain a given inductance on a given winding form.
In Chart A the variables are n, the number of turns, and $\frac{l}{d}$ the ratio of winding length to winding diameter. The ratio of inductance to diameter of winding $\left(\frac{L}{d}\right)$ is used as a parameter.
The curves were computed from the expression given in Circular 74 of the U.S. Bureau of Standards,* which, using the terminology of the chart, may be written,

$$
\begin{equation*}
L=\frac{.02508 n^{2} d^{2}}{l} K \tag{1}
\end{equation*}
$$

where I, is the inductance in μh

$$
K \text { is Nagaoka's constant }
$$

and d and l are in inches.
For a given inductance the number of turns is then,

$$
\begin{equation*}
n=\sqrt{\left(\frac{L}{d}\right)\left(\frac{l}{d}\right)(39.88)\left(\frac{1}{K}\right)} \tag{2}
\end{equation*}
$$

This form of the expression is particularly convenient because, in designing coils, the engineer usually starts with a given coil form ($\frac{l}{d}$ known $)$ and needs a given inductance $L\left(\frac{L}{d}\right.$ easily calculated $)$. Since Nagaoka's constant depends on the ratio $\frac{l}{d}$, the use of this ratio for the horizontal scale makes all the curves parallel, so that, in plotting them, only one curve need be calculated. The other can be drawn from a template.
For interpolating between curves, a logarithmic scale covering one decade of $\frac{L}{d}$ is shown at the right of the chart.

Chart \mathbf{B} is plotted from standard winding data published by wire manufacturers (see page 42).

EXAMPLE

As an example of the use of these charts, consider the problem of

[^3]
INDUCTANCE CHARTS FOR SINGLE-LAYER SOLENOIDS—Cont'd

INDUCTANCE CHART FOR SINGLE-LAYER SOLENOIDS-Cont'd

designing a coil of $100 \mu \mathrm{~h}$ inductance on a winding form two inches in diameter, with an available winding length of two inches. The quantity $\frac{l}{d}$ is unity and $\frac{L}{d}$ is 50 . Entering the chart at $\frac{L}{d}=50$ and following down the curve to the vertical line $\frac{l}{d}=1$, we find that n, as indicated by the lefthand vertical scale, is 54 turns.
The winding length of two inches is equivalent to 27 turns per linear inch, close wound. The second chart shows that No. 18 enamel or single-silk-, No. 20 double-silk-, or single-cotton-or No. 22 double-cotton-covered wire would be used close wound. No. 25 bare wire, double spaced, could also be used.

COPPER WIRE COIL DATA

宮 $=\frac{\text { E }}{\underline{E}}$		
	ن	
	－	
	ن．	
	－	
	ن¢	
	U	
	نِ	
	¢	
	$\begin{aligned} & \overline{\overline{0}} \\ & \overline{y_{u}} \end{aligned}$	arnn
		ベ
言乐玄		
$\begin{array}{ll} \hline \infty & 0 \\ \infty & 0 \\ \infty & 0 \\ \infty & 0 \end{array}$		

REACTANCE CHARTS*

CHART A-1 to 1000 cycles
 CHART B-1 kc to 1000 kc
 CHART C-1 mc to 1000 mc

The three charts on pages 44,45 , and 46 give the relationships of capacitance, reactance, and frequency. Any one value may be determined in terms of the other two by use of a straight edge laid across the correct chart for the frequency under consideration. The example below gives the method of using the charts.

Example: Given a capacitance of $0.01 \mu \mathrm{f}$, find the reactance at a frequency of 400 cycles. Placing a straight edge through these respective values (Chart A), the desired result is read on the reactance scale as 40,000 ohms. Since the straight edge intersects the inductance scale at 15.8 henries, the chart indicates that this value of inductance has a reactance of 40,000 ohms at 400 cycles per second.

The chart also gives the values of L and C that resonate at a given frequency, in the example at 400 cycles, since $X_{\mathrm{L}}=X_{\mathrm{C}}$ at resonance in most radio circuits.

[^4]REACTANCE CHART A

REACTANCE CHART B

REACTANCE CHART C

time constants for series Circuits*

> CHART I -0.1 Cycles $/$ Sec. to $100 \mathrm{kc} / \mathrm{Sec}$.
> CHART II-10 Cycles/Sec. to $10 \mathrm{mc} / \mathrm{Sec}$.

The two charts on pages 48 and 49 provide data for finding the time constant of a network for a series circuit. Time constant for either resistance-capacitance series networks or inductance-resistance series networks can be found. The example below gives the method of using the charts.

Example: Given a resistance of 0.1 megohm in series with a capacitance $0.25 \mu \mathrm{f}$, find the time constant of the network. Placing a straight edge through these respective values (using resistance scale No. 2 and capacitance scale No. 2), the time constant scale is intersected at 0.025 seconds and the frequency scale at 40 cycles $/ \mathrm{sec}$.

The time constant scale gives the interval of time necessary for the current to rise, or decay, to within $\frac{1}{e}$ of the steady state value (approximately 63% of its final value). The frequency scale reads the highest frequency at which 63.2% of the exciting voltage can be developed across the network.

Formulas: In a resistance-capacitance series network, the time constant is defined by: T (seconds) $=R$ (ohms) $\times C$ (farads) In an inductance-resistance series network, the time constant is defined by: T (seconds) $=\frac{L \text { (henrys) }}{R \text { (ohms) }}$

[^5]CHART I

TIME CONSTANTS FOR SERIES CIRCUITS-Confinued

PHASE ANGLE of the Admittance
is $-\tan ^{-1} \frac{X}{R}$

IMPEDANCE FORMULAS
 PHASE ANGLE $\phi=\tan ^{-1} \frac{X}{R}$ ADMITTANCE $Y=\frac{1}{Z}$ mhos

	-12	$-\frac{1}{3}$	U		\|ras		$-\left\|\begin{array}{c}u \\ 3\end{array}\right\|-\left\lvert\, \begin{gathered}* \\ 3\end{gathered}\right.$ \cdots + \sim	$\left.\begin{gathered} \\ 0 \\ 3 \\ 3 \\ \hline \end{gathered} \right\rvert\,$	
	\bigcirc	$* / n$ +	*\|	$\begin{gathered} k \mid \sim \\ + \end{gathered}$	k\|N	$\left\|\begin{array}{c} \dot{3} \\ \vdots \\ \vdots \\ 5 \\ 5 \end{array}\right\| \propto$		kiN	
9 0 0 0 0 0 4	\propto	3	- ${ }^{\prime}$	$\begin{aligned} & \text { E } \\ & \text { N } \\ & H \\ & \text { N } \\ & + \\ & \vdots \\ & \vdots \\ & \hline \end{aligned}$	$\begin{gathered} -10^{5} \\ + \\ -15 \\ -13 \end{gathered}$			$\begin{gathered} -10 \\ 1 \\ \vdots \\ 3 \\ \hline \end{gathered}$	
	χ	. 3	$\stackrel{-1 u_{3}^{0}}{\substack{0}}$	n H H N + \vdots \vdots 3	$\begin{gathered} -10^{-} \\ + \\ -15 \\ -13 \\ -13 \end{gathered}$	$\begin{aligned} & \stackrel{1}{3} \\ & + \\ & + \\ & \times \end{aligned}$		$\begin{gathered} -1 V_{3} \\ 1 \\ 4 \\ 3 \\ \hline-7 \end{gathered}$	$\begin{gathered} -1_{3}^{4} \\ 1 \\ \cdots \\ \vdots \\ \hdashline \\ + \\ 2 \\ 2 \end{gathered}$
				$\left\{\begin{array}{l} 5 \\ 5 \\ 6 \\ 5 \\ 5 \end{array}\right.$	$\frac{\square}{\frac{1}{T}}$	\&	\sum_{∞}^{0}	$5000-\left.1\right\|^{2}$	

(
IMPEDANCE FORMULAS-Confinued

$$
\text { PHASE ANGLE } \quad \phi=\tan ^{-1} \frac{X}{R}
$$

$$
\text { ADMITTANCE } Y=\frac{1}{Z} \quad \text { mhos }
$$

PHASE ANGLE of the Admittance

$$
\text { is }-\tan ^{-1} \frac{X}{K}
$$

	IMPEDA.NCE	$\frac{R+j \omega\left[L\left(1-\omega^{2} L C\right)-C R^{2}\right]}{\left(1-\omega^{2} L C\right)^{2}+\omega^{2} C^{2} R^{2}}$	
	MAgNITUDE	$\left[\frac{R^{2}+\omega^{2} L^{2}}{\left(1-\omega^{2} E C\right)^{2}+\omega^{2} C^{2} R^{2}}\right]^{1}$	
	PHASE ANGLE	$\tan ^{-1} \frac{\omega\left[L\left(1-\omega^{2} L C\right)-C R^{2}\right]}{\tilde{R}}$	
	ADMITTANCE	$\frac{R-j \omega\left[L\left(1-\omega^{2} L C\right)-C R^{2}\right]}{R^{2}+\omega^{2} L^{2}}$	
	IMPEDANCE	$X_{1} \frac{X_{1} R_{2}+j\left[R_{2}^{2}+X_{2}\left(X_{1}+X_{2}\right)\right]}{R_{2}^{2}+\left(X_{1}+X_{2}\right)^{2}}$	
	MAGNITUDE	$X_{1} \frac{\left\{X_{1}{ }^{2} R_{2}{ }^{2}+\left[R_{2}^{2}+X_{2}\left(X_{1}+X_{2}\right)\right]^{2}\right\}}{R_{2}{ }^{2}+\left(X_{1}+X_{2}\right)^{2}}$	
	PHASE ANGLE	$\tan ^{-1} \frac{R_{2}^{2}+X_{2}\left(X_{1}+X_{2}\right)}{X_{1} R_{2}}$	-
	ADMITTANCE	$\frac{R_{2} X_{1}-j\left(R_{2}^{2}+X_{2}^{2}+X_{1} X_{n}\right)}{X_{1}\left(R_{2}^{2}+X_{2}^{2}\right)}$	

	IMPEDANCE	$\frac{R_{1} R_{2}\left(R_{1}+R_{2}\right)+\omega^{2} L^{2} R_{2}+\frac{R_{1}}{\omega^{2} C^{2}}}{\left(R_{1}+R_{2}\right)^{2}+\left(\omega L-\frac{1}{\omega C}\right)^{2}}+j \frac{\omega L R_{2}^{2}-\frac{R_{1}^{2}}{\omega C}-\frac{L}{C}\left(\omega L-\frac{1}{\omega C}\right)}{\left(R_{1}+R_{2}\right)^{2}+\left(\omega L-\frac{1}{\omega C}\right)^{2}}$
	Magnitude	$\left\{\left[\frac{R_{1} R_{2}\left(R_{1}+R_{2}\right)+\omega^{2} L^{2} R_{2}+\frac{R_{1}}{\omega^{2} C^{2}}}{\left(R_{1}+R_{2}\right)^{2}+\left(\omega L-\frac{1}{\omega C}\right)^{2}}\right]^{2}+\left[\frac{\omega L R_{2}{ }^{2}-\frac{R_{1}^{2}}{\omega C}-\frac{L}{C}\left(\omega L-\frac{1}{\omega C}\right)^{2}}{\left(R_{1}+R_{2}\right)^{2}+\left(\omega L-\frac{1}{\omega C}\right)^{2}}\right]^{2}\right\}^{1}$
	Phase angle	$\tan ^{-1}\left[\frac{\omega L R_{2}{ }^{2}-\frac{R_{1}^{2}}{\omega C}-\frac{L}{C}\left(\omega L-\frac{1}{\omega C}\right)}{R_{1} R_{2}\left(R_{1}+R_{2}\right)+\omega^{2} L^{2} R_{2}+\frac{R_{1}}{\omega^{2} C^{2}}}\right]$
	ADMITTANCE	$\frac{R_{1}+\omega^{2} C^{2} R_{1} R_{2}\left(R_{1}+R_{2}\right)+\omega^{4} L^{2} C^{2} R_{2}}{\left(R_{1}^{2}+\omega^{2} / 2^{2}\right)\left(1+\omega^{2} C^{3} R_{2}^{2}\right)}+j \omega\left[\frac{C R_{1}^{2}-L+\omega^{2} L C\left(L-C R_{2}^{2}\right)}{\left(R_{1}^{2}+\omega^{2} L^{2}\right)\left(1+\omega^{2} C^{2} R_{2}^{2}\right)}\right]$
	IMPEDANCE	$\frac{R_{1} R_{2}\left(R_{1}+R_{2}\right)+R_{1} X_{2}^{2}+R_{2} X_{1}^{2}}{\left(R_{1}+R_{2}\right)^{2}+\left(X_{1}+X_{2}^{2}\right)^{2}}+j \frac{R_{1}^{2} X_{2}+R_{2}^{2} X_{1}+X_{1} X_{2}\left(X_{1}+X_{2}\right)}{\left(R_{1}+R_{2}\right)^{2}+\left(X_{1}+X_{2}\right)^{2}}$
	MAGNITUDE	$\frac{\left\{\left[R_{1} R_{2}\left(R_{1}+R_{2}\right)+R_{1} X_{2}^{2}+R_{2} X_{1}^{2}\right]^{2}+\left[R_{1}^{2} X_{2}+R_{2}^{2} X_{1}+X_{1} X_{2}\left(X_{1}+X_{2}\right)\right]^{2}\right\}^{\frac{1}{2}}}{\left(R_{1}+R_{2}\right)^{2}+\left(X_{1}+X_{2}\right)^{2}}$
	PHASE ANGLE	$\tan ^{-1} \frac{R_{1}^{2} X_{2}+R_{2}{ }^{2} X_{1}+X_{1} X_{2}\left(X_{1}+X_{2}\right)}{R_{1} R_{2}\left(R_{1}+R_{2}\right)+R_{1} X_{2}{ }^{2}+R_{2} X_{1}{ }^{2}}$
	ADMITTANCE	$\frac{R_{1}\left(R_{2}^{2}+X_{2}^{2}\right)+R_{2}\left(R_{1}^{2}+X_{1}^{2}\right)}{\left(R_{1}^{2}+X_{1}^{2}\right)\left(R_{2}^{2}+X_{2}^{2}\right)}-j \frac{X_{1}\left(R_{2}^{2}+X_{2}^{2}\right)+X_{2}\left(R_{1}^{2}+X_{1}^{2}\right)}{\left(R_{1}^{2}+X_{1}^{2}\right)\left(R_{2}^{2}+X_{2}^{2}\right)}$

NETWORK THEOREMS

Reciprocity Theorem

If an E.M.F. of any character whatsoever located at one point in a network produces a current at any other point in the network, the same E.M.F. acting at the second point will produce the same current at the first point.

Thévenin's Theorem

If an impedance Z is connected between two points of a network, the resulting steady-state current I through this impedance is the ratio of the p.d. V between the two points prior to the connection of Z, and the sum of the values of (1) the connected impedance Z, and (2) the impedance Z_{1} of the network measured between the two points:

$$
I=\frac{V}{Z+Z_{1}}
$$

Principle of Superposition

The current which flows at any point in a network composed of constant resistances, inductances, and capacitances, or the p.d. which exists between any two points in such a network, due to the simultaneous action of a number of E.M.F.'s distributed in any manner throughout the network, is the sum of the component currents at the first point, or the component p.d.'s between the two points, which would be caused by the individual E.M.F.'s acting alone. (Applicable to E.M.F.'s of any character.)

In the application of this theorem, it is to be noted that: for any impedance element Z through which flows a current I, there may be substituted a virtual source of voltage of value $-Z I$.

ELECTRICAL CIRCUIT FORMULAS

1. Self Inductance of a Straight Round Wire

At zero or very low frequency
$L_{0}=0.002 l\left[2.303 \log _{10} \frac{4 l}{d}-1+\frac{\mu}{4}\right]$ microhenries
If $\frac{2 l}{d}<1000$, add term $\frac{d}{2 l}$ within bracket.
At infinite or very high frequency

$$
I_{\infty}=0.002 l\left[2.303 \log _{10} \frac{4 l}{d}-1\right]
$$

where $\quad l=$ length in cm .
$d=$ diameter in cm.
$\mu=$ permeability.
For nonmagnetic wires, $\mu=1$.

2. Inductance of a Single Layer Coil

For coils of the proportions normally used in radio work, an accuracy of approximately one percent is given by the formula:

$$
L=N^{2} \frac{r^{2}}{9 r+10 l} \text { microhenries }
$$

where l and r are the mean length and radius of the coil in inches; N is the total number of turns.

In the use of various charts, tables, and "calculators" for designing inductors, the following relationships are useful in extending the range of the devices. They apply to coils of any type or design.
(a) If all the dimensions are held constant the inductance is proportional to N^{2}.
(b) If the proportions of the coil remain unchanged, then for a given number of turns the inductance is proportional to the dimensions of the coil. A coil with all dimensions m times those of a given coil (having the same number of turns) has m times the inductance. That is, inductance has the dimensions of "length".

ELECTRICAL CIRCUIT FORMULAS-Continued

3. Capacitance of a Parallel Plate Capacitor

$$
C=0.0885 K \frac{(N-1) A}{t} \text { micromicrofarads }
$$

where $\quad A=$ area of plates in square cm .
$N=$ number of plates
$t=$ thickness of dielectric in cm .
$K=$ dielectric constant.

4. Reactance of an Inductor

$$
X=2 \pi f L \text { ohms }
$$

where

$$
f=\text { frequency in cycles per second }
$$

$$
L=\text { inductance in henries }
$$

or f in kc and L in mh ; or f in megacycles and I. in μh.

5. Reactance of a Capacitor

$$
X=\frac{-1}{2 \pi f C} \text { ohms }
$$

where

$$
C=\text { capacitance in farads. }
$$

This may be written

$$
X=\frac{-159.2}{f C} \text { ohms }
$$

where f and C are kc and μf respectively; or f and C are megacycles and milli-microfarads ($.001 \mu f$) respectively.
6. Impedance of a Series Circuit of Resistance, Capacitance and Inductance

$$
Z=R+j X=\sqrt{R^{2}+X^{2}} / \tan ^{-1} \frac{X}{R}
$$

where $\quad X=\omega L-\frac{1}{\omega C}$

ELECTRICAL CIRCUIT FORMULAS—Continued

7. Resonant Frequency of a Series Tuned Circuit

$$
f=\frac{1}{2 \pi \sqrt{L C}} \text { cycles per second }
$$

where L is in henries and C in farads.
This may be written

$$
L C=\frac{25,330}{f^{2}}
$$

where f, L and C are in kc , mh and milli-microfarads ($001 \mu f$) respectively; or in megacycles, μh and $\mu \mu f$ respectively.

8. Wavelength and Frequency

$$
f \lambda=3 \times 10^{10} \mathrm{~cm} . \text { per second (velocity of light) }
$$

where f is in cycles per second; λ is in cm .
9. Dynamic Resistance of a Tuned Circuit at Resonance

$$
r=\frac{X^{2}}{R}=\frac{L}{C R} \mathrm{ohms}
$$

where $X^{2}=(\omega L)^{2}=\left(\frac{1}{\omega C}\right)^{2}$ and R is the total series resistance in ohms. L is in henries and C is in farads.

10. Q of a Reactor

The reactor may be considered either as a reactance X_{1}, with series resistance R_{1} or as a reactance X_{2} with shunt resistance R_{2}

Then

$$
Q=\frac{\left|X_{1}\right|}{R_{1}}=\frac{R_{2}}{\left|X_{2}\right|}
$$

Except for very low $Q, X_{1}=X_{2}$.

ELECTRICAL CIRCUIT FORMULAS-Continued

11. Parallel Impedances

If Z_{1} and Z_{2} are the two impedances which are connected in parallel, then the resultant impedance is

$$
Z=\frac{Z_{1} Z_{2}}{Z_{1}+Z_{2}}
$$

Given one impedance Z_{1} and the desired resultant impedance Z, the other impedance is

$$
Z_{2}=\frac{Z Z_{1}}{Z_{1}-Z}
$$

12. Impedance of a Two-Mesh Network

Let $Z_{11}=$ impedance determined for first circuit or mesh (with the second mesh open circuited)
$Z_{22}=$ impedance determined for second mesh (with the first mesh open circuited)
$Z_{12}=$ mutual impedance between the two meshes, i.e., the open circuit voltage appearing in either mesh when unit current flows in the other mesh. Z_{12} may be resistive, reactive, or complex.
Then the impedance looking into the first mesh is

$$
Z_{1}^{\prime}=Z_{11}-\frac{Z_{12}^{2}}{Z_{22}}
$$

When $Z_{12}=j X_{12}$ and $Z_{11}=R_{11}+j X_{11} ; Z_{22}=R_{22}+j X_{22}$, then

$$
Z_{1}^{\prime}=R_{1}^{\prime}+j X_{1}^{\prime}=R_{11}+j X_{11}+\frac{X_{12}^{2}}{R_{22^{2}}+X_{22^{2}}}\left(\mathrm{R}_{22}-j X_{22}\right)
$$

For a transformer with tuned secondary and negligible primary resistance

$$
Z_{1}^{\prime}=R_{1}^{\prime}+j X_{1}^{\prime}=\frac{X_{12}^{2}}{R_{22}}+j X_{11}
$$

ELECTRICAL CIRCUIT FORMULAS—Continued

13. Currents in a Two-Mesh Network

$$
\begin{aligned}
i_{1} & =\frac{e_{1}}{Z_{1}^{\prime}} \\
& =e_{1} \frac{Z_{22}}{Z_{11} Z_{22}-Z_{12}^{2}} \\
& \\
i_{2} & =e_{1} \frac{Z_{12}}{Z_{11} Z_{22}-Z_{12}^{2}}
\end{aligned}
$$

where the various symbols have the same significance as in the preceding section.

14. Power Transfer Between Two Impedances Connected Directly

Let $\quad Z_{1}=R_{1}+j X_{1}$ be the impedance of the source, and $\quad Z_{2}=R_{2}+j X_{2}$ be the impedance of the load.
The maximum power transfèr occurs when

$$
R_{2}=R_{1} \quad \text { and } \quad X_{2}=-X_{1} .
$$

The reflection loss due to connecting any two impedances directly is

$$
\frac{I_{2}}{I}=\frac{\left|Z_{1}+Z_{2}\right|}{2 \sqrt{R_{1} R_{2}}}
$$

In decibels:

$$
N=20 \log _{10} \frac{\left|Z_{1}+Z_{2}\right|}{2 \sqrt{R_{1} R_{2}}}
$$

$I_{2}=$ current which would flow in Z_{2} were the two impedances connected through a perfect impedance matching network.
$I=$ current which flows when the impedances are connected directly.
15. Power Transfer Between Two Meshes Coupled Reactively In the general case X_{11} and X_{22} are not equal to zero, and X_{12} may be any reactive coupling. When only one of the quantities X_{11}, X_{22} and X_{12} can be

ELECTRICAL CIRCUIT FORMULAS-Continued

varied, the best power transfer under the circumstances is given by:
For X_{22} variable: $X_{22}=\frac{X_{12}{ }^{2} X_{11}}{R_{11}{ }^{2}+X_{11}{ }^{2}} \begin{gathered}\text { (Zero reactance looking into load } \\ \text { circuit) }\end{gathered}$
For X_{11} variable: $X_{11}=\frac{X_{12}{ }^{2} X_{22}}{R_{22^{2}}{ }^{2}+X_{22^{2}}{ }^{2}}$ (Zero reactance looking into
For X_{12} variable: $X_{12}{ }^{2}=\sqrt{\left(R_{11}{ }^{2}+X_{11}{ }^{2}\right)\left(R_{22}{ }^{2}+X_{22}{ }^{2}\right)}$
When two of the three quantities can be varied, a perfect impedance match is attained and maximum power is transferred when

$$
X_{12}{ }^{2}=\sqrt{\left(R_{11}{ }^{2}+X_{11}{ }^{2}\right)\left(R_{22^{2}}{ }^{2}+X_{22}{ }^{2}\right)}
$$

and

$$
\frac{X_{11}}{R_{11}}=\frac{X_{22}}{R_{22}} \text { (Both circuits of same } \mathrm{Q} \text { or } \text { phase angle). } .
$$

For perfect impedance match the current is

$$
i_{2}=\frac{e_{1}}{2 \sqrt{R_{11} R_{22}}} / \tan ^{-1} \frac{R_{11}}{X_{11}}
$$

In the most common case the circuits are tuned to resonance: $X_{11}=0$ and $X_{22}=0$. Then $X_{12}{ }^{2}=R_{11} R_{22}$ for perfect impedance match.

16. Optimum Coupling Between Two Circuits Tuned to the Same Frequency

From the last result in the preceding section, maximum power transfer (or an impedance match) is obtained for

$$
\omega^{2} M^{2}=R_{1} R_{2}
$$

where M is the mutual inductance between the circuits, R_{1} and R_{2} are the resistances of the two circuits.

17. Coefficient of Coupling

By definition, coefficient of coupling k is

$$
k=\frac{M}{\sqrt{L_{1} L_{2}}}
$$

where $\quad M=$ mutual inductance, L_{1} and L_{2} are the inductances of the two coupled circuits.

ELECTRICAL CIRCUIT FORMULAS-Confinued

Coefficient of coupling is a geometrical property, being a function of the proportions of the configuration of coils, including their relationship to any nearby objects which affect the field of the system. As long as these proportions remain unchanged, the coefficient of coupling is independent of the physical size of the system, and of the number of turns of either coil.

18. Selectivity of Several Single Tuned Circuits in Cascade

When n identical resonant circuits are coupled by tubes, the width of the resonance curve is given to a close approximation by:

$$
\frac{\Delta f_{\beta}}{f_{0}}=\frac{1}{Q} \sqrt{\left(\frac{E_{0}}{E_{\beta}}\right)^{2 / n}-1}
$$

where $\quad f_{0}=$ resonant frequency of circuits.
$\Delta f_{\beta}=$ band width between frequencies where $E_{B}=\beta E_{0}$.
$E_{0}=$ voltage across final tuned circuit at f_{0}.
$E_{\beta}=$ voltage across final tuned circuit at
frequencies $\left(f_{\prime \prime} \pm \frac{\Delta f_{\beta}}{2}\right)$: Input voltage assumed to be kept constant over frequency band.
Q is value for each resonant circuit.
For a single circuit, when $\beta=0.707$

$$
\frac{\Delta f}{f_{0}}=\frac{1}{Q}
$$

19. Peak Separation of Two Overcoupled Tuned Circuits

With each circuit independently tuned to f_{0}, the separation Δf between the two peaks is given to a close approximation by:

$$
\frac{\Delta f}{f_{0}}=\sqrt{k^{2}-\frac{1}{2}\left(\frac{1}{Q_{1}{ }^{2}}+\frac{1}{Q_{2}{ }^{2}}\right)}
$$

where $\quad k=$ coefficient of coupling $=\frac{X_{12}}{\sqrt{X_{1} X_{2}}}$
Q_{1} and Q_{2} are the Q^{\prime} 's of the first and second tuned circuits, respectively.
X_{1} and X_{2} are the inductive (or capacitative) reactances

ELECTRICAL CIRCUIT FORMULAS-Confinued

in the two circuits. (Note that Y_{1} and X_{2} are not necessarily equal.)

For identical circuits this reduces to

$$
\frac{\Delta f}{f_{0}}=\sqrt{k^{2}-\frac{1}{Q^{2}}}=\frac{\sqrt{X_{12}^{2}-R^{2}}}{X}
$$

where $\quad R=$ equivalent series resistance of each circuit.

$$
X=\text { inductive reactance in each circuit. }
$$

The peaks, for the general case, converge to a single peak when the quantity under the radical sign becomes equal to zero. Then:

$$
k^{2}=\frac{1}{2}\left(\frac{1}{Q_{1}{ }^{2}}+\frac{1}{Q_{2}{ }^{2}}\right)
$$

Compare this with the value of k^{2} for optimum coupling (refer to sections 16 and 17), viz.,

$$
k^{2}=\frac{1}{Q_{1} Q_{2}}
$$

When the quantity under the radical sign is negative, the expression is imaginary. Only one peak exists.

20. Selectivity of Several Pairs of Coupled Tuned Circuits in Cascade

When m pairs of tuned circuits are coupled by tubes between each successive pair, the width of the resonance curve is given to a close approximation by the following formula. This is for the case where the two peaks have just converged to a single peak, for which

$$
k^{2}=\frac{1}{2}\left(\frac{1}{Q_{1}{ }^{2}}+\frac{1}{Q_{2}{ }^{2}}\right)
$$

Then,

$$
\frac{\Delta f_{B}}{f_{0}}=\frac{\sqrt{2}}{2}\left(\frac{1}{Q_{1}}+\frac{1}{Q_{2}}\right) \sqrt[4]{\left(\frac{E_{0}}{E_{3}}\right)^{2 / \mathrm{m}}-1}
$$

The two circuits of a pair need not be identical, but it is assumed that both are tuned to f_{0}. See section 18 above on n single tuned circiuts for explanation of symbols. Comparison with the formula of that

ELECTRICAL CIRCUIT FORMULAS-Continued

section shows that the width of the resonance curve for $m=n / 2$ pairs of circuits is $\sqrt{2}$ times the width for n single circuits, except near the center frequency f_{0}.

Certain approximations have been made in order to simplify the results presented in this and the two preceding sections. In most actual applications of the types of circuits treated, the error involved is negligible from a practical standpoint. Over the narrow frequency band in question, it is assumed that:
(1) The reactance around each circuit is equal to $2 a X_{0}$, where

$$
a=\frac{f-f_{0}}{f_{0}} \quad \text { and } \quad X_{0}=2 \pi f_{0} L=\frac{1}{2 \pi f_{0} C}
$$

(2) The resistance of each circuit is constant and equal to $\frac{X_{0}}{Q}$
(3) The mutual reactance between the two circuits of a pair is constant.
(4) The voltage E_{β} across the last circuit is $X_{0} i$, where i is the current in that circuit.

21. Relationships Between a Reactance Shunted by a Resistance and the Equivalent Series Circuit

Let the network in question be the reactance X_{2} shunted by the resistance R_{2}. The terminals present an impedance which may be considered as consisting of a reactance X_{1} in series with a resistance R_{1}.

Then

$$
\begin{align*}
& R_{1}=R_{2} \frac{X_{2}{ }^{2}}{X_{2}^{2}+R_{2}{ }^{2}}=R_{2} \frac{1}{Q^{2}+1} \tag{1}\\
& X_{1}=X_{2} \frac{R_{2}{ }^{2}}{X_{2}^{2}+R_{2}^{2}}=X_{2} \frac{Q^{2}}{Q^{2}+1} \tag{2}
\end{align*}
$$

ELECTRICAL CIRCUIT FORMULAS-Continued

From which

$$
\begin{align*}
& X_{2}= \pm R_{2} \sqrt{\frac{R_{1}}{R_{2}-R_{1}}}=\frac{R_{1} R_{2}}{X_{1}}=\frac{X_{1}{ }^{2}+R_{1}^{2}}{X_{1}} \tag{3}\\
& R_{2}=\frac{X_{1}^{2}+R_{1}^{2}}{R_{1}} \tag{4}
\end{align*}
$$

Note that

$$
\begin{equation*}
R_{1} R_{2}=X_{1} X_{2}=Z^{2} \tag{5}
\end{equation*}
$$

where Z^{2} is the square of the magnitude of the impedance of the network:

$$
\begin{equation*}
Z^{2}=R_{1}{ }^{2}+X_{1}{ }^{2}=\frac{X_{2}{ }^{2} R_{2}{ }^{2}}{X_{2}{ }^{2}+R_{2}{ }^{2}} \tag{6}
\end{equation*}
$$

From equation (5):

$$
\begin{equation*}
\frac{X_{1}}{R_{1}}=\frac{R_{2}}{X_{2}} \tag{7}
\end{equation*}
$$

It is thus rigorous to define Q as the absolute value of either of these ratios, as (7) holds for all values of X_{2}, R_{2} and the corresponding X_{1}, R_{1}.
Two special cases of importance may be cited:
(a) A reactance with Q not too small (In the following expression the error is 1 percent for $Q=10$ and decreases rapidly as Q increases)

$$
\begin{equation*}
R_{1}=\frac{X_{2}{ }^{2}}{R_{2}} \quad \text { and } \quad X_{1}=X_{2} \tag{8}
\end{equation*}
$$

(b) A resistance with a small reactive component

$$
\begin{equation*}
R_{1}=R_{2} \quad \text { and } \quad X_{1}=\frac{R_{2}^{2}}{X_{2}} \tag{9}
\end{equation*}
$$

ATTENUATORS

An attenuator is a network designed to introduce a known loss when working between resistive impedances Z_{1} and Z_{2} to which the input and output impedances of the attenuator are matched. Either Z_{1} or Z_{2} may be the source and the other the load. The attenuation of such networks expressed as a power ratio is the same regardless of the direction of working.

Three forms of resistance network which may be conveniently used to realize these conditions are shown below. These are the T section, the π section, and the Bridged-T section. Equivalent balanced sections also are shown.

Methods are given for the computation of attenuator networks, the hyperbolic expressions giving rapid solutions with the aid of tables of hyperbolic functions.
In the formulas:
Z_{1} and Z_{2} are the terminal impedances (resistive) to which the attenuator is matched.
N is the ratio of the power absorbed by the attenuator from the source to the power delivered to the load.

$$
\begin{aligned}
& \text { Attenuation in decibels }=10 \log _{10} N \\
& \text { Attenuation in nepers }=\theta=1 / 2 \log _{0} N \\
& 1 \text { decibel }=0.1151 \text { neper } \\
& 1 \text { neper }=8.686 \text { decibels }
\end{aligned}
$$

ATTENUATOR NETWORK DESIGN

1. T and H Networks

Unbalanced ${ }^{\top}$

$$
\begin{array}{lll}
R_{3}=\sqrt{Z_{1} Z_{2}} \operatorname{cosech} \theta & \text { or } & R_{3}=\frac{2 \sqrt{N Z_{1} Z_{3}}}{N-1} \\
R_{1}=Z_{1} \operatorname{coth} \theta-R_{3} & \text { or } & R_{1}=Z_{1}\left(\frac{N+1}{N-1}\right)-R_{3} \\
R_{2}=Z_{2} \operatorname{coth} \theta-R_{3} & \text { or } & R_{2}=Z_{2}\left(\frac{N+1}{N-1}\right)-R_{3}
\end{array}
$$

ATTENUATORS-Confinued

Particular Cases:

(a) $Z_{1}=Z_{2}=Z$. Here:

$$
\begin{array}{ll}
R_{3}=Z \operatorname{cosech} \theta & \text { or } R_{3}=\frac{2 Z \sqrt{N}}{N-1} \\
R_{1}=R_{2}=Z \operatorname{coth} \theta-R_{3} & \text { or } R_{1}=R_{2}=Z\left(\frac{N+1}{N-1}\right)-R_{3} .
\end{array}
$$

(b) Minimum Loss pad matching Z_{1} to $Z_{2}\left(Z_{1}>Z_{2}\right)$

Unbalanced

Balanced

Here: $R_{2}=0 ; \quad R_{1}$ and R_{3} as for the general case.
Minimum attenuation in nepers, $\theta=\cosh ^{-1} \sqrt{\frac{Z_{1}}{Z_{2}}}$
Minimum power ratio,

$$
N=\frac{2 Z_{1}}{Z_{2}}\left[1+\sqrt{1-\frac{Z_{2}}{Z_{1}}}\right]-1
$$

2. π and O Networks

ATTENUATORS—Continued

$$
\begin{aligned}
& R_{3}=\sqrt{Z_{1} Z_{2}} \sinh \theta \quad \text { or } R_{3}=\frac{N-1}{2} \sqrt{\frac{Z_{1} Z_{2}}{N}} \\
& \frac{1}{R_{1}}=\frac{1}{Z_{1} \tanh \theta}-\frac{1}{R_{3}} \text { or } \frac{1}{R_{1}}=\frac{1}{Z_{1}}\left(\frac{N+1}{N-1}\right)-\frac{1}{R_{3}} \\
& \frac{1}{R_{2}}=\frac{1}{Z_{2} \tanh \theta}-\frac{1}{R_{3}} \text { or } \frac{1}{R_{2}}=\frac{1}{Z_{2}}\left(\frac{N+1}{N-1}\right)-\frac{1}{R_{3}}
\end{aligned}
$$

Particular Cases:
(a) $Z_{1}=Z_{2}=Z$. Here:

$$
\begin{array}{ll}
R_{3}=Z \sinh \theta & \text { or } \quad R_{3}=\frac{(N-1) Z}{2 \sqrt{N}} \\
\frac{1}{R_{1}}=\frac{1}{R_{2}}=\frac{1}{Z \tanh \theta}-\frac{1}{R_{3}} \quad \text { or } \quad \frac{1}{R_{1}}=\frac{1}{R_{2}}=\frac{1}{Z}\left(\frac{N+1}{N-1}\right)-\frac{1}{R_{3}}
\end{array}
$$

(b) Minimum Loss pad matching Z_{1} to $Z_{2}\left(Z_{1}>Z_{2}\right)$. Here R_{1} becomes infinite and the networks reduce to the same configurations as those of the minimum loss T or H pads.

3. Bridged T and Bridged H Networks

This network is designed to operate only between equal resistive terminal impedances Z. It is a useful form because only two variable elements are required.

$$
\begin{aligned}
& R_{1}=Z \\
& R_{2}=Z(\sqrt{N}-1) \\
& R_{3}=\frac{Z}{(\sqrt{N}-1)}
\end{aligned}
$$

ATTENUATORS—Continued

Effect of Incorrect Load Impedance on Operation of an Attenuator

In the applications of attenuators the question frequently arises as to the effect upon the input impedance and the attenuation by the use of a load impedance which is different from that for which the network was designed. The following results apply to all resistive networks which, when operated between resistive impedances Z_{1} and Z_{2}, present matching terminal impedances Z_{1} and Z_{2} respectively. The results may be derived in the general case by the application of the network theorems, and may be readily confirmed mathematically for simple specific cases such as the T section.

For the designed use of the network, let: $Z_{1}=$ input impedance of properly terminated network. $Z_{2}=$ load impedance which properly terminates the network.
$N=$ power ratio from input to output.
$K=$ current ratio from input to output.

$$
\left.K=\frac{i_{1}}{i_{2}}=\sqrt{\frac{\overline{N Z_{2}}}{Z_{1}}} \begin{array}{l}
\text { (different in the two directions of operation } \\
\text { except when } Z_{2}
\end{array}=Z_{1}\right) .
$$

For the actual conditions of operation, let

$$
\begin{aligned}
& \left(Z_{2}+\Delta Z_{2}\right)=Z_{2}\left(1+\frac{\Delta Z_{2}}{Z_{2}}\right)=\text { actual load impedance } \\
& \left(Z_{1}+\Delta Z_{1}\right)=Z_{1}\left(1+\frac{\Delta Z_{1}}{Z_{1}}\right)=\text { resulting input impedance } \\
& (K+\Delta K)=K\left(1+\frac{\Delta K}{K}\right)=\text { resulting current ratio. }
\end{aligned}
$$

While Z_{1}, Z_{2} and K are restricted to real quantities by the assumed nature of the network, ΔZ_{2} is not so restricted, e.g.,

$$
\Delta Z_{2}=\Delta R_{2}+j \Delta X_{2}
$$

As a consequence ΔZ_{1} and ΔK can become imaginary or complex. ΔZ_{2} is not restricted to small values.

The results for the actual conditions are
and

$$
\begin{aligned}
& \frac{\Delta Z_{1}}{Z_{1}}=\frac{2 \frac{\Delta Z_{2}}{Z_{2}}}{2 N+(N-1) \frac{\Delta Z_{2}}{Z_{2}}} \\
& \frac{\Delta K}{K}=\left(\frac{N-1}{2 N}\right) \frac{\Delta Z_{2}}{Z_{2}}
\end{aligned}
$$

ATTENUATORS—Confinued

Certain special cases may be cited:
(a) For small $\frac{\Delta Z_{2}}{Z_{2}}$:

$$
\begin{aligned}
\frac{\Delta Z_{1}}{Z_{1}} & =\frac{1}{N} \frac{\Delta Z_{2}}{Z_{2}} \\
\text { or } \Delta Z_{1} & =\frac{1}{K^{2}} \Delta Z_{2}
\end{aligned}
$$

(b) Short circuited output:

$$
\frac{\Delta Z_{1}}{Z_{1}}=\frac{-2}{N+1}
$$

or input impedance $=\left(\frac{N-1}{N+1}\right) Z_{1}=Z_{1} \tanh \theta$
where θ is the designed attenuation in nepers.
(c) Open circuited output:

$$
\begin{aligned}
\frac{\Delta Z_{1}}{Z_{1}} & =\frac{2}{N-1} \\
\text { or input impedance } & =\left(\frac{N+1}{N-1}\right) Z_{1}=Z_{1} \operatorname{coth} \theta
\end{aligned}
$$

(d) For $N=1$ (possible only when $Z_{1}=Z_{2}$ and directly connected):

$$
\frac{\Delta Z_{1}}{Z_{1}}=\frac{\Delta Z_{2}}{Z_{2}} \text { and } \frac{\Delta K}{K}=0
$$

(e) For large N :

$$
\frac{\Delta K}{K}=\frac{1}{2} \frac{\Delta Z_{2}}{Z_{2}}
$$

FILTER NETWORKS

GENERAL-Combination of filter elements

LOW PASS

Type	Conflguration	Sories .Arm	Shunt Arm	Notations
Constant "K'"		$L=\frac{R}{\pi f_{c}}$	$C=\frac{1}{\pi k_{c} R}$	$f_{\mathrm{c}}=\underset{\text { culoff }}{\text { culoncy }}$
Series "m" Derived		$L_{1}=\mathrm{mL}$	$\begin{aligned} & L_{2}=\frac{1-m^{2}}{4 m} L \\ & C_{2}=m C \end{aligned}$	$f_{\infty}=$ freq. of peak atten. $m=\sqrt{1-\left(\frac{f_{0}}{f_{\infty}}\right)^{2}}$
Shunt "m" Derived		$\begin{gathered} L_{1}=m L \\ C_{1}=\frac{1-m^{2}}{4 m} c \end{gathered}$	$C_{2}=m C$	minating resistance

FILTER NETWORKS-Confinued

HIGH PASS

Type	Conflguration	Series Arm	Shunt Arm	Notations
Constant "K"		$C=\frac{1}{4 \pi f_{c} R}$	$L=\frac{R}{4 \pi f_{c}}$	$\mathrm{f}_{\mathrm{c}}=\underset{\text { cutoff }}{\text { frequency }}$
Series "m" Derived		$C_{1}=\frac{C}{m}$	$\begin{aligned} L_{2} & =\frac{L}{m} \\ C_{2} & =\frac{4 m}{1-m^{2}} C \end{aligned}$	$f_{\infty}=\text { freq. of peak }$ attenuation $m=\sqrt{1-\left(\frac{f_{\infty}}{f_{c}}\right)^{2}}$
Shunt "m" Derived		$\begin{aligned} & C_{1}=\frac{C}{m} \\ & L_{1}=\frac{4 m}{1-m^{2}} l \end{aligned}$	$L_{2}=\frac{1}{m}$	$\begin{aligned} R= & \text { nominal } \\ & \text { terminating } \\ & \text { resistance } \end{aligned}$

BAND PASS

Type	Conflguration	Series Arm	Shunt Arm	Notations
Constant "K"		$\begin{aligned} & t_{1}=\frac{R}{\pi\left(f_{2}-f_{1}\right)} \\ & C_{1}=\frac{f_{2}-f_{1}}{4 \pi f_{2} f_{1} R} \end{aligned}$	$\begin{aligned} & L_{2}=\frac{f_{2}-f_{1}}{4 \pi f_{1} f_{2}} R \\ & C_{2}=\frac{1}{\pi\left(f_{2}-f_{1}\right) R} \end{aligned}$	$\mathrm{f}_{2}=\underset{\substack{\text { upper cutoff } \\ \text { frequency }}}{ }$
Three Element Series Type		$\begin{aligned} & L_{1}=\frac{R}{\pi\left(f_{2}-f_{1}\right)} \\ & C_{1}=\frac{f_{2}-f_{1}}{4 \pi f_{1}^{2} R} \end{aligned}$	$C_{2}=\frac{1}{\pi\left(f_{1}+f_{2}\right) R}$	$\begin{gathered} \mathbf{f}_{1}=\begin{array}{l} \text { lower cutoff } \\ \text { frequency } \end{array} \\ R=\begin{array}{c} \text { nominal } \\ \text { terminating } \\ \text { resistance } \end{array} \end{gathered}$
Three Element Shunt Type		$C_{1}=\frac{f_{1}+f_{2}}{4 \pi f_{1} f_{2} R}$	$\begin{aligned} & L_{2}=\frac{f_{2}-f_{1}}{4 \pi f_{1} f_{2}} R \\ & C_{2}=\frac{f_{1}}{\pi f_{2}\left(f_{2}-f_{1}\right) R} \end{aligned}$	

BAND EUMINATION

Type	Configuration	Series Arm	Shunt Arm	Notations
Constant "K"		$\begin{aligned} & L_{1}=\frac{f_{2}-f_{1}}{\pi f_{1} f_{2}} R \\ & C_{1}=\frac{1}{4 \pi\left(f_{2}-f_{1}\right) R} \end{aligned}$	$L_{2}=\frac{R}{4 \pi\left(f_{2}-f_{1}\right)}$ $C_{2}=\frac{f_{2}-f_{1}}{\pi f_{1} f_{2} R}$	$\mathrm{f}_{2}=$ upper cutoff frequency $f_{1}=$ lower cutoff frequency $R=$ nominal terminating resistance

SPECIAL CONNECTIONS AND CIRCUIT

Type	Single Phase Full Wave	Single Phase Bridge Cct.	4 Phase Star 2 Phase Supply	Dauble 2 Phase with Bal. Cail 2 Phase Supply
$\begin{array}{cc}\text { SECONDARIES } \\ \text { CIRCUITS } & \\ & \text { PrIMARIES }\end{array}$				
RECTIFIER PHASE	2	2	4	4
NO. OF TUBES	2	4	4	4
NO. OF PHASES OF SUPPLY	1	1	2	2
TRANSF. SEC. VOLTAGE PER LEG	1.11	1.11	0.785	1.11
	(1/2 section)	(whole)		
TRANSF. PRI. VOLTAGE	1.11	1.11	0.785	1.11
TRANSF. SEC. CURRENT PER LEG	0.707	1	0.500	0.354
TRANSF. PRI. CURRENT PER LEG	1	1	0.707	0.500
TRANSF. SEC. K.V.A.	1.57	1.11	1.57	1.57
TRANSF. PRI. K.V.A.	1.11	1.11	1.11	1.11
AVER. OF PRI. AND SEC. K.V.A.	1.34	1.11	1.34	1.34
PEAK inverse tube voltage	3.14	1.57	2.22	3.14
CURRENT PER TUBE	0.707	0.707	0.500	0.354
PEAK CURRENT PER TUBE	1.00	1.00	1.00	0.50
VOLTAGE RIPPLE FREQ.	$2 f$	$2 f$	4 f	4 f
RIPPLE VOLTAGE	0.483	0.483	0.098	0.098
RIPPLE PEAKS REFERENCE	+0.363	0.363	0.111	0.111
TO AVG. DC AS AXIS	-0.637	0.637	0.215	0.215
line voltage	1.11	1.11	0.785	1.11
LINE CURRENT	1.00	1.00	0.707	0.50
LINE POWER FACTOR	0.90	0.90	0.90	0.90
freq. Of bal. COIl Voltage				
balance coil voltage peak bal coll voltage				
peak bal. COIL VOltage balance coil K.V.a.				

Values of voltage and current are RMS unless otherwise stated; they are given in terms of the average d-c values. The kilovolt amperes

DATA FOR TYPICAL RECTIFIERS

are in terms of d-c kilowatt output. For details refer Proc. I. R. E.
'ol. 19 No. 1, January 1931, page 78, "Polyphase Rectification."
SIX PRINCIPAL CIRCUITS OF SELENIUM RECTIFIERS

									$\begin{aligned} & \text { cenm } \\ & 00000 \end{aligned}$			HALS			$\underline{S E}$				
SECTION OF CIRCUIT		\wedge	8	c	\wedge	B	c	A	B	c	\wedge	B	c	A	B	c	\wedge	8	c
$\begin{aligned} & \text { 雄菏 } \\ & 5_{0}^{4} \end{aligned}$	TYPE OF LOMD RESTSTIVE OR WDUCTNE	1.8	1.8	1.8	1.15	． 8	1.15	． 8	．	115	． 65	． 65	1.06	． 85	． 60	1.00	． 46	． 46	1.00
	capacitive or battery	2.5	2.5	2.5	1.7	1.2	1.6	1.2	1.2	1.6	． 70	． 70	1.08	86	． 61	1.02	46	48	1.02
	RESISTIVE OR INDUCTME load														π	$\frac{N}{2 \pi}$	W	π	$\frac{N}{2 \pi}$
$\frac{R_{8}^{2}}{8}$	capacitive	$\sqrt{ }$			$\checkmark \sim$			$\checkmark \sim$			ハ～～			$\cdots m m$			$\cdots \cdots$		
	AD								π			π	2π	0			0	π	2π
of	THEORETICAL IPPLES IN Y fundamental ac	121			48.3			48.3			18.3			4.2			4.2		

Figure 1－Six principal circuits of Selenium Recrifiers and their wave shapes under resistive，inductive or capacitive loads．Also，percent－ age of ripples in each circuit．The a－c input current in r．m．s．value in each section（ A, B and C ）is determined by multiplying the rectified output current in arithmetical value by resistive，inductive，capacitive，or battery load current factors．

SELENIUM RECTIFIERS

Selenium Rectifiers consist of one or several stacks assembled from selenium plates, usually arranged into one of the circuits illustrated in Fig. 1. Seven basic sizes of selenium plates and their rating are listed in Fig. 2. If the plates (Fig. 3) are spaced wider than those shown in Fig. 2, or are equipped with cooling fins (Fig. 4), the current ratings of the same seven basic plates are increased.

The design of Selenium Rectifiers is consummated by means of formulas and design constants tabulated in Fig. 5 and dynamic characteristics shown in Fig. 6 for direct value design method, applicable only to single phase bridge or center tap circuits and for resistive or inductive loads. For all other circuits and loads, the relative value. method using the ratios F_{v} and N of Fig .7 is usually employed. Upon selecting the proper current-carrying capacity plate (derated if necessary for higher ambient temperatures-see upper part of Fig. 8), the total d-c output is divided by the rated current of the selected plate. This current per plate divided by the rated current per basic plate gives quantity N. The corresponding F_{v} for the required circuit and load is then read off Fig. 7. F_{v} multiplied by F_{s} of the plate in question gives $d v$ to be used in the design formulas.

Plate Typ* No.	Diam. eter of Plates		Max. R.M.S. Reverse Voltage Plate	Single Phase Rectifers			Three Phase Rectifiers			Rating of Plotes Used as D.C. Volves	
				$\begin{aligned} & \text { Holf } \\ & \text { Wove } \end{aligned}$	Bridge	Conter Tap	Half Wave	Bridge	Center Tap		
	Inches		Volts	D.C. Amperes						$\xrightarrow{\text { Am. }}$ (eres	Volts
1	2/6	36	18	. 04	. 075	. 075	. 10	. 11	. 13	. 06	15
2	$1 /$	36	18	. 075	. 15	. 15	. 20	. 225	. 27	. 12	15
3	11/3	36	18	. 15		. 30	. 40	. 45	. 55	. 23	15
4	13	40	18	. 30	. 60	. 60	. 80	. 90	1.1	.45	15
5	$23 / 8$	40	18	. 60	1.2	1.2	1.6	1.8	2.2	. 90	15
6	31/8	40	16	1.2	2.4	2.4	3.2	3.6	4.5	1.8	12
7	$41 / 8$	40	14	2.0	4.0	4.0	5.3	6.0	7.5	3.1	12

Figure 2-Current and Voltage Ratings of Seven Basic Selenium Plates used in Narrow Spacing Stack Assemblies feeding Resistive or Inductive Loads under conditions of $35^{\circ} \mathrm{C}$ Ambient Temperature and continuous duty. For Battery-charging or Condenser Loads, these ratings are reduced 20 per cent. For Temperature higher than $35^{\circ} \mathrm{C}$, ratings are reduced in accordance with Fig. 8.

SELENIUM RECTIFIERS-Confinued

Plate Type No.	Diameter of Plates	Maximum Number of Plates Stack	Selenium Plate No. Used (See Fig. 2)	Max. R.M.S. Reverse Volfage per Plate	Singlo Phase Rectifers			Three Phase Rectifers			Rating of Plates Used as D.C. Valves	
					Half Wave	Bridge	Center Top	Half Wave	Bridge	Center Tap		
	Inches			Volts	D.C. Amperes						Am. peres	Volts
20	1	28	2	18	. 11	. 22	. 22	. 29	. 33	. 4	. 17	15
21	13/6	28	3	18	. 23	. 45	. 45	. 6	. 67	. 82	. 34	15
10	11/4	28	4	18	. 39	. 78	. 78	1.0	1.1	1.4	. 58	15
11	2\%	28	5	18	. 78	1.6	1.6	2.1	2.3	2.8	1.2	15
14	31\%	28	6	16	1.5	3.1	3.1	4.1	4.6	5.8	2.4	12
18	4318	28	7	14	2.6	5.2	5.2	6.9	7.8	9.7	4.0	12

Figure 3-Current and Voltage Ratings of Six Selenium Plates (Fig. 2 less No. 1 plate) used in Wide Spacing Assemblies. Other conditions the same as those for Seven Basic Plates in Fig. 2.

Plate Type No.	Size of Cooling Fina	Maximum Number of Plates per Stack	Selenium Plate No. Used (See Fig. 2)	Max. R.M.S. Reverse Voltage per Plate Volts	Single Phase Rectifers			Three Phase Rectifers			Rating of Plates Used as D.C. Valves	
					Half Wave	Bridge	Center	Half Wave	Bridge	Center Tap		
	Inches				D.C. Amperes						Amperes	Volis
9	29. ${ }^{\text {d }}$	28	4	18	. 58	1.1	1.1	1.5	1.7	2.1	. 87	15
12	33 D.	28	5	18	. 90	1.8	1.8	2.4	2.7	3.3	1.4	15
13	4\% D.	28	5	18	1.1	2.2	2.2	2.9	3.3	4.0	1.7	15
15	4\% D.	28	6	16	1.8	3.5	3.5	4.6	5.2	6.5	2.7	12
16	42\% ${ }^{\text {d }}$	24	6	16	1.9	3.8	3.8	5.0	5.6	7.0	2.9	12
17	6×6	28	6	16	2.7	5.4	5.4	7.2	8.1	10.0	4.1	12
19	6×6	28	7	14	3.7	7.4	7.4	9.8	11.1	13.3	5.7	12
8	8×8	28	7	14	5.0	10.0	10.0	13.0	15.0	18.0	7.5	12

Figure 4-Current and Voltage Ratings of Eight Selenium Plate Assemblies using Basic Plates Nos. 4, 5, 6, and 7 and Cooling Fins of Different Sizes. Other conditions the same as in Figs. 2 and 3.

Formula No.	Formula
1	$V_{\text {ac }}=k_{1} V_{\text {de }}+\mathrm{k}_{2} \mathrm{ndv}$
2	$n=\frac{k_{1} V_{d c}}{V_{p}-2 d v}$
3	$V_{a c}=\frac{V_{b}}{\sqrt{2}}+k_{z} n d v$
4	$n=\frac{V_{b}}{V_{p}}$
5	$n=\frac{v_{b} / \sqrt{2}}{V_{p}-2 d v}$
6	$\operatorname{Im}=\sqrt{\frac{A}{A+P}} \times \operatorname{lmax}$

No. of Phase	Circuit Type	k_{1}	n	k_{1}
1	Half Wave	2.3	$\frac{V_{\text {ac }}}{V_{p}}$	1
1	Bridge	1.15	$\frac{V_{\text {ge }}}{V_{p p}}$	2
1	Center Tap	1.15	$\frac{2 V_{a c}}{V_{p}}$	1
3	Half Wave	. 855	$\frac{\sqrt{3} \mathrm{~V}_{\mathrm{BC}}}{\mathrm{V}_{\mathrm{p}}}$	1
3	Bridge	. 74	$\frac{V_{a c}}{V_{p}}$	2
3	Center Tap	. 74	$\frac{2 V_{\text {gc }}}{V_{p}}$	1

Figure 5-Selenium Rectifier Design Formulas in left-hand table: 1st formula is most

SELENIUM RECTIFIERS-Confinued

commonly used in computing the required a-c voltage to give the necessary d-c output. The 3rd formula serves the same purpose in battery charging applications. The 6th formula is used in computing continuous current rating I_{m} when maximum current is drawn during the operating period A and between inoperative intervals P , both expressed in the same units of time and whenever A is not greater than time constant of the plate (approximately 5 or 8 minutes). The $2 \mathrm{nd}, 4$ th and 5 th formulas are for computing n, number of plates in series to take care of voltage. Either 4 th or 5 th, whichever gives greater value, is used in battery charging. Vb is battery voltage, i.e., product of number of cells and the required voltage per cell; dv is voltage drop per plate in RMS value obtainable from Figs. 6 and 7.

Design Constants in right-hand table: $\mathrm{k}_{1}=$ form factor; $\mathrm{k}_{2}=$ circuit factor; $V_{p}=$ maximum voltage per plate; $V_{\text {ac }}=$ phase voltage, except three phase bridge where it is line voltage; $n=$ number of plates in series, for checking purposes after exact computations by formulas.

AMPERES ARITHMETICAL
Figure 6-Rectification Characteristics of Seven Basic Plates (3/4, 1, 13/8, 13/4, 25/8, $33 / 8$ and $43 / 8$ inch Diameter) Used in the Direct Method Design of Single Phase Bridge and Center Tap Rectifiers for Inductive and Resistive I.oads. The voltage drop dv per plate, plotted as ordinates, is one-half of the difference between the r.m.s. values at input and output sides of the rectifier.

SELENIUM RECTIFIERS-Confinued

1. Direct Current Circuits. 2. 3 Phase, Bridge, Center Tap, All Loads. 3. 3 Phase, Half Wave, All Loads. 1 Phase. Half Wave, Bridge, Center Tap. Resistive or Inductive Loads. 4. 1 Phase, Half Wave, Bridge, Center Tap, Capacitive or Battery Loads.
Figure 7-Dynamic characteristics used in computing the necessary a-c voltage and number of series plates by means of relative value method. F_{v} is relative value of $d v$ and F_{B} is plate type factor.

AMBIENT TEMPERATURE RANGE- ${ }^{\circ} \mathrm{C}$.				. 35.40		40.45		45-50	50	50.55	55.60	60
Current Rating-Per Cent of Normal Voltoge Rating-Per Cent of Normal				$\begin{array}{r} 83 \\ 100 \end{array}$		$\begin{array}{r} 67 \\ 100 \end{array}$		$\begin{array}{r} 47 \\ 100 \end{array}$	$\begin{aligned} & 64 \\ & 80 \end{aligned}$	$\begin{aligned} & 47 \\ & 80 \end{aligned}$	30 80	$\begin{aligned} & 47 \\ & 60 \end{aligned}$
${ }^{\circ} \mathrm{C}$.	0	1	2	3	4			5	6	7	8	9
$+50$	122.0	123.8	125.6	127.4	129.2			31.0	132.8	134.6 116.6	136.4	138.2
40	104.0	105.8	107.6	109.4	111.2			13.0	114.8	116.6	118.4	120.2
30	86.0	87.8	89.6	91.4	93.2			95.0	96.8	98.6	100.4	102.2
20	68.0	69.8	71.6	73.4	75.2			77.0	78.8	80.6	82.4	84.2
10	50.0	51.8	53.6	55.4	57.2			59.0	60.8	62.6	64.4	66.2
0	32.0	33.8	35.6	37.4	39.2			41.0	42.8	44.6	46.4	48.2
0	+32.0	30.2	- 28.4	26.6	24.8			23.0	21.2	19.4	17.6	15.8
-10	+14.0	12.2	10.4	8.6	6.8			5.0	3.2	+1.4	-0.4	-2.2
-20	-4.0	5.8	7.6		11.2			13.0	14.8	16.6	18.4	20.2
-30	-22.0	23.8	25.6	27.4	29.2			31.0	32.8	34.6	36.4	38.2
-40	-40.0	41.8	43.6	45.4	$\begin{aligned} & 47.2 \\ & 65.2 \end{aligned}$			49.0	50.8	52.6	54.4	56.2
-50	-58.0	59.8	61.6	63.4				67.0	68.8	70.6	72.4	74.2
For Inter-	${ }^{\circ} \mathrm{C} .0 .1$	0.2	0.3	0.4		0.5		0.6	0.7	0.8	0.9	1.0
polotion	${ }^{\circ} \mathrm{F} .0 .18$	0.36	0.54	0.72		0.90		1.08	1.26	1.44	1.62	1.80

Figure \&-Under no conditions should the temperature of the Selenium Plates exceed $75^{\circ} \mathrm{C}$. If the expected ambient is above $35^{\circ} \mathrm{C}$, the current and, for still higher temperatures, the voltage rating of the plate should be reduced as shown in upper section of this table. The lower part of the table gives temperature conversion data from degrees Centigrade to degrees Fahrenheit.

VACUUM TUBE DESIGN

Vacuum Tube Nomenclature

I.R.E. standard symbols (Flectronics Standards, 1938)

e_{c} Instantaneous total grid voltage
ρ_{b} Instantaneous total plate voltage
i_{c} Instantaneous total grid current
i_{b} Instantaneous total plate current
E_{c} Average value of grid voltage
E_{b} Average value of plate voltage
$I_{c} \quad$ Average value of grid current
I_{b} Average value of plate current
e_{g} Instantaneous value of varying component of grid voltage
e_{p} Instantaneous value of varying component of plate voltage
i_{g} Instantaneous value of varying component of grid current
i_{p} Instantaneous value of varying component of plate current
$E_{\mathbf{g}} \quad$ Effective value of varying component of grid voltage
E_{p} Effective value of varying component of plate voltage
$I_{k} \quad$ Effective value of varying component of grid current
I_{p} Effective value of varying component of plate current
$I_{\mathrm{F}} \quad$ Filament or heater current
I_{s} Total electron emission (from cathode)
r_{1} External plate load resistance
C_{gp} Grid-plate direct capacitance
$C_{\text {gk }}$ Grid-cathode direct capacitance
C_{pk} Plate-cathode direct capacitance
θ_{p} Plate current conduction angle
$r_{\mathrm{p}} \quad$ Internal variational (AC) plate resistance
R_{b} Internal total (DC) plate resistance
Superscripts M preceding symbols (for example ${ }^{m} E_{\mathrm{p}}$) indicate maximum values.

VACUUM TUBE DESIGN-Continued

Vacuum Tube Coefficients

Amplification Factor μ : Ratio of incremental plate voltage to controlelectrode voltage change at a fixed plate current with constant voltage on other electrodes.

$$
\left.\mu=\left[\frac{\partial e_{\mathrm{b}}}{\partial e_{\mathrm{c}_{1}}}\right]_{I_{\mathrm{E}_{\mathrm{c} 2}-\ldots}} \quad E_{\mathrm{cn}}\right\} \text { constant }
$$

Transconductance: Ratio of incremental plate current to controlelectrode voltage change at constant voltage on other electrodes. When electrodes are plate and control-grid the ratio is the Mutual Conductance g_{m} of the tube.

$$
\begin{gathered}
g_{\mathrm{m}}=\left[\frac{\partial i_{\mathrm{b}}}{\partial e_{\mathrm{c}}}\right]_{E_{\mathrm{b}}, E_{\mathrm{c} 2}-\cdots--E_{\mathrm{cn}} \text { constant }} \\
r_{1}=0
\end{gathered}
$$

Variational (AC) Plate Resistance r_{p} : The ratio of incremental plate voltage to current change at constant voltage on other electrodes.

$$
\begin{gathered}
r_{\mathrm{p}}=\left[\frac{\partial c_{\mathrm{b}}}{\partial \imath_{\mathrm{b}}}\right] E_{\mathrm{c}_{1}} \ldots E_{\mathrm{cn}} \text { constant } \\
r_{1}=0
\end{gathered}
$$

Total (DC) Plate Resistance R_{p} : Ratio of total plate voltage to current for constant voltage on other electrodes.

$$
\begin{gathered}
R_{\mathrm{p}}:\left[\frac{e_{\mathrm{b}}}{i_{\mathrm{b}}}\right] E_{E_{\mathrm{c}_{1}-\ldots}} E_{\mathrm{en}} \text { constant } \\
r_{1}=0
\end{gathered}
$$

Vacuum Tube Terminology

Control Grid: Electrode to which plate current-controlling signal voltage is applied.
Space-charge Grid: Electrode, usually biased to constant positive voltage, placed adjacent to cathode to reduce current limiting effect of space charge.
Suppressor Grid: Grid placed between two electrodes to suppress conduction of secondary electrons from one to the other.
Screen Grid: Grid placed between anode and control-grid to reduce the capacitive coupling between them.

VACUUM TUBE DESIGN-Continued

Primary Emission: Thermionic emission of electrons from pure metal or emissive layer.
Secondary Emission: Emission, usually of electrons, from a surface by direct impact, not thermal action, of electronic or ionic bombardment.
Total Emission (I_{s}): Maximum (saturated, temperature-limited) value of electron current which may be drawn from a cathode. "Available Total Emission" is that peak value of current which may safely be drawn.
Transfer Characteristic: Relation, usually graphical, between voltage on one electrode and current to another, voltages on all other electrodes remaining constant. Examples: $\left(i_{\mathrm{b}}-e_{\mathrm{c}}\right) e_{\mathrm{b}}=$ constant curves and the so-called "positive-grid" characteristic ($i_{\mathrm{c}}-e_{\mathrm{b}}$) $e_{\mathrm{c}}=$ constant curves.
Electrode Characteristic: A relation, usually graphical, between the voltage on and current to a tube electrode, all other electrode voltages remaining constant. Examples: ($i_{\mathrm{b}}-e_{\mathrm{b}}$) $\rho_{\mathrm{o}}=$ constant curves.
Composite-Diode Lines: Relation, usually two curves, of the currents flowing to the control grid and the anode of a triode as a function of the equal voltage applied to them (grid-plate tied).
Critical Grid Voltage: Instantaneous value of grid voltage (with respect to cathode) at which anode current conduction is initiated through a gas tube.
Constant Current Characteristics: Relation, usually graphical, between the voltages on two electrodes, for constant specified current to one of them and constant voltages on all other electrodes. Examples: $\left(e_{\mathrm{o}}-e_{\mathrm{b}}\right) i_{\mathrm{b}}=$ constant curves.

Vacuum Tube Formulas*

For unipotential cathode and negligible saturation of cathode emission:

Diode Plate Current

$\frac{$| Parallel Plane Cathode |
| :---: |
| and Plate |}{$G_{1} e_{\mathrm{b}}{ }^{3 / 2}$}$\frac{$| Cylindrical Cathode |
| :---: |
| and Plate |}{$G_{1} e_{\mathrm{b}}{ }^{3 / 2}$}

(amperes)
Triode Plate Current (ampetes)
$G_{2}\left(\frac{e_{\mathrm{b}}+\mu e_{\mathrm{c}}}{1+\mu}\right)^{3 / 2}$
$G_{2}\left(\frac{e_{\mathrm{b}}+\mu e_{\mathrm{c}}}{1+\mu}\right)^{3 / 2}$

[^6]
VACUUM TUBE DESIGN-Continued

```
Diode Perveance, \(G_{1}\)
Triode Perveance, \(G_{2}\)
```

Amplification Factor
Diode Perveance, G_{1}

Triode Perveance, G_{2}

Mutual Conductance
$2.3 \times 10^{-6} \frac{A_{\mathrm{b}}}{d_{\mathrm{b}}{ }^{2}}$
$2.3 \times 10^{-6} \frac{A_{\mathrm{b}}}{\beta^{2} d_{\mathrm{b}}{ }^{2}}$
$2.3 \times 10^{-6} \frac{A_{\mathrm{b}}}{d_{\mathrm{c}}{ }^{2}}$
$\frac{2.7 d_{\mathrm{c}}\left(\frac{d_{\mathrm{v}}}{d_{\mathrm{r}}}-1\right)}{\rho \log \frac{\rho}{2 \pi r_{\mathrm{z}}}} \quad \frac{2 \pi d_{\mathrm{c}}}{\rho} \frac{\log \frac{d_{\mathrm{b}}}{d_{\mathrm{c}}}}{\log \frac{\rho}{2 \pi r_{\mathrm{R}}}}$

```
\[
g_{\mathrm{m}}=\frac{\mu}{r_{\mathrm{p}}}
\]
In above:
\(A_{\mathrm{b}}=\) anode area, \(\mathrm{cm}^{2}\)
\(d_{\mathrm{b}}=\) anode-cathode distance, cm
\(d_{0}=\) grid-cathode distance, cm
\(\beta=\) geometrical constant, a function of ratio of anode to cathode radius;
\[
\beta^{2} \cong 1 \text { for } \frac{r_{\mathrm{u}}}{r_{\mathrm{k}}}>10
\]
\(\rho=\) pitch of grid wires, cm
\(r_{\mathrm{g}}=\) grid wire radius, cm
\(r_{\mathrm{b}}=\) anode radius, cm
\(r_{k}=\) cathode radius, cm
```


Electrode Dissipation Data

Tube performance is limited by electrode dissipation. In turn tube dissipation is limited by the maximum safe operating temperatures of the glass-to-metal seals (approx. $200^{\circ} \mathrm{C}$.), glass envelope, and tube electrodes. Thus excessive dissipation may result in breakage, loss of vacuum and destruction of the tube.
Typical operating data for common types of cooling are roughly as follows:

Type	Average Cooling Surface Temperature ${ }^{\circ} \mathrm{C}$.	Specific Dissipation Watts $/ \mathrm{Cm}^{2}$ of Coding Surface	Cooling Medium Supply
$\overline{\text { Radiation }}$	400-1000	4-10	
Water	30-60	30-110	0.25-0.5 gals./min./KW
Forced-Air	150-200	0.5-1	75-150 cu. ft./min./KW

VACUUM TUBE DESIGN-Continued

The operating temperature of radiation cooled anodes for a given dissipation is determined by the relative total emissivity of their material. Thus, graphite electrodes which approach black body radiation conditions operate at the lower temperature range indicated, while untreated tantalum and molybdenum work at relatively high temperatures.
In computing cooling medium flow, a minimum velocity sufficient to insure turbulent flow at the dissipating surface must be maintained.
In the case of water and forced-air cooled-tubes, the figures above apply to clean cooling surfaces, and may be reduced to a small fraction of these values by heat insulating coatings such as mineral scale or dust. Cooling surfaces should thus be closely observed and cleaned periodically.

Vacuum Tube Filament Characteristics

Typical data on the three types of cathodes most used are given below:

Type	Efficiency MA/watt	Specific Emission I_{s} Amps./Cm ${ }^{2}$	Operating Temperature Degs. Kelvin	Ratio Hot-to_Cold Resistance
Pure 'Tungsten (W)	5-10	0.25-0.7	2500-2600	14:1
Thoriated Tungsten (ThW)	40-100	0.5-3	1950-2000	10:1
Oxide Coated ($B_{\mathbf{a}} C_{\mathbf{a}} S_{\mathrm{r}}$)	50-150	0.5-2.5	1100-1250	2.5 to $5.5: 1$

In the cases of thoriated tungsten and oxide coated filament tules, the emission data vary widely between tubes around the approximate range indicated in the table. The figures for specific emission refer to the peak or saturated value which is usually several times the total available value for these filaments. Instantaneous peak current values drawn during operation should not exceed the published available emission figure for the given tube.
Thoriated tungsten and oxide coated type filaments should be operated close to the specified published excitation currents and voltages. Deviation from these values, particularly in the case of oxide coated filaments, will result in rapid destruction of the cathode surface.
In the case of pure tungsten, the filament may be operated over a considerable temperature range. It should be horne in mind, however,

VACUUM TUBE DESIGN-Continued

that the total filament emission current available varies closely as the seventh power of the filament voltage. Likewise, the expected filament life is critically dependent upon the operating temperature, an increase of 5% over the rated operating filament voltage producing a reduction of 50% in rated tube life. Where the full normal temperature cathode emission is not required, a corresponding increase in operating life may be secured by operation of a pure tungsten filament below rated filament voltage.
From the above tabulated values of hot-to-cold resistance, it may be seen that a very high excitation current will be drawn by a cold filament, particularly one of the tungsten type. In order to avoid destruction by mechanical stresses which are proportional to I^{2}, it is imperative to limit the current to a safe value, say 150% of normal hot value for large tubes and 250% for medium types. This may be accomplished by resistance and time delay relays, high reactance transformers or regulators.

In a case where severe overload has temporarily impaired the emission, of a thoriated tungsten filament, the activity can sometimes be restored by operating the filament, with anode and grid voltages at zero, at 30% above the normal filament voltages for 10 minutes, and then at normal filament voltage for $20-30$ minutes.

ULTRA-HIGH FREQUENCY TUBES

Tubes for $U H F$ application differ widely in design among themselves and from those for lower frequencies. They may be classified according to principle of operation as follows:
(1) Negative grid tubes
(2) Positive grid tubes
(3) Velocity modulated tubes
(4) Magnetrons
(1) Negative grid tubes for efficient UHF operation require:
(a) Low interelectrode capacitance
(b) Low lead inductance
(c) Short electron transit time
(d) Low dielectric losses
(e) Relatively high cathode emission

ULTRA-HIGH FREQUENCY TUBES—Continued

Conditions (b) and (c) lead to small tubes and close electrode spacings, in opposition to requirements (a), (d) and (e). Accordingly, the peak voltage and plate current, electrode dissipation and hence maximum possible power output decrease with increasing frequency. In case of receiving tubes not dissipation limited, small size structures with low transit time result permitting operation to about 3000 megacycles. Use of tubes in lumped constant resonant circuits leads to direct limitation of operating frequency by (a) and (b) since

$$
f=\frac{1}{2 \pi \sqrt{\overline{L C}}}
$$

Using linear resonant circuits such as parallel or concentric lines, the upper frequency attainable is limited by the interelectrode capacitance since

$$
f_{\max }=\frac{10^{6}}{2 \pi C Z_{0} \tan \frac{2 \pi l}{\lambda}}
$$

where $f_{\max }=$ maximum operating frequency in megacycles per second
$C=$ shunt capacitance in $\mu \mu f$ across open end of shorted section line
$l=$ minimum line length in cms.
where $l<\frac{\lambda}{4}$
$Z_{0}=$ line surge impedance, ohms
Transit time of electrons from cathode to grid, and grid to anode must be less than approximately one-fifth of a period at the operating frequency. Larger values reduce operating efficiency, increase internal tube losses and may result in destructive cathode bombardment, due to the arriving electrons becoming out of phase with the accelerating alternating grid and plate voltages.

The effect of transit time limitation in an amplifier is to increase the input shunt conductance between grid and cathode. As this conductance has been found to vary with the square of the frequency, a very rapid reduction in amplification takes place in the vicinity of the upper frequency limit of a tube. The effect of transit time on the input capacitance is small.

ULTRA-HIGH FREQUENCY TUBES-Continued

In negative grid as well as all other UHF tube types, conductor and dielectric resistances must be reduced to a minimum by design and choice of materials inasmuch as skin-effect and dielectric polarization losses rapidly become excessive.

High specific cathode emission per unit area is necessary for appreciable output as the tube dimensions are decreased. A higher available total emission is also required since, for lower permissible plate voltages and load impedances, higher peak currents are drawn.

In contrast to negative grid tubes, transit time is taken advantage of in the operation of positive grid and velocity-modulated tubes and magnetrons.
(2) Positive grid or brake-field tubes in which an oscillating space charge is produced by acceleration of electrons through a positive grid toward a negative reflecting anode have been used for production of wavelengths down to one centimeter. Low power output and efficiency and poor frequency stability has hitherto limited their wide application.
(3) Velocity-modulated tubes utilize the accelerating and retarding action of alternating electrode voltages on a transit-time limited electron beam to vary the space charge density of the latter. After increase of this "bunching" effect by passage through a field-free "drift tube", the beam is passed between the plates of an appropriately tuned resonant cavity from which output power of fundamental frequency is taken off. Several types of amplifiers and oscillators utilize this principle of operation, of which some such as the reflex "Klystron" having a single cavity resemble the brake-field type tube. A maximum efficiency of about 50 percent may be obtained by this principle although the actual efficiency obtained in the frequency range around 10 centimeters is only a few percent.
(4) The magnetron may be considered as another form of velocitymodulated tube in which the electron stream instead of being accelerated linearly is given a circular trajectory by means of a transverse magnetic field. Energy from this beam is not lost directly to an

ULTRA-HIGH FREQUENCY TUBES-Continued

acceleration electrode at DC potential as in the linear case and accordingly a higher operating efficiency may be obtained. Usually acceleration and retardation of the rotary beam is accomplished by one or more pairs of electrodes associated with one or more resonant circuits.

Wavelengths down to a centimeter are produced by the so-called "first order" ($n=1$) oscillations generated in a magnetron having a single pair of plates. Relatively low efficiency and power output are obtained in this mode of operation. Design formulas relating dimensions, D.C. anode voltage, magnetic field strength and output frequency for this case are obtained from the basic relation for electron angular velocity $\omega_{\mathrm{m}}=H \frac{e}{m}$:

$$
\begin{aligned}
\lambda & =\frac{10700}{H} \\
E_{\mathrm{b}} & =0.022 r_{\mathrm{b}}^{2}\left[1-\left(\frac{r_{\mathrm{k}}}{r_{\mathrm{b}}}\right)^{2}\right]^{2} H^{2}
\end{aligned}
$$

where $H=$ field intensity in gauss
$E_{\mathrm{b}}=$ D.C. accelerating voltage in volts
$\lambda=$ generated wavelengths, cms.
$r_{\mathrm{b}}=$ anode radius, cms.
$r_{\mathrm{k}}=$ cathode radius, cms.
Higher order oscillations of the magnetron may be obtained at high outputs and efficiencies exceeding that of the linear velocity modulated tubes.

VACUUM TUBE AMPLIFIER DESIGN

Vacuum Tube Amplifier Classification

It is common practice to differentiate between types of vacuum tube circuits, particularly amplifiers, on the basis of the operating regime of the tube.

Class A: Grid bias and alternating grid voltages such that plate current flows continuously throughout electrical cycle $\left(\theta_{\mathrm{p}}=360\right.$ degrees).
Class AB: Grid bias and alternating grid voltages such that plate current flows appreciably more than half but less than entire electrical cycle ($360^{\circ}>\theta_{\mathrm{p}}>180^{\circ}$).
Class B: Grid bias close to cut-off such that plate current flows only during approximately half of electrical cycle ($\theta_{\mathrm{p}} \cong 180^{\circ}$).
Class C: Grid bias appreciably greater than cut-off so that plate current flows for appreciably less than half of electrical cycle ($\theta_{\mathrm{p}}<180^{\circ}$).

A further classification between circuits in which positive grid current is conducted during some portion of the cycle, and those in which it is not, is denoted by subscripts 2 and 1 , respectively. Thus a class $A B_{2}$ amplifier operates with a positive swing of the alternating grid voltage such that positive electronic current is conducted, and accordingly in-phase power is required to drive the tube.

General Design

In selecting a tube for a given application or, conversely, of the circuit constants to obtain optimum results with a given tube, a two-step process is frequently convenient, namely:
(1) Preliminary estimate on the basis of maximum published tube ratings and output requirements, and,
(2) After tentative selection of tube type, graphic determination of detailed performance constants such as voltages, currents, harmonic distortion, etc., from accurate published tube characteristics. This procedure is conveniently applicable to high as well as low power amplifiers and oscillators although, in the case of receiving and small power output tubes, experimental methods are largely used.

VACUUM TUBE AMPLIFIER DESIGN-Continued

TABLE I

Typical Amplifier Operating Data (Max. signal conditions-per tube)

	Class A	$\begin{aligned} & \text { Class B B } \\ & \text { A-F } \end{aligned}$	$\underset{R-F}{\text { Class } B}$	$\underset{R-F}{C l}$
Plate Efficiency, η \%	20-30	35-65	60-70	65-85
Peak Instantaneous to D.C. plate current ratio $\mathrm{M}_{\mathrm{i}_{\mathrm{b}}} / \mathrm{I}_{\mathrm{b}}$	1.5-2	3.1	3.1	3.1-4.5
R.M.S. alternating to D.C. plate current ratio, $I_{\mathrm{p}} / I_{\mathrm{b}}$	0.5-0.7	1.1	1.1	1.1-1.2
R.M.S. alternating to D.C. plate voltage ratio, $E_{\mathrm{p}} / E_{\mathrm{b}}$	0.3-0.5	0.5-0.6	0.5-0.6	0.5-0.6
D.C. to peak instantaneous grid current, $I_{\mathrm{c}} / \mathrm{M}_{i_{0}}$		0.25-0.1	0.25-0.1	0.15-0.1

Table I gives correlating data for typical operation of tubes in the various amplifier classifications. From this table, knowing the maximum ratings of a tube, the maximum power output, currents, voltages and corresponding load impedance may be estimated. Thus, taking for example, a type F-124-A water-cooled transmitting tube as a class C RF power amplifier and oscillator-the constant current characteristics of which are shown in Fig. 1 published maximum ratings are as follows:
D.C. plate voltage, E_{b}
D.C. grid voltage, $E_{\text {o }}$
D.C. plate current, I_{b}
R.F. grid current, I_{g}

Plate input, P_{i}
Plate dissipation, P_{p}

> 20,000 volts
> 3,000 volts
> 7 amperes

50 amperes
135,000 watts 40,000 watts

Maximum conditions may be estimated as follows:
For $\eta=75 \% \quad P_{\mathrm{i}}=135,000$ watts $\quad E_{\mathrm{b}}=20,000$ volts,
Power Output, $P_{o}=\eta P_{i}=100,000$ watts
Average D.C. plate current, $I_{\mathrm{b}}=P_{\mathrm{i}} / E_{\mathrm{b}}=6.7 \mathrm{amps}$.
From tabulated typical ratio ${ }^{{ }^{M}} i_{\mathrm{b}} / I_{\mathrm{b}}=4$, instantaneous peak plate current ${ }^{\mathrm{M}} i_{\mathrm{b}}=4 I_{\mathrm{b}}=27 \mathrm{amps}$.
The R.M.S. alternating plate current component, taking ratio $I_{\mathrm{p}} / I_{\mathrm{b}}=1.2, I_{\mathrm{p}}=1.2 I_{\mathrm{b}}=8 \mathrm{amps}$.
The R.M.S. value of the alternating plate voltage component from the ratio $E_{\mathrm{p}} / E_{\mathrm{b}}=0.6$ is $E_{\mathrm{p}}=0.6 \quad E_{\mathrm{b}}=12,000$ volts.

Figare 1-Constant Current Characteristics with Typical Load Lines

VACUUM TUBE AMPLIFIER DESIGN-Continued

The approximate operating load resistance r_{1} is now found from $r_{1}=E_{\mathrm{p}} / I_{\mathrm{p}}=1500$ ohms.
An estimate of the grid drive power required may be obtained by reference to the constant current characteristics of the tube and determination of the peak instantaneous positive grid current ${ }^{\mathbf{M}} i_{\mathrm{c}}$ and the corresponding instantaneous total grid voltage ${ }^{M} e_{\mathrm{c}}$. Taking the value of grid bias E_{o} for the given operating condition, the peak A.C. grid drive voltage is

$$
{ }^{\mathrm{m}} E_{\mathrm{g}}=\left({ }^{\mathrm{M}} \boldsymbol{c}_{\mathrm{c}}-E_{\mathrm{c}}\right)
$$

from which the peak instantaneous grid drive power

$$
{ }^{\mathrm{M}} p_{\mathrm{c}}={ }^{\mathrm{m}} E_{\mathrm{g}}{ }^{\mathrm{M}} \mathrm{i}_{\mathrm{c}}
$$

An approximation to the average grid drive power, P_{R}, necessarily rough due to neglect of negative grid current, is obtained from the typical ratio, $I_{\mathrm{c}} /{ }^{/ 2} i_{\mathrm{c}}=0.2$ of D.C. to peak value of grid current, giving

$$
P_{\mathrm{g}}=I_{\mathrm{o}} E_{\mathrm{g}}=0.2^{\mathrm{m}_{\mathrm{c}}} E_{\mathrm{k}} \text { watts. }
$$

Plate dissipation P_{p} may be checked with published values since $P_{\mathrm{p}}=P_{\mathrm{i}}-P_{\mathrm{o}}$.
It should be borne in mind that combinations of published maximum ratings as well as each individual maximum rating must be observed. Thus, for example in this case, the maximum 1).C. plate operating voltage of 20,000 volts does not permit operation at the maximum D.C. plate current of 7 amps . since this exceeds the maximum plate input rating of 135,000 watts.
Plate load resistance r_{1} may be connected directly in the tube plate circuit, as in the resistance-coupled amplifier, through impedance matching elements as in AF transformer-coupling, or effectively represented by a loaded parallel resonant circuit as in most radio frequency amplifiers. In any case, calculated values apply only to effectively resistive loads, such as are normally closely approximated in radio frequency amplifiers. With appreciably reactive loads, operating currents and voltages will in general be quite different and their precise calculation is quite difficult.
The physical load resistance present in any given set-up may be measured by AF or RF bridge methods. In many cases, the proper value of r_{1} is ascertained experimentally as in RF amplifiers which are tuned to the proper minimum I.C. plate current. Conversely, if the circuit is to be matched to the tube, r_{1} is determined directly as in a resistance coupled amplifier or as

$$
r_{1}=N^{2} r_{3}
$$

in the case of a transformer coupled stage, where N is the primary to secondary voltage transformation ratio. In a parallel resonant circuit in which the output resistance r_{3} is connected directly in one of the resistance legs,

> VACUUM TUBE AMPLIFIER DESIGN-Continued
> $r_{1}=X^{2} / r_{\mathrm{B}}=L / C r_{\mathrm{B}}=Q X$,
where X is the leg reactance at resonance (ohms).
L and C are leg inductance (henries) and capacitance (farads), respectively, $Q=X / r_{\mathrm{s}}$.
The above method gives useful approximate results. When accurate operating data are required, as for instance for the layout of large equipment, more precise methods of calculation must be used. The graphical methods listed in the next section are convenient and rapid and give close approximations of actual operating values.

Graphical Methods

Because of the non-linear nature of tube characteristics, graphical methods are resorted to for accurate determination of tube operating data. Examples of such methods are given below.
A comparison of the operating regimes of class $\mathrm{A}, \mathrm{AB}, \mathrm{B}$ and C amplifiers is given in the constant current characteristics graph of Fig. 1. The lines corresponding to the different classes of operation are each the locus of instantaneous grid e_{c} and plate e_{b} voltages, corresponding to their respective load impedances.
For radio frequency amplifiers and oscillators having tuned circuits giving an effective resistive load, plate and grid tube and load alternating voltages are sinusoidal and in phase (disregarding transit time), and the loci become straight lines.
For amplifiers having non-resonant resistive loads, the loci are in general non-linear except in the distortionless case of linear tube characteristics (constant r_{p}) for which they are again straight lines.
Thus, for determination of RF performance, the constant-current chart is convenient. lior solution of AF problems, however, it is more convenient to use the ($i_{\mathrm{b}}-e_{\mathrm{c}}$) transfer characteristics of Fig. 2 on which a dynamic load line may be constructed.
Methods for calculation of the most important cases are given below.
Class C RF Amplifier or Oscillator-Draw straight line from A to B (Fig. 1) corresponding to chosen DC operating plate and grid voltages, and to desired peak alternating plate and grid voltage excursions. The projection of $A B$ on the horizontal axis thus corresponds to ${ }^{m} E_{\mathrm{p}}$. Using Chaffee's 11-point method of harmonic analysis, lay out on $A B$ points:

$$
\begin{aligned}
& e_{\mathrm{p}}^{\prime}=\mathrm{m} E_{\mathrm{p}} \\
& e^{\prime \prime \prime}=0.866^{\mathrm{M}} E_{\mathrm{p}}=0 .{ }^{\mathrm{m}} E_{\mathrm{p}} \\
& e_{\mathrm{p}}^{\prime \prime \prime}=0 .
\end{aligned}
$$

VACUUM TUBE AMPLIFIER DESIGN-Continued

VACUUM TUBE AMPLIFIE,R DESIGN-Confinued

to each of which correspond instantaneous plate currents $i^{\prime}{ }_{\mathrm{b}}, i^{\prime \prime}{ }_{\mathrm{b}}$ and $i^{\prime \prime \prime}{ }_{\mathrm{b}}$ and instantaneous grid currents $i_{\mathrm{c}}^{\prime}, i^{\prime \prime}{ }_{\mathrm{c}}$ and $i^{\prime \prime \prime}{ }_{\mathrm{c}}$. The operating currents are obtained from the following expressions:

$$
\begin{aligned}
I_{\mathrm{b}} & =\frac{1}{12}\left[i_{\mathrm{b}}+2 i^{\prime \prime}{ }_{\mathrm{b}}+2 i^{\prime \prime \prime}{ }_{\mathrm{b}}\right] \\
I_{\mathrm{c}} & =\frac{1}{12}\left[i_{\mathrm{c}}+2 i^{\prime \prime}{ }_{\mathrm{c}}+2 i^{\prime \prime \prime}{ }_{\mathrm{c}}\right] \\
I_{\mathrm{p}} & =\frac{1}{6}\left[i_{\mathrm{b}}+1.73 i^{\prime \prime}{ }_{\mathrm{b}}+i^{\prime \prime \prime \prime}\right] \\
\left.I_{\mathrm{b}}\right] & =\frac{1}{6}\left[i_{\mathrm{c}}^{\prime}+1.73 i^{\prime \prime}{ }_{\mathrm{c}}+i^{\prime \prime \prime}{ }_{\mathrm{c}}\right] .
\end{aligned}
$$

Substitution of the above in the following give the desired operating data.

Power Output, $P_{\mathrm{o}}=\frac{{ }^{\mathrm{m}} E_{\mathrm{p}}{ }^{\mathrm{M}} I_{\mathrm{p}}}{2}$
Power Input, $P_{\mathrm{i}}=E_{\mathrm{b}} I_{\mathrm{b}}$
Average Grid Fxcitation Power $=\frac{{ }^{\mathrm{M}} E_{\mathrm{R}}{ }^{\mathrm{M}} \mathrm{I}_{\mathrm{g}}}{2}$
Peak Grid Excitation Power $=\mathbb{M} E_{\mathbf{g}} i^{\prime}$ 。
Plate Load Resistance, $r_{1}=\frac{{ }_{M} E_{\mathrm{p}}}{{ }_{\mathrm{M}} I_{\mathrm{p}}}$
Grid Bias Resistance, $R_{\mathrm{c}}=\frac{E_{\mathrm{c}}}{I_{\mathrm{c}}}$
Plate Efficiency, $\eta=\frac{P_{\mathrm{o}}}{P_{\mathrm{i}}}$
Plate Dissipation, $P_{\mathrm{p}}=P_{\mathrm{i}}-P_{\mathrm{o}}$
The above procedure may also be applied to plate modulated class C amplifiers. Taking the above data as applying to carrier conditions, the analysis is repeated for ${ }^{\text {crest }} E_{\mathrm{b}}=2 E_{\mathrm{b}}$ and crest $P_{\mathrm{o}}=4 P_{\mathrm{o}}$ keeping r_{1} constant. After a cut and try method has given a peak solution, it will often be found that combination fixed and self grid biasing as well as grid modulation is indicated to obtain linear operation.
To illustrate the preceding exposition, a typical amplifier calculation is given below:
Operating Requirements (carrier condition)

$$
\begin{aligned}
E_{\mathrm{b}} & =12,000 \text { volts } \\
P_{\mathrm{o}} & =25,000 \text { watts } \\
\eta & =75 \%
\end{aligned}
$$

Preliminary Calculation (refer to Table II)

VACUUM TUBE AMPLIFIER DESIGN-Continued

TABLE II
Class C RF Amplifier Data 100\% Plate Modulation

SYMBOL	Prelminary	detalied	
	CARRIER	CArrier	Crest
E_{6} (volts)	12,000	12,000	24,000
${ }^{M} E_{p}$ (volts)	10,000	10,000	20,000
$E_{\text {c }}$ (volts)		-1000	-700
${ }^{M} \mathrm{E}_{\mathrm{g}}$ (volts)		1740	1740
I_{b} (amps)	2.9	2.8	6.4
m/p (amps)	4.9	5.1	10.2
I_{0} (amps)		0.125	0.083
mg_{g} (amps)		0.255	0.183
P_{i} (wats)	35,000	33,600	154,000
Ps (wats)	25,000	25,500	102,000
P_{g} (watts)		220	160
η (per cent)	75	76	66
r_{1} (0 hms)	2060	1960	1960
Ro (ohms)		7100	7100
Ece (volts)		-110	-110

Since $\quad E_{\mathrm{p}} / E_{\mathrm{b}}=0.6$

$$
E_{\mathrm{p}}=0.6 \times 12,000=7200 \text { volts }
$$

and $\quad{ }^{\mathrm{m}} E_{\mathrm{p}}=1.41 \times 7200=10,000$ volts.
From

$$
\begin{aligned}
& I_{\mathrm{p}}=P_{\mathrm{o}} / E_{\mathrm{p}} \\
& I_{\mathrm{p}}=\frac{25,000}{7200}=3.48 \text { amperes }
\end{aligned}
$$

and

$$
\mathrm{m} I_{\mathrm{p}}=4.9 \text { amperes. }
$$

For

$$
I_{\mathrm{p}} / I_{\mathrm{b}}=1.2
$$

$$
I_{\mathrm{b}}=3.48 / 1.2=2.9 \text { amperes }
$$

and

$$
P_{\mathrm{i}}=12,000 \times 2.9=35,000 \text { watts. }
$$

Also $\quad \frac{\mathrm{m}_{i_{\mathrm{b}}}}{I_{\mathrm{b}}}=4.5$
giving $\quad{ }^{3} i_{\mathrm{b}}=4.5 \times 2.9=13.0$ amperes.
Finally $\quad r_{1}=E_{\mathrm{p}} / I_{\mathrm{p}}=\frac{7200}{3.48}=2060$ ohms.
Complete Calculation
Layout carrier operating line, $A B$, on constant current graph, Fig. 1, using values of $E_{\mathrm{b}},{ }^{\mathrm{m}} E_{\mathrm{p}}$ and ${ }^{\mathrm{M}} i_{\mathrm{b}}$, from preliminary calculated data.

VACUUM TUBE AMPLIFIER DESIGN-Continued

Operating carrier bias voltage, E_{c}, is chosen somewhat greater than twice cutoff value, 1000 volts, to locate point A.
The following data are taken along $A B$:

$$
\begin{array}{llc}
i_{\mathrm{b}}^{\prime}=13 \mathrm{amps} & i_{\mathrm{c}}^{\prime}=1.7 \mathrm{amps} & E_{\mathrm{c}}=-1000 \mathrm{volts} \\
i_{\mathrm{b}}^{\prime \prime}=10 \mathrm{amps} & i_{\mathrm{c}}^{\prime \prime}=-0.1 \mathrm{amps} & e_{\mathrm{c}}^{\prime}=740 \mathrm{volts} \\
i_{\mathrm{b}}^{\prime \prime \prime}=9.3 \mathrm{amps} & i_{\mathrm{c}}^{\prime \prime \prime}=0 \mathrm{amps} & \mathrm{M} E_{\mathrm{p}}=10,000 \mathrm{volts}
\end{array}
$$

From the formulas complete carrier data as follows are calculated:

$$
\begin{aligned}
{ }^{\mathrm{m}} I_{\mathrm{p}} & =\frac{1}{6}[13+1.73 \times 10+0.3]=5.1 \mathrm{amps} \\
P_{\mathrm{o}} & =\frac{10,000 \times 5.1}{2}=25,500 \text { watts } \\
I_{\mathrm{b}} & =\frac{1}{12}[13+2 \times 10+2 \times 0.3]=2.8 \mathrm{amps} \\
P_{\mathrm{i}} & =12,000 \times 2.8=33,600 \mathrm{watts} \\
\eta & =\frac{25,500}{33,600} \times 100=76 \text { per cent } \\
r_{\mathrm{l}} & =\frac{10,000}{5.1}=1960 \mathrm{ohms} \\
I_{\mathrm{c}} & =\frac{1}{12}[1.7+2(-0.1)]=0.125 \mathrm{amps} \\
\mathrm{~m}_{\mathrm{g}} & =\frac{1}{6}[1.7+1.7(-0.1)]+0.255 \mathrm{amps} \\
P_{\mathrm{g}} & =\frac{1740 \times 0.255}{2}=220 \mathrm{watts}
\end{aligned}
$$

Operating data at 100% positive modulation crests are now calculated knowing that here

$$
\begin{aligned}
& E_{\mathrm{b}}=24,000 \text { volts } \\
& r_{1}=1960 \text { ohms }
\end{aligned}
$$

and for undistorted operation

$$
\begin{aligned}
P_{\mathrm{o}} & =4 \times 25,500=102,000 \text { watts } \\
{ }^{\mathrm{m}} E_{\mathrm{p}} & =20,000 \text { volts }
\end{aligned}
$$

The crest operating line, $A^{\prime} B^{\prime}$, is now located by trial so as to satisfy the above conditions, using the same formulas and method as for the carrier condition.
It is seen that in order to obtain full crest power output, in addition

VACUUM TUBE AMPLIFIER DESIGN-Confinued

to doubling the alternating plate voltage, the peak plate current must be increased. This is accomplished by reducing the crest bias voltage with resultant increase of current conduction period but lower plate efficiency.

The effect of grid secondary emission to lower the crest grid current is taken advantage of to obtain the reduced grid resistance voltage drop required. By use of combination fixed and grid resistance bias proper variation of the total bias is obtained. The value of grid resistance required is given by

$$
R_{\mathrm{o}}=\frac{-\left[E_{\mathrm{c}}-{ }^{\text {crost }} E_{\mathrm{o}}\right]}{I_{\mathrm{o}}-\mathrm{crest}_{I_{\mathrm{o}}}}
$$

and the value of fixed bias by

$$
E_{\mathrm{co}}=E_{\mathrm{c}}-\left(I_{\mathrm{c}} R_{\mathrm{c}}\right)
$$

Calculations at carrier and positive crest together with the condition of zero output at negative crest give sufficiently complete data for most purposes. If accurate calculation of AF harmonic distortion is necessary the above method may be applied to the additional points required.

Class B RF Amplifiers-A rapid approximate method is to determine by inspection from the tube ($i_{\mathrm{b}}-e_{\mathrm{b}}$) characteristics the instantaneous current, i^{\prime} b, and voltage, e^{\prime} b, corresponding to peak alternating voltage swing from operating voltage, E_{b}.

AC Plate Current, ${ }^{⿺} I_{\mathrm{p}}=\frac{i^{\prime}{ }_{\mathrm{b}}}{2}$
DC Plate Current, $I_{\mathrm{b}}=\frac{i^{\prime} \mathrm{b}}{\pi}$
AC Plate Voltage, ${ }^{\mathrm{m}} E_{\mathrm{p}}=E_{\mathrm{b}}-e_{\mathrm{b}}$
Power Output, $P_{\mathrm{o}}=\frac{\left(E_{\mathrm{b}}-e^{\prime}{ }_{\mathrm{b}}\right) i^{\prime}{ }_{\mathrm{b}}}{4}$
Power Input, $P_{i}=\frac{E_{\mathrm{b}} i^{\prime}{ }_{b}}{\pi}$
Plate Efficiency, $\eta=\frac{\pi}{4}\left(1-\frac{e^{\prime} \mathrm{b}}{E_{\mathrm{b}}}\right)$
Thus $\eta \cong 0.6$ for the usual crest value of ${ }^{\mathbb{M}} E_{\mathrm{p}} \cong 0.8 E_{\mathrm{b}}$.

VACUUM TUBE AMPLIFIER DESIGN-Continued

The same method of analysis used for the class C amplifier may also be used in this case. The carrier and crest condition calculations, however, are now made from the same E_{b}, the carrier condition corresponding to an alternating voltage amplitude of $\frac{{ }^{M} E_{\mathrm{p}}}{2}$ such as to give the desired carrier power output.
For greater accuracy than the simple check of carrier and crest conditions, the RF plate currents ${ }^{\mathbb{M}} I_{\mathrm{p}}^{\prime},{ }^{\mathbb{M}} I^{\prime \prime}{ }_{\mathrm{p}},{ }^{\mathbb{M}} I^{\prime \prime \prime}{ }_{\mathrm{p}},{ }^{\mathbf{M}} I^{\circ}{ }_{\mathrm{p}},-{ }^{\mathbb{M}} I^{\prime \prime \prime}{ }^{\prime}$ p, - ${ }^{M} I^{\prime \prime}{ }_{\mathrm{p}}$, and - ${ }^{\mathrm{M}} I^{\prime}{ }_{\mathrm{p}}$ may be calculated for seven corresponding selected points of the AF modulation envelope ${ }^{\mathrm{m}}{ }^{\mathrm{m}} E_{\mathrm{g}}$, $+0.70 \mathrm{M}^{\mathrm{M}} E_{\mathrm{g}}$, $+0.5^{\mathrm{M}} E_{\mathrm{g}}, 0,-0.5^{\mathrm{M}} E_{\mathrm{g}},-0.77^{\mathrm{M}} E_{\mathrm{g}}$ and ${ }^{\mathrm{M}} E_{\mathrm{g}}$ where the negative signs denote values in the negative half of the modulation cycle. Designating

$$
\begin{aligned}
& S^{\prime}=\mathbb{M} I_{\mathrm{p}}^{\prime}+\left(-{ }^{\mathbf{M}} I_{\mathrm{p}}^{\prime}\right) \\
& D^{\prime}={ }^{\mathbf{M}} I_{\mathrm{p}}^{\prime}-\left(-\mathbb{M} I_{\mathrm{p}}^{\prime}\right), \text { etc. },
\end{aligned}
$$

the fundamental and harmonic components of the output AF current are obtained as

$$
\begin{aligned}
& { }^{\mathrm{M}} I_{\mathrm{p} 1}=\frac{S^{\prime}}{4}+\frac{S^{\prime \prime}}{2 \sqrt{2}} \text { (fundamental) } \\
& { }_{\mathrm{M}} I_{\mathrm{p} 2}=\frac{5 D^{\prime}}{24}+\frac{D^{\prime \prime}}{4}-\frac{D^{\prime \prime \prime}}{3} \\
& { }^{\mathrm{M}} I_{\mathrm{P} 3}=\frac{S^{\prime}}{6}-\frac{S^{\prime \prime \prime}}{3} \\
& { }^{\mathrm{M}} I_{\mathrm{p} 4}=\frac{D^{\prime}}{8}-\frac{D^{\prime \prime}}{4} \\
& { }^{\mathrm{M}} I_{\mathrm{p} 5}=\frac{S^{\prime}}{12}-\frac{S^{\prime \prime}}{2 \sqrt{2}}+\frac{S^{\prime \prime \prime}}{3} \\
& { }^{\mathrm{M}} I_{\mathrm{p} 5}=\frac{D^{\prime}}{24}-\frac{D^{\prime \prime}}{4}+\frac{D^{\prime \prime \prime}}{3}
\end{aligned}
$$

This detailed method of calculation of AF harmonic distortion may, of course, also be applied to calculation of the class C modulated amplifier, as well as to the class A modulated amplifier.

Class A and $A B$ AF Amplifiers-Approximate formulas assuming linear tube characteristics:

$$
\text { Maximum Undistorted Power Output, }{ }^{\mathrm{m}} P_{\mathrm{o}}=\frac{{ }_{\mathrm{m}} E_{\mathrm{p}} \mathrm{M} I_{\mathrm{p}}}{2}
$$

VACUUM TUBE AMPLIFIER DESIGN-Continued

when Plate Load Resistance, $r_{1}=r_{\mathrm{p}}\left[\frac{E_{\mathrm{c}}}{\frac{{ }_{\mathrm{M}}}{E_{\mathrm{p}}}-E_{\mathrm{c}}}-1\right]$
and Negatıve Grid Bias, $E_{\mathrm{c}}=\frac{\mathrm{m} E_{\mathrm{p}}}{\mu}\left(\frac{r_{1}+r_{\mathrm{p}}}{r_{1}+2 r_{\mathrm{p}}}\right)$
gıving Maximum Plate Efficiency, $\eta=\frac{{ }_{\mathrm{M}} E_{\mathrm{p}} \mathrm{M} I_{\mathrm{p}}}{8 E_{\mathrm{b}} I_{\mathrm{b}}}$
Max. Maximum Undistorted Power Output ${ }^{\mathbb{M}} P_{\mathrm{o}}=\frac{\mathrm{M} E_{\mathrm{p}}^{2}}{16 r_{\mathrm{p}}}$

$$
\text { when } \begin{aligned}
r_{1} & =2 r_{\mathrm{p}} \\
E_{\mathrm{c}} & =\frac{3 \mathrm{~m}}{4} \frac{E_{\mathrm{p}}}{\mu}
\end{aligned}
$$

An exact analysis may be obtained by use of a dynamic load line laid out on the transfer characteristics of the tube. Such a line is $C K F$ of Fig. 2 which is constructed about operating point K for a given load resistance r_{1} from the following relation:

$$
i_{\mathrm{b}}^{\mathrm{S}}=\frac{e_{\mathrm{b}}^{\mathrm{R}}-e_{\mathrm{b}}^{\mathrm{S}}}{r_{1}}+i_{\mathrm{b}}^{\mathrm{R}}
$$

where
R, S, etc., are successive conveniently spaced construction points.
Using the seven point method of harmonic analysis, plot instantaneous plate currents $i^{\prime}{ }_{b}, i^{\prime \prime \prime}, i^{\prime \prime \prime}{ }_{b} I_{\mathrm{b}},-i^{\prime \prime \prime}{ }_{\mathrm{b}},-i^{\prime \prime} \mathrm{b}$ and $-i^{\prime} \mathrm{b}$ corresponding to $+^{\mathrm{M}} E_{\mathrm{g}},+0.707^{\mathrm{M}} E_{\mathrm{g}},+0.5^{\mathrm{m}} E_{\mathrm{g}}, 0,-0.5^{\mathrm{M}} E_{\mathrm{g}},-0.707^{\mathrm{M}} E_{\mathrm{g}}$, and $-^{\mathrm{M}} E_{\mathrm{g}}$, where 0 corresponds to the operating point K. In addition to the formulas given under class B RF amplifiers:

$$
I_{\mathrm{b}} \text { average }=I_{\mathrm{b}}+\frac{D^{\prime}}{8}+\frac{D^{\prime \prime}}{4}
$$

from which complete data may be calculated.

Class $A B$ and B AF Amplifiers - Approximate formulas assuming linear tube characteristics give (referring to Fig. 1, line CD) for a class B AF amplifier:

$$
{ }^{\mathrm{m}} I_{\mathrm{p}}=i_{\mathrm{b}}^{\prime}
$$

VACUUM TUBE AMPLIFIER DESIGN-Continued

$$
\begin{aligned}
P_{\mathrm{o}} & =\frac{\mathrm{M} E_{\mathrm{p}} \mathrm{M} I_{\mathrm{p}}}{2} \\
P_{\mathrm{i}} & =\frac{2}{\pi} E_{\mathrm{b}}{ }^{\mathrm{M}} I_{\mathrm{p}} \\
\eta & =\frac{\pi}{4} \frac{\mathrm{M} E_{\mathrm{p}}}{E_{\mathrm{b}}} \\
\dot{R_{\mathrm{pp}}} & =4 \frac{\mathrm{~m} \dot{E}_{\mathrm{p}}}{i_{\mathrm{b}}^{\prime}}=4 r_{1}
\end{aligned}
$$

Again an exact solution may be derived by use of the dynamic load line $J K L$ on the ($i_{\mathrm{b}}-e_{\mathrm{c}}$) characteristic of Fig. 2. This line is calculated about the operating point K for the given r_{1} (in the same way as for the class A case). However, since two tubes operate in phase opposition in this case, an identical dynamic load line $M N O$ represents the other half cycle, laid out about the operating bias abscissa point but in the opposite direction (see Fig. 2).
Algebraic addition of instantaneous current values of the two tubes at each value of e_{e} gives the composite dynamic characteristic for the two tubes $O P L$. Inasmuch as this curve is symmetrical about point P it may be analyzed for harmonics along a single half curve $P L$ by the Mouromtseff 5-point method. A straight line is drawn from P to L and ordinate plate current differences a, b, c, d, f between this line and curve, corresponding to $e^{\prime \prime}{ }_{\mathrm{g}}, e^{\prime \prime \prime}{ }_{\mathrm{g}}, e^{1 V_{g}}, e_{\mathrm{g}}^{V_{g}}$ and $e^{V_{1}}$, are measured. Ordinate distances measured upward from curve $P L$ are taken positive. Fundamental and harmonic current amplitudes and power are found from the following formulas:

$$
\begin{aligned}
& { }^{{ }^{M}} I_{\mathrm{p} 1}=i_{\mathrm{b}}^{\prime}-{ }^{{ }^{M}} I_{\mathrm{p}_{3}}+{ }^{\mathrm{M}} I_{\mathrm{p} 5}-{ }^{\mathrm{M}} I_{\mathrm{p} 7}+{ }^{\mathrm{M}} I_{\mathrm{p} 9}-{ }^{M} I_{\mathrm{p}_{11}} \\
& { }^{{ }^{M}} I_{\mathfrak{p}_{3}}=0.4475(b+f)+\frac{d}{3}-0.578 d-\frac{1}{2}^{{ }^{\mathbb{M}}} I_{\mathfrak{p}_{5}} \\
& { }^{\mathrm{M}} \mathrm{I}_{\mathrm{p} 5}=0.4(a-f) \\
& { }^{M} I_{\mathrm{p} 7}=0.4475(b+f)-{ }^{M} I_{\mathfrak{p}_{3}}+0.5^{M} I_{\mathfrak{p}_{5}} \\
& { }^{\mathrm{M}} I_{\mathrm{p} \theta}={ }^{\mathrm{M}} I_{\mathrm{p} 3}-\frac{2}{3} d \\
& { }^{M} I_{\mathrm{p} 11}=0.707 c-{ }^{M} I_{\mathrm{p} 3}+{ }^{M} I_{\mathrm{p} 5} .
\end{aligned}
$$

Even harmonics are not present due to dynamic characteristic symmetry. The DC current and power input values are found by the 7 -point analysis from curve $P L$ and doubled for two tubes.

RESISTANCE COUPLED AUDIO AMPLIFIER DESIGN

Stage gain at-
medium frequencies $=A_{\mathrm{m}}=\frac{\mu R}{R+R_{\mathrm{p}}}$
high frequencies $\quad=A_{\mathrm{b}}=\frac{A_{\mathrm{m}}}{\sqrt{1+\omega^{2} C_{1}^{2} r^{2}}}$
low frequencies* $\quad=A_{1}=\frac{A_{\mathrm{m}}}{\sqrt{1+\frac{1}{\omega^{2} C_{2}^{2} \rho^{2}}}}$
Where $R=\frac{R_{1} R_{2}}{R_{1}} \quad R_{1}=$ plate load resistance (ohms)

$$
\begin{array}{ll}
r=\frac{R R_{\mathrm{p}}}{R+R_{\mathrm{p}}} & R_{\mathrm{p}}=\text { a-c.plate resistance (ohms) } \\
\rho=R_{2}+\frac{R_{1} R_{\mathrm{p}}}{R_{1}+R_{\mathrm{p}}} & C_{2}=\text { total } \\
\mu=\text { coupling capacity (farads) } \\
\mu=2 \pi \times \text { frequency } &
\end{array}
$$

Given C_{1}, C_{2}, R_{2}, and $X=$ fractional response required:
At highest frequency $\quad r=\frac{\sqrt{1-X^{2}}}{\omega C_{1} X}$

$$
\begin{aligned}
R & =\frac{r R_{\mathrm{p}}}{R_{\mathrm{p}}-r} \\
R_{1} & =\frac{R R_{2}}{R_{2}-R}
\end{aligned}
$$

At lowest frequency* $\quad C_{2}=\frac{X}{\omega \rho \sqrt{1-X^{2}}}$

[^7]
NEGATIVE FEEDBACK

The following quantities are functions of frequency with respect to magnitude and phase:
E, N, and $D=$ signal, noise, and distortion output voltage with feedback

$$
\begin{aligned}
e, n, \text { and } d & =\text { signal, noise, and distortion output voltage without } \\
& \text { feedback } \\
\mu & =\text { voltage amplification of amplifier at a given frequency } \\
\beta & =\text { fraction of output voltage fed back; for usual nega- } \\
& \text { tive feedback: } \beta \text { is negative }
\end{aligned}
$$

$\phi=$ phase shift of amplifier and feedback circuit at a given frequency

The total output voltage with feedback is

$$
\begin{equation*}
E+N+D=e+\frac{n}{1-\mu \beta}+\frac{d}{1-\mu \beta} \tag{1}
\end{equation*}
$$

It is assumed that the input signal to the amplifier is increased when negative feedback is applied, keeping $E=e$.
$(1-\mu \beta)$ is a measure of the amount of feedback. By definition, the amount of feedback expressed in decibels is

$$
\begin{equation*}
20 \log _{10} \quad|1-\mu \beta| \tag{2}
\end{equation*}
$$

Voltage gain with feedback $\quad=\frac{\mu}{1-\mu \beta}$
and change of gain

$$
\begin{equation*}
=\frac{1}{1-\mu \beta} \tag{3}
\end{equation*}
$$

If the amount of feedback is large, i.e., $\mu \beta \gg 1$, the voltage gain becomes $\frac{1}{\beta}$ and so is independent of μ.
In the general case when ϕ is not restricted to 0 or π
the voltage gain $=\frac{\mu}{\sqrt{1+|\mu \beta|^{2}-2|\mu \beta| \cos \phi}}$
and change of gain $=\frac{1}{\sqrt{1+|\mu \beta|^{2}-2|\mu \beta| \cos \phi}}$
Hence if $\mu \beta \gg 1$, the expression is substantially independent of ϕ. On the polar diagram relating ($\mu \beta$) and ϕ (Nyquist diagram), the system is unstable if the point $(1,0)$ is enclosed by the curve.

DISTORTION

A rapid indication of the harmonic content of an alternating source is given by the Distortion Factor which is expressed as a percentage.
$\underset{\text { Factor }}{\text { Distortion }}=\sqrt{\frac{\text { Sum of squares of amplitudes of harmonics }}{\text { Square of amplitude of fundamental }}} \times 100 \%$
If this factor is reasonably small, say less than 10%, the error involved in measuring it as
$\sqrt{\frac{\text { Sum of squares of amplitudes of harmonics }}{\text { Sum of squares of amplitudes of fundamental and harmonics }}} \times 100 \%$
is only small. This latter is measured by the Distortion Factor Meter.
ARMY-NAVY PREFERRED LIST OF VACUUM TUBES

[^8]
CATHODE RAY TUBES, APPROXIMATE FORMULAS

Electrostatic Deflection

is proportional to deflection voltage, is inversely proportional to accelerating voltage,
is at right angles to the plane of the plates and toward the more positive plate:

$$
D=\frac{E_{\mathrm{d}} L l}{2 E_{\mathrm{a}} A}
$$

where
$D=$ deflection
$E_{\mathrm{d}}=$ deflection voltage
$E_{\mathrm{L}}=$ accelerating voltage
$A=$ separation of plates
$l=$ length of plates
$L=l$ length from center of plates to screen
D, A, l, L are all in the same units

Electromagnetic Deflection

is proportional to flux or current in coil, is inversely proportional to the square root of the accelerating voltage, is at right angles to the direction of the field:

$$
D=\frac{.3 L l H}{\sqrt{E_{\mathrm{a}}}} \quad \begin{gathered}
\text { or, assuming no } \\
\text { leakage, }
\end{gathered} \quad D=\frac{.37 \text { LlNI }}{\sqrt{E_{\mathrm{E}}}}
$$

where
$D=$ deflection in cm .
$L=$ length in cm . between screen and point where beam enters deflecting field
$l=$ length of deflection field in cm .
H = flux density in gauss
$E_{\mathrm{a}}=$ accelerating voltage
$N I=$ deflecting coil ampere turns

Deflection Sensitivity

is linear up to frequency where phase of deflecting voltage begins to reverse before electron has reached end of deflecting field. Beyond this frequency, sensitivity drops off reaching zero and then passing

CATHODE RAY TUBES—Continued

through a series of maxima and minima as $n=1,2,3 \ldots$ Each succeeding maximum is of smaller magnitude.
$D_{\text {noro }}=n \lambda\left(\frac{v}{c}\right)$
$D_{\max }=(2 n-1)\left(\frac{\lambda}{2}\right)\left(\frac{v}{c}\right)$
$D=$ deflection
$v=$ electron velocity
$c=$ speed of light ($3 \times 10^{10} \mathrm{~cm} / \mathrm{sec}$)

Electron Velocity

for accelerating voltages up to 10,000 .

$$
v(\mathrm{~km} / \mathrm{sec})=593 \sqrt{E_{0}}
$$

Beyond 10,000 volts apply Einstein's correction for the increase in mass of the electron.

Earth's Magnetic Field

Maximum . 6 Gauss vertical (Canada)
. 4 Gauss horizontal (Philippine Islands)
At New York City 17 Gauss horizontal

Magnetic Focusing

There is more than one value of current that will focus.
Best focus is at minimum value.
For an average coil $\quad I N=220$
$\sqrt{\frac{V_{\mathrm{o} d}}{f}}$
$I N=$ ampere turns
$V_{o}=\mathrm{Kv}$. accelerating voltage
A well designed, shielded coil will require less ampere turns.
$d=$ mean diameter of coil
$f=$ focal length
Example of good shield design

$$
X=\frac{d_{1}}{20}
$$

pOWER RATIO, VOLtAGE RATIO AND dECIBEL table

The decibel, abbreviated db , is a unit used to express the difference in power level which exists at two points in a network:

The number of $\mathrm{db}=10 \log _{10} \frac{P_{1}}{P_{2}}$
It is also used to express voltage and current ratios:

$$
\text { The number of } \mathrm{db}=20 \log _{10} \frac{V_{1}}{V_{2}}=20 \log _{10} \frac{I_{1}}{I_{2}}
$$

Strictly, it can be used to express voltage and current ratios only when the two points at which the voltages or currents are in question have identical impedances.

Power ratio	Voltage and Current rotio	Decibels	Power ratio	Vollage and Current ratio	Decibels
1.0233	1.0116	0.1	19.953	4.4668	13.0
1.0471	1.0233	0.2	25.119	5.0119	14.0
1.0715	1.0315	0.3	31.623	5.6234	15.0
1.0965	1.0471	0.4	39.811	6.3096	16.0
1.1220	1.0593	0.5	50.119	7.0795	17.0
1.1482	1.0715	0.6	63.096	7.9433	18.0
1.1749	1.0839	0.7	79.433	8.9125	19.0
1.2023	1.0965	0.8	100.00	10.0000	20.0
1.2303	1.1092	0.9	158.49	12.589	22.0
1.2589	1.1220	1.0	251.19	15.849	24.0
1.3183	1.1482	1.2	398.11	19.953	26.0
1.3804	1.1749	1.4	630.96	25.119	28.0
1.4454	1.2023	1.6	1000.0	31.623	30.0
1.5136	1.2303	1.8	1584.9	39.811	32.0
1.5849	1.2589	2.0	2511.9	50.119	34.0
1.6595	1.2882	2.2	3981.1	63.086	36.0
1.7328	1.3183	2.4	6309.6	79.433	38.0
1.8198	1.3490	2.6	10^{4}	100.000	40.0
1.9055	1.3804	2.8	104×1.5849	125.89	42.0
1.9953	1.4125	3.0	104×2.5119	158.49	44.0
2.2387	1.4962	3.5	$10^{4} \times 3.9811$	199.53	46.0
2.5119	1.5849	4.0	104×6.3096	251.19	48.0
2.8184	1.6788	4.5	${ }^{105}$	316.23	50.0
3.1623	1.7783	5.0	$10^{5} \times 1.5849$	398.11	52.0
3.5480	1.8836	5.5	$10^{5} \times 2.5119$	501.19	54.0
3.9811	1.9953	6.0	$10^{5} \times 3.9811$	630.96	56.0
5.0119	2.2387	7.0	$10^{5} \times 6.3096$	794.33	58.0
6.3096	2.5119	8.0	106	1,000.00	60.0
7.9433	2.8184	9.0	107	3,162.3	70.0
10.0000	3.1623	10.0	10^{8}	10,000.0	80.0
12.589	3.5480	11.0	10°	31,623.0	90.0
15.849	3.9811	12.0	10^{10}	100,000.0	100.0

[^9]Where the power ratio is less thon unity, it is usual to invert the fraction and express the answer as a decibellozs.
Characteristics of Standard Types of Aerial Wire Telephone Circuits

Type of Cireuit		Spacing of Wires (in.)	CONSTANTS PER LOOP MILE				PROPAGATION CONSTANT				LINE IMPEDANCE						
							Polar		Rectangular		Polar		Rectangular				
			$\begin{gathered} \mathrm{R} \\ \text { Ohms } \end{gathered}$	$\underset{\text { Henrys }}{\text { L }}$	$\underset{\mu \mathrm{F}}{\mathrm{C}}$	$\underset{\text { M.MНО }}{\mathbf{G}}$	Magnifude	Angle Degrees $+$	α	β	Magnitude	Angle Deg.	$\stackrel{R}{\text { Ohms }}$	$\begin{gathered} \mathrm{x} \\ \text { Ohms } \end{gathered}$			
Non-Pole Pair Phys.	165	8	4.11	. 00311	. 00996	. 14	. 0353	83.99	. 00370	. 0351	565	5.88	562	58	179.0	179,000	. 0321
Non-Pole Pair Side	165	12	4.11	. 00337	. 00015	. 29	. 0352	84.36	. 00346	. 0350	612	5.35	610	57	179.5	179,500	. 0300
Pole Pair Side	165	18	4.11	. 00364	. 00863	. 29	. 0355	84.75	. 00325	. 0353	653	5.00	651	57	178.0	178,000	. 0282
Non-Pole Pair Phan.	165	12	2.06	. 00208	. 01514	. 58	. 0355	85.34	. 00288	. 0354	373	4.30	372	28	177.5	177,500	. 0250
Non-Pole Pair Phys.	128	8	6.74	. 00327	. 00944	. 14	. 0358	80.85	. 00569	. 0353	603	8.97	596	94	178.0	178,000	. 0494
Non-Pole Pair Side	128	12	6.74	. 00353	. 00871	. 29	. 0356	81.39	. 00533	. 0352	650	8.32	643	94	178.5	178,500	. 0462
Pole Pair Side	128	18	6.74	. 00388	. 00825	. 29	. 0358	81.95	. 00502	. 0355	693	7.72	686	93	177.0	177,000	. 0436
Non-Pole Pair Phon.	128	12	3.37	. 00216	. 01454	. 58	. 0357	82.84	. 00445	. 0355	401	6.73	398	47	177.0	177,000	. 0386
Non-Pole Pair Phys.	104	8	10.15	. 00340	. 00905	. 14	. 0367	77.22	. 00811	. 0358	644	12.63	629	141	175.5	175,500	. 0704
Non.Pole Pair Side	104	12	10.15	. 00366	. 00837	. 29	. 0363	77.93	. 00760	. 0355	692	11.75	677	141	177.0	177,000	. 0660
Pole Pair Side	104	18	10.15	. 00393	. 00797	. 29	. 0365	78.66	. 00718	. 0358	730	10.97	717	139	175.5	175,500	. 0624
Non-Pole Pair Phan.	104	12	5.08	. 00223	. 01409	. 58	. 0363	79.84	. 00640	. 0357	421	9.70	415	71	176.0	176,000	. 0556

NOTES: 1. All values are for dry weather conditions.

TELEPHONE TRANSMISSION LINE DATA-Continued
Line Parameters of Open-Wire Pairs
DP (Double Petticoat) Insulafors-12-inch spacing

Frequency Cycles/Sec.	RESISTANCE OHMS PER LOOP MI.			inductance HENRY PER LOOP MI.			LEAKANCE MICROMHOS PER LOOP Ml.: 165, 128 OR 104 Mil	
	165 mil	128 mil	104 mil	165 mil	128 mil	104 mil	Dry	Wet
0	4.02	6.68	10.12	0.00337	0.00353	0.00366	0.01	2.5
500	4.04	6.70	10.13	0.00337	0.00353	0.00366	0.15	3.0
1000	4.11	6.74	10.15	0.00337	0.00353	0.00366	0.29	3.5
2000	4.35	6.89	10.26	0.00336	0.00353	0.00366	0.57	4.5
3000	4.71	7.13	10.43	0.00335	0.00352	0.00366	0.85	5.5
5000	5.56	7.83	10.94	0.00334	0.00352	0.00366	1.4	7.5
10000	7.51	9.98	12.86	0.00331	0.00349	0.00364	2.8	12.1
20000	10.16	13.54	17.08	0.00328	0.00346	0.00361	5.6	20.5
30000	12.19	16.15	20.42	0.00326	0.00344	0.00359	8.4	28.0
40000	13.90	18.34	23.14	0.00326	0.00343	0.00358	11.2	35.0
50000	15.41	20.29	25.51	0.00325	0.00343	0.00357	14.0	41.1
infn.				0.00321	0.00337	0.00350		

Capacitance on 40-Wire Lines

	microfarad per loop mile		
	165 mil	128 mil	104 mil
In space	0.00898	0.00855	0.00822
On 40-wire line, dry	0.00915	0.00871	0.00837
On 40-wire line, wel (approx.)	0.00928	0.00886	0.00850

Primary Parameters of Open-Wire Non-Pole Pairs 53 Pairs CS Insulators per Mile-8-inch Spacing Temperature 68° F. 98 Per Cent Conductivity Copper

Frequancy ke/Sec.	RESISTANCE OHMS PER LOOP MI.			inductance MILIHENRIES PER LOOP MI.			LEAKANCE MICROMHOS PER LOOP MI.: 165, 128 OR 104 MIL	
	165 mil	128 mil	104 mil	165 mil	128 mil	104 mil	Dry	Wef
0.0	4.104	6.280	10.33	3.11	3.27	3.40		
1.0	4.186	6.872	10.36	3.10	3.26	3.40	0.052	1.75
2.0	4.416	7.018	10.47	3.10	3.26	3.40		
3.0	4.761	7.243	10.62	3.09	3.26	3.40		
5.0	5.606	7.918	11.11	3.08	3.25	3.40	0.220	3.40
10.0	7.560	10.05	12.98	3.04	3.23	3.38	0.408	5.14
20.0	10.23	13.63	17.14	3.02	3.20	3.35	0.748	8.06
50.0	15.50	20.41	25.67	2.99	3.16	3.31	1.69	15.9
100.0	21.45	28.09	35.10	2.98	3.15	3.29	3.12	27.6
200.0	29.89	38.93	48.43	2.97	3.14	3.28		
500.0	46.62	60.53	74.98	2.96	3.13	3.27		
1000.0	65.54	84.84	104.9	2.96	3.12	3.26		
infin.				2.95	3.11	3.24		

Capacitance on 40-Wire Lines
microfarad per loop mile
165 mil
0.01003
0.00978
128 mil
0.00951
0.00928

104 mil
0.00912 for dry weother
0.00888 capacitance in space (no insulators)

TELEPHONE TRANSMISSION LINE DATA-Confinued
Attenuation of 12 -Inch Spaced Open-Wire Pairs
TOLL AND DP (DOUELE PETTICOAT) INSULATORS

Size Wire	ATTENUATION IN DB PER MILE					
	.165*		.128*		.104"	
Weather	Dry	Wot	Dry	Wet	Dry	Wet
frequency Cyclos/Sec.						
	. 0127	. 0279	. 0163	. 0361	. 0198	. 0444
100	. 0231	. 0320	. 0318	. 0427	. 0402	. 05335
500	. 0288	. 0367	. 0445	. 05330	. 0620	. 0715
1000	. 0300	. 0387	. 0464	. 05537	. 0661	. 0760
	. 0326	. 0431	. 0488	. 0598	. 0686	. 0804
3000	. 0360	. 0485	. 0511	. 0642	. 0707	. 0845
5000	. 0433	. 0598	. 05573	. 0748	. 0757	. 0938
7000	. 051	. 070				.103
10000	. 061	. 085	. 076	. 102	. 093	. 120
15000	. 076	. 108	. 094	. 127	. 111	. 147
20000	. 088	. 127	. 138	. 150	. 129	. 173
30000	. 110	. 161	$\begin{array}{r}.135 \\ .58 \\ \hline 1780\end{array}$. 188	. 159	. 216
40000 50000	.130 .148	. 192	.158 .179	.223 .253	.185 .209	.254 .287

CS (SPECIAL GLASS WITH STEEL PIN) INSULATORS

20	.0126	.0252	.0162	.0326	.0197	.0402
100	.0230	.0303	.0317	.0406	.0401	.0509
500	.0286	.0348	.0441	.0510	.0618	.0693
1000	.0296	.0364	.0458	.0532	.0655	.0735
2000	.0318	.0399	.0475	.0561	.0676	.0767
3000	.0346	.0437	.0495	.0593	.0694	.0797
5000	.0412	.0531	.0547	.0668	.0731	.0856
7000	.048	.061	.062	.075	.078	.093
10000	.057	.072	.071	.087	.088	.104
15000	.068	.087	.086	.105	.104	.123
20000	.078	.099	.099	.121	.119	.141
30000	.099	.121	.120	.146	.145	.171
40000	.111	.138	.138	.166	.166	.195
50000	.125	.153	.154	.184	.185	.215

Attenuation of $\mathbf{8}$-Inch Spaced Open-Wire Palrs
CS INSULATORS

Size Wire	ATTENUATION IN DB PER MILE					
	.165*		.128"		.104"	
Weother	Dry	Wel	Dry	Wet	Dry	Wet
FrequencyCycles/Sec.1000020000300005000070000100000120000140000150000						
	. 063	. 074	. 079	. 090	. 095	. 109
	. 084	.101	. 104	. 124	. 127	.145
	.101	.124	.125	.150	.151	. 177
	. 129	.161	. 159	. 194	.190	. 228
	. 150	.194	. 185	. 232	.222	. 270
	. 178	. 236	.220	. 280	. 262	. 325
	.195	. 261	. 240	. 310	. 286	. 359
	. 211	. 285	. 259	. 337	. 308	. 390
	. 218	.296	. 268	. 350	. 317	.403

TELEPHONE TRANSMISSION LINE DATA-Confinued
Characteristics of Standard (Toll) Types of Paper Cable Telephone Circuits

TELEPHONE TRANSMISSION LINE DATA-Continued
Characteristics of Standard (Exchange) Types of Paper Insulated Telephone

Wire Gauge A.W.G.	Code No.	$\left\{\begin{array}{c} \text { Type } \\ \text { of } \\ \text { Loading } \end{array}\right.$	Loop Mile Constonts		Propagation Constant				Mid-Section Characteristic Impedance				Wave Length Miles	Volocity $\mathrm{Mi} / \mathrm{Sec}$.	Cut-off Freq.	Atten. db/mile
			$\mathrm{C} \mathrm{\mu} \mathrm{~F}$	$\begin{aligned} & G \text { mhos } \\ & \times 10^{-6} \end{aligned}$	Polar		Rectangular		Polar		Rectangular					
					Mag.	Angle (Deg.)	$\boldsymbol{\chi}$	β	Mag.	Angle (Deg.)	Z_{01}	Z_{02}				
26	BST	NL	. 083	1.6					910						-	2.9
	ST	NL	. 069	1.6	. 439	45.30	. 307	. 310	1007	44.5	719	706	20.4	20,400	-	2.67
24	DSM	NL	. 085	1.9					725						-	2.3
	ASM	NL	. 075	1.9	. 355	45.53	. 247	. 251	778	44.2	558	543	25.0	25,000	-	2.15
		M88	. 075	1.9	. 448	70.25	. 151	. 421	987	23.7	904	396	14.9	14,900	3100	1.31
		H88	. 075	1.9	. 512	75.28	. 130	. 495	1160	14.6	1122	292	12.7	12,700	3700	1.13
		B88	. 075	1.9	. 684	81.70	. 099	. 677	1532	8.1	1515	215	9.3	9,270	5300	0.86
22	CSA	NL	. 083	2.1	. 297	45.92	. 207	. 213	576	43.8	416	399	29.4	29,400	-	1.80
		M88	. 083	2.1	. 447	76.27	. 106	. 434	905	13.7	880	214	14.5	14,500	2900	0.92
		H88	. 083	2.1	. 526	80.11	. 0904	. 519	1051	9.7	1040	177	12.1	12,100	3500	0.79
		H135	. 083	2.1	. 644	83.50	. 0729	. 640	1306	6.3	1300	144	9.8	9,800	2800	0.63
		888	. 083	2.1	. 718	84.50	. 0689	. 718	1420	5.3	1410	130	8.75	8,750	5000	0.60
		B135	. 083	2.1	. 890	86.50	. 0549	. 890	1765	3.3	1770	102	7.05	7,050	4000	0.48
19	CNB	NL	. 085	1.6					400						-	1.23
	DNB	NL	. 066	1.6	. 188	47.00	. 128	. 138	453	42.8	333	308	45.7	45,700	-	1.12
		M88	. 066	1.6	. 383	82.42	. 0505	. 380	950	8.9	939	146	16.6	16,600	3200	0.44
		H88	. 066	1.6	. 459	84.60	. 0432	. 459	1137	5.2	1130	103	13.7	13,700	3900	0.38
		H135	. 066	1.6	. 569	86.53	. 0345	. 570	1413	4.0	1410	99	11.0	11,000	3200	0.30
		H175	. 066	1.6	. 651	87.23	. 0315	. 651	1643	3.3	1640	95	9.7	9,700	2800	0.27
		B88	. 066	1.6	. 641	86.94	. 0342	. 641	1565	2.8	1560	77	9.8	9,800	5500	0.30
16	NH			1.5		49.10	. 0868				243	208	62.6	62,600	-	0.76
		M88	. 064	1.5	. 377	85.88	. 0271	. 377	937	4.6	934	76	16.7	16,700	3200	0.24
		H88	. 064	1.5	. 458	87.14	. 0238	. 458	1130	2.8	1130	55	13.7	13,700	3900	0.21

TELEPHONE TRANSMISSION LINE DATA-Continued

Primary Parameters and Propagation Constants of 16 and 19-Gauge Standard Toll Cable - Loop Mile Basis Non-Loaded-Temperature $55^{\circ} \mathrm{F}$.
16-cance

Frequency kc/Sec.	Resistance Ohms/Mi.	Inductonce MilliHenries/MI.	Conductonce M.Mho/Mi.	Copacifance $\mu F / M i$.	Attenuation db per Mi.	Phose Shift Rodions per Mi.	Choracteristic Impedance Ohms
1	40.1	1.097	1	0.0588	. 69	. 09	255-i215
2	40.3	1.095	2	0.0588	. 94	. 14	190-1141
3	40.4	1.094	4	0.0587	1.05	. 19	170-108
5	40.7	1.092	8	0.0588	1.15	. 28	154-71
10	42.5	1.085	19	0.0587	1.30	. 54	142-142
20	47.5	1.066	49	0.0585	1.54	1.01	$137-123$
30	53.5	1.046	83	0.0584	1.77	1.49	135-17
50	66.5	1.013	164	0.0582	2.25	2.43	133-13
100	91.6	0.963	410	0.0580	3.30	4.71	129-19
150	111.0	0.934	690	0.0578	4.17	6.94	127-17
					-		
19-GAUCE							
1	83.6	1.108	1	0.0609	1.05	0.132	345-j316
2	83.7	1.108	3	0.0609	1.44	0.190	254-1215
3	83.8	1.107	4	0.0609	1.73	0.249	215-1170
5	84.0	1.106	9	0.0609	2.02	0.347	181-1121
10	85.0	1.103	22	0.0608	2.43	0.584	153-172
20	88.5	1.094	56	0.0607	2.77	1.07	141-j41
30	93.5	1.083	98	0.0606	3.02	1.56	137-129
50	105.4	1.062	193	0.0604	3.53	2.55	134-120
100	136.0	1.016	484	0.0601	4.79	4.94	131-113
150	164.4	0.985	830	0.0599	6.01	7.27	129-J10

Primary Parameters of Shielded 16-Gauge Spiral-Four Toll-Entrance Cable-Loop Mile Basis Non-Loaded-Temperature $70^{\circ} \mathrm{F}$.

Side Circuit

Frequency ke/Sec.	Resistance Ohms/Mi.	Inductonce Milli-Henries/Mi.	Conductance $\text { Mhos } / \mathrm{Mi} . \times 10^{-6}$	Copocilance $\mu F / M i$.
0.4	43.5	1.913	0.02	0.0247
0.6	43.5	1.907	0.04	0.0247
0.8	43.6	1.901	0.06	0.0247
1.0	43.9	1.891	0.08	0.0247
2	44.2	1.857	0.20	0.0247
3	45.2	1.821	0.32	0.0247
5	49.0	1.753	0.53	0.0247
10	55.1	1.626	1.11	0.0247
20	61.6	1.539	2.49	0.0247
30	66.1	1.507	3.77	- 0.0247
40	71.0	1.490	5.50	0.0247
60	81.5	1.467	8.80	0.0247
80	90.1	1.450	12.2	0.0247
100	97.8	1.438	15.81	0.0247
120	104.9	1.429	19.6	0.0247
140	111.0	1.421	23.3	0.0247
200	127.3	1.411	35.1	0.0246
250	137.0	1.408	46.0	0.0246
300	149.5	1.406	56.5	0.0246
350	159.9	1.405	67.8	0.0246

[^10]
RF TRANSMISSION LINE DATA

For uniform transmission lines:

$$
\begin{aligned}
& Z_{\mathrm{o}}=\sqrt{\frac{L}{C}} \\
& L=1016 \sqrt{\epsilon} Z_{0} \\
& C=1016 \frac{\sqrt{\epsilon}}{Z_{\mathrm{o}}} \\
& \frac{V}{c}=\frac{1}{\sqrt{\epsilon}} \\
& Z_{\mathrm{s}}=Z_{\circ} \frac{Z_{\mathrm{r}}+j Z_{\mathrm{o}} \tan l^{\circ}}{Z_{\mathrm{o}}+j Z_{\mathrm{r}} \tan l^{\circ}} \\
& Z_{\mathrm{s}}=\frac{Z_{\mathrm{o}}^{2}}{Z_{\mathrm{r}}} \quad \text { for } l^{\circ}=90^{\circ} \text { (quarter wave) } \\
& Z_{\mathrm{as}}=+j Z_{\mathrm{o}} \tan l^{\circ} \\
& Z_{\mathrm{so}}=-\frac{j Z_{\mathrm{o}}}{\tan l^{\circ}} \\
& l^{\circ}=360 \frac{l}{\lambda} \\
& \lambda=\lambda_{\mathrm{o}}\left(\frac{V}{c}\right)
\end{aligned}
$$

Where
$L=$ inductance of transmission line in micro micro henries per foot
$C=$ capacity of transmission line in micro micro farads per foot
$l^{\prime}=$ velocity of propagation in transmission line
$c=$ velocity of propagation in freè space
$Z_{8}=$ sending end impedance of transmission line in ohms
$Z_{0}=$ surge impedance of transmission line in ohms
$Z_{\mathrm{r}}=$ terminating impedance of transmission line in ohms
$1^{\circ}=$ length of line in electrical degrees
l = length of line
$\lambda=$ wavelength in transmission line $\}$ same units
$\lambda_{0}=$ wavelength in free space
$\epsilon=$ dielectric constant of transmission line medium
$=1$ for air
$Z_{s s}=$ sending end impedance of transmission line shorted at the far end (in ohms)
$Z_{\Delta 0}=$ sending end impedance of transmission line open at the far end (in ohms)

RF TRANSMISSION LINE DATA-Confinued
Surge Impedance of Uniform Lines-0 to 210 Ohms

RF TRANSMISSION LINE DATA-Continued
Surge Impedance of Uniform Lines- 0 to 700 O

RF TRANSMISSION LINE DATA-Confinued

TYPE OF LINE	CHARACTERISTIC IMPEDANCE
SINGLE COAXIAL LINE (A)	$\begin{aligned} & Z_{0}=\frac{138}{\sqrt{\epsilon}} \log _{10} \frac{D}{d} \\ & \epsilon=\text { DIELECTRIC CONSTANT } \\ & \\ & =I I N \text { AIR } \end{aligned}$
BALANCE SHIELDED LINE (B)	FOR CASES (A) AND (B) IF CERAMIC BEADS ARE USED AT FREQUENT INTERVALS - CALL NEW SURGE IMPEDANCE $Z_{0}{ }^{\prime}$ $Z_{0}^{\prime}=\frac{Z_{0}}{\sqrt{\epsilon_{+} \frac{\epsilon_{1}-\epsilon}{s} W}}$
	FOR D $>\mathrm{d}$ $\begin{gathered} z_{0} \cong \frac{276}{\sqrt{\epsilon}} \log _{10}\left[2 v \frac{1-\sigma^{2}}{1+\sigma^{2}}\right] \\ \sigma=\frac{h}{D} \\ v=\frac{h}{d} \end{gathered}$
OPEN TWO WIRE LINE (D)	$\begin{aligned} Z_{0} & =120 \cosh ^{-1} \frac{D}{d} \\ & \cong 276 \log _{10} \frac{2 D}{d} \end{aligned}$

RF TRANSMISSION LINE DATA-Continued

impedance matching-with open stub

RF TRANSMISSION LINE DATA-Continued

Attenuation of Transmission Lines at Ultra High Frequencies

$$
A=4.35 \frac{R_{\mathrm{t}}}{Z_{\mathrm{o}}}+2.78 \sqrt{\epsilon} p F
$$

Where
$A=$ attenuation in decibels per 100 feet
$R_{\mathrm{t}}=$ total line resistance in ohms per 100 feet
$p=$ power factor of dielectric medium
$F=$ frequency in megacycles
Resistance of Transmission Lines at Ultra High Frequencies

$$
\begin{aligned}
R_{\mathbf{t}} & =0.1\left(\frac{1}{d}+\frac{1}{D}\right) \sqrt{F} \quad \text { for coaxial copper line } \\
& =\frac{.2}{d} \sqrt{F} \quad \text { for open two-wire copper line }
\end{aligned}
$$

Where
$d=$ diameter of conductors (center conductor for the coaxial line) in inches.
$D=$ diameter of inner surface of outer coaxial conductor in inches.

WAVE GUIDES AND RESONATORS

Propagation of Electro-Magnetic Waves

 in Hollow Wave GuideAt ultra-high frequencies, energy can be propagated within a hollow metallic tube if certain necessary conditions are fulfilled. Using a system of Cartesian coordinates as a basis of discussion, the electric and magnetic field vectors may be described by their x, y, and z components. In general, all six quantities can exist simultaneously, but there are two particular types of transmission of special interest:
(1) H waves, also called transverse electric (TE) waves, characterized by $E_{5} \equiv 0$ where z is in the direction of propagation.
(2) E waves, also called transverse magnetic (TM) waves, characterized by $H_{3} \equiv 0$.
Solution of the field equations admits of a two-fold infinity of answers which satisfy the differential equation. These solutions are characterized by the integers m, n, which take on values from
 zero or one to infinity. Only a certain number of these different m, n modes will be propagated, depending upon the dimensions of the guide and the frequency of the excitation. For each mode there is a definite lower limit or cut-off frequency, below which it is incapable of being propagated. Thus, a wave guide is seen to exhibit definite properties of a high pass filter.

WAVE GUIDES AND RESONATORS-Continued

Rectangular Wave Guides

Cross sectional dimensions a, b

TM waves (E waves)

$$
E_{z_{\mathrm{n}, \mathrm{~m}}}=A \sin \frac{n \pi x}{a} \sin \frac{m \pi y}{b} \epsilon-\Gamma_{\mathrm{n}, \mathrm{~m}} z \quad n, m=1,2,3, \ldots
$$

TE waves (H waves)

$$
\left.H_{\mathrm{z}_{\mathrm{n}, \mathrm{~m}}}=B \cos \frac{n \pi x}{a} \cos \frac{m \pi y}{b} \epsilon-\Gamma_{\mathrm{n}, \mathrm{~m}} z \quad n, m=0,1,2,3, \ldots\right)
$$

where $A \& B$ are constants; $\Gamma_{\mathrm{n}, \mathrm{m}}=$ propagation constant; m and n are integers.

For every combination of values of m and n there is a possible solution. Only those solutions actually exist which satisfy the following relation.

$$
f>\frac{c}{2 \pi \sqrt{\epsilon \mu}} \sqrt{\left(\frac{n \pi}{a}\right)^{2}+\left(\frac{m \pi}{b}\right)^{2}}, f>\frac{c k_{\mathrm{n}, \mathrm{~m}}}{2 \pi \sqrt{\epsilon \mu}}, f>f_{\mathrm{n}, \mathrm{~m}} .
$$

where the right hand member is the cut-off frequency and $k_{\mathrm{n}, \mathrm{m}}^{2}=\left(\frac{n \pi}{a}\right)^{2}+\left(\frac{m \pi}{b}\right)^{2}$

This is a design equation, giving the proper dimensions of a wave guide capable of passing the wanted modes at the frequency f.
The wave length within a wave guide will always be greater than the wave length in an unbounded medium for the same frequency.
$\lambda_{\mathrm{g}_{\mathrm{n}, \mathrm{m}}}=\frac{\lambda_{0}}{\sqrt{1-\left(\frac{n \lambda_{0}}{2 a}\right)^{2}-\left(\frac{m \lambda_{0}}{2 b}\right)^{2}}}$
where $\lambda_{R_{n}, \mathrm{~m}}=$ wave length in the guide for the n, m mode. λ_{0} is wavelength in free space.

Because λ_{g} is always greater than λ_{0}, the phase velocity in the guide is always greater than in an unbounded medium.
With $\epsilon, \mu=1$, the phase velocity and group velocity are related by the following

$$
u=\frac{c^{2}}{v}
$$

where $u=$ group velocity, the velocity of propagation of the energy; $v=f \lambda_{g}$, phase velocity.

It is seen from the above that if $v>c$ in all cases, then invariably $u<c$, i.e., the energy cannot be transmitted at a speed greater than the velocity of light.

WAVE GUIDES AND RESONATORS-Confinued

Cylindrical Wave Guides

The usual co-ordinate system is $\rho, \theta, z . \rho$ is in radial directions; θ is the angle; z is in the longitudinal direction.

$$
\begin{aligned}
& \text { TM waves (} E \text { waves) } H_{\mathrm{z}} \equiv 0 \\
& E_{\mathrm{z}}=A J_{\mathrm{n}}\left(k_{\mathrm{n}, \mathrm{~m}} \rho\right) \cos n \theta \epsilon-\Gamma_{\mathrm{n}, \mathrm{~m}} z
\end{aligned}
$$

By the boundary conditions, $E_{z}=0$ when $\rho=a$, the radius. Thus, the only permissible values of k are those for which $J_{\mathrm{n}}\left(k_{\mathrm{n}, \mathrm{m}} a\right)=0$ because E_{x} must be zero at the boundary.
The numbers m, n take on all integral values from zero to infinity. The waves are seen to be characterized by two numbers, m and n, where n gives the order of the Bessel functions, and m gives the order of the root of $J_{\mathrm{n}}\left(k_{\mathrm{n} . \mathrm{m}} a\right)$. The Bessel function has an infinite number of roots, so that there are an infinite number of k 's which make $J_{\mathrm{n}}\left(k_{\mathrm{n}, \mathrm{m}} a\right)=0$.
The other components of the electric vector E_{θ} and E_{ρ} are related to E_{t}, as are H_{θ} and H_{ρ}.
TE waves (H waves) $E_{\mathbf{s}} \equiv 0$

$$
\begin{aligned}
& H_{\mathrm{z}}=B J_{\mathrm{n}}\left(k_{\mathrm{n}, \mathrm{~m}} \rho\right) \cos n \theta \in-\Gamma_{\mathrm{n}, \mathrm{~m}} z \\
& H_{\rho}, H_{\theta}, E_{\rho}, E_{\theta}, \text { are all related to } H_{\mathrm{s}} .
\end{aligned}
$$

Again n takes on integral values from zero to infinity. The boundary condition $E_{\theta}=0$ when $\rho==_{a}^{a}$ applies. To satisfy this condition k must be such as to make $J_{\mathrm{n}}^{\prime}\left(k_{\mathrm{n}, \mathrm{m}} a\right)$ equal to zero where the superscript indicates the derivative of $J_{\mathrm{n}}\left(k_{\mathrm{n}, \mathrm{m}} a\right)$. It is seen that m takes on values from 1 to infinity since there are an infinite number of roots of $J_{\mathrm{n}}^{\prime}\left(k_{\mathrm{n}, \mathrm{m}} a\right)$.
For cylindrical wave guides, the cut-off frequency for the m, n mode is

$$
\begin{aligned}
f_{\mathrm{c}, \mathrm{~m}} & =\frac{c k_{\mathrm{n}, \mathrm{~m}}}{2 \pi} \\
k_{\mathrm{n}, \mathrm{~m}} & =\frac{u_{\mathrm{n}, \mathrm{~m}}}{a} \text { or } \frac{u_{\mathrm{n}, \mathrm{~m}}^{\prime}}{a}
\end{aligned}
$$

The wavelength in the guide is

$$
\lambda_{\mathrm{g}}=\frac{2 \pi}{\sqrt{\left(\frac{2 \pi}{\lambda_{0}}\right)^{2}-k_{\mathrm{n}, \mathrm{~m}}^{2}}}
$$

where $c=$ velocity of light and $k_{\mathrm{n} . \mathrm{m}}$ is evaluated from the roots of the Bessel functions.
where $a=$ radius of guide or pipe and $u_{\mathrm{n}, \mathrm{m}}$ is the root of the particular Bessel function of interest (or its derivative).
where λ_{0} is the wavelength in an unbounded medium.

WAVE GUIDES AND RESONATORS-Continued

The following tables are useful in determining the values of k. For H waves the roots $U_{n, m}^{\prime}$ of $J_{n}^{\prime}(U)=0$ are given in the following table, and the corresponding $k_{\mathrm{n}, \mathrm{m}}$ values are $\frac{U_{\mathrm{n}, \mathrm{m}}^{\prime}}{a}$

Values of $U^{\prime}{ }_{n, m}$	${ }_{m}{ }^{n}$	0	1	2
	1	3.832	1.841	3.054
	2	7.016	5.332	6.705
	3	10.173	8.536	9.965

For E waves the roots $U_{\mathrm{n}, \mathrm{m}}$ of $J_{\mathrm{n}}(U)=0$ are given in the following table, and the corresponding $k_{\mathrm{n}, \mathrm{m}}$ values are $\frac{U_{\mathrm{n}, \mathrm{m}}}{a}$

	n Values of $U_{\mathrm{n}, \mathrm{m}}$ m^{m}	0	1	2
	1	2.405	3.832	5.135
	2	5.520	7.016	8.417
	3	8.654	10.173	11.620

Where n is the order of the Bessel function and m is the order of the root.

Attenuation Coefficients

All the attenuation coefficients contain a common coefficient

$$
\alpha_{0}=\frac{1}{4} \sqrt{\frac{\mu_{2} \epsilon_{1}}{\sigma_{2} \mu_{1}}}
$$

ϵ_{1}, μ_{1} dielectric constant and magnetic permeability for the insulator.
σ_{2}, μ_{2} electric conductivity and magnetic permeability for the metal.
For air and copper $\alpha_{0}=0.35 \times 10^{-9}$ nep. per cm

$$
\text { or } 0.3 \times 10^{-3} \mathrm{db} \text { per } \mathrm{km}
$$

The following table summarizes some of the most important formulas. The dimensions a, b are measured in centimeters.
WAVE GUIDES AND RESONATORS-Confinued
Table of Cutoff Wavelengths and Attenuation Factors

\sqrt{f}
$\sqrt{1-\left(\frac{\gamma_{f}^{\prime}}{f}\right)^{2}}$
$A=$
Where $\quad f_{\mathrm{m}}=$ cut-off frequency

WAVE GUIDES AND RESONATORS—Continued

Resonant Cavities

A cavity resonator is essentially a closed metallic tank in which electric and magnetic fields are excited and which oscillate at one or many of the proper frequencies of the system. One type of resonant cavity is a hollow rectangular or cylindrical pipe, closed at both ends by metallic sheet or pistons.
Resonance occurs when $l=p-\frac{\lambda}{2}$

$$
\begin{aligned}
& \text { where } p \text { is an integer } \\
& \quad l=\text { length of resonator } \\
& \lambda= \\
& \quad \begin{array}{l}
\text { wavelength in the resonator which is } \\
\\
\\
\\
\text { bounded medium. }
\end{array}
\end{aligned}
$$

The wavelength in the resonator is given by:

$$
\begin{aligned}
\left(\frac{\lambda_{0}}{\lambda}\right)^{2} & =1-k^{2}{ }_{n, \mathrm{~m}} \frac{\lambda^{2}{ }_{0}}{4 \pi^{2}} \\
\lambda_{0} & =\text { wavelength in unbounded medium; } \\
k^{2}{ }_{\mathrm{n}, \mathrm{~m}} & =\frac{\pi^{2} n^{2}}{a^{2}}+\frac{\pi^{2} m^{2}}{b^{2}} \text { for a rectangular cavity of dimensions } a \text { and } b .
\end{aligned}
$$

$k_{\mathrm{n}, \mathrm{m}}$ is given by the Bessel roots for cylindrical cavities (see section on wave guides).

The free space wavelength, corresponding to the wavelength in the resonator, is given by

$$
\lambda_{o_{n, \mathrm{~m}, \mathrm{p}}}=\frac{2}{\sqrt{\frac{k^{2}, \mathrm{~m}}{\pi^{2}}+\frac{p^{2}}{l^{2}}}} \quad n, m, p \text { are integers. }
$$

For TM waves $p=0,1,2 \ldots$ For TE waves $p=1,2$, but not zero.

Rectangular Resonators-Edges of Length a, b

The resonant frequencies are given by
$f_{\mathrm{n}, \mathrm{m}, \mathrm{p}}=\frac{c}{\lambda_{\mathrm{o}, \mathrm{m}, \mathrm{p}}}$
$f_{\mathrm{n}, \mathrm{m}, \mathrm{p}}=\frac{c}{2} \sqrt{\frac{n^{2}}{a^{2}}+\frac{m^{2}}{b^{2}}+\frac{p^{2}}{l^{2}}}$
where only one of the three integers n, m, p can be zero.

WAVE GUIDES AND RESONATORS-Continued

Cubic Box, $a=b=l$.
The fundamental vibration

$$
\begin{gathered}
(m=1 \quad n=1 \quad p=0) \text { is } \\
f_{1,1,0}=\frac{c}{a \sqrt{2}}
\end{gathered}
$$

Cylindrical Resonators-Circular Section of

 Radius a and Length lResonant frequencies are

$$
f_{\mathrm{n}, \mathrm{~m}, \mathrm{p}}=\frac{c}{\lambda_{o_{\mathrm{n}, \mathrm{~m}, \mathrm{p}}}}=\frac{c}{2} \sqrt{\frac{k_{n, m}^{2}}{\pi^{2}}+\frac{p^{2}}{l^{2}}}
$$

where for TM, or E, modes, $k_{\mathrm{n}, \mathrm{m}}=\frac{U_{\mathrm{n}, \mathrm{m}}}{a}$ and $U_{\mathrm{n}, \mathrm{m}}$ is the m'th root of $J_{\mathrm{n}}(U)$ and for TE, or H, modes, $k_{\mathrm{m}, \mathrm{n}}=\frac{U_{\mathrm{n}, \mathrm{m}}^{\prime}}{a}$ and $U_{\mathrm{n}, \mathrm{m}}^{\prime}$ is the m'th root of $J_{\mathrm{n}}^{\prime}(U)$.

Lowest modes of oscillation are

$$
\begin{aligned}
f_{\mathbf{E}_{0,1,0}} & =\frac{c}{2 \pi a}(2.405) \\
n & =0 \quad m=1 \quad p=0 \\
f_{\mathrm{H}_{1,1,1}} & =\frac{c}{2} \sqrt{\left(\frac{1.841}{\pi a}\right)^{2}+\frac{1}{l^{2}}} \\
n & =1 \quad m=1 \quad p=1
\end{aligned}
$$

Spherical Resonators-Radius a

Resonant frequencies are given by

$$
f_{\mathrm{n}, \mathrm{~m}}=\frac{c U_{\mathrm{n}, \mathrm{~m}}}{2 \pi a}
$$

where for TE (H) modes

$$
U_{1.1}=4.5 ; \quad U_{2,1}=5.8 ; \quad U_{1.2}=7.64
$$

WAVE GUIDES AND RESONATORS—Confinued

and for TM (E) modes

$$
U_{1,1}^{\prime}=2.75
$$

The most important mode is $E_{1,1}$ which yields

$$
\lambda_{0}=2.28 a
$$

Attenuations suffered by each of the more common types of waves in a hollow copper pipe 5 inches in diameter.

[^11]WAVE GUIDES AND RESONATORS-Continued
Some Characteristics of Various Types of Resonators
(δ is the skin detph)

	Square Prism	Circular Cylinder	Sphere
			∞
$\underset{\text { (Wavelength) }}{\lambda}$	$2 \sqrt{2 a}$	$2.61 a$	2.28 a
Q	$\frac{0.353 \lambda}{\delta} \frac{1}{1+\frac{.177 \lambda}{h}}$	$\frac{0.383 \lambda}{\delta} \frac{1}{1+\frac{.192 \lambda}{h}}$	$0.318 \frac{\lambda}{\delta}$

Additional Q Factors for Some Important Cases

		Q Factor
	E_{0}	$\frac{\pi a}{2 \alpha_{0} C} \sqrt{f}$
Cylindrical Resonators of Circular Cross Section	H_{0}	$\frac{\pi a}{2 \alpha_{0} C} \sqrt{f\left(\frac{f}{f_{\mathrm{m}}}\right)^{2}}$
	H_{1}	$\frac{\pi a}{2 \alpha_{0} C} \sqrt{f}\left[\frac{1}{0.418+\left(\frac{f_{m a}}{f}\right)^{2}}\right]$
Spherical Cavity	Magn. 1.1	$0.725 \frac{\mu_{1}}{\mu_{2}} \times \frac{a}{\delta}$

Where

$$
\begin{array}{ll}
\delta=\frac{1}{2 \pi \sqrt{\sigma_{2} \mu_{2} f}} & \begin{array}{l}
\sigma_{2}=\text { conductivity of metal } \\
\mu_{1}
\end{array}=\text { permeability of insulator } \\
\mu_{2}=\text { permeability of metal }
\end{array}
$$

FIELD STRENGTH OF RADIATION FROM AN ANTENNA

Vertical component of electric field at distances up to a few kilometers. Effect of image is included.

$$
\epsilon=\frac{3.77 I H}{\lambda r} \times 10^{5}
$$

where $\epsilon=$ field strength in microvolts per meter
$I=$ current in amperes at base of antenna
$H=$ effective height of antenna
$\lambda=$ wavelength (H and λ in the same units)
$r=$ distance in kilometers from antenna to point where e is required
Effective Height of an antenna which is short compared to a wavelength is roughly one third to one half of the actual height of the vertical portion of the antenna.

Effective height of a loop antenna

$$
H=2 \pi n \frac{d}{\lambda}
$$

> where $H=$ effective height at wavelength λ
> $A=$ mean area per turn of loop
> $n=$ number of turns
> H and λ in same units (say meters) and
> A is square of that unit (say square meters).

FIELD STRENGTH FROM AN ELEMENTARY DIPOLE*

In order to obtain an advantageous representation of the field at a distance from an elementary dipole, its location is assumed to be at the center of a sphere (see Fig. 1). Its axis, PP^{\prime}, is called the polar line, and the great circle, QQ^{\prime}, the equator of the dipole so that circles such as PMP' become meridians. The magnetic field then is tangent to a parallel of latitude and the electric field is the meridian of the point under consideration.

Using polar coordinates, $\epsilon_{\mathrm{t}}, \epsilon_{\mathrm{r}}$ and $/ h$ are shown in Fig. 1 with positive values indicated by the arrows. Calling c the speed of light, r and θ, respectively, the distance $O M$, and the complementary angle of the latitude, POM, measured positively from P towards M , and letting

$$
\alpha=\frac{2 \pi}{\lambda} \quad \omega t-\alpha r=v
$$

[^12]FIELD STRENGTH FROM AN ELEMENTARY DIPOLE-Continued

the result expressed in electromagnetic units is (in vacuum):

$$
\begin{array}{ll}
\epsilon_{\mathrm{r}}=-\frac{c \lambda I}{\pi} & \frac{\cos \theta}{r^{3}} \\
(\cos v-\alpha r \sin v) \\
\epsilon_{\mathrm{t}}=+\frac{c / \lambda I}{2 \pi} & \frac{\sin \theta}{r^{3}} \\
\left(\cos v-\alpha r \sin v-\alpha^{2} r^{2} \cos v\right) \\
h=-l & \frac{\sin \theta}{r^{2}}
\end{array}\left(\begin{array}{l}
\sin v-\alpha r \cos v)
\end{array}\right\} \text { I }
$$

These formulas are valid for the elementary dipole at a distance which is large compared with the dimensions of the dipole, the length of which is assumed to be very small. They correspond to a dipole isolated in free space. If the dipole is placed vertically on a plane of infinite conductivity, its image should be taken into account, thus doubling the above values.

Field of an Elementary Dipole at a Great Distance

When the distance r with respect to the wavelengths is great, as is generally the case in radio applications, the product $\alpha r=2 \pi \frac{r}{\lambda}$ is large so that lower powers in αr can be neglected; the radial electric

FIELD STRENGTH FROM AN ELEMENTARY DIPOLE-Confinued

field ϵ_{r} then becomes negligible with respect to the tangential field ϵ_{t} and $\epsilon_{\mathrm{r}}=0$

$$
\left.\begin{array}{l}
\epsilon_{\mathrm{t}}=-\frac{2 \pi c l I}{\lambda r} \sin \theta \cos (\omega t-\alpha r) \\
h=-\frac{\epsilon_{\mathrm{t}}}{c}
\end{array}\right\} \text { II }
$$

The disposition of the field at a great distance is therefore very simple: The electric field is tangent to the meridian and the magnetic field to the parallel of latitude; these two fields are in phase and their values at any instant are in the ratio c.

The variation of their amplitude as a function of θ is indicated in Fig. 2. Their relative positions are given by the three finger rule (left hand).

Figure 2

Field of an Elementary Dipole at a Short Distance

In the vicinity of the dipole, αr is very small and only the first terms between parentheses remain. It is easily seen that the electric field is then the one that may be deduced through the use of electrostatic formulas from the electric charges accumulated at both ends of the dipole; also, the magnetic field results from the application to the current, i, of the law of Laplace for a direct current.

The ratio between the radial and tangential field is then:

$$
\frac{\epsilon_{\mathrm{r}}}{\epsilon_{\mathrm{t}}}=-2 \cot \theta .
$$

Hence, the radial field at short distance has a magnitude of the same order as the tangential field. These two fields are in opposition. Further the ratio of the magnetic and electric.tangential field is

$$
\frac{h}{\epsilon_{t}}=-\frac{\alpha r}{c} \quad \frac{\sin v}{\cos v}
$$

The magnitude of the magnetic field at short distance is therefore extremely small with respect to that of the tangential electric field,

FIELD STRENGTH FROM AN ELEMENTARY DIPOLE-Continued

relatively to their relationship at great distances. These two fields are in quadrature. Thus, at short distance, the effect of a dipole on an open circuit is much greater than on a closed circuit as compared with the effect at remote points.

In order to obtain the e.m.f. induced by a plane wave in an element of wire, use is often made of the magnetic flux cut by this element of wire in unit time; the second of the formulas, group II, justifies this practice. Here, however, this procedure is impracticable since the speed of displacement of the magnetic field is not c; the equation consequently does not apply.

TABLE I

$1 / \lambda$	$1 / x_{r}$	Ar	φ_{r}	A l	96	Ah	φh
0.01	15.9	4,028	$3^{\circ} .6$	4,012	$3^{\circ} .6$	253	$93^{\circ} .6$
0.02	7.96	508	$7^{\circ} .2$	500	$7^{\circ} .3$	64.2	$97^{\circ} .2$
0.04	3.98	65	$14^{\circ} .1$	61	$15^{\circ} .0$	16.4	$104^{\circ} .1$
0.06	2.65	19.9	$20^{\circ} .7$	17.5	$23^{\circ} .8$	7.67	$110^{\circ} .7$
0.08	1.99	8.86	$26^{\circ} .7$	7.12	$33^{\circ} .9$	4.45	$116^{\circ} .7$
0.10	1.59	4.76	$32^{\circ} .1$	3.52	$45^{\circ} .1$	2.99	$122^{\circ} .1$
0.15	1.06	1.66	$42^{\circ} .3$	1.14	$83^{\circ} .1$	1.56	$132^{\circ} .3$
0.20	0.80	0.81	$51^{\circ} .5$	0.70	$114^{\circ} .0$	1.02	$141^{\circ} .5$
0.25	0.64	0.47	$57^{\circ} .5$	0.55	$133^{\circ} .1$	0.75	$147^{\circ} .5$
0.30	0.56	0.32	$62^{\circ} .0$	0.48	$143^{\circ} .0$	0.60	$152^{\circ} .0$
0.35	0.45	0.23	$65^{\circ} .3$	0.42	$150^{\circ} .1$	0.50	$155^{\circ} .3$
0.40	0.40	0.17	$68^{\circ} .3$	0.37	$154^{\circ} .7$	0.43	$158^{\circ} .3$
0.45	0.35	0.134	$70^{\circ} .5$	0.34	$158^{\circ} .0$	0.38	$160^{\circ} .5$
0.50	0.33	0.106	$72^{\circ} .3$	0.30	$160^{\circ} .4$	0.334	$162^{\circ} .3$
0.60	0.265	0.073	$75^{\circ} .1$	0.26	$164^{\circ} .1$	0.275	$165^{\circ} .1$
0.70	0.228	0.053	$77^{\circ} .1$	0.22	$166^{\circ} .5$	0.234	$167^{\circ} .1$
0.80	0.199	0.041	$78^{\circ} .7$	0.196	$168^{\circ} .3$	0.203	$168^{\circ} .7$
0.90	0.177	0.032	$80^{\circ} .0$	0.175	$169^{\circ} .7$	0.180	$170^{\circ} .0$
1.00	0.159	0.026	$80^{\circ} .9$	0.157	$170^{\circ} .7$	0.161	$170^{\circ} .9$
1.20	0.133	0.018	$82^{\circ} .4$	0.132	$172^{\circ} .3$	0.134	$172^{\circ} .4$
1.40	0.114	0.013	$83^{\circ} .5$	0.114	$173^{\circ} .5$	0.114	$173^{\circ} .5$
1.60	0.100	0.010	$84^{\circ} .3$	0.100	$174^{\circ} .3$	0.100	$174^{\circ} .3$
1.80	0.088	0.008	$84^{\circ} .9$	0.088	$174{ }^{\circ} .9$	0.088	$174^{\circ} .9$
2.00	0.080	0.006	$85^{\circ} .4$	0.080	$175^{\circ} .4$	0.080	$175^{\circ} .4$
2.50	0.064	0.004	$86^{\circ} .4$	0.064	$176^{\circ} .4$	0.064	$176^{\circ} .4$
5.00	0.032	0.001	$88^{\circ} .2$	0.032	$178^{\circ} .2$	0.032	$178^{\circ} .2$

Field of an Elementary Dipole at Intermediate Distance
At intermediate distance, say between .04 and 1.2 wavelengths, one should take into account all the terms of the formulas of group I. This case occurs, for instance, when studying the reactions between adjacent antennae. To calculate the fields, it is convenient to transform the equations as follows:

$$
\left.\begin{array}{ll}
\epsilon_{\mathrm{r}}=-2 \alpha^{2} l I \cos \theta & A_{\mathrm{r}} \cos \left(v+\varphi_{\mathrm{r}}\right) \tag{III}\\
\epsilon_{\mathrm{t}}=\alpha^{2} c l / \sin \theta & A_{\mathrm{t}} \cos \left(v+\varphi_{\mathrm{t}}\right) \\
h=\alpha^{2} l I \sin \theta & A_{\mathrm{h}} \cos \left(v+\varphi_{\mathrm{h}}\right)
\end{array}\right\} \text { III }
$$

FIELD STRENGTH FROM AN ELEMENTARY DIPOLE—Confinued

where

$$
\left.\begin{array}{ll}
A_{\mathrm{r}}=\frac{\sqrt{1+(\alpha r)^{2}}}{(\alpha r)^{3}} & \tan \varphi_{\mathrm{r}}=\alpha r \\
A_{\mathrm{t}}=\frac{\sqrt{1-(\alpha r)^{2}+(\alpha r)^{4}}}{(\alpha r)^{3}} & \cot \varphi_{\mathrm{r}}=\frac{1}{\alpha r}-\alpha r \\
A=\frac{\sqrt{1+(\alpha r)^{2}}}{(\alpha r)^{2}} & \cot \varphi_{\mathrm{r}}=-\alpha r .
\end{array}\right\}
$$

Values of A 's and φ 's are given in Table I as a function of the ratio between the distance r and the wavelength λ. The second column contains values of $\frac{1}{\alpha r}$ which would apply if the fields ϵ_{t} and h behaved the same as at great distances.

The above outline concerns electric dipoles. It also can be applied to magnetic dipoles, i.e., by installing the loop perpendicular to the PP^{\prime} line at the center of the sphere. In this case, the vector h of Fig. 1 becomes ϵ, the electric field; ϵ_{t} becomes the magnetic tangential field, and ϵ_{r} the radial magnetic field.

In the case of a magnetic dipole, the table showing the variations of the field in the vicinity of the dipole can also be used. A_{r} is then the coefficient for the radial magnetic field, A_{t} is the coefficient for the tangential magnetic field; and A_{b} is the coefficient for the electric field; φ_{r}, φ_{t}, and φ_{b} are the phase angles corresponding to the above coefficients.

ULTRA-SHORT WAVE PROPAGATION

For propagation over a path within the range of optical visibility, the field strength is given approximately by
where

$$
E=\frac{88 \sqrt{W} h_{\mathrm{T}} h_{\mathrm{R}}}{\lambda D^{2}} \text { volts/meter }
$$

$$
W=\text { watts radiated }
$$

$h_{\mathrm{T}}=$ height of transmitting aerial in meters
$h_{\mathrm{R}}=$ height of receiving aerial in meters
$\lambda=$ wavelength in meters
$D=$ distance in meters
Allowing for the refractive effect of the atmosphere, the "optical range" for aerial heights h_{T} and h_{R} is approximately

$$
D_{\mathrm{opt}}=4130\left[\sqrt{h_{\mathrm{T}}}+\sqrt{h_{\mathrm{R}}}\right]
$$

where all dimensions are in meters.
If the refractive effect of the atmosphere is ignored, the "optical range" is reduced to the "geometric" range given by

$$
D_{\text {geom. }}=3550\left[\sqrt{h_{\mathrm{T}}}+\sqrt{h_{\mathbf{R}}}\right]
$$

The above formula holds good for both vertical and horizontal polarization. It assumes that the aerials are half-wave dipoles, and both h_{T} and h_{R} are not less than a half-wavelength and that $h_{\mathrm{T}} h_{\mathrm{R}}$ $\ll \lambda D$.

The curve $R \perp$ corresponds to polarization perpendicular to the plane of incidence (horizontal polarization); curve RII to polarization parallel to the plane of incidence. Valid for frequencies below 1 megacycle.
Curves from "Electromagnetic Theory," by J. A. Stratton, McGrow-Hill Book Co.

dISTANCE RANGES OF RADIO WAVES*

The following four charts show the limits of distance for the periods indicated over which practical radiotelegraph communication is possible. They are based on the lowest field intensity which permits practical reception in the presence of a verage background interference or noise. For the broadcast frequencies this does not mean satisfactory program reception. The limiting field intensity is different at different frequencies and times. The following table gives limiting field intensity values typical of those used in determining the distance ranges. This assumes the use of a good receiving set.

	0.1 mc	1.0 mc	5.0 mc	10.0 mc
Summer day	$60 \mu \mathrm{v} / \mathrm{m}$	$10 \mu \mathrm{v} / \mathrm{m}$	$10 \mu \mathrm{v} / \mathrm{m}$	$3 \mu \mathrm{v} / \mathrm{m}$
Summer night	100	50	15	1
Winter day	25	1	2	1
Winter night	35	5	1	1

When atmospherics ("static") or other sources of interference are great, e.g., in the tropics, larger received field intensities are required and the distance ranges are less. The graphs assume the use of one kilowatt radiated power, and non-directional antennas. For greater power the distance ranges will be somewhat greater. For transmission over a given path, received intensity is proportional to the square root of radiated power, but there is no simple relation between distance range and either radiated power or received field intensity.

The day graphs are based on noon conditions and the night graphs on midnight conditions. In a general way, progressive change occurs from one to the other, but with some tendency for day conditions to persist through dusk, and night conditions through dawn. The conditions of spring and autumn are intermediate between those of summer and winter, autumn resembling winter somewhat more than summer.

The graphs are based principally upon data for the latitude of Washington, but serve as a guide for transmission anywhere in the temperate zones. They are not as accurate for polar or equatorial latitudes.

In general, the distance ranges for paths which lie partly in day and partly in night portions of the globe are intermediate between those shown in the day and night graphs, for the range of frequencies which can be used both day and night. For paths which cross the sunset line in summer, the usable frequencies will be about the same as the usable summer day frequencies. For paths across the sunset line in winter, the usable frequencies will be a little higher than the night

[^13]
frequencies shown in the graphs. For transmissions across the sunrise line, both summer and winter, the usable frequencies will be a little lower than the night frequencies shown in the graphs. Frequently the conditions of the ionosphere on the light and dark sides of sunrise

SUMMFR NIGHT—Figure ?
are widely different. Under such conditions it is often so difficult to transmit across the sunrise line that it is almost a barrier to highfrequency radio communication.

I'he graphs give distance ranges for the year 1941 only. They

DISTANCE RANGES OF RADIO WAVES-Continued

change from year to year because of changes of ionization in the ionosphere. These changes are caused by the changing ultraviolet radiation from the sun in an approximate eleven-year cycle. The graphs therefore require revision each year.

The distance ranges given in the graphs are the distances for good

intelligible reception; they are not the limits of distance at which interference can be caused. A field intensity sufficient to cause troublesome interference may be produced at a much greater distance than the maximum distance of reliable reception.

RADIO TRANSMISSION AND THE IONOSPHERE

Figure 1-CROSS.SECTION of Our ATMOSPHERE showing RADIO REFLECTION LAYERS of IONOSPHERE

Reproduced by permission of "Electronic Industries" and Dr. Harlan T. Stefson, Massachusetts Institute of Technology, compiler.

RADIO TRANSMISSION AND THE IONOSPHERE

In local radio broadcasting, as is well known, electrical impulses set up by an antenna travel close to the earth's surface with rapidly decreasing energy as the distance increases. For distances of 150 miles or over, transmission must occur by way of the ionosphere.

A cross section of the ionospheric radio reflection layers and the ionospheric structure of particular interest to the radio engineer may be visualized in an elementary way from Figs. 1 and 2. The latter is drawn to scale so that the angles of reflection of radio waves from the layers may be estimated correctly.

D Layer

The D) layer (Fig. 1) at the altitude of 40 km . is located at a height corresponding very nearly to the upper part of the ozone region. This is the layer from which the very low-frequency or long radio waves of 20 to 550 kc . are reflected. Such frequencies were used almost exclusively in the earlier days of communication across the Atlantic. Communication conditions at these frequencies are unusually stable but, since attenuation increases rapidly with wave length, very high powers were necessary to cover great distances.

E Layer

The height of the E layer or Kennelly-Heaviside region may be placed at about 100 km . This layer reflects all broadcast frequencies from 500 to 1500 kc . and represents a source of reception of commercial broadcast programs over distances of several hundred miles.

Unfortunately, due to sunlight, the E layer becomes so heavily ionized in the daytime that most of these broadcast waves are absorbed. Thus it is only after dark, when the de-ionizing process has set in, that the critical number of ions exists for proper reflection and "good reception" is obtained at long distances.

F Layer

This layer, 200 km . above the earth, reflects short radio waves that pass through the E layer; that is, waves of frequencies from 1500 to $30,000 \mathrm{kc}$. Within this range, because of reflections from the F layer, radio transmissions are practicable day or night over thousands of miles with moderate power.

Because of the ionizing effect of the sun's rays the height of the F layer varies over a considerable range from day to night and from

RADIO TRANSMISSION AND THE IONOSPHERE—Continued

Figure 3

Figure 5

Figures from Department of Commerce Letter Circular, LC-61t.

RADIO TRANSMISSION AND THE IONOSPHERE-Confinued

season to season. This layer actually splits into two regions during the day, the F_{1} layer and the F_{2} layer. Conditions for maximum transmission depend on how the radio waves are reflected and the occurence of interference from two systems of reflection.

Ionosphere Characteristics

Since each ionospheric layer possesses a certain thickness as well as ionization density, it is necessary to define the sense in which the term, height, is used. When a ray or train of waves is reflected by a layer, it is slowed down as soon as it starts to penetrate the layer. The process of reflection thus goes on from the place at which the waves enter the layer until they have been fully turned down and leave the layer. It is illustrated for oblique incidence by Fig. 3. The time of transmission along the actual path BCD in the ionized layer is, for the simple case, the same as would be required for transmission along the path BED if no ionized particles were present. The height H from the ground to E , the intersection of the two projected straight parts of the path, is called the virtual height of the layer.

The highest frequency at which waves sent vertically upward are received back from the layer is the critical frequency of that layer. Typical results of such measurements are illustrated in Figs. 4*, 5 and 6 for different times of year, day and night. They show critical frequencies as sharp increases in virtual height. Knowing the critical frequency, one can calculate the number of ions per unit volume in the upper atmosphere, an important factor in forecasting radio conditions.

Applications to Radio Transmission

Fig. 7 illustrates the radio wave path in the case of single-hop transmission between Washington, D. C., and Chicago, Ill.-a distance of about 1,000 kilometers (620 miles). For information on ionospheric disturbances and the calculation of maximum working frequencies, reference may be made to the Department of Commerce Letter Circular, LC-614, dated October 23, 1940, and the papers cited therein.

[^14]
TIME INTERVAL BETWEEN TRANSMISSION AND RECEPTION OF REFLECTED SIGNAL

LINEAR RADIATORS

$l^{\circ}=$ Length of radiator in electrical degrees.

LINEAR RADIATORS—Continued

Maxima and Minima of RadiationSingle Wire Radiator

ANTENNA ARRAYS
The basis for all directivity control in antenna arrays is wave interference. By providing a large number of sources of radiation it is possible with a fixed amount of power to greatly reinforce radiation in a desired direction, i.e., by suppressing the radiation in undesired directions.

One of the most important arrays is the linear multi-element array where a large number of equally spaced antenna elements are fed equal currents in phase to obtain maximum directivity in the forward direction. Chart II gives expressions for the radiation pattern of several particular cases and the general case of any number of broadside elements.

In this type of array, a great deal of directivity may be obtained. A large number of minor lobes, however, are apt to be present and they may be undesirable under some conditions, in which case a type of array, called the Binomial array, may be used. Here again all the radiators are fed in phase but the current is not distributed equally between the array elements, the center radiators in the array being fed more current than the outer ones. Chart III shows the configura-

ANTENNA ARRAYS—Continued

tion and general expression for such an array. In this case the configuration is made for a vertical stack of loop antennas in order to obtain single lobe directivity in the vertical plane. If such an array were desired in the horizontal plane, say n dipoles end to end, with the specified current distribution the expression would be

$$
F(\theta)=2^{\mathrm{n}-1}\left[\cos \left(\frac{\pi}{2} \sin \theta\right) / \cos \theta\right] \cos ^{\mathrm{n}-1}\left(1 / 2 S^{\circ} \sin \theta\right) .
$$

The term binomial results from the fact that the current intensity in the successive array elements is in accordance with the binomial expansion $(1+1)^{n-1}$, where n is the number of elements.

Examples of Use of Charts I, II, and III.*

Problem 1 Find horizontal radiation pattern of four colinear horizontal dipoles, spaced successively $\frac{\lambda}{2}\left(180^{\circ}\right)$.
Solution From Chart II radiation from four radiators spaced 180° is given by

$$
F(\theta)=A \cos \left(180^{\circ} \sin \theta\right) \cos \left(90^{\circ} \sin \theta\right) .
$$

From Chart I, the horizontal radiation of a dipole is given by

$$
A=K \frac{\cos \left(\frac{\pi}{2} \sin \theta\right)}{\cos \theta}
$$

therefore, the total radiation

$$
F(\theta)=K\left[\frac{\cos \left(\frac{\pi}{2} \sin \theta\right)}{\cos \theta}\right] \cos \left(180^{\circ} \sin \theta\right) \cos \left(90^{\circ} \sin \theta\right)
$$

Problem 2 Find vertical radiation pattern of four horizontal dipoles, stacked one above the other, spaced 180° successively.
Solution From Chart II we obtain the general equation of four radiators, but since the spacing is vertical, the expression should be in terms of vertical angle β.

$$
F(\beta)=A \cos \left(180^{\circ} \sin \beta\right) \cos \left(90^{\circ} \sin \beta\right) .
$$

From Chart I we find the vertical radiation from a horizontal dipole (in the perpendicular bisecting plane) is non-directional. Therefore the vertical patterns

$$
F(\beta)=K^{\prime}(1) \cos \left(180^{\circ} \sin \beta\right) \cos \left(90^{\circ} \sin \beta\right)
$$

[^15]
ANTENNA ARRAYS-Continued

Problem 3 Find horizontal radiation pattern of group of dipoles in problem 2.

Solution From Chart I.

$$
F(\theta)=K \frac{\cos \left(\frac{\pi}{2} \sin \theta\right)}{\cos \theta} \cong K \cos \theta
$$

Problem 4 Find the horizontal radiation pattern of stack of five loops spaced $2 / 3 \lambda\left(240^{\circ}\right)$ one above the other, all currents equal in phase and amplitude.

Solution From Chart II, using vertical angle because of vertical stacking,

$$
F(\beta)=A \frac{\sin \left[5\left(120^{\circ}\right) \sin \beta\right]}{\sin \left(120^{\circ} \sin \beta\right)}
$$

From Chart I, we find A for a horizontal loop in the vertical plane

$$
A=F(\beta)=K \cos \beta
$$

Total radiation pattern

$$
F(\beta)=K \cos \beta \frac{\sin \left[5\left(120^{\circ}\right) \sin \beta\right]}{\sin \left(120^{\circ} \sin \beta\right)}
$$

Problem 5 Find radiation pattern (vertical directivity) of the five loops in problem 4, if they are used in binomial array. Find also current intensities in the various loops.

From Chart III

$$
F(\beta)=K \cos \beta\left[\cos ^{4}\left(120^{\circ} \sin \beta\right)\right]
$$

(all terms not functions of vertical angle β combined in constant K.)

Current distribution $(1+1)^{4}=1+4+6+4+1$, which represent the current intensities of successive loops in the array.

ANTENNA ARRAYS—Continued

Chart I
 RADIATION PATTERN OF SEVERAL COMMON TYPES OF ANTENNAS

Type of Radiator	Current Distribution	DIRECTIVITY	
		Horizontal $F(\theta)$	Vertical $F(\beta)$
Half Wave Dipole		$\begin{gathered} F(\theta)= \\ K \frac{\cos \left(\frac{\pi}{2} \sin \theta\right)}{\cos \theta} \\ \cong K \cos \theta \end{gathered}$	$F(\beta)=K^{\prime}(1)$
Shortened Dipole		$F(\theta) \cong \chi^{\prime} \cos \theta$	$F(\beta)=K(1)$
Horizontal Loop		$F(\theta) \cong K(1)$	$F(\beta)=K \cos \beta$
Horizontal Turnstile	 i_{1} and i_{2} phased 90°	$F(\theta) \cong K^{\prime}(1)$	$F(\beta) \cong K^{\prime}(1)$

$\theta=$ Horizontal Angle Measured from Perpendicular Bisecting Plane
$\beta=$ Vertical Angle Measured from Horizon
K and K^{\prime} are Constants and $K^{\prime} \cong .7 K$

ANTENNA ARRAYS-Continued Chart III

DEVELOPMENT OF BINOMIAL ARRAY

EXPRESSION FOR INTENSITY

	$\cos \beta(1)$
$\begin{aligned} & \hat{S^{\circ}}-\diamond 1 \\ & i \\ & i \end{aligned}$	$2 \cos \beta\left[\cos \left(\frac{5^{\circ}}{2} \sin \beta\right)\right]$
$\frac{1 \diamond}{\frac{\hat{S}^{\circ} 1 \infty}{1 \diamond}}=\Delta 2-81$	$2^{2} \cos \beta\left[\cos ^{2}\left(\frac{s^{\circ}}{}{ }^{\circ} \sin \beta\right)\right]$
$\begin{gathered} 10 \\ \frac{\hat{S}_{0}^{0}}{2} \infty_{1} \\ +1 \infty 2 \\ 10 \end{gathered}$	$2^{3} \cos \beta\left[\cos ^{3}\left(\frac{5}{2}^{\circ} \sin \beta\right)\right]$
	$2^{4} \cos \beta\left[\cos ^{4}\left(\frac{s^{\circ}}{2} \sin \beta\right)\right]$ AND IN GENERAL: $2^{n-1} \cos \beta\left[\cos ^{n-1}\left(\frac{s^{\circ}}{2} \sin \beta\right)\right]$ WHERE η IS THE NUMBER OF LOOPS IN THE ARRAY

FREQUENCY TOLERANCES \dagger

(Cairo Revision, 1938)

1. The frequency tolerance is the maximum permissible separation between the actual frequency of an emission and the frequency which this emission should have (frequency notified or frequency chosen by the operator).
2. This separation results from the following errors:
(a) Error made when the station was calibrated; this error presents a semi-permanent character.
(b) Error made during use of the station (error variable from one transmission to another and resulting from actual operating conditions: ambient temperature, voltage of supply, antenna, skill of the operator, et cetera). This error, which is usually small in other services, is particularly important in the case of mobile stations.
(c) Error due to slow variations of the frequency of the transmitter during a transmission.

Vote: In the case of transmissions without a carrier wave, the preceding definition applies to the frequency of the carrier wave before its suppression.
3. In the case of ship stations, the reference frequency is the frequency on which the transmission begins, and the figures appearing in the present table, marked by an asterisk, refer only to frequency separations observed during a ten-minute period of transmission.
4. In the frequency tolerance, modulation is not considered.

[^16]
FREQUENCY TOLERANCES-Confinued

FREQUENCY BANDS (wavelengths)	TOLERANCES	
	Tronsmitters in service now and until January 1 , 1944, after which date they will conform to the tolerances indicated in column 2 Column 1	Now transmit. ters installed beginning January 1, 1940 Column 2
A. From 10 to $550 \mathrm{kc}(30,000$ to $\mathbf{5 4 5} \mathrm{m})$ s		
(d) Fixed stations	0.1\%	0.1\%
(b) Lond stations.	0.1%	0.1\%
(c) Mobile stations using frequencies other than those of bands indicated under (d)	0.5\%	0.1\%
(d) Mobile stations using frequencies of the bands $110-160$ ke (2,727 to $1,875 \mathrm{~m}$), 365-515 ke (822		
to 583 m$) \dagger$. .	0.5\%**	0.3\%**
(c) Aircraft stations.	0.5\%	0.3\%
(f) Broodcosting.	50. Cycles	20 cycles
B. From 550 to $1,500 \mathrm{kc}(545$ to 200 m):		
(a) Broadcosting stations.	50 cycles	20 cycles
(b) Land stations.	0.1%	0.05\%
(c) Mabile stations using the frequency of $1,364 \mathrm{kc}$ (220 m) .	0.5\%	0.1%
C. From 1,500 to $6,000 \mathrm{kc}(200$ to 50 m):		
(a) Fixed stotions	0.03\%	0.01\%
(b) Land stotions.	0.04\%	0.02\%
(c) Mobile stations using frequencies other than those of bands indicated in (d):		
1,560 to $4,000 \mathrm{ke}$ (192.3 to 75 m)	0.1\% ${ }^{\text {\% }}$	0.05\%*
4,000 to 6,000 ke (75 to 50 m) .	0.04\%	0.02\%
(d) Mobile stations using frequencies within the bands: 4,115 to $4,165 \mathrm{kc}(72.90$ to 72.03 m$)$		
5,500 to $5,550 \mathrm{kc}(54.55$ to 54.05 m$)$.	$\} 0.1 \%^{*}$	0.05\% ${ }^{*}$
(d) Aircraft stotions	0.05\%	0.025\%
(f) Braadcosting:		
between 1,500 and 1,600 ke (200 and 187.5 m) ...	50 cycles	20 cycles
between 1,600 and 6,000 ke (187.5 and 50 m) . . .	0.01%	0.005\%

[^17]
FREQUENCY TOLERANCES-Continued

FREQUENCY BANDS (wavelengths)	TOLERANCES	
	Transmitters in service now and until January 1 , 1944, offer which dale they will conform to the tolerances indi. cated in column 2 Column 1	New transmitfers installed beginning January 1, 1940 Column 2
D. From 6,000 to $30,000 \mathrm{kc}(50$ to 10 m$) \mathrm{s}$		
(a) Fixed stations	0.02\%	0.01\%
(b) Land stations.	0.04\%	0.02\%
(c) Mobile stations using frequencies other than those of bands indicated under (d)	0.04\%	0.02\%
(d) Mobile stations using frequencies within the bands: 6,200 to $6,250 \mathrm{kc}(48.39$ to 48 m$)$		
8,230 to $8,330 \mathrm{kc}(36.45$ to 36.01 m$)$.		
11,000 to $11,100 \mathrm{kc}(27.27$ to 27.03 m$)$. .		
12,340 to 12,500 kc (24.31 to 24 m$)$.	$0.1 \%^{*}$	0.05\%**
16,460 to $16,660 \mathrm{kc}(18.23$ to 18.01 m$)$.		
22,000 to 22,200 kc (13.64 to 13.51 m). .		
(e) Aircraft stations	0.05\%	0.025\%
(f) Broadcasting stations .	0.01\%	0.005\%

* See preamble, under 3.

Note 1-The administrations shall endeavor to profit by the progress of the art in order to reduce frequency tolerances progressively.

Note 2-It shall be understood that ship stations working in shared bands must observe the tolerances applicable to land stations and must conform to article 7, J21 (2) (a). |No. 186].

Note 3-Radiotelephone stations with less than 25 watts power, employed by maritime beacons for communications with beacons isolated at sea, shall be comparable, with reference to frequency stability, to mobile stations indicated in C above.

Note 4-Ships equipped with a transmitter, the power of which is under 100 watts, working in the band of $1,560-4,000 \mathrm{kc}(192.3-75 \mathrm{~m})$, shall not be subject to the stipulations of column 1.

NOISE AND NOISE MEASUREMENT

I-WIRE TELEPHONY

Definitions:

The following definitions are based upon those given in the Proceedings of the 10th Plenary Meeting (1934) of the Comite Consultatif International Telephonique (C.C.I.F.).
(Note: The unit in which noise is expressed in many of the European countries differs from the two American standards, the "noise unit" and the " db above reference noise." The European unit is referred to as the "Psophometric Electromotive Force".)
Noise is a sound which tends to interfere with a correct perception of vocal sounds, desired to be heard in the course of a telephone conversation.

It is customary to distinguish between-
(1) Room noise: Noise present in that part of the room where the telephone apparatus is used;
(2) Frying noise (transmitter noise): Noise produced by the microphone, manifest even when conversation is not taking place;
(3) Line noise: All noise electrically transmitted by the circuit, other than room noise and frying noise.

Psophometric Electromotive Force

In the case of a complete telephone connection the interference with a telephone conversation produced by extraneous currents may be compared with the interference which would be caused by a parasitic sinusoidal current of 800 cycles per second. The strength of the latter current, when the interference is the same in both cases, can be determined.

If the receiver used has a resistance of 600 ohms and a negligible reactance (if necessary it should be connected through a suitable transformer), the psophometric electromotive force at the end of a circuit is defined as twice the voltage at 800 cycles per second, measured at the terminals of the receiver under the conditions described.

The psophometric electromotive force is therefore the electromotive force of a source having an internal resistance of 600 ohms and zero internal reactance which, when connected directly to a standard receiver of 600 ohms resistance and zero reactance, produces the same sinusoidal current at 800 cycles per second as in the case with the arrangements indicated above.

NOISE AND NOISE MEASUREMENT-Continued

An instrument known as the "psophometer" has been designed. When connected directly across the terminals of the 600 ohm receiver, it gives a reading of $1 / 2$ of the psophometric electromotive force for the particular case considered.

In a general way, the term psophometric voltage between any two points refers to the reading on the instrument when connected to these two points.
If, instead of a complete connection, only a section thereof is under consideration, the psophometric electromotive force with respect to the end of that section is defined as twice the psophometric voltage measured at the terminals of a pure resistance of 600 ohms, connected at the end of the section, if necessary through a suitable transformer.

The C. C. I F. have published a Specification for a psophometer which is included in Volume II of the Proceedings of the Tenth Plenary Meeting in 1934. An important part of this psophometer is a filter network associated with the measuring circuit whose function is to "weight" each frequency in accordance with its interference value relative to a frequency of 800 cycles.

Noise Levels

The amount of noise found on different circuits, and even on the same circuit at different times, varies through quite wide limits. Further, there is no definite agreement as to what constitutes a "quiet" circuit, a "noisy" circuit, etc. The following values should therefore be regarded merely as a rough indication of the general levels which may be encountered under the different conditions:

Open Wire Circuit-Quiet	db above Ref. Noise	
Average	30	
Cable Circuit	Noisy	35
	Quiet	15
	Average	25
	Noisy	40

Relationship of European and American Noise Units

The psophometric E.M.F. can be related to the American units: the "Noise Unit," and the "Decibel above Reference Noise."

The following chart shows this relationship together with correction factors for psophometric measurements on circuits of impedance other than 600 ohms.

NOISE AND NOISE MEASUREMENT--Continued Relationship of European and American Nolse Units

1. The relationship of N.U.'s to db's
above reference noise is obtained
from technical report No. $1 \mathrm{~B}-5$ of the
joint sub committee on development
and research of the Bell Telephone
System and the Edison Electric
Institute.
2. The relationship of $d b$'s above reference noise to psophometric E.M.F. is obtained from the Proceedings of C.C.I.F. 1934.
3. The C.C.I.F. expresses noise limits in terms of the psophometric E.M.F. for a circuit of 600 ohms resistance and zero reactance, terminated in a resistance of 600 ohms. Measurements made in terms of the potential difference across the terminotions, or on circuits of impedonce other thon 600 ohms should be corrected os follows:-

4. Reference Noise-with respect to which the Americon noise meosuring set is colibroted-is a 1000 cycles per second tone 90 db below 1 milliwott.

NOISE AND NOISE MEASUREMENT-Continued

II-RADIO

Radio telephone links, connecting land line networks, using double sideband modulation with directional antennas and optimum frequencies, require a radio signal field strength of from 25 to 35 db above one microvolt per meter and a signal-to-noise ratio at the land line terminal, i.e., the telephone toll board, of from 30 to 40 db for a high grade commercial channel, or, as classified in international service, a "merit four" circuit.

The signal or noise level in the antenna is expressed in db above or below one microvolt per meter as measured by a calibrated field strength set using a half wave vertical antenna at the operating wave length of the circuit under consideration. The signal or noise level at the line terminal is expressed in db measured above or below one milliwatt (sine wave) in an impedance of 600 ohms.
Noise fields for optimum frequency vary generally from 10 to 20 db below one microvolt per meter.

With noise levels and equipment as above, a field strength of 15 to 25 db above one microvolt per meter will give a fair grade of commercial service, corresponding to a "merit three" circuit, while fields of 7.5 to 15 db will give fair to poor service, corresponding to a "merit two" circuit. These figures assume good antenna front to back ratios, antenna gains of 12 to 15 db compared to a half wave element at the operating frequency, and receiver noise levels 50 db below the normal output.

For single sideband radio telephone circuits, the above field strengths can be lowered by from 6 to 10 db for the same grade of commercial service.

Privacy systems, room noise, microphones and language difficulties all serve to degrade the service and necessitate above average signal-to-noise ratios in order to render an average service of the grade specified. Modern high grade radio telephone channels using noise suppressors, compressors, automatic gain controls, etc., maintain a high signal-to-noise ratio, the noise level being subject to further control either through correct frequency selection or the application of power amplifiers at the transmitter.

A voice controlled noise reducer with limited and controlled action can, if placed in the receiving circuit between the radio receiver and the terminal, improve the signal to noise an average of 10 db .
For radio telegraph aural reception, noise levels equal to or above the signal levels are permissible. For tape recording and teletype or teleprinter reception, fields and signal-to-noise ratios comparable to those of telephone circuits are necessary. Diversity reception is the best remedy for fading; two antennas spaced about 10 wave lengths apart will eliminate 90% of the deep fading.

RELAXATION OSCILLATORS

Gas Tube Oscillator

$A=$ Pulse Output
$B=$ Sawtooth Output
Typical Circuit
$V_{1}=884$
$C_{1}=.05 \mathrm{mfd}$.
$C_{2}=.05 \mathrm{mfd}$.
$R_{1}=100,000 \Omega$
$R_{2}=500 \Omega$
$R_{3}=100,000 \Omega$
Frequency Controlling Elements C_{2}, R_{3}

Feedback Relaxation Oscillator

Typical Circuit
$V_{1}=6 \mathrm{~F} 6$
$T_{1}=3: 1$ Audio Trans.
0.3 hry. pri.
$R_{1}=100,000 \Omega$
$\ddot{z}_{2}=5000 \Omega$
$C_{1}=1 \mathrm{mfd}$.
$C_{2}=.1 \mathrm{mfd}$.
Frequency Controlling Elements C_{2}, R_{2}

Blocking Oscillator

\quad Typical Circuit
$V_{1}=6 J 5$
$C_{1}=.01 \mathrm{mfd}$.
$C_{2}=.25 \mathrm{mfd}$.
$R_{1}=1 \mathrm{meg} . \Omega$
$R_{2}=1$ meg. Ω
$R_{3}=1000 \Omega$
quency Controlling Ele-
ts R_{1}, C_{2}, R_{2}

RELAXATION OSCILLATORS-Confinued

Squegging Oscillator

\quad Typical Circuit
$V_{1}=6 \mathrm{~J} 5$
L_{1}
L_{2}
$R_{1}=500,000 \Omega$
$C_{1}=.01 \mathrm{mfd}$.

Frequency Controlling Elements R_{1}, C_{1}

Multivibrator

$$
\begin{aligned}
& \text { Typical Circuit } \\
& V_{1}=6 \mathrm{~F} 8 \\
& R_{1}=100,000 \Omega \\
& R_{2}=1000 \Omega \\
& R_{3}=25,000 \Omega \\
& R_{4}=250,000 \Omega \\
& R_{5}=25,000 \Omega \\
& C_{1}=.01 \mathrm{mfd} . \\
& C_{2}=250 \mathrm{mmfd} .
\end{aligned}
$$

Frequency Controlling Elements $R_{1}, R_{2}, R_{4}, C_{2}$

Vander Pol Oscillator

$$
\begin{aligned}
& \quad \text { Typical Circuit } \\
& V_{1}=6 \mathrm{SJ7} 7 \\
& R_{1}=100,000 \Omega \\
& R_{2}=500 \Omega \\
& R_{3}=100 \Omega \\
& R_{4}=3,000 \Omega \\
& R_{5}=10,000 \Omega \\
& R_{6}=25,000 \Omega \\
& R_{7}=25,000 \Omega
\end{aligned}
$$

Frequency Controlling Elements R_{1}, R_{6}, C_{1}, (Also $B+$)

ELECTRONIC DIFFERENTIATION METHODS

ELECTRONIC DIFFERENTIATION METHODS-Confinued

Methods I and II

(a) Current I should be a replica of the input voltage wave-form V.
(b) The voltage V must be substantially independent of the back EMF developed by the inductance L.
(c) The output shunt impedance placed across E should be high compared to the network impedance.
(d) The resonant period associated with the inductance caused by shunting circuit capacities should be at least one-third the build-up time T.

Method III

(a) Voltage V must be obtained from a low impedance source.
(b) The RC product should be one-fiftieth of the build-up time T or smaller.
(c) The output voltage E should not react back on the input voltage V.
(d) The impedance into which the differentiator circuit works should be large compared with R. If this impedance is resistive it should be included as part of R (This also applies to the input source impedance.)

FOURIER ANALYSIS OF RECURRENT WAVEFORMS

General Formulas

(1) $F(\theta)=\frac{A_{0}}{2}+A_{1} \sin \theta+A_{2} \sin 2 \theta+\ldots+A_{\mathrm{n}} \sin n \theta$ $+B_{1} \cos \theta+B_{2} \cos 2 \theta+\ldots B_{\mathrm{n}} \cos n \theta$
Formula (1) may be written:
(2) $F(\theta)=\frac{A_{0}}{2}+C_{1} \cos \left(\theta-\phi_{1}\right)+C_{2} \cos 2\left(\theta-\phi_{2}\right)+\ldots$

$$
+C_{\mathrm{n}} \cos n\left(\theta-\phi_{\mathrm{n}}\right)
$$

Where:
(3) $C_{\mathrm{n}}=\sqrt{A_{\mathrm{n}}{ }^{2}+B_{\mathrm{n}}{ }^{2}}$
(4) $\phi_{\mathrm{n}}=\arctan \frac{A_{\mathrm{n}}}{B_{\mathrm{n}}}$

FOURIER ANALYSIS OF RECURRENT WAVEFORMS - Continued

The coefficients A_{n} and B_{a} are determined by the following formulas:
(5) $A_{\mathrm{n}}=\frac{1}{\pi} \int_{-\pi}^{\pi} F(\theta) \sin n \theta d \theta$
(6) $B_{\mathrm{n}}=\frac{1}{\pi} \int_{-\pi}^{\pi} F(\theta) \cos n \theta d \theta$

By a change of limits (5) and (6) may also be written:
(7) $A_{\mathrm{n}}=\frac{1}{\pi} \int_{0}^{2 \pi} F(\theta) \sin n \theta d \theta$
(8) $B_{\mathrm{n}}=\frac{1}{\pi} \int_{0}^{2 \pi} F(\theta) \cos n \theta d \theta$

If the function $F(\theta)$ is an odd function, that is:
(9) $F(\theta)=-F(-\theta)$
the coefficients of all the cosine terms (B_{a}) of equation (6) become equal to zero.

Similarly if the function $F(\theta)$ is an even function, that is:
(10) $F(\theta)=F(-\theta)$
the coefficients of all the sine terms $\left(A_{\mathrm{n}}\right)$ of equation (5) become equal to zero.

If the function to be analysed is thus a symmetrical function defined by either equation (9) or (10) the function should be disposed about the zero axis and an analysis obtained by means of equations (5) or (6) for the simplest solution.

FOURIER ANALYSIS OF RECURRENT WAVEFORMS - Confinued

Graphical Solution:

If the function to be analysed is not known analytically, a solution of the Fourier integral may be approximated by graphical means.

The period of the function is divided into a number of ordinates as indicated by the graph.

The values of these ordinates are recorded and the following computations made:

The sum terms are arranged as follows:

	$\begin{align*} & S_{0} \\ & S_{6} \end{align*}$	$\begin{aligned} & S_{1} \\ & S_{5} \end{aligned}$	$\begin{aligned} & S_{2} \\ & S_{4} \end{aligned}$	S_{3}	(13)	$\begin{aligned} & \bar{S}_{0} \\ & \bar{S}_{2} \end{aligned}$	\bar{S} \bar{S}_{3}
Sum	$\overline{S_{0}}$	\bar{S}_{1}	\bar{S}_{2}	\bar{S}_{3}		\bar{S}_{7}	$\overline{S_{8}}$
Difference	D_{0}	$\overline{D_{1}}$	D_{2}				

The difference terms are as follows:

$$
\begin{array}{lll}
d_{1} & d_{2} & d_{3} \tag{14}\\
d_{5} & d_{4} & \\
\hline \overline{S_{4}} & \overline{S_{5}} & \overline{S_{6}} \\
\overline{D_{3}} & \overline{D_{4}} &
\end{array}
$$

Sum

$\overline{S_{4}}$	$\overline{D_{0}}$
$\overline{S_{6}}$	D_{2}
D_{5}	$\overline{D_{0}}$

FOURIER ANALYSIS OF RECURRENT WAVEFORMS - Continued

The coefficients of the Fourier series (1) are now obtained as follows:

$$
\begin{equation*}
A_{0}=\frac{\overline{S_{7}}+\overline{S_{8}}}{12} \tag{16}
\end{equation*}
$$

$$
\begin{equation*}
A_{1}=\frac{\bar{D}_{0}+0.866 \bar{D}_{1}+0.5 \bar{D}_{2}}{6} \tag{17}
\end{equation*}
$$

$$
\begin{equation*}
A_{2}=\frac{\overline{S_{0}}+0.5 \overline{S_{1}}-0.5 \overline{S_{2}}-\overline{S_{8}}}{6} \tag{18}
\end{equation*}
$$

$$
\begin{equation*}
A_{3}=\frac{\bar{D}_{6}}{6} \tag{19}
\end{equation*}
$$

$$
\begin{equation*}
A_{4}=\frac{\overline{S_{0}}-0.5 \overline{S_{1}}-0.5 \overline{S_{2}}+\overline{S_{3}}}{6} \tag{20}
\end{equation*}
$$

$$
\begin{equation*}
A_{5}=\frac{\overline{D_{0}}-0.866 \overline{D_{1}}+0.5 \overline{D_{2}}}{6} \tag{21}
\end{equation*}
$$

$$
\begin{equation*}
A_{6}=\frac{\overline{S_{7}}-\overline{S_{8}}}{12} \tag{22}
\end{equation*}
$$

Also:

$$
\begin{equation*}
B_{1}=\frac{0.5 \overline{S_{4}}+0.866 \overline{S_{8}}+\overline{S_{0}}}{6} \tag{23}
\end{equation*}
$$

$$
\begin{equation*}
B_{2}=\frac{0.866\left(\overline{D_{3}}+\overline{D_{4}}\right)}{6} \tag{24}
\end{equation*}
$$

$B_{3}=\frac{\overline{D_{5}}}{6}$
$B_{4}=\frac{0.866\left(D_{3}-D_{4}\right)}{6}$

$$
B_{5}=\frac{0.5 \overline{S_{4}}-0.866 \overline{S_{5}}+\overline{S_{0}}}{6}
$$

ANALYSES OF COMMONLY ENCOUNTERED WAVEFORMS

The following analyses include the coefficients of the Fourier Series for all harmonics ($\mathrm{n}^{\text {th }}$ order). By the use of the graph for the $\left(\frac{\sin x}{x}\right)$ function, page 164, the amplitude coefficients may be evaluated in a simple manner.
The symbols used are defined as follows:

A_{0}	$=$ pulse amplitude
T	$=$ periodicity
d	$=$ pulse width
f	$=$ pulse build-up time
r	$=$ pulse decay time
n	$=$ order of harmonic
C_{n}	$=$ amplitude of $\mathrm{n}^{\text {th }}$ harmonic
θ_{n}	$=$ phase angle of $\mathrm{n}^{\text {th }}$ harmonic

$A_{\mathrm{av}}=$ average value of function $=\frac{1}{T} \int_{\mathrm{o}}^{\mathrm{T}} F(t) d t$
$A_{\mathrm{rms}}=$ root-mean square value of function $=\sqrt{\frac{1}{T} \int_{0}^{\mathrm{T}}[F(t)]^{2} d t}$

1. RectangularWave

$$
\begin{aligned}
& \mathrm{A}_{\mathrm{av}}=\frac{A d}{T} \\
& \mathrm{~A}_{\mathrm{rman}}=A \sqrt{\frac{d}{T}} \\
& C_{\mathrm{n}}=2 A_{\mathrm{av}}\left[\frac{\sin \frac{n \pi d}{T}}{\frac{n \pi d}{T}}\right]
\end{aligned}
$$

ANALYSES OF COMMONLY ENCOUNTERED WAVEFORMS-Conf.

2. Symmetrical Trapezoid Wave

$$
\begin{aligned}
& A_{\mathrm{av}}=A \frac{(f+d)}{T} \\
& A_{\mathrm{rms}}=A \sqrt{\frac{2 f+3 d}{3 T}}
\end{aligned}
$$

$$
C_{\mathrm{n}}=2 A_{\mathrm{av}}\left[\frac{\sin \frac{n \pi f}{T}}{\frac{n \pi f}{T}}\right]\left[\frac{\sin \frac{n \pi(f+d)}{T}}{\frac{n \pi(f+d)}{T}}\right]
$$

3. Unsymmetrical Trapezoid Wave

$$
\begin{aligned}
& A_{\mathrm{av}}=\frac{A}{T}\left[\frac{f}{2}+\frac{r}{2}+d\right] \\
& A_{\mathrm{rms}}=A \sqrt{\frac{f+r+3 d}{3 T}}
\end{aligned}
$$

If $f \cong r$

$$
C_{\mathrm{n}}=2 A_{\mathrm{av}}\left[\frac{\sin \frac{n \pi f}{T}}{\frac{n \pi f}{T}}\right]\left[\frac{\sin \frac{n \pi(f+d)}{T}}{\frac{n \pi(f+d)}{T}}\right]\left[\frac{\sin \frac{n \pi(r-f)}{T}}{\frac{n \pi(r-f)}{T}}\right]
$$

ANALYSES OF COMMONLY ENCOUNTERED WAVEFORMS-Cont.
4. Isosoles Triangle Wave

5. Clipped Sawtooth Wave

$$
\begin{aligned}
& A_{\mathrm{nv}}=\frac{A d}{2 T} \\
& A_{\mathrm{rms}}=A \sqrt{\frac{d}{3 T}}
\end{aligned}
$$

$$
C_{\mathrm{n}}=\frac{A T}{2 \pi^{2} n^{2} d}\left[2\left(1-\cos \frac{2 \pi n d}{T}\right)+\frac{4 \pi n d}{T}\left(\frac{\pi n d}{T}-\sin \frac{2 \pi n d}{T}\right)\right]^{2}
$$

If d is small

$$
C_{\mathrm{n}}=\frac{2 A_{\mathrm{av}}}{\frac{\pi n d}{T}}\left[\frac{\sin \frac{\pi n d}{T}}{\frac{\pi n d}{T}}-1\right]
$$

ANALYSES OF COMMONLY ENCOUNTERED WAVEFORMS-Conf.

6. Sawtooth Wave

$$
\begin{aligned}
& A_{\mathrm{av}}=\frac{A}{2} \\
& A_{\mathrm{rms}}=\frac{A}{\sqrt{3}} \\
& C_{\mathrm{n}}=-\frac{2 A_{\mathrm{av}}}{n \pi} \cos (n \pi)
\end{aligned}
$$

7. Sawtooth Wave

$$
\begin{aligned}
& A_{\mathrm{av}}=\frac{A}{2} \\
& A_{\mathrm{rms}}=\frac{A}{\sqrt{3}} \\
& C_{\mathrm{n}}=\frac{2 A_{\mathrm{nv}} T}{\pi^{2} n^{2} f\left(1-\frac{f}{T}\right)} \sin \frac{\pi f}{T}
\end{aligned}
$$

ANALYSES OF COMMONLY ENCOUNTERED WAVEFORMS-Conf.

8. Fractionàl Sine-Wave

$$
\begin{aligned}
& A_{\mathrm{av}}=\frac{A\left(\sin \frac{\pi d}{T}-\frac{\pi d}{T} \cos \frac{\pi d}{T}\right)}{\pi\left(1-\cos \frac{\pi d}{T}\right)} \\
& A_{\mathrm{rma}}=\frac{A}{\left(1-\cos \frac{\pi d}{T}\right)} \\
& {\left[\frac{1}{2 \pi}\left(\frac{\pi d}{T}+\frac{1}{2} \sin \frac{2 \pi d}{T}-4 \cos \frac{\pi d}{T} \sin \frac{\pi d}{T}+\frac{2 \pi d}{T} \cos ^{2} \frac{\pi d}{T}\right)\right] } \\
& \mathrm{C}_{\mathrm{n}}=\frac{A_{\mathrm{av}} \frac{\pi d}{T}}{n\left(\sin \frac{\pi d}{T}-\frac{\pi d}{T} \cos \frac{\pi d}{T}\right)}\left[\frac{\sin (n-1) \frac{\pi d}{T}}{(n-1) \frac{\pi d}{T}}-\frac{\sin (n+1) \frac{\pi d}{T}}{(n+1) \frac{\pi d}{T}}\right]
\end{aligned}
$$

9. Half Sine-Wave

$$
A_{\mathrm{av}}=\frac{2 A}{\pi} \frac{\dot{d}}{T}
$$

$$
A_{\mathrm{rms}}=A \sqrt{\frac{d}{2 T}}
$$

$$
C_{\mathrm{n}}=\frac{\pi}{2} A_{\mathrm{av}}\left[\frac{\sin \frac{\pi}{2}\left(1-\frac{2 n d}{T}\right)}{\frac{\pi}{2}\left(1-\frac{2 n d}{T}\right)}+\frac{\sin \frac{\pi}{2}\left(1+\frac{2 n d}{T}\right)}{\frac{\pi}{2}\left(1+\frac{2 n d}{T}\right)}\right]
$$

ANALYSES OF COMMONLY ENCOUNTERED WAVEFORMS-Cont.

10. Full Sine-Wave

11. Critically Damped Exponential Wave

$f(t)=\frac{A \epsilon}{f} t \epsilon^{-\frac{t}{f}} \quad$ where $\epsilon=2.718$
for $T>10 f$

$$
\begin{aligned}
& A_{\mathrm{av}}=\frac{A_{\epsilon f}}{T} \\
& A_{\mathrm{rms}}=\frac{A_{\epsilon}}{2} \sqrt{\frac{f}{T}} \\
& C_{\mathrm{n}}=2 A_{\mathrm{av}}\left[\frac{1}{1+\left(\frac{2 \pi n f}{T}\right)^{2}}\right]=2 A_{\mathrm{nv}} \cos ^{2} \frac{\theta_{\mathrm{n}}}{2} \\
& \frac{\theta_{\mathrm{n}}}{2}=\tan ^{-1}\left(\frac{2 \pi n f}{T}\right)
\end{aligned}
$$

DIMENSIONAL EXPRESSIONS
Units in five systems. Multiply by F to convert to practical units.

Quantity	F (E.M.U.)	F (E.S.U.)	Unrationalized F (MKS)	Rotionalized F (MKS)	Practical
-.m.f.	10^{-8}	300	1	1	volt
potential prodient	10^{-8}	300	10^{-2}	10^{-2}	volf per cm
resistonce	10^{-4}	9×10^{11}	1	1	ohm
resistivity	10^{-4}	9×10^{11}	10^{2}	10^{2}	chm-cm
charge	10	$1 / 3 \times 10^{-9}$	1	1	coulomb
current	10	$1 / 3 \times 10^{-1}$	1	1	ampere
electric flux	10	$1 / 3 \times 10^{-1}$	1	4π	coulomb
flux density	10	$1 / 3 \times 10^{-3}$	10^{-2}	$4 \pi \times 10^{-2}$	coulamb per sq. cm
current density	10	$1 / 3 \times 10^{-3}$	10^{-2}	$4 \pi \times 10^{-2}$	omp. per sq. cm
capacitance	10^{3}	$1 / 9 \times 10^{-11}$	1	1	farad
relative dielectric constont	1	1	1	1	numeric
absolute dielectric constant of free tpoce	9×10^{20}	1	9×10^{-3}	$36 \pi \times 10^{-3}$	
relotive permeability	1	1	1	1	numerie
absolute permeabillty of free space	1	9×10^{20}	107	$1 / 4 \pi \times 10^{1}$	
m.m.f.	1		10^{-1}	$4 \pi \times 10^{-1}$	gilbert
magnetic field	1		10^{-3}	$4 \pi \times 10^{-3}$	oersted or gilbert per cm
strength mognetic flux	1		10 :	10:	maxwell
fux density	1		10^{\prime}	10 .	gauss
reluctance	1		10^{-3}	$4 \pi \times 10^{-0}$	nomeless unit
inductance	10-\%	9×10^{11}	1	1	henry

GREEK ALPHABET

α	A	Alpha	ν	N	Nu
β	B	Beta	ξ	E	Xi
γ	Γ	Gamma	-	0	Omicron
δ	Δ	Delta	π	Π	
ϵ	E	Epsilon	ρ	P	Rho
ζ	Z	Zeta	σ	Σ	Sigma
-	H	Eta	τ	T	Tau
θ	θ	Theta	v	\uparrow	Upsilon
	I	Iota	φ	Φ	Phi
x (caspoitu)	K	Kappa	χ	X	Chi
λ	Λ	Lambda	ψ	Ψ	Psi
${ }_{\mu}$	M	Mu	ω	Ω	Omega

MISCELLANEOUS DATA

1 cubic foot of water at $4^{\circ} \mathrm{C}$ (weight) 62.4 lb .
1 foot of water at $4^{\circ} \mathrm{C}$ (pressure) $0.43352 \mathrm{lb} . / \mathrm{in}^{2}{ }^{2}$
Velocity of light in vacuum $186,284 \mathrm{mi} . / \mathrm{sec}$.
Velocity of sound in dry air at $20^{\circ} \mathrm{C}$ $1129 \mathrm{ft} . / \mathrm{sec}$.
Degree of longitude at equator 69.17 miles
Acceleration due to gravity, g, at sea-level, $40^{\circ} \mathrm{N}$. Latitude (N. Y) $32.1578 \mathrm{ft} . / \mathrm{sec}^{2}{ }^{2}$
$\sqrt{2 g}$. $8.02 \mathrm{ft} . / \mathrm{sec} .^{2}$
1 atmosphere $14.696 \mathrm{lb} . / \mathrm{in}^{2}{ }^{2}$
1 inch of mercury 1.133 ft . water
1 inch of mercury $0.4912 \mathrm{lb} . / \mathrm{in}^{2}{ }^{2}$
1 radian. $180^{\circ} \div \pi=57^{\circ} .3$
360 degrees 2π radians
π 3.1416
Sine 1^{\prime} 0.0002929

MENSURATION FORMULAS

Area of triangle $=\quad$ Base $\times 1 / 2$ height

Area of ellipse
Area of parabola
Area of plane surface
$=\quad$ major axis \times minor axis $\times .7854$
$=$ base $\times 2 / 3$ perpendicular height
$=\quad$ sum of mid. ords. \times width d (approx.) or ($2 n$ strips)
Let $h_{0}, h_{1}, h_{2}, \ldots, h_{\mathrm{n}}$ be the measured lengths of a series of equidistant parallel chords, and let d be their distance apart, then the area enclosed by any boundary is given approximately as follows:

$$
\begin{gathered}
A=1 / 3 d\left[\left(h_{\mathrm{o}}+h_{\mathrm{n}}\right)+4\left(h_{1}+h_{3}+\ldots+h_{\mathrm{n}-1}\right)\right. \\
\left.+2\left(h_{2}+h_{4}+\ldots .+h_{\mathrm{n}-2}\right)\right]
\end{gathered}
$$

(Simpson's Rule, where n is even).

Area of circle	$=\pi r^{2}$
Surface area of sphere	$=4 \pi r^{2}$
Volume of sphere	$=\frac{4 \pi r^{3}}{3}$
Side of square	$=.707$ diagonal of square
Volume of pyramid or cone	$=$ Area of base $\times 1 / 3$ of height

FORMULAS FOR COMPLEX QUANTITIES

$$
\begin{gathered}
(.1+j B)(C+j D)=(A C-B D)+j(B C+1 D) \\
\frac{A+j B}{C+j D}=\frac{A C+B D}{C^{2}+D^{2}}+j \frac{B C-A D}{C^{2}+D^{2}} \\
\frac{1}{A+j B}=\frac{A}{A^{2}+B^{2}}-j \frac{B}{A^{2}+B^{2}} \\
A+j B=\quad \quad \rho(\cos \theta+j \sin \theta) \\
\sqrt{A+j B}=
\end{gathered}
$$

where $\rho=\sqrt{A^{2}+B^{2}} ; \cos \theta=\frac{A}{\rho}$

$$
\begin{aligned}
\sin \theta & =\frac{B}{\rho} \\
e^{i \theta} & =\cos \theta+j \sin \theta \\
e^{-j \theta} & =\cos \theta-j \sin \theta
\end{aligned}
$$

algebraic and trigonometric Quantities

$1=\sin ^{2} A+\cos ^{2} A=\sin A \operatorname{cosec} A=\tan A \cot A=\cos A \sec A$
Sine $A=\frac{\cos A}{\cot A}=\frac{1}{\operatorname{cosec} A}=\cos A \tan A=\sqrt{1-\cos ^{2} A}$
Cosine $A=\frac{\sin A}{\tan A}=\frac{1}{\sec A}=\sin A \cot A=\sqrt{1-\sin ^{2} A}$
Tangent $A=\frac{\sin A}{\cos A}=\frac{1}{\cot A}=\sin A \sec A$
Cotangent $A=\frac{1}{\tan A} \quad$ Secant $A=\frac{1}{\cos A}$
Cosecant $A=\frac{1}{\sin A}$
$\sin (A \pm B)=\sin A \cos B \pm \cos A \sin B$

$$
\tan (A \pm B)=\frac{\tan A \pm \tan B}{1 \mp \tan A \tan B}
$$

ALGEBRAIC AND TRIGONOMETRIC FORMULAS-Continued

$\cos (A \pm B)=\cos A \cos B \mp \sin A \sin B$

$$
\cot (A \pm B)=\frac{\cot A \cot B \mp 1}{\cot B \pm \cot A}
$$

$\sin A+\sin B=2 \sin 1 / 2(A+B) \cos 1 / 2(A-B)$
$\sin ^{2} A-\sin ^{2} B=\sin (A+B) \sin (A-B)$

$$
\tan A \pm \tan B=\frac{\sin (A \pm B)}{\cos A \cos B}
$$

$\sin A-\sin B=2 \cos 1 / 2(A+B) \sin 1 / 2(A-B)$ $\cos A+\cos B=2 \cos 1 / 2(A+B) \cos 1 / 2(A-B)$
$\cot A \pm \cot B=\frac{\sin (B \pm A)}{\sin A \sin B}$
$\cos B-\cos A=2 \sin 1 / 2(A+B) \sin 1 / 2(A-B)$
$\sin 2 A=2 \sin A \cos A \quad \cos 2 A=\cos ^{2} A-\sin ^{2} A$ $\cos ^{2} A-\sin ^{2} B=\cos (A+B) \cos (A-B)$

$$
\tan 2 A=\frac{2 \tan A}{1-\tan ^{2} A}
$$

$\sin 1 / 2 A= \pm \sqrt{\frac{1-\cos A}{2}} \quad \cos 1 / 2 A= \pm \sqrt{\frac{1+\cos A}{2}}$
$\tan 1 / 2 A=\frac{\sin A}{1+\cos A}$

$$
\sin ^{2} A=\frac{1-\cos 2 A}{2}
$$

$\cos ^{2} A=\frac{1+\cos 2 A}{2}$

$$
\tan ^{2} A=\frac{1-\cos 2 A}{1+\cos 2 A}
$$

$\frac{\sin A \pm \sin B}{\cos A+\cos B}=\tan 1 / 2(A \pm B)$
$\frac{\sin A \pm \sin B}{\cos B-\cos A}=\cot 1 / 2(A \mp B)$

Angle			0	30°	45°	60°	90°	180°	270°	360°
Sin	.	..	0	1/2	$1 / 2 \sqrt{2}$	$1 / 2 \sqrt{3}$	1	0	-1	0
Cos	.	. .	1	$1 / 2 \vee 3$	$1 / 2 \sqrt{2}$	$1 / 2$	0	-1	0	1
Tan	.	.	0	$1 / 3 \sqrt{3}$	1	$\sqrt{3}$	$\pm \infty$	0	$\pm \infty$	0

APPROXIMATIONS FOR SMALL ANGLES

$\operatorname{Sin} \theta=\left(\theta-\theta^{3} / 6 \ldots ..\right) \quad \theta$ in radians
$\operatorname{Tan} \theta=\left(\theta+\theta^{3} / 3 \ldots \ldots\right) \quad \theta$ in radians
$\operatorname{Cos} \theta=\left(1-\theta^{2} / 2 \ldots \ldots\right) \quad \theta$ in radians
Versine $\theta=1-\cos \theta$
$\operatorname{Sin} 141 / 2^{\circ}=1 / 4$
$\operatorname{Sin} 20^{\circ}=11 / 32$

QUADRATIC EQUATION

If $a x^{2}+b x+c=0$, then $x=\frac{-b \pm \sqrt{\overline{b^{2}-4 a c}}}{2 a}$

ARITHMETICAL PROGRESSION

$S=n(a+l) / 2=n[2 a+(n-1) d] / 2$
where
$a=$ first term; $l=$ last term; $n=$ number of terms; $S=$ sum; $d=$ common difference.

GEOMETRICAL PROGRESSION

Let $r=$ common ratio, then

$$
S=\frac{a\left(r^{\mathrm{n}}-1\right)}{r-1}=\frac{a\left(1-r^{\mathrm{n}}\right)}{1-r}
$$

COMBINATIONS AND PERMUTATIONS

The number of combinations of n things r at a time $={ }_{n} C_{r}=$ $n!/ r!(n-r)!$
The number of permutations of n things r at a time $={ }_{\mathrm{n}} P_{\mathrm{r}}$.
${ }_{\mathrm{n}} P_{\mathrm{n}}=n(n-1)(n-2) \ldots \ldots 3 \cdot 2 \cdot 1=n!$
${ }_{\mathrm{n}} P_{\mathrm{r}}=n(n-1)(n-2) \ldots(n-r+1)$.

BINOMIAL THEOREM

$(a \pm b)^{\mathrm{n}}=a^{\mathrm{n}} \pm n a^{\mathrm{n}-1} b+\frac{n(n-1)}{2!} a^{\mathrm{n}-2} b^{2} \pm \frac{n(n-1)(n-2)}{3!} a^{\mathrm{n}-3} b^{3}+\ldots$.

MACLAURIN'S THEOREM

$f(x)=f(o)+x f^{\prime}(o)+\frac{x^{2}}{1 \cdot 2} f^{\prime \prime}(o)+\ldots$.

TRIGONOMETRIC SOLUTION OF TRIANGLES

Right Angled Triangles (Right Angle at C)

$$
\begin{aligned}
\sin A & =\cos B=\frac{a}{c} \\
\tan A & =\frac{a}{b} \quad \mathrm{~B}=90^{\circ}-A \\
\text { vers } A & =1-\cos A=\frac{c-b}{c} \\
c & =\sqrt{a^{2}+b^{2}} \\
b & =\sqrt{c^{2}-a^{2}}=\sqrt{(c+a)(c-a)} \\
\text { Area } & =\frac{a b}{2}=\frac{a}{2} \sqrt{c^{2}-a^{2}}=\frac{a^{2} \cot A}{2}=\frac{b^{2} \tan A}{2}=\frac{c^{2} \sin A \cos A}{2}
\end{aligned}
$$

Oblique-Angled Triangles
$\sin 1 / 2 A=\sqrt{\frac{(s-b)(s-c)}{b c}}, \cos 1 / 2 A=\sqrt{\frac{s(s-a)}{b c}}$,
where $s=\frac{a+b+c}{2}$
$\tan 1 / 2 A=\sqrt{\frac{(s-b)(s-c)}{s(s-a)}}$, similar values for angles B and C.
Area $=\sqrt{s(s-a)(s-b)(s-c)}=1 / 2 a b \sin C=\frac{a^{2} \sin B \sin C}{2 \sin A}$
$c=\frac{a \sin C}{\sin A}=\frac{a \sin (A+B)}{\sin A}=\sqrt{a^{2}+b^{2}-2 a b \cos C}$
$\tan A=\frac{a \sin C}{b-a \cos C}, \quad \tan 1 / 2(A-B)=\frac{a-b}{a+b} \quad \cot 1 / 2 C$
$a^{2}=b^{2}+c^{2}-2 b c \cos A$, similar expressions for other sides.

COMPLEX HYPERBOLIC AND OTHER FUNCTIONS

Properties of " e "
$e=1+1+\frac{1}{2!}+\frac{1}{3!}+\ldots=2.71828$
$\frac{1}{e}=.3679$
$e^{x}=1+x+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\ldots$

COMPLEX HYPERBOLIC AND OTHER FUNCTIONS-Continued

$\log _{10} e=0.43429 ; \log _{0} 10=2.30259$
$\log _{e} N=\log 10 \times \log _{10} N ; \log _{1.0} N=\log _{10} e \times \log _{\circ} N$.
$\sin x=x-\frac{x^{3}}{3!}+\frac{x^{5}}{5!}-\frac{x^{7}}{7!}+\ldots$.
$\cos x=1-\frac{x^{2}}{2!}+\frac{x^{4}}{4!}-\frac{x^{6}}{6!}+\ldots$
$\sinh x=x+\frac{x^{3}}{3!}+\frac{x^{5}}{5!}+\frac{x^{7}}{7!}+\ldots$.
$\cosh x=1+\frac{x^{2}}{2!}+\frac{x^{4}}{4!}+\frac{x^{6}}{6!}+\ldots$
$J_{\mathrm{n}(\mathrm{x})}=\frac{x^{\mathrm{n}}}{2^{\mathrm{n}} n!}\left\{1-\frac{x^{2}}{2(2 n+2)}+\frac{x^{4}}{2 \cdot 4(2 n+2)(2 n+4)}\right.$
$\sin x=\frac{\epsilon^{\mathrm{jx}}-\epsilon^{-\mathrm{jx}}}{2 j}$
$\left.-\frac{x^{6}}{2 \cdot 4 \cdot 6(2 n+2)(2 n+4)(2 n+6)}+\ldots\right\}$
$\cos x=\frac{\epsilon^{\mathrm{jP}}+\epsilon^{-\mathrm{jx}}}{2}$
$\sinh x=\frac{\epsilon^{x}-\epsilon^{-x}}{2}$
$\cosh x=\frac{\epsilon^{x}+\epsilon^{-x}}{2}$
$\epsilon^{\mathrm{jx}}=\cos x+j \sin x$
$\epsilon^{-j x}=\cos x-j \sin x$ $j=\sqrt{-1}$
$\sinh (-x)=-\sinh x ; \cosh (-x)=\cosh x$
$\sinh j x=j \sin x ; \cosh j x=\cos x$
$\cosh ^{2} x-\sinh ^{2} x=1$
$\sinh 2 x=2 \sinh x \cosh x$
$\cosh 2 x=\cosh ^{2} x+\sinh ^{2} x$
$\sinh (x \pm j y)=\sinh x \cos y \pm j \cosh x \sin y$
$\cosh (x \pm j y)=\cosh x \cos y \pm j \sinh x \sin y$

GREAT CIRCLE CALCULATIONS-Figures I, 2 and 3

Figure 1

Figure 2

Figure 3

GREAT CIRCLE CALCULATIONS

Referring to Figs. 1, 2 and $3, A$ and B are two places on the earth's surface the latitudes and longitudes of which are known. The angles X and Y at A and B of the great circle passing through the two places and the distance Z between A and B along the great circle can be calculated as follows:
B is the place of greater latitude, i.e., nearer the pole
L_{a} is the latitude of A
L_{b} is the latitude of B
C is the difference of longitude between A and B
Then $\tan \frac{Y-X}{2}=\cot \frac{C}{2} \frac{\sin \frac{L_{\mathrm{b}}-L_{\mathrm{a}}}{2}}{\cos \frac{L_{\mathrm{b}}+L_{\mathrm{a}}}{2}}$
and $\tan \frac{Y+X}{2}=\cot \frac{C}{2} \frac{\cos \frac{L_{\mathrm{b}}-L_{\mathrm{a}}}{2}}{\sin \frac{L_{\mathrm{b}}+L_{\mathrm{a}}}{2}}$
give the values of $\frac{Y-X}{2}$ and $\frac{Y+X}{2}$
from which $\frac{Y+X}{2}+\frac{Y-X}{2}=Y$
and $\quad \frac{Y+X}{2}-\frac{Y-X}{2}=X$
In the above formulas north latitudes are taken as positive and south latitudes as negative. For example, if B is latitude $60^{\circ} \mathrm{N}$. and A is latitude $20^{\circ} \mathrm{S}$.

$$
\begin{aligned}
\frac{L_{\mathrm{l}}+L_{\mathrm{a}}}{2} & =\frac{60+(-20)}{2}=\frac{60-20}{2}=\frac{40}{2}=20^{\circ} \\
\text { and } \quad \frac{L_{\mathrm{s}}-L_{\mathrm{a}}}{2} & =\frac{60-(-20)}{2}=\frac{60+20}{2}=\frac{80}{2}=40^{\circ}
\end{aligned}
$$

If both places are in the southern hemisphere and $L_{\mathrm{b}}+L_{\mathrm{a}}$ is negative it is simpler to call the place of greater south latitude B and to use the above method for calculating bearings from true south and to convert the results afterwards to bearings east of north.

Great circle calculations-Continued

The distance Z (in degrees) along the great circle between A and B is given by the following:

$$
\tan \frac{Z}{2}=\tan \frac{L_{\mathrm{b}}-L_{\mathrm{a}}}{2} \frac{\sin \frac{Y+X}{2}}{\sin \frac{Y-X}{2}}
$$

The angular distance Z (in degrees) between A and B may be converted to linear distance as follows:

$$
\begin{aligned}
& Z \text { (in degrees) } \times 111.136=\text { kilometers } \\
& Z \text { (in degrees) } \times 69.057=\text { statute miles } \\
& Z \text { (in degrees) } \times \quad 60.000=\text { nautical miles }
\end{aligned}
$$

In multiplying, the minutes and seconds of arc must be expressed in decimals of a degree. For example, $Z=37^{\circ} 45^{\prime} 36^{\prime \prime}$ becomes 37.755°. Example:- Find the great circle bearings at Brentwood, Long Island, Longitude $73^{\circ} 15^{\prime} 10^{\prime \prime} \mathrm{W}$, I a atitude $30^{\circ} 48^{\prime} 40^{\prime \prime} \mathrm{N}$, and at Rio de Janeiro, Brazil, Longitude $43^{\circ} 22^{\prime} 07^{\prime \prime} \mathrm{W}$, Latitude $22^{\circ} 57^{\prime} 09^{\prime \prime} \mathrm{S}$.

LONGITUDE LATITUDE			
BRENTWOOD RIO DE JANEIRO	$\begin{aligned} & 73^{\circ} 15^{\prime} 10^{\prime \prime} \mathrm{w} \\ & 43^{\circ} 22^{\prime} 07^{\prime \prime} \mathrm{w} \end{aligned}$	$\begin{array}{r} 40^{\prime \prime} 48^{\prime} 40^{\prime \prime} \mathrm{N} . \\ (-) 22^{\circ} 57^{\prime} 09^{\prime \prime} \mathrm{S} . \end{array}$	$\begin{aligned} & \mathrm{L}_{\mathrm{B}} \\ & \mathrm{~L}_{\mathrm{A}} \end{aligned}$
C	$29^{\circ} 53^{\prime} 03^{\prime \prime}$	$\begin{aligned} & 17^{\circ} 51^{\prime} 31^{\prime \prime} \\ & 63^{\circ} 45^{\prime} 49^{\prime \prime} \end{aligned}$	$\begin{aligned} & L_{B}+L_{A} \\ & L_{B}-L_{A} \end{aligned}$
$\frac{C}{2}=14^{\circ} 56^{\prime} 31^{\prime \prime} \quad \frac{L_{8}+L_{A}}{2}=8^{\circ} 55^{\prime} 45^{\prime \prime} \quad \frac{L_{8}-L_{A}}{2}=31^{\circ} 52^{\prime} 54^{\prime \prime}$			
$\begin{aligned} & \frac{Y+X}{2}+\frac{Y-X}{2}=Y=150^{\circ} 40^{\prime} 52^{\prime \prime} \text { EAST OF MORTH - BEARIMG AT BRENT WOOD } \\ & \frac{Y+X}{2}-\frac{Y-X}{2}=X=23^{\circ} 44^{\prime} 00^{\prime \prime} \text { WEST OF NORTH - BEARING AT RIO DE JAMEIRO } \end{aligned}$			
$\begin{aligned} \frac{L_{B}-L_{A}}{2} & =31^{\circ} 52^{\prime} 54^{\prime \prime} \\ \frac{Y+x}{2} & =82^{\circ} 12^{\prime} 26^{\prime \prime} \\ \frac{y-x}{2} & =63^{\circ} 28^{\prime} 26^{\prime \prime} \end{aligned}$		LOG TAN $31^{\circ} 52^{\prime} 5$ Pus " $61 \mathrm{~N}_{8} 82^{\circ} 12^{\prime} 2$ mimus LOG SIN $63^{\circ} 28^{\prime} 2$ $\text { - } \begin{aligned} \operatorname{TAN} \frac{z}{2} & = \\ \frac{7}{2} & = \\ z & = \end{aligned}$	$\begin{aligned} & 9.79379 \\ & \frac{9.99597}{9.78976} \\ & 9.95170 \\ & \hline 9.83606 \\ & { }^{\circ} 33^{\prime} 24^{\prime \prime} \\ & \hline 06^{\prime} 48^{\prime \prime} \end{aligned}$
$\begin{aligned} 69^{\circ} 06^{\prime} 48^{\prime \prime} & =69.113^{\circ} \\ \text { WEAR DISTANCE } & =69.113 \times 69.057=4772.74 \text { STATUTE MILES } \end{aligned}$			

LOGARITHMS OF NUMBERS AND PROPORTIONAL PARTS

	0	1	2	3	4	5	6	7	8	9	Proportional Parts		
											123	456	788
10	0000	0043	0086	0128	0170	0212	0253	0294	0334	0374	4812	172125	293337
11	0414	0453	0492	0531	0569	0607	0645	0682	0719	0755	4811	151923	$26 \quad 3034$
12	0792	0828	0864	0899	0934	0969	1004	1038	1072	1106	3710	141721	242831
13	1139	1173	1206	1239	1271	1303	1335	1367	1399	1430	3610	$\begin{array}{llll}13 & 16 & 19\end{array}$	232629
14	1461	1492	1523	1553	1584	1614	1644	1673	1703	1732	369	12 l	212427
15	1761	1790	1818	1847	1875	1903	1931	1959	1987	2014	368	111417	202225
16	2041	2068	2095	2122	2148	2175	2201	2227	2253	2279	$3 \begin{array}{lll}3 & 8\end{array}$	111316	$18 \quad 2124$
17	2304	2330	2355	2380	2405	2430	2455	2480	2504	2529	2517	$\begin{array}{llll}10 & 12 \quad 15\end{array}$	172022
18	2553	2577	2601	2625	2648	2672	2695	2718	2742	2765	257	$\begin{array}{llllll}9 & 12 & 14\end{array}$	161921
19	2788	2810	2833	2856	2878	2900	2923	2945	2967	2989	247	91113	161820
20	3010	3032	3054	3075	3096	3118	3139	3160	3181	3201	246	81113	151719
21	3222	3243	3263	3284	3304	3324	3345	3365	3385	3404	246	81012	141618
22	3424	3444	3464	3483	3502	3522	3541	3560	3579	3598	246	81012	$14 \quad 15 \quad 17$
23	3617	3636	3655	3674	3692	3711	3729	3747	3766	3784	246	7911	$\begin{array}{llll}13 & 15 & 17\end{array}$
24	3802	3820	3838	3856	3874	3892	3909	3927	3945	3962	245	7911	121416
25	3979	3997	4014	4031	4048	4065	4082	4099	4116	4133	23	$7{ }_{7}^{7} 910$	121415
26	4150	4166	4183	4200	4216	4232	4249	4265	4281	4298	23	7 810	111315
27	4314	4330	4346	4362	4378	4393	4409	4425	4440	4456	23	6 6 88	111314
28	4472	4487	4502	4518	4533	4548	4564	4579	4594	4609	23	68	111214
29	4624	4639	4654	4669	4683	4698	4713	4728	4742	4757	13	67	$10 \quad 1213$
30	4771	4786	4800	4814	4829	4843	4857	4871	4886	4900.	13	6	101113
31	4914	4928	4942	4955	4969	4983	4997	5011	5024	5038	13	67	101112
32	5051	5065	5079	5092	5105	5119	5132	5145	5159	5172	13	57	91112
33	5185	5198	5211	5224	5237	5250	5263	5276	5289	5302	13	56	91012
34	5315	5328	5340	5353	5366	5378	5391	5403	5416	5428	13	5.68	91011
35	5441	5453	5465	5478	5490	5502	5514	5527	5539	5551	12	$\begin{array}{lll}5 & 6 & 7\end{array}$	91011
36	5563	5575	5587	5599	5611	5623	5635	5647	5658	5670	12	$\begin{array}{lll}5 & 6 & 7\end{array}$	81011
37	5682	5694	5705	5717	5729	5740	5752	5763	5775	5786	12	$\begin{array}{lll}5 & 6 & 7\end{array}$	8910
38	5798	5809	5821	5832	5843	5855	5866	5877	5888	5899	12	$\begin{array}{llll}5 & 6 & 7\end{array}$	8910
39	5911	5922	5933	5944	5955	5966	5977	5988	5999	6010	123	4.57	$8 \quad 910$
40	6021	6031	6042	6053	6064	6075	6085	6096	6107	6117	12	56	$8 \quad 910$
41	6128	6138	6149	6160	6170	6180	6191	6201	6212	6222	12	456	788
42	6232	6243	6253	6263	6274	6284	6294	6304	6314	6325	12	456	7889
43	6335	6345	6355	6365	6375	6385	6395	6405	6415	6425	12	456	789
44	6435	6444	6454	6464	6474	6484	6493	6503	6513	6522	12	456	$\begin{array}{llll}7 & 8 & 9\end{array}$
45	6532	6542	6551	6561	6571	6580	6590	6599	6609	6618	12	456	788
46	6628	6637	6646	6656	6665	6675	6684	6693	6702	6712	12	456	$\begin{array}{lll}7 & 7 & 8\end{array}$
47	6721	6730	6739	6749	6758	6767	6776	6785	6794	6803	123	455	678
48	6812	6821	6830	6839	6848	6857	6866	6875	6884	6893	123	45	678
49	6902	6911	6920	6928	6937	6946	6955	6964	6972	6981	12	445	678
50	6990	6998	7007	7016	7024	7033	7042	7050	7059	7067	12	,	678
51	7076	7084	7093	7101	7110	7118	7126	7135	7143	7152	12	34	678
52	7160	7168	7177	7185	7193	7202	7210	7218	7226	7235	12	3	6
53	7243	7251	7259	7267	7275	7284	7292	7300	7308	7316	12	3	66
54	7324	7332	7340	7348	7356	7364	7372	7380	7388	7396	2	34	66

LOGARITHMS OF NUMBERS AND PROPORTIONAL

PARTS-Confinued

NATURAL TRIGONOMETRIC FUNCTIONS FOR

 DECIMAL FRACTIONS OF A DEGREE| Deg. | Sin | Cos | Tan | Cot | Deg. | Deg. | Sin | Cos | Tan | Cot | Deg. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0.0 | . 00000 | 1.0000 | . 00000 | ${ }^{\infty}$ | 90.0 | 6.0 | .10453 | 0.9945 | . 10510 | 9.514 | 84.0 |
| . 1 | . 00175 | 1.0000 | . 00175 | 573.0 | . 9 | . 1 | . 10626 | . 9943 | . 10687 | 9.357 | . 9 |
| . 2 | . 00349 | 1.0000 | . 00349 | 286.5 | . 8 | . 2 | . 10800 | . 9942 | . 10863 | 9.205 | . 8 |
| .3 | . 000524 | 1.0000 | . 00524 | 191.0 | . 7 | . 3 | .10973 | . 9940 | . 11040 | 9.058 | .7 |
| . 4 | . 00698 | 1.0000 | . 00698 | 143.24 | .6 | . 4 | . 11114 | . 9938 | . 11217 | 8.915 | 6 |
| . 5 | . 00873 | 1.0000 | . 00873 | 114.59 | . 5 | . 5 | .11320 | . 9936 | . 11394 | 8.777 | 5 |
| . 6 | . 01047 | 0.9999 | . 01047 | 95.49 | . 4 | . 6 | . 11494 | . 9934 | . 11570 | 8.643 | 4 |
| . 7 | . 01222 | . 9999 | . 01222 | 81.85 | . 3 | . 7 | . 11667 | . 9932 | . 11747 | 8.513 | 3 |
| . 8 | . 01396 | . 9999 | . 01396 | 71.62 | . 2 | . 8 | .11840 | . 9930 | . 11924 | 8.386 | 2 |
| . 9 | .01571 | . 9999 | .01571 | 63.66 | . 1 | . 9 | . 12014 | . 9928 | .12101 | 8.264 | 1 |
| 1.0 | . 01745 | 0.9998 | . 01746 | 57.29 | 89.0 | 7.0 | . 12187 | 0.9925 | . 12278 | 8.144 | 13.0 |
| . 1 | . 01920 | . 9998 | . 01920 | 52.08 | . 9 | . 1 | . 12360 | . 9923 | . 12456 | 8.028 | . 9 |
| . 2 | . 02094 | . 9998 | . 02095 | 47.74 | . 8 | . 2 | . 12533 | . 9921 | . 12633 | 7.916 | . 8 |
| . 3 | . 02269 | . 9997 | . 02269 | 44.07 | . 7 | . 3 | . 12706 | . 9919 | . 12810 | 7.806 | . 7 |
| . 4 | . 02443 | . 9997 | . 02444 | 40.92 | . 6 | . 4 | . 12880 | . 9917 | . 12988 | 7.700 | . 6 |
| . 5 | . 02618 | . 9997 | . 02619 | 38.19 | . 5 | . 5 | . 13053 | . 9914 | . 13165 | 7.596 | . 5 |
| . 6 | . 02792 | . 9996 | . 02793 | 35.80 | . 4 | . 6 | . 13226 | . 9912 | . 13343 | 7.495 | . 4 |
| . 7 | . 02967 | . 9996 | . 02968 | 33.69 | . 3 | . 7 | . 13399 | -. 9910 | . 13521 | 7.396 | 3 |
| . 8 | . 03141 | . 9995 | . 03143 | 31.82 | . 2 | . 8 | . 13572 | . 9907 | . 13698 | 7.300 | 2 |
| . 9 | .03316 | . 9995 | . 03317 | 30.14 | . 1 | . 9 | . 13744 | . 9905 | . 13876 | 7.207 | 1 |
| 2.0 | . 03490 | 0.9994 | . 03492 | 28.64 | 88.0 | 8.0 | . 13917 | 0.9903 | . 14054 | 7.115 | 82.0 |
| . 1 | . 03664 | . 9993 | . 03667 | 27.27 | . 9 | . 1 | . 14090 | . 9900 | . 14232 | 7.026 | . 2.9 |
| . 2 | . 03839 | . 9993 | . 03842 | 26.03 | . 8 | . 2 | .14263 | . 9898 | . 14410 | 6.940 | . 8 |
| . 3 | . 04013 | . 9992 | . 04016 | 24.90 | . 7 | . 3 | . 14436 | . 9895 | . 14588 | 6.855 | . 7 |
| . 4 | . 04188 | . 9991 | . 04191 | 23.86 | . 6 | . 4 | . 14608 | . 9893 | . 14767 | 6.772 | . 6 |
| . 5 | . 04362 | . 9990 | . 04366 | 22.90 | . 5 | . 5 | . 14781 | . 9890 | . 14945 | 6.691 | 5 |
| . 6 | . 04536 | . 9990 | . 04541 | 22.02 | . 4 | . 6 | . 14954 | . 9888 | . 15124 | 6.612 | 4 |
| . 7 | . 04711 | . 9989 | . 04716 | 21.20 | . 3 | . 7 | . 15126 | . 9885 | . 15302 | 6.535 | . 3 |
| . 8 | . 04885 | . 9988 | . 04891 | 20.45 | . 2 | . 8 | . 15299 | . 9882 | 15481 | 6.460 | . 2 |
| . 9 | . 05059 | . 9987 | . 05066 | 19.74 | . 1 | . 9 | . 15471 | . 9880 | . 15660 | 6.386 | .1 |
| 3.0 | . 05234 | 0.9986 | . 05241 | 19.081 | 87.0 | 9.0 | . 15643 | 0.9877 | . 15838 | 6.314 | 81.0 |
| . 1 | . 05408 | . 9985 | . 05416 | 18.464 | . 9 | .1 | . 15816 | . 9874 | . 16017 | 6.243 | . 9 |
| . 2 | . 05582 | . 9984 | . 05591 | 17.886 | . 8 | . 2 | . 15988 | . 9871 | . 16196 | 6.174 | 8 |
| . 3 | . 05756 | . 9983 | . 05766 | 17.343 | . 7 | . 3 | . 16160 | . 9869 | . 16376 | 6.107 | . 7 |
| . 4 | . 05931 | . 9982 | . 05941 | 16.832 | . 6 | . 4 | . 16333 | . 9866 | . 16555 | 6.041 | . 6 |
| . 5 | . 06105 | . 9981 | . 06116 | 16.350 | . 5 | . 5 | . 16505 | . 9863 | . 16734 | 5.976 | . 5 |
| . 6 | . 06279 | . 9980 | . 06291 | 15.895 | . 4 | . 6 | . 16677 | . 9860 | . 16914 | 5.912 | .4 |
| . 7 | . 06453 | . 9979 | . 06467 | 15.464 | . 3 | . 7 | . 16849 | . 9857 | . 17093 | 5.850 | . 3 |
| . 8 | . 06627 | . 9978 | . 06642 | 15.056 | . 2 | . 8 | .17021 | . 9854 | . 17273 | 5.789 | 2 |
| . 9 | . 06802 | . 9977 | . 06817 | 14.669 | . 1 | . 9 | . 17193 | .9851 | . 17453 | 5.730 | 1 |
| 4.0 | . 06976 | 0.9976 | . 06993 | 14.301 | 86.0 | 10.0 | . 1736 | 0.9848 | 1763 | 5.671 | 80.0 |
| .1 | . 07150 | . 9974 | . 07168 | 13.951 | . 9 | . 1 | . 1754 | . 9845 | . 1781 | 5.614 | - 9 |
| . 2 | . 07324 | . 9973 | . 07344 | 13.617 | . 8 | . 2 | . 1771 | . 9842 | . 1799 | 5.558 | . 8 |
| . 3 | . 07498 | . 9972 | . 07519 | 13.300 | . 7 | . 3 | . 1788 | . 9839 | . 1817 | 5.503 | . 7 |
| . 4 | . 07672 | . 9971 | . 07695 | 12.996 | . 6 | . 4 | . 1805 | . 9836 | . 1835 | 5.449 | . 6 |
| . 5 | . 07846 | . 9969 | . 07870 | 12.706 | . 5 | . 5 | . 1822 | . 9833 | . 1853 | 5.396 | . 5 |
| . 6 | . 08020 | . 9968 | . 08046 | 12.429 | . 4 | . 6 | . 1840 | . 9829 | . 1871 | 5.343 | 4 |
| . 7 | . 08194 | . 9966 | . 08221 | 12.163 | .3 | 7 | . 1857 | . 9826 | . 1890 | 5.292 | 3 |
| . 8 | . 08368 | . 9965 | . 08397 | 11.909 | . 2 | . 8 | . 1874 | .9823 | . 1908 | 5.242 | 2 |
| . 9 | . 08542 | . 9963 | . 08573 | 11.664 | .1 | . 9 | .1891 | . 9820 | . 1926 | 5.193 | .1 |
| 5.0 | . 08716 | 0.9962 | . 08749 | 11.430 | 85.0 | 11.0 | . 1908 | 0.9816 | . 1944 | 5.145 | 79.0 |
| . 1 | . 08889 | . 9960 | . 08925 | 11.205 | . 9 | .1 | . 1925 | .9813 | . 1962 | 5.097 | . 9 |
| . 2 | . 09063 | . 9959 | . 09101 | 10.988 | . 8 | . 2 | . 1942 | . 9810 | . 1980 | 5.050 | . 8 |
| . 3 | . 09237 | . 9957 | . 09277 | 10.780 | . 7 | . 3 | . 1959 | . 9806 | . 1998 | 5.005 | 7 |
| . 4 | . 09411 | . 9956 | . 09453 | 10.579 | . 6 | .4 | . 1977 | . 9803 | . 2016 | 4.959 | . 6 |
| . 5 | . 09585 | . 9954 | . 09629 | 10.385 | . 5 | . 5 | . 1994 | . 9799 | . 2035 | 4.915 | 5 |
| . 6 | . 09758 | . 9952 | . 09805 | 10.199 | . 4 | . 6 | . 2011 | . 9796 | . 2053 | 4.872 | . 4 |
| . 7 | . 09932 | . 9951 | . 09981 | 10.019 | .3 | . 7 | . 2028 | . 9792 | . 2071 | 4.829 | 3 |
| . 8 | . 10106 | . 9949 | . 10158 | 9.845 | . 2 | . 8 | . 2045 | . 9789 | . 2089 | 4.787 | . 2 |
| . 9 | . 10279 | . 9947 | . 10334 | 9.677 | 1 | . 9 | . 2062 | . 9785 | . 2107 | 4.745 | . 1 |
| 6.0 | .10453 | 0.9945 | . 10510 | 9.514 | 84.0 | 12.0 | . 2079 | 0.9781 | .2126 | 4.705 | 78.0 |
| Deg. | Cos | Sin | Cot | Tan | Deg. | Deg. | Cos | Sin | Cot | Ton | Deg. |

NATURAL TRIGONOMETRIC FUNCTIONS FOR DECIMAL FRACTIONS OF A DEGREE-Continued

Deg.	Sin	Cos	Tan	Cot	Deg.	Deg.	Sin	Cos	Tan	Cot	Deg.
12.0	0.2079	0.9781	0.2126	4.705	78.0	18.0	0.3090	0.9511	0.3249	3.078	72.0
. 1	. 2096	. 9778	. 2144	4.665	. 9	. 1	. 3107	. 9505	. 3269	3.060	. 9
. 2	. 2113	. 9774	. 2162	4.625	. 8	2	. 3123	. 9500	3288	3.042	8
. 3	. 2130	. 9770	. 2180	4. 586	. 7	3	. 3140	. 9494	. 3307	3.024	.7
. 4	. 2147	. 9767	. 2199	4.548	. 6	4	. 3156	. 9489	. 3327	3.006	.6
. 5	. 2164	. 9763	. 2217	4.511	. 5	5	. 3173	. 9483	. 3346	2.989	. 5
. 6	. 2181	. 9759	. 2235	4.474	. 4	6	. 3190	. 9478	. 3365	2.971	4
. 7	. 2198	. 9755	.2254	4.437	3	7	. 3206	. 9472	. 3385	2.954	. 3
. 8	. 2215	. 9751	. 2272	4.402	2	8	. 3223	. 9466	3404	2.937	. 2
. 9	. 2233	. 9748	. 2290	4.366	. 1	9	. 3239	. 9461	. 3424	2.921	.1
13.0	0.2250	0.9744	0.2309	4.331	77.0	19.0	0.3256	0.9455	0.3443	2.904	71.0
. 1	. 2267	. 9740	. 2327	4.297	. 9	. 1	. 3272	. 9449	. 3463	2.888	. 9
. 2	. 2284	. 9736	. 2345	4.264	. 8	2	. 3289	. 9444	. 3482	2.872	.8
. 3	. 2300	. 9732	. 2364	4.230	. 7	3	. 3305	. 9438	. 3502	2.856	.7
. 4	. 2317	. 9728	. 2382	4.198	6	4	. 3322	. 9432	. 3522	2.840	6
. 5	2334	. 9724	. 2401	4.165	. 5	5	. 3338	. 9426	. 3541	2.824	. 5
. 6	2351	. 9720	. 2419	4.134	4	6	. 3355	. 9421	. 3561	2.808	4
. 7	2368	. 9715	. 2438	4.102	3	7	. 3371	. 9415	. 3581	2.793	. 3
. 8	2385	. 9711	. 2456	4.071	. 2	. 8	. 3387	. 9409	. 3600	2.778	2
. 9	2402	. 9707	. 2475	4.041	. 1	. 9	. 3404	. 9403	. 3620	2.762	1
14.0	0.2419	0.9703	0.2493	4.011	76.0	20.0	0.3420	0.9397	0.3640	2.747	70.0
. 1	. 2436	. 9699	. 2512	3.981	. 9	. 1	. 3437	. 9391	. 3659	2.733	. 9
. 2	. 2453	. 9694	. 2530	3.952	. 8	2	. 3453	. 9385	. 3679	2.718	. 8
. 3	2470	. 9690	. 2549	3.923	7	3	. 3469	. 9379	. 3699	2.703	. 7
. 4	. 2487	. 9686	. 2568	3.895	. 6	. 4	. 3486	. 9373	. 3719	2.689	. 6
. 5	. 2504	. 9681	. 2586	3.867	. 5	. 5	. 3502	. 9367	. 3739	2.675	. 5
. 6	2521	. 9677	. 2605	3.839	. 4	. 6	. 3518	. 9361	. 3759	2.660	. 4
. 7	2538	. 9673	. 2623	3.812	. 3	. 7	. 3535	. 9354	. 3779	2.646	3
. 8	2554	. 9668	. 2642	3.785	. 2	. 8	. 3551	. 9348	. 3799	2.633	2
. 9	2571	. 9664	. 2661	3.758	. 1	. 9	. 3567	. 9342	. 3819	2.619	. 1
13.0	0.2588	0.9659	0.2679	3.732	75.0	21.0	0.3584	0.9336	0.3839	2.605	69.0
.1	. 2605	. 9655	. 2698	3.706	. 9	. 1	. 3600	. 9330	. 3859	2.592	. 9
. 2	. 2622	. 9650	. 2717	3.681	. 8	. 2	. 3616	. 9323	. 3879	2.578	. 8
. 3	. 2639	. 9646	. 2736	3.655	. 7	3	. 3633	. 9317	. 3899	2.565	. 7
. 4	2656	. 9641	. 2754	3.630	. 6	4	. 3649	. 9311	. 3919	2. 552	6
. 5	2672	. 9636	. 2773	3.606	. 5	5	. 3665	. 9304	. 3939	2.539	5
. 6	. 2689	. 9632	. 2792	3.582	. 4	. 6	. 3681	. 9298	. 3959	2.526	4
. 7	2706	. 9627	.2811	3.558	3	. 7	. 3697	. 9291	. 3979	2.513	3
. 8	2723	. 9622	. 2830	3.534	. 2	. 8	. 3714	. 9285	. 4000	2.500	2
. 9	. 2740	. 9617	. 2849	3.511	. 1	. 9	. 3730	. 9278	. 4020	2.488	. 1
16.0	0.2756	0.9613	0.2867	3.487	74.0	22.0	0.3746	0.9272	0.4040	2.475	68.0
. 1	. 2773	. 9608	. 2886	3.465	9	. 1	. 3762	. 9265	. 4061	2.463	. 9
. 2	. 2790	. 9603	. 2905	3.442	8	2	. 3778	. 9259	. 4081	2.450	. 8
. 3	. 2807	. 9598	. 2924	3.420	. 7	. 3	. 3795	. 9252	. 4101	2.438	. 7
. 4	. 2823	. 9593	. 2943	3.398	. 6	. 4	. 3811	. 9245	. 4122	2.426	. 6
. 5	. 2840	. 9588	. 2962	3.376	. 5	. 5	. 3827	. 9239	. 4142	2.414	5
. 6	. 2857	. 9583	. 2981	3.354	4	. 6	. 3843	. 9232	. 4163	2.402	.4
. 7	. 2874	. 9578	.3000	3.333	.3	. 7	. 3859	. 9225	.4183	2.391	. 3
. 8	. 2890	. 9573	. 3019	3.312	2	8	. 3875	. 9219	. 4204	2.379	. 2
. 9	2907	. 9568	. 3038	3.291	1	9	. 3891	. 9212	. 4224	2.367	.1
17.0	0.2924	0.9563	0.3057	3.271	73.0	23.0	0.3907	0.9205	0.4245	2.356	67.0
. 1	. 2940	. 9558	. 3076	3.251	. 9	1	. 3923	. 9198	. 4265	2.344	. 9
. 2	. 2957	. 9553	. 3096	3.230	8	2	. 3939	. 9191	. 4286	2.333	. 8
. 3	. 2974	. 9548	. 3115	3.211	. 7	3	. 3955	. 9184	. 4307	2.322	. 7
. 4	. 2990	. 9542	. 3134	3.191	. 6	4	. 3971	. 9178	. 4327	2.311	. 6
. 5	. 3007	. 9537	. 3153	3.172	. 5	5	. 3987	. 9171	. 4348	2.300	.5
. 6	. 3024	. 9532	. 3172	3.152	. 4	6	. 4003	. 9164	. 4369	2.289	. 4
. 7	. 3040	. 9527	. 3191	3.133	. 3	. 7	. 4019	. 9157	. 4390	2.278	. 3
. 8	. 3057	. .9521	. 3211	3.115	. 2	8	. 4035	. 9150	. 4411	2.267	. 2
. 9	. 3074	. 9516	. 3230	3.096	. 1	. 9	. 4051	. 9143	. 4431	2.257	. 1
18.0	0.3090	0.9511	0.3249	3.078	72.0	24.0	0.4067	0.9135	0.4452	2.246	66.0
Deg.	Cos	Sin	Cot	Tan	Deg.	Deg.	Cos	Sin	Cot	Tan	Deg.

NATURAL TRIGONOMETRIC FUNCTIONS FOR DECIMAL FRACTIONS OF A DEGREE-Continued

Deg.	Sin	Cos	Jon	Cot	Deg.	Deg.	Sin	Cos	Tan	Cot	Deg.
24.0	0.4067	10.9135	0.4452	2.246	66.0	30.0	0.5000	0.8660	0.5774	1.7321	60.0
. 1	. 4083	. 9128	. 4473	2.236		1	. 5015	. 8652	. 5797	1.7251	9
. 2	. 4099	. 9121	. 4494	2.225	8	2	. 5030	. 8643	. 5820	1.7182	8
. 3	. 4115	. 9114	. 4515	2.215	. 7	. 3	. 5045	. 8634	. 5844	1.7113	7
. 4	.4131	. 9107	. 4536	2.204	. 6	4	. 5060	. 8625	. 5867	1.7045	6
. 5	. 4147	. 9100	. 45578	2.194	5	5	. 5075	. 8616	. 5899	1.6977	5
. 6	$.4163$. 9092	. 4578	2.184	3	7	.5090 .5105	(8807	.5914 .5938	1.6909	4
. 8	. 4195	. 9078	. 4621	2.164	2	. 8	. 5120	. 8590	. 59381	1.6842 1.6775	3
.9	. 4210	. 9070	. 4642	2.154	. 1	.9	. 5135	5.8581	. 5985	1.6709	. 1
25.0	0.4226	0.9063	0.4663	2.145	65.0	31.0	0.5150	0.8572	0.6009	1.6643	59.0
. 1	. 4242	. 9056	. 4684	2.135		1	. 5165	. 8563	. 6032	1.6577	. 9
.2	. 4258	. 9048	. 4706	2.125	8	.2	. 5180	. 8554	. 6056	1. 6512	8
. 3	. 4274	. 9041	. 4727	2.116	7	. 3	. 5195	5.8545	6080	1.6447	. 7
. 4	. 4289	. 9033	. 4748	2.106	. 6	. 4	. 5210	. 85336	. 6104	1.6383	6
. 5	. 43305	. 9026	. 4770	2.097	5	. 5	. 5225	. 85526	. 6128	1.6319	
. 7	. 4321	. 9018	. 4791	2.087	4	6	. 5240	. 8517	. 6152	1.6255	. 4
.8	. 4352	. 9003	. 4834	2.078 2.069	. 2	.8	. 5255	. 8508	. 6176	1.6191	. 3
. 9	. 4368	. 8996	. 4856	2.059	1	.9	. 5288	. 84890	. 62200	1.6128	$\xrightarrow{.} 1$
26.0	0.4384	0.8988	0.4877	2.050	64.0	32.0	0.5299	0.8480	0.6249	1.6003	
1	. 4399	. 8980	. 4899	2.041	. 9	. 1	. 5314	. 8471	. 6273	1.5941	
. 2	. 4415	. 8973	. 4921	2.032	8	.2	. 5329	. 8462	. 6297	1.5880	. 8
. 3	. 4431	. 8965	. 4942	2.023	. 7	. 3	. 5344	. 8453	. 6322	1.5818	7
. 4	. 4446	. 8957	. 4964	2.014	. 6	.4	. 5358	. 8443	. 6346	1.5757	6
. 6	. 4462	8949 8942	. 4986	2.006	. 5	. 5	. 5373	. 8434	. 6371	1.5697	5
. 7	. 4493	. 8934	. 5029	1.988	.4	. 7	.5388 .5402 .	. 8425	6395 6420	1.5637 1.5577 1.5517	3
. 8	. 4509	. 8926	. 5051	1.980	. 2	. 7	. 5417	. 8406	. 6445	1.5517	3
. 9	. 4524	. 8918	. 5073	1.971	. 1	9	. 5432	. 8396	. 6469	1.5458	1
27.0	0.4540	0.8910	0.5095	1.963	63.0	33.0	0.5446	0.8387	0.6494	1.5399	7.0
. 1	. 4555	. 8902	. 5117	1.954	9		. 5461	. 8377	. 6519	1.5340	. 9
.2	. 4571	. 8894	. 5139	1.946	8		. 5476	. 8368	. 6544	1.5282	8
. 3	4586	. 8886	. 5161	1.937	. 7	3	. 5490	. 8358	. 6569	1.5224	7
. 4	. 4602	. 8878	. 5184	1.929	. 6	4	. 5505	. 8348	6594	1.5166	6
5	. 4617	. 8870	. 5206	1.921	. 5	5	. 5519	. 8339	. 6619	1.5108	5
.6	. 4633	. 8882	. 5228	1.913	4		.5534	. 8329	. 8644	1.5051	5
. 8	. 4648	. 88844	. 5250	1.905 1.897	. 3	7	. 5548	. 8320	. 6669	1.4994	3
. 9	. 4679	. 88388	. 5272	1.897	2	8	. 5563	8310 8300	. 66724	1.4938	2
28.0	0. 4695	0.8829	0.5317	1.881	62.0	34.0	0.5592	0.8290	0.67		
	. 4710	. 8821	- 5340	1.873	. 9	. 1	. 5606	. 8281	0.6771	1.4770	
. 2	4726	. 8813	. 5362	1.865	8	2	. 5621	8271	. 6796	1.4715	
. 3	. 4741	. 8805	. 5384	1.857	. 7	3	. 5635	. 8261	. 6822	1.4659	7
	. 4756	. 8796	. 5407	1.849	. 6	5	. 5650	. 8251	. 6847	1.4605	6
. 6	. 4787	. 8780	. 5452	1.832	. 5	5	. 5664	. 8241	. 6873	1.4550	S
. 7	. 4802	. 8771	. 5475	1.827	. 3	7	. 5678	. 8221	6899 6924	1.4496	4
. 8	. 4818	. 8763	. 5498	1.819	2	. 8	. 5707	. 8211	6950	1. 4388	3
. 9	. 4833	. 8755	. 5520	1.811	. 1	. 9	. 5721	. 8202	. 6976	1.4335	. 1
29.0	0.4848	0.8746	0.5543	1.804	61.0	35.0	0.5736	0.8192	0.7002	. 4281	55.0
. 1	. 4863	. 8738	. 5566	1.797	. 9	. 1	. 5750	. 8181	. 7028	1.4229	. 9
. 2	. 4879	. 8729	. 5589	1.789	8	2	. 5764	. 8171	. 7054	1.4176	8
. 3	. 4894	. 8721	. 5612	1.782	. 7	3	. 5779	. 8161	. 7080	1.4124	7
.4	. 4909	.8712	. 5635	1.775 1.767	. 6	- 5	. 5793	. 8151	. 7107	1.4071	6
. 6	. 4939	. 8695	. 5681	1.760	. 4	. 6	. 58827	. 8141	. 7133	1.4019	5
. 7	. 4955	. 8686	. 5704	1.753	. 3	. 7	. 5835	.8121	. 7186	1.3916	4
8	. 4970	. 8678	. 5727	1.746	2	. 8	. 5850	8111	. 7212	1.3865	
9	. 4985	. 8669	. 5750	1.739	. 1	9	. 5864	. 8100	. 7239	1.3814	. 1
30.0	0.5000	0.8660	0.5774	1.732	60.0	36.0	0.5878	0.8090	0.7265	1.3764	54.0
Deg.	Cos	Sin	Cot	Tan	Deg.	Deg.	Cos	Sin.	Cot	Ton	Deg.

NATURAL TRIGONOMETRIC FUNCTIONS FOR DECIMAL FRACTIONS OF A DEGREE-Confinued

Deg.	Sin	Cos	Ton	Cot	Deg.	Deg.	Sin	Cos	Tan	Cot	Deg.
36.0	0.5878	0.8090	0.7265	1.3764	54.0	40.5	0.6494	0.7604	0.8541	1.1708	49.5
. 1	. 58892	. 8080	. 7292	1.3713	. 9	. 6	. 6508	. 7593	. 8551	1.1667	. 4
. 2	. 5906	. 8070	. 7319	1.3663	8	. 7	. 6521	. 7581	. 8601	1.1626	3
. 3	. 5920	8059	. 7346	1.3613	. 7	. 8	. 6534	. 7570	. 8632	1.1585	. 2
. 4	. 5934	. 8049	. 7373	1.3564	.6	. 9	. 6547	. 7559	. 8662	1.1544	1
. 5	. 5948	. 8039	. 7400	1.3514	. 5	41.0	0.6561	0.7547	0.8693	1.1504	49.0
. 6	. 5962	. 8028	. 7427	1.3465	4	. 1	. 6574	. 7536	. 8724	1.1463	9
. 7	. 5976	. 8018	. 7454	1.3416	.3	. 2	. 6587	. 7524	. 8754	1.1423	. 8
. 8	. 5990	8007	. 7481	1.3367	.2	. 3	. 6600	. 7513	. 8785	1.1383	. 7
. 9	. 6004	. 7997	. 7508	1.3319	. 1	. 4	. 6613	. 7501	. 8816	1.1343	. 6
37.0	0.6018	0.7986	0.7536	1.3270	53.0	. 5	. 6626	7490	8847	1.1303	. 5
. 1	. 6032	. 7976	. 7563	1.3222	. 9	. 6	. 6639	7478	8878	1.1263	
. 2	. 6046	. 7965	. 7590	1.3175	. 8	. 7	. 6652	7466	8910	1.1224	3
. 3	. 6060	. 7955	. 7618	1.3127	. 7	. 8	. 6665	. 7455	8941	1. 1184	$\stackrel{2}{2}$
4	. 6074	. 7944	. 7646	1.3079	.6	. 9	. 6678	. 7443	8972	1.1145	1
5	. 6088	. 7934	. 7873	1.3032	. 5	42.0	0.6691	0.7431	0.9004	1. 1106	48.0
6	. 6101	. 7923	. 7701	1.2985	.4	. 1	. 6704	. 7420	. 9036	1.1087	9
. 7	. 6115	. 7912	. 7729	1.2938	.3	. 2	. 6717	. 7408	9067	1.1028	8
	. 6129	. 7902	. 7757	1.2892	. 2	. 3	. 6730	. 7396	9099	1.0990	7
. 9	. 6143	. 7891	. 7785	1.2846	1	. 4	. 6743	. 7385	9131	1.0951	6
38.0	0.6157	0.7880	0.7813	1.2799	52.0	. 5	.6756 .6769	.7373 .7361	9163 9195		5
. 1	. 6170	. 78889	. 7841	1.2753	. 9	. 7	. 6769	. 7361	. 9195	1.0875 1.0837	4
.3	. 6198	. 7848	. 7898	1.2662	7	. 8	. 6794	. 7337	. 9260	1.0799	. 2
.4	. 6211	. 7837	. 7926	1.2617	6	. 9	. 6807	. 7325	. 9293	1.0761	1
. 5	. 6225	. 7826	. 7954	1.2572	. 5	43.0	0.6820	0.7314	0.9325	1.0724	47.0
. 6	. 6239	. 7815	. 7983	1.2527	4	. 1	6833	. 7302	. 9358	1.0686	. 9
. 7	. 6252	. 7804	. 8012	1.2482	3	. 2	. 6845	. 7290	. 9391	1.0649	. 8
. 8	. 6266	7793	. 8040	1. 2437	. 2	. 3	. 6858	. 7278	. 9424	1.0612	. 7
. 9	. 6280	. 7782	. 8069	1.2393	. 1	4	. 6871	. 7266	. 9457	1.0575	. 6
39.0	0.6293	0.7771	0.8098	1.2349	51.0	. 5	. 6884	. 7254	9490	1.0538	. 5
. 1	. 6307	. 7770	. 8127	1.2305	. 9	. 6	6896	7242	9523	1.0501	. 4
.2	. 6320	. 7749	. 8156	1.2261	8	. 7	. 6909	. 7230	9556	1.0464	. 3
. 3	. 6334	. 7738	. 8185	1.2218	. 7	. 8	. 6921	. 7218	9590	1.0428	2
. 4	. 6347	. 7727	. 8214	1.2174	. 6	. 9	. 6934	. 7206	. 9623	1.0392	I
. 5	. 6361	. 7716	. 8243	1.2131	.5	44.0	0.6947	0.7193	0.9657	1.0355	46.0
. 6	. 6374	. 7705	. 8273	1. 2088	. 4	. 1	. 6959	. 7181	. 9691	1.0319	. 9
. 7	. 6388	. 7694	. 8302	1.2045	.3			. 7169	. 9725	1.0283	. 7
.8	.6401	.7683 .7672	8332 8361	1.2002	.2	.3	. 6989	.7157 .7145	.9759 .9793	1.0247	. 7
. 9	. 6414	. 7672	8361	1.1980	. 1	. 4	. 6997	. 7145	. 9793	1.0212	6
40.0	0.6428	0.7660	0.8391	1.1918	50.0	. 5	. 7009	. 7133	. 9827	1.0176	5
. 1	. 6441	. 7649	8421	1.1875	9	.6	. 7022	. 7120	. 9881	1.0141	4
. 2	. 6455	. 7638	. 8451	1.1833	8	. 7	. 7034	. 7108	. 9896	1.0105	3
. 3	. 6468	. 7627	. 8481	1.1792	. 7	. 8	. 7046	. 7096	. 9930	1.0070	2
. 4	. 6481	. 7615	851	1.1750	6	. 9	. 7059	. 7083	9965	1.0035	1
40.5	0.6494	0.7604	0.8541	1.1708	49.5	45.0	0.7071	0.7071	1.0000	1.0000	45.0
Deg.	Cos	Sin	Cot	Tan	Deg.	Deg.	Cos	Sin	Cot	Ton	Deg.

LOGARITHMS OF TRIGONOMETRIC FUNCTIONS

 FOR DECIMAL FRACTIONS OF A DEGREE| Deg. | L. Sin | L. Cos | L. Ton | L. Cot | Deg. | Deg. | L. Sin | L. Cos | L. Tan | L. Cot | Deg. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0.0 | - \quad | 0.0000 | - | | 90.0 | 6.0 | 9.0192 | 9.9976 | 9.0216 | 0.9784 | 84.0 |
| . 1 | 7.2419 | 0.0000 | 7.2419 | 2.7581 | . 9 | . 1 | 9.0264 | 9.9975 | 9.0289 | 0.9711 | |
| 2 | 7.5429 | 0.0000 | 7.5429 | 2.4571 | . 8 | .2 | 9.0334 | 9.9975 | 9.0360 | 0.9640 | 8 |
| 3 | 7.7190 | 0.0000 | 7.7190 | 2. 2810 | . 7 | 3 | 9.0403 | 9.9974 | 9.0430 | 0.9570 | . 7 |
| 4 | 7.8439 | 0.0000 | 7.8439 | 2. 1561 | . 6 | 4 | 9.0472 | 9. 9973 | 9.0499 | 0.9501 | 6 |
| 5 | 7.9408 | 0.0000 | 7.9409 | 2.0591 | . 5 | 5 | 9.0539 | 9.9972 | 9.0567 | 0.9433 | 5 |
| . 7 | 8.0200 | O. 0000 | 8.0200 | 1.9800 | . 4 | ${ }_{7} 6$ | 9.0605 | 9.9971 | 9.0633 | 0.9367 | 4 |
| . 8 | 8.0870 8.1450 | 0.0000 | 8.0870 | 1.9130 | . 3 | 8 | 9.0670 | 9.9970 9.9969 | 9.0699 9.0764 | 0.9301 0.9236 | 3 |
| 9 | 8.1961 | 9.9999 | 8.1962 | 1.8038 | . 1 | .8 | 9.0797 | 9.9968 | 9.0828 | - 0.9238 | $\stackrel{2}{1}$ |
| 1.0 | 8.2419 | 9. | 8.2419 | 1.7581 | 89.0 | 7.0 | 9.0859 | 9.9968 | 9.0891 | 0.9109 | 83.0 |
| 1 | 8.2832 | 9.9999 | 8.2833 | 1.7167 | . 9 | . 1 | 9.0920 | 9.9967 | 9.0954 | 0.9046 | -3. 9 |
| 2 | 8.3210 | 9.999 | 8.3211 | 1.6789 | . 8 | 2 | 9.0981 | 0.9966 | 9.1015 | 0.8985 | . 8 |
| . 3 | 8. 3558 | 9.9999 | 8.3559 | 1.6441 | . 7 | 3 | 9.1040 | 9.9965 | 9.1076 | 0.8924 | 7 |
| . 5 | 8.3880 | 9.9999 | 8.3881 8.4181 | $1 \begin{aligned} & \text {. } 6119 \\ & 1.5819\end{aligned}$ | . 6 | 4 | 9.1099 | 9.9964 | 9.1135 | - $\begin{aligned} & 0.8865 \\ & 0.8806\end{aligned}$ | 6 |
| . 6 | 8.4459 | 9.9998 | 8.4461 | 1.5539 | . 4 | . 6 | 9.1157 | 9.9963 | 9.1194 | 0.8806 | 5 |
| . 7 | 8.4723 | 9.9998 | 8.4725 | 1.5275 | . 3 | .7 | 9.1271 | 9.9961 | 9.1310 | O.8748 | 4 |
| . 8 | 8.4971 | 9.9998 | 8.4973 | 1.5027 | . 2 | . 8 | 9.1326 | 9.9860 | 9.1367 | 0.8633 | |
| . 9 | 8.5206 | 9.9998 | 8.5208 | 1.4792 | . 1 | .9 | 9.1381 | 9.9959 | 9.1423 | 0.8577 | . 2 |
| 2.0 | 8.5428 | 9.9 | 8.5431 | 1.4569 | 88.0 | 8.0 | 9.1436 | 9.9958 | 9.1478 | 0.8522 | |
| 1 | 8.5640 | 9.9997 | 8.5643 | 1.4357 | . 9 | . 1 | 9.1489 | 9.9956 | 9.1533 | 0.8467 | 9 |
| 2 | 8.5842 | 9.9997 | 8.5845 | 1.4155 | 8 | 2 | 9.1542 | 9.9955 | 9.1587 | 0.8413 | 8 |
| . 3 | 8.6035 | 9.9996 | 8.6038 | 1.3962 | 7 | . 3 | 9.1594 | 9.9954 | 9.1640 | 0.8360 | 7 |
| . 4 | 8.6220 | 9.9996 | 8.6223 | 1.3777 | 6 | 4 | 9.1646 | 9.9953 | 9.1693 | 0.8307 | . 6 |
| . 5 | 8.6397 | 9.9996 | 8.6401 | 1.3599 | 5 | 5 | 9.1697 | 9.9952 | 9.1745 | 0.8255 | . 5 |
| .6 | 8.6567 8.6731 | 9.9996 | 8.6571 | 1.3429 1.3264 | 4 | 7 | 9.1747 | 9.9951 | 9.1797 | - $\begin{aligned} & 0.8203 \\ & 0.8152\end{aligned}$ | . 4 |
| . 8 | 8.6889 | 9.9995 | 8.6894 | 1.3106 | 2 | 8 | 9.1847 | 9.9949 | 9.1848 | 0.8152 0.8102 | 3 2 |
| 9 | 8.7041 | 9.9994 | 8.7046 | 1.2954 | 1 | . 9 | 9.1895 | 9.9947 | 9.1948 | 0.8052 | 1 |
| 3.0 | 8.7188 | 9. | 8.7194 | 1. 2806 | 87.0 | 9.0 | 9.1943 | 9.9946 | 9.1997 | 0.8003 | 81.0 |
| 1 | 8.7330 | 9.9994 | 8.7337 | 1.2663 | . 9 | . 1 | 9.1991 | 9.9945 | 9.2046 | 0.7954 | |
| 2 | 8.7468 | 9.9993 | 8.7475 | 1.2525 | 8 | . 2 | - 2038 | 9.994 | 9.2094 | 0.7906 | . 8 |
| 3 | 8.7602 | 9.9993 | 8.7609 | 1.2391 | . 7 | 3 | -. 2085 | 9.9943 | 9.2142 | 0.7858 | 7 |
| 4 | 8.7731 | 9.9992 | 8.7739 | 1.2261 | . 6 | 4 | - 2131 | 9.9941 | 9.2189 | 0.7811. | |
| . 5 | 8.7857 | 9.9992 | 8.7865 | 1.2135 | . 5 | 5 | - 2176 | 9.9940 | 9.2236 | 0.7764 | 5 |
| . 7 | 8.7979 | - 9.9991 | 8.7988 | 1.2012 | 4 | . 6 | 9.2221 | 9.9939 | 9. 2282 | 0.7718 | |
| . 8 | 8.8098 | 9.9991 | 8.8107 | 1.1893 | 3 | . 7 | 9.2266 | 9.9937 | 9. 2328 | 0.7672 | 3 |
| 8 | 8.8213 | 9.9 | . 8223 | 1777 | 2 | . 8 | 9.2310 | 9.9936 | 9.2374 | 0.7626 | $\stackrel{2}{2}$ |
| 4.0 | | | | 1.1554 | 86.0 | 10.0 | 9.2397 | | 9.2463 | 0.7537 | 0.0 |
| . 1 | 8.8543 | 9.9989 | 8.8554 | 1.1446 | . 9 | | 9.2439 | 9.9932 | 9.2507 | 0.7493 | . 9 |
| 2 | 8.8647 | 9.9988 | 8.8659 | 1.1341 | . 8 | 2 | 9.2482 | 9.9931 | 9.2551 | 0.7449 | 8 |
| 3 | 8.8749 | - . 9988 | 8.8762 | 1. 1238 | .7 | 3 | 9.2524 | 9.9929 | 9.2594 | 0.7406 | 7 |
| 4 | 8.8849 | -. 9987 | 8.8862 | 1.1138 | . 6 | 4 | 9.2565 | 9.9928 | 9.2637 | 0.7363 | |
| . 6 | 8.8946 | 9.9987 | 8.8960 | 1. 1040 | .5 | . 5 | 9.2606 | 9.9927 | - 2680 | 0.7320 | 5 |
| . 7 | 8.9042 | 9.9986 | 8.9056 8.9150 | 1.0944 | .4 | 8 | 9.2647 9.2687 | 9.9925 | - 27272 | 0.7278 0.7236 0.7185 | 4 |
| . 8 | 8.9226 | 9.9985 | 8.9241 | 1.0759 | .2 | 8 | 9.2727 | 9.9922 | 9.2805 | 0.7195 | 2 |
| . 9 | 8.9315 | - 9.984 | 8.9331 | 1.0669 | . 1 | . 9 | 9.2767 | 9.9921 | -. 2846 | 0.7154 | . 1 |
| s.a | $\left\|\begin{array}{l} 8.9403 \\ 8.9489 \end{array}\right\|$ | 9.9983 | 8.9420 8.9506 8.959 | 1.0580
 1.0494
 | 85.0 | 11.0 | 9.2806 9.2845 | | 9.2887 | 0.7113 | 79.0 |
| . 2 | 8.9573 | - 9982 | 8.9591 | 1.0409 | . 8 | 2 | 9.2833 | 9.9918 | \%. 2967 | 0.7033 | 8 |
| . 3 | 8.9655 | 9.9981 | 8.9674 | . 0326 | . 7 | 3 | 9.2921 | 9.9915 | 9.3006 | 0.6994 | 7 |
| 4 | 8.9736 | 9.9981 | 8.9756 | . 0244 | 6 | 4 | 9.2959 | 9.9913 | - 3046 | 0.6954 | |
| 5 | 8.9816 | 9.9980 | 8.9836 | . 0164 | 5 | 5 | 9.2997 | 9.9912 | 9. 3085 | 0.6915 | 5 |
| . 6 | 8.9894 | 9.9979 | 8.9915 | . 0085 | 4 | 6 | 9.3034 | 9.9910 | 9.3123 | 0.6877 | |
| . 7 | 8.9970 | 9.9978 | 8.9992 | . 0008 | | 7 | 9.3070 | 9.9909 | 9.3162 | 0.6838 | 3 |
| . 8 | -. 0046 | 9.9978 | -. 0068 | 0.9932 | 2 | . 8 | 9.3107 | 9.9907 | 9.3200 | 0.6800 | 2 |
| . 9 | - 0.0120 | 9.9977 | 9.0143 | 0.9857 | 1 | | 9.3143 | 9.9906 | 9.3237 | 0.6763 | 1 |
| 6.0 | 9.0192 | 9.9976 | 9.0216 | 0.9784 | 84.0 | 12.0 | 9.3179 | 9.9904 | 9.3275 | 0.6725 | 78.0 |
| Deg. | L. Cos | L. Sin | L. Cot | L. Tan | Deg. | Deg. | L. Cos | L. Sin | L. Cot | L. Ton | Deg. |

LOGARITHMS OF TRIGONOMETRIC FUNCTIONS FOR DECIMAL
FRACTIONS OF A DEGREE—Continued

Deg.	L. Sin	L. Cos	L. Tan	L. Cot	Deg.	Deg.	L. Sin	L. Cos	L. Ton	L. Cot	Deg.
12.0	9.3179	9.9904	9.3275	0.6725	78.0	18.0	9.4900	9.9782	9.5118	0.4882	72.0
. 1	9.32149	9.9902	9.33120	0.6688	9	. 1	9.4923	9.9780	9.5143	0.4857	9
. 2	9.3250	9.9901	9.33490	0.6651	8	. 2	9.4946	9.9777	9. 51690	0.4831	8
. 3	9.3284	9.9899	9.3385	0.6615	7	. 3	9.4969	9.9775	9. 5195	0.4805	7
. 4	9.3319	9.9897	9.3422	0.6578	6	4	9.4992	9.9772	9.5220	0.4780	6
. 5	9.33539	9.9896	9.3458	0.6542	5	5	9. 5015	9.9770	- 9.5245	0. 47535	4
.6		9.9894	$\begin{array}{r} 9.34930 \\ 9.35290 \end{array}$	$\left\|\begin{array}{l} 0.6507 \\ 0.6471 \end{array}\right\|$	4	. 7	9.5037 9. 5060	$\left\|\begin{array}{l} 9.9767 \\ 9.9764 \end{array}\right\|$	9.5270	- 0.47305	4
. 8	$\left.\begin{aligned} & 9.3421 \\ & 9.3455 \end{aligned} \right\rvert\,$	9.9892	$\begin{aligned} & 9.3529 \\ & 9.35640 \end{aligned}$	$\left\|\begin{array}{l} 0.6471 \\ 0.6436 \end{array}\right\|$. 2	. 8	9.5082	9.9762	9.5320	0. 4680	2
. 9	9.3488	9.9889	9.3599	0.6401	,	.9	9.51049	9.9759	9.5345	0.4655	1
13.0	9.3521	9.9887	9.3634	0.6366	77.0	19.0	9.51269	9.9757	9.5370	0.4630	71.0
	9.35549	9.9885	9.3668	0.6332	9	1	9.51489	9.9754	9.5394	0.4606	
. 2	9.3586	9.9884	9.3702 0.	0.6298	8	2	$9.5170{ }^{\circ}$	9.9751	9.5419	0.4581	8
. 3	9.3618	9.9882	9.3736	0.6264	7	3	9.5192	9.9749	9.5443	0. 4557	7
. 4	9.3650	. 9880	9.3770	0.6230	. 6	4	9.5213	9.9746	9.5467	0.4533	6
. 5	9.3682	9.9878	9.3804	0.6196	5	5	9.52359	9.9743	9.5491	0.4509	5
. 6	9.3713	9.9876	9.3837	0.6163	4	6	9.5256	9.9741	9.5516	0.4484	4
. 7	9.3745	9.9875	9.3870	0.6130	3	7	9.5278	9.9738	9.5539	0.4461	3
. 8	9.37759	9.9873	- 3903	0.6097	2	. 8	9.5299	9.9735	9.5563	0.4437	2
. 9	9.3806	9.9871	9.3935	0.6065	1	9	9.5320	9.9733	9.5587	0.4413	
. 0	9.38379	9.9869	9.3968	0.6032	76.0	20.0	9.5341	9.9730	9.5611	0.4389	0.0
. 1	9.3867	9.9867	9.4000	0.6000	9	. 1	9.5361	9.9727	9.5634	0.4366	9
.2	9.3897	9.9865	9.4032	0.5968	8	2	9.5382	9.9724	9.5658	0.4342	8
. 3	9.3927	9.9863	9.4064	0.5936	7	3	9.5402	9.9722	9. 5681	0.4319	
. 4	-. 3957	9.9861	9.4095	0.5905	6	4	9.5423	9.9719	9.5704	0.4296 0.4273	5
. 5	9.3986	9.9859	9.4127	0.5873	4	5	9.5443 9.5463	9.9716	9. 5727	$\left\|\begin{array}{c} 0.4273 \\ 0.4250 \end{array}\right\|$	5
. 7	9.4015	9.9857	9.4158 9.41890	0.5842	4	7	9.5463	9.9713 9.9710	9.5773	0.4250	3
. 8	9.4073	9.9853	9.4220	0.5780	2	8	9.5504	9.9707	9.5796	0.4204	2
. 9	9.4102	9.9851	9.4250	0.5750	1	9	9.5523	9.9704	9.5819	0.4181	
3.0	9.413	9.9849	9.4281	0.5719	75.0	21.0	9.5543	9.9702	9.5842	0.4158	9.0
	9.4158	9.9847	9.4311	0.5689	9		9.5563	9.9699	9.5864	0.4136	9
.2	9.4186	9.9845	9.4341	0.5659	8		9.5583	$\left.\begin{gathered} 9.9696 \\ 9.9006 \end{gathered} \right\rvert\,$	9. 5887	0.4113	8
. 3	9.4214	9.9843	9.4371	0.5629	. 7	3	9.56021	9.9693	9. 5909	0.4091	
. 4	9.4242	9.9841	9.4400	0. 5600	. 6	5	9.5621	9.9690 9.9687	9. 5932	0.4068 0.4046	5
. 5	9.4269	9.9839 9.9837	9.4430	$\left\lvert\, \begin{aligned} & 0.5570 \\ & 0.5541 \end{aligned}\right.$. 5	. 5	9.5641 9.5680	9.9687	9. 5954	0.4046	. 4
. 6	9.4296 9.4323	9.9837	9.4459	$\left\lvert\, \begin{aligned} & 0.5541 \\ & 0.5512 \end{aligned}\right.$.3	. 7	9.5680	9.9684	9.59768	0.4024 0.4002	3
. 8	9.4350	9.9833	9.4517	0.5483	. 2	. 8	9.5698	9.9678	9.6020	0.3980	2
. 9	9.4377	9.9831	9.4546	0.5454	. 1	. 9	9.5717	9.9675	9.6042	0.3958	1
16.0	9.44	9.9828	9.4575	0.5425	74.0	22.0	9.5736	9.9672	9.6064	0.3936	0
. 1	9.4430	9.9826	9.4603	0.5397			9. 5754	9.9669	9.6086	0.3914	
.2	9.4456	9.9824	9.4632	0. 5368	8	.2	9.5773	9.9666	9.6108	0.3892	
. 3	9.4482	9.9822	9.4660	0.5340	7	. 3	9.5792	9.9662	9.6129	0.3871	
.4	9.4508	9.9820	9.4688	0. 5312	6	. 4		9.9659 .9656	9.6151 9.6172	0.3849	5
. 5	9.4533	9.9817	9.4716	0.5284	5	. 6	9.5828 9.5847	9.9656	9.6172 9.6194	0.3828 0.3806	. 4
.6	9.4559 9.4584	9.9815	9.4744	0.5258	4	. 7	9.5847	9.9653	9.6194 9.6215	- 0.3785	
. 8	9.4609	9.9811	9.4799	0.5201	. 2	. 8	9.5883	9.9647	9.6236	0.3764	. 2
. 9	9.1634	9.9808	9.4826	0.5174	1	. 9	9.5901	- 9643	9. 6257	0.3743	. 1
17.0	9.465	9.9806	9.4853	0.5147	73.0	23.0	9.5919	9.9640	9.6279	0.3721	67.0
17.1	9.4684	9.9804	9.4880	0.5120	\%	1	9.5937	9.9637	9.6300	0.3700	. 9
.2	9.4709	9.9801	9.4907	0.5093	8	2	9.5954	9.9634	9.6321	0.3679	
.3	9.4733	9.9799	9.4934	0.5066	7	3	9.5972	9.9631	9.634	0.3659	. 7
. 4	9.4757	9.9797	9.4961	0.5039	5	4	9.5990	9.9627	9.6362	$\left\lvert\, \begin{aligned} & 0.3638 \\ & 2 \times 3 \end{aligned}\right.$	
. 5	9.4781	9.9794	9.4987	0.5013	5	5	9.6007		9.6383	$\left\lvert\, \begin{aligned} & 0.3617 \\ & 0.3596 \end{aligned}\right.$	5
6	9.4805	9. 9792	9. 5014	0.4986	4		9.6024 9.6042	$2{ }^{9.9621} 9$	9.6404	0.3596	${ }_{3}^{4}$
. 7	9.4829	9 9.9789	9. 5040	0.4960 0.4934	. 3	7	9.6042	9.9617 9.9614 .961	9.6424	O.3576	. 2
. 9	9.4876	9.9785	9.5092	0.4908	. 2	9	9.6076	9.961	9.646	0.3535	. 1
18.0	9.4900	9.9782	19.5118	0.4882	72.0	24.0	9.6093	9.9607	9.6486	0.3514	66.0
Deg.	L. Cos	L. Sin	L. Cor	Ton	Deg.	Deg.	Cos	L. Sin	L. Cot	L. Ton	Deg.

LOGARITHMS OF TRIGONOMETRIC FUNCTIONS FOR DECIMAL

 FRACTIONS OF A DEGREE-Continued| Deg. | L. Sin | L. Cos | L. Tan | L. Cot | Deg. | Deg. | L. Sin | L. Cos | L. Ton | L. Cot | Deg. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 24.0 | 9.6093 | 9.9607 | 9.6486 | 0.3514 | 66.0 | 30.0 | 9.6990 | 9.9375 | 9.7614 | 0.2386 | 60.0 |
| . 1 | 9.6110 | 9.9604 | 9.6506 | 0.3494 | | 1 | 9.7003 | 9.9371 | 9.7632 | 0.2368 | . 9 |
| . 2 | 9.6127 | 9.9601 | 9.6527 | 0.3473 | 8 | . 2 | 9.7016 | 9.9367 | 9.7649 | 0.2351 | . 8 |
| . 3 | 9.6144 | 9.9597 | 9.6547 | 0.3453 | 7 | . 3 | 9.7029 | 9.9362 | 9.7667 | 0.2333 | . 7 |
| . 4 | 9.6161 | 9.9594 | 9.6567 | 0.3433 | 6 | 4 | 9.7042 | 9.9358 | 9.7684 | 0.2316 | . 6 |
| . 5 | 9.6177 | 9.9590 | 9.6587 | 0.3413 | 5 | . 5 | 9.7055 | 9.9353 | 9.7701 | 0.2299 | . 5 |
| . 6 | 9.6194 | 9.9587 | 9.6607 | 0.3393 | 4 | .6 | 9.7068 | 9.9349 | 9.7719 | O. 2281 | . 4 |
| . 7 | 9.6210 | 9.9583 | 9.6627 | 0.3373 | 3 | . 7 | 9.7080 | 9.9344 | 9.7736 | 0.2264 | .3 |
| . 8 | 9.6227 | 9.9580 | 9.6647 | 0.3353 | 2 | . 8 | 9.7093 | 9.9340 | 9.7753 | 0.2247 | 2 |
| . 9 | 9.6243 | 9.9576 | 9.6667 | 0.3333 | 1 | . 9 | 9.7106 | 9.9335 | 9.7771 | 0.2229 | . 1 |
| 25.0 | 9.6259 | 9.9573 | 9.6687 | 0.3313 | 65.0 | 31.0 | 9.7118 | 9.9331 | 9.7788 | 0.2212 | 39.0 |
| . 1 | 9.6276 | 9.9569 | 9.6706 | 0.3294 | . 9 | | 9.7131 | 9.9326 | 9.7805 | 0.2195 | . 9 |
| . 2 | - 6.6292 | 9.9566 | 9.6726 | 0.3274 | 8 | 2 | 9.7144 | 9.9322 | 9.7822 | 0.2178 | . 8 |
| . 3 | 9.6308 | 9.9562 | 9.6746 | 0.3254 | 7 | 3 | 9.7156 | 9.9317 | 9.7839 | 0.2161 | 7 |
| . 4 | 9.6324 | 9.9558 | 9.6765 | 0.3235 | . 6 | 4 | 9.7168 | 9.9312 | 9.7856 | 0.2144 | .6 |
| . 5 | 9.6340 | 9.9555 | 9.6785 | 0.3215 | 5 | 5 | 9.7181 | 9.9308 | 9.7873 | 0.2127 | 5 |
| . 6 | 9.6356 | 9.9551 | 9.6804 | 0.3196 | 4 | 6 | 9.7193 | 9.9303 | 9.7890 | 0.2110 | 4 |
| . 7 | -. 6371 | 9.9548 | 9.6824 | 0.3176 | 3 | 7 | 9.7205 | 9.9298 | 9.7907 | 0.2093 | 3 |
| . 8 | -. 6387 | 9.9544 | 9.6843 | 0.3157 | 2 | 8 | 9.7218 | 9.9294 | 9.7924 | 0.2076 | 2 |
| . 9 | -. 6403 | 9.9540 | 9.6863 | 0.3137 | 1 | 9 | 9.7230 | 9.9289 | 9.7941 | 0.2059 | , |
| 26.0 | 9.6418 | 9.9537 | 9.6882 | 0.3118 | 64.0 | 32.0 | 9.7242 | 9.9284 | 9.7958 | 0.2042 | 38.0 |
| . 1 | -. 6434 | 9.9533 | 9.6901 | 0.3099 | 9 | 1 | 9.7254 | 9.9279 | 9.7975 | 0.2025 | 9 |
| . 2 | -. 6449 | 9.9529 | 9. 6920 | 0.3080 | 8 | 2 | 9.7266 | 9.9275 | 9.7992 | 0.2008 | 8 |
| . 3 | $\bigcirc .6465$ | 9.9525 | 9.6939 | 0.3061 | 7 | 3 | 9.7278 | 9. 9270 | 9.8008 | 0.1992 | 7 |
| . 4 | -. 6480 | 9.9522 | 9.6958 | 0.3042 | 6 | 4 | 9.7290 | 9.9265 | 9.8025 | 0.1975 | . 6 |
| . 5 | 9.6495 | 9.9518 | 9.6977 | 0.3023 | 5 | | 9.7302 | 9.9260 | 9.8042 | 0.1958 | 5 |
| . 6 | 9.6510 | 9.9514 | 9.6996 | 0.3004 | 4 | . 6 | 9.7314 | 9.9255 | 9.8059 | 0.1941 | 4 |
| . 7 | 9.6526 | 9.9510 | 9.7015 | 0.2985 | 3 | 7 | 9.7326 9.7338 | 9.9251 | 9.8075 | 0.1925 | 3 |
| . 8 | 9.8556 | 9.9506 9.9503 | 9.7034 9.7053 | 0.2968 | 1 | . 8 | 9.7338 9.7349 | 9.92461 | 9.8092 9.8109 | 0.1908 | 1 |
| 27.0 | 9.6570\|9 | 9.9499 | 9.7072 | 0.2928 | 63.0 | 33.0 | 9.7361 | 9.9236 | 9.8125 | 0.1875 | 37.0 |
| . 1 | 9.6585 | 9.9495 | 9.7090 | 0.2910 | . 9 | - 1 | 9.7373 | 9.9231 | 9.8142 | 0.1858 | 87.0 |
| . 2 | 9.6600 | 9.9491 | 9.7109 | 0.2891 | 8 | 2 | 9.7384 | 9. 9226 | 9.8158 | 0.1842 | 8 |
| . 3 | 9.6615 | 9.9487 | 9.7128 | 0.2872 | 7 | 3 | 9.7396 | 9.9221 | 9.8175 | 0.1825 | 7 |
| . 4 | 9.6629 | 9.9483 | 9.7146 | 0.2854 | 6 | . 4 | 9.7407 | 9.9216 | 9.8191 | 0.1809 | 6 |
| . 5 | 9.6644 | 9.9479 | 9.9165 | 0.2835 | 5 | . 5 | 9.7419 | 9.9211 | 9.8208 | 0.1792 | 5 |
| . 6 | 9.6659 | 9.9475 | 9.7183 | 0.2817 | 4 | . 6 | 9.7430 | 9.9206 | 9.8224 | 0.1776 | 4 |
| . 7 | 9.6673 | 9.9471 | 9.7202 | 0.2798 | 3 | . 7 | 9.7442 | 9.9201 | 9.8241 | 0.1759 | 3 |
| . 8 | 9.6687 | 9.9467 | 9.7220 | 0.2780 | 2 | . 8 | 9.7453 | -. 9196 | 9.8257 | 0.1743 | 2 |
| . 9 | 9.6702 | 9.9463 | 9.7238 | 0.2762 | . 1 | . 9 | 9.7464 | 9.9191 | 9.8274 | 0.1726 | 1 |
| 28.0 | 9.6716 | 9.9459 | 9.7257 | 0.2743 | 62.0 | 34.0 | 9.7476 | 9.9186 | 9.8290 | 0.1710 | 56.0 |
| . 1 | 9.6730 | 9.9455 | 9.7275 | 0.2725 | 9 | . 1 | 9.7487 | 9.9181 | 9.8306 | 0.1694 | |
| . 2 | 9.6744 | 9.9451 | 9.7293 | 0.2707 | 8 | 2 | 9.7498 | 9.9175 | 9.8323 | 0.1677 | 8 |
| . 3 | 9.6759 | 9.9447 | 9.7311 | 0.2689 | . 7 | 3 | 9.7509 | 9.9170 | 9.8339 | 0.1661 | 7 |
| . 4 | 9.6773 | 9.9443 | 9.7330 | 0.2670 | . 6 | 4 | 9.7520 | -. 9165 | 9.8355 | 0.1645 | 6 |
| . 5 | 9.6787 | 9.9439 | -.7348 | 0.2652 | 5 | 5 | 9.7531 | Q.9160 | 9.8371 | 0.1629 | 5 |
| . 6 | 9.6801 | 9.9435 | 9.7366 | 0.2634 | 4 | 6 | 9.7542 | - 9155 | 9.8388 | 0.1612 | 4 |
| . 7 | 9.6814 | 9.9431 | 9.7384 | 0.2616 | 3 | 7 | 9.7553 | -. 9149 | 9.8404 | 0.1596 | 3 |
| . 8 | 9.6828 | 9.9427 | 9.7402 | 0.2598 | . 2 | 8 | 9.7564 | 9.9144 | 9.8420 | 0.1580 | . 2 |
| . 9 | 9.6842 | 9.9422 | 9.7420 | 0.2580 | . 1 | 9 | 9.7575 | 9.9139 | 9.8436 | 0.1564 | . 1 |
| 29.0 | 9.6856 | 9.9418 | 9.7438 | 0.2562 | 61.0 | 35.0 | 9.7586 | 9.9134 | 9.8452 | 0.1548 | 35.0 |
| . 1 | 9.6869 | 9.9414 | 9.7455 | 0.2545 | 9 | 1 | 9.7597 | -. 9128 | 9.8468 | 0.1532 | 9 |
| . 2 | 9.6883 | 9.9410 | 9.7473 | 0.2527 | 8 | 2 | 9.7607 | - 9123 | 9.8484 | 0.1516 | 8 |
| . 3 | 9.6896 | 9.9406 | 9.7491 | 0.2509 | 7 | 3 | 9.7618 | 9.9118 | 9.8501 | 0.1499 | 7 |
| . 4 | 9.6910 | 9.9401 | 9.7509 | 0.2491 | . 6 | 4 | 9.7629 | 9.9112 | 9.8517 | 0.1483 | 6 |
| . 5 | 9.6923 | 9.9397 | 9.7526 | 0.2474 | . 5 | 5 | 9.7640 | 9.9107 | 9.8533 | 0.1467 | 5 |
| . 6 | 9.6937 9 | 9.9393 | 9.7544 | 0.2456 | . 4 | | 9.7650 | 9.9101 | 9.8549 | 0.1451 | 4 |
| . 7 | 9.6950 | 9.9388 | 9.7562 | O.2438 | . 3 | 7 | 9.76619 | 9.9096 | 9.8565 | 0.1435 | 3 |
| . 8 | 9.6963 | 9.9384 | 9.7579 | 0.2421 | 2 | 8 | 9.7671 | 9.9091 | 9.8581 | 0.1419 | 2 |
| . 9 | 9.6977 | -.9380 | 9.7597 | 0.2403 | . 1 | . 9 | - 7682 | 9.9085 | 9.8597 | 0.1403 | . 1 |
| 30.0 | 9.6990 | 9.9375 | 9.7614 | 0.2386 | 60.0 | 36.0 | 9.7692 | 9.9080 | 9.8613 | 0.1387 | 34.0 |
| Deg. | L. Cos | L. Sin | L. Cot | L. Ton | Deg. | Deg. | L. Cos | L. Sin | L. Cot | L. Ton | Deg. |

LOGARITHMS OF TRIGONOMETRIC FUNCTIONS FOR DECIMAL
FRACTIONS OF A DEGREE-Continued

Deg.	L. Sin	L. Cos	L. Tan	L. Cot	Deg.	Deg.	L. Sin	L Cos	L. Ton	L. Cot	Deg.
36.0	9.7692	9.9080	9.8613	0.1387	54.0	40.5	9.8125	9.8810	9.9315	0.0685	49.3
. 1	9.7703	9.9074	9.8629	0.1371	. 9	. 6	9.8134	9.8804	9.9330	0.0670	4
. 2	9.7713	9.9069	9.8644	0.1356	. 8	. 7	9.8143	9.8797	9.9346	0.0654	3
. 3	9.7723	9.9063	9.8660	0.1340	. 7	8	9.8152	9.8791	9.9361	0.0639	2
. 4	9.7734	9.9057	9.8676	0.1324	6	9	9.8161	9.8784	9.9376	0.0624	1
. 5	9.7744	9.9052	9.8692	0.1308	. 5	41.0	9.8169	9.8778	9.9392	0.0608	49.0
. 6	9.7754	9.9046	9.8708	0.1292	. 4	. 1	9.8178	9.8771	9.9407	0.0593	9
. 7	9.7764	9.9041	9.8724	0.1276	. 3	. 2	9.8187	9.8765	9.9422	0.0578	8
. 8	9.7774	9.9035	9.8740	0.1260	. 2	3	9.8195	9.8758	9.9438	0.0562	7
. 9	9.7785	9.9029	9.8755	0.1245	. 1	. 4	9.8204	9.8751	9.9453	0.0547	6
37.0	9.7795	9.9023	9.8771	0.1229	33.0	5	9.8213	9.8745	9.9468	0.0532	5
. 1	9.7805	9.9018	9.8787	0.1213	. 9	. 6	9.8221	9.8738	9.9483	0.0517	4
. 2	9.7815	9.9012	9.8803	0.1197	. 8	7	9.8230	9.8731	9.9499	0.0501	3
. 3	9.7825	9.9006	9.8818	0.1182	. 7	8	9.8238	9.8724	9.9514	0.0486	2
. 4	9.7835	9.9000	9.8834	0.1166	. 6	. 9	9.8247	9.8718	9.9529	0.0471	1
5	9.7844	9.8995	9.8850	0.1150	. 5	42.0	9.8255	9.8711	9.9544	0.0456	48.0
. 6	9.7854	9.8989	9.8865	0.1135	. 4	. 1	9.8264	9.8704	9.9560	0.0440	9
. 7	9.7864	9.8983	9.8881	0.1119	3	2	9.8272	9.8697	9.9575	0.0425	8
. 8	9.7874	9.8977	9.8897	0.1103	. 2	3	9.8280	9.8690	9.9590	0.0410	7
. 9	9.7884	9.8971	9.8912	0.1088	. 1	4	9.8289	9.8683	9.9605	0.0395	6
38.0	9.7893	9.8965	9.8928	0.1072	32.0	5	9.8297	9.8676	9.9621	0.0379	5
. 1	9.7903	9.8959	9.8944	0.1056	. 9	. 6	9.8305	9.8669	9.9636	0.0364	4
. 2	9.7913	9.8953	9.8959	0.1041	8	. 7	9.8313	9.8662	9.9651	0.0349 0.0334	3
. 3	9.7922	9.8947	9.8975	0.1025	7	. 8	9.8322	9.8655	9.9666 0.9681	0.0334 0.0319	2
. 4	9.7932	9.8941	9.8990	0.1010	6	. 9	9.8330	9.8648	9.9681	0.0319	1
1	9.7941	9.8935	9.9006	0.0994	. 5	43.0	9.8338	9.8641	9.9697	0.0303	47.0
. 6	9.7951	9.8929	9.9022	0.0978	.4	. 1	9.8346	9.8634	9.9712	0.0288 0.0273	. 9
. 7	9.7960	9.8923	9.9037	0.0963	. 3	2	9.8354	9.8627	9.9727	0.0273	7
. 8	9.7970	9.8917	9.9053	0.0947	. 2	3	9.8362	9.8620	9.9742 0.9757	0.0258 0.0243	7
. 9	9.7979	9.8911	9.9068	0.0932	. 1	4	9.8370	9.8613	9.9757	0.0243	6
39.0	9.7989	9.8905	9.9084	0.0916	31.0	5	9.8378	9.8606	9.9772	0.0228	5
. 1	9.7998	9.8899	9.9099	0.0901	. 9	6	9.8386	9.8598	9.9788	0.0212	4
. 2	9.8007	9.8893	9.9115	0.0885	. 8	7	9.8394	9.8591	9.9803	0.0197	. 3
. 3	9.8017	9.8887	9.9130	0.0870	. 7	8	9.8402	9.8584	9.9818	0.0182	. 2
. 4	9.8026	9.8880	9.9146	0.0854	. 6	. 9	9.8410	9.8577	9.9833	0.0167	. 1
. 5	9.8035	9.8874	9.9161	0.0839	5	44.0	9.8418	9.8569	9.9848	0.0152	46.0
. 6	9.8044	9.8868	9.9176	0.0824	4	1	9.8426	9.8562	9.9864	0.0136	9
. 7	9.8053	9.8862	9.9192	0.0808	3	2	9.8433	9.8555	9.9879	0.0121	7
. 8	9.8063	9.8855	9.9207	0.0793	2	3	9.8441	9.8547	9.9894	0.0106	6
. 9	9.8072	9.8849	9.9223	0.0777	1	4	9.8449	9.8540	9.9909	0.0091	6
40.0	19.8081	9.8843	9.9238	0.0762	50.0	5	9.8457	9.8532	9.9924	0.0076	5
. 1	9.8090	9.8836	9.9254	0.0746	. 9	. 6	9.8464	9.8525	9.9939	0.0061	4
. 2	9.8099	9.8830	9.9269	0.0731	. 8	. 7	9.8472	9.8517	9.9955	0.0045	3
3	9.8108	9.8823	9.9284	0.0716	. 7	8	19.8480	9.8510	9.9970	0.0030	2
4	9.8117	9.8817	9.9300	0.0700	6	. 9	9.8487	9.8502	9.9985	0.0015	. 1
40.3	9.8125	9.8810	9.9315	0.0685	49.5	45.0	9.8495	9.8495	0.0000	0.0000	45.0
Deg.	L. Cos	L. Sin	L. Cof	L. Tan	Deg.	Deg.	L. Cos	L. Sin	L. Cot	L Ton	Deg.

EXPONENTIALS［ e^{n} and e^{-n} ］

n	－皆	n	＊告	n	0°	n	－${ }^{\text {c }}$	n	－7	n	－
0.00	1.00010	0．50｜	1.64916	1.0	2．718＊	0.00	1．000－10	0.50	． 607	1.0	．368＊
． 01	1.01010	． 51	1.66517		3.004		0．990－10	． 51	． 600	1	． 333
． 02	1.02010	52 53	1.68217	2	3.320 3.669	． 02	．980－10	． 52	． 585	2	． 301
． 03	1.03011	53	1.69917	3	3.669	．	970－9	53	． 588	3	． 273
． 04	10	54	${ }^{6} 17$	4	4.055		－		． 583	4	． 217
0.03	1.051	0.53	1.733	1.5	4.482	0.03	951	0.35	577	1.5	． 223
． 06	1.062	． 56	1.751	6	4.953	06	．942－10	56	571	6	． 202
． 07	1.07311	57	1.768	． 7	5.474	07	．932－10	57	． 566	7	． 183
． 08	1.08310	58	1.786	8	6.050	08	．923 -	58	． 560	8	． 165
． 09	1.09411	59	1.80418	9	6.686	09	． 914	． 59	． 554	9	． 150
0.10	1.105	0.60	1.822	2.0	7.389	0.10	905	0.60	549	2.0	． 135
11	1.116	． 61	1.840	． 1	8.166	11	． 896	． 61	543	． 1	． 122
.12	1.127	62	1.859	2	9.025	12	．887	． 62	． 538	2	． 111
.13	1.13912	63	1.87818	3	9.974	13	878－	． 63	． 533	3	． 100
． 14	1.15012	64	1.89620	4	11.02	14	869	64	． 527	． 4	． 0907
0.15	1.162	0.65	1.916	2.3	12.18	0.15	861	0.65	． 522	2.5	． 0821
16	1.174	． 66	1.93519	6	13.46	． 16	．852－	． 66	． 517	． 6	． 0743
． 17	1.185	67	1.95420	7	14.88	17	．844	7	． 512	7	． 0672
.18	1.19712	68	1.97420	8	16.44	18	835－	． 68	． 507	8	． 0608
． 19	1.20912	69	1.99420	9	18.17	19	82	． 69	． 502	9	． 0550
0.20	1.221	0.70	2.01420	3.0	20.09	0.20	819	0.70	． 497	3.0	． 0498
． 21	1.234	． 71	2.03420	1	22.20	21	811二	． 71	． 492		． 0450
22	1.24612	72	2.05421	2	24.53	22	803二	． 72	． 487	2	． 0408
． 23	1．259 12	． 73	2.07521	3	27.11	23		73	． 482	3	． 0369
． 24	1.27113	． 74	2.09621	4	29.96	24	787－	． 74	． 477	4	． 0334
0.23	1.284	0.73	2.117	3.5	33.12	0.25	779	0.75	． 472	3.5	0302
． 26	1.29713	． 76	2.13822	7	36.60		771－8	． 76	468	． 6	． 0273
． 27	$1.310{ }^{13}$	． 77	2.16022	7	40.45	27	763－	． 77	． 463	7	． 0247
． 28	1.323	． 78	2.18122	8	44.70	28	756	． 78	458	8	． 0224
． 29	1.33614	． 79	2.20323	9	49.40	29	．748	． 79	． 454	9	． 0202
0.30	1.350	0.80	2.226	4.0	54.60	0.30	－ 741	0.80	． 449	4.0	． 0183
． 31	1.36314	81	2.24822	． 1	60.34	31	733	81	． 445		． 0166
． 32	1.37714	82	$2.270{ }^{22}$	2	66.69	32	726	82	440		． 0150
． 33	1.39114	83	2.29323 2.23		73.70	33	$719=$	83	436	3	． 0136
． 34	1.40514	84	$2.316 \frac{24}{24}$	． 4	81.45	34	．712	84	432	4	． 0123
0.33	1.419	0.83	2.34023	4.5	90.02	0.35	． 705	0.85	． 427	4.5	． 0111
． 36	1.43315	86	2.36324			36	．698－	86	． 423		
． 37	1.44814	87	2.38724	3.0	148.4	37	691二	87	． 419	3.0	． 00674
． 38	1．462 15	． 88	2.41124	6.0	103.4	38		88	． 415	6．0	． 00248
． 39	1.47715	． 89	2.43525	7.0	1097.	39	． 677	． 89	． 411	7.0	． 000912
0.40	1.492	0.90	2.46024	8.0	2981.	0.40	． 670	0.90	． 407	8.0	000335
． 41	1.50715	91	2.48425	9.0	8103.	41	．664二	91	． 403	9.0	． 000123
42	1.52215	92	2.50926	10.0	22026.	42	．657 $=$	92	． 399	10.0	． 000045
43	1.53716	93	2.53525			43	．651二	93	． 395		
44	1.55315	． 91	2.56026	${ }_{2} \pi / 2$	4.810	44	644	． 94	． 39	$2^{\pi / 2}$	208
0.45	1.568	0.95	2.586	2m／2	111.3	0.45		0.95	387	3 $\pi / 2$	． 00898
． 46	1.584	． 96	2.61226	4 $5 / 2$	535.5	46	631	96	383	$4 \pi / 2$	． 00187
． 47	1.60016	97	2.63826	$5 \pi / 2$	2576	47	625	97	． 379	$5 \pi / 2$	000388
． 48	1.61618	98	2.66427	6 $\pi / 2$	12392.	48	619	98	． 375	6 $\pi / 2$	000081
． 49	1.63217	． 99	2.69127	$7 \pi / 2$	59610.	9	613二	9	． 372	$7 \pi / 2$	000017
0.50	1.649	1.00	2.718	8 8／2	2867	0.5		1.0	368	$8 \pi / 2$	． 00000

＊Note：Do not interpolote in this column．

[^18]NATURAL OR NAPERIAN LOGARITHMS

	0	1	2	3	4	5	6	7	*	\bigcirc	Maan Difforances		
											123	454	78
1-0	0.0000	0099	0198	0296	0392	0488	0583	0677	0770	0862	101929	384857	67768
1.1	. 0953	1044	1133	1222	1310	1398	1484	1570	1655	1740	91726	354452	617078
$1-2$	-1823	1906	1989	2070	2151	2231	2311	2390	2469	2546	81624	324048	566472
1.3	- 2624	2700	2776	2852	2927	3001	3075	3148	3221	3293	71522	303744	525967
1.4	. 3365	3436	3507	3577	3646	3716	3784	3853	3920	3988	71421	283541	485562
1.5	-4055	4121	4187	4253	4318	4383	4447	4511	4574	4637	61319	263239	455258
1.6	-4700	4762	4824	4886	4947	5008	5068	5128	5188	5247	61218	243036	424855
1.7	. 5306	5365	5423	5481	5539	5596	5653	5710	5766	5822	61117	242934	404651
$1 \cdot 8$	-5878	5933	5988	6043	6098	6152	6206	6259	6313	6366	51116	222732	384349
1.9	-6419	6471	6523	6575	6627	6678	6729	6780	6831	6881	51015	202631	364146
$2 \cdot 4$	-6931	6981	7031	7080	7129	7178	7227	7275	7324	7372	51015	202429	343944
2.1	-7419	7467	7514	7561	7608	7655	7701	7747	7793	7839	5914	192328	$\begin{array}{lll}33 & 37 & 42\end{array}$
2.2	-7885	7930	7975	8020	6065	8109	8154	8198	8242	8286	4913	182227	313640
$2 \cdot 3$	-9329	8372	8416	8459	8502	8544	8587	8629	8671	8713	4913	172126	303438
2.4	-6755	8796	8838	8879	8920	8961	9002	9042	9083	9123	4812	162024	293337
2.5	. 9163	9203	9243	9282	9322	9361	9400	9439	9478	9517	4812	162024	273135
$2 \cdot 6$. 9555	9594	9632	9670	9708	9746	9783	9821	9858	9895	4811	151923	263034
2.7	. 9933	9969	1.0006	0043	0080	0116	0152	0188	0225	0260	4711	151812	$25 \quad 2933$
$2 \cdot 8$	1.0296	0332	0367	0403	0438	0473	0508	0543	0578	0613	4711	141821	252832
$2 \cdot 9$	1.0647	0682	0716	0750	0784	0818	0852	0886	0919	0953	3710	141720	242731
$3 \cdot 9$	1.0986	1019	1053	1086	1119	1151	1184	1217	1249	1282	3710	131620	$23 \quad 2630$
3.1	1.1314	1346	1378	1410	1442	1474	1506	1537	1569	1600	3610	131619	222529
$3 \cdot 2$	t.1632	1663	1694	1725	1756	1787	1817	1848	1878	1909	369	121518	222528
$3 \cdot 3$	1.1939	1969	2000	2030	2060	2090	2119	2149	2179	2208	369	121518	212427
$3 \cdot 4$	1.2238	2267	2296	2316	2355	2384	2413	2442	2470	2499	369	$12 \quad 15 \quad 17$	202326
$3 \cdot 5$	1.2528	2556	2585	2613	2641	2669	2698	2720	2754	2782	$\begin{array}{lll}3 & 6 & 8\end{array}$	111417	202375
$3 \cdot 6$	1-2809	52837	2865	2892	2920	2947	2975	3002	3029	3056	$\begin{array}{llll}3 & 5 & 8\end{array}$	111416	192225
3.7	1.3093	3110	3137	3164	3191	3218	3244	3271	3297	3324	$\begin{array}{lll}3 & 5 & 8\end{array}$	111316	192124
$3 \cdot 8$	1.3350	3376	3403	3429	3455	3481	3507	3533	3558	3584	$3{ }^{3} 588$	$\begin{array}{llll}10 & 13 & 16\end{array}$	182123
3.9	1.3610	3635	3661	3666	3712	3737	3762	3788	3813	3838	$3 \begin{array}{lll}3 & 5 & 8\end{array}$	$\begin{array}{llll}10 & 13 & 15\end{array}$	182023
4.6	1.3863	3888	3913	3938	3462	3987							
4.1	1.4110	4134	4159	4183	4207	4231	4255	4279	4303	4327	$\begin{array}{lll}2 & 5 & 7\end{array}$	101214	171922
$4 \cdot 2$	1.4351	4375	4398	4422	4446	4469	4493	4516	4540	4563	$\begin{array}{lll}2 & 5 & 7\end{array}$	91214	161921
4.3	1.4586	4609	4633	4656	4679	4702	4725	4748	4770	4793	$\begin{array}{lll}2 & 5 & 7\end{array}$	91214	161821
4.4	1.4816	4839	4861	4894	4907	4929	4951	4974	4996	5019	$\begin{array}{lll}2 & 5 & 7\end{array}$	91114	16 1820.
4.5	1.5041	5063	5085	5107	5129	5151	5173	5195	5217	5239	247	91113	151820
46	1.5261	5282	5304	5326	5347	5369	5390	5412	5433	5454	246	91113	$15 \quad 1719$
4.7	1.5476	5497	5518	5539	5560	5581	5602	5623	5644	5665	246	81113	15 15 17 19
4.8	1.5686	5707	5728	5748	5769	5790	5810	5831	5851	5872	246	81012	141619
4.9	1.5892	5913	5933	5953	5974	5994	6014	6034	6054	6074	246	-10 12	141618
$5 \cdot 0$	1.6094	6114	6134	6154	6174	6194	8214	6233	6253	6273	$2 \begin{array}{lll}2 & 4 & 6\end{array}$	$\begin{array}{llll}8 & 10 & 12 \\ 8 & 10\end{array}$	
5.1	1.6292	6312	6332	6351	6371	6390	6409	6429	6448	6467	$\begin{array}{lll}2 & 4 & 6\end{array}$	81012	$\begin{array}{lllll}14 & 16 & 18 \\ 13 & 15 & 17\end{array}$
$5 \cdot 2$	1.6487	6506	6525	6544 6734	6563	6582	6601	6620	6639	6658	$\begin{array}{lll}2 & 4 & 6\end{array}$	881011	$\begin{array}{lllll}13 & 15 & 17 \\ 13 & 15 & 17\end{array}$
5.3	1.6677	6696	6715	6734	6752	6771	6790	6808	6827	6845	$\begin{array}{lll}2 & 4 & 6 \\ 2 & 4 & 5\end{array}$	7 7 911	$\begin{array}{llll}13 & 15 & 17 \\ 13 & 15 & 17\end{array}$
5.4	1.6864	6882	6901	6919	6938	6956	6974	6993	7011	7029	4	7911	$13 \quad 1517$

NATURAL OR NAPERIAN LOGARITHMS OF $10^{+\boldsymbol{n}}$

n	1	2	3	4	5	4	7	6	9
$\log 10 n$	2.3026	46052	6.9078	9.2103	11.5129	13.8155	16.1181	18.4207	$20 \cdot 7233$

NATURAL OR NAPERIAN LOGARITHMS—Continued

	0	1	2	3	4	5	6	7	-	-	Mean Differences								
												2	3	4	5	6	7	8	\bigcirc
5.5	1.7047	7066	7084	7102	7120	7138	7156	7174	7192	7210	2	4	5	7			3	14	16
5.6	1.7228	7246	7263	7281	7299	7317	7334	7352	7370	7387	2	4	5	7	91		2	14	16
5.7	1.7405	7422	7440	7457	7475	7492	7509	7527	7544	7561	2	3	5	7		0	2	14	16
5.8	1.7579	75\%	7613	7630	7647	7664'	7681	7699	7716	7733	2	3	5	7	9	0	2	14	15
5.9	1.7750	776	7783	7800	7817	7834	7851	7867	7884	7901	2	3	5	7		0	2		15
$6 \cdot 4$	1.7918	7934	7951	7967	7984	8001	8017	8034	8050	8066	2	3	5	7		0	2	13	15
6.1	1.6083	8099	8116	8132	8148	8165	8181	8197	8213	8229	2	3	5	6		0	11	13	15
6.2	1.8245	0262	8278	8294	8310	8326	8342	8358	8374	8390	2	3	5	6		0			14
6.3	1.8405	8421	8437	8453	8469	8485	8500	8516	8532	8547	2	3	5	6		9		13	14
6.4	1.8563	8579	8594	8610	8625	8641	8656	8672	8687	8703	2	3	5	6	8	9	11		14
6.5	1.8718	8733	6749	8764	8779	8795	8810	8825	8840	8856	2	3	5	6	8	9	11	12	14
6.6	1.8971	8886	6901	8916	8931	8946	8961	8976	8991	9006	2	3	5	6	8	9	11	12	
6.7	1.9021	9036	9051	9066	9081	9095	9110	9125	9140	9155	I	3	4	6	7	9	10	12	13
$6 \cdot 8$	1.9169	9184	9199	9213	9228	9242	9257	9272	9286	9301	I	3	4	6	7	9	10	12	13
6.9	1.9315	9330	9344	9359	9373	9387	9402	9416	9430	9445	1	3	4	6	7	9	10		13
7.0	1.9459	9473	9488	9502	9516	9530	9544	9559	9573	9587	I	3	4	6	7	9	10	11	13
7.1	1.9601	9615	9629	9643	9657	9671	9685	9699	9713	9727	I	3	4	6	7	8	10		13
7.2	1.9741	9755	9769	9782	9796	9810	9824	9838	9851	9865	I	3	4	6	7	8	10	11	12
7.3	1-9879	9892	9906	9920	9933	9947	9961	9974	9988	2.0001	1	3	4	5	7	8	10	11	12
7.4	2.0015	0028	0042	0055	0069	0082	0096	0109	0122	0136	1	3	4	5	7	8	9	11	12
7.5	2.0149	0162	0176	0189	0202	0215	0229	0242	0255	0268	1	3	4	5	7	8	9	11	12
7.6	2.0281	0295	0308	0321	0334	0347	0360	0375	0386	0399	I	3	4	5	7	8	9	10	12
7.7	2.0412	0425	0438	0451	0464	0477	0490	0503	0516	0528	1	3	4	5	6	8	9	10	12
7.8	2.0541	0554	0567	0580	0592	0605	0618	0631	0643	0656	1	3	4	5	6	8	9	10	11
7.9	2.0669	0681	0694	0707	0719	0732	0744	0757	0769	0782	1	3	4	5	6	8	9	10	11
$8 \cdot 0$	2.0794	0807	0819	0832	0844	0857	0869		0894	0906	1	3	4	5	6	7	9	10	11
8.1	2.0919	0931	0943	0956	0968	0980	0992	1005	1017	1029	1	2	4	5	6	7	9	10	II
8.2	2.1041	1054	1066	1078	1090	1102	1114	1126	1138	1150	1	2	4	5	6	7	9	10	11
8.3	$2 \cdot 1163$	1175	1187	1199	1211	1223	1235	1247	1258	1270	1	2	4	5	6	7	8	10	11
8.4	2-1282	1294	1306	1318	1330	1342	1353	1365	1377	1389	1	2	4	5	6	7	8	9	11
$0 \cdot 5$	2.1401	1412	1424	1436	1448	1459	1471	1493	1494	1506	1	2		5	6	7	-	9	11
86	2.1516	1529	1541	1552	1564	1576	1587	1599	1610	1622	,	2	3	5	6	7	8	9	10
8.7	$2 \cdot 1633$	1645	1656	1668	1679	1691	1702	1713	1725	1736	1	2	3	5	6	7	8	9	10
$8 \cdot 8$	2.1748	1759	1770	1782	1793	1804	1815	1827	1838	1849	1	2	3	5	6	7	8	9	10
8.9	2.1861	1872	1893	1894	1905	1917	1928	1939	1950	191	1	2	3	4	6	7	8	9	10
$9 \cdot 0$	2.1972	1983	1994	2006	2017	2028	2039	2050	2061	2072	1	2	3	4	6	7	8	9	10
9.1	2.2083	2094	2105	2116	2127	2138	2148	2159	2170	2181	I	2	3	4	5	7	8	9	10
9.2	2.2192	2203	2214	2225	2235	2246	2257	2268	2279	2289	1	2	3	4	5	6	8	9	
9.3	2.2300	2311	2322	2332	2343	2354	2364	2375	2386	2396	I	2	3	4	5	6	7	9	10
9.4	$2 \cdot 2407$	2418	2428	2439	2450	2460	2471	2481	2492	2502	1	2	3	4	5	6	7	8	10
9.5	2.2513	2523	2534	2544	2555	2565	2576	2586	2597	2607	I	2	3	4	5	6	7	8	9
9.6	2.2618	2628	2638	2649	2659	2670	2680	2690	2701	2711	1.	2	3	4	5	6	7	8	9
9.7	2.2721	2732	2742	2752	2762	2773	2783	2793	2803	2814	1.	2	3	4	5	6	7	8	
9.8	2.2824	2834	2844	2854	2865	2875	2885	2695	2905	2915	1	2	3	4	5	6	7	8	9
9.9	2.2925	2935	2946	2956	2966	2976	2986	2996	3006	3016	1	2	3	4	5	6	7	8	9

NATURAL OR NAPERIAN LOGARITHMS OF 10^{-n}

n	1	2	3	4	5	6	7	6	6
$108 e^{10-n}$	5.6974	5.3948	7.0922	$\overline{10} .7697$	$\overline{12} .4871$	$\overline{14} 1845$	$\overline{17.8819}$	$\overline{19.5793}$	$\overline{21.2767}$

HYPERBOLIC SINES [$\left.\sinh x=1 / 2\left(e^{x}-e^{-x}\right)\right]$

x	0	1	2	3	4	5	6	7	8	9	Avg. diff.
0.0	. 0000	.0100	. 0200	. 0300	. 0400	. 0500	. 0600	. 0701	0801	0901	100
1	. 1002	. 1102	. 1203	. 1304	. 1405	. 1506	. 1607	. 1708	1810	.1911	101
2	. 2013	. 2115	. 2218	. 2320	. 2423	. 2526	. 2629	. 2733	2837	. 2941	103
3	. 3045	. 3150	. 3255	. 3360	. 3466	. 3572	. 3678	. 3795	3892	. 4000	106
4	. 4108	. 4216	. 4325	. 4434	. 4543	. 4653	. 4764	. 4875	. 4988	. 5098	110
0.3	. 5211	. 5324	. 5438	. 5552	. 5666	. 5782	. 5897	6014	8131	6248	116
6	. 6367	. 6485	. 6605	. 6725	. 6846	. 6967	. 7090	. 7213	. 7336	. 7461	122
7	. 7588	. 7712	. 7838	. 7966	. 8094	. 8223	. 8353	. 8484	. 8615	. 8748	130
8	. 8881	. 9015	. 9150	. 9286	. 9423	. 9561	. 9700	. 9840	. 9981	1.012	138
9	1.027	1.041	1.055	1.070	1.085	1.099	1.114	1. 129	1.145	1.160	15
1.0	1.175	1.191	1.206	1.222	1.238	1.254	1. 270	1.286	1.303	1.319	16
1	1.336	1.352	1.369	1.386	1.403	1.421	1.438	1.456	1.474	1.491	17
2	1.509	1.528	1.546	1.564	1.583	1.602	1.621	1.640	1.659	1.679	19
3	1.698	1.718	1.738	1.758	1.779	1.799	1.820	1.841	1.862	1.883	21
4	1.904	1.926	1.948	1.970	1.992	2.014	2.037	2.060	2.083	2.106	22
1.8	2.129	2.153	2.177	2.201	2.225	2.250	2.274	2.299	2.324	2.350	25
6	2.376	2.401	2.428	2.454	2.481	2.507	2.535	2.562	2.590	2.617	27
7	2.646	2.674	2.703	2.732	2.761	2.790	2.820	2.850	2.881	2.911	30
8	2.942	2.973	3.005	3.037	3.069	3.101	3.134	3.167	3.200	3.234	33
9	3.268	3.303	3.337	3.372	3.408	3.443	3.479	3.516	3.552	3.589	36
2.0	3.627	3.665	3.703	3.741	3.780	3.820	3.859	3.899	3.940	3.981	39
1	4.022	4.064	4.106	4.148	4.191	4.234	4.278	4.322	4.367	4.412	44
2	4.457	4.503	4.549	4.596	4.643	4.691	4.739	4.788	4.837	4.887	48
3	4.937	4.988	5.039	5.090	5.142	5.195	5.248	5.302	5.356	5.411	53
4	5.466	5.522	5.578	5.635	5.693	5.751	5.810	5.869	5.929	.5.989	58
2.3	6.050	6.112	6.174	6.237	6.300	6.365	6.429	6.495	6.561	6.627	64
6	6.695	6.763	6.831	6.901	6.971	7.042	7.113	7.185	7.258	7.332	71
7	7.406	7.481	7.557	7.634	7.711	7.789	7.868	7.948	8.028	8.110	79
8	8.192	8.275	8.359	8.443	8.529	8.815	8.702	8.790	8.879	8.969	87
9	9.060	9.151	9.244	9.337	9.431	9.527	9.623	9.720	9.819	9.918	96
3.0	10.02	10.12	10.22	10.32	10.43	10.53	10.64	10.75	10.86	10.97	11
1	11.08	11.19	11.30	11.42	11.53	11.65	11.76	11.88	12.00	12.12	12
2	12.25	12.37	12.49	12.62	12.75	12.88	13.01	13.14	13.27	13.40	13
3	13.54	13.67	13.81	13.95	14.09	14.23	14.38	14.52	14.67	14.82	14
4	14.97	15.12	15.27	15.42	15.58	15.73	15.89	16.05	16.21	16.38	16
3.5	16.54	16.71	16.88	17.05	17.22	17.39	17.57	17.74	17.92	18.10	17
6	18.29	18.47	18.66	18.84	19.03	19.22	19.42	19.61	19.81	20.01	19
7	20.21	20.41	20.62	20.83	21.04	21.25	21.46	21.68	21.90	22.12	21
8	22.34	22.56	22.79	23.02	23.25	23.49	23.72	22.96	24.20	24.45	24
9	24.69	24.94	25.19	25.44	25.70	25.96	26.22	26.48	26.75	27.02	26
4.0	27.29	27.56	27.84	28.12	28.40	28.69	28.98	29.27	29.56	29.86	29
1	30.16	30.47	30.77	31.08	31.39	31.71	32.03	32.35	32.68	33.00	32
2	33.34	33.67	34.01	34.35	34.70	35.05	35.40	35.75	36.11	36.48	35
3	36.84	37.21	37.59	37.97	38.35	38.73	39.12	39.52	39.91	40.31	39
4	40.72	41.13	41.54	41.96	42.38	42.81	43.24	43.67	44.11	44.56	43
4.3	45.00	45.46	45.91	46.37	46.84	47.31	47.79	48.27	48.75	49.24	47
6	49.74	50.24	50.74	51.25	51.77	52.29	52.81	53.34	53.88	54.42	52
7	54.97	55.52	56.08	56.64	57.21	57.79	58.37	58.96	59.55	80.15	58
8	60.75	61.36	61.98	62.60	. 63.23	63.87	64.51	65.16	65.81	66.47	64
9	67.14	67.82	68.50	69.19	69.88	70.58	71.29	72.01	72.73	73.46	71
8.0	74.20										

If $x>5, \sinh x=1 / 2\left(e^{x}\right)$ and $\log _{10} \sinh x=(0.4343) x+0.6990-1$, correct to four significant figures.

HYPERBOLIC COSINES [$\left.\cosh x=1 / 2\left(e^{x}+e^{-x}\right)\right]$

*	0	1	2	3	4	5	6	7	8	9	Avg. dif.
0.0	1.000	1.000	1.000	1.000	1.001	1.001	1.002	1.002	1.003	1.004	1
1	1.005	1.006	1.007	1.008	1.010	1.011	1.013	1.014	1.016	1.018	2
2	1.020	1.022	1.024	1.027	1.029	1.031	1.034	1.037	1.039	1.042	3
3	1.045	1.048	1.052	1.055	1.058	1.062	1.066	1.069	1.073	1.077	4
4	1.081	1.085	1.090	1.094	1.098	1.103	1.108	1.112	1.117	1.122	5
0.5	1.128	1.133	1.138	1.144	1.149	1.155	1.161	1.167	1.173	1.179	6
6	1.185	1.192	1.198	1.205	1.212	1.219	1.226	1.233	1.240	1.248	7
7	1.255	1.263	1.271	1.278	1.287	1.295	1.303	1.311	1.320	1.329	8
8	1.337	1.346	1.355	1.365	1.374	1.384	1.393	1.403	1.413	1.423	10
9	1.433	1.443	1.454	1.465	1.475	1.486	1.497	1.509	1.520	1.531	11
1.0	1.543	1.555	1.567	1.579	1.591	1.604	1.616	1.629	1.642	1.655	13
1	1.669	1.682	1.696	1.709	1.723	1.737	1.752	1.766	1.781	1.796	14
2	1.811	1.826	1.841	1.857	1.872	1.888	1.905	1.921	1.937	1.954	16
3	1.971	1.988	2.005	2.023	2.040	2.058	2.076	2.095	2.113	2.132	18
4	2.151	2.170	2.189	2.209	2.229	2.249	2.269	2.290	2.310	2.331	20
1.5	2.352	2.374	2.395	2.417	2.439	2.462	2.484	2.507	2.530	2.554	23
6	2.577	2.601	2.625	2.650	2.675	2.700	2.725	2.750	2.776	2.802	25
7	2.828	2.855	2.882	2.909	2.936	2.964	2.992	3.021	3.049	3.078	28
8	3.107	3.137	3.167	3.197	3.228	3.259	3.290	3.321	3.353	3.385	31
9	3.418	3.451	3.484	3.517	3.551	3.585	3.620	3.655	3.690	3.726	34
2.0	3.762	3.799	3.835	3.873	3.910	3.948	3.987	4.026	4.065	4.104	38
1	4.144	4.185	4.226	4.267	4.309	4.351	4.393	4.436	4.480	4.524	42
2	4.568	4.613	4.658	4.704	4.750	4.797	4.844	4.891	4.939	4.988	47
3	5.037	5.087	5.137	5.188	5.239	5.290	5.343	5.395	5.449	5.503	52
4	5.557	5.612	5.667	5.723	5.780	5.837	5.895	5.954	6.013	6.072	58
2.5	6.132	6.193	6.255	6.317	6.379	6.443	6.507	6.571	6.636	6.702	64
6	6.769	6.836	6.904	6.973	7.042	7.112	7.183	7.255			70
7	7.473	7.548	7.623	7.699	7.776	7.853	7.932	8.011	8.091	8.171	78
8	8.253	8.335	8.418	8. 502	8.587	8.673	8.759	8.847	8.935	9.024	8
9	9.115	9.206	9.298	9.391	9.484	9.579	9.675	9.772	9.869	9.968	95
	10.07	10.17	10.27	10.37	10.48	10.58	10.69	10.79	10.90	11.01	11
1	11.12	11.23	11.35	11.46	11.57	11.69	11.81	11.92	12.04	12.16	12
2	12.29	12.41	12.53	12.66	12.79	12.91	13.04	13.17	13.31	13.44	13
3	13.57	13.71	13.85	13.99	14.13	14.27	14.41	14.56	14.70 16.25		
4	15.00	15.15	15.30	15.45	15.61	15.77	15.92	16.08	16.25	16.41	16
3.3	16.57	16.74	16.91	17.08	17.25	17.42	17.60	17.77	17.95	18.13	17
,	18.31	18.50	18.68	18.87	19.06	19.25	19.44	19.64	19.84	20.03	19
7	20.24	20.44	20.64	20.85	21.06	21.27	21.49	21.70	21.92	22.14	21
8	22.36	22.59	22.81	23.04	23.27	23.51	23.74	23.98	24.22	24.47	23
9	24.71	24.96	25.21	25.46	25.72	25.98	26.24	26.50	26.77	27.04	26
4.0	27.31	27.58	27.86	28.14	28.42	28.71	29.00	29.29	29.58	29.88	29
1	30.18	30.48	30.79	31.10	31.41	31.72	32.04	32.37	32.69	33.02	32
2	33.35	33.69	34.02	34.37	34.71	35.06	35.41	35.77			35
3	36.86	37.23	37.60	37.98	38.36	38.75	39.13	39.53	39.93 44.12	40.33 44.57	39 43
4	40.73	41.14	41.55	41.97	42.39	42.82	43.25	43.68	44.12	44.57	43
4.5	45.01	45.47	45.92	46.38	46.85	47.32	47.80	48.28	48.76	49.25	47
6	49.75	50.25	50.75	51.26	51.78	52.30	52.82	53.35	53.89	54.43	52
7	54.98	55.53	56.09	56.65	57.22	57.80	58.38 64				58 64
8	60.76 67.15	61.37 67.82	61.99 68.50	62.61 69	63.24 69.89	63.87 70.59	64.52 71.30	$65.16 \cdot$ 72.02	765.82	66.48 73.47	74
3.0	74.21										

If $x_{0}>5, \cosh x=1 / 2\left(0^{x}\right)$ and $\log _{10} \cosh x=(0.4343) x+0.6990-1$, correct to four significant figures.

HYPERBOLIC TANGENTS [$\left.\tanh x=\left(e^{x}-e^{-x}\right) /\left(e^{x}+e^{-x}\right)=\sinh x / \cosh x\right]$

MULTIPLES OF $0.4343\left(0.43429448=\log _{10}\right.$ e)

*	0	1	2	3	4	5	6	7	8	9
0.	0.0000	0.0434	0.0869	0.1303	0.1737	0.2171	0.2606	0.3040	0.3474	0.3909
1.	0.4343	0.4777	0.5212	0.5646	0.6080	0.6514	0.6949	0.7383	0.7817	0.8252
2.	0.8686	0.9120	0.9554	0.9989	1.0423	1.0857	1.1292	1.1726	1.2160	1. 2595
3.	1.3029	1.3463	1.3897	1.4332	1.4766	1.5200	1.5635	1.6069	1.6503	1.6937
4.	1.7372	1.7806	1.8240	1.8675	1.9109	1.9543	1.9978	2.0412	2.0846	2.1280
5.	2.1715	2.2149	2.2583	2.3018	2.3452	2.3886	2.4320	2.4755	2.5189	2.5623
6.	2.6058	2.6492	2.6926	2.7361	2.7795	2. 8228	2.8663	2.9098	2.9532	2.9966
7.	3.0401	3.0835	3.1269	3.1703	3.2138	3.2572	3.3006	3.3441	3.3875	3.4309
8.	3.4744	3.5178	3.5612	3.6046	3.6481	3.6915	3.7349	3.7784	3.8218	3.8652
9.	3.9087	3.9521	3.9955	4.0389	4.0824	4.1258	4.1692	4.2127	4.2561	4.2995

MULTIPLES OF 2.3026 (2.3025851 = $1 / 0.4343$)

x	0	1	2	3	4	5	6	7	8	9
0.	0.0000	0.2303	0.4605	0.6908	0.9210	1.1513	1.3816	1.6118	1.8421	2.0723
1.	2.3026	2.5328	2.7631	2.9934	3.2236	3.4539	3.6841	3.9144	4.1447	4.3749
2.	4.6052	4.8354	5.0657	5.2959	5.5262	5.7565	5.9867	6.2170	6.4472	6.6775
3.	6.9078	7.1380	7.3683	7.5985	7.8288	8.0590	8.2893	8.5196	8.7498	8.9801
4.	9.2103	9.4406	9.6709	9.9011	10.131	10.362	10.592	10.822	11.052	11.283
5.	11.513	11.743	11.973	12.204	12.434	12.664	12.894	13.125	13.355	13.585
6.	13.816	14.046	14.276	14.506	14.737	14.967	15.197	15.427	15.658	15.888
7.	16.118	16.348	16.579	16.809	17.039	17.269	17.500	17.730	17.960	18.190
8.	18.421	18.651	18.881	19.111	19.342	19.572	19.802	20.032	20.263	20.493
9.	20.723	20.954	21.184	21.414	21.644	21.875	22.105	22.335	22.565	22.796

BESSEL FUNCTIONS

BESSEL FUNCTIONS—Continued

z	0	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9
0	0.0000	0.0499	0.0995	0.1483	0.1960	0.2423	0.2867	0.3290	0.3688	
1	0.4401	0.4709	0.4983	0.5220	0.5419	0.5579	0.5699	0.5778	0.5815	0.5812
2	0.5767	0.5683	0.5560	0.5399	0.5202	0.4971	0.4708	0.4416	0.4097	0.3754
3	0.3391	0.3009	0.2613	0.2207	0.1792	0.1374	0.0955	0.0538	0.0128	--0.0272
4	-0.0660	-0.1033	-0.1386	-0.1719	-0.2028	-0.2311	-0.2566	-0.2791	-0.2985	-0.3147
5	-0.3276	-0.3371	-0.3432	-0.3460	-0.3453	-0.3414	-0.3343	-0.3241	-0.3110	-0.2951
6	-0.2767	-0.2559	-0.2329	-0.2081	-0.1816	-0.1538	-0.1250	-0.0953	-0.0652	-0.0349
7	-0.0047	$+0.0252$	0.0543	0.0826	0.1096	0.1352	0.1592	0.1813	0.2014	0.2192
8	0.2346	0.2476	0.2580	0.2657	0.2708	0.2731	0.2728	0.2697	0.2641	0.2559
9	0.2453	0.2324	0.2174	0.2004	0.1816	0.1613	0.1395	0.1166	0.0928	0.0684
10	0.0435	0.0184	-0.0066	-0.0313	-0.0555	-0.0789	-0.1012	-0.1224	-0.1422	-0.1603
11	-0.1768	-0.1913	-0.2039	-0.2143	-0.2225	-0.2284	-0.2320	-0.2333	-0.2323	-0.2290
12	-0:2234	-0.2157	-0.2060	-0.1943	-0.1807	-0.1655	-0.1487	-0.1307	-0.1114	-0.0912
13	-0.0703	-0.0489	-0.0271	-0.0052	$+0.0166$	0.0380	0.0590	0.0791	0.0984	0.1165
14	0:1334	0.1488	0.1626	0.1747	0.1850	0.1934	0.1999	0.2043	0.2066	0.2069
15	0.2051	0.2013	0.1955	0.1879	0.1784	0.1672	0.1544	0.1402	0.1247	0.1080

BESSEL FUNCTIONS-Continued

z	0	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8
0	0.0000	0.0012	0.0050	0.0112	0.0197	0.0306	0.0437	0.0588	0.0758
1	0.1149	0.1366	0.1593	0.1830	0.2074	0.2321	0.2570	0.2817	0.3061
2	0.3528	0.3746	0.3951	0.4139	0.4310	0.4461	0.4590	0.4696	0.4777
3	0.4861	0.4862	0.4835	0.4780	0.4697	0.4586	0.4448	0.4283	0.4093
4	0.3641	0.3383	0.3105	0.2811	0.2501	0.2178	0.1846	0.1506	0.1161

[^19]
[^0]: \dagger For additional data on capper wire see page 42.

[^1]: Note: Copperweld wire in sizes from No. 25 to No. 40 may be difficult to obtain at present due to a shortage of facilities for making these smaller sizes.
 (DP Insulators, 12 -Inch Wire Spacing. 1000 cycles.

[^2]: *For definitions of physical constants see page 20.

[^3]: \dagger Courtesy of General Radio Co.
 ""Radio Instruments and Measurements," p. 252.

[^4]: "Charts courtesy of Hygrade Sylvania Corp.

[^5]: -Charts courtesy of Hygrade Sylvania Corl.

[^6]: *Note: These formulas are based on theoretical considerations and do not provide accurate results for practical structures; however, they give a fair idea of the relationship between the tube geometry and the constants of the tube.

[^7]: *Note: The low frequency stage gain also is affected by the values of the cathode by-pass condenser and the screen by-pass condenser.

[^8]: * Where direct interchangeobility is ossured GT and L counterports of the preferred metal tubes may be used. March 1, 1943.

[^9]: TO CONVERT:-
 DECIBELS TO NEPERS MUITIPLY BY 0.115129
 NEPERS TO DECIBELS MULTIPLY BY 8.68591

[^10]: For a descriplion and illustration of this type cable see Kendall and Affel, "A Twelve-Channel Carrier Telephone Sysfem for Open-Wire Lines," B.S.T.J., January 1939, Pp. 129.131.

[^11]: Ceuriasy of Bell System Technical Journal

[^12]: "Extract from "Radio-Electricité Cënérale" by R. Mesny.

[^13]: * Extracted from U. S. Dept. of Commerce; National Bureau of Standards, Letter Circular LC 615.

[^14]: *Fig. 4 (similarly in Figs. 5 and 6) indicates excessive retardation in the waves near the critical frequency, i.e., rise of the curves near the critical frequency. Also, at the right of the curves, two critical frequencies are shown for the F_{2} layer. This indicates double refraction of the waves due to the earth's magnetic field, yielding two components of different polarization, i.e., the ordinary and extraordinary wave F_{2}^{0} and $\mathrm{F}_{2}^{\mathrm{y}}$, respectively. In the case of the E layer the ordinary wave usually predominates, the extraordinary wave being too weak to affect radio reception. At Washington, the critical frequency of the extraordinary wave is about $750 \mathrm{kc} / \mathrm{s}$ higher than the ordinary wave for frequencies of $4000 \mathrm{kc} / \mathrm{s}$ or over. Present customary practice is to report critical frequency measurements on the basis of ordinary wave values.

[^15]: *Charts located on pages 147,148 , and 149 .

[^16]: \dagger Reproduced from "Treaty Series No. 948, Telecommunication-General Radio Regulations (Cairo Revision, 1938) and Final Radio Protocol (Cairo Revision, 1938) annexed to the Telecommunication Convention (Madrid, 1932) Between the United States of America and Other Powers", Appendix 1, pp. 234, 235 and 236, United States Government Printing Office, Washington, D. C. References refer to this publication.

[^17]: It is recognized that a great number of spark tronsmitters and simple self-oscillafor transmitters exist in this cervice which are not able to meet these requirements.

 * See preamble, under 3.

[^18]: $\bullet=2.71828 \quad 1 / \bullet=0.367879 \quad \log _{10}{ }^{*}=0.4343 \quad 1 /(0.4343)=2.3026$
 $\log _{10}(0.4343)=1.6378 \quad \log _{10}\left(\theta^{n}\right)=n(0.4343)$

[^19]: Table 4.

 | 0 | 0.0000 | 0.0000 | 0.0002 | 0.0006 | 0.0013 | 0.0026 | 0.0044 | 0.0069 | 0.0102 | 0.0144 |
 | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
 | 1 | 0.0196 | 0.0257 | 0.0329 | 0.0411 | 0.0505 | 0.0610 | 0.0725 | 0.0851 | 0.0988 | 0.1134 |
 | 2 | 0.1289 | 0.1453 | 0.1623 | 0.1800 | 0.1981 | 0.2166 | 0.2353 | 0.2540 | 0.2727 | 0.2911 |
 | 3 | 0.3091 | 0.3264 | 0.3431 | 0.3588 | 0.3734 | 0.3868 | 0.3988 | 0.4092 | 0.4180 | 0.4250 |
 | 4 | 0.4302 | 0.4333 | 0.4344 | 0.4333 | 0.4301 | 0.4247 | 0.4171 | 0.4072 | 0.3952 | 0.3811 |

 | Table 5. |
 | :--- |
 | J ($\mathbf{z})$ |
 | 0 |

