REFERENCE DATA

for

RADIO ENGINEERS

second edition

Federal Telephone and Radio Corporation an associate of International Telephone and Telegraph Corporation 67 Broad Street • New York 4, N. Y.

Copyright 1946 by

Federal Telephone and Radio Corporation

Secend Edifion

Printed in the U.S.A. by
J. J. Litile \& Ives Co., N. Y.

Foreword

Abstract

Widespread acceptance of the four printings of the first edition of Reference Data for Radio Engineers prompted this larger and improved second edition. Like its predecessor, it is presented by the Federal Telephone and Radio Corporation as an aid in the fields of research, development, production, operation, and education. In it will be found all the material that proved so useful in the first edition along with much additional data-some the result of helpful suggestions from readers, others stemming from rapid advances in the art, and still others now made possible by declassification of many war developments.

While the general arrangement remains unchanged, the present edition has been greatly enlarged and a subject index included. Chapters on transformers and room acoustics have been added. The material on radio propagation and radio noise has been revised. Because of their importance in television, in radar, and in laboratory technique, the data on cathode-ray tubes have been considerably expanded.

The section on electrical circuit formulas has been greatly enlarged; additions include formulas on $T-\Pi$ and $Y-\Delta$ transformations, amplitude modulation, transients, and curves and numerous formulas on selective circuits. The attenuator section contains comprehensive design formulas and tables for various types of attenuators. The number of mathematical formulas also has been considerably increased.

As revised, the wave-guide chapter includes equations for both rectangular and cylindrical guides plus illustrations of field distribution patterns. Several methods of coupling to the $\mathrm{TE}_{0,1}$ mode are illustrated. A table of standard rectangular wave guides and connectors, giving useful frequency range and attenuation, has been added. Design curves for the gain and beam width of rectangular electromagnetic horn radiators are included, and a simple formula for the gain of a paraboloid reflector is given.

Acknowledgment is made to Edward J. Content, consulting engineer, for his contribution of the chapter on room acoustics; its inclusion was made possible largely through the courtesy of the Western Electric Company in permitting the use of their engineering data. Acknowledgment also is due to I. E. Lempert, Allen B. Dumont Laboratories, Inc., for the descriptive material on cathode-ray tubes; and to Professor L. Brillouin of Harvard University for advice and suggestions on the wave-guide chapter.
In the compilation of this reference book, the cooperation of the following I.T. \& T. associate companies was invaluable:

International Telecommunication Laboratories, Inc., New York, N. Y. E. M. Deloraine, president, and E. Labin, technical director

American Cable and Radio Corporation, New York, N. Y.

Haraden Pratt, vice president and chief engineer
Standard Telephones and Cables, Ltd., London, England.
C. E. Strong, chief engineer of radio division

International Telephone and Telegraph Corporation, New York, N. Y.
George lewis, assistant vice president, and H. P. Westman, associate editor of Electrical Communication.

Recognition for contribution of specific material:
Federal Telecommunication Laboratories, Inc., New York, N. Y. H. Busignies, director, G. S. Burroughs, W. A. Cobb, S. Frankel, J. J. Glauber, D. D. Grieg, A. G. Kandoian, N. Marchand,* C. R. Muller, E. M. Ostlund, W. Sichak, L. D. Smullin, N. S. Tierney, A. R. Vallarrino, M. W. Wallace, A. J. Warner, and J. K. Whitteker

Federal Telephone and Radio Corporation, Newark, N. J.
E. G. Ports, technical director of radio division, H. Baker, W. F. Bonner, C. L. Howk, W. W. Macalpine, G. T. Royden, and A. K. Wing

Mackay Radio and Telegraph Company, New York, N. Y.
R. McSweeny, C. E. Scholz, and L. Spangenberg

International Standard Electric Corporation, New York, N. Y.
J. C. Frick, G. H. Gray, and E. S. Mclarn

H. H. Buttner, chairman
Radio Reference Book Commitree

H. T. Kohlhaas, editor
Editor of Electrical Communication
\section*{F. J. Mann, assistant editor

Managing Editor of Electrical Communication}

Contents

Chapter 1 - General information
Conversion factors 11
Fractions of an inch with metric equivalents 14
Miscellaneous data 14
Greek alphabet 15
Unit conversion table 16
Electromotive force-series of the elements 18
Position of metals in the galvanic series 18
Atomic weights 19
Centigrade table of relative humidity or percent of saturation 20
Almospheric pressure chart 22
Weather data 23
Temperature extremes 23
Precipitation extremes 23
World temperafures 23
World precipitation 24
Principal power supplies in foreign countries 25
World time chart 27
Electromagnetic frequency spectrum 28
Radio frequency classifications 28
Wavelength vs frequency chart 29
Wavelength vs frequency formulas 29
Frequency tolerances 30
Frequency band widths occupied by the emissions 32
Tolerances for the intensity of harmonics of fixed, land, and broadcasting stations 32
Classification of emissions 33
Relation between decibels and power, voltage, and current ratios 34

Chapter 2 - Engineering and material data

Copper wire table-standard annealed copper 35
Copper wire table-English and metric units 36
Solid copperweld wire-mechanical and electrical properties 37
Standard stranded copper conductors-American wire gauge 38
Machine screw head styles, method of length measurement 38
Standard machine screw data including hole sizes 39
Insulating materials 40
Plastics: trade names 41
Wind velocities and pressures 42
Temperature chart of heated metals 43
Physical constants of various metals and alloys 44
Thermocouples and their characteristics 46
Melting points of solder 47
Spark gap voltages 48
Head of water in feet and approximate discharge rate 49
Materials and finishes for tropical and marine use 50
Torque and horsepower 51
Chapter 3 - Audio and radio design
Resistors and capacitors-color code 52
Resistors, flxed composition 52
Standard color coding for resistors 53
Capacitors, fixed mica dielectric 55
Capacitors, fixed ceramic 57
Inductance of single-layer solenoids. 58
Magnet wire data 60
Reactance charts 61
Impedance formulas 64
Skin effect 71
Network theorems 74
Electrical circuit formulas 74
Attenuators 100
Filter networks 115
Chapter 4-Rectifiers and filters
Typical rectifler circuit connections and circuit data 118
Rectifler filter design-ripple voltage vs LC for choke-input filters 120
Rectifler filter design-ripple voltage vs RC for capacitor-input filters 121

Chapter 5 -Iron-core transformers and reactors

Majar transformer types 122
Major reactor types 122
Temperature, humidity, and pressure effects 123
General limitatians 123
Design of power-supply transformers 124
Round enameled capper wire data 126
Chapter 6 -Vacuúm tubes
Nomenclafure 127
Coefficients 127
Terminology 128
Formulas 129
Performance limitations 130
Electrode dissipatian data 131
Filament characteristics 132
Ulira-high-frequency tubes 134
Cathode-ray tubes 136
Army-Navy preferred list of electran tubes 142
Chapter 7 - Vacuum tube amplifiers
Classificatian 143
General design 143
Graphical design methods 146
Classification af amplifier circuits 155
Cathade follower data 157
Resistance-caupled audio amplifier design 158
Negalive feedback 159
Reduction in gain caused by feedback 160
Distortion 164
Chapter 8-Room acoustics
General considerations for good room acaustics 165
Good acoustics-gaverning factors 165
Room sizes and proportions for good acoustics 165
Optimum reverberation time 166
Computation of reverberation time 169
Electrical power levels required for public address requirements 171
General 177

reference data for radio engineers

Chapter 9 - Wire transmission

Telephone transmission line data 179
Frequency allocation chart for type J and K carrier systems 185
Frequency allocation chart for carrier systems 186
Frequency allocation and modulation steps in the L carrier system (coaxial cable) 188
Noise and noise measurement-wire telephony 189
Telegraph facilities 192
Telegraph printer systems 192
Frequency of printing telegraph systems in cycles per second 192
Comparison of telegraph codes 193
Chapter 10-Radio frequency transmission lines
Formulas for uniform transmission lines 194
Surge impedance of uniform lines 195
Transmission line data 196
Transmission line attenuation due to load mismatch 198
Impedance matching with shorted stub 199
Impedance matching with open stub 199
Impedance matching with coupled section 200
Army-Navy standard list of radio-frequency cables 201
Attenuation of standard r-f cables vs frequency 204
Length of transmission line 205
Attenuation and resistance of transmission lines at ultra-high frequencies 206
Chapter 11 - Wave guides and resonators
Propagation of electromagnetic waves in hollow wave guides 207
Rectangular wave guides 208
Circular wave guides 213
Electromagnetic horns 217
Resonant cavities 219
Some characteristics of various types of resonators 222
Additional cavity formulas 223
Recommended rectangular wave guides 223
Chapter 12-Radio propagation and noise
Propagation of medium and long waves 224
Propagation of short waves 226
Propagation forecasts for short waves 231
Propagation of very short waves 237
U-H-F path length and optical line-of-sight distance range of radio waves 238
Great circle calculations 240
Time interval between transmission and reception of reflected signal 244
Radio noise and noise measurement 244

Chapter 13 - Antennas

Field intensity from an elementary dipole 250
Field of an elementary dipole at great distance 252
Field of an elementary dipole at short distance 252
Field of an elementary dipole at intermediate distance 253
Field intensity from a vertically polarized antenna with base close to ground 253
Vertical radiators 254
Field intensity and radiated power from a half-wave dipole in free space 258
Radiation from end-fed conductor of any length in space 260
Maxima and minima of radiation from a single-wire radiator 261
Rhombic antennas 261
Antenna arrays 263
Chapfer 14 - Non-sinusoidal and modulated wave forms
Relaxation oscillators 272
Electronic integration methods 274
Electronic differentiation methods 276
Fourier analysis" of recurrent wave forms 277
Analysis of commonly encountered wave forms 281
Modulated wave forms 288

Chapter 15 - Mathematical formulas

Mensuration formulas 291
Formulas for complex quantities 294
Algebraic and trigonometric formulas 294
Approximations for small angles. 296
Quadratic equation 296
Arithmelical progression 296
Geometrical progression 297
Combinations and permutations 297
Binomial theorem 297
Maclaurin's theorem 297
Taylor's theorem 297
Trigonometric solution of triangles 298
Complex hyperbolic and other functions 299
Table of integrals 300
Chapter 16 - Mathematical tables
Exponentials 303
Common logarithms of numbers and proportional parts 304
Natural trigonometric functions for decimal fractions of a degree 306
Logarithms of trigonometric functions for decimal fractions of a degree 310
Natural logarithms 314
Hyperbolic sines 316
Hyperbolic cosines 317
Hyperbolic tangents 318
Multiples of 0.4343 318
Multiples of 2.3026 318
Bessel functions 319

General information

Conversion factors

to convert	Info	multiply by	cenversely multiply by
Acres	Square foot	4.356×10^{6}	2.296×10^{-8}
Acres	Square meters	4,047	2.471×10^{-4}
Ampere-hours	Coulomb	3,600	2.778×10^{-6}
Amperes per sq cm	Amperes per sq inch	6.452	0.1550
Ampere turns	Gilberts	1.257	0.7958
Ampere furns per cm	Ampere furns por inch	2.540	0.3937
Atmospheres	Mm of mercury @ $0^{\circ} \mathrm{C}$	760	1.316×10^{-3}
Atmospheres	Feot of water@ $4^{\circ} \mathrm{C}$	33.90	2.950×10^{-2}
Atmospheres	Inches mercury @ $0^{\circ} \mathrm{C}$	29.92	3.342×10^{-2}
Armospheres	Kg per sq metor	1.033×10^{4}	9.678×10^{-5}
Atmospheres	Pounds per sq inch	14.70	6.804×10^{-2}
Btu	Foot-pounds	778.3	1.2
Btu	Joules	1,054.8	9.480×10^{-4}
Btu	Kilogram-calorios	0.2520	3.969
Btu	Horsepower-hours	3.929×10^{-6}	2,545
Bushels	Cubic feet	1.2445	0.8036
Contigrade	Fahrenheit	$1 C^{0} \times 9 / 51+32$	$-32) \times 5 / 9$
Circular mils	Square centimeters	5.067×10^{-8}	1.973×10^{5}
Circular mils	Square mils	0.7854	1.273
Cubic foot	Cords	7.8125×10^{-8}	128
Cubic foet	Gallons (liq USI	7.481	0.1337×10^{-2}
Cubic foet	liters	28.32	3.531×10^{-2}
Cubic inches	Cubic centimeters	16.39	6.102×10^{-2}
Cubic inches	Cubic feat	5.787×10^{-4}	1,728
Cubic inches	Cubic meters	1.639×10^{-6}	6.102×10^{4}
Cubic inches	Gallons (liq USI	4.329×10^{-8}	231
Cubic meters	Cubic feet	35.31	2.832×10^{-2}
Cubic meters	Cubic yards	1.308	0.7646
Degrees (angla)	Radians	1.745×10^{-2}	57.30
Dynes	Pounds	2.248×10^{-8}	4.448×10^{6}
Ergs	Foot-pounds	7.367×10^{-8}	1.356×10^{7}
Fathoms	Feot	6	0.16666×10^{-2}
Foot	Centimeters	30.48	3.281×10^{-2}
Feot of water @ $4^{\circ} \mathrm{C}$	Inches of mercury @ $0^{\circ} \mathrm{C}$	0.8826	1.133×10^{-2}
Foet of waper @ $4^{\circ} \mathrm{C}$	Kg per sq meter	304.8	3.281×10^{-2}

cantinued

to convert	info	muitiply by	conversely muitiply by
Feet of water@ $4^{\circ} \mathrm{C}$	Pounds per sq foot	62.43	1.602×10^{-2}
Foot-pounds	Horsepower-hours	5.050×10^{-7}	1.98×10^{6}
Foot-pounds	Kilogram-meters	0.1383	7.233
Foot-pounds	Kilowatt-hours	3.766×10^{-7}	2.655×10^{6}
Gallons	Cubic meters	3.785×10^{-8}	264.2
Gallans (liq US)	Gallons (liq Br Imp)	0.8327	1.201
Gauss	lines per sq inch	6.452	0.1550
Grams	Dynes	980.7	1.020×10^{-8}
Grams	Grains	15.43	6.481×10^{-2}
Grams	Ounces (avoirdupois)	3.527×10^{-2}	28.35
Grams	Poundals	7.093×10^{-4}	14.10
Grams per cm	Pounds per inch	5.600×10^{-2}	178.6
Grams per cu cm	Pounds per cu inch	3.613×10^{-2}	27.68
Grams per sq cm	Pounds per sq foot	2.0481	0.4883
Hectares	Acres	2.471	0.4047
Horsepower (boiler)	Bru per hour	3.347×10^{6}	2.986×10^{-6}
Horsepower (metric) (542.5 ft-lb per sec)	Bru per minute	41.83	2.390×10^{-2}
Horsepower (metric) (542.5 ft-lb per sec)	Foot-lb per minute	3.255×10^{4}	3.072×10^{-6}
Horsepower (metric) (542.5 ft-lb per sec)	Kg-calories per minute	10.54	9.485×10^{-2}
Horsepower (550 ft-lb per sec)	Bru per minute	42.41	2.357×10^{-2}
Horsepower (550 ft -lb per sec)	foot-lb per minute	3.3×10^{4}	3.030×10^{-6}
Horsepower (metric) (542.5 ft -lb per sec)	Horsepower (550 ft -lb par sec)	0.9863	1.014
Horsepower (550 ft -lb per sec)	Kg-calories per minute	10.69	9.355×10^{-2}
Inches	Centimeters	2.540	0.3937
Inches	Feot	8.333×10^{-2}	12
Inches	Miles	1.578×10^{-6}	6.336×10^{4}
Inches	Mils	1,000	0.001
Inches	Yards	2.778×10^{-2}	36
Inches of mercury @ $0^{\circ} \mathrm{C}$	lbs per sq inch	0.4912	2.036
Inches of water@ $4^{\circ} \mathrm{C}$	Kg per sq meter	25.40	3.937×10^{-2}
Inches of woter	Ounces per sq inch	0.5781	1.729
Inches of water	Pounds persq foot	5.204	0.1922
Joules	Foot-pounds	0.7376	1.356
Joules	Ergs	10^{7}	10^{-7}
Kilogram-calories	Kilogram-metars	426.9	2.343×10^{-8}
Kilogram-calories	Kilojoules	4.186	0.2389
Kilograms	Tons, long (avdp 2240 lb)	9.842×10^{-6}	1,016
Kilograms	Tons, short (avdp 2000 lb)	1.102×10^{-3}	907.2
Kilograms	Pounds (avoirdupois)	2.205	0.4536
Kg per sq meter	Pounds per sq foot	0.2048	4.882
Kilometers	Feot	3,281	3.048×10^{-4}
Kilowatt-hours	Bfu	3,413	2.930×10^{-4}
Kilowatt-hours	Foot-pounds	2.655×10^{6}	3.766×10^{-7}
Kilowatt-hours	Joules	3.6×10^{6}	2.778×10^{-7}
Kilowatt-hours	Kilogram-calories	860	1.163×10^{-8}
Kilowatt-hours	Kilogram-meters	3.671×10^{5}	2.724×10^{-4}
Kilowatt-hours	Pounds carbon oxydized	0.235	4.26
Kilowatt-hours	Pounds water evaporated	3.53	0.283

Conversion factors
 canlinued

to convert	info	multiply by	conversely multiply by
Kilowatt-hours	Pounds water raised from 62° to $212^{\circ} \mathrm{F}$	22.75	4.395×10^{-2}
Liters	Bushels (dry US)	2.838×10^{-2}	35.24
liters	Cubic centimeters	1,000	0.001
Liters	Cubic meters	0.001	1,000
liters	Cubic inches	61.02	1.639×10^{-2}
Liters	Gallons (liq US)	0.2642	3.785
liters	Pints lliq US)	2.113	$0.473{ }^{\prime}$
$\log _{8} N$ or $1_{n} N$	$\log _{10} \mathrm{~N}$	0.4343	2.303
lumens per sq fool	Foot-candles	1	1
lux	Foor-candlos	0.0929	10.764
Meters	Yards	1.094	0.9144
Moters per min	Knots Inautical mi par hour)	3.238×10^{-2}	30.88
Meters per min	Feet per minute	3.281	0.3048
Moters per min	Kilometers per hour	0.06	16.67
Microhms per cm cube	Microhms per inch cube	0.3937	2.540
Microhms per em cube	Ohms per mil foot	6.015	0.1662
Miles (nautical)	Feot	6,080.27	1.645×10^{-6}
Milos (nautical)	Kilometers	1.853	0.5396
Miles (statuta)	Kilometers	1.609	- 0.6214
Miles (statute)	Miles (nautical)	0.8684	1.1516
Milos (statuto)	Foot	5,280	1.894×10^{-4}
Miles par hour	Kilometers per minute	2.682×10^{-3}	37.28
Miles per hour	Feet per minute	88	1.136×10^{-2}
Miles per hour	Knots Inautical mi per hour)	0.8684	1.1516
Miles per hour	Kilometars per hour	1.609	0.6214
Pounds of water (dist)	Cubic foel	1.603×10^{-2}	62.38
Pounds of water (dist)	Gallons	0.1198	8.347
Pounds per eu foot	Kg per cu meter	16.02	6.243×10^{-2}
Pounds per cu inch	Pounds per cu foot	1,728	5.787×10^{-4}
Pounds per sq foot	Pounds per sq inch	6.944×10^{-8}	144
Pounds per sq inch	Kg per sq meter	703.1	1.422×10^{-3}
Poundals	Dynes	1.383×10^{4}	7.233×10^{-5}
Poundals	Pounds \avoirdupois)	3.108×10^{-2}	32.17
Sq inches	Circulor mils	1.273×10^{6}	7.854×10^{-7}
Sq inches	Sq centimeters	6.452	0.1550
Sq foot	Sq meters	9.290×10^{-2}	10.76
Sq miles	Sq yards	3.098×10^{6}	3.228×10^{-7}
Sq miles	Acres	640	1.562×10^{-8}
Sq miles	Sq kilometers	2.590	0.3861
Sq millimeters	Circular mils	1,973	5.067×10^{-4}
Tons, short (avoir 2000 lb)	Tonnes (1000 kg)	0.9072	1.102
Tons, long lavoir 2240 lb)	Tonnes (1000 kg)	1.016	0.9842
Tons, long lavoir 2240 lb)	Tons, short lavoir 2000 lbl	1.120	0.8929
Tons IUS shipping)	Cubic foet	40	0.025
Watts	Bru per minute	5.689×10^{-2}	17.58
Watts	Ergs per second	10^{7}	10^{-7}
Watts	Foot-lb per minute	44.26	2.260×10^{-2}
Watts	Horsepower (550 ft-lb per sec)	1.341×10^{-8}	745.7
Watts	Horsepower (metric) (542.5 ft-lb per sec)	1.360×10^{-8}	735.5
Watts	Kg-calorios per minuto	1.433×10^{-2}	69.77

Fractions of an inch with metric equivalents

fractions of an inch		decimols of an inch	millimeters	fractions of an inch		decimals of an inch	millimeters
1/32	$1 / 64$.0156.0313	0.397	17/52	3/64	. 5156	
			0.794			. 5313	13.494
	\% 64	. 0469	1.191	9/16	85/64	. 5469	13.891
$1 / 16$	54	. 0625	1.588		37/04	. 5625	14.288
		. 0781	1.984			. 5781	14.684
38		. 0938	2.381	1962	39/4	. 5938	15.081
	764	. 1094	2.778			. 6094	15.478
1/8		. 1250	3.175	5/8	41/64	. 6250	15.875
	964	. 1406	3.572			. 6406	16.272
56	1164	. 1563	3.969	21/32	43/64	. 6563	16.669
		. 1719	4.366			. 6719	17.066
816	13/4	. 1875	4.763	1316	45\%	. 6875	17.463
		. 2031	5.159			. 7031	17.859
720	1564	. 2188	5.556	23/2	4764	. 7188	18.256
		. 2344	5.953			. 7344	18.653
1/4	17/64	. 2500	6.350	$3 / 4$	49\%4	. 7500	19.050
		. 2656	6.747			. 7656	19.447
96	1964	. 2813	7.144	25/38	$51 / 4$. 7813	19.844
		. 2969	7.541			. 7969	20.241
56	21/4	. 3125	7.938	${ }^{18} 16$	5364	. 8125	20.638
		. 3281	8.3348.731			. 8281	21.034
11/58	23/4	. 3438		27/5	55/64	. 8438	21.431
$8 / 8$. 3750	9.128	7/8		. 8750	22.225
	25/4	. 3906	10.319	29/32	5764	. 8906	22.622
$13 / 5$	27/64	. 4063			59/64	. 9063	23.019
		$\begin{array}{r} .4219 \\ .4375 \end{array}$	$\begin{aligned} & 10.716 \\ & 11.113 \end{aligned}$	15/10		. 9219	23.416
$7 / 16$	2964					. 9375	$\begin{aligned} & 23.813 \\ & 24.209 \end{aligned}$
		. 43751	$\begin{aligned} & 11.509 \\ & 11.906 \end{aligned}$		61/64	. 9531	
15/8		$\begin{aligned} & .4688 \\ & .4844 \\ & .5000 \end{aligned}$		31/32	${ }^{63} 64$	$\begin{array}{r} .9688 \\ .9844 \\ 1.0000 \end{array}$	$\begin{aligned} & 24.606 \\ & 25.003 \\ & 25.400 \end{aligned}$
	81/64		$\begin{aligned} & 12.303 \\ & 12.700 \end{aligned}$				
1/2				-			

Miscellaneous data

1 cubic foot of water at $4^{\circ} \mathrm{C}$ (weight) 62.43 lb

1 foot of water at $4^{\circ} \mathrm{C}$ (pressure) \qquad 0.43352 lb per sq in

Velocity of light in vacuum \qquad $186,284 \mathrm{mi}$ per sec
Velocity of sound in dry air at $20^{\circ} \mathrm{C}$ 1129 ft per sec
Degree of longitude at equator \qquad 69.17 miles

Acceleration due to gravity, g, at sea-level, $40^{\circ} \mathrm{N}$
Latitude (NY) \qquad 32.1578 ft per sq sec
$\sqrt{2 g}$ 8.02

1 inch of mercury \qquad 1.133 ft water

1 inch of mercury 0.4912 lb per sq in

1 radian \qquad $180^{\circ} \div \pi=57.3^{\circ}$
360 degrees 2π radians
π 3.1416

Sine 1^{\prime} 0.0002929

Side of square \qquad 0.707 diagonal of square

Greek alphabef

name	caplial	small	commonly used to designato
ALPHA	A	a	Angles, coefficients, attenuation constant, absarption factor, area
BETA	B	β	Angles, coefficients, phase constant
GAMMA	Γ	$\boldsymbol{\gamma}$	Complex propagation constant (cap), specific gravity, angles, olectrical conductivity, propagation constant
deita	Δ	δ	increment or decrement (cap or small, determinant (cap), permittivity (cap), density, angles
EPSIION	E	c	Dielectric constant, permittivity, base of nafural logarithms, electric intensity
ZETA	Z	ζ	Coordinates, coefficients
ETA	H	η	Intrinsic impedance, efficiency, surface charge density, hysteresis, coordinates
THETA	θ		Angular phase displacement, time constant, reluctance, angles
IOTA	I	\bullet	Unit vector
KAPPA	K	κ	Susceptibility, coupling coefficient
LAMBDA	$\boldsymbol{\Lambda}$	λ	Permeance (cap), wavelength, attenuation constant
MU	M	μ	Permeability, amplification factor, prefix micro
NU	N	ν	Reluctivity, frequency
XI	回	ξ	Coordinates
OMICRON	0	0	
PI	II	π	3.1416
RHO	P	p	Resistivity, volume charge density, coordinates
SIGMA	Σ		Summation (capl, surface charge density, complex propagation constant, electrical conductivity, leakage coefficient
TAU	T	τ	Time constant, volume resistivity, fime-phase displacement, transmission factor, density
UPSILON	T	v	
PHI	¢	$\phi \varphi$	Scalar potential (eap), magnetic flux, angles
CHI	X	χ	Electric susceptibility, angles
PSI	Ψ	ψ	Dielectric fux, phase difference, coordinates, angles
OMEGA	Ω	ω	Resistance in ohms (capl, solid angle (capl, angular velocity
Small letter is used except where capital is indicated.			

From "Radio،" May, 1944 icompiled by John M. Borst)
The table gives the name and defining equation for each unit in six systems and shows factors for the conversion of all units from one system into any other.
Column 3, "equation," of the table lists the relotionships of the physical quantities involved. Consider, as an example, column 5 ,
1 esu $=$ N emu. The conversion foctor in this column can be applied in ony of the following ways:

18

Electromotive force series of the elements

element	volts	ion	element	volts	Ion
Lithium	2.9595		Tin	0.136	
Rubidium	2.9259		Lead	0.122	Pb^{++}
Potassium	2.9241		Iron	0.045	Fe^{+++}
Strontium	2.92		Hydrogen	0.000	
Barium	2.90		Antimony	-0.10	
Calcium	2.87		Bismuth	-0.226	
Sodium	2.7146		Arsenic	-0.30	
Magnesium	2.40		Copper	-0.344	Cu^{++}
Aluminum	1.70		Oxygen	-0.397	
Beryllium	1.69		Polonium	-0.40	
Uranium	1.40		Copper	-0.470	Cu^{+}
Manganeso	1.10		lodine	-0.5345	Cu
Tellurium	0.827		Tellurium	-0.558	Te ${ }^{++++}$
Zinc	0.7618		Silver	-0.7978	
Chromium	0.557		Mercury	-0.7986	
Sulphur	0.51		lead	-0.80	Pb^{++++}
Gallium	0.50		Palladium	-0.820	
Iron	0.441	Fe^{++}	Platinum	-0.863	
Cadmium	0.401		Bromine	-1.0648	
Indium	0.336		Chlorine	-1.3583	
Thallium	0.330		Gold	-1.360	Au^{++++}
Cobalt	0.278		Gold	-1.50	Au^{+}
Nickel	0.231		Fluorine	-1.90	

Position of metals in the galvanic series

Corroded end (anodic, or least noble)	Nickel (active) Inconel (active)
Magnesium	Brasses
Magnesium alloys	Copper
Zinc	Bronzes
Aluminum $2 S$	Copper-nickel alloys
Cadmium	Monel
	Silver solder
Aluminum 17ST	Nickel (passive)
Steel or Iron	Inconel (passive).
Cast Iron	Chromium-iron (passive)
Chromium-iron lactive)	18-8 Stainless (passive)
Ni-Resist	18-8-3 Stainless (passive)
18-8 Stainless (activel	Silver
18-8-3 Stainless (activel	Graphite
Lead-fin solders	Gold
Lead Tin	Protected ond (cathodic, or most noble)

Atomic weights

element	symbol	atomic number	afomic weight	-lement	symbol	atomic number	afomic weight
Aluminum	Al	13	26.97	Molybdenum	Mo	42	95.95
Antimony	Sb	51	121.76	Neodymium	Nd	60	144.27
Argon	A	18	39.944	Neon	Ne	10	20.183
Arsonic	As	33	74.91	Nickel	Ni	28	58.69
Barium	Ba	56	137.36	Nitrogen	N	7	14.008
Beryllium	Bo	4	9.02	Osmium	Os	76	190.2
Bismuth	Bi	83	209.00	Oxygen	O	8	16.0000
Boron	B	5	10.82	Palladium	Pd	46	106.7
Bromine	Br	35	79.916	Phosphorus	P	15	30.98
Cadmium.	Cd	48	112.41	Platinum	Pt	78	195.23
Calcium	Ca	20	40.08	Potassium	K	19	39.096
Carbon	C	6	12.010	. Praseodymium	Pr	59	140.92
Corium	Ce	58	140.13	Protactinium	Pa	91	
Cesium	Cs	55	132.91	Radium	Ra	88	226.05
Chlorine	Cl	17	35.457	Radon	Rn	86	222
Chromium	Cr	24	52.01	Rhenium	Re	75	186.31
Cobalt	Co	27	58.94	Rhodium	Rh	45	102.91
Columbium	Cb	41	92.91	Rubidium	Rb	37	85.48
Copper	Cu	29	63.57	Ruthenium	Ru	44	101.7
Dysprosium	Dy	66	162.46	Samarium	Sm	62	150.43
Erbium	Er	68	167.2	Scandium	Sc	21	45.10
Europium	Eu	63	152.0	Selenium	Se	34	78.96
Fluorine	F	9	19.00	Silicon	Si	14	28.06
Gadolinium	Gd	64	156.9	Silver	Ag	47	107.880
Gallium	Ga	31	69.72	Sodium	Na	11	22.997
Germanium	Ge	32	72.60	Strontium	Sr	38	87.63
Gold	Au	79	197.2	Sulfur	5	16	32.06
Hafnium	Hif	72	178.6	Tantalum	To	73	180.88
Helium	He	2	4.003	Tellurium	To	52	127.61
Holmium	Ho	67	164.94	Terbium	Tb	65	159.2
Hydrogen	H	1	1.0080	Thallium	TI	81	204.39
Indium	In	49	114.76	Thorium	Th	90	232.12
lodine	1	53	126.92	- Thulium	Tm	69	169.4
Iridium	Ir	77	193.1	Tin	Sn	50	118.70
Iron	Fo	26	55.85	Titanium	Ti	22	47.90
Krypton	Kr	36	83.7	Tungsten	W	74	183.92
Lanthanum	La	57	138.92	Uranium	U	92	238.07
Lead	Pb	82	207.21	Vanadium	\checkmark	23	50.95
Lithium	Li	3	6.940	Xenon	Xe	54	131.3
Lutecium	Lu	71	174.99	Ytrorbium	Yb	70	173.04
Magnesium	Mg	12	24.32	Yitrium	Y	39	88.92
Manganese	Mn	25	54.93	Zinc	Zn	30	65.38 91.22
Mercury	Hg	80	200.61	Zirconium	Zr	40	91.22

from the Journal of the American Chemical Society, 1943.

[^0]

1 inch of mercury $=0.4912$ pounds per square inch

Weather daia

Compiled from Climate and Mon, Yearbook of Agriculture, U. S. Dept. of Agriculture, U. S.
Govt. Printing Office, Washingtion, D. C., 1941.

Temperature extremes

United Stales
lowest temperature
Highest tomperoture
Alaska
lowest temperature
Highest tomperature
World
lowest temperoture
Highest femperafure
Lowest mean temperature lannual)
Highest mean temperoture lannuall
$-66^{\circ} \mathrm{F}$ Riverside Range Station, Wyoming TFeb. 9, 19331
$134^{\circ} \mathrm{F} \quad$ Greenland Ranch, Dearh Valley, California Uuly 10, 1933)
$-78^{\circ} \mathrm{F} \quad$ Fort Yukon Uon. 14, 19341
$100^{\circ} \mathrm{F}$ Fort Yukan
$-90^{\circ} \mathrm{F} \quad$ Verkhoyansk, Siberia IFeb. 5 and 7,18921
$136^{\circ} \mathrm{F} \quad$ Azizio, tibya, North Aírica (Sept. 13, 1922
$-14^{\circ} \mathrm{F}$ Fromheim, Anforctico
Massawa, Eritrea, Africa

Precipitation extremes

United States
Wettesi stote
Dryest state
Maximum recorded
Minimum recorded
World
Maximum racorded

Minimum recorded

Couisiona-average annual rainfoll 55.11 inches
Nevada-average annual rainfoll 8.81 inches
New Smyrno, flo., Oct. 10, 1924-23.22 inches in 24 hours
Bogdad, Colif., 1909-1913-3.93 inches in 5 years
Greenland Ranch, Calif.- 1.35 inches annual overage
Cherrapunil, India, Aug. 1841-241 inches in 1 month
(Average onnual rainfoll of Cherrapunji is 426 inches)
Bagui, Luzan, Philippines, July 14-15, 1911-46 Inches in 24 hours
Wadi Halfo, Anglo.Egyption Sudan and Awan, Egypt ore in the "rainless" area; average onnual rainfall is too small to be measured

World temperatures

Ierrilory	$\underset{0_{F}}{\text { maximum }}$	$\underset{0}{\operatorname{minimum}}$	Perritory	${\underset{o f}{\text { maximum }}}^{\text {man }}$	
NORTH AMERICA			ASIA continued		
Alaska	100	-78	India	120	-19 19
Canada	103	-70	Iraq	123	19 -7
Canal Zone	97	63	Jopan	101	-7
Greenland	86	-46	Malay States	97	66
Maxico	118	11	Philippine Islands	101	58
U. S. A.	134	-66	Siam	108	52
West Indies	102	45	Tibet	85	-20
West Indies			Turkey	111	-22
SOUTH AMERICA			U. S. S. R.	109	-90
Argentina	115	-27			
Bolivia	82	25	AFRICA		
Brazil	108	21	Algerio	133	28
Chile	99	19	Anglo-Egyption Sudan	126	28 33
Venezuala	102	45		91 97	33 34
			Belgion Congo	97 124	34
EUROPE			Egypt Ethiopia	124	31 32
British Islos	100	4 -14	Ethiopio	111	32
France	107 100	-14 -16	French Equotoriol Africa French West Alrica	118 122	46
Germany	71	-6	litation Somaliand	93	61
lioly	114	4	libya	136	35
Norway	95	-26	Moroceo	119	5
Spain	124	10	Rhodesio	103	25
Sweden	92	-49	Tunisio	122	28
Turkey	100	17	Union of South Africa	111	21
U. S. S. R.	110	-61			
ASIA			Austrolla	127	19
Arobia	114	53	Howaii	91	51
China	111	-10	New Zealand	94	23
East Indies	101	60	Samoan lsiands	98	61
Froneh Indo-China	113	33	Soloman Islands	97	70

World precipitation

ferrifory	hlghest everage				fowest averoge				$\begin{aligned} & \text { yearly } \\ & \text { average } \\ & \text { inches } \end{aligned}$	
	Jan inches	April Inches	July inches	Ol inches	San inches	Aprll inches	July inches	Ol inches		
NORTH AMERICA										
Alasko	13.71	10.79	8.51	22.94	. 15	. 13	. 93	. 37	43.40	
Conada	8.40	4.97	4.07	6.18	. 48	. 31	1.04	. 73	26.85	
Conal Zone	3.74	4.30	18.00	15.13	.91	2.72	7.28	10.31	97.54	
Greanlond	3.46	2.44	3.27	6.28	. 35	. 47	. 91	. 94	24.70	
Mexico	1.53	1.53	13.44	5.80	. 04	.00	.43	. 35	29.82	
U. S. A.									29.00	
West Indies	4.45	6.65	5.80	6.89	. 92	1.18	1.53	5.44	49.77	
Bolivia	6.34	1.77	. 16	1.42	3.86	1.46	. 16	1.30	24.18	
Brazil	13.26	12.13	10.47	6.54	2.05	2.63	. 01	. 05	55.42	
Chilo	11.78	11.16	16.63	8.88	. 00	. 00	. 03	. 00	46.13	
Vonozuala	2.75	6.90	6.33	10.44	. 02	.61	1.87	3.46	40.01	
EUROPE										
British Isles	5.49	3.67	3.78	5.57	1.86	1.54	2.38	2.63	36.16	
France	3.27	2.64	2.95	4.02	1.46	1.65	. 55	2.32	27.48	
Germany	1.88	2.79	5.02	2.97	1.16	1.34	2.92	1.82	26.64	
'celand	5.47	3.70	3.07	5.95	5.47	3.70	3.07	5.59	52.91	
lioly	4.02	4.41	2.40	5.32	1.44	1.63	. 08	2.10	29.74	
Norway	8.54	4.13	5.79	8.94	1.06	1.34	1.73	2.48	40.51	
Spain	2.83	3.70	2.05	3.58	1.34	1.54	. 04	1.77	22.74	
Swedon	1.52	1.07	2.67	2.20	. 98	. 78	1.80	1.60	18.12	
Turkey	3.43	1.65	1.06	2.52	3.43	1.65	1.06	2.52	28.86	
U. S. S. R.	1.46	1.61	3.50	2.07	. 49	. 63	. 20	. 47	18.25	
ASIA										
Arabla	1.16	. 40	. 03	. 09	. 32	. 18	. 02	. 09	3.05	
Ching	1.97	5.80	13.83	8.92	. 15	. 61	5.78	. 67	50.63	
East Indles	18.46	10.67	6.54	10.00	7.48	2.60	. 20	. 79	78.02	
Fronch Indo-China	. 79	4.06	12.08	10.61	. 52	2.07	9.24	3.67	65.64	
India	3.29	33.07	99.52	13.83	. 09	. 06	. 47	. 00	75.18	
Iraq	1.37	. 93	. 00	. 08	1.17	. 48	. 0	. 05	6.75	
Jopan	10.79	8.87	9.94	7.48	2.06	2.83	5.02	4.59	70.18	
Maloy States	9.88	7.64	6.77	8.07	9.88	7.64	6.77	8.07	95.06	
Philippine Islands	2.23	1.44	17.28	10.72	. 82	1.28	14.98	6.71	83.31	
Siom	. 33	1.65	6.24	8.32	. 33	1.65	6.24	8.32	52.36	
Turkey	4.13	2.75	1.73	3.34	205	1.73	. 21	. 93	25.08	
U. S. S. R.	1.79	2.05	3.61	4.91	. 08	. 16	. 10	. 06	11.85	
AFRICA										
Algeria	4.02	2.06	. 35	3.41	. 52	. 11	. 00	. 05	9.73	
Anglo-Egyption Sudan	. 08	4.17	7.87	4.29	. 00	.00	. 00	. 00	18.27	
Angola	8.71	5.85	. 00	3.80	. 09	. 63	. 00	. 09	23.46	
Belgion Congo	9.01	6.51	. 13	2.77	3.69	1.81	. 00	1.88	39.38	
Egypt	2.09	. 16	. 00	. 28	. 00	. 00	. 00	. 00	3.10	
Ethiopla	. 59	3.42	10.98	3.39	. 28	3.11	8.23	. 79	49.17	
French Equatorial Aírica	9.84	13.42	6.33	13.58	. 00	. 34	. 04	. 86	57.55	
French West Africe	. 10	1.61	8.02	1.87	.00	. 00	. 18	. 00	19.51	
Italion Somaliland	. 00	3.66	1.67	2.42	. 00	3.60	1.67	2.42	17.28	
Libya	3.24	. 48	. 02	1.53	2.74	. 18	. 00	. 67	13.17	
Moroceo	3.48	2.78	. 07	2.47	1.31	. 36	. 00	. 23	15.87	
Rhodesio	8.40	. 95	. 04	1.20	5.81	. 65	. 00	. 88	29.65	
Tunisio	2.36	1.30	. 08	1.54	2.36	1.30	. 08	1.54	15.80	
Union of South Africu	6.19	3.79	3.83	5.79	. 06	. 23	.27	. 12	26.07	
AUSTRALASIA										
Austrolio	15.64	5.33	6.57	2.84	. 34	. 8.5	. 07	. 00	28.31	
Howaii	11.77	13.06	9.89	10.97	3.54	2.06	1.04	1.97	82.43	
Now Zealand	3.34	3.80	5.55	4.19	2.67	2.78	2.99	3.13	43.20	
Samman Is lands	18.90	11.26	2.60	7.05	18.90	11.26	2.60	7.05	118.47	
Solomon istands	13.44	8.24	6.26	7.91	13.44	8.24	6.26	7.91	115.37	

Principal power supplies in foreign countries

merritory	de volts	ac volts	frequency
NORTH AMERICA			
Alasko		110,220	60
British Honduros	110,220		
Canada	110	*110, 150, 115, 230	60, 25
Costo Rica	110	*110	
Cuba	110, 220	* 110,220	60
Dominicon Republic	110	*110, 220	60
Guaramolo	220, 125	* 110, 220	60, 50
Haiti		110, 220	60,50
Honduros	110, 220	*110, 220	
Mexico	110, 220	* $110,125,115,220,230$	60, 50
Newfoundland		110, 115	50, 60
Nicaragua	110	*110	
Panama tRepublic)		110,220	60, 50
Ponama Conal Zonel		110	25
Puerto Rico	110, 220	-110	60
Salvador	110, 220	*110	60
Virgin Islands	110, 220		
WEST INDIES			
Bohamos is.		115	60
Barbados		110	50
Bermudo		110	60
Curacao		127	50
Jemaico		110	40, 60
Nortinique	110	*110	50
Trinidod		110,220	60
SOUTH AMERICA			
Argentina	- 220	-220, 225	50, 60, 43
Belivio	110	*110, 220 , 120	50, 60
Brazil	110, 120, 220	110, 115, 120, 125, 220, 230	50, 60
Chile	220,110	* 220 , 150	50, 60
Ccuador		*110, 220, 150	60, 50
Paroguoy	- 220	220,	50, 50
Peru	220, 110	- 220,110	60, 50
Uruguay	220	*220	
Venezuela	110,220	*110	50, 60
EUROPE			
Albonio	220	*220, 125, 150	50
Austria	220, 110, 150	- 220 , 120, 127, 110	50
Azores	220	220	50
Belgium	220, 110, 120	*220, 127, 110, 115, 135	50, 40
Bulgoria	220, 120	-220, 120, 150	50
Cyprus (Br.)	-220	110 , 110, 127	50
Czechoslovakia	220, 120, 150, 110	- $220,110,115,127$	50,42
Denmork	220, 110	- $220,120,127$	50
Estonio	* 220,110	220, 127	50
Finlond	*120, 220, 110	220, 120, 115, 110	50
Fronce	110, 220, 120, 125	* 110, 115, 120, 125, 220, 230	50, 25
Germony	220, 110, 120, 250	*220, 127, 120, 110	50, 25
Gibraltar	440, 220	\%110	76
Greece	- $220,110,150$	* $127,110,220$	50
Hungary	220, 110, 120	*100, 105, 110, 220, 120	42,50
Icelond		220	50
Irish Free State	-220	*220, 200 ,	
Itoly	110, 125, 150, 220, 250, 160	$\begin{aligned} & \text { F150, } 125,120,110,115,260,220 \text {, } \\ & 135 \end{aligned}$	42,50,45
Latvio	220, 110	${ }^{*} 220,120$	50
lithuania	220, 110	*220	50
Malıo		105	100
Monaco		110	42
Netherlands	220	220, 120, 127	50
Norway	220	${ }^{+} 220,230,130,127,110,120,150$	50
Polond	220, 110	*220, 120, 110	50
Portugal	220, 150, 125	-220, 110, 125	50, 42
Rumonio	*220, 110, 105, 120	120, 220, 110, 115, 105	50, 42
Russio	220, 110, 120, 115, 250	*120, 110, 220	50
Spain	*110, 120, 115, 105	*120, 125, 150, 110, 115, 220, 130	
Sweden	220, 110, 120, 115, 250	-220, 127, 110, 125	50, 20, 25
Switzerlond	220, 120, 110, 150	${ }^{-120}, 220,145,150,110,120$	50, 40
Turkey	110, 220	$\square 220,110$	50

Principal power supplies in foreign countries continued

Ierritery	de volis	ac volis	1 frequency
EUROPE canfinued United Kingdom Jugoslovia	$\begin{aligned} & 230,220,240 \\ & 110,120 \end{aligned}$	*230, 240 , others *120, 220, 150	$\begin{aligned} & 50,25,40 \\ & 50,42 \end{aligned}$
ASIA Arobio British Maloyo		230	50
Fod. Maloy States Non-Fed. Malay Spares	230	230	50, 60,40
Siraits Settiements	- 230	230	50
North Barneo		110	60
Ceylon	220	230	50, 60
China	220, 110	*110, 200, 220	50, 60, 25
Howail		110, 220	60, 25
Indio	220, 110, 225, 230, 250	230, 220, 110, others	50, 25
French Indo-China	110, 120, 220, 240	* 120, 220, 110, 115, 240	50
Iron IPersial	220, 110	220	50
Iroa	-220, 200	220, 230	50
Jopan	100	* 100,110	50, 60
Manchuria		110	60, 50, 25
Palestine		220	
Philippine lslonds		220	60
Syria		110, 115, 220	50
Siom		100	50
Turkey	220, 110	- 220,110	50
AFRICA Angola (Port.)		110	50
Algeria	220	*115, 110, 127	50
Belgian Congo		220	60
British West Afrlco	+220	230	50
British Eost Africo	+220	*240, 230, 110, 100	50, 60, 100
Conary Islands	110	*127. 110	50
Egypt	220	$\begin{aligned} & 200,110,220 \\ & 220,250 \end{aligned}$	$\begin{aligned} & 50,40 \\ & 50 \end{aligned}$
Italion Arica			
Cyrenaica	150	* 110,150	50
Eritrea		127	50
Libya (Tripolil		125, 110, 270	50, 42, 45
Somaliland	120	-230	50
Moroceo (fr. 1	110	115,110	
Moroceo (Spanish)	200	* $127,110,115$	50
Madogasear (Fr.J		120	50
Senegal (fr.d	230	120	50
Tunisio	110	* $110,115,220$	50
Union of South Africa	220, 230, 240, 110	* $220,230,240$	50
OCEANIA			
Australia New South Woles			
New South Woles Victorio	-240	+230	50
Queenslond	220, 240	-240	50
South Austrolla	200, 230, 220	- $200,230,240$	50
West Australia	-220, 110,230	250	40
Tasmania	230	+240	50
New Zealand	230	-230	50
Fiji islonds	240, 110, 250		
Soclety Islands Samoa		120	60 50

Note: Where both ac and de are available, an asterisk 间 indicates the trpe of supoly and voltage predominating. Where approximately equal quantities of ac and de are availabla, an asterisk precedes each of the principal volrages. Volrages and frequencies are listed in order of preference.
The electrical authorlties of Great Britaln have adopied a plan of unitying elecirical distribution systems. The standard potential for both oc and de supplies will be 230 volts. Sysiems using other volfoges will be chonged over. The standard oc frequency will be 50 cycles.

Caution: The listings in these tables represent types of electrical supplies most generally used in particular countries. For powar supply characteristies of particular elties of fareign countries, refer to the country section of World Electrical Markets, a pualication of the U. S. Department of Commerce, Bureau of Foreign and Domestic Commerce, Washington, D. C. In cases where definite information relative to specific locations is necessory, the Electrical Division of the above-named Bureau should be consulted.

pupppony MojBuItoM	E E 高 E E E E E E E E	\pm
d！̣uapejos men 		
\＃Baosoqpyy＇ApupAs beulns mon＇ousnoqjew ubns＇ousqsym		$\frac{0}{2}$
－กฐุกyวuロW ubdop＇ueseys		
！oysuous＊olluow Buox 6ион＇seqejes		
Bulwunx＇misueqว 		
！1410a MeN 4이KOS＇K워№g		$\begin{array}{ll} c & 6 \\ \frac{5}{5} & 0 \\ 3 & 0 \end{array}$
mossow porbupue7		
｜nquopsㄹ umofedos＇Oapos		
แ⿰亻⿻乚㇒ ofso＂u！preg ‘！sobuen		
$1{ }^{\circ}{ }^{\circ} 9$		
Plupew sacd＇uopuol 		
ג๖ఖロロ puopes		
Opncd oos soluos＇oly		
uopjunsy＇zodol ojly ouend＇obephos ppnuseg＇sell soueng		
puroued＇¥to人 meN ｜0ヵциоW＇＇owly DUDADH＇jotog		
		送
fsoos 3ul30d osspupa uns		O 0 0 0 0 0
		$\begin{aligned} & \leqslant \frac{1}{6} \\ & 50 \\ & 50 \end{aligned}$
epucisi up！ipmeh		
Downs＇of！ayn！ 		

Radio frequency classifications

Wavelength vs frequency chart

Conversion factors for wavelength vs frequency chart

for frequencies from	multiply \boldsymbol{f} by	multiply $\boldsymbol{\lambda}$ by	
$30-$	300 kilocycles	0.1	
$300-$	3,005 kilocycles	1.0	10.0
$3,030-$	30,000 kilocycles	10.0	1.0
$30,030-$	305,000 kilocycles	100.0	0.1
$30,030-3,030,000$ kilocycles	$1,000.0$	0.01	
$3,000,000-30,000,000$ kilocycles	$10,000.0$	0.001	
			0.0001

Wavelength vs frequency formulas
$\begin{aligned} \text { Wavelength in meters, } \lambda_{m} & =\frac{300,000}{\text { frequency in kilocycles }} \\ \text { Wavelength in feet, } \lambda_{f} & =\frac{300,000 \times 3.28}{\text { frequency in kilocycles }}\end{aligned}$

Frequency tolerances

Cairo revision 1938

frequency bands (wavelengths)	column 1	column 2
A. From 10 to 550 ke 130,000 ta 545 meters): a. Fixed stations b. Land statians c. Mobile stations using frequencies other than those af bands indicated under (d) d. Mobile stations using frequencies of the bands $110-160 \mathrm{kc}$ (2,727 to 1,875 meters), $365-515 \mathrm{kc}(822$ to 583 meters \dagger e. Aircraft statians f. Broadcasting stations	$\begin{aligned} & 0.1 \% \\ & 0.1 \% \\ & 0.5 \% \\ & 0.5 \%^{*} \\ & 0.5 \% \\ & 50 \text { cycles } \end{aligned}$	$\begin{aligned} & 0.1 \% \\ & 0.1 \% \\ & 0.1 \% \\ & 0.3 \%^{*} \\ & 0.3 \% \\ & 20 \text { cycles } \end{aligned}$
B. From 550 to $1,500 \mathrm{kc}(545$ to 200 meters): a. Broadcasting statians b. Land stations c. Mobile stations using the frequency of $1,364 \mathrm{kc}$ 1220 meters)	$\begin{gathered} 50 \text { cycles } \\ 0.1 \% \\ 0.5 \% \end{gathered}$	$\begin{gathered} 20 \text { cycles } \\ 0.05 \% \\ 0.1 \% \end{gathered}$

C. From 1,500 to $6,000 \mathrm{kc}$ (200 to 50 meters):
a. Fixed stations
b. Land stations
c. Mobile stations using frequencies ather than those of bands indicated in (d):
$1,56)$ to $4,000 \mathrm{kc}(192.3$ to 75 meters)
4,000 to $6,050 \mathrm{kc}(75$ to 50 meters)
d. Mobile stations using frequencies within the bands: $4,115$ to $4,165 \mathrm{kc} 172.90$ to 72.03 meters) $\}$ 5,500 to $5,550 \mathrm{kc}(54.55$ to 54.05 meters) $\}$

- Aircraft stations
f. Broadcasting:
between 1,505 and $1,690 \mathrm{kc} 1200$ and 187.5 meters) between 1,600 and $6,000 \mathrm{kc}$ (187.5 and 50 meters)
D. From 6,000 to $30,000 \mathrm{kc}(50$ to 10 meters):
a. Fixed stations
b. Land stations
c. Mobile stations using frequencies other than those of bands indicated under (d)
d. Mobile stations using frequencies within the bands: 6,200 to $6,250 \mathrm{ke}(48.39$ to 48 meters) 8,230 to $8,330 \mathrm{kc}(36.45$ ta 36.01 meters) 11,000 to $11,100 \mathrm{kc}$ (27.27 to 27.03 meters) 12,340 to $12,500 \mathrm{kc}(24.31$ to 24 meters) 16,460 to $16,660 \mathrm{kc}(18.23$ to 18.01 melers) 22,000 to $22,200 \mathrm{kc}(13.64$ to 13.51 meters)
e. Aircraft stations
f. Broadcasting stations

Calumn 1: Transmitters in service now and until January 1, 1944, ofter which date they will conform to the tolerances indicated in column 2.
Column 2: New transmitters installod beginning January 1, 1940.

* :eo preamble, under 3.
\dagger It is recognized that a great number of spark transmitters and simple self-oscillator transmitters exist in this service which ore not oble to meet these requirements.

The frequency tolerance is the maximum permissible separation beween the actual frequency of an emission and the frequency which this emission should have (frequency notified or frequency chosen by the operator).

This separation results from the following errors:
a. Error made when the station was calibrated; this error presents a semipermanent character.
b. Error made during use of the station lerror variable from one transmission to another and resulting from actual operating conditions: ambient temperature, voltage of supply, antenna, skill of the operator, et ceteral. This error, which is usually small in other services, is particularly important in the case of mobile stations.
c. Error due to slow variations of the frequency of the transmitter during a transmission.

Note: In the case of transmissions without a carrier wave, the preceding definition applies to the frequency of the carrier wave before its suppression.

In the case of ship stations, the reference frequency is the frequency on which the transmission begins, and the figures appearing in the present table, marked by an asterisk, refer only to frequency separations observed during a ten-minute period of transmission.

In the frequency tolerance, modulation is not considered.
Note 1: The administrations shall endeavor to profit by the progress of the art in order th reduce frequency tolerances progressively.
Note 2: It shall be understood that ship stations working in shared bands must observe the tolerances applicable to land stations and must conform to article 7, paragraph 21 (2) (a). [No. 186.]
Note 3: Radiotelephone stations with less than 25 watts power, employed by maritime beacons for communications with beacons isolated at sea, shall be comparable, with reference to frequency stability, to mobile stations indicated in C above.
Note 4: Ships equipoed with a transmitter, the power of which is under 100 watts, working in the band of 1560-4003 ke (192.3-75 meters), shall not be subject to the stipulations of column 1 .

Reproduced from "Treaty Series No. 948, Telecommunicatlon-General Radio Regulations
(Coiro Revision, 1938) and Final Radio Protocal (Cairo Revision, 1938) annexed to the Tele. communication Convention (Madrid, 1932) Between the United States of America and Other Powers," Appendix 1, pp. 234, 235 and 236, United States Government Printing Office, Washington, D. C. References refer to this publication.

The frequency bands necessapy for the various types of transmission, at the present state of technical development, are indicated below. This table is based solely upan amplifude modulation. For frequency or phase modulation, the band widths necessary for the various transmissions are many times greater.

type of transmission	fotal width of the band in cycles for transmission with iwo sidebands
AD Continuous waves, no signaling	
Al Telegraphy, pure, continuous wave Morse code Buudot code Stop-start printer	Numerically equal to the telegraph speed in bauds for the fundamental frequency, 3 times this width for the 3d harmonic, etc. [For a code of 8 time elements (dots or blanks) per letter and 48 time elements per word, the speed in bauds shall be equal to 0.8 times the speed in words per minuto.]
Scanning-type printer	$300-1,000$, for speeds of 50 words per minute, according to the conditions of operation and the number of lines scanned (for example, 7 or 121. Harmonics are not considered in the above values.)

A2 Telegraphy modulated to musical

Figures appearing under AI, plus twice the highest modulation frequency.

| A3 Commercial radiotelephony | Twice the number indicated by the C.C.I.F. Opinions |
| :--- | :--- | labout 6,000 to 8,000). ${ }^{1}$

15,000 to 20,000 .

| A4 Facsimile | Approximately the ratio between the number of |
| :--- | :--- | picture components ${ }^{2}$ to be transmifted and the number of seconds necessary for the transmission.

AS Television

Approximately the product of the number of picture components ${ }^{2}$ multiplied by the number of pictures transmitted per second.

1 If is recognized that the band width may be wider for multiple-channel radiotelephony and secret rodiotelephony.
2 Two pieture components, one black and one white, constitute a evele: thus, the madulation
frequency equals one half th. number of components transmifted per second.

* See Footnote under Frequency Tolerances, Treaty Series No. 943, Telecommunication.

Tolerances for the infensity of harmonics

of fixed, land, and broadcasting stations ${ }^{1}$ Caira revisian, 1938*

frequency bands	folerances
Frequency under $3,000 \mathrm{kc}$ (wavelength above 100 meters)	The field intensity produced by any harmonic must be under $300 \mu v / \mathrm{m}$ at 5 kilometers from the trans- mitfing antenna.

Frequency above 3,000 ke fwavelength The power of a harmonic in the antenna must be under 100 metersl 40 db under the power of the fundamental, but in no case may it be above 200 milliwatts. ${ }^{2}$

[^1]
Classification of emissions Cairo revision, 1938*

1. Emissions shall be classified below according to the purpose for which they are used, assuming their modulation or their possible keying to be only in amplitude.

a. Continuous waves:

Type AO. Waves the successive oscillations of which are identical under fixed conditions. ${ }^{1}$
Type Al. Telegraphy on pure continuous waves. A continuous wave which is keyed according to a telegraph code.
Type A2. Modulated telegraphy. A carrier wave modulated at one or more audible frequencies, the audible frequency or frequencies or their combination with the carrier wave being keyed according to a telegraph code. Type A3. Telephony. Waves resulting from the modulation of a carrier wave by frequencies corresponding to the voice, to music, or to other sounds. Type A4. Facsimile. Waves resulting from the modulation of a carrier wave by frequencies produced at the time of the scanning of a fixed image with a view to its reproduction in a permanent form.
Type A5. Television. Waves resulting from the modulation of a carrier wave by frequencies produced at the time of the scanning of fixed or moving objects. ${ }^{2}$
Note: The band widths to which these emissions correspond are indicated under Frequency-Bond Widths Occupied by the Emissions.

b. Damped waves:

Type B. Waves composed of successive series of oscillations the amplitude of which, after attaining a maximum, decreases gradually, the wave trains being keyed according to a telegraph code.
2. In the above classification, the presence of a carrier wave is assumed in all cases. However, such carrier wave may or may not be transmitted.
This classification does not contemplate exclusion of the use, by the administrations concerned, under specified conditions, of types of waves not included in the foregoing definitions.
3. Waves shall be indicated first by their frequency in kilocycles per second (kc) or in megacycles per second (Mcl. Following this indication, there shall be given, in parentheses, the approximate length in meters. In the present Regulations, the approximate value of the wavelength in meters is the quotient of the number 300,000 divided by the frequency expressed in kilocycles per second.
1 These waves are used only in special cases, such as standard frequency omissions.
${ }^{2}$ Objects is used here in the optical sense of the word.
*See Footnote under Frequency Tolerances, Treaty Series No. 948, Telocommunication.

Relation between decibels and power, voltage, and current ratios

The decibel, abbreviated db , is a unit used to express the ratio between two amounts of power, P_{1} and P_{2}, existing at two points.

By definition the number of $\mathrm{db}=10 \log _{10} \frac{P_{1}}{P_{2}}$
It is also used to express voltage and current ratios.
The number of $\mathrm{db}=20 \log _{10} \frac{V_{1}}{V_{2}}=20 \log _{10} \frac{I_{1}}{I_{2}}$
Strictly, it can be used to express voltage and current ratios only when the two points at which the voltages or currents in question have identical impedances.

pewer ratio	volioge and current ratio	decibels	power rolfo	voltoge and current ralio	decibels
1.0233	1.0116	0.1	19.953	4.4668	13.0
1.0471	1.0233	0.2	25.119	5.0119	14.0
1.0715	1.0351	0.3	31.623	5.6234	15.0
1.0965	1.0471	0.4	39.811	6.3096	16.0
1.1220	1.0593	0.5	50.119	7.0795	17.0
1.1482	1.0715	0.6	63.096	7.9433	18.0
1.1749	1.0839	0.7	79.433	8.9125	19.0
1.2023	1.0965	0.8	100.00	10.0000	20.0
1.2303	1.1092	0.9	158.49	12.589	22.0
1.2589	1.1220	1.0	251.19	15.849	24.0
1.3183	1.1482	1.2	398.11	19.953	26.0
1.3804	1.1749	1.4	630.96	25.119	28.0
1.4454	1.2023	1.6	1000.0	31.623	30.0
1.5136	1.2303	1.8	1584.9	39.811	32.0
1.5849	1.2589	2.0	2511.9	50.119	34.0
1.6595	1.2882	2.2	3981.1	63.096	36.0
1.7378	1.3183	2.4	6309.6	79.433	38.0
1.8197	1.3490	2.6	104	100.000	40.0
1.9055	1.3804	2.8	104×1.5849	125.89	42.0
1.9953	1.4125	3.0	$10^{4} \times 2.5119$	158.49	44.0
2.2387	1.4962	3.5	104×3.9811	199.53	46.0
2.5119	1.5849	4.0	104×6.3096	251.19	48.0
2.8184	1.6788	4.5	${ }^{105}$	316.23	50.0
3.1623	1.7783	5.0	$10^{6} \times 1.5849$	398.11	52.0
3.5481	1.8836	5.5	$10^{5} \times 2.5119$	501.19	54.0
3.9811	1.9953	6.0	$10^{6} \times 3.9811$	630.96	56.0
5.0119	2.2387	7.0	$10^{6} \times 6.3096$	794.33	58.0
6.3096	2.5119	8.0	10^{8}	1,000.00	60.0
7.9433	2.8184	9.0	10^{7}	$3,162.3$	70.0
10.0000	3.1623	10.0	10^{0}	10,000.0	80.0
12.589	3.5481	11.0	10	31,623	90.0
15.849	3.9811	12.0	10^{10}	100,000	100.0

To convert
Decibels to nepers multiply by 0.1151
Nepers to decibels multiply by 8.686
Where the power ratio is less than unity, it is usual to invert the fraction
and express the answar as a decibel loss

Copper-wire fable-standard annealed copper
American wire gauge (B \& S)*

$\begin{aligned} & \text { gauge } \\ & \text { no } \end{aligned}$	diameter, mils	cress section		$\begin{aligned} & \text { ohms per } \\ & 1,000 \mathrm{H} \\ & =f 20^{\circ} \mathrm{C} \\ & \left(68^{\circ} \mathrm{F}\right) \end{aligned}$	lb per	41 per lb	$\underset{\substack{\text { Hit per ohm } \\ \text { at } 20^{\circ} \mathrm{C} \\\left(68^{\circ} \mathrm{C}\right)}}{ }$ ($68^{\circ} \mathrm{F}$)	$\begin{aligned} & \text { ohms per Ib } \\ & \text { of } 20^{\circ} \mathrm{C} \\ & \left(60^{\circ} \mathrm{F}\right) \end{aligned}$
		circular mils	squere inches					
$\begin{array}{r} 0000 \\ 000 \\ 00 \end{array}$	460.0	211,600	0.1662	0.04901	640.5	1.561	20,400	0.00007652
	409.6	167,800	0.1318	0.06180	507.9	1.968	16,180	0.0001217
	354.8 ,	133,100	0.1045	0.07793	402.8	2.482	12,830	0.0001935
-	324.9	105,500	0.08289	0.09827	319.5	3.130	10,180	0.0003076
	289.3	83,690	0.06573	0.1239	253.3	3.947	8,070	0.0004891
	257.6	66,370	0.05213	0.1563	200.9	4.977	6,400	0.0007778
3	229.4	52,640	0.04134	0.1970	159.3	6.276	5,075	0.001237
4	204.3	41,740	0.03278	0.2485	126.4	7.914	4,025	0.001966
5	181.9	33,100	0.02600	0.3133	100.2	9.980	3,192	0.003127
$\begin{array}{r} -6 \\ 7 \\ 8 \end{array}$	162.0	26,250	0.02062	0.3951	79.46	12.58	2,531	0.004972
	144.3	20,820	0.01635	0.4982	63.02	15.87	2,007	0.007905
	128.5	16,510	0.01297	0.6282	49.98	20.01	1,592	0.01257
10	114.4	13,090	0.01028	0.7921	39.63	25.23	1,262	0.01999
	101.9	10,380	0.008155	0.9989	31.43	31.82	1,001	0.03178
	90.74	8,234	0.066467	1.280	24.92	40.12	794	0.05053
121314	80.81	6,530	0.005129	1.588	19.77	50.59	629.6	0.08035
	71.96	5,178	0.004067	2.003	15.68	63.80	499.3	0.1278
	64.08	4,107	0.003225	2.525	12.43	80.44	396.0	0.2032
151617	57.07	3,257	0.002558	3.184	9.858	101.4	314.0	0.3230
	50.82	2.583	0.002028	4.016	7.818	127.9	249.0	0.5136
	45.26	2,048,	0.001609	5.064	8.200	161.3	197.5	0.8167
181920	40.30	1,624	0.001276	6.385	4.917	203.4	156.6	1.299
	35.89	1,288	0.001012	8.051	3.899	256.5	124.2	2.065
	31.96	1,022	0.0008023	10.15	3.092	323.4	98.50	3.283
212223	28.46	810.1	0.0006363	12.80	2.452	407.8	78.11	5.221
	25.35	642.4	0.0005046	16.14	1.945	514.2	61.95	8.301
	22.57	509.5	0.0004002	20.36	1.542	648.4	49.13	13.20
242526	20.10	404.0	0.0003173	25.67	1.223	817.7	38.96	20.99
	17.90	320.4	0.0002517	32.37	0.9699	1.031 .0	30.90	33.37
	15.94	254.1	0.0001996	40.81	0.7692	1,300	24.50	53.06
272829	14.20	201.5	0.0001583	51.47	0.6100	1,639	19.43	84.37
	12.64	159.8	0.0001255	64.90	0.4837	2,067	15.41	134.2
	11.26	126.7	0.00009953	81.83	0.3836	2,607	12.22	213.3
3031	10.03	100.5	0.00007894	103.2	0.3042	3,287	9.691	339.2
	8.928	79.70	0.00006260	130.1	0.2413	4,145	7.685	539.3
32	7.950	63.21	0.00004964	164.1	0.1913	5,227	6.095	857.6
33343	7.080	50.13	0.00503937	206.9	0.1517	6,591	4.833	1,364
	6.305	39.75	0.00003122	260.9	0.1203	8,310	3.833	2.168
35	5.615	31.52	0.00002476	329.0	0.09542	10,480	3.040	3,448
383738	5.000	25.00	0.00501964	414.8	0.07568	13,210	2.411	5,482
	4.453	19.83	0.00001557	523.1	0.06001	16,660	1.912	8,717
	3.965	15.72	0.00001235	859.6	0.04759	21,010	1.516	13,860
39	3.531	12.47	0.000009793	831.8	0.03774	26,500	1.202	22,040
40	3.145	9.888	0.000007766	1,049.0	0.02993	33,410	0.9534	35,040

[^2]Copper-wire table-English and metric units \dagger

Amer wire gauge AWG (Bis)	Bhrm wire gruge BWC	imperial or Brifish sid SWG (NBS)	English units			Eperic enifs		
				weight lbs per wire mill	residionce ohms per wire mile $23^{\circ} \mathrm{C}$ ($69^{\circ} \mathrm{F}$)	diem in mm	woleht kg per wire km	$\left\lvert\, \begin{gathered} \text { resistance } \\ \text { ohms per } \\ \text { wire } \mathrm{km} \\ 20^{\circ} \mathrm{C} \\ \left(68^{\circ} \mathrm{F}\right) \\ \hline \end{gathered}\right.$
$-$	-	-	. 1968	618	1.415	5.0	174.0	. 879
	-	-	. 1940	600	1.458	4.928	169.1	. 905
		6	. 1920	589.2	1.485	4.875	166.2	. 922
-	-	-	.1855	550	1.590	4.713	155.2	. 987
5			. 1319	528.9	1.654	4.620	149.1	1.028
	7		. 1890	517.8	1.690	4.575	146.1	1.049
-	-	-	. 1771	500	1.749	4.5	141.2	1.086
		7	. 1762	495.1	1.769	4.447	140.0	1.098
-	-	-	. 1679	450	1.945	4.260	127.1	1.208
	8		. 1650	435.1	2.011	4.190	123.0	1.249
8			. 1620	419.5	2.086	4.115	118.3	1.296
		8	. 1650	409.2	2.139	4.062	115.3	1.328
—	-	-	. 1582	400	2.187	4.018	113.0	1.358
	-	-	. 1575	$\overline{395.3}$	2.213	4.0	111.7	1.373
7	9	-	. 1480	350.1	2.500	3.760	98.85	1.552
			. 1443	332.7	2.630	3.665	93.78	1.634
		9	. 1440	331.4	2.641	3.658	93.40	1.641
-	-	-	. 1378	302.5	2.892	3.5	85.30	1.795
	-	-	. 1370	300	2.916	$\stackrel{3.480}{ }$	84.55	1.812
	10		. 1341	287.0	3.050	3.405	80.95	1.893
8			. 1285	263.8	3.317	3.264	74.37	2.061
		10	. 1280	261.9	3.342^{\prime}	3.252	73.75	2.077
-	-	-	. 1251	250	3.500	3.180	70.50	2.173
- 9	-	-	.1181	222.8	3.933	3.5	62.85	2.440
			. 1144	209.2	4.182	2.936	58.98	2.599
	-	-	. 1120	200	4.374	2.845	56.45	2.718
-	12		. 1090	189.9	4.609	2.768	53.50	2.862
		12	. 1040	172.9	5.063	2.640	48.70	3.144
*10			.1019	165.9	5.274	2.588	46.77	3.277
-	-	-	. 0984	154.5	- 5.670	2.5	43.55	3.520
-	-	-	. 0970	150	5.832	2.460	42.30	3.62 C
	* 14		. 0830	110.1	7.949	2.108	31.03	4.930
* 12			. 0808	104.4	8.386	2.053	29.42	5.211
		14	. 6801	102.3	8.556	2.037	28.82	5.315
-	-	-	. 0788	99.10	8.830	2.0	27.93	5.480
*13			. 0720	82.74	10.58	$\overline{1.828}$	23.33	6.571
*14			. 0641	65.63	13.33	1.628	18.50	8.285
* 16			. 0508	41.28	21.20	1.291	11.63	13.17
* 17			. 0453	32.74	26.74	1.150	9.23	16.61
* 18			. 0403	25.98	33.71	1.024	7.32	20.95
* 19			. 0359	20.58	42.51	. 912	5.802	26.42
*22			. 0253	10.27	85.24	. 644	2.894	52.96
*24			. 0201	6.46	135.5	. 511	1.820	84.21
*26			. 0159	4.06	215.5	. 405	1.145	133.9
* 27			. 0142	3.22	271.7	. 361	. 908	168.9
* 28			. 0126	2.56	342.7	. 321	. 720	212.9

[^3]Solid copperweld wire－mechanical and electrical properties

$\begin{array}{ll} g_{0} & 0_{0}^{\circ} \\ \frac{2}{6} E & 0 \end{array}$	｜｜B\％ixix
팡ㅎ	116⿳一巛工－
	11880
	110000
	Еై
	\qquad Wh． sicicin－－－
$\begin{array}{ll} 2.8 & 80 \\ \text { E } & \text { of } \\ \text { B } & \end{array}$	ल \qquad
\％ 8 \％${ }^{5}$	
	ジ心
$\begin{aligned} & \text { e. } \\ & \text { 曾 } \\ & \hline \end{aligned}$	
δ^{8}	
唇皆	
흘	

[^4]
Standard stranded copper conductors

American wire gauge

circuler mells	$\begin{aligned} & \text { sixe } \\ & \text { AWG } \end{aligned}$	$\begin{aligned} & \text { number } \\ & \text { of } \\ & \text { wires } \end{aligned}$	individual wire diam inches	cable diam inches	erea Inches	$\begin{aligned} & \text { weight } \\ & \text { lbs por } \\ & 1000 \mathrm{ff} \end{aligned}$	woight Ibs per mile	*maximum resisfonce ohms/1000 fi of $20^{\circ} \mathrm{C}$
211,600	4/0	19	. 1055	. 528	0.1662	653.3	3,450	0.05093
167,800	3/0	19	. 0940	. 470	0.1318	518.1	2,736	0.06422
133,100	$2 / 0$	19	. 0837	. 419	0.1045	410.9	2,170	0.08097
105,500	1/0	19	. 0745	. 373	0.08286	325.7	1,720	0.1022
83,690	1	19	. 0664	. 332	0.06573	258.4	1,364	0.1288
66,370	2	7	. 0974	. 292	0.05213	204.9	1,082	0.1624
52,640	3	7	. 0867	. 260	0.04134	162.5	858.0	0.2048
41,740	4	7	. 0772	. 232	0.03278	128.9	680.5	0.2582
33,100	5	7	. 0688	. 206	0.02600	102.2	539.6	0.3256
26,250	6	7	. 0612	. 184	0.02062	81.05	427.9	0.4105
20,820	7	7	. 0545	. 164	0.01635	64.28	339.4	0.5176
16,510	8	7	. 0486	. 146	0.01297	50.98	269.1	0.6528
13,090	9	7	. 0432	. 130	0.01028	40.42	213.4	0.8233
10,380	10	7	. 0385	. 116	0.008152	32.05	169.2	1.038
6,530	12	7	. 0305	. 0915	0.005129	20.16	106.5	1.650
4,167 2,593	14	7	. 0242	. 0726	0.003226	12.68	66.95	1.650 2.624
2,593	16	7	. 0192	. 0576	0.002029	7.975	42.11	4.172
1,624	18	7	. 0152	. 0456	0.001275	5.014	26.47	6.636
1,022	20	7	. 0121	. 0363	0.000027	3.155	16.66	10.54

* The resistance values in this table are trade maxima for soft or annealed copper wire and are higher than the average values for commercial cable. The following values for the conductivity and resistivity of copper al 20° centigrade ware used:
Conductivity in terms of Internotional Annealed Copper Standard $\quad 98.16 \%$
$\begin{array}{ll}\text { Resistivily in pounds per mile-ohm } & 891.58\end{array}$
The resistance of ha rd drawn copper is slightly greater than the values given, being about 2% to 3% greater for sizas from $4 / 0$ to 20 AWG.

Machine screw head styles

Method of length measurement

Standard

Special

$I=$ initial annent in inductor.
$E_{0}=$ initil vattrye acros apacitor.
bitial renistor curvent $=\frac{E_{0}}{R}$

$$
\begin{aligned}
& \Delta \equiv \frac{I}{E_{0} / R}=\frac{I R}{E_{0}} \\
& k \equiv \frac{1}{2 R} \sqrt{\frac{L}{C}} ; \quad T_{0}=2 \pi \sqrt{L C}
\end{aligned}
$$

underdamped, $k<1$

$$
\begin{aligned}
& \frac{e_{0}}{E_{0}}=\left[-(1+2 \Delta)\left(\frac{k}{\sqrt{1-k^{2}}}\right) \sin 2 \pi \sqrt{1-k^{2}} x\right. \\
& \left.\quad+\cos 2 \pi \sqrt{1-k^{2}} x\right] e^{-2 \pi k x}
\end{aligned}
$$

(imes,

slze and me threeds	ecrew			heod						hox nut			sher		clea	drili ${ }^{\text {F }}$	tap	ilt
	d	dopth of threod	minor diam	$\min _{\text {od }}$		$\max _{\text {od }}$	$\begin{gathered} \min \\ \text { od } \end{gathered}$		$\begin{aligned} & \text { across } \\ & \text { flat } \end{aligned}$	across corner	thickness	od	id	thickness	no	diam	no	diam
2-56	. 086	. 0116	. 0628	. 146	. 070	. 172	. 124	. 055	. 187	. 217	. 062	1/4	. 105	. 020	42	. 093	48	. 076
3-48	. 099	. 0135	. 0719	. 169	. 078	. 199	. 145	. 063	. 187	. 217	. 062	1/4	. 105	. 020	37	. 104	44	. 088
4-40	. 112	. 0162	. 0795	. 193	. 086	. 225	. 166	. 072	. 250	. 289	. 078	$1 / 8$. 120	. 025	31	. 120	40	. 098
5-40	. 125	. 0162	. 0925	. 217	. 095	. 252	. 187	. 081	. 250	. 289	. 078	\%	. 140	. 032	29	. 136	36	. 106
6-32	. 338	.0203	. 0974	. 240	. 103	. 279	. 208	. 089	. 250	. 289	. 078	5/6\%	. 150	. 026	27	. 144	33	. 113
8-32	. 164	. 0203	. 1234	. 287	. 119.	. 332	250	. 106	. 250	. 289	. 078	3/6	. 170	.032 .036	18	. 169	28	. 140
10-32	. 190	. 0203	. 1494	334	. 136	. 385	. 292	. 123	.312 .375	.361 .433	.109 .125	7/1/2	. 195	.036 .040	9	. 196	20	. 161
12-24	216	. 0271	. 1619	3382	. 152	. 438	. 334	. 141	.375 .437	. 4305	. 125	91/2	. 2288	.060 .060	1	. 228	15	. 180
1/4-20	250	. 0325	. 185	. 443	. 174	. 507	3389	. 163	.437 .500	.505 .577	.125 .156 .125 .156	11/68	.260 .260	.040 .051		17/4	6	. 204

matorial	dielectric consient			- ${ }^{\text {cectrical properties* }}$				ressistivity Ohms- cm $25^{\circ} \mathrm{C}$	physicel properties	
	60~	$10^{6} \sim$	$10^{8} \sim$	$60 \sim$	$10^{\circ} \sim$	$10^{8} \sim$	strength kv/mm \dagger		$\begin{aligned} & \text { fhermal } \\ & \text { expansion } \\ & \text { per }{ }^{\circ} \mathrm{C} \end{aligned}$	softening point
Aniline Formaldehyde Resin	3.6	3.5	3.4	. 003	. 007	. 004	16-25			
Cassin		6.2			. 055	. 04	16-28	Poor	5.4×10^{-6}	$260{ }^{\circ} \mathrm{F}$
Cellulose Acetate (plostic)	4.6	3.9	3.4	. 007	. 039	. 039	10-14	${ }^{100}$	$6-15 \times 10^{-6}$	${ }^{100-1900}{ }^{\circ} \mathrm{F}$
Cellulose Acetobutyrate	3.6 3	3.2	3.0	. 004	. 017	. 019	10-16	10^{10}	${ }^{6-15} \times 17 \times 10^{-6}$	$100-190^{\circ} \mathrm{F}$ $110-180^{\circ} \mathrm{F}$
Ethyl Cellulose	3.0 4.0	2.8 3.4	2.8 3.2	. 008	. 008	. 004	18	2×1015	17×10^{-6}	- $140^{\circ} \mathrm{F}$
Glass, Corning 707	4.0	4.0	3.2 4.0	. .0005	. 0008	. 02012	16-28	$15 \times 1{ }^{104}$	3.4×10^{-4}	$120^{\circ} \mathrm{F}$
Glass, Corning 774	5.6	5.2	5.0	. 0136	. 0048	. 008		$1.5 \times 1{ }^{1.4} \times 10^{8}$ af $2500^{\circ} \mathrm{C}$	31×10^{-7}	$1400^{\circ} \mathrm{F}$
Glass, Corning 790	3.9	3.9	3.9	. 0006	. 00006	.000		5.4 5×10^{3} af $250^{\circ} \mathrm{C}$	33 8×10^{-7} $\times 10$	$1500^{\circ} \mathrm{F}$
Glass, Corning 7052	5.2	5.1 3.7	5.1	. 008	. 0024	. 0036		$5.2 \times 10^{\circ}$ of $250^{\circ} \mathrm{C}$	47×10^{-7}	$2600^{\circ} \mathrm{F}$ $1300{ }^{\circ} \mathrm{F}$
Helowax Isolantite	3.8	3.7 6.0	3.4	. 002	.0014 .0018	. 105		$10^{12}-10^{14}$	47×10^{7}	$1300^{\circ} \mathrm{F}$ 190
Melomine Formaldehyde Resin	7.5	4.5	4.5	. 08	. 08	. 03				
Methyl Methecrylate-a lucite HM119	3.3	2.6	2.6	. 066	. 015	. 007	18	10^{15}	$1{ }^{3.5} \times 14 \times 10^{-7}$	
Mieo b Plexiglos	3.5	2.6	2.6	. 064	. 015	. 007	16	10^{15}	11.14×10^{-8}	
Mycolex 364	3.45 7.1	7.4	5.4	. 005	. 0003	. 0003		5×10^{13}		
Nylon FM-1	3.6	3.6	7.0 3.6	. 0064	. 02021	. 0022	14		$8-9 \times 10^{-8}$	$660^{\circ} \mathrm{F}$
Paraflin Oil	2.2	2.2	2.2	. 0001	. 0001	.0004	12	10^{18}	5.7×10^{-6}	$160^{\circ} \mathrm{F}$
Pelroleum Wax (Paraffin Wax	2.25	2.25	2.25	. 0002	. 0002	. 0002	8 8-12		$7.1 \times .10^{-4}$	liquid
Phonal Formaldetiyde Resins				. 0002	.0002	. 0002	8-12	10^{88}		M.P. $132^{\circ} \mathrm{F}$
a general purpose	5.5	4.5	4.0	. 018	. 014	. 014		10^{11}		
b. minerol filled	4.6	4.4	4.3	. 024	. 006	. 012	20	10	$3-4 \times 10^{-6}$	$275^{\circ} \mathrm{F}$
Phenol furfural Resins	7.0	8.0	8.0 4.0	. 20	. 05	. 08	10		$7.5-15 \times 10^{-3}$	$140^{\circ} \mathrm{F}$
Polyethylene	2.25	2.25	2.25	. 0003	. 0003	. 0003				
Polyisoburylene MW 100,000	2.20	2.22	2.22	. 0003	. 0003	. 00004	40	>1010	Vorles	$220{ }^{\circ} \mathrm{F}$
Polystyrene MW 80,000	2.55	2.53	2.52	. 0002	. 0002	. 0003	20-30	1017		$>0^{\circ} \mathrm{F}$
Polyvinyl Carbazole	2.95	2.95	2.95	. 0017	. 0005	. 0006	31-40		$4.5-5.5 \times 10^{-5}$	$175{ }^{\circ} \mathrm{F}$
Polvuinyl Chlor-Acetalo	3.2	2.9	2.8	. 009	. 014	. 009				1800 ${ }^{\circ} \mathrm{F}$
Polyvinylidine Chioride-Saran	3.2 4.5	3.9	2.9	. 012	. 016	. 008				$180^{\circ} \mathrm{F}$
Quartz lfused)	4.5 3.9	3.0 3.8	2.8 3.8	. 03009	. 046	. 014	15	1015	1.58×10^{-4}	$175{ }^{\circ} \mathrm{F}$
Shellac	3.9	3.5	3.1	. 0009	. 0031	. 0002	60		5.7×10^{-7}	$3000^{\circ} \mathrm{F}$
Styraloy 22	2.4	2.4	2.4	. .0010	. 0012	. 00043		1004		
Styramic	2.9	2.75	2.73	. 003	. 0002	. 00002	3	10.	1.8×10^{-4}	
Styramic HT	2.64	2.64	2.62	. 0302	. 0202	. 0002				$1750^{\circ} \mathrm{F}$
Urea Formaldehyde Resins	6.6	5.6	5.0	. 032	. 028	. 05	15	1018		250 ${ }^{\circ} \mathrm{F}$
Wood-Airican Mahogany (dry) Balsa (dry)	2.4 1.4	2.1 1.4	2.1 1.3	$\begin{aligned} & .01 \\ & .048 \end{aligned}$	$.03$	$.04$	15	108	2.6×10^{-6}	
* Voluas given are average for the materials listed. \dagger To convert Kilovolts per millimeter to volts per mil, multiply by 25.4										

Plastics: łrade names

frade n	composition	trade name	composition
Acryloid	Methacrylate Resin	Indur	Phenol Formaldehyde
Alvar	Polyvinyl Acetal	Kodapak	Cellulose Acetate
Amerith	Cellulose Nitrate	Kodapak II	Cellulose Acetobutyrato
Ameripol	Butadiene Copolymer	Koroseal	Modified Polyvinyl Chloride
Ameroid	Casein	Lectrofilm	Polyvinyl Carbazole Icon-
Bakelite	Phenol Formaldehyde		denser material; mica sub-
Bakelite	Urea Formaldehyde		stitutel
Bakelite	Cellulose Acetate	Loalin	Polystyrene
Bakelite	Polystyrene	lucite	Methyl Methacrylate Resin
Beckamine	Urea Formaldehyde Resins	Lumarith	Cellulase Acetate
Bearle	Urea Formaldehyde	Lumarith X	Cellulose Acetate
Butacite	Polyvinyl Butyral	Lustron	Polystyrene
Butvar	Polyvinyl Butyral	Luvican	Polyvinyl Carbazole
Cardolite	Phenol-aldehyde (cashow nut derivativel	Makalot Marbletto	Phenol Formoldehyde Phenol Formaldehyde (cast)
Cerex	Styrene Copolymer	Marbon B	Cyclized Rubber
Cata	Phenol Formaldehyde (cast)	Marbon C	Rubber Hydrochloride
Cellophane	Regenerated Cellulose Film	Melmac	Melamine Formaldehyde
Colluloid	Cellulose Nirrate	Methocel	Methyl Cellulose
Cibanite	Aniline Formaldehyde	Micaband	Glycerol Phthalic Anhydride,
Crystalite	Acrylate and Methacrylate Resin	Micarta	Mica Phenol Formaldehyde Ilami-
Cumar	Cumarone-indene Resin		nation)
Dilectene 100	Aniline Formaldehyde Synthotic Resin	Monsanto Monsanto	Cellulosa Nitrate Polyvinyl Acetals
Dilecto	Urea Formaldehyde (phenol formaldehyde)	Monsanto Monsanto	Cellulose Acetate Phenol Formaldehyde
Dilecto UF	Urea Formaldehyde	Mycalex	Mica Banded Glass
Distrene	Polystyrene	Neoprene	Chloroprene Synthetic Rub-
Durez	Phenol Formaldehyde		ber
Durite	Phenol Formaldehyde	Nevidene	Cumarone-indene
Durite	Phenol Furfural	Nitron	Cellulose Nirrate
Erinofort	Cellulase Acetate	Nixonite	Cellulose Acetate
Erinoid	Casein	Nixonoid	Cellulose Nitrote
Ethocel	Ethyl Cellulose	Nylon	Synthetic Polyamides and Super Polyamides
Ethocel PG Ethofoil	Ethyl Cellulose Ethyl Cellulose		Super Polyomides Polyterpene Resins
Ethomelt	Ethyl Cellulose thot pourin	Nypene	Polyterpene Resins Phenol Formaldehyde
Ethomulsion	compound) Ethyl Cellulose flasquer	Panalyte	Phenol Formaldehyde Ilaminate)
	emulsion)	Panalyte	Phenol Formaldehyde
Fibestos	Cellulose Acetat	Porlon	Chlorinated Rubber
Flamenol	Vinyl Chloride (plasticized)	Perspex	Methyl Mothacrylic Ester
Formica	Phenol Formaldehyde (lamination)	Ploskon Plastacele	Urea Formaldehyde Cellulose Acetate
Formvar	Polyvinyl Formal	Plexiglas	Methyl Methacrylate
Galalith	Casein	Plexiglas	Acrylate and Methacrylate
Gelvo	Polyvinyl Acetate		Resin
Gemstone	Phenol Formaldehyde	Plaskon	Urea Formald ehyde
Geon	Polyvinyl Chloride	Plastacele	Collulose Acetate
Glyptal	Glycerol-phthalic Anhydride	Pliofilm	Rubber Hydrochloride
Haveg	Phenol Formaldehyde Asbestos	Plioform Pliolite	Rubber Derivative Rubber Derivative
Hercose AP	Cellulose Acetate Propionate	Polyfibre	Polystyrene Polyethylene
Heresite	Phenol formaldehyde	Polythen	Polyothylene

Plastics: frade names continued

Wind velocities and pressures

indicated velocities miles per hour* V_{i}	actual velocitios miles per hour Va	cylindrical surfaces pressure lbs par sq ft projected areas $\mathbf{P}=0.0025 \vee a^{2}$	flat surfaces pressure lbs per square foof $P=0.0042 \mathrm{Va}^{2}$
10	9.6	0.23	0.4
20	17.8	0.8	1.3
30	25.7	1.7	2.8
40	33.3	2.8	4.7
50	40.8	4.2	7.0
60	48.0	5.8	9.7
70	55.2	7.6	12.8
80	62.2	9.7	16.2
90	69.2	12.0	20.1
100	76.2	14.5	24.3
110	83.2	17.3	29.1
120	90.2	20.3	34.2
125	93.7	21.9	36.9
130	97.2	23.6	39.7
140	104.2	27.2	45.6
150	111.2	30.9	51.9
160	118.2	34.9	58.6
170	125.2	39.2	65.7
175	128.7	41.4	69.5
180	132.2	43.7	73.5
190	139.2	48.5	81.5
200	146.2	53.5	-89.8

[^5]
ENGINEERING AND MATERIAL DATA 43

Temperature chart of heated metals

Physical constants of various metals and alloys*

maferial	relative resistance	temp coefficiont of resistivity af $20^{\circ} \mathrm{C}$	specifte gravity	coofficient of thermal cond $\underset{\text { watts } / \mathrm{cm}^{\circ} \mathrm{C}}{\mathrm{~K}}$	melting point ${ }^{\circ} \mathrm{C}$
Advance 155 Cu 45 Ni$)$	see	Constantan			
Aluminum	1.64	. 004	2.7	2.03	660
Antimony	24.21	. 0036	6.6	0.187	630
Arsenic	19.33	. 0042	5.73	-	sublimes
Bismuth	69.8	. 004	9.8	0.0755	270
Brass 166 Cu 34 Zn)	3.9	. 002	8.47	1.2	920
Cadmium	4.4	. 0038	8.64	0.92	321
Chromax 115 Cr 35 Ni balance fel	58.0	. 00031	7.95	0.130	1380
Cobalt	5.6	. 0333	8.71	-	1480
Constantan (55Cu45Ni)	28.45	$\pm .0002$	8.9	0.218	1210
Copper-annealed	1.00	. 00393	8.89	3.88	1083
hard drown	1.03	. 00382	8.89	-	1083
Eureka (55 Cu 45 Ni)	see	Constantan			
Gas carbon	2900	-. 0005	-	-	3500
Gold	1.416	. 0034	19.32	0.296	1063
Ideal (55 Cu 45 Ni	see	Constantan			
Iron, pure	5.6	.0052-. 0062	7.8	0.67	1535
0.3 Mn balance Fel	28.4	-	8.2	0.193	1450
Lead	12.78	. 0042	11.37	0.344	327
Magnesium	2.67	. 004	1.74	1.58	651
Manganin 184 Cu 12 Mn 4 Ni	26	$\pm .00002$	8.5	0.63	910
Mercury	55.6	. 00089	13.55	0.063	-38.87
Molybdenum, drawn	3.3	. 0045	10.2	1.46	2630
Monel metal 167 Ni 30 Cu 1.4 Fe 1 Mnl	27.8	. 002	8.8	0.25	1300-1350
Nichromel 165 Ni 12 Cr $23 \mathrm{Fe})$	65.0	. 00017	8.25	0.132	1350
Nickel	5.05	. 0047	8.85	0.6	1452
Nickel silver 164 Cu 18 Zn 18 Ni	16.0	. 00026	8.72	0.33	1110
Palladium	6.2	. 0038	12.16	0.7	1557
Phosphor-bronze 14 Sn 0.5 P balonce Cu	5.45	-	8.9	0.82	1050
Platinum	6.16	. 0038	21.4	0.695	1771
Silver	9.5	. 004	10.5	4.19	960.5
Steal, manganese 113 Mn IC 86 Fel	41.1	-	7.81	0.113	1510
Steel, SAE 1045 10.4-0.5 C balance fol	7.6-12.7	-	7.8	0.59	1480
Steel, 18-8 stainless 10.1 C 18 Cr 8 Ni balance Fel	52.8	-	7.9	0.163	1410
Tantalum	9.0	. 0033	16.6	0.545	2850
Tin	6.7	. 0042	7.3	0.64	231.9
Tophet A 180 Ni 20 Cr$)$	62.5	. $02-.07$	8.4	0.136	1400
Tungsten	3.25	. 0045	19.2	1.6	3370
Zinc	3.4	. 0037	7.14	1.12	419
Zirconium	2.38	. 0044	6.4	-	1860

[^6]
Physical constants of various metals and alloys continued

Definitions of physical consíanis in preceding table

The preceding table of relative resistances gives the ratio of the resistance of any material to the resistance of a piece of annealed copper of identical physical dimensions and temperature.

1. The resistance of any substance of uniform cross-section is proportional to the length and inversely proportional to the cross-sectioned area.
$R=\frac{\rho L}{A}$, where $\rho=$ resistivity, the proportionality constant,
$L=$ length, $A=$ cross-sectional area, $R=$ resistance in ohms.
If L and A are measured in centimeters, ρ is in ohm-centimeters.
If L is measured in feet, and A in circular mils, ρ is in ohm-circular mils per foot. Relative resistance $=\rho$ divided by the resistivity of copper 11.7241×10^{-6} ohm-cml.
2. The temperature coefficient of resistivity gives the ratio of the change in resistivity due to a change in temperature of $1^{\circ} \mathrm{C}$ relative to the resistivity at $20^{\circ} \mathrm{C}$. The dimensions of this quantity are ohms per ${ }^{\circ} \mathrm{C}$ per ohm or $1 /{ }^{\circ} \mathrm{C}$.

The resistance at any temperature is:
$\left.R=R_{0} 11+\alpha T\right), R_{0}=$ resistance at 0° in ohms, $T=$ temperature in degrees centigrade, $\alpha=$ temperature coefficient of resistivity $1 /{ }^{\circ} \mathrm{C}$.
3. The specific gravity of a substance is defined as the ratio of the weight of a given volume of the substance to the weight of an equal volume of water.

In the cgs system, the specific gravity of a substance is exactly equal to the weight in grams of one cubic centimeter of the substance.
4. Coefficient of thermal conductivity is defined as the time rate of heat transfer through unit thickness, across unit area, for a unit difference in temperature. Expressing rate of heat transfer. in watts, the coefficient of thermal conductivity
$K=\frac{W L}{A \Delta T}$
$W=$ watts, $L=$ thickness in $\mathrm{cm}, A=$ area in sq $\mathrm{cm}, \Delta T=$ temperature in ${ }^{\circ} \mathrm{C}$.
5. Specific heat is defined as the number of calories required to heat one gram of a substance one degree Centigrade.
$H=\mathrm{ms} \Delta T$ or change in heat

$$
\begin{aligned}
m & =\text { mass in grams } \\
\mathrm{s} & =\text { specific heat in cal } / \mathrm{gm} /{ }^{\circ} \mathrm{C}
\end{aligned}
$$

Thermocouples and their characteristics

type	copper/constontan	iron/constanton	chremel/censtanten	chrornel/alumel	$\left\|\begin{array}{c} \text { platinum/platinum } \\ \text { thodium (10) } \end{array}\right\|$	pletinum/plefinum rhodium (13)	cerbon/sillicon carbide		
Composition, percent	$\left\lvert\, \begin{array}{cc} 100 \mathrm{Cu} & 54 \mathrm{Cu} 46 \mathrm{Ni} \\ 99.9 \mathrm{Cu} & 55 \mathrm{Cu} 45 \mathrm{Ni} \\ & 60 \mathrm{Cu} 40 \mathrm{Ni} \end{array}\right.$	$\begin{array}{ll} 100 \mathrm{Fe}- & 55 \mathrm{Cu} 44 \mathrm{Ni} \\ & .5 \mathrm{Mn}+\mathrm{Fe}, \\ \mathrm{Si} \end{array}$	${ }^{90 \mathrm{Ni} \mathrm{10Cr}}$ ($\left\|\begin{array}{ll}90 \mathrm{Ni} 10 \mathrm{Cr} & 95 \mathrm{Ni} 2 \mathrm{Al} 2 \mathrm{Mn} \mathrm{15i} \\ 89.6 \mathrm{Ni} 8.9 \mathrm{Cr} & 97 \mathrm{Ni} 3 \mathrm{AI}+\mathrm{Si} \\ 89 \mathrm{Ni} 10 \mathrm{Cr} & 94 \mathrm{Ni} 2 \mathrm{Al} 1 \mathrm{Si} \\ & 2.5 \mathrm{Mn} 0.5 \mathrm{~F} \\ 39 \mathrm{Ni} 9.8 \mathrm{Cr} & \text { 1Fe } 0.2 \mathrm{Mn}\end{array}\right\|$	19P1	87P1 13Rh	SiC		
Ronge of applicotion, ${ }^{\circ} \mathrm{C}$	$1-25010+600$	1-200 10 + 1050	10101100	10101100	10 to 1550		\|10 2000		
Resistivity, micro-ohm-C.M.	$11.75-49$	11049	$170 \quad 49$	170	$110 \quad 21$				
Temperature coafficient of resistivity, ${ }^{\circ} \mathrm{C}$	1.0039 . 00001	1.005 . 00001	1.00035 . 0002	1.00035 . 000125	$1.0030 \quad .0018$				
Melting temperature, ${ }^{\circ} \mathrm{C}$	\|1085 1190		115351190	\|1400	1190	11400	117551700		$13000 \quad 2700$
EMF in mv reference junction of $0^{\circ} \mathrm{C}$	$\|$$100^{\circ} \mathrm{C}$ 4.24 mv 200 9.06 300 14.42	$\begin{array}{cc}100^{\circ} \mathrm{C} & 5.28 \mathrm{mv} \\ 200 & 10.78 \\ 400 & 21.82 \\ 600 & 33.16 \\ 800 & 45.48 \\ 1000 & 58.16 \\ & \end{array}$	$\begin{array}{\|ll\|}100^{\circ} \mathrm{C} & 6.3 \mathrm{mv} \\ 200 & 13.3 \\ 400 & 28.5 \\ 600 & 44.3 \\ & \\ & \\ & \\ & \end{array}$	$100^{\circ} \mathrm{C}$ 4.1 mv 200 8.13 400 16.39 600 24.90 800 33.31 1000 41.31 1200 48.85 1400 55.81	$\begin{array}{\|ll\|}100^{\circ} \mathrm{C} & 0.643 \mathrm{mv} \\ 200 & 1.436 \\ 400 & 3.251 \\ 600 & 5.222 \\ 800 & 7.330 \\ 1000 & 9.569 \\ 1200 & 11.924 \\ 1400 & 14.312 \\ 1800 & 16.674\end{array}$	$100^{\circ} \mathrm{C}$ 0.646 mv 200 1.464 400 3.398 600 5.561 800 7.927 1000 10.470 1200 13.181 1400 15.940 1600 18.680	$\begin{array}{ll}1210^{\circ} \mathrm{C} & 353.6 \mathrm{mv} \\ 1300 & 385.2 \\ 1360 & 403.2 \\ 1450 & 424.9\end{array}$		
Influence of temperature and gas atmosphere	Subject to oxidation and alteration above $400^{\circ} \mathrm{C}$ due Cu , above 600° due constontan wire. Ni-plating of Cu sube gives protecfion, In ocid-contoining gas. Contomina. tion of Cu offects colibration greatly. Resistance to oxid. atm. good. Resistance to reducing atm. good. Requires profection from acid fumes.	Oxidizing and reducing atmosphere have little effect on occuracy. Best used in dry atmosphere. Resistance to oxidation good to $400^{\circ} \mathrm{C}$. Resistonce to reducing atmosphere good. Pratect from oxygen, moisture, sulphur.	Chromel antacked by sulphurous otmosphere. Resistance to oxida. tion good. Resistance to reducing atmosphere poor.	Resistance to oxidizing afmosphere very good. Resistance to reducing afmosphere poor. Affected by sulphur, reducing or sulphurous gas, SO_{2} and $\mathrm{H}_{2} \mathrm{~S}$.	Resistance to oxidizing afmosphere very good. Resistance to reducing atmosphere poor. Susceptible to chemical ateration by As, Si, P vapor in redueing gas $\mathrm{ICO}_{4}, \mathrm{H}_{2}$, $\mathrm{H}_{2} \mathrm{~S}$, SO2. Pt corrodes eosily above 1000°. Used in gastight protecting tube.		Used as fube eloment. Carbon sheath chemically inert.		
Particular applications	low temperature, industrial. Internal combustion engine. Used as a fube element for measurements steam line. in	low temperature, in. dustrial. Steel annealing, boiler ीlues, tube stills. Used in reducing or neutral atmosphere.		Used in oxidizing otmosphere. industrial. Ceramic kilns, tube stills, electric furnoces.	International Stand. ard 630 to $1065^{\circ} \mathrm{C}$.	Simitar to Pl/PiRh IIC) but has higher emf.	Steel furnace and ladle temperatures. laboratory measurements.		

Thermocouples and their characteristics continued

Characteristics of typical thermocouples

Compiled from "Temperature Meosurement and Control" by R. L. Weber, pages 68-71.

Melting points of solder

pure alloys		melfing poinfs	
$\begin{aligned} & \text { Percent } \\ & \text { fin } \end{aligned}$	$\begin{aligned} & \text { Percent } \\ & \text { lead } \end{aligned}$	degrees cenfigrade	degrees fahrenheif
100		232	450
90	10	213	415
80	20	196	385
70	30	186	367
65	35	181	358
60	40	188	370
50	50	212	414
40	60	238	460
30	70	257	496
20	80	290	554
10	90	302	576
	100	327	620

Spark-gap break down voltages

Data for a valtage which is continuous or at a frequency low enough to permit completo deionization between cycles, between needle points or clean, smooth spherical surfaces in dustfroe dry air. The following multiplying factors apply for apmospheric conditions other than those sfated above:

Head of water in feet and approximate discharge rate
Table !
 8\%

은응

$\frac{0}{3}$
0
$\frac{9}{6}$

[^7]
Materials and finishes for tropical and marine use

Ordinary finishing of equipment fails in meeting satisfactorily conditions encountered in tropical and marine use. Under these conditions corrosive influences are greatly aggravated by prevailing higher relative humidities, and temperature cycling causes alternate condensation on, and evaporation of moisture from, finished surfaces. Useful equipment life under adverse atmospheric influences depends largely on proper choice of base materials and finishes applied. Especially important in tropical and marine applications is avoidance of electrical contact between dissimilar metals.

Dissimilar metals, widely separated in the galvanic series, should not be bolted, riveted, etc., without separation by insulating material at the faying surfaces. The only exception occurs when both surfaces have been coated with the same protective metal, e.g., electroplating, hot dipping, galvanizing, etc.
In addition to choice of deterioration-resistant materials, consideration must be given to weight, need for a conductive surface, availability of ovens, appearance, etc.

A-order of preference:

Base materials

1. Brass
2. Aluminum, anodized
3. Nickel silver
4. Steel, zinc phosphated
5. Phosphor-bronze
6. Steel, cadmium phosphated
7. Monel
8. Steel, phosphated
9. Stainless steel

Finishes

1. Baked paint
2. Force dried paint
3. Air dried paint (pigmentless paint, e.g., varnish)

B-order of preference: (if A is impracticable)
Base materiqls

1. Copper
2. Steel

Finishes

1. Copper—nickel-chromium 5. Cadmium, lacquered
2. Copper-nickel-oxide
3. Zinc, phosphated
4. Copper-nickel
5. Cadmium, phosphated
6. Zinc, lacquered

engineering and material data 5

Maierials and finishes for tropical and marine use continued

Aluminum should always be anodized. Aluminum, steel, zinc, and cadmium should never be used bare.
Electrical contact surfaces should be given above finish B-I or 3, and, in addition, they should be silver plated.
Variable capacitor plates should be silver plated.
All electrical circuit elements and uncoated metallic surfaces lexcept electrical contact surfaces) inside of cabinets should receive a coat of fungicidal moisture repellant varnish or lacquer.

Wood parts should receive:

1. Dip coat of fungicidal water repellant sealer.
2. One coat of refinishing primer.
3. Suitable topcoat.

Torque and horsepower

Torque varies directly with power and inversely with rotating speed of the shaft, or
$T=\frac{K P}{N}$
where $T=$ torque in inch-pounds, $P=\mathrm{hp}, N=\mathrm{rpm}, \mathrm{K}$ (constant) $=63,000$. Example 1: For a two-horsepower motor rotating at 1800 rpm ,
$T=\frac{63,000 \times 2}{1800}=70$ inch-pounds.
If the shaft is 1 inch in diameter, the force at its periphery
$F=\frac{T}{\text { Radius }}=\frac{70 \text { inch-pounds }}{0.5}=140$ pounds
Example 2: If 150 inch-pounds torque are required at 1200 rpm ,
$150=\frac{63,000 \mathrm{hp}}{1200} \quad \mathrm{hp}=\frac{150 \times 1200}{63,000}=2.86$ pounds

- Audio and radio design

Resistors and capacitors

Color code \|						
color	signifieant figure	decimal multiplier	rolerance \%		voliage rating RMA 1938 sidt	characleristl AWS and JAN mica eapacifors
			$\begin{gathered} \text { RMA } \\ 1938 \\ \text { std } \end{gathered}$	AWS and JAN*		
Black	0	1	-	$\pm 20 \%$ M	-	A
Brown	1	10	1		100	B
Red	2	100	2	$\pm 2 \%$ G	200	C
Orange	3	1,000	3		300	D
Yellow	4	10,000	4		400	E
Green	5	100,000	5		500	F
Blue	6	1,000,000	6		600	G
Violet	7	10,000,000	7		700	-
Gray	8	100,000,000	8		800	-
White	9	1,000,000,000	9		900	-
Gold	-	0.1	± 5		1,000	-
Silver	-	0.01	± 10	$\pm 10 \% \mathrm{~K}$	2,000	-
No color	-	-	± 20		500	-

* Letter used to indicate tolerance in type designations.
\dagger Applies to copacitors only.

Resistors, flxed composition

RMA Standard, American War Standard, and Joint Army-Navy Specificafions for color coding of fixed composition resistors are identical in all respects.
The exterior body color of insulated axial-lead composition resistors is usually tan, but other colors, except black, are permitted. Non-insulated, axial-lead composition resistors have a black body color. Radial-lead composition resistors may have a body color representing the first significant figure of the resistance value.

| | | |
| :--- | :--- | :--- | :--- |
| Band A | indicates first significant figure of resistance value in ohms. | Body A |
| Band B | indicates second significant figure. | End B |
| Band C | indicates decimal mulfiplier. | Band C or dot |
| Band D | if any, indicates tolerance in percent about nominal resistance | |
| value. If no color appears in this position, tolerance is 20%. | Band D | |

[^8]

proferred values of resistance (ohms)				resistance designation			continued		Standard color coding for resistors					
			roef				values of (ohms)	alanc	- old					
$\underline{\mathrm{D}} \pm \mathbf{2 0 \%} \mathbf{n o c o l}$	($\begin{aligned} & \text { \# } \\ & 0 \\ & =10 \% \\ & \text { silver }\end{aligned}$	$\begin{gathered} \pm 5 \% \\ 0=\text { gold } \\ \hline \end{gathered}$		A	1 B	c	$\mathrm{O}=\mathrm{nos}^{ \pm 20 \%} \mathrm{col}$	$\pm 10 \%$ $=$ silver	=	slondanse resistance volues	res	ance do	nation	
33,000		$\begin{aligned} & 27,000 \\ & 33,000 \\ & 33,000 \\ & 33,900 \\ & 39,000 \end{aligned}$		$\begin{aligned} & 25,000 \\ & 30,000 \end{aligned}$		Green Violet Orange Blue White Black Orange Black Brown Block Red Green Red Brown Brown Red Orange Green Groy Block Red Green Violet Orange Blue White Block Orange Black	Uronge		560,000	$\begin{aligned} & 510,000 \\ & 560,000 \end{aligned}$	600,000			
			$\begin{aligned} & \text { Oronge } \\ & \text { Orange } \\ & \text { Oronge } \\ & \text { Oronge } \\ & \text { Orange } \end{aligned}$				680,000	$\begin{aligned} & \hline \begin{array}{l} \text { Brown } \\ \text { Blue } \\ \text { Black } \\ \text { Red } \end{array} \\ & \hline \end{aligned}$					$\begin{aligned} & \text { Yellow } \\ & \text { Yellow } \\ & \text { Yellow } \\ & \text { Yellow } \end{aligned}$	
	33,000								680,000	$620,000$		Green Green Blue Blue		
47,000	39,000		40,000	Orange				820,000		730,000	VioelVioletGray	GreenRed	Yellow	
	47,000	43,000		(erange $\begin{aligned} & \text { Orange } \\ & \text { Orange } \\ & \text { Oronge } \\ & \text { Oronge } \\ & \text { Orage }\end{aligned}$			1.0 Mog		820.000 890.000 10.0					
			50,000							1.0 Mog	WhiteBrownBrown	BrownBlackBrown	Green	
		51,00056,00						1.0 Meg						
	56,000		60,000	Oronge			1.5 Meg	1.2 Meg			Brown	${ }^{\text {Red }}$	-	
68,000	68,000			(erse $\begin{aligned} & \text { Oronge } \\ & \text { Orone } \\ & \text { Oronge }\end{aligned}$					1.5 Meg1.6 Meg	1.5 Mos	- Brown	Orange	Green	
		$\begin{aligned} & 62,000 \\ & 88,000 \\ & 75000 \end{aligned}$	75,000											
										2.0 Mes	Brown	Gray	Green	
100,000	82,000	82,000 91.000	100,000	Oronge			2.2 Meg	2.2 Meg	2.0 Meg				Green	
	100,000	100000						2.7 Mes	2.4 Meg	3.0 Meg	Red	Red Cl		
	120,000	110000 120000	120,000	(Red		Green	
		120000 130000						3.3 Meg	3.0 Meg 3.3 Meg					
150,000	150,000	150000 160000	150,000	Yellow Yellow Yellow			3.3 Meg		3.6 Meg 3.9 Meg		Orange	Biack Orange Bue	Green	
	180,000	160000 180000						3.9		4.0 Me	Yellow			
220,000	220,000	$\begin{aligned} & 2000000 \\ & 220000 \\ & 240,000 \end{aligned}$	200,000				4.7 Meg	4.7 Meg	4.3 Meg4.7 Meg	4.0 mes		Brack	Creen	
										5.0 Mos	(ellow $\begin{aligned} & \text { Yellow } \\ & \text { Green } \\ & \text { Green }\end{aligned}$	- Violotet	Creen $\begin{gathered}\text { Green } \\ \text { Green } \\ \text { Green }\end{gathered}$	
									5.1 Meg5.6 Meg					
	270,000	270000300000 330000 360000030,000	$\begin{aligned} & 230,000 \\ & 300,000 \end{aligned}$	Yellow Yellow				5.6 Meg			Green	Brown Blue	(Groen	
330,000	$\begin{aligned} & 330,000 \\ & 390,000 \end{aligned}$			Yellow				6.8 Meg	6.2 Meg8.8 Meg	6.0 M		Black Red Gray		
				$\begin{aligned} & \text { Yellow } \\ & \text { Yellow } \end{aligned}$$\begin{aligned} & \text { Yellow } \\ & \text { Yellow } \end{aligned}$Yellor			6.8 Meg			7.0 Meg			Green Green Green	
			400,000											
470,000	470,000	$\begin{aligned} & 430,000 \\ & 470,000 \end{aligned}$		Yellow				$\begin{gathered} 8.2 \mathrm{Meg} \\ 10 \mathrm{Meg} \end{gathered}$	7.5			Green Black Red Block Black		
			300,000	$\begin{aligned} & \text { Yellow } \\ & \text { Yellow } \\ & \text { Yellow } \end{aligned}$					8.2 Meg 9.1 Meg 10 Meg	9.0 Mog 10 Meg				
							10 Meg							

Capacitors, flxed mica dielectric

Fixed mica-dielectric capacitors of the American War Standards and Joint Army-Navy Specification are designated differently from the 1938 RMA Standard. AWS and JAN mica capacitors have a characteristic defined in Table 1.

Table I

characteristic	0	femperature coofflcient parts/million/ $/{ }^{\circ} \mathrm{C}$	maximum capacitance drift	verificatlon of characteristics by production fest
A B C D E F G		Not specified Not specified $\begin{array}{r} -200 \text { to }+200 \\ -100 \text { to }+100 \\ 0 \text { to }+100 \\ 0 \text { to }+50 \\ 0 \text { to }-50 \end{array}$	Not specified Not specified 0.5 percent 0.2 percen 0.05 percent 0.025 percent 0.025 percent	Not required Required Required

[^9]Type designations of AWS or JAN fixed mica-dielectric capacitors are a comprehensive numbering system used to identify the component. The capacitor type designation is given in the following form:

Component designation: Fixed mica-dielectric capacitors are identified by the symbol CM.
Case designation: The case designation is a 2 -digit symbol which identifies a particular case size and shape.
Characteristic: The characteristic is indicated by a single letter in accordance with Table I.
Capacitance value: The nominal capacitance value in micromicrofarads is indicated by a 3-digit number. The first two digits are the first two digits of the capacitance value in micromicrofarads. The final digit specifies the number of zeros which follow the first two digits. If more than two significant figures are required, additional digits may be used, the last digit always indicating the number of zeros.
Capacitance tolerance: The symmetrical capacitance tolerance in percent is designated by a letter as shown on page 52.

56

Capacitors, flxed mica dielectric

AWS and JAN fixed capacitors

RMA fixed capacitors

The 1938 RMA Standard covers a simple 3-dot color code showing directly only the capacitance, and a more comprehensive 6 -dot color code showing 3 significant figures and tolerance of the capacitance value, and a voltage rating. Capacitance values are expressed in micromicrofarads up to 10,000 micromicrofarads.

RMA 3-dol 500 -volt, $\pm 20 \%$ tolerance only

RMA 6-dot
Examples

1yp	Soh	fop row		Iefl	om row		description	
				mul	ance iplifer			
		cemfer	right		center	right		
RMA 13 doll					none	none		$250 \mu \mu \mathrm{~F}=20 \%$, 500 volts
RMA	brown	black	block	blue	green	brown	$1000 \mu \mu l \pm 5$ F\%, 600 volts	
RMA	brown	red	green	gold	gred	brown	$1250 \mu \mu f=2 \%$ \% 1000 volts	
CM308681 J	black	blue	gray	brown	rodd	brown		
CM35E332G	black	Orange	Orange	yellow		bed	$3{ }^{3} 300$ maf $=2 \%$, characteristic E	

Capacitors, fixed ceramic

Tubular ceramic dielectric capacitors are used for temperature compensation of tuned circuits and have many other applications as well. If the capacitance, tolerance, and temperature coefficient are not printed on the capacitor body, the following color code will be used. The change in capacitance per unit capacitance per degree centigrade is the temperature coefficient, usually stated in parts per million per centigrade (ppm/ ${ }^{\circ} \mathrm{C}$).

			copaeltan	tolerance	femperature
color	sIgnificant figure	multiplier	$\begin{gathered} \text { in } \% \\ c>10 \mu \mu f \\ \hline \end{gathered}$		$\begin{gathered} \text { cosfficlent } \\ \text { parts/million/ }{ }^{\circ} \mathrm{C} \\ \hline \end{gathered}$
black	0	1	± 20	2.0	0
brown	1	10	± 1		-30
red	2	100	士2		-80
orange	3	1,000			-150
yellow	4	-			-220
green	5	-	± 5	0.5	-330
blue	6	-			-470
violet	7	-			-750
groy	8	0.01		0.25	+30
white	9	0.1	± 10	1.0	-330 ± 500

Examples

wide	narrow bands or dots				description
band	A	B	c	D	
black	black	red	black	black	$2.0 \mu \mu \mathrm{f} \pm 2 \mu \mu \mathrm{f}$, zero temp coeff
blue	red	red	black	green	$22 \mu \mu \mathrm{f} \pm 5 \%,-470 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ temp coeff
violet	gray	red	brown	silver	$820 \mu \mu\} \pm 10 \%,-750 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ temp
					coeff

The approximate value of the low-frequency inductance of a single-layer solenoid is:
$L=F n^{2} d$ microhenries*
where $F=$ form factor, a function of the ratio d / l. The value of F may be read from the accompanying chart, fig. 1.
$n=$ number of turns, $d=$ diameter of coil (inches), between centers of conductors, $l=$ length of coil linches) $=n$ times the distance between centers of adjacent turns.
The formula is based on the assumption of a uniform current sheet, but the correction due to the use of spaced round wires is usually negligible for practical purposes. For higher frequencies skin effect alters the inductance slightly. This effect is not readily calculated, but is often negligibly small. However, it must be borne in mind that the formula gives approximately the true value of inductance. In contrast, the apparent value is affected by the shunting effect of the distributed capacitance of the coil.

Example: Required a coil of 100 microhenries inductance, wound on a form 2 inches diameter by 2 inches winding length. Then $d / l=1.00$, and $F=0.0173$ on the chart.
$n=\sqrt{\frac{L}{F d}}=\sqrt{\frac{100}{0.0173 \times 2}}=54$ turns
Reference to Magnet Wire Data, page 60 , will assist in choosing a desirable size of wire, allowing for a suitable spacing between turns according to the application of the coil. A slight correction may then be made for the increased diameter (diameter of form plus two times radius of wire), if this small correction seems justified.

In the use of various charts, tables, and calculators for designing inductors, the following relationships are useful in extending the range of the devices. They apply to coils of any type or design.

1. If all dimensions are held constant, inductance is proportional to n^{2}.
2. If the proportions of the coil remain unchanged, then for a given number of furns the inductance is proportional to the dimensions of the coil. A coil with all dimensions m times those of a given coil thaving the same number of turns) has m times the inductance of the given coil. That is, inductance has the dimensions of length.
[^10]
aUdjo and radio design
 59

Inductance of single-layer solenoids continued

Fig. 1—Inductance of a single-layer solenold, form factor: \mathbf{F}

Magnef wire data

size wire AWG	bare nom diam in Inches		scc* diam in inches	DCC* diem in inches	Sce* Alam in irehes	SSC* diam in Inches	DSC* diam in Inches	SSE* difam in Inches	bare		enameled	
									min diam inches	max diam Inches	min diom inches	$\begin{aligned} & \text { diam* } \\ & \text { in } \\ & \text { inches } \end{aligned}$
10	. 1019	. 1039	. 1079	. 1129	. 1104				. 1009	. 1029	. 1024	. 1044
11	. 0907	. 0927	. 0957	. 1002	. 0982				. 0898	. 0917	. 0913	. 0932
12	. 0808	. 0827	. 0858	. 0903	. 0882				. 0800	. 0816	. 0814	. 0832
13	. 0720	. 0738	. 0770	. 0815	. 0793				. 0712	. 0727	. 0726	. 0743
14	. 0641	. 0659	. 0691	. 0736	. 0714				. 0834	. 0647	. 0648	. 0664
15	. 0571	. 0588	.0621	. 0666	. 0643	. 0591	. 0611	. 0613	. 0565	. 0576	. 0578	. 0593
16	. 0508	. 0524	. 0558	. 0603	. 0579	. 0528	. 0548	. 0549	. 0503	. 0513	. 0515	. 0529
17	. 0453	. 0469	. 0503	. 0548	0.523	. 0473	. 0493	. 0493	. 0448	. 0457	. 0460	. 0473
18	. 0403	. 0418	. 0453	. 0498	. 0472	. 0423	. 0443	. 0442	. 0399	. 0407	. 0410	. 0422
19	. 0359	. 0374	. 0409	. 0454	. 0428	. 0379	. 0399	.0398	. 0355	. 0363	. 0386	. 0378
20	. 0320	. 0334	. 0370	. 0415	. 0388	. 0340	. 0360	. 0358	. 0316	. 0323	. 0326	. 0338
21	. 0285	. 0299	. 0335	. 0380	. 0353	. 0305	. 0325	. 0323	. 0282	. 0287	. 0292	. 0303
22	. 0253	. 0266	. 0303	. 0343	. 0320	. 0273	. 0293	. 0290	. 0251	. 0256	. 0261	. 0270
23	. 02226	. 0238	. 0276	. 0316	0292	. 0246	. $0268{ }^{\circ}$. 0262	. 0223	. 02228	. 0232	. 0242
24	. 0201	. 0213	. 0251	. 0291	. 0266	. 0221	. 0241	. 0236	. 0199	. 0203	. 02.28	. 0216
25	. 0179	. 0190	. 0224	. 0264	. 0238	. 0199	. 0219	. 0213	. 0177	. 0181	. 0186	. 0193
26	. 0159	. 0169	. 0204	. 0244	0217	. 0179	. 0199	. 0192	. 0158	. 0161	. 0166	. 0172
27	. 0142	. 0152	. 0187	. 02227	. 0200	. 0162	. 0182	. 0175	. 0141	. 0144	. 0149	. 0155
28	. 0126	. 0135	. 0171	. 0211	. 0183	. 0146	. 0166	. 0158	. 0125	. 0128	. 0132	. 0138
29	. 0113	. 0122	. 0158	. 0198	. 0170	. 0133	. 0153	. 0145	. 0112	. 0114	. 0119	. 0125
30	. 0100	. 0108	. 0145	. 0185	0156	. 0120	. 0140	. 0131	. 0099	. 0101	. 0105	. CH 11
31	. 0089	. 0097	. 0134	. 0174	. 0144	. 0109	. 0129	. 0119	. 0088	. 0090	. 0094	. 0099
32	. 0080	. 0088	. 0125	. 0165	. 0135	. 0100	. 0120	. 0110	. 0079	. 0081	. 0085	. 0090
33	. 0071	. 0078	. 0116	. 0156	0125	. 0091	. 0111	. 0100	. 0070	. 0072	. 0075	. 0080
34	. 0063	. 0069	. 0108	. 0148	. 0116	. 0083	. 0103	. 0091	. 0062	. 0064	.0067	. 0071
35	. 0056	. 0061	. 0101	. 0141	. 0108	. 0976	. 0096	. 00083	. 0055	. 0057	. 0059	. 0063
36	. 0050	. 0055	. 0090	. 0130	0097	. 0070	. 0090	. 0077	. 0049	.0051	. 0053	. 0057
37	. 0045	. 0049	. 0085	. 0125	0091	. 0065	. 0085	. 0071	. 0044	. 0046	. 0047	.0051
38	. 0040	. 0044	. 0088	. 0120	. 00086	. 0360	. 0080	. 0066	. 0039	. 0041	. 0042	. 0046
39	. 0035	. 0038	. 0075	. 0115	. 0080	. 0055	. 0075	. 0060	. 0034	. 0036	. 0038	. 0040
40	. 0031	. 0034	. 0071	. 0111	. 0076	. 0051	. 0071	. 0056	. 0030	. 0032	. 0032	.0036
41	. 0028	.0031							. 00327	. 00029	. 0029	. 0032
42	. 0025	. 0028							. 0024	. 0026	. 0026	. 0029
43	. 0022	. 0025							. 0021	. 0023	. 0023	. 0026
44	. 0020	. 0023							. 0019	. 0021	. 0021	. 0024

[^11]Reactance charts

Figs 2, 3, and 4 give the relalionships of capacitance, inductance, reactance, and frequency. Any one value may be determined in terms of two others by use of a straight edge laid across the correct chart for the frequency under consideration.

Fig. 2-1 cycle to 1000 eycles.

Reactance charts
cantinued

Example: Given a capacitance of 0.001μ, find the reactance ot 50 kilacycles and inductance required ta resanate. Place a straight edge thraugh these values and read the intersectians on the other scales, giving 3,180 ahms and 10.1 millihenries.

Fig. 3-1 kilocycle to 1000 kilecycies.

Reactance charts continued

Fig. 4-1 megacycle to 1000 megacycles.
Impedance formulas

$\begin{aligned} & \text { Impodance } Z=R+j X \text { ohms } \\ & \text { magnitude }\|Z\|=\left[R^{2}+X^{2}\right]^{\frac{1}{2}} \text { ohms } \end{aligned}$		$\begin{aligned} & \text { phase angle } \phi=\tan ^{-1} \frac{X}{R} \\ & \text { admittance } Y=\frac{1}{Z} \text { mhos } \end{aligned}$	phase angle of the admittance$\text { Is }-\tan ^{-1} \frac{X}{R}$	
diagram	impedance	1 magnifude	phase angle	1 admittance
$\because \sim$	R	R	0	$\frac{1}{\bar{R}}$
+900	jwL	ωL	$+\frac{\pi}{2}$	$-j \frac{1}{\omega L}$
\longrightarrow	$-j \frac{1}{\omega C}$	$\frac{1}{\omega C}$	$-\frac{\pi}{2}$	${ }^{*} \omega \mathrm{C}$
	${ }_{j} \omega\left(L_{1}+L_{2} \pm 2 M\right)$	$\omega\left(L_{1}+L_{2} \pm 2 \mathrm{Ml}\right.$	$+\frac{\pi}{2}$	$-j \frac{1}{\left.\omega U_{1}+L_{2} \pm 2 M\right)}$
$a_{0}^{c_{1}} H 1-11^{c_{2}}$	$-j \frac{1}{\omega}\left(\frac{1}{C_{1}}+\frac{1}{C_{2}}\right)$	$\frac{1}{\omega}\left(\frac{1}{C_{1}}+\frac{1}{C_{2}}\right)$	$-\frac{\pi}{2}$	${ }_{j} \omega \frac{C_{1} C_{2}}{C_{1}+C_{2}}$
$\because N-\infty$	$R+j \omega L$	$\left[R^{2}+\omega^{2} L^{2}\right]$	$\tan ^{-1} \frac{\omega L}{R}$	$\frac{R-j \omega L}{R^{2}+\omega^{2} L^{2}}$
$\xrightarrow{R} \sqrt{\text { cos }}$	$R-j \frac{1}{\omega C}$	$\frac{1}{\omega C}\left[1+\omega^{2} \mathrm{C}^{2} \mathrm{R}^{2}\right]$	$-\tan ^{-1} \frac{1}{\omega C R}$	$\frac{R+j \frac{1}{\omega C}}{R^{2}+\frac{1}{\omega^{2} C^{2}}}$
0800	$j\left(\omega L-\frac{1}{\omega C}\right)$	$\left(\omega L-\frac{1}{\omega C}\right)$	$\pm \frac{\pi}{2}$	$1 \frac{\omega C}{1-\omega^{2} L C}$
$O^{R} \mathrm{NL}^{-\infty}$	$R+j\left(\omega L-\frac{1}{\omega C}\right)$	$\left[R^{2}+\left(\omega L-\frac{1}{\omega C}\right)^{2}\right]^{\frac{1}{2}}$	$n^{-1} \frac{\left(\omega L-\frac{1}{\omega C}\right)}{R}$	$\frac{R-J\left(\omega L-\frac{1}{\omega C}\right)}{R^{2}+\left(\omega L-\frac{1}{\omega C}\right)^{2}}$

$\min _{2 \rightarrow 0}$		$\frac{R_{R} n_{0}}{R_{1}+s_{0}}$	-	$\left(\frac{1}{2}+\frac{1}{1}\right)$
مrion			$+\frac{\pi}{2}$	-
- ${ }^{\text {couc }}$	${ }^{-i} \frac{1}{0 \cdot c_{1}+c_{1}}$	$\frac{1}{\omega\left(a_{1}+c_{1}\right.}$	$-\frac{\pi}{2}$	${ }_{\mu}$
Fmorso			${ }^{\text {mon }}$ - $\frac{8}{41}$	$\frac{1}{k}-\frac{1}{4 m}$
orcmo				$\frac{1}{k}+m \mathrm{c}$
-rion	$\frac{\square}{1 / 200}$	$\frac{a}{1-\frac{a t c}{c}}$	$\pm \frac{x^{2}}{2}$	((c- $-\frac{1}{40}$)
$\mathrm{Hms}_{\mathrm{Hc}}^{\mathrm{M}}$		$\frac{1}{\left[\left(\frac{1}{k}\right)^{2}+\left(a c-\frac{1}{4}\right)^{\prime}\right]^{2}}$	$\operatorname{ton}^{-1}\left(\frac{1}{\left(\frac{1}{4}-\infty\right.}\right.$ -	${ }_{\frac{1}{k}+\left(\text { (c - }-\frac{1}{\omega} \text {) }\right.}$
¢Wmion				

continued Impedance formulas
mond

$$
\begin{aligned}
& \text { phase angle } \phi=\tan ^{-1} \frac{X}{R} \\
& \text { admiftance } Y=\frac{1}{Z} \text { mhos }
\end{aligned}
$$

	Impedance	$\frac{R \pm j \omega\left[L \\| l-\omega^{2} L C \mid-C R^{2}\right]}{\left(1-\omega^{2} L_{C}\right)^{2}+\omega^{2} C^{2} R^{2}}$
	magnitude	$\left[\frac{R^{2}+\omega^{2} L^{2}}{\left.\\|-\omega^{2} L C\right)^{2}+\omega^{2} C^{2} R^{2}}\right]^{\frac{1}{2}}$
	phase angle	$\tan ^{-1} \frac{\omega\left[L\left(1-\omega^{2} L C\right)-C R^{2}\right]}{R}$
	admittance	$\frac{\left.R-j \omega\left[L I I-\omega^{2} L C\right]-C R^{2}\right]}{R^{2}+\omega^{2} L^{2}}$
	Impedanc*	$X_{1} \frac{X_{1} R_{2}+j\left[R_{2}^{2}+X_{2}\left(X_{1}+X_{2}\right)\right]}{R_{2}^{2}+\left(X_{1}+X_{3}\right)^{2}}$
	magnifude	$X_{1}\left[\frac{R_{2}^{2}+X_{2}^{2}}{R_{2}^{2}+\left(X_{1}+X_{2}\right)^{2}}\right]^{\prime}$
	phase angle	$\tan ^{-1} \frac{R_{2}^{2}+X_{2}\left(X_{1}+X_{2}\right)}{X_{1} R_{2}}$
	admittance	$\frac{R_{2} X_{1}-j\left(R_{2}^{2}+X_{2}^{2}+X_{1} X_{2}\right)}{X_{1}\left(R_{2}^{2}+X_{2}^{2}\right)}$

	impedance	$\frac{R_{2} R_{2}\left(R_{1}+R_{2}\right)+\omega^{2} L^{2} R_{2}+\frac{R_{1}}{\omega^{2} C^{3}}}{\left(R_{1}+R_{2}\right)^{2}+\left(\omega L-\frac{1}{\omega C}\right)^{2}}+j \frac{\omega L R_{2}^{2}-\frac{R_{1}^{2}}{\omega C}-\frac{L}{C}\left(\omega L-\frac{1}{\omega C}\right)}{\left(R_{1}+R_{2}\right)^{2}+\left(\omega L-\frac{1}{\omega C}\right)^{2}}$
	magnitude	$\left[\frac{\left(R_{1}^{2}+\omega^{2} L^{2}\left(R_{2}{ }^{2}+\frac{1}{\omega^{2} C^{2}}\right)\right.}{\left(R_{1}+R_{2}\right)^{2}+\left(\omega L-\frac{1}{\omega C}\right)^{2}}\right]^{\frac{1}{2}}$
	phase angle	$\tan ^{-1}\left[\frac{\omega L R_{2}^{2}-\frac{R_{1}^{2}}{\omega C}-\frac{L}{C}\left(\omega L-\frac{1}{\omega C}\right)}{R_{1} R_{2}\left(R_{1}+R_{2}\right)+\omega^{2} L^{2} R_{2}+\frac{R_{1}}{\omega^{2} C^{2}}}\right]$
	admithance	$\frac{R_{1}+\omega^{2} C^{2} R_{1} R_{2}\left(R_{1}+R_{2}\right)+\omega^{4} L^{2} C^{2} R_{2}}{\left.\left(R_{1}^{2}+\omega^{2} L^{2}\right)(1)+\omega^{2} C^{2} R_{2}^{2}\right)}+j \omega\left[\frac{\left.C R_{1}{ }^{2}-L+\omega^{2} L C(L) C R_{2}{ }^{2}\right)^{2}}{\left.\left(R_{1}^{2}+\omega^{2} L^{2}\right)\left(1+\omega^{2} C^{2} R_{2}^{2}\right)^{2}\right)}\right]$
	impedance	$\frac{R_{1} R_{2}\left(R_{1}+R_{2}\right)+R_{1} X_{2}^{2}+R_{2} X_{1}^{2}}{\left(R_{1}+R_{2}\right)^{2}+\left(X_{1}+X_{2}\right)^{2}}+j \frac{R_{1}^{2} X_{2}+R_{2}{ }^{2} X_{1}+X_{1} X_{2}\left(X_{1}+X_{2}\right)}{\left(R_{1}+R_{2}\right)^{2}+\left(X_{1}+X_{2}\right)^{2}}$
	magnitude	$\left[\frac{\left(R_{1}^{2}+X_{1}^{2}\right)^{2}\left(R_{2}^{2}+X_{2}^{2}\right)}{\left(R_{1}+R_{3}\right)^{2}+\left(X_{1}+X_{2}\right)^{2}}\right]^{\frac{1}{2}}$
	phase angle	$\tan ^{-1} \frac{R_{1}{ }^{2} X_{2}+R_{2}{ }^{2} X_{1}+X_{1} X_{2}\left(X_{1}+X_{2}\right)}{\left.R_{1} R_{2} R_{1}+R_{2}\right)+R_{1} X_{2}{ }^{2}+R_{2} X_{1}{ }^{2}}$
	admithance	$\frac{R_{1}\left(R_{2}^{2}+x_{2}^{2}\right)+R_{2}\left(R_{1}^{2}+x_{1}^{2}\right)}{\left(R_{1}^{2}+x_{1}^{2}\right)\left(R_{2}^{2}+x_{2}^{2}\right)}-j \frac{x_{1}\left(R_{2}^{2}+x_{2}^{2}\right)+x_{2}\left(R_{1}^{2}+x_{1}^{2}\right)}{\left(R_{1}^{2}+x_{1}^{2}\right)\left(R_{2}^{2}+x_{2}^{2}\right)}$

Impedance formulas continued

Parallel and series circuits and their equivalent relationships

Conductance $\mathrm{G}=\frac{1}{R_{p}}$
$\omega=2 \pi f$

Susceptance $B=\frac{1}{X_{p}}=\frac{1}{\omega L_{p}}-\omega C_{p}$
Reactance $X_{p}=\frac{\omega^{L} L_{p}}{1-\omega^{2} L_{p} C_{p}}$
Admittance $Y=\frac{I}{E}=\frac{1}{Z}=G-j B$
$=\sqrt{C^{2}+B^{2}} \angle-\phi=|Y| \angle-\phi$
Impedance $Z=\frac{E}{I}=\frac{1}{Y}=\frac{R_{p} X_{p}}{R_{p}^{2}+X_{p}^{2}}\left(X_{p}+j R_{p}\right)$
$=\frac{R_{p} X_{p}}{\sqrt{R_{p}{ }^{2}+X_{p}{ }^{2}}} \angle \phi=|Z| \angle \phi$

parallel circult

Phase angle $-\phi=\tan ^{-1} \frac{-B}{C}=\cos ^{-1} \frac{G}{|Y|}=-\tan ^{-1} \frac{R_{p}}{X_{p}}$
Resistance $=R_{\text {s }}$
Reactance $X_{s}=\omega L_{s}-\frac{1}{\omega C_{s}}$
Impedance $Z=\frac{E}{I}=R_{s}+j X_{s}$
$=\sqrt{R_{t}{ }^{2}+X_{s}{ }^{2}} \angle \phi=|Z| \angle \phi$

Phase angle $\phi=\tan ^{-1} \frac{X_{s}}{R_{s}}=\cos ^{-1} \frac{R_{s}}{|Z|}$
Vectors E and I, phase ang'e ϕ, and Z, Y are identical for the parallel circuit and its equivalent series circuit

equivalent series circuit
$Q=|\tan \phi|=\frac{\left|X_{s}\right|}{R_{s}}=\frac{R_{p}}{\left|X_{p}\right|}=\frac{|B|}{G}$
$P F=\cos \phi=\frac{R_{s}}{|Z|}=\frac{|Z|}{R_{p}}=\frac{G}{|Y|}=\sqrt{\frac{R_{s}}{R_{p}}}=\frac{1}{\sqrt{Q^{2}+1}}=\frac{\mathrm{kw}}{\mathrm{kva}}$
$Z^{2}=R_{s}{ }^{2}+X_{s}{ }^{2}=\frac{R_{p}{ }^{2} X_{p}^{2}}{R_{p}^{2}+X_{p}^{2}}=R_{s} R_{p}=X_{s} X_{p}$

$$
\begin{aligned}
& Y^{2}=G^{2}+B^{2}=\frac{1}{R_{p}^{2}}+\frac{1}{X_{p}^{2}}=\frac{G}{R_{s}} \\
& R_{s}=\frac{Z^{2}}{R_{p}}=\frac{G}{Y^{2}}=R_{p} \frac{X_{p}^{2}}{R_{p}^{2}+X_{p}^{2}}=R_{p} \frac{1}{Q^{2}+1} \\
& X_{s}=\frac{Z^{2}}{X_{p}}=\frac{B}{Y^{2}}=X_{p} \frac{R_{p}^{2}}{R_{p}^{2}+X_{p}^{2}}=X_{p} \frac{1}{1+\frac{1}{Q^{2}}} \\
& R_{p}=\frac{1}{G}=\frac{Z^{2}}{R_{s}}=\frac{R_{s}^{2}+X_{s}^{2}}{R_{s}}=R_{s}\left(Q^{2}+1\right) \\
& X_{p}=\frac{1}{B}=\frac{Z^{2}}{X_{s}}=\frac{R_{s}^{2}+X_{s}^{2}}{X_{s}}=X_{s}\left(1+\frac{1}{Q^{2}}\right)=\frac{R_{s} R_{p}}{X_{s}}= \pm R_{p} \sqrt{\frac{R_{s}}{R_{p}-R_{z}}}
\end{aligned}
$$

Approximate formulas
Reactor $R_{s}=\frac{X^{2}}{R_{p}}$ and $X=X_{s}=X_{p} \quad$ (See Note 11
Resistor $R=R_{s}=R_{p}$ and $X_{s}=\frac{R^{2}}{X_{p}} \quad($ See Note 2$)$

Simplifled parallel and series circuits

$$
X_{p}=\omega L_{p} \quad B=\frac{1}{\omega L_{p}} \quad X_{s}=\omega L_{s}
$$

$\tan \phi=\frac{\omega L_{s}}{R_{s}}=\frac{R_{p}}{\omega L_{p}} \quad Q=\frac{\omega L_{s}}{R_{s}}=\frac{R_{p}}{\omega L_{p}}$

$$
\begin{aligned}
& P F=\frac{R_{s}}{\sqrt{R_{s}^{2}+\omega^{2} L_{s}^{2}}}=\frac{\omega L_{p}}{\sqrt{R_{p}^{2}+c}} \\
& P F=\frac{1}{Q} \text { approx (See Note 3) }
\end{aligned}
$$

$$
R_{z}=R_{p} \frac{1}{Q^{2}+1} \quad R_{p}=R_{z}\left(Q^{2}+1\right)
$$

$$
L_{8}=L_{p} \frac{1}{1+\frac{1}{Q^{2}}} \quad L_{p}=L_{8}\left(1+\frac{1}{Q^{2}}\right)
$$

Approximate formulas

$$
\text { Inductor } R_{s}=\frac{\omega^{2} L^{2}}{R_{p}} \text { and } L=L_{p}=L_{s} \quad \text { (See Note } 1 \text {) }
$$

$$
\text { Resistor } R=R_{s}=R_{p} \text { and } L_{p}=\frac{R^{2}}{\omega^{2} L_{s}} \quad \text { (See Note 2) }
$$

Capacitor $R_{s}=\frac{1}{\omega^{2} C^{2} R_{p}}$ and $C=C_{p}=C_{s} \quad$ (See Note 1)
Resistor $R=R_{s}=R_{p}$ and $C_{s}=\frac{1}{\omega^{2} C_{p} R^{2}} \quad$ (See Note 2)
Note 1: (Small resistive component) Error in percent $=-\frac{100}{Q^{2}}$ (for $Q=10$,
error $=1$ percent low)
Note 2: (Small reactive camponent) Error in percent $=-100 Q^{2}$ (for $Q=$ 0.1 , error $=1$ percent low)

Note 3: Error in percent $=+\frac{50}{\mathrm{Q}^{2}}$ approximately (for $\mathrm{Q}=7$, error $=1$
percent high) percent high)

$$
\begin{aligned}
& X_{p}=\frac{-1}{\omega C_{p}} \quad B=-\omega C_{p} \quad X_{*}=\frac{-1}{\omega C_{s}} \\
& \tan \phi=\frac{-1}{\omega C_{s} R_{s}}=-\omega C_{p} R_{p} \\
& Q=\frac{1}{\omega C_{s} R_{s}}=\omega C_{p} R_{p} \\
& P F=\frac{\omega C_{s} R_{s}}{\sqrt{1+\omega^{2} C_{s}^{2} R_{s}^{2}}}=\frac{1}{\sqrt{1+\omega^{2} C_{p}{ }^{2} R_{p}{ }^{2}}} \\
& P F=\frac{1}{Q} \text { approx } \quad(\text { See Nole } 3) \\
& R_{z}=R_{p} \frac{1}{Q^{2}+1} \quad R_{p}=R_{s}\left(Q^{2}+1\right) \\
& C_{s}=C_{p}\left(1+\frac{1}{Q^{2}}\right) \quad C_{p}=C_{s} \frac{1}{1+\frac{1}{Q^{2}}}
\end{aligned}
$$

Skin effecł

A $=$ correction coefficient
$D=$ diameter of conductor in inches
$f=$ frequency in cycles per second
$R_{a c}=$ resistance at frequency f
$R_{\text {de }}=$ direct-current resistance
$T=$ thickness of tubular conductor in inches
$T_{1}=$ depth of penetration of current
$\mu=$ permeability of conductor material $\ell \mu=1$ for copper and other nonmagnetic materials)
$\rho=$ resistivity of conductor material at any temperature
$\rho_{c}=$ resistivity of copper at $20^{\circ} \mathrm{C}(1.724$ microhm-centimeter)
Fig. 5 shows the relationship of $R_{a c} / R_{d c}$ versus $D \sqrt{f}$ for copper, or versus $D \sqrt{f} \sqrt{\mu_{\rho}}$ for any conductor material, for an isolated straight solid conductor of circular cross section. Negligible error in the formulas for $R_{a c}$ results when the conductor is spaced at least 10 D from adjacent conductors. When the spacing between axes of parallel conductors carrying the same current is 4D, the resistance $R_{a e}$ is increased about 3 percent. The formulas are accurate for concentric lines due to their circular symmetry.

For values of $D \sqrt{f} \sqrt{\mu} \frac{\rho_{c}}{\rho}$ greater than 40 ,
$\begin{aligned} & R_{a \epsilon} \\ & R_{d c}\end{aligned}=0.0960 D \sqrt{f} \sqrt{\mu \frac{\rho_{c}}{\rho}}+0.26$
The high-frequency resistance of an isolated straight conductor: either solid; or tubular for $T<\frac{D}{8}$ or $T_{1}<\frac{D}{8}$; is given in equation (2). If the current flow is along the inside surface of a tubular conductor, D is the inside diameter.
$R_{a c}=A \frac{\sqrt{f}}{D} \sqrt{\mu \frac{\rho}{\rho_{c}}} \times 10^{-6}$ ohms per foot
The values of the correction coefficient A for solid conductors are shown in Table II and, for tubular conductors, in Table III.

The value of $T \sqrt{f} \sqrt{\mu \frac{\rho_{c}}{\rho}}$ that just makes $A=1$ indicates the penetration of

Skin effect continued

Fig. 5-Reslstance ratio for isolated straight solid conductors of circular cross section.

Skin effect

 conlinuedthe currents below the surface of the conductor. Thus, approximately,
$T_{1}=\frac{3.5}{\sqrt{f}} \sqrt{\frac{\rho}{\mu \rho_{c}}}$ inches.
When $T_{1}<\frac{D}{8}$ the value of $R_{a c}$ as given by equation (2) (but not the value of $\frac{R_{a c}}{R_{d o}}$ in Table III) is correct for any value $T \geqq T_{1}$.
Under the limitation that the radius of curvature of all parts of the cross section is appreciably greater than T_{1}, equations (2) and (3) hold for isolated straight conductors of any shape. In this case the term $D=$ (perimeter of cross section) $\div \pi$.

Examples

1. At 100 megacycles, a copper conductor has a depth of penetration $T_{1}=0.00035$ inch.
2. A steel shield with 0.005 -inch copper plate, which is practically equivalent in $R_{a c}$ to an isolated copper conductor 0.005 -inch thick, has a value of $A=1.23$ at 200 kilocycles. This 23-percent increase in resistance over that of a thick copper sheet is satisfactorily low as regards its effect on the losses of the components within the shield. By comparison, a thick aluminum sheet has a resistance $\sqrt{\frac{\rho}{\rho_{c}}}=1.28$ times that of copper.

Table II-Solid conductors

$D \sqrt{f} \sqrt{\mu \frac{\rho_{e}}{\rho}}$	A
>370	1.000
220	1.005
160	1.010
98	1.02
48	1.05
26	1.10
13	1.20
9.6	1.30
<5.3	2.00
<3.0	$R_{\text {ae }} \approx R_{d e}$
$R_{d e}=\frac{10.37}{D^{2}} \frac{\rho}{\rho_{e}} \times 10^{-8}$ ohms per foot	

Table III-Tubular conductors

$T \sqrt{f} \sqrt{\mu \frac{\rho_{e}}{\rho}}$	A	$\mathbf{R}_{a c} / \mathbf{R}_{\text {de }}$
$\left.\begin{array}{l}=8 \text { where } \\ B>3.5\end{array}\right\}$	1.00	0.384 B
3.5	1.00	1.35
3.15	1.01	1.23
2.85	1.05	1.15
2.60	1.10	1.10
2.29	1.20	1.06
2.08	1.30	1.04
1.77	1.50	1.02
1.31	2.00	1.00
$\left.\begin{array}{r} =B \text { where } \\ B<1.3 \end{array}\right\}$	$\frac{2.60}{8}$	1.00

Network theorems

Reciprocity theorem

If an emf of any character whatsoever located at one point in a linear network produces a current at any other point in the network, the same emf acting at the second point will produce the same current at the first point.

Thévenin's theorem

If an impedance Z is connected between two points of a linear network, the resulting steady-state current I through this impedance is the ratio of the potential difference V between the two points prior to the connection of Z, and the sum of the values of (1) the connected impedance Z, and (2) the impedance Z_{1} of the network measured between the two points, when all generators in the network are replaced by their internal impedances
$I=\frac{V}{Z+Z_{1}}$

Principle of superposition

The current which flows at any point in a network composed of constant resistances, inductances, and capacitances, or the potential difference which exists between any two points in such a network, due to the simultaneous action of a number of emf's distributed in any manner throughout the network, is the sum of the component currents at the first point, or the potential differences between the two points, which would be caused by the individual emf's acting alone. (Applicable to emf's of any character.)

In the application of this theorem, it is to be noted that: for any impedance element Z through which flows a current l, there may be substituted a virtual source of voltage of value $-Z I$.

Electrical circuit formulas

1. Self-inductance of circular ring of round wire af radio frequencies, for non-magnetic materials
$L=\frac{a}{100}\left[7.353 \log _{10} \frac{16 a}{d}-6.370\right]$
$L=$ inductance in microhenries
$a=$ mean radius of ring in inches
$d=$ diameter of wire in inches
$\frac{a}{d}>25$

Electrical circuit formulas continued

2. Capacifance of a parallel-plafe capacitor

$C=0.0885 K \frac{(N-1) A}{1}$ micromicrofarads
$A=$ area of one side of one plate in square centimeters
$N=$ number of plates
$t=$ thickness of dielectric in centimeters
$K=$ dielectric constant
This formula neglects "fringing" at the edges of the plates.

3. Reactance of an inductor

$X=2 \pi f l$ ohms
$f=$ frequency in cycles per second
$L=$ inductance in henries
or f in kilocycles and L in millihenries; or f in megacycles and L in microhenries

4. Reactance of a capacitor

$X=\frac{-1}{2 \pi f C}$ ohms
$f=$ frequency in cycles per second
$C=$ capacitance in farads
This may be written $\quad x=\frac{-159.2}{\ell C}$ ohms
$f=$ frequency in kilocycles per second
$C=$ capacitance in microfarads
or f in megacycles and C in milli-microfarads $(0.001 \mu \mathrm{f})$.

5. Resonant frequency of a series-funed circuit

$f=\frac{1}{2 \pi \sqrt{L C}}$ cycles per second
$L=$ inductance in henries
$C=$ capacitance in farads
This may be written $L C=\stackrel{25,330}{f^{2}}$
$f=$ frequency in kilocycles
$L=$ inductance in millihenries
$\mathrm{C}=$ capacitance in milli-microfarads $(0.001 \mu f)$
or f in megacycles, L in microhenries, and C in micromicrofarads.

Electrical circuit formulas continued

6. Dynamic resistance of a parallel-funed circuił ał resonance

$r=\frac{X^{2}}{R}=\frac{L}{C R}$ ohms
$x=\omega L=\frac{1}{\omega C}$
$R=r_{1}+r_{2}$
$L=$ inductance in henries
$C=$ capacitance in farads
$R=$ resistance in ohms
The formula is accurate for engineering purposes provided $\frac{X}{R}>10$.

7. Paraliel impedances

If Z_{1} and Z_{2} are the two impedances which are connected in parallel, then the resultant impedance is

$$
\begin{aligned}
Z & =\frac{Z_{1} Z_{2}}{Z_{1}+Z_{2}}=\frac{\left(R_{1}+j X_{1}\right)\left(R_{2}+j X_{2}\right)}{\left(R_{1}+R_{2}\right)+j\left(X_{1}+X_{2}\right)}=\frac{\left(R_{1} R_{2}-X_{1} X_{2}\right)+j\left(R_{1} X_{2}+R_{2} X_{1}\right)}{\left(R_{1}+R_{2}\right)+j\left(X_{1}+X_{2}\right)} \\
Z & =\frac{|Z|\left|Z_{2}\right|}{\left|Z_{1}+Z_{2}\right|} \angle \phi \\
\phi & =\angle Z_{1}+\angle Z_{2}-\angle\left(Z_{1}+Z_{2}\right) \\
& =\tan ^{-1} \frac{X_{1}}{R_{1}}+\tan ^{-1} \frac{X_{2}}{R_{2}}-\tan ^{-1} \frac{X_{1}+X_{2}}{R_{1}+R_{2}}
\end{aligned}
$$

Given one impedance Z_{1} and the desired resultant impedance Z, the other impedance is

$$
Z_{2}=\frac{Z Z_{1}}{Z_{1}-Z}
$$

8. Impedance of a two-mesh network

$Z_{11}=R_{11}+j X_{11}$
is the impedance of the first circuit, measured at terminals $1-1$ with terminals $2-2$ open-circuited.
$Z_{22}=R_{22}+j X_{22}$
is the impedance of the second circuit, measured at terminals $2-2$ with terminals 1-1 open-circuited.
$Z_{12}=R_{12}+j X_{12}$
is the mutual impedance between the two meshes, i.e., the open-circuit voltage appearing in either mesh when unit current flows in the other mesh.

Then the impedance looking into terminals
 1-1 with terminals $2-2$ short-circuited is
$Z_{1}^{\prime}=R_{1}^{\prime}+j X_{1}^{\prime}=Z_{11}-\frac{Z_{12}{ }^{2}}{Z_{22}}=R_{11}+j X_{11}-\frac{R_{12}{ }^{2}-X_{12}{ }^{2}+2 j R_{12} X_{12}}{R_{22}+j X_{22}}$
When
$R_{12}=0$
$Z_{1}^{\prime}=R_{1}^{\prime}+j X_{1}^{\prime}=Z_{11}+\frac{X_{12}{ }^{2}}{Z_{22}}=R_{11}+j X_{11}+\frac{X_{12}{ }^{2}}{R_{22}{ }^{2}+X_{22}{ }^{2}}\left(R_{22}-j X_{22}\right)$
Example 1: Two resistors in parallel.
$Z_{11}=R_{1} \quad Z_{22}=R_{1}+R_{2}$
$Z_{12}=R_{1}$
Hence $Z_{1}^{\prime}=R_{1}{ }^{\prime}=R_{1}-\frac{R_{1}{ }^{2}}{R_{1}+R_{2}}=\frac{R_{1} R_{2}}{R_{1}+R_{2}}$

Example 2: A transformer with tuned secondary and negligible primary resistance.
$Z_{11}=j \omega L_{1}$
$Z_{22}=R_{2} \quad$ since $X_{23}=0$
$Z_{12}=j \omega M$
Then $Z_{1}^{\prime}=j \omega L_{1}+\frac{\omega^{2} M^{2}}{R_{2}}$

9. Currents in a two-mesh network

$$
\begin{aligned}
i_{1} & =\frac{e_{1}}{Z_{1}^{\prime}} \\
& =e_{1} \frac{Z_{22}}{Z_{11} Z_{22}-Z_{12}{ }^{2}} \\
& =e_{1} \frac{R_{22}+i X_{22}}{\left(R_{11} R_{22}-X_{11} X_{22}-R_{12}{ }^{2}+X_{12}{ }^{2}\right)+j\left(R_{11} X_{22}+R_{22} X_{11}-2 R_{12} X_{12}\right)} \\
i_{2} & =e_{1} \frac{Z_{12}}{Z_{11} Z_{22}-Z_{12}{ }^{2}}
\end{aligned}
$$

10. Power transfer between two impedances connected directly

Let $Z_{1}=R_{1}+j X_{1}$ be the impedance of the source, and $Z_{2}=R_{2}+j X_{2}$ be the impedance of the load.

The maximum power transfer occurs when

$$
R_{2}=R_{1} \text { and } X_{2}=-X_{1}
$$

The reflection loss due to connecting any two impedances directly is

$$
\frac{I_{2}}{I}=\frac{\left|Z_{1}+Z_{2}\right|}{2 \sqrt{R_{1} R_{2}}}
$$

In decibels
$\mathrm{db}=20 \log _{10} \frac{\left|Z_{1}+Z_{2}\right|}{2 \sqrt{R_{1} R_{2}}}$
$I_{2}=$ current which would flow in Z_{2} were the two impedances connected through a perfect impedance matching network.
$I=$ current which flows when the impedances are connected directly.

11. Power transfer between two meshes coupled reactively

In the general case, X_{11} and X_{22} are not equal to zero and X_{12} may be any reactive coupling. When only one of the quantities X_{11}, X_{22}, and X_{12} can be varied, the best power transfer under the circumstances is given by

Electrical circuif formulas continued

For X_{22} variable
$X_{22}=\frac{X_{12}{ }^{2} X_{11}}{R_{12}{ }^{2}+X_{11}{ }^{2}}$ (zero reactance looking into load circuit)
For X_{11} variable
$X_{11}=\frac{X_{12}{ }^{2} X_{22}}{R_{22}{ }^{2}+X_{22}{ }^{2}}$ (zero reactance looking into source circuit)
For X_{12} variable
$X_{12}{ }^{2}=\sqrt{\left(R_{11}{ }^{2}+X_{11}{ }^{2}\right)\left(R_{22}{ }^{2}+X_{22}{ }^{2}\right)}$
When two of the three quantities can be varied, a perfect impedance match is attained and maximum power is transferred when
$X_{12}{ }^{2}=\sqrt{\left(R_{11}{ }^{2}+X_{11}{ }^{2}\right)\left(R_{22}{ }^{2}+X_{22}{ }^{2}\right)}$
and
$\frac{X_{11}}{R_{11}}=\frac{X_{22}}{R_{22}}$ (both circuits of same Q or phase angle)
For perfect impedance match the current is

$$
i_{2}=\frac{e_{1}}{2 \sqrt{R_{11} R_{22}}} \angle \tan ^{-1} \frac{R_{11}}{X_{11}}
$$

In the most common case, the circuits are tuned to resonance $X_{11}=0$ and $X_{22}=0$. Then $X_{12}{ }^{2}=R_{11} R_{22}$ for perfect impedance match.

12. Optimum coupling between two circuits funed to the same frequency

From the last result in the preceding section, maximum power transfer for an impedance matchl is obtained for $\omega^{2} M^{2}=R_{1} R_{2}$
where M is the mutual inductance between the circuits, R_{1} and R_{2} are the resistances of the two circuits.

13. Coefficient of coupling

By definition, coefficient of coupling k is
$k=\frac{M}{\sqrt{L_{1} L_{2}}} \quad$ where $M=$ mutual inductance
L_{1} and L_{2} are the inductances of the two coupled circuits.

Electrical circuit formulas continued

Coefficient of coupling is a geometrical property, being a function of the proportions of the configuration of coils, including their relationship to any nearby objects which affect the field of the system. As long as these proportions remain unchanged, the coefficient of coupling is independent of the physical size of the system, and of the number of turns of either coil.

14. Selective circuits

Formulas and curves are presented for the selectivity and phase shift
Of n single tuned circuits
Of m pairs of coupled tuned circuits
The conditions assumed are

1. All circuits are tuned to the same frequency fo-
2. All circuits have the same Q, or each pair of circuits includes one circuit having Q_{1}, and the other having Q_{2}.
3. Otherwise the circuits need not be identical.
4. Each successive circuit or pair of circuits is isolated from the preceding and following ones by tubes, with no regeneration around the system.
Certain approximations have been made in order to simplify the formulas. In most actual applications of the types of circuits treated, the error involved is negligible from a practical standpoint. Over the narrow frequency band in question, it is assumed that
5. The reactance around each circuit is equal to $2 X_{0} \frac{\Delta f}{f_{0}}$.
6. The resistance of each circuit is constant and equal to $\frac{X_{0}}{Q}$.
7. The coupling between two circuits of a pair is reactive and constant. (When an untuned link is used to couple the two circuits, this condition frequently is far from satisfied, resulting in a lopsided selectivity curve.l
8. The equivalent input voltage, taken as being in series with the tuned circuit (or the first of a pair), is assumed to bear a constant proportionality to the grid voltage of the input tube or other driving source, at all frequencies in the band.
9. Likewise, the output voltage across the circuit for the final circuit of a pairl is assumed to be proportional only to the current in the circuit.

Electrical circuit formulas continued

The following symbols are used in the formulas
$\frac{\Delta f}{f_{0}}=\frac{f-f_{0}}{f_{0}}=\frac{\text { deviation from resonance frequency }}{\text { resonance frequency }}$
$f=$ signal frequency
$f_{0}=$ frequency to which all circuits are independently funed
$X_{0}=$ reactance at f_{0} of inductor in tuned circuit
$Q=$ quality factor of tuned circuit. For a pair of coupled circuits, there is used $Q=\sqrt{Q_{1} Q_{2}}$
Q_{1} and Q_{2} are the values for the two circuits of a coupled pair
$Q^{\prime}=\frac{2 Q_{1} Q_{2}}{Q_{1}+Q_{2}}$
$E=$ amplitude of output voltage at frequency f both for the same value
$E_{0}=$ amplitude of output voltage at frequency $\left.f_{0}\right\}$ of input voltage
$n=$ number of single tuned circuits
$m=$ number of pairs of coupled circuits
$\phi=$ phase shift of signal at f relative to shift at f_{0}, as signal passes through cascade of circuits
$k=$ coefficient of coupling between two coupled circuits
$p=k^{2} Q^{2}$ or $p=k^{2} Q_{1} Q_{2}$, a parameter determining the form of the selectivity curve of coupled circuits
$B=p-\frac{1}{2}\left(\frac{Q_{1}}{Q_{2}}+\frac{Q_{2}}{Q_{1}}\right)$
-Selectivity and phase shift of single tuned circuits
$\frac{E}{E_{0}}=\left[\frac{1}{\sqrt{1+\left(2 Q \frac{\Delta f}{f_{0}}\right)^{2}}}\right]^{n}$
$\frac{\Delta f}{f_{0}}= \pm \frac{1}{2 Q} \sqrt{\left(\frac{E_{0}}{E}\right)^{\frac{2}{n}}-1}$

Decibei response $=20 \log _{10}\left(\frac{E}{E_{0}}\right)$
(db response of n circuits) $=n$ times (db response of single circuit)

$$
\phi=n \tan ^{-1}\left(-2 Q \frac{\Delta f}{f_{0}}\right)
$$

These equations are plotted in Fig. 6 and Fig. 7, following.

$$
\begin{aligned}
& Q \frac{\Delta f}{f_{0}}=Q \frac{f-f_{0}}{f_{0}} \\
& \text { db response of }
\end{aligned}
$$

- a single circuil $n=1$
- a pair of coupled circuits $m=1$

The selectivity curves are symmetrical about the axis $Q \frac{\Delta f}{f_{0}}=0$ for practical purposes.

Extrapolation beyond lower limits of chart:

Fig. 6-Selectivity curves.

As an example of the use of the curves, suppose there are three single-tuned circuits $(n=31$. Each circuit has a $Q=200$ and is tuned to 1000 kilocycles. The results of this example are shown in the following table:

abscissa $\mathbf{Q} \frac{\Delta I}{f_{0}}$	$\begin{aligned} & \Delta f \\ & \mathbf{k e} \end{aligned}$	ordinate db response for $n=1$	$\begin{gathered} d b \\ \text { response } \\ \text { for } n=3 \end{gathered}$	$\begin{gathered} \phi^{*} \\ \operatorname{for} n=1 \end{gathered}$	$\begin{gathered} \phi^{*} \\ \text { for } n=3 \end{gathered}$
0.5	± 2.5	-3.0	-9	F45 ${ }^{\circ}$	干 135°
1.5	± 7.5	-10.0	-30	F711/2	F215 ${ }^{\circ}$
5.0	± 25.0				

[^12]
$Q \frac{\Delta f}{f_{0}}=Q \frac{f-f_{0}}{f_{0}}$
relative phase angle ϕ in degrees

- o single circuit $n=1$
- o pair of coupled circuits $m=1$

Fig. 7-Phase-shift curves.

The curves are symmetrical about the origin. For negative values of $Q \frac{\Delta f}{f_{0}}, \phi$ is positive and same numerical value as for corresponding negative value of $Q \frac{\Delta f}{f_{0}}$.

Selectivity and phase shift of pairs of coupled tuned circuits
Case 1: When $Q_{1}=Q_{2}=Q$
These formulas can be used with reasonable accuracy when Q_{1} and Q_{2} differ by ratios up to 1.5 or even 2 to 1 . In such cases use the value $Q=\sqrt{Q_{1} Q_{2}}$.

$\frac{\Delta f}{f_{0}}= \pm \frac{1}{2 Q} \sqrt{(p-1) \pm \sqrt{(p+1)^{2}\left(\frac{E_{0}}{E}\right)^{\frac{2}{m}}-4 p}}$

For very small values of $\frac{E}{E_{0}}$ the formulas reduce to
one of several types of coupling
$\frac{E}{E_{0}}=\left[\frac{\mathrm{p}+1}{\left(2 Q \frac{\Delta f}{f_{0}}\right)^{2}}\right]^{m}$
Decibel response $=20 \log _{10}\left(\frac{E}{E_{0}}\right)$
(db response of m pairs of circuits) $=m$ times (db response of one pair)

$$
\phi=m \tan ^{-1}\left[\frac{-4 Q \frac{\Delta f}{f_{0}}}{(p+1)-\left(2 Q \frac{\Delta f}{f_{0}}\right)^{2}}\right]
$$

As p approaches zero, the selectivity and phase shift approach the values for n single circuits, where $n=2 m$ (gain also approaches zero).

The above equations are plotted in Figs. 6 and 7.
For overcoupled circuits ($p>1$)
Location of peaks: $\left(\frac{\Delta f}{f_{0}}\right)_{\text {deak }}= \pm \frac{1}{2 Q} \sqrt{p-1}$
Amplitude of peaks: $\left(\frac{E}{E_{0}}\right)_{\text {peak }}=\left(\frac{p+1}{2 \sqrt{p}}\right)^{m}$
Phase shift at peaks: $\quad \phi_{\text {peak }}=m \tan ^{-1}(\mp \sqrt{p-1})$

Electrical circuif formulas continued

Approximate pass band (where $\frac{E}{E_{0}}=1$):
$\left(\frac{\Delta f}{f_{0}}\right)_{\text {center }}=0$ and $\left(\frac{\Delta f}{f_{0}}\right)_{\text {unity }}=\sqrt{2}\left(\frac{\Delta f}{f_{0}}\right)_{\text {peak }}= \pm \frac{1}{Q} \sqrt{\frac{p-1}{2}}$
Case 2: General formula for any Q_{1} and Q_{2}
$\frac{E}{E_{0}}=\left[\frac{p+1}{\sqrt{\left[\left(2 Q \frac{\Delta f}{f_{0}}\right)^{2}-B\right]^{2}+(p+1)^{2}-B^{2}}}\right]^{m}$
$\frac{\Delta f}{f_{0}}= \pm \frac{1}{2 Q} \sqrt{B \pm\left[(p+1)^{2}\left(\frac{E_{0}}{E}\right)^{\frac{2}{m}}-(p+1)^{2}+B^{2}\right]^{\frac{\frac{1}{2}}{2}}}$
$\phi=m \tan ^{-1}\left[-\frac{2 Q \frac{\Delta f}{f_{0}}\left(\sqrt{\frac{Q_{1}}{Q_{2}}}+\sqrt{\frac{Q_{2}}{Q_{1}}}\right)}{l p+11-\left(2 Q \frac{\Delta f}{f_{0}}\right)^{2}}\right]$

For overcoupled circuits
Location of peaks: $\left(\frac{\Delta f}{f_{0}}\right)_{\text {peak }}= \pm \frac{\sqrt{B}}{2 Q}= \pm \frac{1}{2} \sqrt{k^{2}-\frac{1}{2}\left(\frac{1}{Q_{1}{ }^{2}}+\frac{1}{Q_{2}{ }^{2}}\right)}$
Amplitude of peaks: $\left(\frac{E}{E_{0}}\right)_{p e a k}=\left[\frac{\rho+1}{\sqrt{(p+1)^{2}-B^{2}}}\right]^{m}$
Case 3: Peaks just converged to a single peak Here $B=0 \quad$ or $\quad k^{2}=\frac{1}{2}\left(\frac{1}{Q_{1}{ }^{2}}+\frac{1}{Q_{2}{ }^{2}}\right)$

$$
\frac{E}{E_{0}}=\left[\frac{2}{\sqrt{\left(2 Q^{\prime} \frac{\Delta f}{f_{0}}\right)^{4}+4}}\right]^{m} ; \quad \frac{\Delta f}{f_{0}}= \pm \frac{\sqrt{2}}{4}\left(\frac{1}{Q_{1}}+\frac{1}{Q_{2}}\right) \sqrt[4]{\left(\frac{E_{0}}{E}\right)^{\frac{2}{m}}-1}
$$

$$
\phi=m \tan ^{-1}\left[-\frac{4 Q^{\prime} \frac{\Delta f}{f_{0}}}{2-\left(2 Q^{\prime} \frac{\Delta f}{f_{0}}\right)^{2}}\right] \begin{aligned}
& \text { The curves of Figs. } 6 \text { and } 7 \text { may be } \\
& \text { applied to this case, using the value } \\
& p=1, \text { and substituting } Q^{\prime} \text { for } Q .
\end{aligned}
$$

15. $T-\pi$ or $Y-\Delta$ transformation

The two networks are equivalent, as far as conditions at the terminals are concerned, provided the following equations are satisfied. Either the impedance equations or the admittance equations may be used.

T or Y nelwork

Impedance equations
$Z_{12}=\frac{Z_{1} Z_{2}+Z_{1} Z_{3}+Z_{2} Z_{3}}{Z_{3}}$
$Z_{13}=\frac{Z_{1} Z_{2}+Z_{1} Z_{3}+Z_{2} Z_{3}}{Z_{2}}$
$Z_{23}=\frac{Z_{1} Z_{2}+Z_{1} Z_{3}+Z_{2} Z_{3}}{Z_{1}}$
$Z_{1}=\frac{Z_{12} Z_{13}}{Z_{12}+Z_{13}+Z_{23}}$
$Z_{2}=\frac{Z_{12} Z_{23}}{Z_{12}+Z_{13}+Z_{23}}$
$Z_{3}=\frac{Z_{13} Z_{23}}{Z_{12}+Z_{13}+Z_{23}}$

π or Δ network

Admittance equations

$$
Y_{12}=\frac{Y_{1} Y_{2}}{Y_{1}+Y_{2}+Y_{3}}
$$

$$
Y_{13}=\frac{Y_{1} Y_{3}}{Y_{1}+Y_{2}+Y_{3}}
$$

$$
Y_{23}=\frac{Y_{2} Y_{3}}{Y_{1}+Y_{2}+Y_{3}}
$$

$$
Y_{1}=\frac{Y_{12} Y_{13}+Y_{19} Y_{23}+Y_{13} Y_{23}}{Y_{23}}
$$

$$
Y_{2}=\frac{Y_{12} Y_{13}+Y_{12} Y_{23}+Y_{13} Y_{23}}{Y_{13}}
$$

$$
Y_{3}=\frac{Y_{12} Y_{13}+Y_{12} Y_{23}+Y_{13} Y_{23}}{Y_{12}}
$$

16. Amplitude modulation

In design work, usually the entire modulation is assumed to be in M_{1}. Then M_{2}, M_{3}, etc, would be neglected in the formulas below.
When the expression $\left(1+M_{1}+M_{2}+\ldots.\right)$ is used, it is assumed that ω_{1}, ω_{2}, etc, are incommensurate.
$i=I\left[1+M_{1} \cos \left\{\omega_{1} t+\phi_{1}\right\}+M_{2} \cos \left(\omega_{2} t+\phi_{2}\right)+\ldots.\right] \sin \left(\omega_{0} t+\phi_{0}\right)$

Electrical circuit formulas continued

To determine the modulation percentage from an oscillogram of type illustrated apply measurements A and B to scales A and B and read percentage from center scale. Example: $A=3$ inches, $B=0.7$ inches-Modulation 62%. Any units of measurement may be used,

Fig. 8-Modulation percentage from oscillograms.

88

Electrical circuit formulas contimued

$$
\begin{aligned}
& =I\left\{\sin \left(\omega_{0} t+\phi_{0}\right)+\frac{M_{1}}{2}\left[\sin \overline{\left(\omega_{0}+\omega_{1}\right.} t+\phi_{0}+\phi_{1}\right)+\right. \\
& \left.\sin \left(\overline{\omega_{0}-\omega_{1}}++\phi_{0}-\phi_{1}\right)\right]+\frac{M_{2}}{2}\left[\sin \left(\overline{\omega_{0}+\omega_{2}}++\phi_{0}+\phi_{2}\right)+\right. \\
& \left.\sin \left[\overline{\omega_{0}-\omega_{2}} \dagger+\phi_{0}-\phi_{2}\right]+\ldots\right\} \\
& \text { Percent modulation }=\left(M_{1}+M_{2}+\ldots .\right) \times 100 \\
& =\frac{\text { crest ampl }- \text { trough ampl }}{\text { crest ampl }+ \text { trough ampl }} \times 100 .
\end{aligned}
$$

Percent modulation may be measured by means of an oscilloscope, the modulated carrier wave being applied to the vertical plates and the modulating voltage wave to the horizontal plates. The resulting trapezoidal pattern and a nomograph for computing percent modulation are shown in Fig. 8. The dimensions A
 and B in that figure are proportional to the crest amplitude and trough amplitude, respectively.
Peak voltage at crest: $\left.V_{\text {creat }}=V_{\text {carrier, rms }} 11+M_{1}+M_{2}+\ldots\right) \sqrt{2}$
Kilovolt-amperes at crest: kva $_{\text {ereest }}=$ kva $_{\text {carrier }}\left(1+M_{1}+M_{2}+\ldots\right)^{2}$
Average kilovolt-amperes over a number of cycles of lowest modulation frequency:
$k v G_{\text {average }}=k v a_{\text {carrier }}\left(1+\frac{M_{1}{ }^{2}}{2}+\frac{M_{2}{ }^{2}}{2}+\ldots\right)$
Effective current of the modulated wave:
$I_{\text {aff }}=I_{\text {carrier, rme }} \sqrt{1+\frac{M_{1}{ }^{2}}{2}+\frac{M_{2}{ }^{2}}{2}+\ldots .}$

17. Elementary R-C, R-L, and L-C filters

Simple attentuating sections of broad frequency discriminating characteristics, as used in power supplies, grid-bias feed, etc. The output load impedance is assumed to be high compared to the impedance of the shunt element of the filter.
continued

diagram	type	$\left\|\begin{array}{c} \text { time constant } \\ \text { or } \\ \text { resonant freq } \end{array}\right\|$	formula and approximation
	$\begin{gathered} \text { low-pass } \\ R-C \end{gathered}$	$T=R C$	$\frac{E_{o u t}}{E_{i n}}=\frac{1}{\sqrt{1+\omega^{2} T^{2}}} \approx \frac{1}{\omega T}$
	$\left\lvert\, \begin{gathered} \text { high-pass } \\ R-C \end{gathered}\right.$	$T=R C$	$\frac{E_{\text {out }}}{E_{\text {in }}}=\frac{1}{\sqrt{1+\frac{1}{\omega^{2} T^{2}}}} \approx \omega T$
	$\begin{gathered} \text { low-pass } \\ R-L \end{gathered}$	$T=\frac{L}{R}$	$\frac{E_{o u t}}{E_{i n}}=\frac{1}{\sqrt{1+\omega^{2} T^{2}}} \approx \frac{1}{\omega T}$
	$\left\|\begin{array}{c} \text { high-pass } \\ R-L \end{array}\right\|$	$T=\frac{L}{R}$	$\frac{E_{o u s}}{E_{i n}}=\frac{1}{\sqrt{1+\frac{1}{\omega^{2} T^{2}}}} \approx \omega T$
	$\begin{gathered} \text { low-poss } \\ L-C \end{gathered}$	$f_{0}=\frac{0.1592}{\sqrt{L C}}$	$\frac{E_{\text {out }}}{E_{\text {in }}}=\frac{1}{\omega^{2} L C-1}=\frac{1}{\frac{f^{2}}{f_{0}^{2}}-1} \approx \frac{1}{\omega^{2} L C}=\frac{f_{0}^{2}}{f^{2}}$
	high-pass L - C	$f_{0}=\frac{0.1592}{\sqrt{L \bar{C}}}$	$\frac{E_{\text {out }}}{E_{i n}}=\frac{1}{\frac{1}{\omega^{2} L C}-1}=\frac{1}{\frac{f_{0}^{2}}{f^{2}}-1} \approx \omega^{2} L C=\frac{f^{2}}{f_{0}^{2}}$

R in ohms L in henries
C in farads \quad (1 $\mu \mathrm{f}=10^{-6}$ farad)
$T=$ time constant (seconds) $\quad f_{0}=$ resonant frequency (cps) $\quad \omega=2 \pi f$
$2 \pi=6.28 \quad \frac{1}{2 \pi}=0.1592$
$4 \pi^{2}=39.5 \quad \frac{1}{4 \pi^{2}}=0.0253$

90

Electrical circuit formulas continued

The relationships for low-pass filters are plotted in Figs. 9 and 10.

Examples

1. Low-pass R-C filters
a. $R=100,000$ ohms, $C=0.1 \times 10^{-6}$ (0.1 $\mu \mathrm{fl}$

Then $T=R C=0.01$ second

$$
\begin{aligned}
& \text { At } f=100 \mathrm{cps}, \frac{E_{\text {out }}}{E_{\text {in }}}=0.16- \\
& \text { At } f=30,000 \mathrm{cps}, \frac{E_{\text {out }}}{E_{i n}}=0.00053
\end{aligned}
$$

| frequency in cycles per second |
| :--- | :--- |
| $E_{\text {out }}$ |\(\quad \begin{aligned} \& \mathrm{N} is any convenient factor, usually

\& \mathrm{E}_{in}\end{aligned} \quad $$
\begin{aligned} & \text { taken as an integral power of } 10 .\end{aligned}
$$\)

Fig. 9-Low-pass R-C and R-L filters.
b. $\quad R=1,000$ ohms, $C=0.001 \times 10^{-6}$

$$
T=1 \times 10^{-6} \text { second }=0.1 \div N, \text { where } N=10^{5}
$$

At $f=10$ megacycles $=100 \times N, \frac{E_{\text {out }}}{E_{\text {in }}}=0.016-$
2. Low-pass $L-C$ filter

$$
\text { At } f=120 \mathrm{cps} \text {, required } \frac{E_{\text {out }}}{E_{\text {in }}}=0.03
$$

Then from curves: $L C=6 \times 10^{-5}$ approximately. Whence, for $C=4 \mu \mathrm{f}$, we require $L=15$ henries.

Fig. 10-Low-pass L-C filters.

18. Transients

The complete transient in a linear network is, by the principle of superposition, the sum of the individual transients due to the store of energy in each inductor and capacitor and to each external source of energy connected to the network. To this is added the steady state condition due to each external source of energy. The transient may be computed as starting from any arbitrary time $t=0$ when the initial conditions of the energy of the network are known.
Convention of signs: In the following formulas, one direction of current is assumed to be positive, and any emf on a capacitor or in an external source, tending to produce a current in the positive direction, is designated as positive. In the case of the charge of a capacitor, this results in the capacitor voltage being the negative of the value sometimes conventionally used, wherein the junction of the source and the capacitor is assumed to be grounded and potentials are computed with respect to ground.
Time constant (designated T): of the discharge of a capacitor through a resistor is the time $t_{2}-t_{1}$ required for the voltage or current to decay to $\frac{1}{6}$ of its value at time t_{1}. For the charge of a capacitor the same definition ϵ applies, the voltage "decaying" toward its steady state value. The time constant of discharge or charge of the current in an inductor through a resistor follows an analogous definition.
Energy stored in a capacitor $=\frac{1}{2} C E^{2}$ joules (watt-seconds). Energy stored in an inductor $=\frac{1}{2} L I^{2}$ joules (watt-seconds).
$\epsilon=2.718 \quad \frac{1}{\epsilon}=0.3679 \quad \log _{10} \epsilon=0.4343 \quad T$ and t in seconds
R in ohms L in henries C in farads E in volts I in amperes

Capacitor charge and discharge

Closing of switch occurs at time $t=0$
Initial conditions (at $t=0$): Battery $=E_{b} ; e_{c}=E_{0}$.
Steady state (at $i=\infty): i=0 ; e_{c}=\rightarrow E_{b}$.
Transient:

$$
\begin{aligned}
& i=\frac{E_{b}+E_{0}}{R} \epsilon^{-\frac{i}{R C}}=I_{0} \epsilon^{-\frac{i}{R C}} \\
& \log _{10}\left(\frac{i}{I_{0}}\right)=-\frac{0.4343}{R C}
\end{aligned}
$$

$\mathbf{e}_{c}=E_{0}-\frac{1}{C} \int_{0}^{t} i d t=E_{0} \epsilon^{-\frac{1}{R C}}-E_{b}\left(1-\epsilon^{-\frac{t}{R C}}\right)$
Time constant: $T=R C$
Fig. 11 shows current $\frac{i}{I_{0}}=\epsilon^{-\frac{t}{T}}$
Fig. 11 shows discharge Ifor $E_{b}=0$) $\frac{e_{c}}{E_{0}}=\epsilon^{-\frac{\imath}{T}}$
Fig. 12 shows charge (for $E_{0}=0$) $-\frac{e_{c}}{E_{b}}=\left(1-\epsilon^{-\frac{\ell}{T}}\right)$

These curves are plotted on a larger scale in Fig. 13.

Two capacitors

Closing of switch occurs at time $t=0$
Initial conditions (at $t=0$):
$\mathbf{e}_{1}=E_{1 ;} \mathbf{e}_{2}=E_{2}$.
Steady state lat $t=\infty$):
$e_{1}=E_{f ;} e_{2}=-E_{f ;} i=0$.
$E_{f}=\frac{E_{1} C_{1}-E_{2} C_{2}}{C_{1}+C_{2}} \quad C^{\prime}=\frac{C_{1} C_{2}}{C_{1}+C_{2}}$
Transient:

$$
i=\frac{E_{1}+E_{2}}{R} \epsilon^{-\frac{B}{R C^{\prime}}}
$$

Electrical circuip formulas continued
$\mathrm{e}_{1}=E_{f}+\left(E_{1}-E_{f}\right) \epsilon^{-\frac{t}{R C^{\prime}}}=E_{1}-\left(E_{1}+E_{2}\right) \frac{C^{\prime}}{C_{1}}\left(1-\epsilon^{-\frac{t}{R C^{\prime}}}\right)$
$\mathrm{e}_{2}=-E_{f}+\left(E_{2}+E_{f}\right) \epsilon^{-\frac{t}{R C^{\prime}}}=E_{2}-\left(E_{1}+E_{2}\right) \frac{C^{\prime}}{C_{2}}\left(1-\epsilon^{-\frac{i}{R C^{\prime}}}\right)$
Original energy $=\frac{1}{2}\left(C_{1} E_{1}{ }^{2}+C_{2} E_{2}{ }^{2}\right)$ joules
Final energy $=\frac{1}{2}\left(C_{1}+C_{2}\right) E_{f}{ }^{2}$ joules
Loss of energy $=\int_{0}^{\infty} i^{2} R d t=\frac{1}{2} C^{\prime}\left(E_{1}+E_{2}\right)^{2}$ joules
(Loss is independent of the value of R.I

Use exponential $\epsilon^{-\frac{1}{T}}$ for charge or discharge of capacitor or discharge of inductor:
current at time t initial current discharge of capacitor:

$$
\frac{\text { voltage at time } t}{\text { initial voltage }}
$$

Use exponential $1-\epsilon^{-\frac{t}{T}}$ for charge of capacitor:
voltage at time \dagger
battery or final voltage charge of inductor:
$\frac{\text { current at time } t}{\text { final current }}$

Fig. 13-Exponential functions $\epsilon^{-\frac{t}{T}}$ and $1-\epsilon^{-\frac{t}{T}}$ applied to Iransients In R-C and L-R sireuits.

Electrical circuit formulas continued

Inductor charge and discharge

Initial conditions (at $t=0$):
Battery $=E_{b} ; i=I_{0}$
Steady state lat $t=\infty$): $i=I_{f}=\frac{E_{b}}{R}$
Transient:

$$
\begin{aligned}
i & =I_{f}\left(1-\epsilon^{-\frac{R t}{L}}\right)+I_{0} \epsilon^{-\frac{R t}{L}} \\
\mathrm{e}_{L} & =-L \frac{d i}{d t}=-\left(E_{b}-R I_{0}\right) \epsilon^{-\frac{R t}{L}}
\end{aligned}
$$

Time constant: $T=\frac{L}{R}$
Fig. 11 shows discharge (for $\left.E_{b}=0\right) \frac{i}{l_{0}}=\epsilon^{-\frac{t}{T}}$
Fig. 12 shows charge (for $\left.I_{0}=0\right) \quad \frac{i}{I_{f}}=\left(1-\epsilon^{-\frac{\ell}{T}}\right)$
These curves are plotted on a larger scale in Fig. 13.
Series circuit of R, L, and Charge and discharge
Initial conditions (at $t=0$):
Battery $=E_{b} ; e_{c}=E_{0} ; i=I_{0}$
Steady state (at $t=\infty): i=0 ; \mathbf{e}_{c}=-E_{b}$
Differential equation:
$E_{b}+E_{0}-\frac{1}{C} \int_{0}^{t} i d t-R i-L \frac{d i}{d t}=0$

whence $L \frac{d^{2} i}{d t^{2}}+R \frac{d i}{d t}+\frac{i}{C}=0$
Solution of equation:

$$
i=\epsilon^{-\frac{R t}{2 L}}\left[\frac{2\left(E_{b}+E_{0}\right)-R I_{0}}{R \sqrt{D}} \sinh \frac{R t}{2 L} \sqrt{D}+I_{0} \cosh \frac{R t}{2 L} \sqrt{D}\right]
$$

where $\quad D=1-\frac{4 L}{R^{2} C}$

96

Case 1: When $\frac{L}{R^{2} C}$ is small

$$
\begin{aligned}
i & =\frac{1}{\left(1-2 A-2 A^{2}\right)}\left\{\left[\frac{E_{b}+E_{0}}{R}-I_{0}\left(A+A^{2}\right)\right] \epsilon^{-\frac{1}{R C}\left(1+A+2 A^{\eta}\right)}\right. \\
& \left.+\left[I_{0}\left(1-A-A^{2}\right)-\frac{E_{b}+E_{0}}{R}\right] \epsilon^{-\frac{R z}{L}\left(1-A-A^{\eta}\right)}\right\}
\end{aligned}
$$

where $A=\frac{L}{R^{2} C}$
For practical purposes, the terms A^{2} can be neglected when $A<0.1$. The terms A may be neglected when $A<0.01$.
Case 2: When $\frac{4 L}{R^{2} C}<1$ for which \sqrt{D} is real

$$
\begin{aligned}
i & =\frac{\epsilon^{-\frac{R t}{2 L}}}{\sqrt{D}}\left\{\left[\frac{E_{b}+E_{0}}{R}-\frac{I_{0}}{2}(1-\sqrt{D})\right] \epsilon^{\frac{R t}{2 L} \bar{D}}\right. \\
& \left.+\left[\frac{I_{0}}{2}(1+\sqrt{D})-\frac{E_{b}+E_{0}}{R}\right] \epsilon^{-\frac{R t}{2 L} \sqrt{D}}\right\}
\end{aligned}
$$

Case 3: When D is a small positive or negative quantily

$$
\begin{aligned}
i & =\epsilon^{-\frac{R t}{2 L}\left\{\frac{2\left(E_{b}+E_{0}\right)}{R}\left[\frac{R f}{2 L}+\frac{1}{6}\left(\frac{R t}{2 L}\right)^{3} D\right]\right.} \\
& \left.+I_{0}\left[1-\frac{R f}{2 L}+\frac{1}{2}\left(\frac{R t}{2 L}\right)^{2} D-\frac{1}{6}\left(\frac{R t}{2 L}\right)^{3} D\right]\right\}
\end{aligned}
$$

This formula may be used for values of D up to ± 0.25, at which values the error in the computed current i is approximately 1 percent of I_{0} or of $\frac{E_{b}+E_{0}}{R}$.
Case 3a: When $\frac{4 L}{R^{2} C}=1$ for which $D=0$, the formula reduces to $i=\epsilon^{-\frac{R t}{2 L}}\left[\frac{E_{b}+E_{0}}{R} \frac{R t}{L}+I_{0}\left(1-\frac{R t}{2 L}\right)\right]$
or $i=i_{1}+i_{2}$, plotted in Fig. 14. For practical purposes, this formula may be used when $\frac{4 L}{R^{2} C}=1 \pm 0.05$ with errors of 1 percent or less.

Electrical circuif formulas continued

Case 4: When $\frac{4 L}{R^{2} C}>1$ for which \sqrt{D} is imaginary

$$
\begin{aligned}
& i=\epsilon^{-\frac{R t}{2 L}\left\{\left[\frac{E_{b}+E_{0}}{\omega_{0} L}-\frac{R I_{0}}{2 \omega_{0} L}\right] \sin \omega_{0} t+I_{0} \cos \omega_{0} t\right\}} \\
&=I_{m} \epsilon^{-\frac{R t}{2 L}} \sin \left(\omega_{0} t+\psi\right) \\
& \text { where } \omega_{0}=\sqrt{\frac{1}{L C}-\frac{R^{2}}{4 L^{2}}} \\
& I_{m}=\frac{1}{\omega_{0} L} \sqrt{\left(E_{b}+E_{0}-\frac{R I_{0}}{2}\right)^{2}+\omega_{0}^{2} L^{2} I_{0}^{2}} \\
& \psi=\tan ^{-1} \frac{\omega_{0} L I_{0}}{E_{b}+E_{0}-\frac{R I_{0}}{2}} \quad \text { Fig. I4—Transionts for } \frac{4 L}{R^{2} C}=1
\end{aligned}
$$

The envelope of the voltage wave across the inductor is:

$$
\pm \epsilon^{-\frac{R t}{2 L}} \frac{1}{\omega_{0} \sqrt{L C}} \sqrt{\left(E_{b}+E_{0}-\frac{R I_{0}}{2}\right)^{2}+\omega_{0}^{2} L^{2} J_{0}^{2}}
$$

Example: Relay with transient suppressing capacitor.
Switch closed till time $t=0$, then opened.
Let $L=0.10$ henries, $R_{1}=100$ ohms,

$$
E=10 \text { volts }
$$

Suppose we choose $C=10^{-6}$ farads, R_{2} $=100$ ohms.

Then $R=200$ ohms, $I_{0}=0.10$ amperes,

$$
E_{0}=10 \text { volts, } \omega_{0}=3 \times 10^{3}, t_{0}=480 \mathrm{cps}
$$

Maximum peak voltage across L lenvelope at $1=0$) is approximately 30 volts.
Time constant of decay of envelope is 0.001 second.
If it had been desired to make the circuit just non-oscillating, (Case 3a):
$\frac{4 L}{R^{2} C}=1$ or $R=630$ ohms for $C=10^{-6}$ farads.

$$
R_{2}=530 \text { ohms. }
$$

Initial voltage at $t=0$, across L is $-E_{0}+R I_{0}=53$ volts.

Electrical circuit formulas continued

Series circuit of R, L, and C with sinusoidal applied voltage

By the principle of superposition, the transient and steady state conditions are the same for the actual circuit and the equivalent circuit shown in the accompanying illustrations, the closing of the switch occurring at time $t=0$. In the equivalent circuit, the steady state is due to the source e acting continuously from time $t=-\infty$, while the transient is due to short circuiting the source

ectual circuit - e at time $t=0$.

Source: $\mathrm{e}=E \sin (\omega t+\alpha)$
Steady state: $\left.i=\frac{e}{Z} \angle-\phi=\frac{E}{Z} \sin (\omega\rangle+\alpha-\phi\right)$
where
$Z=\sqrt{R^{2}+\left(\omega L-\frac{1}{\omega C}\right)^{2}} ; \quad \tan \phi=\frac{\omega^{2} L C-1}{\omega C R}$

equivalent circuit

The transient is found by determining current $i=I_{0}$ and capacitor voltage $\mathrm{e}_{c}=E_{0}$ at time $t=0$, due to the source $-e$. These values of I_{0} and E_{0} are then substituted in the equations of Case 1, 2, 3, or 4 , above, according to the values of R, L, and C.

At time $1=0$, due to the source -e :

$$
\begin{aligned}
i & =I_{0}=-\frac{E}{Z} \sin (\alpha-\phi) \\
e_{c} & =E_{0}=\frac{-E}{\omega C Z} \cos (\alpha-\phi)
\end{aligned}
$$

This form of analysis may be used for any periodic applied voltage e. The steady-state current and the capacitor voltage for an applied voltage -e are determined, the periodic voltage being resolved into its harmonic components for this purpose, if necessary. Then the instantaneous values $i=I_{0}$ and $e_{c}=E_{0}$ at the time of closing the switch are easily found, from which the transient is determined. It is evident, from this method of analysis, that the wave form of the transient need bear no relationship to that of the applied voltage, depending only on the constants of the circuit and the hypothetical initial conditions I_{0} and E_{0}.

19. Effective and average values of alternating current

(Similar equations apply to a-c voltages)
$i=I \sin \omega t$
Average value $I_{a_{v}}=\frac{2}{\pi} I$
which is the direct current which would be obtained were the original current fully rectified, or approximately proportional to the reading of a rectifiertype meter.

Effective or root-mean-square (rms) value $l_{\text {eff }}=\frac{l}{\sqrt{2}}$
which represents the heating or power effectiveness of the current, and is proportional to the reading of a dynamometer or thermal-type meter.
When

$$
\begin{aligned}
i & =I_{0}+I_{1} \sin \omega_{1} t+I_{2} \sin \omega_{2} t+\ldots \\
I_{e f f} & =\sqrt{I_{0}^{2}+\frac{1}{2}\left(I_{1}^{2}+I_{2}^{2}+\ldots\right)}
\end{aligned}
$$

Note: The average value of a complex current is not equal to the sum of the average values of the components.

20. Constants of long Iransmission lines

$\alpha=\mathcal{V}^{\prime} \overline{\frac{1}{}\left(\overline{\left.R^{2}+\omega^{2} L^{2}\right)\left(G^{2}+\omega^{2} C^{2}\right)}+G R-\omega^{2} L C\right\}}$
$\beta=\sqrt{\frac{1}{2}\left\{\sqrt{\left(R^{2}+\omega^{2} L^{2}\right)\left(G^{2}+\omega^{2} C^{2}\right)}-G R+\omega^{2} L C\right\}}$
where
$\alpha=$ attenuation constant in nepers
$\beta=$ phase constant in radians
$R=$ resistance constant in ohms
$G=$ conductance constant in mhos
per unit length of line.
$L=$ inductance constant in henries
$C=$ capacitance constant in farads
$\omega=2 \pi \times$ frequency in cycles per second
Using values per mile for R, G, L, and C, the $d b$ loss per mile will be 8.686α and the wavelength in miles will be $\frac{2 \pi}{\beta}$.

100

Electrical circuif formulas

If vector formulas are preferred, α and β may be determined from the following:
$\alpha+j \beta=\sqrt{Z Y}=\sqrt{(R+j \omega L)(G+j \omega C)}$
where all constants have the same meaning as above.
Characteristic impedance
$Z_{0}=\sqrt{\frac{Z}{Y}}=\sqrt{\frac{R+j \omega L}{G+j \omega C}}$
Note: For radio frequency applications, see formulas under R-F Transmission Line Data.

Attenuators

An attenuator is a network designed to introduce a known loss when working between resistive impedances Z_{1} and Z_{2} to which the input and output impedances of the attenuator are matched. Either Z_{1} or Z_{2} may be the source and the other the load. The attenuation of such networks expressed as a power ratio is the same regardless of the direction of working.

Three forms of resistance network which may be conveniently used to realize these conditions are shown on page 106. These are the T section, the π section, and the Bridged-T section. Equivalent balanced sections also are shown. Methods are given for the computation of attenuator networks, the hyperbolic expressions giving rapid solutions with the aid of tables of hyperbolic functions on pages 313 to 315 . Tables of the various types of attenuators are given on pages 108 to 114 .

In the formulas

Z_{1} and Z_{2} are the terminal impedances (resistive) to which the attenuator is matched.
N is the ratio of the power absorbed by the attenuator from the source to the power delivered to the load.
K is the ratio of the attenuator input current to the output current into the load. When $Z_{1}=Z_{2}, K=\sqrt{N}$.

Attenuation in decibels $=10 \log _{10} N$
Attenuation in nepers $=\theta=\frac{1}{2} \log _{e} N$
For a table of decibels versus power and voltage or current ratio, see page 34. Factors for converting decibels to nepers, and nepers to decibels, are given at the foot of that table.

AUDIO AND RADIO DESIGN $|0|$

Attenuators continued

General remarks

The formulas and figures for errors, given in Tables IV to VIII, are based on the assumption that the attenuator is terminated approximately by its proper terminal impedances Z_{1} and Z_{2}. They hold for deviations of the attenuator arms and load impedances up to ± 20 percent or somewhat more. The error due to each element is proportional to the deviation of the element, and the total error of the attenuator is the sum of the errors due to each of the several elements.

When any element or arm R has a reactive component ΔX in addition to a resistive error ΔR, the errors in input impedance and output current are
$\Delta Z=A(\Delta R+j \Delta X)$
$\frac{\Delta i}{i}=B\left(\frac{\Delta R+j \Delta X}{R}\right)$
where A and B are constants of proportionality for the elements in question. These constants can be determined in each case from the figures given for errors due to a resistive deviation ΔR.

The reactive component ΔX produces a quadrature component in the output current, resulting in a phase shift. However, for small values of ΔX, the error in insertion loss is negligibly small.
For the errors produced by mismatched terminal load impedance, refer to Case 1, page 105.

Ladder aftenuator

Fig. 15 -Ladder attenuator.

Ladder attenuator, Fig. 15, input switch points $P_{0}, P_{1}, P_{2}, P_{3}$ at shunt arms. Also intermediate point P_{m} tapped on series arm. May be either unbalanced, as shown, or balanced.

Attenuafors continued
Ladder, for design purposes, Fig. 16, is resolved into a cascade of π sections by imagining each shunt arm split into two resistors. Last section matches Z_{2} to $2 Z_{1}$. All other sections are symmetrical, matching impedances $2 Z_{1}$, with a

Fig. 16-Ladder aftenuator resolved into a cascade of π sections.
terminating resistor $2 Z_{1}$ on the first section. Each section is designed for the loss required between the switch points at the ends of that section.
Input to P_{0} : Loss, $d b=10 \log _{10} \frac{\left(2 Z_{1}+Z_{2}\right)^{2}}{4 Z_{1} Z_{2}}$
Input impedance $Z_{1}{ }^{\prime}=\frac{Z_{2}}{2}$
Output impedance $=\frac{Z_{1} Z_{2}}{Z_{1}+Z_{2}}$
Input to P_{1}, P_{2}, or P_{3} : Loss, $\mathrm{db}=3 \mathrm{db}+$ sum of losses of π sections between input and output. Input impedance $Z_{1}{ }^{\prime}=Z_{1}$

Input to P_{m} (on a symmetrical π section):
$\frac{e_{0}}{e_{m}}=\frac{1}{2} \frac{m(1-m)(K-1)^{2}+2 K}{K-m(K-1)}$
where
$e_{0}=$ output voltage when $m=0$ (Switch on P_{1}).
$e_{m}=$ output voltage with switch on P_{m}.
and
$K=$ current ratio of the section (from P_{1} to P_{2}). $K>1$.
Input impedance $Z_{1}{ }^{\prime}=Z_{1}\left[m(1-m) \frac{(K-1)^{2}}{K}+1\right]$
$\operatorname{Max} Z_{1}{ }^{\prime}=Z_{1}\left[\frac{(K-1)^{2}}{4 K}+1\right]$ for $m=0.5$.

Attenuafors continued

The unsymmetrical last section may be treated as a system of voltage dividing resistors. Solve for the resistance R from P_{0} to the tap, for each value of
output voltage with input on P_{0}
output voltage with input on tap
A useful case: $Z_{1}=Z_{2}=500$ ohms.
Then loss on P_{0} is 3.52 db .
Let the last section be designed for loss of 12.51 db .
Then
$R_{13}=2444$ ohms (shunted by 1000 ohms)
$R_{23}=654$ ohms (shunted by 500 ohms)
$R_{12}=1409$ ohms.
The table shows the location of the tap and the input and output impedances for several values of loss, relative to the loss on P_{0}.

relative loss db	tap \mathbf{R} ohms	input impedance ohms	output impedance ohms
0	0		
2	170	250	250
4	375	368	304
	615	353	
6	882	562	394
10	1157	600	428
12	1409	577	454

Fig. $17-\mathbf{A}$ variation of the ladder attenuator, useful when $\mathbf{Z}_{1}=\mathbf{Z}_{\mathbf{2}}=\mathbf{Z}$. Simpler in design, with improved impedance characteristics, but having minimum insertion loss 2.5 db higher than aftenuator of Fig. 16. All π sections are symmetrical.

Aftenuators continued

Input to Po: Output impedance $=0.6 \mathrm{Z}$ (See Fig. 17.1
Input to P_{0}, P_{1}, P_{2}, or P_{3} : Loss $=6 \mathrm{db}+$ sum of losses of π sections between input and output. Input impedance $=Z$

Input to $P_{m}: \quad \frac{e_{0}}{e_{m}}=\frac{1}{4} \frac{m(1-m)(K-1)^{2}+4 K}{K-m(K-1)}$
Input impedance $Z^{\prime}=Z\left[\frac{m(1-m)(K-1)^{2}}{2 K}+1\right]$
$\operatorname{Max} Z^{\prime}=Z\left[\frac{(K-1)^{2}}{8 K}+1\right]$ for $m=0.5$.

Effect of incorrect load impedance on operation of an attenuator

In the applications of attenuators the question frequently arises as to the effect upon the input impedance and the attenuation by the use of a load impedance which is different from that for which the network was designed. The following results apply to all resistive networks which, when operated between resistive impedances Z_{1} and Z_{2}, present matching terminal impedances Z_{1} and Z_{2}, respectively. The results may be derived in the general case by the application of the network theorems, and may be readily confirmed mathematically for simple specific cases such as the T section.

For the designed use of the network, let
$Z_{1}=$ input impedance of properly terminated network
$Z_{2}=$ load impedance which properly terminates the network
$N=$ power ratio from input to output
$K=$ current ratio from input to output
$K=\frac{i_{1}}{i_{2}}=\sqrt{\frac{N Z_{2}}{Z_{1}}}$ idiferent in the two directions of operation except when $Z_{2}=Z_{1}$.

For the actual conditions of operation, let
$\left(Z_{2}+\Delta Z_{2}\right)=Z_{2}\left(1+\frac{\Delta Z_{2}}{Z_{2}}\right)=$ actual load impedance
$\left(Z_{1}+\Delta Z_{1}\right)=Z_{1}\left(1+\frac{\Delta Z_{1}}{Z_{1}}\right)=$ resulting input impedance
$(K+\Delta K)=K\left(1+\frac{\Delta K}{K}\right)=$ resulting current ratio.

While Z_{1}, Z_{2}, and K are restricted to real quantities by the assumed nature of the network, ΔZ_{2} is not so restricted, e.g.,
$\Delta Z_{2}=\Delta R_{2}+j \Delta X_{2}$
As a consequence ΔZ_{1} and ΔK can become imaginary or complex. Furthermore ΔZ_{2} is not restricted to small values.

The results for the actual conditions are
$\frac{\Delta Z_{1}}{Z_{1}}=\frac{2 \frac{\Delta Z_{2}}{Z_{2}}}{2 N+\mathbb{N}-11 \frac{\Delta Z_{2}}{Z_{2}}} \quad$ and $\quad \frac{\Delta K}{K}=\left(\frac{N-1}{2 N}\right) \frac{\Delta Z_{2}}{Z_{2}}$
Certain special cases may be cited
Case 1: For small $\frac{\Delta Z_{2}}{Z_{2}}$
$\frac{\Delta Z_{1}}{Z_{1}}=\frac{1}{N} \frac{\Delta Z_{2}}{Z_{2}} \quad$ or $\quad \Delta Z_{1}=\frac{1}{K^{2}} \Delta Z_{2} \quad \frac{\Delta i_{2}}{i_{2}}=-\frac{1}{2} \frac{\Delta Z_{2}}{Z_{2}}$
but the error in insertion power loss of the attenuator is neglibly small.
Case 2: Short-circuited output $\quad \frac{\Delta Z_{1}}{Z_{1}}=\frac{-2}{N+1}$
or input impedance $=\left(\frac{N-1}{N+1}\right) Z_{1}=Z_{1} \tanh \theta$
where θ is the designed attenuation in nepers.
Case 3: Open-circuited output $\quad \frac{\Delta Z_{1}}{Z_{1}}=\frac{2}{N-1}$
or input impedance $=\left(\frac{N+1}{N-1}\right) Z_{1}=Z_{1} \operatorname{coth} \theta$
Case 4: For $N=1$ (possible only when $Z_{1}=Z_{2}$ and directly connected) $\frac{\Delta Z_{1}}{Z_{1}}=\frac{\Delta Z_{2}}{Z_{2}}$ and $\frac{\Delta K}{K}=0$
Case 5: For large $N \quad \frac{\Delta K}{K}=\frac{1}{2} \frac{\Delta Z_{2}}{Z_{2}}$

	configuration	
description	unbalanced	balanced
Unbalanced T and balanced H see Table VIII		$\xrightarrow[\leftrightarrow]{\substack{R_{1}}}$
Symmetrical T and H $\left(Z_{1}=Z_{2}=Z\right)$ see Table IV	- $\sim_{1}^{R_{1}} \sim_{n} \sim_{1}^{R_{1}}-0$ $\stackrel{z}{\longleftrightarrow} \sum^{R_{2}} \longleftrightarrow$	$\xrightarrow[\sim]{\substack{\frac{R_{1}}{2}}}$
Minimum loss pad matching Z_{1} and Z_{2} $\left(Z_{1}>Z_{2}\right)$ see Table VII		$\xrightarrow[\sim]{\sim}$
Unbalanced π and balanced 0		
Symmetrical π and 0 $\left(Z_{1}=Z_{2}=Z \mid\right.$ see Table V		
Bridged T and bridged H see Table V!		

nelwork design see page 100 for symbols

design formulas		checking formulas
hyperbolic	arithmetical	
$R_{3}=\frac{\sqrt{Z_{1} Z_{2}}}{\sinh \theta}$	$R_{3}=\frac{2 \sqrt{N Z_{1} Z_{2}}}{N-1}$	
$R_{1}=\frac{Z_{1}}{\tanh \theta}-R_{3}$	$R_{1}=Z_{1}\left(\frac{N+1}{N-1}\right)-R_{3}$	
$R_{2}=\frac{Z_{2}}{\tanh \theta}-R_{\mathrm{a}}$	$R_{2}=Z_{2}\left(\frac{N+1}{N-1}\right)-R_{3}$	
$\begin{aligned} & R_{3}=\frac{Z}{\sinh \theta} \\ & R_{1}=Z \tanh \frac{\theta}{2} \end{aligned}$	$\begin{aligned} & R_{3}=\frac{2 Z \sqrt{N}}{N-1}=\frac{2 Z K}{K^{2}-1} \\ & R_{1}=Z \frac{\sqrt{N}-1}{\sqrt{N}+1}=Z \frac{K-1}{K+1} \end{aligned}$	$\begin{aligned} R_{1} R_{3} & =\frac{Z^{2}}{1+\cosh \theta}=Z^{2} \frac{2 K}{(K+1)^{2}} \\ \frac{R_{1}}{R_{3}} & =\cosh \theta-1=2 \sinh ^{2} \frac{\theta}{2} \\ & =\frac{(K-1)^{2}}{2 K} \\ Z & =R_{1} \sqrt{1+2 \frac{R_{3}}{R_{1}}} \end{aligned}$
$\begin{aligned} \cosh \theta & =\sqrt{\frac{Z_{1}}{Z_{2}}} \\ \cosh 2 \theta & =2 \frac{Z_{1}}{Z_{2}}-1 \end{aligned}$	$\begin{aligned} & R_{1}=Z_{1} \sqrt{1-\frac{Z_{2}}{Z_{1}}} \\ & R_{2}=\frac{Z_{2}}{\sqrt{1-\frac{Z_{2}}{Z_{1}}}} \end{aligned}$	$\begin{aligned} R_{1} R_{3} & =Z_{1} Z_{2} \\ \frac{R_{1}}{R_{3}} & =\frac{Z_{1}}{Z_{2}}-1 \\ N & =\left(\sqrt{\frac{Z_{1}}{Z_{2}}}+\sqrt{\frac{Z_{1}}{Z_{2}}-1}\right)^{2} \end{aligned}$
$\begin{aligned} & R_{3}=\sqrt{Z_{1} Z_{2}} \sinh \theta \\ & \frac{1}{R_{1}}=\frac{1}{Z_{1} \tanh \theta}-\frac{1}{R_{3}} \\ & \frac{1}{R_{2}}=\frac{1}{Z_{2} \tanh \theta}-\frac{1}{R_{3}} \end{aligned}$	$\begin{aligned} & R_{3}=\frac{N-1}{2} \sqrt{\frac{Z_{1} Z_{2}}{N}} \\ & \frac{1}{R_{1}}=\frac{1}{Z_{1}}\left(\frac{N+1}{N-1}\right)-\frac{1}{R_{3}} \\ & \frac{1}{R_{2}}=\frac{1}{Z_{2}}\left(\frac{N+1}{N-1}\right)-\frac{1}{R_{3}} \end{aligned}$	
$\begin{aligned} & R_{3}=Z \sinh \theta \\ & R_{1}=\frac{Z}{\tanh \frac{\theta}{2}} \end{aligned}$	$\begin{aligned} & R_{3}=z \frac{N-1}{2 \sqrt{N}}=z \frac{K^{2}-1}{2 K} \\ & R_{1}=Z \frac{\sqrt{N}+1}{\sqrt{N}-1}=z \frac{K+1}{K-1} \end{aligned}$	$\begin{aligned} & R_{1} R_{3}=Z^{2}(1+\cosh \theta)=Z^{2} \frac{(K+1)^{2}}{2 K} \\ & R_{3}=\cosh \theta-1=\frac{(K-1)^{2}}{2 K} \\ & R_{1} \\ & Z=\frac{R_{1}}{\sqrt{1+2 \frac{R_{1}}{R_{3}}}} \end{aligned}$
	$\begin{aligned} & R_{1}=R_{2}=Z \\ & R_{4}=Z(K-1) \\ & R_{3}=\frac{Z}{K-1} \end{aligned}$	$\begin{aligned} R_{3} R_{4} & =Z^{2} \\ \frac{R_{4}}{R_{3}} & =(K-1)^{2} \end{aligned}$

[^13]108

Attenuators continued

Table IV-Symmetrical T or H attenuator
$\mathbf{Z}=\mathbf{5 0 0}$ ohms resistive (diagram page 106)

$\begin{gathered} \text { aftenuafion } \\ \text { db } \end{gathered}$	series arm R_{1} ohms	shunf arm R_{3} ohms	$\frac{1000}{R_{3}}$	$\log _{10} \mathrm{R}_{3}$
0.0	0.0	inf	0.0000	
0.2	5.8	21,700	0.0461	
0.4	11.5	10,850	0.0921	
0.6	17.3	7,230	0.1383	
0.8	23.0	5,420	0.1845	
1.0	28.8	4,330	0.2308	
2.0	57.3	2,152	0.465	
3.0	85.5	1,419	0.705	
4.0	113.1	1,048	0.954	
5.0	140.1	822	1.216	
6.0	166.1	669	1.494	2.826
7.0	191.2	558		2.747
8.0	215.3	473.1		2.675
9.0	238.1	405.9		2.608
10.0	259.7	351.4		2.546
12.0	299.2	268.1		2.428
14.0	333.7	207.8		2.318
16.0	363.2	162.6		2.211
18.0	388.2	127.9		2.107
20.0	409.1	101.0		2.004
22.0	426.4	79.94		1.903
24.0	440.7	63.35		1.802
26.0	452.3	50.24		1.701
28.0	461.8	39.87		1.601
30.0	469.3	31.65		1.500
35.0	482.5	17.79		1.250
40.0	490.1	10.00		1.000
50.0	496.8	3.162		0.500
60.0	499.0	1.000		0.000
80.0	499.9	0.1000		-1.000
100.0	500.0	0.01000		-2.000

Attenuators continued

Interpolation of symmetrical Tor H attenuators

Column R_{1} may be interpolated linearly. Do not interpolate R_{3} column. For 0 to 6 db , interpolate the $\frac{1000}{R_{3}}$ column. Above 6 db , interpolate the column $\log _{10} R_{3}$ and determine R_{3} from the result.

Errors in symmetrical Tor H attenuators
Series arms $\boldsymbol{R}_{\mathbf{1}}$ and $\boldsymbol{R}_{\mathbf{2}}$ in error
Error in input impedances:
$\Delta Z_{1}=\Delta R_{1}+\frac{1}{K^{2}} \Delta R_{2}$
and

nominally $\mathbf{R}_{\mathbf{1}}=\mathbf{R}_{\mathbf{2}}$ and $\mathbf{Z}_{\mathbf{1}}=\mathbf{Z}_{\mathbf{2}}$
$\Delta Z_{2}=\Delta R_{2}+\frac{1}{K^{2}} \Delta R_{1}$
Error in insertion loss, $\mathrm{db}=4\left(\frac{\Delta R_{1}}{Z_{1}}+\frac{\Delta R_{2}}{Z_{2}}\right)$, approximately.

Shunt arm R_{3} in error (10 percent high)

designed loss, $d \mathbf{b}$	error in insertion less, $\mathbf{d b}$	error in inpuf impedance $\mathbf{1 0 0} \frac{\Delta \mathbf{Z}}{\mathbf{Z}}$ percent
0.2	-0.01	0.2
1	-0.05	1.0
6	-0.3	3.3
12	-0.5	3.0
20	-0.7	1.6
40	-0.8	0.2
100	-0.8	0.0

Error in input impedance: $\frac{\Delta Z}{Z}=2 \frac{K-1}{K(K+1)} \frac{\Delta R_{3}}{R_{3}}$
Error in output current: $\frac{\Delta i}{i}=\frac{K-1}{K+1} \frac{\Delta R_{3}}{R_{3}}$
See General Remarks on page 101.

Table V-Symmetrical π and $\mathbf{0}$ attenuators

The values of the series and shunt arms of these aftenuators may be de-
termined from Table IV of symmetrical T attenuators by means of the following formulas.
Shunt $R_{13}=R_{23}=R_{1}+2 R_{3}=\frac{Z^{2}}{R_{1}}$
Series $R_{12}=R_{1}\left(\frac{R_{1}}{R_{3}}+2\right)=\frac{Z^{2}}{R_{3}}$

π section with source and load $\mathbf{R}_{13}=\mathbf{R}_{23}$ and $\mathbf{Z}^{\prime}=\mathbf{Z}$
Error in loss, $\mathrm{db}=-8 \frac{\Delta i_{2}}{i_{2}}$ (approximately)

$$
=4 \frac{K-1}{K+1}\left(-\frac{\Delta R_{13}}{R_{13}}-\frac{\Delta R_{2 \pi}}{R_{23}}+2 \frac{\Delta R_{12}}{R_{12}}\right)
$$

T section

Table VI-Bridged T or H aftenuator

$\mathbf{Z}=\mathbf{5 0 0}$ ohms resistive $\mathbf{R}_{\mathbf{1}}=\mathbf{R}_{\mathbf{2}}=\mathbf{5 0 0}$ ohms (diagram page 106)
attenuation $\mathbf{d b}$
bridge arm \mathbf{R}_{4} ohms
0.0

Atfenuators continued

Interpolation of bridged T or H attenuators
Bridge arm $R_{4}: U_{\text {se }}$ the formula $\log _{10}\left(R_{4}+500\right)=2.699+\frac{\mathrm{db}}{20}$ for $Z=500$ ohms. However, if preferred, the tabular values of R_{4} may be interpolated linearly, between 0 and 10 db only.
Shunt arm R_{3} : Do not interpolate R_{3} column. Compute R_{3} by the formula $R_{3}=\frac{10^{8}}{4 R_{4}} \quad$ for $Z=500$ ohms.
Note: For attenuators of 60 db and over, the bridge arm R_{4} may be omitted, provided a shunt arm is used having twice the resistance tabulated in the R_{3} column. (This makes the input impedance 0.1 of 1 percent high at 60 db .)

Errors in bridged T or H attenuators
For resistance of any one arm 10 percent highar than the correct value

designed loss db	col 1* db	col 2* percent	col 3* percent
0.2	0.01	0.005	0.2
1	0.05	0.1	1.0
6	0.2	2.5	2.5
12	0.3	8.6	1.9
20	0.4	10	0.9
40	0.4	10	0.1
100	0.4		0.0

* Refer to following tabulation.

element in error (10 percent high)	error in loss	error in ferminal impedance	remarks
Series arm R_{1} lanalogous for arm R_{2} l	Zero	Col 2, for adjacent terminals	Error in impedance at op- posite terminals is zero
Shunt arm R_{3}	-Col 1	Col 3	Loss is lower than de- signed loss
Bridge arm R_{4}	CCol 1	Col 3	Loss is higher than de- signed loss

Error in input impedance: $\frac{\Delta Z_{1}}{Z_{1}}=\left(\frac{K-1}{K}\right)^{2} \frac{\Delta R_{1}}{R_{1}}+\frac{K-1}{K^{2}}\left(\frac{\Delta R_{3}}{R_{3}}+\frac{\Delta R_{4}}{R_{4}}\right)$
For $\frac{\Delta Z_{2}}{Z_{2}}$ use subscript 2 in formula in place of subscript 1.
Error in output current: $\frac{\Delta i}{i}=\frac{K-1}{2 K}\left(\frac{\Delta R_{3}}{R_{3}}-\frac{\Delta R_{4}}{R_{4}}\right)$
See General Remarks on page 101.

Aftenuators continued

Table VII-Minimum loss pads

Matching $\mathbf{Z}_{\mathbf{1}}$ and $\mathbf{Z}_{\mathbf{2}}$ - both resistive (diagram page 106)

$\begin{gathered} Z_{1} \\ \text { ohms } \end{gathered}$	$\begin{gathered} z_{2} \\ \text { ohms } \end{gathered}$	$\frac{z_{1}}{z_{2}}$	$\begin{gathered} 1088 \\ \mathrm{db} \end{gathered}$	serios arm R_{1} ohms	shunt arm Rz ohms
10,000	500	20.00	18.92	9,747	513.0
8,000	500	16.00	17.92	7,746	516.4
6,000	500	12.00	18.63	5,745	522.2
5,000	500	10.00	15.79	4,743	527.0
4,000	500	8.00	14.77	3,742	534.5
3,000	500	6.00	13.42	2,739	547.7
2,500	500	5.00	12.54	2,236	559.0
2,000	500	4.00	11.44	1,732	577.4
1,500	500	3.00	9.96	1,224.7	612.4
1,200	500	2.40	8.73	916.5	654.7
1,000	500	2.00	7.66	707.1	707.1
800	500	1.60	6.19	489.9	816.5
600	500	1.20	3.77	244.9	1,224.7
500	400	1.25	4.18	223.6	894.4
500	300	1.667	6.48	316.2	474.3
500	250	2.00	7.66	353.6	353.6
500	200	2.50	8.96	387.3	258.2
500	160	3.125	10.17	412.3	194.0
500	125	4.00	11.44	433.0	144.3
500	100	5.00	12.54	447.2	111.80
500	80	6.25	13.61	458.3	87.29
500	65	7.692	14.58	466.4	69.69
500	50	10.00	15.79	474.3	52.70
500	40	12.50	16.81	479.6	41.70
500	30	16.67	18.11	484.8	30.94
500	25	20.00	18.92	487.3	25.65

Interpolation of minimum loss pads

This table may be interpolated linearly with respect to Z_{1}, Z_{2}, or $\frac{Z_{1}}{Z_{2}}$ except when $\frac{Z_{1}}{Z_{2}}$ is between 1.0 and 1.2. The accuracy of the interpolated value becomes poorer as $\frac{Z_{1}}{Z_{2}}$ passes below 2.0 toward 1.2, especially for R_{3}.

Attenuators conlinued

For other terminations

If the terminating resistances are to be Z_{A} and Z_{B} instead of Z_{1} and Z_{2}. respectively, the procedure is as follows. Enter the table at $\frac{Z_{1}}{Z_{2}}=\frac{Z_{A}}{Z_{B}}$ and read the loss and the tabular values of R_{1} and R_{3}. Then the series and shunt arms are, respectively, $M R_{1}$ and $M R_{3}$, where $M=\frac{Z_{A}}{Z_{1}}=\frac{Z_{B}}{Z_{2}}$.

Errors in minimum loss pads

impedance rafio $\frac{\mathbf{Z}_{1}}{\mathbf{Z}_{2}}$	$\begin{gathered} \text { col } 1^{*} \\ \mathrm{db} \\ \hline \end{gathered}$	$\operatorname{col} 2^{\star}$ percent	$\begin{aligned} & \text { col } 3^{*} \\ & \text { percent } \\ & \hline \end{aligned}$
1.2	0.2	+4.1	$+1.7$
2.0	0.3	7.1	1.2
4.0	0.35	8.6	0.6
10.0	0.4	9.5	0.25
20.0	0.4	9.7	0.12

* Notes

Series arm $R_{1} 10$ percent high: Loss is increased by col 1 . input impedance Z_{1} is increased by col 2. Input impedance Z_{2} is increased by col 3.

Shunt arm $R_{3} 10$ percent high: Loss is decreased by col 1 . Input impedance $Z_{\mathbf{2}}$ is increased by col 2. Input impedance Z_{1} is increased by col 3.

Errors in input impedance
$\frac{\Delta Z_{1}}{Z_{1}}=\sqrt{1-\frac{Z_{2}}{Z_{1}}}\left(\frac{\Delta R_{1}}{R_{1}}+\frac{1}{N} \frac{\Delta R_{3}}{R_{3}}\right)$
$\frac{\Delta Z_{2}}{Z_{2}}=\sqrt{1-\frac{Z_{2}}{Z_{1}}}\left(\frac{\Delta R_{3}}{R_{3}}+\frac{1}{N} \frac{\Delta R_{1}}{R_{1}}\right)$

Error in output current, working either direction
$\frac{\Delta i}{i}=\frac{1}{2} \sqrt{1-\frac{Z_{2}}{Z_{1}}}\left(\frac{\Delta R_{3}}{R_{3}}-\frac{\Delta R_{1}}{R_{1}}\right)$
See General Remarks on page 101.

Table VIII-Miscellaneous \mathbf{T} and H pads
(diagram page 106)

resistive terminations $\mathbf{Z}_{\mathbf{1}}$ ohms	\mathbf{Z}_{2} ohms	loss db	series $\mathbf{R}_{\mathbf{1}}$ ohms	stienuator arms series $\mathbf{R}_{\mathbf{2}}$ ohms	shunf $\mathbf{R}_{\mathbf{z}}$ ohms
5,000	2,000	10	3,889	222	2,222
5,000	2,000	15	4,165	969	1,161
5,000	2,000	20	4,462	1,402	639
5,000	500	20	4,782	190.7	319.4
2,000	500	15	1,763	165.4	367.3
2,000	500	20	1,838	308.1	202.0
2,000	200	20	1,913	76.3	127.8
500	200	10	388.9	22.2	222.2
500	200	15	416.5	96.9	116.1
500	200	20	446.2	140.2	19.07
500	50	20	478.2	16.54	31.94
200	50	15	176.3	30.81	36.73
200	50	20	183.8	20.20	

Errors in T and H pads
Series arms R_{1} and R_{2} in error. Error in input impedances:
$\Delta Z_{1}=\Delta R_{1}+\frac{1}{N} \frac{Z_{1}}{Z_{2}} \Delta R_{2}$ and $\Delta Z_{2}=\Delta R_{2}+\frac{1}{N} \frac{Z_{2}}{Z_{1}} \Delta R_{1}$
Error in insertion loss, $\mathrm{db}=4\left(\frac{\Delta R_{1}}{Z_{1}}+\frac{\Delta R_{2}}{Z_{2}}\right)$, approximately.

Shunt arm R_{3} in error (10 percent high)

Filter nełworks

Explanation: Table 1 X shows, in the first column, the fundamental series impedance, Z_{1}, and the fundamental shunt impedance, Z_{2}, from which the various types of filter sections shown in subsequent columns are composed. For example, a T section (third column) is composed of two half-series arms, $\frac{Z_{1}}{2}$ in series, with a full shunt arm Z_{2} connected to their junction point. The subsequent tables (Tables X, XI, XII, and XIII) give formulas for computing the full series arm and the full shunt arm. These must then be modified according to the type of section used.

Example: Design a series M derived high-pass, T-seciion filter to terminate in 500 ohms, with cutoff frequency equal to 1000 cycles, and peak attenuation frequency equal to 800 cycles.

Using Table XIII:
$f_{c}=1000$
$f_{\infty}=800$
$R=500$

$C=\frac{1}{4 \pi f_{c} R}=\frac{1}{4 \pi \times 1000 \times 500}=0.159\left(10^{-6}\right)$ farad $=0.159 \mathrm{microfarad}$
$L=\frac{R}{4 \pi f_{c}}=\frac{500}{4 \pi \times 1000}=0.0398$ henry $=39.8$ millihenry
$C_{1}=\frac{C}{m}=\frac{0.159}{0.6}=0.265$ microfarad
$L_{2}=\frac{L}{m}=\frac{39.8}{0.6}=66.3$ millihenry
$C_{2}=\frac{4 m}{1-m^{2}} C=\frac{4 \times 0.6 \times 0.159}{0.64}=0.597$ microfarad
For a T-section, each series arm must be $\frac{Z_{1}}{2}$ while the full shunt arm is used.
Thus for the series arm use $2 \mathrm{C}_{1}$, or 0.53 microfarad. The accompanying figure shows the final result.

Filfer networks continued
Table IX—Combination of filfer elements
$\xrightarrow[\text { confguration }]{\text { half-section }}$

Table X-Band-pass filfers

type	configuration	series arm	shunt arm	notations
Constant K		$\begin{aligned} L_{1} & =\frac{R}{\pi\left(f_{2}-f_{1}\right)} \\ C_{1} & =\frac{f_{2}-f_{1}}{4 \pi f_{2} f_{1} R} \end{aligned}$	$\begin{aligned} & L_{2}=\frac{f_{2}-f_{1}}{4 \pi f_{1} f_{2}} R \\ & C_{2}=\frac{1}{\pi\left(f_{2}-f_{1}\right) R} \end{aligned}$	$\begin{gathered} f_{2}=\underset{\text { upper curoff }}{\text { frequency }} \end{gathered}$
Three element series type		$\begin{aligned} & L_{1}=\frac{R}{\pi\left(f_{2}-f_{1}\right)} \\ & C_{1}=\frac{f_{2}-f_{1}}{4 \pi f_{1}^{2} R} \end{aligned}$	$C_{2}=\frac{1}{\pi\left(f_{1}+f_{2}\right) R}$	$\begin{gathered} f_{1}=\begin{array}{l} \text { lowor cutoff } \\ \text { frequency } \end{array} \\ R=\begin{array}{l} \text { nominal } \\ \text { terminating } \\ \text { resistance } \end{array} \end{gathered}$
Three element shunt type		$C_{1}=\frac{f_{1}+f_{2}}{4 \pi f_{1} f_{2} R}$	$\begin{aligned} & L_{2}=\frac{f_{2}-f_{1}}{4 \pi f_{1} f_{2}} R \\ & C_{2}=\frac{f_{1}}{\pi f_{2}\left(f_{2}-f_{1}\right) R} \end{aligned}$	

Table XI-Band-elimination fliters

type	configuration	series arm	shunt arm	notations
Constant K		$\begin{aligned} & L_{1}=\frac{f_{2}-f_{1}}{\pi f_{1} f_{2}} R \\ & C_{1}=\frac{1}{4 \pi\left(f_{2}-f_{1}\right) R} \end{aligned}$	$\begin{aligned} & L_{2}=\frac{R}{4 \pi\left(f_{2}-f_{1}\right)} \\ & C_{2}=\frac{f_{2}-f_{1}}{\pi f_{1} f_{2} R} \end{aligned}$	$f_{2}=$ upper cutoff frequency $f_{1}=$ lower cutoff frequency $R=$ nominal torminating resistanco

Filter networks continued

Table XII-Low-pass filiers

type	configuration	series arm	shunt arm	notations
Constant K		$L=\frac{R}{\pi f_{c}}$	$C=\frac{1}{\pi \int_{c} R}$	$f_{c}=\text { cutoff }$
Series M derived		$L_{1}=m L$	$\begin{gathered} L_{2}=\frac{1-m^{2}}{4 m} L \\ C_{2}=m C \end{gathered}$	$\begin{aligned} & f_{\infty}=\begin{array}{l} \text { frequency of } \\ \text { peak } \\ \text { attenuation } \end{array} \\ & m=\sqrt{1-\left(\frac{f_{c}}{f_{\infty}}\right)^{2}} \end{aligned}$
Shunt M derived		$\begin{gathered} L_{1}=m L \\ C_{1}=\frac{1-m^{2}}{4 m} c \end{gathered}$	$C_{2}=m C$	$R=\underset{\substack{\text { terminating } \\ \text { resistance }}}{\text { nominal }}$

Table XIII-High-pass filfers

type	configuration	series arm	shunt arm	notations
Constant K		$\mathrm{C}=\frac{1}{4 \pi f_{c} R}$	$\mathrm{L}=\frac{\mathrm{R}}{4 \pi f_{e}}$	$f_{e}=\begin{gathered} \text { cutoff } \\ \text { frequency } \end{gathered}$
Series M derived		$C_{1}=\frac{C}{m}$	$\begin{aligned} L_{2} & =\frac{l}{m} \\ C_{2} & =\frac{4 m}{1-m^{2}} c \end{aligned}$	$f_{\infty}=$ frequency of peak attenuation $m=\sqrt{1-\left(\frac{f_{\infty}}{f_{c}}\right)^{2}}$
Shunt M derived		$\begin{gathered} C_{1}=\frac{C}{m} \\ L_{1}=\frac{4 m}{1-m^{2}} L \end{gathered}$	$L_{2}=\frac{L}{m}$	$\begin{aligned} R= & \text { nominal } \\ & \text { terminating } \\ & \text { resistance } \end{aligned}$

Rectifiers and filters

Typical rectiffer circuit

rectifler type of circuth fransformer	single-phase full-wave sIngle-phase center-tap	slagle-phase full-wove (bridge) single-phase	3-phere half-wave della-wyo	3-phase half-wave delfo-zig zag
secondaries clrcuifs primaries				
Number of phases of supply Number of tubes*	1	1	3 3	$\begin{aligned} & 3 \\ & 3 \end{aligned}$
Ripple voltoge Ripple frequency	$\begin{aligned} & 0.48 \\ & 2 f \end{aligned}$	$\begin{aligned} & 0.48 \\ & 2 f \end{aligned}$	$\begin{aligned} & 0.18 \\ & 3 f \end{aligned}$	$\begin{aligned} & 0.18 \\ & 3 i \end{aligned}$
line voltage line current line power factor \dagger	$\begin{aligned} & 1.11 \\ & 1 \\ & 0.90 \end{aligned}$	$\begin{aligned} & 1.11 \\ & 11 \\ & 0.90 \end{aligned}$	$\begin{aligned} & 0.855 \\ & 0.816 \\ & 0.826 \end{aligned}$	$\begin{aligned} & 0.855 \\ & 0.816 \\ & 0.826 \end{aligned}$
Trans primary volts per leg Trans primary amperes per leg Trans primary kva	$\begin{aligned} & 1.11 \\ & 1 \\ & 1.11 \end{aligned}$	$\begin{aligned} & 1.11 \\ & 1.11 \end{aligned}$	$\begin{aligned} & 0.855 \\ & 0.471 \\ & 1.21 \end{aligned}$	$\begin{aligned} & 0.855 \\ & 0.471 \\ & 1.21 \end{aligned}$
Trans overoge kva	1.34	1.11	1.35	1.46
Trons secondary volts per leg Trans secondary amperes per leg Transformer secondary kva	$1.11(A)$ 0.707 1.57	$\begin{aligned} & 1.11 \\ & 1 \\ & 1.11 \end{aligned}$	$\begin{aligned} & 0.855 \\ & 0.577 \\ & 1.48 \end{aligned}$	$\begin{aligned} & 0.493(\mathrm{~A}) \\ & 0.577 \\ & 1.71 \end{aligned}$
Peak inverse voltage per tube Peok current per tube Average current per tube	$\begin{aligned} & 3.14 \\ & 1 \\ & 0.5 \end{aligned}$	$\begin{aligned} & 1.57 \\ & 1.5 \end{aligned}$	$\begin{aligned} & 2.09 \\ & 1 \\ & 0.333 \end{aligned}$	$\begin{aligned} & 2.09 \\ & 1 \\ & 0.333 \end{aligned}$

Unless otherwise stated, foctors shown express the ratio of the RMS value of the circuit quantities designated to the average DC output values of the rectifier.
foctors are bosed on o sine wave voltoge input, infinite impedance choke and no tronsformer or rectifier losses.

connections and circuil dafa

6-phase half-wave delfa-star	6-phose half-wave delfa-6-phase fork	6-phase (double 3-phese) half-wave delfe-double wye with balance coil	3-phase full-wave delte-wye	3-phase fell-wave deflo-delfa
3	3 8	3	3 6	$\begin{aligned} & 3 \\ & 6 \end{aligned}$
$\begin{aligned} & 0.042 \\ & 61 \end{aligned}$	$\begin{aligned} & 0.042 \\ & 61 \end{aligned}$	$\begin{aligned} & 0.042 \\ & 6 f \end{aligned}$	$\begin{aligned} & 0.642 \\ & 6! \end{aligned}$	$\begin{aligned} & 0.042 \\ & 6! \end{aligned}$
$\begin{aligned} & 0.740 \\ & 0.816 \\ & 0.955 \end{aligned}$	$\begin{aligned} & 0.428 \\ & 1.41 \\ & 0.955 \end{aligned}$	$\begin{aligned} & 0.855 \\ & 0.707 \\ & 0.955 \end{aligned}$	$\begin{aligned} & 0.428 \\ & 1.41 \\ & 0.955 \end{aligned}$	$\begin{aligned} & 0.740 \\ & 0.816 \\ & 0.955 \end{aligned}$
0.740	0.428	0.855	0.428	0.740
$\begin{aligned} & 0.577 \\ & 1.28 \end{aligned}$	$\begin{aligned} & 0.816 \\ & 1.05 \end{aligned}$	$\begin{aligned} & 0.408 \\ & 1.05 \end{aligned}$	$\begin{aligned} & 0.816 \\ & 1.05 \end{aligned}$	$\begin{aligned} & 0.471 \\ & 1.05 \end{aligned}$
1.55	1.42	1.26	1.05	1.05
0.740 (A)	0.428 (A)	0.855(A)	0.428	0.740
C. 408	$\left\{\begin{array}{l}0.577(B) \\ 0.408(C)\end{array}\right\}$	0.289	0.816	0.471
1.81	1.79	1.48	1.05	1.05
2.09 1	${ }_{1}^{2.09}$	$\begin{aligned} & 2.4^{\prime} \\ & 0.5 \end{aligned}$	1.05	$\begin{aligned} & 1.05 \\ & 1 \end{aligned}$
0.187	0.167	0.167	0.333	0.333

Whese circuit factors ore eavally applicable to tube or dry plate rectifying elements.
\dagger LIne PF = DC Outpul woits/line volt-amperes

Rectifier Alter design

Ripple voltage vs LC for choke-input filters
Minimum induclance for a choke-input filtor is determined from
$L=\frac{K E}{I I}$
where
$L=$ minimum inductance in henries
$E=d-c$ output in volts
$I=$ oufput current in amperes
$K=0.0527$ for full-wave, single-phase
$=0.0132$ for half-wave, three-phase
$=0.0053$ for full-wave, two-phase
$f=$ supply frequency in cps

$$
=0.0016 \text { for full-wave, three-phase }
$$

Ripple voltage vs RC for capacitor-input Alters

The above chart applies to a capacitance filter with resistance load as shown at the right.
For each additional $R^{\prime} C^{\prime}$ section, obtain R by adding al resistances and add $\mathrm{db}=104-20 \log f R^{\prime} C^{\prime}$.
For each additional $L C^{\prime}$ section, add $\mathrm{db}=882-40 \log f$ $-20 \log$ LC'.
The above assumes that the impedance of C^{\prime} is small with respect to that of R, R^{\prime}, and L.
$f=$ ripple frequency in cps
$R^{\prime}=$ series filter resistance in ohms
$C^{\prime}=$ shunt filter capacitance in microforads
$L=$ series filter inductance in henries.

- Iron-core fransformers and reactors

Major łransformer types

1. Audio transformers: Carry audio communication frequencies or some single control frequency.
a. Input transformers: Couple a signal source, e.g., microphone or line, to the grid (s) of an amplifier.
b. Interstage transformers (usually step-up voltage): Couple the plate(s) of a vacuum tube (except a driver stage) to the grid (s) of a succeeding stage of amplification.
c. Output transformers: Couple the plate (s) of an amplifier to an output load.
d. Driver transformers lusuallystep-down voltage): Couple the plate (s) of a driver stage (pre-amplifier) to the grid (s) of an amplifier stage in which grid current is drawn.
e. Modulation transformers: Couple the plate(s) of an audio output stage to the grid or plate of a modulated amplifier.
2. Power supply transformers: Supply appropriate plate and/or filament voltage to vacuum tubes in a unit of equipment.
a. Plate transformers: Supply potential to the plate (s) of high-vacuum or gasfilled tube (s) in a rectifier circuit.
b. Filament transformers: Supply current to heat the filaments of vacuum or gas-filled tubes.
c. Plate-filament transformers: Combinations of $2 a$ and $2 b$.
d. Isolation transformers: Insulate or isolate two circuits, such as a grounded circuit from an ungrounded circuit.
e. Scott-transformers: Scott-connection utilizes two transformers to transmit power from two-phase to three-phase systems, or vice versa.
f. Auto-transformers: Provide increased or decreased voltige by means of a single winding suitably tapped for the primary and secondary circuits, part of the winding being common to both circuits.

Major reactor types

1. Reactors: Single-winding units that smooth current flow, provide d-c feed, or act as frequency-selective units (in suitable arrangement with capacitors).
a. Audio reactors: Single-winding units that supply plate current to a vacuum tube in parallel with the output circuit.

Major reactor types continued

b. Wave-filter reactors: Function as filter unit components which aid in the acceptance or rejection of certain frequencies.
c. Filter reactors: Smooth the d-c output current in rectifier circuits.
d. Saturable reactors: Regulate voltage, current, or phase in conjunction with glow-discharge tubes of the thyratron type. They are also used as voltage-regulating devices with dry-type rectifiers.

Temperature, humidity, and pressure effects

A maximum ambient temperature of $40^{\circ} \mathrm{C}$ is usually assumed. Final operating temperatures with organic insulation (Class A), such as silk, cotton, or paper, are restricted to values less than $95^{\circ} \mathrm{C}$. When weight and space requirements dictate undersized iron cores and wire, with resultant higher temperature rise, inorganic insulation and cooling expedients may be used. Cooling expedients include: open-frame; semi-enclosed (coil-covered, core-exposed) design; and fully-enclosed design having compound or liquid-filled insulant and cooling by convection, or forced cooling by air blast.
Relative humidities from zero to 97 percent should be assumed so that coils and leads should be impregnated with moisture-resistant insulating coatings or, alternatively, cases should be sealed vacuum tight. Pressure variation, in addition to moisture and temperature changes, due to altitude from sealevel up to 7,000 feet (greater for aircraft) may be encountered.

General limitations

Core material

a. For audio transformers and reactors: Core material should be such that core distortion is not greater than 0.75 percent at the lowest frequency. b. For power supply transformers: Core loss should be less than 0.82 watts per pound at 60 cps , for a flux density of 10,000 gauss. Filter reactors may have a core loss of 1.2 watts per pound at 60 cps , for 10,000 gauss.

Terminal facilities

a. All leads or winding ends: Must remain inside the case for hermetically sealed units.
b. Leads may terminate: In studs in a Bakelite board or bushing when voltage is less than 1000 volts peak. For higher voltages, Isolantite or wet process porcelain may be used.

Protective gaps

Protective gaps are frequently used on filter reactors or plate transformers in rectifier circuits delivering more than 1000 volts dc.

Design of power-supply fransformers

The following may be used as a guide in the design of power supply transformers for receivers and small transmitters.

Nomenclature

$A_{c}=a b=$ cross section area of core in square inches
$a=$ stack width in inches
$b=$ stack height in inches
$B_{\text {max }}=$ maximum core flux density in gauss. Usually assumed to be 10,000 gauss 164.5 kilolines per square inch) at 60 cps , or 12,000 gauss at 25 cps
$E_{p}=$ primary terminal voltage
$E_{i}=$ secondary terminal voltage
$f=$ frequency in cycles per second
$h=$ minimum height of a coil section above core in inches
$h^{\prime}=$ maximum height of a coil section above core in inches
$K=$ stacking factor lusually $K=0.9$)
MLT $=$ mean length of turn of a coil section in feet
$T_{p}=$ number of primary turns
$T_{s}=$ number of secondary turns
$V D_{p}=$ voltage drop due to primary resistance
$V D_{s}=$ voltage drop due to secondary resistance

Design procedure

1. Determine secondary output volt-ampere requirements.
2. Calculate primary current based on a wattage 10 percent greater than the volt-amperes determined in (1). Use the given primary voltage E_{p}.
3. The core area is determined roughly by the formula

Core area $=\frac{\sqrt{\text { wattage }}}{5.58} \sqrt{\frac{60}{f}}$
Select a lamination (from a transformer manufacturer's lamination data book) that will fit the transformer space requirements and provide the proper core area when stacked to a sufficient height.
4. Compute the number of primary turns $T_{p}=\frac{E_{p} \times 10^{8}}{4.44 f B_{\max } A_{c} K}$
5. Compute the number of secondary turns $T_{s}=\frac{E_{s}}{E_{p}} T_{p}$
6. Determine the wire sizes needed for primary and secondary on the basis of an optimum current density of 1000 amperes per square inch, using Table I and the currents carried by the primary and secondary. Greater or smaller densities may be used as required. For very small transformers, densities up to 2500 amperes per square inch are sometimes used.
7. Calculate the number of turns per layer that can be placed in the lamination window space, deducting margin space from the window length.
8. From this value, calculate the total number of primary and secondary layers needed.
9. Calculate the total wire height, using the wire diameter and the number of layers.
10. Determine the total insulation thickness required between wire layers (from Table II, and under and over coil sections.
11. Add the results of (9) and (10) and multiply the figure obtained by 10/9 to allow for bulge in winding wire and wrapping insulation. Revise the design, as necessary, to make this over-all thickness figure (coil build) slightly less than the lamination window width.
12. Calculate the mean length of turns for the primary and for each secondary coil section
MLT $=\frac{2 a+2 b+2 \pi \frac{\left(h^{\prime}+h\right)}{2}}{12}$
13. Calculate the total wire length in feet of each primary and secondary coil by multiplying the MLT value of the coil by the corresponding total number of turns in that coil.
14. The resistance of each coil is obtained by multiplying the total wire length obtained above by the resistance per foot.
15. Calculate the voltage drop in each primary and secondary from the calculated resistance and the current flow.
16. Compensate for the voltage drop in the primary and in each secondary by determining the corrected number of turns
(corrected T_{p}) $=\frac{E_{p}-V D_{p}}{E_{p}} \times$ (original T_{p})
$\left(\right.$ corrected $\left.T_{s}\right)=\frac{E_{s}+V D_{s}}{E_{s}} \times\left(\right.$ original $\left.T_{s}\right)$
17. Revise the number of layers of each winding according to the corrected number of turns.
18. Calculate the copper loss in both primary and secondary windings from the resistance of each coil times the square of the current flowing in it.
19. Calculate the core loss from the weight (in pounds) of the core used and the core loss per pound obtained from the core loss curve given by the manufacturer for the iron used.
20. The efficiency of the transformer is

Percent efficiency $=\frac{\text { wattage output } \times 100}{\text { wattage output }+ \text { core loss }+ \text { copper loss }}$

Table I-Round enameled copper wire

AWC (B\&S)	diameter inches	furns per inch	current capacity amperes*	$\begin{aligned} & \text { ohms per } \\ & 1000 \mathrm{ft} \\ & \text { ot } 50^{\circ} \mathrm{C} \end{aligned}$	coil morgin inches	interlayer Insulation \dagger inches
10	0.1039	9	8.2	1.12	0.25	0.010
11	0.0927	10	6.5	1.41	0.25	0.010
12	0.0827	11	5.1	1.78	0.25	0.010
13	0.0738	12	4.1	2.24	0.25	0.010
14	0.0659	13	3.2	2.82	0.25	0.010
15	0.0588	14	2.6	3.56	0.188	0.010
16	0.0524	16	2.0	4.49	0.188	0.010
17	0.0469	19	1.61	5.66	0.188	0.010
18	0.0418	21	1.28	7.14	0.125	0.005
19	0.0374	24	1.01	9.0	0.125	0.005
20	0.0334	26	0.80	11.4	0.125	0.005
21	0.0299	30	0.64 ,	14.3	0.125	0.005
22	0.0266	34	0.50	18.1	0.125	0.003
23	0.0238	39	0.40	22.8	0.125	0.003
24	0.0213	43	0.32	28.7	0.125	0.003
25	0.0190	48	0.25	36.2	0.125	0.002
26	0.0169	54	0.20	45.6	0.125	0.002
27	0.0152	59	0.158	57.5	0.125	0.002
28	0.0135	68	0.126	72.6	0.125	0.002
29	0.0122	74	0.100	91	0.125	0.002
30	0.0108	84	0.079	115	0.125	0.0015
31	0.0097	94	0.063	146	0.125	0.0015
32	0.0088	104	0.050	183	0.094	0.0015
33	0.0078	117	0.039	231	0.094	0.0015
34	0.0069	131	0.031	292	0.094	0.001
35	0.0061	146	0.025	368	0.094	0.001
36	0.0055	162	0.0196	464	0.094	0.001
37	0.0049	183	0.0156	585	0.094	0.001
38	0.0044	204	0.0124	737	0.063	0.001
39	0.0038	227	0.0098	930	0.063	0.00075
40	0.0034	261	0.0078	1173	0.063	0.00075

[^14]
Nomenclałure*

$e_{c}=$ instantaneous total grid voltage
$\mathbf{e}_{b}=$ instantaneous total plate voltage
$i_{c}=$ instantaneous total grid current
$i_{b}=$ instantaneous total plate current
$E_{c}=$ average value of grid voltage
$E_{b}=$ average or quiescent value of plate voltage
$I_{c}=$ average or quiescent value of grid current
$I_{b}=$ average or quiescent value of plate current
$\mathrm{e}_{g}=$ instantaneous value of varying component of grid voltage
$\mathrm{e}_{p}=$ instantaneous value of varying component of plate voltage
$i_{g}=$ instantaneous value of varying component of grid current
$i_{p}=$ instantaneous value of varying component of plate current
$E_{g}=$ effective or maximum value of varying component of grid voltage
$E_{p}=$ effective or maximum value of varying component of plate voltage
$I_{g}=$ effective or maximum value of varying component of grid current
$I_{p}=$ effective or maximum value of varying component of plate current
$I_{f}=$ filament or heater current
$J_{z}=$ total electron emission (from cathode)
$r_{l}=$ external plate load resistance
$\mathrm{C}_{g p}=$ grid-plate direct capacitance
$\mathrm{C}_{g k}=$ grid-cathode direct capacitance
$\mathrm{C}_{p k}=$ plate-cathode direct capacitance
$\theta_{p}=$ plate current conduction angle
$r_{p}=$ variational (a-c) plate resistance
$R_{p b}=$ total (d-c) plate resistance
Note: In the following text, the superscript M indicates the use of the maximum or peak value of the varying component, i.e., ${ }^{\text {m }} E_{p}=$ maximum or peak value of the alternating component of the plate voltage.

* From IRE standard symbols IElectronics Standards, 1938|

Coefficients

Amplification factor μ : Ratio of incremental plate voltage to controlelectrode voltage change at a fixed plate current with constant voltage on other electrodes.

$$
\left.\begin{array}{c}
\mu=\left[\frac{\delta \mathrm{e}_{b}}{\delta \mathrm{e}_{c 1}}\right] \\
I_{b} \\
E_{c 2}=\ldots \ldots-\ldots-E_{c n}
\end{array}\right\} \text { constant }
$$

Coefficients confinued

Transconductance s_{m} : Ratio of incremental plate current to control-electrode voltage change at constant voltage on other electrodes.

$$
\begin{gathered}
s_{m}=\left[\frac{\delta i_{b}}{\delta e_{c 1}}\right] E_{b,} E_{c 2} \cdots \cdots E_{c n} \text { constant } \\
r_{l}=0
\end{gathered}
$$

When electrodes are plate and control grid, the ratio is the mufual conductance g_{m} of the tube.

$$
g_{m}=\frac{\mu}{r_{p}}
$$

Variational (a-c) plate resistance r_{p} : Ratio of incremental plate voltage to current change at constant voltage on other electrodes.

$$
\begin{gathered}
r_{p}=\left[\frac{\delta e_{b}}{\delta i_{b}}\right] E_{c 1-\ldots \ldots-\ldots} E_{c n} \text { constant } \\
r_{l}=0
\end{gathered}
$$

Total (d-c) plate resistance R_{p} : Ratio of total plate voltage to current for constant voltage on other electrodes.

$$
\begin{gathered}
R_{p}=\left[\frac{e_{b}}{i_{b}}\right]_{E_{c 1} \ldots \ldots \ldots-\ldots} E_{c n} \text { constant } \\
r_{l}=0
\end{gathered}
$$

Terminology

Control grid: Electrode to which plate-current-controlling signal voltage is applied.
Space-charge grid: Electrode, usually biased to constant positive voltage, placed adjacent to cathode to reduce current-limiting effect of space charge.
Suppressor grid: Grid placed between two electrodes to suppress the effect of secondary electrons.

Screen grid: Grid placed between anode and control grid to reduce the capacitive coupling between them.

Primary emission: Thermionic emission of electrons from a surface.
Secondary emission: Usually of electrons, from a surface by direct impact not thermal action, of electronic or ionic bombardment.
Total emission I_{s} : Maximum (saturated, temperature-limited) value of electron current which may be drawn from a cathode. Available total emission is that peak value of current which may safely be drawn.

Terminology continued

Transfer characteristic: Relation, usually graphical, between voltage on one electrode and current to another, voltages on all other electrodes remaining constant.

Electrode characteristic: Relation, usually graphical, between the voltage on, and current to, a tube electrode, all other electrode voltages remaining constant.

Composite-diode lines: Relation, usually two curves, of the currents flowing to the control grid and the anode of a triode as a function of the equal voltage applied to them (grid-plate tied).
Critical grid voltage: Instantaneous value of grid voltage lwith respect to cathodel at which anode current conduction is initiated through a gas tube.
Constant current characteristics: Relation, usually graphical, between the voltages on two electrodes, for constant specified current to one of then and constant voltages on all other electrodes.

Formulas

For unipotential cathode and negliglble safuration of cathode emission

function	parallel plane cathode and piate	cylindrical eathode and plate
Diode plate current lamperes)	$\mathrm{G}_{1} \mathrm{e}_{6}{ }^{\frac{3}{2}}$	$\mathrm{G}_{1} \mathrm{e}^{\frac{3}{2}}$
Triode plate current lamperes)	$G_{2}\left(\frac{e_{b}+\mu e_{c}}{1+\mu}\right)^{\frac{3}{2}}$	$G_{2}\left(\frac{e_{b}+\mu e_{c}}{1+\mu}\right)^{\frac{3}{2}}$
Diode perveance G_{1}	$2.3 \times 10^{-6} \frac{A_{b}}{d_{b}{ }^{2}}$	$2.3 \times 10^{-6} \frac{A_{b}}{\beta^{2} r^{2}}$
Triode perveance G_{2}	$2.3 \times 10^{-6} \frac{A_{b}}{d_{b} d_{c}}$	$2.3 \times 10^{-6} \frac{A_{b}}{\beta^{2} r_{b} r_{c}}$
Amplification factor μ	$\frac{2.7 d_{c}\left(\frac{d_{b}}{d_{c}}-1\right)}{\rho \log \frac{\rho}{2 \pi r_{g}}}$	$\frac{2 \pi d_{a}}{\rho} \frac{\log \frac{d_{b}}{d_{c}}}{\log \frac{\rho}{2 \pi r_{0}}}$
Mutual conductance g_{m}	$\begin{aligned} & 1.5 G_{2} \frac{\mu}{\mu+1} \sqrt{\mathrm{e}_{\theta}^{\prime}} \\ & \mathrm{e}_{\theta}^{\prime}=\frac{E_{b}+\mu E_{c}}{1+\mu} \end{aligned}$	$\begin{gathered} 1.5 G_{2} \frac{\mu}{\mu+1} \sqrt{e^{\prime}} \\ e_{\theta}^{\prime}=\frac{E_{b}+\mu E_{c}}{1+\mu} \end{gathered}$

130

Formulas continued

where
$A_{b}=$ effective anode area in square centimeters
$d_{b}=$ anode-cathode distance in centimeters
$d_{c}=$ grid-cathode distance in centimeters
$\beta=$ geometrical constant, a function of ratio of anode to cathode radius; $\beta^{2} \cong 1$ for $\frac{r_{b}}{r_{k}}>10$ (see curve Fig. 1)
$\rho=$ pitch of grid wires in centimeters
$r_{g}=$ grid wire radius in centimeters
$r_{b}=$ anode radius in centimeters
$r_{k}=$ cathode radius in centimeters
$r_{c}=$ grid radius in centimeters
Note: These formulas are based on theoretical considerations and do not provide accurate results; for practical structures, however, they give a fair idea of the relationship between the sube geometry and the constants of the tube.

Fig. 1-Values of β^{2} for values of $\frac{\mathrm{r}_{b}}{\mathrm{r}_{k}}<10$.

Performance limitations

Tube performance limitation factors include electrode dissipation, filament emission, and the transit time of electrons in the active part of the tube. For a given tube, the ultimate limitation may be any one or a combination of these factors.

Electrode dissipation dała

Tube performance is limited by electrode dissipation. In turn, tube dissipation is limited by the maximum safe operating temperatures of the glass-to-metal seals lapproximately $200^{\circ} \mathrm{Cl}$, glass envelope, and tube electrodes. Thus excessive dissipation may result in breakage, loss of vacuum, and destruction of the tube.

Typical operating data for common types of cooling are roughly

fype	average cooling surface temporature ${ }^{\circ} \mathbf{c}$	specific dissipation wats/cm cooling surface	cooling medium supply
Radiation	$400-1000$	$4-10$	
Water	$30-60$	$30-110$	$0.25-0.5$ gpm per kw
Forced-air	$150-200$	$0.5-1$	$50-150 \mathrm{cfm}$ per kW

The operating temperature of radiation-cooled anodes for a given dissipation is determined by the relative total emissivity of the anode material. Thus, graphite electrodes which approach black-body radiation conditions operate at the lower temperature range indicated, while untreated tantalum and molybdenum work at relatively high temperatures. In computing coolingmedium flow, a minimum velocity sufficient to insure turbulent flow at the dissipating surface must be maintained. In the case of water and forced-air cooled tubes, the figures above apply to clean cooling surfaces, and may be reduced to a small fraction of these values by heat-insulating coatings such as mineral scale or dust. Cooling surfaces should, thus, be closely observed and cleaned periodically.

Dissipation and temperature rise of cooling water
$K W=0.264 Q\left(T_{2}-T_{1}\right)$
where $K W=$ power in kilowatts, $Q=$ flow in gallons per minute, T_{2} and $T_{1}=$ outlet and inlet temperatures in degrees centrigrade. An alternate formula is
$K W=\frac{\text { liters per minute }\left(T_{2}-T_{1}\right)}{14.3}$
or $K W=$ liters per minute when the temperature rise is a reasonable figure, namely $14.3^{\circ} \mathrm{C}$.

Air flow and temperature rise
$Q=5.92\left(T_{1}+273\right) \frac{P}{T_{2}-T_{1}}$
where $Q=$ air nlow in cubic feet per minute.

Filament characteristics

The sum of the instantaneous peak currents drawn by all of the electrodes must be within the available total emission of the filament. This emission is determined by the filament material, area, and temperature.

Typical deta on the three types of flament most used are

type	effeiency ma/watt	specific emission I_{s} amp/cm	watt/cm²	operating temperature Kolvin	ratio hot-fo-cold resistance
Pure fungsten (W)	$5-10$	$0.25-0.7$	$70-84$	$2500-2600$	$14: 1$
Thoriated tungsten (ThW)	$40-100$	$0.5-3$	$26-28$	$1950-2000$	$10: 1$
Oxide coated (BaCaSr)	$50-150$	$0.5-2.5$	$5-10$	$1100-1250$	2.5 to $5.5: 1$

In the cases of thoriated-tungsten and oxide-coated filament tubes, the emission data vary widely between tubes around the approximate range indicated in the table. The figures for specific emission refer to the peak or safurated value which is usually two or more times the total available value for these filaments. Instantaneous peak current values drawn during operation should never exceed the published available emission figure for the given tube.

Thoriated-fungsten and oxide-coated type filaments should be operated close to the specified published voltage. Deviation from these values will result in rapid destruction of the cathode surface.

In the case of pure tungsten, the filament may be operated over a considerable temperature range. It should be borne in mind, however, that the total filament-emission current available varies closely as the seventh power of the filament voltage. Likewise, the expected filament life is critically dependent on the operating temperature. The relationship between filament voltage and life is shown by fig. 2 . It will be seen that an increase of 5 percent above rated filament voltage reduces the life expectancy by 50 percent. Where the full normal emission is not required, a corresponding increase in life may be secured by operating a pure tungsten filament below rated filament voltage.

From the above tabulated values of hot-to-cold resistance, it may be seen that a very high heating current may be drawn by a cold filament, particularly one of the fungsten type. In order to avoid destruction by mechanical stresses which are proportional to I^{2}, it is imperative to limit the current to a safe value, say, 150 percent of normal hot value for large tubes and 250 percent for medium types. This may be accomplished by resistance and time-delay relays, high-reactance transformers, or regulators.

Filament characteristics continued

Fig. 2-EFtect of change in Alament volfage on the life and emission of bright fungstee flament (based on $2575^{\circ} \mathrm{K}$ normal femperafure).

In the case where a severe overload has temporarily impaired the emission of a thoriated-tungsten filament, the activity can sometimes be restored by operating the tube with filament voltage only in accordance with one of the following schedules:

1. At normal filament voltage for several hours or overnight. Or, if the emission fails to respond.
2. At 30 percent above normal for 10 minutes, then at normal for 20 to 30 minutes. Or, in extreme cases when 1 and 2 have failed to give results and at the risk of burning out the filament.
3. At 75 percent above normal for 30 seconds followed by schedule 2 .

Ulira-high-frequency fubes

Tubes for u-h-f application differ widely in design among themselves and from those for lower frequency. The theory of their operation and the principles of their design have not been fully expounded, and great progress in this field still lies ahead.

Ultra-high-frequency tubes may be classified according to principle of operation as follows:

1. Negative-grid tubes
2. Positive-grid tubes
3. Velocity-modulated tubes
4. Magnetrons
5. Negative-grid tubes: Effectiveness of negative-grid tubes at ultra-highfrequencies is limited by two factors
a. difficulty of designing the circuit associated with the tube
b. effect of electron inertia.
a. Design of u-h-f circuit associated with negative-grid tubes: The circuit must be tunable at the operating frequency. This leads to the use of transmission lines as associated circuits of the parallel or coaxial type. The tubes themselves are constructed so as to be part of the associated transmission line.

Lines in some cases are tuned on harmonic modes, thus making possible the use of larger circuit elements.
Circuit impedance must match the optimum loading impedance of the tube, a requirement difficult to satisfy inasmuch as the capacitive reactances are very small and u-h-f losses are important in both conductors and insulators. Difficulty in obtaining the proper Q of the circuit is increased with frequency.
b. Effect of electron inertia: The theory of electron inertia effect in receiving tubes has been formulated by Llewelyn, but no comparable, complete theory is now available for transmitting tubes. In both cases the time of flight of an electron from cathode to anode must be a small fraction of the oscillating period. When this period is so short as to be of the same order of magnitude as the transit time, receiving tubes cease to amplify and transmitting tubes cease to oscillate.
Small tubes with close spacing between electrodes have been built that can be operated up to about 3000 megacycles.
To compare results obtained with different tubes and circuits pertaining to a family ruled by the law of similitude, it is useful to know that dimensionless magnitudes, such as efficiency, or signal-noise ratio, are the same when the dimensionless parameter
$\phi=\frac{f \times d}{\sqrt{v}}$ remains constant
where
$f=$ frequency in megacycles
$d=$ cathode-to-anode distance in centimeters
$V=$ anode voltage in volts.
Transit-time effect appears when ϕ becomes greater than 1. Spacing between electrodes of $u-h$ - f tubes then must be small, and operation at high voltage is necessary. In addition cathodes must be designed for high current density operation.
2. Positive-grid tubes: Utilize an oscillating space charge produced by acceleration of electrons through the positive grid toward a negative reflecting anode. This principle has been used for generating waves down to lengths of one centimeter. Low power output and low efficiency have hitherto limited their wide application.
3. Velocity-modulated tubes: Utilize the acceleration and retarding action of an alternating electron voltage on an electron beam to. vary the velocity in the beam. After passage of the beam through a field-free drift space, the beam arrives with variations of space-charge density. In passing through the opening of a resonant cavity at this point, the variation of the beam density induces a current in the external circuit. Several types of amplifiers and oscillators employ this principle of operation; some, such as the reflex Klystron, have a single cavity. While a theoretical efficiency of about 50 percent may thereby be achieved, the actual efficiency in the frequency range around 10 centimeters is only a few percent.
4. Magnetrons: May be considered as another form of velocity-modulated tube in which the electron stream instead of being accelerated linearly is

Ulfro-high-frequency fubes confinued

given a circular trajectory by means of a transverse magnetic field. Energy from this beam is not lost directly to an acceleration electrode at d-c potential as in the linear case and accordingly a higher operating efficiency may be obtained. Usually acceleration and retardation of the rotary beam is accomplished by one or more pairs of electrodes associated with one or more resonant circuits.

Wavelengths down to a centimeter are produced by the so-called first order ln $=11$ oscillations generated in a magnetron having a single pair of plates. Relatively low efficiency and power output are obtained in this mode of operation. Design formulas relating dimensions, d-c anode voltage, magnetic field strength, and output frequency for this case are obtained from the basic relation for electron angular velocity

$$
\begin{aligned}
\omega_{m} & =\frac{\mathrm{e}}{\mathrm{e}} \\
\lambda & =\frac{10,700}{H} \\
E_{b} & =0.022 r_{b}^{2}\left[1-\left(\frac{r_{k}}{r_{b}}\right)^{2}\right]^{2} H^{2}
\end{aligned}
$$

where

$$
\begin{aligned}
H & =\text { field intensity in gauss } \\
E_{b} & =d-c \text { accelerating voltage in volts } \\
\lambda & =\text { generated wavelength in centimeters } \\
\mathbf{r}_{b} & =\text { anode radius in centimeters } \\
\mathrm{r}_{k} & =\text { cathode radius in centimeters }
\end{aligned}
$$

Higher order oscillations of the magnetron may be obtained at high outputs and efficiencies exceeding that of the linear velocity-modulated tubes.

Cathode-ray fubes

Electrodes*

Control electrode (modulating electrode, grid, or grid No. 1): Is operated at a negative potential with respect to the cathode in conventional cathoderay tubes. The negative potential controls the beam current and, therefore, the trace brightness.

[^15]
Cathode-ray łubes

continued

Screen grid (grid No. 2): Is not utilized in all cathode-ray tube designs. Its introduction makes the control characteristic independent of the accelerating potential when operated at fixed positive potential. In electrostaticfocus, it makes the screen current lbeam current to fluorescent screenl substantially independent of the focusing electrode voltage over the focus region. In some tube designs, it is used to change the control characteristic dynamically by application of varying potential.

Fig. 3-Electrode arrangemenf of iypical electrostatic focus and deffection cathode-ray tube. A heater. B cathode. C control electrode. D screan grid or pre-accalerator. E focusing electrode. F accelerating electrode. G defection plate pair. H defection plate pair. J conductive coaling connected to aceelerating electrode. K Intensifier electrode terminal. L infensifer electrode (conductive coating on glass). M fuorescent screen.

Focusing electrode (anode No. 1): Is used in electrostatic-focus cathode-ray tubes and operates at a positive potential,* adjustable to focus the spot.
Accelerating electrode (anode No. 2 or anode): In usual usage, the second anode is the last electrode, prior to deflection, which produces acceleration. The second anode potential is the potential of the electron beam in the deflection region.
Intensifier electrode (post-accelerating electrode, anode No. 3): Provides acceleration after deflection.
Preaccelerating eiectrode: In common usage, is an electrode like a screen grid or second grid, but connected to the accelerating electrode internally. It makes the screen current (beam current to fluorescent screen) substantially independent of the focusing electrode voltage over the focus region.
Deflection plates (deflection electrodes): Conventional cathode-ray tubes have two pairs of deflection plates at right angles to each other. The electric field between the plates of a pair causes deflection of the beam and, therefore, displacement of spot, in a direction perpendicular to plates of a pair.

[^16]
Cathode-ray fubes continued

Characteristics

Cutoff voltage ($E_{\text {co }}$): Negative grid potential at which screen current becomes zero (as indicated by visual extinction of a focused undeflected spot), or some specified low value. It varies directly with the accelerating electrode potential except in tubes with independently connected screen grids where it varies approximately as the screen-grid potential, the accelerating electrode potential having a second order effect (E) $E_{c o}$ increases slightly with accelerating electrode potentiall. $E_{c o}$ is independent of intensifier electrode potential.

Control characteristic (modulation characteristic): Is a curve of beam current versus grid potential. It is often expressed in terms of grid drive (grid potential above cutoff) rather than actual grid potential. This method of expressing it has the advantage that the characteristic then varies less with accelerating potential and with individual tubes of a given design.

Focusing voltage: In electrostatic focus tubes, the focusing electrode voltage at which the spot comes to a focus varies directly with accelerating electrode voltage in most tube designs and is substantially independent of the intensifier electrode potential.

Focusing current or focusing ampere turns: Applies to magnetic-focus cathode-ray tubes and is usually expressed in terms of a definite focus coil in a definite location on the fube. While more than one value of current will focus, the best focus is obtained with the minimum value, i.e., the one ordinarily specified. The focusing current (or ampere turns) increases with accelerating potential.

Deflection factor (for electrostatic-deflection tubes): Is defined as the voltage required between a pair of deflection plates to produce unit deflection of the spot, and is usually expressed in d-c volts per inch of displacement. It varies directly with the accelerating potential in intensifier-type tubes so long as the ratio of the intensifier potential to accelerating-electrode potential lall potentials with respect to cathodel is constant. The application of twice the accelerating electrode potential to the intensifier electrode increases the deflection factor 15 percent to 30 percent above the value with the accelerating electrode and intensifier electrode at the same potential, depending on the tube design.

Deflection factor (for magnetic defection tubes): Usually expressed in terms of a definite deflection yoke in a definite location on the tube, in amperes or milliamperes per inch of spot deflection, it varies as the square root of the accelerating electrode potential.

Cathode-ray fubes continued
Deflection sensitivity: Is the reciprocal of the deflection factor. Usually, however, it is expressed in millimeters per voit for electrostatic deflection tubes.

Spot size: Must be expressed in terms of a defined method of measurement since spot edges are not usually sharp. When the accelerating potential is varied and the screen current maintained constant, the spot size usually decreases with increasing accelerating potential. If the brightness is held constant while varying the accelerating potential, the spot size decreases even more with increasing accelerating potential.
Brightness: Increases with beam current and with accelerating potential. At constant screen current, it usually increases with accelerating potential at a rate between the first and second power of the accelerating potential, approaching a maximum depending upon the screen material.

Application notes

Grid voltage: To permit variation of brightness over the entire range, the grid voltage, should be variable from the maximum specified cutoff bias of a cathode-ray tube to zero. Allowance should be made for a-c grid voltages if they are applied, and for potential drops which may occur in d-c gridreturn circuits due to allowable grid leakage.
Focusing electrode voltage source (electrostatic-focus tubes): Bleeder design should be such as to cover the range of focus voltage over which tubes are permitted to vary by specifications, both at the value of focusing-electrode current that may be encountered in operation, and at cutof (zero focusing-electrode currentl.

Deflection-plate potentials (electrostatic-defection tubes): To avoid defocusing of the spot, the instantaneous average potential of the plates of each deflection-plate pair should always be the same as that of the accelerating electrode.

Magnetic shielding: Magnetic shielding is necessary if it is desired to eliminate magnetic effects on the beam. The earth's and other magnetic fields may shift the beam considerably.

Approximate formulas

Electrostatic deflection: Is proportional to deflection voltage, inversely proportional to accelerating voltage, and at right angles to the plane of the plates and toward the more positive plate. For deflection electrode structures using straight parallel deflection plates
$D=\frac{E_{d} L}{2 E_{a} A}$
$D=$ deflection
$E_{d}=$ deflection voltage
$E_{a}=$ accelerating voltage
A $=$ separation of plates
$l=$ length of plates
$L=$ length from center of plates to screen
D, A, l, L are all in the same units
Electromagnetic deflection: Is proportional to dux or current in coil, inversely proportional to the square root of the accelerating voltage, and at right angles to the direction of the field
$D=\frac{0.3 L I H}{\sqrt{E_{a}}}$
$D=$ deflection in centimeters
$L=$ length in centimeters between screen and point where beam enters deflecting field
$l=$ length of deflection field in centimeters
$H=$ flux density in gauss
$E_{a}=$ accelerating voltage
NI = deflecting coil ampere turns

Deflection sensitivity: Is linear up to frequency where phase of deflecting voltage begins to reverse before electron has reached end of deflecting field. Beyond this frequency, sensitivity drops off reaching zero and then passing through a series of maxima and minima as $n=1,2,3 \ldots$ Each succeeding maximum is of smaller magnitude

$$
\begin{aligned}
D_{\text {zero }} & =n \lambda\left(\frac{v}{c}\right) . \\
D_{\max } & =(2 n-1)\left(\frac{\lambda}{2}\right)\left(\frac{v}{c}\right) \\
D & =\text { deflection } \\
v & =\text { electron velocity } \\
c & =\text { speed of light } 13 \times 10^{10} \mathrm{~cm} / \mathrm{secl}
\end{aligned}
$$

Electron velocity: For accelerating voltages up to 10,000 $v\left(\mathrm{~km}\right.$ per sec) $=593 \sqrt{E_{a}}$

Cathode-ray tubes continued

Beyond 10,000 volts, apply Einstein's correction for the increase in mass of the electron.

Earth's magnetic field:

Maximum 0.4 gauss horizontal (Philippine Islands)
0.6 gauss vertical (Canada)

City of New York 0.17 gauss horizontal; 0.59 gauss vertical
Magnetic focusing: There is more than one value of current that will focus. Best focus is at minimum value.
For an everage coil
$I N=220 \sqrt{\frac{V_{0 d}}{f}}$
IN = ampere turns
$V_{0}=k v$ accelerating voltage
$d=$ mean diameter of coil
$f=$ focal length
d and f are in the same units
A well-designed, shielded coil will require fewer ampere turns.
Example of good shield' design

$$
x=\frac{d_{1}}{20}
$$

Vacuum fube ampliflers

Classiffcation

It is common practice to differentiate between types of vacuum tube circuits, particularly amplifiers, on the basis of the operating regime of the tube.
Class A: Grid bias and alternating grid voltages such that plate current flows continuously throughout electrical cycle ($\theta_{p}=360$ degrees).
Class $A B$: Grid bias and alternating grid voltages such that plate current flows appreciably more than half but less than entire electrical cycle $1360^{\circ}>\theta_{p}>180^{\circ}$.

Class B: Grid bias close to cut-off such that plate current flows only during approximately half of electrical cycle $\left(\theta_{p} \cong 180^{\circ}\right)$.

Class C: Grid bias appreciably greater than cut-off so that plate current flows for appreciably less than half of electrical cycle $1 \theta_{p}<180^{\circ} \%$.

A further classification between circuits in which positive grid current is conducted during some portion of the cycle, and those in which it is not, is denoted by subscripts 2 and 1 , respectively. Thus a class $A B_{2}$ amplifier operates with a positive swing of the alternating grid voltage such that positive electronic current is conducted, and accordingly in-phase power is required to drive the tube.

General design

For quickly estimating the performance of a tube from catalog data, or for predicting the characteristics needed for a given application, the ratios given in Table I may be used.

Table I-Typical amplifier operating dafa

Maximum signal conditions-per fube

function	class A	$\begin{gathered} \text { class B } \\ 0-f(p-p) \end{gathered}$	$\begin{gathered} \text { class } 8 \\ r-f \end{gathered}$	$\underset{\substack{\text { class } \\ r=f}}{ }$
Plate efficiency η \%	20-30	35-65	60-70	65-85
Peak instantaneous to d-c plate current ratio $\mathrm{M}_{\mathrm{ib}} / \mathrm{hb}_{b}$.	1.5-2	3.1	3.1	3.1-4.5
RMS alternating to d-c plate - Current ratio I_{p} / I_{b}	0.5-0.7	1.1	1.1	1.1-1.2
RMS alternating to d-e plate voltage ratio E_{p} / E_{b}	0.3-0.5	0.5-0.6	0.5-0.6	0.5-0.6
D.C to peak instantaneous grid curront $I_{c} /{ }^{M_{i}}$		0.25-0.1	0.25-0.1	0.15-0.1

General design

Table I gives correlating data for typical operation of tubes in the various amplifier classifications. From this table, knowing the maximum ratings of a rube, the maximum power output, currents, voltages, and corresponding load impedance may be estimated. Thus, taking for example, a type F-124-A water-cooled transmitting tube as a class C radio-frequency power amplifier and oscillator-the constant-current characteristics of which are shown in Fig. 1-published maximum ratings are as follows:
D.C plate voltage $E_{b}=20,000$ volts

D-C grid voltage $E_{c}=3,000$ volts
D.C plate current $I_{b}=7$ amperes

R-F grid current $\quad I_{\sigma}=50$ amperes
Plate input $\quad P_{i}=135,000$ watts
Plate dissipation $\quad P_{p}=40,000$ watts
Maximum conditions may be estimated as follows:
For $\eta=75 \% \quad P_{i}=135,000$ watts $\quad E_{b}=20,000$ volts
Power output $P_{0}=\eta P_{i}=100,000$ watts
Average d-c plate current $I_{b}=P_{i} / E_{b}=6.7$ amperes
From tabulated typical ratio ${ }^{\mathrm{M}_{\mathrm{i}}} / I_{b}=4$, instantaneous peak plate current ${ }^{M} i_{b}=4 I_{b}=27$ amperes
The rms alternating plate current component, taking ratio $I_{p} / I_{b}=1.2, I_{p}=$ $1.2 I_{b}=8$ amperes

The rms value of the alternating plate voltage component from the ratio $E_{p} / E_{b}=0.6$ is $E_{p}=0.6 E_{b}=12,000$ volts.

The approximate operating load resistance r_{l} is now found from
$r_{l}=\frac{E_{p}}{I_{p}}=1500$ ohms.
An estimate of the grid drive power required may be obtained by reference to the constant current characteristics of the tube and determination of the peak instantaneous positive grid current ${ }^{\mathrm{M}_{\mathrm{i}}}$ and the corresponding instantaneous total grid voltage ${ }^{M} e_{c}$. Taking the value of grid bias E_{c} for the given operating condition, the peak a-c grid drive voltage is

$$
{ }^{\mathbf{M}} E_{g}=l^{\mathbf{M}} \mathrm{e}_{c}-E_{d}
$$

from which the peak instantaneous grid drive powes
${ }^{M} P_{c}={ }^{M} E_{q}{ }^{M}{ }_{i c}$.

General design continued

An approximation to the average grid drive power P_{g}, necessarily rough due to neglect of negative grid current, is obtained from the typical ratio
$\frac{I_{c}}{\mathrm{M}_{i_{c}}}=0.2$
of d-c to peak value of grid current, giving
$P_{\theta}=I_{c} E_{0}=0.2^{\mathrm{M}_{i_{c}} E_{0}}$ watts.
Plate dissipation P_{p} may be checked with published values since

$$
P_{p}=P_{i}-P_{0}
$$

grid amperes i_{c}

Fig. 1-Constant-current characteristics with typical load Ines AB-elass C, CDclass B, EFC-elass A, and HJK-cless AB.

It should be borne in mind that combinations of published maximum ratings as well as each individual maximum rating must be observed. Thus, for example in this case, the maximum d-c plate operating voltage of 20,000 volts does not permit operation at the maximum d-c plate current of 7 amperes since this exceeds the maximum plate input rating of 135,000 watts.

Plate load resistance r_{l} may be connected directly in the tube plate circuit, as in the resistance-coupled amplifier, through impedance-matching elements as in audio-frequency transformer coupling, or effectively represented by a loaded parallel resonant circuit as in most radio-frequency amplifiers. In any case, calculated values apply only to effectively resistive loads, such as are normally closely approximated in radio-frequency amplifiers. With appreciably reactive loads, operating currents and voltages will in general be quite different and their precise calculation is quite difficult.
The physical load resistance present in any given set-up may be measured by audio-frequency or radio-frequency bridge methods. In many cases, the proper value of r_{l} is ascertained experimentally as in radio-frequency amplifiers which are tuned to the proper minimum d-c plate current. Conversely, if the circuit is to be matched to the tube, r_{l} is determined directly as in a resistance-coupled amplifier or as
$r_{l}=N^{2} r_{s}$
in the case of a transformer-coupled stage, where N is the primary-to-secondary voltage transformation ratio. In a parallel-resonant circuit in which the output resistance r_{8} is connected directly in one of the resistance legs,
$r_{l}=\frac{X^{2}}{r_{s}}=\frac{L}{C r_{s}}=Q X$,
where X is the leg reactance at resonance lohmsl.
L and C are leg inductance (henries) and capacitance (farads), respectively,
$Q=\frac{X}{r_{s}}$.

Graphical design methods

When accurate operating data are required, more precise methods must be used. Because of the non-linear nature of tube characteristics, graphical methods usually are most convenient and rapid. Examples of such methods are given below.
A comparison of the operating regimes of class $A, A B, B$, and C amplifiers is given in the constant-current current characteristics graph of Fig. 1. The

Graphical design methods continued

lines corresponding to the different classes of operation are each the locus of instantaneous grid e_{c} and plate e_{b} voltages, corresponding to their respective load impedances.

For radio-frequency amplifiers and oscillators having tuned circuits giving an effective resistive load, plate and grid tube and load alternating voltages are sinusoidal and in phase (disregarding transit time), and the loci become straight lines.

For amplifiers having non-resonant resistive loads, the loci are in general non-linear except in the distortionless case of linear tube characteristics (constant r_{p}) for which they are again straight lines.

Thus, for determination of radio-frequency performance, the constantcurrent chart is convenient. For solution of audio-frequency problems, however, it is more convenient to use the $\left(i_{b}-e_{c}\right)$ transfer characteristics of Fig. 2 on which a dynamic load line may be constructed.
Methods for calculation of the most important cases are given below.

Class Cref amplifler or oscillator

Draw straight line from A to B (Fig. 1) corresponding to chosen d-c operating plate and grid voltages, and to desired peak alternating plate and grid voltage excursions. The projection of $A B$ on the horizontal axis thus corresponds to ${ }^{\mathrm{M}} E_{p}$. Using Chaffee's 11 -point method of harmonic analysis, lay out on $A B$ points:

$$
e_{p}^{\prime}={ }^{M} E_{p} \quad e_{p}^{\prime \prime}=0.866^{M} E_{p} \quad e^{\prime \prime \prime}{ }_{p}=0.5^{M} E_{p}
$$

to each of which correspond instantaneous plate currents $i_{b}{ }_{b}, i^{\prime \prime} b$ and $i^{\prime \prime \prime}{ }_{b}$ and instantaneous grid currents $i^{\prime}{ }_{c}, i^{\prime \prime}{ }_{c}$ and $i^{\prime \prime \prime}{ }_{c}$. The operating currents are obtained from the following expressions:

$$
\begin{aligned}
I_{b} & =\frac{1}{12}\left[i_{b}^{\prime}+2 i_{b}^{\prime \prime}+2 i_{b}^{\prime \prime \prime}\right] & I_{c} & =\frac{1}{12}\left[i_{c}^{\prime}+2 i_{c}^{\prime \prime}+2 i_{c}^{\prime \prime \prime}\right] \\
{ }^{\mathrm{M}} I_{p} & =\frac{1}{6}\left[i_{b}^{\prime}+1.73 i_{b}^{\prime \prime}+i_{b}^{\prime \prime \prime}\right] & { }^{\mathrm{M}} I_{g} & =\frac{1}{6}\left[i_{c}^{\prime}+1.73 i_{c}^{\prime \prime}+i^{\prime \prime \prime}\right]
\end{aligned}
$$

Substitution of the above in the following give the desired operating data.
Power output $P_{0}=\frac{{ }^{M} E_{p}{ }^{M} l_{p}}{2}$
Power input $P_{i}=E_{b} I_{b}$
Average grid excitation power $=\frac{{ }^{\mathrm{M}} E_{g}{ }^{\mathrm{M}} I_{o}}{2}$
148

Graphical design methods cantinued

Peak grid excitation power $={ }^{M} E_{0} i^{\prime}$ c
Plate load resistance $r_{l}=\frac{{ }^{\mathrm{M}} E_{p}}{{ }^{\mathrm{M}} I_{p}}$
Grid bias resistance $R_{c}=\frac{E_{c}}{I_{c}}$
Plate efficiency $\eta=\frac{P_{0}}{P_{i}}$
Plate dissipation $P_{p}=P_{i}-P_{0}$
The above procedure may also be applied to plate-modulated class C amplifiers. Taking the above data as applying to carrier conditions, the analysis is repeated for ${ }^{\text {crest }} E_{b}=2 E_{b}$ and ${ }^{\text {crest }} P_{0}=4 P_{0}$ keeping r_{l} constant. After a cut-and-try method has given a peak solution, it will often be found that combination fixed and self grid biasing as well as grid modulation is indicated to obtain linear operation.

To illustrate the preceding exposition, a typical amplifier calculation is given below:

Operating requirements (carrier condition)
$E_{b}=12,000$ volts $\quad P_{0}=25,000$ watts $\quad \eta=75 \%$
Preliminary calculation (refer to Table III

Table II—Class C r-f amplifier dafa 100% plate modulation

	proliminary	detailed	
symbol	corrier	carrier	crest
E_{b} (volis)	12,000	12,000	24,000
${ }^{M} E_{p}$ (volis)	10,000	10,000	20,000
$E_{\text {e }}$ (volts)		$-1,000$	-700
${ }^{M} E_{0}$ (volts)		1,740	1,740
i_{b} (amp)	2.9	2.8	6.4
$\mathrm{M} I_{p}$ (amp)	4.9	5.1	10.2
I_{c} (ampl		0.125	0.083
$\mathrm{M}_{I_{0}}$ (ampl		0.255	0.183
P_{i} (watts)	35,000	33,600	154,000
P_{0} (watrs)	25,000	25,5 ${ }^{\circ} 0$	102,000
P_{0} (watis)		220	160
η (percent)	75	76	66
$r_{\text {l }}$ (ohms)	2,06「	1,960	1,960
$\mathrm{R}_{\text {e }}$ (ohms)		7.100	7,100
Ese (volts)		-110	-110

Graphical design methods continued

$$
\begin{aligned}
\frac{E_{p}}{E_{b}} & =0.6 \\
E_{p} & =0.6 \times 12,000=7200 \text { volts } \\
\mathrm{M}_{p_{p}} & =1.41 \times 7200=10,000 \text { volts } \\
I_{p} & =\frac{P_{0}}{E_{p}} \\
I_{p} & =\frac{25,000}{7200}=3.48 \text { amperes } \\
\mathrm{M}_{I_{p}} & =4.9 \text { amperes } \\
\frac{I_{p}}{I_{b}} & =1.2 \\
I_{b} & =\frac{3.48}{1.2}=2.9 \text { amperes } \\
P_{i} & =12,000 \times 2.9=35,000 \text { watts } \\
\frac{M_{i b}}{I_{b}} & =4.5 \\
\mathrm{M}_{i_{b}} & =4.5 \times 2.9=13.0 \text { amperes } \\
r_{l} & =\frac{E_{p}}{I_{p}}=\frac{7200}{3.48}=2060 \text { ohms }
\end{aligned}
$$

Complete calculation

Layout carrier operating line, AB on constant current graph, Fig. I, using values of $E_{b},{ }^{M} E_{p \text {, }}$ and ${ }^{M} i_{b}$ from preliminary calculated data. Operating carrier bias voltage, E_{c}, is chosen somewhat greater than twice cutoff value, 1000 volts, to locate point A.

The following data are taken along $A B$:

$$
\left.\begin{array}{rlrl}
i_{b}^{\prime} & =13 \mathrm{amp} & i_{c}^{\prime} & =1.7 \mathrm{amp} \\
i_{b}^{\prime \prime \prime} & =10 \mathrm{amp} & i_{c}^{\prime \prime} & =-0.1 \mathrm{amp}
\end{array}\right) E_{c}=-1000 \mathrm{volts} .
$$

From the formulas, complete carrier data as follows are calculated:

$$
\begin{aligned}
{ }^{M} I_{p} & =\frac{1}{6}[13+1.73 \times 10+0.3]=5.1 \mathrm{amp} \\
P_{0} & =\frac{10,000 \times 5.1}{2}=25,500 \mathrm{watts} \\
I_{b} & =\frac{1}{12}[13+2 \times 10+2 \times 0.3]=2.8 \mathrm{amp} \\
P_{i} & =12,000 \times 2.8=33,600 \mathrm{watts}
\end{aligned}
$$

Graphical design methods continued

$$
\begin{aligned}
\eta & =\frac{25,500}{33,600} \times 100=76 \text { percent } \\
r_{l} & =\frac{10,000}{5.1}=1960 \text { ohms } \\
I_{c} & =\frac{1}{12}[1.7+2(-0.1)]=0.125 \mathrm{amp} \\
\mathrm{M}_{g} & =\frac{1}{6}[1.7+1.7(-0.1)]+0.255 \mathrm{amp} \\
P_{g} & =\frac{1740 \times 0.255}{2}=220 \mathrm{watts}
\end{aligned}
$$

Operating data at 100 percent positive modulation crests are now calculated knowing that here
$E_{b}=24,000$ volts $\quad r_{l}=1960$ ohms
and for undistorted operation

$$
P_{0}=4 \times 25,500=102,000 \text { watts } \quad{ }^{M} E_{p}=20,000 \text { volts }
$$

The crest operating line $A^{\prime} B^{\prime}$ is now located by trial so as to satisfy the above conditions, using the same formulas and method as for the carrier condition.
It is seen that in order to obtain full-crest power output, in addition to doubling the alternating plate voltage, the peak plate current must be increased. This is accomplished by reducing the crest bias voltage with resultant increase of current conduction period, but lower plate efficiency.
The effect of grid secondary emission to lower the crest grid current is taken advantage of to obtain the reduced grid-resistance voltage drcp required. By use of combination fixed and grid resistance bias proper variation of the total bias is obtained. The value of grid resistance required is given by

$$
R_{c}=\frac{-\left[E_{c}-{ }^{\operatorname{crecs} t} E_{c}\right]}{I_{c}-\operatorname{crect}_{c} I_{c}}
$$

and the value of fixed bias by
$E_{c c}=E_{c}-\left(I_{c} R_{c}\right)$
Calculations at carrier and positive crest together with the condition of zero output at negative crest give sufficiently complete data for most purposes. If accurate calculation of audio-frequency harmonic distortion is necessary the above method may be applied to the additional points required.

Class B r-f amplifiers

A rapid approximate method is to determine by inspection from the tube ($i_{b}-e_{b}$) characteristics the instantaneous current, i_{b} and voltage $e^{\prime}{ }_{b}$ corresponding to peak alternating voltage swing from operating voltage E_{b}.

A-C plate current ${ }^{\mathrm{M}} I_{p}=\frac{i^{\prime}{ }_{b}}{2}$
D.C plate current $I_{b}=\frac{i^{\prime}{ }_{b}}{\pi}$
A.C plate voltage ${ }^{\mathrm{M}} E_{p}=E_{b}-\mathrm{e}^{\prime}{ }_{b}$

Power output $P_{0}=\frac{\left(E_{b}-\mathrm{e}^{\prime}{ }_{b}\right) i^{\prime}{ }_{b}}{4}$
Power input $P_{i}=\frac{E_{b i}{ }^{\prime}{ }_{b}}{\pi}$
Plate efficiency $\eta=\frac{\pi}{4}\left(1-\frac{\mathrm{e}^{\prime}{ }_{b}}{E_{b}}\right)$
Thus $\eta \cong 0.6$ for the usual crest value of ${ }^{\mathrm{M}} E_{p} \cong 0.8 E_{b}$.
The same method of analysis used for the class C amplifier may also be used in this case. The carrier and crest condition calculations, however, are now made from the same E_{b}, the carrier condition corresponding to an alter-nating-voltage amplitude of $\frac{{ }^{M} E_{p}}{2}$ such as to give the desired carrier power output.

For greater accuracy than the simple check of carrier and crest conditions, the radio-frequency plate currents ${ }^{\mathrm{M}} I^{\prime}{ }_{p, 1}{ }^{\mathrm{M}} I^{\prime}{ }_{p,}{ }^{\mathrm{M}} I^{\prime \prime \prime}{ }_{p,}{ }^{\mathrm{M}} I^{\circ}{ }_{p},{ }^{\mathrm{M}} I^{\prime \prime \prime}{ }^{\prime}{ }_{p}$, - ${ }^{\mathrm{M}} I^{\prime \prime}{ }_{p,}$ and - ${ }^{\mathrm{M}} I^{\prime}{ }_{p}$ may be calculated for seven corresponding selected points of the audio-frequency modulation envelope $+{ }^{\mathrm{M}} E_{g}+0.707{ }^{\mathrm{M}} E_{g_{1}}$ $+0.5^{\mathrm{M}} E_{g}, 0,-0.5^{\mathrm{M}} E_{q},-0.707^{\mathrm{M}} E_{q}$, and $-{ }^{\mathrm{M}} E_{g}$, where the negative signs denote values in the negative half of the modulation cycle. Designating
$S^{\prime}={ }^{\mathrm{M}} I^{\prime}{ }_{p}+\left(-{ }^{\mathrm{M}} I^{\prime}{ }_{p}\right)$
$D^{\prime}={ }^{\mathrm{M}} I^{\prime}{ }_{p}-\left(-{ }^{\mathrm{M}} I^{\prime}{ }_{p}\right)$, etc.,
the fundamental and harmonic components of the output audio-frequency current are obtained as
${ }^{M} I_{p 1}=\frac{S^{\prime}}{4}+\frac{S^{\prime \prime}}{2 \sqrt{2}}$ (fundamental)

$$
{ }^{\mathrm{M}} I_{p 2}=\frac{5 D^{\prime}}{24}+\frac{D^{\prime \prime}}{4}-\frac{D^{\prime \prime \prime}}{3}
$$

${ }^{\mathrm{M}} I_{p 3}=\frac{S^{\prime}}{6}-\frac{S^{\prime \prime \prime}}{3}$
${ }^{\mathrm{M}} I_{p \mathrm{p}}=\frac{S^{\prime}}{12}-\frac{S^{\prime \prime}}{2 \sqrt{2}}+\frac{S^{\prime \prime \prime}}{3}$
${ }^{\mathrm{M}} \mathrm{I}_{p^{16}}=\frac{D^{\prime}}{8}-\frac{D^{\prime \prime}}{4}$
${ }^{M^{M}}{ }_{l_{p 6}}=\frac{D^{\prime}}{24}-\frac{D^{\prime \prime}}{4}+\frac{D^{\prime \prime \prime}}{3}$

This detailed method of calculation of audio-frequency harmonic distortion may, of course, also be applied to calculation of the class C modulated amplifier, as well as to the class A modulated amplifier.

Class A and $A B$ a-f amplifiers
Approximate formulas assuming linear tube characteristics:
Maximum undistorted power output ${ }^{{ }^{\mathrm{M}}} P_{0}=\frac{{ }^{\mathrm{M}} E_{p}{ }^{\mathrm{M}} I_{p}}{2}$
when plate load resistance $r_{b}=r_{p}\left[\frac{E_{c}}{\frac{{ }^{M} E_{p}}{\mu}-E_{c}}-1\right]$
and
Negative grid bias $E_{c}=\frac{{ }^{M} E_{p}}{\mu}\left(\frac{r_{l}+r_{p}}{r_{b}+2 r_{p}}\right)$
giving
Maximum plate efficiency $\eta=\frac{{ }^{M} E_{p}{ }^{M} I_{p}}{8 E_{b} I_{b}}$
Maximum maximum undistorted power output ${ }^{\mathrm{MM}} \mathrm{P}_{0}=\frac{{ }^{\mathrm{M}} \mathrm{E}_{p}{ }_{p}}{16 \mathrm{r}_{p}}$
when
$r_{i}=2 r_{p} \quad E_{c}=\frac{3^{M}}{4} \frac{E_{p}}{\mu}$
An exact analysis may be obtained by use of a dynamic load line laid out on the transfer characteristics of the tube. Suct: a line is CKF of Fig. 2 which is constructed about operating point K for a given load resistance r_{8} from the following relation:
$i_{b}^{\mathbf{g}}=\frac{e_{b}^{\mathbf{R}}-\mathrm{e}_{b}^{\mathbf{s}}}{\boldsymbol{r}_{\boldsymbol{I}}}+i_{b}^{\mathbf{R}}$
where
R, S, etc., are successive conveniently spaced construction points.

Graphical design methods

Using the seven-point method of harmonic analysis, plot instantaneous plate currents $i^{\prime} b_{b} i^{\prime \prime} b_{b} i^{\prime \prime \prime}{ }_{b,} i_{b,}-i^{\prime \prime \prime}{ }_{b,}-i^{\prime \prime} b_{b}$ and $-i^{\prime}{ }_{b}$ corresponding to $+{ }^{\mathrm{M}} E_{g_{1}}+0.707^{\mathrm{M}} E_{90}+0.5^{\mathrm{M}} E_{9}, 0,-0.5^{\mathrm{M}} E_{9}-0.707^{\mathrm{M}} E_{g}$, and $-{ }^{\mathrm{M}} E_{g}$, where 0 corresponds to the operating point K . In addition to the formulas given under class B radio-frequency amplifiers:
I_{b} average $=I_{b}+\frac{D^{\prime}}{8}+\frac{D^{\prime \prime}}{4}$
from which complete data may be calculated.

Class $A B$ and B a-f amplifiers

Approximate formulas assuming linear tube characteristics give (referring to Fig. I, line CD) for a class B audio-frequency amplifier:

$$
\begin{aligned}
{ }^{\mathrm{M} I_{p}} & =i_{b}^{\prime} \\
P_{0} & =\frac{{ }^{\mathrm{M}} E_{p}{ }^{\mathrm{M}} I_{p}}{2} \\
P_{i} & =\frac{2}{\pi} E_{b}{ }^{\mathrm{M}} I_{p} \\
\eta & =\frac{\pi}{4} \frac{{ }^{\mathrm{M}} E_{p}}{E_{b}} \\
R_{p p} & =4 \frac{{ }^{\mathrm{M}} E_{p}}{i_{b}^{\prime}}=4 r_{i}
\end{aligned}
$$

Again an exact solution may be derived by use of the dynamic load line JKL on the $\left(i_{b}-e_{c}\right)$ characteristic of Fig. 2. This line is calculated about the operating point K for the given r_{l} lin the same way as for the class A casel. However, since two tubes operate in phase opposition in this case, an iden. tical dynamic load line MNO represents the other half cycle, laid out about the operating bias abscissa point but in the opposite direction (see Fig. 2).
Algebraic addition of instantaneous current values of the two tubes at each value of e_{c} gives the composite dynamic characteristic for the two tubes OPL. Inasmuch as this curve is symmetrical about point P it may be analyzed for harmonics along a single half curve PL by the Mouromtseff 5 -point method. A straight line is drawn from P to L and ordinate plate current differences a, b, c, d, f between this line and curve, corresponding fo $e^{\prime \prime}{ }_{g}, \mathrm{e}^{\prime \prime \prime}{ }_{9}$, $\mathrm{e}^{\mathrm{IV}}{ }_{g,} \mathrm{e}^{\mathrm{V}}{ }_{9}$, and $\mathrm{e}^{\mathrm{VI}}{ }_{8}$, are measured. Ordinate distances measured upward from curve PL are taken positive.

VACUUM TUBE AMPLIFIERS

Graphical design methods continued

Fundamental and harmonic current amplitudes and power are found from the following formulas:

$$
\begin{aligned}
& { }^{\mathrm{M}} I_{p 1}=i^{\prime}{ }_{b}-{ }^{\mathrm{M}} I_{p 3}+{ }^{\mathrm{M}} I_{p 5}-{ }^{\mathrm{M}} I_{p 7}+{ }^{\mathrm{M}} I_{p 9}-{ }^{\mathrm{M}} I_{p 11} \\
& { }^{\mathrm{M}} I_{p 3}=0.4475(\mathrm{~b}+f)+\frac{\mathrm{d}}{3}-0.578 d-\frac{1}{2}{ }^{\mathrm{M}} I_{p 5} \\
& { }^{\mathrm{M}} I_{p 5}=0.4(\mathrm{a}-f) \\
& { }^{\mathrm{M}} I_{p 7}=0.4475(\mathrm{~b}+f)-{ }^{\mathrm{M}} I_{p 3}+0.5{ }^{\mathrm{M}} I_{p 5} \\
& { }^{\mathrm{M}} I_{p 9}={ }^{\mathrm{M}} I_{p 3}-\frac{2}{3} d \\
& { }^{\mathrm{M}} I_{p 11}=0.707 \mathrm{c}-{ }^{\mathrm{M}} I_{p 3}+{ }^{\mathrm{M}} I_{p 5} .
\end{aligned}
$$

Even harmonics are not present due to dynamic characteristic symmetry. The direct current and power input values are found by the 7 -point analysis from curve PL and doubled for two tubes.

Classification of amplifier circuits

The classification of amplifiers in classes A, B, and C is based on the operating conditions of the tube.
Another classification can be used, based on the type of circuits associated with the tube.
A tube can be considered as a four-terminal network with two input terminals and two output terminals. One of the input terminals and one of the output terminals are usually common; this common junction or point is usually called "ground".
When the common point is connected to the filament or cathode of the tube, we can speak of a grounded-cathode circuit. It is the most conventional type of vacuum tube circuit. When the common point is the grid, we can speak of a grounded-grid circuit, and when the common point is the plate or anode, we can speak of the grounded-anode circuit.
This last type of circuit is most commonly known by the name of cathode follower.
A fourth and most general class of circuit is obtained when the common point or ground is not directly connected to any of the three electrodes of the tube. This is the condition encountered at u-h-f where the series impedances of the internal tube leads make it impossible to ground any of them. It is also encountered in such special types of circuits as the phase-splitter, in which the impedance from plate to ground and the impedance from cathode to ground are made equal in order to obtain an output between plate and cathode balanced with respect to ground.

Table III-Classification of triode amplifier circuits

circuil classification	groundedcathode	groundedgrid	grounded-plate or cathode follower
Circuit schematic			
Equivalont circuit, a-c component, class A operation			
Voltage gain, γ for output load impedance $=Z_{2}$ $\gamma=\frac{E_{2}}{E_{1}}$	neglecting $C_{g p}$ $\begin{aligned} \gamma & =\frac{-\mu Z_{2}}{r_{p}+Z_{2}} \\ & =-g_{r_{r}} \frac{r_{p} Z_{2}}{}+Z_{2} \end{aligned}$ (Z_{2} includes $C_{p k}$)	neglecting $C_{p k}$ $\gamma=(1+\mu) \frac{Z_{2}}{r_{p}+Z_{2}}$ $\left(Z_{2}\right.$ includos $\left.C_{a p}\right)$	naglecting $C_{v k}$ $\gamma=\frac{\mu Z_{2}}{r_{p}+(1+\mu) Z_{2}}$ (Z_{2} includes $C_{p k}$)
Input admittance $Y_{1}=\frac{I_{1}}{E_{1}}$	$Y_{1}=j \omega\left[C_{g k}+(1-\gamma) C_{g p}\right]$	$\left\|\begin{array}{l} Y_{1}=j \omega\left[C_{p k}+\right. \\ \left.\quad(1-\gamma) C_{p k}\right]+\frac{1+\mu}{r_{p}+Z_{2}} \end{array}\right\|$	$Y_{1}=j \omega\left[C_{g p}+(1-\gamma) C_{g k}\right]$
Equivalont gon-- rator seen by load at output terminals	neglocting $C_{D D}$	noglocting $C_{p k}$	neglocting $C_{a k}$

Classification of amplifer circuits continued

Design information for the first three classifications is given in Table III, where
$Z_{2}=$ load impedance to which output terminals of amplifier are connected
$E_{1}=\mathrm{rms}$ driving voltage across input terminals of amplifier
$E_{2}=$ rms output voltage across load impedance Z_{2}
$I_{1}=$ rms current at input terminals of amplifier
$\gamma=$ voltage gain of amplifier $=\frac{E_{2}}{E_{1}}$
$\mathrm{Y}_{1}=$ input admittance to input terminals of amplifier $=\frac{I_{1}}{E_{1}}$
$\omega=2 \pi \times$ frequency of excitation voltage E_{1}
$j=\sqrt{-1}$
and the remaining notation is in accordance with the nomenclature of pages 127 and 128.

Cathode follower data

General characteristics

1. High impedance input, low impedance output.
2. Input and output have one side grounded.
3. Good wide-band frequency and phase response.
4. Output is in phase with input.
5. Voltage gain or transfer is always less than one.
6. A power gain can be obtained.
7. Input capacitance is reduced.

General case

Transfer $=\frac{g_{m} R_{L}}{g_{m} R_{L}+1}$ or $g_{m} Z_{r}$
$Z_{r}=$ resultant cathode to ground impedance $=R_{\text {ow }}$ in paraliel with R_{e}
$R_{\text {out }}=$ output resistance

$$
=\frac{R_{p}}{\mu+1} \text { or approximately } \frac{1}{g_{m}}
$$

$R_{L}=$ total load resistance
Input capacitance $=C_{g p}+\frac{C_{g k}}{1+g_{m} R_{L}}$
$g_{m}=$ transconductance in mhos $(1000$
micromhos $=0.001$ mhos

Cathode follower data continued

Specific cases

1. To match the characteristic impedance of the transmission line, $R_{\text {out }}$ must equal Z_{0}. The transfer is approximately 0.5 .
2. If $R_{\text {out }}$ is less than Z_{0}, add resistor $R_{c}{ }^{\prime}$ in series so that $R_{c}{ }^{\prime}=Z_{0}-R_{\text {out }}$ The transfer is approximately 0.5 .

3. If $R_{\text {out }}$ is greater than Z_{0} add resistor R_{c} in parallel so that
$R_{c}=\frac{Z_{0} R_{\text {out }}}{R_{\text {out }}-Z_{0}}$
Transfer $=\frac{g_{m} Z_{0}}{2}$
Note: Normal operating bios must be provided.

For coupling a high impedance into a low impedance transmission line, for maximum transfer choose a tube with a high 9 m .

Resistance-coupled audio amplifier design

Stage gain at
Medium frequencies $=A_{m}=\frac{\mu R}{R+R_{p}}$
High frequencies $=A_{h}=\frac{A_{m}}{\sqrt{1+\omega^{2} C_{1}^{2} r^{2}}}$
Low frequencies* $=A_{1}=\frac{A_{m}}{\sqrt{1+\frac{1}{\omega^{2} C_{2}^{2} \rho^{2}}}}$

[^17]
Resistance coupled audio amplifier design continued

where

$$
\begin{aligned}
R & =\frac{r_{l} R_{2}}{r_{l}+R_{2}} \\
r & =\frac{R_{r_{p}}}{R+r_{p}} \\
\rho & =R_{2}+\frac{r_{l} r_{p}}{r_{l}+r_{p}}
\end{aligned}
$$

[^18]$\mu=$ amplification factor of tube
$\omega=2 \pi \times$ frequency
$r_{l}=$ plate load resistance in ohms
$R_{2}=$ grid leak resistance in ohms
$r_{p}=a-c$ plate resistance in ohms
$\mathrm{C}_{1}=$ total shunt capacitance in farads
$C_{2}=$ coupling capacitance in farads
Given C_{1}, C_{2}, R_{2}, and $X=$ fractional response required
At highest frequency
$$
r=\frac{\sqrt{1-X^{2}}}{\omega C_{1} X} \quad R=\frac{r r_{p}}{r_{p}-r} \quad r_{l}=\frac{R R_{2}}{R_{2}-R}
$$

At lowest frequency*
$C_{2}=\frac{X}{\omega \rho \sqrt{1-X^{2}}}$

* The low-frequency stage gain also is affected by the values of the cathode by-pass capaciror and the scraen by-pass capacitor.

Negative feedback

The following quantities are functions of frequency with respect to magnitude and phase:
E, N, and $D=$ signal, noise, and distortion output voltage with feedback e, n, and $d=$ signal, noise, and distortion output voltage without feedback

$$
\begin{aligned}
& \text { A }= \text { voltage amplification of amplifier at a given frequency } \\
& \beta= \text { fraction of output voltage fed back; for usual negative } \\
& \text { feedback, } \beta \text { is negative } \\
& \phi= \text { phase shift of amplifier and feedback circuit at a given } \\
& \text { freauency }
\end{aligned}
$$

160

Reduction in gain caused by feedback

Fig. 3-in negafive-feedback amplifer considerafions β_{0} expressed as a percentage, has a negative value. A ithe across the β and A scales infersects the center scale to indicate change in gain. H also Indicates the amount, in decibsis, the input must be

Negative feedback continued
The total output voltage with feedback is
$E+N+D=e+\frac{n}{1-A \beta}+\frac{d}{1-A \beta}$
It is assumed that the input signal to the amplifier is increased when negative feedback is applied, keeping $E=$ e.
(1 - $A \beta$) is a measure of the amount of feedback. By definition, the amount of feedback expressed in decibels is
$20 \log _{10}|1-A \beta|$
Voltage gain with feedback $=\frac{A}{1-A \beta}$
and change of gain $=\frac{1}{1-A \beta}$
If the amount of feedback is large, i.e., $-A \beta \gg 1$, the voltage gain becomes $-\frac{1}{\beta}$ and so is independent of A.
In the general case when ϕ is not restricted to 0 or π
the voltage gain $=\frac{A}{\sqrt{1+|A \beta|^{2}-2|A \beta| \cos \phi}}$
and change of gain $=\frac{1}{\sqrt{1+|A \beta|^{2}-2|A \beta| \cos \phi}}$
Hence if $|A \beta| \gg 1$, the expression is substantially independent of ϕ.
On the polar diagram relating $(A \beta)$ and ϕ (Nyquist diagram), the system is unstable if the point $(1,0)$ is enclosed by the curve.

Feedback amplifier with single beam power tube

The use of the foregoing negative feedback formulas is illustrated by the amplifier circuit shown in Fig. 4.
The amplifier consists of an output stage using a 6V6-G beam power tetrode with feedback driven by a resistance-coupled stage using a 6J7-G in a pentode connection. Except for resistors R_{1} and R_{2} which supply the feedback voltage, the circuit constants and tube characteristics are taken from published data.

The fraction of the output voltage to be fed back is determined by specifying that the total harmonic distortion is not to exceed 4 percent. The plate supply voltage is taken as 250 volts. At this voltage, the $6 \mathrm{~V} 6-\mathrm{G}$ has 8 percent

Fig. 4-Feedback amplifer with single beam powor fube.
total harmonic distortion. From equation (1), it is seen that the distortion output voltage with feedback is

$$
D=\frac{d}{1-A \beta}
$$

This may be written as

$$
1-A \beta=\frac{d}{D}
$$

where

$$
\frac{d}{D}=\frac{8}{4}=2 \quad 1-A \beta=2 \quad \beta=-\frac{1}{A}
$$

and where $A=$ the voltage amplification of the amplifier without feedback.
The peak a-f voltage output of the 6V6-G under the assumed conditions is

$$
E_{0}=\sqrt{4.5 \times 5000 \times 2}=212 \text { volts }
$$

This voltage is obtained with a peak a-f grid voltage of 12.5 volts so that the voltage gain of this stage without feedback is

$$
A=\frac{212}{12.5}=17
$$

Hence $\quad \beta=-\frac{1}{A}=-\frac{1}{17}=-0.0589$ or 5.9% approximately
The voltage gain of the output stage with feedback is computed from equafion (3) as follows
$A^{\prime}=\frac{A}{1-A \beta}=\frac{17}{2}=8.5$
and the change of gain due to feedback by equation (4) thus
$\frac{1}{1-A \beta}=0.5$
The required amount of feedback voltage is obtained by choosing suitable values for R_{1} and R_{2}. The feedback voltage on the grid of the $6 \mathrm{~V} 6-\mathrm{G}$ is reduced by the effect of R_{Q}, R_{L} and the plate resistance of the 6J7.G. The effective grid resistance is
$R_{g}{ }^{\prime}=\frac{R_{\theta} r_{p}}{R_{g}+r_{p}}$
where $\quad R_{g}=0.5$ megohm.
This is the maximum allowable resistance in the grid circuit of the 6V6-G with cathode bias.
$r_{p}=4$ megohms, the plate resistance of the 6J7.G tube
$R_{0}^{\prime}=\frac{4 \times 0.5}{4+0.5}=0.445$ megohm
The fraction of the feedback voltage across R_{2} which appears at the grid of the $6 \mathrm{~V} 6-\mathrm{G}$ is
$\frac{R_{Q}{ }^{\prime}}{R_{g}{ }^{\prime}+R_{\mathrm{L}}}=\frac{0.445}{0.445+0.25}=0.64$
where $\quad R_{\mathrm{L}}=0.25$ megohm.
Thus the voltage across R_{2} to give the required feedback must be
$\frac{5.9}{0.64}=9.2 \%$ of the output voltage.
This voltage will be obtained if $R_{1}=50,000$ ohms and $R_{2}=5000$ ohms.
This resistance combination gives a feedback voltage ratio of $\frac{5000 \times 100}{50,000+5000}=9.1 \%$ of the output voltage.

Negative feedback continued

In a transformer-coupled output stage, the effect of phase shift on the gain with feedback does not become appreciable until a noticeable decrease in gain without feedback also occurs. In the high-frequency range, a phase shift of 25 degrees lagging is accompanied by a 10 percent decrease in gain. For this frequency, the gain with feedback is computed from equation (6).

$$
A^{\prime}=\frac{A}{\sqrt{1+|A \beta|^{2}-2|A \beta| \cos \phi}}
$$

where $A=15.3, \phi=180^{\circ}, \cos \phi=0.906, \beta=0.059$.

$$
A^{\prime}=\frac{15.3}{\sqrt{1+|0.9|^{2}+2|0.9| 0.906}}=\frac{15.3}{\sqrt{3.44}}=\frac{15.3}{1.85}=8.27
$$

The change of gain with feedback is computed from equation (7).
$\frac{1}{\sqrt{1+|A \beta|^{2}-2|A \beta| \cos \phi}}=\frac{1}{1.85}=0.541$
If this gain with feedback is compared with the value of 8.5 for the case of no phase shift, it is seen that the effect of frequency on the gain is only 2.7 percent with feedback compared to 10 percent without feedback.

The change of gain with feedback is 0.541 times the gain without feedback whereas in the frequency range, where there is no phase shift, the corresponding value is 0.5 . This quantity is 0.511 when there is phase shift but no decrease of gain without feedback.

Distortion

A rapid indication of the harmonic content of an alternating source is given by the distortion factor which is expressed as a percentage.
$\begin{aligned} & \text { Distortion } \\ & \text { factor }\end{aligned}=\sqrt{\frac{\text { sum of squares of amplitudes of harmonics }}{\text { square of amplitude of fundamental }}} \times 100 \%$
If this factor is reasonably small, say less than 10 percent, the error involved in measuring it

$$
\sqrt{\frac{\text { sum of squares of amplitudes of harmonics }}{\text { sum of squares of amplitudes of fundamental and harmonics }}} \times 100 \%
$$

is also small. This latter is measured by the distortion factor meter.

■ Room acoustics*

General considerations for good room acoustics

The following information is intended primarily to aid field engineers in appraising acoustical properties of existing structures and not as a complete treatise on the subject.

Good acoustics-governing factors

a. Reverberation time or amount of reverberation: Varies with frequency and is measured by the time required for a sound, when suddenly interrupted, to die away or decay to a level 60 decibels (db) below the original sound.

The reverberation time and the shape of the reverberation-time/frequency curve can be controlled by selecting the proper amounts and varieties of sound-absorbent materials and by the methods of application. Room occupants must be considered inasmuch as each person present contributes a fairly definite amount of sound absorption.
b. Standing sound waves: Resonant conditions in sound studios cause standing waves by reflections from opposing parallel surfaces, such as ceilingfloor and parallel walls, resulting in serious peaks in the reverberation-time/ frequency curve. Standing sound waves in a room can be considered comparable to standing electrical waves in an improperly terminated transmission line where the transmitted power is not fully absorbed by the load.

Room sizes and proportions for good acoustics

The frequency of standing waves is dependent on room sizes: frequency decreases with increase of distances between walls and between floor and ceiling. In rooms with two equal dimensions, the two sets of standing waves occur at the same frequency with resultant increase of reverberation time at resonant frequency. In a room with walls and ceilings of cubical contour this effect is tripled and elimination of standing waves is practically impossible.
The most advantageous ratio for height: width: length is in the proportion of $1: 2^{1 / 3}: 2^{1 / 3}$ or separated by $1 / 3$ or $2 / 3$ of an octave.
In properly proportioned rooms, resonant conditions can be effectively reduced and standing waves practically eliminated by introducing numerous surfaces disposed obliquely. Thus, large-order reflections can be avoided by breaking them up into numerous smaller reflections. The object is to pre-

[^19]
Room sizes and proportions for good acoustics continued

vent sound reflection back to the point of origin until after several rereflections.

Most desirable ratios of dimensions for broadeast studios are given in Fig. 1.

volume in cubic feet
Courtesy of Acoustical Sociely of America and RCA

type room	H:W:L	chart designation
Small	1:1.25:1.6	E:D:C:
Average shape	1:1.60:2.5	F:D:B:
Low ceiling	1:2.50:3.2	G:C:B:
Long	1:1.25:3.2	F:E:A:

Fig. l-Preferred room dimensions besed on $2^{\frac{1}{2}}$ ratio. Permissible deviation ± 5 percent.

Optimum reverberation time

Optimum, or most desirable reverberation time, varies with (1) room size, and (2) use, such as music, speech, etc. (see Figs. 2 and 3).

Fig. 2-Optimum revarberation time in seconds for various room volumes at 512 cyeles per second.

Fig. 3-Desiroble relative reverberation time versus frequency for various structures and audiforiums.

Note: These curves show the desirable rotio of the reverbepation time for various frequencios to the reverberation time for 512 cycles. The desirable reverberotion time for any frequency between 80 and 8000 cycles may be found by multiplying the reverbaration time af 512 cycles flom Fig. 21 by the number in the vertical scale which corresponds to the frequency chosen.

A small radio studio for speech broadcasts represents a special case. The acoustic studio design should be such that the studio neither adds nor detracts from the speaker's voice, which on reproduction in the home should sound as though he were actually present.

Fig. 4.

For optimum characteristics of a speech studio, the reverberation time should be about one-half a second throughout the middle and lower audio-frequency range. At high frequencies, the reverberation time may be 20 percent to 25 percent greater than at 512 cycles. This rise at the higher frequencies enhances intelligibility and allows for the presence in the studio of one or two extra persons without materially affecting the reverberation-time/ frequency curve.

Optimum reverberation time
 continued

Speech sounds above about 1000 cycles promote intelligibility. Apparent intensity of speech sounds is provided by frequencies below this value.
Preponderance of low bass reverberation and standing waves tends to make the voice sound "boomy" and impairs speech intelligibility.

Fig. 5-Value of atteauation constont m at different frequencies and relative humldIties.*

Computation of reverberation time

Reverberation time at different audio frequencies may be computed from room dimensions and average absorption. Each portion of the surface of a room has a certain absorption coefficient a dependent on the material of the surface, its method of application, etc. This absorption coefficient is equal to the ratio of the energy absorbed by the surface to the total energy impinging thereon at various audio frequencies. Total absorption for a given surface area in square feet S is expressed in terms of absorption units, the number of units being equal to $a_{a} S$.
$a_{a v}=\frac{\text { total number of absorption units }}{\text { total surface in square feet }}$
One absorption unit provides the same amount of sound absorption as one square foot of open window. Absorption units are sometimes referred to as "open window" or "OW" units.

$$
T=\frac{0.05 V}{-S \log _{e}\left(1-a_{a v}\right)}
$$

where $T=$ reverberation time in seconds, $V=$ room volume in cubic feet, $S=$ total surface of room in square feet, $a_{a v}=$ average absorption coefficient of room at frequency under consideration.

* Reprinted by permission from Architectural Acoustics by V. O. Knudsen, published by John Wiley and Sons, Inc.

For absorption coefficients a of some typical building materials, see Table l. As an aid in using the formula for reverberation time, Fig. 4 (page 168) may be used for obtaining $\left[-\log _{\&}\left(1-a_{a v}\right)\right]$ from known values of $a_{a v}$.
Table II shows absorption coefficients for some of the more commonly used materials for acoustical correction.

Table !-Acoustical coefficients of materials and persons*

descriplion	sound absorption coefticients cycles per second						euthority
	128	256		1024	2048	4096	
Brick wall unpainted	0.024	0.025	0.031	0.042	0.049	0.07	W. C. Sabine
Brick wall painted Plaster + finish	0.012	0.013	0.017	0.02	0.023	0.025	W. C. Sabino
Wood lath-wood studs	0.020	0.022	0.032	0.039	0.039	0.028	P. E. Sobine
Plaster + finish coat on metal lath	0.038	0.049	0.060	0.085	0.043	0.056	V. O. Knudsen
Paured cancrete unpainted	0.010	0.012	0.016	0.019	0.023	0.035	V. O. Knudsen
Poured conerete painted and varnished	0.009	0.011	0.014	0.016	0.017	0.018	V. O. Knudsen
Corper, pile on concrete	0.09	0.08	0.21	0.26	0.27	0.37	Building Research Station
Corpet, pile on $1 / 8^{\prime \prime}$ felt Draperies, velour, 18 oz per sq yd in	0.11	0.14	0.37	0.43	0.27	0.25	Building Research Sration
contact with wall	0.05	0.12	0.35	0.45	0.38	0.36	P. E. Sabine
Ozite \%/	0.051	0.12	0.17	0.33	0.45	0.47	P. E. Sobine
Rug, oxminster	0.11	0.14	0.20	0.33	0.52	0.82	Wente and Bedell
Audience, seared Der sq ft of ored	0.72	0.89	0.95	0.99	1.00	1.00	W. C. Sobine
Each person, seared	1.4	2.25	3.8	5.4	8.6	-	Bureau of Standards,
Each person, seated	-	-	-	-	-	7.0	Estimated ${ }^{\text {averages }}$ of 4 res
Glass surfoces	0.05	0.04	0.03	0.025	0.022	0.02	Estimated

* Reprinted by permission from Archirecrural Acoustics by V. O. Knudsen, published by John Wiley and Sons, Inc.

Table II-Acoustical coefficients of materials used for acoustical correction

[^20][^21]
Computation of reverberation time continued

Considerable variation of sound-absorption in air at frequencies above 1000 cycles occurs at high relative humidities (see Fig. 5). Calculation of reverberation time, therefore, should be checked at average relative humidities applicable to the particular location involved. For such check calculations the following formula may be used:

$$
T=\frac{0.05 V}{-S \log _{e}\left(1-a_{a v}\right)+4 m V}
$$

where m is the coefficient in feet ${ }^{-1}$ as indicated in Fig. 5, page 169.

Electrical power levels for public address requirements

a. Indoor: See Fig. 7, page 172.
b. Outdoor: See Fig. 8, page 173.

Note: Curves are for an exponential Irumpettype horn. Speech levels above reference-average 70 db , peak 80 db . For a loudspeaker of 25 percent efficiency, 4 times the power output would be required or an equivalent of 6 decibels. For one of 10 percent efficiency, 10 times the power output would be required or 10 decibels.

Fig. 6-Wire sizes for loudspeaker circuits assuming maximum loss of 0.5 decibel.

Electrical power levels for public address requirements continued

Fig. 7-Room volume and relative amplifler power capacity. To the indicated power level depending on loudspeaker effleiency, there must be added a correction factor which may vary from 4 decibels for the most efficient horn-type reproducers to 20 decibels for less efficient cone loudspeakers.

Electrical power levels for public address requirements conlinued

Fig. 8-Distance from loudspeaker and relative amplifer power capacity required for speech, average for 30° angle of coverage. For angles over 30°, more loudspeakers and proportional outpul power are required. Depending on loudspeaker efficiency, a correction factor must be added to the indicated power level, varying approximately from 4107 decibels for the more-efficient lype of horn loudspeakers.

Acoustical music ranges and levels

Fig. 9-Frequency ranges of musical instruments. Intensity levels of music. Zerolevel equals 10^{-16} watt per square centimeter.

Acoustical speech levels and ranges of other sounds

FIg. 10-Frequency ranges of male and fomale speech and other sounds. Intensily levels of conversatlonal speech. Zero level equals 10^{-16} watt per square centimeter.

Acoustical sound level and pressure

Courtesy Western Electric Company

Fig. 11 -One dyne per square centimeter is equivalent to an acoustical level of plus 74 decibels.

Table III-Noise levels

Zero level $=10^{-15}$ wott per square cen:imeter
Courteay Western Electric Company

Generel

a. Loudspeaker wire sizes: See Fig. 6, page 171.
b. Acoustical musical ranges and levels: See. Fig. 9, page 174.
c. Acoustical speech levels and ranges of other sounds: See Fig. 10, page 175.
d. Acoustical sound levels: See Fig. 11, page 176.
e. Noise levels: See Table III.

General

f. Equal loudness contours: Fig. 12 gives average hearing characteristics of the human ear at audible frequencies and at loudness levels of zero to 120 db versus intensity levels expressed in decibels above 10^{-18} watt per square centimeter. Ear sensitivity varies considerably over the audible range of sound frequencies at various levels. A loudness level of 120 db is heard fairly uniformly throughout the entire audio range but, as indicated in Fig. 12,

Fig. 12-Equal loudness contours.
a frequency of 1000 cycles at a 20 db level will be heard at very nearly the same intensity as a frequency of 60 cycles at a 60 db level. These curves explain why a loudspeaker operating at lower than normal level sounds as though the higher frequencies were accentuated and the lower tones seriously attenuated or entirely lacking; also, why music, speech, and other sounds, when reproduced, should have very nearly the same intensity as the original rendition. To avoid perceptible deficiency of lower tones, a symphony orchestra, for example, should be reproduced at an acoustical level during the loud passages of 90 to 100 db (see Fig. 9).

Telephone transmission line daid

Line constants of copper open-wire pairs

40 pairs DP (double petticoat) insulators per mile
12-inch spacing
temperature $68^{\circ} \mathrm{F}$

frequency cycles	resistance ohms per loop mile			inductance millihenries per loop mille			leakance micromhos per loop mile: 165, 128, or 104 mit		
per second	165 mil	128 mll	104 mil	165 mil	128 mil	104 mil	dry	1	wot
0	4.02	6.68	10.12	3.37	3.53	3.66	0.01		2.5
500	4.04	6.70	10.13	3.37	3.53	3.66	0.15		3.0
1000	4.11	6.74	10.15	3.37	3.53	3.68	0.29		3.5
2000	4.35	6.89	10.26	3.36	3.53	3.68	0.57		4.5
3000	4.71	7.13	10.43	3.35	3.52	3.66	0.85		5.5
5000	5.56	7.83	10.94	3.34	3.52	3.66	1.4		7.5
10000	7.51	9.98	12.86	3.31	3.49	3.64	2.8		12.1
20000	10.16	13.54	17.08	3.28	3.46	3.61	5.6		20.5
35000	12.19	16.15	20.42	3.26	3.44	3.59	8.4		28.0
40000	13.90	18.34	23.14	3.26	3.43	3.58 3	11.2		35.0
50000	15.41	20.29	25.51	3.25 3.21	3.43 3.37	3.57 3.50	14.0		41.1
infin				3.21	3.37	3.50			

Capacitance on 40-wire lines
microforad per loop mile
In space
On 40.wire line, dry

165 mil	128 mil	104 mil
0.00898	0.00855	0.00822
0.00915	0.00871	0.00837
0.00928	0.00886	0.00850

Line constants of copper open-wire pairs

53 pairs CS (special glass with steel pin) insulators par mile
8-inch spacing
temperature $68^{\circ} \mathrm{F}$

frequency kilocycles	resistance ohms per loop mile			Induetance millihenries per loop mile			leakance micromhes per loop mile: 165,128, or 104 mil	
per second	165 mil	128 mil	104 mil	165 mH	128 mill	104 mil	dry	wet
0.0	4.02	6.68	10.12	3.11	3.27	3.40		
1.0	4.11	6.74	10.15	3.10	3.26	3.40	0.052	1.75
2.0	4.35	8.89	10.26	3.10	3.26	3.40		
3.0	4.71	7.13	10.43	3.09	3.26	3.40		
5.0	5.56	7.83	10.94	3.08	3.25	3.40	0.220	3.40
10.0	7.51	9.98	12.86	3.04	3.23	3.38	0.408	5.14
20.0	10.16	13.54	17.08	3.02	3.20	3.35	0.748	8.06
50.0	15.41	20.29	25.51	2.99	3.16	3.31	1.69	15.9
100.0	21.30	27.90	34.90	2.98	3.15	3.29	3.12	27.6
200.0	29.77	38.77	48.25	2.97	3.14	3.28		
500.0	46.45	60.30	74.65	2.96	3.13	3.27		
1000.0	65.30	84.50	104.5	2.96	3.12	3.26		
infin				2.95	3.11	3.24		

Capacitance on 40-wire lines

microforad per loop mile			
	185 mil	128 mil	104 mil
In space Ino Insulatorsl	0.00978	0.00928	0.00888
On 40-wire line, dry	0.01003	0.0095 i	0.00912

continued Telephone transmission line data
Characteristics of standard types of aerial copper wire telephone circuits af 1000 cycles per second
 DP IDouble Petticcall Insulators assumed for all 12 -inch and 18 -inch spaced
wires-CS (Special Glass with Steel Pin) Insulators assumed for all 8 -inch
spaced wires. Notes: 1. All values ore for dry weather conditions. 2. All capocifance values ossurre o line carrying 40 wires.
3. Resistance values are for temperature of $20^{\circ} \mathrm{C} 168^{\circ} \mathrm{F}$.

WIRE TRANSMISSION

181

Telephone fransmission line data continued
Attenuation of 12 -inch spaced open-wire pairs
Toll and DP (double petticoat) Insulators

sise wire weather	aftenuation in db per mile						
	165 mill			128 mill		104 mil	
	dry	1	wet	dry	wot	dry	wef
frequency							
cycles per sec				. 0183	. 0361	. 0198	. 0444
20 100	. 0127		. 0279	. 0318	. 0427	. 0402	. 0533
530	. 0288		. 0367	. 0445	. 0530	. 0620	. 0715
1 CJO	. 0302		. 0387	. 0454	. 0557	. 0661	. 0760
2050	. 0225		. 0431	. 0486	. 0598	. 0688	. 0804
3020	.03\%		. 0425	. 0511	. 0642	. 0707	. 0845
5000	. 0439		. 0578	. 0573	. 0748	. 0757	. 0938
7000	. 051		. 070	. 054	. 085	. 082	. 103
10300	. 061		. 085	. 678	. 102	. 093	. 120
15050	. 076		. 108	. 094	.127	. 111	. 177
20000	. 038		. 127	. 108	.i59	. 129	. 173
30900	. 110		. 161	. 135	. 188	. 159	. 216
40000	. 130		.192	. 153	.253	. 185	. 254
50000	. 148		. 220	. 179	. 253		. 287
CS (spocial glass with sleel pin) Insulators							
20	. 0126		. 0252	. 0162	. 0326	. 0197	. 0402
100	. 0233		. 0333	. 0317	. 0406	. 0401	. 0509
503	. 0286		. 2348	. 0441	. 0510	. 0618	. 0693
1055	. 0296		. 0334	.0453	. 05	. 0655	. 07.75
2305	. 0318		. 0377	. 0475	. 0581	.0676 .0694	. 0767
3350	. 0346		.0-7\%	. 0475	. 05938	. 0694	. 0856
5005	. 0412		. 0 C31	.0547	. 0568	. 0731	. .693
7000 10500	.048 .057		. 072	. 072	.087	. 088	. 104
15005	. 058		. 087	. 035	$\therefore 05$. 104	. 123
20003	. 078		. 079	. $\mathrm{C}=7$.121	. 119	. 141
30303	. 076		. 121	. 123	.146	. 145	.195
4こ? ${ }^{\text {a }}$. 111		. 138	. 133	. 166	. 186	. 195
50 บู่	. 125		. 153	. 154	. 184	. 185	.215

Attenuation of 8-inch spaced open-wire pairs

CS insulators

Telephone transmission line data continued

Line and propagation constants of 16- and 19-AWG toll cable

 loop mile basis non-loaded temperature $55^{\circ} \mathrm{F}$

16-gouge

Approximate characteristics of standard types of paper-insulated

wire gauge AWO	$\begin{gathered} \text { type } \\ \text { of } \\ \text { looding } \end{gathered}$	spacing of load coils miles	load coil consiants per load section		constants assumed to be distributed per loop mile				ropagation plar	
			ohm	L henrles	$\begin{gathered} \mathbf{R} \\ \text { ohms } \end{gathered}$	henries	$\underset{\mu \boldsymbol{l}}{\mathbf{C}}$	umho	m	0

side circull

19	N.L.S.		-7	$\overrightarrow{0}$	85.8	. 001	. 062	1.5	. 183	47.0
19	H.31.S	1.135	2.7	. 031	88.2	. 028	. 062	1.5	. 277	76.6
19	H.44-S	1.135	4.1	. 043	89.4	. 039	. 062	1.5	. 319	79.9
19	H.88.S	1.135	7.3	. 088	92.2	. 078	. 062	1.5	. 441	84.6
19	H.172.S	1.135	13.0	. 170	97.3	. 151	. 062	1.5	. 610	87.0
19	B.88.5	0.568	7.3	. 088	98.7	. 156	. 062	1.5	. 620	87.0
16	N.L.S.	\longrightarrow		.	42.1	.001	. 062	1.5	. 129	49.1
16	H.31-S	1.135	2.7	. 031	44.5	. 028	. 062	1.5	. 266	82.8
16	H.44-S	1.135	4.1	. 043	45.7	. 039	. 062	1.5	. 315	82.8 84.6
16	H.88.S	1.135	7.3	. 088	48.5	. 078	. 062	1.5	. 438	87.6
16	H-172.S	1.135	13.0	. 170	53.6	. 151	. 062	1.5	. 608	88.3
16	B.88.S	0.568	7.3	. 088	54.9	. 156	. 062	1.5	. 618	88.3
13	N.L.S.		-	-	21.9	. 001	. 062	1.5	. 094	52.9

phantom circult

19	N.1.P.	-								
19	H.18.P	1.135	1.4	. 018	42.9 44.1	. 0007	.100 .100	2.4	. 165	47.8
19	H.25.P	1.135	2.1	. 025	44.7	. 023	. 100	2.4	.270 .308	78.7 81.3
19	H.50.P	1.135	3.7	. 050	46.2	. 045	. 100	2.4	. 424	85.3
19	H.63.P	1.135	6.1	. 063	48.3	. 056	. 100	2.4	. 472	86.0
19	B.50-P	0.568	3.7	. 050	49.4	. 089	. 100	2.4	. 594	87.4
16	N.L.P.	-	-	.	21.0	. 0007	. 100	2.4	. 116	50.0
16	H.18.P	1.135	1.4	. 018	22.2	. 017	. 100	2.4	. 262	84.0
16	H-25.P	1.135	2.1	. 025	22.8	. 023	. 100	2.4	. 303	84.0 85.4
16	H-50.P	1.135	3.7	. 050	24.3	. 045	. 100	2.4	. 422	87.4
16	H.63.P	1.135	6.1	. 063	26.4	. 058	.100	2.4	. 471	87.7
16	B.50.P	0.568	3.7	. 050	27.5	. 089	.100	2.4	. 593	88.5
13	N.L.P.		-		10.9	. 0007	.100	2.4	. 086	55.1

physical circulf

| 16 | 8.22 | \mid | 0.568 | 1.25 | 1 | .022 | 1 | 43.1 | 1 | .040 | 1 | .062 | 1 | 1.5 | 1 | .315 | \mid | 85.0 |
| :--- |

* The letters H and B indlcate loading coil spacings of 6000 and 3000 feet, respectively.

Line constants of shielded 16-gauge spiral-four foll-entrance cable

loep mile basis non-loaded temperafure $70^{\circ} \mathrm{F}$

frequency ke por sex	resistance ohms per mile	inductance mh per mile	conduetance umho per mile	capacifance μ^{f} per mill	athenvation db per mill.
side circull					
0.4	43.5	1.913	0.02	0.0247	0.92
0.6	43.5	1.907	0.04	0.0247	0.93
0.8	43.6	1.901	0.06	0.0247	0.93
1.0	43.9	1.891	0.08	0.0247	0.94
2	44.2	1.857	0.20	0.0247	0.95
3	45.2	1.821	0.32	0.0247	0.96
5	49.0	1.753	0.53	0.0247	0.97
10	55.1	1.626	1.11	0.0247	1.00
20	61.6	1.539	2.49	0.0247	1.06
30	68.1	1.507	3.77	0.0247	1.15
40	71.0	1.490	5.50		1.26
60	81.5	1.467	8.80	0.0247	1.44
80	90.1	1.450	12.2	0.0247	1.60
100	97.8	1.438	15.81		1.77
120	104.9	1.429	19.6	0.0247	1.90
140	111.0	1.421	23.3	0.0247	2.03
200	127.3	1.411	35.1	0.0246	2.35
250	137.0	1.408	46.0	0.0246	-
300 350	14.9 199.9	1.406 1.405	56.5 67.8	0.0246 0.0246	二
350	159.9	1.405	67.8	0.0246	

Characteristic Impedance of this cable at 140 kilocycles approximately 240 ohms.
For a description and ititustration of this type cable see Kendall and Affel, "A Twelve.Channel
Carrier Telephone System for Opan-Wira Lines," B.S.T.」., January 1939, pp. 129-131.
foll telephone cable circuits at 1000 cycles per second

censtant rectangular		Ilne impedance				wavelength miles	volocity milles per second	\qquad	\qquad
		pelar		recto	gular				
		magniIuda	ongle deg -	$\begin{gathered} \text { R } \\ \text { ahms } \end{gathered}$	$\begin{gathered} \text { X } \\ \text { ohms } \end{gathered}$				
. 1249	. 134	470.	42.8	345.	319.4	46.9	46900	-	1.08
. 0643	. 269	710.	13.2	691.	162.2	23.3	23300	6700	. 56
. 0581	. 314	818.	9.9	806.	140.8	20.0	20000	5700	. 49
. 0418	. 439	1131.	5.2	1126.	102.8	14.3	14300	4000	. 36
. 0323	. 609	1565.	2.8	1563.	76.9	10.3	10300	2900	. 28
. 0322	. 619	1590.	2.8	1588.	76.7	10.2	10200	5700	. 28
. 0842	. 097	331.	40.7	251.	215.4	64.5	64500	-	. 73
. 0334	. 264	683.	7.0	677.	83.0	23.8	23800	6700	. 29
. 0296	. 313	808.	5.2	805.	72.8	20.1	$20060{ }^{\circ}$	5700	. 26
. 0224	. 437	1124.	2.7	1123.	53.1	14.4	14400	4000	. 19
. 0183	. 608	1562.	1.5	1562.	41.1	10.3	10300	2900	. 16
. 0185	. 618	1587.	1.5	1587.	41.4	10.2	10200	5700	. 16
. 0568	. 075	242.	36.9	194.	145.2	83.6	83600		.19
. 1106	.122	262.	42.0	195.	175.2	51.5	51500	7000	. 96
. 0529	. 264	429.	11.1	421.	82.6	23.8	23800	7000	. 46
. 0466	. 305	491.	8.5	485.	72.4	20.6	20600	5900	.40
. 0351	. 423	675.	4.5	673.	53.3	14.9	14900	4200	. 30
. 0331	. 471	752.	3.8	750.	49.8	13.3	13300	3700	. 29
. 0273	. 593	945.	2.4	944.	39.8	10.6	10800	5900	. 24
. 0746	. 089	185.	39.0	144.	116.3	70.6	70800	-	. 65
. 0273	. 260	417.	5.8	415.	41.8	24.1	24100	7000	. 24
. 0243	. 302	483.	4.4	481.	36.8	20.8	20800	5900	.21
. 0189	. 422	672.	2.4	672.	27.5	14.9	14900	4200	.16
. 0185	. 471	749.	2.0	749.	26.6	13.4	13400	3700	. 16
. 0157	. 593	944.	1.3	944.	21.4	10.6	10800	5900	.14
.0442	. 071	137.	33.9	114.	76.3	89.1	89100		.43
0273	314	809.	4.8	806.	67.1	20.0	20000	11300	24

Approximate characteristics of standard types of paper-insulafed exchange felephone cable circuifs

wira gauge Awo	cadeno	```type of loading```	loop mis constanis		propagation constant				mid-section characteristic impedance				1000 cycles per second							
								aften												
										ar	recto	ular		ar				miles	cut-	db
			$\mathrm{C}_{\mu} \mathrm{F}$	$\begin{gathered} \text { in } \\ \mu \mathrm{mho} \end{gathered}$	mag	angle (deg)	α	$\stackrel{\beta}{ }$	mag	angle (deg)	z_{01}	$\chi_{\text {m }} 1$	length milos	per second	$\begin{gathered} \text { ofr } \\ \text { frea } \end{gathered}$	par mile				
26	BST	NL	. 033	1.6	-	-	-	10	910	-	-	-	-	-	-	2.9				
	ST	NL	. 069	1.6	. 439	45.30	. 307	. 310	1657	44.5	719	706	20.4	20,400	-	2.67				
24	DSM	NL	. 085	1.9					725						-	2.3				
	ASM	NL	. 075	1.9	. 355	45.53	. 247	. 251	778	44.2	558	543	25.0	25,000	-	2.15				
		M88	. 075	1.9	. 448	70.25	. 151	. 421	987	23.7	904	396	14.9	14,900	3100	1.31				
		H88	. 075	1.9	. 512	75.28	. 130	. 495	1160	14.6	1122	292	12.7	12,700	3700	1.13				
		B88	. 075	1.9	. 684	81.70	. 099	. 677	1532	8.1	1515	215	9.3	9,270	5300	0.86				
22	CSA	NL	. 083	2.1	. 297	45.92	. 207	. 213	576	43.8	416	399	29.4	29,400	-	1.80				
		M88	. 033	2.1	. 447	76.27	. 106	. 434	905	13.7	880	214	14.5	14,500	2900	0.92				
		H88	. 083	2.1	. 526	80.11	. 0904	. 519	1051	9.7	1040	177	12.1	12,100	3500	0.79				
		H135	. 083	2.1	. 644	83.50	. 0729	. 640	1306	6.3	1300	144	9.8	9,800	2800	0.63				
		888	. 083	2.1	. 718	84.50	. 0689	. 718	1420	5.3	1410	130	8.75	8,750	5000	0.60				
		B135	. 083	2.1	. 890	86.50	. 0549	. 890	1765	3.3	1770	102	7.05	7,050	4000	0.48				
19	CNB	NI	. 085	1.6	-	-	-	-	400	-	-	-	-	,	-	1.23				
	DNB	NL	. 066	1.6	. 188	47.00	. 128	. 138	453	42.8	333	308	45.7	45,700	-	1.12				
		M88	. 066	1.6	. 383	82.42	. 0505	. 380	950	8.9	939	146	16.6	16,600	3200	0.44				
		H88	. 066	1.6	. 459	84.60	. 0432	. 459	1137	5.2	1130	103	13.7	13,700	3900	0.38				
		H135	. 066	1.6	. 569	86.53	. 0345	. 570	1413	4.0	1410	99	11.0	11,000	3200	0.30				
		H175	. 056	1.6	. 651	87.23	. 0315	. 651	1643	3.3	1640	95	9.7	9,700	2850	0.27				
		B88	. 066	1.6	. 641	86.94	. 0342	. 641	1565	2.8	1560	77	9.8	9,800	5500	0.30				
16	NH	NL	. 064	1.5	. 133	49.10	. 0868	. 1004	320	40.6	243	208	62.6	62,600	-	0.76				
		M88	. 064	1.5	. 377	85.53	. 0271	. 377	937	4.6	934	76	16.7	16,700	3200	0.24				
		H88	. 064	1.5	. 458	87.14	. 0238	. 458	1130	2.8	1130	55	13.7	13,700	3900	0.21				
In the inducto	olum	e obov coils		$\text { ers } M$		dicato				600				and the						

Cable
186

Frequency allocation and modulation steps in the L carrier system

Noise and noise measurement wire telaphony

Definitions

The following definitions are based upon those given in the Proceedings of the tenth Plenary Meeting (1934) of the Comité Consultatif International Tèléphonique (C.C.I.F.).

Note: The unit in which noise is expressed in many of the European countries differs from the two American standards, the noise unit and the db above reference noise. The Europeon unit is referred to as the psophometric electromotive force.

Noise: Is a sound which tends to interfere with a correct perception of vocal sounds, desired to be heara in the course of a telephone conversation.

It is customary to distinguish between:

1. Room noise: Present in that part of the room where the telephone apparatus is used.
2. Frying noise (transmitter noise): Produced by the microphone, manifest even when conversation is not taking place.
3. Line noise: All noise electrically transmitted by the circuit, other than room noise and frying noise.

Psophometric electromotive force

In the case of a complete telephone connection the interference with a telephone conversation produced by extraneous currents may be compared with the interference which would be caused by a parasitic sinusoidal current of 800 cycles per second. The strength of the latter current, when the interference is the same in both cases, can be determined.

If the receiver used has a resistance of 600 ohms and a negligible reactance lif necessary it should be connected through a suitable transformer), the psophometric electromotive force at the end of a circuit is defined as twice the voltage at 800 cycles per second, measured at the terminals of the receiver under the conditions described.

The psophometric electromative force is therefore the electromotive force of a source having an internal resistance of 600 ohms and zero internal reactance which, when connected directly to a standard receiver of 600 ohms resistance and zero reactance, produces the same sinusoidal current at 800 cycles per second as in the case with the arrangements indicated above.

An instrument known as the psophometer has been designed. When connected directly across the terminals of the 600 -ohm receiver, it gives a reading of half of the psophometric electromotive force for the particular case considered.
In a general way, the term psophometric voltage between any two points refers to the reading on the instrument when connected to these two points.
If, instead of a complete connection, only a section thereof is under consideration, the psophometric electromotive force with respect to the end of that section is defined as twice the psophometric voltage measured at the terminals of a pure resistance of 600 ohms , connected at the end of the section, if necessary through a suitable transformer.
The C. C. I. F. has published a Specification for a psophometer which is included in Volume II of the Proceedings of the Tenth Plenary Meeting in 1934. An important part of this psophometer is a filter network associated with the measuring circuit whose function is to weight each frequency in accordance with its interference value relative to a frequency of 800 cycles.

Noise levels

The amount of noise found on different circuits, and even on the same circuit ot different times, varies through quite wide limits. Further, there is no definite agreement as to what constitutes a quiet circuit, a noisy circuit, etc. The following values should therefore be regarded merely as a rough indication of the general levels which may be encountered under the different conditions:

Open-wire circuit	db above ref noise
Quiet	20
Average	35
Noisy	50
Cable circuit	
Quiet	15
Average	25
Noisy	40

Relationship of European and American noise units

The psophometric emf can be related to the American units: the noise unit and the decibel above reference noise.
The following chart shows this relationship together with correction factors for psophometric measurements on circuits of impedance other than 600 ohms.

Relationship of European and American units

Abstract

1. The relationship of noise units to db 's above reference noise is oblained from technical report No. 1B-5 of the joint subcommittee on development and research of the Bell Telephone System and the Edison Electric Instifute.

2. The relationship of db's above reference noise to psophometric omf is obtained from the Proceedings of C.C.I.F. 1934.
3. The C.C.I.F. expresses noise limits in terms of the psophometric emf for a circuit of 600 ohms resistance and zero reactance, terminated in a resistance of 600 ohms. Measurements made in terms of the potential difference across the ferminations, or on circuits of impedance other than 600 ohms, should be corrected as follows:

4. Reference noise-with respect to which the American noise measuring set is calibroted -is a 1000 cycies per second tone 90 db below 1 milliwatt.

Teıegraph facilities

	speed of usual types frequency cycles	

Telegraph prinfer systems

Speed depends on two factors: 1. Code used, and 2. frequency handling capacity of transmission facilities. One 11 word $=5$ letters and 1 space.

Frequency of printing telegraph systems in cycles per second

Let
$S=$ number of units in code (plus allowance for synchronizing)
$N=$ number of channels
$W=$ revolutions per second
$=\frac{\text { words per minute } \times \text { characters per transmitted word }}{60}$
11 word is assumed to consist of 5 letters and 1 space, or 6 characters.)
$f=$ frequency in cycles per second $f=\frac{1}{2}$ SNW

Examples

1. Three-channel multiplex operating at 60 words per minute, 5 -unit code.
$f=\frac{1}{2} \times 5 \times 3 \times \frac{60 \times 6}{60}=45$ cycles or 90 bauds
2. Single-printer circuit operating at 60 words per minute, 5 -unit code + $2 \frac{1}{2}$ units for synchronizing.
$f=\frac{1}{2} \times 7 \frac{1}{2} \times 1 \times \frac{60 \times 6}{60}=22 \frac{1}{2}$ cycles or 45 bauds
3. Two-channel Baudot operating at 50 words per minute, 5 -unit code + 2 units for synchronizing.
$f=\frac{1}{2}(5+2) \times 2 \times \frac{50 \times 6}{60}=35$ cycles or 70 bauds

Comparison of telegraph codes

■ Radio frequency transmission lines

Formulas for uniform transmission lines losses neglected

$$
\begin{aligned}
Z_{o} & =\sqrt{\frac{L}{C}} \\
L & =1016 \sqrt{\epsilon} Z_{0} \\
C & =1016 \frac{\sqrt{\epsilon}}{Z_{0}} \\
\frac{V}{c} & =\frac{1}{\sqrt{\epsilon}}, \\
Z_{z} & =Z_{0} \frac{Z_{r}+j Z_{0} \tan l^{\circ}}{Z_{o}+j Z_{r} \tan l^{\circ}} \\
Z_{z} & =\frac{Z_{0}^{2}}{Z_{r}} \quad \text { for } l^{\circ}=90^{\circ} \text { lquarter wavel } \\
Z_{s s} & =+j Z_{o} \tan l^{\circ} \\
Z_{s o} & =-\frac{j Z_{o}}{\tan l^{\circ}} \\
l^{\circ} & =360 \frac{l}{\lambda} \\
\lambda & =\lambda_{0}\left(\frac{V}{c}\right)
\end{aligned}
$$

where
$L=$ inductance of transmission line in micromicrohenries per foot
$C=$ capacitance of transmission line in micromicrofarads per foot
$V=$ velocity of propagation in transmission line
$c=$ velocity of propagation in free space $\}$ same units
$Z_{\mathrm{a}}=$ sending end impedance of transmission line in ohms
$Z_{0}=$ surge impedance of transmission line in ohms
$Z_{r}=$ terminating impedance of transmission line in ohms
$l^{\circ}=$ length of line in electrical degrees
$l=$ length of line
$\boldsymbol{\lambda}=$ wavelength in transmission line
$\lambda_{0}=$ wavelength in free space
$\epsilon=$ dielectric constant of transmission line medium
$=1$ for air
$Z_{s}=$ sending end impedance lohmsl of transmission line shorted at far end
$Z_{s 0}=$ sending end impedance (ohms) of transmission line open at far end

Surge impedance of uniform lines- 0 to 210 ohms

Surge impedance of uniform lines-0 to 700 ohms

Transmission line dafa

type of line	characteristic Impedance
A single coaxial line	$\begin{aligned} Z_{0} & =\frac{138}{\sqrt{\epsilon}} \log _{10} \frac{D}{d} \\ \epsilon & =\text { dielectric constant } \\ & =1 \mathrm{in} \text { air } \end{aligned}$
B balanced shielded line	$\begin{aligned} & \quad \text { for } D \gg d, h \gg d \\ & Z_{0} \cong \frac{276}{\sqrt{\epsilon}} \log _{10}\left[2 v \frac{1-\sigma^{2}}{1+\sigma^{2}}\right] \\ & \sigma=\frac{h}{D} \\ & . v= \frac{h}{d} \end{aligned}$

C beads-dielectric ϵ_{1}

for cases (A) and (B)
if ceramic beads are used at frequent intervals-call new surge impedance $Z_{0}{ }^{\prime}$
$Z_{0}^{\prime}=\frac{Z_{0}}{\sqrt{\epsilon+\frac{\epsilon_{1}-\epsilon}{S} W}}$

D open two-wire line

$$
\begin{aligned}
Z_{0} & =120 \cosh ^{-1} \frac{D}{d} \\
& \cong 276 \log _{10} \frac{2 D}{d}
\end{aligned}
$$

Transmission line data-miscellaneous types

type of line	characteristic Impedance
	$Z_{0}=69 \log _{10}\left[\frac{4 h}{d} \sqrt{1+\left(\frac{2 h}{D}\right)^{2}}\right]$
	$Z_{0}=276 \log _{10}\left[\frac{4 h}{d \sqrt{1+\left(\frac{2 h}{D}\right)^{2}}}\right]$
	$Z_{0}=138 \log _{10} \frac{4 h}{d}$
	$\mathrm{Z}_{0}=138 \log _{10} \frac{\mathrm{D}}{\mathrm{d}}\left[1.078-0.078\left(\frac{\mathrm{~d}}{\mathrm{D}}\right)^{2}\right]$
	$Z_{0}=138 \log _{10} \frac{2 D_{2}}{d \sqrt{1+\left(\frac{D_{2}}{D_{1}}\right)^{2}}}$
	$\begin{aligned} & l \gg \mathrm{w} \\ & \mathrm{z}_{0} \cong 377 \frac{\mathrm{w}}{l} \end{aligned}$

Transmission line attenuation due to load mismatch

A_{0} normal line attenuation in decibels

- A - Ac atfenuation in decibels due to load mismatch
$A_{v}=$ normal attenuation (matched)
$A=$ total attenuation (mismatched)
$\rho=$ standing wave ratio $\frac{V_{\text {max }}}{V_{\text {min }}}$ of the load

Impedance matching with shorted stub

Impedance matching with open stub

Impedance matching with coupled section

Defuning from resonance for a particular type of section

$A=$ coupled section-two 0.75 -inch diameter copper tubes, coplanar with line
$8=$ transmission line-two 0.162 -inch diameter wires
$C=$ alternative positions of shorting bar for impedance matching
D = position of shorting bar for maximum current in section conductors
Army-Navy standard list of radio-frequency cables

class of cables		ArmyNavy type number	Inner conductor	ditioce material (1)	nominal diam of diefoctric (in)	shielding braid	profective covering	nominal ovarall diam (in)	$\begin{gathered} \text { woight } \\ \text { lb/At } \end{gathered}$	nominal lompedance ohms	nominal capacifance $\mu \mu \mathrm{I} / \mathrm{A}$	maximum -perating volloge mins	remesks
50-55	Single broid	RG-58/U	20 AWG copper	A	0.116	Tinned Copper	Vinyl	0.195	0.025	53.5	28.5	1,900	General purpose small size flexible cable
		RG-8/U	$\begin{aligned} & 7 / 21 \text { AWG } \\ & \text { copper } \end{aligned}$	A	0.285	Copper	Vinyl	0.405	0,106	52.0	29.5	4,200	General purpose medium size fexible cable
		RG-10/U	7/21 AWG copper	A	0.285	Copper	Vinyl Inoncontaminotingl armor	$\begin{aligned} & \text { (max) } \\ & 0.475 \end{aligned}$	0.146	52.0	29.5	4,000	Some as RG-8/U ormored for naval equip. ment
		RG-17/U	$\begin{aligned} & 0.188 \\ & \text { copper } \end{aligned}$	A	0.680	Copper	Vinyl Inon-contaminatingl	0.870	0.460	52.0	29.5	11,000	large high power low attenuation transmission cable
		RG-18/U	$\begin{aligned} & 0.188 \\ & \text { copper } \end{aligned}$	A	0.680	Copper	Vinyl inoncontaminatingl armor	$\begin{aligned} & \text { (max) } \\ & 0.945 \end{aligned}$	0.585	52.0	29.5	11,000	Same as RG-17/U ormored for naval equip. ment
		RG-19/U	$\begin{array}{\|l\|} \hline 0.250 \\ \text { copper } \end{array}$	A	0.910	Copper	Vinyl Inon.contami. nating)	0.120	0.740	52.0	29.5	14,000	Very large high power low attenuation transmission cab e
		RG-20/U	$\begin{aligned} & 0.250 \\ & \text { copper } \end{aligned}$	A	0.910	Copper	Vinyl inoncontaminatingl ormor	$\begin{aligned} & \text { Imox) } \\ & 1.195 \end{aligned}$	0.925	52.0	29.5	14,000	Some or RG-19/U armored for naval equip. ment
	Double broid	RG-55/U	20AWG copper	A	0.116	Tinned copper	Polyethylene	$\begin{aligned} & \text { Imox } \\ & 0.206 \end{aligned}$	0.034	53.5	28.5	1,900	Small size flexible cable
		RG-5/U	16 AWG copper	\wedge	0.185	Copper	Viny!	0.332	0.087	53.5	28.5	2,000	Small microwave cable
		RG-9/U	7/21 AWG silvered copper	\wedge	0.280	Inner-silver cocted copper. Outer-copper	Vinyl inon-contaminating)	0.420	0.150	51.0	30.0	4,000	Medium size, low leval circuit cable

Dielectric materials
C Synthetic rubber compound
D Layer of synthetic rubber dielectric between thin layers of conducting rubber

came	1 1ev				${ }^{4}$	\ldots		\% $\mathrm{mb}^{\text {mi }}$		mim		
		bame		aso	${ }^{\text {comen }}$		${ }^{\text {oss }}$	${ }^{026}$	20	\%	${ }_{\text {sem }}$	cisemex
		amme					${ }^{0045}$	${ }^{0.30}$	${ }^{20}$	${ }^{\text {m }}$		\%
mome		ame		${ }^{0.146}$	Comen	man	020	oma	${ }^{30}$	2.0	${ }^{220}$	边
		$\frac{\text { andem }}{}$		Mas	come	now	ams	${ }^{0080}$	380	${ }^{25}$	${ }^{100}$	
					copm	mimem	${ }^{0.0} 5$	$0 . .4$	${ }^{30}$	${ }^{\text {ms }}$,em	5imation
\%omb	100	Nome		${ }_{0}$ ous			${ }^{0 \times 2}$	${ }^{\circ}$	${ }^{2} 0$	${ }^{\text {mo }}$	${ }_{200}$	
		${ }^{\frac{2}{2 m a m e m e m}}$		${ }^{020} 0$	${ }_{\text {coma }}$	nom	0×8	a,		${ }^{23}$	$4 \times$	Hest
city					5om	von	ams	0.0	8		\%	
		comem			5mem	\cdots	003	${ }^{\text {cons }}$	${ }^{20}$	10	${ }^{200}$	max
\%		aws		${ }_{\text {a, }}^{0}$	\%ame	边	${ }_{0} 0.38$	cos	so	${ }^{\text {mo }}$	270	\%
\%					Smerem		${ }^{\text {ous }}$	${ }^{000}$			${ }^{\text {amo }}$	

Army-Navy standard list of radio frequency cables

class of cables		Amy. Navy type number	Inner conductor	dialec maferial (1)	nominal diam of dielectric (in)	$\begin{aligned} & \text { shielding } \\ & \text { braid } \end{aligned}$	protective covering	nominal overall diam (in)	weight $\mathrm{lb} / \mathrm{ft}$	nominal Impedance ohms	$\begin{gathered} \text { nominal } \\ \text { capaci- } \\ \text { fance } \\ \mu \mu / / f \\ \hline \end{gathered}$	maximum operating vollage rms	Femorics
Low copacitance	Single braid	RG-62/U	22 AWG copperweld	A	0.146	Copper	Vinyl	0.242	0.0382	93.0	$\begin{gathered} 13.5 \\ \max 14.5 \end{gathered}$	750	Small size low capacltance oir-spaced coble
		RG-63/U	22 AWG copperweld	A	0.285	Copper	Vinyl	0.405	0.0832	125	$\begin{gathered} 10.0 \\ \max 11.0 \end{gathered}$	1,000	Medium size low capoci. tance air-spaced cable
	Double braid	RG-71/U	22 AWG copperweld	A	0.146	Inner-plain copper. Outer -rinnedcopper	Polyethy ene	0.250	0.0457	93.0	$\underset{\max 14.5}{13.5}$	750	Small size low capacitonce alr-spoced coblo for I.F purposes
Pulse appllcations	Single braid	RG-26/U	19/C.0117 finned copper	D	$\begin{gathered} (2) \\ 0.308 \end{gathered}$	Tinned copper	Synthetic rubber and ormor	$\begin{aligned} & (\max) \\ & 0.525 \end{aligned}$	0.189	48.0	50.0	$\begin{array}{r} 8,000 \\ \text { (peak) } \end{array}$	Medium size pulse cable armored for naval equipment
		RG-27/U	$\begin{aligned} & 19 / 0.0185 \\ & \text { tinned } \\ & \text { copper } \end{aligned}$	D	$\begin{gathered} 121 \\ 0.455 \end{gathered}$	Single-tinned copper	Vinyl and armor	$\begin{aligned} & (\max) \\ & 0.675 \end{aligned}$	0.304	48.0	50.0	$\begin{aligned} & 15,000 \\ & \text { (peak) } \end{aligned}$	Large size pulse cablo ormored for noval equip. ment
	Double braid	RG-64/U	$\begin{aligned} & 19 / 0.0117 \\ & \text { tinned } \\ & \text { copper } \end{aligned}$	D	$\begin{gathered} (2) \\ 0.308 \end{gathered}$	Tinned copper	Neoprene	0.495	0.205	48.0	50.0	$\begin{array}{r} 8,000 \\ \text { (peak) } \end{array}$	Medium size pulse cable
		RG-25/U	$19 / 0.0117$ tinned copper	D	$\begin{gathered} 121 \\ 0.308 \end{gathered}$	Tinned copper	Neoprene	0.565	0.205	48.0	50.0	$\begin{array}{r} 8,000 \\ \text { (peok) } \end{array}$	Special twisting pulse coble for naval equip. ment
		RG-28/U	$19 / 0.0185$ tinned copper	D	$\begin{gathered} \stackrel{(2)}{0.455} \end{gathered}$	```Inner-linned copper. Outer -galvanized steel```	Syntheric rub. ber	0.805	0.370	48.0	50.0	$15,000$ (peak)	Large size pulse cable
Twisting application	Single braid	RG-41/U	$\begin{aligned} & \text { 16/30 } \\ & \text { AWG tinned } \\ & \text { copper } \end{aligned}$	C	0.250	Tinned copper	Neoprene	0.425	0.150	67.5	27.0	3,000	Specia! Iwist cable

noin
I. Dielectric moterials
2. This value is the diameter over the outer layer of conducting rubber.

Attenuation of standard r-f eables vs frequency

frequency in megacycles

The above chart refers to cables listed in the Army-Navy standard list of radio-frequency cables on pages 201, 202, and 203. For an explanation of the lefters accompanying the curves, see the table below. Each letter refers to one or more A-N standard cables. The number following the letter in the table is the numerical part of the RG. / U number as listed under "Army-Navy type number" in the third column of the preceding list.

RG-number

A $55 / U$	D	$5 / U$	F $10, U$	I $63 / U$	M $17 / U$	$O 26 / U$
A $58 / U$	D	$6 / U$	G $11 / U$	J $65 / U$	M $18 / U$	$O 64 / U$
B $59 / U$	E $21 / U$	G $12 / U$	K $14 / U$	N $19 / U$	P $27 / U$	
C $62 / U$	F $8 / U$	G $13 / U$	K $74 / U$	N $20 / U$	P $28 / U$	
C 71/U	F $9 / U$	H $22 / U$	L $57 / U$	O $25 / U$	Q $4 / U$	

Length of transmission line

This chart gives the actual length of line in centimeters and inches when given the length in electrical degrees and the frequency provided the velocity of propagation on the transmission line is equal to that in free space. The length is given on the L scale intersection by a line between λ and l° where $1^{\circ}=\frac{360 \mathrm{~L} \text { in centimeters }}{\lambda \text { in centimeters }}$

Example: $\mathrm{f}=600$ megacycles $1^{\circ}=30$ Length $\mathrm{L}=1.64$ inches or 4.2 centimeters

206

Altenuation and resistance of transmission

lines af ulfra-high frequencies

$A=4.35 \frac{R_{t}}{Z_{0}}+2.78 \sqrt{\epsilon} \rho F$
where
$A=$ attenuation in decibels per 100 feet
$R_{t}=$ total line resistance in ohms per 100 feet
$p=$ power factor of dielectric medium
$F=$ frequency in megacycles

$$
\begin{aligned}
R_{t} & =0.1\left(\frac{1}{d}+\frac{1}{D}\right) \sqrt{F} \quad \text { for coaxial copper line } \\
& =\frac{0.2}{d} \sqrt{F} \quad \text { for open two-wire copper line }
\end{aligned}
$$

where
$\mathrm{d}=$ diameter of conductors (center conductor for the coaxial line) in inches
$D=$ diameter of inner surface of outer coaxial conductor in inches

Wave guides and resonators

Propagation of electromagnefic waves in hollow wave guides

For propagation of energy at ultra-high frequencies through a hollow metal tube under fixed conditions, a number of different types of waves are available, namely:

1. TE waves: Transverse electric waves, sometimes called H waves, characterized by the fact that the electric vector (E vector) is always perpendicular to the direction of propagation. This means that
$E_{x}=0$
where x is the direction of propagation.
2. TM waves: Transverse magnetic waves, also called E waves, characterized by the fact that the magnetic vector (H vector) is always perpendicular to the direction of propagation.

This means that
$H_{x}=0$
where x is the direction of propagation.
Note: TEM waves: Transverse electromagnetic waves. These waves are characterized by the fact that both the electric vector (E vector) and the magnetic vector (H vector) are perpendicular to the direction of propagation. This means that
$E_{x}=H_{x}=0$
where x is the direction of propagation. This is the mode commonly excited in coaxial and open-wire lines. It cannot be propagated in a wave guide.

The solutions for the field configurations in wave guides are characterized by the presence of the integers m and n which can take on separate values from 0 or 1 to infinity. Only a limited number of these different m, n modes can be propagated, depending on the dimensions of the guide and the frequency of excitation. For each mode there is a definite lower limit or cutoff frequency below which the wave is incapable of being propagated. Thus, a wave guide is seen to exhibit definite properties of a high-pass filter.

The propagation constant $\boldsymbol{\gamma}_{n, m}$ determines the amplitude and phase of each component of the wave as it is propagated along the length of the guide. With x the direction of propagation and ω equal to 2π times the frequency, the factor for each component is
$e^{\kappa_{\omega N}-\gamma_{m, m^{x}}^{x}}$

Propagation of electromagnetic waves in hollow wave guides

 continuedThus, if $\gamma_{n, m}$ is real, the phase of each component is constant, but the amplitude decreases exponentially with x. When $\gamma_{n, m}$ is real, it is said that no propagation takes place. The frequency is considered below cutoff. Actually, propagation with high attenuation does take place for a small distance, and a short length of guide below cutoff is often used as a calibrated attenuator.

When $\gamma_{n, m}$ is imaginary, the amplitude of each component remains constant, but the phase varies with x. Hence, propagation takes place. $\gamma_{n, m}$ is a pure imaginary only in a lossless guide. In the practical case, $\gamma_{n, m}$ usually comprises both a real part, which is the attenuation constant, and

Fig. I-Reciangular wave guide. an imaginary part, which is the phase propagation constant.

Reciangular wave guides

Fig. 1 shows a rectangular wave guide and a rectangular system of coordinates, disposed so that the origin falls on one of the corners of the wave guide; x is the direction of propagation along the guide, and the crosssectional dimensions are y_{0} and z_{0}.
For the case of perfect conductivity of the guide walls with a non-conducting interior dielectric lusually air), the equations for the $T M_{n, m}$ or $E_{n, m}$ waves in the dielectric are:
$E_{x}=A \sin \left(\frac{n \pi}{y_{0}} y\right) \sin \left(\frac{m \pi}{z_{0}} z\right) e^{j \omega t-\gamma_{n, m^{x}}}$
$E_{y}=-A \frac{\gamma_{n, m}}{\gamma^{2}{ }_{n, m}+\omega^{2} \mu_{k} \epsilon_{k}}\left(\frac{n \pi}{y_{0}}\right) \cos \left(\frac{n \pi}{y_{o}} y\right) \sin \left(\frac{m \pi}{z_{0}} z\right) e^{j \omega t-\gamma_{n, m^{x}}}$
$E_{z}=-A \frac{\gamma_{n, m}}{\gamma^{2}{ }_{n_{0} m}+\omega^{2} \mu_{k} \epsilon_{k}}\left(\frac{m \pi}{z_{o}}\right) \sin \left(\frac{n \pi}{y_{o}} y\right) \cos \left(\frac{m \pi}{z_{o}} z\right) e^{j \omega t-\gamma_{n, m^{x}}}$
$H_{x}=0$
$H_{\nu}=A \frac{j \omega \epsilon_{k}}{\gamma^{2}{ }_{n, m}+\omega^{2} \mu_{k} \epsilon_{k}}\left(\frac{m \pi}{z_{0}}\right) \sin \left(\frac{n \pi}{y_{o}} y\right) \cos \left(\frac{m \pi}{z_{o}} z\right) e^{j \omega t-\gamma_{n, m^{x}}}$
$H_{z}=-A \frac{j \omega \epsilon_{k}}{\gamma^{2}{ }_{n, m}+\omega^{2} \mu_{k} \epsilon_{k}}\left(\frac{n \pi}{y_{0}}\right) \cos \left(\frac{n \pi}{y_{0}} y\right) \sin \left(\frac{m \pi}{z_{0}} z\right) e^{j \omega t-\gamma_{n, m^{x}}}$
where ϵ_{k} is the dielectric constant and μ_{k} the permeability of the dielectric material in MKS (rationalized) units.

Rectangular wave guides continuad

Constant A is determined solely by the exciting voltage. It has both amplitude and phase. Integers m and n may individually take on values from 1 to infinity. No TM waves of the 0,0 type or 0,1 type are possible in a rectangular guide so that neither m nor n may be 0 .
Equations for the $T E_{n, m}$ waves or $H_{n, m}$ waves in a dielectric are:
$H_{x}=B \cos \left(\frac{n \pi}{y_{0}} y\right) \cos \left(\frac{m \pi}{z_{0}} z\right) \mathrm{e}^{j \omega t-\gamma_{n, m^{x}}}$
$H_{y}=B \frac{\gamma_{n, m}}{\gamma^{2}{ }_{n, m}+\omega^{2} \mu_{k} \epsilon_{k}}\left(\frac{n \pi}{y_{0}}\right) \sin \left(\frac{n \pi}{y_{0}} y\right) \cos \left(\frac{m \pi}{z_{0}} z\right) e^{j \omega t-\gamma_{n, m^{2}}}$
$H_{z}=B \frac{\gamma_{n, m}}{\gamma^{2}{ }_{n, m}+\omega^{2} \mu_{k} \epsilon_{k}}\left(\frac{m \pi}{z_{0}}\right) \cos \left(\frac{n \pi}{\gamma_{0}} y\right) \sin \left(\frac{m \pi}{z_{0}} z\right) e^{j \omega t-\gamma_{n, m^{x}}}$
$E_{x}=0$
$E_{y}=B \frac{j \omega \mu_{k}}{\gamma^{2}{ }_{n, m}+\omega^{2} \mu_{k} \epsilon_{k}}\left(\frac{m \pi}{z_{0}}\right) \cos \left(\frac{n \pi}{\gamma_{0}} y\right) \sin \left(\frac{m \pi}{z_{0}} z\right) e^{j \omega t-\gamma_{n, m^{2}}}$
$E_{z}=-B \frac{j \omega \mu_{k}}{\gamma^{2}{ }_{n, m}+\omega^{2} \mu_{k} \epsilon_{k}}\left(\frac{n \pi}{y_{0}}\right) \sin \left(\frac{n \pi}{y_{0}} y\right) \cos \left(\frac{m \pi}{z_{0}} z\right) e^{j \omega t-\gamma_{n, m^{x}}}$
where ϵ_{k} is the dielectric constant and μ_{k} the permeability of the dielectric material in MKS (rationalized) units.
Constant B again depends only on the original exciting voltage and has both magnitude and phase; m and n individually may assume any integer value from 0 to infinity. The 0,0 type of wave where both m and n are 0 is not possible, but all other combinations are.
As stated previously, propagation only takes place when $\gamma_{n, m}$ the propagation constant is imaginary;
$\gamma_{n, m}=\sqrt{\left(\frac{n \pi}{y_{0}}\right)^{2}+\left(\frac{m \pi}{z_{0}}\right)^{2}-\omega^{2} \mu_{k} \epsilon_{k}}$
This means, for any n, m mode, propagation takes place when
$\omega^{2} \mu_{k} \epsilon_{k}>\left(\frac{n \pi}{y_{0}}\right)^{2}+\left(\frac{m \pi}{z_{0}}\right)^{2}$
or, in terms of frequency f and velocity of light c, when

$$
f>\frac{c}{2 \pi \sqrt{\mu_{1} \epsilon_{1}}} \sqrt{\left(\frac{n \pi}{y_{0}}\right)^{2}+\left(\frac{m \pi}{z_{0}}\right)^{2}}
$$

where μ_{1} and ϵ_{1} are the relative permeability and relative dielectric constant, respectively, of the dielectric material with respect to free space.

210

Rectangular wave guides continued

Fig. 2-Field configuration for $\mathrm{TE}_{0,1}$ wave.

Fig. 3-Field configuration for a $\mathrm{TE}_{1,2}$ wave.

Fig. 4-Characteristic E lines for TE waves.

Rectangular wave guides continued

The wavelength in the wave guide is always greater than the wavelength in an unbounded medium. If λ is the wavelength in free space, the wavelength in the guide with air as a dielectric for the n, m mode is
$\lambda_{g(n, m)}=\frac{\lambda}{\sqrt{1-\left(\frac{n \lambda}{2 y_{o}}\right)^{2}-\left(\frac{m \lambda}{2 z_{o}}\right)^{2}}}$
The phase velocity within the guide is also always greater than in an unbounded medium. The phase velocity v and group velocity u are related by the following equation:
$u=\frac{c^{2}}{v}$
where the phase velocity is given by $v=c \frac{\lambda_{g}}{\lambda}$ and the group velocity is the velocity of propagation of the energy.

To couple energy into wave guides, it is necessary to understand the configuration of the characteristic electric and magnetic lines. Fig. 2 illustrates the field configuration for a $\mathrm{TE}_{0,1}$ wave. Fig. 3 shows the instantaneous field configuration for a higher mode, a $\mathrm{TE}_{1,2}$ wave.

In Fig. 4 are shown only the characteristic E lines for the $\mathrm{TE}_{0,1}, T E_{0,2}, T E_{1,1}$ and $T E_{1,2}$ waves. The arrows on the lines indicate their instantaneous relative directions. In order to excite a TE wave, it is necessary to insert a probe to coincide with the direction of the E lines. Thus, for a $\mathrm{TE}_{0,1}$ wave, a single probe projecting from the side of the guide parallel to the E lines would be sufficient to couple into it. Several means of coupling from a coaxial line to a rectangular wave guide to excite the $\mathrm{TE}_{0.1}$ mode are shown in Fig. 5. With structures such as these, it is possible to make the standing wave ratio due to the junction less than 1.15 over a 10 to 15 percent frequency band.

Fig. 6 shows the instantaneous configuration of a TM1.1 wave; Fig. 7, an instantaneous field configuration for a $\mathrm{TM}_{1.2}$ wave. Coupling to this type of wave is accomplished by inserting a probe, which is again parallel to the E lines. Since the E lines in this case extend along the length of the tube, it is necessary to position a probe along its length at the center of the E configuration. Fig. 8 illustrates a method of coupling to an $E_{1,1}$ wave and an $E_{1,2}$ wave.

Rectangular wave guides continued

Fig. 5-Methods of coupling to $\mathrm{TE}_{0,1}$ mode ($a \approx \lambda \mathrm{~g} / 4$).

electric intensity
magnetic intensity
Fig. 6-Instanianeous field configuration for a $\mathrm{TM}_{1,1}$ wave.

Fig. 7-Instantaneous field configuration for a TM1,2 wave.

Fig. 8-Methods of coupling to rectangular wave guides for TM(E) modes.

Circular wave guides

The usual co-ordinate system is ρ, θ, z, where ρ is in radial direction; θ is the angle; z is in the longitudinal direction.

TM waves (E waves) $\mathrm{H}_{z} \equiv 0$
$E_{z}=A J_{n}\left(k_{n, m} \rho\right) \cos n \theta e^{j \omega t-\gamma_{n, m^{2}}}$
By the boundary conditions, $E_{z}=0$ when $\rho=a$, the radius. Thus, the only permissible values of k are those for which $J_{n}\left(k_{n, m} a\right)=0$ because E_{z} must be zero at the boundary.

The numbers m, n take on all integral values from zero to infinity. The waves are seen to be characterized by two numbers, m and n, where n gives the order of the bessel functions, and m gives the order of the root of J_{n} ($k_{n, m}$ a). The bessel function has an infinite number of roots, so that there are an infinite number of k 's which make $J_{n}\left(k_{n, m} a\right)=0$.

The other components of the electric vector E_{θ} and E_{ρ} are related to E_{z} as are H_{θ} and H_{ρ}.

TE waves (H waves) $E_{z} \equiv 0$
$H_{z}=B J_{n}\left(k_{n, m \rho}\right) \cos n \theta e^{j \omega t-\gamma_{n, m m^{\theta}}}$
$H p, H_{\theta}, E_{\rho}, E_{\theta}$, are all related to H_{s}.

214

Circular wave guides continued

Again n-takes on integral values from zero to infinity. The boundary condition $E_{z}=0$ when $\rho=a$ still applies. To satisfy this condition k must be such as to make $J^{\prime}{ }_{n}\left(k_{n, m}\right.$ al equal to zero where the superscript indicates the derivative of $J=\left(k_{n, m} a\right)$. It is seen that m takes on values from 1 to infinity since there are an infinite number of roots of $J_{n}^{\prime}\left(k_{n, m} a\right)$.

For circular wave guides, the cut-off frequency for the $m_{0} n$ mode is $f_{c_{n, m}}=\frac{c k_{n, m}}{2 \pi}$ where $c=$ velocity of light and $k_{n, m}$ is evaluated from the roats of the bessel functions
and
$k_{n, m}=\frac{U_{n, m}}{a}$ or $\frac{U_{n, m}^{\prime}}{a}$ where $a=$ radius of guide or pipe and $U_{n, m}$ is the root of the particular bessel function of interest lor its derivativel.
The wavelength in the guide is
$\lambda_{g}=\frac{2 \pi}{\sqrt{\left(\frac{2 \pi}{\lambda_{0}}\right)^{2}-k^{2}{ }_{n, m}}}$
where λ_{o} is the wavelength in an unbounded medium.

The following tables are useful in determining the values of k. For H waves the roots $U_{n, m}^{\prime}$ of $J_{n}^{\prime}(U)=0$ are given in the following table, and the corresponding $k_{n, m}$ values are $\frac{U_{n, m}^{\prime}}{a}$

Values of $U^{\prime}{ }_{n, m}$

$m{ }^{n}$	0	1	2
1	3.832	1.841	3.054
2	7.016	5.332	6.705
3	10.173	8.536	9.965

For E waves the roots $U_{n, m}$ of $J_{n}|U|=0$ are given in the following table, and the corresponding $k_{n, m}$ values are $\frac{U_{n, m}}{a}$

Values of $U_{n, m}$

$m\rangle^{n}$	0	1	2
1	2.405	3.832	5.135
2	5.520	7.016	8.417
3	8.654	10.173	11.620

where n is the order of the bessel function and m is the order of the root.

Fig. 9
Pafterns of magnetic force of IM woves in circular wave guides.

$T E_{q}$

Fig. 10
Method of coupling to circular wave guide for $\mathrm{TM}_{0,1}$ wave.

Fig. 11
Patterns of electric force of TE waves in circular wave guides.

Fig. 12
Method of coupling to circuler wave guide for $\mathrm{TE}_{\text {1. } 1}$ wave.
Table I-Cut-off wavelengths and aftenuation factors

Circular wave guides continued

The pattern of magnetic force of TM waves in a circular wave guide is shown in Fig. 9. Only the maximum lines are indicated. In order to excite this type of pattern, it is necessary to insert a probe along the length of the wave guide concentric with the H lines. For instance, in the $\mathrm{TM}_{0.1}$ type of wave, a probe extending down the length of the wave guide at the very center of the guide would provide the proper excitation. This method of excitation is shown in Fig. 10. Similar methods of excitation may be used for the other types of TM waves shown in Fig. 9.

Fig. 11 shows the patterns of electric force for TE waves. Again only the maximum lines are indicated. This type of wave may be excited by an antenna which is parallel to the electric lines of force. For instance, the $T E_{0.1}$ wave would be excited by a small circular loop placed where the maximum E line is indicated in the diagram. The $\mathrm{TE}_{1,1}$ wave may be excited by means of an antenna extending across the wave guide. This is illustrated in Fig. 12.

Attenuation constants

All the attenuation constants contain a common coefficient
$\alpha_{0}=\frac{1}{4} \sqrt{\frac{\mu_{2} \epsilon_{1}}{\sigma_{2} \mu_{1}}}$
ϵ_{1}, μ_{1} dielectric constant and magnetic permeability for the insulator
σ_{2}, μ_{2} electric conductivity and magnetic permeability for the metal
For air and copper $\alpha_{0}=0.35 \times 10^{-9}$ nepers per centimeter or $0.3 \times 10^{-3} \mathrm{db}$ per kilometer

Table I summarizes some of the most important formulas. The dimensions a, b are measured in centimeters.

Electromagnetic horns

Radiation from the wave guide may be obtained by placing an electromagnetic horn of a particular size at the end of the wave guide. The characteristics for different types of circular horns are shown in Figs. 13 and 14.

Fig. 13 gives data for designing a horn to have a specified gain with the shortest length possible. The length L_{1} is given by $L_{1}=L\left(1-\frac{a}{2 A}-\frac{b}{2 B}\right)$ where $a=$ wide dimension of wave guide in the H plane, $a n d b=$ narrow dimension of wave guide in E plane.

Electromagnetic horns continued

Fig. 13.

Electromagnetic horns continued

If $L \geqq \frac{a^{2}}{\lambda}$ la $=$ longer dimension of aperturel the gain is given by $G=$ $\frac{10 a b}{\lambda^{2}}$, the half power width in the E plane is given by $51^{\circ} \frac{\lambda}{b}$, and the half power width in the H plane is given by $70^{\circ} \frac{\lambda}{a}$, where E is the electric vector and H is the magnetic vector,
Fig. 14 shows how the angle between 10-decibel points varies with aperture.

Parabolas

If the intensity across the aperture of the parabola is of constant phase and tapers smoothly from the center to the edges so that the intensity at the edges is 10 decibels down from that at the center, the gain is given by $G=\frac{8 A}{\lambda^{2}}\left(A=\right.$ area of aperture). The half power width is given by $70^{\circ} \frac{\lambda}{D}$ ($D=$ diameter of parabola).

Resonant cavities

A cavity enclosed by metal walls will have an infinite number of natural frequencies at which resonance will occur. The lowest frequency or mode of oscillation is determined by the geometry of the cavity. One of the

Resonant cavities

more common types of cavity resonators is a length of transmission line (coaxial, or waveguide) short circuited at both ends.

Resonance occurs when
$2 h=l \frac{\lambda g}{2}$ where l is an integer
$2 h=$ length of the resonator
$\lambda_{g}=$ guide wavelength in resonator
$\lambda_{g}=\frac{\lambda}{\sqrt{1-\left(\frac{\lambda}{\lambda_{c}}\right)^{2}}}$
$\lambda=$ free space wavelength $\lambda_{c}=$ guide cut-off wavelength
For $T E_{n, m}$ or $\mathrm{TM}_{n, m}$ waves in a rectangular cavity with cross section a, b.
$\lambda_{c}=\frac{2}{\sqrt{\left(\frac{m}{a}\right)^{2}+\left(\frac{n}{b}\right)^{2}}}$ where m and n are integers
For $\mathrm{TE}_{n, m}$ waves in a cylindrical cavity
$\lambda_{c}=\frac{2 \pi a}{U_{n, m}^{\prime}}$
where a is the guide radius and $U_{n, m}^{\prime}$ is the m th root of the equation $J_{n}^{\prime}(U)=0$

For $\mathrm{TM}_{n, m}$ waves in a cylindrical cavity
$\lambda_{c}=\frac{2 \pi \mathrm{a}}{U_{n, m}}$
where a is the guide radius and $U_{n, m}$ is the m th root of the equation $J_{n}(U)=0$.

For TM waves $I=0,1,2 \ldots$
For TE waves $1=1,2 \ldots$ but not 0

Rectangular cavity of dimensions abe2h

$$
\lambda=\frac{2}{\sqrt{\left(\frac{l}{2 h}\right)^{2}+\left(\frac{m}{a}\right)^{2}+\left(\frac{n}{b}\right)^{2}}} \text { where only one of } l, m, n \text { may be zero. }
$$

Resonant cavities cantinued

Cylindrical cavities of radius a and length $\mathbf{2 h}$

$$
\lambda=\frac{1}{\sqrt{\left(\frac{1}{4 h}\right)^{2}+\left(\frac{1}{\lambda_{c}}\right)^{2}}}
$$

where λ_{c} is the guide cut-off wavelength.

Spherical resonators of radius a

$\lambda=\frac{2 \pi a}{U_{n, m}}$ for a TE wave
$\lambda=\frac{2 \pi a}{U_{n, m}^{\prime}}$ for a TM wave.
Values of $U_{n, m}$:
$U_{1,1}=4.5, U_{2,1}=5.8, U_{1,2}=7.64$
Values of $U_{n, m}^{\prime}$:
$U_{1,1}^{\prime}=2.75=$ lowest order root

Additional cavity formulas

type of cavity	mode	λ_{0} resonant wavelength	0
Right circular cylinder	TM $M_{0,1,1}\left(E_{\text {c }}\right)$	4	$\frac{\lambda_{0}}{\delta} \frac{a}{\lambda_{0}} \frac{1}{1+\frac{a}{2 h}}$
		$\sqrt{\left(\frac{1}{h}\right)^{2}+\frac{2.35}{\sigma^{2}}}$	
	$T E_{0,1,1}\left(H_{0}\right)$	$\frac{4}{1 \sqrt{(1)^{2}, 5.93}}$	$\frac{\lambda_{0}}{\delta} \frac{0}{\lambda_{0}}\left[\frac{1+0.168\left(\frac{o}{h}\right)^{2}}{1+0.168\left(\frac{o}{h}\right)^{3}}\right]$
		$\sqrt{\left(\frac{1}{h}\right)+\frac{3}{\sigma^{2}}}$	
	TE $\mathrm{E}, 1,1\left(\mathrm{H}_{1}\right)$	$\left\lvert\, \frac{4}{\sqrt{\left(\frac{1}{h}\right)^{2}+\frac{1.37}{\alpha^{2}}}}\right.$	$\frac{\lambda_{0}}{\delta} \frac{h}{\lambda_{0}}\left[\frac{2.39 h^{2}+1.73 \sigma^{2}}{3.39 \frac{h^{3}}{\sigma}+0.73 \mathrm{ch}+1.73 \mathrm{o}^{2}}\right]$

Some characteristics of various types of resonators

δ is the skin depth

	lyperesonator	wavelength, λ	0
Square prism TE $\mathbf{E R O}_{0,1}$		$2 \sqrt{2} a$	$\frac{0.353 \lambda}{\delta} \frac{1}{1+\frac{0.177 \lambda}{h}}$
Circular cylinder TM $\mathbf{M O}_{0,1,0}$		2.61 a	$\frac{0.383 \lambda}{\delta} \frac{1}{1+\frac{0.192 \lambda}{h}}$
Sphere		2.28a	$0.318 \frac{\lambda}{\delta}$
Sphere with cones		4a	Optimum Q $\begin{array}{r} \text { for } \theta=34^{\circ} \\ 0.1095 \frac{\lambda}{\delta} \end{array}$
Cooxial TEM		4h	Oplimum Q $\begin{aligned} & \text { for } \frac{b}{a}=3.6 \\ & \left(Z_{0}=77 \text { ohms }\right) \\ & \frac{\lambda}{4 \delta+7.2 \frac{h \delta}{b}} \end{aligned}$

$\delta=\sqrt{\frac{\rho}{2 \pi \omega \mu}}$ where $\rho=$ resisfivity of wall in abohm $-\mathrm{cm}, \mu=$ permeability of volume lunity for free spacel, $\delta=$ skin depth in centimeters.

Recommended rectangular wave guides

			veable wevelength	m	cters	-fllonwafto
dimension inches	A-N number	wavilongth λc (cenfinethers)	TEO, 1 mode (centimetiors)	choke		wave guide B/H
$\underset{\text { wall }}{11 / 2} \times 3 \times 0.081$	RG-48/U	14.4	7.6-11.8	UG-54/U	UG-53/U	0.012 (c) 10 cm
$\underset{\text { wall }}{ } \times 2 \times 0.064$	RG-49/U	9.5	5.0-7.6	UG-148/U	UG-149/U	0.021 @ 6 cm
$\underset{\text { wall }}{3 / 1 / 2} \times 0.064$	RG-50/U	6.97	3.7-5.7	UG-150/U	contact type	0.036 @ 5 cm
$5 \times 11 / 4 \times 0.064$	RG-51/U	5.7	3.0-4.7	UG-52/U	UG-51/U	0.050 (c) 3.6 cm
$\underset{\text { wall }}{1 / 2} \times 1 \times 0.050$	RG-52/U	4.57	2.4-3.7	UG-40/U	UG-39/U	0.076 @ 3.2 cm

- Radio propagation and noise

Propagation of medium and long waves*

For a theoretical short vertical antenna over perfect ground: $E=186 \sqrt{P_{r}}$ millivolts per meter at 1 mile
or,
$E=300 \sqrt{P_{r}}$ millivolts per meter at 1 kilometer
where $P_{r}=$ radiated power in kilowatts.
Actual inverse-distance fields at one mile for a given transmitter output power depend on the height and efficiency of the antenna and the efficiency of coupling devices.
Typical values found in practice for well-designed stations are:
Small L or T antennas as on ships; $25 \sqrt{P_{t}}$ millivolts per meter at 1 mile Vertical radiators 0.15 to 0.25λ high; $150 \sqrt{P_{i}}$ millivolts per meter at 1 mile Vertical radiators 0.25 to 0.40λ high; $175 \sqrt{P_{t}}$ millivolts per meter at 1 mile Vertical radiators 0.40 to 0.60λ high or top-loaded vertical radiators; $220 \sqrt{P_{t}}$ millivalts per meter at 1 mile, where $P_{t}=$ transmitter output power in kilowatts. These values can be increased by directive arrangements.
The surface-wave field (commonly called ground wavel at greater distances can be found from Figs. 1, 2, and 3. These are based on a field strength of 186 millivolts per meter at one mile. The ordinates should be multiplied by the ratio of the actual field at 1 mile to 186 millivolts per meter.

Table I-Ground conductivities and dielectric constanfs

ferrain	conductivity emu	```# E```
Sea water	4×10^{-11}	80
frosh water	5×10^{-14}	80
Dry, sandy flat coastal land	2×10^{-14}	10
Marshy, forested flat land	8×10^{-14}	12
Rich agricultural land, low hills	1×10^{-13}	15
Pastoral land, medium hills and forestation	5×10^{-14}	13
Rocky land, steep hills	2×10^{-14}	10
Mountainous thills up to 3000 feotl	1×10^{-14}	5
Cities, residential areas	2×10^{-14}	5
Citios, industrial areas	1×10^{-15}	3

Note: This table for use for medium- and long-wave propagation with Norton's, van der Pol's, Eckersley's, or other developments of Sommerfeld propagation formulas.
\# For more exact methods of computatlon see Terman, F. E., Radia Engineers' Handbook. Sec. 10; or Norton, K. A., The Calculation of Ground-wave Field Intensities Over a Finitely Conducting Spherital Earth. Proc. I.R.E., vol. 29, p. 623 (December, 1941).

Propagation of medium and long waves
 continued

Fig. 1-Strength of surface woves as a function of distonce with o verticol ontenna for good earth ($\sigma=10^{-13}$ emu and $\epsilon=15$ esu).

ig. 2-Strength of surface waves as a function of distance with a vertical antenna for poor earth ($\sigma=2 \times 10^{-14}$ emu and $\epsilon=5$ asu).

Propagation of medium and long waves cantinued

Figs. 1, 2, and 3 do not include the effect of sky waves reflected from the ionosphere. Sky waves cause fading at medium distances and produce higher field intensities than the surface wave at longer distances, particularly at night and on the lower frequencies during the day. Sky-wave field intensity, in addition to the usual diurnal, seasonal, and irregular variations due to changing properties of the ionosphere, depends on frequency and the vertical radiation pattern of the antenna. Fig. 4 shows the average of nighttime measurements on a number of broadcast stations for about l-kilowatt output.

Fig. 3-Strength of surface waves as a function of distance with a vertical antenna for sea water ($\sigma=4 \times 10^{-11}$ emu and $\epsilon=80$ esu).

Propagation of short waves

At frequencies between about 3 and 25 megacycles and distances greater than about 100 miles, transmission depends entirely on sky waves reflected from the ionosphere. The ionosphere la region high above the earth's surface where the rarefied air is sufficiently ionized to reflect or absorb radio waves) is usually considered as consisting of the following layers.

D layer: At heights from about 50 to 90 kilometers, it exists only during daylight hours and ionization density corresponds with the altitude of the sun.

This layer reflects low- and medium-frequency waves and weakens highfrequency waves through partial absorption.
E layer: At height of about 110 kilometers, this layer is of importance for shortwave daytime propagation at distances less than 1000 miles and for medium wave nighttime propagation at distances in excess of about 100 miles. Ionization density corresponds closely with the altitude of the sun. Irregular cloud-like areas of unusually high ionization, called sporadic E may occur up to more than 50 percent of the time on certain days or nights. Sporadic E occasionally prevents frequencies that normally penetrate the E layer reaching higher layers and also causes occasional longdistance transmission at very high frequencies.

Fig. 4-Average sky-wave field Intensity (corresponding to the second hour affer sunsef of the recording station).

F1 layer: At heights of about 175 to 250 kilometers, it exists only during daylight. This layer occasionally is the reflecting region for shortwave transmission, but usually oblique incidence waves that penetrate the E layer also penetrate the F_{1} layer to be reflected by the F_{2} layer. The F_{1} layer introduces additional absorption of such waves.

Propagation of short waves continued

F_{2} layer: At heights of about 250 to 400 kilometers, F_{2} is the principal reflecting region for long-distance shortwave communication. Height and ionization density vary diurnally, seasonally, and over the sunspot cycle. Ionization does not correspond closely to the altitude of the sun. At night, the F_{1} layer merges with the F_{2} layer at a height of about 300 kilometers. The absence of the F_{1} layer, and reduction in absorption of the E layer, causes nighttime field intensities and noise to be generally higher than during daylight hours.
As indicated to the right on Fig. 6, these layers are contained in a thick region throughout which ionization generally increases with height. The layers are said to exist where the ionization gradient is capable of refracting waves back to earth. Obliquely incident waves follow a curved path through the ionosphere due to gradual refraction or bending of the wave front.
Depending on the ionization density at each layer, there is a critical or highest frequency f_{c} at which the layer reflects a vertically incident wave. Frequencies higher than f_{c} pass through the layer at vertical incidence. At oblique incidence the layer reflects frequencies higher than f_{c} as given by the approximate relation:
$m u f=f_{c} \sec \phi$
where muf = maximum usable frequency for the particular layer and distance, $\phi=$ angle of incidence at reflecting layer.
f_{c} and height, and hence ϕ for a given distance, for each layer vary with local time of day, season, latitude, and throughout the eleven-year sunspot cycle. The various layers change in different ways with these parameters. In addition, ionization is subject to frequent abnormal variations.
The loss at reflection for each layer is a minimum at the maximum usable frequency and increases rapidly for frequencies lower than maximum usable frequency.
Short waves travel from the transmitter to the receiver by reflections from the ionosphere and earth in one or more hops as indicated in Figs. 5 and 6. Additional reflections may occur along the path between the bottom edge of a higher layer and the top edge of a lower layer, the wave finally returning to earth near the receiver.
Fig. 5 illustrates single-hop transmission, Washington to Chicago, via the E layer (ϕ_{1}). At higher frequencies over the same distance, single-hop transmission would be obtained via the F_{2} layer (ϕ_{2}). Fig. 5 also shows two-hop transmission, Washington to San Francisco, via the F_{2} layer (ϕ_{3}). Fig. 6 indicates transmission on a common frequency, (1.) single-hop via E layer, Denver to Chicago, and, (2.) single-hop via F_{2}, Denver to Washington, with, (3.) the wave failing to reflect at higher angles, thus producing a skip region of no signal between Denver and Chicago.

Actual transmission over long distances is more complex than indicated by Figs. 5 and 6, because the layer heights and critical frequencies differ with time land hence longitudel and with latitude. Further, scattered reflections occur at the various surfaces.

Fig. 5.

Fig. 6.

Maximum usable frequencies (muf) for single-hop transmission at various distances throughout the day are given in Fig. 7. These approximate values apply to latitude $39^{\circ} \mathrm{N}$ for the approximate minimum years (1944 and 1955) and approximate maximum years 11949 and 1960) of the sunspot cycle. Since the maximum usable frequency and layer heights change from month to month, the latest predictions should be obtained whenever available. This information is published by the National Bureau of Standards in the U. S. A. and by similar organizations in other countries.

Operating frequencies should be selected from 50 to 85 percent of the maximum usable frequency, preferably nearer the higher limit in order to reduce absorption loss. The 85 percent limit provides some margin for day-to-day deviation of the ionospheric characteristics from the predicted monthly average value. Maximum usable frequency changes continuously throughout the day, whereas it is ordinarily impractical to change operating frequencies correspondingly. Each operating frequency, therefore, should be selected to fall within the above limits for a substantial portion of the daily operating period.

For single-hop transmission, frequencies should be selected on the basis of local time and other conditions existing at the mid-point of the path. In view of the layer heights and the fact that practical antennas do not operate effectively below angles of about three degrees, single-hop trans-

Propagation of short waves

mission cannot be achieved for distances in excess of about 2200 miles (3500 kilometers) via F layers or in excess of about 1050 miles $(1700$ kilometers) via the E layer. Multiple-hop transmission must occur for longer distances and, even at distances of less than 2200 miles, the major part of the received signal frequently arrives over a two- or more-hop path. In analyzing two-hop paths, eack hop is treated separately and the lowest frequency required on either hop becomes the maximum usable frequency for the circuit. It is usually impossible to predict accurately the course of radio waves on circuits involving more than two hops because of the large number of possible paths and the scattering that occurs at each reflection. For such longdistance circuits, it is customary to consider the conditions existing at points 1250 miles along the path from each end as the points at which the maximum usable frequencies should be calculated.

June 1933 and 1944

June 1937 and 1949

December 1937 and 1949

local time at place of reflection
Fig. 7.

RADIO PROPAGATION AND NOISE 231

Propagation forecasts for short waves

In addition to forecasts for ionospheric disturbances, the Central Radio Propagation Laboratories of the National Bureau of Standards issues monthly Basic Radio Propagation Predictions 3 months in advance used to determine the optimum working frequencies for shortwave communicatior. Indication of the general nature of the CRPL data and a much abbreviated example of their use follows:

Example

To determine working frequencies for use between San Francisco and Wellingron, N. Z.

Methad

1. Place a transparent sheet over Fig. 8 and mark thereon the equator, a line across the equator showing the meridian of time desired lviz., GCT or PSTI, and locations of San Francisco and Wellington.
2. Transfer sheet to Fig. 9, keeping equator lines of chart and transparency aligned. Slide from left to right until terminal points marked fall along a Great Circle line. Sketch in this Great Circle between terminals and mark "control points" 2000 kilometers along this line from each end.
3. Transfer sheet to Fig. 10 , showing muf for transmission via the F_{2} layer. Align equator as before. Slide sheet from left to right placing meridian line on time desired and record frequency contours at control points. This illustration assumes that radio waves are propagated over this path via the F_{2} layer. Eliminating all other considerations, 2 sets of frequencies, corresponding to the control points, are found as listed in Table Il, the lower of which is the muf. The muf, decreased by 15 percent, gives the optimum working frequency.
Transmission may also take place via other layers. For the purpose of illustration only and without reference to the problem above, Figs. 11 and 12 have been reproduced to show characteristics of the E and sporadic E layers. The complete detailed step-by-step procedure, including special considerations in the use of this method, are contained in the complete CRPL forecasts.

Table II-Maximum usuable frequency

OCT	at San Francisco control point (2000 km from San Franciseo)	af Wellington, N. Z. control point (2000 km from Wellington)	optimum working frequency (lower of muf $\times 0.851$
0000	32.0	31.5	26.8
0400	34.2	25.0	21.0
0800	23.2	13.7	11.7
1200	18.0	14.8	12.6
1600	23.4	12.2	10.4
2000	24.6	2.88	20.9

continued Propagation forecasts for short waves

Fig. 8-World map
showing zones cov-
ered by predicted
chorts and auroral zones.
Propagation forecasts for short waves

Fig. 9-Great circle chart lines represent great circles. Dot-dash lines indicale dislances in thousands of kilometers.

$$
\begin{aligned}
& \text { Fig. 10-F } F_{2} 4000 \text {-kilo- } \\
& \text { meter maximum usable } \\
& \text { frequency in mega- } \\
& \text { cycles. I zone (see } \\
& \text { Fig. 8) predicted for } \\
& \text { July, 1946. }
\end{aligned}
$$

continued Propagafion forecasts for short waves

Propagation of very short waves

For propagation over distance within the radio path horizon, the field intensity is given approximately by

$$
\begin{equation*}
E=\frac{14.0 \sqrt{W}}{d} \sin \left(\frac{2 \pi h i h_{r}}{\lambda d}\right) \text { volts per meter } \tag{1}
\end{equation*}
$$

where
$W=$ watts radiated, $h_{l}=$ height of transmitting antenna in meters, $h_{r}=$ height of receiving antenna in meters, $\lambda=$ wavelength in meters, $d=$ distance in meters.

The following approximate formula is useful for transmission below 100 megacycles within the radio path horizon.

$$
\begin{equation*}
E=\frac{0.33 \sqrt{P} H_{l} H_{r} f_{m c}}{D^{2}} \text { microvolts per meter } \tag{2}
\end{equation*}
$$

where
$P=$ kilowatts radiated, $H_{l}=$ height of transmitting antenna in feet, $H_{r}=$ height of receiving antenna in feet, $f_{m c}=$ frequency in megacycles, $D=$ distance in statute miles.

Equations (1) and (2) apply to both vertical and horizontal polarization. It is assumed that the antennas are small dipoles. The equations hold only when the transmission distance is large compared to antenna heights, i.e.,
for equation (1) d>10 h_{r}
for equation (2) $D>4 \mathrm{H}_{\mathrm{l}} \mathrm{H}_{\mathrm{r}} f_{\mathrm{mc}} \times 10^{-6}$
Multiplying the true radius of the earth by correction factor 1.33 to provide for average atmospheric refraction gives the radio path horizon as
$D_{l}=\sqrt{2 H_{l}}+\sqrt{2 H_{r}}$ statute miles
If the refractive effect of the atmosphere is ignored, line-of-sight horizon is reduced to the geometric range
$D_{g}=1.23\left(\sqrt{H_{\ell}}+\sqrt{H_{r}}\right)$
These distances may be obtained from the nomograph, Fig. 13.
When the transmission distance is not large compared with antenna height, the field strength oscillates with distance and height as indicated by the sine term of equation (1).
The number of oscillations for a given distance increases with frequency as illustrated in Fig. 14. This is due to interference between the space wave and the ground-reflected wave as these two components fall in or out of phase at various distances and heights.

238

U-H-F path length and optical line-of-sight

distance range of radio waves

The thearetical maximum path of a radio wave, the sum of the "optical" horizon distances of each antenna, is found on "line-of-sight" scale by a line connecting points representing the two antenna heights. Atmospheric diffraction increases this path an amount generally considered as $2 / \sqrt{3}$ times optical line of sight, given on the radio path scale.
Example shown: Height of receiving antenna 60 feet, height of transmitting antenna 500 feet, and maximum radio path length 41.5 miles.

Fig. 13 ,

Propagation of very short waves continued

Fig. 14-Effect of frequency on ground-wove field intensity.
To compute the field accurately under these conditions, it is necessary to calculate the two components separately and to add them in correct phase relationship as determined by the geometry of the path and the change in magnitude and phase at ground reflection. For horizontally-polarized waves, the reflection coefficient can be taken as approximately one, and the phase

Propagation of very short waves continued

shift at reflection as 180 degrees, for nearly alt types of ground and angles of incidence. For vertically-polarized waves, the reflection coefficient and phase shift vary with the ground constants and angle of incidence.*

For methods of computing field intensities when equations (1) and (2) do not hold beyond the radio path horizon, or when the antenna height is not negligible compared to distance, see reference below. \dagger
At points beyond the radio path horizon, field intensity decreases more rapidly than the square of the distance; and, if the antennas are raised, the field intensity increases more rapidly than the product of antenna heights.

Measured field intensities usually show large deviations from point to point due to reflections from irregularities in the ground, buildings, trees, etc. In addition, fields at the longer distances are subject to fading and day-to-day variations due to changes in the refractive index of the atmosphere and tropospheric reflections.

[^22]
Great circle calculations

Referring to Figs. 15,16 , and $17, A$ and B are two places on the earth's surface the latitudes and longitudes of which are known. The angles X and Y at A and B of the great circle passing through the two places and the distance Z between A and B along the great circle can be calculated as follows:
B is the place of greater latitude, i.e., nearer the pole
L_{A} is the latitude of A
L_{B} is the latitude of B
C is the difference of longitude between A and B
Then, $\tan \frac{Y-X}{2}=\cot \frac{C}{2} \frac{\sin \frac{L_{B}-L_{A}}{2}}{\cos \frac{L_{B}+L_{A}}{2}}$
and, $\tan \frac{Y+X}{2}=\cot \frac{C}{2} \frac{\cos \frac{L_{B}-L_{A}}{2}}{\sin \frac{L_{B}+L_{A}}{2}}$
give the values of $\frac{Y-X}{2}$ and $\frac{Y+X}{2}$

Great circle calculations continued
from which
$\frac{Y+X}{2}+\frac{Y-X}{2}=Y$
and
$\frac{Y+X}{2}-\frac{Y-X}{2}=X$
In the above formulas, north latitudes are taken as positive and south latitudes as negative. For example, if B is latitude $60^{\circ} \mathrm{N}$ and A is latitude $20^{\circ} \mathrm{S}$
$\frac{L_{B}+L_{A}}{2}=\frac{60+(-20)}{2}=\frac{60-20}{2}=\frac{40}{2}=20^{\circ}$
and
$\frac{L_{B}-L_{A}}{2}=\frac{60-(-20)}{2}=\frac{60+20}{2}=\frac{80}{2}=40^{\circ}$
If both places are in the southern hemisphere and $L_{B}+L_{A}$ is negative, it is simpler to call the place of greater south latitude B and to use the above method for calculating bearings from true south and to convert the results afterwards to bearings east of north.

The distance Z (in degreesl along the great circle between A and B is given by the following:
$\tan \frac{Z}{2}=\tan \frac{L_{B}-L_{A}}{2} \frac{\sin \frac{Y+X}{2}}{\sin \frac{Y-X}{2}}$
The angular distance Z (in degrees) between A and B may be converted to linear distance as follows:
Z (in degrees) $\times 111.195=$ kilometers
Z lin degrees) $\times \quad 69.093=$ statute miles
Z lin degrees) $\times 60.000=$ nautical miles
In multiplying, the minutes and seconds of arc must be expressed in decimals of a degree. For example, $Z=37^{\circ} 45^{\prime} 36^{\prime \prime}$ becomes 37.755°.

Example:-Find the great circle bearings at Brentwood, Long Island, Longitude $73^{\circ} 15^{\prime} 10^{\prime \prime} \mathrm{W}$, Latitude $40^{\circ} 48^{\prime} 40^{\prime \prime} \mathrm{N}$, and at Rio de Janeiro, Brazil, Longitude $43^{\circ} 22^{\prime} 07^{\prime \prime} \mathrm{W}$, Latitude $22^{\circ} 57^{\prime} 09^{\prime \prime} \mathrm{S}$, and the great circle distance in statute miles between the two points.

Fig. 16
$\mathbf{L}_{\mathrm{A}}=$ latitude of A
$L_{B}=$ latitude of B
C $=$ difference of longitude

Fig. 17
$\mathrm{L}_{\mathbf{A}}=$ latitude of A
$L_{B}=$ latitude of B
$\mathbf{C}=$ difference of longitude

RADIO PROPAGATION AND NOISE
 243

Great circle calculations continued

$\frac{Y+X}{2}+\frac{Y-X}{2}=Y=150^{\circ} 40^{\prime} 52^{\prime \prime}$ East of North—bearing at Brentwood
$\frac{Y+X}{2}-\frac{Y-X}{2}=X=23^{\circ} 44^{\prime} 00^{\prime \prime}$ West of Nopth—bearing at Rio de Janeiro

$$
\begin{aligned}
& \frac{L_{n}-L_{A}}{2}=31^{\circ} 52^{\prime} 54^{\prime \prime} \\
& \frac{Y+X}{2}=87^{\circ} 12^{\prime} 26^{\prime \prime} \\
& \frac{Y-X}{2}=63^{\circ} 28^{\prime} 26^{\prime \prime} \\
& \log \tan 31^{\circ} 52^{\prime} 54^{\prime \prime}=9.79379 \\
& \text { plus } \log \sin 87^{\circ} 12^{\prime} 26^{\prime \prime}=\frac{9.99948}{9.79327} \\
& \text { minus } \log \sin 63^{\circ} 28^{\prime} 26^{\prime \prime}=9.95170 \\
& \log \tan \frac{Z}{2}=9.84157 \\
& \frac{Z}{2}=34^{\circ} 46^{\prime} 24^{\prime \prime} \\
& Z=69^{\circ} 32^{\prime} 48^{\prime \prime}
\end{aligned}
$$

$$
\begin{aligned}
69^{\circ} 32^{\prime} 48^{\prime \prime} & =69.547^{\circ} \\
\text { linear distance } & =69.547 \times 69.093=4805.21 \text { statuta miles }
\end{aligned}
$$

Fig. 18 gives the time interval between transmission and reception of a reflected signal based on a velocity of propagation in free space of 985 feet per microsecond or 300 meters per microsecond. A statute mile of 5280 feet or 1760 yards or 1.609 kilometers is used.

Note: Ordinotes show distance to point of reflection
Fig. 18.

Radio noise and noise measurement*

Radio noise may be divided into four classifications, depending on origin:

1. Atmospheric noise (static)
2. Cosmic noise
3. Man-made noise
4. Receiver and antenna noise
[^23]
Radio noise and noise measurement continued

Radio noise, as in Fig. 19, is usually expressed in terms of peak values. Atmospheric noise is shown in the figure as the average peaks would be read on the indicating instrument of an ordinary field intensity meter. This is lower than the true peaks of atmospheric noise. Man-made noise is shown as the peak values that would be read on the EEI-NEMA-RMA standard noise meter. Receiver and antenna noise is shown with the peak values 13 decibels higher than the values obtained with an energy averaging device such as a thermoammeter.

1. Atmospheric noise: is produced mostly by lightning discharges in thunderstorms. The noise level is thus dependent on frequency, time of day, weather, season of the year, and geographical location.

Subject to variations due to local stormy areas, noise generally decreases with increasing latitude on the surface of the globe. Noise is particularly severe during the rainy seasons in certain areas such as Caribbean, East Indies, equatorial Africa, northern India, etc. Fig. 19 shows median values of atmospheric noise for the U. S. A. and these values may be assumed to apply approximately to other regions lying between 30 and 50 degrees latitude north or south.

Rough approximations for atmospheric noise in other regions may be obtained by multiplying the values of Fig. 19 by the factors in Table III.

Table III-Multiplying factors for afmospheric noise in regions not shown on Fig. 19

latitude	nightime		daytime	
	100 ke	10 mc	100 ke	10 mc
$90^{\circ}-50^{\circ}$	0.1	0.3	0.05	0.1
$50^{\circ}-30^{\circ}$	1	1	1	1
$30^{\circ}-10^{\circ}$	2	2	3	2
$10^{\circ}-0^{\circ}$	5	4	6	3

Atmospheric noise is the principal limitation of radio service on the lower frequencies. At frequencies above about 30 megacycles, the noise falls to levels generally lower than receiver noise.

The peak amplitude of atmospheric noise usually may be assumed to be proportional to the square root of receiver bandwidth.
2. Cosmic noise: originates outside the earth's atmosphere and appears as a random noise like thermal agitation. Cosmic noise has been observed and measured at frequencies from 10 to 20 megacycles and at frequencies of about 160 megacycles. It is reasonable to assume that it exists at all frequencies between 10 and 1000 megacycles and higher.

Radio noise and noise measurement continued

The intensity of cosmic noise is generally lower than interference produced by other sources. In the absence of atmospheric and man-made noise, it may be the principal limiting factor in reception between 10 and 30 megacycles.

frequency

Notes:

1. All noise curves assume a bondwith of 10 kilocycles.
2. Receiver noise is based on the use of a half-wave dipole antenna and is worse than an ideal receiver by 10 decibels at 50 megacycles and 15 decibels at 1000 megacycles.
3. Refer to Fig. 20 for converting man-made noise curves to bandwiths greater than 10 kilocycles.
4. For all other curves, noise varies as the square root of bandwith.

Fig. 19.

Radio noise and noise measurement continued

3. Man-made noise: includes interference produced by sources such as motorcar ignition, electric motors, electric switching gear, high-tension line leakage, diathermy, industrial heating generators. The field intensity from these sources is greatest in densely populated and industrial areas.

The nature of man-made noise is so variable that it is difficult to formulate a simple rule for converting 10 kilocycle bandwidth receiver measurements to other bandwidth values. For instance, the amplitude of the field strength radiated by a diathermy device will be the same in a 100 - as in a 10 -kilocycle bandwidth receiver. Conversely, peak noise field strength due to automobile ignition will be considerably greater with a 100 - than with a 10 -kilocycle bandwidth. According to the best available information, the peak field strengths of man-made noise lexcept diathermy and other narrow-band noise) increases as the receiver bandwidth is increased, substantially as shown in Fig. 20.

receiver bandwidth in kilocyclas
Fig. 20-8andwidth factor. Multiply value of man-made noise from Fig. 19 by the foctor above for receiver bandwidths higher than 10 kilocyeles.

The man-made noise curves in Fig. 19 show typical median values for the U.S.A. In accordance with statistical practice, median values are interpreted to mean that 50 percent of all sites will have lower noise levels than the values of Fig. 19; 70 percent of all sites will have noise levels less than 1.9 times these values; and 90 percent of all sites, less than seven times these values.

Radio noise and noise measurement continued

4. Receiver and antenna noise: is caused by thermal agitation in resistance components of the antenna and receiver circuits and by electronic current flow in the tubes.

The basic equation for thermal agitation noise is

```
\(E^{2}=4 k T R \Delta f\)
where
    \(E=\) rms volts
    \(k=\) Boltzmann's constant \(=1.374 \times 10^{-23}\)
    \(T=\) absolute temperature in degrees Kelvin
    \(R=\) resistance in ohms
\(\Delta f=\) bandwidth in cycles per second
```

For application of this formula to receiver input circuits see Herold, E. W.,
An Analysis of the Signal-to-Noise Ratio of Ultra-High-Frequency Receivers;
and North, D. O., The Absolute Sensitivity of Radio Receivers. RCA Review,
vol. 6 (January, 1942).

The ideal receiver is one in which the only noise is that generated by thermal agitation in the radiation resistance of the antenna and in the input coupling resistance. The calculated values shown in Fig. 19 are based on the assumption that an actual receiver has a noise level greater than the ideal receiver by a factor varying from 10 decibels at 50 megacycles to 15 decibels at 1000 megacycles.

The peak value of this type of noise is approximately 13 decibels greater than its rms value. The amplitude is proportional to the square root of receiver bandwidth. Fig. 19 shows the field intensities required to equal the peak receiver noise values calculated on the above basis. These equivalent field intensities assume the use of a half-wave dipole receiving antenna. Transmission-line loss is omitted in the calculations. For antennas delivering more power to the receiver than a half-wave dipole, equivalent noise field intensities are less than indicated in Fig. 19 in proportion to the net gain of the antenna plus transmission line.
5. Signal-to-noise ratio: for satisfactory reception varies over wide limits dependent on the type of communication, bandwidth, type of modulation, directivity of receiving antenna, character of noise, etc. A rough general relationship applicable to many services is that the average value of field intensity should be at least 10 decibels higher than the peak noise intensity, both measured on nondirective antennas with the noise peaks as observed on the usual type of measuring devices. Due to the relationship between peak and average values for noise, this means that the average field intensity should exceed the average noise intensity by at least 20 to 25 decibels.

RADIO PROPAGATION AND NOISE 49

Radio noise and noise measurement continued

Considerably higher ratios of signal-to-noise fields are required for many uses such as AM program transmission, television, loop direction finding, etc.
6. Measurement of radio noise: External noise fields, such as atmospheric, cosmic, and man-made, are measured in the same way as radio wave field strengths* with the exception that peak rather than average values of noise are usually of interest and that the overall bandpass action of the measuring apparatus must be accurately known in measuring noise. When measuring noise varying over wide limits with time, such as atmospheric noise, it is generally best to employ automatic recorders.
Internal receiver and antenna noise may be measured by a standard signal generator connected to the receiver through a resistance equal to the calculated antenna radiation resistance. The amplitude of a single-frequency signal at the center of the pass band, when receiver output is $\sqrt{2}$ times the noise output with no signal, may be taken as equal to the noise amplitude.

* For methods of measuring field strengths and, hence, noise. see I.R.E. Standards on Radio Wove Propagation. Meas uring Methods 119421 . For informotion on suitable circuits to obtain peak values, particularly with respect to man-made noise, see Agger, C. V., Foster, D. E., and Young, C. S. Instruments and Methods of Measuring Radio Noise. Trans. A.t.E.E. EElec. Eng., March, 19401, vol. 59.

Field iniensity from an elementary dipole*

The elementary dipole forms the basis for many antenna computations. Since dipole theory assumes an antenna with current of constant magnitude and phase throughout its length, approximations to the elementary dipole are realized in practice only for antennas shorter than one-tenth wavelength. The theory can be applied directly to a loop whose circumference is less than one-tenth wavelength, thus forming a magnetic dipole. For larger antennas, the theory is applied by assuming the antenna to consist of a large number of infinitesimal dipoles with differences between individual dipoles of space position, polarization, current magnitude, and phase corresponding to the distribution of these parameters in the actual antenna. Field intensity equations for large antennas are then developed by integrating or otherwise summing the field vectors of the many elementary dipoles.

The outline below concerns electric dipoles. It also can be applied to magnetic dipoles by installing the loop perpendicular to the PO line at the center of the sphere in Fig. I. In this case, vector h becomes ϵ, the electric field; ϵ_{t} becomes the magnetic tangential field; and ϵ_{r} the radial magnetic field.

Fig. 1
Electric and magnatic components in spherical coordinates for electric dipoles.

In the case of a magnetic dipole, Table I, showing variations of the field in the vicinity of the dipole, can also be used. A_{r} is then the coefficient for the radial magnetic field; A_{t} is the coefficient for the tangential magnetic field; A_{h} is the coefficient for the electric field; $\phi_{r} ; \phi_{t}$ and ϕ_{h} being the phase angles corresponding to the coefficients.

[^24]For electric dipoles, Fig. 1 indicates the electric and magnetic field components in spherical coordinates with positive values shown by the arrows.
$r=$ distance OM

$$
\begin{aligned}
\omega & =2 \pi f \\
\alpha & =\frac{2 \pi}{\lambda} \\
c & =\text { velocity of light (see page } 28 \text {) } \\
v & =\omega t-\alpha r \\
J & =\text { length of dipole }
\end{aligned}
$$

$\theta=$ angle POM measured from P toward M
$I=$ current in dipole
$\lambda=$ wavelength
$f=$ frequency
The following equations expressed in electromagnetic units* (in vacuum) result:

$$
\begin{align*}
\epsilon_{r} & =-\frac{c / \lambda I}{\pi} \frac{\cos \theta}{r^{3}}(\cos v-\alpha r \sin v) \\
\epsilon_{t} & =+\frac{c / \lambda I}{2 \pi} \frac{\sin \theta}{r^{3}}\left(\cos v-\alpha r \sin v-\alpha^{2} r^{2} \cos v\right) \tag{1}\\
h & =-I \frac{\sin \theta}{r^{2}}(\sin v-\alpha r \cos v)
\end{align*}
$$

* See pages 16 and 17 .

Table I-Variations of the field in the vicinity of a dipole

r/ λ	1/ α r	A_{r}	ϕ	A_{1}	$\phi+$	A_{h}	$\phi_{\text {h }}$
0.01	15.9	4,028	$3^{\circ} .6$	4,012	$3^{\circ} .6$	253	$93^{\circ} .6$
0.02	7.96	508	$7^{\circ} .2$	500	$7^{\circ} .3$	64.2	$97^{\circ} .2$
0.04	3.98	65	$14^{\circ} .1$	61	$15^{\circ} .0$	16.4	$104^{\circ} .1$
0.06	2.65	19.9	$20^{\circ} .7$	17.5	$23^{\circ} .8$	7.67	$110^{\circ} .7$
0.08	1.99	8.86	$26^{\circ} .7$	7.12	$33^{\circ} .9$	4.45	$116^{\circ} .7$
0.10	1.59	4.76	$32^{\circ} .1$	3.52	$45^{\circ} .1$	2.99	$122^{\circ} .1$
0.15	1.06	1.66	$42^{\circ} .3$	1.14	$83^{\circ} .1$	1.56	$132^{\circ} .3$
0.20	0.80	0.81	$51^{\circ} .5$	0.70	$114^{\circ} .0$	1.02	$141^{\circ} .5$
0.25	0.64	0.47	$57^{\circ} .5$	0.55	$133^{\circ} .1$	0.75	$147^{\circ} .5$
0.30	0.56	0.32	$62^{\circ} .0$	0.48	$143^{\circ} .0$	0.60	$152^{\circ} .0$
0.35	0.45	0.23	$65^{\circ} .3$	0.42	$150^{\circ} .1$	0.50	$155^{\circ} \cdot 3$
0.40	0.40	0.17	$68^{\circ} .3$	0.37	$154^{\circ} .7$	0.43	$158^{\circ} .3$
0.45	0.35	0.134	$70^{\circ} .5$	0.34	$158^{\circ} .0$	0.38	$160^{\circ} .5$
0.50	0.33	0.106	$72^{\circ} .3$	0.30	$160^{\circ} .4$	0.334	$162^{\circ} .3$
0.60	0.265	0.073	$75^{\circ} .1$	0.26	$164^{\circ} .1$	0.275	$165^{\circ} .1$
0.70	0.228	0.053	$77^{\circ} .1$	0.22	$166^{\circ} .5$	0.234	$167^{\circ} .1$
0.30	0.199	0.041	$78^{\circ} .7$	0.196	$168^{\circ} .3$	0.203	$168^{\circ} .7$
0.90	0.177	0.032	$80^{\circ} .0$	0.175	$169^{\circ} .7$	0.180	$170^{\circ} .0$
1.00	0.159	0.026	$80^{\circ} .9$	0.157	$170^{\circ} .7$	0.161	$170^{\circ} .9$
1.20	0.133	0.018	$82^{\circ} .4$	0.132	$172^{\circ} .3$	0.134	$172^{\circ} .4$
1.40	0.114	0.013	$83^{\circ} .5$	0.114	$173^{\circ} .5$	0.114	$173^{\circ} .5$
1.60	0.100	0.010	$84^{\circ} .3$	0.100	$174^{\circ} \cdot 3$	0.100	$174^{\circ} \cdot 3$
1.80	0.088	0.008	$84^{\circ} .9$	0.088	$174{ }^{\circ} .9$	0.088	$174^{\circ} .9$
2.00	0.080	0.006	$85^{\circ} .4$	0.080	$175^{\circ} .4$	0.080	$175^{\circ} .4$
2.50	0.064	0.004	$86^{\circ} .4$	0.064	$176^{\circ} .4$	0.064	$176^{\circ} .4$
5.00	0.032	0.001	$88^{\circ} .2$	0.032	$178^{\circ} .2$	0.032	$178^{\circ} .2$

Field intensity from an elementary dipole cantinued

These formulas are valid for the elementary dipole at distances which are large compared with the dimensions of the dipole. Length of the dipole must be small with respect to the wavelength, say $\frac{l}{\lambda}<0.1$. The formulas are for a dipole in free space. If the dipole is placed vertically on a plane of infinite conductivity, its image should be taken into account, thus doubling the above values.

Field of an elementary dipole at great distance

When distance r exceeds five wavelengths, as is generally the case in radio applications, the product $\alpha r=2 \pi \frac{r}{\lambda}$ is large and lower powers in ar can be neglected. The radial electric field ϵ_{r} then becomes negligible with respect to the tangential field and

$$
\left.\begin{array}{l}
\epsilon_{r}=0 \tag{2}\\
\epsilon_{\ell}=-\frac{2 \pi c l I}{\lambda r} \sin \theta \cos (\omega t-\alpha r) \\
h=-\frac{\epsilon_{\ell}}{c}
\end{array}\right\}
$$

Field of an elementary dipole at short distance
In the vicinity of the dipole $\left(\frac{r}{\lambda}<0.01\right)$, ar is very small and only the first terms between parantheses in equations (1) remain. The ratio of the radial and tangential field is then

$$
\frac{\epsilon_{r}}{\epsilon_{t}}=-2 \cot \theta
$$

Hence, the radial field at short distance has a magnitude of the same order as the tangential field. These two fields are in opposition. Further, the ratio of the magnetic and electric tangential field is
$\frac{h}{\epsilon_{\ell}}=-\frac{\alpha r}{c} \frac{\sin v}{\cos v}$
The magnitude of the magnetic field at short distances is, therefore, extremely small with respect to that of the tangential electric field, relative to their relationship at great distances. The two fields are in quadrature. Thus, at short distances, the effect of the dipole on an open circuit is much greater than on a closed circuit as compared with the effect at remote points.

Field of an elementary dipole at intermediate distance

At intermediate distance, say between 0.01 and 5.0 wavelengths, one should take into account all the terms of the equations 111. This case occurs, for instance, when studying reactions between adjacent antennas. To calculate the fields, it is convenient to transform the equations as follows:
$\left.\begin{array}{l}\epsilon_{r}=-2 \alpha^{2} c l I \cos \theta A_{r} \cos \left(v+\phi_{r}\right) \\ \epsilon_{l}=\alpha^{2} c I I \sin \theta A_{t} \cos \left(v+\phi_{l}\right) \\ h=\alpha^{2} I I \sin \theta A_{h} \cos \left(v+\phi_{h}\right)\end{array}\right\}$
where

$$
\left.\begin{array}{ll}
A_{r}=\frac{\sqrt{1+\left(\alpha_{r}\right)^{2}}}{(\alpha r)^{3}} & \tan \phi_{r}=\alpha r \\
A_{t}=\frac{\sqrt{1-(\alpha r)^{2}+(\alpha r)^{4}}}{\left(\alpha_{r}\right)^{3}} & \cot \phi_{r}=\frac{1}{\alpha r}-\alpha r \tag{4}\\
A_{h}=\frac{\sqrt{1+\left(\alpha_{r}\right)^{2}}}{\left(\alpha_{r}\right)^{2}} & \cot \phi_{h}=-\alpha r
\end{array}\right\}
$$

Vapues of A 's and ϕ 's are given in Table I as a function of the ratio between the distance r and the wavelength λ. The second column contains values of $\frac{1}{\alpha r}$ which would apply if the fields ϵ_{t} and h behaved as at great distances. $\alpha \mathrm{r}$

Field intensity from a vertically polarized

antenna with base close to ground

The following formula is obtained from elementary dipole theory and is applicable to low frequency antennas. It assumes that the earth is a perfect reflector, the antenna dimensions are small compared with λ, and the actual height does not exceed $\frac{\lambda}{4}$.
The vertical component of electric field radiated in the ground plane, at distances so short that ground attenuation may be neglected lusually when $D<10 \lambda 1$, is given by
$E=\frac{377 I H_{e}}{\lambda D}$
where
$E=$ field intensity in millivolts per meter
$I=$ current at base of antenna in amperes
$H_{e}=$ effective height of antenna
$\lambda=$ wavelength in same units as H
$D=$ distance in kilometers

Field intensity from a vettically polarized
anfenna with base close to ground continued
The effective height of a grounded vertical antenna is equivalent to the height of a vertical wire producing the same field along the horizontal as the actual antenna, provided the vertical wire carries a current that is constant along its entire length and of the same value as at the base of the actual antenna. Effective height depends upon the geometry of the antenna and varies slowly with λ. For types of antennas normally used at low and medium frequencies, it is roughly one-half to two-thirds the actual height of the antenna.

For certain antenna configurations effective height can be calculated by the following formulas

1. Straight vertical antenna $\left(h \equiv \frac{\lambda}{4}\right)$
$H_{e}=\frac{\lambda}{\pi \sin \frac{2 \pi h}{\lambda}} \sin ^{2}\binom{\pi h}{\lambda}$
where $h=$ actual height
2. Loop antenna ($A<0.001 \lambda^{2}$)
$H_{e}=\frac{2 \pi n A}{\lambda}$
where $A=$ mean area per turn of loop
$n=$ number of turns
3. Adcock antenna
$H_{e}=\frac{2 \pi a b}{\lambda}$
where
$a=$ height of antenna
$b=$ spacing between antennas
In the above formulas, if H_{e} is desired in meters or feet, all dimensions h, A, a, b, and λ must be in meters or feet respectively.

Vertical radiators

The field intensity from a single vertical tower insulated from ground and either of self-supporting or guyed construction, such as is commonly used for medium-frequency broadcasting, may be calculated by the following
formula. This is more accurate than the formula given on page 253. Near ground level the formula is valid within the range $2 \lambda<0<10 \lambda$.
$E=\frac{60 I}{D \sin 2 \pi \frac{h}{\lambda}}\left[\frac{\cos \left(2 \pi \frac{h}{\lambda} \cos \theta\right)-\cos 2 \pi \frac{h}{\lambda}}{\sin \theta}\right]$
where
$E=$ field intensity in millivolts per meter
$I=$ current at base of antenna in amperes
$h=$ height of antenna
$\lambda=$ wavelengths in same units as h
$D=$ distance in kilometers
$\theta=$ angle from the vertical
Radiation patterns in the vertical plane for antennas of various heights are shown in Fig. 2. Field intensity along the horizontal as a function of antenna height for one kilowatt radiated is shown in Fig. 3.

Fig. 2-field strenglh as a function of angle of elevation for vertical radiators of different heights.

Both Figs. 2 and 3 assume sinusoidal distribution of current along the antenna and perfect ground conductivity. Current magnitudes for one-kilowatt power used in calculating Fig. 3 are also based on the assumption that the only resistance is the theoretical radiation resistance of a vertical wire with sinusoidal current.

Since inductance and capacitance are not uniformly distributed along the tower and since current is attenuated in traversing the tower, it is impossible to obtain sinusoidal current distribution in practice. Consequently actual radiation patterns and field intensities differ from Figs. 2 and 3.* The closest approximation to sinusoidal current is found on constant cross-section towers.

antenna haight in wavelength

Fig. 3-Field strength along the horizontal as a function of antenna height for a vertical grounded radiator with ane kilowatt radiated power.

In addition, antenna efficiencies vary from about 70 percent for 0.15 wavelength physical height to over 95 percent for 0.6 wavelength height. The input power must be multiplied by the efficiency to obtain the power radiated.

Average results of measurements of impedance at the base of several actual

[^25]vertical radiators, as given by Chamberlain and Lodge, are shown in Fig. 4. For design purposes when actual resistance and current of the projected radiator are unknown, resistance values may be selected from Fig. 4 and

Fig. 4-Resistance and reactance components of impedance between tower base ond ground of vertical radiators as given by Chamberlain and Lodge. Solid lines show average results for 5 guyed towers; dolted lines show average results for 3 selfsupporling lowers.

Vertical radiators continued

the resulting effective current obtained from the following equation

$$
\begin{equation*}
I_{e}=\sqrt{\frac{W \eta}{R}} \tag{6}
\end{equation*}
$$

where

$$
\begin{aligned}
I_{e} & =\text { current effective in producing radiation in amperes } \\
W & =\text { watts input } \\
\eta & =\text { antenna efficiency, varying from } 0.70 \text { at } \frac{h}{\lambda}=0.15
\end{aligned}
$$

$$
\text { to } 0.95 \text { at } \frac{h}{\lambda}=0.6
$$

$R=$ resistance at base of antenna in ohms
If I_{e} from (6) is substituted in (5), reasonable approximations to the field intensity at unit distances, such as one kilometer or one mile, will be obtained.

The practical equivalent of a higher tower may be secured by adding a capacitance "hat" with or without tuning inductance at the top of a lower tower.*

A good ground system is important with vertical-radiator antennas. It should consist of at least 120 radial wires, each one-half wavelength or longer, buried 6 to 12 inches below the surface of the soil. A ground screen of highconductivity metal mesh, bonded to the ground system, should be used on or abcue the surface of the ground adjacent to the tower.

* For additional information see Brown, G. H., Proc. I.R.E., vol. 24, p. 48 IJanuary, 1936) and Brown, G. H. and leitch J. G., vol. 25, p. 533 IMay, 1937 I.

Field intensity and radiated power from

a half-wave dipole in free space

Fig. 5 on page 259 shows the field intensity and radiated power from a half-wave dipole in free space. The following formulas apply:

Input power $W=I^{2} R=I^{2}(73.12)$ watts
Radiated power $P=\frac{30 I^{2}}{\pi d^{2}}=\frac{0.1306 \mathrm{~W}}{d^{2}}$ watts per square meter
Electric field intensity $E=\frac{60 I}{d}=\frac{7.0^{2} \sqrt{W}}{d}$ volts per meter
$I=$ maximum current on dipole in rms amperes
$R=$ radiation resistance $=73.12$ ohms
$d=$ distance from antenna in meters

Field intensity and radiated power from a half-wave dipole continue?

Fig. 5.

260

Table II-Radiation from an end-fed conductor of any length in space

Maxima and minima of radiation from a single-wire radiator

Fig. 6.

Rhombic antennas

Linear radiators may be combined in various ways to form antennas such as the horizontal vee, inverted vee, etc. The type most commonly used at high frequencies is the horizontal terminated rhombic shown in Fig. 7.

In designing rhombic antennas* for high-frequency radio circuits, the desired vertical angle $د$ of radiation above the horizon must be known or assumed. When the antenna is to operate over a wide range of radiation angles or is to operate on several frequencies, compromise values of H, L, and ϕ must

[^26]be selected. Gain of the antenna increases as the length of L of each side is increased; however, to avoid too-sharp directivity in the vertical plane, it is usual to limit L to less than six wavelengths.

Fig. 8-Rhombic antenna design chart.
Knowing the side length and radiation angle desired, the height H above ground and the filt angle ϕ can be obtained from Fig. 8 as in the following example:

Problem: Find H and ϕ if $\Delta=20^{\circ}$ and $L=4 \lambda$.
Solution: On Fig. 8 draw a vertical line from $\Delta=20^{\circ}$ to meet $\frac{L}{\lambda}=4$ curve and $\frac{H}{\lambda}$ curves. From intersection at $\frac{L}{\lambda}=4$, read on the right-hand
scale $\phi=71.5^{\circ}$. From intersection on $\frac{H}{\lambda}$ curves, there are two possible values on the left-hand scale

1. $\frac{H}{\lambda}=0.74$ or $H=0.74 \lambda$
2. $\frac{H}{\lambda}=2.19$ or $H=2.19 \lambda$

Similarly, with an antenna 4λ on the side and a tilt angle $\phi=71.5^{\circ}$, working backwards, it is found that the angle of maximum radiation Δ is 20°, if the antenna is 0.74λ or 2.19λ above ground.

Anfenna arrays

The basis for all directivity control in antenna arrays is wave interference. By providing a large number of sources of radiation, it is possible with a fixed amount of power greatly to reinforce radiation in a desired direction by suppressing the radiation in undesired directions. The individual sources may be any type of antenna.
Expressions for the radiation pattern of several common types of individual elements are shown in Table III but the array expressions are not limited to them. The expressions hold for linear radiators, rhombics, vees, horn radiators, or other complex antennas when combined into arrays, provided a suitable expression is used for A, the radiation pattern of the individual antenna. The array expressions are multiplying factors. Starting with an individual antenna having a radiation pattern given by A, the result of combining it with similar antennas is obtained by multiplying A by a suitable array factor, thus obtaining an A^{\prime} for the group. The group may then be treated as a single source of radiation. The result of combining the group with similar groups or, for instance, of placing the group above ground, is obtained by multiplying A^{\prime} by another of the array factors given.

The expressions given here assume negligible mutual coupling between individual antennas. When coupling is not negligible, the expressions apply only if the feeding is adjusted to overcome the coupling and thus produce resultant currents which are equal or binomial in amplitude and of the relative phases indicated.
One of the most important arrays is the linear multi-element array where a large number of equally spaced antenna elements are fed equal currents in phase to obtain maximum directivity in the forward direction. Table IV gives expressions for the radiation pattern of several particular cases and the general case of any number of broadside elements.

264

Antenna arrays continued
In this type of array, a great deal of directivity may be obtained. A large number of minor lobes, however, are apt to be present and they may be undesirable under some conditions, in which case a type of array, called the Binomial array, may be used. Here again all the radiators are fed in phase

Table III—Radiation patterns of several common types of antennas

$\theta=$ horizontal angle measured from perpendicular bisecting plane
$\beta=$ vertical angle measured from horizon
K and K^{\prime} are constants and $K^{\prime} \cong 0.7 K$
but the current is not distributed equally among the array elements, the center radiators in the array being fed more current than the outer ones. Table V shows the configuration and general expression for such an array. In this case the configuration is made for a vertical stack of loop attennas

Table IV-Linear multi-element array broadside directivity
confguration of array
$A=1$ for horizontal loop, vertical dipole
$A=\frac{\cos \left(\frac{\pi}{2} \sin \theta\right)}{\cos \theta}$ for horizontal dipole
$s^{\circ}=$ spacing of successive elements in degrees
in order to obtain single-lobe directivity in the vertical plane. If such an array were desired in the horizontal plane, say n dipoles end to end, with the specified current distribution the expression would be
$F(\theta)=2^{n-1}\left[\frac{\cos \left(\frac{\pi}{2} \sin \theta\right)}{\cos \theta}\right] \cos ^{n-1}\left(\frac{1}{2} S^{\circ} \sin \theta\right)$
The term binomial results from the fact that the current intensity in the successive array elements is in accordance with the binomial expansion $(1+1)^{n-1}$, where n is the number of elements.

Examples of use of Tables III, IV, V, and VI

Problem 1: Find horizontal radiation pattern of four colinear horizontal dipoles, spaced successively $\frac{\lambda}{2}\left(180^{\circ}\right)$.
So.ution: From Table IV radiation from four radiators spaced 180° is given by $\left.F()^{\circ}\right)=4 \mathrm{~A} \cos \left(180^{\circ} \sin \theta\right) \cos \left(90^{\circ} \sin \theta\right)$.

From Table III the horizontal radiation of a half-wave dipole is given by
$A=K \frac{\cos \left(\frac{\pi}{2} \sin \theta\right)}{\cos \theta} ;$
therefore, the total radiation
$F(\theta)=K\left[\frac{\cos \left(\frac{\pi}{2} \sin \theta\right)}{\cos \theta}\right] \cos \left(180^{\circ} \sin \theta\right) \cos \left(90^{\circ} \sin \theta\right)$
Problem 2: Find vertical radiation pattern of four horizontal dipoles, stacked one above the other, spaced 180° successively.

Solution: From Table IV we obtain the general equation of four radiators, but since the spacing is vertical, the expression should be in terms of vertical angle β.
$F(\beta)=4 A \cos \left(180^{\circ} \sin \beta\right) \cos \left(90^{\circ} \sin \beta\right)$.
From Table III we find that the vertical radiation from a horizontal dipole lin the perpendicular bisecting planel is non-directional. Therefore the vertical pattern is
$F(\beta)=K(1) \cos \left(180^{\circ} \sin \beta\right) \cos \left(90^{\circ} \sin \beta\right)$

Anfenna arrays continued

Table V-Developmenf of binomial array
confguration of orroy

Problem 3: Find horizontal radiation pattern of group of dipoles in problem 2.

Solution: From Table III.
$F(\theta)=K \frac{\cos \left(\frac{\pi}{2} \sin \theta\right)}{\cos \theta} \cong K \cos \theta$
Problem 4: Find the vertical radiation pattern of stack of five loops spaced $2 / 3 \lambda\left(240^{\circ}\right)$ one above the other, all currents equal in phase and amplitude.

Solution: From Table IV, using vertical angle because of vertical stacking,
$F(\beta)=A \frac{\sin \left[5\left(120^{\circ}\right) \sin \beta\right]}{\sin \left(120^{\circ} \sin \beta\right)}$
From Table III, we find A for a horizontal loop in the vertical plane
$A=F(\beta)=K \cos \beta$
Total radiation pattern
$F(\beta)=K \cos \beta \frac{\sin \left[5\left(120^{\circ}\right) \sin \beta\right]}{\sin \left(120^{\circ} \sin \beta\right)}$
Problem 5: Find radiation pattern (vertical directivity) of the five loops in problem 4, if they are used in binomial array. Find also current intensities in the various loops.

Solution: From Table V
$F(\beta)=K \cos \beta\left[\cos ^{4}\left(120^{\circ} \sin \beta\right)\right]$
(all terms not functions of vertical angle β combined in constant K)
Current distribution $(1+1)^{4}=1+4+6+4+1$, which represent the current intensities of successive loops in the array.

Problem 6: Find horizontal radiation pattern from two vertical dipoles spaced one-quarter wavelength apart when their currents differ in phase by 90°.

Solution: From Table VI

$$
\begin{aligned}
& s^{\circ}=\frac{\lambda}{4}=90^{\circ}=\text { spacing } \\
& \phi=90^{\circ}=\text { phase difference } \\
& F(\theta)=2 A \cos \left(45 \sin \theta+45^{\circ}\right)
\end{aligned}
$$

Anfenna arrays
continued
Table VI-Supplementary problems
A-two radiators any phase ϕ expression for intensity
$s^{0}=$ spacing in electrical degrees
$h_{1}{ }^{\circ}=$ height of radiator in electrical degrees
$d^{0}=$ spacing of radiator from screen in electrical degrees

270

Anfenna arrays continued

Problem 7: Find the vertical radiation pattern and the number of nulls in the vertical pattern $0 \leq \beta \leq 901$ from a horizontal loop olaced three wavelengths above ground.

Solution:

$h_{1}^{\circ}=3(360)=1080^{\circ}$
From Table VI
$F(\beta)=2 A \sin (1080 \sin \beta)$
From Table III for loop antennas
$A=K \cos \beta$
Total vertical radiation pattern
$F(\beta)=K \cos \beta \sin (1080 \sin \beta)$
A null occurs wherever $F(\beta)=0$.
The first term, cos β, becomes 0 when $\beta-90^{\circ}$.
The second term, $\sin (1080 \sin \beta)$, becomes 0 whenever the value inside the parenthesis becomes a multiple of 180°. Therefore, number of nulls equal
$1+\frac{h_{1}^{\circ}}{180}=1+\frac{1080}{180}=7$.
Problem 8: Find the vertical and horizontal patterns from a horizontal half-wave dipole spaced $\frac{\lambda}{8}$ in front of a vertical screen.

Solution:
$d^{\circ}=\frac{\lambda}{8}=45^{\circ}$
From Table VI
$F(\beta)=2 A \sin \left(45^{\circ} \cos \beta\right)$
$F(\theta)=2 A \sin \left(45^{\circ} \cos \theta\right)$
From Table III for horizontal half-wave dipole
Vertical pattern $A=K(1)$
Horizontal pattern $A=K \frac{\cos \left(\frac{\pi}{2} \sin \theta\right)}{\cos \theta}$
Total radiation patterns are
Vertical: $\mathrm{F}(\beta)=K \sin \left(45^{\circ} \cos \beta\right)$
Horizontal: $F(\theta)=K \frac{\cos \left(\frac{\pi}{2} \sin \theta\right)}{\cos \theta} \sin \left(45^{\circ} \cos \theta\right)$.

ANTENNAS

Anfenna arrays continued

spacing s° (electrical degrees)
$F(\beta)=\frac{\sin \left(\frac{n s^{\circ}}{2} \sin \beta\right)}{\sin \left(\frac{5^{\circ}}{2} \sin \beta\right)} \cos \beta$
$n=$ number of loops
Gain $(d b)=10 \log _{10}\left[\frac{1}{\frac{1}{n}+\frac{3}{n^{2}} \sum_{k=1}^{n-1}(n-k)\left[-\frac{2 \cos k s^{\circ}}{\left(k s^{\circ}\right)^{2}}+\frac{2 \sin k s^{\circ}}{\left(k s^{\circ}\right)^{3}}\right]}\right]$
Fig. 9-Gain of linear array of loops vertically stacked.

- Non-sinusoidal and modulated wave forms

Relaxation oscillators

Gas fube oscillator

$A=$ pulse output
$B=$ sawtooth output
Typical circuit
$V_{1}=884$
$C_{1}=0.05 \mu \mathrm{f}$
$\mathrm{C}_{2}=0.05 \mu \mathrm{~F}$
$R_{1}=100,000$ ohms
$R_{2}=500$ ohms
$R_{3}=100,000$ ohms
Frequency controlling elements
C_{2}, R_{3}

Feedback relaxation oscillafor

Blocking oscillator

Relaxation oscillators

continued

Squegging oscillator

Multivibrator

Typical circuit
$V_{1}=6 F 8$
$R_{1}=100,000$ ohms
$R_{2}=1000$ ohms
$R_{3}=25,000$ ohms
$R_{4}=250,000$ ohms
$R_{5}=25,000$ ohms
$\mathrm{C}_{1}=0.01 \mu \mathrm{f}$
$C_{2}=250 \mu \mu \mathrm{f}$
Frequency controlling elements $R_{1}, R_{2}, R_{4}, C_{2}$

van der Pol oscillator

Electronic infegration methods

Average value of current or voltage, V or I, during time T or T^{\prime} is equal to zero

Electronic infegration methods

continued

Methods I and II

a. Voltage V must be obtained from a low-impedance source.
b. $\frac{L}{R} \gg T$ or $\frac{M}{R} \gg T$
c. The output E should not react back on the input voltage V.
d. The impedance into which the integrator circuit works should be large compared with R. If this impedance is resistive, it should be included as part of R (this also applies to the input source impedance).

Method III

a. Voltage V must be obtained from a low-impedance source.
b. $R C \gg T$
c. The output E should not react back on the input voltage V.
d. The impedance into which the integrator circuit works should be as large as possible. If this impedance is resistive r then

$$
r C \gg R C
$$

The source impedance should be included in R.

Method IV

a. Current I should be a replica of the input voltage wave-form V.
b. The discharge device allows for integration between limits. If discharge device is not used, the circuit will integrate until E equals the $B+$ voltage.
c. The impedance into which the integrator circuit works should be as large as possible. If this impedance is resistive r then $r C \gg T$.

276

Electronic differentiation methods

I or \mathbf{V} is the change of current or voltage in time T

NON-SINUSOIDAL AND MODULATED WAVE FORMS 27$]$

Electronic differentiation methods continued

Methods I and II

a. Current I should be a replica of the input voltage wave-form V.
b. The voltage V must be substantially independent of the back emf developed by the inductance L.
c. The output shunt impedance placed across E should be high compared to the network impedance.
d. The resonant period associated with the inductance caused by shunting circuit capacitances should be at least one-third the build-up time T.

Method III

a. Voltage V must be obtained from a low-impedance source.
b. The RC product should be one-fiftieth of the build-up time T or smaller.
c. The output voltage E should not react back on the input voltage V.
d. The impedance into which the differentiator circuit works should be large compared with R. If this impedance is resistive, it should be included as part of R. (This also applies to the input source impedance.)

Fourier analysis of recurrent wave forms

General formulas

$$
\begin{align*}
F(\theta)= & \frac{B_{0}}{2}+A_{1} \sin \theta+A_{2} \sin 2 \theta+\ldots+A_{n} \sin n \theta \\
& +B_{1} \cos \theta+B_{2} \cos 2 \theta+\ldots B_{n} \cos n \theta \tag{11}
\end{align*}
$$

Formula (1) may be written

$$
\begin{align*}
F(\theta)= & \frac{B_{0}}{2}+C_{1} \cos \left(\theta-\phi_{1}\right)+C_{2} \cos \left(2 \theta-\phi_{2}\right)+\ldots \\
& +C_{n} \cos \left(n \theta-\phi_{n}\right) \tag{2}
\end{align*}
$$

where

$$
\begin{align*}
C_{n} & =\sqrt{A_{n}^{2}+B_{n}^{2}} \tag{3}\\
\phi_{n} & =\arctan \frac{A_{n}}{B_{n}} \tag{4}
\end{align*}
$$

278

Fourier analysis of recurrent wave forms continued

The coefficients A_{n} and B_{n} are determined by the following formulas:
$A_{n}=\frac{1}{\pi} \int_{-\pi}^{\pi} F(\theta) \sin n \theta d \theta$
$B_{n}=\frac{1}{\pi} \int_{-\pi}^{\pi} F(\theta) \cos n \theta d \theta$
By a change of limits equations (5) and (6) may also be written
$A_{n}=\frac{1}{\pi} \int_{0}^{2 \pi} F(\theta) \sin n \theta d \theta$
$B_{n}=\frac{1}{\pi} \int_{0}^{2 \pi} F(\theta) \cos n \theta d \theta$
If the function $F(\theta)$ is an odd function, that is
$F(\theta)=-F(-\theta)$
the coefficients of all the cosine terms $\left|B_{n}\right|$ of equation (6) become equal to zero.

Similarly if the function $F(\theta)$ is an even function, that is
$F(\theta)=F(-\theta)$
the coefficients of all the sine terms $\left(A_{n}\right)$ of equation (5) become equal to zero.

If the function to be analyzed is thus a symmetrical function defined by either equation (9) or (10) the function should be disposed about the zero axis and an analysis obtained by means of equations (5) or (6) for the simplest solution.

Fourier analysis of recurrent wave forms continued

Graphical solution

If the function to be analyzed is not known analytically, a solution of the Fourier integral may be approximated by graphical means.

The period of the function is divided into a number of ordinates as indicated by the graph.

The values of these ordinates are recorded and the following computations made:

	Y_{0}	Y_{1}	Y_{2}	Y_{3}	Y_{4}	Y_{5}	Y_{8}
		Y_{11}	Y_{10}	Y_{9}	Y_{8}	Y_{7}	
	S_{0}	S_{1}	S_{2}	S_{3}	S_{4}	S_{5}	S_{6}
Sifference		d_{1}	d_{2}	d_{3}	d_{4}	d_{5}	

The sum terms are arranged as follows:

	So	S_{1}	S_{2}	S_{3}	(12)	S_{0}	S_{1}
	S_{6}	S_{6}	S_{4}			$\overline{S_{2}}$	S_{3}
Sum	$\overline{S_{0}}$	$\overline{S_{1}}$	S_{2}	S_{3}		S_{7}	S_{8}
Difference	$\overline{D_{0}}$	$\overline{D_{1}}$	D_{2}				

The difference terms are as follows:

	d_{1}	d_{2}	d_{3}	(14)	
	d_{5}	d_{4}		S	D_{0}
Sum	$\overline{S_{4}}$	$\overline{S_{5}}$	S_{6}	S	D_{2}
Difference	$\overline{D_{3}}$	D_{4}		D_{5}	D_{6}

280

Fourier analysis of recurrenf wave forms continued

The coefficients of the Fourier series are now obtained as follows, where A_{0} equals the average value, the $B_{1} \ldots \ldots$ expressions represent the coefficients of the cosine terms, and the $A_{1} \ldots n_{n}$ expressions represent the coefficients of the sine terms:

$$
\begin{equation*}
B_{0}=\frac{\overline{S_{7}}+\overline{S_{8}}}{12} \tag{16}
\end{equation*}
$$

$\mathrm{B}_{1}=\frac{\overrightarrow{D_{0}}+0.866 \overline{D_{1}}+0.5 \overline{D_{2}}}{6}$
$B_{2}=\frac{\overline{S_{0}}+0.5 \overline{S_{1}}-0.5 \overline{S_{2}}-\overline{S_{3}}}{6}$
$B_{3}=\frac{\overline{D_{6}}}{6}$
$B_{4}=\frac{\overline{S_{0}}-0.5 \overline{S_{1}}-0.5 \overline{S_{2}}+\overline{S_{3}}}{6}$
$B_{5}=\frac{\overline{D_{0}}-0.866 \overline{D_{1}}+0.5 \overline{D_{2}}}{6}$
$B_{6}=\frac{\overline{S_{7}}-\overline{S_{8}}}{12}$
also
$A_{1}=\frac{0.5 \overline{S_{4}}+0.866 \overline{S_{5}}+\overline{S_{6}}}{6}$
$A_{2}=\frac{0.866\left(\overline{D_{3}}+\overline{D_{4}}\right)}{6}$
$A_{3}=\frac{\overline{D_{5}}}{6}$
$A_{4}=\frac{0.866\left(D_{3}-D_{4}\right)}{6}$
$A_{5}=\frac{0.5 \overline{S_{4}}-0.866 \overline{S_{5}}+\overline{S_{6}}}{6}$

Analyses of commonly encounfered wave forms

The following analyses include the coefficients of the Fourier series for all harmonics ($n^{\text {th }}$ order). By the use of the graph for the $\left(\frac{\sin x}{x}\right)$ function, where $f(x)$ is even, the amplitude coefficients may be evaluated in a simple manner.

x in radians

The symbols used are defined as follows:

$$
\begin{array}{ll}
A=\text { pulse amplitude } & r=\text { pulse decay time } \\
T=\text { periodicity } & C_{n}^{n}=\text { order of harmonic } \\
d=\text { pulse width } & C_{n}=\text { amplitude of } n^{t h} \text { harmonic } \\
f=\text { pulse build-up time } & \theta_{n}=\text { phase angle of } n^{t h} \text { harmonic } \\
& \\
A_{a v}=\text { average value of function }=\frac{1}{T} \int_{0}^{T} F(t) d t
\end{array}
$$

$$
A_{r m s}=\text { root-mean square value of function }=\sqrt{\frac{1}{T} \int_{0}^{T}[F(t)]^{2} d t}
$$

282

Analyses of commonly encountered wave forms continued

1. Rectangular wave

$$
\begin{aligned}
& A_{a v}=\frac{A d}{T} \\
& C_{n}=2 A_{a v}\left[\frac{\sin \frac{n \pi d}{T}}{\frac{n \pi d}{T}}\right]
\end{aligned}
$$

$$
\mathrm{A}_{r m s}=\mathrm{A} \sqrt{\frac{d}{T}}
$$

2. Symmetrical trapezoid wave

$A_{a v}=A \frac{(f+d)}{T}$
$A_{r m s}=A \sqrt{\frac{2 f+3 d}{3 T}}$
$C_{n}=2 A_{a v}\left[\frac{\sin \frac{n \pi f}{T}}{\frac{n \pi f}{T}}\right]\left[\frac{\sin \frac{n \pi(f+d)}{T}}{\frac{n \pi(f+d)}{T}}\right]$

3. Unsymmetrical trapezoid wave

$$
A_{a v}=\frac{A}{T}\left[\frac{f}{2}+\frac{r}{2}+d\right]
$$

$$
A_{r m o}=A \sqrt{\frac{f+r+3 d}{3 T}}
$$

If $f \cong r$

$$
C_{n}=2 A_{a v}\left[\frac{\sin \frac{n \pi f}{i}}{\frac{n \pi f}{T}}\right]\left[\frac{\sin \frac{n \pi(f+d)}{T}}{\frac{n \pi(f+d)}{T}}\right]\left[\frac{\sin \frac{n \pi(r-n)}{T}}{\frac{n \pi(r-f)}{T}}\right]
$$

4. Isosceles triangle wave

$$
\begin{aligned}
& A_{a v}=\frac{A f}{T} \\
& C_{n}=2 A_{a v}\left[\frac{\sin \frac{n \pi f}{T}}{\frac{n \pi f}{T}}\right]^{2}
\end{aligned}
$$

$$
A_{r m s}=A \sqrt{\frac{2 f}{3 T}}
$$

284

Analyses of commonly encountered wave forms continued

5. Clipped sawiooth wave

$$
\begin{array}{ll}
A_{a v}=\frac{A d}{2 T} & \quad A_{r m z}=A \sqrt{\frac{d}{3 T}} \\
C_{n}=\frac{A T}{2 \pi^{2} n^{2} d}\left[2\left(1-\cos \frac{2 \pi n d}{T}\right)+\frac{4 \pi n d}{T}\left(\frac{\pi n d}{T}-\sin \frac{2 \pi n d}{T}\right)\right]^{\frac{1}{2}}
\end{array}
$$

If d is small

$$
C_{n}=\frac{2 A_{a v}}{\frac{\pi n d}{T}}\left[\frac{\sin \frac{\pi n d}{T}}{\frac{\pi n d}{T}}-1\right]
$$

6. Sawtooth wave

$$
\left.C_{n}=-\frac{2 A_{a v}}{n \pi} \cos \ln \pi\right) \quad A
$$

7. Sawtooth wave

$$
\begin{array}{ll}
A_{a v}=\frac{A}{2} & A_{r m s}=\frac{A}{\sqrt{3}} \\
C_{n}=\frac{2 A_{a v} T}{\pi^{2} n^{2} f\left(1-\frac{f}{T}\right)} \sin \frac{\pi f}{T} &
\end{array}
$$

8. Fractional sine-wave

$$
A_{a v}=\frac{A\left(\sin \frac{\pi d}{T}-\frac{\pi d}{T} \cos \frac{\pi d}{T}\right)}{\pi\left(1-\cos \frac{\pi d}{T}\right)}
$$

$$
A_{r m s}=
$$

$$
\begin{aligned}
& \frac{A}{\left(1-\cos \frac{\pi d}{T}\right)}\left[\frac{1}{2 \pi}\left(\frac{\pi d}{T}+\frac{1}{2} \sin \frac{2 \pi d}{T}-4 \cos \frac{\pi d}{T} \sin \frac{\pi d}{T}+\frac{2 \pi d}{T} \cos ^{2} \frac{\pi d}{T}\right)\right]^{\frac{\pi}{2}} \\
& C_{n}=\frac{A_{a v} \frac{\pi d}{T}}{n\left(\sin \frac{\pi d}{T}-\frac{\pi d}{T} \cos \frac{\pi d}{T}\right)}\left[\frac{\sin (n-1) \frac{\pi d}{T}}{\ln -11 \frac{\pi d}{T}}-\frac{\sin \ln +11 \frac{\pi d}{T}}{\ln +1) \frac{\pi d}{T}}\right]
\end{aligned}
$$

Analyses of commonly encounfered wave forms continued
9. Half sine-wave

$$
A_{a v}=\frac{2 A}{\pi} \frac{d}{T}
$$

$$
A_{r m s}=A \sqrt{\frac{d}{2 T}}
$$

$$
C_{n}=\frac{\pi}{2} A_{a v}\left[\frac{\sin \frac{\pi}{2}\left(1-\frac{2 n d}{T}\right)}{\frac{\pi}{2}\left(1-\frac{2 n d}{T}\right)}+\frac{\sin \frac{\pi}{2}\left(1+\frac{2 n d}{T}\right)}{\frac{\pi}{2}\left(1+\frac{2 n d}{T}\right)}\right]
$$

10. Full sine-wave

11. Critically damped exponential wave

$A_{r m s}=\frac{A \epsilon}{2} \sqrt{\frac{f}{T}}$

$$
A_{a v}=\frac{A_{\epsilon f}}{T}
$$

$C_{n}=2 A_{a v}\left[\frac{1}{1+\left(\frac{2 \pi n f}{T}\right)^{2}}\right]=2 A_{a v} \cos ^{2} \frac{\theta_{n}}{2}$ $\frac{\theta_{n}}{2}=\tan ^{-1}\left(\frac{2 \pi n f}{r}\right)$
12. Full-wave rectifled sine-wave

Modulated wave forms

Starting from a carrier $i=A \sin \theta$ modulated waveforms are obtained when either or both A and θ are functions of time.

1. Amplitude modulation

$$
\begin{aligned}
\theta & =\omega t+\phi \omega \text { where and } \phi \text { are constants } \\
A & =A_{0}\left[1+m_{a} f(t)\right] \\
i & =A_{0}\left[1+m_{a} f(t)\right] \sin |\omega t+\phi|
\end{aligned}
$$

where $f(f)$ is a continuous function of time representing the signal and $|f(t)| \leq 1$. Then m_{a} is the degree of amplitude modulation; $0 \leq m_{a} \leq 1$ Generally the frequency spectrum of $f(t)$ will be limited up to a value α^{*} $\ll \omega$ and the total frequency spectrum will comprise:
the carrier ω
the lower side band from ω to $\omega-\alpha$
the upper side band from ω to $\omega+\alpha$
For correct transmission of intelligence it is sufficient to transmit one of the side bands only.

For a sinusoidal signal $f(t)=\cos p t$ where $p=$ angular frequency of the signal; $i=A_{0}\left\{\sin \omega t+\frac{m_{a}}{2}[\sin (\omega+\rho) t+\sin (\omega-p \mid t]\}\right.$

2. Frequency modulation

wherein A is constant
$\omega_{t}=\frac{d \theta}{d t}=\omega[1+m f(t)]$
$\omega=2 \pi \times$ mean carrier frequency la constantl, $\omega_{z}=2 \pi \times$ instantaneous frequency, $m=$ degree of frequency modulation, $\Delta \omega=m \omega=2 \pi \times$ frequency swing, $f(t)$ is the signal to be transmitted; $|f(t)| \leq 1$.

Even when the frequency spectrum of $f(t)$ extends only up to $\alpha \ll \omega$ the resulting frequency spectrum of the modulated wave is complex, depending on the relative values of α and m. Generally $\Delta \omega \geq \alpha$ and the spectrum is composed of groups of upper and lower side bands even when $f(f)$ is a sinusoidal function of time.
For a sinusoidal signal $f(t)=\cos p f$
$\omega_{\mathrm{l}}=\omega[1+m \cos \mathrm{pt}]$
$\theta=\omega t+\frac{\Delta \omega}{\mathrm{p}} \sin \mathrm{pt}$
$m_{\rho}=\frac{\Delta \omega}{\rho}=$ frequency modulation index (radians)

In this case the carrier and side bands include a number of components at frequencies $(\omega \pm \mathrm{np}) / 2 \pi$ where $n=0$ or a positive integer.

$$
\begin{aligned}
\frac{i}{A_{0}}= & \sin \left(\omega t+m_{f} \sin p t\right) \\
= & J_{0}\left(m_{f}\right) \sin \omega t \\
& +J_{1}\left(m_{f}\right)[\sin (\omega+p) t-\sin (\omega-p) t] \\
& +J_{2}\left(m_{f}\right)[\sin (\omega+2 p) t+\sin (\omega-2 p) t] \\
& +\cdots \\
& +J_{n}\left(m_{f}\right)\left[\sin (\omega+n p) t+(-1)^{n} \sin (\omega-n p) t\right] \\
= & J_{0}\left(m_{f}\right) \sin \omega t+2 J_{1}(m f) \sin p t \cos \omega t \\
& +2 J_{2}\left(m_{f}\right) \cos 2 p t \sin \omega t+\ldots \\
& +(-1)^{n} 2 J_{n}\left(m_{f}\right) \cos \left(n p t+n \frac{\pi}{2}\right) \sin \left(\omega t+n \frac{\pi}{2}\right)
\end{aligned}
$$

Where $J_{n}\left(m_{f}\right)$ is the Bessel function of the first kind and $n^{t h}$ order. An expansion of $J_{n}(\mathrm{mf})$ in a series is given on page 299 and tables of Bessel functions on pages 319 to 322 .

Amplitude of carrier and side bands for $\mathrm{mf}_{\mathrm{f}}=10$. The carrier emplitude is $0.246 \mathrm{~A}_{0}$ and is represented by the heavy line in the center. The separation between each iwo adjacent components $=$ signal frequency f.
a. For small values of m_{f} up to about 0.2

$$
\begin{aligned}
i & =A_{0}\left\{\sin \omega t+\frac{m_{f}}{2}[\sin (\omega+p) t-\sin (\omega-p) t]\right\} \\
& =A_{0}\left(\sin \omega t+m_{f} \sin p t \cos \omega t\right)
\end{aligned}
$$

Compare with amplitude modulation above.
b. The carrier amplitude varies with m_{f} as does also that of each pair of side bands.
Carrier vanishes for $m_{f}=2.40 \quad 5.52 \quad 8.65 \quad$ • $11.79 \quad 14.93$ etc.
$\begin{array}{lllll}\text { First side band vanishes for } m_{f}= & 3.83 & 7.02 & 10.17 & 13.32 \text { etc. }\end{array}$
This property of vanishing components is used frequently in the measurement of m.

Modulated wave forms continued

c. The approximate number of important side bands and the corresponding band width necessary for transmission are as follows (where $f=p / 2 \pi$ and $\Delta F=\Delta \omega / 2 \pi):$

mf	5	10	20
signal frequency ${ }^{\prime}$	$0.2 \Delta F$	$0.1 \Delta F$	0.05 ${ }^{\text {F }}$
number of pairs of side bands	7	13	23
band width	$\begin{gathered} 14 f \\ 2.8 \Delta F \end{gathered}$	$\begin{gathered} 26 f \\ 2.6 . J F \end{gathered}$	$\begin{gathered} 46 f \\ 2.3 \Delta F \end{gathered}$

This table is based on neglecting side bands in the outer regions where all amplitudes are less than $0.02 \mathrm{~A}_{0}$. The amplitude below which the side bands are neglected, and the resultant band width, will depend on the particular application and the quality of transmission desired.

3. Pulse modulation

Pulse modulation is obtained when A or $\frac{d \theta}{d t}$ are keyed periodically. Then $f(t)$ is generally a pulsing waveform of the type previously described. See 4, page 283 (with $f \ll T$).
In pulse modulation generally $f(t)$ has no simple relation to the signal to be transmitted. Various forms of pulse modulation have been described:
a. Pulse-time modulation: The timing of the pulse $f(t)$ relative to a reference pulse is varied around a fixed mean value and conforms to the amplitude of the signal to be transmitted.
b. Pulse-width modulation: The duration of the pulse $f(t)$ is varied around a fixed mean value and conforms to the amplitude of the signal to be transmitted.
c. Pulse-frequency modulation: The repetition rate of the pulse $f(t)$ is varied around a fixed mean value and conforms to the amplitude of the signal to be transmitted.

Mensuration formulas
Areas of plane figures
Regular polygons Area = bh

292

Areas of plane figures

	formula
Circle	Area $=\pi r^{2}$
	$\begin{aligned} r & =\text { radius } \\ \pi & =3.141593 \end{aligned}$

Segment of circle

Sector of circle

Parabola

Ellipse

Area $=\frac{b r}{2}=\pi r^{2} \frac{\theta}{360^{\circ}}$

Area $=\frac{2}{3} b h$

Area $=\pi a b$

Mensuration formulas

 continued
Area of irregular plane surface

Trapezoidal rule:
Area $=\Delta\left(\frac{y_{1}}{2}+y_{2}+y_{3}+\ldots+y_{n-2}+y_{n-1}+\frac{y_{n}}{2}\right)$
Simpson's rule:
n must be odd
Area $=\frac{\Delta}{3}\left(y_{1}+4 y_{2}+2 y_{3}+4 y_{4}+2 y_{5}+\ldots+2 y_{n-2}+4 y_{n-1}+y_{n}\right)$ $y_{1}, y_{2}, y_{3} \ldots y_{n}$ are measured lengths of a series of equidistant parallel chords

Volumes and surface areas

Sphere: Surface $=4 \pi r^{2}$
Volume $=\frac{4 \pi r^{3}}{3}$
$r=$ radius of sphere
Cylinder: Cylindrical portion of surface $=2 \pi r h$
Volume $=\pi r^{2} h$
$r=$ radius of cylinder
$h=$ height of cylinder
Pyramid or cone: Volume $=$ Area of base $\times \frac{1}{3}$ of height

Formulas for complex quantities

$$
\begin{gathered}
(A+j B)(C+j D)=(A C-B D)+j(B C+A D) \\
\frac{A+j B}{C+j D}=\frac{A C+B D}{C^{2}+D^{2}}+j \frac{B C-A D}{C^{2}+D^{2}} \\
\frac{1}{A+j B}=\frac{A}{A^{2}+B^{2}}-j \frac{B}{A^{2}+B^{2}} \\
A+j B=\rho(\cos \theta+j \sin \theta) \\
\sqrt{A+j B}= \pm \sqrt{\rho}\left(\cos \frac{\theta}{2}+j \sin \frac{\theta}{2}\right)
\end{gathered}
$$

$$
\text { where } \rho=\sqrt{A^{2}+B^{2}} ; \cos \theta=\frac{A}{\rho}
$$

$$
\sin \theta=\frac{\cdot B}{\rho}
$$

$$
\begin{aligned}
\mathrm{e}^{j \theta} & =\cos \theta+j \sin \theta \\
\mathrm{e}^{-j \theta} & =\cos \theta-j \sin \theta
\end{aligned}
$$

Algebraic and trigonometric formulas

$1=\sin ^{2} A+\cos ^{2} A=\sin A \operatorname{cosec} A=\tan A \cot A=\cos A \sec A$
$\sin A=\frac{\cos A}{\cot A}=\frac{1}{\operatorname{cosec} A}=\cos A \tan A=\sqrt{1-\cos ^{2} A}$
$\cos A=\frac{\sin A}{\tan A}=\frac{1}{\sec A}=\sin A \cot A=\sqrt{1-\sin ^{2} A}$
$\tan A=\frac{\sin A}{\cos A}=\frac{1}{\cot A}=\sin A \sec A$
$\cot A=\frac{1}{\tan A} \quad \sec A=\frac{1}{\cos A}$
$\operatorname{cosec} A=\frac{1}{\sin A}$
$\sin (A \pm B)=\sin A \cos B \pm \cos A \sin B$
$\tan |A \pm B|=\frac{\tan A \pm \tan B}{1 \mp \tan A \tan B}$

Algebraic and trigonometric formulas continued

$$
\begin{aligned}
& \cos (A \pm B)=\cos A \cos B \mp \sin A \sin B \\
& \cot (A \pm B)=\frac{\cot A \cot B \mp 1}{\cot B \pm \cot A} \\
& \sin A+\sin B=2 \sin \frac{1}{2}(A+B) \cos \frac{1}{2}(A-B) \\
& \sin ^{2} A-\sin ^{2} B=\sin (A+B) \sin (A-B) \\
& \tan A \pm \tan B=\frac{\sin (A \pm B)}{\cos A \cos B} \\
& \sin A-\sin B=2 \cos \frac{1}{2}(A+B) \sin \frac{1}{2}(A-B) \\
& \cos A+\cos B=2 \cos \frac{1}{2}(A+B) \cos \frac{1}{2}(A-B) \\
& \cot A \pm \cot B=\frac{\sin (B \pm A)}{\sin A \sin B} \\
& \cos B-\cos A=2 \sin \frac{1}{2}(A+B) \sin \frac{1}{2}(A-B) \\
& \sin 2 A=2 \sin A \cos A \quad \cos 2 A=\cos ^{2} A-\sin ^{2} A \\
& \cos ^{2} A-\sin ^{2} B=\cos (A+B) \cos (A-B) \\
& \tan 2 A=\frac{2 \tan A}{1-\tan ^{2} A} \\
& \sin \frac{1}{2} A= \pm \sqrt{\frac{1-\cos A}{2}} \\
& \cos \frac{1}{2} A= \pm \sqrt{\frac{1+\cos A}{2}} \\
& \tan \frac{1}{2} A=\frac{\sin A}{1+\cos A} \\
& \sin ^{2} A=\frac{1-\cos 2 A}{2} \\
& \cos ^{2} A=\frac{1+\cos 2 A}{2} \\
& \tan ^{2} A=\frac{1-\cos 2 A}{1+\cos 2 A} \\
& \frac{\sin A \pm \sin B}{\cos A+\cos B}=\tan \frac{1}{2}(A \pm B) \\
& \frac{\sin A \pm \sin B}{\cos B-\cos A}=\cot \frac{1}{2}(A \mp B) \\
& \sin A \cos B=\frac{1}{2}[\sin (A+B)+\sin (A-B)] \\
& \cos A \cos B=\frac{1}{2}[\cos (A+B)+\cos (A-B)] \\
& \sin A \sin B=\frac{1}{2}[\cos (A-B)-\cos (A+B)]
\end{aligned}
$$

Algebraic and trigonometric formulas

$\sin x+\sin 2 x+\sin 3 x+\ldots+\sin m x=\frac{\sin \frac{1}{2} m x \sin \frac{1}{2} \operatorname{lm}+11 x}{\sin \frac{1}{2} x}$ $\cos x+\cos 2 x+\cos 3 x+\ldots+\cos m x=\frac{\sin \frac{1}{2} m x \cos \frac{1}{2}(m+1) x}{\sin \frac{1}{2} x}$
$\sin x+\sin 3 x+\sin 5 x+\ldots+\sin (2 m-1) x=\frac{\sin ^{2} m x}{\sin x}$
$\cos x+\cos 3 x+\cos 5 x+\ldots+\cos \left(2 m-11 x=-\frac{\sin 2 m x}{2 \sin x}\right.$
$\frac{1}{2}+\cos x+\cos 2 x+\ldots+\cos m x=\frac{\sin \left(m+\frac{1}{2}\right) x}{2 \sin \frac{1}{2} x}$

angle	0	0	30°	45°	60°	90°	180°	270°
\sin	0	$1 / 20^{\circ}$						
\cos	0	$1 / 2 \sqrt{2}$	$1 / 2 \sqrt{3}$	1	0	-1	0	
\tan	1	$1 / 2 \sqrt{3}$	$1 / 2 \sqrt{2}$	$1 / 2$	0	-1	0	1
	0	$z / 3 \sqrt{3}$	1	$\sqrt{3}$	$\pm \infty$	0	$\pm \infty$	0

$$
\begin{aligned}
\text { versine } \theta & =1-\cos \theta \\
\sin 14 \frac{1}{2}^{\circ} & =\frac{1}{4} \text { approximately } \\
\sin 20^{\circ} & =11 / 32 \text { approximately }
\end{aligned}
$$

Approximations for small angles

$\sin \theta$	$=\left(\theta-\theta^{3} / 6 \ldots \ldots\right)$		θ in radians
$\tan \theta$	$=\left(\theta+\theta^{3} / 3 \ldots \ldots\right)$		θ in radians
$\cos \theta$	$=\left(1-\theta^{2} / 2 \ldots \ldots\right)$		θ in radians

Quadratic equation

If $a x^{2}+b x+c=0$, then $x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}$

Arithmetical progression

$S=n l a+n / 2=n[2 a+(n-1) d] / 2$
where $S=$ sum, $a=$ first term, $l=$ last term, $n=$ number of terms, $d=$
common difference $=$ the value of any term minus the value of the preceding term.

Geometrical progression
$S=\frac{a\left(r^{n}-1\right)}{r-1}=\frac{a\left(1-r^{n}\right)}{1-r}$
where $S=$ sum, $a=$ first term, $n=$ number of terms, $r=$ common ratio $=$ the value of any term divided by the preceding term.

Combinations and permutations

The number of combinations of n things, all different, taken r at a time is
${ }_{n} C_{r}=\frac{n!}{r!(n-r)!}$
The number of permutations of n things r at a time $={ }_{n} P_{r}$
${ }_{n} P_{r}=n(n-1)(n-2) \ldots(n-r+1)=\frac{n!}{(n-r)!}$
${ }_{n} P_{n}=n!$

Binomial theorem

$a \pm b)^{n}=a^{n} \pm n a^{n-1} b+\frac{n(n-1)}{2!} a^{n-2} b^{2} \pm \frac{n(n-1)(n-2)}{3!} a^{n-3} b^{3}+\ldots$
If n is a positive integer, the series is finite and contains $n+1$ terms; otherwise it is infinite, converging for $\left|\frac{b}{a}\right|<1$ and diverging for $\left|\frac{b}{a}\right|>1$.

Maclaurin's theorem

$f(x)=f(0)+x f^{\prime}(0)+\frac{x^{2}}{1 \cdot 2} f^{\prime \prime}(0)+\ldots+\frac{x^{h}}{n!} f^{n}(0)+\ldots$.

Taylor's theorem

$$
\begin{aligned}
f(x) & =f\left(x_{0}\right)+f^{\prime}\left(x_{0}\right)\left(x-x_{0}\right)+\frac{f^{\prime \prime}\left(x_{0}\right)}{2!}\left(x-x_{0}\right)^{2}+\ldots \\
f(x+h) & =f(x)+f^{\prime}(x) \cdot h+\frac{f^{\prime \prime}(x)}{2!} h^{2}+\ldots+\frac{f^{n}(x)}{n!} h^{n}+\ldots
\end{aligned}
$$

Trigonometric solution of triangles

Right-angled triangles (right angle at C)

$$
\begin{aligned}
& \sin A=\cos B=\frac{a}{c} \\
& \tan A=\frac{a}{b} \quad B=90^{\circ}-A \\
& \text { vers } A=1-\cos A=\frac{c-b}{c} \\
& c=\sqrt{a^{2}+b^{2}} \\
& b=\sqrt{c^{2}-a^{2}}=\sqrt{(c+a)(c-a)} \\
& \text { Area }=\frac{a b}{2}=\frac{a}{2} \sqrt{c^{2}-a^{2}}=\frac{a^{2} \cot A}{2}=\frac{b^{2} \tan A}{2}=\frac{c^{2} \sin A \cos A}{2}
\end{aligned}
$$

Oblique-angled triangles

$$
\begin{aligned}
\sin \frac{1}{2} A & =\sqrt{\frac{(s-b)(s-c)}{b c}} \\
\cos \frac{1}{2} A & =\sqrt{\frac{s(s-a)}{b c}} \\
\text { where } s & =\frac{a+b+c}{2}
\end{aligned}
$$

$A+B+C=180^{\circ}$
$\tan \frac{1}{2} A=\sqrt{\frac{(s-b)(s-c)}{s(s-a)}}$, similar values for angles B and C

$$
\begin{aligned}
\text { Area } & =\sqrt{s(s-a)(s-b)(s-c)}=\frac{1}{2} a b \sin C=\frac{a^{2} \sin B \sin C}{2 \sin A} \\
c & =\frac{a \sin C}{\sin A}=\frac{a \sin (A+B)}{\sin A}=\sqrt{a^{2}+b^{2}-2 a b \cos C} \\
\tan A & =\frac{a \sin C}{b-a \cos C}, \tan \frac{1}{2}(A-B)=\frac{a-b}{a+b} \cot \frac{1}{2} C
\end{aligned}
$$

$a^{2}=b^{2}+c^{2}-2 b c \cos A$, similar expressions for other sides.

Complex hyperbolic and other functions

Properties of " e "

$$
\begin{aligned}
& \mathrm{e}=1+1+\frac{1}{2!}+\frac{1}{3!}+\ldots=2.71828 \\
& \qquad \begin{array}{l}
\frac{1}{\mathrm{e}}=0.3679 \\
\mathrm{e}^{x}= \\
\\
\log _{10} \mathrm{e}= \\
\log _{e} N=0.43429 ; \log _{e} 10 \times \log _{e} 10=2.30259 \\
\log _{10} N ; \log _{10} N=\log _{10} \mathrm{e} \times \log _{0} N .
\end{array}
\end{aligned}
$$

$$
\left.\begin{array}{r}
\sin x=x-\frac{x^{3}}{3!}+\frac{x^{5}}{5!}-\frac{x^{7}}{7!}+\ldots \\
\cos x=1-\frac{x^{2}}{2!}+\frac{x^{4}}{4!}-\frac{x^{6}}{6!}+\ldots . \\
\sinh x=x+\frac{x^{3}}{3!}+\frac{x^{5}}{5!}+\frac{x^{7}}{7!}+\ldots . \\
\cosh x=1+\frac{x^{2}}{2!}+\frac{x^{4}}{4!}+\frac{x^{6}}{6!}+\ldots .
\end{array}\right\} \begin{aligned}
& x \text { is in radians. The series are con- } \\
& \text { vergent for all finite values of } x .
\end{aligned}
$$

For $n=0$ or a positive integer, the expansion of the Bessel function of the first kind, $n^{\text {th }}$ order, is given by the convergent series

$$
\begin{aligned}
& J_{n}(x)=\frac{x^{n}}{2^{n} n!}\left[1-\frac{x^{2}}{2(2 n+2)}+\frac{x^{4}}{2 \cdot 4(2 n+2)(2 n+4)}\right. \\
& \left.-\frac{x^{6}}{2 \cdot 4 \cdot 6(2 n+2)(2 n+4)(2 n+6)}+\ldots\right] \\
& \text { and } J_{-n}(x)=(-1)^{n} J_{n}(x) \\
& \text { Note: 0! }=1 \\
& \sin x=\frac{e^{j x}-e^{-j x}}{2 j} \\
& e^{j x}=\cos x+j \sin x \\
& \mathrm{e}^{-j x}=\cos x-j \sin x \\
& j=\sqrt{-1} \\
& \cos x=\frac{\mathrm{e}^{j x}+\mathrm{e}^{-j x}}{2} \\
& \sinh (-x)=-\sinh x ; \cosh (-x)=\cosh x \\
& \sinh j x=j \sin x_{j} \cosh j x=\cos x \\
& \sinh x=\frac{e^{x}-\mathrm{e}^{-x}}{2} \\
& \cosh x=\frac{e^{x}+e^{-x}}{2} \\
& \cosh ^{2} x-\sinh ^{2} x=1 \\
& \sinh 2 x=2 \sinh x \cosh x \\
& \cosh 2 x=\cosh ^{2} x+\sinh ^{2} x \\
& \sinh (x \pm j y)=\sinh x \cos y \pm j \cosh x \sin y \\
& \cosh (x \pm j y)=\cosh x \cos y \pm j \sinh x \sin y
\end{aligned}
$$

300

Table of infegrals

Indefinite infegrals

In the following formulas, a, b, and m are constants. The constant of integration is not shown, but is added to each result.

$$
\begin{aligned}
& \int d x=x \\
& \int a f(x) d x=a \int f(x) d x \\
& \int(u+v-s) d x=\int u d x+\int v d x-\int s d x \\
& \int x^{m} d x=\frac{x^{m+1}}{m+1} \quad m \neq-1 \\
& \int \frac{d x}{x}=\log _{e} x \\
& \int(a x+b)^{m} d x=\frac{(a x+b)^{m+1}}{a(m+1)} \quad m \neq-1 \\
& \int \frac{d x}{a x+b}=\frac{1}{a} \log _{e}(a x+b) \\
& \int \frac{x d x}{a x+b}=\frac{1}{a^{2}}\left[a x+b-b \log _{e}(a x+b)\right] \\
& \int \frac{x d x}{(a x+b)^{2}}=\frac{1}{a^{2}}\left[\frac{b}{a x+b}+\log _{e}(a x+b)\right] \\
& \int \frac{x^{2} d x}{a x+b}=\frac{1}{a^{3}}\left[\frac{(a x+b)^{2}}{2}-2 b(a x+b)+b^{2} \log _{e}(a x+b)\right] \\
& \int \frac{d x}{x^{2}+a^{2}}=\frac{1}{a} \tan ^{-1} \frac{x}{a} \\
& \int \frac{d x}{\sqrt{a^{2}-x^{2}}}=\sin ^{-1} \frac{x}{a} \\
& \int \log _{a} x d x=x \log _{a} \frac{x}{e} \text { where } e=2718 \\
& \int a^{x} d x=\frac{a^{x}}{\log _{e} a}
\end{aligned}
$$

Table of integrals

$$
\begin{aligned}
& \int x e^{x} d x=e^{x}(x-1) \\
& \int x^{m} e^{x} d x=x^{m} e^{x}-m \int x^{m-1} e^{x} d x \\
& \int \sin x d x=-\cos x \\
& \int \sin ^{2} x d x=\frac{1}{2}(x-\sin x \cos x) \\
& \int \cos x d x=\sin x
\end{aligned}
$$

$$
\int \cos ^{2} x d x=\frac{1}{2}(x+\sin x \cos x)
$$

$$
\int \tan x d x=-\log _{e} \cos x
$$

$$
\int \cot x d x=\log _{e} \sin x
$$

$$
\int \sec x d x=\log _{e}(\sec x+\tan x)
$$

$$
\int \sec ^{2} x d x=\tan x
$$

$$
\int \operatorname{cosec}^{2} x d x=-\cot x
$$

$$
\int \operatorname{cosec} x d x=\log _{e}(\operatorname{cosec} x-\cot x)
$$

$$
\int \sin ^{-1} x d x=x \sin ^{-1} x+\sqrt{1-x^{2}}
$$

$$
\int \cos ^{-1} x d x=x \cos ^{-1} x-\sqrt{1-x^{2}}
$$

$$
\int \tan ^{-1} x d x=x \tan ^{-1} x-\log _{e} \sqrt{1+x^{2}}
$$

302

Table of integrals continued

Definite integrals

$\left.\int_{0}^{\infty} x^{n-1} e^{-x} d x=\Gamma(n)\right)^{*}$
$\int_{0}^{1} x^{m-1}(1-x)^{m-1} d x=\frac{\Gamma(m) \Gamma(n) *}{\Gamma(m+n)}$
$\int_{0}^{\frac{\pi}{2}} \sin ^{n} x d x=\int_{0}^{\frac{\pi}{2}} \cos ^{n} x d x=\frac{1}{2} \sqrt{\pi} \frac{\Gamma\left(\frac{n+1}{2}\right)^{*}}{\Gamma\left(\frac{n}{2}+1\right)^{\prime}}, n>-1$
$\int_{0}^{\infty} \frac{\sin m x d x}{x}=\frac{\pi}{2}$ if $m>0 ; 0$ if $m=0 ;-\frac{\pi}{2}$ if $m<0$
$\int_{0}^{\infty} \frac{\cos m x d x}{1+x^{2}}=\frac{\pi}{2} e^{-|m|}$
$\int_{0}^{\infty} \frac{\cos x d x}{\sqrt{x}}=\int_{0}^{\infty} \frac{\sin x d x}{\sqrt{x}}=\sqrt{\frac{\pi}{2}}$
$\int_{0}^{\infty} e^{-\sigma^{2} x^{2}} d x=\frac{1}{2 a} \sqrt{\pi}$
$\int_{\frac{-\pi}{2}}^{\frac{\pi}{2}} \frac{\cos ^{2}\left(\frac{\pi}{2} \sin x\right) d x}{\cos x}=1.22$

- Values of Γ (n) are tobulated in Jahnke \& Emde, Tables of Functions

Exponentials [e^{n} and e^{-n}]

n	en $^{\text {n }}$ diff	n	0^{n} diff	n	0 -	n	0^{-n} diff	n	0^{-n}	n	-n
0.00	1.000	0.50	1.649	1.0	2.718*	0.00	1.000	0.50	. 607	1.0	. 368^{*}
. 01	1.01010	. 51	1.66517	. 1	3.004	. 01	0.990	. 51	. 600	.	. 333
. 02	1.02010	. 52	1.68217 17	. 2	3.320	. 02	. $980-10$. 52	. 595	. 2	. 301
. 03	1.03011	. 53	1.69917	3	3.669	. 03	. 970 - 0	. 53	. 589	.3	. 273
. 04	1.04110	. 54	1.71617	. 4	4.055	. 04	${ }^{.961}=10$. 54	. 583	. 4	. 247
0.05	1.05111	0.55	1.73318	1.5	4.482	0.05	. 951	0.55	. 577	1.5	. 223
. 06	1.06211	. 56	1.75117	. 6	4.953	. 06	. $942=10$. 56	. 571	. 6	. 202
. 07	1.07311	. 57	1.76817	7	5.474	. 07	. $932=0$. 57	. 566	7	. 183
. 08	1.08311	. 58	1.78618	. 8	6.050	. 08	.923-9	. 58	. 560	8	. 165
. 09	1.09411	. 59	1.80418	. 9	8.688	. 09	.914-9	. 59	. 55	. 9	. 15
0.10	1.105	0.60	1.822	2.0	7.389	0.10	.905	0.60	. 549	2.0	. 135
. 11	1.116	. 61	1.84018	. 1	8.166	. 11	.896-9	. 61	. 543	. 1	. 122
. 12	1.127 1.139 12	. 62	$\begin{array}{lll}1.859 \\ 1.878 & 19\end{array}$	$\frac{.}{3}$	9.025 9.974	. 12	. $8787-9$. 62	. 5338	.3	. 111
.14	1.150	.64	1.896 18 20	. 4	11.02	.14	$\xrightarrow{.869} \rightarrow 8$. 64	. 527	. 4	. 0907
0.15	1.162	0.65	1.916	2.5	12.18	0.15	. 861 -	0.65	. 522	2.5	. 0821
. 16	1.174	. 66	1.93519	. 6	13.46	. 16	${ }^{852}$-8	. 66	. 517	. 6	. 0743
.17	1.185	. 67	1.95420	. 7	14.88	. 17	.844-8	. 67	. 512	7	. 0672
. 18	1.19712	. 68	1.97420	. 8	16.44	. 18	. 8335 -8	. 68	. 507	. 8	. 0508
. 19	1.20912	. 69	1.99420	.9	18.17	. 19	.827-8	. 69	. 502	. 9	. 0550
0.20	1.22113	0.70	2.01420	3.0	20.09	0.20	.819-8	0.70	. 497	3.0	. 0498
. 21	1.23412	. 71	2.03420	. 1	22.20	. 21	.811-8	. 71	. 492	.1	. 0450
. 22	1.246 1.259 13	. 72	$\begin{array}{lll}2.054 \\ 2.075 & 21 \\ 2\end{array}$. 3	24.53 27.11	. 22	. $8735-8$. 72	. 488	. 2	. 0408
. 24	$1.271 \quad 13$. 74	$2.096{ }_{21}^{21}$. 4	29.96	. 24	$.787-8$ -8	. 74	. 477	. 4	. 0334
0.25	1.28413	0.75	2.117	3.5	33.12	0.25	.779 -	0.73	. 472	3.5	. 0302
. 26	1.29713	. 76	2.13822	. 6	36.60	. 28	.771-8	. 76	. 488	. 6	. 0273
. 27	$1.310{ }^{13}$. 78	2.160 21	. 7	40.45	. 27	.763-7	. 77	. 453	8	. 02247
. 28	1.323 1.336	. 78	2.181 2.2203	. 8	44.70 49.40	. 28	${ }^{.756}$ - 8	. 78	.458 .454	. 8	. 0224
. 29	1.33614	. 79	2.20323	. 9	49.40	.29	. 748 - 7	. 79	. 454		. 0202
0.30	1.350	0.80	2.226	4.0	54.60	0.30	.741	0.80	. 449	4.0	. 0183
. 31	1.36314	81	2.24822	. 1	60.34	. 31	.733-7	. 81	. 445	. 1	. 0166
. 32	1.37714	. 82	$2.270{ }^{23}$. 2	66.69	. 32	. $723-7$. 82	. 440	. 2	. 0150
.33	1.39114	. 83	2.293123	. 3	73.70	. 33	.719	. 83	. 433	. 3	. 0136
. 34	1.40514	. 84	$2.316{ }_{24}$. 4	81.45	. 34	.712-7	. 84	. 432	. 4	. 0123
0.35	1.41914	0.85	2.34023	4.5	90.02	0.35	.705-7	0.85	. 427	4.5	. 0111
. 38	1.43314	. 86	$\begin{array}{ll}2.363 & 24\end{array}$. 38	. 698 - 7	. 86	. 423		
. 37	1.448 1.462 14	. 87	2.38724 2.111	5.0	148.4	$\begin{array}{r}.37 \\ .38 \\ \hline\end{array}$. 581 - 7	${ }^{.87}$. 419	5.0 6.0	. 00074
. 38	1.46215 1.477	. 88	2.411 2.435	6.0 7.0	1097.4	38 .39	. $8781-7$. 88	. 415	6.0 7.0	. 00024812
	1.4715		2.435				-7				
0.40	1.492	0.90	2.440	8.0	2981.	0.40	. 670	0.90	. 407	8.0	. 000335
. 41	1.50715	. 91	$2.484{ }_{25}$	9.0	8103.	. 41	. 664 二 ${ }^{\text {a }} 7$. 91	. 403	9.0	. 000123
. 42	1.522 15	. 92	2.50925	10.0	22026.	. 42	.657-8	. 92	. 399	10.0	. 000045
. 43	1.53716	. 93	2.53525			. 43	. $651-7$. 93	. 395		
. 44	1.55315	. 94	$2.560{ }_{28}^{28}$	$\pi / 2$	4.810	. 44	. 844 - 6	. 94	. 391	$\pi / 2$. 208
				$2 \pi / 2$	23.14					$2 \pi / 2$. 0432
0.45	1.56816	0.95	2.586	3x/2	111.3	0.45	${ }^{6} 381$ - 7	0.95	. 387	3\%/2	. 00898
. 46	1.58416	. 96	2.61228	$4 \pi / 2$	535.5	. 46	${ }^{631}$ - 8	. 96	. 383	$4 \pi / 2$. 00187
. 47	1.60016	. 97	2.6388	$5 \pi / 2$	2576.	. 48	. 6219 - 8	. 98	. 379	$5 \pi / 2$	
. 48	1.616 1.632	. 98				. 48	. 61913^{-8}	. 98	. 375	6\%/2	. 00000017
. 49	1.63217	. 99	$2.691 \quad 27$	$\begin{aligned} & 7 \pi / 2 \\ & 8 \pi / 2 \end{aligned}$	$\begin{array}{r} 59610 . \\ 286751 . \end{array}$. 49	. $613-6$. 99	. 372	$\begin{aligned} & 7 \pi / 2 \\ & 8 \pi / 2 \end{aligned}$	$.000017 .$
0.50	1.649	1.00	2.718			0.50	0.607	1.00	. 368		

[^27]Common logarithms of numbers and proportional parts

											proportional parts							
		1									12	31	4	5	6		7	49
10	0000	0043	0086	0128	0170	0212	0253	0294	0334	0374	4							
11	0414	0453	0492	0531	0569	0607	0645	0682	0719	0755	48	11	15	19	23		26	30 30
12	0792	0828	0864	0899	0934	0969	1004	1038	1072	1106	37	10	14	17	21		24	2831
13	1139	1173	120\%	1239	1271	1303	1335	1367	1399	1430	36	10	13	16	19		23	$26 \quad 29$
14	1461	1492	1523	1553	1584	1614	1644	1673	1703	1732	36	9	12	15	18		21	$24 \quad 27$
15	1761	1790	1818	1847	1875	1903	1931	1959	1987	2014	36	8	11	14	17		20	2225
16	2041	2068	2095	2122	2148	2175	2201	2227	2253	2279	35	8	11	13	16		18	2124
17	2304	2330	2355	2380	2405	2430	2455	2480	2504	2529	25	7	10	12	15		17	2022
18	2553	2577	2801	2625	2648	2672	2695	2718	2742	2765	25	7	9	12	14		16	1921
19	2788	2810	2833	2856	2978	2900	2923	2945	2967	2989	24	7	9	11	13		16	1820
20	3010	3032	3054	3075	3096	3118	3139	3160	3181	3201	24	6	8	11	13		15	1719
21	3222	3243	3263	3284	3304	3324	3345	3365	3385	3404	24	6	8	10	12		14	1618
22	3424	3444	3464	3483	3502	3522	3541	3560	3579	3598	24	6	8	10	12		14	1517
23	3617	3636	3655	3674	3692	3711	3729	3747	3766	3784	24	6	7	9	11		13	1517
24	3802	3820	3838	3856	3874	3892	3909	3927	3945	3962	24	5	7	9	11		12	1416
25	3979	3997	4014	4031	4048	4065	4082	4099	4116	4133	2	5	7	9	10		12	1415
26	4150	4166	4183	4200	4216	4232	4249	4265	4281	4298	23	5	7	8	10		11	$13 \quad 15$
27	4314	4330	4346	4362	4378	4393	4409	4425	4440	4456	23	5	6	8	9		11	1314
28	4472	4487	4502	4518	4533	4548	4564	4579	4594	4609	23	5	8	8	9		11	1214
29	4624	4639	4854	4669	4683	4698	4713	4728	4742	4757	13	4	6	7	9		10	1213
30	4771	4786	4800	4814	4829	4843	4857	4871	4886	4900	13	4	,	7	8		10	1113
31	4914	4928	4942	4955	4969	4983	4997	5011	5024	5038	13	4	6	7	8		10	1112
32	5051	5065	5079	5092	5105	5119	5132	5145	5159	5172	13	4	5	7	8		9	1112
33	5185	5198	5211	5224	5237	5250	5263	5276	5289	5302	13	4	5	6	8		9	1012
34	5315	5328	5340	5353	5366	5378	5391	5403	5416	5428	13	4	5	6	8		9	1011
35	5441	5453	5465	5478	5490	5502	5514	5927	5539	5551	12	4	5	6	7		9	1011
36	5563	5575	5587	5599	5611	5423	5635	5647	5858	5670	12	4	5	6	7		8	1011
37	5682	5694	5705	5717	5729	5740	5752	5763	5775	5786	12	3	5	6	7		8	910
38	5798	5809	5821	5832	5843	5855	5866	5877	5888	5809	12	3	5	6	7		8	910
39	5911	5922	5933	5944	5955	5966	5977	5988	5999	6010	12	3	4	5	7		8	910
40	6021	6031	6042	6053	6064	6075	6085	6096	6107	6117	12	3	4	5	6		8	910
41	6128	6138	6149	6160	6170	6180	6191	6201	6212	6222	12	3	4	5	6		7	89
42	6232	6243	6253	6263	6274	6284	6294	6304	6314	6325	12	3	4	5	6		7	89
43	6335	6345	6355	6365	6375	6385	6395	6405	6415	6425	12	3	4	5	6		7	89
44	6435	6444	6454	6464	6474	6484	6493	6503	6513	6522	12	3	4	5	6		7	89
45	6532	6542	6551	6561	6571	6580	6590	6599	6609	6618	12	3	4	,	6		7	89
46	6628	8637	6646	6656	6665	6675	6684	6693	6702	8712	12	3	4	5	6		7	78
47	6721	6730	6739	6749	6759	6767	6776	6785	6794	6803	12	3	4	5	5		6	78
48	6812	6821	6830	6839	6848	6857	6866	6875	6884	4893	12	3	4	4	5			78
49	6902	6911	6920	6928	6937	6946	6955	6964	6972	6981	12	3	4	4	5		6	78
50	6990	6998	7007	7016	7024	7033	7042	7050	7059	7067	12	3	3	4	5		6	78
51	7076	7084	7093	7101	7110	7118	7126	7135	7143	7152	12	3	3	4	5		6	78
52	7160	7168	7177	7185	7193	7202	7210	7218	7226	7235	12	2	3	4	5		6	77
53	7243	7251	7259	7267	7275	7284	7292	7300	7308	7316	12	2	3	4	5		6	67
54	7324	7332	7340	7348	7356	7364	7372	7380	7388	739	12	2	3	4	5		6	67

Common logarithms of numbers and proportional parts
conlinued

	0		2								Propertional perts								
55	7404	7412	7419	7427	7435	7443	7451	7459	7466	7474	12	2	3			5	5	6	7
56	7482	7490	7497	7505	7513	7520	7528	7536	7543	7551	12	2	3			5	5		7
57	7559	7588	7574	7582	7589	7597	7604	7612	7619	7627	12	2	3			5	5	6	7
58	7634	7642	7649	7657	7664	7672	7679	7686	7694	7701	11	2	3			4	5	6	7
59	7709	7716	7723	7731	7738	7745	7752	7760	7767	7774	11	2	3	4		4	5	6	7
60	7782	7789	7796	7803	7810	7818	7825	7832	7839	7846	11	2	3			4	5	6	
61	7853	7860	7868	7875	7882	7889	7896	7903	7910	7917	11	2	3			4	5	6	4
62	7924	7931	7938	7945	7952	7959	7966	7973	7985	7987	11	2	3			4	5		4
63	7993	8000	8007	8014	8021	8028	8035	8041	8048	8055	11	2	3	3		4	5	5	4
64	8062	8069	8075	8082	8089	8096	8102	8109	8116	8122	11	2	3	3		4	5	5	6
65	8129	8136	8142	8149	8156	8162	8169	8176	8182	8189	11	2	3			4	5	5	6
66	8195	8202	8209	8215	8222	8228	8235	8241	8248	8254	11	2	3			4	5		6
67	8261	8267	8274	8280	8287	8293	8299	8308	8312	8319	11	2	3			4	5		6
68	8325	8331	8338	8344	8351	8357	8363	8370	8376	8382	11	2	3			4	4	5	6
69	8388	8395	8401	8407	8414	8420	8426	8432	8439	8445	11	2	2	3		4	4	5	1
70	8451	8457	8463	8470	8476	8482	8488	8494	8500	8506	11	2	2			4	4		6
71	8513	8519	8525	8531	8537	8543	8549	8555	8561	8567	11	2	2			4	4	5	5
72	8573	8579	8585	8591	8597	8603	8609	8615	8621	8627	11	2	2			4	4	5	\$
73	8633	8639	8645	8651	8657	8663	8669	8675	8681	8686	11	2	2	3		4	4	5	\$
74	8692	8698	8704	8710	8716	8722	8727	8733	8739	8745	11	2	2	3		4	4	5	5
75	8751	8756	8762	8768	8774	8779	8785	8791	8797	8802	11	2	2	3		3	4	5	3
76	8808	8814	8820	8825	8831	8837	8842	8848	8854	8859	11	2	2	3		3	4	5	5
77	8865	8871	8876	8882	8887	8893	8899	8904	8910	8915	11	2	2	3		3	4	4	5
78	8921	8927	8932	8738	8943	8949	8954	8960	8965	8971	11	2	2	3		3	4	4	5
79	8976	8982	8987	8993	8998	9004	9009	9015	9020	9025	11	2	2	3		3	4	4	5
80	9031	9036	9042	9047	9053	9058	9063	9069	9074	9079	1	2	2	3		3	4	4	5
81	9085	9090	9098	9101	9106	9112	9117	9122	9128	9133	11	2	2	3		3	4	4	5
82	9138	9143	9149	9154	9159	9165	9170	9175	9180	9188	11	2	2	3		3	4	4	5
83	9191	9196	9201	9206	9212	9217	9222	9227	9232	9238	11	2	2	3		3	4	4	s
84	9243	9248	9253	9258	9263	9269	9274	9279	8284	9289	11	2	2	3		3	4	4	5
85	9294	9299	9304	9309	9315	9320	9325	9330	9335	9340	11	2	2	3		3	4	4	5
86	9345	9350	9355	9360	9365	9370	9375	9380	9385	9390	11	2	2	3		3	4	4	5
87	9395	9400	9405	9410	9415	9420	9425	9430	9435	9440	01	1	2	2		3	3	4	4
88	9445	9450	9455	9460	9465	9469	9474	9479	9484	9489	01	1	2	2		3	3	4	4
89	9494	9499	9504	9509	9513	9518	9523	9528	9533	9538	01	1	2	2		3	3	4	4
90	9542	9547	9552	9557	9562	9566	9571	9576	9581	9586	0 1	1	2	2		3	3	4	4
91	9590	9595	9800	9605	9609	9614	9619	9624	9628	9633	01	1	2	2	3	3	3	4	4
92	9638	9643	9847	9652	9657	9661	9666	9671	9675	9680	01	1	2	2	3	3	3	4	4
93	9885	9889	9694	9699	9703	9708	9713	9717	9722	9727	01	1	2	2	3	3	3	4	4
94	9731	9736	9741	9745	9750	9754	9759	9763	9768	9773	01	1	2	2	3	3	3	4	4
95	9777	9782	9786	9791	9795	9800	9905	9809	9814	9818	01	1	2	2	3	3	3	4	4
96	9823	9827	9832	9836	9841	9845	9850	9854	9859	9863	01	1	2	2	3	3	3	4	4
97	9868	9872	9877	9881	9886	9890	9894	9899	9903	9908	01	1	2	2	3		3	4	4
98	9912	9917	9921	9926	9930	9934	9939	9943	9948	9952	01	1	2	2	3		3	4	4
99	9956	9961	9965	9969	9974	9978	9983	9987	9991	9996	01	1	2	2	3	3	3	3	4

Natural trigonomefric functions
for decimal fractions of a degree

deg	\sin	cos	Pan	col		deg	sin	cos	Ian	col	
0.0	. 00000	1.0000	. 00000	∞	90.0	6.0	. 10453	0.9945	.10510	9.514	84.0
. 1	. 00175	1.0000	. 00175	573.0	. 9	. 1	. 10626	. 9943	. 10687	9.357	. 9
2	. 00349	1.0000	. 00349	286.5	. 8	. 2	. 10800	. 9942	. 10363	9.255	. 8
3	. 00524	1.0000	. 00524	191.0	. 7	. 3	. 10973	. 9940	. 11040	9.058	. 7
A	. 00698	1.0050	. 00698	143.24	. 6	. 4	. 11147	. 9938	. 11217	8.915	. 6
5	. 03973	1.5030	. 00873	114.59	. 5	. 5	. 11220	. 9938	. 11394	8.777	. 5
4	. 01047	0.9979	. 01047	95.49	. 4	. 6	. 11494	. 9934	. 11570	8.643	. 4
7	. 0122	. 9979	. 01222	81.85	. 3	. 7	. 11667	. 9932	. 11747	8.513	. 3
8	. 01376	. 9979	. 01396	71.62	. 2	. 8	. 11340	. 9939	. 11924	8.336	. 2
. 9	. 01571	. 9999	. 01571	83.68	.1	. 9	. 12014	. 9928	. 12101	8.264	. 1
LO	. 01745	0.9998	. 01746	57.29	89.0	7.0	. 12187	0.9925	. 12278	8.144	83.0
. 1	. 01925	. 9998	. 01923	52.09	. 9	.1	. 12360	. 9923	. 12456	8.628	. 9
. 2	. 02394	. 9998	. 02575	47.74	8	. 2	. 12533	. 9921	. 12533	7.916	. 8
3	. 02269	. 9997	. 02289	44.07	. 7	. 3	. 12706	. 9919	. 12310	7.856	. 7
4	. 02443	. 9997	. 02444	40.92	. 6	. 4	. 12390	. 9917	. 12988	7.700	. 6
5	. 02518	. 9997	. 02619	38.19	. 5	. 5	. 12353	. 9914	. 13165	7.596	. 5
6	. 02792	. 9996	. 02793	35.80	. 4	. 6	. 12.26	. 9912	. 13343	7.495	4
7	. 22967	. 9996	. 02988	33.69	.3	. 7	.15379	. 9910	.13521	7.396	. 3
8	. 03141	. 9995	. 03143	31.82	. 2	. 8	. 12572	. 9937	. 13698	7.309	. 2
9	. 03316	. 9995	. 03317	30.14	. 1	. 9	. 13744	. 9905	. 13876	7.207	.1
2.0	. 03490	0.9994	. 03492	28.64	88.0	8.0	. 13917	0.9903	. 14054	7.115	82.0
. 1	. 03664	. 9993	. 03667	27.27	. 9	. 1	. 14390	. 9930	. 14232	7.026	. 9
2	. 03339	. 9993	. 03342	26.03	. 8	. 2	. 14253	. 9898	. 14410	6.940	8
3	. 04313	. 9992	. 04316	24.90	. 7	.3	. 14436	. 9875	. 14588	6.855	. 7
. 4	. 04188	. 99991	. 04191	23.86	. 6	. 4	. 14338	. 9893	. 14767	6.772	. 6
5	. 04362	. 99970	. 04336	22.90	. 5	. 5	. 14781	. 9890	. 14945	6.691	. 5
6	. 04536	. 9793	. 04541	22.02	. 4	. 6	. 14754	. 9838	. 15124	6.612	4
7	. 04711	. 9737	. 04718	21.23	. 3	.7	. 15125	. 9835	. 15302	6.535	. 3
8	. 04335	. 9723	. 04391	23.45	. 2	. 8	.15279	. 9882	.15431	6.460	. 2
. 9	. 05059	. 9987	. 05366	19.74	. 1	. 9	. 15471	. 9880	. 15660	6.386	. 1
3.0	. 05234	0.9995	. 05241	19.081	87.0	9.0	. 15643	0.9877	. 15838	6.314	81.0
. 1	. 0 jiz3	. 9735	. 05416	18.454	. 9	. 1	. 15316	. 9374	. 16317	6.243	. 9
2	.05532	. 9984	.05591	17.836	. 8	. 2	. 15738	. 9871	. 16196	6.174	. 8
3	. 07755	. 9983	. 05786	17.343	. 7	. 3	. 15163	. 9889	. 16376	6.107	. 7
. 4	.05731	. 9932	. 05941	16.332	. 6	. 4	. 16353	. 9856	. 16555	6.041	. 6
5	. 05105	. 9981	. 08116	16.353	. 5	. 5	. 16505	. 9863	. 16734	5.976	. 5
6	. 06279	. 9980	. 06291	15.895	. 4	. 6	. 16577	. 9830	. 16914	5.912	4
7	. 06453	. 9979	. 06457	15.464	. 3	. 7	. 16349	. 9357	. 17693	5.850	. 3
8	.06627	. 9978	. 06342	15.056	. 2	8	.17021	. 9854	.17273	5.789 5.730	. 2
. 9	. 06802	. 9977	. 06817	14.669	. 1	. 9	. 17193	. 9851	. 17453	5.730	.1
40	. 06976	0.9976	. 06993	14.331	86.0	10.0	. 1736	0.9848	. 1763	5.671	80.0
. 1	. 07150	. 9974	. 07168	13.951	. 9	. 1	. 1754	. 9345	. 1781	5.614	. 9
2	. 07324	. 9973	. 07344	13.517	. 8	. 2	. 1771	. 9842	. 1799	5.558	8
3	. 07478	. 9972	. 07519	13.350	7	. 3	. 1788	. 9833	. 1817	5.533	.7
4	. 07672	. 9971	. 07695	12.996	. 6	. 4	. 1305	. 9833	. 1835	5.449	. 6
5	. 07846	. 9969	. 07870	12.706	. 5	. 5	. 1322	. 9833	. 1853	5.396	. 5
6	. 08920	. 9968	. 08046	12.429	4	. 6	. 1340	. 9829	. 1871	5.343	4
7	. 08194	. 9966	. 08221	12.163	. 3	. 7	. 1357	. 9826	. 1890	5.292	. 3
8	. 08368	. 9965	. 08397	11.939	. 2	. 8	. 1874	. 9823	. 1908	5.242	. 2
9	. 03542	. 9963	. 08573	11.664	. 1	. 9	. 1891	. 9820	. 1926	5.193	.1
5.0	. 08716	0.9962	. 08749	11.430	85.0	11.0	. 1908	0.9816	. 1944	5.145	79.0
J	'08889	. 9960	. 08925	11.205	. 9	. 1	. 1925	. 9813	. 1962	5.097	. 9
2	. 09063	. 9959	. 09101	10.988	8	. 2	. 1942	. 9810	. 1980	5.050	. 8
3	. 09237	. 9957	. 09277	10.780	. 7	. 3	. 1959	. 9806	.1998	5.005	7
4	. 09411	. 9956	. 09453	10.579	. 6	. 4	. 1977	. 9803	. 2016	4.959 4.915	. 6
5	. 09585	. 9954	. 09629	10.385	. 5	. 5	. 1994	. 9799	. 2035	4.915 4.872	. 5
6	. 09758	. 9952	. 09805	10.199	. 4	. 7	. 2011	.9796 .9792	. 2053	4.872 4.829	. 4
J	. 09932	. 9951	. 09981	10.019	. 3	8	.2028 2045	. 9792	. 2071	4.829 4.787	. 3
8 8	.10106 .10279	. 9949	.10158 .10334	9.845 9.677	. 2	.88	.2045 .2052	.9789 .9785	. 2089	4.787 4.745	. 1
.9	. 10279	. 9947	. 10334	9.677	. 1	. 9	. 2002	. 9785	. 2107		.
6.0	. 10453	0.9945	. 10510	9.514	84.0	12.0	. 2079	0.9781	. 2126	4.705	78.0
	cos	sin	col	inn	deg		cos	\sin	cot	tan	deg

for decimal fractions of a degree continued

deg	sin	cos	fan	cot		ces	\sin	cos	Pan	cot	
12.0	0.2079	0.9781	0.2126	4.705	78.0	18.0	0.3090	0.9511	0.3249	3.078	72.0
. 1	. 2396	. 9778	. 2144	4.665	. 9	. 1	. 3107	. 9505	. 3269	3.060	. 9
. 2	. 2113	. 9774	. 2162	4.625	. 8	. 2	. 3123	. 9500	. 3288	3.042	. 8
. 3	. 2130	. 9770	. 2160	4.586	. 7	. 3	. 3140	. 9494	. 3307	3.024	. 7
. 4	. 2147	. 9767	. 2199	4.543	. 6	. 4	. 3156	. 9489	. 3327	3.006	. 6
. 5	. 2164	. 9763	. 2217	4.511	. 5	. 5	. 3173	. 9483	. 3346	2.989	. 5
. 6	. 2181	. 9759	. 2235	4.474	. 4	. 6	. 3190	. 9478	. 3365	2.971	. 4
. 7	. 2198	. 9755	. 2254	4.437	. 3	. 7	. 3236	. 9472	. 3335	2.954	. 3
. 8	. 2215	. 9751	. 2272	4.432	. 2	. 8	. 3223	. 9466	. 3434	2.937	. 2
. 9	.2233	. 9748	. 2290	4.366	. 1	. 9	. 3239	. 9461	. 3424	2.921	. 1
13.0	0.2250	0.9744	0.2309	4.331	77.0	19.0	0.3256	0.9455	0.3443	2.904	71.9
. 1	. 2267	. 9740	. 2327	4.297	. 9	.1	. 3272	. 9449	. 3463	2.358	. 9
. 2	. 2284	. 9736	. 2345	4.264	. 8	. 2	. 3239	. 9444	. 3432	2.872	. 8
.3	. 2350	. 9732	. 2364	4.230	. 7	. 3	. 3335	. 9438	. 3512	2.356	. 7
. 4	. 2317	. 9728	. 2382	4.198	. 6	. 4	. 3322	. 9432	. 3522	2.540	. 6
. 5	. 2334	. 9724	. 2401	4.165	. 5	. 5	. 3338	. 9426	. 3541	2.324	. 5
. 6	. 2351	. 9720	. 2419	4.134	. 4	. 6	. 3355	. 9421	. 3581	2.838	. 4
. 7	. 2368	. 9715	. 2438	4.102	. 3	. 7	. 3371	. 9415	. 3581	2.793	. 8
. 8	. 2385	. 9711	. 2456	4.671	. 2	. 8	. 3387	. 9439	. 3600	2.778	. 2
. 9	2402	. 9707	. 2475	4.041	.1	. 9	. 3404	. 9403	. 3620	2.762	. 1
14.0	0.2419	0.9703	0.2493	4.011	76.0	20.0	0.3420	0.9397	0.3640	2.747	70.0
. 1	. 2436	. 9699	. 2512	3.981	. 9	. 1	. 3437	. 9391	. 3659	2.733	.
. 2	. 2453	. 9694	. 2530	3.952	. 8	. 2	. 34.53	. 9395	. 3679	2.718	. 8
. 3	. 2470	. 9690	. 2549	3.923	. 7	. 3	. 3469	. 9379	. 3699	2.703	. 7
. 4	. 2487	. 9686	. 2568	3.895	. 6	. 4	. 3486	. 9373	. 3719	2.689	. 6
. 5	. 2504	. 9681	. 2586	3.867	. 5	. 5	. 3532	. 9367	. 3739	2.675	. 5
. 6	. 2521	. 9677	. 2605	3.839	. 4	. 6	. 3518	. 9361	. 3759	2.860	. 4
. 7	. 2538	. 9673	. 2623	3.812	. 3	. 7	. 3535	. 9354	. 3779	2.646	.3
. 8	. 2554	. 9668	. 2642	3.785	. 2	. 8	. 3551	. 9348	. 3799	2.633	. 2
. 9	. 2571	. 9664	. 2661	3.758	. 1	. 9	. 3567	. 9342	. 3819	2.619	.1
15.0	0.2588	0.9659	0.2679	3.732	75.0	21.0	0.3584	0.9336	0.3839	2.605	69.0
. 1	. 2605	. 9655	. 2698	3.706	. 9	. 1	. 3600	. 9330	. 3859	2.572	. 9
. 2	. 2622	. 9650	. 2717	3.681	8	. 2	. 3616	. 9323	. 3879	2.578	. 8
. 3	. 2639	. 9646	. 2736	3.655	. 7	. 3	. 3533	. 9317	. 3899	2.565	. 7
. 4	. 2656	. 9641	. 2754	3.630	. 6	. 4	. 3649	. 9311	. 3919	2.552	. 6
. 5	. 2672	. 9636	. 2773	3.606	. 5	. 5	. 3665	. 9304	. 3939	2.539	. 5
. 6	. 2689	. 9632	. 2792	3.582	. 4	. 6	. 3681	. 9298	. 3959	2.526	. 4
. 7	. 2706	. 9627	. 2811	3.558	. 3	. 7	. 3697	. 9291	. 3979	2.513	.3
. 8	.2723	. 9622	.2830	3.534	. 2	. 8	. 3714	. 9285	. 4030	2.550	.2
. 9	. 2740	. 9617	. 2849	3.511	. 1	. 9	. 3730	. 9278	. 4020	2.488	. 1
16.0	0.2756	0.9613	0.2867	3.487	74.0	22.0	0.3746	0.9272	0.4040	2.475	68.6
. 1	. 2773	. 9608	. 2886	3.455	. 9	. 1	. 3762	. 92265	. 40.361	2.463	. 9
. 2	. 2790	. 9603	. 2905	3.442	. 8	. 2	. 3778	. 9259	. 4081	2.450	. 8
. 3	. 2807	. 9598	. 2924	3.423	7	. 3	. 3795	. 9252	. 4101	2.438	. 7
. 4	. 2823	. 9593	. 2943	3.398	. 6	. 4	. 3811	. 9245	. 4122	2.426	. 6
. 5	. 2840	. 9588	. 2962	3.376	. 5	. 5	. 3827	. 9239	.4142	2.414	. 5
. 6	. 2857	. 9583	. 2981	3.354	.4	. 6	. 3843	. 9232	. 4163	2.402	. 4
. 7	. 2874	. 9578	. 3000	3.323	. 3	. 7	. 3859	. 9225	. 4183	2.391	. 3
. 8	. 2890	. 9573	. 3019	3.312	. 2	. 8	. 3875	. 9219	. 4204	2.379	. 2
. 9	. 2907	. 9568	. 3038	3.291	. 1	. 9	. 3891	. 9212	. 4224	2.367	. 1
17.0	0.2924	0.9563	0.3057	3.271		23.0	0.3907	0.9205	0.4245	2.356	67.0
. 1	. 2940	. 9558	. 3076	3.251	. 9	. 1	. 3723	. 9198	. 4265	2.344	. 9
. 2	. 2957	. 9553	. 3096	3.239	. 8	. 2	. 3939	. 9191	. 4286	2.333	. 8
. 3	. 2974	. 9548	. 3115	3.211	. 7	. 3	. 3955	. 9184	. 4307	2.322	. 7
. 4	. 2990	. 9542	. 3134	3.191	. 6	. 4	. 3971	. 9178	. 4327	2.311	. 6
. 5	. 3007	. 9537	. 3153	3.172	. 5	. 5	. 3987	. 9171	. 4348	2.309	. 5
. 6	. 3024	. 9532	. 3172	3.152	. 4	. 6	. 4003	. 9164	. 4369	2.289	. 4
7	. 3040	. 9527	. 3191	3.133	. 3	. 7	. 4019	. 9157	. 4390	2.278	. 3
.8	. 3057	. 9521	. 3211	3.115	. 2	. 8	. 4935	. 9150	. 4411	2.267	. 2
. 9	. 3074	. 9516	. 3230	3.096	. 1	. 9	. 4051	. 9143	. 4431	2.257	. 1
18.0	0.3090	0.9511	0.3249	3.078	72.0	24.0	0.4067	0.9135	0.4452	2.246	66.0
	\cos	\sin	cot	คตก	deg		cos	\sin	cot	tan	deg

for decimal fractions of a degree continued

deg	\sin	cos	fon	cot		deg	sin	\cos	Ion	col	
24.0	0.4067	0.9135	0.4452	2.246	66.0	30.0	0.5000	0.8660	0.5774	1.7321	60.0
. 1	. 4083	. 9128	. 4473	2.236	. 9	. 1	. 5015	. 8052	. 5797	1.7251	. 9
. 2	. 4099	. 9121	. 4494	2.225	. 8	. 2	. 5030	. 8043	. 5820	1.7182	. 8
3	. 4115	. 9114	. 4515	2.215	. 7	. 3	. 5045	. 8034	. 5844	1.7113	. 7
. 4	. 4131	. 9107	. 4535	2.204	. 6	. 4	. 5060	. 8025	. 5867	1.7045	. 6
. 5	. 4147	. 9100	. 4557	2.194	. 5	. 5	. 5075	. 8616	. 5890	1.6977	. 5
. 6	. 4163	. 9092	. 4578	2.184	. 4	. 6	. 5090	. 80.07	. 5914	1.6909	. 4
. 7	. 4179	. 9085	. 4599	2.174	. 3	.7	. 5105	. 8599	. 5938	1.6842	. 3
. 8	. 4195	. 9078	. 4621	2.164	. 2	. 8	. 5120	. 8590	. 5961	1.6775	. 2
. 9	. 4210	. 9070	. 4642	2.154	. 1	. 9	. 5135	. 8581	. 5985	1.6709	. 1
25.0	0.4226	0.9063	0.4663	2.145	65.0	31.0	0.5150	0.8572	0.6009	1.6643	59.0
. 1	. 4242	. 9056	. 4684	2.135	. 9	. 1	. 5165	. 8563	. 6032	1.6577	. 9
. 2	. 4258	. 9048	. 4706	2.125	. 8	. 2	. 5180	. 8554	. 6056	1.6512	. 8
. 3	. 4274	. 9041	. 4727	2.116	. 7	. 3	. 5195	. 8545	. 6080	1.6447	. 7
.4	. 4289	. 9033	. 4748	2.106	. 6	. 4	. 5210	. 8536	. 6104	1.6383	. 6
. 5	. 4305	. 9026	. 4770	2.097	. 5	. 5	. 5225	. 8526	. 6128	1.6319	. 5
. 6	. 4321	. 9018	. 4791	2.087	. 4	.6	. 5240	. 8517	. 6152	1.6255	. 4
. 7	. 4337	. 9011	. 4813	2.078	. 3	. 7	. 5255	. 8508	. 6176	1.6191	. 3
. 8	. 4352	. 9003	. 4834	2.069	. 2	. 8	. 5270	. 8499	. 6200	1.6128	. 2
. 9	. 4368	. 8996	. 4856	2.059	. 1	. 9	. 5284	. 8490	. 6224	1.6066	. 1
26.0	0.4384	0.8988	0.4877	2.050	64.0	32.0	0.5299	0.8480	0.6249	1.6003	58.0
. 1	. 4399	. 8980	. 4899	2.041	. 9	. 1	. 5314	. 8471	. 6273	1.5941	. 9
. 2	. 4415	. 8973	. 4921	2.032	. 8	. 2	. 5329	. 8462	. 6297	1.5880	. 8
. 3	. 4431	. 8965	. 4942	2.023	. 7	. 3	. 5344	. 8463	. 6322	1.5818	. 7
. 4	. 4446	. 8957	. 4964	2.014	. 6	. 4	. 5358	. 8443	. 6346	1.5757	. 6
. 5	. 4462	. 8949	. 4986	2.006	. 5	. 5	. 5373	. 8434	. 6371	1.5697	. 5
. 6	. 4478	. 8942	. 5008	1.997	. 4	. 6	. 5388	. 8425	. 6395	1.5637	. 4
. 7	. 4493	. 8934	. 5029	1.988	. 3	. 7	. 5402	. 8415	. 6420	1.5577	. 3
. 8	. 4509	. 8926	. 5051	1.980	. 2	. 8	. 5417	. 8406	. 6445	1.5517	. 2
. 9	. 4524	. 8918	. 5073	1.971	.1	. 9	. 5432	. 8396	. 6469	1.5458	. 1
27.0	0.4540	0.8910	0.5095	1.963	63.0	33.0	0.5446	0.8387	0.6494	1.5399	57.0
. 1	. 4555	. 8902	. 5117	1.954	. 9	. 1	. 5461	. 8377	. 6519	1.5340	. 9
.2	. 4571	. 8894	. 5139	1.946	. 8	. 2	. 5476	. 8368	. 6544	1.5282	. 8
. 3	. 4586	. 8886	. 5161	1.937	. 7	. 3	. 5490	. 8358	. 6569	1.5224	. 7
. 4	. 4602	. 8878	. 5184	1.929	. 6	. 4	. 5505	. 8348	. 6594	1.5166	. 6
. 5	. 4617	. 8870	. 5206	1.921	. 5	. 5	. 5519	. 8339	. 6619	1.5108	. 5
. 6	. 4633	. 8862	. 5228	1.913	. 4	. 6	. 5534	. 8329	. 6644	1.5051	. 4
.7	. 4648	. 8854	. 5250	1.905	. 3	. 7	. 5548	. 8320	. 6669	1.4994	. 3
. 8	. 4684	. 8846	. 5272	1.897	. 2	. 8	. 5563	. 8310	. 6694	1.4938	. 2
. 9	. 4679	. 8838	. 5295	1.889	. 1	. 9	. 5577	. 8300	. 6720	1.4882	. 1
28.0	0.4695	0.8829	0.5317	1.881	62.0	34.0	0.5592	0.8290	0.6745	1.4826	36.0
. 1	. 4710	. 8821	. 5340	1.873	. 9	. 1	. 5606	. 8281	. 6771	1.4770	. 9
. 2	. 4726	. 8813	. 5362	1.865	. 8	. 2	. 5621	. 8271	. 6796	1.4715	. 8
. 3	. 4741	. 8805	. 5384	1.857	. 7	. 3	. 5635	. 8261	. 6822	1.4659	. 7
. 4	. 4756	. 8796	. 5407	1.849	. 6	. 4	. 5650	. 8251	. 6847	1.4605	. 6
. 5	. 4772	. 8788	. 5430	1.842	. 5	. 5	. 5664	. 8241	. 6873	1.4550	. 5
-6	. 4787	. 8780	. 5452	1.834	. 4	.6	. 5678	. 8231	. 6899	1.4496	. 4
.7	. 4802	. 8771	. 5475	1.827	. 3	. 7	. 5693	. 8221	. 6924	1.4442	. 3
8	. 4818	. 8763	. 5498	1.819	. 2	. 8	. 5707	. 8211	. 6950	1.4388	. 2
. 9	. 4833	. 8755	. 5520	1.811	. 1	. 9	. 5721	. 8202	. 6976	1.4335	.1
29.0	0.4848	0.8746	0.5543	1.804	61.0	35.0	0.5736	0.8192	0.7002	1.4281	55.0
. 1	. 4883	. 8738	. 5566	1.797	. 9	. 1	. 5750	. 8181	. 7028	1.4229	. 9
. 2	. 4879	. 8729	. 5589	1.789	. 8	. 2	. 5764	. 8171	. 7054	1.4176	. 8
. 3	. 4894	. 8721	. 5612	1.782	. 7	. 3	. 5779	. 8161	. 7080	1.4124	. 7
. 4	. 4909	. 8712	. 5635	1.775	. 6	. 4	. 5793	. 8151	.7107	1.4071	. 6
. 5	. 4924	. 8704	. 5658	1.767	. 5	. 5	. 58007	. 8141	.7133	1.4019	. 5
-6	. 4939	. 8695	. 5681	1.760	. 4	. 6	. 5821	. 8131	. 7159	1.3968	. 4
. 7	. 4955	. 8686	. 5704	1.753	.3	. 7	. 5835	. 8121	.7186	1.3916	. 3
. 8	.4970 .4985	.8678 .8869	.5727 .5750	1.746 1.739	. 2	. 8	. 5850	. 8111	. 7212	1.3865	. 2
. 9	. 4985	. 8869	. 5750	1.739	. 1	. 9	. 5864	. 8100	. 7239	1.3814	. 1
30.0	0.5000	0.8660	0.5774	1.732	60.0	36.0	0.5878	0.8090	0.7265	1.3764	54.0
	cos	\sin	cot	Aan	deg		cos	\sin	cof	fan	deg

Natural trigonometric functions

for decimal fractions of a degree continued

deg	\sin	cos	Ion	col		deg	\sin	\cos	Ion	col	
36.0	0.5878	0.8090	0.7265	1.3764	54.0	40.5	0.6494	0.7604	0.8541	1.1708	49.5
. 1	. 5892	. 8080	. 7292	1.3713	. 9	. 6	. 6508	. 7593	. 8571	1.1667	. 4
. 2	. 5906	. 8070	. 7319	1.3663	. 8	. 7	. 6521	. 7581	. 8601	1.1626	. 3
. 3	. 5920	. 8059	.7346	1.3613	. 7	. 8	. 6534	. 7570	. 8632	1.1585	. 2
. 4	. 5934	. 8049	. 7373	1.3564	. 6	. 9	. 6547	. 7559	. 8662	1.1544	. 1
. 5	. 5948	. 8039	. 7400	1.3514	. 5	41.0	0.6561	0.7547	0.8693	1.1504	49.0
. 6	. 5962	. 8028	. 7427	1.3465	. 4	. 1	. 6574	. 75336	. 8724	1.1463	. 9
. 7	. 5976	. 8018	. 7454	1.3416	. 3	. 2	. 6587	. 7524	. 8754	1.1423	. 8
. 8	. 5990	. 8007	. 7481	1.3367	. 2	. 3	. 6600	. 7513	. 8785	1.1383	. 7
. 9	. 6004	. 7997	. 7508	1.3319	. 1	. 4	. 6613	. 7501	. 8816	1.1343	. 6
37.0	0.6018	0.7986	0.7536	1.3270	53.0	. 5	. 6626	. 7490	. 8847	1.1303	. 5
. 1	. 6032	. 7976	. 7563	1.3222	. 9	. 6	. 6639	. 7478	. 8878	1.1263	. 4
. 2	. 6046	. 7965	. 7590	1.3175	. 8	. 7	. 6652	. 7466	. 8910	1.1224	. 3
. 3	. 6080	. 7955	. 7618	1.3127	. 7	. 8	. 6665	. 7455	. 8941	1.1184	. 2
. 4	. 6074	. 7944	. 7646	1.3079	. 6	. 9	. 6678	. 7443	. 8972	1.1145	. 1
. 5	. 6088	. 7934	. 7673	1.3032	. 5	42.0	0.6691	0.7431	0.9004	1.1106	48.0
. 6	. 6101	. 7923	. 7701	1.2985	. 4	. 1	. 6704	. 7420	. 9036	1.1067	. 9
. 7	. 61115	. 7912	. 7729	1.2938	. 3	. 2	. 6717	. 7408	. 9067	1.1028	. 8
. 8	. 6129	. 7902	. 7757	1.2892	. 2	. 3	. 6730	. 7396	. 9099	1.0990	. 7
. 9	. 6143	. 7891	. 7785	1.2846	. 1	. 4	. 6743	. 7385	. 9131	1.0951	. 6
38.0	0.6157	0.7880	0.7813	1.2799	52.0	. 5	. 6756	. 7373	. 9163	1.0913	. 5
. 1	. 6170	. 7869	. 7841	1.2753	. 9	. 6	. 6769	. 7361	. 9195	1.0875	. 4
. 2	. 6184	. 7859	. 7869	1.2708	. 8	. 7	. 6782	. 7349	. 9228	1.0837	. 3
. 3	. 6198	. 7848	. 7898	1.2662	. 7	. 8	. 6794	. 7337	. 9260	1.0799	. 2
. 4	. 6211	. 7837	. 7926	1.2617	. 6	. 9	. 6807	. 7325	. 9293	1.0761	. 1
. 5	. 6225	. 7826	. 7954	1.2572	. 5	43.0	0.6820	0.7314	0.9325	1.0724	47.0
. 6	. 6239	. 7815	. 7983	1.2527	. 4	. 1	. 6833	. 7302	. 9358	1.0686	. 9
. 7	. 6252	. 7804	. 3012	1.2482	. 3	. 2	. 6845	. 7290	. 9391	1.0649	. 8
. 8	. 6266	. 7793	. 8040	1.2437	. 2	. 3	. 6858	. 7278	. 9424	1.0612	7
. 9	. 6280	. 7782	. 8069	1.2393	. 1	. 4	. 6871	. 7266	. 9457	1.0575	. 6
39.0	0.6293	0.7771	0.8098	1.2349	51.0	. 5	. 6884	. 7254	. 9490	1.0538	. 5
. 1	. 6307	. 7760	. 8127	1.2305	. 9	. 6	. 6896	. 7242	. 9523	1.0501	. 4
. 2	. 6320	. 7749	. 8156	1.2261	. 8	. 7	. 6909	. 7230	. 9556	1.0464	. 3
. 3	. 6334	. 7738	. 8185	1.2218	. 7	. 8	. 6921	. 7218	. 9590	1.0428	. 2
. 4	. 6347	. 7727	. 8214	1.2174	. 6	. 9	. 6934	. 7206	. 9823	¢. 0392	. 1
. 5	. 6361	. 7716	. 8243	1.2131	. 5	44.0	0.6947	0.7193	0.9657	1.0355	46.0
. 6	. 6374	. 7705	. 8273	1.2C88	. 4	. 1	. 6959	. 7181	. 9691	1.0319	. 9
. 7	. 6388	. 7694	. 8302	1.2045	. 3	. 2	. 6972	. 7169	. 9725	1.0283	. 7
. 8	. 6401	. 7683	. 8332	1.2002	. 2	. 3	. 6984	. 7157	. 9759	1.0247	. 7
. 9	. 6414	. 7672	. 8361	1.1960	. 1	. 4	. 6997	. 7145	. 9793	1.0212	. 6
40.0	0.6428	0.7660	0.8391	1.1918	50.0	. 5	. 7009	. 7133	. 9827	1.0176	. 5
. 1	. 6441	. 7449	. 8421	1.1875	. 9	. 6	. 7022	. 7120	. 9881	1.0141	. 4
. 2	. 6455	. 7638	. 8451	1.1833	. 8	. 7	. 7034	.7108	. 9896	1.0105	. 3
. 3	. 6468	. 7627	. 8481	1.1792	. 7	. 8	. 7046	. 7096	. 9930	1.0070	. 2
. 4	. 6481	. 7615	. 8511	1.1750	. 6	. 9	. 7059	. 7083	. 9965	1.0035	.1
40.5	0.6494	0.7604	0.8541	1.1708	49.5	45.0	0.7071	0.7071	1.0000	1.0000	45.0
	cos	sin	cot	tan	deg		cos	sin	cot	Ian	deg

Logarithms of trigonometric functions
for decimal fractions of a degree

deg	1 tan	1 cos	1 Itan	L. col		deg	$4 \sin$	L cos	LIan	L col	
0.0	$-\infty$	0.0000	$-\infty$	∞	90.0	6.0	9.0192	9.9976	9.0216	0.9784	84.0
. 1	7.2419	0.0000	7.2419	2.7581	. 9	. 1	9.0264	9.9975	9.0289	0.9711	. 9
. 2	7.5429	0.0000	7.5429	2.4571	. 8	. 2	9.0334	9.9975	9.0360	0.9640	. 8
. 3	7.7190	0.0000	7.7190	2.2810	. 7	. 3	9.0403	9.9974	9.0430	0.9570	. 7
. 4	7.8439	0.0000	7.8439	2.1561	. 6	. 4	9.0472	9.9973	9.0499	0.9501	. 6
. 5	7.9408	0.0000	7.9409	2.0591	. 5	. 5	9.0539	9.9972	9.0567	0.9433	. 5
. 6	8.0200	0.0000	8.0200	1.9800	. 4	. 6	9.0605	9.9971	9.0633	0.9367	. 4
. 7	8.0870	0.0000	8.0870	1.9130	3	. 7	9.0670	9.9970	9.0699	0.9301	. 3
. 8	8.1450	0.0000	8.1450	1.8550	. 2	. 8	9.0/34	9.9969	9.0764	0.9236	. 2
. 9	8.1961	9.9999	8.1962	1.8038	. 1	.9	9.0797	9.9968	9.0828	0.9172	. 1
T. 0	8.2419	9.9999	8.2419	1.7581	89.0	7.0	9.0859	9.9968	9.0891	0.9109	83.0
. 1	8.2832	9.9999	8.2833	1.7167	. 9	. 1	9.0920	9.9967	9.0954	0.9046	. 9
. 2	8.3210	9.9999	8.3211	1.6789	. 8	. 2	9.0981	9.9966	9.1015	0.8985	. 8
. 3	8.3558	9.9999	8.3559	1.6441	7	. 3	9.1040	9.9965	9.1076	0.8924	.7
. 4	8.3880	9.9999	8.3881	1.6119	. 6	. 4	9.1099	9.9964	9.1135	0.8865	. 6
. 5	8.4179	9.9999	8.4181	1.5819	. 5	. 5	9.1157	9.9963	9.1194	0.8806	. 5
.6	8.4459	9.9998	8.4461	1.5539	. 4	. 6	9.1214	9.9962	9.1252	0.8748	. 4
. 7	8.4723	9.9998	8.4725	1.5275	. 3	. 7	9.1271	9.9961	9.1310	0.8690	. 3
. 8	8.4971	9.9998	8.4973	1.5027	. 2	. 8	9.1326	9.9960	9.1367	0.8633	. 2
. 9	8.5206	9.9998	8.5208	1.4792	. 1	. 9	9.1381	9.9959	9.1423	0.8577	. 1
2.0	8.5428	9.9997	8.5431	1.4569	88.0	8.0	9.1436	9.9958	9.1478	0.8522	82.0
. 1	8.5640	9.9997	8.5643	1.4357	. 9	. 1	9.1489	9.9955	9.1533	0.8467	. 9
. 2	8.5342	9.9997	8.5345	1.4155	. 8	. 2	9.1542	9.9955	9.1537	0.8413	. 8
3	8.6235	9.9996	8.6538	1.3962	. 7	. 3	9.1594	9.9954	9.1640	0.8360	. 7
. 4	8.6220	9.9996	8.6223	1.3777	. 6	. 4	9.1646	9.9953	9.1693	0.8307	. 6
. 5	8.6397	9.9996	8.8401	1.3599	. 5	. 5	9.1697	9.9952	9.1745	0.8255	. 5
. 6	8.6567	9.9996	8.6571	1.3429	. 4	. 6	9.1747	9.9951	9.1797	0.8203	. 4
7	8.6731	9.9995	8.6736	1.3264	. 3	. 7	9.1797	9.9950	9.1848	0.8152	. 3
. 8	8.6389	9.9995	8.6394	1.3106	. 2	. 8	9.1347	9.9949	9.1898	0.8102	. 2
. 9	8.7041	9.9994	8.7046	1.2954	. 1	. 9	9.1895	9.9947	9.1948	0.8052	. 1
3.0	8.7188	9.9994	8.7194	1.2806	87.0	9.0	9.1943	9.9946	9.1997	0.8003	81.0
. 1	8.7330	9.9994	8.7337	1.2863	. 9	. 1	9.1991	9.9945	9.2046	0.7954	. 9
. 2	2.7468	9.9993	8.7475	1.2525	. 8	. 2	9.2338	9.9944	9.2094	0.7906	. 8
. 3	8.7672	9.9993	8.7609	1.2391	. 7	. 3	9.2035	9.9943	9.2142	0.7858	. 7
. 4	8.7731	9.9992	8.7739	1.2281	. 6	. 4	9.2131	9.9941	9.2189	0.7811	. 6
. 5	8.7857	9.9992	8.7865	1.2135	. 5	. 5	9.2176	9.9940	9.2236	0.7764	. 5
. 6	8.7979	9.9991	8.7988	1.2012	. 4	. 6	9.2221	9.9939	9.2282	0.7718	. 4
7	8.8098	9.9991	8.8107	1.1893	. 3	. 7	9.2256	9.9937	9.2328	0.7672	. 3
. 8	8.8213	9.9990	8.8223	1.1777	. 2	. 8	$9 . .310$	9.9936	9.2374	0.7626	. 2
. 9	8.8326	9.9990	8.8336	1.1684	. 1	.9	9.2353	9.9935	9.2419	0.7581	.1
4.0	8.8436	9.9989	8.8446	1.1554	86.0	10.0	9.2397	9.9934	9.2463	0.7537	80.0
. 1	8.8543	9.9989	8.8554	1.1446	. 6.9	. 1	9.2439	9.9932	9.2507	0.7493	8.0 .9
. 2	8.8847	9.9988	8.8659	1.1341	. 8	.2	9.2482	9.9931	9.2551	0.7449	. 8
. 3	8.8749	9.9988	8.8762	1.1238	.7	.3	9.2524	9.9929	9.2594	0.7406	.7
. 4	8.8849	9.9987	8.8862	1.1138	. 6	. 4	9.2565	9.9928	9.2637	0.7363	.6
5	8.8946	9.9987	8.8960	1.1040	. 5	. 5	9.2606	9.9927	9.2680	0.7320	. 5
6	8.9042	9.9986	8.9056	1.0944	. 4	. 6	9.2647	9.9925	9.2722	0.7278	. 4
. 7	8.9135	9.9985	8.9150	1.0850	.3	. 7	9.2687	9.9924	9.2764	0.7236	. 3
. 8	8.9226	9.9985	8.9241	1.0759	. 2	. 8	9.2727	9.9922	9.2805	0.7195	. 2
.9	8.9315	9.9984	8.9331	1.0669	.1	. 9	9.2767	9.9921	9.2846	0.7154	. 1
5.0	8.9403	9.9983	8.9420	1.0580	85.0	11.0	9.2806	9.9919	9.2887	0.7113	79.0
. 1	8.9489	9.9983	8.9506	1.0494	. 9	. 1	9.2845	9.9918	9.2927	0.7073	. 9
. 2	8.9573	9.9982	8.9591	1.0409	. 8	. 2	9.2883	9.9916	9.2967	0.7033	. 8
. 3	8.9655	9.9981	8.9674	1.0326	. 7	. 3	9.2921	9.9915	9.3006	0.6994	.7
. 4	8.9736	9.9981	8.9756	1.0244	. 6	. 4	9.2959	9.9913	9.3046	0.6954	.6
. 5	8.9816	9.9980	8.9836	1.0164	. 5	. 5	9.2997	9.9912	9.3085	0.6915	. 5
. 6	8.9894	9.9979	8.9915	1.0085	. 4	. 6	9.3034	9.9910	9.3123	0.6877	. 4
. 8	8.9970	9.9978	8.9992	1.0008	.3	.7	9.3070	9.9909	9.3162	0.6838	. 3
8	9.0046	9.9978	9.0068	0.9932	. 2	. 8	9.3107	9.9907	9.3200	0.6800	. 2
9	9.0120	9.9977	9.0143	0.9857	. 1	.9	9.3143	9.9906	9.3237	0.6763	. 1
6.0	9.0192	9.9976	9.0216	0.9784	84.0	12.0	9.3179	9.9904	9.3275	0.6725	78.0
	L cos	$1 \sin$	L col	L fan	deg		L cos	4 sin	1 cos	14 tan	dag

Logarithms of trigonometric functions

for decimal fractions of a degree continued

deg	1 sin	1 cos	1 fan	L col		de. 1	181.7	1 cos	1 Ian	L cof	
12.0	9.3179	9.9904	9.3275	0.6725	78.0	18.0	9.4900	9.9782	9.5118	0.4882	720
. 1	9.3214	9.9902	9.3312	0.6688	. 9	. 1	9.4723	9.9760	9.5143	0.4857	-9
. 2	9.3250	9.9901	9.3349	0.6651	. 8	. 2	9.4946	9.9777	9.5169	0.4831	. 8
. 3	9.3284	9.9899	9.3395	0.6615	7	. 3	9.4969	9.9775	9.5195	0.4805	. 7
. 4	9.3319	9.9897	9.3422	0.6578	. 6	. 4	9.4992	9.9772	9.5220	0.4780	. 6
. 5	9.3353	9.9896	9.3458	0.6542	. 5	. 5	9.5015	9.9770	9.5245	0.4755	. 8
. 6	9.3387	9.9894	9.3493	0.6507	. 4	. 6	9.5037	9.9767	9.5270	0.4730	. 4
. 7	9.3421	9.9892	9.3529	0.6471	. 3	. 7	9.5060	9.9764	9.5295	0.4705	. 8
. 8	9.3455	9.9891	9.3564	0.6436	. 2	. 8	9.5082	9.9762	9.5320	0.4680	. 2
. 9	9.3488	9.9889	9.3599	0.6401	. 1	. 9	9.5104	9.9759	9.5345	0.4655	. 1
13.0	9.3521	9.9887	9.3634	0.6366	77.0	19.0	9.5126	9.9757	9.5370	0.4630	71.0
. 1	9.3554	9.9885	9.3668	0.6332	. 9	. 1	9.5148	9.9754	9.5394	0.4606	. 9
. 2	9.3586	9.9884	9.3702	0.6298	. 8	. 2	9.5170	9.9751	9.5419	0.4581	. 8
. 3	9.3618	9.9882	9.3736	0.6264	. 7	. 3	9.5192	9.9749	9.5443	0.4557	. 7
. 4	9.3650	9.9880	9.3770	0.6230	. 6	. 4	9.5213	9.9746	9.5467	0.4533	. 6
. 5	9.3682	9.9878	9.3804	0.6196	. 5	. 5	9.5235	9.9743	9.5491	0.4509	. 5
. 6	9.3713	9.9876	9.3837	0.6163	. 4	. 6	9.5256	9.9741	9.5516	0.4484	. 4
. 7	9.3745	9.9875	9.3870	0.6130	. 3	. 7	9.5278	9.9738	9.5539	0.4461	. 3
. 8	9.3775	9.9873	9.3903	$0.6 C 97$. 2	. 8	9.5299	9.9735	9.5563	0.4437	. 2
. 9	9.3806	9.9871	9.3935	0.6065	1	. 9	9.5320	9.9733	9.5587	0.4413	. 1
14.0	9.3837	9.9869	9.3968	0.6032	76.0	20.0	9.5341	9.9730	9.5611	0.4389	70.0
. 1	9.3867	9.9867	9.4000	0.6000	. 9	. 1	9.5361	9.9727	95634	0.4366	. 9
. 2	9.3897	9.9865	9.4 C 32	0.5968	. 8	. 2	9.5382	9.9724	9.5658	0.4342	. 8
. 3	9.3927	9.9863	4.4064	0.5936	. 7	. 3	9.5402	9.9722	9.5681	0.4319	. 7
. 4	9.3957	9.9861	9.4095	0.5905	. 6	. 4	9.5423	9.9719	9.5704	0.4296	. 6
. 5	9.3986	9.9859	9.4127	0.5873	. 5	. 5	9.5443	9.9716	9.5727	0.4273	. 6
. 6	9.4015	9.9857	9.4158	0.5842	. 4	. 6	9.5453	9.9713	9.5750	0.4250	. 4
. 7	9.4044	9.9855	9.4189	0.5811	. 3	. 7	9.5434	9.9710	9.5773	0.4227	. 3
. 8	9.4073	9.9853	9.4220	0.5780	. 2	. 8	9.5504	9.9707	9.5796	0.4204	. 2
. 9	9.4102	9.9851	9.4250	0.5750	. 1	. 9	9.5523	9.9704	9.5819	0.4181	.1
15.0	9.4130	9.9849	9.4281	0.5719	75.0	21.0	9.5543	9.9702	9.5842	0.4158	69.0
. 1	9.4158	9.9847	9.4311	0.5689	. 9	. 1	9.5563	9.9699	9.5364	0.4136	. 9
. 2	9.4186	9.9845	9.4341	0.5659	. 8	. 2	9.5133	9.9596	9.5037	0.4113	. 8
.3	9.4214	9.9843	9.4371	0.5629	. 7	. 3	9.5602	9.9693	9.5909	0.4091	. 7
.4	9.4242	9.9841	9.4400	0.5600	. 6	. 4	9.5621	9.9690	9.5932	0.4068	. 6
. 5	9.4269	9.9839	9.4430	0.5570	. 5	. 5	9.5641	9.9687	9.5954	0.4046	. 5
. 6	9.4296	9.9837	9.4459	0.5541	. 4	. 6	9.5660	9.9684	9.5976	0.4024	. 4
. 7	9.4323	9.9835	9.4488	0.5512	. 3	. 7	9.5679	9.9681	9.5998	0.4022	. 3
. 8	9.4350	9.9833	9.4517	0.5483	. 2	. 8	9.5698	9.9678	9.6020	0.3983	. 2
. 9	9.4377	9.9831	9.4546	0.5454	. 1	. 9	9.5717	9.9675	9.6042	0.3958	. 1
16.0	9.4403	9.9828	9.4575	0.5425	74.0	22.0	9.5736	9.9672	9.6064	0.3936	68.0
. 1	9.4430	9.9826	9.4603	0.5397	. 9	. 1	9.5754	9.9669	9.6086	0.3914	. 9
. 2	9.4456	9.9824	9.4632	0.5368	. 8	. 2	9.5773	9.9666	9.6108	0.3892	. 8
. 3	9.4482	9.9822	9.4660	0.5340	. 7	. 3	9.5792	9.9662	9.6129	0.3871	. 7
. 4	9.4508	9.9820	9.4688	0.5312	. 6	. 4	9.5810	9.9859	9.6151	0.3849	. 6
. 5	9.4533	9.9817	9.4716	0.5284	. 5	. 5	9.5828	9.9656	9.6172	0.3823	. 5
. 6	9.4559	9.9815	9.4744	0.5256	. 4	.6	9.5847	9.9653	9.6194	0.3836	. 4
. 7	9.4584	9.9813	9.4771	0.5229	. 3	. 7	9.5965	9.9650	9.6215	0.3785	. 3
. 8	9.4609	9.9811	9.4799	0.5201	. 2	. 8	9.5893	9.9647	9.6236	0.3764	. 2
. 9	9.4634	9.9808	9.4826	0.5174	. 1	. 9	9.5901	9.9643	9.6257	0.3743	. 1
17.0	9.4659	9.9806	9.4853	0.5147	73.0	23.0	9.5919	9.9840	9.6279	0.3721	678
. 1	9.4684	9.9804	9.4880	0.5120	. 9	. 1	9.5937	9.9637	9.6300	0.3700	. 3
. 2	9.4709	9.9801	9.4907	0.5093	8	. 2	9.5954	9.9634	9.6321	0.3679	. 8
. 3	9.4733	9.9799	9.4934	0.5086	. 7	. 3	9.5972	9.9631	9.6341	0.3659	. 7
. 4	9.4757	9.9797	9.4961	0.5039	. 6	. 4	9.5990	9.9627	9.6362	0.3638	6
. 5	9.4781	9.9794	9.4987	0.5013	. 5	. 5	9.6007	9.9624	9.6383	0.3617	. 5
. 6	9.4805	9.9792	9.5014	0.4986	. 4	. 6	9.6024	9.9621	9.6404	0.3596	. 4
. 7	9.4829	9.9789	9.5040	0.4960	. 3	. 7	9.6042	9.9817	9.6424	0.3576	. 3
. 8	9.4853	9.9787	9.5066	0.4934	. 2	. 8	9.6059	9.9614	9.6445	0.3555	. 2
. 9	9.4876	9.9785	9.5092	0.4908	. 1	. 9	9.6076	9.9611	9.6465	0.3535	. 1
18.0	9.4900	9.9782	9.5118	0.4882	72.0	24.0	9.6093	9.9607	9.6486	0.3514	66.0
	1 cos	1 sin	L cot	1 fon	deg		1 cos	1 sin	1 cot	Lfon	deg

for decimal fractions of a degree continued

dog	1 sin	$\underline{4} \mathbf{c o s}$	L ton	Leol		deg	L. \sin	L cos	L Fon	L cot	
24.0	9.6093	9.9607	9.6488	0.3514	66.0	30.0	9.6990	9.9375	9.7614	0.2386	60.0
.	9.6110	9.9604	9.6506	0.3494	. 6	30.1	9.7003	9.9371	9.7632	0.2368	60.0
$\frac{2}{3}$	9.6127	9.9601	9.6527	0.3473	. 8	. 2	9.7016	9.9367	9.7649	0.2351	. 8
3	9.6144	9.9597	9.6547	0.3453	7	. 3	9.7029	9.9362	9.7667	0.2333	. 7
4	9.6161	9.9594	9.6567	0.3433	. 6	. 4	9.7042	9.9358	9.7684	0.2316	. 6
5	9.6177	9.9590	9.6587	0.3413	. 5	. 5	9.7055	9.9353	9.7701	0.2299	. 5
${ }^{6}$	9.6194	9.9587	9.6607	0.3393	. 4	. 6	9.7068	9.9349	9.7719	0.2281	. 4
7	9.6210	9.9583	9.6627	0.3373	. 3	. 7	9.7080	9.9344	9.7736	0.2264	. 3
8	9.6227	9.9580	9.6647	0.3353	. 2	. 8	9.7093	9.9340	9.7753	0.2247	. 2
.9	9.6243	9.9576	9.6667	0.3333	. 1	. 9	9.7106	9.9335	9.7771	0.2229	. 1
25.0	9.6259	9.9573	9.6687	0.3313	65.0	31.0	9.7118	9.9331	9.7788	0.2212	59.0
. 1	9.6276	9.9569	9.6706	0.3294	. 9	. 1	9.7131	9.9326	9.7805	0.2195	. 9
2	9.6292	9.9568	9.6726	0.3274	. 8	. 2	9.7144	9.9322	9.7822	0.2178	. 8
3	9.6338	9.9562	9.6746	0.3254	. 7	. 3	9.7156	9.9317	9.7839	0.2161	. 7
4	9.6324	9.9558	9.6765	0.3235	. 6	4	9.7168	9.9312	9.7856	0.2144	. 6
5	9.6340	9.9555	9.6785	0.3215	. 5	. 5	9.7181	9.9308	9.7873	0.2127	. 5
6	9.6356	9.9551	9.6304	0.3196	4	. 6	9.7193	9.9303	9.7890	0.2110	. 4
7	9.6371	9.9548	9.6824	0.3176	. 3	. 7	9.7205	9.9298	9.7907	0.2093	. 3
8	9.6387	9.9544	9.6343	0.3157	. 2	. 8	9.7218	9.9294	9.7924	0.2076	. 2
. 9	9.6403	9.9540	9.6863	0.3137	,	. 9	9.7230	9.9289	9.7941	0.2059	. 1
26.0	9.6418	9.9537	9.6882	0.3118	64.0	32.0	9.7242	9.9284	9.7958	0.2042	58.0
. 1	9.6434	9.9533	9.6901	0.3099	. 9	. 1	9.7254	9.9279	9.7975	0.2025	. 9
. 2	9.5449	9.9529	9.6920	0.3080	8	. 2	9.7266	9.9275	9.7992	0.2008	. 8
.3	9.6465	9.9525	9.6939	0.3061	.7	. 3	9.7278	9.9270	9.8008	0.1992	. 7
${ }^{4}$	9.6430	9.9522	9.6958	0.3042	. 6	. 4	9.7290	9.9265	9.8025	0.1975	. 6
5	9.6495	9.9518	9.6977	0.3023	. 5	. 5	9.7302	9.9260	9.8642	0.1958	. 5
6	9.6510	9.9514	9.6996	0.3004	. 4	. 6	9.7314	9.9255	9.8059	0.1941	. 4
J	9.6526	9.9510	9.7015	0.2985	. 3	. 7	9.7326	9.9251	9.8075	0.1925	. 3
8 .8	9.6541 9.6556	9.9506 9.9503	9.7034 9.7053	0.2966 0.2947	.2	8	9.7338	9.9246	9.8092	0.1908	. 2
. 9	9.6556	9.9503	9.7053	0.2947	1	. 9	9.7349	9.9241	9.8109	0.1891	. 1
27.0	9.6570	9.9499	9.7072	0.2928	63.0	33.0	9.7361	9.9236	9.8125	0.1875	57.0
.1	9.6585	9.9495	9.7690	0.2910	. 9	. 1	9.7373	9.9231	9.8142	0.1858	. 9
. 2	9.6600	9.9491	9.7109	0.2891	. 8	. 2	9.7384	9.9226	9.8158	0.1842	. 8
.3	9.6615	9.9487	9.7128	0.2872	. 7	. 3	9.7396	9.9221	9.8175	0.1825	. 7
. 4	9.6829	9.9483	9.7146	0.2854	. 6	. 4	9.7407	9.9216	9.8191	0.1809	. 6
. 5	9.6844	9.9479	9.7165	0.2835	. 5	. 5	9.7419	9.9211	9.8208	0.1792	. 5
. 7	9.0859	9.9475	9.7183	0.2817	. 4	. 6	9.7430	9.9206	9.8224	0.1776	. 4
. 7	9.6673	9.9471	9.7202	0.2798	. 3	. 7	9.7442	9.9201	9.8241	0.1759	. 3
8	9.5687	9.9467 9	9.7220	0.2780	.2	. 8	9.7453	9.9196	9.8257	0.1743	. 2
. 9	9.6702	9.9463	9.7238	0.2762	-	. 9	9.7464	9.9191	9.8274	0.1726	. 1
28.0	9.6716	9.9459	9.7257	0.2743	62.0	34.0	9.7476	9.9186	9.8290	0.1710	56.0
1	9.6730	9.9455	9.7275	0.2725	. 9	. 1	9.7487	9.9181	9.8306	0.1694	. 9
2	9.6744	9.9451	9.7293	0.2707	. 8	. 2	9.7498	9.9175	9.8323	0.1677	. 8
3	9.6759	9.9447	9.7311	0.2689	. 7	. 3	9.7509	9.9170	9.8339	0.1661	. 7
4	9.6773	9.9443	9.7330	0.2670	. 6	. 4	9.7520	9.9165	9.8355	0.1645	. 6
5	9.6787	9.9439	9.7348	0.2652	. 5	. 5	9.7531	9.9160	9.8371	0.1629	. 5
6	9.6801	9.9435	9.7366	0.2634	. 4	. 6	9.7542	9.9155	9.8388	0.1612	. 4
7	9.6814	9.9431	9.7384	0.2616	.3	. 7	9.7553	9.9149	9.8404	0.1596	. 3
8	9.6828	9.9427	9.7402	0.2598	. 2	. 8	9.7564	9.9144	9.8420	0.1580	. 2
9	9.6842	9.9422	9.7420	0.2580	. 1	. 9	9.7575	9.9139	9.8436	0.1564	. 1
29.0	9.6856	9.9418	9.7438	0.2562	61.0	35.0	9.7586	9.9134	9.8452	0.1548	55.0
. 1	9.6869	9.9414	9.7455	0.2545	. 9	. 1	9.7597	9.9128	9.8468	0.1532	. 9
2	9.6883	9.9410	9.7473	0.2527	. 8	. 2	9.7607	9.9123	9.8484	0.1516	. 8
3	9.8896	9.9406	9.7491	0.2509	. 7	. 3	9.7618	9.9118	9.8501	0.1499	. 7
. 4	9.6910	9.9401	9.7509	0.2491	. 6	. 4	9.7629	9.9112	9.8517	0.1483	. 6
5	9.6923	9.9397	9.7526	0.2474	. 5	. 5	9.7640	9.9107	9.8533	0.1467	. 5
6	9.6937	9.9303	9.7544	0.2456	. 4	. 6	9.7650	$9.9{ }^{\prime} 01$	9.8549	0.1451	. 4
7	9.6950	9.9388	9.7562	0.2438	. 3	. 7	9.7661	9.9006	9.8565	0.1435	. 3
8	9.6963	9.9384	9.7579	0.2421	. 2	8	9.7671	9.9091	9.8581	0.1419	. 2
. 9	9.6977	9.9380	9.7597	0.2403	. 1	. 9	9.7682	9.9085	9.8597	0.1403	. 1
30.0	9.6990	9.9375	9.7614	0.2386	60.0	36.0	9.7692	9.9080	9.8613	0.1387	54.0
	Leoz	$\mathrm{L} \sin$	L cot	Ltan	deg		Leos	$t \sin$	L col	Ltan	dog

Logarithms of trigonometric functions
for decimal fractions of a degree continued

deg	L sin	L cos	L tan	L cof		deg	1 sin	1 cos	L tan	1 cot	
36.0	9.7692	9.9080	9.8613	0.1387	54.0	40.5	9.8125	9.8810	9.9315	0.0685	49.5
. 1	9.7703	9.9074	9.8829	0.1371	. 9	. 6	9.8134	9.8834	9.9330	0.0670	. 4
. 2	9.7713	9.9069	9.8844	0.1356	. 8	. 7	9.8143	9.8797	9.9346	0.0654	. 3
. 3	9.7723	9.9063	9.8680	0.1340	. 7	. 8	9.8152	9.8791	9.9361	0.0639	.2
. 4	9.7734	9.9057	9.8676	0.1324	. 6	. 9	9.8161	9.8784	9.9376	0.0624	. 1
. 5	9.7744	9.9052	9.8692	0.1308	. 5	41.0	9.8169	9.8778	9.9392	0.0608	49.0
. 6	9.7754	9.9346	9.8708	0.1292	. 4	. 1	9.8178	9.8771	9.9407	0.0593	. 9
. 7	9.7764	9.9341	9.8724	0.1276	. 3	. 2	9.8187	9.8765	9.9422	0.0578	. 8
. 8	9.7774	9.9035	9.8740	0.1260	. 2	. 3	9.8195	9.9758	9.9438	0.0582	. 7
. 9	9.7785	9.9029	9.8755	0.1245	. 1	. 4	9.8204	9.8751	9.9453	0.0547	. 6
37.0	9.7795	9.9023	9.8771	0.1229	53.0	. 5	9.8213	9.8745	9.9468	0.0532	. 5
. 1	9.7805	9.9018	9.8787	0.1213	. 9	. 6	9.3221	9.8738	9.9483	0.0517	. 4
. 2	9.7815	9.9012	9.8803	0.1197	. 8	. 7	9.8230	9.5731	9.9499	0.0501	. 3
. 3	9.7825	9.9006	9.8818	0.1182	. 7	. 8	9.3338	9.5724	9.9514	0.0486	2
. 4	9.7835	9.9000	9.8834	0.1166	. 6	. 9	9.8247	9.8718	9.9529	0.0471	. 1
. 5	9.7844	9.8995	9.8850	0.1150	. 5	42.0	9.8255	9.8711	9.9544	0.0456	48.0
. 6	9.7854	9.8789	9.8865	0.1135	. 4	. 1	9.8264	9.3704	9.9560	0.0440	. 9
. 7	9.7884	9.8783	9.8881	0.1119	. 3	. 2	9.6272	9.8697	9.9575	0.0425	. 8
. 8	9.7874	9.8977	9.8897	0.1103	. 2	. 3	9.8280	9.8690	9.9590	0.0410	. 7
. 9	9.7884	9.8971	9.8912	0.1088	. 1	. 4	9.8289	9.8683	9.9605	0.0395	. 6
38.0	9.7893	9.8965	9.8928	0.1072	52.0	. 5	9.8297	9.8676	9.9621	0.0379	. 5
. 1	9.7903	9.8959	9.8944	0.1056	. 9	. 6	9.8305	9.8669	9.9636	0.0364	. 4
. 2	9.7913	9.8953	9.8959	0.1041	. 8	. 7	9.3313	9.8662	9.9651	0.0349	. 3
. 3	9.7922	9.8947	9.8975	0.1025	. 7	. 8	9.8322	9.8655	9.9866	0.0334	. 2
. 4	9.7932	9.8941	9.8990	0.1010	. 6	. 9	9.8330	9.8648	9.9681	0.0319	. 1
. 5	9.7941	9.8935	9.9006	0.0994	. 5	43.0	9.8338	9.8641	9.9697	0.0303	47.0
. 6	9.7951	9.8929	9.9022	0.0978	. 4	. 1	9.8346	9.8634	9.9712	0.0288	. 9
. ${ }^{\text {' }}$	9.7960	9.8923	9.9037	0.0963	. 3	. 2	9.8354	9.8627	9.9727	0.0273	. 8
. 8	9.7970	9.8917	9.9053	0.0947	. 2	. 3	9.8362	9.8620	9.9742	0.0258	. 7
. 9	9.7979	9.8911	9.9068	0.0932	. 1	. 4	9.8370	9.8613	9.9757	0.0243	. 6
39.0	9.7989	9.8905	9.9084	0.0916	51.0	. 5	9.8378	9.8606	9.9772	0.0228	. 5
. 1	9.7998	9.8899	9.9099	0.0901	. 9	. 6	9.8386	9.8598	9.9788	0.0212	. 4
. 2	9.8007	9.8893	9.9115	0.0885	. 8	. 7	9.8394	9.8591	9.9803	0.0197	. 3
. 3	9.8017	9.8887	9.9130	0.0870	. 7	. 8	9.8402	9.8584	9.9818	0.0182	. 2
. 4	9.8026	9.8880	9.9146	0.0854	. 6	. 9	9.8410	9.8577	9.9833	0.0167	. 1
-5	9.8035	9.8874	9.9161	0.0839	. 5	44.0	9.8418	9.8569	9.9848	0.0152	46.0
. 6	9.8044	9.8888	9.9176	0.0824	. 4	. 1	9.8426	9.8562	9.9864	0.0136	. 9
. 7	9.8053	9.8882	9.9192	0.0808	. 3	. 2	9.8433	9.8555	9.9879	0.0121	. 8
. 8	9.8063	9.8855	9.9207	0.0793	. 2	. 3	9.8441	9.8547	9.9894	0.0106	7
. 9	9.8072	9.8849	9.9223	0.0777	. 1	. 4	9.8449	9.8540	9.9909	0.0091	. 6
40.0	9.8081	9.8843	9.9238	0.0762		. 5	9.8457	9.8532	9.9924	0.0076	. 5
. 1	9.8090	9.8836	9.9254	0.0746	. 9	. 6	9.8464	9.8525	9.9939	0.0061	. 4
. 2	9.8099	9.8830	9.9269	0.0731	. 8	. 7	9.8472	9.8517	9.9955	0.0045	. 3
. 3	9.8108	9.8823	9.9284	0.0716	. 7	. 8	9.8480	9.8510	9.9970	0.0030	. 2
. 4	9.8117	9.8817	9.9300	0.0700	. 6	. 9	9.8487	9.8502	9.9985	0.0015	. 1
40.5	9.8125	9.8810	9.9315	0.0685	49.5	45.0	9.8495	9.8495	0.0000	0.0000	45.0
	1 cos	L Es?	Lect	L Ian	deg		1 cos	b sin	L col	1 tan	deg

Nafural logarithms

Nafural logarithms of $10^{+\infty}$

315

Natural logarithms continued

			2	3	4	5	6	7		9	mean difierences								
											1	2	3	4	5	6	7	¢	9
5.3	1.7047	7066	7084	7102	7120	7138	7156	7174	7192	7210	2	4	5	7	9	11	13	14	16
5.6	1.7228	7246	7263	7281	7299	7317	7334	7352	7370	7387	2	4	5	7	9	11	12	14	16
5.7	1.7405	7422	7440	7457	7475	7492	7509	7527	7544	7561	2	3	5	7	9	10	12	14	16
5.8	1.7579	7596	7613	7630	7647	7664	7681	7699	7716	7733	2	3	5	7	9	10	12	14	15
5.9	1.7750	7766	7783	7800	7817	7834	7851	7867	7884	7901	2	3	5	7	8	10	12	13	15
6.0	1.7918	7934	7951	7967	7984	8001	8017	8034	8050	8060	2	3	5	7	8	10	12	13	15
6.1	1.8083	8099	8116	8132	8148	8165	8181	8197	8213	8229	2	3	5	6	8	10	11	13	15
6.2	1.8245	8262	8278	8294	8310	8326	8342	83.58	8374	8390	2	3	5	8	8	10	11	13	14
6.3	1.8405	8421	8437	8453	8469	8485	8500	8516	8532	8547	2	3	5	6	8	9	11	13	14
6.4	1.8563	8579	8594	8610	8625	8641	8656	8672	8687	8703	2	3	5	6	8	9	11	12	14
6.3	1.8718	8733	8749	8764	8779	8795	8810	8825	8840	8856	2	3	5	6	8	9	11	12	14
6.6	1.8871	8886	8901	8916	8931	8946	8961	8976	8991	9006	2	3	5		8	9	11	12	14
6.7	1.9021	9036	9051	9066	9081	9095	9110	9125	9140	9155	1	3	4		7	9	10	12	13
6.8	1.9169	9184	9199	9213	9228	9242	9257	9272	9286	9301	1	3	4	6	7	9	10	12	13
6.9	1.9315	9330	9344	9359	9373	9387	9402	9416	9430	9445	1	3	4	6	7	9	10	12	13
7.0	1.9459	9473	9488	9502	9516	9530	9544	9559	9573	9587	1		4		7	9	10	11	13
7.1	1.9601	9615	9629	9643	9657	9671	9685	9699	9713	9727	1	3	4	6	7	8	10	11	13
7.2	1.9741	9755	9769	9782	9798	9810	9824	9838	9851	9865	1	3	4	6	7	8	10	11	12
7.3	1.9879	9892	9906	9920	9933	9947	9961	9974	9988	2.0001	1	,	4	5	7	8	10	11	12
7.4	2.0015	0028	0042	0055	0069	0082	0096	0109	0122	0136	1	3	4	5	7	8	9	11	12
7.5	2.0149	0162	0176	0189	0202	0215	0229	0242	0255	0268	1	3	4	5	7	8	9	11	12
7.6	2.0281	0295	0308	0321	0334	0347	0360	0373	0386	0399	1	3	4	5	7	8	9	10	12
7.7	2.0412	0425	0438	0451	0464	0477	0490	0503	0516	0528	1	3	4	5	6	8	9	10	12
7.8	2.0541	0554	0567	0580	0592	0605	0618	0631	0643	0656	1	3	4	5	6	8	9	10	11
7.9	2.0669	0681	0694	0707	0719	0732	0744	0757	0769	0782	1	3	4	5	6	8	9	10	11
8.0	2.0794	0807	0819	0832	0844	0857	0869	0882	0894	0906	1	3	4	5	\%	7	9	10	11
8.1	2.0919	0931	0943	0956	0968	0980	0992	1005	1017	1029	1	2	4	5	6	7	9	10	11
8.2	2.1041	1054	1066	1078	1090	1102	1114	1126	1138	1150	1	2	4	5		7	9	10	11
8.3	2.1163	1175	1187	1199	1211	1223	1235	1247	1258	1270	1	2	4	5	6	7	8	10	11
8.4	2.1282	1294	1306	1318	1330	1342	1353	1365	1377	1389	1	2	4	5	6	7	8	9	11
8.5	2.1401	1412	1424	1436	1448	1459	1471	1483	1494	1506	1	2	4	5	6	7	8	9	11
8.6	2.1518	1529	1541	1552	1564	1576	1587	1599	1610	1622	1	2	3	5	6	7	8		10
8.7	2.1633	1645	1656	1688	1679	1691	1702	1713	1725	1736	1	2	3	5	6	7	8	-	10
8.8	2.1748	1759	1770	1782	1793	1804	1815	1827	1838	1849	1	2	3	5	6	7	8	9	10
8.9	2.1861	1872	1883	1894	1905	1917	1928	1939	1950	1961	1	2	3	4	6	7	8	9	10
9.0	2.1972	1983	1994	2006	2017	2028	2039	2050	2061	2072	1	2	3	4	5	7	-	9	10
9.1	2.2083	2094	2105	2116	2127	2138	2148	2159	2170	2181	1	2	3	4	5	7	8	9	10
9.2	2.2192	2203	2214	2225	2235	2246	2257	2268	2279	2289	1	2	3	4	5	6	8	9	10
9.3	2.2300	2311	2322	2332	2343	2354	2364	2375	2386	2396	1	2	3	4	5	6	7	9	10
9.4	2.2407	2418	2428	2439	2450	2460	2471	2481	2492	2502	1	2	3	4	5	6	7	8	10
9.3	2.2513	2523	2534	2544	2555	2565	2576	2586	2597	2607	1	2	3	4	5	6	7	8	9
9.6	2.2618	2628	2638	2549	2659	2670	2680	2690	2701	2711	1	2	3	4	5	6	7	8	9
9.7	2.2721	2732	2742	2752	2762	2773	2783	2793	2803	2814	1	2	3	4	5	6	7	8	9
9.8	2.2824	2834	2844	2854	2865	2875	2885	2895	2905	2915	1	2	3	4	5	6	7	8	9
9.9	2.2925	2935	2946	2956	2966	2976	2986	2996	3006	3016	1	2	3	4	5	6	7	8	9
10.0	2.3026																		

Natural logarithms of 10^{-n}

n	1	1	2	3	4	5	6	7	8	9
$\log _{e} 10^{-n}$	$\overline{3} .6974$	$\overline{5} .3948$	$\overline{7.0922}$	$\overline{10.7897}$	$\overline{12.4871}$	$\overline{14.1845}$	$\overline{17.8819}$	$\overline{19} .5793$	$\overline{21.2767}$	

Hyperbolic sines [sinh $\left.x=1 / 2\left(e^{x}-e^{-x}\right)\right]$

X	0	1	2	3	4	s	6	7	f	9	avg diff
0.0	0.0000	0.0100	0.0200	0.0300	0.0400	0.0500	0.0600	0.0701	0.0801	0.0901	100
. 1	c. 1002	0.1102	0.1203	0.1304	0.1405	0.1506	0.1607	0.1708	0.1810	0.1911	10
. 2	0.2013	0.2115	0.2218	0.2320	0.2423	0.2526	0.2629	0.2733	0.2837	0.2941	103
. 3	0.3045	0.3150	0.3255	0.3360	0.3466	0.3572	0.3678	0.3785	0.3892	0.4000	106
. 4	0.4108	0.4216	0.4325	0.4434	0.4543	0.4653	0.4764	0.4875	0.4986	0.5098	110
0.5	c. 5211	0.5324	0.5438	0.5552	0.5666	0.5782	0.5897	0.8014	0.6131	0.6248	116
. 6	C. 6367	0.6485	0.8605	0.6725	0.6846	0.6967	0.7090	0.7213	0.7336	0.7461	122
. 7	C.758\%	0.7712	0.7838	0.7966	0.8094	0.8223	0.8353	0.8484	0.8615	0.8748	130
. 8	C. 8888	0.9015	0.9150	0.9286	0.9423	0.9561	0.9700	0.9840	0.9981	1.012	138
. 9	1.027	1.041	1.055	1.070	1.085	8.099	1.114	1.129	1.145	1.160	15
1.0	1.175	1.191	1.206	1.222	1.238	1.254	1.270	1.286	1.303	1.319	16
. 1	1.336	1.352	1.369	1.386	1.403	1.421	1.438	1.456	1.474	1.491	17
. 2	1.509	1.528	1.546	1.564	1.583	1.602	1.621	1.640	1.659	1.679	19
. 3	1.698	1.718	1.738	1.758	1.779	1.799	1.820	1.841	1.862	1.883	21
.4	1.904	1.926	1.948	1.970	1.992	2.014	2.037	2.060	2.083	2.106	22
1.5	2.129	2.153	2.177	2.201	2.225	2.250	2.274	2.299	2.324	2.350	25
. 6	2.376	2.401	2.428	2.454	2.481	2.507	2.535	2.562	2.590	2.617	27
. 7	2.646	2.674	2.703	2.732	2.761	2.780	2.820	2.850	2.881	2.911	30
. 8	2.942	2.973	3.c05	3.037	3. 669	3.101	3.134	3.167	3.200	3.234	33
. 9	3.268	3.303	3.337	3.372	3.408	3.443	3.479	3.516	3.552	3.589	36
2.0	3.627	3.665	3.703	3.741	3.780	3.820	3.859	3.899	3.940	3.981	39
. 1	4.022	4.064	4.106	4.148	4.191	4.234	4.278	4.322	4.367	4.412	44
. 2	4.457	4.503	4.549	4.596	4.643	4.691	4.739	4.788	4.837	4.887	48
. 3	4.937	4.988	5.039	5.090	5.142	5.195	5.248	5.302	5.356	5.411	53
. 4	5.466	5.522	5.578	5.635	5.693	5.751	5.810	5.869	5.929	5.989	58
2.5	6.050	6.112	6.174	6.237	6.300	6.365	6.429	6.495	6.561	6.627	64
. 6	6.695	6.763	6.831	6.901	6.971	7.042	7.113	7.185	7.258	7.332	71
. 7	7.406	7.481	7.557	7.634	7.711	7.789	7.868	7.948	8.028	8.110	79
. 8	8.192	8.275	8.359	8.443	8.529	8.615	8.702	8.790	8.879	8.969	87
. 9	9.060	9.151	9.244	9.337	9.431	9.527	9.623	9.720	9.819	9.918	96
3.0	10.02	10.12	10.22	10.32	10.43	10.53	10.84	10.75	10.86	10.97	11
. 1	11.08	11.19	11.30	11.42	11.53	11.65	11.76	11.88	12.00	12.12	12
. 2	12.25	12.37	12.49	12.62	12.75	12.88	13.01	13.14	13.27	13.40	13
. 3	13.54	13.67	13.81	13.95	14.09	14.23	14.38	14.52	14.67	14.82	14
. 4	14.97	15.12	15.27	15.42	15.58	15.73	15.89	16.05	16.21	16.38	16
3.5	16.54	16.71	16.88	17.05	17.22	17.39	17.57	17.74	17.92	18.10	17
. 6	18.29	18.47	18.66	18.84	19.03	19.22	19.42	19.61	19.81	20.01	19
. 7	2 C .21	20.41	20.62	20.83	21.04	21.25	21.48	${ }^{21.68}$	21.90	22.12	21
. 8	22.34	22.56	22.79	23.02	23.25	23.49	23.72	23.96	24.20	24.45	24
.9	24.69	24.94	25.19	25.44	25.70	25.96	26.22	26.48	26.75	27.02	26
4.0	27.29	27.56	27.84	28.12	28.40	28.69	28.98	29.27	29.56	29.86	29.
. 1	30.16	30.47	30.77	31.c8	31.39	31.71	32.03	32.35	32.68	33.00	32
2	33.34	33.67	34.01	34.35	34.70	35.05	35.40	35.75	36.11	36.48	35.
. 3	36.84	37.21	37.59	37.97	38.35	38.73	39.12	39.52	39.91	40.31	39
.4	40.72	41.13	41.54	41.96	42.38	42.81	43.24	43.67	44.11	44.56	43.
4.5	45.00	45.46	45.91	46.37	46.84	47.31	47.79	48.27	48.75	49.24	47
. 6	49.74	50.24	50.74	51.25	51.77	52.29	52.81	53.34	53.88	54.42	52
. 7	54.97	55.52	56.08	56.64	57.21	57.79	58.37	58.96	59.55	60.15	58
8	60.75 67.14	61.36 67.82	61.98 68.50	62.60 6919	63.23 69.88	63.87 70.58	64.51	65.16 72.01	65.81 72.73	66.47 73.46	64 71
.9	67.14	67.82	68.50	69.19	69.88	70.58	71.29	72.01	72.73	73.46	71
5.0	74.20										

[^28]Hyperbolic cosines [$\cosh x=1 / 2\left(e^{x}+e^{-x}\right)$]

x	0	1	2	3	4	5	6	7	8	9	$\left\lvert\, \begin{aligned} & \text { divg } \\ & \text { diff } \end{aligned}\right.$
0.0	1.000	1.000	1.000	1.000	1.001	1.001	1.002	1.002	1.003	1.004	1
. 1	1.005	1.006	1.007	1.008	1.010	1.011	1.013	1.014	1.016	1.018	2
. 2	1.020	1.022	1.024	1.027	1.029	1.031	1.034	1.037	1.039	1.042	3
. 3	1.045	1.048	1.052	1.055	1.058	1.062	1.066	1.069	1.073	1.077	4
. 4	1.081	1.085	1.090	1.094	1.098	1.103	1.108	1.112	1.117	1.122	5
0.5	1.128	1.133	1.138	1.144	1.149	1.155	1.161	1.167	1.173	1.179	6
. 6	1.185	1.192	1.198	1.205	1.212	1.219	1.226	1.233	1.240	1.248	7
. 7	1.255	1.263	1.271	1.278	1.287	1.295	1.303	1.311	1.320	1.329	8
. 8	1.337	1.346	1.355	1.365	1.374	1.384	1.393	1.403	1.413	1.423	10
. 9	1.433	1.443	1.454	1.465	1.475	1.486	1.497	1.509	1.520	1.531	11
1.0	1.543	1.555	1.567	1.579	1.591	1.604	1.616	1.629	1.642	1.655	13
. 1	1.669	1.682	1.696	1.709	1.723	1.737	1.752	1.766	1.781	1.796	14
. 2	1.811	1.826	1.841	1.857	1.872	1.888	1.905	1.921	1.937	1.954	16
. 3	1.971	1.988	2.005	2.023	2.040	2.058	2.076	2.095	2.113	2.132	18
. 4	2.151	2.170	2.189	2.209	2.229	2.249	2.269	2.290	2.310	2.331	20
1.5	2.352	2.374	2395	2.417	2.439	2.462	2.484	2.507	2.530	2.554	23
. 6	2.577	2.601	2625	2.650	2.675	2.700	2.725	2.750	2.776	2.802	25
. 7	2.828	2.855	2.882	2.909	2.936	2.964	2.992	3.021	3.049	3.078	28
. 8	3.107	3.137	3.167	3.197	3.228	3.259	3.290	3.321	3.353	3.385	31
. 9	3.418	3.451	3.484	3.517	3.551	3.585	3.620	3.655	3.690	3.726	34
2.0	3.762	3.799	3.835	3.873	3.910	3.948	3.987	4.026	4.065	4.104	38
. 1	4.144	4.185	4.226	4.267	4.309	4.351	4.393	4.436	4.480	4.524	42
. 2	4.568	4.613	4.658	4.704	4.750	4.797	4.844	4.891	4.939	4.988	47
. 3	5. 5.537	5.087	5.137	5.188	5.239	5.290	5.343	5.395	5.449	5.503	52
. 4	5.557	5.612	5.667	5.723	5.780	5.837	5.895	5.954	6.013	6.072	58
2.5	6.132	6.193	6.255	6.317	6.379	6.443	6.507	6.571	6.636	6.702	64
. 6	6.769	6.836	6.904	6.973	7.042	7.112	7.183	7.255	7.327	7.400	70
. 7	7.473	7.548	7.623	7.699	7.776	7.853	7.932	8.011	8.091	8.171	78
. 8	8.253	8.335	8.418	8.502	8.587	8.673	8.759	8.847	8.935	9.024	86
. 9	9.115	9.206	9.298	9.391	9.484	9.579	9.675	9.772	9.869	9.968	95
3.0	10.07	10.17	10.27	10.37	10.48	10.58	10.69	10.79	10.90	11.01	11
. 1	11.12	11.23	11.35	11.46	11.57	11.69	11.81	11.92	12.04	12.16	12
. 2	12.29	12.41	12.53	12.66	12.79	12.91 .	13.04	13.17	13.31	13.44	13
. 3	13.57	13.71	13.85	13.99	14.13	14.27	14.41	14.56	14.70	14.85	14
. 4	15.00	15.15	15.30	15.45	15.61	15.77	15.92	16.08	16.25	16.41	16
3.5	16.57	16.74	16.91	17.08	17.25	17.42	17.60	17.77	17.95	18.13	17
. 6	18.31	18.50	18.68	18.87	19.06	19.25	19.44	19.64	19.84	20.03	19
. 7	20.24	20.44	20.64	20.85	21.06	21.27	21.49	21.70	21.92	22.14	21
. 8	22.36	22.59	22.81	23.04	23.27	23.51	23.74	23.98	24.22	24.47	23
. 9	24.71	24.96	25.21	25.46	25.72	25.98	26.24	26.50	26.77	27.04	26
4.0	27.31	27.58	27.86	28.14	28.42	28.71	29.00	29.29	29.58	29.88	29
. 1	30.18	30.48	30.79	31.10	31.41	31.72	32.04	32.37	32.69	33.02	32
. 2	33.35	33.69	34.02	34.37	34.71	35.06	35.41	35.77	36.13	36.49	35
.3	36.86	37.23	37.60	37.98	38.36	38.75	39.13	39.53	39.93	40.33	39
. 4	40.73	41.14	41.55	41.97	42.39	42.82	43.25	43.68	44.12	4.57	43
4.5	45.01	45.47	45.92	46.38	46.85	47.32	47.80	48.28	48.76	49.25	47
. 6	49.75	50.25	50.75	51.26	51.78	52.30	52.82	53.35	53.89	54.43	52
7	54.98	55.53	56.09	56.65	57.22	57.80	58.38	58.96	59.56	60.15	58
. 8	60.76	61.37	61.99	62.61	63.24	63.87	64.52	65.16	65.82	66.48	64
. 9	67.15	67.82	68.50	69.19	69.89	70.59	71.30	72.02	72.74	73.47	71
5.0	74.21										

If $x>5, \cosh x=1 / 2$ (ax), and logio $\cosh x=10.43431 x+0.6990-1$, correct to four slgnificant figures.

Hyperbolic tangents [tanh $x=\left(e^{x}-e^{-x}\right) /\left\{e^{x}+e^{-x}\right)=\sinh x / \cosh x$]

x	0	1	2	3	4	5	6	7	\%	9	difg
0.0	. 0000	. 0100	. 0200	. 0300	. 0400	. 0500	. 0599	. 0699	. 0798	. 0898	100
. 1	. 0997	. 1096	. 1194	. 1293	. 1391	. 1489	. 1587	. 1684	. 1781	. 1878	98
. 2	. 1974	. 2070	. 2165	. 2260	. 2355	. 2449	. 2543	. 2636	. 2729	. 2821	94
. 3	. 2913	. 3004	. 3095	. 3185	. 3275	. 3364	. 3452	. 3540	. 3627	. 3714	89
. 4	. 3800	. 3885	. 3969	. 4053	. 4136	. 4219	. 4301	. 4382	. 4462	. 4542	82
0.5	. 4621	. 4700	. 4777	. 4854	. 4930	. 5005	. 5080	. 5154	. 5227	. 5299	75
. 6	. 5370	. 5441	. 5511	. 5581	. 5649	. 5717	. 5784	. 5850	. 5915	. 5980	67
. 7	. 6044	. 6107	. 6169	. 6231	. 6291	. 6352	. 6411	. 6469	. 6527	. 6584	60
. 8	. 6640	. 6696	. 6751	. 6805	. 6858	. 6911	. 6963	. 7014	. 7064	. 7114	52
.9	. 7163	. 7211	. 7259	. 7306	. 7352	. 7398	. 7443	. 7487	. 7531	. 7574	45
1.0	. 7616	. 7658	. 7699	. 7739	. 7779	. 7818	. 7857	. 7895	. 7932	. 7969	39
.1	. 8005	. 8041	. 8076	. 8110	. 8144	. 8178	. 8210	. 8243	. 8275	. 8306	33
. 2	. 8337	. 8367	. 8397	. 8426	. 8455	. 8483	8511	8538	. 8585	. 8591	28
. 3	. 8617	. 8643	. 8668	. 8693	. 8717	. 8741	. 8764	. 8787	. 8810	. 8832	24
. 4	. 8854	. 8875	. 8896	. 8917	. 8937	. 8957	. 8977	. 8998	. 9015	. 9033	20
1.5	. 9052	. 9069	. 9087	. 9104	. 9121	. 9138	. 9154	. 9170	. 9186	. 9202	17
.6	. 9217	. 9232	. 9246	. 9261	. 9275	. 9289	. 9302	. 9316	. 9329	. 9342	14
. 7	. 9354	. 9367	. 9379	. 9391	. 9402	. 9414	. 9425	. 9436	. 9447	. 9458	11
. 8	. 9468	. 9478	. 9488	. 9498	. 9508	. 9518	. 9527	. 9536	. 9545	. 9554	?
. 9	. 9562	. 9571	. 9579	. 9587	. 9595	. 9603	. 9611	. 9619	. 9626	. 9633	8
2.0	. 9640	. 9647	. 9654	. 9661	. 9668	. 9674	. 9680	. 9687	. 9693	. 9699	6
. 1	. 9705	. 9710	. 9716	. 9722	. 9727	. 9732	. 9738	. 9743	. 9748	. 9753	5
. 2	. 9757	. 9762	. 9767	. 9771	. 9776	. 9780	. 9785	. 9789	. 9793	. 9797	4
. 3	. 9801	. 9805	. 9809	. 9812	. 9816	. 9820	. 9823	. 9827	. 9830	. 9834	4
. 4	. 9837	. 9840	. 9843	. 9846	. 9849	. 9852	. 9855	. 9858	. 9861	. 9863	3
2.5	. 9866	. 9869	. 9881	. 9874	. 9876	. 9879	. 9881	. 9884	. 9886	. 9888	2
. 6	. 9890	. 9892	. 9895	. 9897	. 9899	. 9901	. 9903	. 9905	. 9906	. 9908	2
. 7	. 9910	. 9912	. 9914	. 9915	. 9917	. 9919	. 9920	. 9922	. 9923	. 9925	2
. 8	. 9926	. 9928	. 9929	. 9931	. 9932	. 9933	. 9935	. 9936	. 9937	. 9938	1
. 9	. 9940	.9941	. 9942	. 9943	. 9944	. 9945	. 9946	. 9947	. 9949	. 9950	1
3.0	. 9951	. 9959	. 9967	. 9973	. 9978	. 9982	. 9985	. 9988	. 9990	. 9992	4
4.0	. 5993	. 9999	. 9996	.9996	.9997	. 9998	. 9998	. 9998	. 9999	. 9999	1
5.0	. 5999										

If $x>5$, tanh $x=1.0000$ to four decimal places.
Multiples of 0.4343 [$0.43429448=\log _{10} \mathrm{e}$]

x	0	1	2	3	4	5	6	7	8	9
0.0	0.0000	0.0434	0.0869	0.1303	0.1737	0.2171	0.2606	0.3040	0.3474	0.3909
1.0	0.4343	0.4777	0.5212	0.5646	0.6080	0.6514	0.6949	0.7383	0.7817	0.8252
2.0	0.8686	0.9120	0.9554	0.9989	1.0423	1.0857	1.1292	1.1726	1.2160	1.2595
3.0	1.3029	1.3463	1.3897	1.4332	1.4768	1.5200	1.5635	1.6069	1.8503	1.6937
4.0	1.7372	1.7806	1.8240	1.8675	1.9109	1.9543	1.9978	2.0412	2.0846	2.1280
5.0	2.1715	2.2149	2.2583	2.3018	2.3452	2.3886	2.4320	2.4755	2.5189	2.5623
6.0	2.6058	2.6492	2.6926	2.7361	2.7795	2.8229	2.8863	2.9098	2.9532	2.9966
7.0	3.0401	3.0835	3.1269	3.1703	3.2138	3.2572	3.3006	3.3441	3.3875	3.4309
8.0	3.4744	3.5178	3.5612	3.6046	3.6481	3.6915	3.7349	3.7784	3.8218	3.8652
9.0	3.9087	3.9521	3.9955	4.0389	4.0824	4.1258	4.1692	4.2127	4.2561	4.2995

Multiples of $2.3026\left[2.3025851=1 / 0.4343=\log _{e} 10\right]$

X	0	1	2	3	4	3	6	7	8	9
0.0	0.0000	0.2303	0,4605	0.6908	0.9210	1.1513	1.3816	1.6118	1.8421	2.0723
1.0	2.3026	2.5328	2.7631	2.9934	3.2236	3.4539	3.6841	3.9144	4.1447	4.3749
2.0	4.6052	4.8354	5.0657	5.2959	5.5262	5.7565	5.9867	6.2170	6.4472	6.6775
3.0	6.9078	7.1380	7.3683	7.5985	7.8288	8.0590	8.2893	8.5196	8.7498	8.9801
4.0	9.2103	9.4406	9.6709	9.9011	10.131	10.362	10.592	10.822	11.052	11.283
5.0	11.513	11.743	11.973	12.204	12.434	12.864	12.894	13.125	13.355	13.585
6.0	13.816	14.046	14.276	14.506	14.737	14.967	15.197	15.427	15.658	15.888
7.0	16.118	16.348	16.579	16.809	17.039	17.269	17.500	17.730	17.960	18.190
8.0	18.421	18.651	18.881	19.111	19.342	19.572	19.802	20.032	20.263	20.493
9.0	20.723	20.954	21.184	21.414	21.644	21.875	22.105	22.335	22.565	22.796

${ }_{0}^{\circ}$				
¢				$\frac{\text { 응 }}{\frac{0}{0}}$
No				
0			$\begin{aligned} & \text { 웅 으N 옴 } \\ & \text { 엉 } \\ & \hline 1 \end{aligned}$	
n				$\frac{0}{i} \frac{8}{N} \frac{N}{0}$
$\dot{0}$				
${ }_{0}^{m}$			$\begin{aligned} & \text { O } \\ & \text { N } \\ & \text { O } \\ & \hline 0 \\ & \hline \end{aligned}$	
ก				
\bigcirc		$\begin{aligned} & \text { 等N } \\ & \text { O} \\ & \text { í } \\ & i \end{aligned}$		$\begin{gathered} \text { ô } \\ \text { No } \\ \hline 0 \\ \hline 10 \\ 0 \end{gathered}$
－				
N	－	\pm	$\infty \sim$	\cong ロサ

Table II- $\mathrm{J}_{1}(\mathrm{z})$								continued Bessel functions		
2	0	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9
0	0.0000	0.0499	0.0995	0.1483	0.1960	0.2423	0.2867	0.3290	0.3688	0.4059
1	0.4401	0.4709	0.4983	0.5220	0.5419	0.5579	0.5699	0.5778	0.5815	0.5812
2	0.5767	0.5683	0.5560	0.5399	0.5202	0.4971	0.4708	0.4416	0.4097	0.3754
3	0.3391	0.3009	0.2613	0.2207	0.1792	0.1374	0.0955	0.0538	0.0128	-0.0272
4	-0.0660	-0.1033	-0.1386	-0.1719	-0.2028	-0.2311	-0.2566	-0.2791	-0.2985	-0.3147
5	-0.3276	-0.3371	-0.3432	-0.3460	-0.3453	-0.3414	-0.3343	-0.3241	-0.3110	-0.2951
6	-0.2767	-0.2559	-0.2329	-0.2081	-0.1816	-0.1538	-0.1250	-0.0953	-0.0652	-0.0349
7	-0.0047	+0.0252	0.0543	0.0826	0.1096	0.1352	0.1592	0.1813	0.2014	0.2192
8	0.2346	0.2476	0.2580	0.2657	0.2708	0.2731	0.2728	0.2697	0.2641	0.2559
9	0.2453	0.2324	0.2174	0.2004	0.1816	0.1613	0.1395	0.1166	0.0928	0.0684
10	0.0435	0.0184	-0.0066	-0.0313	-0.0555	-0.0789	-0.1012	-0.1224	-0.1422	-0.1603
11	-0.1768	-0.1913	-0.2039	-0.2143	-0.2225	-0.2284	-0.2320	-0.2333	-0.2323	-0.2290
12	-0.2234	-0.2157	-0.2060	-0.1943	-0.1807	-0.1655	-0.1487	-0.1307	-0.1114	-0.0912
13	-0.0703	-0.0489	-0.0271	-0.0052	+0.0166	0.0380	0.0590	0.0791	0.0984	0.1165
14	0.1334	0.1488	0.1626	0.1747	0.1850	0.1934	0.1999	0.2043	0.2066	0.2069
15	0.2051	0.2013	0.1955	0.1879	0.1784	0.1672	0.154	0.1402	0.1247	0.1080

Table III- $\mathrm{J}_{2}(\mathrm{z})$

Table III- $\mathrm{J}_{2}(\mathrm{z})$								continued Bessel functions		
21	0	0.1	$\cdot 0.2$	0.3	0.4	0.5	0.6	0.7	0.8	0.9
0	0.0000	0.0012	0.0050	0.0112	0.0197	0.0306	0.0437	0.0588	0.0758	0.0946
1	0.1149	0.1366	0.1593	0.1830	0.2074	0.2321	0.2570	0.2817	0.3061	0.3299
2	0.3528	0.3746	0.3951	0.4139	0.4310	0.4461	0.4590	0.4696	0.4777	0.4832
3	0.4861	0.4862	0.4835	0.4780	0.4697	0.4586	0.4448	0.4283	0.4093	0.3879
4	0.3641	0.3383	0.3105	0.2811	0.2501	0.2178	0.1846	0.1506	0.1161	0.0813

z	0	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.6	0.9
0	0.0000	0.0000	0.0002	0.0006	0.0013	0.0026	0.0044	0.0069	0.0102	0.0144
1	0.0196	0.0257	0.0329	0.0411	0.0505	0.0610	0.0725	0.0851	0.0988	0.1134
2	0.1289	0.1453	0.1623	0.1800	0.1981	0.2166	0.2353	0.2540	0.2727	0.2911
3	0.3091	0.3264	0.3431	0.3588	0.3734	0.3868	0.3988	0.4092	0.4180	0.4250
4	0.4302	0.4333	0.4344	0.4333	0.4301	0.4247	0.4171	0.4072	0.3952	0.3811

z	0	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9
0	0.0000	0.0000	0.0000	0.0000	0.0001	0.0002	0.0003	0.0006	0.0010	0.0016
1	0.0025	0.0036	0.0050	0.0068	0.0091	0.0118	0.0150	0.0188	0.0232	0.0283
2	0.0340	0.0405	0.0476	0.0556	0.0643	0.0738	0.0840	0.0950	0.1067	0.1190
3	0.1320	0.1456	0.1597	0.1743	0.1891	0.2044	0.2198	0.2353	0.2507	0.2661
4	0.2811	0.2958	0.3100	0.3236	0.3365	0.3484	0.3594	0.3693	0.3780	0.3853

322

is		鮙	－－axal	－		\pm		＋品	ר．	二2as	吅䞨	＋imb	5ma	
is	＋tam	捛品	擉等	\％ 7 \％ess	\％	－	－				－ixm	－		
28	＋1：			＋+ \％	魥碞		－㗔			搰歲	＋is	Fwaz	こ．．9	
88	\pm		擢1		㹡	＋就	\％osm	こmid	－200	＋路	拫叕	拫趗		
4	\ddagger		士揀	士，繧	捛	＋7\％	＋扬发	こ\％un		－2，	2．and		＋	f．tie
8is				＋ixat	＋．asd	＋ixa			F（\％m	－＝ixu	－	－	＋．．ass	
¿̊	\pm	\pm				＋虜		$\pm{ }^{\text {¹\％}}$	＋${ }_{\text {xax }}$	\％ 7 \％itit	－2．1046	－23	－1\％s	
Pis			＋	－ose	tage			＋热	\ddagger	＋藘		ごem	－	
88		＋oza	边		＋oen			摡		＋\ddagger		＋，		
							\ddagger	＋imion	$1+0.02$	魥㗊	＋變	＋	f．neme	

Note： $.077186=.007186 \quad .08807=.000807$

A

Absorprion coefficients	170
Absorption units	169
Accelerating electrode, cathode	ray 137
Acoustics	165-178
absorption coefficients	170
absorption units	169
amplifier power capacity	172, 173
attenuation constant	169
coefficients	170
equal-loudness contours	178
music levels	174
music ranges	174
music, requirements	172
noise	177
noise reduction coefficients	170
open-window units	169
optimum reverberation	166-169
pressure	176
public-address requirements	171-173
reverberation	165
computation	169-171
room sizes	165, 166
sound level	176
sound pressure	176
speech frequency	175
speech intensity	175
speech requirements	172, 173
standing waves	165
Admittance	64-70
Admitrance equations	86
Advance wire	44
Aerial-see Antenna	
Air cooling, tube	131
Air-cored coils	58, 59
Algebraic formulas	294-296
Alloys	
melting point	44
physical constants	44
resistance	44
specific gravity	44
temperature coefficient	44

Alternating current 99	
average	99
effective	99
supplies	25
Altitude, atmospheric pressure	22
American	
noise units	190, 191
war standards, capacitors	55
war standards, resistors	52
wire gauge	35, 36
Ampere furns, cathode-ray focusi	sing 138
Amplification, Amplifiers	
audio	143
beam power tube	161, 162, 163
cathode follower	156, 157, 158
circuits	155
class A	143, 153, 154
class $A B$	143, 153, 154
class B	143, 154, 155
class B r-f	152, 153
class C	143
classes	155, 156, 157
constant-current characteristics	cs 145
design	143
class A and $A B$	153
class $A B$ and B	154
class B	152
class C	147
distortion	164
efficiency	143
factor	127, 129
feedback	159
general design	143-146
graphical design	146-155
grid current	143
grounded cathode	156
grounded grid	156
grounded plate	156
harmonic distortion	153, 164
negative feedback	159, 164
operating data	143

Amplification, Amplifiers continued	
plate modulation	149
push-pull	143
radio-frequency	143
resistance coupled	158, 159
sizes, public address	171
transfer characteristics	148
tubo	143-164
Amplitude modulation 86,87	86, 87, 88, 288
Anglos, approximations for	\% 296
Angle of radiation	261
Anode current-see Current, plate	
Antennas-soe also Radiators	250-271
angle, field intensity	255
array, radiation	265
arrays	263-271
binomial array	267
broadside directivity	265
dipole 258,	258, 259, 265
field intonsity 250-253,	250-253, 258, 259
radiafed power	258, 259
electric, magnetic components	oonents 250
end-fed conductor radiation	ation 260
fiold near dipole	251
height	
field intensity	256
impedance	257
reactance	257
resistance	257
horn	217
L and T	224
loop	265, 270
vertically stacked, gain	in 270
maximum radiation	261
minimum radiation	261
noise 244,	244, 246, 248
parallel to screon, radiation	ation 269
radiation	
anglo	261
dipole	264
horizontal	269
loop	264
pattern	263, 264
furnstilo	264
two wires	269
resistance, reactance components	omponents 257
rhombic	261-263
single-lobe directivity	266
tangental magnetic fiold	d 250, 251
top-loaded	224
vertical 224,	224, 254-258
field strength	255-258
polarized	253, 254
Areas of plane figures	291-293
Arithmetical progression	296
Army-Navy, preferred fubes	es 142
Army-Navy radio-frequency cables	cy cables 201-203
Arrays, antenna	263-271
Atmospheric noise	244, 245
pressure	22
Atomic number	19

Atomic weights 19
Attenuation, Attenuator 100-114
balanced O 106
balanced H 106
bridged H 106, 110
bridged T 106, 110
circular wave guides 213-217
H 114
ladder 101, 102
load impedance 104
minimum loss 106, 112
mismatch 198
open-wire pairs 181
symmetrical H 106, 108
symmetrical 0 110
symmetrical π 110
symmetrical T 106, 108
T 114
telephone cable 183, 184
telephono lines $180,181,182,186$
u-h-f lines 206
unbalanced π 106
unbalanced T 106
wave guide 216, 217
Audiblo spectrum 175, 176
Audio reactors 122
Audio transformer 122
Auto transformer 122
B
Bolanced
H attenuator 106
line, impedance 196
shielded, impedance 196
O aftenuator 106
Band-elimination filters 116
Band-pass filters 116
Bandwidth 32
noise 247
Barometer, atmospheric pressure 22
Bauds 192
Beaded line, impedance 196
Bell System carrier frequencies 185
Bessel functions 318-321
Binomial array 267
theorem 297
Birmingham wire gauge 36
Blocking oscillator 272
Bridged H aftenuator 106, 110
T attenuator $100,106,110$
Brightness, cathode pay 139
British wire gauge 36
Broadside directivity 265
B \& S wire gauge 35, 36
C
Cable, radio frequency 201
aftenuation 204

Condenser-see Capacitor
Conductance, Conductor 68
ground 224
mutual 129
solid, skin effect 73
telephone line 182, 183
tubular, skin effect 73
Cone-sphere resonator 222
Cone, volume 292
Constantan, thermocuples 46, 47
Continuous waves 33
Control characteristic, cathode ray 138
electrode, cathode ray 136
grid 128
Conversion foctors 11
Cooling water 131
temperature rise 131
Copper resistance 45
stranded, AWG 38
stranded conductors 38
stranded, resistance 38
stranded, weight 38
thermocouples 46, 47
wire 37, 60, 126
American gauge (AWG) 36, 123
attenuation per mile 37
Birmingham gauge |BWG| 36
British standard 36
Brown and Sharpe 36, 123
choracteristic impedance 37
current capacity 126
enameled 126
English-metric units 36
Imperial standard (SWG) 36
resistance $35,36,37,126$
size AWG 37
strength 37
tables $35,36,38,60,126$$35,36,37$
Core, reactor 123
Core, transformer 123
Cosh, table of 317
Cosmic noise 244-246
Cosmic rays 28
Coupled section, impedance matching 200
Coupling
coefficient 79
optimum 79
phase shift 84
two circuits 79
Crystal detectors 142
Current
average 99
characteristic 129
effective 99
ratio, docibels 34
two-mesh .network 78
Cut-off frequency, telephone cable 183, 184
Cuf-off voltage, cathode ray 138

Electromagnetic units $16,17,251$
Electromotive force, psophometric 189
Electromotive force, series of elements 18
Electron, Electronics-see also Tubesdifferentiation276, 277
inertia 135
integration 274, 275
velocity, eathode ray 140
Elementary dipole 250
Elements
atomic number 19
atomic weight 19
emf series 18
symbols 19
Ellipse, area 292
Emission 33
frequency bands 32
tube 128, 133
EMU units 16, 17
End-fed conductor radiation 260
Equations, admittance 86
Equations, impedance 86
Equivalents 11
ESU units 16,17
European noise units 190
E waves 207
Exponentials 317
Exponential wave 287
F
Factors, conversion 11
Feedback 159, 164
Feedback, relaxation oscillator 272
Feeder-see Transmission line
Feeling, ocoustic threshold 178
Field Intensity-see also Radiation antenna angle 255
antenna heigh \dagger 255
dipole 250
end-fed conductor 260
meter 245
surface-wave 224, 225
vertical antenna 253
Field sfrength-see Fiold infensity,Radiation
filaments
oxide coated 132
reactivation 134
thoriated fungsten 132
transformer 122
tungsten 132
Filters
band elimination 116
band pass 116
constant K 116, 117
high pass 88-91, 117low pass88-91, 117
networks $115,116,117$
power supply
RC, RL, LC 88, 118-121

Filters continued	
reactors	123
rectifier	120
series M	117
shunt M	117
3-element series	116
3-element shunt	116
Finishes, tropical, marine	50
Flow of water	49
Focusing, cathode ray	
ampere turns	138
current	138
electrode	137, 139
voltage	138
Forced-air cooling, tube	131
Forecasts, propagation	231-236
Foreign countries, power supplies	24
Form factor	58, 59
Formulas	
electric circuit	74-100
impedance	64-70
mathematical	291-302
mensuration	291, 292
Fourier analysis	277-287
graphical solution	279, 280
Fractional sine wave	285
Fractions, inch-metric equivalents	14
Frequency	
abbreviations allocation	28
carrior telegraph	187
carrier telaphone	186
J carrier	185
K carrier	185
1 type	188
program	187
telephony, high frequency	187
bands	30, 32
capacitance, inductance	61, 62, 63
classifications, radio	28
cut-off, telephone cable	183, 184
designations	28
modulation	288
power supplies	25
printer telegraph	192
range, music	174
range, speech	174
reactance	61
spectrum, electromagnetic	28
tolerances	30
wavelength	29
Frying noise	189
F_{1} layer	227
F_{2} layer	227, 228
G	
Galvanic series, metals	18
Gamma rays	28
Gaps, protective	123
Gas tube oscillator	272
Gaussian unit	16

Geometrical progression 297
Giorgi unit 16
Great-círcle calculations 240-243
Greek alphabet 15
Grid voltage, critical 129
Ground
conductivity 224
dielectric constant 224
reflection 240
types 224
wave 224
field intensity, frequency 239
Guides, wave 207
HHarmonics-see also Distortion
intensity 32
Hearing, equal loudness 178
High frequency - see also Radio frequancy maximum usable 229
propagation 226
resistance 71
High-pass filters 117
Horns, wave guide 217
Horsepower vs torque 51
H pad 114
Humidity
123
123
effect on reactor
effect on reactor
123
123
effect on transformer
effect on transformer 20
temparafure 20
H waves 207
Hyperbolic
cosines 317
functions 299
sines 316
tangents 318
I
Impedance
antenna height 257
balanced line 196
beaded line 196
coaxial line 196
formula 64-70, 86
matching, coupled section 200
matching, shorted, open stub 199
open 2-wire line 196
parallel 76
wires 197
power transfer 78
shielded balanced line 196
telephone cable 183, 184
relephone line 180, 182
transmission line 194
wire and ground 197
wire and shield 197
2-mesh network 76, 77
2 paralled wire and ground 197
2 wires and ground 197
4 -wire line 197

Nuts, scrows Nyquist diagram	39 161
\bigcirc	
Oblique-angled triangle, solution	298
Open stub, impadance matching	199
Open-window units	169
Open-wire pairs	179-181
Oprical horizon	238
Optical line-of-sight distance	238
Optimum coupling	79
Oscillation, Oscillator	147
blocking	272
feedback, relaxation	272
gas tube	272
multivibrator	273
relaxation	272, 273
squegging	273
van der Pol	273
Oscillogram, modulation percentage	- 87
Output transformer	122
Overcoupled circuits	84
Oxide-coated cathode	132
P	
Pads, minimum loss	112, 113
Pads, T and H	114
Paint, tropical, marine	50
Parabola, area	292
Farallel circuit, impedance	68, 69, 70
Parallel impedance	76
Parallelogram, area	291
Parallel wires, impedance	195, 197
Penetration of current	71
Percentage modulation	87
Permutations, combinations	297
Perveance, diode, triode	129
Phase angle	64-70
Phase shift, coupled tuned circuits	84
Phase shift, single-tuned circuits	81
Phase shift, telephone lines	182
Phototubes	142
Pi section attenuators	100
Pi-fee transformation	86
Plane figures, areas	291-293
Plastics, composition	41
Plastics, trade names	41
Plate current, diade, triode	129
Plate resistance	128
Plato transformer	122
protective gaps	123
Platinum, thermocouples	46, 47
Polygon, area	291
Positivo-grid fubes	135
Post-accelerating electrode, cathode ray	
Potential, element series	18
Power	
dipole radlation factor	258 40

Power cantinued	
supplies	
foreign countries	25
filters, rectifiers 88	88, 118-121
tronsformer	122
design	124
transfer between impedances	78
transfer between two meshes	78,79
Preaccelerating electrode, cathode	de ray 137
Precipitation extremes	23
Precipitation, world	24
Pressure	
acoustic	176
atmospheric	22
reactor	123
transformer	123
wind	42
Primary constants	180
Primary emission	128
Principle of superposition	74
Printer telegraph frequency	192
Printer telegraph, speed	192
Prism resonator	222
Program carrier, frequency	187
Progression, arithmetical	296
Progression, geometrical	297
Propagation-see also Attenuation antenna height	- 238
constant	180
toll cable	182
diffraction	238
distances	238, 240
calculation	240
echo	244
D layer	226
echo time	244
E layer	227
sporadic	227
forecasts	231-236
frequency vs ground wave	239
F_{1} layer	227
F_{2} layer	228
good earth	225
height of antenna	238
high frequencies	226
line of sight	238
long waves	224
low frequencies	224
maximum usable frequencies	229
medium frequencies	224
medium waves	224-226
optical horizon	238
over ground	225
poor earth	225
radio	224-249
radio horizon	238
radiotelephone fields required	235
range	238
sea water	226
short waves	226-230
signal strength required	235

Propagation continued	
sky wave	227
sporodic E	227
surface woves	225
relephone coble	182, 184
telephone lines	180
waves in guides	207
Protective gaps	123
reactors	123
transformers	123
Psophometric electromotive force	189-191
Public-address requirements	171
Pulse-frequency modulation	290
Pulse modulation	290
Pulse modulators	142
Pyramide, volume	293
Q	
Q, resonators	222
Quadratic equation	296
\mathbf{R}	
Radiation, Radiator-see also Antenna angle	
array antenna	265
binomial array	267
cooling, tube	131
dipole	264
end-fed conductor	260
horizontal wire	269
loop	264
pattern	263-264
power, dipole	258
spectrum	28
turnstile antenna	264
vertical	224, 254
wire parallel to screen	269
2 wires	269
Radio frequency	
cable	201
atfenuation	204
classifications	28
resistance	71
Radio horizon	238
Radio noise	244-249
Radio path horizon	237
Radio path length	238
Rodiotelephone, fields required	235
Rainfall	23, 24
RC filters	88-91
Reactance, Reactor	
audio	122
capacitor	75
charts	61, 62,63
cores	123
filter	123
frequency	- 61, 62, 63
humidity	123
inductor	75

 ropagation continued
 sky wave
sporodic E 227
surface waves 225
telephone coble 182, 184
telephone lines 180
waves in guides 207
Protective gaps 123
reactors 123
tronsformers 123
sophometric electromotive force 189-191
Public-address requirements 171
Pulse-frequency modulation 290
Pulse modulation 290
Pulse modulators 142
Pyramide, volume 293
Q, resonators 222
Quadratic equation 296
\mathbf{R}
Radiation, Radiator-see also Antenno
angle 261
array antenna 265
cooling, tube 131
dipole 264
end-fed conductor 260
horizontal wire 269
loop 264
263-264
spectrum 28
łurnstile antenna 264
vertical 224, 254
wire parallel to screen 269
2 wires 269
Radio frequency
cable
attenuation 204
clossifications 28
resistance 71
Radio horizon 238
Radio noise 244-249
Radio path horizon 237
Radio path length 238
Rodiotelephone, fields required 235
Rainfall 23, 24
RC filters 88-91
Reactance, Reactor
antenna height 257
audio 122
capacitor 75
charts 61,62,63
cores 123
filter 123
frequency $\quad 61,62,63$
humidity 123
inductor 75

Reactance, Reactor continued		RL filters	88-91
Reactance, Reactor coninued iron-core	122-126	RMA standards, capacitors	55
major types	122, 123	RMA standards, resistors	52
pressure	123	Room acoustics	165-178
protective gaps	123	Room noise	189
saturable	123		
temperature	123	5	
wave-filter	123		
Receiver noise	244, 246, 248	Saturable reactors	123
Reciprocity theorem	74	Saturation, percent	20
Rectangular wave	282	Sawtooth wave	284, 285
Rectangular wave guides	208	Scolt transformer	22
Rectification, Rectifier		Screen grid	128
circuits	118, 119	cathode ray	137
full-wave	118, 119	Screws, machine	
half-wave	118, 119	head styles	38
power supply	118-121	hole sizes	39
wave analysis	287	length	38
Recurrent wave forms, Tourier analysis		special	38
	277-280	standard	38
Reflected signal, time interval	244	Sea water, propagation	226
Reflection coefficient	240	Secondary emission	128
Reflector, antenna	269	Sector circle area	292
Refractive index	240	Segment circle area	292
Relative humidity	20	Selective circuits	80-86
Relaxation oscillators	272, 273	Self inductance -see Inductance	
Resistance, Resistor	52	Series circuit	
antenna heigh	257	harge	
copper wire	35, 36	discharge	
coupled amplifier	158	impedance formulas	68, 69, 70
high frequency	71	sinusoidal voltage	98
insulating materials	40	Series M filter	117
parallel circuit	76	Series 3-element filter	116
radio frequency	71	Shielded balanced line impedance	196
skin effect	71	Shorted stub, impedance matching	
standard color code	[80, $182 \begin{array}{r}53 \\ 183\end{array}$	Short waves, maximum usable	229
telephone line	180, 182, 183	quencies	226
Resonance, Resonator		Short waves, propagation	
cavities	219	Shunt M filter	16
circular	222	Signal strength see Attenuation, Field	
coaxial	222		
cylinder	222	intensity, Propagation	
frequency, filters	89	Signal-to-noise ratio	8, 249
frequency, series circuit	75	Silicon carbide, thermocouples	46, 47
prism	222	Simpson's rule	293
rectangular	221, 222	Sines, hyperbolic	316
solectivity	80	Sine wave, fractional	5
sphere-cone	222	Sine wave, full	286
spherical	221, 222	Sine wave, half	86
square prism	222	Single-hop transmission	228, 229
woves in	207	Sinh, table of	316
Reverberation time	165	Sinusoidal voltage	98
R-F cables, Army-Navy attenuation	201-203	Skin effect	71,72,73
	also 204	Sky reflection	228, 229
R-F transmission lines-see Transmission lines	also 194-206	Sky-wave-see Attenuation, Fie tensity, Propagation	in-
RG-/U cable	201-204	Solder, melting point	
Rhodium, thermocouples	46, 47	Solenoids, inductance	58, 59
Rhombic antennas	261-263	Sound level, acoustic	77
Right-angle triangle, solution	298	Sound, noise levels	177
Ripple frequency	118-121	Space-charge grid	123
Ripple voltage	118-121	Spacing, telephone lines	180

Transmission canfinued	
length	205
miscellaneous	197
mismatch	198
noise	189
parallel, impedance	197
resistance	206
shielded balanced, impoda	ce 196
shielded, impedance	197
stub	199
surge impedance	195
u-h-f aftenuation	204
2 open wire, impedance	196
modulation types	32
speed, telegraph	192
tolerances, frequency	30
wave guides	207
Transverse electromagnetic wav	-s 207
Trapezoidal rule	293
Trapezoid, area	291
Trapezoid wave	282, 283
Triangle, areo	291
Triangles, trigonometric solution	298
Trigonometry	
formulas	294-296
functions, logarithmic	206, 310-313
functions, natural	306-309
solution, triangles	298
spherical	240
Triode perveance	129
Triode plate current	129
Tropical, finishes and materials	50
T-section attenuators	100
Tubes, gaseous and vacuum	127-141
amplification factor	127, 129
amplifiers	143-164
cathode ray	136-141
accelerating electrode	137
anode	137
application	139
brightness	139
characteristics	138, 139
control	138
electrode	136
cut-o.9 voltage	138
deflection factor	138
deflection plates	137
deflection potential	139
deflection sensitivity	139
electrodes	136, 137
arrangement	137
electron velocity	140, 141
electrostatic deflection	138, 139, 140
focusing	138, 139
electrode	137
formulas	139, 140, 141
grid voltage	139
intensifier electrode	137
magnetic deflection	138, 140, 141
modulating electrode	136
modulation	138

Tubes continued	
post-accelerafing electrode	137
preaccelerating electrode	137
screen grid	137
shielding	139
spot size	139
types	142
clipper	142
coefficients	127,128
composite diode lines	129
constant current characteristics	129
control grid	128
converfers	142
cooling	131
critical grid voltage	129
diodes	142
plate current	129
electron inertia	135
electrode characteristic	129
electrode dissipation	131
emission	128,133
filament	132,134
characteristics	128
life	128
reactivation	129
voltage	142

Tubes continued triodes 142
plate current 129
fungston filament 132
twin tetrodes 142
twin triodes 142
uhf 134
variational plate resistance 128
velocity-modulated 134, 135
voltage regulators 142
water cooling 131
Tuned circuits
optimum coupling 79
parallel, dynamic resistance 76
selectivity 80
series, resonant frequency 75
Tungsten filament 132
Turnstile antenna, radiation paftern 264
Two-hop fransmission 228, 229
Two-wire, open, copper line 206
impedance 196
UUlira high frequency
electron inertio 135
lines, attenuation 204
transmission lines-see Transmissionlines
tubes 134-135
Unbalanced Pi aftenuator 106
Unbalanced T aftenuator 106
Units, conversion 11, 16, 17
Unsymmetrical trapezoid 283
VVacuum fubes-see Tubes
van der Pol ascillator 273
Variational plate resistance 128
Velocity
light 28
modulated tubes 135
felephone cable 183, 184
felephone lines 180
fransmission line 194
variation -see Velocity modulation wind 42
Vertically polarized waves 240
Vertical radiators 254-258
Very-short-waves, propagation 231-234
V-H-F propagation 231-234
path length 232
Voice-frequency carrier 187
Voltage, gap breakdown 48
Voltage, ratio to decibels 34
Voltage regulators 142
Volume
cone 293
eylinder 293
music 174
pyramid 293

[^0]: Reprinted by permiszion of the Foxboro Compony, Foxboro, Mass.

[^1]: 1 With regard to tolerances for mobile stations, on attempt shall be mode to achieve, so for as possible, the figures specified for fixed stations.
 2 A transmitter, the harmoni: intensity of which is not obova the figures specified but which neverthmess causes interference, must be subjected to special measures intanded to eliminato such irtarference.

 * See Footnote under Frequancy Tolerances, Treaty Series No. 948, Telecommunication

[^2]: Temperature ceefficient of resistance:
 The resistance of a conductor at temperature $1^{\circ} \mathrm{C}$ is given by $R_{f}=R_{20}\left[1+a 0_{0} 1-201\right]$
 where R_{20} is the resistonce at $20^{\circ} \mathrm{C}$ ond aso is the temperature coefficient of resistance at $20^{\circ} \mathrm{C}$.
 For copper, $0000=0.00393$. That is, the resistonce of a copper conductor increases approxi-
 mately $4 / 10$ of 1 percent per degree centigrader rise in temperature.

 * For additional dala on wire, se0 pages 36, 37, 38, 60, and 126.

[^3]: * When used in cable, weight and resistance of wire should be increased about 3% to allow for increase due to twist.
 \dagger for additional data on wire, see pages $35,37,38,60$, and 126.

[^4]: For additional information on wire，see pages 35，36，38，60，and 126

[^5]: * As measured with a cup anemometer, these being the average maximum for a period of five minutes.

[^6]: * Soe following page.

[^7]: Multiplication factor to be applied to Table for plpe lischarge of a line of piping $4^{\circ \prime}$ bore, 5000 feet long,
 Approximate discharga for the 1000 foot line from Table $1=195.75$ gallons per minute. Factor from Toble Il $=0.447$
 Approximate discharge for the
 \therefore Approximate discharge $=195.75 \times 0.447=87.5$

[^8]: Note: low-power insulated wire-wound resistors have axial leads and are color coded similar to the left-hand figure above except that band A is double width.

[^9]: * Q must be greater than $1 / 3$ of minimum allowable Q for other chorocteristics IJANI.
 \dagger Minimum acceplable Q af 1 MC is defined by a curve; value varies with copocitance.

[^10]: * Formulas and chart 1fig. 11 derived from equations and tables in Bureau of Standards Circular No. 74.

[^11]: * Nominal bore diameter plus moximum additions.

 For additional dola on copper wire, see pages 35,36 , and 126.

[^12]: : ϕ is negative far Δf pasitive, and vice versa.

[^13]: four-terminal networks: The hyperbolic formulas above ore valid for passive linear foupterminal networks in general, working befween inout and output impejances motching tho respective image impedances. In this case: Z_{1} and Z_{2} are the image impedances; $\mathbf{R}_{\mathbf{1}}, \mathbf{R}_{\mathbf{2}}$ and $\mathbf{R}_{\mathbf{2}}$ become complox impedances; and θ is the imoqe pronsfer consiont. $\theta=\alpha+j \beta$, where a is the image attenuation constant and β is the imoge phase constant.

[^14]: * Current capocity at 1000 amperes per square inch. For other Current densities, multiply by teurrent densityl / 1000 .
 \dagger Interlaver insulation is usually Kroft poper.
 See also page 60.

[^15]: Sections on Electrodes, Characteristics, and Application Notes prepared by L. E. Lempert,
 Atlen B. Dumont Laboratories, Inc.

[^16]: * All porentials are with respect to the cathode except when otherwise indicated.

[^17]: * The low-frequency stage gain also is affected by the values of the cathode by-pass copacitor and the screen ty-pass capacitor.

[^18]: A-plate.
 B-grid.
 C-ground or cathode.

[^19]: * Compiled by Edward J. Content, consulting engineer.

[^20]: Courtesy Acoustics Materiols Association

[^21]: * The noise-reduction coefficient is the average of the coefficients at frequencies from 256 to 2048 cycles inclusive, given to the nearest 5 percent. This average coefficient is recom. mended for use In comporing materials for noise-quieting purposes as in offices, hospitals, banks, corridors, ofc.

[^22]: \# See Burrows, C. R., Radio Propagation over Plone Eorth-Field Sirength Curves. Bell System Tech. Jour., vol. 16 IJonuary 1937.
 \dagger See Norton, K. A., The Effect of Frequency on the Signal Range of an Ulra-High Frequency Radia Station. FCC Mimeo Report 48466 (March 20, 19411.

[^23]: * See also section on Wire Telephony-Nolse and Noise Measurement.

[^24]: * Based on Mesny, R., Radio-Electricité Gén érole.

[^25]: * For information on the effect of some practical current distributions on field intensities see Gihring, H. E. and Brown, G. H. General Considerations of Tower Antennas for Broadcast Use. Proc. I.R.E., vol. 23, p. 311 IApril, 1935).

[^26]: * For more complete informotion seo Horper, A. E. Rhambic Anrenna Design. D. Von Nostrand Co. 11941).

[^27]: * Note: Do not interpolate in this column.
 $e=2.71828 \quad 1 / e=0.357879 \quad$ lo7ne $=0.4343 \quad 1 / 10.43431=2.3026$
 $\log _{10} 10.43431=9.6378-10 \quad \quad \log _{10}\left(e^{n}\right)=n(0.43431$

[^28]: If $x>5, \sinh x=1 / 2$ fext and $\log _{10} \sinh x=10.43431 x+0.6990-1$, correct to four signifizont figures.

