The "itadio’ Mandbook

 By
 Frank C. Jones
 and the
 l'echnical Staff of "Radio"

1938
 EDITION

Published. Distributed and Copyrighted, 1938, by Radio, Ltd.. 7460 Beverly Blvd., Los Angeles, U. S. A.

The technical world at a glance--the outstanding radio developments of the month at your finger tips--the highlights from the leading radio magazines of the world, American and foreign That, in short, is the "RADIO DIGEST", a new 100 -page publication It is something entirely new in the field-a magazine for the busy man who wants the broad scope of what's going on in the whole world of radio (except b c entertainment and trade news)

One of its most valuable features (alone worth many times the subscription price) is a series of "thumb nail sketches" of all important material ir leading contemporary magazines, a comprehensive glossary of current radio literature

PRICE. 25c PER COPY

Subscription rates: $\$ 2.50$ for twelve issues in U. S. A. Canada Newfoundland, Spain, and Pan-American countries. Elsewhere, $\$ 3.00$ or 12 s . 6 d. (British postal orders accepted.)

```
To RADIO DIGEST, 7460 Beverly Blvd., Los Angeles
```

Enter my subscription for............issues. Remittance is enclosed herewith.
Name Call

Address

The "Radio" Handbook

Fourth Edition, First Printing, Noveml,er, 1938 30,000 copies

Copyright serured under Pan American Convention. All tramslation rights reserved.

91 Years Othe.

Bosn Beprese Broadeasting Began

The Magazine "RADIO" is today

the recognized worldwide authority of amateur, shortwave, and experimental radio.
 AUTHORITATIVE ACCURATE RELIABLE

"RADIO" has withstood the test of time, the most stringent test of all. Its readers' faith is reflected in its growing size and circulation. "RADIO" has helped many a radio man along the road to success in radio, both as a hobby and commercially. It is ready to serve you, too. One copy will convince you. The slogan "You can depend on it if you see it in 'RADIO'" is more true today than ever before.

Next time you visit your newsdealer or radio parts store, ask him for a copy of "RADIO"-just plain "RADIO"-that's all. "RADIO" contains 100 pages per issue plus a great yearbook number of 200 pages. 30c per copy; yearbook number, 50c.

100 frges-each issue $30 c$

Regular Features . . .

"RADIO" is written by engineers of national repute, and to add pep, variety, and sparkle to its content it accepts and pays for many from "outside" sources. More profusely illustrated than any magazine in the field.

SUBSCRIBE!

Save $\$ 2.40$ over newsstand prices by taking a 2-year subscription at 54.00 - or save 33% by taking a 5 -is sue trial subscription at $\$ 1.00$ (this offer good for NEW subscribers only). These rates are for U.S.A. $\mathrm{C} \alpha \mathrm{n}$ ada. Newfoundland, Cuba, and Mexico. Add 50c PER YEAR for Pan American countries and Spain; add \$1.00 PER YEAR else. where.

Radio, Lid., Technical Publishers 7460 Beverly Blvd., Los Angeles

Enclose please find $\$$ subscription to "RADIO."

Name
Call
Address
City

1938 EDITION

The 'Radio' Handbook

Chapter Contents

1-bivenamental Pometrical. Princaples and Ramo 'Theory' 7
2-Vacula Tube Tubory avil Practice. 39
3-1) beciblels anto lofiarithas 51
f-learning the Come 57
5-Antennas. Feen Sistems. win Couphing Methods 63
(——Rado Recenlyer Tifeory 115
T-Radio Receiter Construction 133
8-Recenting Tubes 155
0)-Transmitting Tibes 171
10-Transmitter Theory 207
11-Fxciter Coxstrlection 237
12-C. W. Transmatter Constrlection 257
13-Rablotelepriony 「heory 279
1+-Rabotelephony Construction 309
15-U. H. F. Commenication anio EQuipment 335
10-Power Supplies 367
17-Test Eolipmient 385
18-Radio Therap $+01$
19-Radio Lans anjo Regulations. 405
20-Apprendix $+15$

Foreword

THE EDITORS of Radio long have been convinced of the need for a radio handbook that is authoritative technically, yet one which is journalistically sound and substantially new, one that represents far more than a mere condensation of previously published magazine articles with the same illustrations, the same mathematics.

The history of this handbook, now in its fourth edition, gratifyingly has supported this view. Within the short period during which it has been published, sales have approached closely the 100,000 mark, and this despite the fact that changes in the book's title have occurred twice. Called last year the Jones Radio Handbook by reason of its being a separate publishing venture, this issue the book returns to its former title, Radio Handbook.

This fourth edition of the handbook comes in an enlarged and revised form. No chapter remains unchanged; all, we believe, are improved. With patience and perseverance Frank C. Jones, the principal author, and the editors of Radio have sought to determine the clearest methods of presenting all technical information. Even the fundamentals of the theory have been simplified, made more understandable. The new mathematical formulae, based upon laboratory experience, are more clear and far more workable.

As the reader turns through these pages he will find chapter after chapter of vital information.

New methods have been evolved for the presentation of the buffers and amplifiers. By means of them the reader will be able to select the oscillator, buffer, and doubler or final amplifier he prefers, regardless of the type of tube he has or desires to use. This will permit the design of a transmitter employing one of several suitable combinations of the respective units. It is no longer necessary to adhere to one complete set of instructions in constructing a transmitter unless the reader wishes to do so. For those who do so desire, several pages devoted to completely-built transmitters also will be found.

Taken in all, no effort has been spared in this attempt to compile a more comprehensive source of reference than has ever been published previously. We are confident that this edition will meet with the reader's approval.

THE PUBLISHERS.
Los Angeles, California.
November, 193\%
The authers appriciation for Inclpful advice and cooperation is cxtended to Prof. F E. E. Terman of Stanford Vuierersity, Mr. Clayton F. Bane, D. B. MeGroten, and to the Radio Corporation of America for its permission to reprint certuin of the formulae in the theoretial pages of the hamdlonok

Chapter

Fundanental Electidical Principles and Radio Tineory

IT IS difficult for anyone to advance in the study of radio without a first-hand knowledge of electrical phenomena. Electricity can be considered as a movement of extremely minute negative charges; an understanding of electricity can therefore be acquired from a knowledge of the action and nature of infinitesimal units. These small particles of energy are known as clectrons.

- The Electron

Our food, clothing, houses, our entire world-in fact, the human being himselfis a combination of approximately minetytwo substances, called cloments. In spite of this large number of elements, each in turn is composed of two basic units, the positive proton and the negative clectron. The difference between iron and copper, for example, lies not in the basic units of which they are composed, but rather in the quantity and the position of these units.

In combination, these electrons and protons are known as atoms. The proton (one or more) represents the central or neuclear positize charge, while the electron (or electrons) represents the outer or negatize chargi. These electrons revolve around the central unit in an elliptical path or orbit, in much the same manner as the planets in our solar system revolve about the sun. The atoms which make up the various elements differ mainly in the fact that some have several "rings" oi electrons, rather than a single ring.

The electrons in the orbits which surround the positive muclens have a clarge that is rxactly edual to the central unit, and, since they are opposite in polarity, a periect state oi balance exists. It is this same general state of balance which exists throughout matture, generally speaking.

It is important to understand that an atom (or atoms) containing several orbits of electrons around the central portion (nu-
cleus) will have many oi the electrons at a considerable distance from the nucleus, and conseduently these electrons will not be so strongly held as those in the nearer orbits.

In relative size the proton is considered to be approximately 1,845 times larger than the electron. Any attempt to visualize the actual physical mass of either is quite impossible, the realization becoming evident when it is considered that countless billions upon billions of electrons and protons make up a tiny piece of copper wire.

When this enormous quantity of atoms in any particular object is taken into consideration, it is easier to understand why, when electrons in some far-removed orbit are not so strongly held by their central positive proton, such electrons are very apt to be attracted by some other atom which has previously lost its outer electron. This is preciscly what happens.

As was previously related, the atom at all times seeks to maintain a state of balance: this is accomplished only when an atom has the proper number of electrons. If one electron is lost to some other atom, balance is quickly restored by attracting another. Consequently, there is a continuous helterskelter movement of electrons, a constant shifting from one atom to another. The clectrons which move about in a substance are called frec clectrons, and it is these free electrons that make possible the clectric current.

- Insulators and Conductors

If the atomic structure of a certain material is such that all of the electrons in an individual atom are tightly held by their positive proton and tend to remain within theil own orbits, the material or substance will have very few frec electrons and becomes what is known as an insulator. Mica, glass. porcelain, and (lry air are examples of such insmlators. (On the other hand, materials
that have a large number of free electrons are known as conductors. Most metals, such as copper, silver and aluminum are conductors. The ability of a material to pass an electric current is known as its conductivity. Metals which have high conductivity may be said to have low resistance to the flow of an electric current.

- The Electric Current

The free electrons in a conductor move constantly about and change their position in a haphazard manner. If, however, the conductor is comected between the positive and negative terminals of a battery, there will be a steady movement of electrons from the negative to positive terminal, in addition to the irregular movement of the electrons. This flow constitutes an electric current, but as soon as the battery is removed, the current will cease.

In explanation, it can be said that when the battery was first connected to the wire. there existed a shortage of electrons at one terminal, which the electrons at the other terminal attempted to supply.

It must always be remembered that the constant mozement of electrons in a definite direction creates an electric current. In the previous example, the constant clectron movement was brought to a halt when the battery was discomected, since the surplus electrons immediately supplied the deficiency existing at one end and established a balance throughout the entire conductor.

- Resistance

The molecular structure of certain metals is such that when the free electrons are made to flow in a definite direction, there are freIuent collisions between them and the individual atoms in the material. The result of these collisions is to decrease the total number of electrons flowing out of the material. This ability of a substance to resist the steady electron flow is called its resistanc.

It will require a greater clectromotio force to produce a given current through a substance with high resistance than to produce the same current in a good conductor. In the case of the conductor, virtually all of the electromotive force is effective in producing current, whereas in the resistor a portion is wasted in the form of lost energy, due to electron collisions. These collisions cause the material to become heated, and part of the initially-applied electromotive force is thus ultimately lost in the form of heat. This same phenomenom of heat is ex-
hibited when a metal is repeatedly struck by a hammer.

The resistance of a miform length of material is directly proportional to its length, and insersely proportional to its cross-section. A wire with a certain resistance for a given length will have twice as much resistance if the length of the wire is doubled. For a given length, doubling the size (cross section) of the wire will halic the resistance. It is alsis important to note that the resistance of most materials will increase as the temperature is increased. Thus, the resistance of the filament in a vacuum tube or in a tungsten electric lamp, is many times higher when brought to operating temperature than when it is cold.
The resistance of a material or circuit can be expressed by a constant, R, which is equal to the ratio of the applied electromotive force (1) the current produced. Expressed as an erpuation:
electromotive force

$$
\mathrm{k}=\frac{\text { current }}{\text { cit }}
$$

This cepuation constitutes the basis for Ohm's Lazc', which is treated at length in the succeeding text.
The commonly-used unit oi resistance is the olm, although the expression migohm ($1,000,000$ ohms) is sometimes used when very large quantities are involved.

- The Ampere

The strength of an electric current depends upon the rate at which electrons pass a given point. The units of measurement are the ampere and the coulomb. one ampere being equal to 6.28×10^{18} electrons passing a given point in one second. The generallyused term in electrical practice is the ampere, in which the time element is alreadly implied and need not be stated. as would be the case when referring to current in terms of coulombs (coulombs per scemad).

- The Volt

The electrons are driven through the wires and components of a circuit by a iorce called an clectromotize fores, usually abbreriated c.m.f. or EMF. The unit that denotes this force is called the iolt. This force or pressure is measured in terms of the difference in the number of electrons at one point with respect to another. This is known as the potential difference. The relationship between the electromotive force (voltage) to the flow of current (amperes), and the resistance which impedes the flow of eur-
rent (ohms), is very clearly expressed in a simple but highly valuable law, known as Ohm's Lave.

- Ohm's Law

This laze states that the current in amperes is equal to the aroltage dizided by the resistance in ohms. Expressed as an equation:

$$
I=\frac{E}{R}
$$

If the voltage (E) and resistance (R) are known, the current (1) can be readily found. If the voltage and current are known, and the resistance is unknown, the resistance E
(R) is equal to $\frac{1}{1}$. When the voltage is the unknown quantity, it can be found by multiplying $1 \times R$. These three equations are all secured from the original ly simple transposition. The expressions are here repeated for quick reference:

$$
\mathrm{I}=\frac{\mathrm{E}}{\mathrm{R}} \quad \mathrm{R}=\frac{\mathrm{E}}{\mathrm{I}} \quad \mathrm{E}=\mathrm{IK}
$$

where I is the current in amperes.
K is the resistance in olms,
I is the electramotive force in arolts.

- Practical Problems

A typical example for the application of Ohn's law would be a resistance-coupled amplifier whose plate resistor has a value of 00,000 ohms, with a measured current through this resistor of a milliamperes. The problem is to find the actual voltage applied to the plate of the tube. From Olm's law, the resistance R is 30,000 ohms. The current I is given as .s milliamperes; milliamperes must, therefore, first be converted into amperes; . 005 amperes equals 5 milliamperes. The electromotive force or voltage, E, is the mannown quantity. Ohm's law is applied as follows:

$$
\text { Formula: } \begin{aligned}
& \mathrm{E}=1 \times \mathrm{R} \\
& \mathrm{R}=50,000 \text { olms } \\
& 1=.00 \mathrm{~s} \text { amperes }
\end{aligned}
$$

Solution: $.005 \times: 0,000=250$ volts drop acruss the resistor.

If the power supply delivers 300 volts, the actual voltage on the plate of the tube would be only 50 volts. This means that 250 volts of the supply voltage would be consumed in forcing a current of .005 amperes through the 0,000 ohm plate resistor.
Example (2)
Given the same amplifier, suppose it is de-
sirable in this case to have a voltage of 150 on the plate of the tube. The known quantities are a plate current of 10 milliamperes (. 010 amperes), and a supply voltage of 300 volts. It is desired to find the value of plate resistor to provide this drop in voltage.

It is olbvious from the foregoing that with 300 volts plate supply available, the voltage that must be consumed across the plate resistor is 150 volts, so that 150 volts will remain at the plate of the tube. The problem is solved as follows:

From Ohm's law, $\mathrm{K}=\frac{\mathrm{F}}{\mathrm{I}}$
E in the above example is equal to the difference between supply and desired voltages, or the "zoltage drop" arross the resistur, R.

Therefore:

$$
\mathrm{K}=\frac{150}{0.010}, \text { in } 15,000 \text { cinns. }
$$

lisample (3)
The given supply voltage is 300 , and the (measured) voltage on the plate of the tube is 100 volts. Find the current flowing through the plate resistor of 20,000 ohms.

$$
\text { From Ohm's lair, } I=\frac{\mathrm{E}}{\mathrm{R}} \text {. } E \text { again ecpuals }
$$ the difference between supply and measured plate voltages.

Therefore:

$$
\begin{aligned}
& I=\frac{200}{20,000} . \\
& I=.01 \text { anperes. or } 10 \text { milliamperes. }
\end{aligned}
$$

- Resistances in Series

The total resistance oi several resistances in series is equal to the sum total of the individual resistances. A $30,000-\mathrm{ohm}$ resistance in serics with a 0,000 -ohm resistance would give a total resistance of $\tau 5,000$ ohms.

Formula: $\mathrm{R}_{1}+\mathrm{R}_{2}=\mathrm{R}$.

- Resistances in Parallel

When taro resistances of equal value are comected in parallel, the total resistance will be one-half the resistance of one. Two 100,000 -ohm resistances comnected in parallel
would have a total resistance of only 50,000 ohms.

When two or more resistances are connected in parallel, the effective total is always less than the value of the lowest resistance in the group. The value of three or more utcqual resistances in parallel is solved from the following formula:

Figure 2

- Three or More Parallel
 Resistors All Having the Same Value

When three or more resistors of the same ralue are comnected in parallel, the effective resistance is the common value divided by the number of resistances connected in parallel.
Examples:
Three resistances of 75,000 ohmis cach. connected in parallel, wenld have an 75,000
cffective resistance of $\frac{\text { or onty }}{3}$.
25,000 ohms.
Four resistances of 200 ohms each, connected in parallel, zeould have an cffectia'e 200
resistance of $\frac{2}{4}$, or only 50 ollms.

- Two Unlike Resistances In Parallel

When two resistances have the same valuc. the above formula applies. When the resistances are of unequal values, the following formula is used:

$$
R=\frac{R_{1} \times R_{2}}{R_{1}+R_{2}},
$$

where R is the unknozen quantity,
R_{1} is the resistance of the forst resistor,
R : is the resistance of the second resistor.
A typical example would be an a.v.c. resistor of 500,000 ohms, which is to be shunted (paralleled) with another resistor of some value, in order to bring the cffcctive resistance value dozon to a value of 300,000 ohms. Substituting these values in the equation for two unequal resistances in parallel :

$$
300,000=\frac{500,000 \times \mathrm{R}_{2}}{500,000+\mathrm{R}_{2}}
$$

By transposition, factoring and solution, the effective value of R will be 750,000 ohms. Thus a 750,000 -ohm resistance must be connected across the $500,000-$ ohm resistance in order to secure an effective resistance of 300,000 ohnis.

In solving for values other than those given, the simplified equation becones:

$$
\mathrm{R}_{z}=\frac{\mathrm{R}_{1} \times \mathrm{R}}{\mathrm{R}-\mathrm{R}_{1}},
$$

where R is the resistance present.
R_{1} is the resistance to be obtained,
R_{2} is the zalue of the unknozen resistance necessary to gire R_{1} when in parallel with R.

- Resistances in Series-Parallel

Resistances in series-parallel can be solved from the equation:

$$
\mathrm{R}=\frac{1}{\frac{1}{R_{1}+R_{2}} \frac{1}{R_{2}+R_{1}} \frac{1}{R_{3}+R_{4}}}
$$

Figure 3

- Power Measurements and Formulas for Resistive Circuits

It was previously stated that when a voltage causes a given current to flow through a resistor, heat is generated or dissipated by
the resistor. This loss is attributable to the molecular structure of the material through which the current is made to pass. In other words, if the constant flow of electrons is always coming into contact with the atoms of the material through which the electrons flow, there will be countless collisions and the electrons must, therefore, be foreed through in order that a given number will constantly move from the conducting medium. This phenomenom results in heating of the conductor, and this heating results in a loss of pozeer or curergy.

From Ohm's law, $\mathrm{E}=\mathrm{I} \times \mathrm{R}$, it can readily be seen that if the resistance of a circuit is doubled, it will require twice the voltage to maintain the same current flow through the added resistance. This expenditure of power can be considered as the product of the voltage and current in the circuit and is expressed in zoatts. Hence. IV (watts) $=\mathrm{E} \times \mathrm{l}$. Since it is very convenient to express power in terms of the resistance and current, a substitution of $\mathrm{I} \times \mathrm{R}$ for $E(E=I \times R)$ in the above formula, gives: $W=I R \times I$, or $I^{2} R$.
In terms of voltage and resistance, $\mathbb{I V}^{\circ}=$ $\frac{E^{2}}{R}$. Here $I=\frac{E}{R}$ and when this was substituted for I , the formula became $\mathrm{IV}^{=} \mathrm{E}$ 1:
$\times \frac{-}{\mathrm{R}} \mathrm{or}^{\mathbf{W}}=\frac{\mathrm{L}}{\mathrm{R}}$. These three expressions are repeated for quick reference:

$$
\begin{aligned}
& \mathrm{W}=\mathrm{E} \times 1, \mathrm{~W}=\mathrm{I}^{2} \times \mathrm{R}, \mathrm{~W}=\mathrm{E}^{2} \\
& \text { where }{ }^{W} \text { is the power in zeatts, } \\
& E \text { is the electromotioce force or } \\
& \text { I ioltage, } \\
& I \text { is the current in amperes. }
\end{aligned}
$$

This cquation is used in a typical example. as follows: The voltage drop across a cathode resistor in a power amplifier stage is 30 volts; the plate current flowing through the resistor is 150 milliamperes. The number of watts the resistor will be required to dissipate is found from the formula: 11 (watts) $=\mathrm{E} \times \mathrm{I}$, or $50 \times .150=7.5$ watts. (.150 amperes is equal to 150 milliamperes). From the foregoing it is seen that a $\bar{\tau} .5$-watt resistor will safely carry the required current, yet a 10 - or 20 -watt resistor would orclinarily be used to provide a safety factor.

In another problem, the conditions being similar to those above, but with resistance and current being the know'n factors, the so-
lution is obtained as follows: $W=I^{2} \times R$ $=.0225 \times 333.33+=7.5$.
If only the voltage and resistance are
known, $W^{-}=\frac{\mathrm{E}^{2}}{\mathrm{R}}=\frac{2500}{333.33}=7.5$ watts. It is seen that all three equations give the same result; the selection of the particular equation depends only upon the known factors.

- Voitage Dividers

A voltage divider is exactly what its name implies: a resistor or a series of resistors, connected across a source of voltage from which various lesser values of voltage may be obtained by comnection to various points along the resistor. A voltage divider serves a most useful purpose in a radio receiver, transmitter or amplifier, because it offers a simple means of obtaining plate, screen and hias voltages of different values from a common power supply source. It may also be used to obtain very low voltages of the order of .01 to .001 volts with a high degree of accuracy, even though a means of measuring such voltages is lacking. The procedure for making these measurements can hest be given in the following example:
It is assumed that an accurately calibrated $0-150$ voltmeter is available and that the source of voltage is exactly 100 volts. This 100 volts is then impressed through a resistance of exactly 1,000 ohms. It will then be found that the voltage along various poi:ts on the resistor, with respect to the grounded end, will be exactly proportional to) the resistance at that point. From Ohm's law, the current would be 0.1 ampere; this current remains unchanged, since the original value of resistance (1,000 ohms) and the voltage source (100 volts) are unchanged. Thus, at a 500 -ohm point on the resistor (inalf its entire resistance), the voltage will likewise be halved or reduced to 50 volts.

The equation gives the proof: $\mathrm{E}=500 \times$ $0.1=50$. At the point of 250 ohms on the resistor, the voltage will be one-fourth the total value or 2 j volts $(\mathrm{E}=2.50 \times 0.1=$ 25). Continuing with this process, a puint can be found where the resistance measures exactly one ohm, and where the voltage equals 0,1 volt. It is, therefore, obvious that ii the original source of voltage and resistance can be measured. it is a simple matter to predetermine the voltage at any point along the resistor, provided that the current remains constant.

- Bleeder Resistors

Resistors are often connected across the output terminals of power supplies in order to "bleed off" a constant value of current or to serve as a constant, fixed load. The regulation of the power supply is thereby improved and the voltage is maintained at a more or less constant value, regardless of load conditions. When the load is entirely removed from a power supply, the voltage may rise to such a high value as to ruin the filter condensers. The amount of current which can be drawn from a power supply depends upon the current rating of the particular power transformer in use. If a transformer will carry a maximum safe current of 100 milliamperes, and if 75 milliamperes of this current is required for operation of a radio receiver, there remains 25 milliamperes of current available to be "wasted" in the bleeder resistor.

An example for calculating bieeder resistor values for safe wattage rating is as follows: The power supply delivers 300 volts. The power transformer can safely supply 75 mil liamperes of current, of which 60 millianperes will be required for the receiver. The problem is to find the correct value of resistance to give a bleeder current of 15 milliamperes. Ohm's law gives the solution:

E
$\mathrm{R}=\frac{\mathrm{I}}{\mathrm{I}}=\frac{}{.015}=20,000$ ohms. (15 milliamperes is equivalent to .015 ampere.) Therefore, it is seen that the bleeder resistor should have a resistance of 20,000 ohms.

Another problem would be to find the required safe wattage rating of the bleeder, under the same conditions as given in the previous example. The answer is secured as follows: $\mathrm{W}=\mathrm{E} \times \mathrm{I}=300 \times .015=$ 4.5 watts. It is considered good practice to allow an overload factor of at least 100 per cent, since the voltage will increase somewhat when all load except the bleeder is removed. Therefore, a 10 -watt resistor should be chosen.

- Design of
 Voltage Dividers

The design of a voltage divider for any type of radio equipment is a relatively simple matter. The first consideration is the amount of bleeder current to be drawn, which is dictated largely by the examples previously given. In addition, it is also necessary that the desired voltage and the exact current at
each tap om the rultage divider be knows. The current does not flow from the tap-on point through the resistor to ground or negative terminal, but rather from the positive side, then out through the tap, then through the device to ground. This explanation can be more easily followed by referring to figure 4 , wherein the arrows indicate the direction of current flow through the external load.

Figure 4

The device which secures current from the voltage divider is indicated as C. The current drawn by C flows through section A of the bleeder resistor, then through C, and back to ground. The bleeder current, however, flows through the entire divider, i.e., through both A and B. Therefore, it becomes apparent that when a tap-on point is chosen to give the voltage desired, it is necessary to consider not only the current drawn by the device C, but also the bleeder current.
The design of more complex voltage dividers can best be iliustrated by means of the following problems:

A power supply delivers 300 volts and is conservatively rated to supply all needed current for the receiver and still allow a bleeder current of 10 milliamperes. The following voltages are wanted: 250 volts at 20 milliamperes for the plates of the tubes. 100 volts at is milliamperes for the screens of the tubes, and 75 volts at 2 milliamperes for the detector tube. The voltage drop from the 300 -volt value to the required 250 volts would be 50 volts; for the 100 -volt value, the drop will be 150 volts; for the $\pi, 5$-volt value, the drop will be 225 volts. These values are shown in the diagram of figure \therefore. The respective current values are also indicated.

.017
1)issipation $=.01 \% \times 1.50=8.2 .7$ watts.

$$
\mathrm{C}=\frac{\text { Voltage Drop }}{\text { Current }}=\frac{20}{.012}=2.083 \text { olmns. }
$$

$$
\text { Dissipation }=.01: 3 \times 2 \pi=0.3 \text { watts. }
$$

$$
1)=\frac{\text { Voltage Drop }}{\text { Current }}=\frac{75}{.010}=\pi .500 \text { olinns. }
$$

$$
\text { Dissipation }=0.010 \times \pi=0 . \pi 5 \text { watts. }
$$

The total resistance of the divider is $19,7,3$ r ohms; this value is secured by adding together the four resistance values of 1,351 , $8,823,2,083$ and 7,500 ohms. A 20,000 ohm resistor with three sliding taps will, therefore, be of the approximately-correct size and therefore would ordinarily be used because of the difficulty in securing four separate resistors of the exact, odd values indicated, and because no adjustment would be possible to compensate for any slight error in estimating the probable currents through the various taps.

Although the wattage dissipation across all the individual sections is only 5.15 watts, the selection of a single resistor, such as a large resistor with several sliders, should be based not only on the wattage rating but also on the current that it will safely carry. In the above example, the wattage of the section carrying the heaviest current is only 1.85 watts. The maximum dissipation of any particular section is 2.25 watts. Yet, if a 5 -watt resistor were selected, it would very soon burn up. The reason for this is that part of the divider must handle 37 ma . The selection ior wattage rating is therefore made on the basis of current, because wattage rating oi resistors assumes uniform
curtent distribution. Most manufacturers rate their resistors in this manner; if not, it can be calculated from the resistance and wattage rating.

Once the sliders on the resistor are set to the proper point, as in the above example, the voltages will remain constant at the values shown as long as the current remains a constant value. One of the serious disadvantages of the voltage divider becomes evident when the current drawn from one of the taps changes. It is obvious that the voltage drops are inter-dependent and, in turn, the individual drops are in proportion to the current which flows through the respective sections of the divider resistor. The only remedy lies in providing a heavy, steady bleeder current, so as to make the individual currents so small a part of the total current that any change in current will result in only a slight change in voltage. This can seldom be realized in practice because of the excessive values of bleeder current which would be required.

When a power supply is used for C-bias service, still another factor must be taken into consideration. The rectified grid current from the amplifier stages will flow through the divider, in addition to the bleeder current. If this current changes, the voltage applied to the grid will also correspondingly change. When adjustments of a C-bias supply are made, the amplifier should be operated in the condition where it draws its proper amount of grid current ; otherwise, the C-bias resistor setting will be greatly in error. Heavy bleeder currents are thus required for C -bias supplies, especially where the grid current is changing and the bias must remain constant, as in certain types of phone transmitters.

- Resistances for Operating Filaments in Series

When computations are made for the operation of vacuum tube filaments or heatters in series-connection, it should be remembered that each has a definite resistance and that Ohm's law here again holds true, just as it does in the case of a conventional resistance.

No particular problen is involved when two exactly similar tubes of the same voltage and current rating are to be operated with their filaments or heaters connected in series in order to operate them from a source of voltage twice as high as is required for the tubes. If two six-volt tubes, each requiring 0.5 ampere for heater operation, are connected in series across a 12 -volt power source, each tube will have the same voltage drop (6 volts), and the total current drawn from the power supply will be the same as for one tube or 0.5 ampere. By making this connection, the resistance has actually been doubled; yet, because the voltage is doubled, each tube automatically secures its proper voltage drop. In this example, the resistance of each tube would be 12 ohms (6 divided by 0.5). In series, the resistance would be twice this value or 24
ohms. The current I would then equal $\frac{12}{24}$
or 0.5 amperes, from which it can be seen that the current drawn from the supply is the same as for a single tube.

It is important to understand that in a series connection the sum of the voltage drops across all of the tubes in the circuit cannot be more than the voltage of the supply. It is not possible to connect six similar 6 -volt tubes in series across a 32 -volt supply and expect to realize 6 volts on the filaments of each, since the sum of the various voltage drops is equal to 36 volts. The tubes can, however, be connected in such a manner that the correct voltage drop will be secured, as witl be explained later.
The forlowing examples and diagrams give all needed design information for series- and series-parallel connections:
Example-One 6F6 and one 6L6 tube are to be operated in a low-power aeroplane transmitter. The power supply delivers 12.6 volts. The problem is to connect the heaters of the two tubes in such a manner that each tube will have exactly the same voltage drop across its heater terminals. The
fube tables show that a type 6 F 6 tube draws 0.7 ampere at 6.3 volts. Its resistance, ac-
cordingly, equals $R=\frac{E}{I}=\frac{6.3}{0.7}=9$ ohms.
The 6 L .6 tube draws 0.9 ampere at 6.3 volts, and its resistance equals $\frac{6.3}{0.9}=\boldsymbol{i}$ ohms.

If these tubes are connected in serics without precautionary measures, the total resistance of the two will be 16 ohms $(9+7)$. A potential of 12.6 volts will pass a current of 0.787 amperes through this value of 16 olms. The drop across each separate resistor is found from Olmn's law, as follows: $9 \times 0.787=7.083$ volts, and $7 \times 0.787=$ 5.4 volts. Thus, it is seen that neither tube will have the correct voltage drop. One of the resistor values must, therefore, be changed so that it will be equal to the other, in order that the voltage drop will be equal across both tubes. If the larger of the two resistors is taken, and another resistor connected in parallel across it, the value of the larger resistor can then be brought down to that of the smaller.
Substituting these values in an equation

$$
\text { previously given. } \mathrm{R}=\frac{7 \times 9}{7-9}=31.5 \text { ohms. }
$$

By comecting a resistance of 31.5 ohms in parallel with the 9 -ohm resistance, the effective resistance will be exactly 7 ohms or equal to that of the other resistor.
The problem is made more simple by the following procedure:

If the tubes are regarded on the basis of their respective current ratings, it will be

```
6F6 = 9 OHMS
\(6 \mathrm{~L} 6=7\) OHMS
```


found that the $6 L .6$ draws 0.9 ampere and the 6 F6 0.7 ampere, or a difference of 0.2 am pere. If the resistance of the 6 F 6 is made equal to that of the 6L6, both tubes will draw the same current. Simply take the difference in current, 0.2 amperes, and divide this value into the proper voltage drop, 6.3 volts; the answer will be 31.5 ohms, which is the exact same value which was obtained in the previous round-about method of calculation.

Figure 7
The diagram in figure 7 shows other possible connections for tubes of dissimilar heater or filament current ratings. Although section B in figure 7 appears formidable, it is a simple matter to make the necessary calculations for operating the tubes from a common source of supply. In section B there are threc tubes, with their heaters connected in parallel. The current, therefore. will be $0.3+0.3+0.7=1.3$ amps. The two tubes in parallel draw $0.3+0.3=$ 0.6 amps. The difference between 1.3 and 0.6 is $0 . \tilde{\pi}$ amps. The drop across each section is the same or 6.3 volts; therefore, $\frac{6.3}{0.7}$
$=9$ ohms. This value of resistance across the two parallel-connected tubes gives their sections the same resistance as that of the three tubes; consequently, all tubes secure the proper voltage.

When tube heaters or filaments are operated in series comection, the current is the same throughout the entire circuit. The sistance of all tube filaments must then be made the same if each is to have the same voltage drop across its terminals. The resistance of a tube heater or filament should
never be measured when colc, because the resistance will be only a fraction of the resistance present when the tube functions at proper heater or filament temperature. The resistance can be satisfactorily calculated by using the current and voltage ratings given in the tube tables.

Conzersion Table for Volts, Amperes and Watts.
1 kilovult $=1,000$ volts.
1 volt $=1 / 1000$ kilovolt, 10^{-3} kilovolts, or .001 kilovolts.
1 millivolt $=1 / 1000$ volt, 10^{-8} volts, or .001 volts.
1,000 millivolts $=1$ volt.
1 microvolt $=1 / 1,000,000$ volt, 10^{-6} volts, or .000001 volts.
$1,000,000$ microvolts $=1$ volt.
1,000 micruvalts $=1$ millivolt, or 10^{-8} volts.
1 milliampere $=1 / 1,000 \mathrm{am-}$ pere, 10^{-8} amperes, or . 001 amperes.
1,000 milliamperes $=1$ ampere.
1 microampere $=1 / 1,000,000$ ampere, 10^{-6} amperes, or .000001 amperes.
1,000 microamperes $=1$ milliampere, or 10^{-3} amperes.
1 kilowatt $=1,000$ watts.
1 watt $=1 / 1,000$ kilowatt, 10^{-3} kilowatts, or .001 kilowatts.
1 milliwatt $=1 / 1,000$ of a watt, 10^{-8} watts, or .001 watts.
1,000 milliwatts $=1$ watt.
1 microwatt $=1 / 1,000,000$ of a watt, 10^{-6} watts, or .000001 watts.
1,000 microwatts $=1$ milliwatt or 10^{-8} watts.

- Alternating Current

In all previous portions of this text, consideration was given only to a steady flow of electrons in one direction. Such currents are known as un-directional or direct currents, abbreviated d.c. Radio and electrical practice also makes use of another and altogether different kind of current, known as altcrnating current abbreviated a.c.

An alternating current begins to flow in one direction, meanwhile changing its amplitude from zero to a maximum value, then down again to zero, from which point it changes its direction, and again goes through
the same procedure. Each one of these zero-maximum-zero amplitude changes in a given direction is called a half cycle. The complete change in two directions is called a cycle. The number of times per second that the current goes through a complete cycle is called the frequency. The frequency of common house-lighting alternating current is generally 60 cycles, meaning that it goes through 60 complete cycles (120 reversals) per second.

High radio-frequency currents, on the other hand, go through so many of these changes per second that the term cycle becomes tuwieldy. As an example, it can be said that a certain station is operating on $14,000,000$ cycles. However, it is simpler to say 14,000 kilocucles, or 14 megacycles. A conversion table for simplifying this terminology is given here:

> 1,000 cycles $=1$ kilocycle. The abbrexiation for kilocycle is k.
> 1 cycle $=1 / 1,000$ of a kiorpole, . 001 kc . or $10^{-3} \mathrm{kc}$.
> 1 megacyele $=1,000$ kilocyeles. $\quad \mathrm{m}$ $1,000,000$ cyrles, $10^{-8} \mathrm{kc}$. or 10^{-6} cycles.
> 1 kilocycle $=1 / 1,000$ mogacycle, . 001 megaryoles or 10^{-3}. Mi . Fhe abliberiation for meyarycles is . 1 m .

- Ohm's Law Applied to Alternating Current

Ohm's law applies equally to direct on alternating current. prozided that the circuits under consideration are purely resistive. i.e., circuits which have neither inductance (coils) nor capacitance (condensers). Problems which involve tube filaments, drop resistors, electric lamps, heaters or similar resistive devices can be solved from Ohm:s law, regardless of whether the current is direct or alternating. When a condenser on a coil is made a part of the circuit, a property common to each, called ractancc. must be taken into consideration. Reactance will be treated under a separate heading.

- Electromagnetic Effects

When an electric current flows througlo a conductor, the moving electrons which comprise this current set up limes of forec in the surrounding medium. These are termerl lines of magnitic force, and they extend outwardly from the conductor in a plane at right angles to its direction. It is these lines of magnetic force that make up the mo!notic flur. In drawing an analogy of volt-
age, current and resistance in terms of magnetic phenomena, magnetic flux might be termed magnetic current; magneto-motiz' force, or magnetic aroltage. The reluctance of a magnetic circuit can be thought of as the resistance of the maguetic path. The relation between the three is exactly the same as that between current, voltage and resistance (Olm's law).

The magnetic flux depends upon the material, cross-section, and length of the magnetic circuit, and it varies directly as the current flowing in the circuit. The reluctance is dependent upon the length, crosssection, permeability, and air-gap, if any, of the magnetic circuit.

In the electrical circuit. the current would equal the voltage divided by the resistance. and so it is in the magnetic circuit.

Magnetic Flux (ϕ) =

> magneto-motive force (m.m.i.)

$$
\text { reluctance }(r)
$$

- Permeability

lermeability describes the difference in the magnetic properties of any magnetic substance as compared with the magnetic properties of air. Iron, for example, has a permeability of around 2,000 times that of air, which means that a given amount of magnetizing effect produced in an iron core by a current flowing through a coil of wire will produce 2,000 times the $f_{14, x}$ donsity that the same magnetizing effect would produce in air. THe permeabilities of different iron alloys vary quite widely and permeabilities up) to 100,000 can be obtained, if required.

Permeability is similar to clactric conducfizity. There is, however, one important difference: the permeability of iron is not independent of the magnetic current (flux) flowing through it, although electrical conductivity is usually independent of electric current in a wire. After a certain point is reached in the flux density of a magneticconductor, an increase in the magnetizing field will not produce a material increase in flux density. This point is known as the point of saturation. The inductance of a choke coil whose core is saturated declines to a very low value.

The magnetizing effect of a coil is often described in ampere turns. Taso amperes of current flowing through one turn is equal to troo ampere turns. From this it can be seen that the flux can be increased by either increasing the current through the conductor
or by making the conductor into the form of a coil of many turns. As a means of showing why the flux is increased when the conductor is put into the form of a coil, two figures are given here:

A
Figure 8-A

8
Figure 8-8

In . 1 oi figure 8, all arbitrary point " P " is chosen to represent a point at some fixed distance from a straight conductor, $X-Y$. Upon examination, it will be seen that the maximum effect will be exerted on $X-Y$ by the lines of force which are nearest this point, or at D. The field intensity at the fixed point is the resultant or vector sum of all the fields duc to the individual electron flow along the conductor. Other fields than those at the shortest distance will then have less and less effect as they lie farther along the conductor. If the conductor is arranged in the shape shown in B of figure 8, it will readily be seen that all of the fields along the conductor will act equally on the central point, P. with the result that the field is greatly strengthened.

When a conductor is wound into a mumber of turns in the form of a coil, the flux which encircles the current flowing through an individual turn also links the turns adjacent to it. Thus, in a multi-turn coil, the magnetic field which is produced will be much greater than if only a single turn were used. This flux increases or decreases in direct proportion to the change in the current. The ratio of the change in flux to the change in current has a constant value, known as the inductance of a coil.

It is a fundamental law of electricity that when lines of force cut across a conductor, a voltage is induced in that conductor. Therefore, it can be readily seen that in the case of the coil previously mentioned, the flux lines from one turn cut across the adjarent turn. and a coltage is induced in that turn. The effect of these induced voltages is to create a voltage across the entire coil
of opposite polarity or in the opposite direction to the original voltage. Such a voltage is called counter e.m.f. or back e.m.f.

If a direct current potential such as a battery is connected across a multi-turn coil or inductance, the back e.m.f. will exist only at the instant of connection, at which time the flux is rising to its maximum value. While it is true that a current is flowing through the turns of the coil and that a magnetic field exists around and through the center of the inductance, an induced voltage may only be produced by a changing $f_{w x}$. It is only such a changing flux that will cut across the individual turns and induce a voltage in them. By a changing flux is meant a flux that is increasing or decreasing, as would occur if the e.m.f. across the coil were alternating or changing its direction periodically.

As the current increases, the back e.m.f. increases; as the current decreases, the back c.m.f. decreases. This back voltage is always opposite to the exciting voltage and. hence, always acts to resist any change in current in the inductance. This property of an inductance is called its self inductance and is expressed in henrys, the henry being the unit of inductance. A coil has an inductance of one henry when a voltage of one volt is induced by a current change of one ampere per second. The unit, hemry, is too large for reference to inductance coils such as those used in radio-frequency circuits; millihenry or microhenry are more commonly used, in the following manner:
1 honry $=1,000$ millihurass, or 10^{3} millihourys.
1 millihenry $=1 / 1,000$ of a henre or . 001 henry, of 10^{-3} henry.
1 microhenry $=1 / 1,000,000$ of a henry, or .000001 henry, or 10^{-1} henry.
One-one-thousandth of a millihenry $=.001$ or 10^{-4} millihenrys.
1,000 microhenrys $=1$ millihenry.

- Mutual Inductance

When two inductances are so placed in relation to each other that the lines of force encircling one coil are interlinked with the turns of the other, a voltage will be set up or induced in the second coil. As in the case of self-inductance, the induced zoltage will be opposite in direction to the exciting voltage. This effect of linking two inductances is called mutual inductance, abbreviated M. and is also expressed in henrys. Two circuits thus joined are said to be inductively coupled. The magnitude of the mutual in-
ductance depends upon the shape and size of the two circuits, their positions and distances apart, and the permeability of the medium. The extent to which two inductances are coupled is expressed by a relation known as cocfficient of coupling. This is the ratio of the mutual inductance actually present to the maximum possible value.

- Inductances in Parallel

Inductances in parallel are combined exactly as are resistors in parallel, provided that they are far enough apart so that the mutual inductance is entirely negligible, i.e., if the coupling is very loose.

- Inductances in Series

Inductances in series are additive, just as are resistors in series, again provided that no mutual inductance exists. In this case, the total inductance L. is :

$$
\mathrm{L}=\mathrm{L}_{1}+\mathrm{L}_{2}+\ldots \ldots \ldots \ldots \text { etc. }
$$

Where mutual inductance does exist :

$$
\mathrm{L}=\mathrm{L}_{2}+\mathrm{L}_{2}+2 \mathrm{M}
$$

where M is the mutual inductance.
This latter expression assumes that the coils are comnected in such a way that all flux linkages are in the same direction, i.e., additive. If this is not the case, and the mutual linkages subtract from the self linkages, the following formula holds:

$$
\mathrm{L}=\mathrm{I}_{-1}+\mathrm{L}_{\mathrm{s}}-2 \mathrm{M}
$$

where M is the mutual inductance.

- Formulas for Calculating Inductance

The inductance of coils with magnetic cores can be determined with reasonable accuracy from the formula:

$$
\text { I. }=1.25 i \times \mathrm{N}^{2} \times \mathrm{P} \times 10^{-8}
$$

where
I is the inductance in henrys,
N is the number of turns,
P is the permeability of the core material.
From this formula it can be seen that the inductance is proportional to the square of the number of turns, as arcll as to the permeability. Thus, it is possible to secure greater values of inductance with a given number of turns of wire wound on an iron
core than would be possible if an air-core coil were :ised.
Ordinary magnetic cores camot be used ior radio frequencies because the eddy current losses in the core material become enormous as the frequency is increased. The principal use for magnetic cores is in the audio frequency range below approximately $1.5,000$ cycles, whereas at very low irequencies (50 to 60 cycles) their use is mandatory if an appreciable value of inductance is clesired.
An air core inductor of only one henry in inductance would be quite large in size, yet values as high as 100 henrys are commonly a vailable in small, iron core chokes. The inductance of a coil with a magnetic core will vary with the amount of direct current which passes through the coil. For this reason, iron core chokes that are used in power supplies have a certain inductance rating at a predetermined coluc of d.c.
One exception to the statement that metal core inductances are highly inefficient at radio frequencies is in the poudered iron cores used in some types of intermediate frefuency transformers. These cores are made of very finc particles of powdered iron, which is first treated with an insulating compound so that each particle is insulated from the other. These particles are then molderl into a solid core, around which the wire is wound. Eddy current losses are greatly reduced, with the result that these special iron cores are entirely practical in circuits which uperate up to $1,500 \mathrm{kc}$. in frequency.
The inductance of an air core coil is proportional to the square of the number of turns of wire, provided that the length and diameter remain constant as the turns are changed (actually an impossibility, strictly speaking). The formula for inductance of air core coils is given with good accuracy, as follows:

$$
\mathrm{I}=\mathrm{N}^{2} \times \mathrm{d} \times \mathrm{F}
$$

where
$\mathrm{I}=$ inductance in microhenrys,
$\mathrm{d}=$ diameter of coil, measured to center of wire,
$\mathrm{F}=\mathrm{a}$ constant, dependent upon the ratio of length-to-diameter.
This formula is explained under the heading of Coil Calculation, where a graph for the constant F is given.

Mutual Conductance

The unit of conductance is the mho, which can be recognized as ohm spelled back-
ward. Transconductance, or mutual conductance, is expressed in micromhos; the latter is $1 / 1,000,000$ of a mho. A muttital conductance of 5,000 micromhos would be .005 mhos.

- Energy Stored in a Magnetic Field

The stored energy in a magnetic field is $\mathrm{L} \times \mathrm{I}^{2}$
expressed in joules, and is equal to

- Transformers: Primary-Secondary

When two coils are placed in such inductive relation to each other that the lines of force from one cut across the turns of the other and induce a voltage in so doing, the combination can be called a transformer. The name is derived from the fact that en ergy is transformed from one coil into another. The inductance in which the original flux is produced is called the primary; the inductance which reccives the induced voltage is called the secondary. In a radio receiver power transformer, for example, the coil through which the 110 -volts a.c. passes is the primary, and the coil from which a higher or lower voltage than the a.c. line potential is obtained is the secondary.
Transformers can have either air or magnetic cores, depending upon whether they are to be operated at radio or audio frequencies. The reader should thoroughly impress upon his mind the fact that current can be transferred from one circuit to another only if the primary current is changing or alternating. From this it can be seen that a power transformer cannot possibly function as such when the primary is supplied with non-pulsating d.c.

A power transformer usually has a magnetic core which consists of laminations of iron, built up into a square or rectangular form, with a center opening or "window." The secondary windings may be several in number, each perhaps delivering a different voltage. The secondary voltages will be proportional to the number of turns and to the primary voltage.

If a primary winding has an a.c. potential of 110 volts applied to 220 turns of wire on the primary, it is evident that this winding will have two turns per volt. A secondary winding of 10 turns, wound on an adjacent "leg" of the transformer core, would have a potential of 5 volts. If the secondary winding has 500 turns, the potential would be 250 volts, etc. Thus a transformer can be
designed to have either a step-up or stepdown ratio, or both simultaneously. The same applies to air core transformers for radio-frequency circuits.

- Inductive Reactance

It was previously stated that when an alternating current flows through an inductance, a back- or counter-electromotive force is developed; this force opposes any change in the initial e.m.f. The property of an inductance to offer opposition to a change in current is known as its reactance or inductite reactance. This is expressed as X_{L} :

$$
X_{\mathrm{L}}=2 \pi \mathrm{IL}
$$

where $\mathrm{X}_{\mathrm{L}}=$ inductive reactance expressed in ohms.
$\pi=3.1416(2 \pi=6.283)$.
$\mathrm{f}=$ frequency in cycles,
$\mathrm{L}=$ inductance in henrys.

Since it is very often necessary to compute inductive reactance at radio frequencies, the same formula may be used, except that the units in which the inductance and the frequency are expressed will be changed. Inductance can, therefore, be expressed in millihenrys and frequency in kilocycles. For higher frequencies and smaller values of inductance, frequency is expressed in megacycles and inductance in microhenrys. The basic equation need not be changed, since the multiplying factors for inductance and frequency appear in numerator and denominator, and hence are cancelled out. However, it is not possible, in the same equation, to express L in millihenrys and f in cycles without conversion factors.

When it becomes desirable to know the value of inductance necessary to give a certain reactance at some definite frequency, a transposition of the original formula gives the following :

$$
\mathrm{L}=\frac{\mathrm{X}_{\mathrm{L}}}{2 \pi \mathrm{f}}
$$

or. when X_{1}, and I are known :

$$
\mathrm{f}=\frac{\mathrm{X}_{\mathrm{L}}}{2 \pi \mathrm{~L}}
$$

- Capacity; Condensers

When two metallic plates are separated from each other by a thin layer of insulating
material (called a diclectric, in this case), the combination becomes a condenser. When a source of d.c. potential is momentarily applierl across these plates, they may be said to become "charged." If the same two plates are then joined together momentarily, by means of a wire, the condenser will "discharge."

When the potential was first applied. electrons inmediately started to flow from one plate to the other through the battery or such source of d.c. potential as was applied to the condenser plates. However, the circuit irom plate-to-plate in the condenser was incomplete (the two plates being separated by an insulator) and thus the electron flow cased. meanwhile establishing a shortage of electrons on one plate and a surplus of electroms on the other.

It will be recalled that when a deficiency of electrons exists at one end of a conductor. there is always a tendency for the electrons to move ahout in such a manner as to reestablish a state of balance. In the case of the condenser herein discussed, the surplus quantity of electrons on one of the condenser plates camot move to the other plate, because the circuit has heen hroken: i.e.. the battery or d.c. potential was removed. This leaves the condenser in a "charged" condition: the condenser plate with the electron deficiency is positively charged. the other plate being negatize. In this condition, a considerable stress exists in the insulating material (dielectric) which separates the two condenser plates. diue to the mutual attraction of two unlike potentials on the plates. This stress is known as electrostatio energy, as contrasted with electromagnetic energy in the case of an inductance. This charge can also be called potential cnergs. because it is capable of performing work when the charge is released through all cxternal circuit.

When the external circuit of the two condenser plates is completed by joining the terminals together with a piece of wire, the electrons will immediately rush from one plate to the other through the external cirruit and establish a state of equilibrium. This latter phenomenon explains the discharge of a condenser. The amount of stored energy in a charged condenser is dependent upon the charging potential, as well as a factor which takes into account the size of the plates, dielectric thickness. nature of the rielectric. and the mumber of plates. This factor. Which is determined by the foregoing. is called the capacity oi a condenser and is expressed in farads.

where $\mathrm{C}=$ unit of capacity, the farad, $\mathrm{E}=$ potential in volts.

The farad is stich a large mit of capacity that it is rarely used in radio calculations. and the following more practical units have, therefore, been chosen:

1 microfarad $=1 / 1,000,000$ of a farad or 000001 farad, or 10^{-6} farads.
1 micro-microfarad $=1 / 1,000,000$ of a microfarad, or .000001 microfarad, or 10^{-4} microfarads.
1 micro-microfarad $=$ muc-million-millionth af a farad, or .00000000000 farad, or 10^{-18} farads.

If the capacity is to be expressed in miroforads in the equation just given, the factor C would then have to he divided by 1,000 .000 , thus:

$$
\text { Stored encroy in joules }=\frac{\mathrm{C} \times \mathrm{E}^{:}}{2 \times 1.000,000} .
$$

This storage of energy in a condenser is one of its very important properties, particularly in those condensers which are used in pewer supply filter circuits.

- Dieiectric Constant

The capacity of a condenser is largely determined by the thickness and nature of the dielectric separation between plates. Certain materials offer a greater capacity than others, depending upon their physical makeup. This property can be expressed by a constant K, called the diclectric constant. A table for some of the commonly-used dielectrics is given here:

Material Dielectric Constant
Air 1.00
Mica 2.94
Hard rubber 2.50 to 3.00
Glass . 4.90 to 7.00
Bakelite derivitives 3.50 to 6.00
Celluloid 4.10
Fiber to to 6
Wood (without special preparation):
Oak s. 3
Maple 4.4
Birch 2
Transformer oil 2.5
Castor oil 5.0
Porcelain 4.4

- Breakdown in Dielectric

The nature and thickness of a dielectric has a very definite bearing on the amount of charge of a condenser. If the charge becomes too great for a given thickness of dielectric, the condenser will break down, i.e.. the dielectric will "puncture." It is for this reason that condensers are rated in the manner of the amount of voltage they will safely withstand. This rating is commonly expressed as the d, icerking zoltage.

- Calculation of Capacity

The capacity of two parallel plates is given with good accuracy by the following formula:

$$
C=0.22+4 \times K \times \frac{-1}{t},
$$

where $\mathrm{C}=$ capacity in micro-microiarads,
$K=$ dielectric constant of spacing material,
$A=$ area of clielectric in square inclies,
$t=$ thickness of dielectric in inches.
An examination of this formula will show that the capacity is directly proportional to the area of the plates, and inversely proportional to the thickness of the dielectric (spacing between the plates). This simply means that when the area of the plate is doubled. the spacing between plates remaining constant, the capacity will be doubled. Also, if the area of the plates remains constant, and the plate spacing is doubled, the capacity will be reduced to half. The above equation also shows that capacity is directly proportional to the dielectric constant of the spacing material. A condenser that has a capacity of 100 in air would have a capacity of 500 when immersed in castor oil, because the dielectric constant of castor oil is 5.0 or five times greater than the dielectric constant of air.

In order to determine the capacity of a parallel plate condenser, the following transposition is of value when the spacing hetween plates is known:

$$
A=\frac{C \times t}{0.224+\times K}
$$

where $t=$ area of piates in square inches,
$K=$ dielectric constant of spacing material.
$\mathrm{C}=$ capacity in micro-microfarads,
$1=$ thickness of dielectric (plate spacing) in inches.

Where the area of the plates is definitely set, and when it is desired to know the spasing needed to secure a required capacity:

$$
1=\frac{1 \times 0.224+K \times K}{C}
$$

where all units are expressed just as in the preceding formula. This formula is not confined to condensers having only square or rectangular plates, but also applies when the plates are circular in shape. The only change will be the calculation of the ara of such circular plates; this area can be computed by squaring the radins of the plate, when multiplying by 3,1416, or "pi". Expressed as an equation:

$$
.1=3.1+16 \times r^{2} .
$$

where $\mathrm{r}=$ radius in inches.

Figure 9

Muiti-plate condenser capacity can be calculated by taking the capacity of one section and multiplying this by the number of dielectric spaces. In such cases, however, the formula gives no consideration to the effects of "edge capacity," so that the capacity as calculated will not be entirely accuratc. These additional capacities will be but a small part of the effective total capacity, particularly when the plates are reasonably large. and the final result will, therefore, be within practical limits of accuracy.

- Condensers in ParalleI

Equations for calculating capacities of condensers in parallel connection are the same as those for resistors in scrics:

$$
C=C_{1}+C_{2}, \text { etc. }
$$

CONDENSERS IN PARALLEL

Figure 10

- Condensers in Series

Again, as in resistor calculations, condensers in scries connection are calculated in the same manner as are resistors in parallel.

CONDENSERS IN SERIES
 Figure 11

The formulas are repeated: (1) For two or more comdensers of morytal capacity in serics:

$$
C=\frac{1}{\frac{1}{C_{3}}+\frac{1}{C_{i}}+\frac{1}{C_{2}}} \cdot \cdots \frac{1}{C}=\frac{1}{C_{t}}+\frac{1}{C_{1}}+\frac{1}{C_{3}}
$$

(2) Tan conclensers of macqual capacity in series:

$$
C=\frac{C_{1} \times C_{2}}{C_{1}+C_{2}}
$$

(3) Three condensers of cqual capacity in scries:
$\mathrm{C}=\frac{\mathrm{C}_{1}}{3}$, where C_{1} is the common capacity.
(4) Three or more condensers of equal capacity in serics:

$$
\mathrm{C}=\frac{\text { Value of conmon capacity }}{\text { Number of condensers in series }}
$$

(i) Condensers in series parallel:

CONDENSERS IN SERIES - PARALLEL
Figure 12

- Voltage Rating of Series Condensers

A well-made paper dielectric filter condenser has suclı a high internal resistance (indicating a good dielectric) that the exact resistance will vary considerably from condenser to condenser even though they are made by the same manufacturer and are of the same rating. Thus, when 1000 volts d.c. is comected across two $1-\mu \mathrm{fd}$. 500 -volt condensers, the chances are that the voltage will divide mevenly and one condenser receive more than 500 volts and the other less than 500 volts. By connecting a half-megohm 1-watt carbon resistor across each condenser, the voltage will be equalized, because the resistors act as a voltage divider and the internal resistances of the condensers are so much higher (many megohms) that they have but little effect in disturbing the voltage divider balance.
Because carbon resistors of the inexpensive type are not particularly accurate (not being designed for precision service), it is
advisable to check several on an accurate ohmmeter to find two that are as close as possible in resistance. The exact resistance is unimportant, just so it is the same for the two resistors used.

When two condensers are connected in series, altcruating current pays no heed to the relatively high internal resistance of each condenser, but divides across the condensers in inverse proportion to the capacity. Because, in addlition to the d.c. across a capacitor in a filter or audio amplifier circuit, there is usually an a.c. or a.f. voltage contponent, it is inadvisable to series-connect condensers of unequal capacitance, even if dividers are provided to keep the d.c. within the ratings of the individual capacitors. For instance, if a 500 -volt $1-\mu \mathrm{fd}$. capacitor is userl in series with a $4-\mu \mathrm{fd} .500$-volt condenser across a 250 -volt a.c. supply, the $1-\mu \mathrm{fd}$. condenser will have 200 volts a.c. across it and the $4-\mu \mathrm{fll}$. condenser only 50 volts. An equalizing divider to do any good in this case would have to be of very low resistance, because of the comparatively low impedance of the condensers to a.c. Such a divider would draw excessive current and be impracticable.

The safest rule to follow is to use only condensers of the same capacity and voltage rating and to install nuatched, high resistance proportioning-resistors across the various condensers to equalize the d.c. voltage drop across each condenser. This holds regardless of how many capacitors are series-connected.

Similar electrolytic capacitors, of the same capacity and made by the same manufacturer, have more nearly uniform (and much lower) internal resistance, though it still will vary considerably. However, the variation is not nearly as great as encountered in paper condensers, and an odd compensating effect automatically puts the lowest voltage across the weakest electrolytic condensers of a series group.

As an clectrolytic capacitor begins to show signs of treaking down from excessive boltage, the leakage current goes up, which tends to heat the condenser and aggravate the condition. Howerer, when used in series with one or more others, the lower resistance (higher leakage current) tends to put less d.c. voltage on the weakening condenser and more on the remaining ones. Thus the capacitor with the lozecst leakage current, usually the best capacitor, has the highest voltage acons it. For this reason, dividing
resistors are not essential across series-connected electrolytic capacitors.

Electrolytic condensers use a very thin film of oxide as the clielectric and are "polarized"; that is, they have a positive and a negative terminal which must be properly connected in a circuit; otherwise, the oxide will boil, and the condenser will no longer be of service. When electrolytic condensers are connected in series, the positive terminal is always comected to the positive lead of the power supply; the negative terminal of the condenser comnects to the positive terminal of the noxt condenser in the series combination. The method of connection is illustrated in figure 13.

Figure 13

- Condensers in a. c. and d. c. Circuits

When a condenser is connected into a direct current circuit, it will "block" the d.c. or stop the flow of current. Beyond the initial movement of electrons during which the condenser is charged, there will be no flow of current, because the circuit is effectively broken by the dielectric of the condenser. Strictly speaking, a very small current may actually flow, because the dielectric of the condenser may not be a perfect insulator. This minute current flow is the "leakage current" previonsly referred to and is dependent upon the internal d.c. resistance of the condenser. This leakage current is usually quite noticeable in most types of electrolytic condensers.

When an alternating current is applied to a condenser it will charge and discharge a certain number of times per second in accordance with the frecuency of the alternating voltage. The electron flow in the charge and disclarge of a condenser when an a.c. potential is applied constitutes an alternating current, in effect. It is for this reason that a condenser will pass an alternating current, yet offer practically infinite opposition to a direct current. These two properties are repeatedly in evidence in a radio circuit.

- Capacitive Reactance

It has been explained that inductive reactance is the ability of an inductance to oppuse a change in an alternating current. Conrlensers have a similar property, although in this case the opposition is to the rollatio which acts to charge the condenser. This action is called capacitiae ratatane and is expressed as follows:

$$
X_{r}=\frac{1}{2 \pi \mathrm{fC}} .
$$

where $\mathrm{X}_{0}=$ capacitive reactance in olums. $\pi=3.1+16$,
$\mathrm{f}=$ irequency in cycles
$\mathrm{C}=$ capacity in farads.
Here again, as in the case of inductive reactance, the units of capacity and frequency can be comerted into smaller minits for practical problems encomented in radio work. The eouation may be written:

$$
X_{1}=\frac{1,000,000}{2 \pi \mathrm{fC}}
$$

where $i=$ freguency in megacycles.
$\mathrm{C}=$ capacity in micromierofarads.
In the design of filter circuits, it is often convenient to express frequency (f) in reles and capacity (C) in microfarads, in which event the same formula applies.

- Comparison of Inductive to Capacitive Reactance with Changing Frequency

From the equation for inductive reactance. it is seen that as the frequency becomes greater the reactance increases in a corresponding manner. The reactance is doubled when the frequency is doubled. If the reactance is to be very large when the frequency is low, the value of indactance must be very large.

The equation for capacitive reactance shows that the reactance varies inversely with frequency and capacity. With a fixed value of capacity, the reactance will becone less as the frequency increases. When the irequency is fixed, the reactance will be greater as the capacity is lowered. In order to have high reactance, it is necessary to have low capacitance, although in power filter circuits the reactance is always made low so that the alternating current component from the rectifier will be bypassed. The capacitance must be made large in this casc. because the frequency is quite low (00$1 \geq 0$ (y.cles).

I comparison of the two types of re-
attance, inductive and capacitive, shows that in one case (inductive) the reactance inircases with frequency, whereas in the other (capacitive) the reactance dicrosass with frequency.

- Reactance and Resistance in Combination

When a circuit includes a capacity or an inductance or both, in addition tis a resistance, the simple calculations of Ohm's law will not apply when the total a.c. resistance of the circuit is to be determined. Reference is here made to the passage of an alternating current through the circuit; the reactance must be considered in addition to the d.c. resistance, because reactance offers an opposition to the flow of alternating current.

When alternating current passes thongh a circuit which contains only a condenser, the voltage and current relations are as follows:

$$
\begin{aligned}
\mathrm{E} & =\mathrm{I} \mathrm{X}_{\mathrm{r} .} \text { and } \mathrm{I}=\frac{\mathrm{E}}{\mathrm{X}}, \\
\text { Where } \mathrm{F} & =\text { voltage. } \\
\mathrm{I} & =\text { curtent in amperes. } \\
\mathrm{X}_{\mathrm{c}} & =\text { apacitive reactance on } \frac{1}{2 \pi i \mathrm{C}}
\end{aligned}
$$

(expressed in olnns).

When the circuit contains inductance only, yet with the same conditions as above, the dommala is as follows:

$$
I:=I X_{1 . .} \text { and } I=\frac{E}{S_{1}}
$$

where $\mathrm{E}=$ voltage.
$\mathrm{I}=$ curtent in amperes.
$\mathrm{X}_{\mathrm{i}}=$ incluctive reactance or $2 . \operatorname{\pi } \mathrm{I} \mathrm{I}$. (expressed in ohms).
When a circuit has resistance, capacitive reactance and inductive reactance in serics. the effective total opposition to the alternating current flow is known as the impodance of the circuit. Stated in another manner. the impedance of a circuit is the vectom sum of the resistance and the difference between the two reactances. This in expresserl:

$$
\begin{aligned}
& \text { 7. } \quad=1 \overline{r^{2}+\left(X_{i}-S_{1}\right.} \text { ar } \\
& \text { 7. }=\mid r^{-2}+(2 \pi i l \ldots-\cdots)^{2} \\
& \text { where } 7=\text { impedance in ohms. } \\
& r=\text { resistance in ohms. } \\
& \mathrm{X}_{\mathrm{f}}=\text { inductive reatance (2, } \mathrm{iI} \text {) } \\
& \text { in ohms. }
\end{aligned}
$$

$$
\begin{gathered}
\mathrm{X}_{\mathrm{c}}=\text { capacitive reactance } \frac{1}{2 \pi \mathrm{fC}} \\
\text { in ohms. }
\end{gathered}
$$

An example will serve to clarify the relationship of resistance and reactance to the total impedance. If a 10 -henry clooke, a $2-\mu \mathrm{fd}$. condenser, and a resistance of 10 ohms (which is represented by the d.c. resistance of the choke) are all connected in serics across a 60 -cycle source of voltage:
for reactance $\mathrm{X}_{\mathrm{L}}=6.28 \times 60 \times 10=$ 3, זตั oluns (approx.).

$$
X_{\mathrm{e}}=\frac{1.000 .000}{6.28 \times 6.60 \times 2}=
$$

1,300 ohms (approx.)
$r=10$ ohms
Substituting these values in the inpedance equation:
$Z=\sqrt{10^{2}+(3750-1300)^{2}}=24,50$ ohmis. This is nearly 250 times the value of the d.c. resistance of 10 ohms. The subject of impedance is more fully covered under Resonant Circuits.

Again recalling previous text, an alternating current is one which rises to a maxinum, then decreases to zero from that point, and then goes through a negative-maximum-to-zero in the opposite direction. This continual change of amplitude and direction is maintained as long as the current continues to flow. The number of times that the current changes direction in a given length of time is called the frequency of change, or more generally, it is simply called the frequoncy. Alternating currents which range from nearly zero to many millions of cycles per second are commonplace in radio applications. Such a current is produced by the rotating machine which generates the common 60 -cycle house-lighting current: it is likewise produced by oscillatory circuits for the high radio frequencies. A machine that produces alternating current for houselighting, industrial and other purposes is called an alternator. It is also commonty referred to as an a.c. gencrator.

Figure it shows an alternator in its very basic form. It consists of two permanent magnets. M, the opposite poles of which face each other, and the poles being machined so that they have a common radius. Retween these two poles, north (N) and south (S). magnetic lines of force exist: these lines of force constitute a magnetic field. If a conductor in the form of C is so suspended that it can freelv rotate between the two poles,

Figure 14
and if the opposite ends oi conductor C° are brought to collector rings. R, which are contacted by brushes, there will be a flow of alternating current when conductor \mathcal{C} is rotated. This is the basic method of producing alternating current.

When the conductor loop is rotated so that it cuts or passes through the magnetic lines of force between the pole pieces (magnets), a current will be induced in the loop, and this current will flow out through the collector rings R and brushes B to the external circuit. X-Y. As the rotation continucs, the current becomes increasingly greater as the center of the pole pieces are approached by the loop. The field intensity of the magnets is greatest at the center, and gradually falls to a low value either side of center.

Figure 15
Figure 1.5 will serve to clarify the opleration of the alternator. The point P is taken as the revolving conductor, which is C in figure 14. As point P is revolved in a circular manner, the change in field intensity with consequent change in voltage can be visualized. It will be seen that as the conductor P begins its rotation, it starts through the lesser field intensity, gradually coming into the maximum field, then away again to another field of minimum intensity. The conductor then cuts the magnetic field in the opposite direction, going through the same varying intensity as previotsly relater, then
reaching a maximum, and then falling away to zero, from which point the current again increases in the original direction. When the conductor has completed its 360° rotation, two complete changes-or one cycle-will have been completed.
The voltage does not increase directly as the angle of rotation, but rather as the sine of the angle; hence, such a current has the mathematical form of a sine zvave. Although most electrical machinery does not produce a strictly pure sine curve, the departures are usually so slight that the assumption can be regarded as fact for all practical purposes.

Figure 16
Referring to figure 16 , it will be seen that if a curve is plotted for an alternating voltage, such a curve would assume the shape of a sine wave and by plotting amplitude against time, the voltage at any instant could be found. When dealing with alternating current of sine wave character, it becomes necessary to make constant use of terms which involve the number of changes in polarity or, more properly, the frequency of the current. The instantaneous value of voltage at any given instant can be calculated as follows:

$$
c=\mathrm{E}_{\text {max }} \sin 2 \pi \mathrm{ft},
$$

where $c=$ the instantaneous voltage.
sin $=$ the sine of the angle formed by the revolving point P at the instant of time, t.
$\mathrm{E}=$ maximum crest value of voltage (figure 16).

The term $2 x f$ should be thoroughly understood. because it is of basic importance.

Returning again to the rotating point P (figure 1.5), it can be seen that when this point leaves its horizontal position and
begins its rotation in a counter-clockwise direction, through a complete revolution back to its initial starting point, it will have traveled through 360 electrical degrees. Instead of referring to this movement in terms of degrees, nlathematical treatment dictates that the movement be expressed in radians. If radians must be considered in terms of

Figure 17
degrees, there are approximately 37.32 degrees to one radian. In simple language, the radian is nothing more than a unit for dividing a circle into many parts. In a complete circle (360 degrees) there are 2iradians. Figure 17 shows lesser divisions of a circle in radians.

When the expression exradians is used, it implies that the current or voltage has gone through a complete circle of 360 electrical degrees; this rotation represents two complete changes in direction during one cycle, as was previously shown. $2 \pi f$ then represents one cycle, multiplied by the number of such cycles per second or the frequency of the alternating voltage or current. The expression $2 \pi f t$ is a means of showing how far point P has traveled from its zero position toward a possible change of exradians or 360 electrical degrees. In the case of an alternating current with a frequency of 60 cycles per second, the current must pass throngh $I 20$ changes in polarity in the same length of tine. This "time" can be expressed as:

$$
\frac{1}{\cong \mathrm{f}}
$$

However. the only consileration at this moint is one-half of one alternation, and because the wave is symmetrical between 0 -and- 90 -degrees rising. and from 90 -degrees-to-zero when falling. the expression therefure beromes:

The actual time t in the formula is seen to be only a fractional portiun of a second: 1 a 60 -cycle frequency would make $\frac{1}{4 i}$ equal to - of a second at the maximum value. 240
and correspondingly less at lower amplitudes. $2 x \mathrm{ft}$ represents the angular velocity. and since the instantancous voltage or current is proportional to the sine of this angle. a definite means is secured for calculating the voltage at any instant of time. provided that the wave very closely approximates a sine curve.

Current and voltage are synomymous in the foregoing discussion, since they both follow the same laws. The instantaneous current can be found from the same formula. except that the maximum current would be used as the reference, viz.:

$$
\begin{aligned}
& i=\mathrm{I}_{\text {max }} \sin 2 \pi \mathrm{ft}, \\
& \text { where } \\
& i=\text { instantancous current, } \\
& \mathrm{I}=\text { maximum or peak current. }
\end{aligned}
$$

- Effective Value of Alternating Voltage or Current

The fact that an alternating voltage or current in an a.c. circuit is rapidly changing in direction and that since it requires a definite amount of time for the indicator needle on a d.c. measuring instrument to show a deflection, such instruments cannot be used to measure alternating current or voltage. Even if the needle had such negligible damping that it could be made to follow the a.c. changes, it would mercly vibrate back and forth near the zero point on the meter scale.

Alternating and direct current can be expressed in similar terms from the standpoint of heating effect. In other words, an alternating current will have the same value as a direct current in that it produces the same heating effect. Thus, an alternating current or voltage will have an equivalent value of one ampere when it produces the same heating effect in a resistance as does one ampere of direct current. This is known as the effective ralue; it is neither the maximum nor the instantaneous value, but an entirely different value.

This effective value is derived by taking the instantaneous values of current over a cycle of alternating current, then squaring these values, then taking an average of this value, and then taking the square-root of the average thus ohtained. By this pro-
cedure, the effective value becomes known as the root mean square or r.m.s. This is the value that is read on alternating current voltmeters and ammeters. The r.m.s. value is approximately 70 per cent of the peak or maximum instantaneous value and is expressed as follows:

$$
\begin{aligned}
& \mathrm{F}_{\text {Feft }}=0.007 \times \mathrm{E}_{\text {max }} \text {, or } \\
& \mathrm{I}_{\text {eff }}=0.007 \times \mathrm{I}_{\text {max },}
\end{aligned}
$$

Where $E_{\text {max }}$ and $I_{\text {max }}$ are peak values of voltage and current, respectively, and Eers and $I_{\text {ers }}$ are effective or r.m.s values.
The following relations are extremely useful in radio and power work:

$$
\begin{aligned}
& \mathrm{E}_{\mathrm{rms}}=0.707 \times \mathrm{E}_{\text {max }}, \\
& \mathrm{E}_{\text {max }}=1.414 \times \mathrm{E}_{\mathrm{rns}} .
\end{aligned}
$$

In order to find the peak value when the effective or r.m.s, value is known, simply multiply the r.m.s. value by 1.414 , When the peak value is known, multiply it by 0,07 to find the r.m.s. value.

- Rectified Alternating Current or Pulsating Direct Current

When an a.c. current is passed through a full-wave rectifier, it emerges in the form of a current of zarying amplitude which flows in one direction only. Such a current is known as rectificd a.c. or pulsating d.c. I typical wave form of a current of this nature is shown in figure 18.

Figure 18
A d.c. measuring instrument will not read the peak or instantaneous maximum value of the pulsating d.c. output from the rectifier; it will read only the average value. This can be explained by assuming that it could be possible to cut of some of the peaks of the waves, using the cut-off portions to fill in the spaces that are open, thereby obtaining an average d.c. value. A milliammeter and voltmeter connected to the adjoining circuit, or across the output of the rectifier. will read this arprage value.

It is related to piak value by the following expression:

$$
\mathrm{E}_{\mathrm{avg}}=0.636 \times \mathrm{E}_{\text {max }} .
$$

It is thus seen that the average value is approximately 63 per cent of the peak value.

- Phase

When an alternating current flows through a purely resistive circuit, it will be found that the current will go through maximum and mininum in perfect step with the voltage. In this case the current is said to be in step or in phase with the voltage. For this reason, Ohm's law will apply equally well for a.c. or for d.c. where pure resistances are concerned. provided that the offoctioc values of a.c. are used in the calculations.
When a circuit has capacity or inductance. or both, in addition to resistance, the current does not reach a maximum at the same instant as the voltage: Ohm's law will, therefore, not apply. It has been stated that inductance tends to resist any change in current: when an inductance is present in a circuit through which an alternating current is flowing, it will be found that the current will reach its maximum behind the voltage. In electrical terms, the current will lag the voltage or. conversely, the voltage will lad the current. If the circuit is purdy inductive, i.e.. if it contains neither resistance nor capacitance. the current does not start until the voltage has first reached a maximum; the current therefore lags the voltage by 90 degrees as in figure 19. The angle will be less than 90 degrecs if resistance is present in the circuit.
When pure capacity alone is present in an a.c. circuit (no inductance or resistance of any kind), the opposite effect to inductance will be encountered; the current will reach a maximum at the instant the voltage is starting and, hence, will lead the voltage ly 40 degrees. The presence of resistance in the circuit will tend to decrease this angle.

- Power Factor

It should now be apparent to the reader that in such circuits that have reactance as well as resistance. it will not be possible to calculate the power as in a d.c. circuit. (I) as in an ace. circuit in which current and voltage are in phase. The reactive components cause the voltage and current to reach their maximum at different times, as was explained under "phase."

The procer forfor in a resistive-reactive

Figure 19
a.c. circuit may be expressed as the actual watts (as measured by a wattmeter), divilted by the product of voltage and current m:

$$
\frac{11}{E \times 1}
$$

where $\mathrm{W}=$ watts as measured.
$\mathrm{E}=$ voltage (r.m.s.).
$I=$ current in amperes (r.m.s.).
Stated in another manner:

$$
\frac{W}{E \times I}=\cos \theta
$$

The character θ is the angle of phase difference between current and voltage. The product of volts times amperes gives the apparent power of the circuit, and this must be multiplied by $\cos \theta$ to give the actual power. This factor $\cos \theta$ is called the pover factor of the circuit.

When the current and voltage are in phase, this factor is equal to 1 . Resonant or purely resistive circuits are then said to have unity power factor, in which case

$$
\mathrm{W}^{\circ}=\mathrm{E} \times \mathrm{I} . \quad \mathrm{W}=\mathrm{IR} . \quad \mathrm{W}=\frac{\mathrm{E}}{\mathrm{R}}
$$

- Resonant Circuits

Before proceeding with this text. the reader is advised to review the subject matter on inductance. capacity. and alternating current in order that he may gain a complete understanding of the action of resomant
circuits. Once the basic conception of the foregoing has been mastered, the more complex circuits in which they appear in combination will present no great problem.

The accompanying diagram shows an inductance, a capacitance, and a resistance arranged in scries, with a variable frequency source I : of a.c. applied across the comhination.

Figure 20
Resistance is always present in a circuit. because it is possessed in some degree by both the inductance and capacitance. If the frequency of the alternator E in figure 20 is varied from nearly zero to some high frequency, there will be one particular frequency at which the inductive reactance and capacitive reactance will be equal, This is known as the resonant frequency and in a series circuit it is the frequency at which the circuit current will be a maximum. Such series resonant circults are chiefly used when it is desirable to allow a certain frequency to pass through the circuit (low impedance to this frequency), while at the same time the circuit is made to offer considerable opposition to currents ui other frequencies.
If the values of inductance and capacity both are fixed, there will be only one resonant frequency. If, however, both the inductance and capacitance are made variable. the circuit may then be changed or "tumed." so that an unlimited number of combinations of inductance and capacitance can resonate at the same frequency. This can he more casily understood when one considers that indluctive reactance and capacitive reactance travel in opposite directions as the frequency is changed. For example. if the frequency were to remain constant, and the values of inductance and capacitance are then changed. the following combinations would have the same reactance:

Frequency is somstant at 60 cycles.

1. is cxperssed in henrys
C is expresserl in microfarads (.000001 farad).

1.	λ_{1}.	C	$\chi_{\text {c }}$
.265	100	26.5	100
2.65	1,000	2.65	1,000
29.5	10,000	.26.5	10,000
26,3.00	100,000	. 0265	100,000
2.16 .00 .00	1,000,000	. 0026	1,000,000

In the above table there are five radically different ratios of L to C (inductance to capacitance) each of which satisfies the resonant condition, $\mathrm{X}_{\mathrm{L}}=\mathrm{X}_{\mathrm{c}}$. When the frequency is constant, L must increase and C must decrease in order to give equal reactance. Figure 21 shows how the two reactances change with frequency: this illnstration will greatly aid in clarifying this discussion.

Figure 21
For mechanical reasons it is advisable to change the capacitance rather than the inductance when a circuit is "tunced." yet the inductance can be made variable. if desired.

- Formula for Frequency

From the formula for frequency, where $2 \pi \mathrm{il}=\frac{1}{2 \pi f \mathrm{C}}$, the resonant frequency can rearlity be solved. In order to isolate f on one side of the equation, merely multiply both sides bv $2 x f$, thus giving:
$+x^{2} f^{2} \mathrm{~L}=\frac{1}{\mathrm{C}}$.
Dividing by the quantity tall. the result is: $f=\frac{1}{4 \pi^{2} I C \cdot}$.

Then by taking the square-root of both
sides: $\mathrm{f}=\frac{1}{2 \pi \sqrt{\mathrm{LC}}}$,
where $\mathrm{f}=$ frequency in cycles,
$\mathrm{L}=$ inductance in henrys,
$C=$ capacity in farads.
It is more convenient to express L and C in smaller units, especially in making radiofrequency calculations; f can also be expressed in megacycles or kilocycles. A very useful group of such formulas is:

$$
\mathrm{i}^{2}=\frac{25,330}{\mathrm{LC}} \text { or } \mathrm{L}=\frac{25,330}{\mathrm{f}^{2} \mathrm{C}} \text { or } \mathrm{C}=\frac{25,330}{\mathrm{f}^{2} \mathrm{~L}},
$$

where $\mathrm{f}=$ frequency in megacycles,
$\mathrm{L}=$ inductance in microhenries,
$\mathrm{C}=$ capacity in micro-microfarads.
In order to clarify the original formula, $\mathrm{f}=\frac{1}{2 \pi \sqrt{\mathrm{LC}}}$, take two values of inductance and capacitance from the previously given chart and substitute these in the formula. It was stated that the frequency is 60 cycles; therefore, $f=60$. Substituting these values to check this frequency:

$$
\begin{aligned}
60 & =\frac{1}{2 \pi \sqrt{\mathrm{IC}}} ; 3,600=\frac{1}{4 \pi^{2} \mathrm{I} \mathrm{C}}: \\
\mathrm{L} & =\frac{1}{3660 \times 4 \pi^{2} \times .000026} . \\
\mathrm{L} & =0.265
\end{aligned}
$$

The significant point here is that the formula calls for C in farads, whereas the capacity was actually in microfarads. Recalling that one microfarad equals .000001 farad, it is, therefore, possible to express 26 microfarads as .000026 farads. This consideration is often overlooked when computing for frequency and capacitive reactance, because capacitance is expressed in a totally-impractical unit, viz.: the farad.

- Impedance of Series Resonant Circuits

The impedance across the terminals of a series resonant circuit is

$$
Z=\sqrt{r^{2}+\left(X_{L}-X_{C}\right)^{2}}
$$

where $Z=$ impedance in ohms,
$\mathrm{r}=$ resistance in ohms,
$\mathrm{X}_{\mathrm{c}}=$ capacitive reactance in ohms,
$\mathrm{X}_{\mathrm{L}}=$ inductive reactance in ohms.
From this equation it can be scen that the impedance is equal to the vector sum of the circuit resistance and the difference between the two reactances. Since at the resonant frequency X_{1} equals X_{c}, the difference
between them is obviously zero, so that at resonance the impedance is simply equal to the resistance of the circuit . . . and, because the resistance of most normal radiofrequency circuits is of a very low order, the impedance is also low.

At frequencies higher and lower than the resonant frequency, the difference between the reactances will be a definite quantity and will add with the resistance to make the impedance higher and higher as the circuit is tuned off the resonant frequency.

- Current and Voltage in a Series Resonant Circuit

Formulas for calculating series resonance are similar to those of Ohm's law.

$$
\mathrm{I}=\frac{\mathrm{E}}{\mathrm{Z}} . \quad \mathrm{F}=\mathrm{I} Z .
$$

The complete equations:

$$
\begin{aligned}
& I=\frac{E}{\sqrt{r^{2}+\left(X_{L}-X_{c}\right)^{2}}} \\
& E=I \sqrt{r^{2}+\left(X_{L}-X_{c}\right)^{2}}
\end{aligned}
$$

A careful consideration of the above formulas will show the following to apply to series resonant circuits: When the impedance is low, the current will be high ; conversely, when the impedance is high, the current will be low.

Since it is known that the impedance will be very low at the resonant frequency, it follows that the current will be a maximum at this point. If a graph is plotted of the current against the frequency either side of resonance, the resultant curve becomes what is known as a resonance curze. Such a curve is shown in figure 22.

Several factors will have an effect on the shape of this resonance curve, of which resistance and L-to-C ratio are the important considerations. The curves B and C in figure 22 show the effect of adding increasing values of resistance to the circuit. It will be seen that the peaks become less and less prominent as the resistance is increased: thus, it can be said that the selectivity of the circuit is thereby decreased. Selectivity in this case can be defined as the ability of a circuit to discriminate against frequencies adjacent to the resonant frequency.

Again referring to figure 22 , it can be seen from curve A that a signal, for instance, will drop from 19 to 5 , or more than 10 decibels, at 50 kc . off resonance. Curve B. which represents considerable resistance

in the circuit, shows a signal drop of from 4 to 3, or approximately 2.5 decibels, when the signal is also 50 kilocycles removed from the resonant point. From this it becomes evident that the steeper the resonant curve, the greater will be the change in current for a signal removed from resonance by a given amount. The effect of adding more resistance to the circuit is to flatten-off the peaks, without materially affecting the sides of the curve. Thus, signals far removed from the resonance frequency give almost the same value of current, regardless of the amount of resistance present.

- Voltage Across Coll and Condenser in Series Circuit

For the reason that the a.c. or r.f. voltage across a coil and condenser is proportional to the reactance (for a given current), the actual voltages across the coil and across the condenser may be many times greater than the terminal voltage of the circuit. Furthermore, since the individual reactances can be very high, the voltage across the condenser, for example, may be high enough to cause flash-over, even though the applied voltage is of a value considerably below that at which the condenser is rated.

- Circuit "Q"

An extremely important property of an inductance is its factor-of-merit, more gen-
crally called its Q. This factor can be expressed as the ratio of the reactance to the resistance, as follows:

$$
Q=\frac{2 f \mathrm{~L}}{R}
$$

where $R=$ total d.c. and r.f. resistances.
The actual resistance in a wire or inductance can be far greater than the d.c. value when the coil is used in a radio-frequency circuit; this is because the current does not travel through the entire crosssection of the conductor, but has a tendency to travel closer and closer to the surface of the wire as the frequency is increased. This is known as the skin effect. The actual current-carrying portion of the wire is decreased, therefore, and the resistance is increased. This effect becomes even more pronouncd in square or rectangular conductors, because the principal path of current flow tends to work outwardly toward the four edges of the wire.
An examination of the equation for Q may give rise to the thought that even though the resistance becomes greater with frequency, the inductive reactance does likewise, and that the Q might be a constant. In actual practice, however, the resistance usually increases more rapidly with frequency than does the reactance, with the result that Q normally decreases with irequency.

- Parallel Resonance

Parallel resonance is more frequently encountered than series resonance, in radio circuits: in fact, it is the basic foundation of receiver and transmitter circuit operation. A circuit is shown in figure 23 .

In this circuit, as contrasted with a circuit for series resonance, L. (inductance) and C (capacitance) are connected in parallcl, yet the combination can be considered to be in series with the remainder of the circuit. This combination of L and C, in
conjunction with k, the resistance which is principally included in L , is sometimes called a "tank circuit," because it effectively functions as a storage "tank" when incorporated in vacuum tube circuits.

Contrasted with series resonance, there are two kinds of current which must be considered in a parallel resonant circuit: (1) the line current, as read on the indicating meters M, and, (2) the circulating current which flows within the parallel L-C-R portion of the circuit. See figure 23.
At the resonant frequency, the line current (as read on the meters M) will drop to a very low value. although the circulating current in the L-C circuit may be quite large. It is this line current that is read by the milliammeter in the plate circuit of an amplifier or oscillator stage of a radio transmitter, and it is because of this that the meter shows a sudden "dip" as the circuit is tuned through its resonant frequency. The current is, therefore, a mininum when a parallel resonant circuit is tumed to resonance. although the impedance is a marimum at this same point. Therefore it is interesting to note that the parallel resonant circuit. in this respect. acts in a distinctly opposite manner to that of a series resonant circuit, in which the current is at a maximun when the impedance is minimum. It is for this reason that in a parallel resonant circuit the principal consideration is one of impedance, rather than current. It is also siguificant that the impedance curve for parallel circuits is very nearly identical to that of the current curve for series resoonance. The impedance at resonance is expressed as:

$$
\%=\frac{(2 \pi \mathrm{fL})^{2}}{\mathrm{R}} .
$$

where 7. = impedance in ohms.
$\mathrm{I} .=$ inductance in henrys.
$\mathrm{f}=\mathrm{frequency}$ in cycles.
$\mathrm{R}=$ resistance in ohms.
The curves illustrated in figure 2 : can be applied to parallel resonance. in addition to the purpose for which they are illustrated.

Reference to the impedance curve will show that the effect of adding resistance to the circuit will result in both a broadeningout and a lowering of the peak of the curve. Since the voltage of the circuit is directly proportional to the impedance, and since it is this voltage that is applied to the grid of the vacuum tube in a detector or amplifier circuit. the impectance curve must have a sharp peak in order for the circuit to lie
sclectiate. If the curve is broad-topped in shape, both the desired sigual and the interfering signals at close proximity to resonance will give nearly equal voltages on the grid of the tube, and the circuit will then be non-selection, i.e. it will tune broadly:

- Effect of L/C Ratio In Parallel Circuits

In order that the highest possible voltage can he developed across a parallel resonant circuit. the impedance of this circuit must he very high. The impedance will be greater when the ratio of inductance-to-capacitance is great. i.e., when I is large as compared with (:. When the resistance of the circuit is very low, X_{l}. will equal X_{c} at resonance and, of course, there are imumerable ratios of I. and C that will have cqual reactance at a given resonant frequenc: exactly as is the case in a series resonant circuit. Contrasted with the necessity for a high L / C ratio for high impedance, the capacity for maximum sclectivity must he high, and the inductonce lore. While such a ratio will restlt in lower gain, it will offer greater rejectiatity to signals adjacent to the resonant signal.
In practice, where a certain value of inductance is tuned by a variable capacitance wer a fairly wide range in frequency, the L / C ratio will be small at the lowest freguence and large at the high frequency end. The circuit. therefore, will have unequal selectivity at the two ends of the band of frequencies which is being tuned. At the low frequency end of the tuning band. where the capacitance predominates, the selectivity will be greater and the gain less than at the high frequency end, where the opposite condition holds true. Increasing the Q of the circuit (lowering the series resistance) will obviously increase both the selectivity and gain.

- Circulating Tank Current at Resonance

The Q of a circuit has a definte bearing on the circulating tank current at resonance. This tank current is very nearly the value of the line current multiplied by the circuit Q. For example: an r.f. line current of 0.050 amperes, with a circuit Q of 100 , will give a circulating tank current of approximately is amperes. From this it can be seen that the inductance and comecting wires in a circuit with a high ? must he of ample
proportions, particularly in the case of high power transmitters, if heat losses are to be held to a minimum.

- Effect of Coupling on Impedance

When a parallel remmant circuit is coupled to another circuit, such as an antenna output circuit, the impedance of the parallel circuit is decreased as the coupling becomes closer. The effect of closer (tighter) coupling is the same as though an actual resistance were added to the parallel circuit. The resistance thus coupled into the tank circuit can be considered as heing reffected from the output or load circuit to the driver circuit. If the load across the parallel resonant tank circuit is purely resistive, just as it might be if a resistor were shunted across part of the tank inductance, the !oad will not disturb the resnnant setting. If, on the other hand, the load is reactive, as it could be with a ton-long or too-short antema for the resonant fre(fuency: the setting of the tank tuming condenser would have to be changed in order
to restore resonance.

- Tank Circuit Fiywheel Effect

When the plate circuit of a class-ls or class-C operated tube is connected to a parallel resonant circuit, the plate current serves to maintain this $/ / C$ circuit in a state of oscillation, If an initial impulse is applied across the terminals of a parallel resonant circuit, the condenser will become charged when one set of plates assumes a positive polarity, the other set a negative polarity. The condenser will then discharge through the inductance: the current thus flowing will cut across the turns of the inductance and cause a counter-e.m.f. to be set up. charging the condenser in the opposite direction.

In this manner an alternating current is set up within the I / C circuit and the oscillation would contimue indefinitely with the condenser charging. discharging, and charging again if it were not for the fact that the circuit possesses some resistance. The effect of this resistance is to dissipate some energy each time the current flows from inductance to condenser and back, so that the amplitude of the ascillation grows weaker and weaker, eventually dying out completely.
The fretueney of the initial oscillation
is dependent upon the L/C constants of the circuit. If energy is applied in short spurts or pushes at just the right moments, the 1./C circuit can be maintained in a constant oscillatory state. The plate current pulses from class-B and class-C amplifiers supply just the desired kind of "kicks."

Whereas the class-B plate current pulses atpply a kick for a longer period, the short pulses from the class-C amplifier give a pulse oi very high amplitude, thus being even more effective in maintaining oscillation. So it is that the positive half cycle in the tank circuit will be reinforced by a plate current kick, but since the plate current of the tube only flows during a half cycle or less, the missing half cycle in the tank circuit must be supplied by the discharge of the condenser. Since the amplitude of this half cycle will depend upon the charge the the plates of the condenser, and since this in turn will depend upon the capacitance. the value of capacitance in use is very important. Particularly is this true if a distorted wave slape is to be avoided, as would be the case when a transmitter is heing modulated. The foregoing applies particularly to single-ended amplifiers. If push-pull were employed, the negative hali cycle would secure an additional "kick." thereby greatly lesseming the necessity for the use of higher C in the I / C circuit.

- Impedance Matching: Impedance, Voltage, and Turns-Ratio

It is a fundamental law of electricity that the maximum transfer of energy results when the impedance of the load is equal to the impedance of the driver. Although this law holds true, it is not necessarily a desirable one for every condition or purpose. In many cases where a vacuum tube works into a parallel resonant circuit load, it is desirable to have the load impedance considerably higher tlan the tube-plate impedance, so that maximum power will be dissipated by the load, rather than in the tube. On the wher hand, one of the notable conditions for which the law holds true is in the matching of transmission lines to an anttema impedance.

A vacuum tube circuit often requires that the plate impedance of a driver circuit be "matched" to the grid impedance of the tube being driven. When the driven tube operates in such a condition that it draws grid current, such as in all transmitter r.f.
amplifier circuits, the grid impedance may well be lower than the plate tank impedance of the driver stage. In this case it becomes necessary to tap down on the driver tank coil in order to select the proper number of turns that will give the desired impedance. If the desired working load impedance of the driver stage is 10,000 ohms, for example, and if the tank coil has 20 turns, the grid impedance of the driven stage being 5,000 ohms, it is evident that there will be required a step-down impedance ratio of 10,000
5,000 , or 2 -to-1. This impedance value is not secured when the driver inductance is tapped at the center. It is of importance to stress the fact that the impedance is decreased four times when the number of turns on the tank coil is hale'ed. The following equations will prove this fact:

$$
\frac{N_{1}}{N_{2}}=\sqrt{\frac{Z_{1}}{Z_{2}}} \text { or } \frac{N_{1}^{2}}{N_{2}^{2}}=\frac{Z_{1}}{Z_{2}^{2}} \text {. }
$$

where $\frac{\mathrm{N}_{1}}{\mathrm{~N}_{2}}=$ turns ratio,

$$
\frac{Z_{1}}{Z_{2}}=\text { impedance ratio }
$$

In the foregoing example, a step-down impedance ratio of 2 -to-1 would require a turns step-down ratio of the square-root of the impedance or 1.41. Therefore, if the inductance has 20 turns, a tap would be taken on the 6th turn down from the "hot" end or 14 turns up from the "cold" end. This is arrived at by taking the resultant for the turns-ratio, i.c., 1.41, and then dividing it into the total number of turns, as follows:

$$
\frac{20}{1.41}=14(\text { approx. })
$$

Either an impedance step-up or step-down ratio can be secured from a parallel resonant circuit. One popular type of antenna impedance matching device utilizes this principle. Here, however, two condensers are effectively in series across the indluctance; one has a quite-high capacitance (500 $\mu \mu \mathrm{fd}$., the other is a conventional-size condenser, used principally to restore resonance. The theory of the device is simply that the impeclance is proportional to the reactances of the condensers, and, by changing the ratio of the two, the antenna is effectively comected into the tank circuit at impedance points which reach higher or lower values as the ratio of the condensers is changed.

In practice, however, it is usually necessary to change the value of inductance in order to maintain resonance while still correctly matching it to the antenna or feeder. This method is discussed at greater length elsewhere in these pages.

As the impedance step-down ratio becomes larger, the voltage step-down becomes correspondingly great. Such a condition takes place when a resonant circuit is tapped down for reasons of impedance matching; the voltage will be stepped-down in direct proportion to the turn step-down ratio. The reverse holds true for step-up ratios. As the step-up ratio is increased, the voltage is increased. This principle applies in the case of an auto transformer illustrated in Figure 24.

Figure 24
The type of transformer in figure 24 when wound with heavy wire and over an iron core is a common device in primary power circuits for the purpose of increasing or decreasing the line voltage. In effect, it is merely a continuous winding with taps taken at various points along the winding, the

Figure 25
input voltage being applied to the bottom and also to one tap on the winding. If the output is taken from this same tap, the voltage ratio will be 1 -to-1, i.e., the input voltage will be the same as the output voltage. On the other hand, if the output tap is moved down toward the common terminal, there will be a step-down in the turns-ratio with a consequent step-down in voltage. The opposite holds true if the output terminal is moved upward from the middle input terminal ; there will be a voltage step-up in this case. The initial setting of the middle input tap is chosen so that the number of turns will have sufficient reactance to keep the no-load primary current at a reasonably low value.
In the same manner as voltage is steppedup and down by changing the number of turns in a winding, so can impedance be stepped up or down. Figure 25(A) shows an application of this principle as applied to a vacuum tube circuit which couples one circuit to another.

Assuming that the grid impedance may be of a lower value than the plate tank impedance of the preceding stage, a stepdown ratio will be necessary in order to give maximum transfer of energy. In (B) of figure 25 , the grid impedance is very high as compared with the tank impedance of the driver stage, and thus there is required a step-up ratio to the grid. The driver plate is tapped-down on its plate tank coil in order to make this impelance step-up possible. A driver tube with very low plate impedance must be used if a good order of plate efficiency is to be realized.

In (C) of figure 25, the grid impedance very closely approximates the plate impedance and no transformation is required, therefore. The gricl and plate impedances are not generally known in many practical cases and the adjustments, hence, are made on the basis of maximum grid drive consistent with maximum safe input to the driver stage.

- Inductive Coupling

Inductive coupling is often used when two circuits are to be coupled. This method of coupling is shown in figures 26A and 26B.

The two inductances are placed in such inductive relation to each other that the lines of force from the primary coil cut across the turns of the secondary coil, thereby inducing a voltage in the secondary. As in the case of capacitive coupling, impedance
transformation here again becomes of importance. If two parallel tuned circuits are coupled very closely together, the circuits

can in reality be "over-coupled." This is illustrated by the curve in figure 27.
The dotted-line curve A is the original curve or that of the primary coil alone. Curve B shows what takes place when two circuits are over-coupled; the resonance curve will have a definite "dip" on the peak, or a "double hump." This principle of overcoupling is advantagcously utilized in bandpass circuits where, as shown in C, the

Figure $\mathbf{2 7}$
coupling is adjusted to such a value as to reduce the peak of the curve to a virtual flat-top, with no dip in the center as in B.

Some undesirable capacitive coupling will result when circuits are closely or tightly coupled; if this capacitive coupling becomes a factor, the tuning of the circuits will be affected. The amount of capacitive coupling can be reduced by so arranging the physical shape of the inductances as to enable only a minimum surface of one to be presented to the other. Another method of accomplishing the same purpose is by electrical
means. A "curtain" of clusely-spaced parallel wires or bars, comected together only at one end, and with this end connected to ground, will allow electromagnetic coupling. but not electrostatic coupling. Such a device is called a Faraday screen or shiteld.
Still another method of decreasing capacitive coupling is by means of a coupling link circuit between two parallel resomant circuits. The capacity of the coupling link. with its one or two turns, is so small as to be negligible.

- Link Coupling

Link coupling is widely used in transmitter circuits becanse it adapts itself so universally and eliminates the need of a radiofrequency choke, thereby reducing a source of loss. I-ink coupling is very simple: it is diagrammed in figure 28.

In A of figure 28, there is an impedance step-down from the primary coil to the link circuit. This means that the line which connects the two links or lomps will have a low impedance and can, therefore be carried over a comsiderable distance without introduction of appreciable loss. A similar link or loop is at the output end of
the linte: this foop, is coupled to the grich tank of the driven stage.
Still another link coupling method is shown in B of figure 28. It is similar to that of A, with the exception that the primary line is tapped on the coil, rather than being terminated in a link, or lonp.

- Unity Coupling

Another type of commonly-used coupling is that known as unity coupling, by reason of the fact that the turns-ratio between primary and secondary is one-to-one. This method of coupling is illustrated in C of figure 28. Only one of the windings is tuned. although the interwinding of the two coils gives an effect in the untuned winding as though it were actually tuned with a condenser. Linity coupling is used in some types of ultra-high frequency circuits, although the mechanical considerations are somewhat difficult. The secondary, when it serves as the grid cribl, is placed inside of a copper tubing coil: the latter serves as the primary or plate coil.

- Transformer Action: Reflected Impedance

When two inductances are coupled to each other, the result is a transformer in basic form. The two inductances can be wound on separate air-core forms, or, as in an audio of power transformer, on iron or magnetic cores. Power transformers are treated in a separate chapter of this Mandbook: radio-frequency transformers have already been treated, and thus this treatise will be comfmed to audio frequency transformers:
For all audio frequency circuit applications, it is muly necessary to refer to the tube tables in this book in order to find the recommended load impedance for a given tube and a given set of operating conditions. For example. the table shows that a type 42 pentode tube requires a load impedance of $\mathbf{i}, 000$ ohms. Audio transformers are always rated for both their primary and secmelary impedance, which means that the primary impedance will be of the rated value only when the secondary is teminated in its rated impedance.

If a r.000-ohm plate load is to work into a \bar{i}-olm loudspeaker voice coil, the impedance ratio of the transformer would be r.000
$-=1,000-\mathrm{to-1}$. Hence, the turns-ratio
the primary, if the correct primary impedance is to be maintained.

The foregoing can be summarized by stating that a certain transformer will have a certain impedance-ratio (determined by the square of the turns ratio) which will remain constant. If the transformer is terminated with an impedance or resistance lozer than the original rated value, the reflected impedance on the primary will also be lower than the rated value. If the transformer is terminated in an impedance highor than rated, the reflected primary impedance will be higher.

For push-pull amplifiers the recommended primary impedance is stated as some certain value, plate-to-plate; this refers to the impedance of the total winding without consideration of the center-tap. The reflected impedance across the total primary will follow the same rules as previously given for single-ended stages. The voltage relationship in primary and secondary is the same as the turns-ratio. For a step-down turnsratio of 10 -to-1, the corresponding inltage step-down would be $10-\mathrm{to}-1$, though the im pedance ratio would be 100-to-1.

Bibliograpliy. Forminlas, and Notes

Chapter ㄹ

Vaceum Tebe Tineory and Practice

VY ACL'LM TLBES are widely used for the generation, detection and amplification of audio and radio-frequency currents; ulectron tubes also serve as power rectifiers to convert alternating current into direct current, and in special cases for controlling and inverting electric power.

The performance of a thermionic tube depends upon the emission of electrons from a metallic surface and the flow of these electrons to other surfaces; the transition constitutes an clectric current.

An electron tube consists essentially of an evacuated glass or metal envelope in which is enclosed an electron emitting surface, called a cathode, and one or more additimal electrodes. The connections for the various elements are carried through the tube envelope to special connectors.

- Electron Emission; Cathodes

The rate of electronic motion in every atom increases if the molecular constituents of any material are subjected to thermal agitation. Hence, be heating certain metallic conductors the motion of electrons becomes so rapid that some of them break away from their parent atoms and are set free in space. In the absence of any external attraction, the electrons escaping from the enissive surface rejel each other becanse they are all negatively charged. Therefore, the number of clectrons leaving the emitter is limited becanse the "frec" negatively clarged electrons comberact the escape function of new electrons.

The point of electronic saturation is called the "space charge effect." When this condition is reached no further electrons will leave the emitter regardless of how much higher the temperature of the emitting surface is increased.

In all moxlern vacum tubes the surface of the cathorde material is chemically treated in order to increase electronic emission. The
two principal types oi surface treatment include "thoriated tungsten" filaments, as used in medium and high-powered transmitter tubes, and "oxide coated" filaments or cathode sleeves, such as used in most receiver tubes. Pure tungsten filaments are practically obsolete, and are only being manufactured for some types of high-power transmitter tubes in which sufficient vacuum cannot be maintained for operating properly a thoriated tungsten type of filament.

- Cathode Current

When a heated cathode and a separate metallic plate are placed in an evacuated enrelope, it is found that a few of the electrons thrown off by the cathode will leave with sufficient velocity to reach the plate. If the plate is electrically comected back to the cathode, the electrons will flow from cathode to plate, and throught the external circuit back to cathode, due to the potential difference between plate and cathode. This surall current flow is called plate current.

If a battery or other source of d.c. voltage is placed in the external circuit between the plate and cathode, so that the battery voltage places a positive potential on the plate, the How of current from the cathode to plate will be increased. This is due to the strong attraction offered by the positively charged plate for any negatively charged electrons. If the positive potential on the mate is increased, the flow of electrons between the

Figure 1 Curve showing emission from a cathode
cathode and plate will also increase, up to the point of saturation. Saturation current flows when all of the electrons leaving the cathode are attracted to the plate, and no increase in plate voltage can increase the mumber of electrons being attracted to the plate.

Operating a cathode at a temperature materially above its normal rating will shorten the life of the emitting surface. In the case of thoriated tungsten emitters, which are rather sensitive to changes in flament temperature, it is advisable to have a close control over the filament voltage. If there is doubt about the filament voltage, it is better to operate the filament slightly higher than normal, rather than below normal, especially if the tube is operating with high plate current.

- Rectification

It has been stated that when the potential of the plate is different from that of the cathode, electrons will be attracted to the plate and a current will therefore flow in the external circuit. If, on the other hand, the plate is made negative, the electron flow in the external circuit will cease, due to the repulsion of the electron stream within the tube back to its cathode. From this is derived a valuable property, namely the ability to pass current in one direction only, as in a rectifier. Figure 2 -A shows a half-wave rectifier circuit. For convenience of explanation a conventional power rectifier is chosen, although the same diagram and ex-

(A)

(B)

Figure 2
planation will apply to diode rectification in a radio receiver.

When a sine wave voltage is incluced in the secondary of the transformer, the rectifier is made alternately positive and negative as the polarity of the alternating-current changes. Electrons are attracted to the plate from the cathode when the plate is positive, and current then flows in the external circuit. On the succeeding half cycle the plate becomes negative with respect to the cathode, and no current flows. Thus there will be an interval beiore the succeeding half cycle occurs when the plate again becomes positive. Linder these conditions. plate current once more begins to fow and there is another pulsation in the output circuit. For the reason that one-half of the complete wave is absent in the output, the result is what is known as half-ava'e refification. The output power is the average value of these pulsations: it will therefore be of a low value because uf the interval between pulsations.

In a full arave circuit (figure 2B) the plate of one tube is positive when the other plate is negative: although the current changes its polarity, one of the plates is always positive. One tube therefore operates effectively on each half cycle, but the output current is in the same direction. In this type of circuit the rectification is complete and there is no "gap" between plate current pulsations. This output is known as rectified a.c.. or pulsafing d.c.

- Gaseous Conduction: Mercury Vapor Rectifiers

If a two-element electron tube is evacuated and then filled with a gas. such as mercury vapor. its characteristics and performance will differ radically from that of an ordinary high-vacuum dinde tuhe.

The principle upon which the operation of a gas-filled rectifier depend: in known as the phemomenon of ionization. Investigation has shown that the electrons emitted by a hot cathode in a mercury vapor tube are accelerated toward the anode (plate) with great velocity. These electrons move in the electrical force-free space between the hot cathode and the anode. in which space they collide with mercury vapor molecules.

If the moving electrons attain a velocity so great as to enable them to break through a potential difference of more than 10.4 volts (for mercury). they will literally "knock
the electrons out of the atoms" with which they collide. When an electron is separated from its normal orbit it does not leave in the form of an electron, but rather as a positive ion. The positive ion thus freed will thercfore be neutralized by the acquisition of a free electron. Finally, the free electron will be attracted to the anode, or plate, as will the positive ions which have been separated from the mercury atoms; collectively, this constitutes the flow of current in the tube.

As more and more atoms are broken up by collision with electrons, the mercury vapor within the tube becomes ionized and transmits a considerable amount of current. The ions are repelled from the anode when it is positive; they are then attracted to the cathode, thus tending to neutralize the negative space charge as long as saturation current is not drawn. This effect neutralizes the negative space charge to such a degree that the voltage drop across the tube is reduced to a very low value; furthermore, the reduction in heating of the diode plate as well as an improvement in the voltage regulation of the load current is achieved. The efficiency of rectification is thereby increased because the voltage drop across any rectifier tube represents a waste of power.

- The Vacuum Tube As An Amplifer

The rectifice tube is essentially a twoelement device. Λ third element can be added to the tube as a means of controlling the plate current. A third element of this type is called a grid. It is a mesh-like structure which surrounds the cathode, interposed between cathode and plate in such a manner that the passage of electrons to the plate must travel through the grid on the way.

If this grid is made negative with respect to the cathode, the negatively-charged electrons will be repelled back to the cathode. Plate current can be entirely stopped when the grid is made sufficiently negative, even though there is a positive voltage on the plate, that would ordinarily attract electrons. Thus it can be seen that the grid acts as a "valve" in its control of the plate current: it is for this reason that vacuum tubes are termed "valves" in Britain, Australia and Canada. When there is less negative voltage on the grid than that necessary to cutoff the plate current, a stearly value of plate
clurrent will flow. The value of fixed negative voltage on the grid of a vacuum tube is referred to as bias.

A graph of values of plate current for various values of grid voltage can be plotted as shown in figure 3.

A suitable "operating point" is chosen on the static characteristic curve; this point is dictated by the service to which the tube is to be subjected. The bias determines the operating point, and a signal causes the grid to vary back-and-forth about this point in exact accordance with the wave shape of the input signal. This is the condition under which a Class-A amplifier functions. The fluctuation in grid potential results in a corresponding fluctuation in plate current. When this current flows through a suitable load device it produces a varying voltage drop, which is a replica of the original input voltage, although considerahly greater in amplitude.

- Properties of Vacuum Tubes; Ampllfication Factor; Mutual Conductance; Plate Resistance

The amplification factor, or "mu" (μ) of a vacuum tube is the ratio of the ability of the plate voltage to control plate current, to the ability of the grid voltage to likewise control the plate current. Expressed as an equation:

$$
\mu=\frac{\mathrm{dE}_{\mathrm{p}}}{\mathrm{dE}_{\mathrm{g}}}
$$

The μ can be determined experimentally by making a slight change in the plate voltage, thus slightly changing the plate current. The plate current is then returned to its original value by a change in grid voltage. The ratio of the increment in plate voltage to the increment in grid voltage is the μ of the tube. The foregoing assumes that the experiment is conducted on the basis of rated voltages as shown in the manufacturers' tube tables.
The plate resistance can also be determined by the previons experiment. By noting the change in plate current as it occurs when the plate voltage is clanged, and by dividing the latter by the former, the plate resistance can then be determined. Fxpressed as an equation:

$$
\mathrm{R}_{\mathrm{p}}=\frac{\mathrm{dE}}{\mathrm{tr}} \mathrm{dI}_{\mathrm{r}}
$$

The mutual conductance, also referred to as transconductance, is the ratio of the amplication factor (μ) to the plate resistance:

$$
\mathrm{S}_{\mathrm{m}}=\frac{\mu}{\mathrm{R}_{\mathrm{p}}}=\frac{\frac{1!\cdots}{d E_{\mathrm{R}}}}{\frac{d \mathrm{E}_{\mathrm{z}}}{d \mathrm{I}_{\mathrm{p}}}}=\frac{\mathrm{dI} \mathrm{I}_{\mathrm{p}}}{\mathrm{dE}}
$$

The amplification factor is the ability of the tube to amplify or increase the voltages applied to the grid. The amount of voltage amplification that can be obtained from a tube is expressed as follows:

$$
\frac{\mu Z}{R_{\mathrm{p}}+Z}
$$

where $Z=$ olunic load in the plate circuit.
In the case of a type-6F5 tube with a plate resistor of 50,000 ohms, the voltage amplification as calculated from the previous equation would be:

$$
\frac{100 \times 50,000}{50,000+66,000}=43
$$

From the foregoing it is seen that an input of 1 -volt to the grid of the tube will give an output of 43 volts (a.c.).

- Class-A Ampllifer

The expression, "Class-A," is simply a means of classifying the operating conditions of an amplifier stage. It was previously explained how the fixed bias applied to the grid of an amplifier deternines the operating point from which the signal input varies. From the characteristic curve in figure 3 it will be seen that this curve is not a perfectly straight line, but is chised toward its base, with an additional curvature at the top, due to filament saturation. If an amHifier is to be designed so that it will faithfully: reproduce the character of the input signal, the operating point on the curve must be set in the center of the straight-line portion. Furthermore, the amplitude of the input signal must be such that the peaks do not exceed the straight-line portion of the characteristic curve.
If the signal is permitted to go too far negative, the negative half cycle in the plate output will not be the same as the positive half cycle. In other words, the outpint wave shape will not be a duplicate of the input. and a distortion in the output will therefore result. The fundamental property of Class-: amplification is that both the bias voltage and input signal level must not advance beyond the point of zero grid potential, otherwise the grid itself will become positive. Electrons will then flow into the grid and through its external circuit in much the same manner as if the grid were actually the plate. The result of such a flow of grid current is a lowering of the input impedance of the tube, so that power is required to drive it.
Class-A amplifiers are never designed to draw gricl current; in other words, the grid is never permitted to become positive. Class-A amplifiers do not realize the optimum capabilities of any individual tube; it can therefore be said that the efficiency of such amplifiers is low. They are used because they give very little distortion, even though it requires larger tubes and higher plate roltage to obtain a given audio output power than when some grid current is permitted to flow. The correct hias for Class-A operation is given in the Tube Tables.

- Load Impedance; Dynamic Characteristic

The plate current in an amplifier increases and decreases in proportion to the value of applied input signal. If useful power is to be realized from such an amplifier, the plate circuit must be terminated in a suitable resistance or impedance, across which the power can be developed. As soon as the increasing and decreasing plate current flows through a resistor or impedance, the voltage drop across this load will constantly change, because the plate current is constantly changing. The actual value of voltage on the plate will vary in accordance with the $I Z$ drop across the load, even though a steady value of direct current may be applied to the load impedance; hence for an alternating voltage on the grid of the tube there will be a constant change in the voltage at the anode.

The static characteristic curves give an indication of the performance of the tube for only one value of plate voltage. If the plate voltage is changed, the characteristic curve will shift. This sequence of change can be plotted in a form that permits a determination of tube performance; it is customary to plot the plate current for a series of permissible valtes of plate voltage, at some fixed value of grid voltage. The process is repeated for a sufficient number of grid voltage values in order that adequate clata will be available. A group or "family" of plate voltage-plate current curves, each for a different grid potential, makes possible the calculation of the correct load impedance of the tube. Dynamic characteristics include curves for variations in amplification factor. plate resistance, transconductance and detector characteristics.

The correct value of load impedance for a rated power output is always specified by the tube manufacturer. The plate coupling device must always reflect this impedance to the tube. This subject was treated under Impedance . Matching.

- Tubes in Parallel and Push-Pull

Two or more tubes can be connected in parallel in order to secure greater power output: two tubes in parallel will give twice the output of a single tube. Since the plate resistances of the two tubes are in parallel, the required load impedance will be half that for a single tube.

When power is to be increased by the use of two tubes, it is generally advisable to connect them in push-pull; in this connection the power output is doubled and the harmonic content, or distortion, is reduced. The input voltage applied to the grids of two tubes is 180° ont of phase, the voltage usually being secured from a center-tapped secondary winding with the center-tap connected to the source of bias and the outer ends of the windling connected to each grid. The plates are similarly feel into a centertapped winding and plate voltage is introduced at the center-tap. The signal voltage supplied to one grid must always swing in a positive direction when the other grid swings negatively. The result is an increase in plate current in one tube with a consequent decrease in plate current in the other at any given instant : one tube "pushes" as the other "pulls"; hence the term: push-pull.

- Voltage and Power Amplification

Virtually all amplifiers can be divided into two classifications, zoltage amplificrs and poiver amplifiers. In a voltage amplifier it is desirable to increase the voltage to a maximum possible value, consistent with allowable rlistortion. The tube is not required to furnish power, because the succeeding tube is always biased to the point where no grid current flows. The selection of a tube for voltage amplifier service depends upon the voltage amplification it must provide, upon the load that is to be used, and upon the available value of plate voltage. The varying signal current in the plate circuit of a voltage amplifier is expended in the plate load solely in the production of voltage to be anplied to the grid of the following stage. The plate voltage is always relatively high, the plate current small.

- A poaser amplifier, in contrast, must be capable of supplying a heavy current into a load impedance that usually lies between 2,000 and 10,000 ohms. Power amplifiers normally furnish excitation to power-consuming devices. such as a loud-speaker. They also serve as drivers for other larger amplifier stages whose grids require power from the preceding stage. Power amplifiers are common in modulator systems for radiutelephone transmitters.

The difference between the plate power output and plate input is dissipated in the tube in the form of heat, and is known as
the platc dissipation. Tubes for power amplifier service therefore have larger plates and heavier filaments than those for a voltage amplifier. High-power audio circuits for commercial broadcast transmitters call for tubes of such proportions that it becomes necessary to cool their plates by means of water jackets or air-cooling systems.

- Interstage Coupling

Common methods of coupling one stage to another are shown in figure 4.

Figure 4 - Five Common Methods of A.F. Interstage Coupling.

Tronsformer coupling for a single-ended stage is shown in A; coupling to a push-pull stage in B : resistance coupling in C; impedance coupling in D. A combination im-perlance-transformer coupling system is shown in E : this arrangement is generally chosen for high permeability audio transformers of small size, and where it is necessary to prevent the plate current from flowing through the transformer primary. The plate circuit in the latter is shmitford.

- The Class-AB Amplifier

In a Class-AB amplifier the fixed grid bias is made higher than would be the case for a push-pull Class-A amplifier. The static plate current is thereby reduced and higher values of plate voltage can be used withont exceeding the rated plate dissipation of the tube. The result is an increase in power output.

Class-AB amplifiers can be subdivided inte, Class- AB_{1} and Class- $\backslash B_{2}$. There is no How of grid current in a Class- $A B_{1}$ amplifier, i.e., the peak signal voltage applied to each yrid does not exceed the negative grid bias voltage. In a Class- $\& \mathrm{~B}_{2}$ amplifier the grid signal is greater than the bias voltage on the peaks and grid current flows.

The Class- λ B amplifier should be operaterl in push-pull if distortion is to be held to a mininutm. Class-. AB_{2} will furnish more pewer output for a given pair of tubes than will Class-AB ${ }_{1}$. The grids of a class- $-A B_{2}$ amplifier draw current, which means that a porver driver stage must be nsed.

- Class-B Amplifier

A Class-B audio amplifier operates with two tubes in push-pull. The bias voltage is increased to the point where but very little plate current flows. This point is called the int-off point. When the grids are fed with voltage 180° out of phase. i.e., one grid swinging in a positive direction and the other in a megative direction, the two tubes will alternately supply current to the load. When the grid of tube no. 1 swings in a positive direction, plate current flows in this tube. During this process, grid no. ? swings negatively beyond the point of cut-off, hence no current flows in tube no. 2. On the other half-cycle, tube no. 1 is idle. and tube no. $:$? furnishes current. Eacli tube operates on one-half cycle of the input voltage, so that the complete input wave is reproluced in the plate circuit. Since the plate current is

Class A, B, and C Amplifiers
at a very low value when no signal is applied. the plate efficiency is considerably higher than in a Class-A amplifier.

There is a muth higher steady value of pate current flow in a Class-A amplifier, regardless of whether or not a signal is present. The average plate dissipation or plate loss is therefore much greater than in \& Class-B amplifior of the same power output capability.

For the reasum that the plate current rises from a low to a very high peak value on input swings in a Class-B audio amplifier. the demands upon the power supply are quite severe; a puwer supply for Class-B amplifies errice must have good regulation. A high capacity output condenser must be used in the filter circuit to give sufficient storage to supply power for the high peaks, and a choke-input filter s:stem is required for good 1 tisulation.

- Radio-Frequency Amplifier

Class-B radio-freduency amplifiers are used primarily as lincar amplifiers whose function is to increase the output from a modulated Class-C stage. The bias is adjusted to the cut-off value. In a singleended stage. the r.f. plate current flows on alternate half cycles. The power output in Class-B r.i. amplifiers is proportional to the square of the grid excitation voltage. The wrid voltage excitation is doubled in a

CLASS B OPERATION
Figure 5
linear amplifier at 100% modulation, the gricl excitation voltage being supplied by the modulated stage, and hence the power cutput on modulation peaks in a linear stage is increased four times in value. In spite ,f the fact that power is supplied to the tank circuit only on alternate half cycles, the "flywheel" effect of the tuned tank circuit supplies the missing half cycle, and the complete wave form is therefore reproduced in the output to the antenna.

- Class-C R. F. Amplliner

The Class-C amplifier differs from others in that the bias voltage is increased to a point well beyond cut-off. When a tube is biased to cut-off as in a Class-B amplifier, it ciraws plate current for a half cycle, or 180°. As this point of operation is carried leyond cut-off, i.e, when the grid bias becofnes more negative, the angle of plate current flow decreases. Under normal conditions the optimum value for Class-C amplitier operation is approximately 120°. The plate current is at zero value during the first 30° because the grid voltage is still approaching cut-off. From 30° to 90° the grid voltage has advanced beyond cut-off and swings to a maximum in a. region which allows plate current to flow. From 90° to 150° the grid voltage returns to cut-off, and the plate current decreases to zero. From 150° to 18()$^{\circ}$ no plate current flows, since the grid voltage is then beyond cut-off.

The plate current in a Class-C amplifier flows in pulses of high amplitude, but of short duration. Efficiencies up to 75% are realized under these conditions. It is possible to convert nearly all of the plate input power into r.f. output power (approximately 00% efficiency) by increasing the excitation. plate voltage and bias to extreme values.

The r.f. plate current is proportional to the plate voltage, hence the power output is proportional to the square of the plate voltage. Class-C amplifiers are invariably. used for plate modulation because of their high efficiency, and because they reflect a pure resistance load into the modulator. The plate voltage of the Class-C stage is doubled on the peaks at 100% modulation, and the power output at this point is consequently increased four times.

- Osclllation

The ability of an amplifier tube to control power enables it to function as an oscilfotor in a suitable circuit. When part of

Figure 6
the amplified output is coupled back into the input circuit, sustained oscillations will be generated, provided the input voltage to the grid is of the proper magnitude and phase with respect to the plate.

The voltage that is fed back and applied to the grid must be 180° out of phase with the voltage across the load impedance in the plate circuit. The voltage swings are of a frequency depending upon circuit constants.

When a parallel resonant circuit consisting of an inductance and a capacitance is inserted in series with the plate circuit of an amplifier tube and a comnection is made so that part of the potential drop is impressed on the grid of the same tube 180° out of phase, amplification of the potential across the L / C circuit will result. The potential would increase to an unrestricted value were it not for the limited plate voltage and the limited range of linearity of the tube characteristic, which causes a reversal of the process after a certain point is reached. The rate of reversal is determined by the time constant or resonant frequency of the tank circuit.

The frequency range of an oscillator can be made very great; thus by varying the circuit constants, oscillations from a few cycles per second up to many millions can be generated. A number of different types of oscillators are treated in detail elsewhere in this Handbook.

- Harmonic Distortion

It can be said that distortion exists when the output wave shape of an amplifier departs from the shape of the input voltage wave. The flywheel effect in an r.f. aunplifier tends literally to iron out the irregularities in the plate circuit wave, but unless the ratio of capacitance is high as compared to the value of inductance the foregoing does not hold entirely true. Distortion is present in the form of harmonics, i.e., voltages existing simultaneously with the fundamental at frequencies $2,3,4$, 5 , etc. times this fundamental frequency. The lower order of harmonics, namely those whose frequencies are twice and three times that of the fundamental frequency, are generally the strongest. The presence of strong harmonics in an audio frequency amplifier gives rise to speech or music distortion, plainly apparent to the human ear. The average ear can tolerate a certain amount of distortion, and audio amplifiers are therefore rated in percentage of harmonic content. The value of 5% is generally accepted as being the maximum permissible total harmonic distortion from an average audio amplificr.

The effect of harmonics in a c.w. telegraph transmitter is objectionable, for the reason that frequencies in addition to those for the desired transmission may be radiated if means are not taken to suppress them or keep them from reaching the antemna. This is thoroughly covered in later chapters.

- Detection

- Detection is the process by which the andio component is separated from the modulated radio-frequency signal carrier at the receiver. Detection always involves either rectification or non-linear amplification of an alternating current.

Two general types of amplifying detectors are used in radio circuits:

- (1) Plate Detector. The plate detector. or bias detector, sometimes improperly called a pozeer detector, amplifies the radio-frequency wave and then rectifies it and passes the resultant audio signal component to the succeeding audio amplifier. The detector operates on the lower bend in the plate current characteristic, because it is biased close to the cut-off point . . . and could therefore be called a single-ented Class-B amplifier. The plate current is quite low in the absence oi a signal and the audio component is evidenced by an increase in the average ummodulated plate current. See figure 7 .
- (2) Grid Detector. The grid detector differs from the plate detector in that it rectifies in the grid circuit and then amplifies the resultant audio signal. The only source of grid bias is the grid-leak, so that the plate current is maximum when no signal is present. This form of detector operates on the upper, or saturated bend of its characteristic curve, at a high plate voltage, and the demodulated signal appears as an audio frequency decrease in the average plate current. However, at low plate voltage most of the rectification takes place as the result of the curiature in the grid characteristic. By proper choice of grid-leak and plate voltage, distortion can be held to a reasonably small value. In extreme cases the distortion can reach a very high value, particularly when the carrier signal is modulated to a high percentage. In such cases the distor-
tion can reach $\frac{100 \%}{t}$, or 2.3%.
The grid detector will absorbs some power from the preceding stage lecause it draws grid current. It is significant to relate that the higher gain through the grid detector does not necessarily indicate that it is more sensitive. Detector sensitivity is a matter of rectification efficiency and amplification, not amplification alone. Grid-leak detectors are often used in regenerative detector circuits becanse smbother control of refgeneration is

Figure 7
pussible than in other forms of plate and bias detectors.

- Tetrodes

When still another grid is added to a vacuum tube belween the control grid and plate, the tube is then called a tetrode, meaning that it has four elements. Such tubes are more familiarly known as screcn-grid tubes, since the additional element is called a screch. The interposition of this screen
betwecn grid and plate serves as an electrostatic shield between these two elements, with the consequence that the grid-to-plate capacitance is reduced. This effect is accomplished by establishing the screen at r.f. ground potential by" by-passing it to ground with a fairly-large condenser. The griclplate capacitance is then so small that the amount of feedback voltage from plate to grid is normally insufficient to start oscillation. The adsent of the screen-grid tube eliminated the necessity for "lossers" and neutralization previously required to prevent a triode r.i. amplifier stage from oscillating.

In addition to the shiclding effect, the screen-grid serves another very useful purpose. Since the screen is maintained at a positive protential it serves in increase or accelerate the flow of electrons to the plate. There being large openings in the screen mesh, most of the electrons pass through it and on to the plate. Due also to the screen. the plate current is largely independent of plate voltage, thus making for high amplification. When the screen is held at a constant value it is possible to make radical changes in plate voltage without appreciably affecting the plate current.

- Secondary Emission; Pentodes

If the electrons from the cathonle travel with sufficient velocity they may dislodge electrons from the plate when they strike the latter. "This effect of bombarding the plate with high-velocity electrons, with the consequent dislodgement of other electrons from the plate, is known as secondary smission. This effect can cause no particular difficulty in a triode tube because the secondary electrons so emitted are eventually attracted back to the plate. In the screengrid tube, however, the screen is close to the plate and is maintained at a positive putential. Thus the screen will attract these electrons that have been knocked from the plate, particularly when the plate voltage falls to a lower value than the screen voltage. with the result that the plate current is lowered and the amplification is decreased.

This effect is eliminated when still another element is added between the screen and plate. This additional clement is called a suppressor, and tubes in which it is used are called pentodes. The suppressor grid is sometimes comnected to cathode within the
tube, sometimes it is brought out to a connecting pin on the tube base, but in any case it is established negative with respect to the minimum plate voltage. The secondary electrons that would travel to the screen, if there were no suppressor, are diverted back to the plate. The plate current is therefore not reduced and the amplification possibilities are increased.

Pentodes for audio applications are clesigned so that the suppressor increases the limits to which the plate voltage may swing: the consequent power output and gain can therefore be very great. Pentodes for radioirequency service function in such a mamer that the suppressor allows high voltage gain, at the same time permitting fairly-high gain at low plate voltage. This holds true even if the plate voltage is the same or slightly lower than the screen voltage.

- Beam Power Tubes*

A beam power tube makes use of a new method for suppressing secondary emission. In this tube there are four electrodes: a cathode, a grid, a screen. and a plate, so spaced and placed that secondary enission from the plate is suppressed without actual power. Becatse of the manner in which the electrodes are spaced, the electrons which travel to the plate are slowed down when the plate voltage is low, almost to zero ve-

Figure 8-Internal Structure of Beam Power Tube
locity in a certain region between sereen and plate. For this reason the electrons form a stationary "cloud," a space charof". The effect of this space charge is to repel secondary electrons emitted from the plate

[^0]In this way secondary emission is suppressed.

Another feature of the beam power tube is the low current drawn by the screen. The screen and the grid are spiral wires wound so that each turn in the screen is shaded from the cathode by a grid turn. This alignment of the screen and the grid causes the electrons to travel in "sheets" between the turns of the screen, so that very few of then flow to the screen. Because of the effective suppressor action provided by the space charge, and because of the low current drawn by the screen, the beam power tube has the advantages of high power output. high power sensitivity and high efficienc: The 6L6 is such a beam power tube.

- Pentagrid Converters

A pentagrid converter is a multiple-yrid tube so designed that the functions of superheterodyne oscillator and miser are combined in one tube. One of the principal actvantages of this type of tube in superheterodyne circuits is that the coupling between oscillator and mixer is automatically done: the oscillator elements effectively modulate the electron stream and in so doing the conversion conductance is higl. The principal disadvantage of these tubes lies in the fact that they are not partictularly suited for opcration at frequencies much above 20 Mc ., because of difficulties encomentered in the oscillatur section.

- Conversion

 ConductanceConversion conductance is a term applied to mixer circuits in superheterodyne receivers and may be considered as a factor of merit for such stages.

- Special Tube Types: Twin Triodes; Frequency Converters

Some of the commonly-known vacuum tubes are in reality two tubes in one, i.e., in a single glass or metal envelope. Twin triodes, such as the types $33,6 \mathrm{~A}$, and 6 Nin . are typical examples. A feature of the twin triode tube is its common cathode.

Of a different nature is the 6 H 6 t twin diode tube: the cathode is a separate element in this tube, thus making it a true dual-tube in one envelope. Other types combine the functions of donble diode and triode in a (a)mmon envelope, as well as a similar combination with a pentode section instead of a triode. Still other types offer a triode and a pentode in a common envelope.

Notahle among the special purpose multiple grid tubes is the bLi, used principally as a frequency converter or mixer in superheterodyne circuits. This tube has fize grids: control grid, screens, suppressor, and a special injection grid for oscillator input. ()scillator coupling in control grid and screen grid circuits of ordinary pentodes is effective as far as mixing is concerned, but has the disadvantage of considerable interaction betwcen oscillator and mixer. Oscillator injection into the suppressor grid of ant ordinary pentode also is not particularly nuccessful.

The GL: has a special injection grid so placed that it has reasonable effect on the electron strean without the disadvantage of interaction between the screen and con-trol-grid. The principal disadvantage is that it requires fairly high oscillator input in order to realize its high conversion conductance. It may also be used as an r.f. pentode amplifier.

Data and Notes on Newly
 Relensed Tulbes

Chapter 3

DECIBELS AND LOGARITHMS

- Technique and Practical Application

The decibel unit as used in radio engineering and virtually universal in all power and energy measurements is actually a unit of amplification expressed as a common logarithm of a power or energy ratio. One decibel is $1 / 10$ th of a bel. One bel or 10 decibels indicates an amplification by 10 , the common logarithm of 10 being 1 . Similarly, 2 bels or 20 db means amplification by $100 ; 30 \mathrm{db}$. means amplificatinn by 1,000 , and so on. The power ratio for one decibel is expressed as

$$
\frac{P_{1}}{P_{2}}=10^{1}
$$

where P_{1} is the power input; P_{2}, the power output. The number of decibels represents a power gain or loss, depending upon whether the relation P_{1} / P_{2} is greater or less than 1.
Expressions for various power ratios are now commonly employed in communication engineering at audio and at radio frequencies. To express a ratio between any two amounts of power, it is convenient to use a logarithmic scale. A table of logarithms facilitates making conversions in positive or negative directions between the number of decibels and the corresponding power, voltage and current ratios.

- The Logarithmic Table

A table of logarithms is here presented. This table does not differ essentially from any other similar table except that here no proportional parts are given and the figures are stated to only three decimal places; this arrangement has been found to be satisfactory for all practical radio purposes. A complete exposition on logarithms is without the scope of this Handbonk; however, the very essentials together with the practical use of the tables and their application to decibels is given herewith. Thus, a person need not be concerned with the study of logarithms other than their direct employment to decibels.

The logarithm of a number usually con-
sists of two parts: a whole number called the characteristic, and a decimal called the mantissa. The characteristic is the integral portion to the left of the decimal point (see examples below), and the mantissa is the value placed to the right. The mantissa is all that appears in the table of logarithms.
In the logarithm the mantissa is independent of the position of the decimal point, while the characteristic is dependent only on the position of the number with the relation to the decimal point. Thus, in the following examples:

	Number		Logarithm
(a)	4021.	$=$	3.604
(b)	402.1	$=$	2.604
(c)	40.21	$=$	1.604
(d)	4.021	$=$	0.604
(e)	.4021	$=$	-1.604
(f)	.04021	$=$	-2.604

It will be seen that the characteristic is equal, algebraically, to the number of places minus one, which is the first significant figure to the left of the decimal point.

In (a) the characteristic is 3 ; in (b) 2: in (d) 0 ; in (e) -1 ; and in (f) -2 . The following should be remembered: (1) that for a number greater than 1, the characteristic is one less than the number of significant figures in the number; and (2), that for a number wholly a decimal, the characteristic is negatiou and is numerically one greater than the nunber of ciphers immediately following the decimal point. Notice (c) and (f) in the above examples.

- Finding a Logarithm

To find a common logarithm of any number simply proceed as directed herewith: Suppose the number to be $55 \pi 6$. First, determine the characteristic. An inspection will show that this number will be three. This figure is placed to the loft of a decimal point. The nantissa is now found by referring to the logarithm table. Proceed selecting the first two numbers which are 55, then glance down the N column until coming to these figures. Advance to the right until coming in line with the column headed τ; the number will be 746 . (Note that the column headed i corresponds to the third
figure in the number 5576). Place the mantissa $\pi 46$ to the right of the decimal point making the number now read 3.746. This is the logarithm of $55 \% 6$. Important: do not consider the last figure, i, in the number 55.6 when looking for the mantissa: in fact, disregard all digits beyond the first three when determining the mantissa; however, be doubly sure to include all figures when ascertaining the magnitude of the characteristic.

Practical applications of logarithms to decibels will follow, Other methods of using logarithms will be discussed as the subject develops.

- Power Levels

In the design of radio devices and amplifying equipment the standard power level of six milliwatts (.006w) is the arbitrary refcrence level of zero decibels. All power levels above the reference level are designated as "plus" quantities, and below as "minus." The figure is always prefixed by a plus $(+)$ or minus (-) sign indicating the direction in which the quantity is to be read.

- Power to Decibels

The power output (watts) of any amplifier may be easily converted into decibels by the following formula, assuming that the input and output impedances are equal :

$$
N_{\mathrm{dh}}=10 \mathrm{I}_{\mathrm{og}} \frac{\mathrm{P}_{1}}{\mathrm{P}_{2}}
$$

Where Nab is the desired power level in decibels; P_{1}, the output of the amplifier; and P_{n}, the reference level of 6 milliwatts. The subnumeral, 10 , affixed to the logarithm indicates that the log is to be extracted from a \log table using 10 as the base.

Substituting values for the letters shown in the above formula, take the following illustration:

An amplifier using a 2 A5 tube is said to deliver an undistorted output of three watts. How much is this in decibels?

Solution by formula (2)

$$
\begin{aligned}
& \frac{\mathrm{P}_{1}}{\mathrm{P}_{2}}=\frac{3}{.006}=500 \\
& \text { and I } .0 \mathrm{~g} 500=2.69
\end{aligned}
$$

therefore $10 \times 2.69=26.9$ DECIBEIS.
By placing other values for those shown in the solution any output power may be converted into decibels prozided that the decibel equivalent is aboz' the zero refer-

Three Place Logarithms										
N	0	1	2	3	4	5	6	7	8	9
00	000	000	000	000	000	000	000	000	000	000
10	000	004	008	012	017	021	025	029	033	037
11	041	045	049	053	056	060	064	068	071	075
12	079	082	086	089	093	096	100	103	107	10
13	113	117	120	123	127	130	133	136	139	43
14	146	149	152	155	158	161	164	167	170	173
15	176	179	181	184	187	190	193	195	198	201
16	20	206	209	212	214	217	220	222	225	227
1	230	233	235	238	240	243	245	248	250	252
18	255	257	260	262	264	267	269	271	274	76
19	278	281	283	285	287	290	292	294	296	298
20	301	303	305	307	309	311	313	316	318	320
21	322	324	326	328	330	332	334	336	338	340
22	342	344	346	348	350	352	354	356	358	359
23	361	363	365	367	368	371	372	374	376	78
24	380	382	383	385	387	389	390	392	394	396
25	397	399	40	403	404	406	408	409	411	413
26	415	416	418	420	421	423	424	426	428	429
27	431	433	434	436	437	439	440	442	444	445
28	447	448	450	451	453	454	456	457	459	460
29	462	463	465	466	468	469	471	472	474	475
30	477	478	480	481	482	484	485	487	488	490
31	491	492	494	495	496	498	499	501	502	503
32	505	506	507	509	510	511	513	514	515	517
33	518	519	521	522	5235	525	526	527	528	530
34	531	532	534	535	536	537	539	540		542
35	544	545	546	547	549	550	551	552	553	555
36	556	557	558	559	5615	562	563	564	565	567
37	568	569	570	571	572	574	575	576	577	578
38	579	580	582	583	584	585	586	587	588	599
39	591	592	593	594	595	596	597	598	599	601
40	602	603	604	605	606	607	608	609	610	611
41	612	613	614	616	617	618	619	620	621	622
42	623	624	625	626	627	628	629	630	631	632
43	633	634	635	636	637	638	639	640	641	642
44	643		64		647	,	6			652
45	653		655	656	657	658			66	661
46	662	663	664	665	666	667	668	669	670	671
47	672	673	673	674	675	676	677	678	679	680
48	681	682	683	683	684	685	686	687	688	689
49	690	691	692	692	693	694	695	696	697	698
50	699	699	700	701	702	703	704	705	705	706
51	707	708	709	710	711	712	713	713	715	715
52	716	716	717	718	719	720	721	722	722	723
53	724	725	725	726	727	728	729	730	730	731
54	732	733	734	734	735	736	737	738	738	739
N	0		2	3	4	5	6	7	8	9

cone lovel wr the power is not less than 6 milliwatts.

To solve almost all problems to which the solution will be given in minus clecibels, a simple understanding of algebraic adding is required. Tos add algebraically, it is necessary to obscrve the plus and minus signs of expressions. (Do not confuse these signs with decibels.) In the succeeding illustrations notice that the result was caused sometimes by addition and at other times by subtraction.

Three Place Logarithms										
N	0	1	2	3	4	5	6	7	8	9
55	740	741	741	742	743	744	745	746	747	747
56	748	749	749	750	751	752	752	753	54	5
57	755	756	757	758	758	759	760	761	761	762
58	763	764	764	765	766	767	767	768	769	770
59	770	771	772	773	773	774	775	776	776	777
60	778	778	779	780	781	781	782	783	783	784
6	785	786	786	787	788	788	789	790	91	1
6	792	793	793	794	795	795	796	797	798	798
63	799	800	800	801	802	802	803	804	804	805
64	806	806	807	808	809	810	810	811	811	2
6	813	813	814	814	815	816	816	817	818	8
66	819	820	820	821	822	822	823	824	824	825
67	826	825	827	828	828	829	829	830	31	1
68	832	833	833	834	835	835	836	7	7	8
69	838	839	840	840	841	842	842	843	843	4
70	845	845	846	847	848	848	849	849	850	850
71	851	851	852	853	853	854	854	855	856	6
72	857	857	858	859	859	860	860	861	1	2
73	863	863	864	865	865	866	866	867	868	8
74	869	889	870	871	871	872	872	873	873	874
75	875	875	876	876	877	877	878	879	79	O
76	880	881	882	882	883	883	884	4	85	5
77	886	887	887	888	888	889	889	890	91	1
78	892	892	893	893	894	894	895	896	896	897
79	897	898	898	899	899	900	900	01	2	2
80	903	903	904	904	905	905	906	906	907	7
81	908	909	909	910	910	911	911	912	912	3
82	913	914	914	915	915	916	917	917	918	918
83	919	919	920	920	921	921	922	922	923	923
84	924	924	925	925	926	926	927	927	928	8
85	929	929	930	930	931	932	932	933	933	934
86	934	935	935	936	936	937	937	938	938	39
87	939	940	940	941	941	942	942	943	943	944
88	944	945	945	946	946	946	947	947	948	948
89	949	949	950	950	951	951	952	952	953	953
90	954	954	955	955	956	956	957	957	958	958
91	959	959	960	960	960	961	961	962	962	963
92	963	964	964	965	965	966	966	967	967	968
93	968	968	969	969	970	970	971	971	972	972
94	973	973	974	974	975	975	975	976	976	977
95	977	978	978	979	979	980	980	980	981	981
96	982	982	983	983	984	984	985	985	985	986
97	986	978	987	988	988	989	989	989	990	990
98	991	991	992	992	993	993	993	994	994	995
99	995	996	996	996	997	997	998	998	999	999
00	000	004	008	012	017	021	025	029	033	037
N	0	I	2	3	4	5	6	7	8	9

(a)	(b)	(c)	(d)
$-+\ddot{3}$	-1	-1	+4
\cdots	-2	+2	+2
\cdots	$-i$	-2	+6

The terms used in (c) are those that apply t. decibel calculations.

When a solutinn to a problem involving 1ngarithms will be in minus decibels, note particularly that the characteristic of the kugarithm will be prefixet by a minus sign (-). This sign moly affects the character-
istic: the mantissa remains positive. The mantissa altays remains positive, regardless of whether the solution of the prohlem brings the sign of the characteristic as negative or positive. A prefix - 1 to a logarithm means that the first figure of the number which it represents will be the first place to the right of the decimal: --? will occupy the second place to the right, while a cipher fills the first place: -3 , the third place with two ciphers filling the first and secomal places, and so on.

To multiply a minus charateristic and a positioe mantissa by 10 , each part must be considered separately, multiplied by 10 , and then the products added algebraically; thus, in the following illustration:

In amplifier using a 199 tube has an output of is milliwatts. How much is this in decibels:

Sulation by formala (9)

$$
P_{1} \quad .00 . i
$$

$$
\frac{1}{P}=\frac{.00 .1}{.000}=.83
$$

$$
\log .8: 5=-1.9 \text { (actually }-1.920)
$$

Therefore $10 \times-1.9=-1$ DECIBFI. $(10 \times-1=-10$; and $10 \times .9=+9$, hence. adding the protucts algebraically $=-1$).

By substituting the other values for thone in the above solution, any output power belore is milliwatts or the zero reference level may be comerted into decibels.

- Determining Db Gain or Loss

In using amplifiers it is a prime reyuisite to be able to indicate gain or loss in decibels. To determine the gain or loss in dhemplos the following formula:

Where \mathbb{N}_{d} is the number of db gained or Inst; P_{1}, the input power, and P_{n}, the output power.

Applying, for example, formula (3): Suppose that an intermectiate amplifier is being rriven by an input power of 0.2 watts, and after amplification, the output is foum to be 6 watts.

$$
\frac{P_{n}}{P_{1}}=\frac{0}{.2}=30
$$

$\operatorname{Lng} 30=1.48$
Therane $10 \times 1.48=14.9$ DF POUE'? riAIN.

- Amplifier Ratings

The technical specifications or rating on power amplifiers must contain the following information: the overall gain in decibels; the power output in watts; the value of the input and output impedances; the input signal level in (l); the input signal voltage; and the power output level in decibels.

If the specifications on an amplifier include only the input and output signal levels in db , it then is necessary to calculate how much these values represent in power. The methods employed to determine power levels are not similar to those used in previous calculations. Caution should, therefore, be taken in reading the following explanations, with particular care and attention being paid to the minor arithmetical operations.

- The Anti-logarithm

To determine a power level from some given decibel value, it is necessary to invert the logarithmic process formerly employed in converting power to decibels. Here, instead of looking for the \log of a number, it is now necessary to find the anti-logarithm or number corresponding to a given logarithm.

In deriving a number corresponding to a logarithm it is important that these simple rules be committed to memory: (1) that the figures that form the original number from a corresponding logarithm depend entirely upon the mantissa or decimal part of the $\log ;(2)$, that the characteristic serves only to indicate where to place the decimal point of the original mumber; and (3), that if the original number was a whole number the decimal point would be placed to the extreme right.

The procedure of finding the number corresponding to a logarithon is explained as follows: Suppose the logarithm to be 3.5 int. First. search in the table under any column from 0 to 9 for the numbers of the mantissa 5r4. If the exact number cannot be found. look for the next lozeest figure, which is nearest to, but less than, the given mantissa. After the mantissa has been located, simply glance immediately to the left to the N column and there will be read the number, 3 . This number comprises the first two figures of the number corresponding to the antilog. The third figure of the number will appear at the head of the column in which the mantissa was found. In this instance the number heading the column will be 5 . If the figures have been arranged as they have
been found, the mumber will now be 3ra. Now since the claracteristic is 3 , there must be four figures to the left of the decimal point; therefore, by annexing a cipher the number becomes 3750 ; this is the number that corresponds to the logarithm 3.574 . If the characteristic were 2 instead of 3 , the number would be 375 . If the logarithn were - 3.5 at or - 1.5 int, the antilogs or corresponding numbers would be 00375 and .375 respectively. After a little experience a person can obtain the number corresponding to a logarithm in a very few seconds.

- Converting Decibels to Power

It is always convenient to be able to convert a decibel value to a power equivalent in order to determine the ratio difference. The formula used for converting decibels into watts is similar in many respects to equation (2), the only difference being that the factor P_{1} corresponding to the power level is not known. Usually the formula for conrerting deeibels into wher is written as:

$$
\begin{equation*}
N_{\text {tul }}=10 \mathrm{I} \cdot o g \frac{\mathrm{P}_{1}}{006} \tag{5}
\end{equation*}
$$

In practice it laas been found that it is too difficult to derive the solution to the above equation because of the expression being written in the reverse. However, by re-arranging the various factors, the expression can be simplified to permit easy visualization. thas:

$$
\begin{equation*}
\mathrm{P}=.006 \times \operatorname{antilog} \frac{\mathrm{N}_{\mathrm{db}}}{10} \tag{6}
\end{equation*}
$$

where P is the desired power level: .006. the reference level in milliwatts; N_{db}, the decibels to be converted; and 10, the divisor.
To determine the power level, P , from a decibel equivalent, simply divide the decibel value by 10 , then take the number comprising the antilog and multiply it by .006 , the product gives the power level of the decibel value.
Note: In all problems dealing with the conversion of minus decibels to power, it often happens that the decibel value - Nutb, is not always equally divisible by 10 . When this is the case, the mumerator in the factor - $\mathrm{N}_{\mathrm{du}} / 10$ must be made evenly divisible by the denominator in order to derive the proper power ratio. Note that the value $-\mathrm{N}_{\mathrm{db}}$ is negative: hence. when dividing by 10 , the megative signs must be observed and the quotient lahelect accordingly.
To make the numerator in the value $-\mathrm{N}_{\text {a }}$.
equally divisible by 10 , proceed as follows: Assume - Nit to be the logarithm - 38 with a zero mantissa; lence, in order to make -38 divisible by 10 simply annex as many units as is necessary from the zero mantissa and add them to the -38 until the figure can be equally divided. An examination will show it was only necessary to add two units to bring - 3 s up to - 40 . Carefully mote that every unit borrowed from the zero mantissa must be returned to it as a positive quantity multiplied by 10 . Thus, the two units borrowed to bring - 38 up to -40 is returned as 20 , making what was a zero mantissa now have a value of 20 . The mumerator - Na, now becomes - 40.20 ; this figure can now be equally divided by 10.

While the abowe discussion applies strictly to negative values, the following examples will clearly show the technique to be followed ior aimost all practical problems.
(a) The output level of a popular velocity ribbon microphone is rated at - 74 db . What is the equivalent in milliwatts:

Solution by equation (6)

- Nab -it
$\ldots=-\ldots$ (not equally divisible by 10)
10 10
Routine:

$$
\begin{aligned}
& \text {-it mantissa } \\
& +660(6 \times 10) \\
& -8060 \\
& -\mathrm{N}_{\mathrm{d} \mathrm{~h}} \quad-80.60 \\
& \overline{10}=-\frac{}{10}=-8.6 \\
& \text { Antilog -8.6 }=.00000004 \\
& .006 \times .00000004=.000000000240 \text { or } \\
& 240 \text { Micromicrowatts }
\end{aligned}
$$

(b) This example differs somewhat from that of the foregoing one in that the mantissas are added differently. A low powered anmplifier has an input signal level of -17.3 db. How many milliwatts does this value represent?

Solution by equation (6)

$$
\begin{aligned}
& -\Lambda_{\mathrm{il}}=\frac{-17.3}{10}=-2.33 \\
& -17 \cdot 3^{3} \\
& +3 \cdot 30 \\
& -20 \cdot 33
\end{aligned}
$$

(The mantissas were added as 30 plus 3 , and not . 3 plus .30.)

$$
\begin{aligned}
\Lambda n t i l o g & -2.33
\end{aligned}=.0214, \begin{aligned}
.006 \times .0214 & =.000128 \text { or }
\end{aligned}
$$

128 Milliwatts.

- Voltage Amplifiers

When plans are being drafted contemplating the design of power amplifiers, it is essential that the following data be cletermined: liinst, the input and output signal levels to be used; second, the size of the power tubes that would adequately deliver sufficient undistorted output, and third, the input signal voltage that must be applied to the amplifier to deliver the desired output. This last reguirement is the most important in the design of voltage amplifiers.

The voltage step-up in a transformercoupled amplifier depends chiefly upon the μ of the tubes and the turns ratio of the inter-stage coupling transformers. The stepup vahue in any amplifier is calculated by multiplying the step-up factor of each voltage amplifying or step-up device. Thus, for exannple, if an amplifier were designed laving ant output transformer with a ratio of $3: 1$ coupled to a tube having a μ of 7 , the voltage step-up would be approximately 3 times $\%$, or 21. It is seldom that the total product will be exactly the figure derived because it is not quite possible to realize amplification equal to the full μ of the tube.

From the voltage gain in an amplifier it is possible to calculate the input and output signal levels and at the same time be able to determine at what level the input signal must be in order to obtain the desired output. By converting voltage ratios into decibels, power levels can be determined. Hence, to find the gain in db when the input and output voltages are known, the following expression is used;

$$
\text { (gain) } N_{\mathrm{ctl}}=20 \log \frac{E_{1}}{E_{z}}
$$

where E_{1}, is the output voltage: and E_{2}, the input voltage.
Employing the above equation in a practical problem, note that the logarithm is multiplied by 20 instead of by 10 as in previous examples. For instance:

A certain one-stage amplifier consists of the following parts: 1 input transformer, ratio $2: 1$, and 1 output tube having a μ of 95. Determine the gain in decibels with an input voltage of 1 volt.

Solution by equation (7)
$2 \times 95=190$ voltage gain
$\mathrm{E}_{1} \quad 190$
therefore $\underset{\mathrm{E}_{2}}{-}=\frac{-}{1}=190$
$\log 190=2.278$

To reverse the above and convert decibels to voltage ratios, use the following expression:

$$
\begin{equation*}
\mathrm{E}(\text { gain })=\operatorname{antilog} \frac{\mathrm{N}_{\mathrm{db}}}{20} \tag{8}
\end{equation*}
$$

where E is the voltage gain (power ratio); Nats, the decibels, and 20 , the divisor.
To find the gain, simply divide the decibels ly 20, then extract the antilog from the fuotient; the result gives the roltage ratio.

- Input Voltages

In designing power amplifiers, it is paramount to have exact knowledge of the magnitude of the input signal voltage necessary to drive the output power tubes to maximum undistorted output.

To determine the input voltage, take the prak zoltage necessary to drive the grid of the last class A amplifier tube to maximum output and divide this figure by the total overall gain preceding this stage.

- Microphone Levels

Practically all acoustic-electric apparatus used to energize amplifiers have output levels rated in decibels. The output signal levels of these devices vary considerahly, as may be noted from the table below:

	Decibels	Average
Phonugraphic pickup.	0 to -30	1.5
Carhon microphones..	-30 to -	-45
Piezo-electric microphones	-5s to -80	0
Dynamic microphones	一i5 to -9.5	85
Condenser microphones	-80 to -100	90
Velo	-1	

In general the lower the output signal level, the higher will be the acoustic fidelity over the entire audio spectrum.

The output levels of microphones and phonograph pickups have the same power values ascribed to them as those derived from calculating power output levels of amplifiers. Therefore, the same equations employed in connection with power ratios are similarly applied when converting output signal levels to power levels.

- Computing Specifications

From the preceding explanations the following data can be computed with a very high degree of accuracy:
(1) Voltage amplification
(2) Overall gain in db
(3) Output signal level in db
(4) Input signal level in db
(5) Input signal level in watts
(i) Input signal voltage

- Push-Pull Amplifiers

To double the output of any cascade amplifier, it is only necessary to comect in push-pull the last amplifying stage and replace the interstage and output transformers with push-pull types.

To determine the voltage gain (boltage ratio) of a push-pull amplifier, take the ratio of one half of the secondary winding of the push-pull transformer and multiply it by the μ of one of the output tubes in the push-pull stage; the product, wiohen doubled. will be the voltage amplification or step-up.

Tonstically, that is from the loudspeaker standpoint, it takes approximately one db before any change in the volume of sound is noted. This is because the intensity of sound as heard by the ear varies logarithmically with the acoustic power. For practical purposes it is only necessary to remember that if two sounds differ in plysical intensity by less than one db they sound alike. If they are much more than one decibel apart, nne someds slightly louder than the nther.

- Pre-Amplifiers

Pre-amplifiers are employed to raise low input signal levels up to some required input level of another intermediate or succeeding amplifier. For example: If an amplifier was designed to operate at an input level of - 30 db and instead a considerably lower input level were used, a pre-amplifier would then have to be designed to bring the low input signal up to the rated input signal level of - 30 db to obtain the full undistorted output from the power tubes in the main amplifier. The amount of gain necessary to raise a low input signal level up to another level may be determined by the following equation:
$\mathrm{E}($ gain $)=\operatorname{antilog} \frac{\mathrm{N}_{\mathrm{db} 1}-\mathrm{N}_{\mathrm{db}}}{20}$
where E is the voltage step-up or gain; Nan, the input signal level of the pre-amplifier or the new input signal level: $\mathrm{N}_{\mathrm{d} \text { a }}$, the input signal level to the intermediate amplifier: and 20, the divisor.

Chapter 4

LEARNING TIIE CODE

THE FOLLOUVING is addressed more or less personally to those who contemplate taking up amateur radio as a hohby. To secure an amateur license from the Federal Communications Commission, it is necessary that the applicant submit to an examination, the first part of which is a code transmitting and receiving test. The Continontal Code is used for radio communication; it consists of combinations of dots and dashes. It differs from the American Morse Code in that the latter includes the use of "spaces" in addition to the dots and dashes in the formation of certain letters. Thus, for instance, the letter " r " in the Morse Code is: dot-space-dot-dot. In the Continental Code the same letter is made as follows: dot-dashdot. The Morse Code is used principally for land-line telegraphic commumication in North America, while the Continental Code is used for hoth radio and ocean-cable communication.

The Contincutal Code is the more simple of the two because it uses only dots and dashes. The fact that the letters and numerals are free from "spaces" simplifies the learning of this code, because one is less likely to interpret as two letters the characters intended as a single letter.

The applicant for an amateur license must be able to send and receive the Continental Code at a speed of 13 words per minute, with an average of 5 characters to the word. Thus 65 characters must be copied consecutively withont error in one minute. Similarly, 65 consecutive characters must be transmitted without error in that time. The applicant, however, is given sufficient opportunity to pass this code test, since sending and receiving tests are both five minutes in length. If 6.5 consecutive characters, at the required rate, are copied correctly somewhere during the first five-minute period, the applicant may then attempt a transmission. Again, if 65 consecutive characters are sent correctly somewhere during this second period, a passing mark is received.

The mastering of the code has been a stumbling-block to perhaps 30 per cent of the total number of applicants who appear for amateur license examinations. The code
test is given first at any of the several offices of the Federal Communications Commission; if the applicant passes it, he is permitted to proceed with the remaining portions of the examination (technical questions and radio laws). Failure to pass the code test results in a three month "rest period" during which the applicant can improve his mastery of the code; thereafter, he may again appear for another try.

Many of those who fail to pass the code test, or experience difficultey in mastering the code, are handicapped because of their

Figure 1 - The Simplest Code Practice Set-a Key, Buzzer, Battery and Headphones. The Buzzer Operates Continuously, but Signals are Heard in the Headphones Only When the Key Is Depressed.
method of attempting to learn it. The oldline operators, who have graduated from the school of hard-knocks, are almost unanimously of the opinion that the surest method of learning the code consists of becoming familiar with the combinations of short and long sounds that represent the dots and dashes needed to make up the various letters. The beginner is cautioned against regarding the code as being made up of dots and dashes, but rather as consisting of sounds, the dot sounding as a "did," the dash as a "davo".

The code, then, becomes a series of dids and dazus, precisely as it sounds when one listens-in on a receiver of radio-code signals. The code letter A, for example, is not "dotdash"; it is "did-datu".

Study the code chart for a few moments. Memorize the first three groups of characters which make up the letters A, B, and C. Repeat these characters to yourself thus: "did-dazu", "dazv-did-did-did", and "dazi-did-dazc-did". The three letters. . $4, B$, and C. are thus represented as they sound when heard on a code receiver.

Figure 2-Code Practice Oscillator Using Heater Tube. The Tone Can Be Varied by Changing the Values of Condenser Capacity.

Du not attempt to memorize too many letters ,f the alphabet at one time. Take a group of four, such as the letters $I E . I, S$. and $/ I$. These letters consist of mothing but dids (clots). E is "did": I is "did-did": S is "did-did-did": I is "did-did-did-did". On the other hand $T^{\circ}, . / /$, and (), are comprised solely of "dacus" (dashes). T is "dare"; , / is "dan'-ddas". and O is "dazo-daz'-dact".

Next memorize the letters which consist of combinations of clots and dashes, such as the letters N, L^{\prime}, and W^{\prime}. N is "dacc-did"; C' is "did-did-ddec:" and 11 " is "did-dore'dase". It is best to memorize one group of letters before proceeding to another group.

In sending it is obvious that some space must exist between successive dots or dashes. The spacing is determined by the time neeessary for the key to come up) and then close again. No more time should be employed. To the ear, the letter . 1 , previously demoted as "did-daar". for the purpose of clarifying the use of the "elids" and "dlaws", actually sounds like "diddate" when this anomint of spacing is used. There is no patuse between "did" and "daw": they are completely run together into one character. If these code elements were separated ("did" "daw"), the combination might casily be interpreted as consisting of two separate letters uf the alphabet. since I is "dicl" and T is "daw". (See code chart.)

Spaces, howerer, are inserted betwed the letters which compurise a single word and between the words themselves. To clarity this statement, a typical example is given here:

Study the above test group. The "dids" and "daws" which comprise the various letters of the alphabet used in this sentence are printed under the letters. There is a short space between each letter and a lontocr spaci between each word. The space between letfors of a arord is equivalent to the length of tine required to telegraph a single dash or three dots, whereas the space between abords is eduivalent to the length of time required to send fie dots. Obriously, it is necessary that the spacing between the letters of a word be less than the spacing between the words themselves.

Many successful ratio telegraphers have found it easier to learn the colle by first memorizing a single letter of the alphabet, such as the letter ". λ ", diddan'. Firmly affixing this sound in their memories by continwally repeating it, they then tune a shortwave receiver until a slow-sending code

Figure 3-Code Practice Oscillator Using Triode Filament-Type Tube. Equally Desirable as the Method Shown in Figure 2.
transmitter is heard. Each time the diddare is heard and recognized, it is written on a piece of paper. Another letter is then memorized and the process of picking it out of some corle tramsmission again repeated, It is interesting to note the number of times the memorized letters can be heard and recognized. If this system is tried, piok the most used letters first.

Another method of learning the code is With the aid of a code-practice buzzer or uscillator, or by means of any one of the several types of athomatic code-sending matchines which are commercially available. The latter can be adjusted so as to send the corle at any desired speed.

A code oscillator is perhaps the most suit-

able device for the student. It consists of a vacuum tube, a conventional autio transformer, several small resistors and papertype condensers, a small transformer for supplying current to the heater of the tube, a telegraph key, a pair of headphones, a filament transformer, and a " D " battery. Two vacuum tube oscillater's are shown in the accompanying circuit diagrams, figures 2 and 3. Either is a satisfactory device. The oscillator shown in figure :2 uses a cathode-leater type tube and functions in what is known as a "Hartley" oscillating circuit. Tubes with either 2.5 wolt or 6.3 wolt heaters can be substituted with efural success, providing the proper type of filament transformer for the particular tube is used. The audio transformer can be of any commonly-used turnsratio, the customary type having a ratio of one-to-three. The telegraph key is in series with the leatphones and plate (" p ") terminal of the audio transformer. The pitch of the note can be varied by merely increasing or decteasing the " B " voltage.

The capacity of the two fixed condensers shown in the diagram in figure 2 also will have an effect on the resultant tone from the oscillator: almost any desirable tone can be secured by changing these values, though those shown in the circuit diagram have proven gencrally satisfactory.

This vacum tube code practice oscillator is far more practical than the simple buzzerdevice shown in figure 1 because it emits a more stable tone, which can be varied to suit the taste of the individual.

- The Successful Telegrapher

Not all telegraphers are good operators. Each telegrapler acquires what is known as a "fist", i. e., his own individual style of sencling on a telegraph key either of the hand-type or the automatic variety. The latter key is kuww as a "loug", "speed key", or "automatic key" and should not be employed by the beginner until he has become thoroughly adept in sending the code by means of a standard land-type key.

The adjustment of a hand-type key is almost as important as its actual use. It is advisable that beginners have the telegraph key adjusted by an experienced amateur or other telegraph eperator. The "feel" of the key is all-important. It determines to a large extent the nature of the characters which the operator is sending. If the key is opened too wide, the sending will be "choppy"; if not opened sufficiently wide, the sending will sound "sloppy". Neither

Figure 4-Pictorial Wiring Diagram of Code Practice Oscillator Shown Schematically in Figure 3.
is desired. nor to be tolerated. The key should be so adjusted that the spacing between its contact, when ready for use, is approximately $1 / 18$-inch.

The telegraph key should be firmly secured to the operating table or motmted on a board. The tension of the spring on the lever of the key should be adjusted so that no effort is encountered in depressing the key. If the spring is made too stiff in adjustment, the operator will soon tire his hand; however. the tension must be sufficient in order that the key will suap back instantly when released.

To use a telegraph key properly one's arm should rest on the table, in the manner shown in the accompanying sketcl. The third and index fingers are placed on the flat portion of the knob oit the key, the thumb being permitted to touch gently the side of the knob in such a position that it literally "floats". This is much preferred to placing the thumb securely under the key knob.

The wrist must be permitted to move freely in an upward-and-downward motion. with the arm comfortably at ease on the table, and the third and index fingers lightly

Figure 5-Code Practice Ensemble Consisting of Vacuum Tube Oscillator, Telegraph Key and Headphones, as Shown In FIgures 2 and 3.
resting atop the key knob, the thumb "floating" at the side of the knob as indicated above. Do not grasp the key as though it were ready to walk off the table. Grosp it arntly, making no effort oi the task of handling the key.

Place the Code Chart on the table near the telegraph key. Connect the code practive set and send a few preliminary "dids" and "daws" to get the feel of the key. Then send the letter " λ " on the key. Send "did(law". letting the combination "roll into itself". Remember never to send it as "elid daw" with a noticeable space between the "did" and the "daw'. Learn the knack of "rolling the characters into one another". This is what is known as "smooth sending". You will not succeed in mastering this technique if the tension of the key is too great on ii the contacts are spaced ton far. Con-

Correct Position for Arm and Wrist, and Showing How Third and Forefinger and Thumb are Placed on Key Knob.
tinue to practice sending the letter " A " until you have full control oi the "touch" of the key, and until you can send this letter over and again without error. Send "diddaw", then a short pause, then another "diddaw", and repeat the process with a slight panse iollowing each "diddaw".

Do not send too fast. Send cautionsly, steadily, so that you can distinguish every character you make upon the key. li you camot distinguish the characters while you are sencling them, how could it be expected of another to copy what you are sending? Too many students make the mistake of attimpting to send faster than they can recio'c.

Ater you have succeeded in sending the entire code from A to $\%$ withont error, making sure that you have paused between each letter of the alphabet. continue your practice by sending words, then complete sentences. A slight pause should exist between each of the letters making up a word, then a longer pause between the words in the sentence. Therein lies the secret of good, clean telegraphing.

It is advisable to attempt to interest a friend in practicing the code with you. However, first acquaint yoursclf with the characters of each letter of the alphabet, without

Dots Alone, Dashes Alone, and Combinations of Dots and Dashes are Found in the Code Groups Above. These are the More-Easlly Memorlzed Combinations in the Radio Telegraph Code.
assistane from uthers, so that you can send them upon the key without reference to the code chart. Aitempt to relax when sending or receiving. Calmly make the characters in an effortless manner. When receiving, relax in your chair. If someone is sending to von on a mactice set, write down the characters as sout intercept them. If a letter is sont which you do not instantly recognize from menory, ask the sending operator to "break", on pause, until you have recalled the character from memory, or ask the operator to repeat the character until sou have recalled it. Ii this fails, refer back (o) the code chart to determine it. Do mot permit a letter to skip by, It is better either to patise or to ask for a repeat. because by this means the hatel-to-learn combinations will be more yuickly mastered.

The methen of leaming the code adwoeated here has become known as the "sumnd" system by reason of the fact that the characters ate memerized in the form of sounds ("dids" and "daws") and not as dots and dashes. Repeat these "dids" and "daws" t" yourself throughont the day or in your spare moments. lntone signs conveniently located nearby; sencl familiar phrases and sentences by means of your tongue. It will

Correct "Grip" and Position of Wrist for Operating Automatic Key ("Bug").

A Typical Automatic Code-Practice Ensemble.
surprise you to realize how quickly and casily you can learn the entire code by thus utilizing spare noments.

The art of properly spacing letters andi words is even more coniplex than that of learning the code itself and of the utmost importance in the training of a goorl telegrapher. For this reason it is well to memorize such clificult combinations as those which are made up entirely of dashes. The sentence: Tom To Otto, for example, consists of nothing but dasles, with spaciner between the letters and words. Another uroup: She Is His, consists entirely of dots. with proper spacing between letters and words. The paramount considerations for clean-cut telegraphing are repeated and summarized as follows:
(1) The key contacts should be spaced no more than $1 / 14$ inch,
(2) The tension of the spring on the key should be quite light.
(3) Send slowly until you have mastered the code, then improve your speed.
(4) A dot is made with one rapid depression of the key.
(5) A dash should be approximately threc times as long as a dot.
(6) "Roll" the characters of a single letter together, with no pause between them.
(i) Pause slightly between letters of a word. (Approximately one dash.)
(8) Pause a bit longer between words. (Approximately five rints.)

Chapter 5

Antennas, Feed Systenis, and Coupling Metiods

ARADIO wave in space can be compared to a wave in water. The wave, in either case, has peaks and troughs; one peak and one trough constitute a full wave or one ratelcngth.
The radio wave consists of condensations and rarefactions of the energy as it travels through space, and this wave induces electrical energy into an antenna in the case of reception. When the antema is used for transmission, it radiates radio waves, due to the varying intensity of the electrical field surrounding the wire.
The antenna is simply an electrical conductor which either receives or transmits radio-irequency energy. The phenomena of receiving is similar to that of transmission and an antenna can, therefore, be used with equal effectiveness for either purpose.

An antenna is somewhat similar to a tuned circuit; it has a fundamental or resonant frequency which is dependent upon the distributed capacity and inductance of the wirc. The antema is most efficient for transmission and reception when it is receiving or transmitting on its resonant frequenis.

Radio waves travel with approximately the speed of light, which is $300,000,000$ meters per second. The frequency of a radio wave can be expressed in terms of wavelength, from the formula:
$300,000,000$

$$
F=\frac{}{\lambda}
$$

where F is the frequency in cycles per second,
λ is the wavelength in meters.
The physical dimensions of a transmitting antemna at resonance bear a direct relationship to the wavelength of the radio wave, as cloes an organ pipe. A long, straight wire in space is said to be "one half wavelength" long when it is electrically resonant on the "fundamental." The actual physical length of the wire is about 5 per cent less than the physical length of one half the radio wave, due to "ond cffects" of
the antenna wire and because the radio energy travels at a lower speed in the wire than it does in space.

A tuned circuit is always resonant to a half wavelength, so that the fundamental wavelength or resonant frequency of an antenna or tuned circuit is equivalent to approximately twice the antenna length. An antenna is also resonant to the frequencies which are harmonically related to the fundamental resonant frequency. Compare the "overtone" oscillations of a guitar string. The fundamental frequency is known as the first harmonic; twice this frequency is the second harmonic; three times becomes the third harmonic, etc.

From the formula of frequency and wavelength previously given, it is apparent that one is proportional to the reciprocal of the other. The fundamental wavelength is known as a half zaze, and the second harmonic would, therefore, be a full zuaic. The third harmonic would be three halfwavelengths, etc.

Nearly all forms of antennas used by amateurs for general coverage are of either the Hertz or Marconi type. The Hertz antenna consists of a wire suspended above the earth and insulated from it; it is of such a length as to be some multiple of a half wave.

A Marconi antenna is usually one quarter or three quarters of a wave in length and is connected to the carth or to a ground screen for the purpose of obtaining resomance. The ground acts as a mirror in effect and takes the place of the extra quarter wave that would be required to resonate the wire were it not grounded.

Marconi antemas are normally used for longer wavelengths, where the physical length of a half-wave antenna wire makes such an antenna impractical.

Hertz antennas usually are more efficient because there is a power loss due to the resistance of the ground connection required with a Marconi radiator. The Marconi antema is comnected to ground at a current
peak; the resistance of this connection to earth often causes an excessive loss in power when transmitting or receiving.

- Radiation Field

A wire conmected to any source of oscillating electrical energy will radiate radio waves due to the varying intensity of the electrical field surrounding the wire. The field closest to the wire is called the induction ficld; that part of the field which escapes forms the energy in the radiated field, which is urged outward and diffused in all directions through space. Any wire supported in space and within range of the radiated field will intercept the energy and will have induced in it a radio-frequency voltage, which is detectable as an incoming sigual by receiving apparatus.
Radio waves are transmitted from an antema through space in two general types of waves. One is called the gromid acaze. which follows approximately along the surface of the ground and is rapidly attenuated for very short waves. The ground wave is useful in long-wave radio communication and for very short distance work on ultra-short wavelengths. Best broadcast reception is always obtained when the receiver picks up only the ground wave, which means that, normally, it must be within a 100-mile radius of even a high power transmitter. Fading effects take place at greater distances, due to the interference between the ground wave and the sky waves.

Figure 1-Reflection of Radio Waves from the Kennelly-Heaviside Layer Around the Earth

That portion radiated upward from the antemna is known as the sky waic, since it is reflected back to earth by ionized layers in the upper atmosphere known as The Kemelly-Heariside Layers, as shown in figure 1.

At very low angles of radiation, the waves start out practically tangent to the
earth's surface, penctrate into the ionized layers, and are bent back to the earth at a very distant point. Higher angles of radiation are bent back to the earth at shorter distances until a certain high angle is reached at which radiations will not be bent back to earth. This angle varies with the season of the year, frequency, and time of day. At angles slightly less than this value at which the layers are penetrated, the radio, waves can be carried around one of the upper layers to extremely great distances before being bent back to earth.

The Kennelly-Heaviside Layers are strata of ionized air molecules; their ionization is due to the ultra-violet and similar extremely high-frequency radiations from the sun. The refracting layers lie above the earth at distances from about fifty up to several humdred miles elevation. The relative density of the layers is not constant, but varies from year to year and scems to depend upon sun-spot activity.

The time reguired for the sky waves to reach the receiver varies in accordance with the number of reflections to and from earth and the density of ionization in the Ken-nelly-Heaviside L.ayers. Obviously, the time required for a ground wave to reach the receiver will be less than that of a highangle sky wave. When two or more waves from these different paths arrive at the same instant (in-phase), the signal strength will be greatest. If the time lag is great enough so that one wave tends to nentralize another (out-of-phase), the signal intensity will decrease, resulting in the phenomenon known as fading.

The rate of fading varies with frequency, and even a slightly different frequency sometimes has an entirely different rate of fading. A modulated wave from a radiophone station consists of a band of frequencies being transmitted: variation of fading within this narrow band results in distortion in the received signal. This effect is known as selectiac fading, because certain side-band frefuencies may be stronger than others at the receiving point, resulting in bad distortion of audio cquality in the output of the receiver.

- Electrical Properties

A wire stretched out into space has inductance of the same type as that produced by wire wound into a coil. This antenna wire also has a distributed capacity to nearby objects, such as the ground. As in
any electrical circuit, inductive reactance and capacitive reactance impede the flow of current in either a transmitting or receising antema. At resonance, the inductive reactance is equal and opposite to the capacitive reactance, with the result that the electrical current is limited only by the resistance.

The resistance consists of several components, such as wire resistance, dielectric losses from nearby objects, ground resistance, insulator losses, and radiation resistance. The latter is a fictitious term which is useful in expressing the power radiated by the antenna. It is that resistance which would consume the same amount of power that is radiated into space by the antema: the power lost in other forms of resistance is wasted. Shortwave antennas generally have a very high ratio of radiation resistance to loss resistance and are, therefore, very efficient.

In a resouant antema, standing toates of current and voltage exist. In a typical half-wave antenna, the current is maximum at the center and zero at the ends. The radio-freguency voltage is maximum at the ends and minimum at the center. These standing waves exist because an impressed radio wave will travel out to the end of the antema and he reflected back toward the center, since the end is an open circuit corresponding to a large mismatch of inpelance. The resmant antema is of such length that the reflected wave will be inphase with each succeeding impressed wave or oscillation, resulting in a standing wave along the antenna wire. Standing waves produce more actual radiated power into space from an antema than when the values of voltage and current are uniform and of lower value all along the antenna wire. Radio-frequency feeders to an antenna are generally designed for uniform distribution of current and voltage along their entire length (no stancling waves). In other words, the fecders should not radiate be-

SMOW WE mOw sTANDING AVES EEIST ON A RESONANT AMTENNA

Figure 2
cause the antema proper should alone be the radiating medium.
The inpedance alung a lalf-wave antenna varies from a minimum at the center to a maximum at the ends. The impedance is that property which determines the antema current at any point along the wire for the value of radio-frequency voltage at that point. The main component of this impedance is the radiation resistance; normally, the latter is referred to the center of the half-wave antemua where the current is a maximum. The square of the current multiplied by the radiation resistance is equal to the power radiated by the antema, for convenience these values are usually referred to the center of a half-wave section of antenna.

The curves in figure 3 indicate the theoretical center point radiation resistance of a half-wave horizontal antenna for various heights above ground. These values are of some importance in matching radio-frequency feeders to the antemna in order to obtain both a good impedance match and an alsence of standing waves on the feeders.

Figure 3-Effect of Height on the Radiation Resistance of a Dipole

A transmitting antenna usually consists of a wire of definite length either grounded. ungrounded, or comected to a counterpoise. A ground made by either a direct or capacitive comection acts as a "mirror" to the antena wire, thereby completing the circuit. With a direct ground connection, the antenna may be either an electrical quarter wavelength or an odd multiple of a quarter wavelength. A very short wire can be loaded to resonate as a Marconi by means of a loading coil to ground; a wire slightly
over a quarter wave long can be resonated as a Marconi by means of a series condenser to ground. In other words, if a Marconi is not an exact odd number of electrical quarter waves long, the reactance can be tuned out by means of a tapped coil or variable condenser, depending upon whether the antenna is too long or too short. If the antenna is not resonant and presents an inductive reactance, we insert just the right amount of capacitive reactance. If it offers capacitive reactance, we insert just the right amount of inductive reactance to establish resonance.

- Counterpoise

A counterpoise will often reduce the losses incurred in a ground connection when a Marconi antema is used. A counterpoise consists of one or more wires insulated from the ground and supported a few feet above ground. A counterpoise network, such as shown in figure 4 , will act as a condenser plate with high capacity to earth; it will elininate the resistance loss of a high-resistance ground connection.

Figure 4-Typical Counterpolse System with Loading Coil and Series Tuning Condenser

The counterpoise wires can be of any length, preferably about a quarter wavelength at the frequency of operation. The network should spread-out over a wide area under the antenna and in as many directions as possible. The plysical construction often depends upon the space available. Above about two megacycles, a counterpoise (especially a single wire one) takes on the aspects of a radiator, rather than a condenser plate.

- Low Resistance Grounds

Vertical antennas with heights of a quarter to five-eighths wavelength are often used in connection with an elaborate ground wire system, as shown in figure 5.

Figure 5 Ground System For Vertical Radiator,
Wires of any size, from No. 14 to No. 8 gauge, are rum out in all directions and buried a few inches under the surface of the earth. These wires should extend outward about a quarter to one half wavelength from the base of the antenna. As many as 120 radial wires are sonetimes used in order to reduce the resistance of the ground return which may represent a very appreciable power loss with any form of Marconi antenna.

- Directional Properties

A simple vertical antenna is non-directional in a horizontal plane. All horizontal antemas produce a radiation field which is more intense in certain directions than in others. The radiation field around a horizontal antenna depends upon its height above ground for different "vertical" angles of radiation, and upon the length of antenna and the tilt or angle of the wire with respect to ground.

The approximate radiation patterns of a horizontal half-wave antemna for various heights above ground are shown in figure 6. The relative energy is indicated for various vertical angles above the surface of the earth, for both broadside- and end-radiation from the antenna wire.

- Angle of Radiation

The Hcaviside Layer reflects the shortwave and broadcast signals back to earth. This effect is used for long distance shortwave transmission and reception. When the major portion of the transmitted energy is directed at a particular angle above the horizon (some vertical angle), the signal will be stronger at the receiving point. The best angle of radiation depends upon the distance between stations, the frequency, and the condition of the Heasiside Layer.

Low-angle radiation is preferable for extremely long distances because the transmitted wave docs not go through as many reflections from the Heaziside Laver and
surface of the earth between the transmitter and receiver. A certain high critical angle above the earth will sometimes allow the signal to travel through the Heaviside Layer to the distant receiving point, without ground reflections. However, this type of communication is not reliable, due to changing conditions of the Heaviside Layer. Intermediate vertical angles of radiation tend to reflect the signals back to earth at shorter distances.

These higher angles of radiation are suitable for intermediate distances of communication. Each time the signal is reflected from the surface of the earth to the Heaviside Layer the signal strength is reduced, due to losses which arise from the fact that the earth is not a perfect reflector. These "carth reflcction losses" are not as great when the path between radio stations is over salt water.

The major radiation from vertical antemas is at low rertical angles above the earth, as shown in figure 7 .

$\frac{3}{8}$ wave above ground

half wave above groune
Figure 6-Horizontal Half-Wave Antenna Radiation Patterns.

Short: IVertical Antenna Over Perfect Ground Gives Low Angle Radiation.

Quarter-Wave Grounded Antenna Concentrates More of the Radiation at a Low Angle Than the 1/8-Wave Antenna Does

Full-Wave Antenna Gives Maximum Radiation Upward at an Angle of 34 Degrees from the Horizon.

Increasing Height of Antenna Above Average Type Ground Lowers Angle of Radiation to 7.5 Degrees, as Shown.

FIGURE 7-ANGLE OF RADIATION OF HALFWAVE VERTICAL ANTENNAS DEPENDS UPON CHARACTER OF EARTH OVER WHICH ANTENNA IS PLACED.

The earth acts as a reflector and prevents the vertical radiator from transmiting a wave outwardly exactly parallel to the surface of the carth, unless the vertical antema is high above the earth. The radiation from the vertical antema in a horizontal direction is uniform, as shown by the perfect circles in the right-hand patterns of figure \%.

Horizontal antemas, when placed at certain heights above the earth, will be most efficient at certain vertical angles, as shown in figure 6.

- Antenna Impedance

A resonant antenna is one which has an impedance equal to the resistance, which in this case is largely radiation resistance. The radiation resistance varies along the antenua wire and reaches a minimum value at the zoltage node or nodes. The radiation resistance at the center of a half-wave antemua is approximately 33 ohms, and at the ends approximately 2400 ohms if the antenna is high above the earth.

Antenna feeders can be connected in such a mamer that they can be terminated with any value of impedance between 73 and 2400 ohins in order to obtain impedance matching for maximum power transfer from the transmitter to the antema proper.
A non-resonant r.f. feeder of infinite length has a characteristic surge impedance which is a function of the wire diameter and spacing between the wires, in the case of a two-wire feeder. Short r.f. lines, such as used for coupling transmitters to the antenna, can be made to act as lines of infinite length by terminating the far end of the feeder in an impedance that will match this characteristic surge impedance of the feeder. In a non-resonant r.f. feeder that is properly terminated, the r.f. current is of a constant value throughout the length of the feeder (there are no standing waves of voltage and current on the feeder).

In actual practice, there is always a sinall variation of r.f. current along a non-resonant feeder due to difficulties in matching impedances properly and in irregularities in the line, such as bends in the wire, spacing insulators, etc.

Concentric line feeders, tevisted-pair feeders, two-wire and four-wire matched-impedance feeders, and single-tuire feeders are some of the so-called "non-resonant" feeder systems.
Resonant feeders are those which have
standing waves of voltage and current along the feeder line; this type of feeder must, therefore, be tuned (or cut) to resonance. The lines are prevented from radiating energy by using two wires spaced only a few inches apart, and in which the field of one wire tends to cancel that of the other. These feeders essentially consist of "folded" resonant sections of the antenna proper. Center-fed and end-fed Zepp. feeders and matching stubs are types oi resonant r.f. fecders.

- Single-Wire-Fed Antenna

A single-wire feeder has a characteristic surge impedance of from 500 to 600 olmins. depending upon the diameter of the feeder wire. This type of feeder makes use of the earth as a return circuit tlrough the earth's capacity effect to the antenna and iecder. The actual earth comection to the transmitter may have a relatively high resistance without causing appreciable loss of r.f. encrgy. The impedance of the feeder of 500 to 600 ohms is a great many times more than the 5 to 30 olums resistance of a Marconi antema at the grome comection. The additional resistance of a few olms at the earth connection produces a large power loss in the latter case, and relatively little loss in the case of single-wire fecter.
-The single-wire feeder should be tapped to either side of a current loop in a resonant antenna at a point of impedance matching.

The current loop occurs at the center of a half-acare antenna and at the center of cach half-wace "section" in a long-wirc antenna. The impedance at this current loop is approximately 73 ohms for most halfwave antemas (varying with height above ground). In order to match the 500 - or 600 -olm impedance of the feeder, it is necessary to comect it to the antenna at a point approximately $1 /$ Gith or $1 / \pi$ th of the total length of the antenna wre either side of center. There will be no standing waves on the feeder when the impedances are perfectly matched, and maximum efficiency wiil then result.

This point of perfect impedance match unfortunately is not suitable for harmonic operation of the antenna. By having a small imperiance mismatch at the fundamental frequency, the single-wire-fed antenna can be used on several harmonically related shortwave bands. The feeder should be connected to the anterna at a point $1 / 6$ th, rather than $1 / \pi$ th, of the total length of the antenna

Figure 8-Single Wire Fed Antenna for All-Band Operation. An antenna of this type for 40-, 20and 10 -meter operation would have a wire 67 feet long, with the feeder tapped 11 feet off center. The feeder can be 33,66 , or 99 feet long. The same type of antenna for $80-, 40-, 20$ - and $10-m e t e r$ operation would have a wire 134 feet long, with the feeder tapped 22 feet off center. The feeder can be either 66 or 132 feet long. This system should be used only with those coupling methods which provide good harmonic suppression.
wire either side of center. A simple manner in which to find this point is to divide the antemua into three equal lengths, and then comect the feeder to the antenna at a point which is $1 / 3 \mathrm{rd}$ of the total length from either end.
This all-wave type of antenna fecder connection restults in a slight mismatch (not enough to be serions) on the fundamental irequency of operation.

In a perfectly matched design at the fundamental frequency of operation, the impedance mismatch is very great when the antemua is operated on its harmonics. It is better to compromise by comnecting the feeder to the antenna as shown in figure 8, so that the system will operate efficiently in the larmonically related bands.

The effect of the small standing wave on the feeder can be practically eliminated by making the feeder some multiple of quarter waves in lengeth. The impedance at the station end will then be purely resistive and no detuning effect will be evident in the final amplifier circuit when the feeder is either connected or disconnected from the amplifier. The formula for calculating a fecter length in feet is:

$$
1=\frac{234,000}{\mathrm{f}_{1}}
$$

where 1 is the feeder length in feet,
f_{1} is the lowest frequency of operation in kilocycles.
The length of the antema wire in figure 8 is also a compromise for all-band operatimn. The harmonics of an antenna wire for any given length are not exact multiples, due to the culd cffects of the antenna. The end effect shortens each free end of the antemia by approximately $21 / 2$ per cent of a half wave. This necans that a half-wave antemua has a physical length approximately ${ }^{5}$) per cent less than the length of the radio wave in free space. In a long antema which has several half-wave sections, the intermediate half-wave wire lengths have no end effects and, consequently, they are almost as long as the actual radio wave in space.

In this case, only the two quarter-wave sections at each end of the wire are shortened, which results in less than a per cent total shortening of the entire wire length when working on harmonics. This means that a wire cut for $3,600 \mathrm{kc}$. will be a little short for operation as a full wave autenna on 7.200 kc . which is the second harmonic
of 3.600 kc . Fortunately, the single-wire-fed antenna can be operated satisfactorily over a band of frequencies wide enough that this effect is no handicap.

The antema wire should be cut so that it will resonate at the middle of the highest frequency band desired on its fourth harmonic, because this gives the best compromise for operation in three harmonically related bands.

The formula for calculating the length of the alltomna wire for all-band operation is:

$$
\text { I. }=\frac{(\mathrm{K}-.05) 492,000}{\mathrm{f}_{z}}
$$

where L is the antenna length in feet.
f_{z} is the frequency in kilocycles of the chosen middle band of operation in a three-band antenna,
K is the number of half wavelengths at that frequence:
These nulti-band single-wire-fed antennas are generally designed for three bands of operation, such as 80,40 and 20 , or 40 , 20 and 10 meters.

The single-wire feeder for all-band operation should preferably be some nultiple of a quarter wave (of the lowest frequency band) in length; however, it can be made any length (up to several thousand feet). For single-band operation, the feeder can be any length, prozided it is attached to the antenna at the point of cxact impedance match. In any event, the feeder should rum at right angles to the antema wire proper for a distance of at least a quarter wavelength at the lowest frequency of operation. A good "earth" ground connection should be made to the transmitter for most effective operation of a single-wire feeder.

- Coupling the Single-Wire Feeder to the Final Amplifier

The simplest way to comect a single-wire feeder to the final amplifier is to tap the feeder directly to the final amplifier tank coil, at a point on the coil which causes the amplifier to draw its normal d.c. plate current. A high-voltage mica condenser should be comected in series with the feeder and tank coil for the purpose of keeping d.c. plate voltage off the feeder, thus avoiding possible electric shock to persons touching the antema or feeder. The mica condenser can be of any capacity, from . 001 to $.006 \mu \mathrm{fd}$., and should be rated to stand the plate voltage (plus modulation peaks if phone). This mica condenser is not required with a shumt-fed final amplifier, as no d.c.
appears on the plate tank coil with this method of plate voltage feed.

This simple antema coupling method does not prevent the radiation of harmonics from the final amplifier. The single-wire-fed antema offers practically no discrimination against harmonics and, therefore, very effectively radiates these harmonics. The circuits shown in figures 9 and 10 practically elimimate harmonic radiation and provide a balanced load to the final amplifier.

Figure 9 Single Wire Feeder Coupling to Final Amplifier.

Figure 10-Alternate Method of Coupling SingleWire Fed Antenna by Tapping the Link Line DIrectly to the Antenna Coll. The Lower End of the Antenna Coil Should be Grounded.

Direct connection of the feeder to the amplifier tank coil generally causes an unbalance, especially in a push-pull r.f. amplifier. The tuned antenna circuit is tuned to the same frequency as the tank circuit; it can be made of similar coils and condensers, with approximately 10 per cent fewer turns on the antenna coil then on the plate coil. The antenna coil should have a series of taps, soldered to various turns on the coil. in order to connect the feeder to the point which gives correct impedance match to the tuned-antema circuit. The point of connection depends upon the $\mathrm{L}-\mathrm{C}$ ratio in this antema tank circuit and can be found only by experiment. The bottom end of the antema coil should be connected to a good "earth" ground.

A small therno-couple meter can be connected in serics with the feeder, or a small flashlight globe can be shunted across a few inches of the feeder wire for indicating the comparative current flowing through the feeder to the antenna, as shown in figure 11.

- Single-Wire-Fed Antenna Tuning Procedure

Referring to figure 9, the amplifier tank circuit $\mathrm{L}_{1}-\mathrm{C}$ is tumed to its resonant dip with the link coupling circuit remored from the tank circuit. Plate voltage should be reduced in order to prevent flashover in condenser C. The antenna tank circuit L.a-Can be checked for the correct number of turns in L_{t} by holding this tuned antenna circuit close to the amplifier tank coil, then tuning it in the same manuer as a wavemeter is tuned. The plate current in the final amplifier will rise sharply when the circuit $\mathrm{L}_{1}-\mathrm{C}_{2}$ is tuned to resonance (with the antenna feeder removed). The antenna

Figure 11
Resonance
Indicator

tank circuit can then be placed in its permanent location a few feet from the transmitter and coupled to the final amplifier coil by means of one or more turns of wire around coil L_{1} and L_{4} in the link coupling eircuit.

The feeder should be connected to various experimental taps on the coil 1., and the antenna tank then tuned to resonance. The proper tap comection is usually iound at a point about $1 / 4$ th of the total number of turns from the grounded end of L.

The adjustment procedure for tuning the system consists of always keeping the amplifier tank circuit tuned to minimum plate current, then making other adjustments which finally brings the cl.c. plate current to its normal value at the point of lezest dip in plate current tohen twing condenser C. The lamp indicator in the feeter must be observed while adjustments of link conpling, feeder tap connection and tuning of C_{2} are made in order to arrive at the point of maximum antema power at the point of normal plate current in the final amplifier. Maximum curvent in the r.f. feeder denotes greatest poaecr input to the antenna at that frequency.

The circuit C_{2} - L , is automatically tuned to resulatice during this tuning procedure.
since condenser C_{2} should be tuned to the point which draws maximum plate current in the firal amplifier. Just remember to tume C for minimum plate current and C_{2} for maximum. Too many link-coupling turns around cither or both coils will make it very difficult to tune the condenser C_{2} without greatly affecting the amplifier tank condenser (C) setting at its adjustment of minimum plate current. Insufficient link coupling will not enable normal amplifier current to be drawn, even when the antenna tank circuit and feeder tap adjustments are correctly made.

- Two-Wire Matched Impedance-Fed Antenna

A two-wire non-resonant feeder is somewhat more efficient than a single-wire feeder, though the principle of operation is the same. The two-wire matched-impedance-fed antema is suitable for one-band operation unly. A half-wave antenna is comnected to the feeder by means of a matching section 1^{*} in figure 12.

The two-wire line has a spacing of several inches between wires, and, in order to match its impedance of several hundred ohus at the antenna, it must be fanned-ont to each side of center of the antenna. The distance between T and T_{1} and the length Y . figure 12 , can be easily calculated for ang desired frequency of uperation.

Figure 12 -Matched Impedance " Y "' System

The characteristic surge impedance of a two-wire line can be found from the formula.

$$
Z=2 i 6 \log _{1 n} \frac{b}{a}
$$

where Z is the surge impedance in olms,
a is the radius of the wire.
b is the distance between the centers of the two wires.
The spacing of a two-wire line is normally chosen at approximately 600 ohms. The spacing can be calculated by the approximate formula of

$$
S=1.50 \times r
$$

where S is the distance between wires, r is the radius of the wires.
A typical two-wire line consists of No. 12 wires, spaced 6 inches, and supported very few feet by coramic feeder spacers.

The length of the half-wave antenna can he calculated from the formula:

where $L_{\text {. }}$ is the length in feet.
f is the transmiter frequency in kilocycles.
The portion of the antemba between the two taps T and T_{1}, (figure 12) can be calculated from this formula:

118,000
$X=-\frac{}{f}$.
where X is the distance T to T_{1} in feet.
f is the transmitter frequency in kilocycles.
The impedance-matching scetion $)^{\circ}$ in feet can be computed from

117,000

This type of antema is often used for the shortwave hands, such as 5,10 and 90 meters. The transmission line should be at right angles to the antcma for a distance of at least one-third the antenna length. Careful adjustment of the feeder comections T and T_{1} in each antenna installation will give correct impedance match and a minimum of standing waves along the ieeder. No sharp bends shomld be tolerated in the feeder.

Standing waves can be detected in a twowire feeder by means of a standing arare defcioror, illusirated in figures 13 and 14.

Flgure 13-"Standing Wave Detector" and Field Strength Meter. The Device Is Moved Along the Feeder or Antenna, Held Close to the Wire in the Same Relative Position. A Variation of Current Denotes Standing Waves.

Figure 14. Simple Circuit Diagram of Device lliustrated in Figure 13.

A variation in meter reading as the coupling loop is moved along the feeder line at a constant distance from one of the wires indicates the presence of standing waves of feeder current. If the transmitter has suffi-

Two-Conductor Open-Wire-Line Impedance.

No. 12 Ga. Wire Line Im-	No. 14 Ga. Wire pedance Line Im- pedance in Ohms	No. 16 Ga. Wire Line Im- pedance in Ohms	Wire Spacing in Inches
470	500	525	2
550	580	600	4
600	630	660	6

cient power output, a neon bulb can be touched to the feeder and the relative amount of glow in the bulb will indicate the variation in feeder voltage. Any nonresonant r.f. feeder should have nearly constant current and voltage throughout its entire length.

- Zepp Fed Antenna

When resonant r.f. feeders are connected to the end of a resonant antenna, the system is called a $z c p$. antenna, as shown in figure 15.

Resonant feeders can be connected into the center of a half-wave antemna, as shown in figure 16. In this case the system is known as a center-fed zepp.

Figure 16-Center-Fed Zepp. Antenna.
End-fed zepp. feeders must be some odd multiple of quarter waves in length in order to be resonant. The actual length of the feeders can be varied to some extent by series or parallel tuning of the antenna coupling coil L_{2} or L_{2} in figure 15 . The number of turns in the coupling coil depends upon the size of tuning condensers and the actual length of the feeder wires.

The center-fed zepp. antenna in figure 16 requires feeders an even number of quarter waves in length. A common value is a half wavelength, so that the antenna and feeders will be of the same total length.

Approximate feeder lengths and tuning methods for end-fed zepp. antennas are given in the accompanying charts.

Zepp. Feeder Tuning Chart.

Length of Feeders				Type of Feeder Tuning to Use
Up to One Quarter Wave	Parallel Tuning			
Between One and Two Quarter Waves	Series Tuning			
Between Two and Three Quarter Waves	Parallel Tuning			
Between Three and Four Quarter Waves	Series Tuning			
Between Four and Five Quarter Waves	Parallel Tuning			
Between Five and Six Quarter Waves	Series Tuning			

For
5 meters one quarter wave is 4 ft .
10 meters one quarter wave is
20 meters one quarter wave is 16 ft .
40 meters one quarter wave is 33 ft .
80 meters one quarter wave is 66 ft .
160 meters one quarter wave is 132 ft .

Band	Length of Flat-Top
160 meters.	250 feet
80 meters.	130 feet
40 meters.	66 feet
20 meters.	. 33 feet
10 meters.	16.5 feet
5 meters. 8 feet

The flat top portion of a zepp. antemna can be calculated from the formula:

$$
\mathrm{L}=\frac{468,000}{\mathrm{f}}
$$

where L is the length of the antenna in feet,
f is the transmitter frequency in kilocycles.
Another simple formula is:

$$
\mathrm{L}=1.56 \times \lambda,
$$

where L is the antenna length in feet,
λ is the wavelength in meters.
Variations of approximately 10 per cent in the length of the radiating portion can be tolerated when resonant feeders are used. The tuning system at the lower end of the feeders will compensate for errors in an-
tema lengtlo to to 10 per cent without serious radiation from the feeders.

Non-resonant fed antemmas must be cut to more nearly the exact length, which is affected considerably by presence of nearby objects, such as trees, houses, power lines, etc.

When zepp. feeders are tuned, their electrical length is varied. If the physical length of the feeders plus the inductance of the coupling coil is slightly less than an electrical quarter wave or odd number of quarter waves it is necessary to use parallel tuning. If the physical length is slightly greater, the feeders must be tuned with a series condenser.

Zeprd. antemas can be operated on harmonically related bands by tuning the system to resomance for each band of operation. This advantage is sometimes more than offset by losses in the resonant feeder system, in comparison to some of the other non-tesonant liness. Zepp. feeders are usually spaced approximately 6 inches apart and held in position with ceramic insulators tied to the wires at intervals of from 2 to 4 feet.

Figure 17-20- and 40-Meter Vertical Antenna with Zepp. Feeders. Ci-C2 Are . $00025 \mu \mathrm{fd}$. Condensers.

When zequp. feeders are comected to the end of an antenna, the arrangement is often called aroltage fid. since this is a point of high r.f. voltage and low current. When the feeders are commected into the center of a half-nave antema, the method is sometines called current fed. The r.f. voltage in the antemat is at a mimmu at this point, the current at a maximum. A point of maximum current is known as a current loop.

- Impedance Matching Stubs

A pharter- or hali-wave resomant line is often used as an impedancic matching stub. It is a special application of zepp. feeders

Comparative RF Feeder Losses

D. B.

Fre- loss per
quency 100 ft.
Type of Line

Abstract

7 mc. 0.9 (150 ohm impedance, rub14 mc. 1.5 ber insulated twisted pair 30 mc .3 with outer covering of braid.

7 (W. E. 3/8" concentric pipe 7 mc .0 .4 feeder with inner wire on 30 mc. 0.9 bead spacers. Impedance - 70 ohms.

7 mc. $0.05\left\{\begin{array}{l}\text { Open }\end{array} \begin{array}{l}\text { 2-wire line no. } 10 \\ \text { wire. } \\ \text { Impedance }-440\end{array}\right.$ 30 mc .0 .12 (ohms. $7 \quad$ Twisted no. 14 solid me. 3 weather proof wire, 14 mc. $4 \frac{1}{2}$ weathered for six months 30 mc. 8 (telephone wire).

and is extensively used with directive antennt arrays. The sliding bar or jumper used at the botton end of a stub in certain applications permits tuming the antema system to exact resonance. A non-resonant feeder system can be connected across the stub at a point of correct impedance match for coupling the antenna system to the transmitter or receiver.

Matching stubs are oftern applied to simple antena systems, as shown in figures 18. 19, 20, 21, and 22.

The feeder arrangement illustrated in figure 18 can be used in place of long zepp. fecders if the antemna is several hundred feet from the station. The losses in nonresonant feeders connected to a matching stub will be much lower than in zepp. feeders of similarly great lengths.

The antennas shown in figures 18 to $\because 1$ are suitable for operation on one band only: When the matching stub is connected in series with the current loop of the antema and tuned by means of a shorting bar, the shorted stub must be a half wave in length. The stub can be shortened to a quarter wavelength and leit open, as shown in figwre 20, providing the stub) wires are trimmed to exact length for tuning the antenna to resonance with the transmitter frequency.

The arrangement in figute 21 is often used: it is a well-balanced antenna system because both sides of the stub are comnected to separate half-wave antennas. The improdance at the free end of a quater-wave

Figure 18-Half-Wave Antenna with QuarterWave Matching Stub.

Figure 19-Center-Fed Half-Wave Antenna with Half-Wave Matching Stub.

Figure 20-Center-Fed Half-Wave Antenna with Stub Line Cut to Exact Length Without Shorting Bar.

Figure 21-Two Half-Wave Sections in Phase with Quarter-Wave Stub.

2OMETER DIRECTIVE ANTENNA - (2 MALFPWAVE SECTIOMS)
Figure 22-Pictorial of Figure 21, Showing Simpllcity of 20-Meter Antenna Installation.
stub is very high and reaches a minimum at the center of the shorting bar, just as in any half-wave antenna. The quarter-wave stub is, in reality, a half-wave antemat folded together in order to prevent radiation from that portion of the antenna.

A simple 20 -meter directional antenna is shown in figure 22, in which two half-wave antentas are operated in phase by means of a stub approximately 1% feet long. The stub is tuned to exact resonance by slidling the shorting link or bar along the two feeder wires. The current is high at the shorting bar; the connection to the two wires should, therefore, be soldered permanently in position once the proper point of comnection has been found. The radiators should be at least 28 feet above earth, preferably higher (35) or 40 feet).

- Shorted Stub Tuning Procedure

When the antema requires a shorted stub (odd number of quarter waves if the antemma is voltage fed; even number of quarter waves if radiator is current fed), the tuning procedure is as follows:

Shock excite the radiator (or one of the half-wave sections if harmonically operated) by means of a makeshift cloublet strung directly underneath where possible and just off the ground a few inches, connected to the transmitter by means of any kind of twisted pair handy.

With the feeders and shorting bar disconnected from the stub, slide along an r.f. milliammeter or low current dial light at about where you calculate the shorting bar should be and find the point of maximum current (in other words use the meter or lamp as a shorting bar). It is best to start with reduced power to the transmitter until you sce how nuch of an indication you can expect; otherwise the meter or lamp may be blown on the initial trial. The leads on the lamp or meter should be no longer than necessary to reach across the stub).

After finding the point of maximum current, remove the lamp or meter and solder a piece of wire across the stub at that point.

Starting at a point about a fuarter of a (fuarter wave (8 feet at 40 meters) from the shorting bar, comect the feeders to the stub). Then move the feeders up and down the stub until the standing waves on the line are at a minimunn. The makeshift doubet should, of course be discomerted and the regular feeders commected to the transmitter instearl during this process.

In checking for standing waves, take readings no closer than several feet to the stub, as the proximity of the stub will affect the reading of the standing wave indicator and lead one to false conclusions.

- Open-Ended Stub Tuning Procedure

When the antema requires an open stub (even number of quarter waves if the antenna is voltage fed; odd number of quarter waves if radiator is current fed) the tuning procedure is as follows:

Shock excite the radiator as described for tuning a shorted stub system, feeders disconnected from the stub and the stub cut slightly longer than the calculated value. Place a field strength meter (the standing wave indicator can be very easily converted into one by addition of a tuned tank) close enough to one end of the radiator to get a reading, and as far from the makeshift exciting antenna as possible. Now start cutting off the stuh wires together, a couple of inches at a time, until you pass the peak as registered on the field meter and the reading starts to drop. This means you have "passed" the point, but there is no way to determine the correct length without first cutting off a little too much. Solder on a few inches to each of the stub wires to correspond to the point of maximum field strength meter reading.

Now attach the feeders to the stub as described for the shorted stub system, but, for the initial trial comection, the feeders will attach more nearly $3 / 4$ of a quarter wave from the end of the stub instead of $1 / 4$ of a quarter wave as is the case for a shorted stub. After attaching the feeders, move them along the stub as necessary to remove standing waves on the line. If sliding the feeders along the stub a few inches makes the standing waves worse, it means the correct comecting point is in the other direction.

- Johnson "Q’’ Antenna

A popular half-wave antema for 5 -, 10 and 20 -meter operation is the Johnson " Q." This antemna has a special quarter-ware matching "transformer" in the form of a quarter-wave section of two rods or a fourwire closely spaced "cage" line. The usual arrangement has two aluminum tubes, as shown in figure 23. Figture 24 shows the complete system.
The aluminum tubing is $1 / 2$ inch in diam-

Figure 23-Pictorial Sketch of Johnson "Q.'"

JOHNSON "Q" ANTENNA
Figure 24
eter, spaced 1.6 inches apart, in order to obtain an impedance of about 200 olms. This value is the geometric mean between the antema center impedance of 73 ohms and the $600-\mathrm{ohm}$ impedance of the two-wire nonresonant line. The matching "transformer" introduces a negligible loss and eliminates the fanned-out section of a two-wire matched impedance feed system, such as the one described in figure 12.

The $600-$ ohm non-resonant line from the end of the matching "transformer" to the transmitter can be any length. The design formulas for the Johnson " Q " are given here :

$$
\begin{aligned}
L & =\frac{468,000}{f}, \\
I & =\frac{246,000}{f},
\end{aligned}
$$

where L is the antema length in feet.
l is the length of the matching section in feet,
f is the transmitter frequency in kilocycles.

- Collins Multi-Band Antenna

A special form of center-fed Zepp. antema will operate with low feeder loss on several harmonically related amateur bands if the
feeders are designed in such a manmer as to have a low surge impedance. When the antema is operated on the fundanental, the center imperlance is approximately $\mathfrak{z} 3$ olums; when the same antenna is operated in the next higher frequency band, it becomes a full-wave antema with a center impedance of approximately 1,200 ohms. Comsequently, the "compromise" feeder is designed to have an impedance which is the geometric mean of these two values or 300 ohms.

Parallel Tubing Surge Impedance for Matching Sections

Center to Center Sacing in Inches	Impedance in Ohms for $5 / 2^{\prime \prime}$ Diameters	Impedance in Ohms for $1 / 4^{\prime \prime}$ Diameters
1	170	250
	188	277
1.25	207	298
1.5	225	318
1.75	248	335
2		

Correct Values of Surge Impedance of $\lambda / 4$ Matching Sections for Different Lengths of Antennas.

Antenna Length In	Surge Impedance for Connection Into Two-Wire Open Lines with Impedances of		
Wave- length	500 Ohms	580 Ohms	600 Ohms
$1 / 2$	190	210	212
1	210	230	235
2	235	252	257
4	255	277	282
8	280	300	305

Matching section connects into center a current loop such as middle of a half-wave section.

This value of 300 olums can be obtained by using a line made up of two $1 / 4$-inch copper tubes, spaced $1 \frac{1}{2}$ inches apart. The impedance mismatel between 300 olims and \%3 olms, or 1200 ohtus, is four-to-one, which is not great enough to cause an excessive intensity of standing waves on the feeders. The line is made a multiple of quarter waves in length, which results in a resistive impedance of $\because 3$ or 1,200 ohms at the station enel of the line. A simple untuned pickup coil will comple the line to the transmitter or receiver.

Figures :2. and ab show details of this type of feeder.

1)esign formulas are as follows:

Chart for Collins Multi-Band Antenna.

Antenna	A	B	C	D	E	F	G
Antenna Length in Feet	136	136	$2751 / 2$	250	67	67	103
Feeder Length in Feet	66	115	99	122	65	98	$821 / 2$
Frequency Range in Megacycles	$\begin{array}{r} 3.7-4.0 \\ 7.0-7.3 \\ 14.0-14.4 \end{array}$	$3.7-4.0$ $14.0-14.4$	$\begin{array}{r} 1.7-2.0 \\ 3.7-4.0 \\ 7.0-1.3 \\ 14.0-14.4 \end{array}$	$1.7-2.0$ 3.7	$\begin{array}{r} 7.0-7.3 \\ 14.0-14.4 \\ 28.0-29.0 \end{array}$	$\begin{array}{r} 7.0-7.3 \\ 14.0-14.4 \\ 28.0-29.0 \end{array}$	$\begin{array}{r} 3.7-4.0 \\ 7.0-1.3 \\ 14.0-14.4 \end{array}$
Nominal Input Impedance in Ohms	$\begin{gathered} 1200 \\ \text { all } \\ \text { bands } \end{gathered}$	$\begin{gathered} 75 \\ \text { all } \\ \text { bands } \end{gathered}$	$\begin{gathered} 1200 \\ 160-80- \\ 20 \mathrm{M} . \\ \text { and } \\ 75 \text { on } \\ 40 \mathrm{M} . \end{gathered}$	$\begin{gathered} 1200 \\ \text { all } \\ \text { bands } \end{gathered}$	$\begin{aligned} & 75 \text { on } \\ & 40 \mathrm{M} . \\ & 1200 \\ & \text { on } 20 \\ & \text { and } \\ & 10 \mathrm{M} . \end{aligned}$	$\begin{gathered} 1200 \\ \text { all } \\ \text { bands } \end{gathered}$	$\begin{gathered} 1200 \\ \text { all } \\ \text { bands } \end{gathered}$

where L is the antenna length in feet,
l is the feeder length in feet,
k is the number of half wavelengths in the antenna,
f is the transmitter frequency in kilocycles,
m is the number of quarter wavelengths in the feeder.
Refer to the design chart for the Collins Multi-Band Antoma.

COLLINS MULTI-BAND ANTENNA
Figure 26 -Close-Up of Center of Antenna, Showing Feeder Connections.

- Multi-Wire Lines

An inexpensive 200 -ohm matching section for a " Q " antenna or a 300 -ohm feeder for a Collins "Multiband" system can be had by using a four wire feeder or matching section in order to bring down the surge
imperdance without resorting to heary tubing for the conductors. The four wires are equally spaced in the form of a square, and the opposite wires (not the adjacent ones) are comnected together at each end of the feeder or stub and considered as a single wire. Celluloid curtain rings or embroidery hoops, or hard rubber " X " spacers made of 1-inch strips of proper length and bolted together in the center can be used every few feet to hold the wires in position.

Following is constructional data (wire size and spacing) for both 200 - and 300 -ohm four-wire lines or matching sections:
For a 200 -ohm line, the ratio of spacing-to-wire radius is 50 ; for instance, if No. 12 wire were used (radius $.040^{\prime \prime}$), the spacing between adjacent wires would be 50 times this or $2^{\prime \prime}$. Similarly, for a 300 -ohm line, the ratio of spacing to wire radius is about 210. In this case, with No. 16 wire (radius .025 "), the spacing for a 300 -rhm line would be $5.25^{\prime \prime}$ between adjacent wires. Knowing these two factors (50 and 210) of wire spacing to radius, it is possible to calculate the dimensions of any line of these surge impedances.

- Twisted-Pair Fed Antenna

A single-band antenna for transmitting and receiving, which consists of a half-wave flat top with a twisted-pair feeder. is shown in Figure 2π.
The impedance of the twisted-pair feeder depends upon the spacing and diameter of the two wires and is usually of a low value -between 60 and 175 ohms, so that the feeder can be comected directly into the center of a half-wave antenna without serious mismatch.

Figure 27-One-Band Doublet Antenna With Twisted-Pair Feeders for Transmitting and Recaiving.

The feeders are ofter fanned-out into a small triangle, as shown in Figure 27 ; they can be of any length, carried over or near surrounding objects, or run undergroundl. The losses in the line depend upon the dielectric losses in the insulation around the wires. Available for this purpose are special twistecl-pair conductors which will safely handle transmitter powers up to 1 kw . Type "I:O-1" cable, available from radio dealers. is designed with a characteristic impedance of 75 ohms and is suitable for any power the amateur is lawfully permitted to use.

Twisted-pair fed antennas are suitable for operation on one band only because second harmonic operation will result in very bad impedance mismatch ancl power loss. The efficiency is good on the lower frequencies, but the losses go up with frequency, becoming quite high on is and 10 meters unless the feetler is short

- Length of Any Half-Wave Antenna

Ans simple half-wave antema can be cut to the theoretically correct length by consulting the following formulas:

$$
l=1.56 \lambda .
$$

or

$$
L=-\frac{468,000}{f} .
$$

where l. is the lengtl of the antenua in feet, λ is the transmitter wavelengtl in meters.
f is the transmitter freguency in kilocycles.
These formulas do not hold grod for "long wire" antennas.
The antenna length may be slightly modified by the presence of nearby objects, such as the earth, power lines, chimneys, masts, trees, buildings, etc.: these objects may require that the wire be shortened by as much as 10 per cent in order to maintain the electrical length at an exact half wavelength.
The accompanying chart gives theoretical antenna lengtlss for various amateur bands.

- Marconi Antennas

A quarter-wave antenna connected to a ground or counterpoise system is generally called a Marconi Antema. The ground or counterpoise completes the half wavelength necessary for resonance at the desired frequency. The antenna may be less than a (fuarter wave in length and then brought to this value electrically by means of a loading

Chart Showing Theoretical Length of Half-Wave Antennas, Such as Single-Wire Fed, Collins, Johnson " \mathbf{Q}," Matched Impedance, Twisted Pair, and Zepp.

BAND	Frequency	Antenna Length
11/4 Meter	224 mc 232 mc 240 mc	$\begin{aligned} & 22^{\circ}{ }^{24} \\ & 23.5^{\circ} \end{aligned}$
21/2 Meter	112 mc 116 mc 120 mc	
5 Meter	$\begin{aligned} & 56 \mathrm{mc} \\ & 58 \mathrm{mc} \\ & 60 \mathrm{mc} \end{aligned}$	$\begin{aligned} & 8^{\prime} 8^{\prime} 4^{\prime \prime} \\ & 8^{\prime} 10^{\prime \prime} \end{aligned}$
10 Meter	28 mc 29 mc 30 mc	$16^{\prime}, 8 "$ 16^{\prime} 10 $15^{\prime} 61 / 2^{\prime \prime}$
20 Meter	14.05 mc 14.15 mc 14.35 mc	$\begin{aligned} & 33^{3} 4^{\prime \prime} \\ & 3^{\prime} 1^{\prime \prime} \\ & 32^{\prime \prime} 0^{\circ} \\ & 32^{\prime} 8^{2} \end{aligned}$
40 Meter	7.02 mc 7.20 mc 7.28 mc	$\begin{aligned} & 66^{\prime} 7 \\ & 65^{\prime \prime} \end{aligned}$ $\begin{aligned} & 64^{\prime} 11^{\prime \prime} \\ & 6 c^{\prime} \end{aligned}$ 64^{\prime}
80 Meter	3550 kc 3700 kc 3950 ke	$131^{\prime} 6^{\prime \prime}$ $129^{\prime} 10^{\prime \prime}$ $126^{\prime} 4^{\prime \prime}$ $118^{12} 4$
160 Meter	1750 kc 2000 kc	$\begin{aligned} & 2677^{2}{ }_{2}^{\prime} 52^{\prime} \\ & { }^{\prime 3} \end{aligned}$

coil. These antennas, such as shown in Figures 28, 29 and 30, are often used in the 160 -meter amateur band because of the difficulty in getting up a half-wave radiator at that frequency.

The tutal length of the antemna wire can be from 90 to 160 feet for 160 -meter operation. The system is tuned to resonance by connecting series tuning coils and condensers to a ground or counterpoise. For best results. make the radiator as long as possible (up to 150 or 160 feet).

The radiation resistance of a quarter-wave Marconi Antenna at the point of connection to earth is less than 35 ohms. Therefore, the ground connection should have a very low resistance in order to prevent excessive loss of power.

Figure 31 shows how a Marconi Antenna for aeroplanes or small boats is coupled in the transmitter.
Coupling methods for various Marconi Antcnnas are describect in the pages which follow:

Figure 28-160 Meter Operation From a 40-Meter Zepp. Antenna. Where space is limited, the 40meter zepp.-fed Hertz antenna illustrated above will give satisfactory operation on 160 meters. The zepp. feeders are connected together at the station end and attached to one side of the tuning condenser and coil, as shown in the diagram. The remaining ends of the coil and condenser connect to the counterpoise.

Figure 29-40-Meter Single-Wire-Fed Hertz for 160-Meter Operation. If "L"' has sufficient turns, C1 is not required. "L"' is coupled to the plate tank circuit.

Figure 30-System for Loading Any Antenna for 160-Meter Operation.

Figure 31-Loading System for Short Marcon i Antenna for Boats, Aeroplanes, Etc.

- Antenna Coupling Devices

The antenna system must be coupled to a final r.f. amplifier of a radio transmitter in such a manner as to transfer most efficiently the power into useful output. One- and two-wire feeder systems can be directly coupled to the final amplifier, as shown in figures 32 and 33 .

Figure 32

olrect
COUPLING
Figure 33
A blocking condenser of some value, such as $.002 \mu \mathrm{fd}$., should be comected in series with the feeder in order to prevent d.c. plate voltage from reaching the antenna and endangering human life. The feeder is tapped to the final amplifier tank cuil at a point which causes the amplifier to draw normal
d.c. plate current when the tank condenser is tuned for greatest dip in plate current.

- Inductive Coupling

160 -meter antenna systems should be inductively coupled to the fimal tank crit in the manner shown in figures 34 and 35.

Figure 34

Figure 35-The circult shows a tuning lamp in series with the antenna and a shorting switch for bridging the lamp after the antenna is tuned. Another method is to wrap a turn or two of the lead-in wire around a 2-turn loop connected to the lamp. The former system is best adapted for low power, the latter for medium or high power.

The antema circuit is tuned to resonance as indicated by maximum r.f. current in the antenna or counterpoise, and the coupling between coils L_{1} and L_{2} is adjusted to a position which will cause normal plate current to flow in the r.f. amplifier. The antenna tuning circuit will often affect the setting of the r.f. tank circuit condenser, which will then require readjustment for greatest plate current dip.

Twisted-pair feeders can be inductively coupled to the final tank circuit with from one to four turns of well-insulated wire wound over the woltage node of the tank coil. The soltage node is the point of minimum r.f. soltage and is the center of the coil in a plate-neutralized or push-pull amplifier or the B-supply end of the coil in a griclneutralized or screen-grid amplifier stage. The number of coupling turns determines the regree of coupling for each band of operation.

- Pi Coupler

The Collins Pi Coupler consists of one or two coils and two variable condensers connected in the form of a low-pass pi-filter, as shown in figures 36, 37 and 38.

Figure 36-Single-Wire Feed Line-Single Section Plate Tuning Condenser--Shunt Feed. C1 and C2 in All Circuits Are . $00035 \mu \mathrm{fd}$.

Figure 37-Two-Wire Line from Single-Endep Amplifier. Split-Stator Tuning and Series Feed.

Figure 38-Coupling a Two-Wire Line to a PushPull Final Amplifier. Single-Wire Line Out of a Push-Pull Final Through a Pi Network is Not Recommended.

The coupler permits adjustment of the antenna load across the r.f. amplifier; when correctly adjusted it tends to attenuate the higher-frequency harmonics. The coupler is tumed to the frequency of the transmitter by varying the condensers C_{1} and C_{2} and by adjusting the tap on the coil or coils. The impedance of the antenna feeders is matched to that of the final amplifier by comecting
the compler across a portion of the amplifier tank circuit and by adjusting the ratio of the capacities of C_{1} and C_{2}. This system can be used with zepp. feeders which have suficiently high impedance. It is also suitalole for connection to single-wire or twowire feeders, or end-fed antennas. It should not be used for connection to twisted-pair iecders, concentric feeders, or quarter-wave Martoni Antennas, because the capacity reutired at C. would be too high in value for practical use.

The plate tank of the r.f. amplifier must be tuned to resonance with the pi network disconnected and the dial setting of the final tank condenser should not be changed thereaffer. The pi network can then be connected to the tank coil and antenna, and the two condensers adjusted until maximum antenna or feeder current is oftained at normal values of amplifier plate current. The condenser C_{t} is used for obtaining resonance (minimum plate current) for any particular setting of the impedance-matching conclenser C.- The amount of inductance in the pi network coils must be determined by experiment.

A simplified version of the pi network is shown in figure 39, with circuit constants

Figure 39 - Simplified Pi Antenna Coupling System. The $350-\mu \mu \mathrm{fd}$. condenser is an ordinary receiving type variable condenser.
given for 160 -meter operation. This simplified circuit eliminates one tank circuit. The matching network serves the dual purpose of tank circuit and antenna-impedance matching system. This type of circuit can be used at any frequency, especially for screen-grid r.f. and grid-ncutralized triode amplifiers. It is particularly suited for use in low power portables or emergency gear, where simplicity and versatility are required and some harmonic radiation can be tolerated.

- Link Coupling

Any kind of antenna or antenna feeder can be connected to an antema tuning circuit which has a tank coil and one or more tuming condensers. This circuit can then be
link-coupled to the final amplifier with one or two turns of well-insulated wire over the zolfage node of the amplifier and from one to five turns around the antenna tuning circuit. Figure 40 shows a method of link coupling to a zepp. Feeder tuned circuit.

Figure 40
The link around the antenna coil is sometimes omitted, being then connected across a few turns of the antenna tuning coil. The link can consist of a pair of No. 14 or No. 12 rubber-covered wires of any reasonable length.
Figure 41 shows a method of link coupling commonly used to work into an end-fed antenna. Sometimes the system will tume up better if the center of the antenna coil is grounded. The end-fed antenna can be any multiple of half wavelengths long.

Figure 41-Link Coupling for End-Fed or SingleWire Feeders.

Figure 42 shows how to link-couple a 160 meter antenna to a final tank coil. This circuit is often slightly modified by comnecting the link in series with the bottom end of the antenna loading coil, rather than to coil I_{3}. A short antenna can be made to resonate by using more turns in the coil $\mathrm{I}_{\text {A }}$.

The circuits in figure 43 are typical for coupling to zepp, antemas. matched imped-

Figure 42 -Link Coupling to $\mathbf{1 6 0}$-Meter Antenna System.
ance feeders, single-wire-fed antenmas and end-fed antemas. The ground connection is optional.

$C=50 M M F D-650 D Y$
Figure 43-Link Coupling from Final Amplifier to Tuned-Antenna Circuits.

Directive Anteninas

All antennas have directional properties and these can be increased by properly combining the antenna elements. The various forms of half-wave antennas alrearly described have maximum radiation at right angles to the direction of the wire, but the directional effect is not very great.

If this radiation can be confined to a narrow beam, the signal intensity can be increased a great many times in the desired direction of transmission. This is equivalent to increasing the power output of the transmitter. It is more conomical to use a directive antenna than to increase transmitter power if more than a few watts power is being used.

Directive antennas can be designed to give as high as 23 db gain over that of a single half-wave antenna. However, this high gain (nearly 200 times as much power) is confined to such a narrow beam that it can be used only for commercial applications in point-to-point communication.

The increase in radiated power in the desired direction is obtained with a corresponding loss in all other directions. Gains of 3 to 10 db seem to be of more practical
value ior amateur communication because the angle covered by the beam is wide enough to sweep a fairly large area. 3 to 10 db means the equivalent of increasing power from 2 to 10 times. For cxample, an amateur living in the center of the United States would want his beam to be wide enough to cover all of Europe in one direction and New Zealand in the opoosite direction. His beam should be centered about 45° north-of-east and about 35° wide. Similarly, a 20° beam width, 50° south-of-east, would cover South America and the Orient. Another 35° beam pointing east and west would cover Australia and South Africa. In San Francisco, two beam antennas, could be made to cover all dx sections fairly well ; a 30° beam, 35° south-of-east for South America and the Orient, and another 35° to 40° l,cam, 15° north-of casp for Furone. New Zealand and Australia.
In this discussion, all antenna arrays are assumed to have two main lobes of radiation in opposite directions (no reflector sys(tmi). Directions in which the antemas could be pointed can be figured as the Great Circle shortest distance direction with the aid of a globe of the world. Day and night directions in some cases are different, due to the skip distance effects of some of the highfrequency bands, because the signals may go around the world in one direction in the morning, and in the other direction in the evening, to points near the opposite sides of the world.

Four to six half-wave antennas or their equivalent are apparently about all that can be used without securing too much directivity, unless the operator is aiming at one locality of relatively small area. With wavelengths below 10 meters, the problem of rotating the beam antena is simplified and more directional effects with greater power are desirable. Reflector systems can be set up for increasing the beam in one direction and preventing radiation in the opposite direction.
Tables of wire lengths for several arrays and directional types of antennas are given. Surroundings will modify these values, but for most purposes the wires can be cut to the values listed, and satisfactory results obtained.
The most simple method of feerling many types of directional antennas (if near the transmitter) is by means of zepp. feeders which are generally some odd multiple of quarter waves in length. In all cases where the system is much more than a wave-
length from the transmitter to the feed point. a non-resonant two-wire fecder and quarter-wave matching stub should be employed. The problem is greatly simplified in most cases by the use of zepp. feeders, since the fecders can be tuned at the transmitter just as with any zepp. half-wave antenna. A simple field strength meter coupled to the antenna system will readily indicate correct feeder tuning.

All directional resonant antenna systems. other than a single long-wire system, operate on the one frequency for which they are designed. The "V" beam can be operated on two bands with fair satisfaction, although the correct angle δ between the arms of the " 1 "" can only be made for one frequency. A type is generally chosen from a consideration of available space. The " V " beams are less critical in mechanical design: if space is available for pointing the open or closed end of the " V " in the desired direction, this type is excellent.

- Horizontal and Vertical Directivity

The horizontal dircctivity of any antenna system is that shape of the radiated beam or beams shown looking down at the earth from a point above the antema system. For example. a beam having a width of 30° horizontally would spread out enough to cover a whole continent. such as Europe, from points in the United States. Vertical Directizity is the expression for defining the angle above the horizon at which the major portion of the radiation goes out from the antenna. Directional antenna systems are generally made to have a very low angle of radiation, so that the vertical directivity is outward toward the horizon, rather than upward at a high angle.

- Polarization

Rarlio waves are polarized in that they will induce a greater signal in the receiving antena when the plane of that antena is parallel to the plane of polarization. For cxample, a vertical transmitting antenna will produce a vertically-polarized wave which can best be received by a vertical receiving antena over relatively short distances, such as in the ultra-high-frequency region. Wavelengths between 10 and 100 meters can be transmitted with either vertical or horizontal antennas, resulting in the wave starting out with a zertical or horizontal polarization. By the time it reaches the distant receiving antenna it is apt to be
mainly horizontally polarized. Reflection and refraction effects in the Heaviside Layer tend to twist the wave polarization so that in most cases a horizontal receiving antema will give best results.

For ultra-short wavelengths, vertically polarized waves are not reflected upward by the surface of the earth as easily as those of horizontally polarized nature. As only the ground wave is useful on wavelengths below 10 meters, vertical transmitting and receiving antemas have thus proven most satisfactory at these frequencies.

With ultra-short wavelengths, the plane of polarization may be twisted by such objects as liills or buildings, so that occasionally a horizontal antenna will very efficiently recoive signals transmitted by a vertical antema.

- Directive Factors

Directional antenna systens operate on the principle that the radiation fielels add or stubtract in space. When several radiating elements. such as half-wave antemas, are in close proximity to one another, the radiated fields may aid or oppose each other in different directions. In those directions in Which opposition or cancellation occur, the signal is attenuated; similarly in those directions in which the fields aid each other, or ark. the sigmal is increased. All directive antennas depend upon this plenomenon. The fields are said to be in phase when they are additive. and out of phase when they cancel each other. Antenua directivity results from plasing the radiation from adjacent antenna clements so as to neutralize the radiation in the undesired directions, and to reinforce the radiation in the desired direction. Directivity can be obtained in either horizontal or vertical planes. In transmission, directive antennas concentrate energy much like reflectors and lenses concentrate light rays.

- Co-Linear Antennas

Franklin or co-lincar antennas are widely used by amateurs. The radiation is broadside to the antenna. The antenna consists of two or more half-wave radiating sections with the current in-phase in each section. This is accomplished by quarter-wave stubs between each radiating section or by means of a tuncd coil and condenser or resonant loading coil between each half-wave radiating section. The quarter-wave stub is a folded half-wave wire in which the wires are sufficiently together so that the radiation is neutralized.

Figure 44
Two half waves in-phase will give a gain of approximately 2.5 db with respect to a single half-wave antenna; three sections will give a gain of approximately 4 db . Additional half-wave sections increase this power gain approximately one lb . per section.
Various feeder systems are shown in the accompanying sketches. A zepp. feeder can be used in place of a guarter-wave stub) and 600 -ohm line. The latter will allow a two-section co-lincar antema to be operated as a single section half-wave antenna (center-fed zepp.) on the next longer amateur wave band. For example, an antenna of this type would be a half-wave antenna on 40 meters and a two-section co-linear antenna on 20 meters. The direction of current at a given instant and the location of the current nodes are indicated in the sketches by means of arrowheads and dots. respectively.

Co-Linear Antenna Design Chart

Band	Frequency in me.	LI	L2	L3
$\begin{gathered} 10 \\ \text { Meters } \end{gathered}$	30 29 28	$16^{\prime \prime}$ $16^{\prime \prime}$ $17^{\prime \prime} 1^{\prime \prime}$	$16^{\prime} 5^{\prime \prime}$ 17^{\prime} $17^{\prime} 7^{\prime \prime}$	$8^{\prime} 2^{\prime \prime}$ $8^{\prime} 6^{\prime \prime}$ $8^{\prime} 9^{\prime \prime}$
$\begin{gathered} 20 \\ \text { Meters } \end{gathered}$	14.4 14.2 14.0	$33^{\prime} 4^{\prime \prime}$ $33^{\prime \prime} 8^{\prime \prime}$ $34^{\prime} 1^{\prime \prime}$	$34^{\prime} 3^{\prime \prime}$ $34^{\prime}{ }^{\prime \prime}$ $35^{\prime \prime}$	17^{\prime} $17^{\prime \prime}$ $13^{\prime \prime}$ $17^{\prime \prime} 6^{\prime \prime}$
40 Meters	7.3 7.15 7.0	$65^{\prime} 10^{\prime \prime}$ 67^{\prime} $68^{\prime} 5^{\prime \prime}$	$67^{\prime} 6^{\prime \prime}$ $68^{\prime} 8^{\prime \prime}$ $70^{\prime \prime} 2^{\prime \prime}$	$33^{\prime} 9^{\prime \prime}$ $34^{\prime \prime} 4^{\prime \prime}$ $35^{\prime \prime}$
75 Meters	4.0 3.9	$\begin{aligned} & 120 \\ & 123^{\prime} \end{aligned}$	$\begin{aligned} & 123^{\prime} \\ & 126^{\prime} \end{aligned}$	$\begin{aligned} & 61^{\prime} 6^{\prime \prime} \\ & 63^{\prime} \end{aligned}$
	3.6	133'		

A table of wire length for the L_{1}, L_{2}, and L_{23} sections is given for various amateur bands.
The radiation resistance at any voltage node in a co-lintar antenna is shown in the co-phase antenna curve, figure 45. This curve is for an antenna in free space, but is sufficiently correct for satisfactory oneration so long as the antema is more than a quarter wave above earth.

Figure 45-Radiation resistance (at a voltage node) versus harmonic or co-phased elements

The radiation resistance increases rapidly with the number of in-phase sections, so that an antema with five sections can be currentfed dircitly with a 600 -ohm non-resonant line, as shown in one of the sketches. This curve shect can be used to calculate the impedance of current fecders for any number of co-linear or co-phased sections. A Collins multi-hand feeder of two parallel copper or aluminum tubes or a simple four-wire "cage" feeder can be designed to match into impedances of from 250 to 400 ohms.

Tables for parallel-tubing surge impedance for operation as matching sections are given on page 7%.

Co-linear antennas with 2, 3, 4, and 5 sections are shown in Figure 46.

- Long-Wire Antennas

A single long wire can be operated either as a fundamental half-wave radiator or on any of its harmonics. One of the most practical methods of feeding a long wire antena is to bring one end of it into the

FIGURE 46
radio room for direct comection to a tunedantena circuit which is link-coupled to the transmitter. The antenna can be tuned to exact resonance for operation on any harmonic by means of the tuned circuit which is connected to the end of the antenma. This tuned circuit corresponds to an adjustable, non-radiating half-wave section of the antenna. A ground connection is sometimes made to the center of the tuned coil.

Zepp. feeders may be connected to one end of a long wire antenna if the operating room is close to the ground or far removed from the antenna.

FIGURE 47

Long Antenna Design Chart

Length in Feet. End Fed Antennas.

Frequency in me.	1λ	$13 / 2 \lambda$	2λ	$23 / 2 \lambda$	3λ	31/2 λ	4λ	$43 / 2 \lambda$
30	32	48	65	81	97	104	130	146
29	33	50	67	84	101	118	135	152
28	34	52	69	87	104	122	140	157
14.4	$661 / 2$	100	134	169	203	237	271	305
14.2	$671 /$	102	137	171	206	240	275	310
14.0	$681 / 2$	103312	139	174	209	244	279	314
7.4	136	206	276	246	416		555	625
7.15	$1361 / 2$	207	277	347	417	487	557	627
7.0			2773/2	348		488	558	628
	240							
3.9	246	372	498	625	750	877	1000	1130
3.8	252	381	511	640	770	900	1030	1160
3.7	259	392	525	658	790	923	1060	1190
3.6	266	403	540	676	812	950	1090	1220
3.5	274	414	555	696	835	977	1120	
2.0	480	725	972	1230	1475			
1.9	504	763	1020	1280				
1.8	532	805	1080					

FULL WAVE ANTENMA
(2NO MAM MOMIC)

- $\frac{1}{2}$ WAVE KNTENNA

(3MO MARMONIC)

Figure 48-Radiation Patterns of Horizontal Antennas in Free Space.
The presence of the earth makes the antenna less directional than indicated in the above patterns, particularly in the direction of the antenna wire.

The long-wire antenna can be current-fed at a point of maximum current by means of a twisted-pair feeder or concentric line. The radiation resistance at any current node is shown in figure 45.

The proximity of the ground changes the values of radiation resistance to a certain extent. If the antema were in free space, the radiation resistance would fall betwen 73 and 150 ohms, depending upon the length of the antenna wire, assuming that it is some multiple of half-waves in length. The ground may be ignored if the antenna is sufficiently high.

75-Meter Phone Antennas

Lengths in Feet

$\begin{aligned} & \text { Frequency } \\ & \text { in } \\ & \text { Kilocycles } \end{aligned}$	"Halt Wave' $1 / 2 \lambda$	"Full Wave 1λ	$13 / 2 \mathrm{~A}$	2入	23/2
4000	117	240	362	485	618
3950	118	243	367	492	616
3900	1193/2	246	372	498	625

The gain in power in the optimum direction of radiation of a long-wire antenna over that of a half-wave antenna wire is shown in the curve of figure 47 , which gives $d /$, poacer ratio with respect to wire length. It
can be seen from this curve that ant antenna eight waves long will have a gain of more than 6 db over that of a clipole.

An antenina four waves in length has a gain of slightly more than 3 dlb . The greater lengtlis tend to make the antenna more directional out from the ends of the wire and also to lower the vertical angle of the main lobe of radiation.

The approximate lengths of wire resonant at the frequencies listed are shown in the Long Antenna Design Chart.

Long wire antemas can be connected into directional arrays in order to obtain great directivity and ligh gain. The horizontallypolarized long-wire array, shown in figure 4!, gives a theoretical gain of 12.4 db over that of a half-wave antenna.

A more simple form of long wire antenna and reflector suitable for amateur service is shown in figure 50.

A wire 275 feet long can be suspended approximately 8 feet under a similar wire in order to act as a parasitic reflector and

FIGURE 49

FIGURE 50
antenna, respectively. This antenna is suitable for 14 Mc. phone operation; the main lobe of radiation will be at a vertical angle of 26 degrees above the horizon. This lobe will be in the direction as indicated in the sketch and may be reversed 180 degrees by pulling the reflector wire along the axis of its length for a distance of 30 feet.

This antenna is practically uni-directional when the reflector is placed under the antenna. If the reflector is parallel to the antenna and of the same height above ground as the antemna, the radiation becomes bidirectional.

- RCA Broadside Antenna

This broadside radiator is not suitable for amateur practice because of the difficulty in adjusting the feeder sliunt inductances, but is used commercially with excellent results. All parts of the parallel transmission line are kept in-phasc by means of the shunt inductances which are connected across the line at each point where the radiators are attached. The waves are vertically polarized and a reflector can be placed a quarter wave hehind the antenna in order to make the system undidectional. The system is shown in figure 51.

Figure 51

HORIZONTALLY POLARIZED BARRAGE BROADSIDE ANTENNAS.

Barrage Antenna

The Barrage antenna (figure 52) is an "in-between" system of the stacked dipole and the Ilazckins antenna (figure 53). The two end sections I_{-7} are a quarter-wave long, the middle radiating elements L : a halfwave.
The two $I_{\text {a }}$ end sections have out-of-phase currents within the section, so that very little radiation takes place. The transposed I. 2 sections do not radiate because of the close spacing between the two wires. The radiating sections of I_{2} and L_{3} can be mounted horizontally or vertically, as illustrated in the sketches.

The array transmits or receives broadside. The approximate gain of two hori-zontally-polarized arrays for amateur service, shown in the diagrams, is 6 and 8 db respectively: The theoretical wire lengths I: and I_{3} are given in the Rarrage Array Antenna Design Chart.
Barrage Array Antenna Design Chart.

\begin{tabular}{|c|c|c|c|}
\hline Band \& Frequency in me. \& L2 \& L3

\hline $$
\stackrel{5}{\text { Mcters }}
$$ \& $$
\begin{aligned}
& 60 \\
& 58 \\
& 56
\end{aligned}
$$ \& $$
\begin{aligned}
& 8^{\prime} 2 \\
& 8^{\prime} \\
& 8^{\prime \prime} \\
& 8^{\prime} \\
& 9^{\prime \prime}
\end{aligned}
$$ \& $$
\begin{aligned}
& 4^{\prime} 1^{\prime \prime} \\
& 4^{\prime} 3^{\prime} \\
& 4^{\prime} 5^{\prime}
\end{aligned}
$$

\hline $$
\begin{gathered}
10 \\
\text { Meters }
\end{gathered}
$$ \& $$
\begin{aligned}
& 30 \\
& 29 \\
& 28
\end{aligned}
$$ \& $$
\begin{aligned}
& 16^{\prime} 5^{\prime \prime} \\
& 17^{\prime} \\
& 17^{\prime} 7^{\prime \prime}
\end{aligned}
$$ \& $$
\begin{aligned}
& 8^{\prime} 2 \\
& 8^{\prime} \\
& 8^{\prime} \\
& 9^{\prime \prime}
\end{aligned}
$$

\hline $$
\begin{gathered}
20 \\
\text { Meters }
\end{gathered}
$$ \& 14.4
14.2
14 \& 34^{\prime}
$34^{\prime \prime}$

$35^{\prime \prime}$ \& $$
\begin{aligned}
& 17^{\prime \prime} \\
& 17^{\prime} 3^{\prime \prime} \\
& 17^{\prime} 6^{\prime \prime}
\end{aligned}
$$

\hline
\end{tabular}

In conmercial practice, several groups of these arrays are made into a large curtain in order to provicle more gain and a sharper beam for point-to-point communication.

- Compact "H" Arrays

The "H" sections of a stacked dipole antenna can be rearranged into a more compact form, as illustrated in figure 53.

The top and bottom halves of each half

FIGURE 53
wave portion of an " H " section are bent over toward each other and connected together. This reduces the required vertical dimensions one-half. The reduction in gain due to cancellation of radiation in the bentover portion of the half-wave sections is not very great. The calculations of the designer give the approximate gains as shown in figure 53.
The radiation is vertically polarized and broadside to the plane of the antema. The Iaz sections may be made horizontal, if hori-zontally-polarized radiation is desired. These directional antemas should be monuted so that they clear the surface of the ground by a half wavelength, whenever possible. A reduction in height reduces the effectiveness and alters both the directional pattern and gain of the antemia.

The lengths L_{2} and $L_{a s}$ are the same as those shown in the Stacked Dipole Chart for L_{n} and $\mathrm{L}:$ (page 92).

- The Beverage Antenna

Figure 54
A very long wire of several wavelengths when terminated in a resistance equal to its characteristic impedance, becomes a " I "atic" or "Rercrage" antema. This form of antema is satisfactory for long-wave reception and is non-resonant.

The wire is usually suspended from 10 to 20 fect above the surface of the earth and should be pointed toward the stations whose signals are to be received. It is most effective when located over poorly-conducting
earth. since the wave-front of the received signal is tilted more than when it travels over salt water or moist earth. This form ot Beverage antenna is not recomumended for short-wave reception.

- Chirelx-Mesny Antenna

Numerous sections of tilted half-wave dipoles form the Chircix-Mesny array. The wires are arranged so as to form an angle of 45 degrees with respect to the earth. and 90 degrees with respect to each other. in a saw-tooth form.

Figure 55
The two sketches illustrate the design of this array. It transmits vertically-polarized waves. Any array section should be fed so that the current in the half-wave radiating sections will be fairly-well balanced. The antenna may be fed at a point of maximum current, as shown in the simple array. with

Chireix-Mesny Antenna Design Chart

Band	Frequency in me.	L_{1}	L2	L3
$\begin{gathered} 2.5 \\ \text { Meters } \end{gathered}$	$\begin{aligned} & 120 \\ & 116 \\ & 112 \end{aligned}$	$\begin{aligned} & 4^{\prime} \\ & 4^{\prime} 122^{\prime \prime} \\ & 4^{\prime} 3^{\prime 2} \end{aligned}$	$\begin{aligned} & 4^{\prime} 1^{\prime \prime} \\ & 4^{\prime} 3^{\prime \prime} \\ & 4^{\prime} 5^{\prime \prime} \end{aligned}$	$24^{\prime \prime}$ $25^{\prime \prime}$ $26^{\prime \prime}$
$\stackrel{5}{\text { Meters }}$	$\begin{aligned} & 60 \\ & 58 \\ & 56 \end{aligned}$	$\begin{aligned} & 8^{\prime} \\ & 8^{\prime} 3^{\prime \prime} \\ & 8^{\prime} 7^{\prime \prime} \end{aligned}$	$\begin{aligned} & 8^{\prime} 2^{\prime \prime} \\ & 8^{\prime} 6^{\prime \prime} \\ & 8^{\prime} 9^{\prime \prime} \end{aligned}$	$\begin{aligned} & 4^{\prime} 1 \\ & 4^{\prime} 3^{\prime \prime} \\ & 4^{\prime} 5^{\prime \prime} \end{aligned}$
$\begin{gathered} 10 \\ \text { Meters } \end{gathered}$	30 29 28	16 16 16^{\prime} $17^{\prime \prime}$	$\begin{aligned} & 16^{\prime}, 5^{\prime \prime} \\ & 17^{\prime} \\ & 17^{\prime} 7^{\prime \prime} \end{aligned}$	$\begin{aligned} & 8^{\prime} 2^{\prime \prime} \\ & 8^{\prime} 6^{\prime \prime} \\ & 8^{\prime} 9^{\prime \prime} \end{aligned}$
$\stackrel{20}{\text { Meters }}$	$\begin{aligned} & 14.4 \\ & 14.2 \\ & 14 \end{aligned}$	$\begin{aligned} & 33^{\prime} 4^{\prime \prime} \\ & 33^{\prime} 8^{\prime \prime} \\ & 34^{\prime} 1^{\prime \prime} \end{aligned}$	$\begin{array}{ll}34^{\prime} \\ 34^{\prime} & 2^{\prime \prime} \\ 35^{\prime \prime}\end{array}{ }^{\prime \prime}$	$\begin{aligned} & 17^{\prime} \\ & 17^{\prime} 3^{\prime \prime} \\ & 17^{\prime} 6^{\prime \prime} \end{aligned}$

CHIREIX-MESNY ARRAY - VERTICALLY POLARIZED-GAIN APPROX $8 D B$.
FIGURE 56
a haii-wave matching stul) or zepp. feeder of some multiple of half waves in length. If two bent wires are used as shown in the other Chireix-Mesny array, a cuarter-wave matching stub can be comected across two points of high voltage.

The accompanying design chart gives the values for $\mathrm{L}_{4}, \mathrm{~L}_{3}$ and L_{23} for amateur practice.

- Stacked Dipole Antennas

Several halif-wave or dipole antemnas can be arranged in a stacked form in order to provide a directional curtain system. The antennas are usually placed parallel in a plane, a half-wave apart in space. Similar hali-wave sections may be stacked above or below the first sections in order to increase the physical size of the curtain. An increase in size, by the addition of half-wave sections, increases the directivity and gain of the antenna. Elaborate curtains with a gain of nearly 200 times are used in commercial practice. In such cases, a reffector curtain similar to the antenna proper is placed a quarter wavelength behind the antenna in order to make the system midirectional, and thereby increasing the gain in the forward direction by 3 db as well.

Horizontal and vertical directivity can both be made very sharp with this type of directional array. The construction is more difficult than for a thombic or " V " antenna : the wires must be cortetly tuned, and the feeder systen should be connected to points in the curtain which will provide a uniform current distribution in the antenna. This means that the feeders nust be connected into several portions of the large curtains. A single point of connection for the feeder can be used in the less elaborate arrays illusfrated in the accompanying sketches.

In these sketches the arrow-head.s represent the direction of flow of current at a given instant ; the dots represent the points of maximum current and lowest impudance. IIl arrows should point in the same direction in each portion of the radliating sections of the antenna in order to provide a field in-phase for broadside radiation.
If the arrows in adjacent half-way sections (which are spaced a half-wave apart) are in opposite clirections, the system radiates in a direction through the plane of of the wires, and is then called an "ondfire radiator." Figure if shows the directional pattern in a horizontal plane for two half-wave vertical antennas excited out-ofphosis.

Fijure 57

Figure 59

Figure 60

The broadside radiation from two similar antennas excited in-phase is shown in figure 62.

It can be seen that the maxinum gain in the desired directions is approximately the same for either broadside or end-fire radiation: however, the beam in one case is sharper than in the other. In general, when antemas are connected to feeder systems in such a manner that the radiators are out of phase, they have a broader beam than when the antema is excited in-phase for broadside radiation. The curves show the relative radiation in (db, which emphasizes the difference in horizontal directivity of the two systems.

Stacked Dipole Antenna Design Chart

Band	Frequency in me.	L,	\mathbf{L}_{2}	\mathbf{L}_{3}
$\begin{gathered} 1.25 \\ \text { Meters } \end{gathered}$	$\begin{array}{r} 240 \\ 232 \\ 224 \end{array}$	$\begin{aligned} & 24^{\prime \prime} \\ & 25^{\prime \prime} \\ & 26^{\prime \prime} \end{aligned}$	$\begin{aligned} & 241 / 2^{\prime \prime} \\ & 2512^{\prime \prime} \\ & 261 / 2^{\prime \prime} \end{aligned}$	$12^{\prime \prime}$ 12 $13^{\prime \prime} 2^{\prime \prime}$
$\begin{gathered} 2.5 \\ \text { Meters } \end{gathered}$	$\begin{aligned} & 120 \\ & 116 \\ & 112 \end{aligned}$	4' ${ }^{4} 1{ }^{\prime} 11^{\prime \prime}$	4^{\prime} 4 $4^{\prime \prime}$ $4^{\prime \prime}$	$24 *$ 25^{*} 26
$\stackrel{5}{\text { Meters }}$	$\begin{aligned} & 60 \\ & 58 \\ & 56 \end{aligned}$	$\begin{aligned} & 8^{\prime} \\ & 8^{\prime} 3^{\prime \prime} \\ & 8^{\prime} 7 \end{aligned}$	$\begin{array}{ll} 8^{\prime} & \mathbf{2}^{\prime \prime} \\ 8^{\prime} & 6^{\prime \prime} \\ \mathbf{8}^{\prime} & 9^{\prime \prime} \end{array}$	$\begin{array}{ll} 4^{\prime} & 1^{\prime \prime} \\ 4^{\prime} & 3^{\prime \prime} \\ 4^{\prime} & \mathbf{n}^{\prime \prime} \end{array}$
$\begin{aligned} & 10 \\ & \text { Meters } \end{aligned}$	$\begin{aligned} & 30 \\ & 29 \\ & 28 \end{aligned}$	$\begin{aligned} & 16^{\prime} \\ & 16^{\prime} \\ & 17^{\prime \prime} \end{aligned}$	$\begin{aligned} & 16^{\prime} 5^{\prime \prime} \\ & 17^{\prime} \\ & 17^{\prime} 7^{\prime \prime} \end{aligned}$	$\begin{aligned} & 8^{\prime} 2 \\ & 8^{\prime} \\ & 8^{\prime} \\ & 9^{\prime \prime} \end{aligned}$
$\stackrel{20}{\text { Meters }}$	$\begin{aligned} & 14.4 \\ & 14.2 \\ & 14 \end{aligned}$	$\begin{aligned} & 33^{\prime} 4^{\prime} \\ & 33^{\prime} 8 \\ & 34^{\prime} \end{aligned}$	$\begin{aligned} & 34^{\prime} 2^{\prime \prime} \\ & 34^{\prime} 7^{\prime \prime} \\ & 35^{\prime} \end{aligned}$	$\begin{aligned} & 17^{\prime} \\ & 17^{\prime} 3^{\prime \prime} \\ & 17^{\prime} 6^{\prime \prime} \end{aligned}$
$\stackrel{40}{\text { Meters }}$	$\begin{aligned} & 7.3 \\ & 7.0 \end{aligned}$	$\begin{aligned} & 65^{\prime} 10^{\prime \prime} \\ & 68^{\prime} 2^{\prime \prime} \end{aligned}$	$\begin{aligned} & 67^{\prime} 6^{\prime \prime} \\ & 70^{\prime} \end{aligned}$	$\begin{aligned} & 33^{\prime} 9^{\prime \prime} \\ & 35^{\prime} \end{aligned}$

The radiating sections of half-wave wires may be either horizontal or vertical with respect to the surface of the earth, depending upon whether horizontally- or verticallypolarized transmission is desired. The currents in the I_{1} sections are in-phase, with the result that they cause a radiation field which is additive in amplitude; more directivity and gain therefore result from the addition of radiating elements. The currents in the L_{2} and L_{3} sections are out-of-phase: since these wires are only a few inches apart there is no radiation, because the fields neutralize each other.

The theoretical lengths of the $\mathrm{L}_{2}, \mathrm{~L}_{2}$ and L_{3} elements are listed in the table for various anlateur bands.

The L, sections are approximately 2.5 per cent shorter than a half-wavelength, due to the end effect. whereas the L_{2} and L_{3} sections are a full half-wave and quarter-wave in length, since hoth ends are terminated in additional elements. The values listed in the Table may be sulject to modification if there
are objects or conductors in the vicinity of the antenna.
Several forms of these stacked dipole antemas are shown in the sketches. Four radiating elements connected in the form of an " H " section will give a gain of approximately 5 db over that of single half-wave antemia. The "H" section canl be fed as shown in either diagram of the " H " sections. The feeders must be connected so that the current will be in-phase if broadside radiation is desired. The " H " section, in which the quarter-wave matching stub is connecterl as shown in the sketch (L_{2} being the length of the stub), can be converted into an end-fire radiator if the L a sections are not transposed.
In the other " H " section, the impedance across the points X and Y is approximately 1,200 ohms, which can be matched to a 600-ohm non-resonant line by means of a half-wave matching stub. When there are six radiating elements, the impedance across Y-Y drops to 800 ohms, which could be

matched approximately by using very wide spacing in the feeders to the points $X-Y$. The quarter-wave matching stub, as shown in the sketch, gives a more accurate match. The gain from six wires, as illustrated, is approximately 7.5 db over that of a single dipole, and the horizontal directivity becomes more pronounced. The simple " H " section, or the section with six elements, will give as much horizontal directivity as can be used to practical advantage by the amateur.

A double " H " section with eight $L_{\text {, }}$ dipoles can be fed across the points $X-Y^{\prime}$ with a 600 -ohm non-resonant line, because the impedance across these points is 600 ohms. The approximate gain of this array is 10 db over that of a single antenna.

A similar antema with horizontal wires is shown in the diagram of figure 59. It is fed with a quarter-wave matching stub, comected to a non-resonant feeder. Many sections of these types are mounted in large curtains, one above the other and end to
end, in commercial practice. The problem of thuing such elaborate antenna systems is very complex.

- The Bruce Antenna

The Bruce antenna consists oil quarterand eighth-wave sections foll in such a manner that the current in adjacent vertical sections is in-phase. The radiation is vertically polarized and broadside to the antenna. The

BRUCE ANTENNA VERTICALLY POLARIZED BROADSIDE RADIATION

Figure 63
current in the horizontal portions is out-ofphase, as illustrated in figure 63. Very little radiation takes place from the horizontal portions of the autenna.

For goul horizontal directivity the overall length should lee at least five wavelengths. A similar hent wire, placed a quarter wave behind the antema, will act as a reflector and make the system unidirectional. The L : and Ls sections of a Bruce antenna, in actual practice, are a continnous wire which can be mounted in a vertical plane by the use of insulators and adelitional sections of wire connected across the open- C^{\top}-shaped portinns of the bent wire.

MODIFIED BRUCE ANTENNA WITH VERY EFFICIENT FEEDER SYSTEM ANC DOUELE ROW OF BRUCE ELEMENTS.

GAIN APPROX $9 D$.
Figure 64

Bruce Antenna Design Chart

Band	Frequency in mc.	Li	Ls
$\begin{aligned} & 2.5 \\ & \text { Meters } \end{aligned}$	$\begin{aligned} & 120 \\ & 116 \\ & 112 \end{aligned}$	$\begin{aligned} & 12^{\prime \prime} \\ & 122^{\prime \prime} 2^{\prime \prime} \\ & 1 y^{\prime \prime} \end{aligned}$	24**
$\begin{gathered} 5 \\ \text { Meters } \end{gathered}$	60 58 56	$\begin{aligned} & 2^{\prime} \\ & 2^{\prime} 1^{\prime \prime} \\ & 2^{\prime} 2^{\prime \prime} \end{aligned}$	$\begin{aligned} & 4^{\prime} 1 \\ & 4^{\prime} 3^{\prime \prime} \\ & 4^{\prime} 5^{\prime \prime} \end{aligned}$
$\begin{gathered} 10 \\ \text { Meters } \end{gathered}$	30 29 28	$\begin{aligned} & 4^{\prime} \\ & 4^{\prime} 112^{\prime \prime} \\ & 4^{\prime} 3^{\prime \prime} \end{aligned}$	8^{\prime} 8^{\prime} $8^{\prime \prime}$ 8^{\prime} $9^{\prime \prime}$
$\stackrel{20}{\text { Meters }}$	14.4 14.2 14.0	$\begin{array}{ll}8^{\prime} & 4^{\prime \prime} \\ 8^{\prime} & 5^{\prime \prime} \\ 8^{\prime} & 6^{\prime \prime}\end{array}$	$\begin{aligned} & 17^{\prime} \\ & 17^{\prime} 3^{\prime \prime} \\ & 17^{\prime} 6^{\prime \prime} \end{aligned}$

The two forms of the Bruce antema suitable for amateur communication are shown in figures 63 and 64. A Design Chart is given for wire lengths for the 2.5-, 5-, $10-$ and :20-ncter amateur bands.

- The Kraus "Flat-Top Beam'"

This directive antema, developed and first described in K-ADIO only recently by W8JK, has become perhaps the most popular directive system among amateurs be-

G'I APPROX 5DE. OVER - DIPOLE

GAIN APPROX 3 DE.

TOP VIEWS

W\&JK FLAT TOP "END-FIRE" ANTENNAS

FIGURE 65

W8JK Flat-Top Antenna Chart

Band	Frequency in me.	La	L.)	L	Feeder Stub Length
$\stackrel{10}{\text { Meters }}$	$\begin{aligned} & 30 \\ & 29 \\ & 28 \end{aligned}$	$\begin{aligned} & 14^{\prime} \\ & 14^{\prime} 6^{\prime \prime} \\ & 15^{\prime} \end{aligned}$	$\begin{aligned} & 12^{\prime} 4^{\prime \prime} \\ & 12^{\prime} 10^{\prime \prime} \\ & 13^{\prime} 6^{\prime \prime} \end{aligned}$	4 4 4	$\begin{aligned} & 8^{\prime} 2^{\prime \prime} \\ & 8^{\prime} 6^{\prime \prime} \\ & 8^{\prime} 9^{\prime \prime} \end{aligned}$
$\stackrel{20}{\text { Meters }}$	$\begin{aligned} & 14.35 \\ & 14.25 \\ & 14.15 \\ & 14.05 \end{aligned}$	$\begin{aligned} & 29^{\prime} 4^{\prime \prime} \\ & 29^{\prime} 7^{\prime \prime} \\ & 29^{\prime} 10^{\prime \prime} \\ & 30^{\prime} \mathbf{2}^{\prime \prime} \end{aligned}$	$\begin{aligned} & 26^{\prime} 11^{\prime \prime} \\ & 26^{\prime} 5^{\prime \prime} \\ & 26^{\prime} 8^{\prime \prime} \\ & 27^{\prime} \end{aligned}$	8^{\prime} 8^{\prime} 8^{\prime} 8^{\prime}	$\begin{aligned} & 17^{\prime}, 1^{\prime \prime} \\ & 17^{\prime} \\ & 17^{\prime \prime} \\ & 17^{\prime} \\ & 6 \end{aligned}$
$\stackrel{40}{\text { Meters }}$	$\begin{aligned} & 7.28 \\ & 7.20 \\ & 7.10 \\ & 7.02 \end{aligned}$	$\begin{aligned} & 57^{\prime} \\ & 59^{\prime \prime} \\ & 58^{\prime} \\ & 56^{\prime} \\ & 60^{\prime} \\ & 5^{\prime \prime} \end{aligned}$	$\begin{aligned} & 51^{\prime} 4^{\prime \prime} \\ & 52^{\prime} 2^{\prime \prime} \\ & 53^{\prime} \\ & 54^{\prime} \end{aligned}$	$\begin{aligned} & 16^{\prime} \\ & 16^{\prime} \\ & 16^{\prime} \\ & 16^{\prime} \end{aligned}$	$\begin{aligned} & 33^{\prime} 7^{\prime \prime} \\ & 34^{\prime} \\ & 34^{\prime} 6^{\prime \prime} \\ & 35^{\prime} \end{aligned}$

cause of its simple construction and the excellent results it affords.

In its simplest form, the antemna consists of two horizontal, half-wave wires, spaced approximately one-eighth wavelength and bent in towards each other at one end, as shown in figure 65, to allow out-of-phase voltage feed. The "Signal Squisher," described later in this chapter, is a modified form of this arrangement which takes up less room and is, therefore, more readily rotated.

More directivity and gain can be provided by adding additional sections, as illustrated in figure 65. The wires are suspended in a mamer similar to that of the old-time flattop antenna systems.
The system is fed with either zepp. feeders or a matching stub and untuned line. The latter system is preferable when the radiator is located some distance from the transmitter. The stub may be either $1 / 4$ or $3 / 4$ wave long, the feeders attaching the same distance from the stub in either case. This point is determined as previously described under stub-matching sections.
The sketches show top riczus of the antenna. The two wires are parallel to the ground and cross over each half wavelength when more than one section is used. The accompanying table gives proper wire lengths for $10-, 20$-, and 40 -meter operation. The distances L_{a} and L_{b} refer to just the straight portions of the wire. Spacing where the wires cross over should be about 6 inches the entire distance.
While affording high gain when several elements are used, the beam is not particularly sharp and, therefore can be used to cover a wide arca. A good portion of the gain comes from the lowered vertical angle of radiation.

- The Yagi Antenna

A directive antema system which is particularly useful for the ultra-high and microwave frequencies is the Yagi. It usually consists of a vertical half-wave antema with several parasitically-excited reflector and director wires placed in vertical planes around the antenna. The rear reflector wire, which is on the side of the antema opposite that of the desired directions of transmission, is normally spaced a quarter-wavelength behind the radiator. If side reflectors are used, they are spaced a half wavelength from the antenna.
A typical polar diagram of an antenna and three reflectors is shown in figure 68. This antemua has a theoretical gain of 6 db over that of the antenna wire alone. The beam is rather broad and covers an angle of nearly 90 degrees. The two small lobes do not detract from the power gain but do affect the discrimination.

Reflector and Director Dimensions for Yagi Arrays

Freq.	A	R	D	a	b	c
224	25"	26.	23"	13°	$261 /{ }^{\prime \prime}$	20"
232	24"	25*	22*	12120	$251{ }^{\prime \prime}$	19"
240	23 $3^{\prime \prime}$	24"	21^{*}	12*	$2412^{\prime \prime}$	$18 \frac{1 / 2}{}{ }^{\prime \prime}$
112	$4^{\prime \prime} \mathbf{4}^{\prime \prime}$	4'3'*	$451 / 2^{\prime \prime}$	$26^{\prime \prime}$	4'5'	39"
116	$3^{\prime} 10^{\prime \prime}$	$4^{\prime}{ }^{\prime 1}{ }^{\prime \prime}{ }^{\prime \prime}$	44**	25^{\prime}	4, $3^{\prime \prime}$	38'
					4	37
56	8'4"	8'7'	7'12	4'5'	8'9*	$6^{\prime} 7^{\prime \prime}$
58	8'1'	$8^{\prime} 3^{\prime \prime}$	7'4 $1 / 2^{\prime \prime}$	$4^{\prime \prime} 3^{\prime \prime}$	$8^{\prime} 6^{\prime \prime}$	6'4'
60	7'10 ${ }^{\prime \prime}$	$8{ }^{\prime}$	7'11/2'	4'1"	$8^{\prime} 2^{\prime \prime}$	$6^{\prime} 2^{\prime}$
28	16'8'	17'2'	153'	8'9'	17'7"	13'2'
29	16'1'	$16^{\prime} 6^{\prime \prime}$	14'9"	8'6"	17'	12'8"
30	15'61"	16^{\prime}	14'3'	$8^{\prime 2}{ }^{\prime \prime}$	16'5"	12'4*
	33'4*	34'1"		17'6"	35'	26'3'
14.15	33'1'	33'11"	$30^{\prime \prime}{ }^{\prime \prime}$	17'4*	$34^{\prime \prime} 8^{\prime \prime}$	26'1'
14.25	$32^{\prime} 10^{\prime \prime}$	33'8'	30^{\prime}	17'3'	34'6"	25'11"
14.35	32'8'	33'5"	29'10'	17'1*	34'3'	25'8'

PARASITIC REFLECTOR $\frac{\lambda}{4}$ IN BACK OF $\frac{\lambda}{2}$ ANTENNA
GAIN APPROX 3 DE.

Figure 66

Greater directivity can be obtamed with three reflector wires and two directors, figure 69.

The gain is approximately 9 db over that of a single antenna wire. The director wires are spaced about is wavelength each ahead of the antenna wire in the desired line of transmission.

Typical reflector and director wire dimen-

Figure 67
sions are listed in the table.
The elimination of the two side reflector wires results in a reduction in gain of 3 d b in the forward direction and with the addition of two more lobes of radiation at right angles to the desired direction of transmission, as shown in figure $\boldsymbol{\pi} 0$. This effert is shown in the polar diagrann of a single reflector and two director wires. The approximate gain of other simple Yagi are shown in figures 71, 72, and 73.

- Operation of Parasitic Reflectors

A parasitic reflecfor consists of a wire approxinately a half wavelength long, placed in the field of the antenna and parasitically excited by the radiation fields of the antenna. The energy from the antema field is re-radiated by the reflector wire, so that the energy is remforect in certain directions and cancelled in others. For example, if the reffector is spaced a duarter wave from the antema, the resultant radiation field will be practically doubled in a direction opposite to that of the reflector wire in a line with the antema.

Directly radiated and re-radiated fields tend to cancel in the opposite directions with the result that the radiation takes on a heart-shaped horizontal dircetivity pattern.

If the reflector wire is spaced a half wavelength from the antenna, the radiated field will he increased in tao dircctions at right anylis to the plane of the refector and antemna.

When three reflector wires are supported around an antenna, one at the rear and two at the sides, witl spacings of a quarter wavelength and half wavelength respectirely. a radiation field such as the one shown in the polar diagram for the lagi antema will be produced.

Combinations of reflector wires in the form of a curtain are sometines placed a quarter wavelength behind a directional antenma system in order to increase the radiation in the forward direction and likewise prevent radiation from the rear.

Parasitic reflectors call be calculated from the formula:

$$
\begin{aligned}
& L= 1.60 \times \lambda_{1} \\
&+02.000 \\
& 0.9 \%
\end{aligned}
$$

or $L=$

$$
j
$$

where L is the reflector length in feet,
λ is the transmitter wavelength in meters,
f is the transmitter frequency in kilocycles.

side view

PARASITIC DIRECTOR AND REFLECTOR
GAIN APPROX $4 \frac{1}{2} D B$
Figure 71

2 PARASITIC DIRECTORS ANO ONE REFLECTOR GAIN APPROX 6 DE.

Figure 72

- Operation of Parasitic Directors

d wire placed in front of an antenna in the desired direction of transmission or re-

3 PARASITIC DRECTORS AND ONE REFLECTOP
GAIN APPROX $7 \frac{1}{2}$ DB.
Figure 73
ception is known as a dircolor, since it improves the transmission or reception in that clirection, A parasitic director is normally made slightly shorter than the antema proper and spaced 3 of of a wavelength in front of the antena. A parasitic reffector wire placed behind a radiator is normally made slightly longer than an electrical half waveiength. The antenna proper should alwavs be resonant.

The length of dircctor wires can be calculated from the following formulas:

$$
\begin{aligned}
L & =\begin{array}{l}
1.425 \times \lambda \\
492,000 \times 0.87 \\
\text { or } L
\end{array}
\end{aligned}
$$

where L is the director length in feet,
λ is the transmitter wavelength in meters,
f is the transmitter frequency in kilocycles.

- Rhombic Antennas

The terminated rhombic or diamond is probably the most effective directional antenna that is practical for amateur communication. This antenna is non-resonant, with the result that it can be used on three amateur bands, such as 10,20 and 40 meters. When the antenna is non-resonant, i.e., properly terminated, the system is uni-directional and the wire dimensions are not at all critical. The rhombic antema can be suspended over irregular terrain without greatly affecting its practical operation.

The tuned diamond antemna consists of two "V" antemas, end to end, and without a free-end termination, as shown in figure 74. The antenna is bi-directional, in which case the lengths are very critical, and the system must be tuned to exact resonance with the operating frequency. It has less gain than a properly terminated rhombic.

If the free end is terminated with a resistance of a value of from 700 to 800 ohms,

Figure 74

Figure 75
as shown in figures 75,76 and 77 , the backwave is eliminated, the forward gain is increased, and the antenna can be used on several bands without changes. The terminating resistance should be capable of dissipating one-third the power output of the transmitter. A bank of carbon and tungsten fila-

Figure 76

SMALLER RHOMBIC OR DIAMOND ANTENNA SUITABLE FOR $7,14 \& 28 \mathrm{MC}$. BANDS

Figure 77

ment lamps can be connected in series-parallel for this purpose or heavy duty carbon rod resistances can be used. The latter can be procured from the Carborundum Co. For medium or low-power transmitters the noninductive "plaque" resistors made by WardLeonard will serve as a satisfactory termination.

A

B
Figure 78-Diamond Antenna Design Chart.

The antenua should be fed with a nonresonant line, preferably with an impedance of approximately \quad oo ohms. The four corners of the dianoond can be suspencled from poles or trees and, if possible, at least a half wavelength in height above ground at the lowest frequency of operation.

This antenna transmits a horizontallypolarized wave at a low angle above the horizon in the case of a large antenna. The approximate angle of radiation above the horizon is shown in clart B , figure $\% 8$, of Diamond Antenna Design Curies.

The vertical directivity of a typical rhomhic antenna suitahle for amateur communication is shown in the polar diagram, figure 79. This antena will give a gan of approximately 14 (li). over that of a vertical halfwave antema. The horizontal directivity of the same antenna is shown in another polar diagram, figure 90 , The snatler lobes of radiation prevent the antenna from being truly mi-directional : the amplitude, however, is relatively small in comparison to
the main lobe of radiation. The sides of this diamond antema are $31 / 4$ wavelengths long, with the angle θ equal to 58 degrees. The correct angle θ for any length L of the wires in each leg is shown in chart A uf Diamom Antenna Design Curees, figure 78 .

- "V" Antennas

The " V " antema consists of a long wire, folded in the center, so as to form a "V" toward or away from the desired direction of transmission. The antenna is bi-directional (two opposite directions) for the main lobes of racliation. Each side of the "l"" can be made any odd or eren multiple of quarter wavelengths, depending upon the method of feeding the apex of the "V." The complete system must be a multiple of half waves. If each leg is an even number of quarter waves long, the antenna must be voltagefed; if an ookl mumber of quarter waves long, current-feed must be used.

Figure 81

By thoosing the proper angle δ, figure 81 . the lobes of radiation from the two long wire antennas aid each other to form a bidirectional beam. Each wire by itself would have a radiation pattern similar to that shown for antennas operated on harmonics. The reaction of one upon the other removes two of the four main lobes. and increases the other two in such a way as to form two lobes of greater magnitude.

The correct wire lengths and the degree of the angle δ are listed in the " ζ " Antenna $I_{i} \operatorname{sign}$ Table for various frequencies in the $10-, 20$ - and 40 -meter amateur bands. These values must sometimes be reduced slightly if one of the wires is in the vicinity of some large object.

The horizontal directivity pattern for a typical " V " antenna for commercial practice is shown in the table. Each wire is made eiglit wavelengths long. The beam is very sharp, as shown in the polar diagram figure 82. and the gain over an ordinary half-wave antenta is theoretically 15.6 dl3. Four minor lobes occur.

The polar diagram of a very small "V" antenna with each of its sides one full wave in length is illustrated in figure 83. The main lobes give a gain of approximately + (d) over that of an ordinary hali-wave antenna, but the two minor lobes are quite strong and radiate at right angles to the main bean a wave which is only slightly
"V"'Antenna Design Table

Frequency in Kilocycles	"Half Wave" Dipole	"Full Wave" $\begin{aligned} & L=\frac{\lambda}{2} \\ & \delta=180^{\circ} \end{aligned}$	$\begin{gathered} L=\lambda \\ \delta=104^{\circ} \end{gathered}$	$\begin{aligned} & L=2 \lambda \\ & \delta=75^{\circ} \end{aligned}$	$\begin{aligned} L & =4 \lambda \\ \delta & =52^{\circ} \end{aligned}$	$\begin{aligned} & L=8 \lambda \\ & \delta=39^{\circ} \end{aligned}$
28000	$16^{1} 8^{\prime \prime}$	$17^{\prime 1}$	$34^{\prime} 8^{\prime \prime}$	$69^{\prime} 8^{\prime \prime}$	140^{\prime}	280'
28500	$16^{1} 4^{\prime \prime}$	$16^{\prime} 9^{\prime \prime}$	$34^{\prime \prime} 1^{\prime \prime}$	$68^{1} 6^{\prime \prime}$	$137^{\prime} 6^{\prime \prime}$	2751
29000	$16^{\prime \prime} 1$ '	$16^{\prime} 6^{\prime \prime}$	$33^{\prime} 6^{\prime \prime}$	$67^{\prime \prime} 3^{\prime \prime}$	$135{ }^{\prime}$	2711
29500	$15^{\prime} 8^{\prime \prime}$	$16^{\prime} 2^{\prime \prime}$	33^{\prime}	$66^{\prime} 2^{\prime \prime}$	133'	$266{ }^{\prime}$
30000	$15^{\prime} 61 / 2^{\prime \prime}$	$15^{\prime} 11{ }^{\prime \prime}$	$32^{\prime} 5^{\prime \prime}$	65^{\prime}	$131{ }^{\prime}$	262'
14050	33' $4^{\prime \prime}$	34^{\prime}	69^{1}	$139{ }^{\prime}$	$279{ }^{\prime}$	558'
14150	$33^{\prime \prime} 11$	$33^{\prime} 10^{\prime \prime}$	68' $6^{\prime \prime}$	138'	$277{ }^{\prime}$	555'
14250	32' 10"	$33^{\prime} 7 \prime \prime$	$68^{1} 2^{\prime \prime}$	137'	$275{ }^{\prime}$	$55{ }^{\prime}$
14350	$32^{\prime} 8^{\prime \prime}$	$33^{\prime} 5^{\prime \prime}$	67' ${ }^{\prime \prime}$	$136{ }^{1}$	273'	$548{ }^{\prime}$
7020	66^{17}	$68^{\prime} 2^{\prime \prime}$	$138{ }^{\prime} 2^{\prime \prime}$	$278{ }^{\prime}$	558'	1120^{\prime}
7100	$65^{\prime} 9^{\prime \prime}$	67' ${ }^{\prime \prime}$	$136{ }^{1} 8^{\prime \prime}$	$275{ }^{\prime}$	552'	1106'
7200	$64^{\prime} 11^{\prime \prime}$	$66^{\prime} 5^{\prime \prime}$	$134^{\prime 1} 10^{\prime \prime}$	271'	$545{ }^{\prime}$	1090'
7280	64^{\prime}	$65^{\prime} 8^{\prime \prime}$	$1331{ }^{\prime \prime}$	268'	$538{ }^{\prime}$	1078'

RADIATION PATTERN - HORIZONTAL DIRECTIVITY
"V" ANTENNA
$L=8 \lambda$
$\delta=17 \frac{1}{2}^{\circ}$ ANGLE
15.6 DB. GAIN OVER DIPOLE

FIGURE 82

RADIATION PATTERN IN A HORIZONTAL PLANE	
OF A "V ANTENNA	$L=1 \lambda \quad 6=110^{\circ}$ ANGLE

FIGURE 83
lower in amplitude. A longer "y" antema, such as $21 / 2$ to $31 / 2$ wavelengths for each leg. will provide a radiation pattern intermediate between the two illustrated in the polar diagrams. Such a " "Y" antema would be more suitable for amateur communication. Typical examples are shown in the accompanying sketches, figures 84,85 and 86 , The correct lengths and angle, as well as the approximate gain, are denoted on the sketches. These "Y" antema dimensions are suitable for operation in the 20 -meter phone band.
An antenna of the "l"" type can be used for receiving by constructing it as shown in figure 8%. The center is the highest point, and the two ends slope toward the ground. The " V " antenna in this case is in a vertical, rather than a horizontal plane, and the angle θ is equal to 180 degrees minus δ. This form of recciving antenna is seldom used.

Figure 84-20 Meter "V" Antenna, Smallest Worthwhile Size

Figure 85-More Directive " V " Than Shown above, with More Efficient Method of Feed. Dimensions are for 20 Meters

Figure 86-20 Meter "V'" with Moderate Gain and Directivity, Best Suited for General Amateur Use

VERTICAL"V"ANTENNA
Figure 87

The vertical angle at which the wave is best transmitted or received from a horizontal "V" antenna depends largely upon the angle. The sides of the " V " antenna should be at least a half wavelength above ground; commercial practice dictates a height of approximately a full wavelength above ground.

- Tilt Antennas

A tilt antenna consists of a resomant length of wire, one end higher than the other, so that it forms an angle to the earth's horizon and thereby changes the effect of the ground reflection. The earth acts as a mirror and prevents the radiated wave from going out exactly in a plane to the horizon; it reinforces the radiation, however, at vertical angles above the earth's surface. Proper tilt of the wire will lower the effective radiation angle from the low end of the antenna, and reduce the radiation from the high end. An example of a tilt antenna is a half-wave radiator, which, in free space, does not radiate from its ends (sce figure 88). The high end of a tilt antenna can be made to have an angle with respect to the surface of the earth such that the radiation is zero in the upper direction of the wire. Similarly, the antenna can be tilted so that the radiation can be made practically zero at any desired vertical angle in the direction of the higher end of the antenna.

Figure 88-Tilt Doublet Antenna.

This phenomenon causes the tilt antema to be of great value for short-wave communication because it can be oriented so as to cut down the interference from some particular part of the world; h.f. signals can be reduced as much as three to five R points with the proper tilt. The antenna is very nearly non-directional over an angle of 300°, as shown in the dotted curve of the polar diagram. It is also satisfactory for transmission.
The dotted curve in the polar diagram, figure 89, shows the horizontal directivity pattern for a vertical angle of 10° above the horizon for an antenna tilt of approximately 18°. The same curve would apply to a 20° vertical angle for an antemua tilt of approximately 9°.
The solid curve shows the radiation at 10° above the horizon for a tilt of approximately 8°, which in this case is the optimum tilt for greatest reduction in signal from the high end of the antenna when used for reception. The gain in the opposite direction is not as great as for an 18° tilt, as shown in the dotted curve.
The angle of radiation for 10 -meter operation should be approximately 10° above the horizon. The values shown in the polar diagram are suitable for a half-wave tilt antema operated on 10 meters. For operation on 20 meters, the tilt should be slightly greater than for 10 meters for similar conditions of eliminating reception or transmission from the high end of the antemna.

The actual tilt angle of the wire with respect to the ground is somewhat less than the "null" angle, as for example: an 8° wire tilt eliminates a 10° radiation pickup by the antenna. An antenna operating on 40 meters would have a tilt of somewhat less than 30° if the 30° vertical angle reception is to be eliminated.
The actual vertical angle for optimum transmission and reception for any given

frequency is not always cructly the same, though for all practical purposes it may be considered the same, and a great reduction of signal is possible by having the proper amount of tilt for the particular frecuency in use. The reason why a signal cannot be attenuated more than a few R points is that the incoming wave does not come in toward the antema at just one angle, such as exactly 30°.

Full wave, or even longer, antemas can be tilted to increase the ratiation from the lower end and simmeltaneously greatly reduce that from the high end. Tilt antemas are very easily constructed, since it is possible to control simply and easily the tilt by means of the same rope and pulley which hoists the antema wite to the top of the mast.

Figure 90 shows a tilt antema for 20 meter operation. The actual angle of tilt
can be casily varied for best results moder actual operating conditions. The antenna can be fed with any form of non-radiating feeder. Any radiation or reception by the feeder will clange the directivity pattern of the tilted portion of the antema.

A tilt antema can be used in conjunction with another receiving antema in order to reduce the strength of all signals except those from one desired direction, as shown in figure 91.
The principle of operation is to adjust the pickup from both the regular receiving antenna and the tilt antema so that the signals are coupled into the receiver with equal intensity and oppositc in phase. The sigmals from the direction of upward tilt will he of very low amplitude in comparison to those coming from other directions, as regards the tilt antema. If the regular receiving antema is farly mon-dimectional. the un-

Figure 90

Figure 91 - Tilt Bucking Antenna System.

Figure 92 -Directive Doublet Receiving Antenna System.
desired signals can be made to buck each other, thereby picking up only the signals from one direction. This idea can be utilized in reducing interference from relatively strong New Zealand and Australian signals when receiving European stations on the west coast.

Tests indicate that the undesired signals can be reduced from 2 to $3 R$ points over nearly 300 degrees by careful balance of the circuits. The coupling to both antenna systems should be made variable, or at least semi-variable, for proper balance. Two circuits are illustrated, one for any form of receiving antenna, another in connection with a horizontal doublet. This system can
be used only in the frequency band designed for the tilt antema.

Rotatable Arrays

- The Smith "Signal Squisher"

A compact, rotatable, bi-directional antemna giving low-angle radiation with optional polarization is shown in figure 93. It consists essentially of two half-wave radi-

ators bent in the form of a square, voltagefed by means of a matching stub and mounted horizontally for 20 and 10 meters and vertically for s meters. The main portion of the radiation is from the middle (fuarter-wave section of each half-wave radiator, giving directivity in a line through the two current nodes. Because of two minor lobes at right angles to the main lobes, the affair, when orientated horizontally, is little more directive than a horizontal doublet. Its chief advantage over a horizontal doublet is the fact that it is more compact and more easily rotated than a doublet and gives a farorable vertical angle of radiation for 10 and 20 meters regardless of height above the ground. Most of the radiation from a
horizontal doublet is wasted on 10 meters, and a large part of it is wasted on 20 meters. This explains the increase in gain over a plain doublet on 10 and 20 meters. especially the former band.
For 5 -meter work the radiating portion should be mounted ierfically (as in figure 93), instead of horizontally. This gives lowangle radiation with vertical polarization and eliminates the two minor lobes (sends them straight up and down). The horizontal pattern measured on the ground with the antenna in this position (vertical) resembles a fat "figure 8," with no minor lobes.
The length I_{-3} is a quarter wave, $L_{\text {s }}$ an eighth wave. The feeder will attach closer to the shorting bar than is the case with most stub-matched antennas. The correct point for the shorting bar and feeder tap can be determined as previously described in this chapter.
Because it is bi-directional, the array need swing through but 180 degrees (140° is actually sufficient because the beam is not sharply defined and the direction need not be "on the nose").
This is the most widely usel rotatable 20 meter antenna.

- Reinartz Rotary Beam Antenna

The John L. Reinartz compact directive antemia is shown in figures 94 and 95 . It is suitable for 5 - and 10 -meter transmission and reception, and its field pattern shape is roughly similar to that of a half-wave vertical antenna with single reflector.

A 5 -meter artema consists of two 8 -foot lengths of tubing, bent into a circle, with 2 in. to 3 in . spacing between the tubes. The circles are not closed; an opening of one inch remains, as shown in the diagram.
The loop can be placed in either a horizontal or vertical plane, depending upon whether horizontal or vertical polarization is desired. The actual power gain over that of a vertical half-wave antenna in the desired direction is only 18 per cent, but the power directivity is nearly 6-to-1.
$161 / 2-\mathrm{ft}$. rods can be used for 10 -meter operation, $33-\mathrm{ft}$. rods for 20 meters. The spacing between the rods, or circles, need not be increased when the antenna is built for operation on the longer wavelengths.
The antenna should be arranged for 360° rotation. It is useful because of its discrimination (front-to-back ratio) rather than for the small power gain it provides.

Figure 94-Reinartz Rotary Beam with TwistedPair Feeder and Stub.

Figure 95-Reinartz Rotary Beam Antenna with Spaced Feeder and Stub.

- The "Signal Squirter"

A highly effective uni-directional affair that is not too unwieldy to be rotated on $\because 0$ meters and below consists of a half-wave radiator with a parasitically-excited reflector (Yagi) spaced a quarter wave to the rear. This system is not so compact as the Smith rotatable array, and it must be rotated through a full arc instead of half an arc. However, it will give excellent results for those in a position to put one up.

A kit of parts for this antenna, including everything from wire to rotating tower and mechanism, is available commercially under the trade name "Signal Squirter."

- Antennas for U.H.F. Operation

The only difference between antennas for ultra-high-frequency operation as compared with those for operation in other bands is in their physical size. The fundamental principles are unchanged.

Antemas for u.h.f. service are small in size, thus making them easily portable. In the u.h.f. field of communication, the direct or ground ware is used; for this reason the transmitting and receiving antennas are generally in visual range of each other. It is therefore necessary that the antemas be located as high above ground as possible. Low-angle radiation is necessary and antennas which radiate at low angles should always be used.

Vertically-polarized waves have less tendency for an upward bending. This, coupled with the fact that vertical antemas have a low angle of radiation to begin with, causes them to be generally employed.
A simple non-directional antenna for u.h.f. operation consists of a half-wave vertical wire or rod, fed with a two-wire matched impedance feeder, as shown in figure 96 , or by means of a quarter-wave matching stub and two-wire non-resonant line, figure 97.

Zepp. feeders are seldom employed, because the antema in most cases is located several wavelengths away from the transmitter or receiver in order to secure ample height above the ground.

A Concentric Feeder is very effective for feeding either a half-wave antenna or a quarter-wave Marconi antema, such as those used for mobile 5 -meter work.

Directive antemas often prove of great value in the ultra-high-frequency region because the high power gain which is obtainable gives the same result as a great increase in transmitter power. The cost of increasing power is far more than that of a simple antenna array, Any of the directional antema systems previously discussed can be used for u.h.f. communication, although those which give vertical polarization, such as the Stacked Dipole, Yagi, Vertical Franklin, or Pruce are best. A simple directional antenna is shown in figure 98.

- Types of Mobile
 U.H.F. Antennas

A quarter-wave vertical Marconi antema (figure 100) is very convenient for automobile installations. A 4 -foot rod with the bottom end grounded to the car body can be fed with a single-wire feeder several feet long; this feeder connects to the 5 -meter set in the car.

Another 5 -meter antenna consists of an insulated 4 -foot rod, fed by either a twisted pair (solid conductors) or by a concentric

Figure 96-5-Meter Matched Impedance Antenna

Figure 97

SIMPLE S METER DIRECTIONAL ANTENNA WITH REFLECTOR WHICH DOUBLES OUTPUT \& SENSITIVITY

Figure 98

Figure 99-Directivity Pattern of Antenna Shown in Figure 98.

SIMPLE SMETER AUTO ANTENNA
Figure 100

Figure 101

Figure 102
tramsmission line, figures 101 and 102 . In the case of twisted-pair feeders, the impedance match is not very goorl, but this effect can be overcome to some extent by cutting the twisted pair to some particular length. This can best be determined by experiment, because a few inches more or less of feeder will provide a tuning effect and allow more efficient operation.

Quarter-wave rods can be mounted on the roof of an antomobile, if some means of flexible coupling is built into the base of the rod so that the antenna can be swung down when it strikes an overhead obstacle, such as a garage entrance, etc. Sometimes the rod is mounted on the front or rear bumper of the car, on the radiator, running board, or fender. In many cases the antenna rod is mounted directly on a transmitter housed in the rear trunk of the automobile.

Mobile antenna installations for police radio work differ from the 5 -meter types in that the antennas are somewhat longer because the frequency of operation is lower. The length can be calculated from the formula:

$$
\mathrm{L}_{1}=\frac{499,000 \times 0.485}{\mathrm{f}}
$$

where $I_{-1}=$ The quarter-wave antenna length in feet.
$\mathrm{f}=$ The transmitter frequency in kilocycles.
The length of a half-ware antenna is twice that of a quarter-wave antema.

- Fixed Station 5-Meter Antennas

These antennas can be constructed from copper or aluminum rod, or wire. When a wire antema is used, the wire can be supported on stand-off instlators attached to a vertical $2^{\prime \prime} \times 3$ " wood pole. "The pole should be guyed, preferably with ropes, in order to keep metallic conductors away from the field of the antenna. The antema should be as high as possible and well remote from surrounding objects.

These same types of antemas can be used for television reception by making the halfwave antema resonant to the frequency of the television transmitter. In this case a twisted-pair feeder of solid wire, such as the I:()-1 Cable, can be used in order to reduce automobile ignition interference, though the loss in a twisted-pair feeder at these frequencies is rather high.

Long wire antennas can be used on 5 meters providing the directional effects are taken into consideration. For example, a $20-$ or 40 -meter single wire fed or zepp. antenna can be operated on 5 meters with fairly satisfactory results for both transmitting and receiving.

Figure 103

- 21⁄2-Meter Antennas

Any of the antemas previonsly described, and which provide vertical polarization, are suitable for $21 / 2$-neter operation. Those shown in figure 103 are ideally sutable for use with a $21 / 2$-meter transceiver. The figures are seli-explanatory, in that all dimensions are clearly shown. The Table showing Antenna Array Dimensions lists all of the data for the ultra-high-freguency bands, down to $1 \frac{1}{4}$ meters. The Fable, Reflector and Pirector l)imensions. shows the data for any form of Yagi or Parabolic Reflector system for wavelengths down to $1^{1 / 4}$ meters.

- Micro-Wave Antennas

Antmas for operation in the vicinity of one meter, or less, ate classified as .WicroIf az'e Antonas. Hali-wave vertical rods are sulatale for portable operation and in most cases they can be capacitively coupled at one end to the micro-wave tramsmitter or receiver. Directive arrays, especially those of the Yagi type, are casily constructed; they greatly improwe the performance of micro-wave sets.

- Concentric Lines

A concentric transmission line is one of the must satisfactory means for carrying r.f. power from the transmitter to the radiating antema. It has low losses and is weatherproof; the outer conductor is at ground potential. No radiation can occur, which is particularly important in a clirectional antema system. The characteristic impedance ranges from 50 to 150 ohms, depending upon the ratio of inside diameter of the outer conductor to the outside diameter of the inmer conductor. Its impedance can be calculated from the formula :

$$
Z=138 \times I \operatorname{ogg}_{11} \frac{D}{d}
$$

where D is the inside diameter of the outside conductor,
1 is the outside diancter of the inner conductor.
The outer conductor can be grounded at any point. The imer conductor is insulated from the outer sleeath by glass or isolantite beads which are placed at intervals along the line.

Concentric line fecters are used for eoupling bondeant transmitters to the antema, as well as in short-wave and u.h.f. installations. See figures 104 to 10\%. The imped-

Figure 105

Figure 106
Concentric Feeder Systems for Broadcast Antennas with Various Terminations
ance can be made to match exactly the center impedance of a half-wave antenna, or the impedance to ground of a quarter-wave antenna. A vertical quarter-wave antenna has an approximate radiation resistance of 3 whms att the current loop (ground connection).

Concentric Tube Impe	sion Line
Impedance in Ohms	Ratio of Diameters
40. ${ }^{65}$.	2
83.	4
98.	5
109	6
118. 126.	7 8
126.	889
140	10
Inside of outer conductor diameter to outside diameter of inner conductor ratios.	

FIGURE 107

Concentric lines can be buried underground and run for distances of several hundred yards without sacrificing appreciable amounts of r.f. power.

Antennas for Receiving

All of the transmitter antemas previously described are suitable for receiving; their directive properties are unchanged. Allwave receivers present a difficult problem from the standpoint of a suitable antenna that will cover the wide frequency range of the receiver.

Noise reduction is a decided factor in the design of an antenna for recciving all waves. The most prolific noise-creators are electrical devices, such as refrigerator units, vio-let-ray apparatus, thermostats, diathermy machines, battery chargers, electric signs, buzzers and doorbells, ignition systems of oil-burners and automobiles, elevators, street cars, electric motors, power-line disturbances which are carried along the line, telephone ringers, etc.

These disturbances are of a radio nature: however, their intensity dies away rapidly in open space. House wiring and metallic structures convey these electrical disturbances, and noise reduction can, therefore, be accomplished by locating the antenna in a clear space, also by using a lead-in of such type that pick-up on the lead-in is practically eliminated. The noise interference is sometimes so loud that it will seriously interfere with local reception. It becomes

Figure 108-Noise-Reducing Shortwave Doublet Feeder System with Transposition Blocks.
A and B are 33 ft. each. C can be any length. The transposition blocks are spaced 2 feet apart. C1, C2 and C3 are $350 \mu \mu \mathrm{fd}$. variable condensers for tuning the system. L is the recelver coupling coil.
an even more troublesome factor in shortwave reception because the received signal strength is much lower than that from local broadcast stations.

Two general types of lead-ins are widet. used with noise-reducing antenna systems. The shielded lead-in is effective in the broadcast range, but due to the high capacity between the shield and the lead-in conductor inside the shield, it is not often used for shortwave reception. For shortwave reception a balanced transposed line is more efficient, as shown in Fig. 108. Balanced lines consist of twisted-pair feeders or two-wire lines with transposition blocks. The latter can be tuned by means of a coil and variable condensers at the receiver in order to increase the signal energy for a comparatively wide range of frequencies.
Twisted-pair feeders cannot be easily tuned because standing wave effects will cause excessive dielectric losses. In order to cover a wide range of frequencies with twisted-pair fecders, combination Doublet anternas are connected through impedancematching transformers to form an efficient all-wave anterma system. A single doublet with a twisted-pair feeder and without special transformers is stuitable for operation over a very narrow band of only a few hundred kilocycles on the fundamental and third harmonic.
The design of the feeder transformers depends upon the impedance of the twisterpair feeder, length of line and type of dounlet antennas connected to the line. So many complications enter into the design of these feeder transformers that the home constructor cannot easily build them. Complete shortwave antema kits with all proper components are available from many sources. The choice of an all-wave antenna for the home constructor is the tuned transposed feeder system, shown in Fig. 108. In noise-free locations, any single wire antemna will give good results.

- Antennas for Automobiles

The efficiency of all antemna types for automobiles is comparatively low because the amount of available space around the body of the automobile is limited. Automobiles with all-metal tops prohibit the use of interior roof-antennas, so that other forms of antennas, such as shown in figures 109 and 110 are suspended under the ruming boards.

Cinder-car antemas, such as those illustrated, are lecated so close to the braking mechanism that they pick up an excessive amount of tire and brake static. The calcium chloride dust-laying compounds on roadbeds often cause destructive corrosion of the antema.

Newer types oi car antemas consist of chromium-plated top-oi-car rods or "whip" antemas which have iar greater signal pickup than older types of under-car antembas.

Some types of car antemas are equipped with a shielded lead-in and the receivers have a special shielded input transformer for reducing the interference from the car's ignition system, Modern developments have practically eliminated the need of spark plug suppressors.

Figure 109

Figure 110-Triangular Antenna

- The Faraday Screen

An electrostatic shield between two coils is often used in receiver circuits in order to prevent capacitive coupling. One very effective arrangement is known as the Faraday Screen. It generally consists of a row of small wires, spaced from each other and connected together at one end in order to provide a connection to ground. Eddy current losses are prevented by grounding only one and of the wire, the other end remaining open; sce figures 111 and 112.
A Faraday Screen can be constructed by winding a large number of turns of very small insulated wire on a piece of cardboard which has first been treated with insulating

Figure 111

Figure 112
varnish. The wire is wound on, then a coating of insulating varnish is applied to the winding. . ft er it has dried, one edge is trimmed with tin snips or heavy shears and the wires soldered together along the opposite edge as shown in the illustration.

- Aircraft Antennas

Antemas designed for aircraft must have a goocl "effective height" and very low wind resistance. The most efficient antemna electrically is a long trailing wire for both transmitting and receiving. It must be reeled-in when a landing is made, and it offers an excessive wind load at high speeds.
For beacon reception, a hollow streamlined metal rod approximately six fect in height and mounted on top of the fuselage is quite widely used. The rod must be insulated from the supporting structure. It has an effective height of about one meter, thus making it satisfactory for use with a sensitive receiver. Other forms of antennas, such as wires stretched across the wings, or from the tail to the ends of the wings, or from tail to cockpit, are satisfactory for both transmitting and receiving.
A short trailing wire, approximately 25 feet long, has less wind resistance than a rod or pole antenna.

- Marine Antennas

Single-wire antennas of the Inverted-L, T and Doublet types are used on shipboard. The wire is usually suspended between masts, or between mast and funnel. A separate antema is widely used for shortwave reception, while for longer wave operation a break-in keying relay connects the receiver to the main transmitting antenna. Marconi antennas for small marine craft can be mate more effective when more than one wire is used, such as in a cage or flat top antenna.

- Loop Antennas

When highly-directive transmission or reception is desired, loop antennas are used. A conventional type is shown in figure 113. Some are circular in shape, others arc in the form of a rectangle or square.

The relative efficiency of loop antennas is very low and they are used only for such special applications as direction-finding. The directivity pattern has the same appearance as that of a half-wave dipole antenna. The response in the maximum direction (in line with the loop) is rery broad, but the minima or zero signal setting is very sharp.

Figure 113

Antenna Mast Construction

A practical and economical antenna mast is illustrated below. The mast is constructed of three pieces of $2 x 3$, clear pine, each 20 fect long. The completed mast is light enough in weight for mounting on house tops, and it can be erected by two people. The mast is guyed at the top and center with three guys at each point. The guys should be broken about every ten feet with egg-type strain insulators. The illustrations give all of the necessary constructional data.

Chapter 6

Radio Receivel Theory

AFTER radio waves are produced, the next step necessary to complete the transierring of intelligence is the recoption of these waves. The radio receiver used for this purpose must abstract energy from the passing waves, separate the desired signal from all others, and then reprorluce the modulation or code characters of the original signal. This latter function of the receiver usually entails amplification, since its output must be enormously greater than the energy (b)tained from the wave itself.

The antenna circuit plays an impurtant part in this reception. Details of the antenna's function, however, are covered in another portion of this book. For the present, suffice it to say that making the antema resonant to a particular frequency will also increase tremendously the energy received from waves of this frequency. This, in itself, assists in providing some separation between signals. Greater selectivity, however, can he made available by the use of properly arranged resonant circuits placed somewhere in the receiver in such a way as to discriminate strongly against all but the desired signal.

- Common Terms Defined

There are several important general properties of radio receivers which it is necessary to define: selectizity, tuming, detection, scusitioity, and fidelity.

The Selectizity of the recciver is its ability to discriminate between radio waves of different frequencies, between desired and undesired signals.

Tuning is the process of resonating r.f. circuits with the carrier frequency of a desired signal.

Dctection is the process of reproducing the original signal from the radi, frequency currents existing at the receiver: it is the process of demodulation.

The scnsitizity of the receiver represents its ability to respond to small radio-signal voltages; it is the degree to which a receiver will respond to weak signals.

The fidclity of the receiver represents the accuracy with which the receiver reproduces
the intelligence contained in the modulated radio wave; frequency distortion and harmonic distortion impair the fidelity.

- Basic Components

The fundamental parts of a simple radio receiver are the vacuum tube and the coupling circuits. The tube provides amplification and detcction, while the r.f. coupling circuits provide the selectizuty and determine the frequency at which the receiver will operate. Other coupling circuits in the receiver are used for supplying power to the electrodes of the vacuum tube, and also for coupling the audio-frequency amplifiers.

- Radio-Frequency Coupling

A small radio-freguency current is induced in an antenna by any radio wave which is intercepted ly the antema. This radiofrequency energy in the antenna can be made to energize a radio receiver by means of some form of input coupling circuit. When an inductance coil is connected in series with the antenna lead-in or feeder. the radiofrequency energy induced into the antema will cause a small radio-frequency current to fow through coil T_{1} in figure 1.

Figure 1
It will Ie recalled that the voltage induced across the coil is equal to the product of this current and the impedance of the coil. The impedance of the coil to the flow of current is made-up principally of its reacton'c. This is a function of the number
oi turns of wire in the coil, and the freguency of the radio signal.

In most cases, the antemna, ground and coil L_{1} offer very little selectivity, which is always better obtained by means of resonant tuned circuits. As has been mentioned previously, the entire antenna system may be made resonant to the frequency of the radio signal, in which case the current flowing in the antema circuit will be mucl greater. For purposes of simplicity, the standard circuit in figure 1 will be considered, in which resonant effects in the antema ustally are ignored. Selectivity is accomplished through the use of parallel tuned circuits. A typical circuit of this type is shown as L_{2} and C, in figure 1. The current flowing through L_{1} induces a current into L_{2}, providing the two coils L_{1} and L_{2} are coupled closely together. This is known as inductize coupling.

The antenna also may be coupled to the first tuned circuit in the radio receiver by means of capacitive coupling, as shown in figure ${ }^{2}$.

Figure 2
The capacity of condenser C_{1} is very small, so that the desired amount of coupling between the antenna and the tuned circuit $\mathrm{L}^{2} \mathrm{C}_{2}$ can be obtained. Too much coupling between the antenna and the first tuned circuit, either capacitive or inductive, will result in less induced current flowing through the tuned circuit than when the optimum value of coupling is used. If the antenna circuit is resonant to the frequency of the radio signal, and if the circuit $\mathrm{L}_{-} \mathrm{C}_{2}$ in figure 2 (or $\mathrm{L}_{2}-\mathrm{C}$ in figure 1) is tuned to this same frequency, very loose coupling is necessary in order to obtain both a high current in the coil and a high impedance across the tuned circuit.
The current which flows around and through the tuned circuit is limited only by
the resistance of the circuit when the coil and condenser are tuned to resonance. The reactance of the coil is neutralized by the reactance of the condenser, so that relatively greater current may flow in the circuit $\mathrm{L}_{2}-\mathrm{C}$ than in the coil L_{1}. The voltage developed at resonance across the coil or condenser is equal to the product of this current and the reactance of cither the coil or condenser.
Since resonance increases the radio-frequency current (the reactance of the coil remaining the same) the voltage applied across the grid circuit of the vacuum tube is much greater at resonant frequency. Signals of other frequencies will not have this resonant tuned circuit effect, with the result that the voltage of those signals across the coil applied to the grid of the vacuum tube will le very minute. Additional tuned circuits in the radio receiver further discriminate agrainst these undesired signals of other irequencies.

- Efficiency of Resonant Circuits

The efficiency of a tuned circuit can be defined as its " Q ". This is a mathematical expression of the ratio of the reactance to the resistance of the coil in the tuned circuit. A high-" Q " will result in better selectivity and greater radio-frequency voltage across the grid of the vacumm tube. Low-" Q " coils are sometimes desirable where a relatively wide band of radio-frequencies must be passed through the radio-frequency amplifier, such as in modern types of high-fidelity broadcast receivers. Short-wave receivers are designed with circuits having as high a " Q " as possible in comparison to the cost involved in such designs.

The " Q " of a coil or tuned circuit is given in the following formulas:

$$
\begin{aligned}
& \text { (1) " } Q \text { " }=\frac{2 \pi \mathrm{fL}}{\mathrm{R}} \\
& \text { (2) }{ }^{\prime} Q^{\prime \prime}=\frac{1}{2 \pi \mathrm{fCR}}
\end{aligned}
$$

where f is the frequency.
L is the inductance of the coil,
C is the capacity across the tuned circuit.
R is the equivalent resistance in series with the tuned circuit.
Either of these expressions will provide the correct " Q ". since at resonance $X_{c}=$ 1
X_{L} and hence $2 \pi \mathrm{fL}=\frac{1}{2 \pi \mathrm{fC}}$.

The value of K depends upon the relative amount of coupling between the antema and tuned circuit, or between the plate circuit of a vacuum tube and the succeeding tuned circuit; in either case, the effect is to increase the total resistance R when the compling is increased. The resistance of the thang comdenser is relatively much lower than that of the coil, or inductance, so that special care shouid be exercised in designing this coil. Whenever possible, the shape of the coil should be such that its length is made equal to its diameter; this will provide a high " Q ". The diameter of the wire and the spacing between turns also has a definite influence on the "Q".

At radio frequencies, most of the resistance of the inductance coil is due to "skin effect." This effect increases with the frequency, and becomes significant at high frequencies because the current then is not equally distributed throughout the conductor. Instead it tends to travel only on the outermost surface of the wire. For this reason. the radio-frequency resistance may be a great many times higher than the resistance which the wire would offer to direct current.

Spaced winding, i.e., an air space between turns on the coil, reduces the distributed capacity between turns and also increases the " Q ". Dielectric losses in the insulating material and coil forms also have an important effect on the efficiency of the coil. The proximity of other objects, such as metal shichls or chassis, apprecially reduces the " Q " of the coil, mess the distance between t econ and the shielding is at least equal to the diameter of the coil from its sides, and twice this distance from the ends of the coil. The wire with which the coil is wound is a compromise between seweral factors, such as the size of the wire, its cost. allowable physical size of the coil. distributed capacity between turns, and skin effect.

The variable tming condensers in radio receivers are designed to have as low a minimm capacity as possible. in comparison with the capacity when the plates are fully enmeshed. The maximum capacity of the tuning condenser varies from 10 micromicrofarads up to approximately :3\% micromicrofarads in the various types of radio-reccivers: still larger values are used in some longwave receivers. All-ivo radio receivers. which cover short-wave as well as broadcast wavelengths, generally use rather large tuning condensers, thereby crowding the
luming on the short wavelengths. Very small tuming condensers are desirable for shortwave receivers so that tuming of the recever to the desired station is made more easy and the " Q " of the high frequency resonant circuits is kept high.

- Band-Spread Tuning

Short-wave signals are clifficult to tune when the receiver has large tuning condensers, unless some method is used to slow down the rotation of the condenser with respect to the thming band, either mechanically or electrically. This process is known as band-spreadin!. Most short-wave stations of a particular type operate in relatively marrow bands in the short-wave spectrum and these narrow bands slould be spread out by the tuning device of the receiver.

Mechanical band-spreading often consists of a two-speed dial arrangement attached to a large tuning contenser. One control on the dial operates the tuming condenser at a very slow speed, and sometimes this control is geared to an additional pointer in order to facilitate tuning-in the short-wave bands. There is a practical limit to the amount of mechanical reduction in the rive of a vernier dial before back-lasll develops, which makes tuning difficult.

ELECTRICAL BAND-SPREADIIG

Electrical band-spreading is accomplished in a number of ways, as shown in figures $3,4,5$ and 6 . The principle is to connect an additional tuning condenser of very small capacity across the larger tuning condenser so that equal rotations of the two condensers will cover vastly different portions of the short-wave band. The large condenser is for rough tuning or band setting, the small condenser for fine, or arenier tuning. A typical system of this type is shown in figure 3 , in which the large tuning condenser C_{1} may have a maximum capacity of any value from $100 \mu \mu \mathrm{fl}$, to $350 \mu \mu \mathrm{fd}$. The small vernier tuning condenser $\mathrm{C}=$ may have any valuc from $10 \mu \mu \mathrm{fd}$, to $50 \mu \mu \mathrm{fd}$, depending upon the particular design of the receiver. In some circuits the small condenser C_{2} is made semi-variable by means of a screwdriver adjustment, in which case it is used only for the purpose of aligning several tuned circuits for single-tuning-dial-control.

The circuit in figure 4 is similar in action to that in figure 3 and has certain advantages, except from the standpoint of cost. Condenser C_{3} is the usual large tuning condenser and two additional smaller tuning condensers, C_{2} and C_{2}, are comnected in series and across the large condenser C_{3}. If C_{2} and C_{8} are mechanically ganged together, the relative amount of band-spread tuning of C_{2} can be made the same over the complete range of C_{3}. If condenser C_{2} in figure 3 has a fairly high capacity, such as $350 \mu \mu \mathrm{fd}$., the band which can be covered by C_{1} will only be a fraction as wide at the higher capacity values of C_{2} as compared with its lower values. Figure 4 overcomes this disadvantage.

The band-spread method in figure 5 is often used when condensers C_{1} and C_{2} both have a maximum capacity of say $100 \mu \mu \mathrm{fd}$. Band-spreading is accomplished by means of C_{1}, which is connected across a small portion of the tuned circuit. The advantage of this method is that the location of the tap on the coil can be changed for the various coils which cover the different bands, with the result that fairly constant band-spread is accomplished in each coil range. The disadvantage lies in the effect produced by connecting C_{1} across a portion of the coil in the r.f. circuit of a super-heterodyne receiver; the effect is to cause image interference to be more pronounced in this type of circuit, and makes necessary the use of additional tuned circuits.

Figure 6 illustrates another method of equalizing the degree of band-spread over a wide range of frequencies. C_{1} is the large $350 \mu \mu \mathrm{fd}$. tuning condenser; two band-spread condensers C_{2} and C_{3}, of $50 \mu \mu \mathrm{id}$. and 15 $\mu \mu \mathrm{id}$. respectively, are switched across the large tuning condenser for band-spreading the short-wave bands. The $50 \mu \mu \mathrm{fd}$. condenser is suitable for band-spread tuning in the range from 75 to 200 meters, and the smaller condenser is suitable from 10 to 75 meters. The disadvantage of this circuit lies in the switching arrangement, which may require relatively long comnecting leads: the mininum capacity of the circuit also would le rather high.

- Tuned R. F. Circuits

The foregoing discussion was devoted solely to tuned circuits. A radio-frequency amplifier tube can be connected between these tumed circuits in order to increase the sensitiaity of the receiver. The amplification derived from the vacuum tube depends upon the type of circuit in which it is used, and if the plate load impedance can be made very high the gain may be as much as 200 or 300 times that of the signal impressed across the grid circuit. Normal values of gain in the broadcast band are in the vicinity of 100 times. A gain of 30 per r.f. stage is considered excellent for short-wave receivers which have a range of from 30 to 100 meters. Radio-frequency amplifiers for the very short wavelengths, such as from 5 to 20 meters, seldom provide a gain of more than 10 times ljecause of the difficulty in obtaining high load impedances and the shunt effect of input capacities of most screen-grid tubes.

A simple r.f. amplifier and regenerative detector circuit is shown in figure 7 .

The two L-C circuits are tuned to the same frequency throughout the tuning range of each set of coils. This requires that the coils L_{2} and L_{3} have equal values of induc-

Figure 7-R. F. Amplifier and Regenerative Detector Circuit
tance, as well as equal values oi shunt capacity at each point on the tuning dial. The coils can be closely matched by winding the same unmber of turns of wire on sinilar coil forms, with the same exact length of winding space for each coil. Condensers C_{2} and C : are generally called "padder condensers." or "band-setting condensers," depending upon their maximum capacity. In certain receiver designs the ganged condensers C_{1} and C_{4} are used for tuning over the desired range, and C_{2} and C_{3} are small mica or air-clielectric trimmer condensers aligning the two tumed circuits at the high-frequency cud of the tuning range. The miscellaneous circuit capacities are not the sanme for a detector and r.f. amplifier, so that some additional capacities such as padder condensers are needed to align the receiver properly. A resonant antema will unbalance the r.f. stage unless I_{1} is loosely coupled to I_{2}. Coil $I_{\text {, }}$ and condenser C_{3} are closely coupled to L_{3}. and are sometimes used to simulate the effect of both $L_{\text {a }}$ and the output capacity of the screen-grid r.f. tube.

- Autodyne Detector

Nearly all "tuned-radio-frequency" receivcrs have a regenerative autodyne detcctor. similar to the one shown in figure 7 . In some cases the r.f. amplifier is omitted. and the antenna is then coupled to the tuned circuit of the detector. More than one stage of r.f. amplification can be used ahead of the detector in some circuits. Regeneration can be obtained in a number of ways, sucl as with a "tickler' in the plate or screen-grid circuits of the detector, or by means of a tap in the tumed grid circuit, to which the cathode of the detector tube is comected. In the latter case, the screen-grid must be bypassed to the chassis ground comection: the screen-grid voltage is then varied to control the regencration to the point of oscillation.

Regencration is introluced by feeding back a small portion of the amplified r.f. voltage in the plate or screen circuit of the detector tube: this r.f. energy is fed back into the tuned grid circuit so that it will aid the impressed signal. If the amount of feed-back is sufficiently ligh, the tube will break into oscillation: heterodyne reception may then be used for receiving c.w. telegraph signals. As shown in figure i. the "fickler" portion consists of that part of the coil I. which is betwee! the eromid and catlonde commections.

A better name for "tickler" is "feed-back" coil.

The purpose of the detector is to convert the radio-frequency signal into an intelligible audio-frequency signal which can be detected by the human ear. Audio-frequency amplifiers increase the audio-frequency energy to any desired output for headphone or loudspeaker reception.

- Regenerative

R. F. Amplifiers

Ra.lio-frequency amplifiers for wavelengths down to 30 meters can be made to operate nore efficiently in a non-ieycucratize

REGENERATIVE AR F AMPLIFIER

Figure 8
condition. Amplification and selectivity are ample over this range. For higher frequencies, on the other hand, (wavelengths below 30 meters), controlled regeneration in the r.f. amplifier is often very desirable for the purpose of increasing the gain and selectivity. The input impedance of the grid circuit of a radio-frequency amplifier consists of a very high capacitive reactance which becomes part of the tuning capacity for longer wavelengths. However, in very short wave receivers the input reactance of a screen-grid tube may drop to very low values, such as a few thousand ohms. The input impedance then drops to such a low value that very little amplification can be secured from the complete r.f. amplifier stage.

A small amount of r.f. feed-back can be introduced to compensate for this tube loss. Regeneration can be carried to the point of actually creating the effect of negative resistance in the tuned circuit, and thereby balancing the resistance introduced in series with the tuned circuit of the relatively low parallel tube resistance. Fxcessive regeneration will result in too much negative resistance. which will cause the r.f. amplifier to uscillate. Operation should always be below
the point oi self-oscillation. A minor disadvantage of the regenerative r.f. amplifier is the need for an additional regeneration control, and the difficulty of aligning this circuit with the following tuned r.f. stages. Resonant effects of antema systems usually must be taken into account; a variable antema coupling device can be used for balancing out this effect. Another disadvantage is the increase in hiss, or internal noise, in the radio receiver. These disadvantages are more than offset by the ability to receive weak signals which would otherwise not be audible in the average receiver on very short waves.

- Circuit Capacities

Several capacities are involved in every tuned circuit. These are the tuning condenser capacity, tube capacity, trimmer condenser capacity, coil distributed capacity, and miscellaneous capacities due to wiring and placement of parts. These capacitics all combine to increase the apparent capacity of the tuning conclenser, thereby limiting the obtainable minimum capacity at the high-frequency tuning portion of the circuit. A ligh minimum capacity reduces the ratio of max-imum-to-minimum tuning capacity, whiclu results in a narrower tuning range for a tuning condenser of a given size. High minimum capacity is also objectionable in very-shortwave reception because the average ratio of capacity to inductance becomes too high for efficient reception.

In multi-stage tuned circuits, trimmer condensers are necessary in order to align the circuits properly for single-dial control. The trimmer condensers are adjusted at the high-frequency end of the band under test. Slight variations of inductance are often compensated for by slightly bending the end plate on the rotor of each section of the main tuning condenser. Sometimes this plate is slotted in order that it can be more easily bent in or out. The so-called secondaries of the tumed coils are often macle to have the same value of inductance by matching them on some form of coil or inductance-matching loridge before the coils are placed into the receiver.

- Types of Receivers

Numerous kinds of radio receivers are used for short-wave reception:
(1) Regcucrative Detcctor.
(2) Regeneratiac Defictor and Audio Amplifier
(3) T.K.F. Receiver,
(4) Superregencratioc Kociare.
(5) Superheterodyue Reccizer.

A regonerafize detoctor consists of any triode or screen-grid tube in conjunction witls a single tuned circuit, and some means for obtaining regeneration, as mentioned in previous discussions.

The addition of an audio amplifier to a regenerative detector increases the strength of the signal and also the sensitivity, the latter, however, only to the extent that the signal may be more easily heard; an audio amplifier ordinarily will not increase the selectivity nor the sensitivity to weak signals. Audio amplifiers are coupled to the output of a detector by means of resistance coupling, impedance coupling, or transformer coupling.
T.R.I. receivers have one or more stages of radio-frequency amplification alnead of the detector and audio amplifier. These receivers are more sensitive to weak signals and have somewhat better selectivity than the two previously mentioned types.

The superregeneratize reccior is similar in action to a regenerative receiver, except that the regeneration is carried to a far greater extent by permitting the tube to break into oscillation. Then by means of an additional low-irequency oscillation, the detector is made to break in and out of signalfrequency oscillation at a frequency depending upon the low-frequency oscillation. Superregencration is used on very short wavelengths, such as in the micro-wave and ultra-high-frequency regions.

The superheteradyue recoiter consists of a radio-frequency circuit (or circuits) tuned to the frequency of the desired signal, and also an additional amplifier which is generally tuned permanently to some low frequency, such as 465 kilocycles. The incoming radio-frequency signal is converted into the new intermediate frequency ly means of a high-frequency oscillator and first detector or miarer fube circuit. The additional amplifier, consisting of one or more intermediate frequency stages can be made very selective. with the result that this type of receiver is much more selective than any of the previously mentioned types.

The superhetcrodine recciaer requires a scoond detcctor and an audio amplifier to
convert the intermediate signal into an audio signal, just as in the case of the simple regenerative detector receiver.

- Receiver Vacuum Tubes

There are dozens of different types of tubes for use in radio receivers. Many similar tubes are made in different forms, such as metal tubes, glass tubes with standard bases, glass tubes with octal bases similar to those used on metal tubes, glass tubes encased in metal shells and fitted with octal bases, and tubes with similar characteristics but differing in their heater or flament voltage and current ratings. Some tubes are desigued for dry-battery filament supply, others for automobile service, and another group for operation from an a.c. source.

In general, there are certain distinet classes of tubes for particular purposes. Screen-grid tubes were primarily designed for radio-frequency amplifiers, yet they are often employed for regenerative detectors, mixers and highgain voltage audio amplifiers. General-purpose triode tubes are designed for oscillators, detectors and audio amplifiers. Power-triodes, tetrodes and pentodes are designed for obtaining as much power output as possible in the output audio amplifier stage of a radio receiver. Diodes are designed for power supply rectifiers, radio detectors, autonatic volume control circuits and noise-suppression circuits. In addition to these general types of tubes there are a great many others designed for some particular service, such as oscillator-mixer operation in a superheterodyne receiver.

All vacuum tubes require a source of power for the filament and other electrodes. Various components in a radio receiver are for the purpose of supplying direct current energy to the electrodes of the tuhes, such an the plate and screen circuits. In nearly all circuits the control-grid of the vacuum tube is biased negatively with respect to the cathode, for proper amplifier action. This bias is obtained in sereral ways, such as from a self-hiasing resistor in serics with the cathode, fixed bias from the power supply, or grid-leak bias for some oscillators and detectors.

Various bypass and coupling condensers are found in different portions of the circuits throughout a radio receiver. Bypass condensers provide a low impedance for r.f. or atudio frequencies around such compo-
nents as resistors and choke coils. Coupling condensers provide a means of connection between plate and grid circuits in which the d.c. voltage components are of widely different values. The coupling condenser offers an infinite impedance to the d.c. voltages, and a relatively low impedance to the r.f. or a.f. voltages.

Screen-grid tubes have a higher plate impedance than triodes and therefore require a much higher value of plate-load-impedance in order to obtain the greatest possible amount of amplification in the audio or radio circuits. Screen-grid tubes are normally used in all r.f. and i.f. amplifiers because the control grid is electrostatically screened from the plate circuit. Lack of this screening would cause self-oscillation in the amplifier; when triodes are used in amnlifiers the grid-to-plate capacities nust be neutralized. The r.f. amplification from a triode amplifier in a radio receiver is so much less than can be obtained from a screen-grid tube amplifier that triodes are no longer used for this purpose.

Reference should be made to the chapter on Vacuum Tubes for data on all types of tubes. Practical applications of various types are shown in the receivers described in the succeeding chapter of this Handbook.

- Automatic Volume Control

An elementary circuit of an automatic volume control system is shown in figure 9. A diode tube is used as a rectifier of the carrier signal. The raclio (i.f.) frequency circuit to the diode is completed through the small condenser C_{1}, which is too low in value to bypass audio frequencies. The carrier signal is detected or rectified, and the resulting current flows through the diode circuit and the resistance R_{1}. This rectified

Figure 9-Typical A.V.C. Circuit Using Diode

Figure 10 Automatic volume control is a distinct advantage when the receiver is used for phone reception. It automatically compensates for signal fading. Briefly, the carrier signal strength causes a control voltage to vary in proportion to the actual carrier intensity.
current develups a voltage across K_{t}, which is more negative at the ungrounded end.

A simple R-C (resistance-capacity) filter in the form of $\mathrm{R}_{2}-\mathrm{C}_{2}$ may be connected to the diode circuit in order to utilize the d.c. voltage for automatic volume control purposes. This filter removes the audio frequencies and also acts as a decoupling filter. The negative voltage developed across R_{1} and C_{z} has a value directly proportional to the incoming carrier signal. This voltage is used to bias the control-grids of some of the r.f. and i.f. amplifier stages. An increased negative bias will reduce the amplification of the radio receiver, so that a strong carrier, such as from a local broadcast station, furnishes approximately the same audio-frequency output signal as would be obtained from a distant broadcast station. Automatic volume control has the further advantage of maintaining the audio signal at a fairly constant level, even though the signal from a distant station may be fading or varying in amplitude.

A great many different kinds of tubes are used for automatic volume control, but nearly all of these tubes operate on the principle of a diode rectifier.
Figure 10 shows a typical automatic volume control circuit which can be applied to alnost any superheterodyne receiver.

- Automatic Frequency Control

Many new receivers are equipped with alltomatic tuning dial mechanisms which require an addition to the electrical portion of the receiver in order to tune the circuits exactly to the carrier of the desired station. This is accomplished by automatic frequency control, which is an electrical device for varying the frequency of the oscillator from
:s to 1.5 kc . either side of the meclamicall:controlled circuit. Mechanicallỳ-operated dials which tune to a fixed number of broadcast stations can meither be accurately set nor maintained in service on the exact frequency of each station. Automatic frequency control compensates for this defect. and thus there is no distortion due to mistuning.

The high frequency r.f. and detector stages are not automatically tuned ; they must therefore have a very broad tuning claracteristic, preferably of the band-pass type. The automatic frequency control circuit consists of two parts, one of which discriminates between a too-high or too-low dial setting and thereby translates this effect into control voltages which are negative when

Figure 11
the dial is detuned in one direction, and positive when detuned in the opposite direction. The second prortion of the circuit is to correct the high-freguency oscillator. This is accomplished by means of the gili tube, as shown in figure 11.

A 6 H 6 can be used as an automatic volume control, detector and automatic frequency control tube, as indicated in figure 11. The principle of operation is, brielly, based upon a phase difference when the applied frequenc: from the i.f. amplifier is too low or too high. Both capacitive and inductive coupling are used into the 6 H 6 tube ; a phase difference results in the point " x " in the cathode of the 6 H 6 tube having a positive or negative voltage which is impressed on the grid of the 6I\% "corrector tube." Audio and a.s.c. voltages can be obtained from point " 1 ". if desired.

The 6 J 7 tube acts as a variable impedance having the characteristics of an inductance or capacity, depending upon the bias on the grid of the tube. This tube is connected across the oscillator tuned circuit and thereby automatically tunes the oscillator circuit to a point which will heterodyne the inconing carrier signal into the exact frequency to which the i.f. amplifier is tuned. When this occurs, the phase relations in the 6 Hg circuit are such that no further bias change is applied to the 6 J 7 tube.

Automatic frequency control has the disadvantage that the amount of correction varies with the wavelength of the incoming signal. This might result in an oscillator frequency change of as much as 100 kc . in the short-wave bands on an all-wave receiver incorporating a.f.c., so that a strong shortwave signal will detune the receiver from the desired station unless its own sigual is very strong. For this reason provision is

Figure 12-Circuit for Using Meter as Tuning Indicator.
made for switching out the a.f.c. circuit when tuning the short wave bands.

- Tuning Indicators

Visual means for determining whether or not the receiver is properly tuned, as well as an indication of the relative signal strength, are both provided by means of tuning indicators of the meter or vacum tube types. Dircct current milliammeters can be connected in the plate return circuit of an r.i. amplifier in such a manner that the change in plate current, due to the a.v.c. voltage which is supplied to that tube, will indicate proper tuning or resonance. Sometimes these d.c. meters are built in such a manner as to produce a shadow of varying width. Vacuum tube tuning indicators are designed so that an electron-ray "eye" changes its rela-

Figure 13-Electron Ray "Tuning Eye" Indicator.
tive size when the input circuit of the tube is commected across part of the d.c. component of the automatic volume control circuit.

- Beat-Frequency Oscillators

Beat-frequency oscillators, usually called "b.f.o." in superheterodyne receivers, are a necessary adjunct for reception of c.w. telegraph signals on superheterodynes. The oscillator is coupled into the second detector circuit and supplies a weak signal of nearly the same frequency as that of the desired signal from the output of the i.f. amplifier. If the i.f. amplifier is tuned to 465 kc ., for example, the b.f.o. is tuned to approximately 464 or 466 kc . in order to produce a 1,000 cycle beat-note in the output of the second detector of the superheterodyne. The carrier sigual would otherwise be inaudible. The b.f.o. is not used for voice reception, except as an aid in tuning a weak carrier to zero beat. or in searching for weak stations.

The b.f.o. input to the second detector need only be sufficient to give a good beatnote on an average signal. Too much coupling into the second detector will give an
excessively high hiss level, and masking of weak signals by the high noise background will result. This oscillator should be well shielded to prevent harmonics of the circult from radiating into the front end of the radio receiver, thereby producing undesired whistles in various portions of the short wave band. The b.f.o. circuit should have as high a C-to-L ratio as possible in order to obtain an output of good stability.

- Crystal Filters

The selectivity of an intermediate-frequency amplifier can be greatly increased for c.w. reception by means of a quartz crystal filter. This results in a better signal-to-noise ratio, and is a very satisfactory means for obtaining a high degree of selectivity in the i.f. amplifier. The quartz crystal is placed in the i.f. amplifier circuit in such a way that it acts as a very sharply resonant filter which will only pass an extremely narrow band of frequencies. A typical crystal filter circuit is shown in figure 14.

Figure 14-Typical Crystal Filter Circuit.
The crystal functions as a series-resonant circuit having a very high " Q." The capacity across the crystal holder is neutralized by means of the phasing condenser and centertapped tuming condenser or centerlapped input coil. The phasing condenser can also be made to change the selectivity characteristic of the filter circuit, and therefore this control always should be located on the front panel of the radio receiver.

The circuit in figure 15 will illustrate the principle of operation of a quartz crystal filter.

Figure 15-Equivalent Circuit of a Quartz Crystal.
The quartz crystal may be compared to the equivalent electrical circuit shown, where C_{1} is the capacity across the quartz plate when not vibrating, R is the resistance
equivalent to the frictional effects of the vihrating crystal, L the inductance corresponding to the inertia, and C the capacity corresponding to the elasticity. On one side of resonance the circuit has capacitive reactance, due to the elastic forces which control the crystal vibrations, while on the other side of resonance the reactance is inductive because of the effects of inertia. The crystal vibrates freely at resonance, its amplitude being limited by the frictional effects at resonance. L and C are equal and opposite in reactance, the impeclance is very low, and the resonant frequency is the same as the mechanical vibration mode.
A typical 451 kc . quartz crystal has an equivalent inductance of 3.5 henrys and a series capacity of less than $0.1 \mu \mu \mathrm{fd}$. The effective " Q " may run as high as 10,000 , which results in an extremely sharp resonant curve, not obtainahle with ordinary condensers and coils. At frequencies slightly off resonance, the series impedance is extremely high due to the minute series capacity C and enormous inductance L.

By placing the phasing condenser C_{1} in the circuit so that the voltage across it is out of phase with that across the crystal. the parallel resonance can be shifted above or below the series crystal resonance. Thus the phasing condenser can be adjusted so that the parallel resonance causes a sharp dip in the response curve at some desired point, such as 2 kc . from the desired signal peak. This effect can be utilized to eliminate completely the unwanted sidehand 1 kc . away irom zero-beat for c.w. reception. The b.f.o. then provides a true single signal effect. i.e., a single beat frequency note. This effectively increases the number of c.w. channels that can be used in any short-wave band. The series resonant effect of the crystal passes the desired signal through the i.f. amplifier for further amplification.

Other typical quartz crystal filter circuits are shown in figures 16,17 and 18.

The ideal response curve for an i.f, amplifier in either a phone or c.w: receiver would be flat topped and straight sided. The "pass hand" would be somewhat wider for phone, however, than for c.w. An ideal c.w. curve would have a 300 or 400 cycle flat top, while for phone the flat top for good intelligibility and maximum freedom from QRM would be 3000 or 4000 cycles wide. The phone fidelity would be impaired with this degree of

Figure 16

Figure 17

Figure 18
selectivity because of the chopping off of the higher frequency sidebands, but the intelligibility would still be quite good in spite of the narrow: pass-band. The narrow pass band has the advantage of allowing one to discriminate between two stations quite close together in frequency without "slop-over" interference.

By straight sided is meant that the response drups very rapidly to an extremely low value either side of the pass band. For freedom from interference from strong local stations, the response should drop at least 120 db ; otherwise the local may come through as bad interference even though not in the actual "pass band." The high degree of attenuation is necessary because of the tremendons difference between the signal strength of a nearby station as compared to a distant one.

Series crystal circuits, as commonly used in single signal superheterodynes, give a very narrow response width at 465 kc ., and while the response is a little narrower than optimum for c.w., it is entirely satisfactory for c.w. work. However, a 465 kc. series crystal filter has a response much too narrow for intelligible phone reception.

The main disadvantage of the series crystal filter is the presence of a wide "skirt" in the response curve; in other words, the response curve resembles a volcano. Thus it does not meet the "straight sided" requirement of an ideal filter.

- Wide Band Crystal Filters

For radiophone reception, a higher frequency filter crystal and i.f. amplifier may be used to give a wider response curve. By using 1550 kc . instead of 465 kc ., the filter will have a much wider pass band, wide enough to pass intelligible phone signals yet still sharp enough to be useful for c.w. reception.
The same effect is sometimes procured by using several quartz filter crystals in the 463 kc . vicinity in a suitable network. This gives a wider pass band the same as does a 1550 kc . crystal filter and at the same time has the additional advantage of steeper sides, or more rapid attenuation.
Another type of wide band filter is the Transfilter, an electro-mechanical device that is piezo electric in action yet cannot be compared to a quartz crystal filter. Small, piezo electric Rochelle salt crystal "driver" elements actuate a small, steel "resonating rod." The device has ligher mechanical damping than a quartz crystal resonator, and therefore is not so sharp.

By the incorporation of impedance matching networks or tuned circuits in the filter circuit, it is possible to modify the shape of the response curve. This gives a control over the selectivity, and enables one to vary the band width from approximately 3 kc . up to 10 kc ., making the device highly useful for amateur phone work.

Inasmuch as the "Transfilter" is commercially available as a complete resonator unit, detailed constructional data will not be given here. A word of warning is in order, however, to those designing receivers in which a Transfilter is to be used. The receiver should be so laid out mechanically and the filter unit placed so that it will not become heated from other components. Temperatures above 130 degrees F. will damage the small Rochelle salt crystal plates.

- Noise Suppression

The problem of noise suppression conironts the listener who is located in suth places where interference from power lines, electrical appliances and automobile ignition systems is troublesome. This noise is often of such intensity as to swamp out signals from desired stations.
There are three principal methods for reducing this noise:
(1) A.c. line filters at the source of interference, if the noise is created by an electrical appliance.
(2) Noise-balancing circuits, for the reduction of power-leak interference.
(3) Noise-liniting circuits, for the reduction of interference caused by autonobile ignition systems.

- Line Filters

Household appliances, such as electric mixers, heating parls, vacumm sweepers, refrigerators, oil-burners, sewing machines, doorbells, etc., create an interference of an intermittent nature. The insertion of a line filter near the source of interference often will effect a complete cure. Filters for small appliances can consist of a 0.1 ufcl. condenser connected across the 110 volt a.c. line. Two condensers in series across the line, with the mid-point comected to ground, can be used in conjunction with ultra-violetray machines, refrigerators, oil-burner furnaces, and other more stubborn offenders. In severe cases of interference, additional filters in the form of heary-duty r.f. choke coils must be connected in series with the 110 volt a.c. line on both sides of the line.

- Jones NolseBalancing System

A very troublesone form of interference which has heretofore been incurable, except by elimination directly at the source. is that which is carried along the power lines. This form of interference is of such a continuous nature, or buzz, that none of the noise-limiting circuits has proved of value in reducing the noise. Noise-limiters are effective only on popping types of noise. such as automobile ignition.

Power-line noise interference can be greatly reduced $f y$ the installation of a noise-balancing circuit ahead of the receiver. as shown in figures 19 and 20 . The noise-

Figure 19

NOISE BALANCING COUPLER CIRCUIT
Figure 20
balancing circuit adds the noise components from a separate noise antema in such a manner that this noise antenna will buck the noise picked up by the regular receiving antenna. The noise antenna can consist of a connection to one side of the a.c. line, in some cases. While at other times an additimal wire, 20 to 50 feet in length, can be run parallel to the a.c. house supply line. The unise antenna should pick u_{1} p as much noise as possible in comparison with the amount of signal pick-up. The regular receiving antenna should be a good-sized outdoor antema, so that the signal-to-moise ratio will be as higl as possible. When the noise components are balanced-out in the circuit ahead of the receiver. the siguals will not be appreciably attenuated.

Noise-balancing is not a simple proces: it requires a bit of experimentation ill order to obtain good results. When proper adjustments have been made. it is possible to reduce the power-leak noise irom 3 to is " R " points without reducing the signal strength nore than one " R " point, and in some cases there will be no reduction in signal strength whatsoever. This means that fairly weak signals can be received through terrific power-leak interference. Hash-type interference from electrical appliances can te reduced to a very low value by means of the same circuits.

The Noise Balancer. figures $1!$ and 20. must have variable coupling between the two coils in order to obtain a balancing-ont effect. Different noise antemas generally are needed for different amateur bands.

The noise at one part of the short-wave spectrum occasionally will be oi a different phase than the same type of noise in the next short-wave band. This requires a reversal oi the comecting leads to the coil I_{-1} from the antenna feeders. If a single-wire feeder
or an ordinary antema and ground are used for receiving, one connection to the coil L_{1} (figure 19) is unused. The position of the tap on coil 1_{-2} depends upon the amount of noise which is picked up by the noise antemna. In adjusting the coupler, one antenna is discomected while the other is being adjusted, and vice rersa, until the noise level as hearl in the receiver is approximatelythe same with either antema. Incorrect connection to coil L_{1} will increase the noise as heard in the radio receiver, and the correct comnection will reduce the noise. Careful tuning of the variable condenser and proper coupling between the two coils will result in either a complete elimination of the noise or its reduction to a low value.
The comecting leads to the radio receiver should be fairly short. The coil turns given in the circhit diagram for this mise-halancing coupler are for short-wave operation over the range of from 10 to 80 meters. More coil turns are needed for longer wavelengths.

- Noise-Limiting Circuits

Numerous noise-limiting circuits have become popular in the past year. These circuits are beneficial in overcoming automobile ignition interference. They operate on the principle that each individual noise-pulse is of very short duration, yet of extremely high amplitude. The popping or clicking type of noise from electrical ignition systems may produce a signal ten to twenty times as great as the incoming radio signal.
If the duration of the noise peak is sufficiently short, the receiver can be made inoperative during the noise peak without the human ear detecting the total loss of signal. Some noise-limiters, or eliminators. actually "punch a hole" in the signal, while others merely limit the maximum peak signal which reaches the headphones or londspeaker.

The mise peak is of such short duration that it would not be objectionable. except for the fact that it produces an overloading effect in the receiver which increases its time constant. A sharp voltage peak will give a "kick" to the diaphragm of the headphones or speaker, and the momentum or inertia keeps the diaphragm in motion unt il the damping of the diaphragin stops it. This movement produces a popping sound which may completely obliterate the desired signal. If the noise peak can be limited to an amplitude equal to that of the desired signal.
the resulting interference is practically negligible, except in extreme cases.

- Copper-Oxide-Rectifier Noise Limiter

Figure 25 shows a new circuit which is antomatic in its action and very effective ior reducing ignition interference in the output of the radio receiver. It consists of a simall copper-oxide rectifier, of the type used for a.c. voltmeter replacement purposes. The rectifier is uperated as a non-linear resistor by connecting the positive and minus leads tugether for one terminal, and the two a.c. leads together for the other terminal. With no a.c. impressed, the impedance is nearly 1,000 ohms. When the a.c. voltage across the oxide resistor is between one and two volts. the resistor value drops to less than 100 oluns; this unit therefore can be used as a short-circuiting device across the low-level audio section of the radio receiver.

The impelance of the oxide-rectifier is rather low for connection directly across the plate circuit of an audio amplifier and it should be comected therefore across a center-tapped choke, as shown in figure 21. or across the primary of a step-up transformer, as shown in figure 22.

The incoming signal will be slightly attenuated and noise impulses of a high amlitude will be "leveled-off" to an amplitude little higher than that of the desired incorning signal. This type of noise-limiter also will limit the volume of a code or phone signal. unless additional audio amplifiers are atided to the receiver, as shown in figure 22.

- Neon-Bulb
 Noise-Limiter

A 2-watt nenn bulb can be connected across the primary of a loud-speaker output transfurmer in provide unise limiting, but

Figure 21 -Automatic Noise Limiter Circuit.

Figure 22 Oxide Rectifier Noise Silencer Circuit for Loud Speaker.
the resistor must first be removed from the base of the neon bulb. By setting the audio volume control to a certain critical point, the neon bulb will flash-over on noise pulses and tend to act as a noise-limiter. The bulb must not be shunted with condensers in the output circuit ; condensers will charge and discharge, and produce a loud popping sotud. The neon bulb is not as satisfactory for noise-limiting purposes as the copperoxide rectifier. A high-level audio system is required for operation of the bulb-limiter, since the latter requires from 60 to 100 volts potential in order to flash-over and cause the bulb to act as a low resistance across the output.

- Noise-Silencers for Connection Into I. F. Amplifier Circuits

Several noise-sifencing or limiting circuits have been developed for connection into the i.f. or detector portions of a superheterodyne receiver. Tests conducted with a great many of these circuits have indicated that the one shown in figure 23 is among the most practical and desirable for use in amateur communications receivers. The noise-silencing action is entirely automatic and does not require readjustment for each incoming signal.

A double-diode, such as a 6116, or two separate tubes are necessary for second detector and noise-suppression tubes. One diode acts as a seconcl detector and a.v.c. tube. the other being connected across it as a noise-suppression tube. The principle of operation is as follows: The incoming carrier signal will build up a certain value of a.v.c. voltage across the 75,000 and 100,000 ohm resistors in the detector diode. The plate of the noise diode is connected across these two resistors, as well as the cathode of the noise diode, as shown in figure 23 . The plate of the noise diode will remain at the average potential developed by the a.v.c. voltage due to the carrier signal. The time
constant of the $1 / 2$-megolm resistor and $1 / 2$ $\mu \mathrm{fd}$. condenser in the noise diote plate circuit will not follow the short pulse period of a noise signal. This noise pulse will act upon the cathorle of the noise diode. due to the very short time constant in that circuit. The noise peak causes the cathode to be more negative than the plate. so that the noise diode conducts current and drops to a very low impedance value. This effectively short-circuits the audio-frequency output for the duration of the noise pulse. Thus it can be seen that this noise silencer will operate very effectively on noise pulses of short-time duration, such as ignition noise, without destroying the intelligibility of the desired signal. However, in the case of a power-leak which produces a more or less constant noise voltage, the signal would be blocked out for so great a time that it would be unintelligible.

AUTOMATIC NOISE SILENCER, DETECTOR \& AVC SYSTEM
Figure 23
The noise-silencer shown in figure 23 can be used for either 'phone or c.w. reception, but is most effective for the latter. The noise diode for 'phone reception must be set so that it will not operate for noise pulses of an amplitude less than twice that of the incoming carrier signal ; for c.w. the device can be made to operate for any noise pulse of greater intensity than the c.w. carrier. The changeover from 'phone to c.w. is ac-
complished by short-circuiting the $\pi 5,000$ ohm resistor. This operation can be accomplished by means of a single-pole-singlethrow switch, or, if desired, by a double-pole-single-throw switch, in which case the automatic volume control can simultancously be cut off for c.w. reception.

- Receiver Adjustments

Satisfactory results can only be obtained from a radio receiver when it is properly aligned and adjusted. The most practical technique for making these adjustments is given in the following discussion:

The simplest type of regenerative receiver requires little adjustment other than those necessary to insure correct tuning and smooth regeneration over some desired range. Receivers of the tuned radio-frequency type and superheterodynes require precise aligmment to obtain the highest possible degree of selectivity and sensitivity.

- Test Instruments

Only a very small number of instruments are necessary to check and align any multitube receiver, the most important of these testing units being a modulated oscillator and a d.c. and a.c. voltmeter. The meters are essential in checking the voltage applied at each circuit point from the power supply. NOTl:: If the a.c. voltmeter is of the oxilerectifier type, it can be used, in addition, as an output meter when connected across the receiver output when tuning to a modulated signal. If the signal is a steady tone, such as from a test oscillator, the output meter will indicate the value of the detected signal. In this manmer linc-up adjustments may be visually moted on the meter rather than by increases or decreases of sound intensity as detected by ear.

Receiver Alignment

- Tuned R. F. Receivers

The alignment procedure in a multi-stage r.f. receiver is exactly the same as aligning a single stage. If the detector is regenerative, each preceding stage is successively aligned while keeping the detector circuit tuned to the test signal, the latter being a station signal or one locally generated by a
test oscillator loosely coupled to the antenna lead. During these adjustments the r. f. amplifier gain control is adjusted for maximum sensitivity, assuming that the r.f. amplifier is stable and does not oscillate. Oscillation is indicative of improper bypassing or shielding. Often a sensitive receiver can be roughly aligned by tuning for maximum noise pick-up, such as parasitic oscillations originating from static or electrical machinery.

- Superheterodynes

A superheterodyne presents an involved alignment procedure since it is necessary to align both the oscillator and first detector as well as the intermediate frequency amplifier. In this case, the latter should be aligned first.

METHOD : A calibrated modulated oscillator is set to the frequency of the i.f. amplifier; this is usually between 175 and 500 kc. A lead from the oscillator is connected to the grid of the last i.f. stage, and C_{5} and C_{8} of figure 24 varied until maximum signal strength is obtained in the output of the and detector or andio amplifier. The adjustment can be simplified if the receiver has a.v.c., the tuning meter being used to indicate the maximum signal strength. Since the coupling inductances L_{3} and L_{3} are generally fixed, the only possible adjustment will be by varying the trimmer condensers.

After C_{s} and C_{s} are properly set, the oscillator power is decreased, then coupled to the grid of the first i.f. amplifier tube. C_{3} and C_{4} may then be adjusted for maxinnum signal strength. The r.f. input to the receiver must be kept at an optimun value to insure signal readability. The procedure is repeated to align C_{1} and C_{2}, providing the receiver has two i.f. stages.

Sonetinnes it is necessary to disconnect the first detector grid lead from the coil, grounding it through a 1000 or 5000 ohm grid leak, and the test oscillator coupled through a small capacity to the grid. The oscillator should preferably have some form of attenuator: however, the coupling may be varicd by moving the oscillator lead further away from the tube grid into which it is coupled. The first cletector acts as an ampli-

Figure 24-I. F. Amplifier.
fier. After the i.f. is aligned, the first detector grid lead is connected back to its r.f. coil.

The technique of lining-up the first detector and r.f. stages, if any, is precisely the same as that described in aligning a tuned r.f. receiver. However, the line-up with the r.f. oscillator is slightly modified. METHOD: The h.f. oscillator is used to provide a signal in the first detector which will beat with the desired signal to form a new signal at the frequency to which the i.f. amplifier is tuned. If this is 450 kc ., the h.f. oscillator should tune to 450 kc . higher frequency than that of the first detector and r.f. stage. Figure 25 illustrates this circuit.

In general, coil $L:$ must have less inductance than L_{1}, and C_{4} must have less tuning range than C_{1}. These requirements necessitate that L_{2} have less turns than L_{1} and less capacity in C_{4} than in C_{1}. If C_{1} and C_{4} are of the same capacity and are coupled in tandem, a fixed or variable condenser C_{3} is placed in series with C_{*} to reduce its maximum capacity. C_{2} and C_{4} may be either trimmer or band-setting condensers. C_{3} is required at longer wavelengths where the ratio of the oscillator to detector frequency is not approaching unity. For example: at $14,000 \mathrm{kc}$. with the oscillator at $14,450 \mathrm{kc}$. no series condenser is necessary, but one

Figure 25-Front-End of Superheterodyne.
wonld he required at irefuencies of 2,000 kc . and 2.4 .50 kc . if the tuning condensers C_{1} and C_{1} were very large.

- Alignment Procedure

Actual alignment of the front end of a "superhet," such as shown in figure 2.). follows: The test oscillator is set at the highest frequency which can be tuned in with a given set of coils. This may require a little manipulation. but if the tuning range is known or can be estimated, an approxi-
mate frequency setting of the test oscillator can be made.

The test signal intensity is increased in value until it is heard or can be measured at the output of the receiver. C_{5} is then adjusted to bring the dial reading to the desired point for a given frequency, providing the dial is calibrated. C_{2} is then adjusted for maximum sensitivity. Next, the tuning dial is rotated througli to nearly full capacity setting of C_{1} and C_{1}, of figure 25 , and the test oscillator set for this lower frequency. These circuits can be aligned by moving the tuning dial while adjusting "padding" condenser C_{3} with a screwdriver or by plate bending of C_{2}.

A middle dial setting can be checked by means of a third setting of the test oscillator and plate bending of C_{1}. Sometimes L_{2} has to have considerably less turns than $I_{L_{1}}$ and a few turns added or subtracted to allow the h.f. oscillator to tune through the whole range at precisely 450 kc . ligher in frequency than the detector and r.f. stages.

- Multi-Band Receivers

Individual coils in multi-band receivers with coil switching arrangements must have small

Figure 26 Another Type of Front-End.
trimmer condensers shunted across the inductive circuits, as shown in figure 27. This allows fairly accurate alignment in each band by following the procedure previonsly

Figure 27-Tuned Circuits for Coil Switching
outlined. In assembling a superheterodyne, the labor of checking is rather long and tedious since each coil must have exactly the correct number of turns because bending the main tuning condenser plates would unbalance or misalign all other coils. Unfortunately in receivers incorporating coil switching arrangements, it is impossible to obtain accurate circuit alignment on all coils. Many commercially built receivers use two stages of r.f. ahead of the first detector, tuned rather broadly in order to overcome this defect and obtain better signal-to-noise and image ratios.
If either the r.f. stage or first detector is regenerative, it must track exactly with the h.f. oscillator. This type of circuit is shown in figure ${ }_{26}$ where C_{1} and C_{3} are approximately $25 \mu \mu \mathrm{fl}$. ganged tuning condensers on the main tuning dial, and C_{2} and C_{4} are band setting condensers of 100 to $1+0 \mu \mu \mathrm{fil}$. In this instance C_{2} can be used as a paneloperated trimmer condenser to hold the circuits exactly in line at high degrees of regeneration. The series padding condenser C_{3} of figure 2.5 is not required in this class of receiver due to the very narrow band tun-ing-range of C_{1} and C_{3}. The coil turns on L_{-1} and I_{-2} can be adjusted so that at random settings of C_{2} and C_{1} they will give practically perfect alignment. Varying the coil turns and spacing between turns will insure good tracking throughout all the amateur lands with the possible exception of the 160 meter band. This form of receiver invariably uses plug-in coils which first must be adjusted properly, the turns then being cemented in place with celluloidal cement.

- Crystal Filter Alignment

It lining up the i.i. amplifier for use with a crystal filter. it is customary to employ the crystal itself as an oscillator. The circuit shown in figure 28 should be used. A

TEST OSCILLATOR CIRGUIT
Figure 28-Rough Alignment of Crystal Filter.
winding from an i.f. transformer can be used for the plate inductance. If none is handy, a b.i.o. coil can be used. In either case, it is necessary to discomect the trimmer across the winding.

For lining-up purposes, a type 30 tube with 2 volts a.c. on the filament will suffice: the a.c. modulates the signal and simplifies the adjusting procedure. Plate voltage (180 volts) can be secured from a tap on the receiver voltage divider or procured from one or two " B " batteries. A milliammeter inserted in the plate circuit will indicate oscillation, the plate current dipping as the condenser tuncs the inductance to the resonant frequency of the crystal. The oscillator is then used as a "line up". oscillator as already described earlier in this chapter.
Exact i.i. alighment should be made with the crystal in the ctrcuif, aiter the preliminary adjustment is made, because the crystal frequency is not cxactly the same in a resonator as in an oscillator,

In adjusting the crystal filter, the phasing condenser and input tuning condenser should be adjusted simultaneously for maximum signal response, then a slight readjustment of the phasing condenser will allow elimination of the other sideband.

- Notes

In lining up a receiver which has automatic volume control (a.v.c.) it is considered good practice to keep the test-oscillator signal near the threshoid sensitivity at all times to give the effect of a very weak signal relative to the audio amplifier output with the audio gain control on maximum setting.

In checking over a receiver certain tronbles are often difficult to locate. By making voltage or continuity tests, blown-out condensers, or burned-out resistors, coils or transformers may usually be located. Oscillators are usually checked by means of a d.c. voltmeter comnected from ground to screen or plate-return circuits. Short-circuiting the tuning condenser plates ustally should produce a change in voltmeter reading. A vacuum-tube voltmeter is also very handy for the purpose of measuring the correct amount of oscillator r.f. voltage supplied to the first detector circuit. The proper value of the r.f. voltage is approximately one volt less than the fixed grid bias on the first detector when the voltage is introduced into either the grid or the cathode circuit.

Incorrect voltages, poor resistors or leaky bypass or blocking condensers will ruin the audio tone of the receiver. Defective tubes can be checked in a tube tester. Loudspeaker rattle is not always a defect in the voice coil or spider support, or metallic filings in its air-gap; more often the distortion is caused by overloading the audio amplifier.

An i.f. amplifier can also impair splendid tone due to a defective tube or overloading of the final i.f. tube. In some circuits the last i.f. tube will overload on strong carrier signals. Diode detectors provide best fidelity when operated at fairly high input levels, which means that there must be ample voltage swing delivered by the last i.f. tube.

Chapter 7

RADIO RECEIVER Constriction

ARECEIVER of modest cost, incorporating a dual-triode tube which serves the combined purpose of a detector and audio amplifier, is shown in figure 1 . This receiver "perates from dry-cells for the filament supply, and from either a power pack or B-batturies for the plate supply. The type-19 dual-triode tube enables this receiver to give performance comparable with that of any other dry-cell operated receiver in which two separate tubes are used for detection and autlo amplification.

The receiver is of the regenerative type, regeneration being controlled by means of a midget variable condenser of $140 \mu \mu \mathrm{fl}$. capacity. Bancl-spread tuning is accomplished by means of a $15 \mu \mu \mathrm{fd}$. midget variable condenser in slunt with the nain "tank" condenser of either .50 or $100 \mu \mu \mathrm{fd}$. Satisfactory operation catn be secured from a single ti-volt B battery, but performance is improved if the B supply is increased to 90 volts.
l'ictorial and schematic

The insulated antema lead-in is capacity coupled to the receiver by twisting a few turns of it around the protruling wire hook which is attached to the antenna binding post at the rear of the receiver baseboard. The number of twists in the lead-in wire can be varied in order to overconse antenna deadspot effects; three or four twists will suffice for ordinary purposes.

The receiver is capable of covering all of the amateur and intermediate short-wave bands from 20 to 160 meters by winding a set of four separate coils on standard $1 \frac{1}{2} \mathrm{in}$. diameter t-prong plug-in coil forms. Complete coil data and specifications are given on pages 134 and 135.

The only major precaution in butilding this receiver is to guard against incorrect wiring of the 6 -prong socket which holds the type 19 tube. Careful adherence to the pictorial wiring diagram will safeguard the builder against error. wiring diagrams and front and rear view illustrations of the receiver show clearly how the parts are mountel and wired. The receiver baschoard should be of oak or other hardwood, 9 in. x 11 in . $\times 3 / 4 \mathrm{in}$. Small wood cleats are screwed to the underside of the board at each end so as to elevate the board slightly above the operating table and thereby conceal many of the commecting wires.

The front panel is of no. 10 or 12 gatuge aluminum. r in. x 9 in. A slow-motion vernier dial is a distinct aisl it thanine. An on-of toggle snap switch is provided for the purpose of cliscomecting the battery supply from the receiver when not in use.

Figure 1-Dual Triode Regenerative Receiver, wood baseboard model described in detail in the text. Components should preferably be mounted as shown here and in figure 2.

Figure 2-Rear View of the Dual Triode Receiver, Showing Layout of Parts.

COIL DATA

The upper coil is the grid (secondary) coil. Start the winding at point 1 , make the connection to prong 1. The bottom of the grid coil (2) connects to prong 2. The top of the tickler coil (3) connects to prong 3 ; the bottom of the tickler (4) connects to prong 4 . Mark the coil prongs and the coll socket contacts to correspond with these numbers. See the pictorial layout to show how the connections are made to the coil socket. Make certain that Connection No. 1 goes to the stators of both tuning condensers, and also to one side of the $.0001 \mu \mathrm{fd}$. grid condenser. Likewise, take care to see that Connection No. 4 goes to the plate of the detector portion (P2) of the type 19 tube. If these connections are not properly made, the receiver will not function. The antenna lead-in wire can be looped around the No. 1 connecting lead.

COIL WINDING DATA

The secondary coil and the tickler coil are both wound in the same direction.

20-METER COIL: Secondary winding-7 turns of No. 22 DSC wire, space-wound to cover a winding space of $1-i n$.
Tickler Winding- 5 turns of No. 22 DSC wire, close-wound, and spaced about $1 / 8-i n$. from the secondary winding.

Figure 3 -Schematic circuit diagram of the onetube receiver. L1 is the secondary, or grid coil. L2 is the "tickler," or regeneration coil.

Figure 4 Pictorial Wiring Plan for Type-19 Twin-Triode Regenerative Receiver.

40-METER COIL: Secondary Winding-14 turns of No. 22 DSC wire, space-wound to cover a winding space of 1-in.
Tickler Winding-11 turns of No. 22 DSC wire, close-wound, and spaced $1 / 8-i n$. from secondary winding.
80-METER COIL: Secondary Winding- 27 turns of No. 22 DSC wire, close-wound.
Tickler Winding-11 turns of No. 22 DSC wire, close-wound, and spaced $1 / 8-i n$. from secondary winding.

160-METERCOIL: Secondary Winding-60turns of No. 22 DSC wire, close-wound.
Tickler Winding-17 turns of No. 32 Enameled wire, elose-wound, and spaced $1 / 8-i n c h$ from secondary winding.

COIL FORM LEGEND

TERMINAL No. 1 connects to one side of the .0001 $\mu \mathrm{fd}$. mica fixed condenser and to the stator of the $100 \mu \mu \mathrm{fd}$. (or $50 \mu \mu \mathrm{fd}$.) condenser, as well as to the stator of the 3 -plate midget variable tuning condenser. Likewise, the insulated antenna lead-in wire is twisted around the lead which connects to Terminal No. 1.

TERMINAL No. 2 connects to the rotors of all three variable condensers, and at the point where the three are connected together another lead is run to the "ground" terminal of the receiver.
TERMINAL No. 3 connects to the stator of the $140 \mu \mu$ fd. variable condenser which is used for regeneration, and the same terminal also connects to one end of the 2.5 mh . r.f. choke.
TERMINAL No. 4 connects to the P2 terminal on the type '19 tube.

Standard Regenerative "Gainer" Receiver

In a.c. operated receiver which also can be used with dry-cells, and which gives greater sensitivity and more volume than the single tube recciver previously described, is the two-tulse standard regenerative "Gainer". This receiver will operate with glass or metal tubes. Glass tubes are used in the model described in detail becanse they are lower in cost than metal tubes, and because their use makes the recciver easier to build, due to the simpler socket connections. If metal tubes are to be used, the only change will be in the tube sockets and the grounding of the metal tube shells to the common ground lead. Metal tube socket connections shown in the clapter on Recciter Tubes. A metal tube version is pictured in figure 8.

The circuit consists of a regenerative detector having excellent sensitivity, and an

Figure 5-Looking Into the Receiver. The Various Parts Should be Mounted Exactly as Shown.

For the sake of simplicity, the circuit diagram is shown in both schenatic and pictorial form, so that those building their first receiver will have no difficulty in following the wiring diagram.

The circuit consists of a regencrative screen-grid detector which is impedancecoupled into a triole audio amplifier stage. The antenna is coupled to the grid circuit of the detector by twisting from one to five turns of insulated hookup wire around the grid connection to the tuned circuit. The amount oi coupling depends upon the length of antenna; it should not have ton many twists of wire or else the detectot stage will not oscillate. Regeneration is obtained by means of a cathode tap in the tuned grid circuit. Standard phig-in coils are used to cover the various amateur bands, as shown in the coilwinding table.

Grid-leak detection gives maximum sensitivity and smooth control of regeneration, which is adjusted by
impedance-conpled audio amplifier stage which gives sufficient volume for headphone reception. Loud-speaker operation of the receiver would require an additional audio amplifier stage.

The main tuning control drives a small band-spread tuning condenser. A bandsetting variable condenser is controlled from the front pancl by means of a knob and pointer and small dial. The third front-panel control is for adjustment of regeneration, which is accomplished by varying the screen-grid voltage of the detector tube. The band-setting condenser is adjusted to the desired band, and the actual tuning is done with the band-spread condenser which is connected to the vernier tuming dial.
varying the screen-grid voltage applied to the $6 \mathrm{C}(\mathrm{f}$ tube. The screcn-gricl lead has an additional resistance filter in the circuit to prevent noise from being introduced into the detector circuit when varying the screen-

Figure 6-Front View of Receiver. Colls for All-Band Operation are to the Right.

Figure 7-Schematic and Pictorial Circuit Diagrams of the Standard "Gainer" Regenerative Receiver.

Figure 8-Metal tube version of the receiver. The circuit is the same, though the mechanical layout is slightly different. It is built on a metal chassis instead of a wood baseboard.

Figure 9-Another modification of the simple regenerative receiver. A miniature loudspeaker and conventional pentode power audio stage have been added. A $7 \times 12 \times 7$ in. metal cablnet houses the complete receiver.
grid potentioncter. Impedance conpling allows full plate roltage to be applied to the plate of the screen-grid tube, and results in louder signals than would be secured with undinary resistance coupling. The type-86 audio amplifier is conventional, with a resistor and condenser in the plate circuit tu remove the dice plate potential firm the headphones.

The high imperlance choke in the detector plate circuit should be ne designed to carry approximately is millianperes of plate current, with an inductance of between 100 and 500 henrys. A 250,000 ohm resistor connected across this choke will prevent "fringehomel" when the detector tube is used near the "edge" of osetillation.

The detector grid-leak and grid condenser should be nounted as close as possible to the grid cal, of the 6C6 detector tube to prevent hum pickup. The $0.1 \mu \mathrm{fd}$. condenser which is connected across the positive and negative terminals of the " B " supply in the receiver prevents what is known as "tunable hum" in some of the short-wave bands when the receiver is operated from an a.c. source of supply.

- Construction

The receiver is built on an oak baseboard, 11 in. $x 8$ in. $\times 3 / 4$ in. with cleats at either end secured to the bottom of the board to provide space for mounting small resistors and lypass condensers under the board. The front panel is of no. 12 gauge aluminum, 8 in. $\times 12$ in. The metal front pancl prevents the effect of "body capacify," which would cause diffculty in tuning the receiver if a bakelite panel were used. The metal panel is connected to the common ground connection of the receiver. The various parts should be mounted as shown in the photograph.
The following parts are momuted under the board: $1-\mu \mathrm{fd}$. bypass condenser for the cathode of the is tube: $0.1-\mu \mathrm{fd}$, condenser atross positive and negative terminals of the B supply: $0.1-\mu \mathrm{i}$. condenser in the headphone cirrnit: $0.1-\mu \mathrm{fd}$. screen-bypass condenser ; 1:00 olum cathode resistor for the $\pi 6$ tube ; 20,000 ohm screen-grid resistor ; 20,000 chun resistor in the potentiometer circuit ; 50,000 ohm resistor in the type 76 tube plate circuit. These parts are mounted under the haseboard in order to improve the appearance of the receiver and to conceal much of the wiring.
All coils are wound on standard four-prong coil forms. The coil table gives the correct number of turns of wire for each of the refurired coils.
The receiver uses an a.c. power supply which should consist of three filter chokes and three or four $8-\mu \mathrm{fd}$. filter condensers in order to provide a source of rery pure d.c. plate supply. Such a power supply is described in the clapter devoted to P niner Supply Systoms.

- Operation

Before putting the receiver into operation, the wiring should be carefully checked. The power supply is then connected to the receiver, the tubes permitted to warm-up, and the regeneration control advanced to the point where a "hiss" is heard in the headphones. In this condition c.w. telegraph signals can

Figure 10 - Interior of the recelver illustrated in figure 9. The permanent magnet, dynamic loudspeaker at the extreme left gives ample volume for enjoyable room reception of both code and voice signals.
be received; just below this "hiss" point is the correct setting for reception of weak voice signals. The band-sctting condenser is set near minimum capacity for locating the various amateur bands, and the band-spread condenser is then tuned to receive the desired signals. If no signals are heard, the difficulty usually can be traced to one or more of the following causes:
(1) Defective grid condenscr.
(2) Defective grid resistor.
(3) Defective tube or tubes.
(4) Defectio'e regeneration condenser.
(i) Defectiz'e high impedance choke.

Winding the Coils

Five tuning coils are needed to cover the amareur bands-160, 80, 40,20 , and 10 meters. These coils are wound on standard Hammarlund 4 -prong $11 / 2$-inch diameter coll forms.

Each coil has three connections: top, bottom, and cathode-tap. These connections are made to three of the coil prongs; the wires must be soldered into the prongs.
(6) Open sircuit in coil or socket connections.
(7) Short-circuited bypass condenser.
(8) Antcma not comected to receiver.
(9) Incorrect wiring.
(10) Socket prong broken or bent out of position.
(11) Cathode tap not soldered to coil winding.
(12) Short-circuited twing condenser.
(13) Excessie'e antcnua coupling.

Coil-Winding Table for Standard Regenerative"GAINER''Receiver

160-225 METERS: Wind 70 turns of No. 24 DSC wire on a $11 / 2-i n$. dia. form. Connect cathode tap $11 / 2$ turns up from ground end.

70-110 METERS: Wind 36 turns of No. 22 DSC wire on a $11 / 2$-In. dla. form. Connect cathode tap $11 / 2$ turns up from ground end.

32-60 METERS: Wind 21 turns of No. 22 DSC wire on a $11 / 2$-in. dia. form and space-wind the wire over a winding space of $13 / 4$-in. Connect cathode tap $1 / 2$ turn up from ground end.
19-30 METERS: Wind 11 turns of No. 22 DSC wire on a $11 / 2$-in. dia. form and space-wind the wire over a winding space of $13 / 4-i n$. Connect cathode tap $1 / 2$ turn up from ground end. The location of the cathode tap is quite critical on the 19-30 meter coil, and a slight amount of experimenting must sometimes be done in order to find the point where smooth oscillation control is obtained.

10-25 METERS: Wind 5 turns of No. 16 DSC wire on a $11 / 2-i n$. dia. form and space-wind the wire over a winding space of $11 / 2$-in. Connect cathode tap $1 / 3 \mathrm{rd}$ turn up from ground end. Experiment with cathode tap connecting point until best control of regeneration is secured.

NOTE: This receiver will not cover the broadcast band unless a $350 \mu \mu \mathrm{fd}$. variable condenser is connected in parallel with the $100 \mu \mu \mathrm{fd}$. band-setting condenser. A coll which will cover the broadcast band can be made with a 2 -inch winding length of No. 28 or 30 DSC or Enameled wire on a $11 / 2$-in. dia. form. Connect cathode tap $21 / 2$ turns up from ground end.

Figure 11-Front view of the t.r.f. amateur receiver. A precision type, slow-speed illuminated tuning dialdrives the bandspread condenser. Regeneration, volume, and sensitivity controls are arranged along the lower portion of the panel.

For the benefit of those who want to build an exact replica of the model shown and use duplicate parts, the following list is given:

PARTS LIST

2 Hammarlund 5-prong Isolantite Sockets.
1 Hammarlund 6-prong Isolantite Socket.
5 Hammarlund 5 -prong $11 / 2{ }^{*}$ dia. Coil Forms.
1 50,000 Ohm Centralab Potentiometer.
1 Hammarlund 3-plate Midget "Star"; Variable Condenser.
1 Hammarlund 100- $\mu \mu \mathrm{fd}$. (.0001 $\mu \mathrm{fd}$.) "Star"'Variable Condenser.
1 Open-circuit Jack for Headphones.
1 4-terminal Connector Strip for connecting batteries or power supply to the receiver.
1 2-terminal Ant-Gnd Terminal Strip.
1 High Impedance Choke, 200 henrys inductance or higher.
1 250,000 ohm Resistor, 1 watt.
2 20,000 ohm Resistors, 1 watt.
11500 ohm Resistor, 1 watt.
1500,000 ohm Resistor, 1 watt.
150,000 ohm Resistor, 1 watt.
1 1-ufd. Tubular Paper Condenser, CornellDublier, 400 volt rating.
2 . 01- $\mu \mathrm{fd}$. Tubular Paper Condensers, CornellDubilier, 600 volt rating.
3 0.1-यfd. Tubular Paper Condensers, CornellDubilier, 600 volt rating.
1 . $0001 \mu \mathrm{fd}$. MICA Fixed Condenser (Grid Condenser for 6C6).
12 megohm Grid-Leak.
6 Small tie-connector strips.
1 Roll, 25 ft., Push-back hookup wire.
1 Small reel rosin-core solder.
$106 / 32 \times 2$-inch round-head brass machine screws for sockets and terminal strip mountings.
1 Doz. round-head brass wood screws, $12-i n$. Iong.
1 3-foot length No. 14 bus-bar wire.
1 1/4-1b. spool No. 22 DSC wire for coils.
1 Spool, approx. 300 ft., No. 24 DSC wire for 160 meter coll.

ContinuonsCoverage T.R.F. Receiver

This receiver is similar in design to the Standard Reyencratize "Gainer," except for the addition of a tuned r.f. stage and the use of metal tubes throughout. The coils are designed to give complete coverage on all wavelengths from 9 to 200 meters, rather than merely covering the amateur bands. The tuned r.f. stage increases the sensitivity to weak signals and prevents cross-talk from nearby powerful broadcast stations, which sometimes ride-in on the short-wave bands on the more simple types of regenerative receivers.

The r.f. amplifier has a sensitivity control which consists of a variable resistor in the cathode circuit. This is essential for proper operation of the receiver in locations where interference from powerful nearby stations is troublesome. The receiver is designed for simplicity in construction by using two midget two-gang tuning condensers, separated by a heavy aluminum shield partition. This type of construction gives fairly-good isolation between the two tuned circuits. Each coil socket has its grid and ground leads connected to the

Figure 12-8 to $161 / 2$-Meter Coil Construction for Continuous Coverage T.R.F. Receiver.

Continuous Coverage T. R. F. Receiver Coil Table

All Coils Wound on $11 / 2^{\prime \prime}$ Diameter Forms.

Approx. Range in Meters	Ant. Coil L.	Secondary Coil L2	Primary Coil L3	Sccondary Coil L4	Cathode Tap on L4
8 to 16	3 turns, spaced $1 / 8$-in. from ground end end of L2.	31/2 turns no. 20 d.s.c. 3/4-in. long.	21/2 turns no. 24 d.s.c. interwound with L4. + B at bottom.	$31 / 2$ turns no. 20 d.s.c. 3/4-in. long.	Tap at $1 / 3$ turn on bottom turn.
151/2 to 32	5 turns $1 / 8$-in. from L2.	```turns no. 24 d.s.c. 11/2-in. long.```	3 turns no. 24 d.s.c. interwound with L4.	7 turns no. 24 d.s.c. 11/2-in. long.	Tap at $1 / 2$ turn on bottom turn.
29 to 62	$\begin{aligned} & 8 \text { turns, } \\ & 1 / 8-\text { in. } \\ & \text { from L2. } \end{aligned}$	16 turns no. 24 d.s.c. 11/2-in. long.	6 turns no. 24 d.s.c. interwound with L4.	```16 turns no. 24 d.s.c. 11/2-in. long.```	Tap at $3 / 4$ turn on bottom turn.
59 to 107	10 turns, $1 / 8$-in. from L.2.	31 turns no. 24 d.s.c. $11 / 2$-in. long.	8 turns no. 34 d.s.c. interwound with L4 at ground end.	31 turns no. 24 d.s.c. 11/2-in. long.	Tap at 1 turn up from bottom.
97 to 215	$\begin{aligned} & 12 \text { turns, } \\ & 1 / 8 \text {-in. } \\ & \text { from L2. } \end{aligned}$	54 turns no. 24 d.s.c. $11 / 2$-in. long.	12 turns no. 34 d.s.c. wound over bottom end of L4 over celluloid layer of insulation.	54 turns no. 24 d.s.c. 11/2-in. long.	Tap at $11 / 4$ turns up from bottom.

Figure 14-Interior view of the t.r.f. amateur type receiver. The receiver should preferably be housed in a metal container in order to reduce hum pickup.
staturs and rotors of its particular band-setting and band-spread tuning condenser sections. Insulated couplings between the tuning dials and variable condenser shafts prevent the introduction of noise when tuning-in the short-wave bands.
The r.f. and detector tumed circuits are made to "track" by winding the secondaries of each pair of coils in a similar manner. The coil turns are then slightly pushed together, or spaced more widely, when the circuits are lined-up with the receiver under test. The r.f. tuned circuit has an additional 3-to-30 $\mu \mu \mathrm{fd}$. trimmer condenser to compensate for the additional circuit capacities in the detector grid circuit. This condenser can be adjusted to a compromise value for all coils without much loss in exact tuning, if the coils are carefully wound and spaced before the turns are cemented in place.
From one-third to one-half the total number of plates in a $35 \mu \mu \mathrm{fd}$. per section variable condenser must be removed to give best band-spread tuning. The number of plates to be removed will depend upon the operator's particular desire for a particular amount of band-spread. 12 to $15 \mu \mu \mathrm{fds}$. per section gives very good band-spread for the high-frequency bands, but will not cover the 80 and 160 meter amateur bands without resetting the bandsetting condensers. If the receiver is to be used primarily for the longer wavelengths, such as for the $\mathbf{1 6 0}$ meter band, a capacity of approximately $25 \mu \mu \mathrm{fds}$. per section in the
band-sprearl condenser witl be more satisfactory.

Bypass condensers and resistors should be connected directly to the coil and tube socket terminals. All bypass connections to ground should be made as short as possible, directly to the chassis which serves as a common ground connction. The chassis should be made of zinc or lead coated steel in order that the leads may be soldered to any point on the chassis. The tuning condenser rotor should also be comnected to the chassis, and each rotor section connected to its proper coil socket. No. 10 or 12 gauge aluminum is suitable for the shield partition and front panel. The partition should extend upward as high as the front panel in order to provide an effective baffle between the two coils. The chassis is $9 \mathrm{in}, \times 12 \mathrm{in} . \times 21 / 2 \mathrm{in}$. The metal front panel is $13 \mathrm{in}, \times 9 \mathrm{in}$.

1938 "Ultra Gainer" Receiver

The "Ultra-Gaincr"' receiver described in previous edtitions of this Handbook has been still further improved and modernized by the addition of a noise-balancing input circuit, a better moise suppressor in the output circuit, a quartz-crystal filter in the i.f. amplifier, and a simplified tuning control. These improvements make this new model more effective than ever as a communications receiver.

- Technical Features

The input circuit is designed to use a noisebucking antenna in conjunction with the regular receiving antenna for balancing-out powerleak noises. This balancing circuit consists of a $140 \mu \mu \mathrm{fd}$. variable condenser, a 3 -to- 30 $\mu \mu \mathrm{fd}$. semi-adjustable condenser, and a separate antenna primary. The latter also is semiadjustable in that the turns can be moved toward or away from the secondary winding, or the number of turns can be changed, in order to balance the circuit with the particular antema in use. As shown in the circuit diagram, a single long wire antenna can be connected to the antema coupling condensers, the noise antenna being connected to the primary coil. Another combination would be a doublet receiving antema connected to the primary coil, and the noise antenna to the antenna condensers. The purpose of the noise antenna is to pick up as much of the interfering power-leak type of noise as possible, in comparison to the actual desired signal pickup. The regular receiving antenna should be designed to pick up as much signal as possible; the noise component which it also picks up must be balanced-out by that introduced from the noise antema. The proper comection of the noise antenna and ground to the antema coil will depend upon the particular out-of-phase balancing necessary for the particular amateur band and type of power-leak, so that these two connections may have to be reversed.

Figure 15-The 1938 "Ultra Gainer" receiver, showing fully enclosed coil shield compartment and front panel layout.

The noise antenua may consist of a 20 to 50 foot length of wire, run outwardly towards the power lines, or telephone circuits, from which the interference emanates. This antema should not be more than 10 or 20 feet above ground, so that it will be relatively inefficient in picking up signals but highly efficient in picking up noise. The signals will be balanced-out with the noise unless the regular receiving antemna is much ligher than the noise antenna, and resonant to the signal.

Another very effective noise antema for many locations is a comnection back to one side of the 110 -volt a.c. line through a .002 $\mu \mathrm{fd}$. mica condenser. Careful balancing of the two antemnas will often permit weak signal reception in locations where the power buzz is so loud as to render normal reception impossible. The problem of noise balancing is not simple, because the length of ground lead, type of receiver, location of antennas and values of antema coil turns and condenser capacities are factors which must be taken into consideration. Sometimes the ground comnection to a water pipe will introduce a power buzz of such a phase that it cannot be balanced-out by means of the circuit shown. One or more ground rods, driven into the earth to a depth of approximately three feet. will often serve as an effective noise-free ground connection.

The r.f. amplifier tuning condenser in this new receiver has been ganged with the detector and oscillator tuning condensers to simplify the tuning. The ratio of I , to C is made as high as possible so as to obtain high gain on 10 and 20 meters. This model was primarily designed for 10,20 and 40 meter operation; however, it can be used to cover nearly all of the 80 meter band, even with its small two-plate tuning condensers. Ganging the r.f. stage makes it difficult to utilize regeneration in the r.f. amplifier, and the r.f. gain is thet efore incteased by using a 6 j / sharp cutoff screen-grid tube, rather than a 6 K 7 variable μ r.f. amplifier tube.

The 6 J 7 is operated witl low bias, high screen voltage, and high plate current in order to obtain very high operating mutual conductance. This results in greater r.f. gain than can be obtained from a 6 K 7 . The ratio of signal-to-noise is much ligher with this design, and tends to offset the lack of controlled regeneration present in last year's "Ultra Gainer." This r.f. amplifier is operated at maximum gain at all times in order to have a very high signal-to-noise ratio. The plate current is at least twice normal value for a 6J7 tube, which will probably shorten

Figure 16-Illustrating assembly of the new "Ultra Gainer," showing antenna noise suppressor, shielded coll compartment (cover removed to show coils) and ganged condenser arrangement.
the life of the tube to some extent; in spite of this, the 6 Jf should be capable of satisfactory operation for at least 800 hours, so that this factor is of no importance when compared with the aclvantages secured when operating the tube in the manmer prescribed. The only serious disadvantage of using a 6 J 7 with low grid bias is a tendency for cross-talk if the receiver is operated in the vicinity of a powcrful broadeast transmitter.

The r.f. amplifier is capacitively-coupled to the 61.7 first detector. A 10,000 ohm resistor in series with a 2 mh . r.f. choke provides an effective r.f. impedance for all amateur bands. The semi-variable r.f. coupling condenser serves a dual purpose. in that it can also be used to line-up the detector tuned circuit.. Low bias on the b] tube is obtained by using a 400 ohm resistor. rather than the usual 1500 ohns value recommended for this type of tube. A small mica trimmer condenser is comnected across each individual r.f. plug-in coil in order to insure proper tracking for each anateur band.

A 6 K 7 tube is connected as a triode for the h.f. oscillator so as to obtain sufficient r.f voltage for driving the injection-grid in the 6L.7 first detector tube. Insufficient injection voltage results in a high hiss level, especially in the 10 and 20 meter bands. The $6 \mathrm{~K} \%$ plate circuit is commected to the power supply
through a woltage-clropping resistor and the cathode is comnected to a tap on the coil to obtain uscillation. The injection-gricl of the $6 \mathrm{~L}, 7$ comects to the cathode and the detuning effect on the oscillator circuit will therefore be minimized. The circuit, as shown, provides sufficient r.f. voltage without connection to the grid-end of the oscillator tuned circuit.

A great many first detector circuits and tubes were tried in this receiver in order to determine a most satisfactory type for weak signal reception. The arrangement with grid-leak detection apparently is somewhat better than bias-detection for very weak signal input, as checked with a standard signal generator. Space-charge cletectors, 6A8 bias and grid-leak detectors, and 6 J 7 detectors were all tried and found to be lacking in sensitivity to weak signals as compared to a properly operated 6L7.

The small capacity of the grid condenser in the first detector circuit is necessary for satisfactory detector action at 465 kc . Even at best grid-leak detection is very poor for 465 kc . because the 6 L 7 must act as an i.f. amplifier with a relatively low impedance in the grid circuit at that frequency. This is more than offset by the increased detection efficiency procured when detection or mixing action takes place in the grid rather than in the plate circuit. The screen-grid voltage

Figure 17-General wiring schematic. If the layout of parts shown in figure 16 is followed closely, there is no need to wo rry about short leads, as the important leads will then all be short.
must be somewhat less with grid-leak than with bias-detection.

A 465 kc . crystal filter is incorporated in the i.f. amplifier for the purpose of improving the selectivity for c.w. reception. The volume control for the receiver is located in the cathode circuit of the i.f. amplifier.

The second detector circuit utilizes a $6 \mathbb{N}$ twin-triode connected as an audio amplificr and regencrative second detector. This regenerative detector provides a beat-oscillator action for c.w. reception and also has a lower hiss-to-signal ratio than when a separate b.f.o. circuit is used. Regeneration is obtained by means of a $7 \mathrm{~J}-\mathrm{turn}$ cathode coil, $1 / 2 \mathrm{in}$. diameter, jumble-wound with no. 28 d.s.c. wire. Regeneration and oscillation are controlled by means of a variable 1,000 ohm resistance in shunt to the cathode coil. Grid-leak detection provides good sensitivity and very smooth regeneration in the detector circuit. Ironcore air-tuncel i.f. transformers give good selectivity and high i.f. amplifier gain.

The audio output circuit is designed for headphone operation, and a special moise-suppression circuit is incorporated for minimizing automobile ignition interference. An ordinary copper-oxid rectifier, such as those sold for replacement purposes in oxide-rectifier a.c. voltmeters, is connected across part of the output circuit, as indicated in the circuit diagram. The copper-oxide rectifier has its plus and minus leads connected together
for one terminal, and the two a.c. leads connected tugether for the remaining terminal to make it operate as a non-linear resistance. Its impedance is ton low to connect across the headphones; thus it should be connected across only one-half of the primary of a push-pull-pentorle-to-loud-speaker ontput transformer. The noise suppressor operates as jollows:

All very loud sigmals, such as moise peaks, overload the copper-oxide rectifier so that the latter acts as a short-circuit across the output for the duration of the noise peak. This effectively reduces the noise peaks to a level equal to that of the desired signal, even though these peaks may be ten or twenty times as strong as the original signal. This noisesuppressor is entirely automatic. It is very simple and economical, and quite effective in operation.

If loudspeaker reception is desired, a 3-to-1 audio transformer should be used to couple the output into a $6 F 6$ pentode audio amplifier.

- Construction

The receiver is built on a zinc-coated meta? chassis, $10 \mathrm{in} . \times 14 \mathrm{in} . \times 21 / 2 \mathrm{in}$. The front panel is $15 \mathrm{in} . \times 8 \mathrm{in}$., of no. 8 aluminum. The tuning coil sockets are mounted on $1 \frac{1}{8}$ in. bushings in order to raise the coils well above the chassis. An aluminum box with two partitions is built around the coils to pro-

Coils for 1938 "Ultra-Gainer Receiver"

Band (Meters)	Oscillator Coil	Detector Coil	R. F. Coil
10	5 turns, no. 22 d.s.c. 1-in. Jong, $11 / 8$-in. diameter, tapped at $1 / 2$ turns.	5 turns, no. 22 d.s.c. 1-in. long, $11 / 8$-in. diameter.	5 turns, no. 22 d.s.c. 1 -in. long, $11 / 8$-in. diameter, tapped at 3/4-turn.
20	13 turns, no. 22 d.s.c. 1-in. long, $11 / 8$-in. diameter, tapped at 2 turns.	13 turns, no. 22 d.s.c. 7/8-in. long, $11 / 8$-in. diameter.	13 turns, no. 22 d.s.c. $7 / 8$-in. long, $11 / 8$-in. diameter, tapped at one turn.
40	26 turns, no. 22 d.s.c. 1 -in. long, $11 / 8$-in. diameter, tapped at 4 turns.	27 turns, no. 22 d.s.c. 1 -in. long, $11 / 8$-in. diameter.	27 turns, no. 22 d.s.c. 1-in. long, $11 / 8$-in. diameter, tapped at 2 turns.
80	52 turns, no. 22 d.s.c. 15/8-in. long, $11 / 4$-in. diameter, tapped at 7 turns.	60 turns, no. 22 d.s.c. 13/4-in. long, 11/4-in. diameter.	60 turns, no. 22 d.s.c. 13/4-in. long, $11 / 4$-in. diameter, tapped at 4 turns.

vide good shielding between stages. This aluminum catacomb is made 5 inches high and about 4 inches wide, with each partition about $31 / 4$ inches wide. This provides wide spacing around the small isolantite plug-in coil forms, with the result that r.f. losses in the shielding are negligible.

The oscillator air-tuning padder condenser is soldered across the oscillator coil socket, which is in the front section of the receiver. The detector coil is in the center section, the r.f. coil in the rear. The ganged tuning condenser is made by mounting three HammarIund midget variable condensers on three separate aluminum vertical partitions. The mounting holes are made large enough so that the condensers can be lined-up accurately before the single-mounting nut is tightened. Flexible couplings are used between sections, and to the vernier tuning dial, in order to give smooth action in spite of the many fixed bearing surfaces in the ganged condenser. Excessive friction in the tuning of the ganged condenser will canse backlash in the drive of the tuning dial for c.w. reception, because of the extremely high vernier action of the particular dial shown in the photograph of the complete receiver.
The r.f. amplifier tube is mounted in a horizontal position so as to secure very short grid and plate leads. The tube socket is mounted on one of the vertical aluminum partitions near the tuning condenser.

- Lining-Up the Receiver

An all-wave test oscillator is required for aligning this receiver. The i.f. transformers should first be aligned to the frequency of the quartz crystal, as described in the Receizer Theory chapter. The second detector should go into oscillation smoothly as the 1,000 -ohm variable resistance is rotated. The i.f. tuning into the second detector should be adjusted so that the latter will give single-sigual reception in conjunction with the crystal filter and phasing condenser in the crystal circuit.

If insufficient cathode turns are used, the second detector cannot be made to oscillate: too many turns will cause a detuning effect when adjusting the i.f. transformers, and smooth control of regeneration cannot be sccured.
The h.f. circuit alignment is rather diffcult, unless the signal generator is accurately calibrated. The oscillator parlder condenser should be set so that the oscillator will track with the first detector circuit over one of the coil ranges, preferably the 10 -meter band.

The r.i. coupling condenser should be adjusted to approximately two-thirds its maximum capacity. The r.f. padding condenser can be adjusted for maximum sensitivity with the particular antenuas used for each band. It will be found that coils made as shown in the coil table, with some slight re-spacing of the coil turns before they are cemented into position, will make the tracking very accurate over the narrow amateur bands. The tuning condensers have a low maximum capacity, so that the amatcur bands are spread over a large portion of the tuning dial. The additional time involved in originally lining up the coils and condenser in the h.f. circuits is well repaid because the band-setting condensers then need not be readjusted and tuning can be accomplished with the singledial.

- Coil Data

The 10, 20 and 40 meter coils are wound on small Isolantite coil forms, $1 / 8-\mathrm{in}$. diameter. The 75 meter coils, which cover a range of from 4.0 to 3.5 megacycles, are wound on ribbed bakelite forms, $11 / 4-\mathrm{in}$. diameter. The coil chart appears on page 147 .

De Luxe Communications Receiver

Those who have the ability and the facilities for building a de luxe communications receiver will find many features of interest in this ten-tube superheterodyne. It incorporates a very high gain r.f. amplifier, antema noise-balancing circuit, crystal filter, a very effective noise-silencing circuit, and reverse-feed-back audio amplification. It has an " R " meter for denoting carrier signal strength, a precision single-tuning control, built-in power supply, cast aluminum chassis, and shielded plug-in coils which can be mechanically ganged together by means of bakelite strips and handles for quick coil change when desired.

- Technical Features

The circuit begins with an antenna noise balancer which is built into the receiver, with the exception of the $140-\mu \mu \mathrm{fd}$. variable condenser, which is connected in series with the noise antema. Reference should be made to

Figure 18-Front View of the De Luxe Communications Receiver.
the description of the $103 \mathrm{~S}^{\prime}$ "Littra Gainer" Keciacr for a more complete description of this noise-balancing circuit,

The r.f. amplifier has a slarp cut-off screengricl tube. operated with low bias and high screen voltage and plate current to obtain maximum signal-to-noise ratio in the frontend of the receiver. A standard 6Lr first detector has its injection-grid connected to the cathode of a 6 K 7 power type triode oscillator. The position of the cathode tap on the oscillator coil was selected so that proper injection voltage is provided for each amateur band. Under these conditions, the 6L $\tilde{\text { first }}$ detector is very efficient for weak signal detection or mixing action.

A $46, j-k c$. quartz crystal filter is built into the circuit between the first detector and first i.f. amplier. Two stages of i.f. amplification make possible very high selectivity and ample gain to work into a diode second detector. The latter provides a.v.c voltage for phone reception, second detector action, and is part of the noise-suppression circuit for elimination of automobile ignition interference. A 6R7 serves as a second detector diode and for the first stage of audio amplification. This tube drives a GI, 6 pentode audio amplifier which has reverse-feedback in the audio stage in order to reduce the hum level and instability of the GL. 6 .

A separate b.f.o. circuit is incorporated for c.w. reception. For 'phone reception an " K " meter is comnected in the first detector plate circuit in a Wheatstone-Bridge arrangement. This meter indicates the relative signal strength, since the plate current of the 6I. 7 varies in accordance with the a.v.c. voltage; the letter depends upon the strength of the incoming carrier signal. A 1,000 ohm vari-
able resistor gives a comvenient zero-settmg adjustment for the " R " meter scale. For c.w. reception the a.v.c. voltage is short-circuited to ground, and the " R " meter indication is meaningless in this condition.

A separate type 1-v diode tube is incorporated in the noise-silencing circuit of the type developed by Dickert. This circuit is very effective for reducing automobile ignition noise and is entirely automatic in action. It will follow a slowly fading signal, and can be used for either 'phone or c.w. Its effectiveness can be greatly increased for c.w. reception by short-circuiting one of the resistors in the $1-\mathrm{v}$ tube circuit. This connection tends to operate on the molulated side-bands of a phone sigmal, so that for good quality phone reception the switch should be in the "open" position. The additional diode acts as a short-circuit across the audio amplifier for sharp peaks of noise which have all amplitude greater than that of the incoming signal. The time constants of the $1-v$ circuit are chosen so that the diode acts as a very high impedance slumt across the audio circuit except during the very short time interval of a high moise pulse. The plate circuit of the $1-v$ tube has a large time constant, and thus its potential remains at the average value determined by the rectified incoming carrier signal. The cathode bias of this tube las a short time constant and is comected into the a.v.c. circuit so that its instantaneous value depends upon the peak signal which is present, such as that of the noise pulse. This causes the $1-v$ diode to act as a short-circuit to the audio amplifier and its instantaneous bias is more negative than the plate potential. However, the plate potential is a function of the a.s.c. voltage; it therefore is entirely

Figure 19-Layout of Parts, Showing Individually Shielded Plug-In Coils.
automatic and needs now readjustment for different signals when tuning the receiver.

The audio volume control is connected in the grid circuit of the 6 R a atio triode tube. The jack for headphone reception is located in the plate circnit of the GK\% and when the headphones are plugged-in, the loulspeaker is discomected from the eireuit. The $6 \mathrm{H} . \mathrm{i}$ gives additional amplification for loudspeaker reception. The reverse-feedback circuit consists of a $0.1 \mu \mathrm{ftl}$. condenser in series with a 50,000 ohm resistor connected from the plate of the fildi tube to the return grid circuit of the audio transformer. A 5,000 ohm resistor from this point to ground provides the out-ui-phase voltage in the grid circuit.

- Construction

The receiver is built on a cast aluminum chassis. 12 in. $\times 1 \%$ in. $\times 2 \frac{1}{2}$ in. The front panel is $80.6 \mathrm{in} . \times 19 \mathrm{in} . \times 1 / 4 \mathrm{in}$. Dural, for standard relay-rack mounting. This very heave construction insures good rigidity for elimination of detuning effects canserl by towhing the front panel, or when making tuning adjustments. A standard three-gang tuning condenser and vernier dial assembly is mounted in the center of the chassis. with the tubes on one side and the individuallyshielded plug-in coils on the other. The oscillator tube and tuned circuit is nearest the
front panel, while the r.i. circuit and hori-zontally-mounted r.f. amplifier tube are toward the rear of the chassis. The power supply is mounted on one end, with one of the two filter chokes mounted below the chassis. An external permanent-magnet dynamic speaker is needed for loudspeaker reception. The first i.f. iransformer is mounted near the first detector, and directly in front of it (near the " R " meter) is the quartz crystal. which connects in turn to the i.i. transformer nearest the front pancl. The b.f.o. coil is at the far rear of the chassis and an external vernier adjustment for the b.f.o. frequency is controlled from the front panel by means of a long bakelite extension shaft to a $2.5 \mu \mu \mathrm{fd}$. midget variable condenser under the chassis directly below the b.f.o. transformer.

The shielded coil assembly plags into three individual isolantite sockets which are mounted on two ${ }^{1}$ f-in. square brass rods, raised approximately 1 -inch above the chassis by means of brass bushings. The $3-t o-30 \mu \mu \mathrm{fl}$. trimmer condensers are mounted on top of the individual coil forms and the condensers are aljusted by means of a bakelite-rod through the $1 / 4$-in. holes which are drilled into the top of each coil shield can. Individual trimmer condensers for each coil make possible ant accurate alignment for cach amateur band.

| | Coil Table For De Luxe Communications Receiver |
| :--- | :--- | :--- | :--- |

The coils are wound on $11 / 8$-in. diameter forms, which have a rectangular moulded base with prongs for plugging the units into the sockets. The coil table appears above.

- Adjustments

The lining-up adjustments of this receiver are the same as those described carlier in this chapter for the 1938 Ultra Gainer Receiver.

Improved Regenerative Pre-Selector

Many signals which are inatulible in most receivers can be heard by the addition of a regenerative pre-selector. A good r.f. amplifier ahead of any superheterodyne receiver will increase the signal-to-noise ratio and reduce image interference to a negligible quantity. A single-tube pre-selector with regeneration can be made equivalent to a two-tube pre-selector without regeneration, and the slight additional load on the receiver power pack, with only one extra tube, usually will not overload the power transformer. This climinates the need of an addlitional power pack for the pre-selector.
In the pre-selector here illustrated, either a 2.5 volt type 5 or 6.3 volt 6 C 6 tube can

Figure 21-Regenerative Pre-Selector with Noise Balancing Antenna Circuit and Variable Antenna Coupling.
be used, depending upon the type of tubes employed in the radio receiver proper. The circuit of this pre-selector has a built-in balanced noise-suppressing circuit for the elimination of power-leak noise. The r.f. amplifier is regenerative, due to the cathode being tapped into the tuned grid circuit. The degree of regeneration is controlled by means of a potentiometer which varies the screengricl voltage. The plate circuit can be connected into any kind of receiver input circuit without much loss in efficiency, since any im-

Figure 22-Wiring Diagram of the Regenerative Preselector.
pedance mismatch loss can be offset by regenerative gain in the r.f. amplifier.
The noise-balancing circuits were designed so that the regular receiving antenna and ground, or cloublet antenna, can be connected to either of the primary windings, the noise antenna to the other. The noise-balancing antenna should be designed to pick up as much of the interfering noise as passible, while the receiving antenna should be mounted as high as is practicable to pick up a good ratio of signal-to-noise. The noise antenna should consist of a short wire near the ground, and parallel to the power line, or sometimes a connection can be made satisfactorily to one side of the 110 -volt a.c. house-lighting circuit through a $.002 \mu \mathrm{fd}$. mica condenser. The other side of the primary coil should be connected to ground in some cases, as determined by test. One antenna coil is made contintuously adjustable by mounting it on a $1 / 4$-inch brass rod which slides through a telephone-jack in the front panel. This antenna coil consists of 12 turns of no, 24 d.s.c. wire, center-tapped, wound on the top portion of a $11 / 2-\mathrm{in}$. diameter coil form, this portion being sawed from a conrentional coil form. Flexible leads connect from the two ends of the winding to the antema terminal strip. The center-tap connects to the brass rod, fastened to the coil form by means of a $6 / 32$ machine screw which threads into the end of the brass rod. Coupling is varied by plunger-action from the knob control on the front panel.

The remaining primary is wound on each plug-in coil form at the top of the coil, near the grounded end of the secondary winding. The number of turns for the antenna winding. and the spacing of the secondary, are subject to experiment when balancing-out the power-leak moise. In quiet locations where
there is no power-leak interference, the noise antenna and the additional semi-fixed coupling primary are not required. The adjustable primary should be built into the pre-selector for the purpose of obtaining ease of regeneration control for different types of antennas and various strengths of incoming signals.

A vernier tuning dial drives the $35 \mu \mu \mathrm{fd}$. midget tuning condenser.

The pre-selector is built into a metal cabinct, 7 in . high, $7^{1 / 2} \mathrm{in}$. long and 7 in . deep: the chassis is $13 / 4 \mathrm{in}$. deep. The tube must be shielded so as to prevent feedback between grid and plate circuit. The plate coupling lead should be made as short as possible to the antenna terminals of the radio receiver proper.

Coil Table For Regenerative Pre-Selector

All Coils Wound on $11 / 4$ in. Diameter 5-Prong Forms.	
Band Meters	Coil
10	5 turns, No. 20 d.s.c., 1-in. long, tapped at $1 / 3 \mathrm{rd}$ turn.
20	12 turns, No. 20 d.s.c., 1 -in. long, tapped at $1 / 3$ rd turn.
40	23 turns, No. 20 d.s.c., 1 -in. long, tapped at $1 / 2$ turn.
80	42 turns, No. 20 d.s.c., $11 / 2$-in long, tapped at $3 / 4$ turn.
160	80 turns, No. 30 Enam., closewound, tapped at 1 turn.

Receiver Notes

(Coil data, frequency-versus-dial-setting log, dates new tubes or batteries were installed, etc.)

Chapter 8

Radio Receiver Tube Characteristics

Receiver Tube Characteristics

TYPE	NAME	BASE	SOCKET CONMEC. TIONS	DIMEMSIONSMAXIMUMOYERALLLENGTHXDIAMETER	CATHODE TYPE	RAtING			
						filament or heater		plate max. volts	$\begin{gathered} \text { SCREEN } \\ \max _{\text {MOLTS }} \end{gathered}$
						VOLTS	AMPERES		
00-A	DETECTOR. triode	MEDIUM 4-PIN Bayonet	40	$4 \frac{11}{6}{ }^{\prime \prime} \times 1 \frac{1}{1} \frac{1}{6}^{*}$	D-C FILAMENT	5.0	0.25	45	-
01-A	DETECTOR* AMPLIFIER	MEDIUM 4-PIN Bayonet	4 D	$4 \frac{11}{16}{ }^{*} \times 1 \frac{1}{136}{ }^{\prime \prime}$	FILAMENT	5.0	0.25	135	-
144	SUPER-CONTROL A-F AMPLIFEER PENTODE	SMALL 4-PJN	4M	$4 \frac{173}{}{ }^{*} \times 1 \frac{9}{16}{ }^{\prime \prime}$	FILAMENT	2.0	0.06	180	67.5
IA6	PENTAGRID CONVERTER :	SMALL 6-PIN	6 L	$4 \frac{19}{3 \frac{7}{2}}{ }^{\prime \prime} \times 1 \frac{9}{16}{ }^{\prime \prime}$	$\mathrm{O}-\mathrm{C}$ FILAMENT	2.0	0.06	180	67.5
184	R-F AMPLIFIER PENTODE	SMALL 4-PIN	4M	$4 \frac{174}{3 \prime} \times 1 \frac{1}{16 \prime}$	FILAMENT	2.0	0.06	180	67.5
185/25S	DUPLEX-DIODE TRIODE	SMALL 6-PIN	6M	$44^{\prime \prime} \times 1 \frac{9}{16}$	FILAMENT	2.0	0.06	135	-
IC6	PENTAGRID CONVERTER O	SMALL 6-PIN	6 L	$4 \frac{17^{\prime \prime}}{}{ }^{\prime \prime} \times 1 \frac{9^{\prime \prime}}{}{ }^{\prime \prime}$	D-C FILAMENT	2.0	0.12	180	67.5
154	POWER AMPLIFIER PENTODE	MEDIUM 5-PIN	5K	$4 \frac{11}{16}{ }^{\prime \prime} \times 1 \frac{13}{16^{\prime \prime}}$	$\begin{aligned} & \text { D-C } \\ & \text { FILAMENT } \end{aligned}$	2.0	0.12	135	135
JF6	DUPLEX-DIODE PENTODE	SMALL G-PIN	6W	$4 \frac{173}{}{ }^{\prime \prime} \times 1{ }^{\frac{9}{16}}{ }^{\prime \prime}$	D.C FILAMENT	2.0	0.06	180	67.5
I-v	half-wave RECTIFIER	SMALL 4-PIN	4G	44" $\times 1 \frac{9}{16}{ }^{\prime \prime}$	HEATER	6.3	0.3	-	-
$2 A 3$	POWER AMPLIFIER TRIODE	MEDIUM 4-PIN	40	$5{ }^{3}{ }^{\prime \prime} \times 2{ }^{1} \frac{1}{6 \prime \prime}^{\prime \prime}$	FILAMENT	2.5	2.5	$\begin{aligned} & 250 \\ & 300 \end{aligned}$	—
245	POWER AMPLIFIER PENTODE	MEDIUM G-PIN	68	$4 \frac{11}{16}{ }^{\prime \prime} \times 1 \frac{13}{17}{ }^{\prime \prime}$	heater	2.5	1.75	-	-
$2 A 6$	DUPLEX-DIODE high-mu thiode	SMALL E-PIN	6 G	$4 \frac{1}{3 \frac{7}{2}}{ }^{\prime \prime} \times 1 \frac{9}{16}{ }^{\prime \prime}$	HEATER	2.5	0.8	250	--
247	PENTAGRID CONVERTER a	SMALL 7-PIN	7 C	$4 \frac{17}{3 \frac{1}{2}}{ }^{\prime \prime} \times 1 \frac{9^{\prime \prime}}{}{ }^{\prime \prime}$	heater	2.5	0.8	250	100
$2 B 7$	DUPLEX-DIODE PENTODE	SMALL 7-PIN	70	$4 \frac{1}{3}{ }^{\prime \prime} \times 1 \times 1{ }^{\frac{9}{16}}{ }^{\prime \prime}$	HEATER	2.5	0.8	250	125
5W4	FULL-WAVE RECTIFIER	$\begin{aligned} & \text { SMALL } \\ & \text { OCTAL } 5 \text {-PIN } \end{aligned}$	sT	$33^{\frac{1}{4}} \times \times 1 \frac{5}{16}{ }^{\prime \prime}$	FILAMENT	5.0	1.5	-	-
523	FULL-WAVE RECTIFIER	MEDIUM 4-PIN	4 C	$53^{\prime \prime} \times 2 \frac{1}{16}^{\prime \prime}$	FILAMENT	5.0	3.0	--	-
524	FULL-WAVE RECTIFIER	$\begin{aligned} & \text { SMALL } \\ & \text { STAL } 5 \text {-PIN } \end{aligned}$	SL	$34^{\prime \prime} \times 1 \frac{5}{16}^{\prime \prime}$	heater	5.0	2.0	-	-
6A4/LA	POWER AMPLIFIER PENTODE	MEDIUM S-PIN	58	$4 \frac{11}{16}{ }^{\prime \prime} \times 1 \frac{13}{16}{ }^{\prime \prime}$	FILAMENT	6.3	0.3	180	180
6A6	TWIN-TRIODE AMPLIFIER	MEDIUM 7-PIN*	78	$4 \frac{11}{16}{ }^{\prime \prime} \times 1 \frac{13}{16}{ }^{\prime \prime}$	HEATER	6.3	0.8	300	-
6A7	PENTAGAID CONVERTER	SMALL 7.PIN	7 C	$4 \frac{173}{3}{ }^{\prime \prime} \times 1 \frac{1}{16}$	HEATER	6.3	0.3	250	100
6A8	PENTAGRIO CONVERTER	SMALL OCTAL 8-PIN	8 8	$3 \frac{1}{8}^{\prime \prime} \times 1^{\frac{3}{16}}{ }^{\prime \prime}$	heater	6.3	0.3	250	100
$6 B 7$	DUPLEX-DIODE PENTODE	SMALL 7-PIN	70	$4 \frac{1}{3} 7^{\prime \prime} \times 1 \frac{9}{16}{ }^{\prime \prime}$	HEATER	6.3	0.3	250	125
6B8	DUPLEX-DIODE PENTODE	$\begin{aligned} & \text { SMALL } \\ & \text { OCTAL } 8-P I N \end{aligned}$	8 E	$38_{8}^{\prime \prime} \times 1 \frac{5}{16}{ }^{\prime \prime}$	heater	6.3	0.3	250	125
6C5	DETECTOR ${ }_{\text {® }}$ AMPLIFIEA TRIODE	SMALL OCTAL 6-PJN	60	$25^{\prime \prime} \times 1 \frac{3}{16}{ }^{\prime \prime}$	heater	6.3	0.3	250	-
6C6	TRIPLE.GRIO DETECTOR AMPLIFIEA	SMALL 6-PIN	$6 F$	$4 \frac{15}{16}{ }^{\prime \prime} \times 1 \frac{9}{16}{ }^{\prime \prime}$	heater	6.3	0.3	250	100

HANDBOOK

Receiver Tube Characteristics

USE Values to right glve operating condtions and characteriaticen for Indicated typical use	PLATE SUP. PLY volts	GRID BIAS volis	SCREEN SUPPLY Vot 7 S	SCREEM CURRENT ма.	PLATE CUR- RENT MA.	A-C PLATE RESIS. TANCE OHMS	TRAMS. CONDUC. TANCE (GRIDPLATE) ныноs	AMPLIFI- CATION factor	LOAD FOR stateo POWER ouiput OHMS	POWER OUT. PUT Watts	TYPE
GRID.LEAK DETECTOR	45	Grid Return to (-) Filament			1.5	30000	666	20	- -	\cdots	00-A
CLASS A AMPLIFIER	$\begin{array}{r} 90 \\ 135 \\ \hline \end{array}$	-4.5 -9.0	-	-	$\begin{aligned} & 2.5 \\ & 3.0 \end{aligned}$	$\begin{aligned} & 11000 \\ & 10000 \end{aligned}$	$\begin{aligned} & 725 \\ & 800 \\ & \hline \end{aligned}$	$\begin{aligned} & 8.0 \\ & 8.0 \\ & \hline \end{aligned}$	--...	-	01-A
CLASS A AMPLIFIER	$\begin{array}{r} 90 \\ 180 \end{array}$	$\left\{\begin{array}{c}-3.0 \\ \min .\end{array}\right\}$	$\begin{aligned} & 67.5 \\ & 67.5 \end{aligned}$	$\begin{aligned} & 0.9 \\ & 0.8 \end{aligned}$	$\begin{aligned} & 2.2 \\ & 2.3 \end{aligned}$	$\begin{array}{r} 600000 \\ 1000000 \end{array}$	$\begin{aligned} & 720 \\ & 750 \end{aligned}$	$\begin{aligned} & 425 \\ & 750 \end{aligned}$		\cdots	IA4
CONVERTER	$\begin{aligned} & 135 \\ & 180 \end{aligned}$	$\left\{\begin{array}{c}-3.0 \\ \min .\end{array}\right\}$	$\begin{aligned} & 67.5 \\ & 67.5 \end{aligned}$	$\begin{aligned} & 2.5 \\ & 2.4 \end{aligned}$	$\begin{aligned} & 1.2 \\ & 1.3 \end{aligned}$	$\begin{aligned} & 400000 \\ & 500000 \end{aligned}$	Anode-Grid (\$2): 180 max. volts, 2.3 ma . Oscillator-Grid ($\mathbf{N H}^{2}$) Resistora. Conversion Conductance, 300 micromhos.				\|A6
CLASS A AMPLIFIER	$\begin{array}{r} 90 \\ 180 \\ \hline \end{array}$	-3.0 $-\quad 3.0$	$\begin{aligned} & 67.5 \\ & 67.5 \\ & \hline \end{aligned}$	$\begin{aligned} & 0.7 \\ & 0.6 \end{aligned}$	$\begin{aligned} & 1.6 \\ & 1.7 \\ & \hline \end{aligned}$	$\begin{aligned} & 1000000 \\ & 1500000 \end{aligned}$	$\begin{aligned} & 600 \\ & 650 \end{aligned}$	$\begin{array}{r} 550 \\ 1000 \end{array}$	-	\cdots	I B4
CLASS A AMPLIFIER	135	- 3.0	-	-	0.8	35000	575	20	\cdots	-	1B5/25S
CONVERTER	$\begin{aligned} & 135 \\ & 180 \end{aligned}$	$\left\{\begin{array}{c}-3.0 \\ \text { min. }\end{array}\right\}$	$\begin{aligned} & 67.5 \\ & 67.5 \end{aligned}$	$\begin{aligned} & 2.0 \\ & 2.0 \end{aligned}$	$\begin{aligned} & 1.3 \\ & 1.5 \end{aligned}$	$\begin{aligned} & 550000 \\ & 750000 \end{aligned}$	Arode-Grid ($\% 2$): 180 max, volts, 3.3 ma . Oscillator-Grid (/1) Resistor a. Conversion Conductance, 325 micromhos.				166
CLASS A AMPLIFIER	135	-4.5	135	2.6	8.0	200000	1700	340	16000	0.34	IF4
PENTODE UNIT AS R.F AMPLIFIER	180	- 1.5	67.5	0.6	2.0	1000000	650	650	-_	-	$1 F 6$
PENTODE UNIT AS AF AMPLIFIER	135 \times	- 2.0	Screen Supply, 135 volts applied through 0.8 -megohm resistor. Grid Resistor,** 1.0 megohm. Voltage Gain, 46.								
Maximum A-C Plate Voltage.... 350 Volts, RMSMaximum D-C Output Current50 Milliamperes											1-V
CLASS A AMPLIFIER	250	-45.0			60.0	800	5250	4.2	2500	3.5	
PUSH. PULL CLASS AB ${ }^{2}$ AMPLIFIER	$\begin{aligned} & 300 \\ & 300 \\ & \hline \end{aligned}$	Self-bias, -62 volt	80 ohms , fixed		$\begin{aligned} & 80.0 \\ & 80.0 \\ & \hline \end{aligned}$	\square		-	$\begin{aligned} & 5000 \\ & 3000 \\ & \hline \end{aligned}$	$\begin{aligned} & 10.0 \dagger \\ & 15.0 \dagger \end{aligned}$	$2 A 3$
AMPLIFIER	For other ratings and characteristics, refer to Type 42.										$2 A 5$
TRIODE UNIT AS AMPLIFIER	For other characteristics, refer to Type 75.										$2 A 6$
CONVERTER	For other characteristics, refer to Type 6A7.										$2 A 7$
AMPLIFIER	For other characteristics, refer to Type 6B7.										287
											5W4
											523
Maximum A-C Voltage per Plate.. 125 Volts, RMSMaximum D-C Output Current.................... 125 illiamperes											524
CLASS A AMPLIFIER	$\begin{aligned} & 100 \\ & 180 \\ & \hline \end{aligned}$	$\begin{aligned} & -6.5 \\ & -12.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 100 \\ & 180 \\ & \hline \end{aligned}$	1.6 3.9	9.0 22.0	83250 45500	1200 2200	$\begin{aligned} & 100 \\ & 100 \\ & \hline \end{aligned}$	$\begin{array}{r} 11000 \\ 8000 \end{array}$	$\begin{aligned} & 0.31 \\ & 1.40 \end{aligned}$	6A4/LA
AMPLIFIER	For other characteristics, refer to Type 6N7.										$6 A 6$
CONVERTER	100 250	$\left\{\begin{array}{c}-3.0 \\ \min .\end{array}\right\}$	50 100	2.5 2.2	1.3 3.5	$\begin{aligned} & 600000 \\ & 360000 \end{aligned}$	Anode-Grid (m^{2}): 250 max. volts, 4.0 ma . Oscillator-Grid (${ }^{(1)}$) Resistor ${ }^{\circ}$ Conversion Conductance, 520 micromhos.				$6 A 7$
CONVERTER	$\begin{aligned} & 100 \\ & 250 \end{aligned}$	$\left\{\begin{array}{c}-3.0 \\ \min .\end{array}\right\}$	50 100	1.5 3.2	1.2 3.3	$\begin{aligned} & 600000 \\ & 360000 \end{aligned}$	Anode-Grid (w2): 250 max, volts, 4.0 ma . Oscillator-Grid (N_{1}) Resistor a. Conversion Conductance, 500 micromhos.				6 68
PENTODE UNIT AS R-F AMPLIFIER	$\begin{array}{r} 100 \\ 250 \\ \hline \end{array}$	$\begin{array}{r} -3.0 \\ -\quad 3.0 \\ \hline \end{array}$	$\begin{aligned} & 100 \\ & 125 \end{aligned}$	1.7 2.3	5.8 9.0	$\begin{aligned} & 300000 \\ & 650000 \\ & \hline \end{aligned}$	$\begin{array}{r} 950 \\ 1125 \\ \hline \end{array}$	$\begin{aligned} & 285 \\ & 730 \\ & \hline \end{aligned}$	-	-	
PENTODE UNIT AS A-F AMPLIFIER	$\begin{gathered} 90 \times \\ 300 \times \\ \hline \end{gathered}$										
pentode unit as R.F AMPLIFIER	250	- 3.0	125	2.3	10.0	600000	1325	800	-	-	
PENTODE UNIT AS A-F AMPLIFIER	$\begin{array}{r} 90 x \\ 300 x \end{array}$										
CLASS A AMPLIFIER	$\begin{aligned} & 250 \\ & 250 \\ & \hline \end{aligned}$	$\begin{array}{r} -8.0 \\ -\quad 5.0 \\ \hline \end{array}$	-	-	$\begin{aligned} & 8.0 \\ & 1.0 \end{aligned}$	10000 Gain	per stage $=$	24^{20}		-	
BIAS DETECTOR	250	$\left\{\begin{array}{c}-17.0 \\ \text { appros. }\end{array}\right\}$	-	-		ate curren	to be adjus with no	sted to 0. signal.	milliam		6 C 5
AMPLIFIER DETECTOR	For other characteristics, refer to Type 6J7.										6 C 6

Receiver Tube Characteristics

TYPE	NAME	BASE	SOCKET CONHEC. TIONS	OIMENSIDNS maxImum OVERALL	CATHODE TYPE	Rating			
						FILAMENT OR HEATER		plate	Screen
				$\begin{gathered} \text { LENGTH } \\ x \\ \text { DIAMETER } \end{gathered}$		volts	AMPERES	$\begin{aligned} & \max . \\ & \text { volis } \end{aligned}$	$\max .$ volis
606	TRIPLE-GRID SUPER-CONTROL AMPLIFIEA	SMALL -PIN	6 f	$4 \frac{15}{18}{ }^{\circ} \times 1 \frac{9}{16}{ }^{\prime \prime}$	heater	6.3	0.3	250	100
6 E 5	ELECTRON-RAY TUBE	SMALL E-PIN	6R	41*** ${ }^{\circ}$	heater	6.3	0.3	250\%	-
$6 F 5$	HIGH-MU TRIODE	$\begin{aligned} & \text { SMALL } \\ & \text { OCTAL } 5-\mathrm{PIN} \end{aligned}$	5M	$33^{\prime \prime} \times 1 \frac{5}{16}^{\prime \prime}$	heater	6.3	0.3	250	-
6F6	POWER AMPLIFIER PENTODE	SMALL OCTAL 7-PIN	75	$3 \frac{1}{\prime \prime}^{\prime \prime} \times 1 \frac{5}{16}$	HEATER	6.3	0.7	315	315
								250	-
								375	250
								350	-
6F7	TRIODE. PENTODE	SMALL 7-PIM	$7 E$	$4 \frac{17}{3}{ }^{\prime \prime} \times 1 \frac{9}{16}$	heater	6.3	0.3	100	-
								250	100
								250	100
065	$\begin{aligned} & \text { ELECTRON-RAY } \\ & \text { TUBE } \end{aligned}$	SMALL E-PIN	6R	$4 \frac{10}{*}^{\circ} \times 1 \frac{9}{16}$	HEATER	6.3	0.3	2504	-
$6 \mathrm{H6}$	TWIN DIODE	SMALL OCTAL 7-PIN	70	15* ${ }^{\circ} \times 1 \frac{5}{16}{ }^{\prime \prime}$	heater	6.3	0.3	-	-
617	TRIPLE-GRID DETECTOR AMPLIFIER	OCTAL T-PIN	7 R	$31^{\prime \prime} \times 1 \frac{3}{16}^{\prime \prime}$	HEATER	6.3	0.3	250	125
$6 \mathrm{K7}$	TRIPLE-GRID SUPER-CONTROL AMPLIFIER	SMALL OCTAL 7.PIN	7R	$3 \frac{1}{\prime \prime}^{\prime \prime} \times 1 \frac{5}{16}{ }^{\prime \prime}$	HEATER	6.3	0.3	250	125
6 L 6	BEAM POWER AMPLIFIER	$\text { OCTAL }_{\text {SMPIN }}$	7 AC	$4 \frac{1}{16}^{\circ} \times 1{ }^{\prime \prime}$	heater	6.3	0.9	375	250
								375	250
								400	300
								400	300
$6 \mathrm{L7}$	PENTAGRID MIXERA AMPLIFIER	OCTAL 7 PPIN	π	$3 \mathrm{~s}^{\prime \prime} \times 1 \frac{5}{16}$	heater	6.3	0.3	250	150
								250	100
$6 \mathrm{N7}$	TWIN-TRIODE AMPLIFIER	OCTAL SMALL	8 B	$3 \frac{1}{4}^{\prime \prime} \times 1{ }^{\frac{3}{16}}{ }^{\prime \prime}$	HEATER	6.3	0.8	300	-
607	DUPLEX-DIODE high-mu triode	$\begin{aligned} & \text { STMALL } \\ & \text { STAL } 7-\text { PIN } \end{aligned}$	TV	31** $\times 1 \frac{5}{16}$	heater	6.3	0.3	250	-
687	DUPLEX-DIODE TRIODE	OCTAL T-PIN	TV	$38^{\prime \prime} \times 1 \frac{3}{16}{ }^{\text {a }}$	heater	6.3	0.3	250	-
6×5	full-wave RECTIFIER	SMALL OCTAL B-PIN	65	$31_{6}^{\prime \prime} \times 1 \frac{5^{16}}{}{ }^{\prime \prime}$	heater	6.3	0.6	-	-
10	POWER AMPLIFIER TAIODE	MEDIUM 4-PIN Bayonet	40	$55^{\prime \prime} \times 2 \frac{3}{16}{ }^{\prime \prime}$	FILAMENT	7.5	1.25	425	-

Receiver Tube Characteristics

USE Values to right give operating conditions and characteristics for indicated typieal use	PLATE SUP. PLY volts	GRID BIAS = volts	SCREEN SUPPLY volts	$\begin{aligned} & \text { SCREEN } \\ & \text { CUR- } \\ & \text { RENT } \\ & \text { MA. } \end{aligned}$	PLATE CUR. RENT ma.	A.C PLATE RESIS. TANCE OHMs	TRANS. CONDUC. TANCE (6RIDPLATE) μ MHOS	AMPLIFI- CATION FACTOR	LOAD FOR sTATEO POWEA OUTPUT OHMS	POWER OUT. PUT watts	TYPE
SCREENCRID R-F AMPLIFIER	$\begin{aligned} & 100 \\ & 250 \end{aligned}$	$\left\{\begin{array}{c}-3.0 \\ \min .\end{array}\right\}$	$\begin{aligned} & 100 \\ & 100 \\ & \hline \end{aligned}$	$\begin{aligned} & 2.2 \\ & 2.0 \\ & \hline \end{aligned}$	$\begin{array}{r} 8.0 \\ 8.2 \\ \hline \end{array}$	$\begin{aligned} & 250000 \\ & 800000 \\ & \hline \end{aligned}$	$\begin{aligned} & 1500 \\ & 1600 \\ & \hline \end{aligned}$	$\begin{array}{r} 375 \\ 1280 \\ \hline \end{array}$			606
MIXER IN SUPERHETERODYNE	100 250	$\begin{array}{r} -10.0 \\ -10.0 \\ \hline \end{array}$	$\begin{aligned} & 100 \\ & 100 \\ & \hline \end{aligned}$		-		Oscillator	Peak V	ts $=7.0$		
visual INDICATOR	Plate \& Target Supply $=100$ volts. Triode Plate Resistor $=0.5 \mathrm{meg}$. Target Current $=4.5 \mathrm{ma}$. Grid Bias, -3.3 volts; Shadow Angle, 0°. Bias, 0 volts; Angle, 90°; Plate Current, 0.19 ma .										$6 E 5$
	Plate \& Target Supply $=250$ volts. Triode Plate Resistor $=1.0 \mathrm{meg}$. Target Current $=4.5 \mathrm{ma}$. Grid Bias, -8.0 volts; Shadow Angle, 0°. Bias, 0 volts; Angle, 90°; Plate Current, 0.24 ma .										6
	250	-2.0			0.9	66000	1500	100			$6 F 5$
CLASS A AMPLIFIER	250 m	-0.3			0.4	Grid Resistor, 0.25 meg.** Gain per stage $=52$					6 F5
PENTODE CLASS A AMPLIFIER	$\begin{aligned} & 250 \\ & 315 \end{aligned}$	$\begin{aligned} & -16.5 \\ & -22.0 \end{aligned}$	$\begin{aligned} & 250 \\ & 315 \end{aligned}$	6.5 8.0	34.0 42.0	80000 75000	$\begin{aligned} & 2500 \\ & 2650 \end{aligned}$	$\begin{aligned} & 200 \\ & 200 \\ & \hline \end{aligned}$	$\begin{aligned} & 7000 \\ & 7000 \\ & \hline \end{aligned}$	$\begin{aligned} & 3.0 \\ & 5.0 \\ & \hline \end{aligned}$	$6 F 6$
TRIODED CLASS A AMPLIFIER	250	-20.0	-	-	31.0	2600	2700	7	4000	0.85	
PENTODE PUSH-PULL CLASS AB3 AMPLIFIER	$\begin{aligned} & 375 \\ & 375 \end{aligned}$	$\begin{gathered} \text { Self-bias } \\ -26.0 \end{gathered}$	$\begin{aligned} & \hline 250 \\ & 250 \end{aligned}$	$\begin{aligned} & 8.0 \\ & 5.0 \end{aligned}$	$\begin{aligned} & 54.0 \\ & 34.0 \end{aligned}$	Self-Bias Resistor, 340 ohms			10000 10000	$\begin{aligned} & 19.0 \dagger \\ & 19.0 \dagger \end{aligned}$	
TRIODE PUSH-PULID CUSS AB2 AMPLIFIER	$\begin{aligned} & 350 \\ & 350 \\ & \hline \end{aligned}$	$\begin{gathered} \text { Self-bias } \\ -38.0 \end{gathered}$			$\begin{aligned} & 50.0 \\ & 45.0 \\ & \hline \end{aligned}$	Self-Bias Resistor, 730 ohms			$\begin{array}{r} 10000 \\ 6000 \\ \hline \end{array}$	$\begin{aligned} & 14.0 \dagger \\ & 18.0 \dagger \end{aligned}$	
$\begin{aligned} & \text { TRIODE UNIT AS } \\ & \text { CLASS A AMPLIFIER } \end{aligned}$	100	- 3.0	-	-	3.5	16000	500	8	\longrightarrow	\longrightarrow	$6 F 7$
PENTODE UNIT AS CLASS A AMPLIFIER	$\begin{aligned} & 100 \\ & 250 \\ & \hline \end{aligned}$	$\left\{\begin{array}{c}-3.0 \\ \text { min. }\end{array}\right\}$	$\begin{aligned} & 100 \\ & 100 \\ & \hline \end{aligned}$	$\begin{aligned} & 1.6 \\ & 1.5 \\ & \hline \end{aligned}$	$\begin{aligned} & 6.3 \\ & 6.5 \end{aligned}$	$\begin{aligned} & 290000 \\ & 850000 \\ & \hline \end{aligned}$	$\begin{aligned} & 1050 \\ & 1100 \\ & \hline \end{aligned}$	$\begin{aligned} & 300 \\ & 900 \\ & \hline \end{aligned}$		-	
PENTODE UNIT AS MIXER	250	-10.0	100	0.6	2.8	Oscillator Peak Volts $=7.0$. Conversion Conductance $=300$ micromhos.					
vISUAL indicator	Plate \& Target Supply $=100$ volts. Triode Plate Resistor $=0.5 \mathrm{meg}$. Target Current $=4.5 \mathrm{ma}$. Grid Bias, -8 volts; Shadow Angle, 0°. Bias, 0 volts; Angle, 90°; Plate Current, 0.19 ma .										5
	Plate \& Target Supply $=250$ volts. Triode Plate Resistor $=1.0$ meg. Target Current $=4.5 \mathrm{ma}$. Grid Bias, -22 volts; Shadow Angle, 0°. Bias, 0 volts; Angle, 90°; Plate Current, 0.24 ma .										5
TWINDIODE DETECTOR RECTIFIER	Maximum A.C Voltage per Plate..................................... 100 Volts, RMSMaximum D.C Output Current..................... 4 Milliamperes										6H6
SCREENLGRID R-F AMPLIFIER	$\begin{aligned} & 100 \\ & 250 \end{aligned}$	$\begin{aligned} & =3.0 \\ & -3.0 \end{aligned}$	$\begin{aligned} & 100 \\ & 100 \end{aligned}$	$\begin{aligned} & 0.5 \\ & 0.5 \end{aligned}$	2.0 2.0	1000000 $1.5+8$	$\begin{aligned} & 1185 \\ & 1225 \end{aligned}$	$\begin{aligned} & 1185 \\ & 1500+ \end{aligned}$	-	- -	6.7
SCREEN_RID A-F AMPLIFIER	$\begin{gathered} 90 \times \\ 300 \times \end{gathered}$	Self-bias, 2600 ohms. Screen Resistor $=1.2$ meg. Self-bias, 1200 ohms. Screen Resistor $=1.2$ meg.					Grid Resistor, ${ }^{* * *}$0.5 megohm. $\left\{\begin{array}{l}\text { Gain per stage }=85 \\ \text { Gain per stage }=140\end{array}\right.$				
BIAS DETECTOR	250	- 4.3	100	Cathode current 0.43 ma .		-	Plate Resistor, 500000 ohms. Grid Resistor, * 250000 ohms.				
SCREEN-CRID R-F AMPLIFIER	$\begin{array}{r} 90 \\ 250 \end{array}$	$\left\{\begin{array}{c}-3.0 \\ \text { min. }\end{array}\right\}$	$\begin{array}{r} 90 \\ 125 \end{array}$	$\begin{aligned} & 1.3 \\ & 2.6 \end{aligned}$	$\begin{array}{r} 5.4 \\ 10.5 \end{array}$	$\begin{aligned} & 315000 \\ & 600000 \end{aligned}$	$\begin{aligned} & 1275 \\ & 1650 \end{aligned}$	$\begin{aligned} & 400 \\ & 990 \end{aligned}$		-	K7
$\begin{gathered} \text { MIXER IN } \\ \text { SUPERHETERODYNE } \\ \hline \end{gathered}$	250	-10.0	100	-.	-	Oscillator Peak Volts $=\mathbf{7 . 0}$					
SINGLE TUBE CLASS AI AMPLIFIER	$\begin{aligned} & 250 \\ & 250 \end{aligned}$	-14.0 Self-bias	$\begin{aligned} & 250 \\ & 250 \end{aligned}$	$\begin{aligned} & 5.0 \\ & 5.4 \end{aligned}$	$\begin{aligned} & 72.0 \\ & 75.0 \end{aligned}$	Self-Bias Resistor, 170 ohms.			$\begin{aligned} & 2500 \\ & 2500 \end{aligned}$	$\begin{aligned} & 6.5 \\ & 6.5 \end{aligned}$	$6 L 6$
PUSH-PULL CLASS AI AMPLIFIER	$\begin{aligned} & 250 \\ & 250 \\ & \hline \end{aligned}$	$\begin{aligned} & -16.0 \\ & \text { Self-bias } \end{aligned}$	$\begin{aligned} & 250 \\ & 250 \\ & \hline \end{aligned}$	$\begin{aligned} & 10.0 \\ & 10.0 \\ & \hline \end{aligned}$	$\begin{array}{\|l\|} \hline 120.0 \\ 120.0 \\ \hline \end{array}$	Self-Bias Resistor, 125 ohms.			$\begin{aligned} & 5000 \\ & 5000 \end{aligned}$	$\begin{aligned} & 14.5 \dagger \\ & 13.8 \dagger \end{aligned}$	
PUSH-PULL CLASS AB 1 AMPLIFIER	$\begin{aligned} & 400 \\ & 400 \end{aligned}$	$\begin{gathered} -25.0 \\ \text { Self-bias } \end{gathered}$	$\begin{aligned} & 300 \\ & 300 \end{aligned}$	6.0 7.0	$\begin{aligned} & 102.0 \\ & 112.0 \end{aligned}$	Self-Bias	Resistor, 2	00 ohms.	$\begin{aligned} & 6600 \\ & 6600 \end{aligned}$	$\begin{aligned} & 34.0 \dagger \\ & 32.0 \dagger \end{aligned}$	
$\begin{aligned} & \text { PUSH-PULL } \\ & \text { CLASS AB } 2 \text { AMPLIFIER } \end{aligned}$	$\begin{aligned} & 400 \\ & 400 \\ & \hline \end{aligned}$	$\begin{aligned} & -20.0 \\ & -25.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 250 \\ & 300 \\ & \hline \end{aligned}$	$\begin{aligned} & 4.0 \\ & 6.0 \\ & \hline \end{aligned}$	$\begin{array}{r} 88.0 \\ 102.0 \\ \hline \end{array}$				$\begin{aligned} & 6000 \\ & 3800 \end{aligned}$	$\begin{aligned} & 40.0 \dagger \\ & 60.0 \dagger \end{aligned}$	
MIXER IN SUPERHETERODYNE	250	- 3.0	100	6.2	2.4	Oscillator-Grid (${ }^{(1)}$) Bias, -10 volts. Grid *3 Peak Swing, 12 volts min. Conversion Conductance, 350 micromhos.					$6 L 7$
CLASS A AMPLIFIER	250	$\left\{\begin{array}{c}-3.0 \\ \min .4\end{array}\right\}$	100	5.5	5.3	800000	1100	880	-	-	
CLASS A AMPLIFIER (A) Driver) ${ }^{\circ}$	250 -5.0 6.0 11300 3100 35 20000 exceeds										6N7
CLASS B AMPLIFIER	$\begin{aligned} & 250 \\ & 300 \end{aligned}$	0			Power Output is for one tube at stated plate-to-plate load.				$\begin{array}{r} 8000 \\ 10000 \end{array}$	$\begin{array}{r} 8.0 \\ 10.0 \end{array}$	
TRIODE UNIT AS CLASS A AMPLIFIER	$\begin{aligned} & 100 \\ & 250 \\ & \hline \end{aligned}$	-1.5 -3.0			1.1	87500 58000	$\begin{array}{r} 800 \\ 1200 \\ \hline \end{array}$	70 70		-	607
	$\begin{aligned} & 10000-1.1 \\ & 250-2.0 \\ & \hline \end{aligned}$				$\begin{aligned} & 0.25 \\ & 0.5 \\ & \hline \end{aligned}$	$\left\{\begin{array}{c} \text { Grid Resistor, } \\ 0.5 \text { megohm } \end{array}\right\}$		$\begin{aligned} & \text { Gain per stage }=35 \\ & \text { Gain per stage }=43 \end{aligned}$			
TRIODE UNIT AS CLASS A AMPLIFIER	$\begin{aligned} & 250 \\ & 250 \end{aligned}$	-9.0-6.0		——	9.5	Grid Resistor, ${ }^{* *} 0.5 \mathrm{meg}$. Gain per stage $=12$					687
					1.3						
Maximum A-C Voitage per Plate............................. 350 Volts, RMS Maximum D-C Output Current 75 Milliamperes											6×5
CLASS A AMPLIFIER	$\begin{aligned} & 350 \\ & 425 \\ & \hline \end{aligned}$	$\begin{array}{r} -32.0 \\ -40.0 \\ \hline \end{array}$	-	-	$\begin{aligned} & 16.0 \\ & 18.0 \end{aligned}$	$\begin{aligned} & 5150 \\ & 5000 \end{aligned}$	$\begin{aligned} & 1550 \\ & 1600 \\ & \hline \end{aligned}$	$\begin{array}{r} 8.0 \\ 8.0 \\ \hline \end{array}$	$\begin{aligned} & 11000 \\ & 10200 \end{aligned}$	$\begin{aligned} & 0.9 \\ & 1.6 \end{aligned}$	10

Receiver Tube Characteristics

TYPE	NAME	BASE	SOCKET CONNEC. TIONS	DIMENSIONSMAXIMUMOVERALLLENGTMxDIAMETER	CATHODE TYPE	RATING			
						filament or heater		plate	SCREEM
						Volts	AMPERES	max. volis	$\max .$ volts
$\begin{aligned} & 11 \\ & 12 \end{aligned}$	DETECTOR \star AMPLIFIER triode	WD 4-PIN MEDUMM 4. PIN Bayonet	$\begin{aligned} & 4 F \\ & 4 D \end{aligned}$	$\begin{array}{llll} 4 y^{\prime \prime} & x & 1-\frac{3}{3} 6^{\prime \prime} \\ 4 \frac{11}{16}{ }^{\prime \prime} & x & \frac{7^{\prime \prime}}{16} \end{array}$	FILAMENT	1.1	0.25	135	-
1223	half-WAVE RECTIFIER	SMALL 4-PIN	4 G	$4 \frac{11}{\prime \prime}^{\prime \prime} \times 1 \frac{9}{16}$	HEATER	12.6	0.3	-	-
15	R-F AMPLIFIER PENTODE	SMALL 3-PIN	$5 F$	$4 \frac{17}{32}{ }^{\prime \prime} \times 1{ }^{\frac{9}{16} 6^{\prime \prime}}$	meater	2.0	0.22	135	67.5
19	TWIN-TRIODE AMPLIFIER	SMALL 6-PIN	6 C		FILAMENT	2.0	0.26	135	-
20	POWER AMPLIFIER TRIODE	SMALL 4-PIN	4D	$4 \frac{1}{3 \prime}^{\prime \prime} \times 1{ }^{\frac{3}{2 \prime}}{ }^{\prime \prime}$	FILAMENT	3.3	0.132	135	-
22	R.F AMPLIFIER TETRODE	MEDIUM 4-PIN	4K	$5 \frac{1}{32}{ }^{\prime \prime} \times 1 \frac{13}{16}$	D-C FILAMENT	3.3	0.132	135	67.5
24-A	R-F AMPLIFIER TETRDDE	MEOIUM S-PIN	$5 E$	$5 \frac{1}{32}^{\prime \prime} \times 1 \frac{13}{16}$	heater	2.5	1.75	275	90
25A6	POWER AMPLIFIER PENTODE	$\begin{aligned} & \text { SMALL } \\ & \text { OCTAL } 7-\mathrm{PIN} \end{aligned}$	75	$3 \frac{1}{4 \prime \prime}^{\prime \prime} \times 1 \frac{S^{\prime \prime}}{}$	heater	25.0	0.3	180	135
2525	RECTIFIERODUBLER	SMALL 6-PIN	$6 E$	$4 \frac{1}{4}^{\prime \prime} \times 1 \frac{9}{16}{ }^{\prime \prime}$	meater	25.0	0.3	-	-
2526	RECTIFIER. DOUBLER	SMALL DCTAL 7.PIN	70	3*" ${ }^{\prime \prime} 1 \frac{3}{16}{ }^{\prime \prime}$	heater	25.0	0.3	-	-
26	AMPLIFIER TRIODE	MEDIUM 4-PIN	4D	$4 \frac{11}{16}{ }^{\prime \prime} \times 1 \frac{13}{16^{\prime \prime}}$	FILAMENT	1.5	1.05	180	-
27	DETECTOR* AMPLIFIER TRIDDE	MEDIUM S-PIN	5A		meater	2.5	1.75	275	-
30	DETECTDR* AMPLIFIER triode	SMALL 4.PIN	4D	$44^{\prime \prime} \times 1 \frac{9^{\prime \prime}}{16}$	FILAMENT	2.0	0.06	180	-
31	POWER AMPLIFIER TRIOOE	SMALL 4-PIN	40	$4 \frac{1}{11}^{\prime \prime} \times 1 \frac{9}{16}{ }^{\prime \prime}$	D-C FILAMENT	2.0	0.13	180	-
32	R-F AMPLIFIER TETRODE	MEDIUM A-PIN	4 K	$5 \frac{1}{32}{ }^{\prime \prime} \times 1 \frac{13}{16}$	D.C FILAMENT	2.0	0.06	180	67.5
33	POWER AMPLIFIER	MEDIUM 5-PIN	5K	$4 \frac{11}{16}{ }^{\prime \prime} \times 1 \frac{13}{16}{ }^{\prime \prime}$	FILAMENT	2.0	0.26	180	180
34	SUPER-CONTROL R-F AMPLIFIER PENTODE	MEDIUM 4-PIN	4M	$5 \frac{1}{32}{ }^{\prime \prime} \times 1 \frac{13}{16}{ }^{\prime \prime}$	FILAMENT	2.0	0.06	180	67.5
35	SUPER-CONTROL R-F AMPLIFIER tETRODE	MEDIUM S-PIN	$5 E$	$5 \frac{1}{32}^{\prime \prime} \times 1 \frac{13}{16}{ }^{\prime \prime}$	heater	2.5	1.75	275	90
36	R-F AMPLIFIER TETRODE	SMALL 5-PIN	5E	$4 \frac{17}{}{ }^{\prime \prime} \times 1{ }^{\frac{9}{16}}{ }^{\prime \prime}$	meater	6.3	0.3	250	90
37	DETECTOR AMPLIFIER TRIDOE	SMALL 5-PIN	5A	$4_{4}^{17} \times 1 \frac{9}{16}{ }^{\prime \prime}$	meater	6.3	0.3	250	-
38	POWER AMPLIFIER	SMALL 5-PIN	5F	$4 \frac{17}{3 \prime} \times 1 \frac{9}{16}$	heater	6.3	0.3	250	250
39/44	SUPER.CONTROL R-F AMPLIFIER PENTODE	SMALL S-PIN	57	$4 \frac{173}{\prime \prime}^{\prime \prime} \times 1 \frac{9}{16}{ }^{\prime \prime}$	meater	6.3	0.3	250	90
40	voltage AMPLIFIER TRIODE	MEDIUM 4-PIN Bayonet	40	$4 \frac{11^{\prime \prime}}{} \times 1 \frac{13}{16}{ }^{\prime \prime}$	D.C FILAMENT	5.0	0.25	180	-
41	PDWER AMPLIFIER PENTODE	SMALL 6-PIN	68	$4 \frac{1}{4}^{\prime \prime} \times 1 \frac{9}{16}{ }^{\prime \prime}$	heater	6.3	0.4	250	250

Characteristics

Receiver Tube Characteristics

USE Values to right give operating conditions and characteristics for indicated typical use	PLATE SUP. PLY volts	GRID BIAS volts	SCREEN SUPPLY volts	SCREEN CUR- RENT MA.	PLATE CUR- RENT ma.	A.C PLATE RESISTANCE OHMS	TRANS. CONDUC. TANCE (GRIOplate) μ MHOS	AMPLIFI- CAYION FACTOR	LOAD FOR STATED POWER OUTPUT OHMS	POWER OUT. PUT wits	TYPE
CLASS A AMPLIFIER	$\begin{array}{r} 90 \\ 135 \end{array}$	$\begin{aligned} & -4.5 \\ & -10.5 \end{aligned}$			$\begin{aligned} & 2.5 \\ & 3.0 \end{aligned}$	$\begin{aligned} & 15500 \\ & 15000 \end{aligned}$	$\begin{aligned} & 425 \\ & 440 \end{aligned}$	$\begin{aligned} & 6.6 \\ & 6.6 \end{aligned}$			$\begin{aligned} & 11 \\ & 12 \end{aligned}$
Maximum A-C Plate Voltage Maximum D-C Output Current 250 Volts, RMS											1223
CLASS A AMPLIFIER	$\begin{gathered} 67.5 \\ 135 \end{gathered}$	$\begin{aligned} & -1.5 \\ & -1.5 \end{aligned}$	$\begin{aligned} & 67.5 \\ & 67.5 \\ & \hline \end{aligned}$	$\begin{aligned} & 0.3 \\ & 0.3 \\ & \hline \end{aligned}$	$\begin{aligned} & 1.85 \\ & 1.85 \end{aligned}$	$\begin{aligned} & 630000 \\ & 800000 \end{aligned}$	$\begin{aligned} & 710 \\ & 750 \end{aligned}$	$\begin{aligned} & 450 \\ & 600 \end{aligned}$	-	-	15
CLASS B AMPLIFIER	$\begin{aligned} & 135 \\ & 135 \end{aligned}$	$\begin{array}{r} 0 \\ -\quad 3.0 \\ \hline \end{array}$	-	-	Power Output is for one tube at stated plate-to-plate load.				$\begin{aligned} & \hline 10000 \\ & 10000 \\ & \hline \end{aligned}$	$\begin{aligned} & 2.1 \\ & 1.9 \end{aligned}$	19
CLASS A AMPLIFIER	90 135	$\begin{aligned} & -16.5 \\ & -22.5 \\ & \hline \end{aligned}$	-	-	$\begin{aligned} & 3.0 \\ & 6.5 \\ & \hline \end{aligned}$	$\begin{aligned} & 8000 \\ & 6300 \\ & \hline \end{aligned}$	$\begin{array}{r} 415 \\ 525 \\ \hline \end{array}$	$\begin{aligned} & 3.3 \\ & 3.3 \end{aligned}$	$\begin{aligned} & 9600 \\ & 6500 \\ & \hline \end{aligned}$	$\begin{aligned} & 0.045 \\ & 0.110 \\ & \hline \end{aligned}$	20
SCREEN-GRID R.F AMPLIFIER	$\begin{aligned} & 135 \\ & 135 \end{aligned}$	$\begin{aligned} & -1.5 \\ & -1.5 \end{aligned}$	$\begin{array}{r} 45 \\ 67.5 \end{array}$	$\begin{aligned} & 0.6^{*} \\ & 1.3^{*} \end{aligned}$	$\begin{aligned} & 1.7 \\ & 3.7 \end{aligned}$	$\begin{aligned} & 725000 \\ & 325000 \end{aligned}$	$\begin{aligned} & 375 \\ & 500 \end{aligned}$	$\begin{aligned} & 270 \\ & 160 \end{aligned}$	_-_	-	22
SCREEN:GRID R-F AMPLIFIER	$\begin{aligned} & 180 \\ & 250 \end{aligned}$	$\begin{aligned} & -3.0 \\ & -\quad 3.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 90 \\ & 90 \end{aligned}$	$\begin{aligned} & 1.7^{*} \\ & 1.7^{\circ} \end{aligned}$	$\begin{aligned} & 4.0 \\ & 4.0 \end{aligned}$	$\begin{aligned} & 400000 \\ & 600000 \end{aligned}$	$\begin{aligned} & 1000 \\ & 1050 \end{aligned}$	$\begin{aligned} & 400 \\ & 630 \end{aligned}$		-	24-A
BIAS DETECTOR	2500	$\left\{\begin{array}{r} -5.0 \\ \text { anninx } \end{array}\right.$	$\begin{array}{r} 20 t 0 \\ 85 \end{array}$	-	Plate current to be adjusted to 0.1 milliampere with, no uignal.						
CLASS A ANPLIFIER	$\begin{array}{r} 95 \\ 180 \end{array}$	-15.0 -20.0	$\begin{array}{r} 95 \\ 135 \end{array}$	4.0 7.5	20.0 38.0	45000 40000	2000 2500	90 100	4500 5000	$\begin{aligned} & 0.9 \\ & 2.75 \end{aligned}$	25A6
voltace DOUBLER	Maximum A.C Voltage per Plate 125 Volts, RMS Maximum D-C Output Current.										
halferave RECTIFIER	Maximum A-C Voltage per Plate P Maximum D-C Output Current per Plate$\quad . \quad .850$ Volts, RMS										2525
vOLtaGE DOUBLER	Maximum A-C Voltage per Plate................$~$Maximum D-C Output CurrentMalts. RMS85 Milliamperes										
half.wave RECTIFIER	Maximum A-C Voltage per Plate \boldsymbol{P}...... $\quad . \quad 250$ Volts, RMS Maximum D-C Output Current per Plate										
CLASS A AMPLIFIER	$\begin{array}{r} 90 \\ 180 \end{array}$	$\begin{array}{r} -7.0 \\ -14.5 \end{array}$	-	-	$\begin{aligned} & 2.9 \\ & 6.2 \\ & \hline \end{aligned}$	$\begin{aligned} & 8900 \\ & 7300 \end{aligned}$	$\begin{array}{r} 935 \\ 1150 \end{array}$	$\begin{aligned} & 8.3 \\ & 8.3 \end{aligned}$	-	-	26
CLASS A AMPLIFIER	$\begin{aligned} & 135 \\ & 250 \\ & \hline \end{aligned}$	$\begin{array}{r} -9.0 \\ -21.0 \\ \hline \end{array}$	-		$\begin{aligned} & 4.5 \\ & 5.2 \\ & \hline \end{aligned}$	$\begin{aligned} & 9000 \\ & 9250 \end{aligned}$	$\begin{array}{r} 1000 \\ 975 \\ \hline \end{array}$	$\begin{aligned} & 9.0 \\ & 9.0 \\ & \hline \end{aligned}$	-		27
BIAS DETECTOR	250	$\left\{\begin{array}{c} -30.0\} \\ \text { approx. } \end{array}\right\}$	-	-	Plate current to be adjusted to 0.2 milliampere with no signal.						
CLASS A AMPLIFIER	$\begin{array}{r} 90 \\ 135 \\ 180 \end{array}$	$\begin{aligned} & -4.5 \\ & -9.0 \\ & -13.5 \end{aligned}$	-	-	$\begin{aligned} & 2.5 \\ & 3.0 \\ & 3.1 \end{aligned}$	$\begin{aligned} & 11000 \\ & 10300 \\ & 10300 \end{aligned}$	$\begin{aligned} & 850 \\ & 900 \\ & 900 \end{aligned}$	$\begin{aligned} & 9.3 \\ & 9.3 \\ & 9.3 \end{aligned}$	-	-	30
CLASS B AMPLIFIER	157.5	-15.0	-	-	1.0	-	-		8000	$2.1+$	
CLASS A AMPLIFIER	$\begin{aligned} & 135 \\ & 180 \end{aligned}$	-22.5 -30.0	-	-	$\begin{array}{r} 8.0 \\ 12.3 \\ \hline \end{array}$	$\begin{aligned} & 4100 \\ & 3600 \\ & \hline \end{aligned}$	$\begin{array}{r} 925 \\ 1050 \\ \hline \end{array}$	$\begin{aligned} & 3.8 \\ & 3.8 \end{aligned}$	$\begin{aligned} & 7000 \\ & 5700 \\ & \hline \end{aligned}$	$\begin{aligned} & 0.185 \\ & 0.375 \end{aligned}$	31
SCREEN.GRID R.F AMPLIFIER	$\begin{aligned} & 135 \\ & 180 \\ & \hline \end{aligned}$	$\begin{array}{r} -3.0 \\ -\quad 3.0 \\ \hline \end{array}$	$\begin{aligned} & 67.5 \\ & 67.5 \end{aligned}$	$\begin{aligned} & 0.4^{*} \\ & 0.4^{*} \end{aligned}$	$\begin{aligned} & 1.7 \\ & 1.7 \end{aligned}$	$\begin{array}{r} 950000 \\ 1200000 \end{array}$	$\begin{array}{r} 640 \\ 650 \\ \hline \end{array}$	$\begin{aligned} & 610 \\ & 780 \\ & \hline \end{aligned}$			32
BIAS DETECTOR	180%	$\left\{\begin{array}{l} -6.0 \\ \text { approx. } \end{array}\right.$	67.5	-	Plate current to be adjusted to 0.2 milliampere with no signal.						
CLASS A AMPLIFIER	180	-18.0	180	5.0	22.0	55000	1700	90	6000	1.4	33
SCREEN-CRID R-F AMPLIFIER	$\begin{aligned} & 135 \\ & 180 \end{aligned}$	$\left\{\begin{array}{l}-3.0 \\ \text { min. }\end{array}\right\}$	$\begin{aligned} & 67.5 \\ & 67.5 \end{aligned}$	$\begin{aligned} & 1.0 \\ & 1.0 \end{aligned}$	$\begin{aligned} & 2.8 \\ & 2.8 \end{aligned}$	$\begin{array}{r} 600000 \\ 1000000 \end{array}$	$\begin{aligned} & 600 \\ & 620 \end{aligned}$	$\begin{aligned} & 360 \\ & 620 \end{aligned}$	-	-	34
SCREEN.CRID R-F AMPLIFIER	$\begin{aligned} & 180 \\ & 250 \end{aligned}$	$\left\{\begin{array}{c}-3.0 \\ \min .\end{array}\right\}$	$\begin{aligned} & 90 \\ & 90 \end{aligned}$	$\begin{aligned} & 2.5^{*} \\ & 2.5^{\circ} \end{aligned}$	$\begin{aligned} & 6.3 \\ & 6.5 \end{aligned}$	$\begin{aligned} & 300000 \\ & 400000 \end{aligned}$	$\begin{aligned} & 1020 \\ & 1050 \end{aligned}$	$\begin{aligned} & 305 \\ & 420 \end{aligned}$	-	-	35
SCREENCRID R-F AMPLIFIER	$\begin{aligned} & 100 \\ & 250 \\ & \hline \end{aligned}$	$\begin{array}{r} -1.5 \\ -\quad 3.0 \\ \hline \end{array}$	$\begin{aligned} & 55 \\ & 90 \\ & \hline \end{aligned}$	1.7*	1.8	$\begin{aligned} & 550000 \\ & 550000 \end{aligned}$	$\begin{array}{r} 850 \\ 1080 \\ \hline \end{array}$	$\begin{aligned} & 470 \\ & 595 \\ & \hline \end{aligned}$	-	-	36
BIAS DETECTOR	$\begin{aligned} & 100{ }^{\circ} \\ & 2500 \end{aligned}$	$\begin{aligned} & -5.0 \\ & -8.0 \end{aligned}$	$\begin{aligned} & 55 \\ & 90 \end{aligned}$	-	Grid-bias values are approximate. Plate current to be adjusted to 0.1 milliampere with no signal.						
CLASS A AMPLIFIER	$\begin{array}{r} 90 \\ 250 \end{array}$	$\begin{array}{r} -6.0 \\ -18.0 \end{array}$	-	-	$\begin{array}{r} 2.5 \\ .7 .5 \end{array}$	$\begin{array}{r} 11500 \\ 8400 \end{array}$	$\begin{array}{r} 800 \\ 1100 \end{array}$	$\begin{aligned} & 9.2 \\ & 9.2 \\ & \hline \end{aligned}$	-	-	37
BIAS DETECTOR	$\begin{array}{r} 90 \\ 250 \\ \hline \end{array}$	$\begin{array}{r} -10.0 \\ -28.0 \\ \hline \end{array}$	-	-	Grid-bias values are approximate. Plate current to be adjusted to 0.2 milliampere with no signal.						
CLASS A AMPLIFIER	$\begin{aligned} & 100 \\ & 250 \\ & \hline \end{aligned}$	$\begin{aligned} & -9.0 \\ & -25.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 100 \\ & 250 \end{aligned}$	$\begin{aligned} & 1.2 \\ & 3.8 \end{aligned}$	$\begin{array}{r} 7.0 \\ 22.0 \end{array}$	$\begin{aligned} & 140000 \\ & 100000 \end{aligned}$	$\begin{array}{r} 875 \\ 1200 \end{array}$	$\begin{aligned} & 120 \\ & 120 \\ & \hline \end{aligned}$	$\begin{aligned} & 15000 \\ & 10000 \end{aligned}$	$\begin{aligned} & 0.27 \\ & 2.50 \\ & \hline \end{aligned}$	38
SCREEN.CRID R-F AMPLIFIER	$\begin{array}{r} 90 \\ 250 \end{array}$	$\left\{\begin{array}{c}-3.0 \\ \min .\end{array}\right\}$	$\begin{aligned} & 90 \\ & 90 \end{aligned}$	$\begin{aligned} & 1.6 \\ & 1.4 \end{aligned}$	$\begin{aligned} & 5.6 \\ & 5.8 \end{aligned}$	$\begin{array}{r} 375000 \\ 1000000 \end{array}$	$\begin{array}{r} 960 \\ 1050 \end{array}$	$\begin{array}{r} 360 \\ 1050 \end{array}$	-	\cdots	39/44
CLASS A AMPLIFIER	$\begin{aligned} & 135 x \\ & 180 x \end{aligned}$	$\begin{aligned} & -1.5 \\ & -3.0 \end{aligned}$	-	-	$\begin{aligned} & 0.2 \\ & 0.2 \end{aligned}$	$\begin{aligned} & 150000 \\ & 150000 \end{aligned}$	$\begin{aligned} & 200 \\ & 200 \end{aligned}$	$\begin{aligned} & 30 \\ & 30 \end{aligned}$	-	-	40
CLASS A AMPLIFIER	$\begin{aligned} & 100 \\ & 250 \\ & \hline \end{aligned}$	$\begin{array}{r} -7.0 \\ -18.0 \\ \hline \end{array}$	$\begin{aligned} & 100 \\ & 250 \\ & \hline \end{aligned}$	$\begin{aligned} & 1.6 \\ & 5.5 \end{aligned}$	$\begin{array}{r} 9.0 \\ 32.0 \end{array}$	$\begin{array}{r} 103500 \\ 68000 \\ \hline \end{array}$	$\begin{aligned} & 1450 \\ & 2200 \end{aligned}$	$\begin{aligned} & 150 \\ & 150 \\ & \hline \end{aligned}$	$\begin{array}{r} 12000 \\ 7600 \end{array}$	$\begin{aligned} & 0.33 \\ & 3.40 \end{aligned}$	41

Receiver Tube Characteristics

TYPE	NAME	BASE	SOCKET CONHEC. TIOMS	DIMENSIONS MAXIMUM OVERALL	CATHODE TYPE	RATINS			
						fllament or heaten		$\begin{aligned} & \text { plate } \\ & \text { max. } \\ & \text { volis } \end{aligned}$	$\begin{aligned} & \text { sCREEM } \\ & \text { max. } \\ & \text { votis } \end{aligned}$
				$\begin{gathered} \text { LENGTH } \\ x \\ \text { DIAMETER } \end{gathered}$		volts	AMPEAES		
42	POWER AMPLIFIER PENTDDE	MEDIUM 6-PIN	6B	$4 \frac{11}{16}{ }^{\prime \prime} \times 1 \frac{17}{16^{\prime \prime}}$	HEATER	6.3	0.7	315	315
								315	-
								375	250
								350	-
43	POWER AMPLIFIER PENTODE	MEDIUM 6-PIN	68	$4 \frac{11}{16}{ }^{\prime \prime} \times 1 \frac{13}{16}{ }^{\prime \prime}$	heater	25.0	0.3	180	135
45	POWER AMPLIFIER TRIODE	MEDIUM A-PIN	4D	$4 \frac{18}{16}{ }^{\prime \prime} \times 1 \frac{1}{16}{ }^{\prime \prime}$	FILAMENT	2.5	1.5	275	-
								250	-
46	DUAL-GRID POWER AMPLIFIER	MEDIUM 5-PIN	5C	$5{ }^{5 \times 17} \times 2 \frac{3}{16}{ }^{\prime \prime}$	FILAMENT	2.5	1.75	400	-
47	POWER AMPLIFIER PENTODE	MEDIUM 5-PIN	58	$5_{817}^{71} \times 2 \frac{1}{16}{ }^{\prime \prime}$	FILAMENT	2.5	1.75	250	250
48	POWER AMPLIFIER TETRODE	MEDIUM 6-PIN	6A	$5{ }^{3 / 4} \times 2 \frac{1}{16}{ }^{\prime \prime}$	MEATER	30.0	0.4	125	100
	DUAL-GRID		5 C		D-C	2.0	0.12	135	-
49	POWER AMPLIFIER	MEDIUM S-PIN	5	X $1 \frac{16}{16}$	FILAMENT	2.0	0.12	180	-
50	POWER AMPLIFIER TRIODE	$\begin{aligned} & \text { MEDIUM A-PIN } \\ & \text { Bayonet } \end{aligned}$	40	$6 \frac{1}{4}^{\prime \prime} \times 2 \frac{7}{16}^{\prime \prime}$	FILAMENT	7.5	1.25	450	-
53	TWIN-TRIODE AMPLIFIER	MEDIUM 7-PIN*	78	$4 \frac{11}{16}{ }^{\prime \prime} \times 1 \frac{13}{16^{\prime \prime}}$	meater	2.5	2.0	300	-
55	DUPLEX-DIODE tRIODE	SMALL 6-PIN	6G	$4 \frac{17}{32}{ }^{\prime \prime} \times 1 \frac{9}{16}{ }^{\prime \prime}$	HEATER	2.5	1.0	250	-
56	SUPER-TRIODE AMPLIFIER DETECTOA	SMALL 5-PIN	5A	$4 \frac{1}{4}{ }^{\prime \prime} \times 1 \frac{9}{16}^{\prime \prime}$	Heater	2.5	1.0	250	-
57	TRIPLE-GRID DETECTOR AMPLIFIER	SMAALL 6-PIN	$6 F$	$4 \frac{15}{16}{ }^{\prime \prime} \times 1{ }^{9} 6^{\prime \prime}$	heater	2.5	1.0	250	100
58	$\begin{aligned} & \text { TRIPLE-GAID } \\ & \text { SUPER-CONTROL } \\ & \text { AMPLIFIER } \end{aligned}$	SMALL 6-PIN	65	$4 \frac{15}{16}{ }^{\prime \prime} \times 1{ }^{\frac{9}{16}}{ }^{\prime \prime}$	heater	2.5	1.0	250	100
								250	-
59	TRIPLE-GRID POWER AMPLIFIER	MEDIUM T-PIN\%	7A	$5_{6}^{34} \times 2 \frac{1}{16}$	heater	2.5	2.0	250	250
								400	-
71-A	POWER AMPLIFIER TRIODE	MEDIUM A-PIN Bayonet	4 D	$4 \frac{11}{16}{ }^{\prime \prime} \times 1 \frac{133^{\prime \prime}}{}$	FILAMENT	5.0	0.25	180	-
75	DUPLEX-DIODE HIGH-MU TRIODE	SMALL 6-PIN	6G	$4{ }^{\frac{17}{3}}{ }^{18} \times 1 \frac{9}{16}{ }^{10}$	meater	6.3	0.3	250	-
76	SUPER-TRIODE AMPLIFIER DETECTOA』	SMALL 5-PIN	5A	$4 \frac{1}{1 \prime}^{\prime \prime} \times 1 \frac{T^{\prime \prime}}{}$	meater	6.3	0.3	250	-
77	TRIPLE-GRID DETECTOR AMPLIFIER	SMALL 6-PIN	6 F	$4 \frac{1}{3} 7^{\prime \prime} \times 1 \frac{9}{16}^{\prime \prime}$	heater	6.3	0.3	250	100
78	TRIPLE.GRID SUPER-CONTROL AMPLIFIER	SMALL 6-PJN	$6 F$	$4^{\frac{1}{17}}{ }^{\prime \prime} \times 1{ }^{\frac{9}{16}}{ }^{\prime \prime}$	HEATER	6.3	0.3	250	125

Receiver Tube Characteristics

USE Values to right give operating conditions and characteristtes for indicated typical use	PLATE SUP. PLY volts	6RID 81AS a volts	SCREEM SUPPLY volis	SCREEN CURRENT ma.	PLATE CUR- RENT M重。	A.C PLATE RESIS. TANCE онмз	TRANS. COMDUC. TANCE (cridplate) ниноs	AMPLIFl. CATION FACTOR	LOAD for STATED POWER OUTPUT OHMS	POWER OUTPUT watrs	TYPE
PENTODE CLASS A AMPLIFIER	$\begin{aligned} & 250 \\ & 315 \end{aligned}$	$\begin{aligned} & -16.5 \\ & -22.0 \end{aligned}$	$\begin{aligned} & 250 \\ & 315 \end{aligned}$	$\begin{aligned} & 6.5 \\ & 8.0 \end{aligned}$	$\begin{aligned} & 34.0 \\ & 42.0 \\ & \hline \end{aligned}$	$\begin{array}{r} 80000 \\ 100000 \\ \hline \end{array}$	$\begin{aligned} & 2350 \\ & 2600 \\ & \hline \end{aligned}$	$\begin{aligned} & 190 \\ & 260 \\ & \hline \end{aligned}$	$\begin{aligned} & 7000 \\ & 7000 \\ & \hline \end{aligned}$	$\begin{aligned} & 3.0 \\ & 5.0 \\ & \hline \end{aligned}$	42
TRIODE CLASS A AMPLIFIER	250	-20.0	-	-	31.0	2700	2300	6.2	3000	0.65	
PENTODE PUSH.PULL CLASS AB2 AMPLIFIER	$\begin{aligned} & 375 \\ & 375 \end{aligned}$	$\begin{gathered} \text { Self.bias } \\ -26.0 \end{gathered}$	$\begin{array}{r} 250 \\ 250 \\ \hline \end{array}$	$\begin{aligned} & 8.0 \\ & 5.0 \end{aligned}$	$\begin{aligned} & 54.0 \\ & 34.0 \end{aligned}$	Self-Bias	$\xrightarrow{\text { Resistor, } 340}$	40 ohms	$\begin{aligned} & 10000 \\ & 10000 \end{aligned}$	$\begin{aligned} & 19.0 \dagger \\ & 19.0 \dagger \end{aligned}$	
TR1ODE PUSH-PLLLD CLASS AB2 AMPLIFIER	$\begin{array}{r} 350 \\ 350 \\ \hline \end{array}$	Self-bias, 730 ohms -38.0 volts, fixed bias			$\begin{aligned} & 50.0 \\ & 45.0 \\ & \hline \end{aligned}$	-	\square	-	$\begin{array}{r} 10000 \\ 6000 \\ \hline \end{array}$	$\begin{aligned} & 14.0 \dagger \\ & 18.0 \dagger \end{aligned}$	
CLASS A AMPLIFIER	$\begin{array}{r} 95 \\ 180 \end{array}$	$\begin{aligned} & -15.0 \\ & -20.0 \end{aligned}$	$\begin{array}{r} 95 \\ 135 \\ \hline \end{array}$	$\begin{aligned} & 4.0 \\ & 7.5 \\ & \hline \end{aligned}$	$\begin{array}{r} 20.0 \\ 38.0 \\ \hline \end{array}$	$\begin{aligned} & 45000 \\ & 40000 \end{aligned}$	$\begin{aligned} & 2000 \\ & 2500 \end{aligned}$	$\begin{array}{r} 90 \\ 100 \\ \hline \end{array}$	$\begin{aligned} & 4500 \\ & 5000 \\ & \hline \end{aligned}$	$\begin{aligned} & 0.90 \\ & 2.75 \\ & \hline \end{aligned}$	43
CLASS A AMPLIFIER	$\begin{aligned} & 180 \\ & 275 \\ & \hline \end{aligned}$	$\begin{aligned} & -31.5 \\ & -56.0 \end{aligned}$	-	-	$\begin{aligned} & 31.0 \\ & 36.0 \end{aligned}$	$\begin{aligned} & 1650 \\ & 1700 \\ & \hline \end{aligned}$	$\begin{aligned} & 2125 \\ & 2050 \\ & \hline \end{aligned}$	$\begin{aligned} & 3.5 \\ & 3.5 \\ & \hline \end{aligned}$	$\begin{aligned} & 2700 \\ & 4600 \\ & \hline \end{aligned}$	$\begin{aligned} & 0.82 \\ & 2.00 \\ & \hline \end{aligned}$	45
CLALSJ AB_{2} ASIFLIFILK	$\begin{aligned} & 275 \\ & 275 \end{aligned}$	Self-bias, 775 ohms -68.0 volts, fixed bias			$\begin{array}{r} 72.0 \\ 28.0 \\ \hline \end{array}$	--	-	-	$\begin{aligned} & 5060 \\ & 3200 \end{aligned}$	$\begin{aligned} & 12.0 \dagger \\ & 18.0 \dagger \end{aligned}$	
CLASS A AMPLIFIERD	250	-33.0	-	-	22.0	2380	2350	5.6	6400	1.25	46
CLASS B AMPLIFIER ${ }^{\text {a }}$	$\begin{array}{r} 300 \\ 400 \\ \hline \end{array}$	$\begin{aligned} & 0 \\ & 0 \\ & \hline \end{aligned}$	-	--	$\begin{array}{r} 8.0 \\ 12.0 \\ \hline \end{array}$	-	-	-	$\begin{aligned} & 5200 \\ & 5800 \\ & \hline \end{aligned}$	$\begin{aligned} & 16.0 \dagger \\ & 20.0 \dagger \end{aligned}$	
CLASS A AMPLIFIER	250	-16.5	250	6.0	31.0	60000	2500	150	7000	2.7	47
TETRODE CLASS A AMPPLIFIER	$\begin{array}{r} 96 \\ 125 \\ \hline \end{array}$	$\begin{array}{r} -19.0 \\ -20.0 \\ \hline \end{array}$	$\begin{array}{r} 96 \\ 100 \\ \hline \end{array}$	$\begin{aligned} & 9.0 \\ & 9.5 \end{aligned}$	$\begin{aligned} & 52.0 \\ & 56.0 \\ & \hline \end{aligned}$		$\begin{aligned} & 3800 \\ & 3900 \\ & \hline \end{aligned}$		$\begin{aligned} & 1500 \\ & 1500 \\ & \hline \end{aligned}$	$\begin{aligned} & 2.0 \\ & 2.5 \\ & \hline \end{aligned}$	48
TETRODE PUSH.PELL CLASS A AMPLIFIFR	125	-20.0	100	-	100.0	-	-	-	3000	$5.0 \dagger$	
CLASSA AMPLIFIERD	135	-20.0	-	-	6.0	4175	1125	4.7	11000	0.17	49
CLASS B AMPLIFIER	180	0	-	-	4.0	-		-	12000	$3.5 \dagger$	
CLASS A A:MPLIFIER	$\begin{aligned} & 300 \\ & 400 \\ & 450 \end{aligned}$	$\begin{aligned} & -54.0 \\ & -70.0 \\ & -84.0 \end{aligned}$			$\begin{array}{r} 35.0 \\ 55.0 \\ 55.0 \\ \hline \end{array}$	$\begin{aligned} & 2000 \\ & 1800 \\ & 1800 \end{aligned}$	$\begin{aligned} & 1900 \\ & 2100 \\ & 2100 \\ & \hline \end{aligned}$	$\begin{aligned} & 3.8 \\ & 3.8 \\ & 3.8 \\ & \hline \end{aligned}$	$\begin{aligned} & 4600 \\ & 3670 \\ & 4350 \\ & \hline \end{aligned}$	$\begin{aligned} & 1.6 \\ & 3.4 \\ & 4.6 \end{aligned}$	50
AMPLIFIER	For other characteristics, refer to Type 6N7.										53
TRIODE UNIT AS	For other characteristics, refer to Type 85.										55
AMPLIFIER DETECTOR	For other characteristics, refer to Type 76.										56
A. APLIFIER DETECTOR	For other characteristics, refer to Type 6J7.										57
AMPLIFIER MIXER	For other characteristics, refer to Type 6D6.										58
TRIODE CLASS A ANAPLIFIER	250	-28.0	-	-	26.0	2300	2600	6.0	5000	1.25	59
PESTODE: CLASS A AMPLIFIER	250	-18.0	250	9.0	35.0	40.000	2500	100	6000	3.0	
CLASS B ARPLIFIER	$\begin{aligned} & 300 \\ & 400 \\ & \hline \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & \hline \end{aligned}$	-	-	$\begin{aligned} & 20.0 \\ & 26.0 \\ & \hline \end{aligned}$	-	-	\square	$\begin{aligned} & 4600 \\ & 6000 \\ & \hline \end{aligned}$	$\begin{aligned} & 15.0 \dagger \\ & 20.0 \dagger \end{aligned}$	
CLASS A AMPLIFIER	$\begin{array}{r} 90 \\ 180 \\ \hline \end{array}$	$\begin{array}{r} -19.0 \\ -43.0 \\ \hline \end{array}$	-	-	$\begin{aligned} & 10.0 \\ & 20.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 2170 \\ & 1750 \\ & \hline \end{aligned}$	$\begin{aligned} & 1400 \\ & 1700 \\ & \hline \end{aligned}$	$\begin{array}{r} 3.0 \\ 3.0 \\ \hline \end{array}$	$\begin{array}{r} 3000 \\ 4800 \\ \hline \end{array}$	$\begin{aligned} & 0.125 \\ & 0.790 \end{aligned}$	71-A
TRIODE L'NIT AS CLASS A AMPLIFIER	250x	- 1.35	-	-	0.4	-	-	Gain per stage $=50.60$			75
CLASS A AMPLIFIER	$\begin{aligned} & 100 \\ & 250 \\ & 250 \end{aligned}$	$\begin{array}{r} -5.0 \\ -13.5 \\ -\quad 9.0 \end{array}$	-	-	$\begin{aligned} & 2.5 \\ & 5.0 \\ & 1.0 \end{aligned}$	$\begin{array}{r} 12000 \\ 9500 \end{array}$	$\begin{aligned} & 1150 \\ & 1450 \end{aligned}$	$\begin{array}{r} 13.8 \\ 13.8 \\ \hline \end{array}$	- -	-	76
BIAS DETECTOR	250	$\left\{\begin{array}{l} -20.0 \\ \text { approx. } \end{array}\right\}$	---	-	Plate current to be adjusted :o 0.2 milliampere with no signal.						
SCREEN-GRID R-F AMPLIFIER	$\begin{aligned} & 100 \\ & 250 \end{aligned}$	$\begin{aligned} & -1.5 \\ & -3.0 \end{aligned}$	$\begin{array}{r} 60 \\ 100 \end{array}$	$\begin{aligned} & 0.4 \\ & 0.5 \end{aligned}$	$\begin{aligned} & 1.7 \\ & 2.3 \end{aligned}$	$\begin{array}{\|r\|} 650000 \\ 1500000 \end{array}$	$\begin{aligned} & 1100 \\ & 1250 \end{aligned}$	$\begin{array}{r} 715 \\ 1500 \end{array}$		-	77
BIAS DETECTOR	250	- 1.95	50	Cathode current 0.65 ma.		-	Plate Resistor, 250000 ohms. Grid Resistor, ** 250000 ohms.				
AMPLIFIER SIJXER	For other characteristies, refer to Type 6K7.										78

Receiver Tube Characteristics

TYPE	NAME	BASE	SOCKET COMNEC. TIOMS	DIMENSIONSMAXIMUMOVERALLLENGTHXDIAMETER	CATHODE TYPE	Ratimg			
						FILAMENT OR HEATEA		plate max. YOLTS	$\frac{\text { SCREEN }}{\substack{\text { max. } \\ \text { VOLTS }}}$
						YoLTs	amperes		
79	TWIN-TRIODE amplifien	SMALL G-PIN	6H	$4 \frac{1}{3} 2^{\prime \prime} \times 1 \frac{6}{16}{ }^{\prime \prime}$	HEATER	6.3	0.6	250	-
80	FULL-WAVE RECTIFIER	MEDIUM 4-PIN	4 C	$41_{6}^{11}{ }^{\prime \prime} \times 1 \frac{13}{16}$	FILAMENT	5.0	2.0	-	-
81	MALF-WAVE RECTIFIER	MEDIUM 4-PIN Bayonel	4 B	$64^{\prime \prime} \times 2 \frac{7}{16}^{\prime \prime}$	FILAMENT	7.5	1.25	-	-
82	FULL-WAVE RECTIFIER	MEDIUM 4-PIN	4 C	$4 \frac{116}{1 / 6^{\prime \prime}} \times 1{ }^{16 \prime \prime}$	filament	2.5	3.0	-	-
83	FULL-WAVE $>$ RECTIFIER	MEDIUM 4-PIN	4 C	$5_{8}^{3 \prime \prime} \times 2 \frac{1}{16}{ }^{\prime \prime}$	FILAMENT	5.0	3.0	-	-
83-v	FULL.WAVE RECTIFIER	MEDIUM 4-PIN	4L	$4 \frac{117}{} 6^{\prime \prime} \times 1 \frac{17}{16}$	HEATER	5.0	2.0	-	-
84/624	FULL.WAVE RECTIFIER	SMALL S-PIN	5D	$4 \frac{1}{4}{ }^{\prime \prime} \times 1 \frac{9}{16}{ }^{\prime \prime}$	heater	6.3	0.5	-	-
85	DUPLEX-DIODE TRIODE	SMALL 6-PIN	6 G		heater	6.3	0.3	250	-
89	TRIPLE-GRID POWER AMPLIFIER	SMALL 6-PIN	$6 F$	$4 \frac{172}{}{ }^{\prime \prime} \times 16^{9 \prime}$	heater	6.3	0.4	250	-
								250	250
								250	-
$\begin{aligned} & \text { Y-99 } \\ & \text { X-99 } \end{aligned}$	DETECTOR AMPLIFIER TRIODE	SMALL a-NUB SMALL A-PIN	$\begin{aligned} & 4 E \\ & 4 D \end{aligned}$	$\begin{array}{lll} 3^{1^{\prime \prime}} & \times \frac{1}{16} \\ 4^{\prime \prime} & \times 1 \frac{3}{16} \end{array}$	$\stackrel{\text { D-C }}{\text { FILAMENT }}$	3.3	0.063	90	-
112-A	DETECTOR AMPLIFIER TRIODE	MEDIUM 4-PIN Bayonet	40	$4 \frac{11}{6 \prime} \times 13^{\prime \prime}$	FILAMENT	5.0	0.25	180	-
874	voltage regulator	MEDIUM 4-PiN Bayonet	4 S	$58^{\prime \prime}{ }^{\prime \prime} \times 2{ }^{\frac{3}{16}}{ }^{\prime \prime}$	--	-	-	-	-
876	CURRENT REGULATOR	MOGUL SCREW	--	8" $8^{\prime \prime} 2^{\frac{1}{16}}{ }^{\prime \prime}$	filament	-	-	-	-
886	CURRENT REGULATOR	MOGUL SCREW	-	$8{ }^{\prime \prime} \times 2{ }_{16}{ }^{\prime \prime}$	FILAMENT	-	-	-	-

\star For Grid-leak Detection-plate volts 45, grid return to + filament or to cathode.

- Either A. C. or D. C. may be used on flament or heater, except as specifically noted. For use of D.C. on A-C filament types, decrease stated grid volts by $1 / 2$ (approx.) of filament voltage.
- Supply voltage applied through 20000 -ohm voltage-dropping resistor.
- Mercury-Vapor Type.
* Erid * 1 is control grid. Grid * 2 is sereer. Grid 3 tied to cathode.
Grid $!$ is controi grid. Grids $* 2$ and $* 3$ tied to plate.
$*$ Grids $* 1$ and $* 2$ connected together. Grid 3 tied to plate.
- Grids $* 3$ and $\% 5$ are screen. Grid $* 4$ is signal-input control grid.

A Grids *2 and \# 4 are screen. Grid *1 is signal-input control grid.
\neq Triode Plate-Supply Voltage and Max. Target Voltage; Min. Target Voltage $=90$ volts.

- Both grids connected together; likewise, both plates.
\dagger Power output is for two tubes at stated plate-to-plate load.

Receiver Tube Characteristics

USE Values to right give operating conditions and characteristics for indicated typical use	PLATE SUP－ PLY volts	GRID BIAS m volts	SCREEN SUPPLY VOLTS	SCREEN CUR－ RENT ma．	PLATE CUR－ RENT Ma．	A．C PLATE RESIS． TANCE	TRANS． CDNDUC TANCE （GRID－ PLATE） $\mu \mathrm{MHOS}$	AMPLIFF CATION FACTOR	LOAD for stateo pOWER OUTPUT OHMS	$\begin{aligned} & \text { POWER } \\ & \text { OUT. } \\ & \text { PUT } \\ & \text { WATTs } \end{aligned}$	TYPE
CLASS B AMPLIFIER	$\begin{array}{r} 180 \\ 250 \\ \hline \end{array}$	0		－		Output d plat	r one plate lo	e at	$\begin{array}{r} 7000 \\ 14000 \end{array}$	$\begin{array}{r} 5.5 \\ 8.0 \\ \hline \end{array}$	79
A－C Voltage per Plate（Volts RMS） 350 400 550 The 550 －volt rating applies to filter circuits having an D－C Output Current（Maximum MA．） 125 110 135 input choke of at least 20 henries．											80
Maximum A－C Plate Voltage ．．．．．．．．．．．．．．．．．．．．．．．．．．．．．． 700 Volts，RMSMaximum D－C Output Current											81
Maximum A－C Voltage per Plate ． 500 Volts，RMS Maximum Peak Inverse Voltage ．．．．． 1400 Volts											82
Maximum A－C Voltage per Plate 500 Volts，RMS Maximum Peak Inverse Voltage．．．．． 1400 Volts											83
Maximum A－C Voltage per Plate．．．．．．．．．．．．．．．．．．．．．．．．． 400 Volts，RMSMaximun D－C Output Current											83－v
Maximum A－C Voltage per PlateMaximum D－C Output Current．											84／624
TRIODE LNNTT AS CLASS A AMPLIFIER	$\begin{array}{r} 135 \\ 250 \\ \hline \end{array}$	$\begin{aligned} & -10.5 \\ & -20.0 \end{aligned}$	－	－	$\begin{aligned} & 3.7 \\ & 8.0 \end{aligned}$	$\begin{array}{r} 11000 \\ 7500 \end{array}$	$\begin{array}{r} 750 \\ 1100 \\ \hline \end{array}$	$\begin{aligned} & 8.3 \\ & 8.3 \end{aligned}$	$\begin{aligned} & 25000 \\ & 20000 \end{aligned}$	$\begin{aligned} & 0.075 \\ & 0.350 \\ & \hline \end{aligned}$	85
AS TRIODE $\frac{1}{6}$ CLASS A AMPLIFIER	$\begin{aligned} & 160 \\ & 250 \\ & \hline \end{aligned}$	$\begin{aligned} & -20.0 \\ & -31.0 \\ & \hline \end{aligned}$	－	－	$\begin{aligned} & 17.0 \\ & 32.0 \end{aligned}$	$\begin{aligned} & 3300 \\ & 2600 \end{aligned}$	$\begin{aligned} & 1425 \\ & 1800 \\ & \hline \end{aligned}$	$\begin{array}{r} 4.7 \\ 4.7 \\ \hline \end{array}$	$\begin{aligned} & 7000 \\ & 5500 \\ & \hline \end{aligned}$	$\begin{aligned} & 0.30 \\ & 0.90 \\ & \hline \end{aligned}$	
AS PENTODE＊ CLASS A AMPLIFIER	$\begin{aligned} & 100 \\ & 250 \end{aligned}$	$\begin{aligned} & -10.0 \\ & -25.0 \end{aligned}$	$\begin{aligned} & 100 \\ & 250 \end{aligned}$	$\begin{aligned} & 1.6 \\ & 5.5 \\ & \hline \end{aligned}$	$\begin{array}{r} 9.5 \\ 32.0 \\ \hline \end{array}$	$\begin{array}{r} 104000 \\ 7000 \end{array}$	$\begin{aligned} & 1200 \\ & 1800 \\ & \hline \end{aligned}$	$\begin{aligned} & 125 \\ & 125 \\ & \hline \end{aligned}$	$\begin{array}{r} 10700 \\ 6750 \\ \hline \end{array}$	$\begin{aligned} & 0.33 \\ & 3.40 \\ & \hline \end{aligned}$	89
AS TRIODE $屯$ CLASS 3 AMPLIFIER	180	0	\square	－	6.0	－	－．．．－	－．．－	$\begin{array}{r} 13600 \\ 9400 \\ \hline \end{array}$	$\begin{aligned} & 2.50 \dagger \\ & 3.50 \dagger \end{aligned}$	
CLASS A AMPLIFIER	90	-4.5	－	－	2.5	15500	425	6.6	－	－	$\begin{aligned} & \mathrm{V}-99 \\ & \mathrm{X}-99 \end{aligned}$
CLASS A AMPLIFIER	$\begin{array}{r} 90 \\ 180 \end{array}$	$\begin{aligned} & -4.5 \\ & -13.5 \end{aligned}$	－	－	$\begin{aligned} & 5.0 \\ & 7.7 \end{aligned}$	$\begin{aligned} & 5400 \\ & 4700 \end{aligned}$	$\begin{aligned} & 1575 \\ & 1800 \end{aligned}$	$\begin{aligned} & 8.5 \\ & 8.5 \end{aligned}$	－	－	$112-A$
Minimum D．C Starting Supply Voltage $\quad 125$ Volts D．C Operating Current Maximum Current（Continuous） D．C Operating Voltage．．．．．．．．．．．．． $10-50 \mathrm{Ma}$ ．．．． ..											874
Voltage Range ．．．．．．．．．．．．．．．．．．．．－．．．．．． 40 to 60 Volts Operating Current．．．．．．．．．．．．．．．．．．．．．1．7 Amperc											876
Voltage Range．＿．．．．．．．．．．．．．．．．．．．． 40 to 60 Volts \quad Operating Current．．．．．．．．．．．．．．．．．．．．．．．． 2.05 Amper											886

－Applied through plate resistor of 250000 ohms or 500 －henry choke shunted by 0.25 －megohm resistor．
＊Applied through plate resistor of 100000 ohms．
－Applied through plate resistor of 250000 ohms．
＂Maximum．
\＆ 50000 ohms．
§Megohms．
－Requires different socket from small 7．pin．
aGrid＊ 2 tied to plate．\＄Grids 1 and $\omega 2$ tied together．＊＊For grid of following tube．
－Plate voltages greater than 125 volts RMS require 100 －ohm series－plate resistor．
00 Applied through plate resistor of 150000 ohms．
\＆For signal－input control－grid（省1）；control－grid 3 bias，-3 volts．
可 Applied through 200000 －ohm plate resistor．
Note 1：Types with octal bases have Miniature Metal Cap；all others have Small Metal Cap．
Note 2：Subscript I on class of amplifier service（as $A B_{1}$ ）indicates that grid current does not fow during any part of input cycle．
Subscript 2 on class of amplifier service（as $A B_{2}$ ）indicates that grid current flows during some part of the input cycle．

Receiver Tube Characteristics

INDEX OF TYPES BY USE AND BY CAThOde vOLTAGE Tubes of All-Metal construction are shown in BOLD FACE						
$\begin{gathered} \text { CATHOOE } \\ \text { VOLTS } \end{gathered}$	RECTIFIERS		VOLTAGE AMPLIFIERS Including Duplen-Diode Types		POWER AMPLIFIERS	
1.1	-		11, 12		\square	
1.5	-		26		-	
2.0	\cdots		1A4, 1A6, 1B4, 1B5/25S, 1F6, 15, 30, 32, 34		1F4, 19, 31, 33, 49	
2.5.	82		$\begin{gathered} \text { 2A6, 2B7, 24-A, 27, 35, } \\ 55,56,57,58 \end{gathered}$		$\begin{gathered} 2 A 3,2 A 5,45,46 \\ 47,53,59 \\ \hline \end{gathered}$	
3.3	-		22,99		20	
5.0	5W4, 5Z3, 5Z4, 80, 83, 83-v		01.A, 40, 112-A		71.A, 112-A	
6.3	6H6, 6X5, 1-v, 84,624		6B7, 6B8, 6C5, 6C6, 6D6, 6F5, 6F7, 6J7, 6K7, 6L7, 6Q7, 6R7, 36, 37, 39/44, 75, 76, 77, 78, 85		$\begin{aligned} & \text { 6A4, 6A6, 6F6, 6L6, } \\ & \text { 6N7, 38, 41, 42, 79, } 89 \end{aligned}$	
7.5	81		-		10, 50	
12.6	1223		-		-	
25.0	25Z5, 2526		-		25A6, 43	
30.0	-		-		48	
$\begin{aligned} & \text { CATHODE } \\ & \text { vOLTSS } \end{aligned}$	CONVERTERS IN SUPERHETERODYNES		detectors	MIXER TUBES IN SUPERHETERODYNES		INDICATORS (Visual)
1.1	-		11, 12	-		-
1.5	-		-			-
2.0	1A6, 1C6	1 A6	B5 25S, 1F6, 30, 32	1A6, 1		-
2.5	2 A 7		$\begin{aligned} & \text { AA6, 2B7, 24-A, } 27, \\ & 55,56,57 \end{aligned}$	2A7, 3		-
3.3	-		99			-
5.0	-		-A, 01-A, 40, 112-A	-		-
6.3	6A7, 6A8	6B7, 688	$\begin{aligned} & \text { C5, 6C6, 6F7, 6J7, 6H6, 6Q7, } \\ & , 36,37,75,76,77,85 \end{aligned}$	$\begin{array}{r} \text { 6A7, 6A8, } \\ 6 \mathrm{~L} 7,39 \end{array}$	$\begin{aligned} & , 6 K 7, \\ & 78 \end{aligned}$	6E5, 6G5
7.5	-		-—_ -	-		--
12.6	-		\longrightarrow	-		-
25.0	-		\square			-
30.0	\cdots		-	-		-

RCA-EEE6-G:	
Craracteristics:	
Heater Voltage	$25.0 \mathrm{a}-\mathrm{c}$ or $\mathrm{d}-\mathrm{c}$ Volts
Heater Current	0.3 Ampere
Plate Voltage	95 Volts
Screen Voltage	95 Volts
Crid Voltage	-15 Volts
Flate Current	45 Milliamperes
Screen Current	4 Milliauperes
Plate Resistance	Subject to considerable variation
Transconductance	4000 Micromhos
Load Resistance	2000 Ohws
Power Output (1C\% Distortion)	1.75 Watts

KEY TO TERMINAL DESIGNATIONS OF SOCKETS

Alphobetical subseripts D. P. ond T indicote, respectively, diode unit, pentode unit, and triode unit in multi-unit types.

Numericol subscripts ore used (1) in multi-grid types to indicote relotive position of grids to cothode or filoment, ond (2) in multi-unit types to differentiote between two identical electrodes which would otherwise hove the some designotion.

$\mathbf{B P}=$ Bayonet Pin	$\mathbf{H}=$ Heater	$\mathbf{P}=$ Plate
$\mathbf{F}=$ Filament	$\mathbf{K}=$ Cathode	$\mathbf{P}=$ Beam-Forming Plates
$\mathbf{G}=$ Grid	$\mathbf{N C}=$ No Connection	$\mathbf{T A}=$ Target

Receiver Tubes

SOCKET CONNECTIONS

BOTTOM VIEWS

4 F

4 M

5 C

$6 A$

$4 C$

$4 G$

45

50

4D

$4 K$

SA

$5 E$

$6 C$

$4 E$

4L

58

5F

$6 E$

Receiver Tubes

SOCKET CONNECTIONS

BOTTOM VIEWS

6 M

6W

7c

6G

6Q

7A
(2) CO2

70

$7 E$

$8 B$

8 E

Receiver Tubes

SOCKET CONNECTIONS FOR G-TYPES BOTTOM VIEWS

G-7AD

G-Type Radio Tubes

(Octal-Base, Glass-BuIb Types)
In addition to the types of tubes shown on the preceding pages, the following octal-base, glass-bulb types are also available. These types are identified by the letter " G " following the type number. For each of these types, the corresponding glass or metal types are indicated below, together with socket connections and overall dimensions. Characteristics data for the G-types, except for some differences in capacity values, are the same as those for the corresponding types.

G-Series Type	Glass Type	Corresponding Metal Type	Socket Connections	Max Overall Dimensions Length x Diam.
1C7-G	1 C 6	-	($3-7 Z$	$415 / 52^{\prime \prime} \times 19 / 16^{\prime \prime}$
1D5-G	1 A 4	-	($\mathrm{i}-5 \mathrm{Y}$	$415 \% 2^{\prime \prime} \times 19 / 16^{\prime \prime}$
1D7-G	1 A 6	-	G-72	$415 \%{ }^{\prime \prime} \times 1916{ }^{\prime \prime}$
1E5-G	1B4	--	G-5Y	$4152^{\prime \prime} \times 19 / 16^{\prime \prime}$
1E7-G	$\stackrel{\text { S }}{ }$	-	($\mathrm{G}-8 \mathrm{C}$	$41 / 8{ }^{\prime \prime} \times 19 / 16 "$
1F5-G	1 F 4	-	G-6X	$45 / 8{ }^{\prime \prime} \times 13 / 16$
1F7-G	1F6	-	G-7AI)	$415 / 32^{\prime \prime} \times 19 / 16^{\prime \prime}$
$1 \mathrm{H} 4-\mathrm{C}$	30	--	($\mathrm{j}-5 \mathrm{~S}$	$41 / 8{ }^{\circ} \times 19 / 1{ }^{\prime \prime}$
1 H 6 -G	185/25S	S	$\mathrm{G}-7 \mathrm{AA}$	$41 / 8{ }^{\prime \prime} \times 19 / 16$
1J6-G	19*		G-7AB	$41 / 8$ " $\times 19 / 16{ }^{\prime \prime}$
5U4-G	5Z3	-	G-5T	$55 / 10^{\prime \prime} \times 2116 "$
5V4-C	83-v	\square	G-5L	$45 / 8$ " $\times 13 / 16{ }^{\prime \prime}$
5X4-C	52:3	-	($\mathrm{C}-5 \mathrm{Q}$	$55 / 16^{\prime \prime} \times 21 / 16^{\prime \prime}$
5Y3-G	80	-	G-5T	$45 / 8{ }^{\prime \prime} \times 113 / 6{ }^{\prime \prime}$
5 Y 4 -G	80	-	G-5Q	$45 / 8$ " $\times 113 / 16^{\prime \prime}$
6 A 8 -G	-	$6{ }^{6} 8$	G-8A	$415 / 2^{\prime \prime} \times 19 / 16^{\prime \prime}$
6C5-G	-	${ }_{6} \mathrm{C} 5$	G-6Q	$41 / 8{ }^{\prime \prime} \times 19 / 16$
6 F 5 -G	-	6 F \%	$\mathrm{G}-5 \mathrm{M}$	$415 / 2^{\prime \prime} \times 19 / 16^{\prime \prime}$
6F6-G	-	6 F 6	G-7S	$45 / 8{ }^{\prime \prime} \times 1{ }^{13 / 16 "}$
6 H 6 -C	--	6 H 6	G-7Q	$41 / 8{ }^{\prime \prime} \times 19 / 16{ }^{\prime \prime}$
$6 \mathrm{~J} 5-\mathrm{Cr}$	-	6 J 5	G-6Q	$43 / 16$ "x 19/16"
$6 J 7-\mathrm{G}$	-	6J7	($3-7 \mathrm{R}$ (65]-G)	$415 / 16{ }^{\prime \prime} \times 19 / 16{ }^{\prime \prime}$
6Kう-G		See data below	G-5U	$415 / 32^{\prime \prime} \times 19 / 16^{\prime \prime}$
6K6-C	41	-	($\mathrm{i}-7 \mathrm{~S}$	$41 / 8^{\prime \prime} \times 19 / 16 "$
6 K 7 -(-	6 K 7	(i-7R (6K7-G)	$4^{15} 32^{\prime \prime} \times 19 / 16$
6L6-G	-	6 L 6	G-7AC	55/16" $\times 21 / 16$
6L.7-G	-	6L, 7	G-7T	$415 / 5{ }^{\prime \prime} \times 19 / 16^{\prime \prime}$
6N7-G	--	6 N 7	C-813	$45 / 8{ }^{\prime \prime} \times 113 / 16^{\prime \prime}$
6Q7-G	-	6Q7	Gr-7.	$415 / 2^{\prime \prime} \times 19 / 16^{\prime \prime}$
6R7-Cr	-	6 R 7	G-7V	$415 / 92^{\prime \prime} \times 1916{ }^{\prime \prime}$
6T7-9	-	6Q7	G-7V	$415 / 32^{\prime \prime} \times 1916{ }^{\prime \prime}$
6V7-(8i5		(i-7V	$41 / 2{ }^{\prime \prime} \times 19 / 16 "$
6W5-¢	-	84	G-6S	41/8" $\times 19 / 16^{\prime \prime}$
6 XJ - $\mathrm{C}^{\text {a }}$	70	6X5	G-6S	$41 / 8{ }^{\prime \prime} \times 1916 "$
6 Y 7 -C	79		G-8B	$41 / 2 " \times 1916 "$
25A6-(${ }^{\text {\% }}$	-	25 AG	G-7S	$45 / 8$ " $\times 1.13 / 16{ }^{\prime \prime}$
25 Bb -C	-		G-7S	$45 / 8$ "x $133 / 16^{\prime \prime}$
$25 \mathrm{Z6}$-9	-	25Z6	G-7Q	$41 / 8$ "x 19 自"

"Except that filament current is 0.24 ampere. δ Two $1 F 4$'s in the same bulb.
NOTE: Certain G-types have an internal shield which is brought out to Pin No. 1. Socket connections for such types designate Pin No. 1 as SHIELD. For G-types without SHIELD connections. Pin No. I is marked NC. Other symbols on socket diagrams are explained in the KEY TO TERMINAL DESIGNATIONS OF SOCKET CONNECTIONS on page 166.
RCA-fiK5-G: Similar to triode section of 6Q7.
Characteristics:

Chapter 9

'TRANSMITTING 'TUBES

SOME OF THE necessary information for determining the operating conditions of transmitter racuum tubes is not generally found in technical bulletins which are supplied by tube manufacturers. For this reason it was necessary to compute this data in "RADIO's" laboratory; the findings are in the pages which follow.
The typical operating conditions for class-B audio amplifiers or modulators, and for r.f. amplifier service, are included. From this data the reader can tell at a glance what type of driver stage is needed, what the power supply requirements must be, the approximate output that can be expected, and how the tube constants vary under certain operating conditions.
The ratings in the Tube Tables are for safe zalues of plate voltage and current. Amateurs who operate their transmitters at higher than normal tube ratings, without exceeding the actual plate dissipation ratings of the tubes, should remember that this condition of operation sometimes can be tolerated for c.w. telegraphy only, and with consequent increase in the required grid driving power, so that the tuhe can be operated over a lesser angle of plate current flow during each r.f. cycle. The d.c. grid current never should exceed the maximum rated value, yet the grid bias voltage may be increased to such an extent that from two to four times as much grid driving power is applied to the grid (or grids) of the tube (or tubes) in the final amplifier stage. This practice results in greater plate efficiency (within limits), but with a sacrifice in pozeer gain.
In extreme cases, 200 watts of grid-driving power would be required to obtain 600 watts of antenna power from the final r.f. amplifier stage. Thus it can be seen that the foregoing does not represent economy in design ; for this reason the Tube Tables in this chapter are, in gencral, based on a power gain of approximately 10 , with plate efficiencies of from 66 per cent to 75 per cent. Radiation of harmonics will not be so troublesome when the class-C amplifier operates in this range of efficiencies, particularly when the C-to-I ratio of the tank circuit is chosen correctly.

The values of grid driving power shown in the Tables are those actually used by the grid of the tube. The power loss in the C-bias supply or grid-leak should be added to these values. Circuit losses should be given consideration when designing buffer or amplifier stages for all-band operation. The tuned circuit losses are appreciably higher in the 10 - and 20 -meter bands than for operation at 80 - or 160 -meters. These circuit losses cannot be given in a tube table: only the grid bias loss and grid-driving power can be listed. The driving stage should be capable of supplying some excess of power to compensate for circuit losses.

- Crystal Oscillator Circuit Tubes

The most satisfactory tube for operation in a crystal oscillator circuit of an amateur transmitter is the 6L6 beam power pentode or its glass equivalent with octal base, the 6L6G. These tubes also are available with isolantite sockets, enabling slightly higher plate voltages to be used without breakdown in the tube lase. Next in order are the types 6 A 6 and 53 , identical in characteristics except for heater voltage and current. Other suitable tubes for crystal oscillators are the types $41,42,2 \mathrm{~A} 5,59,47,56,76,6 \mathrm{~F} 6,6 \mathrm{C} 5$, $6 \mathrm{~F} 5,6 \mathrm{~N} 7,30,19$, and 10.

- Frequency Doubler Tubes

The 6L6 or 6I.6G again takes its place at the top of the list for most satisfactory frequency doubler service. And too, the 6. A 6 and 53 are next in order, followed by the 46 . It is obviously assumed that these tubes are for operation in medium power stages only. A tube for frequency doubler service should have a high amplification constant; pentode $2 \mathrm{~A} 5,42$ or 59 types are, therefore, used occasionally. Outputs of from 2 to 15 watts can be realized from these receiver type pentodes.
Greater output from frequency doubjers is secured with larger tubes, such as the 35 T , 341, and 756. These tubes will deliver from 15 to 50 watts of output when driven by a 6.46 or 6L6-6L6G crystal oscillator. They
have a further advantage in that they can be easily neutralized when operated as buffers. The output from a frequency doubler is almost as high as that from a buffer stage if the grid bias in the former is at least six times cut-off and if nearly normal d.c. grid current flows.

- R. F. Amplifier Tubes

The more popular inexpensive tubes for moderate-power, c.w. amateur service are the types 10 and T-20, the latter having its plate lead brought through the top of the glass envelope. When two or three of these tubes are driven by a crystal exciter, the output will be more than 100 watts.
Many of the new carbon plate tubes are easy to drive to high outputs. This is particularly true of some of the Taylor and Amperer types, such as the $\Gamma-5 \cdot, 1 \mathrm{H}^{-100}$, and T-200. On the other hand, the interelectrode capacities of tantalum plate tubes are lower than in those tubes which have carbon plates; thus, they are more efficient for operation at the higher frequencies and at higher plate voltages. Both types can be made to operate with equal effecticeness in the most commonly used amatior bands.
Tantalun plate tubes are gas-frce and can be operated at plate potentials as high as 4,000 or 5,000 volts for one kw. input to a single tube; however, a more powerful driver is needed than for two carbon plate tubes operated at lower plate voltage with the same power input.

- The Tube Tables

With the exception of small receivertype tubes, all tubes for transmitter, modulator and audio application are listed in the Tables in the order of their rated plate dissipation. Frequency range, interelectrode capacities, grid dricing power, power output, and average operating conditions are given. The capacity of the neutralizing condenser should be made to equal the grid-to-plate capacity of the tube. I'ower output and grid-dricing power requirements are given for average conditions where Class-C amplifiers operate at an angle between 120° and 140°. The Class.C plate efficiency will be between 66 percent and 75 percent under these conditions. Greater output and higher efficiency sometimes can be securel whon more grid drive is available. The amplification factor (μ) determines the vvilue of d.c. grid bias needed for the particular type of amplifier circuit in which the tube operates.

- Receiver-Type Tubes for Crystal Oscillators and Low - Power BufferDoubler Service

RK-15 Raytheor trin base mede similar to 46 , and designed for Class 13 audio amplifier or r.f. doubling. Control grid at top of tube.

Characteristies:

Max. IVC Ilate Voltage............................... 400 volt
Max. DC Plate Current.................................. 50 ma
Max. Plate Dissipation................................. 10 watts
RK-16
RAYTHEON Triode 5-pin base, similar to 59 when trj. ode-connected. For use as Class B driver stage. Characteristics same as RK-15.

RK-17 RAYTHEON Pentode, 5•pin base. Designed primarily for crystal oscillators in standard pentode circuits. Control grid at top of tube. Char. acteristics same as RK-15.

RK-34RAYTHEON Twin - Triode Power Amplifier, Designed primarily for U.H.F. ampli. fier or oscillator service. May be used efficiently up to 240 mc ., providing the plate dissipation is not allowed to exceed 10 watts.

Note: A fixed bias of -15 volts is desirable in case of failure of RF-excitation.

Unusual Feature: Two plate leads are broukhe through the sop of the tulse envelope, thus reducing intcrelectrole capacities for ['.]I.F. servicc.

Characteristics:

Heater Voltage ... 6.3 volts
Heater Current .. 0.8 amps.
Amplification Factor .. 13

Input Capaclty .. 2 цми.
Output Capacity .. 2.1 ц $\mu \mathrm{fd}$.
Max. Dlate bissipation 10 watts
Max. ID.C. Illate Voltage...................................... 300 volts
Max. I.C. Plate Current....................................... 80 ms

Class A Amplifier (Sections in Parallel):
ID. I'late Voltage 300 volts
1).C. Grid Voltage 16 volts (nate lesistance ... 2950 ohmas. Mutual fonductance 4400 micromhoe. 1.aad Ibesistance .. 5000 ohms. 1'ower 0utput . .. 0.8 watt
Class B Amplifier:

19Twintriode class B audio amplifier for purtable radio receivers. Class B Modulator in portable U.H.F. transmitters and transceivers. 【.H.F nscillator in push-minll cir cuits. Occasionally used as crystal oscillator or r.f. anplifier in portable transmitters.

Characteristies:

Flament Voltage (D.C.)		2.0 volts
Filamen: Current		0.26 amps .
As Class B Power Amplifler:		
Plate Voltage Dynamic Deak Ilate Current (pet		135 max. volts
		50 max . ma (
Typieal Operation:		
Fllament Voltage		2.0 volte
Plate Voltage 135	135	135 volts
Grid Voltase -6	-3	0 volte
Static Plate Current I	4	10 ma .
Load Iesistance (plate-		
Average Power Input.... 95	130	170 ap. mw.
Nomlnal Power Output .. 1.6	1.9	2.1 watts

2A3-6A3
Triode Power Amplitier. Normally used in pushpull in radio receivers and as a P.P. driver stage for Class B modulators which have outputs of from 100 to 300 watts. The low plate resistance load with fixed grid bias makes these tubes desirable as Class B stage drivers. Sometimes operated as a Class C r.f. amplifier in radio transmitters, in which case the maximum plate voltage is 400 volts. The 6A3 is sim. ilar to the 2A3, except for its heater, which is rated at 6.3 volts and one ampere.
Note: As a Class C r.f. amlifier, approx. 15% more output can be obtained than from a 45 tube. Not recommended for Class C service above i me.

Characteristics, Class A Amplifier:

Filament Voltage	2.5 volts
Filament Current	2.5 amps.
Grid to Plate Capacitance	$13 \mu \mu \mathrm{fd}$
Input Capacitance	$9 \mu \mu \mathrm{fd}$.
Output Capacitance	$4 \mu \mu \mathrm{fd}$.
Platu Vultase	250 max. volts
Grid Voltage	45 volts
Plate Current	60 ma .
I'late Resistance	800 ohtrs
Amplification Factor	4.2
Mutual Conductance	5250 mieromhos
Load Resistance	2500 ohms
Self Blas Jesistor	750 ohme
Power Output	3.5 watts
Push. Putl Class AB Amplifier (2 tubes):	
Fixed Blas	Self Blas
Plate Voltage 300	300 max. volts
Grid Voltake -62	... rolts
Self Hias Hesistor	750 ohms
Ilate Current (per tube)........ 40	40
Load Resistance (Plate to	
1'late) 3000	5000 ohms
Harmonic Distortion............ 2.5	5%
Irower Output 15	10 watts

2B6Power Amplifier for radio receivers. More often used as a crystal oscillator-amplifier or doubler in radio transmitters.

Unusual Characteristics: Two triodes in one en. velope. The power amplifier grid is direct-coupled to the driver cathode, and the driver plate connects directly to plus B.

$2 B 6$ "LES-TET* CMYSTAL OSCILLATOR-DOUBLER WEN SECOND THIODE IS USED AS AN P F ANPLIFICN it must ee neutamlized

30Triode Detector. Audio Amplifier and Oscillator for battery-operated radio receivers. Also used in meter transceivers. Sometimes used as crystal oscillator or amplifier, in portable transmitters.
Characteristics:
Filament Viltase (1).C.).................................... 0.0 volts
-ilament ouruat
.06 amps.
Grld to lolate faparitance.
$6.0 \mu \mu \mathrm{fd}$.
Grid to lolate faparitance.
Input (aparitance
2. $1 \mu \mu \mathrm{fd}$.

R, \"THEON 「RROIOE for Portable Sith. Similar to Tyve :3". except for filament.

Filament Voltage
1.5 rolts

Filanent eurrent
60 ma.

RAYTHEON High Mu TwinTriode for Class B service. Each Tric de is somewhat similar to RK-42, except for higher MU.
Filament Vollage
1.5 volts

Filament Current
120 กia.

42-6F6-2A5

 PentodePower Amplifier ${ }^{\text {Amor }}$ radio receivers. 2.5 volt equivalent of glass 42 tube is 2.55 , with filament current of 1.7 amp .
(1) Single or push-pull audio anıplitier for radio receivers (pentode).
(2) Crystal oscillators in transmitters.
(3) Frequency doublers in transmitters.
(4) Triode driver stage or Class $A B$ push-pull power amplifier.
(See 61.6 applications for other uses.)

Characteristics, Pentode Amplifier, Class A :

Equivalent to Metal Tube 6D5. Triode Power Tube for push-pull Class A or AB service. The output in Class AB is sufficient to drive Class B modulators of 100 to 200 watts output. Also useful as a low power R-F buffer tube in transmitters.

Low Distortion Audio Amplifier for Radio Receivers

Class C R-F Amplifter:
Plate Voltage .. 400 volts
Plate Current .. 50 ma.
Peas Plate Current (AC) 200 molt.
Grid Bias Voltage. -200 volts
Grid Blas Current... 20 watts
Plate Power Input . 1.0 watta

’ower Output ... 15 watt

46 Class B Amplifier for radio receivers and public address systems. More often used in modulator systems for smal radiophone transmitters. Frequently serves as a doubler in $R F$ circuits of radio transmitter.

Note: Audio peak outputs of 40 watts for speech can be secured if a 500 volt plate supply is avail. able, although this exceeds the manufacturers' ratings of 400 volts plate supply.

Push-Pull Class AB Amplifier for Class B Driver or P. A. Service

AUOIO AMPLIFIER, - OR MOOULATOR FOR GRIO MOOULATEO TUBES

Characteristies for Class A Amplification:

47 Audio power amplifier for radio re* ceivers or modulator service in small AC operated 5 -meter transmitters. Crys. tal oscillator in radio transmitters.

Sote: This tube has been replaced for most services by tubes with a separate cathode and heater.

AUDIO AMPLIFIERS OR MODULATOR 5

Characteristics:

Characteristics:
Heater Voltage 2.5 volts
Hester Current
2.0 amps.

Class A Amplifier Triode	Pontodo
Plate Voltage 250	250 volts
Screen Voltage	250 volts
Grid Voltage (No. 1) -28	- 18 volts
Plate Current 26	35 ma .
Screen Current	9 ma
Amplification Factor 6	100
Plate Kesistance 2300	40,000 ohms
Muturl Conductance 2600	2500 micromhos
Load Hesistance 5000	6000 ohms
Self-İlas Resistor 1080	410 ohms
Power Output 1.35	3 watt
Grid No. 2..... icd to plate	Screen
Grid No. 3.............tied to plate	Tled to cathode
Class 8 Amplifier: Triode C	Triode Connected
I'late Voltage 300	400 volts
Avg. Flate Disgipation.......... 10	16 watts mex.
Grids No. 1 and 2 tled together. (irld No. 3 tied to plate.	
Zero Signal Plate Current (per tube)	13 回血.
Max. Slgnal Plate Current......********	200 ma .
Losd Resistance (plate to plate). 4600	6000 ohms
1'ower Output (2 tubes).......... 15	20 watts

6A6-53Fquivalent Metal Tube6.N7. Type 53 is identical in characteristics, except for its heater, which is rated at 2.5 volts at 2 amps. Twin Triode lower lube designed for Clas- B andio amplifiers in radio receivers. Also very useful as crystal oscillator and frequency doubler in transmitters. for freluencies up to 30 mc . Often used in $\overline{\bar{b}}$ meter transmitters and receivers as oscillators and detectors.
Precautionary Measures: 300 volt plate supply is maximum as a Class B audio amplifier. As an KF - oscillator or doubler, the plate potential must not exceed 400 volts if cathode bias is used, and not over 300 for grid-leak bias. For RF, purposes the DC plate current per plate should not exceed 35 na. and excessive grid excitation should be avoided.

6A6 Push-Push RF Frequency Doubler
As Class A Ampliffers (Triodes in Parallei):

As Class B Amplifier (Triodes in Push-Pull):
Plate Voltage 250 . 300 volts
Grid Voltage 0 rolt
Zero Signal Plate Current (per plate) $14 \quad 17.5 \mathrm{ma}$.
Maximum llate Current.............. 105 125 ma
Load Resistance (plate $10-\mathrm{blite}$) $8000 \quad 10000 \mathrm{ohms}$
Power putput (with 350 milliwatt input
to grids) $\quad 8 \quad 10$ watts
6B5 Equivalent Tubes-6N6G, 6N6. Glass Tube Special Power Amplifier. Designed for power amplifier use in the output stage of a radio receiver. Can be used in push-pull for outputs as high as 20 watts in small power amplifiers or modulators. Due to the gain within the double triode tube, the input grid does not need to be driven beyond Class A, and a 76 tube will drive a pair of 6 B 5 tubes to 20 watts output.

Unusual Characteristics: An internal grid of the power output triorle is direct-coupled to an internal cathode. No external connections are necessary, and the small triode drives the large triode in Class AB

GES MODULATOR OR DRIVER STAGE

Characteristics, Single Tube Class A Amplifier:

6L6-6L6G Purpose: Designed primarily for push. pull ampifier in radio receivers but also widely used in crystal oscillator and RF amplifiers for radio transmitters.

Unusual Charactcristic: Has two beam-forming plates internally connected to the cathode. Has no physical suppressor grid. The beant action suppresses secondary emission and results in a more ideal pentode operation.

Precautionary Mcasures: Good air ventilation is desirable because the tube shell becomes very hot under normal operation. In push-pull circuits, balanced tubes are necessary, as well as balanced transformers if second harmonic elimination is desired.

Audio Amplifier Application: If not over 34 watts of audio output is required, a simgle 6C5 audio amplifier or power detector will drive a pair of 6 L 6 tubes in pusi-pull. A $1-\mathrm{to}-2$, or 1 -to-3 step-up interstage transformer is suitable. For out. puts of over 34 watts, push-pull 6L5 tubes are suitable for drivers. with a 1 -to- $1 / 2$ ratio interstage transformer (primary to $1 / 2$ secondary). The out. put transformer should be of large size in order to handle up to 60 watts of audio power without core saturation. May be used as a modulator for phone transmitters.

Feed-back Amplifier Application: Reverse feedback operation in a receiver amplifier will dannp out low-frequency loudspeaker resonance. The result is similar in action to a triode, hut the I)C efficiency of a pentode is retained without much sacrifice in power sensitivity. Part of the output is fed back to the grid circuits in reverse phase in order to produce the effect of lower plate innpedance.

GL6 CRYSTAL OSCIRLATOR WITH CATHODE AEGENERATION
This Circuit Can Also Be Used with 41, 42, 2A5, 89 and 6F6 Tubes

Crystal Oscillator Application: The crystal RF current is very low due to the high power sensitivity of this tube. Outputs of from 5 to 15 watts can be olstained as a crystal oscillator without exceeding tube ratings.

Characteristics:

A. F. Operation Character istics:	Single	Tube	Push	Pull	Tubes
Plate Voltage	250	375	250	400	400
Screen Voltage	250	250	250	300	300
Contrul Grid Voltage	-14	-17.5	-16	- 25	-25
Zero Signal Plate Current	72	57	60	50	50
Full Signal l'late Current	79	67	70	76	114
Zero Signal Screen Current	5	2.5	5	2.5	2.5 per tubo
Full Signal Screen Current	7.3	6	8	8.5	9.5
Simnal-l'eak Volts	14	17.5	16	25	42.5
Load in Ohms	2500	4000	5000	6600	3800 plate to plate
Power Output-Wats	6.5	11.5	14.5	34	60 (
Total Distortion	10.	14.5	2.	2.	,
2nd Harmonic	9.7	11.5			
3rd Harmonic	2.5	4.2	2.	2.	2.
['eak Grid DrIring I'ower	-*	0	400 milliwatts

6 6L TRITET OR DOW CRYSTAL OSCILLATOR
The Same Circuit Is Also Suitable for 41, 42, 2A5 89 and 656 Tubes

RF Applications: The 6L. 6 is suitable for a low power frequency doubler in transmitters. Due to high sensitivity and harmonic output, only a small amount of power is required to drive the grid as a doubler for outputs of 20 watts and more for frequencies as high as 15 mc .

6L6 REGENERATIVE R F DOUBLEA
Circuit also Sultable for Other Tubes, Such as 41 42, 2A5, 89 and 6F6

BL6 NEUTRALIZED R BUFFEA OR DOUBLER

41, 42, 2A5, 89 or 6 F6 Tubes Can Be Used in Sarme Circuit

6L6 Audio Amplifier with 6F5 Driver. Low Values of "R" Tend to Generate Out-of-Pha e 2nd Harmonic Which Cancels Distortion of 6 L6 as Single-Tube Audio Amplifier

89Triple Grid Iower Amplifier. Designed for storage battery operation, such as is atutomobile radio receivers. Can be used with AC supply. Occasionally used as an electron-coupled or crystal oscillator in short-wave transmitters.

Note: The triple-grid construction makes operation possible as a Class A triode or pentode ampli lier and as a Class B triode.

Not in general use. Not very desirable for operation at RF frequencies above 10 mc .

Characteristics:

Class A Power Amplifer-Pentode Connection:
(Grid No. 3 thed to cathoile).

-9\% total harmonic distortion.

Class 8 Power Amplifer-Triode Connection:
(Grids No. 1 and No. 2 tied together; grid No. 3 tied to plate)
Plate Yoltage
Dynemic Peak Plate Current max. mandiamperes
Average Grid l)issipation (Grids No. 1 and No. $\frac{2}{}$ (inmper together)

Class A Pawer Amplifier-Triode Connection:
(Grids No. 2 and No. 3 tied to plate).

ater Voltage			6.3 volts
Plate Voltage	160	180	250 max. volts
Grid Voltage (Grid			
No. 1)	-20	22.5	-31 volts
Amplifleation Factor	4.7	4.7	4.7
Plate Resistance	3300	3000	3600 ohms
Mutual Conductance	1425	1550	1800 micromhos
Plate Current	17	20	32 milliamperel
Load Hesistance	7000	6500	5500 ohms
T'ndistorted I'ower			

- Transmitting Type Tubes

RK-23-25
RAYTHEON R - 1 F Amplifier, Frequency Doubler, Oscillator, Suppressor, Control Grid or Plate Modulated Amplifier. As a doubler, approx. 12 watts can be obtained. This tube has large 7 -pin base. Plate at top of tube. Frequency Range: 100% ratings up to 30 mc .

Characteristics :	RK-23	RK-25
Heater Voltage	2.5	6.3 volts
Heater Current	2.0	0.8 amps.
Grid-Plate Cap.		$0.2 \mu \mu \mathrm{dd}$.
Input Capacity		$10 \mu \mu \mathrm{fd}$.
Output Caparity		$10 \mu \mu \mathrm{dd}$.
Max. Plate Dissipation		8 watts

R-F Service:

		Control Grid Modu. lation	Supp. Mad.	Class C Telegraphy	
	Plate Voltage.	500	500	500	500 v .
IC.	Screen Voltage..	200	200	200	200 v.
$1 . \mathrm{C}$.	Suppress. Volig.	. 45	-45	0	45%.
	Frid Voltame....	, -125	-90	-90	-90 v.
P'eak	HF Grid Voltage	e 150	135	135	135 V .
Peak	AF Grid Voltage	e 45	75		
D.c.	1'ate C'urrent.	. 34	32	50	55 ma .
11 C .	screen Current.	- 20	40	40	35 ma .
II.C.	Grid Current....	. 1.5	6	8	6 ma .
Grid	Drising Power..	- 1,3	. 8	. 8	. 8 watte
dirid	Bias Loss		5	5	. 5 watts
Pwr.	Output (apmos)) 65	5.5	18	24 watts
Scree	en Resistor20.000	7500	7500	8500 ohms.

RK-44Raytheon pentode, similar to RK.25, except for somewhat higher ratings. Designed for aircraft and mobile services.
Ieater Current
12.6 volts
Ieater Current
0.7 amps .
Iaxinum 1).C. Plate Voltare
.850 volts

Iaximum D.C. I'late Currant 80 ma
RK-45
Raytheon pentide, identical to RK-25. except for heater, which operates at 12.6 volts and 0.45 amps. Designed for aircraft and mobile transmitters.

RCA Audio Frequency Amplifier and Modulator. Triode. Not as desirable as a type 2A3, which will provide more output at lower plate voltage.

Characteristics:

Filament Yoltage	volts
Filament Current	25 amps.
Grid-Plate Capacisy	$7 \mu \mu \mathrm{fd}$.
Grid-Filament Capacity	$4 \mu \mu \mathrm{~d}$.
1'late-Fliament Capacity	$3 \mu \mu \mathrm{dd}$.
Amplification Factor	
Max. Plate IMsslpation	
Mas. Plate Voltage	425 volts

Class A Audio Amplifler (I Tube):

Peak Grid AF Voltage ${ }_{5000}^{87} \quad 809$ volts
Load Resistance 5000
Self-Bias Resistor 2120
3570 ohms.

10Triode. Class C Amplifier or Doubler. Class B Power Amplifier and Modulator for medium power transmitters. Crystal Oscillator in commercial transmitters (at 250 volts max, plate supply). Often operated at 750 to 900 volts plate supply and 75 ma. per tube in Class C Telegraphy, amateur service.

Frequency Range; Up to 15 mc at normal ratings. May be operated on frequencies as high as 60 me. at reduced plate voltage (400 volts) if tube is equipped with ceramic base, or if molded bakelite bases are cross-slotted with hacksaw cut.

Characteristies:		
Filament Voltage		7.5 volts
Fllament Current		1.25 amps .
Ilate Voltage	350	425 max . volts
Grid Voltage	-31	-39 max. volis
Plate Current	16	18 ma .
Plate Heslstance	5150	5000 ohens.
Amplification Factor	8	8
Mutual Conductance	1550	1800 mieromhos.
Load Itesistance	1.000	10,200 ohms.
Self-Bias Resistance	1950	2150 ohms.
Iower Output	0.9	16 waitg
Plate-Grid Cap.		$7 \mu \mu \mathrm{fd}$.
Input Capacitance		$4 \mu^{\mu} \mathrm{fl}$.
Output Capacitance		$3 \mu \mu \mathrm{fd}$.
Base		Sedium 4 pin

210 or 801 Buffer-Doubler Circuit with Split Plate Coil, Requiring Minimum Grid Drive Under Load

802RCA Pentode. R-F Amplifier, Frequency Doubler, Oscillator; Suppressor, Grid or Plate Modulated Amplifier. Plate at top of tube.
Frequency Range: 100% up to $30 \mathrm{mc} ., 55 \%$ at 60 mc.

Note: The internal shield should connect to cathode at the socket, in all circuits.

802 Pentode Low Power Buffer Stage
Characteristies:

Western Electric Pertode. Oscilla. tor, High.Frequency Amplifier and Doubler, Suppressor-Modulated Amplifier. Designed for portable H.F. and U.H.F. transmitters.

Frequency Range: 100% ratings up to approx. 60 mc .

Unusual Feature: Quick-heating filament instead of heater for intermittent use in automobile trans. mitters.

Charateristics:

Filament Voltage ... 5.5 volts
Fllament Current ...
Grid-to-1יlate Cab... $0.55 \mu \mu \mathrm{pd}$.

Max. Plate Dissipation.. watt
R-F Service:

D.C. Plate Voltage $\ldots \ldots \ldots \ldots$	Suppress. Mod.		Class C
:---:			
Teleg.			

841 RCA, Amperex, United. High-Mu ('10) Triode. Class B modulator. Class C RF amplifier or doubler. Oscillator. Resistance Coupled audio amplifier.

Frequency Range: 100% ratings up to 6 mc . New ceramic base types may be operated up to 30 me at full ratings, which are about 50% higher than the 450 volt type listed.

Note: Grid excitation varies under different operating conditions; thus the driver stage should be capable of supplying twice as much power as listed for grid drive and bias loss.

R.F Serviee				
	Class C Tele. phony		ss C raphy	Doubler
DC Plate Voltage	350	450	600	450 volts
DC Grid Voltage.	-36	-3!	-79	- 170 volts
DC Plate Current	50	50	50	28 ma .
DC Grid Current	18	12.5	11	8 ma .
Grid Driving lower (A				
	1.75 .65	1.25	2.19	1.75 watts
Power Output (Approx.)) 11.5	14	18.5	7.5 watts
Approx. A.C. Load Im pedance	3500	4500	5400	8100 ohms
Mod. DC Load Resist-				
ance	7000	9000	12.000	ohm

843KCA Triode. Oscillator AF power amplifier and R.F. Anplifier of the heater-cathode type for 2.5 volt filament supply, Not in general use.

Frequency Range: 100% ratings up to 6 mc . 50% at 30 mc .

Note: Grid driving power requirements vary over wide limits.

Characteristics:	
Heater Voltage	. 5 volts
11 eater Current	
Amplification Factor	
Irate to Cathode Capaci	
Maximum I.C. Plate Voltage 450	
Maximum l.C. plate Dissipation.................. 15 watts	

Class A Audio Amplifter:

D.C. Plate Voltage 350					
D.C.	Grid	Voltage (Approx.	-25	$\begin{array}{r} 35 \text { volts } \\ 35 \mathrm{volits} \end{array}$	
I'eak	Grid	Swing (Approx.)			
D.C.	PIate	Current ..	25	25 ma .	
Plate	Resist	ance	4700	4800 ohms.1600 micromhos.	
Mutue	al Cond	ductance	1700		
Lord	Resista	ance	9500	12.000 ohms.	
Power	Outpu		0.95		1.6 watts
Class C Amplifier:					
			Plate Mod. relephony	Telegraphy	
D.c.	Plate	Voltage. . 250	350	350	450 volts
D.C.	Grid	Voltage. . -100	-140	-100	-149 rolts
D.C.	Plate	Current.. 30	30	30	30 ma .
D.C.	Grid	Current... 7	7	5	5 ma .
Grid	Drivin	g l'ower. 1.3	1.6	0.8	1.0 watts
Grid	blas los	ss 0.7	1.0	0.8	1.5 watts
Power	Input	7.5	10.5	10.5	13.5 watts
Power	Outpu	((pprox.$)$	6	6	8 watts

844
RCA Screen-grid R. F. Amplifierdoubler or buffer. Oscillator. Not in general use.
Characteristics:

(Heater-Cathode Type)	
aster	
Heater Current	
Amplification Fs	
Grid to Plate	
Maximum Irate Dissipation 15 wats	
Maximum Screen Dissipation	3 watts
Maximum 1).C. Plate Toltage...................... 50.500 volts	
Maximum D.C. Plate Current. 3 . 30.5 ma ma.	
Base UX U-D $^{\text {- }}$	

Characteristics:		
Fliament Voltage		5 volts
Filament Current2.0. 0 amp		
Grid Voltage . 0 volta		
Amplification Factor		. 130
I late Resistance		0.000 ohmis.
Mutal Conductance		micromhos
Plate furrent .. 21 m		
Maximum l'late Dissipation....................... 15 watts		
Class C Operation:		
[).C. Ilate Voltage	500	750 voles
D.C. Plate ('urrent	50	40 ma .
D.C. Screen Voltare	125	125 volts
b.C. Grid Voltage		-80 volts
D.C. Grid current	9	55 ma .
(irid Driving Power (Approx.)	2.0	1.0 watts
Girid Bias lower loss	7	. 45 watts
Plate Power Input	25	30 watts
r'ower Output (Approx	10	16 wattI

Single 865 Buffer or Doubler Circuit

T20Taylor Tube Co. H.F. Triode. General purpose high μ; suitable for high-frequencies up to 56 Mc . Suitable for class Ib audio service, or as an r.f. frequency-doubler or r.f. amplifier. Isolantite-based tube with plate through top of envelope. 4 -pin base. Molybdenum plate. Greater plate dissipation than type 10 or $8 \not \& 1$ triode.

Characteristics:

Class C Amplifier:	
11.C. Plate Voltage	7.00 volts
I).C. Grid Voltage	100 volts
1).c. Plate Current	75 ma .
I.C. Grid Current	20 ma .
Grid Driving Power	x.) 3 watts
Grid Blas loss.	2 watts
l'ower Output (Ap	42 watts

be similar to those of the $T 20$; the grid bias, however, will be samewhat lower in each case. An improved doubler over the T-20. Isolantite base, metal plate, plate lead through top.
Characteristies:

Mutual Concluctance

Radio Frequency Amplifier Service:
See operating conditions for 'I'-io.

801
RCA, Amperex, United 310. Triode. Class C. R|- amplifier for phone or cw. Class B modulators. Frequency doubler.

Cantion: The values given for grid driving power and power ollıut warg with frequency and luad circuit imperdance. The elriving stage should have, if possible, twice as much power output as needed for grid driving prower and bias supply loss.

Note: As a doubler, regeneration can be obtained at the output frequency to improve the output efficiency without reguiring as high grid bias and grid drive as listed in the table.

Charatteristics:

Class B Audio:

ドjlament ¢urrent . ${ }^{\text {aty }}$ amps.	
Ampliflation liactur	
Maxjmum IJ.C. I*late	Vritage. 425 volts
Maximum D.C. Jlate	Current 95 ma.
(lass-6 R F. Outiut	$\xrightarrow[7]{7}$ watts
'lass-IS Jinear Output	10 watts
f*ass-13 Audio (Two 'T	(ubes) 0.0 watts

807

R.C.A. Beam Power I'entode Transmitter Tube. R-F buffer or doubler for frequencies up to 60 mc . at full rated inptut. $50 / \mathrm{m}$ ratings at 150 mc . Also useful as crystal oscillator with external capacity connected between grid and plate. Class AB audio amplifier with 60 watts output for two tubes (see 6 I .6 characteristics). If care is taken in placement of parts and if shield is placed around tube and if the input circuits are shielded from the output circuits, no neutralization will be required for $\mathrm{R}-\mathrm{F}$ circuits.

Characteristics:
Héater Voltage .. 6 tolta
Heater Current
iri৷ to I'late Capacity. .. 0.2 amps.

Maximum thate Dissipation... 11 wat

liate lead at ton of cravelope
Standard 5-pin Ceramic base.

RK-39
Raytheon beam power tetrode, designed for frequency-doubler, amplifier, or crystal oscillator service. Freguency range: full voltage ratings up to 30. 11 c . Thaximum plate voltage at 60 Mc., 400 volts.

R.F. Service Class B R.F. Class C

1B. 1 I I late Voltage
1).C. I'bate rourant
13.1
119
10
$\begin{array}{cc}.5191 \\ 7.50 & 500 \text { volt } \\ 95 & \mathrm{mal}\end{array}$
250 wolts
1). 1° (cuntrol Grid C'urrent.
$1 \frac{2}{3}$ ma.

RK-41
Raytheon Beam Power Pentode, identical with RK.39, except for heater which is 2.5 volts

at 2.4 amps.

250
RCA Audio Amplifier in radio receivers or as a low power modulator for transmitters.
Note: Not over 10,000 ohms resistance can be placed in the grid circuit without endangering tube operation. These tubes have been supplemented by more modern tubes, such as the 2A3 and 6L6.

Characteristics:

Bas
Class A Audio Amplifier

Plate Voltage	350	400	450 max.	volts
Grid Voltage	fi3	-70	-84	volts
Plate Current	45	55	55	milliamperes
Plate Resistance	1900	1800	1800	ohms.
Amplification Factor	3.8	3.8	3.8	
Mutual Conductance	2000	2100	2100	micromhos.
Load Resistance	4100	3670	4350	ohms.
Cndistorted lower	2.	3.4	4.6	watts

WE-254B

$15 \mathrm{mc} .662 / 3 \%$ at 20 mc .
Characteristics:
Tetrode R, F. Amplifier. Frequency Range: 100% up to

Filament Vola ${ }^{\text {aje }}$	
Filament Current	s.
Output Capacity d $_{\text {м }}$	
Ampliflcation ract	
Maximum I'late l)issipation 25 watts	
Maximum Screen Inissipation 4 \% watts	
Maximum D.C. Plate Voltage....................... 750 volts	
Maximum D.C. Plate Current	
raximum Ib.C. Grid Current	

 R-F Servite

Class B	Clast C	
r. ${ }^{\text {f }}$		rsphy
750	500	750 rolts
150	150	150 volts
-70	-125	-125 \%olts
50	75	75 ma .
12.5	25	37.5 watt

U.H.F. oscillator or amplifier especially designed for opera. tion at frequencies above 100 megacycles. The upper limit of oscillation as a regenerative negative grid oscillator is 750 mc

Note: Outputs of approximately 8 watts can be obtained at $3 / 4$ meter, and 4 watts at $1 / 2$ meter (600 nic.).

UHF OSCILLATOR

Fllament Voltage	2 volts
Filament Current	55 mps .
Thermionic Emission	0.4 amp
Amplification Factor	
Grid to Plate Capacity	. 6μ fd.
Grid to Flament Capacity	$1.2 \mu \mu \mathrm{fd}$.
l'ate to Flament Capacits:	$0.8 \mu \mu \mathrm{fd}$.
Maximum Plate IDissipation	30 watts
Naximum D.C. Plate Voltage	50 volts
Maximum I).C. Plate Current	80 ma
Maximum D.C. Grid Current	10 ma .

800
RCA or Amperex Triode. Class B Modulator. Class C RF Amplifier. Frequency doubler. U.H.F. oscillator and amplifier.
Frequency Range: $\quad 90 \quad 120 \quad 158 \quad 200 \mathrm{MC}$. Class C plate Voltsge (max.) $1125 \quad 1000 \quad 875 \quad 650$ Teleg. $900 \quad 800 \quad 700 \quad 500$ Telep. Caution: Maintain at least 7.5 volts at filament terminals of tubes.

Note: Grid driving power is a function of load impedance, frequency and type of neutralizing circuit. The driver stage should be capable of supplying approximately twice as much power output as required for the listed values of grid drive and grid bias loss.

Class B RF Telephony: Plate voltage of 1000 , plate current of $\$ 2 \mathrm{ma}$., grid voltage- 55 , carrier power ly watts.

Note: Regeneration at the output frequency in doubler operation will allow equivalent outputs without as high grid drive and grid bias.

Charateristies:

Filament Voltage	Its
Filament Current	
Amplitication Fiactor	
Maximum llate Ibissipation	35 watle
Grid to P'late Capacity	$2.5 \mu \mu \mathrm{dd}$.
Grid to Fllament Capacity	$2.75 \mu \mu \mathrm{fd}$.
Plate to Filament Capacits	$1.0{ }^{\mu \mu \mathrm{fd}}$.
Maximum D.C. Ilate Voltage	1250 volts
Maximum D.C. l"late Current	80 ma .
Maximum D.C. Grid Cu	5 m
Babo	

Baso ㄱ..
Class B Audio Amolifier:

Class B Audio Amolifier:			
D.C. Grid Voltage (Approx.)			
Zero sla. Plate Cur-			
rent (per tube)	13	14	15 ma .
Lod Resistance (plate to			
plate)	6400	12.500	21.000 ohms.
D.C. Plate Input	80		80 watts
lower Output (2 tubes)	90	100	106 watts
Class C R.-F. Amplifier (Telegraphy) :			
1).C. Plate Voltage	750	1000	1250 volts
13.C. Plate Current	\cdots	70	70 ms .
D.C. Grid Voltage	-100	-135	-175 volts
D.C. Grid Current	15	15	15 ms .
Grid loriving Power	2.5	3.5	4.5 watts
Grid Bias Loss	1.5	2.0	2.6 watta
Approxtmate Power Output..	35	50	65 watts
Power Input	50.5	T0	$8 . .5$ watts
Approximate A.C. Load Im. pedance	5300	7100	9000

R.-F. Frequency Doubler:	lt
[1.C. Plate Current	53.5 mm .
II.C. Grid Voltage.	17 voles
I.C. Grid Current	6 ma
Grid Driving Power	3.8 wa

Grid Bias Loss
Approximate lower Output
3.1 watt
A.C. Load Impedance (Approx; 36 watt Class C R.F. Amplifier (Telephony):
D.C. L'late Voltage 750
D.C. plate Current

70
-150
18
5
2.7
35
5300
10.700
Grid Jriving lower (Approx.) Grid IBias Lose
 A.C. Inad IResistance (Approx. Modulator D.C. Joad Power Input

1000 volts (max.) 70
-200 volts
-200 volts
18 ma .
6 watts
3.6 watts

50 Watts
7100 nt ms
14.300 ohms

70 watt

RK-30
Raytheon H. F. Triode Similar to 800 in all respects. See 800 data.
Characteristics.
Fllament Voltage
Filament Current
. 3.7 .5 volts
Maximum Plate Dissipation
Amplification Factor \qquad
Grid-Filament Capacit
Ilate- Filament Capacity
Marimum D.C. Plate Yoltage
Maximum D.C. Plate Current
Maximum D.C. Grid Current 1250 rolts $12 \mu \mathrm{~d}$.
Maximum D.C. Grid Current 25 ma
Plate and grid at top of envelope
RK-35
Raytheon U.H.F. Triode. Gen eral purpose triode with tanta lum plate. Class B Audio,
K.F. Amplifier or oscillator.

Frequency Range: 80% of full ratings at 56 mc ., 60% at 112 mc
Note: Grid driving power requirements vary over wide limits, depending upon plate load, circuit losses and type of circuit.

Characteristics:			
Filament Current			
Amplification Factor			
Frid to J'late Capacliy			
Maximum l'late Dissipation. 35 watts			
Maximum D.C. Plate Coltage................... 1250 volts			
Maximum D.C. Grid Current.......................... 20 m			
Base......UX-4 pin. Plate at top, grid at slue of enveln			
	r.f.	Mod. r.f.	Class C
0.C. Plate Voltane.	1000	1000	1000 volts
T.C. Grid Voltag	160	240	320 volts
D.C. Plate Current	52	50	96 mz .
D.C. Grid Current			15 ma .
Grid loriving lowe	6	2.6	6.5 watts
Grid Bias Loss			5 watts
Power Input	52	50	96 \%atts
Power Output (Approx	17	16	70 watt

RK-37Kaytheon High-Mu Triode, Tantalum Plate. Oscillator or Amplifier for very high fre quency operation. 100% ratings up to $30 \mathrm{MC} .80 \%$ ratings at $56 \mathrm{MC} .60 \%$ ratings at 112 MC .

Characteristies:

35-T

 1200 vorts plate voltages up to Class B modulator or AF amplifier. Class C buffer or doubler. Class C telephony. U.H.F. oscillators with quarter-wave line frequency control. U.H.F. r. f. amplifiers.Frequency Range: 100% ratings up to 100 mc .
Note (1): For plate modulation, the values of grid bias should be increased at least 50%, and the grid drive will be approximately doubled.

Note (2): Values of grid bias and grid drive may be reduced with regenerative doubler circuits. The above values are for values of efficiencies between 58% and 68%. Lower grid bias and drive give lower efficiencies. With regeneration, the bias may be reduced to approximately $1 / 3$ of the above values without loss of output. The bias should never be less than $31 / 2$ times cut.off bias when doubling.

megenerative frequency onubler

Characteristies:

D.C. Plate Voltage.	500	750	1000	1250	1500 volt ${ }^{\text {c }}$
D.C. Grin Voltage.	0	-10	-22.5	-40	-50 rolts
Zero Signal D.C.					
Plate Current	65	50	40	20	16 ma .
Maximum Slenal					
D.C. Plate Current	200	200	188	158	140 ma .
Load Resistance					
(Plate to Plate)	4000	7000	11000	17200	23600
Driving Power	6.5	8.5	7.5	5.5	4.5 watts
Output Power	50	90	120	130	140 watts

Class C r.f. Amplifier Telegraphy (Buffer Service)

Regenterative Frequency Doubler:
D.C. Plate Voltage. .
D.C. Grid Voltage.. $-90 \quad-100$ volts
D.C. Plate Current $100 \quad 80 \mathrm{ma}$.
D.C. Grid Current. 20 ms.

Grid Drivlng Power........................ \quad.5 5.5 watts
Grid Bias Iross.............................. I. 8 - 3 uat

825
Taylor 40 watt Triode．Intermediate between 801 and 211 tubes．Class B audio amplifier operating in the Class $A B$ region．Class B r．f．amplifier for telephony or telegraphy in high frequency transmitters．

Note：（irid drive requirements vary widely under various circuit conditions．

Character istics：		
Fllament Voltage ．．．．．．．．．．．．．．．．．．．．．．．．．．．．． 7.5 volts		
Filanient Current ．．．．．．．．．．．．．．．．．．．．．．．．．．．．． 2 amps．		
Amplification Factor ．．． 8		
Grid to I＇late Capacitr ．．．．．．．．．．．．．．．．．．．．．．．．．．．．i $\mathrm{i}_{\text {¢ }}$ fd．		
Grid to Filament Capacity．．．．．．．．．．．．．．．．．．．．．．．．．．．． $3^{\mu \mu \mathrm{f}} \mathrm{fd}^{\mu \mu \mathrm{f}}$		
Plate to Flument Capacits ．．．．．．．．．．．．．．．．．．．． 2.7 ．μ mfd．		
Maximum Plate Dissipation．．．．．．．．．．．．．．．．．．．．．．．．． 40 watts		
Maximum D．C．Plate Voltage．．．．．．．．．．．．．．．．．．．．．．． 850 volts		
Maximum I）．C．Ilate Current．．．．．．．．．．．．．．．．．． 110 ma．		
Maximum D．C．Grid Current．．．．．．．．．．．．．．．．．．．ify ma，		
Base ．．．UX－4 pin		
Class 8 Audio Amplifier（2 Tubes）：		
D．C．I＇late Yoltage		850 volts
D．C．（irid voltage \ipproxi）．．．．．．．．．．．．．．．．．．．．．．．．		
Zero Signal I）．C．Plate Current．．．．．．．．．．．．．．．．． 50 ma ．		
Maximum Siknal D．${ }^{\text {c }}$ ．Plate Current ．．．．．．．．．．． 170 ma m．		
Load Impedance（I＇late to Plate）．．．．．．．．．．．．．．．．．． 8000 ohms． Power Output ．．． 80 watts		
Class C R．F Amplifter：		
Plate Mod．	Telegraphy	
D．C．Pate Voltage．．．．．．${ }^{50}$	750	850 rolts
D．C．Grid Voltage．．．．．．－ 235	-180	－225 rolts
I．C．Plate Current．．．．．． 80	100	100 ma ．
D．C．Grid Current．．．．．．． 20	15	15 ma．
Grid J）riving Iower		
（Approx．）．．．．．．．．．．．．． 6	4.3	4.8 watts
Grld Bias Joss ．．．．．．．． 4.7	2.7	3.4 watts
Power input ．．．．．．．．．．． 60	75	85 watts
Power Output ．．．．．．．．． 40	45	55 watts

930United Flectronics Co．Triode．Am－ perex（ 830 ）．Oscillator，modulator， r．f．amplifier，generally as a neutral－ ized r．f．amplifier or buffer stage in high frequency transmitters．

Note：Intermediate between 211 and 210 or 801 in operation．

Frequency Range： 100% ratings up to 6 MC ．

Characteristics：

Filament Voltage ．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．． 10 volts		
Filament	Current	
Amplification Factor		
Grid to	Ilate Canac	． $9 \mu \mathrm{fd}$ ．
Girid to Filament Capacit3．．．．．．．．．．．．．．．．．．．．．．．．．．．． 4.9 m 9 ¢d．		
Plate to Fidanent Capaeity ．．．．．．．．．．．．．．．．．．．．．． 2.2 m ${ }^{\text {mfd．}}$		
Maximum D．C．Plate Voltage．．．．．．．．．．．．．．．．．．．．．．isis		
Maximum D．C．Plate Current．．．．．．．．．．．．．．．．．．．．．．． 110 ma ．		

Base

R－F Service

D．C．Plate Voltage．	Class B Telephony	Class C Plate Mod． Telephony 600	Class C Telegraphy 750 max．
D．C．Grid Voltage	－95	－180	－180 rolts
1．C．Plate Current．	80	100	110 ma ．
I．C．Grid Current	．．．．	15	15 ma ．
Grid Irising Powe			5 watts
Grid Blas Joss．		2.7	2.7 watts
Power Input	60	60	82.5 watts
Power Output	20	40	55 watts

WE－300A
Western Electric Class A aurlin am－ plifier or modulator， especially suitalle for automobile transmitters． Note：If fixed C bias is used，the plate current should be limited to nut over 70 ma．
Characteristics：
Filament roltage
． 5.0 rolts a．c．or d．c． Filament Current
1.2 a mps． 8

Aniplitication Fartor iisporox．
Grid to Plate Caparity．．．

Plate to Filament Caparity．
9
$4 \mu_{\text {fid }}$
$\mu \mu \mathrm{fl}$ ．
Maximum llate Dissipation．
40 watts
Saximum D．C．Plate Voltage
Maximum D．C．Plate Current．

Class A（Single Tube）Modulator：

1）．C．1＇late Voltage	200	250	350	450 volts
b．C．Grid Voltage		45	－71	91.90
I．c．Plate Current．	40	80	80	80 ma ．
Loud Resistance	500	1500	2200	3000 ohms．
ower	2.6	5.0	9.6	14.6 watt

Push Pull Operation（2 Tuhes）

II．C．Plate Voltage
.450 solts
b．C．1＂late Current（1＇er Tube
Mutual Conductance
Class－A Power Output．
.70 ma．
5200 mhos．
25 watts

RK－18 Kaytheon 1I．F．Triode，Class B modulator．Class C r．f．amplifier or oscillator．Buffer or doubler．
Note（1）：Values of grid drive will vary witb load resistance，circuit design，and losses；thus the driver stage should be capable of supplying approxi－ mately twice as much output as listed for grid drive and bias loss．

Note（2）：The efficiency of a doubler at a lower value of grid bias than that listed may be im． proved by regeneration at the output frequency．

Frequency Range： 100% ratings up to 30 KC ．

Neutralized Buffer Stage
Characteristics：

Filament Yoltage	7.5 volts
Filament Current	． 0 amps．
A inplitication Factor	$\ldots .18$
Fird to Plate c＂apacity	
Erid to Filament Capacity	$4.6 \mu \mu \mathrm{fd}$ ．
［＇lute to E＇ilament C＇apacity	$2.9 \mu \mu \mathrm{pd}$ ．
Amximum Ilate lissipation	40 watts
Maxinam Ib．C．liate Voltage	000 volts
\＄aximum D．${ }^{\text {S }}$（＇Jate（＇urrett	85 ma ．
Maximunt 》．C（irld C＂urrent	5 ma.
Base ．．．．．．．．．．．．．．．．．．l⿺𠃑	enselope

Ciass B Modulator or A．F．Amplifier：

D．C．Grid Toltage．．．．．．．．．．．．．．．．．．．．．－ 40
Yesk A．b Gric Voltage

（per tube）	90	100 F
Zero Signal D．C．Plate Current		
（per tube）	5	7 ma

Maximum Signal I）．C．V＇late
current per（Plate to blate．）．－． 10000
Load Kesistance（1Plate to I＇late）．．．． 10.000
1＇ower Uutput（2 Tubes）．．．．．．．．．．． 65
80 ma.
2.000 ohms

100 wattg

	Class C Telegraphy		Frequency Doubler
	Final	Buffer	
IV．${ }^{\text {c．Plate Voltage }}$	1000	1000	1000 volts
1）C．Grid Voltage	－12：	－80	－425 rolts
	88	80	64 max ．
［．C．Crin Current．	2\％	15	10 ma ．
firid Itriring l＇ower	6.0	9.7	5.3 watts
Firid IBlas Ioss．	$\because .7$	1.9	4.3 watts
Fower Input	$8 \times$	80	64 watts
Approximate I＇ower Output	60	42	35 watts
Approximate A．C．Loril			
Impedance	5.300	58.850	5000 ohms
Efficiency：	6 s	52.5	55%

RK-31Raytheon Hish Mu Triode. l'rimarily a Class B Audio Am. plifier. May be used for R.F. Note: R.F. grid excitation requirements vary widely, thus the driver stage should be designed with ample factor of safety for output needs.

Characteristics:

Filament Voltage . 7.5 volts		
ilament Current 3.0 amps .		
Amplitiration ractor Varies with Input............hiphmu.		
Staximum Plate Dissipation....................... 40 watts		
		250 rolts
Naximum Tic lolate Current		
Basel*-4 pin. ilate at top of enselope		
Class B Modulator or AF Amplifier:		
Il.C. 1'late Voltage............. 1	10001250	volts (max.)
1).C. Grid Voltage.		volts
Grid Driving l'ower (2 tubes).	900900	milliwats
Zero signal I).C. Plate Current		
Maximum Sligmal D.C. I'late		
Current (ber tuhe)		
Load Reslstance (Plate to iPlate) $13.600 \quad 17000 \mathrm{ohms}$		
l'ower Output (2 tubes)........ 110R-F Service		
	Class C	Frequency
D.C. Plate Voltare	1350	1000 \%ol
D.C. Grld Vulatre................ -90-300 rolts		
D.C. I'late c'urrent.................. 85 . 85 ma		
(irit Imiving power................. 5.25 . 6 watt		
1'ower Innut $10 .$.		
Aprroximate lower output		5\% watts
Approximate A.C. Load Impedance.	. 7250	5400 ohms

756
Tavlor Triode for Doubler and Class C operation. Class B audio amplifier.
Note: Cirid drive requirements vary widely under difterent operating conditions.

R F DOUELER OR NEUTRALIZED BUFFER

Class C R.F. Amplifier:

	Plato Mod. Telephony		Telegraphy
D.C. Plate Voltage	750	750	850 volts
D.C. I'late Current	-80 90	-75	-85 rolts
D. C. Grid Current.	20	16	16 ma .
Grid Iriving Power	5	3.5	
Grid Bias Loss	1.6	1.2	1.4 watt
Power Input	67.5	82.5	93.5 watts
lower Output	40	50	60 watts

804RCA Pentode R. F. Amplifier. Frequency doubler. Oscillator. Suppressor, grid or plate modulated am-
plifier.
Caution: Do not apply screen voltage without simultaneous application of plate voltage.

Fequency Range: 100% ratings at $15 \mathrm{mc} .75 \%$ at 35 mc and 50% at 80 mc . Special attention should be given to shielding and by-passing at high frequencies.

Characteristics :

Filament Voltage rolts
Filament Current ... 3.0 amps.

Input Capacity 16 я $\mu \mathrm{md}$.
Output Capacits …... $\mu \mu \mathrm{fd}$.
Maximum plate Dissipation 40 watts
Maximum Screen Hissipation …............................... 15 watts
Mutual Conductance $\cdot \ldots .$. 3250 micromhos.
C'X-5 pin base plate at top of envelope.

D.C. Plate Volt-age	R-F Service			Pentode Class C raphy	Tetrode Class C raphy
	Class B Telophony	Suppressor Mod. Telephony			
	1250	1000	1250		
1.C. screen Volt-					
age suppre...	300	300	300	300	180 colts
D.C. Suppressor					
D.C. Grid Bias	-20	-100	-100	-100	100 rolts
I'eak R.F. Gri	$2{ }^{-}$	140	140	150	160 rolts
Peak A.F. Grid					
Volts		60	70	-	.. volts
D.C. I'late Cur-					
D. ${ }^{\text {rent }}$ C. screen Cur	45	45	48	92	92 ma .
rent	11	33.5	35.5	27	23 ma .
I).C. Grid Current	1	5.5		7	8 ma .
Grid irtsing Power.	. 25	. ${ }^{\text {r }}$. 85	. 9	1.1 wate
Grid Bias Loss.		. 6	. 7	. 7	. 8 watts
Power output (Approx.	16		21	80	80 watts
Ecreen Resistor	86,000	21.000	27.000	35.000	ohms

Conventional Screen-Grid Buffer or Final Amplifier

RK-20Raytheon RF Amplifier. Frequency Doubler. Oscillator. Suppressor, Grid•or-Plate modulated Amplifier. Caution: Do not apply screen volage without sinultaneous application of plate voltage.

Frequency Range: 100 cotings up to 20 MC . The RK 20 has lower input and output capacitances than the 804 . and may therefore be used more effectively at higher frequencies, such as 30 me.

Charaeteristies :

Filament Voltage 6.5 \%olts	
Grid Current	3.0 amps.
Grid to l'late c'apacit	$0.12 \mu \mu \mathrm{fd}$.
Input Capacity	$11 \mu \mu \mathrm{fd}$.
Output Capacity	$10 \mu \mu \mathrm{fd}$.
Maximum Ilate Dissipation	40 watte
Maximum Screen Dissipatlon	15 watts
ase .. ${ }^{\text {I }} 5$ din	
Isolantite. Plate at top of	

	R-F SERVICE			
	Class B Tele. phony			Class C Telegraphy
D.C. Plate Voltage.	1250	1250	1250	1250 volts
D.C. Screen Voltage..	300	300	300	300 volks
D.C. Suppressor Voleage …..............	0	-45	0	-45 volts
D.C. Grid Bias	-30	-100	-100	- 100 volts
Peak R.F. Grid Yolts	70	175	175	175 volts
Peak A.F. Grid Volts		75		$\sim_{\text {a }}$ volts
D.C. Plate Current...	43	43	80	92 ma .
D.C. Sereen Current..	15	36	37	39 ma .
D.C. Grid Current...		5	5	5 ma .
Grid Driving Power..	. 5	. 9	. 9	. 9 watts
Grid Bias Loss		. 5	. 5	. 5 watts
Power output (Ap- pros.)		18	64	80 watts
Screen Resistor	0.000	25.000	26.000	29.000 ohms.

RK-46Kistlieon pentode. similar to $R K 20$, except for filament and envelope, which are heavier in construction. Filament is rated at 12.6 volts at 2.5 amps. Designed for mohile and aircraft transmitters.

Raytheon bcam-nower tetrode designed for $1 \cdot f$. amplifier-doubler service. Snmewhat similar to RK 2n, excent for Snecial grid -tructure; slightly higher plate efficiency than in similar types of pentode tulse-s

Charactorlstles:

F'Hlament Voltage
10 wolts
Filament Current
Maximum D.S. Dlate foltuge
Maximum D.C. Screen Voltage
Maximun Pate Dissipation
Maximum Sereen Dissipation
Maximum D.C. Girid Current
(irid-to-Plate c'macits:
Input Capacity
Output Capacity gis amp 050 rolt. 50 wat . .35 watts .10 tratts 0.12 ци fl_{1} Output capacty

rlate throukh ion of envelone

841 A
Taylor H. F. Triode. Doubler or buffer stage in high power trans mitters. R.F. Amplifier down to
\% $3 / 2$ meters
Note: Grid driving power requirements vary over wide limits under operating conditions.

Neutralized Buffer

Characteristics:
Filament Voitage ... 10 voits
Filament Current -14.6
Amplificaton Constant $9 \mu \mu \mathrm{fd}$.
Grid to Plate Capacits........................ ${ }^{9 \mu \mu \mathrm{fl}}$
Frid to Fllament Capacity. umpd.
Mate to rllatnent Capacity $50 \mu \mathrm{f}_{\mathrm{d}}$.
Maximum IVate Dissipation................................... . 50 watts

Class C R-F Amplifier:
II.C. I'late Voltage. 1000 volts
II.C. Grid Voltage... 180 votes
b.C. Plate Current. 150 ma.
D.C. 6
$\because 0 \mathrm{nia}$.

Trid Blas Loss. ... 3.6 watte
Power Input 150 watts
Power Output .. 1 (tu watts
304B
W'estern Electric じ.H.F. oscillator or amplifier up to 300 mc .
Froquency
100 me.
200 me.
300 me.

Class C Telegraphy
Piate Voits
1250
750
Plate Volts
Plate Volts
ate Vo
1000
800
600
Characteristies
. 7.5 volts
Amplifieation Factor
3.25 amps
firld to Plate Canacit

Trid to Flament Capacity

Maximum Ilate IIssipation 50 watts
Maximum D.C. Plate Voltage.......................... . . . 1450 volts
Maxinum le.C. Plate Current............................. . . . 100 ina

I'Jate and Grid at Ton of Finvelone
Class B Audio Ampliffer (2 tubes):

Class C Service:-See 834.
808
RCA Tantalum llate Triole. NighFrequency Oscillator and Amplifier. 100% ratings up to 30 MC . 50% ratings at 130 MC .

Neutralized Buffer or C. W. Amplifier

Characteristics:
Filament Voltage . 5 solta
flament Current
5
flament Current
Amplification Factor
Trid to Plate Capacits.
Frid to Fllament Caparits
$\therefore \mu \mu \mathrm{ft}$.
late 10 Filament ('apaclt)
) $\boldsymbol{\mu} \boldsymbol{1}$
Flate through top. grid through slie of enrelupe.

Class B Audio Amplifier (2 Tubes):

D.C. l'tate Voltage		1250	1500 volts
D.E. (irlil Voltage		-15	-25 volts
Zero Signal 1.C. Plate		40	30 ma .
Maximum Signal D.C.	Curient	230	190 ma .
Load Hesistance (plate-	ate)	$1: 700$	18300 ohins
Girid loriving Power.		- 8	4.8 watts
Power Ontput, Approxis			185 watt
Class C RF Amplifier:			
	Plate Mod. Telephony		lass C graphy
D.C. I'late Voltage	. 1250	1250	1500 volts
I).C. Grid Voltage	-225	-150	-200 voles
[).C. Plate Current	100	135	125 ma .
1).C. (irid Current	32	30	30 ms .
(irid l)riving lower	10.5	8	9.5 watts
Grid lias Loss ...	7	4.5	6 watts
l'ower output (App	105	120	140

Heintz \& Kaufman. General purpose $\mathrm{C} . \mathrm{H} . \mathrm{F}$. and H.F. triode. Tantalum
plate and grid.
Note: Grid drive requirements vary widely under different operating conditions.

GRID NEUTRALIZED FINAL AMPLIFIER'

Charateristies:

ilament Voltage			volt
Fllament C'urrent			amps
Amplijeation F'actor			6
Trid to l'late Capacity			出d
Maximun Plate DIssipation			Watt
Maximum 1.C. I'late Voltage			0 volts
Maximum I.C. Plate Current.			75 ma.
Maximutn D.C. Grid Cu			30 ms
Base			4 pin
Grid and Plate Leads Through Op	\$1	E	elope
A.F Amplifier (2 tubes) :			
IV.C. Plate Voltage............ 750	1000	1500	0 volts
Power Ontput 150	200		watts
(irid 1)rising Power (.dpprox.). 10	11)		0 wa

R-F Service

Class B R.F Class C R-F
D.C. Dlate voltage. $\quad 750 \quad 1500 \quad 750 \quad 1000 \quad 1500$ volls D.C. Blate Current.. $80 \quad 50 \quad 175 \quad 175 \quad 175 \mathrm{ma}$. D.C. Grid Voltage.. - $112-225-275-350-500$ volis D.C. Grid Current... 20 20 20 ma. Approx. Grid Iriving
Appoxer
Prid $\begin{array}{lllllrr}\text { Grid Rlas Loss Output } & 18 & 28 & 5.5 & 8 & 10 & \text { watts } \\ \text { Approx. Iower Outpu } & 18 & 200 & 125 a t t s\end{array}$

834 RCA U'.IH.F amplifer and oscillator. Frequcncy Range: $\mathrm{C} p$ to $3 \overline{0} 0$ megacveles.

Rated input at $100 \mathrm{mc}-100 \%$ Rated input at 350 mc - 50%
Note (1): (irid driving power varies with type of circuit used, load impedance, and frequency range (dielectric and circuit losses increase with frequency). Driver should be capable of twice as much output as listed for grid drive and bias loss, as a factor of safety in design.
Note (2): Regeneration in the frequency doubler will allow lower values of grid bias and grid drive for same nutput fower

UHF OSCILLATOR

Characteristics:

RK-32

Raytheon U.II.F. Triode. Similar to 834 in all respects. See 834 data.
Characteristics:
Clla
Fllament Voltage
7.5 volte
...... 11
Anupllincatlon Factor
$3.0 \mu \mu \mathrm{fd}$.
Grid to I'late fapacity.

Mate to Fillament Capacity................................... 1.0 urpd.
Maximurn I.C. Ilate Voltage.................................. 1250 volta
Maximum D.C. Mate Current.
.100 ma .
Maximum D.C. Grld Current
.20 ma .
Base
UX 4 pin
Plate and Grld at Top of Fnvelope

Taylor Class C r.f. Amplifier. U.H.F. oscillator down to 2 meters wavelength.

P,P, R,F. Amplifler

Characteristies:
Filament Voltage .. i. 5 volts

 Plate to Fllament Capacity............................. 1.5 н $\mu \mathrm{fd}$.
Maximum liate Dissipation.. 1500 vatts

ximum Ib.C. Plate Volta

Maximum 1).C. Grid Current.............................. 40 ma.		

Base .. $\mathbf{U}-4$ pin.
Class C R.F Amplifior:
D.C. Plate Yoltage. 1500 rolts
D.C. Grild Voltage. ... 18 - 180
D.C. Plate Current.. 150 ma .
D.C. Grid Current. 30 ma.

Grid Driving Power. 10 watts
Grid Blas Loss.. 5.5 watts
Power Input 225 watts
Power Output
.170 watts
Class B Audio Amplifier (Two Tubes):
D.C. Plate Voltage. 1000 volts 1500 volts D.C. Grid Voltage (Approx.).... - 45 volts -67.5 volts Zero D.C. Signal Plate Current.... io 40 ma . 40 ma $\begin{array}{ll}\text { Load Resistance. Plate to Plate... } 10.000 \text { ohms } \\ \text { Audio Output }(2 \text { tubes)............. } 125 \text { watts } & 12.000 \text { ohms } \\ 175 \text { watts }\end{array}$

203-B
Taylor High-mu Triode. Redesigned primarily for class B audio amplifiers.
Driver:
2 A 3 s in push-pull with $\frac{1 / 2 \mathrm{sec}}{1 / 2}=1.6$ ratio input transformer.

ECONOMICAL CLASS B MOOULATOR
Characteristics:

Class B Audio Amplifier (2 Tubses):

D.C. Plate Voltage	1000	1250 solts
D.C. Grid Voltage	35	45 rolts
Zero Eignal lu. (utue)	20	20 ma .
Saximum Signal D.C. P'ate Current (2 tubes)	330	350 ma .
Load Impedance (I'late to I'late)	6800	7900 ohms
Power Output	200	300 watts
Driving Iower	10	12 watts

830B
RCA 830-B. United Electronics Co. 930-I. Class B modulator for outputs up to 175 watts. May he driven by a push-pull 45 or 2 A 3 driver stage. Also used for RF.
R.F. Frequency range: 100% ratings up to 15 $\mathrm{mc}, 75 \%$ at $30 \mathrm{mc} .50 \%$ at 60 mc .

Note: R. F. Grid driving power requirements vary with load impedance, circuit design and circuit losses with increase of frequency. The driver stage should be capable of supplying twice as much power output as listed for grid drive and grid bias loss.

Characteristics:

Class B Modulator or A-F Amplifier:

D.C. Plate Volt	800	1000 solts
D.C. Grid voltase	-27	-35 coles
Peak Grid to Grid A-F Volts	250	270 solts
Zero Sig. D.C. Plate Current (2 tubes)	20	20 ma

- At I'eak.

WE-305A
 Western Electric R.F. amplifier, os. cillator or harmonic

generator at ultra-high frefuencies.
Frequency Range: 100% ratings up to 50 mc . 50% plate voltage rating at 100 mc .
Note: Plate, screen, and filament center-tap leads come out through rods at top of tube to enable short leats at very high frequencies. Cooling lugs of copper are needed for operation at frequencies above 50 mc .
Characteristics:

Filament Voltage	10 volts
Filament Current	1 mmps .
Plate to Grid ca	$14 \mu \mu \mathrm{fd}$.
Inpur Capacity	0.5 murid.
Output Capacits	D. $\mu^{\mu \mu \mathrm{fd}}$.
Maximum Plate Dissipation	60 watts
Maximum Screen Dissipat	6 watts
Maximum D.C. 1'late Voita	000 volls
Maximum I.C. Screen Voltage	200 solta
Saximum D.C. Plate Current.	25 ma .
Masimum D.C.	

203-Z

 audio amplifers or modulator fier below 15 Mc .
Characteristics:

WE-282A

or frequency doubler.
Fircquency Range: 100% ratings up to 30 mc . 50% ratings at 60 mc .
Characteristits:

Amperex Triode. II.F. and U.H.F amplitier or oscillator down to 2 meters in
wavelength
Note: Similar to $830-\mathrm{B}$, except for lower interelectrode capacities and ability to operate efficiently in U.H.l. applications.

Neutralized R. F. Amplifier or Doubler

Charateristies:
Filament Voltage 10 to 10.5 volt

2 smp .
Amplitication Facior

Grid to Plate C'anacity
$3.5 \mu \mu \mathrm{Pd}$.
Grid to Filament Capacley $1.4 \mu \mu \mathrm{dd}$
Plate $t 0$ Filament Capacity. .75 wate
Maximum lilate Dissipation... 1500 watte
Maximum D.C. plate Current................................. 150 ma .
Maximum D.C. Prid Current.. 30 ma man.
Base..
Plate Out Top. Grid Out side of Envelope. Carbon plate.
Class C R-F Service:

	$\begin{aligned} & 30 \mathrm{mc} . \\ & \text { or } L \text { ower } \end{aligned}$	120 mc .
1.C. I'late Voltage.	1500	1000 voles
D.C. Grid Voltage	200	-110 volts
D.C. Plate Current	150	120 ma .
D.C. Grid Current	20	20 ma .
(irid Drive (Approx.)	7	6 watts
Grid Bias Loss	4	2.2 watts
Power Outpus (Appro	170	70 watts
Maximum l'late Diss	75	50 watts

50TEimac general purpose II.F. and U.H.F. triode. Tantalum plate and grid. The low inter-electrode capacitances and small physical size make this tube very effective for ultra-high frequency amplitication.

Frequency Kange: 100% ratings up to 80 mc.
Note: Values of grid excitation vary considerably with load impedance, circuit design, and losses at higher frequencies; thus the driver should be designed to furnish approximately twice as much output as listed for grid drive and bias loss.
Characteristies:
Filament Voltage 5 to 5.25 volts

Plate to Filament Capacity............................. 0.4 $\mu \mu \mathrm{fd}$
Maximum I'late Dissipation............................... 75 watt
Maximum Plate Voltage................................. 3000 volts
Marimum Plate Current... 30 ma.
Base
Plate at top. grid at side of envelope.
Class B Audio Amplifier (2 tubes):
DC plate roltage.. 1000
D.C. Grid Voltage
(Approx.)
A.
A.

$\begin{array}{llrrrr}\text { Driving Power.... } & 106^{7} & 200^{7} & 250 & 300^{7} & 350 \text { watts }\end{array}$
R-F Service

	Plate Mod. Telephony		Class C Telegraphy			Frequency Doubler
D.C. Plate Voltage	1500	2500	1000	2000	3000	2000 volts
D.C. Grid						
D.C. Plate $\cdots-350-600-200-400-600-810$ volts						
D.C. Grid						
Current	25	25	25	25	25	15 ms.
Grid Driving						
Grid Blas						
Loss ...	9	15	5	10	15	12 watt
Power Input.. 150 250 125 250 375 200 watt Power Output						
A.C. Load Re-						
Mod D.C.						
Losd	5,000	25.000	\ldots	\ldots	\ldots	... ohms

ZB120
Amperex. Zerobias Triode. Especially designed for class B audio amplificasion. Can be used as linear r.f. power amplifier. Is capable of delivering up to 150 watts in class C r.f. service. Its high amplification factor makes it an efficient frequency doubler.

Characteristies:

WE-242A

Western Electric Triode. R.F. Amplifier or oscillator.
Audio amplifier in modulators.
Frequency Kange: 100% up to $6 \mathrm{mc} .50 \%$ of plate voltage ratings at 30 mc .

Characteristics:

Filament $\begin{gathered}\text { Filament } \\ \text { Furrent }\end{gathered}$		volt
	Filament Current .. 35 amps	
Amplification Factor		
Grid to Plate Capacity		
Grid to Filament Capacity		. 5 «mp
1'late to Filament Capacity		
Maximum ${ }^{\text {Plate Miasipation }}$. 85 wat		
Maximum D.C. Plate Current............................ 150.15 m		
Maximum D.C. Grid Current........................ 50 ma		
Class B Audio Amplifter (2 Tubes):		
D.C. Plate Voltage 1000 . 1250 volts		
1.		-80 voits
Maximum Signal D.C. lilate Current.. 300 300 ma.		300 ma .
Zero Signal D.C. Ilate Current		60 ma .
Load lesistance (plate to plate)...... 60008000 ohma.		
Power Output		200 watts
Driver Power	25	25 watts

R-F Serviee

	$\begin{gathered} \text { Class } 8 \\ R-F^{8} \end{gathered}$	```Class C Tele. ahony```	Class C Telegraohy
D.C. Plate Voltage.	1250	1000	1250 volts (max.)
D.C. Grid Voltage..	-90	-175	-200 volts
D.C. Plate Current.	106	150	150 ms .
D.C. Grid Current	30	30 ma .
Grid Driving Power		10	11 watts
Grid Blas Loss ...		5	6 watts
Power Input	132.5	150	187.5 watts
Power Output	44	100	125 watts

211Class B modulator. Class B and C r.f. amplifier for telephony or teleg. raphy. Occasionally used as a frequency doubler.

Frequency Range: Full ratings up to 6 megacycles. 50% ratings at 30 mc .

Note (1): Grid driving requirements vary with load impedance, frequency of operation (due to losses), and type of circuit; thus the driver stage should be capahle of supplying twice as much power output as listed for grid drive and bias loss.

Note (2): The W. E. 242A is similar in characteristics and operation to the 211. The 211D is similar to the 211 but it also has slightly lower inter-electrode capacities.

Grid-Modulated R. F. Amplifier

Characteristics:

eristites :		
Filament Current 3.25 amps.		
Amplitication Factor		
Grld-Plate Capacity		. $5 \mu \mu \mathrm{fd}$.
Grld-Fllament Capacity .		
Plate-Fllament Capacity 5.5 murd.		
Maximum rlate Dissipation 100 watta		
Base		50 watt
Class B Modulator ($\mathbf{A}-\mathrm{F}$) :		
U.C. Plate Voltage	1000	1250 volts
Zero Signal Plato Current (per tube)	10	10 ma .
Zero Grid Blas		-100 volts
Maximum Signal Plate Carrent (per		
tube)	160	160 ma
Load Resistance (plate to pla		9000 ohms.
1'ower Output (2 tubes)		260 watts

R-F Amplifier Service

Characteristics:
Fllament Voltar
Fllament Vurage ... 10 volts

Mrutul Prate Voltage 1250 volts
Mutual Conductance 2500 mhos
Class-A Output, 2 Tubes .175 ma .
.50 wattg
class-1 Output, 2 Thbes
.165 watts

203A
Class B audio service and as an RF Amplifier.
Frequency Range: 100% rat-
ings uF to 6 mc . 50% at 30 mc .
Note: The grid drive requirements vary with load impedance, circuit design, and high frequency circuit loises; thus the driver should be able to deliver twice as much power as listed for grid drive and bias loss.
Characteristies:

838

Most used as Class B modulator due to its zero bias characteristic.
R.F. Frequency Range: 100% ratings up to 30 mc . 65% at $60 \mathrm{mc} .50 \%$ at 90 me.
Notc (1): Fush-pull 2A3 tubes in Class A will serve as a driver for Class B 838 tubes. The Class B input transformer should have a Prim.
turns ratio of $\frac{1 / 2 \mathrm{sec}}{}=3.2$ if fixed bias is used on the 2 A 3 s . A little greater ratio of stepdown is desirable if the 2 A 3 drivers are self biased.
 with Provision for Balancing Plate Current

Single 845 Modulator for 50-Watt Radiophone

Characteristics:		
Flament Voltage 10 volts		
Fibament Current 3.25 amps.		
Amplification Factor (average)		
Grid to Plate Capacty 13.5 Hupd.		
Grid to Filament Capaelty		6.0 н $\mu \mathrm{fd}$.
Plate to Fliament Capaeltr......................6.5 $\boldsymbol{\mu} \mathrm{\mu} \mathrm{fd}$.		
Maximutu Plate Current 175 ma.		
Base		pha. 50 watt
Class A Audio Amplifier (l Tube):		
D.C. Plate Voltage 50	1000	1250 volts
D.C. Grid Voitage - 98	-155	-209 vols
D.C. Plate Current 95	${ }^{65}$	$5 . \mathrm{ma}$.
Peak Grid A-F Voliage........ 93	150	204 volts
Load Resistance 3400	9000	16000 ohms
Power Output 15	21	34 watts
Class AB Audio Amplifier (2 Tubes):		
D.C. Plate Voltage		. 1250 rolts
D.C. Grsd Voltage $\mathbf{2 2 5}$ volts		
Zero Stinal D.C. Plate Current 45 ma		
Power Output 125 watts		
Load Impedance. lelate-to-		00 ohm

Characteristics:

Characteristics:		
Filament Voltage		
Fllament Current		a
Implification Factor		
Maximurs l'ate Dissipation 100 w		
frid-Ilate Capacity		
ririd-Fllament fapacits		
Phate-Filament Capacity		
Maxinum I.C. 1'late \oltam匕.. 1250 volts		
Haximum 10.C. Vlate Current		
Maximum 1b.C. Grid Current		
Base .. 50 wa		
Class B Modulator:		
1.C. Plate Voltage	1000	1250 rolts
D.C. Grid Voltage	0	0 rolts
Approx. Peak A-F Grid Input Vultaze	90	90 rolts
Zero Signal D.C. I'late Current (per tube)	53	74 ma .
Maximum Signal D.C. Plate Current (per tube)	160	
Load Resistance (plate to plate)	-600	
Maximum I'ower Output (\% tubes)		260 watts
Peak l)riring I'ower (Approx.).	5	5 watts

R.F Service

R.F Service				
	$\begin{gathered} \text { Class } \\ B \\ B \cdot F \end{gathered}$		C Telegraphy	Frequency Doubler
D.C. Plate Voltage	1250	1000	1250	1000 volts
D.C. Plate current	106	150	15.5	157 ma .
D.C. Grid Plas ...		-135	-90	-465 volis
D.C. Grid Current	60^{*}	- 60	30	20 ma .
Grid. Drising nowe				
(Approx)	10^{*}	- 17.5	6	12.3 watts
Griu itias laoss			2	9.3 watts
Power Input	133	150	19.5	15 i watts
Adprox. Power Ourmat	4*.	101	140	100 watts
Approx. A.C. Inoad Immel				
ance \ldots.........		3300	4070	5360 ohms.
Modulator I.C I.gad lis				
alsance		86fa		... ohms.

[^1]Triode. Class A or AB aurlin ampli fier in public address systems or as modulator in radio transmitters. Seldem used in IR.F. amplifiers.

852Triode. RCA. Amperex, United U.H.F Oscillator H,F. Amplifier or Class B modulator.
Frequercy Range: 100% ratings up to 30 mc . 80% at 60 mc . 50% at 120 mc , and 40% at 150 mc. (2 meters).

Characteristics:

Filament Voltage	
Filament Current	
Amplification Factor	
Grid to Plate Capaci	$6 \mu_{\mu} \mathrm{l}$ d.
Grid to Filament Capacit	1.9 нutd.
Plate to Filament Caparity	$1.0 \mu \mu \mathrm{fd}$.
Maximum plate Plsgipation	100 watts
Maximum In.C. Plate Voltage	2500 volts
Maximum lo.r. Plate Curre	150 ma
Maximum D.C Grid Curre"l ..	

[^2]Class B Modulator or R-F Amplifier:

R.F Service
Plate.

[^3]

Raytheon R.F. amplifier or oscillator for II.F. and U.H.F. applications.
Frequency Range: $\mathbf{1 0 0 \%}$ ratings up to 56 mc . Note: Grid drive may vary widely under dif ferent operating conditions.

Grid-Neutralized P. P. Amplifier
Characteristies:
 Elilament Current Amplitication Factor II Grid to Plate Capacity $5_{5 \mu \mathrm{fid}}^{\mu \mu \mathrm{fd}}$ Grid to Filament Capacity $4.5{ }^{\mu \mu \mathrm{fd}}$ Maximum Plate Dissipation....................................... 100 watts Maximum D.C. Plate Voltage 3000 volts Maximum D.C. Plate Current................................... 165 ma
 envelope. Tantalum plate.

	R.F Service		
	Class B	Grid Mod.	Class C
D.C. Plate Voltage	2000	2000	2000 volts
D.C. Grid Voltage	-180	-270	-360 solts
D.C. Plate Current	75	72	150 ma .
D.C. Grid Current		...	30 ma .
Grid Drising Power			
(Approx.)	10*	$3.5 *$	15 watt
Grid Mias Loss			5.4 watta
Power Output (Appr	50	42	200 watts

- (Peak). Class B Audio Amplifier, RF Amplifier or Oscillator Service. 100% ratings up to 56 MC .

Characteristics:

Silament Voltage	1ts
Filament Current	smps.
Grid to Plate Caparity	5) $\mu \mu \mathrm{f}$
Grid to Filament Capacity	. 9 m $\mu \mathrm{Pd}$.
plate to Fllament Capacity	. $\mu \mu \mathrm{dd}$.
Maximum Plate vissipation	100 watts
Maxlmum D.C. Plate Voltag	000 volts
Maximum D.C. I'late Curre	. 65 ms .
Maximum D.C. Grid Curren	
Standard 4 pln-UX baso. 1	rou

RF Service
Class B Grid Mod.

100TL
Eimac UHF Triode with medium amplification constant. Designed primarily for diathermy service and as replacement for original Eimac 50 T .

Characteristics:
Fllament Voltage
5 to 5.1 rolts
Filament Current
6.5 amps.

Frid-to-Plate Capacity
6.5 amps.

Grid-to-Filament Capacity $.2 .0 \mu \mu \mathrm{fl}$.
$.0 .4 \mu \mu \mathrm{fl}$.

Maximum D.C. Grid Current ..
Amplification Factor ... Base. $_{\text {in }}^{\text {- }}$

Amplifier:			
D.C. Plate Foltage	1000	2000	3000 volts
D.C. Plate Current	200	150	135 ma.
D.C. Grid Current	30	30	30 ma .
1).C. Grid Bias	900	-400	-600 volts
Approximate Power Output	120	225	300 watts
Approx. Grid Driving I'ower	7.5	13.5	21 watts
Grid Bias Loss.	6	12	18 wat ts
Class B Audlo Amplifier:			
D.C. Plate Voltage......	1000	2000	3000 volts
Load Impedance, Plate-toPlate	5200	16,000	30,000 ohms
Power Output. 2 Tubes....	170	350	465 watts

100TH
Eimac. High-mu U.H.F. Triode. Especially suitable for class C r.f. amplification and
class \mathbf{B} audio service.

R. F. Amplifier

Characteristies:
Filament Vics:
Fllament Voltase
Amplitication Factor
$\cdots{ }_{2} \quad 30$

Jhate-to-Filament Capacity
Maximum D.C. Plate Voltage Maximum D.C. Plate c'urrent Maxlmum D.C. Grid Cirrent
.
$0 .: 1 \mu_{\text {uf }}$

Sormal l'late 1)Issipation.

"late throush fonlantite
Class C R.F. Amplifier:

Class C R.F. Ampli			
D.C. Plate Voltage.	11140	24181	3000 rolts
D.C. Plate current	2110	1.89	135 ma .
D.C. Grid current	45	45	45 ma .
D.C. grid bias.	--i)	-140	-210 rolts
Annroximate grid drising			
oower	4.8	*	10 watts
Grid blas loss	3.2	6.3	4.5 watts
Approximate power output	120	2.85	300 watta
Class B Audio Amplifier:			
D.C. nlate voltage	1100	$\because 000$	3000 volts
Isoad imwedance vlate-to			
nlate	-0n	16000	30000 ohnus
lount outhut. - tuhes	211	3×0	500 watts

211 C The 211 C tubes of various manufacturers (Amperex, 「aylor, United) are similar to 211 tubes in operation, except for lower grid to plate capacitance. They are somewhat more effective at the ligher frequencies down towards the U.II.F. region. See 211 iube data.

Note: The W.E. 261 A and WE 276 A are somewhat similar to the 211 C in characteristics and operation.
Characteristics:
Fllanent Voltage
10 solts
F゙lument Curtage
55 amps.
 Saximum D.e. Drate Voltage.................................... 1350 voles Maximuin D.C. Plate Current. 180 ma. Maximum D.C. Cirdil Current. 50 ma. Grid to lyate Capheity 7 to 9 mifat. firld to Nilament Capacity 5 инды.

850RC'A screen-grid r.f. amplifier of the 10) watt type. Frequeniy Range: 100% ratings up to 13 me. 50% at 30 nic.

Note: Grid drive waries widely under various load impedances.

Characteristies:
Fllament Voltaxe ... 10 volta
Fllament Current
Amplitication Factor
Grial to Plate rapacity".
Input "aparits
Outptit ('ajacits
Maximum lolate Inssipation
Maximum I).' Flate Voltace
Maximum I.C. Plate Current.
Maximum Sereen bissipation
R-F Service

	Class B Telephony	Class C Telegraphy		
IV.' I'late Voltase.	1250	750	1000	1250 volts
1). S Srreen Voltage	1%	175	175	175 volts
I).C. Girtd Voltage	-13	-150	-1.50	-150 volts
I. 1 . I'late Current	110	140	190	160 ma .
I*.C. Gril Current		35	35	35 ma .
Grid Ibristng Power				
f.ipprox.		10	10	10 watts
Grid Eias Iooss		5	5	5 watts
Itate Power Input	137.	1:0	180	900 watts
Pourer Output	40	55	100	130 watts
Screcn Serfes Resistor		13000	95000	40000 ohms.

860
Screen-(Frid Tetrode. (RCA). R.F. Amplifier for high frequencies. Frequency Range: 100% ratings up $1030 \mathrm{mc} .80 \% / \mathrm{at}+0 \mathrm{mc}$.
\therefore : 11 (When plate modulated, the screen should the modulated simultanenusly.

A small r.f. by-pass condenser from screen to filament, and a series 100,000 ohm resistor to the r.f. plate return, will allow simultaneous screen and plate molulation.
Note (2): The grid excitation will vary with load impedance and circuit losses, thus the driver should have an available output of approximately twice that listed for grid drive and bias loss.

Coution: Do not turn off filament without first removing plate voltage. Do not apply screen voltage without plate voltage.

Character isties:

jlament Coltage
.10 rolts
Hament Current
Ampliffeation Facto
irid-lplate Capacits
Input Cavacity
outnut Capacity
100 watts
Iasimum Ilate Jissipation 100 watts
Faximum screen Ibissipation
.4 pin Bas

R.F	Service Plate Mod.
Class B Class C	

[^4]

Raytheon screen-grid tube for Suppressor Modulated tele prony. Buffer or final amplifier in radio transmitters. Since it is a screen grid tule, no neutralization is needed. May be used as a crystal oscillator or douhler at reduced inputs and outputs of approx. 60%.
Precalifion: Mnput and output circuits should be shielded and all circuits carefully by-passed for r.f. Screen voltage should only be applied when plate voltage is connected.

RK-28 C-W Radio-Frequency Amplifier

Frequency Range: 100% ratings up to 20 mc . The $\mathrm{KK} \cdot 28$ has a lower output capacitance than the 803 , so can be operated more effectively at higher frequencies, such as 14 and 30 mc .

Note: Combined plate and screen modulation may be applied for a carrier output of 100 watts with a maximum plate supply of 1500 volts. With 400 volts DC on screen, 300 volts peak $A F$ on it, and 1500 peak volts on the plate will provide 100% modulation.

Characteristics:

Filament Voltage .. 10 volts
Filsment Current ... 5 gmps .

Input Capacity
$15.3 \mu \mu \mathrm{fd}$
Output Capacity
Maximum Screen りissipation …............................... 30.35 watts
Base5 pin, 50 watt. Piate at tod of envelope

RK-48Raytheon beam-power tetrode, designed for r.f. amplifier seryice. Requires very low grid excitation. Somewhat similar to KK-28. lut with ut suppressorgrid. Easier to drive than RK-28 for slightly higher power output.

Charscteristies:

203H Amperex R.F. Amplifier or Oscillator, especially at high frequencies.
Note (1): The grid r.f. excitation requirements vary with efficiency, plate load and circuit design; thus the driver must be designed to allow for these factors

Neutralized R. F. Amplifier

Note (2): The plate lead is through the top of the tube; thus it will stand higher plate voltages and operate more efficiently at high frequencies than a regular type 203-A.

Maximum I'late Dissipation... 1.0 watts
Maximum Plate Voltage... 1500 volts
Maximum Plate Current................................ 180 ma.

Base

211 A Amperax BF ampilier for ba dio transmitters.

Note (1): The grid input and plate output powers will vary greatly with diflerent values of load impedance and frequency. The values listed are typical operating conditions.

Note (2): At high frequencies, circuit and dielectric losses increase and thus the grid driver should have available approximately twice as much output as shown in the table below for grid drive and bias supply power loss.

Note (3): This tube has the plate lead out through the top of the envelope and thus it will operate more efficiently at higher frequencies than a standard type 211 tube.

Characteristies:
Filament Voltage ... 10 volts
Gridament rurrent *...3 amps.

Grid to Filament Capacty $\mu \mathrm{pd}$.
Plate to Filament Capacity.............................. 0.0 $\mu \mathrm{fd}$
Amplifiention factor $100 . . .$.
Mutual Conductance at 100 ma . Ib.......... 4000 micromhos
Maximum Allowable Plate Ilissipation.............. 120 watts

Class	C Amplifler Single Tube at 60 me .	$\begin{aligned} & \text { Less } \\ & \text { Than } \\ & 20 \mathrm{me} . \end{aligned}$	Telegraphy
D.C. Plate Voltage.	1200*	1500**	2000 rolts
D.C. Plate Current	175	175	180 ma .
D.C. Grld Bias..	-200	-300	-300
D.C. Grid Current	30	30	50 ma .
Grid Driving Power (Ap.)	11	14	20 watts
Grid Bias Supply Loss.	6	9	15 watts
Power Output (Approx.)	100	190	250 watts
Power Input	216	3 ¢3	$3 \mathrm{f0}$ watts
Plate Loss	116	73	110 watts
Approx. A.C. Load Imped	. 3500	4300	5500 ohms
Modulator D.C. Load.	6850	8500	11.100 ohms

- Maximum

Taylor carbon-tantalum plate high-frequency triode. suitable as replacement tube for type

Characteristics:

Jilament Yoltage	10 volts
Nilament Current	\% amps.
Mutual Condurtance	00 mhos
Amplifiration Fartor	. . 25
Maximum Ilate Dissipation	5 watts
Maximum D.C. Plate Vollage	00 volts
Maximum D, C. Frid ("urrent	60 ma .
Maximum D.C. Plate Current	200 ma .
Frid-to-I'late Capacity	4.5 呺:
Irase	-0, wati
Flate through top of envelop	

Class-C R.F. Amplifier:

805
RCA IIigh-mu type tube for Class B audio service. May also be used for r.f. service.

Note (1): Plate lead out top of tube reduces flash-over danger.

Frequency Range: 100% ratings up to 30 mc . 75% at 45 mc . and 50% at 85 mc .

Note (2): The Class B input transformer between push-pull 2A3s (fixed bias) and Class B s05 tubes should have a turas-ratio of

$$
\frac{\text { primary }}{1 / 8 \text { Sue. }}=3.0
$$

Note (3): The grid excitation and bias may vary widely for Class C operation. It is desirable that the driver be capable of supplying approximately twice as much output as listed for grid drive and bias loss.

805 High Power Class B Modulator and_Oriver
Character isties:

Filament	
Filament	
Amolification	
Grial to Plate Caparity	
Grid to Fillanent Capa	
Plate to Filament	
Maximum Plate Pissipation......................... 1500 volts	
Maximum D.C. Plate Curren	
Maximum D.C. Grid Current.................... 70 ma.	
ase Plate at tod of envelope.	

Class B Modulator or A-F Amplifier:

	R-F Service			
	Class B Teleph. ony	Plate Mod. Tolephony	Class C Tolograshy	Frequency Doubler
D.C. Plate Voltage.	1250	1250	1500	1250 volts
1).C. Grid Voltage		-160	-100	-400 volts
Peak R-F Grid Voltage	-. 75	300	230	625 volte
D.C. Plate Current.	135	160	200	135 ma .
D.C. Grid Current..		60	40	25 ma.
Grid lriving Power				
(Approx.)	11	16	9.2	12.5 watte
Grid Blas Loss.		9.6	4	10 watts
lower Input	169	200	300	169 watts
Approx. Power Output.	55	140	215	85 watte
Ap. A-C Load Imped.		3900	3600	3800 ohmı
Mod. D.C. Load Resis	t. ...	7800	...	

803 RCA. Suppressor Modulated telephony. Buffer or final amplifier in radio transmitters. Since it is a screen grid tube, no neutralization is needed. May be used

Medium Power 803 Final Amplifier

as a crystal oscillator or doubler at approximately 60% output.

Frequency Range: 100% ratings up to 20 mc . High interelectrode capacities also tend to reduce output circuit efficiencies at higher frequencies such as 30 mc .

Precaution: Input and output circuits should be shielded and all circuits carefully by-passed for R.F. Screen voltage should not be applied unless plate voltage is connected.

Charatteristics:

HD-203C
 HD-211C

Taylor U.H.F. and H.F. oscillator for diathermy machines.

Characteristics:

Fibanent Volkage 10 volts
Fibament Current 4 amps.
Amplification Factor
$\therefore 0$ and 13
Amplification ractor
Flate to Filament Capacity
Maximum Plate Dissipation
Maximum D.C. Plate Voltag
Vaximum D.C. Flate Murrent
Iaximum D.C. Cate Current

```
Base.
```

rate at ion of envelone.

HD-203A

'laylor heavy duty 203A tube, intermediate between 204A and 203A. Class B audio amplifier or modulator. Class C r.f. amplifier.

Note: Grid driving power requirements vary over wide limits.
A. F. Drizer. 2A3s in push-pull with fixed grid bias input transformer ratio of $\frac{\text { primary }}{1 / 2 \mathrm{sec}}=1.6$.

Character istics:

Class B Audio Amplifler ($(2$ tubes):

Class C R-F Amplifier:

D.C.	Plate	1500	1750 rolts
D.C.	Grid Voltage.	-150	- 180 volts
D.C.	Plate Current	250	950 ma .
D.C.	Grid Current	50	50 nia.
Cirid	1)riving I'ow	1.7	18 watts
Grid	Blas Loss.	7.5	9 watts
Power	Input	$3-5$	433 watts
Fower	Output	950	300 watts

HF-200Amperex general purpose high frequency triode. Suit. able for U.II.F. oscillators.
Note: Grid excitation requirements vary greatly due to plate load, efficiency required, and circuit design.

Frequency Range: 100% ratings up to 45 mc . Characteristics:

Flate at top. grld at side of enrelope.

Class C R-F Amplifier:

$1)$.	Plate Voltase	1500	9000 volt
D.C.	Grid Voltage.	$\because 10$	-300 rolts
IJ.C.	Phate Current.	200	200 ma .
1 Cl .	Grid Current	35	35 ma .
(irld	Iriving Power	13	19 watts
Grid	Bias Loss.	-. 5	10 watts
Power	Input	300	400 watts
I'ower	Output	180	960 watts

806 RCA U. $11 . F$. power trinde for sencral use in either r.f. or audio service. Frequency range: $10 n^{\circ}$ of rating up to

Characteristies:

Filament voltage	5.0 rolts
Filament current	. 0 amps.
Implitication factor	12.6
Grid-to-nlate rapacits	$3.4 \mu \mu \mathrm{Pd}$.
Pritheto-filament capacity	$6.1 \mu \mu \mathrm{fd}$.
Plate-to-flament eapacity	$1.1 \mu \mu \mathrm{fd}$.
Maximum d.c. plate voltage	3000 rolts
Maximum d.e. plate current	200 mia .
Maximum d.c. grid murrent	0 m.a.
Sormal plate dissipation.	ts
[3ase: Standard 50-watt; gr	c through

[3ase: Standard 50 -watt; grid through side. plate through ton of envelone.

Class B Audio Amplifier (two tulses)
D.C. plate roltage

20003000 volts
l).C. grid voltage

-1.0	--3: ${ }^{\text {a }}$
20	50
390	3.30
11.500	21.50 O
14	10
500	610

Max. simnal plate current.
Load res. (plate to plate).
Yax. signal drising power
I'ower output
Class C R.F. Amplifier:
 Maximum d.e. plate current Maximum di.c. Hate chryen 1000 volts

HK-354Heintz \& Kaufman Tri. ode. Tantalum plate and grid. Class B modulator. Class C r.f. amplifier. Maximum DC plate voltage for plate modulation is 3000 -volts.

Note (1): The values of grid drive may be low. ered for plate voltages less than 3500 without much sacrifice in plate efficiency. A 50% decrease of grid drive from the above values will drop the efficiency 10% to 15% which will not cause ex. cessive plate dissipation if the load is reduced slightly with correspondingly less output and less plate current.

Note (2): Nay be used as a linear (Class B) r.f. amplifier as above and also with grid modulation under similar operating conditions, but with higher grid bias.

Note (3): With forced ventilation. the plate dissipation may be increased to as high as 250 watts.

Frequency Range: $100 \% \mathrm{me}$ ratings up to 15 mc . Reduced ratings at $\mathrm{C} . \mathrm{II} . \mathrm{F}$. (above 30 mc).

Characteristics:

HK-354C

 Heintz \& Kaufman Triode. Cltra-higho. freauency amplifier, tantalum plate and grid. Suitable for use as class B modulator and class C amplifier. All charac teristics are the same as those for $\mathrm{HK}-3.3$, except for lower grid-to-filament capacity. The grid comes out througlt the side of the glass envelope. rather than though the base of the tube as in the HK-3.t, which makes the tube more suitable for high-frecurncy operation. Refer to HK-354 for characteristics and perating data.

HK-354D
Heintz \& Kanfman Triole. Thra-higla-frequency amplitier. doubler and class B audio amplifier. Similar to $1 \mathrm{~K}-3 \mathrm{ai} \mathrm{C}$ except for amplification constant.

Characteristics:
 class B audio and r.f. frequency doubling.

HK-354F

Heintz \& K゙anfman triode. Ľlra high-frequency. (lass C. r.f. freutuency doubling and class B audio amplification. Similar to $1110.35 \pm$ in size.
Characteristies:
Filament roltage

lament

Amplitication factor
Normal plate dissipation.
Maximum dic. plate roltage
Maximum tic. plate curage

$.75 \mathrm{~m} . \mathrm{a}$
Class C R.F. Amplifter

1).C. grid soltage	1.000	2000	9500	3000	3 mon rolts
D.C. plate current	-85	-13.7	-203	-313	-36is volts
	300	295	260	20.	2 O ma.
Grid driving polier	\%	31		75	
Grid-bias loss	?	10	17	${ }^{45}$	270 watts
Power output, anpr	30i1	435	500	615	

R.F. Doubler:
D.C. Dlate voltage
1.C. grid toltage
D.C. Rrid toltare
D.C. plate current
D.C. grid current

Grid driving power
Grid-blas loss
Grid-blas loss
Porrer output. approximate

1.500	2000 volts
- 305	- 425 voles
200	$175 \mathrm{~m} . \mathrm{a}$.
75	75 m.a.
49	50 watts
30	32 watts
150	200 watts
2500	3000 volts
-35	-45 wates
50	$50 \mathrm{~m} . \mathrm{a}$.
300	344 in.a.
20000	20000 ohms
.5.50	7-5 watts

H-K
 Gridless
 Heintz and Kaufman HK55, HK155, HK255.

Unusual Features:
Control element is a gamma plate of tantalum.
Filament is between regular plate and gamma plate.
Uses: Oscillators, audio and radio frequency amplifiers. Nearly complete plate current variation may be secured without driving the control (gamma plate) element positive.
Tyog 255. Inter-Electrode Capacity:
Gamma Plate to Power Plate
Filament to Gamma plate
Filament to Power Plate
Type 255 Class A Audio Amplifier (Single Tube with no Grid (Gamma) Current):

HIGH OUTPUT CLASS A AUDIO AMPLIFIEA

C. Plate Voltage	1500	2000	2500	3000 volts
D.C. Grid Voltage	-350	-570	80	-1000 volts
D.C. Inate Current		5	20	17 amps.
Load Resistance	5000	6000	8000	20000 ohm
Output Power	60	125	175	180 wat
Fifficiency	12	25	35	36\%
Harmonic Distortion (Approz.)	5	5	5	\%

Type 255 Class B Audio Ampliffer (2 Tubes, "Grids" Swing to Zero and Draw no Current):

Type 255 Class B R-F Amplifier (Single Tube, no "Grid" Current):

D.C. Plat	2000	3000	5000	8000 volts
D.C. Grid Voltage	-800	1200	2100	3300 volts
D.C. Plate Current	120	155	142	97 ma .
Load TResistance	1500	2000	4500	12000 ohms
Plate Loss	188	347	490	500 watts
Power Input	240	465	710	775 watts
Power Output	52	118	220	275 watts
Effleiency ...		25	31	36\%

$150 T$Finac meditm nower triode for general use, either in r.f. or audio circuits. More efficient at high frequencies than tuhes with higher inter-electrode capacities (of equal power ratings).

Frequenty Range: 100% ratings up to 60 mc .
Note (1): Values of grid r.f. excitation vary over wide limits depending upon efficiency desired, circuit losses at higher frequencies. plate lnad impedance and circuit design. The driver should be designed to provide considerably more output than shown by the table, if possible.

Note (2): For keyed telegraphy, the above ratings may be exceeded by 50%. Higher grid bias and grid drive are desirable if more outpot is wanted.

Characteristics:

Ftament Voltare
Hlament Curage
5 to 5.25 volts
Fllament Current ...
Grid to Plate Capacity
Frid to Filament Caparity
.... 10 amps.

Plate to Filament Caparyty..
Normal Plate Hissipation 150 watts
Normal Plate Voltage. 3000 volts
Normal Plate Current 200 ma .
Base.................................. Standard 4 Pin 50 watt
Plate through top, grid through side of envelope.

T.C. Plate Voltare........... 1000	2000	3000 volts
D.C Grid Voltage-75	-160	-230 volts
Zero Sig. D.C. Plate Current (Approximate)	0	20 ma .
Maximum Sig. D.C. Plate Cur-		
rent (Approximate) 400	400	365 ma.
Load Resistance (IPlate in		
Plate) 4500	13.500	20.000 ohms
Driving Power 11	15	17 watts
Outnut Power 200	4.50	700 watts

Class C R.F Ampliffer Teiephony or Telegraphy:

D.C. Plate Voltage.... 1000	2000	3000 volts
I).C. Grid Voltage.... -200	-400	-600 volts
I).C. Plate Current. . . . 200	200	200 ma
I.C. Grid Current.... 35	35	35 ma .
Grid I)riving Power.... 14	21	30 watts
Grid Bias Loss 7	14	21 watts
["ower Input 200	400	600 watts
1'ower futput 150	300	450 watts
A.C. Load Mesistance . 2500	5000	8000 ohms
Mod. D.C. Load. 5000	10,000	15,000 ohms

T-155
Taylor general purpose triode, suitable for U.H.F. service down to 2 meters.

Characteristics:
Fllament Voltage 10 volts
Filament Current .4 amps.
Amplification Factor 20

Plate to Fliament Capacity................................ $1 \mu \mu \mathrm{fl}$
Maximum Plate Plasipation.. 3000 volts
Maximum D.C. Plate Current. 200 ma
Maximum D.C. Plate Current. .. 60 ma.

Plate through top, grid through side of envelope.
Class C R-F Amplifier:
D.C. Plate Voltago................ 2500 volts
D.C. Grid Voltage... 250 volts

Grid Drid Current... 50 ma.
Grid prias Loss
Grid Pias Loss . 12.5 watts

Power Output 370 watts

WL461Westinghouse ultra-high.frequency triode for medium and high power service. Special design of terminals for elements enables direct connection to elements, thus providing a very low inductance path to the tube electrodes. This construction, together with low interelectrode capacities. gives 5 megacycle performance at 50 megacycles and useful output up to 150 megacycles.

c^{\prime} 'aracteristies:

Frilament
Filament Current
5.0 volts
implification \qquad
Maximm M.C Onstant \qquad 2000 volts
Maximum A.C. Plate voltare (Bivis)5nn wolts Maximum D.C. Plate Current
.250 ma .
Jaximum Plate Dissipation
160 watts

Tantalum plate, all leads out through base in speelat short leads for diathermy operation.
Approximate Power Output on 50 Mic........... 400 watts

Federal Tel. Co. General purpose triode. Especially suitable for very high fre-
quencies.
Note: Grid excitation requirements vary greatlv. due to circuit design, plate load, and required efficiencies.

Frequency Range: 100% ratings up to 30 mc . Characteristics:

Filament Voltage		10 volts
Fllament Current		1 amps .
Amplification Fartor		
Grid to Tlate Caparits		$7 \mu \mu \mathrm{fl}$.
Frid to Filament Capacity		$3 \mu \mu \mathrm{ff}$.
Plate to Filament Caparity.		$2 \mu \mu \mathrm{fr}$,
Maximum rlate Dissination		175 watts
Maximum D. ${ }^{\text {c. Prate }}$ Soltage		3000 volts
Maximum II.C. Pate Current		\%on ma.
Maximum In.C. Grfd Current		. 00 ma.
Class C R-F Amplifer:		
D.C. Plate Voltage...	2000	3000 volts
n.r. Frid Voltare...	400	-600 volts
D.C. Plate Current...	200	200 ma.
nre ripld Current		
(Annrox.)	40	40 ma .
Grid Drive	2 F	34 watte
Frid Rlas Toss	1 f	24 watts
Power Input	400	600 watt
Power Output	260	480 watta

HF-300
Amperex Gen eral purpose triode for bigb frequency and U.H.F. amplifiers or oscillators.

Note: Grid excitation requirements vary greatly due to circuit design, plate load, and required efficiency.
Frequency Range: 100% ratings up to 45 mc .

Characteristics :

Filament Voltage .. 11 to 12 rolts
Filament Current
1 to 12 rolt
Amplification Factor
Grid to Plate Capacity
Grid to Filament Capacity $6.5 \mu \mathrm{~m}$.
Pate to Fllament Capacity . $1.4 \mu^{\mu \mu \mathrm{f}} \mathrm{d}$.
Maximum Flate Dissipation.
Maximum D.C. Plate Voltage...
Mayimum D.C. Plate Voltage.
Mazimum D. C. Prate Current 2500 rolt.
Maximum D.C. Grid Current .. 75 ma .
Base... 4 ma.
Plate through top. grid through side of envelope.

Class C R-F Amplifier

D.C. Plate Voltage.	1500	2500 volte
1).C. Grid Voltage	200	-300 volte
D.C. Plate Current	275	275 ma.
D.C. Grid Current	60	60 ma .
Grid Driving Powe	27	33 watt
Grid Blas Loss.	12	18 watts
Power Input	420	700 watts
Power Output	260	500 watt

814Taylor H.F. Triode. Class C r.f. am plifier of high output with relativel; low grid-driving requirements.
Frequency Range: 30 to 2 mc .

Characteristies:
Fllament Voltage
10 Folts
Filament Current ...
48 mps.
Amplification Factor
$.13 \mu \mu \mathrm{p}$.
Grid to Plate Capacity....
Grid to FIlament Capacity
$.7 \mu \mu \mathrm{fd}$.

Maximum D.C. Plate Voltage.
Maximum D.C. Plate Current
300 ma
Maximum D.C. Plate Current.
.300 ma

Plate through top of envelope.
Class C R-F Amplifer:

D.C. Plate Voltage	0 rolts
D.C. Grid Voltage	400 volts
D.C. Plate Current	300 ma .
D.C. Grid Current	45 ma .
Grid Driving Power	25 watts
Grid Bias Loss.	18 watts
Power Input	00 watts
Powter Output	

822
Taylor High.Mu Triode. Class R audio amplifier or modulator. May be used in Class C r.f. service.
A.F. Driver: Push-pull parallel 2A3 tubes with

Grid-Neutralized Circuit for HF-300 Amplifier
input transformer ratio of $\frac{\text { Primary }}{1 / 2 \mathrm{sec} .}=1.6$.
Characteristics:
Filament Voltage

Grid to Plate Capacity..

Plate to Filament Capacity............................... $6 \boldsymbol{\mu} \boldsymbol{\mu d}$.
Maximum Plate Dissipation. 200 watts
Maximum D.C. Plate Voltage............................ 2000 rolts
Maximum D.C. Plate Current.......................... 300 ma.
Maximum D.C. Grid Current... 60 ma .

Plate through top of envelope.
Class B Audio Amplifer (2 Tubes):
D.C. Plate Voltage................................... . . . 2000 rolts
D.C. Grial Voltage (Approx.) - 75 Folt

Zero Signal D.C. Plate Current........................... 50 ma.
Maximum Signal D,C. Plate Current. 450 ma.
Load Impedance (Plate to Plate).................. 9000 ohms
Power Output 500 watts
Driving Power ... 30 watts
Class C R-F Amplifler:
D.C. Plate Voltage... 2000 rolts
D.C. Grid Voltage. - $2 \stackrel{2}{2} 0$ volts
D.C. Plate Current .. 300 ma
D.C. Grid Current . 50 ma

Grid Driving 1'ower. .
Grid Bias Loss . 11 watts

Taylor U.H.F. Triode, suitable for Oscillator or Amplifier serv. ice. Similar to HF-300.
Note: Grid driving requirements vary widely under different operating conditions.
Characteristies:

1 Kw. P.P. Amplifier
Class C R-F Amplifier:
11.C. Plate Voltage..................................... 2500 volts
1.C. (Jrid Voltage..................................... 300 volts
1.C. Plate Current . 300 ma. 50 ma.
(irid J)riving Jower (Anprox.) 24 watts
Grid Blas Loss.. 15 watts
lower Input
.750 watts
Jower Gitput
.560 wat!

250TLEinac. U.II.F. Triode with medium amplification factor. Designed for diathermy service and for replacement of older type 150 T Eimac.

Characteristics:	
Fllamient boltage	(1) . 3.1 volts
Filament current	. 10.5 amps .
Amplitication factor	... 18
Grid-to-plate canacits	$3.5 \mu \mu \mathrm{fd}$.
girid-to-flament capacity	$3.0 \mu \mu \mathrm{fd}$.
Jlate-to-filament capacity	$0.5 \mu \mu \mathrm{f}$.
Maximum d.c. plate voltage	3000 volts
Maximum d.c. plate current	$.350 \mathrm{~m} . \mathrm{a}$.
Maximum d.c. grid current	$50 \mathrm{~m} . \mathrm{a}$
Normal plate disslpation	250 watts
Hase: Stanatard 50 watt. side of envelope.	erlil throuslı

Class C R.F. Amolifier:

Class C R.F. Amo			
I.C. nlate voltage	1000	2000	3000 rolts
D.C. plate current	300	350	330 m .a.
1).C. Mrid current	45	4.5	$4{ }^{\circ} \mathrm{ma}$ a.
J. C. grid bias	200	-400	-600 volts
Approximate grida rlriving nower	11	25	33 watts
Girid blas loss	9	18	27 watts
Approximate power output	200	500	750 watts
Class B. Audio Amplifier:			
I.C. nlate voltage	12.50	2000	3000 volts
Load impedance, mate-to plate	3280	6000	12400 ohms
Pouter outbut. \geq tubes.	540	900	1180 witts

250TH
audio service.

Characteristies,
Filament voltuge
F^{2} ilament current
Amplification factor
Eimac. High-mu U.H.F. Triode. Designed primarily for r.f. amplification and class B

Western Klectric Triode, designed for mod nlators in radiotele.
phone transmitters.
Characteristies:
Filament Voltage ... 14 volts
Filament current
6 amps.
D. ${ }^{\prime}$ blate (arment.

300 ma .

Mutisal Conductance
7500 mhos
Clasz-A Outnut. 2 Tubes
.100 watts
.000 watts

Frequency Range: 100% ratings up to 3 mc . 50% at 15 mc .

Note: Grid excitation requirements vary with plate impedance, circuit design and circuit losses, so the driver stage should be able to supply approximately twice as much output as listed for grid drive and bias loss.

Characteristies:

Filament Voltage	1 volts
Filament Current	5 amps .
Amplification Factor	. . . 25
Grid to Plate Capacity	15 Hefd.
Grid to Filament Capacity	$2.5 \mu \mu \mathrm{fd}$.
Plate to Filament Capacity	$2.3 \mu \mu \mathrm{fd}$.
Maximum l'ate Dissipation	250 wattr
Maximum D.C. Plate Voltage	2500 volts
. Iaximum D.C. Plate ('urtent.	275 ms.
Maximum D.C. Grid Current.	. 80 ma .
Jage	250 watt
I'late through top.	

late-to-filament panacity
$.0 .3 \mu \mu \mathrm{fl}$.

Base: Standard 50 -watt. Griol through side. plate through top of encelope.

Class C R.F. Amplifier:			
1). C. plate voltage	1000	2000	3000 rolts
1).C. plate current	300	350	$330 \mathrm{~m} . \mathrm{a}$.
1).C. Rrid current	8.5	号	55 m .a.
1).C. krid bias	-70	-140	-210 volts
Approximate grld diving			
power	8	16	25 watts
Grid bias loss	3.9	7.7	11.6 watts
Approximate polver	outnut... 200	500	750 watts

Class-IB 13utput. : Tubes

204ATriode (RCA-Amperex-(${ }^{\circ}$ nited). Oscillator or amplifier for frequencies below 3000 KC .

2000 volts
Class B Modulator or A.F Amplifier:

R-F Service				
	Class B TO. lephony	Plato Mod. To. Iephony		ass C legraphy
D.C. Plate Voltage.	2000	1800	1500	2500 volte
D.C. Grid Bias.	-20	-250	-150	-200 volta
D.C. Piate Current.	160	250	250	250 ma .
D.C. Grid Current.		${ }^{6} 0$	50	50 ma .
Power Output (Approx	100	300	225	400 watts
Grid Driving Power.		35	17	22 watts
Grid Bias Loss		17.5	7.5	10 watt
Power Input	140	450	375	695 watt

Class B. Audio Amplifier:
1). C. plate voltage....... l.oad impedance. plate-10-
plate
Bower outbut 2 tubes $\begin{array}{cccc}.260 & \pm 200 & 1180 & \text { watts } \\ 350 & 630 & 12400 & \text { ohms } \\ \text { botentials up to } & 1400 \text { volts. }\end{array}$

1 Kw. R F Amplifier

WE-212Ebelow 1500 KC . Normally used in audio circuits.
Frequency Range: 100% ratings up to 1.5 mc . 33% plate voltage ratings at 4.5 mc .

Characteristies:		
Elament Voltage . 14 volt		
Fllament Current		6 amps.
Amplification Factor . 16		
Grid to Plate Capactiy 18.8 миfd.		
Grid to Filament Capactiy14.9 usfd.		
Plate to Filament Capacity 8.6 . $6 \mu \mathrm{fd}$.		
Maximum Plate Dissipation...................... . 275 watta		
Mazimum D.C. Plste Voltage. 3000 volts		
Siaximum D.C. Plate Current. 350 ma . Marimum D.C. Grid Current 75 ma.		
Speelal W.E. base.		
Class B Audio Ampliner (2 tubes) :		
DC. Plate Voltage...................... 1500 . 2000 volts		
D.C. Grid Voltage.................... -75 - 105 rolts		
Maximum Signal D.C. 1'late Current... 600 600 ma.		
Zero Slgnal D.C. Plate Curreat....... $80 \quad 100 \mathrm{ma}$.		
Lod Resistance (Plate to l'late)....... 5900 . 8000 ohms		
Power Output . 500 . 650 watts		
Driver Power . 50.50 fatts		
R.F Servite		
Class B R.F	Class C Telephony	Class C
O.C. Plate Voltage......... 2000	1500	2000 volta
D.C. Grid Voltage. - 100	-200	-250 volt
D.C. Plate Current. 200	306	300 ma .
D.C. Grid Current.	60	60 ma .
Grid Drive (Approx.)	21	25 watts
Grid Blas (Loss)	12	15 watt
Power Input 400	450	600 watts
Power Output 135	300	400 watt

300T

 Eimac. General purpose "Low C" triode for audio and high frequency amplifiers.Frequency Range: 100% ratings up to 40 mc .
Note: Values of grid r.f. excitation vary over wide limits so this should be taken into account when designing the driver stage.

1-K.W. AMPL.IFIER

Characteristies:

Filament Voltage			
Filament Current 11.58 smps			
Normal Plate Dissipation.......................... . 300			
Ampliteation Factor (A			
Maximum Plate Votage................................. . 35.			
Maximum Grid Current. 75			
Grid to Plate Caparity			
Grid to Filament Caparity			
Base. standard 4 pin 50 watt Iliste through top, grid through gide of envelope.			
Class B Audio Amplinter (2 tubes) :			
D.C. Plate Voltage........ 1000	2000	3000	3500 volts
D.C. Grid Voltage (Ap.), -60	-135	-200	-240 volts
Zero Simnal D.C. Plate			
Current (Appror.)	40	40	0
Max. Signal D.C. Plate			
Current 700	700	700	600 ma .
Coad Reslatance (Plate to			
Platel 2800	8500	10.000	13.000 ohms
Driving Power 30	38	48	46 watts
Output Power 400	950	1500	1620 wat

HK-654Heintz and Kaufman Tri. ode for Class B, Modula. tor and high-frequency RF
Service. Especially suitable for Class B RF and grid modulated telephony. Tantalum plate and grid. 100% ratings up to 15 MC ; reduced ratings above 30 MC .
Characteristies

WE-270A

Western Electric general purpose triode for broadcast
station operation in ligh frequency transmitters.
Frequency Range: 100% ratings up to 7.5 mc . 33% plate voltage ratings at upper limit of 22.5 mc . Characteristics:

Filament Voltage	10 volts
l^{2} lament Current 0.75 amps.	
Amplification Factor	
Grid to Plate Capacity	
Grid to Filament Capacity	18 м $\mu \mathrm{fd}$.
Plate to Fllament Capacty	$2 \mu \mu \mathrm{fd}$.
Maximum l'late 1)issipation.	350 watts
Maximum D.C. Plate Voltage	3000 volts
Maximum D.C. Plate Current	375 ma .
Maximum DC Grid	75 mas .

Driver Power

R-F Service

If. Plate Voltege	Class B R.F 3000	Class C Telophony	Class C Telegraphy
IV.C. Grid voltage	-180	-300	3000 volts (max.)
13.C. Plate Current.	175	300	350 ma .
IV.C. Grid Current.	70	70 ms .
Grid Driver (Approx	\ldots	32	37 watts
Grid lias Lass.		21	11 watts
Power Input	525	675	1050 watts
lower Output	175	450	700 watts

861RCA Screen Grid RF. Amplifier for normal operation up to 20 mega. cycles.
Frcquency Range: 100% ratings up to 20 mc . 75 \% at 30 mc .

Note (1): Grid driving power requirements vary over wide limits, depending upon load impedance and circuit losses.

Note (2): In modulated operation (plate type) the screen voltage should be modulated simultaneously with the plate voltage. Grid modulation characteristics are approx. similar to Class B r.f. operation, except for grid bias.
Characteristics:

Cilament Voltage 11 volts	
Fllament Current	10 amns.
Amplification Fartor 30 .	
Grid to Plate Cap	ก. 1 แमfत.
Input Capartty	$11.5 \mu \mu \mathrm{fl}$.
Output Capacity	$11 \% \mu \mathrm{fl}$.
Maximum Plate Voltase	35 nn volts
Maximum Plate Dissipation	400 watls
Maximum Screen Dissination	35 watts
Maxtmum D.C. Plate Current	350 ma
Maximum D.C. Grid Current.	

831RCA and Amperex Oscillator and r.f. amplifier for high frequency operation. Frequency Range: 100% ratings up to $20 \mathrm{mc} .55 \%$ at 75 mc
Note: Grid driving requirements vary greatly under different values of load impedance, neutraliz. ing circuits and circuit losses which vary with frequency.
Characteristics:

F Hament Voltage	11 colts
Filament Current	10 mmp .
Amplitication Factor	14
Grid to Plate Capaeits	. 0
Grid to Fibament (apacity	3.8 н μ
Plate to Filament Capacity	1.4 нилd.
Maximum l'late [issipation	00 watts
Maximum I.C. Plate Voltage	500 volts
axinum D.C. Prate	

	R-F Ser	rvice		
		Class C		
		Plate		
	Telephony	Tolephony		$\begin{aligned} & \text { lass } \\ & \text { eqraphy } \end{aligned}$
D.C. Plate Voltage	3500	$3000 *$	2000	3500 volts
D.C. Grid Voltage.	- 120	-500	$\cdots 00$	-400 volts
D.C. P'late (current.	145	200	300	275 ma .
D.C. Grid Current.	...	60	45	40 ma .
Grid loriving Power.		50	25	30 watts
Grid Bias Loss		30	9	16 watts
Power Input	510	600	800	965 watts
Power Output	160	375	400	600 watts

- (Max.)

849I'riode. RCA-Amperex-United. Fspecially suited for Class B modulators. May be used in Class C as well as Class B r.f. amplifiers.

Frequency Range: 100% ratings up to 3 mc . 50% at 15 mc .

Characterlstics:		
Filament Voltage		
Filament Current		
Amplification Factor		
Frid to Plate Caparity		
Plate to Filament Caparity............................... 3 и $\boldsymbol{\mu}^{\text {¢ }}$		
Maximum Plate Dissipation		
Maxmum Plate Dissipation (T		
Maximum D.C. Plate Voltage		000
Maxinum D.C. Plate Current. 350		
Maximum D.C. Grid Cur		
Plate through top of envelone.		
Class B Modulator or A-F Amplit		
I.C. I'late voltage.................. 2000 2500		
Grid Blas (Approximate)	-105	-130 voles
Zero Sig. Plate Current (Per Tube).. $7 \quad 10 \mathrm{ma}$		
Maxlmum Sig. Plate Current (Per		
Tube)	325	275 ma .
Load Resistanee (Plate to Plate)	7040	11.480 ohms
Power Output		920 watts
Class B-R-F Amplifter:		
D.C. Plate Voltage	1500	2000 voles
D.C. Grid Blas		-9.5 volts
D.C. Plate Current	340	
Carrier Output		175 watts
Plate Modulated Class C. Amplifter:		
D.C. Plate Vollage	1500	1800 volts
D.C. Grid Bias		300 volts
D,C, Plate Current	300	300 ma .
Power output		390 watts
Class C Telegraphy:		
D.C. Plate Voltage	1500	2000 volts
D.C. Grid Blas		200 rolts
n.c. Plate Current	300	300 ma .
Power Output	300	450 watts
D.C. Grid Curren	75	75 ma .
Grid Driving Power (Appros	32	34 watts
Grint Biga Laga , ..	13	15 watt

450TH
450TLEimac high power triodes. The 4.50 'TH has an amplification factor of 32 , the 450 TL has an amplification factor of 16. These tubes are especially designed for broadcast and commercial transmitters. Tantalum plates and grids.

500TEimac general purpose triode for audio and high-frequency amplifiers. Its low inter-electrode capacities allow effective r.f. amplification at high radio frequencies.

Frequency Range: 100% ratings up to 40 mc .
Note: Values of r.f. grid excitation vary over wide limits so this should le taken into account when designing the driver stage.
Characteristics:
Fhament Voltage ... 7.5 volts

Ampliftcatlon Figetor (Average) ...
Maximum Plate Voltage …….......................... 4000 volts

Maximum Plate Current
. 600 ma .
Grid to plate cupaty $1 \div 5 \mathrm{ma}$.
Grid to Dlate Capacity $4.5{ }^{\mu \mu \mathrm{Pd}}$.
 base piate through oon grid through side of envelope. plate through top, grid through side of envelope.
Class B Audio Amplifier (2 Tubes):

C. Plate Voltage	15	2000	3000	4000 volts
D.C. Grid Voltage (Approx.)	-110	-150	-225	-310 volts
Maximum Signal D.C. Plate Current	1200	1150	900	800 ma.
Load Resistance (plate to plate)	2400	3000	6800	11300 ohms
Grid 1 Priving Power	90	90	85	80 watts
Power Output	900	1200	1800	2300 watts

F-100A

Federal Tel. Co. general purpose triode for high frequency transmitters.
U'seful up to 100 mc .

es :	
Filament Voltage	11 volts
Filament Current	5 a
Amolification Factor	
Grid to Plate Capaclty 10 品的.	
Grid to Flament Capacity	$4 \mu \mu \mathrm{md}$.
Ilate to Filament Capacity......................... $2^{2}{ }^{\mu \mu \mathrm{Pd}}$.	
Maximum D.C, Plate Voltage 40.400 .300 molts	

887, 888 RC.I l"IF water. cooled triodes. De signed for use as os cillators or amplifiers in the ultra-high frequency spectrum. Fither tuhe may le used at full input as an oscillator up to 240 Mc. or as an amplifier at full input to 300 Mc . Operation at higher frequencies is permissible with reduced inturt. The characteristics of the 88 : are given; the se of the 888 are almost identical except that the latter tuhe has an amplification factor of 30 and ha- slighty higher interelectrode capacities.

Characteristies:			
Filament voltage 11 volt			
Filament current			
Amplification factor			
Plate dissipation (max			600 watts
Direct intereleetrode capacities:			
Grid-flament . 2.5 尘id			
Type of coolfng..................... Water and forced			
Class B R.F. Amplifter :			
D.C. plate roltage (max.) 3000			
D.C. plate current (max.) 000 m.a.			
Plate Input (max.)			0 wats
Typical operation:			
D.C. plate roltare	9.10	3000	solts
D.C. grid voltage	250	-300	volts
Peak r.f. grid voltage	290		volts
D.C. blate current			
D.C. grid current			m.a.
Driving power	4.3		watts
Power output	165		wat

Class C Modulated Amplifler-Modulation factor of 1.0 Maximum Conditions:
D.C. plate voltage (max.) 2000 volt

pige thput (max)
plate dissipatlon
400 wat
Class C. Amplifer-C.W. Tetegraphy Maximum Conditions: D.C. plate roltage 3000 volts
 D.C. plate curren *-"... 400 m.a. ple. grid current
l'late dissipation
75 m.a
1000 watts

851
RCA-Amperex-United. High power air cooled triode for AF or RF service.
Frequency Range: 100% ratings up to 3 mc 50% at 6 mc .

Cherateteristies:

Fllament Voltage	Its
Fllament Current	5 a
Amollfication Factor	
Grid to Plate Capacits	$5 \mu \mu$
Grid to Filament Capacity	30 mafd.
Plate to Filament Capacity.	$7{ }^{\mu} \mathrm{ffd}$.
Maximum I'late Dlsalpation	50 watts
Maximum D.C. Plate Voltage	2500 volts
Maximum D.C. Plate Current	1 Amp .
Maximum D.C. Grid Current	200 ma .
Base	50 wat
Plate through top of envelop	

HK-1554

Heintz \& Kaufman general purpose triode. Designed for commercial transmitters in the high frequency range.

Note: Air-cooled plate. With forced ventilation, plate dissipation may be increased to 1500 watts.

Characteristies:

Filament Voltage	11 volts
Filament Current	7 mmps .
Normal Plato Dissipation	50 watts
Amplification Factor	4.5 watts
Grid to Plate Capacity	11 - $\mu \mathrm{fd}$.
Grid to Filament Capacity	$5.5 \mu \mu \mathrm{fd}$.
Plate to Filament Capacit	$1.2 \mu \mu \mathrm{fd}$.
Bape	cial HK
Plate throush top of en	

Class C Operation Modulation):	(3000 Max.	Plate	Voltage	for Plato
D.C. Plate Voltage	0500	3000	4000	5000 rolis
D.C. Grid Voltare	600	-810	-700	-760 rolis
1).C. I'late Current	1.00	.930	1.00	1.00 amps .
D.C. Grid Current.	110	95	104	95 ms .
Grid Driving Jower	117	125	124	120 watts
Grid Bias Loss	66	58	73	79 watts
Load Resistance	1190	1480	1960	2500 ohms
Power Input.	2500	2780	4000	5000 watts
Power Output	1750	2030	3040	3950 watts
Plate Efficiency	70	73	76	79\%
Plate Loss.	750	850	960	1050 watts

WE-251A

Western Electric H.F. triode broadcast or police transmitter tube for r.f. or a.f. service.
Frequency Range: 100% ratings $u p$ to 30 mc . 66% plate voltage ratings at 50 mc .

Characteristits:

Filament Voltage	10 volts
Filament Current	16 am
Amplification Factor	... 10.5
Frid to Plate Capacity	$8 \mu \mu \mathrm{~d}$ d
Grid to Filament Capacity	$0 \mu \mu \mathrm{p}$
Plate to Flament Capacity	$6 \mu \mu$
Maximum Plate Dissipation	watts
Maximum J.C. Plate Voltake	000 volt
Maxtmum J.C. Plate Current.	ma
Maximum I.C. Girid Current	0 ms

Air-cooled tube
R-F Service

air-cood	R-F Service		
	$\underset{\substack{\text { Class } \\ \text { R. }}}{\substack{\text { B }}}$	Class C Telephony	Class C Telegraphy
D.C. Plate Voltage	3000	2250	3000 volts*
D.C. Grid Voltare	-300	-4i0	-550 volts
D.C. Plate Current	400	400	600 ma .
Power Input	1200	900	1800 watts
Power Output	400	600	1200 watts

- (Maximum).

Western Flectric H.F. triode broadcast or police station operation for AF or RF service.

Frequency Range: 100% ratings up to 20 mc . 50% plate voltage ratings at 40 mc .

Charateristies :

Fliament Voltage	10 volts
Filament Current	21 amps.
Amnlification Factor	10
Grid to Plate Capacity	$8 \mu \mu \mathrm{fd}$.
Firtd to Filament Capacits	$15 \mu \mu \mathrm{dd}$.
Plate to Filament Caparity	$7 \mu \mu \mathrm{fd}$.
Vaximum Flate IHissipation	0 watts
Marimum D.C. Plate Voltage	00 volts
Maximum D.C. Plate Current	00 ma .
Vaximum D.C. Grid Current	

Class $\mathbf{8}$ Audio Amplifter (2 Tubes):

	R-F Serviee		
	$\begin{gathered} \text { Ctass } \\ R-F \end{gathered}$	$\begin{aligned} & \text { Class C } \\ & \text { Tele. } \\ & \text { phony } \end{aligned}$	Class C Tolegraphy
D.C. Plate Voltage	3000	2250	3000 volts
D.C. Grid Voltage	-325	-450	-600 volts
D.C. Plato Current	600	600	800 ma.
Power Input	1800	1350	2400 watts
Power Output	600	900	1600 wattg

HK-3054
Heintz \& Kaufman general purpose triode for commercial application. Largest air-cooled tube made.

Note: Plate dissipation may be increased to 3 KW by forced ventilation, air cooled H.1", tube construction.

Characteristics:

Filament Voltage
Filament Voltage
18 volts
50 ampa.
Normal I'late Dissipation Amplification Factor
Grid to Plate Cadacity
.1 .5 kv
Grid to Fllament
Grid to Filament Capactiy 25 mpp.
plate to Fllament Capacity.............................. 5 . $\mathrm{M} \mathrm{\mu} \mathrm{fd}$,

Maximum 1.C. Ilate Current 2 amps.
Marimum D.C. Grid Current .
.5 ampe.

RECTIFIERS

866-866A-872-872A

Note: The 86f-A and $872 . \mathrm{A}$ rectifiers are limited to 5,000 peak inverse voltage if the temperature near the base of the tube is below $15^{\circ} \mathrm{C}$, or above $50^{\circ} \mathrm{C}$.

Uses: Half wave rectifiers, of the mercury vapor type, for high voltage plate supplies in radio transmitters. Two or four tubes niay be connected in full wave rectifier circuits. (See power supply chapter.)

Ma.r. Peak inverse voltoge is the highest peak voltage that the rectifier tube can safely stand in the opposite direction to which it is supposed to pass current. In a single phase, full wave choke input circuit, the peak inverse voltage is approx. 1.4 times the RMS voltage applied to the tube. In a single phase, half wave circuit with condenser imput, the peak inverse voltage may be 2.8 times the RMS value.

Max. peak plate curront is the highest value of peak current that the rectifier tube can safely pass. With large choke inductance input to the filter, the peak current is not much higher than the load current. With condenser input, the peak current may be four times as high as the load current.

* Varimim

866 Jr.Taylor 'lube Co. Mercury vapor half wave rectifier for operation in full wave or bridge rectifier systems. Intermediate in load capability between the type sifi and 83 rectifiers.

Characteristies:
Filament Voltag
2.5 volte

Filament Voltage
2.5 amps. Maximum 1tMs A.C. Voltage .. 1250 amps.
 13ase. Standard 4 pin. UX., isolantlte

RK-19, RK-21, RK-22

Raytheon Rectifiers. Intermediate between 83 and 866 rectifiers, but of high vacuum type construction. Designed for 1000 voit DC supplies.

Characteristics:

Characteristics.	Full Wave RK-19	Half Wave RK-2I	
Heater Voltuge	7. 5	$\underline{2.5}$	2.5 volt
Heater Current	2.5	4.0	8.0 amp.
Masimtm ItMs	Voliago I'er 1'lato.		. 1250 voltif
Maximum Peak	Inverse Voltage		. 3500 volts
Maximum Peak	Current 800 ma .
Maximum D.C.	Load Current (with	d. Inp	. 200 mas.

866B
Taylor mercury-vapor half -wave rectifier for operation in fullwave or bridge rectifier systems.
Intermediate in load capacity between 866 and 872A rectifiers.

Reactivation of Transmiting Tulbes

Thoriated tungsten type transmitting tubes that have had their filaments temporarily "poisoned" or "paralized" by insufficient filament voltage or temporary overload can be permanently reactivated by "flashing" the filament at a voltage considerably higher than the rated filament voltage and then "cooking" the filament for a period at slightly more than the rated filament voltage. No voltage is applied to any of the other elements during either the "flashing" or "cooking" processes. An attempt at reactivation is a waste of time if gas has been liberated during the overload.

Tubes that have lived a long and useful life, tubes that have "scen better days," can be only temporarily reactivated. The emission will fall off worse than ever after a few hours use. In buying used tubes it is wise to make certain you are not purchasing reactivated "duds," as their apparently good emission will be short lived.

If you have an expensive tube that has been "paralized" but is otherwise in good condition (in other words, if the tube is not gassey and has seen only a fraction of its expected useful life), write to the manufacturer for specific reactivation data on that particular type before attempting to "bring it back."

Filament voltmeters can be surprisingly inaccurate, especially when mounted on a steel panel. With expensive tubes it is highly important that the filament voltmeter be checked carefully for accuracy. Excessive filament voltage will greatly shorten the life of a tube. Insufficient voltage may result in the filament's being paralized. Continued deficiency in filament voltage is just as clamaging to a tube as is excessive filament voltage.

Chapter 10

TRANSMITTER THEORY

- Introduction

EARLIER in this text it was indicated that all electrical circuits conducting alternating currents radiate some electrical energy in the form of radio, or electromagnetic waves. The amount of this radiation depends upon the ratio of the dimensions of the circuit to a wave length. Thus it can be seen that with higher frequencies, and consequently shorter wavelengths, it becomes increasingly possible to radiate more and more electrical energy. Physical limitations in raliator dimensions prevent the efficient radiation of truly low-frequencies; an efficient radiator of ordinary 50 or 60 cycle currents would require circuit dimensions to be thousands of miles in length. Radio frequency radiators however, may be measured in feet. The transmitting antenna is just such a radiator.

The amount of radiated encrgy released from any antemna is proportional to the square of the radio frequency current flowing in that antemna. Resonating the antemna circuit to the frequency of the wave to be transmitted greatly increases this current. This, then, ordinarily is attempted. Antenna problems are considered more fully in a later chapter. The transmitter, essentially a generator of the radio frequency power, is considered here.

Various methods have been used in the past to generate r.f. power. Toclay, however, such power virtually always is obtained from racuum tube oscillators and amplifiers. The transmitters are of two general types: c.w. (continuous wave) or code transmitters; and 'phone, or voice transmitters. We shall consider them in that order.

- The C. W. Transmitter

The essential portions of a c.w. transmitter are the crystal oscillator, frequency doubler or doublers, and r.f. amplifiers. The crystal oscillator determines the frequency in the short-wave spectrum at which the transmitter will operate; frequency doublers multiply the relatively low frequency of the crystal oscillator when high-frequency operation is desired; the r.f. amplifier increases
the output of the source of frequency control to the desired value before comection to the antenna circuit. Intermediate r.f. amplifiers are called "butfer amplifiers"; their use is necessary where the output of the crystal oscillator or frequency doubler is insufficient to drive the final r.f. amplifier for normal operation. The final r.f. amplifier stage is a converter of direct current power into radio-frequency power, which then is supplied to the antema system for transmission of signals.

- Circuit Analysis

A simple c.w. telegraph transmitter is shown schematically in figure 1 . The crystal oscillator portion of the transmitter consists of the tuned circuit $L_{1}-C_{3}$, the type-48 pentode tube, various resistors and condensers, and the quarti crystal. The quartz crystal has pieso-electric properties; i.e., the crystal will vibrate physically at a resonant frequency as long as some electrical stimulus is applied to it. This stimulus is obtained from r.f. feedback through the plate-to-grid interelectrode capacity of the type-47 tube. 'The tuned circuit $L_{1}-C_{3}$ is tuned to a point near resonance. A surge, such as is obtained when the plate voltage is applied to the type-47 tube, will start an oscillation which is controlled by the frequency of the quartz crystal. Only a small portion of the oscillating energy in the plate circuit $L_{1}-C_{3}$ is needed to maintain the crystal in oscillation. the main portion of the power output can be used to drive the grid circuit of a bufferamplifier, as shown in figure 1 , or to drive the grid circuit of a frequency cloubler, as explained later in this chapter. The actual frequency of the crystal-controlled oscillator is either very slightly higher or lower than the exact mechanical resonant frequency of the quartz plate. The type of feedback circuit determines which side of resonance this oscillation will occur; the actual difference of frequency from the resonant point is very small and practically constant for various outputs and plate voltages applied to the oscillator tube.
The quartz crystal circuit acts as a sharply tuned resonant circuit which has a
very high "Q." The latter is an index of the ability of the crystal to maintain constant frequency of oscillation. The " Q " is much higher for the crystal than for an ordinary tuned circuit. A crystal-controlled oscillator therefore has much better frequency stability than self-excited oscillators of the tumed-grid-tumed plate, I/artley or Co!pitts variety.
of pentodes suitable for crystal oscillator service. The main requirement of the tube is that very little grid drive or r.f. excitation be necessary to maintain stable oscillation in the tuned plate circuit $L_{1}-C_{s}$. As a general rule, pentode or tetrode tubes require and have less r.f. feedback into the quartz crystal circuit than is needed with triode tubes.

CRYSTAL OSCILLATOR - BUFFER - AMPLIFIER CIRCUIT
Figure 1

Each of the various resistors and condensers in the oscillator circuit of figure 1 serves a separate and distinct function. Resistor R_{1} provides a path for the direct current component in the grid circuit of the type-tr tube. When the tube is oscillating, the grid circuit is positive with respect to the filament for a portion of each cycle, which catuses a flow of electrons to the grid electrode; the resultant pulsating direct current flows through the resistance K_{1}. The direct current cannot flow through the quartz crystal because the crystal, acting like a condenser in this respect, prevents direct current flow. The current which flows through R_{1} causes a voltage drop proportional to the current, and provides a negativ: grid-bias for proper oscillator action of the type-47 tubc.

The center-fap resistor R_{1} in the type-to tube circuit supplies a balanced point of connection to the filament ; the filanent normally is operated from an alternating current source and the 60 -cycle variation at the center point of the resistor R_{4} is zero and does not introduce a.c. hum into the output of the oscillator.

The type-4: tule is only one of a number

The screen-grid in a tetrode or pentode tube tends to shicld the plate circuit electrostatically from the control-grid circuit, and also causes the tube to operate with less grid excitation than that used by a similar tube without a screen-grid. This screen-grid must be bypassed to the filament (or cathode) of the tube, which, in turn, is comected to a common ground and negative I3 supply. The sereen-grid of a type-47 tube should be operated at a positive potential of from 100 to 12.5 volts, and this voltage is obtained from the 350 volt plate supply by connecting two resistors (R_{2} and R_{3}) across the positive and negative terminals of the 350 -volt sumply in the manmer oi a voltage divider.

The tuned plate circuit, $I_{1}-\left(\begin{array}{c}\text { s. must } \\ \text { be }\end{array}\right.$ connected from the plate to the filament of the vacuum tube. This is accomplished by means of the condenser C_{2}, which bypasses the r.f. to filament. yet at the same time prevents the plate circuit from being shortcircuited. The plate circuit r.f, power output ranges from 2.5% to 50% of the d.c. power input for different types of crystal oscillators. A meter or meter jack should be connected in the plate circuit of the
crystal oscillator to aid in tuning of the circuit.

- Buffer-Amplifier

The r.f. power from the crystal oscillator usually is amplified to secure greater output. A large variety of tubes can be used for amplifier circuits. For the purpose of illustration, a type-10 triode tube is shown in figure 1. This tube has its grid to filament circuit comected across part of the plate eircuit of the crystal oscillator. The filament of the type- 10 circuit is connected to the common ground by means of a cen-ter-tap resistor $R_{\text {s }}$, or by a center-tap connection on the filament transformer proper. The filament voltage of a type-10 tube is three times as high as that required for a type-47 tube, and the resistance R : therefore is made from three to five times as high in value as the 47 filament resistor. This increase in resistance adds an appreciable amount of impedance to the flow of r.f. current from the center point of R; to the actual filament of the type-210 tube. To provide a low impedance path for r.f., two filament bypass condensers C_{B} should be connected from filament to ground. The grid of the amplifier tube is connected to the oscillator circuit $L_{t}-C_{3}$ through a coupling condenser, C_{4}, which isolates the grid circuit from the oscillator plate supply, and yet enables r.f. current to flow to the grid circuit. The position of the tap on the coil I_{21} and the capacity of condenser C_{4}. determines the amount of grid circuit drive. The closer this tap is to the bottom end of coil I_{-1} (which is at r.f. gromend potential) the lower will be the r.f. voltage on the grid of the amplifier tube.

The grid circuit of the amplifier requires actual power to operate the tube in the usual form of Class-C operation. When the grid circuit is driven positive it has an average finite value of impedance, and this forms the output load for the crystal oscillator.

The grid of the type-10 amplifier tube for Class-C operation must be biased to more than cut-off voltage, which is a function of the plate voltage and amplification constant of the amplifier tube. The rectified current flows through the r.f. choke, resistor $R_{\text {B }}$ and meter $M .4$: to ground, the latter being the return circuit to the filament. This rectified current flowing through R_{n} must be sufficient to hias the amplifier tube at least to cut-off, and normally is made high enough to reach twice this value. Correct raline of grid current and grid bias volt-
age are listed in the Fransmitter Tube Tables. The radio-frequency choke in series with K_{6} is needed in cases where the resistance of h_{s} is relatively low, for instance only one-fourth of the ohmic resistance of R_{1}. Actual values of resistances and capacities are shown in numerous circuits throughout this Handbook, and also in the Tube Tables.

The type-10 amplifier tube is a triode: it has a capacity of several micro-microfarads between its grid and plate electrodes. When the plate circuit is tumed to the same frequency as the grid-driving circuit $L_{1}-C_{3}$. the typc-10 tube will act as a regenerative self-excited oscillator, unless it is nettralized. When the grid-to-plate capacitance of the tube is balanced by means of a neutralizing condenser C_{s}, connected in a circuit of the tupe shown in figure 1 , there is no feedback from the plate to the grid circuit. The tube acts as a stable r.f. amplifier and power can be taken from the tuned plate circuit $L_{2}-C_{5}$ by means of the coil L_{3}.

The tuned plate tank circuit $L_{z}-C_{s}$ must be center-tapped to supply a radio-frequency voltage 180 degrees out-of-phase across each end of the inductance L_{z} so as to obtain the desired neutralizing action. The r.f. voltage fed back through the tube elements from plate to grid is exactly neutralized by the feedback through the small variable condenser C_{3}, which is adjusted to the same capacitance as the actual grid-toplate capacitance of the tube. A split-stator tuning condenser often is used as a sulsstitute for C_{8}, which is shown as a single-section variable conrlenser in figure 1. This provides a center-tap connection to the tuncd circuit $L_{2}-C_{9}$ for neutralizing purposes the same as cloes a bypassed center tap.

- Frequency Multipliers

It is repeated here that quartz crystals are not suitable for direct control of the output frequency of high-frequency transmitters. Frequcucy multiplicrs are needed to multiply the frequency to the desired value. These multipliers operate on exact multiples of the crystal frequency: a 3.6 megacycle crystal oscillator can be made to control the output of the transmitter on $\underset{\sim}{2}$. or 14.4 megacycles, or even on 28.8 megacycles, by means of one or more frequenc: multipliers. When used at twice-frequency, as they most usually are. they are often termed frequoncy doublers. A simple doubler circuit is shown in figure 2. It consists of a vacuum tube with its plate cir-
cuit tuned to twice the frequency of the grid driving circuit. This doubler can be excited from a crystal oscillator, or connected to another doubler or buffer amplifier stage.

Doubling (frequency multiplication) is accomplished by operating the tube with extremely high grid bias in order to make the ontput plate circuit rich in harmonics. The grid circuit is driven approximately to normal values of d.c. grid current through the r.f. choke and grid-leak resistor, shown in figure 2. The resistance value generally is from two to five times as high as that used with the tube for simple amplifying. For the same value of grid current the grid bias is several times as high, and should be at least six times cut-off bias. Cut-off is calculated by dividing the d.c. plate voltage by the amplification constant of the tube. It is that value of bias which will cut off the d.c. plate current when no r.f. excitation is present in the grid circuit.

Figure 2 -Simple doubler circuit with type 46 Tube

No neutralization is necessary in a doubler circuit, since the plate is tuned to twice the frequency of the grid circuit. The feedback from the doubler plate circuit to the grid circuit is at tzvice the frequency of the grid driving circuit to which the coupling condenser (figure 2) is connected. The impedance of this external tuned grid driving circuit is very low at the doubling frequency and thus there is no tendency for self-excited oscillation when ordinary triode tubes are used. At very high frequencies however, this impedance may be great enough to cause regeneration, or even oscillation, at the tuned output trequency of the doubler.

A doubler can either be neutralized, or made more regenerative by adjusting C_{2} in the circuit shown in figure 3.

When condenser C_{2} is of the proper value to neutralize the plate-to-grid capacity of the tube, the plate circuit can be tunerl to twice the frequency (or to the same frequency) as that of the source of grid drive: the tube is operated as a neutralized amplifier or dowbler. The capacity of C_{2} can be

Figure 3-Regenerative Doubler or Neutralized Buffer
increased so that the doubler will become regenerative, if the r.f. impedance of the external grid driving circuit is high enough at the output frequency of the doubler. This doubler is regenerative at its output frequency; regeneration will increase the efficiency when there is a lack of sufficient grid excitation. A doubler which receives sufficient grid excitation does not require regeneration to obtain efficiencies of from 50% to 60%. This efficiency refers to the ratio of r.f. power ontput to d.c. power input of the doubler plate circuit. The circuit in figure 3 generally is operated with the condenser C : adjusted for exact neutralization, so that the tube can be operated either as an amplifier or doubler for two-band operation.
Frequency doublers require bias of several times cut-off, and high- μ tubes thercfore are desirable for this type of service. Tubes which have amplification constants of from 20 to :200 are suitable for doubler circuits. Tetrodes and pentodes usually have amplification constants of approximately 200. Low- μ triodes, having amplification constants of from 3 to 10, are not applicable for doubler service because in some cases the grid voltage nust be as high as the plate voltage. for efficient doubling action. The necessary d.c. grid voltage for high $-\mu$ tubes can be obtained more easily from average driver stages in conventional exciters.

- Push-Push Doublers

Two tubes can be connected with the grids in push-pull. and the plates in parallel.

Figure 4-Push-Push Doubler

for operation in a so-called "push-push" doubler, as shown in figure 4.
This doubler circuit will deliver twice as much output as a single-tube circuit; it has proven pupular in anateur transmitters because of its operating ease. In previous doubler circuits, capacitive coupling was shown. Link coupling to the tuned circuit in a preceding stage is shown in figure 4. This coupling arrangement simplifies the push-pull comection of the two grid circuits. The circuit $\mathrm{C}_{2}-\mathrm{L}_{2}$ is tuned to the same frequency as that of the preceding tuned circuit, and the doubler plate circuit $C_{1}-L_{1}$ is tunced to tavice the frequency. The gricl circuit should be tuned by means of a split-stator condenser, connected as shown in figure 4, rather than by means of the single-section tuning condenser and bypassed center-tapped coil arrangement. The latter would provide a relatively high impedance at the doubling frequency. The push-push doubler then would be highly regenerative, and in most cases it would break into selfoscillation. The split-stator tuning circuit provides a capacitive reactance at the doubling frequency, so that there is very little regencrative action, and the circuit therefore is quite stable.
Some multi-grid crystal oscillators are designed so that frequency doubling can be accomplished directly in the oscillator tube circuit by connecting the various grids in push pull (2 tubes) and the output plates in parallel.
High power push-push doubler stages for use with such tubes as the HK-354D or 250-TH will become too highly regenerative and therefore should be neutralized, as slown in the circuit in figure 5. Each tube is separately neutralized (the plate voltage having first been removed) with the plate circuit tuned to the same frequency as that of the grid circuit. The plate circuit then
can be tuned to twice the frequency of the grid circuit (after the neutralizing process has been completed) without danger of selfoscillation.

- Cathode Regeneration

Another form of regenerative doubler is shown in figure 6. This circuit eniploys a

Figure 6-Regenerative Doubler
pentode tube with its catloode only partially bypassed for radio frequencies. This provides a common impedance for both plate and grid circuits and causes a regenerative effect at high frequencies, such as 14 or 23 megacycles. The circuit tends to be degencrative, rather than regenerative, at the low frequencies.

- Neutralizing Circuits

Those screen-grid tubes which have a plate-to-control-grid capacitance of a small fraction of one micro-microfarad require no neutralization. All triodes and some multi-grid tubes must be neutralized for r.f. amplifier service. Single-tube amplifiers can be either plate or grid neutralized. A typical grid neutralized circuit is shown in figure 7 .

The out-of-phase neutralizing voltage is obtained by using a "split-tank" comection in the grid, rather than in the plate circuit.

Figure 7-Grid neutralizing with series feed
The circuit shown in figure 7 is stuitable for low or medium-C tubes, in which the grid-tu-filament capacitance is less than 8 or 10 $\mu \mu \mathrm{fd}$. Tubes with higher iuterelectrode capacitance cannot be satisfactorily neutralized in circuits which have a single-section tuning condenser in both plate and grid circuits. The circuit in figure 7 becones more regenerative as the frequency increases, and cannot be used at frequencies of the order of 28 megacycles. The tuning condenser which is comnected across the neutralizing circuit should be of the split-stator variety for frequencies above i Mc. The ilectival

Figure 8-Plate, or Hazeltine neutralization
coulcr of the tuning condenser (rotor oi a split-stator condenser) is comnected to ground, or bypassed to ground, but the cen-ter-tap of the coil is not bypassed to ground. This holds for cither plate or grid nentralization. An r.f. choke is necessary at the center-tap for external connection to the plate supply or grid-hias supply: (irid and plate neutralization are equally efficient. and the choice between the two usually depends upon the type of equipment available when building the r.f. amplifier. This point is emphasized later in this chapter, where a number of c.w. amplifier designs are treated.

A comparison between split-stator and single-section plate neutralized circuits can be seen in figure 9.

As was previonsly stated, the single-section condenser tuned circuit is somewhat regenerative, and therefore is more easily
driven from a luw puwer sonrce of grid excitation. Some regeneration can be tolerated in an amplifier for c.w. transmission, but not for radio phone service. The splitstator tuned circuit alacays should be used in modnlated r.f. amplifiers which operate at high frequencies. The single-section condenser tuncd circuit only requires about half as much grid driving power as the split-

Figure 9-The upper circuit has a center-tapped plate coil bypassed to ground; the lower circuit uses a split-stator plate tuning condenser with
r.f. choke in the coil center-tap connection
stator tuned circuit. In c.w. transmitter design this may eliminate one buffer stage, or allow higher efficiencies to be obtained from the final amplifier. The efficiency of the final amplifier is dependent to a large extent upon the amount of grid drive ; if there is a deficiency in the latter, the amplifier efficiency may drop to a low value, with attendant low r.f. power output and excessive plate dissipation.

The same grid excitation requirements hold true for the two types of grid neutralized circuits as well as for the two types of plate neutralized circuits.

- Push-Pull R. F. Circuits

Two tubes can be connected for pushs-pull uperation so as to obtain twice as much output as that of a single tube. A push-pull comection, such as that shown in figure 10. also has an advantage in that the circuit can be more easily balanced than a single-tube r.f. amplifier. The various interelectrode capacities and neutralizing condensers are connected in such a manner that those on one side of the tuned circuits are exactly equal to those on the onposite side. For this reason, push-pull r.f. amplifiers can be more easily neutralized in very-high-frequency

Figure 10 - Push-pull r.f. amplifier stage
transmitters; also they usually remain in perfect neutralization when tuning the amplifier to different bands.

The center-tap of the grid coil is sometimes bypassed to ground; in other cases it can "foat." It is possible to use a singlesection plate tuning condenser with twice the plate spacing between adjacent plates as that of a normal split-stator tuning condenser. providing a split-stator grid tuning condenser is used in the push-pull amplifier. The center-tap of the plate tuned circuit should be bypassed to ground in this case. The plate tuning condenser, as a general rule. should be of the split-stator type, with the stator connected to ground, or bypassed to ground by means of a high-voltage . 002 $\mu \mathrm{fd}$. mica condenser in series with the rotor of the variable condenser and gromel. The latter comection is particularly desirable because it prevents a d.c. arc from being formed and damaging the r.f. choke and power supply components in the event of r.f. flashover across the plates of the tuning condenser.

- Neutralizing Procedure

The r.f. amplifier is neutralized to prevent self-oscillation or regeneration. A neon bulb, a flashlight lamp and a loop of wire, or an r.f. galvanometer can he used as a "null indicator" for neutralizing low power stages. Plate voltage is disconnected from the r.f. amplifier stage while it is being neutralized. Normal grid drive then is applied to the r.f. stage; the neutralizing indicator is coupled to the plate coil, and the plate tuning condenser is tuned to resonance. The neutralizing condenser (or condensers) then can be adjusted until minimum r.f. is indicated for optimum settings of both grid and plate tuming condensers. Both neutralizing condensers are adjusted simultaneously when a push-pull stage is being neutralized.

A final check for neutralization should be made with a d.c. milliammeter connected in
the grid-leak or grid-bias circuit. There will be no movement of the meter reading as the plate circuit is tuned through resonance (without plate voltage being applied) when the stage is completely neutralized. The milliammeter check is more accurate than any other means for indicating complete neutralization and it also is suitable for neutralizing the stages of a high power transmitter.

Push-pull circuits usually can be morecompletely neutralized than single ended circuits when operating at very high frequencies. In the intermediate range of from 3 to 15 megacycles, single-ended circuits will give satisfactory results. Operation in the 3 -to-15 megacycle range calls for a splitstator tuning condensers; for example: a grid-neutralized circuit requires a splitstator grid tuning condenser. while a plateneutralized circuit requires a split-stator plate tuming condenser.

- Neutralizing Problems

If a stage camnot be completely neutralized, the difficulty can be traced to one or more of the following causes: (1) The filament leads may not be bypassed to the common ground bus connection of that particular stage. (2) The ground lead from the rotor conncction of the split-stator tuning comelenser to filament may be too long. (3) The neutralizing condensers may be in a field of excessive r.f. from one of the tuning coils. (5) Electromagnetic coupling may exist between grid and plate coils, or between plate and preceding buffer or oscillator circuits. (6) Insufficient slielding between stages. or between grid and plate circuits in compact transmitters may prevent neutralization or give false indications of neutralizing adjustments. (7) If shielding is placed too close to plate circuit coils, neutralization will not be secured because of induced currents in the shields. (8) Parasitic oscillations may take place when plate voliage is applicd. The cure for the latter is to rearrange the parts, change the length of grid or plate or neutralizing leads. insert an ultra-high-freguency r.f. choke in the grid lead or leads, or eliminate the grid r.f. clokes which may be the cause of a lowfrequency parasitic (in conjunction with plate r.f. chokes).

High power amplifiers can be neutralized under normal operating conditions, when necessary: by means of a cathole-ray oscilloscope. The neutralizing condenser or condensers can first be adjusted to approximate
settings from available data on grid-to-plate capacities, and a knowledge of the maximum and minimum capacities of the neutralizing condensers. The latter can be adjusted for exact neutralization under normal conditions by obscrving the wave pattern on the oscilloscope.

- Grid Excitation

Sufficient grid excitation must be available for class-B or class-C service. The excitation for a plate modulated class- C° stage must be sufficient to drive a normal value of d.c. grid current through the bias supply of about $21 / 2$ times cut-off. The bias voltage preferably should be obtained from a combination of grid-leak and fixed C -bias supply. Cut-off bias can be calculated by dividing the amplification constant of the tube into the d.c. plate voltage. This is the value normally used for class- 13 amplifiers (fixed bias, no grid-leak). Class-C amplifiers use from $11 / 2$ to 5 times this value, depending upon the available grid drive, or excitation. and the desired plate efficiency. Less grid excitation is need for c.w. operation, and the values of fixed hias (if greater than cut-off) may be reduced, or the value of the grid-leak resistor can be lowered until normal d.c. grid current flows. This value should be between 55% and 100% of the value listed under tube characteristics.

The values of grid excitation listed for each type of tube may be reduced by as much as 50% if only moderate power output and plate efficiency is clesired. When consulting the tube table, it is well to remember that the values listed are those actually used by the tube for grid excitation. The power lost in the grid bias supply in the form of $I^{2} \mathrm{R}$ loss. or charging current. plus that lost in the tumed circuits. must be taken into consideration when calculating the availahle grid drive. At very high frequencies, the r.f. circuit losses may be greater than the power lost in the griclbias, plus that which is useful for gricl drive.

Readjustments in the tuming of the oscitlator. buffer, or doubler circuits, will result in greater grid drive to the final amplifier. The actual grid driving power is proportional to the d.c. voltage developed across the grid-leak (or hias supply) multiplied by the d.c. grid current.

Link coupling between stages, particularly to the final amplifier grid circuit, normallywill provide more grid drive than can be obtained from nther coupling sustems. The
number of turns in the coupling link and the location of the turns on the coil can be varied with respect to the tuned circuits to obtain the greatest grid drive for allowable values of buffer or doubler plate current. Slight readjustments sometimes can be made after plate voltage has been applied.

Power output and efficiency, within limits, are proportional to the grid drive in class-C amplifiers. Excessive grid current will damage the tubes by overheating the grid structure: beyond a certain point of grid drive no increase in power output can be obtained for a given plate voltage.

- Plate Circuit Tuning

When the amplifier is completely nentralized, reduced plate voltage should be applied before any load is coupled to the amplifier. This reduction in plate voltage should be at least 50% of normal value because the plate current will rise to excessive values when the plate tuning condenser is not adjusted to the point of resonance. The latter is indicated by the greatest dip in reading of the d.c. plate current milliammeter; the r.f. voltage across the plate circuit is greatest at this point. With no load. the r.f. voltage may be several times as high as when operating under condlitions of full load: this may result in condenser flash-over if normal d.c. voltage is applied. The noload plate current at resonance should dip to 10% or 20% of normal value if the plate circuit losses are not excessive, and if no parasitic oscillations are taking place.

The load (antenna or succeeding r.f. stage) then can be coupled to the amplifier under test. The coupling can be increased until the plate current at resonance (greatest dip in plate current meter reading) approaches the normal values at which the tube is rated. The value at reduced plate voltage should be proportionately less in order to prevent excessive plate current load when normal plate voltage is applied. Full plate voltage should not be applied to an amplifier unless the r.f. load also is comected. otherwise the condensers will arc-over or flash-over, thereby causing an abnormally high tube plate current which will damage the tube. The tuned circuit impedance is lowered when the amplifier is loaded. as are the r.f. voltages across the tuning condenser.

- Tank Circuit Capacities

The plate tank circuit of any transmitting r.f. amplifier consists of a parallel resonant
tuned circuit. The ratio oi actual capacity to inductance of a tuned circuit in a class-C amplifier is of considerable importance. The capacity must be great enough at a desired frequency to give a certain "fly-wheel" effect to the tumed circuit. The tube furnishes power during only a small part of the time of each r.i. cycle; the LC circuit must have a sufficient " fl y -wheel" effect to carry on during the remainder of the r.f. cycle if approximate sine wave output is desired. The latter is necessary because an irregular wave-form of the carrier frequency will produce excessive harmonic power output. For example: 70% fundamental carrier frequency and 30% in the form of harmonics of the carrier frequency is obtained easily hy using very low C circuits when operating a class-C amplifier at high values of grid drive. Radiation of harmonics is illegal, not to mention the power that is wasted. Proper L-to-C ratios will reduce the harmonic content to values of less than 5%, and further reduction is possible by means of r.f. filters or antema tumed circuits.

Figure 11 -Typical Tank Circuits
The "flywheel-" effect normally is defined as the ratio of radio-frequency volt-amperes to actual power transierred to the antemat VA circuit, or $\frac{\mathrm{W}}{\mathrm{W}}$. For all practical purposes, this value is equal to the circuit Q and
should not be less than 10 , even for c.w. operation. Values of from 15 to 20 are more appropriate for phone operation in order to prevent distortion of the modulated carrier wave output.

The ratio between the inductive reactance of a coil and its effective resistance gives a measure of its efficiency and is called Q,
where

$$
Q=\frac{\omega L}{R}
$$

The value of R depends largely upon the degree of antema loading, because Q for an muloaded circuit may be over 100 , and may drop to 5 or 10 as the load is increased to normal. By properly proportionating the value of C and L , the circuit Q can be made from 15 to 20 at normal values of tube plate current. The effective series resistance in the tuned circuit is $\mathrm{K}=\frac{1}{\mathrm{Z}(\omega \mathrm{C})^{2}}$, therefore $Z=\frac{1}{R(\omega \mathrm{C})^{2}}$ which is the loarl impedance into which the tube should work. Practically, this value of Z is onc-half of the rl.c. tube impelance, calculated by dividing the i.c. plate voltage by the d.c. plate current.
Since $Q=\frac{\omega \mathrm{L}}{\mathrm{R}}=\frac{1}{\omega \mathrm{CR}}=\omega \mathrm{C} \%=\frac{\omega \mathrm{CR}_{\mathrm{p}}}{2}$
then $C=\frac{2 Q}{\omega R_{\mathrm{p}}}=\frac{\varrho}{\pi \mathrm{fR}_{\mathrm{p}}}$, because $\omega=2 \pi \mathrm{f}$. where f is the frequency of operation and a is the constant 3.1416 . For phone operation, C in micro-micro-farads can be calculated if the d.c. plate voltage and current and frefluency of operation are known.

$$
\begin{aligned}
& C=\frac{6.400,000}{f_{\mathrm{p}}} \\
& \mathrm{C}=\mu \mu \mathrm{fd} . \\
& \mathrm{f}=\text { frequency in megacyeles. } \\
& \mathrm{R}_{\mathrm{p}}=\text { d.c. plate resistance }=\frac{\mathrm{F}}{\mathrm{I}}
\end{aligned}
$$

This furmula applies for single-ended grid neutralized amplifiers. For plate neutralization, these values of plate tuning capacities should be divided by t, since in this case the tube is across only one-half of the tuned circuit, or one-fourth of its impedance.

Push-pull circuits are similar to plate neutralized circuits, except for greater plate current, therefore lower plate resistance. Somewhat lower values of Q are permissible

Plate Neutralized Circuit Class C Modulated Amplifier Tuning Capacity

DC Plate $\begin{array}{c}\text { Resistit. } \\ \text { E.le }\end{array}$				
2,000	400	200	57	28
3,000	267	133	38	19
4,000	200	100	28	14
5,000	160	80	23	11
6,000	133	66	19	10
7,500	107	53	15	8
10,000	80	40	11	6
15,000	53	27	8	4
20,000	40	20	6	3
25,000	32	16	5	2
30,000	27	13	4	2

Grid Neutralized Circuit Modulated Class C Amplifier Plate Tuning Capacity

DC Plate Resist. $\frac{\text { E.se }}{1 / \mathrm{c}}$.	2 Megacycles (Capac. in $\mu \mu \mathrm{fd}$.)	4 Megacycles (Capac. in $\mu \mu \mathrm{fd}$.	14 Megacycles (Capac. in $\mu \mu \mathrm{fd}$.	28 Megacycles (Capac. in $\mu \mu \mathrm{fd}$.)
2,000	1600	800	228	114
3,000	1064	532	152	76
4,000	800	400	114	56
5,000	640	320	92	46
6,000	533	266	76	38
7,500	427	213	60	30
10,000	320	160	46	22
15,000	217	108	30	15
20,000	160	80	23	11
25,000	128	64	18	8
30,000	106	53	15	7

Push.Pull Class C Modulated Amplifier Plate Tuning Capacity				
DC Plate Resist. EIl: Ide				
2,000	200	100	29	14
3,000	133	66	19	9
4,000	100	50	14	7
5,000	80	40	11	6
6,000	67	33	10	5
7,500	53	- 27	8	4
10,000	40	20	6	3
15,000	27	13	4	2
20,000	20	10	3	1.5

since the tank circuit receives impulses during a portion of each hali cycle in a pushpull circuit. A Q of 10 is sufficient in the case of a plate modulated class-C amplifier. Tables are given for grid neutralized, plate neutralized, and plate-modulated amplifiers. The d.c. plate resistance, in all cases, is calculated by dividing the d.c. plate voltage by the total d.c. plate current.

The values given in these tables san be dizided by two for cice transmitters.

- Parasitic Osclllations in R. F. Amplifiers

"Parasitics" are undesirable oscillations, either of very high or very low frequencies which occur in radio-frequency amplifiers. Their presence reduces the operating efficiency and output at the desired frequency, and introduces distortion in radiophone transmitters. Parasitics can be detected by excessive values of plate current in comparison to the r.f. output at the desired frequency; difficulty will be experienced in obtaining a satisfactory dip in plate current when tuning the r.f. amplifier circuit to resonance when unloaded.

Parallel or push-pull operation of two tubes often will form a Tuned-Grid-TunedPlate oscillating circuit which will be resonant at from 3 to 6 meters. This u.h.f. circuit is formed by the two plate leads and grid leads. Parasitic oscillations of this type can he prevented by making one of the grid leads longer than the other, or by the in-

Parasitics-Grid Bias

stallation of a parasitic suppressor in one of the grid or plate leads, as shown in figure 12.

From six to eight turns of No. 14 wire, $1 / 2$-inch in diameter and slightly spaced in will provide a suitable parasitic choke. A 100 to 200 ohm 2 -watt carbon resistor sometimes is shunted across the parasitic r.f. choke, as shown in fig. 12. Parasitic elimination requires considerable experimenting with each individual amplifier. An all-wave diode-type ficld strength metcr or absorption wazometer is of great convenience in locating the frequency of the undesired oscillation, and also an aid in making tests to remove the parasitic.

Low frequency parasitic oscillations may occur in an r.f. amplifier in which r.f. chokes are in both the bias and plate supply leads. The r.f. chokes form a tuned-grid-tunedplate circuit at some very low r.f. frequency, as determined by the natural period of the plate and grid r.f. chokes.

The leads to the plate tank condenser and neutralizing condenser may form an ultra-high-frequency oscillator circuit in a single-tube amplifier. A change in physical layout, and use of shorter leads. are the best cure for most parasitic oscillations of these types. Parasitic oscillations, in gencral. are more troublesome in high power transmitters.

- Grid Bias

All amplifiers require some form of grid bias for proper operation. Practically all r.f. amplifiers operate in such a manner that plate current flows in the form of short. peaked impulses which have a duration of only a fraction of an r.f. cycle. The plate current is cut-off during the greater part of the r.f. cycle. which makes for high efficiency and high power output from the tuhes. since there is no power being dissipated by the plates during a major portion of each r.f. cycle. The grid bias must be sufficient to cut-off the plate current, and in very high efficiency class-C amplifiers this hias may he several times cut-off value. Cut-off bias, it will be recalled. is that value of grid soltage which will reduce the plate
current to zero, and the method for calculating it has been indicated previously. This theoretical value of cut-off will not reduce the plate current completely to zero, due to the "variable μ " tendency which is characteristic of all tubes as the cut-off point is approached. This factor, however, is of no importance in practical applications.

Kadiophone class-C amplifiers should be uperated with the grid bias adjusted to values between two and three times cut-off at normal values of d.c. grid current. C.w. telegraph transmitters can be operated with hias as low as cut-off, if limited excitation is available and high plate efficiency is not a factor. In a c.w. transmitter the bias supply, or resistor, should be adjusted to the point which will allow normal grid current to flow for the particular amount of grid driving r.f. power available. This form of adjustment will allow more output from the under-excited r.f. amplifier than when twice cut-off, or higher hias is used with low values of grid current.

- Grid Leak Bias

A resistor can be connected in the grid circuit of an r.f. amplifier to provide gridleak bias. This resistor R_{1} in figure 13 is part of the d.c. path in the grid circuit.

The r.f. excitation is applied to the grid circuit of the tube. This causes a pulsating d.c. current to flow through the hias supply lead and any current flowing through $R_{\text {, }}$ produces a voltage drop across that resistance. The grid of the tube is positive for a short duration of each r.f. cycle, and draws electrons from the filament or cathode of the tube rluring that time. These electrons complete the circuit through the d.c. grid return. The voltage drop across the resistance in the grid return provides a negatia'c hias for the grid. The r.f. chokes in figures $13,14,15$ and 16 present the r.f. excitation from flowing through the hias supply: or from being short-circuited to ground. The bypass condenser across the bias source proper is for the purpose of provirling a low impedance path for the
small amount of stray r.f. energy which passes through the r.f. choke.

Grid-leak bias automatically adjusts itself even with fairly-wide variations of r.f. excitation. The value oi grid-leak resistance should be such that normal values of grid current will flow at the maximum available anount of r.f. excitation. Grid-leak bias camot be used for grid-modulated or linear amplifiers in which the d.c. grid current is approximately zero and constantly varying. Grid-leak bias alone provides no protection against excessive plate current in case of failure of the crystal oscillator, or failure of any other source of r.f. grid excitation.

COMBINATION BATTEAY

- grid leak bias

Figure 14

A C-battery or C-bias supply can be connected in series with the grid leak, as shown in figure 14. This additional C-bias should at least be made equal to cut-off hias. This will protect the tube in the event of iailure of grid excitation.

- Cathode Bias

A resistor can be connected in series with the cathode or center-tapped filament lead of an amplifier to secure automatic bias. The plate current flows through this resistor, then back to the cathode or filament, and the voltage drop across the resistor can be applied to the grid circuit by connecting the grid-bias lead to the grommed, or power supply end of the resistance R, as shown in figure 1.\%.

Figure 15

The grounded (B-minus) end of the cathode resistor is negative relative to the filament by an amount equal to the voltage drop across the resistor. The value of resistance must be so chosen that the desired plate current flowing through the resistor will bias the tube for proper operation at that plate current.

This type of bias is used more extensively in audio-frequency than in radio-frequency amplifiers. The voltage drop across the resistor must be substracted from the total plate supply voltage when calculating the power input to the amplifier, and this loss of plate voltage in an r.f. amplifier may be excessive. A class-A audio amplifier is biased only to approximately one-half cut off, whereas an r.f. amplifier may be biased to twice cut-off, or more, and thus the plate supply voltage loss may be a large percentage of the total available voltage when using low or medium μ tubes.

- Separate Bias Supply

C-batteries, or an external C-bias supply sometimes are used for grid bias of an amplifier, as shown in figure 16.

BATTERY BIAS

Figure 16
Battery bias gives very good voltage regulation and is satisfactory for grid modulated or linear amplifiers, which operate nearly at zero grid current. In the case of class-C amplifiers which operate with high grid current, battery bias is not very satisfactory. This d.c. current has a charging effect on the dry batteries; after a few months of service the cells will become unstable, bloated and noisy.

A separate a.c. operated power supply can be used as a substitute for dry batteries. The bleeder resistance across the output of the filter can be made sufficiently low in value that the grid current of the amplifier will not appreciably change the amount of negative grid-bias voltage. This type of bias sumply is used in class- B audio and class- B r.f. linear amplifier service where the volt-
age regulation in the C-bias supply is important. For a class-C amplifier it is not so important, and an economical design of components in the power supply therefore can be utilized.

- R. F. Coupling Systems

Energy is coupled from one circuit into another in several ways. These various systems are called "couplings," and are of three general types; capacitize coupling, inductiar coupling or link coupling. The latter is a special form of inductive coupling. The choice of a coupling method depends upan the purpose for which it is to be used.

- Capacitive Coupling

The grid circuit of an anplifier or doubler circuit can be coupled to a preceding

Figure 17
driver stage by means of a fixed or variable condenser, as shown in figure 1%.

Condenser C isulates the (l.c. power supplies from each other and provides a low impedance path for the r.f. energy between the tube being driven, and the driver tube. This method of coupling is simple and economical for low power amplifier or exciter stages, but has certain disadvantages for the coupling of a final amplifier to the preceding stage. The grid leads in a neutralized am[llifier should be as short as possible. but this is difficult to attain in the physical arrangement of a high power amplifier with respect to a capacitively compled driver stage.

The r.f. choke in serics with the C-bia: supply lead tunst offer an extremely high: impedance to the r.f. circuit, and this too is difticult to oltain when the transuinter is operated on several harmonically related bands. Aunther disadvantage of capacitive coupling is the difficulty of adjusting the load on the driver stage. Imperlance adjustment can be accomplished by tapping the coupling lead a part of the way down on the plate coil of the tuned stage of the driver circuit, as can be seen hy referring back to figure 1. However. when this lead is tapped part way down on the coil, a parasitic oscillation tenclency becomes very troublesone and is difficult to eliminate. If

Figure 18-Typical Capacitive Coupling Circuit between 6L6-G Oscillator and T-20 R. F. Amplifier. The 50 MMF Coupling Condenser Can Be Made Variable, If Desired
the driver stage has sufficient power output so that an impedance mismatch can be tolerated, the condenser C in figure 17 can be connected directly to the top of the coil. and made small enough in capacity for the particular frequency of operation that not more than normal plate current is drawn by the driver stage.

The impedance of the grid circuit of a class-C amplifier may be as low as a few hundred ohms in the case of a high- μ tube. and may range from that value up to a few thousand ohms for low $-\mu$ tubes.

Capacitive coupling places the grid-tofilament capacity of the driven tube directly across the driver tuned circuit, which reduces the L-C ratio and sometimes makes the r.f. amplifier difficult to neutralize because the additional driver stage circuit capacities are connected into the grid circuit.

Capacitive coupling can be used to advantage in reducing the total number of tumed circuits in a transmitter so as to conserve space and cost. It also can be used to advantage between stages for driving tetrode or pentode amplifier or doubler stages. These tubes require relatively small amounts ,f grid excitation.

- Inductive Coupling

The r.f. amplifier often is coupled to the antema circuit by means of inductive coupling. which consists of two coils electromagnetically coupled to each other. The antema tuned circuit can be of the seriestuned type, such as is illustrated for Marconi type 160 meter antemas in the clapter on Antennas. Parallel resonant circuits sometimes are used, as shown in figure 19. in which the antenna fecders are commected across the whole or part of the circuit Le-C.

INDUCTIVE COUPLING
Figure 19
The degree of coupling is controlled by varying the mutual inductance of the two coils, which is accomplished by changing the spacing between the coils.
Inductive coupling also is used extensively for coupling r.f. amplifiers in radio
receivers, and occasionally in transmitting r.f. amplifier circuits. The mechanical problems involved in adjusting the degree of coupling in a transmitter make this sy:tem of limited practical value.

- Link Coupling

A special form of inductive coupling which is applied to radio transmitter circuits is known as link coupling. A low impedance r.f. transmission line, commonly known as a "link," couples the two tuned circuits together. Each end of the line is terminated in one or more turns of wire, or "loops," wound around the coils which are being coupled together. These loops should be coupled to each tuned circuit at the point of zero r.f. potential. This nodal point is the center of the tuned circuit in the case of plate neutralized for push-pull amplifiers. and at the positive-B end of the tuned circuit in the case of screen-grid and grid nentralized amplifiers. The nodal puint in an antema tuned circuit depends upon the type of feeders, and the node may be either at the center or at one end of the tuned circhit. The nodal point in tuned grid circuits is at the C-bias or grounded end of plateneutralized r.f. or screen-grid amplifiers, and at the center of the tumed grid coil in the case of push-pull or grid-ncutralized amplifiers. The link conpling turns should be as close to the nodal point as possible. This ground connection to one side of the link is used in special cases where larmonic elimination is important, or where all capacitive coupling between two circuits must be minimized.

Typical link coupled circuits are shown in figures 20,21 and 22.

Some of the advantages of link coupling are listed here:
(1) It eliminates coupling taps on tuned circuits.

Figure 20-Link coupling between single-ended stages

Figure 21 -Link coupling between push-pull
(2) It permits the use of series power supply connections in both tuned-grid and tuned-plate circuits, and thereby eliminates the need of r.f. chokes.
(3) It allows separation between transmitter stages of distances up to several feet without appreciable r.i. lusses.
(4) It reduces capacitive coupling and thereby makes neutralization more easily attamable in r.i. amplifiers.
(5) It provides semi-automatic impedance matching between plate and grid tuned circuits, with the result that as much as 50% greater grid "swing" can be obtained in comparison to capacitive coupling.
(b) It effectively reduces harmonic radiation when a final amplifier is coupled to a tuned antenna circuit. due to the additional tuned circuit and, particularly, it eliminates capacitive coupling to the antenna.
The link coupling line and loops can be made of 11o. 1 S or 20 gange push-back wire for coupling low power stages. High power circuits can be link coupled by means of no. 8 to no. 1: rubber-covered wire, or EO-1 cable.

The impedance of a link coupling line varies from $\because: 10: 00$ ohms. depending upon
the diameter of the conductors and the spacing between them.

- Grid Saturation

Excessive grid excitation is just as injurious to a vacuum tube as abnormal plate current or low filament operation. Too much grid driving power will overheat the grid wires in the tube, and will cause a release of gas in certain types of tubes. An excess of grid drive will not appreciably increase the power output and increases the efficiency only slightly after a certain point is reached. The gricl current in the tube should not exceed the values listed in the Tube Tables, and care also should be exercised to have the bias voltage low enough to prevent flashover in the stem of the vacutm tube.

Grid excitation usually reiers to the actual r.f. power input to the grid circuit of the vacuum tulse, part of which is used to drive the tube, and part of which is lost in the C-bias supply. There is no way to avoid wasting a portion of the excitation power in the bias supply.

- R. F. Chokes

Radio-frequency chokes are commected in circuits for the purpose of preventing r.f. energy from being short-circuited, or escaping into power supply circuits. They consist of inductances wound with a large number of turns, either in the form or a solenoid or "universal" pie-winding. These inductances are designed to have as much inductance and as little distributed or shunt capacity as possible, since the capacity bypasses r.f. energy. The unavoidable small amount of distributed capacity resonates the inductance, and this frequency nornally should be lower than the frequency at which the transmitter or receiver circuit is oper-

Figure 22-Complete Circuit Diagram of 47 Osclllator link coupled to 210 amplifier stage. One or two turns of wire are wound around coils L1 and L2 to form the coupling loop. The two loops are connected through a twisted-pair feed line, made with hook-up wire.

ating. R.f. chokes for operation on several harmonically-related bands must be designed carefully so that the impedance of the choke will be extremely high (several hundred thousand ohms) in each of the bands.

The r.f. choke is resonant to the harmonics of its fundamental resonant frequency; however, the cien harmonics have a very low impedance, so that an r.f. choke designed for maximum innedance in the 80 meter amateur band would not be satisfactory for operation in the 40 meter band. The harmonic resonance points of the r.f. choke usually are made to fall between frequency bands, so that a reasonably high valte of impedance is obtained on all bands. The d.c. current which flows through the r.f. choke largely determines the size of wire to be used in the windings. The inductance of r.f. chokes for very short wavelengths is much less than for chokes designed for broadcast and ordinary short-wave operation, so that the impedance will be as high as possible in the desired range of operation. A very high inductance r.f. choke has more distributed capacity than a smaller one, with the result that it will actually offer loss impedance at very high frequencies.

- Self-Excited Oscillators

A continuously variable range in frequency control often is desirable for a radio trans-
mitter. Some form of sclf-cxcited oscillator (s.e.o.) is a practical means of accomplishing this purpose. The clectron-coupled oscillator is to be preferred because of its greater stability with respect to power supply voltage variation. Good design of a self-excited oscillator requires the use of good parts, solid connections, freedom from vibration, and a power supply with a builtin voltage regulator. The construction of an exciter of this type is more difficult and costly than is that of a crystal-controlled oscillator, for comparative stability of frequency control. For this reason it is not in general use.

In many cases a self-excited oscillator is used as a complete transmitter, especially on the 80 meter c.w. band, employing a fairly large size transmitter tube. Simplicity and variable frequency control are its only virtues. The output efficiency is less than can be obtained in an r.f. amplifier, and the frequency stability can be very poor under certain conditions.

- Shunt and Series Feed

Direct-current grid and plate connections are made either by shunt or farallel fecd systems. Simplified forms of each are shown in figures 28 and 29.

Series feed cant be defined as that in which the d.c. comnection is made to the grid or plate circuit at a point of very low r.f. po-

Figure 29
tential. Shunt feed always is made to a point of high r.f. voltage and always requires a high impedance r.f. choke or resistance in the connection to the high r.f. point in order to prevent loss of r.f. power.

Series feed is more popular than shout feed, since r.f. choke coils can usually be omitted.

- Parallel and Push-Pull Tube Circuits

The comparative r.f. power outpht from parallel or push-pull operated amplifiers is the same if proper impedance matching is accomplished and if sufficient grid excitation is available in both cases.

Parallel operation of tubes has some adlvantages in transmitters designed for operation on 40,80 and 160 meters, or for broadcast band operation. Only one neutralizing condenser is required for parallel operation, as against two for push-pull. However, on wavelengths below 40 meters, parallel tube operation is not advisable because of the unbalance in capacity across the tank circuits. Low-C typas of vacuum tubes can be connected in paratlel with less difficulty than the high-C types. in which the combined interelectrode capacities might be quite high in the parallel connection.

Push-pull operation provides a well-balanced circuit insofar as miscellancous capacities are concerned: in addition the circuit can he nentralized more easily, especially in high-frequency amplifiers. The

L-C ratio in a push-pull amplifier can be made higher than in a plate-neutralized parallel-tube operated amplifier. Push-pull amplifiers, when perfectly balanced, have less second-harmonic output than parallel or single-tube amplifiers. In actual practice, undesired capacitive coupling and circuit unbalance usually nullifies this theoretical advantage of push-pull r.f. circuits.

- C. W. Telegraphy Keying

The carrier frequency signal from a c.w. transmitter must be broken into dots and dashes in the form of keying for the transmission of code characters. The carrier signal is of a constant amplitude while the key is closed, and is entirely removed when the key is open. If the change from the no-output condition to full-output occurs too rapidly, an undesired key-click effect takes place, which causes interference in other signal channels. If the opposite condition of full output to no output condition occurs too rapidly, a similar effect takes place.

The two general methods of keying a c.w. transmitter are those which control either the excitation, or the plate voltage which is applied to the final amplifier. Direct plate voltage control can be obtained by connecting the key in the primary line circuit of the high voltage plate power supply: A slight modification of direct plate voltage control is the connection of the c.w. key or relay in the filament center-tap lead of the final amplifier. Excitation keying can be of several forms, such as crystal oscillator keying, buffer stage keying, or blocked-grid keying.

Key clicks should be eliminated in all c.w. telegraph transmitters. Their elimination is accomplished by preventing a toorapid make-and-break of power to the antenna circuit. A gradual application of power to the antenna, and a similarly slow cessation, will eliminate key clicks. Tm much lag will prevent fast keying. but fortunately key clicks can be practically eliminated without limiting the speed of manual (hand) keying. Some circuits which eliminate key clicks introduce too much time-lag and thereby add "tails" to the dots. These tails may cause the signals to sound chirny. or make them difficult to copy at high speeds.

The elimination of key clicks by some of the key-click-filter circuits illustrated in the following text is not easily applied to every individual transmitter. The constants in the time-lag and spark-producing sircuits
depend upon the individual characteristics of the transmitter, such as the type of filter, power input, and various circuit impedances. All keying systems have one or more disadvantages, so that no particular method can be recommended as an ideal one. An intelligent choice can be made by the reader for his particular transmitter requirements by carefully analyzing the various keying circuits.

- Primary Keying

Key clicks can be climinated entirely by means of primary keying, in which the key is placed in the a.c. line supply to the primary of the high voltage plate supply transformer. This method of keying also has the advantage that grid-leak bias can be used in the keyed stages of the transmitter. As ordinarily applied, the plate voltage to the final amplifier is controlled by the action of the key. The filter in the high voltage rectifier circuit creates a time-lag in the application and removal of the d.c. power input to the r.f. amplifier. Too much filter will introduce too great a time lag, and add tails to the dots. If a high power stage is keyed, the variation in load of the houselighting circuits may be sufficient to cause blinking of the lights. A heavy-duty key, or keying relay, is necessary for moderate or high power transmitters to break the inductive a.c. current. The exciting current
or surge current may be several times as high as the average current drawn by the transformer which is being keyed. This will cause difficulty from sticking key contacts, or burnt points on the keying relay. This effect can be minimized by proper design of the power transformer, which should have a high primary inductance and an iron core of generous size.

An improved primary keying circuit is shown in figure 30 . This circuit makes high speed keying possible, without clicks or tails, and the plate supply to the final amplifier can be very well filtered without introducing tails to the dots.

The final amplifier must have a fixed bias supply equal to more than cut-off value, so that when the grid excitation from the buffer stage is removed the amplifier output will drop immediately to zero, in spite of the filter condenser's being fully charged in the final amplifier circuit. The bleeder across the final plate supply filter should have a very high resistance so that the filter condenser will hold its charge between dots and dashes. This will allow a quick application of plate voltage as soon as the grid excitation. supplied by the buffer stage, is applied to the final amplifier.

The buffer plate supply is keyed : its filter circuit consists of a single $2-\mu \mathrm{fd}$. filter condenser, shimted by the usual heavy-duty ligh-current bleeder resistor. This small

filter has no appreciable time lag, and will not add tails to the dots and dashes, but it does provide sufficient time lag for key click elimination. The small amount of filter will not introduce a.c. hum modulation into the output of the final amplifier, because the latter is operated in class-C, under saturated grid conditions. A moderate a.c. ripple in the grid excitation will not introduce hum in the output circoit under this operating condition.

- Blocked Grid Keying

The negative grid bias in a medium or low-power r.f. amplifier can easily be intcreased in magnitude sufficiently to reduce the amplifier output to zero. The circuits shown in figures 31 and 32 represent two methods of such blocked grid keying.

In figure $31, R_{1}$ is the usual grid-leak. Additional fixed bias is applied through a 100,000 ohm resistor K_{2} to block the grid current and reduce the output to zero. As a general rule, a small 300 to 400 volt power supply with the positive side connected to ground can be used for the additional C-bias supply.

The circuit of figure 32 can be applied by connecting the key across a portion of the plate supply bleeder resistance. When the key is open, the high negative bias is applied to the grid of the tube, since the filament center-tap is comected to a positive point on the bleeder resistor. Resistor $\mathrm{R}_{\text {: }}$ is the normal bleeder: an additional resistor of from one-fourth to one-lalf the value of R : is connected in the circuit for R_{1}. A disadvantage of this circuit is that one side of the key may be placed at a positive potential of several hundred volts above ground, with the attendant danger of shock to the operator. Plocked grid keying is not particularly effective for eliminating key clicks.

- Oscillator Keying

A stable and quick-acting crystal oscillator may be keyed in the plate, cathode, or screen-grid circuit for the purpose of minimizing key clicks, and for break-in operation. This type of keying requires either fixed or cathode bias, since the r.f. excitation is removed from all of the grid circuits. The key clicks are minimized by the presence of several tuned circuits between the antema and crystal oscillator in a multistage transmitter. The key clicks act as side-band frequencies and are attenuated somewhat in a multi-stage transmitter by the resonant tuned circuits which are tuned to the carrier frequency.

If a key click filter is placed in the crystal oscillator circuit, the tone may become "chirpy" and tails may be added to the ends of the transmitted characters. A practical circuit for clickless keying is illustrated in figure 33, in which both the cathode of the crystal oscillator and the cathode of the next succeeding buffer or doubler circuit are connected through a key click filter.

Figure 33
Two 6Lb or 61.66; tubes can be keyed very effectively with this type of circuit. The choke coil, shunted with a semi-variable resistor, provides a series inductance for slowing down the application of cathode current to the two tubes. The inductance of the choke coil can be effectively lowered to one or two henrys hy shunting it with a
semi-variable resistance so that the time lag will not be excessive. The $0.5 \mu \mathrm{fd}$, condenser and 400 -ohm resistor are connected across the key contacts, as close to the key as possible, and these serve to absorb the spark at the telegraph key each time the circuit is opened. This effectively prevents a click at the end of each dot and dash. This same key click filter can be connected in the center-tap lead of a final amplifier or buffer-amplifier stage for the elimination of clicks.

- Center-Tap Keying

The lead from the center-tap connection to the filament of an r.f. amplifier tube can be opened and closed for keying a circuit. This opens the B-minus circuit, and at the same time opens the grid-bias return lead. For this reason the grid circuit is blocked at the same time that the plate circuit is opened, so that excessive sparking does not occur at the key contacts. Unfortunately, this method of keying applies the power too suddenly to the tulbe, producing a serious key click in the output circuit, which generally is coupled to the antenna. This click often can be elininated with the simple key click eliminator shown in figures 33 and 34.

Figure 34 - Center-tap keying with an adjustable key-click filter. This system gives very good results. The actual amount of inductance and capacity in the circuit depends on the amount of current being keyed, and also on the voltage regulation of the plate power supply. L_{1} should be of a value between 1 and 5 henrys; R_{1} 20,000 ohms; C, between $1 / 4$ and 2 ffds.; R. 2,000 ohms.

Straight center-tap keying as shown in figure 35 never should be used, because this circuit produces extremely bad key clicks. The key click filter in figure 34 always can be connected into the center-tap lead as an external unit. A more effective key click filter for the center-tap lead is made possible through the use of vacuum tubes. A simple vacuum tube keying circuit is shown in figure 36.

The keying tube is comected in series with the center-tap lead of the final r.f. amplifier. The grid of the keying tube is shortcircuited to the filament when the key is closed, and the keying tube then acts as a

Figure 35
Ordinary center-tap keying. The center-tap of the filament transformer must not be grounded. As a general rule, the filament transformer which supplies the keyed stage will not be used to supply any of the other stages. The B minus lead from the power supply should be grounded.

Figure 36 -Vacuum Tube Keying. The circuit shows one of the more simple vacuum tube keying circuits. Some current flows through the key and this system sometimes produces clicks when the key is opened. Both filament transformers must be Insulated from each other and also from ground. This circult will not completely cut off the plate current to the keyed stage, but will reduce it to a very small value.
low resistance in the center-tap lead. When the key is opened, the grid of the keying tube tends to block itself and the plate-tofilament resistance of the tube increases to a high value, which reduces the output of the r.f. amplifier approximately to zero. A more effective vacuum tube keying system is shown in figure 3 r.

In this system, the grids of the keying tubes are biased to a high negative potential, when the key is open, and to zero potential when the key is closed. The fixed bias supply to the keying tubes provides very effective keying operation. The degree of time lag (key click elimination) can be adjusted to suit the individual operator, by varying both the capacity of the condenser

Figure 37

Figure 38-The vacuum tube keying system, using four 45's. Sockets for two additional (optional for higher power) tubes are provided. It is advantageous to mount the b. c. chokes directly at the key terminals, as shown.
which is shunted from grid to filament, and the values of the two high resistances in series with the grid and power suppl- leads. R.f. chokes can be connected in series with the key directly at the key terminals, to prevent the minute spark at the key contacts from causing interference in nearby broadcast receivers. These r.i. chokes are of the conventional b.c. type. There is no danger of shock to the operator when this kesing circuit is used.

The small power supply for this keying circuit requires very little filter and can be of the half-wave rectifier type with a ' 45 tube as the rectifier. The negative voltage from this power supply only needs to be sufficient to provide cut-off bias to the type t5 keving tubes: potentials of from 100 to 300 volts are needed for this purpose. Approxinately 50 milliamperes of plate current in the final amplifier slould be allowed per type 45 keying tube. If the final amplifier draws 150 milliamperes, for example. three type 4.5 keying tubes will be required. A disadivantage of vacumm tube keying circuts is a plate supply potential loss of approxinately 100 volts, which is consumed by the keving tuhes. The plate supply therefore should be designed to give an output of 100 volts more than ordinarily is needed for the r.f. amplifier. This loss of plate voltage is encountered because the plate-to-filament resistance of the type 4.5 tubes, at 50 milliamperes of current and zero grid potemtial, is approximately 2000 ohms.

This keying system is applicable for highspeed commercial transmitters, as well as for amateur use.

- Elimination of Interference to Broadcast Reception

The troublesome interference created by anateur radiotelephones in nearby b.c. receivers usually can be eliminated by means of shunt or series type wave traps which

are tuned to the frequency of the interiering signal. The wavetrap coil should have a sufficient number of turns to resonate with a compression-type mica trinmer condenser of 30 or $\mathrm{T} 0 \quad \mu \mu \mathrm{~d}$. maxinum capacity. The coil is similar to a short-wave receiver r.f. coil and should be tapped at several places along the winding to simplify adjustment. The wavetrap should be located as close as possible to the antenna pust of the b.c. receiver. The series-type wavetrap usuall. is more effective than the shunt-type.

Horizontal cloublet transmitting antennas usually cause lows interference than those of

Figure 40
the Marconi type. If a Marconi antenna is to be used, a counterpoise, rather than a ground connection, will often minimize the interference in b.c. receivers.

- Harmonic Elimination

The second harmonic of a 5 -meter plisone signal falls outside the amateur bands and causes illegal interference with 37.5 meter commercial transmissions. Push-pull final amplifiers rarely cancel the second harmonic in amateur transmitters, due to unbalanced circuits and insufficient tank circuit capacity to inductance ratio. Reference should be made to the Churt of Tank Circuit Taning Capacitics for proper circuit design. Sufficient tank circuit capacity will greatly minimize harmonic radiation.

Several circuits which will greatly reduce harmonic radiation are shown here.

Figure 41 shows link coupled antenna tuning circuits which discriminate against harmonics from the r.f. amplifier. The additional circuit is tuncel to the fundanental frequency by means of a $50 \mu \mu \mathrm{fd}$. or $100 \mu \mu \mathrm{fd}$. condenser. somewhat similar to the plate tuning condenser. The coil L also is similar to the plate coil in the r.i. amplifier. Adjustments of the antenna or feeder tap, and also the link coupling, should be made with the aid of a field-strength meter.

Figure 41
D in figure to show pi couplers suitable for single wire ied ant these circuits the tuming condenser he plate (or plate circuit) offers nedance to the harmonic and prac-rt-circuits the harmonic energy to The tuning coil in either circuit tively high impedance to the harh the result that very little hargy is present across the 3.j) $\mu \mu \mathrm{fd}$. pedance matching condenser. The ircuit always is resonated to the I frequency of operation. The coupler must be tuned exactly of the harmonic energy is to be The link coupling systems in superior to the Collins method batcur use, inasmuch as they

COLLINS PI COUPLER
Figure 42
are not so critical of adjustment. Improper adjustment of a pi coupler will sometimes make the harmonic worse.

- Quartz Crystals

Quartz and tourmaline are minerals having a crystalline structure which, when cut and ground on certain crystalographic (opticall axes, possess piezo-electric properties in the influence of an oscillating electrical field. A detailed explanation of the piezoelectric effect will be found in any modern, comprehensive encyclopedia.

The mechanical activity or frequency of a piezo-electric element depends upon its physical dimensions (the frequency being inversely proportional to the thickness). The stability of the oscillatory properties depends mainly upon the optical cut and the crystal-temperature coefficient.

Piezo-electric oscillator (after the U.S.N. conference in 1929) : A circuit containing a resonator (crystal) and possessing too little regeneration to oscillate itself. but which oscillates through the reaction of the crystal when the latter is vibrating near one of its normal irequencies with energy derived from the circuit. Such a circuit is often called a "crystal contrulled" or "piezo-oscillator."

Figure 43

- Crystal Cuts

The iace of an X-cut or l^{\prime}-cut crystal is made parallel to the Z axis in figure 43 . Special-cut crystals, known as AT-cut. Vctit. I. W:?, HF: , ete., are made with the face of the crystal having an angle with respect to the Z axis, rather than being parallel to it. The purpose of these special-cut crystals is to increase their power-handling ability, in some cases. but especially to reduce the temperature coefficient. There is no frefuency drift in crystals which have absolute zero temperature coefficient. AT, V, and I.D:-cut crystals have temperature cocff:cient, approaching zero when correctly cut
and ground, and they should be used in radio transmitters in which accurate frequency control is essential, such as edge of hand operation. These crystals eliminate the need of a crystal oven for amateur work. A constant operating temperature is still required for some commercial applications, but the oven temperature need not be kept within as close limits as for an X or I cut plate.

- Frequency Drift and "'Twin-Peaks"

Crystals that oscillate at more than one frequency are commonly known as crystals with "twin peaks." The dual vibrational tendency is more pronounced with Y -cuts, but to a certain degree is exhibited by many X-cuts. The use of a well-designed, space wound, low "C" tank coil in an oscillator will prolibit the crystal from oscillating at two frequencies, and in addition will increase the output. Experiments have shown that the frequency stability is not improved by large tank capacities, which only tend to augment the double frequency phenomenon.

Twin frequencies appear in several ways: sometimes the crystal will have two frequencies several hundred cycles apart, oscillating on both frequencies at the same time, and producing an acoustically audible beat note. Other crystals will suddenly "jump" Frequency as the tank tuning condenser is varied past a certain setting. Operation with the tank condenser adjusted near the point where the frequency shifts is very imstable, the crystal sometimes going into oscillation on one frequency and sometimes one the other as the plate voltage is cut "on" and "off." Still other crystals will jump frequency only when the temperature is varied over a certain range. And some plates will jump frequency with a change in either tank tuning or temperature, and produce an audible beat tone at the same time, showing actually two pairs of frequencies!

- Use and Care of Crystals

When operating close to the edge of one band, it is adrisable to make sure that the crystal will responel to but one frequency in the holder and oscillator in which it is functioning; a crystal with two peaks can jump frequency slightly without giving any indications of the clange on the meter readings of the transmitter. If the transmitter fre-
quency is such that the operar on the edge of the band at al all conditions of room temp form of temperature control wi for the crystal unless it is of th type. When working close to t the 14 or 28 megacycle band it that the crystal temperature b fairly constant value; the freque kilocycles per degree Centigrade direct proportion to the operating regardless of whether the funda harmonic is used. When a crysta frequency by two kilocycles, its s. monic has shifted 4 kilocycles. not operating on the edge of the not concern themselves about freq due to changes in room temperat

If a pentode tube is used for oscillator having a plate potenti proximately 300 volts, the tempera crystal, regardless of cut, will nc appreciably to cause any noticeab; even 14 megacycles. When a cry lator is keyed on 3.5 or 1.7 megar frequency drift is not of any co even with much higher values of put, because of the keying and c that the drift is not multiplied a be with harmonic operation of a fier.
Crystal holders have a large e frequency; for example, the f. an 80 meter crystal can vary a: kilocycles in different holders. tals can be purchased in vari: ers which enable the operat frequency by varying the ait or ${ }^{2.5} \mathrm{kc}$. shift can be obtOnly 80 meter AT cut cry: for this purpose.

- High Frequency Crystals

40 meter crystals can be treated m same as 80 meter crystals, providec. are purchased in a dustproof holder fro. reliable manufacturer. However, it is a go idea with to meter crystals to make sure the crystal current is not excessive, as it will run higher in a given oscillator circuit than when a lower frequency crystal is used in the same circuit at the same voltage. A low loss. low-C tank circuit and a pentode or beam tope oscillator tube are desirable.

20 and 10 meter crestals, especially the latter, require more care in regard to circuit details, components, and plysical layout. 20
and 10 meter crystals are not of the zero drift type, as such crystals would be too thin to be of practical use. A special thick cut is used to give the crystal sufficient mechanical ruggedness. Crystals of this cut have a drift of approximately $40-4$; cy . cles/Ac./deg. C. This means that such crystals must be rum at very low power levels not only to avoid fracture, but to prevent excessive drift. However, their use permits considerable simplification of a u.h.f. transmitter.

A type 41 tube, rumning at $2 \pi .5$ volts on the plate and 100 volts on the screen, makes a good oscillator tube for a 20 meter crystal. Bias should be oftained from a 500 ohm cathode resistor rather than a grid leak. Very light loading, preferably with inductive coupling, is required. The tank cnil should be luw luss, preferably vir-suphorted or wound on a ceramic form.

With 10 meter crystals it is necessary to use low capacity triodes as oscillator tubes. The high shunt capacities of multi-grid tubes makes their use impracticable with 10 meter erystals. Medium-high μ triodes with high transconductance and low input and output capacities make the best oscillators. The types RK3t, $6 \mathrm{~J} . \mathrm{BG}$, and 9.5 are the most satisfactory oscillators, the 6J.5G permitting the most output besides being the least expensive. The second section of an RK3t can be used as a doubler to 5 meters, thus giving about 3 watts of crystal controlled 5 meter out

Contrary to general practice with pentode crystal oscillators,' the plate tank circuit should not be too low C: a moderate anount of tuning capacity should be used in a 10 meter triode crystal oscillator. The plate voltage on the oscillator tube should not be allowed to exceed 200 volts. About 2 watts output is obtainable from the 10 meter oscillator tank at this plate voltage. The tank coil can consist of 8 turns of no. 12 wire, air wound and spaced the diameter of the wire, $3 / 4$ inches in diameter. Bias should be ohtained from a 200 olun cathole resistor (bypassed) and no grid leak. Connecting leads should be short and components small physically.

Both 10 and 20 meter crystal oscillators
should be followed, where practicable, b. tube of high power gain, such as the ε This cuts down the number of tubes quired in a high power, stationary n.j transmitter.

A 10 meter crystal oscillator with a $6 J 5$ driving a 6V6 doubler using a 150,000 ob grid leak, makes an excellent 5 meter m bile transmitter. The latter tube can 1 either plate or plate-and-screen modulate The modulation is better when doubling i both plate and screen are modulated.

Coil Winding Table For Low-C Wire-Wound Tank Coils

$\begin{gathered} \text { Band } \\ \text { In } \\ \text { Mieters } \end{gathered}$	No. 10 Wire Coils	No. 14 Wire Coils	Total Cond. Capac in $\mu \mu \mathrm{fds}$.
160	42 turns. 5 in. dia. 6 turns perinch.	38 turns. 4 in. dia. 8 turns per inch.	100
80	28 turns. $41 / 2$ in. dia. 4 turns per inch.	34 turns. 23/4in.dia. 8 turns per inch.	50
40	20 turns. $31 / 2 \mathrm{in}$. dia. 3 turns per inch.	22 turns. 23/4in. dia. 5 turns per inch.	35
20	10 turns. $31 / 4$ in. dia. $11 / 2$ turns per inch.	11 turns. $25 / 8$ in. dia. $21 / 2$ turns per inch.	35
10	6 turns. 21/rin. dia. 1 turn per inch.	6 turns. 21/4in. dia. $11 / 2$ turns per inch.	25

Note: These coils are sulitable for plute nenfrolized or push-pull amplifiers zuith Low-C tubes. Grid ncutralized amplifiers require from 10% to 30% fezecr flums than those listed aboice, depending upon the tube. Last column indicates shmullest siar thning iondonser nisable.

LINK COUK
C and which arc tennas. It towards t a low im: tically she ground. offers rela monic, wil monic ener antenna in complete c fundamenta Collins pi right if all eliminated.
A and B are for general at

-ion takes place 1 times, under crature, some 41 be required " "zero drift" he edges of is essential
e kept at a ncy slift in increases in y frequency, zmental or 1 shifts its econd har-
Amateurs band need uency drift tre.
the crystal al of apture of the t increase he drift at stal osciliycles, the asequence, i plate inif the fact s it would final ampli-
ffect on the equency of much as 3
In fact, crysable gap holc! or to vary the gap. Ahout $: 20$ ained at $1+$ me. tals are suitable

Coil Winding Charts for Copper Tubing Tank Coils

THE values given are a close approximation to your particular requirements in each case, but exact accuracy depends on the circuit arrangement and the length of the leads in the plate circuit of the tube to be used. The two factors mentioned become more important as the frequency increases. Long leads necessitate fewer turns on the coil, but the leads should be long enough to keep the tank condenser separated from the coil by at least the coil diameter

All the values in the table are for the tubes specified when used as single-ended amplifiers with the neutralization tap near the center of the coil. If placed in the center of the coil, this tap will automatically give fixed neutralization on all bands. For pushpull amplifiers, decrease the number of turns by 25% for any given tube. The reason for this decrease will be apparent upon close comparison of single-ended and push-pull circuits. Just twice as much tube capacity is shunted across the tank in push-pull circuits as when single-ended circuits are used.

In low-C tanks. such as these, the voltage rating of the condenser should be equal to four times the plate voltage on the tube for single-section types, and twice the plate voltage (each section) for split-stator models.

Chart NO I. For Coils Tuned With Split-Stator Condenser and Used in Circuits Employing Low-C Tubos, such as 150T, 50T, 354, 852, 800, 825, RKI8.

BAND	2" Dia. Coil	$3^{\prime \prime}$ Dia, Coil	$4^{\prime \prime}$ Dia. Coil	5" Dia. Coil	$6^{\prime \prime}$ Dia. Coil	Size of Tunino Condenser
160	N.S.	N.S.	N.S.	N.S.	$\begin{aligned} & 80 \text { Tums } \\ & 36 \text { "" Long } \\ & 3 / 9^{\prime \prime} \text { Tubing } \end{aligned}$	250 Mmf. Each Section for Full Band Coverage.
80	N.S.	N.S.	$\begin{aligned} & \hline 60 \text { Tums } \\ & 20^{\prime \prime \prime} \text { Long } \\ & 1 / 4 " \text { Tubing } \end{aligned}$	$\begin{aligned} & 50 \text { Turns } \\ & 18^{\prime \prime \prime} \text { Long } \\ & 1 / 4^{\prime \prime} \text { Tubing } \end{aligned}$	40 Turns 18" Long 8/8" Tubing	100 Mmf . Each Section for Full Band Coverage.
40	N.S.	$\begin{aligned} & 46 \text { Tums } \\ & 16 \text { ", Long } \\ & 1 / 4 \text { " Tubing } \end{aligned}$	$\begin{aligned} & 34 \text { Turns } \\ & 12, \prime \text { Long } \\ & 1 / 4^{\prime \prime} \text { Tubing } \end{aligned}$	$\begin{aligned} & 28 \text { Turns } \\ & 12 \text { '" Lond } \\ & 1 / a^{\prime \prime} \text { Tubing } \end{aligned}$	$\begin{aligned} & 22 \text { Turns } \\ & 12^{\prime \prime} \text { Long } \\ & 1 / 4^{\prime \prime} \text { Tubing } \end{aligned}$	35 Mmf . Each Section.
20	$\begin{aligned} & 32 \text { Turns } \\ & 15 \text {," Long } \\ & 1 / 4^{\prime \prime} \text { Tubing } \end{aligned}$	$\begin{aligned} & 20 \text { Turns } \\ & 12 \text { " Long } \\ & 1 / 4^{\prime \prime} \text { Tubing } \end{aligned}$	$\begin{aligned} & 16 \text { Tums } \\ & 12,{ }^{\prime \prime \prime} \text { Long } \\ & 1 / 4^{\prime \prime} \text { Tubing } \end{aligned}$	$\begin{aligned} & 14 \text { Turms } \\ & 12^{\prime \prime \prime} \text { Long } \\ & 1 / 4^{\prime \prime} \text { Tubing } \end{aligned}$	$\begin{aligned} & 10 \text { Turns } \\ & 12^{\prime \prime} \text { Long } \\ & 1 / 4^{\prime \prime} \text { Tubing } \end{aligned}$	35 Mmf. Each Section.
10	$\begin{aligned} & 8 \text { Turns } \\ & 4^{\prime \prime} \text { Long } \\ & 1 / 4^{\prime \prime} \text { Tubing } \end{aligned}$	$\begin{gathered} 6 \text { Turns } \\ 4^{\prime \prime \prime} \text { Lond } \\ y^{\prime \prime} \text { " Tubing } \\ \hline \end{gathered}$	$\begin{gathered} 4 \text { Turns } \\ 4^{\prime \prime \prime} \text { Long } \\ \text { 1/4" Tuhing } \end{gathered}$	$\begin{aligned} & 4 \text { Turns } \\ & 4^{\prime \prime} \text { Long } \\ & 1 / 4^{\prime \prime} \text { Tubing } \end{aligned}$	$\begin{gathered} 3 \text { Turns } \\ \text { 4", Long } \\ \text { 1/4" Tubing } \end{gathered}$	35 Mmf. Each Section. N.S. Indicates: NOT SATISFACTORY

CHART NO 2. For Coils Tuned With Single-Section Condenser and Used ir Circuits Employing Low-C Tubes, such as 150T, 50T, 354, 852, 800, 825, RKI8.

BANO	2" Dia. Coil	3" Dia. Coil	$4^{\prime \prime}$ Dia. Coll	5" Dia. Coil	$6^{\prime \prime}$ Dia Coil	Size of Tunting Condenser
160	N.S.	N.S.	N.S.	N.S.	60 Turns 36" Long 3/8" Tubing	100 mmf .
80	N.S.	N.S.	$\begin{aligned} & 50 \text { Tums } \\ & 20 \text { "' Long } \\ & 1 / 4^{\prime \prime} \text { Tubing } \end{aligned}$	$\begin{aligned} & 40 \text { Turns } \\ & 18^{\prime \prime \prime} \text { Long } \\ & 1 / 4^{\prime \prime} \text { Tubing } \end{aligned}$	$\begin{aligned} & 30 \text { Turns } \\ & 18^{\prime \prime} \text { Long } \\ & 8 \text { "" Tubing } \end{aligned}$	100 Mmf . For Full Band Corerage.
40	N.S.	$\begin{aligned} & 36 \text { Turns } \\ & 14 \text { "' Long }^{\prime \prime} \text { " Tubing } \end{aligned}$	$\begin{aligned} & 24 \text { Tums } \\ & 12^{\prime \prime \prime} \text { Long } \\ & 1 / 4^{\prime \prime} \text { Tubing } \end{aligned}$	$\begin{aligned} & 20 \text { Turns } \\ & 12^{\prime \prime} \text { Lonn } \\ & 1 / 4^{\prime \prime} \text { Tubing } \end{aligned}$	$\begin{aligned} & 16 \text { Turns } \\ & 12^{\prime \prime \prime} \text { Long } \\ & 1 /{ }^{\prime \prime} \text { Tubing } \end{aligned}$	35 Mmf .
20	$\begin{aligned} & 22 \text { Turns } \\ & 12 \text { "' Long } \\ & 3 / 4^{\prime \prime} \text { Tubing } \end{aligned}$	$\begin{aligned} & 16 \text { Turns } \\ & 12{ }^{\prime \prime \prime} \text { Lomp } \\ & 1 / 4^{\prime \prime} \text { Tubing } \end{aligned}$	$\begin{aligned} & 12 \text { Turns } \\ & 12^{\prime \prime \prime} \text { Long } \\ & 1 / 4^{\prime \prime} \text { Tubing } \end{aligned}$	$\begin{aligned} & 10 \text { Turns } \\ & 12^{\prime \prime \prime} \text { Long } \\ & 1 / 4^{\prime \prime} \text { Tubing } \end{aligned}$	$\begin{aligned} & 8 \text { Tums } \\ & 12^{\prime \prime \prime} \text { Long } \\ & 1 / \mathbf{s}^{\prime \prime} \text { Tubing } \end{aligned}$	35 Mmf .
10	$\begin{aligned} & 6 \text { Turns } \\ & 5^{\prime \prime \prime} \text { Lonng } \\ & \text { 1/4" Tubing } \end{aligned}$	$\begin{gathered} 4 \text { Turns } \\ 5^{\prime \prime \prime} \text { Long } \\ 1 / \mathbf{1}^{\prime \prime} \text { Tubing } \\ \hline \end{gathered}$	$\begin{gathered} 4 \text { Turns } \\ \text { 5"' Long } \\ \text { 1/4" Tubing } \end{gathered}$	$\begin{aligned} & 4 \text { Turns } \\ & 5^{\prime \prime} \text { Long } \\ & 1 / 4^{\prime \prime} \text { Tubing } \end{aligned}$	$\begin{aligned} & 2 \text { Tuns } \\ & 5^{\prime \prime} \text { Long } \\ & \text { y/8" Tubing } \end{aligned}$	35 Mmf .

CHART NO. 3. For Coils Tuned With Split-Stator Condenser and Used in Circuits Employing High-C Tubes, Such as 50 Watters, 210, 204A, 849, 212D, 830, 46, RK20.

BAND	2" Dia. Coil	3" Dia. Coil	4" Dia. Coil	$5^{\prime \prime}$ Dia Coil	$6^{\prime \prime}$ Dia. Coil	Size of Tuning Condenser
160	N.S.	N.S.	N.S.	N.S.	$\begin{aligned} & 72 \text { Tums } \\ & 36 \text { "' Lonn } \\ & \text { 8/6" Tubing } \end{aligned}$	250 Mmf. Each Section for Full Band Corerage.
80	N.S.	N.S.	$\begin{aligned} & 54 \text { Turns } \\ & 16 \text { ", Lond } \\ & 1 / 4^{\prime \prime} \text { Tubing } \end{aligned}$	$\begin{aligned} & 46 \text { Turns } \\ & 18 \text { "' Lon }^{\prime \prime} \text { Lubing } \\ & 1 / 4^{\prime \prime} \end{aligned}$	$\begin{aligned} & 36 \text { Tums } \\ & 18^{\prime \prime} \text { Long } \\ & \text { gis Tubing } \end{aligned}$	100 Mmf. Each Section for Full Band Coverage.
40	N.S.	$\begin{aligned} & 36 \text { Turns } \\ & 144^{\prime \prime \prime} \text { Long } \\ & 1 / 4^{\prime \prime} \text { Tubing } \\ & \hline \end{aligned}$	$\begin{aligned} & 24 \text { Turns } \\ & 10^{\prime \prime} \text { Long } \\ & 1 / 4^{\prime \prime} \text { Tubing } \end{aligned}$	$\begin{aligned} & 20 \text { Turns } \\ & 10^{\prime \prime} \text { Long } \\ & 1 / 4^{\prime \prime} \text { Tubing } \\ & \hline \end{aligned}$	$\begin{aligned} & 16 \text { Turns } \\ & 10 \text { ", Long } \\ & 1 / 4 \text { " Tubing } \end{aligned}$	35 Mmf . Each Section.
20	$\begin{aligned} & 24 \text { Turns } \\ & 10^{\prime \prime} \text { Long } \\ & 1 / 4^{\prime \prime} \text { Tubing } \end{aligned}$	$\begin{aligned} & 16 \text { Turns } \\ & 10^{\prime \prime \prime} \text { Long } \\ & 1 / 4^{\prime \prime} \text { Tubing } \\ & \hline \end{aligned}$	$\begin{aligned} & 12 \text { Turns } \\ & 10^{\prime \prime \prime} \text { Long } \\ & 1 / 4^{\prime \prime} \text { Tubing } \end{aligned}$	$\begin{aligned} & 10 \text { Turns } \\ & 10 \text { "u } \\ & \text { 1/4" Tubing } \end{aligned}$	$\begin{aligned} & 8 \text { Turns } \\ & 10^{\prime \prime \prime} \text { Long } \\ & 1 / 4^{\prime \prime} \text { Tubing } \end{aligned}$	35 Mmf . Each Section.
10	$\begin{gathered} 8 \text { Tums } \\ 5 \text { " Long } \\ 1 / \text { al }^{\prime \prime} \text { Tuhing } \\ \hline \end{gathered}$	$\begin{aligned} & 6 \text { Turns } \\ & 5^{\text {J" Long }} \\ & 1 / 4 " \text { Tubing } \end{aligned}$	$\begin{aligned} & 4 \text { Tums } \\ & 5 \text { "' Long } \\ & 1 / 1 " \text { " Tuhing } \end{aligned}$	$\begin{aligned} & 4 \text { Tums } \\ & 5 \text { "' Lang } \\ & 1 / 1^{\prime \prime} \text { Tubinn } \end{aligned}$	$\begin{aligned} & 3 \text { Tums } \\ & 5^{\prime \prime} \text { Long } \\ & 1 / 4 " \text { Tubing } \end{aligned}$	35 MmP . Each Section.

CHART NO. 4. For Coils Tuned With Single-Section Condenser and Used in Circuits Employing High-C Tubes, Such as 50 Watters, $210,204 \mathrm{~A}, 849,212 \mathrm{D}, 830,46$, RK20.

BAND	$2^{\prime \prime}$ Dia. Coil	$3^{\prime \prime}$ Dia. Coil	4" Dia. Coil	5" Dia. Coil	$6^{\prime \prime}$ Dia. Coil	Size of Tuning Condenser
160	N.S.	N.S.	N.S.	N.S.	$\begin{aligned} & 600 \text { Turms } \\ & 36^{\prime \prime} \text { Long } \\ & \text { 3/g" Tubing } \end{aligned}$	100 Mmf .
80	N.S.	N.S.	$\begin{aligned} & 50 \text { Turns } \\ & 20^{\prime \prime \prime} \text { Long } \\ & 1 / /^{\prime \prime} \text { Tubing } \end{aligned}$	$\begin{aligned} & 40 \text { Turns } \\ & 18^{\prime \prime \prime} \text { Long } \\ & 1 / 4 \text { " Tubing } \end{aligned}$	$\begin{aligned} & 30 \text { Turns } \\ & 18^{\prime \prime \prime} \text { Lonn } \\ & \text { 8/f" Tubing } \end{aligned}$	100 Mmf. For Full Band Coverage.
40	N.S.	$\begin{aligned} & 32 \text { Turns } \\ & 14^{\prime \prime \prime} \text { Long } \\ & 1 / 4^{\prime \prime} \text { Tubing } \end{aligned}$	$\begin{aligned} & 22 \text { Turns } \\ & 12^{\prime \prime \prime} \text { Long } \\ & 1 / 4^{\prime \prime} \text { Tubing } \end{aligned}$	$\begin{aligned} & 18 \text { Turns } \\ & 12 \text { "' Long } \\ & 1 / 4^{\prime \prime} \text { Tubing } \end{aligned}$	$\begin{aligned} & 14 \text { Turns } \\ & 12^{\prime \prime \prime} \text { Long } \\ & 1 / 4 \text { " Tubing } \end{aligned}$	35 Mmf.
20	$\begin{aligned} & 18 \text { Turns } \\ & 10^{\prime \prime \prime} \text { Long } \\ & 1 / 4^{\prime \prime} \text { Tubing } \end{aligned}$	$\begin{aligned} & 14 \text { Turns } \\ & 10^{\prime \prime \prime} \text { Long } \\ & 1 / 4^{\prime \prime} \text { Tubing } \end{aligned}$	$\begin{aligned} & 10 \text { Turms } \\ & 10^{\prime \prime \prime} \text { Long } \\ & 1 / 4 " \text { Tubing } \end{aligned}$	$\begin{aligned} & 8 \text { Turns } \\ & 10^{\prime \prime \prime} \text { Long } \\ & 1 / /^{\prime \prime} \text { Tubine } \end{aligned}$	$\begin{aligned} & 6 \text { Turns } \\ & 10^{\prime \prime} \text { Long } \\ & 1 / 4 \text { " Tubing } \end{aligned}$	35 Mmf .
10	$\begin{aligned} & 4 \text { Turns } \\ & 5^{\prime \prime} \text { Long } \\ & \text { 1/4" Tubing } \end{aligned}$	$\begin{gathered} 4 \text { Turns } \\ 5^{\prime \prime \prime} \text { Long } \\ 1 / 1^{\prime \prime} \text { Turing } \end{gathered}$	$\begin{aligned} & 4 \text { Turns } \\ & 5^{\prime \prime} \text { Long } \\ & 1 / 4^{\prime \prime} \text { Tubing } \end{aligned}$	$\begin{gathered} 4 \text { Turns } \\ 5^{\prime \prime \prime} \text { Long } \\ 1 /^{\prime \prime \prime} \text { Tuhing } \end{gathered}$	$\begin{gathered} 2 \text { Turns } \\ 5^{\prime \prime} \text { Long } \\ 1 / 4^{\prime \prime} \text { Tubing } \\ \hline \end{gathered}$	35 Mmf .

Wire Wound Coils

Coil Chart for $11 / 2$-in. and $21 / 2$-in. Dia. Coil Forms.

BAND	11/2" Dia. Coil Form	Size of Tuning Condenser	BAND	$21 / 2^{\prime \prime}$ dia. Coil Form	Size of Tuning Condenser	REMARKS
160	Not Satisfactory		160	46 Turns No. 16 DCC. Close wound	100 MMF. or larger	The winding data shown here is for coils that are tuned with single-sec. tion variable condensers. See Chart below for coil winding data when split-stator variable condensers are used.
80	35 Turns No. 22 DCC. Close wound	100 MMF.	80	23 Turns No. 16 DCC. Spaced one dia.	100 MMF.	
40	19 to 21 Turns No. 16 DCC. Spaced one dia.	100 MMF .	40	16 Turns No. 16 DCC. Spaced one dia.	25-35 MMF.	
20	11 to 13 Turns No. 16 DCC. Spaced one dia.	25-35 MMF.	20	8 to 10 Turns No. 16 DCC. Spaced one dia.	25-35 MMF.	
10	5 to 6 Turns No. 16 DCC. Snaced one dia.	25-35 MMF.	10	5 Tums No. 16 DCC. Spaced one dia.	25-35 MMF.	

Coil Winding Chart for $11 / 2-$-in. and $21 / 2-\mathrm{in}$. Dia. Coil Forms and Split-Stator V.C.

BAND	11/3"Dia. Coil Form	$\begin{aligned} & \text { Size of Tuning } \\ & \text { Condenser } \end{aligned}$	BAND	$\begin{aligned} & \hline 21 / 20 \text { dia. } \\ & \text { Coil form } \end{aligned}$	Size of Tuning Condenser	
160	Not Satisfactory		160	59 Turns No. 16 Enameled Close wound. Tap at center.	250 MMF. Each Section (smalle condenser can be used).	35 mmf. Each section split-stator double-spaced midget variable condensers are satisfactory.
80	Not Satisfactory		80	55 to 57 Turns No. 16 DCC. Close wound. Tap at center.	35 MMF. Each Section	
40	35 Turns No. 16 DCC. Close wound. Tap at center.	35 MMF. Each Section	40	29 Turns No. 14 Enamelec Space wound. To cover 3 inches.	35 MMF. Each Section	
20	19 Turns No. 16 DCC. Spaced one dia. Tap at center.	35 MMF. Each Section	20	15 Turns No. 14 Enameler Snaced one dia. Tap at center.	35 MMF. Each Section	

TRANSMITTER ADJUSTMENT CHART
 Quick Reference for Tuning and Meter Scale Readings

$\begin{gathered} \text { Band } \\ \text { of } \\ \text { Operation } \end{gathered}$	Oscillator Plate or Cathode Current in M. A.	$\begin{aligned} & \text { Doubler } \\ & \text { Grid } \\ & \text { Current } \\ & \text { in M. A. } \end{aligned}$	Doubler Plate Current in M. A.	Buffer Grid Current in M. A.	Buffer Current in M. A.	Final Grid Current in M. A.	Final Plate Current in M. A.
160							
80							
40							
20							
10							
5							
	$\left\|\begin{array}{c} \text { Oscillator } \\ \text { Plate } \\ \text { Puning Dial } \end{array}\right\|$	$\begin{gathered} \text { Doubler } \\ \text { Plater } \\ \text { Tuning Dial } \end{gathered}$	Doubler Grid Dial	Buffer Plate Dial	$\begin{aligned} & \text { Final } \\ & \text { Grid } \\ & \text { Dial } \end{aligned}$	Final Plate Dial	Antenna Coupler Dials
160							
80							
40							
20							
10							
5							

Miscellaneous Adjustment Notes

Coil Winding and Condenser Capacity Notes

	$\begin{aligned} & \text { Band } \\ & \text { In Meters } \end{aligned}$	Oscillator	Doubler Plate Coil	Buffer-Doubler Grid Coil	Buffer-Doubler Plate Coil	Ginal ${ }_{\text {Frid }}$	${ }_{\text {Plate Coil }}^{\text {Final }}$
	160	Wire Size Turns Spacing Condenser					
Fill-in Your	80	Wire Size Spacing Turns. Condenser					
Own Coil Data in Pencil	40	Wire Size Spacing Turns. Condenser					
-	20	Wire Size Spacing Turns. Condenser					
	10	Wire Size Spacing Turns Condenser					

Danger-High Voltage

The high voltage power supplies even in a low power transmitter are potentially lethal. They are also potential fire hazards. Pages could be written on "don'ts" and precautionary measures, but the important thing is to use your head; don't fool with any part of your transmitter or power supply unless you know exactly what you are doing and have your mind on what you are doing.

Not only should your transmitter installation be so arranged to minimize the danger of accidental shock for your own safety, but also because "haywire" installations that do not pass the underwriter's rules will invalidate your fire insurance. You have no claim against the insurance company if they can prove that the installation did not meet underwriters' specifications.

Some of the most important things to remember in regard to the high voltage danger are the following:

Do not rely upon bleeders to discharge your filter condensers; shurt the condenser with an insulated-handle screwdriver before handling any of the associated circuits. Blecders occasionally blowe out, and good filter condensers hold a charge a long time.

Beware of "zero adjuster" devices on meters placed in positive high voltage leads. Also be carcful of dial set screzes if the rotor shaft of the condenser is "hot." Both of these situations represent poor practice to begin with.

Don't touch any transmitter components awithout first turning off all seritches. If you do insist on making coupling adjustments, etc., with the transmitter on (very bad practice), kecp ONE H.4.ND BEHIND YOU.

Do not work on the high roltage circuits or make adjustments withere it is necessary to reach inside the transmitter UNLESS SOMEONE EL.SE IS PRESENT. 90% of the deaths of amateurs due to electrocution could have been prevented if someone had been present to kill the high aoltage or remove the victim and to call the doctor and administer first aid before he arrived.

High voltage gear should be so fired that small children camot manipulate the switches or come in contact with any of the zeires or components. Either keep the radio room or gear under lock and key or clse prozide an "interlock" system zehercby all primary circuits are broken when the transmitter cabinet is opened.

Familiarize yoursclf with the latest approved methods of first aid treatment for electrical shock. It may chable you to saze a life some time.

Don't attempt to hurry too much if a companion comes in contact wevith high voltage and cannot extricats himself. . Act quickly but do not act without deliberation or you may be in as bad a fire as the person you are trying to help. Do not touch the victim with your bare hands if things are wet. Otherwise it is safe to grab him by a loose fold of clothing to pull him free, first making sure that you are well insulated from anythiny grounded. Turning off the voltage is simpler, when possible. However, do not waste precious moments dashing around trying to discover how to open the circuit. If you do not already knoze, try to remoze the victim if it can be done safely.

A main primary switch at the entrance to the radio room, killing all primary circuits, will reduce the fire hazard and help your peace of mind. provided you make it an iron-clad rule alecals to throw the saitch wehen leawing the room.

Bezare of strange equipment. It may contain unconentional wiring or circuits. Do not take for granted that it is zeired the zeay you would do it.

Chapter 11

Enciter Construction

ONE OF the most important portions of a radio transmitter is the means of controlling its frequency of operation. This frequency determines the place in the radio spectrum in which the transmitter operates. Some form of oscillator is needed for this purpose.
The most practical method of frequency control is by means of a duartz crystal oscillator, because the oscillation frequency is determined by the physical dimensions of the quartz plate. Quartz is a very hard substance which is not easily affected by temperature or pressure changes, and for this reason the quartz crystal oscillator has a better frequency stability than other forms of oscillators.

Relatively low-frequency crystal oscillators are often followed by frequencydoublers or triplers, in order to obtain frequency control for high-frequency transmitters. That portion of the transmitter which supplies the actual control of frequency, in most cases, is defined as the cretiter: therefore the exciter includes the crystal oscillator and any frequency-multipliers of medium or low power output.

- Crystal Oscillators

Crystal oscillators can be divided into three classifications: (1) luw puwer circuits, which require several additional buffer stages to drive medium or high power final amplifiers; (2) high power crystal oscillators, which minimize the number of buffer stages in a transmitter; (3) harmonic crystal oscillators, which operate on more than one harmonically-related band from one quartz crystal.

Low power crystal oscillators are often required in transmitter design where extremely accurate frequency control is needed. The crystal oscillator tube is operated at low plate potential, such as 200 volts, with the result that oscillation is relatively minute. This weak or moderate crystal oscillation means that there will be less heating effects in the quartz plate: the irequency drift, due to changes in temperature, is therefore minimized.

Mere operation of a quartz crystal oscillator tube at relatively low plate voltage does not necessarily mean a low degree of frefuency drift; a type of crystal oscillator tube must be used which has high power sensitivity, high μ, and low feedback (interelectrode) capacity. The amount of feedback determines the value of r.f. current flowing through the quartz plate, and thus determines the amplitude of the physical vibration of the quartz plate. Any tube which requires only a very small amount of gi icl excitation voltage and neutralizing capacity can be used to supply relatively high power output in a crystal oscillator without heating of the quartz plate.

High power crystal oscillators are those which operate with as high a plate voltage as can be used with only moderate heating of the quartz crystal. Many transmitters, such as those used for c.w. telegraphy, do not reguire as high a degree of frequency stability as for radiotelephone transmitters used for commercial services. The relatively high output from such crystal oscillators usually means the elimination of one or two buffer-amplifier stages. This simplifies the transmitter, and may result in more troubleiree operation. There are a great many types of tubes for high power crystal oscillators, some of which are also used in high stability bow power crystal oscillators by merely reducing the electrode voltages.

The crystal oscillator circuits in figures 1 and 2 are of the standard pentode-tube type. They operate on one frequency only, and the plate circuit is tuned to approximately the frequency of the quartz crystal.

The plate circuit in most crystal oscillators is tuned to a frequency somewhat higher than the frequency of the crystal itself. The actual power output of crystal oscillators, such as those shown in figures 1 and 2 , is from one to five watts, depending upon the values of plate and screen voltage. The use of AT-cut or low temperature coefficient quartz plates allows higher values of output to be obtained without exceeding the safe r.f. crystal current ratings or encountering frequency drift. X-cut and Y-cut crystals must be operated with comparatively low

Figure 1-Pentode Oscillator with Type '47 Tube

Figure 2-Pentode Crystal Oscillator with Type '42 Tube
crystal current, because they not only will not stand as much r.f. crystal current, but also have a higher temperature coefficient.

Push-Pull Crystal Oscillators

The type 53 twin-triode tube (2.5 volt heater) and its 6.3 volt companion tubes, 6 A 6 and 6 N 7 , are very efficient for pushpull crystal oscillators. A typical twintriode oscillator circuit is shown in figure 3.

Figure 3-Dual-Triode 6A6 (or 53) High-Output Push-Pull Oscillator

Outputs of irom 5 to 10 watts can be obtained from the above circuit withont exceeding the ratings of the usual X -cut crystals. The crystal current for a pushpull oscillator is but little higher than for a single tube of the same type, and twice the output can be obtained.

- Oscillator-Doubler Circuit

The type 53 and $6 . \pm 6$ twin-triode tubes are very popular for circuits where one tri-
ode acts as a crystal oscillator which drives the other triode as a frequency doubler; one tube therefore serves a dual purpose, supplying approximately 5 watts output on either the fundamental frequency or the second harmonic of the quartz crystal. Two applications of the twin-triode tube in a crystal oscillator circuit are shown in figures 4 and 5.

JONES CRYSTAL OSCILLATOR-OOUBLER
Figure 4

Figure 5-Jones Regenerative Exciter for all-band operation. R-50,000 ohms

Figure t is a circuit which can be used with quartz crystals cut for $160,80,40$ or 20 meter operation. The circuit shown in figure \bar{j} can be made regenerative in the fre-quency-nultiplier section in order to use the second triode as a tripler or quadrupler. By reducing the capacity of the $25 \mu \mu \mathrm{fi}$. condenser (shown with an arrow pointing to it) to a low enough value, the second triode can be neutralized for use as a buffer stage. A suitable condenser for this purpose is a small nica-insulated trimmer condenser having a capacity range of from 3 -to- 30 $\mu \mu \mathrm{fds}$. The resistor R shown in figure 5 should be from 30,000 to 50,000 ohms in value, and generally the r.f. choke shown in series with this resistor can be omitted. Coil data for any of these exciters can be obtained from those circuits (shown in the following pages) for which constructional details are given.

- Tritet Crystal Oscillator

Any of the screen-grid tubes can be used in a tritet oscillator circuit, such as the one shown in figure 6.

Figure 6. Tritet Crystal Oscillator

The tritet consists of a triode oscillator circuit with an additional tuned circuit con nected in series with the cathode. This allows the screen-grid circuit to be bypassed to ground, and the tetrode or pentode plate circuit is electron-compled to the oscillator circuit. The plate circuit is generally tuned to the second harmonic and outputs of from 5 to 15 watts can be obtained without damage to the quartz crystal. This circuit is all improvement over the older forms of

6L6G Tritet Coil Data			
All Coils Wound on $11 / 2 \mathrm{in}$. Diameter Forms			
Wavelength	$\begin{gathered} \text { L2 } \\ \text { Plate Coil } \end{gathered}$	$\stackrel{\text { Li }}{\text { Cathode Coll }}$	Crystal
160	78 turns no. 24 d.s.c. closewound	Shortcircuited	160
80	38 turns no. 18 Enam. close- wound	25 turns no. 22 d.s.c. $11 / 2 \mathrm{in}$. long	160
40	20 turns no. 18 Enam. $11 / 2 \mathrm{in}$. long	12 turns no. 18 Enam. $11 / 2 \mathrm{in}$. long	80
20	9 turns no. 18 Enam. $11 / 4 \mathrm{in}$. long	7 turns no. 18 Enam. $11 / 4 \mathrm{in}$. long	40

tritet in which a grid-leak was used in place of the grid r.f. choke, and in which no cathode resistor and bypass condenser were included. The improved circuit (figure 6) decreases the crystal current as much as 50%, and thereby protects the crystal against fracture. The cathode circuit is "high C" and tuned to a frequency which is 40% or

Figure 7-6L6G Tritet Oscillator for Operation on Both Fundamental Frequency and Second Harmonic
50% higher than that of the crystal. If an 802 or RK-25 is substituted for the 6l,6 tube, the plate circuit can be tuned to the fundamental frequency of the crystal without making it necessary to short-circuit the cathode tuned circuit.

- Regenerative Oscillators

When a crystal oscillator circuit is made regenerative by means of a r.f. choke in the cathode-circuit bypassed to ground with a small mica conderser, nearly twice as much output can be obtained from the plate circuit without loss of crystal oscillation, and the r.f. crystal current is reduced. The cathode circuit produces a regenerative effect depending upon the capacity of the cathode bypass condenser, which varies in capacity from $.0001 \mu \mathrm{ful}$. up to $.0004 \mu \mathrm{fd}$. in different tube circuits. Figures 8 and ! show the comentional and regenerative pentode oscillator circuits.

The regenerative crystal oscillator becomes a good harmonic oscillator by simply changing the plate coil for operation on the harmonics of the crystal frequency. The circuit in figure 10 can be used on 40 and 80 meters with an 80 meter crystal. If the plate tuning condenser has a maximum capacity of at least $150 \mu \mu \mathrm{frls}$, this oscil-

CONVENTIONAL LOW OUTPUT PENTODE CAYSTAL oscillator with gridleak bias resistor

Figure 8

Figure 9
C- .0001 or $.00025 \mu \mathrm{fd}$. (mica) C1-Screen By-Pass Condenser R-Grid-Leak, 50,000 ohms

25 WATT CW TRANSMITTER
Figure 10
lator can be tised on two bands with a single plate coil, the two extreme ranges of the condenser being used to tune the respective bands. I coil suitable for covering both the 40 and 80 meter bands would have approximately 20 turns of No. 20 d.c.c. wire on a $11 / 2 \mathrm{in}$. dia. form, over a winding space $11 / 2 \mathrm{in}$. long.

- Reinartz Crystal Oscillator

This regenerative crystal oscillator has a fixed-tuned cathode circuit which is resonated to approximately one-half the crystal frequency. For example, with an 80 meter crystal the cathode circuit is tumed to 160 meters, the plate circuit to 80 meters. Either an 802 or a 6 F 6 tube can be used in a Reinartz crystal oscillator circuit. The output will be from 5 to 25 watts, depending tuon the values of plate and screen voltages. The 6Fi is used as a high- μ triode in this same type of circuit, whereas the 802 is used as a pentode oscillator with addlitional control-grid-to-plate capacity feedhack. The circuit is shown in figure 12.

Figure 11 -Reinartz 802 Oscillator

Figure 12-Reinartz 802 Oscillator Circuit

The crystal r.i. current is quite low in this circuit, in comparison with the output power which can be obtained. The eathode circuit is tuned to hali the frequency of the crystal, and the reactive effect produces regeneration at the harmonic frequency. This inereases the operating efficiency of the

802 Reinartz Coil Data		
Wavelength Meters	Plate Coill	Cathode Coil
160	70 turns no. 22 d.s.c. 2 in . long $13 / 4 \mathrm{in}$. diam.	116 turns no. 26 Enam. close-wound $11 / 2 \mathrm{in}$. diam.
80	34 turns no. 18 Enam. 2 in . long $13 / 4$ in. diam.	55 turns no. 24 d.s.c. close-wound $11 / 2 \mathrm{in}$. diam.
40	16 turns no. 18 Enam. 11/2in. long $13 / 4 \mathrm{in}$. diam.	27 turns no. 24 d.s.c. $11 / 2$ in. long $11 / 2 \mathrm{in}$. diam.
20	8 turns no. 18 Enam. $11 / 2 \mathrm{in}$. long 13/4in.diam.	14 turns no. 24 d.s.c. $11 / 2$ in. long $11 / 2$ in. diam.

Figure 13
tube without danger of uncontrollable oscillation at irequencies other than that of the crestal.

- New 6A6 Harmonic Osclllator

A type 6.16 or B_{3} twin-triode tube will supply output on either the fundamental or second harmonic of the crystal frequency in the circuit shown in figure $1 t$.

Figure 14
The crystal is comected between the grid and plate of one of the triodes of the twintriode tulbe, and the same grid is connected to cathode and ground through a 10,000 ohm grid-leak. The circuit should be used only with 80 and 1 bio meter crystals. A $.0001 \mu \mathrm{fd}$.
mica condenser is connected across the gridleak in order to obtain highest possible r.f. voltage at the plate of this triode section.
The grid of the second section of the tube is capacitively-coupled to the plate of the first section; the plate circuit of the second section is tuned to either the fundamental or second harmonic, depending upon whether fundamental or second harmonic output is desired. This oscillator circuit requires an active crystal and will not iunction satisfactorily with 40 or 20 meter crystals. An output of approximately 7 watts can be oftained with an active 80 or 160 meter crystal. The r.f. choke is non-resonant, and should have an inductance of about 10 millihenrys.

- 5 to 160 Meter Exclter

An exciter which will supply from 3 to : watts on any of the amateur bands from : to 160 meters is shown in figure 15.

Figure 15-Top View of 6-Band Exciter. 5 to 160 Meter Operation

It consists of a 42 regenerative oscillator and three type ${ }^{6} \mathrm{~A}$; frequency doublers. Each 6A6 has its grids and plates comected in parallel in order to obtain as high an output as possible. A type 42 pentode regenerative oscillator will supply approximately 5 watts of output, in addition to exciting the succeeding bidi doubler stage. No neutralizing problens are involved, and when the exciter is operated on low frequencies the unused frequency doubler stages can be cut-out of the circuit by inserting ans open plug in all unused cathode jacks. The circuit diagram is shown in figure 16, the coil construction data in figure 1π. 160, 80 and 40 meter crystals are necessary for all-band operation in conjunction with the six coils shown in the coil-winding chart.

Figure 16
JONES 6 BAND EXCITER
DELIVERS 2 TO 5 WATTS OUTPUT ON 5 METERS


```
DOUBLE TUNED SPACED STAR MOMFD MIDGT MIDGET VARIAELES
```

DOUBLE SPACED STAR MIDGET VARIABLES

COILS FOR 40, 20, 10 AND 5 METER OPERATION
($40 A$ CRYSTAL IN OSCILLATOR)

FIGURE 17

Coil Winding Specifications

All coils, except the 5 meter coil, are wound on standard five prong $11 / 2 \mathrm{in}$. diameter low-loss plug-in coil forms. The 5 meter coil is wound on a $11 / 8 \mathrm{in}$. diameter ceramic 5 -prong plug-in form. Coils for 160, 80, 40, 20 and 10 meter operation have a 2-turn winding at the bottom of the form. This 2 -turn winding is the coupling loop, and the ends of the loop are connected to two of the prongs on the coil form. The pictorial drafting (figure 17) shows a complete group of coils for $40,20,10$ and 5 meter operation with a 40 meter crystal in the oscillator stage.
160 Meter Coil: 60 turns, no. 24 d.s.c., close-wound.
80 Meter Coil: 30 turns, no. 18 d.s.c., close-wound.
40 Meter Coil: 16 turns, no. 18 d.s.c., space-wound over a winding length of $11 / 2$ inches.
20 Meter Coil: 8 turns, no. 18 d.s.c., space-wound over a winding length of $11 / 2$ inches.
10 Meter Coil: $31 / 4$ turns, no. 18 d.s.c., space-wound over a winding length of 1 inch.
5 Meter Coil: 13/4 to 21/2 turns, no. 18 d.s.c., spaced approximately $3 / 8 \mathrm{in}$. between turns. Some readjustment of this spacing may be necessary in order to permit the plate tuning condenser to resonate the circuit.

- 10 to 160 Meter Exciter

The exciter shown in figure 18 can be highly recommended for any c.w. or phone transmitter because of its simplicity and relatively high output.

Two type 6L6 or 6L6G tubes are used as a harmonic crystal oscillator and regenerative freguency doubler, respectively. The harmonic oscillator circuit is an improved design which can be easily adjusted for stable operation with 160,80 or 40 meter crystals, though some 40 meter crystals are not sufficiently active for use in this circuit. The plate circuit of the crystal oscillator may be tuned to either the fundamental frequency or the second harmonic of the crystal, and the degree of regeneration is controlled by means of a small 3 -to- $30 \mu \mu \mathrm{fd}$. trimmer condenser conmected between the cathode and plate of the oscillator tube.

The ratio of the capacity of this condenser to that of the $.0004 \mu \mathrm{fd}$. (mica type)
cathode-to-ground bypass condenser determines the degree of regeneration. Excessive regeneration will cause the plate circuit to oscillate at inequencies other than those controlled by the crystal, whereas insufficient regeneration will result in low output when operating on the second harmonic. The regeneration condenser can be set with a particular crystal to a value which will canse the tuned plate circuit output (as checked with a flashlight ramp and a loop of wire) to be the same for either the fundamental frequency or the second harmonic. Once adjusted, crystals can be changed from 160 to 40 meters, the plate coils changed for output on any band from 160 to 20 meters without further adjustment of the regeneration condenser. An output of 10 to 15 watts can be obtained from the plate circuit of either tube by means of link coupling.
The second tube is capacitively coupled to the oscillator and its plate circuit is always tuned to the second harmonic of the frequency applied to its grid circuit.
The cathode circuit is bypassed with a relatively small condenser of only . $0001 \mu \mathrm{fd}$. capacity in order to obtain regeneration. This regeneration increases the output on 10 meters, and to some extent on 20 meters. It has practically no effect when the second tube is used as a doubler for 80 or 40 meter output. The r.f. choke in series with the cathode circuit is needed in order to confine the r.f. path through the $.0001 \mu \mathrm{fd}$. condenser. The cathodes of both tubes are connected to a common keying circuit, which is very effective in removing all traces of key-click and back-wave for c.w. operation. The keying circuit is shown in the diagram of figure 18, and allows break-in operation for either c.w. or phone communication. The succeeding stages in the transmitter should have fixed C-hias equal to at least cut-off when using this keying circuit. The coils

Band Coils $11 / 2 \mathrm{in}$. Dia. Forms

16065 turns, no. 24 d.s.c., closewound.
8035 turns, no. 29 d.c.c., $1 \frac{1}{2}$ in. long.
4018 turns, no. 20 d.c.c., $11 / 2 \mathrm{in}$. long.
2010 turns, no. 16 Enam., $11 / 2$ in. long.
104 turns, no. 16 Enam., 1-in. long.

Figure 19 .The Two Tube, 10 to 160 Meter 15-Watt Exciter
for this exciter are very simple to construct and only five are needed for five-band operation. The data is listed in the coil table.

- 6A6-6L6 Five-Band Exclter

The stantard 6.16 Oscillator already desoribed drives a 6 L .6 G buffer or doubler stage ior output on any band from 1.60 to 10 meters. The circuit diagram is shown in figure 20, and a photograph of the complete unit in figure 21 .

This exciter has several advantages over other types, in that the 6 L .6 G tube serves as a buffer even when operating on 160 meters. This makes it particularly desirable for driving a nedium-power final amplifier for 160 meter plone operation. The crystal oscillator is a $6 . \downarrow 6$, which is not at all critical with respect to crystals, and since the 6AG is only recuired to furnish sufficient power to drive the 6 L 6 G , the plate potential can be reduced to around 300 volts. This means that the r.f. crystal current, even with 40 meter crystals, will be quite low. It is more sure-fire with average 40 -meter crystals than the harmonic types of crystal oscillators using 6L. 6 or 61.6G tubes. This exciter is recommended for average amateur use because of the ease with which it

Figure 20
can be made to operate, and also liccause it will work with 80 and 40 meter crystals that do not show high activity.

The 6 L 6 G tube is capacitively-coupled through a plug and a pair of pin-jacks to either of the two tuned circuits of the $6 . t \mathrm{ti}$ crystal oscillator. The tildg tube is newtralized, so that it can be used as a buffer or cloubler. The cathode condenser is smaller than customary (. $0001 \mu \mathrm{fd}$. in value) in order to obtain a little regeneration when the exciter is operated on 10 meters. This condenser is rather small for perfect neutralization when working "straight through." but the neutralization need only be sufficient to prevent any tendency for self-oscillation when the plate circuit is tuned to the same frequency as the grid circuit. This can be accomplished with the circuit constants shown in figure 20. The neutralizing condenser consists of a 3 -to- $30 \mu \mu \mathrm{id}$. mica trimmer with the movable plate bent-out and the adjusting screw removed so as to secure a very low minimum capacity, The plate runing condenser in the 6lifg circuit has a maximum capacity of $1.50 \mu \mu \mathrm{ffl}$., so that two-band operation can be secured without

Figure 21-Showing Construction of the 6A6-6L6 Five Band Exciter, Top and Bottom Views
any coil change. For example, the output can be tuned to 160 meters with the condeuser near maxinum capacity, and to 75 or 80 meters with the condenser set near its minimum capacity. The output as a buffer or doubler will be around 15 watts on any band.

This unit can be built on a $13^{\prime \prime} \times 7^{\prime \prime} \times 2^{\prime \prime}$ zinc-coated metal chassis, with a bakelite sub-pancl for mounting the tuning condensers. All bypass condensers are connected directly to the tube and coil sockets, the other end of these condensers being soldered to the nearest point on the chassis.

- Coli Data

All of the coils are wound on standard $1 \% / 2$ in. diameter pling-in forms. Coils can be chosen for only the desired bands of operation.

Band	Oscillator and Doubler Coils	6L6G Stage
160	65 turns, no. 22 d.s.c., close-wound.	
80	30 turns, no. 22 d.s.c., $13 / 4 \mathrm{in}$. long.	50 turns, no. 22 d.s.c., close-wound and centertapped. (For 80 and 160 Meters).
40	17 turns, no. 22 d.s.c., $11 / 2 \mathrm{in}$. long.	26 turns, no. 18 Enam., center- tapped. $11 / 2$ in. long. (For 40 and 80 Meters).
20	8 turns, no. 22 d.s.c., $13 / 4 \mathrm{in}$. long.	121/2 turns, no. 18 Enam., centertapped. 11/2 in. long. (For 20 and 40 Meters).
10		6 turns, no. 18 Enam., centertapped. 15/8 in. long. (For 10 and 20 Meters).

6A6-6L6 Exciter Coil Table

- 30-Watt Exciter

Operation from 80 to 10 meters can be secured from the exciter circuit shown in figure 22. The construction of the unit is shown in figure 23.

Coil Data for High Power 6L6G Exciter
All Coils Wound on $13 / 4$-inch Ceramic Forms
\section*{160 Meter Oscillator}
70 turns no. 24 d.s.c., with C. T., $2^{\prime \prime}$ long, $18 /{ }^{\prime \prime}$ diameter
80 Meter Oscillator or Doubler Coil 34 turns no. 16 E., with C. T., 2" long, 1% " diameter
40 Meter Oscillator or Doubler Coil 16 turns no. 16 E., with C. T., $11 / 2^{\prime \prime}$ long, $13 / 4^{\prime \prime}$ diameter
20 Meter Oscillator or Doubler Coil 8 turns no. 16 E., with C. T., $13 / 2^{\prime \prime}$ long, 13/4" diameter
10 Meter Doubler Coil
$41 / 2$ turns no. 16 E., $11 / 2^{\prime \prime}$ long, $1 \frac{1}{4}$ "diameter

This exciter is suitable where fairly high output is clesired. A 6L6G harmonic crystal oscillator employs a split-stator plate tuning condenser which tunes the plate circuit to either the fundamental or second harmonic of the crystal, by merely changing the plugin plate coil. The split-stator tuning condenser provides a balanced circuit for coupling into the push-pull grids of the fre-quency-(loulbing stage. The two grids are capacitively coupled to each ench of the oscillator plate circuit, and the two plates of the doubler stage are comnected in parallel in a standard push-push frequency-doubling stage. With the plate and screen voltages shown in the circuit diagram, outputs of 30 watts can be obtained on bands of from 80 to 10 meters.

The crystal oscillator adjustments are similar to those described under the discussion for figure 18. This exciter can be used to obtain outputs of about 1.5 watts at the crystal frequency by opening-up the heater circuit of one of the 6L6G doubler tubes with an on-off switch. With one tube inoperative, the other tube may be used as a neutralized buffer, since the "cold" tube acts as a neutralizing condenser. The plate circuit in this case would be tumed to the same

Figure 22

Figure 23-30-Watt Two-Band Exciter
frequency as the plate circuit of the crystal oscillator.

- Bi-Push Exciter

The Bi-l'ush exciter, intrombed recently in "R:HDIO" and widely popular among amateurs, is shown in figure 24 .

Only three five-prong coils are needed for operating this exciter on 40, 20 or 10 meters from a 40 meter crystal. The coil prongs should be connected with jumpers between prongs as shown in the sketch of the schematic circuit diagram, figure : 4.

For 10 meter operation, a 40 meter crystal is plugged-into the first s-prong socket and
the three coils are plugged-in for operation as a 40 meter push-pull crystal oscillator driving a 20 meter pusli-push doubler, then driving a 10 -nieter push-push doubler to approximately 40 watts output. The output power depends upon the plate voltage available from the power supply.

For 20 meter operation, the crystal is plugged into socket " A ", coil No. 1 is plugged into socket " B ", coil No. 2 into socket " C ". This results in the second 6A6 tube operating as a push-pull crystal oscillator which drives the two 6L6G tubes as a ?0-meter push-push doubler.

For 40 meter operation, the crystal is plugged into socket " B " and the 40 meter coil into socket " C ". This results in a pushpull iLL 6 crystal oscillator.

A band-changing switch is needed to change from grid-leak to cathode bias on whichever tube is acting as the crystal oscillator in order to prevent the r.f. crystal current from rising to excessive values. The additional grid-leak bias is necessary for operation as frequency-doublers, but should be short-circuited with the band switch when the particular tube is used as a crystal oscillator.

It is very important that the bandswitch be thrown to the proper position when changing bands; if it is not done before the

plate zoltage is applicd the crystal may be fractured.
The power supply used should deliver from 450 to 550 volts under load, and have grod regulation. Otherwise the voltage will rise to an unsafe value when the first two tubes are not working or when the plate voltage is removed from the 6L6's as would be the case during keying of that stage. A mercury vapor rectifier and low-resistance choke input filter will give suffciently good regulation.
Modulation can be applied for 10 or 20 meter phone at J_{4}. Approximately 30 watts of audio power will be required for operation at the plate voltage specified (52.5 volts). The modulation will be satisfactorily linear up to 90%, in spite of the fact that the tubes are ruming as doublers.

Plate current for the 6LG's may be measurerl either at J_{3} or l_{4}. Keying should be attempted only at \int, and not in one of the 6.46 stages. Very short leads will be necessary in the 6L6 stage for good operation on 10 meters. The 6L.6 $50 \mu \mu \mathrm{fd}$. tuning condenser should be so connected that the rotor is cold and the stator "hot" with r.f. on 10 meters, rather than vice versa (rotor "hot"). If you can draw pencil sparks off the rotor on 10 metcrs, the comections to the condenser should be reversed. On other bands, both rotor and stator will always be "hot." For maximum 10 meter output, the 10 meter coil form. the 6I. 6 sockets, and the last coil socket should be of ceramic material.

- Coil Data

The coils are wouncl on $1 \frac{1}{2}$ in. diameter isolantite coil forms. The "stubby" type of coil form is desirable in order to simplify soldering the jumper connections hetween prongs.

Bi-Push Exciter Coil Table

[^5]

Figure 25-Illustrating Physical Layout of Parts in the "Bi-Push" Exciter

Any three bands. such as 160 . 80 and 40 meters, or 80,40 and 20 meters, can be used with 160 or 80 meter crystals, respectively, in the same manner as that previously deseribed for a 40 meter crystal.

If tronble irom parasitic oscillations is encountered, a small parasitic choke can be pliaced in one of the 6L6G plate leads. This choke call consist of B turns of No. uc. hookup wire, wrapped around a pencil as a winding form, with slight spacing between turns. This self-supporting coil should be connected directly at one 6L.6G tube socket. It will usually be found more effective in one plate lead than the oraer. Which lead will be determined by the individual mechanical layout.

- High Power Regenerative Oscillator

From 100 to 150 watts of output can be obtained on 80 meters from the regenerative crystal oscillator illustrated below. Cathode bias and cathode regeneration make this high ontput possible, and without overloading the crystal. The crystal r.f. current measures conly 40 milliamperes through an AT-cut crystal ; this current is so low that no frequency drift is encountered. No external feed-back capacity is needed between the control grid and plate circuit in order to ohtain uscillation, because the cathode or filament center-tap r.f. choke and variable condenser arrangement produces the necessary feed-lack.
This escillator will serve as a complete me-tube transmitter, with the key in either the cathode or screen circuit. The sereen and suppressor of the RK-2s are tied to-

Figure 26-RK-28 Oscillator 100 to 150 Watts Output on 80 Meters
gether and operated with approximately 300 volts on the screen. The $100 \mu \mu \mathrm{fd}$. midget variable condenser connected from centertap to ground should be set towards maximum capacity. Too much capacity will reduce the output, and the circuit camot be properly keyed.

- Crystal Oscillator Tuning Procedure

Every oscillator circuit is generally tuned for maximum output, by means of an indicator of some form, such as d.c. milliammeter in the grid-bias lead of the tube being driven by the oscillator. Maximum meter reading indicates maximum output from the crystal oscillator. Other indicators are: (1) - A small neon bulb held near the plate end of the oscillator tuned circuit ; maximum glow of the bulb indicates maximum oscillator output. (2)-A flashlight bulb, or a pilot light bulb, connected in series with a
turn of wire, can be coupled to the oscillator coil for indicating r.f. output. Maximum brilliancy of the lamp denotes maximum output from the oscillator.
The type-53 or 6A6 oscillator-doubler circuit is adjusted by tuning the oscillator section for maximum output, and the doubler section for greatest dip in cathode or plate current. The crystal plate section should generally be tuned until the circuit approaches the point where oscillation is about to cease; this is towards the higher-capacity setting of the oscillator plate tuning condenser and operation in this manner provides most output in proportion to r.f. crystal current and frequency drift. The cathode current should never exceed $\% 5$ milliamperes and safe limits for plate current in each section is 30 milliamperes. With eathore bias in this oscillator circuit, the plate current will (rop) to 20 or 30 milliamperes when the tube is not oscillating. The plate voltage for a 6.46 or 53 oscillator-doubler or pushpull oscillator may range from 250 to 400 volts, depending upon the power output which is needed. The heater voltage should be at least $21 / 2$ volts for a type 33 tube, under full load conditions, but should not exceed this value by more than 10%.

Harmonic crystal oscillators, such as the 6 L 6 or 6 L 6 G circuits, are always tuned for maximum output and minimum plate or cathode current. The regeneration or feedback condenser between plate and cathode is increased from its minimum capacity up to a point which will provide a good platecurrent dip when the plate circuit is tmed to the second harmonic of the crystal oscillator. Too mucli regeneration condenser capacity will cause the tube to oscillate for all settings of the plate tank condenser, without any sharp dip at the harmonic frequency of the crystal. Too low a capacity will cause insufficient regeneration and very low second harmonic output. A plate potential of 400 volts is generally considered a sate upper limit for a type-6L, 6 oscillator tulse. The screen-grid voltage affects the degree of regeneration and harmonic output; this voltage should generally range between 250 and 275 volts. The cathode current will run between in and 60 milliamperes for fundamental frequency operation, and 60 to is milliamperes for harmonic operation, at these plate and screen voltages. The crystal r.f. current normally rums between 2.5 and is milliamperes in this type of oscillator, depending on the frequency and plate voltage used.

Block Diagrams, Showing Comparative Output of C. W., Radiotelephone, and Combination C. W.Radiotelephone Transmitters

It is often desirable to ascertain, at a glance, the approximate output which can be secured from such combinations of tubes as the experimenter may have on hand. I.ikewise, when a new transmitter is to be designed, the approximate output can be determined in advance by selecting such tube combinations as are shown in the numerous block-diagrams in these pages. These diagrams are divided into three classifications: (1) c.w., (2) radiotelephony, (3) combination c.w. and radiotelephony.

The legend is a guide to the method used in compiling these diagrams. Single tubes, tubes in push-pull or parallel connection. coupling of the circuits by link, capacitive or unity methorls are clearly defined in lefond and diagram alike.

Directly under each tube symbol is a notation which states the service that the tube is asked to perform; the plate voltage is clearly indicated and the output rating from the final stage is to the extreme right of each block diagram. Relative power output, rather than power input, is slown in each diagram, begiming with low power and ending with high power combinations.

Block diagrams for radiotelephone transmitters begin where the diagrams for c.w. transmitters are ended. Then follow the diagrams for combination c.w.-radiotelephone transmitters.

The method used in presenting these simple block-diagrams can be illustrated by the following example, when considering the very first diagram of the c.w. group, directly following this text: It is seen that a 6 A 6 oscillator, operating on 80 meters, with a plate potential of 450 volts on the oscillator tube, will deliver a power output of 10 watts for c.w. operation. Proceed, then, to the diagram with two tubes, directly below the aforementioned one-tube diagram. It is here seen that a 6 L 6 tube acts as a crystal oscillator on 80 meters, with a plate potential of 300 volts on the oscillator tube; the oscillator tube, in turn, is link coupled to a type 210 tube, which serves as a class-C amplifier, on 80 meters, with a plate potential of 750 volts. The result is a power output of 40 watts for c.w. operation.

Capacitive coupling between tubes is indicated by the conventional fixed capacity (condenser) symbol, unity coupling by a letter "U" within a circle.

The attention of the reader is invited to a group of newer combinations which were not shown in previous editions of this Handbook.

C.W.

Radiotelephony Block Diagrams

Combination Radiotelephony and C.W. Block Diagrams

Chapter 12

C.W. Tinansmitter Constriction

1-RANSMITTERS ARE constructed in two general ways: (1) Bradboard or (2) Relay-Rack or metal frame construction.
Breadboard construction is more economical than relay-racks and panels, but it sacrifices appeatance and safety of operation. Metal frame construction acts as a shield around the r.f. and high voltage circuits; the metal frame is grounded and thereby protects the operator against clectrical shock.
Breadbords are made of any size to suit the individual taste of the constructor. Dry hardwood should be used, and the board should be fitted with cleats at either end to prevent warping and also to provide space under the board for some of the wiring and mounting of small parts. The board can be covered with a thin sheet of metal, but in most cases a good ground connection can be made by means of a heavy copper wire or strip, which is called a "bus-bar." One common ground point should be used for all ground connections in each stage, the common ground points of the several stages then being connected together and carried to an external ground connection such as a water pipe.
Metal relay rack construction makes a neat installation, to which changes can be made at any future time because the individual chassis and panels can be easily and quickly removed from the rack.

- Relay Rack Dimensions

Standard relay rack panels are 19 inches long and some multiple of $13 / 4$-inches high, such as $13 / 4,31 / 2,51 / 4,7,83 / 4,101 / 2,121 / 4,14$, etc., inches high. At least ${ }^{2}$-inch clearance should be allowed between panels, so that they can be readily removed from the rack. Normally, the panels are slotted $1 / 4$ or $11 / 2$ inches from top and bottom, with center slots. when needed. A $1 / 4$-inch diameter hole is drilled $3 / 8$-inch from the edge of the panel. and the slot itself is $1 / 4$-inch wide.

The rack on which the panels are mounted can be of any desired height and is usually made of heavy channel iron. Standard drilling of the rack begins $1 / 4$-inch from the top, with 10-32 machine-screw threads. Two rows of holes are spaced $183 / 8$ inches apart: the rack should have a clearance of approximately $1 \pi / 2$ inches in order to accommodate chassis 17 -inches long. The holes in the relay rack are $11 / 4$ - and $1 / 2$-inch apart, respectively, beginning with the topmost threaded holes. This standard form of drilling permits the nse of any standard size relay rack panel.

A standard size for chassis is 17 -inches wide. The height and depth of the chassis pans depend upon the anoount of apparatus which is to be mounted above and under the chassis. The chassis can be fastened to the front panels by means of machine screws and two triangular-shaped end supports, as illustrated in the accompanying photograph. figure 1.

- Parts Placement

Various sizes of standoff insulators are available for mounting variable condensers and coils at convenient heights above metal bases or chassis. Coils should preferab!y be momted a coil-diameter, or more, from the metal chassis or panels. Large holes should be punched under small coils, tubes and quartz crystal sockets for convenience in wiring. Zinc-coated chassis allow small resistor and condenser leads which carry mo r.f. to be soldered directly to the chassis, thus making the leads very short. Power supply leads can be brought to insulators, terminal strips, or sockets at the rear of the chassis. Variable condensers can be driven from dials on the front of the panel by means of insulated extension shafts or by flexible cable couplings. Metering jacks can be insulated from the front panels, when necessary, by means of a 1 -inch diameter hole. with the jack monnted on a small strip
of bakelite. Rubber grommets should be fitted to the numerous small holes in the chassis through which the individual wires pass, in order to prevent fraying of insulation or flashover from wiring to chassis.

Relay rack construction must take into consideration the proximity of power supply equipment to the audio fre(fuency transiormers or low-level grid leads. Tle chokes and transformers should be mounted as far as possible from power transformers and input filter chokes which have relatively large surrounding a.c. ficlds. The audio transformers and chokes can be properly oriented on the chassis before the holes are drilled for their mounting. A pair of headphones should be commected across the windings of the audio transformers or chokes; 110 -volts a.c. is then supplied to the primaries of the power transformers. and the audio transformers or choke is then varjed in position until the a.c. hum, as heard in the headphones. is no longer audible. These tests can the made before the mits are permanently wired.

- Simple C. W. Transmitter

A very simple push-pull crystal oscillator makes a satisfactory c.w. transmitter of modest power output. The complete unit is illustrated in figure 2 , and the circuit diagram in figure 3 .

A pair of 6L.6G heam power tubes is connected in a push-pull circuit which is coupled directly to an antema; the power output is at least 25 watts with a plate potential of 400 volts, and with the antenna coupling adijusted for satisfactory c.w. keying.

The transmitter is mounted on an oak baseboard, $12-\mathrm{in} . \times 14$-in. $\times 3 / 4$ - in. with cleats secured to the bottom of the board at either end so that some of the wiring can be run muler the board.

The transmitter can be operated from either an 80 - or 40 -meter crystal. The crystal is commected between the two control-grids of the 61.6G tubes. An r.f. choke from each grid! to ground provides a path for the rectified d.c. grid current. Grid bias is obtained by means of a 200 -ohm cathode biasing resistor.

The c.w. telegraph key is comnected in series with this resistor. The plate circuit is connected in push-pull with a single-section midget variable condenser and a conventional center-tapped plate coil which is bypassed to the common ground point.

For 80 -meter operation, the plate coil has

Figure 1 - Relay Rack and Chassis for Mounting Heavy
Modulator Components.
37 turns of no. 20 d.s.c. wire, close wound, ofl a standard $1 / 2$-inch diameter 4 -prong plug-in coil form. A center-tap connection is made to the 19 th turn. The 40 -meter coil has 21 turms of no. 20 cl.s.c. wire. close wound, and center-tapped on the 11th turn. The center-tap connection is brought to one of the prongs of the coil form. Coil construction is shown in figure 5.

The antenna coil is wound on a slightly larger diameter tube than the coil form proper, and this coil is placed over the center of the plate coil winding, as shown in figure 3. The number of turns of wire on the antenna coil depends upon the type of antemna to be used and the amount of power that can be drawn from the crystal oscillator while keying the transmitter. An active crystal is necessary for this type of transmitter when heavily loaded by the antenna for maximum output. The number of turns of wire on the antema coil can be increased until a point is reached where the oscillator refuses to "start" properly when keyed. Two or three turns of wire should be removed from the antenna coil in order to insure stable operation after the transmitter has been loaded to the critical point.

Figure 2-The Transmitter, Ready for Connection to Power Supply and Antenna.
tested with a d.c. voltmeter, if possible. This adjustment can also be made without the aid of a voltmeter by observing the color of the spiral screen-grid when the key is depressed and the transmitter is in an oscillating condition. The slider on the resistor can be moved up, toward the 400 -volt connection witil the screens of the tubes show just a trace of red and then backed off slightly.

The transmitter is tuned for the maximum output consistent with keying stability by the aid of a low-current 6.3 volt pilot lamp, which is comected in series with the antemm feeder. This lamp should light each time the key is depressed. Loss of power in the lamp is negligible, and it can, therefore, remain permanently in the antenna feeder for the purpose of giving a visual means of satis-

The voltage applied to the screens of the 6L6G tubes can be adjusted to the correct operating value by changing the position of the slider on the 25,000 -ohm, 50 -watt resistor. The screen potential should be 250 volts,
factory operation of the transmitter.

A suitable power supply for this transmitter is one which will supply 400 volts at 125 milliamperes for the plate circuit, and 6.3 volts at 2 amperes for the heaters of the

Figure 3-Schematic Circuit of Push-Pull 6L6G CW Transmitter and Pictorial_Drafting of Plate Coil With Antenna Coupler.

Figure 4 -Pictorial Wiring Diagram, Showing Placement of Parts on the Baseboard.

6L6G tubes. The high voltage should be well-filtered in order to obtain a pure d.c. note. A suitable power supply for this transmitter is described in the Pozeer Supply Chapter.

All of the wiring is above the baseboard except those wires shown in dotted lines which are run under the bascboard, througn small holes drilled through the board. The diagram shows TOP of socket connections for the four sockets used in the transmitter. No connection wires are shown for the heater ("H") contacts of the 6L6G tube sockets, in order to simplify the diagram, and it is obviously necessary for the constructor to make these connections. The heaters of both tubes are connected in par-
allel. The connecting wires are twisted together, then carried to the terminal at the left rear of the board. The $50 \mu \mu \mathrm{fd}$. doublespaced midget variable condenser (which tunes the plate coil) is secured to the baseboard by means of an angle bracket. Connecting wires are soldered to the rear of the stator ends of this condenser, as the pictorial diagram shows. A very hot soldering iron is needed for this purpose. Some of the pins on the 6I.6G tube sockets have no wires connected to them; this means that these pins are NOT used (except the "H" heater pins, as previously referred to). The abbreviations in the pictorial diagram are interpreted as follows: MMF indicates micro-micro-farads: 2 Mh. r.f. Chokes indicates ? millihenry r.i.

Coil Table For 35-Watt 6L6G Transmitter	
Coil	Winding Data
160 Meters	68 turns, no. 24 d.s.c., $13 / 4 \mathrm{in}$. winding length.
80 Meters	33 turns, no. 20 d.s.c., $11 / 2 \mathrm{in}$. winding length.
40 Meters	16 turns, no 16 Enam., $1^{1 / 2} \mathrm{in}$ in. winding length.
20 Meters	7 turns, no. 16 Enam., $11 / 2 \mathrm{in}$. winding length.
10 Meters	3 turns, no. 16 Enam., 1-in. winding length.

chokes; $M F D$ indicates microfarads: COIL C. T. indicates the center-tap connection to the plate coil. The 6L6G socket connections are identified as follows: H and H are the heaters, P is the plate, G is the grid, $S G$ is the screen-grid, K is the cathode.

- Trouble Shooting

If the transmitter does not function. i. e., if the 6.3 -volt lamp does not glow brightly, the difficulty can be traced to one or more of the following causes:
(I) Incorrect aviring.
(2) Crustal inserted into arrong socket pins.
(3) Slider on 25,000-ohm resistor not adcranced far enough to left.
(7) Defcctive quartz crystal or a dirty crustal.
(5) Key not down wehen tming adjustmonts are made.

LIST OF PARTS REQUIRED

2 Raytheon or Sylvania 6L6G Tubes.
2 8-prong Hammarlund Isolantite Sockets.
1 4-prong Hammarlund Isolantite Socket.
1 5-prong Hammarlund Isolantite Socket.
1 Quartz Crystal, any frequency between 3550 and 3850 KC .
Quartz Crystal holder.
1 4-prong Hammarlund $11 / 2^{\prime \prime}$ dia. Coll Form.
2 Hammarlund 2 Mh R. F. Chokes, small type; Hammarlund $50 \mu \mu \mathrm{fd}$. Double-Spaced "Star"' Variable Condenser.
Cornell-Dublilier . 01 $\mu \mathrm{fd}$., 1000-volt Mica Fixed Condenser.
2 Cornell-Dubilier .01 رfd., 600-volt Tubular Paper Condensers.
Ohmite $25,000-0 \mathrm{hm}, 50$-watt Resistor with Stider.
Ohmite $200-\mathrm{Ohm}, 10$-watt Resistor.
Closed-Circult Jack (for Key).
Terminal Connector Strip, 4 terminals.
Roll (25 feet) No. 16 push-back wire.
Wood Baseboard, $11^{\prime \prime} \times 14^{\circ} \times 3 / /^{\prime \prime}$.
Wood Cleats, $8 / 4^{\prime \prime} \times 111^{\prime \prime} \times 11^{\prime \prime}$.
Doz, wood screws, $1 / 2^{\prime \prime}$ long.
8 Wood screws, $1 \frac{1 / 2}{}{ }^{\prime}$ long (for mounting sockets). 4-pound spool No. 18 DCC wire for plate coil winding.
(6) Open circuit in some resistor or condenser.
(7) Short-circuited fixed condenser.
(8) Heater voltage not supplied to tube heaters.
(9) RF chokes incorrectly zuired into the iircuit.
(1o) Short-circuited between rotor and stator plates of tariable condenser.
(1I) Tube sockets incorrectly zeired.
(12) Open circuit in one of the ground comections.
(13) Incorrect wiring of plate coil or its socket.
(14) Defective tube, or tubes.

- 35-Watt 6L6G Transmitter

A small c.w. transmitter for either portable or fixed station operation on $80,40,20$ and 10 meters is illustrated in figures 6, \boldsymbol{i} and 8.

- Technical Description

A harmonic 6L6G oscillator drives two 6L6G tubes in parallel as a high-efficiency doubler. This transmitter can be used as a high power exciter for driving amplifiers with outputs of approxinately 500 watts. The crystal oscillator will operate on either the fundamental or second harmonic of the crystal by merely changing the plate coil. The adjustments of this type of oscillator are fully covered in the chapter on Transmitter Frequency Control.

Two tubes are operated in parallel in the doubler circuit in order to obtain liigh output. These tubes are capacitively coupled to the crystal oscillator. The plate circuit is tuned to the second harmonic of the driver irequency. An r.f. choke is connected in series with the cathodes of the tubes in the doubler stage and a $.0001 \mu \mathrm{fd}$. mica condenser is connected from cathode to ground. This forms an automatic regenerative effect which is more pronounced in the high-frequency bands. The output on 10 meters is very nearly doubled, and less grid circuit drive is needed when there is regeneration in the doubler circuit. $160-80$-, or 40 -meter crystals can be used in the crystal oscillator.

A simple tuning indicator is comected in series with the cathode in each stage; it consists of a 2 -volt 60 ma . pilot lamp in the oscillator cathode circuit and a 6.3 -volt 150 ma . lamp in serjes with the cathode of the doubler circuit. These lamps eliminate the conventinnal d,c, milliammeter, and they also serve

Figure 6-Front View of Housing for a Small Transmitter or High-Power Exciter. The Two Dial Lights for Tuning are Clearly Seen Between the Tuning Dials. These Dial Lights Obviate the Need of a Milliammeter.

Figure 7 - The Complete 6L6G Transmitter or High-Power Exciter, with Power Supply on the Lower Chassis. Five-Band Operation is Secured, with High Output for Either Direct Connection to an Antenna or Feeder System or as a Driver for a Medium Power R. F. Amplifier.
as an overload fuse. The lamps are mounted near the tuning dials and protrude through the front panel, as shown in the illustration, figure 6. Closed-circuit jacks, also in the cathocle circuit, can be used for external metering when desired. The meter jack contacts are connected so as to measure the cathote current of each individual stage with an external meter, the cathode being disennnected from the common keying circuit at the same time The tuming indicator lamps light up more brilliantly when the circuits are detumed, or more heavily loaded at the resonant dip in current. The plate circuits are tuned for minimum brilliance of the lamps.
looth stages are simultaneously keyed, which allows break-in operation and prevents the rloubler stage from breaking into selfexcited oscillation when no grid excitation is applied. The cathode circuits are connected through a key-click filter which consists of a series inductance and a condenser and resistor across the key contacts. The inductance of the 10 -henry 200 -ma. choke would introduce too much time lag. and a semi-adjustable 10,000 -ohm resistor is therefore shunted across the choke coil, the resistor usually being set to a value of approximately 5,000 oluns. This combination of inductance and shunt resistance effectively reduces the series impedance and gives cleancut keying without clicks.

The final stage is operated with rather high plate voltage in order to increase the output. The crystal oscillator plate supply is adjusted to approximately 400 volts and the common screen roltage supply to 2:0 volts by means of sliders on the bleeder resistor in the filter circuit.

The transmitter is built into a midget relay rack. 18 in. $x 13 \mathrm{in}$. $x 8$ in. deep, with a hinged rear cover.

- Coil Winding

All coils are wound on standard $11 / 2 \mathrm{inl}$. diameter plug-in coil forms. The oscillator and doubler coils are interchangeable. The doubler coil is always one of a higher frequency than the oscillator coil: i.e., for $40-$ meter output, for example, the doubler requines a 40 -meter coil and the oscillator an 80 -meter coil. and either an 80 -meter or $160-$ meter erystal.

- 210 C.W. Transmitter

A Tiswatt c.w. transmitter with stanclard type-210 tubes, or a 100 watt transmitter with the newer Taylor T-20 triodes, is hown in figures ? 10, and 11.

Figure 8

The phongraphs and circuit diagram show the type-210 tubes. When T-20s are substituted, the plate connections are made to the tops of the tubes, and the $5,000-$ and $10,000-$ ohn grid-leak values should be changed to 2.500 ohms and 5,000 ohms, respectively. This is necessary because of the higher μ of the T-20 tubes.

- Technical Features

A regenerative crystal oscillator, for oneband operation only, is capacitively coupled to a neutralized buffer or doubler stage. This stage is then link coupled to the final pushpull amplifier.
This transmitter is designed primarily for 80 - 40 - and 20 -meter operation. It can be used on 160 meters by substituting a larger plate tuning condenser in the final amplifier (210) $\mu \mu$ id. per section for $160-$ meter operation), but without change in the capacity of the oscillator and buffer stage tuming condensers.
The crystal-oscillator cathode circuit is keyed for c.w: operation. Fixed bias is used for both buffer and final amplifier stages. Ii type T-20 tubes are used, the fixed C-bias voltage can be reduced to as low as 45 volts. The buffer plate voltage is obtained from the $: 50$-volt supply through a 5,000 -ohm semi-variable series dropping resistor. this resistor being adjusted so that approximately

Fiyure 9-GLGG Exeiter and 210 RufferDoubler.

Figure 10-Final Amplifier with Two 210 Tubes in Push-Pull. The Tubes, Grid Coil and Neutralizing Condensers are Mounted on a Separate Masonite "Deck," Supported on Small Insulators.

Figure 11-Circuit Diagram of R. F. Portion of 210 C. W. Transmitter.
(000 volts is supplied to the buffer plate. The 400-volt supply for the crystal oscillator should be capable of handling a 75 ma. load; the 750 -volt supply must handle a 200 ma . load.

Typical milliammeter readings for 8n-meter operation are:

Oscillalor C'athode-6o ma.
Oscillator I'late-50 ma.
Buffer-Doubler Grid-Io ma.
Buffer-Duubler Plate-60 to 75 ma .
Final Grid- 25 to 30 ma.
Final Plate-rion ma. with normal antcnna load.

Coil Winding Table for 75-Watt C. W. Transmitter				
Band	Oscillator Plate Coil	210 Buffer Plate Coil	Final Amp. Grid Coil	Final Amp. Plate Coil
160	60 turns no. 22 d.s.c. close-wound.	72 turns no. 22 d.s.c. wire, closewound. Center-tapped.	Same as 210 Buffer Plate Coil.	78 turns no. 18 d.s.c. 4 -in. dia., 4-in. long. Centertapped.
80	25 turns no. 18 d.s.c. Close-wound.	```34 turns no. }18\mathrm{ d.s.c. Close-wound. Center-tapped.```	48 turns no. 18 d.s.c. Close-wound. Center-tapped.	40 turns no. 14 Enam. $25 / 8$ in. dia. $41 / 2 \mathrm{in}$. long. Center-tapped.
40	17 turns no. 18 d.s.c. spaced to cover $11 / 2$-in.	21 turns no. 18 d.s.c. spaced to cover $11 / 2 \mathrm{in}$. Center-tapped.	24 turns no. 18 d.s.c. spaced to cover 1-inch Center-tapped.	22 turns No. 14 Enam. 25/8 in. dia. $41 / 2 \mathrm{in}$. long. Center-tapped.
20	Use 40-meter Oscillator coil and double in Buffer plate.	$\begin{aligned} & 14 \text { turns } \\ & \text { no. } 18 \text { d.s.c. } \\ & \text { spaced two } \\ & \text { diameters. } \\ & \text { Center-tapped. } \end{aligned}$	$\begin{aligned} & 13 \text { turns } \\ & \text { no. } 18 \text { d.s.c. } \\ & \text { spaced two } \\ & \text { diameters. } \\ & \text { Center-tapped. } \end{aligned}$	10 turns No. 14 Enam. 25/8 in. dia. 4 -in. long. Center-tapped.

- Medíum Power C.W. Amplifiers

The ever increasing number of new tubes for amateur transmitters, and the ability to interchange these tubes with those of somewhat similar ratings, makes it difficult to show complete c.w. transmitters for every possible combination of tubes. For this reason, the text which follows is devoted to the design and construction of a large group of individual amplifiers which will deliver from 100 to 500 watts output. Grid neutralized, plate neutralized, and push-pull amplifiers are illustrated in conjunction with a number of the more popular medium power tubes.

Any of these single-tube amplifiers are capable of being driven for c.w. telegraph operation by means of exciters shown in the chapter on Transmitter Frequency Control, in which the type 6L6G tube is featured. The push-pull amplifiers can be driven by the high power exciters which have parallel or push-push doublers, or by means of a buffer amplifier with a type-210 or T-20 tube. The output from any of these amplifiers can be link-coupled to most any type of tuned antenna coupling circuit.

The result of this new method of treatment is that the experimenter is given the specific circuit constants for the tube of his choice. The coil-winding data for any of the amplifiers described can be obtained from the new air-supported coil chart shown in the C. W. Theory chapter, or from previously listed coil design tables.

- 808 Amplifier

The 808 is a low-C tantalum plate triode which can be driven by a GL6G buffer or doubler, or any other type of exciter which will deliver 10 or 15 watts output. This amplifier is built on a $10 \mathrm{in} . \times 12 \mathrm{in}$. metal chassis. It has a single-section 6,000 -volt plate tuning condenser and a double-spaced $50-\mu \mu \mathrm{fd}$. single-section midget variable condenser for tuning the grid circuit. The neutralizing condenser should have a plate spacing of approximately $1 / 4$ inch, and can be mounted to the rotor frame of the plate tuning condenser by means of a bracket, as shown in figure 12.

The $.002-\mu \mathrm{fd}$ mica condenser connected to the center-tap connection of the plate coil in figure 13 should be rated at 5,000 volts. The grid and filament bypass condensers can be of the ordinary 1,000 volt mica receiving type. Short neutralizing leads are of extreme importance. The parts should be laid out in

Figure 12 - RCA-808 Tantalum Plate Triode in a Simple, Effective R. F. Amplifier Unit.

Figure 13 -Circuit of Amplifier Pictured in Figure 12.
such a manner as to provide fairly good separation without long connections in the r.f. circuits. When operated within its nornal ratings, this amplifier will deliver a maximum output of approximately 140 watts.

211 Amplifier

Certain tubes can be used in a circuit which has a single-section plate tuning condenser and bypassed center-tapped plate coil. These tubes will not have excessive regeneration in this form of neutralizing circuit, and they require about 50 per cent less grid excitation than when split-stator condenser tuning is used. This type of circuit is not satisfactory for 'phone operation, except on the lower frequencies such as 160 meters. Some regeneration can be used to advantage in c.w. transmitters in order to reduce the

Figure 14 - The "Old Reliable", Type 211 or 203A Triode is Still Widely Used by Amateurs. The Amplifier Design is Ideal for Such Tubes. The Larger-ThanUsual Neutralizing Condenser is Easily Made from Aluminum, Bent as Shown in the Photograph, with One of the Sections Attached Directly to the Stator of the Plate - Tuning Condenser. Note How Well the Parts Lend Themselves to Symmetry in This Design.
grid driving power requirement for relatively high output and efficiency.
The 211 amplifier shown in figures 14 and 15 will operate hest with a 10,000 ohm gridleak; a type-203.- will require a 5,000 -ohm grid-leak. These tubes can be driven to morlerate output with a 6 L 6 G driver, or to high output by a type- 10 or T20 buffer. The plate tuning condenser should be able to withstand 4000 volts on peaks. The particular plate tuning condenser shown in figure 14 is a split-stator condenser with the two stator sections comected in parallel. The neutralizing condenser is made of two U-slaped pieces of no. 16 gauge aluminum, 3 in. x i in. When hent into the shape of a " U ", the plates are 3 -inches square and 1 -inch apart, which gives approximately $1 / 2$-inch plate

Figure 15 Circuit for 211 Amplifier Pictured in Figure 14.
spacing. Ont section is rigidly mounted to the rotor of the plate tuning condenser; the other is secured to a right-angle bracket made of 16 -gauge aluminum, this bracket being mounted on a standoff insulator. The aluminum bracket allows this U -shaped section to be bent forward or backward, for adjusting the neutralizing capacity.

The $002 \mu \mathrm{fd}$. mica plate bypass condenser should be rated at 5,000 volts. The grid tuning condenser is a double-spaced $50-\mu \mu \mathrm{fd}$. midget variable. Both tuning condensers are mounted on porcelain standoff insulators. The chassis is $8 \mathrm{in} . \times 17 \mathrm{in} \times 2 \mathrm{in}$.

The output efficiency of a 211 or 203A anplifier will not be as high for 20 -meter operation as would be secured from a low-C triode with the plate lead brought through the top of the glass envelope.

- 35-T Push-Pull Amplifier

Relatively ligh power output can be obtained with small tubes of the modern type. Operating at their normal ratings, the pushpull 35T's, shown in figures 16 and 17 , will supply 350 watts to the antemia. These tubes are often operated at plate potentials exceeding 2,000 volts and no difficulty is experienced in obtaining over 500 watts output at such voltages from the amplifier illustrated.

The important factors which enter into the design of an efficient push-pull amplifier are

Figure 16-A Pair of 35 T's, 800 's, RK- 35 's or Other Tubes of Similar
Type are Correctly Arranged in an R.F. Amplifier When the Placement
is as Shown in This Illustration.
the need fur symmetrical lengths of plate and neutralizing leads in each side of the amplifier. The grid circuit is often purposely made to have unequal length of leads in order to minimize the possibility of a u.h.f. parasitic oscillation.

A split-statu plate tuning condenser is very desirable; the plates should have a spacing sufficiently wide so that cach section of the condenser will withstand a peak potential of 5,500 volts when the d.c. plate voltage is of any value between 1.500 and 2,000 volts.

The neutralizing condensers are made of no. 1t gange aluminum plates, with an active plate area of $11 / 2 \mathrm{in} . \times 11 / 2 \mathrm{in}$. The plate spacing is varied by mounting the movable plates (grid) on $1 / 4$ in. diameter coil jacks and plugs. The spring tension in this type of coil jack is sufficient to hold the movable plate in its proper position, once the correct neutralizing adjustment is found. A doublespaced $50-\mu \mu \mathrm{fd}$. midget variable condenser tumes the grid circuit. This condenser is mounted on a small bracket attached to a standuff insulator.

The r.f. choke must be capable of carrying 350 ma . of cl.c. plate current ; the centertap of the plate coil clips into a Fahnestock clip attached to one end of the r.f. choke.
The grid driving power requirements for this amplifier depend upon the plate voltage. antenna loading, and operating efficiency. For normal operation a pair of 6L6G tubse in parallel or push-pull will drive the amplifier to efficiencies of more than 75 per cent. If

Figure 17-Push-Pull 35T Amplifier. The Mechanical Construction is Shown in Figure 16.

Figure 18 - Standard LowCost Parts are Used in This Amplifier. The Tube is an RK-35 Triode. DoubleSpaced $50 \mu \mu \mathrm{fd}$. Midget Variable Condensers Tune Both the Grid and Plate Circuits. Neutralizing Condenser is a Standard $4-\mu \mu \mathrm{fd}$. Wide-Spaced Midget. When Mounted Behind a Metal Relay-Rack Panel, Condenser Shafts Should be Fitted with Insulated Couplings.
the amplifier operates with 2,000 volts on the plates, the driver should be another 35 T tube when used as a doubler, or a T-20 when used as a huffer.

- RK-37 Amplifier

The RK-3r is a high μ tantalum plate triode similar to the 35 T , except that the plate voltage and current ratings are slightly lower. The amplifier shown in figures 18 and 19 is designed for operation at 1.000 volts in order to economize on cost. (irid netutralization makes possible the use of a small, double-spaced, midget plate tuning condenser. The peak r.f. plate voltage in a grid neutralized amplifier is generally not more than one-

Figure 19-RK-37 Amplifier Circuit for the Unit Shown in Figure 18.
half of that in a similar plate neturalized aniplifier, even though the power input and efficiency may be the same. If a plate neutralized circuit is to be used in this amplifier. the plate tuning condenser must have approximately twice as great an air-gap between its plates.

This c.w. amplifier can be driven by any exciter with a 6L6G doubler or buffer. The $.002 \mu \mathrm{fd}$. plate circuit bypass condenser should be of the mica type, rated at 2,500 volts. The grid neutralizing condenser should have a plate spacing slightly greater than that of the plate tuning condenser; it should have a low minimum capacity in order to neutralize the low-C tube.

If this amplifier is used primarily on 10 and 20 meters, it is desirable to use a splitstator grid tuning condenser in order to provide a non-regenerative neutralizing circuit. The single-section tumed grid circuit in figure 19 requires less grid circuit drive than when a split-stator grid tuning condenser is used. but at a sacrifice in stability at the higher frequencies.

- Taylor T-55 Amplifier

A high- μ carbon plate $\mathrm{T}-55$ triode is suitable for either a high power buffer or doubler stage. When operated under the conditions illustrated in figure 21, an output of 175 watts can be secured if the amplifier is driven by a

Figure 20-Single-Ended R. F. Amplifier with Taylor T-55, or Similar Triode. This Amplifier is Suitable for Buffer Service. It Will Drive a 1Kllowatt Amplifier for C, W, Operation.

6L6 doubler or buffer. When the T-55 is used as a doubler, the value of grid-leak should be increased to somewhere between 15,000 and 50,000 ohms, depending upon the available amount of grid excitation and plate voltage. Higher efficiency can be obtained with the higher value of grid-leak if sufficient grid excitation is available. A suitable driver would then be a type T-20 tube.

The plate tuning condenser should be able

Figure 21 -Single-Ended T-55 Amplifier as Pictured In Figure 20.
to withstand r.f. peak potentials of 6,000 volts. An ordinary, double-spaced, $50 \mu \mu \mathrm{fd}$. midget, variable condenser tunes the grid circuit, which should be link-coupled to the driver. The neutralizing condenser plates should be spaced from 0.2 to $0.25-\mathrm{in}$. between rotor and stator. The $.002 \mu \mathrm{fd}$ mica bypass condenser in the plate coil center-tap lead should be a 5,000 -volt mica; other bypass condensers can be of the mica 1,200 -volt type.

- Single Tube 35T Amplifier

A typical breadboard mounted amplifier with a type 35 T tube is shown in figures 22 and 23. Grid neutralization requires less spacing between plates of the plate tank condenser though the actual amount of capacity used in each band of operation should be

Figure 22-Medium Power R. F. Amplifier with 35 T Triode. The Grid and Plate Tuning Condensers are Mounted Sidewise in Order to Facilitate Short, Direct Connecting Leads. Flexible Cable Couplings Can be Attached to the Condenser Shafts When an Amplifier of This Type is to be RelayRack Mounted. The 35T Can be Replaced with a T-55, 808, RK-35 or Similar Tube.

Figure 23 - Single 35T Amplifier; Figure 22 Shows Its Construction.

The number of turns of wire in the plate coil of a grid-ncutralized amplifier should be from 25 per cent to 40 per cent less than in the case of a plate-nentralized amplifier, in order to maintain the proper $L-C$ ratio for the circuits. The grid coil in a grid-neutraliized stage may have approximately 10 per cent to 1.5 per cent more turns than for a plate-neutralized amplifier, since the input capacity of the tube is connected across only one-half of the coil.
The plate bypass condenser is a $002 \mu \mathrm{fd}$. 5,000 -wolt mica type. The filament bypass comdensers can be of the 400 -volt size, any capacity from . 001 to $01 \mu \mathrm{id}$.

Figure 24 - Flexible Cable Drive for Tuning Grid and Plate Condensers is Now Coming into Wide Use. This Arrangement Makes Possible the Mounting of Condensers in Such Positions as Will Give Greatest Effielency in Amplifier Circuits. Here lllustrated is an R. F. Amplifier with an HF-100 Triode. This Particular Amplifier Was Built for 20 and 40 Meter Operation; the Long Plate Lead Does not Lend Itself to Operation on 10 Meters. For the Latter Band, Amplifiers Which are More Sulted are Described in This Chapter.
propertionately higher than in a plate-neutralized amplifier. The split-stator grid tuming condenser enables this amplifier to operate on 10 meters with good stability. The plate-tuning condenser is rated to withstand 3,000 volts. The grid-tuning condenser is a single-spaced split-stator variable. The neutralizing condenser is made of two aluminum plates which have an exposed area of 1 -in. $\times 2$-in. One of the plates is attached to a $1 / 4$-inch coil plug and jack; this is the movable plate. The spacing of the plate-tuning condenser shown in the photograph is sufficient to withstand the r.f, voltage encountered with a 1,500 -volt d.c. plate supply, procided that the amplifier is loaded twith an antenna circuit.

Figure 25 - HF-100 Triode Amplifier. Figure 24 Shows Its Mechanical Construction.

Figure 26 - Single-Ended R. F. Amplifier with HK-154 Gammatron. The Same Amplifier Adapts Itself to Other Tubes of the Same General Size and Type. Note the Uniformity of Controls, the Short, Direct Wiring Connections. Insulated Couplings Can be Attached to the Condenser Shafts When the Amplifier Chassis is Mounted Behind a RelayRack Panel.

This amplifier can be driven by a 6L6G amplifier or doubler which delivers an output of 15 watts or more.

- HF-100 Amplifier

Tubes with very high mutual conductance, such as the HF-100, should preferably be operated in split-stator neutralized circuits, such as the one illustrated in figure 25. A single-section plate-tuning condenser with the center-tap of the coil bypassed to ground will introduce too much regeneration on the higher frequencies when plate voltage is applied. The split-stator tuned plate circuit also has an advantage in that a neutralizing condenser seldom requires readjustment when

Figure 27 - HK-154 Amplifier. It Witl Supply 200 Watts Output for C. W. Operation. Figure 26 Shows the Mechanical Design.
the hands of operation are changed. The lack of regeneration in this type of neutralizing circuit under normal operating conditions means that more grid drive is required than in the case of a single-section plate-tuning condenser. The HF-100 has a very high mutual conductance and therefore requires very little grid drive even when no regeneration is present. This amplifier can be driven by a ${ }_{6} \mathrm{~L}$ 6G tube, either as a buffer or doubler.

The plate-tuning condenser is rated at approximately 5,000 volts per section. The neutralizing condenser has a similar rating. A double-spaced, $50-\mu \mu \mathrm{fd}$. midget variable condenser tunes the grid circuit.

The amplifier is built on a metal classis, ${ }^{17}$ in. $\times 8$ in. $\times 2$ in. The two tuning controls are brought to symmetrical points on the front of the chassis by means of a flexible cable connected to the grid tuning condenser.

HK-154 Amplifier

The mechanical design of an amplifier for the $\mathrm{HK}-154$ tantalum plate triode can be the same as for others previously described. Figures 26 and 27 show such an amplifier.

This tube has a lower amplification constant than other tubes described in this chapter; for this reason it is not recommended as a frequency doubler but will give

Figure 28 - Push-Pull R. F. Amplifier with Taylor T-55 Triodes. HomeBuilt Neutralizing Condensers are Mounted on Stand-off Insulators, the Assembly Being Clearly Shown in the Photograph. The Grid Coil and GridTuning Condensers are at the Extreme Left. Symmetrical Layout of Parts is All-Important in Amplifier Design. The Amplifier lllustrated Above Adapts Itself to Numerous Types of Tubes, Such as T-55s, 35T's, 808's, RK-35's, etc.
high output at low plate voltage when used as a neutralized amplifier.

The plate-tuning condenser is rated at 6,000 volts peak, the nentralizing condenser at 4.500 volts. The grid-tuning condenser is a $\quad 50-\mu \mu \mathrm{fd}$. double-spaced midget variable. A 5,000 -volt mica condenser, $00: \mu \mathrm{fd}$, is required across the plate supply at the cen-ter-tap connection to the plate coil. The other bypass condensers are of the 1,200 -volt mica type.

Because of the higin grid impedance of this tube, a very low- C grid coil should be used in order to develop the necessary r.f. voltage swing with low excitation power.

The metal chassis for this amplifier is 10

Figure 29-Push-Pull 300-Watt Amplifier with T-55 Tubes.

Figure 30 - Medium HighPower, Controlled Regeneration R.F. Amplifier with 100TH Triode. The Same Amplifier Design is Suitable for a Single RK-38, and, by Changing the Tube Socket and Neutralizing Condenser, for Such Tubes as the More Modern Versions of the " 211, " etc. The Neutralizing Condenser is Mounted with One of Its Plates Attached to the Stator of the Plate Condenser, the Other Neutralizing Plate "Floats" on a Plug and Jack, Secured to Standoff Insulator.

in. $\times 12$ in. $\times 21 / 2$ in., and can be mounted behind a relay rack panel, in which event the shafts of the tuning condensers must be fitted with insulated flexible couplings and extension rods to the tuning dials.

- Push-Pull T-55 Amplifier

A neutralized T-20 driver stage will supply ample excitation for driving the pushpull T-55 amplifier shown in figures 28 and 29. An output of more than 300 watts can be realized on any band from 10 to 80 meters with a plate potential of only 1,500 volts.

Figure 31-350-Watt Controlled Regenerative Neutralizing Clreuit for a 100 TH Amplifier, as Pictured in Figure 30.

The amplifier is built on a metal chassis, $17 \mathrm{in} . \times 10 \mathrm{in} . \times 2 \mathrm{in}$., for mounting behind a standard relay rack panel. The arrangement of the plate- and grid-tuning condensers provides a symmetrical front panel layout. In order to obtain this effect, the platetuning coil is placed between the tubes and the split-stator condenser, and the coil is mounted on tall standoff insulators so as to raise it high above the metal chassis, removed from the tuning condenser.

Each neutralizing condenser consists of two aluminum plates which overlap each other $1 \frac{1}{2}$ in. $\times 1^{1 / 2}$ in. The grid plates of the neutralizing condensers are secured to $1 / 4 \mathrm{in}$. coil jacks; these are the movable plates. The r.i. choke must be able to carry a d.c. loarl of 300 milliamperes. The two leads in the grid-tuned circuit are made of unequal length in order to eliminate a tendency for parasitic oscillation. The split-stator tuning condenser should have a rating of 5.000 volts per section. The grid-tuming condenser is a doublespaced io $\mu \mu \mathrm{ffl}$. midget variable.

- Medium Power 100-TH Amplifier

The r.f. amplifier circuit in figure 31 is designed with a controlled regcneration neu-

Figure 32 - Oscillator, Oscilta-tor-Doubler, Buffer and R. F. Amplifier Combination with 6A6 Twin - Triode, a 6L6G Doubler or Buffer Amplifier and a T-55 Triode in the BufferDriver Amplifier. An Ideal Medium Power Amateur Transmitter in Itself. It Can be Used as a Driver for the High-Powe Amplifier Shown in Figure 33. The T-55 Amplifier is Mounted on a Separate Small Metal Chassis. The Design of the Oscillator and Doubler is Given in the Chapter on Transmitter Frequency Control.
tralising circuit which reduces the amount of grid excitation required on any shortwave band.

A split-stator tuned plate circuit is plateneutralized, and a $100-\mu \mu \mathrm{fd}$. variable condenser is connected between the coil centertap and the rotor of the split-stator condenser. There is no regeneration when this $100-\mu \mu \mathrm{fd}$. condenser is set at minimum capacity, but as the capacity is increased there is an introduction of regeneration similar to that obtained in some of the previous amplifier designs.

The regeneration control condenser is made variable in order to reduce the amount of regeneration when the amplifier is operated on 10 or 20 meters. This condenser is located at the extreme end of the chassis behind the plate tank coil, and, therefore, is not easily seen in the photograph, figure 30 . The three variable condenser are arranged for symmetry on a $17 \mathrm{in} . \times 8 \mathrm{in} . \times 2 \mathrm{in}$. chassis. Extension shafts protrude through the front pancl to the tuming dials.

Controllefl regeneration in the r.f. amplifier is desirable when a low-power driver or exciter stage is used. This 100 -watt high- μ triode has a very high transconductance (mutual condurtance) and is very easy to drive; with the addition of a small amount of re-
generation it is still easier to drive, and a type 6L.6G doubler or amplifier will supply enough grid excitation to drive the amplifier to more than 350 watts of output for c.w. operation.

The split-stator plate-tuning condenser is rated at 6,500 volts per section and the rotor is insulated from the common ground by means of a $5,000-$ volt $.002-\mu \mathrm{fd}$. mica condenser. The regeneration control condenser has relatively low r.f. voltage impressed across it.

The grid-tuning condenser is a doublespaced $50-\mu \mu \mathrm{fd}$. midget variable. All tuning condensers are mounted on stand-off insulators. The neutralizing condenser is made of two aluminum plates which have an overlapping area of $2 \mathrm{in} . \times 2 \mathrm{in}$. The stationary plate is fastened directly to the rotor of the plate tank condenser and the moving plate is attached to a $1 / 4$-inch coil plug, which fits into a jack-equipped standoff insulator.

- 1-Kw. C. W. Transmitter

The construction of the radio-frequency portion of a modern, high power, c.w. transmitter is shown in figures 32 and 33 . The circuit diagram for the complete transmitter is figure 34 .
This transmitter can be operated on any

Figure 33-1-Kw. R. F. Amplifier with a Pair of Taylor-200 Triodes in Push-Pull. More Than Ordinary Precaution Must be Exercised in the Design and Construction of High-Power R. F. Amplifiers. The Condensers Must be Wide-Spaced so as to Prevent Flash-Over, and Complete Symmetry of the Parts is of Great Importance. The Design Pictured Here is an Excellent One, and is Suitable for a Wide Variety of High-Power Transmitting Tubes.
band, from 10 to 160 meters. with $1-k w$. input on any of these bands. It wtilizes the breadboard type of construction, with the final anmlifier mounted on a shelf above the exciter and buffer amplifier stages. The exciter consists of two 6Lofi tubes in a harmonic erystal oscillator and doubler, as described in the chapter on Tramsmitter Fireyuency Control. The circuit details and operation of the exciter are described in that chapter.

The 6L6C doubler is capacitively coupled through a $40-\mu \mu \mathrm{fd}$. condenser to a $\mathrm{T}-5 . \mathrm{s}$ neutralized buffer-amplifier or double stage. The T-55 is normally used as a buffer, with a negative fixed bias of 75 volts. The grid bias should be increased to at least 1.00 volts for doubler service.

Fixed bias in these two stages makes it possible to key the exciter unit for break-in operation. A simple kev-click filter is connected in series with the cathodes of the two 6L.6G exciter tubes. The T-55 buffer stage is capable of supplying more than 100 watts of output for driving the grid circuit of the

Coil Table for T-200 1-Kw. Amplifier.				
Band in Meters	Oscillator Coil	Doubler Coil	T-55 Plate and Final Grid Coils	Final Plate Coil
80	65 turns no. 24 d.s.c. close-wound. $11 / 2$ in. dia. (160 meter coil)	35 turns no. 20 d.s.c. $11 / 2$ in. long. $11 / 3$ in. dia.	28 turns no. 14 8 turns perin. $23 / 4$ in. dia. Center-tapped.	28 turns no. 10 Enam. $41 / 2$ in. dia. 4 turns per in. Center-tapped.
40	(Use 80 meter Doubler Coil)	18 turns no. 20 d.s.c. $11 / 2 \mathrm{in}$. dia. $11 / 2 \mathrm{in}$. long.	16 turns no. 14 E . 5 turns per in. $23 / 4$ in. dia. Center-tapped.	20 turns no. 10 Enam. 3 turns perin. $31 / 2 \mathrm{in}$. dia. Center-tapped.
20	(Use 40 meter Doubler Coil)	9 turns no. 16 Enam. $11 / 2$ in. dia. $11 / 2 \mathrm{in}$. long.	10 turns no. 14 Enam. 21/2turns perin. 2 in. dia. Center-tapped.	10 turns no. 10 Enam. $11 / 2$ turns per in. $31 / 4 \mathrm{in}$. dia. Center-tapped.

Figure 34-General Diagram of the Complete High Power Transmitter.
high power final amplifier. The plate-tuning condenser in the T-55 stage is a single-section 5,000 -volt variable capacitor, and the plate bypass condenser has a capacity of $.002 \mu \mathrm{id}$. (mica type). The neutralizing condenser for this stage is a special Trim-Air condenser, rated at 5,000 volts, having a capacity range of from 2 to $5 \mu \mu \mathrm{fds}$.

Onc heavy duty high voltage power transformer can be used with two separate rectifier systems, as shown in figure 34, for plate supply to the buffer and final amplifier stages.

The final amplifier should be link coupled to the T-55 driver stage by a single turn of no. 11 heavy rubber-covered wire around the center of each coil. The type T-200 tubes in the final amplifier have a plate current rating of 350 ma. cach; this high plate current rating allows the amplifier to be operated with 1 kw . input from an 1,800 -volt power supply. The amplifier is operated with less than 300 milliamneres on each tube for an input of 1 kw . The relatively low d.c. plate voltage simplifies the final amplifier plate circuit design. since the r.f. peak voltages

Figure 35-1-Kw. R. F. Amplifier with HK-354D Gammatron and Now Atkins-Brown "PropellerType," Split-Stator Tuning Condenser. Note

Extremely Short Connecting Leads.
are proportional to the d.c. plate voltage. The plate spacing in the split-stator tuning condenser is approximately $3 / 8-\mathrm{in}$. between stator and rotor plates.

The neutralizing condensers must have a capacity of $\tau \mu \mu \mathrm{fds}$. each, which can be obtained by means of three plates in each condenser, these plates having an area of 9 sq . in. each. The two U-shaped sections are attarhed directly to the stators of the platetuning condensers, and the grid plates (movable) are made semi-adjustable by attachment to aluminum angle brackets mounted rin standoff insulators.

- A Compact 1-Kw. Amplifier

One of the difficulties which enters into the resign of a high power amplifier for relay rack mounting is the large physical size of the high voltage tuning condensers. A new type of transmitter condenser of compact design. capable of withstanding peak potentials of 16,000 volts per section (one-half inch airgap) has recently been made available.*
*Atkins \& Brou'n.

Figure 36-Under-Subpanel View of 1-Kw. R. F. Amplifier, Showing Grid Coll and Tuning Condenser, Method of Socket Mounting and Arrangement of Resistor and Bypass Condensers.

Figure 37 -1-Kw. Amplifier.
This new type condenser is incorporated in a high power amplifier illustrated in figure 35. A circuit diagram of the amplifier is shown in figure 37.

The design of the new condenser makes for very short r.f. paths within the condenser proper; the rotor plates are shaped in the form of a two-blade propeller, and the unit proper is only $93 / 4 \mathrm{in}$. long overall.

A single HK-354 high μ triode can be used in the amplifier illustrated here for inputs up to $1-k w$. without exceeding the manufacturer's rating. The tube must be operated at high plate efficiency and therefore requires a driver having an output of between $\%$ and 100 watts. Some of the c.w. amplifiers illustrated in this chapter are suitable for driving this amplifier.

- Construction

The complete amplifier can be built behind a $101 / 2 \mathrm{in}$. or $121 / 4 \mathrm{in}$. $x 19 \mathrm{in}$. standard relay rack panel, with a chassis 12 in . $\times 14 \mathrm{in}$. supported by the pancl, as shown in figure 36 . The plate tuncel circuit is shielded from the grid circuit by means of this cllassis. Onc of the grid coil standoff insulators extends through the chassis and supports the rotatable neutralizing condenser plate, which also connects to the grid cap of the tuhe. The stator plate of the neutralizing condenser is mounted directly on the plate tuning condenser. The exposed area of the neutralizing condenser plates is $23 / 4 \mathrm{in}$. $\times 3 \mathrm{t} / 2 \mathrm{in}$. and the rotor plate is supported by a $1 / 4-\mathrm{in}$. coil jack in order to adjust the position of this plate.

Coil data for this amplifier can be found in the chart for Wire lVound Coils. page 233.

\forall

Recoral of Circonit Changes Made in and New Components Installed in My Tramsmituer
Date

Chapter 13

RADIOTELEPIIONY 'TIEDRY

AC. WV. WELECKAPH transmitter has two essential components: (1) the r.f. channel: (2) the porser supply. A radiotelephone transmitter, on the other hand. reguires these two same components but with a third compoment added, the audio frequency chanmel.

Some incans must first be provided to produce a source of r.f. control, then the desired r.f. frequency must be amplificd to whatever power ontput is desired. A quart\% crystal plate in an oscillator circuit generates the r.f. currier: this carrier is then amplified and oftentimes multiplied in frequency by additional r.f. stages until the desired power output is obtained.

- Modulation

When audio frequencies are combined with the r.f. carrier frequency in the modulated stage, the process is known as modulation. These frequencies are hetcrodyned together into a group of radio frequencies called sidchails, which differ from the carrier frequency by the values of the audio frequencies. A modulated r.f. signal, therefore, occupies a band of radio frequencies which have a width of at least 3,000 cycles, assuming that none of the audio frequencies are higher than 1,500 cycles. Frequencies up to at last 1,500 cycles are required for good sprech intelligibility, and frequencies as high as 5,000 or 6,000 cycles are required for gorod music fidelity. When audio frequencies as high as 5,000 cycles are to be transmitted. the radio frequency channel would have to be 10.000 cycles (10 kilocycles) in width. since both the upper and lower side-band frefuencies are generated in the modlulated r.i. stage.

- Side-Band Frequencies

The transmitted signal, when modulated, contains side-bond frequencics, in addition to the carrier frequency. These side-band frequencies are adjacent to, and on either side of the carrier frequency. The width of these side-bands depends upon the audio frequency which modulates the r.f. carrier, and the side-band frequencies are generated only

When the r.f. stage is modulated by an audio frequency, or frequencies.

- Instantaneous Power Output

The arevage anplitude of the carrier frequency wave is constant in most systems, but the instantancous pozer output varies from approximately zero to foir times that of the power of the unmodulated carrier wave. In a symmetrically modulated wave, the antema current increases approximately 2n per cent to 100 per cent modulation with a pure-tome input; the r.f. meter in the antema circuit indicates this increase in antenna current. The azeraye poaecr of the r.f. wave increases so per cent to 100 per cent modulation. This indicates that in a plate-modulated radiotelephone transmitter the audio frequency channel must supply this additional so per cent increase in average power. If the power input to the modulated stage is 100 watts, for example, this arerage pozer will increase to 150 watts at 100 per cent morlulation, and this additional 50 watts of power must be supplied by the modulator, when plate modulation is used. The actual antenua power is a constant percentage of the total value of input power.

Figure 1 -Graphic representation of four types of wave form, illustrating the difference between an unmodulated carrier, audio sine wave, 50 per cent modulated carrier, and 100 per cent modulated carrier.

A c.w. or mumodulated carrier wave is represented in (A), figure 1. An audio frequency wave is represented by curve (B). When this audio frequency wave (B) is applied to the modulated stage, the resultant wave may be represented as in (C) and (1)). The azerage amplitude of the carrier wave remains constant because the derrease in amplitude is the same as the increase (up to 100 per cent). In (C), tigure 1, the carrier wave is shown to be approximately 50 per cent modulated, and (D) shows a 100 per cent modulated wave. In order to obtain 50 per cent modulation in a plate modulated system, only one-fourth as much audio frequency power is required as for 100 per cent modulation. However, the audio signal which is received at a distant point after being de-modulated (detected) is in proportion to the percentage of modulation of the transmitter. If the peaks of modulation are reduced from 100 per cent down to 50 per cent, the result is a decrease in range of the transmitter.

- Audio Frequency Channel

The sound waves of speech or music must first be converted into electrical energy: This is accomplished by means of a microphone. The electrical power output from a microphone is very low, and must, therefore, be amplified before it is applied to the modulated radio-frequency stage. Amplification of this weak power output can be accomplished by impressing the electrical output of the microphone across a vacuum tube amplifier system which has sufficient amplification to deliver the desired output. The required audio power output from this amplifier, in the case of a plate modulated radiotelephone transmitter, is one-half that of the porerr input to the modulated r.f. stage.
The electrical power output of the microphone is impressed across the grid impedance of the vacuum tube amplifier, and the voltage is amplified by the vacuum tube. The amplified voltage can then be carried througls a number of additional amplifier stages until it becomes a hight enough value to develop, the desired power into the untput impelance.
The audio power output is the value of voltage multiplied by the audio frequency current flowing through the output impedance; in the case of a low impedance, the current is high and the voltage is relatively low. and vice versa for a high impedance.
The load impedance in the case of a platemodulated r.f. state is the plate circuit of
the modulated amplifier fube. The impedence can be calculated by dividing the d.c. plate voltage applied to the r.f. stage by the d.c. plate current which is flowing in the tube in that stage. This is equivalent to a pure resistance if the amplifier is class C, and therefore is a constant load across the output of the audio channel.

Different types of modulated r.f. stages call for vastly different amounts of audio power. Grid modulation, for example, requires only a fraction of the amount of audio power as is required for 100 per cent plate modulation of the same output of r.f. carrier power, Various types of modulation other than the most common method (plate modulation) are discussed later in this chapter,

- Frequency Control

The quartz crystal oscillator is the most satisfactory means for controlling the frequency of a radiotelephone transmitter. Greater precautions are necessary than when the same type of oscillator is used for c.w. telegraphy in order to avoid 'freguency mutulation."

- Amplitude Modulation

When the r.f. power output is varied by means of side-band frequency amplitude variations, the method is known as amplifudc modulation. This is the only system of mod-

Figure 2
ulation commonly used by amateurs. The carrier amplitude (except in controlled-carricr systems) should always remain constant. A change in carrier amplitude during modulation is called carricr shift. This produces distortion and often creates interference in adjacent radiotelephone channels.

- Frequency Modulation

Frequency modulation is just what the term implies and is undesirable for many reasons. Reaction between the modulated stage and the crystal oscillator can be prevented by the incorporation of at least one luffer or doubler stage between the crystal oscillator and the modulated r.i. amplifier. Except for emergency operation, in a circuit such as shown in figure 2. the crystal oscillator should never be modulated because freruency modulation will result from any modulation of the plate voltage.

- Frequency Drift

When the quartz crystal in an oscillator circuit is overloaded and heats, frequency drift will take place. Incorrect design of the oscillator or excessive plate voltage will cause an excessive flow of r.f. current through the equartz crystal. This excessive r.f. current will then cause a temperature rise which will change the frequency of oscillation when X-cut or Y^{\prime}-cut crystals are used. Some of the newer crystal cuts, such as the V or $4 T$. have a very low temperature coefficient (change in physical dimension with change in temperature) with a result that practically no frequency drift is encountered, even when the power output from the crystal oscillator is very high.

- Frequency Multiplication

Frequency doublers or triplers are used to multiply the output frequency of the crystal oscillator to the desired frequency which is wanted in the final r.f. amplifier. These circhits are similar in all respects to those used for c.w. telegraphy, as disclosed in the chapter on C. W. Theory. In radiotelephony: however, a plate-modulated r.f. amplifier requires more excitation than is needed for the final stage in the usual c.w. transmitter, because the amplifier in the radiotelephone transmitter must be operated at more than twice cut-off bias and high grid current. It is common to use a buffer r,f, amplifier which operates at the same frequency as the final amplifier in order to secure ample grid excitation, In many cases, a frefurncy dou-
bler or tripler can be made to deliver sufficient output to drive the modulated stage properly, thereby eliminating the need of a buffer stage for operation at the very high irequencies.

- Doubler Stage Efficiency

The grid bias in a doubler stage should be at least five times cut-off value in order to notain high efficiency. The d.c. gricl current should be of a normally-rated value for the tube in use, providing that this value of grid current can be obtained from the preceding stage at the high bias required. While in a neutralized stage (triode), it is best procedure to run as much bias as the excitation will allow with maximum rated grid current : in a triode doubler it is best to run as much grid current (up to maximum rating) as the excitation will allow while maintaining at least five times cut-off bias.
Regeneration in a doubler stage can be surbstituted for high bias and r.f. excitation, in the event the transmitter has not been conservatively designed to increase the output. Regenerative frequency doublers are satisfactory for c.w. telegraphy, but they will usually introduce operating difficulties when used for radiotelephony.

- Radiotelephony Power Supplies

A power supply for a radiotelephone transmitter should furnish non-pulsating d.c. voltage to the crystal oscillator or other source of frequency control. The amount of pulsation or ripple voltage should be less than 1 per cent of the d.c. voltage, especially for radio transmitters operating on very high frequencies. Hum or ripple voltage in the plate supply to the oscillator will fiequencymodulate the r.f. output slightly. Each frequency multiplier stage increases the frequency modulation, until the carrier hum becomes objectionable in high-frequency transmitters. Many amateur 10 -meter phones suffer from this difficulty, noticed especially with selective receivers.
The power supply for the "front end" of the speech channel must be thoroughly filtered in order to avoid amplification of the ripple in the succeeding audio or speech amplifier stages. The plate supply for the final audio amplifier stage does not require as much filter as the preceding stages, and, in the case of a push-pull audio modulator stage, a single-section filter will suffice.
Buffer stages of a control-grid modulated transmitter must have very well-filtered plate
supplies (more than the buffers in a platemodulated transmitter) in order to prevent lum modulation in the grid circuit on which the speech audio frequencies are impressed. On the other hand, the plate supply for the grid-modulated stage itself does not require quite as much filter as does a comparable plate-modulated stage. This indicates that a single-section filter will suffice for a gridmodulated stage, whereas a two-section filter is desirable for plate modulation. In the event that only a single-section filter is used for a grid-modulated stage, condenser input is desirable. A single-section choke input filter does not furnish sufficient ripple suppression except for a c.w. amplifier or pushpull (or pusli-push class B) modulator stage.

- Class B Modulator Voltage Regulation

Power supply voltage regulation of class I) modulators is of great importance because the plate current varies appreciably with the amount of speech input. Choke input, utilizing preferahly a sevinging-choke with high no-current inductance rating (25 hy: or more) and low d.c. resistance, in conjunction with mercury vapor rectifiers and a lusky filter condenser (at least $4 \mu \mathrm{fd}$.) will make a good power supply. If the "resting" plate current of the modulator tuhes is high, as is the case with some of the zero hias, class B tubes, a swinging type choke is not essential. but even so, the choke should have high inductance (10 or 20 hy .).

- Microphones

The microphone. which changes sound into dectrical energy, usually consists of a diaphragm which moves in accordance with the compressions and rarefactions of the air called somd araits. The diaphragm then actuates some form of device which changes its electrical properties in accordance with the amount of physical movement.

If the diaphragm is wery tightly stretched. the natural period of its vihration can be placed at a frequency thich will be out of range of the human voice. This ohviously reduces the sensitivity of the microphone. yet it greatly improves the uniformity of response to the wide range encountered for voice or musical tones. If the natural mechanically resmant period of the diaphragm falls within the voice range, the sensitivity is greatly increased near the resonant frefuency. The effect results in distorted output, a familiar example of this effect being
found in the ordinary land-line telephone microphone.

A good microphone mast respond equally to all woice freguencies: it must not introditce noise, such as hiss: it must have sufficient sensitivity to climinate the need of excessive audio amplification; its characteristics should not vary with changes in temperature or humidity, and its characteristics should remain constant over a useful period of life.

- The Carbon Microphone

Carbon micruphones can be divided into two classes: (1) Single-hutton. (2) Doublebutton. The single-button microphone consists of a diaphragm which exerts a mechanical pressure on a group of carbon granules. These granules are placed behind the diaphragm between two electrodes, one of which is secured directly to the diaphragm and moves in accordance with the vibration of the diaphragm. This vibration changes the pressure on the carbon granules, resulting in a change of electrical resistance to current Howing between the electrodes, the d.c. current heing supplied from an external source. The variation in resistance causes a change in the current which flows through the primary winding of a coupling transformer, thereby inducing a voltage in the secondary winding of this transformer: this voltage is then amplified by means of vacum tule amplifiers.
Single-button microphones are useful for operation in portable transmitters because their sensitivity is greater than that of nther types of microphones, thereby requiring less audio amplification to supply audio molulating power for the transmitter. The objectionable feature of the single-button microphone is its high hiss level. Another is that the diaphragm generally resonates within the voice range. resulting in rather poor tone quality.

- The Double-Button Microphone

The double-button microphone has two groups of carbon granules arranged in small containers on either side of the diaphragm. This "push-pull" effect reduces the evenharmonic distortion. resulting in more intelligible modulation. The diaphragm is normally stretched to such an extent that its natural period may be as high as 8,000 cycles per second, which is beyond the range of the human voice. This reduces the sensitivity of the microphone and greater audio

Figure 3-10-Watt Amplifier for Use with a Single-Button Microphone.
amplification is needed to secure the same output as from a single-button carbon microphone. On the other hand, the tone quality from the double-button microphone is better, though the hiss is still present.

The cost of a double-button microphone is a satisfactory index of its performance when purchased from a reliable concern. The output from a high-quality two-button microphone is rated 45 d). below that of a standatd single-button microplone.

The movement of the diaphragn changes the spacing between the two clectrodes, resulting in a change in electrical capacity. When a d.c. polarizing voltage is applied :cross the plates, an a.c. voltage will be generated when the diaphragm is actuated by reason of the change in capacity between the vilates: this voltage can then be amplified by means of vacuum tubes. The diaphragm of a typiral condenser microphone is made of duralumin sheet, approximately $1 / 1,000$ in. thick, with approximately the same spacing between the diaphragm and the rear heavy plate electrode. The output is approximately 75 db . below an ordinary singlebutton carbon microphone with unstretched diaphragm.

The condenser microphone has a low output level, which necessitates at least two stages of pre-amplification, the first stage being located very close to the microphone.

T1 - Double Button
Mike-to-Grid Trans. T2 - 3:1 Interstage Transformer.
Choke: 20 henry. 200 M.A.

Figure 4-10-Watt Amplifier for Double-Button Microphone.

- Condenser Microphone

A. condenser microphone has a better freyuency response than a carbon microphone. and it does not produce a hiss. This type of microphone consists of a highly damped or stretched diaphragm mounted very close to a metal plate. but insulated from the plate.

The output impedance is extremely high, and the unit must, therefore, be well shielded in order to prevent r.f. and $60-c y c l e ~ a . c$. hum nickup. It is sensitive to changes in barometric pressure and hunidity. Morl modern types of microphones are replacing the condenser type, although the latter are still widely used.

Figure 5

Figure 6-Condenser Microphone Pre-Amplifier. This pre-amplifier is used with a condenser microphone in order to increase its output to a sufficient level to work directly into the grid of a speech amplifier, such as one which was originally designed for carbon microphone input. No transformer is needed for coupling between the $6 F 5$ and the speech amplifier. The $0.1 \mu \mathrm{fd}$. coupling condenser and the speech amplifier grid-leak should be located at the speech amplifier.

- Crystal Microphone

The crystal microphone operates on the principle that a change in dimensions of a Piczo-electric material, such as Kochclle Salt crystals, generates a small a.c. voltage which can be amplified by means of vacuum tubes. No d.c. polarizing voltage or current or coupling transformer is required for the crystal type of microphone, and thus it becomes a very simple device to connect into an audio amplifier.

Figure 7-This pre-amplifier can be used with an inductive microphone by changing the resistance network in the input to a transformer of the correct design. If the preamplifier is far removed from the main speech amplifier, a plate-to-500-ohm-line transformer should be connected in the output, with a corresponding 500 ohm-to-grid transformer at the speech amplifier.

Crystal microphones can be divided into two classifications: (i) the diaphragm type, (2) the grille type.

The diaphragm type is relatively inexpersive and consists of a semi-floating diaphragm which subjects the crystal to deformation in accordance with the applied sound pressure. The fidelity is equal to that of most two-button carbon microphones and there is no background noise or hiss generated in the microphone itself.

The grille type consists of a group of crystals connected in series or series-parallel for the purpose of obtaining high electrical output without aid of a diaphragm. The output level varies between - 65 db . and - 80 db . for various types of crystal microphones. The grille type is less directional to sound pickup than most other types and is capable of almost perfect fidelity.

- Velocity or Ribbon Microphones

The inductive or ribbon-type microphone has a thin, corrugated, metal strip diaphragm which is loosely supported between the poles of a horse-shoe magnet. A minute current is induced in this strip when it moves in a magnetic field, and this current can be fed to the primary of a step-up-ratio transformer of high ratio because of the very low impedance of the ribhon.

The microphone output must be amplified by means of a very high gain pre-amplifier, because the output level of the older types of ribbon microphones is -100 db . and even the newer ones are around -85 db . The inductive type of microphone is rigged and simple in construction. Unfortunately, it cannot be used for close talking without overemphasizing the lower frequencies. It is a velocity, rather than a pressure-operated. microphone and should therefore, be placed at least two feet from the source of sound. It is very sensitive to a.c. hum pickup, and this is one of the principal reasons why it is not widely used in amateur practice.

The impedance of the ribhon is so low that it is difficult to design a ribbon-to-grid transformer with good fidelity. Therefore. for best quality. two transformers are usually used in cascade: ribbon-to-200 ohms and 200 ohms-to-grid.

- The Dynamic Microphone

The dynamic (moving coil) type of microphone operates on the same principle as the inductive microphone. A small coil of wire. actuated by a diaphragm. is suspended in a magnetic field, and the movement of the coil in this field generates an alternating current. The output impedance is approximately 30 ohms as against approximately one ohm for the ribbon type of microphone. The output level is about - 85 db ., the level varying with different makes. This type of microphone is quite rugged and its frequency response is excellent.

LOW COST DYNAMIC MICROPHONE INPUT AMPLIFIER
Figure 8-Low Cost Dynamic Microphone Amplifier.
, A non-directional dynamic microphone can be made by enclosing it in a small spherical housing with the diaphragm at the top. An acoustic screen is mounted directly above the diaphragm for producing uniform acoustic response from all directions.

An inexpensive and very satisfactory dynamic microphone for amateur transmitters can be made from a small, permanent-magnet type, dynamic loud-speaker, as illustrated in figure 9. One of the newer 5 in. types with alloy magnet will give surprising fidelity at relatively ligh output level.

Figure 9-A Small "PM"' Speaker Makes a Good Microphone.

A shielded cable and plug are essential to prevent hum pickup. The unit can be mounted in any suitable type of container. The circuit diagram is shown in figure 8.

- Directlonal Effects

Crystal microphones, as well as those of some other types, can be mounted in spherical housing in order to secure a non-directional effect. Decidedly directimal effects
may be required, on the other hand, and microphones for this purpose are commercially available.

- Speech Amplifiers

That portion of the audio channel between the microphone or its pre-amplifier and the power amplifier or power-amplifier driver stage can be defined as the specch amplificr. It consists of from une to three stages of zoltage amplification with resistance, impedance, or transformer coupling between stages. The input level is generally about $-50(\mathrm{db}$. in the case of a speech amplifier designed for a double-button carbon microphone or pre-amplifier input. The input level is approximately - 70 db . when the speech amplifier is designed for operation from a diaphragm-type crystal microphone. A conventional speech amplifier for a dou-ble-button carbon microphone is shown in figure 5. Other speech amplifier circuits are shown in figures 10 and 11 , and also in the numerous complete transmitter circuits shown throughout the chapter on Radiotcliphonc Transmitter Constraction.

- Input Level

It is possible to dispense with the preamplifier with certain types of low-level microphones by designing the speech amplifier input to work at -90 dlb , or so, but it is better practice and entails less constructional care if a speech amplifier with less gain is used in conjunction with a pre-amplifier to make up the reguired overall amnlification. I.ess trouble with hum and feedback will be encountered with the latter method.

Designing a speech amplifier to work at - in rlh. is comparatively casy.

Figure 10-Typical Speech Amplifier Modulating a 50-Watt Class C Stage.

- Amplifier Gain

The power gain in amplifiers or the power loss in attenuators can be conveniently expressed in terms of db. whits, which is an expression of two power ratios.

A formula for the calculation of db. gain or loss is here given:

$$
\mathrm{DB}=\log _{10} \frac{\mathrm{P}_{1}}{\mathrm{P}_{2}}
$$

Since power is equal to the product of voltage times current, when the power factor is unity: dh, units can be used to express voltage gain. In this case the formula is:

$$
\mathrm{DB}=20 \times \log _{10} \frac{\mathrm{E}_{1}}{\mathrm{E}_{2}}
$$

This provides a useful means for computing the overall voltage gain of a pre-amplifier and the speech amplifier. When adding the gain of several stages, the db . units are added or subtracted, which greatly simplifies the calculations.

For example: if a pre-amplifier has 35 db . gain, and the speech amplifier has 65 db . gain, the total gain is $35+65$, equals 100 db . 100 db . corresponds to a voltage gain of

100,000 times. Thus, for example, if the microphone level is -100 db ., the speech amplifier output will be $-100 \mathrm{db} .+100 \mathrm{db}$. equals zero db. level. Zero level corresponds to a power level of 6 milliwatts.
In order to obtain 60 watts of audio power output, a power gain of 6,000 times will be required, which corresponds to a power gain of approximately 38 db . This amplification can be considered as part of the main power amplifier or modulator, or as part of the speech amplifier, depending upon the particular transmitter under consideration. The important point to remember is that power ratios use the expression: $10 \times \mathrm{Log}$. whereas voltage gain between similar impedances is computed by the expression: $20 \times$ Log.
I_ct us take a typical example of radiophone transmitter with a class C amplifier input of 200 watts. For 100 per cent plate modulation, the audio power requirement is 100 watts. This corresponds to a db. power level of +42 db . Tero db. level is 6 milliwatts, or .006 watts.
Therefore, the formula:

Figure 11-Speech Amplifier and Modulator for 175-Watt Class C R.F. Amplifier.

$$
\begin{aligned}
& D B=10 \times \log _{10} \frac{P_{1}}{P_{2}}= \\
& 10 \times \log _{10} \frac{100}{.006}=42
\end{aligned}
$$

Either a logaritlom table or a \log slide rule is needed for making db. calculations.

The anateur may desire to use a diaphragm type crystal microphone which is rated at - 00 db . for average sound levels. This extremely low output must be brought up to a value of 100 watts. or +42 db . The total gain required will be 112 db .

No pre-amplifier would be necessary, because this amount of gain can be built into a good speech amplifier and modulator. A typical audio channel which meets these requirements is shown in the skeleton circuit. figure 1.5

The first speech amplifier consists of a 6C6 connected as a high-gain pentode, resist-ance-coupled to a 76 speech amplifier which, in turn, is coupled through a step-up transformer into a 42 tube which operates as a triode. The latter is connected to a pushpull 45 class $A B$ driver for the final power amplifier or modulator which consists of a pair of 35 Ts .

The 6 C 6 stage is capable of producing a voltage amplification of 100 times. which corresponds to 40 db .

$$
D P=20 \times \log _{1 n} \frac{100}{1}=40
$$

The 76 and 42 triodes with a 3 -to- 1 stepup interstage transformer will produce a voltage gain of 240 .

Figure 12
60-Watt 6L6 Amplifier
By incorporating the new Thordarson "Try= Fidelity" Transformers In the amplifier here shown, the hum level with gain open is approx= imately 58.7 db. down from maximum output of 18.7 db . down from xero level. The slider on the voltage divider must be adjusted for 300 volts on the screen of the 6L6 tubes, with negative 25 volts bias. Voltage measured from plate to ground on the 6C5 tube should be 258 volts. Total plate current of final stage, 100 to 110 ma. with no elgnal.

Figure 13
60-Watt 6L6 Amplifier
Two 6L6 tubes in Class AB. The power transformer has one set of windlings for supplying both B current requirements for the initial stages and a steady source of Tixed bias and screen voltage for the output stage. Frequency range: 30 to 12,000 cycles. Gain 120 db ., or 88 db ., depending upon input ehannel connection.

Figure 14
6LS Anjlifar
The Type PAK-1 United Transformer Corp. Beam Power Amplifier delivers 35
to 55 watts of output. It has high gain, $118 \mathrm{db}$. , with provision for immediate changeover to 95 db . The output circuit has stabilized feedback to increase available output and reduce distortion. Self-contained equalIzer circuits enable bringing up the low frequency, or both low and high frequencies simultaneousiy. All recies simultaneousiy. All re-
sistors are rated at one watt, except bleeder and 6 L 6 cathode resistors, which are 20 watt.

Figure 15

$$
\mathrm{DB}=20 \times \log _{10} \frac{240}{1}=47
$$

Actually, the db . voltage gain must be measured between like impedances in order to be correct.

The total speech amplifier gain is $40+47$. equals 87 d lb . If the output level of the microphone is -70 db ., the output level of the 42 triode will be $87-70$, equals +17 db. 'This level corresponds to approximately 300 milliwatts, which is well within the rating of a 42 triode driver, and is sufficient to drive the tir tubes in class AB .

$$
1 \tilde{r}=10 \times \log _{11} \frac{I^{\prime}}{.006}
$$

therefore, P equals 0.3 watts, or 300 milliwatts.

$$
\mathrm{DB}=10 \times \log _{10} \frac{100}{0.3}=2
$$

This can he checked by subtracting 17 from 42, which is 25 db., the power gain between the grids of the tir tubes and the output of the class B modulator.

With 0.3 watt input to the 4.5 stage. 9 watts of output can be obtained.

$$
\mathrm{DB}=10 \times \log _{10} \frac{9}{0.3}=15
$$

The power gain through the $4 ;$ stage is 15 db.. leaving a power gain of 10 in the 35 T class D stage. More power gain could be secured in the 35 T stage, thus reguiring less gain in the 45 driver stage. and therefore the class B input transformer could have a greater step-down ratio than in the case of a circuit design in which no leeway in voltage and power gain is provided for.

- Plate Modulation Transformer Calculations

The modulation transformer is a device for natching the modulator plate impedance to the impedance of the chass C r.f. amntifier.

The class C r.f. amplifier impedance is calcuated by dividing the d.c. plate-to-filament voltage by the total d.c. plate current. For example, a pair of type 211 tubes, operating at 1200 volts and 300 milliamperes. has a load impedance of 1200 divided by 0.3 amperes, or 4,000 ohms.

$$
Z=\frac{\mathrm{E}}{\mathrm{I}}=\frac{1200}{0.3}=4,000 \text { ohms }
$$

where 7 . is the load impedance of the class C r.f. amplifier.

The power input is $1: 000$ times 0.3 or 360 watts.

The audio power required for 100 per cent modulation is one-half this value or 180 watts. This power of 180 watts can be supplied by a pair of 203 A tubes in class B with a 1000 -volt plate supply. From vacuum tube tables, it will be found that the load resistance or impedance (plate-to-plate) of class B 203.A tubes slovild be 6900 ohms.

For maximum power transfer the 4000 ohm load must be transformed to 6900 ohms. The transformer changes this impedance by using a step-down turns-ratio of 1.3-to-1 total primary to secondary. This ratio is obtained by taking the square-root of the impedance ratio $\frac{6900}{4000}$.

Another example is an $H \mathrm{H}^{-3}-3 \mathrm{t}$ operating at 2500 volts with 250 milliamperes of plate current. The load impedance is

$$
\frac{2.500}{.0250}=10,000 \text { ohums. }
$$

The power inpust is equal to $2,500 \times 0.250$ or 625 watts.

The modulator would be required to supply slightly more than 300 watts. RCA-805 tubes. in class B, operating with 1500 volts plate supply. will deliver ample output for this purpose.

The plate-to-plate imnedance of the modnlator under these conditions should be ap-
proximately 8,000 ohms, as listed in the tube tables for the RCA-805s. In this case, the 10,000 -ohm load impedance must be reduced to 8,000 ohms. The modulation transformer should have a total primary to secondary turns-ratio of 1-to-1.1. Thus, it is seen from these examples that the HK-354 calls for a step-up trans former, whereas the transformer for the 211 tubes is of the step-down variety.

- Audio Output Block Diagrams

From the group of 27 block diagrams here shown, the reader can quickly find a satisfactory tube complement for audio outputs ranging from 1.5 watts to 1,000 watts. The legend explains the various connection systems shown in the block diagrams; crystal or carbon microphones or pre-amplifier are denoted by the conventional symbol, shown directly below the legond. Correct operating plate voltages are shown under the tube symbols in each diagram. The arrow to the far right denotes the audio output of the amplifier. Outputs are listed in the respective order of the diagrams, beginning with the lowest (1.5 watts) and ending with the highest (1,000 watts).

Hock Diagrams For Modulators

Figure 16
Plate
Modulated Phone Transmitter with 150-Watt Carrier

Modulators

A morlulator supplies audio power to the particular r.i. stage in the transmitter which is being modulated. A speech amplifier does not deliver sufficient power output for platemodulating any of the conventional forms of r.f. stages. The modulator is an audio amplifier which delivers ample power output for completely modulating the d.c. input to the modulated stage. Power requirements of audio amplifiers vary from a fraction of a watt up to 500 watts, for amateur purposes. Low-power transmitters of the gridmodulated or suppressor-grid-modulated types require less than one watt of audio power, whereas a $1-\mathrm{kw}$. plate-modulated phone transmitter require 500 peak watts of andio power.

Class A amplifiers arc suitable for lowpower grid-motulated, or suppressor-modulated phone transmitters; class AB audio amplifiers for high power grid-modulated, or for low-power plate-modulated phones; and class B audio amplifiers for most economical operation of transmitters in which the audio requirements are greater than 60 watts. Class $A B$ or class B molulators require a driver stage which can be considered part of the morlulating system proper rather than part of the speech amplifier. The complete morlulator essentially consists of a device for converting speech-amplifier output voltage into audio power.
Complete information on receiver and ransmitter type tubes for modulator service. as well as for any other portion of a radiotelephone transmitter, will be found in the chapters which deal with vacuum tubes.

- Plate Modulation

Plate modulation is the application of the audio modulating power to the plate circuit of an r.f. amplifier. The r.f. amplifier must be operated class C for this type of modulation in order to obtain a radio frequency output which changes in exact accordance with the variation in plate voltage. The r.f. amplifier is 100 per cent modulated zehen the peak a.c. voltayge from the modulater is equal to the d.c. zoltage applied to the r.f. tube. The positive peaks of audio voltage increase the instantaneous plate voltage on the r.f. tube to tacice the d.c. value, and the negative peaks reduce the voltage to zero.

The instantaneous plate current to the r.f. stage also varies in accordance with the modulating voltas. The peak alternating
current in the output of a modulator must be equal to the d.c. plate current of the class C r.f. stage at the point of 100 per cent modulation. This combination of clange in audio voltage and current can be most easily referred to in terms of audio pozecr in waits. By properly matching the plate impedance of the r.f. tube to the plate impedance of the modulator, the ratio of voltage and current swing to d.c. voltage and current is automatically obtained. The modulator should always be capable of supplying audio power to the extent of 50 per cent of the d.c. input to the plate-modulated stage. Complete modulation cannot be secured unless this value of 50 per cent is available, in addition to a coupling system permitting the correct "reflected" impedance to be obtained.

The plate efficiency of the plate-modulated stage is constant, and the additional power radiated in the form of side-bands is supplied by the modulator.

One of the advantages of plate (or power) modulation is the ease with which proper adjustments can be made in the transmitter. There is less plate loss in the r.f. amplifier for a given value of carrier power than with other forms of modulation, because the plate efficiency is higher. Figures 16 and 17 show two types of radiotelephone transmitters with plate modulation.

- Helsing Modulation

Heising modulation usually consists of a class A audio amplifier coupled to the r.f. amplifier by means of a modulation choke coil, as shown in figure 18.

The d.c. plate voltage and plate current in the r.f. amplifier must be adjusted to a value which will cause the plate impedance to match the output of the modulator, since the modulation choke gives a 1-to-1 coupling ratio. A series resistor, bypassed for andio frequencies by means of a condenser, must be connected in series with the plate of the r.f. amplifier in order to obtain modulation up to 100 per cent. The a.c. or audio output voltage of a class A amplifier does not reach a value equal to the d.c. voltage applied to the class A amplifier and, consequently, the d.c. plate voltage impressed across the r.f. tube must be reduced to a value equal to the maximum available a.c. peak voltage. A higher degree of distortion can be tolerated in low-power emergency phone transmitters which use a pentode modulator tube for securing sufficient audio output. and thus the series resistor and bypass rondenser are usually unitted.

HEISING OR PLATE MODULATION "R" DLOOS PLATE OOWER INPUT ANO VOLTAGE TO CLASS C STAGE IN ORDER TO DBTAIN HIGM OEGREES OF MODULATION. "C" IS FROM 2 TO 4 MFDS TO BY-PABS THE AUDIO SIGNAL

Figure 18

Figure 19

- Series Modulation

Another form of plate molulation is known as scrics modulation. in which the r.f. tube and modulator are in series across the d.c. plate supply, as shown in figure 19.

Series modulation eliminates the modulation choke required in the usual form of Heising modulation. Although this system is capable of very gond wice quality, the
antenna coupling must be carefully adjusted simultaneously with the C-bias in the modulator in order to maintain at least 20 per cent more plate voltage across the modnlator than that which is neasured from positive B to r.f. tube filament. It is difficult to obtain a high degree of modulation maless a portion of the total plate current is shunted by the r.f. tube through a small high-induçtance choke coil. Scries modulation is seldom used today except for telorision work.

- Efficiency Modulation

When modulation is effected by a change of r.f. tuhe plate efficiency, rather than by modulation of plate input power, the system is known as sficiency modulation. Con-trol-gricl, screen-grid, and suppressor-grid modulation operate on the foregoing principle, as does the "linear amplifier" stage used by broadcast stations to build up their power after modulation.
With pure efficiency modulation, the maximum efficiency at which the r.f. modulated tube can operate is less than 50 per cent, since the peak efficiency (twice the "resting" value) must be less than 100 per cent. Several methods have been devised for the operation of amplifiers at efficiencies as high as 60 per cent during periods of no modulation. and then changing the plate power supply in order to obtain 100 per cent modulation without much increase in peak plate efficiency. This is accomplished in the cxpanding linear r.f. antlificr, developed in various forms by W. H. Doherty of Bell Laboratorics, and independently by I. N. A. Hawkins.

The method used by Hawkits consists of maintaining a constant r.f. grid drive, then varying the d.c. plate voltage and d.c. grid bias together in accordance with the cn zelope of the audio-frequency wave. At maximum audio input to the modulated stage, which precedes the controlled linear amplificr, the bias and d.c. plate voltage and current in the latter are normal for linear amplifier operation. When the plate and grid voltages are reduced during periods of no modulation, the modulation capability of the linear amplifier is reduced. and the plate efficiney is increased.
The method used by Doherty consists of expanding the linear amplifier by means of an additional r.f. tube and circuit networks. In both systenis, the ummolulated plate effiriency can be made as high as 60 per cent,
resulting in a considerable saving in tubes and power supply equipment for transmitters of very high power. However, it is doubtful if the system is justified for powers of less than one or two kilowatts.

Certain forms of grid modulation. while operating on the general principle of efficiency modulation, can be made to release additional power from the d.c. plate supply. These systems are discussed under grid moxhlation.

- Grid Modulation

The several popular forms of grid modulation operate on the same general principle, but under somewhat different conditions. In all systems, the audio-frequency power is impressed upon the grid circuit. and the r.f. amplifier operates in a modified class C arrangement. One system employs a vacuum tube as a variable grid-leak in a class C r.f. amplifier with a very small order of excitation. The modulator tube is driven by the speech amplifier, and its plate impedance varies in accordance with the speech input. The modulator tube receives its plate current from the rectified grid current of the r.f. amplifier. The grid bias of the modulator is adjusted to the point which gives best voice quality, and the r.f. excitation must be similarly adjusted for the same purpose. This system, shown in figure 20, does not give distortionless modulation and it is critical in adjustment.

Figure 20

- The Class BC System

The Hawkins class BC system, shown in figure 21 , is a method of grid modulation which can be adjusted to give exceptionally goocl quality:

R F AMPLIFIEA

Figure 21
The r.f. amplifier is operated with fixed bias egual to cut-off. This bias is supplied either from batteries or from a bias pack. Additional bias is obtained from a cathode resistor R_{z} in the modulated stage. This resistor should be bypassed for r.f., but not for audio frequencies, by means of filament bypass condensers no higher in value than .t05 $\mu \mathrm{fd}$. When an audio voltage is applied from the modulator, it is amplified in the r.f. tube, and a degenerative feedback occurs across resistor Re. For this reason the audio power requirements are shmewhat greater than for other grid-moclulated systems. This degenerative effect, however, produces a very linear modulation characteristic. The d.c. plate current which flows through K : slould provide an additional bias equal to at least half the theoretical cut-off bias. A higher value of $\mathrm{R}=$ will result in higher plate efficiency. but at a sacrifice in power output, which can be brought up by using higher plate voltage.

The r.f. grid excitation is adjusted to the point where gricl current just starts to flow. Excess r.f. grid excitation can be absorbed hy resistor R_{1} (figure 21) connected across the grid circuit; this resistor also stabilizes the operation of the circuit and improves the quality.

Grid excitation can be conveniently controlled by means of a link-coupling adjustment. The antenna loading is greater than that required for plate modulation or c.w. operation. This coupling should be increased to a point somewhat beyond that at which maximum antenna or feeder r.f. current occurs for given excitation. The plate efficiency will be between 35 per cent and +1) per cent in a well-designed class $B C$ amplifier. Design of the grid-modulation transformer is discussed on page 298 .

The circuit constants can be calculated from a group of formulae given here:
(1) $\mathrm{E}_{11}=$ d.c. plate supply voltage, in volts.
(2) $W_{\text {plate lons }}=$ rated plate dissipation of the tube in watts.
(3) $\mu=$ amplification factor of the tube.
(4) $\mathrm{W}_{\text {input }}=$ d.c. plate input power, in watts.
(5) $W_{\text {output }}=$ r.f. unmodulated carricr output in watts.
(6) $\mathrm{I}_{\mathrm{p}}=$ d.c. plate current, amperes.
(7) $\mathrm{E}_{\mathrm{ccu}}=$ d.c. battery bias equal to theoretical cut-off bias (one-half total bias).
(8) $\mathrm{R}_{\mathrm{k}}=$ cathode bias resistance, in ohms.
(9) $\mathrm{W}_{\text {tnput }}=1.66 \mathrm{~W}_{\text {plate loss }}$
(10) $\mathrm{W}_{\text {output }}=.66 \mathrm{~W}_{\text {plate }}$ joss
(11) $I_{p}=$

$$
1.66 \mathrm{~W}_{\text {plate } 1 \text { оч4 }}(1+\mu)
$$

(1:)
(13)

$$
\begin{aligned}
& \text { 11) } \mathrm{I}_{\mathrm{p}}=\frac{\mu \mathrm{E}_{11}}{1 \text { 1: } \mathrm{E}_{\mathrm{ren} \mathrm{n}}}=\frac{\mathrm{E}_{1}}{1+\mu} \\
& \text { 13) } \mathrm{R}_{\mathrm{k}}=\frac{\mathrm{E}_{11}^{3} \mu}{1.66 \mathrm{~W}_{\text {plate } \operatorname{los} \mu}(1+\mu)^{2}}
\end{aligned}
$$

The class-BC amplifier shown for grid modulation can be operated as a linear r.f. amplifier at 40 per cent plate efficiency, which is somewhat better than the efficiency obtainable from a conventional linear amplifier (30 to 33 per cent).

Dr. F. E. Termum and F. A. Eicrest have eleveloped a dynamic shift grid-bias morlulation system which operates on the same principle as the Haivkins dynamic shift expanding linear amplifier. Expansion of plate and gricl-bias voltages during modulation is accomplished by using saturable control reactors or grid controlled rectifiers. The maximum peak efficiency is approximately 66 per cent in practice, and the resting plate efficiency can be acljusted to some point between 40 per cent and 66 per cent, which results in less plate loss in the r.f. amplifier.

Oleson, also of Stanford Unizersity, has found that a grid modulated amplifier can be operated at relatively high efficiencies (50 per cent to 60 per cent) when not modulated with the d.c. grid bias at 3 times cut-off. Rather high r.f. and audio excitation are required. The antenna loading is similar to that of other grid modulation systems. Linear modulation up to values of 90 per cent are obtained, and the system apparently works on the principle of efficiency modulation plus some release of additional plate power from the power supply. The circuit, except for the value of grid bias, is exactly similar to the one shown for ordinary grid modulation.

- Ordinary Grid Modulation

Probably the most popular form of grid morlulation is shown in figure 22.

The grid bias is adjusted to $11 / 2$ times cut-off, and the r.f. excitation is set to a value which will cause approximately one milliampere of rectified grid current to flow, as indicated by a d.c. milliammeter. The antenna load is made greater than that required for maximum r.f. antema current; or increased until linear modulation is obtained, as shown on an oscilloscope or by a phone monitor.

The plate current may increase as much as 10 per cent during peaks of modulation without objectionable distortion, and this
increase of power input to the modulated r.i. amplifier will allow good quality modulation up to 90 per cent.

- Modulators for Grid Modulation

The modulator tube for a grid-modulated phone transmitter is relatively small in comparison to the tube required for plate modulation. Grid-modulated phones with 200 to 400 watts output require an audio power of less than 15 atatts. This is because modulation takes place in the grid circuit, in which the r.f. power is only a few per cent of that in the plate circuit of the modulated tube.

A small modulator, capable of delivering 2 to 3 watts of audio power, will modulate an r.f. stage which supplies 50 to 100 watts to the antema circuit. A typical example is shown in one of the transmitters described in the constructional clapters of this book. The peak audio voltage of 120 volts completely morlulates an r.f. tube which nerates from a 1500 -volt plate supply, and the carrier output exceeds 60 watts. The modulator is a type 42 or $\mathrm{ol}^{6} 6$ pentode amplifier, operating well below its normal output and having a good portion of its output dissipated in a resistor R_{3}. which is connected across the modulation transformer. This resistor is across the output of the modulator for the purpose of providing a more constant load impedance than that reflected by the grid circuit of the morlulated r.f. tube.

The modulator should preferably have a low plate impedance, unless a step-down ratio modulation transformer is available. The resistor R_{3} could be eliminated in the case of a type :A3 tube working into a transformer having a step-down ratio of 11/2-to-1. or 2-to-1. The resistor R_{3} should be connected across a 1-to-1 transformer when either triode or pentode atudio amplifiers are used as modulators. The modulation transformer is suitable for working out of a 2.43 triode or 42 pentode into any grid modulated r.f. stage in which 50 or 100 watt tubes are used. The resistor R_{3} is usually a 10.000 -ohm, 2-watt type.

Small. class-AP output transformers designed for operation from 2A.3's or 42 triodes into a 5,000 -olm load are suitable for push-pull modulators. The resistance R_{3}, in such cases, should be of some value between 7,500 and 10,000 ohms, rated at 10 watts. This push-pull modulator will drive higher power grid-modulated stages. such as a
pair of HK-354's, RCA-806's, Eimac 2.0TL's, Taylor 814 's, H1'-200's or RK-36's.

A phone monitor should always be available for adjusting the r.f. grid excitation to the proper value which produces good voice quality. An overmodulation indicator is also essential for determining the amount of speech amplifier output and gain. The plate circuit of the nodulated r.f. tube should have a low impedance to voice frequencies: a 2 to $4 \mu \mathrm{fd}$. filter condenser across the output of the power supply filter will usually suffice.

Modern grid modulation circuits are capable of supplying 500 to 600 watts of carrier output from an input of 1 kw . For this higher efficiency, more r.f. drive, more bias, and a 3 s-watt low impedance audio stage (push-pull-parallel $\because . A 3$) are required.

- Tubes for Grid Modulated Phones

Low or medium μ triodes are more satisfactory than high μ tubes for grid modulated r.f. circuits. The high μ tubes have a high plate impedance, which makes it difficult to secure a linear dynamic characteristic: this high plate impedance limits the amount of undistorted power output. Low μ tubes have the most linear characteristics for this purpose, but the required values of bias voltage are so ligh that this advantage may be offset by the requirements of higher grid drive. Any screen-grid tube, tetrode or pentode, can be effectively control-grid modulated. The most satisfactory triode tubes for grid modulation are the $2 \mathrm{~A} 3,10,801$, RK-35, 82.5, $930, \mathrm{HK}-154,50 \mathrm{~T}, 100 \mathrm{TI}$, WE-242A. RK-36, 211, T200, HF200, HK$354,1.50 \mathrm{~T}, 250 \mathrm{TL}, 814, \mathrm{WE}-212-\mathrm{E}, 300 \mathrm{~T}$, 84!, and 500 T .

- Screen-Grid Modulation

Modulation can be accomplished by varying the screen-grid roltage at an audio-frequency rate in an r.f. screen-grid tube. The screen-grid voltage must be reduced to approximately one-fourth the value of that used for c.w. operation. The r.f. output is correspondingly reduced and the tube then operates as ant efficiency-modulated device, somewhat similar to ordinary grid modulation.

The degree of modulation is limited to approximately 60 per cent when the screengrid of a single stage is modulated. When two cascade stages are modulated, a level of

Figure 23

100 per cent can be reached, with goucl quality. The r.f. excitation and screen-grid voltages must be carefully adjusted in order to secure satisfactory results. The r.f. excitation to the grid of the final amplifier must be so low that this tube will act somewhat like a class-B linear stage. It is possible to use dissimilar tubes in the cascademodulated circuit shown in figure 23.

The buffer amplifier can be a type-80a the final amplifier an RK-47 ; or a single 860 can drive an 860 push-pull final amplifier. In any event. both stages should have the audio modulation voltage applied to the screens. This system of modulation is seldon used because of its complications, and because only a few types of tubes are suitable for this application.

- Plate and Screen Modulation

When omly the plate of a screen-grid tube is molulated, it is impossible to obtain high percentage linear modulation, except in the case of certain "heam" tubes. A dynatromic action usually takes place when the instantaneous plate voltage falls below the d.c. screen voltage, and this prevents linear modulation. However, if the screen is modulated simultaneously with the plate. the instantaneous screen voltage drops in proportion to the drop in plate voltage, and linear modulation can then be obtained.
A circuit for such a system is shown in figure 24.
The screen r.f. bypass condenser, $C=$, should not have a value greater than .01
$\mu \mathrm{d} . \mathrm{l}$, preferably not larger than $.005 \mu \mathrm{fd}$. It should be large enougl to bypass effectively all r.i. voltage without short-circuiting ligh frequency audio voltages. The plate bypass condenser can be of any value from $.002 \mu \mathrm{id}$. to 003 fid . The screen-dropping resistor, R=, should reduce the applied high voltage to the value srocified for operating the particular tube in the circuit. Condenser C_{1} is seldom required, yet some tubes may require this condenser in order to keep Ca from attenuating the high audio frequencies. Different values between .01 and $0.1 \mu \mathrm{fd}$. should be tried for best results.
Another method is to have a third winding on the modulation transformer, through which the screen-grid is comnected to a low-voltage prower supply. The ratio of turns between the two output windings depends upon the type of screen-grid tube which is being modulated. The latter arrangement is more economical insofar as modulator power is concerned, because there is no waste of audio power across a screen-gricl voltage-dropping resistor, but this loss is relatively small anyway with most tubes. The special transformer is not justified except perlaps for high power.
The modulation transformer for plate-

Figure 24
and-screen-modulation, when utilizing a dropping resistor, is similar to the type of transformer used for any plate-modulated phone. In figure 24, the combined screen and plate current is divided into the plate voltage in order to obtain the class-C amplifier load impedance. The audio power required to obtain 100 per cent modulation is one-half the d.c. power input to the screen, screen resistor, and plate of the modulated r.f. stage.

Quite good linearity at high percentage modulation can be obtained with some of the larger bcam-type transmitting tetrodes by modulating the plate voltage alone.

- Suppressor Modulation

Still another form of efficiency modulation can be obtained by applying audio voltage to the suppressor-grid of a pentode tube which is operated class-C. A change in bias voltage on the suppressor-grid will change the r.f. output of a pentode tube, and the application of audio voltage then provides a very simple method of obtaining modulation.
The suppressor-grid is biased negatively to a point which reduces the plate efficiency to somewhat less than 40 per cent. The peak efficiency at the time of complete modulation must reach twice this value. It is difficult to obtain 100 per cent modulation, though 90 per cent to 95 per cent can easily be obtained and with good linearity. Adjustments are more easily made than with control-grid modulation, and the type of audio modulator and the values of audio voltage are approximately the same as for ordinary grid modulation. The same modulator design problems apply to suppressormodulated phones. The control grid in the suppressor-modulated stage is driven to about the same degree as for c.w. or plate modulation. The r.f. excitation adjustment is not critical, but the excitation should be ample to allow distortionless modulation in this stage.

The quartz crystal should not be placed directly in the grid circuit of any supprcs-sor-modulated stage because of a tendency for frequency modulation and poor quality due to insufficient r.f. grid cxcitation. A simple test zeith an oscilloscope zeill prove the fallacy of using a suppressor-grid modulated pentode as a crystal oscillator in or-

Figure 25
der to minimize the number of stages in the transmitter.

One of the smallest and most simple sup-pressor-modulated phone transmitter circuits is shown in figure 25.

The output of this transmitter is very low; it is satisfactory for local communication only, especially in the 160 -meter band.

A separate crystal oscillator is incorporated in order to secure better quality of modulation. A 250,000 -ohm gain control may be required in the pentode modulator circuit if a sensitive single-button carbon microphone is used. The modulation transformer should be of the type designed for class-B input service, 1-to-1, or 2 -to- 1 stepdown ratio. When a 2 -to- 1 ratio transformer is used, the $10,000-\mathrm{ohm}$ loading resistor across the secondary should be reduced to about 5,000 ohms. The suppressorgrid should be bypassed with a condenser not larger in value than $.001 \mu \mathrm{fd}$. in order to prevent loss of high audio frequencies. The screen-grid resistor of the modulated tube should be adjusted to a value which will give 200 volts between screen and cathode, during normal operation.

The output can be doubled by merely putting another tube in parallel with the 802 or RK-25 and using a 5000 -ohm grid leak instead of the $10,000-\mathrm{ohm}$ one shown. No other changes are necessary. All pentode r.f. tubes can be easily over-excited, resulting in decreased output. The amount of excitation, while not critical, should be checked with a d.c. milliammeter in the grid-leak circuit of the modulated stage. The grid current should run between 4 and 6
milliamperes for the $\mathrm{KCA}-82$ or Raytheon RK-25 tubes. The antenna loading should be adjusted so that the plate current is between 20 and 30 milliamperes at resonance. Overmodulation, due to excessive audio input, can be checked with an overmodulation indicator. The peak audio voltage need not be more than 65 or 75 volts for an RK-25 or 802. This is the peak voltage which is measured across the secondary of the modulation transformer. An ordinary rectifier-type a.c. voltmeter will give an indication of approximately 50 volts of audio at this point.

Suppressor-modulated phone transmitters should not be too-heavily loaded by the antenna if linear modulation is desired. The degree of loading is comparable to that for a class-C plate-mochulated stage. Typical oscilloscope trapezoidal patterns of suppressor modulated phones are shown in the Chapter on Test Instruments.

It is desirable to place a metal shield around the screen-grid tuhe; this shield should extend from the base to about halfway up the glass envelope. Plate and grid circuits should be well-shielded.

A higher power suppressor modulated phone circuit is shown in figure 26.

This transmitter uses an RCA-804 or Raytheon RK-20 pentode tube. The modulator is quite similar to the one shown in the preceding transmitter circuit. The peak audio voltage for complete modulation is

20 WATT SUPPRESSOR MODULATED PHONE
Figure 26
the same as for the smaller tubes. Slightly more grid drive is required from the crystal oscillator or exciter which may be either link or capacitively coupled to the modulated stage. The same exciter as shown for the 802-RK-25 transmitter, but with from 300 to 350 volts on the plate of the oscillator tube, will give ample excitation to drive the RK-20 or 804 . The oscillator screen resistor should be increased to 30,000 or 40,000 ohms in order to kecp the screen voltage of the crystal oscillator below 125 volts.

RK-28 or RCA-803 pentodes may be sup-pressor-modulated for carrier outputs of from 50 to 60 watts. The r.f. excitation depends upon the frequency of operation, but can be supplied by a 6L6 crystal oscillator or doubler. A type 45 or 42 pentode will serve as a modulator for either tube.

It is possible to operate a suppressormodulated stage as a doubler. The efficiency suffers somewhat, but the quality is about as good as when working on the fundamental.

- Controlled Carrier Radiotelephony

One way in which the operating efficiency of a class-B r.f. linear amplifier can be improved is by the use of carricr control, in which the amplitude of the carrier wave is proportional to the voice frequency envelope. Two or three times as much peak power can be obtained from a linear amplifier with carrier control than when constant carrier is applied to the linear amplifier.

The principle of the system is the use of only enough carrier power to accommodate the actual sideband power that is being transmitted at the moment. This variation in carrier amplitude can be accomplished by a number of different methods. One is to use a saturable reactor in series with the modulated stage, another is to vary the average suppressor voltage on a s'ppressormodulated stage, and another is to vary the control bias on a control-grid modulated stage. In all these cases, the control voltage is taken from a rectifier and amplifier system that is connected to the speech circuit of the transmitter.

The system has some advantages, but for amateur work the advantages are largely outweighed by the disadvantages. In the first place, it is difficelt to eliminate the time lag that is introduced by the control system. The existence of this lag has a tendency to allow the first syllable of each wave train to overmordulate the transmitter. Another disadvantage of the system is that

Figure 27
the variations in line drain are yuite large: unusually good line regulation is necessary to eliminate the reaction between the final plate current variations and the lower powered stages. Also, the varying carrier affects the a.s.c. circuit of a receiver tuned to it.

- Suppressor-Modulated Controlled Carrier System

Figure is shows a transmitter circuit which has an output of approximately 40 watts. The circuit is not anlike a conventional suppressor-modulated phone transmitter, except for the addition of a type- 1 s . diode rectifier and minor components, such as resistors and condensors. The bias on the suppressor-grid is from no per cent to 100 per cent greater than normal in order to reduce the carrier output during the periods of no speech input.

The diode rectifier circuit decreases this hias tol normal values during modulation. The audio-frequency components are fil-tered-out of the variable bias circuit and only the envelope of the voice frequency affects the bias. The suppressor-grid is
modulated by means of the audio frequencies, the same as in any standard circuit. The output can be coupled directly to an antenna or to a high power linear amplifier. A single RK-20 tube will furnish sufficient nutput for driving an HK-3̄̄4 pusli-pull linear amplifier.

- Controlled Carrier Grid Modulation

The circuit in figure 28 operates on the principle of varying the grid-bias of the buffer or doubler stage by means of a type fij high μ tuhe which acts as a variable cathode bias resistor. The grid circuit of the 46 tube is driven from a portion of the grid modulator tube. Because of its high amplification constant, the tube rectifies the audio frequency, and the plate current varies in accordance with the envelope of voice frequencies. The andio frequencies are prerented from modulating the buffer stage by means of a low-pass filter which is in series with the filament center-tap.

The slow change of current which follows the pattern of the voice envelope passes through the filter and causes a change in

bias in the buffer r.f. tube. This clange of bias varies the r.f. excitation to the gridmodulated r.f. amplifier. The latter operates in a manner similar to that of any other grid-modulated stage, except that the carrier output varies in accurdance with the amplitude of the speech input.

- Inverse Feedback

Inverse feedback or degeneration allows improved operation of audio amplifiers or radio transmitters. It has been found that the proper application of degeneration in an amplifier can be made to reduce greatly the harmonic distortiun and otherwise improve the fidelity. Inverse feedback causes a reduction in amplifier gain, which can be offset by the addition of a stage of audio amplification in the speech amplificr. This disadvantage is more than offset by the reduction in three kinds of distortion, known as frequency distortion, non-linear distortion, and delay or phase distortion.

The principle involved in inverse feedback systems is to select a portion of the amplifier ontput voltage and feed it back into one of the previous circuits, exactly out of phase with the input woltage. In figure 29 , a simple method of applying inverse feedback to an audio amplifier is shown, With the values of resistance as indicated, the reverse feedback is approximately 10 per cent. This reduces the gain of the audio amplifier: however, it still las approsimately iwice
the sensitivity of a triode amplifier with similar plate circuit characteristics. The plate circuit impedance of the 6 L 6 is greatly reduced, an advantage when working into a loudspeaker (because a loudspeaker is not a constant impedance device).

Figure 29

Figure 30

DEGENERATIVE FEEDBACK AMPLIFIER
Figure 31

Inverse feedback can be applied in a sonewhat different manner, as shown in figure 30 , for a two-stage amplifier. This nethod is particularly desirable, in that feedback produces better results when the feedback circuit is connected from the output back to the grid of one of the preceding amplifier stages.

The polarity of the secontary winding of the output transformer, in all cases where the feedback connection is made to the secondary, should be that which will produce degeneration and reduction in amplifier gain, rather than regeneration and howl or increase of gain.

The circuits in figures 31 and 32 indicate methods for applying inverse feedback to three stages of amplification. These two systems are suitable for operation as speech amplifiers and modulators for grid-modulated radiotelephones, or low-power plate
modulated transmitters. The 100 -ohm cathode resistor should be located as near as nossible to the 6 C 5 tube cathode terminal in order to prevent undesirable pickup and feedback at frequencies other than those desired.

- R. F. Inverse Feedback

Modulation distortion, noises, and hum level which are present on the carrier of a radiotelephone station can be reduced by inverse feedback applied as follows: This system is used in some broadcast transmitters and can be noodified for amateur applications. The method consists of rectifying a small amount of the carrier signal and feeding-back the audio component in reverse phase into some part of the speech amplifier. This arrangement will reduce the hum level and improve the voice quality of

Figure 32
most amateur radiotelephone transmitters.
The amount of inverse feedback that can be applied in this mamer will depend upon the available amount of excess speech anıplification and the degree to which it can be carried without oscillation at some undesired r.f. or audio frequency. The process of inverse feedback is to utilize voltages 180° out-of-phase over the band of frequencies of operation. Sometimes the feedback voltage may be in-phase, or considerably less than 180° out-of-phase for frequencies outside of the voice range, and the amount of feedback which can be applied is limited by this effect.
Two inverse feedback rectifier circuits are shown in figures 33 and 34.
Figure 33 is a simple diode rectifier which incorporates a phase-reversing switch which must be thrown to that position which will cause a slight recluction in speech amplificr gain. The actual gain of the speech amplifier can be increased by means of the manual gain control. The undesired noise or hum which is audible in the phone monitor will generally be reduced with the correct adjustment of the r.f. pickup coil and phasereversing switch. Once adjusted, no additional changes are necessary unless the transmitter power output or frequency is varied.
In figure 34, a type-84 rectifier tube is connected so that one side serves as an inverse feedback rectifier, and the other side is a standard overmodulation indicator and phone monitor.
The circuits in figures 35 and 36 show methods of connection from the feedlack rectifier into the speech amplifier.
The feerthack rectifier diode rectifies the carrier, and any hum or noise modulation on the carrier appears as an audio voltage across the 100,000 -ohm feedhack contrn! to the grid of the speech amplifier. A portion of this voltage is fed back into the speech amplifier so as to be out-of-phase, and thus

Figure 33
buck out the hum or noise in the output of the radio transmitter. This may actually introduce distortion in a portion of the specch amplifier in which there is otherwise none present, but the final result is that the distortion or hum is cancelled out in the carrier signal of the radiotelephone transmitter. This system may be applied to transmitters which use plate. suppressor or control grid modulation.

Figure 34

Figure 35

Figure 36

- Audio A. V. C. System

Automatic volume control can be applied to audiofrequency, as well as radiofrequency, amplifiers. The power output level can be limited to any desired value so that overmodulation of an amateur radiophone transmitter can be practically eliminated. Another application is for public-address amplifiers in which an automatic gain control is desirable for maintaining a fairly constant output level as the speaker turns his head

Figure 37-The gain of this amplifier varies inversely with the input signal.
or moves slightly away from the microphone.

The Eldred system of audio automatic volume control, shown in figure 3 r, consists of a three-stage push-pull audio amplifier with variable- μ tubes in the first stage. The grid bias in the first amplifier stage is varied in accordance with the average voice level by means of a type-76 antomatic volume control tube.

The aniplifier operates in a normal manner, and the input voltage to the grids of the final stage, at any desired level, will drive the grid circuit of the type 76 a.v.c. tube to the point at which plate current will flow in this tube. This plate current furnishes additional bias to the first audio amplifier stage and automatically reduces the gain of this stage. The action is cumulative and the total gain of the amplifier is automatically reduced for high audio input. The output power level can be maintained practically constant at any desired value by arljnsting the negative bias in the
grid of the type 76 a.v.c. tube. The individual voice peaks are filtered out in the plate circuit of the a.v.c. tube in order to prevent voice frequency feedback into the grid circuit of the first amplifier. The time constant in the a.v.c. system can be adjusted to a value which will follow the average voice level, rather than the individual syllables.
Other forms of audio a.v.c. make use of a diode and a.v.c. amplifier which supplies a bias voltage change to the injection-grid of a $6 \mathrm{~L} \%$ andio amplifier tube.

The same general idea is applied to program amplifiers used by broadcast stations to give an effective increase in power. The system is similar, but it is designed with a "delayed"-action that is triggered off only above a certain level, which usually corresponds to approximately so per cent modulation of the carrier. Above this point, compression takes place, several db. increase in input being necessary to cause one db. increase in the nutput of the amplifier when

100 per cent modulation is approached. This allows the operator to turn up the gain control without danger of occasional loud peaks overmodulating the carrier.

Fither variable- μ tubes or nen-linear conper oxide rectifiers may be used in conjunction with a triggering circuit similar to that used in the Dickert noise silencer described in the receiver chapter.

Trouble Shooting

- Feedback, Hum, and Distortion in Speech Amplifiers

Great care is necessary in the design of speech anıplifiers in order to prevent hum, ristortion, and feedback at radio- or audiofrequencies. Certain precautions can be taken in building the speech amplifier, as related here: (1) Shield all low-level grid and plate leads. (2) Avoid overheating the shielded wires (rubber insulation) when soldering ground connections to the shield. (3) Shield all input and microphone connections. (4) Wire the filaments with twisted conductors. (5) Mount resistors and condensers as near as possible to socket terminals. (6) Orient the input and lowlevel audio transformers in a position of minimum hum when a.c. power is applied to the primaries of the power supply transformers. (r) Shield the input and lowlevel stage tubes. (8) Use a good ground connection to the metal chassis (water-pipe or ground rod connection). (9) Ground all transformer and choke coil cores. (10) Use nietal cabinets and classis, rather than breadloard construction, (11) Pybass lowlevel audio stage cathode resistors with a $.002 \mu \mathrm{fd}$. mica condenser for the purpose of breventing rectification of stray r.f. energy which will sonetimes produce hum.
The power supply for a speech anplifier should be exceptionally well filtered. This mave require three sections of filter. consisting of three high-capacity condensers and two or threc filter chokes. When space permits, the power supply should be placed several feet from the speech amplifier.
The speech amplifier and microphone leads sho: Id be completely shielded for the elimination of r.f. feedback. A balaned two-wire r.f. transmission line to a remotely located antenna is the most effective method of preventing r.f. feellback into the microphome or speech amplifier circuits in the range uif from i to : ? m meterṣ.

Figure 38
The impedance of ground leads at such short wavelengths makes it impossible completely to eliminate stray r.f. currents. Endfed antemlas and single-wire fed systems are particularly troublesonie with respect to r.f. feedback.

Audio feedback may cause motor-boating, whistling, or howling noises in the audio amplifiers. Insufficient bypass capacity across the plate supply of a multi-stage speech amplifier is one cause of motor-boating. The first stage of a speech amplifier should have a resistance filter in its plate supply lead, which may consist of a $10,000-$ to 80,000 -ohin 1 -watt resistor in series with the positive " 13 " lead, with a $1 / 2-\mu \mathrm{fl}$. condenser connected to ground from the amplifier side of the series resistor. (See figure 38.)

A defective tube will introduce hum or distortion, as well as affect the overall gain or power output of an audin amplifier. Incorrect bias on any amplifier stage will produce harmonic distortion, which changes the quality of speech. This bias voltage should be of the correct value for the actual plate-to-cathode whtage, rather than the plate supply output voltage (these may be widely different in a resistance coupled stage. Excessive audio input to any aniplifier stage will produce amplitude distortion. Incorrect plate coupling impedances, or resistances, will cause distortion. A damaged or inferior microphone is another source of disturtion. Cathode resistors should be bypassed with ample capacity to provide a low impedance path for the lowest frequencies. Puslo-p: : ll, and especially class B anplifiers. require balanced tubes.

Bibliography, Notes and Formulas

$$
\begin{aligned}
& \left.P_{\text {max }}\right) \frac{h^{2} E_{g^{2}}}{\operatorname{tap}^{2}}
\end{aligned}
$$

Chapter 11

Radiophone Tinansmitterif Constinction

THIS chapter includes detailed information on the design, construction and operation of several molern radiotelephone transmitters of various power outputs, for operation in any of the commonly used amateur frequency bands. All of these transmitters are in actual operation at amateur stations. They include new but proved circuit improvements, and they are presented because they are representative of the type of equipment most universally chosen by the typical radio amateur.
The principal considerations in the design of an economical radiophone transmitter are the choice of the correct combinations of tubes and circuits so that the desired amount of power output and good voice quality can be secured with a minimum of components.
The components in the audio channel must be so chosen and arranged as to reduce the hum level to a minimum ; the r.f. circuits, must be free from parasitics; the L-C tuning ratios must be correct ; and there must be a total absence of frequency modulation, instability, carrier shift, over- or under-modulation. All of these considerations were carefully considered in the design of the transmitters shown in this chapter.

:3(1) Wiatt Grid-Modulated Transmitter

A very inexpensive method of modulating a small phone transmitter is by means of grid modulation, as shown in the circuit diagram of figure 1. Figures 2 and 3 show front and rear views of the complete transmitter.

Low cost tubes are used, and the driver stage for the final r.f. amplifier is designed only for sufficient drive for grid modulation in the amateur bands, from 75 to 10 meters. The type-53 or 6 A 6 buffer tube can be replaced with a 6L.6. f if the transmitter is to
be used for c.w. transmission. The 6A6 shown in figure 1 gives sufficient drive on 80 meters for c.w. operation, but not enough to secure maximum obtainable efficiency on the higher frequency amateur bands.

- Circuit Considerations

The r.f. portion begins with a 2 A 5 or 42 harmonic type crystal oscillator which operates from a 350 volt plate supply. This crystal oscillator has an r.f. choke in the cathode circuit, and a small semi-variable condenser connected from cathode to plate of the oscillator tube so that the degree of regeneration can be made variable, when the oscillator has its plate circuit tuned to the second harmonic of the quartz crystal. The plate circuit can be tuned to either the fundamental or second harmonic of the crystal by merely changing the plate coil. Complete adjustments for this oscillator are found in the chapter on Transmitter Frequency Control.

The crystal oscillator is capacitively coupled to a type 53 or 6 A 6 in the doubler stage; the two grids and two plates of the tube are connected together, as shown in the circuit diagram. This method of connection provides ample output for driving the final amplifier. The doubler tube has a high amplification constant and derives its grid bias from a combination of grid-leak and cathodebias resistors. The final amplifier has fixed bias, necessary for grid modulation as used in this transmitter.
The final amplifier is link-coupled to the doubler stage by means of a one-turn lonp around each coil. The location of the coupling loop on the coil is adusted so as to drive approximately one milliampere of grid current into the final amplifier under normal operating conditions. The final amplifier utilizes two type- 10 tubes in push-pull, operating from a 750 -volt plate supply.
The plate tuning condenser in the final amplifier is "double spaced" (2000 volt spacing). Fixed bias for the final amplifier is obtained from the low voltage power supply by connecting the negative high voltage lead

Figure 1
Low Power Grid Modulated Radiophone Transmitter

30 Watts

10-75 Meters

and the 7.5 -volt filament center-tap lead to the proper point on the blecele resistor of the 350 -volt power supply. This positive 120 -volt bias is obtained under normal load conditions by adjustment of the slider on the bleeder resistor. This pusitive bias on the filaments uf the type-10 tubes provirles a urgatiare bias of 120 volts to the gitils uf the 10° s. The bias is approximately $1 / 2$ times cutoff.

- The Speech Channel

The complete modulator system consists of two small receiver-type tubes, because only about one acatt of aution power is required for modulation levels of over so per cunt. A small ;-inch $J_{\text {cnsen }}$ permanent magnet dy namic loulspeaker serves as a microphone, as described in the phone theory portion of the preceding chapter. The output transformer is used as a microphone-to-grifi transionmer
 speech amplifier.

This pentode amplifier uses an undersized cathode bypass condenser to attenuate the low frequencies, which tend to predominate as a result of the use of the dynamic speaker as a microphone. This audio equalizer provides a tone quality comparable with that of a good two-button carbon microphone or crystal diaphragm type microphone.

The speech amplifier drives a type-wis on 42 movelulator tube, which is comnected to the grid circuit of the final r.f. amplifier through a 1..)-to-1 ratio stepdozen audio transformer. This transformer should be of the small class B input or output type, with relatively low d.c. resistance in both the primary and secontary windings. A 5,000 -ohm resistor is comected across the secondary of this transformer for the purpose of stabilizing the loat impedance across the modulator tube.

- The Power Supply

Two separate transformers are included in the power supply, one for the final amplifier. the other for the remaining components of the transmitter. The low voltage power supply must have a transformer capable of supplying a d.c. load current of 150 ma. A $7.50-$ rolt center-tapped secondary winding will give approximately 350 volts d.c. output under load with condenser input to the first section of the filter circuit. A two-section filter is aniple for the crystal oscillator and audio stages. The high voltage supply must be capable of supplying a d.c. load current of 100 ma. for phone operation (150 ma . for c, w.) at a plate potential of approximately \quad テ50

Figure 2-Front view of the inexpensive gridmodulated radiotelephone transmitter. It uses wall type on-off switches to control the power supplies. The Masonite panels are mounted on a wood rack. The two end pieces are ripped from one board by means of a single diagonal cut. Crackle paint gives both rack and panels the appearance of metal.
volts. A 1 too-volt center-tapped power transformer can be used with two type-80 rectifier tubes and condenser input filter, as shown in figure 1 , in order to obtain the 750 -volt output.

High voltage secondary windings are usually rated for d.c. load current with choke input to the filter circuit. In this circuit, condenser input is used; so therefore the current rating on the transformer should be at least ? 00 ma. if 150 ma . is to be drawn from the condenser input filter. Unless these considerations are observed, the result may be a burntout high voltage transformer after a few hours of operation.

- Construction

The complete transmiter is built into three separate relay rack panels of Masonite, black crackled, each $83 / 4 \mathrm{in}$. x 19 in . x $3 / 16$ in. The power supply is built directly on the wooden base which forms a support for the rack proper. The remaining two clecks are of Masonite.

The entire audio amplifier is housed in a metal can in order to isolate it completely from the r.f. fields. The gain control in the speech amplifier is brought through the front
panel to a control dial in order to give a symmetrical front panel layout.
The final amplifier is constructed in such a manner that the plate and grid and nentralizing condensers are mounted under the shelf. The two neutralizing condensers are mounted directly to the Masonite chassis; close to the plate tuning condenser are the two tube sockets. Neutralizing adjustments are made with the aid of an insulated-handle screwdriver, the shaits of the neutralizing condensers being slotted with a hacksaw so that screwdriver adjustments can be made. The bakelite bases of the type 10 tubes should be cross-slotted with a hacksaw cut, if the transmitter is to be operated on 10 and 20 meters.

- Coll Data

The oscillator plate, doubler plate and final grid coils are wound on standard $11 / 2 \mathrm{in}$. forms. The oscillator and cloubler coils are made interchangeable, since one operates on twice the frequency of the other. The final plate coil is wire wound and air supported on strips of celluloid. to which the turns are cemented.

- Operation

When the crystal oscillator functions on its second harmonic, the plate circuit is tuned for maximum dip in plate current and the small $3-30 \mu \mu \mathrm{fd}$. regeneration condenser is increased in capacity until the dip in plate current is quite pronounced at resonance. Too much capacity in the regeneration control conclenser will result in self-excited oscillation, which can be detected by a lack in dip of plate current when tuning the plate tank of the uscillator to resonance.

Second harmonic operation is used when the transmitter is operated on 10 meters irom a 40 meter crystal, or in the 20 meter band with an 80 meter crystal. Operation on 75 meters (or 20 meters with a 40 meter crystal) is accomplished by tuning the crystal oscillator plate circuit to the fundamental frequency of the crystal oscillator, and by roubling in the 6A6 stage. A small neon bulb, or a flashlight globe with a turn of wire, can be used to thme the oscillator and doubler circuits for maximum output.

The doubler plate circuit is tuned for greatest dip in plate current; at no time should the plate current in the 53 or 6.46 exceed 75 ma. Ample output to drive the final amplifier stage is generally secured with 50 ma , of plate current in the 6A6 tube and approximately the same value of current for the crystal os-
cillator. The final amplifier is neutralized in the conventional manner. The antema must be coupled very closely to the final plate tank circuit by tight link coupling to a tuned antenna circuit.

A carrier output of 35 watts can be obtained from this transmitter by increasing the antenna loading until approximately 100 ma . of plate current flows in the modulated amplifier stage when the d.c. grid current is 1-ma., as measured in the grid circuit jack. The plate dissipation at this power output will be approximately 20 watts per tube, with the result that the plates will show some color.

The molulated stage is operated with an idling efficiency of nearly 50 per cent in this circuit. The output can be modulated 90 per cent without appreciable distortion, and the quality compares with that of any good plate modulated phone. A slight variation in plate current of 10 or 15 ma . in the final amplifier is permissible during modulation, since one ionm of distortion apparently cancels that of another when the grid modulated amplifier is uperated in this manner.

Even thongh the carrier power is relatively low, this transmitter will cause interference when overmodulated, the same as a higher powered transmitter. An overmodulation indicator is essential.

Figure 3-The continued popularity of the type 10 ube prompted the design of this grid-modulated transmitter. It will deliver a 30-35 watt carrier on phone, more on c.w. on the lower frequency bands.

160 Meter Transmitter

Grid Modulated Low Power Phone Transmitter			
$\begin{aligned} & \text { Band } \\ & \text { In Meters } \end{aligned}$	Oscillator or Doubler Coil	Final Grid Coil	Final Plate Coil
150	68 turns, No. 24 d.s.c., close-wound.		
75	34 turns, no. 20 d.s.c., 2 in. long.	36 turns, no. 20 d.s.c., 2 in. long, center-tapped.	26 turns, no. 14 Enam., $2 \frac{5}{8}$ in. dia., 8 turns per inch, center-tapped.
40	18 turns, no 20 d.s.c., 2 in. long.	-1............
20	$\begin{aligned} & 8 \text { turns, no. } 20 \\ & \text { d.s.c., } 11 / 2 \mathrm{in} . ~ l o n g . ~ \end{aligned}$	10 turns, no. 20 d.s.c., $13 / 4$ in. long, center-tapped.	8 turns, no. 12 Enam., 21/2 in. dia., 4 in . long, center-tapped.
10	$31 / 2$ turns, no. 20 d.s.c., 1 in . long.	4 turns, no. 20 d.s.c., $11 / 2$ in. long, center-tapped.	6 turns, no. 12 Enam., 13/4 in. dia., 4 in. long, center-tapped.

160 Meter Transmitter

For those who desire to operate only in the 160 meter phone band with an inexpensively constructed transmitter, the arrangement shown here is ideal. This transmitter will deliver up to 50 watts maximum carrier output.

- Technical Features

The crystal oscillator consists of a 6L6G tetrode in a circuit using a cathode bias resistor. An 8 mh . r.f. choke is connected across the crystal and bias is obtained by means of the 400 ohm resistor in series with the cathode, rather than with the usual gridleak methorl. This bias arrangement results in protection to the quartz crystal because the r.f. crystal current is much lower than in a gricl-leak oscillator. A type 42 pentode can be used in place of the 6L6G, if desired, but with a slight loss in output.
A type 10 buffer-amplifier is capacitively coupled from the crystal oscillator through a $.00005 \mu \mathrm{fd}$. ($50 \mu \mu \mathrm{fd}$) mica condenser. This buffer stage isolates the plate modulated amplifier from the crystal oscillator and insures sufficient grid excitation for proper operation of the class- C final amplifier. This buffer
stage is neutralized and operated from the same plate supply as that which supplies the final amplifier.
A variable condenser couples the final amplifier to the buffer stage in order to prevent overload of the buffer. This capacity can be varied until normal grid current flows in the final amplifier when the buffer tank circuit is tuned to resonance.

Two type-10 tubes are connected in parallel in the final amplifier; these tubes are plate neutralized. A large tank tuning condenser is required (because of the low frequency) in order to insure proper "fly-wheel" effect.

The antenna circuit should be tuned to resonance by means of an external loading coil and variable condenser. Either a ground or counterpoise can be used with a single-wire antenna 100 to 150 feet long. A suitable counterpoise can be made by means of several wires, each 60 to 100 feet long, suspended high enough above the ground to clear all low objects. The antema circuit can be coupled to the final tank coil by wrapping a few turns of rubber-covered wire around the center of coil L_{3}. The exact number of turns in the coupling coil Ls must be varied for the particular antenna system employed. Adequate coupling turns are needed so that the final amplifier will draw approximately 140 ma . of plate current when the plate tank condenser is tuned

Figure 4 -Radio Frequency Portion and Modulator of the 160-Meter Phone Transmitter.
for minimum plate current and the antenna tuned for maximum r.f. current, as indicated by a small flashlight bulb or r.f. meter in the antenna circuit. A combination field strength and overmodulation meter, such as the one described in the chapter on test sets is a necessary accessory to this or any other phone transmitter.

Plate modulation is obtained by a push-pull ${ }_{6 L 6 G}$ modulator which is capable of supplying an output of 35 watts of audio power. This is ample power to modulate fully a d.c. power input of 70 watts. The final amplifier is operated from a 500 -volt plate supply. The plate current should be 140 ma . for a normal input of 70 watts.

The push-pull 6L.6G stage is driven by a type- 66 triode which, in turn, is driven by a

6C6 pentode audio anplifier. The latter can be driven by a double-button carbon microphone, as shown in the circuit diagram, figure 4.

A small permanent magnet dynamic speaker and transformer can be used in place of the double-button carbon microphone and input transformer without change in the amplifier except for a reduction of the capacity of the cathode bypass condenser in the 6C6 stage; the latter should then be $0.1 \mu \mathrm{fd}$. instead of $+\mu \mathrm{fd}$.

- Construction

The r.f. and power supply components are mounted on breadboards; the speech amplifier and modulator should be mounted on metal chassis, preferably housed it a metal cabinet

Figure 5-Two Power Supplies Provide All Necessary Power for the Transmitter.

Oscillator Coil	Buffer Coil	Final Plate Coil
45 turns, no. 18 d.c.c., spaced to cover a wind- ing length of 3 inches.	45 turns, no. 18 d.c.c., spaced to cover a wind- ing length of 3 inches.	36 turns, no. 14 Enamel, spaced to cover a wind- ing length of 3 inches, and center-tapped.

Figure 6 -Coil Table.

in order to prevent r.f. feedback into the audio circuits. The r.f. portion of the transmitter can be built on a hardwood baseboard, 11 in. $\times 24$ in. $\times 3 / 4$ inn, with cleats at either end to raise the board above the operating table. Snall resistors, filament bypass condensers, jacks and subbase wiring can be placed under the board for neat appearance. Two aluminum shields are mounted between stages, as the picture shows; these shields are connected to the common ground lead. Each stage must be isolated from the others because all are operated on the same frequency and coupling would cause feedback. The tuming condensers can be mounted on small insulators or angle brackets.

All bypass condensers are of the 600 -volt paper tubular type; mica condensers (small size) are used for all values of $.002 \mu \mathrm{fd}$. or less.

The output transformer in the $6 \mathrm{~L} g \mathrm{G}$ morklator stage should be capable of handling 35 watts of audio power, and the secondary winding should be so tapped that it will mateh mroperly the modulator plate impedance of 6. 600 ohms plate-to-plate to the class-C load impedance of approximately 3,000 ohms.

The 400 -volt power supply for the modulator must have good voltage regulation and the power transformer should be rated to
supply a luad of 250 ma . in order to supply the crystal oscillator as well as the audio system.

The 61.6 G push-pull modulator stage is operated class-AB. It is not necessary to drive the grid circuit into the positive region in order to obtain an ontput of 30 to 35 watts; for this reason a conventional step-up pushpull interstage transformer can be connected between the 76 and push-pull modulator stages.

- Coil Data

Coils for all stages are wound on standard $21 / 4$ in. diancter coil forms, either mounted horizontally and supported with angle brackets to the wood baschoard or plugged into tube soekets, as shown in figure $\%$.

- Operation

The crystal oscillator is tuned for maximum grid current in the buffer stage. The plate current of the crystal oscillator will read at sone value between 40 and 50 ma. when the grid current to the buffer is from 10 to 1.5 ma. The buffer is neutralized without applied plate voltage. Complete neutralization is obtained when there is no appreciable variation of grid current as the plate tuning condenser is tumed throngh resonance. (The

Figure 7-Ther.f. portion of the transmitter is built "breadboard" fashion. The split-stator tuning condensers seen in the photographs are used with their sections in parallel in order to secure sufficient capacity for 160 meter operation.

Figure 8-Speech channel, power supply and modulator for the 160 meter phone transmitter. It delivers 35 watts of audio power, sufficient to modulate over 70 watts input to the parallel 210 final amplifier.
final amplifier is neutralized in a similar manner.)

Plate voltage is then applied to the buffer stage and the plate tuning condenser adjusted for minimum plate current; the grid coupling condenser is then varied until a grid current value of approximately 30 ma. flows into the final amplifier grid circuit. The two condensers can be adjusted simnltaneously, always making certain that the plate tuning condenser is set for minimum plate current indication. The plate current in the buffer stage will be approximately 50 ma. under normal load. The final amplifier plate current will be between 125 and 145 ma . when the antema circuit is properly adjusted, with the final plate tuning condenser tuned to resonance (plate current dip).

The modulator system can be checked by connecting a 3,000 ohm 50 watt resistor across the output terminals of the modulation transformer in place of the r.f. amplifier. A lourd speaker can be bridged across a small portion of this load resistor and the quality of speech can then be tested. A pair of headphones can be used in place of the loudspeaker, provided that they are connected across less than 100 ohms of the total of 3,000 ohms of the load resistor. Hum level and speech quality can be checked by this method. Hum may be introduced because of lack of shielding in the microphone and grid circuits, or lack of sufficient filter in the plate supply.

After the audin channel has been tested and found satisfactory, it can be connected into the r.f. amplifier. An overmodulation indicator and phone monitor should be used to check for quality of output, and to insure against overmodulation. The plate and grid
current in all the meters shown in the circuit diagram should remain constant during modulation.

10-7.5 M. 400 W. Tramsmitter

A medium power phone transmitter with an input of 400 watts and a carrier output of from 2.50 to 275 watts is shown in the circuit diagrams of figures 9,10 and 11. This transmitter incorporates numerous modern features and includes the latest type tubes. It is of standard relay-rack construction with heary metal chassis.
The final r.f. amplifier, shown in the circuit diagran, figure 9, uses an HK-354C medium μ triode. This tube can be replaced with a pair of paralleled or push-pull HK154 's, 35 T's, T 55 's, HF-100's or RCA 808's without change in power output or modulator requirements. The buffer-doubler stage uses a Taylor T-20 triode, which furnishes just sufficient power to drive the final amplifier for modulated inputs as high as 400 watts except on 10 meters. If 400 watts or more is desired for operation in the 10 meter band, the buffer can be changed to a T-55 or 35 T , operating from the high voltage power supply. The transmitter as shown is capable of operating with an input of approximately 300 watts on 10 meters.
The crystal oscillator can be operated either on its fundamental frequency or on the second harmonic. The T-20 stage functions either as a neutralized buffer or doubler ; power output from this stage as a doubler can be increased for a given amount of plate current by increasing the capacity of the neutralizing condenser in order to secure greater regeneration. The buffer stage is link coupled to the final amplifier with a coupling link consisting of one turn around the center of the buffer plate coil, and two turns around the lower end of the final grid coil. The final r.f. stage is operated as a neutralized class-C amplifier with a grid current of approximately 30 ma . This is sufficient for ontaining bias of somewhat more than twice chitoff across the grid leak specified because relatively low plate voltage is used on this stage. The HK-354C is a medium μ tube with an amplification constant of 14, and it is quite easily driven when operated from a 1500 volt plate supply and relatively low power input.

The modulator must be able to supply 200 watts of audio for 100 per cent modulation. A pair of 3.5T's or T-55's will supply this out-

Figure 9-Schematic diagram of the radio frequency portion of the 400 -watt phone transmitter.

Figure 10 Audio channel and modulator for the HK-354C radiophone transmitter.
put when driven by a 6 F 6 or 42 push-pull driver stage. The driver stage is operated with fixed C-bias, with triode connection of the tubes. This stage, in turn, is driven by a ${ }_{6 \mathrm{~F}} 6$ or 42 , triode connected, which is resistance coupled to the speech amplifier. The speech amplifier proper consists of a 6 F 5 or type 75 in the input stage, and a 6 C .7 or 76 in the second stage. This portion of the audio channel is built into a separate shield can in order to prevent r.f. and hum feedback into the low-level portion of the audio channel. The input is designed for a crystal microphone.

The first driver stage transformer between the single triode and push-pull driver stage should have a primary-to-one-lialf-secondary turns ratio of 1.5-to-1. Any standard make ui driver transformer for working into a class$\therefore B$ push-pull 42 amplifier is sutable for this purpose. The class- B input transiormer should have a turns ratio of total primary to total secondary of 3-to-1. This transformer must be larger than the preceding one, so that it will handle the 10 to 20 watts of audio power necessary for clriving the grids of the classB modulator tubes. A pair of $.001 \mu \mathrm{fd}$. nica condensers is connected across the grids and
filaments of the class-B stage in order to prevent undesired parasitic oscillation, which would cause audio distortion at high voice levels. The class- B output transformer must be large enough to handle the 200 watt audio power output, and be capable of carrying approximately 250 ma . of d.c. plate current through the secondary winding. The impedance ratio of total primary to secondary in the output transformer should be approximately 20,000 ohms to 6,000 ohms.

A universal type class- B output transformer with tapped primary and secondary windings should be used for this purpose. Fixed bias of 45 volts for the class- B and driver stages can be obtained from a 45 volt B battery. The regulation of the C-bias supply is quite important, and a battery is used in this transmitter for the sake of simplicity.

- Power Supply

Three plate supply units are required for this transmitter: one for the crystal oscillator and audio amplifiers; une for the buffer r.f. stage; a heavy duty 1500 volt power supply for the class-P modulator and final r.f. amplifier.

COIL TABLE

Band In Meters	Oscillator Coil	Buffer Plate Coil	Final Grid Coil	Final Plate Coil
160	65 turns, no. 24 d.s.c., close-wound.	
80	25 turns, no. 20 d.s.c., close-wound.	36 turns, no. 18 d.c.c., spaced one diameter, center-tapped.	32 turns, no. 18 d.c.c., spaced one diameter.	28 turns, no. 10 Enam., 41, 反-in. dia., 7-in. long, center-tapped.
40	17 turns, no. 18 d.c.c., spaced one diameter.	20 turns, no. 16 Enam., $11 / 2$-in. long, center-tapped.	19 turns, no. 18 d.c.c., spaced one diameter.	20 turns, no. 12 Enam., 7 -in. long, 3 -in. dia., center-tapped.
20	8 turns, no. 18 d.c.c., spaced to cover $1 \frac{1}{2}$-in.	11 turns, no. 16 Enam., 11/2-in. long, center-tapped.	10 turns, no. 16 Enam., 1/2-in. long.	10 turns, no. 10 Enam., 7-in. long, 31/4-in. diameter, center-tapped.
10	5 turns, no. 16 Enam., 11/4-in. long, center-tapped.	4 turns, no. 16 Enam., oneinch long.	6 turns, no. 8 Enam., 4-in. long, 2-in. dia., center-tapped.

Figure 11 -Low, medium, and high voltage power supplies for the medium power radiophone.

Figure 12 - 6L6 Harmonic oscillator and T-20 buffer - doubler. The plate tuning condensers for both stajes and T-20 neutralizing condenser are mounted on 3 non - metal sub. panel (Masonite). The neutralizing condensormay be seen directly to the left of the T-20 plate tuning condenser. The shaft of this neutralizing condenser is slotted, and adjustments made through a hole in the front panel.

The low voltage power supply includes a 900 volt center-tapped transformer rated to supply a d.c. load of 200 ma . from a choke input filter. The push-pull 6F6 driver stage connection is made to the first section of filter, and the remaining audio positive- B leads are taken from the second section. Screen voltage for the 6 L .6 G oscillator is taken from the bleeder of the low voltage power supply: this potential is adjusted to a value of 250 to 275 volts by means of a slider on the bleeder resistor. The buffer plate supply uses a $5 Z 3$ or 83 rectifier and 1,200 volt center-tapped power transformer. The normal d.c. load of this power supply is from 75 to 85 ma . Condenser input to the filter circuit gives a potential of approximatcly 650 volts to the huffer. The exact value of this voltage depends upon the load current, the capacity of the input condenser, and the resistance of the 20 henry filter choke. This voltage can be any value between 600 and 700 .

The high voltage power transformer should be rated at 3,500 volts center-tapped, capable of supplying a d.c. load of 500 ma . The average load is somewhat less than this value. The class- B modulator is connected to the first section of filter through a snall knife switch, which can be opened when the transmitter is operated for c.w. A similar switch can be connected across the secondary of the modulation transformer in order to short-circuit this winding when keying the transmitter for c.w. If this is not done, the resulting surges may cause keying lag and flashover of the final plate tank condenser.

- Construction

The lowest deck of the relay rack ensemble holds the high voltage power supply. It is pictured in the Pozecr Supply chapter. 'The chassis is $12 \mathrm{in} . \times 17 \mathrm{in} . \times 2 \mathrm{~m}$. . supported to a standard $121 / 4 \mathrm{in}$. relay rack panel. The second deck from the bottom holds the two low voltage power supplies. The chassis is $10 \mathrm{in} . \times 17 \mathrm{in} . \times 2 \mathrm{in}$., the panel is $93 / 4 \mathrm{in} . \times 19$ in. The next deck supports the audio system and class- B modulator on a $12 \mathrm{in} . x 17 \mathrm{in} . x$ 2 in . chassis, with a front panel $101 / 2$ in. x 19 in. Above this deck is the crystal oscillator and buffer stage, mounted on a 10 in . $\times 17 \mathrm{in}$. x 2 in . chassis; the front panel is $10 \frac{1 / 2 \mathrm{in} . \mathrm{x}}{}$ 19 in . The uppermost deck holds the final r.f. amplifier, which is mounted on a $12 \mathrm{in} . \mathrm{x} 17$ $\mathrm{in} . \mathrm{x} 2 \mathrm{in}$, chassis; the front panel is $121 / 4 \mathrm{in} . \mathrm{x}$ 19 in . There is still some available space on the relay rack for an additional unit, such as an antenna tuner, which can be link coupled to the final r.f. amplifier. All high voltage leads are carried through heavily insulated wire, such as automobile high tension cable.

The final amplifier plate tuning condenser has wide plate spacing and is rated at 5,000 volts, $100 \mu \mu \mathrm{fd}$. per section. The rotor is insulated from the metal front panel and chassis, but is grounded through a $002 \mu \mathrm{fd} .5,000$ volt mica condenser. The neutralizing condenser has two heavy circular aluminum plates, each $27 / 8 \mathrm{in}$. diameter and spaced approximately $5 / 8 \mathrm{in}$. apart, when the stage is properly neutralized.

Figure 14 Speech amplifier for crystal microphone, and $35-\mathrm{T}$ modulator unit. The first two stages of the speech amplifier are housed in a grounded metal box. The overmodulation indicator components are fastened directly to the front panel.

Figure 15-Front panel view of the speech amplifier and modulator unit.

- Coll Data

The oscillator plate, buffer plate and final grid coils are wound on standard $11 / 2 \mathrm{in}$. diameter ceramic forms. The final tank coil is of the heavy wire, air-supported type, with plugs for coil changing.

- Operation

The crystal oscillator is tuned as described in the chapter Transmitter Frequency Control. The plate circuit can be tuned to either the fundamental or second harmonic of the crystal by merely changing the oscillator plate coil. The cathode current in this stage will run between 40 and 60 ma., and the regeneration condenser should be increased in capacity until a dip of at least 10 ma . is obtained when tuning the oscillator plate tank condenser through resonance on the second hąrmonic of the crystal. This same regeneration control setting is suitable for various crystals, and for operation on either the fundamental or second harmonic. The grid current to the buffer stage should be approximately 15 ma . under load, and the plate current in the buffer should be between 75 and 85 ma. under load. This plate current may run slightly higher when the stage serves as a doubler, depending upon the degree of regencration in this stage. The final grid current should be at least 30 ma . under load. Neutralization in the buffer and final amplifier follows standard procedure, as has been previously explained. The final amplifier should be loaded to approximately 250 ma. by means of link coupling to an antenna tank circuit.

A phone monitor and overmodulation indicator is built on the modulator panel. The circuit for this device is shown in the chapter Test Instruments. The diode tube of the monitor should be loosely coupled to the final r.f. amplifier plate circuit. or to the antema
lead, by means oi an insulated wire running from the diode connection to a position near the final plate circuit or antenna lead.

A Multi-Unit, Hligh Power Transmitter

A thoroughly modern de-luxe radiophone transmitter of home-built amateur construction, yet closely following advanced ideas incorporated in commercial transmitters and using the latest circuit improvements as shown in this Handbook is profusely illustrated here. This transmitter was constructed by W6LVS* and is in active operation on the amateur bands.

The transmitter consists essentially of four units: (1) microphone and preamplifier ; (2) speech amplifier and driver, (3) 250 watt complete transmitter and modulator, (4) 1-kw. r.f. amplifier and modulator.

The speech amplifier and driver is used in conjunction with either of the modulators. The 250 watt transmitter is complete in itself, and may be connected either to the antenna system or to the high power r.f. amplifier in the large rack by means of a rather complex system of interlocking relays, as shown in figure 34.

The two transmitter units are interconnected by means of relays, so that for normal use only the small transmitter is in service; when more power is needed a toggle switch at the control position is closed, and a time-delay relay makes the changeover with no perceptible break in voice transmission. This changeover is made by relays which switch the antenna from the small transmitter to the large amplifier; then the r.f. output from the smaller unit is switched to the grid circuit of the $250-\mathrm{TH}$ push-pull high power final amplifier. The relays also cut out the modulator in the small unit, and make switch-over of the audio driver 500 ohm line to the modulator in the large rack. Overload and underload relays, as well as door interlock line switches, are adiditional features for protecting the operator and apparatus.

The two large units can be controlled either separately or together from the remote operating position ; the speech amplifier and driver is located at this point.

The large rack is 30 in . wide, 18 in . deep and of the same height as the associated standard rack, both of which are illustrated here.

[^6]

Figure 16-The 250 watt complete radiophone transmitter (left) and high power amplifier and modulator (right).

- The Speech Amplifier

A straightforward, conventional speech amplifier with tubes, resistor and condenser values such as are shown elsewhere in this Handbook, is diagrammed in figure 18. The speech chamnel consists of a preamplifier built into the microphone stand proper ; it contains a 6 F 5 high μ triode working into a 6 C 5 . The high impedance line runs from the preamplifier to the main speech amplifier, and consists of two stages of 76 tube amplification and a push-pull 2A3 class-AB driver stage. The output transformer works into a 500 ohm line which connects through a relay circuit to the $35-\mathrm{T}$ class- B modulator in the low power unit of the transmitter, or to the $100-\mathrm{TH}$ class-B modulator in the high power unit.

- The Excliter

The harmonic crystal oscillator and 6L6G doubler unit is quite similar to one of the exciters shown in the chapter Transmitter Frequency Control. Either tube can be used to drive the 35 T buffer stage by means of a
switching connection in the plug-in coil form in the oscillator stage. The oscillator can be tuned to either the fundamental or second harmonic of any of the five crystals.

The additional doubler stage is especially useful when operating on 10 meters; when this stage is not in use a switch in the cathode circuit is opened, and an oscillator coil is plugged in so that the plate of the oscillator connects to one of the coil pins through a 20 $\mu \mu \mathrm{fd}$. condenser to the grid of the $35-\mathrm{T}$ amplifier. The latter is used as a neutralized buffer at all times, and is link coupled to the pushpull 35-T final amplifier in the small rack of the transmitter.

Figure 19 shows the complete exciter unit and figure 20 gives the circuit diagram. It was found necessary to place the oscillator tuning condenser above the chassis in order to prevent feedback between the grid and plate circuits of the 6L6G doubler. This feedback may cause undesired oscillation in the doubler stage. The remaining tuning condensers are mounted below chassis, as illustrated in figure 21. Filament transformers are mounted in

Figure 17-Looking into the "works" from the back. The 250 watt deluxe unit meets the needs of the most descriminating amateur. For those who are satisfied with nothing but the biggest and the best, and to whom cost is not an important item, the auxiliary high power amplifier is the answer.

the deek oi each amplifier in order to prevent excessive voltage drop in the comecting leads to the tube sockets. The neutralizing condenser for the 35 T is adjusted from the front panel by means of an extension shaft.

- The 35-T Push-Pull Amplifier

The modulated amplifier in the small transmitter rack is illustrated in figures 22 and 23 , with the circuit diagram in figure 24 . It consists of two 35 T 's in push-pull, with a combination of cathode and grid-leak bias. The tuning condensers in this stage are mounted parallel to the front panels in ouder to obtain a symmetrical arrangement of parts and learls. These condensers are driven from front panel controls by means of pulleys and cords.

A parasitic suppressor is connected in one grid circuit : it consists of 7 turns of wire, shunted with a 100 ohm 3 watt resistor. The grid plug-in coil is accessible through a rectangular opening at the rear of the chassis. The two neutralizing condensers are ganged together with an insulated coupling and the two stators are part of the plate tuning condenser coil mounting brackets. These two brackets are attached to the stators of the split-stator plate tuning condenser. The neutralizing condenser rotors are mounted on a sheet of Mycale.r, below the plate tuning con-
denser. The neutralizing leads to the grids pass through the chassis in ceramic bushings. The plate coil assembly is supported by two heary copper brackets which act as part of the plate tank leads. Each chassis makes use of a small disk, as shown in the bottom view of the exciter chassis, for a common grounding connection. The coils shown in the illustrations of this amplier are for the 20 meter band, while those shown in the exciter illustrations are for 10 neter operation.

- The 35-T Class-B Modulator

The 35 T modulator circuit is part of figure 24, which includes both modulator and the 35-T push-pull r.f. stage. The illustrations in figures 25 and 26 show top and bottom views of the $35-\mathrm{T}$ modulator unit.
This modulator supplies sufficient audio output fully to morlulate the 250 watt $35-\mathrm{T}$ r.f. amplifier. The output transformer in the moktulator stage is mounted in a sub-base which is cushoned from the main chassis in order to prevent "talkback" from the output transformer from feeding back into the microphone when the two are in close proximity.

The C-bias supply for the $35-\mathrm{T}$ modulator is diagrammed in figure 2π. It consists of a small power transformer which delivers ap-

Figure 18-The Speech Amplifier-Driver Unit. It is used to drive either the medium or high power modulator. The first two stages (shown dotted) are built in a preamplifier can, on which the microphone is mounted. Coupling condenser and resistor values are conventional; those not familiar with them can find them elsewhere in this chapter.

Figure 19-The exciter unit uses a $35-\mathrm{T}$, driven either directly by a 6L6-G harmonic oscillator or by a 6L6-G doubler. Most of the components are mounted on the under side of the sub-chassis (see figure 21). This unit can be used as a low power transmitter, plate modulated by the 2A3 driver stage to give about 35 watts of carrier until time or finances permit completion of the 250 watt amplifier and associated modulator.
moximately minus is volts at the output of the filter when the load resistance bleeder of 800 ohms is connected across its output.

- The 250-TH High Power Final Amplifier

This stage is pictured in figures 28 and 29 , with the circuit diagram as figure 30 .

A pair of $250-\mathrm{TH}$ tubes is operated conservatively at $1-\mathrm{kw}$. input. The tuning condensers are so placed that the rotors are parallel with the front panel ; they are controlled by means of worm-and-pinion drive to the pate condenser, and pulley and cord drive for the grid tuning condenser. The plate tuning condenser is home-built ; it has plate spacing of $3 / 4-\mathrm{in}$. and the insulation is Mycalex. The two neutralizing condensers are also home-built ; the plates are 3 in. diameter, with an adjustable airgap. The coils shown in the illustrations are for 20 meter operation. The plate coil is made of copper tubing. Coil turns ior all stages of this transmitter can be
obtained from the data given in the chapter on Transmitter Frequency Control, and from the copper tubing and wire wound coil tables in the clapter on C. W^{\prime}. Transmitter Construction.

- The 100-TH Class-B Modulator

The modulator for the $250-\mathrm{TH}$ r.f. stage uses a pair of $100-\mathrm{TH}$ tubes in class- B , driven by the push-pull 2A3 stage previously described. This modulator is illustrated in figure 28, with the circuit in figure 32 . The modulator must be able to supply 500 watts of audio, which requires a very large output transformer, as the illustration shows. The modulator plate supply is taken from a 5 -kw. power transformer and rectifier system which also supplies the high power r.f. amplifier. Outputs in excess of 500 watts of audio power can be obtained by slightly exceeding the plate dissipation ratings of the $100-\mathrm{TH}$ tubes. The circuit for the power supply is shown in

Figure 20 - Schematic wiring diagram of the $35-$ T exciter unit and low voltage power supply for the 6L6-G's. Refer to note 2 in figure 34 regarding oscillator cathode relay. All variable condensers should be insulated from metal panel or chassis unless one side is shown grounded.

Figure 21 Underneath view of the exciter unit, showing placement of components. Extension shafts allow the various condensers to be placed closer to their associated circuits.

Figure 22-The 250-Watt 35-T Amplifier. This stage is either plate modulated or used to drive the high-power modulated amplifier. The plate tuning condenser is mounted parallel with the front panel to allow shorter leads, and is driven by cord and pulleys.

Figure 23 - Under chassis view of the push-pull 250 watt amplifier. stage. The grid tuning condenser is mounted and driven in the same manner as the plate tuning condenser.

Figure 24 Schematic wiring diagram of the 250 -watt amplifier and the associated class B modulator shown in figure 25.

Figure 25-The 35-T class B modulator unit.

Figure 26-Bottom View of the 35-T Modulator.

Figure 27-Showing bias supply for the 35-T modulator (above) and the blas supply for the 100-TH modulator (below).

Figure 28-The 500 watt class B modulator unit.

Figure 29-The high power modulated amplifier uses 250-TH's in push-pull.

Figure 30-Under chassis view of the 250-TH amplifier, showing filament transformer, grid tank, etc.

Figure 31 -Schematic wiring diagram of the 1 kllowatt amplifler.

Figure 32 -Wiring diagram for the high power modulator.

Figure 33-Connections and circuit constants for the three high-voltage power supplies.
figure 33 , and a photograph of the unit appears in the chapter on Power Supplies. The large power unit can be adjusted in steps, from 500 to 4,000 volts, by means of taps on the secondary winding and by switching the two primary windings of the G.E. $5-\mathrm{kw}$. power transformer. A pair of 872 rectifiers is connected through a heavy duty two-section filter to the high power transmitter unit. Separate 1,500 volt power supplies are used for the $35-T$ audio and radio frequency stages in the small rack of the transmitter.

Figure 34-Connections for relays, interlock and changeover systerns. If the is not contemplated is not contemplated, tem will not be required.

NOTE 1: This 110 volt a.c. Iine supplies the current to all the changeover relays the instant the time delay relay (6) closes. Relay (2) is the only diagram which is affected by this line; it fected by this line; it breaks the a.c. Iine to power supply. On this same line are the following relays, taking partin the changeover but not shown in the diagram: the audio line relay which switches the line from the low power modulator to ulator, relays which switch the antenna and exeltation.

NOTE 2: The 150 ohm relay in the oscillator cathode works as follows. Closing the key or break. In switeh starts the oscillator. Current flow enering contay coll, clos"B." Contact "A," turns on plate and turns on plate and in the 250 watt unit If switches are closed. Contact " B "' controls maln relay (3) in the high power amplifier when the time-delay
relay is closed.

E\&E Jət!

The Federal Connminnications Commission Requires

in the case of amateur radiophone transmitters that means be employed to insure that the transmitter is not modulated in excess of its modulation capability. Very few transmitters have a modulation capability approaching 100 per cent. Many, especially the grid modulated types, may have a very low modulation capability when not correctly adjusted. Some sort of device enabling the operator to keep a continuous check on the modulation at all times is indicated. Such equipment is described in chapter 17.

The chief objection to radiotelephony as compared to c.w. telegraphy is the relatively large frequency channel required for each station, even when the telephone transmitter is properly operated. It is to their own interests that the radiophone fraternity do the utmost in their power to keep the channel widths of their signals confined to as narrow a band as the present state of the art permits.

The easiest way to take up three times the room actually required by a properly operated phone is to overmodulate. The increase in signal strength due to the higher percentage of modulation is negligible as compared to the additional room taken up by the overmodulated signal. Besides being illegal it indicates lack of consideration.
Amateurs operating on 10 and 20 meter phone will find that in many instances the readability of their signals is actually improved by using a lower percentage of modulation. The reason for this is that at times during a "selective fade" the carrier may fade to a much greater degree than the sidebands. This will result in bad overmodulation of the carrier as it arrives at the receiver, and consequent distortion and poor intelligibility, if the percentage of modulation was high to begin with. Many of the 16-19 meter broadcast stations do not attempt to modulate their antenna power over 50 or 75 percent for this very reason.

Chapter 15

U.H.F. Communication And Equipment

- U. H. F. Considerations

'THE VERY-high frequency or ultra-high frequency range may be said to extend from 30 megacycles (10 meters) to infinity. Frequencies higher than 300 Mc . (1 meter in wave length) are usually classed as "nicro waves." The micro waves extend into the region of heat wavelengths, thence into the wavelengths of light. Amateur operation is permissible for both voice and c.w. communication in the range of 56 to 60 Mc ., and from 110 Mc . to infinity.
The speed of light and radio waves is approximately $300,000,000$ meters per second. In order to show the relation between frequency and wavelength of radio waves, the following formulae are given:

where F is the frequency in cycles per second,
λ is the wavelength in meters, or:-

$$
\lambda=\frac{300}{\mathrm{f}}
$$

Where if megacycles per secont.
Very short radio waves behave very much like light waves and are not often reflected or refracted by the Heaviside layer. These radio waves are most useful over optical paths, i.e., between points which are in visual range with one another. The wavelength used for radio communication in the u.h.f. range, however. is thousands of times greater than that of light, and there is a greater curvature of the paths of the radio waves. For this reason the range is somewhat greater than can be obtained by means of light rays, and signals can, therefore, be received from points beyond the horizon. The range of transmission is governed by the height of the transmitting and receiving antennas. Objects that lie in the path of the transmitted wave intro-
duce a "shadowe effect", which often prevents reception of the transmitted signal. This shadow effect can be overcome to some extent by using higher power in the transmitter.
Occasionally, the radio waves in the range of 56 to 60 Mc . are reflected back to earth by the Heaviside layer with the result that these signals can be heard over distances of a few hundred, or even a few thousand, miles. This type of long-distance communication is extremely erratic, and the practical service of the ultra-high frequencies lies in the shortdistance visual range. The occasional reflection of 5 -meter signals from the Heaviside layer seems to depend upon sun spot activity and the season of the year, as well as the time of day. At distances somewhat beyond the horizon, reception is often erratic because the atmosphere changes its temperature in layers close to the earth which, in turn, may change the amount of refraction of the 5 -meter signals. Refraction bends the radio waves into a curve along the earth's circumference and, therefore, increases the range of the radio wave beyond the optical distance.
Very little transmitter power is required for communication in the u.h.f. range over optical distances. The following formula can be used for calculating the optical range of transmission and reception:

$$
\mathrm{x}=\frac{2 \mathrm{~d}^{2}}{3}
$$

where
$\mathrm{X}=$ height of the u.h.f. antenna in feet, $\mathrm{d}=$ distance in miles.
This empirical formula can be used to calculate the height of an antenna in order to obtain any given distance of transmission to the optical horizon (in level country). If the receiving antenna is also located at some height above ground, the range will be increased and the same formula can again be used. For example, if the transmitting antenna is located at a height of 25 feet above ground, the transmission range will be found as follows:

$$
75=2 / 3 \times \mathrm{d}^{2},
$$

thus $\mathrm{d}=10.5$ miles.

If the receiving antenna is 30 feet high, the optical range can be found from the same formula, i.e., $30=2 / 3 \times \mathrm{d}^{2}$ or $\mathrm{d}=6.7$ miles. The receiving station could, therefore, be located $6.7+10.5$ or 17.2 miles from the transmitter and still be within the optical range. In this case, the radio wave will just graze the surface of the earth in reaching the receiving location and would tend to be reflected upward by the earth so that the signal at the receiving station would be considerably attenuated. The tendency of u.h.f. waves to be curved along the surface of the earth compensates for the tendency to be reflected upward from the surface of the earth, so that this range can be maintained, provided that no large objects lie between the transmitter and receiver locations.

- U. H. F. Transmitter Considerations

Self-excited modulated oscillators of the type shown in figure 1 are widely used for short-range 56 Mc . mobile operation. This type of circuit is typical of those used in low power transmitters and receivers.

Figure 1-Self-Excited Modulated Oscillator.
Standard tubes cannot be used in this circuit for wavelengths below 2.5 meters. Special tubes of the acorn type, or those in which the element spacing is very small, can be used in this same type of circuit for wavelengths as low as 0.4 meters (40 centimeters).

Transmitters for fixed station 5 -meter service should preferably have a stabilized source of frequency control. The simple modulated oscillator shown in figure 1 is subject to a high degree of frequency modulation and its signals cannot be received on a selective radio receiver. This means that relatively few transmitters of this type can be used simultaneously in the 5 -meter band. Stabilized oscillator circuits, such as those described later in this chapter, can be modulated with-
out causing excessive frequency modulation. Crystal control by means of a crystal oscillator and frequency-doubling or tripling stages is the most perfect method of stabilized frequency control for the very short wave bands. The relative cost and complexity of circuits of this type has retarded their general use.

Transmitters for portable operation can operate successfully with power outputs of one watt or less. Those for mobile operation usually have an output of from 5 to 10 watts ; fixed amateur stations commonly use power outputs varying from 5 to 30 watts. Experimental and commercial stations require higher outputs; values of several kilowatts are desirable for reliable general coverage over a radius of 25 or 30 miles.

- U. H. F. Receiver Considerations

Radio and television receivers for the u.h.f. region vary in design from simple one-tube radio receivers up to as many as 25 or 30 tubes in a television receiver. In the more complex types of u.h.f. radio receivers, the superheterodyne circuits are quite similar to those used in the shortwave and broadeast ranges. The design of tuning coils and inductances is somewhat different in order to function successfully in the u.h.f. range.

- Super-regeneration

Regeneration carried beyond the point of oscillation, called super-regeneration, is extensively used for reception of radio waves in the range of from 10 down to $1 / 2$-meter. Super-regeneration is accomplished by allowing the detector to oscillate, then damping out the oscillations a great many times per second (at a rate above audibility). This increases the sensitivity of the detector to an enormous degree for weak signal reception. Super-regeneration becomes more effective at higher frequencies, and since the selectivity of a super-regenerative receiver is very poor in comparison with ordinary regeneration, this type of receiver can be used successfully to receive the simple modulated oscillator transmitter signals which are so common in the u.h.f. range.

Super-regencration can be obtained by means of a blocking-gridl-leak action, as shown in figure 2, or by means of a separate low-frequency oscillation applied to the grid or plate of the detector, as shown in figure 3. The circuit in figure 2 can be used as a blocking-grid-leak type of superregenerator by choosing the values of
C_{1}, R_{1} and C_{1} in such a manner that the u.h.f. uscillation is started and stopped at a rate above audibility. This circuit functions as an ordinary oscillator in which the resistance of the grid-leak is too high to permit the electrons on the grid to leak-off at a rate that will give constant value of grid-bias voltage. This blocking action causes a change in the average grid-bias and stops the u.h.f. oscillation because the plate current is decreased and the mutual conductance of the tube also decreases during the blocking action. If the circuit constants are correct, this blocking action takes place at an inaudible high-frequency rate and super-regeneration is accomplished.

Figure 2-Fundamental U. H. F. Receiver Circuit.

Figure 3-U. H. F. Receiver Circuit with Separate Oscillator.

Damping or "quenching" action can be obtained by means of a separate oscillator which functions at some inaudible frequency, such as 100,000 cycles per second, as shown in figure 3. The interruption-frequency circuit consists of an oscillator tuned to about 100,000 cycles per second, connected so that this oscillation modulates the d.c. plate supply to
the u.h.i. detector. The latter is an ordinary oscillator which is made super-regenerative by means of the interruption-frequency oscillator. The interruption-frequency voltage varies the detector plate voltage to such an extent that the detector goes in and out of oscillation at a rate determined by the inter-ruption-frequency oscillator circuits.
Fairly heavy antema loading or coupling is required in either circuit in order to obtain good audio quality and sensitivity. Too much antenna coupling will pull the detector out of super-regeneration. The antenna system can be either inductively or capacitively coupled to the detector tuned circuit or to an r.f. amplifier preceding the super-regenerative detector. Super-regenerative detectors comected directly to an antemna radiate a signal fully modulated by the quenching frequency and thereby cause bad interference in other receivers for a radius of several miles. The blocking-grid-leak detector is more troublesome in this respect, and, in either case, a radio-frequency amplifier should be connected ahead of the super-regenerative detector in order to eliminate or minimize receiver radiation into the antenna system.
A super-regenerative detector has an automatic volume control effect, in that it has high sensitivity to weak signals and low sensitivity to strong signals. This action greatly reduces automobile ignition interference, since the latter is usually of very strong intensity, but fortunately of short time amplitude. The detector sensitivity automatically drops down during the small fraction of a second in which this noise impulse is present, and, although the desired signal is also reduced, the human ear will not respond to changes of such short duration. The ignition interference, therefore, does not cause an excessively loud signal in the audio output as compared with the strength of the desired phone signal. The high sensitivity of a superregenerative detector, when no carrier signal is present, results in a loud audible hiss or rushing sound in the output circuit and is due to thermal and contact noise in the detectur circuit. A fairly strong carrier signal automatically reduces the sensitivity of the detector and, consequently, reduces the background noise or hiss; a strong signal will completely eliminate the background noise.

- Antenna Systems

A great many types of antenna systems can be used for u.h.f. communication. Simple, nondirective half-wave vertical antennas are desirable for general transmission and reception
in all directions. Point-to-point communication is most economically accomplished by means of directional antennas which confine the energy to a narrow beam in the desired direction. If the power is concentrated into a narrow beam, the apparent power of the transmitter is increased a great many times.

The useful portion of a signal in the u.h.f. region for short-range communication is that which is radiated in a direction parallel to the surface of the earth. A vertical antenna transmits a wave of low-angle radiation which is vertically polarized, and for this reason, vertical receiving antennas should be used to receive signals from a vertical transmitting antenna. Vertically-polarized radio waves are not as easily reflected upward by the surface of the earth as are horizontallypolarized waves. Horizontal anternas can be used to advantage during the occasional periods in which the 5 -meter signals are reflected from the Heaviside layer.

The antenna system for either transmitting or receiving should be as high above earth as possible and clear of nearby objects. Transmission lines, consisting of concentricline or spaced two-wire lines, can be used to couple the antenna system to the transmitter or receiver. Non-resonant transmission lines are more efficient at these frequencies than those of the resonant type.

Antenna design data, charts, tables, and graphs for simple and complex antennas and arrays are covered in the chapter on . $4 n-$ tennas.

- Wavelength or Frequency Determination

Transmitter and receiver frequency or wavelength checking can be accomplished by means of parallel-wire measurements (Lecher wire system), by wavemeters or by means of harmonics from a crystal or calibrated low-frequency oscillator. The parallel wire or Lecher wire system is very easily applied to wavelength measurements in the micro wave region.

- Lecher Wire Systems

A Lecher wire measuring system consists of a pair of parallel wires, short-circuited at one end in order to provide a pickup loop which can be coupled to the tuned circuit of the transmitter or receiver. The energy induced into the parallel wires establishes standing waves of voltage and current along the wire, and these standing waves can be located with a sliding bar or copper wire. as shown in figure 4.

Figure 4
A single sliding bar can be moved along the parallel wires until two successive points are located which produce a change in the oscillator plate or grid current, or in the receiver noise level when the pickup loop of the parallel wire system is inductively coupled to the circuit under test. The distance between these two points is a half-wavelength, and this value can be converted from feet or inches into the wavelength in meters by multiplying the number of feet by 0.656 or the number of inches by 0.0547 .

For micro-wave measurements, the distance between half-wave points is usually measured in inches and converted to wavelength in centimeters by multiplying the number of inches by 5.47. This conversion factor takes into consideration the conversion into the metric system and the fact that the distances are a half-wave apart. The result is the actual wavelength of the oscillator. An accuracy of approximately 1 per cent can be expected; for more accurate frequency or wavelength determination, the harmonic method should supplement these measurements.

A Lecher wire system suitable for measurement of wavelengths below 1-meter can be made by stretching two no. 12 bare copper wires approximately 1 -inch apart. Each wire has a length of about 50 inches; this length will depend upon the wavelength being measured, and lengths of 35 to 40 feet will be necessary for 10 -meter measurements. The spacing between wires can be as much as 3 or 4 inches for wavelength measurements above 10 meters.
A Lecher wire system can consist of a long wooden framework and some means of clamping or stretching the two parallel wires to prevent sag or change in wire spacing. No supports or insulators should be connected to the parallel wires in the actual measuring range between the two half-wave points over which the sliding bar is moved.

- U. H. F. Wavemeters

Absorption-type wavemeters are easily constructed and considerable time can be saved in making oscillator wavelength measure-
ments by this means rather than by Lecher wires. These wavemeters can be calibrated by means of a super-regenerative receiver and harmonics from a calibrated low-frequency oscillator or by means of Lecher wire comparative measurements. A simple ab-sorption-type wavemeter which has a range of about 4.5 to 7 meters can be constructed by comnecting a 5 -turn coil of wire across a $25-\mu \mu \mathrm{fd}$. midget variable condenser which is in parallel with a $20-\mu \mu \mathrm{fd}$. midget fixed condenser as shown in figure 5 .

Figure 5
The turns can be squeezed in and out to "spot" the 5 -meter band on the center of the condenser dial and the device then calibrated from known frequencies or Lecher wires. The coil can be wound with no. 10 wire in a winding length of 1 -inch and with a diameter of about $1 / 2$-inch.

A similar type of wavemeter with a range of from + to 14 meters can be made with a $150-\mu \mu \mathrm{fd}$. variable condenser comected across a 2 -turn coil, 2 -inches in diameter. The coil should be supported on bakelite spacers. Hand-capacity effects can be eliminated by tuning the condenser with a bakelite extension shaft. A two-turn coil, approximately ξ_{8}-inch diameter, tuned with a $15-\mu \mu \mathrm{fd}$. condenser, will cover the range of 2 to 3 meters. These absorption-type wavemeters are inductively coupled to the tuned circuit in the transmitter or receiver under measurement. When the wavemeter is tuned to the same frequency or wavelength as that of the oscillator under measurement, a change in plate or grid current will be noted.

The absorption-type wavemeter with a dinde indicator, shown in figure 6 , is quite
useful in the range of 3 to 10 meters. A type-30 tube with a single $1 \frac{1}{2}$-volt flashlight cell serves as a diode to rectify the radiofrequency. A 0.1 d.c. milliammeter is connected in series with the diode so as to act as a resonance indicator; a closed-circuit telephone jack enables the device to be used as a monitor for checking the quality of a phone transmitter.

The coil L consists of from 3 to 10 turns, $1 / 2$-inch diameter, no. 12 wire, space-wound, depending upon the desired range of the wavemeter. The tuning condenser C can have any maximum capacity of from 25 to $50 \mu \mu \mathrm{fds}$, depending upon the desired range of the wavemeter.

- Harmonic Frequency Determination

A calibrated low-frequency oscillator, such as a quartz crystal, will provide an accurate means of frequency determination in the range of from 2 to 10 meters. An oscillating quartz crystal in the 160 - or 80 -meter amateur bands will produce strong harmonics in the u.h.f. region between 2 and 10 meters. A super-regenerative receiver, when tuned to this region (while very loosely coupled to the oscillator), will indicate the harmonics by sharp reductions in hiss-level in the receiver output. An absorption wavemeter can be coupled to this receiver and calibrated by this means. More accurate measurements can be made by using an oscillating regenerative receiver or a superheterodyne receiver equipped with a beat-frequency oscillator. Such receivers can be tuned to zero-beat with the harmonics, and then to the u.h.f. oscillator or transmitter for accurate frequency determination.

U. H. F and Mlcro-
 Wave Transmitters and Recelvers

Micro-waves, as previously related, are those whose length is less than one meter.

Micro-waves are generated by means of Magnetrons, Electron-Orbit Oscillators, and Regeneratice Oscillators. Micro-waves are used by broadcast stations for remote pickup, by amatcurs and experimenters, and for occasional telegraph and telephone communication, such as the British channel spanning system. The technical problems encountered in this field are numerous, yet new tubes designed for micro-waves have simplified many of these problems and have been instrumental in increasing the usefulness of the band.

- The Magnetron Oscillator

The Magnetron is a specially designed tube for very-short-wave operation. It consists of a filament or cathode between a split plate, as shown in figure 7 .

Figure 7
A magnetic field is produced at the filament by means of a large external field coil which is energized by several hundred watts of d.c. power. Ultra-high-frequency oscillations are produced in the split-plate circuit when this magnetic field is in the correct direction and of the proper intensity. A parallel-wire tuned circuit can be used for wavelengths below one meter or for ordinary tuned circuits with wavelengths above one meter. These tubes are available for experimental purposes and will produce outputs of several watts. The frequency stability is not very good and it is difficult to obtain satisfactory voice modulation from magnetron oscillators.

- Electron Orbit Osclllator

The range of oscillation in ordinary circuits is limited by time required for electrons to travel from cathode to anode. This transit time is negligible at low frequencies, but becomes an important factor below 5 meters. With ordinary tubes, oscillation cannot be secured below 1 meter, but by means

Figure 8

Figure 9
of electron orbit oscillators, in which the grid is made positive and the plate is kept at zero or slightly negative potential, oscillation can be obtained on wavelengths very much below 1 meter.

Parallel-wire tuning circuits can be connected to these tube oscillators in order to increase the power output and efficiency. The tubes most suitable for this type of operation have cylindrical plates and grids, and their output is limited by the amount of power which can be dissipated by the grids. For transmitting, tubes such as the $35 \mathrm{~T}, 50 \mathrm{~T}$ or 852 can be used in the circuit shown in figure 8, which is a modification of the Gill-Morrel oscillator. More output is obtained by using a tuned-cathode circuit instead of tuned-grid circuit. Modulation can be applied to either the plate or grid. The frequency stability is very poor. The circuit in figure 8 is an carly type oscillator of this general classification.

- Regenerative Osclllators

The introduction of the RCA Acorn 955 and Western Electric 316-A tubes made $1 / 2$-meter regenerative oscillators practical. These tubes are more efficient than ordinary types for ultra-high-frequency work. Figure 10 illustrates the RCA acorn triode. Circuits, such as that shown in figure 11 and a constructional plan in figure 12, are satisfactory for low-power transmitters and super-regen-

Figure 10 -RCA Acorn 955

Figure 11 -RCA 955 -Cireuit Diagram and Suggested Layout.

L1-8 turns, $1 / 2$-in. outside diameter, No. 18 wire, spaced $1 / 4$-in. between turns.
Ci-Tuning condenser; 2 circular brass plates $3 / 4$-in. in diameter; $10 / 32$ thread on adjusting screws.
C2-. 00025 mica condenser, postage stamp type R1-15,000 ohms, 1 watt carbon resistor.
RFC-1/4-in. bakelite rod wound $11 / 2-i n$. with No. 32 DCC wire.

Figure 12-Plan view of transmitter.
erative receivers. The 955 acorn can be used as an oscillator in super-heterodyne receiver circuits with its companion tube, RC. 9.51 (or 956) Acorn Pentode, in the r.f. portions of the circuit. The regenerative circuits are quite similar to those for longer wavelengths. except for the physical size of condensers and coils. The tube element spacing in these acorn tubes is made so small that electron transit time becomes a negligible factor for wavelengths above 0.6 meter.

Micro-Wave Tube Characteristics

RCA 954 PENTODE

- W. E. 316-A MicroWave Oscillator

Western Electric has produced a new micro-wave triode which delivers from 5 to 10 watts output on wavelengths as low as $1 / 2$ meter. The element spacing is so close that the tube operates efficiently as a regenerative oscillator with negative grid and positive plate for frequencies as high as 750 Mc. The maximum plate dissipation is 30 watts. The transmitter illustrated in figure 14 delivers approximately 7.5 watts with 400 volts on the plate. This power output is

Figure 13-W.E.-316A U.H.F. Triode.
sufficient for coverage over a visual range, although in one case a $3 / 4$-meter signal was heard over a distance of 80 miles. which is far beyourl the optical path

Figure 14-W.E.-316A 3/4-Meter Oscillator.

A large variety of circuits could be suggested for micro-wave operation, but the most simple of these is the one shown in figure 15. It consists of two parallel half-wave rods, spaced about $1 / 4$-inch apart, to provide a $3 / 4$ meter tuned circuit of fairly-high " Q." See figure 14. The grid and plate of the tube are connected to the copper rods; this capacity causes the physical length to be less than a half wave-length. As can be seen from the photograph, the plate r.f. choke and the grid-leak do not connect to the center of the rods, but rather across the voltage node. The distance between this point and the free ends of the rods is a quarter wavelength. The other distance is shortened by the tube capacity. Filament r.f. chokes, or tuned filament leads, are desirable for operation below one meter because the filament is not strictly at a point of ground potential in the oscillating circuit. These filament chokes consist of 30 turns of no. 16 enameled wire, wound on a $1 / 4$-inch rod, then removed from the rod and air-supported, as the picture shows. The length of these chokes is approximately 3 inches. A 200 -ohm resistor is placed in series with the 110 -volt a.c. line to the filament transformer in order to reduce the
transformer secondary voltage from $21 / 2$ to 2 volts, because the filament of the tube operates on 2 volts at 3.6 s amperes. This particular oscillator gave outputs in excess of 5 watts on $3 / 4$ meters, even when no filament r.f. chokes were used.

This oscillator, when loaded by an antenna, draws from 70 to 80 milliamperes at 400 -volts plate supply. An audio modulator, such as a pair of 2 A 3 tubes, class AB connection, will supply approximately 15 watts of audio power for modulation. The oscillator should be tested at reduced plate voltage, preferably by means of a 1000 to 2000 ohm resistor in series with the positive B lead, until oscillation has been checked. A flashlight globe and loop of wire can be coupled to the parallel rods at a point near the voltage node, in order to indicate oscillation.

A 15 -inch antenna rod or wire can be fed by a one- or two-wire feeder of the nonresonant type. A single-wire feeder can be capacitively coupled to the plate rod, either side of the voltage node, through a small blocking condenser. If a two-wire feeder is employed, a snall coupling loop, placed parallel to the oscillator rods, with the closed end of the loop near the voltage node of the

Figure 15 W.E.-316A \%/Meter Oscillator Circuit.
oscillator, will provide a satisfactory means of coupling to the antenna. The power output is high enough so that tuning is as simple as any 40 meter c.w. transmitter.

W. E. 316-A Characteristics.

Filament voltage 2 volts a.c or d.c.
 Average thermionic emission. 0.45 amp . Amplification factor 6.5 Plate-to-grid capacitance $1.6 \mu \mu \mathrm{fd}$. Grid-to-filament....
Plate-to-filament ... $0.8 \mu \mu \mathrm{td}$.
Max. plate dissipation 30 watts
Max. d.c. plate voltage. 450 volts
Max. d.c. plate current. 80 MA .
Max. d.c. grid current. 12 MA .

-11/4-Meter Transmitter with RCA-834 U.H.F. Tube

The advent of several new tubes particularly designed for the ultra-high frequencies makes possible the construction of a transmitter which will deliver from 10 to 50 watts on wavelengths below 5 meters. Raytheon RK-32, Western Electric 304-B and RCA 834 are equally suitable for use in the transmitter shown in figure 17. The characteristics of all three tubes are similar.

The grid and plate leads are brought out through the top of the tube envelope in all cases, resulting in operation down to $3 / 4$ meter.

The circuit in figure 16 is suitable for oscillation between 1 and 3 meters, depending upon the length of the parallel rods or pipes.

A slight variation of frequency is possible ii two condenser plates each $3 / 4 \mathrm{in}$. square are connected across the pipes near the tube leads. This type of circuit works more efficiently than a conventional coil and condenser oscillator circuit. The tube leads fit into the ends of copper pipes, and small set screws provide good electrical contact between pipe and tube leads. This type of mounting must be used with care in order to aroid breakage of the tube envelope. The tube socket mounting strip should have slotted holes in order to make correct alignment with the copper pipes.

Filament r.f. chokes are necessary below 3 meters in order to secure oscillation. At $15 / 4$ meters, the metal shell of the tube socket, and the metal support that holds the socket, introduce excessive capacity to the filament circuit of the tube, resulting in non-oscillation if either of these metal surfaces is grounded. A non-metallic socket and socket support would be preferable if operation in the neighborhood of 1 -meter is wanted. A tuned filament circuit, somewhat similar to the type used with filament tubes in a tritet, will work more effectively than r.f. chokes for wavelengths below $11 / 2$ meters.

The antenna feeder is coupled to the parallel pipes or tubes by means of a coupling loop. A half- or quarter-wave antenna can be capacitively coupled through a very small variable condenser to the plate, rod at a point approximately one to two inches from the plate blocking condenser. Transmission ranges of 3 to 50 miles are possible if the

Figure 17-2 $1 / 5$-Meter Transmitter with RCA 834 U.H.F. Triode.
antema is located at high elevation, Even $11 / 4$-meter waves tend to curve along the surface of the earth to such an extent that communication can often be obtained beyond the optical range.

- 21/2-Meter Transmitter

An RK-34 twin-triode tube is connected in a tuncd-grid-tuned-plate circuit for $21 / 2$ meter operation in the transmitter illustrated in figure 19. A parallel rod or wire tunedplate circuit gives good efficiency on $21 / 2$ meters, proved by tests where efficiencies of

Figure 18
approxinately i0 per cent were realized. A carrier power output of 10 to 15 watts is casily obtainable on $21 / 2$ meters. The circuit is shown in figure 18. If a more powerful modulator is connected to the oscillator, together with plate potentials of 500 to 600 volts, outputs of 25 to 30 watts can be secured.

A 15,000 -ohm grid-leak and 300 -ohm cathode resistor give stable grid bias for the oscillator. The cathode resistor prevents all tendency for the plate current to "run away" during operation. The grid coil consists of torms of no. 18 wire, wound to cover a length of one inch, with an inside diancter of $7 / 16$-inch. This coil is soldered directly to the tube socket terminals. The antenna feeders can be capacitively coupled to the plate circuit through a pair of $.001 \mu \mathrm{fll}$. mica condensers. If a two-wire spaced feeder is used, these wires tap across the plate rods about two inches from the shorting bar.
The plate circuit is tuned to the desired frequency by sliding the shorting-bar along the rods. Antenna coupling is adjusted loy slicling the antenna taps along these rods until normal plate current is drawn. The inductance in the grid circuit can be varied in order to obtain the best amount of feedback for high output.

A suitable modulator consists of a pair of type 42 pentode tubes driven by a 76 speech amplifier. The 42 tubes can be operated from the common 350-volt plate supply by means

Figure 19-Raytheon RK-34 $21 / 2$ Meter Oscillator.
of a 30 -henry, 150 ma., modulation choke. The screen voltage should be reduced through a resistor from the 250 -volt supply; a 10 -watt, 10,000 -olim resistor is of the correct size. A $2 \mu \mathrm{fd}$. or larger by-pass condenser from screen to ground will pass the audio frequencies from screen to ground for normal operation. The cathode resistor of 300 ohms, 10 watt rating, should be bypassed by means of a $25 \mu \mathrm{fd}$. low voltage condenser. If greater input is applied to the oscillator. a more powerful modulator is needed. Class B 46 tubes or push-pull 6L6 tubes will give ample audio power for inputs as high as 40 or 50 watts on the RK-34 tube. Normal plate current to the latter is 80 ma., although in actual practice this oscillator has been operated over considerable periods of time at 100 ma . plate current.

- 3/4-Meter Recelver

Lack of stability and difficulty of tuming a micro-wave receiver have been the two principal obstacles in the past. Stable operation can be obtained loy confining the radio frequencies to certain portions of the circuit of a parallel-wire oscillator, as shown in figure 21.

In the receiver described here, the quarter-wave parallel-wire tuning section can be tuned over a range of from 5 to 10 centimeters by neans of a relatively large series tuming condenser. This condenser, when set to maxinum capacity, acts as a short-circuit across the parallel wires. Settings of lower capacity tend to decrease the effective length of the parallel wires by means of series tuning. This is more satisfactory than the use of parallel tuning across the grid and plate terminals of the type-955 acorn tube.

The usual micro-wave receiver consists of a similar type of circuit with a small fixed mica condenser in place of the variable tuning condenser; this requires the use of a soldering iron to change the tuning of the receiver, because the fixed condenser must be moved along the parallel wires when the frequency or wavelength is to be changed.

The acorn tube and tuning condenser are mounted on a small panel above the aluminum chassis. Small r.f. chokes are placed in series with

Figure 21

Figure 22 - Practical Micro-Wave Receiver with Acorn Triode Detector and ' 76 Audio Stage. This design must be rigidly adhered to, and all specifications closoly followed.
the heater and cathode leads oi the 955 tube. These r.f. chokes consist of 25 turns of No. 24 d.c.c. wire, in the form of a self-supported winding, $1 / 4$-inch in diameter. The plate choke is similar in construction, and with the same number of turns as the other chokes.

A quarter-wave tuned circuit of two parallel wires, terminated with a small fixed mica condenser, can be used in place of the heater and cathode chokes for wavelengths of less than $3 / 4$-meter. One side of the heater connects to the cathode at the acorn tube socket. The plate and grid terminals to the 955 tube connect to two parallel wires, each approximately $1 \mathrm{I} / 2$-in. long for $3 / 4$-meter operation. These two wires are soldered directly to the leads of the sub-midget $100-\mu \mu \mathrm{fd}$. tuning condenser, which is designed for u.1.f. operation. The rotor of this condenser is connected through an insulated flexible coupling for front-panel dial tuning; a cable drive connects the tuning dial to the condenser coupling. About 150 volts should be used on the plate. The tuning range is approximately 70 to 80 centimeters. Super-regeneration can be obtained with a 90 -volt plate supply over a range of approximately 75 to 80 centimeters. The higher plate potential of 135 volts will allow super-regeneration at lower capacity settings of the series tuning condenser, and thus permit higher frequency operation.

Super-regeneration is obtained by means of a blocking grid action, with a 1 -megohm gridleak connected across the parallel wire circuit. The output of the detector can be amplified by means of an audio transformer coupled stage or by impedance coupling ; the latter is used in the circuit shown in Fig. 21.
The chassis for this receiver is $3 \mathrm{in} . \times 10 \mathrm{in} . \times 1 \mathrm{in}$. and the front panel is $4 \mathrm{in} \times 8 \mathrm{in}$. The $3 / 4$-meter tuned circuit is mounted high enough above the chassis so that there will be no effect from the metal chassis. Three resistors and the two larger fixed condensers are mounted under the chassis. A condenser and resistor in the plate circuit of the audio amplifier prevents d.c. from flowing through the headphones and
allows grounding one side of the headphone jack. Either batteries or an a.c. power supply can be used to operate this receiver. provided that the plate potential is not more than 180 volts.

- Operation

The tuning range can be determined by means of Lecher wires approximately 3 -feet long and spaced 1 -inch apart.

An antenna can be inductively coupled to the parallel wires of the receiver by placing a $1 / 2$ - or 1 -turn loop in the plane of the wires. The coupling should be loose enough to prevent loss of super-regeneration. A directive antenna system such as a Yagi array is very satisfactory for $3 / 4$-meter operation. The antenna wire should be approximately 14 inches long, with a two-wire feeder tapped to each side of center at a point about 2 -inches each side of center. The reflector wires should be approximately 15 inches long, and the director wires 13 inches long. A quarter-wave spacing of the rear reflector wire would be approximately $71 / 2$ inches; a half-wave spacing for side reflector wires would be approxi-

Figure 23-One-to-Ten-Meter Super-regenerative Receiver with Loudspeaker Output. A feature of this recelver is the almost complete absence of connecting leads. Note arrangement and assembly of tube socket and coil holder. In the foreground are the coils for $1-, 21 / 2-$ and 5 -meter operation.
mately 15 inches. The director wires would be placed in front of the antenna in the desired line of reception, and each wire would be spaced 10 inches from the next.

- One-to-10-Meter Superregenerative Receiver

The problem of designing a receiver to cover a range of less than one meter up to more than 10 meters is indeed a simple one. The only important considerations are the need for extremely short r.f. lcads, and the use of a standard super-regenerative circuit.

Figures 23 and 24 illustrate a practical receiver which gives moderate londspeaker volume with either 135- or 180 -volt plate supply. A type-955 acorn triode serves as a super-regenerative detector which is transformer coupled to a high gain 6V6G beam power pentode. The latter is similar to the 6L6G, except for its smaller size: it also requires less heater and plate current.

Five sclf-supporting coils of No. 14 enameled wire cover the range of from 1 to 11.8 meters by means of a $15 \mu \mu \mathrm{fd}$. tuning condenser. The coils plug into pin-jacks mounted in a strip of Victron, $11 / 4 \mathrm{in}$. $\times 2 \mathrm{in}$. This strip is fastened to the 2 in . $\times 4 \mathrm{in}$. bakelite subpanel by means of a pair of 2 -inch $6 / 3$? machine screws. This method of support brings the ends of the tip-jacks directly against the terminals of the u.h.f. variable condenser. The stator lead connects to the plate terminal of the acorn tube socket by means of a wire approximately $1 / 4$-inch long. The grid condenser is an extreniely small mica fixed condenser. connected between the grid terminal of the tube socket and the rotor lead of the tuning condenser. The tuning condenser is diriven by a vernier dial through an insulated coupling and extension shaft to the front panel. The tube socket is mounted on standard socket bushings, secured to the same bakelite panel that supports the
tuning condenser and coil. The cathode and one side of the heater of the 955 tube connect directly to the metal chassis by means of a soldering lug attached to one of the mounting screws on the subpancl.

A, $006-\mu \mathrm{fd}$, mica condenser connects to one of the pin-jacks and to the same ground point on the chassis, so as to provide a short r.f. lead between the tap on the coil and the cathode terminal on the tube socket. This tap is used only on the two coils which cover the longer wavelengths. The coils which tune from 1 to 4.4 meters are center-tapped and plug into the other pin jacks in order to connect the small r.f. choke into the circuit. This choke consists of 25 turns of no. 24 d.c.c. wire, close wound and self-supporting, $1 / 4$-inch in diameter. The choke is soldered directly to the two pin jacks which are used only for the coil taps. The two lower pin jacks connect to the tuning condenser and to the outer leads of the coils.

Figure 24
The r.f. choke has a natural period of about i meters and must be short-circuited when the
large coil (6.5 to 11.8 meters) is plugged-in This is accomplished by soldering a length of no. 14 wire to the cathole tap of the coil, so that the coil plugs into all four pin jacks. The illustration in figure 23 shows how this method of comection is made.

An audio volume control regulates the gain of the beam power amplifier and a $100,000-$ ohm potentioneter controls the super-regeneration for the type-955 tube. A small 20or 30 -henry choke is shunted across the magnetic loudspeaker terminals in order to provide a path for most of the d.c. plate current through the 6 V 6 G tube.

This receiver will not super-regenerate over the entire tuning range with the one-turn coil for 1 -meter reception because the capacitance-to-inductance ratio becomes too great for condenser settings of more than approximately half-scale. However, the coils are designed so that ample overlap is obtained in order to secure super-regeneration over the complete range of from 1 to 10 meters.

- Coll Data

The coil which covers the range of from 1 to $1 . \pi$ meters consists of slightly less than one full turn of no. 14 enameled wire. The actual wire length is approximately one-inch from tip jack to tip jack, and is not plugged all the way into the tip jacks. If this coil is pushed clear into the pin jacks, so that the cathode tap to the r.f. choke coil is flush with the tip jack, the range is from 0.9 to approximately 1.6 meters. The range of from 1.6 meters to 2 meters is covered with a 4 -turn coil, with a tap near the center for connection to the r.f. choke coil. This coil is spacewound to one-inch long and has an inside diameter of $3 / 3 \mathrm{in}$.

A 7 -turn coil of the same diameter and length covers the range of from 2.5 meters to $4 . t$ meters. This coil is tapped near the center and the tap plugs into the r.f. choke pin jack. A 14 -turn coil, $3 / 8$-in. dia., $11 / 4-\mathrm{in}$. long. tunes from 4 meters up to 6.8 meters. This coil is tapped at the bith turn from the grid end of the coil, and the tap plugs into the cathode bypass pin jack. The largest coil consists of 14 turns, $5 / 8-\mathrm{in}$. inside diameter, $11 / 8-\mathrm{in}$. long, with a tap at 5 turns from the plate end of the coil is tapped at the 6th turn from the gridend the upper jacks in such a manner as to shortcircuit the r.f. choke. The tuning range of this coil is from 6.5 to 11.8 meters. The exact dimensions of the coils and locations of the taps will depend upon the physical layout of the r.f. circuit components. Enameled or bare copper wire, no. 14 , should be used in prefer-
ence to timed wire because of the lower r.f. resistance at the higher frequencies. Timed wire has a much greater "skin effect" loss and should be avoided in all ultra-high-frequency receivers and transmitters.

The chassis is $5 \mathrm{in} . \times 9 \mathrm{in} . \times 11 / 2 \mathrm{in}$., of no. it gauge aluminum, with a 12 gauge alumitum front panel 7 in. $x 11 \mathrm{in}$. The cathode bypass condenser, cathode resistor for the 656G tube, and the regeneration control hypass condenser and $50,000-\mathrm{ohm}$ resistor are mounted under the chassis.

- 21/2-5-Meter Metal
 Tube Transcelver

Metal tubes fit readily into the design of a very compact ankl powerful transceiver for 3 - and $21 / 2$-meter operation. This unit here illustrated transmits more power than most transceivers because heavy antenna loading is permissible for both transmitting and receiving. It is quite sensitive and the hiss level is low. The radiated interference is much less than from most transceivers while receiving, due to the separate interruption frequency coil circuit.

The set is built into a $5^{1 / 2}$ in. $\times 51 / 2 \mathrm{inl}$. $\times 41 / 4$ inl. steel can formed into two U-shapes with lips along the top and bottom edges of one of the U-shaped pieces. The chassis is $4 \mathrm{in} . \mathrm{x}$ $53 / 8$ in. $\times 13 / 4$ in., thus making it somewhat difficult to wire-up the 4 -pole-double-throw switch, but this job can be accomplished with a little patience. The tuning condenser, plug-in-coil and 6Cos tube are mounted on a vertical bakelite subpanel, $33 / 8$ in. high, $21 / 4$ in. wide. is in. thick. The r.f. chokes must be wound to the correct inductance so that no resonant absorption dips occur in either band. About is turns of no. 34 d.s.c. wire, closewound on a piece of $3 / 8$-in. bakelite rod, serves the purpose. The terminals of these r.f. chokes are made by drilling small holes through the ends of the bakelite rod and then soldering the fine wire to a piece of no. 22 wire twisted through and around the ends of the rod.
The interruption frequency coil provides super-regeneration in the 6С5 tube when receiving; thus heavy antenna loading and low plate voltage can be used on 5 meters. On $21 / 2$ meters, the plate voltage should be 200 volts, preferably 250 if available. The transmitter output with 135 volts supply on 5 meters will be approximately $1 / 2$ watt, and $11 / 4$ watts at 200 volts, which is greater than the output obtainable from most other transceivers. A 6 F 6 power pentode acts as modulator when transmitting and as an audio anplifier when receiving. The output in the

Figure 25-Metal Tube 21/2-5-Meter Circuit Dlagram.
latter condition is sufficient to drive a small magnetic loudspeaker to moderate volume. The detector regeneration control can be set to a point of very low hiss level and high sensitivity.

A separate $41 / 2$-volt microphone battery allow's the use of either a.c. or d.c. supply for the heaters of the two tubes. Either an a.c. power supply or batteries can be used for home or portable operation. Variable antenna coupling capacity will permit the use of any type of 5 - or $21 / 2$-meter antema. The coupling condenser can be adjusted through a hole in the front panel by means of a bakelite screw driver. The shield of the 6C5 tube should "float," i.e., it is not connected to ground as is the usual practice.

The 5 -meter coil consists of 9 turns no. 14 wire, $1 / 2$-in. diameter and $11 / 2$ in. long. The $21 / 2$-meter coil has 3 turns, $1 / 2$-in. diameter, wound to a length of between 1 in . and $11 / 2$ in., depending upon the length of r.f. leads in the r.f. tuning assembly. Pin jacks serve as terminal plug receptacles for the little plugin coils. The send-receive switch in its center position opens the heater supply circuit, but does not disconnect the B battery; consequently, if dry cells are used, the regeneration control will absorb a small amount of current, even when the set is turned off.

This transceiver can be built on a larger
chassis, if space requirements permit. The ${ }_{6} \mathrm{C} 5 \mathrm{G}$ and 6 F 6 G large glass tube equivalents of the little 6 C 5 and 6 F 6 metal tubes can be substituted without change in circuit constants. Operation on $21 / 2$ meters should be slightly more efficient when using the glass $6 \mathrm{C5G}$ tube. These glass tubes have octal bases, but they require more space.

The same arrangement of horizontal r.f. tube mounting, very close to the tuning con-

Figure 26-Front Vlew of Metal Tube Transceiver.

Figure 27-Interior View, showing Coil and Condenser Support, Also Horizontal Mounting of 6 C 5.
denser and coil, is recommended if $21 / 2$-meter operation is desired. The tuning condenser has two plates. An insulated shaft connects the condenser rotor to the dial.

The three-winding midget audio transformer is manufactured by several concerns. Any small 20 or 30 henry, 50 ma. filter choke is suitable for the modulation choke.

Figure 28-The Complete 5-Moter R-C Coupled Superheterodyne.

The performance of this unit is so superior to most other transceivers that it is highly recommended for the amateur.

- Resistance-Coupied 5Meter Super-Heterodyne

A simple 5 -meter resistance-coupled superheterodyne is shown in figures 28 and 29. The receiver has four tubes: a 6 C 6 autodyne detector, two stages of resistance-coupled i.f. amplification with 6D6 tubes, and a 76 triode second detector. The values of resistors and condensers in the i.f. amplifier are correct to bypass the intermediate frequencies only: the coupling condensers and resistors are too small in value to pass audio frequencies. The response curve of the amplifier is quite broad in order to receive 5 -meter phone signals.

All of the $.0001 \mu \mathrm{fd}$. condensers should be of the mica "postage-stamp" variety. The resistors can all be $1 / 2$ watt in rating. The $500,000-$ ohn screen control potentiometer in the 6C6 detector stage should be advanced only to the point where the detector oscillates weakly, and never to the point oi howling or super-regeneration.

The coupling between the antenna coil and the first detector should be adjusted for best weak-signal reception. Too much coupling to a resonant antenna will prevent detector oscillation and proper superheterodyne action. In tuning the receiver dial, it will be found that all 5 -meter signals will have two points on the dial, very close to each other, because the detector functions in a simple autodyne circuit.

- 5- and 10-Meter Superheterodyne

The simple 5 - and 10 meter super-regenerative receiver does not fill the requirements of the advancel experimenter who is interested in long-distance 5 meter pioneering. The spasmodic periods during which u.h.f. signals have been heard over great distances have en-

Figure 29 -The Extremely Simple Circuit Diagram of the 5-Meter Resistance Coupled Super.
couraged the design of a practical receiver capable of receiving phone c.w., and i.c.w. signals. A correctly designed u.h.f. superheterodyne can be made more sensitive than a superregenerative receiver, more stable in operation, and equally free from ignition noise.
Other uses for a combination 5- and 10-meter stuperheterodyne of the type described here are for police and commercial services where dependability and absence of background hiss are essential requirements. This receiver incorporates the Dickert noise-silencer in a modified form. A Faraday screen prevents capacitive coupling between antenna feeders and the first tuned circuit in the receiver. The high-frequency oscillator and mixer circuits were especially designed for u.h.f. operation after all other practical forms of firstdetector circuits were discarded.

The amplifier in this receiver uses $1,600-\mathrm{kc}$., air-tuned i.f. transformers and the frequency of the i.f. amplifier can be made any value between $1,600 \mathrm{kc}$. and $5,000 \mathrm{kc}$. by changing the i.f. transformers and slightly altering the high-frequency oscillator coils. The choice of i.f. frequency depends upon the service required of the receiver. The higher i.f. frequency, such as $3,000 \mathrm{kc}$. or $5,000 \mathrm{kc}$., would provide a more broadly tuned i.f. amplifier for 5 -meter voice reception. The selectivity of the $1,600-\mathrm{kc}$., i.f. amplifier is rather great for reception of signals from an ordinary 5 meter transceiver, but is excellent for reception of m.o.p.a. or crystal-controlled 5 -meter voice or c.w. signals. The high-frequency oscillator in this receiver could be crystalcontrolled for police communication service where single-frequency reception is desired.

The receiver is tuned with a single dial. The r.f. stage is not of the regenerative type, thus simplifying the problem of ganging this
tuned circuit with the first-detector and oscillator circuits. The r.f. amplifier has appreciable gain on 5 meters, however, because of careful circuit design. Very short r.f. leads, low "C" tuned circuits, and a 6 J 7 sharp cutoff tube are used to accomplish this purpose. The 6 J 7 tube is operated at very low bias and high screen voltage and at somewhat more than normal plate current. Under these conditions, the tube has about the same plate current as a $6 \mathrm{~K} \gamma$ variable μ tube operating under normal conditions, but produces about twice as much amplification. The increased gain available from a sharp cutoff tube, such as a 6 J \% or 6 C 6 , gives a better signal to noise ratio in the front end of a superheterodyne. The sharp cutoff tube will provide at least as much r.f. gain-to-noise ratio as can be obtained from a variable μ tube connected in a regenerative r.f. amplifier.
The 6 J 7 tube has nearly twice as much output capacitance as a 6 C 6 glass tube if the latter is not shielded. The difference in output capacitance is not very great when the 6C6 tube has a metal shield around it, such as is necessary for any r.f. amplifier. The shell of the metal tube serves as the shield and the small physical size of this tube allows shorter leads. The disadvantage of a possible effective higher output capacitance in the r.f. tube can be overcome by using capacitive coupling between the r.f. and first-detector tubes. As long as this tube capacity is not too great, it does not lower the I./C ratio in the following tuned circuit, and simply becomes a part of the tuning condenser capacity. The r.f. coupling circuit shown in the schematic diagram is very effective for highfrequency r.f. amplifiers. The variable plate coupling condenser allows exact alignment of the detector tuned circuit if the oscillator and

Figure 30-General Wiring Diagram of the U. H. F. Superheterodyne.

Figure 31-Top View, Showing Layout of Parts.
r.f. trimmer condensers have previously been adjusted to the correct values. This method of circuit alignment can only be applied over a very narrow range, since the variation of coupling capacity changes the r.f. gain.

The r.f. ampliier plate can be connected to the positive B through a small r.f. choke of T.5 turns of no. 34 d.s.c. wire, closewound on a $3 / 8 \mathrm{in}$. diameter bakelite rod. This choke coil is suitable for $5-$ and $10-m e t e r$ operation, but will not have enongh inductance for use on 20 meters. The receiver can be operated on :20 and 40 meters by winding additional coils on small plug-in forms. The 10,000 -ohm resistor in series with the r.f. choke in the plate circuit allows onperation on 20 or 40 meters (in spite of the too small r.f. choke) and the resistor does no harm when the set is used in the 5 - or 10 -meter bands.

The $1,600 \mathrm{kc}$., i.f. transformers are tuned by means of air dielectric trimmer condensers. Type Cr-1601, G-1600, and G-1604 -fladdin iron-core i.f. transformers are used in the amplifier in the order given.

Grithleak and space-charge first detectors depent upen grid rectification for their operation and the tube itself acts as an additional i.f. amplifier. For audio frequencies or very low i.f. frefuencies, grid detection is very effective because the grid impedance can be made high for such low irequencies. The grid-coupling condenser bypasses the r.f. frequency to the grid of the detector in these circuits and is supposed to act as a very high
impedance to the demodulated or new frequency of the plate circuit. The new freguency is formed in the grid circuit by the process of detection or mixing and part of it is lost due to the by-passing action of the gricl condenser. If the i.f. frequency is very high, such as $1,600 \mathrm{kc}$., the usual value of $.0001-\mu \mathrm{fd}$. grid condenser provides quite a low impedance to this frequency; as a result, the tube itself may provide a loss instead of a gain. If the grid condenser is made smaller in order to minimize this loss, its reactance soon becomes too great to apply the major portion of the r.f. signal across the grid-tocathode capacitance of the tube. Space-charge detectors, such as a type $24-\mathrm{A}$ or 36 tube, act as triodes which have a very low plate impedance and very high mutual conductance. This low impedance loads the first i.f. transformer to an excessive degree and tends to reduce both the i.f. annplification and selectivity. A grid-leak detector tends to have a low grid impedance as well as low plate impedance, resulting in a non-tesirable load on both the r.f. tuned circuit and the first i.f. tuned circuit. Bias detection eliminates these faults at the expense of a drop in detection efficiency. The final result is a compromise in either case when a 465 kc . i.f. amplificr is used. Bias detection proved its superiority in tests made with this receiver, where a higher i.f. frequency is used.

The oscillator in this receiver has a 6 K connected as a triode with the cathode tapped

Figure 32-The Ganged High, Frequency Circuits.
into the tumed grid circuit. This is a better method than the use of a 6 C 5 triode from the standpoint of input capacitance. The grid of the 6 K 7 comes out through the top of the tube and has less capacitance to ground than the grid of the 6 C 5 , which comes out through a prong in the base.

Two stages of i.f. amplification give good selectivity and sufficient gain for satisfactory operation of the second detector and noise limiter circuit. Signal fading is minimized by applying a.v.c. voltage to the i.f. amplifier. A 10,000 -ohm variable cathode-bias resistor serves as a control of sensitivity for c.w. reception. As the value of this bias resistor is increased, the a.v.c. effect becomes less, so that it is not necessary to cut out the a.v.c. for c.w. reception.

A $6 \mathrm{H}_{6}$ double-diode tube serves a dual function; one diode unit acts as a second detector and also supplies a.v.c voltage to the i.f. amplifier. The second diode in the 6 H 6 tube provides a noise-limiting or silencing action. This diode acts as a variable resistor shunted across the audio amplifier.

When the noise impulses, due to automobile ignition, are of a value greater than the average modulated signal, the diode acts as a short circuit across the audio output. A noise pulse of very short duration, such as that from automobile ignition interference, causes the receiver to become inoperative for a correspondingly short interval. This interval of silence is so short that it is inaudible to the ear; it only takes place on noise impulses in
which the amplitude is much greater than that of the carrier signal. The 1-megohm resistor and $1-\mu \mathrm{fd}$. condenser in the plate circuit of the noise diode have a slow time constant, so that the tube follows the a.v.c. voltage (which is proportional to the carrier signal). This makes the noise-limiter entirely automatic in its action, and by choosing those values of resistors in the noise-limiter cathode circuit as are shown in the diagram, the noise-limiting action can be made to start only for noise pulses of an amplitude greater than the modulated component of the desired signal.

Any noise impulse of high amplitude makes the noise diode cathode circuit negative with respect to its plate and, therefore, reduces the diode impedance to a few hundred ohms. This portion of the diode is connected across the audio amplifier volume control (100,000 ohm potentioneter) and thereby tends to short circuit the audio amplifier during the noise impulse interval. This circuit does not eliminate automobile ignition of low or medium anıplitude; however, it does improve reception of readable signals through strong ignition interference.

A beat-frequency oscillator is coupled to the second detector diode plate through a small capacitance consisting of a short length of hookup wire twisted twice around the plate lead of the diode. The b.f.o. consists of a standard electron-coupled oscillator tuned to produce a beat note with the $1,600-\mathrm{kc}$. signal for c.w. reception. The value of screen-grid resistor shown in the circuit diagram depends
upon the type of grid tuned coil and location of cathode tap. The b.f.o. coil is made by scramble-winding 150 turns of no. 30 d.s.c. wire on a $1 / 2$-inch diameter dowel rod, with a winding length of one inch. The cathode tap is made $1 / 4$ of the total number of turns up from the grounded end. The dowel rod is forced into a $1 / 2$-inch diameter hole in the chassis, and this coil, grid-leak and condenser are then shielded by covering them with an aluminum shield can. The $50 \mu \mu \mathrm{fd}$. tuning condenser is mounted on the rear of the chassis directly below the b.f.o. coil and the b.f.o. switch is mounted on the front panel for the sake of convenience. Excessive b.f.o. injection into the second detector produces an objectionable amount of hiss and a consequent loss of sensitivity on weak signals. If the injection voltage is too low, the beat-note on c.w. reception will be weak and strong signals can not be heterodyned. The amount of injection voltage can be varied by changing the coupling capacity between the two plate circuits and by changing the value of the screen-grid resistor.

The power supply and loudspeaker are built into the chassis. The presence of the loudspeaker produces an audio howl on signals having a strong carrier if the volume control is advanced too far. If high audio volume is desired, the loudspeaker should be mounted in a separate cabinet. The howling effect is an acoustic feedback from the loudspeaker to the tuning condenser plates and is not easily remedied.
The audio amplifier consists of a 6 C 5 triode, resistance-coupled into a 6F6 pentode. The 6 C 5 obtains its grid bias from the diode voltage; this bias voltage depends upon the signal strength and position of the arm on the volume control potentiometer. The bias is automatically increased when receiving strong signals or when the volume control is advanced for a high audio level. This arrangement is desirable in preference to fixed bias because of the noise-limiter circuit. The difficulty lies in obtaining a quiet volume control, since there is a small flow of direct current through the resistor, and most types of volume controls tend eventually to become noisy under these conditions.

- Construction of Receiver

The receiver is mounted on a cast aluminum chassis, 12 in. $\times 17$ in. $\times 21 / 2$ in. The front panel is $83 / 4 \mathrm{in} . \times 19 \mathrm{in}$., 10 -gauge dural. There are three tuning condensers of the

Hammarlund u.h.f. type, originally having a capacity of $35 \mu \mu \mathrm{fd}$. each and then reduced in capacity by removing plates until only two rotors and two stators remain in each condenser. These condensers are very efficient for u.h.f. operation because very short r.f. leads can be made; however, they are difficult to gang together for single-dial tuning. Extension shafts, two in number, each $13 / 4$ inch long, are cut from $1 / 4$ inch round brass tubing having an inside diameter of $1 / 8$ inch. These are forced-fit over the $1 / 8$ inch shafts on the tuning condensers and then soldered in place. This is accomplished by drilling a $1 / 4$ inch hole in a block of wood which is clamped to the base plate of a drill press. The front shaft of the tuning condenser is then slipped into the $1 / 4$ inch-hole and the brass extension shaft is fastened into the chuck of the drill press. The chuck is then brought down until the brass tube slips over the $1 / 8$ inch-condenser shaft and the two are then sweated together with a hot soldering iron and solder. This alignment procedure results in a reasonably straight extension shaft which rotates on the shaft axis without wobbling.
Each tuning condenser is then mounted on an aluminum subpanel, with flexible couplings linking the shafts. The mounting holes for the condensers are made a little large so that the condensers can be lined up with the front section and tuning dial without binding when the dial is rotated. The aluminum panels which hold the condensers (three in number) are spaced $31 / 4$ inches apart; they also serve as r.f. shields between stages. The two larger aluminum shield brackets are 6 inches long and 4 inches high. The smaller bracket is used for the oscillator tuning condenser and padding condenser; this bracket is 2 inches wide and 4 inches high. Even when great care was exercised in lining up the condenser, the friction developed. This, plus the friction of each condenser itself, required a vernier tuning dial with a powerful driving action. If care is taken to gang the condensers properly and if a good dial is chosen, it is easy to tune without backlash, even on 5 meter c.w. reception.

The oscillator components are mounted in the compartment closest to the front of the receiver in order to minimize backlash, which is inherent even in a solid $1 / 4$ inch-brass rod. The detector is mounted in the center compartment and the r.f. tube is mounted in a horizontal position in the third compartment at the rear of the chassis. The horizontal mounting makes it passible to run a very short plate lead, so that the efficiency even on

4 meters is relatively high. Plug-in coils, "air supported," are used for the 5 - and $10-$ meter bands. Brass standoff supports are made by drilling a $1 / 8$ inch hole in one end of a F_{6} inch round brass rod for receiving the banana-type plug on the coil. The other end of each brass standoff ($11 / 2$ inches long) is drilled and tapped to take a $6 / 32$ machine screw, so that the standoff can be supported to the chassis. Small porcelain standoff insulators, $11 / 2$ inch high, support the grid end of each coil by means of a banana-type plug and jack.
The cathode of the oscillator feeds up through the chassis into a through-type insulator which has a plug in its end. The oscillator coil has three of the small banana-type plugs, whereas the detector and r.f. coils have only two. The antenna coupling coil is mounted on standoff insulators and the coupling remains fixed for all bands. This coil consists of 7 turns of no. 14 bare wire, $7 / 8$ inch diameter, $3 / 4$ inch long. This coil can be cen-ter-tapped to ground for connection to a transposed two-wire feeder or connected to ground at one end for comnection to a concentric line feeder or simple antemna and ground.

A Faraday Screen is mounted between the antenna coil and r.f. tuned circuit. This screen consists of parallel insulated wires, spaced one diameter of the wire, cemented to a flat sheet of celluloid. One end of all of these wires is soldered to a no. 12 "bus" wire which serves as a common support for the screen. This end is grounded. The remaining ends of all the wires are insulated from each other. The physical size of this screen is $21 / 4 \mathrm{in}$. wide and $23 / 4 \mathrm{in}$. high.
The 5 -meter detector and r.f. grid coils are both identical in size; each has 7 turns of no. 14 wire $5 / 8$ inch diameter, and spaced to occupy a length of $11 / 2 \mathrm{in}$. The 5 -meter oscillator coil consists of 6 turns of no. 14 wire, $5 / 8$ inch diameter, space-wound to occupy a length of $1 \mathrm{t} / \mathrm{inl}$. The cathode tap is soldered to a point on the coil which is slightly more than one turn from the gromided end.
The 10 -meter r.f. and detector coils each have 10 turns of no. 14 wire, "air wound," $7 / 8$ in. diameter, $11 / 4$ in. long. The $10-$ meter oscillator coil has 9 turns of no. 14 wire, "air wound," $7 / 8 \mathrm{in}$. diameter, $11 / 8 \mathrm{in}$. long, with a cathode tap taken two turns from the ground end. All coils are fitted with banana-type plugs.
The oscillator padding condenser ($15 \mu \mu \mathrm{fd}$. maximum capacity) is mounted directly above its tuning condenser in the compartment closest to the front of the panel, and its capacity
is set so that the plates are about one-third enmeshed. The r.f. grid trimmer and r.f. coupling condensers are set with the plates between one-third and one-half enmeshed. The coil turns are then compressed or expanded until the circuit tracks over the :and 10 -meter bands. This is a rather tedious procedure and can be accomplished most easily by means of the 5 - or 10 -meter harmonics from a test oscillator or signal generator.

The first detector comects to the i.f. transformer nearest to it and the high-frequency oscillator tube. The first i.f. tube is mounted close to the front panel and it feeds into the second i.f. transformer, which is directly behind the round electrolytic condenser can. The second i.f. amplifier tube and third i.f. transformer are in a line with the 6C5 and 6F6 audio tubes.

The 6 H 6 detector and 6 K 7 b.f.o. tube and coil are mounted near the last i.f. transformer and audio tubes. The power supply components are mounted far to the left on the chassis. The knob on the rear side of the chassis is the b.f.o. adjuster.

All of the $.00005 \mu \mathrm{fd}$. ($50 \mu \mu \mathrm{fd}$.) condensers are of the mica type; the remaining condensers are of the fi00-volt tubular paper type, except for the $1 / 2-\mu \mathrm{fd}$. noise filter condenser, which has a rating of 400 volts.

- High-Output 6A6 5-Meter TransmitterRecelver

It was previously stated that 5 -meter transceivers have many disadvantages, including excessive receiver radiation, low output when transmitting, poor sensitivity, high receiver hiss level, and variation of transmitter frequency with receiver frequency shift. The unit here shown has a separate transmitting r.f. circuit, a common audio system, and separate receiver r.f. circuits. This permits the use of an r.f. stage, which increases sensitivity and prevents receiver radiation. The transmitter frepuency can be set to some fixed value. and the output is several times as high as that from a transceiver.

This transmitter-receiver is not much larger than a transceiver, in spite of its being a separate receiver and transmitter for 5 -meter opcration. The receiver has a separate quench frequency tube and associated controls, thus the hiss level can be set at such a low value that it is no higher than the external interference noise in most locations. Regenerative r.f. amplification with regeneration control gives extremely high sensitivity when needed.

A class B 6A6 modulator supplies sufficient audio output to modulate the 5 -meter oscillator at approximately 5 watts carrier output when a 300 -volt plate supply is available. Either an a.c. power supply, or B batteries and a 6 -volt storage battery, can be used for portable or fixed station operation. The I supply can be of any value from 150 to 30.5 volts, much better results being secured with the higher values around 280 to 300 volts.

A small magnetic loudspeaker is built into a cabinct only $14 \mathrm{in} . \times 7 \mathrm{in} . \times 71 / 2 \mathrm{in}$. This set has all of the best features of mobile or medium power station units built into one, and it can be highly recommended for general 5 -meter operation.

- Technical Notes

The transmitter consists of a TNT pushpull oscillator with a $6 . \mathrm{A} 6$ tube in a cathode bias arrangement. A 6AG speech amplifier drives a class B 6 A6 modulator which delivers 8 to 10 watts output at 300 volts. The microphone is an ordinary single-button type.
The same two lid6 audio tubes serve as an audio amplifier for the receiver when the 4-P-D-T switch is thrown to the reccive position. The latter also switches the antema from transmit to receive. The 76 super-regenerative detector is not self-quenching, but uses a separate 76 interruption frequency oscillator. The latter permits a setting of the detector plate voltage to such a value that the tube continues to super-regenerate, but with a very low hiss level. This means that a great portion of the troublesome loud hiss or roar can be eliminated, even when no station is tuned-in on the 5 -meter band.
The regenerative r.f. stage has a 6 K r metal tube, requiring less space and shorter leads. A slight amount of regeneration actually gives some r.f. gain on 5 meters and very weak signals can be received which would otherwise be inaudible. A 954 acorn r.f. tube will give more gain. but at a considerable increase in

Figure 33-Front View of High-Output 6A6 Transmitter-Receiver.
cost; thus a compromise was made in the form of the 6 K 7 tube.

The interruption frequency oscillator has two small universal-wound coils in a small shick can beneath the chassis. This oscillator functions at about 100 kc . and causes a variation at 100 kc . per second of the plate voltage on the 76 detector. This variation causes super-regeneration, with a gain of several thousand times on weak signals.

Audio volume is controlled, in the receiver only, by slunting a tapered $50,000-\mathrm{ohm}$ control across the grid circuit of the first audio stage. The microphone-to-grid transformer carries the detector plate current through its secondary when receiving; it slould, therefore, be wound with sufficiently heavy wire in order to carry approximately 5 ma . A push-pull pentorie to dynamic loudspeaker voice coil transformer can be substituted for the "mike" transformer. The voice coil winding then becomes the microphone winding, and the detector lead can be comected through the switch to the center-tap or to the grid ends of the secondary. The loudspeaker connects from one of the class B plates through a $1 / 2-\mu \mathrm{fcl}$. condenser back to a switch contact which discomects it when transmitting. This send-receive switch also comects the B supply voltage to either the transmitting 6AG oscillator or to the detector and r.f. stages.
The 6Af oscillator draws from 30 to 60 ma., deperding upon plate voltage and antenna loading. The plate impedance is some value between 5,000 and 10,000 ohms and the class B output transformer should therefore have a total primary-to-secondary turns-ratio of between 1.4-to-1 and 1-to-1. The transformer shown was rated for a 5,000 -ohm load out of a bAd class B tube, which would indicate a $1.4-$ to- 1 ratio. The class B input transformer can be any type designed for a 6.16 or 53 driver into a 6.16 or 53 class P amplifier.

- Construction

The sheet-iron can is 14 in . long, \boldsymbol{z} in. high and $71 / 2 \mathrm{in}$. deep, a standard size available from many radio supply houses. A $13 / 4 \mathrm{in}$. chassis depth is ample for the 4 -P-D-T switch, variable and fixed resistors and fixed condensers.

The 4-prong wafer socket for the power cable and the insulated microphone jack are mounted in the rear. The class B transformers are placed in such a manner that space is available for a $4 \frac{1}{2}$-volt C battery for microphone supply. The separate mike battery makes possible the use of either d.c. or a.c. for the heaters without wiring clanges. The

Figure 34-Complete Circuit Diagram of High-Output 6A6 Transmitter-Receiver.

5 -inch magnetic speaker is covered with a metal screen grill behind a 4 -inch diameter hole in the front panel.

The two receiving $15 \mu \mu \mathrm{fd}$. tuning condensers mount on small porcelain stand-off insulators. The two corresponding vernier tuning dials are of bakelite, thus a one-inch front panel hole insulates the tuning condensers from ground. Other types of dials would require an insulated coupling on the tuning condenser shafts in order to prevent r.f. noise, in one case, and a short circuit in the other.

The 6 K 7 r.f. tube mounts horizontally on a 4 in. $\times 5$ in. no. 12 aluminum shield. The latter has a $1 / 2-\mathrm{in}$. lip bent at right angles along the bottom so that a pair of $6 / 32$ machine screws will hold it rigidly in place. Shakeproof lock-washers should be placed under all machine screw nuts if the set is operated in mobile service. The r.f. stage by-pass condensers, r.f. choke and plate coupling condenser mount directly at the 6.Ai tube socket, with short leads to the aluminum sheet for a ground connection. All ground points are bonded together with hook-up wire and connected to the minus B power socket terminal.

The r.f. chokes are made by winding about 75 turns of no. 34 d.s.c. wire on a $3 / 8-\mathrm{in}$. diameter bakelite rod. The detector coil has 8 turns, $1 / 2$-in. inside diameter, tapped near the center, and the turns are spaced approxi-
mately the diameter of the no. 14 wire. The r.f. coil is similar in construction, except for the cathode tap, which is taken at about $3 / 4$ turn. The plate coil of the 6 A 6 oscillator has it turns, $5 / 3$-in. diameter, $17 / 2$-in. long. The wire for the coils should be no. 12 or preferably no. 10 copper. The 6A6 grid coil has 11 turns of no. 14 wire, $3 / 2-\mathrm{in}$. diameter, with a center-tap. This coil mounts on small standoff insulators beneath the chassis and the two grid leads extend through the insulators directly to the grid terminals on the isolantite socket of the 6.A6. This arrangement gives equal and very short grid and plate leads to the 6 A 6 r.f. tube. The 6 A 6 r.f. tube and 76 detector both mount on isolantite sockets above the chassis in order to reduce the length of the r.f. leads.

All coils are soldered to their terminals so as to prevent loose connections, losses and noise. The two antenna coils are made of no. 18 insulated hook-up wire and the coupling can thus be varied for best results with different antennas.

- Operating Notes

When first testing the receiver, the r.f. regeneration control should be set so that the value of screen voltage is approximately
zero. The super-regeneration control should be decreased in resistance until a super-recenerative hiss is audible in the loud-speaker. The r.i. control can then he rotated until r.f. oscillation takes place (without antenna), as indicated by a sudden cessation in hiss output when tuning the r.i. dial across its scale. When actually operating the receiver with an antema, the r.f. regeneration control should never be set to the point oi r.i. oscillation. A check on the operation of the r.f. stage and its tracking qualities with the detector tuning dial can be secured with the oscillation test just described.
A little practice is needed to uperate the receiver for maxinum sensitivity, because it has two tuning dials and two regeneration controls. For normal operation the r.f. stage tumes very broadly, and the r.f. gain control need not be set to its critical position. The detector super-regeneration control should always be set to a position where it will maintain a low degree of hiss level when no signal is received. The r.f. stage prevents radiation of super-regeneration squeals from the detector circuit and therefore serves a good purpose ; careful turing of the r.f. stage will give a decided gain in receiver sensitivity on weak signals.
The transmitter should be tumed to some frequency within the 5 -meter band between 56 and 60 megacycles bey means of a wavemeter or by checking it against another receiver. A diode tube ficld strength metermonitor should be available for clecking modulation. A single turn of wire in series with a 6 -volt pilot lamp makes a good tuning indicator, in addition to the field strength meter. The lamp, when coupled to the 6. As plate coil. should light up more brilliantly when the microphone is spoken into or energized by a whistle. Fairly heavy antema coupling is essential for best results. The modulation percentage is greatest at a point where the r.f. current in the antenua begins to drop slightly on steady carrier due to close coupling to the antemma fecder. The lamp indicator will also show a greater variation in

Figure 35 Looking into the High-Output Transmitter-Receiver.
r.f. current when modulating with a heavy antenna load. The spacing of the grid coil turns and the value of the cathode resistor both affect the degree of modulation for a given degree of antenna coupling.

The antema coupling system is suitable for a spaced two-wire r.f. feeder, a single-wire fecder, or to a concentric feed line. The latter is of especial benefit for automobile installations and is also best from a standpoint of minimum noise pick-up at fixed stations. The antenua can be a vertical half-wave Y-fed wire or rod, about 8 fect long, or a "J" type. A directional array will give better performance than a single element half wave antenna. For automobile installations the antenna can be 4 feet long, with the imner conductor of a concentric line feeding the lower end of the 4 -fuot insulated rod.

- Parallel Rod Oscillators

A parallel rod oscillator consists of two sets of quarter-wave parallel rod tuned circuits, such as shown in figures 36 and 37 . The parallel grid rods act as a high Q circuit, giving a high degree of frequency stability: These rods are approximately $21 / 4$ feet long for the $2.5-m e t e r$ band and $41 / 2$ feet long for the 5 -meter band. The lower ends of the grid rods are comnected to a short-circuiting copper plate, and the two grid leads are tapped to the rods a few inches above the copper plate. The plate tuning rods are nearly as long as the grid rods, and a sliding short-

Figure 36-Parallel Rod U.H.F. Oscillator with HK-354C Gammatrons in Push-Pull. The circuit diagram_is shown in figure 37.
ing-bar, or connection, tunes this circuit to resonance as indicated by minimum plate current. The oscillator is a tuned-grid-tumed-
plate circuit in which the grid circuit controls the frequency of operation. The oscillator shown in the illustration is suitable for high power amateur 2.5- or 5 -meter transmitters; smaller tubes can be used if lower power opcration is desired.

Plate modulation can be used without excessive frequency modulation. The antenna can be inductively coupled to the plate rods or directly coupled to the rods through fixed mica condensers which are connected to the rods near the shorting bar. The coupling can be adjusted so that normal plate current is drawn. The plate circuit should always be tuned to resonance with the grid circuit, as indicated by minimum plate current. The plate tuming has some effect on the frequency of oscillation. Oscillator-amplifier transmitters of this type are particularly useful for plone.

Another form of rod oscillator is shown in figure 38. This oscillator has a pair of parallel rods which are coiled into spirals. The circuit and adjustments are the same as for a conventional parallel rod oscillator. The plates are comected to a point on the spiral about one turn from the free ends; the two grids are connected to the grid spiral coils at a point about 5 inches from the short-circuited end. Each spiral consists of four turns, the total length of each rod being approximately 4.5 feet for i-meter operation.

2.5 METER OSCILLATOR (EXPERIMENTAL) USING 354-C GAMMATRONS

Figure 37 High Power U. H. F. Oscillators

Figure 38-Spiral-Rod Oscillator.

Figure 39-Low Power-Factor Line Oscillator.

- Low Power-Factor Line Oscillator

large diameter pipes, a quarter wavelength long, short-circuited at one end, are suitable for stable osciliators in the range of from 7 to 500 megacycles. Castings and heavy pipes are used in conmercially-built transmitters; temperature compensation is secured by means of semi-flexible netal bellows and an invar-rud within the inner pipe.

A pipe oscillator suitable for the amateur \therefore.j-meter band can be made as shown in the illustrations, figures 39 and 40 .

The grid of a 35 T tube is comected to the inner pipe at a point about 6 inches from the short-circuited end. The outer pipe is 36 inches long and is soldered to a copper sheen through which the inner pipe slides; this inner pipe is 27 -inches long and from 24 - to $: 55$-inches of the pipe extends into the larger pipe (for 2.5 meter operation). Waxed linen cords are wrapped around the inner pipe in order to center its position with respect to the onter pipe. The quarter-wave pipe tuned circuit controls the frequency of operation. Regeneration (and plate tuning, to some cxtent) is varied by means of a $15 \mu \mu \mathrm{fd}$. grid excitation condenser. The capacity of this combenser should be varied until the circuit oscillates under load over a range of pipe lengths. The plate current is relatively low when the proper adjustment is found. The entire transmitter should be suspended by a shock absorbing system in order to prevent vibration, which would impair the frequency stability. An efficiency of about 50 per cent can be olstained with this oscillator. It a plate potential of 500 volts, the plate current was 2.5 ma., at 700 volts 3 .) to 40 ma., and at 1,000 volts from 75 to 90 ma. under load, in laboratory tests.

This oscillator can be plate modulated, or it can be used as a driver for a class C amplifier.

- Stabilized 5-Meter Transmitter

This stabilized m-meter transmitter provides a means of securing good frequency stability without resorting to the use of long parallel rods or crystal control. Frequency stability is obtained by means of a high- Q tuned circuit, in conjunction with a variable grid coupling condenser. These two factors minimize the effect of changes in plate voltage in the oscillator during the process of modulation. Proper adjustment of the grid con-

Figure 40
trol condenser results in an oscillator which has a frequency stability comparable to that of a high-Q parallel-rod oscillator. An increase in d.c. plate voltage of from 225 up to 350 volts caused a frequency change of less than 5,000 cycles when this oscillator was under test; the usual 5 -meter oscillator has a frequency change of from 60 to 100 kc . under these test conditions. The tests were made by listening to the beat-note in a 5 meter c.w. superheterodyne receiver. A d.c. plate voltage drop of from the 225 -volt value down to 100 volts caused a frequency change of approximately 7 kc.

The oscillator in the transmitter illustrated in figures 41 and 42 can be modulated up to 75 per cent without appreciable frequency

Figure 41-Stabllized U.H.F. Oscillator, diagram. med in figure 42. Note center plate between adjustable rotors of a standard, small size neutral-izing-type condenser. It is of importance that the components be placed precisely as shown.

Figure 42

The heart of the transmitter is a special variable condenser made from a standard Bud neutralizing condenser, to which is added a small rectangular aluminum plate. One end of the coil connects to the fixed aluminum plate, which is fastened to the chassis by means of small, porcelain, standoff insulators at either end of the plate; the other end of the coil connects to one of the adjustable plates of the Bud condenser. This same lead is also connected to the plate terminal of the 6 V 6 G tube. The grid of the tube connects to the remaining circular plate of the Bud condenser. A 50,000 ohm gridleak connects from the grid to the chassis ground. The coil consists of 9 turns of no. 12 enameled wire, center-tapped; this coil is self-supporting and has an inside diameter of slightly more than $1 / 2$-inch. The turns are spaced approximately one wire diameter.
The r.f. choke consists of 80 turns of no. 34 d.s.c. wire, close wound on a $3 / 8$-inch diameter bakelite rod. This choke is mounted vertically under the
modulation. The signal can be received with excellent quality on a selective superheterodyne receiver.
This form of stabilized circuit was first shown in the 1936 edition of "The 'RADIO' Handbook." The new type-6V'6G beam power tube replaces the type-45 used in the original model. A carrier output of 3 to 5 watts is obtained from this newer transmitter. Another 6 V 6 G tube serves as a modulator, in conjunction with a single-button carbon microphone. A separate 4.5 -volt microphone battery allows the use of either a.c. or d.c. heater supply and a.c. or dynamotor plate supply.
The heater drain of the 6 V 6 G tubes is 0.9 amps. at 6 volts, for the two. The total plate current drain is approximately 70 ma . at $2: 50$ volts and approximately 85 ma . at 300 volts. The 6 V 6 G tube is a small version of the 6L6G and is primarily designed for automobile receiver service. Its characteristics are similar to those of the 6L6G.
coil, the lower end of the coil rod being supported to the chassis by means of a $6 / 32$ machine screw. The $.01-\mu \mathrm{fd}$, and $.001-\mu \mathrm{fd}$. r.f. bypass condensers in the oscillator circuit are connected directly from the tube socket terminals to the chassis ground; these condensers are of the mica type. A combination of grid-leak and cathode bias provides better frequency stability than gridleak bias alone. The screen and plate circuits of the oscillator are both modulated by the 6 V 6 G modulator tube.

In operation, the circular condenser plate at the plate side of the coil is spaced approximately is-inch from the fixed aluminum plate; the circular plate in the grid circuit should be spaced ${ }^{\text {to }}$ to $1 / 8$ inch from the center fixed plate, depending upon the degree of antenna loading. This plate must be close enough to the stator to supply just sufficient grid excitation for stable oscillation. The position of this condenser plate affects the frequency of operation, so that both con-

[^7]denser plates should be simultaneously adjusted in order to tune the circuit to the desired portion of the 5 -meter band. The position of the grid coupling condenser plate is not critical.

- High Power 5-Meter Transmitter

Occasionally, the 5 -meter signals are reflected back to earth from the Heaviside layer and communications over a distance of several hundred or even several thousand miles can be accomplished. A high power c.w. or phone signal is desirable for these periods of unusual operation.

The amplifier and doubler shown in figures 43 and 44 are capable of furnishing a carrier output of 200 watts when driven by any 6L6G doubler which has a 10 -meter output of 10 to 15 watts.

The requirements for satisfactory $\mathbf{5}$-meter operation demand very short r.f. leads and tubes with low interelectrode capacitics. Type 35 T tubes are very suitable for this purpose; the amplifier operates in the 5 -meter band as easily as a normal amplifier will operate in the 40 - or 80 -meter bands. A 35 T doubler drives the push-pull amplifier through a linkcoupled circuit. The grid circuit of the doubler tube is tuned to 10 meters, the plate circuit to 5 meters. If this complete unit is to be used for 10 -meter operation, the doubler should have its grid circuit tuned to 20 meters, or it may be used as a neutralized buffer. The plate coil must then be center-tapped and bypassed to ground and a neutralizing condenser connected from one end of the tuned circuit to the grid. Such a circuit can be used as a cloubler as well as a buffer, whereas
the one shown in figure it can be used only as a doubler. Ii a plate potential mucla higher than 1250 volts is applied to the doubler, the tuned plate circuit should be center-tapped for the usual neutralizing system in order to prevent excessive regeneration or oscillatonn in the doubler stage. This doubler is regenerative, even though the grid circuit is tuned to half the frequency of the plate circuit.

The complete unit is built on an 8 in. $\times 17$ in. $\times 2$ in. zinc-coated steel chassis. The doutbler plate and grid-tuning condensers are mounted on small standoff insulators, the bypass condensers are soldered to the metal chassis and to the tube or variable condenser terminals. The 10 -meter gric coil consists of 13 turns of no. 12 enameled wire, with a winding length of 2 inches. All coils have an inner diameter of $3 / 4$-inch. The 5 -meter plate tuning coil has 8 turns of no. 12 enameled wire, $1 / 4 \mathrm{inches}$ long. This coil is tuned by means of a midget variable condenser which las exceptionally wide plate spacing.
A one-turn link coupling circuit drives the grid circuit of the push-pull final amplifier. The grid coil of the final amplifier has is turns oi no. 12 enameled wire, center-tapped. 1 -inch long. The plate coil for the final amplifier has 9 turns of no. 8 enameled wire, $13 / 4-$ inches long, and center-tapped. All coils connect directly to the variable condenser terminals. The rotor of the plate tuning condenser remains "floating," and the condenser is mounted several inches above the chassis hy means of two vertical panels of bakelite. The neutralizing condensers are mounted directly under the plate tuning condenser, on small standoff insulators; these neutralizing

Figure 44 - General Wiring Diagram of the 5 and 10 Meter 200 Watt Unit. It Can Be Driven by Any 10 Watt 10 Meter Exciter
conderisers have 3 plates widely spaced. The ${ }_{35} \mathrm{~T}$ tubes are neutralized with the condensers enmeshed approxinately 20 per cent.

If T-20 tubes are used in place of 35 T 's in the final amplifier, the neutralizing condensers will require a higher maximum capacity. Due to the higher interelectrode capacities of the T-20 tubes, the coil inductances must be reduced by greater spacing between turns. A type TZ-20 doubler tube can be used to drive a pair of T-20 tubes to a carrier output of 60 watts from a $\boldsymbol{\tau} 00$-volt plate supply.

The plate tuning condenser in the final amplifier must have sufficient spacing between plates to withstand the peak r.f. voltages developed when plate modulating the final amplifier. The new Cardzerll u.h.f. split-stator condenser shown in the illustration has a 4,500 -volt per section flashover rating.

Current readings in the various circuits, when 35 T tubes are used with a 1,250 -volt power supply, are as follows:
Doubler grid current........... 10 to 15 ma.
Doubler plate current.......... 80 to 90 ma .
Final grid current. 40 ma.
Final plate current................... 250 ma.
At this input to the final amplifier, 150 watts of audio power is required for 100 per cent modulation. This amount of power can be secured from a pair of 35 T tubes in class-B.

A combination of grid-leak and battery-bias makes it possible to key the crystal oscillator for c.s. telegraphy.

The antenna should be inductively coupled to the final amplifier plate coil. The most desirable arrangement is by link coupling to an additional tuned circuit connected across the antenna feeders.

Scientific Progress in the I.II.F. Field

Individual experimentation and observations in the ultra high frequency field can result in little scientific accomplishment or progress unless correlated with the results and observations of others working for the advancement of u.h.f. communication.

Amateur radio has enjoyed the reputation of having been instrumental in pioneering and popularizing the wavelengths between 10 and 160 meters. We have another chance to contribute something to the advancement of the art. But nothing can be accomplished without correlation of observations and results.

When you have anything unusual to report in the way of circuits, antennas, sky-wave communication, weather or sunspot correlation, or anything else that will help in gathering useful data on the ultra high frequencies, mail it to:

Associate Editor of RADIO Magazine, $5 I 2$ N. Main St., Wheaton, Ill.

Chapter 16

Power Supplies

ANY DEVICE which incorporates vacuum tubes requires a power supply for the filament and plate circuits of the tube or tubes. The filaments of the tubes must be heated in order to produce a source of electrons within the vacuum tubes; di-rect-current voltages are needed for the other electrodes in order to obtain detection, amplification, oscillation, and rectification.

Either a.c. or d.c. voltage may be used for filament power supply in most applications; however, the a.c. power supply is the more economical, and can be used with most tubes without introduction of hum in the output of the vacuum tube device. The plate potential must be secured from a d.c. source, such as from batteries or a rectified and filtered a.c. power supply.

The a.c. current first must be converted into a uni-directional current; this is accomplished by means of vacuum tube rectifiers, of either the full- or half-zuaze type.

Figure 1 -Showing effects of rectification and filtering of an AC current.

A half-wave rectifier passes one-half of the wave of each alternation of the a.c. current and blocks the other half. The output current is of a pulsating nature, which can be smoothed into pure, direct current by means of filter circuits. Half-wave rectifiers produce a pulsating current which has zero output during one-half of each a.c. cycle; this makes it difficult to filter the
output properly into d.c. and also to secure good voltage regulation for varying loads.

A full-wave rectifier consists of two halfwave rectifiers working on opposite halves of the cycle, connected in such a manner that each half of the rectified a.c. wave is combined in the output as shown in figure 1. This pulsating uni-directional current can be filtered to any desired degree, depending upon the particular application for which the power supply is designed.

Figure 2
A full-wave rectifier consists of two plates and a filament, either in a single glass or metal envelope for low voltage rectification, or in the form of two separate tubes, each having a single plate and filament for high voltage rectification. The plates are connected across the high voltage a.c. power transformer winding, as shown in figure Ω. The power transformer is for the purpose of transforming the 110 -volt a.c. line supply to the desired secondary a.c. voltages for filament and plate supplies. The transformer delivers alternating current to the two plates of the rectifier tube; one of these plates is positive at any instant during which the other is negative. The center point of the high voltage transformer winding is usually grounded, and is, therefore, at zero voltage, thereby constituting the negatioe " B " connection.

When one plate of the rectifier tube is conducting, the other is inoperative, and vice-versa. The output voltages from the rectifier are connected together through a common rectifier filament circuit, and thus the plates alternately supply pulsating current to the output circuit. The rectifier tube filaments are always positive in polarity with respect to the output.

The output current pulsates 120 times per second for a full-wave rectifier connected to a 60 -cycle a.c. line supply, and the output from the rectifier must connect to a filter, which will smooth the pulsations into direct current. Filters are designed to select or reject alternating currents; those most commonly used in a.c. power supplies are of the low-pass type. This means that pulsating currents which have a frequency below the cut-off frequency of the filter will pass through the filter to the load. Direct current can be considered as alternating current of zero frequency; this passes through the low-pass filter. The 120 -cycle pulsations are similar to alternating current in characteristic, so that the filter must be designed to have a cut-off at a frequency lozior than 120 cycles.

- Filter Circuits

A low-pass filter consists of combinations of inductance and capacitance. An inductance or choke coil offers an impedance to any change in the current that flows through it. A high infuctance choke coil offers a relatively high resistance to the flow of pulsating current, with the result that the a.c. component or riphle passes from the rectifier tube through the load only with the greatest of difficulty. A capacitance has exactly the opposite action to that of an inductance. It offers a low impedance path to the flow of alternating or pulsating current, but represents practically infinite resistance to the flow of direct current. Inductance coils are usually comnerted in series with the rectifier outputs, while confensers are connected across the positive and negative leads of the output circuit. A simple filter circuit is shown in figure 3.

Figure 3
Electricity always follows the path of least resistance or impedance. The direct current will travel through the choke and back to the ground (negative B) comection through the external load, which normally consists of the plate circuits of vacuum tubes. The a.c. component, or ripple, tends to be impeded by the choke and short-circuited by the condensers across the filter,
which offer a lower resistance to the pulsating voltage than that offered by the load. The load impedance across the output of most filter systems is generally high, usually from 5,000 to 10,000 ohms. This load resistance can be calculated by dividing the output voltage by the total load current, this value is necessary in making calculations for low-pass and resonant types of filter circuits.
A resonant type filter is shown in figure 4 , in which a condenser C_{1} tunes the choke coil inductance to series resonance at the ripple frequency. Series resonance provides a very low impedance to the resonant frequency limited only by the actual resistance of the choke coil (since the reactance of both the condenser C_{1} and the choke coil cancel each other.)

Figure 4
The filter circuit in figure 4 accomplishes the same purpose as a large shumt condenser at the ripple frequency, but is not effective in short-circuiting the higher harmonics in the output of the rectifier system. Additional low-pass filter circuits are needed to remove these harmonic components, which are of great enough magnitude to produce objectionable high-pitched hum in the vacuum tuthe amplifier circuits.

A typical lozi-pass filter is diagrammed in figure 5. The combination of C_{1}, C_{2} and L should give a "cut-off" frequency below that of the rectified output pulsation frequency.

This type of filter is very effective because the circuit can be designed with any cut-off frequency, as long as the attenuation or rejection at the 120 -cycle-and-higher harmonic frequencies is great. This type of filter is sometimes called a "brute force filter," because large values of inductance and capacitance are normally used without much attention being paid to the actual cut-
off frequency. Inductance values of 10 to 30 henrys are used for filter chokes, and shunt capacities of from 2 to 16 microfarads are used for C_{1} and C_{2} in figure 5 .
A resomant trap circuit, such as shown in figure 6 , is sometimes used to increase the impedance of the choke L at some particular frequency, such as 120 cycles per second.

Figure 6
l'arallel resonance of C and L provides a very high impedance at the resonant frequency. The condenser C_{3} tends to bypass the higher ripple harmonics that get through the trap circuit. This type of filter is often used in conjunction with an additional section of filter of the type shown in figure 3.

The single-section, low-pass filter in figure 5 is often combined with an additional choke coil is shown in figure 7 . The additional choke coil L_{1} is an aid in filtering and also provides better voltage regulation for varying d.c. loads, such as presented by a class-B audio amplifier.

Figure 7
A two-section, low-pass filter with condenser input is shown in figure 8 . In some cases, additional sections of choke coils and condensers are added for the purpose of obtaining very pure direct current.

Resistors may be used in place of inductances in circuits where the load current is of low value, or where the applied d.c. voltage must be reduced to some desired value.

Figure 8
The ripple in the output of a filter circuit can be measured with an oscilloscope or by means of the simple circuit in figure 9. A
high voltage condenser C_{3}, having a capacity of from $1 / 4$ to $1 \mu \mathrm{fd}$., and a high-resistance copper oxide a.c. voltmeter provides a method of measuring the actual ripple voltage.

Figure 9 - Circuit for Measuring A.C. Ripple
The voltmeter should be plugged into the measuring jack after the power supply and external load circuit are in normal operating condition, and the meter should be removed from the shorting type jack before turning off the power supply or removing the load. The charging current through condenser C_{3} would tend to burn out the meter if it were left in the circuit at all times.

- Filter Circuit Considerations

The shunt condensers in a filter system serve a dual purpose: (1) a low impedance path for ripple, and (2) an energy storing system for maintaining constant power output from the power supply. The condensers are charged when the peak voltage is applied across them from the output of the rectifier; during the time in which the rectifier output decreases to zero, the filter condensers supply output current to the load. This action provides a constant output voltage.
In an a.c. circuit, the maximum peak voltage or current is the square-root of 2 , or 1.41 times that indicated by the a.c. meters in the circuit. The meters read the root-mean-square (r.m.s.) values, which are the peak values divided by 1.41 for a sine wave.
If a potential of 1,000 r.m.s. volts is obtained from a high voltage secondary winding of a transformer, there will be 1,410 volts peak potential from the rectifier plate to ground. The rectifier tube has this voltage impressed on it, either positively when the current flows or "inaerse" when the current is blocked on the other half-cycle. The inaerse peak aoltage which the tube will stand safely is used as a rating for rectifier tubes. At higher voltages the tube is liable to are-back, thereby destroying it. The relations between peak inverse voltage, total transformer voltage, and filter output voltage depend upon the characteristics of
the filter and rectifier circuits (whether full or half-wave, bridge, etc.).

Rectifier tubes are also rated in terms of peak current load. The actual d.c. load current which can be drawn from a given rectifier tube or tubes depends upon the type of filter circuit. A full-wave rectifier with condenser input may be called upon to deliver a peak current several times the d.c. load current.

In a filter with choke input, the peak plate current is not nearly so much greater than the load current, provided the inductance of the choke is fairly high.

Figure 10-When "C1"' is connected in the circuit, the filter is termed "Condenser Input." If "C1", is omitted, the filter is called "Choke Input."

A full-wave rectifier with two rectifier elements requires a transformer which delivers twice as much a.c. voltage as would be the case for a half-wave rectifier or bridge rectifier. The bridge rectifier is another type of full-wave circuit in which four rectifier elements or tubes are operated from a single high-voltage winding on the power transformer.

Figure 11-Bridge Rectifier Circuit
While twice as much output voltage can be obtained from a briclge rectifier as from a center-tapped circuit, the permissible output current, is only one-half as great for a given power transformer. In the bridge circuit, four rectifier and three filament heating transformer windings are needed, as against two rectifiers and one filament winding in the center-tap, full-wave circuit.

The output voltage across the filter circuit depends upon the design of the filter, resisance of rectifier, power transformer, and load resistance. A low resistance rectifier, such as the mercury-vapor type-83 or 866, has very low voltage drop in comparison to most high-racuum (not mercury-filled) rectifiers. The filter circuit with condenser input, i.e., a condenser across the rectifier output, will deliver a higher d.c. voltage than one with choke input, but with a sacrifice both in voltage regulation and the amount of available load current.
The d.c. voltage across the load circuit of a condenser-input filter may be as high as 1.4 times the a.c. input voltage (r.m.s) across one of the rectifier tubes if the input condenser capacity is large and the current drain small. Low values of load resistance (heavy current drain) will cause this type of power supply to have a d.c. voltage output as low or even lower than the a.c. input to the rectifier. The maximum permissible load current in this same circuit is less for a given transformer-secondary wire size and rectifier tube peak current rating than would be the case for a choke-input filter.
A choke-input filter will reduce the d.c. voltage to a value of 0.9 the a.c., r.m.s. value, but the output voltage with choke input is fairly constant over a wide range of load resistances, and the allowable load current is greater than with condenser input for a given rectifier tube and power transformer.

- Types of Chokes

A filter choke coil consists of a coil of wire wound on a laminated iron or steel core. The size of wire is determined by the amount of d.c. current which is to flow through the choke coil. This direct current magnetizes the core and reduces the inductance of the choke coil ; therefore, filter choke coils of the "smoothing" type are built with an airgap, a small fraction of an inch in the iron core, for the purpose of preventing saturation when maximum d.c. flows through the coil winding. This airgap is usually in the form of a piece of fiber inserted between the ends of the laminations. The airgap reduces the initial inductance of the choke coil, but keeps it at a higher value under maximum load conditions. The coil must have a great many more turns for the same initial inductance when an airgap is used.

As explained earlier in this chapter, choke input tends to keep the output voltage of the filter at approximately 0.9 of the r.m.s.
voltage impressed upon the filter from the rectifiers. However, this effect does not take place until the load current exceeds a certain minimum value. In other words, as the load current is decreased, at a certain critical point the output voltage begins to soar. This point is determined by the inductance of the input choke. If it has high inductance, the current can be reduced to a very low value before the output voltage begins to soar. Under these conditions, a low-drain bleeder resistor will keep the current in excess of the critical point and the voltage will not "soar" even if the external load is removed. For this purpose, chokes are made with little or no airgap in order to give them more inductance at low values of current. Their filtering effectiveness at maximum current is impaired somewhat, but it permits use of a smaller bleeder to keep the current in excess of the critical value. Such chokes are called "swinging chokes" because, while they have high initial inductance, the inductance rapidly falls to a comparatively low value as the current through the choke is increased.
The d.c. resistance of any filter choke should be as low as possible in conjunction with the desired value of inductance. Small filter chokes, such as those used in radio receivers, usually have an inductance of from 20 to 30 henrys, and a d.c. resistance of from 200 to 400 ohms. A high d.c. resistance will reduce the output voltage, due to the voltage drop across each choke coil. Filter choke coils for radio transmitters and class- B amplifiers usually have less than 100 ohms a.c. resistance.

- Types of Filter Condensers

There are two types of filter condensers: (1) Paper dielectric type; (2) Electrolytic type.

Paper condensers consist of two strips of metal foil, separated by several layers of waxed paper. Some types of paper condensers are wax-impregnated; others, especially the high voltage types, are oil-impregnated. High voltage filter condensers which are oil-impregnated will withstand a greater peak voltage than those impregnated with wax, but they are more expensive to manufacture. Condensers are rated both for "flash" test and normal operating voltages; the latter is the important rating and is the maximum voltage which the condenser should be required to withstand in service.
The condenser across the rectifier circuit
in a condenser-input filter should have a working voltage rating equal to at least 1.41 times the r.m.s. voltage out of the rectifier. The remaining condensers may be rated more nearly in accordance with the d.c. voltage.

Figure 12-Newer Form of Electrolytic Condenser with a Bank of Electrodes, Rather Than a FoilCoated Layer.

Electrolytic condensers are of two types: (1) Wet; (2) Dry. The wet electrolytic condenser consists of two aluminum electrodes immersed in a solution called "electrolyte." A very thin film of oxide is formed on the surface of the metal, and this acts as the dielectric. The electrolytic condenser must be correctly connected in the circuit because it has positive and negative electrodes, and a reversal of the polarity will ruin the condenser. The dry type of electrolytic condenser uses aluminum electrodes with an electrolyte in the form of paste. The dielectric in both kinds of electrolytic condensers is not perfect; these condensers have a much higher d.c. current leakage than the paper type. The leakage current is greater in the wet electrolytic than in the dry types.
The high capacitance of electrolytic condensers results from the very thin film which is formed on the plates. The maxi-

Figure 13-Electrolytic condensers connected in series plus to minus, with $500,000=\mathrm{hm}$, 1-watt, resistor connected across each condenser in order to equalize the leakage and to prevent excessive strain onjany one section of cendenser.
mum voltage that can be safely impressed across the average electrolytic filter condenser is between 450 and 600 volts; the working voltage is usually rated at 450 . When electrolytic condensers are used in filter circuits of high voltage supplies, the condensers should be connected in series, as shown in figure 13. The positive terminal of one condenser must comnect to the negative terminal of the other, in the same manner as dry batteries are connected in series. Grid-leak resistors of equal value should be connected across each condenser in order to equalize the leakage and to provide a more uniform d.c. voltage drop across each condenser section.
The capacity of two condensers in series is only one-half that of a single condenser, but the voltage breakdown rating is doubled. Four condensers in series give only onefourth as much capacity as a single condenser, but the voltage breakdown rating is approximately four times as high. There is very little economy in using electrolytic condensers in series in circuits where more than two of these condensers would be required to prevent voltage breakdown.

- Bleeder Resistors

A heavy duty resistor should be connected across the output of a filter in order to draw some load current at all times. This resistor avoids "soaring" at no load when swinging choke input is used, and also provides a means for discharging the filter condensers when no external vaculum tube circuit load is connected to the filter. This "bleeder" resistor should normally draw approximately 10 per cent of the full load current. The power dissipated in the bleeder resistor can be calculated by dividing the square of the d.c. voltage by the resistance. This power is dissipated in the form of heat, and, if the resistor is not in a well ventilated position, the wattage rating should be higher than the actual wattage being dissipated. The following table gives suitable values of bleeder resistors for nower supply systems with from 500 to 3,000 volts output.

- Rectifier Circuits

The three types of rectifier circuits for single-phase a.c. line supply consist of a half-wave rectifier, as shown in figure 17, a full-wave rectifier as shown in figure 18, and a bridge rectifier circuit as shown in figure 19.

Figure 17

Figure 18

Figure 19
Three-phase circuits can be connected for half-wave rectification, as shown in figure 20 , or for full-wave rectification as shown in figure 21.
The most popular circuits are those shown in figures 18 and 19. The maximum transformer voltage of the high voltage secondary, d.c. output voltage for choke-input filter, and maximum d.c. load current are shown in the accompanying table in terms

Output Voltage	Resistance In Ohms	Actual Dissipated Power In Watts	Recommended Resistor Wattage Rating
500	25,000	10	25
1,000	50,000	20	50
1,500	75,000	25	50
2,000	100,000	40	100
2,500	150,000	42	100
3,000	200,000	45	100

Figure 20

Figure 29
of rectifier tube peak ratings. These peak ratings are listed in a separate table for a few commonly used rectifier tubes.

An example for applying the figures in the table, if type-866.A rectifier tules are used as in figure 15, is given here: The naximum transformer voltage E across each side of the conter-tap is 0.35 times 10,000 or 3,500

Tube Type	Peak Inv. Volts	Peak Plate Current (amp.)
66 Jr.	2,500	.25
82	1,400	.40
83	1,400	.80
66	7,500	.6
66 A	10,000	.6
72	7,500	2.5
72 A	10,000	2.5
869	20,000	5.0

rolts. The d.c. roltage at the input to the filter (choke infut) is 3,500 times 0.9 or 3,150 zolts. The maximum adzisable d.c. output current is 0.66 times the peak plate current of 0.6 ampere or 396 milliamperes.

These are the maximum voltages and currents which can be used without exceeding the ratings of the rectifier tubes. The actual d.c. voltage at the output of the filter will depend upon the d.c. resistance of the filter, and can be found by subtracting the $I R$ drop across the filter chokes from the value of 0.9 times the transformer voltage E. This does not take into consideration the voltage drop in the power transformer and rectifier tubes. The voltage drop across a mercury vapor rectifier tube is always between 10 and 15 volts. However,

Figure 23

Figure 24

Edc-860 V Idc-100 MA EAC-1100 V IAC-96 MA [PRT-1.1 A
\qquad
Edc-1200 V IdC-100 MA EAC-1100 V [AC-148 MA [PRI-1.65 A

Figure 25
Typical voltage and current readings in various types of power supplies.

Figure No.	Transformer Volts Max. "E"	DC Output Volts at Input to Filter	DC Output Current In Amperes
18	. $35 \times$ Inv. Pk. Vtg.	. $9 \times E$. $66 \times$ Pk. Plate
19	. $7 \times$ Inv. Pk. Vtg.	. $9 \times \mathrm{E}$	$.66 \times$ Pk. Plate
20	. $43 \times$ Inv. Pk, Vtg.	$1.12 \times \mathrm{E}$. $83 \times$ Pk. Plate
21	. $43 \times$ Inv. Pk. Vtg.	$2.25 \times$ E	$1.0 \times$ Pk. Plate

the voltage drop across high-vacuum rectifier tubes can be many times greater.

The power supply circuits illustrated in figures 22 to 25 represent commonly-used connections for power transformers. The values of d.c. output voltage are indicated in each case for a load current of 100 ma. The transformer secondary potential is 1,100 volts. The interesting figures in connection with each circuit are those of the primary winding current.

The circuit in figure 25 should never be used unless the load current is very low. Manutacturers generally rate their transformers in terms of secondary r.m.s. voltage and the maximum d.c. load current which can be taken from a choke input filter circuit such as shown in figure 2.2. In order to prevent overload of the power transformer, the load current must be reduced to less than one-third of the value which can be drawn from the circuit in figure 22. The load which can be drawn from the circuit in figure 24 without overload to the power transformer is approximately 50 per cent of that for the circuit in figure 22. The permissible d.c. load current in figure 23 would only be two-thirds as much as for figure 22, for a given transformer size.

- Mercury Vapor Rectifier Tubes

When new high voltage mercury vapor rectifier tubes are first placed in service. the filaments should be operated at normal temperature for approximately 20 minutes before plate voltage is applied, in order to remose all traces of mercury from the cathode. Aiter this preliminary operation, plate voltage can be applied within 20 to 30 seconds of the time the filaments are turned on, each time the power supply is again used. If plate voltage is applied before the filament is brought to full temperature, active material may be knocked off the oxide-coated filament and the life of the tube will be greatly shortened.

Small r.f. chokes must sometimes be connected in series with the plate leads of mercury vapor rectifier tubes in order to prevent the generation of radio-frequency "hash," These r.f. chokes must have sufficiently heary wire to carry the load current and enough inductance to attenuate the r.f. parasitic noise current from flowing into the filter supply leads and thereby radiating into nearby radio receivers.

Small resistors or small iron-core choke coils should he connected in series with each

Figure 26
Bridge rectifier suitable for 1000 -volt supply. Equalizing resistors are 100 ohms each, 10 w .

Figure 27
plate lead of a mercury vapor rectifier tube when used in circuits such as those shown in figures 26 and 27.

These resistors tend to prevent one plate iron carrying the major portion of the current. High-íacmum type rectifiers which are connected in parallel do not require these resistors or chokes.

Bias Voltage Power Supplies

Power supplies to supply negative grid voltage for radio or audio amplifiers differ from plate supplies only in that the positive and negative connections are reversed: the positive terminal of a C-bias supply is connected to ground. The filter chokes are usually connected in series with the "hot" lead, which in this case is the negative lead. A simple C-bias power supply for negative grid bias for a class-A audio amplifier is shown in figure 29 ,

Figure 29-Here is a Bias Pack which uses a medium-to-high resistance bleeder. Voltage regulation is usually unimportant in biasing a class A modulator and very little bleeder is used.

Figure 30

The value of C -bias dipends uthon the secondary voltage of the transformer and whether condenser or choke input to the filter is used.
The bias voltage supply for a linear r.f. amplifier or class-B audio amplifier must have a very low resistance bleeder; a circuit such as the one in figure 31 is satisfactory: The power transformer must be rated to carry a d.c. load current of approximately 250 ma., which is dissipated in the low-resistance bleeder.
The exact required voltage for a class- B audio amplifier can be obtained by means of a slider on the bleeder resistor, provided the latter has a very low resistance, such as 800 to 2,000 ohms. The transiormer secondary voltage should preferably be chosen in such a manner that the correct bias voltage is obtained at the output terminals of the filter.
A bias power supply for medium power radio transmitters is shown in figure 30 .
Two bleeder resistors with slider adjustments provide any desired value of negative grid bias for the r.f. amplifiers. The location of the slider on the resistors should be determined experimentally with the amplifier in operation, since the d.c. grid current of the r.f. amplifier itself will affect the voltage across the bias supply taps. If the final r.f. amplifier or buffer-amplifier operates with high μ tubes, the values of bleeder resistance shown in figure 30 may have to be reduced as much as 50 per cent. The total resistance in series with the grid to ground acts as a grid-leak resistance. The circuit illustrated is practically free from reaction between buffer and final amplifier bias.

- Transmitter Power Input Control

The U. S. Goverument regulations require that only sufficient power input to a radio transmitter be used to maintain satisfactory communication. The power input to the final r.f. amplifier of a c.w. transmitter can be controlled over a very wide range by means of an auto-transformer, connected as shown in figure 32.

The a.c. voltage can be varied from a few volts up to 130 volts, by means of a relatively small auto-transformer. This a.c.

Figure 31 -In the Elas Pack shown above, alowresistance bleeder is used to provide a constant voltage output. A Bias Pack of this type is suitable for class B audio or class BC Linear Amplifier operation. The ungrounded side is the negative terminal.
voltage should be applied only to the highvoltage power transformer which supplies plate power to the final r.f. amplifier.
Convenient adjustment of input to a phone transmitter other than of the plate-modulated type is a more difficult problem. Input to a plate-modulated transmitter can be varied the same as for a c.w. transmitter without danger of overmodulating the reduced input if the primary voltage for the plate transformer that feeds the modulators

Figure 32
is fed from the same tap on the auto transformer as the plate transformer for the final amplifier. If onc power supply is used for both, the problem is further simplified.

Reducing the power of a grid-modulated final amplifier is more of a problem. The best method for reducing power is to reduce the r.f. excitation and audio gain together,

Figure 33-Dual-power supply for crystal oscillator, buffer-doubler and speech amplifier service. The unlt closest to the front panel delivers from 350 to 400 volts, the other is a 600 -volt supply for a huffer stage. Bleeder resistors are under the chassis. Wafer sockets are for plug-in terminals and cords.

Figure 34-High-Voltage Power Supply with "Streamline" Transformer and Chokes. This unit delivers 1750 or 1500 volts for the medium-power phone transmitter described in the Chapter on Radlotelephone Transmitter Construction.

Figure 35-A laboratory type power supply which makes provision for various heater and plate voltages, with socket plugs for cable connections to any device under test. Some components are secured directly to the front panel, the others on a subdeck. A variable resistor allows line voltage adjustment over a wide range.

Figure 36 -This unit, and the one illustrated in figure 37, are referred to in the WGLVS transmitter description In the radiotelephone construction chapter of this handbook. Figure 36 shows the relay-switching control unit, bias supply, bleeder resistors and filament supply transformers for a high power modulator. Figure 37 shows the high-power plate supply system for this same transmitter. A "pole pig" transformer, re-encased and re-impregnated, is shown at the far right in figure 37.

without disturbing the bias or plate voltage or antenna coupling adjustment.

Those using linear r.f. amplifiers can either incorporate a switching arrangement for throwing the antenna over to the lowlevel modulated stage and thus reduce power about 10 db , or else merely reduce excitation to the linear amplifier without disturbing the a.f. gain control.

Transformer Desigin

A common problem in radio and allied work is to determine how a transformer can be built to supply certain power requirements for a particular application, or how to calculate the windings needed to fit a certain

Figure 37 - High voltage, high power flate supply referred to in figure 36 .
transformer core which is already on hand. These problems can be solved by a small amount of calculation.
The most important factor in determining the size of any transformer is the amount of core material available. The electrical rating, as well as the physical size, is determined almost entirely by the size of the core. The core material is also important. The present practice is to use high-grade silicon-steel sheet. It will be assumed that this type of material is to be employed in all construction herein described. Soft sheetiron or stovepipe iron is sometimes substituted, but transformers made from such materials will have about 50 to 60 per cent of the power rating, pound for pound of core, as those made from silicon-steel.

The core size determines the performance of a transformer because the entire energy circulating in the transformer (except small amounts of energy dissipated in resistance losses in the primary) must be transformed from electrical energy in the primary winding to magnetic energy in the core, and reconverted into electrical energy in the secondary. The amount of core material determines quite definitely the power that any transformer will handle.

Transformer cores are often designed so
that if the losses per cubic inch of core material are determined, these losses can be used as a basis for calculating the rating of the transformer. These losses exist in watts, and are divided between the eddy current loss and the hysteresis loss. The eddy current loss is the loss due to the lines of force moving across the core, just as if it were a conductor, and setting up currents in it. Induced currents of this type are very undesirable and they are merely wasted in heating the core, which then tends to heat the windings, increase the resistance of the coils and reduce the overall power handling ability of the transformer. To reduce such losses, transformer cores are made of thin sheets, usually about no. 29 gauge. These sheets are insulated from each other by a coat of thin varnish, shellac or japan, or by the iron-oxide scale which forms on the sheets during the manufacturing process and which forms a good insulator between sheets.
"Hysteresis" means "to lag." and hysteresis in an iron-core means that the magnetic flux in the core lags behind the magnetizing force that produces it, which is, of course, the primary supply. Because all transformers operate on alternating current. the core is subjected to continuous magnetizing and denlagnetizing force, due to the
alternating effect of the a.c. field. This force heats the iron, due to molecular friction caused by the iron molecules re-urienting themselves as the direction of the magnetizing flux changes.
The higher the field strength, the greater the heat produced. A condition can be reached where a further increase in magnetizing flux does not produce a corresponding increase in the flux density. This is called "saturation" and is a condition which would cause considerable heat in a core. In practice, it has been found that all core material must be operated with the magnetic flux well below the limit of saturation.
Core losses manifest themselves as heat and these losses are the determining factor in transformer rating. They are spoken of as "total core loss," generally used as a single figure, and for common use a core loss of from . 75 watts to 2.5 watts per pound of core naterial can be assumed for 60 cycles. The lower figure is for the better grates of thin sheet, while the higher loss is for hearier grades.

About 1 watt per pound is a very satisfactory rating for common grades of material. This rating is also dependent on the manner in which the transformer is built and mounted and in the ease with which the heat is radiated from the core. Transformers with higher losses may be used for intermittent service.
The transformer core loss can be assumed to be from 5 to 10 per cent of the total rating for small transformers. Thus, if the core loss is known, the rating of the transformer can be easily determined. If the figure of 1 watt per pound is assumed, the problem is further simplified. To determine the rating of the transformer, weigh the core. If, for example, the core weighs 10 pounds, the transformer will handle from 100 to 200 watts. Such a transformer core can be assumed to have about 1.50 watts nominal rating.
If the weighing of the core is inconvenient, the weight can be calculated from the cubic content or volume. Sheet-stecl core laminae weigh approximately one-fourth pound per cubic inch.
Transformer cores are generally made of two types, shell and core. The shell-type has a center leg which accommodates the windings, and this is twice the cross-sectional areas of the side legs. The core-type is made from strips built-up into a hollowlike affair of uniform cross section. For the shell-type core, the area is taken as the
square section of the center leg, in this case $21 / 4 \mathrm{in}, x+1 / 2$ in. and in the core-type, this area is taken as the section of 1 leg , and is also $21 / 4 \mathrm{in} . \times 4 \mathrm{I} / 2 \mathrm{in}$., or an actual core area in both cases of 10.1 square inches, which is large enough for a comparatively large transformer.
To determine the number of turns for a given voltage, apply the following formula:

$$
=\frac{4.4+\mathrm{N} \mathrm{~B} \mathrm{~A} \mathrm{~T}}{10^{*}}
$$

Where E equals the rolts of the circuit; N. the cycles of the circuit; B, the number of magnetic lines per square inch of the magnetic circuit; A, the number of square inches of the magnetic circuit, and T , the number of turns.
The proper value for B, for small transformers, and for ordinary grades of sheetiron, such as are now being considered, is 75,000 for 25 cycles and $\mathbf{5 0 , 0 0 0}$ for 50 or 60 cycles.
Rewriting the above formula:

$$
T=\frac{\mathrm{E} \times 10^{*}}{4.44 \mathrm{~N} \mathrm{~B} \mathrm{~A} \mathrm{~T}}
$$

and since N and B are known

$$
\mathrm{T}=\frac{10^{8}}{4.44 \times 60 \times 50,000} \times \frac{\mathrm{E}}{\mathrm{~A}}
$$

from which

$$
T=\pi .5 \times \frac{\mathrm{E}}{\mathrm{~A}}
$$

That is, for a transformer to be used on a 60 -cycle circuit, the proper number of turns for the primary coil is obtained by multiplying the line-voltage by 7.5 and dividing this product by the number of square inches cross-section of the magnetic circuit.
On a 25 -cycle circuit, the 7.5 becomes 12. and on 50 cycles it becomes 9 .

- Tentative Design

Assume a transformer core that is to be used on a 115-rolt, 60-cycle circuit for supplying power to two rectifier tubes, each of which takes 1,000 volts on the plate. The rectifier is of the full-wave type. The core measures $21 / 2$ inches $\times 4^{1 / 2}$ inches; hence.
$\mathrm{T}=\frac{7.5 \times 115}{2.25 \times 4.5}=85$ (to the nearest turn), and the volts per turn equals
115
$-=1.353$ which is the same for all coils. 85
Now, the secondary coil must have two windings in series. each to give 1,000 volts, and with a middle-tap. The secondary turns

Guam cross sectiomal area				DCE	T sec	ose	ssc.	Enım.			DCC.		TURHS PEM SQUARE IMCH osc ssc. Enes.			$\xrightarrow[\text { Ecc. }]{\text { scac. }}{ }_{\text {ssc. }}$		\longleftarrow FT. PER POUMO \longrightarrow			RES PEf1000 Ft .\qquad	carryimg capacity Capos				
Mo	(124	c_{10}	$\begin{gathered} \text { So. } \\ \text { Lnemen } \end{gathered}$								OCL					sce.	m		$\begin{aligned} & 1500 \mathrm{~cm} \\ & \text { Pu Ami. } \end{aligned}$							
nuat	460.0	211600	. 1662																				1.561	. 649	815.6	140.7
000	- 09.6	167×00	.1318																	1.968	. 0629	167.8	111.3			
00	366.8	133100	. 1045																	2.482	.0i93	133.1	88.9			
0	324.9	$10: 5110$. 018289																	3.130	. 1000	105.5	70.3			
1	2 m 9.3	H3690	. 06573																	3.947	. 1260	83.7	55.7			
2	237.6	66370	. 05213																	6.977	. 1592	6.6	44.1			
-	229.4	52649	.04134																	6.276	. 2004	32.6	35.0			
4	20.3	51710	. 03278																	7.914	. 2338	41.7	87.7			
5	181.9	33100	. 026 mm																	9.986	. 3192	33.1	22.0			
6	162.0	26250	- 12062	5.4	5.60															12.58	. 6028	26.3	17.5			
7	10.3	-nM20	. 11635	6.08	6.23															13.87	. 5080	20.8	13.8			
5	$12 \times .5$	16510	. 01297	6.80	8.96													19.6	19.9	20.01	. 6405	16.5	11.0			
5	214.4	13199	. 0102 L	7.64	7.68													24.6	25.1	25.23	. 4078	13.1	8.7			
10	101.9	10350	. 00×155	8.51	8.55													30.9	31.6	31.82	1.018	16.4	6.9			
11	90.74	$\mathrm{N}_{23} \mathrm{~S}_{4}$. 006167	9.58	9.60													38.9	39.8	40.12	1.284	8.8	5.5			
12	80.81	6530	. 005129	10.62	10.80	11.8	12.1	12.1	18.4	11.8	121	136	139	148	146	130	139	48.9	50.2	50.59	1.619	6.5	4.4			
13	71.96	5178	. 004067	11.88	12.06	13.2	13.5	13.5	12.8	13.2	153	171	173	143	183	168	173	61.5	63.2	63.80	2.042	5.2	3.5			
14	64.09	1107	.on ${ }^{\text {22 }}$ \% 5	13.10	13.45	11.7	15.1	15.2	11.2	14.7	187	213	216	229	239	201	218	77.3	79.6	80.44	2.575	4.1	8.7			
15	57.07	32.37	. 002558	14.68	14.90	16.4	16.9	17.0	15.8	16.5	229	268	268	287	290	250	271	97.3	100	101.4	3.247	3.3	2.2			
16	30.12	2393	.092028	16.40	17.20	18.2	18.9	18.7	17.6	18.4	2×0	327	333	358	350	309	338	119	126	127.9	4.094	2.6	1.9			
17	4.3 .26	2014	. 001609	18.10	18.80	20.3	21.2	21.4	19.5	20.5	360	404	12	48	458	381	421	150	155	161.3	5.163	2.0	1.3			
B	0.30	169	-001276	20.00	21.00	22.6	23.6	24.0	21.7	22.8	412	498	510	559	575	669	524	188	196	203.4	6.510	1.6	1.1			
19	3:,49	1288	On1012	21.43	23.60	25.4	26.8	27.2	24.2	25.8	50%	629	644	715	739	587	665	237	247	236.5	8.210	1.3	. 86			
20	31.96	1422	.nnosoz3	23.91	25.40	27.8	29.5	30.1	26.5	28.4	596	732	773	867	904	701	805	298	311	323.4	80.35	1.0	. 68			
21	29.46	810.1	Trone 36	26.20	29.70	30.8	32.A	33.6	29.6	31.5	75.2	949	949	1078	1129	878	991	370	389	407.8	13.05	. 61	. 54			
22	25.35	612.4	. 010 ºsn 6	28.58	32.00	38.1	36.6	37.7	32.7	35.0	*99	1161	1161	1337	1419	1071	1327	461	491	514.8	16.48	. 4	.43			
23	22.37	509.5	OMut 0 a 2	31.12	34.30	37.6	40.7	42.3	36.1	39.0	1080	1816	1416	1656	1785	1306	1518	584	624	648.4	20.76	. 51	. 34			
21	21.10	101.0	.0003173	33.60	37.70	41.5	45.3	17.2	39.7	43.1	1266	1722	1722	2048	2225	1575	1858	745	878	817.7	26.17	. 41	. 27			
25	17.90	320.4	. 0 On2517	36.20	41.50	15.7	50.3	52.9	43.7	47.9	1491	2085	2085	2525	2800	1907	2289	903	958	1031	33.00	. 38	. 21			
26	15.94	2.0.1	.0001996	$39.9 n$	45.30	50.2	55.7	59.0	47.8	52.8	1715	2515	2515	3108	3484	2281	2798	1118	1188	1300	41.62	. 25	. 17			
27	14.20	20.5	. 00015×3	42.60	49.40	58.0	61.8	65.8	52.1	58.1	2039	3019	3019	3811	4328	2713	3381	1422	1533	1639	52.48	. 20	. 13			
2 EM	12.61	159.8	. 01012%	45.57	51.60	60.1	68.3	83.9	57.0	64.4	2397	3611	3611	4666	5956	3230	414	1759	1903	2067	66.17	. 16	.41			
29	11.26	125.8	.0i10n9933	48.00	58.80	65.5	75.4	82.2	61.9	10.6	2696	4294	4294	5688	6362	3830	1988	2207	2461	2607	83.44	. 13	. 084			
30	10.03	110.5		$51.1 ?$	64.60	71.3	83.1	92.3	67.4	17.9	3076	5081	5081	6911	8527	4549	6075	2534	2893	3287	105.20	. 10	.067			
31	H.928	29.711	. 000006360	56.84	69.00	77.3	91.6	103.0	32.8	85.9	$314 n 9$	5981	5981	8389	10568	5305	1267	2768	3483	4145	132.70	. 079	. 0.53			
32	7.950	63.21	.0ninu 963	60.20	75.00	83.7	101.0	116.0	89.1	93.9	3331	8003	8003	10101	13363	6250	8818	3137	4414	5227	167.30	. 063	. 012			
33	7.000	50.13	. 0 nnin 3937	61.30	81.00	96.3	110.0	130.0	85.6	103.0	4398	8143	8143	12130	16952	7326	10672	6697	5688	6591	211.00	.030	. 033			
31	6.385	39.75	.0n0003122	65.60	87.60	97.0	120.0	145.0	91.7	112.0	4893	9407	9407	14499	20967	8403	12610	6168	6400	8310	266.00	. 039	. 026			
35	: 615	31.52	. 00003196	73.00	94.20	101.0	131.0	168.0	98.8	123.0	5391	10817	10817	17247	26745	9766	15186	6737	8393	10480	335.00	. 33	. 021			
35	5.000	25.00	. 00 not964	78.50	101.00	111.0	143.0	${ }^{182.0}$	105.0	133.0	5917	12316	12316	20408	33051	11080	17787	7877	9846	13210	\$23.00	. 225	. 017			
37	4.473	13.183	. 0 0nnol:59	81.168	108.00	118.0	15.5 .0	208.0	113.0	146.0	$61: 2$	13996	13996	24015	40766	12758.	21295	9309	11638	16650	533.40	. 020	. 013			
3\%	3.265	15.72	. 0 Onn1233	89.10	115,00	125.0	168.0	235.0	120.0	${ }^{157.0}$	${ }^{\text {gyis }}$	15763	15763	28106	54990	14291	24685	10688	13848	21010	672.60	. 016	. 010			
39	5.331	12.47	. 0 กก̄0̆9793	95.00	122.50	133.0	1×1.9	261.0	$12 \mathrm{~A} \cdot \mathrm{O}$	182.0	7621	17630	17630	32690	68120	16308	29412	11907	18286	26500	848.10	. 012	. 008			
40	1.134	9.8R4	. 000409766	102.50	${ }^{130.04}$	111.0	191.0	290.0	131.0	184.0	8015	19589	195\%9	37779	81248	18014	43727	11232	24381	33110	1059.00	.008	. 006			
11	2.800	7.811	.nmmotico	112.00	153.00													17920	30610	42130	1323.00	. 008	. 005			
42	2.191	6.220	. 000005×85	124.00	168.00													22600	38700	53100	1667.00	. 006 -	. 004			
43	2.221	4.933	-0nn003873	1160.00	192.00													28410	48600	66970	2105.00	. 005	. 003			
4	1.978	3.910	. 0000003073	153.00	210.00													35950	61400	84460	2655.00	. 004	. 0025			

Figure 40 -Copper Wire Table
will be $\frac{2000}{1.353}=14.8$ with a tap taken out at the 739th turn.

Allowing $1,500 \mathrm{~cm}$. per ampere, the primary wire should be no. 12. The size of the wire on the plate coils may be no. 22 or 24 for a 400 to 300 ma . rating.

Figure 41-Types of Transformer Cores.

To determine the quantity of iron to pile up for a core, it is well to consider 1 to 1.5 volts per turn as a conservative range. For trial assume 1.25 volts. Then by transforming the first equation:
$A=\pi .5 \times \frac{E}{T}$ or, the area required is 7.5 times the volts per turn; in this case, $7.5 \times 1.25=9.38$ sq. in.

The magnetic cross section must be measured at right angles to the laminations that are enclosed by the coil, the center leg when the core is built up around the coil, and either leg where the core is built up inside the coil, that is, between the arrows in the sketches shown above.

It should be kept in mind that there is a copper or resistance loss in all transformers. This is caused by the passage of the current through the windings and is commonly spoken of as the "IR" loss. It manifests itself directly as heat and varies as the load is varied; the heavier the load, the more heat is developed.

This heat, as well as other heat losses, must be removed, or the transformer will burn up. Most transformers are so arranged that both the core and windings can radiate heat into the surrounding air and thus cool themselves. Large transformers are mounted in oil for cooling and also for the purpose of increasing the insulation factors.

In any transformer, the voltage ratio is directly proportional to the turns ratio.

This means that if the transformer is to have 110 volts input and 250 turns for the primary, and if the output is to be 1,100 volts, 2,500 turns will be needed. This may be expressed as :

$$
\frac{\mathrm{E}_{\mathrm{p}}}{\mathrm{E}_{g}}=\frac{\mathrm{T}_{\mathrm{p}}}{\mathrm{~T}_{s}}
$$

It is often more convenient to take the figure obtained for the primary winding and, by dividing by the supply voltage, the number of turns per volt is calculated. This accomplished, the number of turns for any given voltage can be calculated by simple multiplication.

Radio transformers are generally of small sizc. The matter of power factor can therefore be disregarded, more especially because they work into an almost-purely resistive load. In the design of radio transformers, the power factor can be safely assumed as unity, in which case the apparent watts and the actual watts are the same. Admittedly, this is not always a correct assumption, but it will suffice for common applications.

The size of the wire to be used in any transformer depends upon the amperage to be carried. For a current of 1 ampere as a continuous load, at least 1,000 circular mils per ampere must be allowed. For transformers which have poor ventilation, or continuous heavy load service, or where price is not the first consideration, 1,500 circular mils per ampere is a preferable figure. If, for example, a transformer is rated at 100 watts primary load on 110 volts, the current will be

$$
I=\frac{W}{V}=\frac{100}{110}=0.90 \text { amperes }
$$

and if the assumption is 1,000 circular mils per ampere, it will be found that this will require $1,000 \times .90$, or 900 circular mils. The wire table on page 381 shows that no. 20 wire for 1,200 mils, is entirely satisfactory. If it is desired to use 1,500 circular mils, instead of 1,000 , this will require $1,500 \times .90$ or 1350 mils, which corresponds to approximately no. 19 wire. The difference seems to be small, yet it is large enough to reduce heating and to improve overall performance. Assume, for tentative design, a 600 -volt, $100-\mathrm{ma}$. high-voltage secondary; a 3 -ampere 5 -volt secondary, and 2.5 -volt 7.5 -ampere secondary. Simple calculation will show a 60 -watt load on the high-voltage secondary; 15 watts on the 5 -volt winding, and 16 watts on the 2.5 -volt winding, a total of 91 watts. The core and copper loss is 10
watts. The wire sizes for the secondaries will be for $100-\mathrm{ma}$. current, no. 30 wire; 3 amperes at 5 volts, No. 15 wire; No. 11 wire for the 7.5 -ampere secondary.

For high voltage secondary windings, a small percentage of turns should be added to overcome the resistance of the small wire used, so that the output roltage will be as high as anticipated. The figures given in the table include this percentage which is added to the theoretical ratio of turns and, conseguently, the number of turns shown in the table can be accepted as the actual number of turns to be wound on the core of any given transformer.

Allowance should always be made for the insulation and size of the windings. Good insulation should be provided between the core and the windings and also between each winding and between turns. Numerous materials are satisfactory for this purpose; varnished paper or cloth, called "empire," or paper is very satisfactory, although costly. Good bond paper will serve well as an insulating medium for small transformer windings.

Insulation between primary and secondary and to the core must be exceptionally good, as well as the insulation between windings. Thin mica or "micanite" sheet is very good. Thin fibre, commonly called "fish paper," is also a good insulator; bristol board, or strong, thin cardboard may also be used. In all cases, the completed coil should be impregnated with insulating varnish, and either dried in air or baked in an oven. Common varnishes or shellac are unsatisfactory on account of the moisture content of these materials. Air-drying insulating varnish is
practical for all-around purposes; baking varnish may be substituted, but the fumes given off are inflammable and often explosive. Care must bc excrcised in the handling of this type of material. Collodion and banana oil lacquer are positively dangerous, and in the event of a short-circuit of transformer burn-out, a serious fire may result.

If it is desired to wind a transformer on a given core, it is much better to calculate the actual space required for the windings, then determine whether there is enough available space on the core. If this precaution is not observed, the designer may find that only about half the turns can actually be wound on the core, when the work is about three-fourths finished. From 15 to 40 per cent more space than is actually required must be allowed. The winding of transformers by hand is a space consuming process. Unless the builder is an experienced coilwinder, there is every chance that a sizable portion of the space will be used-up by insulation, etc., not sufficient space remaining for the winding. Calculate the cubical space needed for the total number of turns, and allow from 15 to 40 per cent additional space in the core "window." Thereby much time and labor will be saved.

- Filter Chokes

A choke is a coil of high inductance. It offers an extremely high impedance to alternating current, or to current which is substantially alternating, such as pulsating d.c. delivered at the output of a rectifier.

Choke coils are used in power supplies as part of the complete filter system in order

to produce an effectively-pure direct current from the pulsating current source, that is, from the rectifier. The wire size of the choke must be such that the current flowing through it does not cause an appreciable voltage drop due to the ohmic resistance of the choke; at the same time, sufficient inductance must be maintained to provide ample smoothing of the rectified current.

- Smoothing Chokes

The function of a smoothing choke is to discriminate as much as possible between the a.c. ripple which is present and the desired d.c. that is to be delivered to the output. Its air-gap should be large enough so that the inductance of the choke does not vary materially over the normal range of load current drawn from the power supply, but no larger than necessary to give maximum inductance at full current rating.

- Swinging Chokes

In certain radio circuits the power drawn by a vacuum tube amplifier can vary widely. Class B audio amplifiers are good examples of this type of amplifier. The plate current drawn by a class B audio amplifier can vary a thousand per cent or more. It is clesirable to keep the d.c. output voltage applied to the plate of the amplifier as constant as possible, and the voltage should be independent of the current drawn from the power supply. The output voltage from a given power supply is always higher with a condenser input filter than with a choketype input filter. When the input choke is of the racinging variety, it means that the inductance of the choke varies widely with the load current drawn from the power supply, due to the fact that high initial inchuctance is obtained by utilizing a "butt" gap. or none at all as in a transformer core.

- Choke Design and Construction

A choke is made up from a silicon-steel core which consists of a number of thin
sheets of steel, similar to a transformer core, but wound with only a single winding. The size of the core and the number of turns of wire, together with the air-gap which must be provided to prevent the core from saturating, are factors which determine the inductance of a choke. The relative sizes of the core and coil determine the amount of cl.c. which can flow through the choke without reducing the inductance to an undesirable low value due to magnetization.

The same core material which is used in ordinary radio power transformers or from those which are burned-out, is satisfactory for all general purposes.

In construction, the choke winding must

Figure 42-Two types of choke coil construction. The air-gap is approximately $1 / 32$ inch.

Figure 43-The air-gap can be filled with nonmagnetic material, such as brass, bakelite, etc.
be insulated from the core with a sufficient quantity of insulating material so that the highest peak voltages which are to be experienced in service will not rupture the insulation.

Chapter 17

TEST INSTRUMENTS

Certain pieces of test equipment should be part of every radio station and laboratory, in order to insure proper operation of radio receivers, transmitters, amplifiers, antenna systems, etc. Test equipment described in this chapter is suitable for practically every need of the average radio amateur. This equipment has been designed both from a standpoint of simplicity and economy.

- Field Strength Meter

The most practical method of tuning any antenna system, such as a half-wave antenna or a directional array, is by means of a field strength meter. This instrument gives a direct indication of the actual field strength of a transmitted signal in the vicinity of the antema. The device consisis of a tuned circuit and a diode rectifier which is connected in series with a $0-1$ d.c. milliannmeter or microammeter so that the meter will read the carrier signal strength.
The circuit is shown in figure 1 and a photograph of the instrument in figure 2.

FIELD STRENGTH MEASURING SET A PHONE MONITOR
Figure 1-Simple Circuit of Field Strength Meter.
Three plug-in coils cover the six amateur bands from 5 to 160 meters, each coil being so designed that it will cover two separate bands by means of a midget tuning condenser having a maximum capacity of $100 \mu \mu \mathrm{fds}$. The coils are wound on $11 / 2$-in. diameter plug-in coil forms, with no. 24 d.s.c. wire. The 5 - and 10 -meter coil has two turns, spaced $1 / 2$-in. apart, with a centertap. The 20 - and 40 -meter coil has 12 turns, space wound to cover a winding
length of $3 / 4$ in., with a tap taken at the fourth turn from the grounded enci. The 80- and 160 -meter coil has 60 turns cluse wound, with a tap at the 20 th turn from the grounded end. The low capacity range of the tuning condenser covers the 5 -, 20and 80 -meter bands, while the high capacity range covers the 10,40 - and 160 -meter bands, with the three plug-in coils.

A type 30 tube is connected as a diode, with a single $11 / 2$-volt filament battery and an on-off switch. The diode is compected atross a portion of the tuned circuit, rather than across the entire circuit, in order to obtain a selective tuning indication. The d.c. milliammeter reads the rectified current produced by the r.f. energy flowing through the diodle. A telephone jack is connected in series with the meter in order to use the field strength set as a monitor. The complete instrument can be built into a small metal case, as shown in figure 2, with a

Figure 2
snall rod-antenna, insulated from the metal case, for picking up r.f. energy. A longer antenna can be used for tuning low power transmitter antennas. The rod antenna illustrated has the advantage that the field strength meter can be calibrated as a wavemeter.

Figure 3 - Simple Absorption Type Wavemeter, Useful for Identifying Harmonics

The field strength meter should be tuned to resonance and lowated in the vieinity of the antema in order to secure a small deflection of the meter scale. As the antema system becontes more efficiently tuned, greater indications will be obtained on the meter.

This device can also be used for checking key-clicks if it is coupled to the antenna and placed at least 10 feet from the c.w. key.

- Absorption-Type Wavemeter

The wavelength of any oscillator, doubler, or amplifier stage can be roushly utt:mined with the aid of a simple absorption wavemeter. It is particularly useful for determining the correct harmonic from a harmonic crystal oscillator or frequency doubler or quadrupler. It consists of a simple lumed circuit which is coupled to the tank circuit under measurement. The wavemeter absorbs a small amount of energy from the transmitter tank circuit; this produces a change in reading of the milliammeter in the plate or grid circuit. A sharp rise or dip in milliammeter current reading will take place when the wavemeter is tuned to the same wavelength or frequency as that of the circuit under measurement. The wavemeter shown in figures 3 and 4 consists of a $220-\mu \mu \mathrm{fd}$. midget variable condenser and two plug-in coils which cover a range of from 8 to 80 meters; an additional
coil can be wound for 160 -meter operation, if lesired.

The smaller coil consists of 8 turns of no. 16 pushback wire, space wound over a winding length of $13 / 8 \mathrm{in}$. on a $11 / 4-\mathrm{in}$. form. The larger coil. which covers a range including

SIMPLE AESOAPTION WAVEMETEA CIRCUIT

Figure 4

the 40 - and 80 -meter bands, is wound with 18 turns of pushback wire, spaced to cover a winding length of $13 / 4 \mathrm{in}$. on a $11 / 4-\mathrm{in}$. diameter form. A coil suitable for 160 meter measurements can be made by clusewinding 40 turns of no. 24 d.c.c. on a similar coil form. The turns should le cenmenteal in position with a liberal application of Duco household cement.

A four-prong coil socket is secured to one end of the tuning condenser by means of a machine screw; it is spaced from the comdenser by means of a standard socket mounting bushing. An insulated handle is attached to the other end of the coil socket so that the wavemeter can be held in one hand while being tuned with the other. A small 180° dial is attached to the rotor frame of the condenser; the tuning knob is fitted with a sharply-pointed indicator. The coil socket terminals are soldered di-

rectly to rutor and stator of the variable tuming condenser.

The wavemeter can be calibrated by holding it near the secondary coil of an ordinary regenerative receiver which tunes to the known amateur bands. As the wavemeter condenser is rotated through its range, a point will be found where the receiver is pulled out of oscillation, as indicated by a sharp click in the headphones of the receiver. This point is then marked on the scale of the wavemeter dial. This calibration is sufficiently accurate to insure transmitter operation in the 10 -meter band rather than 13 -meter operation, which can be easily mistaken for 10 -meter output when tuning a transmitter. The wavemeter can also be calibrated by holding it near the plate coil of a crystal oscillator. A change in oscillator plate current or even a cessation of oscillation will occur when the wavemeter is tuned to the same frequency as that of the oscillator.
The photograph shows a calibration chart for the two coils; this curve can be plotted by transferring the wavemeter dial scale readings for the various amateur bands to the graph paper, then drawing a curve through the plotted points.

- General Purpose Phone Test Set

A phone test set is quite similar to a field strength meter, yet it lends itself to making additional measurements. It can be used as an overmodulation indicator, phone monitor, field strength meter. neutralizing indicator and wavemeter. This test set en-
ables the operator to check for overmochulation of a phone transmitter. When the tuned circuit of the test set is coupled to the morlulated amplifier or antenna system in such a manner as to obtain half-scale deflection of the milliammeter, any flicker of the meter reading will then be an indication of overmodulation. A change in meter reading during modulation is an indication of carricr shift, which will produce illegal interference in adjacent radiophone chamels. The phone test set consists of a diode rectifier connected across a tuned circuit, as shown in figure 5. A $0-1$ d.c. milliammeter serves to check overmodulation, also serving, for field strength measurements or neturalizing adjustments of a transmitter.

A phone jack provides a method for checking the voice quality of a radiophone transmitter. The audio volume with half to full scale meter indication is sufficient to give normal headphone response. A 5,000olm resistor is connected into the jack circuit so as to be in use when the test set functions as an overmodulation indicator. This resistor is in series with the diode and tends to produce linear rectification of the ratrier wave.

For neutralizing or field strength measurements. a short-circuiting plug or brass rod should be plugged into the phone jark in order to short circuit the $5,000-\mathrm{ohm}$ resistor and thereby increase the sensitivity of the meter. Neutralizing adjustments are made by coupling the test set's tuned circuit to the transmitter stage under test (without plate voltage applied to the stage). When the stage is completely neutralized.

HPADBOON

Figure 6 - Phone Test Set for All Bands.
there will be either a minimum or zero deflection of the meter needle. The coil I. figure 5 , can be coupled directly to the tank coil or loosely-coupled to it by means of a link circuit.

Antenna field strength measurements can be made by coupling an auxiliary antenna to coil L. by merely wrapping one or two turns of this auxiliary antema wire around

Figure 7-Under-Chassis View.
the field strength meter coil. This auxiliary antenna should be clear from the ground and parallel to the antenna under test. The degree of coupling to the coil can be varied in order to obtain a satisfactory preliminary reading on the scale of the milliammeter; the antenna feeder or coupling adjustments can be varied until maximum indication is obtained on the meter scale.

Three coils are needed to cover the six amateur bands. Only one coil is used at a time, the other two being mounted in spare sockets which have their terminals short circuited so as to prevent absorption effects in the unused coils.

COIL TABLE

Band In Meters
 Coil Specifications

5-10 2 turns, no. 22 d.s.c., 3/4-in. winding length, center-tapped.
20-40 ... 10 turns, no. 22 d.s.c., $3 / 4$-in. winding length, tapped at 4th turn from ground end.
80-160... 58 turns, no. 22 d.s.c., close wound, tapped at 21 st turn from ground end.
All coils are wound on standard $11 / 2$ in. dia. plug-in coil forms.

- Construction

The framework of this test set is made by bending an $8 \mathrm{in} . \mathrm{x} 12 \mathrm{in}$. piece of no. 12 gauge aluminum into an open-ended chassis, as shown in figures 6 and 7 . The back side is $4 \frac{1}{4} \mathrm{in}$. high, the top portion $21 / 4 \mathrm{in}$. wide, and the front consists of a 3 -in. sloping portion and a 2 -in. vertical portion. The sloping front panel has sufficient space for mounting a 2 -inch meter which can be easily read when tests are being made.

- A. C. Operated Peak Vacuum Tube Voltmeter

Peak values of radio- and andio-frequency voltages can be measured by means of a vacuum tube voltmeter. This device can be calibrated from a 60 -cycle source, and the same calibration curve will be satisfactory for radio-frequency measurements. A vacuum tube voltmeter is also very useful for aligning circuits of a radio receiver The device has nearly infinite input resistance. It consists of a vacuum tube, operated with high grid bias. The tube acts as a rectifier or detector, and the change in plate current produced by the application of an external grid voltage is indicated by means of a microammeter. There are many types of vacuum tube voltmeters, one of which is shown in figures $8,9,10$, and 11. The outstanding features of this device are: (1) a.c. operation, (2) good calibration stability, very nearly independent of moderate changes in line voltage, (3) high $-\mu$ 6F5 tube can be plugged-into the side of the metal cabinet for voltage measurements on the workbench, or by plugging the tube into an extension cable for making r.f. tests where the length of grid and ground lengths are of extreme importance, such as lining-up r.f. amplifiers in radio receivers.

Figure 8

Figure 9-Front View of the Peak V. T. Voltmeter

Figure 10 Showing Layout of Components
tial deflection. The input voltage slould be balanced out by a change in the setting of the 6F: grid-bias potentiometers. The d.c. voltmeter reading at this point is the actual peak input voltage. This type of measurement depends upon maintaining the microammeter reading at some fixed, low indication.

When this device is in operation, care must be taken to provide a d.c. path from the grid of the 6F5 to the chassis ground. Most circuits under measurement will complete this path, which can be as high as several megohms without damage to the microammeter. The complete test set is housed in a commercially -available metal cabintet of standard size.

A very simple battery-operated vacuum tube voltmeter is diagrammed in figure 12. This type of meter can be calibrated by means of a potentiometer and low-reading a.c. voltmeter connected across a transformer filament winding. The a.c. voltmeter reads r.m.s. values; consequently, 2.5 volts r.m.s. equals 3.53 volts peak. The maximum peak voltage which can be measured by this instrument is not over 4.5 volts, the useful range is from about 1 to 4 peak volts.

A $0-200$ microammeter is operated at an initial deflection of approximately 10 microamperes or it can be used as a "slide-back" type of voltmeter with practically zero ini-

- Ohmmeter

One of the most useful instruments is a simple ohmmeter for making continuity

Figure 11-Subchassis View of Peak V. T. Voltmeter

VACUUM TUBE VOLTMETER
Figure 12

OHMMETER - D C VOLTMETER
Figure 13

Figure 14
Position 1 of Switch
Position 2 of Switch Position 3 of Switch Position 4 of Switch
Position 5 of Switch
Position 6 of Switch

0- 1 Ma. $0-100,000$ Ohms
0-10 Volts
0- 50 Volts
0-250 Volts
0-500 Volts

Figure 15

Figure 16-Interior View of Ohmmeter, Showing Battery, Rotary Switch and Ohmite Resistors.
lests and for measuring the values of resistors. The same instrument can be combined into a multi-range voltmeter by means of a rotary switch and a few resistors, as shown in the circuit, figure 13.

A 0-1 ma. d.e. millianmeter of the - -inch size can be used in this test set by cutting out or reproducing the scale in figure it and pasting it wer the existing meter scale.

The unit can be built into a small box. 4 in. $\times 8$ in. $\times 35 / 2 \mathrm{inl}$. as sluown in figures 15 and 16.

Continuity tests can be made by turning the switch to position 2 ; the device then acts as an ohmmeter which has a range of from zero to approxinately 100,000 ohms. The needle position should be adjusted to zero by means of the 1,000 ohm resistor, with the output leads short-circuited by means of pin jacks.

Resistance measurcments are made by reading the values clirectly on the upper-
most scale. The ohmmeter proper consists of only the $0-1$ d.c. milliammeter, a $4,000-$ ohm fixed resistor, a 1,000 -ohm variable resistor, and a 4.5 -volt C-battery. The unknown resistance is connected in series with this combination. The additional components shown in the photograph and circuit diagram are necessary only when the meter is used as a multi-range voltmeter and 0-1 d.c. milliammeter.

- All-Wave Test Oscillator

A n:odulated test signal is required for lining-up a superheterodyne receiver in order to simply the procedure. The intermediate and tuned-radio-frequency circuits in the receiver must be properly aligned; an all-wave signal generator produces a signal similar to that of a weak radio signal, yet it is instantly available at any desired frequency.

A very simple modulated oscillator is shown in figure 17; interior and exterior views of the complete instrument are in figures 18 and 19. The entire instrument,

Figure 17

Figure 18-Interior View of All-Wave Test Signal Generator, Showing Type 30 Tube, Dry Cells, Condensers and Resistors.

Figure 19-All-Wave Test Signal Generator in Aluminum Shield Can. The coil is also shielded with a large coil-shield can, as shown.
batteries included, can be built into a \bar{j} in. $\mathrm{x} 5 \mathrm{in}, \times 9$ in. metal cabinet.
The top panel is made of no. 12 gauge aluminum, $\overline{5}$ in. x 9 in. The plug-in coils are shielded by means of a removable aluminum can atop the oscillator cabinet.
The oscillator circuit is a standard Hariley with a type 30 tube. A variable gridleak is controlled from the front panel; this gives a means for obtaining either unmodulated or self-modulated carrier signals. High values of grid-leak cause a blocking grid action, and the result is a test r.f. signal modulated at some audio frequency of 500 or 1,000 cycles. This grid-leak resistor at low resistance values produces an unmodulated signal which simulates that of a c.w. signal.

A single 1.5 -volt dry cell and a 22.5 C-battery furnish filament and plate potentials for the oscillator. A two-gang $360-\mu \mu \mathrm{fd}$. variabe condenser has its sections in paralled when tuning the long-wave or low-frequency range, while only a single section of the condenser is used for the medium- and shortwave bands. The changeover is made by an additional link connection in the plug-in coil form. The output is controlled by a $200-\mathrm{ohm}$ potentiometer. The condenser has a 2 -to-1 reduction gear in order to spread the luning range.

- Calibration

The instrument is calibrated by coupling it into a radio receiver which can be tuned
to broadeast stations in the frequency range of from 550 to $1,500 \mathrm{kc}$. The oscillator is tuned to produce a heterodyne note with broarlcast station signals of a known frequency.

The range of from 150 to 550 kc . can be calibrated in a similar manner by using the harmonies of the signal gemerator to prorluce the heterodyne note. When a calibration scale is to be plotted, the fropuency can be divided by 2 or 3. depending on whether the second or third harmonic of the oscillator is being used in the long-wave calibration range.

The most satisfactory method of calibration in the short-wave range is to couple the revice into an all-wave radio receiver in conjunction with another accurately calibrated all-wave test oscillator. Dial readings can be plotted in this manner to give a calibration curve for each set of coils. using the radio receiver as a means of detecting zero-beat between the two oscillators. Care must be excreised not to tune one oscillator to a harmonic of the other for this type of calibration.

- Operation

The long-wave ranges of this test oscillator are used to line-up the i.f. frequency circuits in superheterodyne receivers. The majority of receivers have an i.f. frequency of approximately 465 kc . The output terminals of the test oscillator can be connected to each stage of the i.f. amplifier in the radio receiver while that stage is being lined-up. The last i.f. stage should be linedup first. The signal generator produces a steady tone modulated signal which can be heard in the output of the radio receiver. The shortwave ranges of the oscillator are
useful for lining-up the first detector and r.f. stages, so as to make them track properly with the high-frequency tuned circuit in a superheterodyne receiver. Nore details are given it the chapter on Recciater Theorl.

The frequency of a quartz crystal, such as that used in a single signal receiver, can be determined very closely by setting the quartz plate on, or leaning it against, the grid of the oscillator tube. The oscillator frequency will suddenly change at resonanee with the crystal, as will be heard in a broadcast receiver tuned to the second harnonic of the oscillator. This test requires a manipulation of both oscillator and broadcast receiver, but once the crystal frequency is found, the i.f. amplifier in the shortwave receiver can be lined-up to this same frequency by means of the oscillator.

- A. C. Frequency Meter-Monitor

An accurate means for determining the frequency of a radio transmitter is essential when the circuit is of the self-excited oscillator type. The same device is also useful for clecking quartz crystal transmitters in order to make certain that the crystal frequency falls within the desired amateur hand. The frequency meter consists of a very stable electron-coupled oscillator which can be accurately calibrated. This same unit can serve as a c.v. monitor by adding an audio amplifier stage to the plate circuit of the electron-coupled oscillator. The oscillator can be designed to cover either the 80or 160 -meter amateur bands, and harmonics of these frequencies can then be used for measurements in the shorter-wave bands. The oscillator has a small tuning condenser shunted by a large band-setting condenser:

Approx. Freq. Range	Secondary 11/4" Diam.	Coupling Coil (over center of sec.)
13 to $4 . \dot{2} \mathrm{mc}$. (One tuning condenser)	15 turns no. 24 d.s.c., c.t., $11 / 2^{\prime \prime}$ long (space-wound)	1 turn
5100 to 1600 kc . (One tuning condenser)	38 turns no. 26 d.s.c., c.t., $13 / 8^{\prime \prime}$ long (space-wound)	2 turns
1800 to 530 kc . (One tuning condenser)	110 turns no. 30 enam., c.t. Close-wound	5 turns
550 to 150 kc . (Two tuning condensers)	285 turns no. 26 d.s.c., c.t., Jumble-wound over $11 / 2^{1}$ of winding length	10 turns

Figure 20-Frequency Meter-Monitor.
the latter is adjusted only when the frequency meter is calibrated by means of standard frequency transmissions or from broadcast station harmonics in conjunction with a calibration osciliator. A good, finelygraduated vernier dial is essential for read-
ing the scate indication of the smaller condenser for accurate determination of frequency. The instrument must be housed in a metal calinet or can in order to prevent excessive pickup between the frefuency meter and the transmitter under test. The electron-coupled oscillator functions as a beat-note detector similar to that in a shortwave regenerative receiver.

- Callbration

Standard frequency transmissions are sent (on the amateur bands at regular intervals: whedules of these stations can be found in current issues of monthly amateur radio perioclicals. These signals can be tuned-in on a shortwave receiver and the frequency meter can be tuned to the zero beat-note in the output of the radin receiver. A slight external coupling can be made from the frequency meter oscillator by connecting a short piece of wire to the grid circuit of the audio amplifer in the frequency meter: this wire call be run close to the radio receiver antema lead-in in order to pick up a small amount of r.f. energy from the frequency meter.

If a superheterodyne is used for calibration purposes care must be taken to make certain that the frequency meter is not tuned to the imate frequency response of the radio receiver, but to the same frequency as that of the standard signal transmission. A calibration chart can be plotted so that a frequency range of 3,500 to $4,000 \mathrm{kc}$. is obtained. Harmonics of the oscillator can be

Figure 22-Frequency Meter Curve.
accurately set on the dial by multiplying the frequency readings from the chart by the number of the harmonic.

A typical calibration chart is shown in figure 2:2. On this chart the dial reading of 60 livisions shows frequency of 3600, , 200 , 14,400 and $28,800 \mathrm{kc}$. If the frequency meter has a 160 -meter coil, this same reading will also show a frequency of $1,800 \mathrm{kc}$. If the frequency meter is calibrated in the range of 3,500 to $4,000 \mathrm{kc}$., it dues not matter whether a 160 - or 80 -meter coil is used in the electron-coupled oscillator circuit.

The frequency meter can be calibrated be means of a calibration oscillator and a broadcast receiver. The calibration uscillator is tuned to produce zero-beat in the broadcast receiver with carrier signals from broadeast

Figure 23 -Calibration Oscillator for Battery Operation.
stations of known frequency. The harmonics of the calibration oscillator are coupled into the frequency meter and the latter is tuned to zero-beat, as heard in the phone jack in the output of the monitor. An example
would be where the local oscillator is tuned to zero-beat with a broadcast station signal of 880 kc .; the fourth harmonic of the local oscillator would be four times 880 or 3520 kc . This value can be used to obtain a calibration point on the frequency meter.

Suggested circuits for calibration oscillators are shown in figures 23 and 24 . Calibration oscillators can be built on a small hreadboard; they do not reguire shielding.

Figure 24-With Heater Type Tubes, Battery Plate Supply is Still Used for Stabllity.

- C. W. Monitor

Must monitors for checking the characteristics of a c.w. signal from the radio station room are lacking in sufficient audio output. The c.w. monitor shown in figures 25 and 26 overcomes this defect by means of an additional tube and a stage of audio amplification. A c.w. monitor is used principally for determining the character of the emitted note and to check the keying characteristics of the dots and dashes, either from the standpoint of the apparatus or operator.

C W MONITOR
Figure 25

Figure 26-Illustrating Construction of the C. W. Monitor.

This monitor consists of a very simple oscillating receiver, built into a shielded container, which will only pick up enough r.f. energy from the transmitter to produce a beat-note in the output of the monitor. It employs two type 30 tubes, operated from is single $1 / \frac{1}{2}$-volt dry cell, and a small 45 volt B-battery. These batteries should be located inside the shield can in order to prevent the leads from picking itp r.i. energy from the attenna. The small amount of inherent leakage in the shielded container is sufficient to give a normal amount of pickup from the radio transmitter when the monitor is within a few feet of the transmitter.

Plug-in coils are used for covering the various amateur bands. The coil data are as follows:

80 Meters. .Secondary: 27 turns no. 22 d.s.c., close wound.

Tickler: 6 turns no. 22 d.s.c., close wound and spaced $1 / 8=$ inch from secondary.

Figure 27 Circult for Oscilloscope Pletured in Figures 28 and 29.

40 Meters. Secondary: 14 turns no. 22 d.s.c., space-wound to cover a length of 1 -inch. Tickler: 4 turns no. 22 d.s.c., close-wound and spaced $1 / 3$ inch from secondary.

20 Meter
Secondary: 7 turns no. 22 d.s.c., space-wound to cover a length of 1 -inch.
Tickler: 4 turns no. 22 d.s.c. close-wound, spaced $1 / 3$-inch from secondary.

All of the above coils are wound on standard $11 / 2-\mathrm{in}$. diameter forms.

- Cathode-Ray Oscilloscopes

Measurements of r.f. and a.f. voltage and wave form can be easily made with the aid of cathode-ray oscilloscopes. Such a device includes a vacuum tube which has two sets of defiecting plates for controlling a beam of electrons: this beam strikes a fluorescent screen on the face of the tube and traces a pattern of the signal applied to the control grid or deflection plates. The fluorescente screen in the tube produces a visual indication of the pattern of r.f. or aulio, voltages.

Cathote-ray oscilloscopes are extremely useful for measuring percentage modulation in a radiop phone transmitter.

- Construction

A very simple oscilluscope, such as the one shown in figures 27 , 28 and 29, is c13tirely satisfactory for antateur services. It consists of an RCA-913 cathode-ray tube which has a fluorescent screen approximately one inch in diameter. This tube, and a suitable power supply, can be built into a small metal cabinct approximately 6 in . long, 4 in . wide and 5 in . high. The tube screen is riewed through a $11 / 8$-in. diameter hole in the top of the container.

Figure 28-Exterior View of 913 Oscilloscope.

Figure 29 Looking Into the Oscilloscope.

Figure 30

The two deflecting plates which connect to the shell of the RCA-913 tube are connected to the center grounded output terminal, and the two remaining deflecting plates (horizontal and vertical) are brought through to a pair of push-through porcelain insulators. Either set of plates can be used for radio or audio measurements. When a voltage is applied to only one set of plates, a thin straight line is obtained on the face of the cathode-ray tube when the $50.000-$ and 25,000 -olm potentiometers are correctly adjusted.
When a modulated carrier voltage is applied to one set of plates, and the audio

Figure 31

A: Plate-Modulated. Excessive Bias or Regeneration.
B: Undistorted Plate or Grid Modulation. Less Than 100\%.
C: Suppressor-Modulated 802 or RK-20 Phone with Crystal in Grid Circuit.
D: Suppressor-Modulated Phone with Separate R. F. Driver Tube, Modulated Approximately 100\%.
E: Maximum Plate Modulation of 6L6, 865 or 860 Screen-Grid Tubes without Screen Modulation (or Insufficient Sereen Modulation).
F: Unmodulated Carrier Signal.
G: Plate-Modulated, Regeneration and Modu. lator Overload or Mismatch.
H: Plate Overmodulation with Bad Mismatch of Class-B Modulator I mpedance.
I: Plate Modulated, Insufficient R. F. Grid Drive to Allow Over 50% Modulation.
J: Grid-Modulation. Excessive R. F.Grid Drive.

K: Grid- or Plate-Modulated Phone with Improper Neutralization or Detuned Final Amplifier.
L: 100% Grid Modulation, Normal Adjustments of $11 / 2$ Times Cut-Off Bias. Curvature Due ts High Bias.
M: Phase Shift Through Speech Amplifier. Approximately 60% Modulation. No Distortion In Output.
N: Plate or Grid Overmodulation. Too Much Audio Input

O: Class-B Mismatched or Underpowered. Corners on Pattern Indicate Overmodulation. May be due to Excessive Antenna Load for Transmitter.
P: Insufficient R. F. Grid Drive with Plate Modulation.

Q: Overmodulation. Too Much Audio Input (Audlo Distortion) with Plate Modulation.
R: 100% Modulation. Grid or Plate. No Distortion.

Figure 32-RCA Saw-Tooth-Wave Sweep Oscillator Circuit
modulating voltage applied to the other, a trapezoidal figure will be produced during modulation. This pattern should be a straight-sided triangle, sharply pointed when 100 per cent modulation is being obtained. Typical patterns are shown for plate and grid modulation in the accompanying sketches, figure 31.
The audio- or radio-frequency voltage should have an amplitude of from 50 to 100 volts in order to cause good deflection on the screen. The audio voltage should be obtained from the output of the modulator through a high resistance network, as shown in figure 30, when making modulation measurements in a radiophone transmitter. The r.f. voltage can be secured by coupling a few turns of wire to the center of the modulated amplifier tank coil or to the antenna tuning circuit. The amplitude should be sufficient to give a large pattern on the face of the tube. The 25,000 - and $50,000-\mathrm{ohm}$ potentiometers are adjusted to give sharp definition and a reasonable amount of illumination on the screen.

- Cathode-Ray Oscllloscope With Sweep Circuit

Most audio frequency measurements require a variable frequency sweep oscillator circuit which can be synchronized with the
frequency of the audio voltage being tested. For this purpose, a saw-tooth wave form is desirable; it can be obtained from a con-denser-charge-and-discharge-circuit. The condenser is slowly charged, then rapidly discharged by means of a gas-filled type 885 triode which ionizes at a certain peak voltage and short-circuits the condenser in the plate circuit. A sweep circuit of this type is shown in figure 32.

The sweep circuit oscillation can be synchronized with that of the audio frequency signal by applying a small portion of it to the grid circuit of the type 885 tube. The approximate frequency of the saw-tooth oscillator is adjusted by means of the capacity in the plate circuit of the type 885 tube and the value of the resistance in series with the positive-B lead from this tube. The output of this oscillator must be amplified by a high-gain audio stage, such as a type 57 tube, in order to provide sufficient voltage to produce a sweep across the screen of the RCA-913 cathode-ray tube. An additional type 57 pentode audio amplifier is shown in the circuit diagram; it can be used to amplify the test audio voltages if the latter are of low amplitude. The power supply consists of two rectifier and filter circuits which supply plate voltage to all of the tubes in the oscilloscope.

Emergency Work

In many of the larger cities, various indiniduals and clubs haze prepared themselves for any emergency that might arise by constructing and kecping in readiness self-pozecred communication equipment, for use in casc of pozecr failure. Such foresighteduess is to be commended.

On the other hand, disaster is bownd to strike at times in localities where no such methodical preparation has been made. In such an event, amateurs zeith a reasonable amount of technical training and experience shotld be able to establish commenication within a couple of hours imith no other facilities than an automobile tool kit, two or threc auto roulio receiters, and a conple of auto batterics. The latter are wiarersally available, and a high percentage of the newer cars are now equipped zeith auto radios. If the supply of auto batterics is limited, they can be recharged as necessary by one of the autos from which they zeere commandecred.

One recciver can be torn up to prozidd parts and a power source for the "ransmitter. The output tube will make " good oscillator, cither crystal or "t,n.t."

Another set can be torn into and the coils cut down antil zeith the condenser plates entively mmeshed they "hit" around 70 meters. Both the so and tho meter bands can then be covered in grand styli if a good outside antenna and a ground connection are used.

By: zurapping a piece of insulated arire around both plate and grid leads of an i.f. tube (assuming the set is a superhctcrodyne, as most are), the staye can be made to oscillate, thus proziding makeshift yet satisfactory hetcrodyne reception of c.ze. signals. If the a.z.c. action bothers on c.x., either use a zery short antenna or clse ground the a.2.c. bus; cither weill effect a cure, the lattcr being the better method.

A microphone can be temporarily horrozed for the emergency from the nearest telephone. Tivo output transformers, of the type designed to match a pentode twbe to dyamic spcaker zoice coil, can be connected with their corresponding werndings in series (primaries in series; secondaries in series) and used backuards as a single, microphone transformer to feed dircctly into a pentode tube used as a class A modulator (Heising). It will be necessary to talk loudly and directly into the microphone, wehich incidentally should be fed from a separate 6 volt battery in order to avoid vibrator hash in the speech.

Home stations often can be kept on the air after a power failure by utilizing an auto radio and battery. fecding plate voltage to either the oscillator or exciter of your regular transmitter from the vibrator pack and deriving heater zoltage direct from the battery. The oscillator or exciter should be originally designed with this in mind.

Any anateurs in the vicinity possessing battery-poncered or auto-installed 5 meter gear can locate their equipment at strategic points and take care of short-hail traffic.

Amateurs not in the immediate disaster area usually can be of most service by doing lots of listening, and little or no transmitting until called upon.

Chapter 18

RADIO TIIEIAPY

SHORT-WAVE radio-frequency energy can be applied to the human body for the purpose of treating various ailments. This form of treatment is known as radio therapy, and the apparatus is called a diathcrmy machine.
Radio-frequency energy can be applied to various parts of the human anatomy in order to produce a localized fever or temperature. The increase in temperature is effective for increasing circulation and for destroying certain kinds of germ diseases. The radio-frequencies involved in radio therapy normally range from 6 to 16 meters in wavelength, although there has not yet heen an accepted standard of frequencies for the treatment of any particular ailment. The muscular cartilage, fatty and bone tissues all respond differently to applied radio waves. Some of these tissues are dielectrics while others are conductors, yet nost of them have an intermediate characteristic, that of a leaky dielectric shunted by a capacitance. The radio energy is dissipated in the form of a dielectric loss which increases the temperature of that portion of the anatomy under treatment.
The correct application of radio therapy depends upon the ailment and should, therefore, be under the supervision of a skilled physician. The diathermy machine usually has a means of controlling the power output and often has a frequency control in the form of plug-in coils. The radio energy is normally applied by means of a pair of rub-ber-covered metal electrodes which are placed on opposite sides of the portion of the body of the patient under treatment.
A diathermy machine consists of an oscillator with a normal output of from 100 to 200 watts. The load impedance connected across the oscillator varies greatly; this requires special design of the oscillator circuit. The variation in load impedance is caused by the variation in size and in spacing between the electrodes required for various forms of treatment.
Radio therapy is used to kill certain bacteria in the body, much in the same manner as artificially-induced typhoid fever. It must be emphasized that the ramifications of radin therapy are still highly problematical. The
entire subject must be handled with discretion, because careless use of radio therapy can and has caused extremely serious damage. Self-treatment or treatment of friends by means of a home-built diathermy machine should never le attempted unless the operator is thoroughly familiar with this hranch of physio-therapy:

Diathermy machines are essentially radio transmitters, and they can cause serious interference to radio reception. The diathermy machine slould be housed in a shielded cabinct; the 110 -volt line should include an r.f. filter in order to prevent the r.f. energy from feeding back into the line and thereby radiating into space. The output electrode pads and the patient proper act as an antenna system, and thus both machine and patient shottcl be placed in a metallicallyscreened room. This room can be made of ordinary galvanized iron screen, provided that all seams are carefully soldered and especial care taken to prevent r.f. leakage around the doorway. This type of room construction is similar to that used for receiver testing in radio manufacturing plants.

A circuit for a typical diathermy machine is shown in figure 1. This circuit has certain features not found in most commer-cially-made machines. The oscillator circuit proper is a push-pull Hartley system in which the grid excitation is more constant than in most u.h.f. oscillator circuits for various load impedances. A futl-wave rectifier system with sufficient filter capacity is of practical value for reducing radio interference which is caused by the more usual form of self-rectified power supply circuit.

The wave-form of the r.f. output power is not as sharply peaked when a full-wave rectifying system is used, with the result that there is less danger to body tissues. The ratio of peak-to-average r.f. voltage should be as low as possible in any diathermy machine. The only virtue of a selfrectified oscillator is its cheapness, and even though offered by many manufacturers. should not be given consideration.
A 6E. 5 electron-ray tube is used as a "ready" indicator by having its 6.3 -volt heater connected across the 5 -volt filament
supply, The 866 rectifier tubes should be allowed to reach normal temperature before the high voltage power supply switch is thrown to the an position. By the time the GE:) tube first glows at full brilliancy, the sitis will have reached operating temperature and plate voltage may be applied.

Many of the older machines, and some of the newer ones as well, do not use either at lumped or adjustable capacity across the output tank coil: the tank circuit therefore has insufficient Q, especially when a singleended oscillator is used. The well-designed diathermy machine uses a pair of fixed condenser plates which act as a lumped capacity across the plate tank circuit. The pads are tumed to resonance by means of a variable condenser in the output circuit.

The system shown in the schematic iliagram has many advantages over the aforementioned types in that the oscillator is tuned to the output circuit, instead of the pads being tuned to the freguency of the oscillator. When the plates of the tank condenser in figure 1 are entirely out, the. "minimum" capacity of the condenser is high enough to offer sufficient Q for proper operation of a push-pull circuit below 16 meters; at the same time, it allows a frequency rance of almost two-to-one to be covered by merely using parls that resonate at different frequencies. If a still greater frequency range is to be covered, this can be accomplished by means of plug-in coils. A fiveconnection plug and jack transmitter assembly is suitable for use with such coils, and by this means it will then be possible to cover a range of from approximately 5 to 19 meters. Pads with long leads sometimes can be resonated after a fashion at the higher frequencies (5 or 6 meters) by resonating them on the third harmonic.

The disadvantage of the customary fixedtuned plate tank and series-tuned pad circuit lies in the high capacity series variable condenser which is required: also it is often difficult to resonate the pads when they are placed in some umusual position on the body of the patient. In addition to its high capacity, the series condenser must have wider spacing between plates than would ordinarily be assumed, because the pads will sometimes resonate when the condenser plates are almost entirely unmeshed. U'nder the latter condition, there is a high r.f. potential across the condenser.

The r.f. potential in a condenser which is placed across a plate tank is much more uniform under the varying conditions en-
conntered with the pad circuit. In addition, the capacity of the condenser need be only a fraction of that ordinarily required where the condenser is used to resonate the parl circuit.

All insulation that is either in contact with r.f. leads or in an r.f. field should be of highgrade ceramic material, The tank and antenna coils can be wound with no. 8 wire, self-supported by end and center-tap connections.

A push-pull harther circuit is used in the machine described because its frequency can be varied by a single tuning condenser without affecting the excitation. In addition to being superior in this respect. the circuit performs equally well in all other respects; then, ton, if plug-in coils are used, it is only necessary to change a single coil.

An approximate adjustment of the output is secured by means of a Lore-High switch. The output decreases considerably when the switch is opened, thereby adding a 20,000 ohm grid-leak into the circuit, Minute adjustment of the output is obtained by simply detuning the tank condenser, a crude but entirely satisfactory method. This means that the operator need manipulate only one switch and one knob for adjustment of the output.

At the point where the 110 -volt a.c. supply leads enter the cabinet which houses the diathermy machine, 20 turns of no. 12 wire are wound on a diameter of $3 / 4$-inch and connected in serics with the transformer primarics and the two a.c. supply leads. These coils constitute an effective pair of line chokes, one in each lead of the 110 -volt line. They are as effective as any commer-cially-made choke, the latter normally being designed to operate at lower frequencies than those at which the diathermy machine operates. These home-made u.h.f. chokes, in connection with the $.006-\mu \mathrm{fd}$. condensers shown in the circuit diagram, constitute as effective a filter as it is possible to secure.

The grid taps on each tank coil are made exactly the same distance from each side of center. If one tube heats more than the other, it indicates that the taps are not symmetrically made. To adjust the taps to their proper position, disconnect the pads from the circuit, place a $0-1.00$ or $0-2.50$ ma. a.c. milliammeter across the 20,000 -ohm grid-leak with the Low-High switch in the Lowe (open) position, and move the taps outwardly toward the ends of the coil until the meter gives an indication of 100 ma . This is greater than the maximum grid current

250 Watt Variable-High-Frequency Diathermy
rating of the tubes (35 ma. per tube), but with the pads comected to the circuit this value will decrease slightly, and when the pads are loaded (resunated) there will be another decrease. Under normal use, the grid current will be somewhat less than 70 ma. for the two tubes. When the grid meter is removed, and with the switch in the Loze position (with the additional grid-leak in the circuit) the grid current will be still lower. A grid meter can be permanently incorporated in this diathermy machine, if desired, in which event it would be wired in series with the grid resistor. It is absolutely necessary, however, only for this initial adjustment.

A red ink "warning" marker should be drawn on the scale of the plate meter at the point of 350 ma., in order to make certain that this value of plate current will not be exceeded. The plate meter is the only essential meter in this machine, although some physicians insist upon a r.f. meter in the pad circuit. Neither plate current nor r.f. output are more than an approximate indication of the clegree of heating; they are not relied upon except as a means for a relative check when the pads are in any gieen position on a certain patient. When the pads are placed in different positions, the r.f. meter may read either higher or lower for a given heating effect. The
actual temperature of that portion of the body of the patient under treatment is the only safe barometer of the amount of heating effect being supplied.

The mica condensers in series with the pacls have no effect on the performance of the circuit; they are used merely for the purpose of safeguarding the patient against ligh d.c. voltages in the event of breakdown of the ceramic material which supports the coils.

It is very difficult to stop oscillation by means of excessive output loading; nothing other than an abnormal value of plate current will result when the machine is too heavily loaded, as will be indicated by the meter when the needle passes the red ink "danger" mark. Should the circuit accidentally stop oscillating, a acry high degree of plate current will flow just long enough to permit the 5 -ampere primary fuse to blow. For this reason the fuses should be accessible at some point on the outer portion of the diathermy machine housing.

It is important that the center-tap connection of the rectifier filament winding be used, rather than one leg of the rectifier filaments. for the high voltage connection. This prevents r.f. from finding its way back into the tubes through the high voltage lead, because the capacity of the transformer to ground is sufficiently high to bypass practically all r.f.
to ground. The r.f. current in the ligh voltage lead is very snall (theoretically zero at the fundamental frequency), but is sufficiently high to cause erratic operation of the rectifiers if this current finds its way hack into the rectifier tubes. The $0.5 \mu \mathrm{fd}$. filter condenser is not very effective at radio frequencies and it is therefore possible to draw small sparks from the high voltage lead.
The small filter condenser ($0.5 \mu \mathrm{fd}$.) provides sufficient filtering to prevent the oscillator tubes from going out uf oscillation for an instantancous period 120 times per second; it is the latter that results in "hash" on the lower frequencies, including the broadcast band. The ripple voltage will still be quite high, with the small filter, but interference on frequencies other than those of the operating frequency will be eliminated.
It is not advisable to use higher capacity values than those shown in figure 1 ; otherwise the plate voltage will rise to excessive values when the pads are not loaded and when the plate current is relatively low. This, in turn, results in excessive grid current. The grid current normally tends to rise badly anyway when an oscillator is not loaded.

If this diathermy machine causes interference to nearby amateurs on the 5.10 and 20 meter bands, the cure lies in the installation of a heavy duty choke-input filter, consisting of a 30 henry 350 ma . swinging choke and a $4 \mu \mathrm{ff}$. 2,000 volt condenser. This permits a high degree of filtering without sacrificing voltage regulation. The interference will then be confined to a very narrow range of frequencies. If a choke input filter is used, a higher voltage plate transformer will be required (1500 ๒.).

In order to prolong the life of rectifier and oscillator tubes it is important that they be permitted to warm-up for a period of 20 or 30 seconds before plate voltage is applied. Switch SIW-2 should never be thrown to the on position, until switch $S W-1$ has first been turned ons. This means that switch SW-2 is turned on last, and turned off first. The 6 E5 electron-ray indicator tube can be mounted directly above switch $S W-2$ with the following inscribed on the panel: "SW-z Should Never Be Turned 'ON' Except When Green Light Shozes." By this means it will be necessary for the user to wait for about thirty seconds before the plate voltage is turned on. $S W-2$, however, must always be turned off before $S W-1$ is turned on; otherwise $S W-z$ would remain on when the electron-ray indicator light is not glowing.
To aroid this possibility the following should also be inscribed conspicuously on the control panel: "When Through zuith Machine, Be Sure All Switches Are Turned Off." A red pilot light connected across the primary of one of the filament transformers will help the physician to remember to turn off switch $S W-1$.

If desired, a time delay relay may be used to protect the rectifiers, thus making a foolproof arrangement. However, besides being cheaper, the 6E5 indicator arrangement enhances the machine and impresses the patient. This last factor has been stressed by most physicians ordering this type of equipment, and camot be ignored.

Information as to the availability of the heating pads may be obtained from the publishers by enclosing a stamped, self-addressed envelope.

Chapter 19

Radio Laws

Rules Governing Amateur Radio Stations and Operators in the United States

(As in effect November 1, 1937)

The following excerpts from the Federal Communications Commission's rules include all that deal solely with the amateur service and certain others that apply generally.

- Practice and Procedure

103.6. Applications.- Each application for an instrument of authorization shall be made in writing, under oath of the applicant, on a form prescribed and furnished by the Commission * * *. Separate application shall be filed for each instrument of authorization requested * * * The required forms may be obtained from the Commission or from any of its field offices. (For a list of such offices and related geographical districts, see rule 30 .)
103.7. Place of filing; number of copies.- Each application for * * * station license, with respect to the number of copies and place of filing, shall be submitted as follows: * * *
g. Amateur. 1 copy to be sent as follows (a) To proper district office if it requires personal appearance for operator examination under direct supervision from that office; (b) Direct to Washington, D. C., in all other cases, including examinations for class C privileges.
103.8. Amendments; withdrawals.-Where other parties will not be aggrieved or adversely affected thereby, an applicant may amend or withdraw his application without prejudice, at any time up to the conclusion of a hearing thereon $* * *$.
103.14. Modification of license.-An application for modification of license may be filed for *** change in location * **. Except when filed to cover construction permit, each application for modification of license shall be filed at least 60 days prior to the contemplated modification of license; Provided, howezer, That in emergencies and for good cause shown, the Commission may waive the requirements hereof insofar as time for filing is concerned.
103.15. Renewal of license.-Unless otherwise directed by the Commission, each application for renewal of license shall be filed at least 60 days prior to the expiration date of the license sought to be renewed.
103.16. Application called for by Commission.Whenever the Commission regards an application for a renewal of license as essential to the proper conduct of a hearing or investigation, and specifically directs that the same be filed by a date certain, such application shall be filed within the time thus specified. If the licensee fails to file such application within the prescribed time, the hearing or investigation shall proceed as if such renewal application had been received.
103.17. Extension of station and operator licenses. -Where there is pending before the Commission any application, investigation, or proceeding which, after hearing, might lead to or make necessary the modification of, revocation of, or the refusal to renew an existing license, or the suspension of an operator's license, the Commission may, in its dis-
cretion, grant a temporary extension of such license: Provided, howevcr, That no such temporary extension shall be construed as a finding by the Commission that the operation of any radio station thercunder, or use of the operator's license, will serve public interest, convenience, and necessity beyond the express terms of such temporary extension of license, and Provided further, That such temporary extension of license will in no wise affect or limit the action of the Commission with respect to any pending application or proceeding.
104.1. Defective applications rejected.-If an applicant, by specific request of the Commission, is required to file any documents or information not included in the prescribed application forms, a failure to comply therewith shall constitute a defect in the application, and the application will not be considered by the Commission. Any application which is not filed in accordance with the Commission's regulations with respect to the form used, manner of execution, and completeness of answer to questions therein required, will not be considered by the Commission. Each such application shall be returned to the applicant by the Secretary of the Commission, together with a brief statement of the respect in which it is defective.
105.23. Answers to notice of violations.-Any licensee receiving official notice of a violation of the terms of the Communications Act of 1934, ally legislative act, Executive order, treaty to which the United States is a party or the rules and reg. ulations of the Federal Communications Commis. sion, which are binding upon licensee or the terms and conditions of a license, shall, within 3 days from such receipt, send a written reply direct to the Federal Communications Commission at Washington, D. C., and a copy thereof to the office of the Commission originating the official notice, when the originating office is other than the office of the Commission in Washington, D. C. The answer to each notice shall be complete in itself and shall not be abbreviated by reference to other communications or answers to other notices. If the notice relates to some violation that may be due to the physical or electrical characteristics of the transmitting apparatus, the answer shall state fully what steps, if any, are taken to prevent future violations, and if any new apparatus is to be installed, the date such apparatus was ordered, the name of the manufacturer, and promised date of delivery.

If the notice of violation relates to some lack of attention or improper operation of the transmitter, the name and license number of the operator in charge shall be given.
105.29. Revocation proceedings under section 312 (a) of the act.-Whenever the Commission shall in-
stitute a revtation proceeding against the holder of any radio station construction permit or license under section 312 (a). it shall initiate said proceeding by servirg upon said licensee an order of revocation effective not less than 15 days after written notice thereof is given the licensee. The order of revocation shall contain a statement of the grounds and reasons for such proposed revocation and a notice of the licensee's right to be heard by filing with the Commission a written request for hearing within 15 days after receipt of said order. Upon the filing of such written request for hearing by said licensee the order of revocation shall stand suspended and the Commission will set a time and place for hearing and shall give the licensee and other interested parties notice thereof. If no repuest for hearing on any order of revocation is made by the licensee against whom such an order is directed within the time hereinabove set forth, the order of revocation slaall become final and effective. without further action of the Commission.
105.31. Suspension of operator license.-Proceedings for the suspension of an operator license shall in all cases be initiated by the entry of an order of suspension. a copy of which shall be served upon or mailed to the holder of the license involved, to become effective on a day certain, in no event less than 40 days after date of serving or mailing such order. The order shall set forth the name of the operator, class and grade of license. the effective date of the order, the period of sus. pension, and a statement of the reasons for sus. pension, and shall contain a notice to the holder of such license of his right to be heard and contest the order. by filing with the Commission within 35 days from the receipt of said order, a written request for hearing with a statement executed by him under oath, denying or explaining specifically and in detail the charges set forth in the order of suspension. Whon receipt of such request and statement, the effective date of the suspension of such license will be extended; and the Commission, upon consideration of the licensee's statement, as herein provided, will either revoke its order of suspension, or fix a time and place for hearing, and notify the licensce thereof.

If no request for hearing on any order of suspension is made by the licensee against whom such order is directed within 35 days of receipt of such order of suspension, the same shall hecome firal and effective.

Where any order of suspension has become final, the person whose license has been suspended shall forthwith send the operator's license in question to the office of the Commission in Washington. I). C.

- Other General Rules

27. Normal license periods.-All station licenses will be issued so as to expire at the hour of 3 a. m.. eastern standard time. * *
f. The licenses for amateur stations will be issued for a normal license neriod of 3 years from the date of expiration of old license or the date of granting a new license or modification of a license.
28. Designation of call signals.-Insofar as practicable, call signals of radio stations will be designated in alphahetical order from groups available for assignment, depending upon the class of station to be licensed. Because of the large number of amateur stations, calls will be assigned thereto in regular order and requests for particular calls will not be considered except on formal application the Conmission may reassign calls to the last holders of record.
29. Deletion of call signals.-Call signals of stations will be deleted in each of the following cases:
a. Where an existing instrument of authorization has expired and no application for renewal or extension thereof has been filed.
b. Where a license has been revoked.
c. Where a license is surrentered or cancelled.
d. Other cause, such as death, loss of citizenship, or adjudged insanity of the station licensee. Such occurrences coming to notice should the reported to the Commission, preferably accompanied by the station license for cancellation, if available.
30. Radio districts.-The following list of the radio districts [do not confuse with call areas- Edttor] gives the address of each field office of the Federal Communications Commission and the territory embraced in each district: [See p. 408.]
a. Examining cities.-Examinations for all classes of radio operator licenses will be given frequently at Washington, 1). (... and the District ()ffices oi the Commission in accordance with ammuncerl schedules.
(1) Such examination will be beld quarterly at: Cincinnati, ().
Cleveland, (0 .
Columbus, O.
Des Moines, Jowa.
Nashville, Tenn.
Oklahoma City, Okla.
Pittsburgh, Pa.
St. Louis, Mo.
San Antonio, Texas.
Schenectady, N. Y'.
Winston-Salen, N. C.
(2) Examinations will lie leld not more than twice annually at:
Albuquerque, N. Mex.
Billings, Mont.
Bismarck, N. Jak.
Boise, Idaho.
Butte, Mont.
Jacksonville, Fla.
Little Rock, Ark.
l'hoenix, Ariz.
Salt Lake City. Iftah.
Spokane, Wash.
Note.-Arrangements have also been made, including cooperation of other Federal agencies, for class A examinations in oltiying areas as follows:

Alaska.-United States Signal Corps stations.
Guam.-District communications officer, United States naval station.
Hawaii.-At not exceeding one point on any island, by the inspector in charge (Honolulu).
Puerto Rico.-District communications officer, United States naval radio station, San Juan.
b. Amateur call areas.-The following is a list of the amatetr call areas, showing the territory embraced in each area: [Omitted here for lack of space; refer to Radio Antateur Call Book or Government booklet from which this text is re. printed.-EDITOR.]

- Services Other Than Broadcast

GENERAL REGULATIONS

182. Scope-Whenever in these regulations the words "services other than broadcast" are used without specific restriction of further qualification, the words shall be taken to refer to all radio services, frequencies, etc., except broadcast serv.
ice in the band of frequencies between 550 and 1,500 kilocycles, inclusive. ${ }^{1}$
183. Waves designated by frequency.-In these regulations and instruments of althorization issued by the Commission a wave referred to is desig. nated hy its frequency in kilocycles per second.
184. Total spectrum of waves.-The total spectrum of waves shall he construed as extending in frequency from 10 to 500,000 kilncycles, inclusive. This provision, howerer. shall not be interpreted as precluding authority of the fommission over the use of waves having frequencies less than in kilocyeles or more that 500.000 kilocyeles if and when such waves, by reasm of progress in the art. leenme availablee for radin communication either fractically or experimentally. nor as precluding the (n mnsission from issuing instruments of atuthoriza. tion with respect to the use of such waves.
185. Division of total spectrum into major bainds. -The total spectrum of waves as liereinhefore defined is herelyy divided into six major hamis, as follow's:
a. Lnw.frefuency: in to 100 kilocycle
r. Medirm-frequency: 1 (x) 10 inio kilocyc!es
c. Rroadcast : 550 to 1.500 kilocycles
d. Merlium high-frequency : 1.500 to f.0no kilo. cycles.
c. High-frequency: 0,000 to 30,000 kilocycles.
f. Very high-frequency: Ahove 30 .nno kilocycles.
186. Definitions.-The following refinitions shall apply generally to all services (sec also International 'relecommunication (onvention).
187. Station--The term "station" means all of the radio-transmitting apparatus used at a mar. tictular location for one class of service and operated under a single instrument of authorization. In the case of every station other than broadcast, the location of the station shall be considered as that of the radiating antema
188. Mobile station.-"The term "muibile station" means a station that is cabrable of being moverl and ordinarily does move.
189. Fixed station--The term "fixed station" means a station, other than an amateur station, not capable of being moved. and commnnicating by radio with one or more stations similarly estab. lished.
190. Land station.-The term "1and station" means a station not capable of being moved. carrying on a mobile service.
191. Portable station.-The terms "portable sta. tion" means a station so constructed that it may conveniently be moved about from place to place for communication and that is in fact so moved about from time to time, but not used while in motion.
a. Portable-mobile station.-The term "portablemrbile station" means a station so constructed that it may conveniently he moved from one mobile unit to another for communication, and that is, in fact, so moved ahout from time to time and ordinarily used while in motion.
192. Mobile service.-The term "mobile service" means a radio-communication service carried on hetween mobile and land stations and by nubile

[^8]stations, communicating among themsclecs, special services being excluded.
194. Fixed service. - The term "fixed service" means a service carrying on radio-communication of any kind between fixed points. excluding hroadcasting services and special services.
195. Special service.-The term "special service" means a radio-communication service carried on especially for the needs of a specific service of general interest and not open to public correspomilence. such as a service of radiobeacons, radio direc. tion finding. time signals, regular meteorologic:al litulletins, notices to mavigators. press messages adelressed to all, medical motices (medical consultatiom ly radios. standard freruencies, emissions for scientific purposes, etc
196. International service. -The term "interma tional service" means a radio-communication ser ice between offices or stations under the jurisdicion of rlifferent countries. or lietween stations uf the mohile service except when the latter are of the same nationality and are within the limits of the country to which they belong. An internal or national radio-communication service which is likely to cause interference with services beyond the limits of the country in which it operates shall be considered as an international service from the standpoint of interference.
197. General communication service.-The term "general communication service" is used in these regulations only with respect to the service allncation of eertain frequencies. and means that such frequencies have not been assigned to any specific service, and are available for future allocation to services which will he designated.
198. Public service. - The term "public service" means a service for the use of the pulblic in general.
199. Public correspondence.- The term "public correspondence" means any radio-comumunication where the offices and stations, by reasom of their being at the clisposal of the public. must accept for transmission.
200. Private service. -The term "private service" means a radio-comnmuncation service which is not open to public correspondence and which may be used only by specified persons for either general or specific purposes.
201. Private enterprise.-The term "private en. terprise" means any person, company, or corporation which operates one or more stations for radio communication.
202. Limited service.-The term "limited service" means a service which can be used only by specified persons or for special purposes.
203. Radio operating signals.-The tern "radio operating signals" means a letter. figure, or combination of letters and figures. or both, designed to facilitate the conduct of communications; for example, the list of abbrcviations to be used in Radio Transmission, appendix 9 to the General Radio Regulations annexed to the International Telecommunication Convention.
204. Allocation of bands of frequencies to serv ices.-Allocations of bands of frequencies to services, such as mohile, fixed. broadcast, amateur. etc., are set forth in article 7 of the General Radio Regulations annexed to the International Telecommunication Convention and in the North American Radio Agreement. These allocations will be adhered to in all assignments to stations capable of causing international interference.
205. Frequency standard.-The national standard of radiofrequency maintained by the Bureau of Standards. Department of Commerce, shall be the basis for all frequency measurements, and assign. ments will be made on the basis of this standard.

RADIO DISTRICTS

Territory embraced and address of inspector in charge. (Do not confuse with call areas.)

Rarlio District	Adrleses of the Inspector in Charge	Territory Within District	
		States. Efc.	Counties
1	Customhouse. Boston, Mass...	Connecticut Maine Massarhusetts New Hamıshire Rhode Island. Vermont	All countios. 1) 0. I) O. 10 . Do. Do.
\because	Federal Building. New York, N. Y.	Sew Jersey New York.	Bersen. Essex. IIudson. Hunterdon. Mereer. Middlesex. Monmouth, Morris, Passaic Somerset. Sussex. Union, and Warren. Albany. Bronx, Columbia. Delaware, Dutchess, Greene, Kings, Nassau. New York. Orange. Putnam, Queens. Rensselaer. Richmond. Rockland Scher ectady, Suffolk, Sullivan, Úlster, and Westchester.
3	New United States Customhouse, Philadelphia, Pa.	Delaware New Jersey Pennsylvania	Newcastle. Atlantic, Burlington, Camden. Cape May. Cumberland, Gloucester, Ocean, and Salem. Adams, Berks, Bucks, Carbon, Chester, Cum berland. Dauphin, Delaware, Lancaster. Lebanon. Lehigh. Monroe, Montgomery Northanpton, Perry. Philadelphia, Schuylkill, and York.
4	Fort MeIIenry, Baltimore, Mit	Delaware District of Col mabia Maryland Virginia	Kent and Sussex. All counties. Do. Arlington, Clark, Fairfax, Fanquier, Frederick, Loudoun. Page. Prince William, Rappahannock, Shenandoah. and Warren.
5	New Post Office Building, Norfolk. Va.	North Carolina Virginia	All except district 6. All except district 4.
6	New Post Office Building. Atlanta, Ga.	Alabama. Georgia. North Carolina South Carolina Tennessee. \qquad	All counties. Do. Ashe, Avery, Buncombe. Burke, Caldwell, Cherokee, Clay, Cleveland, Graharn, Haywood. Henderson. Jackson. McDowell. Macon, Madison, Mitchell, Polk, Rutherford. Swain. Transylvania, Watauga, and Yancey. All counties. Do.
7	Post Office Box 1.50, Miami, Fla	Florida Puerto Rico Virgin Islands.	Do.
8	Customhouse, New Orleans. La.	Arkansas Louisiana. Mississippi Texas.	Do. Do. Do. City of Texarkana only
9	Prudential Building, Galveston, Tex.	Texas	Aransas. Brazoria. Brooks, Calhoun, Cameron, Chambers, Fort Bend, Galveston. Goliad, Ha: ris, Hidalgo. Jackson, Jefferson. Jim Wells. Kenedy, Kleberg. Matagorda. Nueces, Refugio, San Patricio. Victoria. Wharton, and Wilacy.
10	Federal Building. Dallas. Tex...	New Mexicn Oklahoma Texas.	All counties. Do. All except district 9 and the city of Texarkana
11	Rives-Strong Building, Los Angeles, Calif.	Arizona California Nevada	All counties. Imperial, Inyo, Kern, Los Angeles., Orange. Riverside. San Bernardino, San Diego, San Luis Obispo. Santa Barbara, and Ventura. Clarke.

Radio District	Address of the Inspector in Charge	Territory Within District	
		States, etc.	Counties
12	Customhouse, San Francisco, Calif.	California Nevadis. Guam. Midway Wake American Samoa	All except district 11 . All except Clarke.
1.3	New United States Courthouse, Portland, Oreg.	Idaho. Oregon	All except listrict 1 \&. All counties.
14	Federal Offire Builcing, Seattle. Wash.	Alaska Idaho. Montana Washington.	Benewah, Bonner, Boundary, Clearwater, Idaho, Kootenai, Latah, Lewis, Nez Perce, and Shoshone. Beaverhead, Broadwater, Cascade, Deerlodge, Flathead, Gallatin, Glacier, Granite, Jefferson, Lake, Lewis and Clark, Lincoln. Madison, Meagher, Mineral, Missoula, Pondera, Powell, Ravalli, Sanders, Silver Bow, Teton, and Toole. All counties.
15	Customhouse, Denver, Colo....	Colorado. Montana Utah. Wyoming	Do. Except district 14 . All counties. Do.
16	New Main Post Office Building, St. Paul, Minn.	Minnesota Michigan. North Dakota. South Dakota Wisconsin.	Do. Alger, Baraga, Chippewa, Delta, Dickinson, Gogebic, Houghton, Iron, Keweenaw, l.uce, Mackinac, Marquette, Menominee, Ontonagon, and Schooleraft. All counties. Do. All except dist 18.
17	Federal Building, Kansas City, Mo.	Iowa Kansas. Missouri. Nebraska.	Do. All counties. Do. Do.
18	Engineering Building, Chicago, I11.	Illinois Indiana Iowa. \qquad Wisconsin	All counties. Do. Allamakee, Buchanan, Cedar, Clayton, Clinton, Delaware, Des Moines, Dubuque, Fayette, Henry, Jackson, Johnson, Jones, Lee, Linn, Louisa, Muscatine, Scott, Washington, and Winneshiek. Columbia, Crawford. Dane, Dodge, Grant, Green, Iowa, Jefferson, Kenosha, Lafayette, Milwaukee, Ozaukee, Racine, Richland, Rock, Sauk, Walworth, Washington, and Wankesha.
19	New Federal Building, Detroit, Mich.	Kentucky Michıgan. Ohio. West Virginia.	All counties. All except district 16 . All counties. Do.
20	Federal Buidding, Buftalo, N. Y .	New York Pennsylvanis.	All except district 2 All except district 3.
21	Alohi Tower, Honolulu, Territory of Hawaii.	Territory of Hawaii...	

206. Frequency checking,-The ticensee oi each station, except amateur, shall provide for measure. ment of the station frequency and establish procedure for checking it regularly. These measurements of station frequency shall be made by means independent of the frequency control of the trans. mitter and shall be of such an accuracy that the limit of error is within the frequency tolerance allowed the station.
207. Interference, prevention of.-Licensees shall use radio transmitters the emissions of which do not cause interference, outside the authorized band,
that is detrimental to traffic and programs of other authorized stations.
208. Emissions.-Fxcept for amateur stations, each license and construction permit will specify the type or types of emission that the station is authorized to use, in conformity with the definitions given in article 7 of the General Radio Regulations annexed to the International Teleconmunication Convention, but special types of emission not specifically defined therein will be designated in instruments of authorization with reference to the nature of service the station is authorized to render.
209. Damped waves. Except for ship stations under the canditions hereinafter specified, no license will be issued ior the operation of any station using, or prumsing to use, transmitting apparatus einploying danuped wave emissions.
210. Distress messages.-Radio communications or sigmals relating to ships or aircraft in distress shatl be given absolute priority. Upon notice from any station, government or commercial, all other transailssion shatl cease on such frequencies and for such time as may, in any way, interfere with the reception of distress signals or related traffic.
211. No station shall resume operation until the need for distress traffic no longer exists, or it is determined that said station will not interfere with distress traffic as it is then being routed and said station shall again discontinue if the routing of distress traffic is so changed that said station will interfere. The status of distress traffic may be ascertained by communication with Government and commercial stations.
212. The Commission may require at certain stations an effective, continuous watch on the dis. tress frequency, 500 kilocycles (410 kilocycles in the Great Lakes area).
213. Operators.-One or more licensed operators of the grade specified by these regulations shall be on duty at the place where the transmitting apparatus of each station is located and whenever it is being operated; Provided, however, That for a station licensed for service other than broadcasting, and remote control is used, the Commission may morlify the foregoing requirement, npon proper asplication and showing leeing made, so that such uperator or operators may be on duty at the control station in lieu of the place where the transmitting apparatus is located. Such modification shall be subject to the following conditions:
a. The transmitter shall be capable of operation and shall be operated in accordance with the terms of the station license.
b. The transmitter shall be monitored from the control station with apparatus that will permit placing the transmitter in an inoperative condition in the event there is a deviation from the terms of the license, in which case the radiation of the transmitter shall be suspended immediately until corrective measures are effectively applied to place the transmiter in proper condition for operation in accordance with the terms of the station license.
c. The transmitter shall he so located or housed that it is not accessible to uther than duly anthorized persons.

[^9]214. Licensed operator required.-Only an operator holding a radiutelegraph class of operator's license may manipulate the transmitting key of a manually operated coastal telegrapl or mobile telegraph station in the international service; and only a licensed amatenr operator may manipulate the transmitting key at a manually operated amateur station. The licensces of other stations operated umler the constant sumervision of duly licensed operators may permit any ferson or persons. whether licensed or not, to transmit by voice or otherwise, in accordance with the types of emissiom specified by the respective licenses. ${ }^{\text {? }}$
220. Maintenance tests.- Licensees of stations other than broadcast stations are authorized to carry on such routine tests as may be required for the proper maintenance of the stations: Proaided, howezer, That these tests shall be so conducted as not to canse interference with the service of o:her stations.
221. Licenses, posting of.-The original of each station license, excejt amateur, portable, and port-able-mobile stations shall be posted by the licensee in a conspicmous place in the room in which the transmitter is located. In the case of amateur, portable, and portable-mobile stations the original license, or a photostat copy thereof, shall be similarly posted or kept in the personal possession of the operator on duty.
a. The original license of each station operator. except amateur and aircraft radio station operaturs, and operators of portable and portable-molile stations, shall be posted in a conspicnous place in the room occupied by such operator while on duty. In the case of an amateur or aireraft radio oprrator, and operators of portable or portable-mobile stations, the original operator's license shall be similarly posted or kept in his personal possession and available for inspection at all times while the operator is on duty.
b. When an operator's license cannot be posted hecause it has been mailed to an office of the Federal Communications Commission for endorsement or other change, such operator may continue to operate stations in accordance with the class of license held for a period not to exceed 60 days. but in no case beyond the clate of expiration of the license.
222. Day frequencies.-In all cases where the word "day" or "daylight" ocenrs in connection with a specific frequency. such use of the word shall be construed to mean that period of time included between 2 hours after local sunrise and 2 hours before local sunset.

- Amateur Service

361. Definitions, amateur service. The term "amateur service" means a radio service carried on by amateur stations.
362. Definition, , amateur station. - The term "amateur station" means a station nised by an "amateur," that is, a duly authorized person interested in radio technigue solely with a personal aim and without peciniary interest.
363. Deleted. (See pars. 362 and 364.)
364. Definition, amateur radio operator.-The term "amateur radio operator" means a person holding a valid license issued by the Federal Conmmnica. tions Commission who is authorized under the regulations to operate amateur radio stations,
365. Definition, amateur radio communication. The term "amateur radio communication" means radio eommunication between amateur radio sta. tions solely with a personal aim and without pecuniary interest.
,i6n. Station licenses. - An amateur station liconse may be issued only to a licensed amateur raslio operator who has made a satisfactory showing os (whership or control of proper transmitting apparatus: Proivded, howerer, That in the case of a military ur naval reserve radio station located in approved puhlic quarters and established for training purposes, but not operated by the linited States Government. a station license may be issued to the person in charge of such station who may mot possess an anateur operator's license.
a. Operator's license.-An amateur operator's license may be granted to a person who does not desire an amateur station license, prosided such applicant waives his right to apply for an amateur station license for 90 days subsequent to the date of application for operator's license.
366. Eligibility for license.-Amateur radio station licenses shall not he issued to corporations. associations, or other organizations: f'roidided. horicver, That in the case of a bona fide amateur radio society a station license may be iscued to a licensed amateur radio operator as trustec for such society.
3fr. Mobile stations.-Licenses for molife stations and portable mobile stations will not be Eratutul twantatetars for operation on frequencies helow 28,000 kilocycles. Ilowever, the licensee of a fixed amateur station may operate portable amat teur stations (rule 192) in accordance with the jrovisions of rules 384, 386. and 387; and also portahle and portablemohile amateur stations (rules 192 and 192a) on authorizerl amateur frequencies above 28,000 kilocycles in acoordance with rules 384 and 386 , but without regard to rule 387.

369. Deleted. Paragraph 213 applics.

370. Points of communication.-Amateur stations shall be used only for amateur service, except that in emergencies or for testing purposes they may le used also for communication with eommercial or fiovermment radio stations. In addition, amateur stations may commmicate with any mobile radin station which is licensed by the commission on communicate with amateur stations, and with stations of expeditions which may also be authorized to communicate with amateur stations.

371. Amateur stations not to be used for broad-

 casting.-Amateur stations shall not be used for broadeasting any form of entertainment. nor for the simultaneous retransmission by automatic means of programs or signals emanating from any class of station other than amateur.372. Radiotelephone tests.- Amateur stations may be used for the transmission of music for test purposes of short duration in connection with the development of experimental radiotelephone equipment.
37.3. Amateur stations not for hire- Amateur radio stations shall not be used to transmit or receive messages for hire, nor for communication for material compensation, direct or indirect, paid or promised.
373. The following hands of frequencies are allo. cated exclusively for use hy amateur stations:
1.715 to 2,000 kilocycles.
3.500 to 4.000 kilocycles.

7,000 to 7.300 kilocycles.
14,000 to 14,400 kilocycles.
28,000 to 30.000 kilocycles.
56,000 to 60,000 kiloctecles.
400,000 to 401,000 kilocycles.
a. The licensee of an amateur station may. suh. ject to change upon further order, nperate amateur stations on any frequency above 110,000 kilocycles, without separate licenses therefor, provided:
(1) That such operation in every respect complies with the Commissinn's rules governing the
nucration of amateur stations in the amateur serv. icc.
(2) That recurds are maintained of all trans. missions in accordance with the prowisions of rate 386.

Note.-The use of frefucncies above 110,000 kilocycles may be with any type of emission author. ized for amateur stations.
375. Types of emission.-All lands of frepuencies so assigned may be used for radiotelegraphy, type A-1 emission. Type $A .2$ emission may be used in the following bands of frefuencies only:

56,000 to 60.000 kilocyeles.
400,000 to 401,000 kilocycles.
376. Frequency bands for telephony.-The following bands of frequencies are allocated for use by amateur stations using radio-telephony, type A-3 emission:
1.800 to 2,000 kilneyeles.

28,500 to 30,000 kilocycles.
56,000 to 60,000 kilocycles.
400,000 to 401,000 kilocycles.
377. Additional bands for telephony.-Irovided the station shall be operated by a person who holds an amateur operator's license endorsed for class A privileges, an amateur radion station may vac rarlin. telephony, type $A \cdot 3$ emission, in the following anldi. tional hands of frequencies:
3.900 to 4.000 kilocycles.

14,150 io 14,250 kilocycles.
378. Amateur television, facsimile, and picture transmission.-The following hands of frefuencies are allocated for use by amateur stations for television, facsimile, and picture transmission:

1,715 to 2,000 kilocycles.
56,000 to 60,000 kilocycles.
379. Licenses will not specify individual fre-quencies.-Transmissions by an amateur station may be on any frequency within an amateur band ahove assigned.
380. Aliens.-An amateur radio station shall mot be located upon premises controlled by an alien.
381. Prevention of interference.--Spurions radia. tions from an amateur transmitter operating on a frequency below 30,000 kilocycles shall he reflited or eliminated in accordance with good engineering practice and shall not be of sufficient intensity to cause interference on recciving sets of modern dosign which are tuned outside the frefuency hand of emission normally required for the type of emission employed. In the case of A-3 cmission, the transmitter shall not he modulated in excess of its modulation capability to the extent that inter. fering spurious radiations occur, and in no case shall the emitted carrier he amplitude-morlulaterl in excess of 100 percent. Means shall be employed to insure that the transmitter is not modulated in eveess of its modulation capability. A spurious radiation is any radiation from a transmitter which is outside the frequency band of emission normal for the type of transmission employed, including any component whose frequency is an integral mul. tiple or submultiple of the carrier frequency (harmonies and subharmonics), spurious modulatiom products, key clicks and other transient effects. and parasitic oscillations.
382. Power supply to transmitter--licensees of amateur stations using frequencies below 30.000 kilocycles shall use adequately filtered direct-cur. rent power supply for the transmitting equipment to minimize frequency modulation and to prevent the emission of broad signals.
383. Authorized power.-Licensees of amateur stations are anthorized to use a maximum power input of 1 kilowatt to the plate circuit of the final amplifier stage of an oscillator-amplifier irans. mitter or to the plate circuit of an oscillator transmitter.

384. Transmission of call. -An operator of ant amateur station shall transmit its assigned call at least once during each 15 minutes of operation and at the end of each transmission. In addition, an operator of an amateur portable or portable-mobile radiotelegrapll station shall transmit immediately after the call of the station the break sign (BT) followed by the number of the amateur call area in which the portable or portable-mobile amateur station is then operating, as for example:
Example 1. Portable or portable-mobile amateur station operating in the third amateur call area calls a fixed amateur station: WIABC W1ABC W1ABC DE W2DEF $\overline{B T 3}$ W2DEF $\overline{\mathrm{BT} 3}$ W2DEF $\overline{\mathrm{RT} 3} \overline{\mathrm{AR}}$.

Example 2. Fixed amateur station answers the portable or portable-mobile amateur station: W2DEF W2DEF W2DEF DE WIABC WIABC WIABC $\overline{\mathbf{K}}$.
Example 3. Portable or portable-mobile amateur station calls a portable or portable-mobile amateur station: W3GHI W3GHI W3GHI DF W4JKL $\overline{\mathrm{BT} 4}$ W4JKL $\overline{\mathrm{BT}} \mathrm{W} 4 \mathrm{JKL} \overline{\mathrm{BT}} \overline{\mathrm{AR}}$.
If telephony is used, the call sign of the station shall be followed by an announcement of the amateur call area in which the portable or portablemobile station is operating.
a. In the casc of an amateur licensee whose sta-
tion is licensed to a regularly commissioned or enlisted member of the United States Naval Reserve, the commandant of the naval district in which such reservist resides nuay authorize in his discretion the use of the call-letter prefix N in lien of the profix W or K, assigned in the license issued by the Conmission, provided that such \mathbf{N} prefix shall be used only when operating in the frequency hands $1,715-2,000$ kilocycles, $3,500-4,000$ kilocycles, 36,000 to 60,000 kilocycles, and 400,000 to 401,000 kilocycles in accordance with instruction to be issued by the Navy Department.
385. Quiet hours.-In the event that the operation of an amateur radio station causes general interference to the reception of broadcast programs with receivers of modern design, that amateur station shall not operate during the hours from 8 o'clock p. m. to 10:30 p. m. local time, and on Sunday from 10:30 a. m. until 1 p. m., local time, upon such frequency or frequencies as cause such interference.
386. Logs--Each licensee of an amateur station shall keep an accurate log of station operation to be made available upon request by authorized Government representatives, as follows:
a. The date and time of each transmission. (The date need only be entered once for each day's oper-
ation. The expression "time of each transmission" means the time of making a call and need not be repeated during the sequence of communication which immediately follows; however, an entry shall be made in the log when "signing off" so as to show the period during which communication was carried on.)
b.The name of the person manipulating the transmitting key of a radiotelegraph transmitter or the name of the person operating a transmitter of any other type (type A-3 or A-4 emission) with statement as to type of emission. (The name need only be entered once in the \log provided the \log contains a statement to the effect that all transmissions were made by the person named except where otherwise stated. The name of any other person who operates the station shall be entered in the proper space for his transmissions.)
c. Call letters of the station called. (This entry need not be repeated for calls made to the same station during any sequence of communication, provided the time of "signing off" is given.)
d. The input power to the oscillator, or to the final amplifier stage where an oscillator-amplifier transmitter is employed. (This need be entered only once, provided the input power is not changed.)
ε. The frequency band used. (This information need be entered only once in the log for all transmissions until there is a change in frequency to another amateur band.)
f. The location of a portable or portable-mobile station at the time of each transmission. (This need be entered only once, provided the location of the station is not changed. However, suitable entry shall be made in the log upon changing location, showing the type of vehicle or mobile unit in which the station is operated and the approximate geographical location of the station at the time of operation.)
g. The message traffic handled. (If record cominunications are handled in regular message form, a copy of each message sent and received slall be entered in the log or retained on file for at least 1 year,
387. Portable stations.-Advance notice of all locations in which portable amateur stations will be operated shall be given by the licensee to the inspector in charge of the district in which the station is to be operated. Such notices shall be made by letter or other means prior to any operation contemplated and shall state the station call, name of licensee, the date of proposed operation, and the approximate locations, as by city, town, or county. An amateur station operating under this rule shall not be operated during any period exceeding 30 days without giving further notice to the inspector in charge of the radio-inspection district in which the station will be operated. This rule does not apply to the operation of portable or portablemobile amateur stations on frequencies above 28,000 kilocycles authorized to be used by amateur sta. tions. (See rule 368.)

- Radio Operators

AMATEUR OPERATORS

400. Only amateur operators may operate amateur stations.-An amateur station may be operated only by a person holding a valid amateur operator's license, and then only to the extent provided for by the class of privileges for which the operator"s license is endorsed.
401. Validity of operator's license.-Amateur operators' licenses are valid only for the operation of licensed amateur stations, provided, however,
any person holding a valid radio operator's license of any class may operate stations in the experimental service licensed for, and operating on, frequencies above 30,000 kilocycles.
402. Proof of use-Amateur-station licenses and/ or amateur-operator licenses may. upon proper application, be renewed provided: (1) The applicant has used his statimn to comnumicate by radio with at least three other amateur stations during the 3 -month period prior to the date of sumitting the application, or (2) in the case of an applicant possessing only an operator's license, that he has similarly communicated with amateur stations during the same period. Proof of such communica. tion must be included in the application by stating the call letters of the stations with which com. munication was carried on and the time and date of each communication. Laeking such proof, the applicant will be ineligible for a license for a periorl of 90 days.
This rule shall not prevent renewal of an ama. teur-station license to an applicant who has recently qualified for license as an amateur operator.
403. Class of operator and privileges.-There shall be but one main class of amateur operator's license, to be known as "amateur class." but cach such license shall be limited in scope hy the signature of the examining officer opposite the particular class or classes of privileges which apply, as follows:
Class A-Unlimited privileges.
Class B.-Unlimited radiotelegraph privileges. Limited in the operation of radiotelephone amateur stations to the following hands of frequencies: 1.800 to 2,000 kilocycles; 28,500 to 30,000 kilocycles; 56,000 to 60,000 kilocycles; 400,000 to 401,000 kilocycles.

Class C.-Same as class B privileges, except that the Commission may require the licensee to appear at an examining point for a supervisory written examination and practical code test during the license term. Failing to appear for examination when directed to do so, or failing to pass the supervisory examination, the license held will be canceled and the holder thereof will not be issued another license for the class C privileges.
404. Scope and places of examinations.-The scope of examinations for amateur operators. licenses shall be based on the class of privileges the applicant desires, as follows:

Class A.-To be eligible for the class A amateur operator's privileges the applicant must have been a licensed amateur operator for at least 1 year and must personally appear at one of the Commis. sion's examining offices, and take the supervisory written examination and code test. (See pars. 2 h (1), 30, and 408.) Examinations will be conducted at Washington, D. C., on Thursday of each week, and at each radio district office of the Commission on the days designated by the inspector in charge of such office. In addition, examinations will be held quarterly in the examining citics listed in paragraph 30 on the dates to be designated by the in. spector in charge of the radio district in which the examining city is situated. The examination will include the following:
a. Applicant's ability to send and receive in plain language messages in the Continental Morse Code (5 character to the word) at a speed of not less than 13 words per minute.
b. Technical knowledge of amateur radio apparatus, both telegraph and telephone.
c. Knowledge of the provisions of the Communications Act of 1934, subsequent acts, treaties, and rules and regulations of the Federal Communications Commission, affecting amateur licensecs.

Class B.-The requirements for class B amateur operators' privileges are similar to those for the class A, except that no experience is required and the questions on radiotelephone apparatus are not so comprehensive in scope.
Class C. - The requirements for class C amateur operators' privileges shall be the same as for the class B except the examination will be given by mail. Applicants for class C privileges must reside more than 125 miles airline from the nearest office of the Commission and the nearest point named in Rule $30-\mathrm{a}$ (1), or in a camp of the Civilian Con. servation (orps, or be in the regular military or naval scrice of the United States at a military post or naval station; or be shown by physician's certificate to be unable to appear for examination due to protracted disability.
13y arrangement with other Federal Agencies which cooperate with the Commission for the purpose of such examinations, the class It as well as the class A will similarly be given at Guam, at San Juan, I'terto Rico. and at various points in Alaska.
405. Recognition of other classes of licenses.-An applicant for any class of amateur operator's privileges who has held a radiotelephone second-class operator's license or higher, or an equivalent commercial grade license. or who has been accorded unlimiterl amateur radiotelephone privileges. within 5 years of the date of application may only be reguired to submit additional proof as to code ability and/or knowledge of the laws, treaties, and regulations affecting amateur licensees.
405. An applicant for the class B or C amateur operator's privileges who has held a radiotelegraph third-class operator's license or higher, or an equivalent commercial grade license. or who has held an amateur extra first-class license within 5 years of the date of application may be accorded a license by passing an examination in laws, trea. tics. and regulations affecting amatcur licensees.
407. Code ability to be certified by licensed oper-ator.-An applicant for the class C amateur operator's privileges must have his application signed in the presence of a person authorized to administer oaths by (1) a licensed radiotelegraph operator other than an amateur operator possessing only the elass C privileges or former temporary anateur class license, or (2) by a person who can show evidence of employment as a radiotelegraph operator in the Government service of the United States. In either case the radiotelegraph code examiner shall attest to the applicant's ability to send and receive messiges in plain language in the continental Morse code (5 characters to the word) at the speed of not less than 13 words per minute.

The code certification may be omitted if the applicaut can show proof of code ability in accordance with the preceding rule.
408. Application forms.-See Rule 103.6.
419. Grading of examinations.-The percentage that must be obtained as a passing mark in each examination is 75 out of a possible 100 . No credit will be given in the grading of papers for experi. ence or knowledge of the code. If an applicant answers only the questions relating to laws, treaties, and regulations by reason of his riglt to omit other subjects because of having held a recog. nized class of license, a percentage of 75 out of a possible 100 must be obtained on the questions answered.
410. Operator's and station licenses to run con-currently.-An amateur station license shall be issued so as to run concurrently with the amateur operator's license and both licenses shall run for 3 years from the date of issuance. If either the station license or the operator's license is modified during the license term. Inth licenses shalt be reissued for the full 3-year term: Provided, houever. if an operator's license is modified only with re. spect to the class of operator's privileges, the old license may be endorsed. in which case the expiration date will not change.
411. Eligibility for reexamination.-An applicant who fails examination for amateur privileges may not take another examination for such privileges within three months, except that this rule shall not apply to successive examinations at a point named in rule $30 a$.
412. Penalty.-Any attempt to olstain an operator's license by fraudulent means, or by attempting to impersonate another, or copying or divulging questions used in examinations, or, if found unqualified or unfit, will constitute a violation of the regulations for which the licensee may suffer suspension of license or be refused a license and or deharment from further examination for a period not exceeding 2 years at the discretion of the licensing authority.
413. Duplicate licenses.-Any licensee applying for a duplicate license to replace an original which has been lost. mutilated, or destroyed. shall submit an affidarit to the Commission attesting to the facts regarding the manner in which the orig. inal was lost. Duplicates will be issued in exact confornity with the original. and will be marked "duplicate" on the face of the license.
414. Oath of secrecy.-licenses are not valid until the oath of secrecy has been executed and the signature of the licensee affixed thereto.
415. Examination to be written in longhand.All examinations. including the code test. must be written in longhand by the applicant.

Chapter 20

Appenidix

Handy tables, charts, formulas; useful data, short cuts and general information.

Relay Rack Construction

Kack and pancl construction is a practice borrowed from a long established telephone practice. It offers many mechanical advantages, facilitates service and inspection, and lends itself to the increasing association of radio apparatus with telephone equipment, besides enhancing the appearance of the apparatus.

The relay rack type of construction offers many advantages not to be found in other styles. Its appearance is commercial, parts are quite accessible and alterations which change the physical size of one section of the transmitter can be made without requiring corresponding alterations in other sections, as would be the case with a framemounted or four-poster transmitter. The reason for this is that each section of the transmitter is provided with its own mounting unit, quickly removable after disconnecting supply wires. All the apparatus of the unit is supported by the panel.

The standard relay rack has two uprights made from three inch 4.1 pound channel iron. The base is made from two pieces of 6 inch by 4 inch, $38^{\prime \prime}$ angle, and the top straps are made from two pieces of $1 / 4^{\prime \prime}$ by $2^{\prime \prime}$ cold-rolled iron. The diagram gives all the details as well as dimensions necessary.

Panels are usually of metal (either steel, dural or aluminum) though sometimes made from pressed wood products such as "Tempered Masonite." Masonite is the cheapest, with steel, aluminum and dural next in order. The usual thickness of the metal panels is $3 / 16^{\prime \prime}$, and sometimes $1 / 4^{\prime \prime}$ is used. Metal panels of thinner dimensions are not satisfactory.

The versatility of the relay rack is due to the fact that dimensions have been completely standardized. A few manufacturers still use their own pet dimensions but they are quickly falling into line. Panels are $19^{\prime \prime}$ wide and of varying heights. The height is measured as a "rack unit," a rack unit being $13 / 4$ inches. To allow for stacking and slight tolerance in cutting and fabrication, a relayrack panel is always made to be a certain number of rack units high less $1 / 32$ inch for clearance. This formula can be used:

$$
\text { panel }=n(13 / 4)-1 / 32
$$

Thus a pancl four rack-units in height will measure 4 times $13 / 4$ inches or 7 inches, less $1 / 32$ inch, or an exact total height of ${ }^{(6} 31 / 32$ inches. The channel uprights are drilled to take 10-32 round head machine
screws as can be noted in the drawing. A very light tapped thread is sufficient, the usual 75% tap being unnecessary. Most of the strain on the thread is at right angles to the axis, and since this is shear on the screw, very little thrust is placed on the threads. A light thread takes less time and effort and results in fewer broken taps. When panels are properly made, the edge of a panel always falls midway between two holes spaced one-half inch apart.
Now to start your rack, go to the local steel company and order the following:
2 pieces 3 inch, 4.1 pound channel, $5^{\prime} 91 / 8^{\prime \prime}$ long
2 pieces 6 inch by 4 inch by $3 / 8$ angle, $1^{\prime} 81 / 2^{\prime \prime}$ long
2 pieces $1 / 4$ inch by 2 inch cold rolled, $1^{\prime} 8^{1 / 2 \prime \prime}$ long
The total price on the above steel order including the cutting should be around $\$ 5.00$. Make sure that the steel is cut square and exactly to the above lengths. It is just as easy for the steel man to cut the right length and your rack will come out square and save you lots of tough filing. Ordinary strap iron could have been used for the top straps, but the edges of this type of steel are not square and since this is such a small item, it is better to get the cold rolled for its square corners and finished appearance.
The steel will weigh within a pound or two of one hundred pounds. The next thing to do is to lay out the channels as shown in the drawing. Wipe off the steel and then chalk the front face of each channel. Use ordinary black-board chalk. Remember that one member is left handed and the other right-handed; don't make two right or lefthanded members. Two tools are now needed: a center punch and one of the dimestore steel pushrules. Don't under any circumstances lay out the rack with an ordinary foot rule or yardstick. The cumulative error will show up and the rack will not be square. Note that the line of the holes is in $11 / 16$ inch from the edge of the channel. Take a sharp pointed instrument and, using a scale set in a dividing head, mark this line (which will be the vertical line to the holes) carefully on the total length of the channel.

It can be seen that the top hole on each chamel is $5 / 16$ inch below the top strap, or a total of $25 / 16$ inches below the top of the rack. Carefully mark this top hole on each
channel, keeping in mind that there is a right and left hand member. Now take the steel tape and clamp it to the channel with an even half inch or inch mark exactly opposite the hole that has been center-punched $25 / 16$ inches from the top. This first hole is the reference nark and all measurements are made from this point.
Now that the scale is clamped, go right down, first $11 / 4$ inches and then one-half inch, alternating until 72 holes have been punched. If you have not made a mistake the last hole will be exactly $45 / 16$ inches from the bottom end of the channel. While punching the holes, check back frequently. It is very easy to make an incorrect reading on the scale and a single "off hole" will throw all the rest in the wrong place. After all the holes are center-punched check back to sce if the alternate $1 / 2$ inch and $1 \frac{1 / 4}{}$ inch spacings are correct. You cannot be ton careful, as it is very easy to make a mistake here.
Now that all the holes are center-punched, do the same on the back if desired. The frequent spacings are not necessary, but a few holes may prove handy. In any case two holes should be drilled and tapped about : inches above the bottom so that grounding and bonding wires can be fastened.

The next operation is to pilot-drill all the conter-punches. It is suggested that a small drill, number 28 or so, be used for this purpose. This operation consists of drilling the punch marks slightly so as to preserve the spacing and to give the tap drill a good bearing surface. The pilot holes need be drilled only until the maximum diameter of the drill is reached which is about $1 / 16$ inch deep.

After all the pilot holes are drilled, select the tap drill that will give the correct percentage of thread desired. For 10-32 thread of 75% clearance thread, a number 19 drill is correct. However, 75% thread is really unnecessary and several sizes larger can easily be used as explained before. For a drill press one can use a small mail-order house type which, with motor, costs about $\$ 20.00$. A good, high speed drill and a little oil make the drilling operation quite simple. Remember to set the channel so as to get the holes at right angles to the channel axis.

After all the holes are drilled, tapping is next in order. Use a small hand tap-wrench, and above all things remember to get a taper tap. This type of tap is tapered and will easily go through without very much effort. Use plenty of thread cutting oil and

RELAY-RACK PANELS

1. Make panel height a multiple of $13 / 1$ inches less 1 百 inch for clearances.
2. Both top and bottom edges of a properly mounted panel will, neglecting clearances, always fall half way between a pair of holes spaced $1 / 2$ inch a part on the rack.
3. It is seldom necessary to cut all the possible mounting-screw slots in a panel, but it can be done if desired.
4. Any panel lald out to fit the rack will also fit if the panel is turned end-for-end or back-for-front.
take it easy. If you feel that you are getting tired, stop and come back to the job later. The least side twist on the wrench will break the tap.

When all the tapping is done, clean the burrs off the holes on the inside of the channel. This can easily be done with the head of a file.

The only other holes required are the base holes in the bottom angles. These are desirable, but not necessary. The racks are self-supporting with most amateur radio cquipment and do not need to be bolted to the floor. However, if it is felt the bottom holes are desirable, have some machine shop drill or punch the holes. The job is too tough for a small drill press.

The next operation is welding. This is a difficult job and can best be done by an experienced welder. Take the pieces to him together with the drawing and show him just where the welding is to be done. There are eight welds altogether, and make sure that the welding is not done zwhere the panels will mount. The rack should be set up on a welding table and checked several times for squareness. Before the welding "tacks" are made, check again the distance from the center of the bottom and top holes to the strap and the base. This must be exactly $5 / 16$ inch. If it is less the panels will jam, and if it is more, an open space will show through. A welder should not charge over $\$ 4.00$ for this welding job. Make the welder keep in mind that you want a "finished" job; it won't cost you any more provided you get him to set the price first!

After welding, the steel should be well cleaned and given a good coat of paint. Black is usually used, although black panels set against a rack painted with aluminum lacquer is quite striking.

Radio Symbols Used in Circuit Diagrams

R. M. A. COLOR CODE

For Fixed Condensers, Unit: MicroMicrofarads

First	Dot	Second Dof	Third		Dot
Black	0	Black	0		
Brown	1	Brown	1	Brown	0
Red	2	Red	2	Red	00
Orange	3	Orange	3	Orange	000
Yellow	4	Yellow	4	Yellow	0000
Green	5	Green	5	Green	00000
Blue	6	Blue	6	Blue	000000
Purple	7	Purple	7	Purple	0000000
Gray	8	Gray	8	Gray	00000000
White	9	White	9	White	000000000

White $\quad 9$ White 9 White 000000000

For Resistors, Unit: Ohms

Body Color		End Color			Color
Black	0	Black	0		
Brown	1	Brown	1	Brown	0
Red	2	Red	2	Red	00
Orange	3	Orange	3	Orange	000
Yellow	4	Yellow	4	Yellow	0000
Green	5	Green	5	Green	00000
Blue	6	Blue	6	Blue	000000
Purple	7	Purple	\%	Purple	0000000
Gray	8	Gray	8	Gray	00000000
White	9	White	,	White	000000000

THE "Q SIGNALS"

Abbreviation	Question	Answer
QRA	What is the name of your station?	The name of my station is
QRB	How far approximately are you from my station?	The approximate distance between our stations is \qquad nautical miles (or
QRC	What company (or Government Administration) settles the accounts for your station?	The accounts for my station are settled by the company (or by the Government Administration of
QRD	Where are you bound and where are you from?	I am bound for from
QRG	Will you tell me my exact frequency (wave-length) in kc / s (or m)?	Your exact frequency (wave-length) ke/s (or m).
QRH	Does my frequency (wave-length) vary?	Your frequency (wave-length) varies.
QRI	Is my note good?	Your note varies.
QRJ	Do you receive me badly? Are my signala weak?	I cannot receive you. Your signals are too weak.
QRK	Do you receive me well: Are my signals good?	I receive you well. Your signals are good.
QRL	Are you busy?	I am busy (or I am busy with). Please do not interfere.
QRM	Are you being interfered with?	I am being interfered with.
QRN	Are you troubled by atmospherics?	I am troubled by atmospherics.
QRO	Shall I increase power?	Increase power.
QRP	Shall I decrease power?	Decrease power.
QRQ $Q R R$	Sball I send faster?	Send faster ($\ldots, \ldots \ldots$ words per minute).
QR		Amateur "SOS" or distress call (U.S.A.). Use only in serious emergency.
QRS	Shall I send more slowly?	Send more slowly (........... words per minute).
QRT	Shall I stop sending?	Stop sending.
QRU	Have you anything for me?	I have nothing for you.
QRV	Are you ready?	I am ready.
QRW	Shall I tell $\ldots \ldots \ldots$ that you are calling $\operatorname{him}_{\mathrm{m})}$ on $\ldots \ldots \ldots \mathrm{kc} / \mathrm{s}$ (or $\ldots \ldots \ldots .$.	
QRX	Shall I wait? When will you call me again?	Wait (or wait until 1 have finished com municating with) I will call you at o'clock (or immedi ately).
QRY	What is sny turn?	Your turn is No. (or according to any other method of arranging it).
QRZ	Who is calling me?	You are being called by
QSA	What is the strength of my signals (1 to 5)?	The strength of your signals is (1 to 5).
QSB	Does the strength of my signals vary?	The strength of your signals varies.
QSD	Is my keying correct; are my signals distinct?	Your keying is incorrect; your signals are bad.
QSG	Shall I send telegrams (or one telegram) at a time?	Send telegrams (or one telegram) at a time.
QSJ	What is the charge per word including your internal telegraph charge?	The charge per word for \qquad francs, including my internal telegraph charge.
QSK	Shall I continue with the transmission of all my traffic, I can hear you through my signals?	Continue with the transmission of all your traffic, I will interrupt you if necessary.
QSL	Can you give me acknowledgment of receipt?	I give you acknowledgment of receipt.
QSM	Shall I repeat the last telegram I sent you?	Repeat the last telegram you have sent me.
QSO	Can you communicate with direct (or through the medium of direct (or	I can communicate with direct (or through the medium of).
QSP	Will you retransmit to \qquad free of charge?	I will retransmit to free of charge.
QSR	Has the distress call received from....... been cleared?	The distress call received from has been cleared by
QSU QSV	Shall I send (or reply) on ke/s (or m) and/or on waves of Type A1, $\mathrm{A} 2, \mathrm{~A} 3$, or B ? Shall I send a series of VVV?	Send (or reply) on kc/s for Ai, $\ldots, \ldots \mathrm{m}$) and A or on waves of Type Send a series of VVV

Abbre. viation	Qucstion	Answer
QSW	Will you send onkc/s (or $\cdots \cdots \cdot m$) and/or on waves of Type $\mathrm{A} 1, \mathrm{~A} 2, \mathrm{~A} 3$ or B ?	I am going to send (or I will send) on $\ldots . . . \mathrm{kc} / \mathrm{s}$ (orm) and or on waves of Type $A 1, A 2, A 3$ or B.
QSX		I am listening for (call sign) on kc/s (orm).
QSY	Shall I change to transmission on . kc / s (or $\ldots \ldots . . \mathrm{m}$) without changing the type of wave? or Shall I change to transmission on another wave?	Change to transmission on kc/s (or n) without changing the type of wave. Change to transmission on another wav.
QSZ	Shall I send each word or group twice?	Send each word or group twice.
QTA	Shall I cancel telegram No. as if it had not been sent?	Cancel telegram No. as if it had not been sent.
QTB	Do you agree with my number of words?	I do not agree with your number of words: I will repeat the first letter of each word and the first figure of each number.
QTC	How many telegrams have you to send?	I have telegrams for you (or for).
QTE	What is my true bearing in relation to you?	Your true bearing in relation to me is degrees or
	What is my true bearing in relation to (call sign)? or	Your true bearing in relation to (call sign) is degrees at (time) or
	What is the true bearing of \qquad (call sign) in relation to (call sign)?	The true bearing of $\ldots . . .$. (call sign) iil relation to in relation to \ldots. . (call sign) is
QTF	Will you give me the position of my station according to the bearings taken by the direction finding stations which you control?	The position of your station according to the bearings taken by the direction.find. ing stations which I control is....... latitude longitude.
QTG	Will you send your call sign for fifty seconds followed by a dash of ten seconds on $\ldots \mathrm{kc} / \mathrm{s}$ (or m) in order that I may take your bearing?	I will send my call sign for fifty seconds followed by a dash of ten seconds on order that you may take my hearing.
QTH	What is your position in latilude and longitude (or by any other way of showing it)?	My position is latitude longitude (or by any other way of show. ing it).
QTI	What is your true course?	My true course is degrees.
QTJ	What is your speed?	My speed is knots (or kilometers) per hour.
QTM	Send radioelectric signals and submarine sound signals to enable me to fix my bearing and my distance.	1 will send radioelectric signals and sub. marine sound signals to enable you to fix your bearing and your distance.
QTO	Have you left dock (or port)?	I have just left dock (or port).
QTP	Are you going to enter dock (or port)?	I am going to enter dock (or port).
QTQ	Can you communicate with my station by means of the International Code of Signals?	I am going to communicate with your station by means of the International Code of Signals.
QTR	What is the exact time?	The exact time is
QTU	What are the hours during which your station is open?	My station is open from to
QUA	Have you news of the mobile station)?	Here is news of (call sign of the mobile station).
QUB	Can you give ne in this urder. informa. tion concerning: visibility, height of clouds, ground wind for (place of observation)?	Here is the information requested
QUC	What is the last message received by you from .;..... (call sign of the mobile station)?	The last message received by me from $\ldots . .$. (call sign of the mobile station) is
QUD	Have you received the urgency signal sent by $. \ldots \ldots .$. (call sign of the mobile station)?	I have received the urgency signal sent by (call sign of the motile station) at (time).
QUF	Have you received the distress signal sent by $\ldots . . \ldots \ldots$. (call sign of the mobile station)?	I have received the distress signal sent by tion)..... (call sign of the mohile station) at (time).
QU'	Are you being forced to alight in the sea (or to land)?	I am forced to alight (or land) at (place).
QUH	Will you indicate the present barometric pressure at sea level?	The present barometric pressure at sea level is (units).
QU.	Will you indicate the true course for me to follow, with no wind, to make for you?	The true course for you to follow, with no wind, to make for me is degrees at (time).

R-S-T REPORTING SYSTEM

READABILITY

1-UNREADABLE.
2-B A R E L Y READABLE - OCCASIONAL WORDS DISTINGUISHABLE.
3-READABLE WITH CONSIDERABLE DIFFICULTY.
4-R EADABLE WITH PR.ACTICALLY NO DIFFICULTY.
:-PERFECTI,Y READABIE.

SIGNAL STRENGTH

1—FAINT—SIGNAIS BAREI.Y PERCEPTIBLE.
2- ${ }^{7}$ ERY WEAK SIGNAI.S.
3-WEAK SIGNALS.
4-FAIR SIGNALS.
5-FAIRLY GOOD SIGNAIS.
6-GOOD SIGNALS.
~-MODERATELY STRONG SIGNALS.
8-STRONG SIGNALS.
O-F.KTREMEIY STRONG SIGNAIS.

TONE

1-EXTREMELY ROUGH, HISSING NOTE.
2-VERY ROUGH A.C. NOTE-NO TRACE OF MUSICALITY.
3-R OUGH, LOW-PITCHEI A.C. NOTE-SLIGHTLY MUSICAI..
4-RATHER ROUGH A.C. NOTEMODERATELY MUSICAI.
¿-MUSICAI.I.Y MODUI.ATED NOTE.
(;-MODUI,ATED NOTE - SLIGHT TRACE OF WHISTLE.
T-NEAR D.C. NOTE-SMOOTII RIPPI.E.
8--GOOD D.C. NOTE—JUST TRACE OF RIPPLE.
9-PUREST D.C. NOTE.
IF THE NOTE APPEARS TO BE CRYSTAL CONTROLLED, SIMPI,Y ADD AN X AFTER THE APPROPRI.\TE NUMBER.

U. S. POSTAL RATES ON CARDS AND LETTERS

I.ETTERS 3c each ounce or fraction to United States, U. S. Possessions, Canada, Labrador and Newfoundland, 2c each vunce or fraction if for delivery in the town in L. S. where letter was mailed. AIRMAIL to U. S. and Canada: oc each ounce or fraction.
LETTERS, 3c each ounce or fraction, CARDS 2c, to: Argentina, Balearic Islands, Bolivia, Brazil, Canary Islands, Chile, Colombia, Costa Rica, Cuba, Dominican Republic, Eucador, Guatemala, Haiti, Honduras, Mexico, Morocco (Spanish), Nicaragua, Panama, Paraguay, Peru, Salvador, Spain and its Colonies, L'ruguay, Venezuela.
I.etters 3c each ounce or fraction to C.IN.IDA, LABRADOR, and NEW-

FOUNDLAND. Letters 5 c each ounce or fraction to GREAT BRITAIN (England, Scotland, Wales), NORTHERN IRELAND, and IRISH FREE STATE.
LETTERS 5 c first ounce and 3 c for each additional ounce or fraction to: All other countries not in the above lists.

Registration Fee-In addition to posttage, 15 cents to all countries.
POST CARDS (Government and Private)

CARD゚S ic each in United States and Possessions, and 2c to comntries taking 3 c letter rate.

Cards 2c each to CANADA. LABRADOR, and NEWFOUNDLAND.
Cards 3c each to all other foreign countries.

International Prefixes

MASTER RESISTOR CHART

STANDARD RESISTANCE VALUES WITH CORRESPONDING PART NUMBERS AND COLOR CODE

				coloncoor							colon cone			$\left\lvert\, \begin{gathered} \text { mad } \\ \substack{\text { rame } \\ \text { nol }} \\ \hline \end{gathered}\right.$				colon coue			
+				a	-	c					*	-	c				a	- 1	1 c		
1 	38	111	10	BROWN	K	BLACK	13	62	159	1,000	BROWN	BLACK	RED	25	66	207		100,000	BROWN	BLACK	YELLOW
		118	11	日ROWN	BROWN	OLACK			760	1.100	BROWN	BROW	RE			208	110,00	BROWN	BRPWN	yellow	
	39	113	12	BROWN	RED	BLACK		63	61	1,800	BROWN	RED	RED		81	209	120,000	8ROWN	RED	YELLOW	
		114	13	BROWN	ORANGE	BLACK			162	1. 300	BROWN	ORANGE	RED			210	130,000		ORANGE	YELLOW	
	40	115	15	BROWN	GREEN	BLACK	14	64	63	1,500	BROWN	GREEN	RED	26	88	211	150,000	BROWN	GREEN	yellow	
2		116	16	BROWN	blue	BLACK			5	1,600	EROWN	CBLUE	REO			218	160,000	GROWN	BlUE	yELLOW	
	41	117	16	BROWN	GRAY	BLACK		65	165	1.800	8ROWN	GRAY	RED		89	213	180,000	GROWN	GRAY	YELLOW	
		118	90	RED	Black	8LACK			166	3,000	RED	BLACK	RED			214	200,000	RED	BLACK	YELLOW	
3	42	110	22	RED	RED	BLACK	15	∞	167	2,200	RED	RED	RED	27	∞	215	290,000	RED	RED	YELLOW	
		120	24	REO	YELLOW.	BLACK			168	2.400	RED	Yellow	RED			216	240,000	RED	YELIOW	YELLOW	
	$4)$	121	27	RED	VIolet	BLACK		67	169	2.700	RED	VIOLET	RED		91	217	270,00	RED	VIOLET	YELLOW	
		198	30	ORANGE	BLACK	BLACK			170	3,000	ORANGE	black	RED			218	300.000	ORANGE	BLACK	YELLOW	
4	44	123	33	ORANGE	ORANGE	BLACK	16	60	\int_{11}^{17}	3,300	ORANGE	ORANGE	RED	28	09	219	330,000	ORANGE	ORANGE	YELLOW	
		124	36	ORANGE	blut	BLACK			178	3,600	ORANGE	BLUE	RED			820	360,000	ORANGE	日LUE	YELLOW	
	45	12	39	ORANGE	WHITE	Black		69	173	3,900	ORANGE	White	RED		93	221	390,000	ORANGE	WHITE	yELLOW	
		126	$4)$	YELLOW	ORANGE	BLACK			14	4,300	yELLOw	ORANGE	RED			282	430,000	YELLOW	ORANGE	YELLOW	
5	46	197	47	YELLOW	VIOLET	BLACX	17	70	175	4,700	YELLOW	VIOLET	RED	99	94	273	470,000	YELLOW	YIOLEI	yellow	
		128	51	GREEN	BROWN	BLACK			176	\$,100	GREEN	BROWN	RED			224	\$10,000	GREEN	BROWN	YELLOW	
	47	189	56	GREEN	8LUE	BLACK		11	177	5,600	GREEN	BLUE	RED		05	225	500,000	GREEN	Glue	YELLOW	
		130	62	blue	D	8LACK			178	6,200	BlUE	RED	RED			286	620,000	blue	RED	YELLOW	
6	41	131	68	BtUE	GRAY	BLACK	18	12	179	6,800	blue	GRAY	RED	30	06	987	680,000	alue	GRay	YELLOW	
		13\%	75	VIOLET	GREEN	BLACK			180	7.500	VIOLET	GREEN	RED			728	130,000	Violet	GREEN	VELLOW	
	49	133	88	GRAY	RED	BLACK		13	11	8,200	GRAY	RED	RED		97	229	820.000	GRAY	RED	Yetlow	
		134	91	White	BROWN	BLACK			2	9,100	WHITE	GROWN	RED			30	910,000	WhHITE	8ROWN	YELLOW	
T	50.	13s		8ROWN	BLACK	OROWN	19	14	183	10.000	8ROWN	8LACK	ORANGE	31	98	231		OROWN	BLACK	GREEN	
		136	110	BROWN	BROWN	BROWN				11.000	BROWN	BROWN	ORANGE			232	1.1 Meg.	GROWN	BROWN	GREEN	
	51	137	180	BROWN	RED	BROWN		75	185	12.000	BROWN	RED	orange		99	933	1.2 Mes.	EROWN	RED	GREEN	
		138	130	BROWN	ORANGE	BROWN			188	13,000	BROWN	ORANGE	ORANGE			234	13 Meg	BROWN	ORANGE	GREEN	
8	52	139	150	BROWN	GREEN	BROWN	20	76	187	15.000	8ROWN	GREEN	Orange	32	0	235	15 Mes	BrOWN	GREEN	GREEN	
		140	180	BROWN	blue	BROWN			188	16,000	Brown	BLUE	ORANGE			236	16 Mes	BROWN	blue	GREEN	
		141	180	EROWN	GRAY	BROWN		17	189	18,000	8ROWN	GRAY	ORANGE		101	37	18 Meg	BROWN	GRAY	GREEN	
		142	200	RED	BLACK	BROWN			-	80,000	RED	BLACK	ORANGE			238	80 Mcs .	RED	BLACK	GREEN	
-	54 !	143	220	RED	RED	BROWN	21	78	191	22.000	RED	RED	ORANGE		102	239	2.2 Mes.	RED	RED	GREEN	
		144	240	RED	YELLOW	OROWN			192	24,000	RED	YELLOW	ORANGE			240	24 Meg .	RED	YELLOW	GREEN	
	55	145	270	RED	VIOLEI	8ROWN		79	193	27.000	RED	VIolet	ORANGE		403	241	87 Mes	RED	VIOLEI	GREEN	
		140	300	ORANGE	BLACK	BROWN			194	10,000	ORANGE	Black	ORANGE			248	30 Mes	ORANGE	BLACK	GREEN	
10	56	147	330	ORANGE	ORANGE	BROWN	28	80	195	33,000	ORANGE	ORANGE	ORANGE	341	104	24)	33 Mes	ORANGE	ORANGE	GREEN	
		148	360	ORANGE	Bl.UE	BROWN			196	16,000	ORANGE	BLUE	ORANGE			244	16 Mes	ORANGE	BLUE	GREEN	
	57	149	390	ORANGE	WHITE	BROWN		81	197	39,000	ORANGE	W/HITE	ORANGE		105	245	3.9 Meg	ORANGE	Whate	GREEN	
		130	430	YELLOW	ORANGE	BROWN			198	43,000	YELLOW	ORANGE	ORANGE			246	43 Meg	YELLOW	ORANGE	GREEN	
11	58	151	470	YELLOW	VIolet	8ROWN	23	$B 2$	199	47,000	YELLOW	VIOLET	ORANGE	35	06	247	4.3 Meq	YELLOW	VIOLET	GREEN	
		158	510	GREEN	EROWN	GROWN			1900	\$1,000	GREEN	BROWN	orange			248	51 Meg	GREEN	BROWN	GREEN	
	50	153.	500	GREEN	OLUE	BROWN		83	01	56,000	GREEN	blue	ORANGE		107	249	56 Meg	GREEN	BLUE	GREEN	
		154	620	UE	RED	BROWN			202	62,000	blue	RED	ORANGE			1250	62 Meg	GLUE	RED	GREEN	
12	60	155	680	BLUE	GRAY	8ROWN	24	84	203	68,000	blue	GRAY	ORANGE	36	108	251	68 Meg 75 Meg	BlUE	GRAY GREEN	GREEN	
		13 C	750	VIOLET	GREEN	BROWN			204	15,000	VIOLET	GREEN	ORANGE		109	125	75 Meg 89 Meg	GRAY	GREEN	GREEN	
	61	157	220	Gray	RED	BROWN		05	205	d8, ${ }^{1}$,000	GRAY	RED	ORANGE			1254	81 Meg	WHITE	BROWN	GREEN	
		15 E	910	WHITE	BROWN	BROWN			2008	91,000	While	BROWN	ORANGE	371	10	123s	100 Meg	BROWN	BLACK	blue	

The above illustration shows the relative D

Table of Color Valver

Volue	Solor
0	Black
1	8 rom
?	Red
3	Otonge
5	Green
6	Blue
7	Violel
8	Groy

Tolerente-Gold oc. Iolenanke-Silve

Enamplen

Chart courtesy The Carborundum Co., Globar Division

Prefines by Countries

PITCAIRN ISLAND (U)..................................	
RRTUGAL (E)	
REUNION (AF)	
ROUMANIA (E)	
ST. KITTS.NEVIS (Na).	
T. LUCIA	
ST. PIERRE \& MIQ	
LVADOR (NA)	
SAMOA (0) (U.S.)	
SARAWAK (O)	
SCOTLAND (E)	
SEYCHELLES	
SIAM (A)	
SIBERIA (see U.S.S.R.)..	
SOUTHERN RHODESIA (AF).............2E1	
STRAITS SETTOEXOMENTS (see	
SURINAM (SA) ${ }^{\text {PZ }}$	

SYRIA (A) (E) HBTANGANYIKA (AF)TOGOLAND (British) (AF)......................ZD4
(Erench) (AF) FD8ruansjordania (a)2 C
TRINIDAD \& TOBAGO (SA VP
TUNIS (AF) FTURKD (EAFV
UNITED STATES (NA) W
STATIONS (NANCX
S S P (ERA)VENEZUELA (SA)YV
(NA)GW
WESTERN SAMOA (O) (Britis) ZM*Official, by French Govt.

Abbreviations Commonly Used by Amatenrs

Short	Full	Short	Full
A B T	About	F B	Fine Business
A G N	Again	F M	From
A H D	Ahead	FR	For
A HR	Another	$F \mathrm{R} Q$	Frequency
A NI	Any	G A	Go Ahead
A PR X	Approximate-Approximately	G B	Good-Bye
B C	Broadcast	G M	Good Morning
B D	Bad	G N	Good Night
B 4	Before	G G	Going
B I	By	G T	Got-Get
B K	Break	G N D	Ground
B N	Been	H A (HI)	Laughter
B T	But	H M	Him
B C L ${ }^{-}$	Because	H R	Here-Hear
B T W N	Between	H V	Have
B I Z	Business	H W	How
C	See	I	OK
C L R	Clear	1 C	I See
CN	Can	I C W	Interrupted Continuous Wave
C ${ }^{\text {N T }}$	Can't	K	Go Ahead
C K	Check	LI D	Poor Operator
C K T	Circuit	L I L	Little
C M G	Coming	L F T	Left
$C \mathrm{U}$ D	Could	L S T	Last-Listen
C W	Continuous Ware	I. T R	Letter
C U L	See You Later	M A	Milliampere
C U A G N	See You Again	M C	Megacycle
D E	From	M ${ }_{\text {I }}$	Motor Generator
D A	Day	M I	My
D NT	Don't	M K	Make
D I NT	Did Not	M O	More
D H	Deadhead	M S G	Message
D C	Direct Current	M T	Empty
D X	Long Distance	N N	Nothing Doing
E S	And	N G	No Good
E Z	Easy	N I I.	Nothing

GAMMATRDN
 THE ORIGINAL TANTALUM TUBE

(High Frequency Style)

HK-354. The original amateur Tantalum element transmitting tube. An all-purpose triode. Rated plate dissipation, 15,0 watts. Amplification factor, 14.............. $\$ 24.50$

HK-354-C. A modification of the " 354 " specially adapted to high frequency use. Has identical characteristics, but lowered input capacity. Welded plate and grid caps of improved design . 24.50

HK-354-D. Supplied in high frequency or standard style. Rated plate dissipation, 150 watts. Adapted to all Class "C" amplifier operation. Amplification factor, 22. . . $\$ 24.50$

HK-354-E. Supplied in high frequency or standard style. Rated plate dissipation, 150 watts. Adapted to Class " B " audio and " C " amplifier operation. Amplification factor, $35 \ldots$..... $\mathbf{\$ 2 4 . 5 0}$

HK-354-F. Supplied in high frequency or standard style. Rated plate dissipation, 150 watts. Adapted to Class " B " audio modulator use. Amplification factor, 50...................... $\$ 24.50$

HK-154. A low voltage high frequency tube of exceptional power output. Full ratings to 60 megacycles. Rated plate dissipation, 50 watts. It is the only high frequency Tantalum tube whose characteristics are particularly adapted to high efficiency grid modulation use................. $\$ 12.50$

HK-154

The Pioneer Naturally Takes the Lead

N M	No More
N R	Number
N W	Now
O B	Old Boy
O L	Old Lady
O M	Old Man
O P	Operator
O T	Old Top-Timer
O W	Old Woman
P L S	Please
P S E	Please
P X	Press
R	O K
R C D	Received
R C V R	Receiver
R I	Radio Inspector
S A	Say
S E Z	Says
S M	Some
S W	Short-Wave
S I G	Signal
S K E D	Schedule
T F C	Traffic
T M W	Tomorrow
T R	There
T T	That
T K	Take

TK S
T N K
T N X
U
(1)
[].
L R
VB
V T
V Y
W A
W B
W D
W F
W K
W L
W N
W T
W X
X
X M TR
Y F
Y I
Y R
30
73
88

Thanks
Think
Thanks
You
You Would
You Will
Your
Very Bad
Vacuum Tube
Very
Word After
Word Before
Would
Word Following
Work
Will—Would
When
What
Weather
Interference
Transmitter
Wife
Young Lady
Your
Finish-End
Best Regards
Love and Kisses

Pertinent Excerpts from the Radio Laws Affecting Radio Amateurs

Any licensee receiving notice of violation of radio laws shall reply to said notice in writing to the F.C.C. at Washington.

Requests for special call-letters will not be considered.
The person manipulating the telegraph key of an amateur station must be a duly licensed operator.

The original license shall be posted in the station or kept in the personal possession of the operator on duty, except when it has been mailed to an office of the F.C.C. for endorsement or change before date of its expiration.

Amateur stations must not be used to handle messages for pecuniary interests, direct or indirect, paid or promised.

Amateur transmissions must be free from harmonics. Loosely-coupled circuits must be used. or devices that will result in giving equivalent effects to minimize keying impacts, clicks, harmonics and parasitics.

Phone transmitters must not be modulated in excess of their modulation capability, and means must be incorporated to insure against such overmodulation.

One kw. power input to the stage which feeds the antemna is the maximum permissible power for amateur operation.

Amateur operators must transmit their assigned call letters at the end of each transmission, or at least once during each 1.5 minutes of operation. If an amateur transmitter causes general interference with reception of broadcast signals in receivers of modern design, that amateur station shall not operate during the hours from $8 \mathrm{p} . \mathrm{m}$. to $10: 30 \mathrm{p} . \mathrm{m}$., local time, and on Sundays from 10:30 a. m. until 1 p . m., local time, in addition to the $\mathrm{e}^{\text {renning silent period, upon such frequency }}$ or frequencies as catse such interference.

Each licensee of an amateur station must keep an accurate \log of station operation, name of person operating the transmitter, with statement as to the nature of transmission. The call letters of the station, the input power to the stage which feeds the antenna, the frequency band used, the location of the station if portable operation is used, must all be entered in the station log.

A copy of each message sent and received must be kept on file for at least one year.

Announcing LATEST ACHIEVEMENTS OF ASTATIC ENGINEERS
 $$
\begin{aligned} & \text { ASK } \\ & \text { YOUR } \\ & \text { JOBBER } \end{aligned}
$$

The success of constant effort on the part of Astatic Engineers to improve performance, flexibility and design of Crystal Microphones and Pickups is evidenced in the new products now being introduced. Wide-range reproduction, quality workmanship, sturdy construction, attractive designs and low price make Astatic Microphones and Pickups popular the world over.

New Acorn Model T-3 Microphone Praised for Beauty, Flexibility and Performance

Pride of Astatic's 1938 line. An all-purpose instrument of the highest type, relatively low in cost, to meet the exacting demands in public address, broadcasting, recording and amateur fields. By tilting the head upon swivel mount, acoustic feedback is easily controlled and the pickup made either directional or non-directional, as desired. New crystal assembly offers improved frequency response over previous single diaphragm types. Complete with interchangeable plug and socket connector. Furnished with 8 - ft. one-wire cable. $25-\mathrm{ft}$. and 50 -ft. lengths available. Polished chromium finish.
LIST

PRICE $\$$ - $0<$| Fully |
| :--- |
| Guaranteed |

Streamlined Pickup Tru-Tan Model 0-7

uality reproduction and beauty of design make this an ideal instrument for modern amplifier and radio phonograph combinations. Streamlined $9^{\prime \prime}$ pickup arm designed with Offset Head for records to 12 ". Axial Cushioning reduces motor noise and speaker-pickup feedback. Standard black or special finish.

LIST PRICE
$\$ 12.00$

Unique Grip-To-Talk
 MICROPHONE Model CD-104
Here is an ideal speach range microphone designod by Astatic Engineors for oir-way ground stations, inter-office, inter-factory. - mateur and similar comwunicating systoms. Unique, grip-operated switch, attached to standard, cuts microphone in or out. Frequency response especially appropriate. Heavily chrome plated with black base. Complete with $8-\mathrm{ft}$. cable.
LIST PRICE \$27.50

Address
Dept. N-2

> ASTATIC MICROPHONE LABORATORY,Inc.YOUNGSTOWN,O. Pioneer Manufacturers of 2uality Crystal Droducts

Licensed under Brush Development Company Patents

This information must be available on request by authorized representatives of the Government of the United States.

- Distress Signals

The International Distress Signal is ... - - - . . (three dots, three dashes, three dots). The distress signal is not SOS; it is an easily recognized group of characters of three dots, three dashes, three dots. For radiotelephony distress calls the signal is MAYD.4Y. All communication must cease when a distress call is heard. Communication must not be resumed until it has been definitely determined that all is clear again. When you hear a distress call, notify the nearest source from which aid can be secured.

It is umlawful to send fraudulent signals of distress or communications relating thereto; to maliciously interfere with any other radio communication. Distress calls have precedence over all others. Minimum power must be used to effect reliable communication. The use of profane language is prohibited. The contents or meaning of a message must be kept secret, except to an authorized agency which takes part in the forwarding of the message, or to the addressee or his agent, or upon the demand of a court of competent jurisdiction or authority.

Secrecy provisions do not apply to broad-
casts for public use, or to distress calls. In the event of a national emergency the station can be ordered closed.
In the event of an emergency an anateur station is permitted to communicate with stations other than amateur.
The penalty for violation of the provisions of the Communications Act of 1934 is $\$ 10$,000 , or imprisomment not to exceed 2 years, or both, for each offense. The operator's license is liable to suspension for 2 years if a conviction is secured. The station license can also be revoked.

For violation of any of the regulations of the Federal Communications Commission a fine not to exceed $\$ 500$ can be imposed for each day of such offense. If the convicted person is a licensed operator his license can be suspended for a period not to exceed two years. The station license can also be revoked. The penalty for not keeping a station \log is the same as related above. For malicious intereference with distress communications the maximum penalty of $\$ 10,000$ and 2 years can be imposed. For malicious interference with other than distress communications the license can be suspended for up to 2 years. An amateur who accepts material compensation for any services rendered by his station is subject to a fine of not more than $\$ 500$ for each day of such offense. His license can also be suspended for as long as 2 years.

Hules of the Board of Underwriters

- Receiving ${ }^{-}$Stations

Owners of insured residences and buitdings are compelled to comply with the following Underwriter's rules:
a-Outdoor antenna and counterpoise conductor sizes shall not be less than no, 14 if copper or no. 17 if of bronze or copperclad steel. Antenna and counterpoise conductors outside of buildings shall be kept well away from all electric light and power wires or any circuit of more than 600 volts, and from railway, trolley or feeder wires. so as to avoid the possibility of contact between the antenna or counterpoise and such wires under accidental conditions.
b-Antenna and counterpoise where placed in proximity to electric light or power wires of less than 600 volts, or signal wires, shall be constructed and installed in a strong and durable manner, and shall be so located and provided with suitable clearances to pre-
vent accidental contact with such wires by sagging or swinging.
c-Splices and joints in the antema span shall be soldered unless made with approved splicing devices.
d-The preceding paragraphs a, b, and c, shall not apply to power circuits used as receiving antenna, but the devices used to comnect the light and power wires to radio receiving sets shall be of approved type.
e-Lead-in conductors, that is, conductors from outdoor antennas to protective devices, shall be of copper, approved copper-clad steel or other metal which will not corrode excessively and in no case shall they be smaller than No. 14, except that bronze or copper-clad steel not less than No. 17 may be used.
f-Lead-in conductors from the antenna to the first building attachment shall conform to the requirements for antennas similarly. locaterl. J.ead-in conductors from the first
building attachment to the building entrance shall, except as specified in the following paragraph, be installed and maintained so that they cannot swing closer to open supply conductors than the following distances:
Supply wires 0 to 600 volts...... 2 feet
Supply wires exceeding 600 volts.. 10 feet Where all conductors involved are supported so as to secure a permanent separation and the supply wires do not exceed 150 volts to ground, the clearance may be reduced to not less than 4 inches. Lead-in conductors on the outside of buildings shall not come nearer than the clearances specified above to electric light and power wires unless separated therefrom by a continuous and firmly fixed non-conductor which will maintain permanent separation. The non-conductor shall be in addition to any insulating covering on the wire.
g-Each lead-in conductor from an outdoor antenna shall be provided with an approved protective device (lightning arrester) which will operate at a voltage of 500 volts or less, properly constructed and located either inside the building at some point between the entrance and the set which is convenient to a ground, or outside the building as near as practicable to the point of entrance. The protector shall not be placed in the immediate vicinity of easily ignitable material, or where exposed to inflammable gases or dust or flyings of comjustible materials.
h -The grounding conductor from the protective device may be bare and shall be of copper, bronze or approved copper-clad steel, and if entirely outdoors shall not be smaller than No. 14 if of copper nor smaller than No. 17 if of bronze or copper-clad steel. If wholly indoors or with not more than ten feet outdoors it need not be larger than No. 18. The protective grounding conductor shall be run in as straight a line as possible from the protective device to a good permanent ground. The ground connections shall be made to a cold-water pipe where such pipe is available and is in service connected to the street mains. An outlet pipe from a water tank fed from a street main or a well may be used, providing such outlet pipe is adequately bonded to the inlet pipe connected to the street water main or well. If water pipes are not available, ground connections may be made to a grounded steel frame of a building or to a grounding electrode, such as a galvanized pipe or rod driven into permanently damp carth or to a metal plate or other body of

Make \$15, \$20, $\$ 25$ a Week Spare Time, Then $\$ 35$ to $\$ 60$ a Week Full Time

I'LL show you right away how - I train men at home to make good money in Radio: I'll send you my famous book "More Money in Radio", and one of my unique "Business Builder" Les. sons that show where the jobs are, how to get them, and how to handle them.

AN IOEAL COURSE FOR "HAMS"

Learn Radio from the first prin. ciples of electricity to the latest in clectronics. Get special instruction in code, if you want it. Build your own transmitter and receiver according to sound methods. and with the most recent improvements. Aside from the pleasure of doing it, you'll be fitting yourself for a good job-in any one of Radio's numerous branches. Many former amateurs are making real money in Radio today. The amateur has a real licad-start: and can become an expert quickly.

\$175 A Mooth Meet my sin. dent Josepn Artzabalo who says: "Now I"m in charge of the repair depart ment of a big distributor - a permanent job. Thanks to your course, which was interesting and easy to understand. I'm making $\$ 175$ a month.*

PROFESSIONAL EQUIPMENT SENT

Is train you. I send you pull proressional Radlo equipment: Blg Too Kle, Genuine Trlolett Tester. Complete Set of Rider Manuals, Repair and Replacement Parts-practlcally a complete Radio shop!

SERVICEMEN'S COURSE

If Fou are already In the Fadio Service business. I have what you need 10 get the better Jobs: A nesy 45-lesson practical course In Radlo repalr work that puts 504 ahead of your competitors. Men aking this course report greatly increased income. You can have t on ter As bonth. Get complete facts abouk rimore Money in Radio', mones how Radio -8ee how
I traln you from I traln you from tha tree fosson
alsn sant frita 10 me fir complete facts and plete facts and fiee hmoks TO. F. L. Sprayberyy President.

SPRAYBERRY

 ACADEMY OF RADIO70 UNIVERSITY PLACE, N. W. WASH., D. C.
dołวnpHo八 su!punols an!

pasn aq !एeys durej puno.s panoadde uv

 may be run either inside or outside the
building. The protective grounding conduc-
tor and ground, installed as prescribed in
the preceding paragraphs h and i may be
used as the operating ground.
It is recommended that in this case the
operating grounding conductor may be con-
nected to the ground terminal of the proective deric

\qquad
\qquad $\stackrel{\Delta}{0}$ \qquad \% 09

WATTS-vs-DECIBELS
 $\rightarrow \forall y 9-O-N \exists x$

2Et

x!puadd \forall

AMERICA'S MOST COMPLETE LINE OF COMMUNICATIONS REGEIVERS!

America's leadina manuracturer of communications receivers

Ii desired, a separate operating grounding connection and ground may be used. This operating grounding conductor may be either bare or provided with an insulated covering.
k -Wires inside buildings shall be securely fastened in a workman-like manner and except as provided in paragraph m of this section shall not come nearer than two inches to any electric light or power wire not in conduit unless separated therefrom by some continuous and firmly fixed nonconductor, such as porcelain tubes or approved flexible tubing, making a permanent separation. This non-conductor shall be in addition to any regular insulating covering on the wire.
1-Storage battery leads shall consist of conductors having approved rubber insulation. The circuit from a filament "A," storage battery of more than 20 amperehours capacity, NEMA rating, shall be properly protected by a fuse or circuitbreaker rated at not more than 5 amperes. The circuit from a plate. "B," storage battery or power supply shall be properly protected by a fuse.

- Transmitting Stations

The following paragraphs apply to amateur stations only:
a-Antenna and counterpoise conductors outside buildings shall be kept well away from all electric light or power wires or any circuit of more than 600 rolts, and from railway, trolley or feeder wires, so as to avoid the possibility of contact between the antenna or counterpoise and such wires under accidental conditions. Antenna and counterpoise condluctors when placed in proximity to electric light or power wires of less than 600 volts, or signal wires, shall be constructed and installed in a strong and durable manner, and shall be so located and provided with suitable clearances as to prevent accidental contact with such wires by sagging or swinging.
b-Antenna conductor sizes shall not be less than given in the following table:
c -Splices and joints in the antenna and counterpoise span shall be soldered joints unless made with approved splicing devices.
d-I ead-in conductors shall be of copper, bronze, approved copper-clad steel or other metal which will not corrode excessively and in no case shall be smaller than No. 14 .
e-Antenna and counterpoise conductors and wires leading therefrom to ground switch, where attached to buildings, shall be firmly mounted five inches clear of the surface of the building, on a non-absorptive insulating support, such as treated pins or brackets, equipped with insulators having not less than five inches creepage and airgap distance to inflammable or conducting material, except that the creepage and airgap for continuous wave sets of 1,000 watts and less input to the transmitter shall not be less than 3 inches.
f-In passing the antenna or counterpoise lead-in into the building, a tube slanting upward toward the inside or a bushing of non-absorptive insulating material shall be used, and shall be so insulated as to have a creepage and air-gap distance in the case of contimuous wave sets of 1,000 watts and less input to the transmitter, not less than three inches, and in other cases not less than five inches. Fragile insulators shall be protected where exposed to mechanical injury. A drilled window pane may be used in place of a bushing, provided the creepage and air-gap distance, as specified above. are maintained.
g-Adequate lightning protection either in the form of a grounding switch or suitable lightning arrester shall be provided. The grounding conductor for such protection shall be at least as large as the lead-in and in no case smaller than no. 14 copper, bronze, or approved copper-clad steel. The protective grounding conductor need not have an insulating covering or be mounted on insulating supports. The protective grounding conductor shall be run in as straight a line as possible to a good, permanent ground suitable for the purpose. The protective grounding conductor shall be

Material	Stations to which power supplied is less than 100 watts and voltage of power is less than 400 v .	Stations to which power supplied is more than 100 watts or voltage of power is more than 400 volts
Soft copper	No. 14	No. 7
- Medium drawn copper	No. 14	No. 8
Hard drawn copper....	No. 14	No. 10
Bronze or copper-clad steel.	No. 14	No. 12

RADIO AMATEURS
 EXPEPIMENTEPS. RADDD EXPERMENTES B :

 SET BUILDERS.
make allied's catalog YOUR RADIO BUYING GUIDE!

32 NEWEST KITS!
See the great section of Build Sour-Own kits of every typu, from a Beginner's 1 Tube set to a 14 Tube All-llave superhet. These kits hare been bullt by thousands with pertect results. Complete, tasy-to-read wlring digaratis are supplied with each Allitibl wit. Tou needi only a soldering iron, a serewdriver, and a pair of pliers io assenble one of these sets in a few heurs of entoyatie work.

Latest transmitters! Niee the flosest selection of annteur Equipment ever assembled in one kreat book. The new Add-A-Unit A mat eur Transmitter-ilesigned so you can bexin with the 80 watt CW unit and add other units at ans time until you have a complete 400 watt Cw : sthone rik. 'Tlie newest $\overline{5}$ meter equin-inent-both factorr-built and in kit form. Esersthing you'll want is in this great Aldilet) (atalog!

26 AMATEUR RECEIVERS!
The finest, most complete array of Amateur leceivers you've ever seen (ew HCA 111. new Hallirrafters seen els-atid every other modern communicathons type set built by the leadink manufacturers as well as the newezt fatm edulument in kit form wore than 20.000 lifensed Amateurs shop t NeLIED because MLDED's stock nit whulate ALLIED' fustent A.Lifins prices are always

You'll tind the world"s largest seterliont of gutality Teat linatiuments in your Ald, [lis) (atillog. Ite show all the loading lines-surrme. R.C.A. Triplett. Cloughobrankle, Western, ete. and that means the very latest and hest in test equipment design. It whl bay you to make the ALLIED Catalog simar eosndete hadio Busing Guade.

Here'z an exclusite Aldalil) service! We can supply, thathed kits of parts
or buiding any, clrcuit described in any radio publication. Ne"l! be ylad to
send you-FREF, our complete approved parts lists for ans et featured int
ALIIED's articles in this Handhook or in any other katio publication.
part you need for the set yout want to build, they shou vou Mhadion every
beatable low prices. iLDLED'S Teehnical Stath is alwas at sour servire
to held you with all your radio problems and needs. Write today for
the bia ilfillel) Catalon--Hadio's easy-to-rend, eany-to-slood, eass-to-

ALLIED:

EVERYTHING IN RADIO IN ONE BIG BOOK

Get oft to a head start in your radio work by making the A[J.IEI) (atalog your Complete Kuy: ing Gulde. Hers in one great book you'll find listed every item you need: parts. kits, trols. broks-In all nationally known brands-at the lowest prices. In this one lbt-page book there are ble sections devoted exclusirely to antateur and Set Juilder rear, Service cquipment and Test instruments, Kadio sets. Sound ertupment-erery thing logically arranged for quick. ready reference. ALIIED 18 Headquarters for Radio Buflders everywhere and saves you time and money on every order. That's why we sas: For Radio Amateurs. Set I3ullders. and Fxperimenters Lesson No. 1 is: \because Make. N1AlFD'S ('ataloz Sour Kadio Buytng

COMPLETE STOCKS FASTEST SERVICE LOWEST PRIGES

I'nder the roof we have gathered together the Cholcest. Hiost complete stocks in liadio. Every formance and balue. Eversthing you need is ready (t) be ahbopel instantly from Aholl isD's tremen. dous sturek:. N.l.1EI) bus's in buge quantities and thares the adrings with you. That"s why AD,I.IFI's prices are always lowest-that's why thousands of Amuteurs. Sat IBulilers, and Experimenters buy exclusively at AISLIFD. four FRFF; copy of the AI.J.JF:'1) ('atalog-Radio's Iseading supnly Guble
protected where exposed to mechanical injury.
h-The operating grounding conductor where used shall be of copper strip not less than $3 / 8$ inch wide by $\frac{1}{32}$ inch thick, or of copper, bronze or approved copper-clad steel having a periphery, or girth, of at least $3 / 4$ inch, such as no. 2 wire, and shall be firmly secured in place throughout its length.
i-The operating grounding conductor shall be bonded to a good, permanent ground. Preference shall be given to water piping. Other permissible grounds are grounded steel frames of buildings or other grounded metal work in the building, and artificial grounding devices such as driven pipes, rods, plates, cones, etc. Gas piping shall not be used for the ground.
j-The transmitter shall be enclosed in a metal frame, or grill, or separated from operating space by a barrier or other equivalent means, all metallic parts of which are effectually connected to ground.
k-All external metallic handles and controls accessible to the operating personnel shall be effectually grounded.

No circuit in excess of 150 volts should have any parts exposed to direct contact. A complete dead-front type of switchboard is preferred.
l-All access doors shall be provided with interlocks which will disconnect all voltages in excess of 750 volts when any access door is opened.
m-Under the conditions noted in paragraphs 1 and 2, below, wiring may be grouped in the same conduit armored cable, electrical metallic tubing, metal raceway, pull-box, junction box or cabinet.

1. When power-supply wires are introduced solely for supplying power to the equipment to which the other wires are connected.
2. Wires other than power-suroly wires run in conduit, armored cable, electrical metallic tubing, metal raceways, pull-box, junction box or cabinet with power supply wires are insulated individually or collectively in groups by insulation at least equivalent to that on the power-supply wires or the power and other wires are separated by a lead sheath or other continuous metallic sheathing.

An alphabetical glossary of words and phrases commonly used to describe the operation of television equipment.

(Courtesy, Electronics and Farnsworth Television, Inc., of Penna.)

Aperture distortion:
A loss of image definition due to the finite width of the scanning aperture, the height of the aperture being equivalent to the height of one scanning line.

Aspect Ratio:

The numerical ratio of the width to the height of the picture frame area.

Automatic Background Control:

A method of automatically adjusting the background illumination of the cathode-ray reproducer by modulating the cathode-ray intensity with the d.c. component of the video signal.

Black Control:

A name sometimes used for Automatic Background Control.
Composite Television Signal (R.M.A.):

By a composite television signal is meant a signal in which the combined video, blanking, and synchronizing signals are present.

Consecutive Scanning:

A method of television image scanning in which the field-frequency and the frame-frequency are identical.
D.C. Video Component:

The part of the video signal due to the average steady back-ground illumination of the scene being transmitted is called the d.c. Component of the video signal.

Direct Pickup:

The process of televising scenes or objects directly from life as contrasted with the transmission of film subjects.

Electron Multiplier:

A video amplifier tube in which amplification of the original electron emission (either photo-electric or thermionic) is obtained by bombarding the emitted electrons against one or more secondary-emissive surfaces.

Even-line Interlace:

An interlaced scanning field in which the number of lines scanned during each frame is an even integer.
Field Frequency (R.M.A.):
The field frequency is the number of times per second the field area is fractionally scanned in interlaced scanning.
Field Frequency Blanking Impulse:
A square topped impulse transmitted at the end of each vertical scansion of the picture field for the purpose of erasing the re-

WITH Hammarlund precision products in your recejver or transmitter, you are thoroughly assured of dependable service for superior results! Since 1911-when Hammarlund products were introduced - engineers, professionals, amateurs. set builders, and experimenters in every corner of the world have developed and built their equipment exclusively with Hammarlund products-products that insure smooth sailing performance!

Hanmarlund today manufactures over 500 precision products, among which are standard, midget and micro variable condensers; trimming and padding condensers; plug-in coils; coil forins; Isolantite sockets: I. F. transformers; R. F. Chokes; couplings; slields; professional "Super-Pro" and "Comet Pro" receivers, and special laboratory equipnient for ultra-high frequency and high frequency receiving and transmitting. Above are illustrated the famous coil forms (SWK and SWF) using the special low loss natural colored XP-53 dielectric with its unusually low power factor, rugged structure and extreme durability. The "MC" condensers use lsolantite insulation, noiseless silver plated Berylinm wiping contact, wide split type rear bearing, cadminm plated brass plates, etc. The " HF "
micro condensers, ideal for tuning or trinming high irequency circuits, also use cadmium plated soldered brass plates. Isolantite insulation, wide front bearing. etc.

For best results use Hammarlund. and to be sure you get a genuine hammarlund product. look for the name HAMMARI,UND stamped on every prodnet! Mail coupon below for new catalog with complete details on all Hammarlund broducts.

MAIL THIS COUPON

HAMMARIUND MF゙G. CO.. INC. der-438 West 33rd st.. N. Y. C.
l'leasp send new catalor.
Name

Tdireses
(its \qquad
trace path of the cathode ray spot at the television receiver.

Field Distortion:

Distortion of the shape or proportions of objects in the television image due to nonuniform velocity of the scanning spot, or departure from a rectilinear shape of scamning field.

Ficld Frcquency Synchronising Impulse:

A square topped impulse transmitted at the end oi each vertical scansion of the picture field for the purpose of keeping the vertical scanning generator at the receiver in step with the transmitter.
Frome Frequency (R..M.A.) :
The frame frequency is the number of times per second the frame area is completely scanned in interlaced scanning.
Frame:
A single complete picture.
Horizontal Scanning Frcquency:
Synonym for "Line Frequency."
Ilorizontal Blanking Impulsc:
Synonym for "Line Frequency Blanking Impulse."

Ghost Image:

A spurious image usually displaced in phase from the main image and having the same or opposite polarity as the main image. (F.g. The signals generated during the retrace time of the television camera scanning produce a ghost image signal which is subsequently erased by the blanking signals.)

I conoscope:

An electronic television camera tube in which an insulated photo-electric mosaic plate is scanned with a cathode ray beam so that the positive charges thereon are neutralized and the resulting discharge currents constitute a video signal.

Image Dissector:

A television camera tube in which an electron image which corresponds to the optical image of the scene being televised is made to move with respect to a fixed scanning aperture in such a way that the electrons so collected constitute a video signal current.

Interlaced Scanning Field:

A midirectional rectilinear scaming field in which the field frequency is an integral multiple of the frame frequency and in which the lines traced on each fractional scansion of the picture area are made to fall evenly hetween those of each previous fractional
scansion so as to completely scan each picture frame.

Intcrlace Ratio:

The numerical ratio of the field frequency to the frame frequency is called the interlace ratio.

Keystone Distortion:

An optical or electrical distortion whereby the picture field assumes a trapezoidal rather than rectangular shape.
Kinescope:
An electrostatically focused cathode ray television receiver tube.
Line Frequency ($R . M . A$.):
The line frequency is the frequency of the saw tooth wave used for scanning in the horizontal direction and is mumerically equal to the number of lines scamned per second. Line Frequoncy Synchronizing Impulse:
A square topped impulse transmitted at the end of each scanning line to keep the horizontal scamming generator at the receiver in step with the horizontal generator at the transmitter.

Line Frequency Blanking Impulse:

A square-topped impulse transmitted at the end of each scanning line for the purpose of erasing the return trace of the cathoderay spot on the television receiver tube. Master Pulse Generator:

A central unit used at the television studio to provide all blanking and synchronizing signals both for the transmitter and the receiver.

Magnetic Deflection:

The method of imparting lateral or vertical motion to the cathode-ray spot by means of the field produced by a coil through which the sawtooth scanning current is made to flow.

Magnetic Focus Coil:

A D.C. solenoid placed over the neck of an oscillight tube for the purpose of concentrating the stream of electrons emitted by the cathode-ray gun into a fine spot on the cathode-ray screen.

Multipactor:

A cold-cathode secondary-emission multiplier tube.

Negative Polarity of Transmission:

The polarity of transmission is said to be negative when a decrease in initial light intensity results in an increase in the radiated r.f. power.

Neqative Picture:

The image produced when a video signal
of reversed polarity is applied to the grid of the cathode-ray receiver tube.

Odd-Line Interlace:

An interlaced scanning field in which an odd number of lines is scanned during each picture frame.

Optical Focus:

The focussing of the optical image on the light sensitive cathode of an image dissector as distinguished from the electrical focussing of the electron image produced within the tube.

Oscillight:

A magnetically-focused cathode-ray television reproducer tube.
"Pairing-Off":
Expression used to describe the condition of an interlaced scanning field when the lines traced on succeeding fractional scansions are not evenly spaced but are distributed in pairs.

Positia'e Polarity of Transmission:

The polarity of transmission is said to be positive when an increase in initial light intensity results in an increase in the radiated r.f. power.

Picture Element:

A picture element is the smallest subdivision of the picture area defined in the process of scanning.

"Rain":

Expression used to describe the effect on the television image of a poor signal-to-noise-ratio. Under such conditions thermal agitation and shot-noise produce on effect similar to the appearance of "rain" on the television image.

Retrace Time:

The time which elapses between the end of one vertical scansion of the picture field and the start of the next vertical scansion or the time elapsing between the ending of one scanning line and the starting of the next consecutive line.

R. F. Tclevision Signal:

The signal resulting from modulation of the r.f. picture carrier by the composite tclevision signa!.

Scanning:

The process of analyzing in a predctermined manner an optical image having the dimensions width, height, and intensity for the purpose of obtaining an electrical am-plitude-time function representative of the illumination intensity of each elementary area of the original image. The amplitudetime function thus obtained constitutes a video signal.

These GUARDIAN Relays are built and engineered for radio transmission in the amateur field where size, current drain, ease of wiring and mounting are of utmost importance.

KEYING RELAYS
Model K-100, net $\$ 3.30$
*
BREAK-IN RELAYS
Model B-100, net $\$ 4.50$
OVERLOAD RELAYS
Model L-250,
(250 ma .) net $\$ 4.50$
Model L-500,
(500 ma .) net 4.50 Model X-100, adjustable Overload Relay (150 to 500 ma .)

Net $\$ 7.20$
*
TIME DELAY RELAYS
Model T-100, net $\$ 9.00$
*

FOR BAND SWITCHING and High voltage KEYING

R-100 is used in sound transmitter tuning circuits to 1 KW and 14 megacycles, on all circuits to .5 KW . for shorting coil turns, adding condensers, switching crystals. etc. May also be used in conjunction with high voltage keying rigs.
R-100 contacts are single pole, single throw, normally open. Coil wound for 110 volts. Very low capacity between contacts, and contacts and ground. Self insulated. Easily mounted on panel, requiring but two holes. Solder lug type terminals, tinned phosphor bronze contact springs, insulated by Triple-X bakelite. List $\$ 2.50$.
R-100-C identical with R-100, but has single pole, double throw contacts. List $\$ 3.00$.

RELAYS by GUARDIAN perform perfectly in the CIRCUIT DIAGRAMS
shown in this book
WRITE TODAY
for FREE BULLETINS and CIRCUIT DIAGRAMS

Address Dept. H

GUARDIAN (G) ELECTRIC

Scaming Interforence:
The effect produced on the television image by cross-talk between the video and scanning circuits.
Scanning Field:
The area traversed by the scaming spot either in dissecting or reproducing the television image.

Synchronization:

The process of keeping the scamming generators at the receiver in step with the scanning gencrators feeding the television camera.

Scanning Generator:

A vacuum tube circuit used to generate the sawtooth waves used for the electrical scanning of a television camera tube or a
cathode-ray reproducer tube.
Telecine Transmission:
The process of transmitting motion-picture film subjects by television.
I Crtical Blanking Impulse:
Synonym for "Field Frequency Synchronizing lmpulse."
I'ritiol Synchronizing Impulse:
Synonym for "Field Frequency Synchronizing Impulse."
Vertical Scaming Generator:
Synonym for "Field Frequency Scaming Generator."
lideo Signal:
The video signal is the signal generated by the television camera in the process of scanning the image being transmitted.

Handy Workshop Kinks

- To'Resharpen Old Files

Wash the files in warm potash water to remove the grease and dirt, then wash in warm water and dry by heat. Put one and one-half pints warm water in a wooden vessel, put in the files, add three ounces blue vitriol finely powdered, three ounces borax. Mix well and ,turn the files so that every one may come in contact with the mixture. Add ten and one-half ounces sulphuric acid and one-half ounce cider vinegar. Remove the files after a short time, dry, rub with olive oil, wrap in porous paper. Coarse files should be kept in the mixture for a longer time than fine ones.

- File Lubricant

When filing aluminum, dural, etc., the file should be oiled or rubbed in chalk, but will cut slower than with no lubricant. However, the file will last much longer.

- Screw Lubricant

Put hard soap on lag screws, wood screws, or any screw for wood. It will surprise you how much easier they will turn in, and prevent or at least reduce splitting.

- Drilling Glass

This is clone very readily with a common Irill by using a mixture of turpentine and camphor. When the point of the drill has come through it should be taken out and the hole worked through with the point of a three cornered filc, having the edges ground sharp. i'se the corners of the file.
scraping the glass rather than using the file as a reamer. Great care must be taken not to crack the glass or flake off parts of it in finishing the hole after the point of the drill has come through. Use the mixture freely during the drilling and scraping. The above mixture will be found very useful in drilling hard cast iron.

- Etching Solution

Add three parts nitric acid to one part muriatic acid. Cover the piece to be etched with beeswax. This can be done by heating the piece in a gas or alcohol flame and rubbing the wax over the surface. Use a sharp steel point or hard lead pencil point as a stylus. A pointed glass dropper can be used to put the solution at the place needed. After the solution foams for two or three minutes, remove with blotting paper and put oil in the piece and then heat and remove the wax.

- Annealing Brass or Copper

In working brass or copper, it will become hard and if hammered to any great extent will split. To prevent cracking or splitting. the piece must be heated to a dull red heat and plunged into cold water; this will soften it so it can be worked easily. Be careful not to heat brass too hot, or it will fall to pieces.

- To Clean Copper

Prepare a strong soda or potash lye solttion by alleling about a pound of lye to a pail

with the best in radio

ADISCRIMINATING LOT - these Wholesale customers. Not the kind to vhom radio is just a fad. They are experts, nany of them filling important posts on the ration's networks . . . many more operating 'ham" stations of their own from coast to :oast-skilled radio technicians, "in the cnow"
[oo far advanced, these fellows, to work with ordinary equipment - they demand and get from Wholesale - precision parts rom the top-notch manufacturers in radio. [oo busy, these men, to wait for ordinary ielivery they demand and get from Wholesale "lightning service". Too wise, to pay any price - they demand and get from Wholesale rock-bottom economy prices.
「ake advantage of all that Wholesale has 10 offer the radio expert. You know that when you buy "Wholesale" your equip. ment is the most dependable that can be bought, and nowhere can it be bought for less.

IHITSAIf
HOLESALE NEWYORK, N.Y. CHICACO,ILL. ATLANTA, GA. 100 SIXTH AVENUE gO1 W. JACKSON BLVD. 430 W. PEACHTREE ST., N.W. BOSTON, MASS. BRONX, N. Y. NEWARK, N. J. JAMAICA, L. I. 110 FEOERAL. STREET SA2 E. FORDHAM RD. 219 GRNTRAL AVENUE gO-08 - 16Gih STRGET
of boiling water. Dip the metal or apply this solution with a brush, scrubbing well. Then rinse or wash with plain hot water and finally with cold water.

- To Protect Brass from Tarnish

Thoroughly cleanse and remove the last trace oi grease, by the use of potash and water. The brass must be carefully rinsed with water and dried; but in doing it, care must be taken not to handle any portion with the bare hands nor anything else that is greasy. The preservative varnish is made by mixing two parts of shellac to nine parts of alcohol. Put on with a brush as thin and smooth as possible.

- To Color Brass a Steel Blue

Dissolve three drams antimony sulphite and four ounces calcined soda in one and one-half pints water. To this add five and one-half drams Kermes. Filter and mix this solution with five and one-half clrams tartar. eleven drams sodium hyposulphate, and one and one-half pints water. Polished sheet brass placed in the warm mixture will assume a steel blue color.

- To Give Brass a Dull Finish

Mix one part (by weight) of iron rust, one part white arsenic, and twelve parts hydrochloric acid. Clean the brass thoroughly and apply with a brush until the desired color is obtained, after which it should be oiled, dried, and lacquered.

- Polish for Bakelite and Crackle Finish

Mix two parts benzine with one part mineral oil and apply with cloth. Wipe with dry cloth. This is not a messy polish and does not leave an oily surface.

- Inverted Tubes

Surprisingly few amateurs have thonght of the possibility and desirability of mounting tubes upside down in their ultra-high frequency rigs. An inverted tube may not look as well but in most cases shorter leads are the result. A solid mounting can be had by fastening the tube socket face downward on two pieces of $3 / 8^{\prime \prime}$ wooden dowling. By having the tube socket at the same level as the tuning condenser and the tank inductance. much shorter leads can be obtained.

NUMBERED DRILL SIZES

Drill Number	Diameter (in.)	Clears Screze	Correct for Tapping Stect or Brass*
1	. . 228	-	--
2	. 221	12-24	-
3	. 213	-	14-24
4 .	. 209	12-20	-
5 .	. 205	-	-
6 ..	. 204	-	--
7 ..	. 201	-	-
8 199	-	--
9	. . 190	-	-
10	. 193	10-3:	---
11	. . 191	10-24	-
12	. . 189	-	-
13	. 185	-	---
14	. . 182	-	-
1.7 180	-	--
16.	. 17%	-	12-24
17.	. 173	-	-
18	. 169	8-39	-
19	. . 166	-	1:-00
20.	. . 161	-	-
21.	. . .159	-	10-3:
$2 ?$.	. . 157	-	-
23.	. . .154	-	-
24152	-	-
25	. . 149	-	10-24
26	. . .14\%	-	-
27	. . .14t	-	-
28	. . . 140	6-32	-
29	. . 136	-	8-32
30	. . 128	-	-
31	. . . 120	-	-
32	. . . 116	-	-
33	. . .11:	$4-364-40$	-
34	. . . 111	-	-
:5)	. . . 110	-	6-3:
36	. . . 106	-	-
3%	. . . 104	-	-
38	. . . 102	-	-
$: 9$ 100	3-48	-
40	. . . 098	-	-
41	. . . 096	-	-
42	. . . 093	-	$4-36 \quad 4-40$
$4: 3$. . . 089	2-56	-
44	. . . 086	-	-
45) 082	-	3-48

[^10]
"WE GIVE C\&S XTALS OUR UNRESERVED RECOMMENDATION"-Bowdoin, Gents Island Expedition

CES Xtals are used by the U. S.
Army. Navy, Commercial,
Marine, and Police Sta-
lions.

RADIOGRAM
 amir amattue radio syst

 W6OM. WM CARL A SCNEIDER PLEASED WITH OUR C ANS S CRYSTALS STOP TR CAN GIVE THEM OUTS GROSS
IOU TE ONE IN PER THOMAS GROSS
Th mentor
$\xrightarrow[\text { Minimum of } 47 \text { times }]{\text { Pta }}$ minimum of 47 times during manufacture.

Low drift - Highly
Active - single ire quency-cut from optically tested Brazilian Quartz of highest quality and free 0 ne editing. twinning.
bubbles and C\&S $+<p$ other defects. Fully guaranteed.
AMATEUR PRICES

LOW DRIFT

DEALERS WRITE.

Stockton, Calif. WEBER AVE.

LOW DRIFT
Unmounted

C and S Crystals
 836 EAST

Three choices of selectivity at the flick of a knob. Curve A spells clear. inteleligible speech coupled with ORSI and QRS rejection in phone reception which Is amazing. Curve C is "broad as a barn " standby. or for modulated 10 meter transmitters. Curve B is in betweenactually better selectivity than that of most non-crystal amateur phone receivers.
McMUREO SILVER CORPORATION, 2900-P South Michigan Blvd., Chicago, Ill., U.S. A.

ACOUSTICAL LEVELS

Various Noises and Orchestral Effects	Sound Pressure \qquad Dynes per Sq. Cm.	Particle Velocity Cm. per 1 Sec.	Movement of Air \qquad Millimeters at 1,000 Cycles	Sound Intensities \qquad Microwatts per Sq. Cm.	Power I.evel Decibels
Threshold	0.000204	0.0000050	2.20x 20 -	$10)^{10}$	0
	0.000363	0.0000089	3.95×100^{8}	$3.165 \times 10{ }^{-11}$	5
	0.000645	0.0000158	$87.00 \times 10{ }^{*}$	10-9	10
	0.001146	0.0000281	1.25×10^{7}	$3.165 \times 10{ }^{9}$	15
Whisper 4' from source	0.00204	0.000050	$2.22 \times 10{ }^{7}$	10^{8}	20
	0.00363	0.000089	$3.95 \times 10{ }^{-3}$	$3.165 \times 10{ }^{*}$	25
Soft Violin 12' from source	0.00645	0.000158	$7.00 \times 10{ }^{7}$	$10{ }^{7}$	30
	0.01146	0.000281	$1.25 \times 10{ }^{6}$	$3.165 \times 10{ }^{\text { }}$	35
	0.0204	0.0005	2.22×10^{-6}	$10-8$	40
	0.036	0.00089	$3.95 \times 10{ }^{\text {a }}$	$3.165 \times 10{ }^{-8}$	45
Rell F4 160' from source	0.0645	0.00158	$7.00 \times 10-{ }^{6}$	$10{ }^{5}$	50
Ordinary Conversation 3^{\prime} from source	0.1146	0.00281	$1.25 \times 10{ }^{5}$	$3.165 \times 10-5$	35
	0.204	0.0050	$2.22 \times 10{ }^{5}$	10-4	60
	0.363	0.0089	3.95×100^{5}	$3.165 \times 10{ }^{-4}$	65
Bell F2 160 ${ }^{\circ}$ from source	0.645	0.0158	$7.00 \times 10{ }^{5}$	$10-{ }^{\text {s }}$	70
	1.146	0.281	1.2.5 $\times 10{ }^{4}$	$3.165 \times 10{ }^{3}$	75
Full Orchestra					
Bell F4 6' from source	2.04	0.15	$2.22 \times 10{ }^{-4}$	$10-^{2}$	80
	3.63	0.089	$3.95 \times 10{ }^{4}$	$3.165 \times 10{ }^{-2}$	85
	6.45	0.158	$7.00 \times 10-8$	$10{ }^{1}$	90
	11.46	0.281	1.25×100^{8}	0.3165	95
	20.4	0.5	2.22×100^{8}	1.0	100

Bell F2 6' $^{\prime}$ from source

	36.3	0.89	$3.95 \times 10-^{3}$	3.165	105
Thunder	64.5	1.58	$7.00 \times 10-^{3}$	10.0	110
Harnnier 2^{\prime} from source	114.6	2.81	$1.25 \times 10-^{2}$	31.65	115
	204	5.0	$2.22 \times 10-^{2}$	100.00	120
	363	8.9	$3.95 \times 10-^{2}$	316.5	125
Threshold of pain	645	15.8	$7.00 \times 10-^{-2}$	1000.0	130

Courtesy, Brash Development Co.

"Talk Back" Intercommunication System

Simple, "Talk Back" Amplifier System

The accompanying diagram shows an audio amplifier circuit suitable for "talk back" interoffice, kitchen call, and other such communication.

Snuall permanent magnet type dynamic loudspeakers are used both as receiving loudspeakers and microphones by means of a "talk-listen" switch located in the amplifier circuit, comnected in such a manner that when one is in the input circuit the other is in the output circuit and vice versa.
The speakers and amplifier have enough gain when used as microphones that it is not necessary to talk directly into the unit. The amplifier has sufficient power output to drive one of the speakers hard enough to be heard considerable distance if desired. Quite good quality is obtained from the units when used as microphones. due to the equalizing circuit used.
The amplifier proper "on-off" switch. "talk-listen" switch, and the speaker unit shown as the upper one in the diagram are all located at the "nain" station. The "remote" speaker and "push-call" button are the only components located at the other station. The lead from the grid of the input tube to the "talk-listen" switch should be shielded for the entire length, as should be the wire from the remote speaker. If the lead to the remote speaker is not shielded
right up to the "talk-listen" switch, there may be some hum pickup. If the "local" speaker unit is located more than a short distance from the amplifier, the lead to it too should be shielded.

The remute speaker-microphone unit and associated "push-call" button can be located up to several hundred feet from the main station. Two remote speakers instead of one can be used if desired, the second unit being connected in parallel with the remote mit shown in the diagram. The voice quality and gain will suffer slightly, but not enough to be serious. The two remote stations cannot talk to each other in this case ; they can only talk with the main station. Comecting more than two remote speakers in the circuit shown is not recommended.

In the "standby" condition, the filaments are left lit and the "talk-listen" switch left on "listen." The "on-off" switch is left on "off." If the operator wishes to talk to the remote station. he turns the switch "on" and the "talk-listen" switch to "talk." When through talking he turns it to "listen" to hear the remarks of the remote station. He always turns the switch to "listen" when not actually talking. When through with the conversation he turns the "on-off" switch "off" and the "talk-listen" to "listen."

To call the main station to start a corn

IT is mighty reassuring to know that when you need a capacitor, regardless of shape, size or type, you can get it from the Cornell-Dubilier authorized distributor nearest to you. His success depends on the service he renders and the quality of merchandise he handles, so naturally he stocks Cornell-Dubilier-the world's most complete line of quality capacitors. Behind that line towers the experience of twenty-eight years devoted exclusively to condenser manufacturing. Insist on Cor-nell-Dubilier and be sure of the best in condensers.
Internationally famous Mica and DYKA VOL capacitors widely used by amateur and broadcast stations throughout the wo ld. Every amateur building a new transmitter or repairing his old rig will do we'l to use C-D throughout to insure best results. Specify the condenser used by the army and navy signal corps!
Cornell-Dubilier Mica and Dykanol capacitors are today internationally famous. You will find them on the job in amateur and broadcast stations throughout the world. The "ham" building a new x-mttr. or repairing the old rig will do well to use C-D. Remember, when you specify C-D you get the condenser used by the U'nited States Army, Navy and Signal Corps.

A.c.-d.c. amplifier circuit suitable for any intercommunicating system, either the simple "talk-back" type or the more elaborate, multi-station selective type system.
versation, the remote station pushes the "push-call' button and calls the main station, holding the button down until the operator at the main station has a chance to turn the "on-off" switch to the "on" position. It is then no longer necessary for the remote operator to hold the "push-call" button while talking.

With the above arrangement, there is no plate voltage applied to the tubes during the standby periods, and the tubes will last a long time. At night or when the system is not in use, the line switch should be turned off, thus saving the tube filaments.

The chokes L should be 20 to 30 hy . 50 ma. or more.

Radio Data Charts

Radio data charts provide designers of amateur radio equipment with a ready and convenient means of solving problems without having recourse to complicated formula and mathematics.

To use the chart properly and to prevent disfiguring the page, simply place a piece of tracing paper, celluloid, or waxed paper over the scales, then, the index line which intercepts the scales may be drawn with a hard pencil and a straight edge.

The first chart, which is a logarithuic alignment nomogram. will solve many problems encountered in ordinary practice.

- Voltage Drop Calculation in Resistors

To find the voltage drop for a certain bias for a self-biased tuhe, add three ciphers to the value desired, seek this value on scale A:
next. search for the value which corresponds to the plate current (cathode current) on the B scale. Now, drawing a line between these two points will intersect a point on C; this corresponds to the ohmage. Hence, a resistance required to produce 9 volts bias for a triode which operates at 3 ma. plate current is: on the A scale, 9 plus three ciphers equals 9000 ; on the B scale 3 ma . The ohmage 3000 , is found on C.

- Wattage or Heat Capacity in Resistors

To find the power in watts dissipated by a certain resistor when ohmage and voltage is known, proceed as follows: On C find the voltage, on A, the resistance; draw a line connecting these two points over to the P scale. Next, find the voltage (for the second time) on the A scale and draw a line

BIRNBACH Blace. THE QUALITY NAME in RADIO

X'MITTING SOCKETS
Featuring side wiping contacts. Brass, nickel plated shell. Highly vitrified, low absorption base. All brass hardware. Low prices. No. 434. 50 Watt, List ea.
. $\$ 1.25$
No. 435. 10 Wati, List ea.
.90
X'MTR LEAD IN INSULATORS
Made of highly vitrified glazed porcelain. Feature low absorption

Cat.	No.	
4235	10	Inch rod
4236	15	inch rod
4237	10	inch rod
4238	15 inch rod	
4240	Bushing $1 "$	
4241	Bushing	$1 / "^{\prime \prime}$
4242	Bushing	$1 / 4{ }^{\prime \prime}$

ad...
od w
od
" 10
"
"
List Price

\qquad .50 .90

BIRNBACH JACKS AND PLUGS
Feature
large
contact area.

Cat.
No. Description
395 Giant Jack "/a" Mtg. Hole
Price
396 Glant Plug 10/32 threaded iole
397 Giant Plur $1 / 6-20$ threaded hole.
398 Giant Pluk $1 / 2-28$ threaded shank
399 Glant Jack $1 / 2^{\prime \prime}$ mountling nole.
400 Pluk fise threaded shank $1 / 2{ }^{\prime \prime}$ ' long
401 Jlug fi/3" threaded hole.
403 Jatek $1 / 4{ }^{3}$ mounting hole.
COPPERWETD
ANIENA WIRE
Stretchlessl Has steel core covered with copper and heavily enameled. Low R.F. resistance.

Gauq
 12 List ner $100 \mathrm{ft}$. 14 List ner $100 \mathrm{ft} \ldots \cdots \cdots \cdots \cdots{ }^{1} \cdot 25$ Special prices in 250. 500, 1000, 2500 $f t$. lengeths.

E01 TRANSMISSION CABLE

Surge impedance 72 ohms. Can use up to 1000 uth neglirible loss. Immune to the elements.
 Also avallable in 100 and 500 ft. lengths.

BIRNBACH ANTENNA INSULATOR

[^11]CONE STANDOFF INSULATORS
Of improved physical and electrical qualities Complete range of heights
Cat.
NO.
430
431
$431 J$
+32
$432 J$
433
$433 J$

List
Price
$\$ 0.10$
.15
.20
$.201 / 2$
.25
.25
.50

4
4
8

FEEDTHRU STANDOFF INSULATORS

An original Birnbach development. Two pieces. Designed and proportioned for maximum strength. Brass nickel plated hardware supolied.

BIRNBACH STANDOFF INSULATORS
Come in fine, properly graduated heights to cover every need. Highly vitrified, low absorpfion porcelain lised throughout.
Cat.
No.
No.
405
966
9651
966
$966 J$
866
866 J J
8665
4275
4275 J
4275 J
4450
4450 J

INSULATED SCRULOCK PIN TIP

Phenolic resin handle, ${ }^{\prime \prime}$ long x $5 / 6^{\prime \prime}$ dia. Designed for easy insertion of wire. Compact. Colors: black, red, green, yellow.

No.
$\$ 12$ Insulated Scruloct Phone Tid
List
407 Insulated Phone Tid Jack.
0.10

406 Insulated Banana Plug Jack.............................. 10
409 Insulated Solderless Pin Thd (sr.) 12
415 Insulated Solderless Pin THD (jr.)........ 12

BIRIBALH / RADIO CO:

145 HUDSON ST. BIRCCN NEW YORK, N. Y.

Radio Handbook Logarithmic Alignment Nomogram.
from point B through A. The wattage will be given on C. See the auxiliary Figure for an example.

If the current instead of the voltage is known in the above procedure, the technique is as follows: On C find the value of current; on A , the resistance. A line drawn connecting these points will intercept the wattage rating on V .

- Serles Capacity Calculations

To determine the value of any two seriescapacities, find one of the values on C and the other on B ; draw a line to connect these two points; next, add the values of the capacities on B, then from this new point, draw a line to intersect A. The series value will be read on C.

If three series capacities are to be employed, the value of any two of them is found as above, and then this is treated as a single capacity and its value combined with the

Auxilliary Chart.

A book on ANTENNAS and nothing else! Full of fact, curves,

THE "RADIO" ANTENNA HANDBOOK

1938 edition - To be released early in 1938

Those who break records learned long ago that the antenna in the all-important factor, more important by far than the receiver used or the tramsmitter's power.
A million watts won't get far without an antenna, but with a good antenna it is possible to transmit over long distances with a fraction of a watt. The best factory-built "superhet" won't "drag in" much without an antenna, but with a good antenna it is possible to hear the world on a one-tube set.
Everything worth telling about antennas is found in this 100 page book. It is the enlarged, revised successor to both the 1937 edition and the "Jones

Antenna Handbook." It was the first comprehensive and is still the foremost work on this subject. Much of the material can be found in no "general" handbook, making the book invaluable to you regardless of what books you already possess.
It is profusely illustrated; features include many diagrams, tables of dimensions for all frequencies (no calculations necengary), dope on all practical arrays and directive antennas, "noise reducing" antennas, and leeders of all types. Several practical multi-band antennas are described.
No station is better than its antenna.

> S E V E N T Y - F I V E
> in U. S. A. Elsowhere, $\$ 0.85$ or 3 s .6 d .
third by repeating the process, which can be carried on indefinitely.

An example illustrating the method is shown in auxiliary figure (b).

Note: Raise the A scale the distance from 1 to 10 when the reading is beyond the bottom, or by taking a piece of tracing paper and tracing the A scale so as to extend it another length of 1 to 10 .

- Parallel Resístor Calculations

These are treated exactly as series capacities, and the above explanation will solve all values.

Fixed Networks

- "T"' and "H" Pads

The "T" section, which is an unsymmetrical network (unbalanced) is most frequently used where small unbalances in the line or to ground are of little importance. Fixed type networks are chiefly employed in circuits where it is desired to limit the

amount of input voltage available to excite amplifiers, thus precluding the possibilities of overloading certain components in the amplifying system. A resistive network which functions as an absorption device loses its identity as a "pad" and is most often referred to as an "insertion loss," because the section has been inserted to attenuate a known and definite quantity.

To design a fixed " T " or " H " type section for some predetermined loss in db ., the following equations are given. These equa-
tions only hold good when the line impedances terminating each end of the network are equal ; therefore where

$$
\begin{aligned}
& \mathrm{R}_{\mathrm{x}}=\frac{\mathrm{Z}}{2} \frac{(\mathrm{~K}-1)}{(\mathrm{K}+1)} \\
& \mathrm{R}_{y}=2 \mathrm{Z} \frac{\mathrm{~K}}{\left(\mathrm{~K}^{2}-1\right)} \\
& \mathrm{K}=\operatorname{antilog} \frac{\mathrm{N}_{\mathrm{ab}}}{20}
\end{aligned}
$$

equals the series resistor (this value must be multiplied by 2 for " T " sections) ; R_{y}, the shunt resistor; Z, the line impedance; and K, a constant derived by taking the inserted attenuation in db . and dividing by 20 , then extracting the antilog.

- Impedance Matching Networks

At audio frequencies an impedance matching network comprised of resistive impedances can be substituted for an impedance matching transformer or like device. Unfortunately, this type of network introduces a small loss; however, this loss is of little consequence because it can be counteracted by simply working the input or output circuits at a higher level.

In the above figure it is very important that the resistors R_{1} and R_{2} be placed correctly in the configuration, otherwise impedances will be mismatched.

"L"-Type Network
In the above figure, resistor R_{1} must fact the highest terminal impedance.

To design an impedance matching network

IOHNSON for CONDENSERS

Johnson now offers the most complete line of variable transmitting condensers available. Ca. pacities and spacings for every transmitter use from the smallest portable unit to a "California Kilowatł.'

TYPES "C'’ and "D'’

Types " C " and ' D " condensers are available in spacings from $.060^{\prime \prime}$ to $.5^{\prime \prime}$ and in a very comprehensive range of capacities. The tremendous acceplance accorded these condensers in 1936. 37 has made it possible to reduce prices on most sizes despite the marked increase in material costs. Now more than ever they represent maximum value per dollar cost.

TYPES '‘E" and "F'"

The new Types "E" and "F" meet the demand for genuine transmitting condensers of small size. Available in a wide range of capacities and in spacings from .045" to . I25". Compact, sturdy and efficient.

TYPE "G"

Using an end plate of Alsimag 196, the Type " G " is an extremely low-loss unit with very low minimum capacity. Designed for neutralizing both low and high C tubes, it is equally well suited for grid and plate tuning in intermediate stages.

TYPE ‘‘N’’

Designed as a neutralizing condenser for low C tubes, the Type " N " has an extremely low minimum capacity, requires small mounting space, does not change voltage rating with change in capacity, and is extremely attractive in appearance.

Only Johnson Condensers include all these features: Alsimag 196 insulation heavy aluminum plates, buffed and rounded —insulated tie rods-dual rotor contact springs-and many other exclusive Johnson features.

Other Johnson products include the famous Johnson "Q" Antenna, and a complete line of Insulators, Plugs and Jacks, Vacuum Tube Sockets, "Hi-Q" Inductors, and Shaft Coupling Units.

Ask your Jobber or

Write for Catalog 964Q.
of the " T " type requires the use of the following equations:

$$
\begin{aligned}
& \mathrm{K}_{1}=\frac{\left(\mathrm{R}_{\mathrm{S}}+\mathrm{R}_{\mathrm{L}}\right) \mathrm{K}_{1}+\left(\mathrm{R}_{\mathrm{S}}-\mathrm{R}_{\mathrm{L}}\right)}{2} \\
& \mathrm{~K}_{2}=\frac{\left(\mathrm{R}_{\mathrm{S}}+\mathrm{R}_{\mathrm{L}}\right) \mathrm{K}_{1}+\left(\mathrm{R}_{\mathrm{S}}-\mathrm{R}_{\mathrm{L}}\right)}{2} \\
& \mathrm{R}_{3}=\frac{\left(\mathrm{R}_{\mathrm{S}}+\mathrm{R}_{\mathrm{L}}\right)}{2 \mathrm{~K}_{2}}
\end{aligned}
$$

Where K_{S} is the input impedance; R_{L}, the output impedance; and K_{1} and K_{2} are constants taken from the following table. These constants appear directly opposite the amount of attenuation in the N_{db} column:

Nab	K_{1}	K,
1	. 057	0.115
2	. 114	0.232
3	. 171	0.352
4	. 226	0.477
5	. 280	0.609
6	. 331	0.747
7	. 382	0.897
8	. 430	1.055
9	. 476	1.233
10	. 519	1.422
11	. 560	1.634
12	. 598	1.863
13	. 634	2.122
14	. 667	2.404
15	. 697	2.720
16	. 726	3.075
17	. 752	3.468
18	. 776	3.907
19	. 798	4.398
20	. 818	4.952
21	. 835	5.555
22	. 852	6.262
23	. 867	7.013
24	. 880	7.868
25	. 893	8.870
26	. 904	9.972
27	. 914	11.188
28	. 923	12.484
29	. 931	14.091
30	. 938	15.734
31	. 945	17.744
32	. 950	19.810
33	. 956	22.339
34	. 960	24.939
35	. 965	27.121
36	. 968	31.393
37	. 972	35.397
38	. 975	39.515
39	. 978	44.555
40	. 980	50.237
41	. 982	56.079
42	. 984	63.230
43	. 985	70.583
44	. 987	78.792
45	. 988	88.836
46	. 990	100.165
47	. 991	111.813
48	. 992	126.070
49	. 993	140.729
50	. 994	158.672

To design an impedance matching network of the "L" type requires this set of equations:

$$
\begin{aligned}
& R_{1}=Z_{\mathbf{x}}\left(\mathrm{Z}_{\mathbf{x}}-\mathrm{Z}_{\mathbf{y}}\right) \\
& \mathrm{R}_{\mathbf{y}}=\frac{\mathrm{Z}_{\mathbf{x}} \mathrm{Z}_{\mathbf{y}}}{\sqrt{\mathrm{Z}_{\mathbf{x}}\left(\mathrm{Z}_{\mathbf{x}}-\mathrm{Z}_{\mathbf{y}}\right)}}
\end{aligned}
$$

Since the insertion loss is a function of the impedances terminating the network it can be calculated as follows:

$$
\mathbf{K}=\sqrt{\frac{Z_{\mathbf{x}}}{\mathbf{Z}_{\mathbf{y}}}+\sqrt{\frac{Z_{\mathbf{x}}}{\mathbf{z}_{\mathbf{y}}}-1}}
$$

Where loss in $\mathrm{db}=: 30 \log _{50} \mathrm{~K}$.

Calculation of Inductance

The calculation of inductance values for coils in radio transmitter and receiver circuits is not difficult when certain basic considerations are taken into account. There are a number of formulas for such inductance calculations, some laying claim to greater accuracy than others. It must be remembered that most of such formulas give only approximate solutions to practical problems: few claim absolute accuracy. There is lacking an absolutely accurate means of inductance calculations at the frequency at which the inductance is to be used. The following discussion is confined to calculations for sin-gle-layer solenoids.

If it is desired to find the value of inductance to tune a receiver circuit to $3,500 \mathrm{kc}$. with a $50-\mu \mu \mathrm{fd}$. maximum capacity variable condenser, the formula is :

$$
\mathrm{L}=\frac{25,330}{\mathrm{f}^{2} \times \mathrm{C}}
$$

For ease of calculation, assume that C was to be approximately $41 \mu \mu \mathrm{fds}$., and f was 3.5 megacycles; these values would then give a value of L equal to 50 microhenrics.

From the formula:

$$
N=\sqrt{\frac{\mathrm{I}}{\mathrm{df}}}
$$

where
$N=$ number of turns,
$\mathrm{L}=$ inductance in microhenries,
$\mathrm{d}=$ diameter of coil measured to center of wire,
$\mathrm{f}=\mathrm{a}$ factor dependent upon the ratio of length of winding to coil diameter.

The value of L is known; the diameter d will be dependent upon the coil form which has been selected. Once the ratio of length to diameter is known, the value of f (constant) can readily be found from the accompanying graph. If the coil diameter is oneinch, and if it is assumed that the winding will be one inch long, the ratio of the two will be unity. From the graph, a ratio of 1 corresponds to factor f of .0175 . This graph is published by courtesy of Professor F. E. Terman of Stanford University, in whose textbook, Radio Enginecring, the original presentation was made.

Contimuing with the coil calculations, the values are now substituted in an equation, as follows:

$$
\Sigma=\sqrt{\frac{50}{1 \times .0175}}=53.5 \text { turns. }
$$

Referring to the copper zeire table in the Power Supply chapter, it is found that a wire size which will wind approximately 53

> To Keep Abreast of the Times, Read "RADIO"

AMATEURS...

will find every conceivable type of microphone bearing the UNIVERSAL label.

Other models include ribbon. $118 t$ at $\$ 22.50$ or $\$ 24.50$ with plug: new dymamic. $118 t$ \$44.50 with $2 . \mathrm{ft}$. cable; handi-mike. single button. $\$ 10$. and clouble button. \$15.; lapel models. cartons. condensers, airpiane, police car and inter- phone mlcrophones. Also co. under patent of the 13rush Derelopment Co. 50 extrand model cryatal. moxiel, \$22.50. desk mount $\$ 3.50$ extra.

Microphone Division
UNIVERSAL MICROPHONE, CO., LTD.
424 Warren Lane. Inglowood, Calif., U.S.A.

BLILEY CRYSTALS

TYPE LD2

A precision low-drift mounted crystal for the 80 and 160 -meter bands. Frequency drift less than $\mathbf{4 c} / \mathrm{MC} .{ }^{\circ} \mathrm{C}$. . . . $\$ 4.80$

TYPE HF2

Simplifies 5, 10 and 20 -meter crystal control transmitters. High activity, medium drift. Type HF2, 14.0 to 15.0MC. $\$ 5.75$ Type HF2, 28.0 to 30.0 MC ., designed for use on 5 -meters .
\$5.75

TYPE VFI

Frequency is variable up to 6 KC . on $80-\mathrm{meter}$ fundamental or 24 KC . at $\mathbf{2 0}$-meters . . . $\$ 7.50$

TYPE B5
A superior 40-meter low-drift unit with greater power handling capacity $\$ 4.80$

For 20 -meters ($14.0-15.0 \mathrm{MC}$.)-a new and bet terlow-drift crystal unit. $\$ 7.50$

TYPE BC3

This proven X -cut unit for 40 and 80 -meters is now available at a new low price $\$ 3.35$

> (All prices are net in U.S.A.)

See your nearest Bliley Distribut or for complete information on these and other Bliley Crystals for Amateur and GeneralCommunication Frequencies.

BLILEY ELECTRIC CO. ERIE, PENNA.

Coil Inductance Calculation Chart

turns per inch will be size No. 2 s , double cotton covered (DCC). This wire size will actually wind 54.6 turns per inch, yet it comes closest to what is here desired, and consequently must be used. The actual difference between 53 turns per inch and 54.6 turns is neglible.
The chart will require a bit of practice when used with the foregoing formula; it is suggested that several ratios of length to diameter be experimented with, insofar as the calculations are concerned, before a coil is actually to be wound. If the wire size is very small as compared with the diameter of the coil, the stipulation that the diameter be regarded as that measured from the center of the wire can be neglected. If greater accuracy is required, the formula should be converted into centimeters insofar as units of length and diameter are concerned.

WIRE TABLE
 Winding Turns Per Inch

B\& Gauge No.	D.C.C.	S.C.C.	$\begin{gathered} \text { En- } \\ \text { amel } \end{gathered}$	B \& 5 Gauge No.	D.C.C.	S.C.C.	Enamel
6	5.44	5.60		26	39.90	45.30	57.00
7	6.08	6.23		27	42.60	49.40	64.00
8	6.80	6.94		28	45.50	54.00	71.00
9	7.64	7.68		29	48.00	58.80	81.00
10	8.51	8.55		30	51.10	64.40	88.00
11	9.58	9.60		31	56.80	69.00	104.00
12	10.62	10.80		32	60.20	75.00	120.00
13	11.88	12.06		33	64.30	81.00	130.00
14	13.10	13.45	14.00	34	68.60	87.60	140.00
15	14.68	14.90	16.00	35	73.00	94.20	160.00
16	16.40	17.20	18.00	36	78.50	101.00	190.00
17	18.10	18.80	21.00	37	84.00	108.00	195.00
18	20.00	21.00	23.00	38	89.10	115.00	205.00
19	21.83	23.60	27.00	39	95.00	122.50	215.00
20	23.91	26.40	29.00	40	102.50	130.00	230.00
21	26.20	29.70	32.00	41	112.00	153.00	240.00
22	28.58	32.00	36.00	42	124.00	168.00	253.00
23	31.12	34.30	40.00	43	140.00	192.00	265.00
24	33.60	37.70	45.00	44	153.00	210.00	27500
25	36.20	41.50	50.00				

NOWIThe World＇s Champion Telegrapher－－T．R．McELROY

 Offers YOU His Radio Key！

NEW 1938 De Lise Moill MAC KEy
Here is the most amazing value in telegraph history． A semi－automatic key so beautifully balanced and designed，that speedy，tireless，rhythmic sending is now easy for any operator．Has a remarkable new dot stabilizer a specially tensioned Swedish steel main spring－a solid base that really＂stays put＂－big silver contacts－large aljustment screws－in every detail this key is the finest ever produced！You must see it －at your jobbers．In no time at all you＇ll be sending out the lind of stuff they love to listen to．Only $\$ 9.50$ －but don＇t wait．Get yours now！Also Standard Model．Same design but less costly finish，$\$ 7.50$ ． IF YOI^{+}W INT I STRAIGHT KEY－just remember this．＂．．．the New 1938 Mac Straight Key is the sweetest ever built．＂It＇s beantifully balanced，sturdy， and designed to save your energy and your arm． Iriced so that every amateur can lave one．Only $\$ 1.50$ at your jobber＇s．
EVERY AMBITIOUS AMATEUR should have a MAC HUMMER．This meclanical oscillator gives wonderful performance－yet sells for only $\$ 1.50$ to operators．With just a $4 \frac{1}{2}$ volt C battery，you can get a 1000 cycle note as clear as a bell．
FOR A REAL PRAC＇TICE SET－be sure you say ＂MAC＂to your jobber．He＇ll give you the sweetest outfit ever made for this purpose．It＇s a combina－ tion of the New MAC IIUMMER and the New MAC STRAIGFIT KEY－all on one sturdy base．＂It＇s a honey．＂And the price？Only $\$ 2.95$ ！
MAC－AUTO－World＇s finest electrical automatic transmitter－onlv \＄69．
T．R．McELROY

TIME REQUIRED FOR A 90% DROP OF VOLTAGE ACROSS C

TIME REQUIRED FOR A 63% DROP OF VOLTAGE ACROSS C

It's the "phone man's 'bible""

THE "RADID" TELEPIONY HANDHOOK

Note: copies of the first printing are entitled
"Amateur Radiotelephony"; the text is the same.

This book bas been written expressly for the "phone man" and the amateur interested in getting on phone. The art of radiotelephony requires more care, more equipment, more knowledge than that of radigtelegraphy.

This clear yet concise work devotes itself particularly to the intricacies and technicalities peculiar to this field, and makes them more understandable to the greater number of experimenters.

A dozen complete transmitters are described from the tiny, ten-watt size up to one kilowatt. Each has been laboratory built and tested, and lested on the air.

It is more comprehensive thon the radiotelephony data to be found in any "general" handbook. It is rapidly becoming the "phone man's bible." None of the transmitters described is found in any other work by "Radio."
All systems of modulation are covered, also class BC amplifiers, inverse-feedback systems, modulation measuring equipment, and the like. Over 100 illustrations show how to construct and adjust all items described.
52 typical questions for the special-privilege Class-A. license examination are answered in detcil.

The best single investment you cam make in your phone transmitter is the purchase of this book at

SEVENTY-FIVE CENTS

in continental U. S. A. Elsewhere, 85c or 3s. 6d.

TIME REQUIRED FOR A 25% DROP IN VOLTAGE ACROSS C

It is sometimes desirable to know how much time will be taken for a condenser to discharge its stored energy through a resistance. The voltage across the condenser diminishes, or dies away, according to an exponential curve. For this voltage to dirop to absolute zero would require an indefinite length of time, but for practical purpose the voltage is at a negligible value a few seconds after the condenser is discharged.

This information is of value for calculating $R-C$ filters of the type used in feeding automatic volume control voltage to the control grid of a tube. Values of R and C are chosen to give as rapid or slow an a.v.c. action as may be desired.

Three graphs are reproduced, giving the time required for the voltage to fall to either $75 \%, 37 \%$ or 10% for various $R-C$ combinations.

Oscillator Tracking Calculations for Superheterodynes

Practically all of the present-day superheterodyne receivers use a single two or threegang tuning condenser, depending upon whether or not a tuned r.f. stage is incorporated in the receiver circuit, and consideration must therefore be given to the oscillator circuit so that it will maintain a constant frequency difference from the r.f. and detector stages.

If the tuning ratio (frequency to be covered at the high-frequency end divided by the frequency at the low-frequency end) is
greater than 1.5 -to-1, it will be impossible to make the oscillator and r.f. stages track, unless certain precautions are observed.

Since all three of the condenser sections are mounted on a common shaft, they all have identically the same capacity change for a given degree of rotation. It should not be difficult to understand that since the oscillator must operate at a higher frequency than the r.f. stages (differing from the r.f. stages by an amount equal to the i.f. frequency), it will not cover the same tuning ratio as the latter. For example, if the band

EASY WAY TO LEARN RADIO CODE

To speed up the learning of the code use a Machine to send to you, Always ready-no delay trying to tune in on Short Wavs-no schedules to watch for-no weather interference. Beats having another send to you, as you concentrate fully on the study.

THE "JUNIOR"
The "Junior" Model of the Instructograph, similar in appearance to the "Standard" Machine, only a little smaller, with five tapes and the book of instructions IS NOT RENTED, but may be purchased for $\$ 12.00$, delivered to any point in the United States or possessions, and $\$ 13.00$ to points in Foreign Countries.

The "Junior" operates just as officiently as the larger machine, and the difference being mainly in the size, weight and number of tapes supplied. However, additional tapes may be purchased at a reduced rate. Oscillator equipment may be installed in the "Junior" also.
BOTH MACHINES ARE SOLD ON
EASY MONTHLY PAYMENTS IF DESIRED
We also handle "R.M.E." and "Hallicrafter" Receivers: "Signal" Keys and Telegraph Instruments: "Vibroplex" and "Speed-X" Gutomatic Eending keys (Bugs). Sold on easy terms if desired.
The "Instructograph" can also be used for American Morse (Wire) Code Instructions, for which tapes are available.
R. W. WHITE, D.C., Ph.C.

1042 North Calvert Street, Baltimore, Maryland. Says:
\because I thought you inisht be interested to know that I have taken my examination for an Amateur license
"'I recelved my instructograph, December 11th. 1936. I knew no code whaterer, and took niy examination April 21st. 1937, about four inonths. I did all my practice in the few minutes. I would have between patlents. I can't see how any method could beat loant seo how any method could beat
vours. sending 30 wpm.
"In appreclation for you having mado what spemed an impossible task fairly easy. you have my permission to use this letter in any way you choose."

AL WESSELL
3860 North Tomple Avenue, Indianapolis.
Indiana. Says:
... Am getting alonz fine and find it Is murb easier to learn code on the Instructograph than having a partner send to you.
or copy from a Recelver..
J. K. WINDSOR

2606 St. George, Dallas. Texas, Says: "I received my Instructorraph on the twentleth in perfect condition. It certainly is a pleasure to deal with a company that answers as swiftly as you do. 1 am verv grateful for the interest you have shown in rushing my order.
"As soon as I get my "Ham" license, I shall be pleased to order some equlpment from sou,

> ROBERT LEE

Zillah, Washington, Says:
ent ior This remittance completes the payment for the Instructoaraph. I am well satisfied with this machine. All the operators around here praise it very hikhly."

CONNIE JAKUBAUSKAS. JR.
191 Alder Street. Waterbury, Connecticut.
.. I also Ways: to state that 1 am having very zood success with the Instructograph. having advanced from 5 wnm to 20 upm in the two months that I have had it in my possesslon."
SwVILLE H. CAGE
\cdots The Instructorraph is performing perfectly and 1 am more than pleased with it. I will probably use it for at least two more monthy.

MACHINES FOR SALE OR RENT

The "Instructograph" Code Machine is made in two sizes. The "Standard," illustrated above, includes the full set of ten tapes and book of instructions. Priced $\$ 20.25$, delivered to any point in the United States or Possessions. $\$ 1.00$ additional to points in Foreign Countries.

Full Oscillator equipment-Audio transformer, and tube socket wired and installed in the machine, " 99 " type of radio tube, Key and connecting cord and Trimm head phones. Priced $\$ 6.50$.

RENTALS [In United States only]

No. 1. Instructograph, tapes and book of instructions: First month $\$ 3.00$, each additional month, $\$ 2.25$.

No. 2. Instructograph, tapes and book of instructions, with transformer and tube socket wired and installed in machine: First month, $\$ 3.25$, and each additional month, $\$ 2.50$.

No. 3. Instructograph, tapes, look of instructions, transformer and tube socket installed in the machine, key and connecting cord, and head phones: First month $\$ 3.50$, and each additional month, $\$ 2.75$.

We pay return transportation charges on all rentale, and pay it both ways if rented for three month or more, and full three months' rental accompanies the order. A deposit of $\$ 10.00$. in addition to the rental is required, or satisfactory references asked.
to be covered is from 2,000 to $4,000 \mathrm{kc}$, the r.f. tuning ratio will be 2-to-1. For this same coverage the oscillator will tune from 2,460 to 4,460 (if the intermediate frequency is 460 kc .) This corresponds to a tuning ratio of $1.81-$ to- 1 . Obviously the two tuning ratios are not the same. The oscillator tuning condenser must therefore be decreased in capacity in order to make its ratio the same as for the r.f. stages.
This is accomplished by adding a fixed condenser in series with the oscillator con-
denser and the inductance. The proper value of this condenser can be obtained by calculation. There are three points in the tuning range where the tracking will be correct (although slight departures from these optimum points will not be at all serious) if the calculations are accurately made. These three points are known as the cross-over points.

In order to make use of the formulas shown for calculation of oscillator series condenser and inductance, it will be neces-

Formulas for Calculation of Superheterodyne, Oscillator, Constants

> Frequencies expressed in megacycles Inductances expressed in microhenries Capacitances expressed in micromicrofarads

Basic Consideration and Relations
$\mathrm{f}_{0}=$ Intermediate frequency
$F_{1}, F_{2}, F_{3}=$ Frequencies at which exact tracking is to be obtained.
$\mathrm{a}=\mathrm{F}_{1}+\mathrm{F}_{2}+\mathrm{F}_{3}$
$\mathrm{b}^{2}=\mathrm{F}_{1} \mathrm{~F}_{2}+\mathrm{F}_{2} \mathrm{~F}_{3}+\mathrm{F}_{3} \mathrm{~F}_{3}$

$\mathrm{d}=\mathrm{a}+2 \mathrm{f}_{\mathrm{o}}$

$1^{2}=\left(b^{2} d-c^{s}\right) / 2 f_{0}$
$\mathrm{m}^{2}=\mathrm{r}^{2}+\mathrm{f}_{0}{ }^{2}+\mathrm{ad}-\mathrm{b}^{2}$
$\mathrm{n}^{2}=\left(\mathrm{c}^{3} \mathrm{~d}+\mathrm{f}_{0}^{2} 1^{2}\right) / \mathrm{m}^{2}$
$\mathrm{C}_{0}=$ Tuning capacitance at frequency F_{0}
$\mathrm{L}=25330 / \mathrm{C}_{0} \mathrm{~F}_{0}{ }^{2}$, or if L is known, then $\mathrm{C}_{0} \mathrm{~F}_{0}{ }^{2}=25330 / \mathrm{L}$
$\mathrm{A}=\mathrm{C}_{0} \mathrm{~F}_{0}{ }^{2}\left(1 / \mathrm{n}^{2}-1 / \mathrm{l}^{2}\right)$ Required only for Case $3 \ldots \ldots \ldots \ldots \ldots \ldots \ldots$...........................
$\mathrm{B}=\left(\mathrm{C}_{0} \mathrm{~F}_{0}{ }^{2} / 1^{2}\right)-\mathrm{C}^{3}$ Required only for Case $4 \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots$. 20 .
Case 1: When $\mathrm{C}_{4}=0$, or C_{4} « C_{2} (the usual case).
$\mathrm{C}_{2}=\mathrm{C}_{0} \mathrm{~F}_{0}{ }^{2}\left(1 / \mathrm{n}^{2}-1 / \mathrm{l}^{2}\right)$
$\mathrm{C}_{3}=\mathrm{C}_{0} \mathrm{~F}_{0}{ }^{2} / 1^{2}$

$$
\begin{equation*}
\mathrm{L}_{1}=\mathrm{L}\left(1^{2} / \mathrm{m}^{2}\right)\left(\mathrm{C}_{2}+\mathrm{C}_{3}\right) / \mathrm{C}_{2} \tag{10}
\end{equation*}
$$

Case 2: When $\mathrm{C}_{3}=0$.

$$
\begin{align*}
& \mathrm{C}_{2}=\mathrm{C}_{0} \mathrm{~F}_{0}{ }^{2} / \mathrm{n}^{2} \cdots \cdots \tag{13}\\
& \mathrm{C}_{1}=\mathrm{C}_{0} \mathrm{~F}_{0}^{2}\left(\mathrm{I}^{2}-\mathrm{n}^{2}\right)
\end{align*}
$$

Case 3: When C_{4} is known.

$$
\begin{align*}
& \mathrm{C}_{8}=\mathrm{A}\left(1 / 2+\sqrt{1 / 4+\mathrm{C}_{4} / \mathrm{A}}\right) \ldots \ldots \tag{17}\\
& \mathrm{C}^{\mathrm{j}}=\left(\mathrm{C}_{0} \mathrm{~F}_{0}^{2} / 1^{2}\right)-\mathrm{C}_{2} \mathrm{C}_{4} /\left(\mathrm{C}_{2}+\mathrm{C}_{4}\right) \tag{18}
\end{align*}
$$

$$
\begin{equation*}
\mathrm{L}_{1}=\mathrm{L}\left(1^{1 /} / \mathrm{m}^{2}\right)\left(\mathrm{C}_{2}+\mathrm{C}_{3}\right) /\left(\mathrm{C}_{2}+\mathrm{C}_{1}\right) \tag{1}
\end{equation*}
$$

Case 4: When C_{3} is known.

Check Formulas

$$
\mathrm{L}_{1}=\mathrm{L}\left(1^{2} / \mathrm{m}^{2}\right)\left(\mathrm{C}_{2}+\mathrm{C}_{3}\right) /\left(\mathrm{C}_{2}+\mathrm{C}_{4}\right) \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots
$$

Equation for oscillator frequency:

$$
\begin{equation*}
\mathrm{f}_{1}=\mathrm{m} v\left(\mathrm{f}^{2}+\mathrm{n}^{2}\right) /\left(\mathrm{f}^{2}+\mathrm{l}^{2}\right) \tag{24}
\end{equation*}
$$

Equations for $\mathrm{l}^{2}, \mathrm{~m}^{2}$, and n^{2}, in terms of oscillator constants:

$$
\begin{align*}
& \mathrm{I}^{2}=\mathrm{C}_{0} \mathrm{~F}_{0}{ }^{2} /\left(\mathrm{C}_{3}+\frac{\mathrm{C}_{2} \mathrm{C}_{4}}{\mathrm{C}_{2}+\mathrm{C}_{4}}\right) \ldots \ldots \tag{25}\\
& \mathrm{m}^{2}=\mathrm{C}_{0} \mathrm{~F}_{0}{ }^{2} /\left(\mathrm{L}_{1} / \mathrm{L}\right)\left(\mathrm{C}_{4}+\frac{\mathrm{C}_{2} \mathrm{C}_{3}}{\mathrm{C}_{2}+\mathrm{C}_{3}}\right) \tag{2}\\
& \mathrm{n}^{2}=\mathrm{C}_{0} \mathrm{~F}_{0}{ }^{2} /\left(\mathrm{C}_{2}+\mathrm{C}_{3}\right) \ldots \ldots \ldots \ldots \ldots \tag{27}
\end{align*}
$$

$$
\begin{align*}
& \mathrm{C}_{2}=\left(\mathrm{C}_{0} \mathrm{~F}_{0}{ }^{2} / \mathrm{n}^{2}\right)-\mathrm{C}_{3} \tag{21}
\end{align*}
$$

As in former years, this edition of the "RADIO" HANDBOOK is available in English or Spanish. The Spanish edition is published under license by Editorial Pan America, Perú 677, Buenos Aires, Argentina, to whom all inquiries and orders should be directed. The list price is $\$ 5.00$, Buenos Aires funds.* Copies may be obtained at retail (\$1.65, postpaid) from Radio, Ltd., 7460 Beverly Boulevard, Los Angeles.

> *Money orders, checks, and banknotes for the current equivalent of $\$ 5.00$ Argentine funds will be accepted drawn in local funds on New York, La Paz, Rio de Janeiro, Santiago de Chile, Lima, Lisbon, and Montevideo.

R-F CIRCUIT

sary to have the following information:
(1) Capacity of variable condenser at maximum and at minimum values.
(2) Capacity must include that which is introduced by grid-cathode capacity of the tubes, and approximately $10 \mu \mu \mathrm{fds}$. of miscellaneous stray capacities, due to wiring, etc.
(3) Frequency range to be covered. Minimum and maximum capacity of the tuning condenser will limit the range. Knowing the frequency and capacity the inductance can be readily determined from:

$$
L=\frac{25,330}{f^{2} C}
$$

(t) Tracking irequencies. These are notated F_{1}, Γ_{2} and F_{3} in the formula, and two are usually selected at points close to the extreme ends of the band to be covered, with the third point being approximately at the mid-point on the dial.
(5) The term F_{0} is arbitrarily chosen at some frequency close to the center of the band. Since the inductance is already known,
the values of capacity for this frequency can be readily determined:

$$
\mathrm{C}=\frac{25,330}{\mathrm{f}^{2} \mathrm{~L}}
$$

(6) Case (1) should be used for oscillator constants, because this is the most general case.

It may appear on first inspection that the formulas are quite complicated; actually they involve nothing more than ordinary arithmetic. For accuracy where the frequencies to be covered are high, divisions should be carried out to at least three places, and preferably four. Slide-rule calculations are very apt to be in error, unless the rule is capable of being read to the above stipulations.

At the ultra-high frequencies, the percentage of oscillator variance from the tuning ratio of the r.f. stages will be small. In such cases, the series padder condenser may usually be omitted, and a slight adjustment on the oscillator inductance will suffice to give rear,riably good tracking.

In many cases the capacity of the oscillator section of the tuning condenser can be decreased by bending-out the plates; in this manner some measure of tracking can be obtained. The foregoing formulas for calculation of superheterodyne oscillator constants are by courtesy of the RC. Mfg. Co., from whosc bulletin the reprint is made by permission

The Experimental License

Where Required and How Obtained

Any licensed amateur who chooses to conduct experiments at his station, whether he plans honest-to-goodness scientific investigation or only wishes to test a new rig, is within his right as long as the experiments are non-commercial in character and he confines his transmissions to amateur frequencies. The amateur station license, however, does not authorize any type of experimenting where money-making features are involved, whether stated or implied; the use of frequencies other than those allocated for amateur communication; or the use of types of emission not permitted to amatenr stations.

For all special experimental work, the Federal Communications Commission issues an experimental class station license, and this ticket must be obtained whenever anticipated experiments cannot be covered by the accepted definition of amateur radio communi-
cation. The experimental license is not a ham ticket, though the call letters are made up with the district numeral in the conventional amateur fashion. The one distinguishing feature of the call is the initial letter, X (such as W1XYZ) which has given rise to the slang terms. X-license and X -station.

Special frequencies are set aside for use by X-stations, and the particular ones chosen by an applicant should best suit the conditions under which he plans to operate. An applicant for an experimental license is required to request one or more of these definite frequencies, as the Commission neither assigns frequencies individually nor advises applicants which would be the best ones for their particular experiments. Whatever the frequencies chosen, the applicant must satisfy the Commission that his equipment will enable him to maintain those

To our Customers in the

BRITISH EMPIRE

Canada
For the convenience of our customers in Canada, we accept Canadian postal notes at par; add 10e exchange to Canadian cheques under $\$ 2.50$. Canadian currency is acceptable but is sent at your risk.

Elsewhere
For the convenience of our customers in most other parts of the Empire, we accept British postal orders and cheques payable at par in London, at the following prices, postpaid (prices subject to change without notice):

RADIO, 1 year (10 issues)	14s. 6d. 248. 6d.	"RADIO" AMATEUR NEWCOMER'S HANDBOOR	1s. 8d.
RADIO DIGEST, 12 issues	12s. 6d.	"RADIO" U.H.F. HANDBOOK	2s. 6d.
"RADIO" HANDBOOK	73.	'RADIO" NOISE REDUCTION	
"RADIO" Antenna handboor	3s. 6d.	HANDBOOR	1s. 8d.
"RADIO" TELEPHONY HANDBOOX	37. 6d.	"RADIO" BINDER	78. 3d.
		W.A.z. Map	1 s

RADIO, LTD., 7460 Beverly Boulevard, Los Angeles

BOUND

To Give
Greater Value

A BINDER

For a Year's Copies of "RADIO"

. . . and it holds your copy of the great annual "Handbook" by "Radio" in addition! Brilliant, durable red imitation leather, with the "Radio" name cmbossed in gold. Each magazine or book can be inserted or removed separately at will.
Makes a real radio library of your literature from "Radio", for permanent reference, easily consulted at any time.

TECHNICAL PUBLISHERS • 7460 BEVERLY BLVD. LOS ANGELES
irequencies within three-hundredths of one per cent, plus or minus. And he must show that he has precision monitoring equipment which will indicate this small tolerance.

The Experimental Service includes (1) General Experimental Stations, (2) Special Experimental Stations, (3) Experimental Broadcast Stations, and (4) Experimental Visual Broadcast (television) Stations. It is assumed that the average amateur of experimental bent will be interested only in the first two classifications, hence this discussion will be confined to general and special stations.

Rules 303 and 301 (Rules and Regulations of the Federal Communications Commission) define these two classes of experimentals as follows: "The term 'general experimental station' means a station equipped to carry on research or development in the radio art requiring the transmission of radio-frequency power and operating on frequencies designated by the Commission for general experimental service. The term 'special experimental station' means a station used to carry on special research or development in the radio art which because of the nature of the experiments, requires frequencies other than those designated for general experimental stations."

The following frequencies are allocated for general experimental service: 1614, 2398, $3492.5,4797.5,6425,8655,12862.5,17310$. $23100,25700,26000,27100,31600$, 35600. $38600,41000,86000$ to 400,000 and 401,000 kilocycles and above. An applicant may request any or all of these frequencies, but he must be equipped to maintain the $0.0 .3 \%$ inlerance on each one requested.

None of the frequencies is assigned exclusively to any one applicant; they are shared by similar stations throughout the country. and when interference results, the license holders are required to arrange a division of time.

- Special Experimental Frequencies

Special X-stations may ask for definite frequencies other than those in the above list when the proposed owners can show that the general experimental frequencies are unsuitable for their research. Where the frequency requested is already in use by some other radio service, the applicant must make arrangements with those services beforehand in order that interference may be prevented and in many cases must file with his appli-
cation statements from the other services that experimental use of the frequency is agrecable.

- Special Operators License Necessary

Experimental Stations may be operated only by individuals who hold commercial operator licenses of the radiotelegraph third class or higher, except in the case of stations employing frequencies higher than 30,000 kc. where an amateur operator license is acceptable.

- Emissions Permitted

A1 (c.w. telegraphy), A2 (i.c.w. telegraphy), A3 (radiotelephony), and "special" types of emission are authorized under the experimental license, and the applicant may request permission to use any or all. Under the heading of special are included all types of keying, modulation, etc., which cannot be classified as A1, A2, or A3.

Experimental applicants may ask for definite operating hours or may request unlimited time.

- Application Procedure

The prospective experimental's first job will be to apply to the Commission for a construction permit. The application, Form 401, is an eight-page document containing thirty-four questions. Herein, the applicant requests the frequency desired, hours of operation, operating output power, and emission. He must state the proposed location of the station to the nearest degrec, minute, and second, north latitude and west longitude, and must list the airways and airports within ten miles of the location. He must also state the number of persons residing within one mile and within five miles of the proposed transmitter.

The type of experimental research to be carried on must be described in detail, and the applicant's own technical qualifications, or the qualifications of those he will engage to carry on the work, must be outlined. A bona fide statement must be made of the applicant's financial responsibility to see the work through.

Most difficult of all, the applicant must satisfy the Commission that his proposed researches will be in the public interest, convenience, and necessity. A large number of applicants are refused the construction permit because they fall down on this last requirement.

Before filling out an application for station

New R．F．的成会 Circuit Hook－Up Wire for Short Wave Transmitters and Receivers

The necessity for correct Hook－Up Wire is just as important as the other component parts used in the construction of the circuits shown in this book． Hook－Up Wire must have proper insulation of high di－electric characteristics for the perfect operation of any transmitter or receiver．LENZ Hook－Up Wire is the best obtainable for short wave work．

It is a wire of extremely low losses at high frequencies．Designed espe－ cially for the RF．circuit．Conductors supplied in several sizes，either solid or stranded．Insulation pushes back freely without adhering to the conductor， and is mechanically strong enough to resist abrasion．A fine production wire with insulation impregnated in a high resistant，low－loss，moisture resisting compound．

LENZ wires and cables are carried in stock by leading Dealers and Distribu－ tors throughout the country．Use LENZ for better results．

Shielded Cables Cotton Braid Overall

Twisted Pair Braid Overall Cable for Doublet Antenna System

Shielded Rubber Jacketed Microphone Cable

Tinned Copper Shielding

Shielded Low Capacity
Weatherproof Tubing （Loom）

PARTIAL LIST OF LENZ PRODUCTS：

Push－back wire Indoor aerial Auta radio cable Microphone cable Short wave lead－in

Shielded wires and cables
Speaker and head set cords
Specially constructed shielded cables
Batfery and speaker extension cable
Flexible rubber covered lead－in wire

Ground wire
Shielded low capacity cable Elevator annunciator cables Organ cables
Flameproof jumper wire

In Business since 1904

Cable Address：Lenzco Chgo

LENZ ELECTRIC MANUFACTURING CO． 1753 N．WESTERN AVE．
 CHICAGO，ILL．

construction permit，a study should be made of Rules and Regulations of the Federal Communications Commission，with particular attention to the section on Experimental Services．The booklet may be obtained for thirty－five cents from the Superintendent of Documents，Government Printing Office， W＇ashington，D．C．

－Station License

The construction permit bears the call－ letters of the station，frequency（s），power output of transmitter，emission（s），and hours of operation，and authorizes the build－ ing and testing of the equipment described in detail in the application．Six months are allowed for completion of the station；and if at the expiration of that period the sta－ tion has not been completed，the applicant may file an application for an extension of time．

On completion of the construction and testing，application for station license is made on Form 403．This application merely certifies that the station has been completed and corresponds to the description in the ap－ plication for construction permit．Should changes have been made in the original plan， these changes are detailed in the station license application．The applicant also re－ affirms all statements regarding ownership． operation，control，and so forth，made by him in the application for construction per－ mit．

Both the application for construction per－ mit and the one for station license are filed in duplicate．

Experimental station licenses are issued for a period of one year．

Every station is required to keep an ac－ curate \log and to file with each application for renewal a report showing：

A．Ultimate objective to be reached by experiments．
B．General results accomplished during period of report，including references to published reports of experimental work．
C．Technical studies in progress at time of filing report．
D．Any major changes in equipment．
E．Total hours of operation．

FRACTIONAL－DECIMAL EQUIVALENTS

A time－saving table is given for frac－ tional－decimal conversion．Many of the commonly used fractions and their deci－ mal equivalents are shown．Others can be calculated by dividing the numerator by the denominator．

${ }_{6}^{16}=.0165$	${ }^{7}{ }^{7}{ }^{\text {P }}=.4375$
＝ 0312	$1 / 2=.500$
${ }_{8}{ }^{3}=.0468$	${ }^{\text {昌 }}=.5625$
位 $=.0625$	$5 / 8=.625$
${ }^{3}{ }^{3} 2=.0936$	拈 $=.6825$
$1 / 8=.125$	$3 / 4=.750$
$\frac{3}{18}=.1875$	㥩 $=.8125$
$1 / 4=.250$	$7 / 8=.875$
${ }^{5}$	${ }^{\text {㰻 }}=.9375$
$3 / 8=.3750$	

Simplified Trigonometric Tables

Angles of Every 3 Degrees

Angle in Degrees	SINESide Opp．Hypot－ enuse	cosine Side Adj． Hypot－ enuse	TANGENT Side Opp． Side Adjacent
0	0.0000	1.0000	0.0000
3	． 0523	． 9986	． 0524
6	． 1045	． 9945	． 1051
9	． 1564	． 9877	． 1584
12	． 2079	． 9782	． 2126
15	． 2588	． 9659	． 2679
18	． 3090	． 9511	． 3249
21	． 3584	． 9336	． 3839
24	． 4067	． 9136	． 4452
27	． 4540	． 8910	． 5096
30	． 5000	． 8660	． 5774
33	． 5446	． 8387	． 6494
36	． 5878	． 8090	． 7265
39	． 6293	． 7772	． 8098
42	． 6691	． 7431	． 9004
45	． 7071	． 7071	1.0000
48	． 7431	． 6691	1.1106
51	． 7772	． 6293	1.2349
54	． 8090	． 5736	1.4281
57	． 8387	． 5446	1.5399
60	． 8660	． 5000	1.7321
63	． 8910	． 4540	1.9626
66	． 9136	． 4067	2.2460
69	． 9336	． 3584	2.6051
72	． 9511	． 3090	3.0777
75	． 9659	． 2588	3.7321
78	． 9782	． 2079	4.7046
81	． 9877	． 1564	6.3138
84	． 9945	． 1045	9.5144
87	． 9986	． 0523	19.0813
90	1.0000	． 0000	

To Manufacturers and Distributors of High Frequency Radio Equipment

In four short years. the "RADIO" HANDBOOK has become the most authoritative radio text in the world among those who are the leaders in high frequency radio communication-just as RADIO has become the "Worldwide Technical Authority of Amateur, Shortwave, and Experimental Radio" among periodicals.

The "RADIO" HANDBOOK is bought by those who not only are discriminating but also have the means with which to buy; its higher price discourages buying by the merely curious or those who must count every penny, a fact of the utmost importance when considering results rather than mere circulation.

Your advertisement is seen in the "RADIO" HAND. BOOK, for unless otherwise requested all full page advertisements are placed on a righthand page opposite text; they are not buried with catalog-style makeup unless you so wish.

Advertising inquiries are invited from reliable manufacturers, importers. or distributors. Rates are reasonable.

Radio Ltd., Publishers.

INDEX

（1）CONTENTS

TVアバ lage
Abbreviations，Amateur． 426
Alsorption Wavemeter． 386
Air Gap in Choke Coil 370
Alignment，Receiver 460
Alternating Current 15,25
Alternator 25
Amateur Bands 412
Amateur Operator＇s amd station Litenses 410
Amateur Regulations 405
Ampere 8
Ampere Tinns 16
Amplifications Fictor 41
Amplification，Power 43
Amplification，Voltage 43
Amplifier Calculations 56
Amplifier Classifications． 44
Amplifier，Degenerative Feedback 303
Amplifier，lntermediate Frequency 120
Amplifier，Inverse Feedback 303
Amplifier，Linear 301
Amplifier Ratings 54
Amplifier，Regenerative lk．F＇ 119
Amplifier，Speech 303－306
Amplifler Theory 41
Amplifiers，Class A，AB，13，13C，and C． 42－44
Amplitude Modulation（See＂Modulation＂）
Angle Radiation 66， 83
Angular Velocity 27
Antennas：
dirplane 80， 113
Angle Radiation． 66． 83
Antenna Impedance 65， 68
Antomobile 109． 112
Broadside Radiation 66
（onstruction of 114
Connterpoise 66
Coupling：
Collins＂Pi＂ 81
Impedance Malching Transformers．．． 112
Inductive 81
Link 82
Simplified＂l＇i＂ 82
Single－Wire－Feeder 70
Twisted Pair Feeders 81
100 Meter Loaded Antemins 81
Current Loop 74
Directional Effects 66
Directional Antennas： 89
Beverage 90
＇TOR＇I PAGL
liruce Folded 94
（hireix Mesny 90
co－linear 84
Diamond 100
Directors，Parasitic 99
Franklin 8．
＂H＂Arrays 89
Hawkins 90
Kraus（Flat Top Beam） 95
RCA Broadside． 89
Reflectors，Parasitic． 88， 98
Rhombic 100
Rotatable 107,114
stacked Dipole 91
Tilt 103
＂V＂ 84， 101
lagi 96
Directive Antennas（General） 83
Directors，Parasitic 99
Electrical Properties 64
End Effects 69
End Fire Radiation （6），88， 95
Feeders（See＂Feed Systems＂）Feed Systems，General68
Feed Systems，Specific：Center－Fed73
Concentric Lines 111
Current 68， 74
Doublet 112
End－Fed 73
Impedance Matching Stub 74
l．inear Transformers 76， 78
Multi－Band 77
Non Resonant． 68
Open Lines． 08
＂Q＂Antenna 76，78
liesonant 68
Single Wire 68
Stub，Matching 74
Surge Impedance． ．68， 72
Transposition Blocks． 112
Twisted Pair Feeders －8， 112
Two－Wire Matched Impedance 71
Voltage 74
Zepp 73
Cirounds 66
lmpedance 65， 68
Lengths 70，72， 73
Parasitic Directors 99
Parasitic Refiectors 88， 98

MeGRAW-HILL Radio Rooks

PRACTICAL RADIO COMMUNICATION

Principles-Systems-Equipment-Operation;

Including Short-wave and Ultra-short-wave Radio

754 pages, $6 \times 9,435$ illustrations, flexible, $\$ 5.00$
By Nilson and Hornung, well-known radio experts, instructors, writers. This book covers the requirements for all classes of radio operator's license examinations, treats long, medium, short, and ultra-short-wave radio, includes all classes of radio stations-is in general a complete text on practical
 radio communication based on a theoretical introduction.

Use this book to get ahead in practical radio operating

- oives full treatment radio and electrical principles; delves deeply into alternating currents.
-particular attention to broadeasting ; Western Electric hroadenat transmitter; studio acoustics and apparatus. control-roont equipment and operation; specinl lingrums, etc.
-section on ultra-short-ware equipments, for police operitors.
—radio-telegraphic and radio-telephonic treatment aviation radio: aircraft transmitters, recelvers, testing and maintenance.
-marine medium-frequency equipment. high-frequency transmitters and re-e-eivers; direction-finders. ete.
-rectificis; generators; batteries. etc.

Terman-RADIO ENGINEERING-New Second Edition

Analyzes electrical circuits and vacuum tubes and reduces then to quantitative relations that predict with accuracy the performance of radio circuits and radio apparatus. Up-to-date second edition just published, with new chapter on television and extensive other rewritten and new material. 813 pages, $\$ 5.50$.

Nilson and Hornung-RADIO OPERATING QUESTIONS AND ANSWERS

Gives over six hundred typical radio operator license examination questions, with full, illustrated answers, covering broadcasting, marine, aeronautical, police and amateur radio. 389 pages, $\$ 2.50$.

Henney--RADIO ENGINEERING HANDBOOK

Twenty-four big, authoritative reference sections under one convenient cover. Covers technical data and applications in all fields and aspects of radio engineering. Second edition, 583 pages, $\$ 5.00$.

Henney-ELECTRON TUBES IN INDUSTRY

Practical electronics, with emphasis on what the electron tube is doing toward making processes simpler. cheaper, safer, and in methods of control of manufacture. Second edition, 539 pages, $\$ 5.00$.

Eastman-FUNDAMENTALS OF VACUUM TUBES

Discusses at length the principal types of vacuum tubes-high vacuum, mercury-vapor, photo, and several special varjeties-underlying laws, and engineering analyses of their important applications. 438 pages, $\$ 4.00$.

Terman-MEASUREMENTS IN RADIO

ENGINEERING

Comprehensive discussion of the measuring problems commonly encountered by radio engineers. Covers tchniques. design and construction of equipment, and practical methods least likely of error. 400 pages, \$4.00.

Glasgow-PRINCIPLES OF RADIO ENGINEERING

Thorough presentation of fundamentals of radio communication and application of these principles. Emphasis on theory and application of vacoum tube and associated circuits to communication systems. 520 pages. $\$ 4.00$.

Turle Heage
Radiation Field 64
Radiation Patterns. 67. 87
Radiation Resistance 65, 68
Reflectors, Parasitic 88, 98
Standing Waves 65
Theory 63
'lypes, General
Collins Multi-Band 77
Hertz 63
Johnson " Q 76
Long Wire 85
Marconi 63, 79
Marine 111
Matched Impedance 71
Noise-Bucking 141, 153
Receiving:
Air craft. 113
Automobile 112
Doublet 112
Reinartz 108
Single-Wire-Fed 68
"Signal Squirter" 108
"Signal Squisher* 107
Tilt 105
Ultr 337
Zepp 73
Voltage Nodes 68
Antilogarithms 54
Arrays, Directional (See "Antennas")
Atom 7
Audio Amplifier, Shunt Fed 41
Iudio Frequency Transformers 36
Intodyne Detector 119
Automatic Frequency Control. 122
Nutomatic Key 59, 61
Auto-Transformer 34, 375
Back E.M.F 17
Band Spreading 117
Bands, Amateur 112
Battery Operated Receivers 133
13-K Oscillator (See "U.H.F.")
Beat Frequency Oscillator 123
Ream Power Tubes 48
Bias 11. 217, 374
Bleeder Resistor 12, 372
Bridge Rectifier. 370
Breadboard Construction 257
Body Capacity 138
"Brute Force" Filters 368
Bug Key 50, 61
Buzzer Code Practice 57
C-Bias 218
Capacities, Circuit 120
Capacitive Coupling. 219
Capacitive Reactance 24
Capacity 19-22
Capacity, Borly 138
Capacity. Distributed 117
Capacity: Parallel, Series 22
Carbon Microphones 282
Cathode 39
Cathore Ray Oscilloscope 397, 399
Cathode Regeneration 211Characteristics. Vacuum Tubes (See "VacunmTubes'")THPICPagE
Charts and lables
Abbreviations, Amateur 426
Amateur Frequency Bands 412
Antennas:
Barrage Array 89
Bruce 95
Chireix-Mesny 90
Co-Linear 85
Collins 77, 79
Diamond 100
Feed Systems 72, 74
Half Wave 79
Long Wire. 86, 87
"Q" 79
Stacked Dipole. 92
"V" 103
Yagi 96
Zepp 73
Bleeder Resistance 372
Characteristics, Vacuum Tubes (See "VacuunTubes"
Choke Design 383
Color Code 419,421
Concentric Line Impedance 111
Condensers, Parallel and Series 22
Continental Code 59
Conversion lable 422
Data Charts 448
Decibel Chart 390
Dielectric Constants 20
Drill Sizes. 442
Equivalent Tuhe Table 170
Feed Systems. Antenna (See "Antenna Tables")
Fractional-Decimal Equivalents 468
Frequency Chart 412
Frequency Meter 393
"Ham" Abbreviations 426
Inductance Calculation 454-456
International Prefixes 423
(By Countries) 425
Logarithms 52, 53
Metal Tube Characteristics 156-166
Oscillator Tracking 460
Postal Rates. 423
Preflxes 423, 425
"Q" Signals 420
R-C Time Constant Cliarts 458-460
RMA Color Code 419,424
R-S-T Scale 422
Radio Data Chart 448
Radio Symbols 419,422
Receiving Tube Characteristics 155-178
Rectifier Tube Characteristics 205, 873
Socket Connections 166-169
Tank Coils 231-233
Television Glossary 436
Tracking, Oscillator 460
Transformer Design 381
Transmitting Tube Characteristic 171-205
Trigonometric Tables (Simplifled) 468
W.A.Z. Map 470
Wire Tables 380
Word Abbreviations 426
Choke Coil 16, 370
Choke Input Filters. 369
Circuit "Q" 31

COOME COMPONENTS FOR AMATEUR EQUIPMENT

CROWE components for amateur equipment include-Dials, Dial and Switch Plates, Knobs, Instrument Controls, etc., for constructing and equipping Receivers, Transmitters, Sound Equipment and for Experimental Work.

No. 418 "Tone" and "Gain" Crowe DoubleStyle Dial Plates. Single and quadruple styles also available. Made of silver. white anodized aluminum with black fiqures. Hard. permanent tinish.

No. 415 "Micro. phone" single. style Crowe Deluce Dial Plate.

Large Airplane Dial. Two. speed planetary drive.

No. 275 Off-On Switeh Plate.

No. 283 Bakelite Skirt Knob.

PLATE VOLTAGE

Crowe Deluxe Name Plates. Anodized Aluminum. Stock list of 142 plates with different titles.

Nos. 587 and 588 New-Style Bar Knobs. Black Bakelite. Fit any $1 / 4^{\prime \prime}$ shaft.

No. 542-A Chang. O. Name Dial Plate.

No. 564 " " $1-2-3$ " S witch Plate. Etched aluminum and black.

No. 525 Front-O-Panel Airplane Dial.

No. 278 "OHf-On" Switeh Plate. Etched aluminum and black.

No. 296 Plan-O.Vernier Re-duced-Speed Dial with Micrometer Marker.

No. 245 Metal Cabinet for Receivers. Test Equipment, etc. Black crystalline tinish.

Stocked by leading Dealers and Jobbers.

- -

Ask for Bulletins
75 and 220

¿CROWE NAME PLATE \& MANUFACTURING COMPANY

 1762 Grace St., Chicago, 11.Cable Address-Croname, Chicago

OHMAITE PRODUCTS

 changing transmitter to date. ohms.

Send for your free copy of this new catalog describing the complete line of Ohmite products.

Band-Change Switch Here's the unit you've heard 'em all talking about. Substitutes turn of a knob method of the bothersome plug-in concy. Get one

Fixed Resistors
If you use Ohmite Vitreous Enameled Fixed Resistors you can rest assuy. Now have the best that mo, 160 and 200 watt made in 25,50 . 100 .
sizes. in resistance ranges from 5 to 250,000

Vitreous Enameled Rheostats These famous power rheostats are in a class by themselves. Get them for yout rig if you want that close conte. Made in 25,50 , and means long tube life. Made in w. I .

Tap-Switches
Ohmite tap-switches are rugged units which are used to switch one circuit to any of several other circuits. Can up to nished with any number aither the shorttwelve, inclusive, and type.
ing of non-shorting type.

T.Pad and L-Pad Attenuators These attenuators afford stepless control These attenuato of loudspeakers used in of the vol.P.A. systems. They are inserted high-pow the amplifier and loudspeakers to be permit the controlled speakerging the permit in volume without changing load. impedance of the total connected load tapped resistors are most frequently to proacross transmitter center for the grid and vide an electricalenter tap is accurate plate returns. $\mathrm{F} \%$. plus or minus 1%.

OHMITE MANUFACTURING COMPANY

4849 W. Flournoy St., Chicago, III.

OHMITE
 PRODUCTS

Brown Devil Resistors "Brown Devils" have for years been the standard radio replacement resistor where a unit of high class constiuction and hundieds of pendability is desired. Also hund 20 watt other uses. Avala number of resistance

Dividohm Adjustable Resistors Here is a mighty handy resistor to have around when changes in your The "Dividchanged values in resistors. The by means of s ohm" can be adjusted by contacts a strip ball-ponted lus left exposed. sizes
values.

Precision Resistorts The new Ohmite precision resistors meet the demand for resistors of great accuracy for meter multipliers and other single layer solenoid age uses. Furnished in singes and in pie-wound type for lower resis vilues. Accuracy 1%.

Send for your copy of the Ohmite Ama. tour Hand. book. Only 10c at your dealer or will be mailed to you direct.

These solenoid chokes have been engineered so as to avoid either fundamental or harmonic resonance. in the capacity is much bands. Current usually required.

Power Line Chokes Here is the unit that will help you eliminate B.C.L. complaints of interterence. note
Will keep r.f. currents from feeding 105 . unistor up to one watt ratrom noise and into power line. Details in Bull struction assures freedom fistics. Available other disturbing characteristics from 100 to 25,000 ohms.

OHMITE MANUFACTURING COMPANY

4849 W. Flournoy St., Chicago, III.
ropleCircuits, Receiving and Transmitting (See Re-ceiver and Transmitter Chapters)
Circuits, Resonant 28. 30, 31, 116
Circuit Capacities. 120
Class A Amplifiers 42
Class AB Amplifiers 44
('lass B Amplifiers. 4. 295-301
Clickless Keying 223-220
Code, Continental 59
Code Practice 57
Coll 17
Collins "Pi" Coupler 81
Concentric lines 111
Condenser 19-22
Condenser Microphone 283
Condensers, Energy Storage in 20
Condensers: Parallel, Series 2.
Condensers, Voltage Ratings 22, 371
Conductance, Mitual 18
Conductivity 8
Conductors 7
Conductance, Conversion 49
Continental Cocle 59
Controlled Carrier Modulation Systems. 301
Conversion Conductance 49
Conversion Table. 422
Converters, Frequency 49
Core, Transformer 6, 378
Copper Tubing Coils 234
Coulomb 8
Counter E.M.F 17
Coupling, Capacitive 219
Coupling, Coefficient of 18
Coupling, Effect on Impedance 83
Coupling, Impedance. 44
Coupling, Inductive $17,35,81,220$
Coupling, Link 36, 82. 220
Coupling Methods. 44
Coupling. Transformer 44
Coupling, Resistance. 44
Coupling, Radio Frequency 115
Coupling, Unity 36
Crystal Filter 124, 131
Crystal Microphone 284
Crystal Oscillators 207, 237
Crystals:
Cuts 229. 281
L.ow Drift 230, 281
Monnting 230
Temperature Effects 230
Current, Alternating 5, 25
Current. Direct 15
Current, Electric 7, 8
Current Fed Antennas FeedSystems")
Current Flow 8
Current in A.C. Circuits 15
Current. Peak 27. 370
Cycle 15
Dh 51
Decibel (Db) 51
Decibel Chart 890
Decibel Gain, Calculation of 53. 286Demodulation (Spe "Detection")Detection47. 115
Detection, Grid 47
Detection. Plate 47
TUPIC PGE
Detector, Autodyne 119
Detector, Kegenerative 120
Diatherms 411
Dielectric 20
Dielectric Constant. 20
Dip in Plate Current 32
Direct Current 1.5
Direct Current. Average. 27
Direct Current, Pulsating $\because 7$
Directional Antennas (See "Antemma")
Distributed Capacity 117
Districts, Inspection 407
Doublers, Frequency 209, 281Doublet Antenna (See "Antennas")
Doubling. Frequency 009
Dynamic (haracteristics, Tube 43
Dynamic Microphone 281
Eudy Current Losses 1N. 378
Electric Current. 7. 8
Electrical Units and Symbols. 422
Electricity 7
Electromotive Force 8
Electron 7
Electron Coupled Frequency Meter 389
Electron Orbit Oscillator (See "U.H.F.")Electron liay Tubes.123
Electrostatic Coupling 20
E.M.F. 8
Emergency Work. 400
Emission, Secondary $+8$
Empire Cloth 383
Excitation (See "Exciters")
Expanding Linear Amplifier. 29.5
Exciters:
Block Diagrans. 2.51-256
Geceral 337
Types:
Bi-Push $25:$
Regenerative 239
Reinart \quad. 240
Tritet 239
53-6A6 238
A6 Marmonic 21
81.6 Multiband 24
RK-28 High Power 219
5 to 160 Meters 24
10 to 160 Meters 243
Experimental License 464
Fading 64
Fading, Selective 64
Farad 20
Faraday Screen. 36. 113
Feed. Parallel (Shunt) 229
Feed. Series 999
Fidelity 115
Field. Mignetic. 2.5
Field Strength Measurements 72
Field Strength Meter 38.5. 387
Filament Emission. 39
Filaments in Series. 11
Filters (See "Power Supply")
Filters, Crystal. 121
Fixed Netuorks 45
Flux 16
Folded Resonant Jine Circuits (See "[T.H.F.")

El

"RADIO"

 HANDBOOKEdición Español

El "RADIO" HANDBOOK es el libro de radio más famoso e importante del mundo en su carácter de obra divulgadora para el amateur. Este libro, conocido en los Estados Unidos como la autoridad más importante del mundo de la radio, se edita original. mente en inglés en California, y representa el esfuerzo más serio y ordenado hecho en favor del estudioso y del aficionado. El "RADIO" HANDBOOK no es una obra anónima; no es un libro escrito por aficionados. Es la obra cumbre del talento maduro e inimitable del radio-ingeniero Frank C. Jones, W6AJF, uno de los más ilustres "pioneers" de la radio en el mundo, y de los redactores y ingenieros de la revista "RADIO."

El "RADIO" HANDBOOK, rdición 1938, tendrá aproximamente 500 páginas, y sus sujetos incluyen todos los sujetos que incluye esta edición inglesa, con excepción de las leves de la radio de los Estados ['nidos.

EI "RADIO" HANDBOOK, edición español, se remite franco de porte por correo certificado al precio de $\$ 5.00$, moneda nacional de la República Argentina. Aceptamos en pago giros y cheques sobre Buenos Aires, La Paz, Río de Janeiro, Santiago de Chile, Lisboa, Lima, Montevideo, y Nueva York; también accptamos billetes de banco de sus naciones los cuales deben venir en carta certificada.

Editorial Pan America
Perú 677
Buenos Aires, Argentina

turic

Formulas:
Antenna l.engtls
70, 72, 73

Collins Antema.......................... 77
Director lengths........................ 100
Electron Orbit Oscillator............ 310
Feedersi9. 72
Frequency, Resonant
Half Wave Antenna
Impedance Matching
Inductance Calculations
Ohin's Law.
$\because 9$
79
33

Parasitic Kellectors
45.4
"Q"
"Q" Antenna.
8

Retlector Lengths.
Resonant Frequency
Single-Wirc-Fed Antenna
Surge Impedance.
Tank Capacities.
'I'ransformer Cores
'Transformer Desiril
U.II.F. Quarter Wave Antennas.

Wavelength-Frequency Conversinu.
Kepp Antenna
Frequencies. Anuteur
Frequency 15
Frequency Control............................... 237
Frequency Doubling...... 209
Frequency Meters:
Absorption . 386, 387
Flectron Coupled Frequency Meter..... 389
F゙requency Modılation. 280
Frequency Multipliers. 209.281
Frequeney-W avelength Conversion 63
Fring Ilowl.. 138
Full Wave Rectifier. 367
Findamental Frequency. 63

Gain, (aleulation in Deeibelsns, 286
Gain, Voltage. .
Generators 25
Grid .. 41
Grid Bias.. 217
Grid Bias Mociulation 296
Grid Detection. 47
Grid Excitation.................................... 214
Grid Leak Bias................................ 217

Grid Satıration.................................. 221
Grounds 66
Gronnd Wave... 61

Ilalp Wave Antenna......................... . . . 79
Half Wave Rectifiers............................ . . 367
Harmonic Distortion. 46
Harmonic Elimination. 228
Harmonics . 6.63
"H" Arrays. 89
Hawkins Antenna................................ 90
Heaviside I.ayer, . 84,66
Henry . 17
Iligh-C ... 33
Hım, Tınable. 138
IHysteresis .. 378
Image Suppression (See "Preselector")
Impedance
2.1
TOPIC

PAGE:
Impedance, Antenna 65
Impedance Coupling. 44
Impedance, Load 43
Impedance Matching Networks 453
Impedance Matcling Stub: 74
Impedance, Plate-to-llate. 37
Impedance, Reflected 36
Indicator, Neutralizing 38 \%
Indicator, Overmodulation 387
Induced Voltage 17
Inductance 16
Inductance Calculation. $151-4.56$
Inductance, Iron Core 18
Inductance, Mutual 17
Inductance: Parallel, Series 18
Inductive Coupling 2
Inductive Reactance 19
Inductor Microphone (See "Dynamic Micro phone")
Indicators. Tuningr 123
Instruments:
Cathode Ray Oscilloscope 397. 394
Ficld Strength Meter ;85, 387
Frequency Meters 39:3
Monitor 387, 393, 395
Monitor, Radiotelephone.
387
Neutralizing Indicator 389
Oscillator, All Wave Test 392
Overmodulation Indicator. 387
Test Set. Radiotelephone 387
Vacuum Tube Voltmeto. 388
Voltmeters 391
Wavemeter, Absorption. 386. 387
Intereominunication System 441 i
International "Q" Sigitals 420
Insulators 7
Intermediate Frequency Amplifier: 120
Inverse Peak Voltage 369
Ionization 40
Iron Core Inductinees 18
Johnson "Q" Antenna Systrm 76
Joule 19
Kennily-Heaviside layer 64, 66
Key, Automatie. 59, 61
Key, How to Grip 60
Keying:
Chirps 223
Clicks 423
Filters 223
Methods:
Blocked Grid 22.5
Center Tap 226
Excitation 223
Oscillator 22.5
Primary 224
Vacuum Tube 226
Kilocycle 15
L.C Ratio 32
L.aws, Amateur (See "Regulations")
Iicenses, Amateur. 57. 410
Lightning Arrestors 'See "Underwriters Rules")
Linear Ampliffers. 44, 295, 301
IInear Antenna Transformers (See "Q Antenna")
(utally by RCA

RCA COMMUNICATION RECEIVER AR-67
9 tubes. Receives phone and C-W sigaals between 75 and 1500 kilocycles. May be operated from A-C or batteries. Complete with tubes but less other accessories, $\$ 275.00$.

RCA AMATEUR TRANSMITTER ACT-20
This crystal-controlled transmitter offers easy tuning, "broadcast quality" and excellent performance. 20 watts C.W, 16-watt phone output 10-160 meter bands. RF Stage: RCA-807-RCA-802-RCA-807 AudioStage: RCA-6F5-RCA-6F6-RCA-6L6 $\$ 129.50$ with one set of coils but less tubes and accessories.

RCA MODEL ACT-150
TRANSMITTER
150 watts output CW and phone. 10 to 160 meter amateur bands.

> RF Stages:

RCA- 807 -RCA- 802 RCA-807-RCA-808 RCA-807-RCA. 808 Audio Stages: RCA-6J7 RCA-6C6-RCA-6C6 RCA-2A3-RCA-808 RCA-2A3-RCA-808 with one set of coils but less Tubes and Accessories, \$625.00.

Se eour distributor or write us for complete details of equipment illustrated.
All prices are amateur's net, f. o. b. factory and subject to change or withdrawal.

RCA AMATEUR RECEIVER ACR-155
A 9 -tube communication receiver covering from 520 to 22,000 kilocycles. 100 -1 ratio tuning drive and large knob for bandspread. R-F stage, air-dielectric trimmers and magnetite core I-F transformers. Complete with built-in speaker and tubes at $\$ 74.50$.

RCA AMATEUR RECEIYER ACR-111
The last word in modern design! Features of particular importance are constant-percentage electrical bandspread $5 y$ stem, noise suppressor, two r-f and i-f stages, crystal filter, exceptional sensitivity and signal-to-noise ratio. Rack-mounting or sable styic. Complete with speaker and 16 tabes, $\$ 189.50$.

RCA MANUFACTARIAG COMPANY, INC. - CAMDEN, NEW JERSEY

(agi) TTPE: POR Every

RCA-801

A rugged, carbon-anode triode, having wide application in buffer/doubler and final stages. Rated at 20 watts max. plate dissipation, 600 max. plate volts, 70 max. plate m.a. Full rated input up to 60 m.c.

RCA-802

The favorite pentode for crystal oscillator or buffer/doubler. Well-shielded construction eliminates neutralization in most applications. The stability and reliability of this type makes it particularly suitable for exciter stages. Rated at 500 max. plate volts, 60 max. plate m.a.

RCA-803

The outstanding high-power pentode. Nominal output is 53 watts when suppressor modulated, 210 watts as Class C amplifier. The low drivingpower requirements, large power gain, and elimination of neutralization in well-shielded circuits, make this husky type ideal for many applications.

RCA-804

A medium power-pentode of popular design. Particularly useful as a sup-pressor-modulated amplifier or driver for higher-power stage. Requires no neutralization in most cases. Rated at 120 watts input for Class C telegraph service.

RCA-866-For the power supply system, the logical choice is

RCA-805

The popular triode for all-around amateur use. Easy to drive; will deliver over 200 watts r-f output at 1500 volts. High-mu design provides zerobias operation in Class B modulator service. Two tubes deliver 370 watts of audio power. Excellent as a highpower frequency doubler.

RCA-806

A heavy-duty tantalum plate triode for the high powered final or modulator. A pair take a kilowatt input easily and another pair will modulate a kilowatt input with plenty to spare. The most economical tubes to use for the kilowatt final r-f stage.

RCA-807

The sensational beam-power tube Rated at 60 watts Class C input, the RCA-807 is widely useful as crystal oscillator, buffer/doubler or final stage. Requires no neutralization in most applications.

RCA-808

For the medium power stage this tan-talum-plate type offers the unusual advantages of high power output (150 watts) at moderate plate voltage (1500 volts), high-mu, low driving power, rugged construction, heavy-duty filament, yet the price is surprisingly low.

the rugged, reliable RCA-866 now at an amazingly low price.

SPECIAL PURPOSE TUBESReguirement!

CATALOGUE OF POPULAR RCA TRANSMITTING AND SPECIAL PURPOSE TYPES

TRANSMITTING TYPES

Type
$203-\mathrm{A}$
$204-\mathrm{A}$
211
00
501
305
506
508
$530-13$

Net

203
204
211
00
501
505
506
508
530
531
534
338
341
542
543
545
849
351
352
$\$ 15.00$ R-F Power Amplifier. Oscillator, Class 13 Modulator 97.50 Oscillator. R-F Power Amplifier, $15.00 \mathrm{R}-\mathrm{F}$ and A-F Power A 10.00 12-F Dower Amplifier Oscllator $3.45 \mathrm{~K}-\mathrm{F}$ and $\mathrm{A}-\mathrm{F}$ power Amplifer (Neillator. Modulator 13.50 R-F Power Amplifter, (scillator. Class 14 Modulstor
$2,00 \mathrm{~K}-\mathrm{F}$ Power Amplifier, Oscillator 7.75 R-F power Ampliner, O Class 13 Modulator

$$
\text { Clask } 18 \text { Nodulator }
$$ 10.00 Class 13 Moduator R-F Power Amplifier. Oscillator 265,00 Oscillator. R-F Power Amplifter 12.50 Cltra-High Frequency R-F 16,00 Class B M Modulator, iR-F Iower Amplifier. (scillator 3.25 R-F Power Amplitier. (sclliator. A-F Voltage Ampliner . 50 A-F Power Amplifier. Modulator 12.50 Power Amplifier. (Oscillator 160.00 Modulator. A-F Power Amplifer 60.00 Modulator A-F and 13-F Power 350.00 M Amplifler. Oscillator 10,40 Oscillator, li-F Fower Amplifer

TETRODES
\$3.50 Transmitting Beam-Power Amplifier
18.00 Sereen-Grid R-F Power Amplifier 37.50 Screen-Grid R-F Power Amplifier 32.50 Sereen-(irid R-F Power Ampliffer 12.75 sereen-Grid R-F Power Ampliter

> PENTODES
\$3.50 R-F Power Amplither Pentode $34.50 \mathrm{R}-\mathrm{F}$ Power Amplifer l'entode $15.00 \mathrm{R}-\mathrm{F}$ P'ower Amplifier 1'entode 8.50 R -F P'ower Amplifier 1'entode

Max Plate Cath- CathIIGlts TYpe volts

100 Fllament 100 Fllament 10.0 35 Filament 7.5 20 Filament 7.5 125 Filsment 10.0 150 Filament 50 Filament f0 Fllament 10,0 400 Filament 11.0

50 Filament 7.5
100 Filament 10.0
15 Fllament
12 Fllament
15 Heater
75 Filament

750 Filament 11.0 100 Flament 10.0

21	Heater	6.3
15	Heater	2.
100	Filament	100
100	Flament	10.0
400	Flament	1.0
15	Filament	1.5

10 Heater 125 Filament 12 Heater

RECTIFIERS

Max Peat	Cath-		
ode			
lec-			Coun-
:---:			
ode			
oderse			
odes			

Prices effective Sept. 7, 1937-Prices subject to change or withdrawal without notice.
ropic PAGE
Lines of Force. 16
Link Coupling 36. 82, 220
Load Impedance 13, 368
logarithms 51
l.ong Wire Antennas 85
I. Ow-C 33
I.ow l'ass Filters 368
Magnetic Field 25
Magnetic Flux 16
Magnetism 17
Magnetron Oscillitor. 3.40
Mantissa 52
Marconi Antenna (See "Antennas")
Mast Construction114
Matching lmpedances 33
Matching Networks 452
Megacycle 13
Megolint 8
Vemorizing Code. 59
Mercury Vapor Rectifier 374
Mlio 19
Microfarad $\because 0$
Microampere 8
Microhenry 17
Micromhos 19
Microvolt 8
Microwatt 11
Microphones:
Carbon 280
Condenser 283
C'rystal 281
Dynamic 281
Gemeral 79
Ribbon 284
Velocity 28.
Microphone l'uwer Levels. 56
Micro-Waves (See "U.II.F.")
Milliampere 8
Millihenry 17
Millivolt 8
Milliwatt 11
Modulation 9
Mudulation
Efficiency 295
Frequency 280
Grid 296-298
Heising $29: 3$
lmpedance Calculations 289
l'atterns, Oscilloscope 308
Plate 293
Plate and Screen 299
Screen Grid 298
Series 29.5
Suppressor 300,301
Transformer 289
Transformer Load Calculations 288
Mirdulators 293
Monitors 387, 393. 39:
Moving Coil Mirrophone 28
Mu (Amplification Factor) 41
Multi-Band Antenna (See "Antennas")Multi-Band Receivers130
Multipliers, Frequency (See "Frequency
Doublers"')
18. 11
18. 11 17
Mutual Conductance
Mutual Conductance
TOPIC PAGE
Negative Clarge.
Networks (See "'I’ Pads" and "' 'll' Pads")
Neutralizing 213
Voise Bucking Antenna 144, 153
Olim 8
Ohm's Law 9
Ohmmeter 389
Oscillator, Electron Orbit 340
Oscillator, Magnetron $3+0$
Oscillators 45
Oscillators, Crystal 207.237
Oscilloscopes 397, 394
Overmodulation Indicator 3nt
Parallel Capacities 18
Parallel Condensers -3)
Parallel Feed 222
'arallel Inductances. 18
Parallel Resistances 9
Parallel Resonance 31. 369
larallel Tube Operatiom 2ロ!
Parallel, Tubes in 13. 22:
larasitic Oscillations 215
l'arasitic Oscillation Suppressor. 217
Parasitic Reflectors (Antenna) 98
leak Voltage 27
l'entorle 1.5
'entagrid Converter 19
l'ermeability 16
l'hase 28
Phone (See "Radiotelephony")
Piezo Electric Microphone. 28.1
l'ate 39
Plate Current 32
Plate Detection. 47
l'late Dissipation 41
Plate Modulation 293
Plate Neutralization 211,213
l'late Resistance 41
l'olarity 7.26
Polarization, Radiation 81
Positive Charge 7
lower 11
l'ower Ampliflers 43
l'ower Factor. 28, 38ะ
l'ower Levels. 52
lower Modulation 093
l'ower Supply:
Auto Transformer 3.5
Bias Supplies. 371
Bleeder Resistance 13. 3:2
Cloke Design 383, 381
Choke, Smoothing 381
Choke, Swinging 371, 381
Electrolytic Condensers 371
Filters:
"Brute Force" 368
Choke Input 371
Circuits 368
Condenser Input 370
Condensers 371
Low-Pass 368
Resonant 368

112 PAGE INSTRUCTION BOOK

Containing complete detailed wiring instructions, diagrams, schematics, pictorial diagrams, chassis layouts, alignment data and operating instructions for:

16 MODERN CIRCUITS

Ranging from the latest 4 tube circuit to the ultra-modern 14 tube Communications receiver using B.F.O., Crystal Filter, Noise Silencer, Band Expansion, etc., etc., and

```
4 ADAPTER UNITS
```

Consisting of Beat Frequency Osc., Noise Silencer, Phonograph Osc., and Remote Control. All selfi-powered.

COILS AND COIL KITS

The use of Meissner products in any receiver will result in improved performance.
Meissner offers the most complete line of coils and coil kits. I.F., R.F. Ant.. Osc., etc., coils for every use. Complete tuning kits for the latest receivers including the 14 tube Com munications Receiver, already justly famous.

FREE - FREE - FREE

Complete 32 page coil and coil kit catalog. A valuable addition to your 山brary.
Name

Address

Model No. 7512 . Your Cost $\$ 23.10$ Your Cost to 60 Mc (5 to 555 meters) no skip. AIR TUNFD.

The UTC organization manufactures the most complete and diversified group of transformers produced in the entire world. UTC transformers are used by such organizations as RCA, Western Electric, General Electric, Western Union Hygrade Sylvenis, Coast Guard Service, U. S. Navy, U. S. Army, Dept. af Commerce, Columbia Broadcasting System etc

LINEAR STANDARD TRANSFORMERS

UTC Linear Standard components are ideal high fidelity units for broadcast and recording service. The frequency response is guaranteed uniform from 30 to 20,000 cycles and hum pickup and insertion loss is maintained at extremely low values. These units are unequalled for studio and speech input equipment.

ULTRA COMPACT HIGH FIDELITY AUDIO UNITS

The UTC ultra compact audio units are extremely small and weigh only $51 / 2$ ounces. The fidelity however, is excellent, the frequency response being uniform $\pm 2 \mathrm{DB}$ from 30 to 20,000 cycles. These units are ideal for remote pickup equipment and similar applications where both weight and size are paramount factors.

HIPERM ALLOY COMPONENTS

UTC Hiperm Alloy Com. ponents are similar to the Linear Standard units but of a more compact design and employ a lighli-weight high conductivity case so that these units can be employed for portable and compact service. They are used extensively in recording and remote pickup equipment

UTC VARITRAN VOLTAGE CONTROL UNITS

The UTC VARITRAN makes possible continuously variable output voltage using a sliding contact riding over the turns of an auto-transformer. Standard units are designed for 115 volt input, 0.130 volts continuously variable output.

APPLICATIONS

- Line voltage control
- Rectifier control
- Motor control
- Heat control
- Light control

FEATURES

- Smooth control
- High efficiency
- Excellent regulation
- Low cost

Model V-1 570 Watts-5 amp maximum rating, complete with cord, plug and switch. net …................ $\$ 10.00$
Model V-2 Same as V-1, but uncased, with terminal strip for rack or panel mounting. net $\$ 9.00$ Model V. 3850 Watts maximum rating 7.5 amps., uncased, with terminal board and provisions for mounting, net $\$ 14.00$ Model V. 41250 Watts - 11 amps. maximum rating, uncased net $\$ 20.00$ Model V-5 2000 Watts maxmum rating, 17.5 amps uncased, net …........... $\$ 32.00$ Automatic VARITRANS are available to maintain line voltage constant. Details and prices on request.

The Varimatch Transformer is a unique unit developed and pioneered by UTC which will not only match PRESENT available modulator tubes, but any tube that may be released at a FUTURE date. All you have to decide is the DC input to your RF stage. Then just pick the VARIMATCH output transformer that will handle the maximum audio power required. The secondaries of all Varimatch transformers are designed to carry the Class C plate current.

VARIMATCH TRANSFORWERS NEVER BECQME DBSOLETE

Aoproximate Audio							
Tubes in	Plate	P to P	Power	Driver		UTC	UTC
Push Pull	Voltage	Load	in Watts	Tubes		Input	Output
RK.30, 800	1000	12500	100	45	PA	52 AX	VM-3
35-T	1000	10000	115	2 A3	*	53 AX	V M - 3
35-T	1250	12800	130	2 A3	${ }^{6}$	53 AX	VM-3
RK-18	1000	12000	100	2 A3	${ }^{6}$	53 AX	$\checkmark M \cdot 3$
RK.31	1000	13600	110	243	4	53 AX	VM-3
845	1250	8800	105	45	${ }^{6}$	52 AX	VM-3
825	850	8000	80	45	4	52 AX	VM.3
756	850	6750	100	45	"	52 AX	VM. 3
50.T	1250	10000	135	243	"	53 AX	VM-3
203. A	1000	6900	200	2 A3	4	53 AX	VM-4
242. 211							
838	1000	7600	200	2A3	${ }^{\prime}$	53 AX	VM-4
830.8	1000	7600	175	2A3	${ }^{\prime}$	53 AX	VM-4
805	1250	6700	300	2 A 3	'6	$53 A X$	VM-4
50. T	1500	15000	175	2 A 3	"	53 AX	VM-4
50-T	2000	20000	250	$2 A 3$	4	53 AX	VM-4
203-A. 242. 211	1250	9000	260	2 A 3	"	$53 A X$	VM-4
808	1500	18300	200	2A3	${ }^{6}$	53 AX	VM-4
T. 55	1000	10000	175	2A3	4	$53 A X$	VM-4
T. 55	1250	12000	250	2 A3	*	53 AX	VM-4
HF. 100	1000	7000	200	2 A 3	1	53 AX	VM-4
HF 100	1250	8800	250	2 A 3	${ }^{6}$	53 AX	VM-4
HF. 100	1500	12000	300	2A3	4	53 AX	VM-4
HF. 100	1750	16000	350	2 A 3	4	53 AX	VM-5
805	1500	8200	370	2 A3	6	53 AX	VM-5
204. A	2000	8800	600	845 or 4-2A3's	6	238 AX	$V M .5$
HK-354	2000	15000	400	243	${ }^{4}$	53 AX	VM-5
HK.354	3000	25000	650	4-2A3's	4	238 AX	VM-5
150-T	1500	8000	350	4.2A3's, 845	${ }^{4}$	238 AX	VM-5
$150 . T$	2000	10400	500	4.2A3's, 845	${ }^{4}$	238 AX	VM-5
150.7	2500	14000	650	4-2A3's. 845	${ }_{6} 6$	$238 A X$	VM-5
HD.203.A	1750	9000	500	4-2A3's	${ }^{4}$	23.8 AX	VM-5
822	2000	9000	500	4.2A3's	"	238 AX	VM-5
HF. 200	2000	11200	500	4-2A3's	"	238 AX	VM 5
HF. 200	2500	16000	600	4.243 's	${ }^{4}$	238 AX	VM-5
HF. 300	2000	9600	650	4.2A3's	${ }^{4}$	238 AX	$V M-5$
2B-120	750	4800	150	45	4	52 AX	VM-4
7B-120	1000	6900	200	$2 A 3$	${ }^{6}$	53 AX	VM-4
2B.120	1250	9000	245	2 A3	${ }^{6}$	$53 A X$	VM-4
7B. 120	1500	11200	300	243	4	53 AX	$\checkmark M-4$
100-TH	1000	5200	200	2 A 3	4	53 Ax	VM-4
100.TH	1250	7200	250	2 A3	${ }^{4}$	$53 A X$	VM-4
100.TH	1500	9600	300	2 23	${ }^{6}$	53 AX	$V M-4$
100. TH	2000	16000	380	2 A3	*	53 AX	VM-5
100.TH	2500	22000	460	243	${ }^{6}$	53 AX	VM+5
250. TH	1000	2360	350	243	4	$53 A X$	VM-5
250-TH	1250	3280	540	4-2A3's	6	238 AX	VM. 5
250. TH	1500	4200	630	4-2A3*5	${ }^{6}$	238 AX	VM-5

VM-0 Will handle any power tubes to modulate a 10 to 25 watt Class C stage.
Net to Hams
VM-I Will handle any power tubes to modulate a 20 to 60 watt Class C stage. Maximum audic output 30 watts. Net to Hams.

VM-2 Will handle any power tubes to modulate a 40 to 120 watt Class C stage. Maximum audis output 60 watts. Net to Hams.
$\$ 7.5$
VM-3 Will handle any power tubes to modulate a 100 to 250 watt Class C stage. Maximun audio output 125 watts. Net to Hams. . . $\$ 12.01$

VM-4 Will handle any power tubes to modulate a 200 to 600 watt Class C stage. Maximun audio output 300 watts. Net to Hams.... \$19.51

- VM-5 Will handle any power tubes to modulat a 450 watt to I KW plus, Class C stage. Maxi mum audio output 600 watts. Net to Hams.

PA-52AX Push pull $45,59,2 \mathrm{~A} 3$ or 6 L6 plates t 2-46 Class B grids. Push pull 45,59, 2A3 or 6 L plates to $4-46$ or 59 Class B grids. Push pu 2A3's to 2-84I, 35T, 50T, 756, 825 Class B grid: Net to Hams.
. 3.9
PA.53AX Push pull $42,45,50,59,2 \mathrm{~A} 3$ or 6 L plates to two 210, 801, RK-18, 35T, 50T. HF-10 or 800 Class B grids. Push puli 2A3 plates t two 838, 203A, 50T, 35T, 211A, 242A, 830B, 80 RK-18, 801 or 210 Class B grids.
Net to Hams
PA-238AX Push pull parallel $2 \mathrm{~A} 3,45,50,59$ 6 L6 to four 805,838 , or 203A Class B grid Push puil paralle! $2 \mathrm{~A} 3,45,50,59,6 \mathrm{~L} 6$ or th 2IIA, 845 plates to Class B 204A. HF300 849 grids. Push pull parallel $2 A 3,45,50$ or tw 50T, 21IA, 845 plates to Class B I50T, HD 203 or HF200 Class B grids. Net to Hams... $\$ 10$!

UNITED TRANSEOR MER GORP.

TUPIC Page
Input Choke 369
Input Control 375
Line Voltage Requlation 375
Radiotelephone 281
Rectiffer Circuits 372
Rectifler 367
Transformer Design and Construction 377
Tube Limits 373
Voltage Dividers 11
l're-Amplifer 56, 284
Prefxes, International 423, 42.5
Pre-Selector $118,119,1.52$
Primary (Transformer) 19
Proton 7
Pulsating Current 27
Push-Pull Amplifer 13, 212
Push-Push Doubler 210
"Q" Antenna 76
"Q" of Coil or Circuit 31.8⒉116, 208
"Q Signals". 420
QSA System 422
Quartz Crystal Filter 124
Quartz Crystals 207, 229
R.M.S. 7, 370
R-S-T System 422
Rack Construction 257, 417
Radiation, Angle. 66, 83
Radiation Field (of Antenma) 64
Radiation Patterns. 65, 67
Radiation Resistance 65
Radio Frequency. 15
Radio Frequency Amplifers 44, 118
Radio Frequency Choke 221
Radio Frequency Coupling. 115
Radiotelephones (See "Radiotelepliony")
Radiotelephony:
Amplifiers:
Class B Linear R.F. Anplifer. 295-301
Degenerative Feedback 303
Expanding Linear 295
Inverse Feedback 303
Amplitude Modulation 280
Carrier Frequency 279
Carrier Shift 081
Controlled Carrier Systems 301
Frequency Control 280
Frequency Modulation 280
Load Impedance of Plate Modulated Stage 278
Microphones $279,282-284$
Modulation 279. 289-301
Monitor 387, 393, 395
Oscilloscope Patterns 398
Overmodulation Indicator 387
Plate Modulation 295
Plate Modulation of Pentodes 298
Power Supplies 281
Side Bands 270
Speech Amplifiers. 285-288, 308, 306
Suppressor Grid Modulation 300
Test Set 387
Theory 279
Transmitters:
50 Watt, 6L-6.G 286
150 Watt, T-55 292

TOPIC PAGE
\qquad17.5 Watt, HF-10028
400 Watt, 10 to 75 Meters 316
800 Watt, $100-\mathrm{TH}$ 294
30 Watt Grid Modulated. 309
High Power, Multi-unit 323
Trouble Shooting 307
Radio Therapy 401
Reactance 2
Reactivation (Transmitting Tubes) 206
Receivers:
Adjustments
129
460
Alignment
Audio Frequency Ampliffers. 14
Autodyne Detector 119
Automatic Frequency Control 129
Automatic Volume Control 121
Band Spreading 117
Beat Frequency Oscillator 123
Circuit "Q" 31
Construction and Types:
A.C. Operated 135
Battery Operated. 183
DeLuxe Communications Type 148
"Gainer" 185
Regenerative 121. 133-185
Superheterodyne $120-129$
superregenerative 120
T.R.F. 140
Ultra-Gainer 14.
Ultra High Frequencr (See "U.H.F.")
Crystal Filters 124. 131
Detection 115
Fring Howl 138
Ilum, Tunable 138
Intermediate Frequency Amplifiers 120
Noise Silencing 19
Oscillator, Beat Frequency (B.F.O.) 123
Oscillator Tracking 46
Preselector 1.5
Quartz Crystal I.F. Filters 12
Regenerative Detector. 120
Regenerative R.F. Amplifers 133-13\%
"R" Meter 149
Selectivity 11.5
Sensitivity 11
Tickler 119
Transfller 125
Tubes 121
Tuning 15
Tuning Indicators 123
Tuning, Vernier 18
Types (See "Receivers. Construction")
R-C Time Constant 160
Rectification 40, 367
Rectifier Filter Systems 368
Rectiflers 10. ․․․ 367, 373
Reflected Waves 64
Reflectors 88. 98
Regeneration 119
Regulation, Voltage 12
Regulations, General 405
Amateur 410
Condensed 428
Rejecticity 32
Relay Rack Construction 57. 117
Reluctance 16

Radio's OUTSTANDING LIBRARY

Now Ready

RADIO, world's foremost technical and constructional magazine for high frequency radio, per year (10 issues).

RADIO DIGEST, bimonthly, the best from the entire world of radio condensed into each edition: 12 issues for,.
"RADIO" HANDBOOK, leading shortwave text, complete, authoritative, practical; 500 pages, no "padding," profusely illustrated; per cepy.
"RADIO" TELEPHONY HANDBOOR (text identical with book formerly called "Amateur Radiotelephony") over 100 pages devoted exclusively to radiotelephony; the 'Phone man's 'bible;' "' per copy......... $\$ 0.75$

To be released early in 1938

'RADIO" ANTENNA HANDBOOR, over 100 pages on antennas and nothing else; facts, curves, diagrams, tables, charts, no calculations necessary; intensely practical; much more antenna data than in any "general" handbook: per copy............s0.75
"RADIO" ULTRA HIGH FREQUENCY HANDBOOX, devoted exclusively to the simple yet distinctly different equipment and practice of communication from 12 meters down to micro-waves; per copy.......... $\$ 0.50$
"RADIO" AMATEUR NEWCOMER'S HAND. BOOE: written especially for the beginner: simple theory; getting started; simple receivers and transmitters; how to get your license; radio laws; per copy

"RADIO" NOISE REDUCTION HANDBOOK.

 only book of its kind; tells you how to slop or greatly reduce all radio "noise" except staticAbove prices are for continental U. S. A. only: for rates elsewhere see
individual advertisements in this book or send stamp for catalog.

TECHNICAL PUBLISHERS• 7460 BEVERLY BLVD. LOS ANGELES
rople rage Topic Pabe
Resisianfer 8， 9
Resistanme－Capatity＇lime Constant 160
Resistance Coupling4.4
Resistance：Series．Darallel 18
Resunance Curve． 31
Resomanere larallel 31
Resouant Circuits 116
Resonant Frequency．Formula 29
Ribbon Microphone $28!$
Ripple 368
＂R＂Meter． $14!$
Root－Mean－Square（R．M．S．） $2 \% .370$
Saturation 16
Saturation（Core） 379
Saturation（Tube） 40
Screen Grid． 47
Screen Grid Modulation 299
Secondary Emission 48
Secondary．Transformer 19
Selective Fading． 64
Selectivity 115
Self－lixated Osaillaters 222
Self－Incluctance 17
Sencling（Code） 60
Sensitivity 11.
Series Capacities 22
Series Feert 222
Series Inductance 18
Series－Parallel 10
Series Resistance 9
Series Resonance 28． 31
Shunt Feed 290
Short Wrave Therapy 501
Side Bands（See＂Monlulation＂）
Signal Strength Scille 422
Sine Wave 26
Skin Fffect 31， 117
Skip Distance 64.86
Smonthing Choke． 384
Sorket Connections 166－169
Space Charge 39． 48
Speech Amplifiers 303－306
Standing Wave Detector 72
Standing Waves 65
Stub Matching Section 74
Superheterodyne（See＂Receivers＂）
Superregenerative Receiver（See＂LY．H．F．＂）
Suppressor Grid．48
Suppressor Grid Modulation． 300
Sweep Circuits 398
Swinging Choke 38
Symbols．Flectrical and Radio 119．422
＂T＂Pads． 452
Tables and Charts（See＂Charts and Tables＂）
＂Talk Back＂Intercommunicating System 46
Tank Cireuits 32． 213
Television Glossary 130
Test Fquipment（Spe＂Instruments＂） Test Set．Radiotelephone 387
Thump Filters（Siee＂Keying＂）
Tickler 119
Transconductance 42
Transformer 19
Transformer Action． 36
Transformer Core． 378
Transformer Coupling ． 1
Transformer Design and Construction 37
＇lransmission Lines（See＂Antennas＂）Iransmitters：
Breadboard Constrnction． 257
Buffer Amplitier． $20 \%, 209$
Construction and＇Types of＇Iransmitters and
Amplifiers（See also＂Radiotelephony＂）
Simple C．W 258
35 Watt 61．6－G 261
75 Watt 210 or T－20 262
1 Kw．T－200 27
100－TH 27
211 65
35－T 269
35－T Push Pull 260
HF－1 00 271
HK－154 Amplitier 271
IKK－354－D 2テ
808 $20:$
RK－37 268
T－5．5 268
Crystal Control 237
Feed，Parallel（Shunt） 202
Feed．Series 202
Final Ampliflers（See＂Transmitters．Construction and Types＂）
Frequency Doublers． 200
Frequency Multipliers 209
Gird Bias 217
Grid Neutralization 211
Harnonic Elimination 22 n
Keying ロッ3
Neutralizing 213
Parallel Feed 222
Parallel Operation 223
Pirasitie Oscillations 22 1
Plate Neutralization 212
Pash－I＇ull Operation 212．22：
Rack Construction 5\％
Self－Excited Oscillators． さロッ
Series Feed －20
Theory 207
Tuning 250
Cltra High Frequency（See＂C．II．F．＂）
Trigonometric Tables 468
lri－Tet Crystal Oscillator 939
Tube Block Diagrams 2．51－2．56
Tunable Hum 138
Tuned R．F．Ampliflers 118
Tuning（See＂Recelvers＂ind＂Transmitters＂）
Tuning Capacities 234
Tuning Inductors 123
lwin－Triode Tubes． 49
＇I＂wisted Pair Feeders（See＂Antennas，Doublet＂）（＇ltra High Frequency（U．II．F．）：
Antennas 337．317
Frequency Measurements 338
General 335
Lecher Wire Systems． 338
Oscillators 340
Receivers：
Superheterodyne． 5 and 10 Meters．．．． 350 55
Superregenerative
Skin Effect 18
Superregeneration 336
Transmitters
Concentric Line Controlled 361

RME-69 SSS
Receiver with built-in noise suppressor

There is only one way of knowing whether the radio equipment you desire to purchase will satisfy-

TRY IT.
Thousands have done this and are enthusiastic users of RME Receivers. The latest DX contest winners and high scorers will verify our contention that RME users are pleased. They must be or we should know the reason why.

Note the completeness in the RME line: Standard with built-in crystal filter, range from 550 KC to $32,000 \mathrm{KC}$, electrical band-spread, built-in continuous reading decibel-R meter, monitor circuit, and the optional choice of a relay rack model, combination battery and AC, special 6 Volt B pack model, noise suppressor when desired, special band coverage receivers for aircraft, weather bureau, or police frequencies, and a finish in either gray or black crinkle. Do not forget the DB-20 pre-selector-the best obtainable today. It will function with practically any receiver and add tremendously to the present signal intensity and tuning capabilities of your receiver.
Literature on request.

RADIO MFG. ENGINEERS, Inc.

CAROWFL (S) Suality

No filamboyant hyperboles, to exaggerated descriptive adjectives, are needed to bring home a known truth. Most of you know Cardwell Ouality - You have used Cardwell productsthey have spoken for themselves.

This is no catalog-Every dealer has our new No. 40 and our handy reference sheets for easy comparison of characteristics of the most popular units in the Cardwell complete line. Representative types are shown-with characteristics applying to that particular class or size. See your dealer or jobber, for complete information.

ET-30-AD
A 30 Minfd. per section 2500 V . dual-.070"' airgap. $113 / 82^{\prime \prime}$ square ends; single hole mounting or regular Trim-air mounting brackets or mounting studs and 4 mounting screws in tie rods provide flexible mounting facilities. Duals of all single units available. Net
\$2.16

ZT-15-AS
3-15 Mmids., low power neutralizer, 2500 V. single, $.070^{\prime \prime}$ airgap. Detachable shaft, screw driver slot for screw driver adjustment; shaft locking \$.93

ES-4-SDI

Dual Midget ganged neutralizer. 1.5-4 Mmpds. each section; 4500 V. peak flash over; new type ES-9-SDI- $\$ 3.00$ net. ES-4-SDINet.
$\$ 2.46$

MIDWAY FEATHERWEICHT CONDENSERS

* MT-150-GS

16-150 Mmfds., 3000 V.. .070" Hirgap, polished plates. Panel space, condenser open, only $21 /{ }^{\prime \prime} \times 3^{\prime \prime}$. Airgaps from . $030^{\prime \prime}$ to .171" may be had in single Midways. Mounting feet included but not shown. \$3,60 Set

The original light weight all aluminum fraine condenser. Single and duals in various airgaps and larger capacities than possible in Trim-air midgets, yet light and compact. $1 / 4^{\prime \prime}$ steel shafts -General Electric mycalex insulation throughout. Most widely used variable air condenser for high frequency receivers or transmitters due to compact size, great mechanical rigidity, low losses and price.

* MT-70-GD

Midway Dual-10-70 Mmfds. per section, 3000 V., .070" gap. Many other airgaps and capacities avallable. Popular push pull or balanced tank circuit. low or medium power. $\$ 4.20$

CAIDWELL (C) Luality

"X" TYPE TRANSMITTING CONDENSERS

XG-110-KD

Standard Dual, 27-110 Mmfds. per section-. 171" airgap, 5000 V. Widely recommended and used for $1 / 2$ kilowatt input plate modulated finals.
Net \$10.80

Standard of comparison for years. Widest range of capacities and airgaps for medium and high power transmitters. Fraine is nickel plated brass, alıminum plates buffed and polished on all airgaps above .070". General Electric mycalex and heavy mounting lrackets on all " X " types. Frame measures $33 / 8^{\prime \prime} \times 4^{\prime \prime}$. $1 / 4^{\prime \prime}$ steel shafts. N. P. brass bearing bushings, with ball thrust rear bearing. Unequalled strength and rigidity. See catalog for high power "I"" types in larger frane.

* XE-240-KS

Typical standard "X" type single. $30-240 \mathrm{Mmfds}$., .084" airgap, 4200 V. Airgaps to . $230^{\prime \prime}$ available in wide range of capacities.
Net.
$\$ 6.48$

MEUTRALIZIMG CONDENSERS

NA-16-NS

VA series of 5 units includes maximum capacity of $4,6,11$ and 16, and manged 12 Mmfd. Init.

Net
$\$ 3.00$

NEUTRALIZIMG CONDENSERS

New $D N$ series of disc neutralizers for low capacity, medium and higb power tubes.

Type ADN . 5 to 4. Mmfds.
ret..... \$1.80

Type BDN 2 to Net \$3.00

OTTA HIGH FREOVEMET DUALS

For 5-10 metertanks of medium power and for diathermy pad cirenits. ${ }_{5 \cdot 35}^{\text {pad }} \mathrm{Mmfds}$. per section. $.084^{\prime \prime}$ gap 4200 V゙. Isolantite insulation. No closed loops in frame.
Net.

FLEXIBLE COUPLINPS

Alsimag. 190 insula. tion, N.P. phospor Honze springs. Double set screws. hubs locked to springs per-manently-
For $1 / 4$ " shafts-I Iubs turned in-
Type A. Net ... ${ }^{\text {. }} 36$ For $3 / 4$ " shafts-Hubs out for higher voltage. Type B. 5.36 net. For $1 / 4 / 4,48$ or ${ }^{1 / 2}{ }^{\prime \prime}$ shafts or combinations as specifled. 15.000 V. insulation, Glazed alsimag $196-21 / 4$ " disc. For high torque, heavy duty-
Type C. Net
$\$ 1.68$
TOHIC PAGE Tonde PAGE
High l'ower 361
Low-Power-Factor-l, fine Controlled 361
Parallel Rod Oscillator. 3.59
Spiral Rod Oscillatot 360
Stabilized 361
334 Oscillator 343
RK-34 Oscillator 34.
Transmitting Range. 335
Wavemeters 338
'nderwriters' Riles 430
Unity Coupling 36
"V" Alitenna 8.4
V. T. Voltmeter 390
Vacnum Tubes
Amplification Fuctor 41
Amplifiers 41
Beanm Power Tuhes 48
Cathode 39
Characteristies:
Receiving Types 155-178
Transmitting Types $.171-205$
Eatuivalent Types 170
Grid 41
Pentodes 18
Plate 29
'late Resistance 41
Receiving 155-178
Rectifiers. 40. 205. 367. 374
Saturation
166-169
Socket Connections
39. 48
Space Charge 49
retiodes 47
Theory 39
Fransmitting 71-20.3
I'win-Triode 49
Vacmum Tube Voltmeter 388
Valve 41
Vector Simm 2.4
Velocity Microphone 284
Vernier Tuning 118
Volt 8
Voltage Ampliflcation 43
Voltage Condenscr Ratings :2
Voltare Dividers 11
Voltate, Effective 27
Voltage. Induced 17
Voltare. Inverse l'eak $36!$
Voltage. l'eak 27
Voltage, Ripple 369
Voltage, Working $\because 1$
Voltmeter 301
Voltmeter Vicumm 'lube 38
W. A. Z. Map 470
Watt 11
Wiavelength 63
Wavelength-Frequency Conversion 03
Wavemeters. Absorption 3R1, 38:
Wave Traps 228
Wire Tables 380
W'orkshop Kinks 140

*

A MAP OF THE WORLD FOR ONLY 25c!

Size: $34^{\prime \prime} \times 28^{\prime \prime}$
Ifrezy white preper

This is an entarged reproduction of the W.A.K. map which appears on pares 470 and 471 of this book. List of enuntries within each zone is also included.

The W..A.Z. plan is the best "Yarcl-stick" yet developed for the measurement of DX achievement.

TWENTY FIVE CENTS

postpaid. anywhere. Canarlian postal notes (2,ie) and British postal orders (1s.) accepted. Fixe international postal reply conpons accepted as as.

Radio, Ltd.
 Technical Publishers

7460 Beverly Blvd.
Los Angeles

No one has ever duplicated Eimac Tubes! Why? The answer is as simple as ABC. They copy what they see on the surface, but cannot copy the vital, invisible, secret Eimac processes. Attempting that, is like trying to see into another man's mind.
The phenomenal success of Eimac Tube sales has baffled the industry. And yet, there has been very little effort to sell. Eimac Tube performance has done its own selling. Throughout the

[000
Eimac Tubes for every Transmitter, from 50 Watts to 5000 Watts

35T IOOT 25OT 450T 750T

PLAY SAFE...INSIST ON

Questions and Answers

The questions which an applicant for Class-A Anateur License should be able to answer are of the general type here shown. A careful study of the theoretical text of the pages of this book will further enhance the knowledge required for answering correctly any of the examination questions.

1. Explain the operation of a simple micro. phone.
A carbon microphone converts sound into electrical energy by means of a diaphragm which vibrates in accordance with the sound waves impressed upon it. This vibration changes the resistance of the carbon particles to the flow of current which is supplied from an external battery. The variation in current across a transformer winding causes a voltage change which can be applied to a vacuum tube amplifier.
2. Describe the operation of a Class-A Am. plifier or Modulator.
The output of a Class-A Audio Amplifier is an undistorted replica of the grid signal. The grid is biased for operation over the linear portion of the grid voltage-plate current curve, and the input signal is never great enough in amplitude to exceed the fixed bias. The result is a constant D.C. plate current.

3. Describe the Operation of a Class-B Amplifier or Modulator.

Two tubes are connected in push-pull, with grid bias equal approximately to cut-off. Each tube operates during half of the audio cycle, and the distorted output is combined in an output transformer in order to provide a ref ca of the input signal. The grids may be twung positive, and a power driver stage should therefore be used.
4. What adjustments are required for a Class-A Amplifier if the plate current increases during operation?
This is an indication of excessive grid bias or excitation. The negative grid bias should be reduced, or less audio excitation should be applied.
5. What adjustments are required for a Class-A Amplifier if the plate current decreases during operation?
More negative grid bias, or less audio input is required.
6. What causes distortion in a Speech Am. plifier and what is the cure?
(1) Incorrect grid bias. (2) Excessive excitation. (3) Audio frequency regeneration or degeneration. (4) R.F. feed-back. (5) Defective tubes or incorrect type of tubes. The corresponding adjustments to overcome these difficulties are: (1) Adjust grid bias to the correct operating point. (2) Reduce excitation by means of gain control. (3) Installation of decoupling filter circuits. (4) Installation of R.F. chokes and shielding. (5) Use tubes which are capable of supplying the required signal voltage.
त. If the plate current in a Class-A Am. plifier or Modulator fluctuates with speech input, when all voltages are at their proper values, what adjustments should be made?
Turn down the gain control, or do not talk so loudly into the microphone.

8. What are the effects of excessive Audio Amplification?

Distortion of speech, and overmodulation in some cases.
9. What is the function of a Gain Control?
It is usually a potentiometer which controls the amount of audio frequency input to a speech amplifier.

10. What is a Modulator?

A modulator is a device for varying the radio-frequency carrier amplitude in accordance with the audio-frequency signal.
11. What is a Speech Amplifier?

A speech amplifier consists of one or more stages of audio frequency amplification for the purpose of increasing the microphone output to a value required for actuating the modulator.
12. How is a plate modulated Class-C Amplifier properly adjusted?
The Class-C amplifier is operated with normal plate voltage, normal grid current, and grid bias of at least twice cut-off. It is neutralized, unless a screen-grid tube is used. The antenna loading is adjusted until normal plate current loads the modulator tube to the proper value for correct impedance matching. All circuits are tuned to exact resonance. The audio gain control
should be set below the point where sound input to the microphone causes fluctuation of the Class-C amplifier plate current, or where overmodulation is shown by an overmodulation indicator.

13. How is a grid-modulated transmitter adjusted?

The modulated stage is operated with fixed bias equal to from $11 / 2$ to 2 times cutoff. Considerably less r.f. driving power and grid current are utilized than with an equivalent Class-C stage. However, the r.f. driver must have good regulation. This can be secured by dissipating approximately half the driver output in a load resistor connected across a portion of the driver tank. The modulated stage is loaded somewhat heavier than would be the case for a Class-C amplifier, by using tighter antema coupling. The excitation to the modulated stage is increased in small steps until the modulation capability of the amplifier is around 90%. More excitation will reduce the modulation capability, giving less sideband power even though the carrier may be greater. If the tubes run too hot, the antenna coupling should be reduced and the process repeated. If they are running at less than rated dissipation, the antenna coupling may be increased and the excitation adjustment repeated.
14. What is the indication of correct modulation?
Witl plate modulation, the D.C. plate current of the modulated stage should be constant during modulation. Unsymmetrical modulation takes place when this plate current varies. A pure audio-frequency sine wave from the moculator will cause the antenna R.F. current to increase $221 / 2$ percent at 100 percent modulation, grid current and plate current remaining constant.

15. What is a Class-C Amplifier?

The power output of a Class-C amplifier is proportional to the square of the plate voltage. The grid-bias is usually twice that regurired for cut-off of plate current with no R.F. excitation. High grid excitation is required, and the amplifier is more efficient than a Class-A or Class-B amplifier.

16. What is the principle of operation of the Class-B Linear Amplifier?

The plate power output in a Class-B R.F. amplifier is proportional to the square of the grid excitation voltage, and thus it can be used as a linear amplifier of modulated R.F. power. The grid-bias is adjusted to cut-off,
and in the case of a single-ended stage, the output becomes sinusoidal by means of the "fly-wheel" effect of the tuned plate circuit.

17. Describe the effects of overmodulation. What is the cure?

Overmodulation causes the radiation of a broad interfering wave. Another effect is audio distortion at the receiving end. Overmodulation can be eliminated by using the correct value of grid excitation, correct D.C. grid bias, well-regulated power supplies, correct amount of audio-frequency output from the modulator, and proper degree of antenna coupling.

18. What is the most likely cause of overmodulation?

Excessive audio power output from the modulator. The gain control in the speech amplifier should be turned down.
19. How is overmodulation observed in a transmitter?
Overmodulation is observed by clsecking continuously with an approved type of overmodulation indicator. When any tuning adjustments are made, an initial check should preferably be made with a monitor and oscilloscope, to check the modulation capability of the transmitter.
The plate current should remain absolutely constant in a Class-A amplifier or modulator, a Class-B linear amplifier, and in a modulated Class-C amplifier. It should not vary over 10% in a grid bias modulated transmitter, and any change should be upward.

20. What causes radiotelephone interference

 with broadcast reception and how is it eliminated?Overmodulation or frequency modula n will cause interference with broadcast reckiption. Insufficient selectivity in the broadicast receiver, or a lack of shielding, or transmitting and receiving antennas too close together, are other causes of interference. A tuned wavetrap in series with the receiving antenna and a change in the relative position of the antennas will relieve interference, except in the case of overmodulation or frequency modulation. The cure for the latter is covered in another question.

21. Name three causes of frequency modu-

 lation.(1) Variation in oscillator plate voltage. (2) Vibration of the oscillator. (3) Reaction of the modulated stage upon the oscillator due to lack of a buffer amplifier. (4) Im-
proper neutralization of an amplifier. (5) Modulated R.F. feed-back to the oscillator.
22. Why is frequency modulation undesir. able?
Spurious side-band frequencies are gencrated by frequency modulation and these side-bands may extend far into other phone channels, causing unnecessary interference.
23. How can frequency modulation be eliminated?
By the use of a well-regulated power supply for the oscillator and separate power supplies for the remainder of the transmitter. A buffer amplifier or doubler and a stable oscillator should also be used. The R.F. amplifier should be correctly neutralized, and the crystal oscillator should be shielded from the remainder of the set.
24. What is a test for frequency modulation?
Monitor the output of the transmitter by means of a heterodyne meter tuned to zero beat with the carrier frequency. The presence of frequency modulation will cause the signal quality to be distorted, or "mushy."
25. Why is a buffer amplifier used in a phone transmitter?
To isolate the oscillator from the modulated amplifier, in order to prevent frequency modulation. The input resistance of a modulated tube varies during modulation, which places a varying load upon the R.F. driver stage.
26. Why should a crystal oscillator be oper. ated with light load and moderate plate voltage?
Changes of load conditions will have minimum effect when the crystal is lightly loaded. Moderate plate voltage is desirable in order to prevent frequency drift due to overload of the quartz crystal. High plate voltage may cause excessive vibration of the quartz crystal at radio-frequencies.
27. How should the oscillator be isolated from the modulated amplifier?
By means of one or more buffer or doubler stages.
28. What is the proper adjustment for a freguency-doubler-amplifier?
High R.F. grid excitation is necessary, and the grid bias should be from 3 to 6 times cut-off. High L-to-C ratio is also desirable.
29. What is the proper indication of resonance in the R.F. amplifier tuning circuit?
Resonance is indicated by setting the plate tuning condenser to the point where minimum plate current is indicated. In the case of a tuned grid circuit, resonance occurs at the point of maximum D.C. grid current, as read by a milliammeter.
30. What method is used to determine the correct harmonic frequency of opera. tion of a doubler stage?
An absorption wavemeter or frequency meter should be used for this purpese.
31. What method is used to ascertain whether or not the crystal oscillator is operating on only the desired fre. quency?
The output is checked with an oscillating c.w. monitor while tuning the oscillator plate circuit over the range of the tuning condenser.
32. What radio-frequencies are produced during the process of amplitude modu. lation?
Upper and lower sideband frequencies equal to the carrier frequency plus and minus the various audio frequencies applied.

33. What is meant by Percentage of Modu.

 lation?It is the ratio of onc-half the difference between the maximum and minimum amplitudes of a modulated wave to the average or unmodulated amplitude (expressed in percentage).
34. How much audio power output is required for a given plate modulated Class-C input for 100% modulation?
50% of the D.C. power input to the Class-C stage.
35. What is the ratio of peak power output to carrier power at 100 percent modulation?
The peak power output is 4 times the unmodulated carrier power.
36. What is the ratio of average power output to carrier power at 100 percent modulation?
One-and-one-half to one, with pure tone input.
37. How close to the edge of the amateur bands can the carrier frequency be op. erated?
The carrier should be far enough from
the edge of the band so that the side-band frequencies which are radiated will fall within the assigned phone bands.

38. What determines the above limits?

The highest molutation frequency determines the outermost side-band frequency. The carrier frequency must be inside of the band by the amount of the highest audio frequency used.

39. What is meant by Modulation?

Modulation is the process of combining the audio-and-radio-frequency signals into a radio-frequency wave for the purpose of transmitting intelligence. The a.f. signal is superimposed on the r.f. signal.

40. What is a Carrier Wave?

A carrier wave is the unmodulated component of the R.F. wave.

41. Why should self-excited oscillators not be modulated?

Because frequency modulation as well as amplitude modulation takes place. This causes radiation of an extremely broad wave.
42. What should be done to reduce harmonic radiation?
The remedies consist of: (a) Increasing the capacity-to-inductance ratio in the tank circuit of the final amplifier. (b) The use of additional tuned antenna circuits by means of link or inductive coupling. (c) By means of low-pass "pi" antenna couplers.

43. Draw a complete circuit diagram of a radiotelephone transmitter, and explain the operation of all parts.

The reader is referred to the theoretical section of this book for complete information on the theory, operation and circuit design of any type of radiotelephone transmitter.

44. Describe three means of indicating

 Audio volume level.(1) By means of a volume indicator consisting of a vacuum-tube voltmeter, (2) By means of an oxide rectifier type voltmeter or volume indicator, (3) By noting the readings of a D.C. milliammeter in the plate supply lead of a Class-B audio amplifier.

45. Explain why a transmitter should not be modulated in excess of its modulation capability.

Because it will cause interference with adjacent radiophone channels.
46. Why are two tubes necessary in a Class. B audio output circuit, whereas only one tube is necessary in a Class-B linear radio frequency amplifier?
Two tubes are needed in a Class-B audio circuit in order to supply the complete audio cycle to the output transformer, since each tube functions during only half the audio cycle. The output transformer is not resonant and therefore cannot complete the cycle in a manner similar to that of the tank circuit of a Class-B R.F. linear amplifier.
In the r.f. amplifier the tank circuit provides a "fly-wheel" effect which completes the R.F. cycle, even though the tank circuit is only driven during half of the R.F. cycle.

47. Explain the action of a quartz crystal

 oscillator. Why is its use desirable?The quartz crystal acts as a tuned circuit, due to its piezo-electric properties, and it has an extremely high degree of stability since it is mechanically resonant to the electrical frequency of oscillation. Feed-back causes oscillation at a frequency determined by the physical dimensions of the quartz crystal, and power can be taken from the plate circuit.
The quartz crystal is mechanically resistant to changes in physical dimensions, with the result that the frequency of oscillation is very constant.

48. Explain how a plate modulated trans. mitter is correctly operated with reduced power.

The D.C. plate voltage in the final platemodulated R.F. amplifier can be lowered by reducing the 110 volt A.C. line voltage by means of an auto-transformer or a primary line resistor. The audio power output from the modulator should be reduced by turning down the gain control to a point which prevents overmodulation, as indicated by an oscilloscope or overmodulation indicator. If the plate voltage to the Class- B audio modulator is reduced, the C bias must be proportionately reduced in order to maintain good voice quality. The modulator output impedance will usually remain the same at reduced power, since a reduction of plate voltage generally causes a reduction of plate current in the R.F. amplifier.
49. Under what circumstances is it necessary to reduce the power of a radio transmitter?
Only sufficient power should be used to

GREAT CIRCLE MAP OF THE WORLD

Centered on Washington, D. C.
For Use in Orienting Directive Antennas
enable reliable communication with the desired station.
50. Explain how to eliminate parasitic oscillations from the various stages of a radio transmitter.
Use shorter leads in the grid and neutralizing circuits, or use small parasitic chokes,
shunted by a 200 ohm resistor, in the grid circuits adjacent to the grid terminals. Lowfrequency parasitics can be prevented by eliminating the grid R.F. choke, or by using one with very much less inductance than that used in the plate circuit.
Parasitics in a Class-B audio amplifier can be eliminated by shunting .0005 mfd . or .001 mfd . condensers from grid to filament.

GREAT CIRCLE MAP OF THE WORLD
 Centered on Topeka, Kansas For use in Orienting Directive Antennas

and by inserting 40 whm resistors in the plate leads to the output transformer.

Parasitics are undesirable because they will introduce distortion in Class-B audio circuits. In R.F. circuits, parasitics will cause excessive tube heating, radiation of undesired frequencies, and instability in neutralized R.F. amplifiers.
51. What is meant by "Cross Modulation" in a receiver, and how is it eliminated?
"Cross Modulation" is the effect of an undesired signal superimposed upon the signal to which the receiver is tuned. It is usually due to lack of selective R.F. circuits ahead of the first tube, incorrect bias on the first tube, or lack of a variable-mu charac-

GREAT CIRCLE MAP OF THE WORLD

Centered on San Francisco, Calif. For Use in Orienting Directive Antennas
teristic in the first tube of a radio receiver. A wavetrap tuned to the undesired signal will help reduce Cross Modulation.
32. What is "Image Interference" in a re. ceiver, and how is it eliminated?
In a superheterodyne receiver, the oscillator supplies a heterodyne signal which differs
from the frequency of the desired signal by the value of the intermediate frequency: Image interference may take place from an undesired signal which differs from the desired signal by twice the I.F. frequency, since the oscillator will also heterodyne this signal into the I.F. amplifier. The cure lies in the use of sufficient pre-selection to eliminate the tundesired signal.

Every reader of this handbook will find "Radio Digest" of interest and value. But because the magazine is so new, perhaps you have not seen a copy. The following pages will give you a general idea as to the aims, purpose, and content of this new and different technical radio magazine.

If, after perusal of these typical "Digest" pages you are interested, and we know you will be, turn to page 2 of this handbook for prices, size, frequency, and other pertinent data. In the U. S. A. you can subscribe to "Radio Digest" for two years for \$2.50. Foreign rates are correspondingly low.

The Editors

A月111 Ilhts|
NUMBER 2 SEPTEMBER, 1937
We present:
Now We Have Full-Range Superhet Selectivity James J. Lamb 3
Condensed from QST
Amplifier Measuring Technique E. F. Kiernan 14
Conderised from Electronics
The Shunt-Excited Antenna - - - J. F. Morrison and P. H. Smith 19From Proceedings of the Institute of Radio Engincers
R. F. Transmission Lines - - - - - - Everett L. Dillard 35
From The Radio Engincer
Advanced 10-20 Superhet H. G. Mustermann 42
From All.Wave Radio
Audio Amplifier Checking with the Oscillograph John F. Rider 49
From Successful Servicing
What the Cathode-Ray Oscillograph Shows 51From Successful Sericing
Improving Weak Signal Response in Superhets - - Morton E. Moore 55Condensed from Radio
Consumers' Research Looks at Radio 64From Redio Engineering
Equipment for Radiotherapy Aaron Nadell 70
From Radio Engincering
Broadcast Antenna Developments - - - - - Raymoand F. Guy 74
From RCA ReviewLower Atmosphere IonizationE. I. Williams 86Condensed from The T. \& R. Bulletin
Power Amplifier Tube for Ultra-High Frequencies 1. 1. Samuel 89From Bell Laboratories Record
The Technical Field in Quick Review 96
RADIO DIGEST• No. 2 - M. M. Lloyd, Managing Editor
Editors: W. W. Smith, Ray L. Dawley, B. A. Ontiveros
$25 e$ per copy. By subseription: Twelve issues for $\$ 2.50$ in U. S. A., Canada, and Pan-American countries. Elsewhore $\$ 3.00$ or 12 s . 6 d . for twelve issues. (British postal orders accepted.)

Published bimonthly by Radio, Ltd., 7460 Beverly Boulevard, Los Angeles, Cali
tornia. Application for eniry as second-class matter is panding. Copyright, 1937,
by Radio, Ltd.

We present:

Sound Recording on Magnetic Tape-Bell System Technical Journal...... :
Making Life More Simple-Radio.. 1.,
Research in Static-Acro Digest.,
The "Electric Eye"-Electronics.................. su
Tubes in Transit-Radio Enginecring..:1
Standard Frequencies for the Musician-General Radio Experimenter......... 33
Radio Control of Model Aircraft-QST...................................... 35
Concerning Cables for Crystal Mikes-Brush Strokes........................ 43
Voltage Stabilized H. F. Crystal Oscillator Circuit-I.R.E. Proceedings.... 45
Pictorial Section: Television... . 11
Tapped Transformer Impedances-Service.................................... is $_{5}$
Ultra Short Wave Circuit for Mt. Palomar Observatory-Bell Laboratories
Record .. 8 .
Disc Recording-Studio Acoustics-Communications......................... 62
New Ionosphere Broadcasts-Radio... . .
Research on Lightning ... 69
"Multiband" System of I.F. Selectivity-All-Wave Radio...................... 11
More on the "Electric Eye"-Electronics...................................... 7 .
Three Authoritics Discuss Television.. 8
Television at Home and Abroad.. 81
Television Transminters-RCA Review... 83
Why Sensitivity Testing?-Service... ${ }^{91}$
Book Reviews .. 95
The Technical Field.. 9 .

RADIO DIGEST• No. 3 - M. M. Lloyd, Managing Editor Editors: W. W. Smith, Ray L. Dawley, B. A. Ontiveros 250 per copy. By subseription: Twelve issues for $\$ 2.50$ In U. S. A., Canada, and Pan-American countries. Elsewhere $\mathbf{\$ 3 . 0 0}$ or $\mathbf{1 2 s}$. 6d. for twelve Issues. (British postal orders accepted.)
Published bimonthly by Radio, Ltd., 7460 Beverly Boulevard, Los Angeles, California. Application for entry as second-class matter is pending. Copyright, 1937, by Radio, Ltd.

An Ultra Short Wave Circuit for Mt. Palomar Observatory

BYAUSTIN BAILEY

THERE is under construction on the top of Palomar Mountain. in Southern Caliornia, a new astronomical observatory in which the world's largest telescope is to be installed. The establishment of the observatory represents a major construction project, for which a telephone "order wire" is required between the mountain top and the headquarters in the California Institute of Teclnology, situated about ninety miles away.
Members of the staff of the California Institute proposed establishing the desired telephone contrection by means of an ultra-short wave radio link. As this seemed to be a favorable opportunity to try out ultria-short waves for telephone purposes over an unusual and difficult transmission path. the engineers of the I.aboratories became interested in it. and the project was undertaken on a coöperative basis.
The transmission path is claracterized by its considerable length, ninety miles, and the fact that the peaks of an intervening range of mountains protrude into it. The situation is illustrated by the protile chart, figure 2 , where the solid line indicates the shortest path and

the dashed one represents the mean path which the ultra-short waves would be expected to take under average conditions, were no barriers present. The curvature is due to atmospheric refraction which is caused primarily by water vapor in the air. It is difficult to predict results on a theoretical basis, lout preliminary studies indicated that the obstruction of the mountains might insert a transmission loss of about eighteen db . The indications were that five-watt transmitters might serve if the local noise conditions were not too severe and if antennas of reasonable gain were employed.

The circuit has now been established and is used thirty or forty times on each work day. The transmission to Palomar Monntain

[^12]
AUDIO AMPLIFIER CHECKING with the Oscillograph

BY JOHN F. RIDER

WITH the introduction of the new small screen cathode-ray tubes and the resulting economies which they make possible, an ever increasing number of servicemen are becoming owners of cathoderay oscillographs. Now, more than ever before, many servicemen are surveying these shiny new instrumints with their array of knobs and wondering just how the new instrmints will help them speed up their service work.

Those using the cathode-ray oscillograph for the first time will probably be disappointed. It is going to take a considerable amount of experience and study before one will be able to save time in service operations through the use of the oscillograph. At the beginning, if one is an average serviceman, he
will attempt to do things with the oscillograph that it was never meant to do. He will find the large number of controls confusing: and he will run across all sorts of puzling effects. But with experience and study, an understanding of just what the instrument is capable of will come, and then he will find himself amply repaid for all the fffort expended.

The peculiar adaptability and usefulness of the cathode-ray oscillograph over all other types of measuring instruments is that it permits the visual observation of waveforms. Whereas the ordinary type of instrument can tell us only the magnitude or the size of a given voltage or current, the oscillograph can tell us not only the magnitude but its waveform. As such it is to

Normal Amplifier Operation
(C) 1937, by John F. Rider, Publisher, 1440 Broadway. N. Y. C.

C from RCA Review, July, 1937

TELEVISION TRANSMITTERS

BYJ. W. CONKLIN AND H.E. GIHRING

THE advent of high-definition television, involving modulation frequencies up to several million cycles, has necessitated the development of high-power, ultra-high frequency transmitters. The unique tube and circuit problems encountered and the practicability of line sections as circuit elements has resulted in radical departures from conventions in transmitter design as may be seen from the accompanying illustrations, showing features of high-power, ultra-higl-frequency television transmitters.

- Vacuum Tube Problems

In ultra-high-frequency development the vactum tubes have always been one of the major sources of difficulty. Vacuum tubes developed for lower frequencies have a number of limitations rendering them unsuitable for u-h-f applications. For low-power u-h-f transmitters and receivers, special tubes having low internal capacities, short leads, and other features are available, permitting conventional designs insofar as tubes are concerned. Television transmitters with carrier powers between five and ten kilowatts require tubes with dissipation
capabilities of the order of thirty kilowatts. The Type 899 is one of the tubes now used in these applications. Some of the problems of high-power u-h-f transmitters are due to the large physical size of tubes now available.

A 50-megacycle amplifier. Tank circuit is of the parallel-line type using a small disc condenser for fine tuning adjustment.
(C) 1937, by RCA Institute Technical Press, 75 Varick Strect. N. Y. C.
(F From All-Wave Radio
August, 1937

ADVANCED 10-20 SUPERHET

BY H.G.MUSTERMANN

\|N THIS article is described a receiver built specifically for 10 meter work. Nevertheless 20 -meter coils are also provided, as a receiver that performs well on 10 always works a little better on 20 . A set of 5 -meter coils is contemplated for the near future. This will permit the reception of crystal controlled transmitters on this band.

- High gain in the r.f. stages is of most importance for a 10 -meter receiver and is most difficult of attainment. High-inductance coils and small tuning capacities are imperative if this high gain is to be realized. For this reason the somewhat odd construction shown in the high-frequency section is used. Four $20-\mu \mu \mathrm{fd}$. midget tuning condensers are ganged to a PW-O type drive unit. The 500 -degree scale of this unit provides adequate mechanical band spread. The coil sockets are placed as close as possible to the condensers in a raised position. This gives shortest tank leads. APC air trimmers are mounted right in the coils. The first r.f. stage
is trimmed with a panel mounted condenser (C_{y}). This takes care of antenna variations.

A shelf of $1 / 8 \mathrm{in}$. thick aluminum is mounted an inch above the chassis, and supports the entire highfrequency section with the exception of the drive unit. This is bolted direct to the chassis, being raised a half inch. Both the drive unit and the shelf are fastened to the chassis by means of long $6 / 32$ bolts and Cardwell half-inch spacers. Two of the latter make up the inch height for the shelf. This shelf should be fastened in about a dozen places to the chassis to keep it rigid.

Another set of half-inch spacers raises the tuning condensers to the proper height above the shelf for ganging to the drive unit. Great
(c) 1937, by Manson Publications Corp., in E. 4. St., N. Y. C.

More Uses of the Electric Eye

Astronomy: When finally established in the next three or four years, the 200 -inch Mount Palomar telescope will be used in conjunction with a photocell detector for registering the presence of extremely faint illuminations.

General research: 'I'he color reflection and transmission properties of any material can be analyzed by a machine which employs polarized light along with a single photocell and plots the complete spectral response in three minutes.

Telegraph delivery: Automatic indications of trouble in connection with the conveyor belt system of one of the larger Western Union offices is made available by strategically-placed photocells.

Silk manufacture: Photocells are now responsible for the smoothness and hence the sheen of women's silk hose.

Cotton making: A new weft straightening control, which has phototubes to detect skew in cotton cloth, has been developed by G. E.

Burglar alarm: Successful in its every test, a phototube burglar alarm, which has an infra-red beam and automatically notifies the police by a spoken alarm played from a record, should prove effective in the apprelending of certain "master" criminals.

Ship guidance: Photocell controlled, motor-operated rudder-control devices are being increasingly used as robot pilots for motorship guidance.

Refining industry: The "compensating calorimeter," a phototube device, measures the color of anything transparent or translucent, and is thus being used for color measurements which control various industrial processes such as sugar or oil refining, heat treatments in the metal industry. and so forth.

Spark plug manufacturing: The proper gap in spark plugs can be obtained very accurately by controlling with a phototube the vibrating hammer used to bend one of the electrodes.

[^0]: *rxplanation and illustration courtesy K(A Kadı tron (o., Inc.

[^1]: * At Peak).

[^2]: Grid at ton. Date throlly side of envelope.

[^3]: (Max.)

[^4]: *MasImum.

[^5]: 160 Meters
 70 turns c.t. no 22 Enam. close-wound, $11 /{ }^{2}{ }^{*}$ diameter

 80 Meters
 34 turns c.t. no. 22 d.c.c. close-wound, $11 / 2^{\prime \prime}$
 diameter
 40 Meters
 18 turns c.t. no. 18 d.c.c. close-wound, $11 / 2^{\prime \prime}$ diameter

 ## 20 Meters

 8 turnsc.t. no. 16 bare, spaced to $1 \frac{1 / 8 ", 11 / 2 " ~}{1}$ dia., or 11 turns same $1 \frac{1}{8}$ dia. spaced to $13 / /^{\prime \prime}$

 ## 10 Meters

 $31 / 2$ turns no. 16 bare, spaced to $11 / 3^{\prime \prime}, 11 / 2^{*}$ dia., or $4 \frac{1}{2}$ turns same $1 \frac{1}{8}{ }^{*}$ dia. spaced to $13 / 8^{\prime \prime}$

[^6]: *R. J Wnollum.

[^7]: Figure 43-An ultraefficient buffer doubler and final r.f. amplifier for 5- and 10-meter operation. The illustration shows a complete group of 5-meter coils in their respective positions. The r.f. plate choke in the final stage is mounted closely to the center tap of the plate coll. Neutral izing condensers for the push-pull 35T
 stage are barely vis-
 ible in the photograph; they are mounted directly under the final plate
 turing condenser,
 close to the 35T's and
 the condenser terminals.

[^8]: International conzentions.-1n addition to the regulations herein contained licensees must observe the provisions of the following insofar as they apply:
 a. The Telecommunication Convention and General Radio Regulations annexed thereto (State Department Treaty Series No. 867).
 b. North American Radio Agreement of 1929 (State Department Treaty Series No. 7i7-A).

 Copies may be obtained from the Superintendent of Documents, Washington, D. C. Treaty Series No. 867 , price 20 cents, and Treaty Series No. テテ̈-A, price 10 cents.

[^9]: ${ }^{1}$ With reference to rule 214 the expression "constant supervision of duly licensed operators'" slatl for the time leing and until fürther notice, be construed to mean:
 a. For stations licensed to use frequencies below 30,000 kilocycles an operator of the grade reguired under rules 403,420 , and 443 shall be on duty at the transmitter location, whenever the transmitter is being operated, or at the remote cintrol point if authorized in accordance with rule 213.
 b. For stations licensed to use frequencies above 30,000 kilocycles only, the operator shall be similarly employed as in (a) above, provided, however. in the case of two or more stations licensed in the name of the same individual or organization, except amateur, a licensed radio operator of any class except amateur and radiotelephone third class who has the stations within his effective control, may be on duty at any point within the communicatic n range of such stations in lieu of the transmitter location or control point during the actual operation of the transmitting apparatus, and shall supervise the emissions of all such stations so as to insure preper operation in accordance with the station license(s).

[^10]: *'se next size larger drill for tapping bakelite and similar composition materials (plastics, etc.).

[^11]:
 Cat. No. 470 l.engith ${ }^{\text {Cat. No. } 471 \text {..........ist Price Fow. } \$ 0.50}$

[^12]: (c) 1037, by Bell Telephone Laboratorics. Inc.. fo: If Ifst Strcet. I. Y. C.

