reference data

Pof
RADIO ENGINEERS
third eaition

REFERENCE DATA

for RADIO ENGINEERS

third edition

> Federal Telephone and Radio Corporation an associate of International Telephone and Telegraph Corporation 67 Broad Street • New York 4, N. Y.

Copyright 1943; 1946, and 1949 by Federal Telephone and Radio Corporation

Third Edition
All rights reserved. This book, or any part thereof, may not be reproduced in any form without permission of the publishers.
Printed in the U.S.A. by
Knickerbocker Printing Corp., N. Y.

```
REFERENCE DATA FOR RADIO ENGINEERS S
```


Foreword

Reference Data for Radio Engineers in this third edition has grown to twice the size of the preceding edition and is three times as large as the first edition. Wartime restrictions in 1943 on technical data, printing materials, and printing facilities limited sharply the contents of the initial edition. Nor was the second edition, published in 1946, free of these restraints. This third edition is, therefore, the first of these volumes to be prepared in large measure under the freedoms of peace.

Designed to fill a gap in our field of technical books between textbooks and handbooks, Reference Data for Radio Engineers is, as its title indicates, a comprehensive compilation of basic electrical, physical, and mathematical data frequently needed in the solution of engineering problems.

Its usefulness has not been restricted to the practicing radio and electronic engineers for whom it was originally prepared, but it has reached into the realm of the engineer-in-training and has been accepted for student use in many of the leading colleges in the United States. This broadened applicafion has been recognized in the contents of the third edition.

Grateful acknowledgement is made to Professor A. G. Hill and L. D. Smullin of Massachusetts Instifute of Technology, Professor J. R. Ragazzini and L. A. Zadeh of Columbia University, and Professor H. R. Mimno of Harvard University for their many contributions and useful suggestions.

Federal Telephone and Radio Corporation, in the compilation of this reference book, wishes to acknowledge the valuable assistance and advice of the following members of associate companies.

International Telephone and Telegraph Corporation, New York, N. Y.

E. M. Deloraine Technicol Director
H. P. Westman Editor, Electrical Communication
L. C. Edie
American Cable \& Radio Corporation, New York, N. Y.
Haraden Praft Vice President, Chief Engineer
Federal Telecommunication Laboratories, Inc., New York, N. Y.
H. H. Buttner President H. Busignies Technical Director
R. B. Colton Execulive Vice President E. Labin Technical Direcior
A. Abbot
M. Dishal
R. T. Adams
M. J. DiToro
F. J. Aliman
L. Goldstein
R. F. Lewis
B. Parzen
R. E. Houston
T. J. Marchesse
W. P. Short
C. R. Brown
H. P. Iskenderian
S. Moskowitz
W. Sichak
M. S. Buyer
C. R. Muller
N. S. Tierney
F. A. Muller
A. R. Vallarino
J. J. Caldwell, Jr.
S. Klein
J. J. Nail
M. W. Wallace
H. G. Nordlin
A. K. Wing
A. E. Chettle
R. W. Kosley
G. C. Dewey
G. R. Leef
P. F. Panter
International Standard Electric Corporation, New York, N. Y.
E. S. McLarn Vice President
G. H. Gray

Mackay Radio and Telegraph Company, New York, N. Y.

C. E. Scholz
Vice President
G. T. Royden
L! Spangenberg Vice President
R. McSweeney
Standard Telephones and Cables, Limited, London, England
C. E. Strong, Chief Engineur, Radio Division

Editorial Board

A. G. Kandoian, chairman
W. W. Macalpine
A. G. Clavier
F. J. Mann
S. F. Fronkel
E. M. Ostlund
George Lewis
A. M. Stevens

F. J. Mann, editor

Manager, Technisal Publications Division,
International Telephone and Telegraph Corporation
J. E. Schlaikjer, assistant edifor
International Telephone and Telegraph Corporation
George Lewis, coordinator
Assistant Vice President,
International Telephone and Telegraph Corporation

Contents

Chapter 1 - Frequency data 7
Chapter 2 - Units, constants, and conversion factors 22
Chapter 3 - Properties of materials 31
Chapter 4 - Components 54
Chapter 5 - Fundamentals of networks 73
Chapter 6 - Selective circuits 114
Chapter 7 - Filter networks 130
Chapter 8 - Attenuators 153
Chapter 9 - Bridges and impedance measurements 169
Chapter 10 - Rectifiers and filters 177
Chapter 11 - Iron-core transformers and reactors 186
Chapter 12 - Electron tubes 209
Chapter 13 - Amplifiers and oscillators 240
Chapter 14 - Modulation 275
Chapter 15 - Fourier waveform anglysis 291
Chapter 16 - Transmission lines 304
Chapter 17 - Wave guides and resonators 339
Chapter 18 - Antennas 362
Chapter 19 - Radio-wave propagation 397
Chapter 20 - Radio noise and interference 441
Chapter 21 - Radar fundamentals 459
Chapter 22 - Broadcasting 473
Chapter 23 - Wire transmission 490
Chapter 24 - Electroacoustics 509
Chapter 25 - Servo mechanisms 533
Chapter 26 - Miscellaneous data 546
Chapter 27 - Maxwell's equations 570
Chapter 28 - Mathematical formulas 576
Chapter 29 - Mathematical tables 620

Wavelength-frequency conversion

The graph given below permits conversion between frequency and wavelength; by use of multiplying factors such as those at the bottom of the page, this graph will cover any portion of the electromagnetic-wave spectrum.

for frequencies from	multiply f by	mulfipiy λ by
$0.03-$	0.3 megacycles	0.01
0.3	-	3.0 megacycles
3.0	-	30 megacyclos
30	-	300 megacycies
300	$-3,000$ megacyclos	0.1
3000	$-30,000$ megacycles	1.0

Wavelength-frequency conversion continued

Conversion formulas

Propagation velocity $c=3 \times 10^{8}$ meters $/$ second
Wavelength in meters $\lambda_{m}=\frac{300,000}{f \text { in kilocycles }}=\frac{300}{f \text { in megacycles }}$

$$
\text { Wavelength in feet } \lambda_{f t}=\frac{300,000 \times 3.28}{f \text { in kilocycles }}=\frac{300 \times 3.28}{f \text { in megacycles }}
$$

$$
1 \text { Angstrom unit } \begin{aligned}
\AA & =3.937 \times 10^{-9} \text { inch } \\
& =1 \times 10^{-10} \quad \text { meter } \\
& =1 \times 10^{-4} \quad \text { micron } \\
1 \text { micron } \mu & =3.937 \times 10^{-5} \text { inch } \\
& =1 \times 10^{-6} \quad \text { meter } \\
& =1 \times 10^{4} \quad \text { Angstrom units }
\end{aligned}
$$

Nomenclature of frequency bands

According to international agreement at the Atlantic City Conference, 1947, it was decided that frequencies shall be expressed in kilocycles/second $(\mathrm{kc} / \mathrm{s})$ at and below 30,000 kilocycles, and in megacycles/second (mc/s) above this frequency. The following are the band designations

frequency subdivision		frequency range	mefric subdivision
VIF	Very low frequency	$30 \mathrm{kc} / \mathrm{s}$	Myriametric waves
IF	low frequency	$30-300 \mathrm{kc} / \mathrm{s}$	Kilometric waves
MF	Medium frequency	$300-3,000 \mathrm{kc} / \mathrm{s}$	Hectometric woves
HF	High frequency	$3,000-30,000 \mathrm{kc} / \mathrm{s}$	Decametric waves
VHF	Very high frequency	$30,000 \mathrm{kc} / \mathrm{s}-300 \mathrm{mc} / \mathrm{s}$	Metric woves
UHF	Ultra high frequency	$300-3,000 \mathrm{mc} / \mathrm{s}$	Decimetric waves
SHF	Super high frequency	$3,000-30,000 \mathrm{mc} / \mathrm{s}$	Centimetric waves
EHF	Extremely high frequency	$30,000-300,000 \mathrm{mc} / \mathrm{s}$	Millimetric waves

Atlantic City Conference, 1947

It is the function of the International Telecommunications Conferences (Madrid, 1932; Cairo, 1938; Atlantic City, 1947) to promote international cooperation in the development and use of telecommunication services of all sorts. The following material has been extracted from the parts of the Acts of the conference specifically relating to radio. The official publication, "Final Acts of the International Telecommunication and Radio Conference, Atlantic City, 1947," is obtainable at nominal charge from the Secretary, International Telecommunication Union, Berne Bureau, Berne, Switzerland.

The following table of frequency allocations pertains to the western hemisphere (region 2), and covers all frequencies between 10 kilocycles and 10,500 megacycles.

Regions defined in toble of frequency allocations. Shaded areo is the tropical zone.

Note: An asterisk (*) following a service designation indicates that the allocation has been made on a world-wide basis. All explanatory notes covering region 2 as well as other regions have been omitted. For these explanatory notes the original text of Acts of the Atlantic City Conference should be consulted.

kiloc		service	kilocycles		service
10-	14	Radio navigation*	325-	405	Aeronautical mobile,* Aero.
14-	70	Fixed,* Maritime mobile*			nautical navigation*
70	90	Fixed, Maritime mobile	405-	415	Aeronautical mobile, Aero-
$90-$	110	Fixed,* Maritime mobile,* Radio navigation*			nautical navigation, Maritime navigation (radio direction
110-	130	Fixed, Maritime mobile			finding)
130-	150	Fixed, Maritime mobile	415-		Maritime mobile*
150-	160	Fixed, Maritime mobile	490-	510	Mobile (distress and calling)*
160-	200	Fixed	$510-$	525	Mobile
200-	285	Aeronautical mobila, Aeronautical navigation	$\begin{aligned} & 525- \\ & 535- \end{aligned}$	535 1605	Mobile Broadcas
285 -	325	Maritime radio navigation (radio beacons)	1605-	1800	Aeronautical radio naviga. tion, Fixed, Mobile

kilocycles	service	kllocycles	service
1800-2000	Amatour, Fixed, Mobile oxcopt aeronautical mobilo, Radio navigation	$\begin{aligned} & 11275-11400 \\ & 11400-11700 \\ & 11700-11975 \end{aligned}$	Aeronautical mobilo* Fixed* Broadcasting*
2000-2065	Fixed, Mobile	11975-12330	Fixed*
2065-2105	Maritime mobile	12330-13200	Maritime mobile*
2105-2300	Fixed, Mobile	13200-13260	Aeronautical mobile*
2300-2495	Broadcasting, fixed, Mobile	13260-13360	Aeronautical mobile**
2495-2505	Standard frequency	13360-14000	Fixed*
2505-2850	Fixed, Mobile	14000-14350	Amatour*
2850-3025	Aeronautical mobile*	14350-14990	Fixed*
3025-3155	Aeronautical mobile*	14990-15010	Standard frequency*
3155-3200	Fixed," Mobile except aeronautical mobilo*	$\begin{aligned} & 15010-15100 \\ & 15100-15450 \end{aligned}$	Aeronautical mobila* Broadcasting*
3200-3230	Broadcasting,* Fixed,* Mo. bile except aeronautical mobile*	$\begin{aligned} & 15450-16460 \\ & 16460-17360 \\ & 17360-17700 \end{aligned}$	Fixed* Maritime mobile* Fixed*
3230-3400	Broadcasting,* Fixed,* Mobile excepl aeronautical mobile*	-17700-17900 $1790-17970$	Broadcasting* Aeronautical mobilo*
3400-3500	Aeronautical mobile*	17970-18030	Aeronautical mobile*
3500-4000	Amateur, Fixed, Mobile except aeronautical mobilo	$\begin{aligned} & 18030-19990 \\ & 19990-20010 \end{aligned}$	Fixed* Standard frequency*
4000-4063	Fixed*	20010-21000	Fixed*
4063-4438	Maritime mobilo*	21000-21450	Amatour*
4438-4650	Fixed, Mobile except aero. nautical mobile	$\begin{aligned} & 21450-21750 \\ & 21750-21850 \end{aligned}$	Broadcasting* Fixed*
4650-4700	Aeronautical mobilo**	21850-22000	Aeronautical fixed, Aero-
4700-4750	Aeronautical mobile*		nautical mobilo ${ }^{\text {* }}$
4750-4850	Broadcasting, Fixed	22000-22720	Maritime mobile*
4850-4995	Broadcasting,* Fixed,* land mobilo*	$\begin{aligned} & 22720-23200 \\ & 23200-23350 \end{aligned}$	Fixed ${ }^{*}$ Aeronautical fixed,* Aero-
4995-5005	Standard frequency*		nautical mobilo*
5005-5060	Broadcasting,* Fixed*	23350-24990	Fixed,* Land mobilo*
5060-5250	Fixed*	24990-25010	Standard frequency ${ }^{\text {* }}$
5250-5450	Fixed, Land mobile	25010-25600	Fixed, ${ }^{\text {/ Mobile except aero- }}$
5450-5480	Aeronautical mobile		nautical mobilo*
5480-5680	Aaronautical mobile*	25600-26100	Broadcasting*
5680-5730	Aeronautical mobile* ${ }^{*}$	26100-27500	Fixed, ${ }^{\text {\% }}$ Mobile except aero-
5730-5950	Fixed*		nautical mobilo*
5950-6200	Broadcasting*	27500-28000	Fixed, Mobile
6200-6525	Maritime mobile*	28000-29700	Amateur*
6525-6685	Aeronautical mobile**		
6685-6765	Aeronautical mobile*	megacycles	service
6765-7000	Fixed*	29.7- 44	Fixed, Mobile
7000-7100	Amatour*	$44-50$	Broadcasting, Fixed, Mobile
7100-7300	Amateur	50-54	Amatour
7300-8195	Fixed*	94-72	Broadcasting, Fixed, Mobile
8195-8815	Maritime mobile*	72-76	Fixad, Mobilo
8815-8965	Aeronautical mobilo*	$76-88$	Broadcasting, Fixed, Mo-
8965-9040	Aeronautical mobile*		bilo
9040-9500	Fixed*	$88-100$	Broadcasting*
9500-9775	Broadcasting*	100-108	Broadcasting
9775-9995	Fixed*	108-118	Aeronautical radio naviga.
9995-10005	Standard frequency*		tion*
10005-10100	Aeronautical mobile*	118-132	Aeronautical mobile*
10100-11175	Fixed ${ }^{\text {F }}$	132-144	Fixed, Mobile
11175-11275	Aeronautical mobile*	144-146	Amatour*

Frequency allocations
continued

megacycles	service	megacycios	service
146-148	Amateur	1660-1700	Moteorological aids Iradio.
$148-174$	Fixed, Mobilo		sonde)
174-216	Broadcasting, Fixed, Mo-	1700-2300	Fixed,* Mobilo*
	bilo	2300-2450	Amatour*
216-220	Fixed, Mobile	2450-2700	Fixed,* Mobilo*
$220-225$	Amateur	2700-2900	Aoronautical radio naviga-
$225-235$	Fixed, Mobile		
$235-328.6$	Fixed,* Mobile*	2900-3300	Radio navigation*
328.6 - 335.4	Aeronautical radio naviga-	$3300-3500$	Amatour
	tion* ${ }^{\text {* }}$	$3500-3900$	Fixad, Mobile
335.4- 420	Fixed,* Mobile*	$3900-4200$	Fixed,* Mobile*
420-450	Aeronautical radio novigo. tion,* Amateur*	4200-4400	Aeronautical radio navigafion*
$450-460$	Aeronautical radio naviga-	$4400-5000$	Fixed,* Mobilo*
	tion, Fixed, Mobile	$5000-5250$	Aeronautical radio naviga-
$460-470$	Fixed,* Mobile*		tion Radio navigation*
470-585	Broadcasting*	5250-5650	Radio novigation*
$585-610$	Broadcasting	5650-5850	Amatour*
$610-940$	Brood costing*	5850-5925	Amateur
$940-960$	Fixed	5925-8500	Fixed,* Mobilo*
$960-1215$	Aeronoutical radio naviga-	$8500-9800$	Radio navigation*
	fion**	$9800-10000$	Fixad,* Radio navigation*
1215-1300	Amatour*	10000-10500	Amatour*
1300-1660	Aeronautical radio naviga.	Above 10500	Not allocated

Frequency tolerances Allantic City, 1947

frequency bond	type of service and power	tolerance In percent*	
		column 1	column 2
10-535 kc/s	Fixad stations		
	$10-50 \mathrm{kc} / \mathrm{s}$		0.1
	$50 \mathrm{kc} / \mathrm{s}$-end of band	0.1	0.02
	land stations		
	Coast stations		
	Power >200 watts	0.1	0.02
	Power < 200 watts	0.1	0.05
	Aeronautical stations	0.1	0.02
	Mobile stations	0.3 (6)	
	Ship stations	0.3 (6) 0.3	0.1111
	Aircraft stations Emergency (reservo) ship transmitters, and	0.3	
	lifeboat, lifecraft, and survival-craft transmittars	0.5	0.5
	Radionavigation stations	0.05	0.02
	Broadcasting stations	20 cyclos	20 cyclos
535-1605 kc/s	Broadcasting stations	20 cycles	20 cycles

frequency band	type of service and power	tolerance in percent	
		column 1	column 2
$1605-4000 \mathrm{kc} / \mathrm{s}$	Fixed stations Power >200 watts Power < 200 watts	$\begin{aligned} & 0.01 \\ & 0.02 \end{aligned}$	$\begin{aligned} & 0.005 \\ & 0.01 \end{aligned}$
	land stations Coast stations		
	Power >200 watts	0.02	0.005
	Power <200 watts	0.02	0.01
	Power >200 watts	0.02	0.005
	Power <200 watts	0.02	0.01
	Base stations		
	Power >200 watts	0.02	0.005
	Power < 200 watts	0.02	0.01
	Mobile stations		
	Ship stations	0.05 (6)	0.02 (3)
	Aircraft stations	0.05	0.02 (3)
	Land mobile stations	0.05	0.02
	Radionavigation stations		
	Power >200 watts		0.005
	Power < 200 walts	0.02	0.01
	Broadcasting stations	0.005	0.005
4000-30,000 kc/s	Fixed stations		
	Power >500 watts		0.003
	Power <500 watts	0.02	0.01
	Land stations		
	Coast stations	0.02	0.005
	Aeronautical stations Power >500 watts	0.02	0.005
	Power < 500 watts	0.02	0.01
	Base stations		
	Power >500 watts	0.02	0.005
	Power <500 walts	0.02	0.01
	Mobile stations		
	Ship stations	$0.05(6)$	
	Aircraft stations	0.05	0.02
	Land mobile stations	0.05	0.02
	vival craft	0.05	0.02
	Broadcasting stations	0.005	0.003
$30-100 \mathrm{mc} / \mathrm{s}$	Fixed stations	0.03	
	land stations	0.03	0.02
	Mobile stations	0.03	0.02
	Radionavigation stations	0.02 (5)	0.02 (5)
	Broadcasting stations	0.01	0.003

frequency bond	type of service and powor	tolerance in percent	
		column 1	column 2
$100-500 \mathrm{mc} / \mathrm{s}$	fixed stations	0.03	0.01
	Land stations	0.03	0.01
	Mobilo stations	0.03	0.01 (4)
	Radionavigation stations	0.02 (5)	0.02 (5)
	Broadcasting stations	0.01	0.003
$500-10,500 \mathrm{mc} / \mathrm{s}$	-	0.75	0.75 (7)

Notes:

Column 1: Applicable until Janvary Ist, 1953, to transmitters now in use and those to be installed before January 1st, 1950.
Column 2: Applicable to new transmitters installed after Janvary 1st, 1950; and to all transmitters aftor January 1st, 1953.
for ship stations, in the absence of an assigned frequency to a particular ship or ship transmitter, the substitute for the assigned frequency is that frequency on which an emission begins.
I. It is recognized that certain countries will encounter difficulties in fitting, prior to 1953, all their ships with equipment that will satisfy the indicated tolerance; however, it is requested that these countrios complete the necessary conversion as soon as possible.
2. The frequency tolerance of 0.02 percent is maintained temporarily for fixed-station transmitters now in operation using a power between 200 and 500 watts.
3. For this category, the final date of Janvary 1st, 1953, is extended until the date when the Radio Regulations of the next Conforence are put into force.
4. In this band and for this category, it is recognized that certain countries are not sure that their equipment can satisfy a stricter frequency tolerance than that fixed for the 30-100-magacycle band; however, these countries will endeavor to satisfy the tolerance for the band 100-500 mogacycles.
5. It is recognized that there are in service, in this category, pulse transmitters that cannot moet tolerances closer than 0.5 percent.
6. Frequency deviations are to be measured over a period not exceeding ten minutes from the commencement of an emission. This provision, however, is applicable only to transmitters in service before January 1st, 1950, and until the replacement of these transmitters by modern equipment; and only in exclusive maritime mobile bands, and excepting such parts of these bands as are reserved for ship radiotelephony. Thereafter the frequency tolerance specified shall be adhered to during the whole period of an emission.
7. Until opinion is available from the Comité Consultatif International Radio, no closer tolerances can be specified for this band in this column.

Intensity of harmonics Allantic City, 1947

In the band 10-30,000 kilocycles, the power of a harmonic or a parasitic emission supplied to the antenna must be at least 40 decibels below the power of the fundamental. In no case shall it exceed 200 milliwatts Imean powerl.
For mobile stations, endeavor will be made, as far as it is practicable, to reach the above figures.

Abstract

Emissions are designated according to their classification and the width of the frequency band occupied by them. Classification is according to type of modulation, type of transmission, and supplementary characteristics.

Types of modulation

Amplitude
Frequency (or phase)
Pulse

Types of transmission

Absence of any modulation intended to carry information 0
Telegraphy without the use of modulating audio frequency I
Telegraphy by keying of a modulating audio frequency or frequencies, or by keying of the modulated emission (Special case: An unkeyed modulated emission.l 2
Telephony 3
Facsimile 4
Television 5
Composite transmission and cases not cov- ered by the above 9
Supplementary characteristics
Double sideband, full carrier (none)
Singie sideband, reduced carrier a
Two independent sidebands, reduced carrier b
Other emissions, reduced carrier c
Pulse, amplitude modulated d
Pulse, width modulated θ
Pulse, phase lor positionl modulated f

Note: As an exception to the above principles, damped waves are desig. nated by B.

Designation of emissions continued

Examples

The classification of emissions is

type of modulation	type of transmission	supplementary characteristics	symbol
Amplitudo modulation	Absence of any modulation	-	AO
	Telegraphy without the use of modulating audio frequency lon-of keyingl		Al
	Telegraphy by the keying of a modulating audio frequency or audio frequencies, or by the keying of the modulated emission (Special case: An unkeyed modulated emission.)	-	A2
	Tolophony	Double sideband, full carrier	A3
		Single sideband, reduced carrier	A3a
		Two independent sidobands, reduced carrier	A3b
	Facsimile	——	A4
	Telovision	-	A5
	Composite transmissions and cases not covored by the above	-	A9
	Composite transmissions	Reduced carrier	A9c
Froquency lor phasel modulation	Absence of any modulation	-	FO
	Tolegraphy without the use of modulating audio frequency (frequency-shiff keying)	-	F1
	Tolegraphy by the keying of a modulating audio frequency or audio frequencies, or by the keying of the modulated emission (Special case: An unkeyed emission modulated by audio frequency.)		F2
	Tolophony	-	F3
	Facsimile	-	F4
	Tolovision	-	F5
	Composite transmissions and cases not covered by the above	\longrightarrow	F9

16

Designation of emissions continued

type of modulation	type of Iransmission	supplementary characteristics	symbol
Pulse modulation	Absence of any modulation intended to carry information	-	PO
	Telegraphy without the use of modulating oudio frequency	-	P1
	Telegraphy by the keying of a modulating audio frequency or audio frequencies, or by the keying of the modulated pulse (Special case: An unkeyed modulated pulse.)	Audio frequency or audio frequencies modulating the pulse in amplifude	P2d
		Audio frequency or audio frequencies modulating the width of the pulse	P2e
		Audio frequency or oudio frequencies modulating the phase (or position) of the pulse	P2f
	Tolophony	Amplitude modulated	P3d
		Width modulated	P3*
		Phase lor position) modulated	P3f
	Composite transmission and cases not covered by the above	-	P9

Bandwidth Atlantic City, 1947

Wherever the full designation of an emission is necessary, the symbol for that class of emission, as given above, is prefixed by a number indicating the width in kilocycles of the frequency band occupied by it. Bandwidths of 10 kilocycles or less shall be expressed to a maximum of two significant figures after the decimal.

The width of the frequency band that is necessary in the overall system, including both the transmitter and the receiver, for the proper reproduction at the receiver of the desired information, does not necessarily indicate the interfering characteristics of an emission.

Bandwidth continued

The following are examples of the designation of emissions.

description	designation
Tolegraphy 25 words/minute, international Morse code, carrier modulated by keying only	0.1 AI
Telegraphy, 525 -cycle tone, 25 woids/minute, international Morse code, carrier and tone keyed or tone keyed only	1.15A2
Amplitude-modulated telephony, 3000 -cycle maximum modulation, double sideband, full carrier	6A3
Amplifude-modulated telephony, 3000 -cycle maximum modulation, single sideband, reduced carrier	343a
Amplifude-modulated telephony, 3000 -cycle maximum modulation, two independent sidebands, reduced corrier	6A3b
Vestigial-sideband television lone sideband partially suppressed), full carrier lincluding a frequency-modulated sound channell	6000A5, F3
Frequency-modulated telephony, 3000 -cycle modulation frequency, 20,000-cycle doviation	46F3
Frequency-modulated telephony, 15,000-cycle modulation frequency, 75,000-cycle deviation	180F3
One-microsecond pulses, unmodulated, assuming a value of $K=5$	10000P0

Determination of bandwidth

For the determination of this necessary bandwidth, the following table may be considered as a guide. In the formulation of the table, the following working terms have been employed:
$B=$ telegraph speed in bauds (see p. 287)
$N / T=$ maximum possible number of black + white elements to be transmitted per second, in facsimile and television
$M=$ maximum modulation frequency expressed in cycles/second
$D=$ half the difference between the maximum and minimum values of the instantaneous frequencies; D being greater than 2 M , greater than N / T, or greater than B, as the case may be. Instantaneous frequency is the rate of change of phase
$t=$ pulse length expressed in seconds
$K=$ overall numerical factor that differs according to the emission and depends upon the allowable signal distortion and, in television, the time lost from the inclusion of a synchronizing signal

Bandwidth continued

amplitude modulation

description and ciass of emission	necessary bandwidth in cycles/second	examples	
		defails	designation of emission
Continuouswave telography Al	$\text { Bandwidth }=8 K$ where $K=5$ for fading circuits $=3$ for nonfading circuits	Morse code at 25 words/minute, $8=20 ;$ bandwidth $=100$ cycles	0.1AI
		Four-channel multiplex, 7 -unit code, 60 words/minute/channel, $8=170$, $K=5 ;$ bandwidth $=850$ cycles	0.85A1
Tolegraphy modulated af audio frequency A2	$\text { Bandwidth }=B K+2 M$ where $\begin{aligned} K & =5 \text { for fading circuits } \\ & =3 \text { for nonfading circuits } \end{aligned}$	Morse code at 25 words/minute, 1000-cycle tone, $8=20$; bandwidth $=2100$ cycles	2.1A2
Commercial tolephony A3	$\begin{aligned} & \text { Bandwidth }=M \text { for singlo } \\ & \text { sideband } \\ &=2 M \text { for dou. } \\ & \text { ble sideband } \end{aligned}$	For ordinary single-sideband telephony, $M=3000$	3A3a
		For high-quality single-sideband telephony, $M=4000$	4A3a
Broadcasting A3	Bandwidth $=2 \mathrm{M}$	M may vary between 4000 and 10,000 depending upon the quality desired	843 to 2043
facsimilo, carrior mod. ulated by tone and by koying A4	$\text { Bandwidth }=\frac{K N}{T}+2 M$ where $K=1.5$	Total number of picture elements (black + whito) transmitted per secand $=$ circumference of cylinder theight of pictura) X lines/unit length X speed of cylinder rotation (revolutions/second). If diameter of cylinder $=70$ millimoters, lines/millimeter $=3.77$, speed of rotation $=1 /$ second, frequency of modulation $=1800$ cyclos; $\begin{aligned} \text { bandwidth } & =3600+1242 \\ & =4842 \text { cyclos } \end{aligned}$	4.84A4
Television A5	Bandwidth $=K N / T$ where $K=1.5$ (This allows for synchronization and filfer shaping.) Nole: This band can be appropriately reduced when a symmetrical transmission is employed	Total picture elements (black + whitel transmitted per second $=$ number lines forming each image X olements/line X pictures trans$\mathrm{mitred} / \mathrm{second}$. If lines $=500$, olements/line $=500$, pictures $/$ second $=25$; bandwidth ≈ 9 megacyclos	9000 A5

Bandwidth continued

frequency modulation

description and ciass of emission	necessary bandwidth in cycles/second	examples	
		details	designation of emission
Frequencyshif! telography FI	$\text { Bandwidth }=B K+2 D$ where $K=5$ for fading circuits $=3$ for nonfading circuits	Four-channel multiplex with 7 -unit code, 60 words/minute/channel. Then, $B=170, K=5, D=425$; bandwidth $=1700$ cycles	1.7F1
Commercial telephony and broadcasting F3	Bandwidth $=2 M+2 D K$ For commercial telephony, $K=1$. For high-fidelity transmission, higher values of K may be necessary	For an average case of commercial tolophony, with $D=15,000$ and $M=3000$; bandwidth $=36,000$ cyclos	36F3
Facsimile - F4	Bandwidth $=\frac{K N}{T}+2 M+2 D$ where $K=1.5$	(See facsimile, amplifude modulation.l Cylinder diametor $=70$ millimeters, lines/millimeter $=3.77$, cylinder rotation speed $=1 / \mathrm{sec}$. ond, modulation tone $=1800 \mathrm{cy}$. cles, $D=10,000$ cycles; bandwidth $\approx 25,000$ cycles	$25 F 4$
Unmodulated pulse PO	Bandwidth $=2 K / t$ where K varios from 1 to 10 according to the permissible deviation in each particular case from a rectangular pulse shape. In many cases the value of K need not exceed 6	$\begin{aligned} & t=3 \times 10^{-6} \text { and } K=6 ; \\ & \text { bandwidth }=4 \times 10^{6} \text { cyclos } \end{aligned}$	4000P0
Modulated pulse P2 or P3	Bandwidth dopends upon the particular types of mod. ulation used, many of these still being in the developmental stage		

Station WWV transmissions*

The Central Radio Propagation Laboratory of the National Bureau of Standards operates radio station WWV, which transmits standard radio and audio frequencies, time announcements, time ticks, and warning notices of radio-propagation disturbances.

[^0]There are eight transmitters near Washington, D.C., operating on the frequencies listed below.

carriar frequency in megacycles/second	power in kilowotts	audio madulation in cycles/second
2.5	0.7	440
5	8.0	440
10	9.0	440 and 4000
15	9.0	440 and 4000
20	8.5^{*}	440 and 4000
25	0.1	440 and 4000
30	0.1	440

* On first four work days after first Sunday of each month, power is 0.1 kilowatt.

They broadcast continuously, day and night. Vertical nondirectional antennas are used. Time announcements, time ticks, and warning notices are broadcast simultaneously by all transmitters. Some details of the services are noted below.
Standard radio frequency: The carrier frequency of each transmitter is accurate, as transmitted, to better than one part in 50,000,000. Transmission effects in the medium, such as the Doppler effect, result in an instantaneous accuracy of the received signal somewhat poorer than the above figure.
Standard audio frequencies: The carrier is amplitude modulated with audio frequencies as listed in the above table. Accuracy of the audio frequencies, as transmitted, is better than one part in $50,000,000$, but is subject to transmission effects as is the carrier frequency.
Standard musical pitch: The 440-cycle/second audio frequency is standard musical pitch, being A above middle C.
Time ticks: On each carrier frequency, at intervals of one second, there is a pulse of 0.005 -second duration, which is audible as a faint tick. The pulse is omitted on the 59 th second of each minute. A time interval of one second as marked by two successive pulses is accurate, as transmitted, to one microsecond 11×10^{-6} second), while intervals of one minute or longer are accurate to one part in $50,000,000$. Longer periods of 1,4 , or 5 minutes, etc., are marked by the beginning and ending of intervals during which no audio modulation is present. These are synchronized with the seconds ticks.
Time announcements: Precisely four minutes past the hour and every five minutes thereafter, the audio modulations are interrupted for exactly one minute. Thus, the last minute of each hour is free of audio modulation, which is resumed again precisely on the hour. The beginnings of the periods when

Station WWV transmissions continued

the audio frequencies are resumed are in agreement with the basic time service of the U.S. Naval Observatory. Eastern Standard Time is announced in international Morse code, indicating the end of each period free of audio tones. Thus, 1525 EST ($3: 25$ PM), which is 2025 GMT, is announced by the number 1525 in code.

Station announcements: At the hour and half-hour silent periods, the station announcement is made in voice following the time announcement.
Propagation warning notices: At 19 and 49 minutes past the hour, following the time announcement, a series of W's or a series of N 's is sent in telegraphic code. If N's are sent, no warning is in effect. However, W's indicate that there is in progress, or anticipated within 12 hours, a radio-propagation disturbance of the ionospheric-storm type, with its most severe effects on the North-Atlantic transmission path.
Coverage: Reliable reception is generally possible at all times throughout the United States and the North-Atlantic area, and often over the world. Depending on the conditions over the propagation path between Washington, D.C., and the point of reception, choice of the most favorable frequency should be made.

Units, constants, and conversion factors

Conversion factors

to convert	Into	multiply by	conversely, multiply by
Acres	Square feot	4.356×10^{4}	2.296×10^{-6}
Acres	Square meters	4047	2.471×10^{-4}
Ampero-hours	Coulomb	3600	2.778×10^{-4}
Amperes per sq cm	Ampores par sq inch	6.452	0.1550
Ampere turns	Gilberts	1.257	0.7958
Ampere turns per cm	Ampere turns per inch	2.540	0.3937×10^{-1}
Atmospheres	Mm of mercury @ $0^{\circ} \mathrm{C}$	760	1.316×10^{-8}
Atmospheres	Foat of water © $4^{\circ} \mathrm{C}$	33.90	2.950×10^{-2}
Atmospheres	Inches mercury @ $0^{\circ} \mathrm{C}$	29.92	3.342×10^{-2}
Atmospheres	Kg per sq meter	1.033×10^{4}	9.678×10^{-6}
Atmospheres	Pounds per sq inch	14.70	6.804×10^{-2}
Bru	foot-pounds	778.3	1.285×10^{-3}
Bru	Joulos	1054.8	9.480×10^{-4}
Bru	Kilogram-calories	0.2520	3.969
Bru per hour	Horsopowar-hours	3.929×10^{-1}	2545
Bushols	Cubic foet	1.2445	0.8036
Contigrade	Fahrenheit	$1 C^{0} \times 9 / 51+32$	-32) $\times 5 / 9$
Circular mils	Square centimeters	5.067×10^{-6}	1.973×10^{5}
Circular mils	Square mils	0.7854	1.273
Cubic foot	Cords	7.8125×10^{-8}	128
Cubic foel	Gallons (liq USI	7.481	0.1337
Cubic foot	Liters	28.32	3.531×10^{-2}
Cubic inches	Cubic centimeters	16.39	6.102×10^{-2}
Cubic inchos	Cubic foot	5.787×10^{-6}	1728
Cubic inches	Cubic meters	1.639×10^{-8}	6.102×10^{4}
Cubic inches	Gallons llia USI	4.329×10^{-8}	231
Cubic meters	Cubic foot	35.31	2.832×10^{-2}
Cubie meters	Cubic yards	1.308	0.7646
Degrees (angle)	Radians	1.745×10^{-2}	57.30
Dynes	Pounds	2.248×10^{-6}	4.448×10^{5}
Ergs	foot-pounds	7.367×10^{-6}	1.356×10^{7}
Fathoms	foot	6	0.16666
Feot	Contimeters	30.48	3.281×10^{-2}
Foet	Varas	0.3594	2.782
Feet of water @ $4^{\circ} \mathrm{C}$	Inches of mercury @ $0^{\circ} \mathrm{C}$	0.8826	1.133×10^{-8}
Feet of water @ $4^{\circ} \mathrm{C}$	Kg per sq metor	304.8	3.281×10^{-8}
Feet of water @ $4^{\circ} \mathrm{C}$	Pounds per sq foot	62.43	1.602×10^{-2}
foot-pounds	Harsepower-hours	5.050×10^{-7}	1.98×10^{6}
foot-pounds	Kilogram-meters	0.1383	7.233
foot-pounds	Kilowatt-hours	3.766×10^{-7}	2.655×10^{6}
Gallons	Cubic motors	3.785×10^{-3}	264.2
Gallons (liq US)	Gallons (liq Br Imp)	0.8327	1.201
Gauss	Lines por sq inch	6.452	0.1550
Grains (for humidity calculations)	Pounds (avoirdupois)	1.429×10^{-4}	7000
Grams	Dynes	980.7	1.020×10^{-8}
Grams	Grains	15.43	6.481×10^{-2}
Grams	Ounces (avoirdupais)	3.527×10^{-2}	28.35
Grams	Poundals	7.093×10^{-2}	14.10
Grams per cm	Pounds per inch	5.600×10^{-8}	178.6
Grams por cu cm	Pounds per cu inch	3.613×10^{-2}	27.68
Grams por sq cm	Pounds per sq fool	2.0481	0.4883

Conversion factors
continued

10 convert	into	multiply by	conversely, multipiy by
Hectares	Acres	2.471	0.4047
Horsepowar (boiler)	Biu per hour	3.347×10^{8}	2.986×10^{-6}
Horsopower (metric) (542.5 ft -lb por sec)	Btu per minute	41.83	2.390×10^{-2}
Horsepower (metric) ($542.5 \mathrm{ft}-\mathrm{lb}$ por sed)	Foot-lb per minute	3.255×10^{4}	3.072×10^{-6}
Horsopower (metric) (542.5 ft-lb per sec)	- Kg-calories per minuto	10.54	9.485×10^{-2}
Horsopower (550 ft-lb per sec)	Bru por minute	42.41	2.357×10^{-2}
Horsepower ($550 \mathrm{ft}-\mathrm{lb}$ per sec)	Foot-lb per minute	3.3×10^{4}	3.030×10^{-6}
Horsepower (550 ft-lb por secl	Kilowatts	0.745	1.342
Horsepower (metric) (542.5 ft -lb per sec)	Horsepowar (550 ft lib per sec)	0.9863	1.014
Horsopower (550 ft-lb por sec)	Kg -calories per minute	10.69	9.355×10^{-2}
Inches	Contimeters	2.540	0.3937
Inchos	Foot	8.333×10^{-2}	12
chos	Miles	1.578×10^{-6}	6.336×10^{4}
inchos	Mils	1000	0.001
Inches of mercury @ $0^{\circ} \mathrm{C}$	lbs per sq inch	$\frac{2.778}{0.4912} \times 10^{-2}$	36
Inches of water@4 $4^{\circ} \mathrm{C}$	Kg per sq mator	25.40	3.036
Inches of water @ $40^{\circ} \mathrm{C}$	Ounces per sq inch	0.5782	3.937×10^{-2}
Inches of water @ $4^{\circ} \mathrm{C}$	Pounds per sq fool	5.202	0.1922
Inches of water @ $4^{\circ} \mathrm{C}$	In of mercury	7.355×10^{-2}	13.60
Joules	Foot-pounds	0.7376	1.356
Joules	Ergs	10^{7}	0^{-7}
Kilogram-calories	Kilogram-motors	426.9	2.343×10^{-9}
Kilogram-calorios	Kilojoules	4.186	0.2389
Kilograms	Tons, long (avdp 2240 lb)	9.842×10^{-4}	1016
Kilograms	Tons, short (avdp 2000 lb)	1.102×10^{-8}	907.2
Kilograms	Pounds (avoirdupois)	2.205	0.4536
Kg per sq meter	Pounds per sq foot	0.2048	4.882
Kilomoters	Feot	3281	3.048×10^{-4}
Kilowatt-haurs	Bru	3413	2.930×10^{-4}
Kilowatt-hours	Foot-pounds	2.655×10^{6}	3.766×10^{-7}
Kilowatt-hours	Joules	3.6×10^{6}	2.778×10^{-7}
Kilowatt-hours Kilowatt-hours	Kilogram-calorios	860	1.163×10^{-3}
Kilowatt-hours	Kilogram-meters	3.671×10^{5}	2.724×10^{-8}
Kilowatt-hours	Pounds carbon oxydized	0.235	4.26
Kilowatt-hours	Pounds water ovaporated from and at $212^{\circ} \mathrm{F}$	3.53	0.283
Kilowatt-hours	Pounds water raised from 62° to $212^{\circ} \mathrm{F}$	22.75	4.395×10^{-2}
Leagues	Miles	2.635	0.3795
Litors	Bushols (dry US)	2.838×10^{-2}	35.24
Liters	Cubic centimeters	1000	0.001
Litors	Cubic metors	0.001	1000
Liters	Cubic inches	61.02	1.639×10^{-8}
liters	Gallons (liq US)	0.2642	$3.785 \times 1{ }^{-2}$
$\log ^{\text {diters or }} \ln N$	Pints lliq USI	2.113	0.4732
$\log _{6} N$ or $\ln N$	$\log _{10} N$	0.4343	2.303

Conversion factors continued

to convert	into	multiply by	canvarsely, multiply by
tumens per sq foot	foot-candles	1	1
lux	Foot-candles	0.0929	10.764
Metors	Yards	1.094	0.9144
Meters	Varas	1.179	0.848
Metors por min	Knots (naut mi per hour)	3.238×10^{-5}	30.88
Meters per min	Foet per minute	3.281	0.304
Meters per min	Kilometers per hour	0.06	16.67
Microhms per em cube	Microhms per inch cube	0.3937	2.540
Microhms per em cube	Ohms per mil foot	6.015	0.1662
Miles Inauticall	foet	6080.27	1.645
Milos (nauticall	Kilometers	1.853	0.5396
Miles (statuto)	Kilometers	1.609	0.6214
Miles (statute)	Miles (naurical)	0.8684	1.1516
Milos (statute)	Feer	5280	$1.894 \times$
Miles per hour	Kilometers per minute	2.682×1	37.
Miles per hour	Foet per minute	88	1.136×10^{-2}
Miles per hour	Knots (naut mi per hour)	0.8684	1.1516
Miles per hour	Kilometers per hour	1.609	0.6214
Nepers	Decibels	8.686	62.38
Pounds of water (dist)	Cubic feel	1.603×10^{-2}	62.38
Pounds of water (dist)	Gallons	0.1198	6.243×10^{-2}
Pounds per cu foot	Kg per cu meter	16.02	6.243×10^{-2} 5.787×10^{-4}
Pounds por cu inch	Pounds per cu foot	1728.	${ }_{144}^{5.787} \times 10^{-4}$
Pounds persq foot	Pounds per sq inch	$\xrightarrow{603.9} 1 \times 10^{-3}$	1.422×10^{-8}
Pounds per sq inch	Kg per sq meter Dynes	703.1 1.383×10^{4}	7.233×10^{-6}
Poundals	Dynes Pounds lavoirdupois)	3.108×10^{-2}	32.17×10^{-2}
Slugs	Pounds	32.174	3.108×10^{-2}
Sq inches	Circular mils	1.273×10^{6}	7.854×10^{-7}
Sq inches	Sq contimetors	6.452	0.1550
Sq foet	Sq meters	9.290×10^{-2}	10.76
Sq milos	Sq yards	3.098×10^{6}	3.228×10^{-7}
Sq milos	Acres	640	
Sq milos	Sq kilomoters	1973	5.067×10^{-4}
Sq millimeters	Circular mils	1973	1.102×10
Tons, short (avair 2000 lb	Tonnes (1000 kg)	1.016 1.16	0.9842
Tons, long lavoir 2240 lb	Tons, short lavoir 2000 lb)	1.120	0.8929
Tons (US shippingl	Cubic foot	40	0.025
Watts	Bru per minute	5.689×10^{-2}	17.58 10
Watts	Ergs per second	10^{7}	
Watts	Foot-lb per minute	$\stackrel{44.26}{1.341} \times 10^{-3}$	745.7
Watts	Horsopower (550 ft-lb per soc)	1.341×10^{-2}	74.7
Watts	Horsepower (metric) (542.5 ft-lb per sec)	1.360×10^{-3}	735.5
Watts	Kg -calories per minute	1.433×10^{-2}	69.77

Principal atomic constants*

usual symbol	denamination	value and units
F	faraday's constont	$9649.6 \neq 0.7$ emu equiv $^{-1}$ (chemical scale) 9652.2 ± 0.7 omu equiv ${ }^{-1}$ Iphysical scalel
N	Avogadio's number	$\begin{aligned} & 16.0235=0.00041 \times 10^{29} \text { tehomicals } \\ & 16.0251=0.00041 \times 10^{23} \text { (physicall } \end{aligned}$
h	Planck's constant	$16.6234 \pm 0.00111 \times 10^{-27} \mathrm{erg} \mathrm{sec}$
m	Electron mass	$19.1055 \pm 0.00121 \times 10^{-28} \mathrm{~g}$
-	Electronic charge	$\begin{aligned} & 14.8024 \neq 0.00051 \times 10^{-10} \text { esu } \\ & 11.60199 \neq 0.000161 \times 10^{-20} \mathrm{emu} \end{aligned}$
e/m	Specific electronic charge	$\begin{aligned} & 11.75936 \neq 0.000181 \times 10^{7} \text { emu g }^{-1} \\ & \left(5.2741 \neq 0.00051 \times 10^{17} \text { esu g }^{-1}\right. \end{aligned}$
c	Velocity of light in vacuum	$12.99776 \pm 0.000041 \times 10^{10} \mathrm{~cm} \mathrm{sec}^{-1}$
h/me	Compton wovelength	$12.42650 \pm 0.000251 \times 10^{-10} \mathrm{~cm}$
$\alpha_{0}=h^{2} /\left(4 \pi^{2} m \theta^{2}\right)$	First Bohr electron-orbit radius	$10.529161 \pm 0.0000281 \times 10^{-8} \mathrm{~cm}$
σ	Stefon-Boltzmann constant	$15.6724 \pm 0.00231 \times 10^{-8} \mathrm{erg} \mathrm{cm}^{-2} \mathrm{deg}^{-4} \mathrm{sec}^{-1}$
$\lambda_{\text {max }}{ }^{\top}$	Wien displocement-law constont	$10.289715 \pm 0.0000391 \mathrm{~cm} \mathrm{deg}$
$\mu_{i}=h_{e} / 4 \pi m$	Bohr magneton	$10.92731 \pm 0.00017 \times 10^{-20} \mathrm{erg}^{\text {gauss }}{ }^{-1}$
mN	Atomic weight of the electron	$15.4847 \pm 0.0006) \times 10^{-4}$ (chemical) $15.4862 \pm 0.0006) \times 10^{-4}$ (physical)
$\mathrm{H}^{+/ m N}$	Ratio, proton mass to electron mass	1836.57 ± 0.20
$v_{0}=[2 \cdot 103 \mathrm{le} / \mathrm{ml}]^{1 / 2}$	Speed of 1 ev olectron	$15.93188 \pm 0.000301 \times 10^{7} \mathrm{~cm} \mathrm{sec}^{-1}$
$E_{0}=\mathrm{e} \cdot 10^{8} / \mathrm{c}$	Energy associated with 1 ev	$11.60199 \pm 0.000161 \times 10^{-12} \mathrm{erg}$
λ_{0}	DeBroglie wavelength associated with lev	$112394.2 \pm 0.9) \times 10^{-8} \mathrm{~cm}$
$m c^{2}$	Energy equivalent of eloctron mass	$10.51079 \pm 0.000061 \mathrm{Mev}$
k	Bolizmann's constant	$11.38032 \pm 0.000111 \times 10^{-16} \mathrm{erg} \mathrm{deg}^{-1}$
R_{∞}	Rydberg constont for "infinite" mass	$109737.30 \pm 0.05 \mathrm{~cm}^{-1}$
H	Hydrogen atomic mass (physical scale)	1.008131 ± 0.000003
Ro	Gas constant per mol	$18.31436 \pm 0.000381 \times 10^{7} \mathrm{erg} \mathrm{mol}^{-1} \mathrm{deg}^{-1}$
Vo	Standard volume of perfect gas	$122.4146=0.0061 \times 10^{3} \mathrm{~cm}^{2} \mathrm{~mol}^{-1}$

[^1]
Unit conversion table

quantity	$\begin{gathered} \text { symu } \\ \text { bol } \end{gathered}$	```equation in mks(r) units```	$\begin{gathered} \text { mks(r) } \\ \text { (rationallzed) } \\ \text { unit } \end{gathered}$	equivalent number of				mke(nr) (nomrationa (zed) unll
				$\begin{gathered} \text { miks }(n r) \\ \text { units } \end{gathered}$	proel units	unite	emu units	
length	l		meter (m)	1	10^{*}	10^{8}	10^{2}	meter (m)
mass	明		kilogram	1	10^{2}	10^{3}	10^{2}	kilogram
Hime	t		second	1	1	1	1	second
force	F	$F=m b$	newton	1.	10^{5}	10^{5}	10^{8}	newton
work, energy	W	$W=F l$	joule	1	1	10^{7}	10^{7}	joule
power	P	$P=W / t$	watt	1	1	10^{7}	10^{7}	watt
electric charge	q		coulomb	1	1	3×10^{0}	10^{-1}	coulomb
volume charge density	p	$\rho=q / \%$	coulomb/m ${ }^{3}$	1	10^{-6}	3×10^{4}	10^{-7}	coulomb/m ${ }^{\text {d }}$
surfece charge denslity	*	$\sigma=9 / A$	coulomb/m2	1	10^{-4}	3×10^{5}	10^{-9}	coulomb/m ${ }^{2}$
electric dipole moment	P	$p=q$	coulomb-ineter	1	10^{4}	3×10^{14}	10	coulomb-me1
polarization	P	$p=p / s$	coulomb/m ${ }^{2}$	1	10^{-4}	3×10^{5}	10^{-6}	coulomb/m ${ }^{2}$
electric field intensty	E	$\boldsymbol{E}=\boldsymbol{F} / \boldsymbol{q}$	volt/m	1	10^{-2}	$10^{-1 / 3}$	10°	volt/m
permitivity	c	$F=g^{1 / 4 \pi e l^{z}}$	farad/m	47	$4 \pi \times 10^{-7}$	$36 \pi \times 10^{0}$	$4 \pi \times 10^{-11}$	
displacement	D	$D=e E$	coulomb/m ${ }^{2}$	4「	$4 \pi \times 10^{-4}$	$12 \pi \times 10^{5}$	$4 \times \times 10^{-8}$	
displacement fux	\pm	$\pm=D A$	coulomb	47	4\%	$12 \times \times 10^{4}$	$4 \times \times 10^{-1}$	
emff, electric potential	V	$\boldsymbol{V}=E l$	volt	1	1	$10^{-7 / 3}$	10°	volt
current	1	$I=q / t$	mpere	1	1	3×10^{4}	10^{-1}	ampere
velume current denshy	J	$J=I / A$	ampere/m8	1	10^{-8}	$3 \times 10^{*}$	10^{-8}	smpere/m ${ }^{2}$
surface currem density	K	$K=1 / l$	ampere/m	1	10^{-2}	3×10^{7}	10^{-3}	smpers/m
resistance	R	$R=V / I$	ohm	1	1	$10^{-11 / 9}$	10^{9}	ohm
conductance	G	$G=1 / R$	mho	1	1	9×10^{11}	10^{-6}	mho
resistivity	p	$p=R A / l$	ohm-meter	1	10^{2}	$10^{-9} / 9$	10^{14}	ohm-meter
conductivity	$\boldsymbol{\gamma}$	$\gamma=1 / \rho$	mho/meter	1	10^{-2}	9×10^{4}	10^{-11}	mho/meter
capocitance	C	$C=q / V$	farad	1	1	9×10^{14}	10^{-}	farad
-lostance	S	$S=1 / C$	daraf	1	1	$10^{-11 / 9}$	10^{4}	daraf
mognenic charge	m		weber	1/4\%	100/4.	$10^{-2} / 12 \pi$	102/4 π	
mognatic dipole mement	m	$m=m!$	weber-meter	1/4\%	1010/4 ${ }^{\text {m }}$	1/12\%	1010/4 ${ }^{\text {x }}$	
magnetization	M	$M=m / m$	weber/m²	1/4\%	104/4\%	$10^{-6} / 12 \pi$	104/4\%	
magnefic field infensity	H	$H=n^{\prime} / / l$	ampere-turn/m	4\%	$4 \times \times 10^{-1}$	$12 \pi \times 10^{7}$	$4 \times \times 10^{-3}$	
permeability	μ	$P=m^{2} / 4 \mu^{2 / 2}$	henry/m	1/4]		$10^{-13 / 36 \pi}$	107/4\%	
induction	8	$B=\mu H$	weber/m²	1	10^{4}	10-3/3	10^{4}	Weber/m²
Induction fux	Φ	$\Phi=8 A$	weber	1	10°	$10^{-8} / 3$	$10 *$	weber
mmf, megnetic polential	M	$M=H l$	ampere-turn	4 ${ }^{\text {r }}$	$4 \times \times 10^{-1}$	$12 \pi \times 10^{9}$	$4 \pi \times 10^{-1}$	
reluctonce	R	$\underline{R}=M / \Phi$	amp-turn/weber	47	$4 \pi \times 10^{-8}$	$36 \pi \times 10^{12}$	$4 \pi \times 10^{-3}$	
permeance	\boldsymbol{P}	$\underline{T}=1 / R$	weber/amp-turn	1/4\%	10/4 ${ }^{1}$	$10^{-11 / 36}$	109/45	
inductance	L	$L=\Phi / L$	henry	1	1	$10^{-11 / 9}$	10	henry

Compiled by J. R. Ragazzini and L. A. Zadeh, Columbia University, New York.
The velocity of light was taken as 3×10^{10} centimeters/second in computing the conversion factors.
Equations in the second column are for dimensional purposes only.

UNITS, CONSTANTS, AND CONVERSION FACTORS $/ 7$

equivaleni number of			$\begin{gathered} \text { practical } \\ \text { (cgs) } \\ \text { Unit } \end{gathered}$	equivalont number of		unif	equivalent number of omu unibs		
pract Unilt	esu	omu units		env	-mu units				
10^{2}	10^{3}	$10{ }^{4}$	centimeter (cm)	1	1	ventimeter (cm) (G)	1	centimeter (em)	
10^{3}	10^{3}	10^{3}	gram	1	1	gram (G)	1	gram	
1	1	1	second	1	1	second (G)	1	Becond	
10^{5}	10^{6}	10^{6}	dyne	1	1	dyne (G)	1	dyme	
1	10^{7}	10^{7}	joule	10^{7}	10^{7}	erg (G)	1	erg	
1	10^{7}	10^{7}	watt	10^{7}	10^{7}	erg/cocond (G)	1	erg/becond	
1	3×10^{0}	10^{-1}	coulomb	3×10^{0}	10^{-1}	statcoulomb (G)	10-10/3	abeoulomb	
10-8	3×10^{4}	10^{-7}	coulomb/cm ${ }^{\text {d }}$	3×10^{0}	10^{-1}	statcoulomb/cm ${ }^{\text {a }}$ (G)	$10^{-10} / 3$	abooulomb/cma	
10^{-6}	3×10^{5}	10^{-6}	coulomb/cm ${ }^{\text {a }}$	3×10^{0}	10^{-1}	statcoulomb/ $\mathrm{cm}^{2}(\mathrm{C})$	10-10/3	abcoulomb/ cm^{3}	
10^{9}	3×10^{41}	10	coulomb-cm	3×10^{0}	10^{-1}	statcoulomb-cm (a)	$10^{-10 / 3}$	abooulomb-am	
10^{-6}	3×10^{5}	10^{-8}	coulomb/ cm^{2}	3×10^{0}	10^{-1}	statcoulomb/em² (a)	$10^{-10 / 3}$	abeoulomb/ cm^{2}	
10^{-2}	$10^{-6 / 3}$	10°	volt/cm	$10^{-3 / 3}$	10°	statvolt/cm (0)	3×10^{10}	abvolt/cm	
10^{-7}	9×10^{10}	10^{-11}		9×10^{18}	10^{-2}	(C)	$10^{-20 / 9}$		
10^{-6}	3×10^{5}	10^{-8}		3×10^{0}	10^{-1}	(G)	$10^{-10 / 3}$		
1	3×10^{9}	10^{-1}		3×10^{0}	10^{-1}	(G)	$10^{-10 / 3}$		
1	$10^{-2} / 3$	10^{6}	volt	10-2/3	10^{4}	statvolt (C)	3×10^{19}	abvolt	
1	3×10^{0}	10^{-1}	ampere	3×10^{0}	10^{-1}	statampere (G)	$10^{-10 / 3}$	abampera	
10^{-6}	3×10^{5}	10^{-6}	ampere/cm ${ }^{2}$	3×10^{0}	10^{-1}	statampere/cm ${ }^{\text {3 }}$ (G)	$10^{-10 / 3}$	ebampere/cm ${ }^{2}$	
10^{-2}	3×10^{7}	10^{-1}	ampere/cm	3×10^{0}	10^{-1}	statampere/cm (G)	$10^{-10 / 3}$	absmpere/cm	
1	$10^{-11 / 9}$	10°	ohm	$10^{-11 / 9}$	10°	Etatohma (G)	9×10^{30}	abohm	
1	9×10^{11}	10^{-8}	mho	9×10^{41}	10^{-9}	statmho (G)	$10^{-5} / 9$	abmho	
10^{7}	10-3/9	10^{14}	ohm-em	$10^{-11 / 9}$	10°	atatohm-ata (G)	9×100	abohm-am	
10^{-2}	9×10^{0}	10^{-11}	mho/cm	9×10^{11}	10^{-3}	statmho/cm (G)	$10^{-20 / 9}$	abmbo/cm	
1	9×10^{11}	10^{-8}	farad	9×10^{11}	10^{-3}	statfarad (cma) (G)	$10^{-50,9}$	ablarad	
1	$10^{-11 / 9}$	10°	daraf	$10^{-11 / 9}$	100	atatdaraf (G)	9×10^{20}	abdaraf	
10^{8}	10-2/3	10°		$10^{-10 / 3}$	1		3×10^{20}	unit pole	(G)
10^{10}	1/3	10^{10}		$10^{-10 / 3}$	1		3×10^{20}	pole-ma	(G)
10^{4}	10-4/3	10^{4}		$10^{-10 / 3}$	1		3×10^{20}	pole/cm ${ }^{2}$	(G)
10^{-8}	3×10^{7}	10^{-3}	oersted	3×10^{10}	1		10-10/3	oersted	(G)
10^{7}	$10^{-13 / 9}$	10^{7}	gausa/oersted	$10^{-20 / 9}$	1		9×10^{30}	grum/oersted	(G)
10^{4}	$10^{-8} / 3$	10^{4}	gauss	$10^{-10 / 3}$	1		3×10^{20}	gauss	(G)
10^{8}	10-2/3	10°	maxwell (line)	10-10/3	1		3×10^{10}	maxwell (line)	(G)
10^{-1}	3×10^{9}	10^{-1}	gilbert	3×10^{10}	1		$10^{-10} / 3$	gilbert	(G)
10^{-9}	9×10^{12}	10^{-4}	gilbert/maxwell	9×10^{30}	1		$10^{-50 / 9}$	gitbert/maxwell	(G)
10°	10-11/9	10°	maxwell/gilbert	$10^{-20 / 9}$	1		9×10^{30}	maxwell/gilbert	(G)
1	$10^{-11 / 9}$	10°	heary	$10^{-11 / 9}$	10^{7}	stathenry (G)	9×1000	abheary (cm)	(G)

G $=$ Gaussian unit.

Fractions of an inch with metric equivalents

fractions of on inch		decimals of an inch	millimetars	fractions of an inch		decimals of an inch	millimeters
	1/64	0.0156	0.397		. $38 / 4$	0.5156	13.097
$1 / 52$		0.0313	0.794	17/32		0.5313	13.494
	364	0.0469	1.191		3564	0.5469	13.891
116		0.0625	1.588	26		0.5625	14.288
	5/64	0.0781	1.984		3764	0.5781	14.684
38		0.0938	2.381	19/20		0.5938	15.081
	764	0.1094	2.778		$39 / 4$	0.6094	15.478
1/8		0.1250	3.175	5/8		0.6250	15.875
	9	0.1406	3.572		41/84	0.6406	16.272
852		0.1563	3.969	21/22		0.6563	16.669
	11/4	0.1719	4.366		4364	0.6719	17.066
3/16		0.1875	4.763	1116		0.6875	17.463
	13/6	0.2031	5.159 5.556		4564	0.7031	17.859
720		0.2188	5.556	23/32		0.7188	18.256
1/4	15/4	0.2344 0.2500	5.953 6.350		$47 / 64$	0.7344	18.653
\%	1764	0.2656	6.347	$3 / 4$	4\% 6	0.7500 0.7656	19.050 19.447
9/32		0.2813	7.144	$25 / 38$,	0.7813	19.844
	194	0.2969	7.541	13	31/64	0.7969	20.241
$5 / 16$		0.3125	7.938	13/16		0.8125	20.638
	21/64	0.3281 0.3438	8.334 8.731		3864	0.8281	21.034
132	23/64	0.3438 0.3594	8.731 9.128	27/82		0.8438 0.8594	21.431
3/8		0.3750	9.525	7/8	\%	- 0.8750	22.225
	25/64	0.3906	9.922		57/64	0.8906	22.622
13/22		0.4063	10.319	29/3		0.9063	23.019
	2764	0.4219	10.716		5\%/4	0.9219	23.416
716		0.4375	11.113	15/16		0.9375	23.813
	29\%4	0.4531	11.509		61/4	0.9531	24.209
15/32		0.4688	11.906	31/22		0.9688	24.606
	21/64	0.4844	12.303		63/4	0.9844	25.003
1/2		0.5000	12.700	-		1.0000	25.400

Useful numerical data

I cubic foot of water at $4^{\circ} \mathrm{C}$ (woight) \qquad 62.43 lb

1 foot of water at $4^{\circ} \mathrm{C}$ (pressure) \qquad $0.4335 \mathrm{lb} / \mathrm{in}^{2}$
Volocity of light in vacuum c \qquad $186,280 \mathrm{mi} / \mathrm{sec}=2.998 \times 10^{10} \mathrm{~cm} / \mathrm{sec}$
Volocity of sound in dry air at $20^{\circ} \mathrm{C}, 76 \mathrm{~cm} \mathrm{Hg}$ \qquad $1127 \mathrm{ft} / \mathrm{sec}$
Degree of longitude at equator \qquad 69.173 miles

Acceleration due to gravity at sea-lovel, 40° Latitude, g $32.1578 \mathrm{ft} / \mathrm{sec}^{2}$
$\sqrt{2 g}$
\qquad

1 inch of mercury at $4^{\circ} \mathrm{C}$ \qquad 1.132 ff water $=0.4908 \mathrm{lb} / \mathrm{in}^{2}$

Ease of natural logs ϵ \qquad 2.718

1 radian \qquad $180^{\circ} \div \pi=57.3^{\circ}$
360 degrees \qquad 2π radians
π \qquad -
Sine 1' \qquad 0.00029089

Arc 1° \qquad 0.01745 radian

Side of square \qquad $0.707 \times$ (diagonal of square)

Greek alphabet

name	capital	small	commonly used to designate
ALPHA	A	a	Angles, coefficients, aftenuation constant, absorption factor, area
BETA	B	$\boldsymbol{\beta}$	Angles, coefficients, phase constant
GAMMA	r	$\boldsymbol{\gamma}$	Complex propagation constant (capl, specific gravity, angles, electrical conductivity, propagation constant
DELTA	Δ	δ	Increment or decrement (cap or small), determinant (capl, permittivity (cap), density, angles
EPSILON	E	ϵ	Dielectric constant, permittivity, base of natural logarithms. electric intensity
ZETA	Z	ζ	Coordinates, coefficients
ETA	II	η	Intrinsic impedance, efficiency, surface charge density, hysteresis, coordinates
THETA	θ	$\theta \theta$	Angular phase displacement, time constant, reluctance, angles
IOTA	I	4	Unit vector
KAPPA	K	κ	Susceptibility, coupling coofficiont
LAMBDA	A	λ	Permeance (cap), wavelength, aftenuation constant
MU	M	μ	Permeability, amplification factor, prefix micio
NU	N	ν	Reluctivity, frequency
XI	品	ξ	Coordinates
OMICRON	0	0	
PI	II	π	3.1416
RHO	P	ρ	Resistivity, volume charge density, coordinates
SIGMA	Σ	σ S	Summation (cap), surface charge density, complex propagation constant, electrical conductivity, leakage coefficiont
TAU	T	τ	Time constant, volume resistivity, time-phase displacement, fransmission factor, density
UPSILON	T	v	
PHI	$\boldsymbol{\Phi}$	$\phi \quad \varphi$	Scalar potential (cap), magnetic flux, angles
CHI	\mathbf{X}	χ	Electric susceptibility, angles
PSI	Ψ	ψ	Dielectric flux, phase difference, coordinates, angles
OMEGA	Ω	ω	Resistance in ohms (cap), solid angle (cap), angular volocity

Decibels and power, voltage, and current ratios

The decibel, abbreviated db , is a unit used to express the ratio between two amounts of power, P_{1} and P_{2}, existing at two points. By definition, number of $\mathrm{db}=10 \log _{10} \frac{P_{1}}{P_{2}}$

It is also used to express voltage and current ratios;
number of $\mathrm{db}=20 \log _{10} \frac{V_{1}}{V_{2}}=20 \log _{10} \frac{I_{1}}{I_{2}}$
Strictly, it can be used to express voltage and current ratios only when the two points at which the voltages or currents in question have identical impedances.

power rotio	volfage and current ratio	decibels	power potio	voltage and current ratio	decibels
1.0233	1.0116	0.1	19.953	4.4668	13.0
1.0471	1.0233	0.2	25.119	5.0119	14.0
1.0715	1.0351	0.3	31.623	5.6234	15.0
1.0965	1.0471	0.4	39.811	6.3096	16.0
1.1220	1.0593	0.5	50.119	7.0795	17.0
1.1482	1.0715	0.6	63.096	7.9433	18.0
1.1749	1.0839	0.7	79.433	8.9125	19.0
1.2023	1.0985	0.8	100.00	\$10.0000	20.0
1.2303	1.1092	0.9	158.49	12.589	22.0
1.2589	1.1220	1.0	251.19	15.849	24.0
1.3183	1.1482	1.2	398.11	19.953	26.0
1,3804	1.1749	1.4	630.96	25.119	28.0
1.4454	1.2023	1.6	1000.0	. 31.623	30.0
1.5136	1.2303	1.8	1584.9	39.811	32.0
1.5849	1.2589	2.0	2511.9	50.119	34.0
1.6595	1.2882	2.2	3981.1	63.096	36.0
1.7378	1.3183	2.4	6309.6	79.433	38.0
1.8197	1.3490	2.6	10^{4}	100.000	40.0
1.9055	1.3804	2.8	104×1.5849	125.89	42.0
1.9953	1.4125	3.0	$10^{4} \times 2.5119$	158.49	44.0
2.2387	1.4962	3.5	$10^{4} \times 3.9811$	199.53	46.0
2.5119	1.5849	4.0	$10^{4} \times 6.3096$	251.19	48.0
2.8184	1.6788	4.5	10^{6}	316.23	50.0
3.1623	1.7783	5.0	$10^{5} \times 1.5849$	398.11	52.0
3.5481	1.8836	5.5	$10^{5} \times 2.5119$		
3.9811	1.9953	6.0	$10^{5} \times 3.9811$	630.96	56.0
5.0119	2.2387	7.0	$10^{5} \times 6.3096$	794.33 100000	58.0 60.0
6.3096	2.5119	8.0	104	1,000.00	60.0
7.9433	2.8184	9.0	10^{7}	3,162.3	70.0
10.0000	3.1623	10.0	10	10,000,0	80.0
12.589	3.5481	11.0	10^{0}	31,623	90.0
15.849	3.9811	120	10^{16}	100,000	100.0

To convert
Decibols to nepers multiply by 0.1151
Nopers to decibels multiply by 8.686
Where the power ratio is less than unity, it is usual to invert the fraction and express the answer as a decibol loss.

Properties of materials

Atomic weights

element	symbol	afomic number	afomic weight	element	symbol	atomic number	afomic welght
Aluminum	Al	13	26.97	Molybdonum	Mo	42	95.95
Antimony	Sb	51	121.76	Neodymium	Nd	60	144.27
Argon	A	18	39.944	Neon	Ne	10	20.183
Arsonic	As	33	74.91	Nickel	Ni	28	58.69
Barium	Ba	56	137.36	Nitrogen	N	7	14.008
Beryllium	Bo	4	9.02	Osmium	Os	76	190.2
Bismuth	Bi	83	209.00	Oxygen	\bigcirc	8	16.0000
Boron	B	5	10.82	Palladium	Pd	46	106.7
Bromine	Br	35	79.916	Phosphorus	P	15	30.98
Cadmium	Cd	48	112.41	Platinum	Pt	78	195.23
Calcium	Ca	20	40.08	Potassium	K	19	39.096
Carbon	C	6	12.010	Praseodymium	Pr	59	140.92
Cerium	Co	58	140.13	Profactinium	Pa	91	231
Cosium	Cs	55	132.91	Radium	Ra	88	226.05
Chlorino	Cl	17	35.457	Radon	Rn	86	222
Chramium	Cr	24	52.01	Rhenium	Re	75	186.31
Cobalt	Co	27	58.94	Rhodium	Rh	45	102.91
Columbium	Cb	41	92.91	Rubidium	Rb	37	85.48
Copper	Cu	29	63.57	Ruthenium	Ru	44	101.7
Dysprosium	Dy	66	162.46	Samarium	Sm	62	150.43
Erbium	Er	68	167.2	Scandium	Sc	21	45.10
Europium	Eu	63	152.0	Selenium	So	34	78.96
Fluorine	${ }^{5}$	9	19.00	Silicon	Si	14	28.06
Gadolinium	Gd	64	156.9	Silver	Ag	47	107.880
Gallium	Ga	31	69.72	Sodium	Na	11	22.997
Germanium	Ge	32	72.60	Strontium	Sr	38	87.63
Gold	Au	79	197.2	Sulfur	S	16	32.06
Hafnium	Hf	72	178.6	Tantalum	Ta	73	180.88
Helium	He	2	4.003	Tollurium	Te	52	127.61
Holmium	Ho	67	164.94	Terbium	Tb	65	159.2
Hydragen	H	1	1.0080	Thallium	TI	81	204.39
Indium	In	49	114.76	Thorium	Th	90	232.12
lodino	,	53	126.92	Thulium	Tm	69	169.4
Iridium	Ir	77	193.1	Tin	Sn	50	118.70
Iron	Fo	26	55.85	Titanium	Ti	22	47.90
Krypton	Kr	36	83.7	Tungsten	W	74	183.92
Lanthanum	La	57	133.92	Uranium	U	92	238.07
load	Pb	82	207.21	Vanadium	V	23	50.95
Lithium	Li	3	6.940	Xenon	X_{0}	54	131.3
Lutecium	Lu	71	174.99	Yttorbium	Yb	70	173.04
Magnesium	Mg	12	24.32	Ytirium	Y	39	88.92
Manganese	Mn	25	54.93	Zinc	Zn	30	65.38
Mercury	Hg	80	200.61	Zirconium	Zr	40	91.22

From Journal of American Chemical Society, v. 70, n. 11, p. 3532; December 8, 1948.

Electromotive force

Series of the elements

element	volts	Jon	olement	volts	Ion
Lithium	2.9595		Tin	0.136	
Rubidium	2.9259		leod	0.122	Pb^{++}
Potassium	2.9241		Iron	0.045	Fe^{+++}
Strontium	2.92		Hydrogen	0.000	
Barium	2.90		Antimony	-0.10	
Calcium	2.87		Bismuth	-0.226	
Sodium	2.7146		Arsenic	-0.30	
Magnasium	2.40		Copper	-0.344	Cu^{++}
Aluminum	1.70		Oxygen	-0.397	
Boryllium	1.69		Polonium	-0.40	
Uranium	1.40		Copper	-0.470	$\mathrm{Cu}{ }^{+}$
Manganase	1.10		lodine	-0.5345	
Tollurium	0.827		Tellurium	-0.558	T ${ }^{++++}$
Zinc	0.7618		Silver	-0.7978	
Chromium	0.557		Morcury	-0.7986	
Sulphur	0.51		Leod	-0.80	Pb^{++++}
Gallium	0.50		Palladium	-0.820	
Iron	0.441	Fe^{++}	Platinum	-0.863	
Cadmium	0.401		Bromine	-1.0648	
Indium	0.336		Chlorine	-1.3583	
Thallium	0.330		Gold	-1.360	Au^{++++}
Cobalt	0.278		Gold	-1.50	Au^{+}
Nickel	0.231		Fluorine	-1.90	

Position of metals in the galvanic series

Corroded end (anodic,
or least noble)
Magnesium
Magnesium alloys
Zinc
Aluminum $2 S$
Cadmium
Aluminum 17ST
Steel or Iron
Cast Iron
Chromium-iron lactive)
Ni-Resist
18-8 Stainless lactivel
18-8-3 Stainless (active)
lead-tin solders
Lead
Tin

Nickel lactive)
Inconel (active)
Brasses
Copper
Bronzes
Copper-nickel alloys
Monel
Silver solder
Nickel (passivel
Inconel (passive)
Chromium-iron (passive)
18-8 Stainless (passive)
18-8-3 Stainless (passive)
Silver
Graphite
Gold
Platinum
Protected end (cothodic,
or most nobie)

Note: Groups of metals indicate they are closely similar in properties.

Thermocouples and their characteristics

\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline type \& copper/constonton \& iron/constontan \& chromel/conslanton \& chromel/alumel \& $$
\left\lvert\, \begin{array}{|c|}
\text { Platinum /platinum } \\
\text { phodium (10) }
\end{array}\right.
$$ \& platinum/platinum
rhodium (13) \& carbon/silicon carbide

\hline Composition, percent \& $$
\begin{array}{ll}
100 \mathrm{Cu} & 54 \mathrm{Cu} 48 \mathrm{Ni} \\
99.9 \mathrm{Cu} & 55 \mathrm{Cu} 45 \mathrm{Ni} \\
& 60 \mathrm{Cu} 40 \mathrm{Ni}
\end{array}
$$ \& $$
100 \mathrm{Fe} \begin{aligned}
& 5 \mathrm{SCu} 44 \mathrm{Ni} \\
& 0.5 \mathrm{Mn}+\mathrm{Fe}, \\
& \mathrm{Si}
\end{aligned}
$$ \& 90 Ni 10 Cr

55 Cu 45 Ni \& $\left|\begin{array}{ll}90 \mathrm{Ni} 10 \mathrm{Cr} & 95 \mathrm{Ni} 2 \mathrm{Al} 2 \mathrm{Mn} 1 \mathrm{Si} \\ 89.6 \mathrm{Ni} 8.9 \mathrm{Cr} & 97 \mathrm{Ni} 3 \mathrm{Al}+\mathrm{Si} \\ 89 \mathrm{Ni} 10 \mathrm{Cr} & 94 \mathrm{Ni} 2 \mathrm{Al} 1 \mathrm{Si} \\ & 2.5 \mathrm{Mn} 0.5 \mathrm{Fe} \\ 89 \mathrm{Ni} 9.8 \mathrm{Cr} & 1 \mathrm{Fe} 0.2 \mathrm{Mn}\end{array}\right|$ \& 90Pi lorh p \& Pi 87Pil3ah \& $C \mathrm{SiC}$

\hline Range of application, ${ }^{\circ} \mathrm{C}$ \& -250 to +600 \& $1-20010+1050$ \& 10 to 1100 \& 10 to 1100 \& 10 to 1550 \& \& 1102000

\hline Resistivity, miero-ohm-em \& 11.7549 \& 11049 \& $170 \quad 49$ \& 17029.4 \& |10 21 \& \& 1

\hline Temperature coefficient of resistivity, ${ }^{\circ} \mathrm{C}$ \& $10.0039 \quad 0.00001$ \& $0.005 \quad 0.00001$ \& $0.00035 \quad 0.0002$ \& $0.00035 \quad 0.000125$ \& $0.0030 \quad 0.0018$ \& \&

\hline Melting temperature, ${ }^{\circ} \mathrm{C}$ \& 110851190 \& $11535 \quad 1190$ \& $11400 \quad 1190$ \& 11400 \& 117551700 \& \& |3000 27

\hline emf in millivolts; reference junction of $0^{\circ} \mathrm{C}$ \& | $100^{\circ} \mathrm{C}$ | 4.24 mv |
| :--- | :---: |
| 200 | 9.06 |
| 300 | 14.42 | \& | $100^{\circ} \mathrm{C}$ | 5.28 mv |
| :---: | :---: |
| 200 | 10.78 |
| 400 | 21.82 |
| 600 | 33.16 |
| 800 | 45.48 |
| 1000 | 58.16 | \& | $100^{\circ} \mathrm{C}$ | 6.3 mv |
| :--- | :--- |
| 200 | 13.3 |
| 400 | 28.5 |
| 600 | 44.3 | \& | $100^{\circ} \mathrm{C}$ | 4.1 mv |
| :--- | :--- |
| 200 | 8.13 |
| 400 | 16.39 |
| 600 | 24.90 |
| 800 | 33.31 |
| 1000 | 41.31 |
| 1200 | 48.85 |
| 1400 | 55.81 | \& | $100^{\circ} \mathrm{C}$ | 0.643 mv |
| :--- | :--- |
| 200 | 1.436 |
| 400 | 3.251 |
| 600 | 5.222 |
| 800 | 7.330 |
| 1000 | 9.569 |
| 1200 | 11.924 |
| 1400 | 14.312 |
| 1600 | 16.674 | \& | $100^{\circ} \mathrm{C}$ | 0.646 mv |
| :---: | :---: |
| 200 | 1.464 |
| 400 | 3.308 |
| 600 | 5.561 |
| 800 | 7.927 |
| 1000 | 10.470 |
| 1200 | 13.181 |
| 1400 | 15.940 |
| 1600 | 18.680 | \& | $1210^{\circ} \mathrm{C}$ | 353.6 mv |
| :--- | :--- |
| 1300 | 385.2 |
| 1360 | 403.2 |
| 1450 | 424.9 |

\hline Influance of temperature und gas aimosphere \& Subject to oxidation and alteration above $400^{\circ} \mathrm{C}$ due Cu , above 600° due constantan wire. Ni-plating of Cu tube gives protec. Hon, in acid-contain. ing gas. Contamination of Cu offects calibration greatly Resistance 10 oxid. alm. good. Resistance to reducing atm. good. Requires pro. tection from acid fumes. \& Oxidizing and reducing atmosphere hove little effect on accuracy. Best used in dry atmosphere. Resistance to oxida. tion good to $400^{\circ} \mathrm{C}$. Resistance to redueing atmosphere good. Protect from oxygen, moisture, sulphur. \& Chromel anocked by sulphurous amosphare. Resistance to oxidation good. Resistance to reducing atmosphere poor. \& Resistance to oxidizing almosphere very good. Resistance to reducing almosphere poor. Affected by sulphur, reducing or sulphurous gas, SO_{2} and $\mathrm{H}_{2} \mathrm{~S}$. \& Resistance 10 oxidizing atmosphere very good. Resistance to reducing otmosphere poor. Susceptible to chemical alreration by As, Si, P vopor in reducing gas $\mathrm{CCO}_{2}, \mathrm{H}_{2}$ $\mathrm{H}_{2} \mathrm{~S}, \mathrm{SO}_{2}$. Pt corrodes easily above 1000°. Used in gastight protecting tube. \& \& Used as lube element. Carbon shearh chemically inert.

\hline Particular opplications \& Low temperature, in dustrial. Internal combustion engine. Used as a tube element for meosurements in steam line. \& Low iemperolure, in. dustrial. Steel onnealing, boiler flues, tube stills. Used in reducing or neurral otmosphere. \& \& Used in oxidizing atmosphere. Industriol. Ceromic kilns, tube stills, electric furnaces. \& Iternational Siandard 630 to $1065^{\circ} \mathrm{C}$. \& Simillar to Pt/PtRhilol but has higher emf. \& Steel furnoce and ladle temperolures. toboratory measurements.

\hline
\end{tabular}

Temperature-emf characteristics of thermocouples

degrees centigrado

Compiled from R. L. Weber, "Temperature Measurement and Control," Blakiston Co., Philadelphia, Pennsylvania; 1941: see pp. 68-71.

Physical constants of various metais and alloys

Definitions of physical constants in table

Relative resistance: The table of relative resistances gives the ratio of the resistance of any material to the resistance of a piece of annealed copper of identical physical dimensions and temperafure. The resistance of any substance of uniform cross-section is proportional to the length and inversely proportional to the cross-sectional area.
$R=\frac{\rho L}{A}$
where
$\rho=$ resistivity, the proportionality constant
$L=$ length
$A=$ cross-sectional area
$R=$ resistance in ohms

Physical constants of various metals and alloys continued

moterial	relative resistance*	lemp coefficient of resistivity af $20^{\circ} \mathrm{C}$	specific gravity	coefficient of thermal cond K watts $/ \mathrm{cm}^{\circ} \mathrm{C}$	melting point C
Advance $155 \mathrm{Cu}, 45 \mathrm{Ni}$)	seo	Constantan			
Aluminum	1.64	0.004	2.7	2.03	660
Antimony	24.21	0.0036	6.6	0.187	630
Arsonic	19.33	0.0042	5.73	-	sublimes
Bismuth	69.8	0.004	9.8	0.0755	270
Brass (66 Cu, 34 Znl	3.9	0.002	8.47	1.2	920
Cadmium	4.4	0.0038	8.64	0.92	321
Chromax $115 \mathrm{Cr}, 35 \mathrm{Ni}$, balance Fel	58.0	0.00031	7.95	0.130	1380
Cobalt	5.6	0.0033	8.71	-	1480
Constantan ($55 \mathrm{Cu}, 45 \mathrm{Ni}$)	28.45	± 0.0002	8.9	0.218	1210
Copper-annealed	1.00	0.00373	8.89	3.88	1083
. hard drawn	1.03	0.00382	8.89	-	1083
Eureka is5 Cu, 45 Ni$)$	50e	Constantan			
Gas carbon	2900	-0.0005	-	-	3500
Gold	1.416	0.0034	19.32	0.296	1063
German silvar	16.9	- 0.00027	8.7	0.32	1110
Ideal ($55 \mathrm{Cu}, 45 \mathrm{Ni}$)	5800	Constantan			
Iron, pure	5.6	0.0052-0.0062	7.8	0.67	1535
Kovar A $129 \mathrm{Ni}, 17 \mathrm{Co}$, 0.3 Mn, balance Fe)	28.4	-	8.2	0.193	1450
Lead	12.78	0.0042	11.35	0.344	327
Magnesium	2.67	0.004	1.74	1.58	651
Manganin ($84 \mathrm{Cu}_{\mathrm{C}} 12 \mathrm{Mn}$, 4 Ni	26	± 0.00002	8.5	0.63	910
Mercury	55.6	0.00089	13.55	0.063	-38.87
Molybdenum, drawn	3.3	0.0045	10.2	1.46	2630
Monel metal $167 \mathrm{Ni}, 30$ Cu, $1.4 \mathrm{Fe}, 1 \mathrm{Mn}$)	27.8	0.002	8.8	0.25	1300-1350
Nichrome $1165 \mathrm{Ni}, 12$ Cr, 23 Fel	85.0	0.00017	8.25	0.132	1350
Nickel	5.05	0.0047	8.85	0.6	1452
Nickel silver 164 Cu , $18 \mathrm{Zn}, 18 \mathrm{Ni}$	16.0	0.00026	8.72	0.33	1110
Palladium	6.2	0.0038	12.16	0.7	1557
Phosphor-bronze (4 Sn, 0.5 P , balance Cu$)$	5.45	0.003	8.9	0.82	1050
Platinum	6.16	0.0038	21.4	0.695	1771
Silver	0.95	0.004	10.5	4.19	960.5
Steel, manganese (13 Mn , $1 \mathrm{C}, 86 \mathrm{Fel}$	41.1	-	7.81	0.113	1510
Steel, SAE 1045 (0.4-0.5 C, balance Fe)	7.6-12.7	-	7.8	0.59	1480
Steel, 18-8 stainless $10.1 \mathrm{C}, 18 \mathrm{Cr}, 8 \mathrm{Ni}$, balance Fel	52.8	-	7.8 7.9	0.163	1410
Tantalum	9.0	0.0033	16.6	0.545	2850
Tin	6.7	0.0042	7.3	0.64	231.9
Tophet A $180 \mathrm{Ni}, 20 \mathrm{Cr}$)	62.5	0.02-0.07	8.4	0.136	1400
Tungsten	3.25	0.0045	19.2	1.6	3370
Zinc	3.4	0.0037	7.14	1.12	419
Zirconium	2.38	0.0044	6.4	-	1860

36

Physical constants of various metals and alloys continued

If L and A are measured in centimeters, ρ is in ohm-centimeters. If L is measured in feet, and A in circular mils, ρ is in ohm-circular-mils/foot.

Relative resistance $=\rho$ divided by the resistivity of copper $\left(1.7241 \times 10^{-6}\right.$ ohm-centimeters)

Temperature coefficient: Of resistivity gives the ratio of the change in resistivity due to a change in temperature of 1 degree centigrade relative to the resistivity at 20 degrees centigrade. The dimensions of this quantity are ohms/degree centigrade/ohm, or $1 /$ degree centigrade.

The resistance at any temperature is

$$
\left.R=R_{0} l l+\alpha T\right)
$$

where
$R_{0}=$ resistance at 0° in ohms
$T=$ temperature in degrees centigrade
$\alpha=$ temperature coefficient of resistivity/degree centigrade
Specific gravity: Of a substance is defined as the ratio of the weight of a given volume of the substance to the weight of an equal volume of water. In the cgs system, the specific gravity of a substance is exactly equal to the weight in grams of one cubic centimeter of the substance.

Coefficient of thermal conductivity: Is defined as the time rate of heat transfer through unit thickness, across unit area, for a unit difference in temperafure. Expressing rate of heat transfer in watts, the coefficient of thermal conductivity
$K=\frac{W L}{A \Delta T}$
where
$W=$ watts
$L=$ thickness in centimeters
$A=$ area in centimeters ${ }^{2}$
$\Delta T=$ temperature difference in degrees centigrade
Specific heat: Is defined as the number of calories required to heat one gram of a substance one degree centigrade. If H is the number of calories,

```
H=ms}\DeltaT\mathrm{ or change in heat
```

where
$\Delta T=$ temperature change in degrees centigrade
$m=$ mass in grams
$s=$ specific heat in calories/gram/degree centigrade

Temperature charts of metals

On the following two pages are given centigrade and fahrenheit temperatures relating to the processing of metals and alloys.

Soldering, brazing, and welding: This chart has been prepared to provide, in a convenient form, the melting points and components of various common soldering and brazing alloys. The temperature limits of various joining processes are indicated with the type and composition of the flux best suited for the process. Two pairs of identical Fahrenheit and centigrade temperature scales are shown with the low values at the bottom of the chart. The chart is a compilation of present good practice and does not indicate that the processes and materials cannot be used in other ways under special conditions.

Melting points: The melting-point chart is a thermometer-type graph upon which are placed the melting points of metals, alloys, and ceramics most commonly used in electron fubes and other components in the radio industry. Centigrade and the equivalent Fahrenheit scales are given; above 2000 degrees centigrade the scale is condensed. Pure metals are shown opposite their respective melting points on the right side of the thermometer. Ceramic materials and metal alloys are similarly shown on the left. The melting temperature shown for ceramic bodies is that temperature above which no crystalline phase normally exists. No attempt has been made to indicate their progressive softening characteristic.

When a specific material is being considered for use because of desirable electrical, chemical, or other properties, the melting point is easily obtained. Conversely, where the temperature range within which materials must work is known, suitable ones can be quickly selected.

Fabrication techniques may employ soldering, brazing, or*welding, and the most suitable method for a particular material may be determined from the two charts. Similarly, where sequential heating operations are planned, they are useful.

Temperature charis of meials continued

Soldering, brazing, and welding processes*

* By R. C. Hitchcock, Research Laboratories, Westinghouse Electric Corp., East Pittsburgh, Pa.

Reprinted by permission from Producl Engineering, vol. 18, p. 171; October, 1947.

Temperafure charts of metals continued

Melting points of mefals, alloys, and ceramics*

[^2]Solid copper-comparison of gauges

			diamater		clifculaf mils	erea		weight	
Amer= ican (B A S) wire gauge	ham (Stubs') iron wire gauge	standard (NBS) wire ¢ouge	mils	millimoters		square millimaters	square inches	per 1000 feet in pounds	per kilometer in kilogram:
-	0	-	340.0	8.636	115600	58.58	0.09079	350	521
0	0	-	324.9	8.251	105500	53.48	0.08289	319	475
-	-	0	324.0	8.230	105000	53.19	0.08245	318	472
-	1	1	300.0	7.620	90000	45.60	0.07069	273	405
1	-	-	287.3	7.348	83690	42.41	0.06573	253	377
-	2	-	284.0	7.214	80660	40.87	0.06335	244	363
-	-	-	283.0	7.188	80090	40.58	0.06290	242	361
-	\rightarrow	2	276.0	7.010	76180	38.60	0.05963	231	343
-	3	-	259.0	6.579	67080	33.99	0.05269	203	302
2		-	257.6	6.544	66370	33.63	0.05213	201	299
-	-	3	252.0	6.401	63500	32.18	0.04988	193	286
-	4	\rightarrow	233.0	6.045	56640	28.70	0.04449	173	255
-		4	232.0	5.893	53820	27.27	0.04227	163	242
3	-	-	229.4	5.927	52630	26.67	0.04134	159	237
3	5	-	220.0	5.598	48400	24.52	0.03801	147	217
-	S	5	212.0	5.385	44940	22.77	0.03530	136	202
4	-	-	204.3	5.189	41740	21.18	0.03278	126	188
$-$	6	-	203.0	5.156	41210	20.88	0.03237	125	186
-	\rightarrow	6	192.0	4.87%	36860	18.88	0.02895	112	166
5	-	-	181.9	4.621	33100	16.77	0.02600	100	149
-	7	-	180.0	4.572	32430	16.42	0.02545	98.0	146
-	$\stackrel{\square}{\square}$	7	178.0	4.470	32980	15.70	0.02433	93.6	139
-	8	$-$	165.0	4.191	27225	13.86	0.02138	86.2	123
6	-	-	162.0	4.116	26250	13.30	0.02062	79.5	118
-	-	8	180.0	4.064	25600	12.97	0.02011	77.5	115
-	9	-	148.0	3.759	21900	11.10	0.01720	66.3	98.6
7		-	144.3	3.665	20820	10.55	0.01635	63.0	93.7
-	-	9	144.0	3.658	20740	10.51	0.01629	62.8	93.4
-	10	-	134.0	3.404	17960	9.098	0.01410	54.3	80.8
8		-	128.8	3.264	16510	8.366	0.01297	50.0	74.4
-	-	10	128.0	3.251	16380	8.302	0.01267	49.6	73.8
-	11	-	120.0	3.048	14400	7.297	0.01131	43.6	64.8
-	-	11	116.0	2.946	13460	6.818	0.01057	40.8	60.5
9	-	-	114.4	2.906	13090	6.634	0.01028	39.6	58.9
-	12	F	109.0	2.769	11880	6.020	0.009331	35.9	53.5
-	12	12	104.0	2.642	10820	5.481	0.008495	32.7	48.7
10	-	-	101.9	2.588	10380	5.261	0.008155	31.4	46.8
-	13	-	95.00	2.413	9025	4.573	0.007088	27.3	40.6
-	,	13	92.00	2.337	8464	4.289	0.006648	25.6	38.1
11	-	-	90.74	2.305	8234	4.172	0.006467	24.9	37.1
-	14	-	83.00	2.108	6889	3.491	0.005411	20.8	31.0
12	1	$=$	80.81	2.053	6530	3.309	0.005129	19.8	29.4
-	-	14	80.00	$2.03{ }^{\text {c }}$	6400	3.243	0.005027	19.4	28.8
-	15	15	72.00	1.829	5184	2.627	0.004072	16.1	23.4
13	15		71.96	1.828	5178	2.624	0.004067	15.7	23.3
-	16	-	65.00	1.651	4225	2141	0.003318	12.8	19.0
14	16	-	64.08	1.628	4107	2.081	0.003225	12.4	18.5
-	$\bar{\square}$	16	64.00	1.626	4096	2.075	0.003217	12.3	18.4
-	17	16	58.00	1.473	3364	1.705	0.002042	10.2	15.1
15	1	7	57.07	1.450	3257	1.650	0.002558	9.86	14.7
-	-	17	56.00	1.422	3136	1.589	0.002463	9.52	14.1
16	18		50.82	1.291	2583	1.309 1.217	0.002028 0.001888	7.82 7.27	11.6 10.8
16	18	18	49.00 48.00	1.245 1.219	2401	1.217 1.167	0.001886 0.001810	7.27 6.98	10.8 10.4
17	-	18	48.00 45.26	1.219 1.150	2304	1.167 1.038	0.001810 0.001609	6.98 6.20	10.4 9.23
17	19	-	42.00	1.067	1764	0.8938	0.001385	5.34	7.94
18	-	-	40.30	1.024	1624	08231	0.001276	4.92	7.32
	-	19	40.00	1.016	1600	0.8107	0.001257	4.84	7.21
-	-	20	36.00	0.9144	1296	0.6567	0.001018	3.93	5.84
19	0	-	35.89	0.9116	1288	0.6527	0.001012	3.90	5.80
-	20	$\stackrel{-}{1}$	35.00	0.8890	1225	0.6207	0.0009621	3.71	5.52 4.62
2	21	21	32.00	0.8128	1024	0.5189	0.0008042	3.11	4.62 4.60
20	-	-	31.96	0.8118	1022	0.5176	0.0008023	3.09	4.60

* For information on insulated wire for inductor windings, see pp. 74 and 190.

Wire tables continued
Siandard annealed copper (B \& S

AWG B\& gauge	dlom. eter in mils	crass section		$\begin{aligned} & \text { ahms per } \\ & 1000 \mathrm{ft} \\ & \text { of } 20^{\circ} \mathrm{C} \\ & \left(68^{\circ} \mathrm{F}\right) \end{aligned}$	Ibs per 1000 ft	ff per lb	$\begin{aligned} & \text { ft per ohm } \\ & \text { at } 20^{\circ} \mathrm{C} \\ & \left(68^{\circ} \mathrm{F}\right) \end{aligned}$	$\begin{aligned} & \text { ohms per Ib } \\ & \text { of } 20^{\circ} \mathrm{C} \\ & \left(68^{\circ} \mathrm{F}\right) \end{aligned}$
		circular mils	square inches					
0000	460.0	211,800	0.1662	0.04901	640.5	1.561	20,400	0.00007652
000	409.6	167,800	0.1318	0.06180	507.9	1.968	16,180	0.0001217
00	364.8	133,100	0.1045	0.07793	402.8	2.482	12,830	0.0001935
0	324.9	105,500	0.08289	0.09827	319.5	3.130	10,180	0.0003076
1	289.3	83,690	0.66573	0.1239	253.3	3.947	8,070	0.0004891
2	257.6	66,370	0.05213	0.1563	200.9	4.977	6,400	0.0007778
3	229.4	52,640	0.04134	0.1970	159.3	6.276	5,075	0.001237
4	204.3	41,740	0.03278	0.2485	126.4	7.914	4,025	0.001966
5	181.9	33,100	0.02600	0.3133	100.2	9.980	3,192	0.003127
6	162.0	26,250	0.02062	0.3951	79.46	12.58	2,531	0.004972
7	144.3	20,820	0.01635	0.4982	63.02	15.87	2,007	0.007905
8	128.5	16,510	0.01297	0.6282	49.98	20.01	1,592	0.01257
9	114.4	13,090	0.01028	0.7921	39.63	25.23	1,262	0.01999
10	101.9	10,380	0.008155	0.9989	31.43	31.82	1,001	0.03178
11	90.74	8,234	0.006467	1.260	24.92	40.12	794	0.05053
12	80.81	6,530	0.005129	1.588	19.77	50.59	829.	0.08035
13	71.96	5,178	0.004067	2.003	15.68	63.80	499.3	0.1278
14	64.08	4,107	0.003225	2.525	12.43	80.44	396.0	0.2032
15	57.07	3,257	0.002558	3.184	9.858	101.4	314.0	0.3230
16	50.82	2,583	0.002028	4.016	7.818	127.9	249.0	0.5136
17	45.26	2,048	0.001609	5.064	6.200	161.3	197.5	0.8187
18	40.30	1,624	0.001276	6.385	4.917	203.4	156.6	1.299
19	35.89	1,288	0.001012	8.051	3.899	256.5	124.2	2.065
20	31.96	1,022	0.0008023	10.15	3.092	323.4	98.50	3.283
21	28.46	810.1	0.0006363	12.80	2.452	407.8	78.11	5.221
22	25.35	642.4	0.0005048	16.14	1.945	514.2	61.95	8.301
23	22.57	509.5	0.0004002	20.36	1.542	648.4	49.13	13.20
24	20.10	404.0	0.0003173	25.67	1.223	817.7	38.96	20.99
25	17.90	320.4	0.0002517	32.37	0.9499	1,031,0	30.90	33.37
26	15.94	254.1	0.0001996	40.81	0.7692	1,300	24.50	53.06
27	14.20	201.5	0.0001583	51.47	0.6100	1,639	19.43	84.37
28	12.64	159.8	0.0001255	64.90	0.4237	2,067	15.41	134.2
29	11.26	126.7	0.00009953	81.83	0.3836	2,607	12.22	213.3
30	10.03	100.5	C.00007894	103.2	0.3042	3,287	9.691	339.2
31	8.928	79.70	0.00006260	130.1	0.2413	4,145	7.685	539.3
32	7.950	63.21	0.00004964	164.1	0.1913	5,227	6.095	857.6
33	7.080	50.13	0.00003937	206.9	0.1517	6,591	4.833	1,364
34	6.305	39.75	$0.000 \cap 3122$	260.9	0.1203	8,310	3.833	2,168
35	5.615	31.52	0.00002476	329.0	0.09542	10,480	3.040	3,448
36	5,000	25.00	C.00001984	414.8	0.07568	13,210	2.411	5,482
37	4.453	19.83	0.00001557	523.1	0.06001	16,660	1.912	8,717
38	3.965	15.72	0.00001235	659.6	0.04759	21,010	1.516	13,860
39	3.531	12.47	0.000009793	831.8	0.03774	26,500	1.202	22,040
40	3.145	9.888	0.000007766	1049.0	0.02993	33,410	0.9534	35,040

Temperature coefficient of resistance: The resistance of a conductor at temperature t in degrees centigrade is given by
$R_{i}=R_{20}\left[1+a_{20}(\%-201]\right.$
where R_{20} is the resistance of 20 degrees centigrade and a_{20} is the temperature coefficient of resistance at 20 degrees centigrade. For copper, $a_{00}=0.00393$. That is, the resistance of a copper conductor increases approximately $4 / 10$ of 1 percent per degree centigrode rise in temperature.

Bare solid copper-hard-drawn (B \& S)*

AWG B 5 gauge	wire diameter in inches	breaking load in pounds	tensila sfrength in Ibs/in ${ }^{2}$	waight		moximum resistance (ohms per 1000 feet of $68^{\circ} \mathrm{F}$)	cross-sectional orea	
				$\begin{aligned} & \text { pounds } \\ & \text { per } \\ & 1000 \text { feef } \end{aligned}$	pounds per mile		circular mils	square inches
- 4/0	0.4600	8143	49,000	640.5	3382	0.05045	211,600	0.1662
3/0	0.4096	6722	51,000	507.9	2682	0.06361	167,800	0.1318
2/0	0.3648	5519	52,800	402.8	2127	0.06021	133,100	0.1045
1/0	0.3249	4517	54,500	319.5	1687	c. 1011	105,500	0.08289
1	0.2893	3688	56,100	253.3	1338	0.1287	83,690	0.06573
2	0.2576	3003	57,600	200.9	1061	0.1625	66,370	0.05213
3	0.2294	2439	54,000	159.3	841.2	0.2049	52,630	0.04134
4	0.2043	1970	60,100	126.4	667.1	0.2584	41,740	0.03278
5	0.1819	1591	61,200	100.2	529.1	0.3258	33,100	0.02800
-	0.1650	1326	62,000	82.41	435.1	0.3961	27,225	0.02138
6	0.1620	1280	62,100	79.46	419.6	0.4108	26,250	0.02052
7	0.1443	1030	63,000	63.02	332.7	0.5181	20,820	0.01635
$\bar{\square}$	0.1340	894.0	53,400	54.35	287.0	0.6006	17,956	0.01410
8	0.1285	826.0	63,700	49.97	263.9	0.6533	16,510	0.01297
9	0.1144	661.2	64,300	39.63	209.3	0.8238	13,090	0.01028
\square	0.1040	550.4	64.800	32.74	172.9	0.9971	10,816	0.008495
10	0.1019	529.2	64,900	31.43	165.9	1.039	10,390	0.038155
11	0.09074	422.9	65,400	24.92	131.6	1.310	8,234	0.006467
12	0.08081	337.0	65,700	19.77	104.4	1.652	6,530	0.005129
13	0.07196	268.0	65,900	15.68	82.77	2.083	5,178	0.004067
14	0.06408	213.5	66,200	12.43	65.64	2.626	4,107	0.003225
15	0.05707	169.8	66,400	9.858	52.05	3.312	3,257	0.002558
16	0.05082	135.1	66,600	7.818	41.28	4.176	2,533	0.002028
17	0.04526	107.5	66,800	6,200	32.74	5.256	2,048	0.001699
18	0.04030	85.47	67,000	4.917	25.96	6.640	1,624	0.001276

*Caurtesy of Copperweld Steel Co., Glassport, Pa. Based on ASA Specificarion H-4.2 and ASTM Specification B-I.

Modulus of elasiticity is $17,000,000 \mathrm{lbs}^{\prime} /$ Inch2. Coefficient of linear expansion is $0.0000094 / \mathrm{degree}$ Fohrenheit,
Weights are based on a density of 8.89 grams/ cm^{2} at 20 degroes centigrode lequivalent to 0.00302699 lbs/circular mil/ic00 feen).
The resistances are maximum values for hard-drown copper and are bosed on a resigtivity of $10.674 \mathrm{ohms} / \mathrm{cli}$ cular-mil lojt at 20 dejrees centigrade 177.16 percent conductivityl for sizes 0.325 inch and larger, and 10.785 ohms/circulormil foot at 20 degrees centigrade 196.16 percent conductivity) for sizes 0.324 inch and smoller.

Tensile strength of copper wire ($\mathrm{B} \& \mathrm{~S}$)*

AWG BES gauge	wise diameter in inches	herd drawn		medium-hard drawn		soft or annealed	
		minimum tensife strangth lbs $/ \mathrm{In}^{2}$	breaking lood in pounds	```minimum Iensile strengih lbs/in}\mp@subsup{}{}{2```	breaking Jood in pounds	maximum Iensile strength lbs/in ${ }^{2}$	breaking laced in pounds
$\begin{aligned} & 1 \\ & 2 \\ & 3 \end{aligned}$	0.2893 0.2576 0.2294	56,100 57,600 59,000	$\begin{aligned} & 3688 \\ & 3023 \\ & 2439 \end{aligned}$	46,000 47,000 48,000	$\begin{aligned} & 3024 \\ & 2450 \\ & 1984 \end{aligned}$	37,000 37,000 37,000	$\begin{aligned} & 2432 \\ & 1929 \\ & 1530 \end{aligned}$
4 5	0.2043 0.1819 0.1650	60,100 61,250 62,000	$\begin{aligned} & 1970 \\ & 1591 \\ & 1326 \end{aligned}$	$\begin{array}{r} 48,330 \\ 48,660 \end{array}$	$\begin{aligned} & 1584 \\ & 1265 \end{aligned}$	37,000 37,000 \qquad	$\begin{aligned} & 1213 \\ & 961.9 \end{aligned}$
6	0.1620 0.1443 0.1340	62,100 63,000 63,400	$\begin{gathered} 1280 \\ 1030 \\ 894.0 \end{gathered}$	$\begin{aligned} & 49,000 \\ & 49,330 \end{aligned}$	1010 806.6	$\begin{aligned} & 37,000 \\ & 37,000 \end{aligned}$	$\begin{aligned} & 762.9 \\ & 605.0 \end{aligned}$
8	$\begin{aligned} & 0.1285 \\ & 0.1144 \\ & 0.1040 \end{aligned}$	$\begin{aligned} & 63,700 \\ & 64,300 \\ & 64,800 \end{aligned}$	$\begin{aligned} & 826.0 \\ & 661.2 \\ & 550.4 \end{aligned}$	49,660 50,070	$\begin{aligned} & 643.9 \\ & 514.2 \end{aligned}$ -	$\begin{aligned} & 37,000 \\ & 37,000 \end{aligned}$	479.8 380.5
10 11 12	0.1019 0.09074 0.08081	64,900 65,400 65,700	$\begin{aligned} & 529.2 \\ & 422.9 \\ & 337.0 \end{aligned}$	50,330 50,660 51,000	$\begin{aligned} & 410.4 \\ & 327.6 \\ & 261.6 \end{aligned}$	38,500 38,500 38,500	$\begin{aligned} & 314.0 \\ & 249.0 \\ & 197.5 \end{aligned}$

[^3]Solid copperweld (B \& S)

AWG B \& 5 gouge	diom inch	cross-sectional oreo		weight			$\begin{gathered} \text { resistonce } \\ \text { ohms } / 1000 \mathrm{ft} \text { ot } 68^{\circ} \mathrm{F} \end{gathered}$		breoklng lood, pounds		attenuation in decibels/mile				choracteristic impedance*	
				$\begin{gathered} \text { pounds } \\ \text { per } \\ 1000 \\ \text { foet } \\ \hline \end{gathered}$		$\begin{gathered} \text { feet } \\ \text { per } \\ \text { pound } \end{gathered}$										
		circulor mils	square Inch				$\begin{gathered} 40 \mathrm{C} \\ \text { conduct } \end{gathered}$	30 conduct	40 conduct	30° conduct	40', cond		30c cand		$\begin{aligned} & 40 \% \\ & \text { cond } \end{aligned}$	$\begin{aligned} & 30 \% \\ & \text { cand } \end{aligned}$
											dry	wet	dry	we!		
4	. 2043	41,740	. 03278	115.8	611.6	8.63										
5	. 1819	33,100	. 02600	91.86	485.0	10.89	0.6337 0.7990	0.8447	3,541	3,934			-			
6	. 1620	26,250	. 02062	72.85	384.6	13.73	0.6390 1.008	1.065 1.343	2,938 2.433	3,250	$\overline{078}$	-	-	-	-	-
7	. 1443	20,820	. 01635	57.77	305.0	17.31	1.270	1.343	2.433 2.011	2,680 2,207	. 078	. 086	. 103	. 109	650	688
8	. 1285	16,510	. 01297	45.81	241.9	21.83	1.602	1.694 2.136	2,011	2,207 1.815	. 093	. 100	. 122	. 127	685	732
9	. 1144	13,090	. 01028	36.33	191.8	27.52	2.020	2.136 2.693	1,660 1,368	1.815	. 111	. 118	. 144	. 149	727	787
10	. 1019	10,380	. 008155	28.81	152.1	34.70	2.547	2.693 3.396	1,368 1,130	1,491	. 132	. 138	. 169	. 174	776	852
11	. 0907	8,234	. 006467	22.85	120.6	43.76	2.547 3.212	3.396 4.28	1,130 896	$\begin{array}{r}1.231 \\ \hline 975\end{array}$.156 .183	. 161	. 196	. 200	834	920
12	. 0808	6,530	. 005129	18.12	95.68	55.19	4.05	4.28 5.40	896 711	975 770	. 183	. 188	.228	. 233	910	1,013
13	. 0720	5,178	. 004067	14.37	75.88	69.59	5.11	6.401	711	770 530				. 266	1,000	1,120
14	. 0641	4.107	. 003225	11.40	60.17	87.75	6.44	6.81 8.59	490	530 440						
15 16	. 0571	3.257	. 002558	9.038	47.72	110.6	6.44 8.12	8.59 10.83	400 300	440 330						
16	. 0508	2,583	. 002028	7.167	37.84	139.5	8.12 10.24	10.83 13.65	300	330 270						
17	. 0453	2,048	. 001609	5.684	30.01	175.9	12.91	17.22	$\stackrel{185}{185}$	270						
18 19	. 0403	1,624	. 001276	4.507	23.80	221.9	16.28	21.71	185 153	205 170						
19	. 0359	1,288	. 0101012	3.575	18.87	279.8	20.53	27.37	153	170 135						
20	.0320 .0285	1,022 810.1	. 00188023	2.835	14.97	352.8	258 ?	34.52	100	110						
22	. 0253	642.5	. 0005046	2.248 1.783	11.87 9.413	444.8 560.9	32.65	43.52	73.2	81.1						
23	. 02226	509.5	. 0004002	1.414	9.413 7.465	560.9	41.17	54.88	58.0	64.3						
24	. 0201	404.0	. 0003173	1.121	7.465	707.3 891.9	51.92 65.46	69.21 87.27	46.0	51.0						
25	. 0179	320.4	. 0002517	0.869	4.695	1,125	65.46 82.55	87.27 1100	36.5	40.4						
26	. 0159	254.1	. 0001996	0.705	3.723	1,418	82.55 104.1	138.8	28.9 230	32.1						
27	. 0142	201.5	. 0001583	0.559	2.953	1,788	131.3	138.8 175.0	23.0 18.2	25.4 20.1						
28 29	.0126 .0113	159.8	. 0001255	0.443	2.342	2,255	165.5	220.6	14.4	15.9						
30	. 0100	126.7	.0060995 .0000789	0.352	1.857	2,843	208.7	278.2	11.4	12.6						
31	. 0089	79.70	. 00000626	0.279 0.221	1.473 1.168	3,586 4.521	263.2	350.8	9.08	10.0						
32	. 0080	63.21	. 0000496	0.221	1.168 0.926	4,521 5,701	331.9	442.4	7.20	7.95						
33	. 0071	50.13	. 0000394	0.139	0.734	7.189	418.5 527.7	557.8	5.71	6.30						
34	. 0063	39.75	. 0000312	0.110	0.582	9,065	527.7 665.4	703.4	4.53	5.00						
35	.co56	31.52	. 0000248	0.087	0.462	11,430	683.4 839.0	1,119	3.59 2.85	3.97 3.14						
36	. 0050	25.00	. 0000196	0.069	0.366	14,410	1,058 ${ }^{839.0}$	1,119 1,410	2.85 2.26	3.14 2.49						
37 38	. 0045	19.83	. 00000156	0.055	0.290	18,180	1,334	1,778	2.26 1.79	2.49 1.98						
38 39	. 0040	15.72	. 0000123	0.044	0.230	22,920	1,682	2,243	1.42	1.98 1.57						
40	. 0083	12.47 9.89	. 000000979	0.035	0.183	28,900	2,121	2,828	1.13	1.24						
DP insulators, 12-inch wire spacing at $1000 \mathrm{cycles} / \mathrm{second}$							2,675	3,566	0.893	0.986						

Physical properties of various wires*

property		copper		aluminum 99 percent pure
		annealed	hapd-drawn	
Conduerivity, Matthiessen's standard in percent Ohms $/ \mathrm{mil}$ foot at $68^{\circ} \mathrm{F}=20^{\circ} \mathrm{C}$ Circutor-mil-ohms/mile at $68^{\circ} \mathrm{F}=20^{\circ} \mathrm{C}$		$\begin{gathered} 99 \text { to } 102 \\ 10.36 \\ 54,600 \end{gathered}$	$\begin{gathered} 961099 \\ 10.57 \\ 55,700 \end{gathered}$	$\begin{gathered} 611063 \\ 16.7 \\ 88,200 \end{gathered}$
Pcunds/mile-o Meon temp co Mean lemp co	$38^{\circ} \mathrm{F}=20^{\circ} \mathrm{C}$ of resistivity $/{ }^{\circ} \mathrm{F}$ af resisfivity $/{ }^{\circ} \mathrm{C}$	$\begin{aligned} & 875 \\ & 0.00233 \\ & 0.0042 \end{aligned}$	$\begin{aligned} & 896 \\ & 0.00233 \\ & 0.0042 \end{aligned}$	$\begin{aligned} & \quad 424 \\ & 0.0022 \\ & 0.0040 \end{aligned}$
Mean specific Pounds/1000 f Weight in pou	cular mil h^{3}	$\begin{aligned} & 8.89 \\ & 0.003027 \\ & 0320 \end{aligned}$	$\begin{aligned} & 8.94 \\ & 0.003049 \\ & 0.322 \end{aligned}$	$\begin{aligned} & 2.68 \\ & 0.000909 \\ & 0.0967 \end{aligned}$
Mean specific Mean melting Mean melting	$\begin{aligned} & \circ \mathrm{F} \\ & { }^{\circ} \mathrm{C} \end{aligned}$	$\begin{array}{r} 0.093 \\ 2,012 \\ 1,100 \end{array}$	$\begin{array}{r} 0.093 \\ 2,012 \\ 1,100 \end{array}$	$\begin{array}{r} 0.214 \\ 1,157 \\ 625 \end{array}$
Mean coaffici Mean coeffict	inear expansion $/{ }^{\circ} \mathrm{F}$ ineap expansion $/{ }^{\circ} \mathrm{C}$	$\begin{aligned} & 0.00000950 \\ & 0.0000171 \end{aligned}$	$\begin{aligned} & 0.00000950 \\ & 0.0000171 \end{aligned}$	$\begin{aligned} & 0.00001285 \\ & 0.0000231 \end{aligned}$
Solid wire $\binom{\text { Volues in }}{\text { pounds } / \mathrm{in}^{2}}$	Ultimate tensile strength Average tensile strength Elostic limit Average elastic limit Modulus of elasticity Average modulus of elasticity	$\begin{gathered} 30,000 \text { to } 42,000 \\ 32,000 \\ 6,000 \text { to } 16,000 \\ 15,000 \\ 7,000,000 \text { to } \\ 17,000,000 \\ 12,000,000 \end{gathered}$	$\begin{gathered} 45,000 \text { to } 68,000 \\ 60,000 \\ 25,000 \text { to } 45,000 \\ 30,000 \\ 13,000,000 \text { to } \\ 18,00,000 \\ 16,000,000 \end{gathered}$	$\begin{gathered} 20,0001035,000 \\ 24,000 \\ 14,000 \\ 14,000 \\ 8,500,000 \text { to } \\ 11,500,000 \\ 9,000,000 \end{gathered}$
Concentric strand $\binom{\text { Values in }}{\text { pounds } / \mathrm{in}^{2}}$	Tensile strength Average tensile strength Elastic !imit Average elastic limil Modulus of elaspicity	$\begin{gathered} 29,000 \text { 10 } 37,000 \\ 35,000 \\ 5,800 \text { to } 14,800 \\ 5,000,000 \text { to } \\ 12,000,000 \end{gathered}$	$\begin{gathered} 43,000 \text { 10 } 85,000 \\ 54,000 \\ 23,000 \text { to } 42,000 \\ 27,000 \\ 12,000,000 \end{gathered}$	$\begin{gathered} 25,800 \\ \underline{13,800} \\ \text { Aporox } \\ 10,000,000 \end{gathered}$

-Reprinted by permission from "Transmission Towers," American Bridge Company, Pitrsburgh, Pa.: 1925; p. 169.
Stranded copper conductors (B \& S)*

circular mils	AWG BES gauge	$\begin{aligned} & \text { number } \\ & \text { of } \\ & \text { wires } \end{aligned}$	individual wire diom in inches	cable diam Inches	area square inches	woight lbs per $1000 \mathrm{H}$	weight Ibs per mile	$\begin{aligned} & \text { Fmaximum } \\ & \text { resistance } \\ & \text { ohms } / 1000 \mathrm{ft} \\ & \text { of } 20^{\circ} \mathrm{C} \\ & \hline \end{aligned}$
$\begin{aligned} & 211,600 \\ & 167,800 \\ & 133,100 \end{aligned}$	$\begin{aligned} & 4 / 0 \\ & 3 / 0 \\ & 2 / 0 \end{aligned}$	$\begin{aligned} & 19 \\ & 19 \\ & 19 \end{aligned}$	$\begin{aligned} & 0.1055 \\ & 0.0940 \\ & 0.0837 \end{aligned}$	$\begin{aligned} & 0.528 \\ & 0.470 \\ & 0.419 \end{aligned}$	$\begin{aligned} & 0.1662 \\ & 0.1318 \\ & 0.1045 \end{aligned}$	$\begin{aligned} & 653.3 \\ & 518.1 \\ & 410.9 \end{aligned}$	$\begin{aligned} & 3,450 \\ & 2,736 \\ & 2,170 \end{aligned}$	0.05093 0.06422 0.08097
$\begin{array}{r} 105,500 \\ 83,690 \\ 66,370 \end{array}$	$1 / 0$ 1 2	$\begin{array}{r} 19 \\ 19 \\ 7 \end{array}$	$\begin{aligned} & 0.0745 \\ & 0.0864 \\ & 0.0974 \end{aligned}$	$\begin{aligned} & 0.373 \\ & 0.332 \\ & 0.292 \end{aligned}$	0.08286 0.08573 0.05213	$\begin{aligned} & 325.7 \\ & 258.4 \\ & 204.9 \end{aligned}$	$\begin{aligned} & 1,720 \\ & 1,364 \\ & 1,082 \end{aligned}$	0.1022 0.1288 0.1624
52,640 41,740 33,100	3 4 5	7 7 7	$\begin{aligned} & 0.0867 \\ & 0.0772 \\ & 0.0688 \end{aligned}$	$\begin{aligned} & 0.260 \\ & 0.232 \\ & 0.206 \end{aligned}$	$\begin{aligned} & 0.04134 \\ & 0.03278 \\ & 0.02600 \end{aligned}$	$\begin{aligned} & 162.5 \\ & 128.9 \\ & 102.2 \end{aligned}$	$\begin{aligned} & 858.0 \\ & 680.5 \\ & 539.6 \end{aligned}$	$\begin{aligned} & 0.2048 \\ & 0.2582 \\ & 0.3256 \end{aligned}$
26,250 20,820 16,510	$\begin{aligned} & 6 \\ & 7 \\ & 8 \end{aligned}$	7 7 7	0.0812 0.0545 0.0486	$\begin{aligned} & 0.184 \\ & 0.164 \\ & 0.146 \end{aligned}$	0.02062 0.01635 0.01297	$\begin{aligned} & 81.05 \\ & 64.28 \\ & 50.98 \end{aligned}$	$\begin{aligned} & 427.9 \\ & 339.4 \\ & 269.1 \end{aligned}$	$\begin{aligned} & 0.4105 \\ & 0.5176 \\ & 0.6528 \end{aligned}$
$\begin{aligned} & 13,090 \\ & 10,380 \end{aligned}$	9 10	7	$\begin{aligned} & 0.0432 \\ & 0.0385 \end{aligned}$	$\begin{aligned} & 0.130 \\ & 0.116 \end{aligned}$	$\begin{aligned} & 0.01028 \\ & 0.008152 \end{aligned}$	$\begin{aligned} & 40.42 \\ & 32.05 \end{aligned}$	$\begin{aligned} & 213.4 \\ & 169.2 \end{aligned}$	$\begin{aligned} & 0.8233 \\ & 1.038 \end{aligned}$
$\begin{aligned} & 6,530 \\ & 4,107 \\ & 2,583 \end{aligned}$	12 14 16	7 7 7	$\begin{aligned} & 0.0305 \\ & 0.0242 \\ & c .0192 \end{aligned}$	0.0915 0.0726 0.0576	$\begin{aligned} & 0.005129 \\ & 0.003226 \\ & 0.002029 \end{aligned}$	$\begin{aligned} & 20.16 \\ & 12.68 \\ & 7.975 \end{aligned}$	106.5 66.95 4211	$\begin{aligned} & 1.650 \\ & 2.624 \\ & 4.172 \end{aligned}$
1,624 1,022	18	7	0.0152 0.0121	$\begin{aligned} & 0.0456 \\ & 0.0363 \end{aligned}$	$\begin{aligned} & 0.001275 \\ & 0.008027 \end{aligned}$	$\begin{aligned} & 5.014 \\ & 3.155 \end{aligned}$	$\begin{aligned} & 26.47 \\ & 16.66 \end{aligned}$	$\begin{aligned} & 6.636 \\ & 10.54 \end{aligned}$

* The resistance values in this table are trade maxima for soft or annealed copper wire and are higher than the average values for commercial cable. The following values for the conductivity and resistivity of copper at 20 degrees centigrade were used:

Conduetivity in terms of International Annaaled Copper Standard: 98.16 percent
Rosistivity in pounds par mile-ohm:
891.58

The resistance of hard-drown copper is slightly greater than the values given, being about 2 percent to 3 percent greater for sizes from $4 / 0$ to 20 AWG.

$\begin{aligned} & \text { iron } \\ & (E x B B) \end{aligned}$	steel （Siemens－ Martin）	crueible sleel，high strength	plow steel， extra－high strength	copper－elod	
				30\％cond	40\％cond
$\begin{gathered} 16.8 \\ 82.9 \\ 332,000 \end{gathered}$	$\begin{gathered} 8.7 \\ 119.7 \\ 632,000 \end{gathered}$	122.5 647，000	$\begin{gathered} 125.0 \\ 660,000 \end{gathered}$	$\begin{aligned} & 29.4 \\ & 35.5 \\ & 187,000 \end{aligned}$	$\begin{aligned} & 39.0 \\ & 26.6 \\ & 140,000 \end{aligned}$
4，700 0.0028 0.0050	$\begin{aligned} & 8,900 \\ & 0.00278 \\ & 0.00501 \end{aligned}$	$\begin{array}{r} 9,100 \\ 0.00278 \\ 0.00501 \end{array}$	$\begin{aligned} & 9,300 \\ & 0.00278 \\ & 0.00501 \end{aligned}$	$\begin{array}{r} 2.775 \\ 0.0024 \\ 0.0044 \end{array}$	$\begin{array}{r} 2.075 \\ 0 . \overline{0041} \end{array}$
$\begin{aligned} & 7.77 \\ & 0.002652 \\ & 0.282 \end{aligned}$	$\begin{aligned} & 7.85 \\ & 0.002671 \\ & 0.283 \end{aligned}$	$\begin{aligned} & 7.85 \\ & 0.283 \end{aligned}$	$\begin{aligned} & 7.85 \\ & 0.283 \end{aligned}$	8.17 0.00281 0.296	8.25 0.0028 I 0.298
0.113 2,975 1,635	$\begin{aligned} & 0.117 \\ & 2,480 \\ & 1,360 \end{aligned}$	－	二	－	－
$\begin{aligned} & 0.00000673 \\ & 0.0000120 \end{aligned}$	$\begin{aligned} & 0.00000662 \\ & 0.0000118 \end{aligned}$	－	－	$\begin{aligned} & 0.0000072 \\ & 0.0000129 \end{aligned}$	$\begin{aligned} & 0.0000072 \\ & 0.0000129 \end{aligned}$
$\begin{gathered} 50,000 \text { 10 } 55,000 \\ 55,000 \\ 25,000 \text { 10 } 30,000 \\ 30,000 \\ 22,000,000 \text { to } \\ 27,000,000 \\ 26,000,000 \end{gathered}$	$\begin{gathered} 70,000 \text { 10 } 80,000 \\ 75,000 \\ 35,000 \text { 10 } 50,000 \\ 38,000 \\ 22,000,000 \text { to } \\ 29,000,000 \\ 29,000,000 \end{gathered}$	$\begin{aligned} & \overline{125,000} \\ & \overline{69}, 000 \\ & 30,000,000 \end{aligned}$	$\begin{gathered} \overline{187,000} \\ \overline{130,000} \\ - \\ 30,000,000 \end{gathered}$	$\begin{array}{r} \overline{60,000} \\ \overline{30,000} \\ 19,000,000 \end{array}$	$\begin{array}{r} \overline{100,000} \\ \overline{50,000} \\ 21,000,000 \end{array}$
二	$\begin{gathered} 74,000+1098,000 \\ 80,000 \\ 37,000 \text { to } 49,000 \\ 40,000 \\ 12,000,000 \end{gathered}$	$\begin{gathered} 85,000 \text { ro } 165,000 \\ 125,000 \\ 70,000 \\ 15,000,000 \end{gathered}$	$\begin{gathered} 140,00010245,000 \\ 180,000 \\ 110,000 \\ 15,000,000 \end{gathered}$	$\begin{gathered} 70,000 \text { to } 97,000 \\ 80,000 \\ = \\ = \end{gathered}$	二

Machine screws

Head styles－method of length measurement

Standard

Dimensions and other data

serew		threads per inch		clearance delil*		lap drill \dagger			head					hex nut			washer		
no	dia	cearst	nne	no	dla	no	diameter		round		$\begin{aligned} & \text { fat } \\ & \text { mox } \\ & \text { OD } \end{aligned}$	filister		$\begin{gathered} \text { aeross } \\ \text { flat } \end{gathered}$	across corner	thickness	OD	10	thickness
							inches	mm	$\max _{\text {OD }}$	max holegh		$\begin{gathered} \max \\ 00 \end{gathered}$	max holght						
0	0.060	-	80	52	0.063	56	0.046	1.1	0.113	0.053	0.119	0.096	0.059	-	-	-	-	-	-
1	0.073	64	72	47	0.078	53	0.059	1.5	0.138	0.061	0.146	0.118	0.070	-	-	-	-	-	-
2	0.086	56	64	42	0.093	50	0.070	1.8	0.162	0.070	0.172	0.140	0.083	0.187	0.217	0.062	1/4	0.105	0.020
3	0.099	48	-	37	0.104	47	0.079	2.0	0.187	0.078	0.199	0.161	0.095	0.187	0.217	0.062	1/4	0.105	0.020
		-	56			45	0.082	2.1											
4	0.112	40	-	31	0.120	43	0.088	2.2	0.211	0.086	c. 225	0.183	0.107	0.250	0.289	0.078	9/32	0.120	0.025
		-	48			42	0.092	2.3											
5	0.125	40	-	29	0.136	38	0.101	2.5	0.236	0.095	0.252	0.205	0.120	0.250	0.289	0.078	3/8	0.140	0.032
		-	44			37	0.103	2.6											
6	0.138	32	-	27	0.144	36	0.108	2.7	0.290	0.103	0.279	0.226	0.132	0.250	0.289	0.078	5/16	0.150	0.026
		-	40			33	0.114	2.9						0.312	0.361	0.109	3/8		0.032
8	0.164	32	-	18	0.169	29	0.134	3.4	0.309	0.119	0.332	0.270	0.156	0.250	0.289	0.078	3/8	0.170	0.032
		-	36			29	0.137	3.5						0.375	0.433	0.125	7/16		0.036
	0.190	24	-	9	0.196	25	0.149	3.8	0.357	0.136	0.385	0.313	0.180	0.312	0.361	0.109	7/16	0.195	0.036
10		-	32			21	0.160	4.0						0.375	0.433	0.125	1/2		0.040
12	0.216	24	-	1	0.228	16	0.175	4.4	0.408	0.152	0.438	0.357	0.205	0.375	0.433	0.125	1/2	0.228	0.060
		-	28			14	0.181	4.6						0.437	0.505	0.125	$9 / 16$		
V/4	0.250	20	-	-	17/64	7	0.201	5.1	0.472	0.174	0.507	0.414	0.237	0.437	0.505	0.125	$9 / 16$		0.040
		-	28			3	0.213	5.4						$\begin{array}{l\|l\|l\|l\|l} 0.500 & 0.577 & 0.156 & 11 / 16 & 0.260 \end{array}$					0.051

All dimensions in inches except where noted.

* Clearance-drill sizes are practical values for use of the onginear or technician doing his own shop work.
\dagger Tap-drill sizes are for use in hand tapping material such as brass or soft steel. For copper, aluminum, or Norway iron, the drill should be a size or two larger diameter than shown. For cast iron and bakelite, or for very thin material, the tap drill should be a size or two smaller diameter than shown.

Commercial insulating materials*

The tables on the following pages give a few of the important electrical and physical properties of insulating or dielectric materials. The dielectric constant and dissipation factor of most materials depend on the frequency and temperature of measurement. For this reason, these properties are given at a number of frequencies, but because of limited space, only the values at room temperature are given. The dissipation factor is defined as the ratio of the energy dissipated to the energy stored in the dielectric per cycle, or as the tangent of the loss angle. For dissipation factors less than 0.1 , the dissipation factor may be considered equal to the power factor of the dielectric, which is the cosine of the phase angle by which the current leads the voltage.
Many of the materials listed are characterized by a peak dissipation factor occurring somewhere in the frequency range, this peak being accompanied by a rapid change in the dielectric constant. These effects are the result of a resonance phenomenon occurring in polar materials. The position of the dissipation-factor peak in the frequency spectrum is very sensitive to temperature. An increase in the temperature increases the frequency at which the peak occurs, as illustrated qualitatively in the sketch at the right. Nonpolar materials have very low losses without a noticeable peak, and the dielectric constant remains essentially unchanged over the frequency range.

logorithmic frequancy

Another effect that contributes to dielectric losses is that of ionic or electronic conduction. This loss, if present, is important usually at the lower end of the frequency range only, and is distinguished by the fact that the dissipation factor varies inversely with frequency. An increase in temperature increases the loss due to ionic conduction because of the increased mobility of the ions.
The data given on dielectric strength are accompanied by the thickness of the specimen tested because the dielectric strength, expressed in volts/mil, varies inversely with the square root of thickness, approximately.
The direct-current volume resistivity of many materials is influenced by changes in temperature or humidity. The values given in the table may be reduced several decades by raising the temperature toward the higher end of the working range of the material, or by raising the relative humidity of the air surrounding the material to above 90 percent.

[^4]Commercial insulating materials cantinued

moterial	composition	${ }_{0}^{\circ} \mathrm{C}$	dielectric constant af						
			(frequancy in cycles/second)						69
			60	10^{3}	10^{8}	10^{3}	$\begin{array}{r} 3 \\ \times 10^{9} \\ \hline \end{array}$	$\begin{array}{r} 2.5 \\ \times 10^{10} \\ \hline \end{array}$	
ceramics			6.14	5.96	5.84	5.75	5.60	5.36	0.017
AlSiMag A-3.5	Magncsium silicate	23	6.14	5.96	5.87	5.75 5.60	5.60	5.36 5.18	0.0022
AlSiMag A-1! 6	Magnesium silicate	25	5.00	5.88	5.70	5.60	5.42	5.18	0.0022 0.012
AdSiMag 211	Magnesium silicato	25	6.00	5.98	5.97	5.06	5.80	-	
AlSiMag 228	Magnesium silicate	25	6.41	6.40	6.36	6.20	5.97	5.83	0.0013
ALSiMag 24:	Magnesium silicate	22	6.32	6.30	6.22	6.10	5.78	5.75	0.0015
Porcelain	Dry process	25	5.5	5.36	5.08	5.04	-	-	0.03
Porcelain	Wet process	25	6.5	6.24	5.87	5.80	-7	-	0.03
Steatite 410		25	5.77	5.77	5.77	5.77	5.7	100	0.0056
TamTicon 1s	Barium titanate*	26	1250	1200	1143	-	600	100	0.0056
TamTicon 13S	Barium-strontium titanate*	27	7600	7500	-	-	-	-	0.0141
TamTicon (!	Calcium titanate	26	108	167.5	167.5	167.5	\cdots	-	0.006
Tannlicon MB	Marnesium titanate	28	13.4	13.4	13.4	13.3	-	-	0.0016
TamTicon's TI Pure 0-600		25	215	209	206.5	205	-	-	0.035
	Titanium dioxide--rutile	23	99	99	\|99	99	-	-	0.0006

glosses									
Corning 001	Soda-potash-lead silicate	24	6.70 6.76	6.63 6.70	6.65	0.38 6.65	6.61	6.81	0.0050
(Gorning 012	Soda-potash-lead silicate Soula-potash-lead silicate	24	6.76 8.10	6.10 8.10	8.08	6.05 8.00	6.62 7.92	0.51	0.0027
Corning 193-1	soda-potash-lcad sulcate								
Sorning 704	Soda-potash-borosilicate	23	4.85	4.82	4.73	4.68	4.67	4.52	0.0055
Corning 705	Soda-potash-borosilicate	25	4.90	4.84	4.78	4.75	4.74	4.64	0.0093
Corning 707	Low-alkali, potash-lithioborosilicate	23	4.00	4.00	4.00	4.00	4.00	3.9	0.0006
	Sods-lend borosilicate	24	4.75	4.70	4.62	4.50	4.40	-	0.0093
	$96 \%{ }^{\text {¢ }}$	20	3.85	3.85	3.85	3.85	3.84	3.82	0.0006
(Sorning 1990	Iron-sealing glase	24	8.41	8.38	8.30	8.20	7.99	7.84	-
Leartz (fused)	$100 \% \mathrm{SiO}_{3}$	25	3.78	3.78	3.78	3.78	3.78	3.78	0.0009

plastics				4.74	4.36	3.0 .7	3.70	3.75	0.08
Rakelite BM1:20	Phenol-formaldehyde	25	4.90	4.84	4.30	4.0.5	3.70	4.5	0.010
Bakelite BM262	Phenol-anilinc-forinaldehy, ${ }^{\text {a }}$, 62% mica	25	4.87 8.6	4.80	4.4	4.60 4.4	3.61	4.5	0.15
Bakclite BT-48-306	100\% phenol-formaldehyde	24	8.6	7.15	5.4	4.4	3.61		
	Urea-formaldehyde, celluluee	27	6.6	6.2	5.65	5.1	4.87	-	
Gatalin 200 base	Phenol-formaldehyde	22	8.8	8.2	7.0		4.89	-	0.05
Cibanate	100\% auiline-formaddehyile	25	3.60	3.58	3.42	3.40	3.40	-	0.0030
DC 2101	Cross-linked organo-siloxane polyner	25	2.9	2.9	2.9	2.9	-	\square	0.0074
Dilectene-100	100\% aniline-formaldehyde	25	3.70	3.68	3.52	3.50	3.44	3.42	0.0033
Durea 1601 natural	Phenul-formaldehyde, 67% mica	26	5.1	4.91	4.60	4.51	4.43	-	0.03
Dures 11863	Therol-anilinefornal lehy le, $43^{\prime \prime}{ }_{0}$ mie ,								
	5\% raise	25	4.80	4.10	4.55	4.48	4.65	-	0.011
Durite 5.50	Phenol-formaldehyde, 65^{-6} mica, f_{0} lubricants	24	5.1	5.03	4.78	4.7\%	4.71	-	0.015
Ethocel Q-180	Ethylcellulose, plasticised	26	2.00	2.85	2.75	2.75	2.72	-	0.0155
	Melamine-formaldehyde, 55\% fillor	26	-	6.09	5.75	5.5	-	-	-
Formica XX	Phenol-formaldehyde, 50% paper laminate	26	5.25	5.15	4.60	4.01	3.57	-	0.025
Formvar E	1'olyvinylformal	26	3.20	3.13	2.92	2.80	3.76	2.7	0.003
Geon 2046	30% polyvinyl-chloride, 30% dioctyl								
treon 2046	phthalate, 6% stabilizer, 5% filler	23	7.5	6.10	3.55	3.00	2.89	-	0.08
Kel-F	Polychlorotrifluoroethylena	25	2.72	2.63	2.82	2.32	2.23	2.28	0.015
Koroseal SCS-243	63.7% polyviayl-chlori.le. 3.1% di-2-ethylhexyl-phthalate, lewd silic ite	27	6.2	5.65	3.60	2.9	2.73	-	0.07
	Chburine-containing allyl resin	25	3.0%	3.00	2.88	2.79	2.77	-	0.011
Kriston Lucite HM-119	Polyinethylmethacrylate	$2: 3$	3.30	2.81	2.63	2.55	3.58	2.57	0.066
Lumarith 22361	Ethylcellulose, 13% plasticizer	24	3.12	3.06	2.92	2.80	2.14	2.65	-

[^5]| dissipation factor of | | | | | dielectric strength in volis $/ \mathrm{mil}$ af $25^{\circ} \mathrm{C}$ | dec volume resistivily in ohm－cm of $25^{\circ} \mathrm{C}$ | thermal ex－ pansion （linear）in parts／$/{ }^{\circ} \mathrm{C}$ | softening point in ${ }^{\circ} \mathrm{C}$ | moisture absorp－ fion in percent |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| （frequency in eyelas／zecond） | | | | | | | | | |
| 10^{3} | 10^{8} | 108 | $\begin{array}{r} 3 \\ \times 10^{0} \end{array}$ | $\begin{array}{r} 2.5 \\ \times 10^{10} \end{array}$ | | | | | |
| 0.0100 | 0.0038 | 0.0037 | 0.0041 | 0.0058 | 225 （t） | >104 | 8.7×10^{-0} | 1450 | ＜0．1 |
| 0.0059 | 0.0031 | 0.0016 | 0.0018 | 0.0038 | 240 （ ${ }^{\prime \prime}$ ） | >1014 | 8.9×10^{-6} | 1450 | ＜0．1 |
| 0.0034 | 0.0005 | 0.0001 | 0.0012 | | | >104 | 9.2×10^{-6} | 1350 | 0．1－1 |
| 0.0020 | 0.0012 | 0.0010 | 0.0013 | 0.0942 | － | \bigcirc | $6-8 \times 10^{-8}$ | 1450 | ＜0．05 |
| 0.00045 | 0.00037 | 0.0003 | 0.0006 | 0.0012 | 200 （1） | >104 | 10.5×10^{-6} | 1450 | ＜0．1 |
| 0.0140 | 0.0075 | 0.0078 | | | | | － | | |
| 0.0150 | 0.0090 | 0.0135 | － | － | － | － | － | － | － |
| 0.0030 | 0.0007 | 0.0006 | 0.00089 | － | $\overline{75}$ | － | － | \cdots | |
| 0.0130 | 0.0105 | － | 0.30 | 0.50 | 75 | $10^{12} 10^{18}$ | － | 1400－1430 | 0.1 |
| 0.0169 | － | － | － | － | 75 | $19^{122} 10^{12}$ | － | 1430 | |
| 0.00045 | 0.00032 | 0.008 | － | － | 100 | $10^{12-10^{14}}$ | － | 1510 | ＜0．1 |
| 0.00108 | 0.0007 | 0.0004 | － | － | 100 | $10^{12-10} 10^{4 /}$ | － | 1430 | ＜0．1 |
| 0.0070 | 0.0906 | 0.0020 | － | － | 100 | $10^{12}-10^{44}$ | － | 1510 | 0.1 |
| 0.0002 | 0.0001 | 0.0007 | － | － | － | － | － | － | |

0.00535 0.0030 0.0009	$\begin{aligned} & 0.00165 \\ & 0.0012 \\ & 0.0005 \end{aligned}$	0.0023 0.0018 0.0012	$\begin{aligned} & 0.0060 \\ & 0.0041 \\ & 0.0038 \end{aligned}$	0.0110 0.0127	二	$100 \mathrm{at} 250^{\circ}$ $10^{10} \mathrm{at} \mathrm{25} 250$ $4 \times 10^{\circ} \mathrm{at} 250^{\circ}$	$\begin{gathered} 90 \times 10^{-7} \\ 87 \times 10^{-7} \\ 128 \times 10^{-7} \end{gathered}$	626 630 527	二
0.0031	0.0019	0.0027	0.0044	0.0073		5×10^{9} at 259°	49×10^{-9}	697	
0.0056	0.0327	0.0035	0.0052	0.0083	－	10^{8} at 250°	46×10^{-7}	703	
0.0005	0.0006	0.0012	0.0012	0.0031	－	10^{41} at 250°	31×10^{-7}	716	
0.0012	0.0020	0.0032	0.0051	－	－	6×109 at 250°	36×10^{-7}	756	－
0.0006	0.0006	0.0006	0.0068	0.0013	－	$5 \times 10^{\circ} \mathrm{at} 250^{\circ}$	8×10^{-7}	1450	
0.0004	0.0005	0.0009	0.00109	0.0112	－	10^{10} at 250°	132×10^{-7}	484	Poor
0.00075	0.0002	0.0002	0.00006	0.00025	15，000（1）	$>10^{10}$	5.7×10^{-7}	1667	－

$\begin{aligned} & 0.0220 \\ & 0.0082 \\ & 0.082 \end{aligned}$	$\begin{aligned} & 0.0280 \\ & 0.0055 \\ & 0.0660 \end{aligned}$	$\begin{aligned} & 0.0380 \\ & 0.0057 \\ & 0.077 \end{aligned}$	$\begin{aligned} & 0.0138 \\ & \overline{0.052} \end{aligned}$	$\begin{gathered} 0.0300 \\ 0.0089 \end{gathered}$	$\begin{gathered} 300\left(1^{\prime \prime}\right) \\ 325-375\left(t^{\prime \prime}\right) \\ 277\left(1^{\prime \prime}\right) \end{gathered}$	$\begin{gathered} 1011 \\ 2 \times 10^{14} \end{gathered}$	$\begin{aligned} & 30-40 \times 10^{-6} \\ & 10-20 \times 10^{-6} \\ & 8.3-13 \times 10^{-6} \end{aligned}$	$\mid<135 \text { (distortion) } \mid$ $50 \text { (distortion) }$	$\begin{gathered} <0.6 \\ 0.3 \\ 0.42 \end{gathered}$
$\begin{aligned} & 0.024 \\ & 0.0290 \\ & 0.0041 \end{aligned}$	$\begin{aligned} & \hline 0.027 \\ & 0.050 \\ & 0.0078 \end{aligned}$	$\begin{aligned} & 0.050 \\ & 0 . \overline{0034} \end{aligned}$	$\begin{aligned} & 0.0535 \\ & 0.108 \\ & 0.0029 \end{aligned}$	二	$\begin{gathered} 375\left(0.085^{\prime \prime}\right) \\ 200\left({ }^{\prime \prime}\right) \\ 600\left(\text { IN }^{2}\right. \end{gathered}$	二	$\begin{gathered} 2.6 \times 10^{-6} \\ 7.5-15 \times 10^{-6} \\ 6.49 \times 10^{-6} \end{gathered}$	$\begin{gathered} 152 \text { (distortion) } \\ 40-60\left(\begin{array}{c} \text { (sistortion) } \\ 126 \end{array}\right. \end{gathered}$	$\frac{2}{0.05-0.08}$
$\begin{aligned} & 0.0056 \\ & 0.0032 \\ & 0.021 \end{aligned}$	$\begin{aligned} & 0.0045 \\ & 0.0061 \\ & 0.0080 \end{aligned}$	$\begin{gathered} 0.0045 \\ 0.0033 \\ 0.0064 \end{gathered}$	0.0026 0.0062	0.005	$810(\overline{0.068})$	$>\overline{10}^{16}$	5.4×10^{-5}	$\begin{gathered} >250 \\ 125 \end{gathered}$	$\stackrel{\mathrm{Nil}}{0.06-0.08}$
0.010	0.0052	0.0052	0.0069	－	450 （ ${ }^{\prime \prime}$ ）	4×10^{4}	1.9×10^{-6}	110 （distortion）	0.03
$\begin{aligned} & 0.0104 \\ & 0.0109 \end{aligned}$	$\begin{aligned} & 0.0082 \\ & 0.0109 \end{aligned}$	$\begin{aligned} & 0.0115 \\ & 0.014 \end{aligned}$	$\begin{aligned} & 0.0126 \\ & 0.0169 \end{aligned}$	二	二			71 （distortion）	1.4
$\begin{aligned} & 0.0119 \\ & 0.0165 \\ & 0.01100 \end{aligned}$	$\begin{aligned} & 0.0115 \\ & 0.031 \\ & 0.019 \end{aligned}$	$\begin{aligned} & 0.020 \\ & 0.057 \\ & 0.013 \end{aligned}$	0.060	$0 . \overline{0115}$	$860(\overline{0.034 n})$	$>5 \overline{\times 10}$	$\begin{aligned} & 1.7 \times 10^{-5} \\ & 7.7 \times 10^{-6} \end{aligned}$	$\overline{\overline{190}}$	$\frac{0.6}{1.3}$
$\begin{aligned} & 0.110 \\ & 0.0270 \end{aligned}$	$\begin{aligned} & 0.089 \\ & 0.0082 \end{aligned}$	0.030	$\begin{aligned} & 0.0116 \\ & 0.028 \end{aligned}$	$0 . \overline{0053}$	400 （0．075 ${ }^{\text {f }}$ ）	$\begin{gathered} 8 \times 1014 \\ 10^{18} \end{gathered}$	二	60 （staple）	0.5
0.100	0.093	0.030	0.0112	－	－	－－	－	－	－
0.0110	0.0086 0.0145	0.0043 0.0017	0.0023 0.0051	$0 . \overline{0032}$	990 （0．030 ${ }^{-}$）	$>5 \overline{1010}{ }^{18}$	$11-1 \overline{1} \times 10^{-5}$	72 （listortion）	$\overline{0.4}$
0.0048	0.0115	0.0130	0.0196	0.630	$522\left({ }^{\prime \prime}\right)$	5×10^{16}		51 （distortion）	1.50

50

Commercial insulating materials

materlal	composition	${ }^{\circ} \mathrm{C}$	diefectrle constant ef						60
				（fre	ne	n	／s		
			60	10^{3}	10^{4}	10^{9}	$\begin{array}{r} 3 \\ \times 10 \\ \hline \end{array}$	$\begin{array}{r} 2.5 \\ \times 10^{10} \\ \hline \end{array}$	
Melmac resin 592 Micarta 254	Melamine－formaldehyde，mineral filler Cresylic acid－formadehyde， 50% a－cellulose Polyhexamethylene－adipamide	$\begin{aligned} & 27 \\ & 25 \\ & 25 \end{aligned}$	$\begin{aligned} & 8.0 \\ & 5.45 \\ & 3.7 \end{aligned}$	$\begin{aligned} & 6.25 \\ & 4.95 \\ & 3.50 \end{aligned}$	5.20	4.70	4.67	－	0.08
					4.51	3.85	3.43	3.21	0.098
Nylon 610					3.14	3.0 3.0	2.84	2.73	0.018
Piccolastic D－125	Methylatrycne－styrene copolymer Polymethylmethacrylate 1\％antioxidant	25	2.58	2.58	2.58	2.88	2.55	－	0.0002
Plexiglass		27	3.45	3.12	2.76	2.70	2.80	－	0.064
Polycthylene DE－3401		25	2.26	2.26	2.26	2.20	2.26	2.26	<0.0002
Polyisobutylene Polyatyrene	58.1% poly－2，5 dichlorostyrene， $\mathbf{4 1 . 9 \%}$ TiO_{2}	$\begin{aligned} & 25 \\ & 25 \\ & 23 \end{aligned}$	2.23	2.23	2.23	2.23	2.23	－	0.0004
			2.56	2.56	2.56	2.55	2.55	2.54	<0.00005
			5.30	5.30	5.30	5.30	5.30	5.30	0.0032
Pyralin	$34.7 \mathrm{C}_{\circ}^{\circ}$ poly－2，5 cichlorostyrene， 63.3 Co TiO_{2} 18．6 poly－2，5 dichlorostyrene， 81.4% TiO_{2} Cellulose－nitrate，25\％\％camphor	$\begin{aligned} & 24 \\ & 23 \\ & 27 \end{aligned}$	10.2	10.2	10.2	10.2	10.2	10.2	0.0018
			23.7	23.4	23.0	23.0	23.0	23.0	0.006
			11.4	8.4	6.6	5.2	3.74	－	2.0
Resinox L．8241	Phenol－formaldehyde 71 rob mica Phenol－aniline－formaldchyde， 58% n．ica， 2% misc Dihydronaphthalene tetramer	$\begin{aligned} & 24 \\ & 25 \\ & 24 \end{aligned}$	$\begin{aligned} & 4.66 \\ & 4.72 \\ & 2.7 \end{aligned}$	$\begin{aligned} & 4.64 \\ & 4.55 \\ & 2.7 \end{aligned}$	4.64	4.62	4.60	－	0.006
Resinox 7013					4.37	4.30	4.27	－	0.017
RII－35 reain					2.7	2.7	2.63	－	0.0009
Saran B－115	Vinylidene－vinyl chloride copolymer Foamed polystyrene， 0.25% filler Polytetraluoroethylene	$\begin{aligned} & 23 \\ & 25 \\ & 22 \end{aligned}$	$\begin{aligned} & 5.0 \\ & 1.03 \\ & 2.1 \end{aligned}$	$\begin{aligned} & 4.65 \\ & 1.03 \\ & 2.1 \end{aligned}$	$\begin{aligned} & 3.18 \\ & 1.03 \\ & 2.1 \end{aligned}$	2.82	2.711.03	1.03	$\begin{gathered} 0.042 \\ <0.0002 \\ <0.0005 \end{gathered}$
Styrofoam 103.7						－			
Teflon						2.1	2.1	2.08	
Tenite I（008A，H4） Tcivite II（205A，H4） Textolite 1422	Cellulose acetate，plasticized Celiulose acetobutyrate，plasticized Croso－linked polystyrcne	$\begin{aligned} & 26 \\ & 26 \\ & 25 \end{aligned}$	4.59	4.483.48	3.90	3.40	3.25	3.11	$\begin{aligned} & 0.0075 \\ & 0.0045 \end{aligned}$
			3.60		3.30	3.08	2.91	－	
			－	－		－	2.53		－
Vibron 140 Vinylite QYNA Vinylite VG5001	Cros－linked polystyrene 100% polyvinyl－chloride 62.5% polyvinyl－chloride－acetate， 20% plasticizer， 8.5% misc	$\begin{aligned} & 25 \\ & 20 \\ & 25 \end{aligned}$	2.593.20	2.59	2.58	2.58	2.582.84	二	$\begin{aligned} & 0.0004 \\ & 0.0115 \end{aligned}$
				3.10	2.88	2.85			
			－	5.5	3.4	3.0	2.88	－	－
Vinylite VG5904	34% polyvinyl－chloride－acetate， 11% plasticizer， 5% misc． Polymer of 95% vinyl－chloride， 5% vinyl－acetate	$\begin{aligned} & 25 \\ & 20 \end{aligned}$		$\begin{aligned} & 7.5 \\ & 3.15 \end{aligned}$	$\begin{aligned} & 4.3 \\ & 2.90 \end{aligned}$	$\begin{aligned} & 3.3 \\ & 2.8 \end{aligned}$	$\begin{aligned} & 2.94 \\ & 2.74 \end{aligned}$		－
Vinylite VYNW									－
erganic liquids									
Aroclor 1254	Chlorinated diphenyls$77.6 c^{\circ}$ parafins， 22.4% naphtheneaCheinically pure，dried	$\begin{aligned} & 25 \\ & 21 \\ & 25 \end{aligned}$	$\begin{aligned} & 5.05 \\ & 2.06 \\ & 2.28 \end{aligned}$	$\begin{aligned} & 5.05 \\ & 2.06 \\ & 2.28 \end{aligned}$	$\begin{aligned} & 4.30 \\ & 2.06 \\ & 2.28 \end{aligned}$	$\begin{aligned} & 2.75 \\ & 2.06 \\ & 2.28 \end{aligned}$	$\begin{aligned} & 2.70 \\ & 2.06 \\ & 2.28 \end{aligned}$	二	$\begin{array}{r} 0.0002 \\ 0.0001 \\ <0.0001 \end{array}$
Bayol－D									
Benzene								2.28	
Cable oil 5314	Aliphatic，aromatic hydrocarbous Absolute	252525	2.25	$\begin{aligned} & 2.25 \\ & 2.17 \end{aligned}$	$\begin{aligned} & 2.25 \\ & 2.17 \end{aligned}$	$\begin{aligned} & 2.25 \\ & 2.17 \end{aligned}$	$\begin{aligned} & 2.22 \\ & 2.17 \\ & 6.5 \end{aligned}$	－	0.0006 0.007 －
Carbon tetracnloride			2.17						
Ethyl alcohol			－	－	24.5	23.7			
Fluorolube	Polychlortrifluorethylene（low mol．wt．） 57.4% perafins， $31.1{ }^{\circ}$ ；naphthencs 60% mon－， 40% di－，trichloronaphthalenes	$\begin{aligned} & 25 \\ & 26 \\ & 25 \end{aligned}$	$\begin{aligned} & 2.84 \\ & 2.17 \\ & 4.80 \end{aligned}$	$\begin{aligned} & 2.84 \\ & 2.17 \\ & 4.77 \end{aligned}$	$\begin{aligned} & 2.84 \\ & 2.17 \\ & 4.77 \end{aligned}$	$\begin{aligned} & 2.57 \\ & 2.17 \end{aligned}$	$\begin{aligned} & 2.16 \\ & 2.17 \\ & 3.44 \end{aligned}$	2.12	$\begin{gathered} 0.0002 \\ <0.0001 \\ 0.30 \end{gathered}$
Fractol A									
Halowax oil 1000									
Ignition－scaling compound 4	Organo－siloxane potymer Clilorinated Indan 72．4\％paraffins， 27.6% naphthenea	252.42.4	$\begin{aligned} & 2.75 \\ & 5.77 \\ & 2.14 \end{aligned}$	$\begin{aligned} & 2.75 \\ & 5.71 \\ & 2.14 \end{aligned}$	$\frac{2.75}{2.14}$	$\frac{2.74}{2.14}$	$\frac{2.65}{2.14}$	二	$\begin{gathered} 0.002 \\ 0.00004 \\ <0.002 \end{gathered}$
IN－420									
Marcol									
Methyl alcohol	Absolute analytical grade 49.4% paraffins， 27.6% naphthenes Chlorinated bensenes，diphenyls	25 24 25	$\begin{aligned} & 2.17 \\ & 4.40 \end{aligned}$	2.17	${ }^{31.17}$	$\begin{gathered} 31.0 \\ 2.17 \end{gathered}$	$\begin{gathered} 23.9 \\ 2.17 \\ 2.84 \end{gathered}$	二	$<0 . \overline{002}$
Primol－D									
Pyranol 1467				4.40	4.40				
Pyranol 1476	Isomerio pentachlorodiphenyls Isomeric trichlorobensenes Mcthyl or ethyl siloxane polymer（1000 cs）	$\begin{aligned} & 26 \\ & 26 \\ & 22 \end{aligned}$	$\begin{aligned} & 5.04 \\ & 4.55 \\ & 2.78 \end{aligned}$	$\begin{aligned} & 5.04 \\ & 4.53 \\ & 2.78 \end{aligned}$	$\begin{aligned} & 3.85 \\ & 4.53 \\ & 2.78 \end{aligned}$	$\stackrel{\rightharpoonup}{4.5}$	$\begin{aligned} & 2.70 \\ & 3.80 \\ & 2.74 \end{aligned}$	－	$\begin{aligned} & 0.02 \\ & 0.0001 \end{aligned}$
Pyranol 1478									
Silicone fluid 200									

distipation foctor at					dielectric strength in volits／mil af $25^{\circ} \mathrm{C}$	dee velume rasistivity in ohmecm of $25^{\circ} \mathrm{C}$	thermal ex－ pansion （hinear）in parts $/{ }^{\circ} \mathrm{C}$	$\begin{gathered} \text { softoning point } \\ \text { in }{ }^{\circ} \mathrm{C} \\ \hline \end{gathered}$	meisture abserp－ tien in percent
（frequency in eycles／second）									
10^{3}	10°	10^{5}	$\times{ }^{3} 0^{0}$	$\begin{array}{r} 2.5 \\ \times 10^{10} \\ \hline \end{array}$					
0.0470	0.0347	0.0360	0.0410	－	450 （3）	3×10^{18}	3.5×10^{-6}	125 （distortion）	0.1
$\begin{aligned} & 0.033 \\ & 0.0186 \end{aligned}$	$\begin{aligned} & 0.036 \\ & 0.0218 \end{aligned}$	$\begin{aligned} & 0.055 \\ & 0.0200 \end{aligned}$	$\begin{aligned} & 0.051 \\ & 0.0117 \end{aligned}$	$\begin{aligned} & 0.038 \\ & 0.0105 \end{aligned}$	$\begin{gathered} 1020\left(0.033^{4}\right) \\ 400\left(\mathbb{1}^{\prime \prime}\right) \end{gathered}$	$\begin{aligned} & 3 \times 11^{18} \\ & 8 \times 10^{14} \end{aligned}$	$\begin{gathered} 3 \times 10^{-8} \\ 10.3 \times 10^{-1} \end{gathered}$	$65(\text { (distartion) }$	$\begin{aligned} & 1.2 \\ & 1.5 \end{aligned}$
$\begin{aligned} & 0.00015 \\ & 0.0465 \\ & <0.0002 \end{aligned}$	$\begin{array}{r} 0.0001 \\ 0.0140 \\ <0.0002 \end{array}$	$\begin{gathered} 0.0003 \\ 0.007 \\ 0.0002 \\ 1 \\ \hline \end{gathered}$	0.0005 0.0057 0.00031	$0 . \overline{0006}$	$\begin{gathered} 990\left(\overline{\left.0.030^{7}\right)}\right. \\ 1200\left(0.033^{\prime}\right) \end{gathered}$	$>\underset{1017}{ }$	$\begin{gathered} 8-9 \times 10^{-5} \\ 10 \times 10^{-5} \\ (\text { varys }) \end{gathered}$	70－75（distortion） 95－105（distortion）	$\begin{gathered} 0.3-0.6 \\ 0.03 \end{gathered}$
$\begin{gathered} 0.0001 \\ <0.00005 \end{gathered}$	$\begin{aligned} & 0.0001 \\ & 0.00007 \end{aligned}$	$\begin{array}{r} 0.0003 \\ <0.0001 \end{array}$	$\begin{aligned} & 0.00047 \\ & 0.00033 \end{aligned}$	$0 . \overline{0012}$	$\begin{aligned} & 600\left(0.010^{\prime \prime}\right) \\ & 500-700\left(1^{\prime \prime}\right) \end{aligned}$	108	$8-8 \times 10^{-6}$	25 （distortion） 82 （distortion）	$\begin{aligned} & \mathrm{L}_{0} \\ & 0.05 \end{aligned}$
0.0021	0.0003	0.0003	0.0008	0.0015	－	－	5.6×10^{-6}	－	－
0.0008	0.0003	0.0003	0.00075	0.002	－	－	3.3×10^{-6}	－	－
$\begin{aligned} & 0.0041 \\ & 0.100 \end{aligned}$	$\begin{aligned} & 0.0012 \\ & 0.064 \end{aligned}$	$\begin{aligned} & 0.0008 \\ & 0.103 \end{aligned}$	$\begin{aligned} & 0.0012 \\ & 0.165 \end{aligned}$	0.002	二	二	$\begin{aligned} & 1.4 \times 10^{-4} \\ & 9.8 \times 10^{-6} \end{aligned}$	二	2.0
0.0040	0.0019	－	0.0042	－	400 （1）	－	－	135 （distortion）	0.03
$\begin{array}{r} 0.0137 \\ <0.0003 \end{array}$	$\begin{array}{r} 0.0062 \\ <0.0002 \end{array}$	$\begin{array}{r} 0.0077 \\ <0.0003 \end{array}$	$\begin{aligned} & 0.0123 \\ & 0.0004 \end{aligned}$	$0 . \overline{0006}$	400 （ ${ }^{\text {² }}$ ）	二	二	$\begin{gathered} >100(\text { distortion) } \\ 100 \end{gathered}$	0．07－0．10
$\begin{gathered} 0.063 \\ <0.0001 \\ <0.0003 \end{gathered}$	$\begin{gathered} 0.057 \\ <0.0002 \\ <0.0002 \end{gathered}$	$\begin{array}{r} 0.0180 \\ <0.0002 \end{array}$	0.0072 0.0001 0.00015	$\overline{\overline{-}}$	$\begin{gathered} 300\left(\mathbf{1}_{\prime \prime}\right) \\ 1000-2000 \\ \left(0.005^{\prime \prime}-0.012^{\prime \prime}\right) \end{gathered}$	10141004 1047	$\begin{aligned} & 15.8 \times 10^{-6} \\ & 9.0 \times 10^{-6} \end{aligned}$	$\begin{gathered} 150 \\ 85 \\ 66 \text { (distortion, } \\ \text { stable to } 300 \text {) } \end{gathered}$	$\begin{aligned} & <_{0.1} \\ & \text { Low } \\ & 0.00 \end{aligned}$
$\begin{aligned} & 0.0175 \\ & 0.0097 \end{aligned}$	$\begin{aligned} & 0.039 \\ & 0.018 \end{aligned}$	$\begin{aligned} & 0.038 \\ & 0.017 \end{aligned}$	$\begin{aligned} & 0.031 \\ & 0.028 \\ & 0.0005 \end{aligned}$	0．030	$\begin{aligned} & 290-000\left(l^{\prime \prime}\right) \\ & 250-400\left(4^{\prime \prime}\right) \end{aligned}$	二	$\begin{gathered} 8-16 \times 10^{-6} \\ 1-17 \times 10^{-6} \\ \hline \end{gathered}$	$\begin{aligned} & 60-121 \\ & 60-121 \end{aligned}$	$\begin{aligned} & 2.9 \\ & 2.3 \end{aligned}$
$\begin{aligned} & 0.0005 \\ & 0.0185 \end{aligned}$	$\begin{aligned} & 0.0016 \\ & 0.0160 \end{aligned}$	$\begin{aligned} & 0.0020 \\ & 0.0081 \end{aligned}$	$\begin{aligned} & 0.0019 \\ & 0.0055 \end{aligned}$	－	400 （\％）	$\overline{104}$	$6.9 \times 10{ }^{-6}$	54 （distortion）	0．05－0．15
0.118	0.074	0.020	0.0106	－	－	－	－	－	－
0.071	0.140	0.067	0.034	－	－	－	－	－	－
0.0165	0.0150	0.0080	0.0059	－	－	－	－	－	－

$\begin{gathered} 0.00035 \\ <0.0001 \\ <0.0001 \end{gathered}$	$\left\lvert\, \begin{gathered} 0.20 \\ <0.0003 \\ <0.0001 \end{gathered}\right.$	$\left\lvert\, \begin{array}{r} 0.0170 \\ 0.00005 \\ <0.0001 \end{array}\right.$	$\left\|\begin{array}{c} 0.0032 \\ 0.00133 \\ <0.0001 \end{array}\right\|$	$<\overline{\overline{0}}$	300 （0．100＇）	二	1×10^{-2}	－26（pour point）	Slight
$\begin{gathered} <0.00004 \\ 0.0008 \\ - \end{gathered}$	$\begin{gathered} 0.0008 \\ <0.00004 \\ 0.090 \end{gathered}$	$<0 . \overline{0002}$	$\begin{aligned} & 0.0018 \\ & 0.0004 \\ & 0.250 \end{aligned}$	－	$300\left(0.100^{\prime \prime}\right)$ -	二	二	-40 （pour point） －	二
$\begin{aligned} & <0.0001 \\ & <0.0001 \\ & 0.0050 \end{aligned}$	$\begin{array}{r} 0.0092 \\ <0.0003 \\ <0.0002 \end{array}$	$\begin{aligned} & 0.060 \\ & 0.0004 \end{aligned}$	$\begin{aligned} & 0.031 \\ & 0.00072 \\ & 0.25 \end{aligned}$	$0 . \overline{0019}$	300 （0．100\％）	二	$\begin{aligned} & 7.06 \times 10^{-0} \\ & 2.1 \times 10^{-4} \end{aligned}$	$\begin{gathered} <-15 \text { (pour point) } \\ -38 \text { (melto) } \\ \hline \end{gathered}$	Slight
$\begin{array}{r} 0.0006 \\ 0.0010 \\ <0.0001 \end{array}$	$\begin{array}{r} 0.0004 \\ <0 . \overline{0002} \end{array}$	0.0015	$\begin{aligned} & 0.0092 \\ & 0.00097 \end{aligned}$	二	$\begin{aligned} & 300\left(0.010^{\prime \prime}\right) \\ & 300\left(0.100^{7}\right) \end{aligned}$	$\begin{gathered} 1 \times 10108 \\ 10^{14} \\ \hline \end{gathered}$	$\begin{aligned} & 63 \times 10^{-6} \\ & 7.5 \times 10^{-4} \end{aligned}$	10 （pour point） -12 （pour point）	Slight
$<\underset{0.0001}{<0 . \overline{0}}$	$\begin{gathered} 0.20 \\ <0.002 \\ 0.0100 \end{gathered}$	$\begin{aligned} & 0.038 \\ & 0.13 \end{aligned}$	0.64 0.00077 0.0116	二	$\stackrel{\bar{\square}}{300(0.100 \%}$	二	$6.91 \times 10 \mathrm{C}$	<-15（pour point）	Slight
0.0006 0.0014 0.00008	$\begin{aligned} & 0.25 \\ & 0.0003 \\ & 0.0003 \end{aligned}$	0.014	$\begin{aligned} & 0.0042 \\ & 0.23 \\ & 0.0096 \end{aligned}$	二	二	二	二	$10 \text { (pour point) }$	－

Commercial insulating materials continued

maferial	composifion	${ }_{0}^{\mathrm{T}}$	dielectric constant of						60
				(frec	uency		/		
			80	10^{3}	10^{*}	10^{8}	$\begin{array}{r} 3 \\ \times 109 \end{array}$	$\begin{array}{r} 2.5 \\ \times 10 \\ \hline \end{array}$	
Silicone fluid 500	Methyl or ethyl siloxane polymer (0.65 cs)	22	2.20	2.20	2.20	2.20	2.20	2.13	<0.001
Sigrene dimer	Monomeric styrene	2522	2.40	2.40	2.72.40	2.7	2.5	-	
Styrcne N-100						2.40	2.40		0.01
Transil oil 10C Vaseline	Alijhatic, aromatic hydrocarbons	$\begin{aligned} & 26 \\ & 25 \end{aligned}$	$\begin{aligned} & 2.22 \\ & 2.16 \end{aligned}$	$\begin{aligned} & 2.22 \\ & 2.16 \end{aligned}$	$\begin{aligned} & 2.22 \\ & 2.16 \end{aligned}$	$\begin{aligned} & 2.20 \\ & 2.16 \end{aligned}$	$\begin{aligned} & 2.18 \\ & 2.16 \end{aligned}$	-	$\begin{aligned} & 0.001 \\ & 0.0004 \end{aligned}$
woxes 0									
Acromax C	Cetylacetamide	24	2.60	2.58	2.54	2.52	2.48	2.44	0.025
Beeswax, yellow		23	2.76	2.73	2.53 2.3	2.45 2.3	2.39 2.25	-	$0 . \overline{0000}$
Ceresin, white	Vegetable and mineral waxes	25	2.3	2.3	2.3	2.3	2.25	-	
Halowax 11-314	Dichloronaphthalenes	23	3.14	3.04	2.98	2.93	2.89	- 81	0.10
Halowax 1001, cold-molded	Tri- and tetrachloronaphthalenea	26	5.45	5.45	5.40	4.2	2.92	2.84	0.002
Opalwax	Mainly 12-hydroxystearin	24	14.2	10.3	3.2	2.7	2.55	2.5	0.12
Parafin wax, 132° ASTM	Mainly C_{32} to C_{29} aliphatic, saturated hydrocarbons	25	2.25	2.25	2.25	2.25	2.25	-	<0.0002
Vistamax	Polybutene	25	2.34	2.34	2.34	2.30	2.27	-	0.0002
rubbers									
GR-I (butyl rubber)	Copolymer of $08-\mathbf{9 9 \%}$ isobutylene, $1-2$ Co $^{\circ}$ isoprene 100 pts polymer, 3 pts sine oxide, 1 pt tuads, 1.5 pts sulfur Styrene-butadienc copolymer, fillers, lubricants, ctc.	$\begin{aligned} & 25 \\ & 25 \\ & 25 \end{aligned}$	2.39	2.38	2.35	2.35	2.35	-	0.0034
GR-I compound			2.43	2.42	2.40	2.39	2.38	-	0.005
GR-S (Buns S) cured			2.86	2.06	2.90	2.82	2.75	-	0.0008
GR-S (Buna S), uncured	Copolymer of 75% butadienc, 25% styrenc Palc crepe	$\begin{aligned} & 20 \\ & 25 \\ & 25 \end{aligned}$	$\begin{aligned} & 2.5 \\ & 2.61 \\ & 2.4 \end{aligned}$	$\begin{aligned} & 2.5 \\ & 2.60 \\ & 2.4 \end{aligned}$	$\begin{aligned} & 2.50 \\ & 2.53 \\ & 2.4 \end{aligned}$	$\begin{aligned} & 2.45 \\ & 2.47 \\ & 2.4 \end{aligned}$	$\begin{aligned} & 2.45 \\ & 2.40 \\ & 2.15 \end{aligned}$	-	$\begin{aligned} & 0.0005 \\ & 0.0005 \\ & 0.0030 \end{aligned}$
Gutta-percha									
Hevea rubber								-	
Hevea rubber, vulcanized	100 pts pale crepe, 6 pts sulfur Cyclized pale creje $38 \mathrm{C} \%$ Gll-M	272724	$\begin{aligned} & 2.94 \\ & 2.48 \\ & 6.7 \end{aligned}$	$\begin{aligned} & 2.94 \\ & 2.48 \\ & 6.60 \end{aligned}$	$\begin{aligned} & 2.74 \\ & 2.48 \\ & 6.26 \end{aligned}$	$\begin{aligned} & 2.42 \\ & 2.44 \\ & 4.5 \end{aligned}$	$\begin{aligned} & 2.36 \\ & 2.37 \\ & 4.00 \end{aligned}$	-	$\begin{aligned} & 0.005 \\ & 0.0021 \\ & 0.018 \end{aligned}$
Marbon \mathbf{B}									
Neoprene compound									
Silatic 120	50% siloxane elantomer, $50 \% \mathrm{TiO}_{3}$ Copolymer of butadicne, styrcne	2523	$\begin{aligned} & 5.78 \\ & 2.4 \end{aligned}$	$\begin{aligned} & 5.76 \\ & 2.4 \end{aligned}$	$\begin{aligned} & 5.75 \\ & 2.4 \end{aligned}$	$\begin{aligned} & 5.75 \\ & 2.4 \end{aligned}$	$\begin{aligned} & 5.73 \\ & 2.4 \end{aligned}$	2.35	$\begin{aligned} & 0.056 \\ & 0.001 \end{aligned}$
Styraloy 22									

woods*									
Balsawrod	-	201	1.4	1.4	1.37	1.301	1.22	-	0.058
Douglan Fir	-	25	2.05	2.00	1.93	1.88	1.58	1.78	0.004
Douglas Fir, plywood	-	25	2.1	2.1	1.90	-	-	1.6	0.012
Mahogany	-	25	2.42	2.40	2.25	2.07	1.88	1.6	0.008
Yellow Birch	-	25	2.9	2.88	2.70	2.47	2.13	1.87	0.007
Yellow Poplar	-	25	1.85	1.79	1.75	-	1.50	1.4	0.004
miscellaneous ${ }^{\text {a }}$									
Amber	Fossil resin	25	2.7	2.7	2.65	-	2.6	-	0.0010
Cenco Sealatix	DeKhotinsky cement	23	3.95	3.75	3.23	-	2.96	-	0.049
Gilsonite	99.9\% natural bitumen	26	2.60	2.66	2.58	2.56	2.56	-	0.006
Shellac (natural XL)	Contains -3.5% wax	28	3.87	3.81	3.47	3.10	2.86	-	0.006
Mycalex 2821	Glass-bonded mica	25	7.50	7.50	7.50	7.45	-	-	-
Ruby mica Paper, Royalgrey Sodium chloride	Muscovite	26	5.4	5.4	5.4	5.4	5.4	-	0.005
	- -	25	3.30	3.29	2.99	2.77	2.70	-	0.010
	Fresh crystals	25	-	5.90	5.90	-	-	-	-
Ice	lirom pure distilled water	-12	-	-	4.15	3.45	3.20	-	-
Snow	Hard-packed snow followed by light rain	-6	-	-	1.55	-	1.5	-	-
Water	Distilled		-	-	78.2	78	76.7	-	-

* field perpendicular to grain.

disslpation factor al					dielectric strength in volis $/ \mathrm{mil}$ at $25^{\circ} \mathrm{C}$	$\begin{aligned} & \text { dec volume } \\ & \text { resistivity in } \\ & \text { ohm-cm of } \\ & 25^{\circ} \mathrm{C} \end{aligned}$	thermal ex－ ponsion （linear）in ports／$/{ }^{\circ} \mathrm{C}$	softening point in ${ }^{\circ} \mathrm{C}$	moisture obsorp tion in percent
（frequency in cycles／second）									
10^{4}	10^{6}	10^{*}	$\begin{array}{r}3 \\ \times 109 \\ \hline\end{array}$	$\begin{array}{r} 2.5 \\ \times 1010 \\ \hline \end{array}$					
<0.00004	<0.0003	0.00014	0.00145	0.0060	250－300（0．100 ${ }^{\prime}$ ）	－	1.308×10^{-3}	－68（melta）	Nil
－$\overline{0} 5$	0.0003	0.0018	0.011	－	－	－$\times 10$	－	－	\bigcirc
0.005	0.0003	－		－	300 （0．100 ${ }^{\prime}$ ）	3×10^{18}	－	－	0.06
＜0．0001	＜0．0005	0.0048	0.0028	－	300 （0．100 ${ }^{\prime \prime}$ ）	－	－	－40（pour point）	－
0.0002	＜0．0001	＜0．0004	0．00066	－		－	－		－

0.0035	0.0010	0.0010	0.0000	－	－	－	－	－	－
0.0060	0．0022	0.0010	0.00093	－	－	－	－	－	－
0.0024	0.0120	0.0080	0.0057	－	870 （0．040＂）	2×10^{15}	－	－	－
0.0009	0.0038	0.0071	0.0044	－	－	－	－	－	－
0.0004	0.0042	0.0120	0.0060	－	－	10^{18}	－	－	－
0.0018	0.0018	0.0050	0.0030	－	－	－	－	－	－
0.0024	0.0446	0.0180	0.0047	－			－	－	－＊
0.0014	0.0009	0.0014	0.0029	－	620 （1）	5×10^{10}	－	40－90	<0.1
0.011	0.038	0.090	0.034	0．025	300 （\％）	$8 \times 1{ }^{14}$	－	－	Nil
0.0030	0.0008	0.0027	0.0254	－	－	－	\cdots	$\bar{\square}$	－
0.60055	0.0012	0.0052	0.0032	0.0018	1070 （0．030 $)$	6×10^{14}	5.9×10^{-6}	125	0．2－0．4

0.0018 $0.0 ; 35$ 0.00355	$\begin{aligned} & 0.0056 \\ & 0.024 \\ & 0.00255 \end{aligned}$	$0 . \overline{0015}$	0.0090 0.021 0.00078	二	$2300\left({ }^{\text {² }}\right.$ ） - -	Very high －	$0^{0.8 \times 10^{-6}}$	$\begin{array}{r} 200 \\ 80-85 \\ 60-65 \end{array}$	二
$\begin{aligned} & 0.0035 \\ & 0.0044 \end{aligned}$	$\begin{aligned} & 0.0016 \\ & 0.031 \end{aligned}$	$\begin{aligned} & 0.0011 \\ & 0.030 \end{aligned}$	$\begin{aligned} & 0.0010 \\ & 0.0254 \end{aligned}$	－	二	1030		$\begin{gathered} 155 \text { (melts) } \\ 80 \end{gathered}$	Low after baking
0.0028	0.0010	0.0009	－	－	－	－	－	－	－
0.0006 $0.00{ }^{-7}$ 0	0.0003 0.038	0.0002 0.066	$\begin{aligned} & 0.0003 \\ & 0.056 \end{aligned}$	二	$\begin{gathered} 118-976\left(0.040^{\prime \prime}\right) \\ 202\left(i^{\prime \prime}\right) \end{gathered}$	5×10^{40}	二	－	二
＜0．0001	＜0．0002			－		－	－	－	－
－	0.12	0.035	0.0009	－	－	－	－	－	－
－	0.29 0.040	$0 . \overline{050}$	0.0009 0.157	－	二	10°	二	二	二

Components

Standards in general

Standardization in the field of components for radio equipment is organized and governed mainly by three cooperating agencies, the Armed Services Electro Standards Agency (ASESAI, which issues Joint Army-Navy (JAN) specifications; the American Standards Association (ASA); and the Radio Manufacturers Association (RMA). Part of the function of these bodies is to set the standards for radio components land equipments, in many cases) with the purpose of providing for interchangeability among different manufacturers' products as to size, performance, and identification; minimum number of sizes and designs; uniform testing of products for acceptance; and minimum manufacturing costs. In this chapter is presented a brief outline of the requirements, characteristics, and designations for the major types of radio components.

Color coding

The color code of Fig. 1 is used as a basis for marking radio components.

Fig. 1-Standard radio-industry color code.

color	significant figure	decimal multiplier	tolerance in percent*	voltage rating	characteristic
Black	0	1	± 20 (M)	-	A
Brown	1	10	-	100	B
Red	2	100	± 2 (G)	200	C
Orange	3	1,000	-	300	D
Yollow	4	10,050	-	400	E
Green	5	100,000	-	500	F
Blue	6	1,000,000	-	600	G
Violot	7	10,000,000	-	700	-
Groy	8	100,000,000	-	800	1
White	9	1,000,000,000	-	900	J
Gold	-	0.1	± 5 (J)	1000	-
Silver	-	0.01	± 10 (K)	2000	-
No color	-	-	± 20	500	-

* Letter symbol is used at end of type designations in RMA standards and JAN specifications to indicate tolerance

Tolerance

The maximum deviation allowed from the specified nominal value is known as the tolerance. It is usually given as a percentage of the nominal value, though for very small capacitors, the tolerance may be specified in micromicrofarads ($\mu \mu \mathrm{f}$). For critical applications it is important to specify the permissible tolerance; where no tolerance is specified, components are likely to vary by ± 20 percent from the nominal value.

Preferred values

To maintain an orderly progression of sizes, preferred numbers are frequently used for the nominal values. A further advantage is that all components manufactured are salable as one or another of the preferred values. Each preferred value differs from its predecessor by a constant multiplier, and the final result is conveniently rounded to two significant figures.

The ASA has adopted as an "American Standard" a series of preferred numbers based on $\sqrt[5]{10}$ and $\sqrt[10]{10}$ as listed in Fig. 2. This series has been widely used for fixed wirewound power-type resistors and for time-delay fuses.

Because of the established practice of $\pm 20- \pm 10$ - and ± 5-percent tolerances in the radio-component industry, a series of values based on $\sqrt[6]{10}, \sqrt[12]{10}$, and $\sqrt[24]{10}$ has been adopted by the RMA and is widely used for small radio components, as fixed composition resistors and fixed ceramic, mica, and molded paper capacitors. These values are listed in Fig. 2.

Voltage rating

Distinction must be made between the breakdown-voltage rating (test volts) and the working-voltage rating. The maximum voltage that may be applied (usually continuously) over a long period of time without causing failure of the component determines the working-voltage rating. Application of the test voltage for more than a very few minutes, or even repeated applications of short duration, may result in permanent damage or failure of the component.

Characteristic

This term is frequently used to include various qualities of a component such as temperature coefficient of capacitance or resistance, Q value, maximum permissible operating termperature, stability when subjected to repeated cycles of high and low temperature, and deterioration experienced when the component is subjected to moisture either as humidity or water immersion. One or two letters are assigned in RMA or JAN type designations, and the characteristic may be indicated by color coding on the component. An explanation of the characteristics applicable to a component will be found in the following sections covering that component.

Fig. 2-ASA and RMA preferred values. RMA series is standard in the radia industry.

	ASA standard		RMA standard*		
Name of series	"5"	* 10 "	$\pm 20 \%$	$\pm 10 \%$	$\pm 5 \%$
Percent step sizo	60	25	≈ 40	20	10
Step multiplier	$\sqrt[5]{10}=1.59$	$\sqrt[10]{10}=1.26$	$\sqrt[6]{10}=1.46$	$\sqrt[12]{10}=1.21$	$\sqrt[24]{10}=1.10$
Values in the series					
	10	10	10	10	10
	-	12.5	-	-	11
	-	(12) $\}$	-	12	12
	-	-	-	-	13
	-	-	15	15	15
	16	16	-	-	16
	-	-	-	18	18
	-	23	-	-	20
	-	-	22	22	22
	-	-	-	-	24
	2.5	25	-	-	-
	-	-	-	27	27
	-	31.5)	-	-	30
	-	(32) $\}$	-	3	
	-	-	33	33	33
	-	-	-	-	36
	-	-	-	39	39
	43	40	-	-	-
	-	-	-	-	43
	-	-	47	47	47
	-	50	-	-	-
	-	-	-	-	51
	-	-	-	56	56
	-	-	-	-	62
	63	63	-	-	-
	-	-	68	68	68
	-	-	-	-	75
	-	B)	-	-	-
	-	-	-	82	82
	-	-	-	-	91
	100	100	100	100	100

* Use decimol multipliers for smoller and larger values. Associate the tolerance $\pm 20 \%, \pm 10 \%$, or $\pm 5 \%$ only with the values listed in the corresponding column: Thus, 1203 ohms moy be either ± 10 or ± 5, but not ± 20 percent; 750 ohms may be ± 5, but neither ± 20 nor ± 10 percent.

Resistors-fixed composition

Color code

RMA-standard and JAN-specification requirements for color coding of fixed composition resistors are identical (Fig. 31. The exterior body color of insulated axial-lead composition resistors is usually tan, but other colors, except black, are permitted. Noninsulated, axial-lead composition resistors
have a black body color. Radial-lead composition resistors may have a body color representing the first significant figure of the resistance value.

axia lead		radial leads
Band A	Indicotes first significont figure of resistonce volue in ohms	Bady A
Bond B	Indicotes second significont figure	End B
Band C	Indicotes decimol multiplier	Band C or dot
Band D	If ony, indicotes toleronce in percent obout nominol resistonce volve. If no color oppeors in this position, toleronce is 20%	Band D

Fig. 3-Resistor color coding. Colors of Fig. 1 determine values.
Examples: Code of Fig. I determines resistor values. Examples are

resisfance in ohms and folerance	A and designation			
	Orange	Orange	Red	Black or no band
	Groen	Brown	Brown	Gold
1.8 megohms $\pm 10 \%$	Brown	Groy	Graen	Silver

Tolerance

Standard resistors are furnished in $\pm 20-, \pm 10$-, and ± 5-percent tolerances, and in the preferred-value series previously tabulated. "Even" values, such as 50,000 ohms, may be found in old equipment, but they are seldom used in new designs.

Temperature and voltage coefficients

Resistors are rated for maximum wattage for an ambient temperature of 40 degrees centigrade;* above this figure it is necessary to operate at reduced wattage ratings. Resistance values are found to be a function of voltage as well as temperature; current JAN specifications allow a maximum

[^6]voltage coefficient of 0.035 percent/volt for $\frac{1}{4}$ - and $\frac{1}{2}$-watt ratings, and 0.02 percent/volt for larger ratings. Specification JAN-R-11 permits a resistance-temperature characteristic as in Fig. 4.

Fig. 4-Temperature coefficient of resistance.

	characteristic	percent maximum allowable change from resistance af 25 degrees centigrade					
Nominal resistance in ohms		$\begin{gathered} 0 \\ \text { to } \\ 1000 \end{gathered}$	$\begin{gathered} >1000 \\ 10 \\ 10,000 \end{gathered}$	$\begin{gathered} >10,000 \\ 10 \\ 0.1 \mathrm{meg} \end{gathered}$	$\begin{gathered} >0.1 \mathrm{meg} \\ 10 \\ 1.0 \mathrm{meg} \end{gathered}$	$\begin{gathered} >1 \mathrm{meg} \\ \text { to } \\ 10 \mathrm{meg} \end{gathered}$	$\begin{gathered} >10 \mathrm{meg} \\ \text { to } \\ 10 \mathrm{~m}^{\mathrm{meg}} \end{gathered}$
At - 55 deg cent ambient	E	13	20	25	43	52	70
	F	6.5	10	13	20	26	35
At +105 deg cent ambient	5	± 10	± 12	± 15	± 20	± 36	± 44
	F	± 5	± 6	± 7.5	± 10	± 18	± 22

The separate effects of exposure to high humidity, salt-water immersion lapplied to immersion-proof resistors only), and a 1003-hour rated-load life test should not exceed a 10 -percent change in the resistance value. Soldering the resistor in place may cause a maximum resistance change of ± 3 percent. Simple temperature cycling between -55 and +85 degrees centigrade for 5 cycles should not change the resistance value as measured at 25 degrees centigrade by more than 2 percent. The above summary of composition-resistor performance indicates that tolerances closer than ± 5 percent may not be satisfactorily maintained in service; for a critical application, other types of small resistors should be employed.

Resistors-flxed-wirewound low-power types

Color coding

Small wirewound resistors in $\frac{1}{2}-$, 1-, or 2 -watt ratings may be color coded as described in fig. 3 for insulated composition resistors, but band A will be twice the width of the other bands.

Maximum resistance

For reliable continuous operation, it is recommended that the resistance wire used in the manufacture of these resistors be not less than 0.0015 inch in diameter. This limits the maximum resistance available in a given physical size or wattage rating as follows:
$\frac{1}{2}$-watt: 470 ohms 1-watt: 2200 ohms 2-watt: 3300 ohms

Resistors-fixed-wirewound low-power types continued

Wattage

Wattage ratings are determined for a temperature rise of 70 degrees in free air at a 40 -degree-centigrade ambient. If the resistor is mounted in a confined area, or may be required to operate in higher ambient temperafures, the allowable dissipation must be reduced.

Temperature coefficient

The temperature coefficient of resistance over the range -55 to +110 degrees, referred to 25 degrees centigrade, may have maximums as follows:

Above 10 ohms: ± 0.025 percent/degree centigrade
10 ohms or less: 0.050 percent/degree centigrade
Stability of these resistors is somewhat better than that of composition resistors, and they may be preferred except where a noninductive resistor is required.

Capacitors-fixed ceramic

Ceramic-dielectric capacitors of one grade are used for temperature compensation of funed circuits and have many other applications. In certain styles, if the temperature coefficient is unimportant li.e., general-purpose applications), they are competitive with mica capacitors. Another grade of ceramic capacitors offers the advantage of very high capacitance in a small physical volume; unfortunately this grade has other properties that limit its use to noncritical applications such as bypassing.

Color code

If the capacitance tolerance and temperature coefficient are not printed on the capacitor body (Fig. 5), the color code of Fig. 6 may be used.

Fig. 5-Type designation for ceramic copocitors. RMA class is omitted on JAN. specification copacitars.

Fig. 6-Color code for fixed ceramic capacitors.

Capacitance and capacitance folerance

Preferred-number values on RMA and JAN specifications are standard for capacitors above 10 micromicrofarads ($\mu \mu$ f). The physical size of a capacitor is determined by its capacitance, its temperature coefficient, and its class. Note that the capacitance tolerance is expressed in $\mu \mu \mathrm{f}$ for nominal capacitance values below $10 \mu \mu \mathrm{f}$ and in percent for nominal capacitance values of $10 \mu \mu \mathrm{f}$ and larger.

Temperature coefficient

The change in capacitance per unit capacitance per degree centigrade is the temperature coefficient, usually expressed in parts per million parts per degree centigrade (ppm $/{ }^{\circ} \mathrm{Cl}$. Preferred temperafure coefficients are those listed in Fig. 6.

Capacitors-fixed ceramic continued

Temperature-coefficient tolerance: Because of the nonlinear nature of the temperature coefficient, specification of the tolerance requires a statement of the temperature range over which it is to be measured lusually -55 to +85 degrees centigrade, or +25 to +85 degrees centigradel, and a

Fig. 7-Quality of fixed coramic capacitors. Summary of lest requirements.

		specificationJAN-C-20	RMA class					
		1	2	3	4	5		
Minimum initial insulation resistance in megohms			>7500	7500	7500	7500	1000	1000
Minimum Q for $C>30 \mu \mu \mathrm{i}$ (Soo Fig. 8 for smaller C)		>1000	1000	650	335	100	40	
Maximum allowable capacitance drift with temperature cycling lpercent or $\mu \mu$; whichever is greater)		$\begin{gathered} 0.2 \% \\ \circ \% \\ 0.25 \mu \mu \mathrm{f} \end{gathered}$	$\begin{gathered} 0.3 \% \\ \text { or } \\ 0.25 \mu \mu \mathrm{f} \end{gathered}$	$\begin{gathered} 0.3 \% \\ \text { or } \\ 0.25 \mu \mu \mathrm{f} \end{gathered}$	$\begin{gathered} 0.3 \% \\ \text { or } \\ 0.25 \mu \mu \mathrm{f} \end{gathered}$	-	-	
Maximum capacitance change in percent over range - 55 to to +85 C		-	-	-	-	± 25	-50 +25	
Working voltage $=$ sum of de and poak ac		-	500	500	5 CO	350	350	
Humidity tost		100 hours exposure at $40^{\circ} \mathrm{C}, 95 \%$ relativa humidity						
Lifo test ot $85^{\circ} \mathrm{C}$		1000 hours, 750 vde plus 250 vac at 100 cycles or less	1000 hours, 1000 valts			1000 hours, 750 volts		
After humidity test or life test	Minimum Q (C $>30 \mu \mu$ f	$>\frac{1}{2}$ initial limits	350	350	170	50	20	
	Minimum insulation resistance in megohms	>1000	1000	1000	1000	100	100	
Aftor life test	Maximum capacitance change	1\%	$\begin{gathered} 1 \% \\ \text { or } \\ 0.5 \mu \mu \mathrm{f} \end{gathered}$	$\begin{gathered} 1 \% \\ \text { or } \\ 0.5 \mu \mu \mathrm{f} \end{gathered}$	$\begin{gathered} 5 \% \\ \text { or } \\ 0.5 \mu \mu \mathrm{f} \end{gathered}$	10\%	Not yo dotermined	
Application		Temperature compen. sation; stable, generalpurpose uses		Intermediate quality		High-capocitonce general-purpose, noncritical uses only		
Volume efficiency ($\mu \mathrm{\mu f} / \mathrm{inch}^{3}$)		low		Low		High		

Capacitors-fixed ceramic continued

statement of the measuring procedure to be employed. Standard tolerances based on +25 to +85 degrees centigrade are symmetrical:

tolerance in $\mathrm{ppm} /{ }^{\circ} \mathrm{C}$	± 15	± 30	± 60	± 120	± 250	± 500
code	(F)	(G)	(H)	(J)	(K)	(L)

The smaller tolerances can be supplied only for capacitors of $10 \mu \mu \mathrm{f}$ or larger, and only for the smaller temperature coefficients.

Quality

Insulation resistance, internal loss (conveniently expressed in terms of Q1, capacitance drift with temperature cycling, together with the permissible effects of humidity and accelerated life tests, are summarized in Fig. 7. This data will be a guide to the probable performance under favorable or moderately severe ambient conditions.

Fig. 8-Minimum Q requirements far ceramic capacitars where capacitance $<30 \mu \mu f$.

Capacitors-molded mica-dielectric

Type designation

Small fixed mica capacitors in molded plastic cases are manufactured to performance standards established by the RMA or in accordance with a JAN specification. A comprehensive numbering system, the type designation, is used to identify the component. The mica-capacitor type designations are of the form

Capacitors-molded mica-dielectric

Component designation: Fixed mica-dielectric capacitors are identified by the symbol CM for JAN specification, or RCM for RMA standard.
Case designation: The case designation is a two-digit symbol that identifies a particular case size and shape.
Characteristic: The JAN characteristic or RMA class is indicated by a single letter in accordance with Fig. 9.

Fig. 9-Fixed-mico-capacitor requirements by JAN choracteristic and RMA closs.

	JAN-sperification requirements			RMA-standard requirements				
JAN char RMA class	maximum capacitance drift in percent	maximum range of fomperafure coefficiont (ppm/ ${ }^{\circ} \mathrm{C}$)	$\underset{0}{\operatorname{minimum}}$	moximum copacilance drift	moximum range of temperafure coefficient (ppm/ $/{ }^{\circ} \mathrm{C}$)	minimum insulation resistonce in megohms	$\underset{\mathbf{Q}}{\operatorname{minimum}}$	
A	-	-	33% of JAN value In Fig. 10.	$=15 \%+$	± 1000	3000	30% of RMA value in Fig. 10.	
B	-	-		$\pm 13 \%+$	± 500	6000		
c	0.5	*200		$\begin{array}{r} =10.5 \%+ \\ 0.5 \mu \mu \mathrm{n} \\ \hline \end{array}$	± 200	6000	$\begin{aligned} & \text { 표 } \\ & 8 \\ & 8 \end{aligned}$	
I	-	-		$\begin{array}{r} =10.3 \%+ \\ 0.2 \mu \mu \\| \end{array}$	$\begin{aligned} & -5010 \\ & +150 \end{aligned}$	6000	$\frac{3}{0}$	
0	0.2	± 100		$\begin{gathered} \pm 10.3 \% \neq \\ 0.1 \mathrm{\mu} \mathrm{\mu n} \end{gathered}$	± 100	6000	$\sum_{\infty} \sum_{i}^{\overline{2}}$	
J	-	-		$\begin{array}{r} \pm 10.2 \%+ \\ 0.2 \mu \mu \\| \end{array}$	$\begin{array}{r} -50+0 \\ +100 \end{array}$	6000		
E	0.05	0 to +100		$\pm 10.1 \%+$	$\begin{aligned} & -2010 \\ & +100 \end{aligned}$	6000	号品	
F	0.025	$010+50$		-	-	-	-	
G	0.025	0 10-50		-	-	-	-	

Insulation resistance of all JAN capacitors must exceed 7500 megohms.
ppm $/{ }^{\circ} \mathrm{C}=$ parts/million/degree centigrade.
Where no data are given, such characteristics are not included in that particular standard.

Fig. 10-Minimum Q versus capocitance for JAN mica capocitors (\mathbf{Q} measured af 1.0 megacycle), and for RMA mica capacitors (\mathbf{Q} measured of 0.5 to 1.5 megocyeles).

Capacitors-molded mica-dielectric continued

Capacitance value: The nominal capacitance value in micromicrofarads is indicated by a 3 -digit number. The first two digits are the first two digits of the capacitance value in micromicrofarads. The final digit specifies the number of zeros that follow the first two digits. If more than two significant figures are required, additional digits may be used, the last digit always indicating the number of zeros.
Capacitance tolerance: The symmetrical capacitance tolerance in percent is designated by a letter as shown in Fig. 1 .

Color coding

The significance of the various colored dots is explained by Figs. 11-13. The meaning of each color may be interpreted from Fig. 1.

JAN specifications and 1948 RMA standard: Are shown in Fig. 11.

Fig. 11-Now standord code for fixed mica capacitors. See color code, Fig. 1.

Older RMA standards-not in current use: The 1938 RMA standard covered a simple 3 -dot color code (Fig. 12) showing directly only the capacitance, and a more comprehensive 6 -dot color code (Fig. 13) showing 3 significant figures and tolerance of the capacitance value, and a voltage rating. Capacitance values are expressed in micromicrofarads up to 10,000 micromicrofarads.

Fig. 12-RMA 3-dot code (obsolete) for mica capacitors; 500 -volt, $\pm 20 \%$ tolerance only. See Fig. 1.

Capacitors-molded mica-dielectric continued

Fig. 13-RMA 6-dot color code (obsolete) for mica capacitors. See Fig. I.

Examples

	top row			bottom row			description
type	left	center	right	leth	tolerance center	multiplier right	
RMA (3 do:) RMA RMA CM30B681」 CM35E332G RCM20A221M	red brown brown black black whire	green black red blue orange red	brown black green gray orange fed	none blue gold brown yellow black	none green red gold red black	none brown brown brown red brown	

Capacitance

Measured at 500 kilocycles for capacitors of $1000 \mu \mu \mathrm{f}$ or smaller; larger capacitors are measured at 1 kilocycle.

Temperature coefficient

Measurements to determine the temperature coefficient of capacitance and the capacitance drift are based on one cycle over the following temperature values lall in degrees centigradel.

$$
\begin{aligned}
& \text { JAN: }+25,-40,-10,+25,+35,+45,+55,+65,+85,+25 \\
& \text { RMA: }+25,-20,+25,+85,+25
\end{aligned}
$$

Dielectric strength

Molded-mica capacitors are subjected to a test potential of twice their direct-current voltage rating.

Humidity and thermal-shock resistance

RMA-standard capacitors must withstand a 120 -hour humidity test: Five cycles of 16 hours at 40 degrees centigrade, 90 -percent relative humidity, and 8 hours at standard ambient. Units must pass capacitance and dielectricstrength tests, but insulation resistance may be as low as 1000 megohms for class-A, and 2000 megohms for other classes.

Capacitors-molded mica-dielectric continued

JAN-specification capacitors must withstand 5 cycles of $+25,-55,+25$, +85 , +25 degree-centigrade thermal shock followed by water immersion at +65 and +25 degrees centigrade. Units must pass capacitance and dielectric-strength tests, but insulation resistance may be as low as 3000 megohms.

Life

Capacitors are given accelerated life tests at 85 degrees centigrade with 150 percent of rated voltage applied. No failures are permitted before: 1000 hours for JAN specification; or 500 hours for RMA standard.

Capacitors-button-style fixed mica-dielectric

Color code

"Button" mica capacitors are color coded in several different ways, of which the two most widely used methods are shown in Fig. 14.

Fig. 14-Color coding of button-mica capacitors. See Fig. I for color code.

Characteristic

characterisfle	max range of femp coeff (ppm/ $/{ }^{\circ} \mathrm{C}$)	moximum capacliance driff
C	± 200	$\pm 0.5 \%$
D	± 100	$\pm 0.3 \%$
E	$-2010+100$	$\pm 10.1 \%+0.1 \mu \mu \mathrm{H}$

Capacitors-button-style fixed mica-dielectric continued

Initial Q values shall exceed 500 for capacitors 5 to $50 \mu \mu$; ; 700 for capasitors 51 to $100 \mu \mu$ f; and 1000 for capacitors 101 to $5000 \mu \mu$ f. Initial insulation resistance should exceed 10,000 megohms. Dielectric-strength tests should be made at twice rated voltage.

Thermal-shock and humidity tests

These are commercial requirements. After 5 cycles of $+25,-55,+85$, +25 degrees centigrade, followed by 96 hours at 40 degrees centigrade and 95 -percent relative humidity, capacitors should have an insulation resistance of at least 500 megohms; a Q of at least 70 percent of initial minimum requirements; a capacitance change of not more than 2 percent of initial value; and should pass the dielectric-strength test.

Capacitors—paper-dielectrie

The proper application of paper capacitors is a complex problem requiring consideration of the equipment duty cycle, desired capacitor life, ambient temperature, applied voltage and waveform, and the capacitor-impregnant characteristics. From the data below, a suitable capacitor rating may be determined for a specified life under normal use.

Life-voltage and ambient temperature

Normal paper-dielectric-capacitor voltage ratings are for an ambient temperature of 40 degrees centigrade, and provide a life expectancy of approximately I year continuous service. For ambient temperatures outside the range 0 to +40 degrees centigrade, the applied voltage must be reduced in accordance with Fig. 15.

The energy content of a capacitor may be found from
$W=C E^{2} / 2$ watt-seconds
where
$C=$ capacitance in microfarads ($\mu \mathrm{f})$
$E=$ applied voltage in kilovolts
In multiple-section capacitors, the sum of the watt-second ratings should be used to determine the proper derating of the unit.
Longer life in continuous service may be secured by operating at voltages lower than those determined from Fig. 15. Experiment has shown that

Fig. 15 -Life-expectancy rating for paper capocitors as a function of ambient temperofure.
capacitor life is approximately inversely proportional to the 5th power of the applied voltage:

desired life in years (at ambient $\left.\approx 45^{\circ} \mathrm{C}\right)$	1	1	2	1	5	10
applied voltage in percent of rated voltage	100	85	70	60	53	

The above life derating is to be applied together with the ambient-temperature derating to determine the adjusted-voltage rating of the paper capacitor for a specific application.

Waveform

Normal filter capacitors are rated for use with direct current. Where alternating voltages are present, the adjusted-voltage rating of the capacitor should be calculated as the sum of the direct voltage and the peak value of the alternating voltage. The alternating component must not exceed 20 percent of the rating at 60 cycles, 15 percent at 120 cycles, 6 percent at 1000 cycles, or 1 percent at 10,000 cycles.
Where alternating-current rather than direct-current conditions govern, this fact must be included in the capacitor specification, and capacitors specially designed for alternating-current service should be procured.
Where heavy transient or pulse currents are present, standard capacitors may not give satisfactory service unless an allowance is made for the unusual conditions.

Capacitor impregnants

Fig. 16 lists the various impregnating materials in common use together with their distinguishing properties. At the bottom will be found recommendations for application of capacitors according to their impregnating material.

Insulation resistance

For ordinary electronic circuits, the exact value of capacitor insulation resistance is unimportant. In many circuits little difference in performance is observed when the capacitor is shunted by a resistance as low as 5 megohms. In the very few applications where insulation resistance is important le.g., some R C-coupled amplifiers), the capacitor value is usually small and megohm \times microfarad products of 10 to 20 are adequate.
The insulation resistance of a capacitor is a function of the impregnant; its departure from maximum value is an indication of the care taken in

Capacitors - paper-dielectric continued

Fig. 16-Characteristics of impregnonts for poper capacitors.

preperty			cestor all		$\begin{aligned} & \text { mineral } \\ & \text { oil } \end{aligned}$		$\begin{gathered} \text { askareis" } \\ \text { (chlorinated } \\ \text { symbthetic) } \end{gathered}$		$\left\|\begin{array}{c} \text { Halowax } \\ \text { (chlorin- } \\ \text { ated noph- } \\ \text { thalene } \\ \text { symhatic) } \end{array}\right\|$	minerel wax
Charactaristic		From Specification JAN-C-5	D	-	E†	-	f \dagger	-	H	-
		From RMA standard	-	C	-	A	0000	0^{B}	3000	15,000
		Nominal	1500		7000		6000		3000	15,000
	Megohms X microlarads	Specification minimum	500	500	2000	3000	1500	1000	2000	-
	Minimum insulation resistonce in megohms		1500	1500	6000	6000	4500	1500	6000	$0.5 \text { 10 } 1.5$
	Power lactor in percent	$60 \mathrm{c} / \mathrm{s}$	<0.2		0.3		<0.3		0.5 to 3	
		$1000 \mathrm{c} / \mathrm{s}$	-		≈ 1		-		≈ 2	
	High-ambient rest remperature in degrees centigrode		85	85	83	85	85	85	55	85
		Nominal	10		40		30		100	
	Megohms X microforads	Specification minimum	5	5	20	30	15	10	100	-
	Minimum insulation pesiztance in meaohms		150	150	600	600	450	150	1000	0.2 to 1.5
	Power foctor in percent		2106		0.3 10 1.6		1105		110	0.2 to 1.5
	Parcant capacitance change from value af 25 degrees centigrode		$-410+1$		-1 to +1.5		-6 to -2		-4.5 100	-10 to-6
\%	Low-ambient test temperature in degrees centigrado		-55	-40	-55	-40	-55	-40	-20	-55
듬	Power facior in percent		1.5104		0.5103		0.8103		0.5 to 4	
$\begin{aligned} & 0.0 \\ & \text { 을 } \\ & \text { E. } \end{aligned}$	$\begin{array}{l}\text { Percont } \\ \text { copactiance }\end{array}$ Nominal		$\begin{gathered} -2010 \\ +4 \end{gathered}$		$\begin{gathered} -10 \text { 10 } \\ +2 \end{gathered}$		$\begin{aligned} & -3010 \\ & -20 \\ & \hline \end{aligned}$		-5	-2
	change from value of 25 degrees centigrade	Specification moximum	-30	+5 10 -30	-15	± 5	-30	+5 10 -30	-10	-
Application dato	Recommended ambient tomperature range in degrees centigrade		-55	+85	-55	+85	-55	+85	$\begin{gathered} -2010 \\ +55 \end{gathered}$	to +85
	Relative capacitor volume lifor units of equal copacitoncel			00		35		00	100	135
	Recommended uses		General. purpose dc. Also ac if romperature pange is limited		Generalpurpose de and ac; high. tomp applica. tions. High. spobility requirements		General. purpose de and ac. Noninflammable		General. purpose de over limited tempero. ture range	General. purpose de over widar tomp pange than Halowax units allow

Notes:

Boid figures in tabulation are Specification JAN-C-25 or RMA-standard limits for that property.

* Trade names Aroclor, Pyranal, Dykanol A, Inerteen, otc.
\dagger JAN-C-25 characteristics A and B (not tabulated above) are essentially long-life versions of JAN characteristics E and F, respectively.
\ddagger At 25 degrees contigrade, applies to capacitors of approximately $\$$ microfarad or larger. At any test temperature, capacitors are not expected to show megohm X microfarad products in excess of the insulation-resistance requirements.

Capacitors-paper-dielectric
 continued

manufacture to avoid undesirable contamination of the impregnant. For example, if an askarel-impregnated capacitor has the same insulation resistance as a good castor-oil-impregnated capacitor of equal rating, the askarel impregnant is strongly contaminated, and the capacitor life will be considerably reduced.

Measurements are made with potentials between 100 and 500 volts, and a maximum charging time of 2 minutes.

Power factor

This is a function of the capacitor impregnant. In most filter applications where a specified maximum capacitor impedance at a known frequency may not be exceeded, the determining factor is the capacitor reactance and not the power factor. A power factor of 14 percent will increase the impedance only 1 percent, a negligible amount.

For alternating-current applications, however, the power factor determines the capacitor internal heating. Consideration must be given to the alternating voltage and the operating temperature. Power factor is a function of the voltage applied to the capacitor; any specification should include actual capacitor operating conditions, rather than arbitrary bridge-measurement conditions.

For manufacturing purposes, power factor is measured at room temperature ($=25$ degrees centigrade), with 1000 cycles applied to capacitors of $1 \mu \mathrm{f}$ or less, rated 3000 volts or less; and with 60 cycles applied to capacitors larger than $1 \mu \mathrm{f}$, or rated higher than 3000 volts. Under these conditions the power factor should not exceed 1 percent.

Temperature coefficient of capacitance

Depending upon the impregnant characteristics, low temperature may cause an appreciable drop in capacitance. Due allowance for this must be made if low-temperature operation of the equipment is to be satisfactory. This temperature effect is nonlinear.

Life tests

Accelerated life tests run on paper capacitors are based on 250 -hour operation at the high-ambient-temperature limit shown in Fig. 16 with an applied direct voltage determined by the watt-second and 40 -degreecentigrade voltage ratings.

I-F transformer frequencies

Recognized standard frequencies for receiver intermediate-frequency transformers are
Standard broadcast (540 to 1600 kilocycles) ___ 455, 175 kilocycles
Very-high-frequency broadcast 10.7 megacycles

Vory-, ultra-, and super-high-frequency equipment 30, 60, 100 megacyclos

Color codes for transformer leads

Radio power transformers ${ }^{1}$

Primary If tapped:	Black	Amplifior	
		Filament No. 1	Green
Common	Black	Conter tap	Green-Yellow
Tap	Black-Yallow	Filament No. 2	Brown
Finish	Black-Red	Conter tap	Brown-Yellow
		Filament No. 3	Slate
Rectifier		Center tap	Slate-Yellow
Plate	Red		
Center tap	Red.Yellow		
Filament	Yellow		
Center tap	Yellow-Blue		

Audio-frequency transformers ${ }^{2}$

Primary	singlo	push-pull	Secondary	single	push-pull
Plate	Blue	Blue	Grid lor high side		
B+	Red	Red	of moving coill	Green	Green
Plato	-	Brown ${ }^{3}$	Return lor low side of moving coil)	Black	Black
			Grid	-	Green or Yollow ${ }^{3}$

Infermediafe-frequency transformers ${ }^{4}$

Primary

Plate	Blue
B+	Red
Secondary	
Grid or diade	Green
Grid return	White

For full-wave transformer:
Secand diode Violet
Old standard ${ }^{5}$ is same as above, excepl: Grid roturn Black Second diode Green-Black
${ }^{1}$ Radio Manufacturer's Association Standard M4-505.
${ }^{2}$ Radio Manufacturer's Association Standard M4-507.
${ }^{3}$ The brown and yellow colors are used to indicate the starts of the windings, but only when polarity must be indicated. In an output transformer, the black lead is the start of the secondary.
4 Radio Manufacturer's Association Standard REC-114.
${ }^{5}$ Radio Manufacturer's Association Standard M4-506.

- Fundamentals of networks

Inductance of single-layer solenoids

The approximate value of the low-frequency inductance of a single-layer solenoid is*
$L=F n^{2} d$ microhenries
where $F=$ form factor, a function of the ratio $d / 1$. (Value of F may be read from the accompanying chart, Fig. 1. Also, $n=$ number of turns, $d=$ diameter of coil (inches), between centers of conductors, $l=$ length of coil (inches) $=n$ times the distance between centers of adjacent turns.
The formula is based on the assumption of a uniform current sheet, but the correction due to the use of spaced round wires is usually negligible for practical purposes. For higher frequencies, skin effect alters the inductance slightly. This effect is not readily calculated, but is often negligibly small. However, it must be borne in mind that the formula gives approximately the true value of inductance. In contrast, the apparent value is affected by the shunting effect of the distributed capacitance of the coil.
Example: Required a coil of 100 microhenries inductance, wound on a form 2 inches diameter by 2 inches winding length. Then $d / 1=1.00$, and $F=0.0173$ on Fig. 1.
$n=\sqrt{\frac{L}{F d}}=\sqrt{\frac{100}{0.0173 \times 2}}=54$ turns
Reference to Magnet-wire data, page 74, will assist in choosing a desirable size of wire, allowing for a suitable spacing between turns according to the application of the coil. A slight correction may then be made for the increased diameter (diameter of form plus two times radius of wire), if this small correction seems justified.

Approximate formula

For single-layer solenoids of the proportions normally used in radio work, the inductance is given to an accuracy of about 1 percent by
$L=n^{2} \frac{r^{2}}{9 r+101}$ microhenries
where $r=d / 2$.

General remarks

In the use of various charts, tables, and calculators for designing inductors, the following relationships are useful in extending the range of the devices.

* Formulas and chart (Fig. 11 derived from equations and tables in Bureau of Standards Circular No. C74.

Inductance of single-layer solenoids continued

They apply to coils of any type or design.
a. If all dimensions are held constant, inductance is proportional to n^{2}.
b. If the proportions of the coil remain unchanged, then for a given number of furns the inductance is proportional to the dimensions of the coil. A coil with all dimensions m times those of a given coil thaving the same number of turns) has m times the inductance of the given coil. That is, inductance has the dimensions of length.

Magnet-wire data

$\begin{aligned} & \text { AWC } \\ & \text { BES } \\ & \text { geuge } \end{aligned}$	bare nam diam in inches	enam nom diam In inches	$\begin{gathered} \text { scc* } \\ \text { dlam } \\ \text { in } \\ \text { inchet } \end{gathered}$	$\begin{gathered} \text { DCC } \\ \text { diam } \\ \text { in } \\ \text { inches } \end{gathered}$	SCE* diam in inches	$\begin{aligned} & \text { ssc } \\ & \text { diam } \\ & \text { in } \\ & \text { inches } \end{aligned}$	DSC ${ }^{+}$ diam in inches	SS管 diom in Inches	bare		enameled	
									min diam inches	max diam Inches	min diam inches	
10	. 1019	. 1039	. 1079	. 1129	. 1104	\cdots	-	\cdots	. 1009	. 1029	. 1024	. 1044
11	. 0907	. 0927	. 0957	. 1002	. 0982				. 0898	. 0917	. 0913	. 0932
12	. 0808	. 0827	. 0858	. 0903	. 0882	-	-	\cdots	. 0800	. 0816	. 0814	. 0832
13	. 0720	. 0738	. 0770	. 0815	. 0793	\cdots	-	-	. 0712	. 0727	. 0726	. 0743
14	. 0641	. 0659	. 0691	. 0736	. 0714				. 0634	. 0647	. 0648	. 0664
15	.0571	. 0588	. 0621	. 0666	. 0643	. 0591	. 0618	. 0613	. 0566	. 0576	. 0578	. 0593
16	. 0508	. 0524	. 0558	. 0603	. 0579	. 0528	. 0548	. 0549	. 0503	. 0513	. 0515	. 0579
17	. 0453	. 0469	. 0503	. 0548	. 0523	. 0473	. 0493	. 0493	. 0448	. 0457	. 0460	. 0473
18	. 0403	. 0418	. 0453	. 0498	. 0472	. 0423	. 0443	. 0442	. 0399	. 0407	. 0410	. 0422
19	. 0359	. 0374	. 0409	. 0454	. 0428	. 0379	. 0399	. 0398	. 0355	. 0363	. 0366	. 0378
20	. 0325	. 0334	. 0370	. 0415	. 0388	. 0340	. 0360	. 0358	. 0316	. 0323	. 0326	. 0338
21	. 0285	. 0299	. 0335	. 0380	. 0353	. 0305	. 0325	. 0323	. 0282	. 0287	. 0292	. 0303
22	. 0253	. 0266	. 0303	. 0343	. 0320	. 0273	. 0293	. 0290	. 0251	. 0256	. 0261	. 0270
23	. 0226	. 0238	. 0276	. 0316	. 0292	. 0246	. 0266	. 0262	. 0223	. 0228	. 0232	. 0242
24	. 0201	. 0213	. 0251	. 0291	. 0266	. 0221	. 0241	. 0236	. 0199	. 0203	. 0208	. 0216
25	. 0179	. 0190	. 0224	. 0264	. 0238	. 0199	. 0219	. 0213	. 0177	. 0181	. 0186	. 0193
26	. 0159	. 0169	. 0204	. 0244	. 0217	. 0179	. 0199	. 0192	. 0158	. 0181	. 0166	. 0172
27	. 0142	. 0152	. 0187	. 0227	. 0200	. 0162	. 0182	. 0175	. 0141	. 0144	. 0149	. 0155
28	. 0126	. 0135	. 0171	. 0211	. 0193	. 0146	. 0166	. 0158	. 0125	. 0128	. 0132	. 0138
29	. 0113	. 0122	. 0158	. 0178	. 0170	. 0133	. 0153	. 0145	. 0112	. 0114	. 0119	. 0125
30	. 0100	. 0108	. 0145	. 0185	. 0156	. 0120	. 0140	. 0131	. 0099	. 0101	. 0105	. 0111
31	. 0089	. 0097	. 0134	. 0174	. 0144	. 0109	. 0129	. 0119	. 0088	. 0090	. 0094	. 0099
32	. 0060	. 0088	. 0125	. 0165	. 0135	. 0100	. 0120	. 0110	. 0079	. 0081	. 0085	. 0090
33	. 0071	. 0078	. 0116	. 0156	. 0125	. 0091	. 0111	. 0100	. 0070	. 0072	. 0075	. 0080
34	. 0063	. 0069	. 0108	. 0148	. 0116	. 0083	. 0103	. 0091	. 0062	. 0064	. 0067	.0071
35	.0056	.0061	. 0101	. 0141	. 0108	. 0076	. 0096	. 0083	. 0055	. 0057	. 0059	. 0063
36	. 0050	. 0055	. 0090	. 0130	. 0097	. 0070	. 0090	. 0077	. 0049	. 0051	. 0053	. 0057
37	. 0045	. 0049	. 0085	. 0125	. 0091	. 0065	. 0085	. 0071	. 0044	. 0046	. 0047	. 0051
38	. 0040	. 0044	. 0080	. 0120	. 0086	. 0060	. 0080	. 0066	. 0039	. 0041	. 0042	. 0046
39	.0035	. 0038	. 0075	. 0115	. 0080	. 0055	. 0075	. 0060	. 0034	. 0036	. 0036	. 0040
40	. 0031	.0034	.0071	. 0111	. 0076	. 0051	.0071	. 0056	. 0030	. 0032	. 0032	. 0036
41	. 0028	.C031	-	-	-	-	-	-	. 0927	. 0029	. 0029	.00\%2
42	. 0025	. $\mathrm{CO28}$	-	-	-	-	-	-	. 0024	. 0026	. 0026	. 0029
43	. 0022	. 0025	-	-	-	-	一	-	. 0021	. 0023	. 0023	. 0028
44	.0020	.0023	-	-	-	-	-	-	. 0019	.0021	.0021	. 0024

[^7]For additional data on copper wire, see pp. 40-45 and p. 190.

Inductance of single-layer solenoids continued

Fig. 1-Inductance of a single-loyer solenoid, form factor $=\mathbf{F}$.

Reactance charts

Figs. 2, 3, and 4 give the relationships of capacitance, inductance, reactance, and frequency. Any one value may be determined in terms of two others by use of a straight edge laid across the correct chart for the frequency under consideration.

Fig. 2-Chart covering 1 cycle to 1000 cycles.

Reactance charts continued

Example: Given a capacitance of 0.001μ f, find the reactance at 50 kilocycles and inductance required to resonate. Place a straight odge through these values and read the intersections on the other scales, giving 3,180 ohms and 10.1 millihenries.

Fig. 3-Chart covering $\mathbf{1}$ kilocyele to 1000 kilocyelos.

Fig. 4-Chart covering 1 megacycle to 1000 megacycles.

Impedance formulas

Parallel and series circuits and their equivalent relationships

Conductance $G=\frac{1}{R_{p}} \quad \omega=2 \pi f$
Susceptance $B=-\frac{1}{X_{p}}=\omega C_{p}-\frac{1}{\omega L_{p}}$
Reactance $X_{p}=\frac{\omega L_{p}}{1-\omega^{2} L_{p} C_{p}}$

Admittance $Y=\frac{I}{E}=\frac{1}{Z}=G+j B$

$$
=\sqrt{G^{2}+B^{2}} \angle-\phi=|Y| \angle-\phi
$$

Impedance $Z=\frac{E}{l}=\frac{1}{Y}=\frac{R_{p} X_{p}}{R_{p}{ }^{2}+X_{p}^{2}}\left(X_{p}+j R_{p}\right)$

$$
=\frac{R_{p} X_{p}}{\sqrt{R_{p}^{2}+X_{p}^{2}}} \angle \phi=|Z| \angle \phi
$$

parallel circuit

Phase angle $-\phi=\tan ^{-1} \frac{B}{G}=\cos ^{-1} \frac{G}{|Y|}=-\tan ^{-1} \frac{R_{n},}{X ;}$
Resistance $=R$,
Reactance $X_{s}=\omega L_{s}-\frac{1}{\omega C_{s}}$
impedance $Z=\frac{E}{I}=R_{0}+j X_{\text {a }}$

$$
=\sqrt{R_{B}^{2}+X_{\theta}^{2}} \angle \phi=|Z| \angle \phi
$$

Phase angle $\phi=\tan ^{-1} \frac{X_{s}}{R_{s}}=\cos ^{-1} \frac{R_{s}}{|Z|}$
Vectors E and I, phase angle ϕ, and Z, Y are identical for the parallel circuit and its equivalent series circuit

$$
\begin{aligned}
Q & =|\tan \phi|=\frac{\left|X_{B}\right|}{R_{s}}=\frac{R_{p}}{\left|X_{p}\right|}=\frac{|B|}{G} \\
(p f) & =\cos \phi=\frac{R_{s}}{|Z|}=\frac{|Z|}{R_{p}}=\frac{G}{|Y|}=\sqrt{\frac{R_{s}}{R_{p}}}=\frac{1}{\sqrt{Q^{2}+1}}=\frac{(\mathrm{kw} \mid}{(\mathrm{kva})} \\
Z^{2} & =R_{s}{ }^{2}+X_{s}{ }^{2}=\frac{R_{p}{ }^{2} X_{p}{ }^{2}}{R_{p}{ }^{2}+X_{p}{ }^{2}}=R_{s} R_{p}=X_{s} X_{p}
\end{aligned}
$$

$$
\begin{aligned}
& Y^{2}=G^{2}+B^{2}=\frac{1}{R_{p}^{2}}+\frac{1}{X_{p}^{2}}=\frac{G}{R_{s}} \\
& R_{s}=\frac{Z^{2}}{R_{p}}=\frac{G}{Y^{2}}=R_{p} \frac{X_{p}^{2}}{R_{p}^{2}+X_{p}^{2}}=R_{p} \frac{1}{Q^{2}+1} \\
& X_{s}=\frac{Z^{2}}{X_{p}}=-\frac{B}{Y^{2}}=X_{p} \frac{R_{p}^{2}}{R_{p}^{2}+X_{p}^{2}}=X_{p} 1+\frac{1}{1 / Q^{2}} \\
& R_{p}=\frac{1}{G}=\frac{Z^{2}}{R_{s}}=\frac{R_{s}^{2}+X_{s}^{2}}{R_{s}}=R_{s} Q^{2}+11 \\
& X_{p}=-\frac{1}{B}=\frac{Z^{2}}{X_{s}}=\frac{R_{s}^{2}+X_{s}^{2}}{X_{s}}=X_{s}\left(1+\frac{1}{Q^{2}}\right)=\frac{R_{s} R_{p}}{X_{s}}= \pm R_{p} \sqrt{\frac{R_{s}}{R_{p}-R_{s}}}
\end{aligned}
$$

Approximate formulas

Reactor $R_{s}=\frac{X^{2}}{R_{p}}$ and $X=X_{s}=X_{p} \quad$ (See Note 1, p. 811
Resistor $R=R_{s}=R_{p}$ and $X_{a}=\frac{R^{2}}{X_{p}} \quad$ (See Note 2, p. 811

Simplified parallel and series circuits

$$
\tan \phi=\frac{\omega L_{s}}{R_{s}}=\frac{R_{p}}{\omega L_{p}} \quad Q=\frac{\omega L_{s}}{R_{s}}=\frac{R_{p}}{\omega L_{p}}
$$

$$
R_{s}=R_{p} \frac{1}{Q^{2}+1} \quad R_{p}=R_{s}\left(Q^{2}+1\right) \quad Z=R_{p} \frac{1+j Q}{1+Q^{2}}
$$

$$
L_{s}=L_{p} \frac{1}{1+1 / Q^{2}} \quad L_{p}=L_{s}\left(1+\frac{1}{Q^{2}}\right) \quad Y=\frac{1}{R_{s}} \frac{1-j Q}{1+Q^{2}}
$$

$$
\begin{aligned}
X_{p} & =\frac{-1}{\omega C_{p}} \quad B=\omega C_{p} \quad X_{s}=\frac{-i}{\omega C_{s}} \\
\tan \phi & =\frac{-1}{\omega C_{s} R_{s}}=-\omega C_{p} R_{p} \\
Q & =\frac{1}{\omega C_{s} R_{s}}=\omega C_{p} R_{p} \\
(p f) & =\frac{\omega C_{s} R_{s}}{\sqrt{1+\omega^{2} C_{s}^{2} R_{s}^{2}}}=\frac{1}{\sqrt{1+\omega^{2} C_{p}^{2} R_{p}^{2}}} \\
(p f) & \approx \frac{1}{Q} \quad(\text { See Note 3) } \\
R_{s} & =R_{p} \frac{1}{Q^{2}+1} \quad R_{p}=R_{s}\left(Q^{2}+1\right) \\
C_{s} & =C_{p}\left(1+\frac{1}{Q^{2}}\right) \quad C_{p}=C_{s} \frac{1}{1+1 / Q^{2}} \\
Z & =R_{p} \frac{1-j Q}{1+Q^{2}} \quad Y=\frac{1}{R_{s}} \frac{1+j Q}{1+Q^{2}}
\end{aligned}
$$

Approximate formulas

Inductor $R_{s}=\omega^{2} L^{2} / R_{p}$ and $L=L_{p}=L_{s} \quad$ (See Note 1)
Resistor $R=R_{s}=R_{p}$ and $L_{p}=R^{2} / \omega^{2} L_{s} \quad$ (See Note 2)
Capacitor $R_{s}=1 / \omega^{2} C^{2} R_{p}$ and $C=C_{p}=C_{s} \quad$ (See Note 1)
Resistor $R=R_{s}=R_{p}$ and $C_{s}=1 / \omega^{2} C_{p} R^{2} \quad$ (See Note 2)
Note 1: (Small resistive component) Error in percent $=-103 / Q^{2}$
(for $Q=10$, error $=1$ percent low)
Note 2: (Small reactive camponent) Error in percent $=-100 Q^{2}$
(for $Q=0.1$, error $=1$ percent low)

Note 3: Error in percent $=+50 / Q^{2}$ approximately
(for $Q=7$, error $=1$ percent high)
impedance $Z=R+j X$ ohms
magnitude $|z|=\left[R^{2}+X^{2}\right]^{\frac{3}{3}}$ ohms
phase angle $\phi=\tan ^{-1} \frac{X}{R}$
admittance $Y=\frac{1}{Z}$ mhos

diagram	Impedance \mathbf{Z}	magnitude $\|z\|$	phase angle ϕ	admittance Y
$\cdots \sqrt{R} \sqrt{\text { a }}$	R	R	0	$\frac{1}{R}$
	$j \omega L$	ωL	$+\frac{\pi}{2}$	$-j \frac{1}{\omega L}$
0	$-j \frac{1}{\omega C}$	$\frac{1}{\omega C}$	$-\frac{\pi}{2}$	JwC
	$j \omega\left(L_{1}+L_{2} \pm 2 M\right)$	$\omega\left(L_{1}+L_{2} \pm 2 M\right)$	$+\frac{\pi}{2}$	$-j \frac{1}{\omega\left[L_{1}+L_{2} \pm 2 M\right)}$
$\stackrel{c_{1}}{\square}$	$-j \frac{1}{\omega}\left(\frac{1}{C_{1}}+\frac{1}{C_{2}}\right)$	$\frac{1}{\omega}\left(\frac{1}{C_{1}}+\frac{1}{C_{2}}\right)$	$-\frac{\pi}{2}$	$\omega_{\omega} \frac{C_{1} C_{2}}{C_{1}+C_{2}}$
$\sqrt[R]{\sim}$	$R+j \omega L$	$\left[R^{2}+\omega^{2} L^{2}\right]^{\prime}$	$\tan ^{-1} \frac{\omega L}{R}$	$\frac{R-j \omega L}{R^{2}+\omega^{2} L^{\circ}}$
\xrightarrow{R}	$R-j \frac{1}{\omega C}$	$\frac{1}{\omega C}\left[1+\omega^{2} C^{2} R^{2}\right]^{\frac{1}{2}}$	$-\tan ^{-1} \frac{1}{\omega C R}$	$\frac{R+j \frac{1}{\omega C}}{R^{2}+\frac{1}{\omega^{2} C^{2}}}$
$1800-1!$	$f\left(\omega L-\frac{1}{\omega C}\right)$	$\left(\omega L-\frac{1}{\omega C}\right)$: $\frac{\pi}{2}$	$f \frac{\omega C}{1-\omega^{2} L C}$
$o^{R} N M^{2} m l^{-}$	$R+j\left(\omega L-\frac{1}{\omega C}\right)$	$\left[R^{2}+\left(\omega L-\frac{1}{\omega C}\right)^{2}\right]^{\frac{1}{2}}$	$\tan ^{-1} \frac{\left(\omega L-\frac{1}{\omega C}\right)}{R}$	$\frac{R-j\left(\omega L-\frac{1}{\omega C}\right)}{R^{2}+\left(\omega L-\frac{1}{\omega C}\right)^{2}}$

impedance $\mathbf{Z}=\mathbf{R}+j X$ ohms magnitude $\|\mathbf{Z}\|=\left[R^{2}+X^{2}\right]^{\frac{1}{2}}$ ohms		phase angle $\phi=\tan ^{-1} \frac{X}{R}$ admiftance $Y=\frac{1}{\mathbf{Z}}$ mhos	
	Impedance \mathbf{Z}	$\frac{R+k \omega\left[L 11-\omega^{2} L C l-C R^{2}\right]}{\left.11-\omega^{2} L C\right)^{2}+\omega^{2} C^{2} R^{2}}$	
	magnitude $\|\mathbf{z}\|$	$\left[\frac{R^{2}+\omega^{2} L^{2}}{\left(1-\omega^{2} L C\right)^{2}+\omega^{2} C^{2} R^{2}}\right]^{1}$	
	phase angle ${ }^{\text {d }}$	$\tan ^{-1} \frac{\left.\omega\left[L(1)-\omega^{2} L C\right)-C R^{2}\right]}{R}$	
	admittance \mathbf{Y}	$\frac{\left.R-j \omega\left[L 11-\omega^{2} L C\right)-C R^{2}\right]}{R^{2}+\omega^{2} L^{2}}$	
	impedance Z	$X_{1} \frac{X_{1} R_{2}+f\left[R_{2}^{2}+X_{2}\left(X_{1}+X_{2}\right)\right]}{R_{2}^{2}+\left(X_{1}+X_{2}\right)^{2}}$	
	magnilude \|z		$x_{1}\left[\frac{R_{2}^{2}+x_{2}^{2}}{R_{2}^{2}+\left(x_{1}+x_{2}\right)^{2}}\right]^{1}$
	phase angle ϕ	$\tan ^{-1} \frac{R_{2}{ }^{2}+X_{2}\left(X_{1}+X_{2}\right)}{X_{1} R_{2}}$	
	admiflance Y	$\frac{R_{2} x_{1}-j\left(R_{2}^{2}+x_{2}^{2}+x_{1} x_{2}\right)}{X_{1}\left(R_{2}^{2}+x_{2}^{2}\right)}$	

Skin effect

A $=$ correction coefficient
$D=$ diameter of conductor in inches
$f=$ frequency in cycles/second
$R_{a c}=$ resistance at frequency f
$R_{d c}=$ direct-current resistance
$T=$ thickness of tubular conductor in inches
$T_{1}=$ depth of penetration of current
$\mu=$ permeability of conductor material $\mu=1$ for copper and other nonmagnetic materials)
$\rho=$ resistivity of conductor material at any temperature
$\rho_{c}=$ resistivity of copper at 20 degrees centigrade
$=1.724$ microhm-centimeter
Fig. 5 shows the relationship of $R_{a c} / R_{d c}$ versus $D \sqrt{f}$ for copper, or versus $D \sqrt{f} \sqrt{\mu \rho_{c} / \rho}$ for any conductor material, for an isolated straight solid conductor of circular cross section. Negligible error in the formulas for $R_{a c}$ results when the conductor is spaced at least 10 D from adjacent conductors. When the spacing between axes of parallel conductors carrying the same current is 4D, the resistance $R_{a c}$ is increased about 3 percent, when the depth of penetration is small. The formulas are accurate for concentric lines due to their circular symmetry.
For values of $D \sqrt{f} \sqrt{\mu \rho_{c} / \rho}$ greater than 40 ,
$\frac{R_{a c}}{R_{d c}}=0.0960 D \sqrt{f} \sqrt{\mu \rho_{c} / \rho}+0.26$
The high-frequency resistance of an isolated straight conductor: either solid; or tubular for $T<D / 8$ or $T_{1}<D / 8$; is given in equation (2). If the current flow is along the inside surface of a tubular conductor, D is the inside diameter.
$R_{a c}=A \frac{\sqrt{f}}{D} \sqrt{\mu} \frac{\rho}{\rho_{o}} \times 10^{-6}$ ohms/foot
The values of the correction coefficient A for solid conductors and for tubular conductors are shown in Fig. 6.
The value of $T \sqrt{f} \sqrt{\mu \rho_{c} / \rho}$ that just makes $A=1$ indicates the penetration of

Skin effect continued

Fig. 5-Resistance ratio for isolated straight solid conductors of circulor cross section.

Skin effect continued

the currents below the surface of the conductor. Thus, approximately,
$T_{1}=\frac{3.5}{\sqrt{f}} \sqrt{\frac{\rho}{\mu \rho_{c}}}$ inches.
When $T_{1}<D / 8$ the value of $R_{a c}$ as given by equation (2) (but not the value of $R_{a c} / R_{d c}$ in Fig. 6, "Tubular conductors") is correct for any value $T \geqslant T_{1}$.

Under the limitation that the radius of curvature of all parts of the cross section is appreciably greater than T_{1}, equations (2) and (3) hold for isolated straight conductors of any shape. In this case the term $D=$ lperimeter of cross section) $/ \pi$.

Examples

a. At 100 megacycles, a copper conductor has a depth of penetration $T_{1}=0.00035$ inch.
b. A steel shield with 0.005 -inch copper plate, which is practically equivalent in $R_{a c}$ to an isolated copper conductor 0.005 -inch thick, has a value of $A=1.23$ at 200 kilocycles. This 23-percent increase in resistance over that of a thick copper sheet is satisfactorily low as regards its effect on the losses of the components within the shield. By comparison, a thick aluminum sheet has a resistance $\sqrt{\rho / \rho_{c}}=1.28$ times that of copper.

Fig. 6-Skin-effect correction coefficient \mathbf{A} for solid ond tubulor conductors.

solid conductors		fubular conductors		
D $\sqrt{f} \sqrt{\mu \frac{\rho_{\epsilon}}{\rho}}$	A	$T \sqrt{f} \sqrt{\mu \frac{\rho_{c}}{\rho}}$	A	$\mathbf{R}_{a c} / \mathbf{R}_{d e}$
>370 220	1.000 1.005	$\left.\begin{array}{rl} = & B \text { where } \\ B>3.5 \end{array}\right\}$	1.00	0.384 B
160	1.010	3.5	1.00	1.35
		3.15	1.01	1.23
98	1.02	2.85	1.05	1.15
48	1.05			
26	1.10	2.60	1.10	1.10
		2.29	1.20	1.06
	1.20	2.08	1.30	1.04
9.6	1.30			
5.3	2.00	1.77	1.50	1.02
<3.0	$R_{a c} \approx R_{d c}$	1.31	2.00	1.00
$R_{d c}=\frac{10.37}{D^{2}} \frac{\rho}{\rho_{c}} \times$	ohms/foot	$\left.\begin{array}{r} =8 \text { where } \\ B<1.3 \end{array}\right\}$	$\frac{2.60}{8}$	1.00

Network theorems

Reciprocity theorem

If an emf of any character whatsoever located at one point in a linear network produces a current at any other point in the network, the same emf acting at the second point will produce the same current at the first point.

Corollary: If a given current flowing at one point of a linear network produces a certain open-circuit voltage at a second point of the network, the same current flowing at the second point will produce a like opencircuit voltage at the first point.

Thévenin's theorem

If an impedance Z is connected between two points of a linear network, the resulting steady-state current I through this impedance is the ratio of the potential difference V between the two points prior to the connection of Z, and the sum of the values of (1) the connected impedance Z, and (2) the impedance Z_{1} of the network measured between the two points, when all generators in the network are replaced by their internal impedances:
$I=\frac{V}{Z+Z_{1}}$
Corollary: When the admittance of a linear network is Y_{12} measured between two points with all generators in the network replaced by their internal impedances, and the current which would flow between the points if they were short-circuited is $I_{a c \theta}$ the voltage between the points is $V_{12}=I_{s c} / Y_{12}$.

Principle of superposition

The current that flows at any point in a network composed of constant resistances, inductances, and capacitances, or the potential difference which exists between any two points in such a network, due to the simultaneous action of a number of emf's distributed in any manner throughout the network, is the sum of the component currents at the first point, or the potential differences between the two points, that would be caused by the individual emf's acting alone. (Applicable to emf's of any character.)

In the application of this theorem, it is to be noted that for any impedance element Z through which flows a current I, there may be substituted a virtual source of voltage of value $-Z I$.

Formulas for simple R, L, and C networks*

1. Self-inductance of circular ring of round wire at radio frequencies, for nonmagnetic materials
$L=\frac{a}{100}\left[7.353 \log _{10} \frac{16 a}{d}-6.386\right]$ microhenries
$a=$ mean radius of ring in inches
$d=$ diameter of wire in inches
$\frac{a}{d}>2.5$

2. Capacitance of a parallel-plate capacitor

$C=0.0885 K \frac{(N-11 \mathrm{~A}}{\dagger}$ micromicrofarads
$A=$ area of one side of one plate in square centimeters
$N=$ number of plates
$t=$ thickness of dielectric in centimeters
$K=$ dielectric constant
This formula neglects "fringing" at the edges of the plates.

3. Reactance of an inductor

$X=2 \pi f$ ohms
$f=$ frequency in cycles per second
$L=$ inductance in henries
or f in kilocycles and L in millihenries; or f in megacycles and L in microhenries.

4. Reaciance of a capacitor

$x=\frac{-1}{2 \pi i C}$ ohms
$f=$ frequency in cycles/second
$C=$ capacitance in farads
This may be written $x=\frac{-159.2}{\text { fC }}$ ohms
$f=$ frequency in kilocycles/second
$\mathrm{C}=$ capacitance in microfarads
or f in megacycles and C in millimicrofarads $(0.001 \mu \mathrm{f})$.

[^8]
Formulas for simple \mathbf{R}, \mathbf{L}, and \mathbf{C} networks continued

5. Resonant frequency of a series-funed circuif

$f=\frac{1}{2 \pi \sqrt{L C}}$ cycles $/$ second
$L=$ inductance in henries
C = capacitance in farads
This may be written $L C=\frac{25,330}{f^{2}}$
$f=$ frequency in kilocycles
$L=$ inductance in millihenries
$C=$ capacitance in millimicrofarads ($0.001 \mu \mathrm{f})$
or f in megacycles, L in microhenries, and C in micromicrofarads.

6. Dynamic resistance of a parallel-funed circuit af resonance

$r=\frac{X^{2}}{R}=\frac{L}{C R}$ ohms
$X=\omega L=1 / \omega C$
$\cdot R=r_{1}+r_{2}$
$L=$ inductance in henries
$C=$ capacitance in farads
$R=$ resistance in ohms
The formula is accurate for engineering purposes provided $X / R>10$.

7. Parallel impedances

If Z_{1} and Z_{2} are the two impedances that are connected in parallel, then the resultant impedance is

$$
Z=\frac{Z_{1} Z_{2}}{Z_{1}+Z_{2}}
$$

Refer also to page 85.
Given one impedance Z_{1} and the desired resultant impedance Z, the other impedance is

$$
Z_{2}=\frac{Z Z_{1}}{Z_{1}-Z}
$$

Formulas for simple R, L, and C networks

8. Input impedance of a 4-terminal network*

$Z_{11}=R_{11}+j X_{11}$
is the impedance of the first circuit, measured at terminals $1-1$ with terminals 2-2 open-circuited.
$Z_{22}=R_{22}+j X_{22}$
is the impedance of the second circuit, measured at terminals $2-2$ with load Z_{2} removed and terminals $1-1$ open-circuited.
$Z_{14}=R_{12}+j X_{12}$
is the transfer impedance between the two pairs of terminals, i.e., the open-circuit voltage appearing at either pair when unit current flows at the other pair.

Then the impedance looking into terminals $1-1$ with ioad Z_{2} across terminals $2-2$ is

$Z_{1}^{\prime}=R_{1}^{\prime}+j X_{1}^{\prime}=Z_{11}-\frac{Z^{2}{ }_{12}}{Z_{22}+Z_{2}}=R_{11}+j X_{11}-\frac{R^{2}{ }_{12}-X_{12}^{2}+2 j R_{12} X_{12}}{R_{22}+R_{2}+j\left(X_{22}+X_{2}\right)}$
When
$R_{12}=0$
$Z_{1}{ }^{\prime}=R_{1}{ }^{\prime}+j X_{1}{ }^{\prime}=Z_{11}+\frac{X_{12}^{2}}{Z_{22}+Z_{2}}$
Example: A transformer with puned secondary and negligible primary resistance.
$Z_{11}=j \omega L_{1}$
$Z_{22}+Z_{2}=R_{2} \quad$ since $X_{22}+X_{2}=0$
$Z_{12}=\jmath \omega M$
Then $Z_{1}{ }^{\prime}=j \omega L_{1}+\frac{\omega^{2} M^{2}}{R_{2}}$

[^9]
9. Input admittance of a 4-terminal network*

$Y_{11}=$ admittance measured at terminals 1-1 with terminals $2-2$ shortcircuited.
$Y_{22}=$ admittance measured at terminals $2-2$ with load Y_{2} disconnected. and terminals $1-1$ shortcircuited.

equivalent circuit
$Y_{12}=$ transfer admittance, i.e., the short-circuit current that would flow at one pair of terminals when unit voltage is impressed across the other pair.
Then the admittance looking into terminals $1-1$ with load Y_{2} connected across $2-2$ is
$Y_{1}^{\prime}=G_{1}^{\prime}+j B_{1}^{\prime}=Y_{11}-\frac{Y^{2}{ }_{12}}{Y_{22}+Y_{2}}$

10. 4-ferminal network with loads equal to image impedances*

When Z_{1} and Z_{2} are such that $Z^{\prime}=Z_{1}$ and $Z^{\prime \prime}=Z_{2}$ they are called the image impedances. Let the input impedance measured at terminals $1-1$ with terminals 2-2 open-circuited be $Z^{\prime}{ }_{o c}$ and with $2-2$ short-circuted be $Z^{\prime}{ }_{s c}$. Similarly $Z^{\prime \prime}{ }_{o c}$ and $Z^{\prime \prime}{ }^{\text {sc }}$ measured at terminals $2-2$. Then

$$
\begin{aligned}
& Z^{\prime}=\left[Z^{\prime}{ }_{o c} Z^{\prime}{ }_{s c}\right]^{1 / 2}=\left[Z_{11}\left(Z_{11}-\frac{Z^{2}{ }_{22}}{Z_{22}}\right)\right]^{1 / 2}=\left[Y_{11}\left(Y_{11}-\frac{Y_{12}}{Y_{22}}\right)\right]^{-3 / 2} \\
& Z^{\prime \prime}=\left[Z^{\prime \prime}{ }_{o c} Z^{\prime \prime}{ }_{s c}\right]^{1 / 2}=\left[Z_{22}\left(Z_{22}-\frac{Z^{2}{ }_{12}}{Z_{11}}\right)\right]^{1 / 2}=\left[Y_{22}\left(Y_{22}-\frac{Y^{2}{ }_{12}}{Y_{11}}\right)\right]^{-1 / 2} \\
& \tanh \left(\alpha+j \beta \left\lvert\,= \pm\left[\frac{Z^{\prime}{ }_{s c}}{Z^{\prime}{ }_{n c}}\right]^{3 / 2}= \pm\left[\frac{Z^{\prime \prime}{ }^{1 / 2}}{Z^{\prime \prime}}\right]^{1 / 2}\right.\right]^{1 / 2}= \pm\left[1-\frac{Z^{2}{ }_{12}}{Z_{11} Z_{22}}\right]^{3 / 2} \\
& = \pm\left[1-\frac{Y_{12}^{2}}{Y_{11} Y_{22}}\right]^{1 / 2}
\end{aligned}
$$

[^10]
Formulas for simple R, L, and C networks continued

The quantities Z_{11}, Z_{22}, and Z_{12} are defined in paragraph 8, above, while Y_{11}, Y_{22}, and Y_{12} are defined in paragraph 9.
($\alpha+j \beta$) is called the image transfer constant, defined by

$$
\begin{aligned}
\left(\frac{\text { complex volt-amperes into load from } 2-2}{\text { complex volt-amperes into network at } 1-1}\right) & =\frac{v_{2} i_{2}}{v_{1} i_{1}}=\frac{v_{2}^{2} Z_{1}}{v_{1}{ }^{2} Z_{2}}=\frac{i_{2}{ }^{2} Z_{2}}{i_{1}{ }^{2} Z_{1}} \\
& =\epsilon^{-2(a+j \beta)}=\epsilon^{-2 a}-2 \beta
\end{aligned}
$$

when the load is equal to the image impedance. The quantities α and β are the same irrespective of the direction in which the network is working.
When Z_{1} and Z_{2} have the same phase angle, α is the attenuation in nepers and β is the angle of lag of i_{2} behind i_{1}.

11. Currents in a 4-terminal network*

$$
\begin{aligned}
i_{1} & =\frac{e_{1}}{Z_{1}^{\prime}} \\
& =e_{1} \frac{Z_{22}}{Z_{11} Z_{22}-Z^{2}{ }_{12}}
\end{aligned}
$$

$=e_{1} \frac{R_{22}+j X_{22}}{\left(R_{11} R_{22}-X_{11} X_{22}-R^{2}{ }_{12}+X^{2}{ }_{12}\right)+j\left(R_{11} X_{22}+R_{22} X_{11}-2 R_{12} X_{12}\right)}$

$$
i_{2}=e_{1} \frac{Z_{12}}{Z_{11} Z_{22}-Z^{2}{ }_{12}}
$$

12. Voltages in a 4-ferminal network*

Let
$i_{1 s c}=$ current that would flow between terminals 1-1 when they are short-circuited.
$Y_{11}=$ admittance measured across terminals 1-1 with generator replaced by its internal impedance, and with terminals $2-2$ shortcircuited.

*See footnote on p. 92.

Formulas for simple R, L, and C networks continued

$Y_{22}=$ admittance measured across terminals $2-2$ with load connected and terminals $1-1$ short-circuited.
$Y_{12}=$ transfer admittance between terminals $1-1$ and $2-2$ (defined in paragraph 9 abovel.

Then the voltage across terminals $1-1$, which are on the end of the network nearest the generator, is
$v_{1}=\frac{i_{1 s c} Y_{22}}{Y_{11} Y_{22}-Y^{2}{ }_{12}}$
The voltage across terminals $2-2$, which are on the load end of the network is
$v_{2}=\frac{i_{1 s c} Y_{12}}{Y_{11} Y_{22}-Y^{2}{ }_{12}}$

13. Power transfer between two impedances connected directly

Let $Z_{1}=R_{1}+j X_{1}$ be the impedance of the source, and $Z_{2}=R_{2}+j X_{2}$ be the impedance of the load.

The maximum power transfer occurs when

$$
\begin{aligned}
R_{2} & =R_{1} \text { and } X_{2}=-X_{1} \\
\frac{P}{P_{m}} & =\frac{4 R_{1} R_{2}}{\left(R_{1}+R_{2}\right)^{2}+\left(X_{1}+X_{2}\right)^{2}}
\end{aligned}
$$

$P=$ power delivered to the load when the impedances are connected directly.
$P_{m}=$ power that would be delivered to the load were the two impedances connected through a perfect impedance-matching network.

14. Power transfer between two meshes coupled reactively

In the general case, X_{11} and X_{22} are not equal to zero and X_{12} may be any reactive coupling. When only one of the quantities X_{11}, X_{22}, and X_{12} can be varied, the best power transfer under the circumstances is given by:

For X_{22} variable
$X_{22}=\frac{X^{2}{ }_{12} X_{11}}{R^{2}{ }_{11}+X^{2}{ }_{11}}$ (zero reactance looking into load circuit)
For X_{11} variable
$X_{11}=\frac{X^{2}{ }_{12} X_{22}}{R^{2}{ }_{22}+X^{2}{ }_{22}}$ (zero reactance looking into source circuit)
For X_{12} variable
$X^{2}{ }_{12}=\sqrt{\left(\mathbb{R}^{2}{ }_{11}+X^{2}{ }_{11}\right)\left(R^{2}{ }_{22}+X^{2}{ }_{22}\right)}$
When two of the three quantities can be varied, a perfect impedance match is attained and maximum power is transferred when
$X^{2}{ }_{12}=\sqrt{\left(R^{2}{ }_{11}+X^{2}{ }_{11}\right)\left(R^{2}{ }_{22}+X^{2}{ }_{22}\right)}$
and
$\frac{X_{11}}{R_{11}}=\frac{X_{22}}{R_{22}}$ (both circuits of same Q or phase angle)
For perfect impedance match the current is

$$
i_{2}=\frac{e_{1}}{2 \sqrt{R_{11} R_{22}}} \angle \tan ^{-1} \frac{R_{11}}{X_{11}}
$$

In the most common case, the circuits are tuned to resonance $X_{11}=0$ and $X_{22}=0$. Then $X^{2}{ }_{12}=R_{11} R_{22}$ for perfect impedance match.

15. Optimum coupling between two circuits tuned to the same frequency

From the last result in paragraph 14, maximum power transfer for an impedance match) is obtained for $\omega^{2} M^{2}=R_{1} R_{2}$ where M is the mutual inductance between the circuits, and R_{1} and R_{2} are the resistances of the two circuits.

16. Coefficient of coupling-geometrical consideration

By definition, coefficient of coupling k is

$$
k=\frac{M}{\sqrt{L_{1} L_{2}}}
$$

where $M=$ mutual inductance, and L_{1} and L_{2} are the inductances of the two coupled circuits.

Coefficient of coupling of two coils is a geometrical property, being a function of the proportions of the configuration of coils, including their relationship to any nearby objects that affect the field of the system. As long as these proportions remain unchanged, the coefficient of coupling is independent of the physical size of the system, and of the number of turns of either coil.

17. $T-\pi$ or $Y-\Delta$ transformation

The two networks are equivalent, as far as conditions at the terminals are concerned, provided the following equations are satisfied. Either the impedance equations or the admittance equations may be used:
$Y_{1}=1 / Z_{1,}, Y_{12}=1 / Z_{12}$, etc.

Impedance equations
$Z_{12}=\frac{z_{1} z_{2}+z_{1} z_{3}+z_{2} z_{3}}{z_{3}}$
$z_{13}=\frac{z_{1} z_{2}+z_{1} z_{3}+z_{2} z_{3}}{z_{2}}$.
$z_{23}=\frac{z_{1} Z_{2}+z_{1} z_{3}+z_{2} z_{3}}{z_{1}}$
$Z_{1}=\frac{Z_{12} Z_{13}}{Z_{12}+Z_{13}+Z_{23}}$
$Z_{2}=\frac{Z_{12} Z_{23}}{Z_{12}+Z_{13}+Z_{23}}$
$Z_{3}=\frac{Z_{13} Z_{23}}{Z_{12}+Z_{13}+Z_{23}}$

Admittance equations

$$
\begin{aligned}
Y_{12} & =\frac{Y_{1} Y_{2}}{Y_{1}+Y_{2}+Y_{3}} \\
Y_{13} & =\frac{Y_{1} Y_{3}}{Y_{1}+Y_{2}+Y_{3}}
\end{aligned}
$$

$$
Y_{23}=\frac{Y_{2} Y_{3}}{Y_{1}+Y_{2}+Y_{3}}
$$

$$
Y_{1}=\frac{Y_{12} Y_{13}+Y_{12} Y_{23}+Y_{13} Y_{23}}{Y_{23}}
$$

$$
\gamma_{2}=\frac{Y_{12} Y_{13}+Y_{12} Y_{23}+Y_{13} Y_{23}}{Y_{13}}
$$

$$
Y_{3}=\frac{Y_{12} Y_{13}+Y_{12} Y_{23}+Y_{13} Y_{23}}{Y_{12}}
$$

Formulas for simple R, L, and C networks continued

Fig. 7-Simple fitter sections containing R, L, and C. See also Fig. 6.

diagram	typ	$\left\|\begin{array}{c}\text { time constont } \\ \text { or } \\ \text { resonant freq }\end{array}\right\|$	formula and approximation
	low-pass $R-C$	$T=R C$	$\begin{aligned} \frac{E_{o u t}}{E_{i n}} & =\frac{1}{\sqrt{1+\omega^{2} T^{2}}} \approx \frac{1}{\omega T} \\ \phi_{A} & =-\tan ^{-1}(R \omega C) \end{aligned}$
	B high-pass R-C	$T=R C$	$\begin{aligned} \frac{E_{o u t}}{E_{i n}} & =\frac{1}{\sqrt{1+\frac{1}{\omega^{2} T^{2}}}} \approx \omega T \\ \phi_{B} & =\tan ^{-1}(1 / R \omega C) \end{aligned}$
	C low-pass R-L	$T=\frac{L}{R}$	$\begin{aligned} \frac{E_{o u t}}{E_{1 n}} & =\frac{1}{\sqrt{1+\omega^{2} T^{2}}} \approx \frac{1}{\omega T} \\ \phi_{C} & =-\tan ^{-1}(\omega L / R) \end{aligned}$
	D high-pass R-L	$T=\frac{L}{R}$	$\begin{aligned} \frac{E_{\text {out }}}{E_{\text {in }}} & =\frac{1}{\sqrt{1+\frac{1}{\omega^{2} T^{2}}}} \approx \omega T \\ \phi_{D} & =\tan ^{-1}(R / \omega L) \end{aligned}$
	$\begin{gathered} \mathbf{E} \\ \text { low-poss } \\ \text { L-C } \end{gathered}$	$f_{0}=\frac{0.1592}{\sqrt{L C}}$	$\begin{aligned} \frac{E_{\text {out }}}{E_{i n}} & =\frac{1}{1-\omega^{2} L C}=\frac{1}{1-f^{2} / f_{0}^{2}} \\ & \approx-\frac{1}{\omega^{2} L C}=-\frac{f_{0}^{2}}{f^{2}} \\ \phi & =0 \text { ior } f<f_{0} ; \quad \phi=\pi \text { for } f>f_{0} \end{aligned}$
	$\underset{\substack{\text { F } \\ \text { high-pass } \\ \text { L-C }}}{\text {. }}$	$f_{0}=\frac{0.1592}{\sqrt{\text { LC }}}$	$\begin{aligned} \frac{E_{\text {out }}}{E_{i n}} & =\frac{1}{1-1 / \omega^{2} L C}=\frac{1}{1-f_{0}^{2} / f^{2}} \\ & \approx-\omega^{2} L C=-\frac{f^{2}}{f_{u^{2}}} \\ \phi & =0 \text { for } f>f_{0} ; \quad \phi=\pi \text { for } f<f_{0} \end{aligned}$

R in ohms; L in henries; C in farads $11 \mu f=10^{-6}$ farad).
$T=$ time constant (seconds), $f_{0}=$ resonant frequency (cps),$\omega=2 \pi f$,
$2 \pi=6.28, \quad 1 / 2 \pi=0.1592, \quad 4 \pi^{2}=39.5, \quad 1 / 4 \pi^{2}=0.0253$.
The relationships for low-pass filters are plotted in Figs. 9 and 10.

18. Elementary R-C, R-L, and L-C Alters and equalizers

Simple attenuating sections of broad frequency discriminating characteristics, as used in power supplies, grid-bias feed, etc. are shown in Figs. 7 and 8. The output load impedance is assumed to be high compared to the impedance of the shunt element of the filter. The phase angle ϕ is that of $E_{\text {out }}$ with respect to $E_{1 \mathrm{In}}$.

Fig. 8-Circie diagrams for R-L and R-C filter sections.

Fig. 9-Low-pass R-C and R-L filters. N is any convenient factor, usually taken as an integral power of to.

Fig. 10 -Low-pass L-C Aifters. N is any convenient factor, usually taken as an Integral power of 10.

Examples of low-pass R-C filfers

a. $R=100,000$ ohms

$$
C=0.1 \times 10^{-6}(0.1 \mu)
$$

Then $T=R C=0.01$ second

$$
\begin{array}{ll}
\text { At } f=100 \mathrm{cps}: & E_{\text {out }} / E_{\text {in }}=0.16- \\
\text { At } f=30,000 \mathrm{cps}: & E_{\text {out }} / E_{i n}=0.00053
\end{array}
$$

b. $\quad R=1,000$ ohms

$$
\begin{aligned}
C & =0.001 \times 10^{-6} \text { farad } \\
T & =1 \times 10^{-6} \text { second }=0.1 / \mathrm{N}, \text { where } \mathrm{N}=10^{5} \\
\text { At } f & =10 \text { megacycles }=100 \times \mathrm{N}: \quad E_{o u z} / E_{i n}=0.016-
\end{aligned}
$$

Example of low-pass L-C filter

At $f=120 \mathrm{cps}$, required $E_{\text {out }} / E_{\text {in }}=0.03$
Then from curves: $L C=6 \times 10^{-5}$ approximately.
Whence, for $C=4 \mu$, we require $L=15$ henries.

Effective and average values of alternating current

(Similar equations apply to a-c voltages)
$i=I \sin \omega t$
Average value $I_{a v}=\frac{2}{\pi} I$
which is the direct current that would be obtained were the original current fully rectified, or approximately proportional to the reading of a rectifiertype meter.

Effective or root-mean-square (rms) value $I_{e f f}=\frac{I}{\sqrt{2}}$
which represents the heating or power effectiveness of the current, and is proportional to the reading of a dynamometer or thermal-type meter.

When

$$
\begin{aligned}
i & =I_{0}+I_{1} \sin \omega_{1} t+I_{2} \sin \omega_{2} t+\ldots \\
I_{\text {efy }} & =\sqrt{I_{0}^{2}+\frac{1}{2}\left(I_{1}^{2}+I_{2}^{2}+\ldots .\right)}
\end{aligned}
$$

Note: The average value of a complex current is not equal to the sum of the average values of the components.

Transients-elementary cases

The complete transient in a linear network is, by the principle of superposition, the sum of the individual transients due to the store of energy in each inductor and capacitor and to each external source of energy connected to the network. To this is added the steady-state condition due to each external source of energy. The transient may be computed as starting from any arbitrary time $\mathrm{f}=0$ when the initial conditions of the energy of the network are known.

102

Transients-elementary cases

Time constant (designated T): Of the discharge of a capacitor through a resistor is the time $t_{2}-h_{1}$ required for the voltage or current to decay to $1 / \epsilon$ of its value at time t_{1}. For the charge of a capacitor the same definition applies, the voltage "decaying" toward its steady-state value. The time constant of discharge or charge of the current in an inductor through a resistor follows an analogous definition.
Energy stored in a capacitor $=\frac{1}{2} C E^{2}$ joules (watt-seconds) Energy stored in an inductor $=\frac{1}{2} L I^{2}$ joules (watt-seconds) $\epsilon=2.718 \quad 1 / \epsilon=0.3679 \quad \log _{10} \epsilon=0.4343 \quad T$ and t in seconds R in ohms L in henries C in farads E in volts I in amperes

Capacitor charge and discharge

Closing of switch occurs at time $t=0$
Initial conditions (at $t=0$): Battery $=E_{b} ; e_{c}=E_{o}$.
Steady state (at $t=\infty): \quad i=0_{i} \quad e_{c}=E_{b}$.

Transient:

$$
\begin{aligned}
i & =\frac{E_{b}-E_{0}}{R} \epsilon^{-t / R C}=I_{0} \epsilon^{-t / R C} \quad \log _{10}\left(\frac{i}{I_{0}}\right)=-\frac{0.4343}{R C} t \\
e_{c} & =E_{0}+\frac{1}{C} \int_{0}^{t} i d t=E_{0} \epsilon^{-t / R C}+E_{b}\left(1-\epsilon^{-t / R C}\right)
\end{aligned}
$$

Time constant: $T=R C$
Fig. II shows current:

$$
i / I_{0}=\epsilon^{-t / T}
$$

Fig. 11 shows discharge (for $E_{b}=0$: : $e_{c} / E_{0}=\epsilon^{-t / T}$
Fig. 12 shows charge Ifor $E_{0}=01: \quad e_{c} / E_{b}=1-\epsilon^{-t / T}$
These curves are plotted on a larger scale in Fig. 13.

Fig. 11-Capacitor discharge.

Fig. 12-Capacitor charge.

Transients-elementary cases continued

Two capacitors

Closing of switch occurs at time $t=0$
Initial conditions (at $t=0$):
$e_{1}=E_{1} ; e_{2}=E_{2}$.
Steady state (at $\mid=\infty$):
$e_{1}=E_{f} ; e_{2}=-E_{f ; i}=0$.
$E_{f}=\frac{E_{1} C_{1}-E_{2} C_{2}}{C_{1}+C_{2}} \quad C^{\prime}=\frac{C_{1} C_{2}}{C_{1}+C_{2}}$
Transient:

$$
i=\frac{E_{1}+E_{2}}{R} \epsilon^{-\ell / R C^{\prime}}
$$

Use exponential $\epsilon^{-t / T}$ for charge or discharge of capacitor or discharge of inductor:

$$
\frac{(\text { (current at time } t)}{(\text { initial current) }}
$$

Discharge of capacitor:

$$
\frac{(\text { voltage al time } t)}{(\text { initial voltage) }}
$$

Use exponential l- $\epsilon^{-t / T}$ for charge of capacitor:
(vollage at time t)
(battery or final voltage)
Charge of inductor:

$$
\frac{\text { (curront at time t) }}{(\text { Anal curront) }}
$$

Fig. 13-Expenential functions $\epsilon^{-8 / T}$ and $1-\epsilon^{-\ell / T}$ applied to translents In $R-C$ and L-R circuits.

104

Transients-elementary cases continued
$e_{1}=E_{f}+\left(E_{1}-E_{f}\right) \epsilon^{-t / R C^{\prime}}=E_{1}-\left(E_{1}+E_{2}\right) \frac{C^{\prime}}{C_{1}}\left(1-\epsilon^{-t / R C^{\prime}}\right)$
$e_{2}=-E_{1}+\left(E_{2}+E_{j}\right) \epsilon^{-t / R C^{\prime}}=E_{2}-\left(E_{1}+E_{2}\right) \frac{C^{\prime}}{C_{2}}\left(1-\epsilon^{-t / R C^{\prime}}\right)$
Original energy $=\frac{1}{2}\left(C_{1} E_{1}{ }^{2}+C_{2} E_{2}{ }^{2}\right)$ joules
Final energy $=\frac{1}{2}\left(C_{1}+C_{2}\right) E_{f}{ }^{2}$ joules
Loss of energy $=\int_{0}^{\infty} i^{2} R d t=\frac{1}{2} C^{\prime}\left(E_{1}+E_{2}\right)^{2}$ joules
(loss is independent of the value of.R.)

Inductor charge and discharge

Initial conditions lat $t=0$):
Battery $=E_{b} ; i=I_{0}$
Steady state lat $t=\infty$ l: $i=I_{f}=E_{\delta} / R$
Transient, plus steady state:

$$
\begin{aligned}
i & =I_{J}\left(1-\epsilon^{-R t / L}\right)+I_{0} \epsilon^{-R t / L} \\
e_{L} & =-L d i / d t=-\left(E_{b}-R I_{0}\right) \epsilon^{-R t / L}
\end{aligned}
$$

Time constant: $T=L / R$
Fig. 11 shows discharge (for $\left.E_{b}=0\right) \quad i / I_{0}=\epsilon^{-t / T}$
Fig. 12 shows charge (for $1_{0}=01 \quad i / I_{f}=\left(1-\epsilon^{-t / T}\right.$)
These curves are plotted on a larger scale in Fig. 13.

Series R-L-C circuit charge and discharge

Initial conditions $(a t \mid=0)$:
Battery $=E_{b ;} \mathbf{e}_{c}=E_{0} ; i=I_{0}$
Steady state lat $t=\infty): i=0 ; e_{c}=E_{b}$
Differential equation:
$E_{b}-E_{0}-\frac{1}{C} \int_{0}^{t} i d t-R i-L \frac{d i}{d t}=0$

Transients-elementary cases continued
when $L \frac{d^{2} i}{d t^{2}}+R \frac{d i}{d t}+\frac{i}{C}=0$
Solution of equation:

$$
i=\epsilon^{-R t / 2 L}\left[\frac{2\left(E_{b}-E_{0}\right)-R I_{0}}{R \sqrt{D}} \sinh \frac{R t}{2 L} \sqrt{D}+I_{0} \cosh \frac{R t}{2 L} \sqrt{D}\right]
$$

where $D=1-\frac{4 L}{R^{2} C}$
Case 1: When $\frac{L}{R^{2} C}$ is small

$$
\begin{aligned}
i=\frac{1}{\left(1-2 A-2 A^{2}\right)}\{ & {\left[\frac{E_{b}-E_{0}}{R}-I_{0}\left(A+A^{2}\right)\right] \epsilon^{-\frac{B}{R C}(1+A+2 A)} } \\
& \left.+\left[I_{0}\left(1-A-A^{2}\right)-\frac{E_{b}-E_{0}}{R}\right] \epsilon^{-\frac{R t}{L}\left(1-A-A^{2}\right)}\right\}
\end{aligned}
$$

where $A=\frac{L}{R^{2} C}$
For practical purposes, the terms A^{2} can be neglected when $A<0.1$. The terms A may be neglected when $A<0.01$.
Case 2: When $\frac{4 L}{R^{2} C}<1$ for which \sqrt{D} is real

$$
\begin{aligned}
& i=\frac{\epsilon^{-R t / 2 L}}{\sqrt{D}}\left\{\left[\frac{E_{b}-E_{0}}{R}-\frac{I_{0}}{2}(1-\sqrt{D})\right] \epsilon^{\frac{R t}{} \bar{D} \bar{D}}\right. \\
&\left.+\left[\frac{I_{0}}{2}(1+\sqrt{D})-\frac{E_{b}-E_{0}}{R}\right] \epsilon^{-\frac{R t}{2 L} \sqrt{D}}\right\}
\end{aligned}
$$

Case 3: When D is a small positive or negative quantity

$$
\begin{aligned}
i=\epsilon^{-R t / 2 L}\left\{\frac { 2 (E _ { b } - E _ { 0 }) } { R } \left[\frac{R t}{2 L}\right.\right. & \left.+\frac{1}{6}\left(\frac{R t}{2 L}\right)^{3} D\right] \\
& \left.+I_{0}\left[1-\frac{R t}{2 L}+\frac{1}{2}\left(\frac{R t}{2 L}\right)^{2} D-\frac{1}{6}\left(\frac{R t}{2 L}\right)^{3} D\right]\right\}
\end{aligned}
$$

This formula may be used for values of D up to ± 0.25, at which values the error in the computed current i is approximately 1 percent of I_{0} or of $\frac{E_{b}-E_{0}}{R}$

Transients-elementary cases continued

Case 3a: When $4 L / R^{2} C=1$ for which $D=0$, the formula reduces to
$i=\epsilon^{-R t / 2 L}\left[\frac{E_{b}-E_{0}}{R} \frac{R t}{L}+I_{0}\left(1-\frac{R t}{2 L}\right)\right]$
or $i=i_{1}+i_{2}$, plotted in Fig. 14. For pracfical purposes, this formula may be used when $4 L / R^{2} C=1 \pm 0.05$ with errors of 1 percent or less.

Fig. 14 Transients for $\mathbf{4 L} / \mathbf{R}^{2} \mathrm{C}=\mathbf{1}$.

Case 4: When $\frac{4 L}{R^{2} C}>1$ for which \sqrt{D} is imaginary

$$
\begin{aligned}
i & =\epsilon^{-R t / L 2}\left\{\left[\frac{E_{b}-E_{0}}{\omega_{0} L}-\frac{R I_{0}}{2 \omega_{0} L}\right] \sin \omega_{0} t+I_{0} \cos \omega_{0} t\right\} \\
& =I_{m} \epsilon^{-R t / 2 L} \sin \left(\omega_{0} t+\psi \mid\right.
\end{aligned}
$$

where $\quad \omega_{0}=\sqrt{\frac{1}{L C}-\frac{R^{2}}{4 L^{2}}}$
$I_{m}=\frac{1}{\omega_{0} L} \sqrt{\left(E_{b}-E_{0}-\frac{R I_{0}}{2}\right)^{2}+\omega_{0}^{2} L^{2} I_{0}^{2}} \quad \psi=\tan ^{-1} \frac{\omega_{0} L I_{0}}{E_{b}-E_{0}-\frac{R I_{0}}{2}}$
The envelope of the voltage wave across the inductor is:
$\pm \epsilon^{-R z / 2 L} \frac{1}{\omega_{0} \sqrt{ } L C} \sqrt{\left(E_{b}-E_{0}-\frac{R I_{0}}{2}\right)^{2}+\omega_{0}{ }^{2} L^{2} I_{0}{ }^{2}}$

Example: Relay with transient-suppressing capacitor.
Switch closed till time $1=0$, then opened.

Let $L=0.10$ henries, $R_{1}=100$ ohms,

$$
E=10 \text { volts }
$$

Suppose we choose
$C=10^{-6}$ farads
$R_{2}=100$ ohms

Transients-elementary cases continued

Then
$R=200$ ohms
$I_{0}=0.10$ amperes
$E_{0}=10$ volts
$\omega_{0}=3 \times 10^{3}$
$f_{0}=480 \mathrm{cps}$
Maximum peak voltage across L (envelope at $t=0$ l is approximately 30 volts. Time constant of decay of envelope is 0.001 second.
It is preferable that the circuit be just nonoscillating ICase 3al and that it present a pure resistance at the switch terminals for any frequency (see note on p .85).

$$
R_{2}=R_{1}=R / 2=100 \text { ohms }
$$

$4 L^{\prime} R^{2} C=1$
$C=10^{-5}$ farad $=10$ microfarads
At the instant of opening the switch, the voltage across the parallel circuit is $E_{0}-R_{2} I_{0}=0$.

Series R-L-C circuit with sinusoidal applied volitage

By the principle of superposition, the transient and steady-state conditions are the same for the actual circuit and the equivalent circuit shown in the accompanying illustrations, the closing of the switch occurring at time $1=0$. In the equivalent circuit, the sleady state is due to the source e acting continuously from time $t=-\infty$, while the transient is due to short-circuiting the source

actual circuit - e at time $t=0$.

Source: $\quad e=E \sin |\omega t+\alpha\rangle$
Steady state: $\left.i=\frac{e}{Z} \angle-\phi=\frac{E}{Z} \sin (\omega)+\alpha-\phi\right)$
where

$$
\begin{aligned}
Z & =\sqrt{R^{2}+\left(\omega L-\frac{1}{\omega C}\right)^{2}} \\
\tan \phi & =\frac{\omega^{2} L C-1}{\omega C R}
\end{aligned}
$$

equivalent circuit

The transient is found by determining current $i=I_{0}$

108

and capacitor voltage $e_{c}=E_{0}$ at time $t=0$, due to the source $-e$. These values of I_{0} and E_{0} are then substituted in the equations of Case $1,2,3$, or 4 , above, according to the values of R, L, and C.

At time $t=0$, due to the source -e :

$$
i=I_{0}=-\frac{E}{Z} \sin |\alpha-\phi|
$$

$e_{c}=E_{0}=\frac{E}{\omega C Z} \cos (\alpha-\phi)$
This form of analysis may be used for any periodic applied voltage e. The steady-state current and the capacitor voltage for an applied voltage -e are determined, the periodic voltage being resolved into its harmonic components for this purpose, if necessary. Then the instantaneous values $i=I_{0}$ and $e_{c}=E_{0}$ at the time of closing the switch are easily found, from which the transient is determined. It is evident, from this method of analysis, that the waveform of the transient need bear no relationship to that of the applied voltage, depending only on the constants of the circuit and the hypothetical initial conditions I_{0} and E_{0}.

Transients-operational calculus and Laplace transforms

Among the various methods of operational calculus used to solve transient problems, one of the most efficient makes use of the Laplace transform.

If we have a function $v=f(t)$, then by definition the Laplace transform is $T(v)=F(p)$, where
$F(p)=\int_{0}^{\infty} \epsilon^{-p t} f(t) d t$
The inverse transform of $F(p)$ or $T(v)$ is $v=f(t)$. Most of the mathematical functions encountered in practical work fall in the class for which Laplace transforms exist. The transforms of a number of functions are given in the table of pages 611 to 613.

The electrical for other) system for which a solution of the differential equation is required, is considered only in the time domain $t \geqslant 0$. Any currents or voltages existing at $t=0$, before the driving force is applied, constitute the initial conditions. The driving force is assumed to be zero when $\mathrm{t}<0$.

Example

Take the circuit of Fig. 15, in which the switch is closed at time $t=0$. Prior to the closing of the switch, suppose the capacitor is charged; then at $t=0$, we have $v=V_{0}$. It is required to find the voltage v across capacitor C as a function of time.
Writing the differential equation of the circuit in terms of voltage, and since $i=d q / d t=C(d v / d t)$, the equation is
$e(t)=v+R i=v+R C(d v / d t)$

Fig. 15.
where $e(f)=E_{b}$
Referring to the table of transforms, the applied voltage is E_{b} multiplied by unit step, or $E_{b} S_{-1}(t)$; the transform for this is E_{b} / p. The transform of v is $T(v)$. That of $R C(d v / d t)$ is $R C[p T(v)-v(0)]$, where $v(0)=V_{0}=$ value of v at $t=0$. Then the transform of (5) is
$\frac{E_{b}}{p}=T(v)+R C\left[p T(v)-v_{0}\right]$
Rearranging, and resolving into partial fractions,
$T(v)=\frac{E_{b}}{p(1+R C p)}+\frac{R C V_{0}}{1+R C p}=E_{b}\left(\frac{1}{p}-\frac{1}{p+1 / R C}\right)+\frac{V_{0}}{p+1 / R C} \quad$ (6)
Now we must determine the equation that would transform into (6). The inverse transform of $T(v)$ is v, and those of the terms on the right-hand side are found in the table of transforms. Then, in the time domain $t \geqslant 0$,

$$
\begin{equation*}
v=E_{b}\left(1-\epsilon^{-8 / R C}\right)+V_{0} \epsilon^{-t / R C} \tag{7}
\end{equation*}
$$

This solution is also well known by classical methods. However, the advantages of the Laplace-transform method become more and more apparent in reducing the labor of solution as the equations become more involved.

Circuit response related to unit impulse

Unit impulse is defined on page 611. It has the dimensions of time ${ }^{-1}$. For example, suppose a capacitor of one microfarad is suddenly connected to a battery of 100 volts, with the circuit inductance and resistance negligibly small. Then the current flow is 10^{-4} coulombs multiplied by unit impulse.
The general transformed equation of a circuit or system may be written
$T(i)=\phi(p) T(e)+\psi(p)$
Here $T(i)$ is the transform of the required current lor other quantityl, $T(e)$ is
the transform of the applied voltage or driving force $e(t)$. The transform of the initial conditions, at $t=0$, is included in $\psi(p)$.
First considering the case when the system is initially at rest, $\psi(\rho) \Rightarrow 0$. Writing i_{a} for the current in this case,
$T\left(i_{a}\right)=\phi(p) T(e)$
Now apply unit impulse $S_{0}(t)$ (multiplied by one volt-second), and designate the circuit current in this case by $B(t)$ and its transform by $T(B)$. By pair 13, page 613, the transform of $S_{0}(t)$ is 1 , so

$$
\begin{equation*}
T(B)=\phi(p) \tag{10}
\end{equation*}
$$

Equation (9) becomes, for any driving force
$T\left(i_{a}\right)=T(B) T(e)$
Applying pair 4, page 612,
$i_{a}=\int_{0}^{t} B(t-\lambda) e(\lambda) d \lambda=\int_{0}^{t} B(\lambda) e(t-\lambda) d \lambda$
To this there must be added the current i_{0} due to any initial conditions that exist. From (8),
$T\left(i_{0}\right)=\psi(\mathrm{p})$
Then i_{0} is the inverse transform of $\psi(\mathrm{p})$.

Circuit response related to unit step

Unit step is defined and designated $S_{-1}(t)=0$ for $t<0$ and equals unity for $t>0$. It has no dimensions. Its transform is $1 / p$ as given in pair 12 , page 613. Let the circuit current be designated $A(t)$ when the applied voltage is $e=S_{-1}(f) \times 11$ volt $)$. Then, the current i_{a} for the case when the system is initially at rest, and for any applied voltage $e(t)$, is given by any of the following formulas:

$$
\left.\begin{array}{rl}
i_{a} & =A(t) e(0)+\int_{0}^{t} A(t-\lambda) e^{\prime}(\lambda) d \lambda \\
& =A(t) e(0)+\int_{0}^{t} A(\lambda) e^{\prime}(t-\lambda) d \lambda \\
& =A(0) e(t)+\int_{0}^{t} A^{\prime}(t-\lambda) e(\lambda) d \lambda \tag{14}\\
& =A(0) e(t)+\int_{0}^{t} A^{\prime}(\lambda) e(t-\lambda) d \lambda
\end{array}\right\}
$$

where A^{\prime} is the first derivative of A and similarly for e^{\prime} of e.

Transients-operational calculus and Laplace transforms continued

As an example, consider the problem of Fig. 15 and (5) to 171 above. Suppose $V_{0}=0$, and that the battery is replaced by a linear source
$e(t)=E l / T_{1}$
where T_{1} is the duration of the voltage rise in seconds. By (7), setting $E_{b}=1$, $A(t)=1-\epsilon^{-z / R C}$
Then using the first equation in (14) and noting that e(0) $=0$, and $e^{\prime}(r)$ $=E / T_{1}$ when $0 \leqslant 1 \leqslant T_{1}$, the solution is
$v=\frac{E \dagger}{T_{1}}-\frac{E R C}{T_{1}}\left(1-\epsilon^{-z / R C}\right)$
This result can, of course, be found readily by direct application of the Laplace transform to (5) with e(t) $=E t / T_{1}$.

Heaviside expansion theorem

When the system is initially at rest, the transformed equation is given by 191 and may be written
$T\left(i_{a}\right)=\frac{M(p)}{G(p)} T(e)$
$M(p)$ and $G(p)$ are rational functions of p. In the following, $M(p)$ must be of lower degree than $G(p)$, as is usually the case. The roots of $G(p)=0$ are p_{r}, where $r=1,2, \ldots n$, and there must be no repeated roots. The response may be found by application of the Heaviside expansion theorem.
For a force $e=E_{\max } \epsilon^{\text {jut }}$ applied at time $1=0$,

$$
\begin{align*}
\frac{i_{a}(t)}{E_{\max }} & =\frac{M(j \omega)}{G(j \omega)} \epsilon^{j \omega l}+\sum_{r=1}^{n} \frac{M\left(p_{r}\right) \epsilon^{p_{r} \ell}}{\left(p_{r}-j \omega\right) G^{\prime}\left(p_{r}\right)} \\
& =\frac{\epsilon^{j \omega l}}{Z(j \omega)}+\sum_{r=1}^{n} \frac{\epsilon^{p_{r} \ell}}{\left(p_{r}-j \omega\right) Z^{\prime}\left(p_{r}\right)}
\end{align*}
$$

The first term on the right-hand side of either form of (16) gives the steady-state response, and the second term gives the transient. When $e=E_{\text {max }} \cos \omega t$, take the real part of (16), and similarly for $\sin \omega t$ and the imaginary part. $Z(p)$ is defined in (19) below. If the applied force is the unit step, set $\omega=0$ in (16).

Application to linear networks

The equation for a single mesh is of the form

$$
\begin{equation*}
A_{n} \frac{d^{n} i}{d t^{n}}+\ldots .+A_{1} \frac{d i}{d t}+A_{0} i+B \int i d t=e(t) \tag{17}
\end{equation*}
$$

112

Transients-operational calculus and Laplace fransforms
 continued

System initially at rest: Then, (17) transforms into

$$
\begin{equation*}
\left(A_{n} p^{n}+\ldots+A_{1} p+A_{0}+B p^{-1}\right) T(i)=T(e) \tag{18}
\end{equation*}
$$

where the expression in parenthesis is the operational impedance, equal to the alternating-current impedance when we set $p=j \omega$.
If there are m meshes in the system, we get m simultaneous equations like (17) with m unknowns $i_{1}, i_{2}, \ldots, i_{m}$. The m algebraic equations like (18) are solved for $T\left(i_{1}\right)$, etc., by means of determinants, yielding an equation of the form of (15) for each unknown, with a term on the right-hand side for each mesh in which there is a driving force. Each such driving force may of course be treated separately and the responses added.
Designating any two meshes by the letters h and k, the driving force e(t) being in either mesh and the mesh current $i(t)$ in the other, then the fraction $\mathrm{M}(\mathrm{p}) / \mathrm{G}(\mathrm{p})$ in (15) becomes
$\frac{M_{h k}(p)}{G(p)}=\frac{1}{Z_{h k}(p)}=Y_{h k}(p)$
where $Y_{k k}(p)$ is the operational transfer admittance between the two meshes. The determinant of the system is $G(p)$, and $M_{h k}(p)$ is the cofactor of the row and column that represent $e(t)$ and $i(t)$.
System not initially at rest: The transient due to the initial conditions is solved separately and added to the above solution. The driving force is set equal to zero in (17), $e(t)=0$, and each term is transformed according to

$$
\begin{align*}
T\left(\frac{d^{n} i}{d t^{n}}\right) & =p^{n} T(i)-\sum_{r=1}^{n} p^{n-r}\left[\frac{d^{r-1} i}{d t^{r-1}}\right]_{t=0} \tag{20a}\\
T\left[\int_{0}^{l} i d t\right] & =\frac{1}{\rho} T(i)+\frac{1}{p}\left[\int i d t\right]_{\ell=0} \tag{20~b}
\end{align*}
$$

where the last term in each equation represents the initial conditions. For example, in $\mathbf{2} 2 \mathrm{~b}$) the last term would represent, in an electrical circuit, the quantity of electricity existing on a capacitor at time $t=0$, the instant when the driving force $e^{(t)}$ commences to act.
Resolution into partial fractions: The solution of the operational form of the equations of a system involves rational fractions that must be simplified before finding the inverse transform. Let the fraction be $h(p) / g(p)$ where $h(p)$ is of lower degree than $g(p)$, for example $(3 p+2) /\left(p^{2}+5 p+8\right)$. If $h(p)$ is of equal or higher degree than $g(p)$, it can be reduced by division. The reduced fraction can be expanded into partial fractions. Let the factors of the denominator be $\left(p-p_{r}\right)$ for the n nonrepeated roots p_{r} of the equation $g(p)=0$, and $\left(p-o_{a}\right)$ for a root ρ_{a} repeated m times.

$$
\begin{equation*}
\frac{h(p)}{g(p)}=\sum_{r=1}^{n} \frac{A_{r}}{p-p_{r}}+\sum_{r=1}^{m} \frac{B_{r}}{\left(p-p_{a}\right)^{m-r+1}} \tag{2la}
\end{equation*}
$$

There is a summation term for each root that is repeated. The constant coefficients A_{r} and B_{r} can be evaluated by re-forming the fraction with a common denominator. Then the coefficients of each power of p in $h(p)$ and the re-formed numerator are equated and the resulting equations soived, for the constants. More formally, they may be evaluated by
$A_{r}=\frac{h\left(p_{r}\right)}{g^{\prime}\left(p_{r}\right)}=\left[\frac{h(p)}{g(p) /\left(p-p_{r}\right)}\right]_{p=p_{r}}$
$B_{r}=\frac{1}{(r-1)!} f^{(r-1)}\left(\rho_{a}\right)$
where
$f(p)=\left(p-p_{a}\right)^{m} \frac{h(p)}{g(p)}$
and $f^{(7-1)}\left(p_{a}\right)$ indicates that the $(r-1)$ th derivative of $f(p)$ is to be found, after which we set $p=p_{a}$.
Fractions of the form $\frac{A_{1} p+A_{2}}{p^{2}+\omega^{2}}$ or, more generally,
$\frac{A_{1} p+A_{2}}{p^{2}+2 a p+b}=\frac{A(p+a)+B \omega}{(p+a)^{2}+\omega^{2}}$
where $b>a^{2}$ and $\omega^{2}=b-a^{2}$, need not be reduced further. By pairs 8 , 23 , and 24 of the table on pages 612 and 613 , the inverse transform of $(22 a)$ is $\epsilon^{-a t}(A \cos \omega t+B \sin \omega t)$
where

$$
\begin{align*}
& A=\frac{h(-a+j \omega)}{g^{\prime}(-a+j \omega)}+\frac{h(-a-j \omega)}{g^{\prime}(-a-j \omega)} \tag{22c}\\
& B=j\left[\frac{h(-a+j \omega)}{g^{\prime}(-a+j \omega)}-\frac{h(-a-j \omega)}{g^{\prime}(-a-j \omega)}\right] \tag{22d}
\end{align*}
$$

Similarly, the inverse transform of the fraction $\frac{A(p+a)+B \alpha}{(p+a)^{2}-\alpha^{2}}$
is $\epsilon^{-a t}(A \cosh \alpha t+B \sinh \alpha t)$, where A and B are found by $(22 c)$ and $(22 d)$, except that $j \omega$ is replaced by α and the coefficient j is omitted in the expression for B.

Selective circuits

Coefficient of coupling*

Several types of coupled circuits are shown in Figs. IB to F, together with formulas for the coefficient of coupling in each case. Also shown is the dependence of bandwidth on resonance frequency. This dependence is only a rough approximation to show the frend, and may be altered radically if $L_{m}, M_{\text {, }}$ or C_{m} are adjusted as the circuits are tuned to various frequencies.
$k=X_{120} / \sqrt{X_{10} X_{20}}=$ coefficient of coupling
$X_{120}=$ coupling reactance at resonance frequency f_{0}
$X_{10}=$ reactance of inductor lor capacitorl of first circuit at f_{0}
$X_{20}=$ reactance of similar element of second circuit at f_{0}
$(\mathrm{bw})_{c}=$ bandwidth with capacitive tuning
$(\mathrm{bw})_{L}=$ bandwidth with inductive tuning

Gain at resonance

Single circuit

In Fig. 1A,
$\frac{E_{0}}{E_{0}}=-g_{m}\left|X_{10}\right| Q$
where
$E_{0}=$ output volts at resonance frequency f_{0}
$E_{0}=$ input volts to grid of driving tube
$g_{m}=$ transconductance of driving tube

Pair of coupled circuits (Figs. 2 and 3)

In any figure-Figs. IB to F ,

$$
\frac{E_{0}}{E_{0}}=j g_{m} \sqrt{x_{10} X_{20}} Q \frac{k Q}{1+k^{2} Q^{2}}
$$

This is maximum at critical coupling, where $k Q=1$.
$Q=\sqrt{Q_{1} Q_{2}}=$ geometric-mean Q for the two circuits, as loaded with the tube grid and plate impedances
*See also "Coefficient of coupling-geometrical consideration," p. 96.

Fig. 1-Several types of coupled circuits, showing coefficient of coupling and selectivity formulas in each case.

diagram	coefficient of coupling	approximate bandwidth variation with frequency	selectivity for from resonance	
			formule*	curve in Fig. 4
A			Input to PB or to $\mathrm{P}^{\prime} \mathrm{B}^{\prime}$: $\frac{E_{0}}{E}=\rho\left(\frac{f}{f_{0}}-\frac{f_{0}}{f}\right)$	A
B	$\begin{aligned} k & =L_{m} / \sqrt{\left.\mathbb{U}_{1}+L_{m}\right)\left(\mathbb{L}_{2}+L_{m}\right)} \\ & =\omega_{0}^{2} L_{m} \sqrt{C_{1} C_{2}} \end{aligned}$	$\mid b w)_{C} \propto f_{0}$	Input to PB : $\frac{E_{0}}{E}=-A \frac{f}{f_{0}}$	C
	$\approx L_{m} / \sqrt{L_{1} L_{2}}$	$(b w)_{L} \propto f_{0}{ }^{3}$	Input to $P^{\prime} B^{\prime}$: $\frac{E_{0}}{E}=-A \frac{f_{0}}{f}$	D
C	$\begin{aligned} k & =M / \sqrt{l_{1} l_{2}} \\ & =\omega_{0}^{2} M \sqrt{C_{1} C_{2}} \end{aligned}$	$(b w)_{C} \propto f_{0}$	Input to PB: $\frac{E_{0}}{E}=-A_{\rho_{0}}^{\prime}$	C
	M may be positive or negative	$(\mathrm{bw})_{L} \propto 6^{3}$	Input to $P^{\prime} B^{\prime}$: $\frac{E_{0}}{E}=-A \frac{t_{0}}{f}$	D
*Where $A=\frac{Q^{2}}{1+k^{2} Q^{2}}\left(\frac{f}{f_{0}}-\frac{f_{0}}{f}\right)^{2}$				

selective circuits 115

Fig. 1-continued

diagram	coefficient of coupling	opproximate bandwidth variatlon with frequency	selectivity far from resonance	
			formulo*	curve in Fig. 4
D	$\begin{aligned} k & =-\left[\frac{C_{1} C_{2}}{\left.\left(C_{1}+C_{m}\right) C_{2}+C_{m}\right)}\right]^{\frac{1}{2}} \\ & =-1 / \omega 0^{2} C_{m} \sqrt{L_{1} L_{2}} \\ & \approx-\sqrt{C_{1} C_{2}} / C_{m} \end{aligned}$	$\begin{aligned} & (b w)_{C} \propto 1 / f_{0} \\ & (b w)_{L} \propto f_{0} \end{aligned}$	Input to $P B$ or to $P^{\prime} B^{\prime}$: $\frac{E_{0}}{E}=-A \frac{f_{0}}{f}$	D
E	$\begin{aligned} k & =\frac{-C_{m}^{\prime}}{\sqrt{\left(C_{1}^{\prime}+C_{m}^{\prime}\left\|C_{2}^{\prime}+C_{m}^{\prime}\right\|\right.}} \\ & =-\omega_{0}^{\prime} C_{m}^{\prime} \sqrt{L_{1} L_{2}} \\ & \approx-C_{m}^{\prime} / \sqrt{C_{1}^{\prime} C_{2}^{\prime}} \end{aligned}$	$(b w)_{C} \propto f^{d}$ $(b w)_{L} \propto ;$	Input to $P B$ or to $P^{\prime} B^{\prime}$: $\frac{E_{0}}{E}=-A \frac{f_{0}}{f}$	D
	$\begin{aligned} k & =-\left[\frac{C_{1} C_{2}}{\left(C_{1}+C_{m}\right)\left(C_{2}+C_{m}\right)}\right]^{\frac{1}{2}} \\ & =-1 / \omega_{0}^{2} C_{m} \sqrt{L_{1} L_{2}} \\ & \approx-\sqrt{C_{1} C_{2}} / C_{m} \end{aligned}$	$(b w)_{C} \propto 1 / f_{0}$ $(b w)_{L} \propto f_{0}$	Input to PB: $\frac{E_{0}}{E}=-A\left(\frac{f}{f_{0}}\right)^{\mathrm{J}}$ Input to $P^{\prime} B^{\prime}$: $\frac{E_{0}}{E}=-A \frac{f}{f_{0}}$	B

*Where $A=\frac{Q^{2}}{1+k^{2} Q^{2}}\left(\frac{f}{f_{0}}-\frac{f_{0}}{f}\right)^{2}$

Gain at resonance

 continuedFor circuits with critical coupling and over coupling, the approximate gain is $\left|\frac{E_{0}}{E_{0}}\right|=\frac{0.1 \mathrm{~g}_{m}}{\sqrt{C_{1} C_{2}}(\mathrm{bw})}$
where (bw) is the useful pass band in megacycles, g_{m} is in micromhos, and C is in micromicrofarads.

Fig. 2-Connection wherein k_{m} opposes k_{c}. (k_{c} may be due to stray capacifance.) Peak of atfenuation is af $f=f_{0} \sqrt{-k_{n i} / k_{c}} \quad$ Reversing connecfions or winding direction of one coil causes \boldsymbol{k}_{m} to aid \boldsymbol{k}_{c}.

Fig. 3-Connection wherein $k_{t n}$ aids $k_{\text {.. If }}$ If utual-inductance coupling is reversed, \boldsymbol{k}_{m} will oppose \boldsymbol{k}_{c} and there will be a transfer minimum at $f=f_{0} \sqrt{-k_{m} / k_{c}}$

Selectivity far from resonance

The selectivity curves of Fig. 4 are based on the presence of only a single type of coupling between the circuits. The curves are useful beyond the peak region treated on pp. 119-124.
In the equations for selectivity in Fig. I

$$
\begin{aligned}
E= & \text { output volts at signal frequency } f \text { for same value of } E_{0} \text { as that pro. } \\
& \text { ducing } E_{0}
\end{aligned}
$$

For inductive coupling

$$
A=\frac{Q^{2}}{1+k^{2} Q^{2}}\left[\left(\frac{f}{f_{0}}-\frac{f_{0}}{f}\right)^{2}-k^{2}\left(\frac{f}{f_{0}}\right)^{2}\right]=\frac{Q^{2}}{1+k^{2} Q^{2}}\left(\frac{f}{f_{0}}-\frac{f_{0}}{f}\right)^{2}
$$

For capacitive coupling

A is defined by a similar equation, except that the neglected term is $-k^{2}\left(f_{0} / f^{2}\right.$. The 180 -degree phase shift far from resonance is indicated by the minus sign in the expression for E_{0} / E.

Ples. A-Selectivity for frequencies far from resonance. $Q=100$ and $|k| Q=1.0$.
Example: The use of the curves, Figs. 4, 5, and 6, is indicated by the following example. Given the circuit of Fig. IC with input to $P B$, across capacitor C_{1}. Let $Q=50, k Q=1.50$ and $f_{0}=16.0$ megacycles. Required is the response of $f=8.0$ megacycles.

Here $f / f_{0}=0.50$ and curve C, fig. 4 , gives -75 decibels. Then applying the corrections from Figs. 5 and 6 for Q and $k Q$, we find
Response $=-75+12+4=-59$ decibels

Flg. 5-Correction for $Q \neq 100$.

Fig. 6-Correction for $|k| Q \neq 1.0$.

Selectivity of single- and double-tuned circuits near resonance

Formulas and curves are presented for the selectivity and phase shift:
Of n single-tuned circuits
Of m pairs of coupled tuned circuits
The conditions assumed are
a. All circuits are funed to the same frequency f_{0}.
b. All circuits have the same Q, or each pair of circuits includes one circuit having Q_{1}, and the other having Q_{2}.
c. Otherwise the circuits need not be identical.
d. Each successive circuit or pair of circuits is isolated from the preceding and following ones by tubes, with no regeneration around the system.
Certain approximations have been made in order to simplify the formulas. In most actual applications of the types of circuits treated, the error involved is negligible from a practical standpoint. Over the narrow frequency band in question, it is assumed that
a. The reactance around each circuit is equal to $2 X_{0} \Delta f / f_{0}$.
b. The resistance of each circuit is constant and equal to X_{0} / Q.
c. The coupling between two circuits of a pair is reactive and constant.

When an untuned link is used to couple the two circuits, this condition frequently is far from satisfled, resulting in a lopsided selectivity curve.)
d. The equivalent input voltage, taken as being in series with the tuned circuit (or the first of a pair), is assumed to bear a constant proportionality to the grid voltage of the input tube or other driving source, at all frequencies in the band.
e. Likewise, the output voltage across the circuit lor the final circuit of a pairl is assumed to be proportional only to the current in the circuit.
The following symbols are used in the formulas in addition to those defined on pages 114 and 117.

$$
\frac{\Delta f}{f_{0}}=\frac{f-f_{0}}{f_{0}}=\frac{\text { (deviation from resonance frequency) }}{\text { (resonance frequency) }}
$$

$(b w)=$ bandwidth $=2 \Delta f$
$X_{0}=$ reactance at f_{0} of inductor in tuned circuit
$\mathrm{n}=$ number of single-tuned circuits
$m=$ number of pairs of coupled circuits
$\phi=$ phase shift of signal at f relative to shift at f_{0}, as signal passes through cascade of circuits

Selectivity of single- and double-funed circuits

near resonance
continued

$$
\begin{aligned}
p= & k^{2} Q^{2} \text { or } p=k^{2} Q_{1} Q_{2}, a \text { parameter determining the form of the } \\
& \text { selectivity curve of coupled circuits }
\end{aligned}
$$

$B=p-\frac{1}{2}\left(\frac{Q_{1}}{Q_{2}}+\frac{Q_{2}}{Q_{1}}\right)$
Selectivity and phase shift of single-funed circuits
$\frac{E}{E_{0}}=\left[\frac{1}{\sqrt{1+\left(2 Q \frac{\Delta f}{f_{0}}\right)^{2}}}\right]^{n}$
$\frac{\Delta f}{f_{0}}= \pm \frac{1}{2 Q} \sqrt{\left(\frac{E_{0}}{E}\right)^{\frac{2}{n}}-1}$

Decibel response $=20 \log _{10}\left(\frac{E}{E_{0}}\right)$
(db response of n circuits) $=n \times$ (db response of single circuit)
$\phi=n \tan ^{-1}\left(-2 Q \frac{\Delta f}{f_{0}}\right)$
These equations are plotted in Figs. 7 and 8, following.

Q determination by 3-decibel points

For a single-tuned circuit, when
$E E_{0}=0.707(3$ decibels down)

$$
Q=\frac{f_{0}}{2 \Delta f}=\frac{(\text { resonance frequency) }}{(\text { bandwidth })_{3 \mathrm{db}}}
$$

Selectivity and phase shift of pairs of coupled tuned circuits
Case 1: When $Q_{1}=Q_{2}=Q$
These formulas can be used with reasonable accuracy when Q_{1} and Q_{2} differ by ratios up to 1.5 or even 2 to 1 . In such cases use the value $Q=\sqrt{Q_{1} Q_{2}}$.
$\frac{E}{E_{0}}=\left[\frac{p+1}{\sqrt{\left[\left(2 Q \frac{\Delta f}{f_{0}}\right)^{2}-(p-1)\right]^{2}+4 p}}\right]^{m}$

one of several types of coupling

Selectivity of single- and double-funed circuits
near resonance conlinued

Fig. 7 - Selectivity curves showing response of a single circuit $n=1$, and a pair of coupled circuits $m=1$.

The selectivity curves are symmetrical about the axis $Q \frac{\Delta f}{f_{0}}=0$ for practical purposes.

Extrapolation beyond lower limits of chart:

		useful limit	
Δ response for doubling Δf	circuit	af $\frac{(\mathrm{bw})}{\mathrm{f}_{0}}$	error becomes
- 6 db	\leftarrow single \rightarrow	± 0.6	1102 db
$-12 \mathrm{db}$	\leftarrow pair \rightarrow	± 0.4	3 to 4 db

Example: Of the use of Figs. 7 and 8. Suppose there are three single-funed circuits $(n=3)$. Each circuit has a $\mathbf{Q}=200$ and is funed to 1000 kilocycles. The results are shown in the following table:

abscissa a $\frac{(b w)}{f_{0}}$	bondwidth kilocycles	ordinate db response for $\boldsymbol{n}=1$	decibels response for $n=3$	$\begin{gathered} \phi^{*} \\ \text { for } n=1 \end{gathered}$	$\begin{gathered} \phi^{*} \\ \text { for } n=3 \end{gathered}$
$\begin{array}{r} 1.0 \\ 3.0 \\ 10.0 \end{array}$	$\begin{aligned} & 5.0 \\ & 15 \\ & 50 \end{aligned}$	$\begin{array}{r} -3.0 \\ -10.0 \\ -20.2 \end{array}$	$\begin{array}{r} -9 \\ -30 \\ -61 \end{array}$	$\begin{aligned} & \mp 45^{\circ} \\ & \mp 711 /{ }^{\circ} \\ & \mp 84^{\circ} \end{aligned}$	$\begin{aligned} & \mp 135^{\circ} \\ & \mp 215^{\circ} \\ & \mp 252^{\circ} \end{aligned}$

* ϕ is negative for $f>f_{0}$, and vice versa.

Selectivity of single- and double-tuned circuits

near resonance continued
$Q \frac{\Delta f}{f_{0}}=Q \frac{f-f_{0}}{f_{0}}$
Fig. 8-Phase-shift curves for a
single circuit $n=1$ and 0 poir of
coupled circuits $m=1$.
For $f>f_{0,} \phi$ is negotive, while for $f<f_{0}$,
ϕ is positive. The numerical value is identical
in either case for the some $\left|f-f_{0}\right|$.

Selectivity of single- and double-tuned circuits

near resonance continued
$\frac{\Delta f}{f_{0}}= \pm \frac{1}{2 Q} \sqrt{(p-1) \pm \sqrt{(p+1)^{2}\left(\frac{E_{0}}{E}\right)^{\frac{2}{m}}-4 p}}$
For very small values of E / E_{0} the formulas reduce to
$\frac{E}{E_{0}}=\left[\frac{\rho+1}{\left(2 Q \frac{\Delta f}{\rho_{0}}\right)^{2}}\right]^{m}$
Decibel response $=20 \log _{10}(E / E)$
(db response of m pairs of circuits) $=m \times(\mathrm{db}$ response of one pair)
$\phi=m \tan ^{-1}\left[\frac{-4 Q \frac{\Delta f}{f_{0}}}{(p+1)-\left(2 Q \frac{\Delta f}{f_{0}}\right)^{2}}\right]$
As p approaches zero, the selectivity and phase shift approach the values for n single circuits, where $n=2 m$ igain also approaches zerol.

The above equations are plotted in Figs. 7 and 8.

For overcoupled circuits ($\mathrm{p}>1$)
Location of peaks: $\quad \frac{f_{\text {peak }}-f_{0}}{f_{0}}= \pm \frac{1}{2 Q} \sqrt{p-1}$
Amplitude peaks: $\quad \frac{E_{\text {peal }}}{E_{0}}=\left(\frac{p+1}{2 \sqrt{p}}\right)^{m}$
Phase shift at peaks: $\quad \phi_{\text {peak }}=m \tan ^{-1}(\mp \sqrt{p-1})$
Approximate pass band (where $E / E_{0}=1$ I is
$\frac{f_{\text {unity }}-f_{0}}{f_{0}}=\sqrt{2} \frac{f_{\text {peak }}-f_{0}}{f_{0}}= \pm \frac{1}{Q} \sqrt{\frac{p-1}{2}}$

Case 2: General formula for any Q_{1} and Q_{2}
$\frac{E}{E_{0}}=\left[\frac{p+1}{\sqrt{\left[\left(2 Q \frac{\Delta f}{f_{0}}\right)^{2}-B\right]^{2}+(p+\|)^{2}-B^{2}}}\right]^{m}$ (for B see tap of p. 120.)

Selectivity of single- and double-tuned circuits

near resonance continued

$$
\begin{aligned}
\frac{\Delta f}{f_{0}} & = \pm \frac{1}{2 Q} \sqrt{B \pm\left[(p+1)^{2}\left(\frac{E_{0}}{E}\right)^{\frac{2}{m_{2}}}-(p+1)^{2}+B^{2}\right]^{\frac{1}{2}}} \\
\phi & =m \tan ^{-1}\left[-\frac{2 Q \frac{\Delta f}{f_{0}}\left(\sqrt{\frac{Q_{1}}{Q_{2}}}+\sqrt{\frac{Q_{2}}{Q_{1}}}\right)}{(p+1)-\left(2 Q \frac{\Delta f}{f_{0}}\right)^{2}}\right]
\end{aligned}
$$

For overcoupled circuits
Location of peaks: $\frac{f_{\text {peak }}-f_{0}}{f_{0}}= \pm \frac{\sqrt{B}}{2 Q}= \pm \frac{1}{2} \sqrt{k^{2}-\frac{1}{2}\left(\frac{1}{Q_{1}{ }^{2}}+\frac{1}{Q_{2}{ }^{2}}\right)}$
Amplitude of peaks: $\quad \frac{E_{\text {De } 1, ~}}{E_{0}}=\left[\frac{p+1}{\sqrt{(p+1)^{2}-B^{2}}}\right]^{\mathrm{m}}$

Case 3: Peaks just converged to a single peak
Here $B=0 \quad$ or $\quad k^{2}=\frac{1}{2}\left(\frac{1}{Q_{1}{ }^{2}}+\frac{1}{Q_{2}{ }^{2}}\right)$
$\frac{E}{E_{0}}=\left[\frac{2}{\sqrt{\left(2 Q^{\prime} \frac{\Delta f}{f_{0}}\right)^{4}+4}}\right]^{m}$
where $Q^{\prime}=\frac{2 Q_{1} Q_{2}}{Q_{1}+Q_{2}}$
$\frac{\Delta f}{f_{0}}= \pm \frac{\sqrt{2}}{4}\left(\frac{1}{Q_{1}}+\frac{1}{Q_{2}}\right) \sqrt[4]{\left(\frac{E_{0}}{E}\right)^{\frac{2}{m}}-1}$
$\phi=m \tan ^{-1}\left[-\frac{4 Q^{\prime} \frac{\Delta f}{f_{0}}}{2-\left(2 Q^{\prime} \frac{\Delta f}{f_{0}}\right)^{2}}\right]$
The curves of Figs. 7 and 8 may be applied to this case, using the value $p=1$, and substituting Q^{\prime} for Q.

Triple-funed circuits

Exact design formulas for n identical cascaded tripie-tuned stages used to produce the "maximally-flat" amplitude-response shape are given. Typical circuit is shown in Fig. 9, together with the response.

Fig. 9-Typical triple-tuned circuit and response curve.
To obtain the required Q 's,
$\frac{Q_{1}}{f_{0}(b w)_{\beta}}=0.737 \sqrt[6]{\left(V_{p} / V_{\beta}\right)^{2 / n}-1}$

$$
Q_{2}=Q_{3}=4.24 Q_{1}
$$

in the above formulas, Q_{3} and Q_{1} may be interchanged.
To obtain the required coefficient of coupling.
$k_{12}=k_{23}=\frac{0.527}{Q_{1}}$
To obtain the gain per stage,
$\frac{\text { (stage gain) }}{g_{m} 4 \pi(\mathrm{bW})_{\beta} \sqrt{\mathrm{C}_{1} \mathrm{C}_{3}}}=\sqrt[6]{\left(V_{p} / V_{\beta}\right)^{2 / n}-1}$
The exact amplitude response is given by
$\frac{V_{p}}{V}=\left\{1+\left[\left(V_{p} / V_{\beta}\right)^{2 / n}-1\right]\left[\frac{(b w)^{2}}{(b w)_{\beta}}\right]^{6}\right\}^{\frac{n}{2}}$ or $\frac{(b w)^{(b w)_{\beta}}}{(b)}$
This equation is plotted in Fig. 10.

126

Triple-łuned circuits continued

The exact phase response for one stage is given by

Fig. 10-Solectivity of n cascaded maximally flat triple-tuned circults.

Stagger funing of single-funed infersfages

Response shape B (Bufterworth) (Fig. w)

The required Q's are given by
$\frac{1}{Q_{m}}=\frac{(b \mathrm{bw})_{\beta} / t_{0}}{\sqrt[2 n]{\left(V_{p} / V_{\beta}\right)^{2}-1}} \sin \left(\frac{2 m-1}{n} 90^{\circ}\right)$
The required stagger tuning is given by
$\left(f_{a}-f_{b}\right)_{m}=\frac{(b w)_{\beta}}{\sqrt[2 n]{\left(V_{p} / V_{\beta}\right)^{2}-1}} \cos \left(\frac{2 m-1}{n} 90^{\circ}\right)$
$\left(f_{a}+f_{b}\right)_{m}=2 f_{0}$
The amplitude response is given by

$$
\begin{aligned}
V_{p} / V & =\left\{1+\left[\left(V_{p} / V_{\beta}\right)^{2}-1\right]\left[(\mathrm{bw}) /(\mathrm{bw})_{\beta}\right]^{2 n}\right\}^{\frac{1}{2}} \\
\frac{(\mathrm{bw})}{(\mathrm{bw})_{\beta}} & =\left[\frac{\left(V_{p} / V\right)^{2}-1}{\left(V_{p} / V_{\beta}\right)^{2}-1}\right]^{1 / 2 n} \\
n & =\frac{\log \left[\frac{\left(V_{p} / V\right)^{2}-1}{\left(V_{p} / V_{\beta}\right)^{2}-1}\right]}{2 \log \left[(\mathrm{bw}) /(\mathrm{bw})_{\beta}\right]}
\end{aligned}
$$

Stagger funing of single-tuned inferstages continued

Stage gain $=\frac{g_{m}}{2 \pi(b w)_{\beta} C} \sqrt[2 n]{\left(V_{p} / V_{\beta}\right)^{2}-1}$
or
$n=\frac{\log \left[\frac{(\text { total gain) }}{\sqrt{\left(V_{p} / V_{\beta}\right)^{2}-1}}\right]}{\log \left(\frac{g_{m}}{2 \pi(b w)_{\beta} C}\right)}$
where
$\mathrm{g}_{\mathrm{m}}=$ geometric-mean transconductance of n fubes
$C=$ geometric-mean capacitance

Response shape C (Chebishev) (Fig. 12)

The required Q 's are given by

$$
\begin{aligned}
\frac{1}{Q_{m}} & =\frac{(b w)_{\beta}}{f_{0}} S_{n} \sin \left[\frac{2 m-1}{n} 90^{\circ}\right] \\
S_{n} & =\sinh \left[\frac{1}{n} \sinh ^{-1} \frac{1}{\sqrt{\left(V_{p} / V_{\beta}\right)^{2}-1}}\right]
\end{aligned}
$$

Stagger funing of single-łuned inferstages

continued

The required stagger tuning is given by

$$
\left(f_{a}-f_{b i}=(b w)_{\beta} C_{n} \cos \left(\frac{2 m-1}{n} 90^{\circ}\right)\right.
$$

$\left(f_{a}+f_{b}\right)_{m}=2 f_{0}$

$$
C_{n}=\cosh \left[\frac{1}{n} \sinh ^{-1} \frac{1}{\sqrt{\left(V_{p} / V_{\beta}\right)^{2}-1}}\right]
$$

Shape outside pass band is

$$
\begin{aligned}
\frac{V_{p}}{V} & =\sqrt{1+\left[\left(\frac{V_{p}}{V_{\beta}}\right)^{2}-1\right]\left\{\cosh ^{2}\left[n \cosh ^{-1} \frac{(b w)}{(b w)_{\beta}}\right]\right\}} \\
\frac{(\mathrm{bw})}{(\mathrm{bw})_{\beta}} & =\cosh \left\{\frac{1}{n} \cosh ^{-1}\left[\frac{\left(V_{p} / V\right)^{2}-1}{\left(V_{p} / V_{\beta}\right)^{2}-1}\right]^{\frac{1}{2}}\right\} \\
n & =\frac{\cosh ^{-1}\left[\frac{\left(V_{p} / V\right)^{2}-1}{\left(V_{p} / V_{\beta}\right)^{2}-1}\right]^{\frac{1}{2}}}{\cosh ^{-1}\left[(\mathrm{bw}) /(\mathrm{bw})_{\beta}\right]}
\end{aligned}
$$

Shape inside pass band is

$$
\begin{aligned}
& \frac{V_{p}}{V}=\sqrt{1+\left[\left(\frac{V_{p}}{V_{\beta}}\right)^{2}-1\right]\left\{\cos ^{2}\left[n \cos ^{-1} \frac{(\mathrm{bw})^{(b)}}{(\mathrm{bw})_{\beta}}\right]\right\}} \\
& \frac{(\mathrm{bw})_{\text {crest }}}{(\mathrm{bw})_{\beta}}=\cos \left(\frac{2 m-1}{n} 90^{\circ}\right) \\
& \frac{(\mathrm{bw})_{\text {troush }}}{(\mathrm{bw})_{\beta}}=\cos \left(\frac{2 m}{n} 90^{\circ}\right)
\end{aligned}
$$

Stage gain $=\frac{g_{m}}{2^{1 / n} \pi(\mathrm{bw})_{\beta} C} \sqrt[2 n]{\left(V_{p} / V_{\beta}\right)^{2}-1}$
$n=\frac{\log \left[\frac{(\text { total gain) }}{\frac{1}{2} \sqrt{\left(V_{p} / V_{\beta}\right)^{2}-1}}\right]}{\log \left[\frac{g_{m}}{\pi(b w)_{\beta} C}\right]}$
where
$\mathcal{G}_{m}=$ geometric-mean transconductance of n tubes
$C=$ geometric-mean capacitance

Filter nełworks

General

The basic filter half section and the full sections derived from it are shown in Fig. 1. The fundamental filter equations follow, with filter characteristics and design formulas next. Also given is the method of building up a composite filter and the effect of the design parameter m on the image-impedance characteristic. An example of the design of a low-pass filter completes the chapter. It is to be noted that while the impedance characteristics and design formulas are given for the half sections as shown, the attenuation and phase characteristics are for full sections, either T or π.

Fig. 1-Basic fliter sections.
Cull T -section

Fundamental filter equations

Image impedances \boldsymbol{Z}_{T} and $\boldsymbol{Z}_{\text {* }}$

$Z_{\mathbf{T}}=$ mid-series image impedance $=$ impedance looking into 1-2 (Fig. |A) with Z_{π} connected across 3-4.
$Z_{\pi}=$ mid-shunt image impedance $=$ impedance looking into 3-4 (Fig. IA) with $Z_{\mathbf{T}}$ connected across 1-2.
Formulas for the above are

$$
\begin{aligned}
Z_{T} & =\sqrt{Z_{1} Z_{2}+Z_{1}^{2} / 4}=\sqrt{Z_{1} Z_{2}} \sqrt{1+Z_{1} / 4 Z_{2}} \text { ohms } \\
Z_{\pi} & =\frac{Z_{1} Z_{2}}{\sqrt{Z_{1} Z_{2}+Z_{1}^{2} / 4}}=\frac{\sqrt{Z_{1} Z_{2}}}{\sqrt{1+Z_{1} / 4 Z_{2}}} \text { ohms } \\
Z_{T} Z_{\pi} & =Z_{1} Z_{2}
\end{aligned}
$$

Image transfer constant θ

The transfer constant $\theta=\alpha+j \beta$ of a network is defined as one-half the natural logarithm of the complex ratio of the steady-state volt-amperes entering and leaving the network when the latter is terminated in its image impedance. The real part α of the transfer constant is called the image attenuation constant, and the imaginary part β is called the image phase constant.

Formulas in terms of full sections are
$\cosh \theta=1+Z_{1} / 2 Z_{2}$

Pass band

$\alpha=0$, for frequencies making $-1 \leqslant Z_{1} / 4 Z_{2} \leqslant 0$
$\beta=\cos ^{-1}\left(1+Z_{1} / 2 Z_{2}\right)= \pm 2 \sin ^{-1} \sqrt{-Z_{1} / 4 Z_{2}}$ radians
Image impedance $=$ pure resistance

Stop band

$$
\begin{aligned}
& \left\{\begin{array}{l}
\alpha=\cosh ^{-1}\left|1+Z_{1} / 2 Z_{2}\right|=2 \sinh ^{-1} \sqrt{Z_{1} / 4 Z_{2}} \text { nepers for } Z_{1} / 4 Z_{2}>0 \\
\beta=0 \text { radians }
\end{array}\right. \\
& \left\{\begin{array}{l}
\alpha=\cosh ^{-1}\left|1+Z_{1} / 2 Z_{2}\right|=2 \cosh ^{-1} \sqrt{-Z_{1} / 4 Z_{2}} \text { nepers for } Z_{1} / 4 Z_{2}<-1 \\
\beta= \pm \pi \text { radians }
\end{array}\right.
\end{aligned}
$$

Image impedance $=$ pure reactance
The above formulas are based on the assumption that the impedance arms are pure reactances with zero loss.

Low-pass filter design

Notations:

Z in ohms, α in nepers, and β in radians

$$
m=\sqrt{1-\omega_{e}^{2} / \omega_{\infty}^{2}}
$$

$$
\begin{aligned}
\omega_{e} & =2 \pi f_{e}=\text { angular cutoff frequency } \\
& =1 / \sqrt{L_{k} C_{k}} \\
\omega_{\infty} & =2 \pi f_{\infty}=\begin{array}{c}
\text { angular frequency of peak } \\
\text { attenuation }
\end{array}
\end{aligned}
$$

$$
R=\text { nominal terminating resistance }
$$

$$
=\sqrt{L_{k} / C_{k}}
$$

$$
=\sqrt{Z_{\mathrm{T} k} Z_{\pi k}}
$$

High-pass filter design

Notations:

Z in ohms, α in nepers, and β in radians

$$
m=\sqrt{1-\omega_{\infty}^{2} / \omega_{c}^{2}}
$$

$$
\begin{aligned}
\omega_{c} & =2 \pi f_{c}=\text { angular cutoff frequency } \\
& =1 / \sqrt{L_{k} C_{k}}
\end{aligned}
$$

$$
R=\text { nominal terminating resistance }
$$

$$
=\sqrt{L_{k} / C_{k}}
$$

$$
\omega_{\infty}=2 \pi f_{\infty}=\underset{\substack{\text { angular frequency of peak } \\ \text { ottenuation }}}{\text { ats }}
$$

$$
=\sqrt{Z_{\mathrm{T} k} Z_{\pi k}}
$$

full-section attenuation α and phase β characteristics	design formulas	
	series arm	shunt arm
	$C_{k}=\frac{1}{\omega_{c} R}$	$L_{k}=\frac{R}{\omega_{c}}$
	$C_{1}=\frac{C_{k}}{m}$	$L_{2}=\frac{L_{k}}{m}$ $C_{2}=\frac{m}{1-m^{2}} C_{k}$
When	$\begin{aligned} & L_{1}=\frac{m}{1-m^{2}} L_{k} \\ & C_{1}=\frac{C_{k}}{m} \end{aligned}$	$L_{2}=\frac{L_{k}}{m}$
When $=\cosh ^{-1}\left[1+2 \frac{m^{2}}{\left(1-m^{2}\right)-\frac{\omega^{2}}{\omega_{c}^{2}}}\right]$ $\begin{aligned} \omega_{c}<\omega<\infty \\ \alpha=0 \text { and } \end{aligned} \quad \beta=\cos ^{-1}\left[1-2 \frac{\omega_{\infty}{ }^{2}-\omega_{c}{ }^{2}}{\omega_{\infty}^{2}-\omega^{2}}\right] ~\left(1+2 \frac{m^{2}}{\left(1-m^{2}\right\}-\frac{\omega^{2}}{\omega_{c}{ }^{2}}}\right]$	For constant-k $R^{2}=Z_{1 k} Z_{2 k}=$ For m-derived Curves drawn $\begin{aligned} R^{2} & =Z_{T_{2}} Z_{\pi 1} \\ & =Z_{1 \text { (series. }} \\ & =Z_{1 \text { (shunt- }} \end{aligned}$	type k^{2} type for $m \approx 0.6$ $Z_{\text {(shunt-m) }}$ $Z_{\text {(series-m) }}$

136

Band-pass fliter design

Notations:

The following notations apply to the charts on band-pass filter design that appear on pp. 136-145
Z in ohms, α in nepars, and β in radians
$\omega_{1}=2 \pi f_{1}=$ lower cutoff angular frequency
$\omega_{2}=2 \pi f_{2}=$ upper cutoff angular frequency
$\omega_{0}=\sqrt{\omega_{1} \omega_{2}}=$ midband angular frequency
$\omega_{2}-\omega_{1}=$ width of pass band
$R=$ nominal terminating resistance
$\omega_{1 \infty}=2 \pi f_{1 \infty}=$ lower angular frequency of peak attenuation
$\omega_{2 \infty}=2 \pi f_{2 \infty}=$ upper angular frequency of peak atfenvation

$$
\begin{aligned}
& m_{1}=\frac{\frac{\omega_{1} \omega_{2}}{\omega_{2 \infty}^{2}} g+h}{1-\frac{\omega_{1 \infty}^{2}}{\omega_{2 \infty}^{2}}} \\
& m_{\mathbf{2}}=\frac{g+h \frac{\omega_{1 \infty}^{2}}{\omega_{1} \omega_{2}}}{1-\frac{\omega_{1 \infty}^{2}}{\omega_{2 \infty}^{2}}}
\end{aligned}
$$

type and half section	impedance characteristics

Constant-k

$Z_{T k}=\frac{R \sqrt{\left(\omega_{2}^{2}-\omega^{2}\right)\left(\omega^{2}-\omega_{1}^{2}\right)}}{\omega\left(\omega_{2}-\omega_{1}\right)}$

$$
Z_{\pi k}=\frac{R \omega\left(\omega_{2}-\omega_{1}\right)}{\sqrt{\left(\omega_{2}^{2}-\omega^{2}\right)\left(\omega^{2}-\omega_{1}^{2}\right)}}
$$

$$
\left.\begin{array}{rl}
g & =\sqrt{\left(1-\frac{\omega_{1 \infty}^{2}}{\omega_{1}^{2}}\right)\left(1-\frac{\omega_{i \infty}^{2}}{\omega_{2}^{2}}\right)} \\
h & =\sqrt{\left(1-\frac{\omega_{1}^{2}}{\omega_{2 \infty}^{2}}\right)\left(1-\frac{\omega_{2}^{2}}{\omega_{2 \infty}^{2}}\right)} \\
L_{1 k} C_{1 k} & =L_{2 k} C_{2 k}=\frac{1}{\omega_{1} \omega_{2}}=\frac{1}{\omega_{0}^{2}} \\
R^{2} & =\frac{L_{1 k}}{C_{2 k}}=\frac{L_{2 k}}{C_{1 k}} \\
& =Z_{1 k} Z_{2 k}=k^{2} \\
& =Z_{\mathrm{Tk}} Z_{\pi k} \\
& =Z_{1 \text { (series-m) }} Z_{2 \text { (shunt-m) }} \\
& =Z_{2 \text { (neriem-m) }} Z_{1 \text { (shunt-m) }} \\
& =Z_{\mathrm{T} \text { (shunt-m) }} Z_{\pi \text { (serise-m) }} \\
Z_{\mathrm{T} \text { (cories-m) }} & =Z_{\mathrm{T} k} \\
Z_{\pi \text { (shunt-m) }} & =Z_{\pi k}
\end{array}\right\} \text { for any one pair of m-derived half-sections }
$$

full-section aftenuation α and phase β characteristics

When $\omega_{2}<\omega<\infty, \beta=\pi$ and
$\alpha=2 \cosh ^{-1}\left[\frac{\omega^{2}-\omega_{0}^{2}}{\omega\left(\omega_{2}-\omega_{1}\right)}\right]$
When $0<\omega<\omega_{1}, \beta=-\pi$ and
$\alpha=2 \cosh ^{-1}\left[\frac{\omega_{0}^{2}-\omega^{2}}{\omega\left(\omega_{2}-\omega_{1}\right)}\right]$
When $\omega_{1}<\omega<\omega_{2}, \alpha=0$ and
$\beta=2 \sin ^{-1}\left[\frac{\omega^{2}-\omega_{0}^{2}}{\omega\left(\omega_{2}-\omega_{1}\right)}\right]$

frequen- cies of peak α	design formulas	
$\omega_{1 \infty}=0$		
$\omega_{2 \infty}=\infty$	$L_{1 k}=\frac{R}{\omega_{2}-\omega_{1}}=\frac{\omega_{2}-\omega_{1}}{R \omega_{0}^{2}}$	$L_{2 k}=\frac{R\left(\omega_{2}-\omega_{1}\right)}{\omega_{0}^{2}}$

full-section alfenuation α and phase β characteristics	conditions	frequencies of peak α	design formulas	
			series arm	shunt arm
 When $0<\omega<\omega_{\mathrm{l}}, \quad \beta=0$ and $\alpha=\cosh ^{-1}\left[1-2 \frac{\omega^{2}-\omega_{1}{ }^{2}}{\omega_{2}^{2}-\omega_{1}^{2}}\right]$ When $\omega_{1}<\omega<\omega_{2}, \quad \alpha=0$ and $\beta=\cos ^{-1}\left[1-2 \frac{\omega^{2}-\omega_{1}^{2}}{\omega_{2}^{2}-\omega_{1}^{2}}\right]$ When $\omega_{2}<\omega<\infty, \beta=\pi$ and $\alpha=\cosh ^{-1}\left[2 \frac{\omega^{2}-\omega_{1}^{2}}{\omega_{2}^{2}-\omega_{1}^{2}}-1\right]$	$\begin{aligned} & m_{1}=1 \\ & m_{2}=\frac{\omega_{1}}{\omega_{2}} \end{aligned}$	$\omega_{3 \infty}=\infty$	$\begin{aligned} & L_{1}=L_{1 k} \\ & C_{1}=\frac{C_{1 k}}{m_{2}} \end{aligned}$ $L_{1}=\frac{1-m_{2}}{1+m_{2}} L_{1 k}$	$C_{2}=\frac{1-m_{2}}{1+m_{2}} C_{2 k}$ $L_{2}=\frac{L_{2 k}}{m_{2}}$ $C_{2}=C_{2 k}$
 When $0<\omega<\omega_{1}, \beta=-\pi$ and $\alpha=\cosh ^{-1}\left[2 \frac{\omega_{1}^{2}\left(\omega_{2}^{2}-\omega^{2}\right)}{\omega^{2}\left(\omega_{2}^{2}-\omega_{1}^{2}\right)}-1\right]$ When $\omega_{1}<\omega<\omega_{2}, \quad \alpha=0$ and $\beta=\cos ^{-1}\left[1-2 \frac{\omega_{1}^{2}\left(\omega_{2}^{2}-\omega^{2}\right)}{\omega^{2}\left(\omega_{2}^{2}-\omega_{1}^{2}\right)}\right]$ When $\omega_{2}<\omega<\infty, \beta=0$ and $\alpha=\cosh ^{-1}\left[1-2 \frac{\omega_{1}^{2}\left(\omega_{2}^{2}-\omega^{2}\right)}{\omega^{2}\left(\omega_{2}^{2}-\omega_{1}^{2}\right)}\right]$	$\begin{aligned} m_{1} & =\frac{\omega_{1}}{\omega_{2}} \\ m_{2} & =1 \end{aligned}$	$\omega_{1 \infty}=0$	$\begin{aligned} & L_{1}=m_{1} i_{1 k} \\ & C_{1}=C_{1 k} \end{aligned}$ $C_{1}=\frac{1+m_{1}}{1-m_{1}} C_{1 k}$	$L_{2}=\frac{1+m_{1}}{1-m_{1}} L_{2 k}$ $L_{2}=L_{2 k}$ $C_{2}=m_{1} C_{2 k}$

140

Band-pass filter design* continued

type and half section	impedance characteristics
4-element series I	
4-element shunt i	
4-element series if	$\begin{aligned} Z_{T 3}= & Z_{T k} \\ Z_{\pi 3}= & \frac{R}{\omega\left(\omega_{2}-\omega_{1}\right)} \sqrt{\frac{\omega^{2}-\omega_{1}^{2}}{\omega_{2}^{2}-\omega^{2}}} \\ & \times\left[\left(\omega_{2}^{2}-\omega^{2}\right)+m_{1}^{2}\left(\omega^{2}-\omega_{1}^{2}\right)\right] \end{aligned}$

4-element shunt it

$$
\begin{gathered}
Z_{\mathrm{T}}=\frac{R \omega\left(\omega_{2}-\omega_{1}\right)}{\left(\omega_{2}^{2}-\omega^{2}\right)+m_{1}^{2}\left(\omega^{2}-\omega_{1}^{2}\right)} \\
\times \sqrt{\frac{\omega_{2}^{2}-\omega^{2}}{\omega^{2}-\omega_{1}^{2}}}
\end{gathered}
$$

$$
=R^{2} / Z_{\pi 3}
$$

$$
Z_{\pi 4}=Z_{\pi k}
$$

[^11]| full-s oction atfenvation α and phase β characteristics | conditions | $\left\|\begin{array}{c} \text { fro- } \\ \text { quency } \\ \text { of peak } \alpha \end{array}\right\|$ | design formulas | |
| :---: | :---: | :---: | :---: | :---: |
| | | | serios arm | shunt arm |
|
 When $\omega_{1}<\omega<\omega_{2}, \alpha=0$ and $\beta=\cos ^{-1} \mathrm{~A}$
 When $0<\omega<\omega_{100}, \beta=0$ and $\alpha=\cosh ^{-1} \mathrm{~A}$
 When $\omega_{1 \infty}<\omega<\omega_{1}, \beta=-\pi$ and $\alpha=\cosh ^{-1}(-A)$
 When $\omega_{\mathrm{g}}<\omega<\infty, \beta=0$ and $\alpha=\cosh ^{-1} \mathrm{~A}$ | | | $\begin{aligned} & L_{1}=m_{1} L_{1 k} \\ & C_{1}=\frac{C_{1 k}}{m_{2}} \\ & \\ & L_{1}= \\ & \frac{m_{2}}{1-m_{2}^{2}} L_{2 k} \\ & C_{1}= \\ & \frac{1-m_{1}^{2}}{m_{1}} C_{2 k} \end{aligned}$ | $\begin{aligned} & \frac{1-m_{1}^{2}}{m_{1}} L_{1 k} \\ & C_{2}= \\ & \frac{m_{2}}{1-m_{2}^{2}} C_{1 k} \\ & \\ & L_{2}=\frac{L_{2 k}}{m_{2}} \\ & C_{2}=m_{1} C_{2 k} \end{aligned}$ |
|
 When $\omega_{2}<\omega<\omega_{2 \infty}, \beta=\pi$ and $\alpha=\cosh ^{-1}(-B)$
 When $0<\omega<\omega_{1}, \beta=0$ and $\alpha=\cosh ^{-1} B$
 When $\omega_{1}<\omega<\omega_{2} \quad \alpha=0$ and $\beta=\cos ^{-1} B$
 When $\omega_{2 \infty}<\omega<\infty, \beta=0$ and $\alpha=\cosh ^{-1} \mathrm{~B}$ | | | $\begin{aligned} & L_{1}=m_{1} L_{1 k} \\ & C_{1}=\frac{C_{1 k}}{m_{2}} \end{aligned}$ \qquad
 $\mathrm{L}_{1}=$ $\frac{m_{2}}{1-m_{2}^{2}} L_{2 k}$ $\begin{aligned} & C_{1}= \\ & \frac{1-m_{1}^{2}}{m_{1}} C_{2 k} \end{aligned}$ | $\begin{aligned} & L_{2}= \\ & \frac{1-m_{1}^{2}}{m_{1}} L_{1 k} \\ & C_{2}= \\ & \frac{m_{2}}{1-m_{2}^{2}} C_{1 k} \\ & \square \\ & L_{2}=\frac{L_{2 k}}{m_{2}} \\ & C_{2}=m_{1} C_{2 k} \end{aligned}$ |

142

Band-pass fliter design*
continued

Band-pass filter design* cantinued

full-section attenuation α and phase β characteristics
When $\omega_{1}<\omega<\omega_{2}, \quad \alpha=0$ and
$\beta=\cos ^{-1}\left[1-\frac{2\left(\omega^{2} m_{1}-\omega_{0}^{2} m_{2}\right)^{2}}{\left(\omega^{2} m_{1}-\omega_{0}^{2} m_{2}\right)^{2}+\left(\omega_{2}^{2}-\omega^{2}\right)\left(\omega^{2}-\omega_{1}^{2}\right)}\right]$
When $\omega_{2}<\omega<\omega_{2 \omega}, \quad \beta=\pi$ and
$\alpha=\cosh ^{-1}\left[\frac{2\left(\omega^{2} m_{1}-\omega_{0}^{2} m_{2}\right)^{2}}{\left(\omega^{2} m_{1}-\omega_{0}^{2} m_{2}\right)^{2}+\left(\omega_{2}^{2}-\omega^{2}\right)\left(\omega^{2}-\omega_{1}^{2}\right)}+1\right]$

When $0<\omega<\omega_{1 \infty}, \beta=0$ and
$\alpha=\cosh ^{-1}\left[1-\frac{2\left(\omega^{2} m_{1}-\omega_{0}^{2} m_{2}\right)^{2}}{\left(\omega^{2} m_{1}-\omega_{0}^{2} m_{2}\right)^{2}+\left(\omega_{2}^{2}-\omega^{2}\right)\left(\omega^{2}-\omega_{1}^{2}\right)}\right]$

When $\omega_{1 \infty}<\omega<\omega_{1}, \quad \beta=-\pi$ and
$\alpha=\cosh ^{-1}\left[\frac{2\left(\omega^{2} m_{1}-\omega_{0}^{2} m_{2}\right)^{2}}{\left(\omega^{2} m_{1}-\omega_{0}^{2} m_{2}\right)^{2}+\left(\omega_{2}^{2}-\omega^{2}\right)\left(\omega^{2}-\omega_{1}^{2}\right)}-1\right]$
When $\omega_{2 \infty}<\omega<\infty, \quad \beta=0$ and
$\alpha=$ same formula as for $0<\omega<\omega_{1 \infty}$

[^12]
FILTER NETWORKS

	ormulos
series orm	shunt arm
$\begin{aligned} L_{1} & =m_{1} L_{1 k} \\ C_{1} & =\frac{C_{1 k}}{m_{2}} \end{aligned}$	$\begin{aligned} & L_{2}=\frac{L_{1 k}}{m_{2}}\left[\frac{\left(\omega_{2}-\omega_{1}\right)^{2}}{\omega_{0}^{2}}-\frac{\left(m_{1}-m_{2}\right)^{2}}{m_{1} m_{2}}\right] \\ & L_{2}^{\prime}=\frac{1-m_{1}^{2}}{m_{1}} L_{1 k} \\ & C_{2}=\frac{m_{1} C_{1 k}}{\frac{\left(\omega_{2}-\omega_{1}\right)^{2}}{\omega_{0}^{2}}-\frac{\left(m_{1}-m_{2}\right)^{2}}{m_{1} m_{2}}} \\ & C_{2}^{\prime}=\frac{m_{2}}{1-m_{2}^{2}} C_{1 k} \end{aligned}$
$\begin{aligned} & L_{1}=\frac{m_{1} L_{2 k}}{\frac{\left(\omega_{2}-\omega_{1}\right)^{2}}{\omega_{0}^{2}}-\frac{\left(m_{1}-m_{2}\right)^{2}}{m_{1} m_{2}}} \\ & C_{1}=\frac{C_{2 k}}{m_{2}}\left[\frac{\left(\omega_{2}-\omega_{1}\right)^{2}}{\omega_{0}^{2}}-\frac{\left(m_{1}-m_{2}\right)^{2}}{m_{1} m_{2}}\right] \\ & L_{1}^{\prime}=\frac{m_{2}}{1-m_{2}^{2}} L_{2 k} \\ & C_{1}^{\prime}=\frac{1-m_{1}^{2}}{m_{1}} C_{2 k} \end{aligned}$	$\begin{aligned} & L_{2}=\frac{L_{2 k}}{m_{2}} \\ & C_{2}=m_{1} C_{2 h} \end{aligned}$

Band-stop filter design

Notations

Z in ohms, α in nepors, and β in radians

$$
\begin{aligned}
& \omega_{1}=\text { lower cutoff angular fre- } \\
& \text { quency } \\
& \omega_{2}=\text { upper cutoff angular íre- } \\
& \text { quency } \\
& \omega_{0}=\sqrt{\omega_{1 \omega_{2}}}=1 / \sqrt{L_{1 k} C_{1 k}} \\
& =1 / \sqrt{L_{2 k} C_{2 k}} \\
& \omega_{2}-\omega_{1}=\text { width of stop band } \\
& \omega_{1 \infty}=\text { lower angular frequency } \\
& \text { of peak attenuation } \\
& \omega_{2 \infty}=\text { upper angular frequency of } \\
& \text { peak attenuation } \\
& R=\text { nominal forminating resistance } \\
& R^{2}=\frac{L_{1 k}}{C_{2 k}}=\frac{L_{2 k}}{C_{1 k}} \\
& =Z_{1 k} Z_{2 k}=Z_{T k} Z_{\pi k}=k^{2} \\
& =Z_{1 \text { (eries-m) }} Z_{\text {g(nhunt-m) }} \\
& =Z_{\text {(norico-m) }} Z_{1 \text { (hhunt-m) }} \\
& =Z_{T 2} Z_{\pi 1}
\end{aligned}
$$

Series m-derived

$$
\begin{aligned}
Z_{\mathrm{T} 1} & =Z_{\mathrm{T} k} \\
Z_{\pi 1} & = \\
& R\left\{\frac{1-\left(1-m^{2}\right)\left[\frac{\omega\left(\omega_{2}-\omega_{1}\right)}{\omega_{1}^{2}-\omega^{2}}\right]^{2}}{\sqrt{1-\left[\frac{\omega^{2}\left(\omega_{2}-\omega_{1}\right)}{\omega_{0}^{2}-\omega^{2}}\right]^{2}}}\right\}
\end{aligned}
$$

curves drawn far $m=0.6$

Shunim-derived

$$
\begin{aligned}
& Z_{\mathrm{T} 2}=\frac{R^{2}}{Z_{\pi 1}} \\
& Z_{\pi 2}=Z_{\pi k}
\end{aligned}
$$

[^13]| full-section aftenuation α and phose β chorocteristics | conditions | $\left\|\begin{array}{c} \text { freq } \\ \text { of } \\ \text { peak } \\ \alpha \end{array}\right\|$ | design formulas | |
| :---: | :---: | :---: | :---: | :---: |
| | | | series arm | shunt orm |
| $\begin{aligned} & \text { When } \omega=\omega_{0} \\ & \alpha=\infty \\ & \text { When } \omega_{0}<\omega<\omega_{2} \\ & \alpha=2 \cosh ^{-1} \frac{\omega\left(\omega_{2}-\omega_{1}\right)}{\omega^{2}-\omega_{0}^{2}} \\ & \beta=-\pi \\ & \text { When } \omega_{2}<\omega<\infty \\ & \alpha=0 \\ & \beta=2 \sin ^{-1} \frac{\omega\left(\omega_{2}-\omega_{1}\right)}{\omega_{0}^{2}-\omega^{2}} \end{aligned}$
 When $\omega_{1}<\omega<\omega_{0}$ $\begin{array}{ll} \alpha=2 \cosh ^{-1} \frac{\omega\left(\omega_{2}-\omega_{1}\right)}{\omega_{1}^{2}-\omega^{2}} & \alpha=0 \\ \beta=\pi & \beta=2 \sin ^{-1} \frac{\omega\left(\omega_{2}-\omega_{1}\right)}{\omega_{0}^{2}-\omega^{2}} \end{array}$ | | 3 11 8 3 | $\begin{aligned} & L_{1 k}=\frac{R\left(\omega_{2}-\omega_{1}\right)}{\omega_{1} \omega_{2}} \\ & C_{1 k}=\frac{1}{R\left(\omega_{2}-\omega_{1}\right)} \end{aligned}$ | $\begin{aligned} L_{2 k} & =\frac{R}{\omega_{2}-\omega_{1}} \\ C_{2 k} & =\frac{\omega_{2}-\omega_{1}}{\omega_{1} \omega_{2} R} \end{aligned}$ |
|
 curves drawn for $m=0.6$ | $\|$-1
 $\frac{8}{3}$ $\frac{1}{3}$
 1 1 | | $\begin{aligned} & L_{1}=m L_{1 k} \\ & C_{1}=\frac{C_{1 k}}{m} \end{aligned}$ | $\begin{aligned} & L_{2}=\frac{1-m^{2}}{m} L_{1 k} \\ & C_{2}=\frac{m}{1-m^{2}} C_{1 k} \\ & L_{2}^{\prime}=\frac{L_{2 k}}{m} \\ & C_{2}^{\prime}=m C_{2 k} \end{aligned}$ |
| When $\omega_{2}<\omega<\infty, \alpha=0$ and $\beta=$ same formula as for $0<\omega<\omega_{1}$ | (1) $\begin{array}{cc}8 \\ 3 & 3 \\ 3 & 3 \\ 1 .\end{array}$ | "110 | | |
| When $\omega_{2 \infty}<\omega<\omega_{2}, \beta=-\pi$ and $\alpha=$ same formula as for $\omega_{1}<\omega<\omega_{100}$ | $\frac{1}{2}$ | $\begin{aligned} & 8 \\ & \text { 85 } \\ & \hline \end{aligned}$ | $C_{1}=C_{1 k}$ | |
| When $0<\omega<\omega_{1,}, \alpha=0$ and $\beta=\cos ^{-1}\left[1-\frac{2 \omega^{2} m^{2}\left(\omega_{2}-\omega_{1}\right)^{2}}{\left(\omega^{2}-\omega_{1}^{2}\right)\left(\omega^{2}-\omega_{2}^{2}\right)+\omega^{2} m^{2}\left(\omega_{2}-\omega_{1}\right)^{2}}\right]$ | ε | $\frac{8}{3}$ | $L_{1}^{\prime}=\frac{m}{1-m^{2}} L_{2 k}$ | $\begin{aligned} L_{2} & =\frac{L_{2 k}}{m} \\ C_{2} & =m C_{2 k} \end{aligned}$ |
| When $\omega_{1}<\omega<\omega_{1 \infty}, \beta=\pi$ and $\alpha=\cosh ^{-1}\left[\frac{2 \omega^{2} m^{2}\left(\omega_{2}-\omega_{1}\right)^{2}}{\left(\omega^{2}-\omega_{1}^{2}\right)\left(\omega^{2}-\omega_{2}^{2}\right)+\omega^{2} m^{2}\left(\omega_{2}-\omega_{1}\right)^{2}}-1\right]$ | | | $C_{1}^{\prime}=\frac{1-m^{2}}{m} C_{2 k}$ | |
| When $\omega_{1 \infty}<\omega<\omega_{2 \infty}, \beta=0$ and $\alpha=\cosh ^{-1}\left[1-\frac{2 \omega^{2} m^{2}\left(\omega_{2}-\omega_{1}\right)^{2}}{\left(\omega^{2}-\omega_{1}^{2}\right)\left(\omega^{2}-\omega_{2}^{2}\right)+\omega^{2} m^{2}\left(\omega_{2}-\omega_{1}\right)^{2}}\right]$ | | | | |

Building up a composite filter

Fig. 2—Method of building up a composite filter.

Fig. 3-Effect of design parameter m an the image-impedonce characteristics in the pass bond.

Building up a composite filter continued

The intermediate sections (Fig. 2) are matched on an image-impedance basis, but the attenuation characteristics of the sections may be varied by suitably designing the series and shunt arms of each section. Thus, the frequencies attenuated only slightly by one section may be strongly attenuated by other sections. However, the image impedance will be far from constant in the passband, unless the value of m is appropriately selected. In order to have a more constant impedance at the external terminals, suitably designed half sections are added. For these terminating sections, a value of $m \approx 0.6$ is used IFig. 31. When they are designed with the same cutoff frequencies and the same load resistance as the midsections, the image impedance will match that of the midsections.

Example of low-pass filter design

To cut off at 15 kilocycles/second; to give peak attenuation at 30 kilocycles; with a load resistance of 600 ohms; and using a constant-k midsection and an m -derived midsection. Full T -sections will be used.

Constant-k midsection

$$
\begin{aligned}
L_{k} & =\frac{R}{\omega_{c}}=\frac{600}{(6.28)\left(15 \times 10^{3}\right)}=6.37 \times 10^{-3} \text { henry } \\
C_{k} & =\frac{1}{\omega_{c} R}=\frac{1}{(6.28)\left(15 \times 10^{3}\right)(600)}=0.0177 \times 10^{-6} \text { farad } \\
\alpha & =2 \cosh ^{-1} \frac{\omega}{\omega_{c}}=2 \cosh ^{-1} \frac{f}{15} \\
\beta & =2 \sin ^{-1} \frac{\omega}{\omega_{c}}=2 \sin ^{-1} \frac{f}{15}
\end{aligned}
$$

where α is in nepers, β in radians, and f in kilocycles.

m-derived midsection

$$
\begin{gathered}
m=\sqrt{1-\omega_{c}^{2} / \omega_{\infty}^{2}}=\sqrt{1-15^{2} / 30^{2}} \\
=\sqrt{0.75}=0.866 \\
\begin{aligned}
L_{1}=m L_{k} & =0.866\left(6.37 \times 10^{-8}\right) \\
& =5.52 \times 10^{-3} \text { henry }
\end{aligned}
\end{gathered}
$$

Example of low-pass filter design continued

$$
\begin{aligned}
& L_{2}=\frac{1-m^{2}}{m} L_{k}=\left[\frac{1-(0.866)^{2}}{0.866}\right]\left(6.37 \times 10^{-3}\right)=1.84 \times 10^{-3} \text { henry } \\
& C_{2}=m C_{k}=0.866\left(0.0177 \times 10^{-9}\right)=0.0153 \times 10^{-6} \text { farad } \\
& \alpha=\cosh ^{-1}\left[1-\frac{2 m^{2}}{\frac{\omega_{c}^{2}}{\omega^{2}}-\left(1-m^{2}\right)}\right]=\cosh ^{-1}\left[1-\frac{1.5}{\frac{225}{f^{2}}-0.25}\right] \\
& \beta=\cos ^{-1}\left[1-\frac{2 m^{2}}{\frac{\omega_{c}^{2}}{\omega^{2}}-\left(1-m^{2}\right)}\right]=\cos ^{-1}\left[1-\frac{1.5}{\frac{225}{f^{2}}-0.25}\right]
\end{aligned}
$$

End sections $m=0.6$

$$
\begin{aligned}
L_{1} & =m L_{k}=0.6\left(6.37 \times 10^{-3}\right) \\
& =3.82 \times 10^{-3} \text { henry } \\
L_{2} & =\frac{1-m^{2}}{m} L_{k} \\
& =\left[\frac{1-(0.6)^{2}}{0.6}\right]\left(6.37 \times 10^{-3}\right)=6.80 \times 10^{-3} \text { henry } \\
C_{2} & =m C_{k}=0.6\left(0.0177 \times 10^{-6}\right)=0.0106 \times 10^{-6} \text { farad }
\end{aligned}
$$

Frequency of peak attenuation f_{∞}

$$
f_{\infty}=\sqrt{\frac{f_{c}{ }^{2}}{1-m^{2}}}=\sqrt{\frac{\left(15 \times 10^{3}\right)^{2}}{1-(0.6)^{2}}}=18.75 \text { kilocycles }
$$

Filter showing individual sections

Example of low-pass filter design
conlinued
Filter affer combining elements

Attenuation of each section
solid line $=\underset{\substack{\text { constant } \\ \text { midsection }}}{\text { m }}$

$f=$ frequency in kilocycles/second
Attenuation of composite filter

152

Example of low-pass fliter design continued

Phase characteristic of each section

solid line $=$	$\underset{\text { constant-k }}{\text { midsection }}$
dashed	$=\underset{m}{m}$-derived
	midsection
dash-dot $=$	$\underset{\sim}{m}$-derived
ends	

Phase characteristic of composite fliter

Impedance looking into filter $\mathbf{Z}_{\text {in }}$

$$
\begin{aligned}
& Z_{i n}=\frac{R\left[1-\frac{\omega^{2}}{\omega_{c}{ }^{2}}\left(1-m^{2}\right)\right]}{\sqrt{1-\omega^{2} / \omega_{c}{ }^{2}}} \\
& =\frac{600\left[1-0.64(f / 15)^{2}\right]}{\sqrt{1-(f / 15)^{2}}}
\end{aligned}
$$

Attenuators

Definitions

An attenuator is a network designed to introduce a known loss when working between resistive impedances Z_{1} and Z_{2} to which the input and output impedances of the attenuator are matched. Either Z_{1} or Z_{2} may be the source and the other the load. The attenuation of such networks expressed as a power ratio is the same regardless of the direction of working.

Three forms of resistance network that may be conveniently used to realize these conditions are shown on page 158. These are the T section, the π section, and the bridged-T section. Equivalent balanced sections also are shown. Methods are given for the computation of attenuator networks, the hyperbolic expressions giving rapid solutions with the aid of tables of hyperbolic functions on pages 632 to 634. Tables of the various types of attenuators are given on pages 161 to 168 .

Ladder aftenuator

Ladder attenuator, fig. 1 , input switch points $P_{0}, P_{1}, P_{2}, P_{3}$ at shunt arms. Also intermediate point P_{m} tapped on series arm. May be either unbalanced, as shown, or balanced.

Fig. 1-Ladder attenualor.

Ladder, for design purposes, fig. 2, is resolved into a cascade of π sections by imagining each shunt arm split into two resistors. Last section matches Z_{2} to $2 Z_{1}$. All other sections are symmetrical, matching impedances $2 Z_{1}$, with a terminating resistor $2 Z_{1}$ on the first section. Each section is designed for the loss required between the switch points at the ends of that section.

Input to P_{0} : Loss in decibels $=10 \log _{10} \frac{\left(2 Z_{1}+Z_{2}\right)^{2}}{4 Z_{1} Z_{2}}$
Input impedance $Z_{1}^{\prime}=\frac{Z_{2}}{2} \quad$ Output impedance $=\frac{Z_{1} Z_{2}}{Z_{1}+Z_{2}}$

Input to $\boldsymbol{P}_{1}, P_{2}$, or \boldsymbol{P}_{3} : Loss in decibels $=3+$ (sum of losses of π sections between input and output). Input impedance $Z_{1}{ }^{\prime}=Z_{1}$

Fig. 2-Ladder aftenuotor resolved into a coscade of π sections.

Input to P_{m} (on a symmetrical π section):
$\frac{e_{0}}{e_{m}}=\frac{1}{2} \frac{m(1-m)(K-1)^{2}+2 K}{K-m(K-1)}$
where
$e_{0}=$ output voltage when $m=0$ (Switch on P_{1})
$e_{m}=$ output voltage with switch on P_{m}
$K=$ current ratio of the section (from P_{1} to P_{2}) $K>1$
Input impedance $Z_{1}{ }^{\prime}=Z_{1}\left[m(1-m) \frac{(K-1)^{2}}{K}+1\right]$
Maximum

$$
Z_{1}^{\prime}=Z_{1}\left[\frac{(K-1)^{2}}{4 K}+1\right] \text { for } m=0.5
$$

The unsymmetrical last section may be treated as a system of voltage-dividing resistors. Solve for the resistance R from P_{0} to the tap, for each value of
$\binom{$ Output voltage with input on $P_{0}}{$ output voltage with input on tap }

A useful case

When $Z_{1}=Z_{2}=500$ ohms.
Then loss on P_{0} is 3.52 decibels.
Let the last section be designed for loss of 12.51 decibels. Then

Ladder attenuator

$R_{13}=2444$ ohms (shunted by 1000 ohms)
$R_{23}=654$ ohms (shunted by 500 ohms)
$R_{12}=1409$ ohms
The table shows the location of the tap and the input and output impedances for several values of loss, relative to the loss on P_{0} :

relative loss in decibels	tap \mathbf{R} ohms	inpui impedance ohms	output impedonce ohms
0	0	250	250
2	170	368	304
4	375	478	353
6	615	562	394
8	882	600	428
10	1157	577	454
12	1409	500	473

Input to P_{0} : Output impedance $=0.6 \mathrm{Z}$ (See fig. 3.)
Input to P_{0}, P_{1}, P_{2}, or P_{3} Loss in decibels $=6+$ Isum of losses of π sections between input and output). Input impedance $=Z$
Input to P_{m} :
$\frac{e_{0}}{e_{m}}=\frac{1}{4} \frac{m(1-m)(K-1)^{2}+4 K}{K-m(K-1)}$
Input impedance:
$Z^{\prime}=Z\left[\frac{m(1-m)(K-1)^{2}}{2 K}+1\right]$
Maximum $Z^{\prime}=Z\left[\frac{(K-1)^{2}}{8 K}+1\right]$ for $m=0.5$

Fig. 3-A variatlon of the ladder oftenuator, useful when $\boldsymbol{Z}_{1}=\boldsymbol{Z}_{2}=\mathbf{Z}$. Simpler in design, with improved impedance chorocteristics, but hoving minimum insertion loss 2.5 decibels higher thon aftenuator of Fig. 2. All π sections are symmetrical.

156

Load impedance

Effect of incorrect load impedance on operation of an attenuator

In the applications of attenuators, the question frequently arises as to the effect upon the input impedance and the attenuation by the use of a load impedance which is different from that for which the network was designed. The following results apply to all resistive networks that, when operated between resistive impedances Z_{1} and Z_{2}, present matching terminal impedances Z_{1} and Z_{2}, respectively. The results may be derived in the general case by the application of the network theorems, and may be readily confirmed mathematically for simple specific cases such as the T section.

For the designed use of the network, let
$Z_{1}=$ input impedance of properly terminated network
$Z_{2}=$ load impedance that properly terminates the network
$N=$ power ratio from input to output
$K=$ current ratio from input to output
$K=\frac{i_{1}}{i_{2}}=\sqrt{\frac{N Z_{2}}{Z_{1}}}$ (different in the two directions except when $Z_{2}=Z_{1}$)

For the actual conditions of operation, let
$\left(Z_{2}+\Delta Z_{2}\right)=Z_{2}\left(1+\frac{\Delta Z_{2}}{Z_{2}}\right)=$ actual load impedance
$\left(Z_{1}+\Delta Z_{1}\right)=Z_{1}\left(1+\frac{\Delta Z_{1}}{Z_{1}}\right)=$ resulting input impedance
$(K+\Delta K)=K\left(1+\frac{\Delta K}{K}\right)=$ resulting current ratio

While Z_{1}, Z_{2}, and K are restricted to real quantities by the assumed nature of the network, ΔZ_{2} is not so restricted, e.g.,
$\Delta Z_{2}=\Delta R_{2}+j \Delta X_{2}$

As a consequence, ΔZ_{1} and ΔK can become imaginary or complex. Furthermore, ΔZ_{2} is not restricted to small values.

Load impedance conlinued
The results for the actual conditions are
$\frac{\Delta Z_{1}}{Z_{1}}=\frac{2 \Delta Z_{2} / Z_{2}}{2 N+(N-1) \frac{\Delta Z_{2}}{Z_{2}}}$ and $\frac{\Delta K}{K}=\left(\frac{N-1}{2 N}\right) \frac{\Delta Z_{2}}{Z_{2}}$

Certain special cases may be cited

Case 1: For small $\Delta Z_{2} / Z_{2}$
$\frac{\Delta Z_{1}}{Z_{1}}=\frac{1}{N} \frac{\Delta Z_{2}}{Z_{2}} \quad$ or $\quad \Delta Z_{1}=\frac{1}{K^{2}} \Delta Z_{2}$
$\frac{\Delta i_{2}}{i_{2}}=-\frac{1}{2} \frac{\Delta Z_{2}}{Z_{2}}$
but the error in insertion power loss of the attenuator is negligibly small.
Case 2: Short-circuited output
$\frac{\Delta Z_{1}}{Z_{1}}=\frac{-2}{N+1}$
or input impedance $=\left(\frac{N-1}{N+1}\right) Z_{1}=Z_{1} \tanh \theta$
where θ is the designed attenuation in nepers.
Case 3: Open-circuited output
$\frac{\Delta Z_{1}}{Z_{1}}=\frac{2}{N-1}$
or input impedance $=\left(\frac{N+1}{N-1}\right) Z_{1}=Z_{1} \operatorname{coth} \theta$
Case 4: for $N=1$ (possible only when $Z_{1}=Z_{2}$ and directly connected)
$\frac{\Delta Z_{1}}{Z_{1}}=\frac{\Delta Z_{2}}{Z_{2}}$
$\frac{\Delta K}{K}=0$
Case 5: For large N
$\frac{\Delta K}{K}=\frac{1}{2} \frac{\Delta Z_{2}}{Z_{2}}$

Attenuator network design see page 160 for symbols

Minimum-loss
pad matching
Z_{1} and Z_{2}
$\left(Z_{1}>Z_{2}\right)$
(see Fig. 7)

Unbalanced π and
balanced 0

Symmetrical π and 0
$\left(Z_{1}=Z_{2}=Z\right)$
(see Fig. 5)

Bridged T
and
bridged H
(see Fig. 6)

ATTENUATORS

design formulas

design formulas		checking formulas
hyperbolic	arithmetical	
$\begin{aligned} & R_{3}=\frac{\sqrt{\overline{Z 1}_{1} Z_{3}}}{\sinh \theta} \\ & R_{1}=\frac{Z_{1}}{\tanh \theta}-R_{3} \\ & R_{2}=\frac{Z_{2}}{\tanh \theta}-R_{3} \end{aligned}$	$\begin{aligned} & R_{3}=\frac{2 \sqrt{N Z_{1} Z_{2}}}{N-1} \\ & R_{1}=Z_{1}\left(\frac{N+1}{N-1}\right)-R_{3} \\ & R_{2}=Z_{2}\left(\frac{N+1}{N-1}\right)-R_{3} \end{aligned}$	
$\begin{aligned} & R_{2}=\frac{Z}{\sinh \theta} \\ & R_{1}=Z \tanh \frac{\theta}{2} \end{aligned}$	$\begin{aligned} R_{3} & =\frac{2 Z \sqrt{N}}{N-1}=\frac{2 Z K}{K^{2}-1} \\ & =\frac{2 Z}{K-1 / K} \\ R_{1} & =Z \frac{\sqrt{N}-1}{\sqrt{N}+1}=Z \frac{K-1}{K+1} \\ & =Z[1-2 / K+11] \end{aligned}$	$\begin{aligned} R_{1} R_{2} & =\frac{Z^{2}}{1+\cosh \theta}=Z^{2} \frac{2 K}{(K+1)^{2}} \\ \frac{R_{1}}{R_{3}} & =\cosh \theta-1=2 \sinh ^{2} \frac{\theta}{2} \\ & =\frac{(K-1)^{2}}{2 K} \\ Z & =R_{1} \sqrt{1+2 \frac{R_{3}}{R_{1}}} \end{aligned}$
$\begin{aligned} \cosh \theta & =\sqrt{\frac{Z_{1}}{Z_{2}}} \\ \cosh 2 \theta & =2 \frac{Z_{1}}{\bar{z}_{2}}-1 \end{aligned}$	$\begin{aligned} & R_{1}=Z_{1} \sqrt{1-\frac{Z_{2}}{Z_{1}}} \\ & R_{3}=\frac{Z_{2}}{\sqrt{1-\frac{Z_{2}}{Z_{3}}}} \end{aligned}$	$\begin{aligned} R_{1} R_{3} & =Z_{1} Z_{2} \\ \frac{R_{1}}{R_{3}} & =\frac{Z_{1}}{Z_{2}}-1 \\ N & =\left(\sqrt{\frac{Z_{1}}{Z_{2}}}+\sqrt{\frac{Z_{1}}{Z_{2}}-1}\right)^{2} \end{aligned}$
$\begin{aligned} & R_{3}=\sqrt{Z_{1} Z_{2} \sinh \theta} \\ & \frac{1}{R_{1}}=\frac{1}{Z_{1} \tanh \theta}-\frac{1}{R_{3}} \\ & \frac{1}{R_{2}}=\frac{1}{Z_{2} \tanh \theta}-\frac{1}{R_{2}} \end{aligned}$	$\begin{aligned} & R_{3}=\frac{N-1}{2} \sqrt{\frac{Z_{1} Z_{3}}{N}} \\ & \frac{1}{R_{1}}=\frac{1}{Z_{1}}\left(\frac{N+1}{N-1}\right)-\frac{1}{R_{3}} \\ & \frac{1}{R_{2}}=\frac{1}{Z_{2}}\left(\frac{N+1}{N-1}\right)-\frac{1}{R_{3}} \end{aligned}$	
$\begin{aligned} & R_{3}=Z \sinh \theta \\ & R_{1}=\frac{Z}{\tanh \frac{\theta}{2}} \end{aligned}$	$\begin{aligned} R_{3} & =z \frac{N-1}{2 \sqrt{N}}=z \frac{K^{2}-1}{2 K} \\ & =Z(K-1 / K) / 2 \\ R_{1} & =Z \frac{\sqrt{N}+1}{\sqrt{N}-1}=z \frac{K+1}{K-1} \\ & =Z[1+2 /(K-1)] \end{aligned}$	$\begin{aligned} R_{1} R_{3} & =Z^{2}(1+\cosh \theta)=Z^{2} \frac{(K+1)^{2}}{2 K} \\ \frac{R_{3}}{R_{1}} & =\cosh \theta-1=\frac{(K-1)^{2}}{2 K} \\ Z & =\frac{R_{1}}{\sqrt{1+2 \frac{R_{1}}{R_{3}}}} \end{aligned}$
	$\begin{aligned} & R_{1}=R_{2}=Z \\ & R_{4}=Z(K-1) \\ & R_{3}=\frac{Z}{K-1} \end{aligned}$	$\begin{aligned} & R_{3} R_{4}=Z^{2} \\ & \frac{R_{1}}{R_{3}}=(K-1)^{2} \end{aligned}$

Four-terminal networks: The hyperbolic formulas above are valid for passive linear four-terminal networks in general, working between input and oufput impedances matching the respective image impedances. In this case: Z_{1} and Z_{2} are the image impedances; R_{1}, R_{2} and R_{3} become complex impedarces; and θ is the image transfer constant. $\theta=\alpha+i \beta$, where α is the image attenuation constant and β is the image phase constant.

Attenuator network design continued

Symbols

Z_{1} and Z_{2} are the terminal impedances (resistive) to which the attenuator is matched.
N is the ratio of the power absorbed by the attenuator from the source to the power delivered to the load.
K is the ratio of the attenuator input current to the output current into the load. When $Z_{1}=Z_{2}, K=\sqrt{N}$. Otherwise K is different in the two directions.
Attenuation in decibels $=10 \log _{10} \mathrm{~N}$
Attenuation in nepers $=\theta=\frac{1}{2} \log _{\theta} N$
For a table of decibels versus power and voltage or current ratio, see page 30. Factors for converting decibels to nepers, and nepers to decibels, are given at the foot of that table.

Notes on error formulas

The formulas and figures for errors, given in figs. 4 to 8, are based on the assumption that the attenuator is terminated approximately by its proper terminal impedances Z_{1} and Z_{2}. They hold for deviations of the attenuator arms and load impedances up to ± 20 percent or somewhat more. The error due to each element is proportional to the deviation of the element, and the total error of the attenuator is the sum of the errors due to each of the several elements.
When any element or arm R has a reactive component ΔX in addition to a resistive error ΔR, the errors in input impedance and output current are
$\Delta Z=A(\Delta R+j \Delta X)$
$\frac{\Delta i}{i}=B\left(\frac{\Delta R+j \Delta X}{R}\right)$
where A and B are constants of proportionality for the elements in question. These constants can be determined in each case from the figures given for errors due to a resistive deviation ΔR.
The reactive component ΔX produces a quadrature component in the output current, resulting in a phase shift. However, for small values of ΔX, the error in insertion loss is negligibly small.
For the errors produced by mismatched terminal load impedance, refer to Case 1, page 157.

Symmetrical T or H attenuators

Interpolation of symmetrical \mathbf{T} or \mathbf{H} attenuators (Fig. 4)

Column R_{1} may be interpolated linearly. Do not interpolate R_{3} column. For 0 to 6 decibels interpolate the $1000 / R_{3}$ column. Above 6 decibels, interpolate the column $\log _{10} R_{3}$ and determine R_{3} from the result.

Fig. 4-Symmetrical T and H attenuatar values, $Z=500$ ohms resistive (diagrom on page 158).

oftenuafion in decibels	series orm \mathbf{R}_{1} ahms	shunt orm R_{3} ohms	1000/R3	$\log _{10} \mathbf{R}_{\mathbf{2}}$
0.0	0.0	inf	0.0000	-
0.2	5.8	21,700	0.0461	-
0.4	11.5	10,850	0.0921	-
0.6	17.3	7,230	0.1383	-
0.8	23.0	5,420	0.1845	-
1.0	28.8	4,330	0.2308	-
2.0	57.3	2,152	0.465	\square
3.0	85.5	1,419	0.705	-
4.0	113.1	1,048	0.954	-
5.0	140.1	822	1.216	-
6.0	166.1	669	1.494	2.826
7.0	191.2	558	-	2.747
8.0	215.3	473.1	-	2.675
9.0	233.1	405.9	-	2.608
10.0	259.7	351.4	\square	2.546
12.0	299.2	268.1	-	2.428
14.0	333.7	207.8	-	2.318
16.0	363.2	162.6	- -	2.211
18.0	388.2	127.9	-	2.107
20.0	409.1	101.0	-	2.004
22.0	426.4	79.94	-	1.903
24.0	440.7	63.35	-	1.802
26.0	452.3	50.24	-	1.701
28.0	461.8	39.87	-	1.601
30.0	469.3	31.65	-	1.500
35.0	482.5	17.79	-	1.250
40.0	490.1	10.00	-	1.000
50.0	496.8	3.162	——	0.500
60.0	499.0	1.000	-	0.000
80.0	499.9	0.1000	-	-1.000
100.0	500.0	0.01000	-	-2.000

Symmetrical T or H affenuators continued

Errors in symmetrical Tor H aftenuators

Series arms \mathbf{R}_{1} and $\mathbf{R}_{\mathbf{2}}$ in error: Error in input impedances:
$\Delta Z_{1}=\Delta R_{1}+\frac{1}{K^{2}} \Delta R_{2}$
and
$\Delta Z_{2}=\Delta R_{2}+\frac{1}{K^{2}} \Delta R_{1}$

nominally $\boldsymbol{R}_{1}=\boldsymbol{R}_{\mathbf{2}}$
$\mathbf{Z}_{1}=\mathbf{Z}_{2}$

Error in insertion loss, in decibels,
$\mathrm{db}=4\left(\frac{\Delta R_{1}}{Z_{1}}+\frac{\Delta R_{2}}{Z_{2}}\right)$ approximately

Shunt arm R_{3} in error (10 percent high)

designed loss, in decibels,	error in insertion loss, in decibels	error in input impedance $\mathbf{1 0 0} \frac{\Delta z}{z}$ percent
0.2	-0.01	0.2
1	-0.05	1.0
6	-0.3	3.3
12	-0.5	3.0
20	-0.7	1.6
40	-0.8	0.2
100	-0.8	0.0

Error in input impedance:
$\frac{\Delta Z}{Z}=2 \frac{K-1}{K(K+1)} \frac{\Delta R_{3}}{R_{3}}$

Error in output current:
$\frac{\Delta i}{i}=\frac{K-1}{K+1} \frac{\Delta R_{3}}{R_{3}}$

See Notes on page 160.

Symmetrical π and 0 aftenuators

Inferpolation of symmetrical π and 0 attenvators (fig. 51.

Column R_{1} may be interpolated linearly above 16 decibels, and R_{3} up to 20 decibels. Otherwise interpolate the $1000 / R_{1}$ and $\log _{10} R_{3}$ columns, respectively.

Fig. 5-5ymmetrical π and 0 attenuator. $Z=500$ ohms resisfive (diagram, page 1 3:).

aftenuation in deelbels	shunt arm $\mathbf{R}_{\mathbf{1}}$ ohms	1000/ R_{1}	series arm \mathbf{R}_{3} ohms	$\log _{10} \mathrm{H}_{1}$
0.0	∞	0.000	0.0	-
0.2	43,400	0.023	11.5	-
0.4	21.700	0.046	23.0	-
0.6	14,500	0.069	34.6	-
0.8	10,870	0.092	46.1	-
1.0	8,700	0.115	57.7	-
2.0	4,362	0.229	116.1	-
3.0	2,924	0.342	176.1	-
4.0	2,210	0.453	238.5	-
5.0	1,785	0.560	304.0	-
6.0	1,505	0.665	373.5	-
7.0	1,307	0.765	448.0	-
8.0	1,161.4	0.861	528.4	-
9.0	1,049.9	0.952	615.9	-
10.0	962.5	1.039	711.5	-
12.0	835.4	1.197	932.5	-
14.0	749.3	1.335	1,203.1	-
16.0	688.3	1.453	1,538	-
18.0	644.0	-	1,954	-
20.0	611.1	-	2,475	3.394
22.0	586.3	-	3,127	3.495
24.0	567.3	-	3,946	3.596
26.0	552.8	-	4,976	3.697
28.0	541.5	-	6,270	3.797
30.0	532.7	-	7,900	3.898
35.0	518.1	-	14,050	4.148
40.0	510.1	-	25,000	4.398
50.0	503.2	-	79,100	4.898
60.0	501.0	-	2.50×10^{5}	5.398
80.0	500.1	-	2.50×10^{8}	6.398
100.0	500.0	-	2.50×10^{7}	7.398

Errors in symmetrical $\boldsymbol{\pi}$ and $\mathbf{0}$ attenuators

decibels $=-8 \frac{\Delta i_{2}}{i_{2}}$ (approximately)

$$
=4 \frac{K-1}{K+1}\left(-\frac{\Delta R_{1}}{R_{1}}-\frac{\Delta R_{2}}{R_{2}}+2 \frac{\Delta R_{3}}{R_{3}}\right)
$$

See Notes on page 160.

Bridged T or H aftenuaiors

Interpolation of bridged \mathbf{T} or \mathbf{H} aftenuators (Fig. 6)

Bridge arm R_{4} : Use the formula $\log _{10}\left(R_{4}+500\right)=2.699+$ decibels $/ 20$ for $Z=500$ ohms. However, if preferred, the tabular values of R_{4} may be interpolated linearly, between 0 and 10 decibels only.

Fig. 6-Values for bridged T or H attenuators. $Z=500$ ohms resistive, $R_{1}=R_{2}=$ 500 ohms (diagram on page 158).

aftenuation in decibels	bridge arm R_{4} ohms	shunt arm R_{3} ohms	attenuation in decibels	bridge arm R_{1} ohms	shunt orm R_{s} ohms
0.0	0.0	∞	12.0	1,491	167.7
0.2	11.6	21,500	14.0	2,006	124.6
0.4	23.6	10,610	16.0	2,655	94.2
0.6	35.8	6,990	18.0	3,472	72.0
0.8	48.2	5,180	20.0	4,500	55.6
1.0	61.0	4,100	25.0	8,390	29.8
2.0	129.5	1,931	30.0	15,310	16.33
3.0	236.3	1,212	40.0	49,500	5.05
4.0	272.4	855	50.0	157,600.	1.586
5.0	339.1	642	60.0	499,500	0.501
6.0	498	502	83.0	5.00×10^{6}	0.0500
7.0	619	404	100.0	50.0×10^{6}	0.00500
8.0	756	331	-	-	-
9.0	909	275.0	-	-	-
10.0	1.081	231.2		-	-

ATtENUATORS
 165

Bridged T or H attenuators

 cantinuedShunt arm R_{3} : Do not interpolate R_{3} column. Compute R_{3} by the formula $R_{3}=10 \% / 4 R_{4} \quad$ for $Z=500$ ohms.

Note: For attenuators of 60 db and over, the bridge arm R_{4} may be omitted provided a shunt arm is used having twice the resistance tabulated in the R column. (This makes the input impedance 0.1 of 1 percent high at 60 db .)

Errors in bridged \mathbf{T} or \mathbf{H} attenuators

Resistance of any one arm 10 percent higher than correct value

designed Joss decibels	A decibels*	B percent*	C percenf*
0.2	0.01	0.005	0.2
1	0.05	0.1	1.0
6	0.2	2.5	2.5
12	0.3	5.6	1.9
20	0.4	8.1	0.9
40	0.4	10	0.1
100	0.4	10	0.0

* Refer to following rabulation.

element in error $(10$ percent high)	error in loss	error in terminal impedance	remorks
Series arm R_{1} lanalogous for arm $\left.R_{2}\right)$	Zero	B, for adjacent terminals	Errar in impedance at op- posite ferminals is zero
Shunt arm R_{3}	-A	loss is lawer than de- signed loss loss is higher than de- signed loss	

Error in input impedance:
$\frac{\Delta Z_{1}}{Z_{1}}=\left(\frac{K-1}{K}\right)^{2} \frac{\Delta R_{1}}{R_{1}}+\frac{K-1}{K^{2}}\left(\frac{\Delta R_{3}}{R_{3}}+\frac{\Delta R_{4}}{R_{4}}\right)$
For $\Delta Z_{2} / Z_{2}$ use subscript 2 in formula in place of subscript 1 .
Error in output current:
$\frac{\Delta i}{i}=\frac{K-1}{2 K}\left(\frac{\Delta R_{3}}{R_{3}}-\frac{\Delta R_{4}}{R_{4}}\right)$
See Notes on page 160.

Minimum-loss pads

Interpolation of minimum-loss pads (Fig. 71

This table may be interpolated linearly with respect to Z_{1}, Z_{2}, or Z_{1} / Z_{2} except when Z_{1} / Z_{2} is between 1.0 and 1.2 The accuracy of the interpolated value becomes poorer as Z_{1} / Z_{2} passes below 2.0 toward 1.2 , especially for R_{2}.

For other terminations

If the terminating resistances are to be Z_{A} and Z_{B} instead of Z_{1} and Z_{2}, respectively, the procedure is as follows. Enter the table at $\frac{Z_{1}}{Z_{2}}=\frac{Z_{A}}{Z_{B}}$ and

Fig. 7-Values for minimum-loss pads matching Z_{1} and Z_{2}, both resistive (diagram on page 158).

$\begin{gathered} Z_{1} \\ \text { ohms } \end{gathered}$	$\begin{gathered} \mathbf{Z}_{2} \\ \text { ohms } \end{gathered}$	Z_{1} / Z_{2}	loss in decibels	series arm $\mathbf{R}_{\mathbf{1}}$ ohms	shunt arm R_{3} ohms
10,000	500	20.00	18.92	9,747	513.0
8,000	500	16.00	17.92	7,746	516.4
6,000	500	12.00	16.63	5,745	522.2
5,000	500	10.00	15.79	4,743	527.0
4,000	500	8.00	14.77	3,742	534.5
3,000	500	7:00	13.42	2,739	547.7
2,500	500	5.00	12.54	2,236	559.0
2,000	500	4.00	11.44	1,732	577.4
1,500	500	3.00	9.96	1,224.7	612.4
1,200	500	2.40	8.73	916.5	654.7
1,000	500	2.00	7.66	707.1	707.1
800	500	1.60	6.19	489.9	816.5
600	500	1.20	3.77	244.9	1,224.7
500	400	1.25	4.18	223.6	894.4
500	300	1.667	6.48	316.2	474.3
500	250	2.00	7.66	353.6	353.6
500	200	2.50	8.96	387.3	258.2
500	160	3.125	10.17	412.3	194.0
500	125	4.00	11.44	433.0	144.3
500	100	5.00	12.54	447.2	111.80
500	80	6.25	13.61	458.3	87.29
500	65	7.692	14.58	466.4	69.69
500	50	10.00	15.79	474.3	52.70
500	40	12.50	16.81	479.6	41.70
500	30	16.67	18.11	484.8	30.94
500	25	20.00	18.92	487.3	25.65

Minimum-loss pads

 continuedread the loss and the tabular values of R_{1} and R_{3}. Then the series and shunt arms are, respectively, $M R_{1}$ and $M R_{3}$, where $M=\frac{Z_{A}}{Z_{1}}=\frac{Z_{B}}{Z_{2}}$.

Errors in minimum-loss pads

Impadance ratio Z_{1} / Z_{2}	D decfbels*	Epercent*	F percent*
1.2	0.2	+4.1	$+1.7$
2.0	0.3	7.1	1.2
4.0	0.35	8.6	0.6
10.0	0.4	9.5	0.25
20.0	0.4	9.7	0.12

* Notes

Series arm $R_{1} 10$ percent high: Loss is increased by D decibels from above table. Input impedance Z_{1} is increased by E percent. Input impedance Z_{2} is increased by F percent.

Shunt arm $R_{3} 10$ percent high: Loss is decreased by D decibels from above table. Input impedance Z_{2} is increased by E percent. Input impedance Z_{1} is increased by F percent.

Errors in input impedance

$$
\begin{aligned}
& \frac{\Delta Z_{1}}{Z_{1}}=\sqrt{1-\frac{Z_{2}}{Z_{1}}}\left(\frac{\Delta R_{1}}{R_{1}}+\frac{1}{N} \frac{\Delta R_{3}}{R_{8}}\right) \\
& \frac{\Delta Z_{2}}{Z_{2}}=\sqrt{1-\frac{Z_{2}}{Z_{1}}}\left(\frac{\Delta R_{3}}{R_{3}}+\frac{1}{N} \frac{\Delta R_{1}}{R_{1}}\right)
\end{aligned}
$$

Error in output current, working either direction
$\frac{\Delta i}{i}=\frac{1}{2} \sqrt{1-\frac{Z_{2}}{Z_{1}}}\left(\frac{\Delta R_{3}}{R_{3}}-\frac{\Delta R_{1}}{R_{1}}\right)$
See Notes on page 160.

Fig. 8-Values for miscellaneous T ond H pods (diagrom on page 158)

resistive ferminations		$\begin{aligned} & \text { Joss } \\ & \text { decibels } \end{aligned}$	aftenuofor arms		
$\begin{gathered} Z_{1} \\ \text { ohms } \end{gathered}$	\mathbf{Z}_{2} ohms		$\begin{gathered} \text { series } R_{1} \\ \text { ohms } \end{gathered}$	$\begin{gathered} \text { series } R_{2} \\ \text { ohms } \end{gathered}$	shunt R_{3} ohms
5,000	2,000	10	3,889	222	2,222
5,000	2,000	15	4,165	969	1,161
5,000	2,000	20	4,462	1,402	639
5,000	500	20	4,782	190.7	319.4
2,000	500	15	1,763	- 165.4	367.3
2,000	500	20	1,838	308.1	202.0
2,000	200	20	1,913	76.3	127.8
500	200	10	388.9	22.2	222.2
500	200	15	416.5	96.9	116.1
500	200	20	446.2	140.2	63.9
500	50	20	478.2	19.07	31.94
200	50	15	176.3	16.54	36.73
200	50	20	183.8	30.81	20.20

Errors in \mathbf{T} and \mathbf{H} pads

Series arms $\mathbf{R}_{\mathbf{1}}$ and $\mathbf{R}_{\mathbf{2}}$ in error: Errors in input impedances are
$\Delta Z_{1}=\Delta R_{1}+\frac{1}{N} \frac{Z_{1}}{Z_{2}} \Delta R_{2}$ and $\Delta Z_{2}=\Delta R_{2}+\frac{1}{N} \frac{Z_{2}}{Z_{1}} \Delta R_{1}$
Error in insertion loss, in decibels $=4\left(\frac{\Delta R_{1}}{Z_{1}}+\frac{\Delta R_{2}}{Z_{2}}\right)$ approximately

Shunt arm R_{3} in error (10 percent high)

Z_{1} / Z_{2}	designed loss decibels	error in loss decibels	error in input impedance	
			$100 \frac{\Delta Z_{1}}{Z_{1}}$	$100 \frac{\Delta Z_{2}}{Z_{2}}$
2.5	10	-0.4	1.1\%	7.1\%
2.5	15	-0.6	1.2	4.6
2.5	20	-0.7	0.9	2.8
4.0	15	-0.5	0.8	6.0
4.0	20	-0.65	0.6	3.6
10	20	-0.6	0.3	6.1

$\frac{\Delta Z_{1}}{Z_{1}}=\frac{2}{N-1}\left(\sqrt{\frac{N Z_{2}}{Z_{1}}}+\sqrt{\frac{Z_{1}}{N Z_{2}}}-2\right) \frac{\Delta R_{3}}{R_{3}} \quad\left\{\begin{array}{r}\text { for } \Delta Z_{2} / Z_{2} \text { interchange sub- } \\ \text { scripts } 1 \text { and } 2 .\end{array}\right.$
$\frac{\Delta i}{i}=\frac{N+1-\sqrt{N}\left(\sqrt{\frac{Z_{1}}{Z_{2}}}+\sqrt{\frac{Z_{2}}{Z_{1}}}\right)}{N-1} \frac{\Delta R_{3}}{R_{3}}\{$ where i is the output current.

Bridges and impedance measurements

Infroduction

In the diagrams of bridges below, the source is shown as a generaior, and the detector as a pair of headphones. The positions of these two elements may be interchanged as dictated by detailed requirements in any individual case, such as location of grounds, etc. For all but the lowest frequencies, a shielded transformer is required at either the input or output lbut not usually at both) terminals of the bridge. This is shown in some of the following diagrams. The detector is chosen according to the frequency of the source. Above the middle audio frequencies, a simple radio receiver or its equivalent is essential. The source may be modulated in order to obtain an audible signal, but greater sensitivity and discrimination against interference are obtained by the use of a continuous-wave source and a heterodyne detector. An amplifier and oscilloscope or an output meter are sometimes preferred for observing nulls. In this case it is convenient to have an audible output signal available for the preliminary setup and for locating trouble, since much can be deduced from the quality of the audible signal that would not be apparent from observation of amplitude only.

Fundomental alternating-current or

Wheafstone bridge

Balance condition is $Z_{z}=Z_{s} Z_{a} / Z_{b}$ Maximum sensitivity when Z_{d} is the conjugate of the bridge output im. pedance and Z_{g} the conjugate of its

input impedance. Greatest sensitivity when bridge arms are equal, e.g., for resistive arms,
$Z_{d}=Z_{a}=Z_{b}=Z_{x}=Z_{s}=Z_{o}$

Bridge with double-shielded transformer

Shield on secondary may be floating, connected to either end, or to center of secondary winding. It may be in two equal parts and connected to opposite ends of the winding. In any case, its capacitance to ground must be kept to a minimum.

170

Wegner arth connection

None of the bridge elements are grounded directly. First balance bridge with switch to B. Throw switch to G and rebalance by means of R and C. Recheck bridge balance and repeat as required. The capacitor balance C is necessary only when the

frequency is above the audio range. The transformer may have only a single shield as shown, with the capacitance of the secondary to the shield kept to a minimum.

Capacitor balance

Useful when one point of bridge must be grounded directly and only a simple shielded transformer is used. Balance bridge, then open the two arms at P and Q. Rebalance by
auxiliary capacitor C. Close P and Q and check balance.

Series-resistance-capacliance bridge

$C_{x}=C_{s} R_{b} / R_{a}$
$R_{x}=R_{s} R_{a} / R_{b}$

Wien bridge

$$
\frac{C_{x}}{C_{z}}=\frac{R_{b}}{R_{a}}-\frac{R_{z}}{R_{x}}
$$

$C_{s} C_{x}=1 / \omega^{2} R_{s} R_{x}$

Wien bridge conlinued
For measurement of frequency, or in a frequency-selective application, if

we make $C_{x}=C_{8}, R_{x}=R_{8}$, and $R_{b}=2 R_{a}$, then
$f=\frac{1}{2 \pi C_{B} R_{z}}$

Owen bridge

$L_{x}=C_{b} R_{d} R_{d}$
$R_{x}=\frac{C_{b} R_{d}}{C_{d}}-R_{c}^{\prime}$

Resonance bridge
$\omega^{2} L C=1$

$$
R_{x}=R_{z} R_{a} / R_{b}
$$

Maxwell bridge
$L_{x}=R_{a} R_{b} C_{s}$
$R_{x}=\frac{R_{a} R_{b}}{R_{s}}$
$Q_{z}=\omega \frac{L_{x}}{R_{z}}=\omega C_{z} R_{z}$

Moy bridge

For measurement of large inductance.

$L_{x}=\frac{R_{a} R_{b} C_{s}}{1+\omega^{2} C_{z}{ }^{2} R_{z}{ }^{2}}$
$Q_{x}=\frac{\omega L_{x}}{R_{x}}=\frac{1}{\omega C_{s} R_{s}}$

Schering bridge

$C_{x}=C_{a} R_{b} / R_{a}$
$1 / Q_{x}=\omega C_{x} R_{x}=\omega C_{b} R_{b}$

Substitution method for high impedonces
Initial balance lunknown terminals $x-x$ open):
C_{a}^{\prime} and R_{a}^{\prime}
Final balance lunknown connected to $x-x$):
$C_{8}^{\prime \prime}$ and $R_{8}^{\prime \prime}$
Then when $R_{x}>10 / \omega C_{s}^{\prime}$, there results, with error <1 percent,
$C_{x}=C_{8}^{\prime}-C_{8}^{\prime \prime}$
The parallel resistance is $R_{x}=\frac{1}{\omega^{2} C_{s}^{\prime 2}\left(R_{s}^{\prime}-R_{s}^{\prime \prime}\right)}$

If unknown is an inductor,
$L_{x}=-\frac{1}{\omega^{2} C_{x}}=\frac{1}{\omega^{2}\left(C_{s}^{\prime \prime}-C_{s}^{\prime}\right)}$

Measurement with capacifor in series

with unknown

Initial balance lunknown terminals $x-x$ short-circuited):
C_{s}^{\prime} and R_{s}^{\prime}
Final balance $(x-x$ un-shorted):
$C^{\prime \prime}$ and $R_{3}^{\prime \prime}$
Then the series resistance is
$R_{x}=\left(R_{s}^{\prime \prime}-R_{s}^{\prime}\right) R_{a} / R_{b}$
$C_{x}=\frac{R_{b} C_{s}^{\prime} C_{s}^{\prime \prime}}{R_{a}\left(C_{s}^{\prime}-C_{s}^{\prime \prime}\right)}$
$=\frac{R_{b}}{R_{a}} C_{s}^{\prime}\left(\frac{C_{s}^{\prime}}{C_{s}^{\prime}-C_{s}^{\prime \prime}}-1\right)$

When $C_{s}^{\prime \prime}>C_{s}^{\prime}$,
$L_{x}=\frac{1}{\omega^{2}} \frac{R_{s}}{R_{b} C_{s}^{\prime}}\left(1-\frac{C_{s}^{\prime}}{C_{z}^{\prime \prime}}\right)$

Measurement of direct capacitance

Connection of N to N^{\prime} places $C_{n g}$ across phones, and $C_{n p}$ across R_{b} which requires only a small readjustment of R_{s}.

Initial balance: lead from P disconnected from X_{1} but lying as close to connected position as practical.

Final balance: Lead connected to X_{1}. By the substitution method above, $C_{p q}=C_{s}^{\prime}-C_{s}^{\prime \prime}$

Felici mutual-inductance balance

At the null:
$M_{x}=-M_{s}$

Useful at lower frequencies whert capacitive reactances associated with windings are negligibly small.

Using low-loss capacitor. At the null $M_{x}=1 / \omega^{2} C_{k}$

Hybrid-coll method

At null:

$$
Z_{1}=Z_{2}
$$

The transformer secondaries must be accurately matched and balanced to

ground. Useful at audio and carrier frequencies.

O of resonant circuit by bandwidth

For 3-decibel or half-power points. Source loosely coupled to circuit. Adjust frequency to each side of resonance, noting bandwidth when

$$
v=0.71 \times(v \text { at resonance })
$$

$$
Q=\frac{\text { (resonance frequency) }}{\text { (bandwidth) }}
$$

Q-meter (Boonton Radio Type 160A)
$R_{1}=0.04 \mathrm{ohm}$
$R_{2}=100$ megohms
$V=$ vacuum-tube voltmeter
$I=$ thermal milliammeter
$L_{z} R_{z} C_{0}=$ unknown coil plugged into coll terminals for measurement.

Correction of Q reading

For distributed capacitance C_{0} of coil
$Q_{\text {rue }}=Q \frac{C+C_{0}}{C}$
where
$Q=$ reading of Q-meter (corrected for internal resistors R_{1} and R_{2} if necessary)
$\mathrm{C}=$ capacitance reading of Q meter

Measurement of C_{0} and true L_{z}
C plotted vs $1 / f^{2}$ is a straight line.

Measurement of C_{0} and true $L_{s} \quad$ continued
$L_{x}=$ true inductance

$$
=\frac{1 / f^{2}{ }_{2}-1 / f_{1}{ }_{1}}{4 \pi^{2}\left(C_{2}-C_{1}\right)}
$$

$\mathrm{C}_{0}=$ negative intercept
$f_{0}=$ natural frequency of coil
When only two readings are taken and $f_{1} / f_{2}=2.00$,
$C_{0}=\left(C_{2}-4 C_{1}\right) / 3$

Measurement of odmittance

Initial readings $C^{\prime} Q^{\prime} \| L R_{p}$ is any suitable coill

Final readings $C^{\prime \prime} Q^{\prime \prime}$

$1 / Z=Y=G+j B=1 / R_{p}+j \omega C$
Then
$C=C^{\prime}-C^{\prime \prime}$
$\frac{1}{Q}=\frac{G}{\omega C}$

$$
=\frac{C^{\prime}}{C}\left(\frac{1000}{Q^{\prime \prime}}-\frac{1000}{Q^{\prime}}\right) \times 10^{-3}
$$

If Z is inductive, $C^{\prime \prime}>C^{\prime}$

Measurement of impedances lower than
those directly measurable
For the initial reading, $C^{\prime} Q^{\prime}, C O N D$ terminals are open.

On second reading, $C^{\prime \prime} Q^{\prime \prime}$, a capacitive divider $C_{a} C_{b}$ is connected to the COND terminals.

Final reading, $C^{\prime \prime \prime} Q^{\prime \prime \prime}$, unknown connected to $x-x$.

$Y_{a}=G_{a}+j \omega C_{a} \quad Y_{b}=G_{b}+j \omega C_{b}$ G_{a} and G_{b} not shown in diagrams.
Then the unknown impedance is

$$
\begin{aligned}
Z=\left(\frac{Y_{a}}{Y_{a}+Y_{b}}\right)^{2} & \frac{1}{Y^{\prime \prime \prime}-Y^{\prime \prime}} \\
& -\frac{1}{Y_{a}+Y_{b}} \text { ohms }
\end{aligned}
$$

where, with capacitance in micromicrofarads and $\omega=2 \pi \times$ Ifrequency in megacycles/second):

Meosurement of impedances lower than
those diractly measurable continued

$$
\begin{aligned}
& \frac{1}{Y^{\prime \prime \prime}-Y^{\prime \prime}}= \\
& \frac{10^{8} / \omega}{\left.C^{\prime}\left(\begin{array}{c}
1000 \\
Q^{\prime \prime \prime}
\end{array}-\frac{1009}{Q^{\prime \prime}}\right) \times 10^{-3}+j C^{\prime \prime}-C^{\prime \prime \prime}\right)}
\end{aligned}
$$

Usually G_{a} and G_{b} may be neglected, when there results

$$
\begin{aligned}
& Z=\left(\frac{1}{1+C_{b} / C_{a}}\right)^{2} \frac{1}{Y^{\prime \prime \prime}-Y^{\prime \prime}} \\
& \quad+j \frac{10^{6}}{\omega\left(C_{a}+C_{b}\right)} \text { ohms }
\end{aligned}
$$

For many measurements, C_{a} may be 100 micromicrofarads. $C_{b}=0$ for very low values of Z and for highly reactive values of Z. For unknowns that are principally resistive and of low or medium value, C_{b} may take sizes up to 300 to 500 micromicrofarads.
When $\mathrm{C}_{b}=0$
$Z=\frac{1}{Y^{\prime \prime \prime}-Y^{\prime \prime}}+j \frac{10^{6}}{\omega C_{a}}$ ohms
and the "second" reading above becomes the "initial", with $C^{\prime}=C^{\prime \prime}$ in the formulas.

Parallei-T (symmetrical)

Conditions for zero transfer are

$$
\begin{aligned}
\omega^{2} C_{1} C_{2} & =2^{\prime} R_{2}^{2} \\
\omega^{2} C_{1}^{2} & =1 / 2 R_{1} R_{2} \\
C_{2} R_{2} & =4 C_{1} R_{1}
\end{aligned}
$$

Use any two of these three equations.

When used as a frequency-selective network, if we make $R_{2}=2 R_{1}$ and $C_{2}=2 C_{1}$ then
$f=1 / 2 \pi C_{1} R_{2}=1 / 2 \pi C_{2} R_{1}$

Twin-T admittance-meosuring circuit

(General Rodio Co. Type 821-A)
This circuit may be used for measuring admittances in the range somewhat exceeding 400 kilocycles to 40 megacycles. It is applicable to the special measuring techniques described above for the Q-meter.

Conditions for null in output
$G+G_{l}=R \omega^{2} C_{1} C_{2}\left(1+C_{g}{ }^{\prime} C_{3}\right)$
$C+C_{b}=1 / \omega^{2} L$

$$
-C_{1} C_{2}\left(\frac{1}{C_{1}}+\frac{1}{C_{2}}+\frac{1}{C_{3}}\right)
$$

With the unknown disconnected, call the initial balance C_{b}^{\prime} and C_{b}^{\prime}.

With unknown connected, final balance is $C_{b}^{\prime \prime}$ and $C_{g}^{\prime \prime}$.

Then the components of the unknown $Y=G+j \omega C$ are
$C=C_{b}^{\prime}-C_{b}^{\prime \prime}$
$G=\frac{R \omega^{2} C_{1} C_{2}}{C_{3}}\left(C_{0}^{\prime \prime}-C_{0}^{\prime}\right)$

Rectifiers and filters

Rectifler basic circuits

Half-wave rectifier (Fig. 1): Most applications are for low-power direct conversion of the type necessary in small ac-dc radio receivers (withoui an intermediary transformerl, and often with the use of a metallic rectifier. Not generally used in high-power circuits due to the low frequency of the ripple voltage and a large direct-current polarization effect in the transformer, if used.

Full-wave rectifier (Fig. 2): Extensively used due to higher frequency of ripple voltage and absence of appreciable direct-current polarization of transformer core because transformer-secondary halves are balanced.

Bridge rectifier (Fig. 3): Frequently used with metallic-rectifier elements; may operate by direct conversion or through a transformer. Compared to full-wave rectifiers, has greater transformer utilization, but requires twice the number of rectifier elements and has twice the rectifierelement voltage drop. If tubes are used, three well-insulated filamenttransformer secondaries are required.

Voltage multiplier (Fig. 4): May be used with or without a line transformer. Without the transformer, it develops sufficiently high output voltage for low-power equipment; however, lack of electrical insulation from the power line may be objectionable. May also be used for obtaining high voltages from a transformer having relatively low step-up ratio.

Fig. 1-Half-wove single-phose rectifer.

Fig. 3-Bridge rectifer.

Fig. 4-Voltoge-doubler rectifier.

Typical power rectifier circuit connections and circuit dafa

rectiller Types	single-phose full-wave	single-phase full-wave (bridge)	3-phase fialf-wave	3-phate half-wave
circuits transformer	single-phase centor-top	single-phase	delfo-wy	delfo-zig zag
secondaries clrcuits primeries				
Number of phoses of supply Number of tubes*	1 2	1 4		$\begin{aligned} & 3 \\ & 3 \end{aligned}$
Ripple voltage Ripple frequency	$\begin{aligned} & 0.48 \\ & 2 f \end{aligned}$	$\begin{aligned} & 0.48 \\ & 2 f \end{aligned}$	$\begin{aligned} & 0.18 \\ & 3 f \end{aligned}$	$\begin{aligned} & 0.18 \\ & 3 f \end{aligned}$
Line voltage line current line power foctor \dagger	$\begin{aligned} & 1.11 \\ & 1 \\ & 0.90 \end{aligned}$	$\begin{aligned} & 1.11 \\ & 1 \\ & 0.90 \end{aligned}$	$\begin{aligned} & 0.855 \\ & 0.816 \\ & 0.826 \end{aligned}$	$\begin{aligned} & 0.855 \\ & 0.816 \\ & 0.826 \end{aligned}$
Trans primary volts por leg	1.11	1.11	0.855	0.855
Trans primary omperes per leg Trans primary kva	1.11	$\begin{aligned} & 1 \\ & 1.11 \end{aligned}$	$\begin{aligned} & 0.471 \\ & 1.21 \end{aligned}$	$\begin{aligned} & 0.471 \\ & 1.21 \end{aligned}$
Trons overoge kvo	1.34	1.11	1.35	1.46
Trans secondory volts per log	1.11 (A)	1.11	0.855	$0.493(\mathrm{Al}$
Trans secondary amperes per log	0.707	1	0.577	0.577
Transformer secondory kvo	1.57	1.11	1.48	1.71
Peok inverse voltage per tube	3.14	1.57	2.09	2.09
Peak current per tube	1	1	1	1
Average current per tube	0.5	0.5	0.333	0.333

Unless otherwise stated, factors shown express the ratio of the root-mean-square value of the circuit quantities designated to the average direct-current-output values of the rectifer.
Factors are based on a sine-wave voltage input, infinite-impedance choke, and no transformer or rectifier losses.
rectifiers and filters 179

[^14]
Grid-controlled gaseous rectifers

Grid-controlled rectifiers are used to obtain closely controlled voltages and currents. They are commonly used in the power supplies of high-power radio transmitters. For low voltages, gas-filled tubes, such as argon those that are unaffected by temperature changes) are used. For higher voltages, mercury-vapor tubes are used to avoid flash-back (conduction of current when plate is negative). These circuits permit large power to be handled, with smooth and stable control of voltage, and permit the control of short-circuit currents through the load by automatic interruption of the rectifier output for a period sufficient to permit short-circuit arcs to clear, followed by immediate reapplication of voltage.

critical grid voltage
Fig. 5 - Critical grid voltoge versus plofe valtage.

In a thyratron, the grid has a oneway control of conduction, and serves to fire the tube at the instant that it acquires a critical voltage. Relationship of the critical voltage to the plate voltage is shown in Fig. 5. Once the tube is fired, current flow is generally determined by the external circuit conditions; the grid then has no control, and plate current can be stopped only when the plate voltage drops to zero.

Fig. 6-Basie thyratron eircuit. The grid voltage hos direct- and alternatingcurrent componenis.

Fig. 7-Contral of plate-current conduction period by means of variable direct grid voltage. E_{u} lags E_{p} by 90 degrees.

Fig. 8-Control of plate-current conduction period by fixed direct grid voltage (nop indicated in schematic) and alternating grid voltage of variable phase. Either induc-tance-resistance or capacitance-resistance phase-shift networks (A and B, respectively) may be used. L may be a variable inductor of the saturable-reactor type.

Basic circuit

The basic circuit of a thyratron with alternating-current plate and grid excitation is shown in Fig. 6. The average plate current may be controlled by maintaining
a. A variable direct grid voltage plus a fixed alternating grid voltage that lags the plate voltage by 90 degrees (Fig. 7).
b. A fixed direct grid voltage plus an alternating grid voltage of variable phase (Fig. 8).

Phase shifting

The phase of the grid voltage may be shifted with respect to the plate voltage by the methods illus. trated in Figs. 8 and 9.
a. Varying the indicated resistor.
b. Variation of the inductance of the saturable reactor.
c. Varying the capacitor.

On multiphase circuits, a phase-shifting transformer may be used.

Fig. 9-Full-wave thyratron rectifier. The capacitor is the variable element In the phase-shifting nefwork, and hence gives control of output voltage.

For a stable output with good voltage regulation, it is necessary to use an inductor-input fitter in the load circuit. The value of the inductance is critical, increasing with the firing angle. The design of the plate-supply transformer of a full-wave circuit (Fig. 9) is the same as that of on ordinary full-wave rectifier, to which the circuit of Fig. 9 is closely similar. Grid-controlled rectifiers yield larger harmonic output than ordinary rectifier circuits.

Filters for rectifer circuits

Rectifier filters may be classified into three types:
Inductor input (Fig. 10): Have good voltage 'regulation, high transformerutilization factor, and low rectifier peak currents, but also give relatively low output voltage.

Fig. 10-Inductor-input filter.
Capacitor input (Fig. 11): Have high output voltage, but poor regulation, poor transformer-utilization factor, and high peak currents. Used mostly in radio receivers.

Resistor input (Fig. 12): Used for low-current applications.

Fig. 11-Capacitor-lnput filter. C_{1} is the input capacitor.

Filters for rectifler circuits continued

Design of inductor-input fliters

The constants of the first section (Fig. 10) are determined from the following considerations:
a. There must be sufficient inductance to insure continuous opera.

Fig. 12-Resistor-input filter. tion of rectifiers and good voltage regulation. Increasing this critical value of inductance by a 25 -percent safety factor, the minimum value becomes
$L_{\text {min }}=\frac{K}{f_{s}} R_{l}$ henries
where
$f_{s}=$ frequency of source in cycles/second
$R_{l}=$ maximum value of total load resistance in ohms
$K=0.060$ for full-wave single-phase circuits
$=0.0057$ for full-wave two-phase circuits
$=0.0017$ for full-wave three-phase circuits
At 60 cycles, single-phase full-wave,
$L_{\text {ratn }}=R_{l} / 1000$ henries
b. The LC product must exceed a certain minimum, to insure a required ripple factor

$$
\begin{equation*}
r=\frac{E_{r}}{E_{\mathrm{dc}}}=\frac{\sqrt{2}}{p^{2}-1} \frac{10^{6}}{\left(2 \pi f_{s} p\right)^{2} L_{1} C_{1}}=\frac{K^{\prime}}{L_{1} C_{1}} \tag{2}
\end{equation*}
$$

where, except for single-phase half-wave,

$$
p=\text { effective number of phases of rectifier }
$$

$E_{r}=$ root-mean-square ripple voltage appearing across C_{1}
$E_{\mathrm{dc}}=$ direct-current voltage on C_{1}
L_{1} is in henries and C_{1} in microfarads.
For single-phase full-wave, $p=2$ and
$r=\frac{0.83}{L_{1} C_{1}}\left(\frac{60}{f_{s}}\right)^{2}$

Filters for rectifler circuits

For three-phase, full-wave, $p=6$ and
$r=\left(0.0079 / L_{1} C_{1}\right)\left(60 / F_{s}\right)^{2}$
Equations (1) and (2) define the constants L_{1} and C_{1} of the filter, in terms of the load resistor R_{l} and allowable ripple factor r.

Filters for rectifler circuits

Swinging chokes: Swinging chokes have inductances that vary with the load current. When the load resistance varies through a wide range, a swinging choke, with a bleeder resistor $R_{b}(10,000$ to 20,000 ohms) connected across the filter output, is used to guarantee efficient operation; i.e., $L_{m!n}=R_{l}^{\prime} / 1000$ for all loads, where $R_{l}^{\prime}=\left(R_{l} R_{b}\right) /\left(R_{l}+R_{b}\right)$. Swinging chokes are economical due to their smaller relative size, and result in adequate filtering in many cases.

Second section: For further reduction of ripple voltage $E_{r l}$, a smoothing section (fig. 10) may be added, and will result in output ripple voltage $E_{\text {r2: }}$
$E_{r 2} / E_{r 1}=1 /\left(2 \pi f_{r}\right)^{2} L_{2} C_{2}$
where $f_{r}=$ ripple frequency

Design of capacitor-input filters

The constants of the input capacitor (Fig. 11) are determined from:
a. Degree of filtering required.
$r=\frac{E_{r}}{E_{l: c}}=\frac{\sqrt{2}}{2 \pi f_{r} C_{1} R_{l}}=\frac{0.00188}{C_{1} R_{l}}\left(\frac{120}{f_{r}}\right)$
where $C_{1} R_{l}$ is in microfarads X megohms, or farads X ohms.
b. A maximum-allowable C_{1} so as not to exceed the maximum allowable peak-current rating of the rectifier.

Unlike the inductor-input filter, the source impedance Itransformer and rectifier) affects output direct-current and ripple voltages, and the peak currents. The equivalent network is shown in Fig. 11.

Neglecting leakage inductance, the peak output ripple voltage $E_{r 1}$ (across the capacitor) and the peak plate current for varying effective load resistance are given in Fig. 13. If the load current is small, there may be no need to add the l-section consisting of an inductor and a second capacitor. Otherwise, with the completion of an $L_{2} C_{2}$ or $R C_{2}$ section (fig. 11), greater filtering is obtained, the peak output-ripple voltage $E_{r 2}$ being given by (3) or
$E_{r 2} / E_{r 1} \approx 1 / \omega R C_{2}$
respectively.

- Iron-core transformers and reactors

General

Iron-core transformers are, with few exceptions, closely coupled circuits for transmitting alternating-current energy and matching impedances. The equivalent circuit of a generalized transformer is shown in Fig. 1.

Major transformer types used in electronics

Power transformers

Rectifier plate and/or filament: Operate from a source of nearly zero impedance and at a single frequency.

Vibrator power supply: Permit the operation of radio receivers from directcurrent sources, such as automobile batteries, when used in conjunction with vibrator inverters.

Scott connection: Serve to transmit power from 2-phase to 3-phase systems, or vice-versa.
Autotransformer: Is a special case of the usual isolation type in that a part of the primary and secondary windings are physically common. The size, voltage regulation, and leakage inductance of an autotransformer are, for a given rating, less than those for an isolation-type transformer handling the same power.

Fig. I-Equivalent network of a transformer.

Major transformer types used in electronics continued

Audio-frequency transformers

Match impedances and transmit audio frequencies.
Output: Couple the plate (s) of an amplifier to on output load.
Input or interstage: Couple a magnetic pickup, microphone, or plate of a tube to the grid of another tube.
Driver: Couple the plate (s) of a driver stage (preamplifier) to the grid(s) of an amplifier stage where grid current is drawn.
Modulation: Couple the plate (s) of an audio-output stage to the grid or plate of a modulated amplifier.

High-frequency transformers

Match impedances and transmit a band of frequencies in the carrier or higher-frequency ranges.
Power-line carrier-amplifier: Couple different stages, or couple input and output stages to the line.
Intermediate-frequency: Are coupled tuned circuits used in receiver inter-mediate-frequency amplifiers to pass a band of frequencies these units may, or may not have magnetic coresl.
Pulse: Transform energy from a pulse generator to the impedance level of a load with, or without, phase inversion. Also serve as interstage coupling or inverting devices in pulse amplifiers. Pulse transformers may be used to obtain low-level pulses of a certain repetition rate in regenerative-pulsegenerating circuits (blocking oscillators).

Sawtooth-amplifier: Provide a linear sweep to the horizontal plates of a cathode-ray oscilloscope.

Major electronic reactor types

Filter: Smooth out ripple voltage in direct-current supplies. Here, swinging chokes are the most economical design in providing adequate filtering, in most cases, with but a single filtering section.

Audio-frequency: Supply plate current to a vacuum tube in parallel with the output circuit.
Radio-frequency: Pass direct current and present high impedance at the high frequencies.

Wave-filter: Used as filter components to aid in the selection or rejection of certain frequencies.

Special nonlinear transformers and reactors

These make use of nonlinear properties of magnetic cores by operating near the knee of the magnetization curve.
Peaking transformers: Produce steeply peaked waveforms, for firing thyratrons.
Saturable-reactor elements: Used in tuned circuits; generate pulses by virtue of their saturation during a fraction of each half cycle.
Saturable reactors: Serve to regulate voltage, current, or phase in conjunction with glow-discharge tubes of the thyratron type. Used as voltageregulating devices with dry-type rectifiers. Also used in mechanical vibrator rectifiers and magnetic amplifiers.

Design of power transformers for rectiflers

The equivalent circuit of a power transformer is shown in Fig. 2.
a. Determine total output volt-amperes, and compute the primary and secondary currents from

$$
\begin{aligned}
E_{p} I_{p} \times 0.9 & =\frac{1}{\eta}\left[\left(E_{s} I_{\mathrm{dc}}\right)_{\mathrm{wl}} K+(E)_{\mathrm{NII}}\right] \\
I_{s} & =K^{\prime} I_{\mathrm{dc}}
\end{aligned}
$$

Fig. 2-Equivalent network of o power fronsformer. I_{p} and I_{s} may be neglected when there ore no strict requirements on voltoge regulation.
where the numeric 0.9 is the power factor, and the efficiency η and the K, K^{\prime} factors are listed in Figs. 3 and 4. $E_{p} I_{p}$ is the input volt-amperes, I_{dc} refers to the total direct-current component drawn by the supply; and

Fig. 3-Foctors K ond K^{\prime} for various rectiffer supplies.

nlter	\mathbf{K}	\mathbf{K}^{\prime}
Full-wave:		
Capacitor input Reactor input	0.717	1.06
Half-wave:	0.5	0.707
Capacitor input Reactor input	1.4	2.2

[^15]Design of power transformers for rectifiers canlinued
the subscripts $p /$ and fil refer to the volt-amperes drawn from the platesupply and filament-supply (if present) windings, respectively. E_{s} is the root-mean-square voltage applied to the plate of a rectifier element. In a fullwave circuit, this would be half of the total secondary voltage.
b. Compute the size of wire of each winding, on the basis of current densities given by

For 60 -cycle sealed units,
amperes $/$ inch $^{2}=2470-585 \log W_{\text {out }}$
or, inches diameter $=1.13 \sqrt{\frac{I \text { (in amperes) }}{2470-585 \log W_{\text {out }}}}$
For 60-cycle open units, uncased,
amperes/inch ${ }^{2}=2920-610 \log W_{\text {our }}$
or, inches diameter $=1.13 \sqrt{\frac{I \text { (in amperes) }}{2920-610 \log W_{\text {out }}}}$
Fig. 5-Equivalent \mathcal{L}^{2} and $E 1$ ratings of power transformers: $B_{m}=$ flux density in gauss; $E l=$ volt-amperes. This table gives the maximum values of \mathbb{L}^{2} and $E l$ ratings at 60 and 400 cycles for various size cores. Ratings are based on a 50 -degreecentigrade rise above ambient. These values can be reduced to obtain a smaller temperature rise. El ratings are based on a two-winding transformer with normal operating voltage. When three or more windings are required, the El rafings should be decreased slightly.

$\mathbf{L I}{ }^{\mathbf{2}}$	at 60 cycles		at 400 cycles		El-type punchings	fongue width of E in inches	sfack height in inches	$\begin{gathered} \text { amperes } \\ \text { per } \\ \text { inch } \end{gathered}$
	EI	$\mathrm{B}_{\mathrm{m}}{ }^{*}$	EI	$\mathrm{B}_{\text {m }}{ }^{*}$				
0.0195	3.9	14,000	9.5	5000	21	$\frac{1}{2}$	$\frac{1}{2}$	3200
0.0288	5.8	14,000	15.0	4900	625	${ }^{5}$	8	2700
0.067	13.0	14,000	30.0	4700	75	4		2560
0.088	17.0	14,000	38.0	4600	75	3	1	2560
0.111	24.0	13,500	50.0	4500	11	${ }_{8}^{7}$	${ }_{8}^{7}$	2330
0.200	37.0	13,000	80.0	4200	12		1	2130
0.300	54.0	13,000	110.0	4000	12	1	11 ${ }^{\frac{1}{2}}$	2030
0.480	82.0	12,500	180.0	3900	125	1)	12	1800
0.675	110.0	12,000	230.0	3900	125	$1{ }^{1}$	13	1770
0.850	145.0	12,000	325.0	3700	13	11	11	1600
1.37	195.0	11,000	420.0	3500	13	$1{ }^{1}$	2	1500
3.70	525.0	10,500	1100.0	3200	19	$1 \frac{1}{6}$	$1{ }_{6}^{3}$	1220

from "Radio Components Handbook," Technical Advertising Associates; Cheltenham, Pa.; May, 1948: see p. 92.

[^16]Fig. 6-Wire table for transtormer denign. The resistance R_{T} at ony temperature T is given by $R_{T}=\frac{234.5+T}{234.5+i} \times r$, where $i=r e f e r e n c e$ temperature of winding, and $r=$ resistonce of winding at temperature i.

*Dimensions very nearly the same as for enamelled wire. \dagger Values are at 20 degrees centigrade.
$\ddagger K=$ kraft paper, $G=$ glassino.

Additional data on wire will be found on pp. 40-45 and p. 74.

Design of power transformers for rectiflers continued

c. Compute, roughly, the net core area
$A_{c}=\frac{W_{\text {out }}}{5.58} \sqrt{\frac{60}{f} \text { inches }^{2}}$
where f is in cycles (see also fig. 5). Select a lamination and core size from the manufacturer's data book that will nearly meet the space requirements, and provide core area for a flux density B_{m} not to exceed a limiting value (10,000 gauss for 29 -gauge 4 -percent silicon steel, at 60 cycles) under normal operating conditions.
d. Compute the primary turns N_{p} from the transformer equation
$E_{p}=4.44 \mathrm{fN}_{p} A_{c} B_{m} \times 10^{-8}$
and the secondary turns
$N_{s}=1.05\left(E_{s} / E_{p}\right) N_{p}$
(this allows 5 percent for $I R$ drop of windings).
e. Calculate the number of turns per layer that can be placed in the lamination window space, deducting from the latter the margin space given in Fig. 6 (see also Fig. 7).
f. From (d) and (e) compute the number of layers n_{l} for each winding. Use interlayer insulation of thickness t as given in Fig. 6, except that the minimum allowance should be 40 volts/mil dielectric strength.
g. Calculate the coil-built a:
$a=1.1\left[n_{l}(D+t)-1+f_{c}\right]$
for each winding from (b) and (f), where $D=$ diameter of insulated wire and $t_{c}=$ thickness of insulation under and over the winding; the numeric 1.1 allows for a 10 -percent bulge factor. The total coil-built should not exceed 85-90 percent of the window width. Note: Insulation over the core may vary from 0.025 to 0.050 inches for core-builts of $\frac{1}{2}$ to 2 inches.)
h. Compute the mean length per turn (MLT), of each winding, from the geometry of core and windings. Compute length of each winding $N(M L T)$
i. Calculate the resistance of each winding from (h) and fig. 6, and determine $I R$ drop and $I^{2} R$ loss for each winding.
i. Make corrections, if required, in the number of turns of the windings to allow for the $I R$ drops, so as to have the required E_{s} :
$E_{s}=\left(E_{p}-I_{p} R_{p}\right) N_{s} / N_{p}-I_{s} R_{s}$
k. Compute core losses from weight of core and the table on core materials, Fig. 8.
I. Determine the percent efficiency η and voltage regulation (vr) from

$$
\begin{aligned}
\eta & =\frac{W_{\text {out }} \times 100}{W_{\text {out }}+(\text { core loss })+(\text { copper loss) }} \\
(\text { vr }) & =\frac{I_{s}\left[R_{s}+\left(N_{s} / N_{p}\right)^{2} R_{p}\right]}{E_{s}}
\end{aligned}
$$

\mathbf{m}. For a more accurate evaluation of voltage regulation, determinfe leakage-reactance drop $=I_{\mathrm{dc}} \omega I_{\mathrm{nc}} / 2 \pi$, and add to the above (vr) the value of $\left(I_{d c} \omega l_{\mathrm{wc}}\right) / 2 \pi E_{d c}$. Here, $l_{\mathrm{sc}}=$ leakage inductance viewed from the secondary; see "Methods of winding transformers", p. 205 to evaluate $I_{s c}$.
n. Bring out all terminal leads using the wire of the coil, insulated with suitable sleevings, for all sizes of wire heavier than 21 ; and by using 7-30 stranded and insulated wire for smaller sizes.

High-frequency power transformers: For use in rectification may be designed similarly to low-frequency units. Of interest are units that may use FerroxcubeIII cores having practically no eddy-current losses.

```
g= width of lamination tongue
p = width of lamination stack
k = stacking factor
    \approx0.90 for 14-mil lamination
    \approx0.80 for 2-mil lamination or ribbon.
        wound core
m= marginal space given in Fig. }
r = window length tolerance
    = 1/16 inch, total
b = coil width
    t= thickness of interlayer insulation
w = width of core window
Ic}=\mathrm{ average length of magnetic-flux path
a = height of coil
    = coil-built
```


Fig. 7-Dimensions relaling to the design of a fronsformer coil-built and cors. Core area $A_{c}=(\mathrm{gp})$.

Fig. 8-Core materials for low - and medium-frequeney fransformers.

alfoy	Inillad permea. bility μ о	maximum permedbility $\mu \mathrm{m}$	seturation induction 8.a in gouss*	coercive force in oersteds	```specifte resistivity in microhms/ centimetor```	$\begin{gathered} \text { core losses } \\ \text { in watts/ } \\ \text { pound (ot } \\ \mathrm{B}_{\mathrm{m}}=10,000 \text {) } \end{gathered}$	$\begin{gathered} \text { gauge } \\ \text { in } \\ \text { mils } \end{gathered}$	chief uses
4. percent silicon steel	400	10,000	12,000	0.6	60	0.6 at 60 cyeles	14	Small power and audio pransformers, chokes and saturable reactors
Hipersil	1,500	40,000	17,000	0.1	48	$\begin{aligned} & 0.33-0.44 \\ & \text { of } 80 \text { cycles } \end{aligned}$	14	larger power and wider-range audia translormers and chakes, and safurable reaciors
						3.8 of 400 cycles	5	400-800-cycle power pransformers
						$\begin{gathered} 1.25 \text { at } 800 \text { cyclos } \\ 18 \mathrm{~m}=4,0001 \end{gathered}$	2	High-frequency ond pulse transformers
Hiperco	600	10,000	24,000	0.4	-	4 of 60 cycles $18 m=20,0001$	14	Sma! powar transformers for aircraft equip. ment
Hipernik	4,000	80,000	15,000	0.05	35	-	14	Audio transformers with belter characteristics; low- and high-voltage levels
Allogheny 4750 +	4,000	40,000	15,000	0.07	52	0.36 at 60 cycles	-	
Monimax	3,200	38,000	14,000	0.15	80	1.7 at 400 cycles	4	400-800-cycle power transiormers
Sinimax	4,600	30,000	11,000	0.1	90	1.7 af 400 cyeles	6	400-800-cycle power transformers
Mumetal	20,000	110,000	7,200	0.03	60	-	-	Low-valpage-level, high-fidelity transformers
4-79 molybde. num-permalloy	20,000	80,000	8,500	0.05	57	-	-	Low-valrage-level, high-fidelity transformers
Ferroxcube-III	600	-	2,500	-	10^{3}	-	-	High-frequency power and pulse transformers

Data mostly from: R. M. Bozorth, "Magnetism," Reviews af Modern Physics, v. 19, p. 42; January, 1947.

* These B^{\prime} 's values may be termed useful saturation values of induction, in contradistinction with the true safuration values B_{a}, which may be considerably higher (such as for 4 -percent silicon steel, $B_{s} \approx 20,000$. For these high B_{s} values, the exciting current and core losses would become prohibitive, due to very low permeabilities
t Carpenter 49 alloy is approximately the equivalent of Allegheny 4750.
i Carpenter Hymw is the approximate equivalent of Western Electric Company's 4-79 Malybdenum-permalloy.

Design of filter reactors for rectifiers and plate-current supply

These reactors carry direct current and are provided with suitable air-gaps. Optimum design data may be obtained from Hanna curves, Fig. 9. These curves relate direct-current energy stored in core per unit volume, $L_{\text {de }}{ }^{2} / \mathrm{V}$ to magnetizing field $N I_{\text {de }} / l_{c}$ where $l_{c}=$ average length of flux path in corel, for an appropriate air-gap. Heating is seldom a factor, but direct-current-resistance requirements affect the design; however, the transformer equivalent volt-ampere ratings of chokes (Fig. 5) should be useful in determining their sizes.
As an example, take the design of a choke that is to have an inductance of 10 henries with a superimposed direct current of 0.225 amperes, and a direct-current resistance $\leqslant 125$ ohms. This reactor shall be used for suppressing harmonics of 60 cycles, where the alternating-current ripple voltage (2nd harmonic) is about 35 volts.

Fig. 9-Hanna curves for 4-percent silicon-steel core moterial.

Design of filter reactors for rectiflers

conlinued
a. $L^{2}=0.51$. Based on data of Fig. 5, try 4-percent silicon-steel core, type El-125 punchings, with a core-built of 1.5 inches. From manufacturer's data, volume $=13.7$ inches $^{3} ; I_{c}=7.5$ inches; $A_{c}=1.69$ inches 2.
b. Compute $U_{\mathrm{dc}}{ }^{2} / V=0.037$; from Fig. $9, N I_{\mathrm{dc}} / I_{c}=85$; hence, by substitution, $N=2840$ turns. Also, gap ratio $l_{d} / l_{c}=0.003$, or, total gap $I_{o}=22$ mils. Alternating-current flux density $B_{m}=\frac{E \times 10^{8}}{4.44 \mathrm{fNA}_{c}}=210$
c. Calculate from the geometry of the core, the mean length/turn, (MLT) $=0.65$ feet, and the length of coil $\doteq N(M L T)=1840$ feet, which is to have a maximum direct-current resistance of 125 ohms. Hence, $R_{\mathrm{dc}} / \mathrm{N}(\mathrm{MLT})$ $=0.068$ ohms $/$ foot. From Fig. 6, the nearest size is No. 28.
d. Now see if 1840 turns of No. 28 single-Formex wire will fit in the window space of the core. (Determine turns per layer, number of layers, and coilbuilt, as explained in the design of power transformers.)
e. This is an actual coil design; in case lamination window space is too small (or too large) change stack of laminations, or size of lamination, so that the coil meets the electrical requirements, and the total coil-built ≈ 0.85 to $0.90 \times$ (window width).
Note: To allow for manufacturing variations in permeability of cores and resistance of wires, use at least 10 -percent tolerance.

Design of wave-filter reactors

These must have high Q values to enable sharp cutoff, or high attenuation at frequencies immediately off the pass-band. Data on high-Q cores is given in table on cores, fig. 10. Nicalloy and Hymu for their equivalentsl are listed primarily for low frequencies, and should be used only with suitable gaps to minimize losses and insure stability of inductance and effective resistance for small magnetizing fietds. Maximum Q is obtained when
(copper loss) $=$ (core loss)
The inductance is given by
$L=\frac{1.25 \mathrm{~N}^{2} A_{c}}{I_{g}+I_{c} / \mu_{0}} 10^{-8}$ henries
where dimensions are in centimeters and $\mu_{0}=$ initial permeability.
When using molybdenum-permalloy-dust toroidal cores, the inductance is given by
$L=\frac{1.25 \mathrm{~N}^{2} A_{c}}{I_{c}} \mu_{o f} \times 10^{-8} \quad$ for $\mu_{e f}=125$

Fig. 10-Characteristics of core materials for high-Q coils.

alloy	$\begin{gathered} \text { initial } \\ \text { permeability } \\ \mu_{0} \\ \hline \end{gathered}$	resistivily in microhms/ centimeter	hysteresls coofficient ${ }_{+}^{+}$ $\left(\mathrm{a} \times 10^{6}\right)$	resldual coefficient \ddagger (c $\times 10^{\text {f }}$)	```eddy-current coeffcient$ (0 X 10)```	```gauge in mils```	uses (frequencies in kilocycles)
4-percent silicon steel	400	60	120	75	870	14	Rectifier filters
Nicalloy*	3,500	45	0.4	14	1550	14	Wave filters up to 0.1-0.2
					284	6	Wave filters up to 10
Hymu*	20,000	55	0.05	0.05	950	14	Wave filters up to 0.1-0.2
					175	6	Wave filters up to 10
2-81 molybdenumpermalloy dust \ddagger	125	1 ohm/cm	1.6	30	19	-	Wave filters 0.2 to 7
	60	-	3.2	50	10	-	Wave filters 5-20
	26	-	6.9	96	7.7	-	Wave filfers 15-60
	14	-	11.4	143	7.1	-	Wave filters 40-150
Carbonyl types	55	-	9	80	7	-	Wave filters
	26	-	3.4	220	27	-	Wave filters
	16	-	2.5	80	8	-	Wave filters 40-high
Ferroxcube-III \dagger	600	50 ohms/cm	3.0	40 at 10 kc 120 at 100 kc 630 at 1000 kc	--	-	-

*The toroidal 2-81-percent molybdenum-permalloy dust cores yield higher Q than laminated Hymu or Nicalloy (provided with suitable air-gaps) at frequencies above 200 cycles.
\dagger Has a temperature coefficient of inductance of about 0.15 percent/degree between 10 and 40 degrees centigrade, and a Curie temperature $=120$ de. grees centigrade.
\ddagger Data on molybdenum-permalloy dust and definition of constants a, c, and e are from an article by V. E. legg, and F. J. Given, "Compressed Powdered Molybdenum-Permalloy for High-Quality Inductance Coils," Bell System Technical Journal, v. 19, pp. 385-406; July, 1940:
$R_{c} / f L=\mu_{0}\left(a B_{m}+c\right)+\mu_{0} f$
where $R_{c}=$ resistance due to core loss, in ohms.

Design of wave-filter reactors

continued
$L \approx 0.85 \frac{1.25 \mathrm{~N}^{2} A_{c}}{I_{c}} \mu_{e f} \times 10^{-8}$ for $\mu_{e f}=65$

Ferroxcube-III cores may be used only if cognizance is taken of their high temperature instability 10.15 percent/degree centigrade, between 10 and 40 degreesl and their low Curie temperature of 120 degrees centigrade. Suitable gaps would reduce core losses, improve Q, and insure stability of constants for varying alternating voltage; and also (to some extent) for varying temperatures.

Design of audio-frequency transformers

Important parameters are: generator and load impedances R_{q}, R_{l}, respectively, generator voltage E_{0}, frequency band to be transmitted, efficiency loutput transformers onlyl, harmonic distortion, and operating voltages lfor adequate insulation).

At mid-frequencies: The relative low- and high-frequency responses are taken with reference to mid-frequencies, where

$$
\frac{\mathrm{a} E_{\mathrm{out}}}{E_{g}}=\frac{1}{\left(1+R_{s} / R_{l}\right)+R_{1} / a^{2} R_{1}}
$$

At low frequencies: The equivalent unity-ratio network of a transformer becomes approximately as shown in Fig. 11:

$$
\text { Amplitude }=\frac{1}{\sqrt{1+\left(R_{\text {par }}^{\prime} / X_{m}\right)^{2}}}
$$

Fig. 11 -Equivalent neiw ork of on audiofrequency transformer at low frequencies. $R_{1}=R_{g}+R_{p}$ and $R_{2}=R_{i}+R_{i}$. In \quad a good output transformer, R_{p}, R_{s}, and R_{e} may be neglected. In input or inferstage transformers, R_{c} may be omitted.

Fig. 12-Equivalent network of an audiofrequency transformer of high frequencies, neglecting the effect of the winding shunt capacitances. Primary shortcircuit inductance $I_{s c p}=I_{p}+a^{2} I_{s}$.

At high frequencies: Neglecting the effect of winding and other capacitances (as in low-impedance-level output transformers), the equivalent unity-ratio network becomes approximately as in Fig. 12:

$$
\text { Amplifude }=\frac{1}{\sqrt{1+\left(X_{l} / R_{\mathrm{se}}^{\prime}\right)^{2}}}
$$

Phase angle $=\tan ^{-1} \frac{X_{L}}{R_{s e}^{\prime}}$
where $R_{\text {sc }}^{\prime}=R_{1}+R_{2} a^{2}$ and $X_{l}=2 \pi l_{80}$

Courtesy of McGrow-Hill Publishing Company
Fig. 13-Universal frequency- and phase-response characteristics of outpul fransformers.

Design of audio-frequency transformers continued

These low- and high-frequency responses are shown on the curves of Fig. 13.

If at high frequencies, the effect of winding and other capacitances is appreciable, the equivalent network on a l:l-furns-ratio basis becomes as shown in Fig. 14. The relative highfrequency response of this network is given by
$\frac{\left(R_{1}+R_{2}\right) / R_{2}}{\sqrt{\left(\frac{R_{1}}{X_{c}}+\frac{X_{l}}{R_{l}}\right)^{2}+\left(\frac{X_{l}}{X_{c}}-\frac{R_{g}}{R_{l}}-1\right)^{2}}}$

Fig. 14 -Equivalent network of a 1:1-furns-ratio audio-frequency fransformer of high frequencies when effect of winding shunt capacitances is appreciable. In a step-up transformer, $\mathrm{C}_{2}=$ equivalent shunt capacitances of both windings. In"a step-down transformer, C_{2} shunts both leakage inductances and R_{2}.

Reprinted from "Electronic Transformers and Circuits," by R. Lee, Ist ed., p. 122, 1947i by parmission, John Wiley \& Sons, N. Y.

Fig. 15-Transformer characteristics at high frequencies for matched impedances. At frequency $f_{r,} X_{l}=X_{c}$ and $B=X_{c} / R_{1}$.

This high-frequency response is plotted in Figs. 15 and 16 for $R_{1}=R_{2}$ (matched impedances), and $R_{2}=\infty$ (input and interstage transformers). Harmonic distortion: Requirements may constitute a deciding factor in the design of transformers. Such distortion is caused by either variations in load impedance or nonlinearity of magnetizing current. The percent harmonic voltage appearing in the output of a loaded transformer is given by*
Percent harmonics $=\frac{E_{h}}{E_{f}}=\frac{I_{h}}{I_{f}} \frac{R_{\text {nur }}^{\prime}}{X_{m}}\left(1-\frac{R_{\text {par }}^{\prime}}{4 X_{m}}\right)$
where $100 I_{h} / I_{s}=$ percent of harmonic current measured with zeroimpedance source lvalues are given in fig. 17 for 4 -percent siticon-steel corel.
*N. Portridge, "Hormonic Distortion in Audio-Frequency Tronsformers," Wireless Engineer, v. 19; September, October, and November, 1942.

Example of audio-output-transformer design

This transformer is to operate from a 4000-ohm impedance; to deliver 5 watts to a matched load of 10 ohms; to transmit frequencies of 60 to 15,000 cycles with a $V_{\text {out }} / V_{\text {in }}$ ratio of 71 percent of that at mid-frequencies (400 cycles); and the harmonic distortion is to be less than 2 percent. (See Figs. 11 and 12.1
a. We have: $E_{s}=\sqrt{W_{\text {uut }} R_{l}}=7.1$ volts

$$
\begin{aligned}
I_{s} & =W_{\mathrm{out}} / E_{s}=0.7 \text { amperes } \\
a & =\sqrt{R_{g} / R_{l}}=20
\end{aligned}
$$

Then
$I_{p} \approx 1.1 I_{s} / a=0.039$ amperes, and $E_{p} \approx 1.1 a E_{s}=156$
b. To evaluate the required primary inductance to transmit the lowest frequency of 60 cycles, determine $R_{\text {ae }}^{\prime}=R_{1}+a^{2} R_{2}$ and $R_{\text {par }}^{\prime}=\frac{R_{1} R_{2} a^{2}}{R_{1}+R_{2} a^{2}}$, where $R_{1}=R_{g}+R_{p}$ and $R_{2}=R_{l}+R_{s}$. We choose winding resistances $R_{s}=R_{p} / \alpha^{2} \approx 0.05 R_{l}=0.5$
(for a copper efficiency $=\frac{R_{l} a^{2} \times 100}{\left(R_{l}+R_{s}\right) a^{2}+R_{p}}=91$ percent). Then,
$R_{\mathrm{se}}^{\prime}=2 R_{1}=8400$ ohms, and $R_{\text {par }}^{\prime}=R_{1} / 2=2100$ ohms.
c. In order to meet the frequency-response requirements, we must have, according to Fig. $13, \frac{\omega_{\text {low }} L_{p}}{R_{\text {par }}^{\prime}}=1=\frac{\omega_{\text {high }} I_{\text {sep }}}{R_{\text {ae }}^{\prime}}$, which yield
$L_{p} \approx 5.8$ henries and $l_{\text {scp }}=0.093$ henries

Fig. 17-Harmonics produced by various flux densifies B_{m} in a 4-percent silicon-steelcore audio fransformer.

\mathbf{B}_{m}	percent 3rd harmonic	Percent 5th harmonic
100	4	
500	7	1.0
1,000	9	1.5
		2.0
3,000	15	2.5
5,000	20	3.0
10,000	30	5.0

Example of audio-output-transformer design continued

d. Harmonic distortion is usually a more important factor in determining the minimum inductance of output transformers than is the attenuation requirement at low frequencies. Compute now the number of turns and inductance for an assumed $B_{m}=5000$ for 4-percent silicon-steel core with type El-12 punchings in square stack. Here, A_{c} (net) $=5.8$ centimeters ${ }^{2}$, $I_{c}=15.25$ centimeters, and $\mu_{\mathrm{ac}}=5000$. See fig. 18.

$$
\begin{aligned}
N_{p} & =\frac{E_{p} \times 10^{8}}{4.44 f A_{c} B_{m}}=2020 \\
N_{a} & =1.1 N_{p} / a=111 \\
L_{p} & \approx \frac{1.25 N_{p}^{2} \mu_{\pi c} A_{c}}{I_{c}} \times 10^{-8}=97 \text { henries }
\end{aligned}
$$

At 60 cycles, $X_{m}=\omega L_{p}=36,600$ and $R_{\text {par }}^{\prime} / X_{m} \approx 0.06$.
From values of I_{h} / I_{ρ} for 4-percent silicon-steel (See Fig. 17):
$\frac{E_{h}}{E_{f}}=\frac{I_{h}}{I_{j}} \frac{R_{\text {par }}^{\prime}}{X_{m}}\left(1-\frac{R_{\text {par }}^{\prime}}{4 X_{m}}\right) \approx 0.012$ or 1.2 percent
e. Now see if core window is large enough to fit windings. Assuming a simple method of winding (secondary over the primary), compute from geometry of core the approximate (MLT), for each winding.

Fig. 18 -incremental permeability μ_{nc} characteristics of Allegheny audio-transformer "A" sheet steel at 60 eycles/second. No. 29 U.S. gouge, $1-7$ standard lominations stacked 100 percent, inferieaved. This is 4 -percent silicon-steel core material. $H_{0}=$ mognotizing fieid in oersteds.

Example of audio-output-transformer design continued

For the primary, $($ MLT $)=0.42$ feet and $N_{p}(M L T) \approx 850$ feet.
For the secondary, $(M L T)=0.58$ feet and $N_{s}(M L T)=65$ feet.
For the primary, then, the size of wire is obtained from $R_{p} / N_{p}(\mathrm{MLT})=0.236$ ohms $/$ foot; and from Fig. 6, use No. 33.
For the secondary, $R_{s} / N_{s}($ MLT $)=0.008$, and size of wire is No. 18.
f. Compute the turns/layer, number of layers, and total coil-built, as for power transformers. For an efficient design,
(total coil-built) $=10.85$ to 0.90$) \times($ window width)
g. To determine if leakage inductance is within the required limit of (c) above, evaluate
$I_{\mathrm{sc}}=\frac{10.6 \mathrm{~N}_{p}{ }^{2}(\mathrm{MLT})(2 n c+\mathrm{a})}{n^{2} b \times 10^{9}}=0.036$ henries
which is less than the limit 0.093 henries of (c). The symbols of this equation are defined in Fig. 19. If leakage inductance is high, interleave windings as indicated under "Methods of winding transformers", p. 205.

Example of audio-input-transformer design

This transformer must couple a 500 -ohm line to the grids of 2 tubes in class-A push-pull. Attenuation to be flat to 0.5 decibels over 100 to 15,000 cycles; step-up $=1: 10$; and input to primary is 2 volts.
a. Use Allegheny 4750 material for high μ_{0} (4000) due to low input voltage. Interleave primary between halves of secondary. Use No. 40 wire for secondary. For interwinding insulation use 0.010 paper. Use winding-space tolerance of 10 percent.
b. Total secondary load resistance $=R_{\text {par }}^{\prime}=\frac{a^{2} R_{1} R_{2}}{a^{2} R_{1}+R_{2}}=a^{2} R_{1}$

$$
=500 \times 10^{2}=50,000 \text { ohms }
$$

From universal-frequency-response curves of Fig. 13 for 0.5 decibel down at 100 cycles (voltage ratio $=0.95$),
$\frac{\omega_{\text {low }} L_{s}}{R_{\text {par }}^{\prime}}=3$, or $L_{s}=240$ henries
c. Try Allegheny type El-68 punchings, square stack. Here, $A_{c}=3.05$ centimeters, $I_{c}=10.5$ centimeters, and window dimensions $=\frac{1}{3} \frac{1}{2} \times 1 \frac{1}{3} \frac{1}{2}$ inches,
inferleaved singly: $I_{v}=0.0005$. From formula $L=\frac{1.25 \mathrm{~N}^{2} A_{c}}{l_{g}+l_{c} / \mu_{0}} \times 10^{-8}$ and above constants, compute
$N_{s}=4400$
$N_{v}=N_{s} / a=440$
d. Choose size of wire for primary winding, so that $R_{p} \approx 0.1 R_{0}=50$ ohms. From geometry of core, $(\mathbb{M L T}) \approx 0.29$ feet; also, $R_{p} / N_{p}(\mathrm{MLT})=0.392$, or No. 35 wire ($D=0.0062$ for No. 35 f).
e. Turns per layer of primary $=0.9 \mathrm{~b} / \mathrm{d}=110$; number of layers n_{p} $=N_{p} / 110=4$; turns per layer of secondary $0.9 b / d=200$; number of layers $n_{z}=N_{s} / 200=22$.
f. Secondary leakage inductance
$y_{\text {scs }}=\frac{10.6 \mathrm{~N}^{2}{ }_{\mathrm{s}}(\mathrm{MLT})(2 n c+\mathrm{a}) \times 10^{-9}}{n^{2} b}=0.35$ henries
g. Secondary effective layer-to-layer capacitance
$C_{e}=\frac{4 C_{l}}{3 n_{l}}\left(1-\frac{1}{n_{l}}\right)$
Isee Fig. 191 where $C_{l}=0.225 A_{\epsilon} / t=1770$ micromicrofarads. Substituting this value of C_{l} into above expression of C_{e}, we find
$C_{e}=107$ micromicrofarads
h. Winding-to-core capacitance $=0.225 A \epsilon / t \approx 63$ micromicrofarads lusing 0.030 -inch insulation between winding and corel. Assuming tube and stray capacitances total 30 micromicrofarads, total secondary capacitance $C_{s} \approx 200$ micromicrofarads
i. Series-resonance frequency of $l_{s c}$ and C_{s} is
$f_{r}=\frac{1}{2 \pi \sqrt{I_{s c}} C_{z}}=19,200$ cycles,
and X_{c} / R_{1} af f_{r} is $1 / 2 \pi f_{r} C_{s} R_{1}=0.83$; af 15,000 cycles, $f / f_{r}=0.78$.
From fig. 16, decibels variation from median frequency is seen to be less than 0.5 .
If it is required to extend the frequency range, use Mumetal core material for its higher $\mu_{0}(20,000)$. This will reduce the primary turns, the leakage inductance, and the winding shunt capacitance.

Methods of winding tronsformers

Most common methods of winding transformers are şhown in Fig. 19. Leakage inductance is reduced by interleaving, i.e., by dividing the primary or secondary coil in two sections, and placing the other winding between the two sections. Interleaving may be accomplished by concentric and by coaxial windings, as shown on Figs. 19 B and $\mathrm{C}_{\text {; }}$ reduction of leakage inductance may be seen from formula
$I_{\mathrm{sc}}=\frac{10.6 \mathrm{~N}^{2}(\mathrm{MLT})(2 \mathrm{nc}+\mathrm{a})}{\mathrm{n}^{2} \mathrm{~b} \times 10^{9}}$ henries
(dimensions in inches) to be the same for both Figs. 19B and C.

Fig. 19-Methods of winding transformers.

Effective interlayer capacitance of a winding may be reduced by sectionalizing it as shown in D. This can be seen from the formula
$C_{e}=\frac{4 C_{l}}{3 n_{l}}\left(1-\frac{1}{n_{l}}\right)$ micromicrofarads
where
$C_{l}=$ capacitance of one layer to another
$n_{l}=$ number of layers
$C_{l}=\frac{0.225 A \epsilon}{1}$ micromicrofarads
where
$A=$ area of winding layer
$=$ (MLT) b inches ${ }^{2}$
$t=$ thickness of interlayer insulation in inches
$\epsilon=$ dielectric constant
$=3$ for paper

Temperafure and humidity

The average life expectancies of class-A and class-B insulated transformers are given by*
Class A: $\log t=8.7-0.038 T$
Class B: $\log t=10-0.038 T$
where $t=$ time in hours and $T=$ temperature in degrees centigrade.
For class-A insulation (organic materials), operating-temperature limits are set at 95 degrees.
For class-B insulation. (inorganic: glass, mica, asbestosl, operating temperature limits are set at 125 degrees.
Higher operating temperatures of 200 degrees are being reached with the use of silicones.
Open-type constructions will naturally be cooler than the enclosed types. To eliminate the detrimental effects of humidity, transformers may be enclosed in hermetically sealed cans, or surrounded by some suitable compound (such as the Intelin 211 compound) that will insulate all leads and prevent moisture conduction as well.

Dielectric insulation and corona

For class-A, a maximum dielectric strength of 40 volts $/ \mathrm{mil}$ is considered safe for small thicknesses of insulation. At high operating voltages, due regard should be paid to corona, which starts at about 1250 volts and is then of greater importance than dielectric strength in causing failure. 60 -cycle root-mean-square corona voltage may be given by, approximately,

$$
\log \frac{V(\text { in volts })}{800}=\frac{2}{3} \log (100 t)
$$

where $t=$ total insulation thickness in inches. This may be used as a guide in determining the thickness of insulation. With the use of some new varnishes that require no solvents, but solidify by polymerization, the bubbles present in the usual varnishes are eliminated, and much higher operating voltages and, hence, reduction in the size of high-voltage units may be obtained. Fosterite, and some polyesters, such as the Intelin 211 compound, belong in this group. In the design of high-voltage transformers, the creepage distance required between wire and core may necessitate the use of insulating channels covering the high-voltage coil, or taping of the latter. For units operating at 10 kilovolts or higher, oil insulation will greatly reduce creepage and, hence, size of the transformer.

[^17]
Saturable reactors and magnetic amplifers

A saturable reactor (S.R.) is one in which the core, or part of it, operates near the knee of the magnetization curve, and the impedance of the

Fig. 20-Salurable-reactor connections.
alternating-current windings is varied by a direct lor slowly varyingl current in the control windings, in which no voltage is induced by the alternatingcurrent windings. Typical connections are shown in Fig. 20. A magnetic amplifier has an essential component, the saturable reactor(s), and also has rectifier (s), load, and possibly other elements. Similar to vac-uum-tube amplifiers, magnetic amplifiers may be used in nonregenerative or regenerative circuits, as shown in Fig. 21.

Regenerative- (positive-) type amplifiers have increased sensitivities to changes in the control current, are responsive to the polarity of the input signals, and usually require, for the minimum output at zero-signal input, fixed negative-bias winding(s). The maximum output obtainable from

Fig. 21-Magnetic-amplifler connections.
a magnetic amplifier depends on the size and properties of the core material and the value of the load; it is substantially the same for regenerative or nonregenerative arrangements.
Great sensitivity of response $S=(N I)_{\text {out }} /(N I)_{\text {in }}$ and power gain $=P_{\text {out }} / P_{\text {th }}$ are achieved with magnetic cores having nearly rectangular hysteresis loops. Speed of response is obtained by use of thin laminations also having high resistivity (to reduce eddy currents that retard response). A reduction of time constant L / R, especially in the input control circuit of a multistage amplifier, will greatly improve the speed of response. This may be achieved by the series addition of external resistors to the control circuit, and the use of regeneration to compensate for the loss due to this addition. Speed of response is inversely proportional io frequency of source and power gain. The relative sensitivity and power gain of regenerative and nonregenerative circuits using different core materials are listed below.

	nonregenerative		regenerative
material	sensitivity	power gain \dagger	sensitivity ${ }_{+}^{+}$
4-percent silicon steel*	$\left(S_{1}\right)=5$	150	$5\left(S_{1}\right)=25$
Allegheny 4750	$\left(S_{2}\right)=20$	350	$50\left(S_{2}\right)=40 \times 5\left(S_{1}\right)=1000$
Mumetal	-	450	$2.5 \times 50\left(S_{2}\right)=2500$
Permenorm $5000 Z$	-	-	$25 \times 50\left(S_{2}\right)=25,000$

* Data for 4 -percent silicon steol are for singly interleaved laminations leffective gap ≈ 0.0005 inch).
\dagger Refers to singly interleaved laminations leffective gap ≈ 0.0005 inch).
\ddagger Refers to ribbon-wound cores, except for 4 -percent silicon-steel core.

Elecłron fubes

General data*

Cathode emission

The cathode of an electron tube is the primary source of the electron stream. Available emission from the cathode must be af least equal to the sum of the instantaneous peak currents drawn by all of the electrodes. Maximum current of which a cathode is capable at the operating temperafure is known as the saturation current and is normally taken as the value at which the current first fails to increase as the three-halves power of the voltage causing the current to flow. Thoriated-tungsten filaments for continuous-wave operation are usually assigned an available emission of approximately one-half the saturation value; oxide-coated emitters do not have a well-defined saturation point and are designed empirically. In the following table the figures refer to the saturation current.

Commonly used cathode materials

Iype	specific efficiency in milliamperes/ waft	emission In in amperes/ centimeter	emissivity in wafts/ centimeter	operating temp in degrees Kelvin	ratio hot/cold resistance
Bright fungsten (W)	$5-10$	$0.25-0.7$	$70-84$	$2500-2600$	$14 / 1$
Thoriated tung: sten (Th-W)	$40-100$	$0.5-3.0$	$26-28$	$1950-2000$	$10 / 1$
Tantalum (Ta)	$10-20$	$0.5-1.2$	$48-60$	$2380-2480$	$6 / 1$
Oxide coated (Ba-Ca-Sr)	$50-150$	$0.5-2.5$	$5-10$	$1100-1250$	2.5 to $5.5 / 1$

Operation of cathodes: Thoriated-tungsten and oxide-coated emitters should be operated close to specified voltage. A customary allowable voltage deviation is ± 5 percent. Bright-tungsten emitters may be operated at the minimum voltage that will supply required emission as determined by poweroutput and distortion measurements. Life of a bright-tungsten emitter will be lengthened by lowering the operating temperature. Fig. I shows the relationship between filament voltage and temperature, life, and emission in a typical case.
Mechanical stresses in filaments due to the magnetic field of the heating current are proportional to $I_{l}{ }^{2}$. Current flow through a cold filament should be limited to 150 percent of the normal operating value for large tubes, and

[^18]210

General data
 continued

250 percent for medium types. Excessive starting current may easily warp or break a filament.

Thoriated-tungsten filaments may sometimes be restored to useful activity by applying filament voltage lonly) in accordance with one of the following schedules.

Fig. I-Effect of change in floment voltoge on the temperature, llfe, and emission of - bright-tungsten filament (based on 2575-degree-Kelvin normal temperature).
a. Normal filament voltage for several hours or overnight.
b. If the emission fails to respond; at 30 percent above normal for 10 minutes, then at normal for 20 to 30 minutes.
c. In extreme cases, when a and b have failed to give results, and at the risk of burning out the filament; at 75 percent above normal for 3 min utes followed by schedule b.

Electrode dissipation

Typical operoting data for common types of cooling

average cooling- surface femperature in degrees centigrode	specific dissipation in wafts/centimeter of cooling surface	coolings medium supply	
Radiation	$400-1000$	$4-10$	$30-110$

In computing cooling-medium flow, a minimum velocity sufficient to insure turbulent flow at the dissipating surface must be maintained. The figures for specific dissipation apply to clean cooling surfaces and may be reduced to a small fraction of the values shown by heat-insulating coatings such as scale or dust.
Operating temperature of a radiation-cooled surface for a given dissipation is determined by the relative total emissivity of the anode material. Temperature and dissipation are related by the expression,
$P=\epsilon_{6} \sigma\left(T^{4}-T_{0}^{4}\right) \times 10^{-7}$
where

$$
P=\text { radiated power in watts/centimeter }{ }^{2}
$$

$\epsilon_{t}=$ total thermal emissivity of the surface
$\sigma=$ Stefan-Boltzmann constant
$=5.72 \times 10^{-12}$ watt-centimeters ${ }^{-2} \times$ degrees Kelvin ${ }^{-4}$
$T=$ temperature of radiating surface in degrees Kelvin
$T_{0}=$ temperature of surroundings in degrees Kelvin
Total thermal emissivity varies with the degree of roughness of the surface of the material, and the temperature. Values for typical surfaces are as follows:

Total thermal emissivity $\epsilon_{\&}$ of electron-fube materials

moterial	temperature in degrees Kelvin	total thermal emissivity
Aluminum		
Anode graphite	1000	0.1
Copper	300	0.9
Molybdenum	1300	0.07
Molybdenum, quartz-blasted	1300	0.13
Nickal	600	0.5
Tontalum	1400	0.09
Tungsten	2600	0.18
		0.30

Except where noted, the surface of the metals is as normally produced.

Dissipation and temperature rise for water cooling
$P=264 Q_{i v} \cdot\left(T_{2}-T_{1}\right)$
where

$$
\begin{aligned}
P & =\text { power in watts } \\
Q_{W} & =\text { flow in gallons } / \text { minute }
\end{aligned}
$$

$T_{2}, T_{1}=$ outlet and inlet water temperatures in degrees Kelvin, respectively

Dissipation and temperature rise for forced-air cooling
$P=169 Q_{.1}\left(\frac{T_{2}}{T_{1}}-1\right)$
where $Q_{A}=$ air flow in feet ${ }^{3} /$ minute, other quantities as above. Fig. 2 shows the method of measuring air flow and temperature rise in forced-air-cooled systems. A water manometer is used to determine the static pressure against which the blower must deliver the required air flow. Air velocity and outlet air temperature must be weighted over the cross-section of the air stream.

Fig. 2-Meosurement of air flow and lemperature rise in a forced-oir-cooled system is shown of the right.

General data

Grid temperature: Operation of grids at excessive temperatures will result in one or more harmful effects; liberation of gas, high primary thermall enaission, contamination of the other electrodes by deposition of grid material, and melting of the grid may occur. Grid-current ratings should not be exceeded, even for short periods.

Noise in tubes*

Noise figure F : Is defined as the ratio of the available signal/noise ratio at the signal-generator (input) terminals to the available signal/noise ratio at the output terminals. A more detailed discussion of noise figure will be found in the chapter "Radio noise and interference."

Shot effect: Is noise due to random emission, is less pronounced in space-charge-limited than in temperature-limited tubes.

Flicker effect: Due to variations in the activity of the cathode, is most common in oxide-coated emitters.

Collision ionization: Causes noise when ionized gas atoms or molecules liberate bursts of electrons on striking the cathode.

Partition noise: Caused by random division of current between electrodes.
Induced noise: Caused by ultra-high-frequency components of the random space-charge fluctuations.

Miscellaneous noises: Due to microphonics, hum, leakage, charges on insulators, and poor contacts.

Nomenclature

Application of the standard nomenclature \dagger to a typical electron-tube circuit is shown in Fig. 3. A typical oscillogram is given in Fig. 4 to illustrate the designation of the various components of a current. By logical extension of these principles, any tube, circuit, or electrical quantity may be covered.

Fig. 3-Typical electran-tube circuit.

[^19]
Nomenclature continued

$\mathrm{e}_{c}=$ instantaneous total grid voltage
$\mathrm{e}_{b}=$ instantaneous total plate voltage
$i_{c}=$ instantaneous total grid current
$E_{c}=$ average or quiescent value of grid voltage
$E_{b}=$ average or quiescent value of plate voltage
$I_{c}=$ average or quiescent value of grid current
$\mathbf{e}_{g}=$ instantaneous value of varying component of grid voltage
$e_{p}=$ instantaneous value of varying component of plate voltage
$i_{g}=$ instantaneous value of varying component of grid current
$E_{g}=$ effective or maximum value of varying component of grid voltage
$E_{p}=$ effective or maximum value of varying component of plate voltage
$I_{0}=$ effective or maximum value of varying component of grid current
$I_{f}=$ filament or heater current
$I_{s}=$ total electron emission from cathode
$\mathrm{C}_{a p}=$ grid-plate direct capacitance
$\mathrm{C}_{0 k}=$ grid-cathode direct capacitance
$C_{p k}=$ plate-cathode direct capacitance
$\theta_{p}=$ plate-current conduction angle
$r_{l}=$ external plate load resistance
$r_{p}=$ variational (a-c) plate resistance

Fig. 4-Nomenclature of the various componenis of a current.

Low- and medium-frequency tubes

This section applies particularly to triodes and multigrid tubes operated at frequencies where electron-inertia effects are negligible.

Terminology

Space-charge grid: Placed adjacent to the cathode and positively biased to reduce the limiting effect of space charge on the current through the tube.

Control grid: Ordinarily placed between the cathode and the anode, for use as a control electrode.

Screen grid: Placed between the control grid and the anode, and usually maintained at a fixed positive potential, for the purpose of reducing the electrostatic influence of the anode in the space between the screen grid and the cathode.

Suppressor grid: Interposed between two electrodes lusually the screen grid and plate), both positive with respect to the cathode, in order to prevent the passage of secondary electrons from one to the other.

Anode: Electrode to which a principal electron stream flows.

Electron emission: The liberation of electrons from an electrode into the surrounding space. Quantitatively, it is the rate at which electrons are emitted from an electrode.

Fig. 5-Electrode arrangement of a small external-anode triode. Overall length is 4 l/́ inches. A-flament, B-flament centratsupport rod, C-grid wires, D-anode, E-gridsupport sleeve, F-floment-leg support rods, G-metal-fo-glass seal, H-glass envelope, l-filament and grid terminals, J-exhaust fubulation.

Thermionic emission: Electron or ion emission due directly to the temperature of the emitter. Thermionic electron emission is also known as primary emission.

Secondary emission: Electron emission due directly to impact by electrons or ions.

Grid emission: Electron or ion emission from a grid.
Perveance: Ratio of the current, expressed in amperes, to the $\frac{3}{2}$ power of the potential expressed in volts.
Electrode admittance: The quotient of the alternating component of the electrode current by the alternating component of the electrode voltage, all other electrode voltages being maintained constant.
Electrode impedance: The reciprocal of the electrode admittance.
Electrode characteristic: A relation, usually shown by a graph, between an electrode voltage and current, other electrode voltages maintained constant.
Transfer characteristic: A relation, usually shown by a graph, between the voltage of one electrode and the current to another electrode, all other voltages being maintained constant.
Electrode capacitance: The capacitance of one electrode to all other electrodes connected together.
Constant-current characteristics: Show the relation, usually by a graph, between the voltages on two electrodes for constant specified current to one of them, all other voltages being maintained constant.
Electronic efficiency: Of a vacuum-tube oscillator or amplifier, is the electromagnetic power delivered by the electron stream divided by the power contained in the stream.
Circuit efficiency: Of a vacuum-tube oscillator or amplifier, is the electromagnetic power delivered to the load divided by the electromagnetic power received from the electron stream.

Coefficients

Amplification factor μ : Ratio of incremental plate voltage to controlelectrode voltage change at a fixed plate current with constant voltage on other electrodes

$$
\left.\mu=\left[\frac{\delta \mathrm{e}_{b}}{\delta \mathrm{e}_{c 1}}\right] \quad \begin{array}{ll}
I_{b} & \\
E_{c 2} & E_{c n}
\end{array}\right\} \text { constant }
$$

Transconductance s_{m} : Ratio of incremental plate current to control-electrode voltage change at constant voltage on other electrodes

$$
\begin{gathered}
s_{m}=\left[\frac{\delta i_{b}}{\delta e_{c 1}}\right] E_{b,} E_{r 2} \ldots \ldots \ldots E_{c n} \text { constant } \\
r_{l}=0
\end{gathered}
$$

When electrodes are plate and control grid, the ratio is the mutual conductance, g_{m}
$g_{m}=\frac{\mu}{r_{p}}$
Variational (a-c) plate resistance r_{p} : Ratio of incremental plate voltage to current change at constant voltage on other electrodes

$$
\begin{gathered}
r_{p}=\left[\frac{\delta e_{b}}{\delta i_{b}}\right] E_{c 1} \ldots \ldots \ldots E_{c n} \text { constant } \\
r_{l}=0
\end{gathered}
$$

Total (d-c) plate resistance $\boldsymbol{R}_{\boldsymbol{p}}$: Ratio of total plate voltage to current for constant voltage on other electrodes

$$
\begin{gathered}
R_{p}=\left[\frac{E_{b}}{I_{b}}\right]_{E_{c l} \ldots \ldots \ldots \ldots . E_{c n} \text { constant }} \\
r_{l}=0
\end{gathered}
$$

A useful approximation of these coefficients may be obtained from a family of anode characteristics, Fig. 6.

Amplification factor $\mu=\frac{e_{b 2}-e_{b 1}}{e_{c 2}-e_{c 1}}$

Mutual conductance $g_{m}=\frac{i_{b 2}-i_{b 1}}{e_{c 2}-e_{c 1}}$

Total plate resistance $R_{p}=\frac{e_{b 2}}{i_{b 2}}$

eb in volts

Variational plate resistance $r_{p}=\frac{e_{b 2}-e_{b 1}}{i_{b 2}-i_{b 1}}$

Fig. 6-Graphical method of defermining coefficients.

Formulas

For unipotential cathode and negligible saturation of cothode emission

function	parallel-plane cathode and anode	cylindrical cathode ond onode
Diode anode current (amperes)	$\mathrm{G}_{1} \mathrm{e}^{\frac{3}{2}}$	$\mathrm{G}_{1} \mathrm{e}^{\text {3 }}{ }^{\frac{3}{2}}$
Triode anode current (amperes)	$\mathrm{G}_{2}\left(\frac{e_{b}+\mu \mathrm{e}_{c}}{1+\mu}\right)^{\frac{8}{2}}$	$\mathrm{G}_{2}\left(\frac{\mathrm{e}_{b}+\mu \mathrm{e}_{c}}{1+\mu}\right)^{\frac{9}{2}}$
Diode perveance G_{1}	$2.3 \times 10^{-6} \frac{A_{b}}{d_{b}{ }^{2}}$	$2.3 \times 10^{-6} \frac{A_{b}}{\beta^{2} r_{b}{ }^{2}}$
Triode perveance G_{2}	$2.3 \times 10^{-6} \frac{A_{b}}{d_{b} d_{c}}$	$2.3 \times 10^{-6} \frac{A_{b}}{\beta^{2} r_{b} r_{c}}$
Amplification factor μ	$\frac{2.7 d_{c}\left(\frac{d_{b}}{d_{c}}-1\right)}{\rho \log \frac{\rho}{2 \pi r_{g}}}$	$\frac{2 \pi d_{c}}{\rho} \frac{\log \frac{d_{b}}{d_{c}}}{\log \frac{\rho}{2 \pi r_{p}}}$
Mutual conductance gm_{m}	$\begin{aligned} & 1.5 \mathrm{G}_{2} \frac{\mu}{\mu+1} \sqrt{E_{g}^{\prime}} \\ & E_{g}^{\prime}=\frac{E_{b}+\mu E_{c}}{1+\mu} \end{aligned}$	$\begin{gathered} 1.5 G_{2} \frac{\mu}{\mu+1} \sqrt{E_{g}^{\prime}} \\ E_{g}^{\prime}=\frac{E_{b}+\mu E_{c}}{1+\mu} \end{gathered}$

where
$A_{b}=$ effective anode area in square centimeters
$d_{b}=$ anode-cathode distance in centimeters
$d_{c}=$ grid-cathode distance in centimeters
$\beta=$ geometrical constant, a function of ratio of anode-to-cathode radius; $\beta^{2} \approx 1$ for $r_{b} / r_{k}>10$ (see curve Fig. 7)
$\rho=$ pitch of grid wires in centimeters
$r_{g}=$ grid-wire radius in centimeters
$r_{b}=$ anode radius in centimeters
$r_{\mathbf{t}}=$ cathode radius in centimeters
$r_{c}=$ grid radius in centimeters
Note: These formulas are based on theoretical considerations and do not provide accurate results for practical structures; however, they give a fair idea of the relationship between the tube geometry and the constants of the tube.

Fig. 7-Values of β^{2} for values of $r_{b} / r_{k}<10$.

High-frequency triodes and multigrid tubes*

When the operating frequency is increased, the operation of triodes and multigrid tubes is affected by electron-inertia effects. The poor microwave performance of these tubes has fostered the development of other types of fubes for use as oscillators and amplifiers af microwave frequencies. The three principal varieties are the magnetron, the klystron, and the traveling-wave amplifier.

Terminology

The definitions of the previous section apply in addition to those given below:

Pulse: Momentary flow of energy of such short time duration that it may be considered as an isolated phenomenon.

Pulse operation: Method of operation in which the energy is delivered in pulses.

Coherent-pulse operation: Method of pulse operation in which the phase of the radio-frequency wave is mainfained through successive pulses.
R-F pulse duration: Time inferval between the points af which the amplitude of the envelope of the radio-frequency pulse is 70.7 percent of the maximum amplitude of the envelope.

[^20]
High-frequency triodes and multigrid tubes continued

Duty: The product of the pulse duration and the pulse-repetition rate.
Transit angle: The product of angular frequency and time taken for an electron to traverse the region under consideration. This time is known as the transit time.

The design features that distinguish the high-frequency tube shown in Fig. 8 from the lower-frequency tube (Fig. 5) are: reduced cathode-to-grid and grid-to-anode spacings, thigh emission density, high power density, smali active and inactive capacitances, heavy terminals, short support leads, and adaptability to a cavity circuit.

Factors affecting ultra-highfrequency operation

Electron inertia: The theory of electron-inertia effects in smallsignal tubes has been formulated;* no comparable complete theory is now available for large-signal tubes.

When the transit time of the electrons from cathode to anode is an appreciable fraction of one radiofrequency cycle:
a. Input conductance due to reaction of electrons with the varying field from the grid becomes appreciable. This conductance, which increases as the square of the frequency, results in lowered gain, an increase in driving-power requirement, and loading of the input circuit.

* A. G. Clavier, "Effect of Electron Transit. Time in Valves," L'Onde Elecrique, v. 16 , pp. 145-149; March, 1937: also, A. G. Clavier, "The Influence of Time of Transit of Electrons in Thermionic Valves," Bulletin de la Societe Francaise des Electriciens, v. 19, pp. 79-91; January, 1939. F. B. Llewellyn, "ElectronInertio Effects," 1st ed., Cambridge University Press, London; 1941.

Fig. 8-Electrode arrangement of ex-ternal-anode ultra-high-frequency triode. Overoll length is 49/16 inches. A-flament, B-floment central-support rod, C-grid wires, D-anode, E-grid-support cone, F-grid terminol flange, G-filoment-leg support rods, H-glass envelope, I-filoment terminals.

High-frequency triodes and multigrid tubes continued

b. Grid-anode transit time introduces a phase lag between grid voltage and anode current. In oscillators, the problem of compensating for the phase lag by design and adjustment of a feedback circuit becomes difficult. Efficiency is reduced in both oscillators and amplifiers.
c. Distortion of the current pulse in the grid-anode space increases the anode-current conduction angle and lowers the efficiency.

Electrode admittances: In amplifiers, the effect of cathode-lead inductance is to introduce a conductance component in the grid circuit. This effect is serious in small-signal amplifiers because the loading of the input circuit by the conductance current limits the gain of the stage. Cathode-grid and grid-anode capacitive reactances are of small magnitude at ultra-high frequencies. Heavy currents flow as a result of these reactances and tubes must be designed to carry the currents without serious loss. Coaxial cavities are often used in the circuits to resonate with the tube reactances and to minimize resistive and radiation losses. Two circuit difficulties arise as operating frequencies increase:
a. The cavities become physically impossible as they tend to take the dimensions of the tube itself.
b. Cavity Q varies inversely as the square root of the frequency, which makes the attainment of an optimum Q a limiting factor.

Scaling factors: For a family of similar tubes, the dimensionless magnitudes such as efficiency are constant when the parameter
$\phi=f \mathrm{~d} / \mathrm{V}^{\frac{1}{2}}$
is constant, where
$f=$ frequency in megacycles
$d=$ cathode-to-anode distance in centimeters
$V=$ anode voltage in volts
Based upon this relationship and similar considerations, it is possible to derive a series of factors that determine how operating conditions will vary as the operating frequency or the physical dimensions are varied isee table, p. 222). If the tube is to be scaled exactly, all dimensions will be reduced inversely as the frequency is increased, and operating conditions will be as given in the "size-frequency scaling" column. If the dimensions of the tube are to be changed, but the operating frequency is to be maintained, operation will be as in the "size scaling" column. If the dimensions are to be maintained, but the operating frequency changed, operating conditions will be as in the "frequency scaling" column. These factors apply in general to all types of tubes.

222
High-frequency friodes and multigrid tubes cantinued
Scaling factors for ultra-high-frequency tubes

quanfity	ratio	sizefrequency scaling	size sealing	frequency sealing
Voltage	V_{2} / V_{1}	1	d^{2}	f^{2}
Field	E_{3} / E_{1}	f	d	${ }^{2}$
Current	I_{2} / I_{1}	1	d^{3}	f
Current density	$\left.J_{2} /\right\lrcorner_{1}$	f^{2}	d	f
Power	P_{2} / P_{1}	1	d^{6}	${ }^{6}$
Power density	h_{2} / h_{1}	f^{2}	d^{3}	f^{6}
Conductance	$\mathrm{G}_{3} / \mathrm{G}_{1}$	1	d	f
Magnetic-flux density	B_{2} / B_{1}	f	1	f

$d=$ ratio of scaled to original dimensions
$f=$ ratio of original to scaled frequency

Fig. 9-Maximum ultra-high-frequency continuous-wave power obtainable from a single triode or tetrode. These data are based on present knowledge and techniques.

High-frequency triodes and multigrid tubes

canlinued
With present knowledge and techniques, it has been possible to reach certain values of power with conventional tubes in the ultra- and super-high-frequency regions. The approximate maximum values that have been obtained are plotted in Fig. 9.

Positive-grid tubes

Specially designed triodes have been operated with positive grid and negative anode to produce oscillations in the microwave region. Such tubes utilize an oscillating space charge produced by acceleration of electrons through the positive grid toward a negative reflecting anode. This principle has been used to generate oscillations at wavelengths down to one centimeter. A typical tube is shown in Fig. 10.

Fig. 10-Construction of a positive-grid tube. Electrode arrongement is shown at the right.

Low power output and low efficiency have hitherto limited their wide application. As local oscillators, positive-grid tubes possess the advantage of a rela-
 tively long and linear frequency vs. anode-voltage characteristic. A frequency variation of ± 25 megacycles at 3000 megacycles is obtainable.

Magnetrons*

A magnetron is a high-vacuum tube containing a cathode and an anode, the latter usually divided into two or more segments, in which tube a constant magnetic field modifies the space-charge distribution and the current-

[^21]
Magnetrons

voltage relations. In modern usage, the term "magnetron" refers to the magnetron oscillator in which the interaction of the electronic space charge with a resonant system converts direct-current power into alternat-ing-current power.

Many forms of magnetrons have been made in the past and several kinds of operation have been employed. The type of tube that is now almost universally employed is the multicavity magnetron generating travelingwave oscillations. It possesses the advantages of good efficiency at high frequencies, capability of high outputs either in pulsed or continuous-wave operation, moderate magnetic-field requirements, and good stability " of operation. The basic structure of a typical magnetron is shown in Fig. 11.

In this type of tube, the operating frequency is determined by the resonant frequency of the separate cavities that are arranged around the central cathode and parallel to it. Under the action of the radio-frequency voltages across these resonators, and the axial magnetic field, the electrons from the cathode form a bunch. ed space-charge cloud that rotates around the tube axis, exciting the cavities and maintaining their voltages. Direct current is fed into

Fig. 11-Basic structure of a typical multicavity centi-meter-wove magnetran. The cothode is nat shown. the rube and radiofrequency output is brought out through a suitable transmission line or wave guide, usually coupled to one of the resonator cavities. The tube operates most efficiently when in the π mode, that is, in such a fashion that the phase difference between the voltages across each adjacent resonator is 180 degrees. Since other modes of operation are possible, it is often desirable to provide means for suppressing them; a common method is to strap alternate anode segments together conductively, so that large circulating currents flow in the unwanted modes of operation, thus damping them.

Terminology

Many of the definitions given in previous sections apply.
Anode strap: Metallic connector between selected anode segments of a multicavity magnetron.
Interaction space: Region between anode and cathode.
End spaces: In a multicavity magnetron, the two cavities at either end of the anode block terminating all of the anode-block cavity resonators.
End shields: Limit the interaction space in the direction of the magnetic field.

Magnet gap: Space between the pole faces of the magnet.
Mode number n (magnetron): The number of radians of phase shift in going once around the anode, divided by 2π. Thus, n can have integral values 1 , $2,3, \ldots . N / 2$, where N is the number of anode segments.
π mode: Of a multicavity magnetron, is the mode of resonance for which the phase difference between any two adjacent anode segments is π radians. For an N-cavity magnetron, the π mode has the mode number $N / 2$.
Frequency pulling: Of an oscillator, is the change in the generated frequency caused by a change of the load impedance.
Pulling figure: Of an oscillator, is the difference in megacycles/second between the maximum and minimum frequencies of oscillation obtained when the phase angle of the load-impedance reflection coefficient varies through 360 degrees, while the absolute value of this coefficient is constant and equal tó 0.20.
Frequency pushing: Of an oscillator, is the change in frequency due to change in anode current (or in anode voltage).
Pushing figure: Of an oscillator, is the rate of frequency pushing in megacycles/second/ampere (or megacycles/second/volt).
Q: Of a specific mode of resonance of a system, is 2π times the ratio of the stored electromagnetic energy to the energy dissipated per cycle when the system is excited in this mode.
Unloaded Q: Of a specific mode of resonance of a system, is the Q of the mode when there is no external coupling to it.
Loaded Q: Of a specific mode of resonance of a system, is the Q when there is external coupling to that mode. Note: When the system is connected to the load by means of a transmission line, the loaded Q is customarily determined when the line is terminated in its characteristic impedance.
External Q : The reciprocal of the difference between the reciprocals of the loaded and unloaded Q's.

Performance data

The performance data for a magnetron is usually given in terms of two diagrams, the performance chart and the Rieke diagram.
Performance chart: is a plot of anode current along the abscissa and anode voltage along the ordinate of rectangularcoordinate paper. For a fixed typical tube load, pulse duration, pulse-repetition rate, and setting of the tuner of tunable tubes, lines of constant magnetic field, power output, efficiency, and frequency, may be plotted over the complete operating range of the tube. Regions of unsatisfactory operation are indicated by cross hatching. For tunable tubes, it is customary to show performance charts for more than one setting of the tuner. In the case of magnetrons with attached magnets, curves showing the variation of anode voltage, efficiency, frequency, and power output with change in anode current are given. A typical chart for a magnetron having eight resonators is given in fig. 12.

Courtesy of Bell System Tech Jour

Fig. 12-Performance chart for pulsed magnetron.

Rieke diagram: Shows the variation of power output, anode voltage, efficiency, and frequency with changes in the voltage standing-wave ratio and phase angle of the load for fixed typical operating conditions such as magnetic field, anode current, pulse duration, pulse-repetition rate, and the setting of the tuner for tunable tubes. The Rieke diagram is plotted on polar coordinates, the radial coordinate being the reflection coefficient measured in the line joining the tube to the load and the angular coordinate being the angular distance of the voltage standing-wave minimum from a suitable reference plane on the output terminal. On the Rieke diagram, lines of constant frequency, anode voltage, efficiency, and output may be drawn (Fig. 13).

Courlesy of Bell System Tech. Jour.

Fig. 13—Rieke diagram.

electron tubes
 227

Magneirons

Design data

The design of a new magnetron is usually begun by scaling from an existing magnetron having similar characteristics. Normalized operating parameters have been defined in such a way that a family of magnetrons scaled from the same parent have the same electronic efficiency for like values of $I / \mathcal{J}, V / V$, and B / B,
where the normalized parameters $\mathcal{J} . \mathcal{U}$, and \mathbb{B} for the π mode are

$$
\begin{aligned}
\partial & =\frac{2 \pi a_{1}}{\left(1-\sigma^{2}\right)^{2}(1 / \sigma+11} \frac{m}{e}\left(\frac{4 \pi c}{N \lambda}\right)^{3} r_{a}^{2} \epsilon_{0} h \\
& =\frac{8440 a_{1}}{\left(1-\sigma^{2}\right)(1 / \sigma+11}\left(\frac{4 \pi r_{a}}{N \lambda}\right)^{3} \frac{h}{r_{a}} \text { amperes } \\
V & =\frac{1}{2} \frac{m}{e}\left(\frac{4 \pi c}{N \lambda}\right)^{2} r_{a}^{2}=253,000\left(\frac{4 \pi r_{a}}{N \lambda}\right)^{2} \text { volts } \\
O B & =2 \frac{m}{e}\left(\frac{4 \pi c}{N \lambda}\right) \frac{1}{\left(1-\sigma^{2}\right)}=\frac{42,400}{N \lambda\left(1-\sigma^{2}\right)} \text { gausses }
\end{aligned}
$$

where
$a_{1}=a$ slowly varying function of r_{a} / r_{c} approximately equal to one in the range of interest
$r_{a}=$ radius of anode in meters
$r_{c}=$ radius of cathode in meters
$h=$ anode height in meters
$N=$ number of resonators
$n=$ mode number
$\lambda=$ wave length in meters
$m=$ mass of an electron in kilograms
$e=$ charge on an electron in coulombs
$c=$ velocity of light in free space in meters/second
$\epsilon_{0}=$ permittivity of free space
and I, V, and B are the operating conditions. Scaling may be done in any direction or in several directions at the same time. For reasonable performance it has been found empirically that

Magnetrons continued
$\frac{V}{O} \geqslant 6, \quad \frac{B}{B} \geqslant 4$, and $\quad \frac{1}{3}<\frac{I}{J}<3$
The minimum voltage required for oscillation has been named the "Hartree" voltage and is given by
$V_{H}=V\left(2 \frac{B}{B}-1\right)$
Slater's rule gives the relation between cathode and anode radius as

$$
\sigma=\frac{r_{c}}{r_{a}} \approx \frac{N-4}{N+4}
$$

Magnetrons for pulsed operation have been built to deliver peak powers varying from 3 megawatts at 10 centimeters to 100 kilowatts at one centimeter. Continuous-wave magnetrons having outputs ranging from one kilowatt at 10 centimeters to a few watts at 1 centimeter have been produced. Operation efficiencies up to 60 percent at 10 centimeters are obtained, falling to 30 percent at 1 centimeter.

Klystrons*

A klystron is a vacuum tube in which the distinguishing features are the modulation or periodic variation of the longitudinal velocity of an electron stream without appreciable variation of its convection current, and the subsequent conversion of this velocity modulation into convection-current modulation by the process of bunching.
In the usual form of klystron, a beam of electrons passes through the interaction gap of an input resonator where additional acceleration is given to each electron by the voltage across the gap. The sign and magnitude of this acceleration depends upon the magnitude and phase of the voltage at the instant the electron crosses the gap. The stream of electrons thus modulated in velocity then passes through a radio-frequency-field-free drift space where the velocity modulation is converted into density modulation. At the end of the drift space, the electron stream passes through the interaction gap of an output resonator which is excited by the densitymodulated, or bunched beam. By applying a signal to the input resonator and a load to the output resonator, amplifier action may be obtained. This amplification takes place because of the conversion of a portion of the

[^22]
Klystrons

 continueddirect-current beam energy into radio-frequency energy that is abstracted by the output resonator. If some of the output is coupled back to the input cavity in the proper energy phase, oscillations may be obtained. A schematic of a typical structure is shown in Fig. 14.

Fig. 14-Diagram of a 2-cavity klystron.

Fig. 15-Diagram of a reflex klystron.

A variation of the basic klystron tube that has advantages as an oscillator is the reflex klystron. In this tube, the electron stream, after being velocity modulated in the interaction gap of a cavity, enters a retarding-field region where it is reversed in direction and returned through the original resonator gap. While in the retarding-field region, the velocity-modulated beam is bunched. By proper proportioning of dimensions and retarding voltage, the bunches return in the proper phase to deliver energy to the resonator and oscillations may be sustained. A typical structure is shown in Fig. 15. Frequency of operation is determined by the frequency to which the resonators are tuned, and the repeller voltage. Since the reflex klystron has only a single resonator, the tuning procedure is simplified. This advantage and the possibility of using the repeller voltage for automatic frequency control or frequency-modulation purposes accounts for its widespread use.

Terminology

Many of the definitions given in the previous sections apply.
Cavity resonator: Any region bounded by conducting walls within which resonant electromagnetic fields may be excited.

Interaction gap: Region between electrodes in which the electron stream interacts with a radio-frequency field.
Input gap: Gap in which the initial velocity modulation of the electron stream is produced. This gap is also known as the buncher gap.
Output gap: Gap in which variations in the convection current of the electron stream are subjected to opposing electric fields in such a mannes as to extract usable radio-frequency power from the electron beam. This gap is also known as the catcher gap.
Drift space: Region relatively free of radio-frequency fields where a convection-current modulation of an electron stream arises as a result of the existence of differences in the electron velocities.
Reflector: Electrode whose primary function is to reverse the direction of an electron stream. It is also called a repeller.
Velocity modulation: Process whereby a periodic time variation in velocity is impressed on an electron stream; also, the condition existing in the stream subsequent to such a process.
Convection-current modulation: Periodic variation in the convection current passing any one point, or the process of producing such a variation.
Bunching: Any process that introduces a radio-frequency convectioncurrent component into a velocity-modulated electron stream as a direct result of the variation in electron transit time that the velocity modulation produces.
Reflex bunching: Type of bunching that occurs when the velocity-modulated electron stream is made to reverse its direction by means of an opposing direct-current field.
Beam-coupling coefficient: Ratio of the amplitude of the velocity modulation produced by a gap, expressed in volts, to the radio-frequency gap voltage.
Cavity impedance: The impedance of the cavity which appears across the gap.
Mode number (klystron): Number of whole cycles that a mean-speed electron remains in the drift space of a reflex klystron.
Electron transit time: For a reflex klystron, is $N+\frac{3}{4}$ cycles, where N is the mode number.

Performance data

The performance data for a reflex klystron is usually given in terms of a Reflector (or Repeller) characteristic chart. This chart displays power output

Klystrons cantinued
and frequency deviation as a function of reflector voltage. Usually information is given on four modes. This chart is also called a Reflector mode chart. A typical chart is shown in Fig. 16.

Klystrons find use as amplifiers, oscillators, and frequency multipliers. In the latfer service, the output resonator is tuned to a harmonic of the input-resonator frequency. Klystron amplifiers have been developed for frequencies from 1000 to 5000 megacycles with output powers up to 750 watts and power gains to 1500 .

Pulsed 2-cavity oscillators have been built with a power output of 10 kilowatts and an efficiency of 20 percent at 3000 megacycles.

Fig. 16-Kiystron reflector characteristic chart.

Reflex klystrons with the following characteristics have been developed

frequency in megocycles	power outp ut in watts	effeciency in percent	operating beam voltage
3000	0.150	2.3	300
5000	12	8	1200
9000	0.030	0.5	300

Klystron frequency multipliers from 300 to 5100 megacycles have been built with output powers in the tens of milliwatts and efficiencies in the neighborhood of $\frac{1}{2}$ percent.

Traveling-wave fubes*

Traveling-wave tubes are a relatively new class of tubes useful as amplifiers in the ultra-high- and super-high-frequency ranges. They depend on the

[^23]
232

Traveling-wave fubes

Fig. 17-Diagram of a traveling-wave amplifier. The electron beam travels from bottom to top through the center of the helix. Microwave input and output signals are coupled through the rectangular wave guides. Impedance of the wave guides is matched to that of the helix by meons of the movable shorting stubs.
interaction of a longitudinal electron beam with a wave-propagating structure.

By virtue of the distributed interaction of the wave and the electron stream, traveling-wave tubes do not suffer the gain-bandwidth limitation of ordinary thermionic tubes. The bandwidth is most easily characterized by a percentage of the center frequency, 20 percent being not uncommon. An essential feature of traveling-wave tubes is the approximate synchronism between the speed of the electron stream and the wave on the propagating structure. Practical considerations require low voltages and hence wave guides with phase velocities v of the order of $0.1 c$, where c is the velocity of light.

The best-known type of traveling-wave tube uses a helix as the slow-wave guide, fig. 17. Such a tube gives gains as high as 23 decibels over a bandwidth of 800 megacycles around a center frequency of 4000 megacycles. These amplifiers are limited in output and operate at very low efficiencies, but such limitations are not fundamental.

The gain of a traveling-wave tube is given approximately by
$G=-9+47.3 \mathrm{CN}$
in decibels for a lossless helix, where
$N=\frac{1}{\lambda_{0}} \times \frac{\mathrm{c}}{\mathrm{v}}$
$C=\left(\frac{E_{z}{ }^{2}}{(\omega / v)^{2} P} \times \frac{I_{0}}{8 V_{0}}\right)^{\frac{1}{3}}$
where
$l=$ length of the helix
$I_{0}=$ beam current
$V_{0}=$ beam voltage
and $E_{2}{ }^{2} /(\omega / v)^{2} P$ is a normalized wave impedance that may be defined in a number of ways. For lossy helices, the gain is given approximately by
$G=-9+47.3 C N-L / 3$ decibels
where L is the cold insertion loss of the helix. The maximum output power is given approximately by $P_{\text {out }}=\mathrm{Cl}_{0} V_{0}$. Commonly, C is of the order of 0.02 to 0.04 in helix traveling-wave tubes.

Gas fubes*

A gas tube is a vacuum tube in which the pressure of the contained gas or vapor is such as to affect substantially the electrical characteristics of the fube. The presence of gas allows the formation of positive ions that effectively neutralize the electron space charge and allow large currents to flow at low voltages. Construction of a typical gas triode is shown in Fig. 18.

Terminology

Critical grid voltage: Instantaneous value of the grid voltage when the anode current starts to now.

Critical grid current: Instantaneous value of the grid current when the anode current starts to flow.

Fig. 18-Elecirode arrangement of a typical gas triode. A-heoter, B-cathode, C-grid, $\mathrm{D}-$ onode, E-gloss envelope, F-anode ferminal, G-heater, cathode, and grid terminal pins.

Control characteristic: A relation, usually shown by a graph, between critical grid voltage and anode voltage.

Deionization time: Time required after anode-current interruption for the grid to regain control.

Cathode-heating time: Time required for the cathode to attain operating temperature with normal voltage applied to the heating element.

Tube-heating time: In a mercury-vapor tube, is the time required for the coolest portion of the tube to attain operating temperature.

Mercury-vapor rectifler tubes

In mercury-vapor tubes, the source of the vapor is usually a reservoir of liquid mercury. Since the vapor pressure of this mercury is a function of the temperature of the condensed mercury, the operating characteristics are dependent upon the temperature (Figs. 19 and 20).

[^24]

Fig. 19-Dependence of mercury-vapor pressure on temperalure.

Gas fubes conlinued

Operation below the minimum temperature recommended by the manufacturer results in excessive internal voltage drop. This in turn results in destructive bombardment of the cathode lin hotcathode tubes) by mercury ions.

Operation above the maximum temperature recommended by the manufacturer results in a decrease in the peak-inverse voltage that the tube can withstand.

Pool-cathode rectifiers: Wherein electron supply is from a cathode spot on a pool of mercury, are affected only to the extent that low temperatures increase the internal voltage drop and decrease the efficiency.

Fig. 20-Tube drop and orcback voliages as a function of the condensed mercury lemperoture in a hot-cathode mercuryvapor tube.

Hot-cathode gas-rectifier fubes

These fubes approximate their mercury-vapor counterparts in physical form and operating. characteristics. Generally, the internal voltage drop is higher, and the peak-inverse-voltage rating is lower than in mercury-vapor tubes. Their operating characteristics are substantially independent of the temperature of the gas.

Ionizing volfages for various gases

Argon	15.4	Hydrogen	15.9	Nitrogen	16.7
Carbon monoxide	14.2	Mercury	10.4	Oxygen	13.5
Helium	24.6	Neon	21.5	Water vapor	13.2

Cathode-ray tubes*

A cathode-ray tube is a vacuum tube in which an electron beam, deflected by applied electric and/or magnetic fields, indicates by a trace on a fluorescent screen the instantaneous value of the actuating voltages and/or currents.

[^25]
Cathode-ray tubes

continued

Terminology

Modulating electrode: Electrode to which potential is applied to control the beam current. It is also known as grid or control electrode.
Focusing electrode: Controls the cross-sectional area of the electron beam in electrostatic-focus tubes.
Accelerating electrode: Used to increase the velocity of the electrons in the beam.
Deflecting electrodes (deflecting plates): Electrodes to which a potential is applied to produce angular displacement of the beam.
Cut-off voltage: Negative grid potential at which beam current becomes 'zero.
Control characteristic (modulation characteristic): A curve of beam current versus grid potential.
Focusing voltage: In electrostatic-focus tubes, the voltage at which the spot comes to a focus.
Focusing current or focusing ampere turns: In magnetic-focus tubes, the current required through a given focus coil located at a given point on the tube to bring the spot into focus.
Deflection factor: In electrostatic-focus tubes, the voltage required between a pair of deflection plates to produce unit deflection. Value usually is expressed in direct-current volts/inch.
Deflection factor: In magnetic-focus tubes, the current required through a definite deflection yoke at a definite point on the tube to produce unit deflection. Value usually is expressed in milliamperes/inch.

Fig. 21-Electrode arrangement of typical electrostotic focus and deflection cathoderay tube. A-heoter, B-cathode, C-control electrode, D-screen grid or pre-accelerator, E-focusing electrode, F-accelerating electrode, G-defection-plate pair, H-defectionplate pair, J-conductive coating connected to accelerating electrode, K-intensifierelectrode terminol, L-intensifier electrode (conductive coating on glass), M-fluorescent screen.

Cathode-ray tubes cantinued

Deflection sensitivity: The reciprocal of the deflection factor. Value is expressed in inches/volt for electrostatic-deflection tubes.

Formulas

Electrostatic deflection: Is proportional to the deflection voltage, inversely proportional to the accelerating voltage, and deflection is in the direction of the applied field (Fig. 22). For structures using straight and parallel deflection plates, it is given by
$D=\frac{E_{d} L l}{2 E_{a} A}$
where
$D=$ deflection in centimeters
$\mathrm{E}_{a}=$ accelerating voltage

Fig. 22-Electrostatic deflection.
$E_{d}=$ deflection voltage
$I=$ length of deflecting plates or deflecting field in centimeters
$L=$ length from center of deflecting field to screen in centimeters
$A=$ separation of plates
Electromagnetic deflection: Is proportional to the flux or the current in the coil, inversely proportional to the square root of the accelerating voltage, and deflection is at right angles to the direction of the applied field (Fig. 23).

Deflection is given by
$D=\frac{0.3 L I H}{\sqrt{E_{a}}}$

Fig. 23-Magnetic defiection.
where $H=$ flux density in gauss
$I=$ length of deflecting field in centimeters
Deflection sensitivity: Is linear up to frequency where the phase of the deflecting voltage begins to reverse before an electron has reached the end of the deflecting field. Beyond this frequency, sensitivity drops off, reaching zero and then passing through a series of maxima and minima as $n=1,2$, 3, Each succeeding maximum is of smaller magnitude.

$$
\begin{aligned}
& D_{\text {zero }}=n \lambda v / c \\
& D_{\max }=\left(2 n-11 \frac{\lambda}{2} \frac{v}{c}\right.
\end{aligned}
$$

where
$D=$ deflection in centimeters
$v=$ electron velocity in centimeters/second
$c=$ speed of light $\left(3 \times 10^{10}\right.$ centimeters/second)
$\boldsymbol{\lambda}=$ free-space wavelength in centimeters
Magnetic focusing: There is more than one value of current that will focus. Best focus is at minimum value. For an average coil
$I N=220 \sqrt{\frac{V_{0 d}}{f}}$
IN = ampere turns
$V_{0}=$ accelerating voltage in kilovolts
$d=$ mean diameter of coil
$f=$ focal length
d and f are in the same units. A well-designed, shielded coil will require fewer ampere turns.

Example of good shield design (fig. 24):

$$
x=\frac{d_{1}}{20}
$$

Fig. 24-Magnetic focusing.

Cathode-ray-fube phosphors

	P1	P2	P4	P5	P7	P11
Color	Green	Blue fluorescence; green phos- phorescence	White	Blue	Blue fluorescence; yellow phos- phorescence	Blue
Spectral range in Angstrom units	$5740-4850$	$4280-6080$	$3980-$ 6880	$3470-6100$	$4140-6210$	$3770-5690$
Spectral peak in Angstrom units	5220	$4550 ; 5300$	$4600-$	4280	$4500 ; 5700$	4400
Persist- ence	Medium- 30 millisec- onds for decay to 10 percent	Long	Medium	Very short- 15 microsec- onds for decay to 10 percent	Long	Short-60 microsec- onds for decay to 10 percent

Armed Services preferred list of electron tubes

Receivin													
Aloment vollage	diodes	diodetriodes	triodes	twin Iriodes	pentodes		canverters	klystrons	power oulput	tuning indicators	rectiflers	miscelloneous	
					remote	shorp						cathode ray	crystals
1.4	1A3			345	174	104 105	IRS		384 354 $3 V 4$		122	$\begin{aligned} & \text { 28P1 } \\ & \text { 3DP1A } \\ & \text { 3JP11, } 7,121 \\ & \text { 5CP } 114,7 A, 12\} \\ & \text { SFP(7A, 14) } \\ & \text { 5JP1A } \\ & \text { 5SP11, } 7 \\ & \text { 7BP7A } \\ & \text { 10KP7 } \\ & 120 P 7 A \end{aligned}$	IN21B IN238 IN2S IN26 IN3I IN32 IN43
5.0											$\begin{aligned} & \text { SU4G } \\ & 5 Y 3 G T \end{aligned}$		
6.3	2822 6415	6AT6 68F6	$\begin{aligned} & 2 \mathrm{C} 40 \\ & 6 \mathrm{C} 4 \\ & 6 \mathrm{~F} 4 \\ & 6 \mathrm{~J} 4 \end{aligned}$	2C5I$6 A S 7 G$616$6 N 7 G T$$6 S 17 W$$12 A T 7$$12 A U 7$$12 A \times 7$	$\begin{aligned} & \text { 6BA6 } \\ & \text { 6BD6 } \\ & \text { 6SG7 } \\ & \text { 6SK7 } \\ & 90033 \end{aligned}$	6AC7 6AG5 64H6 6AK5 6AS6 6AU6 6SH7 6517 5656	$\begin{aligned} & \text { 6BE6 } \\ & 6 S B 7 Y \end{aligned}$	$2 K 22$$2 K 25$$2 K 26$$2 K 2 B$$2 K 29$$2 K 41$$2 K 45$$2 K 50$$2 K 54$$2 K 55$	$\begin{aligned} & \hline \text { 2E30 } \\ & \text { 6AG7 } \\ & \text { 6AK6 } \\ & \text { 6ANS } \\ & \text { 6AQS } \\ & \text { 6B4G } \\ & \text { 6l6GA } \\ & \text { 6V6GT } \\ & \text { 6Y6G } \end{aligned}$	6E5	$\begin{aligned} & 6 \times 4 \\ & 6 \times 5 G T \end{aligned}$		
													$\begin{aligned} & \text { photorubet } \\ & 1 P 30 \\ & 1 P 37 \\ & 1 P 39 \\ & 1940 \\ & 927 \end{aligned}$
												valitageregulatorsOA2OB2$0 A 3$$O C 3$0035651	
25 or over									2516GT		2576GT		
Only types for 28 volts anode-supply operation		26C6				26A6	26D6		26A7GT				

Transmitting

[^26]
- Amplifiers and oscillators

Classification

It is common practice to differentiate between types of vacuum-tube circuits, particularly amplifiers, on the basis of the operating regime of the tube.

Class-A: Grid bias and alternating grid voltages such that plate current flows continuously throughout electrical cycle $\boldsymbol{\theta}_{\boldsymbol{p}}=360$ degrees).

Class-AB: Grid bias and alternating grid voltages such that plate current nows appreciably more than half but less than entire electrical cycle $\left(360^{\circ}>\theta_{p}>180^{\circ}\right)$.

Class-B: Grid bias close to cut-off such that plate current flows only during approximately half of electrical cycle $\left(\theta_{p} \approx 180^{\circ}\right)$.

Class-C: Grid bias appreciably greater than cut-off so that plate current flows for appreciably less than half of electrical cycle $\left(\theta_{p}<180^{\circ}\right)$.

A further classification between circuits in which positive grid current is conducted during some portion of the cycle, and those in which it is not, is denoted by subscripts 2 and 1 , respectively. Thus a class- $A B_{2}$ amplifier operates with a positive swing of the alternating grid voltage such that positive electronic current is conducted, and accordingly in-phase power is required to drive the tube.

General design

For quickly estimating the performance of a tube from catalog data, or for predicting the characteristics needed for a given application, the ratios given below may be used.

The table gives correlating data for typical operation of tubes in the various amplifier classifications. From the table, knowing the maximum ratings of a tube, the maximum power output, currents, voltages, and corresponding load

Typical omplifter operating data. Maximum signol conditions-per tube

Punction	class A	$\begin{aligned} & \text { class B } \\ & \text { o-f (} p-p \text {) } \end{aligned}$		$\underset{r-f}{\text { class } C}$
Plote efficiency η (percent)	20-30	35-65	60-70	65-85
Peak instantaneous to d-c plate current ratio $\mathrm{M}_{i_{b}} / \mathrm{I}_{b}$	1.5-2	3.1	3.1	3.1-4.5
RMS alternating to d-c plate current ratio I_{p} / I_{b}	$0.5-0.7$	1.1	1.1	1.1-1.2
RMS alternating to $\mathrm{d}-\mathrm{c}$ plate voltage ratio E_{p} / E_{b}	0.3-0.5	0.5-0.6	0.5-0.6	0.5-0.6
D.C to peak instantaneous grid current $I_{c} / \mathrm{M}_{\mathrm{i}_{c}}$		0.25-0.1	0.25-0.1	0.15-0.1

impedance may be estimated. Thus, taking for example, a type F-124-A water-cooled transmitting tube as a class-C radio-frequency power amplifier and oscillator-the constant-current characteristics of which are shown in Fig. 1-published maximum ratings are as follows:
D.C plate voltage $E_{b}=20,000$ volts
D.C grid voltage $E_{c}=3,000$ volts

D-C plate current $\quad I_{b}=7$ amperes
R-F grid current $I_{0}=50$ amperes
Plate input $\quad P_{i}=135,000$ watts
Plate dissipation $\quad P_{p}=40,000$ watts
Maximum conditions may be estimated as follows:
For $\eta=75$ percent $\quad P_{i}=135,000$ watts $\quad E_{b}=20,000$ volts
Power output $P_{0}=\eta P_{i}=100,000$ watts
Average d-c plate current $I_{b}=P_{i} / E_{b}=6.7$ amperes
From tabulated typical ratio ${ }^{\mathrm{M}_{i}} / I_{b}=4$, instantaneous peak plate current ${ }^{\mathrm{M}} \mathrm{i}_{b}=4 I_{b}=27$ amperes*

The rms alternating plate-current component, taking ratio $I_{p} / I_{b}=1.2$, $I_{p}=1.2 I_{b}=8$ amperes

The rms value of the alternating plate-voltage component from the ratio $E_{p} / E_{b}=0.6$ is $E_{p}=0.6 E_{b}=12,000$ volts.

The approximate operating load resistance r_{l} is now found from
$r_{l}=E_{p} / I_{p}=1500$ ohms
An estimate of the grid drive power required may be obtained by reference to the constant-current characteristics of the tube and determination of the peak instantaneous positive grid current ${ }^{\mathbf{M}} \boldsymbol{i}_{c}$ and the corresponding instantaneous total grid voltage ${ }^{M} e_{c}$. Taking the value of grid bias E_{c} for the given operating condition, the peak alternating grid drive voltage is
${ }^{\mathrm{M}} E_{g}=\left({ }^{\mathrm{M}} \mathrm{e}_{c}-E_{c}\right)$
from which the peak instantaneous grid drive power is
${ }^{\mathrm{M}} \mathrm{P}_{c}={ }^{\mathrm{M}} \mathrm{E}_{\mathrm{p}}{ }^{\mathrm{M}} \mathrm{i}_{\mathrm{c}}$

[^27]An approximation to the average grid drive power P_{g}, necessarily rough due to neglect of negative grid current, is obtained from the typical ratio
$\frac{I_{c}}{\mathrm{M}_{\mathrm{i}_{e}}}=0.2$
of d-c to peak value of grid current, giving
$\mathrm{P}_{\theta}=I_{c} E_{g}=0.2{ }^{\mathrm{M}_{\mathrm{i}}} E_{g}$ watts
Plate dissipation P_{p} may be checked with published values since

$$
P_{p}=P_{i}-P_{0}
$$

grid amperes i_{c}

Fig. 1-Constant-current charactaristics with typical load lines $A B$-class $C, C D-$ class B, EFG-class A, and HJK—class AB.

General design continued

It should be borne in mind that combinations of published maximum ratings as well as each individual maximum rating must be observed. Thus, for example in this case, the maximum d-c plate operating voltage of 20,000 volts does not permit operation at the maximum d-c plate current of 7 amperes since this exceeds the maximum plate input rating of 135,000 watts.
Plate load resistance r_{l} may be connected directly in the tube plate circuit, as in the resistance-coupled amplifier, through impedance-matching elements as in audio-frequency transformer coupling, or effectively represented by a loaded parallel-resonant circuit as in most radio-frequency amplifiers. In any case, calculated values apply only to effectively resistive loads, such as are normally closely approximated in radio-frequency amplifiers. With appreciably reactive loads, operating currents and voltages will in general be quite different and their precise calculation is quite difficult.
The physical load resistance present in any given set-up may be measured by audio-frequency or radio-frequency bridge methods. In many cases, the proper value of r_{l} is ascertained experimentally as in radio-frequency amplifiers that are tuned to the proper minimum d-c plate current. Conversely, if the circuit is to be matched to the tube, r_{l} is determined directly as in a resistance-coupled amplifier or as
$r_{l}=N^{2} r_{a}$
in the case of a transformer-coupled stage, where N is the primary-to-secondary voltage transformation ratio. In a parallel-resonant circuit in which the output resistance r_{3} is connected directly in one of the reactance legs,
$r_{l}=\frac{X^{2}}{r_{s}}=\frac{L}{C r_{s}}=Q X$
where X is the leg reactance at resonance lohms), and L and C are leg inductance in henries and capacitance in farads, respectively;
$Q=\frac{X}{r_{t}}$

Graphical design methods

When accurate operating data are required, more precise methods must be used. Because of the nonlinear nature of tube characteristics, graphical methods usually are most convenient and rapid. Examples of such methods are given below.

A comparison of the operating regimes of class $A, A B, B$, and C amplifiers is given in the constant-current characteristics graph of Fig. 1. The lines

Graphical design methods continued

corresponding to the different classes of operation are each the locus of instantaneous grid e_{c} and plate e_{b} voltages, corresponding to their respective load impedances.

For radio-frequency amplifiers and oscillators having tuned circuits giving an effectively resistive load, plate and grid tube and load alternating voltages are sinusoidal and in phase (disregarding transit timel, and the loci become straight lines.

For amplifiers having nonresonant resistive loads, the loci are in general nonlinear except in the distortionless case of linear tube characteristics (constant r_{p}), for which they are again straight lines.
Thus, for determination of radio-frequency performance, the constantcurrent chart is convenient. For solution of audio-frequency problems, however, it is more convenient to use the $\left(i_{b}-e_{c}\right)$ transfer characteristics of Fig. 2 on which a dynamic load line may be constructed.
Methods for calculation of the most important cases are given below.

Class-C radio-frequency amplifler or oscillator

Draw straight line from A to B (Fig. I) corresponding to chosen d-c operating plate and grid voltages, and to desired peak alternating plate and grid voltage excursions. The projection of $A B$ on the horizontal axis thus corresponds to ${ }^{\mathrm{M}} E_{p}$. Using Chaffee's 11 -point method of harmonic analysis, lay out on $A B$ points:

$$
e_{p}^{\prime}={ }^{\mathrm{M}} E_{p} \quad \mathrm{e}_{p}^{\prime \prime}=0.866^{\mathrm{M}} E_{p} \quad \mathrm{e}_{p}^{\prime \prime \prime}=0.5^{\mathrm{M}} E_{p}
$$

to each of which correspond instantaneous plate currents $i_{6}{ }^{\prime}, i_{6}{ }^{\prime \prime}$ and $i_{b}{ }^{\prime \prime \prime}$ and instantaneous grid currents $i_{c}{ }^{\prime}, i_{c}^{\prime \prime}$ and $i_{c}{ }^{\prime \prime \prime}$. The operating currents are obtained from the following expressions:

$$
\begin{aligned}
I_{b} & =\frac{1}{12}\left[i_{b}^{\prime}+2 i_{b}^{\prime \prime}+2 i_{b}^{\prime \prime \prime}\right] & I_{c} & =\frac{1}{12}\left[i_{c}^{\prime}+2 i_{c}^{\prime \prime}+2 i_{c}^{\prime \prime \prime}\right] \\
\mathrm{M}_{p} & =\frac{1}{6}\left[i_{b}^{\prime}+1.73 i_{b}^{\prime \prime}+i_{b}^{\prime \prime \prime}\right] & \mathrm{M}_{g} & =\frac{1}{6}\left[i_{c}^{\prime}+1.73 i_{c}^{\prime \prime}+i_{c}^{\prime \prime \prime}\right]
\end{aligned}
$$

Substitution of the above in the following give the desired operating data Power output $P_{0}=\frac{{ }^{\mathrm{M}} E_{p}{ }^{\mathrm{M}} I_{p}}{2}$
Power input $\quad P_{i}=E_{b} I_{b}$
Average grid excitation power $=\frac{{ }^{\mathrm{M}} E_{q}{ }^{\mathrm{M}} I_{\theta}}{2}$

Graphical design methods

Peak grid excitation power $={ }^{\mathrm{M}} E_{0} i^{\prime}{ }_{c}$
Plate load resistance $\quad r_{l}=\frac{{ }^{\mathrm{M}} E_{p}}{{ }^{\mathrm{M}} I_{p}}$

Grid bias resistance

$$
R_{c}=\frac{E_{c}}{I_{c}}
$$

Plate efficiency

$$
\eta=\frac{P_{0}}{P_{i}}
$$

Plate dissipation

$$
P_{p}=P_{i}-P_{0}
$$

The above procedure may also be applied to plate-modulated class-C amplifiers. Taking the above data as applying to carrier conditions, the analysis is repeated for ${ }^{\text {crest }} E_{b}=2 E_{b}$ and ${ }^{\text {crest }} P_{0}=4 P_{0}$ keeping r_{l} constant. After a cut-and-try method has given a peak solution, it will often be found that combination fixed and self grid biasing as well as grid modulation is indicated to obtain linear operation.

To illustrate the preceding exposition, a typical amplifier calculation is given below:

Operating requirements (carrier condition)
$E_{b}=12,000$ volts $\quad P_{0}=25,000$ watts $\quad \eta=75$ percent
Preliminary calculation (refer to table below)

Closs-C r-f emplifier data for $\mathbf{1 0 0}$-percent plote modulation.

symbol	preliminary corrier	detailed	
		carrier	crest
E_{6} (volts)	12,000	12,000	24,000
${ }^{M} E_{p}$ (volts)	10,000	10,000	20,000
E_{e} (volts)	-	- 1,000	-700
${ }^{M} E_{0}$ (volts)	-	1,740	1,740
I_{6} (amp)	2.9	2.8	6.4
$\mathrm{M}_{I_{p}}$ (ampl	4.9	5.1	10.2
L_{c} (ampl	-	0.125	0.083
$\mathrm{M}_{I_{0}}$ (amp)	\cdots	0.255	0.183
P_{i} (watts)	35,000	33,600	154,000
Po (watts)	25,000	25,500	102,000
P_{g} (watts)	-	220	160
7 (percent)	75	76	66
n lohms)	2,060	1,960	1,960
R_{c} lohms)		7,100	7,100
$E_{e e}$ (volts)	-	-110	-110

Graphical design methods

$$
\begin{aligned}
& \frac{E_{p}}{E_{b}}=0.6 \\
& E_{p}=0.6 \times 12,000=7200 \text { volts } \\
& { }^{\mathrm{M}} E_{p}=1.41 \times 7200=10,000 \text { volts } \\
& I_{p}=\frac{P_{o}}{E_{p}} \\
& I_{p}=\frac{25,000}{7200}=3.48 \text { amperes } \\
& { }^{\mathrm{M}} I_{p}=4.9 \text { amperes } \\
& \frac{I_{p}}{I_{b}}=1.2 \\
& I_{b}=\frac{3.48}{1.2}=2.9 \text { amperes } \\
& P_{i}=12,000 \times 2.9=35,000 \text { watts } \\
& \frac{\mathrm{M}_{i_{b}}}{I_{b}}=4.5 \\
& { }^{\mathrm{M}_{i_{b}}}=4.5 \times 2.9=13.0 \text { amperes } \\
& r_{l}=\frac{E_{p}}{I_{p}}=\frac{7200}{3.48}=2060 \text { ohms }
\end{aligned}
$$

Complete calculation

Lay out carrier operating line, $A B$ on constant-current graph, Fig. 1, using values of $E_{b},{ }^{\mathrm{M}} E_{p \text {, }}$ and ${ }^{\mathrm{M}} \mathrm{i}_{b}$ from preliminary calculated data. Operating carrier bias voltage, E_{c}, is chosen somewhat greater than twice cutoff value, 1000 volts, to locate point A .

The following data are taken along $A B$:

$$
\begin{aligned}
& i_{b}^{\prime}=13 \mathrm{amp} \\
& \begin{aligned}
i_{c}^{\prime} & =1.7 \mathrm{amp} \\
i_{c}{ }^{\prime \prime} & =-0.1 \mathrm{amp} \\
i_{c}{ }^{\prime \prime \prime} & =0 \mathrm{amp}
\end{aligned} \\
& E_{c}=-1000 \text { volts } \\
& e_{c}^{\prime}=740 \text { volts } \\
& { }^{{ }^{1}} E_{p}=10,000 \text { volts }
\end{aligned}
$$

From the formulas, complete carrier data as follows are calculated:

$$
\begin{aligned}
{ }^{\mathrm{M}} I_{p} & =\frac{1}{6}[13+1.73 \times 10+0.3]=5.1 \mathrm{amp} \\
P_{0} & =\frac{10,000 \times 5.1}{2}=25,500 \mathrm{watts} \\
I_{b} & =\frac{1}{12}[13+2 \times 10+2 \times 0.3]=2.8 \mathrm{amp} \\
P_{i} & =12,000 \times 2.8=33,600 \text { watts }
\end{aligned}
$$

Graphical design methods continued

$$
\begin{aligned}
\eta & =\frac{25,500}{33,600} \times 100=76 \text { percent } \\
r_{l} & =\frac{10,000}{5.1}=1960 \mathrm{ohms} \\
I_{c} & =\frac{1}{12}[1.7+2(-0.1)]=0.125 \mathrm{amp} \\
{ }^{\mathrm{M}} I_{\sigma} & =\frac{1}{6}[1.7+1.7(-0.1)]=0.255 \mathrm{amp} \\
P_{\sigma} & =\frac{1740 \times 0.255}{2}=220 \text { watts }
\end{aligned}
$$

Operating data at 100 -percent positive modulation crests are now calculated knowing that here
$E_{b}=24,000$ volts $\quad r_{l}=1960$ ohms
and for undistorted operation

$$
P_{0}=4 \times 25,500=102,000 \text { watts } \quad{ }^{\mathrm{M}} E_{p}=20,000 \text { volts }
$$

The crest operating line $A^{\prime} B^{\prime}$ is now located by trial so as to satisfy the above conditions, using the same formulas and method as for the carrier condition.

It is seen that in order to obtain full-crest power output, in addition to doubling the alternating plate voltage, the peak plate current must be increased. This is accomplished by reducing the crest bias voltage with resultant increase of current conduction period, but lower plate efficiency.

The effect of grid secondary emission to lower the crest grid current is taken advantage of to obtain the reduced grid-resistance voltage drop required. By use of combination fixed and grid resistance bias proper variation of the total bias is obtained. The value of grid resistance required is given by

$$
R_{c}=\frac{-\left[E_{c}-{ }^{\operatorname{crest}} E_{c}\right]}{l_{c}-{ }^{\operatorname{crest}} l_{c}}
$$

and the value of fixed bias by
$E_{c c}=E_{c}-\left(I_{c} R_{c}\right)$
Calculations at carrier and positive crest together with the condition of zero output at negative crest give sufficiently complete data for most purposes. If accurate calculation of audio-frequency harmonic distortion is necessary, the above method may be applied to the additional points required.

Graphical design methods

Class-B radio-frequency amplifiers

A rapid approximate method is to determine by inspection from the tube ($i_{b}-e_{b}$) characteristics the instantaneous current, $i^{\prime}{ }_{b}$ and voltage $e_{b}{ }_{b}$ corresponding to peak alternating voltage swing from operating voltage E_{b}.
A.C plate current ${ }^{M} I_{p}=\frac{i_{b}}{2}$
D.C plate current $\quad I_{b}=\frac{i_{b}}{\pi}$

A-C plate voltage ${ }^{M} E_{p}=E_{b}-e^{\prime}{ }_{b}$
Power output $\quad P_{0}=\frac{\left(E_{b}-e^{\prime}{ }_{b}\right) i^{\prime}{ }_{b}}{4}$
Power input $\quad P_{i}=\frac{E_{b i{ }^{\prime}}{ }_{b}}{\pi}$
Plate efficiency

$$
\eta=\frac{\pi}{4}\left(1-\frac{e_{b}^{\prime}}{E_{b}}\right)
$$

Thus $\eta \approx 0.6$ for the usual crest value of ${ }^{\mathrm{M}} E_{p} \approx 0.8 E_{b}$.
The same method of analysis used for the class-C amplifier may also be used in this case. The carrier and crest condition calculations, however, are now made from the same E_{b}, the carrier condition corresponding to an alter-nating-valtage amplitude of ${ }^{{ }^{M}} E_{p} / 2$ such as to give the desired carrier power output.

For greater accuracy than the simple check of carrier and crest conditions, the radio-frequency plate currents ${ }^{\mathrm{M}} I_{p}{ }^{\prime},{ }^{\mathrm{M}} I_{p}{ }^{\prime \prime},{ }^{\mathrm{M}} I_{p}{ }^{\prime \prime \prime},{ }^{\mathrm{M}} I_{p}{ }^{\circ},-{ }^{\mathrm{M}} I_{p}{ }^{\prime \prime \prime}$, $-{ }^{\mathrm{M}} I_{p}{ }^{\prime \prime}$, and $-{ }^{\mathrm{M}} I_{p}{ }^{\prime}$ may be calculated for seven corresponding selected points of the audio-frequency modulation envelope $+{ }^{\mathrm{M}} E_{0}+0.707{ }^{\mathrm{M}} E_{0}$, $+0.5^{\mathrm{M}} E_{g}, 0,-0.5^{\mathrm{M}} E_{q},-0.707^{\mathrm{M}} E_{g}$, and $-{ }^{\mathrm{M}} E_{g}$, where the negative signs denote values in the negative half of the modulation cycle. Designating
$S^{\prime}={ }^{\mathrm{M}} I_{p}{ }_{p}+\left(-{ }^{\mathrm{M}} I^{\prime}{ }_{p}\right)$
$D^{\prime}={ }^{\mathrm{M}} I^{\prime}{ }_{p}-\left(-{ }^{\mathrm{M}} \mathrm{I}^{\prime}{ }_{p}\right)$, etc.,
the fundamental and harmonic components of the output audio-frequency current are obtained as
${ }^{\mathrm{M}} I_{p 1}=\frac{S^{\prime}}{4}+\frac{S^{\prime \prime}}{2 \sqrt{2}}$ (fundamental) $\quad{ }^{\mathrm{M}} I_{p 2}=\frac{5 D^{\prime}}{24}+\frac{D^{\prime \prime}}{4}-\frac{D^{\prime \prime \prime}}{3}$

Graphical design methods

${ }^{M} I_{p 3}=\frac{S^{\prime}}{6}-\frac{S^{\prime \prime \prime}}{3}$
${ }^{M} I_{p 1}=\frac{D^{\prime}}{8}-\frac{D^{\prime \prime}}{4}$
${ }^{\mathrm{M}} I_{p b}=\frac{S^{\prime}}{12}-\frac{S^{\prime \prime}}{2 \sqrt{2}}+\frac{S^{\prime \prime \prime}}{3}$.
$M_{l p 8}=\frac{D^{\prime}}{24}-\frac{D^{\prime \prime}}{4}+\frac{D^{\prime \prime \prime}}{3}$
This detailed method of calculation of audio-frequency harmonic distortion may, of course, also be applied to calculation of the class-C modulated amplifier, as well as to the class-A modulated amplifier.

Class-A and $A B$ audio-frequency amplifiers

Approximate formulas assuming linear tube characteristics:
Maximum undistorted power output ${ }^{\mathrm{M}} \mathrm{P}_{0}=\frac{{ }^{\mathrm{M}} E_{p}{ }^{\mathrm{M}} I_{p}}{2}$
when plate load resistance $r_{b}=r_{p}\left[\frac{E_{c}}{\frac{{ }^{M} E_{p}}{\mu}-E_{c}}-1\right]$
and
negative grid bias $E_{c}=\frac{{ }^{M} E_{p}}{\mu}\left(\frac{r_{l}+r_{p}}{r_{l}+2 r_{p}}\right)$
giving
maximum plate efficiency $\eta=\frac{{ }^{M} E_{p}{ }^{M} I_{p}}{8 E_{b} I_{b}}$
Maximum maximum undistorted power output ${ }^{M M} P_{0}=\frac{{ }^{M} E_{p}^{2}}{16 r_{p}}$
when
$r_{i}=2 r_{p} \quad E_{c}=\frac{3}{4} \frac{{ }^{M} E_{p}}{\mu}$
An exact analysis may be obtained by use of a dynamic load line laid out on the transfer characteristics of the tube. Such a line is CKF of Fig. 2 which is constructed about operating point K for a given load resistance r_{0} from the following relation:

$$
i_{b}^{\mathrm{B}}=\frac{e_{b}^{\mathrm{R}}-\mathrm{e}_{b}^{\mathrm{S}}}{r_{l}}+i_{b}^{\mathrm{R}}
$$

where
R, S, etc., are successive conveniently spaced construction points.

Graphical design methods

Using the seven-point method of harmonic analysis, plot instantaneous plate currents $i_{b}{ }^{\prime}, i_{b}{ }^{\prime \prime}, i_{b}{ }^{\prime \prime \prime}, i_{b_{d}}-i_{b}{ }^{\prime \prime \prime},-i_{b}{ }^{\prime \prime}$, and $-i_{b}{ }^{\prime}$ corresponding to $+{ }^{\mathrm{M}} E_{q}+0.707^{\mathrm{M}} E_{q}+0.5^{\mathrm{M}} E_{q}, 0,-0.5^{\mathrm{M}} E_{q}-0.707^{\mathrm{M}} E_{q}$, and $-{ }^{\mathrm{M}} E_{q}$, where 0 corresponds to the operating point K. In addition to the formulas given under class-B radio-frequency amplifiers:
I_{b} average $=I_{b}+\frac{D^{\prime}}{8}+\frac{D^{\prime \prime}}{4}$
from which complete data may be calculated.

Class-AB and B audio-frequency amplifiers

Approximate formulas assuming linear tube characteristics give (referring to Fig. 1, line CD) for a class-B audio-frequency amplifier:

$$
\begin{aligned}
{ }^{\mathrm{M}} I_{p} & =i_{b}^{\prime} \\
P_{0} & =\frac{{ }^{\mathrm{M}} E_{p}{ }^{\mathrm{M}} I_{p}}{2} \\
P_{i} & =\frac{2}{\pi} E_{b}{ }^{\mathrm{M}} I_{p} \\
\eta & =\frac{\pi}{4} \frac{{ }^{\mathrm{M}} E_{p}}{E_{b}} \\
R_{p p} & =4 \frac{{ }^{\mathrm{M}} E_{p}}{i_{b}^{\prime}}=4 r_{i}
\end{aligned}
$$

Again an exact solution may be derived by use of the dynamic load line JKL on the ($i_{b}-e_{c}$) characteristic of Fig. 2. This line is calculated about the operating point K for the given r_{l} (in the same way as for the class-A casel. However, since two tubes operate in phase opposition in this case, an identical dynamic load line MNO represents the other half cycle, laid out about the operating bias abscissa point but in the opposite direction (see fig. 2).

Algebraic addition of instantaneous current values of the two tubes at each value of e_{c} gives the composite dynamic characteristic for the two tubes OPL. Inasmuch as this curve is symmetrical about point P , it may be analyzed for harmonics along a single half-curve PL by the Mouromtseff 5-point method. A straight line is drawn from P to L and ordinate plate-current differences a, b, c, d, f between this line and curve, corresponding to $e_{0}{ }^{\prime \prime}, e_{q}{ }^{\prime \prime \prime}$, $e_{g}{ }^{\text {IV }}, e_{g}{ }^{v}$, and $e_{g}{ }^{\text {vI }}$, are measured. Ordinate distances measured upward from curve PL are taken positive.

Graphical design methods continued

Fundamental and harmonic current amplitudes and power are found from the following formulas:

$$
\begin{aligned}
& { }^{\mathrm{M}} I_{p 1}=i^{\prime}{ }_{b}-{ }^{\mathrm{M}} I_{p 3}+{ }^{\mathrm{M}} I_{p 5}-{ }^{\mathrm{M}} I_{p 7}+{ }^{\mathrm{M}} I_{p 9}-{ }^{\mathrm{M}} I_{p 11} \\
& { }^{\mathrm{M}} I_{p 3}=0.4475(b+f)+\frac{d}{3}-0.578 d-\frac{1}{2}{ }^{\mathrm{M}} I_{p 5} \\
& { }^{\mathrm{M}} I_{p 5}=0.4(\mathrm{a}-f) \\
& \left.{ }^{\mathrm{M}} I_{p 7}=0.4475 \mathrm{lb}+f\right)-{ }^{\mathrm{M}} I_{p 3}+0.5^{\mathrm{M}} I_{p 5} \\
& { }^{\mathrm{M}} I_{p 9}={ }^{\mathrm{M}} I_{p 3}-\frac{2}{3} d \\
& { }^{\mathrm{M}} I_{p 11}=0.707 c-{ }^{\mathrm{M}} I_{p 3}+{ }^{\mathrm{M}} I_{p 5} .
\end{aligned}
$$

Even harmonics are not present due to dynamic characteristic symmetry. The direct-current and power-input values are found by the 7-point analysis from curve PL and doubled for two tubes.

Classification of amplifier circuits

The classification of amplifiers in classes A, B, and C is based on the operating conditions of the tube.
Another classification can be used, based on the type of circuits associated with the tube.

A tube can be considered as a four-terminal network with two input terminals and two output terminals. One of the input terminals and one of the output terminals are usually common; this common junction or point is usually called "ground".

When the common point is connected to the filament or cathode of the tube, we can speak of a grounded-cathode circuit. It is the most conventional type of vacuum-tube circuit. When the common point is the grid, we can speak of a grounded-grid circuit, and when the common point is the plate or anode, we can speak of the grounded-anode circuit.
This last type of circuit is most commonly known by the name of cathode follower.

A fourth and most general class of circuit is obtained when the common point or ground is not directly connected to any of the three electrodes of the tube. This is the condition encountered at u-h.f where the series impedances of the internal tube leads make it impossible to ground any of them. It is also encountered in such special types of circuits as the phase-splitter, in which the impedance from plate to ground and the impedance from cathode to ground are made equal in order to obtain an output between plate and cathode balanced with respect to ground.

Classification of amplifier circuits cantinued
grounded-
cathode

254

Classification of amplifier circuits continued

Design information for the first three classifications is given in the table on page 253, where
$Z_{2}=$ load impedance to which output terminals of amplifier are connected
$E_{1}=$ rms driving voltage across input terminals of amplifier
$E_{2}=$ rms output voltage across load impedance Z_{2}
$l_{1}=$ rms current at input terminals of amplifier
$\boldsymbol{\gamma}=$ voltage gain of amplifier $=E_{2} / E_{1}$
$Y_{1}=$ input admittance to input terminals of amplifier $=l_{1} / E_{1}$
$\omega=2 \pi \times$ (frequency of excitation voltage E_{1})
$j=\sqrt{-1}$
and the remaining notation is in accordance with the nomenclature of pages 213 and 214.

Cathode-follower dafa

General characteristics

a. High-impedance input, low-impedance output.
b. Input and output have one side grounded.
c. Good wideband frequency and phase response.
d. Output is in phase with input.
e. Voltage gain or transfer is always less than one.
f. A power gain can be obtained.
g. Input capacitance is reduced.

General case

Transfer $=\frac{g_{m} R_{L}}{g_{m} R_{L}+1}$ or $g_{m} Z_{r}$
$Z_{r}=$ resultant cathode-to-ground impedance $=R_{\text {out }}$ in parallel with R_{e}
$R_{\text {out }}=$ output resistance
$=\frac{R_{p}}{\mu+1}$ or approximately $\frac{1}{g_{m}}$
$g_{m}=$ transconductance in mhos $(1000$ micromhos $=0.001$ mhos)
$R_{L}=$ total load resistance
Input capacitance $=C_{p p}+\frac{C_{p k}}{1+g_{m} R_{L}}$

amplifiers and oscillators 255

Cathode-follower data continued

Specific cases

a. To match the characteristic impedance of the transmission line, $R_{\text {ous }}$ must equal Z_{0}. The transfer is approximately 0.5 .

b. If $R_{\text {out }}$ is less than Z_{0}, add resistor R_{e}^{\prime} in series so that $R_{c}{ }^{\prime}=Z_{0}-R_{\text {ous }}$. The transfer is approximately 0.5 .

c. If $R_{\text {out }}$ is greater than Z_{0} add resistor R_{c} in parallel so that
$R_{c}=\frac{Z_{0} R_{\text {out }}}{R_{\text {out }}-Z_{0}}$
Transfer $=\frac{g_{m} Z_{0}}{2}$

Nole: Normal operating bias must be provided. For coupling a high impedance into a lowimpedance transmission line, for maximum transfer choose a tube with a high g_{m}.

Resistance-coupled audio-amplifier design

Stage gain: At
medium frequencies $=A_{m}=\frac{\mu R}{R+R_{p}}$
high frequencies $\quad=A_{h}=\frac{A_{m}}{\sqrt{1+\omega^{2} C_{1}^{2} r^{2}}}$
low frequencies* $=A_{i}=\frac{A_{m}}{\sqrt{1+\frac{1}{\omega^{2} C_{2}^{2} \rho^{2}}}}$

[^28]
Resistance-coupled audio-amplifier design cantinued

where

$$
\begin{aligned}
R & =\frac{r_{l} R_{2}}{r_{l}+R_{2}} \\
r & =\frac{R r_{p}}{R+r_{p}} \\
\rho & =R_{2}+\frac{r_{l} r_{p}}{r_{l}+r_{p}}
\end{aligned}
$$

$\mu=$ amplification factor of tube
$\omega=2 \pi X$ frequency
$r_{l}=$ plate-load resistance in ohms
$R_{2}=$ grid-leak resistance in ohms
$r_{p}=a-c$ plate resistance in ohms
$C_{1}=$ total shunt capacitance in farads
$C_{2}=$ coupling capacitance in farads
Given C_{1}, C_{2}, R_{2}, and $X=$ fractional response required.
At highest frequency

$$
r=\frac{\sqrt{1-X^{2}}}{\omega C_{1} X} \quad R=\frac{r r_{p}}{r_{p}-p} \quad r_{l}=\frac{R R_{2}}{R_{2}-R}
$$

At lowest frequency*

$$
C_{2}=\frac{x}{\omega \rho \sqrt{1-x^{2}}}
$$

Negative feedback

The following quantities are functions of frequency with respect to magnitude and phase:
E, N, and $D=$ signal, noise, and distortion output voltage with feedback e, n, and $d=$ signal, noise, and distortion output voltage without feedback

$$
\begin{aligned}
A= & \text { voltage amplification of amplifier at a given frequency } \\
\beta= & \text { fraction of output voltage fed back; for usual negative } \\
& \text { feedback, } \beta \text { is negative } \\
\phi= & \text { phase shift of amplifier and feedback circuit at a given } \\
& \text { frequency }
\end{aligned}
$$

[^29]
Negative feedback

Reduction in gain caused by feedback
percent feedbod

Fig. 3-In negative-feedback amplifier considerations β, expressed as a percentage, has a negative value. A line acrass the β and A scales intersects the center scole to indicate change in goin. It also Indicates the amount, in decibels, the Input must be increased to maintain original output.

Negative feedback continued

The total output voltage with feedback is

$$
\begin{equation*}
E+N+D=e+\frac{n}{1-A \beta}+\frac{d}{1-A \beta} \tag{1}
\end{equation*}
$$

It is assumed that the input signal to the amplifier is increased when negative feedback is applied, keeping $E=$ e.

11 - A β) is a measure of the amount of feedback. By definition, the amount of feedback expressed in decibels is
$20 \log _{10}|1-A \beta|$
Voltage gain with feedback $=\frac{A}{1-A B}$
and change of gain $=\frac{1}{1-A \beta}$
If the amount of feedback is large, i.e., $-A \beta \gg 1$,
voltage gain becomes $-1 / \beta$ and so is independent of A.
In the general case when ϕ is not restricted to 0 or π
the voltage gain $=\frac{A}{\sqrt{1+|A \beta|^{2}-2|A \beta| \cos \phi}}$
and chenge of gain $=\frac{1}{\sqrt{1+|A \beta|^{2}-2|A \beta| \cos \phi}}$
Hence if $|A \beta| \gg 1$, the expression is substantially independent of ϕ.
On the polar diagram relating ($A \beta$) and ϕ (Nyquist diagram), the system is unstable if the point (1,0) is enclosed by the curve. Examples of Nyquist diagrams for feedback amplifiers will be found in the chapter on "Servo mechanisms".

Feedback amplifier with single beam-power tube

The use of the foregoing negative feedback formulas is illustrated by the amplifier circuit shown in Fig. 4.
The amplifier consists of an output stage using a $6 \mathrm{~V} 6-\mathrm{G}$ beam-power tetrode with feedback, driven by a resistance-coupled stage using a 6J7-G

Negative feedback continued

in a pentode connection. Except for resistors R_{1} and R_{2} which supply the feedback voltage, the circuit constants and tube characteristics are taken from published data.

The fraction of the output voltage to be fed back is determined by specifying that the total harmonic distortion is not to exceed 4 percent. The plate supply voltage is taken as 250 volts. At this voltage, the $6 \mathrm{~V} 6-\mathrm{G}$ has 8 -percent

Fig. 4-Feedback amplifer with single beam-power tube.
total harmonic distortion. From equation (1), it is seen that the distortion output voltage with feedback is

$$
D=\frac{d}{1-A \beta}
$$

This may be written as

$$
1-A \beta=\frac{d}{D}
$$

where
$\frac{d}{D}=\frac{8}{4}=2 \quad 1-A \beta=2 \quad \beta=-\frac{1}{A}$
and where $A=$ the voltage amplification of the amplifier without feedback.
The peak a-f voltage output of the 6V6-G under the assumed conditions is $E_{o}=\sqrt{4.5 \times 5000 \times 2}=212$ volts

This voltage is obtained with a peak a-f grid voltage of 12.5 volts so that the voltage gain of this stage without feedback is
$A=\frac{212}{12.5}=17$

Hence $\beta=-\frac{1}{A}=-\frac{1}{17}=-0.0589$ or 5.9 percent, approximately.
The voltage gain of the output stage with feedback is computed from equation (3) as follows
$A^{\prime}=\frac{A}{1-A \beta}=\frac{17}{2}=8.5$
and the change of gain due to feedback by equation (4) is thus
$\frac{1}{1-A \beta}=0.5$
The required amount of feedback voltage is obtained by choosing suitable values for R_{1} and R_{2}. The feedback voltage on the grid of the 6V6-G is reduced by the effect of R_{g}, R_{L} and the plate resistance of the 6J7-G. The effective grid resistance is
$R_{\sigma}^{\prime}=\frac{R_{0} r_{p}}{R_{0}+r_{p}}$
where $R_{d}=0.5$ megohm.
This is the maximum allowable resistance in the grid circuit of the 6V6-G with cathode bias.
$r_{p}=4$ megohms $=$ the plate resistance of the 6J7-G tube
$R_{\sigma}^{\prime}=\frac{4 \times 0.5}{4+0.5}=0.445$ megohm
The fraction of the feedback voltage across R_{2} that appears at the grid of the $6 \mathrm{~V} 6-\mathrm{G}$ is
$\frac{R_{g}^{\prime}}{R_{g}^{\prime}+R_{\mathrm{L}}}=\frac{0.445}{0.445+0.25}=0.64$
where $R_{L}=0.25$ megohm.
Thus the voltage across R_{2} to give the required feedback must be
$\frac{5.9}{0.64}=9.2$ percent of the output voltage.
This voltage will be obtained if $R_{1}=50,000$ ohms and $R_{2}=5000$ ohms. This resistance combination gives a feedback voltage ratio of
$\frac{5000 \times 100}{50,000+5000} \cdot 9.1$ percent of the output voltage \cdot

In a transformer-coupled output stage, the effect of phase shift on the gain with feedback does not become appreciable until a noticeable decrease in gain without feedback also occurs. In the high-frequency range, a phase shift of 25 degrees lagging is accompanied by a 10 -percent decrease in gain. For this frequency, the gain with feedback is computed from (6).
$A^{\prime}=\frac{A}{\sqrt{1+|A \beta|^{2}-2|A \beta| \cos \phi}}$
where $A=15.3, \phi=155^{\circ}, \cos \phi=-0.906, \quad \beta=0.059$.
$A^{\prime}=\frac{15.3}{\sqrt{1+|0.9|^{2}+2|0.9| 0.906}}=\frac{15.3}{\sqrt{3.44}}=\frac{15.3}{1.85}=8.27$
The change of gain with feedback is computed from (7).
$\frac{1}{\sqrt{1+|A \beta|^{2}-2|A \beta| \cos \phi}}=\frac{1}{1.85}=0.541$
If this gain with feedback is compared with the value of 8.5 for the case of no phase shift, it is seen that the effect of frequency on the gain is only 2.7 percent with feedback compared to 10 percent without feedback.

The change of gain with feedback is 0.541 times the gain without feedback whereas in the frequency range where there is no phase shift, the corresponding value is 0.5 . This quantity is 0.511 when there is phase shift but no decrease of gain without feedback.

Distortion

A rapid indication of the harmonic content of an alternating source is given by the distortion factor which is expressed as a percentage.

$$
\binom{\text { Distortion }}{\text { factor }}=\sqrt{\frac{\text { (sum of squares of amplitudes of harmonics) }}{\text { (square of amplitude of fundamental) }}} \times 100 \text { percent }
$$

If this factor is reasonably small, say less than 10 percent, the error involved in measuring it,

is also small. This latter is measured by the distortion-factor meter.

262

Capacitive-differentiation ampliflers

Capacitive-differentiation systems employ a series-RC circuit (Fig. 51 with the output voltage e_{2} taken across R_{2}. The latter includes the resistance of the load, which is assumed to have a negligible reactive component compared to R_{2}. In many applications the circuit time constant $R C \ll T$, where T is the periad of the input pulse e_{1}. Thus, transients constitute a minor part of the response, which is essentially a steady-state phenomenon within the time domain of the pulse.

Differential equation

$e_{1}=e_{c}+R C \frac{d e_{e}}{d t}$
where $R=R_{1}+R_{2}$. Then

Fig. 5-Copacitive differentiation.
$e_{2}=R_{2} C \frac{d e_{e}}{d t}=\frac{R_{2}}{R}\left(e_{1}-e_{c}\right)$
When the rise and decay times of the pulse are each $\gg R C$,
$e_{2} \approx R_{2} C \frac{d e_{1}}{d t}$

Trapezoidal input pulse

When T_{1}, T_{2}, and T_{3} are each much greater than $R C$, the output response e_{2} is approximately rectangular, as shown in Fig. 6.
$E_{21}=E_{1} R_{2} C / T_{1}$
$E_{23}=-E_{1} R_{2} C / T_{3}$
More accurate!y, for any value of T, but for widely spaced input pulses,

Fig. 6-Trapezoidal input pulso and principal response.

If $0<t<T_{1}: e_{21}=\frac{E_{1} R_{2} C}{T_{1}}\left[1-\exp \left(-\frac{t}{R C}\right)\right]$
$T_{1}<t<\left(T_{1}+T_{2}\right): e_{22}=\frac{E_{1} R_{2} C}{T_{1}}\left[\exp \left(\frac{T_{1}}{R C}\right)-1\right] \exp \left(-\frac{t}{R C}\right)$
Note: $\exp \left(-\frac{t}{R C}\right)=\epsilon^{-1 / R C}$

$$
\begin{aligned}
\left|T_{1}+T_{2}\right|<+<T: e_{23}= & -\frac{E_{1} R_{2} C}{T_{3}}\left\{1-\left\{\frac{T_{3}}{T_{1}}\left[\exp \left(\frac{T_{1}}{R C}\right)-1\right]\right.\right. \\
& \left.\left.+\exp \left(\frac{T_{1}+T_{2}}{R C}\right)\right\} \exp \left(-\frac{1}{R C}\right)\right\} \\
1>T: e_{2 x}= & \frac{E_{1} R_{2} C}{T_{3}}\left\{\frac{T_{3}}{T_{1}}\right.
\end{aligned} \begin{aligned}
& \left.\exp \left(\frac{T_{1}}{R C}\right)-1\right] \\
& \left.\quad+\exp \left(\frac{T_{1}+T_{2}}{R C}\right)-\exp \left(\frac{T}{R C}\right)\right\} \exp \left(-\frac{1}{R C}\right) \\
= & A \exp \left(-\frac{t}{R C}\right)
\end{aligned}
$$

when $T_{2} \gg R C: \quad e_{23}=-\frac{E_{1} R_{2} C}{T_{3}}\left[1-\exp \left(-\frac{t_{3}}{R C}\right)\right]$
For a long train of identical putses repeated at regular intervals of T_{r} between starting points of adjacent pulses, add to each of the above $\left\{e_{21}, e_{22}, e_{23}\right.$, and $\left.e_{2 z}\right)$ a term
$\mathrm{e}_{20}=\frac{A}{\exp \left(\frac{T_{r}}{R C}\right)-1} \exp \left(-\frac{1}{R C}\right)$
where A is defined in the expression for $e_{2 z}$ above.

Fig. 7-Single rectangular pulse and response for I much shorter than in Fig. 6.

Rectangular input pulse

Fig. 7 is a special case of Fig. 6 , with $T_{1}=T_{3}=0$.
$0<t<T: \quad e_{21}=\frac{R_{2}}{R} E_{1} \exp \left(-\frac{1}{R C}\right)=E_{21} \exp \left(-\frac{t}{R C}\right)$

$$
\begin{aligned}
t>T: \quad e_{23} & =-\frac{R_{2}}{R} E_{1}\left[\exp \left(\frac{T}{R C}\right)-1\right] \exp \left(-\frac{1}{R C}\right) \\
& =E_{23} \exp \left(-\frac{t_{3}}{R C}\right)
\end{aligned}
$$

where $E_{23}=-\frac{R_{2}}{R} E_{1}\left[1-\exp \left(-\frac{T}{R C}\right)\right]$

Triangular input pulse

Fig. 8 is a special case of the trapezoidal pulse, with $T_{2}=0$. The total output amplitude is approximately
$\left|E_{21}\right|+\left|E_{23}\right|=\left|E_{1}\right| R_{2} C \frac{T_{1}+T_{3}}{T_{1} T_{3}}$
which is a maximum

Fig. 9-Capacitive-differentiation circuit with cathode-follower source.

Fig. - Triongulor pulse-special case of Fig. 6.

fig. 10-Capacitive-differentiation circuit with platecircuit source.

Schematic diagrams

Two capacitive-differentiation circuits using vacuum tubes as driving sources are given in Figs. 9 and 10.

Capacitive-integration ampliflers

Capacitive-integration circuits employ a series-RC circuit (fig. III with the output voltage e_{2} taken across capacitor C. The load admittance is accounted for by including its capacitance in C; while its shunt resistance is combined with R_{1} and R_{2} to form a voltage divider treated by Thevenin's theorem. In contrast with capacitive differentiation, time constant RC $\gg T$ in many applications. Thus, the output voltage is composed mostly of the early part of a transient response to the input voltage wave. For a long repeated train of identical input pulses, this repeated transient response becomes steady-state.

Circuit equations

$e_{1}=e_{2}+R C \frac{d e_{2}}{d t}$
where $R=R_{1}+R_{2}$.

Fig. 11 -Capacitive integration.

When $t \ll R C$ and E_{20} is very small compared to the amplitude of e_{1},
$e_{2} \approx E_{20}+\frac{1}{R C} \int_{0}^{t} e_{1} d t$
where $E_{20}=$ value of e_{2} at time $t=0$.

Rectangular input-wave train

See Fig. 12.
$E_{\mathrm{av}}=\frac{1}{T} \int_{0}^{T} e_{1} d t$

Then
$E_{11} T_{1}+E_{12} T_{2}=0$

Fig. 12-Rectangular inpulwove troin at top. Below, output wave on an exaggerated volfage seale.

After equilibrium or steady-state has been established,
$e_{21}=E_{\mathrm{av}}+E_{11}\left[1-\exp \left(-\frac{t_{1}}{R C}\right)\right]+E_{21} \exp \left(-\frac{t_{1}}{R C}\right)$
$e_{22}=E_{\mathrm{av}}+E_{12}\left[1-\exp \left(-\frac{t_{2}}{R C}\right)\right]+E_{22} \exp \left(-\frac{t_{2}}{R C}\right)$

If the steady-state has not been established at time $f_{1}=0$, add to e_{2} the term
$\left(E_{20}-E_{\mathrm{av}}-E_{21}\right) \exp \left(-\frac{f_{1}}{R C}\right)$

When $T_{1}=T_{2}=T / 2$, then
$E_{11}=-E_{12}=E_{1}$
$E_{2}=E_{22}=-E_{21}=E_{1} \tanh (T / 4 R C)$

Cápacitive-integration amplifiers continued

Approximately, for any T_{1} and T_{2}, provided $T \ll R C$,
$0<t_{1}<T_{1}: \quad e_{21}=E_{\text {av }}-E_{2}\left(1-2 t_{1} / T_{1}\right)$
$0<t_{2}<T_{2}: \quad e_{22}=E_{\text {av }}+E_{2}\left(1-2 t_{2} / T_{2}\right)$
where $E_{2}=E_{22}=-E_{21}=E_{11} T_{1} / 2 R C$

$$
=-E_{12} T_{2} / 2 R C .
$$

Error: Due to assuming a linear outputvoltage wave (Fig. 13) is
$E_{\Delta} / E_{2} \approx T / 8 R C$
when $T_{1}=T_{2}=T / 2$. The error in E_{2} due to setting tanh $(T / 4 R C)=T / 4 R C$ is comparatively negligible. When $T / R C=0.7$, the approximate error in E_{2} is only 1 percent. However, the error $E_{د}$ is 1 percent of E_{2} when $T / R C=0.08$.

Biased rectangular input wave

In Fig. 14, when $\left(T_{1}+T_{2}\right) \ll R C$, and $E_{20}=0$ at $t=0$, the output voltage approximates a series of steps.

Fig. 13 -Errar EA from assuming a linear autput idashed line).

Fig. 14-Rectangular inpul wave gives stepped autput.
$E_{2}=E_{1} T_{1} / R C$

Triangular input wave

In Fig. 15, when $\left(T_{1}+T_{2}\right) \ll R C$, and after the steady-state has been established, then, approximately,
$0<t_{1}<T_{1}:$
$e_{21}=E_{20}+E_{21}-4 E_{21}\left(\frac{t_{1}}{T_{1}}-\frac{1}{2}\right)$
$0<t_{2}<T_{2}$:
$\mathrm{e}_{22}=E_{20}+E_{22}-4 E_{22}\left(\frac{t_{2}}{T_{2}}-\frac{1}{2}\right)$
where
$E_{20}=E_{1}\left(T_{2}-T_{1}\right) / 6 R C$
$E_{21}=E_{1} T_{1} / 4 R C$
$E_{22}=-E_{1} T_{2} / 4 R C$

Fig. 15-Triangular input wave at top. Below, parabolic output wove on an exaggerated valfage scole.

Capacitive-integration ampliflers continued

Schematic diagrams

Two capacitive-integration circuits using vacuum fubes as sources are given in Figs. 16 and 17.

Fig. 16 (right)-Capacitive-integration eircuit with cathode-follower source.

Fig. 17 (right)-Capacitive-integration eircult with plate-circuitsource. $C D>C$ and $R^{\prime} \gg R$

Nonsinusoidal generators

Free-running zero-bias symmetrical multivibrator
Exact equation for semiperiod (Figs. 18 and 19):
$J_{1}=\left(R_{01}+\frac{R_{12 r_{p}}}{R_{12}+r_{p}}\right) C_{1} \log _{e} \frac{E_{b}-E_{m}}{E_{x}}$

Fig. 18-Schematic diagram of symmetrical multivibrator and voltage waveforms on tube elements.

268

Nonsinusoidal generators

where ${ }^{\circ}$

$$
J=J_{1}+J_{2}=1 / f, J_{1}=J_{2}, R_{01}=R_{a 2}, C_{1}=C_{2}
$$

$f=$ repetition frequency in cycles/second
$\mathbf{J}=$ period in seconds
$J_{1}=$ semiperiod in seconds
$r_{p}=$ plate resistance of tube in ohms
$E_{b}=$ plate-supply voltage
$E_{m}=$ minimum alternating voltage on plate
$E_{x}=$ cutoff voltage corresponding to E_{b}

Dlote voltoge
Fig. 19-Multivibrator potentiols on plate-charocteristic curve.
$C=$ capacitance in farads
Approximate equation for semiperiod, where $R_{01} \gg \frac{R_{t 2} r_{p}}{R_{l 2}+r_{p}}$, is

$$
J_{1}=R_{01} C_{1} \log _{e}\left(\frac{E_{b}-E_{m}}{E_{x}}\right)
$$

Equation for buildup time is

$$
\begin{aligned}
& J_{\mathrm{B}}=4\left(R_{l}+r_{p}\right) C=98 \text { percent of } \\
& \text { peak value }
\end{aligned}
$$

Free-running zero-bias unsymmetrical multivibrator

See symmetrical multivibrator for circuit and terminology; the wave forms are given in Fig. 20.

Fig. 20 - Unsymmetrical multivibrator woveforms.

$$
\begin{aligned}
& J_{1}=\left(R_{\bullet 1}+\frac{R_{t 2} r_{p}}{R_{t 2}+r_{p}}\right) C_{1} \log _{e}\left(\frac{E_{b 2}-E_{m 2}}{E_{x 1}}\right) \\
& J_{2}=\left(R_{02}+\frac{R_{l 1} r_{p}}{R_{l 1}+r_{p}}\right) C_{2} \log _{e}\left(\frac{E_{b 1}-E_{m 1}}{E_{x 2}}\right) \\
& J=J_{1}+J_{2}=1 / f
\end{aligned}
$$

Nonsinusoidal generators continued

Free-running positive-bias multivibrator

Equations for fractional period (Fig. 21) are

$$
\begin{aligned}
& J_{1}=\left(R_{01}+\frac{R_{l 2} r_{p}}{R_{l 2}+r_{p}}\right) C_{1} \log _{e}\left(\frac{E_{b 2}-E_{m 2}+E_{c 1}}{E_{c 1}+E_{x 1}}\right) \\
& J_{2}=\left(R_{02}+\frac{R_{l 1} r_{p}}{R_{l 1}+r_{p}}\right) C_{2} \log _{e}\left(\frac{E_{b 1}-E_{m 1}+E_{c 2}}{E_{c 2}+E_{x 2}}\right)
\end{aligned}
$$

where

$$
\mathfrak{J}=\mathfrak{J}_{1}+\mathfrak{J}_{2}=1 / f
$$

$E_{c}=$ positive bias voltage
$R_{c}=$ bias control

Fig. 21 -Free-running positive-bias multivibrator.

Driven (one-shot) multivibrator

Circuit is given in fig. 22. Equations are
$f_{m v}=f_{s}$
$f_{m v}=$ multivibrator frequency in cycles/second
$f_{s}=$ synchronizing frequency in cycles/second

Conditions of operation are
$f_{s}>f_{n}$ or $J_{s}<J_{n}$

Nonsinusoidal generators
 conlinued

where

Fig. 22-Driven (one-shot) multivibrator schematic and waveforms.

Phantastron*

The phantastron circuit is a time-delay device of the multivibrator type having high-accuracy possibilities. A negative pulse of about 30 -volts amplitude is applied at the input, and the circuit produces a delayed positive output pulse at the cathode of the 6SA7. The amount of delay is determined by the setting of the calibrated delay-control potentiometer, delay being linearly proportional to the output voltage of this potentiometer to within ± 0.5 microsecond. At any one setting of the delay control, the long-time variation in time delay is about half of the above figure.
Maximum time delay $\approx R_{g} C_{g}\left(E_{\max }-E_{\min }\right) / E_{b}$
where $E_{\max }$ is the maximum value of the control voltage, $E_{\min }$ is the minimum control voltage resulting in delay (40 to 60 volts), and E_{b} is the platesupply voltage.
Minimum delay $=0.02 \times($ maximum delay $)$

[^30]
Nonsinusoidal generators continued

For the circuit shown, $E_{\max }=225$ volts, $E_{\text {min }}=50$ volts, and delay range is 60 to 3000 microseconds.

Fig. 23-Schematic of a typical phantastron delay nefwork.

Free-running blocking oscillator

Conditions for blocking
$E_{1} / E_{0}<1-\epsilon^{1 / a t-\theta}$
where
$E_{0}=$ peak grid volts
$E_{1}=$ positive portion of grid swing in volts
$E_{c}=$ grid bias in volts
$f=$ frequency in cycles/second
$\alpha=$ grid time constant in seconds
$\epsilon=2.718=$ base of natural logs
$\theta=$ decrement of wave
a. Use strong feedback

$$
=E_{0} \text { is high }
$$

b. Use large grid time constant

$$
=\alpha \text { is large }
$$

c. Use high decrement (high losses)

$$
=\theta \text { is high }
$$

Pulse width is $J_{1} \approx 2 \sqrt{L C}$

Fig. 24-Free-running blocking oscillator-schematic and waveforms.

Fig. 25 -Blocking-oscillator grid voltoge.

where

$J_{1}=$ pulse width in seconds
$L=$ magnetizing inductance of transformer in henries
$C=$ interwinding capacitance of transformer in farads

$$
L=M \frac{n_{1}}{n_{2}}
$$

where
$M=$ mutual inductance between windings
$n_{1} / n_{2}=$ turns ratio of transformer
Repetition frequency
$J_{2}=\frac{1}{f}=R_{0} C_{0} \log _{e} \frac{E_{b}+E_{0}}{E_{b}+E_{x}}$

Fig. 26-Blocking oscillolor pulse waveform.
where

$$
\begin{aligned}
J_{2} & >J_{1} \\
f & =\text { repetition frequency in cycles/second } \\
E_{b} & =\text { plate-supply voltage } \\
E_{0} & =\text { maximum negative grid voltage } \\
E_{x} & =\text { grid cutoff in volts } \\
J & =J_{1}+J_{2}=1 / f
\end{aligned}
$$

Free-running positive-bias wide-frequency-range

blocking oscillator

Typical circuit values are
$R=0.5$ to 5 megohms
$C=50$ micromicrofarads to
0.1 microfarads
$R_{z}=10$ to 200 ohms
$R_{b}=50,000$ to 250,000 ohms
$\Delta f=100$ cycles to 100 kilocycles

Fig. 27 - Free-running posilivebios blocking oscillotor.

Nonsinusoidal generators

continued

Synchronized blocking oscillator

Operating conditions (Fig. 28) are
$f_{n}<f_{s}$ or $T_{n}>T_{s}$
where
$f_{n}=$ free-running frequency in cycles/ second
$f_{s}=$ synchronizing frequency in cycles/ second
$T_{n}=$ free-running period in seconds
$T_{s}=$ synchronizing period in seconds

Fig. 28-Synchronized blocking oscill otor.

Driven blocking oscillafor

Operating conditions (Fig. 29) are
a. Tube off unless positive voltage is applied to grid.
b. Signal input controls repetition frequency.
c. E_{c} is a high negative bias.

Free-running gas-tube oscillator

Equation for period (Fig. 30)
$5=\alpha R C\left(1+\alpha^{\prime} 2\right)$
where
$\mathfrak{J}=$ period in cycles/second
$\boldsymbol{\alpha}=\frac{E_{i}-E_{x}}{E-E_{x}}$
$E_{i}=$ ignition voltage
$E_{x}=$ extinction voltage
$E=$ plate-supply voltage

Flg. 29-Driven blocking osellIotor.

Fig. 30-Free-running gas-fube oscillator.

Nonsinusoidal generators continued

Velocity error $=$ change in velocity of cathode-ray-tube spot over trace period.
Maximum percentage error $=\alpha \times 100$
if $\alpha \ll 1$.
Position error $=$ deviation of cathode-ray-tube trace from linearity.
Maximum percentage error $=\frac{\alpha}{8} \times 100$
if $\alpha \ll 1$.

Synchronized gas-fube oscillator

Conditions for synchronization (Fig. 31) are
$f_{s}=N f_{n}$
where
$f_{n}=$ free-running frequency in cycles/second
$f_{s}=$ synchronizing frequency in cycles/second
$N=$ an integer
For $f_{s} \neq N f_{n}$, the maximum δf_{n} before slipping is given by
$\frac{E_{0}}{E_{s}} \frac{\delta f_{n}}{f_{s}}=1$
where
$\delta f_{n}=f_{n}-f_{s}$
$E_{0}=$ free-running ignition voltage
$E_{8}=$ synchronizing voltage referred to plate circuit

CHAPTER FOURTEEN

Introduction

The process of modulation of a radio-frequency carrier $y=A(t) \cos \gamma(t)$ is treated under two main headings as follows:
a. Modification of its amplitude $A(t)$
b. Modification of its phase $\gamma(t)$

For a harmonic oscillation, $\gamma(t)$ is replaced by $(\omega t+\phi)$, so that
$y=A(t) \cos (\omega)+\phi)=A(t) \cos \psi(t)$
A is the amplitude. The whole argument of the cosine $\psi(t)$ is the phase.

Amplitude modulation

In amplitude modulation (Fig. 11, ω is constant. The signal intelligence $f(t)$ is made to control the amplitude parameter of the carrier by the relation

$$
\begin{aligned}
A(t) & =\left[A_{0}+a f(t)\right] \\
& =A_{0}\left[1+m_{a} f(t)\right]
\end{aligned}
$$

where
$\psi(t)=\omega t+\phi$
$\omega=$ angular carrier frequency
$\phi=$ carrier phase constant

Fig. 1-Sideband and vector representation of amplifude modulation for a single
sinusoldal modulation frequency (acos ρ).

276

Amplitude modulation continued

$A_{0}=$ amplitude of the unmodulated carrier
$\mathrm{a}=$ maximum amplitude of modulating function
$f(t)=$ generally, a continuous function of time representing the signal; $0 \leqslant f(t) \leqslant 1$
$m_{a}=a / A_{0}=$ degree of amplitude modulation; $0 \leqslant m_{a}<1$
$y=A_{0}\left[1+m_{a} f(t)\right] \cos \left\{\omega_{0} t+\phi \mid\right.$
For a signal $f(t)$ represented by a sum of sinusoidal components
$f(t)=\sum_{K=1}^{K=M} a_{K} \cos \left(\rho_{K^{t}}+\theta_{K}\right)$
where ρ_{K} is the angular frequency of the modulating signal and θ_{K} is the constant part of its phase.
Assuming the system is linear, each frequency component ρ_{K} gives rise to a pair of sidebands $\left(\omega+\rho_{K}\right)$ and ($\omega-\rho_{K}$) symmetrically located about the carrier frequency ω.

$$
\left.\left.y=A_{0}\left[1+\frac{1}{A_{0}} \sum_{K=1}^{\kappa=3} a_{K} \cos \left(\rho_{K}\right\rangle+\theta_{K}\right)\right] \cos (\omega)+\phi\right)
$$

The constant component of the carrier phase ϕ is dropped for simplification.

$$
\begin{aligned}
& y=\underbrace{A_{0} \cos \left(\omega_{0} t\right)}_{\text {carrier }}+\underbrace{\left(\cos \omega_{0} t\right)\left[\sum_{K=1}^{K=1} a_{K} \cos \left(\rho_{K^{t}}+\theta_{K}\right)\right]}_{\text {modulation vectors }} \\
& =\underbrace{A_{0} \cos \omega_{0} t}_{\text {carrier }}+\underbrace{\frac{a_{1}}{2} \cos \left[\left(\omega_{0}+\rho_{1}\right) t+\theta_{1}\right]}_{\text {upper sideband }}+\underbrace{\frac{a_{1}}{2} \cos \left[\left(\omega_{0}-\rho_{1}\right) t-\theta_{1}\right]}_{\text {lower sideband }}+\cdots \\
& +\underbrace{\frac{a_{m}}{2} \cos \left[\left|\omega_{0}+\rho_{m}\right| 广+\theta_{m}\right]}_{\text {upper sideband }}+\underbrace{\frac{a_{m}}{2} \cos \left[\left(\omega_{0}-\rho_{m} \mid \ell-\theta_{m}\right]\right.}_{\text {lower sideband }}
\end{aligned}
$$

Degree of modulation $=\frac{1}{A_{0}} \sum_{k=1}^{K=m} a_{k}$ for ρ 's not harmonically related.

$$
\text { Percent modulation }=\frac{(\text { crest ampl })-(\text { trough ampl })}{(\text { crest ampl })+(\text { trough ampl })} \times 100
$$

To determine the modulation percentage from an oscillogram of type illustrated apply measuraments A and B to scales A and B and read percentage from center scale. Any units of measurement may be used.
Example: $A=3$ inches, $B=0.7$ inches $=62$-parcent modulation.

Fig. 2-Modulotion percentage from oscillograms.

278

Amplitude modulation continued

Percent modulation may be measured by means of an oscilloscope, the modulated carrier wave being applied to the vertical plates and the modulating voltage wave to the horizontal plates. The resulting trapezoidal pattern and a nomograph for computing percent modulation are shown in Fig. 2. The dimensions A
 and B in that figure are proportional to the crest amplitude and trough amplitude, respectively.

Peak voltage at crest for ρ 's not harmonically related:
$A_{\text {creat }}=A_{0, ~ r m s}\left[1+\frac{1}{A_{0}} \sum_{K=1}^{\kappa=m} o_{K}\right] \times \sqrt{ } 2$
Effective value of the modulated wave in general:

$$
A_{e \pi}=A_{0, \mathrm{rms}}\left[1+\frac{1}{A_{0}^{2}} \sum_{K=1}^{K=m} a_{K}^{2}\right]^{\frac{1}{2}}
$$

Angle modulation

All sinusoidal angle modulations derived from the harmonic oscillation $y=A \cos (\omega t+\phi)$ can be expressed in the form

$$
\begin{aligned}
y & =A \cos \psi(t) \\
& =A \cos \left(\omega_{0} t+\Delta \theta \cos \rho t\right)
\end{aligned}
$$

where the oscillating component $\Delta \theta \cos \rho f$ of the phase excursion is determined by the type of angular modulation used. In all angle modulations A is constant.

Frequency modulation

$y=A_{0} \cos \psi(t)$
The signal intelligence $f(t)$ is made to control the instantaneous frequency parameter of the carrier by the relation

$$
\begin{aligned}
\omega(t) & =\omega_{0}+\Delta \omega f(t) \\
& =\frac{d \psi(t)}{d t}
\end{aligned}
$$

Angle modulation continued

where

$$
\omega(t)=\text { instantaneous frequency }
$$

$$
=d \psi(t) / d t
$$

$\psi(t)=\int \omega(t) d t$
$\omega_{0}=$ frequency of unmodulated carrier
$\Delta \omega=$ maximum instantaneous frequency excursion from ω_{0}
For single-frequency modulation $f(f)=\cos \rho t$,
$y=A \cos \left(\omega_{0} t+\frac{\Delta \omega}{\rho} \sin \rho t\right)$
$\Delta \omega / \rho=\Delta \theta$ (in radians) is the modulation index. The phase excursion $\Delta \theta$ is inversely proportional to the modulating frequency ρ. In general for broadcast applications, $\Delta \omega \ll \omega_{0}$ and $\Delta \theta \gg 1$.

Phase modulation

$y=A_{0} \cos \psi(t)$

The signal intelligence $f(t)$ is made to control the instantaneous phase excursions of the carrier by the relation $\delta \theta=\Delta \theta f(t)$.

$$
\begin{aligned}
\psi(t) & =\left[\omega_{0} t+\Delta \theta f(t)\right]=\int_{0}^{1} \omega(t) d t \\
y & =A \cos \left[\omega_{0} t+\Delta \theta f(t)\right]
\end{aligned}
$$

For sinusoidal modulation $f(t)=\cos \rho t$,
$y=A \cos \left(\omega_{0} t+\Delta \theta \cos \rho t\right)$
Maximum phase excursion is independent of the modulating frequency ρ. The instantaneous frequency of the phase-modulated wave is given by the derivative of its total phase:
$\omega(t)=d \psi(t) / d t=\left(\omega_{0}-\rho \Delta \theta \sin \rho t\right)$

$$
\delta \omega=\omega(t)-\omega_{0}=-\rho \Delta \theta \sin \rho t
$$

Maximum frequency excursion $\Delta \omega=-\rho \Delta \theta$ is proportional to the modulation frequency ρ.

Sideband energy distribution in angle modulation

$y=A \cos \left(\omega_{0} t+\Delta \theta \cos \rho t\right)$
for $\Delta \theta \ll 0.2$ and a single sinusoidal modulation. See fig. 3.

$$
\begin{aligned}
y & =A(\underbrace{\cos \omega_{0} t}_{\text {corrier }}-\underbrace{\left.\Delta \theta \cos \rho t \sin \omega_{0} t\right)}_{\text {modulotion vector }} \\
& =A[\underbrace{\cos \omega_{0}^{t}}_{\text {corrier }}-\underbrace{\frac{\Delta \theta}{2} \sin \left(\omega_{0}+\rho\right) t}_{\text {upper sidebond }}-\underbrace{\frac{\Delta \theta}{2} \sin \left(\omega_{0}-\rho\right) t}_{\text {lower sidebond }}]
\end{aligned}
$$

Frequency spectrum of angle modulation

No restrictions on $\Delta \theta$.
$y=A \cos \left(\omega_{0} t+\Delta \theta \cos \rho t\right)$

Fig. 3-Sideband and modulation vector representation of ongle modulation for $\Delta \theta \ll 0.2$ as well as for amplitude modulation.

Angle modulation continued

$$
\begin{aligned}
y=A\left[J_{0}(\Delta \theta) \cos \omega_{0} t\right. & -2 J_{1}(\Delta \theta) \cos \rho t \sin \omega_{0} t \\
& +2 J_{2}(\Delta \theta) \sin 2 \rho t \cos \omega_{0} t \\
& -2 J_{3}(\Delta \theta) \sin 3 \rho t \sin \omega_{0} t \\
& +\ldots \ldots]
\end{aligned}
$$

This gives the carrier modulation vectors. See Fig. 4.

The sideband frequencies are given by

$$
\begin{aligned}
y=A\left\{J_{0}(\Delta \theta) \cos \omega_{0} t\right. & -J_{1}(\Delta \theta)\left[\sin \left(\omega_{0}+\rho\right) t+\sin \left(\omega_{0}-\rho\right) \nmid\right] \\
& +J_{2}(\Delta \theta)\left[\sin \left(\omega_{0}+2 \rho\right) \dagger+\sin \left(\omega_{0}-2 \rho\right) \nmid\right] \\
& \left.-J_{3}(\Delta \theta)\left[\sin \left(\omega_{0}+3 \rho\right) \dagger+\sin \left(\omega_{0}-3 \rho\right) t\right]\right\}
\end{aligned}
$$

Here, $J_{n}(\Delta \theta)$ is the Bessel function of the first kind and nth order with argument $\Delta \theta$. An expansion of $J_{n}(\Delta \theta)$ in a series is given on page 614, tables of Bessel functions are on pages 636 to 639; and a 3-dimensional representation of Bessel functions is given in Fig. 5. The carrier and sideband amplitudes are oscillating functions of $\Delta \theta$:
Carrier vanishes for $\quad \Delta \theta$ radians $=2.40 ; 5.52 ; 8.65+n \pi$
First sideband vanishes for $\Delta \theta$ radians $=3.83 ; 7.02 ; 10.17 ; 13.32+n \pi$
The property of vanishing carrier is used frequently in the measurement of $\Delta \omega$ in frequency modulation. This follows from $\Delta \omega=(\Delta \theta)(\rho)$. Knowing $\Delta \theta$ and $\rho, \Delta \omega$ is computed.

Angle modulation cantinued

The approximate number of important sidebands and the corresponding bandwidth necessary for transmission are as follows, where $f=\rho / 2 \pi$ and $\Delta f=\Delta \omega / 2 \pi$,

mf_{f}	$\mathbf{5}$	$\mathbf{1 0}$	$\mathbf{2 0}$
Signal frequency f	$0.2 \Delta f$	$0.1 \Delta f$	$0.05 \Delta f$
Number of pairs of sidebands	7	13	23
Bandwidth	$14 f$	$26 f$	$46 f$
	$2.8 \Delta f$	$2.6 \Delta f$	$2.3 \Delta f$

This table is based on neglecting sidebands in the outer regions where all amplitudes are less than $0.02 \mathrm{~A}_{0}$. The amplitude below which the sidebands are neglected, and the resultant bandwidth, will depend on the particular application and the quality of transmission desired.

Fig. 5-3-dimensional representation of Bessel functions.

Interference and noise in AM and FM

Interference rejection in amplitude and frequency modulations

Simplest case of interference; two unmodulated carriers:

$$
\begin{aligned}
e_{0} & =\text { desired signal } \\
& =E_{0} \sin \omega_{0} t \\
e_{1} & =\text { interfering signal } \\
& =E_{1} \sin \omega_{1} t
\end{aligned}
$$

The vectorial addition of these two results in a voltage that has both amplitude and frequency modulation.

Amplitude-modulation interference

$E_{\imath}=$ resultant voltage
$\approx E_{0}\left[1+\frac{E_{1}}{E_{0}} \cos \left(\omega_{1}-\omega_{0}\right)\right]$ for $E_{1} \ll E_{0}$

The interference results in the amplitude modulation of the original carrier by a beat frequency equal to $\left(\omega_{0}-\omega_{1}\right)$ having a modulation index equal to E_{1} / E_{0}.

Frequency-modulation interference

$\omega(t)=$ resultant instantaneous frequency

$$
\left.=\omega_{0}+\frac{E_{1}}{E}\left(\omega_{1}-\omega_{0}\right) \cos \left(\omega_{1}-\omega_{0}\right)\right\rangle \text { for } E_{1} \ll E_{0}
$$

$\Delta \omega_{1}=\omega(t)-\omega_{0}=\frac{E_{1}}{E}\left(\omega_{1}-\omega_{0}\right) \cos \left(\omega_{1}-\omega_{0}\right) t$

The interference results in frequency modulation of the original carrier by a beat frequency equal to $\left(\omega_{0}-\omega_{1}\right)$ having a frequency-modulation index equal to $E_{1}\left(\omega_{1}-\omega_{0}\right) / E \Delta \omega$
$\left(\frac{\text { interference amplitude modulation }}{\text { interference frequency modulation }}\right)=\frac{\Delta \omega}{\left(\omega_{1}-\omega_{0}\right)}$
where $\Delta \omega$ is the desired frequency deviation.

Noise reduction in frequency modulation

The noise-suppressing properties of frequency modulation apply when the signal carrier level at the frequency discriminator is greater than the noise level. When the noise level exceeds the carrier signal level, the noise suppresses the signal. For a given amount of noise at a receiver there is a sharp threshold level of frequency-modulation signal above which the noise is suppressed and below which the signal is suppressed. This threshold has been defined as the improvement threshold. For the condition where the threshold level is exceeded:

Random noise: Assuming the receivers have uniform gain in the pass band, the resultant noise is proportional to the square of the voltage components over the spectrum of noise frequencies:
$\left(\frac{F-M \text { signal } / \text { random-noise ratio }}{A-M \text { signal } / \text { random-noise ratio }}\right)=\sqrt{3} \frac{\Delta \omega}{\rho}=\sqrt{3} \Delta \theta$

Impulse noise: Noise voltages add directly:
$\left(\frac{\mathrm{F}-\mathrm{M} \text { signal/impulse-noise ratio }}{\mathrm{A}-\mathrm{M} \text { signal/impulse-noise ratio }}\right)=2 \frac{\Delta \omega}{\rho}=2 \Delta \theta$

Fig. 6-Improvement threshoid for frequency modulation. Deviation $\Delta \theta$ offects amount of signal required to reach threshold and also amount of noise suppression oblained. Solid line shows peok, and dotted line the root-meansquare noise in the output.

Courlesy of McGraw•Hill Book Compony

decibels AM carrier/peak noise

The carrier signal required to reach the improvement threshold depends on the frequency deviation of the incoming signal. The greater the deviation, the greater the signal required to reach the improvement threshold, but the greater the noise suppression, once this level is reached. Fig. 6 illustrates this characteristic.

In amplitude modulation, the presence of the carrier increases the background noise in a recciver. In frequency modulation, the presence of the carrier decreases the background noise, since the carrier effectively suppresses it.

Pulse modulation

Pulse-modulation methods

There are four general classes of pulse-modulation methods:
a. Modulation methods in which the values of instantaneous samples of the modulating wave are caused to modulate the time of occurrence of some characteristic of a pulse carrier. This class has been called pulse-time modulation, or PTM.)
b. A second class in which the values of the instantaneous samples of the modulating wave are caused to modulate the amplitude of a pulse carrier with the time of occurrence of the individual pulses being fixed.
c. That class in which the modulating wave is sampled, quantized, and coded. This method has been called pulse-code modulation, or PCM.I
d. The class that includes composite methods combining the modulation characteristics of the aforementioned classes.

Class a

Pulse-position modulation (PPM): Pulse-time modulation (PTM) in which the value of each instantaneous sample of a modulating wave is caused to modulate the position.
Pulse-duration modulation (PDM): Pulse-time modulation in which the value of each instantaneous sample of the modulating wave is caused to modulate the duration of a pulse. Also called pulse-width modulation (PWM).
Pulse-frequency modulation (PFM): Modulation in which the modulating wave is used to frequency-modulate a carrier wave consisting of a series of direct-current pulses.
Additional methods: Which include modified-time-reference and pulseshape modulation.

Class b

Pulse-amplitude modulation (PAM): Used when the modulating wave is caused to amplitude-modulate a pulse carrier. Forms of this type of modulation include unidirectional PAM and bidirectional PAM.

Class c

Binary pulse-code modulation (PCM): Pulse-code modulation in which the code for each element of information consists of one two distinct kinds or values, such as pulses and spaces.

Pulse modulation

Ternary pulse-code modulation (PCM): Pulse-code modulation in which the code for each element of information consists of any one of three distinct kinds or values, such as positive pulses, negative pulses, and spaces.
N-ary pulse-code modulation (PCM): Pulse-code modulation in which the code for each element of information consists of any one of distinct kinds or values.

Terminology

Pulse: A single disturbance characterized by the rise and decay in time or spacs, or both, of a quantity whose value is normally constant.

Unidirectional pulses: Single-polarity pulses that all rise in the same direction.
Bidirectional pulses: Pulses some of which rise in one direction and the remainder in the other direction.
Pulse duration: Equal to the duration of rectangular pulses whose energy and peak power equal those of the pulse in question.
Pulse-rise time: The time required for the instantaneous amplitude to go from 10 percent to 90 percent of the peak value.
Pulse-decay time: The time required for the instantaneous amplitude to go from 90 percent to 10 percent of the peak value.
Transducer: A device by means of which energy can flow from one or more transmission systems to one or more other transmission systems.
Clipper: A transducer that gives output only when the input exceeds the critical value.
Limiter: A transducer whose output is constant for all inputs above a critical value.
Time gate: A transducer that gives output only during chosen time intervals.
Improvement threshold: In pulse-modulation systems, the condition that exists when the ratio of peak-pulse voltage to peak-noise voltage exceeds 2 after selection and before any nonlinear process such as amplitude clipping and limiting.
Quantization: A process wherein the complete range of instantaneous values of a wave is divided into a finite number of smaller subranges, each of which is represented by an assigned or quantized value within the subranges.
Code: A plan for representing each of a finite number of values as a particularly arrangement of discrete events.
Code element: One of the discrete events in a code.

Pulse modulation continued

Code character: A particular arrangement of code elements used in a code to represent a single value.

Baud: The unit of signaling speed equal to the number of code elements per second.

Level: The number by which a given subrange of a quantized signal may be identified.

Pulse regeneration: The process of replacing each code element by a new element standardized in timing and magnitude.

Quantization distortion: The inherent distortion introduced in the process of quantization. This is sometimes referred to as quantization noise.

Sampling

The modulation is impressed on the pulses by the process known as sampling, wherein the amplitude of the modulating signal is determined at the time of occurrence of the pulse. A characteristic of the pulse, such as its time position or amplitude, is then affected by the signal amplitude at that instant. This process, for the several types of modulations, is illustrated in Fig. 7.

The minimum ratio of sampling frequency f_{p} to modulating frequency bandwidth $\left(f_{h}-f_{l}\right)$, where f_{h} and f_{l} are the high- and low-frequency limits of the modulating-frequency band, respectively, is given by
$f_{p} /\left(f_{h}-f_{l}\right)=2$
In practice, a larger ratio is utilized to permit the sampling components to be separated from the voice components with an economical filter. Consequently, a ratio of about 2.5 is used.

Pulse bandwidth

The bandwidth necessary to transmit a video pulse

Fig. 7-Pulse trains of single chamnels for various pulse systems, showing effect of modulation on am. plitude and time-spacing of subcarrier pulses. The modulating signal is at the top.

Pulse modulation continued

train is determined by the rise and decay times of the pulse. This bandwidth F_{0} is approximately given by
$F_{0}=1 / 2 t_{r}$
where t_{r} is the rise or decay time, whichever is the smaller.
The radio-frequency bandwidth F_{R} is then
$F_{R}=1 / t_{r}$
for amplitude-keyed radio-frequency carrier. Bandwidth is
$F_{R}=\frac{1}{f_{r}}(m+1)$
for frequency-keyed radio-frequency carrier where m is the index of modulation.

Signal-to-noise ratio

The signal/noise improvement factors (NIF) for the pulse subcarrier are as follows:

Pulse-amplitude modulation: If the minimum bandwidth, is used for transmission of PAM pulses, the signal/noise ratio at the receiver output is equal to that at the input to the receiver. The improvement factor is therefore unity.

Pulse-position modulation: By the use of wider bandwidths, an improvement in the signal/noise ratio at the receiver output may be obtained. This improvement is similar to that obtained by frequency modulation applied to a continuous-wave carrier. Since PPM is a constant-amplitude method of transmission, amplitude noise variations may be removed by limiting and clipping the pulses in the receiver. An improvement threshold is then established at which the signal/noise power ratio s / n at the receiver output is closely given by
$s / n=160\left(F_{v} f_{m}\right)^{2} \frac{f_{p}}{f_{h}-f_{l}}$
where I_{m} is the peak modulation displacement.
Pulse-code modulation: The output signal/noise ratio is extremely large after the improvement threshold is exceeded. However, because of the random nature of noise peaks, the exact threshold is indeterminate. The output

Pulse modulation

signal/noise ratio in decibels can be closely given in terms of the input power ratio by
(decibels output $s / n)=\frac{4.4}{N} \times($ input $s / n)$
where N is the order of the code.
For a binary-PCM system, $N=2$ and, therefore,
(decibels output s / n) $=2.2 \times\left(\right.$ input $s^{\prime} n$)
The overall radio-frequency-transmission sianal/noise ratio is determined by the product of the transmission and the pulse-subcarrier improvement factors. To calculate the overall output s / n ratio, the pulse-subcarrier signal/noise ratio is first determined using the radio-frequency modulationimprovement formula. This value of pulse s / n is substitut 3 d as the input s / n in the above equations.

Quantization

In generating pulse-code modulation, the process of quantization is introduced to enable the transformation of the sampled signal amplitude into a pulse code. This process divides the signal amplitude into a number of discrete levels. Quantization introduces a type of distortion that, because of its random nature, resembles noise. This distortion varies with the number of levels used to quantize the signal. The percent distortion D is given by
$D=\frac{1}{\sqrt{6} L} \times 100$
where L is the number of levels on one side of the zero axis.

Time-division mulfiplex

Pulse modulation is commonly used in time-division-multiplex systems. Because of the time space available between the modulated pulses, other pulses corresponding to other signal channels can be inserted if they are

Fig. 8-Time-multiplex froin of subcarrier pulses for 8 channels and marker pulse M for synchronization of recelver with transmitfer.

Pulse modulation

conlinued
in frequency synchronism. A multiplex train of pulses is shown in Fig. 8. It is common practice to use a channel or a portion of a channel for synchronization between the transmitter and the receiver. This pulse is shown as M in Fig. 8. This synchronizing pulse may be separated from the signal-carrying pulses by giving it some unique characteristic such as modulation at a submultiple of the sampling rate, wider duration, or by using two or more pulses with a fixed spacing.
An important characteristic of a multiplex system is the interchannel crosstalk. Such crosstalk can be kept to a reasonably low value by preventing excessive carryover between channel pulses.
Crosstalk between channels in a pulse-code-modulation system will arise if the carryover from the last pulse of a channel does not decay to one-half or less of the amplitude of the pulse at the time of the next channel.
For pulse-amplitude modulation, the requirement is more severe, since the crosstalk is directly proportional to the amplitude of the decaying pulse at the time of occurrence of the following channel. Thus if the pulse decays over a time T in an exponential manner, such as might be caused by transmission through a resistance-capacitance network, the crosstalk ratio is then crosstalk ratio $=\exp \left[2 \pi F_{v} T\right]$
where F_{0} is measured at the 3 -decibel point.
For pulse-position modulation, the crosstalk ratio under the same conditions is
crosstalk ratio $=\frac{\exp \left[2 \pi F_{v} T\right]}{\sinh \left(2 \pi F_{0} t_{m}\right)} \frac{t_{m}}{t_{r}}$

Real form of Fourier series

For functions defined in the interval $-\pi$ to $+\pi$ or 0 to 2π, as illustrated below,

$$
\begin{align*}
f(x) & =\frac{A_{0}}{2}+\sum_{n=1}^{n=\infty}\left(A_{n} \cos n x+B_{n} \sin n x\right) \quad x \text { in radians } \tag{1}\\
& =\frac{A_{0}}{2}+\sum_{n=1}^{n=\infty} C_{n} \cos \left(n x+\phi_{n}\right) \tag{2}
\end{align*}
$$

where
$C_{n}=\sqrt{A_{n}^{2}+B_{n}^{2}}$
$\phi_{n}=\tan ^{-1}\left(-B_{n} / A_{n}\right)$

The coefficients A_{0}, A_{n}, and B_{n} are determined by
$A_{0}=\frac{1}{\pi} \int_{-\pi}^{\pi} f(x) d x \quad=\frac{1}{\pi} \int_{0}^{2 \pi} f(x) d x$
$A_{n}=\frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos n x d x=\frac{1}{\pi} \int_{0}^{2 \pi} f(x) \cos n x d x$
$B_{n}=\frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin n x d x=\frac{1}{\pi} \int_{0}^{2 \pi} f(x) \sin n x d x$

Arbifrary expansion interval

For functions defined in the intervals $-T / 2$ to $+T / 2$ or from 0 to T instead of from $-\pi$ to $+\pi$ or 0 to 2π, the fourier expansion is given by
$f(x)=\frac{A_{0}}{2}+\sum_{n=1}^{n=\infty}\left(A_{n} \cos 2 n \frac{\pi}{T} x+B_{n} \sin 2 n \frac{\pi}{T} x\right)$
and the coefficients by
$A_{n}=\frac{2}{T} \int_{-T / 2}^{T / 2} f(x) \cos \frac{2 n \pi x}{T} d x=\frac{2}{T} \int_{0}^{T} f(x) \cos \frac{2 n \pi x}{T} d x$
$B_{n}=\frac{2}{T} \int_{-T / 2}^{T / 2} f(x) \sin \frac{2 n \pi x}{T} d x=\frac{2}{T} \int_{0}^{T} f(x) \sin \frac{2 n \pi x}{T} d x$

Complex form of Fourier series

For functions defined in the interval $-\pi$ to $+\pi$,
$f(x)=\sum_{n=-\infty}^{n-+\infty} D_{n} e^{i n x}$
where

$$
D_{n}=\frac{A_{n}-j B_{n}}{2}
$$

$D_{-n}=\frac{A_{n}+j B_{n}}{2}$

$$
D_{0}=\frac{A_{0}}{2}
$$

The summation is over negative as well as positive integral values of n, including zero.

$$
\begin{equation*}
D_{n}=\frac{1}{2 \pi} \int_{-\pi}^{+\pi} f(x) e^{-j n x} d x \tag{7}
\end{equation*}
$$

where n takes on all positive and negative integral values including zero.
For the arbitrary expansion interval $-T / 2$ to $T / 2$ or 0 to T

$$
\begin{aligned}
f(x) & =\sum_{n=-\infty}^{n=+\infty} D_{n} \exp \left[j \frac{2 n \pi x}{T}\right] \\
D_{n} & =\frac{1}{T} \int_{0}^{T} f(x) \exp \left[-j \frac{2 n \pi x}{T}\right] d x
\end{aligned}
$$

Periodic functions

When the function $f(x)$, such as shown in the illustration on page 291 is periodic, i.e., every value of the function is repeated after each 2π interval, then the fourier expansions will continue to be valid throughout the whole range in which the functions are periodic.

Odd and even functions

If $f(x)$ is an odd function, i.e.,

$$
f(x)=-f(-x)
$$

Odd and even functions

continued

then all the coefficients of the cosine terms $\left(A_{n}\right)$ vanish and the Fourier series consists of sine terms alone.

If $f(x)$ is an even function, i.e.,
$f(x)=f(-x)$
then all the coefficients of the sine terms $\left(B_{n}\right)$ vanish and the Fourier series consists of cosine terms alone, and a possible constant.

The Fourier expansions of functions in general include both cosine and sine terms. Every function capable of Fourier expansion consists of the sum of an even and an odd part:
$f(x)=\underbrace{\frac{A_{0}}{2}+\sum_{n=1}^{n=\infty} A_{n} \cos n x}_{\text {oven }}+\underbrace{\sum_{n=1}^{n=\infty} B_{n} \sin n x}_{\text {odd }}$
To separate a general function $f(x)$ into its odd and even parts, use
$f(x) \equiv \underbrace{\frac{f(x)+f(-x)}{2}}_{\text {oven }}+\underbrace{\frac{f(x)-f(-x)}{2}}_{\text {odd }}$
Whenever possible choose the origin so that the function to be expanded is either odd or even.

Odd or even harmonics

An odd or even function may contain odd or even harmonics. The condition that causes a function $f(x)$ of period 2π to have only odd harmonics in its Fourier expansion is
$f(x)=-f(x+\pi)$

The condition that causes a function $f(x)$ of period 2π to have only even tharmonics in the Fourier expansion is
$f(x)=f(x+\pi)$
To separate a general function $f(x)$ into its odd and even harmonics use
$f(x) \equiv \underbrace{\frac{f(x)+f(x+\pi)}{2}}_{\text {even harmonics }}+\underbrace{\frac{f(x)-f(x+\pi)}{2}}_{\text {odd harmonics }}$

A periodic function may sometimes be changed from odd to even, and vice versa, but the presence of particular odd or even harmonics is unchanged by such a shift.

Graphical solution

If the function to be analyzed is not known analytically, a solution of the Fourier integral may be approximated by graphical means.

The period of the function is divided into a number of ordinates as indicated by the graph.

The values of these ordinates are recorded and the following computations made:

	Y_{0}	Y_{1}	Y_{2}	Y_{3}	Y_{4}	Y_{5}	Y_{6}
		Y_{11}	Y_{10}	Y_{9}	Y_{8}	Y_{7}	
	S_{0}	S_{1}	S_{2}	S_{3}	S_{4}	S_{5}	S_{6}
Sum							
Difference		d_{1}	d_{2}	d_{3}	d_{4}	d_{5}	

The sum terms are arranged as follows:

	So	S_{1}	S_{2}	S_{3}	(9)	S_{0}	S_{1}
	S_{6}	S_{5}	S_{4}			S_{2}	S_{3}
Sum	$\overline{S_{0}}$	$\overline{S_{1}}$	$\overline{S_{2}}$	S_{3}		$\overline{S_{i}}$	$\overline{S_{8}}$
Difference	D_{0}	D_{1}	D_{2}				

The difference terms are as follows:

Sum

d_{1}	d_{2}	d_{3}
d_{5}	d_{4}	
$\overline{S_{4}}$	$\overline{S_{5}}$	$\overline{S_{6}}$
D_{3}	\cdot	D_{4}

(11)
(12)

The coefficients of the Fourier series are now obtained as follows, where A_{0} equals the average value, the $B_{1} \ldots n$ expressions represent the coefficients of the cosine terms, and the $A_{1} \ldots n$ expressions represent the coefficients of the sine terms:

$$
\begin{align*}
& B_{0}=\frac{\overline{S_{7}}+\overline{S_{8}}}{12} \tag{13}\\
& B_{1}=\frac{D_{0}+0.866 D_{1}+0.5 D_{2}}{6} \tag{14}
\end{align*}
$$

$B_{2}=\frac{\stackrel{\rightharpoonup}{S_{0}}+0.5 \overline{S_{1}}-0.5 \overline{S_{2}}-\overline{S_{3}}}{6}$
$B_{3}=\frac{D_{6}}{6}$
$B_{4}=\frac{\overline{S_{0}}-0.5 \overline{S_{1}}-0.5 \overline{S_{2}}+\overline{S_{3}}}{6}$
$B_{5}=\frac{D_{0}-0.866 D_{1}+0.5 D_{2}}{6}$
$B_{6}=\frac{\overline{S_{7}}-\overline{S_{8}}}{12}$
Also
$A_{r}=\frac{0.5 \overline{S_{4}}+0.866 \overline{S_{5}}+\overline{S_{6}}}{6}$
$A_{2}=\frac{0.866\left(D_{3}+D_{4}\right)}{6}$
$A_{3}=\frac{D_{5}}{6}$

$$
\begin{align*}
& A_{4}=\frac{0.866\left(D_{3}-D_{4}\right)}{6} \tag{23}\\
& A_{5}=\frac{0.5 \overline{S_{4}}-0.866 \overline{S_{5}}+\overline{S_{6}}}{6} \tag{24}
\end{align*}
$$

Analyses of commonly encounfered waveforms

The following analyses include the time function, the corresponding frequency function, and the coefficients of the Fourier series for all harmonics Inth order). The symbols used are

$$
\begin{aligned}
A & =\text { pulse amplitude } \\
T & =\text { period } \\
t_{0} & =\text { pulse width } \\
t_{1} & =\text { pulse build-up time } \\
t_{2} & =\text { pulse decay time } \\
n & =\text { order of harmonic } \\
C_{n} & =\text { amplitude of } n \text {th harmonic } \\
\theta_{n} & =\text { phase angle of } n \text {th harmonic } \\
A_{a v} & =\text { average value of function } \\
& =\frac{1}{T} \int_{0}^{T} y(t) \text { dt } \\
A_{t m s} & =r o o t-m e a n-\text { square value of function } \\
& =\left\{\frac{1}{T} \int_{0}^{T}[y(t)]^{2} d t\right\}^{\frac{t}{t}}
\end{aligned}
$$

The frequency function is a plot of the envelope of the amplitudes C_{n} of the harmonics versus frequency $F=1 / T$, with $1 \leqslant n \leqslant \infty$. The direct.current term is shown by $A_{u v}$. The ratio $n=F / f_{0}=f_{0} / T$ determines the number of harmonics that lie between $F=0$ and $n F / f_{0}=1$.

As an example, consider a rectangular pulse where $A_{a v}=A / 4$ and $A_{r m s}=A / 2$. Then,
$C_{n}=2 A_{a v}\left(\frac{\sin \frac{\pi n F}{f_{0}}}{\pi n F / f_{0}}\right)=2 A_{\mathrm{av}}\left(\frac{\sin \frac{\pi n}{4}}{\pi n / 4}\right)$

It is seen that the even harmonics disappear. The amplitude coefficients may be read directly from the graph of the frequency function for the rectangular pulse.

\boldsymbol{n}	$\mathbf{n F} / \mathbf{f}_{0}$	$\mathbf{C}_{n} / \mathbf{A}_{\mathrm{av}}$	amplitudes
1	0.25	1.8	$\mathrm{C}_{1}=0.45 \mathrm{~A}$
2	0.50	1.35	$\mathrm{C}_{2}=0.34 \mathrm{~A}$
3	0.75	0.64	$\mathrm{C}_{3}=0.16 \mathrm{~A}$
4	1.00	0	$\mathrm{C}_{4}=0$
otc			

The frequency function for this case is as shown at right.
Alternatively, the graph (as shown below) for the $(\sin x) / x$ function, where $y(x)$ is even, may be used to evaluate the amplitude coefficients.

time functlon	frequency function	equations
Rectangular wave	$F=1 / T_{i} \quad f_{0}=1 / t_{0}$	$\left.\begin{array}{rl} A_{m v}=A t_{0} / T \\ A_{r m b} & =A \sqrt{t_{0} / T} \\ C_{n} & =2 A_{\mathrm{av}}\left(\frac{\sin \pi \frac{n t_{0}}{T}}{\pi n t_{0} / T}\right. \end{array}\right)$
Isosceles-triangle wave	$F=1 / T_{;} \quad f_{1}=1 / t_{1}=2 f_{0}$	$\begin{aligned} A_{\mathrm{av}} & =A f_{1} / T \\ A_{\mathrm{rma}} & =A \sqrt{2 t_{1} / 3 T} \\ C_{n} & =2 A_{\mathrm{av}}\left(\frac{\sin \pi \frac{n t_{1}}{T}}{\pi n t_{1} / T}\right)^{2} \\ & =2 A_{\mathrm{av}}\left(\frac{\sin \pi \frac{n F}{f_{1}}}{\pi n F / f_{1}}\right)^{2} \end{aligned}$

Sawtooth wave \quad (

Hime function	frequency function	-quotlons
Half sine wave	$F=1 / T_{;}, f_{0}=1 / 10$	$\begin{aligned} A_{2 v} & =\frac{2 A A_{0}}{\pi} \quad A_{r \operatorname{soa}}=A \sqrt{\frac{f_{0}}{2 T}} \\ C_{n} & =\frac{\pi}{2} A_{a v}\left[\frac{\sin \frac{\pi}{2}\left(1-\frac{2 n t_{0}}{T}\right)}{\frac{\pi}{2}\left(1-\frac{2 n f_{0}}{T}\right)}+\frac{\sin \frac{\pi}{2}\left(1+\frac{2 n f_{0}}{T}\right)}{\frac{\pi}{2}\left(1+\frac{2 n f_{0}}{T}\right)}\right] \\ & =\frac{\pi}{2} A_{\Delta v}\left[\frac{\sin \frac{\pi}{2}\left(1-\frac{2 n F}{f_{0}}\right)}{\frac{\pi}{2}\left(1-\frac{2 n F}{f_{0}}\right)}+\frac{\sin \frac{\pi}{2}\left(1+\frac{2 n F}{f_{0}}\right)}{\frac{\pi}{2}\left(1+\frac{2 n F}{f_{0}}\right)}\right] \end{aligned}$
Full sine wave	$F=1 / T_{;} ; f_{0}=1 / 1_{0}$	$\begin{aligned} A_{n v} & =\frac{A f_{0}}{2} \quad \quad A_{r \sin }=\frac{A}{2} \sqrt{\frac{3 f_{0}}{2 T}} \\ C_{n} & =A_{n v}\left[2 \frac{\sin \pi \frac{n f_{0}}{T}}{\pi \frac{n f_{0}}{T}}+\frac{\sin \pi\left(1-\frac{n t_{0}}{T}\right)}{\pi\left(1-\frac{n t_{0}}{T}\right)}+\frac{\sin \pi\left(1+\frac{n f_{0}}{T}\right)}{\pi\left(1+\frac{n f_{0}}{T}\right)}\right] \\ & =A_{n v}\left[2 \frac{\sin \pi \frac{n F}{f_{0}}}{\pi \frac{n F}{f_{0}}}+\frac{\sin \pi\left(1-\frac{n F}{f_{0}}\right)}{\pi\left(1-\frac{n F}{f_{0}}\right)}+\frac{\sin \pi\left(1+\frac{n F}{f_{0}}\right)}{\pi\left(1+\frac{n F}{f_{0}}\right)}\right] \end{aligned}$

Full-wave-rectified sine wave

ped exponential wave

n

$$
A_{\mathrm{BV}}=\frac{2}{\pi} A \quad A_{\mathrm{ran}}=\frac{A}{\sqrt{2}}
$$

$$
C_{n}=\frac{\pi}{2} A_{\Delta r}\left[\frac{\sin ^{2} \frac{\pi}{2}(1-2 n)}{\frac{\pi}{2}(1-2 n)}+\frac{\sin ^{2} \frac{\pi}{2}(1+2 n)}{\frac{\pi}{2}(1+2 n)}\right]
$$

$$
=2 A_{n v} \cos ^{2} \frac{\theta_{n}}{2}
$$

$$
\frac{\theta_{n}}{2}=\tan ^{-1}\left(2 \pi \frac{n f_{1}}{T}\right)=\tan ^{-1}\left(2 \pi \frac{n F}{f_{1}}\right)
$$

Ume function	equations	
Symmetrical trapezoid wave	$\begin{aligned} A_{\text {av }} & =A \frac{p_{0}+f_{1}}{T} \quad A_{r m a n}=A \sqrt{\frac{3 t_{0}+2 f_{1}}{3 T}} \\ C_{n} & =2 A_{a v}\left[\frac{\sin \pi \frac{n f_{1}}{T}}{\pi \frac{n f_{1}}{T}}\right]\left[\frac{\sin \pi \frac{n\left(f_{0}+f_{1}\right)}{T}}{\pi \frac{n\left(f_{0}+f_{1}\right)}{T}}\right] \\ & =2 A_{a v}\left[\frac{\sin \pi \frac{n F}{f_{1}}}{\pi \frac{n F}{f_{1}}}\right]\left[\frac{\sin \pi n F\left(\frac{1}{f_{0}}+\frac{1}{f_{1}}\right)}{\pi n F\left(\frac{1}{f_{0}}+\frac{1}{f_{1}}\right)}\right] \end{aligned}$	
Unsymmetrical trapezoid wave	$\begin{aligned} A_{a v} & =\frac{A}{T}\left[f_{0}+\frac{f_{1}}{2}+\frac{f_{2}}{2}\right] \quad A_{E m s}=A \sqrt{\frac{3 f_{0}+f_{1}+f_{2}}{3 T}} \\ \\| f_{1} & \approx f_{2} \\ C_{n} & =2 A_{a v}\left[\frac{\sin \pi \frac{n f_{1}}{T}}{\pi \frac{n f_{1}}{T}}\right]\left[\frac{\sin \pi \frac{n\left(f_{0}+f_{1}\right)}{T}}{\pi \frac{n\left(f_{0}+f_{1}\right)}{T}}\right]\left[\frac{\sin \pi \frac{n\left(f_{2}-f_{1}\right)}{T}}{\pi \frac{n\left(f_{2}-f_{1}\right)}{T}}\right] \\ & =2 A_{a v}\left[\frac{\sin \pi \frac{n F}{f_{1}}}{\pi \frac{n F}{f_{1}}}\right]\left[\frac{\sin \pi n F\left(\frac{1}{f_{0}}+\frac{1}{f_{1}}\right)}{\pi n F\left(\frac{1}{f_{0}}+\frac{1}{f_{1}}\right)}\right]\left[\frac{\sin \pi n F\left(\frac{1}{f_{2}}-\frac{1}{f_{1}}\right)}{\pi n F\left(\frac{1}{f_{2}}-\frac{1}{f_{1}}\right)}\right] \end{aligned}$	

Fractional sine wave

$A_{a v}=\frac{A\left(\sin \pi \frac{1_{0}}{T}-\pi^{10} \cos \pi \frac{1_{0}}{T}\right)}{\pi\left(1-\cos \pi \frac{10}{T}\right)}$
$A_{\operatorname{ran}}=\frac{A}{\left(1-\cos \pi \frac{t_{0}}{T}\right)}\left[\frac{1}{2 \pi}\left(\pi \frac{t_{0}}{T}+\frac{1}{2} \sin 2 \pi \frac{t_{0}}{T}-4 \cos \pi \frac{t_{0}}{T} \sin \pi \frac{t_{0}}{T}+2 \pi \frac{t_{0}}{T} \cos ^{2} \pi \frac{t_{0}}{T}\right)\right]$
$C_{n}=\frac{A_{a v} \pi \frac{t_{0}}{T}}{n\left(\sin \pi \frac{t_{0}}{T}-\pi \frac{t_{0}}{T} \cos \pi \frac{t_{0}}{T}\right)}\left[\frac{\sin \pi \ln -11 \frac{t_{0}}{T}}{\pi \ln -11 \frac{t_{0}}{T}}-\frac{\sin \pi \ln +11 \frac{t_{0}}{T}}{\pi \ln +1) \frac{t_{0}}{T}}\right]$
$=\frac{A \operatorname{Av} \pi \frac{F}{f_{0}}}{n\left(\sin \pi \frac{F}{f_{0}}-\pi \frac{F}{f_{0}} \cos \pi \frac{F}{f_{0}}\right)}\left[\frac{\left.\sin \pi \ln -11 \frac{F}{f_{0}}-\frac{\sin \pi \ln +11 \frac{F}{f_{0}}}{\pi \ln -1) \frac{F}{f_{0}}}\right]}{\pi \ln +11 \frac{F}{f_{0}}}\right]$

Sawtooth wave

$$
\begin{aligned}
A_{A V} & =\frac{A}{2} \quad A_{\text {ras }}=\frac{A}{\sqrt{3}} \\
C_{n} & =\frac{2 A_{2 v}}{\pi^{2} n^{2} \frac{f_{1}}{T}\left(1-\frac{f_{1}}{T}\right)} \sin \pi \frac{f_{1}}{T} \\
& =\frac{2 A_{A v}}{\pi^{2} n^{2} \frac{F}{f_{1}}\left(1-\frac{F}{f_{1}}\right)} \sin \pi \frac{F}{f_{1}}
\end{aligned}
$$

- Transmission lines

General

The formulas compiled below apply to transmission lines in the steady state. They give the voltage, impedance, etc., at a point 2 on the line with respect to the values at a reference point 1 (Fig. 11. Point 2 may be either on the source side or on the load side of 1 , provided in the latter case, that a minus sign is placed before x and θ in the formulas. The minus sign may then be cleared through the hyper. bolic or circular functions; thus,
$\sinh (-\gamma x)=-\sinh \gamma x$, etc.
The formulas for small attenuation are obtained by neglect. ing the terms $\alpha^{2} x^{2}$ and higher powers in the expansions of $\epsilon^{a x}$, etc. Thus, when
$\alpha x=\frac{\alpha}{\beta} \theta=0.1$ neper
lor about 1 decibell, the error in the approximate formulas is of the order of 1 percent.

Fig. 1-Generalixed transmission line showing reference poinls and sign conventions.

Symbols and sign conventions

Voltage and current symbols usually represent the alternating-current complex sinusoid, with magnitude equal to the root-mean-square value of the quantity. Referring to Fig. 1 , all voltages E represent the potential of conductor w_{1} with respect to the potential of w_{2}. Currents I refer to current in w_{1} and are positive when flowing toward the load.
Symbols carrying subscript 1 refer to reference point 1, and subscript 2 to the other point, 2.
Certain quantities, namely C, c, f, L, T, v, and ω are shown with an optional set of units in parentheses. Either the standard units or the optional units may be used, provided the same set is used throughout.

Symbols and sign conventions continued

$B_{m}=$ susceptive component of Y_{m} in mhos
$C=$ capacitance of line in farads/unit length (microfarads/unit length)
$c=$ velocity of light in units of length/second lunits of length/microsecond)
$E=$ voltage (root-mean-square complex sinusoid) in volts
${ }_{r} E=$ voltage of forward wave, traveling toward load
${ }^{,} E=$ voltage of reflected wave
$\left|E_{\text {ast }}\right|=$ root-mean-square voltage when standing-wave ratio $=1.0$
$\left|E_{\text {wax }}\right|=$ root-mean-square voltage at crest of standing wave
$\left|E_{\text {min }}\right|=$ root-mean-square voltage at trough of standing wave
$e=$ instantaneous voltage
$f=$ frequency in cycles/second (megacycles/second)
$G=$ conductance of line in mhos/unit length
$\mathrm{G}_{m}=$ conductive component of Y_{m} in mhos
$g_{a}=Y_{a} / Y_{0}=$ normalized admittance at voltage standing-wave maximum
$g_{0}=Y_{0} / Y_{0}=\underset{\text { normalized admittance at voltage }}{\text { standing-wave }}$ standing-wave minimum
$I=$ current (root-mean-square complex sinusoid) in amperes
$J=$ current of forward wave, traveling toward load
r $I=$ current of reflected wave
$i=$ instantaneous current
$L=$ inductance of line in henries/unit length Imicrohenries/unit length)
$P=$ power in watts
(pf) $=G / \omega C=$ power factor of dielectric
$R=$ resistance of line in ohms/unit length
$R_{m}=$ resistive component of Z_{m} in ohms
$r_{a}=Z_{a} / Z_{0}=$ normalized impedance at voltage standing-wave maximum
$r_{b}=Z_{b} / Z_{0}=$ normalized impedance at voltage standing-wave minimum

306

Symbols and sign conventions continued

```
(swr) = voltage standing-wave ratio
    T = delay of line in seconds/unit length (microseconds/unit length)
    v= phase velocity of propagation in units of length/second lunits of
        length/microsecond)
Xm
    x = distance between points 1 and 2 in units of length lsee Fig. 1 re-
    garding signsl
Y
                                    from point 1
Y}=\mp@subsup{G}{0}{}+j\mp@subsup{B}{0}{}=1/\mp@subsup{Z}{0}{}=\mathrm{ characteristic admittance of line in mhos
Z Z = R R + jX ( = impedance in ohms looking toward load from point l
```



```
Zvc}=\mathrm{ input impedance of a line open-circuited at the far end
Z Zce input impedance of a line short-circuited at the far end
    \alpha}=\mathrm{ attenuation constant = nepers/unit length
                                    =0.1151 }\times\mathrm{ decibels/unit length
    \beta= phase constant in radians/unit length
    \Gamma= |\Gamma|/2\psi = reflection coefficient
    \gamma=\alpha+\beta}=\mathrm{ propagation constant
    \epsilon= base of natural logarithms = 2.718; or dielectric constant of
        medium (relative to air), according to context
    \eta= efficiency (fractional)
    0=\betax = electrical length or angle of line in radians
    0}=57.30=\mathrm{ electrical angle of line in degrees
    \lambda = wavelength in units of length
    \lambda}\mp@subsup{\lambda}{0}{}=\mathrm{ wavelength in free space
    \phi = time phase angle of complex voltage at voltage standing-wave
        maximum
    \psi= half the angle of the reflection coefficient = electrical angle to
        nearest voltage standing-wave maximum toward source
    \omega=2\pif = angular velocity in radians/second (radians/microsecond)
```


Fundamental quantities and line paramefers

$$
\begin{aligned}
d E / d x & =(R+j \omega L I I \\
d^{2} E / d x^{2} & =\gamma^{2} E \\
d I / d x & =(G+j \omega C) E \\
d^{2} I / d x^{2} & =\gamma^{2} I \\
\gamma & =\alpha+j \beta=\sqrt{(R+j \omega L)(G+j \omega C)} \\
& =j \omega \sqrt{L C} \sqrt{(1-j R / \omega L)(l-j G / \omega C)} \\
\alpha & =\left\{\frac{1}{2}\left[\sqrt{\left(R^{2}+\omega^{2} L^{2}\right)\left(G^{2}+\omega^{2} C^{2}\right)}+R G-\omega^{2} L C\right]\right\}^{\frac{1}{2}} \\
\beta & =\left\{\frac{1}{2}\left[\sqrt{\left(R^{2}+\omega^{2} L^{2}\right)\left(G^{2}+\omega^{2} C^{2}\right)}-R G+\omega^{2} L C\right]\right\}^{\frac{1}{2}} \\
\gamma x & =\alpha x+j \beta x=\frac{\alpha}{\beta} \theta+j \theta \\
\theta & =\beta x=2 \pi x / \lambda=2 \pi f T x \\
\theta^{\circ} & =57.3 \theta=360 x / \lambda=360 f T x \\
Z_{0} & =\frac{1}{Y_{0}}=\sqrt{\frac{R+j \omega L}{G+j \omega C}=\sqrt{\frac{L}{C}} \times \sqrt{\frac{1-j R / \omega L}{1-j G / \omega C}}=R_{0}\left(1+j \frac{x_{0}}{R_{0}}\right)} \\
Y_{0} & \left.=1 / Z_{0}=G_{0} \|+j B_{0} / G_{0}\right) \\
1 / T & =v=\AA \lambda=\omega / \beta \\
\beta & =\omega / v=\omega T=2 \pi / \lambda
\end{aligned}
$$

a. Special case-distortionless line: when $R / L=G / C$, the quantities Z_{0} and α are independent of frequency
$X_{0}=0$
$\alpha=R / R_{0}$
$Z_{0}=R_{0}+j 0=\sqrt{L / C}$
$\beta=\omega \sqrt{L C}$
b. For small attenuation: $R / \omega L$ and $G / \omega C$ are small
$\gamma=j \omega \sqrt{L C}\left[1-j\left(\frac{R}{2 \omega L}+\frac{G}{2 \omega C}\right)\right]=j \beta\left(1-j \frac{\alpha}{\beta}\right)$
$\beta=\omega \sqrt{L C}$
$T=1 / v=\sqrt{L C}$
$\frac{\alpha}{\beta}=\frac{R}{2 \omega L}+\frac{G}{2 \omega C}=\frac{R}{2 \omega L}+\frac{(p f)}{2}=$ attenuation in nepers/radian

308

Fundamental quantities and line parameters continued

$\alpha=\frac{R}{2} \sqrt{\frac{C}{L}}+\frac{G}{2} \sqrt{\frac{L}{C}}=\frac{R}{2 R_{0}}+\pi \frac{(\mathrm{pf})}{\lambda}=\frac{R}{2 R_{0}}+\frac{(\mathrm{pf}) \beta}{2}$
where R and G vary with frequency, while L, C, and (pf) are nearly independent of frequency.

$$
\begin{aligned}
Z_{0} & =\frac{1}{Y_{0}}=\sqrt{\frac{L}{C}}\left[1-j\left(\frac{R}{2 \omega L}-\frac{G}{2 \omega C}\right)\right]=R_{0}\left(1+j \frac{X_{0}}{R_{0}}\right) \\
& =\frac{1}{G_{0}\left(1+j B_{0} / G_{0}\right)}=\frac{1}{G_{0}}\left(1-j \frac{B_{0}}{G_{0}}\right) \\
R_{0} & =1 / G_{0}=\sqrt{L / C} \\
\frac{B_{0}}{G_{0}} & =-\frac{X_{0}}{R_{0}}=\frac{R}{2 \omega L}-\frac{(p f)}{2} \\
X_{0} & =-\frac{R}{2 \omega \sqrt{L C}}+\frac{G}{2 \omega C} \sqrt{\frac{L}{C}}=-\frac{R \lambda}{4 \pi}+\frac{(p f)}{2} R_{0} \\
L & =1.016 R_{0} \sqrt{\epsilon} \times 10^{-3} \text { microhenries/foot } \\
& =\frac{1}{3} R_{0} \sqrt{\epsilon} \times 10^{-4} \text { microhenries/centimeter } \\
C & =1.016 \frac{\sqrt{\epsilon}}{R_{0}} \times 10^{-3} \text { microfarads } / \text { foot } \\
& =\frac{\sqrt{\epsilon}}{3 R_{0}} \times 10^{-4} \text { microfarads/centimeter } \\
v / c & =1 / \sqrt{\epsilon} \\
\lambda & =\lambda_{0} v / c=c / f \sqrt{\epsilon}
\end{aligned}
$$

Voltages and currents

$$
\begin{aligned}
E_{2} & ={ }_{\jmath} E_{2}+{ }_{r} E_{2}={ }_{f} E_{1} \epsilon^{\gamma x}+{ }_{r} E_{1} \epsilon^{-\gamma x}=E_{1}\left(\frac{Z_{1}+Z_{0}}{2 Z_{1}} \epsilon^{\gamma x}+\frac{Z_{1}-Z_{0}}{2 Z_{1}} \epsilon^{-\gamma x}\right) \\
& =\frac{E_{1}+I_{1} Z_{0}}{2} \epsilon^{\gamma x}+\frac{E_{1}-I_{1} Z_{0}}{2} \epsilon^{-\gamma x} \\
& =E_{1}\left[\cosh \gamma x+\left(Z_{0} / Z_{1}\right) \sinh \gamma x\right]=E_{1} \cosh \gamma x+I_{1} Z_{0} \sinh \gamma x \\
& =\frac{E_{1}}{1+\Gamma_{1}}\left(\epsilon^{\gamma x}+\Gamma_{1} \epsilon^{-\gamma x}\right]
\end{aligned}
$$

Voliages and currents continued

$$
\begin{aligned}
I_{2} & ={ }_{\rho} I_{2}+{ }_{r} I_{2}={ }_{\rho} I_{1} \epsilon^{\gamma x}+{ }_{r} I_{1} \epsilon^{-\gamma x}=Y_{0}\left({ }_{f} E_{1} \epsilon^{\gamma x}-{ }_{r} E_{1} \epsilon^{-\gamma x}\right) \\
& =I_{1}\left(\frac{Z_{0}+Z_{1}}{2 Z_{0}} \epsilon^{\gamma x}+\frac{Z_{0}-Z_{1}}{2 Z_{0}} \epsilon^{-\gamma x}\right)=\frac{I_{1}+E_{1} Y_{0}}{2} \epsilon^{\gamma x}+\frac{I_{1}-E_{1} Y_{0}}{2} \epsilon^{-\gamma x} \\
& =I_{1}\left(\cosh \gamma x+\frac{Z_{1}}{Z_{0}} \sinh \gamma x\right) \\
& =I_{1} \cosh \gamma x+E_{1} Y_{0} \sinh \gamma x=\frac{I_{1}}{1-\Gamma_{1}}\left(\epsilon^{\gamma x}-\Gamma_{1} \epsilon^{-\gamma x}\right)
\end{aligned}
$$

a. When point No. 1 is at a voltage maximum or minimum; x^{\prime} is measured from voltage maximum and $x^{\prime \prime}$ from voltage minimum:

$$
\begin{aligned}
E_{2} & =E_{\max }\left[\cosh \gamma x^{\prime}+\frac{1}{(s w r)} \sinh \gamma x^{\prime}\right] \\
& =E_{\min }\left[\cosh \gamma x^{\prime \prime}+(s w r) \sinh \gamma x^{\prime \prime}\right] \\
I_{2} & =I_{\max }\left[\cosh \gamma x^{\prime}+\frac{1}{(s w r)} \sinh \gamma x^{\prime}\right] \\
& =I_{\min }\left[\cosh \gamma x^{\prime \prime}+(s w r) \sinh \gamma x^{\prime \prime}\right]
\end{aligned}
$$

When attenuation is neglected:

$$
\begin{aligned}
E_{2} & =E_{\max }\left[\cos \theta^{\prime}+j \underset{(s w r)}{1} \sin \theta^{\prime}\right] \\
& =E_{\min }\left[\cos \theta^{\prime \prime}+j(s w r) \sin \theta^{\prime \prime}\right]
\end{aligned}
$$

b. Letting $Z_{l}=$ impedance of load, $l=$ distance from load to No. I, and $x_{l}=$ distance from load to No. 2 :

$$
\begin{aligned}
E_{2} & =E_{1} \frac{\cosh \gamma x_{l}+\left(Z_{0} / Z_{l}\right) \sinh \gamma x_{l}}{\cosh \gamma l+\left(Z_{0} / Z_{l}\right) \sinh \gamma l} \\
I_{2} & =I_{1} \frac{\cosh \gamma x_{l}+\left(Z_{l} / Z_{0}\right) \sinh \gamma x_{l}}{\cosh \gamma l+\left(Z_{l} / Z_{0}\right) \sinh \gamma l}
\end{aligned}
$$

c. $e_{2}=\left.\sqrt{2}\right|_{f} E_{1} \left\lvert\, \epsilon^{a x} \sin \left(\omega t+2 \pi \frac{x}{\lambda}-\psi_{1}+\phi\right)\right.$

$$
+\left.\sqrt{2}\right|_{r} E_{1} \left\lvert\, \epsilon^{-a x} \sin \left(\omega t-2 \pi \frac{x}{\lambda}+\psi_{1}+\phi\right)\right.
$$

Voliages and currents conlinued

$$
\begin{aligned}
i_{2}=\sqrt{2}\left|\delta I_{1}\right| \epsilon^{\alpha x} \sin & \left(\omega t+2 \pi \frac{x}{\lambda}-\psi_{1}+\phi+\tan ^{-1} \frac{B_{0}}{G_{0}}\right) \\
& +\left.\sqrt{2}\right|_{r} I_{1} \left\lvert\, \epsilon^{-\alpha x} \sin \left(\omega t-2 \pi \frac{x}{\lambda}+\psi_{1}+\phi+\tan ^{-1} \frac{B_{0}}{G_{0}}\right)\right.
\end{aligned}
$$

d. For small attenuation:

$$
\begin{aligned}
& E_{2}=E_{1}\left[\left(1+\frac{Z_{0}}{Z_{1}} \alpha x\right) \cos \theta+j\left(\frac{Z_{0}}{Z_{1}}+\alpha x\right) \sin \theta\right] \\
& I_{2}=I_{1}\left[\left(1+\frac{Z_{1}}{Z_{0}} \alpha x\right) \cos \theta+j\left(\frac{Z_{1}}{Z_{0}}+\alpha x\right) \sin \theta\right]
\end{aligned}
$$

Fig. 2-Diagram of complex voltages and currents at iwo fixed points on a line with considerable attenuation. (Diagram rotates counterclockwise with time.)
e. When attenuation is neglected:

$$
\begin{aligned}
E_{2} & =E_{1} \cos \theta+j I_{1} Z_{0} \sin \theta \\
& =E_{1}\left[\cos \theta+j\left(Y_{1} / Y_{0}\right) \sin \theta\right] \\
& ={ }_{j} E_{1} \epsilon^{j \theta}+{ }_{r} E_{1} \epsilon^{-\mu \theta}
\end{aligned}
$$

Fig. 3-Voltages and currents af time $i=0$ af a point ψ electrical degress toward the load from a voltage standing-wave maximum.

Fig. 4-Abbreviated diagram of a line with zera attenualion.

$$
\begin{aligned}
I_{2} & =I_{1} \cos \theta+j E_{1} Y_{0} \sin \theta=I_{1}\left[\cos \theta+j\left(Z_{1} / Z_{0}\right) \sin \theta\right] \\
& =Y_{0}\left(j E_{1} \epsilon^{j \theta}-{ }_{r} E_{1} \epsilon^{-j \theta}\right)
\end{aligned}
$$

Impedances and admittances

$\frac{Z_{2}}{Z_{0}}=\frac{Z_{1} \cosh \gamma x+Z_{0} \sinh \gamma x}{Z_{0} \cosh \gamma x+Z_{1} \sinh \gamma x}$
$\frac{Y_{2}}{Y_{0}}=\frac{Y_{1} \cosh \gamma x+Y_{0} \sinh \gamma x}{Y_{0} \cosh \gamma x+Y_{1} \sinh \gamma x}$
a. When $Z_{2}=$ load impedance Z_{l}, and $-x=$ distance 1 from No. 1 to load:
$\frac{Z_{l}}{Z_{0}}=\frac{Z_{1} \cosh \gamma l-Z_{0} \sinh \gamma l}{Z_{0} \cosh \gamma l-Z_{1} \sinh \gamma l}$
b. The input impedance of a line at a position of maximum or minimum voltage has the same phase angle as the characteristic impedance:
$\frac{Z_{1}}{Z_{0}}=\frac{Z_{b}}{Z_{0}}=\frac{Y_{0}}{Y_{b}}=r_{b}+j 0=\frac{1}{(s w r)}$ at a voltage minimum (current maximum). $\frac{Y_{1}}{Y_{0}}=\frac{Y_{a}}{Z_{0}}=\frac{Z_{0}}{Z_{a}}=g_{a}+j 0=\frac{1}{(s w r)}$ at a voltage maximum (current minimum).
c. When attenuation is small:
$\frac{Z_{2}}{Z_{0}}=\frac{\left(\frac{Z_{1}}{Z_{0}}+\alpha x\right)+j\left(1+\frac{Z_{1}}{Z_{0}} \alpha x\right) \tan \theta}{\left(1+\frac{Z_{1}}{Z_{0}} \alpha x\right)+j\left(\frac{Z_{1}}{Z_{0}}+\alpha x\right) \tan \theta}$
For admittances, replace Z_{0}, Z_{10} and Z_{2} by Y_{0}, Y_{1}, and Y_{2}, respectively.
When A and B are real:
$\frac{A \pm j B \tan \theta}{B \pm j A \tan \theta}=\frac{2 A B \pm j\left(B^{2}-A^{2}\right) \sin 2 \theta}{\left(B^{2}+A^{2}\right)+\left(B^{2}-A^{2}\right) \cos 2 \theta}$
d. When attenuation is neglected:
$\frac{Z_{2}}{Z_{0}}=\frac{Z_{1} / Z_{0}+j \tan \theta}{1+j\left(Z_{1} / Z_{0}\right) \tan \theta}=\frac{1-j\left(Z_{1} / Z_{0}\right) \cot \theta}{Z_{1} / Z_{0}-j \cot \theta}$
and similarly for admittances.
e. When attenuation $\alpha x=\theta \alpha / \beta$ is small and (swr) is large (say >10):

For θ measured from a voltage minimum

$$
\begin{aligned}
& \frac{Z_{2}}{Z_{0}}=\left(r_{b}+\frac{\alpha}{\beta} \theta\right)\left(1+\tan ^{2} \theta\right)+j \tan \theta=\left(r_{b}+\frac{\alpha}{\beta} \theta\right) \frac{1}{\cos ^{2} \theta}+j \tan \theta \\
& \text { (See Note I) } \\
& \left.\begin{array}{rl}
\frac{Z_{0}}{Z_{2}}=\frac{Y_{2}}{Y_{0}} & =\left(r_{b}+\frac{\alpha}{\beta} \theta\right) 11+\cot ^{2} \theta 1-j \cot \theta \\
& =\left(r_{b}+\frac{\alpha}{\beta} \theta\right) \frac{1}{\sin ^{2} \theta}-j \cot \theta
\end{array}\right\} \\
& \text { (See Note } 2
\end{aligned}
$$

For θ measured from a voltage maximum
$\frac{Z_{0}}{Z_{2}}=\frac{Y_{2}}{Y_{0}}=\left(g_{a}+\frac{\alpha}{\beta} \theta\right)\left(1+\tan ^{2} \theta\right)+j \tan \theta$
(See Note 1)
$\frac{Z_{2}}{Z_{0}}=\left(g_{a}+\frac{\alpha}{\beta} \theta\right)\left(1+\cot ^{2} \theta\right)-j \cot \theta$
(See Note 2)

Note 1: Not valid whan $\theta \approx \pi / 2,3 \pi / 2$, etc., due to approximation in denominator $1+\left(r_{b}+\theta \alpha / \beta\right)^{2} \tan ^{2} \theta=1$ (or with g_{a} in place of $\left.r_{o}\right)$.

Note 2: Nof volid when $\theta \approx 0, \pi, 2 \pi$, otc., due to approximation in denominator $1+\left(r_{b}+\theta \alpha / \beta\right)^{2} \cot ^{2} \theta=1$ lor with g_{a} in place of $\left.r_{b}\right)$. For open- or short-circuited line, valid of $\theta=0$.
f. When x is an integral multiple of $\lambda / 2$ or $\lambda / 4$. For $x=n \lambda / 2$, or $\theta=n \pi$,
$\frac{Z_{2}}{Z_{0}}=\frac{\frac{Z_{1}}{Z_{0}}+\tanh n \pi \frac{\alpha}{\beta}}{1+\frac{Z_{1}}{Z_{0}} \tanh n \pi \frac{\alpha}{\beta}}$
For $x=n \lambda / 2+\lambda / 4$, or $\theta=\left(n+\frac{1}{2}\right) \pi$
$\frac{Z_{2}}{Z_{0}}=\frac{1+\frac{Z_{1}}{Z_{0}} \tanh \left(n+\frac{1}{2}\right) \pi \frac{\alpha}{\beta}}{\frac{Z_{1}}{Z_{0}}+\tanh \left(n+\frac{1}{2}\right) \pi \frac{\alpha}{\beta}}$
9. For small attenuation, with any standing-wave ratio: For $x=n \lambda / 2$, or $\theta=n \pi$, where n is an integer
$\frac{Z_{2}}{Z_{0}}=\frac{\frac{Z_{1}}{Z_{0}}+n \pi \frac{\alpha}{\beta}}{1+\frac{Z_{1}}{Z_{0}} n \pi \frac{\alpha}{\beta}}$

Impedances and admittances continued

$g_{a 2}=\frac{g_{a 1}+\alpha n \lambda / 2}{1+g_{a 1} \alpha n \lambda / 2}=\frac{1}{(s w r)_{2}}$
For $\left.x=\ln +\frac{1}{2}\right) \lambda / 2$, or $\theta=\left(n+\frac{1}{2}\right) \pi$, where n is an integer
$\frac{Z_{2}}{Z_{0}}=\frac{1+\frac{Z_{1}}{Z_{0}}\left(\mathrm{n}+\frac{1}{2}\right) \propto \frac{\lambda}{2}}{\frac{Z_{1}}{Z_{0}}+\left(\mathrm{n}+\frac{1}{2}\right) \propto \frac{\lambda}{2}}$
$g_{b 2}=\frac{1+g_{a 1}\left(n+\frac{1}{2}\right) \frac{\alpha}{\beta} \pi}{g_{a 1}+\left(n+\frac{1}{2}\right) \frac{\alpha}{\beta} \pi}=(s w r)_{2}$
Subscript a refers to the voltage-maximum point and b to the voltage minimum. In the above formulas, the subscripts a and b may be interchanged, and/or r may be substituted in place of g.

Lines open- or short-circuited at the far end

Point No. 1 is the open- or short-circuited end of the line, from which x and θ are measured.
a. Voltages and currents:

Use formulas of "Voltages and currents" section p. 308 with the following conditions
Open-circuited line: $\quad \Gamma_{1}=1.00 / 0^{\circ}=1.00 ; \quad{ }_{r} E_{1}={ }_{f} E_{1}=E_{1} / 2$;
${ }_{n} l_{1}=-{ }_{j} I_{1} ; \quad I_{1}=0 ; \quad Z_{1}=\infty$.
Short-circuited line: $\Gamma_{1}=1.00 / 180^{\circ}=-1.00 ; \quad{ }_{r} E_{1}=-{ }_{j} E_{1}$;
$E_{1}=0 ; \quad l_{1}={ }_{j} I_{1}=I_{1} / 2 ; \quad Z_{1}=0$.
b. Impedances and admittances:
$Z_{\infty}=Z_{0}$ coth γx
$Z_{\mathrm{Bc}}=Z_{0} \tanh \boldsymbol{\gamma} x$
$Y_{o c}=Y_{0} \tanh \gamma x$
$\gamma_{s c}=Y_{0} \operatorname{coth} \boldsymbol{\gamma} x$

Lines open- or short-circuited af the far end cantinued

c. For small attenuation:

Use formulas for large (swr) in paragraph e, pp. 311-312, with the following conditions
Open-circuited line: $g_{a}=0$
Short-circuited line: $r_{b}=0$
d. When attenuation is neglected:
$Z_{o c}=-\mathcal{R}_{0} \cot \theta$
$Z_{s c}=j R_{0} \tan \theta$
$Y_{o c}=j G_{0} \tan \theta$
$Y_{\mathrm{mc}}=-j G_{0} \cot \theta$
e. Relationships between $Z_{o c}$ and $Z_{\text {so }}$:

$$
\begin{aligned}
& \sqrt{Z_{\mathrm{oc}} Z_{\mathrm{sc}}}=Z_{0} \\
& \pm \sqrt{Z_{\mathrm{sc}} / Z_{\mathrm{oc}}}=\tanh \gamma x=\frac{\alpha}{\beta} \theta\left(1+\tan ^{2} \theta\right)+j \tan \theta=\frac{\alpha \theta}{\beta \cos ^{2} \theta}+j \tan \theta \\
& \quad \approx j \tan \theta\left[1-j \frac{\alpha}{\beta} \theta(\tan \theta+\cot \theta)\right]=j \tan \theta\left(1-j \frac{\alpha}{\beta} \frac{2 \theta}{\sin 2 \theta}\right)
\end{aligned}
$$

Note: Above approximations not valid for $\theta \approx \pi / 2,3 \pi / 2$, eic.

$$
\begin{aligned}
& \pm \sqrt{Z_{\mathrm{oc}} / Z_{\mathrm{sc}}}=\operatorname{coth} \gamma x=\frac{\alpha}{\beta} \theta\left(1+\cot ^{2} \theta\right)-j \cot \theta=\frac{\alpha \theta}{\beta \sin ^{2} \theta}-j \cot \theta \\
& \quad=-j \cot \theta\left[1+j \frac{\alpha}{\beta} \theta(\tan \theta+\cot \theta)\right]=-j \cot \theta\left(1+j \frac{\alpha}{\beta} \frac{2 \theta}{\sin 2 \theta}\right)
\end{aligned}
$$

Note: Above approximations not valid for $\theta \approx \pi, 2 \pi$, efc.
f. When attenuation is small lexcept for $\theta=n \pi / 2, n=1,2,3$. . .l:

$$
\pm \sqrt{\frac{Z_{\mathrm{sc}}}{Z_{\mathrm{oc}}}}= \pm \sqrt{\frac{Y_{\mathrm{oc}}}{Y_{\mathrm{sc}}}}= \pm j \sqrt{-\frac{\mathrm{C}_{\mathrm{oc}}}{C_{\mathrm{sc}}}}\left[1-j \frac{1}{2}\left(\frac{\mathrm{G}_{\mathrm{oc}}}{\omega C_{o c}}-\frac{\mathrm{G}_{s c}}{\omega C_{s c}}\right)\right]
$$

Where $Y_{o c}=G_{o c}+j \omega C_{o c}$ and $Y_{\mathrm{gc}}=\mathrm{G}_{\mathrm{sc}}+j \omega \mathrm{C}_{\mathrm{gc}}$. The + sign is to be used before the radical when C_{oc} is positive, and the - sign when C_{oc} is negative.

Lines open- or short-circuited at the far end

 continuedg. $R /|X|$ component of input impedance of low-attenuation nonresonant line:

Short-circuited line (except when $\theta=\pi / 2,3 \pi / 2$, etc.)

$$
\frac{R_{2}}{\left|X_{2}\right|}=\frac{G_{2}}{\left|B_{2}\right|}=\left|\frac{\alpha}{\beta} \theta(\tan \theta+\cot \theta)+\frac{B_{0}}{G_{0}}\right|=\left|\frac{\alpha}{\beta} \frac{2 \theta}{\sin 2 \theta}+\frac{B_{0}}{G_{0}}\right|
$$

Open-circuited line (except when $\theta=\pi, 2 \pi$, etc.)
$\frac{R_{2}}{\left|X_{2}\right|}=\frac{G_{2}}{\left|B_{2}\right|}=\left|\frac{\alpha}{\beta} \theta(\tan \theta+\cot \theta)-\frac{B_{0}}{G_{0}}\right|=\left|\frac{\alpha}{\beta} \frac{2 \theta}{\sin 2 \theta}-\frac{B_{0}}{G_{0}}\right|$
h. Input admittance and lumped-circuit equivalent of resonant low-loss lines:
$\theta=n \pi / 2$ = length of line at resonance frequency f_{0}
$n=1,2,3 \ldots$ even or odd as stated in Fig. 5
θ_{1} or $\pi / 2-\theta_{1}$ is electrical length at f_{0} from end of line to tap point
The admittance looking into the line at the tap point θ_{1} is approximately
$Y=G+j B=\frac{n \pi Y_{0}}{2 \sin ^{2} \theta_{1}}\left(\frac{\alpha}{\beta}+j \frac{\Delta f}{f_{0}}\right)=\frac{n \pi Y_{0}}{4 \sin ^{2} \theta_{1}}\left(\frac{1}{Q}+j \frac{2 \Delta f}{f_{0}}\right)$
provided $\Delta f / f_{0}=\left(f-f_{0}\right) / f_{0}$ is small. Formula not valid when

Flg. 5-Resonant low-loss transmission lines and their equlvalont tumped circuit.
$\theta_{1}=0, \pi, 2 \pi$, etc. A further condition for its accuracy is that

$$
\left|\theta \frac{\Delta f}{f_{0}} \cot \theta_{1}\right| \ll 1.0
$$

Such a resonant line is approximately equivalent to a lumped LCG parallel circuit, where

$$
\omega_{0}^{2} L_{1} C_{1}=\left(2 \pi f_{0}\right)^{2} L_{1} C_{1}=1
$$

Admittance of the equivalent circuit is

$$
\begin{aligned}
Y & =G+j\left(\omega C_{1}-\frac{1}{\omega L_{1}}\right) \\
& =\omega_{0} C_{1}\left(\frac{1}{Q}+j \frac{2 \Delta f}{f_{0}}\right)
\end{aligned}
$$

Then, subject to the conditions stated above,

$$
L_{1}=\frac{4 \sin ^{2} \theta_{1}}{n \pi \omega_{0} Y_{0}}
$$

$$
C_{1}=\frac{n \pi Y_{0}}{4 \omega_{0} \sin ^{2} \theta_{1}}=\frac{n Y_{0}}{8 f_{0} \sin ^{2} \theta_{1}}
$$

$$
G=\frac{n \pi Y_{0}}{2 \sin ^{2} \theta_{1}} \frac{\alpha}{\beta}=\frac{n \pi Y_{0}}{4 Q \sin ^{2} \theta_{1}}
$$

$$
Q=\frac{\omega_{0} C_{1}}{G}=\frac{1}{\omega_{0} L_{1} G}=\frac{\beta}{2 \alpha}
$$

Referring to the section above on "Fundamental quantities", page 307. $Q=\frac{\beta}{2 \alpha}$
$=\frac{\omega L}{R}$ when dielectric losses are negligible
$=\frac{1}{(p f)} \quad \begin{aligned} & \text { when conductor losses are negligible } \\ & \text { compared to dielectric losses }\end{aligned}$

Example: Find the equivalent circuit of a resonant $\lambda / 4$ line shorted at one end, open at the other, if the line has a characteristic impedance of 70 ohms, a measured Q of 1000 , is tapped at a point 10 electrical degrees from the shorted end, and is resonant at 200 megacycies:

From the data,
$Y_{0}=1 / 70, Q=1000, \theta_{1}=10^{\circ}, \sin \theta_{1}=0.174, \omega_{0}=12.57 \times 10^{8}$, and $\mathrm{n}=1$; therefore
$L_{1}=\frac{4(0.174)^{2}}{\pi(12.57) \times 10^{8} / 70}=2.15 \times 10^{-9}$ henry, or 2.15 millimicrohenries
$C_{1}=\frac{\pi / 70}{4(12.57) \times 10^{8}(0.174)^{2}}=2.95 \times 10^{-10}$ farad, or $295 \begin{aligned} & \text { micromicro- } \\ & \text { farads }\end{aligned}$ $G=\frac{\pi / 70}{4(1000)(0.174)^{2}}=3.70 \times 10^{-4}$ mho, or 370 micromhos

Reflection coefficient, standing-wave ratio, and power

$$
\Gamma_{1}=\frac{{ }_{r} E_{1}}{{ }_{j} E_{1}}=-\frac{{ }_{n} I_{1}}{{ }_{f I_{1}}}=\frac{Z_{1}-Z_{0}}{Z_{1}+Z_{0}}=\frac{Y_{0}-Y_{1}}{Y_{0}+Y_{1}}=\left|\Gamma_{1}\right| / 2 \psi_{1}
$$

where ψ_{1} is the electrical angle to the nearest voltage maximum on the generator side of point No. 1 (figs. 2, 3, and 4).

$$
\begin{aligned}
& \Gamma_{2}=\Gamma_{1} \epsilon^{-2 a x} /-2 \theta \\
& \left|\Gamma_{2}\right|=\left|\Gamma_{3}\right| / 10^{d b / 10} \\
& Z_{1}=\frac{E_{1}}{I_{1}}=\frac{{ }_{r} E_{1}+{ }_{r} E_{1}}{{ }_{\rho} I_{1}+{ }_{r} I_{1}}=Z_{0} \frac{1+\Gamma_{1}}{1-\Gamma_{1}} \\
& \frac{Z_{2}}{Z_{0}}=\frac{1+\Gamma_{2}}{1-\Gamma_{2}}=\frac{1+\left|\Gamma_{1}\right| / 2 \psi_{1}-2 \theta}{1-\left|\Gamma_{1}\right| / 2 \psi_{1}-2 \theta} \text { ineglecting attenuation) } \\
& (\mathrm{swr})=\left|\frac{E_{\max }}{E_{\text {inia }}}\right|=\left|\frac{I_{\max }}{I_{\min }}\right|=\left|\frac{{ }_{f} E|+|{ }_{r} E}{{ }_{f} E|-|_{r} E}\right|=\left|\frac{{ }_{f} I|+|{ }_{r} I}{{ }_{f} I|-|{ }_{n} I}\right| \\
& =\frac{1+|\Gamma|}{1-|\Gamma|}=r_{a}=\frac{1}{g_{a}}=g_{b}=\frac{1}{r_{b}} \\
& |\Gamma|=\frac{(s w r)-1}{(s w r)+1}
\end{aligned}
$$

Reflection coefficient, standing-wave ratio, and power continued

a. When the angle X_{0} / R_{0} of the surge impedance is negligibly small, the net power flowing toward the load is given by
$P_{1}=G_{0}\left(\left|f E_{1}\right|^{2}-\left|r_{r} E_{1}\right|^{2}\right)=\left|f E_{1}\right|^{2} G_{0}\left(1-\left|\Gamma_{1}\right|^{2}\right)=\left|E_{\max } E_{\text {min }}\right| / R_{0}$
where $|E|$ is the root-mean-square voltage.
$P_{2}=\left|f E_{1}\right|^{2} G_{0}\left(\epsilon^{2(\alpha / \beta) \theta}-\left|\Gamma_{1}\right| \epsilon^{-2(\alpha / \beta) \theta}\right)$
b. Efficiency:
$\eta=\frac{P_{1}}{P_{2}}=\frac{1-\left|\Gamma_{1}\right|^{2}}{\epsilon^{2(\alpha / \beta) \theta}-\left|\Gamma_{1}\right|^{2} \epsilon^{-2(\alpha / \beta) \theta}}$
When the load matches the line, $\Gamma_{1}=0$ and
$\eta_{\text {max }}=\epsilon^{-2(\alpha / \beta) \theta}$
For any load,
$\eta=\frac{1-\left|\Gamma_{1}\right|^{2}}{1-\left|\Gamma_{1}\right|^{2} \eta_{\max }^{2}} \eta_{\max }$
c. Attenuation in nepers $=\frac{1}{2} \log _{e} \frac{P_{2}}{P_{1}}=0.1151 \times$ (attenuation in decibels) For a matched line, attenuation $=(\alpha / \beta) \theta=\alpha \times$ nepers.
Attenuation in decibels $=10 \log _{10} \frac{P_{2}}{P_{1}}=8.686 \times$ (attenuation in nepers)
When $2(\alpha / \beta) \theta$ is small,
$\frac{P_{2}}{P_{1}}=1+2 \frac{\alpha}{\beta} \theta \frac{1+\left|\Gamma_{1}\right|^{2}}{1-\left|\Gamma_{1}\right|^{2}}$ and
decibels/waveiength $=10 \log _{10}\left(1+4 \pi \frac{\alpha}{\beta} \frac{1+\left|\Gamma_{1}\right|^{2}}{1-\left|\Gamma_{1}\right|^{2}}\right)$
d. For the same power flowing in a line with standing waves as in a matched, or "flat," line:

$$
\begin{aligned}
P & =\left|E_{\mathrm{nat}}\right|^{2} / R_{0} \\
\left|E_{\mathrm{max}}\right| & =\left|E_{\mathrm{aat}}\right| \sqrt{(\mathrm{swr})} \\
\left|E_{\mathrm{min}}\right| & =\left|E_{\mathrm{nat}}\right| / \sqrt{\text { (swr) }}
\end{aligned}
$$

Reflection coefficient, standing-wave ratio, and power continued

$$
\begin{aligned}
& |f E|=\frac{\left|E_{\mathrm{nat}}\right|}{2}\left[\sqrt{(\mathrm{swr})}+\frac{1}{\sqrt{(s w r)}}\right] \\
& |r E|=\frac{\left|E_{\mathrm{nat}}\right|}{2}\left[\sqrt{(\mathrm{swr})}-\frac{1}{\sqrt{(\mathrm{swr})}}\right]
\end{aligned}
$$

When the loss is small, so that (swr) is nearly constant over the entire length,
$\frac{\text { (power loss) }}{(\text { loss for flat line) }} \approx \frac{1}{2}\left[(\mathrm{swr})+\frac{1}{(\mathrm{swr})}\right]$
e. When a load is connected to a generator through a line, the generator output impedance being equal to the Z_{0} of the line, then, for any load impedance,
$\frac{P}{P_{m}}=1-|\Gamma|^{2}=\frac{4(s w r)}{[1+(s w r)]^{2}}$
where

$$
P=\text { power delivered to the load }
$$

$P_{m}=$ power that would be delivered to a load impedance matching the line I' and (swr) are the values at the load.

Attenuation and resisiance of transmission lines

at ultra-high frequencies

$$
A=4.35 \frac{R_{t}}{R_{0}}+2.78 \sqrt{\epsilon}(\mathrm{pf}) f=\text { attenuation in decibels per } 100 \text { feet }
$$ where

$$
\begin{aligned}
R_{t} & =\text { total line resistance in ohms per } 100 \text { feet } \\
(\mathrm{pf}) & =\text { power factor of dielectric medium } \\
f & =\text { frequency in megacycles }
\end{aligned}
$$

$$
\begin{aligned}
R_{t} & =0.1\left(\frac{1}{d}+\frac{1}{D}\right) \sqrt{f} \quad \text { for copper coaxial line } \\
& =\frac{0.2}{d} \sqrt{f} \quad \text { for copper two-wire open line }
\end{aligned}
$$

$d=$ diameter of conductors (coaxial line center conductor) in inches
$D=$ diameter of inner surface of outer coaxial conductor in inches

Measurement of impedance with slotted line

Symbols

$$
\begin{aligned}
& Z_{0}=\text { characteristic impedance } \\
& \text { of line } \\
& Z=\text { impedance of load } \\
& \text { (the unknown) } \\
& \lambda=\text { wavelength on line } \\
& \chi=\text { distance from load to first } V_{\text {min }} \\
& (s w r)=V_{\max } / V_{\text {min }} \\
& Z_{1}=\text { impedance at first } V_{\text {min }} \\
& k=\text { velocity factor } \\
& \theta^{\circ}=180 \frac{\chi}{\lambda / 2}=0.0120 \mathrm{f} / \mathrm{k} \\
& =\text { (velocity on linel/(velocity in free space) }
\end{aligned}
$$

where f is in megacycles and χ in centimeters.

Procedure

Measure $\lambda / 2, \chi, V_{\text {max, }}$ and $V_{\text {min }}$
Determine
$Z_{1} / Z_{0}=1 /($ swr $)=V_{\min } / V_{\text {max }}$
(wavelengths toward load) $=\chi \lambda=0.5 \chi /(\lambda / 2)$
Then Z / Z_{0} may be found on an impedance chart. For example, suppose
$V_{\text {tulu }} / V_{\text {mux }}=0.60$ and $\chi / \lambda=0.40$
Refer to the chart, such as the Smith chart reproduced in part here. Lay off with slider or dividers the distance on the vertical axis from the center point (marked 1.0) to 0.60. Pass around the circumference of the chart in a counterclockwise direction from the starting point 0 to the position 0.40, toward the load. Read of the resistance and reactance components of the normalized load impedance Z / Z_{0} at the point of the dividers. Then it is found that
$\left.Z=Z_{0} 10.77+j 0.39\right)$
Similarly, there may be found the admittance of the load. Determine
$Y_{1} / Y_{0}=V_{\max } / V_{\text {miln }}=1.67$
in the above example. Now pass around the chart counterclockwise through $\chi / \lambda=0.40$, starting at 0.25 and ending at 0.15 . Read off the components of the normalized admittance.

$Y=\frac{1}{Z}=\frac{1}{Z_{0}}(1.03-j 0.53)$
Alternatively, these results may be computed as follows:
$Z=R_{s}+j X_{s}=\frac{1-j(s w r) \tan \theta}{(s w r)-j \tan \theta}=\frac{2(s w r)-j\left[(s w r)^{2}-1\right] \sin 2 \theta}{\left[(s w r)^{2}+1\right]+\left[(s w r)^{2}-1\right] \cos 2 \theta}$
$Y=G+j B=\frac{1}{Z}=\frac{1}{R_{p}}-j \frac{1}{X_{p}}=\frac{2(\mathrm{swr})+j\left[(\mathrm{swr})^{2}-1\right] \sin 2 \theta}{\left[(\mathrm{swr})^{2}+1\right]-\left[(\mathrm{swr})^{2}-1\right] \cos 2 \theta}$
where R_{z} and X_{z} are the series components of Z, while R_{p} and X_{p} are the parallel components.

322

Surge impedance of uniform lines

0 to 210 ohms

0 to 700 ohms "

$Z_{0}=120 \cosh ^{-1} \frac{D}{d}$
For $D \gg d$
$Z_{0} \approx 276 \log _{10} \frac{2 D}{d}$
porollel wires in oir

Transmission-line data

type of tine	characteristic impedance
A. single coaxial line	$\begin{aligned} Z_{0} & =\frac{138}{\sqrt{\epsilon}} \log _{10} \frac{D}{d} \\ & =\frac{60}{\sqrt{\epsilon}} \log _{e} \frac{D}{d} \\ \epsilon & =\text { dielectric constant } \\ & =1 \mathrm{in} \text { air } \end{aligned}$
B. balanced shielded line	$\begin{aligned} \text { For } D \gg d, h \gg d, \\ \begin{aligned} Z_{0} & \approx \frac{276}{\sqrt{\epsilon}} \log _{10}\left[2 v \frac{1-\sigma^{2}}{1+\sigma^{2}}\right] \\ & \approx \frac{120}{\sqrt{\epsilon}} \log _{e}\left[2 v \frac{1-\sigma^{2}}{1+\sigma^{2}}\right] \\ v & =\frac{h}{d} \quad \sigma=\frac{h}{D} \end{aligned} \end{aligned}$

C. beads-dielectric ϵ_{1}

For cases (A) and (B),
if ceramic beads are used at frequent intervals-call new surge impedance $Z_{0}{ }^{\prime}$

$$
Z_{0}^{\prime}=\frac{Z_{0}}{\sqrt{1+\left(\frac{\epsilon_{1}}{\epsilon}-1\right) \frac{W}{S}}}
$$

$$
\begin{aligned}
Z_{0} & =120 \cosh ^{-1} \frac{D}{d} \\
& \approx 276 \log _{10} \frac{2 D}{d} \\
& \approx 120 \log _{8} \frac{2 D}{d}
\end{aligned}
$$

324
Transmission-line data
continued

type of line	characteristic Impedance
E. wires in parallel, near ground	For $d \ll D, h$, $Z_{0}=\frac{69}{\sqrt{\epsilon}} \log _{10}\left[\frac{4 h}{d} \sqrt{1+\left(\frac{2 h}{D}\right)^{2}}\right]$
F. balanced, near ground	For $d \ll D, h$, $Z_{0}=\frac{276}{\sqrt{\epsilon}} \log _{10}\left[\frac{2 D}{d} \frac{1}{\sqrt{1+(D / 2 h)^{2}}}\right]$

G. single wire, near ground

For $d \ll h$,
$Z_{0}=\frac{138}{\sqrt{\epsilon}} \log _{10} \frac{4 h}{d}$
H. single wire, square enclosure
$Z_{0}=138 \log _{10} \rho+6.48-2.34 A$

$$
-0.48 B-0.12 C
$$

where $\rho=D / d$
$A=\frac{1+0.405 \rho^{-4}}{1-0.405 \rho^{-4}}$
$B=\frac{1+0.163 \rho^{-8}}{1-0.163 \rho^{-8}}$
$C=\frac{1+0.067 \rho^{-12}}{1-0.067 \rho^{-12}}$
I. balanced 4-wire

For $d \ll D_{1}, D_{2}$
$Z_{0}=\frac{138}{\sqrt{\epsilon}} \log _{10} \frac{2 D_{2}}{d \sqrt{1+\left(D_{2} / D_{1}\right)^{2}}}$

M. air coaxial with dielectric supporting wedge

$Z_{0}=\frac{138 \log _{10}(D / d)}{\sqrt{1+(\epsilon-1)(\theta / 360)}}$
$\epsilon=$ dielectric constant of wedge
$\theta=$ wedge angle in degrees

326

Transmission-line data continued

type of line	characteristic impadance
N. balanced 2-wire - unequal diameters	For $d_{1}, d_{2} \ll D_{1}$ $Z_{0}=\frac{276}{\sqrt{\epsilon}} \log _{10} \frac{2 D}{\sqrt{d_{1} d_{2}}}$
O. balanced 2-wire near ground	For $d \ll D_{1} h_{1}, h_{2}$, $Z_{0}=\frac{276}{\sqrt{\epsilon}} \log _{10}\left[\frac{2 D}{d} \frac{1}{\sqrt{1+\frac{D^{2}}{4 h_{1} h_{2}}}}\right]$ Holds also in either of the following special cases: $D= \pm\left(h_{2}-h_{1}\right)$ or $\boldsymbol{h}_{1}=\boldsymbol{h}_{2} \text { (see F above) }$
P. single wire between grounded parallel planes-ground return	$\begin{aligned} & \text { For } \frac{d}{h}<0.75, \\ & Z_{0}=\frac{138}{\sqrt{\epsilon}} \log _{10} \frac{4 h}{\pi d} \end{aligned}$
Q. balanced line between grounded parallel planes	For $d \ll D, h$, $Z_{0}=\frac{276}{\sqrt{\epsilon}} \log _{10}\left(\frac{4 h \tanh \frac{\pi D}{2 h}}{\pi d}\right)$

Transmission-line data continued
type of line characteristic impedance
R. balanced line between grounded parallel planes

S. single wire in trough

For $d \ll h, w$,
$Z_{0}=\frac{138}{\sqrt{\epsilon}} \log _{10}\left[\frac{4 w \tanh \frac{\pi h}{w}}{\pi d}\right]$
T. balanced 2-wire line in rectangular enclosure

For $d \ll D, w, h$,

$$
\begin{aligned}
& Z_{0}=\frac{276}{\sqrt{\epsilon}}\left\{\log _{10}\left[\frac{4 h \tanh \frac{\pi D}{2 h}}{\pi d}\right]\right. \\
&\left.-\sum_{m=1}^{\infty} \log _{10}\left[\frac{1+u_{m}^{2}}{1-v_{m}^{2}}\right]\right\}
\end{aligned}
$$

where
$U_{m}=\frac{\sinh \frac{\pi D}{2 h}}{\cosh \frac{m \pi w}{2 h}} \quad v_{m}=\frac{\sinh \frac{\pi D}{2 h}}{\sinh \frac{m \pi w}{2 h}}$
U. eccentric line

For $d \ll D$,
$Z_{0}=\frac{138}{\sqrt{\epsilon}} \log _{10}\left\{\frac{D}{d}\left[1-\left(\frac{2 c}{D}\right)^{2}\right]\right\}$
For $c / D \ll 1$ this is the Z_{0} of type A diminished by approximately
$\frac{240}{\sqrt{\epsilon}}\left(\frac{c}{D}\right)^{2}$ ohms

328

Transmission-line data continued

type of line	characteristic impedance
V. balanced 2-wire line in semiinfinite enclosure	For $d \ll D, w, h$, $Z_{0}=\frac{276}{\sqrt{\epsilon}} \log _{10} \frac{2 w}{\pi d \sqrt{A}}$ where $A=\operatorname{cosec}^{2}\left(\frac{\pi D}{w}\right)+\operatorname{cosech}^{2}\left(\frac{2 \pi h}{w}\right)$
W. outer wires grounded, inner wires balanced to ground	$\begin{aligned} Z_{0}= & \frac{276}{\sqrt{\epsilon}}\left\{\log _{10} \frac{2 D_{2}}{d}\right. \\ & \left.-\frac{\left[\log _{10} \frac{1+\left(1+D_{2} / D_{1}\right)^{2}}{1+\left(1-D_{2} / D_{1}\right)^{2}}\right]^{2}}{\log _{10} \frac{2 D \sqrt{2}}{d}}\right\} \end{aligned}$

X. slotted air line

When a slot is introduced into an air coaxial line for measuring purposes, the increase in characteristic impedance in ohms, compared with a normal coaxial line, is less than a quantity given by the formula

$\Delta Z=0.03 \theta^{2}$

where θ is the angular opening of the siot in radians

Transmission-line aftenuation due to load mismatch

Let $W_{\imath}=$ power delivered to line by transmitter
$W_{l}=$ power delivered to load by line
Then $A=10 \log _{10} W_{t} / W_{l}$ decibels
A reduces to A_{0} when the load impedance equals the characteristic impedance of the line.
$A_{0}=$ normal attenuation (matched)
$A=$ total attenuation Imismatched) e.g., power loss in line, not reflection loss $\rho=$ standing-wave ratio $V_{\text {tumx }} / V_{\text {mith }}$ at the load
Example: Find the attenuation at 200 megacycles in a 200 -foot length of RG-8/U cable terminated to give a voltage standing-wave ratio of $3: 1$.
From the chart on page 338, the normal attenuation of RG-8/U cable at 200 megacycles is 3.1 decibels per 100 feet, or 6.2 decibels for 200 feet. Referring to the chart below, the added attenuation $\left(A-A_{0}\right)$ due to mismatch for $A_{11}=6.2$ and $\rho=3$ is approximately 1.2 decibels. The total attenuation A is therefore $6.2+1.2=7.4$ decibels.

Quarter-wave matching sections

The accompanying figures show how voltage-reflection coefficient or standing-wave ratio (swr) vary with frequency f when quarter-wave matching lines are inserted between a line of characteristic impedance Z_{0} and a load of resistance R. f_{0} is the frequency for which the matching sections are exactly one-quarter wavelength $(\lambda / 4)$ long.

Impedance matching with shorted stub

Impedance matching with open stub

332

Impedance matching with coupled section

Detuning from resonance for a particular type of section

$A=$ coupled section-iwo 0.75 -inch diameter copper fubes, coplanar with line.
$B=$ transmission line-two 0.162 -inch diameter wires.
$\mathbf{C}=$ alfernative positions of shorting bar for impedance matching.
$D=$ position of shorting bar for maximum current in section conductors.

Length of fransmission line

This chart gives the actual length of line in centimeters and inches when given the length in electrical degrees and the frequency, provided the velocity of propagation on the transmission line is equal to that in free space. The length is given on the L-scale intersection by a line between λ and l°, where $l^{\circ}=\frac{360 L \text { in centimeters }}{\lambda \text { in centimeters }}$
Example: $f=600$ megacycles, $1^{\circ}=30$, Length $L=1.64$ inches or 4.2 centimeters.

Army-Navy standard list of radio-frequency cables

class of cables		ArmyNavy type number	Inner conductor	dialer material"	nominal diam of dielectric inches	shiolding braid	protective covering	nominal overall diam Inchas	$\begin{gathered} \text { weight } \\ \mathrm{Hb} / \mathrm{ft} \end{gathered}$	nominal impedance ohms	nominal caparitence $\mu \mu \mathrm{f} / \mathrm{h}$	meximum eperating vollage rms	remarks
$\begin{aligned} & 50-55 \\ & \text { ohms } \end{aligned}$	$\begin{array}{\|l} \text { Single } \\ \text { braid } \end{array}$	RG-8/U	7/21 AWG copper	A	0.285	Copper	Vinyl	0.405	0.106	52.0	29.5	4,000	General-purpose medium size fexible cable
		RG-10/U	7/21 AWG copper	A	0.285	Copper	Vinyl inoncontaminatingl. Armor	$\begin{aligned} & \text { (max1 } \\ & 0.475 \end{aligned}$	0.146	52.0	29.5	4,000	Same as RG-8/U ar. mored for naval equip. ment
		RG-16/U	Copper rube. Nom. diom. 0.125 in .	A	0.460	Copper	Vinyl	0.630	0.254	52.0	29.5	6,000	Power-transmission cable
		RG-17/U	0.188 copper	A	0.680	Copper	Vinyl inon-coniaminating)	0.870	0.460	52.0	29.5	11,000	large high-power low-aptenuation transmission cable
		RG-18/U	$\begin{aligned} & 0.188 \\ & \text { copper } \end{aligned}$	A	0.680	Copper	Vinyl ínoncontaminating). Armor	$\begin{aligned} & \text { (max) } \\ & 0.945 \end{aligned}$	0.585	52.0	29.5	11,000	Same as RG-17/U armored for naval equip. ment
		RG-19/U	$\begin{aligned} & 0.250 \\ & \text { copper } \end{aligned}$	A	0.910	Copper	Vinyl Inon-contaminating!	1.120	0.740	52.0	29.5	14,000	Very large high.power low-attenuation transmission cable
		RG-20/U	$\begin{aligned} & 0.250 \\ & \text { copper } \end{aligned}$	A	0.910	Copper	Vinyl Inon. contaminatingl. Armor	$\begin{aligned} & \text { (max) } \\ & 1.195 \end{aligned}$	0.925	52.0	29.5	14,000	Same as RG-19/U ar. mored lor noval equip. ment
		RG-29/U	20 AWG copper	A	0.116	Tinned copper	Polyethylene	0.184	0.0194	53.5	28.5	1,900	Same as RG-58/U; polyothylene jacket
		$\stackrel{R G-}{58 A / U}$	20 AWG elass C stranded finned copper	A	0.116	Tinned copper	Vinyl	0.195	0.025	52.0	28.5	1,900	Smoll-size highly flexible cable
		RG-58/U	20 AWG copper	A	0.116	Tinned Copper	Vinyl	0.195	0.025	53.5	28.5	1,900	General-purpose small. size flexible cable

continued Army-Navy standard list of radio-frequency cables

*Notes on dielectric materiats: A-Stabilized polyethylene. B-- Polymerir resin mixture. C-Synthetic rubber combound rubber
Nores on dieleetric materials: A-Siabilued potyeinylene. B-aber loyer synthetic rubber, outer loyer rad insulating synthe tic rubber

class of cables													S
		Navy type number	inner conductor	dielec material*	nominal diam of dielectric inchas	shielding broid	profective covering	nominal overall diam inches	weight lb/f	naminal impedonce ohms	nominal copacitance $\mu \mu \mathrm{f} / \mathrm{fi}$	moximum operating voltage rms	
70-80 shms cons.	Single broid cont.	RG-35/U	9 AWG copper	A	0.680	Copper	Vinyl Inon. contaminating'. Armor	0.945	0.439	71.0	21.5	rms	$\frac{\text { remarks }}{\text { large-size vidoo cable }}$
	Double braid	, RG-6/U	21 AWG copperweld	A	0.185	Inner-silver coated copper Outer-copper	Vinyl Inon-contaminaling!	0.332	0.082	76.0	20.0	2,700	Small size video and I.F cable
		RG-13/U	7/26 AWG tinned copper	A	0.280	Copper	Vinyl	0.420	0.126	74.0	20.5	4,000	I-F cable
		RG-15/U	15 AWG copperweld	A	0.370	Copper	Vinyl	0.545	0.181	78.0	20.0	5,000	edium-size video co
		RG-39/U	22 AWG tinned copporweld	C	0.198	Tinned copper	Polyethylene	0.312	0.100	72.5	28.0	1,000	High-loss video coble
		RG-40/U	22 AWG finned copperweld	C	0.198	Tinnod copper	Syntheric rubber	0.420	0.150	72.5	28.0	1,000	High-loss video cable
Cobles of special charac. teristics	Twin conduelor	RG-22/U	$\begin{aligned} & 2 \text { cond. } \\ & 7 / 0.0152 \\ & \text { copper } \end{aligned}$	A	0.285	Single-linned copper	Vinyl	0.405	0.107	95.0	16.0	1,000	Small size iwin-conductor cable
		RG-23/U	2 cond. 7/21 AWG copper	A	0.380	Copper-individual inner: common outer	Vinyl	$\begin{aligned} & 0.650 \times \\ & 0.945 \end{aligned}$	0.367	125.0	12.0	3,000	Bolanced Iwin-coaxial cable
		RS-57/U	2 cond. 7/21 AWG copper	A	0.472	Single-linned copper	Vinyl	0.625	0.225	95.0	17.0	3,000	large size iwin-conductor cable
	High attenu. ation	$\mathrm{RS}^{\text {R }-21 / U}$	16 AWG resistance wire 21 AWG	A	0.185	inner-silver. coated copper. Quter-copper	Vinyl Inon-contaminatingl	0.332	0.087	53.0	29.0	2,700	Special atrenuating cable with small lemperature coefficient of attenuation
			high-resist. ance wire			ilvered opper	Vinyl (non. confaminatingl	0.342	0.120	78.0	20.0	2,700 A	Astenuating cable with small temperature coeff. of attenuation

class of cables		Army. Navy type number	inner conductor	dielec material*	nominal diom of dielectric inches	shielding braid	protective covering	noriinal overall diam inches	weight lb/f	nominal impedence ohms	nominal capocifonce $\mu \mu \mathrm{f} / \mathrm{ft}$	maximum operating voltage rms	remarks
	High imped. once	RG-65/U	No. 32 formex F helix diom 0.128 in.	A	0.285	Single-copper	Vinyl	0.405	0.096	950	44.0	1,000	High-impedance video cable. High delay
Low capacitance	Single braid	RG-7/U	19 AWG copper	$\stackrel{A}{\operatorname{or}^{\prime} B}$	0.250	Copper	Vinyl	0.370	0.0763	90-105	12.5 Mox. 14.0	1,000	Medium-size Iow-copocitance air-spaced cable
		RG-62/U	22 AWG copperweld	$\stackrel{A}{\text { or } B}$	0.146	Copper	Vinyl	0.242	0.0382	93.0	$\begin{gathered} 13.5 \\ \operatorname{mox} 14.5 \end{gathered}$	750	Small-size low-capocitance air-spaced cable
		RG-63/U	22 AWG copperweld	$\stackrel{A}{\text { or } B}$	0.285	Copper	Vinyl	0.405	0.0832	125	$\begin{gathered} 10.0 \\ \max \quad 11.0 \end{gathered}$	1,000	Medium-size low-capacitance air-spaced cable
	Double braid	RG-71/U	22 AWG copperweld	A	0.146	Inner-plain copper. Outer -tinnedcopper	Polyethylene	0.250	0.0457	93.0	$\begin{gathered} 13.5 \\ \operatorname{mox} 14.5 \end{gathered}$	750	Small-size low-copacitance oir-spaced cable for I.F purposes
Pulse applicotions	Single braid	$\begin{aligned} & R G- \\ & 26 A / U \end{aligned}$	$\begin{aligned} & 19 / 0.0117 \\ & \text { tinned } \\ & \text { copper } \end{aligned}$	E	0.288	Tinned copper	Synthetic rubber. Armor	0.505	0.168	48.0	50.0	$\begin{array}{r} 8,000 \\ \text { (peak) } \end{array}$	Medium-size armored pulse cable
		RG-27/U	$\begin{aligned} & 19 / 0.0185 \\ & \text { finned } \\ & \text { copper } \end{aligned}$	D	0.455	Tinned copper	Vinyl and armor	$\begin{aligned} & (\text { max }) \\ & 0.675 \end{aligned}$	0.304	48.0	50.0	$\begin{aligned} & 15,000 \\ & \text { (peak) } \end{aligned}$	Large-size pulse cable armored for naval equipment
	Double braid	$\begin{aligned} & \text { RG- } \\ & 25 A / U \end{aligned}$	$\begin{aligned} & 19 / 0.0117 \\ & \text { tinned } \\ & \text { copper } \end{aligned}$	E	0.288	Tinned copper	Synthetic rubber	0.505	0.183	48.0	50.0	$\begin{array}{r} 8,000 \\ \text { (peak) } \end{array}$	Medium.size pulse cable
		RG-28/U	$19 / 0.0185$ tinned copper	D	$\begin{gathered} 0.455 \\ \ddagger \end{gathered}$	Inner-linned copper. Outer -golvanized steel	Synthelic rub. ber	0.805	0.370	48.0	50.0	$\begin{aligned} & 15,000 \\ & \text { (peok) } \end{aligned}$	Large-size pulse cable
		$\begin{aligned} & \text { RG- } \\ & 64 A / U \end{aligned}$	$\begin{aligned} & 19 / 0.0117 \\ & \text { tinned } \\ & \text { copper } \end{aligned}$	E	0.288	Tinned copper	Syntheric rubber	0.475	0.162	48.0	50.0	$\begin{array}{r} 8,000 \\ \text { (peok) } \end{array}$	Medium-size pulse cable
Twisting applicafion	Single braid	RG-41/U	16/30 AWG finned copper	C	0.250	Tinned copper	Neoprene	0.425	0.150	67.5	27.0	3,000	Special-twist cable

*Notes on dielectric materials: A-Stabilized polyethylene. B-Polymeric resin mixpure. C-Synthetic rubber compound. D-layer of synthetic rubber dielectric belween thin layers of conducting rubber. E-Inner layer conducting rubber, center loyer synthetic rubber, outer layer red insulating synthetic rubber.
tDara courtesy of Otonite Company.
\$This value is the diameter over the outer layer of conducting rubber.

338

Altenuation of A-N cables versus frequency

The charts below refer to cables listed in the Army-Navy standard list of radio-frequency cables. The numbers on the charts represent the $R G-/ U$ designation of the cables.
For example, the curve labeled " $55,58,29$ " is the attenuation curve for cables RG-55/U, RG-58/U, and RG-29/U.

Propagation of electromagnetic waves in hollow wave guides

For propagation of energy at microwave frequencies through a hollow metal tube under fixed conditions, a number of different types of waves are available, namely:

TE waves: Transverse-electric waves, sometimes called H waves, characterized by the fact that the electric vector (E vector) is always perpendicular to the direction of propagation. This means that
$E_{x} \equiv 0$
where x is the direction of propagation.
TM waves: Transverse-magnetic waves, also called E waves, characterized by the fact that the magnetic vector (H vector) is always perpendicular to the direction of propagation.

This means that
$H_{x} \equiv 0$
where x is the direction of propagation.
Note-TEM waves: Transverse-electromagnetic waves. These waves are characterized by the fact that both the electric vector (E vector) and the magnetic vector (H vector) are perpendicular to the direction of propagation. This means that
$E_{x}=H_{x}=0$
where x is the direction of propagation. This is the mode commonly excited in coaxial and open-wire lines. It cannot be propagated in a wave guide.
The solutions for the field configurations in wave guides are characterized by the presence of the integers n and m which can take on separate values from 0 or 1 to infinity. Only a limited number of these different n, m modes can be propagated, depending on the dimensions of the guide and the frequency of excitation. For each mode there is a definite lower limit or cutoff frequency below which the wave is incapable of being propagated. Thus, a wave guide is seen to exhibit definite properties of a high-pass filter.
The propagation constant $\gamma_{n, m}$ determines the amplitude and phase of each component of the wave as it is propagated along the length of the guide. With $x=$ (direction of propagation) and $\omega=2 \pi \times$ (frequency), the factor for each component is
$\exp \left[j \omega t-\gamma_{n, m} \times\right]$

Thus, if $\gamma_{n, m}$ is real, the phase of each component is constant, but the amplitude decreases exponentially with x. When $\gamma_{n, m}$ is real, it is said that no propagation takes place. The frequency is considered below cutoff. Actually, propagation with high attenuation does take place for a small distance, and a short length of guide below cutoff is often used as a calibrated attenuator.

When $\boldsymbol{\gamma}_{n, m}$ is imaginary, the amplitude of each component remains constant, but the phase varies with x. Hence, propagation takes place. $\gamma_{n, m}$ is a pure imaginary only in a lossless guide. In the practical case, $\gamma_{n, m}$ usually has both a real part, which is the

Fig. 1-Rectangular wave guide.
Fig attenuation constant, and an imaginary part, which is the phase propagation constant.

Reciangular wave guides

Fig. 1 shows a rectangular wave guide and a rectangular system of coordinates, disposed so that the origin falls on one of the corners of the wave guide; x is the direction of propagation along the guide, and the crosssectional dimensions are y_{0} and z_{0}.
For the case of perfect conductivity of the guide walls with a nonconducting interior dielectric lusually air), the equations for the $T M_{n, m}$ or $E_{n, m}$ waves in the dielectric are:
$E_{x}=A \sin \left(\frac{n \pi}{y_{0}} y\right) \sin \left(\frac{m \pi}{z_{0}} z\right) e^{g_{\omega} R-\gamma_{n, m^{2}}}$
$E_{\nu}=-A \frac{\gamma_{n, m}}{\gamma^{2}{ }_{n, m}+\omega^{2} \mu_{k} \epsilon_{k}}\left(\frac{n \pi}{y_{0}}\right) \cos \left(\frac{n \pi}{y_{0}} y\right) \sin \left(\frac{m \pi}{z_{0}} z\right) e^{j \omega t-\gamma_{n, m^{x}}}$
$E_{z}=-A \frac{\gamma_{n, m}}{\gamma^{2}{ }_{n, m}+\omega^{2} \mu_{k} \epsilon_{k}}\left(\frac{m \pi}{z_{0}}\right) \sin \left(\frac{n \pi}{y_{0}} y\right) \cos \left(\frac{m \pi}{z_{0}} z\right) e^{j \omega t-\gamma_{n, m^{x}}}$
$H_{x}=0$
$H_{y}=A \frac{j \omega \epsilon_{k}}{\gamma_{n, m}^{2}+\omega^{2} \mu_{k} \epsilon_{k}}\left(\frac{m \pi}{z_{0}}\right) \sin \left(\frac{n \pi}{y_{0}} y\right) \cos \left(\frac{m \pi}{z_{0}} z\right) e^{j \omega t-\gamma_{n, m^{x}}}$
$H_{z}=-A \frac{j \omega \epsilon_{k}}{\gamma^{2}{ }_{n, m}+\omega^{2} \mu_{k} \epsilon_{k}}\left(\frac{n \pi}{y_{0}}\right) \cos \left(\frac{n \pi}{y_{0}} y\right) \sin \left(\frac{m \pi}{z_{0}} z\right) e^{j \omega t-\gamma_{n, m^{x}}}$
where ϵ_{k} is the dielectric constant and μ_{k} the permeability of the dielectric material in meter-kilogram-second (rationalized) units.

Constant A is determined solely by the exciting voltage. It has both amplitude and phase. Integers n and m may individually take values from 1 to infinity. No TM waves of the 0,0 type or 0,1 type are possible in a rectangular guide so that neither n nor m may be 0 .

Equations for the $T E_{n, m}$ waves or $H_{n, m}$ waves in a dielectric are:

$$
\begin{aligned}
& H_{x}=B \cos \left(\frac{n \pi}{\gamma_{0}} y\right) \cos \left(\frac{m \pi}{z_{0}} z\right) e^{j \omega t-\gamma_{n, m^{x}}} \\
& H_{y}=B \frac{\gamma_{n, m}}{\gamma_{n, m}^{2}+\omega^{2} \mu_{k} \epsilon_{k}}\left(\frac{n \pi}{\gamma_{0}}\right) \sin \left(\frac{n \pi}{\gamma_{0}} y\right) \cos \left(\frac{m \pi}{z_{0}} z\right) e^{j \omega t-\gamma_{n, m^{x}}} \\
& H_{z}=B \frac{\gamma_{n, m}}{\gamma_{n, m}^{2}+\omega^{2} \mu_{k} \epsilon_{k}}\left(\frac{m \pi}{z_{0}}\right) \cos \left(\frac{n \pi}{\gamma_{0}} y\right) \sin \left(\frac{m \pi}{z_{0}} z\right) e^{j \omega t-\gamma_{n, m^{x}}} \\
& E_{x} \equiv 0 \\
& E_{y}=B \frac{j \omega \mu_{k}}{\gamma_{n, m}^{2}+\omega^{2} \mu_{k} \epsilon_{k}}\left(\frac{m \pi}{z_{0}}\right) \cos \left(\frac{n \pi}{\gamma_{0}} y\right) \sin \left(\frac{m \pi}{z_{0}} z\right) e^{j \omega t-\gamma_{n, m^{x}}} \\
& E_{z}=-B \frac{j \omega \mu_{k}}{\gamma_{n, m}^{2}+\omega^{2} \mu_{k} \epsilon_{k}}\left(\frac{n \pi}{\gamma_{0}}\right) \sin \left(\frac{n \pi}{\gamma_{0}} y\right) \cos \left(\frac{m \pi}{z_{0}} z\right) e^{j \omega t-\gamma_{n, m^{x}}}
\end{aligned}
$$

where ϵ_{k} is the dielectric constant and μ_{k} the permeability of the dielectric material in meter-kilogram-second (rationalized) units.

Constant B depends only on the original exciting voltage and has both magnitude and phase; n and m individually may assume any integer value from 0 to infinity. The 0,0 type of wave where both n and m are 0 is not possible, but all other combinations are.

As stated previously, propagation only takes place when the propagation constant $\boldsymbol{\gamma}_{n, m}$ is imaginary;
$\boldsymbol{\gamma}_{n, m}=\sqrt{\left(\frac{n \pi}{y_{o}}\right)^{2}+\left(\frac{m \pi}{z_{o}}\right)^{2}-\omega^{2} \mu_{k \epsilon} \epsilon_{k}}$
This means, for any n, m mode, propagation takes place when $\omega^{2} \mu_{k} \epsilon_{k}>\left(\frac{n \pi}{y_{0}}\right)^{2}+\left(\frac{m \pi}{z_{0}}\right)^{2}$

342
Rectangular wave guides
continued

Fig. 2-Field configurotion for $\mathrm{TE}_{0,1}$ wave.

Fig. 3-Field configuration for a $\mathrm{TE}_{1,2}$ wave.

Fig. 4-Characterislic E lines for TE waves.

Rectangular wave guides continued

or, in terms of irequency f and velocity of light c, when

$$
f>\frac{c}{2 \pi \sqrt{\mu_{1} \epsilon_{1}}} \sqrt{\left(\frac{n \pi}{y_{0}}\right)^{2}+\left(\frac{m \pi}{z_{0}}\right)^{2}}
$$

where μ_{1} and ϵ_{1} are the relative permeability and relative dielectric constant, respectively, of the dielectric material with respect to free space.
The wavelength in the wave guide is always greater than the wavelength in an unbounded medium. If λ is the wavelength in free space, the wavelength in the guide for the n, m mode with air as a dielectric is

$$
\lambda_{o(n, m)}=\frac{\lambda}{\sqrt{1-\left(\frac{n \lambda}{2 y_{0}}\right)^{2}-\left(\frac{m \lambda}{2 z_{0}}\right)^{2}}}
$$

The phase velocity within the guide is also always greater than in an unbounded medium. The phase velocity v and group velocity u are related by the following equation:
$u=\frac{c^{2}}{v}$
where the phase velocity is given by $v=c \lambda_{\Omega} / \lambda$ and the group velocity is the velocity of propagation of the energy.
To couple energy into wave guides, it is necessary to understand the configuration of the characteristic electric and magnetic lines. Fig. 2 illustrates the field configuration for a $T E_{0,1}$ wave. Fig. 3 shows the instantaneous field configuration for a higher mode, a $\mathrm{TE}_{1,2}$ wave.
In Fig. 4 are shown only the characteristic E lines for the $T E_{0.1}, T E_{0.2}, T E_{1,1}$ and $T E_{1,2}$ waves. The arrows on the lines indicate their instantaneous relative directions. In order to excite a TE wave, it is necessary to insert a probe to coincide with the direction of the E lines. Thus, for a $T E_{0.1}$ wave, a single probe projecting from the side of the guide parallel to the E lines would be sufficient to couple into it. Several means of coupling from a coaxial line to a rectangular wave guide to excite the $T E_{0,1}$ mode are shown in Fig. 5. With structures such as these, it is possible to make the standing-wave ratio due to the junction less than 1.15 over a 10 - to 15 -percent frequency band.
Fig. 6 shows the instantaneous configuration of a $T M_{1,1}$ wave; Fig. 7, the instantaneous field configuration for a $\mathrm{TM}_{1,2}$ wave. Coupling to this type of wave may be accomplished by inserting a probe, which is parallel to the E lines, or by means of a loop so oriented as to link the lines of flux.

Fig. 5-Methods of coupling to $T E_{0,1}$ mode ($a \approx \lambda_{0} / 4$).

Fig. 6-Instantaneous field configuration for a $T M_{1,1}$ wave.

Fig. 7-Instontaneous field configuration for a TM1,2 wave.

Circular wave guides

The usual coordinate system is ρ, θ, z, where ρ is in the radial direction; θ is the angle; z is in the longitudinal direction.

TM waves (E waves): $H_{z} \equiv 0$
$E_{z}=A J_{n}\left(k_{n, m} \rho\right) \cos n \theta e^{j \omega t-\gamma_{n, m^{2}}}$
By the boundary conditions, $E_{z}=0$ when $\rho=a$, the radius of the guide. Thus, the only permissible values of k are those for which $J_{n}\left(k_{n, m} a\right)=0$ because E_{z} must be zero at the boundary.
The numbers n, m take on all integral values from zero to infinity. The waves are seen to be characterized by the numbers, n and m, where n gives the order of the bessel functions, and m gives the order of the root of J_{n} $\left(k_{n, m} a l\right.$. The bessel function has an infinite number of roots, so that there are an infinite number of k 's that make $J_{n}\left(k_{n_{0} m} a\right)=0$.
The other components of the electric vector E_{θ} and E_{ρ} are related to E_{z} as are H_{θ} and H_{ρ}.

TE waves (H waves): $E_{z} \equiv 0$
$H_{z}=B J_{n}\left(k_{n, m} \rho\right) \cos n \theta e^{j \omega t-\gamma_{n, m^{2}}}$
$H \rho_{1} H_{\theta}, E_{\rho_{1}} E_{\theta}$, are all related to H_{2}.
Again n takes on integral values from zero to infinity. The boundary condition $E_{\theta}=0$ when $\rho=a$ still applies. To satisfy this condition k must be such as to make $J^{\prime}{ }_{n}\left(k_{n, m}\right.$ a) equal to zero [where the superscript indicates the derivative of $\left.J_{n}\left(k_{n, m} a\right)\right]$. It is seen that m takes on values from 1 to infinity since there are an infinite number of roots of $J^{\prime}{ }_{n}\left(k_{n, m} a\right)$.
For circular wave guides, the cut-off frequency for the n, m mode is $f_{c n, m}=c k_{n, m} / 2 \pi$
where $c=$ velocity of light and $k_{n, m}$ is evaluated from the roots of the bessel functions
$k_{n, m}=U_{n, m} / a$ or $U_{n, m}^{\prime} / a$
where $a=$ radius of guide or pipe and $U_{n, m}$ is the root of the particular bessel function of interest (or its derivative).
The wavelength in any guide filled with a homogeneous dielectric is
$\lambda_{0}=\lambda_{0} / \sqrt{1-\left(\lambda_{0} / \lambda_{C}\right)^{2}}$
Where λ_{0} is the wavelength in free space, and λ_{c} is the free-space cutoff wavelength.

Circular wave guides

The following tables are useful in determining the values of k. For TE waves the cutoff wavelengths are given in the following table.

Values of λ_{c} / a (where $a=$ radius of guide)

$\mathrm{m} \mathrm{n}^{2}$	0	1	2
1	1.640	3.414	2.057
2	0.896	1.178	0.937
3	0.618	0.736	0.631

For Tm waves the cutoff wavelengths are given in the following table.

Values of λ_{c} / \mathbf{o}			
$\mathrm{m} \overline{\mathrm{n}}$	0	1	2
1	2.619	1.640	1.224
2	1.139	0.896	0.747
3	0.726	0.618	0.541

where n is the order of the bessel function and m is the order of the root. Fig. 8 shows $\lambda_{0} / \lambda_{g}$ as a function of $\lambda_{0} / \lambda_{c}$. From this, λ_{0} may be determined when λ_{0} and λ_{c} are known.
The pattern of magnetic force of TM waves in a circular wave guide is shown in Fig. 9. Only the maximum lines are indicated. In order to excite this type of pattern, it is necessary to insert a probe along the length of the wave guide and concentric with the H lines. For instance, in the $T M_{0,1}$ type of wave, a probe extending down the

Fig. 8-Chart for defermining guide wavelength. length of the wave guide at the very center of the guide would provide the proper excitation. This method of excitation is shown in Fig. 10. Corresponding methods of excitation may be used for the other types of TM waves shown in Fig. 9.
Fig. 11 shows the patterns of electric force for TE waves. Again only the maximum lines are indicated. This type of wave may be excited by an antenna that is parallel to the electric lines of force. The $\mathrm{TE}_{1,1}$ wave may be excited by means of an antenna extending across the wave guide. This is illustrated in Fig. 12.

Circular wave guides

 continued

Fig. 13-Cutoff wavelengths and oftenuation factors; all dimensions are in meters.

Type of guide	coaxial coble TEM	rectangular pipe $T E_{0, m}$ or $H_{0 . m}$	TM $M_{0,1}$ or E_{0}	circular pipe	$\mathbf{T E} E_{0,1} \text { or } \mathbf{H}_{0}$
Cutoff wavelength λ_{c}	0	$\frac{2 a}{m}$	2.613a	3.412a	1.640a
Attenuation constant $=\alpha$ (nepers/meter)	$\alpha_{0} \sqrt{\frac{c}{\lambda}} \frac{\left(\frac{1}{a}+\frac{1}{b}\right)}{\log _{e} \frac{b}{a}}$	$\frac{4 \alpha_{0} A}{a}\left(\frac{a}{2 b}+\frac{\lambda^{2}}{\lambda_{e}^{2}}\right)$	$\frac{2 \alpha_{o}}{a} A$	$\frac{2 \alpha_{0}}{a} \mathrm{~A}\left(0.415+\frac{\lambda^{2}}{\lambda_{c}^{2}}\right)$	$\frac{2 \alpha_{0}}{a} A\left(\frac{\lambda}{\lambda_{c}}\right)^{2}$
where $\lambda_{c}=$	ff wavelength	$=\frac{\sqrt{c / \lambda}}{\sqrt{1-\left(\lambda / \lambda_{c}\right)^{2}}}$	$=\frac{1}{2} \sqrt{\frac{\mu_{2}}{\sigma}}$	(M.K.S.)	

Attenuation constants continued

All of the attenuation constants contain a common coefficient
$\alpha_{0}=\frac{1}{2} \sqrt{\mu_{2} \epsilon_{1} \pi / \sigma_{2} \mu_{1}}$
ϵ_{1} and μ_{1} are the dielectric constant and the magnetic permeability of the insulator, respectively; and σ_{2} and μ_{2} are the electric conductivity and magn en permeability of the metal, respectively.
For air and copper,
$\alpha_{0}=0.35 \times 10^{-9}$ nepers $/$ meter $=0.3 \times 10^{-5}$ decibels/kilometer
To convert from nepers/meter to decibels/100 feet, multiply by 264. Fig. 13 summarizes some of the most important formulas. Dimensions a and b are measured in meters.

Attenuation in a wave guide beyond cutoff

When a wave guide is used at a wavelength greater than the cutoff wavelength, there is no real propagation and the fields are attenuated exponentially. The attenuation L in a length d is given by
$L=54.5 \frac{d}{\lambda_{c}} \sqrt{1-\left(\frac{\lambda_{c}}{\lambda}\right)^{2}}$ decibels
where $\lambda_{c}=$ cutoff wavelength and $\lambda=$ operating wavelength

Standard wave guides and connectors

The following presents a list of rectangular wave guides that have been adopted as standard, their wavelength range, attenuation factors, and standard connectors.

			usable wavelength range for	cennectors		attenuation in brass wave guide decibels/foof
dimensions inches	Army-Navy type number	wavelength λ_{e} (centimelers)	TED, 1 mode (centimeters)	chok	flonge	
$\begin{aligned} & 11 / 2 \times 3 \\ & \times 0.081 \text { woll } \end{aligned}$	RG-48/U	14.4	7.6-11.8	UG-54/U	UG-53/U	0.012 (1) 10 cm
$1 \times 2 \times 0.064 \text { wall }$	RG-49/U	9.5	5.15-7.6	UG-148/U	UG-149/U	0.021 @ 6 cm
$\begin{aligned} & 3 / 4 \times 11 / 2 \\ & \times 0.064 \text { wall } \end{aligned}$	RG-50/U	6.97	3.66-5.15	UG-150/U	contact type	0.036 (a) 5 cm
$\begin{aligned} & 3 / 6 \times 1 / 4 \\ & \times 0.064 \text { wall } \end{aligned}$	RG-51/U	5.7	3.0-4.26	UG-52/U	UG-51/U	0.050 @ 3.6 cm
$\begin{array}{r} 1 / 2 \times 1 \\ \times 0.050 \text { wall } \end{array}$	RG-52/U	4.57	2.4-3.66	UG-40/U	UG-39/U	0.076 (3) 3.2 cm

Nave-guide circuit elements

Just as at low frequencies, it is possible to shape metallic or dielectric pieces to produce local concentrations of magnetic or electric energy within a wave guide, and thus produce what are, essentially, lumped inductances or capacitances.

The most convenient form of variable capacitance is a screw projecting into the guide from one side along an electric-field line. In lines handling high levels of pulsed power, such tuners are undesirable because of their tendency to cause breakdown of the air dielectric.

Because of the variation of impedance along a transmission line, it is often possible to replace a lumped capacitance by a lumped inductance at some other point in the line. The most common form of shunted lumped inductance is the diaphragm. Figs. 14 and 15 show the relative susceptance B / Y_{0} for symmetrical and asymmetrical diaphragms in rectangular wave guides. These are computed for infinitely thin diaphragms. Finite thicknesses result in an increase in B / Y_{0}.

Fig. 14-Normalized susceptance of a symmetrical inductive diaphragm.

Wave-guide circuit elements

conlinued

Another form of shunt inductance that is useful because of mechanical simplicity is a round post completely across the narrow dimension of a rectangular guide (for $\mathrm{TE}_{0,1}$ mode). Figs. 16 and 17 give the normalized values of the elements of the equivalent 4 -terminal network for several post diameters.

Frequency dependence of wave-guide susceptances may be given approximately as follows:

Fig. 16-Equivalent circuit for induetive eylindrieal post.

352

$$
\begin{aligned}
\text { Inductive } & =B / Y_{0} \propto \lambda_{\sigma} \\
\text { Capacitative } & =B / Y_{0} \propto 1 / \lambda_{0} \text { (distributed) } \\
& =B / Y_{0} \propto \lambda_{0} / \lambda^{2} \text { (lumped) }
\end{aligned}
$$

Distributed capacitances are found in junctions and slits, whereas tuning screws act as lumped capacitances.

Fig. 17-Equivalent circuit for inductive cylindrical post.

Hybrid junctions (the magic T)

The hybrid junction is illustrated in various forms in fig. 18. An ideal junction is characterized by the fact that there is no direct coupling between arms 1 and 4 or between 2 and 3 . Power flows from 1 to 4 only by virtue of reflec-
tions in arms 2 and 3. Thus, if arm 1 is excited, the voltage arriving at arm 4 is
$E_{4}=\frac{\sqrt{2}}{2} E_{1}\left(\Gamma_{2} e^{j 2 \theta z}-\Gamma_{3} e^{j 2 \theta \theta}\right)$
and the reflected voltage in arm 1 is
$E_{r 1}=\frac{\sqrt{2}}{2} E_{1}\left(\Gamma_{2} e^{j 20 n}+\Gamma_{3} e^{j 202}\right)$
where E_{1} is the amplitude of the incident wave, Γ_{2} and Γ_{3} are the reflection coefficients of the terminations of arms 2 and 3 , and θ_{2} and θ_{3} are the respective distances of the terminations from the junctions. In the case of the rings, θ is the distance between the arm-and-ring junction and the termination.

Fig. 18-Hybrid [unctions (magic T).

Resonant cavities

A cavity enclosed by metal walls will have an infinite number of natural frequencies at which resonance will occur. One of the more common types of cavity resonators is a length of transmission line (coaxial or wave guide) short circuited at both ends.

Resonance occurs when
$2 h=l \frac{\lambda g}{2}$ where l is an integer
$2 h=$ length of the resonator
$\lambda_{g}=$ guide wavelength in resonator

$$
=\frac{\lambda}{\sqrt{1-\left(\frac{\lambda}{\lambda_{c}}\right)^{2}}}
$$

where $\lambda=$ free-space wavelength and $\lambda_{c}=$ guide cutoff wavelength
For $\mathrm{TE}_{n, m}$ or $\mathrm{TM}_{n, m}$ waves in a rectangular cavity with cross section a, b,
$\lambda_{c}=\frac{2}{\sqrt{\left(\frac{n}{a}\right)^{2}+\left(\frac{m}{b}\right)^{2}}}$
where n and m are integers.
For $\mathrm{TE}_{n, m}$ waves in a cylindrical cavity
$\lambda_{c}=\frac{2 \pi a}{U_{n, m}^{\prime}}$
where a is the guide radius and $U_{n, m}^{\prime}$ is the m th root of the equation $J_{n}(U)=0$.

For $\mathrm{TM}_{n, m}$ waves in a cylindrical cavity
$\lambda_{c}=\frac{2 \pi a}{U_{n, m}}$
where a is the guide radius and $U_{n, m}$ is the m th root of the equation $J_{n}(U)=0$.

For TM waves $!=0,1,2 \ldots$.
For TE waves $/=1,2 \ldots$ but not 0

Resonant cavities continued

Rectangular cavity of dimensions $\boldsymbol{a}, \mathbf{b}, \mathbf{2 h}$

$$
\lambda=\frac{2}{\sqrt{\left(\frac{l}{2 h}\right)^{2}+\left(\frac{n}{a}\right)^{2}+\left(\frac{m}{b}\right)^{2}}} \text { (where only one of } l, n, m \text { may be zerol. }
$$

Cylindrical cavities of radius a and length 2h

$$
\lambda=\frac{1}{\sqrt{\left(\frac{l}{4 h}\right)^{2}+\left(\frac{1}{\lambda_{c}}\right)^{2}}}
$$

where λ_{c} is the guide cutoff wavelength.

Spherical resonators of radius a

$$
\lambda=\frac{2 \pi a}{U_{n, m}} \text { for a TE wave } \quad \lambda=\frac{2 \pi a}{U_{n, m}^{\prime}} \text { for a TM wave }
$$

Values of $U_{n, m}$:

$$
U_{1,1}=4.5, U_{2,1}=5.8, U_{1,2}=7.64
$$

Values of $U^{\prime}{ }_{n, m}$:
$U_{1.1}^{\prime}=2.75=$ lowest-order root

Additional cavity formulas

type of cavity	mode	λ_{0} resonant wavalength	(all dlmensions in same units)
Right circular cylinder	TM $M_{0,1,1}\left(E_{0}\right)$	$\frac{4}{\sqrt{\left(\frac{1}{h}\right)^{2}+\frac{2.35}{a^{2}}}}$	$\frac{\lambda_{0}}{\delta} \frac{0}{\lambda_{0}} \frac{1}{1+\frac{\sigma}{2 h}}$
	TE ${ }_{0,1,1}\left(H_{0}\right)$	$\frac{4}{\sqrt{\left(\frac{1}{h}\right)^{2}+\frac{5.93}{a^{2}}}}$	$\frac{\lambda_{0}}{\delta} \frac{0}{\lambda_{0}}\left[\frac{1+0.168\left(\frac{0}{h}\right)^{2}}{1+0.168\left(\frac{\circ}{h}\right)^{3}}\right]$
	$T E_{1,1,1}\left(H_{1}\right)$	$\frac{4}{\sqrt{\left(\frac{1}{h}\right)^{2}+\frac{1.37}{0^{2}}}}$	[$\left[\frac{2.39 h^{2}+1.73 a^{2}}{3.39 \frac{h^{3}}{0}+0.73 a h+1.73 a^{2}}\right]$

356

Resonant cavities continued
Characteristics of various types of resonators

	type resonator	wovelength, λ	0
Square prism TE $\mathrm{E}_{0,1,1}$		$2 \sqrt{2} 0$	$\frac{0.353 \lambda}{\delta} \frac{1}{1+\frac{0.177 \lambda}{h}}$
Circular cylinder TM0.1,0		2.610	$\frac{0.383 \lambda}{\delta} \frac{1}{1+\frac{0.192 \lambda}{h}}$
Sphere		2.280	$0.318 \frac{\lambda}{\delta}$
Sphere with cones		40	Optimum Q for $\theta=34^{\circ}$ $0.1095 \frac{\lambda}{\delta}$
Coaxial TEM		4h	Optimum Q $\begin{aligned} & \text { for } \frac{b}{a}=3.6 \\ & \left(Z_{0}=77 \text { ohms }\right) \end{aligned}$ $\frac{\lambda}{4 \delta+7.2 \frac{h \delta}{b}}$

Skin depth in meters $=\delta=\sqrt{10^{7} / 2 \pi \omega \sigma}$
where $\sigma=$ conductivity of wall in mhos/meter and $\omega=2 \pi \times$ frequency

Resonant cavities continued

Fig. 19-Mode chart for zighl-circular-cylinder cavily.

358

Resonant cavities cantinued

Fig. 19 is a mode chart for a right-circular-cylindrical resonator, showing the distribution of resonant modes with frequency as a function of cavity shape. With the aid of such a chart, one can predict the various possible resonances as the length (2h) of the cavity is varied by means of a movable piston.

Effect of temperature and humidity on cavity tuning

The resonant frequency of a cavity will change with temperature and humidity, due to changes in dielectric constant of the atmosphere, and with thermal expansion of the cavity. A homogeneous cavity made of one kind of metal will have a thermal-tuning coefficient equal to the linear coefficient of expansion of the metal, since the frequency is inversely proportional to the linear dimension of the cavity.

mefal	linear coefficient of expansion $/{ }^{\circ} \mathrm{C}$
Yellow bross	20×10^{-0}
Copper	17.6
Mild steal	12
Invor	1.1

The relative dielectric constant of air (vacuum $=11$ is given by
$k_{e}=1+210 \times 10^{-6} \frac{P_{a}}{T}+180 \times 10^{-6}\left(1+\frac{5580}{T}\right) \frac{P_{w}}{T}$
where P_{a} and P_{w} are partial pressures of air and water vapor in millimeters of mercury, and T is the absolute temperature. Fig. 20 is a nomograph showing change of cavity tuning relative to conditions at 25 degrees centigrade and 60 percent relative humidity (expansion is not included).

Coupling to cavities and loaded \mathbf{Q}

Near resonance, a cavity may be represented as a simple shunt-resonant circuit, characterized by a loaded Q

$$
\frac{1}{Q_{l}}=\frac{1}{Q_{0}}+\frac{1}{Q_{\mathrm{ext}}}
$$

where Q_{0} is the unloaded Q characteristic of the cavity itself, and $1 / Q_{\text {ext }}$

wAVE gUIDES AND RESONATORS 359

Resonant cavities continued

Reprinted from "Techniques of Microwove Meosurements," by Carol G Monigomery, lst ed, 1947; by permission, McGraw-Hill Book Co., N. Y.

Fig. 20-Effect of temperature and humidity on cavity tuning.

360

Resonant cavities continued

is the loading due to the external circuits. The variation of $Q_{\text {ext }}$ with size of the coupling is approximately as follows:

coupling	$\mathbf{1 /} \mathbf{Q}_{\text {ext }}$ is proportional io
Smoll round hole Symmetrical inductive diaphrogm Small loop	(diometer) (81^{4} see Fig. 14 (diameter)

Summary of formulas for coupling through a cavity

The following table summarizes some of the usefut relationships in a 4terminal cavity (transmission typel for three conditions of coupling: matched input linput resistance at resonance equals Z_{0} of input linel, equal coupling $11 / Q_{\mathrm{ln}}=1 / Q_{\text {out }}$), and matched output (resistance seen looking into output terminals at resonance equals output-load resistance). A matched generator is assumed.

	matched input	equal coupling	matched output
Input standing- Wove ratio	1	$1+g_{c}^{\prime}=2\left(\frac{1}{\sqrt{T}}-1\right)$	$1+2 g_{c}^{\prime}$
Transmission	$1-g_{c}^{\prime}=1-2 \rho$	$11+g_{c}^{\prime} / 21-2=(1-\rho)^{2}$	$\left(1+g_{c}^{\prime}\right)-1=1-2 \rho$
$Q_{8} / Q_{0}=\rho$	$\frac{g_{c}^{\prime}}{2}=\frac{1-T}{2}$	$\frac{g_{c}^{\prime}}{2+g_{c}^{\prime}}=1-\sqrt{T}$	$\frac{g_{c}^{\prime}}{2\left(1+g_{e}^{\prime}\right)}=\frac{1-T}{2}$

where g_{c}^{\prime} is the apparent conductance of the cavity at resonance, with no output load; the transmission T is the ratio of the actual output-circuit power delivered to the available power from the matched generator.

Simple wave-guide cavity

A cavity may be made by enclosing a section of wave guide between a pair of large shunt susceptances, as shown in Fig. 21. Its loaded Q is given by

Fig. 21-Wave-guide cavity and equivalent circuit.

$$
\frac{1}{Q_{l}}=\frac{1}{Q_{0}}+\frac{1}{Q_{\mathrm{in}}}+\frac{1}{Q_{\mathrm{ouz}}}=\frac{2}{n \pi}\left(\frac{\lambda}{\lambda_{0}}\right)^{2}\left(\alpha L_{1}^{r}+\frac{1}{b_{1}^{2}}+\frac{g_{2}}{b_{2}^{2}}\right)
$$

for b_{1} and $b_{2} \gg 1$, where b_{1} and b_{2} are the input and output normalized susceptances, g_{2} is the conductance seen looking from the output terminals, α is the attenuation constant, and L is given by
$L=\frac{\lambda_{9}}{2}\left(1+\frac{b_{1}+b_{2}}{2 \pi b_{1} b_{2}}\right)$

Resonant irises

Resonant irises may be used to obtain low values of loaded $Q(<100)$. The simplest type is shown in Fig. 22. It consists of an inductive diaphragm and a capacitive screw located in the same plane across the wave guide. For $Q_{l}<50$, the losses in the resonant circuit may be ignored, and

Fig. 22-Resonant iris in wave guide.
$1 / Q_{l} \approx 1 / Q_{\mathrm{ext}}$
To a good approximation, the loaded Q imatched load and matched generatorl is given by
$Q_{i}=\frac{B_{l}}{2 Y_{0}}$
where B_{l} is the susceptance of the inductive diaphragm. This value may be taken from charts such as Figs. 14 and 15.

Antennas

The elementary dipole

Field infensify*

The elementary dipole forms the basis for many antenna computations. Since dipole theory assumes an antenna with current of constant magnitude and phase throughout its length, approximations to the elementary dipole are realized in practice only for antennas shorter than one-tenth wavelength. The theory can be applied directly to a loop whose circumference is less than one-tenth wavelength, thus forming a magnetic dipole. For larger antennas, the theory is applied by assuming the antenna to consist of a large number of infinitesimal dipoles with differences between individual dipoles of space position, polarization, current magnitude, and phase corresponding to the distribution of these parameters in the actual antenna. Field-intensity equations for large antennas are then developed by integrating or otherwise summing the field vectors of the many elementary dipoles.

The outline below concerns electric dipoles. It also can be applied to magnetic dipoles by installing the loop perpendicular to the PO line at the center of the sphere in Fig. 1. In this case, vector h becomes ϵ, the electric field; ϵ_{ℓ} becomes the magnetic tangential field; and ϵ_{r} becomes the radial magnetic field.

Fig. 1
Electric and magnetic components in spherical coordinates for electric dipoles.

In the case of a magnetic dipole, the table, fig. 2, showing variations of the field in the vicinity of the dipole, can also be used.
For electric dipoles, Fig. 1 indicates the electric and magnetic field components in spherical coordinates with positive values shown by the arrows.

[^31]\[

$$
\begin{array}{rlrl}
r & =\text { distance } O M & \omega=2 \pi f \\
\theta & =\text { angle POM measured } & & \omega=\frac{2 \pi}{\lambda} \\
& \text { from } P \text { toward } M & & c=\text { velocity of light (see page } \\
I & =\text { current in dipole } & & v=\omega t-\alpha r \\
\lambda & =\text { wavelength } & & l=\text { length of dipole }
\end{array}
$$
\]

The following equations expressed in electromagnetic units* (in vacuum) result:

$$
\begin{align*}
\epsilon_{r} & =-\frac{c / \lambda I}{\pi} \frac{\cos \theta}{r^{3}}(\cos v-\alpha r \sin v) \\
\epsilon_{t} & =+\frac{c / \lambda I}{2 \pi} \frac{\sin \theta}{r^{3}}\left(\cos v-\alpha r \sin v-\alpha^{2} r^{2} \cos v\right) \tag{1}\\
h & =-l \frac{\sin \theta}{r^{2}}(\sin v-\alpha r \cos v)
\end{align*}
$$

*See poges 26 ond 27.

Fig. 2-Variations of feld in the vicinity of a dipole.

$\mathbf{r} / \boldsymbol{\lambda}$	$\mathbf{1} / \boldsymbol{\alpha} \mathbf{r}$	$\mathbf{A}_{\mathbf{r}}$	$\boldsymbol{\phi}_{\mathbf{r}}$	$\mathbf{A}_{\mathbf{h}}$	$\boldsymbol{\phi}_{\mathbf{h}}$	$\mathbf{A}_{\mathbf{h}}$	$\boldsymbol{\phi}_{\mathbf{h}}$
0.01	15.9	4,028	$3^{\circ} .6$	4,012	$3^{\circ} .6$	253	$93^{\circ} .6$
0.02	7.96	508	$7^{\circ} .2$	500	$7^{\circ} .3$	64.2	$97^{\circ} .2$
0.04	3.98	65	$14^{\circ} .1$	61	$15^{\circ} .0$	16.4	$104^{\circ} .1$
0.06	2.65	19.9	$20^{\circ} .7$	17.5	$23^{\circ} .8$	7.67	$110^{\circ} .7$
0.08	1.99	8.86	$26^{\circ} .7$	7.12	$33^{\circ} .9$	4.45	$116^{\circ} .7$
0.10	1.59	4.76	$32^{\circ} .1$	3.52	$45^{\circ} .1$	2.99	$122^{\circ} .1$
0.15	1.06	1.66	$42^{\circ} .3$	1.14	$83^{\circ} .1$	1.56	$132^{\circ} .3$
0.20	0.80	0.81	$51^{\circ} .5$	0.70	$114^{\circ} .0$	1.02	$141^{\circ} .5$
0.25	0.64	0.47	$57^{\circ} .5$	0.55	$133^{\circ} .1$	0.75	$147^{\circ} .5$
0.30	0.56	0.32	$62^{\circ} .0$	0.48	$143^{\circ} .0$	0.60	$152^{\circ} .0$
0.35	0.45	0.23	$65^{\circ} .3$	0.42	$150^{\circ} .1$	0.50	$155^{\circ} .3$
0.40	0.40	0.17	$68^{\circ} .3$	0.37	$154^{\circ} .7$	0.43	$158^{\circ} .3$
0.45	0.35	0.134	$70^{\circ} .5$	0.34	$158^{\circ} .0$	0.38	$160^{\circ} .5$
0.50	0.33	0.106	$72^{\circ} .3$	0.30	$160^{\circ} .4$	0.334	$162^{\circ} .3$
0.60	0.265	0.073	$75^{\circ} .1$	0.26	$164^{\circ} .1$	0.275	$165^{\circ} .1$
0.70	0.228	0.053	$77^{\circ} .1$	0.22	$166^{\circ} .5$	0.234	$167^{\circ} .1$
0.80	0.199	0.041	$78^{\circ} .7$	0.196	$168^{\circ} .3$	0.203	$168^{\circ} .7$
0.90	0.177	0.032	$80^{\circ} .0$	0.175	$169^{\circ} .7$	0.180	$170^{\circ} .0$
1.00	0.159	0.026	$80^{\circ} .9$	0.157	$170^{\circ} .7$	0.161	$170^{\circ} .9$
1.20	0.133	0.018	$82^{\circ} .4$	0.132	$172^{\circ} .3$	0.134	$172^{\circ} .4$
1.40	0.114	0.013	$83^{\circ} .5$	0.114	$173^{\circ} .5$	0.114	$173^{\circ} .5$
1.60	0.100	0.010	$84^{\circ} .3$	0.100	$174^{\circ} .3$	0.100	$174^{\circ} .3$
1.80	0.088	0.008	$84^{\circ} .9$	0.088	$174^{\circ} .9$	0.088	$174^{\circ} .9$
2.00	0.080	0.006	$85^{\circ} .4$	0.080	$175^{\circ} .4$	0.080	$175^{\circ} .4$
2.50	0.064	0.004	$86^{\circ} .4$	0.064	$176^{\circ} .4$	0.064	$176^{\circ} .4$
5.00	0.032	0.001	$88^{\circ} .2$	0.032	$178^{\circ} .2$	0.032	$178^{\circ} .2$

$A_{r}=$ coelficient for rodial mognetic field
$A_{t}=$ coefficient for tangentiol mognetic field
$A_{h}=$ coefficient for electric field $\phi_{r}, \phi_{k}, \phi_{h}=$ phose ongles corresponding 10 coefficients

364

The elementary dipole

These formulas are valid for the elementary dipole at distances that are large compared with the dimensions of the dipole. Length of the dipole must be small with respect to the wavelength, say $l / \lambda<0.1$. The formulas are for a dipole in free space. If the dipole is placed vertically on a plane of infinite conductivity, its image should be taken into account, thus doubling the above values.

Field at great distance

When distance r exceeds five wavelengths, as is generally the case in radio applications, the radial electric field ϵ_{r} becomes negligible with respect to the tangential field and

$$
\left.\begin{array}{l}
\epsilon_{r}=0 \tag{2}\\
\epsilon_{t}=-\frac{2 \pi c l I}{\lambda_{r}} \sin \theta \cos (\omega t-\alpha r) \\
h=-\frac{\epsilon_{i}}{c}
\end{array}\right\}
$$

Field at short distance

In the vicinity of the dipole $(r / \lambda<0.01$), ar is very small and only the first terms between parentheses in (I) remain. The ratio of the radial and tangential field is then

$$
\frac{\epsilon_{T}}{\epsilon_{t}}=-2 \cot \theta
$$

Hence, the radial field at short distance has a magnitude of the same order as the tangential field. These two fields are in opposition. Further, the ratio of the magnetic and electric tangential field is
$\frac{h}{\epsilon_{\boldsymbol{t}}}=-\frac{\alpha r}{c} \frac{\sin v}{\cos v}$

The magnitude of the magnetic field at short distances is, therefore, extremely small with respect to that of the tangential electric field, relative to their relationship at great distances. The two fields are in quadrature. Thus, at short distances, the effect of the dipole on an open circuit is much greater than on a closed circuit as compared with the effect at remote points.

The elementary dipole

Field at intermediate distance

At intermediate distance, say between 0.01 and 5.0 wavelengths, one should take into account all the terms of the equations (II). This case occurs, for instance, when studying reactions between adjacent antennas. To calculate the fields, it is convenient to transform the equations as follows:

$$
\left.\begin{array}{l}
\epsilon_{r}=-2 \alpha^{2} c I I \cos \theta A_{r} \cos \left(v+\phi_{r}\right) \tag{3}\\
\epsilon_{i}=\alpha^{2} c I I \sin \theta A_{i} \cos \left(v+\phi_{t}\right) \\
h=\alpha^{2} I I \sin \theta A_{h} \cos \left(v+\phi_{h}\right)
\end{array}\right\}
$$

where

$$
\left.\begin{array}{ll}
A_{r}=\frac{\sqrt{1+(\alpha r)^{2}}}{(\alpha r)^{3}} & \tan \phi_{r}=\alpha r \tag{4}\\
A_{t}=\frac{\sqrt{1-(\alpha r)^{2}+(\alpha r)^{4}}}{(\alpha r)^{3}} & \cot \phi_{t}=\frac{1}{\alpha r}-\alpha r \\
A_{h}=\frac{\sqrt{1+(\alpha r)^{2}}}{(\alpha r)^{2}} & \cot \phi_{h}=-\alpha r
\end{array}\right\}
$$

Values of A's and ϕ 's are given in Fig. 2 as a function of the ratio between the distance r and the wavelength λ. The second column contains values of $1 / \alpha r$ that would apply if the fields ϵ_{t} and h behaved as at great distances.

Linear polarization

An electromagnetic wave is linearly polarized when the electric field lies wholly in one plane containing the direction of propagation.

Horizontal polarization: Is the case where the electric field lies in a plane parallel to the earth's surface.

Vertical polarization: Is the case where the electric field lies in a plane perpendicular to the earth's surface.

E plane: Of an antenna is the plane in which the electric field lies. The principal E plane of an antenna is the E plane that also contains the direction of maximum radiation.

H plane: Of an antenna is the plane in which the magnetic field lies. The H plane is normal to the E plane. The principal H plane of an antenna is the H plane that also contains the direction of maximum radiation.

Elliptical and circular polarization

An electromagnetic wave is elliptically polarized when the electric field does not lie wholly in one plane containing the direction of propagation. In a plane normal to the direction of propagation, the electric field rotates around the direction of propagation, making one complete revolution in a time equal to the period of the wave. If x and y are two orthogonal coordinate axes in the plane perpendicular to the direction of propagation, the field components along these axes are

$$
\begin{aligned}
& E_{z}=A \sin \omega t \\
& E_{v}=B \sin (\omega t+\phi)
\end{aligned}
$$

where

$$
\begin{aligned}
\text { A,B } & =\text { constants } \\
\omega & =2 \pi f \\
f & =\text { frequency in cycles/second } \\
t & =\text { time in seconds } \\
\phi & =\text { phase difference between } x \text { and } y \text { components in radians }
\end{aligned}
$$

If $\phi=0$, the field is linearly polarized. If $\phi= \pm \pi / 2$ and $A=B$, the field is circularly polarized. If $\phi=+\pi / 2$, the field is right-handed-circularly polarized. If $\phi=-\pi / 2$, the field is left-handed-circularly polarized. At a fixed instant of time a right-handed-circularly polarized field rotates clockwise around the direction of propagation when viewed in the direction of propagation. In a plane normal to the direction of propagation a right-handed-circularly polarized field rotates counter-clockwise as a function of time. To avoid confusion, the sense of rotation should be specified with respect to the direction of propagation.

The locus of the instantaneous values of the electric field in an elliptically polarized wave is an ellipse in the plane normal to the direction of propagation. The ratio of the minor diameter to the major diameter is called the axial ratio. The axial ratio is unity for circular polarization and zero for linear polarization.

The relative power received by an elliptically polarized receiving antenna as it is rotated in a plane normal to the direction of propagation of an elliptically polarized wave is given by

$$
\begin{equation*}
P_{r}=K \frac{\left(1 \pm r_{1} r_{2}\right)^{2}+\left(r_{1} \pm r_{2}\right)^{2}+\left(1-r_{1}{ }^{2}\right)\left(1-r_{2}{ }^{2}\right) \cos 2 \theta}{\left(1+r_{1}{ }^{2}\right)\left(1+r_{2}{ }^{2}\right)} \tag{5}
\end{equation*}
$$

time phasing $=\phi$ in degrees

$$
\begin{aligned}
M & =\text { ellipse major axis } \\
m & =\text { ellipse minor axis } \\
B & =\text { inclination of ellipse major axis } \\
(A R) & =m / M=\text { axial ratio } \\
E_{1} & =k, I_{1} \cos \omega t \\
E_{2} & =k, I_{2} \cos (\omega t-\phi)
\end{aligned}
$$

Fig. 3-Ellipticolly polarized field as a function of relotive current amplitude and phase ϕ. Axial-ratio (AR) lines and β lines are plotted.

Elliptical and circular polarization

where
$K=$ constant
$r_{1}=$ axial ratio of elliptically polarized wave
$r_{2}=$ axial ratio of elliptically polarized antenna
$\theta=$ angle between the direction of maximum amplitude in the incident wave and the direction of maximum amplitude of the elliptically polarized antenna

The + sign is to be used if both the receiving and transmitting antennas produce the same hand of polarization. The (-) sign is to be used when one is left handed and the other right handed.
Fig. 3 is useful in the design of circularly polarized antennas. For example if an axial ratio of 0.5 is measured with an angle of 15 degrees between the maximum field and the reference axis, this elliptically polarized field can be considered to be produced by two similar radiators normal to each other, the ratio of whose currents is 1.8 , and the current in the radiator along the reference axis is larger and 70 degrees ahead of the current in the other radiator.

Vertical radiators

Field intensity from a vertically polarized antenna with base close to ground

The following formula is obtained from elementary-dipole theory and is applicable to low-frequency antennas. It assumes that the earth is a perfect reflector, the antenna dimensions are small compared with λ, and the actual height does not exceed $\lambda / 4$.
The vertical component of electric field radiated in the ground plane, at distances so short that ground attenuation may be neglected (usually when $D<10 \lambda 1$, is given by
$E=\frac{377 I H^{2}}{\lambda D}$
where
$E=$ field intensity in millivolts/meter
$I=$ current at base of antenna in amperes
$H_{e}=$ effective height of antenna
$\lambda=$ wavelength in same units as H
$D=$ distance in kilometers

The effective height of a grounded vertical antenna is equivalent to the height of a vertical wire producing the same field along the horizontal as the actual antenna, provided the vertical wire carries a current that is constant along its entire length and of the same value as at the base of the actual antenna. Effective height depends upon the geometry of the antenna and varies slowly with λ. For types of antennas normally used at low and medium frequencies, it is roughly one-half to two-thirds the actual height of the antenna.

For certain antenna configurations effective height can be calculated by the following formulas

Straight vertical antenna: $h \leqslant \lambda / 4$
$H_{e}=\frac{\lambda}{\pi \sin \frac{2 \pi h}{\lambda}} \sin ^{2}\left(\frac{\pi h}{\lambda}\right)$
where $h=$ actual height
Loop antenna: $A<0.001 \lambda^{2}$
$H_{e}=\frac{2 \pi n A}{\lambda}$
where
$A=$ mean area per turn of loop
$n=$ number of turns

Adcock antenna

$H_{e}=\frac{2 \pi a b}{\lambda}$
where
$a=$ height of antenna
$b=$ spacing between antennas
In the above formulas, if H_{e} is desired in meters or feet, all dimensions h, A, a, b, and λ must be in meters or feet, respectively.

Practical vertical-tower antennas

The field intensity from a single vertical tower insulated from ground and either of self-supporting or guyed construction, such as is commonly used for medium-frequency broadcasting, may be calculated by the following
formula. This is more accurate than formula (6). Near ground level the formula is valid within the range $2 \lambda<D<10 \lambda$.

$$
\begin{equation*}
E=\frac{60 I}{D \sin 2 \pi \frac{h}{\lambda}}\left[\frac{\cos \left(2 \pi \frac{h}{\lambda} \cos \theta\right)-\cos 2 \pi \frac{h}{\lambda}}{\sin \theta}\right] \tag{7}
\end{equation*}
$$

where
$E=$ field intensity in millivolts/meter
$I=$ current at base of antenna in amperes
$h=$ height of antenna
$\lambda=$ wavelengths in same units as h
$D=$ distance in kilometers
$\theta=$ angle from the vertical
Radiation patterns in the vertical plane for antennas of various heights are shown in Fig. 4. Field intensity along the horizontal as a function of antenna height for one kilowatt radiated is shown in Fig. 5.

Fig. 4-Fiold strength as a function of angle of elevation for vertical radiators of different heights.

Vertical radiators

Both figs. 4 and 5 assume sinusoidal distribution of current along the antenna and perfect ground conductivity. Current magnitudes for one-kilowatt power used in calculating Fig. 5 are also based on the assumption that the only resistance is the theoretical radiation resistance of a vertical wire with sinusoidal current.

Since inductance and capacitance are not uniformly distributed along the tower and since current is attenuated in traversing the tower, it is impossible to obtain sinusoidal current distribution in practice. Consequently actual radiation patterns and field intensities differ from figs. 4 and 5.* The closest approximation to sinusoidal current is found on constant-cross-section towers.

Fig. 5-Field strength along the horizontol as afunction of antenna height for a vertical grounded radiator with one kilowolt radiofed power.

In addition, antenna efficiencies vary from about 70 percent for 0.15 wavelength physical height to over 95 percent for 0.6 wavelength height. The input power must be multiplied by the efficiency to obtain the power radiated.
Average results of measurements of impedance at the base of several actual vertical radiators, as given by Chamberlain and Lodge \dagger, are shown in Fig. 6.

[^32]

Fig. 6-Resistance and reactance components of impedance between tower base and ground of verlical radiators as given by Chamberlain and Lodge. Solid lines show average results for 5 guyed towers; dashed lines show average resulis for 3 selfsupporting towers.

Vertical radiators continued

For design purposes when actual resistance and current of the projected radiator are unknown, resistance values may be selected from Fig. 6 and the resulting effective current obtained from

$$
\begin{equation*}
I_{e}=\sqrt{\frac{W_{\eta}}{R}} \tag{8}
\end{equation*}
$$

where

$$
I_{e}=\text { current effective in producing radiation in amperes }
$$

W = watts input

$$
\begin{aligned}
\eta= & \text { antenna efficiency, varying from } 0.70 \text { at } h / \lambda=0.15 \text { to } 0.95 \text { at } \\
& h / \lambda=0.6
\end{aligned}
$$

$R=$ resistance at base of antenna in ohms
If I_{e} from (8) is substituted in (7), reasonable approximations to the field intensity at unit distances, such as one kilometer or one mile, will be obtained.

The practical equivalent of a higher tower may be secured by adding a capacitance "hat" with or without tuning inductance at the top of a lower tower.*

A good ground system is important with vertical-radiator antennas. It should consist of at least 120 radial wires, each one-half wavelength or longer, buried 6 to 12 inches below the surface of the soil. A ground screen of highconductivity metal mesh, bonded to the ground system, should be used on or above the surface of the ground adjacent to the tower.

Field infensity and radiated power from antennas in free space

Isotropic radiator

The power density P at a point due to the power P_{t} radiated by an isotropic radiator is
$P=P_{t} / 4 \pi R^{2}$ watts $/$ meter ${ }^{2}$

[^33]
Field infensily and radiafed power continued

where
$R=$ distance in meters
$P_{t}=$ transmitted power in watts
The electric-field intensity E in volts/meter and power density P in watts/ meter ${ }^{2}$ at any point are related by
$P=E^{2} / 120 \pi$
where 120π is known as the resistance of free space. From this
$E=\sqrt{120 \pi P}=\sqrt{30 P_{t}} / R$ volts $/$ meter

Half-wave dipole

For a half-wave dipole, in the direction of maximum radiation
$P=1.64 P_{t} / 4 \pi R^{2}$
$E=\sqrt{49.2 P_{\ell} / R}$
These relations are shown in Fig. 7.

Received power

To determine the power intercepted by a receiving antenna, multiply the power density from fig. 7 by the receiving area. The receiving area is
Area $=G \lambda^{2} / 4 \pi$
where
$G=$ gain of receiving antenna
$\lambda=$ wavelength in meters
The receiving areas and gains of common antennas are given in Fig. 25.
Equation (13) can be used to determine the power received by an antenna of gain G_{r} when the transmitted power P_{t} is radiated by an antenna of gain G_{t}.

$$
P_{r}=\frac{P_{t} G_{r} G_{t} \lambda^{2}}{(4 \pi R)^{2}}
$$

G_{ℓ} and G_{r} are the gains over an isotropic radiator. If the gains over a dipole are known, instead of gain over isotropic radiator, multiply each gain by 1.64 before inserting in (13).
gic svnnainv

376

Radiation from an end-fed conductor of any length

conflguration (length of radiator)	expression for Intensity $F(\theta)$
A. half-wave, resonant	$F(\theta)=\frac{\cos \left(90^{\circ} \sin \theta\right)}{\cos \theta}$
B. any odd number of half waves, resonant	$F(\theta)=\frac{\cos \left(\frac{l^{\circ}}{2} \sin \theta\right)}{\cos \theta}$
C. any even number of half waves, resonant	$F(\theta)=\frac{\sin \left(\frac{l^{\circ}}{2} \sin \theta\right)}{\cos \theta}$
D. any length, resonant	$\begin{aligned} F(\theta)=\frac{1}{\cos \theta}[& 1+\cos ^{2} l^{\circ}+\sin ^{2} \theta \sin ^{2} l^{\circ} \\ & \left.-2 \cos U^{\circ} \sin \theta\right) \cos l^{\circ} \\ & \left.-2 \sin \theta \sin \left(l^{\circ} \sin \theta\right) \sin l^{\circ}\right]^{\frac{1}{2}} \end{aligned}$
E. any length, nonresonant	$\left.F(\theta)=\tan \frac{\theta}{2} \sin \frac{l^{\circ}}{2}(1)-\sin \theta\right)$

where
$l^{\circ}=3601 / \lambda$
$=$ length of radiator in electrical degrees, energy to flow from left-hand end of radiator.
$1=$ length of radiator in same units as λ
$\theta=$ angle from the normal to the radiator
$\lambda=$ wavelength
See also Fig. 8.

length of wire in wavelengths
Fig. 8-Directions of maximum (solid lines) and minimum (dotted lines) radiation from a single-wire radiater. Direction given here is $\left(90^{\circ}-\theta\right)$.

Rhombic antennas

Linear radiators may be combined in various ways to form antennas such as the horizontal vee, inverted vee, etc. The type most commonly used at high frequencies is the horizontal terminated rhombic shown in Fig. 9.

Fig. 9-Dimensions and radiation angles for rhombie antenna.
In designing rhombic antennas* for high-frequency radio circuits, the desired vertical angle Δ of radiation above the horizon must be known or assumed. When the antenna is to operate over a wide range of radiation angles or is to operate on several frequencies, compromise values of H, L, and ϕ must * For more complete information see A. E. Harper, "Rhombic Antenna Design," D. Van Nostrand Company, Now York, Now York; 1941.

Rhombic anfennas

be selected. Gain of the antenna increases as the length L of each side is increased; however, to avoid too-sharp directivity in the vertical plane, it is usual to limit L to less than six wavelengths.

Fig. 10-Rhombic-antenna design chart.

Knowing the side length and radiation angle desired, the height H above ground and the tilt angle ϕ can be oblained from fig. 10 as in the following example:
Problem: Find H and ϕ if $\Delta=20$ degrees and $L=4 \lambda$.
Solution: On fig. 10 draw a vertical line from $\Delta=20$ degrees to meet $L / \lambda=4$ curve and H / λ curves. From intersection at $L / \lambda=4$, read on the right-hand scale $\phi=71.5$ degrees. From intersection on H / λ curves, there are two possible values on the left-hand scale
a. $H / \lambda=0.74$ or $H=0.74 \lambda$
b. $H / \lambda=2.19$ or $H=2.19 \lambda$

Rhombic antennas continued

Similarly, with an antenna 4λ on the side and a tilt angle $\phi=71.5^{\circ}$, working backwards, it is found that the angle of maximum radiation Δ is 20°, if the antenna is 0.74λ or 2.19λ above ground.

Figs. 11 and 12 give useful information for the calculation of the terminating resistance of rhombic antennas.

Fig. 11 -Attenuation of balanced 600ohm transmission lines for use as termlnating networks for rhomble antennas.

Fig. 12-Paraltel-line spacing and wire size to give $\mathbf{6 0 0}$-ohm terminating impedance for rhombic antennas. Attenuation of $\mathbf{6 0 0}$-ohm lines is given in Fig. $\mathbf{1}$. All wire sizes are American wire gauge.

Antenna arrays*

The basis for all directivity control in antenna arrays is wave interference. By providing a large number of sources of radiation, it is possible with a fixed amount of power greatly to reinforce radiation in a desired direction while suppressing the radiation in undesired directions. The individual sources may be any type of antenna.

Individual elements

Expressions for the radiation pattern of several common types of individual elements are shown in fig. 13, but the array expressions are not limited to these. The expressions hold for linear radiators, rhombics, vees, horn radiators, or other complex antennas when combined into arrays, provided a suitable expression is used for A, the radiation pattern of the individual antenna. The array expressions are multiplying factors. Starting with an individual antenna having a radiation pattern given by A , the result of combining it with similar antennas is obtained by multiplying A by a suitable array factor, thus obtaining an A^{\prime} for the group. The group may then be treated as a single source of radiation. The result of combining the group with similar groups or, for instance, of placing the group above ground, is obtained by multiplying A^{\prime} by another of the array factors given.

Linear array

One of the most important arrays is the linear multielement array where a large number of equally spaced antenna elements are fed equal currents in phase to obtain maximum directivity in the forward direction. Fig. 14 gives expressions for the radiation pattern of several particular cases and the general case of any number of broadside elements.
In this type of array, a great deal of directivity may be obtained. A large number of minor lobes, however, are apt to be present and they may be undesirable under some conditions, in which case a type of array, called the Binomial array, may be used.

Binomial array

Here again all the radiators are fed in phase but the current is not distributed equally among the array elements, the center radiators in the array being fed more current than the outer ones. Fig. 15 shows the configuration and general expression for such an array. In this case the configuration is made for a vertical stack of loop antennas in order to obtain single-lobe directivity

[^34]Anfenna arrays continued
Fig. 13-Radiation patterns of several common types of antennas.

type of radiator	$\begin{aligned} & \text { current } \\ & \text { distribution } \end{aligned}$	directivity	
		horizontal Eplane A (θ)	$\begin{aligned} & \text { vertical } H_{A}(\beta) \end{aligned}$
A half-wave dipole		$\begin{aligned} A(\theta) & =K \frac{\cos \left(\frac{\pi}{2} \sin \theta\right)}{\cos \theta} \\ & \approx K \cos \theta \end{aligned}$	$A(\beta)=K(1)$
B shortened dipole		$A(\theta) \approx K \cos \theta$	$A(\beta)=K(1)$
C lengthened dipole		$\begin{aligned} & A(\theta)= \\ & K\left[\frac{\cos \left(\frac{\pi l}{\lambda} \sin \theta\right)-\cos \frac{\pi I}{\lambda}}{\cos \theta}\right] \end{aligned}$	$A(\beta)=K(1)$
D horizontal loop		$A(\theta) \approx K(1)$	$A(\beta)=K \cos \beta$
E horizontal turnstile	i_{1} and i_{2} phased 90°	$A(\theta) \approx K^{\prime}(1)$	$A(\beta)=K^{\prime}(1)$

$\theta=$ horizontal angle measured from perpendicular bisecting plane
$\beta=$ vertical angle measured from horizon
K and K^{\prime} are constants and $K^{\prime}=0.7 K$

382

Antenna arrays continued

in the vertical plane. If such an array were desired in the horizontal plane, say n dipoles end to end, with the specified current distribution the expression would be
$F(\theta)=2^{n-1}\left[\frac{\cos \left(\frac{\pi}{2} \sin \theta\right)}{\cos \theta}\right] \cos ^{n-1}\left(\frac{\pi}{2} S^{\circ} \sin \theta\right)$
The term binomial results from the fact that the current intensity in the successive array elements is in accordance with the numerical coefficients of the terms in the binomial expansion $(a+b)^{n-1}$ where n is the number of elements in the array. This is shown in Fig. 15.

Fig. 14-Linear-multielement-array broadside directivity. See Fig. 13 to compare A for common antenna types.

Antenna arrays continued

Fig. 15 -Development af the binamial array. The expression for the general case is given in E.
contion
where $n=\begin{aligned} & \text { number of loops in the } \\ & \text { array }\end{aligned}$

Optimum current distribution for broadside arrays*

It is the purpose here to give design equations and to illustrate a method of calculating the optimum current distribution in broadside arrays. The resulting current distribution is optimum in the sense that (a) if the side-lobe level is specified, the beam width is as narrow as possible, and (b) if the first null is specified, the side-lobe level is minimized. The current distribution for 4 - through 12-; and $16-20$-, and 24 -element arrays can be calculated after either the side-lobe level or the position of the first null is specified.

Parameter Z : All design equations are given in terms of the parameter Z. To determine Z if the side-lobe level is specified, let
$r=\frac{\text { (maximum amplitude of main lobe) }}{\text { (maximum amplitude of side lobe) }}$
then
$Z=\frac{1}{2}\left[\left(r+\sqrt{r^{2}-1}\right)^{1 / M}+\left(r-\sqrt{r^{2}-1}\right)^{1 / M}\right]$
where

$$
\begin{aligned}
M & =2 N-1 \text { for an array of } 2 N \text { elements } \\
& =2 N \text { for an array of } 2 N+1 \text { elements }
\end{aligned}
$$

To determine Z if the position of the first null is specified (fig. 16), let $\theta_{0}=$ position of first null. Then
$Z=\frac{\cos (\pi / 2 M)}{\cos \left(\frac{\pi S}{\lambda} \sin \theta_{0}\right)}$

Fig. 16-Beam pattern for broodside arroy, showing firsi null at θ_{0}.
where $S=$ spacing between elements.
Design equations: The following are in \mathbf{Z}. It is assumed that all elements are isotropic, are fed in phase, and are symmetrically arranged about the center. See fig. 17 for designation of the respective elements to which the following currents I apply.

[^35]Antenna arrays continued

4-element array
$I_{2}=Z^{3}$
$I_{1}=3\left(I_{2}-Z\right)$

8-element array
$I_{4}=Z^{7}$
$I_{3}=7\left(I_{4}-Z^{5}\right)$
$I_{2}=5 I_{3}-14 I_{4}+14 Z^{3}$
$I_{1}=3 I_{2}-5 I_{3}+7 I_{4}-7 Z$

12-element array
$I_{6}=Z^{11}$
$I_{5}=11\left(I_{6}-Z^{9}\right)$
$I_{4}=9 I_{5}-44 I_{6}+44 Z^{7}$
$I_{3}=7 I_{4}-27 I_{5}+77 I_{6}-77 Z^{5}$
$I_{2}=5 I_{3}-14 I_{4}+30 I_{5}-55 I_{6}+55 Z^{3}$
$I_{1}=3 I_{2}-5 I_{3}+7 I_{4}-9 I_{5}+11 I_{6}-11 Z$

16-element array
$I_{8}=Z^{15}$
$I_{7}=15 I_{8}-15 Z^{13}$
$I_{6}=13 I_{7}-90 I_{8}+90 Z^{11}$
$I_{5}=11 I_{6}-65 I_{7}+275 I_{8}-275 Z^{9}$
$I_{4}=9 I_{5}-44 I_{6}+156 I_{7}-450 I_{8}$ $+450 Z^{7}$
$I_{3}=7 I_{4}-27 I_{5}+77 I_{6}-182 I_{7}$

$$
+378 I_{8}-378 Z^{5}
$$

$I_{2}=5 I_{3}-14 I_{4}+30 I_{3}-55 I_{6}$

$$
+91 I_{6}-140 I_{8}+140 Z^{3}
$$

$I_{1}=3 I_{2}-5 I_{3}+7 I_{4}-9 I_{3}$ $+11 I_{6}-13 I_{7}+15 I_{8}-15 z$

The relative current values necessary for optimum current distribution are plotted as a function of side-lobe level in decibels for 8-, 12-, and 16element arrays (Figs. 18-20).

Courtesy of Proceedings of the I.R.E.
Fig. 17-Broadside array of \mathbf{N} and $\mathrm{N}+1$ elements showing nomenclature of radiators, spacing S, and beam-angular measurement θ.

Courtesy of Procesdings of the I.R.E.
Fig. 19-The relative current values for a 12-element array necessary for "the optimum current distribution" as a funcfion of side-labe level in decibels.

Courtesy of Proceedings of the / R.E.
Fig. 20-The relofive current values for a 16-element array necessary for "the optimum current distribution" os a funcfion of side-labe level in decibels.

Effect of ground on antenna radiation at very-high and ultra-high frequencies

The behavior of the earth as a reflecting surface is considerably different for horizontal than for vertical polarization. For horizontal polarization the earth may be considered a perfect conductor, i.e., the reflected wave at all verlical angles β is substantially equal to the incident wave and 180 degrees out of phase with it. $F(\beta)$ in Fig. 21B was derived on this basis. The approximation is good for all practical types of ground.

For vertical polarization, however, the problem is much more complex as both the relative amplitude K and relative phase ϕ change with vertical angle β, and vary considerably with different types of ground. Fig. 22 is a set of curves that illustrate the problem. The subscripts to the amplitude and phase coefficients K and ϕ refer to the type of polarization.

It is to be noted particularly that at grazing incidence ($\beta=0$) the reflection coefficient is the same for vertical and horizontal polarization. This is substantially true for all practical ground conditions.

Antenna arrays continued

Directivity of several miscellaneous arrays

Fig. 21-Directivity of several orroy problems that do not foll into any of the preceding classes.

configuration of arroy	expression for intensily
A. two radiators any phase ϕ	$F(\theta)=$
$\left[A_{1}^{2}+A_{2}^{2}+2 A_{1} A_{2} \cos \left(S^{\circ} \sin \theta+\phi\right)\right]$	
When $A_{1}=A_{2}$,	
$F(\theta)=2 A \cos \left(\frac{S^{\circ}}{2} \sin \theta+\frac{\phi}{2}\right)$	

B. radiator above ground (horizontal polarization)

$F(\beta)=2 A \sin \left(h_{1}{ }^{\circ} \sin \beta\right)$
C. radiator paraliel to screen

$F(\beta)=2 A \sin \left(d^{\circ} \cos \beta\right)$
or
$F(\theta)=2 A \sin \left(d^{\circ} \cos \theta\right)$
$S^{0}=$ spacing in electrical degrees
$h_{1}{ }^{\circ}=$ height of radiator in electrical degrees
$d^{\circ}=$ spacing of radiator from screen in electrical degrees

Antenna arrays conlinued

Fig. 22-Typicol ground-reflecfion coefficients for horizontal and vertical polarizations.

Electromagnefic horns and parabolic reflectors

Radiation from a wave guide may be obtained by placing an electromagnetic horn of a particular size at the end of the wave guide.

Fig. 23 gives data for designing a horn to have a specified gain with the shortest length possible. The length L_{1} is given by
$L_{1}=L\left(1-\frac{a}{2 A}-\frac{b}{2 B}\right)$
where
$\mathrm{a}=$ wide dimension of wave guide in the H plane
$b=$ narrow dimension of wave guide in E plane
If $L \geqslant a^{2} / \lambda$, where $a=$ longer dimension of aperture, the gain is given by $G=10 a b / \lambda^{2}$

The half-power width in the E plane is given by
$51 \lambda / b$ degrees
and the half-power width in the H plane is given by
70 ג/a degrees
where
$E=$ electric vector
$H=$ magnetic vector
Fig. 24 shows how the angle between 10 -decibel points varies with aperture.

Electromagnetic horns and parabolic reflectors

Fig. 23-Design of electromegnetic-horn radiator.

Electromagnetic horns and parabolic reflectors continued

Fig. 24-10-decibel widths of horns. $L \geqslant A^{2} / \lambda$

Parabolas

If the intensity across the aperture of the parabola is of constant phase and tapers smoothly from the center to the edges so that the intensity at the edges is 10 decibels down from that at the center, the gain is given by $G=8 A / \lambda^{2}$
where $A=$ area of aperture. The half-power width is given by $70 \lambda / D$ degrees
where $D=$ diameter of parabola.

Antenna gain and effective area

The gain of an antenna is a measure of how well the antenna concentrates its radiated power in a given direction. It is the ratio of the power radiated in a given direction to the power radiated in the same direction by a standard antenna la dipole or isotropic radiatorl, keeping the input power constant. If the pattern of the antenna is known and there are no ohmic losses in the system, the gain G is defined by

Anfenna gain and effective area conlinued

$$
\begin{equation*}
G=\left(\frac{\text { maximum power intensity }}{\text { average power intensity }}\right)=\frac{\left|E_{0}\right|^{2}}{\iiint_{\substack{\text { all } \\ \text { angles }}}|E|^{2} d \Omega} \tag{14}
\end{equation*}
$$

where
$\left|E_{0}\right|=$ magnitude of the field at the maximum of the radiation pattern $|E|=$ magnitude of the field in any direction

The effective area A_{r} of an antenna is defined by

$$
\begin{equation*}
A_{r}=\frac{G \lambda^{2}}{4 \pi} \tag{15}
\end{equation*}
$$

where
$G=$ gain of the antenna
$\lambda=$ wavelength
The power delivered by a matched antenna to a matched load connected to its terminals is PA_{r}, where P is the power density in watts/meter ${ }^{2}$ at the antenna and A_{r} is the effective area in meters ${ }^{2}$.
The gains and receiving areas of some typical antennas are given in fig. 25.

Fig. 25-Power gain G and effective area A of several common antennas.

radiator	gain above isofropic radiafor	effective area
Isotropic radiator	1	$\lambda^{2 / 4 \pi}$
Infinitesimal dipole or loop	1.5	$1.5 \lambda^{2 / 4 \pi}$
Half-wave dipole	1.64	$1.64 \lambda^{2 / 4 \pi}$
Optimum horn (mouth area $=$ A)	$10 \mathrm{~A} / \mathrm{\lambda}^{2}$	0.81 A
Horn Imaximum gain for fixed length-see Fig. 24, mouth area $=$ A)	5.6 A/ λ^{2}	0.45 A
Parabola or metal lens	6.3 to 7.5 A/ $\mathrm{\lambda}^{2}$	0.5 to 0.6 A
Broadside array larea $=$ Al	$4 \pi A / \lambda^{2}$ (max)	A (max)
Omnidirectional stacked array llength $=\mathrm{L}$. stack interval $\leqslant \lambda$)	$\approx 2 \mathrm{~L} / \lambda$	$\approx L \lambda / 2 \pi$
Turnstilo	1.15	$1.15 \lambda^{2} / 4 \pi$

392

Antenna gain and effective area continued

The gains and effective areas given in Fig. 25 apply in the receiving case only; when the polarizations are not the same, the gain is given by
$\mathrm{G}_{\theta}=\mathrm{G} \cos ^{2} \theta$
where
$G=$ gain of the antenna
$\theta=$ angle between plane of polarization of the antenna and the incident field

Equation (16) applies only to linear polarization. Equation (5) gives the variation for circular or elliptical polarization. If a circularly polarized antenna is used to receive power from an incident wave of the same screw sense, the gains and receiving areas in fig. 25 are correct. If a circularly polarized antenna is used to receive power from a linearly polarized wave for vice versal the gain or receiving area will be one-half those of Fig. 25.
If the half-power widths of a narrow-beam antenna are known, the approximate gain above an isotropic radiator may be computed from
$G=\frac{30,000}{W_{E} W_{H}}$
where
$W_{E}=E$-plane half-power width in degrees
$W_{H}=H$-plane half-power width in degrees
Equation (17) is not accurate if the half-power widths are greater than about 20 degrees, or if there are many large side lobes.

Vertically stacked horizontal loops

Radiation pattern for array at right is
$F(\beta)=\frac{\sin \left(\frac{n S^{\circ}}{2} \sin \beta\right)}{\sin \left(\frac{S^{\circ}}{2} \sin \beta\right)} \cos \beta$
where
$n=$ number of loops
$S^{\circ}=$ spacing in electrical degrees
$S=$ spacing in radians

Vertically stacked horizontal loops

conlinued

The gain is
gain $=\left\{\frac{1}{n}+\frac{6}{n^{2}} \sum_{k=1}^{n-1}(n-k)\left[\frac{\sin k S^{\circ}}{(k S)^{3}}-\frac{\cos k S^{\circ}}{(k S)^{2}}\right]\right\}^{-1}$

The gain as a function of the number of loops and the electrical spacing is given in Fig. 26.

The data are also directly applicable to stacked dipoles, discones, tripoles, etc., and all other antenna systems that have vertical directivity but are omnidirectionat in the horizontal plane. Such antennas are widely used for frequency-modulation, television, and radio-beacon applications.

spacing S°
Fig. 26-Gain of linear array of horizontal loops vertically stacked

Examples in the solution of antenna-array problems

Problem 1: Find horizontal radiation pattern of four colinear horizontal dipoles, spaced successively $\lambda / 2$, or 180 degrees.

Solution: From Fig. 14D, radiation from four radiators spaced 180 degrees is given by
$F(\theta)=4 A \cos \left(180^{\circ} \sin \theta\right) \cos \left(90^{\circ} \sin \theta\right)$
From Fig. 13A, the horizontal radiation of a half-wave dipole is given by
$A=K \frac{\cos \left(\frac{\pi}{2} \sin \theta\right)}{\cos \theta}$
therefore, the total radiation
$F(\theta)=K\left[\frac{\cos \left(\frac{\pi}{2} \sin \theta\right)}{\cos \theta}\right] \cos \left(180^{\circ} \sin \theta\right) \cos \left(90^{\circ} \sin \theta\right)$
Problem 2: Find vertical radiation pattern of four horizontal dipoles, stacked one above the other, spaced 180 degrees successively.

Solution: From Fig. 14D we obtain the general equation of four radiators, but since the spacing is vertical, the expression should be in terms of vertical angle β.
$F(\beta)=4 A \cos \left(180^{\circ} \sin \beta\right) \cos \left(90^{\circ} \sin \beta\right)$.
From Fig. 13A we find that the vertical radiation from a horizontal dipole lin the perpendicular bisecting planel is nondirectional. Therefore the vertical pattern is
$F(\beta)=K(1) \cos \left(180^{\circ} \sin \beta\right) \cos \left(90^{\circ} \sin \beta\right)$

Problem 3: Find horizontal radiation pattern of group of dipoles in problem 2.

Solution: From Fig. 13A.
$F(\theta)=K \frac{\cos \left(\frac{\pi}{2} \sin \theta\right)}{\cos \theta} \approx K \cos \theta$

Examples in the solution of antenna-array problems continued

Problem 4: Find the vertical radiation pattern of stack of five. loops spaced $2 \lambda / 3$, or 240 degrees, one above the other, all currents equal in phase and amplitude.
Solution: From Fig. 14E, using vertical angle because of vertical stacking,
$F(\beta)=A \frac{\sin \left[5\left(120^{\circ}\right) \sin \beta\right]}{\sin \left(120^{\circ} \sin \beta\right)}$
From Fig. 13D, we find A for a horizontal loop in the vertical plane
$A=F(\beta)=K \cos \beta$
Total radiation pattern
$F(\beta)=K \cos \beta \frac{\sin \left[5\left(120^{\circ}\right) \sin \beta\right]}{\sin \left(120^{\circ} \sin \beta\right)}$
Problem 5: Find radiation pattern (vertical directivity) of the five loops in problem 4, if they are used in binomial array. Find also current intensities in the various loops.
Solution: From Fig. 15E
$F(\beta)=K \cos \beta\left[\cos ^{4}\left(120^{\circ} \sin \beta\right)\right]$
(all terms not functions of vertical angle β are combined in constant K)
Current distribution $11+11^{4}=1+4+6+4+1$, which represent the current intensities of successive loops in the array.
Problem 6: Find horizontal radiation pattern from two vertical dipoles spaced one-quarter wavelength apart when their currents differ in phase by 90 degrees.

Solution: From Fig. 21A
$s^{\circ}=\lambda / 4=90^{\circ}=$ spacing
$\phi=90^{\circ}=$ phase difference
Then,
$F(\theta)=2 A \cos \left(45 \sin \theta+45^{\circ}\right)$
Problem 7: Find the vertical radiation pattern and the number of nulls in the vertical pattern $10 \leqslant \beta \leqslant 901$ from a horizontal loop placed three wavelengths above ground.

Solution

$h_{1}^{\circ}=3(360)=1080^{\circ}$

396

From Fig. 21B
$F(\beta)=2 A \sin (1080 \sin \beta)$
From Fig. 13D for loop antennas
$A=K \cos \beta$
Total vertical radiation pattern
$F(\beta)=K \cos \beta \sin (1080 \sin \beta)$
A null occurs wherever $F(\beta)=0$.
The first term, $\cos \beta$, becomes 0 when $\beta=90$ degrees.
The second term, $\sin (1080 \sin \beta$), becomes 0 whenever the value inside the parenthesis becomes a multiple of 180 degrees. Therefore, number of nulls equals
$1+\frac{h_{1}{ }^{\circ}}{180}=1+\frac{1080}{180}=7$
Problem 8: Find the vertical and horizontal patterns from a horizontal half-wave dipole spaced $\lambda / 8$ in front of a vertical screen.
Solution:
$d^{\circ}=\frac{\lambda}{8}=45^{\circ}$
From Fig. 21C
$F(\beta)=2 A \sin \left(45^{\circ} \cos \beta\right)$
$F(\theta)=2 A \sin \left(45^{\circ} \cos \theta\right)$
From fig. 13A for horizontal half-wave dipole
Vertical pattern $\quad A=K(1)$
Horizontal pattern $A=K \frac{\cos \left(\frac{\pi}{2} \sin \theta\right)}{\cos \theta}$
Total radiation patterns are
Vertical: $\quad F(\beta)=K \sin \left(45^{\circ} \cos \beta\right)$
Horizontal: $F(\theta)=K \frac{\cos \left(\frac{\pi}{2} \sin \theta\right)}{\cos \theta} \sin \left(45^{\circ} \cos \theta\right)$

- Radio-wave propagation

Very-long waves-up to $60 \mathrm{kc} / \mathrm{s}$

The received field intensity in microvolts/meter has been experimentally found to follow the Austin-Cohen equation,
$E=\frac{298 \times 10^{3} \sqrt{ } P}{D} \cdot \sqrt{\frac{\theta}{\sin \theta}} \cdot \epsilon^{-a D / \sqrt{\lambda}}$
where
$E=$ received field intensity in microvolts/meter
$P=$ radiated power from the transmitter antenna in kilowatts
$D=$ kilometers between transmitter and receiver
$\theta=$ transmission distance in radians
$\epsilon=2.718$
$\lambda=$ wavelength of radiation in kilometers
$\alpha=$ attenuation constant
The two nomograms, Figs. 1 and 2,* give solutions for the most important problems related to very-long-wave propagation. The first nomogram solves the following equations
$\sqrt{P}=\frac{H I}{\lambda} \cdot \frac{377}{298}$
$M=\frac{E}{298 \times 10^{3} \sqrt{P}}$
where
$H=$ radiation height (effective height) in meters
$I=$ antenna current in amperes
$M=$ quantity used in Fig. 2

Example

To effect a solution of the above equations:
a. On fig. l, draw two straight lines, the first connecting a value of H with a value of I, the second connecting a value of λ with a value of P; if both

[^36]Very-long waves continued

Fig. 1-First nomogram for the soiution of very-long-wave field strength. For the solution of P and M, equations (2) and (3).

Very-long waves continued

Fig. 2-Second nomogram for the determination of very-long-wave field strength by the Austin-Cohen equation (1). Value M is first determined from Fig. 1.

400

lines intersect on the central M line of the nomogram, the values present a solution of (2). Note: This does not give a solution of (3), i.e., a solution for M.
b. Draw a straight line connecting values of P and E. The intersection of this line with the central nomographic scale M gives the corresponding value of M, as indicated in (3).

Fig. 2 represents the Austin-Cohen equation, affording the possibility of either determining or using various values for the attenuation constant α. To use,
c. Draw a straight line connecting points located on the two distance scales for the proper transmission distance.
d. Draw a second straight line connecting the proper values of wavelength (or frequency) and $M_{\text {; }}$ its intersection with the straight line in (c) above must lie at the proper value of α among the family of curves represented. The values of M, λ, D, and α thus indicated represent a solution of (1).

Long and medium waves- 100 to $3000 \mathrm{kc} / \mathrm{s}^{*}$

For low and medium frequencies, of approximately 100 to 3000 kilocycles, with a theoretical short vertical antenna over perfectly reflecting ground:
$E=186 \sqrt{P_{r}}$ millivolts/meter at 1 mile
or,
$E=300 \sqrt{P_{r}}$ millivolts/meter at 1 kilometer
where $P_{r}=$ radiated power in kilowatts.
Actual inverse-distance fields at one mile for a given transmitter output power depend on the height and efficiency of the antenna and the efficiency of coupling devices.
Typical values found in practice for well-designed stations are:
Small L or T antennas as on ships: $\quad 25 \sqrt{ } \vec{P}_{t}$ millivolts/meter at 1 mile Vertical radiators 0.15 to 0.25λ high: $150 \sqrt{P_{\ell}}$ millivolts/meter at 1 mile Vertical radiators 0.25 to 0.40λ high: $175 \sqrt{P_{t}}$ millivolts/meter at 1 mile Vertical radiators 0.40 to 0.60λ high or top-loaded vertical radiators: $220 \sqrt{P_{t}}$ millivolts/meter at 1 mile

[^37]
Long and medium waves continued

where $P_{\ell}=$ transmifter output power in kilowatts. These values can be increased by directive arrangements.

The surface-wave field (commonly called ground wave) at greater distances can be found from Figs. 3-6. Figs. 4-6 are based on a field strength of 186 millivolts/meter at one mile. The ordinates should be multiplied by the ratio of the actual field at 1 mile to 186 millivolts/meter.

Fig. 3-Ground conductivity and dielectric constant for medium- ond long-wave propagation to be used with Norton's, van der Pol's, Eckersley's, or other developments of Sommerfeld propagation formulas.

ferrain				conductivity in emu	dielectric constant ϵ in esu
Sea water	4×10^{-11}				
Fresh water	5×10^{-14}	80			
Dry, sandy flat coastal land	2×10^{-14}	80			
Marshy, forested flat land	8×10^{-14}	10			
Rich agricultural land, low hills	1×10^{-13}	12			
Pastoral land, medium hills and forestation	5×10^{-14}	15			
Rocky land, steep hills	2×10^{-14}	13			
Mountainous thills up to 3000 feell	1×10^{-14}	10			
Cities, residential areas	2×10^{-14}	5			
Cities, industrial areas	1×10^{-15}	5			

Fig. 4-Strength of surface waves as ofunction of distance with a vertical antenno for good eorth ($\sigma=10^{-13}$ emu and $\epsilon=15$ esu).

Long and medium waves continued

Figs. 4, 5, and 6 do not include the effect of sky waves reflected from the ionosphere. Sky waves cause fading at medium distances and produce higher field intensities than the surface wave at longer distances, particularly at night and on the lower frequencies during the day. Sky-wave field intensity is subject to diurnal, seasonal, and irregular variations due to changing properties of the ionosphere.

The annual median field strengths are functions of the latitude, the frequency on which the transmission takes place, and the phase of the solar sunspot cycle at a given time.

The dependence of the annual median field for transmissions on frequencies around the middle of the United States standard broadcast band is shown on Fig. 7 for a period of sunspot maximum (1939) and on Fig. 8, for a period of sunspot minimum (1944).

The curves are given for 35,40 , and 45 degrees latitude. The latitude used to characterize a path is that of a control point on the path. The control point is taken to be the midpoint of a path less than 1000 miles long; and for a longer path, the reflection point (for two-reflection transmission) that is at the higher latitude.

The curves are extracted from a report of the Federal Communications Commission in 1946.*

Short waves- 3 to $25 \mathrm{mc} / \mathrm{s}$

At frequencies between about 3 and 25 megacycles and distances greater than about 100 miles, transmission depends entirely on sky waves reflected from the ionosphere. This is a region high above the earth's surface where the rarefied air is sufficiently ionized (primarily by ultraviolet sunlight) to reflect or absorb radio waves, such effects being controlled almost exclusively by the free-electron density. The ionosphere is usually considered as consisting of the following layers.

D layer: At heights from about 50 to 90 kilometers, \dagger it exists only during daylight hours, and ionization density corresponds with the altitude of the sun.

This layer reflects very-low- and low-frequency waves, absorbs mediumfrequency waves, and weakens high-frequency waves through partial absorption.

[^38]

Aeld strength in microvolts/meter

Fig. 8-Sky-wave signal range af medium frequencies for 1944 (sunspot minimum). Shown are the values exceeded by field intensities (hourly median values) for various percentages of the nights per year per $100 \mathrm{mlllivalts} / \mathrm{meter}$ radiated at 1 mlle . Annual average is also shown. Values are given for latitudes of 35, 40, and 45 degrees.

406

Short waves conlinued

Elayer: At height of about 110 kilometers, this layer is of importance for short-wave daytime propagation at distances less than 1000 miles, and for medium-wave nighttime propagation at distances in excess of about 100 miles. Ionization density corresponds closely with the altitude of the sun. Irregular cloud-like areas of unusually high ionization, called sporadic E may occur up to more than 50 percent of the time on certain days or nights. Sporadic E occasionally prevents frequencies that normally penetrate the E layer from reaching higher layers and also causes occasional long-distance transmission at very high frequencies. Some portion (perhaps the major partl of the sporadic-E ionization is now definitely ascribable to visible- and subvisible-wavelength bombardment of the atmosphere.
F_{1} layer: At heights of about 175 to 250 kilometers, it exists only during daylight. This layer occasionally is the reflecting region for shortwave transmission, but usually oblique-incidence waves that penetrate the Elayer also penetrate the F_{1} layer to be reflected by the F_{2} layer. The F_{1} layer introduces additional absorption of such waves.
F_{2} layer: At heights of about 250 to 400 kilometers, F_{2} is the principal reflecting region for long-distance short-wave communication. Height and ionization density vary diurnally, seasonally, and over the sunspot cycle. Ionization does not follow the altitude of the sun in any simple fashion, since lat such extremely low air densities and molecular-collision rates) the medium can store received solar energy for many hours, and, by energy transformation, can even detach electrons during the night. At night, the F_{1} layer merges with the F_{2} layer at a height of about 300 kilometers. The absence of the F_{1} layer, and reduction in absorption of the E layer, causes nighttime field intensities and noise to be generally higher than during daylight hours.

Fig. 9-Single- and two-hop transmission paths due to E and F_{2} layers.

Fig. 10-Schemotic explanotion of skip-signol zones.

Short waves conlinued

As indicated to the right on Fig. 10, these layers are contained in a thick region throughout which ionization generally increases with height. The layers are said to exist where the ionization gradient is capable of refracting waves back to earth. Obliquely incident waves follow a curved path through the ionosphere due to gradual refraction or bending of the wave front. When attention need be given only to the end result, the process can be assimilated to a reflection.
Depending on the ionization density at each layer, there is a critical or highest frequency f_{e} at which the layer reflects a vertically incident wave. Frequencies higher than f_{c} pass through the layer at vertical incidence. At oblique incidence, and distances such that the curvature of the earth and ionosphere can be neglected, the maximum usable frequency is given by

$$
(\text { muf })=f_{c} \sec \phi
$$

where

(muf) $=$ maximum usable frequency for the particular layer and distance

$$
\phi=\text { angle of incidence at reflecting layer }
$$

At greater distances, curvature is taken into account by the modification

$$
(m u f)=k f_{e} \sec \phi
$$

where k is a correction factor that is a function of distance and vertical distribution of ionization.
f_{c} and height, and hence ϕ for a given distance, vary for each layer with local time of day, season, latitude, and throughout the eleven-year sunspot cycle. The various layers change in different ways with these parameters. In addition, ionization is subject to frequent abnormal variations.
The loss at reflection for each layer is a minimum at the maximum usable frequency and increases rapidly for frequencies lower than maximum usable frequency.
Short waves travel from the transmitter to the receiver by reflections from the ionosphere and earth in one or more hops as indicated in Figs. 9 and 10. Additional reflections may occur along the path between the bottom edge of a higher layer and the top edge of a lower layer, the wave finally returning to earth near the receiver.
Fig. 9 illustrates single-hop transmission, Washington to Chicago, via the E layer (ϕ_{1}). At higher frequencies over the same distance, single-hop transmission would be obtained via the F_{2} layer (ϕ_{2}). Fig. 9 also shows two-hop

Short waves

transmission, Washington to San Francisco, via the F_{2} layer $\left(\phi_{3}\right)$. Fig. 10 indicates transmission on a common frequency, (1) single-hop via E layer, Denver to Chicago, and, (2) single-hop via F_{2}; Denver to Washington, with, (3) the wave failing to reflect at higher angles, thus producing a skip region of no signal between Denver and Chicago.

Actual transmission over long distances is more complex than indicated by Figs. 9 and 10, because the layer heights and critical frequencies differ with time (and hence longitude) and with latitude. Further, scattered reflections occur at the various surfaces.

June 1933 and 1944

June 1937 and 1949

December 1937 and 1949

local time af place of reflection

Fig. 1 I-SIngle-hop transmission of various froquencies.

Short waves conlinued

Maximum usable frequencies (muf) for single-hop transmission at various distances throughout the day are given in Fig. 11. These approximate values apply to latitude $39^{\circ} \mathrm{N}$ for the approximate minimum years (1944 and 1955) and approximate maximum years (1949 and 1960) of the sunspot cycle. Since the maximum usable frequency and layer heights change from month to month, the latest predictions should be obtained whenever available.

This information is published lin the form of contour diagrams, similar to Fig. 14, supplemented by nomograms) by the National Bureau of Standards in the U. S. A., and equivalent predictions are supplied by similar organizations in other countries.

Preferably, operating frequencies should be selected from a specific frequency band that is bounded above and below by limits that are systematically determinable for the transmission path under consideration. The recommended upper limit is called the optimum working frequency lowfl and is defined as 85 percent of the maximum usable frequency (muf). The 85 -percent limit provides some margin for ionospheric irregularities and turbulence, as well as statistical deviation of day-to-day ionospheric characteristics from the predicted monthly median value. So far as may be consistent with available frequency assignments, operation in reasonable proximity to the upper frequency limit is preferable, in order to reduce absorption loss.

The lower limit of the normally available band of frequencies is called the lowest useful high frequency (luhf). Below this limit ionospheric absorption is likely to be excessive, and radiated-power requirements quite uneconomical. [For lack of better information the (luhf) was formerly arbitrarily designated at 50 percent of the (muf). Even for single-hop transmission, the 50 -percent factor is now considered unreliable, and it will usually be very misleading when applied to multiple-hop paths.] For a given path, season, and time, the (luhfl may now be predicted by a systematic graphical procedure, roughly similar to that illustrated below for the determination of (muf). Unlike the (muf), the predicted (luhf) has to be corrected by a series of factors dependent on radiated power, directivity of transmitting and receiving antennas in azimuth and elevation, class of service, and presence of local noise sources. Available data include atmospheric-noise maps, fieldintensity charts, contour diagrams for absorption factors, and nomograms facilitating the computation. The procedure is formidable but worth while. The current technique includes some approximations and estimates that are gradually being replaced by an influx of new information derived from measured data.

The upper and lower frequency limits change continuously throughout the day, whereas it is ordinarily impractical to change operating frequencies correspondingly. Each operating frequency, therefore, should be selected to fall within the above limits for a substantial portion of the daily operating period.

If the operating frequency already has been dictated by outside considerations, and if this frequency has been found to be safely below the maximum usable frequency, then the same noise maps, absorption contours, nomograms, and correction factors Imentioned abovel may be applied to the systematic statistical determination of a lowest required radiated power (Irrp), which will just suffice to maintain the specified grade of service.

For single-hop transmission, frequencies should be selected on the basis of local time and other conditions existing at the mid-point of the path. In view of the layer heights and the fact that practical antennas do not operate effectively below angles of about three degrees, single-hop transmission cannot be achieved for distances in excess of about 2500 miles $\left(4000\right.$ kilometers) via F_{2} layer, or in excess of about 1250 miles (2000 kilometers) via the E layer. Multiple-hop transmission must occur for longer distances and, even at distances of less than 2500 miles, the major part of the received signal frequently arrives over a two-or more-hop path. In analyzing two-hop paths, each hop is treated separately and the lowest frequency required on either hop becomes the maximum usable frequency for the circuit.

It is usually impossible to predict accurately the course of radio waves on circuits involving more than two hops because of the large number of possible paths and the scattering that occurs at each reflection. When investigating F_{2}-layer transmission for such long-distance circuits, it is customary to consider the conditions existing at points 2000 miles along the path from each end as the points at which the maximum usable frequencies should be calculated.

When investigating E-layer transmission, the corresponding control points are 1000 kilometers $(620$ miles) from each end. For practical purposes, F_{1}-layer transmission lusually of minor importancel is lumped with E-layer transmission and evaluated at the same control points.

Forecasts of short-wave propagation

In addition to forecasts for ionospheric disturbances, the Central Radio Propagation Laboratories of the National Bureau of Standards issues monthly Basic Radio Propagation Predictions 3 months in advance used to
determine the optimum working frequencies for shortwave communication. Indication of the general nature of the CRPL data and a much abbreviated example of their use follows:

Example

To determine working frequencies for use between San Francisco and Wellington, N. Z.

Method

a. Place a transparent sheet over fig. 12 and mark thereon the equator, a line across the equator showing the meridian of time desired (viz., GCT or PSTI, and locations of San Francisco and Wellington.
b. Transfer sheet to Fig. 13, keeping equator lines of chart and transparency aligned. Slide from left to right until terminal points marked fall along a Great Circle line. Sketch in this Great Circle between terminals and mark "control points" 2000 kilometers along this line from each end.
c. Transfer sheet to Fig. 14, showing muf for transmission via the F_{2} layer. Align equator as before. Slide sheet from left to right placing meridian line on time desired and record frequency contours at control points. This illustration assumes that radio waves are propagated over this path via the F_{2} layer. Eliminating all other considerations, 2 sets of frequencies, corresponding to the control points, are found as listed below, the lower of which is the (muf). The (muf), decreased by 15 percent, gives the optimum working frequency.

GCT	at San Franciseo control point (2000 km from Son Froncisco)	at Wellington, N. Z. contral point (2000 km from Wellington)	optimum working frequency $=$ lower of (muf) $\times 0.85$
0000	32.0	31.5	26.8
0400	34.2	25.0	21.0
0800	23.2	13.7	11.7
1200	18.0	14.8	12.6
1600	23.4	12.2	10.4
2000	24.6	2.88	20.9

Transmission may also take place via other layers. For the purpose of illustration only and without reference to the problem above, Figs. 15 and 16 have been reproduced to show characteristics of the E and sporadic- E layers. The complete detailed step-by-step procedure, including special considerations in the use of this method, are contained in the complete CRPL forecasts.

Fig. 12-World map showing zones coyered by predicted charts and aureral zones. Zones shown ore $E=$ east, $I=$ intermediafe, end W = west.

Fig. 13-Great circle chart centered on equator. Solid lines represent great circles.
Dot-dash lines indicale dis. lances in thousands of kilometers.

Fig. 14-F2 4000-kilometer maximum usable frequency in megacycles. Zone | (see Fig. 12) predicted for July, 1946

Fig. 15-E-layer 2000. kilometer maximum usable frequency in megacycles predicted for July, 1946.

continued Forecasts of short-wave propagation

Fig. 16-Madian FE_{s} in megacycles (spo-radic-E layer) prodicted for July, 1946.

Forecasts of short-wave propagation continued

local time
Fig. 17-F-layer transmission for a 2000-kilometer guard band for control points on the 4000 -kilometer (muf) contour. Frequency is 15 percent below 30 megocyeles. For December, 1946. Zones are $E=$ east, $W=$ west, and $I=$ intermediate. Map is a modified cylindrical projection.

Fig. 18-As Fig. 17, for June, 1947.

Forecasts of short-wave propagation

Fig. 19A—Field-intensity contours in microvolts/meter for 1 kilowaft rodiofed at 6 megacycles. Azimuthal equidistant projection centered on stotion at 40 degrees south latitude. Time is noon of a June doy during o sunspot-minimum year.

Contour charts of fleld infensity-dark spot and skip zones
Figs. 17 and 18 are skip-zone charts showing areas in which F-layer transmission is normally impossible at a particular frequency, 30 megacycles on the example shown. Fig. 17 is for December, 1946, east, west, and intermediate zones. Fig. 18 is for June, 1947.
These charts are established for a 2000-kilometer guard-distance for control points on the 4000 -kilometer (muf) contour for a frequency 15 percent below 30 megacycles.
World-coverage field-intensity contours are useful for determining the strength of an interfering signal from a given transmitter, as compared with the wanted signal from another transmitter. A sample instance of such a

Forecasts of short-wave propagation continued

Fig. 198-field intensity of antipades, drawn to twice the scale of Fig. 19A.
field-intensity-contour chart is shown in Figs. 19A and B. The field is given in microvolts/meter for a 1 -kilowatt station at 6 megacycles. Fig. 19A is an azimuthal equidistant projection centered on the transmitter (periphery of figure represents antipodes). Fig. 19B, at twice the scale, is centered on antipodes, but for a half-sphere only. These diagrams are useful in determining the point on the surface of the earth where the field intensity is a minimum, the so-called dark spot.

Great-circle calculations

Mathematical method

Referring to figs. 20,21 , and $22, A$ and B are two places on the earth's surface the latitudes and longitudes of which are known. The angles X and Y

Great-circle calculations

at A and B of the great circle passing through the two places and the distance Z between A and B along the great circle can be calculated as follows:
$B=$ place of greater latitude, i.e., nearer the pole, $L_{A}=$ latitude of A, $L_{B}=$ latitude of B, and $C=$ difference of longitude between A and B,

Then,
$\tan \frac{Y-X}{2}=\cot \frac{C}{2} \frac{\sin \frac{L_{B}-L_{A}}{2}}{\cos \frac{L_{B}+L_{A}}{2}}$ and $\quad \tan \frac{Y+X}{2}=\cot \frac{C}{2} \frac{\cos \frac{L_{B}-L_{A}}{2}}{\sin \frac{L_{B}+L_{A}}{2}}$
give the values of $\frac{Y-X}{2}$ and $\frac{Y+X}{2}$,
from which
$\frac{Y+X}{2}+\frac{Y-X}{2}=Y \quad$ and $\quad \frac{Y+X}{2}-\frac{Y-X}{2}=X$
In the above formulas, north latitudes are taken as positive and south latitudes as negative. For example, if B is latitude $60^{\circ} \mathrm{N}$ and A is latitude $20^{\circ} \mathrm{S}$,
$\frac{L_{B}+L_{A}}{2}=\frac{60+(-20)}{2}=\frac{60-20}{2}=\frac{40}{2}=20^{\circ}$
$\frac{L_{B}-L_{A}}{2}=\frac{60-(-20)}{2}=\frac{60+20}{2}=\frac{80}{2}=40^{\circ}$
If both places are in the southern hemisphere and $L_{B}+L_{A}$ is negative, it is simpler to call the place of greater south latitude B and to use the above method for calculating bearings from true south and to convert the results afterwards to bearings east of north.
The distance Z (in degrees) along the great circle between A and B is given by the following:
$\tan \frac{Z}{\rho^{2}}=\tan \frac{L_{B}-L_{A}}{2}\left(\sin \frac{Y+X}{2}\right) /\left(\sin \frac{Y-X}{2}\right)$
The angular distance Z (in degreesl between A and B may be converted to linear distance as follows:
Z (in degrees) $\times 111.195=$ kilometers
Z lin degrees) $\times 69.093=$ statute miles
Z lin degrees) $\times 60.000=$ nautical miles

Great-circle calculations continued

Fig. 21
$L_{\mathbf{A}}=$ latitude of \mathbf{A}
$L_{B}=$ latitude of B
$C=$ difference of longitude

Fig. 22
$L_{A}=$ latitude of A
$L_{\mathrm{B}}=$ latitude of B
$\mathbf{C}=$ difference of longitude

In multiplying, the minutes and seconds of arc must be expressed in decimals of a degree. For example, $Z=37^{\circ} 45^{\prime} 36^{\prime \prime}$ becomes 37.755°.
Example: Find the great-circle bearings at Brentwood, Long Island, Longitude $73^{\circ} 15^{\prime} 10^{\prime \prime} \mathrm{W}$, Latitude $40^{\circ} 48^{\prime} 40^{\prime \prime} \mathrm{N}$, and at Rio de Janeiro, Brazil, Longitude $43^{\circ} 22^{\prime} 07^{\prime \prime} \mathrm{W}$, Latitude $22^{\circ} 57^{\prime} 09^{\prime \prime} \mathrm{S}$; and the great-circle distance in statute miles between the two points.

	Iongitude	Iatitude	
Brentwood Rio de Janeiro	$\begin{aligned} & 73^{\circ} 15^{\prime} 10^{\prime \prime} \mathrm{W} \\ & 43^{\circ} 22^{\prime} 07^{\prime \prime} \mathrm{W} \end{aligned}$	$\begin{array}{r} 40^{\circ} 48^{\prime} 40^{\prime \prime} \mathrm{N} \\ 1-122^{\circ} 57^{\prime} 09^{\prime \prime} \mathrm{S} \end{array}$	L_{8} L_{A}
C	$29^{\circ} 53^{\prime} 03^{\prime \prime}$	$17^{\circ} 55131{ }^{\prime \prime}$ $63^{\circ} 45^{\prime} 49^{\prime \prime}$	$\begin{aligned} & L_{B}+L_{A} \\ & L_{B}-L_{A} \end{aligned}$
$\frac{C}{2}=14^{\circ} 56^{\prime} 31^{\prime \prime}$	$\frac{L_{B}+L_{A}}{2}=8^{\circ} 55^{\prime} 45^{\prime \prime} \quad \frac{L_{B}-L_{A}}{2}=31^{\circ} 52^{\prime} 54^{\prime \prime}$		

$$
\begin{aligned}
& \log \cot 14^{\circ} 56^{\prime} 31^{\prime \prime}=10.57371 \\
& \text { plus } \log \cos 31^{\circ} 52^{\prime} 54^{\prime \prime}=\frac{9.92898}{0.50269} \\
& \text { minus } \log \sin 8^{\circ} 55^{\prime} 45^{\prime \prime}=9.19093 \\
& \log \tan \frac{Y+X}{2}=\overline{1.31176} \\
& \frac{Y+X}{2}=87^{\circ} 12^{\prime} 26^{\prime \prime} \\
& \log \cot 14^{\circ} 56^{\prime} 31^{\prime \prime}=10.57371 \\
& \text { plus } \log \sin 31^{\circ} 52^{\prime} 54^{\prime \prime}=\frac{9.72277}{0.29648} \\
& \text { minus } \log \cos 8^{\circ} 55^{\prime} 45^{\prime \prime}=9.99471 \\
& \log \tan \frac{Y-X}{2}=\overline{0.30177} \\
& \frac{Y-X}{2}=63^{\circ} 28^{\prime} 26^{\prime \prime}
\end{aligned}
$$

Bearing at Brentwood $=\frac{Y+X}{2}+\frac{Y-X}{2}=Y=150^{\circ} 40^{\prime} 52^{\prime \prime}$ East of North
Bearing at Rio de Janeiro $=\frac{Y+X}{2}-\frac{Y-X}{2}=X=23^{\circ} 44^{\prime} 00^{\prime \prime}$ West of North

$\frac{L_{B}-L_{A}}{2}=31^{\circ} 52^{\prime} 54^{\prime \prime}$	
$\frac{Y+X}{2}=87^{\circ} 12^{\prime} 26^{\prime \prime}$	$\log \tan 31^{\circ} 52^{\prime} 54^{\prime \prime}=9.79379$
plus $\log \sin 87^{\circ} 12^{\prime} 26^{\prime \prime}=\frac{9.99948}{9.79327}$	
$\frac{Y-X}{2}=63^{\circ} 28^{\prime} 28^{\prime \prime}$	minus log $\sin 63^{\circ} 28^{\prime} 26^{\prime \prime}=9.95170$
$\log \tan \frac{Z}{2}=9.84157$	
$\frac{Z}{2}=34^{\circ} 46^{\prime} 24^{\prime \prime} \quad Z=69^{\circ} 32^{\prime} 48^{\prime \prime}$	

[^39]Linear distance $=69.547 \times 69.093=4805.21$ statute miles

Use of the nomogram of Fig. 24*

Note: Values near the ends of the nomogram scales of Fig. 24 are subject to error because the scales are compressed. If exact values are required in those regions, they should be calculated by means of the trigonometric formulas of the preceding section.
Method: In Fig. 23, Z and S are the locations of the transmitting and receiving stations, where Z is the west and S the east end of the path. If a point lies in the southern hemisphere, its angle of latitude is always taken as negative. Northern-hemisphere latitudes are taken as positive.
a. To obtain the great-circle distance $Z S$ (short route):

1. Draw a slant line from llat Z - lat S) measured up from the bottom on the left-hand scale to llat $Z+$ lat S) measured down from the top on the right-hand scale. If (lat $Z-$ lat S) or (lat $Z+$ lat S) is negative, regard it as positive.
2. Determine the separation in longitude of the stations. Regard as positive. If the angle so obtained is greater than 180 degrees, then subtract from 360 degrees. Measure this angle along the bottom scale, and erect a vertical line to the slant line obtained in (1).
3. From the intersection of the lines draw a horizontal line to the lefthand scale. This gives ZS in degrees.
4. Convert the distance ZS to kilometers, miles, or nautical miles, by using the scale at the bottom of Fig. 24.
Note: The long greatcircle route in degrees is simply 360 - ZS. The value will always be greater than 180 degrees. Therefore, in order to obtain the dis-

Fig. 23-Diagram of iransmission between points Z and S. For use with Fig. 24.

[^40]

Fig. 24-Nomogram (after D'Ocagne) for obtoining great-circle distances, bearings, solor zenith angles, ond latilude and longitude of transmission-control points. With conversion seale for various units.
tance in miles from the conversion scale, the value for the degrees in excess of 180 degrees is added to the value for 180 degrees.
b. To obtain the bearing angle PZS (short routel:

1. Subtract the short-route distance $Z S$ in degrees obtained in (a) above from 90 degrees to get h. The value of h may be negative, but should always be regarded as positive.
2. Draw a slant line from (lat $Z-h$ measured up from the bottom on the left-hand scale to llat $Z+h$ measured down from the top on the right-hand scale. If (lat $Z-h$) or (lat $Z+h$) is negative, regard it as positive.
3. From 190° - lat S) measured up from the bottom on the left-hand scale, draw a horizontal line until it intersects the previous slant line.
4. From the point of intersection draw a vertical line to the bottom scale. This gives the bearing angle PZS. The angle may be either east or west of north, and must be determined by inspection of a map.
c. To obtain the bearing angle PSZ:
5. Repeat steps (1), (2), (3), and (4) in (b) above, interchanging Z and S in all computations. The result obtained is the interior angle PSZ, in degrees.
6. The bearing angle PSZ is 360 degrees minus the result obtained in (1) las bearings are customarily given clockwise from due northl.
Note: The long-route bearing angle is simply obtained by adding 180 degrees to the short-route value as determined in (b) or (c) above.
d. To obtain the latitude of Q, the mid- or other point of the path (this calculation is in principle the converse of (b) above):
7. Obtain $Z Q$ in degrees. If Q is the midpoint of the path, $Z Q$ will be equal to one-half $Z S$. If Q is one of the 2000 -kilometer control points, $Z Q$ will be approximately 18 degrees, or $Z S-18^{\circ}$.
8. Subtract $Z Q$ from 90 degrees to get h^{\prime}. If h^{\prime} is negative, regard it as positive.
9. Draw a slant line from (lat $Z-h^{\prime}$) measured up from the bottom on the left-hand scale, to llat $Z+h^{\prime}$ l measured down from the top on the righthand scale. If (lat $Z-h^{\prime}$) or (lat $Z+h^{\prime}$) is negative, regard it as positive.
10. From the bearing angle PZS (taken always as less than 180 degrees) measured to the right on the bottom scale; draw a vertical line to meet the above slant line.
11. From this intersection draw a horizontal line to the left-hand scale.
12. Subtract the reading given from 90 degrees to give the latitude of Q. (If the answer is negative, then Q is in the southern hemisphere.)
e. To obtain the longitude difference t^{\prime} between Z and Q (this calculation is in principle the converse of (a) above):
13. Draw a straight line from llat Z - lat Q l measured up from the bottom on the left-hand scale to llat $Z+$ lat Q) measured down from the top on the right-hand scale. If llat $Z-$ lat Q) or llat $Z+$ lat Q l is negative, regard it as positive.
14. From the left-hand side, at $Z Q$, in degrees, draw a horizontal line to the above slant line.
15. At the intersection drop a vertical line to the bottom scale, which gives t^{\prime} in degrees.

Available maps and tables

Great-circle initial courses and distances are conveniently determined by means of navigation tables such as
a. Navigation Tables for Navigators and Aviators-HO No. 206.
b. Large Great-Circle Charts:

HO Chart No. 1280—North Atlantic
1281—South Atlantic
1202—North Pacific
1203-South Pacific
1204-Indian Ocean
The above tables and charts may be obtained at a nominal charge from United States Navy Department Hydrographic Office, Washington, D. C.

Ultra-high-frequency line-of-sight conditions

Straight-line diagrams

The index of refraction of the normal lower atmosphere (troposphere) decreases with height so that radio rays above approximately 200 megacycles follow a curved path, slightly bent downward toward the earth. If the real earth is replaced by a fictitious earth having an enlarged radius $4 / 3$ times the earth's true radius $(3963 \times 4 / 3=5284$ miles), the radio rays may be drawn on profiles as straight lines.

The radio distance to effective horizon is given with a good approximation bv

Ulifra-high-frequency line-of-sight conditions continued

$d=\sqrt{2 h}$
where
$h=$ height in feet above sea level
$d=$ radio distance to effective horizon in miles
when the height is very small compared to the earth's radius.

Example shown: Height of receiving antenno 60 feet, height of transmitting antenna 500 feet, and maximum radio-path length $=41.5$ miles.

Fig. 25-Nomogram giving radio-horizon distance in miles when h_{r} and h_{t} are known.

Over a smooth earth, a transmitter antenna at height h_{l} (feetl and a receiving antenno at height h_{r} (feet) are in radio line-of-sight provided the spacing in miles is less than $\sqrt{2 h_{t}}+\sqrt{2 h_{r}}$.

Example shown: Height of receiving-antenna airplane 8500 foet (1.6 miles), height of transmittingantenna airplane 4250 feot 10.8 mile); maximum radio-path distance $=220$ miles.

Fig. 26-Nomegram giving radio-poth length and tangential distance for transmission between two olrplanes of haights h_{r} and h_{1}.

Ulitra-high-frequency line-of-sight conditions continued

The nomogram in fig. 25 gives the radio-horizon distance between a transmitter at height h_{t} and a receiver at height h_{r}. Fig. 26 extends the first nomogram to give the radio-path maximum length between two airplanes whose altitudes are known.

Alternative "flat-earth" method

Instead of drawing the rays as straight lines and the earth's surface with a circular cross-section, an alternative approximate method of using a "flat" earth and curved rays is frequently convenient. The arc $H_{1} H_{0} H_{2}$ of the effective earth cross-section is replaced by the line $H_{1} T_{0} H_{2}$, and the straight ray $P_{1} Q P_{2}$ becomes a fictitious curved ray $P_{1} P P_{2}$ (Fig. 27).
The approximate value of the deviation QP in feet of this curved ray from the straight-line path is
$Q P=d_{1} d_{2} / 2$
where d_{1} and d_{2} are expressed in miles. This is called the dip, and its maximum value occurs for $d_{1}=d_{2}$ and is equal to

$$
\left(d_{1}+d_{2}\right)^{2} / 8
$$

The apparent lack of homogeneity in these formulas is due to the inclusion of the radius of the earth in the numerical constant.

Where there are one or more obstacles to be investigated for line-of-sight clearance (fig. 28), a convenient method is to draw a flat profile, draw a straight line between transmitter and receiver antennas, and a parallel line below it at a vertical distance equal to the maximum dip. Anything below the lower line is not an obstacle. For anything above it, the corresponding dip must be checked to determine if there is actual obstruction.

Fig. 27-Flot-earth method of determining line of sight.

Fig. 28-Defermination of pessible obstructions in a radio path.

Fresnel-zone clearance at UHF

A criterion to determine whether the earth is sufficiently removed from the radio line-of-sight ray to allow mean free-space propagation conditions to apply is to have the first Fresnel zone clear all obstacles in the path of the rays. This first zone is bounded by points for which the transmission path from transmitter to receiver is greater by one-half wavelength than the direct path. Let d be the length of the direct path and d_{1} and d_{2} be the distances to transmitter and receiver. The radius of the first fresnel zone corresponding to d_{2} is approximately given by
$R_{1}{ }^{2}=\lambda \frac{d_{1} d_{2}}{d}$
where all quantities are expressed in the same units.
The maximum occurs when $d_{1}=d_{2}$ and is equal to
$R_{\mathrm{l} m}=\frac{1}{2} \sqrt{\lambda d}$
Expressing d in miles and frequency F in megacycles/second, the first Fresnel-zone radius at half distance is given in feet by
$R_{1 m}=1,140 \sqrt{d / F}$

Interference between direct and reflected U-H-F rays

Where there is one reflected ray combining with the direct ray at the receiving point (Fig. 29), the resulting field strength (neglecting the difference in angles of arrival, and assuming perfect reflection at T) is related to the free-space intensity by the following equation, irrespective of the polarization:
$E=2 E_{d} \sin 2 \pi \frac{\delta}{2 \lambda}$

Fig. 29-Interference botween direct and refected rays.

Interference between direct and reflected U-H-F rays continued

where
$E=$ resulting field strength $\quad\}$ same units
$\delta=$ geometrical length difference between direct and reflected paths, which is given to a close approximation by
$\delta=2 h_{t} h_{r} / d$
if h_{ℓ} and h_{r} are the heights of transmitter and receiver points above reflecting plane on effective earth.

The following cases are of interest:
$E=2 E_{d} \quad$ for $h_{c} h_{r}=d \lambda / 4$
$E=E_{d} \quad$ for $h_{t} h_{r}=d \lambda / 12$
In case $h_{t}=h_{T}=h_{\text {, }}$
$E=2 E_{d}$ for $h=\sqrt{d \lambda / 4}$
$E=E_{d}$ for $h=\sqrt{d \lambda / 12}$
All of these formulas are written with the same units for all quantities.

Space-diversity reception

When h_{r} is varied, the field strength at the receiver varies approximately according to the preceding formula. The use of two antennas at different heights provides a means of compensating to a certain extent for changes in electrical-path differences between direct and reflected rays by selection of the stronger signal (space-diversity reception).
The spacing should be approximately such as to give a $\lambda / 2$ variation between geometrical-path differences in the two cases. An approximate value of the spacing is given by $\lambda d / 4 h_{t}$ when all quantities are in the same units.

The spacing in feet for d in miles, h_{l} in feet, and λ in centimeters is given by spacing $=43.4 \frac{\lambda d}{h_{t}}$

Example: $\lambda=3$ centimeters, $d=20$ miles, and $h_{t}=50$ feet; therefore spacing $=52$ feet

Assuming $h_{r}=h_{l}$ the total height of the receiving point in this case would be 70 (minimum for line-of-sight) $+50+52=172$ feet

Interference between direct and reflected U-H-F rays

Variation of feld strength with distance

Fig. 30 shows the variation of resulting field strength with distance and frequency; this effect is due to interference between the free-space wave and the ground-reflected wave as these two components arrive in or out of phase.

Interference between direct and reflected U-H-F rays continued

To compute the field accurately under these conditions, it is necessary to calculate the two components separately and to add them in correct phase relationship. The phase and amplitude of the reflected ray is determined by the geometry of the path and the change in magnitude and phase at ground reflection. for horizontally polarized waves, the reflection coefficient can be taken as approximately one, and the phase shift at reflection as 180 degrees, for nearly all types of ground and angles of incidence. For vertically polarized waves, the reflection coefficient and phase shift vary appreciably with the ground constants and angle of incidence.
For methods of computing field intensities at and beyond the radio-path horizon, or when the antenna height is not negligible compared to distance, see reference below.*
Measured field intensities usually show large deviations from point to point due to reflections from irregularities in the ground, buildings, trees, etc.

Fading at ultra-high frequencies

Apart from signal-strength variations due to multipath transmission, line-ofsight propagation is affected by other causes, such as abnormal variation of refractive index with height in the lower atmosphere. This was observed ever since microwaves were used for telecommunication, starting with the Calais-Dover experimental link in 1930 and following years on wavelengths of 17 centimeters. \dagger

As previously noted, average atmospheric refraction results in a moderate extension of the radio transmission path beyond the geometric horizon. It should be noted, however, that relatively stable and widespread ..departures from average refraction occur frequently, and may be predicted with fair accuracy from a sufficiently detailed knowledge of local meteorological data. The atmospheric water-vapor gradient is of primary importance, with the vertical temperature gradient exerting a significant supplementary effect. The results occasionally include the formation of radio shadows or "dead spots" even within the geometric horizon. However, greater interest and importance attaches to the production of "mirage" effects that may extend radar and communication channels very far beyond the normally expected range. On such occasions the watervapor density ordinarily decreases with height, while the temperature may

[^41]
Fading at ultra-high frequencies

increase over a limited range of heights. The radio wave is then trapped and efficiently transmitted within a duct that may have the earth's surface as a lower boundary, or may lie completely above the surface. In either case it may act as would a wave guide, with a definite low-frequency cut-off dependent upon its vertical dimension. Boundary heights vary widely (from a fraction of a meter to a few kilometers). Very low boundaries ordinarily occur only over the sea, and then require relatively smooth water. For best results under such conditions, antennas must be placed within the duct land sometimes very close to the waterl. This is a noteworthy exception to the general trend toward maximum elevation of microwave equipment. Additional data will be found in the literature.*

There is also some absorption due to water vapor in the atmosphere and to rainfalls. Water vapor has an absorption band at a wavelength of 1.33 centimeters and oxygen at 0.5 and 0.25 centimeters.

For transmission paths of the order of 30 miles, it is considered good engineering practice to allow for possible variations of signal strength between -20 and +10 decibels with respect to free-space propagation.

Free-space transmission formulas for U-H-F links

Free-space attenuation

Let the incoming wave be assimilated to a plane wave with a power flow per unit area equal to P_{0}. The available power at the output terminals of a receiving antenna may be expressed as
$P_{r}=A_{r} P_{0}$
where A_{r} is the effective area of the receiving antenna.
The free-space path attenuation is given by
Attenuation $=10 \log \frac{P_{t}}{P_{r}}$
where P_{l} is the power radiated from the transmitting antenna (same units as for P_{r} l. Then
$\frac{P_{r}}{P_{t}}=\frac{A_{r} A_{t}}{d^{2} \lambda^{2}}$

[^42]
Free-space transmission formulas for U-H-F links continued

where
$A_{r}=$ effective area of receiving antenna
$A_{z}=$ effective area of transmitting antenna
$\lambda=$ wavelength
$\mathbf{d}=$ distance between antennas
The length and surface units in the formula should be consistent. This is valid provided $d \gg 2 a^{2} / \lambda$, where a is the largest linear dimension of either of the antennas.

Effective areas of typical antennas

Hypothetical isotropic antenna (no heat loss)
$A=\frac{1}{4 \pi} \lambda^{2} \approx 0.08 \lambda^{2}$
Small uniform-current dipole, short compared to wavelength (no heat loss)
$A=\frac{3}{8 \pi} \lambda^{2} \approx 0.12 \lambda^{2}$
Half-wavelength dipole (no heat loss)
$A \approx 0.13 \lambda^{2}$
Parabolic reflector of aperture area S there, the factor 0.54 is due to nonuniform illumination of the reflectorl
$A \approx 0.54 \mathrm{~S}$
Very long horn with small aperture dimensions compared to length
$A=0.81 S$
Horn producing maximum field for given horn length
$\mathrm{A}=0.45 \mathrm{~S}$
The aperture sides of the horn are assumed to be large compared to the wavelength.

Path attenuation between isotropic antennas

This is
$\frac{P_{t}}{P_{T}}=4.56 \times 10^{3} \mathrm{f}^{2} \mathrm{~d}^{2}$
where
$f=$ megacycles/second
$d=$ miles

Path aftenuation α (in decibels) is

$$
\alpha=37+20 \log f+20 \log d
$$

A nomogram for the solution of α is given in fig. 31 .

Exomple shown: distonce 30 miles, frequency 5000 megocycles; oftenuotion $=141$ decibels

Fig. 31-Nomogram for salution of path attenuation α between isotropic antennas.

Free-space transmission formulas for U-H-F links continued

Gain with respect to hypothetical isotropic antennas

Where directive antennas are used in place of isotropic antennas, the transmission formula becomes
$\frac{P_{r}}{P_{t}}=G_{t} G_{r}\left[\frac{P_{r}}{P_{t}}\right]_{\text {isotropic }}$
where G_{l} and G_{r} are the power gains due to the directivity of the transmitting and receiving anlennas, respectively.

The apparent power gain is equal to the ratio of the effective area of the antenna to the effective area of the isotropic antenna (which is equal to $\lambda^{2} / 4 \pi \approx 0.08 \lambda^{2}$).

The apparent power gain due to a parabolic reflector is thus
$G=0.54\left(\frac{\pi D}{\lambda}\right)^{2}$
where D is the aperture diameter, and an illumination factor of 0.54 is assumed. In decibels, this becomes
$10 \log G=20 \log f+20 \log D-52.6$
where
$f=$ megacycles/second
$D=$ aperture diameter in feet

The solution for G may be found in the nomogram, fig. 32.

Beam angle

The beam angle θ in degrees is related to the apparent power gain G of a parabolic reflector with respect to isotropic antennas approximately by
$\theta^{2} \approx \frac{27,000}{G}$
Since $G=5.6 \times 10^{-6} D^{2} f^{2}$, the beam angle becomes
$\theta=\frac{7 \times 10^{4}}{f D}$

Free-space transmission formulas for U-H-F links

continued
where
$\theta=$ beam angle between 3-decibel points in degrees
$f=$ frequency in megacycles
$D=$ diameter of parabola in feet
$\lambda=$ wavelength in centimeters
$f=$ frequency in megacycles

$\mathbf{G}=$
gain in
decibels

$D=$ refector diameter in motars in foel

Free-space transmission formulas for U-H-F links continued

Transmitter power for a required output signal/noise ratio

Using the above expressions for path attenuation and reflector gain, the ratio of transmitted power to theoretical receiver noise, in decibels, is given by
$10 \log \frac{P_{t}}{P_{n}}=A_{p}+\frac{S}{N}+(N F)-G_{t}-G_{r}-(\overline{N(F)}$
where
$S / N=$ required signal/noise ratio at receiver in decibels
(NF) = noise figure of receiver in decibels lsee chapter "Radio noise and interference" for definition)
$(\overline{\mathrm{N} I F})=$ noise improvement factor in decibels due to modulation methods where extra bandwidth is used to gain noise reduction Isee chapter "Modulation" for definitionl
$P_{n}=$ theoretical noise power in receiver (see chapter "Radio noise and interference')
$P_{t}=$ radiated transmitter power
$G_{t}=$ gain of transmitting antenna in decibels
$G_{r}=$ gain of receiving antenna in decibels
$A_{p}=$ path attenuation in decibels
An equivalent way to compute the transmitter power for a required output signal/noise ratio is given below directly in terms of reflector dimensions and system parameters:
a. Normal free-space propagation,
$P_{t}=\frac{\beta_{1} \beta_{2}}{40} \frac{B L^{2}}{f^{2} r^{4}} \frac{E}{K} \frac{S}{N}$
b. With allowance for fading,
$P_{t}=\frac{\beta_{1} \beta_{2}}{40} \frac{B L^{2}}{f^{2} r^{4}} \frac{F}{K} \sigma\left(\frac{S}{N}\right)_{m^{*}}$
c. For multirelay transmission in n equal hops,
$P_{t}=\frac{\beta_{1} \beta_{2}}{40} \frac{B L^{2} n}{f^{2} r^{4}} \frac{F}{K} \sigma\left(\frac{S}{N}\right)_{n m}$
d. Signal/noise ratio for nonsimultaneous fading is
$10 \log (S / N)_{n}=10 \log \sigma(S / N)_{1 m}-10 \log \bar{n}$
where
$P_{t}=$ power in watts available at transmitter output terminals lkept constant at each repeater point)
$\beta_{1}=$ loss power ratio Inumericall due to transmission line at transmitter
$\beta_{2}=$ same as β_{1} at receiver
$B=$ root-mean-square bandwidth (generally approximated to bandwidth between 3 -decibel attenuation pointsl in megacycles
$L=$ total length of transmission in miles
$f=$ carrier frequency in megacycles/second
$r=$ radius of parabolic reflectors in feet
$F=$ power-ratio noise figure of receiver la numerical factor; see chapter "Radio noise and interference")
$K=$ improvement in signal/noise ratio due to the modulation utilized (numericall. For instance, $K=3 m^{2}$ for frequency modulation, where m is the ratio of maximum frequency deviation to maximum modulating frequency
$\sigma=$ numerical ratio between available signal power in case of normal propagation to available signal power in case of maximum expected fading
$S / N=$ required signal/noise power ratio at receiver
$(S / N)_{m}=$ minimum required signal/noise power ratio in case of maximum expected fading
$(S / N)_{n m}=$ same as above in case of n hops, at repeater number n
$(S / N)_{1 m}=$ same as above at first repeater
$n=$ number of equal hops
$m=$ number of hops where fading occurs
$\bar{n}=n-m+\sum_{1}^{m} \sigma_{k}$
$\sigma_{k}=$ ratio of available signal power for normal conditions to available signal power in case of actual fading in hop number k lequation holds in case signal power is increased instead of decreased by abnormal propagation or reduced hop distancel

Noise and its sources

Noise and interference from other communication systems are two factors limiting the useful operating range of all radio equipment.
The values of the main different sources of radio noise versus frequency are plotted in Fig. 1.
Atmospheric noise is shown in Fig. 1 as the average peaks would be read on the indicating instrument of an ordinary field-intensity meter. This is lower than the true peaks of atmospheric noise. Man-made noise is shown as the peak values that would be read on the EEI-NEMA-RMA standard noise meter. Receiver and antenna noise is shown with the peak values 13 decibels higher than the values obtained with an energy averaging device such as a thermoammeter.

Afmospheric noise

This noise is produced mostly by lightning discharges in thunderstorms. The noise level is thus dependent on frequency, time of day, weather, season of the year, and geographical location.
Subject to variations due to local stormy areas, noise generally decreases with increasing latitude on the surface of the globe. Noise is particularly severe during the rainy seasons in certain areas such as Caribbean, East Indies, equatorial Africa, northern India, etc. Fig. I shows median values of atmospheric noise for the U.S.A. and these values may be assumed to apply approximately to other regions lying between 30 and 50 degrees latitude north or south.
Rough approximations for atmospheric noise in other regions may be obtained by multiplying the values of Fig. 1 by the following factors:

degrees of latitude	nighttime		daytime	
	$100 \mathrm{kc} / \mathrm{s}$	$10 \mathrm{mc} / \mathrm{s}$	$100 \mathrm{kc} / \mathrm{s}$	$10 \mathrm{mc} / \mathrm{s}$
$90-50$	0.1	0.3	0.05	
$50-30$	1	1	1	0.1
$30-10$	2	2	3	1
$10-0$	5	4	6	2

Atmospheric noise is the principal limitation of radio service on the lower ,frequencies. At frequencies above about 30 megacycles, the noise falls to llevels generally lower than receiver noise.
The peak amplitude of atmospheric noise usually may be assumed to be proportional to the square root of receiver bandwidth.

1. All curves assume a bandwidth of 10 kilocycles/second.
2. Refer to Fig. 2 for converting man-made-noise curves to bandwidths greater than 10 kilocycles. For all other curves, noise amplitude varies as the square root of bandwidth.
3. The chart shows the field intensities required to equal the peak receiver noise values assuming
a. The use of a half-wave-dipole antenna.
b. A receiver noise level greater than the ideal receiver level by a factor varying from 10 decibels at 50 megacycles to 15 decibels at 1000 megacycles.
4. Transmission-line loss is not cansidered in the calculatians.
5. For antennas having a gain with respect to a half-wave dipole, equivalent noise-field intensities are less than indicated above in proportion to the net gain of the antenna-transmission-line combination.

Fig. 1-Major sources of radio-frequency noise, showing amplitudes at various frequencies. For the U.S.A. and regions of similar latitude.

Noise and its sources continued

Cosmic noise

The intensity of cosmic noise is generally lower than the perturbations due to other sources. In the absence of atmospheric and man-made noise, however, it may become the limiting factor in reception between 10 and 300 megacycles. Three types of cosmic noises have so far been detected in radio receivers.
Galaxy noise: Was first found by Jansky on 200 megacycles (1933), and later by Grote Reber on 150 megacycles. It has the same character as thermal-electronic noise, but shows a spatial distribution with a maximum originating in the general region of the Milky Way.
Thermal noise: Due to celestial bodies, observed by Southworth in 1945 on 3000 to 30,000 megacycles for solar radiation, and utilized at Massachusetts Institute of Technology to determine the apparent temperature of the sun and moon, the measurements being made on millimetric waves.
Anomalous solar radiation: Observed by English radio amateurs on 30 megacycles (1936), and dependent on the sunspot cycle (Appleton).

Man-made noise

This includes interference produced by sources such as motorcar ignition, electric motors, electric switching gear, high-tension line leakage, diathermy, industrial-heating generators. The field intensity from these sources is greatest in densely populated and industrial areas.

receiver bondwidth in kilocycles
Fig. 2—Bandwidth factor. Multiply value of man-made noise from Fig. I by the factor above for receiver bandwidths greater than 10 kilocycles.

The nature of man-made noise is so variable that it is difficult to formulate a simple rule for converting 10 -kilocycle-bandwidth receiver measurements to other bandwidth values. For instance, the amplitude of the field strength radiated by a diathermy device will be the same in a 100 -as in a 10 -kilocycle bandwidth receiver. Conversely, peak-noise field strength due to automobile ignition will be considerably greater with a 100 - than with a 10 -kilocycle bandwidth. According to the best available information, the peak field strengths of man-made noise lexcept diathermy and other narrow-band noise) increases as the receiver bandwidth is increased, substantially as shown in Fig. 2.

The man-made noise curves in Fig. 1 show typical median values for the U.S.A. In accordance with statistical practice, median values are interpreted to mean that 50 percent of all sites will have lower noise levels than the values of Fig. $1 ; 70$ percent of all sites will have noise levels less than 1.9 times these values; and 90 percent of all sites, less than seven times these values.

Thermal noise

Thermal noise is caused by the thermal agitation of electrons in resistances. Let $R=$ resistive component in ohms of an impedance Z. The root-meansquare value of thermal-noise voltage is given by
$E^{2}=4 R k T \cdot \Delta f$
where
$k=$ Boltzmann's constant $=1.38 \times 10^{-23}$ joules/degree Kelvin*
$T=$ absolute temperature in degrees Kelvin
$\Delta f=$ bandwidth in cycles/second
$E=$ root-mean-square noise voltage
The above equation means that thermal noise has a uniform distribution of power through the radio-frequency spectrum.

In case two impedances Z_{1} and Z_{2} with resistive components R_{1} and R_{2} are in series at the same temperature, the square of the resulting root-meansquare voltage is the sum of the squares of the root-mean-square noise voltages generated in Z_{1} and Z_{2};

$$
E^{2}=E_{1}^{2}+E_{2}^{2}=4\left(R_{1}+R_{2}\right) k T \cdot \Delta f
$$

[^43]
Noise and its sources

In case the same impedances are in parallel at the same temperature, the resulting impedance Z is calculated as is usually done for alternatingcurrent circuits, and the resistive component R of Z is then determined. The root-mean-square noise voltage is the same as it would be for a pure resistance R.

It is customary in temperate climates to assign to T a value such that $1.38 T=400$, corresponding to about 17 degrees centigrade or 63 degrees fahrenheit. Then

$$
E^{2}=1.6 \times 10^{-20} R \cdot \Delta f
$$

Tube noise

The electric current emitted from a cathode consists of a large number of electrons and consequently exhibits fluctuations that produce tube noise and set a limitation to the minimum signal voltage that can be amplified. This is also called shot or Schottky effect.
Shot effect in temperature-limited case: The root-mean-square value I_{n} of the fluctuating (noise) component of the plate current is given in amperes by
$I_{n}{ }^{2}=2 \epsilon I \cdot \Delta f$
where
$I=$ plate direct current in amperes
$\epsilon=$ electronic charge $=1.6 \times 10^{-19}$ coulombs
$\Delta f=$ bandwidth in cycles/second
Shot effect in space-charge-controlled region: The space charge tends to eliminate a certain amount of the fluctuations in the plate current. The following equations are generally found to give good approximations of the plate-current root-mean-square noise component in amperes.
For diodes:
$I_{n}{ }^{2}=4 \mathrm{k} \times 0.64 T_{c} g \cdot \Delta f$
For negative-grid triodes:
$I_{n}{ }^{2}=4 \mathrm{k} \times \frac{0.64}{\sigma} T_{c} g_{m} \cdot \Delta f$
where
$k=$ Boltzmann's constant $=1.38 \times 10^{-28}$ joules/degree Kelvin
$T_{c}=$ cathode temperature in degrees Kelvin
$g=$ diode plate conductance
$g_{m}=$ triode transconductance
$\sigma=$ tube parameter varying between 0.5 and 1.0
$\Delta f=$ bandwidth in cycles/second
Multicollector tubes: Excess noise appears in multicollector tubes due to fluctuations in the division of the current between the different electrodes. Let a pentode be considered, for instance, and let e_{g} be the root-mean.square noise voltage that, if applied on the grid, would produce the same noise component in the plate current. Let e_{t} be the same quantity when the tube is operated as a triode. North has given
$\mathrm{e}_{\mathrm{o}}{ }^{2}=\left(1+8.7 \sigma \frac{I_{c 2}}{g_{m}} \frac{1000}{T_{c}}\right) \mathrm{e}_{\iota^{2}}$
where

$$
\begin{aligned}
I_{c 2} & =\text { screen current in amperes } \\
g_{m} & =\text { pentode transconductance } \\
\sigma_{,} T_{c} & =\text { as above }
\end{aligned}
$$

Equivalent noise input-resistance values: The most practical way of expressing the properties of vacuum tubes with respect to noise is to determine the equivalent noise input resistance; that is to say, the value of a resistance that, if considered as a source of thermal noise applied to the driving grid, would produce the same noise component in the anode circuit.
The information below has been given by Harris,* and is found to give practical approximations.

For triode amplifiers:
$R_{e g}=2.5 / g_{m}$
For pentode amplifiers:
$R_{e 0}=\frac{I_{b}}{I_{b}+I_{c 2}}\left(\frac{2.5}{g_{m}}+\frac{20 I_{c 2}}{g_{m}^{2}}\right)$

[^44]Noise and its sources continued

For triode mixers:

$$
R_{e g}=4 / g_{c}
$$

For pentode mixers:

$$
R_{e g}=\frac{I_{b}}{I_{b}+I_{c 2}}\left(\frac{4}{g_{c}}+\frac{20 I_{c 2}}{g_{c}^{2}}\right)
$$

For multigrid converters and mixers:
$R_{\mathrm{eg}}=\frac{19 I_{b}\left(I_{a}-I_{b}\right)}{g_{c}{ }^{2} I_{a}}$
where
$R_{e g}=$ equivalent grid noise resistance in ohms
$g_{m}=$ transconductance in mhos
$I_{b}=$ average plate current in amperes
$I_{c 2}=$ average screen-grid current in amperes
$\exists_{c}=$ conversion conductance in mhos
$I_{a}=$ sum of currents from cathode to all other electrodes in amperes
The cathode temperature is assumed to be 1000 degrees Kelvin in the foregoing formulas, and the equivalent-noise-resistance temperature is assumed to be 293 degrees Kelvin.
Low-noise triode amplifiers have noise resistances of the order of 200 ohms; low-noise pentode amplifiers, 700 ohms; pentode mixers, 3000 ohms. Frequency converters have much higher noise resistances, of the order of 200,000 ohms.

Noise measurements - noise figure

Measurement for broadcast receivers*

For standard broadcast receivers, the noise properties are determined by means of the equivalent noise sideband input (ENSI). The receiver is connected as shown in Fig. 3.

[^45]
Noise measuremenis - noise figure continued

Fig. 3-Measurement of equivolent noise sideband input of a broadcasi receiver.

Components of the standard dummy antenna are
$C_{1}=200$ micromicrofarads
$C_{2}=400$ micromicrofarads
$L=20$ microhenries
$R=400$ ohms
The equivalent noise sideband input
$(E N S I)=m E_{z} \sqrt{P_{n}^{\prime} / P_{s}^{\prime}}$
where
$E_{s}=$ root-mean-square unmodulated carrier-input voltage
$m=$ degree of modulation of signal carrier at 400 cycles/second
$P^{\prime}:=$ root-mean-square signal-power output when signal is applied
$P_{n}^{\prime}=$ root-mean-square noise-power output when signal input is reduced to zero

It is assumed that no appreciable noise is transferred from the signal generator to the receiver, and that m is small enough for the receiver to operate without distortion.

Noise figure of a receiver

A more precise evaluation of the quality of a receiver as far as noise is concerned is obtained by means of its noise figure.*
Let the case be considered first when the receiver does not include any operation capable of improving the signal-to-noise ratio (such as frequency modulation, or puise demodulation).

* The definition of the noise figure was first given by H. T. friis, "Noise figures of Radio Receivers," Proceedings of the l.R.E., vol. 32, pp. 419-422; July, 1944.

Noise measurements - noise figure continued

Fig. 4-Measurement of the noise figure of a receiver. The receiver is considered as a 4-terminal network.

The equipment used for measuring noise figure is shown in Fig. 4. The incoming signal (applied to the receiver) is replaced by a signal generator with
$R_{0}=$ internal resistive component
$E_{i}=$ root-mean-square signal voltage
$E_{n}=$ root-mean-square noise voltage produced in signal generator

Then
$E_{n}^{2}=4 k T_{0} R_{0} \Delta f^{\prime}$
where

$$
\begin{aligned}
k & =\text { Boltzmann's constant }=1.38 \times 10^{-23} \text { joules/degree Kelvin } \\
T_{0} & =\text { temperature in degrees Kelvin }
\end{aligned}
$$

$\Delta f^{\prime}=$ effective bandwidth of receiver (determined as on p. 450)
If the receiver does not include any other source of noise, the ratio $E_{i}{ }^{2} / E_{n}{ }^{2}$ is equal to the power signal/noise ratio measured by the square-law detector.
$\frac{E_{i}{ }^{2}}{E_{n}{ }^{2}}=\frac{E_{i}{ }^{2} / 4 R_{0}}{k T_{0} \Delta f^{\prime}}=\frac{P_{i}}{N_{i}}$
The quantities $E_{i}{ }^{2} / 4 R_{0}$ and $k T_{0} \Delta f^{\prime}$ are called the available signal- and noise-input powers, respectively.
The output signal/noise power ratio measured in a resistance R may be considered as the ratio of an available signal-output power P_{0} to ar. available noise-output power N_{o}.

Noise measurements - noise figure continued

The noise figure F of the receiver is defined by

$$
\begin{aligned}
\frac{P_{0}}{N_{0}} & =\frac{1}{F} \times \frac{P_{i}}{N_{i}} \\
F & =\frac{N_{0}}{N_{i}} \times \frac{1}{P_{0} / P_{i}}
\end{aligned}
$$

The ratio P_{o} / P_{i} is the available gain G of the receiver.
Noise figure is often expressed in decibels:
$F_{\mathrm{db}}=10 \log _{10} F$

Effective bandwidth: Δf^{\prime} of the receiver is
$\Delta f^{\prime}=\frac{1}{G} \int G_{f} d f$
where G_{f} is the differential available gain. Δf^{\prime} is generally approximated to the bandwidth of the receiver between those points of the response showing a 3-decibel attenuation with respect to the center frequency.

Noise figure of cascaded networks

The overall noise figure of two networks a and b in cascade (Fig. 5) is

$$
F_{a b}=F_{a}+\frac{F_{b}-1}{G_{a}}
$$

provided the effective bandwidth of each is the same.

Fig. 5-Overall naise figure $F_{a b}$ of twa netwarks, a and b, in cascade.

The value of F is a measure of the quality of the input tubes of the circuits. Up to some 300 megacycles, noise figures of 2 to 4 have been obtained. From 3000 to 6000 megacycles, the noise figure varies between 10 and 40

Noise measurements - noise flgure continued

for the tubes at present available. It goes up to about 50 for 10,000 -megacycle receivers.
The additional noise due to external sources influencing real antennas (such as cosmic noisel, may be accounted for by an apparent antenna temperature, bringing the available noise-power input to $k T_{a} \Delta f^{\prime}$ instead of $N_{i}=k T_{0} \Delta f^{\prime}$ the physical antenna resistance at temperature T_{0} is generally negligible in high-frequency systems). The internal noise sources contribute $\mathbb{I F}-11 \mathrm{~N}_{i}$ as before, so that the new noise figure is given by

$$
\begin{aligned}
F^{\prime} N_{i} & =\left\{F-11 N_{i}+k T_{0} \Delta f^{\prime}\right. \\
F^{\prime} & =F-1+T_{a} / T_{0}
\end{aligned}
$$

The average temperature of the antenna for a 6-megacycle equipment is found to be 3000 degrees Kelvin, approximately. The contribution of external sources is thus of the order of 10, compared with a value of $(F-1)$ equal to 1 or 2, and becomes the limiting factor of reception. At 3000 megacycles, however, values of T_{a} may fall below T_{0}, while noise figures are of the order of 20.

Noise improvement factor*

In case the receiver includes demodulation processes that produce a signal/noise ratio improvement (NIF), the value of the noise figure measured as mentioned above should be divided by the signal/noise power improvement ratio, or alternately, the experimental value should be considered as an effective noise figure accounting for all noise transformation within the receiver.

Measurement of external radio noise

External noise fields, such as atmospheric, cosmic, and man-made, are measured in the same way as radio-wave field strengthst, with the exception that peak, rather than average, values of noise are usually of interest, and that the overall bandpass action of the measuring apparatus must be accurately known in measuring noise. When measuring noise varying over wide limits with time, such as atmospheric noise, it is generally best to employ automatic recorders.

[^46]
Interference effects in various systems

Besides noise, the efficiency of radio-communication systems can be limited by the interference produced by other radio-communication systems. The amount of tolerable signal/interference ratio, and the determination of conditions for entirely satisfactory service, are necessary for the specification of the amount of harmonic and spurious frequencies that can be allowed in transmifter equipments, as well as for the correct spacing of adjacent channels.

The following information has been extracted from "Final Acts of the International Telecommunication and Radio Conferences (Appendix I)," Atlantic City, 1947.

Fig. 6-Curves giving the envelopes for Fourier spectra of the emission resulting from severol shapes of a single lelegraph dot. For the upper curve the dot is token to be rectongular and its length is $1 / 2$ of the period 1 corresponding to the fundamenfol dotting frequency. The dotfing speed in bouds is $B=1 / t=2 / T$. The bottom curve would result from the insertion of a flter with a passband equal to 5 units on the f / B scale, ond having a slope of 30 decibels/octave outside of the passband.

Fig. 7-Received power as a function of frequency separation between transmitter frequency and midband frequency of the receiver.

Available information is not sufficient to give reliable rules in the cases of frequency modulation, pulse emission, and television transmission.

Simple telegraphy

It is considered that satisfactory radiotelegraph service is provided when the radio-frequency interference power available in the receiver, averaged over a cycle when the amplitude of the interfering wave is at a maximum, is at least 10 decibels below the available power of the desired signal averaged in the same manner, at the time when the desired signal is a minimum.
In order to determine the amount of interference produced by one telegraph channel on another, Figs. 6 and 7 will be found useful.

Frequency-shift telegraphy-facsimile

It is estimated that the interference level of -10 decibels as recommended in the previous case will also be suitable for frequency-shift telegraphy and facsimile.

Double-sideband telephony

The multiplying factor for frequency separation between carriers as required for various ratios of signal/interference is given in the following table. This factor should be multiplied by the highest modulation frequency.

ratio of desired to interfering corriers in decibels	mutliplying factor for various rotios of signal/interference			
	20 db	30 db	40 db	50 db
$\begin{aligned} & 60 \\ & 50 \\ & 40 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0.60 \end{aligned}$	$\begin{aligned} & 0 \\ & 0.60 \\ & 1.55 \\ & \hline \end{aligned}$
$\begin{aligned} & 30 \\ & 20 \\ & 10 \end{aligned}$	$\begin{aligned} & 0 \\ & 0.60 \\ & 1.55 \\ & \hline \end{aligned}$	$\begin{aligned} & 0.60 \\ & 1.55 \\ & 1.85 \\ & \hline \end{aligned}$	$\begin{aligned} & 1.55 \\ & 1.85 \\ & 1.96 \\ & \hline \end{aligned}$	$\begin{aligned} & 1.85 \\ & 1.96 \\ & 2.00 \end{aligned}$
0	1.85	1.96	2.00	2.55
$\begin{aligned} & -10 \\ & -20 \\ & -30 \end{aligned}$	$\begin{aligned} & 1.96 \\ & 2.00 \\ & 2.55 \end{aligned}$	$\begin{aligned} & 2.00 \\ & 2.55 \\ & 2.85 \\ & \hline \end{aligned}$	$\begin{aligned} & 2.55 \\ & 2.85 \\ & 3.2 \end{aligned}$	$\begin{aligned} & 2.85 \\ & 3.2 \\ & 3.6 \\ & \hline \end{aligned}$
$\begin{aligned} & -40 \\ & -50 \\ & -60 \end{aligned}$	$\begin{aligned} & 2.85 \\ & 3.2 \\ & 3.6 \\ & \hline \end{aligned}$	$\begin{aligned} & 3.2 \\ & 3.6 \\ & 4.0 \end{aligned}$	$\begin{aligned} & 3.6 \\ & 4.0 \\ & 4.5 \end{aligned}$	$\begin{aligned} & 4.0 \\ & 4.5 \\ & 5.1 \end{aligned}$
$\begin{array}{r} -70 \\ -80 \\ -90 \\ -100 \end{array}$	$\begin{aligned} & 4.0 \\ & 4.5 \\ & 5.1 \\ & 5.7 \end{aligned}$	$\begin{aligned} & 4.5 \\ & 5.1 \\ & 5.7 \\ & 6.4 \end{aligned}$	5.1 5.7 6.4 7.2	$\begin{aligned} & 5.7 \\ & 6.4 \\ & 7.2 \\ & 8.0 \end{aligned}$

Interference effects in various sysfems canlinued

The acceptance band of the receiving filters in cycles/second is assumed to be $2 \times$ thighest modulation frequency), and the cutoff characteristic is assumed to have a slope of 30 decibels/octave.

Broadcasting

As a result of a number of experiments, it is possible to set down the following results for carrier frequencies between 150 and 285 kilocycles/second and between 525 and 1560 kilocycles.

These experimental results agree reasonably well with the theoretical results of the preceding table with a highest modulation frequency of about 4500 cycles/second, and with a signal/interference ratio of 50 decibels.

Single-sideband telephony

Experience shows that the separation between adjacent channels need be only great enough to insure that the nearest frequency of the interfering signal is 40 decibels down on the receiver filter characteristic when due allowance has been made for the frequency instability of the carrier wave.

Spurious responses

In superheterodyne receivers, where a nonlinear element is used to get a desired intermediate-frequency signal from the mixing of the incoming signal and a local-oscillator signal, interference from spurious external signals results in a number of undesired frequencies thot may fall within the intermediate-frequency band. Likewise, when two local oscillators are mixed in a transmitter or receiver to produce a desired output frequency, several unwanted components are produced at the same time due to the imperfections of the mixer characteristic. The following tables show how the location of the spurious frequencies can be determined.

Spurious responses continued

Symbols

$f_{1}=$ signal frequency (or first source)
$f_{1}^{\prime}=$ spurious signal $\mathbb{f}_{1}^{\prime}=f_{1}$ for mixing local sources, but when dealing with a receiver, usually $f_{1}^{\prime} \neq f_{1}$)
$f_{2}=$ local-injection frequency (or second source)
$f_{x}=$ desired mixer-output frequency
$f_{x}^{\prime}=$ spurious mixer-output frequency
$k=m+n=$ order of response, where m and n are positive integers
Coincidence: Is where $f_{1}^{\prime}=f_{1}$ and $f_{x}^{\prime}=f_{x}$

Defining and coincidence equations

mixing for difference frequency			mixing for sum frequancy		
type	defining equations	coincidence	type	defining equations	coincidence
1	$\begin{aligned} & f_{x}= \pm\left(f_{1}-f_{2}\right) \\ & f_{x}^{\prime}= \pm\left(\ln f_{2}-m f_{1}^{\prime \prime}\right) \end{aligned}$	$\left[\frac{f_{2}}{f_{1}}\right]_{00}=\frac{m+1}{n+1}$	IV	$\begin{aligned} f_{x} & =f_{1}+f_{2} \\ f_{x}^{\prime} & =m f_{1}^{\prime}-n f_{2} \end{aligned}$	$\left[\frac{f_{2}}{f_{1}}\right]_{00}=\frac{m-1}{n+1}$
11	$\begin{aligned} f_{x} & = \pm\left(f_{1}-f_{2}\right) \\ f_{z}^{\prime} & = \pm\left(m f_{1}^{\prime}-n f_{2}\right) \end{aligned}$	$\left[\frac{f_{2}}{f_{1}}\right]_{\mathrm{co}}=\frac{m-1}{n-1}$	V	$\begin{aligned} f_{x} & =f_{1}+f_{2} \\ f_{x}^{\prime} & =n f_{2}-m f_{1}^{\prime} \end{aligned}$	$\left[\frac{f_{2}}{f_{1}}\right]_{\text {co }}=\frac{m+1}{n-1}$
III	$\begin{aligned} f_{x} & =f_{1}-f_{2} \\ f_{x}^{\prime} & =m f_{1}^{\prime}+n f_{2} \end{aligned}$	$\left[\frac{f_{2}}{f_{1}}\right]_{\mathrm{co}}=\frac{1-m}{n+1}$	v	$\begin{aligned} f_{x} & =f_{1}+f_{2} \\ f_{x}^{\prime} & =m f_{1}^{\prime}+n f_{2} \end{aligned}$	$\left[\frac{f_{2}}{f_{1}}\right]_{00}=\frac{1-m}{n-1}$

In rypes I and II, both f_{x} and f_{x}^{\prime} must use the same sign throughout.
Typos III and VI are relatively unimportant excopt when $m=n=1$.

Image ($m=n=1$)

kind of mixing	receiver ($f_{x}^{\prime}=f_{x}$)	iwo local sources $\left(f_{1}^{\prime}=f_{1}\right)$
Difference	$\begin{array}{rlrl} f_{1}^{\prime} & = \pm\left(2 f_{2}-f_{1}\right) & & \\ & = \pm\left(f_{1}-2 f_{z}\right) & & f_{2}<f_{1} \\ & =f_{1}+2 f_{z} & f_{2}>f_{1} \end{array}$	$f_{x}^{\prime}=f_{1}+f_{2}$
Sum	$\begin{aligned} f_{1}^{\prime} & =f_{1}+2 f_{2}+ \\ & =2 f_{x}-f_{1} \end{aligned}$	$f_{x}^{\prime}= \pm\left(f_{1}-f_{2}\right)$

Intermediate-frequency rejection: Must be provided for spurious signal $f_{1}^{\prime}=f_{x}$ where $m=1, n=0$.

Spurious responses conlinued

Selectivity equations

For types I, II, IV, and V only.
When $f_{x}^{\prime}=f_{x}$

$$
\frac{f_{1}^{\prime}-f_{1}}{f_{1}}=\frac{A}{m}\left\{\frac{f_{2}}{f_{1}}-\left[\frac{f_{2}}{f_{1}}\right]_{c o}\right\}
$$

When $f_{1}{ }^{\prime}=f_{1}$

$$
\begin{aligned}
& \frac{f_{x}^{\prime}-f_{x}}{f_{1}}=B\left\{\frac{f_{2}}{f_{1}}-\left[\frac{f_{2}}{f_{1}}\right]_{c o}\right\} \\
& \frac{f_{x}^{\prime}-f_{x}}{f_{x}}=C \frac{\left(f_{2} / f_{1}\right)-\left[f_{2} / f_{1}\right]_{c o}}{1 \mp f_{2} / f_{1}}
\end{aligned}
$$

Where the coefficients and the \mp signs are

type	A	B		C	F sign
		$\mathrm{f}_{2}<\mathrm{f}_{1}$	$\mathrm{f}_{2}>\mathrm{f}_{1}$		
I	$n+1$	A	-A	A	-
II	$n-1$	-A	A	$-\mathrm{A}$	-
IV	$n+1$	- A	-A	- A	$+$
V	$n-1$	A	A	A	$+$

Variation of output frequency vs input-signal deviation

For any type
$\Delta f_{x}{ }^{\prime}= \pm m \Delta f_{1}{ }^{\prime}$

Use the + or the - sign according to defining equation for type in question.

Table of spurious responses

Type I coincidences: $\left[\frac{f_{2}}{f_{1}}\right]_{\mathrm{co}}=\frac{m+1}{n+1}$, where $f_{t}^{\prime}=f_{x}$ and $f_{1}^{\prime}=f_{1}$

frequency ratio $=\left[f_{2} / f_{1}\right]_{\text {co }}$			lowest order			higher orders
froction	decimol	reciprocol	k_{1}	m_{1}	n	
1/1	1.000	1.000	2	1	1	All even orders m=n (See note b)
8/9	0.889	1.125	15	7	8	
7/8	0.875	1.143	13	6	7	
6/7	0.857	1.167	11	5	6	
5/6	0.833	1.200	9	4	5	
4/5	0.800	1.250	7	3	4	
7/9	0.778	1.286	14	6	8	$\left\{m_{1}=5\right.$
3/4	0.750	1.333	5	2	3	$\left\{\begin{array}{l}n_{1}=7\end{array}\right.$
5/7	0.714	1.400	10	4	6	
7/10	0.700	1.429	15	6	9	$\left\{m_{1}=3 \quad\{=5\right.$
2/3	0.667	1.500	3	1	2	$\left\{\begin{array}{l}n_{1}=5 \\ n_{1}\end{array}\right\}=8$
5/8	0.625	1.600	11	4	7	, $\left\{m_{1}=5\right.$
3/5	0.600	1.667	6	2	4	$\left\{\begin{array}{l}n_{1}=9\end{array}\right.$
4/7	0.571	1.750	9	3	6	
5/9	0.556	1.800	12	4	8	
6/11	0.545	1.833	15	5	10	$\left\{m_{1}=1 \quad\{=2 \quad\{=3 \quad\{=4\right.$
1/2	0.500	2.000	1	0	1	$\left\{\begin{array}{l}m_{1}=3 \\ n_{1}=3\end{array}\right\}=5 \quad\{=7 \quad\{=9$

Types II, IV, and V coincidences: For each ratio $\left[f_{2} / f_{1}\right]_{c o}$ there are also the following responses

iype	k	m	n
II	$k_{11}=k_{I}+4$	$m_{11}=m_{1}+2$	$n_{11}=n_{1}+2$
IV	$k_{1 v}=k_{1}+2$	$m_{1 v}=m_{1}+2$	$n_{i v}=n_{1}$
V	$k_{v}=k_{i}+2$	$m_{v}=m_{1}$	$n_{v}=n_{1}+2$

Notes:

a. When $f_{2}>f_{1}$ use reciprocal column and interchange the values of m and n.
b. At $\left[f_{2} / f_{1}\right]_{\text {co }}=1 / 1$, additional important responses are
type II: $m=n=2$
type $I V: m=2, n=0$
type V : $m=0, n=2$

Chart of spurious responses

Each circle represents a spurious response coincidence, where $f_{1}^{\prime}=f_{1}$ and $\boldsymbol{f}_{x}{ }^{\prime}=\boldsymbol{f}_{x}$.
Example: Suppose two frequencies whose ratio is $f_{2} / f_{1}=0.12$ are mixed to obtain the sum frequency. The spurious responses are found by laying a transparent straightedge on the chart, passing through the circle $-1,-1$ and lying a little to the right of the line marked $f_{2} / f_{1}=0.10$. It is observed that the straightedge passes near circles indicating the responses
Type IV $\left\{\begin{array}{l}m=1 \\ n=0\end{array} \quad\left\{\begin{array}{l}=2 \\ =7\end{array} \quad\left\{\begin{array}{l}=2 \\ =8\end{array}\right.\right.\right.$
Type V

$$
\left\{\begin{array} { l }
{ m = 0 } \\
{ n = 9 }
\end{array} \quad \left\{\begin{array}{l}
=0 \\
=10
\end{array}\right.\right.
$$

The acfual frequencies of the responses f_{x}^{\prime} or f_{1}^{\prime} can be determined by substituting these coefficients m and n in the defining equations.

General

A simplified diagram of a set for RAdio Direction And Range finding is shown in fig. 1. A pulsed high-power transmitter emits centimeter waves for approximately a microsecond through a highly directive antenna to illuminate the target. The returned echo is picked up by the same antenna,

Fig. 1-Simplifed diagram of a radar set.

Fig. 2-Time belween transmission and reception of a refected signal.

General continued

amplified by a high-gain wideband receiver, and displayed on an indicator. Direction of a target is usually indicated by noting the direction of the narrow-beam antenna at the time the echo is received. The range is measured in terms of time because the radar pulse travels with the speed of light, 300 meters one way per microsecond, or approximately 10 microseconds per round-trip radar mile. Fig. 2 gives the range corresponding to a known echo time.
The factors characterizing the operation of each component are shown in Fig. 1. These are discussed below in turn and combined into the freespace range equation. The propagation factors modifying free-space range are presented.

Transmitter

Important transmitter factors are:
$\tau=$ pulse length in microseconds
$f_{r}=$ pulse rate in cycles/second
$d=$ duty cycle $=\pi f_{r} \times 10^{-6}=P_{a} / P_{D}$
$P_{a}=$ average power in kilowatts
$P_{p}=$ peak power in kilowatts
$\lambda=$ carrier wavelength in centimeters
Pulse length is generally about one microsecond. A longer pulse may be used for greater range, if the oscillator power capacity permits. On the other hand, if a range resolution of $\triangle R$ feet is required, the pulse cannot be longer than $\triangle R / 500$ microseconds.
The repetition frequency must be low enough to permit the desired maximum unambiguous range ($f_{r}<90,000 / R_{u}$). This is the range beyond which the echo returns after the next transmitter pulse and thus may be mistaken for a shortrange echo of the next cycle. If this range is small, oscillator maximum average power may impose an upper limit.
The peak power required may be computed from the range equation lsee belowl after determination or assumption of the remaining factors. Peak and average power may be interconverted by use of Fig. 3. Pulse energy is $P_{p} \tau \times 10^{-3}$ joules.
The choice of carrier frequency is a complex one, often determined by available oscillators, antenna size, and propagation considerations. Frequency-wavelength conversions are facilitated by Fig. 4, which also defines the band nomenclature.

Transmiffer continued

Fig. 3-Power-time relationships.

Fig. 4-Correlation belween frequency, wavelength, and band nomenclature for radar.

Anfenna

The beam width in radians of any antenna is approximately the reciprocal of its dimension in the plane of interest expressed in wavelength units. Beam width may be found readily from Fig. 5, which also shows gain of a paraboloid of revolution. The angular accuracy and resolution of a radar are roughly equal to the beam width; thus precision radars require high frequencies to avoid excessively cumbersome antennas.

Fig. 5-Beam width and goin of a porobolic reflector.

Target echoing area

The radar cross section σ is defined as 4π times the ratio of the power per unit solid angle scattered back toward the transmitter, to the power per unit area striking the target. For large complex structures and short wavelengths, the values vary rapidly with aspect angle. The effective areas of several important configurations are listed in the following table.*

[^47]Target echoing area continued

reflector	
Tuned $\lambda / 2$ dipole Small sphere with radius $=0$, where $a / \lambda<0.15$ large sphere with radius $=a$, where $a / \lambda>1$	$\begin{aligned} & 0.22 \lambda^{2} \\ & 9 \pi a^{2}(2 \pi a / \lambda)^{4} \\ & \pi a^{2} \end{aligned}$
Corner reflector with one edge $=\mathrm{a}$ (maximum) Flat plate with area $=A$ inormal incidencel Cylinder with radius $=a$, length $=L$ (normal incidencal	$\begin{aligned} & 4 \pi a^{4} / 3 \lambda^{2} \\ & 4 \pi A^{2} / \lambda^{2} \\ & 2 \pi L^{2} a / \lambda \end{aligned}$
Small airplane (AT-1)) Large airplane (B-17)	$\begin{aligned} & 200 \text { feet }^{2} \\ & 800 \text { feet }^{2} \end{aligned}$
Small cargo ship large cargo ship	$\begin{array}{r} 1,500 \text { feet }^{2} \\ 160,000 \text { feet }^{2} \end{array}$

Receiver

The receiver is characterized by an overall noise figure N, defined as the ratio of signal power available from the antenna to theoretical noise

Fig. 6-Noise figure of a receiver of given bandwidth.

type H

Signal appears as two dots. Left dot gives range and azimuth of target. Relative position of right dot gives rough indication of elevation
type J

Same as type A, except time base is circular, and signals appear as radial pips

type L

Same as type K, but signals from two lobes are placed back to back

type N

A combination of type K and type M
type 1

Antenna scan is conical. Signal is a circle, the radius proportional to range. Brightest part indicates direcfion from axis of cone to target
type K

Type A with lobe-switching antenna. Spread voltage splits signals from two lobes. When pips are of equal size, antenna is on target
type M

Type A with range step or range motch. When pip is aligned with step or notch, range can be read from dial or counter
type $P(P P I)$

Range is measured rudially from center

466

Receiver cantinued

power $K T b$, when the mean noise power and the signal power are equal.* This equality must be observed at some stage in the receiver where both have been amplified so highly as to override completely any noise introduced by succeeding stages. $K T=4.1 \times 10^{-21}$, and $\mathrm{b}=$ receiver bandwidth in cycles/second. The bandwidth in megacycles should be $1.2 / \pi$, plus an allowance for frequency drift, thus usually about $2 / \tau$. Fig. 6 enables the determination of the noise figure of a receiver operating from any source impedance, Z_{g} ohms. E is one-half the open-circuit voltage of a fifty-ohm source, adjusted for receiver output signal-plus-noise 3 decibels above noise alone.
Thus, if the generator is calibrated for microvolts into Z_{0} ohms, use $\frac{1}{2} \sqrt{50 / Z_{0}}$ times the indicated voltage. If it is calibrated for voltage into an open circuit, multiply by $\sqrt{50 / Z_{g}}$, but add series resistance to make source $=Z_{\text {g }}$ ohms.

Indicator

The many types of radar indicators are shown in Fig. 7. Type A is the first type used, and the best example of a deflection-modulated display. The PPI is the most common intensity-modulated type. For the purpose of determining maximum radar range, an indicator is characterized by a visibility factor V, defined \dagger as follows:
$V=\tau P_{\min } \times 10^{-6} /$ NKT
where $P_{\min }$ is the receiver input-signal power in watts for a 50 -percent probability of detection.
For an A-scope presentation, V may be found from Fig. 8 , where τ is in microseconds, and B is in megacycles. The values are conservative, but the effects of changing τB and f_{r} are shown correctly.

Fig. 8-Visibility foctor for an A scope.

[^48]
Range equation

The theoretical maximum free-space range of a radar using an isotropic common receiving and transmitting antenna, lossless transmission line, and a perfect receiver, may be found as follows:

Transmitted pulse energy $=P^{\prime}$ (in peak watts) $\times \tau^{\prime}$ (in seconds)
Energy incident on targe! $=P^{\prime} \tau^{\prime} / 4 \pi R^{2}$ per unit area
Energy returned to antenna $=F^{\prime} \tau^{\prime} \sigma /\left(4 \pi R^{2}\right)^{2}$ per unit area
Energy at receiver input $=P^{\prime} \tau^{\prime} \sigma \lambda^{2} /(4 \pi)^{3 R^{4}}$
where σ, λ, and R are in the same units.
Receiver input-noise energy $=K T=4.11 \times 10^{-21}$ joules. Assuming that the receiver adds no noise, and that the signal is visible on the indicator when signal and noise energies are equal, the maximum range is found to be
$R^{4}=\frac{P^{\prime} \tau^{\prime} \sigma \lambda^{2}}{(4 \pi)^{3} K T}$
The free-space range of an actual radar will be modified by several dimensionless factors, primarily antenna gain G, receiver noise figure N, and indicator visibility factor V, as discussed above.
Additional minor losses may be lumped under factors L_{1} and L_{2}, one-way and two-way loss factors, respectively. L_{1} includes losses in transmission lines running from the TR switch to both transmitter and receiver, as well as TR loss, usually about. 1 decibel. L_{2} includes loss of the transmission line between TR box and antenna, and atmospheric absorption.

The range equation, including these factors, and using convenient units, is

$$
R_{m}=0.1146 \sqrt[4]{P_{p} \tau \sigma \lambda^{2} G^{2} L_{1} L_{2}{ }^{2} / V N}
$$

where
$R_{m}=$ maximum free-space range in miles
$P_{p}=$ peak power in kilowatts
$\tau=$ pulse width in microseconds
$\sigma=$ effective target area in square feet
$\lambda=$ wavelength in centimeters
The use of this equation is facilitated by use of decibels throughout, since many of the factors are readily found in this form. Thus, to find maximum radar range,

Range equation continued

a. From Fig. 9 , find $\left(P_{p}+\tau+\sigma+\lambda^{2}\right)$ in decibels.
b. Add $2 \times$ Igain in decibels of common antennal.
c. Subtract $\left(L_{1}+2 L_{2}+V+N\right)$ in decibels. Note V may be negative.
d. From the net result and Fig. 9, find R_{m} in miles.

Fig. 9-The radar range equation.

Reflection lobes

The maximum theoretical free-space range of a radar is often appreciably modified, especially for low-frequency sets, by reflections from the earth's surface. For low angles and a flat earth, the modifying factor is
$F=2 \sin \frac{\left(2 \pi h_{1} h_{2}\right)}{\lambda R}$
where h_{1}, h_{2}, and R are defined in Fig. 10, all in the same units as λ. The result-

Reflection lobes continued

Fig. 10-Rador geometry, showing reflection from fal earth.

Fig. 11 -Verticol-lobe pattern resulting from refections from earth.
ing vertical pattern is shown in Fig. I1 for a typical case. The angles of the maxima of the lobes and the minima, or nulls, may be found from
$\theta_{m}=\frac{h_{2}}{R}=\frac{n \lambda}{4 h_{1}}$
where
$\theta_{m}=$ angle of maximum in radians, when $n=1,3,5 \ldots$
$=$ angle of minimum in radians, when $n=0,2,4 \ldots$
This expression may be applied to the problem of finding the height of a maximum or null over the curved earth with the following approximate result:
$H_{2}=44 n \lambda D / H_{1}+D^{2} / 2$
where
$H=$ feet
$\lambda=$ centimeters
$D=$ miles

470

Reflection zone

The reflection from the ground occurs not at a point, but over an elliptical area, essentially the first Fresnel zone. The center of the ellipse and its dimensions may be found from
$x_{0}=d_{1}(1)+2 a l, \quad x_{1}=2 d_{1} \sqrt{a(l+a)}, \quad y_{1}=2 h_{1} \sqrt{a(1+a)}$
where x_{0}, x_{1}, y_{1}, d, are shown in Fig. 10, and
$d_{1}=h_{1} d / h_{2}=h_{1} / \sin \theta$
$a=\lambda / 4 h_{1} \sin \theta$
In the maximum of the first lobe, $a=1$, and the distances to the nearest and farthest points are

$$
x_{0}-x_{1}=0.7 h_{1}^{2} / \lambda, \quad x_{0}+x_{1}=23.3 h_{1}^{2} / \lambda, \quad y_{1}=2 \sqrt{2 h_{1}}
$$

These dimensions determine the extent of flat ground required to double the free-space range of a radar as above. The height limit of any large irregularity in the area is $h_{1} / 4$. If the same area is available on a sloping site of angle ϕ, double range may be obtained on a target on the horizon. In this case
$x_{0}+x_{1}=1.46 \lambda / \sin ^{2} \phi$

Absorption

When passing through atmospheric moisture, microwaves suffer an attenuation at an approximate rate of

$$
L=10 Q / \lambda^{2}
$$

where
$L=$ attenuation in decibels/mile
$\lambda=$ wavelength in centimeters
$Q=$ rate of rainfall in inches/hour

Refraction

The moisture content of the air is also responsible for refraction of radar waves. In the so-called "standard" atmosphere, the moisture content decreases with height so that there is a tendency for the waves to curve toward the earth. This may be taken into account by assuming straight-line propagation over an earth of $4 / 3$ the actual radius, or 5280 miles, for convenience. This value has been assumed in the equation for lobe height given above.

Refraction continued

When the decrease in moisture content with height is abnormally rapid, a condition of super-refraction or anomalous propagation is said to exist. This effect is common over large bodies of water, and is strongest for the shortest wavelengths. Thus, S-band radars often show targets far beyond the normal horizon.

Terminology

A brief glossary is presented below of various terms that have fallen into most common use in the field of radar. In view of the fact that these terms, being widely familiar, may not be defined in the technical literature, they are presented here. Complete glossaries may be found in many of the more widely used radar texts.

Al: Aircraft interception. Short-range airborne radar sets that guide nightfighters in their interception of enemy aircraft.
ATR switch: Anti-TR switch to prevent received power from entering transmitter.

Blister: The housing for radar antenna (see Radome).
BTO: Bombing through overcast.
Chaff: Foil-and-paper strips dropped from airplanes to create false signals on enemy radar sets (see Window).
Clutter: Echoes from fixed or relatively slow-moving objects, e.g., hills, towers, clouds, sea surface.

Coherent: Refers to correspondence in phase at some time between two oscillations.
Coho: Coherent oscillator used with MTI.
Duct: Atmospheric phenomenon causing radar waves to bend toward earth, increasing radar range.
Duplexer: Navy term for TR switch.
GCA: Ground-controlled approach. The technique and/or apparatus for "talking down" an aircraft into approach for landing in poor visibility.
GCl: Ground lor shipl controlled interception. GCl stations vector li.e., supply bearings) to within visual or radar range of enemy aircraft.
GL: Gun laying. Range, bearing, and elevation are provided by GL equipment to direct guns and control their fire.

IFF: Identification of friend or foe. Method of automatically challenging and receiving positive response from aircraft or ship.

Terminology continued
Jamming: Introduction of false radiation into enemy radio and radar devices.

LO: Local oscillator.
MTI: Moving-target indicator.
PPI: Plan-position indicator.
PPPI or P^{3} : Precision PPI.
P4: Photographic-projection PPI.
Racon: Radar beacon used as a navigational aid, blind landing of planes, etc

Radome: Antenna housing.
RCM: Radio or radar counter measures.
RDF: Radio direction finding, also Radiclocation. British terms for Radar.
SLC: Search-light-control radar.
Stalo: Stable local oscillator, used with MTI.
TR switch: Transmit-receive device to prevent application of full transmitter power to receiver input.
Window: Mechanical reflecting devices dropped by planes to confuse enemy radar.

473

Broadcasting

Introduction

Radio broadcasting for public entertainment in the U.S.A. is at present of three general types.

Standard broadcasting: Utilizing amplitude modulation in the 550-1600kilocycle/second band.

Frequency-modulation: Broadcasting in the 88-108-megacycle/second band.

Television broadcasting: Utilizing amplitude-modulated video and fre-quency-modulated aural transmission in the llowl 54-88-megacycle band and the (high) 174-216-megacycle band.

There is also

International broadcasting: On assigned frequencies in the region be. tween 6000 and 21,700 kilocycles in accordance with international agreement*.

Operation in these bands in the U.S.A. is subject to licensing and technical regulations of the Federal Communications Commission.

Selected administrative and technical information and rules from F.C.C. publications applicable to each of these broadcast applications, are given in this chapter.

General reference: "Rules Governing Radio Broadcast Service of June 25, 1940, revised to June 16, 1948," Federal Communications Commission, Washington, D.C.

Standard broadcasting \dagger

Standard-broadcast stations are licensed for operation on 10 -kilocyclespaced channels occupying the band 550-1600 kilocycles, inclusive, and are classified as follows.

[^49]| closs of statlon | closs of channel | normal service | permissible powar in kilowafts | signal-intensity contour in microvolis/meter of areo protected from objectionable inferference | |
| :---: | :---: | :---: | :---: | :---: | :---: |
| | | | | $\begin{gathered} \text { day } \\ \text { (ground-wave) } \end{gathered}$ | night |
| 10 | Cloor | Primary and secondary | 50 | $\begin{aligned} & S C=100 \\ & A C=500 \end{aligned}$ | Not duplicated |
| lb | Clear | Primary and secondary | 10 to 50 | $\begin{aligned} & S C=100 \\ & A C=500 \end{aligned}$ | 500
 150% sky wavel |
| II | Cloar | Primary | 0.25 10 50 | 500 | $\begin{aligned} & 2500 \\ & \text { (Ground wave) } \end{aligned}$ |
| III-A | Regional | Primary | 1 to 5 | 500 | 2500
 (Ground wavel |
| III-B | Regional | Primary | $\begin{aligned} & \text { Night }=0.5 \text { to } 1 \\ & \text { Doy }=5 \end{aligned}$ | 500 | 4000
 (Ground wave) |
| IV | Local | Primary | 0.1 to 0.25 | 500 | 4000
 (Ground wavel |

$\mathrm{SC}=$ same channel $\quad \mathrm{AC}=$ adjocent channel
Taken from "Standards of Good Engineoring Practice Concerning Standard Broadcasting, August 1, 1939, revised October 30, 1947," Fedoral Communications Commission, Washington, D.C.

Field-intensity requirements

Primary service

City areas: 2 to 50 millivolts/meter, ground wave
Rural areas: 0.1 to 1.0 millivolt/meter, ground wave

Secondary service

All areas having sky-wave field intensity greater than 500 microvolis/meter for 50 percent or more of the time.

Coverage data

The charts of figs. 1-3 show computed values of ground-wave field intensity as a function of the distances from the transmitting antenna. These are used for the determination of coverage and interference. They were computed for the frequencies indicated, a dielectric constant equal to 15 for ground and 80 for sea water (referred to air as unity), and for the surface conductivities noted. The curves are for radiation from a short vertical antenna at the surface of a uniformly conductive spherical earth, with an antenna power and efficiency such that the inverse-distance field is 100 millivolts/meter at one mile.

Standard broadcasting

canlinued

The following table gives data on ground inductivity and conductivity in the U.S.A.

type of terrajn	inductivity referred to air $=1$	conduclivity in omu	absorption factor af 50 miles, 1000 kilocycles*
Sea water, minimum atrenuation	81	4.64×10^{-11}	1.0
Pastoral, low hills, rich soil, typical of Dallas, Texas; lincoln, Nebraska; and Wolf Point, Montana, areas	20	3×10^{-15}	0.50
Pastora!, low hills, rich soil, typical of Ohio and Illinois	14	10^{-18}	0.17
Flat country, marshy, densely wooded, typical of louisiana near Mississippi River	12	7.5×10^{-14}	0.13
Pastoral, medium hills, and forestation, typical of Maryland, Pennsylvania, Now York, exclusive of mountainous territory and sea coasts	13	6×10^{-14}	0.09
Pastoral, medium hills, and forestation, heavy clay soil, typical of central Virginia	13	4×10^{-14}	0.05
Rocky soil, steep hills, typical of New England	14	2×10^{-14}	0.025
Sandy, dry, flat, typical of coastal country	10	2×10^{-14}	0.024
City, industrial areas, average attenuation	5	10^{-14}	0.011
City, industrial areas, maximum attenuation	3	10^{-15}	0.003

* This figure is stated for comparison purposes in order to indicate at a glance which values of conductivity and inductivity represent the higher absorption. It is the ratio between field intensity obtained with the soil constants given and with no absorption. From "Standards of Good Engineering Practice Concerning Standard Broadcasting, August 1, 1939, revised October 30, 1947," Federal Communications Commission, Washington, D.C.

Station performance requirements

Operation is maintained in accordance with the following specifications.
Modulation: Amplitude modulation of at least 85 to 95 percent.
Audio-frequency distortion: Harmonics less than 5 percent arithmetical sum or root-mean-square amplitude up to 85 percent modulation; less than 7.5 percent for 85 to 95 percent modulation.

Audio-frequency response: Transmission characteristic flat between 100 and 5000 cycles to within 2 decibels, referred to 1000 cycles.

Standard broadcasting continued

Noise: At least 50 decibels, unweighted, below 100 percent modulation for the frequency band 150 to 5000 cycles, and at least 40 decibels down outside this range.

Carrier-frequency stability: Within 20 cycles of assigned frequency.

Fig. 1-Ground-wave field intensity plotted against distance. Computed for 550 kilocycles. Dielectric constant $=15$. Ground-conductivity values above are emu $\times 10^{14}$.

Frequency modulation*

Frequency-modulation broadcasting stations are authorized for operation on 100 allocated channels each 200 kilocycles wide extending consecutively from channel No. 201 on 88.1 megacycles to No. 300 on 107.9 megacycles.

[^50]

Fig. 2-Ground-wave field intensity plotted against distance. Computed for 1000 kilocycles. Dielectric constont $=15$. Ground-conductivity values above ore emu $\times 10^{14}$.

478

Commercial broadcasting is authorized on channels No. 221192.1 megacycles) through No. 300. Noncommercial educational broadcasting is licensed on channels No. 201 through 220189.9 megacycles).

Station service classification

Licenses are issued to stations of two main classifications.

Fig. 3-Ground-wave feld intensity plotted against distance. Computed for 1600 kilocycles. Dielectric constant $=15$. Ground-conductivity values above are emu $\times 10^{14}$.

Frequency modulation continued

Class-A stations: Render service primarily to communities other than the principal city of an area. A maximum effective rated power of 1 kilowatt and an antenna height of 250 feet are permitted.
Class-B stations: Render service primarily to a metropolitan district or principal city and its surrounding rural area, or to primarily rural areas. In FM Area I, which includes New England and the North- and Middle-Atiantic-states areas, they are licensed to operate with 10 kilowatts minimum, 20 kilowatts maximum, effective rated power and 300 feet minimum, 500 feet maximum, effective antenna height. In FM Area II (balance of U.S.A. outside of Area I, class- B stations are licensed to operate with 2 kilowatts minimum, 20 kilowatts maximum, effective rated power and 300 feet minimum, 500 feet maximum, effective antenna height.

Fig. 4-Ground-wave signal range for television band 46 megaeycles. Conductivity $=5 \times 10^{-14} \mathrm{emu}$, and dielectric constont $=15$. Receiving-antenna height $=30$ feet. For horizontal (and opproximotely for vertical) polarization.

Frequency modulation

Coverage data

The frequency-modulation broadcasting service area is considered to be only that served by the ground wave. The median field intensity considered necessary for adequate service in city, business, or factory areas is 100 microvolts/meter; in rural areas, 50 microvolts/meter is specified. A median field intensity of 3000 to 5000 microvolts/meter is specified for the principal city to be served. The curves of Fig. 7 give data for determination of F-M broad-cast-station coverage as a function of rated power and antenna height.
Objectionable interference from other stations may limit the service area. Such interference is considered by the F.C.C. to exist when the ratio of desired to undesired signal values is as follows:

Fig. 5-Ground-wave signol range for television band 63 megacycles. Conductivity $=5 \times 10^{-16} \mathrm{emu}$, and dielectric constant $=15$. Receiving-antenna height $=30$ feet. For horizontal (and approximately for vertical) palarization.

Frequency modulation
Same channel: 10/1
Adjacent channel ($200-\mathrm{kc} / \mathrm{s}$ separation): $2 / 1$
Values are ground-wave median field for the desired signal, and the tropospheric-signal intensity exceeded for 1 percent of the time for the undesired signal. It is considered that stations having alternate-channel spacing (400-kilocycle separation) may be operated in the same coverage area without objectionable mutual interference.

Station performance requirements

Operation is maintained in accordance with the following specifications.

Fig. 6-Greund-wave signal ronge for television band 82 megacycles. Canductivity $=5 \times 10^{-14} \mathrm{emu}$, and dielectric constont $=15$. Receiving-antenna height $=30 \mathrm{feet}$. For horizontal (ond approximately for vertical) palarizotion.

Audio-frequency response: Transmitting system capable of transmitting the band of frequencies 50 to 15,000 cycles. Preemphasis employed and response maintained within limits shown by curves of Fig. 9.

Audio-frequency distortion: Maximum combined audio-frequency harmonic root-mean-square voltage in system output less than

modulating frequency in cycles/second	percent hormonic
$50-100$	3.5
$100-7500$	2.5
$7500-15000$	3.0

Fig. T-Ground-wave signal ronge for frequency-modulation broadcosting band, 98 megacycles. Conductivity $=5 \times 10^{-16} \mathrm{emv}$, and dielectric constont $=15$. Receiv-ing-ontenna height $=\mathbf{3 0}$ feet. For horizonfal (and approximately for vertical) polarization.

Frequency modulation continued

tronsmitting ontenno height in feot
Fig. 8-Ground-wove signal renge for teievision bond 195 megocycles. Conductivity $=5 \times 10^{-14} \mathrm{emu}$, ond dielectric constant $=15$. Receiving-antenna height $=30$ feet. For horizontol (and approximately for vertical) polarization.

Fig. 9-Standard pre-emphasis curve for frequency-modulation and television aural broadcasting. Time constant $=75$ micro-seconds (solid line). Frequencyresponse limits are set by the iwo lines.

Frequency modulation

Power output: Standard transmitter power output ratings are 250 watts, and $1,3,10,25,50$, and 100 kilowatts.
Modulation: Frequency modulation with a modulating capability of 100 percent corresponding to a frequency swing of ± 75 kilocycles.

Noise:

FM-In the band 50 to 15,000 cycles, at least 60 decibels below 100 -percent swing.
AM-In the band 50 to 15,000 cycles, at least 50 decibels below level representing 100 -percent amplitude modulation.
Center-frequency stability: Within ± 2000 cycles of assigned frequency. Antenna polarization: Horizontal.

Television broadcasting

Television-broadcast stations are (January, 1949) authorized for commercial operation on 12 channels designated as follows:

channel number	band in mc/s	\|channel number	band in mc/s
2	$54-60$	8	
3	$60-66$	9	$180-186$
4	$66-72$	10	$186-192$
5	$76-82$	11	$192-198$
6	$82-88$	12	$198-204$
7	$174-180$	13	$204-210$
		$210-216$	

Assignment of channels to specific areas has been made by the F.C.C. in such a manner as to facilitate maximum interference-free coverage within the available frequency spectrum. Within a given area, operation is on alternate channels or with at least a 4-megacycle channel guard band.

Station classification

Channels 2 through 13 are authorized for three basic types of television stations.

Community stations: Stations of this type render service to smaller metropolitan districts or principal cities. An effective radiated peak power of 1 kilowatt and a maximum antenna height of 500 feet are permitted.
Metropolitan stations: Are designed primarily to render service to a single metropolitan district or a principal city and surrounding rural area. Peak effective radiated power is limited to 50 kilowatts at a maximum antenna

Television broadcasting continued

height of 500 feet above average terrain. Greater heights with equal or less power may be permitted.

Rural stations: Are proposed to serve an area predominantly rural in character. Technical conditions of operation of such stations, as well as their licensing, are determined upon special action of the F.C.C.

Broadcast coverage

The television-broadcast service area, like that of frequency modulation, is considered to be that region receiving a satisfactory ground-wave signal intensity. Median field intensities (at synchronizing-pulse peaks) considered necessary for service are

City, business, or factory areas: 5000 microvolts/meter
Residential and rural areas: $\quad 500$ microvolts/meter
The curves of Figs. 4-8 give coverage distance through the allocated television-frequency bands as a function of radiated power and antenna height.
Objectionable visual interference, limiting the satisfactory signal values indicated above, is considered to exist when the ratio of desired/undesired signals is
$\begin{array}{lr}\text { Same channel: } & 100 / 1 \\ \text { Adjacent channel }(6-\mathrm{mc} / \mathrm{s} \text { separation }) & 2 / 1\end{array}$
The desired-signal intensity is that of the ground-wave median field, while the undesired-signal value is the tropospheric signal intensity exceeded for 10 percent of the time. It is considered that stations having an alternatechannel 112-megacycle) or a 10 -megacycle separation may be operated in the same coverage area without objectionable interference.

Overall station performance requirements

F.C.C. television standards (December 19, 1945) are

Channel width: 6 megacycles/second.
Picture carrier location: 4.5 megacycles below aural center frequency.
Aural center frequency: 0.25 megacycles below upper-frequency limit of channel.
Polarization of radiation: Horizontal.
Modulation: Amplitude-modulated composite picture and synchronizing signal on visual carrier, together with frequency-modulated audio signal on aural carrier shall be included in a single television channel (Figs. 10 and 111 .

Television broadeasting continued

Visual transmission requirements

Modulation: Amplitude modulation.

Radio-frequency-amplitude characteristic: As per Fig. 10.

Scanning lines: 525 lines/frame, interlaced two to one.

Frame frequency: $30 /$ second.
Field frequency: $60 /$ second.
Aspect ratio: 4 units horizontal to 3 units vertical.

Scanning sequence:
Horizontal-left to right
Vertical-top to bottom

channel frequency spectrum in megacycles referred to lower frequency limit of channel

Fig. 10-Rodio-frequency amplifude characteristic of television picture transmission. Field intensity at points A sholl not exceed 20 decibels below picture carrier. Drawing not to scale.

Fig. 11-(Above and of right) Television composife-signol waveform data.

Television broadcasting cantinued

Fig. 11 - confinued

Television broadcasting continued

Transmission polarity: Negative li.e., a decrease in initial light intensity corresponds to an increase in radiated powerl.

Pedestal level: 75 ± 2 percent of peak carrier amplitude.
Black level: Constant at or closely approaching pedestal level.
White level: 15 percent or less of peak carrier amplitude.
Transmitter output variation: At synchronizing peak and black levels, the total output variation due to noise, hum, response, etc., shall not exceed 5 percent of synchronizing-peak amplitude within each frame.

Brightness characteristic: Transmitter output shall vary in substantially inverse logarithmic relation to the brightness of the subject.

Visual transmitter design

Overall frequency response: The output measured into the antenna after vestigial-sideband filters shall be within limits of +0 and

- 2 decibels at 0.5 megacycles
-2 decibels at 1.25 megacycles
- 3 decibels at 2.0 megacycles
-6 decibels at 3.0 megacycles
- 12 decibels at 3.5 megacycles
with respect to video amplitude characteristic of Fig. 12.

Lower-sideband radiation: for modulating frequency of 1.25 megacycles or greater, radiation must be 20 decibels

modulating frequency in megacycles
Fig. 12-Ideal demodulated amplitude characteristic of television transmitter below carrier level.

Radiated "radio-frequency-signal envelope: Specified by Fig. 11 as modified by vestigial operation characteristic of Fig. 10.

Horizontal pulse-timing variations: Variation of time interval between successive pulse leading edges to be less than 0.5 percent of average interval.

Horizontal pulse-repetition stability: Rate of change of leading-edge recurrence frequency shall not exceed 0.15 percent/second.

Television broadcasting conlinued

Aural transmitter

Effective radiation: Greater than 50 percent and less than 150 percent of visual-fransmitter peak radiated power.
Modulation: Frequency modulation with 100 -percent swing of ± 25 kilocycles. Required maximum swing $= \pm 40$ kilocycles.
Audio-frequency response: 50 to 15,000 cycles within limits and utilizing preemphasis as shown in Fig. 10.
Audio-frequency distortion: Maximum combined harmonic root-mean-square output voltage shall be less than

modulating frequency in eycles/second	percent harmonic
$50-100$	3.5
$100-7500$	2.5
$7500-15000$	3.0

Noise

FM-55 decibels below 100 -percent swing.
AM-50 decibels below level corresponding to 100-percent modulation.

Wire fransmission

Telephone transmission-line data

Line constants of copper open-wire pairs

```
8- and 12-inch spacing
Insulators:
    40 poirs toll and double-petticoat (DP) per mile
    53 poirs Pyrex glass (CS) per mile
```

Temperoture 68° fahrenheit

$\begin{gathered} \text { freq } \\ \text { in } \\ \mathrm{kc} / \mathrm{s} \\ \hline \end{gathered}$	resistance in ohms/loop mile						Inductance In millihenries/loop mile					
	165 mil		128 mil		104 mil		165 mil		128 mil		104 mil	
	$\begin{gathered} 12^{\prime \prime} \\ \text { DP } \end{gathered}$	$\begin{aligned} & 8^{\prime \prime} \\ & \mathrm{CS} \end{aligned}$	$\begin{aligned} & 12^{\prime \prime} \\ & D P \end{aligned}$	$\begin{aligned} & 8^{\prime \prime} \\ & \mathrm{CS} \end{aligned}$	$\begin{aligned} & 12^{\prime \prime} \\ & \text { DP } \end{aligned}$	$\begin{aligned} & 8^{\prime \prime} \\ & \mathrm{CS} \end{aligned}$	$\begin{aligned} & 12^{\prime \prime} \\ & \text { DP } \end{aligned}$	$\begin{aligned} & 8^{\prime \prime} \\ & \text { CS } \end{aligned}$	$\begin{aligned} & 12^{\prime \prime} \\ & \text { DP } \end{aligned}$	$\begin{aligned} & 8^{\prime \prime} \\ & \mathrm{CS} \end{aligned}$	$\begin{aligned} & 12^{\prime \prime} \\ & D P \end{aligned}$	$\begin{aligned} & 8^{\prime \prime} \\ & \text { C5 } \end{aligned}$
0.1	4.10	4.10	6.82	6.82	10.33	10.33	3.37	3.11	3.53	3.27		
0.5	4.13	4.13	6.83	6.83	10.34	10.34	3.37	3.10	3.53	3.27 3.27	3.66 3.66	3.40 3.40
1.0	4.19	4.19	6.87	6.87	10.36	10.36	3.37	3.10	3.53	3.27 3.27	3.66 3.66	3.40 3.40
1.5	4.29	4.29	6.94	6.94	10.41	10.41	3.37	3.10	3.53	3.26	3.66 3.66	3.40 3.40
2.0	4.42	4.42	7.02	7.02	10.47	10.47	3.36	3.10	3.53	3.26	3.66	
3.0	4.76	4.76	7.24	7.24	10.62	10.62	3.35	3.09	3.52	3.26	3.66	3.40 3.40
5.0	5.61	5.81	7.92	7.92	11.11	11.11	3.34	3.08	3.52	3.26 3.25	3.66 3.66	3.40 3.40
10	7.56	7.56	10.05	10.05	12.98	12.98	3.31	3.04	3.49	3.23	3.66 3.64	3.40 3.38
20	10.23	10.23	13.63	13.63	17.14	17.14	3.28	3.02				
30	12.26	12.26	16.26	16.26	20.55	20.55	3.26	3.00	3.46 3.44	$3.21{ }^{\text {3 }}$	3.61 3.58	3.35 3.33
50	15.50	15.50	20.41	20.41	25.67	25.67	3.25	2.99	3.43	3.16	3.57	3.31
100	21.45	21.45	28.09	28.09	35.10	35.10	3.24	2.98	3.42	3.15	3.55	3.29
150	26.03	26.03	33.96	33.96	42.42	42.42	3.23	2.97	3.41	3.14		
200	29.89	29.89	38.93	38.93	48.43	48.43	3.23	2.97	3.41 3.40	3.14 3.14	3.54 3.54	3.28 3.28
500 1000	46.62	46.62	60.53	60.53	74.98	74.98	3.22	2.96	3.39	3.13 3.13	3.54 3.53	3.28 3.27
1000	65.54	65.54	84.84	84.84	104.9	104.9	3.22	2.96	3.38	3.12	3.52	3.26

$\begin{gathered} \text { freq } \\ \text { in } \\ k c / s \\ \hline \end{gathered}$	leakage conductance in micromhos/loop mile			
	dry-oll	gauges	wet-all	gouges
	$12^{\prime \prime}-\mathrm{DP}$	$8^{\prime \prime}$-CS	$12^{\prime \prime}$-DP	$8^{\prime \prime}$-CS
0.1	0.04	0.04	2.5	2.0
0.5	0.15	0.06	3.0	2.3
1.0	0.29	0.11	3.5	2.6
1.5	0.43	0.15	4.0	2.9
2.0	0.57	0.20	4.5	3.2
3.0	0.85	0.30	5.5	3.7
5.0	1.4	0.49	7.5	4.6
10	2.8	0.97	12.1	6.6
20	5.6	1.9	20.5	9.6
30	8.4	2.9	28.0	12.1
50	14.0	4.8	41.1	15.7

wire size	capocitance in microfarads/loop mile	
	12"	$8^{\prime \prime}$
in space		
165 mil	0.00898	0.00978
128 mil	0.00855	0.00928
104 mil	0.00822	0.00888
on 40-wire line, dry		
165 mil	0.00915	0.01000
$128 \mathrm{ml}$	0.00871	0.00948
104 mil	0.00857	0.00908
on 40-wire line, wel		
165 mil	0.0093	0.0102
128 mil	0.0089	0.0097
104 mil	0.0085	0.0093

Telephone transmission-line data continued

Line constants of 40\% Copperweld open-wire pairs

8- and 12-ineh spacing

```
Insulators:
    40 pairs toll and double-petticoat (DP) per mile
    53 pairs Pyrex glass (CS) per mile
```

Temperature 68° fahrenheif

$\begin{gathered} \text { freq } \\ \ln \\ \mathrm{ke} / \mathrm{s} \end{gathered}$	esistance in ohms/loop mile						inductance in millihenries/loop mile					
	165 mil		128 mil		104 mil		165 mil		128 mil		104 mil	
	$\begin{aligned} & 12^{\prime \prime} \\ & \text { DP } \end{aligned}$	$\begin{aligned} & 8^{\prime \prime} \\ & \text { CS } \end{aligned}$	$\begin{aligned} & 12^{\prime \prime} \\ & \text { DP } \end{aligned}$	$\begin{aligned} & 8^{\prime \prime} \\ & \text { CS } \end{aligned}$	$\begin{aligned} & 12^{\prime \prime} \\ & D P \end{aligned}$	$\begin{aligned} & 8^{\prime \prime} \\ & \text { CS } \end{aligned}$	$\begin{gathered} 12^{\prime \prime} \\ \text { DP } \end{gathered}$	$\begin{aligned} & 8^{\prime \prime} \\ & \text { CS } \end{aligned}$	$\begin{aligned} & 12^{\prime \prime} \\ & \mathrm{DP} \end{aligned}$	$\begin{aligned} & 8^{\prime \prime} \\ & \text { CS } \end{aligned}$	$\begin{aligned} & 12^{\prime \prime} \\ & \text { DP } \end{aligned}$	$\begin{aligned} & 8^{\prime \prime} \\ & \text { CS } \end{aligned}$
0.0	9.8	9.8	16.2	16.2	24.6	24.6	-	-			-	
0.1	10.0	10.0	16.3	16.3	24.6	24.6	3.37	3.11	3.53	3.27	3.66	3.40
0.5	10.0	10.0	16.4	16.4	24.7	24.7	3.37	3.10	3.53	3.27	3.66	3.40
1.0	10.1	10.1	18.6	16.6	24.8	24.8	3.37	3.10	3.53	3.27	3.66	3.40
1.5	10.1	10.1	16.7	16.7	24.9	24.9	3.37	3.10	3.53	3.26	3.66	3.40
2.0	10.2	10.2	16.8	10.8	25.2	25.2	3.36	3.10	3.53	3.26	3.66	3.40
3.0	10.4	10.4	17.1	17.1	25.4	25.4	3.35	3.09	3.52	3.26	3.66	3.40
5.0	10.6	10.6	17.4	17.4	26.0	26.0	3.34	3.08	3.52	3.25	3.66	3.40
10	10.8	10.8	17.7	17.7	26.5	26.5	3.31	3.04	3.49	3.23	3.64	3.38
20	11.4	11.4	18.2	18.2	27.1	27.1	3.28	3.02	3.46	3.20	3.61	3.35
30	12.3	12.3	18.8	13.8	27.5	27.5	3.26	3.00	3.44	3.17	3.58	3.33
50	14.5	14.5	20.4	20.4	28.7	28.7	3.25	2.99	3.43	3.16	3.57	3.31
100	20.8	208	26.5	26.5	33.3	33.3	3.24	2.98	3.42	3.15	3.55	3.29
150	25.9	25.9	32.5	32.5	39.6	39.6	3.23	2.97	3.41	3.14	3.54	3.28

$\begin{gathered} \text { freq } \\ \text { in } \\ \text { ke/s } \end{gathered}$	leakage conductance in micromhos/loop mile				wire slze	capacitance in microfarads/loop mile			
	dry-all gauges		wet-all gauges						
	12"-DP	8'1-Cs	12"-DP	$8^{\prime \prime}$-CS		12"	$8^{\prime \prime}$		
01	0.04	0.04	2.5	2.0	in space 165 mil 128 mil 104 mil				
05	0.15	0.06	3.0	2.3		0.00898	0.00978		
10	0.29	0.11	3.5	2.6		0.00855	0.00928		
1.5	0.43	0.15	4.0	2.9		0.00822	0.00888		
	-				on 40-wire line,				
2.0	0.57	0.20	4.5	3.2					
3.0	0.85	0.30	5.5	3.7	16.5 mil	0.00915	0.01000		
5.0	14	0.49	7.5	4.6	128 mil	0.00871	0.00948		
10	2.8	0.97	12.1	6.6	104 mil	0.00857	0.00908		
					on 40-wire line,				
20	5.6	1.9	20.5	9.6					
30	8.4	2.9	28.0	12.1	165 mil	0.0093	0.0102		
50	14.0	4.8	41.1	15.7	128 mil	0.0089	0.0097		
					104 mil	0.0085	0.0093		

492

Telephone transmission-line data cantinued

Attenuation of copper open-wire pairs

8- and 12-inch spocing

insulators:
40 pairs fall and double-petficaat (DP) per mile 53 poirs Pyrex gloss (CS) per mile

Temperature 68° fahrenheif

dry weather

$\begin{gathered} \text { freq } \\ \text { in } \\ k \in / s \end{gathered}$	aftenuation in decibels per mile								
	165 mil			128 mil			104 mil		
	$\begin{aligned} & 12^{\prime \prime} \\ & D P \end{aligned}$	$\begin{gathered} 12^{\prime \prime} \\ \text { Cs } \end{gathered}$	$\begin{aligned} & 8^{\prime \prime} \\ & \text { C5 } \end{aligned}$	$\begin{aligned} & 12^{\prime \prime} \\ & D P \end{aligned}$	$\begin{gathered} 12^{\prime \prime} \\ \text { C5 } \end{gathered}$	$\begin{aligned} & 8^{\prime \prime} \\ & \text { CS } \end{aligned}$	$\begin{aligned} & 12^{\prime \prime} \\ & D P \end{aligned}$	$\begin{gathered} 12^{\prime \prime} \\ \text { Cs } \end{gathered}$	$\begin{aligned} & 8^{\prime \prime} \\ & \text { C5 } \end{aligned}$
0.1	0.023	0.023	0.025	0.032	0.032	0.034	0.041	0.041	0.0425
0.5	0.029	0.029	0.0315	0.045	0.045	0.048	0.063	0.063	0.067
1.0	0.030	0.030	0.0325	0.047	0.047	0.0505	0.067	0.067	0.072
1.5	0.031	0.031	0.0335	0.048	0.048	0.051	0.068	0.068	0.073
2.0	0.0325	0.032	0.035	0.0485	0.048	0.052	0.069	0.069	0.074
3.0	0.036	0.034	0.038	0.051	0.050	0.054	0.071	0.070	0.076
5.0	0.044	0.041	0.0445	0.057	0.055	0.0595	0.076	0.074	0.080
10	0.061	0.056	0.0605	0.076	0.070	0.076	0.093	0.087	0.094
20	0.088	0.076	0.083	0.108	0.096	0.104	0.129	0.116	0.125
30	0.110	0.092	0.100	0.135	0.116	0.125	0.159	0.140	0.151
50	0.148	0.118	0.127	0.179	0.147	0.158	0.209	0.176	0.189
100	-	0.165	0.178	-	0.204	0.220	-	0.244	0.262
150	-	0.203	0.218	-	0.249	0.268	-	0.296	0.317
200	-	0.235	0.25	-	-	-	-	-	-
500	-	-	$0.42 \pm$	-	-	-	-	-	-
1000	-	-	$0.7 \pm$	-	-	-	-	-	-

wef weother

0.1	0.032	0.029	0.030	0.043	0.039	0.040	0.054	0.049	0.0505
0.5	0.037	0.034	0.036	0.053	0.050	0.053	0.072	0.069	0.0705
1.0	0.039	0.035	0.037	0.056	0.052	0.055	0.076	0.073	0.0775
1.5	0.041	0.037	0.0385	0.058	0.0535	0.0565	0.078	0.0745	0.0795
2.0	0.043	0.038	0.040	0.060	0.0545	0.058	0.0805	0.076	0.0805
3.0	0.0485	0.041	0.044	0.064	0.0575	0.061	0.0845	0.078	0.083
5.0	0.060	0.050	0.0525	0.075	0.0645	0.068	0.094	0.084	0.089
10	0.085	0.068	0.072	0.102	0.083	0.0885	0.120	0.101	0.106
20	0.127	0.095	0.101	0.150	0.116	0.123	0.173	0.137	0.144
30	0.161	0.118	0.124	0.188	0.142	0.150	0.216	0.168	0.176
50	0.220	0.154	0.162	0.253	0.185	0.195	0.287	0.217	0.227
100	-	0.228	0.237	-	0.271	0.283	-	0.313	0.326
150	-	0.288	0.299	-	0.339	0.353	-	0.390	0.405

Telephone transmission-line data
conlinued

Attenuation of 40% Copperweld open-wire pairs

8- and 12-inch spacing

Insulatars:

40 pairs tall and dauble-petticaat (DP) per mille
53 pairs Pyrex glass (C5) per mile
Temperature 68° fahrenheit
dry weather

freq in kc/s	attenuation in decibels per mile								
	165 mil			128 mil			104 mil		
	$\begin{aligned} & 12^{\prime \prime} \\ & \mathrm{DP} \end{aligned}$	$\begin{gathered} 12^{\prime \prime} \\ \text { C5 } \end{gathered}$	$\begin{aligned} & 8^{\prime \prime} \\ & \text { Cs } \end{aligned}$	$\begin{gathered} 12^{\prime \prime} \\ \text { DP } \\ \hline \end{gathered}$	$\begin{gathered} 12^{\prime \prime} \\ \text { CS } \end{gathered}$	$\begin{aligned} & 8^{\prime \prime} \\ & \text { CS } \end{aligned}$	$\begin{aligned} & 12^{\prime \prime} \\ & \text { DP } \end{aligned}$	$\begin{gathered} 12^{\prime \prime} \\ \text { Cs } \end{gathered}$	$\begin{aligned} & 8^{\prime \prime} \\ & \text { CS } \end{aligned}$
0.2	0.054	0.054	0.057	0.073	0.073	0.077	0.091	0.091	0.096
0.5	0.067	0.067	0.071	0.097	0.097	0.103	0.127	0.127	0.134
1.0	0.073	0.073	0.078	0.112	0.112	0.120	0.152	0.152	0.162
1.5	0.076	0.076	0.082	0.118	0.118	0.127	0.162	0.162	0.174
2.0	0.077	0.077	0.083	0.120	0.120	0.130	0.168	0.168	0.180
3.0	0.079	0.079	0.085	0.124	0.124	0.134	0.174	0.174	0.188
5.0	0.082	0.082	0.088	0.127	0.127	0.138	0.179	0.179	0.195
10	0.085	0.085	0.092	0.131	0.131	0.142	0.186	0.186	0.201
20	0.088	0.088	0.096	0.135	0.135	0.147	0.191	0.191	0.207
30	0.095	0.095	0.103	0.139	0.139	0.152	0.195	0.195	0.211
50	0.110	0.110	0.119	0.150	0.150	0.163	0.206	0.206	0.221
100	0.156	0.156	0.168	0.188	0.188	0.203	0.234	0.234	0.252
150	0.199	0.199	0.214	0.233	0.233	0.251	0.273	0.273	0.293

wat weather

0.2	0.066	0.060	0.063	0.089	0.081	0.084	0.111	0.101	0.105
0.5	0.077	0.072	0.076	0.111	0.104	0.110	0.145	0.136	0.142
1.0	0.083	0.078	0.084	0.126	0.119	0.126	0.168	0.160	0.169
1.5	0.088	0.082	0.087	0.130	0.124	0.133	0.178	0.170	0.181
2.0	0.089	0.083	0.089	0.136	0.128	0.137	0.184	0.176	0.188
3.0	0.093	0.086	0.092	0.140	0.132	0.142	0.192	0.183	0.196
5.0	0.100	0.091	0.097	0.147	0.137	0.148	0.201	0.190	0.205
10	0.111	0.098	0.104	0.159	0.145	0.155	0.214	0.200	0.215
20	0.126	0.107	0.115	0.175	0.155	0.166	0.233	0.212	0.228
30	0.145	0.120	0.127	0.197	0.168	0.177	0.253	0.224	0.238
50	0.184	0.147	0.153	0.230	0.190	0.199	0.288	0.247	0.261
100	0.282	0.219	0.227	0.314	0.254	0.265	0.372	0.303	0.317
150	0.370	0.285	0.295	0.415	0.324	0.336	0.461	0.367	0.382

Characteristics of standard types of aerial copper-wire telephone circuits
1000 cycles per second
DP (double petticoat) insulators for all 12 - ond 18 -inch spaced wires.
CS (special glass with steel pin) insulators for all 8-inch spaced wires.

type of circull	$\begin{gathered} \text { gauge } \\ \text { of } \\ \text { wires } \\ \text { mils } \\ \hline \end{gathered}$	spacing of wires inches	primary constants per loop mile				propogation constont				line impedance				length miles	velosity miles per second	aftenuation db per mile
							polar		rectangular		polar		rectangular				
			$\underset{\text { ohms }}{\mathbf{R}}$	$\underset{\text { henries }}{\text { L }}$	$\underset{\mu f^{\prime}}{C}$	$\stackrel{G}{\mu m h o}$	mag-nitude	angle deg \qquad	α	θ	$\begin{aligned} & \text { mag- } \\ & \text { nl- } \\ & \text { lude } \end{aligned}$	angle deg	$\underset{\substack{R \\ \text { ohms }}}{ }$	$\underset{\text { ohms }}{X}$			
Non-pole pair phys	165	8	4.11	. 00311	. 01000	. 11	.0353	83.99	. 00370	. 0351	565	5.88	562	58	179.0	179,000	. 0325
Non-pole poir side	165	12	4.11	. 00337	. 00915	. 29	. 0352	84.36	. 00346	. 0350	612	5.35	610	57	179.5	179,500	. 030
Pole poir side	165	18	4.11	. 00364	. 00883	. 29	. 0355	84.75	. 00325	. 0353	653	5.00	651	57	178.0	178,000	. 028
Non-pole pair phan	165	12	2.06	. 00208	. 01514	. 58	. 0355	85.34	. 00288	. 0354	373	4.30	372	28	177.5	177,500	. 025
Non-pole poir phys	128	8	6.74	. 00327	. 00948	. 11	. 0358	80.85	. 00569	. 0353	603	8.97	596	94	178.0	178,000	. 0505
Non-pole poir side	128	12	6.74	. 00353	. 00871	. 29	. 0356	81.39	. 00533	. 0352	650	8.32	643	94	178.5	178,500	. 047
Pole pair side	128	18	6.74	. 00380	. 00825	. 29	. 0358	81.95	. 00502	. 0355	693	7.72	686	93	177.0	177,000	. 044
Non-pole pair phon	128	12	3.37	. 00216	. 01454	. 58	. 0357	82.84	. 00445	. 0355	401	6.73	398	47	177.0	177,000	. 039
Non-pole pair phys	104	8	10.15	. 00340	. 00908	. 11	. 0367	77.22	. 00811	. 0358	644	12.63	629	141	175.5	175,500	. 072
Non-pole pair side	104	12	10.15	.00366	. 00837	. 29	. 0363	77.93	. 00760	. 0355	692	11.75	677	141	177.0	177,000	. 067
Pole poir side	104	18	10.15	. 00393	. 00797	. 29	. 0365	78.66	. 00718	. 0358	730	10.97	717	139	175.5	175,500	. 063
Non-pole pair phan	104	12	5.08	. 00223	. 01409	. 58	. 0363	79.84	. 00640	. 0357	421	9.70	415	71	176.0	176,000	. 056

Notes: 1. All volues are for dry-weather conditions.
2. All copocitonce values assume a line carrying 40 wires.
3. Resistance values are for temperature of $20^{\circ} \mathrm{C} 168^{\circ} \mathrm{F}$.

Represenfafive values of foll－cable line and propagation constanfs

13，16，and 19 AWG quadded toll cable
Nonloaded
All figures for loop－mile basis Temperofure 55° fahrenheit

freq in ke／s	resistance ohms／mile			Inductonce millihenries／mile			conductance micromhos／mile			capacitance $\mu \mathrm{l} / \mathrm{mile}$	characteristlic impedance ohms			phose shiff radians／mile			affenuation decibals／mile		
	13	16	19	13	16	19	13	16	19	13，16，or 19	13	16	19	13	16	19	13	16	19
0	20.7	41.8	83.8	1.070	1.100	1.112	－	－	－	0.0610			1050－1040	0000					
0.1	20.7	41.8	83.8	1.069	1.100	1.112	0.40	0.25	0.10	0.0610	530－j505	745－7730	1050－j1040	0.020	0.027	0.040	0.17	0.24	0.35
0.5	20.7	41.9	83.9	1.065	1.099	1.112	1.4	0.75	0.40	0.0609	250－j210	345－7315	80－j460	0.050	0.064	0.092	0.36 0.47	0.51	0.77 1.06
1.0	20.8	42.0	84.0	1.060	1.098	1.111	2.5	1.5	1.0	0.0609	195－j140	255－1215	345－j319				0.47		
1.5	20.9	42.1	84.1	1.057	1.097	1.111	3.5	2.0	1.6	0.0608	170－j105	225－j175	290－ 1255	0.100	0.116	0.17	0.53	0.79	1.27
2.0	21.0	42.2	84.2	1.053	1.096	1.110	4.5	2.65	2.35	0.0608	160－ 185	205－j150	255－ 21215	0.120	0.140	0.20	0.58	0.87	1.44
3.0	21.3	42.4	84.3	1，046	1．095	1.110	6.5	4.15	4.05	0.0607	145－ 763	180－j115	217－ 3170	0.170	0.189	0.25	0.63	1.00	1.68
5.0	22.0	43.0	84.5	1.035	1.093	1.109	10.5	7.6	8.0	0.0606	135－j42	155－ 772	182－j120	0.26	0.28	0.35	0.70	1.16	2.03
					1.085	1.105	21.0	18.5	20.0	0.0605	131－ 723	142－ 740	155－ 773	0.50	0.52	0.59	0.80	1.32	2.43
10 20	24.0 29.1	44.5 49.5	85.3 89.0	1.007	1.085 1.066	1.095	21.0 47.0	46.2	50.0	0．0604	128－j15	137－ 225	141－ 741	0.97	1.00	1.07	1.04	1.55	2.77
30	39.5	49.5 55.4	94.0	0.945	1.047	1.085	78.0	80.5	87.5	0.0602	126－j12	135－ 118	137－ 330	1.43	1.48	1.57	1.27	1.78	3.02
50	47.5	67.0	105.5	0.910	1.015	1.065	150.	160.	180.	0.0600	124－ 110	133－ 113	134－$/ 20$	2.34	2.42	2.60	1.75	2.24	3.53
	71.3	91.7	137.0	0.870	0.963	1.017	350.	400.	450.	0.0598	121－ 77.3	130－19	131－j13	4.54	4.71	5.00	2.72	3.31	4.80
150	90.0	111.2	165.0	0.850	0.935	0.980	600.	700.	800.	0.0595	119－88．0	127－ 77	129－ 111	6.73	6.94	7.25	3.60	4.27	6.00
200	－	－	－	－	－	－	－	－	－	－	－	－	－	－	－				7.00 $12 \pm$
500	－	－	－	－	－	－	－	二	－	－			二	－	－	－	－	－	$18 \pm$
1000	－	－	－	－	－	－		－	－										
For $0^{\circ} \mathrm{F}$ ： Increase by Decroase by	9%	9%	9\％	0．5\％	0．5\％	0．5\％	50\％	50\％	50\％	2\％	二	二	－	2\％	2\％	$\overline{\%}$	\％\％	$\%$	9\％
For $110^{\circ} \mathrm{F}$ ： Increase by	8\％	8\％	8\％	0．4\％	0．4\％	0．4\％	50\％\％	$5 \overline{\%}$	50\％	2\％	二	二	二	2\％	2\％	2\％	\％	9\％	9\％

Approximate characteristics of standard types of paper-insulated toll telephone cable circuits

wire gauge AWG	Iype of loading*	spoeing of load calls mites	constonts assumed to be distributed per laop mile				propagation constont				line impedance				length miles	velocity miles per second	cul-off frequency f_{c}	altenuation decibels per mile
							polar		rectangular		polor		rectangulor					
			$\underset{\operatorname{ohm}_{8}^{R}}{ }$	L henries	$\underset{\mu f}{c}$	$\underset{\text { mhe }}{\mathbf{G}}$	inagnitude	$\begin{gathered} \text { angle } \\ \text { deg }+ \end{gathered}$	a	β	magni- tude	$\begin{gathered} \text { angle } \\ \text { deg }- \end{gathered}$	$\begin{gathered} \mathbf{R} \\ \text { ohms } \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{X} \\ \text { ohms } \end{gathered}$				
side circuil																		
19	N.L.S."	F	84.0	0.001	0.061	1.0	0.183	47.0	0.1249	0.134	470	42.8	345	319.4				
19	H.31.S	1.135	B7.2	0.028	0.061	1.0	0.277	76.6	0.0643	0.269	710	42.8 13.2	691	319.4 162.2	46.9 23.3	46900 23300	6700	
19	H.44-S	1.135	88.4	0.039	0.061	1.0	0.319	79.9	0.0561	0.314	818	13.2 9.9	8806	140.8	23.3 20.0	23300 20000	$\begin{aligned} & 6700 \\ & 5700 \end{aligned}$	$\begin{aligned} & 0.56 \\ & 0.49 \end{aligned}$
19	H.88-S	1.135	91.2	0.078	0.061	1.0	0.441	84.6	0.0418	0.439	1131	5.2	1126	102.8	14.3	14300	4000	
19	H.172-S	1.135	96.3	0.151	0.061	1.0	0.610	87.0	0.0323	0.609	1565	2.8	1563	76.9	10.3	10300	2900	0.36 0.28
19	8.88.5	0.568	97.7	0.156	0.061	1.0	0.620	87.0	0.0322	0.619	1590	2.8	1588	76.7	10.2	10200	5700	$\begin{aligned} & 0.28 \\ & 0.28 \end{aligned}$
16	N.L.S.	-	42.1	0.001	0.061	1.5	0.129	49.1	0.0842	0.097	331	40.7						
16	H.31-S	1.135	44.5	0.028	0.061	1.5	0.266	82.8	0.0334	0.264	683	40.7	255 677	215.4 83.0	64.5 23.8	64500 23800	6700	$\begin{aligned} & 0.69 \\ & 0.29 \end{aligned}$
16	H.44-S	1.135	45.7	0.039	0.061	1.5	0.315	84.6	0.0296	0.313	808	5.2	805	72.8	23.8 20.1	238000	6700 5700	$\begin{aligned} & 0.29 \\ & 0.26 \end{aligned}$
16	H-88-S	1.135	48.5	0.078	0.061	1.5	0.438	87.6	0.0224	0.437	1124	2.7	1123	53.1	14.4	14400		
16	H.172.S	1.135	53.6	0.151	0.061	1.5	0.608	88.3	0.0183	0.608	1562	1.5	1562	41.1	10.3	10300	2900	$\begin{aligned} & 0.19 \\ & 0.18 \end{aligned}$
16	B.88-S	0.568	54.9	0.156	0.061	1.5	0.618	88.3	0.0185	0.618	1587	1.5	1587	41.4	10.3 10.2	10300 10200	2900 5700	0.16 0.16
13	N.L.S.	-	20.8	0.001	0.061	2.5	0.094	52.9	0.0568	0.075	242	36.9	195	140.0	83.6	10200 83600	5700	$\begin{aligned} & 0.16 \\ & 0.47 \end{aligned}$
phantom circuit																		
19	N.L.P.	- 13	42.0	0.0007	0.100	1.5	0.165	47.8	0.1106	0.122	262	42.0		175.2	51.5	51500		
19	H.18.P	1.135	43.5	0.017	0.100	1.5	0.270	78.7	0.0529	0.264	429	11.1	421	175.2 82.6	23.8	51500 23800	$7 \overline{000}$	0.96 0.46
19	H-25.P	1.135	44.2	0.023	0.100	1.5	0.308	813	0.0488	0.305	491	8.5	485	72.4	20.6	20600	5900	0.46 0.40
19	H.50.P	1.135	45.7	0.045	0.100	1.5	0.424	85.3	0.0351	0.423	675	4.5	673	53.3	14.9			
19	H-63-P	1.135	47.8	0.056	0.100	1.5	0.472	86.0	0.0331	0.471	752	3.8	750	49.8	13.3	14900 13300	4200 3700	0.30 0.29
19	B-50-P	0.568	49.0	0.089	0.100	1.5	0.594	87.4	0.0273	0.593	945	2.4	944	39.8	10.6	10600	5900	0.24
16	N.L.P.	-	21.0	0.0007	0.100	2.4	0.116	50.0	0.0746	0.089	185	39.0	144	116.3				
16	H.18-9	1.135	22.2	0.017	0.100	2.4	0.262	84.0	0.0273	0.260	417	5.8	415	11.8 41.8	24.1	24100	7000	0.65 0.24
16	H.25.9	1.135	22.8	0.023	0.100	2.4	0.303	85.4	0.0243	0.302	483	4.4	481	36.8	20.8	20800	5900	0.21
16	H.50-P	1.135	24.3	0.045	0.100	2.4	0.422	87.4	0.0189	0.422	672	2.4	672	27.5				
16	H.63-P	1.135	26.4	0.056	0.100	2.4	0.471	87.7	0.0185	0.471	749	2.0	749	27.6	14.9 13.4	14900 13400	4200 3700	0.16 0.16
16	B. $50-\mathrm{P}$	0.568	27.5	0.089	0.100	2.4	0.593	88.5	0.0157	0.593	944	1.3	944	21.4	10.6	10600	3700 5900	0.16 0.14
13	N.l.P.	-	10.4	0.0007	0.100	2.4	0.086	55.1	0.0442	0.071	137	33.9	114	76.3	89.1	89100	5	0.43
physical circuit																		
16	B. 22	0.5681	43.1	0.040 I	0.061	1.5	0.315	85.0	0.0273 \|	0.314	809	4.8 ।	806	67.1	20.0	20000	11300	0.24

* The letters H and B indicate loading-coil spacings of 6000 and 3000 feet, respectively.

Approximate characteristics of standard types of paper-insulated exchange telephone cable circuits

wire gauge AWG	code no	```type of looding```	loop mile constanis		propagalion constant				mid-section characteristlc impedonce				wove Jengith miles	1000 cycles per second			
					```velocity miles per second```	cut--命 freq	atfen   db   per   mile										
			$\mathbf{C}$$\mu f$	$G$ $\mu \mathrm{mh}$ o				polor		rectangular		polar		rectangular			
								mag	angle deg	$\alpha$	$\beta$	mog		angle deg	$\mathbf{Z}_{01}$	$Z_{02}$	
26	$\begin{array}{r} \hline \text { BST } \\ \text { ST } \end{array}$	$\begin{aligned} & \mathrm{NL} \\ & \mathrm{NL} \end{aligned}$	$\begin{aligned} & .083 \\ & .069 \end{aligned}$	$\begin{aligned} & 1.6 \\ & 1.6 \end{aligned}$	. 439	- 45.30	. 307	. 310	910 1007	- 44.5	719	706		- 20.4	20,400	-	$\begin{aligned} & 2.9 \\ & 2.67 \end{aligned}$
24	DSM ASM	NL	.085 .075	1.9 1.9	. 355	45.53	. 247	251	725	44.2				20,400	-	2.67 2.3	
		M88	. 075	1.9	. 448	70.25	.247 .151	. 421	778 987	44.2 23.7	558 904	543 396	25.0 14.9	25,000 14,900	- 3100	2.15	
		H88	. 075	1.9	. 512	75.28	. 130	. 495	1160	14.6	1122	292	14.9	14,900 12,700	3100 3700	1.31 1.13	
		B88	. 075	1.9	. 684	81.70	. 099	. 677	1532	8.1	1515	215	12.7 9.3	12,700 9,270	3700 5300	1.13 0.86	
22	CSA	NL	. 083	2.1	. 297	45.92	. 207	. 213	576	43.8	416	399	29.4	29,400	-	1.80	
		M88	. 083	2.1	. 447	76.27	. 106	. 434	905	13.7	880	214	14.5	14,500	2900	0.92	
		H88	. 083	2.1	. 526	80.11	. 0904	. 519	1051	9.7	1040	177	12.1	12,100	3500	0.79	
		H135	. 083	2.1	. 644	83.50	. 0729	. 640	1306	6.3	1300	144	9.8	9,800	2800	0.63	
		B88	. 083	2.1	. 718	84.50	. 0689	. 718	1420	5.3	1410	130	8.75	8,800 8,750	2800 5000	0.63 0.60	
		B135	. 083	2.1	. 890	86.50	. 0549	. 890	1765	3.3	1770	102	7.05	7,050	4000	0.48	
19	$\mathrm{CNB}$	NL	. 085	1.6	-		-	-	400	3.3	,	-	.	-	4000	1.23	
	DNB	NL	. 066	1.6	. 188	47.00	. 128	. 138	453	42.8	333	308	45.7	45,700	-	1.12	
		M88	. 066	1.6	. 383	82.42	. 0505	. 380	950	8.9	939	146	16.6	16,600	3200	1.12 0.44	
		H88	. 066	1.6	. 459	84.60	. 0432	. 459	1137	5.2	1130	103	13.7	13,700	3900	0.44 0.38	
		H135	. 066	1.6	. 569	88.53	. 0345	. 570	1413	4.0	1410	99	11.0	11,000	3200	0.30	
		H175	. 066	1.6	. 651	87.23	. 0315	. 651	1643	3.3	1640	95	9.7	9,700	2800	0.27	
		B88	. 066	1.6	. 641	86.94	. 0342	. 641	1565	2.8	1560	77	9.8	9,800	5500	0.37	
16	NH	NL	. 064	1.5	.133	49.10	. 0868	. 1004	320	40.6	243	208	62.6	62,600	SS00	0.76	
		M88	. 064	1.5	. 377	85.88	. 0271	. 377	937	4.6	934	76	16.7	16,700	3200	0.24	
		H88	. 064	1.5	. 458	87.14	. 0238	. 458	1130	2.8	1130	55	13.7	13,700	3900	0.21	

In the third column of the above table the letters $\mathrm{M}, \mathrm{H}$, and B indicate loading-coil spocings of 9000 faet, 6000 feet, and 3000 teet, respectively, and the figures show the

## Representative values of line and propagation constants of miscellaneous cables

## All figures for loop-mile basis

## Nonloaded

Temperafure $55^{\circ}$ fahrenheit
16-gauge spiral-four (disc-insulated) foll-entrance cable

$\begin{gathered} \text { freq } \\ \text { in } \\ \mathbf{k e} / \mathrm{s} \end{gathered}$	resistance ohms/mile	inductence mh/mile	conduclance $\mu \mathrm{mhos} / \mathrm{mile}$	capacilance $\mu \mathrm{f} / \mathrm{mile}$	$\text { \|characteristle } \begin{gathered} \text { impedence } \\ \text { ohms } \end{gathered}$	phase shifi radians/ mile	attenuation db/mile
0.1	42.4	2.00	0.042	0.02491	-	0.024	0.18
0.5	42.9	1.98	0.053	0.02491	540-j460	0.045	0.32
1.0	43.4	1.94	0.074	0.02491	428-j324	0.067	0.44
1.5	43.9	1.89	0.102	0.02491	380-j275	0.085	0.49
2.0	44.4	1.82	0.127	0.02491	350-j230	0.101	0.55
3.0	45.5	1.74	0.186	0.02490	307-j157	0.145	0.64
5.0	47.5	1.64	0.320	0.02490	279-j107	0.218	0.74
10	50.8	1.56	0.72	0.02489	258-j63	0.405	0.85
20	56.9	1.53	1.95	0.02488	226-j36	0.78	0.99
30	63.0	1.52	3.54	0.02488	248-j26	1.15	1.10
50	73.0	1.51	7.1	0.02488	245-j19	1.90	1.31
100	94.8	1.46	16.9	0.02488	243-j13	3.80	1.71
150	113.5	1.44	27.1	0.02488	240-j10	5.65	2.08
200	130.0	1.43	38.0	0.02487	-	-	2.35

22 AWG emergency cable

side:   0 1	166	$\stackrel{1.00}{\sim}$	1.3	0.063	468-j449	-	$\overline{1.53}$
phant:							
0	83	0.69	2.1	0.100	-	-	$\overline{1.37}$

19 AWG CL emergoncy cable

side: $\text { dry } 0$	92	1.39	negligible	-	-	-	-
wet 0	92	1.39	negligible	-	-	-	-
dry 1	-	-	negligible	0.110	272-j244	-	1.48
wel 1	-	-	negligible	0.14	239-j214	-	1.69
phant:							
dry 0	46	0.5	negligible	-	-	-	-
wet 0	46	0.5	negligible	-	-	-	-
dry 1	-	-	negligiblo	0.25	124-j116	-	1.58
wet 1	-	-	negligible	0.28	117-j109	-	1.69

Telephone transmission-line data conlinued

## Coaxiol cable 0.27 -inch diam (New York-Philadelphio 1936 type)

Temperature $68^{\circ}$ fahrenhelt

freq In ke/s	resistonce ohms/mile	inductance mh/mile	conductonce $\mu$ mhos/mile	capacitonce mf/mile	chapacteristic impedance ahms	phase shift radians/ mile	ottenuation db/mile
50	24	0.48	23	0.0773	78.5	-	1.3
100	32	0.47	46	0.0773	78	-	1.9
300	56	0.445	156	0.0772	76	$\square$	3.2
1000	100土	0.43	570	0.0771	74.5	-	6.1

Coaxial cable 0.27 -inch diom (Stevens Point-Minneapolis type)
Temperoture $68^{\circ}$ fohrenheit

10	-	-	-	-	-	-	0.75
30	-	-	-	-	-	-	0.92 1.10
50	-	-	-	-	79-j6	-	1.38
100	-	-	-	-	77.8-j4	-	1.70
300	-	-	-	-	76.1-j2	-	3.00
1000	-	-	-	-	75-j1.3	-	5.6
3000	-	-	-	- -	74.5-j1.1	-	10
10000	-	-	-	-	-	-	18

Cooxial cable 0.375 -inch diam (Palyethylene discs)

10	-	-	-	-	-	-	0.53
20	-	-	-	-	-	-	0.65
30	-	-	-	-	-	-	0.72
50	-	-	-	-	$50 \pm$	-	0.90
100	-	-	-	-	-	-	1.18
300	-	-	-	-	-	-	2.1
1000	-	-	-	-	-	-	4.0
3000	-	-	-	-	-	-	7
10000	-	-	-	-	-	-	13

## 500

## Carrier sysfems

Frequency allocafions for open-wire carrier systems


[^51]
## Carrier systems continued



## Notes:

Solid arrows = carrier frequencies Dotted arrows $=$ pilot frequencies
$\uparrow=$ eost-west or $A-B$ direction
$\downarrow=$ west-east or B-A direction
 = channel No. 1
$S=$ signalling frequency

* Carrier frequencies of the 6 channels in each af the 4 telegraph bands represented by A, B, C, and D for STOA-3/6 and STOB-3/6 on p. 500 are as follows:

A	B	C	D
6.54 kc	16.63 kc	19.27 kc	29.36 kc
6.66	16.75	19.39	29.48
6.78	16.87	19.51	29.60
6.90	16.99	19.63	29.72
7.02	17.11	19.75	29.84
7.14	17.23	19.87	29.96

$\dagger$ Manufacture disconfinued.
$\ddagger$ See p. 500 under "Carrier telephone."

Frequency allocations for 12-channel open-wire and 12- or 24-channel cable-carrier systems


Carriers spaced 4 kilacycles apart.
Sidebands include speech from 200 ta 3300 cycles.
Frequencies shown are line frequencies abtained by two or more stages of madulatian.
Solid arrows $=$ carrier frequencies
Dotted arraws $=$ pilal frequencies
$\uparrow=$ east-west or $A-B$ direction
$\downarrow=$ west-east or $B-A$ direction
Channel numbers are shown at the base of each arrow. STC $=$ Standard Telephones and Cables, Limited WECa = Western Electric Campany

## Frequency allocations and modulation steps for coaxial-cable carrier systems



## 504

## Telephone noise and noise measurement

## Definitions

The following definitions are based upon those given in the Proceedings of the tenth Plenary Meeting (1934) of the Comite Consultatif International Téléphonique (C.C.I.F.).

Note: The unit in which noise is expressed in many of the European countries differs from the two American standards, the noise unit and the db above reference noise. The European unit is referred to as the psophometric electromotive force.

Noise: Is a sound which tends to interfere with a correct perception of vocal sounds, desired to be heard in the course of a telephone conversation.

It is customary to distinguish between:
Room noise: Present in that part of the room where the telephone apparatus is used.

Frying noise (transmitter noise): Produced by the microphone, manifest even when conversation is not taking place.

Line noise: All noise electrically transmitted by the circuit, other than room noise and frying noise.

## Psophometric electromotive force

In the case of a complete telephone connection the interference with a telephone conversation produced by extraneous currents may be compared with the interference which would be caused by a parasitic sinusoidal current of 800 cycles per second. The strength of the latter current, when the interference is the same in both cases, can be determined.

If the receiver used has a resistance of 600 ohms and a negligible reactance (if necessary it should be connected through a suitable transformer), the psophometric electromotive force at the end of a circuit is defined as twice the voltage at 800 cycles per second, measured at the terminals of the receiver under the conditions described.

The psophometric electromotive force is therefore the electromotive force of a source having an internal resistance of 600 ohms and zero internal reactance which, when connected directly to a standard receiver of 600 ohms resistance and zero reactance, produces the same sinusoidal current at 800 cycles per second as in the case with the arrangements indicated above.

An instrument known as the psophometer has been designed. When connected directly across the terminals of the 600 -ohm receiver, it gives a reading of
half of the psophometric electromotive force for the particular case considered.
In a general way, the term psophometric voltage between any two points refers to the reading on the instrument when connected to these two points.
If, instead of a complete connection, only a section thereof is under consideration, the psophometric electromotive force with respect to the end of that section is defined as twice the psophometric voltage measured at the terminals of a pure resistance of 600 ohms, connected at the end of the section, if necessary through a suitable transformer.
The C. C. I. F. has published a specification for a psophometer which is included in Volume II of the Proceedings of the Tenth Plenary Meeting in 1934. An important part of this psophometer is a filter network associated with the measuring circuit whose function is to weight each frequency in accordance with its interference value relative to a frequency of 800 cycles.

## Noise levels

The amount of noise found on different circuits, and even on the same circuit at different times, varies through quite wide limits. Further, there is no definite agreement as to what constitutes a quiet circuit, a noisy circuit, etc. The following values should therefore be regarded merely as a rough indication of the general levels that may be encountered under the different conditions

Open-wire circuit	db above   ref noise
Quiet	20
Average	35
Noisy	50
Cable circuit	
Quiet	15
Average	25
Noisy	40

## Relationship of European and American noise units

The psophometric emf can be related to the American units: the noise unit and the decibel above reference noise.
The following chart shows this relationship together with correction factors for psophometric measurements on circuits of impedance other than 600 phms.

## Relationship of European and American units



## Telegraph facilifies

## Signaling speeds and pulse lengths

The graph below shows the speeds of various telegraph systems. The American Morse curve is based on an average character of 8.5 units determined from actual count of representative traffic. The Continental Morse curve similarly on 9 units, and the Cable Morse on 3.7 units.

systern	speed of usual lypes	
	frequency in cycles	bauds
Grounded wire	75	150
Simplex Itelephonel	50	100
Composite	15	30
Mepallic telegroph	85	170
Carrier channal		
Norrow band Wide band	40 75	80 150



Fead holes: For Morse, (number feed holes/second) = (number cycles/second) for multiplex and teleprinter, (rumber feed holes/second) $=($ words $/$ minute $) / 10$

## 508

Telegraph facilities continued
Comparison of telegraph codes in current and recent use
Morse codes outomatic tronsmission

Americon Morse	
Continental and Creed Morse	
Coble Morse	$\text { p }{ }_{\text {pinen }}^{\text {a }}$

Synchronous printer codes

Baudof*

	0 a, i i
RCA error-proof	1

Start-stop printer codes

Creed and teletype (7-unil)

Creed and telelype ( $71 / 2$-unit)


## Morkrum



IBM (Globe Wireless)


[^52]Electroacoustics

## Theory of sound waves*

Sound lor a sound wavel is an alteration in pressure, stress, particle displacement, or particle velocity that is propagated in an elastic material; or the superposition of such propagated alterations. Sound lor sound sensationl is also the sensation produced through the ear by the above alterations.

## Wave equation

The behavior of sound waves is given by the wave equation
$\nabla^{2} p=\frac{1}{c^{2}} \frac{\partial^{2} p}{\partial t^{2}}$
where $p$ is the instantaneous pressure increment above and below a steady pressure (dynes/centimeter ${ }^{2}$ ) $p$ is a function of time and of the three coordinates of space. Also,

$$
t=\text { time in seconds }
$$

$c=$ velocity of propagation in centimeters/second
$\nabla^{\mathbf{2}}=$ the Laplacian, which for the particular case of rectangular coordinates $x, y$, and $z$ lin centimeters), is given by
$\nabla^{2} \equiv \frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}}+\frac{\partial^{2}}{\partial z^{2}}$

For a plane wave of sound, where variations with respect to $y$ and $z$ are zero, $\nabla^{2} p=\partial^{2} p / \partial x^{2}=d^{2} p / d x^{2}$; the latter is approximately equal to the curvature of the curve showing $p$ versus $x$ at some instant. Equation (I) states simply that, for variations in $x$ only, the acceleration in pressure $p$ (the second time derivative of $p$ ) is proportional to the curvature in $p$ (the second space derivative of pl.

For a gas las airl, the velocity of propagation $c$ is related to other parameters of the medium by the equation
$c=\sqrt{\gamma p_{0} / \rho_{0}}$

[^53]
## 510

## Theory of sound waves continued

where
$\boldsymbol{\gamma}=$ ratio of the specific heat at constant pressure to that at constant volume
$\mathrm{p}_{0}=$ the steady pressure of the gas in dynes/centimeter ${ }^{2}$
$\rho_{0}=$ the steady or average density of the gas in grams/centimeter ${ }^{3}$

The range of variation of these parameters is given in Fig. 1 for typical substances at standard conditions $\mathbf{( 2 0}$ degrees centigrade, 760 millimeters of mercury).

Fig. 1-Table of sound-propegation parameters in various substances.

substance	density po grams/centimeter ${ }^{3}$	velocity of propagotion e centimeters/second	characteristic acoustic resistance poc groms/centimeter ${ }^{2}$ /second
Air	0.00121	34,400	41.6
Hydrogen	0.00009	127,000	11.4
Carbon dioxide	0.0020	25,800	51.3
Salt water	1.03	150,400	155,000
Morcury	13.5	140,000	1,900,000
Hard rubber	1.1	140,000	150,000
Hard glass	2.4	600,000	1,440,000

Sinusoidal variations in time are usually of interest. For this case the usual procedure is to put $p=$ (real part of $\bar{p} \epsilon^{j \omega t_{i}}$, where $\bar{p}$ now satisfies the equa. tion
$\nabla^{2} \bar{\rho}+(\omega / c)^{2} \bar{p}=0$

The vector complex velocity $\bar{v}$ of the sound wave in the medium is related to the complex pressure $\bar{p}$ by the formula
$\bar{v}=-\left(1 / j \omega \rho_{0}\right) \operatorname{grad} \bar{p}$

The specific acoustical impedance $\bar{Z}$ at any point in the medium is the ratio of the complex pressure to the complex velocity, or
$\bar{Z}=\bar{p} / \bar{v}$

The solutions of (1) and (4) take particularly simple and instructive forms for the case of one dimensional plane and spherical waves in one direction. Fig. 2 gives a summary of the pertinent information.

For example, the acoustical impedance for spherical waves has an equivalent electrical circuit comprising a resistance shunted by an inductance. In this

Theory of sound waves continued

Fig. 2-Table of solutions for various parameters.

foctor	type of sound wove	
	plane wove	spherical wave
Equation forp	$\frac{\partial^{2} p}{\partial x^{2}}=\frac{1}{c^{3}} \frac{\partial^{2} p}{\partial t^{2}}$	$\frac{\partial^{2} p}{\partial x^{2}}+\frac{2}{r} \frac{\partial p}{\partial r}=\frac{1}{c^{2}} \frac{\partial^{2} p}{\partial t^{2}}$
Equation for $\bar{\rho}$	$\frac{d^{2} \bar{p}}{d x^{2}}+\left(\frac{\omega}{c}\right)^{2} \bar{p}=0$	$\frac{d^{2} \bar{p}}{d x^{2}}+\frac{2}{r} \frac{d \bar{p}}{d t}+\left(\frac{\omega}{c}\right)^{2} \bar{p}=0$
Solution for p	$p=F\left(1-\frac{x}{c}\right)$	$p=\frac{1}{r} f\left(t-\frac{x}{c}\right)$
Solution for $\overline{\bar{p}}$	$\bar{p}=\bar{A}^{-i \omega t / c}$	$\bar{\rho}=\frac{1}{r} \bar{A}^{-j \omega r / \epsilon}$
Solution for $\bar{v}$	$\bar{v}=\frac{\bar{A}}{\rho_{0} C} \epsilon^{-j_{\omega} x / e}$	$\bar{v}=\frac{\bar{A}}{\rho_{0} c r}\left(1+\frac{c}{j \omega r}\right) e^{-i \omega r / e}$
$\bar{Z}$	$\bar{z}=\rho_{0} \mathrm{C}$	$\bar{Z}=\rho_{0 c} /\left(1+\frac{c}{f \omega r}\right)$
Equivalent olectrical circuit for $\overline{\mathbf{Z}}$		

where
$p=$ excess pressure in dynes/centimeter ${ }^{2}$
$\bar{p}=$ complex excess pressure in
dynes/centimeter ${ }^{2}$
$t=$ time in seconds
$x=$ space coordinate for plane wave in
contimeters
$r=$ space coordinate for spherical wave in
centimeters
$\bar{v}=$ complex volocity in contimoters/second
$\bar{Z}=$ specific acoustic impedance in dyne-
seconds/centimeter ${ }^{2}$
$c=$ velocity of propagation in centimeters/
second
$\omega=2 \pi f_{;} f=$ frequency in cycles, second
$F=$ an arbitrary function
$\overline{\mathrm{A}}=$ complex constant
$\rho_{0}=$ density of medium in grams/centimet or ${ }^{2}$
form, it is obvious that a small spherical source $(r$ is small) cannot radiate efficiently since the radiation resistance $\rho_{0} c$ is shunted by a small inductance $\rho_{0}$. Efficient radiation begins approximately at the frequency where the resistance $\rho_{0}$ r equals the inductive (mass) reactance $\rho_{0} c$. This is the frequency at which the period ( $=1 / f$ ) equals the time required for the sound wave to travel the peripheral distance $2 \pi$ r.

## Sound infensity

The sound intensity is the average rate of sound energy transmitted in a specified direction through a unit area normal to this direction at the point considered. In the case of a plane or spherical wave, the intensity in the direction of propagation is given by
$I=p^{2} / \rho c \quad$ ergs/second/centimeter ${ }^{2}$
where
$p=$ pressure (dynes/centimeter ${ }^{2}$ )
$\rho=$ density of the medium (grams/centimeter ${ }^{3}$ ) and
$c=$ velocity of propagation (centimeters/second)
The sound intensity is usually measured in decibels, in which case it is known as the intensity level and is equal to 10 times the logarithm to the base 10 ) of the ratio of the sound intensity lexpressed in watts/cen. timeter ${ }^{2}$ ) to the reference level of $10^{-16}$ watts/centimeter ${ }^{2}$. Fig. 3 shows the intensity levels of some familiar sounds.

## Acoustical and mechanical networks

## and their electrical analogs*

The present advanced state of the art of electrical network theory suggests its advantageous application, by analogy, to equivalent acoustical and mechanical networks. Actually, Maxwell's initial work on electrical networks was based upon the previous work of LaGrange in dynamical systems. The following is a brief summary showing some of the network parameters available in acoustical and mechanical systems and their analysis using LaGrange's equations.
Fig. 4 shows the analogous behavior of electrical, acoustical, and mechanical systems. These are analogous in the sense that the equations lusually differential equationsl formulating the various physical laws are alike.

[^54]
## Acoustical and mechanical networks

and their electrical analogs cantinued

Fig. 3-Table of intensity levels.
$\left.\begin{array}{l|c|c|c|c|c}\text { peok-to-peak } \\ \text { particle }\end{array}\right\}$

## Acoustical and mechanical neiworks

## and their electrical analogs confinued

Fig. 4A-Table of analogous behavior of systems-parameter of energy dissipation (or radiation).

electrical	mechonical	ocoustical
current in wire	viscous damping vane	gas flow in small pipe
$P=R i^{2}$ $i=\frac{e}{R}=\frac{d q}{d t}=\dot{q}$ $R=\frac{\rho l}{A}$	$\begin{aligned} P & =R_{m} v^{2} \\ v & =\frac{1}{R_{m}}=\frac{d x}{d t}=\dot{x} \\ R_{m} & =\frac{\mu A}{h} \end{aligned}$	$\begin{aligned} P & =R_{a} \dot{X}^{2} \\ \dot{X} & =\frac{\rho}{R_{a}}=\frac{d X}{d f} \\ R_{a} & =\frac{8 \mu \pi I}{A^{2}} \end{aligned}$
where   $i=$ current in amperes   $e=$ volfage in volts   $\mathrm{q}=$ charge in coulombs   $t=$ time in seconds   $R=$ resistance in ohms   $\rho=$ resistivity in ohm-centimoters   $1=$ length in centimeters   $A=$ cross-sectional area of wire in centimeters ${ }^{2}$   $P=$ power in watts	where   $v=$ velocity in centimeters/ second   $f=$ force in dynes   $x=$ displacement in centimeters   $1=$ time in seconds   $R_{m}=$ mechanical resistance in dyne-seconds/centimeter   $\mu=$ coofficiont of viscosity in poise   $h=$ hoight of damping vane in centimeters   $A=$ orea of vane in centimoters ${ }^{2}$   $P=$ power in ergs/second	where   $\dot{x}=$ volume velocity in cen. timelars ${ }^{3} /$ second   $p=$ excess pressure in dynes/ centimeter ${ }^{2}$   $X=$ volume displacement in centimeters ${ }^{3}$   $f=$ Hime in seconds   $R_{a}=$ acoustic resistance in dyne-seconds/centimeter ${ }^{5}$   $\mu=$ coofficiont of viscosily in poise   $t=$ length of tube in centimeters   $A=$ area of circular tube in centimeters ${ }^{2}$   $P=$ power in ergs/second

## Acoustical and mechanical networks

and their electrical analogs cantinued

Fig. 4B-Table of onalogous behovior of systems-parameter of energy sloroge (electrostatic or potential energy).

electrical	mechanical	acoustical
capacitor with closely spaced platos	clamped-free (cantilever beam)	piston acoustic compliance (at audio frequencies, adiabalic expansion)
$\begin{aligned} W_{e} & =\frac{q^{2}}{2 C}=\frac{S q^{2}}{2} \\ q & =C e=\frac{e}{S} \\ C & =\frac{k A}{36 \pi d} \times 10^{-11} \end{aligned}$	$\begin{aligned} V & =\frac{x^{2}}{2 C_{m}}=\frac{S_{m} x^{2}}{2} \\ x & =C_{m} f=\frac{f}{S_{m}} \\ C_{m} & =\frac{l^{3}}{3 E I} \end{aligned}$	$\begin{aligned} V & =\frac{X^{2}}{2 C_{a}}=\frac{S_{a} X^{2}}{2} \\ X & =C_{a} P=\frac{\rho}{S_{a}}=X A \\ C_{a} & =\frac{V_{0}}{G^{Q} \rho} \end{aligned}$
where   C = capacitance in farads   $S=$ stifiness $=1 / C$   $W_{e}=$ energy in watt-sec. onds   $k=$ relative dielectric constant 1=1 for air, numeric)   $A=$ area of plates in centimeters ${ }^{2}$   $d=$ separation of plates in centimoters	where   $\mathrm{C}_{\mathrm{m}}=$ mechanical compliance in centimaters/dyne   $S_{m}=$ mechanical stiffness $=1 / C_{m}$   $V=$ potential onergy in orgs   $E=$ Young's modulus of elasticity in dynes/ centimeter ${ }^{2}$   $I=$ moment of inertia of cross-section in centimoters ${ }^{4}$   $1=$ length of beam in cenmoters	where   $\mathrm{C}_{a}=$ acoustical compliance in centimoters ${ }^{\text {b }} /$ dyno   $S_{a}=$ acoustical stiffness $=1 / C_{a}$   $\mathbf{V}=$ potential energy in orgs   $c=$ valocity of sound in onclosed gas in contimeters/second   $\rho=$ density of enclosed gas in grams/centimeter ${ }^{3}$   $V_{0}=$ enclosed volume in cen$\dagger$ imotors ${ }^{3}$   $A=$ area of piston in centimotors ${ }^{2}$

## Acoustical and mechanical networks

## and their electrical analogs continued

Fig. 4C-Table of analogous behavior of systems-parameter of onergy storage (magnetostatic or kinetic energy).

electrical	mochanical	acoustical
for a very long solenoid	for translatianal motion in one direction m is the actual weight in grams	gas flow in a pipa
$\begin{aligned} W_{m} & =\frac{L i^{2}}{2} \\ e & =L \frac{d i}{d t}=L \frac{d^{2} q}{d L^{2}}=L \ddot{q} \\ L & =4 \pi \ln ^{2} A k \times 10^{-9} \end{aligned}$	$\begin{aligned} & T=\frac{m v^{2}}{2} \\ & f=m \frac{d v}{d t}=m \frac{d^{2} x}{d t^{2}}=m \ddot{x} \end{aligned}$	$\begin{aligned} & T=\frac{M \dot{X^{2}}}{2} \\ & \rho=M \frac{d \dot{X}}{d t}=M \frac{d^{2} X}{d t^{2}}=M \ddot{X} \\ & M=\frac{\rho l}{A} \end{aligned}$
where   $L=$ inductance in henries	where $m=\text { mass in grams }$	where   $M=$ inertance in grams/centimoter ${ }^{4}$
$W_{m}=\begin{gathered}\text { energy } \\ \text { onds }\end{gathered}$   $1=$ length of solenoid in centimeters	$T=$ kinatic energy in ergs	$T=$ kinetic energy in ergs   $I=$ length of pipe in centimeters
$A=$ area of solenoid in centimeters ${ }^{2}$   $n=$ number of turns of wire/centimeter		$\begin{gathered} A=\underset{\substack{\text { meters }^{2}}}{ } \begin{array}{c} \text { of pipe in centi- } \\ \rho=\underset{\text { density of gas in grams/ }}{\text { centimetor }} \text { 3 } \end{array} \end{gathered}$
$k=$ relative permeability of core $\mathrm{l}=1$ for air, numeric)		

## Acoustical and mechanical networks

and their electrical analogs

## LaGrange's equations

The LaGrangian equations are partial differential equations describing the stored and dissipated energy and the generalized coordinates of the system. They are
$\frac{d}{d t}\left(\frac{\partial T}{\partial \dot{q}_{v}}\right)+\frac{\partial F}{\partial \dot{q}_{v}}+\frac{\partial V}{\partial \mathrm{q}_{v}}=\mathrm{Q}_{\nu,} \nu=1,2, \ldots, n$,
where $T$ and $V$ are, as in Fig. 4, the system's total kinetic and potential energy lin ergs), $F$ is $\frac{1}{2}$ the rate of energy dissipation (in ergs/second, Rayleigh's dissipation function), $Q_{v}$ the generalized forces (dynes), and $q_{v}$ the generalized coordinates (which may be angles in radians, or displacements in centimeters). For most systems land those considered herein) the generalized coordinates are equal in number to the number of degrees of freedom in the systems required to determine uniquely the values of $T, V$, and $F$.

## Example

As an example of the application of these equations toward the design of electroacoustical transducers, consider the idealized crystal microphone in Fig. 5.
This system has 2 degrees of freedom since only 2 motions, namely the diaphragm displacement $x_{d}$ and the crystal displacement $x_{c}$, are needed to specify the system's total energy and dissipation.
A sound wave impinging upon the microphone's diaphragm creates an excess pressure p ldynes/centimeter ${ }^{2}$ ). The force on the diaphragm is then pA (dynes), where $A$ is the effective area of the diaphragm. The diaphragm has


Fig. 5-Crysial micraphone analyzed by use of LaGrange's equations.

## Acoustical and mechanical networks

## and their electrical analogs continued

an effective mass $m_{d}$, in the sense that the kinetic energy of all the parts associated with the diaphragm velocity $\dot{x}_{d}\left(=d x_{d} / d t\right)$ is given by $m_{d} \dot{x}_{d}^{2} / 2$. The diaphragm is supported in place by the stiffness $S_{d}$. It is coupled to the crystal via the stiffness $S_{o}$. The crystal has a stiffness $S_{c}$, an effective mass of $m_{c}$ (to be computed below), and is damped by the mechanical resistance $R_{c}$. The only other remaining parameter is the acoustical stiffness $S_{a}$ introduced by compression of the air-tight pocket enclosed by the diaphragm and the case of the microphone.
The total potential energy $V$ stored in the system for displacements $x_{d}$ and $x_{c}$ from equilibrium position, is
$V=\frac{1}{2} S_{d} x_{d}^{2}+\frac{1}{2} S_{a}\left(x_{d} A\right)^{2}+\frac{1}{2} S_{c} x_{c}^{2}+\frac{1}{2} S_{o}\left(x_{d}-x_{c}\right)^{2}$
The total kinetic energy $T$ due to velocities $\dot{x}_{d}$ and $x_{c}$ is
$T=\frac{1}{2} m_{c} \dot{x}_{c}^{2}+\frac{1}{2} m_{d} \dot{x}_{d}^{2}$
This neglects the small kinetic energy due to motion of the air and that due to the motion of the spring $S_{0}$ l. If the total weight of the unclamped part of the crystal is $w_{c}$ (grams), one can find the effective mass $m_{c}$ of the crystal as soon as some assumption is made as to movement of the rest of the crystal when its end moves with velocity $\dot{x}_{c}$. Actually, the crystal is like a transmission line and has an infinite number of degrees of freedom. Practically, the crystal is usually designed so that its first resonant frequency is the highest passed by the microphone. In that case, the end of the crystal moves in phase with the rest, and in a manner that, for simplicity, is here taken as parabolically. Thus it is assumed that an element of the crystal located $y$ centimeters away from its clamped end moves by the amount $(y / h)^{2} x_{c}$, where $h$ is the length of the crystal. The kinetic energy of a length $d y$ of the crystal due to its velocity of $(y / h)^{2} \dot{x}_{c}$ and its mass of $(d y / h) w_{c}$ is $\left.\frac{1}{2}(d y / h) w_{c} l y / h\right)^{4} \dot{x}_{c}{ }^{2}$. The kinetic energy of the whole crystal is the integral of the latter expression as $y$ varies from 0 to $h$. The result is $\frac{1}{2}\left(w_{c} / 5\right) \dot{x}_{c}{ }^{2}$. This shows at once that the effective mass of the crystal is $m_{c}=w_{c} / 5$, i.e., $\frac{1}{8}$ its actual weight.

The dissipation function is $F=\frac{1}{2} R_{c} \dot{x}_{c}{ }^{2}$. Finally, the driving force associated with displacement $x_{d}$ of the diaphragm is pA . Substitution of these expressions and (8) and (9) in LaGrange's equations (7) results in the force equations

$$
\left.\begin{array}{l}
m_{d} \ddot{x}_{d}+S_{d} x_{d}+S_{o} A^{2} x_{d}+S_{o}\left(x_{d}-x_{c}\right)=p A  \tag{10}\\
m_{c} \ddot{x}_{c}+S_{o}\left(x_{c}-x_{d}\right)+R_{c} \dot{x}_{c}=0
\end{array}\right\}
$$

These are the mechanical version of Kirchhoff's law that the sum of all the resisting forces (rather than voltages) are equal to the applied force. The

# ELECTROACOUSTICS <br> 519 

## Acoustical and mechanical networks

and their electrical analogs continued
equivalent electrical circuit giving these same differential equations is shown in Fig. 5. The crystal produces, by its piezoelectric effect, an open-circuit voltage proportional to the displacement $x_{c}$. By means of this equivalent circuit, it is now easy, by using the usual electrical-circuit techniques, to find the voltage generated by this microphone per unit of sound-pressure input, and also its amplitude- and phase-response characteristic as a function of frequency.
It is important to note that this process of analysis not only results in the equivalent electrical circuit, but also determines the effective values of the parameters in that circuit.

## Sound in enclosed rooms*

## Good acoustics-governing factors

Reverberation time or amount of reverberation: Varies with frequency and is measured by the time required for a sound, when suddenly interrupted, to die away or decay to a level 60 decibels (db) below the original sound.

The reverberation time and the shape of the reverberation-time/frequency curve can be controlled by selecting the proper amounts and varieties of sound-absorbent materials and by the methods of application. Room occupants must be considered inasmuch as each person present contributes a fairly definite amount of sound absorption.
Standing sound waves: Resonant conditions in sound studios cause standing waves by reflections from opposing parallel surfaces, such as ceilingfloor and parallel walls, resulting in serious peaks in the reverberation-time/ frequency curve. Standing sound waves in a room can be considered comparable to standing electrical waves in an improperly terminated transmission line where the transmitted power is not fully absorbed by the load.

## Room sizes and proportions for good acoustics

The frequency of standing waves is dependent on room sizes: frequency decreases with increase of distances between walls and between floor and ceiling. In rooms with two equal dimensions, the two sets of standing waves occur at the same frequency with resultant increase of reverberation time at resonant frequency. In a room with walls and ceilings of cubical contour this effect is tripled and elimination of standing waves is practically impossible.

[^55]
## Sound in enclosed rooms continued

The most advantageous ratio for height:width:length is in the proportion of $1: 2^{1 / 3}: 2^{3 / 3}$ or separated by $1 / 3$ or $2 / 3$ of an octave.
In properly proportioned rooms, resonant conditions can be effectively reduced and standing waves practically eliminated by introducing numerous surfaces disposed obliquely. Thus, large-order reflections can be avoided by breaking them up into numerous smaller reflections. The object is to prevent sound reflection back to the point of origin until after several rereflections.
Most desirable ratios of dimensions for broadcast studios are given in Fig. 6.


Sound in enclosed rooms
continued


Fig. 7-Optimum reverberation time in seconds for vorious room volumes af 512 cycles per second.


Fig. 8-Desirable relative reverberation time versus frequency for various sfructures and audiloriums.

## 522

## Sound in enclosed rooms

## Optimum reverberation time

Optimum, or most desirable reverberation time, varies with (1) room size, and (2) use, such as music, speech, etc. (see Figs. 7 and 8).

These curves show the desirable ratio of the reverberation time for various frequencies to the reverberation time for 512 cycles. The desirable reverberation time for any frequency between 60 and 8000 cycles may be found by multiplying the reverberation time at 512 cycles (from Fig. 7) by the number in the vertical scale which corresponds to the frequency chosen.

## Computation of reverberation time

Reverberation time at different audio frequencies may be computed from room dimensions and average absorption. Each portion of the surface of a room has a certain absorption coefficient a dependent on the material of the surface, its method of application, etc. This absorption coefficient is equal to the ratio of the energy absorbed by the surface to the total energy impinging thereon at various audio frequencies. Total absorption for a given surface area in square feet $S$ is expressed in terms of absorption units, the number of units being equal to $a_{a v} S$.
$a_{a v}=\frac{\text { (total number of absorption units) }}{\text { (total surface in square feet) }}$
One absorption unit provides the same amount of sound absorption as one square foot of open window. Absorption units are sometimes referred to as

Fig. 9-Table of ocousticol coefficients of moterials and persons*

descriptlon	sound abserption coefficients in cycles/second						outhority
	128	256	512	1024	2048	4096	
Brick wall unpainted	0.024	0.025	0.031	0.042	0.049	0.07	
Brick woll painted	0.012	0.013	0.017	0.02	0.023	$0.025$	W. C. Sabine W. C. Sabine
Plaster + finish coat on wood lath-wood sfuds	0.020	0.022	0.032				W. C. Sabine
Plaster + finish coat on metal lath	0.038	0.049	0.032	0.039	0.039	0.028	P. E. Sobine
Poured conerete unpainted	0.010	0.012	0.016	0.085	0.043 0.023	0.056 0.035	V. O. Knudsen
Poured concrete painted and varnished	0.009	0.011	0.014	0.016	0.017	0.035 0.018	V. ${ }^{\text {V. O. Knudsen }}$
Carpet, pile on $1 / 8 \mathrm{in}$ in felt	0.09 0.11	0.08 0.14	0.21	0.26	0.27	0.37	Building Research Station
Draperies, velour, 18 oz per sq yd in contact with wall	0.11 0.05	0.14 0.12	0.37 0.35	0.43 0.45	0.27 0.38	0.25	Building Research Station
Ozite $\% / 8$ in	0.05	0.12 0.12	0.35 0.17	0.45 0.33	0.38	0.36	P. E. Sabine
Rug. axminstar	0.11	0.14	0.17 0.20	0.45 0.33 0.33	0.45	0.47	P. E. Sabine
Audience, seoted per sq ft of area	0.72	0.89	0.20 0.95	0.33 0.99	0.52 1.00	0.82	Wente and Bedell
Each person, seated	1.4	2.25	3.8	5.4	6.6	1.00	W. C. Sabine Bureou of Siandor
Each person, seoted Glass surfaces	0.05	0.04	$0 . \overline{03}$	$0 . \overline{025}$	0.022	7.0 0.02	averages of 4 iests Estimated

[^56]
## Sound in enclosed rooms continued

"open window" or "OW" units.
$T=\frac{0.05 V}{-S \log _{e}\left(1-a_{a v}\right)}$
where $T=$ reverberation time in seconds, $V=$ room volume in cubic feet, $S=$ total surface of room in square feet, $a_{a v}=$ average absorption coefficient of room at frequency under consideration.
For absorption coefficients a of some typical building materials, see fig. 9. Fig. 10 shows absorption coefficients for some of the more commonly used materials for acoustical correction.

Fig. 10-Toble of acaustical coefficients of moteriols used for ocoustical correction

material	cyeles/secand						nolsered coef	manufactured by
	128	256	512	1024	2048	4096		
Corkoustle-B4	0.08	0.13	0.51	0.75	0.47	0.46	0.45	Armstrong Cork Co.
Corkoustic-B6	0.15	0.28	0.82	0.60	0.58	0.38	0.55	Armstrong Cork Co.
Cushionione A-3	0.17	0.58	0.70	0.90	0.76	0.71	0.75	Armstrong Cork Co.
Koustex	0.10	0.24	0.64	0.92	0.77	0.75	0.85	Dovid E. Kennedy, Inc.
Sonacoustic tmetaly tiles	0.25	0.56	0.99	0.99	0.91	0.82	0.85	Johns-Manville Soles Corp.
Permacoustic tiles $8 / 4$ in	0.19	0.34	0.74	0.76	0.75	0.74	0.65	Johns-Manville Soles Corp.
Low-frequency alement	0.66	0.60	0.50	0.50	0.35	0.20	0.50	Johns-Manville Soles Corp.
Triple-tuned element	0.66	0.61	0.80	0.74	0.79	0.75	0.75	Johns-Manville Sales Corp.
High-frequency element	0.20	0.46	0.55	0.66	0.79	0.75	0.60	Johns-Manville Sales Corp.
Absorbatono A	0.15	0.28	0.82	0.99	0.87	0.98	0.75	luse Stevenson Co.
Acoustex 600	0.14	0.28	0.81	0.94	0.83	0.80	0.70	National Gypsum Co.
Econacoustic I in	0.25	0.40	0.78	0.76	0.79	0.68	0.70	National Gypsum Co.
Fiberglas acoustical tiletype TWPF 9 D	0.22	0.46	0.97	0.90	0.68	0.52	0.75	Owens-Corning Fiberglas Cop.
Acoustone $\mathrm{D}^{11}$ 1/6 in	0.13	0.26	0.79	0.88	0.76	0.74	0.65	U. S. Gypsum Company
Acoustone $\mathrm{F}^{12} / \mathrm{m}$ in	0.16	0.33	0.85	0.89	0.80	0.75	0.70	U. S. Gypsum Compony
Acousti-celotex type C-6 11/2 in	0.30	0.56	0.94	0.96	0.69	0.56	0.80	The Celotex Corp.
Absorbex type A 1 in	0.41	0.71	0.96	0.88	0.85	0.96	0.85	The Celotex Corp.
Acousteal 8 metal facing $18 / 8$ in	0.29	0.57	0.98	0.99	0.85	0.57	0.85	The Celotex Corp.

* The noise-reduction coefficient is the average of the coefficients at frequencies from 256 to 2048 cycles inclusive, given to the nearest 5 percent. This average coefficiont is recammended for use in comparing materials for noise-quieting purposes as in offices, hospitals, banks, corridors, otc.


## Public-address systems*

## Electrical power levels for public-address requirements

Indoor: Power-level requirements are shown in Fig. 11. Outdoor: Power-level requirements are shown in Fig. 12.

Note: Curves are for an exponential trimpet-type horn. Speech levels above referenceaverage 70 db , peak 80 db . For a loudspeaker of 25 -percent officiency, 4 times the power output would be required or an equivalent of 6 decibels. For one of 10 -percent efficiency, 10 times the power output would be required or 10 decibels.

[^57]Public-address systems

## continued



Fig. 11 -Room valume ond relotive omplifer power copacity. To the indicated power leval depanding on loudspeoker efficiency, there must be added a correction foctor which may vary from 4 decibels for the most efficient horn-type reproducers to 20 decibels for less efficient cone loudspeakers.

Public-address systems cantinued


Fig. 12-Distance from loudspeoker and relative amplifier power capacity required for speech, average for $30^{\circ}$ angle of coverage. For angles over $30^{\circ}$, more loudspeokers and proportional output power are required. Depending on loudspeaker efficiency, a correction foctor must be added to the indicated power level, varying approximately from 4 to 7 decibels for the more-efficient type of horn loudspeokers.


## Sounds of speech and music*

A large amount of data are available regarding the wave shapes and statistical properties of the sounds of speech and music. Below are given some of these data that are of importance in the design of transmission systems.

## Minimum-discernible-bandwidth changes

Fig. 13 gives the increase in high-frequency bandwidth required to produce a minimum discernible change in the output quality of speech and music.

Fig. 13-Table showing bandwidth increases necessary to give an even chance of quality improvement being noticeoble. All figures are in kilocycles.

minus one limen		reference   frequency	plus one limen	
speech	music	music	speech	
			3	3.0
-	-	4	4.8	3.3
3.4	3.3	5	6.0	4.8
4.1	4.1	6	7.4	6.9
4.6	5.0	7	9.3	12.8
5.1	5.8	8	11.0	-
5.5	6.4	9	12.2	-
5.8	6.9	10	13.4	-
6.2	7.4	11	15.0	-
6.4	8.0	13	-	-
7.0	9.8	15	-	-
7.6	11.0			

These bandwidths are known as differ-ence-limen units. For example, a system transmitting music and having an upper cutoff frequency of 6000 cycles would require a cutoff-frequency increase to 7400 cycles before there is a 50 -persent chance that the change can be discerned. (Curve B, Fig. 14.)
Fig. 14 is based upon the data of Fig. 13. For any high-frequency cutoff along the abscissa, the ordinates give the next higher and next lower cutoff frequencies for which there is an even chance of discernment. As expected, one ob*H. Fletcher, "Speech and Hearing," lst ed., D. Van Nostrand Company, Now York, New York; 1929. S. S. Stevens, and H. Davis, "Hearing," J. Wiloy and Sons, Now York, Now York; 1938.


Fig. 14 - Minimum-discernible-
bandwidth chonges. Curves show:
A-Plus 1 limen for speoch
B-Plus 1 limen for music
C-Minus 1 limen for music
D-Minus 1 limen for speech
serves that, for frequencies beyond about 4000 cycles, restriction of upper cutoff affects music more appreciably than speech.

## Peak factor

One of the important factors in deciding upon the power-handling capacity of amplifiers, loudspeakers, etc., is the fact that in speech very large fluctuafions of instantaneous level are present. Fig. 15 shows the peak factor (ratio of peak to root-mean-square pressurel for unfiltered (or wideband) speech, for separate octave bandwidths below 500 cycles, and for separate $\frac{1}{2}$-octave bandwidths above 500 cycles. The peak values for sound pressure of unfiltered speech, for example, rise 10 decibels higher than the averaged root-mean-square value over an interval of $\frac{1}{8}$ second, which corresponds roughly to a syllabic period. However, for a much longer interval of time, say the time duration of one sentence, the peak value reached by the sound pressure for unfiltered speech is about 20 decibels higher than the root-mean-square value averaged for the entire sentence.


Flg. 15 -Peok factor (ratio of peak/rool-mean-square pressures) in decibels for speech in 1-ond 1/2-actove frequency bands, for 1/8-and 75-second time intervols.

## Sounds of speech and music conlinued

Thus, if the required sound-pressure output demands a long-time average of, say, I watt of electrical power from an amplifier, then, to take care of the instantaneous peaks in speech, a maximum-peak-handling capacity of 100 watts is needed. If the amplifier is tested for amplitude distortion with a sine wave, 100 watts of peak-instantaneous power exists when the average power of the sine-wave output is 50 watts. This shows that if no amplitude distortion is permitted at the peak pressures in speech sounds, the amplifier should give no distortion when tested by a sine wave of an average power 50 times greater than that required to give the desired long-time-average root-mean-square pressure.
The foregoing puts a very stringent requirement on the amplifier peak power. In relaxing this specification, one of the important questions is what percentage of the time will speech overload an amplifier of lower power than that necessary to take care of all speech peaks. This is answered in fig. 16; the abscissa gives the probability of the $\frac{\text { peak }}{\text { long-time-average }}$ powers exceeding the ordinates for continuous speech and white noise. When multiplied by 100 , this probability gives the expected percent of time during which peak distortion occurs. If 1 percent is taken as a suitable criterion


Fig. 16-Statistical properties of the peak factor in speech. The obscisso gives the probobility (ratio of the time) that the peak factor in the uninterrupted speech of one person exceeds the ordinote volue. Peok factor = (decibels instantaneous peak value) - (decibels root-meon-square long-time overage).

## 530

## Sounds of speech and music

continued
then a 12 -decibel ratio of $\frac{\text { peak }}{\text { long-time-average }}$ powers is sufficient. Thus, the amplifier should be designed with a power reserve of 16 in order that peak clipping may occur not more than about 1 percent of the time.

## Speech-communication

## systems

In many applications of the transmission of intelligence by speech sounds, a premium is placed on intelligibility rather than flawless reproduction. Especially important is the reduction of intelligibility as a function of both the background noise and the restriction of transmission-channel bandwidth. Intelligibility is usually measured by the percentage of correctly received monosyllabic nonsense words uttered in an uncorrelated sequence. This score is known as syllable articulation. Because the sounds are nonsense syllables, one part of the word is entirely uncorrelated with the remainder, so it is not consistently possible to guess the whole word correctly if only part of it is received intelligibly. Obviously, if the test speech were a commonly used word, or say a whole sentence with commonly used word sequences, the score would increase because of correct guessing from the context. Fig. 17 shows the inter-relationship between syllable, word, and sentence


Fig, 17-Reiations between various meosures of speech intelligibility. Relatlons are approximote; they depend upon the typo of material and the skill of the talkers and listeners.
 $380 \quad 6309201230157019202370300039505600$ mean frequencies of bands of equal contribution to articulation index

Courfesy of Proceedings of the I.R.E.
Fig. 18 -Bands of equal articulation index. 0 decibels $=0.0002$ dyne/centimeter.

## Speech-communication systems continued

articulation. Also given is a quantity known as articulation index.
The concept and use of articulation index is obtained from Fig. 18. The abscissa is divided into 20 bandwidths of unequal frequency interval. Each of these bands will contribute 5 percent to the articulation index when the speech spectrum is not masked by noise and is sufficiently loud to be above the threshold of audibility. The ordinates give the root-mean-square peaks and minimums (in $\frac{1}{8}$-second intervals), and the average sound pressures created at 1 meter from a speaker's mouth in an anechoic lecho-freel chamber. The units are in decibels pressure per cycle relative to a pressure of 0.0002 dynes/centimeter ${ }^{2}$. (For example, for a bandwidth of 100 cycles, rather than 1 cycle, the pressure would be that indicated plus 20 decibels; the latter figure is obtained by taking 10 times logarithm (to the base 10) of the ratio of the 100 -cycle band to the indicated band of 1 cycle.l
An articulation index of 5 percent results in any of the 20 bands when a full 30 -decibel range of speech-pressure peaks to speech-pressure minimums is obtained in that band. If the speech minimums are masked by noise of a higher pressure, the contribution to articulation is accordingly reduced to a value given by $\frac{1}{6}$ [(decibels level of speech peaks) - (decibels level of average noisel]. Thus, if the average noise is 30 decibels under the speech peaks, this expression gives 5 percent. If the noise is only 10 decibels below the speech peaks, the contribution to articulation index reduces to $\frac{1}{8} \times 10=1.67$ percent. If the noise is more than 30 decibels below the speech peaks, a value of 5 percent is used for the articulation index. Such a computation is made for each of the 20 bands of Fig. 18, and the results are added to give the expected articulation index.
A number of important results follow from Fig. 18. For example, in the presence of a large white (thermal-agitation) noise having a flat spectrum, an improvement in articulation results if pre-emphasis is used. A preemphasis rate of about 8 decibels/octave is sufficient.

## Loudness

Equal loudness contours: Fig. 19 gives average hearing characteristics of the human ear at audible frequencies and at loudness levels of zero to 120 decibels versus intensity levels expressed in decibels above $10^{-16}$ watt per square centimeter. Ear sensitivity varies considerably over the audible range of sound frequencies at various levels. A loudness level of 120 decibels is heard fairly uniformly throughout the entire audio range but, as indicated in Fig. 19, a frequency of 1000 cycles at a 20 -decibel level will be heard at very nearly the same intensity as a frequency of 60 cycles at a 60 -decibel level. These curves explain why a loudspeaker operating at lower-than-

532

## Loudness continued



Fig. 19-Equal loudness contours.
normal-level sounds as though the higher frequencies were accentuated and the lower tones seriously attenuated or entirely lacking; also, why music, speech, and other sounds, when reproduced, should have very nearly the same intensity as the original rendition. To avoid perceptible deficiency of lower tones, a symphony orchestra, for example, should be reproduced at an acoustical level during the loud passages of 90 to 100 decibels.

## Servo mechanisms

## Definitions

A servo system is a combination of elements for controlling a source of power. The output of the system or some function of the output is fed back for comparison with the input, and the difference between these quantities is used to control the power. Examples of servo systems are: automatic gain controls, automatic-frequency-control systems, positioning systems, etc. A servo mechanism is a servo system that involves mechanical motion.

## Basic system elements

The basic elements of the system (Fig. II are:

An input quantity $\theta_{i}$
An output quantity $\theta_{\text {o }}$
A mixer or comparator that subtracts $\theta_{0}$ from $\theta_{i}$ to yield an error


Fig. 1-Example of simple servo sysfem. quantity $\epsilon=\theta_{i}-\theta_{0}$

A controller which so regulates the flow of power from the power source that $\epsilon$ tends toward zero. The controller may include amplifiers, motors, and other devices.

## Classification of servo mechanisms

Servo mechanisms may be classified as follows:
Use: Remote control, power amplification, indicating instruments, computers, etc.

Motive characteristics: Hydraulic servos, thyratron servos, Ward-Leonard controls, amplidyne controls, two-phase alternating-current servos, me-chanical-torque amplifiers, pneumatic servos, etc.

Control characteristics: Relay-type servo in which the full power of the motor is applied as soon as the error is large enough to operate a relay, definite-correction servo where the power of the motor is controlled in finite steps at definite time intervals, continuous-control servos in which the power of the motor is continuously controlled by some function of the error. Only the continuous type of servo is treated in the following material.

## 534

## Fundamental quantities for linear-lumped-constant servos

$$
\begin{align*}
f(f)= & \text { function of time } \\
F(p)= & \text { Laplace transform of } f(f) \\
\theta_{i}= & \text { input quantity } \\
\theta_{0}= & \text { output quantity } \\
\epsilon= & \text { error quantity }=\theta_{i}-\theta_{0} \\
Y(p)= & \text { loop transfer function } \\
= & \frac{\theta_{0}(p)}{\epsilon(p)}=\frac{\mid K Q_{m}(p)}{p^{s} P_{n}(p)} \text { where } m<n \text { and } s \text { is an integer. } \mid K \text { is de- } \\
& \text { fined in }(7) . Q_{m} \text { and } P_{n} \text { are polynomials of degree } m \text { and } n, \text { of } \\
\mid K= & \text { loop gain }=l_{\rho \rightarrow 0} p^{s} Y(p) \\
Y_{0}(p)= & \text { overall transfer function }=\frac{\theta_{0}(p)}{\theta_{i}(p)}=\frac{Y(p)}{1+Y(p)}=\left\lvert\, K_{0} \frac{S_{m}(p)}{R_{n}(p)}\right. \\
& \text { where } S_{m,} R_{n} \text { are polynomials similar to } Q_{m} \text { and } P_{n} \text { in }(6) \text { above }  \tag{7}\\
Y_{i}(p)= & \text { error-input transfer function }=\frac{\epsilon(p)}{\theta_{i}(p)}  \tag{8}\\
= & \frac{1}{1+Y(p)}=\frac{p^{s} P_{n}(p)}{1+\mid K Q_{m}(p)} \\
f_{s s}= & \text { steady-state quantity }=f(f)=\lim _{p \rightarrow \infty} p F(p)
\end{align*}
$$

Whens $=1$ in (6), the system is termed a zero-displacement-error system, since from equations ( 9 ) and $(10), \epsilon_{s s}=0$ when $\theta_{i}(1)$ is a step displacement. Similarly, when $s=2$, the system is termed a zero-velocity-error system since $\epsilon_{s s}=0$ when $\theta_{i}(t)$ is a step velocity. Obviously a zero-velocity-error system is also a zero-displacement-error system.

## Positioning-type servo mechanisms

The fundamental quantities described above are applicable to all classifications of continuous-servo mechanisms. The remaining material in this chapter applies to positioning systems using electronic and electromechanical devices. Other servo mechanisms can be treated in exactly analoaous fashions.

## Positioning-type servo mechanisms



Fig. 2-Positioning-type servo.
A typical positioning servo is shown in Fig. 2. For this system:

$$
\begin{align*}
& Y(p)=\frac{\theta_{0}(p)}{\epsilon(p)}=\frac{k_{1} Y_{A}(p) Y_{m}(p) U(p)}{1+Y_{m}(p) U(p) V(p)}  \tag{111}\\
& Y_{0}(p)=\frac{\theta_{o}(p!}{\theta_{i}(p)}=\frac{k_{1} Y_{A}(p) Y_{m}(p) U(p)}{1+k_{1} Y_{A}(p) Y_{m}(p) U(p)+Y_{m}(p) U(p) V(p)}  \tag{12}\\
& Y_{i}(p)=\frac{\epsilon(p)}{\theta_{i}(p)}=\frac{1+Y_{m}(p) U(p) V(p)}{1+k_{1} Y_{A}(p) Y_{m}(p) U(p)+Y_{m}(p) U(p) V(p)} \tag{13}
\end{align*}
$$

Comparator 1 : Is an error-measuring system that converts the difference between $\theta_{i}$ and $\theta_{0}$ into error voltage e, where $e=k_{1} \epsilon$. $k_{1}$ is usually a real constant. Examples of error-measuring systems are shown in Fig. 3.
Mixer 2: Is a circuit arrangement that subtracts $E_{c}$ from $E_{a}$ to yield a volfage $e_{1}=E_{a}-E_{c}$.
$U(p)$ : Represents the motor and load characteristics. It includes the motor gearing and all inertias and forces imposed by the load. Quantities and relationships making up and describing $U(p)$ are described by (14) to (34).


Fig. 3-Error-meosuring systems.

## Linear motor and load characteristics

In the following, subscript $m$ refers to motor, 1 refers to load, and o refers to combined motor and load:

$$
\begin{align*}
\theta & =\text { angular position in radians }  \tag{14}\\
\Omega & =\text { angular velocity in radians } / \text { second }=d \theta / d t \tag{15}
\end{align*}
$$

$M_{m}=$ motor-developed torque in foot-pounds (16)
$J_{m}=$ motor inertia in slug-feet ${ }^{2} \quad$ (17)
$E_{m}=$ impressed volts
$k_{t}=$ motor stalled-torque constant in foot-pounds/volt
$=\left(\Delta M_{m} / \Delta E_{m}\right)_{\Omega_{m}}$
$k_{m}=$ velocity constant in radians/second/volt
$\left.=\left(\Delta \Omega_{m}\right\rangle \Delta E_{m}\right)_{M_{m}}$
$f_{m}=$ motor internal-damping characteristic in foot-pound-seconds

$$
\begin{equation*}
\text { per radian }=-\frac{k_{t}}{k_{m}}=\left(-\frac{\Delta M_{m}}{\Delta \Omega_{m}}\right)_{E_{m}} \tag{22}
\end{equation*}
$$

$r_{m}=$ motor torque-inertia constant in $1 /$ seconds $^{2}=M_{m} / J_{m}$
$J_{b}=$ load inertia in slug-feet ${ }^{2}$
$f_{b}=$ load viscous-friction coefficient in foot-pound-seconds per radian
$F_{l}=$ load coulomb friction in foot-pounds
$S_{i}=$ load elastance in foot-pounds/radian
$N=$ motor-to-load gear ratio $=\theta_{m} / \theta_{l}$
$f_{0}=$ overall viscous-friction coefficient referred to load shaft
$=f_{b}+N^{2} f_{m}$
$J_{0}=$ overall inertia referred to load shaft $=J_{b}+N^{2} J_{m}$
$T_{0}=$ overall time constant in seconds $=J_{0} / f_{0}$
The ideal motor characteristics of Fig. 4 are quite representative of directcurrent shunt motors. For alternating-current two-phase motors, one phase of which is excited from a constant-voltage source, the curves are valid up to about 40 percent of synchronous speed.
The motor and load-transfer characteristics are given by
$\theta_{0}(p)=\frac{\left(k_{t} / N\right) E_{m}(p)-F_{l}(p)}{p^{2} J_{0}+p f_{0}+S}$


Fig. 4-Ideol motor curves.
When $S=0$, which is very often the case,
$\theta_{0}(p)=\frac{\left(k_{t} / N\right) E_{m}(p)-F_{b}(p)}{p\left(f_{0}+p J_{0}\right)}$
and
$U(p)=\frac{\theta_{o}(p)}{E_{m}(p)}=\frac{k_{z}}{N\left(f_{0}+p J_{o}\right)_{p}}-\frac{F_{l}(p)}{E_{m}(p)\left(f_{0}+p J_{0}\right) p}$
When $F_{l}$ can be assumed zero, then
$U(p)=\frac{k_{t}}{N\left(f_{0}+p J_{o}\right)_{p}}=\frac{k_{t}}{N f_{o p}\left(T_{o p}+1\right)}$
$Y_{m}(p)$ : Represents the power amplifier that energizes the motor system $U(p)$. This amplifier may be of the hard-tube, thyratron, fixed-magnetic, or rotarymagnetic (amplidynel types. Typical values of $Y_{m}(p)$ are:
$Y_{m}(p)=\frac{K_{a}}{1+p T_{a}}$
for electronic amplifiers, where $T_{a}$ is often of negligible magnitude, and
$Y_{m}(p)=\frac{K_{a}}{\left(1+p T_{a}\right)\left(1+p T_{b}\right)}$
for a 2-stage magnetic amplifier.
$Y_{A}(p)$ : Represents the error-voltage amplifier. This amplifier may include various eavalizing networks that modify e as required to improve the servo

Posifioning-type servo mechanisms conlinued
response. Servos are often classified in accordance with the characteristics of $Y_{A}(p)$. For example,

$Y_{A}(\mathrm{p})$	type of servo
$k_{A}$	Proportional
$k_{A}\left(1+p T_{a}\right)$	Proportional plus derivative
$k_{A}\left(1+\frac{1}{p T_{a}}\right)$	Proportional plus derivative plus integral
$k_{A}\left(1+p T_{a}+\frac{1}{p T_{b}}\right)$	

Practical circuits that approximate some of these characteristics are shown in Fig. 5.

The above circuits are for use where the steady-state error voltage $e_{s s}$ has a direct-current value. In those cases where $e_{s s}$ is a sinusoid of frequency $\omega_{0}$, the bridged-T circuit is useful as a proportional-plus-derivative network (Figs. 6 and 7). For the circuit 10 possess approximately proportional-plusderivative characteristics, it is necessary that
$Y(j \omega)=G\left[1+j T_{d}\left(\omega-\omega_{0}\right)\right]$


Fig. 5-Direct-current equalizing networks.

## Positioning-type servo mechanisms continued

This is true when
$R_{1}=\frac{1}{T_{d} \omega_{0}^{2} C}, \quad R_{3}=\frac{T_{d}}{C}, \quad$ and $G=\frac{2}{T_{d}^{2} \omega_{0}^{2}+2}$


Fig. 6-Alfernafing-current derivative nefwork.
$V(p)$ : Is a feedback and amplifier network that is used effectively to modify the characteristics of the power amplifier and motor elements. Often this takes the form of a tachometer generator coupled to the output shaft, or equivalent, that develops a voltage $e_{0}$ proportional to the outputshaft speed. This voltage may be further modified by circuits that are usually of the derivative type. Typical circuits are shown in Fig. 8.


Flg. 7-Alternating-current derivative network characteristics.


Fig. 8-Tachometer feedback network.

540

## Typical positioning-servo mechanisms

## Simple viscous-damped system

For this servo, referring to Fig. 2,
$Y_{A}(p)=k_{A}, \quad Y_{m}(p)=1, \quad V(p)=0, \quad$ and $U(p)=\frac{k_{1} / N}{f_{o p}\left(T_{o p}+1\right)} \quad 1391$
From (11), we have
$Y(p)=\frac{k_{1} k_{A} k_{l} / N}{f_{o p}\left(T_{\text {op }}+1\right)}=\frac{\mid K}{p\left(T_{\text {op }}+1\right)}$
where $\left\lvert\, K=\frac{k_{1} k_{A} k_{t}}{f_{0} N}\right.$ seconds ${ }^{-1}$
or
$Y(p)=\frac{\mid K_{m}}{J_{o p}\left(p+1 / T_{o}\right)}$
where $\left|K_{m}=\right| K f_{o}$ foot-pounds/radian.
Also, from (13),

$$
\left.\begin{array}{rl}
Y_{i}(p) & =\frac{\frac{J_{0}}{\mid K_{m}}\left(p+\frac{1}{T_{0}}\right)}{1+\frac{J_{0}}{\mid K_{m}} p\left(p+\frac{1}{T_{0}}\right)}=\frac{p\left(p+2 r \omega_{n}\right\rangle}{p^{2}+2 r \omega_{n} p+\omega_{n}^{2}}  \tag{42}\\
& =\frac{p\left(p+2 r \omega_{n}\right)}{\left[p+\omega_{n}\left(r+\sqrt{r^{2}-1}\right)\right]\left[p+\omega_{n}\left(r-\sqrt{\left.r^{2}-1\right]}\right]\right.}
\end{array}\right\}
$$

Where

$$
\begin{align*}
\omega_{n} & =\left\|K_{m} / J_{0}\right\|^{\frac{1}{2}}=\text { system natural angular velocity, }  \tag{43}\\
r & =1 / 2 T_{0} \omega_{n}=\text { ratio of actual to critical damping. } \tag{44}
\end{align*}
$$

For $\quad \theta_{i}(p)=\omega_{i} / p^{2}$ (step-velocity function of amplifude $\left.\omega_{i}\right)$,
$\frac{\epsilon(t)}{\theta_{s s c}}=r\left[1-\epsilon^{-r \omega_{n} b}\left(\cos \sqrt{1-r^{2}} \omega_{n} t+\frac{2 r^{2}-1}{2 r \sqrt{1-r^{2}}} \sin \sqrt{1-r^{2}} \omega_{n}^{t}\right)\right]$
where
$\theta_{s s c}=2 \omega_{i} / \omega_{n}=$ steady-state error for critical damping
Equation (45) is plotted in Fig. 9.

## Typical positioning-servo mechanisms continued



Fig. 9-Propertional viscous-damped system.

## Proportional-plus-derivative system

The transfer functions of this system are identical with those of the proportional system, except that
$Y_{A}(p)=k_{A}\left(1+p T_{A}\right)$
so that

$$
\begin{equation*}
Y(p)=\frac{\mid K_{m}}{J_{0}} \frac{1+p T_{A}}{p\left(p+1 / T_{0}\right)} \tag{48}
\end{equation*}
$$

and

$$
\begin{equation*}
Y_{i}(p)=\frac{p\left(p+1 / T_{o}\right)}{p^{2}+p\left(\frac{1}{T_{o}}+\frac{\mid K_{m}}{J_{o}} T_{\Lambda}\right)+\frac{\mid K_{m}}{J_{o}}}=\frac{p\left(p+2 \omega_{n} c r\right)}{p^{2}+2 r \omega_{n} p+\omega_{n}^{2}} \tag{49}
\end{equation*}
$$

Where

$$
\begin{align*}
\omega_{n} & =\left(\mid K_{m} / J_{o}\right)^{\frac{1}{2}}  \tag{50}\\
c & =\frac{1 / T_{o}}{\frac{1}{T_{0}}+\omega_{n}^{2} T_{A}}=\text { ratio of viscous to overall damping, } \tag{1511}
\end{align*}
$$

## Typical positioning-servo mechanisms continued

and
$r=\frac{1}{2 \omega_{n}}\left(\frac{1}{T_{0}}+\omega_{n}^{2} T_{A}\right)=\frac{1}{2 \omega_{n} c T_{0}}$
For $\theta_{i}(p)=\omega_{i} / p^{2}$,
$\epsilon(t)=\frac{2 r c \omega_{i}}{\omega_{n}}\left[1-\epsilon^{-r \omega_{n} t}\left(\cos \sqrt{1-r^{2}} \quad \omega_{n} t+\frac{2 r^{2} c-1}{2 r c \sqrt{1-r^{2}}}\right.\right.$

$$
\begin{equation*}
\left.\left.\times \sin \sqrt{1-r^{2}} \quad \omega_{n^{\prime}}\right)\right] \tag{53}
\end{equation*}
$$

Equation (53) for $c=0$ (i.e., $1 / T_{0}=0$ and $f_{0}=0$ ) is plotted in Fig. 10.


Fig. 10-Proportlonal-plus-derivative system.

## Examples of simple system with auxiliary feedback loop

For this system (Fig. 2), $Y_{A}(p)=k_{A}$ and $Y_{m}(p)=1$;

$$
\begin{align*}
U(p) & =\frac{k_{2} / N}{f_{o p}\left(T_{a} p+1\right)}=\frac{k_{\ell} / N}{p^{2} J_{0}+f_{o p} p} \\
V(p) & =k_{0} p \text { for the circuit of fig. 8A. } \\
& =k_{D} T_{a} p^{2} \text { for the circuit of Fig. 8B, assuming } 1 \gg p T_{\theta} \text { so that } \\
Y(p) & =\frac{\frac{k_{A} k_{t} / N}{p^{2} J_{0}+p f_{0}}}{1+\frac{k_{t} V(p)}{N\left(p^{2} J_{o}+p f_{0}\right)}}=\frac{k_{A} k_{t} / N}{p^{2} J_{0}+f_{o p}+\frac{k_{t}}{N} V(p)} \tag{54}
\end{align*}
$$

## Typical positioning-servo mechanisms continued

It is seen therefore that, if $V(\rho)=k_{g} p_{0}$, the effect is to increase the motor damping to $f_{o}+k_{t} k_{g} / N$.

Similarly, when $V(p)=k_{g} T_{\theta} \rho^{2}$, the overall inertia is effectively increased to $J_{0}+k_{l} k_{g} T_{g} / N$.

Since $k_{0}$ can be negative or positive, it follows that $V(p)$ provides a method of effectively decreasing or increasing the damping and inertia.

## Servo-mechanism performance criteria

It is very difficult to describe completely or specify the performance of servo mechanisms. However, the following steady-state quantities and their typical magnitudes may be used as a guide.
Static error $\epsilon_{s}=$ error when input shaft is at rest
Velocity figure of merit $K_{V}=\omega_{i} / \epsilon_{s s}=$ input velocity/error
Acceleration figure of merit $K \alpha=\alpha_{i} / \epsilon_{s g}=$ input acceleration/error

Typical performance values are:

quantity	excellent	goad	poor
$\epsilon_{s}$	15 min	1 deg	5 deg
$K_{V}$	$200 \mathrm{sec}^{-1}$	$100 \mathrm{sec}^{-1}$	$25 \mathrm{sec}^{-1}$
$K_{a}$	$150 \mathrm{sec}^{-2}$	$75 \sec ^{-2}$	$15 \mathrm{sec}^{-2}$

## Stability criteria

A system is unstable when its amplitude of oscillation theoretically increases without limit. Instability is mathematically determined by taking the denominator of $Y_{0}(p)$ or $Y_{i}(p)$, equations (8) and (9).
$D=\sum_{i=0}^{i=n} a_{i} p_{i}$
and putting it into the form
$D=\left(p+p_{0}\right)\left(p+p_{1}\right)\left(p+p_{2}\right) \ldots\left(p+p_{n}\right)$
If any root $p_{i}$ has a negative real part, the system is then unstable.
The labor involved in transforming (58) into (59) is considerable, particularly when $n$ exceeds 2. To avoid this labor Routh has specified requirements for

## 544

## Stability criteria

the coefficients $\alpha_{i}$. If these requirements are satisfied, no $p_{i}$ has a negative real part.

The requirements, known as the "Routh stability criteria," are as follows:
a. All coefficients $a_{i}$ must be positive.
b. A certain relationship, depending upon the degree of $D$, must exist between the coefficients $a_{i}$.

For the lower-degree equations, the relationships in $b$ above are as follows.
a. For the first and quadratic degrees, the coefficient of $p$ must exceed zero:
b. Cubic, $a_{3} p^{3}+a_{2} p^{2}+a_{1} p+a_{0}$.
for stability, $a_{2} a_{1}>a_{3} a_{0}$.
c. Quartic, $a_{4} p^{4}+a_{3} p^{3}+a_{2} p^{2}+a_{1} p+a_{0}$.

For stability, $a_{3} a_{2} a_{1}>\sigma_{3}{ }^{2} a_{0}+a_{1}{ }^{2} a_{4}$.
d. Quintic, $a_{5} p^{5}+a_{4} p^{4}+a_{3} p^{3}+a_{2} p^{2}+a_{1} p+a_{0}$.

For stability,
$\sigma_{2}\left(a_{4} \sigma_{1}-\sigma_{5} \sigma_{0}\right)\left(a_{4} \sigma_{3}-\sigma_{5} \sigma_{2}\right)>a_{4}\left(\sigma_{4} \sigma_{1}-\sigma_{5} \sigma_{0}\right)^{2}+\sigma_{0}\left(\sigma_{4} \sigma_{3}-\sigma_{5} \sigma_{2}\right)^{2}$.
A second method for determining stability is known as the "Nyquist stability criterion." This method consists of obtaining the locus of the loop-transfer function $Y(p),(6)$ in the $Y$ plane for values of $p=j \omega$, where $\omega$ varies from $+\infty$ to $-\infty$. If the locus, described in a positive sense, encloses the point $-1,0$, the system is unstable. (By positive sense is meant that the interior of the locus is always on the left as A the point describes the locus.) Since the locus is always sym. metrical about the real axis, it is necessary to draw only the locus for positive values of $\omega$; the remainder of the locus is then obtained by reflection in the real axis.

Fig. 11 shows loci for several simple systems. Curves $A$ and $C$ represent stable systems, curve $B$ an unstable system. Curve $D$ is a conditionally stable one; that is, for a


Fig. 11 -Typical Nyquist loci. Plotted in $Y(j \omega)$ plone.
solid line $=$ locus for $0 \leqslant \omega \leqslant \infty$
dotted $=$ locus for $-\infty \leqslant \omega \leqslant 0$
dash-dol $=$ locus for $\omega=0$

## SERVO MECHANISMS <br> 545

## Stability criferia continued

particular range of values of $\mid K$ it is unstable, but it is stable for both larger and smaller values. It is unstable as shown.
Curve $A$ illustrates a zero-displacement-error system; curve $C$ a zero-velocity-error system.
Curve $A$ also demonstrates the phase margin $\theta_{p}$, and gain margin $g$. The phase margin is the angle between the negative real axis and the $Y$ vector when $|Y|=1$. The gain margin is the value of $|Y|$ when the phase angle is 180 degrees. The gain margin is often specified in decibels, so that $g=20 \log |Y|$. Typical satisfactory values are 15 decibels for $g$ and 50 degrees for $\theta_{p}$.

## Linearity considerations

The preceding material applies strictly to linear systems. Actually all systems are nonlinear to some extent. This nonlinearity may cause serious deteriorafion in performance. Common sources of nonlinearity are:
a. Nonlinear motor characteristics.
b. Overloading of amplifiers by noise.
c. Static friction.
d. Backlash in gears, potentiometers, etc. For good performance it is recommended that the total backlash should not exceed 20 percent of the expected static error.
e. Low-efficiency gear or worm drives that cause locking action.

In spite of all the available types and sources of nonlinearity, it is usually found that when care is taken to minimize it, the linear theory applies quite well.

- Miscellaneous data


## Aimospheric data

## Pressure-altitude graph

Design of electrical equipment for aircraft is somewhat complicated by the requirement of additional insulation for high voltages as a result of the decrease in atmospheric pressure. The extent of this effect may be determined from the chart below and the information on the opposite page.

1 inch mercury $=25.4 \mathrm{~mm}$ mercury $=0.4912$ pounds $/$ inch 2


## Atmospheric data cantinued

Spark-gap breakdown volitages
gap length in inches
Data above is for a voltage that is continuous or at a frequency low enough to permit complate deionization between cycles, between needle points, or clean, smooth spherical surfaces (electrodes ungrounded) in dust-free dry air. Temperature is 25 degrees centigrade and pressure is 760 millimeters ( 29.9 inches) of mercury. The following multiplying factors apply for atmospheric conditions other than those stated above:

pressure		temperature in degrees centigrade					
in Hg	mm Hg	-40	-20	0	20	40	60
5	127	0.26	0.24	0.23	0.21	0.20	0.19
10	254	0.47	0.44	0.42	0.39	0.37	0.34
15	381	0.68	0.64	0.60	0.56	0.53	0.50
20	508	0.87	0.82	0.77	0.72	0.68	0.64
25	635	1.07	0.99	0.93	0.87	0.82	0.77
30	762	1.25	1.17	1.10	1.03	0.97	0.91
35	889	1.43	1.34	1.26	1.19	1.12	1.05
40	1016	1.61	1.51	1.42	1.33	1.25	1.17
45	1143	1.79	1.68	1.58	1.49	1.40	1.31
50	1270	1.96	1.84	1.73	1.63	1.53	1.44
55	1397	2.13	2.01	1.89	1.78	1.67	1.57
60	1524	2.30	2.17	2.04	1.92	1.80	1.69

## Centigrade table of relative humidity or percent of saturation

| dry bulb degrees cenfigrade | 10.5 | 1.0] | 1.5 | $2.0 \mid$ | 2.51 | 13.0 | 3.5 | 4.01 | differ | 51 | 61 | 17 \| | \% rea | 9 adin | 101 | \| 11 | | \| 12 | | \|13 dry | \| 14 | | \|15 1 | in deg | \| 18 | | \| 20 | | \| 22 | | \| 24 | |  | 28 | 30 | \| 32 | |  |  |  |  | dry bulb degreet cenfigrade |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 4 | 93 | 85 | 77 | 70 | 63 | 56 | 48 | 4) | 34 | 28 | 15 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  | 4 |
| 8 | 94 | 87 | 81 | 74 | 68 | 62 | 56 | 50 | 45 | 39 | 28 | 17 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  | 8 |
| 12 | 94 | 89 | 84 | 78 | 73 | 68 | 63 | 58 | 53 | 48 | 38 | 30 | 21 | 12 | 4 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  | 12 |
| 16 | 95 | 90 | 85 | 81 | 76 | 71 | 67 | 62 | 58 | 54 | 45 | 37 | 29 | 21 | 14 | 7 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  | 16 |
| 20 | 96 | 91 | 87 | 82 | 78 | 74 | 70 | $\triangle 8$ | 62 | 58 | 51 | 44 | 36 | 30 | 23 | 17 | 11 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  | 20 |
| 22 | 96 | 92 | 87 | 83 | 79 | 75 | 72 | 68 | 64 | 60 | 53 | 46 | 40 | 34 | 27 | 21 | 16 | 11 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  | 22 |
| 24 | 96 | 92 | 88 | 85 | 81 | 77 | 74 | 70 | 68 | 63 | 56 | 49 | 43 | 37 | 31 | 26 | 21 | 14 | 10 |  |  |  |  |  |  |  |  |  |  |  |  |  |  | 24 |
| 26 | 96 | 92 | 89 | 85 | 81 | 77 | 74 | 71 | 67 | 64 | 57 | 51 | 45 | 39 | 34 | 28 | 23 | 18 | 13 |  |  |  |  |  |  |  |  |  |  |  |  |  |  | 26 |
| 28 | 96 | 92 | 89 | 85 | 82 | 78 | 75 | 72 | 68 | 65 | 59 | 53 | 47 | 42 | 37 | 31 | 26 | 21 | 17 | 13 |  |  |  |  |  |  |  |  |  |  |  |  |  | 28 |
| 30 | 96 | 93 | 89 | 86 | 82 | 79 | 76 | 73 | 70 | 67 | 61 | 55 | 50 | 44 | 39 | 35 | 30 | 24 | 20 | 16 | 12 |  |  |  |  |  |  |  |  |  |  |  |  | 30 |
| 32 | 96 | 93 | 90 | 86 | 83 | 80 | 77 | 74 | 71 | 68 | 62 | 56 | 51 | 46 | 41 | 36 | 32 | 27 | 23 | 19 | 15 |  |  |  |  |  |  |  |  |  |  |  |  | 32 |
| 34 | 97 | 93 | 90 | 87 | 84 | 81 | 77 | 74 | 71 | 69 | 63 | 58 | 53 | 48 | 43 | 38 | 34 | 30 | 26 | 22 | 18 | 10 |  |  |  |  |  |  |  |  |  |  |  | 34 |
| 36 | 97 | 93 | 90 | 87 | 84 | 81 | 78 | 75 | 72 | 70 | 54 | 59 | 54 | 50 | 45 | 41 | 36 | 32 | 28 | 24 | 21 | 13 |  |  |  |  |  |  |  |  |  |  |  | 36 |
| 38 | 97 | 94 | 90 | 87 | 84 | 81 | 79 | 76 | 73 | 70 | 65 | 60 | 56 | 51 | 46 | 42 | 38 | 34 | 30 | 26 | 23 | 16 | 10 |  |  |  |  |  |  |  |  |  |  | 38 |
| 40 | 97 | 94 | 91 | 88 | 85 | 82 | 79 | 76 | 74 | 71 | 68 | 61 | 57 | 52 | 48 | 44 | 40 | 36 | 32 | 29 | 25 | 19 | 13 |  |  |  |  |  |  |  |  |  |  | 40 |
|  | 97 | 94 | 91 | 88 | 86 | 83 | 80 | 77 | 75 | 73 | 68 | 63 | 59 | 54 | 50 | 47 | 43 | 39 | 36 | 32 | 29 | 23 | 17 | 12 |  |  |  |  |  |  |  |  |  | 44 |
| 48 | 97 | 94 | 92 | 89 | 86 | 84 | 81 | 78 | 76 | 74 | 69 | 65 | 61 | 56 | 53 | 49 | 45 | 42 | 39 | 35 | 33 | 27 | 21 | 16 | 12 |  |  |  |  |  |  |  |  | 48 |
| 52 | 97 | 94 | 92 | 89 | 87 | 84 | 82 | 79 | 77 | 75 | 70 | 66 | 62 | 58 | 55 | 51 | 48 | 44 | 41 | 38 | 35 | 30 | 25 | 20 | 16 | 11 |  |  |  |  |  |  |  | 52 |
| 56 | 97 | 95 | 92 | 90 | 87 | 85 | 83 | 80 | 78 | 76 | 72 | 68 | 64 | 60 | 57 | 53 | 50 | 46 | 43 | 40 | 38 | 32 | 27 | 23 | 19 | 15 | 11 |  |  |  |  |  |  | 56 |
| 60 | 98 | 95 | 93 | 90 | 88 | 86 | 83 | 81 | 79 | 77 | 73 | 69 | 65 | 62 | 58 | 55 | 52 | 48 | 45 | 43 | 40 | 35 | 30 | 26 | 21 | 18 | 14 | 11 |  |  |  |  |  | 60 |
| 70 | 98 | 96 | 93 | 91 | 89 | 87 | 85 | 83 | 81 | 79 | 75 | 71 | 68 | 65 | 61 | 58 | 55 | 52 | 50 | 47 | 44 | 40 | 35 | 31 | 27 | 23 | 20 | 17 | 14 | 11 |  |  |  | 70 |
| 80 | 98 | 96 | 94 | 92 | 90 | 88 | 86 | 84 | 83 | 81 | 77 | 74 | 71 | 67 | 64 | 61 | 58 | 56 | 53 | 50 | 48 | 43 | 39 | 35 | 31 | 28 | 24 | 22 | 19 | 16 | 14 | 11 |  | 80 |
| 90 | 98 | 97 | 95 | 93 | 91 | 89 | 87 | 85 | 84 | 82 | 79 | 76 | 73 | 69 | 67 | 64 | 61 | 58 | 56 | 53 | 51 | 47 | 42 | 39 | 35 | 32 | 28 | 26 | 23 | 20 | 18 | 16 | 14 | 90 |
| 100 | 99 | 97 | 95 | 93 | 92 | 90 | 88 | 86 | 85 | 83 | 80 | 77 | 74 | 71 | 68 | 66 | 63 | 60 | 58 | 56 | 54 | 49 | 45 | 42 | 38 | 35 | 32 | 29 | 26 | 24 | 22 | 19 | 17 | 100 |

Example: Assume dry-bulb reading thermometer exposed directly to atmospherel is $20^{\circ} \mathrm{C}$ and wet-bulb reading is $17^{\circ} \mathrm{C}$, or a difference of $3^{\circ} \mathrm{C}$. The relative humidity at $20^{\circ} \mathrm{C}$ is then $74 \%$.

## Combined psychrometric and volume chart

Shows pounds of water per pound of dry air, and volume in feet per pound of dry alr


For sample reading:

Dry-bulb thermometer reads 75 degroes Wet-bulb thermometer reads 68 degrees

[^58]
## Weather data

Compiled from "Climate and Man," Yearbook of Agriculture, U. S. Dept. of Agriculfure 1941. Obtainable from Superintendent of Documents, Government Printing Office, Washington 25, D.C.

## Temperature extremes

## United Siales

Lowest temperature Highest temperature

## Alasko

Lowest temperafure
Highest temperalure

## World

Lowest temperature
Highest temperafure
Lowest mean semperature lannual)
Highost mean remperasure lannuall
$-66^{\circ} \mathrm{F}$ Riverside Range Station, Wyoming tfeb. 9, 1933
$134^{\circ} \mathrm{F} \quad$ Greenland Ranch, Deoth Valley, California Uuly 10, 1933)
$-78^{\circ} \mathrm{F} \quad$ Fort Yukon Uan. 14, 1934)
$100^{\circ} \mathrm{F}$ Fort Yukan
$-90^{\circ} \mathrm{F}$ Verkhoyansk, Siberio tfeb. 5 and 7, 18921
$136^{\circ} \mathrm{F}$ Azizia, Libya, North Africa (Sepi. 13, 1922)
$-14^{\circ} \mathrm{F} \quad$ Framheim, Antaretica
$86^{\circ} \mathrm{F}$ Massawa, Eritreo, Africa

## Precipitation extremes

## United Stoles

Wettest state
Oryest stato
Maximum recorded
Minimums recorded

## World

Maximums recorded

Minimums recorded

Louisiana-average annual rainfall 55.11 inches
Nevada-average annual rainfall 8.81 inches
New Smyrna, Fla., Oct. 10, 1924-23.22 inches in 24 hours
Bogdad, Calif., 1909-1913-3.93 inches in 5 years
Greenland Ranch, Calif.- 1.35 inches annual average
Cherropunfi, Indlo, Aug. 1841-241 inches in 1 month
(Average annual rainfall of Cherrapunit is 426 inches)
Bogui, Luzon, Philippines, July 14-15, 1911-46 inches in 24 hours
Wadi Halfa, Anglo-Egyptian Sudan and Awan, Egypt are in the "rainless" area; average annual rainfall is too small to be measured

## World temperatures

territory	maximum ${ }^{\circ} \mathrm{F}$	$\underset{{ }_{F}}{\operatorname{minimum}}$	ierritory	$\left.\right\|_{0} ^{\operatorname{maximum}}$	$\operatorname{minimum}_{F}^{\min }$
NJORTH AMERICA			ASIA continued		
Alaska	100	-78	Indic	120	-19
Canado	103	-70	Iraq	123	19
Canal Zone	97	63	Japan	101	-7
Greenlond	86	-46	Malay States	97	66
Mexico	118	11	Philippine Islands	101	58
U. S. A.	134	-66	Siom	106	52
West Indies	102	45	Tibel	85	-20
			Turkev	111	-22
SOUTH AMERICA			U. S. S. R.	109	-90
Argentino	115	-27			
Bolivia	82	25	AFRICA		
Brazil	108	21	Algeria	133	1
Chile	99	19	Anglo-Egyptian Sudan	126	28
Venezuela	102	45	Angola $\begin{aligned} & \text { Belgian Congo }\end{aligned}$	91 97	33
EUROPE			Belgian Congo Egypt	97 124	34
British Islos	100	4	Ethiopic	111	32
France	107	-14	French Equatorial Alrica	118	46
Germany	100	$-16$	French West Alfico	122	41
leeland	71	-6	Italian Somaliland	93	61
Italy	114	4	Libyo	136	35
Norway	95	-26	Moroceo	119	5
Spain	124	10	Rhodesia	103	25
Sweden	92	-49	Tunisia	122	28
Turkey	100	17	Union of South Alrica	111	21
U. S. S. R.	110	-61	AUSTRALASIA		
ASIA			Australia	127	19
Arobio	114	53	Hawaii	91	51
China	111	-10	Now Zeolond	94	23
East Indies	101	60	Somoon Islands	96	81
French Indo. Chino	113	33	Solomon 'slands	97	70

## World precipitation

territory	highest average				lowest average				yearly avorage inches
	Jan inches	April inches	July Inches	Oct   inches	Jan incher	April Inches	July inches	Oct   Inches	
NORTH AMERICA									
Alaska	13.71	10.79	8.51	22.94	. 15	.13	. 93	. 37	43.40
Conodo	8.40	4.97	4.07	6.18	. 48	. 31	1.04	. 73	26.85
Conal Zone	3.74	4.30	16.00	15.13	. 91	2.72	7.28	10.31	97.54
Greenland	3.46	2.44	3.27	6.28	. 35	. 47	. 91	. 94	24.70
Mexico	1.53	1.53	13.44	5.80	. 04	. 00	. 43	. 35	29.82
U. S. A.									29.00
West Indies	4.45	6.65	5.80	6.89	. 92	1.18	1.53	5.44	49.77
SOUTH AMERICA									
Argentina	6.50	4.72	2.16	3.35	. 16	. 28	. 04	. 20	16.05
Bolivio	6.34	1.77	. 16	1.42	3.86	1.46	. 16	1.30	24.18
8 razil	13.26	12.13	10.47	6.54	2.05	2.63	.01	. 05	55.42
Chile	11.78	11.16	16.63	8.88	. 00	. 00	. 03	. 00	46.13
Venezuelo	2.75	6.90	6.33	10.44	. 02	.61	1.87	3.46	40.01
EUROPE									
8 ritish Isles	5.49	3.67	3.78	5.57	1.86	1.54	2.38	2.63	36.16
France	3.27	2.64	2.95	4.02	1.46	1.65	. 55	2.32	27.48
Germony	1.88	2.79	5.02	2.97	1.16	1.34	2.92	1.82	26.64
Iceland	5.47	3.70	3.07	5.95	5.47	3.70	3.07	5.59	52.91
Italy	4.02	4.41	2.40	5.32	1.44	1.63	. 08	2.10	29.74
Norway	8.54	4.13	5.79	8.94	1.06	1.34	1.73	2.48	40.51
Spain	2.83	3.70	2.05	3.58	1.34	1.54	. 04	1.77	22.74
Sweden	1.52	1.07	2.67	2.20	. 98	. 78	1.80	1.60	18.12
Turkey	3.43	1.65	1.06	2.52	3.43	1.65	1.06	2.52	28.86
U, S. S. R,	1.46	1.61	3.50	2.07	. 49	. 63	.20	. 47	18.25
ASIA									
Arabia	1.16	. 40	. 03	. 09	. 32	. 18	. 02	. 09	3.05
Chino	1.97	5.80	13.83	6.92	. 15	. 61	5.78	. 67	50.63
East Indies	18.46	10.67	6.54	10.00	7.48	2.60	. 20	. 79	78.02
French Indo-China	. 79	4.06	12.08	10.61	. 52	2.07	9.24	3.67	65.64
India	3.29	33.07	99.52	13.83	. 09	. 06	. 47	. 00	75.18
Iraq	1.37	. 93	. 00	. 08	1.17	. 48	. 00	. 05	6.75
Japan	10.79	8.87	9.94	7.48	2.06	2.83	5.02	4.59	70.18
Malay States	9.88	7.64	6.77	8.07	9.88	7.64	6.77	8.07	95.06
Philippine Islonds	2.23	1.44	17.28	10.72	. 82	1.28	14.98	6.71	83.31
Siam	. 33	1.65	6.24	8.32	. 33	1.65	6.24	8.32	52.36
Turkey	4.13	2.75	1.73	3.34	2.05	1.73	. 21	. 93	25.08
U. S. S. R.	1.79	2.05	3.61	4.91	. 08	. 16	. 10	. 06	11.85
AFRICA									
Algeria	4.02	2.06	. 35	3.41	. 52	. 11	. 00	. 05	9.73
Anglo-Egyptian Sudan	. 08	4.17	7.87	4.29	. 00	. 00	. 00	.00	18.27
Angola	8.71	5.85	. 00	3.80	. 09	. 63	. 00	. 09	23.46
Belgion Congo	9.01	6.51	. 13	2.77	3.69	1.81	. 00	1.88	39.38
Egypt	2.09	. 16	. 00	. 28	. 00	. 00	. 00	. 00	3.10
Ethiopia	. 59	3.42	10.98	3.39	. 28	3.11	8.23	. 79	49.17
French Equatorial Alrica	9.84	13.42	6.33	13.58	. 00	. 34	. 04	. 86	57.55
French West Africa	.10	1.61	8.02	1.87	. 00	. 00	. 18	. 00	19.51
Italian Someliland	. 00	3.66	1.67	2.42	. 00	3.60	1.67	2.42	17.28
Libyo	3.24	. 48	. 02	1.53	2.74	. 18	. 00	. 67	13.17
Morocco	3.48	2.78	. 07	2.47	1.31	.36	. 00	. 23	15.87
Rhodesio	8.40	. 95	. 04	1.20	5.81	. 65	. 00	. 88	29.65
Tunisia	2.36	1.30	. 08	1.54	2.36	1.30	. 08	1.54	15.80
Union of South Africa	6.19	3.79	3.83	5.79	. 06	. 23	. 27	.12	26.07
AUSTRALASIA									
Australia	15.64	5.33	6.57	2.84	. 34	. 85	. 07	. 00	28.31
Hawaii	11.77	13.06	9.89	10.97	3.54	2.06	1.04	1.97	82.43
New Zealand	3.34	3.80	5.55	4.19	2.87	2.78	2.99	3.13	43.20
Samcan Islands	18.90	11.26	2.60	7.05	18.90	11.26	2.60	7.05	118.47
Solomon Islands	13.44	8.24	6.26	7.91	13.44	8.24	6.26	7.91	115.37

## 552

## Weather data continued

Wind-velocity and temperature extremes in North America
Maximum corrected wind velocity for a period of 5 minutes in miles/hour.

station	wind miles/hour	femperafure degrees fahrenheil	
		maximum	minimum
UNITED STATES, 1871-1947			
Albany, Now York	60	104	-24
Amarillo, Texas	70	107	-16
Buffalo, Now York	73	97	-20
Charleston, South Carollna	81	104	7
Chicago, llinois	65	105	-23
Bismarck, North Dakota	74	108	-45
Hatreras, North Capolina	90	95	8
Miomi, Florida	123	96	27
Minneapolis, Minnesota	65	108	-34
Mobile, Alabamo	87	103	-1
Mi. Washington, Now Hompshire	$140^{\text {* }}$	80	-46
Nantucket, Massochuseits New Yark, Now York	66 81	92 102	-6 -14
New Yark, Now York North Platte, Nebrosko	81 73	102	-14 -35
North Platte, Nebrosko	73	109	-35
Pensacolo, Florida	91	103	7 -15
Washingron, D.C.	53	106	-15
San Juan, Puepto Rico	135	94	62
CANADA, 1947	52	97	-45
Komloops, British Columbio	34	107	-31
Sable Island, Novio Scotio	64	86	-12
Toponto, Ontario	48	105	-46

- Gusts were recorded of 225 miles/hour (corrected).


## Wind velocities and pressures

indicoted velocilies miles per hour* $V_{1}$	octual velocilies miles per hour $\mathbf{V}_{a}$	cylindrical surfoces   pressure lbs/h ${ }^{2}$ projected areas $\mathbf{P}=0.0025 \mathrm{~V}_{\mathbf{a}}^{2}$	flat surfaces $\begin{aligned} & \text { Pressure lbs } / \text { fit }^{2} \\ & P=0.0042 \mathrm{~V} \frac{2}{2} \end{aligned}$
10	9.6	0.23	0.4
20	17.8	0.8	1.3
30	25.7	1.7	2.8
40	33.3	2.8	4.7
50	40.8	4.2	7.0
60	48.0	5.8	9.7
70	55.2	7.6	12.8
80	82.2	9.7	16.2
90	69.2	12.0	20.1
100	78.2	14.5	24.3
110	83.2	17.3	29.1
120	90.2	20.3	34.2
125	93.7	21.9	36.9
130	97.2	23.6	39.7
140	104.2	27.2	45.6
150	111.2	- 30.9	51.9
160	118.2	34.9	58.6
170	125.2	39.2	65.7
175	128.7	41.4	69.5
180	132.2	43.7	73.5
190	139.2	48.5	81.5
200	146.2	53.5	89.8

[^59]Principal power supplies in foreign countries


## Principal power supplies in foreign countries

\%erritory	1 d-e valts	O-e volft	frequency
ASIA Arabia			
British Malaya:		230	50
Colony of Singapore	230	230	
Malayon Faderation North Borneo	-	230	$50$
Ceylon	$\overline{220}$	110	$50,60,40$ 60
China	220, 110	110, 200, 220	50, 60
French Indochino	110, 120, 220, 240	120, 220, $110,115,240$	$50,60,25$
Iran (Persia)	220, 110, 225, 230, 250	230, 220, 110	50 50
lraq	220,110 220,200	220	50, 25
Japan	100, 200	220, 230	50
Korea	10	100,110 100,200	50,60
Manchuria Netherland Easf Indies:	-	110	60.50
Bornoo	110		60, 50, 25
Jova and Madura		127,110, 127	50
Sumatra	220	$127,110,220$ $127,110,220$	50
Palestina	-	220*110, 220	50
Philippine Republic	-	220, 110	50
Siom	-	110, 115, 220	60 50
Jurkey	220, 110	100 220,110	50
		220, 110	50
AFRICA			
Angola (Port.)	-		
Algeria	220	115, 110, 127	50
Belgion Congo	-	115, 110, 127	50
British West Alrica	220	220	50
British East Africa	220	240, 230,400	50
Conary lisands	110	127, 110	50
Egypt	200, 100	200, 110, 105, 110, 220	50
Ethiopia (Abyssinial Italian Alrica:	200, 100	220, 250 , 105, 110, 220	50,40 50
Cyrenaica	150		
Erimea	150	110, 150	50
Libya (Tripoli)	-	127 , 1250	50
Somaliland ISomolial	120	125, 110, 270	50, 42, 45
Morocco (Freneh)	110	230	$50^{\circ}$
Morocco (Spanish)	200	115, 110	50
Madagasear	-	127, 110, 115	50
Senagal (French]	230	120, 115, 110	50
Tunisia	110	1110	50
Union of South Africo (Br.)	$220,230,240,110$	220, 230, 240	
OCEANIA			
Australia:			
Now South Wales			
Vietoria	$230$	240	50
Queensland	220, 240	230	50
South Australio	200, 230, 220	240 , 230, 240	50
West Australia	220, 110,230	200, 230, 240	50
Tosmania	230 , 230	240	40
New Zeoland	230	240	50
Fiji lslands	240, 110, 250	240	50
Sociaty Islands	-	110	50 50
		120	60

from "World Electrical Current Characteristics," issued by U. S. Department of Commerce; October, 1948.
Caution: The listings in these tables reprosent typas of electrical supplies most genarally used in particular countries. For power-supply characteristics of particular citios of foreign countries, refer to the preceding reference, which may be obtained at nominal charge by addressing the Superintendent of Documents, Government Printing, Office,
Woshington 25 , D. C.

Voltages and frequencies ara listed in order of proference. Where both alternating and direct current are available, ovailable, each of the principal voltages are bold.

The electrical authorities of Great Britain have adopted a plan of unitying alectrical-distribution systams. The standard potential for both alfernating. and direct-current supplies will be 230 volts. Systoms using other voltages will
be changed over, The standard frequency will be 50 cycles.

## MISCELLANEOUS DATA 504

		最						를		-		$\begin{aligned} & 5 \\ & 0 \\ & 0 \\ & 8 \\ & 85 \\ & 95 \\ & 0.5 \\ & 0.5 \end{aligned}$								
	$\pm$								Midnite	0000	1:00am	2:00am	3:00am	5:300m	7:00am	8:000m	9:00am	10:00am	11:00am	
1:00pm	1:30pm	2:00pm	4:00pm	6:00pm		9:00pm	10:00pm	Midnite	1:000m	0100	2:00am	3:00am	4:00am	6:300m	9.00 mm	9:00am 10:00am	10:00om 11:00am	Noon	1:00pm	1:30pm
2:00pm	2:30pm	3:00pm	5:00pm	7:00pm 8.00 pm	8:00pm 9.00 pm	10:00pm	11:00pm	1:00am	2:000m	0200	3:000m	4:000m	5:00am	7:300m	9:00am	10:00am 11.00 om	11:000m Noon	$\begin{aligned} & \text { Noon } \\ & \text { 1:00pm } \end{aligned}$	2:00pm	2:30pm
3:00pm	3:30pm	4:00pm	6:00pm	8.00pm	9:00pm 10.00 pm	11:00pmm	Midnite	2:00am	3:000m	0300	4:00am	5:00am	6:000m	8.30 mm	10:000m	11:00am   Noon	Noon 1:00 pm	$\begin{aligned} & \text { 1:00pm } \\ & \text { 2:00pm } \end{aligned}$	$\begin{aligned} & \text { 2:00pm } \\ & 3: 00 \mathrm{pm} \end{aligned}$	3:30pm
4:00pm	4:30pm	5:00pm	7:00pm	9:00pm	10:00pm	Mldnite	1:00om	3:00am	4:00am	0400	5:00am	6:00am	7:00am	9:30am	11:00am	Noon	$\begin{aligned} & \text { 1:00pm } \\ & \text { 2:00 pm } \end{aligned}$	3:00pm	4:00pm	4:30pm
5:00pm	5:30pm	6:00pm	8:00pm	10:00pm	11:00pm	Midriro	2:000	4:00am	5:000m	0500	6:00am	7:00am	8:00am	10:300m	Noon	1:00pm	2:00pm	3:00pm   4:00pm	$\begin{aligned} & \text { 4:00pm } \\ & \text { 5:00pm } \end{aligned}$	5:30pm
6.00pm	6:30pm	7:00pm	9:00pm	11:00pm	Midnite	1:000m	2:000	5:000m	6:00a	0600	7:00a	8:00am	9:00am	11:30am	1:00pm	2:00pm	3:00pm	4:00pm	5.00pm	5:30pm
7:00pm	7:30pm	8:00pm	10:00pm	Midnite	:00am	2:000			7:00 0 m	0700	8:00am	9:00am	10,00am	12:30pm	2:00pm	3:00pm	4:00pm	.00pm		7:30pm
8:00pm	8:30pm	9:00pm	11:00pm	1:00am	2:00am	3:00am	4:00am		8:00	080	9:00am	10:00am	11:00am	1:30pm	3:00pm	4:00pm	5:00pm	6:00pm	7:00pm	8:30pm
9:00pm	9:30pm	10:00pm	Midnite	2:000m	3:00am			8:00	9:00	0900	10:000m	11:00am	Noon	2:30pm	4:00pm	5:00pm	6:00pm	00pm		$9: 30 \mathrm{pm}$
10:00pm	10:30pm	11:00pm	1:00am	3:00am	4:00am	5:000	, 00	9:00a		1000	11:00am	Noon	1:00pm	3:30pm	5:00pm	6:00pm	7:00pm	8:00pm	9:00pm	10:30 pm
11:00pm	11:30pm	Midnite	2:00am	4:0			8:000mm	10:00a	11:00	1100	Noon	1:00pm	2:00pm	4:30pm	6:00pm	7.00pm	8:00pm		11:00pm	11:30pm
Midnite	12:300m	1:00am	3:000m	6:00am	6:00am 7.00 am		9:000m	11:00am	Noon	1200	1:00pm	2:00pm	$3: 00 \mathrm{pm}$	5:30pm	7:00pm	8:00pm	10:00pmm	11:00pm	Midnile	12:30am
1:00am	1:30am	2:00am	4:00am	6:00am	8:00amm	9:000m	10:00am	Noon	1:00pm	1300	2:00pm	3,00pm	4:00pm	:30pm	8:00pm	9:00pm	\| 1:00pm	1.00pm	1:00am	1:300m
2:00am	2:30am	3:00am	5:000m	7;000m	9:00am	10:00am	11:00\%m	1:00pm	2:00pm	1400	3:00pm	4:00pm	00pm	7:30p	9:00pm	10:00	Midnite	1:00am	2:00am	2:30am
3:00am	3:30am	4:00am	6:00	9.000m	10:000m	11:00am	Noon	2:00pm	3:00pm	1500	4:00pm	5:00pm	6:00pm	30p	10,00pm	:00	1:00	2:000m	3:00am	3:300m
4:00am	4:30am	5:00am	7:00am	9:00am	11:00a	Noon	1:00pm	3:00pm	4:00pm	1600	5:00pm	.00pm	7:00pm	9:30p	11:00pm			.000	4:00am	4:30am
5:000m	5:30am	6:00am				1:00pm	2:00pm	4:00pm	:00	1700	6:00pm	7:00pm	8:00pm	10:30 pm	Midni				.00c	5:30am
6:00am	6:30am	7:00am	9:00am	1:000m	1:000m		3:00pm	5:00pm	6:00pm	1800	7:00pm	8:00pm	9:00pm	11:30pm	1:00am	2:00am		$: 000$	:00am	6:300m
7:00am	7:30am	8:000m	10:00am	Noon	1:00pm 2:00pm	3:00pm	4:00pm	6:00p	7:00pm	1900	8:00pm	9:00pm	10:00pm	12:30am	2:00am	$3:$	4:00am $5: 00 \mathrm{~mm}$		7:00am	7:300m
8:00am	8:300m	9:00am	11:00am	1:00pm 2.00 pm	.00pm	4:00pm	5:00pm	7:00pm	8:00.pm	2000	9:00pm	10:00pm	11:00pm	1:300m	3:000	4:000m		7:000m	8:00am	8:30am
9:00am	9:30am	10:000m	Noon	2:00pm	4:00pm	5:00pm	6:00pm	8:00pm	9:00pm	2100	10:00pm	11:00pm	Midnite	300m	4.000m		$\begin{aligned} & \text { 8:0 } \\ & 7: 0 \end{aligned}$	8:00am	9:00am	9:30am
10:000m	10:30am	11:000m	1:00pm	3:00pm	4:00pm	6:00pm	7:00pm	9:00.pm	10:00pm	2200	11:00pm	Midnite	1:000m	3:30	5:00am	6:000	7;0	9:00 om	10:000m	0:30am
11:00am	11:30am	Noon	2:00p	4:00pm 5:00pm	5:00pm	7:00pm	8:00pm	10:00pm	11:00pm	2300	Midnite	1:00am	2:00am	4:30	6:00am	7:00am			11:00am	11:30am
Noon	12:30pm	1:00pm	3:00pm	5:00pm 6:00pm		8:00pm	9:00pm	11:00pm	Mldnite	2400	1:00am	2:00am	3:000m	5:	7:00am	8:00am	9:00am	10:000m		
1:00pm	1:30pm	2:00pm	4:00pm	6:00		0:00pm		,								heav	-	0	A	

## Materials and finishes for tropical and marine use

Ordinary finishing of equipment fails in meeting satisfactorily conditions encountered in tropical and marine use. Under these conditions corrosive influences are greatly aggravated by prevailing higher relative humidities, and temperature cycling causes alternate condensation on, and evaporation of moisture from, finished surfaces. Useful equipment life under adverse atmospheric influences depends largely on proper choice of base materials and finishes applied. Especially important in tropical and marine applications is avoidance of electrical contact between dissimilar metals.
Dissimilar metals, widely separated in the galvanic series,* should not be bolted, riveted, etc., without separation by insulating material at the facing surfaces. The only exception occurs when both surfaces have been coated with the same protective metal, e.g., electroplating, hot dipping, galvanizing, etc.

In addition to choice of deterioration-resistant materials, consideration must be given to weight, need for a conductive surface, availability of ovens, appearance, etc.
Aluminum should always be anodized. Aluminum, steel, zinc, and cadmium should never be used bare. Electrical contact surfaces should be given copper-nickel-chromium or copper-nickel finish, and, in addition, they should be silver plated. Variable-capacitor plates should be silver plated.
All electrical circuit elements and uncoated metallic surfaces lexcept electrical contact surfaces) inside of cabinets should rece ive a coat of fungicidal moisture-repellant varnish or lacquer.

## Wood parts should receive:

a. Dip coat of fungicidal water repellent sealer.
b. One coat of refinishing primer.
c. Suitable topcoat.

* The galvanic series is given on p. 32.

Finish application table $\dagger$

material	Anish	remarks
Aluminum alloy	Anodizing	An electrochemical-oxidation surface treatment, for Improving corrosion resistance; not an electroplating process. For riveled or welded assemblies specily chromic acid anodizing. Do not onodize parts with nonaluminum Inserts. Colors vary: Yellowgreen, groy or black.
	"Alrok"	Chemical-dip oxide Ireatment. Cheap. Inferlor in abrosion and corrosion resistance to the anodizing process, but applicable to assemblies of alumunum and nonaluminum materials.

$\dagger$ By Z. Fox. Reprinted by permission from Producl Engineering, vol. 19, p. 161; January, 1948.

## Materials and finishes for tropical and marine use continued

material	finish	remarks
Magnesium alloy	Dichromate treatment	Corrosion-proventive dichromote dip. Yellow color.
Stainless steol	Passivating trearment	Nitric-acid immunizing dip.
Steel	Codmium	Electroplate, dull white color, good corrosion resistance, oasily scratched, goad thread anti-seize. Poor waar and galling resis fance.
	Chromium	Electroplare, excellant corrosion resistance and lustrous appeorance. Relatively expensive. Specily hard chrome plate for exceptionally hard abrasion-resistive surface. Has low coofficient of friction. Used to some extent on nonferrous metals particularly when die-cast. Chrome plated objects usually receive a bose electroplate of copper, then nickel, followed by chromium. Usod for build-up of parts that are undersized. Do not use on parts with deep recesses.
	"Bluaing"	Immarsion of cleaned and polishod steel into heoted saltpeter or carbonaceous material. Port then rubbed with linseed oil. Cheop. Poor corrosion resistance.
	Silver plate	Electroplate, frosted oppearance; buff to brighten. Tarnishes readily. Good bearing lining, for electrical confacts, reflectors.
	Zinc plate	Dip in molten zinc lgalvanizingl or electroplate of low-earbon or low-alloy steals. Low cost. Generally inferior to cadmium plate. Poor appearance. Poor wear resistance, eloctroplate has better adherence to bose metal than hot-dip coating, for improving corrosion resistonce, zinc-plated parts are given special inhibiting treatments.
	Nickel plate	Electroplato, dull whito. Does not protect steel from galvanic corrosion. If plating is broken, corrosion of base metol will be hastened. Finishes in dull white, polistod or block. Do nol use on ports with deep recosses.
	Block oxide dip	Nonmetallic chemieal block oxidizing troatment for steel, cast Iron, and wrought iron. Inferior to electroplato. No build-up. Suitabio for ports with close dimensional requirements as geors, worms and guides. Poor obrosion resistance.
	Phosphate treatment	Nonmetallic chemical treatment for steel and iron products Suitable for protection of internal surfaces of hollow parts Smail amount of surface build-up. Inferior to metolic elactroplate. Poor abrazion resistance. Good paint bose.
	Tin plate	Hot dip or electroplate. Excellant corrosion resistance, but if broken will not protect steel from galvanic corrosion. Also used for copper, bross and bronze parts which must be soldered ofter plating. Tin-plated parts can be severely worked and delormed without rupture of plating.
	Brass plate	Electroplate of copper and zinc. Applied to brass and steel parts where uniform appearance is desired. Applied to steel parts when bonding to rubber is desired.
	Copper plate	Electroplate applied preliminary to nickel or chrome plates. Also for parts to be brazed or protected against carburization Tarnishes reodily.
Copper and zinc alioys	Bright acid dip	Immersion of ports in acid solution. Clear lacquer applied to prevant parnich.
Brass, bronze, zinc diecasting alloys	Brass, chrome, nickel, fin	As discussed under steel.

## Small-motor selection guide*

type of motor		$\left\|\begin{array}{ll} 8 & \\ 0 & 6 \\ 0 & 6 \\ 6 & E \\ 8 & E \\ \hline \end{array}\right\|$	opplication dota
$\begin{aligned} & \text { e } \\ & \frac{2}{\mathrm{a}} \\ & \frac{\mathrm{E}}{\mathrm{E}} \end{aligned}$	Gencral purpose	1	For applications up to $1 / 3$-hp where medium starting and brcaklown torques are eufficient. Low starting current minimuses light flicker, making this type suitable for frequent starting, such as on oil burners, office appliances, fans, and blowers.
	High torque	2	Designed for continuous- and intermittent-duty applications where operation is infrequent and starting current in excess of NEMA valucs is not objectionable. ldeal for washing machines, ironers, sump pumps, and home-workshop machincs. May cause light flicker on underwired or overloaded lighting circuits.
	Two-speed (two windings)	3	Recommended for belted furnace blowers, attic ventilating fans, and similar belted mediumtorque jobs. Simplicity permits operation with any l-pole, double-throw switch or relay. Starts equally well on either speed-thus can be used with thermostatic or otler automatic control.
	$\begin{aligned} & \text { General-purpose } \\ & \text { (capacitor-start, } \\ & \text { induction-run) } \end{aligned}$	4	All-purpose motor for high starting torque, low starting eurrent, quietness, and economy. Efficiency and power factor among highest. Ideal for all heavy-duty drives, auch as compressors, pumps, stokers, refrigerators, and air conditioning.
	$\begin{aligned} & \text { Two-speed } \\ & \text { (capacitor-start, } \\ & \text { two windings) } \end{aligned}$	5	Similar to 2 -speed split-phase motor (sec No 3), and is used on identical applications requiring horsepower ratings from $1 / 3$ to $3 / 4 \mathrm{hp}$.
	Single-value (permanent split)	6	For direct-connected fan drives-particularly unit heaters. Not for belt drives. Adaptable for 1 -tpeed, 2 -speed, or multispeed service by use of 1 -pole, single-throw switch, 2 -pole, double-throw switch, or apeed controller, respectively. Fan load must be accurately matched to motor output for proper speed control.
\%	Shaded pole	7	Inclosed for fan duty in subfractional horsepower range-cooled by air flow over motor. Driveu fan load should be accurately matehed with motor output to get proper speed control.
	Split-phase	8	Definitely constant speed. Principal applications are on instruments, sound rccording and reproducing apparatus, teleprinters, and fascimile printers. Type selected depends largely on starting torque. No 10 is recommended where low wat tage input is desirable and low starting torque is sufficient. Nos 8 or 9 are recommended where higher starting torque is needed. Pull-in torque on all types is affected by inertia of connected load.
	Capacitor-start	9	
	Single-value capacitor	10	
	Polyphase	11	
	Squirrel Cage	12	For all applications where polyphase circuits are available. Extra high starting torque should be specified for such applications as hoists, door operators, twol traverse, and clamp motors.
	Shunt wound and compound wound	13	Companion d-e motor, osingle-phase and polyphase a-e motors. For all applicatione operated from d-e eircuits.
	Series wound	14	Companion motor to No 7 shaded pole for use on direct-current and 25 -to-40-cycle alternatcurrent circuits. Mects same application requirements.
	Noncompensated (salient-pole winding)   Cotnpensated (distributed winding)	15 16	Operatcs on either a-c or deccircuita. Inherently small sise and light weight for given horsepower output. Fundamentally a high-speed and varying-speed motor. Inherent speed characteristics, high starting torque and light weight, make motors especially suitable for such applications as sewing machines, portable tools, vacuum clanners, and motion-picture projectors. When higher power at lower speeds is required (large vacuum cleancrs and larger portable tools), No 16 is recommended.
	Governor controlled	17	Governor-controlled type permita utilizing the light-weight high-sjeed universal motor for conatant-speed applications. Two types of governors. One permits adjustment while running, and is used for such applications as electric typewriters and motion-picture projectors and camerus. The other is adjustable at standstill only, and is used for adding machines, calculating machines, and other constant-speed office machines.
* Reprinted by permission from American Machinist, vol. 87, pp. 115-116; December 9, 1943. This guide is general and does not include the motor field in its entirety. See following page for wiring data on the above types.			


	spoed data			approximate torque (4 poles)		built-In starting mechanism	reversibility		radio inter ference	opproximate comper olive price in percent
rang*	roted speed	speed charoeteristics	speed control	$\begin{aligned} & \text { start } \\ & \text { ing* } \end{aligned}$	breakdownt		$\begin{gathered} \text { of } \\ \text { rest } \end{gathered}$	$\ln _{\text {motion }}$		
$1 / 20$ 3   to 1   $1 / 3$ 1  	$\begin{array}{r} 3450 \\ 1725 \\ 1140 \\ 860 \\ \hline \end{array}$	Constant	None	Medium	Mediutn	Centrifugal switch	Yeschange connections	No-except with specia! design and relay	None	85
$1 / 6$ to $1 / 5$	1725	Constant	None	High	High	Centrifugal switch	Yeschange connections	No-except with special design and relay	None	80
$1 / 6$ $1 / 4$ $1 / 4$	$\begin{aligned} & \hline 1725 / 1140 \\ & 1725 / 860 \end{aligned}$	Two-speed	1-pole doublethrow 8witch	$\overline{\text { Medium }}$	Mediurn	Centrifugal switch	Yeschange connections	No	None	165
	$\begin{array}{r} 3450 \\ 1725 \\ 1140 \\ 860 \\ \hline \end{array}$	Constant	None	$\begin{aligned} & \text { Extra } \\ & \text { high } \end{aligned}$	Iligh to extra high	Centrifuga! switch	Yes- change con- nections	No-except with special design und relay	None	100
$\begin{array}{l\|l} \hline 1 / 6 & \frac{0}{1} \\ \text { to } \\ 3 / 4 \end{array}$	$\begin{aligned} & 1725 / 1140 \\ & 1725 / 860 \end{aligned}$	Two-speed	1-pole doubleswitch	$\overline{\text { Medium }}$	Medium	Centrifugal switch	Yes-   change con-   nections	No	None	200
$\begin{aligned} & 1 / 20 \\ & 10 \\ & 3 / 6 \end{aligned}$	1620 1080 820	Constant   or adjusta-   ble vary-   ink	$\qquad$   Two-speed awh autotransform	Low	Medium	None	Yeachange connections	No	None	125
$\begin{aligned} & \hline 1 / 300 \\ & \text { to } \\ & 1 / 30 \end{aligned}$	$\begin{aligned} & 1500 \\ & 1000 \end{aligned}$	Constant ur adjustable varying	Choke coil	Low	Low	None	No	No	None	-
$\begin{aligned} & 1 / 250 \\ & \text { to } \\ & 1 / 5 \end{aligned}$	$\begin{array}{r} 3600 \\ 1800 \\ 1200 \\ 900 \end{array}$	Absolutely constant	None	Low	Medium	Centrifugal switch	See No 1	See No 1	None	325
				Medium	Medium	$\begin{aligned} & \text { Centrifugal } \\ & \text { switch } \\ & \hline \end{aligned}$	See No 4	Sec No 4		
				Very low	Medium	None	Sce No 6	See No 6		
				Merium	Velium	None	See No 12	See No 12		
$\begin{aligned} & 1 / 6 \\ & \text { to } \\ & 3 / 4 \end{aligned}$	$\begin{array}{r} 3450 \\ 1725 \\ 1140 \\ 860 \\ \hline \end{array}$	Constant	None	High	$\begin{aligned} & \hline \text { Extra } \\ & \text { high } \end{aligned}$	None	'cschange connections	Yes- chanue con- nections	None	140
$\begin{aligned} & \overline{1 / 20} \\ & 10 \\ & \% / 6 \end{aligned}$	$\begin{array}{r} 3+50 \\ 1725 \\ 1140 \\ 860 \\ \hline \end{array}$	Conetant or adjustable varying	Armature resistance	$\begin{aligned} & \text { Extra } \\ & \text { high } \end{aligned}$	-	None	Ye changeconnections	No-except with special design	Yea	185
$\begin{aligned} & \hline 1 / 125 \\ & 10 \\ & 1 / 30 \end{aligned}$	$\begin{aligned} & 900 \\ & \text { to } \\ & 2000 \end{aligned}$	Varyingor adjustable varying	Resistance	$\begin{aligned} & \hline \text { Fxtra } \\ & \text { high } \end{aligned}$	-	None	Yeschange connections	No-except with special design	Yes	-
$1 / 150$   10   $3 /$ integral   hp)   1	$\begin{aligned} & 1500 \\ & t 0 \\ & 15000 \\ & 15 \end{aligned}$	Varying	Voltake control using resistatice or transformer	Extra	-	None	No-except with special design	$\begin{aligned} & \text { No-except } \\ & \text { with special } \\ & \text { design } \end{aligned}$	Yea	-
$\begin{aligned} & \hline 1 / 40 \\ & \text { to } \\ & 21 / 2 \\ & \text { (integral } \\ & \text { hp) } \\ & \hline \end{aligned}$	$\begin{aligned} & 2500 \\ & \text { to } \\ & 15000 \end{aligned}$	Varying		$\begin{aligned} & \text { Extra } \\ & \text { high } \end{aligned}$	-	None	No-except with special design	No-except with special design	Yes	-
$\begin{aligned} & 1 / 50 \\ & \text { to } \\ & 1 / 20 \end{aligned}$	$\begin{aligned} & 2000 \\ & 2000 \\ & 6000 \end{aligned}$	Adjustable constant	Adjustable governor	$\begin{aligned} & \hline \text { Extra } \\ & \text { high } \end{aligned}$	-	None	No-except with special deaign	No-except with special design	Yes	-

* Starting torque in percent of full-load torque is

Low- $<100$; medium- $100-200$; high- $200-300$; exlro high- $>300$.
$\dagger$ Breakdown torque in percent of full-load torque is Low- < 150 ; medium- $150-225$; high - $225-300$; extra high- $>300$.

560

Electric-motor data conlinued

Wiring diagrams for small motors*


No. 3-Alternating-current two-speed

No. 4-Alternating-current capacitor, general purpose
No. 9-Synchronous, capacilor-start


No. 5-Alternating-current capacitor, two-speed


No. 6-Alternating-current capacitor, single-value
No. 10 - Synchronous, single-value copacitor


No. 7-Shoded pole

squirrel-cage rotor
ceer
main winding waing auxiliary winding
line terminals
Ther

centrifugal starting switches

[^60]

capacitor

wound rotor with commutator


3-phase primary resistor


governor contacts

562
Electric-motor data
cantinued
Wiring and fusing data*

single phase-115 volts							single phase-230 volis					
$\begin{gathered} \mathrm{hp} \\ \text { of } \\ \text { motor } \end{gathered}$	current rating amperes	minimum size wire AWG or MCM		condull size $\dagger$		maximum punning fuse amperes	current paling amperes	minimum size wire AWG or MCM		condult size $\dagger$		maximum running fuse amperes
		type   R of $T$	$\begin{aligned} & \text { type } \\ & \text { RH } \end{aligned}$	type   $R$ or $T$	type RH			Pype   R or $T$	TYpe RH	type   R or $T$	$\begin{gathered} \text { type } \\ \text { RH } \\ \hline \end{gathered}$	
1/2	7.4	14	14	1/2	1/2	10	3.7	14	14	1/2	1/2	6
3/4	10.2	14	14	1/2	1/2	15	5.1	14	14	$1 / 2$	$1 / 2$	8
1	13	12	12	1/2	1/2	20	6.5	14	14	1/2	1/2	10
$11 / 2$	18.4	10	10	$3 / 4$	$3 / 4$	25	9.2	14	14	1/2	1/2	12
2	24	10	10	$3 / 4$	$3 / 4$	30	12	14	14	$1 / 2$	1/2	15
$3^{\circ}$	34	6	8	1	$3 / 4$	45	17	10	10	$3 / 4$	$3 / 4$	25
5	56	4	4	11/4	$11 / 4$	70	28	8	8	1/4	$3 / 4$	35
$71 / 2$	80	1	3	11/2	11/4	100	40	8	8	,	1	50
10	100	1/0	1	$11 / 2$	$11 / 2$	125	50			11/4	1	60

3-phase induction-220 volis:

$1 / 2$	2	14	14	$1 / 2$	$1 / 2$	3
$3 / 4$	2.8	14	14	$1 / 2$	$1 / 2$	4
1	3.5	14	14	$1 / 2$	$1 / 2$	4
$11 / 2$	5	14	14	$1 / 2$	$1 / 2$	8
2	6.5	14	14	$1 / 2$	$1 / 2$	8
3	9	14	14	$1 / 2$	$1 / 2$	12
5	15	12	12	$1 / 2$	$1 / 2$	20
$71 / 2$	22	10	10	$1 / 4$	$1 / 4$	30
10	27	8	8	$1 / 4$	$1 / 4$	35

direct current-115 valts

$1 / 2$	4.6	14	14	$1 / 2$	$1 / 2$	6	2.3	14	14	$1 / 2$	$1 / 2$	3	
$3 / 4$	6.6	14	14	$1 / 2$	$1 / 2$	10	3.3	14	14	$1 / 2$	$1 / 2$	4	
1	8.6	14	14	$1 / 2$	$1 / 2$	12	4.3	14	14	$1 / 2$	$1 / 2$	6	
$11 / 2$	12.6	12	12	$1 / 2$	$1 / 2$	15	6.3	14	14	$1 / 2$	$1 / 2$	8	
2	16.4	10	10	$3 / 4$	$3 / 4$	20	8.2	14	14	$1 / 2$	$1 / 2$	12	
3	24	10	10	$1 / 4$	$3 / 4$	30	12	14	14	$1 / 2$	$1 / 2$	15	
5	40	6	6	1	1		50	20	10	10	3	$3 / 4$	25
$71 / 2$	58	3	4	$11 / 4$	$11 / 4$	70	29	8	8	$1 / 4$	$3 / 4$	40	
10	76	2	3	$11 / 4$	$11 / 4$	100	38	6	6	1	1	50	

* Reprinted by permission from General Electric Supply Corp. Catalogue; 94WP. Adapted from 1947 National Electrical Code.
$\dagger$ Conduit size based on three conductors in one conduit for 3-phase alternating-current motors, and on two conductors in one conduit for direct-current and single-phase motors.


## Torque and horsepower

Torque varies directly with power and inversely with rotating speed of the shaft, or
$T=K P / N$
where $T=$ torque in inch-pounds, $P=$ horsepower, $N=$ revolutions/minute, and $K$ (constant) $=63,000$.

## Elecłric-mofor dafa

continued
Example 1: For a two-horsepower motor rotating at 1800 rpm ,
$T=\frac{63,000 \times 2}{1800}=70$ inch-pounds
If the shaft is 1 inch in diameter, the force at its periphery
$F=\frac{T}{\text { radius }}=\frac{70 \text { inch-pounds }}{0.5}=140$ pounds
Example 2: If 150 inch-pounds torque are required at 1200 rpm ,
$150=\frac{63,000 \times h p}{1200} \quad$ horsepower $=\frac{150 \times 1200}{63,000}=2.86$

## Transmission-line sag calculations*

For transmission-line work, with towers on the same or slightly different levels, the cables are assumed to take the form of a parabola, instead of their actual form of a catenary. The error is negligible and the computations are much simplified. In calculating sags, the changes in cables due to variations in loads and temperature must be considered.


For supports at same level: The formulas used in the calculations of sags are
$H=W L^{2} / 8 S$
$S=W L^{2} / 8 H=\sqrt{\left(L_{c}-L\right) 3 L / 8}$
$L_{c}=L+8 S^{2} / 3 L$

[^61]
## Transmission-line sag calculations continued

where
$L=$ length of span in feet
$L_{c}=$ length of cable in feet
$S=$ sag of cable at center of span in feet
$H=$ tension in cable at center of span in pounds
$=$ horizontal component of the tension at any point
$W=$ weight of cable in pounds per lineal foot
Where cables are subject to wind and ice loads, $W=$ the algebraic sum of the loads. That is, for ice on cables, $W=$ weight of cables plus weight of ice; and for wind on bare or ice-covered cables, $W=$ the square root of the sum of the squares of the vertical and horizontal loads.

For any intermediate point at a distance $x$ from the center of the span, the sag is
$S_{x}=S\left(1-4 x^{2} / L^{2}\right)$

## For supports at different levels

$S=S_{0}=\frac{W L_{0}^{2} \cos a}{8 T}=\frac{W L^{2}}{8 T \cos a}$
$S_{1}=\frac{W L_{1}{ }^{2}}{8 H}$
$S_{2}=\frac{W L_{2}{ }^{2}}{8 \mathrm{H}}$
$\frac{L_{1}}{2}=\frac{L}{2}-\frac{h H \cos a}{W L}$
$\frac{L_{8}}{2}=\frac{L}{2}+\frac{h H \cos a}{W L}$
$L_{c}=L+\frac{4}{3}\left(\frac{S_{1}{ }^{2}}{L_{1}}+\frac{S_{2}{ }^{2}}{L_{2}}\right)$
where
$W=$ weight of cables in pounds per lineal foot between supports or in direction of $L_{0}$
$T=$ tension in cable direction parallel with line between supports

## Transmission-line sag calculations

conlinued

The change $l$ in length of cable $L_{c}$ for varying temperature is found by multiplying the number of degrees $n$ by the length of the cable in feet times the coefficient of linear expansion per foot per degree fahrenheit $c$. This is*
$l=L_{c} \times n \times c$
A short approximate method for determining sags under varying temperatures and loadings that is close enough for all ordinary line work is as follows:

supports at differenl elovalions
a. Determine sag of cable with maximum stress under maximum load at lowest temperature occurring at the time of maximum load, and find length of cable with this sag.
b. Find length of cable at the temperature for which the sag is required.
c. Assume a certain reduced tension in the cable at the temperature and under the loading combination for which the sag is required; then find the decrease in length of the cable due to the decrease of the stress from its maximum.
d. Combine the algebraic sum of (b) and (c) with (a) to get the length of the cable under the desired conditions, and from this length the sag and tension can be determined.
e. If this tension agrees with that assumed in (c), the sag in (d) is correct. If it does not agree, another assumption of tension in (c) must be made and the process repeated until (c) and (d) agree.

[^62]566

## Summary of Joint Army-Navy nomenclature sysiem

The Joint Army-Navy or AN nomenclature system has been introduced to eliminate confusing and conflicting designations formerly used by the armed services, and to provide a nomenclature that in itself gives a brief description of the article designated. In the AN system, nomenclature consists of a name followed by a type number. The name will be terminology of standard engineering usage, e.g., Radio Receiver, Switchboard, etc. The type number will consist of indicator letters shown below, and an assigned number. Additional symbols are added as required. An example is


## Nomenclature policy

AN nomenclature will be assigned to:
a. Complete sets of equipment and major components of military design.
b. Groups of articles of either commercial or milifary design that are grouped for a military purpose.
c. Major articles of military design that are not part of or used with a set.
d. Commercial articles when nomenclature will facilifate milifary identification and/or procedures.
AN nomenclature will not be assigned to:
a. Articles cataloged commercially except in accordance with paragraph (d) above.
b. Minor components of military design for which other adequate means of identification are available.
c. Small parts such as capacitors and resistors.
d. Articles having other adequate identification in American War Standard or Joint Army-Navy Specifications.
Nomenclature assignments will remain unchanged regardless of later changes in installation and/or application. .

Summary of Joint Army-Navy nomenclature system continued

## Set or equipment indicator letters

type of installation	type of equipment	purpose
A Airborne	A Invisible light, heat radiation	A Auxiliary assemblies inot complete operating sets)
B Underwater mobile, submarine	B Pigeon	B Bombing
C Air transportable linactivated, do not use)	C Carrier (wire)	C Communications
D Pilotless carrier		D Direction finder
F Ground, fixed	F Photographic	
G Ground, general ground use lincludes two or more ground installations)	G Telegraph or teletype (wire)	G Gun directing
		H Recording lphotographic, meteorological, and sound)
	I Interphone and public address	
		」 Countermeasures
$K$ Amphibious	$K$ Telemetering	
		L Searchlight control
$M$ Ground, mobile in a vehicle which has no function other than transporting the equipment	M Moteorological	M Maintenance and test assemblies
	$N$ Sound in air	N Navigational aids
P Ground, pack, or portable	P Radar	P Reproducing lphotographic and sound)
	Q Underwater sound	Q Special, or combination of types
	R Radio	$R$ Receiving
S Shipboard	S Special types, magnetic, etc., or combinations of types	S Search
T Ground, transportable	T Telephone (wire)	T Transmitting
U General utility lincludes two or more general installation classos, airborne, shipboard, and ground)		
	$\checkmark$ Visual and visible light	
W Underwater, fixed		WRemote contral
	$X$ Facsimile or television	$X$ Identification and recog. nition

Table of component indicators

indicatar	family name	indicalar	family name
$A B$	Supports, Antenna	MX	Miscellaneous
AM	Amplifiers	$\bigcirc$	Oscillators
AS	Antenna Assemblies	OA	Operating Assamblies
AT	Antennas	OS	Oscilloscopo, Tost
BA	Battery, primary type	PD	Prime Drivers
BB	Battery, secondary type	PF	Fittings, Pole
BZ	Signal Dovicos, Audible	PH	Photographic Arriclos
C	Control Articlos	PP	Power Supplies
CA	Commutator Assemblies, Sonar	PT	Plotting Equipments
CB	Capacitor Bank	PU	Power Equipments
CG	Cabies and Trans. Line, R.F.	$R$	Rodio and Radar Recoivers
CK	Crystal Kits	RD	Recorders and Reproducers
CM	Comparators	RE	Relay Assemblies
CN	Compensators	RF	Radio Frequency Component
CP	Computers	RG	Cables and Trans. Line, Bulk R.F.
CR	Crystals	RL	Reol Assomblios
CU	Coupling Dovices	RP	Rope and Twine
CV	Converters lelectronicl	RR	Reflectors
CW	Covers	RT	Recoiver and Transmittei
CX	Cords	S	Shelters
CY	Cases	SA	Switching Dovices
DA	Antenna, Dummy	SB	Switchboards
DT	Detecting Heads	SG	Generotors, Signal
DY	Dynamotors	SM	Simulators
E	Hoist Assembly	SN	Synchronizers
F	Filters	ST	Straps
FN	Furnitura	T	Radio and Radar Transmitters
FR	Frequency Measuring Dovices	TA	Telephone Apparatus
G	Generators	TD	Timing Devices
GO	Goniometers	TF	Transformers
GP	Ground Rods	TG	Positioning Dovicos
H	Head, Hand, and Chest Sets	TH	Telegraph Apparatus
HC	Crystal Holder	TK	Tool Kits or Equipments
HD	Air Conditioning Apparatus	TL	Tools
ID	Indicating Devices	TN	Tuning Units
II	Insulators	TS	Test Equipment
IM	Intensity Moasuring Dovicos	TT	Teletype and Facsimile Apporatus
IP	Indicators, Cathode-Ray Tube	TV	Testor, Tube
J	Junction Devices	U	Connectors, Audio and Power
KY	Koying Dovices	UG	Connectors, R.F.
IC	Tools, Line Construction	$V$	Vohiclos
LS	Loudspeakers	VS	Signaling Equipment, Visual
M	Microphones	WD	Cables, Two-Conductor
MD	Modulators	WF	Cables, Four-Conductor
ME	Meters, Portable	WM	Cables, Multiplo-Conductor
MK	Maintenance Kits or Equipments	WS	Cables, Single-Conductor
ML	Meteorological Devices	WT	Cables, Three-Conductor
MT	Mountings	ZM	Impedance Measuring Devices

## Summary of Joint Army-Navy nomenclature system cantinued

## Experimental indicators

In order to identify a set or equipment of an experimental nature with the development organization concerned, the following indicators will be used within the parentheses:
XA Aircraft Radio Laboratory, Wright Field, Dayton, Ohio
XB Naval Research Laboratory, Anacostia Station, Belleville, D. C.
XC Coles Signal Laboratory, Red Bank, New Jersey
XE Evans Signal Laboratory, Belmar, New Jersey
XG USN Electronic Laboratory, San Diego, California
XM Squier Signal Laboratory, Fort Monmouth, New Jersey
XN Navy Department, Washington, D. C.
XU USN Underwater Sound Laboratory, Fort Trumbull, New London, Connecticut
XW Watson Laboratories, Red Bank, New Jersey

## Examples of AN type numbers

AN/ARC-3 () General reference for the third airborne radio set for communication to be assigned AN nomenclature, not necessarily used by both Army and Navy.
AN/ARC-3(XA-2) Second experimental type developed for Aircraft Radio Laboratories

AN/ARC-3 Original procurement type.
AN/ARC-3C Third modification, functionally interchangeable, not in detail. Same frequency range.
AN/ARC-3Z $X, Y, Z$ used to indicate change in power source; may be voltage, phase, or frequency.
AN/ARC-3-T1 () General reference for training set for AN/ARC-3 (1.
AN/ARC-TI First general airborne radio training set.
T-22/ARC-3 Original procurement type of transmitter No. 22, part of, or used with, AN/ARC-3.
T-22A/ARC-3 Interchangeable with above, physically, electrically, and mechanically; as a whole, not parts.
RG-8/U Bulk radio-frequency cable for general use on several types of equipment for several purposes.

## General*

The following four basic laws of electromagnetism for bodies at rest are derived from the fundamental, experimental, and theoretical work of Ampére and Faraday, and are valid for quantities determined by their average values in volumes that contain a very great number of molecules (macroscopic electromagnetism).

## Statement of four basic laws rationalized mks units

a. The work required to carry a unit magnetic pole around a closed path is equal to the total current linking that path, that is, the total current passing through any surface that has the path for its periphery. This total current is the sum of the conduction current and the displacement current, the latter being equal to the derivative with respect to time of the electric induction flux passing through any surface that has the above closed path for its periphery.
b. The electromotive force (e.m.f.) induced in any fixed closed loop is equal to minus the time rate of change of the magnetic induction flux $\phi_{B}$ through that loop. By electromotive force is meant the work required to carry a unit positive charge around the loop.
c. The total flux of electric induction diverging from a charge $Q$ is equal to $Q$ in magnitude.
d. Magnetic-flux lines are continuous (closed) loops. There are no sources or sinks of magnetic flux.

## Expression of basic laws in integral form

a. $\int_{0} \mathbf{H} \cdot \mathbf{d s}=I_{\text {totul }}=I_{\text {conduction }}+\frac{\partial \phi_{D}}{\partial t}$
where

$$
\begin{aligned}
\int_{0} & =\text { a line integral around a closed path } \\
d s & =\text { vector element of length along path } \\
\mathbf{H} & =\text { vector magnetic field intensity } \\
\phi_{\mathrm{D}} & =\text { electric induction flux }
\end{aligned}
$$



[^63]b. $\int_{0} E \cdot d s=-\frac{\partial \phi_{B}}{\partial t}$

The time rate of change of $\phi_{B}$ is written as a partial derivative to indicate that the loop does not move the coordinates of each point of the loop remain fixed during integration). $E$ is the vector electric-field intensity.

c. $\int_{8} \mathbf{D} \cdot \mathbf{d S}=\mathrm{Q}$
where
$S=$ any closed surface
dS $=$ vector element of $S$
$\mathbf{D}=$ vector electric-llux density
$Q=$ the net electric charge within $S$
and the integral indicates that D.dS is to be calculated for each element of $S$ and summed.

$S=$ total surface $\mathbf{Q}=$ total charge inside $\mathbf{S}$
d. $\int_{0} \mathbf{B} \cdot \mathbf{d S}=0$
where
$\mathbf{B}=$ vector magnetic-flux density.


B lines are closed curvos; as many ontor region as leave it.

general form	sfafic case	steady-state	quasi-steady-state	free-space	free-space single-frequency
$\begin{aligned} & \left.\begin{array}{c} \text { curl } \mathrm{H} \\ \nabla \times \mathrm{H} \end{array}\right\}=j_{c}+\frac{\partial \mathrm{D}}{\partial t} \\ & j_{c}=\begin{array}{c} \text { conduction current } \\ \text { density } \end{array} \end{aligned}$	$\left.\begin{array}{rl} \text { curl } \boldsymbol{H} \\ \nabla \times \mathbf{H} \end{array}\right\}=0$	$\left.\begin{array}{r} \text { eurl } \boldsymbol{H} \\ \nabla \times \mathbf{H} \end{array}\right\}=\boldsymbol{j}_{\boldsymbol{c}}$   Conducting current exists but time derivatives are zero	$\left.\begin{array}{r} \text { curl } \mathbf{H} \\ \nabla \times \mathbf{H} \end{array}\right\} \approx j_{c}$   $\mathrm{D} / \mathrm{dr}$ can be neglected oxcept in capacitors lac at industrial power frequencies)	$\left.\begin{array}{rl} \text { curl } \mathbf{H} \\ \nabla \times \mathbf{H} \end{array}\right\}=\frac{\partial \mathrm{D}}{\partial t}, \begin{gathered} \\ \\ \\ =\epsilon_{0} \frac{\partial \mathrm{E}}{\partial t} \end{gathered}$   $\boldsymbol{j}_{c}=0$ and $\epsilon_{0}$ is the di. electric constant of frea space	$\left.\begin{array}{c} \text { curl } \mathbf{H} \\ \nabla \times \mathbf{H} \end{array}\right\}=j \omega \epsilon_{0} \mathbf{E}$   $\omega=2 \pi f=$ angular fro. quency, $f=$ the frequency considered, and $j=\sqrt{-1}$
b $\left.\begin{array}{c}\text { curl } E \\ \nabla \times E\end{array}\right\}=-\frac{\partial \mathrm{B}}{\partial t}$	$\left.\begin{array}{r} \text { curl E } \\ \nabla \times E \end{array}\right\}=0$	$\left.\begin{array}{c}\text { curl } \mathbf{E} \\ \nabla \times \mathbf{E}\end{array}\right\}=0$	$\left.\begin{array}{c}\text { curl E } \\ \nabla \times \mathbf{E}\end{array}\right\}=-\frac{\partial \mathrm{B}}{\partial t}$	$\left.\begin{array}{rl} \text { curl } \mathbf{E} \\ \nabla \times E \end{array}\right\}=-\frac{\partial \mathrm{B}}{\partial t}, \begin{aligned} & \\ &=-\mu_{0} \frac{\partial \mathrm{H}}{\partial t} \end{aligned}$   $\mu_{0}=$ magnetic parmeability of free space	$\left.\begin{array}{c}\text { curl } \mathbf{E} \\ \nabla \times \mathbf{E}\end{array}\right\}=-j \omega \mu_{0} \mathbf{H}$
$\begin{aligned} & \begin{array}{c} \text { Civ D } \\ \operatorname{div} \\ \nabla \cdot \mathbf{D} \end{array}\}=\rho \\ & \rho= \text { charge density } \\ &= \text { charge per unit } \\ & \text { volume } \end{aligned}$	$\left.\begin{array}{c}\operatorname{div} \mathbf{D} \\ \nabla \cdot \mathbf{D}\end{array}\right\}=\rho$	$\left.\begin{array}{c}\operatorname{div} \mathrm{D} \\ \nabla \cdot \mathrm{D}\end{array}\right\}=\rho$	$\left.\begin{array}{l}\operatorname{div} \mathrm{D} \\ \nabla \cdot \mathrm{D}\end{array}\right\}=\rho$	$\left.\begin{array}{c} \operatorname{div} E \\ \nabla \cdot \mathbf{E} \end{array}\right\}=0$	$\left.\begin{array}{c} \operatorname{div} E \\ \nabla \cdot E \end{array}\right\}=0$
	$\left.\begin{array}{c}\operatorname{div} \mathbf{B} \\ \nabla \cdot \mathbf{B}\end{array}\right\}=0$	$\left.\begin{array}{c}\operatorname{div} \mathrm{B} \\ \nabla \cdot \mathrm{B}\end{array}\right\}=0$	$\left.\begin{array}{c}\operatorname{div} \mathrm{B} \\ \nabla \cdot \mathrm{B}\end{array}\right\}=0$	$\left.\begin{array}{r}\operatorname{div} \mathbf{H} \\ \nabla \cdot \mathbf{H}\end{array}\right\}=0$	$\left.\begin{array}{rl}\operatorname{div} \boldsymbol{H} \\ \boldsymbol{\nabla} \cdot \boldsymbol{H}\end{array}\right\}=\mathbf{O}$

## Notes:

For an explanation of the operator $\nabla$ (dell) and the associated vector operations see p. 616 in the "Mathematical formulas" chapter.
$\left.\begin{array}{l}\epsilon_{0}=\frac{1}{36 \pi \times 10^{9}} \text { farad } / \text { meter } \\ \mu_{0}=4 \pi \times 10^{-7} \text { henry/meter }\end{array}\right\} \begin{aligned} & \text { in the rationalized meter-kilogram-second } \\ & \text { system of units. }\end{aligned}$
Maxwell's equations obey the law of conservation of electric charges, the integral form of which is
$I=-\partial Q_{i} / \partial t$
$Q_{i}=$ net sum of all electric charges within a closed surface $S$
$I=$ outgoing conduction current
and the derivative form
$\operatorname{div} j_{c}=-\partial \rho / \partial \dagger$

Boundary conditions at the surface of separation between two media 1 and 2 are

$$
\begin{array}{ll}
\mathbf{H}_{2 T}-\mathbf{H}_{1 T}=j_{8} \times \mathbf{N}_{1,2}^{\circ} & \mathbf{B}_{2, N}-\mathbf{B}_{1, v}=0 \\
\mathbf{E}_{2 T}-\mathbf{E}_{1 T}=0 & \mathbf{D}_{2, v}-\mathbf{D}_{1, N}=\sigma
\end{array}
$$

Subscript $T$ denotes a tangential, and subscript $N$ a normal component. $\mathbf{N}^{\circ}{ }_{1,2}=$ unit normal vector from medium 1 to medium 2, which is the positive direction for normal vectors
$j_{s}=$ convection current density on the surface, if any
$\sigma=$ density of electric charge on the surface of separation

## Retarded potentials H. A. Lorentz

Consider an electromagnetic system in free space in which the distribution of electric charges and currents is assumed to be known. From the four basic equations in derivative form:
curl $H=j_{c}+\epsilon_{0} \frac{\partial E}{\partial t}$
curl $E=-\mu_{0} \frac{\partial H}{\partial t}$
$\operatorname{div} \mathbf{H}=0$

$$
\operatorname{div} E=\frac{\rho}{\epsilon_{0}}
$$

## Retarded potentials

two retarded potentials can be determined:
one scalar, $\phi=\frac{1}{4 \pi \epsilon_{0}} \int_{\infty} \frac{\rho^{*} d V}{r} \quad$ one vector, $\mathbf{A}=\frac{1}{4 \pi} \int_{\infty} \frac{j_{c}^{*}}{r} d V$
The asterisks mean that the values of the quantities are taken at time $t-r / c$, where $r$ is the distance from the location of the charge or current to the point $P$ considered, and $c=$ velocity of propagation $=$ velocity of light $=1 / \sqrt{\epsilon_{0} \mu_{0}}$.
The electric and magnetic fields at point $P$ are expressed by
$\mathbf{H}=$ curl $\mathbf{A}$ $\mathbf{E}=-\operatorname{grad} \phi-\mu_{0} \frac{\partial \mathbf{A}}{\partial t}$

## Fields in terms of one vector only Hertz vectar

The previous expressions imply a relation between $\phi$ and $\mathbf{A}$
$\operatorname{div} \mathbf{A}=-\epsilon_{0} \frac{\partial \phi}{\partial t}$
Consider a vector $\Pi$ such that $\mathbf{A}=\partial \Pi / \partial t$. Then for all variable fields
$\phi=-\frac{1}{\epsilon_{0}} \operatorname{div}$ II
The electric and magnetic fields can thus be expressed in terms of the vector II only
$H=\operatorname{curl} \frac{\partial \Pi}{\partial t}$
$\mathbf{E}=\frac{1}{\epsilon_{0}} \operatorname{grad} \operatorname{div} \Pi-\mu_{0} \frac{\partial^{2} \Pi}{\partial t^{2}}$

## Poynting vector

Consider any volume $V$ of the previous electromagnetic system enclosed in a surface $S$. It can be shown that

$$
-\int_{V} \mathbf{E} \cdot j_{c} d V=\frac{\partial}{\partial t} \int_{V}\left(\frac{\epsilon_{0} E^{2}}{2}+\frac{\mu_{0} H^{2}}{2}\right) d V+n u x_{S} \mathbf{E} \times \mathbf{H}
$$

The rate of change with time of the electromagnetic energy inside $V$ is equal to the rate of change of the amount of energy localized inside $V$

## Poynting vector continued

plus the flux of the vector $\mathbf{E} \times \mathbf{H}$ through the surface $S$ enclosing said volume $V$. The vector product $\mathbf{E} \times \mathbf{H}$ is called the Poynting vector.
In the particular case of single-frequency phenomena, a complex Poynting vector $\mathbf{E} \times \mathbf{H}^{*}$ is often utilized $\left(\mathbf{H}^{*}\right.$ is the complex conjugate of $\left.\mathbf{H}\right)$. It can be shown that

$$
-\int_{V} \frac{\mathbf{E} \cdot j_{c}^{*}}{2} d V=2 j \omega \int_{V}\left(\mu_{0} \frac{H H^{*}}{4}-\epsilon_{0} \frac{E E^{*}}{4}\right) d V+\text { flux } s \frac{\mathbf{E} \times \mathbf{H}^{*}}{2}
$$

This shows that in case there is no conduction current inside $V$ and the flux of the complex Poynting vector out of $V$ is zero, then the mean value per period of the electric and magnetic energies inside $V$ are equal.

## Superposition theorem

The mathematical form of the four basic laws llinear differential equations with constant coefficientsl shows that if two distributions $\mathbf{E}, \mathbf{H}, j_{c}, \rho$, and $\mathbf{E}^{\prime}, \mathbf{H}^{\prime}, j_{c}{ }^{\prime}, \rho^{\prime}$, satisfy Maxwell's equations, they are also satisfied by any linear combination $E+\lambda E^{\prime}, H+\lambda H^{\prime}, j_{c}+\lambda j_{c}{ }^{\prime}$, and $\rho+\lambda \rho^{\prime}$.

## Reciprocity theorem

Let $j_{c}$ be the conduction current resulting in any electromagnetic system from the action of an external electric field $\mathbf{E}_{a}$ and $j_{c}{ }^{\prime}$ and $\mathbf{E}_{a}{ }^{\prime}$ be the corresponding quantities for another possible state; then
$\int_{\infty}\left(\mathbf{E}_{a} \cdot j_{c}{ }^{\prime}-\mathbf{E}_{a}{ }^{\prime} \cdot j_{c}\right) d V=0$
This is the most useful way of expressing the general reciprocity theorem (Carson). It is valid provided all quantities vary simultaneously according to a linear law lexcluding ferromagnetic substances, electronic space charge, and ionized-gas phenomenal. A particular application of this general reciprocity theorem will be found on p. 89.

## Maxwell's equations in different systems of coordinates

When a particular system of coordinates is advantageously used, such as cylindrical, spherical, etc., the components are derived from the vector equations by means of the formulas included in the chapter "Mathematical formulas," pages 618 and 619.

Mathematical formulas

## Mensuration formulas

## Areas of plane figures

Parallelogram Area = bh

Mensuration formulas continued


Sector of circle


## Parabola



Area $=\frac{b r}{2}=\pi r^{2} \frac{\theta}{360^{\circ}}$

578
Ellipse Area $=\pi a b$

## Area of irregular plane surface



Trapezoidal rule
Area $=\Delta\left(\frac{y_{1}}{2}+y_{2}+y_{3}+\ldots+y_{n-2}+y_{n-1}+\frac{y_{n}}{2}\right)$
Simpson's rule: $n$ must be odd
Area $=\frac{\Delta}{3}\left(y_{1}+4 y_{2}+2 y_{3}+4 y_{4}+2 y_{5}+\ldots+2 y_{n-2}+4 y_{n-1}+y_{n}\right)$ $y_{1}, y_{2}, y_{3} \ldots y_{n}=$ measured lengths of a series of equidistant parallel chords

## mathematical formulas 579

Mensuration formulas
continued

## Surface areas and volumes of solid figures

Agure	formula
Sphere	$\begin{aligned} & \text { Surface }=4 \pi r^{2}=12.5664 r^{2}=\pi d^{2} \\ & \text { Volume }=\frac{4 \pi r^{3}}{3}=4.1888 r^{3} \end{aligned}$
Sector of sphere	$\begin{aligned} \text { Total surface } & =\frac{\pi r}{2}(4 h+c) \\ \text { Volume } & =\frac{2 \pi r^{2} h}{3}=2.0944 r^{2} h \\ & =\frac{2 \pi r^{2}}{3}\left(r-\sqrt{r^{2}-\frac{c^{2}}{4}}\right) \\ c & =\sqrt{4\left(2 h r-h^{2}\right)} \end{aligned}$
Segment of sphere	$\begin{aligned} & \text { Spherical surface }=2 \pi \pi h=\frac{\pi}{4}\left(c^{2}+4 h^{2}\right) \\ & \qquad \begin{aligned} \text { Volume } & =\pi h^{2}\left(r-\frac{h}{3}\right) \\ & =\pi h^{2}\left(\frac{c^{2}+4 h^{2}}{8 h}-\frac{h}{3}\right) \end{aligned} \end{aligned}$
Cylinder	$\begin{aligned} \text { Cylindrical surface } & =\pi \mathrm{d} h=3.1416 \mathrm{dh} \\ \text { Total surface } & =2 \pi \mathrm{r}(r+h) \\ \text { Volume } & =\pi r^{2} h=0.7854 \mathrm{~d}^{2} h \\ & =\frac{c^{2} h}{4 \pi}=0.0796 \mathrm{c}^{2} h \\ c & =\text { circumference } \end{aligned}$

580

Mensuration formulas continued

figure	formula
Torus or ring of circular cross-section	$\begin{aligned} \text { Surface } & =4 \pi^{2} R r=39.4784 R r=9.8696 D d \\ \text { Volume } & =2 \pi^{2} R r^{2}=19.74 R r^{2} \\ & =2.463 D d^{2} \\ D & =2 R=\text { diameter to centers of cross- } \\ & =d / 2 \end{aligned}$
Pyramid	$\begin{aligned} \text { Volume } & =\frac{A h}{3} \\ & =\frac{h}{3}\left[n r^{2}\left(\tan \frac{360^{\circ}}{2 n}\right)\right] \\ & =\frac{h}{3}\left[\frac{n s^{2}}{4}\left(\cot \frac{360^{\circ}}{2 n}\right)\right] \\ A & =\text { area of base } \\ n & =\text { number of sides } \\ r & =\text { short radius of base } \end{aligned}$

Pyramidic frustum


Cone with circular base


$$
\begin{aligned}
\text { Volume } & =\frac{A}{3}(a+A+\sqrt{a A}) \\
A & =\text { area of base } \\
a & =\text { area of top }
\end{aligned}
$$

Conical area $=\pi r s=\pi r \sqrt{r^{2}+h^{2}}$

$$
\begin{aligned}
\text { Volume } & =\frac{\pi r^{2} h}{3}=1.047 r^{2} h=0.2618 d^{2} h \\
s & =\text { slant height }
\end{aligned}
$$

Mensuration formulas continued

figure	formula
Conic frustum	$\begin{aligned} \text { Volume } & =\frac{\pi h}{3}\left(R^{2}+R r+r^{2}\right) \\ & =\frac{\pi h}{3}\left(\frac{R^{3}-r^{3}}{R-r}\right) \\ & =\frac{\pi h}{12}\left(D^{2}+D d+d^{2}\right) \\ & =\frac{h}{3}(a+A+\sqrt{a A)} \end{aligned}$   Area of conic surface $=\frac{\pi s}{2}(D+d)$ $\begin{aligned} & C=s+\frac{s d}{D-d}=s\left(1+\frac{d}{D-d}\right) \\ & \theta=\frac{180 D}{C}=\frac{180(D-d)}{s} \end{aligned}$   $A=$ area of base $\quad a=$ area of top   $R=D / 2 \quad r=d / 2$   $s=$ slant height of frustum
Wedge frustum	$\begin{aligned} \text { Volume } & =\frac{h s}{2}(a+b) \\ h & =\text { height between parallel bases } \end{aligned}$
Ellipsoid	$\begin{aligned} \text { Volume } & =\frac{4 \pi R r^{2}}{3}=4.1888 R r^{2} \\ & =0.053 \pi^{2} D d^{2}=0.5231 D d^{2} \end{aligned}$
Paraboloid	$\begin{gathered} \text { Volume }=\frac{\pi r^{2} h}{2}=1.5707 r^{2} h \\ \text { Curved surface }=0.5236 \frac{r}{h^{2}}\left[\left(r^{2}+4 h^{2}\right)^{3 / 2}-r^{3}\right] \end{gathered}$

## 582

## Algebraic and frigonomefric formulas including complex quantitias

## Quadratic equation

If $a x^{2}+b x+c=0$, then
$x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}=-\frac{b}{2 a} \pm \sqrt{\left(\frac{b}{2 a}\right)^{2}-\frac{c}{a}}$
provided that $a \neq 0$

## Arithmetic progression

$l=a+(n-1) d$
$S=\frac{n}{2} l a+n=\frac{n}{2}[2 a+(n-1) d]$
where
$a=$ first term $\quad S=$ sum of $n$ terms $\quad l=$ value of $n$th term
$d=$ common difference $=$ value of any term minus value of preceding term

## Geometric progression

$$
\begin{aligned}
& I=a r^{n-1} \\
& S=\frac{a\left(r^{n}-1\right)}{r-1}
\end{aligned}
$$

where
$a=$ first term $\quad S=$ sum of $n$ terms $\quad l=$ value of the $n$th term
$r=$ common ratio $=$ the value of any term divided by the preceding term

## Combinations and permutations

The number of combinations of $n$ things, all different, taken $r$ at a time is

$$
{ }_{n} C_{r}=\frac{n!}{r!(n-r)!}
$$

The number of permutations of $n$ things $r$ at a time is

$$
\begin{aligned}
& { }_{n} P_{r}=n(n-1)(n-2) \ldots(n-r+1)=\frac{n!}{(n-r)!} \\
& { }_{n} P_{n}=n!
\end{aligned}
$$

## Algebraic and trigonometric formulas <br> continued

## Binomial theorem

$(a \pm b)^{n}=a^{n} \pm n a^{n-1} b+\frac{n(n-1)}{2!} a^{n-2} b^{2} \pm \frac{n(n-1)(n-2)}{3!} a^{n-2} b^{3}+\ldots$.
If $n$ is a positive integer, the series is finite and contains $n+1$ terms; otherwise, it is infinite, converging for $|b / a|<1$, and diverging for $|b / a|>1$.

## Complex quantities

In the following formulas all quantities are real except $j=\sqrt{-1}$

$$
(A+j B)+(C+j D)=(A+C)+j(B+D)
$$

$$
(A+j B)(C+j D)=(A C-B D)+j(B C+A D)
$$

$$
\begin{aligned}
\frac{A+j B}{C+j D} & =\frac{A C+B D}{C^{2}+D^{2}}+j \frac{B C-A D}{C^{2}+D^{2}} \\
\frac{1}{A+j B} & =\frac{A}{A^{2}+B^{2}}-j \frac{B}{A^{2}+B^{2}} \\
A+j B & =\rho(\cos \theta+j \sin \theta)=\rho \epsilon^{\beta \theta} \\
\sqrt{A+j B} & = \pm \sqrt{\rho}\left(\cos \frac{\theta}{2}+j \sin \frac{\theta}{2}\right)
\end{aligned}
$$

where

$$
\begin{aligned}
\rho & =\sqrt{A^{2}+B^{2}}>0 \\
\cos \theta & =A / \rho \\
\sin \theta & =B / \rho
\end{aligned}
$$

## Properties of e

$$
\begin{aligned}
\mathrm{e} & =1+1+1 / 2!+1 / 3!+\ldots=2.71828 \\
1 / \mathrm{e} & =0.367879 \\
\mathrm{e}^{ \pm j x} & =\cos x \pm j \sin x=\exp ( \pm j \times) \\
\log _{10} \mathrm{e} & =0.43429 \quad \log _{10}(0.43429 \\
\log _{e} 10 & =2.30259=1 / \log _{10} \mathrm{e} \quad \log _{10}\left(\mathrm{e}^{n}\right. \\
\log _{6} N & =\log _{6} 10 \times \log _{10} \mathrm{~N} \\
\log _{10} N & =\log _{10} \mathrm{e} \times \log _{6} N
\end{aligned}
$$

584

## Algebraic and trigonometric formulas

## Trigonometric identities

$$
\begin{aligned}
& 1=\sin ^{2} A+\cos ^{2} A=\sin A \operatorname{cosec} A=\tan A \cot A=\cos A \sec A \\
& \sin A=\frac{\cos A}{\cot A}=\frac{1}{\operatorname{cosec} A}=\cos A \tan A= \pm \sqrt{1-\cos ^{2} A} \\
& \cos A=\frac{\sin A}{\tan A}=\frac{1}{\sec A}=\sin A \cot A= \pm \sqrt{1-\sin ^{2} A} \\
& \tan A=\frac{\sin A}{\cos A}=\frac{1}{\cot A}=\sin A \sec A \\
& \sin (A \pm B)=\sin A \cos B \pm \cos A \sin B \\
& \tan (A \pm B)=\frac{\tan A \pm \tan B}{1 \mp \tan A \tan B} \\
& \sin A=\frac{e^{j A}-e^{-j A}}{2 j} \\
& \cos A=\frac{e^{j A}+e^{-j A}}{2} \\
& \cos (A \pm B)=\cos A \cos B \mp \sin A \sin B \\
& \cot (A \pm B)=\frac{\cot A \cot B \mp 1}{\cot B \pm \cot A}=\frac{\cot A \mp \tan B}{1 \pm \cot A \tan B} \\
& \sin A+\sin B=2 \sin \frac{1}{2}(A+B) \cos \frac{1}{2}(A-B) \\
& \sin ^{2} A-\sin ^{2} B=\sin (A+B) \sin (A-B) \\
& \tan A \pm \tan B=\frac{\sin (A \pm B)}{\cos A \cos B} \\
& \sin A-\sin B=2 \cos \frac{1}{2}(A+B) \sin \frac{1}{2}(A-B) \\
& \cos A+\cos B=2 \cos \frac{1}{2}(A+B) \cos \frac{1}{2}(A-B) \\
& \cot A \pm \cot B=\frac{\sin (B \pm A)}{\sin A \sin B} \\
& \cos B-\cos A=2 \sin \frac{1}{2}(A+B) \sin \frac{1}{2}(A-B) \\
& \sin 2 A=2 \sin A \cos A \\
& \cos 2 A=\cos ^{2} A-\sin ^{2} A \\
& \tan 2 A=\frac{2 \tan A}{1-\tan ^{2} A}
\end{aligned}
$$

$$
\begin{array}{rlrl}
\cos ^{2} A-\sin ^{2} B & =\cos (A+B) \cos (A-B) \\
\sin \frac{1}{2} A & = \pm \sqrt{\frac{1-\cos A}{2}} & \cos \frac{1}{2} A & = \pm \sqrt{\frac{1+\cos A}{2}} \\
\tan \frac{1}{2} A & =\frac{\sin A}{1+\cos A} & \sin ^{2} A & =\frac{1-\cos 2 A}{2} \\
\cos ^{2} A & =\frac{1+\cos 2 A}{2} & \tan ^{2} A & =\frac{1-\cos 2 A}{1+\cos 2 A}
\end{array}
$$

$\frac{\sin A \pm \sin B}{\cos A+\cos B}=\tan \frac{1}{2}(A \pm B)$
$\frac{\sin A \pm \sin B}{\cos B-\cos A}=\cot \frac{1}{2}(A \neq B)$
$\sin A \cos B=\frac{1}{2}[\sin (A+B)+\sin (A-B)]$
$\cos A \cos B=\frac{1}{2}[\cos (A+B)+\cos (A-B)]$
$\sin A \sin B=\frac{1}{2}[\cos (A-B)-\cos (A+B)]$
$\sin x+\sin 2 x+\sin 3 x+\ldots+\sin m x=\frac{\sin \frac{1}{2} m x \sin \frac{1}{2}(m+1) x}{\sin \frac{1}{2} x}$
$\cos x+\cos 2 x+\cos 3 x+\ldots+\cos m x=\frac{\sin \frac{1}{2} m x \cos \frac{1}{2}(m+1) x}{\sin \frac{1}{2} x}$
$\sin x+\sin 3 x+\sin 5 x+\ldots+\sin \left(2 m-11 x=\frac{\sin ^{2} m x}{\sin x}\right.$
$\cos x+\cos 3 x+\cos 5 x+\ldots+\cos \left(2 m-11 x=\frac{\sin 2 m x}{2 \sin x}\right.$
$\frac{1}{2}+\cos x+\cos 2 x+\ldots+\cos m x=\frac{\sin \left(m+\frac{1}{2}\right) x}{2 \sin \frac{1}{2} x}$

angle	0	$30^{\circ}$	$45^{\circ}$	$60^{\circ}$	$90^{\circ}$	$180^{\circ}$	$270^{\circ}$	$360^{\circ}$
				$1 / 2 \sqrt{2}$	$1 / 2 \sqrt{3}$	1	0	-1
sine	0	$1 / 2$	$1 / 2 \sqrt{2}$	$1 / 2$	0	-1	0	1
cosine	1	$1 / 2 \sqrt{3}$	$1 / 2 \sqrt{2}$	$\sqrt{3}$	$\pm \infty$	0	$\pm \infty$	0

$$
\begin{aligned}
\text { versine } \theta & =1-\cos \theta \\
\sin 14 \frac{3^{\circ}}{} & =\frac{1}{4} \text { approximately } \\
\sin 20^{\circ} & =11 / 32 \text { approximately }
\end{aligned}
$$

Algebraic and trigonometric formulas continued

## Approximations for small angles

$$
\begin{aligned}
\sin \theta & =\left(\theta-\theta^{3} / 6 \ldots \ldots\right) & & \theta \text { in radians } \\
\tan \theta & =\left(\theta+\theta^{3} / 3 \ldots \ldots\right) & & \theta \text { in radians } \\
\cos \theta & =\left(1-\theta^{2} / 2 \ldots \ldots\right) & & \theta \text { in radians }
\end{aligned}
$$

## Right-angled triangles right ongle of C

$$
\begin{aligned}
\sin A & =\cos B=a / c \quad B=90^{\circ}-A \\
\tan A & =a / b \\
\text { vers } A & =1-\cos A=\frac{c-b}{c} \\
c & =\sqrt{a^{2}+b^{2}} \quad b=\sqrt{c^{2}-a^{2}}=\sqrt{(c+a)(c-a)} \\
\text { Area }= & \frac{a b}{2}=\frac{a}{2} \sqrt{c^{2}-a^{2}}=\frac{a^{2} \cot A}{2}=\frac{b^{2} \tan A}{2}=\frac{c^{2} \sin A \cos A}{2}
\end{aligned}
$$

## Oblique-angled triangles

$$
\begin{aligned}
\sin \frac{1}{2} A & =\sqrt{\frac{(s-b)(s-c)}{b c}} \\
\cos \frac{1}{2} A & =\sqrt{\frac{s(s-a)}{b c}} \\
\text { where } s & =\frac{a+b+c}{2}
\end{aligned}
$$


$A+B+C=180^{\circ}$

$$
\tan \frac{1}{3} A=\sqrt{\frac{(s-b)(s-c)}{s(s-a)}} \text {, similar values for angles } B \text { and } C
$$

$$
\text { Area }=\sqrt{s(s-a)(s-b)(s-c)}=\frac{1}{2} a b \sin C=\frac{a^{2} \sin B \sin C}{2 \sin A}
$$

$$
c=\frac{a \sin C}{\sin A}=\frac{a \sin (A+B)}{\sin A}=\sqrt{a^{2}+b^{2}-2 a b \cos C}
$$

$$
\tan A=\frac{a \sin C}{b-a \cos C}, \quad \tan \frac{1}{2}(A-B)=\frac{a-b}{a+b} \cot \frac{1}{2} C
$$

$$
a^{2}=b^{2}+c^{2}-2 b c \cos A \text {, similar expressions for other sides. }
$$

## Spherical trigonometry

In the following triangles each element is assumed to be less than 180 degrees.

## General (for any spherical triangle)

$$
\begin{aligned}
& \cos a=\cos b \cos c+\sin b \sin c \cos \alpha \\
& \cos \alpha=-\cos \beta \cos \gamma+\sin \beta \sin \gamma \cos a \\
& \frac{\sin \alpha}{\sin a}=\frac{\sin \beta}{\sin b}=\frac{\sin \gamma}{\sin c} \\
& \sin a \cos \beta=\cos b \sin c-\sin b \cos c \cos \alpha \\
& \sin \alpha \cos b=\cos \beta \sin \gamma+\sin \beta \cos \gamma \cos a \\
& \sin \alpha \cot \beta=\cot b \sin c-\cos c \cos \alpha \\
& \sin a \cot b=\cot \beta \sin \gamma+\cos a \cos \gamma
\end{aligned}
$$



Right spherical triangles $\left(\gamma=90^{\circ}\right)$

$$
\begin{aligned}
\cos c & =\cos a \cos b \\
\cos c & =\cot \alpha \cot \beta \\
\cos \alpha & =\sin \beta \cos a \\
\cos \beta & =\sin \alpha \cos b \\
\cos \alpha & =\tan b \cot c \\
\cos \beta & =\tan a \cot c \\
\sin a & =\sin c \sin \alpha \\
\sin b & =\sin c \sin \beta \\
\sin b & =\tan a \cot \alpha \\
\sin a & =\tan b \cot \beta
\end{aligned}
$$

Species (right triangles): Two angular quantities are of the same species if both are in the same quadrant; otherwise they are of different species. Rules for species are:
a. An oblique angle and its opposite side are always of the same species.
b. If the hypotenuse is less than $90^{\circ}$, the oblique angles land the two sidest are of the same species; otherwise they are of different species.

## 588

## Spherical trigonometry

## Oblique spherical triangle

$$
\begin{aligned}
& \text { Let } a+b+c=2 s \\
& \sin ^{2} \frac{1}{2} \alpha=\frac{\sin (s-b) \sin (s-c)}{\sin b \sin c}, \text { etc. } \\
& \cos ^{2} \frac{1}{2} \alpha=\frac{\sin s \sin (s-a)}{\sin b \sin c}, \text { etc. } \\
& \tan \frac{1}{2} \alpha=\frac{r}{\sin (s-a)}, \text { etc. } \\
& \text { where } r=\left[\frac{\sin (s-a) \sin (s-b) \sin (s-d)}{\sin s}\right]^{\frac{1}{2}} \\
& \cos a=\frac{\cos \alpha+\cos \beta \cos \gamma}{\sin \beta \sin \gamma}, \text { etc. } \\
& \sin ^{2} \frac{1}{2} a=-\frac{\cos S \cos (s-\alpha)}{\sin \beta \sin \gamma}, \text { etc. }
\end{aligned}
$$

where $2 S=\alpha+\beta+\gamma$.

$$
\begin{aligned}
\cos ^{2} \frac{1}{2} \alpha & =\frac{\cos (S-\beta) \cos (S-\gamma)}{\sin \beta \sin \gamma}, \text { etc. } \\
\tan ^{2} \frac{1}{2} \alpha & =-\frac{\cos S \cos (S-\alpha)}{\cos (S-\beta) \cos (S-\gamma)}, \text { etc. }
\end{aligned}
$$

$$
\begin{array}{ll}
\frac{\tan \frac{1}{2}(a-b)}{\tan \frac{1}{2} c}=\frac{\sin \frac{1}{2}(\alpha-\beta)}{\sin \frac{1}{2}(\alpha+\beta)} & \frac{\tan \frac{1}{2}(a+b)}{\tan \frac{1}{2} c}=\frac{\cos \frac{1}{2}(\alpha-\beta)}{\cos \frac{1}{2}(\alpha+\beta)} \\
\frac{\tan \frac{1}{2}(\alpha-\beta)}{\cot \frac{1}{2} \gamma}=\frac{\sin \frac{1}{2}(a-b)}{\sin \frac{1}{2}(a+b)} & \frac{\tan \frac{1}{2}(\alpha+\beta)}{\cot \frac{1}{2} \gamma}=\frac{\cos \frac{1}{2}(a-b)}{\cos \frac{1}{2}(a+b)}
\end{array}
$$

## Rules for species (oblique triangles)

a. If a side lor angle) differs more than another side lor anglel from $90^{\circ}$, it is of the same species as its opposite angle (or side).
b. Half the sum of two sides is of the same species as half the sum of two opposite angles.

## Plane analytic geometry

In the following, $x$ and $y$ are coordinates of a variable point in a rectangular-coordinate system.

## Straight line



## Slope-intercept form

$y=s x+b$
$b=y$-intercept
$s=\tan \theta$

## Intercept-intercept form

$\frac{x}{a}+\frac{y}{b}=1$
o $=x$-intercept
$b=y$-intercept


## Point-slope form

$$
\begin{aligned}
y-y_{1} & =s\left(x-x_{1}\right) \\
s & =\tan \theta \\
\left(x_{1} y_{1}\right)= & \text { coordinates of known point } \\
& \text { on line. }
\end{aligned}
$$

## Point-point form

$\frac{y-y_{1}}{y_{1}-y_{2}}=\frac{x-x_{1}}{x_{1}-x_{2}}$

$\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$ are coordinates of two different points on the line.
Normal form
$\frac{A}{ \pm \sqrt{A^{2}+B^{2}}} x+\frac{B}{ \pm \sqrt{A^{2}+B^{2}}} y+\frac{C}{ \pm \sqrt{A^{2}+B^{2}}}=0$
the sign of the radical is chosen so that
$\frac{C}{ \pm \sqrt{A^{2}+B^{2}}}<0$

## Plane analytic geometry continued

Distance from point $\left(x_{1}, y_{1}\right)$ to a line
Substitute coordinates of the point in the normal form of the line. Thus, distance $=\frac{A}{ \pm \sqrt{A^{2}+B^{2}}} x_{1}+\frac{B}{ \pm \sqrt{A^{2}+B^{2}}} y_{1}+\frac{C}{ \pm \sqrt{A^{2}+B^{2}}}$

Angle between two lines
$\tan \phi=\frac{s_{1}-s_{2}}{1+s_{1} s_{2}}$
where
$\phi=$ angle between the lines
$s_{1}=$ slope of one line
$s_{\mathbf{2}}=$ slope of other line
When the lines are mutually perpendicular, $\tan \phi=\infty$, whence $s_{1}=-1 / s_{2}$

## Transformation of rectangular coordinates

## Translation

$$
\begin{aligned}
x_{1} & =h+x_{2} \\
y_{1} & =k+y_{2} \\
(h, k) & =\text { the coordinates of the new origin referred to the old origin }
\end{aligned}
$$

## Rotation

$x_{1}=x_{2} \cos \theta-y_{2} \sin \theta$
$y_{1}=x_{2} \sin \theta+y_{2} \cos \theta$
$\left(x_{1}, y_{1}\right)=$ "old" coordinates
$\left(x_{2}, y_{2}\right)=$ "new" coordinates
$\theta=$ counterclockwise angle of rotation of axes

## Circle

The equation of a circle of radius $r$ with center at $(m, n)$ is
$(x-m)^{2}+(y-n)^{2}=r^{2}$
Tangent line to a circle: At $\left(x_{1}, y_{1}\right)$ is
$y-y_{1}=-\frac{x_{1}-m}{y_{1}-n}\left(x-x_{1}\right)$

## mathematical formulas

Plane analytic geametry continued

Normal line to a circle: At $\left(x_{2}, y_{1}\right)$ is
$y-y_{1}=\frac{y_{1}-n}{x_{1}-m}\left(x-x_{1}\right)$

## Parabala

## $x$-parabola

$$
(y-k)^{2}= \pm 2 p(x-h)
$$

where $(h, k)$ are the coordinates of the vertex, and the sign used is plus or minus when the parabola is open to the right or to the left, respectively. The semi-latus rectum is $p$.
$y$-parabola

$$
(x-h)^{2}= \pm 2 p(y-k)
$$

where $(h, k)$ are the coordinates of the vertex. Use plus sign if parabola is open above, and minus sign if open below.

Tangent lines to a parabola
$\left(x_{1}, y_{1}\right)=$ point of tangency
For $x$-parabola,

$$
y-y_{1}= \pm \frac{p}{y_{1}-k}\left(x-x_{1}\right)
$$

Use plus sign if parabola is open to the right, minus sign if open to the left. For $y$-parabola,

$$
y-y_{1}= \pm \frac{x_{1}-h}{p}\left(x-x_{1}\right)
$$

Use plus sign if parabola is open above, minus sign if open below.
Normal lines to a parabola
$\left(x_{1}, y_{1}\right)=$ point of contact
For $x$-parabola,

$$
y-y_{1}=\mp \frac{y_{1}-k}{p}\left(x-x_{1}\right)
$$

## 592

## Plane analytic geometry

 continuedUse minus sign if parabola is open to the right, plus sign if open to the left. For $y$-parabola,

$$
y-y_{1}=\mp \frac{p}{x_{1}-h}\left(x-x_{1}\right)
$$

Use minus sign if parabola is open above, plus sign if open below.

## Ellipse

Figure shows ellipse centered at origin.

$$
\begin{aligned}
F, F^{\prime} & =\text { foci } \\
D D^{\prime}, D^{\prime \prime} D^{\prime \prime \prime} & =\text { directrices } \\
e & =\text { eccentricity }<1 \\
2 a & =A^{\prime} A=\text { major axis } \\
2 b & =B B^{\prime}=\text { minor } a x i s
\end{aligned}
$$

Then

$$
\begin{aligned}
O C & =a / e \\
F C & =a e \\
1-e^{2} & =b^{2} / a^{2}
\end{aligned}
$$



## Equation of ellipse

$\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$

## Sum of the focal radii

To any.point on ellipse $=2 \mathrm{a}$

## Equation of tangent line to ellipse

$$
\left(x_{1}, y_{1}\right)=\text { point of tangency }
$$

$\frac{x x_{1}}{a^{2}}+\frac{y y_{1}}{b^{2}}=1$

Equation of normal line to an ellipse
$y-y_{1}=\frac{a^{2} y_{1}}{b^{2} x_{1}}\left(x-x_{1}\right)$

Piane analytic geometry continued

## Hyperbola

Figure shows $x$-hyperbola centered at origin.
$F, F^{\prime}=$ foci
$D D^{\prime}, D^{\prime \prime} D^{\prime \prime \prime}=$ directrices
$e=$ eccentricity $>1$
$2 a=$ transverse axis $=A^{\prime} A$
$\mathrm{CO}=\mathrm{a} / \mathrm{e}$
$C F=\alpha e$

Equation of $x$-hyperbola
$\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$

where
$b^{2}=a^{2}\left(e^{2}-1\right)$

Equation of conjugate ( $y-$ ) hyperbola
$\frac{y^{2}}{b^{2}}-\frac{x^{2}}{a^{2}}=1$

Tangent line to $x$-hyperbola
$\left(x_{1}, y_{1}\right)=$ point of tangency
$a^{2} y_{1} y-b^{2} x_{1} x=-a^{2} b^{2}$

Normal line to $x$-hyperbola
$y-y_{1}=-\frac{a^{2} y_{1}}{b^{2} x_{1}}\left(x-x_{1}\right)$

Asymptotes to hyperbola
$y= \pm \frac{b}{a}$

## Solid analytic geometry

In the following, $x, y$, and $z$ are the coordinates of a variable point in space in a rectangular-coordinate system.

Distance between two points ( $x_{1}, y_{1}, z_{1}$ ) and ( $x_{2}, y_{2,}, z_{2}$ )
$d=\left[\left(x_{1}-x_{2}\right)^{2}+\left(y_{1}-y_{2}\right)^{2}+\left(z_{1}-z_{2}\right)^{2}\right]^{\frac{1}{2}}$

## Equations of the straight line

The straight line is specified in terms of its projections on two of the coordinate planes. For example, using the projections on the $x-z$ and $y-z$ planes respectively, the equations of the line are
$x=m z+\mu$
$y=n z+\nu$
where
$\mathrm{m}=$ slope $\mathrm{f} x-z$ projection
$n=$ slope of $y-z$ projection

$\mu=$ intercept of $x-z$ projection on $x$-axis
$\nu=$ intercept of $y-z$ projection on $y$-axis

## Equation of plane, intercept form

$\frac{x}{a}+\frac{y}{b}+\frac{z}{c}=1$
where $a, b, c$ are the intercepts of the plane on the $x, y$, and $z$ axes, respectively.

## Prolate spheroid

$a^{2}\left(y^{2}+z^{2}\right)+b^{2} x^{2}=a^{2} b^{2}$
where $a>b$, and $x$-axis $=a x i s$ of revolution

## Oblate spheroid

$b^{2}\left(x^{2}+z^{2}\right)+a^{2} y^{2}=a^{2} b^{2}$
where $a>b$, and $y$-axis $=a x i s$ of revolution

## MATHEMATICAL FORMULAS

## Solid analytic geometry

## Paraboloid of revolution

$y^{2}+z^{2}=2 p x$
$x$-axis $=$ axis of revolution

## Hyperboloid of revolution

Revolving an $x$-hyperbola about the $x$-axis results in the hyperboloid of two sheets
$a^{2}\left(y^{2}+z^{2}\right)-b^{2} x^{2}=-a^{2} b^{2}$
Revolving an $x$-hyperbola about the $y$-axis results in the hyperboloid of one sheet
$b^{2}\left(x^{2}+z^{2}\right)-a^{2} y^{2}=a^{2} b^{2}$

## Ellipsoid

$\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}+\frac{z^{2}}{c^{2}}=1$
where $a, b, c$ are the semi-axes of the ellipsoid or the intercepts on the $x, y$, and $z$ axes, respectively.

## Hyperbolic functions

$$
\sinh x=\frac{e^{x}-e^{-x}}{2} \quad \cosh x=\frac{e^{x}+e^{-x}}{2}
$$

$$
\begin{aligned}
\sinh (-x) & =-\sinh x & \cosh (-x) & =\cosh x \\
\sinh (j x) & =j \sin x & \cosh (j x) & =\cos x
\end{aligned}
$$

$$
\cosh ^{2} x-\sinh ^{2} x=1
$$

$\sinh 2 x=2 \sinh x \cosh x$

$$
\cosh 2 x=\cosh ^{2} x+\sinh ^{2} x
$$

$\sinh (x \pm j y)=\sinh x \cos y \pm j \cosh x \sin y$
$\cosh (x \pm j)=\cosh x \cos y \pm j \sinh x \sin y$

## Differential calculus

## List of derivatives

In the following $u, v, w$ are differentiable functions of $x$, and $c$ is a constant.

## General

$$
\begin{aligned}
\frac{d c}{d x} & =0 \\
\frac{d x}{d x} & =1 \\
\frac{d}{d x}(u+v-w) & =\frac{d u}{d x}+\frac{d v}{d x}-\frac{d w}{d x} \\
\frac{d}{d x}(c v) & =c \frac{d v}{d x} \\
\frac{d}{d x}(u v) & =u \frac{d v}{d x}+v \frac{d u}{d x} \\
\frac{d}{d x}\left(v^{c}\right) & =c v^{c-1} \frac{d v}{d x} \\
\frac{d}{d x}\left(\frac{u}{v}\right) & =\frac{v \frac{d u}{d x}-u \frac{d v}{d x}}{v^{2}} \\
\frac{d y}{d x} & =\frac{d y}{d v} \cdot \frac{d v}{d x} \text { if } y=y(v) \\
\frac{d y}{d x} & =\frac{1}{d x / d y} \quad \text { if } \frac{d x}{d y} \neq 0
\end{aligned}
$$

Transcendental functions

$$
\begin{aligned}
\frac{d}{d x}\left(\log _{e} v\right) & =\frac{1}{v} \frac{d v}{d x} \\
\frac{d}{d x}\left(c^{v}\right) & =c^{v} \log _{e} c \frac{d v}{d x} \\
\frac{d}{d x}\left(e^{v}\right) & =e^{v} \frac{d v}{d x} \\
\frac{d}{d x}\left(u^{v}\right) & =v u^{v-1} \frac{d u}{d x}+\left(\log _{e} u\right) u^{v} \frac{d v}{d x}
\end{aligned}
$$

## Differenfial calculus

continued

$$
\begin{aligned}
\frac{d}{d x}(\sin v) & =\cos v \frac{d v}{d x} \\
\frac{d}{d x}(\cos v) & =-\sin v \frac{d v}{d x} \\
\frac{d}{d x}(\tan v) & =\sec ^{2} v \frac{d v}{d x} \\
\frac{d}{d x}(\cot v) & =-\csc ^{2} v \frac{d v}{d x} \\
\frac{d}{d x}(\sec v) & =\sec v \tan v \frac{d v}{d x} \\
\frac{d}{d x}(\csc v) & =-\csc v \cot v \frac{d v}{d x} \\
\frac{d}{d x}(\operatorname{arc} \sin v) & =\frac{1}{\sqrt{1-v^{2}} \frac{d v}{d x}} \\
\frac{d}{d x}(\operatorname{arc} \cos v) & =-\frac{1}{\sqrt{1-v^{2}}} \frac{d v}{d x} \\
\frac{d}{d x}(\operatorname{arc} \tan v) & =\frac{1}{1+v^{2} \frac{d v}{d x}} \\
\frac{d}{d x}(\operatorname{arc} \cot v) & =-\frac{1}{1+v^{2}} \frac{d v}{d x} \\
\frac{d}{d x}(\operatorname{arc} \sec v) & =\frac{1}{v \sqrt{v^{2}-1} \frac{d v}{d x}} \\
\frac{d}{d x}(\operatorname{arc} \csc v) & =-\frac{1}{v \sqrt{v^{2}-1}} \frac{d v}{d x}
\end{aligned}
$$

## Curvałure of a curve

$K=\frac{y^{\prime \prime}}{\left(1+y^{\prime 2}\right)^{3 / 2}}=\frac{1}{R}$
where
$K=$ curvature
$R=$ radius of curvature
$\begin{aligned} y^{\prime}, y^{\prime \prime}= & \text { respectively, first and second derivatives of the curve } y=f(x) \\ & \text { with respect to } x\end{aligned}$

## 598

## Infegral calculus

## Rational algebraic integrals

1. $\int x^{m} d x=\frac{x^{m+1}}{m+1}, \quad m \neq-1$
2. $\int \frac{d x}{x}=\log _{e} x$
3. $\int(a x+b)^{m} d x=\frac{(a x+b)^{m+1}}{a(m+1)}, \quad m \neq-1$
4. $\int \frac{d x}{a x+b}=\frac{1}{a} \log _{e}(a x+b)$
5. $\int \frac{x d x}{a x+b}=\frac{1}{a^{2}}\left[a x+b-b \log _{e}(a x+b)\right]$
6. $\int \frac{x d x}{(a x+b)^{2}}=\frac{1}{a^{2}}\left[\frac{b}{a x+b}+\log _{e}(a x+b)\right]$
7. $\int \frac{d x}{x(a x+b)}=\frac{1}{b} \log _{e} \frac{x}{a x+b}$
8. $\int \frac{d x}{x(a x+b)^{2}}=\frac{1}{b(a x+b)}+\frac{1}{b^{2}} \log _{e} \frac{x}{a x+b}$
9. $\int \frac{d x}{x^{2}(a x+b)}=-\frac{1}{b x}+\frac{a}{b^{2}} \log _{e} \frac{a x+b}{x}$
10. $\int \frac{d x}{x^{2}(a x+b)^{2}}=-\frac{2 a x+b}{b^{2} x(a x+b)}+\frac{2 a}{b^{3}} \log _{e} \frac{a x+b}{x}$
11. $\int \frac{d x}{x^{2}+a^{2}}=\frac{1}{a} \tan ^{-1} \frac{x}{a}$
12. $\int \frac{d x}{x^{2}-a^{2}}=\frac{1}{2 a} \log \frac{x-a}{x+a}=-\frac{1}{a} \tanh ^{-1} \frac{a}{x}$
13. $\int \frac{d x}{\left(a x^{2}+b\right)^{m}}=\frac{x}{2(m-1) b\left(a x^{2}+b\right)^{m-1}}$

$$
+\frac{2 m-3}{2(m-1) b} \int \frac{d x}{\left(a x^{2}+b\right)^{m-1}}, m \neq 1
$$

14. $\int \frac{x d x}{\left(a x^{2}+b\right)^{m}}=-\frac{1}{2(m-1) a\left(a x^{2}+b\right)^{m-1}}, m \neq 1$
15. $\int \frac{x d x}{a x^{2}+b}=\frac{1}{2 a} \log _{e}\left(a x^{2}+b\right)$
16. $\int \frac{x^{2} d x}{a x^{2}+b}=\frac{x}{a}-\frac{b}{a} \int \frac{d x}{a x^{2}+b}$
17. $\int \frac{x^{2} d x}{\left(a x^{2}+b\right)^{m}}=-\frac{x}{2(m-1) a\left(a x^{2}+b\right)^{m-1}}$

$$
+\frac{1}{2(m-1) a} \int \frac{d x}{\left(a x^{2}+b\right)^{m-1}}, \quad m \neq 1
$$

18. $\int \frac{d x}{a x^{3}+b}=\frac{k}{3 b}\left(\sqrt{3} \tan ^{-1} \frac{2 x-k}{k \sqrt{3}}+\log _{e} \frac{k+x}{\sqrt{k^{2}-k x+x^{2}}}\right)$, where $k=\sqrt[3]{b / a}$
19. $\int \frac{x d x}{a x^{3}+b}=\frac{1}{3 a k}\left(\sqrt{3} \tan ^{-1} \frac{2 x-k}{k \sqrt{3}}-\log _{\varepsilon} \frac{k+x}{\sqrt{k^{2}-k x+x^{2}}}\right)$,
where $k=\sqrt[3]{b / a}$
20. $\int \frac{d x}{x\left(a x^{n}+b\right)}=\frac{1}{b n} \log _{e} \frac{x^{n}}{a x^{n}+b}$

Let $x=a x^{2}+b x+c$ and $q=b^{2}-4 a c$
21. $\int \frac{d x}{x}=\frac{1}{\sqrt{q}} \log _{\varepsilon} \frac{2 a x+b-\sqrt{q}}{2 a x+b+\sqrt{q}}$, when $q>0$
22. $\int \frac{d x}{x}=\frac{2}{\sqrt{-q}} \tan ^{-1} \frac{2 a x+b}{\sqrt{-q}}$, when $q<0$

For the case $\mathrm{q}=0$, use equation 3 with $m=-2$
23. $\int \frac{d x}{x^{n}}=-\frac{2 a x+b}{\ln -1) q x^{n-1}}-\frac{2(2 n-3) a}{q(n-1)} \int \frac{d x}{x^{n-1}}, n \neq 1$
24. $\int \frac{x d x}{x}=\frac{1}{2 a} \log _{e} x-\frac{b}{2 a} \int \frac{d x}{x}$
25. $\int \frac{x^{2} d x}{x}=\frac{x}{a}-\frac{b}{2 a^{2}} \log _{a} x+\frac{b^{2}-2 a c}{2 a^{2}} \int \frac{d x}{x}$

## Integral calculus continued

## Integrals involving $\sqrt{a x+b}$

26. $\int x \sqrt{a x+b} d x=\frac{2(3 a x-2 b) \sqrt{(a x+b)^{3}}}{15 a^{2}}$
27. $\int x^{2} \sqrt{a x+b} d x=\frac{2\left(15 a^{2} x^{2}-12 a b x+8 b^{2}\right) \sqrt{(a x+b)^{3}}}{105 a^{3}}$
28. $\int x^{m} \sqrt{a x+b} d x=\frac{2}{a(2 m+3)}\left[x^{m} \sqrt{(a x+b)^{3}}\right.$
$\left.-m b \int x^{m-1} \sqrt{a x+b} d x\right]$
29. $\int \frac{\sqrt{a x+b} d x}{x}=2 \sqrt{a x+b}+\sqrt{b} \log _{e} \frac{\sqrt{a x+b}-\sqrt{b}}{\sqrt{a x+b}+\sqrt{b}}, \quad b>0$

$$
=2 \sqrt{a x+b}-2 \sqrt{-b} \tan ^{-1} \sqrt{\frac{a x+b}{-b}}, \quad b<0
$$

30. $\int \frac{\sqrt{a x+b} d x}{x^{m}}=-\frac{1}{(m-1) b}\left[\frac{\sqrt{(a x+b)^{3}}}{x^{m-1}}\right.$

$$
\left.+\frac{(2 m-5) a}{2} \int \frac{\sqrt{a x+b} d x}{x^{m-1}}\right], m \neq 1
$$

31. $\int \frac{x d x}{\sqrt{a x+b}}=\frac{2(a x-2 b)}{3 a^{2}} \sqrt{a x+b}$
32. $\int \frac{x^{2} d x}{\sqrt{a x+b}}=\frac{2\left(3 a^{2} x^{2}-4 a b x+8 b^{2}\right)}{15 a^{3}} \sqrt{a x+b}$
33. $\int \frac{x^{m} d x}{\sqrt{a x+b}}=\frac{2}{a(2 m+1)}\left(x^{m} \sqrt{a x+b}-m b \int \frac{x^{m-1} d x}{\sqrt{a x+b}}\right), m \neq \frac{1}{2}$
34. $\int \frac{d x}{x \sqrt{a x+b}}=\frac{1}{\sqrt{b}} \log _{e} \frac{\sqrt{a x+b}-\sqrt{b}}{\sqrt{a x+b}+\sqrt{b}}, \quad b>0$

$$
=\frac{2}{\sqrt{-b}} \tan ^{-1} \sqrt{\frac{a x+b}{-b}}, \quad b<0
$$

35. $\int \frac{d x}{x^{m} \sqrt{a x+b}}=-\frac{\sqrt{a x+b}}{(m-1) b x^{m-1}}-\frac{(2 m-3) a}{(2 m-2) b} \int \frac{d x}{x^{m-1} \sqrt{a x+b}}$,

$$
m \neq 1
$$

## Infegral calculus continued

Infegrals involving $\sqrt{x^{2} \pm a^{2}}$ and $\sqrt{a^{2}-x^{2}}$
36. $\int \sqrt{x^{2} \pm a^{2}} d x=\frac{1}{2}\left[x \sqrt{x^{2} \pm a^{2}} \pm a^{2} \log _{e}\left(x+\sqrt{x^{2} \pm a^{2}}\right)\right]$
37. $\int \sqrt{a^{2}-x^{2}} d x=\frac{1}{2}\left(x \sqrt{a^{2}-x^{2}}+a^{2} \sin ^{-1} \frac{x}{a}\right)$
38. $\int \frac{d x}{\sqrt{x^{2} \pm a^{2}}}=\log _{e}\left(x+\sqrt{\left.x^{2} \pm a^{2}\right)}\right.$
39. $\int \frac{d x}{\sqrt{a^{2}-x^{2}}}=\sin ^{-1} \frac{x}{a}$
40. $\int x \sqrt{x^{2} \pm a^{2}} d x=\frac{1}{3} \sqrt{\left(x^{2} \pm a^{2}\right)^{3}}$
41. $\int x^{2} \sqrt{x^{2} \pm a^{2}} d x=\frac{x}{4} \sqrt{\left(x^{2} \pm a^{2}\right)^{3}} \mp \frac{a^{2}}{8}\left[x \sqrt{x^{2} \pm a^{2}}\right.$ $\pm a^{2} \log _{e}\left(x+\sqrt{\left.x^{2} \pm a^{2}\right)}\right]$
42. $\int x \sqrt{a^{2}-x^{2}} d x=-\frac{1}{3} \sqrt{\left(a^{2}-x^{2}\right)^{3}}$
43. $\int x^{2} \sqrt{a^{2}-x^{2}} d x=-\frac{x}{4} \sqrt{\left(a^{2}-x^{2}\right)^{3}}+\frac{a^{2}}{8}\left(x \sqrt{a^{2}-x^{2}}+a^{2} \sin ^{-1} \frac{x}{a}\right)$
44. $\int \frac{\sqrt{a^{2} \pm x^{2}}}{x} d x=\sqrt{a^{2} \pm x^{2}}-a \log _{e} \frac{a+\sqrt{a^{2} \pm x^{2}}}{x}$
45. $\int \frac{\sqrt{x^{2}-a^{2}}}{x} d x=\sqrt{x^{2}-a^{2}}-a \cos ^{-1} \frac{a}{x}$
46. $\int \frac{\sqrt{x^{2} \pm a^{2}}}{x^{2}} d x=-\frac{\sqrt{x^{2} \pm a^{2}}}{x}+\log _{e}\left(x+\sqrt{x^{2} \pm a^{2}}\right)$
47. $\int \frac{\sqrt{a^{2}-x^{2}}}{x^{2}} d x=-\frac{\sqrt{a^{2}-x^{2}}}{x}-\sin ^{-1} \frac{x}{a}$
48. $\int \frac{x d x}{\sqrt{a^{2}-x^{2}}}=-\sqrt{a^{2}-x^{2}}$
49. $\int \frac{x d x}{\sqrt{x^{2} \pm a^{2}}}=\sqrt{x^{2} \pm a^{2}}$

602
Integral calculus conlinued
50. $\int \frac{x^{2} d x}{\sqrt{x^{2} \pm a^{2}}}=\frac{x}{2} \sqrt{x^{2} \pm a^{2}} \mp \frac{\sigma^{2}}{2} \log _{e}\left(x+\sqrt{x^{2} \pm a^{2}}\right)$
51. $\int \frac{x^{2} d x}{\sqrt{a^{2}-x^{2}}}=-\frac{x}{2} \sqrt{a^{2}-x^{2}}+\frac{a^{2}}{2} \sin ^{-1} \frac{x}{a}$
52. $\int \frac{d x}{x \sqrt{x^{2}-\sigma^{2}}}=\frac{1}{a} \cos ^{-1} \frac{a}{x}$
53. $\int \frac{d x}{x \sqrt{a^{2} \pm x^{2}}}=-\frac{1}{a} \log _{e}\left(\frac{a+\sqrt{a^{2} \pm x^{2}}}{x}\right)$
54. $\int \frac{d x}{x^{2} \sqrt{x^{2} \pm a^{2}}}= \pm \frac{\sqrt{x^{2} \pm a^{2}}}{a^{2} x}$
55. $\int \frac{d x}{x^{2} \sqrt{a^{2}-x^{2}}}=-\frac{\sqrt{a^{2}-x^{2}}}{a^{2} x}$
56. $\int \sqrt{\left(x^{2} \pm a^{2}\right)^{3}} d x=\frac{1}{4}\left[x \sqrt{\left(x^{2} \pm a^{2}\right)^{3}} \pm \frac{3 a^{2} x}{2} \sqrt{x^{2} \pm a^{2}}\right.$

$$
+\frac{3 a^{4}}{2} \log _{e}\left(x+\sqrt{\left.x^{2} \pm a^{2}\right)}\right]
$$

57. $\int \sqrt{\left(a^{2}-x^{2}\right)^{3}} d x=\frac{1}{4}\left[x \sqrt{\left(a^{2}-x^{2}\right)^{3}}+\frac{3 a^{2} x}{2} \sqrt{a^{2}-x^{2}}+\frac{3 a^{4}}{2} \sin ^{-1} \frac{x}{a}\right]$
58. $\int \frac{d x}{\sqrt{\left(x^{2} \pm a^{2}\right)^{3}}}=\frac{ \pm x}{a^{2} \sqrt{x^{2} \pm a^{2}}}$
59. $\int \frac{d x}{\sqrt{\left(a^{2}-x^{2}\right)^{3}}}=\frac{x}{a^{2} \sqrt{a^{2}-x^{2}}}$

## Integrals involving $\sqrt{a x^{2}+b x+c}$

Let $X=a x^{2}+b x+c$ and $a=b^{2}-4 a c$
60. $\int \frac{d x}{\sqrt{x}}=\frac{1}{\sqrt{a}} \log _{e}\left(\sqrt{x}+\frac{2 a x+b}{2 \sqrt{a}}\right), a>0$

$$
=\frac{1}{\sqrt{-a}} \sin ^{-1} \frac{(-2 a x-b)}{\sqrt{a}}, \quad a<0
$$

## Integral calculus continued

61. $\int \frac{x d x}{\sqrt{x}}=\frac{\sqrt{x}}{a}-\frac{b}{2 a} \int \frac{d x}{\sqrt{x}}$
62. $\int \frac{x^{2} d x}{\sqrt{x}}=\frac{(2 a x-3 b) \sqrt{x}}{4 a^{2}}+\frac{3 b^{2}-4 a c}{8 a^{2}} \int \frac{d x}{\sqrt{x}}$
63. $\int \frac{d x}{x \sqrt{x}}=-\frac{1}{\sqrt{c}} \log _{c}\left(\frac{\sqrt{x}+\sqrt{c}}{x}+\frac{b}{2 \sqrt{c}}\right), \quad c>0$
64. $\int \frac{d x}{x \sqrt{x}}=\frac{1}{\sqrt{-c}} \sin ^{-1} \frac{b x+2 c}{x \sqrt{q}}, c<0$
65. $\int \frac{d x}{x \sqrt{x}}=-\frac{2 \sqrt{x}}{b x}, c=0$
66. $\int \frac{d x}{(m x+n) \sqrt{x}}=\frac{1}{\sqrt{k}} \log _{e}\left[\frac{\sqrt{k}-m \sqrt{x}}{m x+n}+\frac{b m-2 a n}{2 \sqrt{k}}\right], k>0$

$$
\left.=\frac{1}{\sqrt{-k}} \sin ^{-1}\left[\frac{(b m-2 a n)(m x+n)+2 k}{m(m x+n) \sqrt{q}}\right], k<0\right\}
$$

67. $\int \frac{d x}{(m x+n) \sqrt{x}}=-\frac{2 m \sqrt{x}}{(b m-2 a n)(m x+n)}$. $k=0$
where $k=a n^{2}-b m n+c m^{2}$.
68. $\int \frac{d x}{x^{2} \sqrt{x}}=-\frac{\sqrt{x}}{c x}-\frac{b}{2 c} \int \frac{d x}{x \sqrt{x}}$
69. $\int \sqrt{x} d x=\frac{(2 a x+b) \sqrt{x}}{4 a}-\frac{q}{8 a} \int \frac{d x}{\sqrt{x}}$
70. $\int x \sqrt{x} d x=\frac{x \sqrt{x}}{3 a}-\frac{b(2 a x+b) \sqrt{x}}{8 a^{2}}+\frac{b q}{16 a^{2}} \int \frac{d x}{\sqrt{x}}$
71. $\int x^{2} \sqrt{x} d x=\frac{(6 a x-5 b) x \sqrt{x}}{24 a^{2}}+\frac{\left(5 b^{2}-4 a c\right)(2 a x+b) \sqrt{x}}{64 a^{3}}$

$$
-\frac{15 b^{2}-4 a c 1 q}{128 a^{3}} \iint \frac{d x}{\sqrt{x}}
$$

72. $\int \frac{\sqrt{x} d x}{x}=\sqrt{x}+\frac{b}{2} \int \frac{d x}{\sqrt{x}}+c \int \frac{d x}{x \sqrt{x}}$

604

Integral calculus cantinued
73. $\int \frac{\sqrt{x} d x}{m x+n}=\frac{\sqrt{x}}{m}+\frac{b m-2 a n}{2 m^{2}} \int \frac{d x}{\sqrt{x}}$

$$
+\frac{a n^{2}-b m n+c m^{2}}{m^{2}} \int \frac{d x}{(m x+n) \sqrt{x}}
$$

74. $\int \frac{\sqrt{x} d x}{x^{2}}=-\frac{\sqrt{x}}{x}+\frac{b}{2} \int \frac{d x}{x \sqrt{x}}+a \int \frac{d x}{\sqrt{x}}$
75. $\int \frac{d x}{x \sqrt{x}}=-\frac{2(a x+b)}{q \sqrt{x}}$
76. $\int x \sqrt{x} d x=\frac{2(2 a x+b) x \sqrt{x}}{8 a}-\frac{3 a(2 a x+b) \sqrt{x}}{64 a^{2}}+\frac{3 q^{2}}{128 a^{2}} \int \frac{d x}{\sqrt{x}}$

## Miscellaneous irrational integrals

77. $\int \sqrt{2 a x-x^{2}} d x=\frac{x-a}{2} \sqrt{2 a x-x^{2}}+\frac{a^{2}}{2} \sin ^{-1} \frac{x-a}{a}$
78. $\int \frac{d x}{\sqrt{2 a x-x^{2}}}=\cos ^{-1} \frac{a-x}{a}$
79. $\int \sqrt{\frac{m x+n}{a x+b}} d x=\int \frac{(m x+n) d x}{\sqrt{a m x^{2}+(b m+a n) x+b n}}$

## Logarithmic integrals

80. $\int \log _{a} x d x=x \log _{a} \frac{x}{a}$
81. $\int \log _{e} x d x=x\left(\log _{e} x-1\right)$
82. $\int x^{m} \log _{a} x d x=x^{m+1}\left(\frac{\log _{a} x}{m+1}-\frac{\log _{a} e}{(m+1)^{2}}\right)$
83. $\int x^{m} \log _{e} x d x=x^{m+1}\left(\frac{\log _{e} x}{m+1}-\frac{1}{(m+1)^{2}}\right)$

## Exponential infegrals

84. $\int a^{x} d x=\frac{a^{x}}{\log _{6} a}$

Integral calculus continued
85. $\int e^{x} d x=e^{x}$
86. $\int x e^{x} d x=e^{x} \mid x-11$
87. $\int x^{m} e^{x} d x=x^{m} e^{x}-m \int x^{m-1} e^{x} d x$

## Trigonometric infegrals

In these equations $m$ and $n$ are positive integers unless otherwise indicated, ond $r$ and $s$ are any integers.
88. $\int \sin x d x=-\cos x$
89. $\int \sin ^{2} x d x=\frac{1}{2}(x-\sin x \cos x)$
90. $\int \sin ^{n} x d x=-\frac{\sin ^{n-1} \times \cos x}{n}+\frac{n-1}{n} \int \sin ^{n-2} x d x$
91. $\int \frac{d x}{\sin ^{n} x}=-\frac{\cos x}{\ln -1) \sin ^{n-1} x}+\frac{n-2}{n-1} \int \frac{d x}{\sin ^{n-2} x}, n \neq 1$
92. $\int \cos x d x=\sin x$
93. $\int \cos ^{2} x d x=\frac{1}{2}(x+\sin x \cos x)$
94. $\int \cos ^{n} x d x=\frac{\cos ^{n-1} x \sin x}{n}+\frac{n-1}{n} \int \cos ^{n-2} x d x$
95. $\int \frac{d x}{\cos ^{n} x}=\frac{\sin x}{(n-1) \cos ^{n-1} x}+\frac{n-2}{n-1} \int \frac{d x}{\cos ^{n-2} x}, n \neq 1$
96. $\int \sin ^{n} x \cos x d x=\frac{\sin ^{n+1} x}{n+1}$
97. $\int \cos ^{n} x \sin x d x=-\frac{\cos ^{n+1} x}{n+1}$

## 606

## Integral calculus continued

98. $\int \sin ^{2} x \cos ^{2} x d x=\frac{4 x-\sin 4 x}{32}$
99. $\int \frac{d x}{\sin x \cos x}=\log _{e} \tan x$
100. $\int \sin ^{r} x \cos ^{8} x d x=\frac{\cos ^{s-1} \times \sin ^{r+1} x}{r+s}+\frac{s-1}{r+s} \int \sin ^{r} x \cos ^{s-2} x d x$, $r+s \neq 0$

$$
\begin{aligned}
& =-\frac{\sin ^{r-1} \times \cos ^{s+1} \times}{r+s}+\frac{r-1}{r+s} \int \sin ^{r-2} \times \cos ^{s} \times d x, \\
& r+s \neq 0 \\
& =\frac{\sin ^{r+1} \times \cos ^{o+1} \times}{r+1}+\frac{s+r+2}{r+1} \int \sin ^{r+2} \times \cos ^{s} \times d x, \\
& r \neq-1 \\
& =-\frac{\sin ^{r+1} \times \cos ^{s+1} \times}{s+1} \\
& \quad+\frac{s+r+2}{s+1} \int \sin ^{r} \times \cos ^{s+2} \times d x, \quad s \neq-1
\end{aligned}
$$

101. $\int \tan x d x=-\log _{e} \cos x$
102. $\int \tan ^{n} x d x=\frac{\tan ^{n-1} x}{n-1}-\int \tan ^{n-2} x d x$
103. $\int \cot x d x=\log _{e} \sin x$
104. $\int \cot ^{n} x d x=-\frac{\cot ^{n-1} x}{n-1}-\int \cot ^{n-2} x d x$
105. $\int \sec x d x=\log _{e}(\sec x+\tan x)$
106. $\int \sec ^{2} x d x=\tan x$
107. $\int \sec ^{n} x d x=\frac{\sin x}{(n-1) \cos ^{n-1} x}+\frac{n-2}{n-1} \int \sec ^{n-2} x d x, \quad n \neq 1$

Integral calculus continued
108. $\int \csc ^{2} x d x=-\cot x$
109. $\int \csc x d x=\log _{e}(\csc x-\cot x)$
110. $\int \csc ^{n} x d x=\frac{\cos x}{-11 \sin ^{n-1} x}+\frac{n-2}{n-1} \int \csc ^{n-2} x d x, n \neq 1$
$111 \int \sec ^{n} x \tan x d x=\frac{\sec ^{n} x}{n}$
112. $\int \csc ^{n} x \cot x d x=-\frac{\csc ^{n} x}{n} \int$
113. $\int \tan ^{n} x \sec ^{2} x d x=\frac{\tan ^{n+1} x}{n+1}$
114. $\int \cot ^{n} x \csc ^{2} x d x=-\frac{\cot ^{n+1} x}{n+1}$
115. $\int \frac{d x}{a+b \sin x}=\frac{-1}{\sqrt{a^{2}-b^{2}}} \sin ^{-1} \frac{b+a \sin x}{a+b \sin x}, \quad a^{2}>b^{2}$

$$
=\frac{+1}{\sqrt{b^{2}-a^{2}}} \log _{e} \frac{b+a \sin x-\sqrt{b^{2}-a^{2}}(\cos x)}{a+b \sin x}
$$ $b^{2}>a_{2}$

116. $\int \frac{d x}{a+b \cos x}=-\frac{1}{\sqrt{a^{2}-b^{2}}} \sin ^{-1}\left(\frac{b+a \cos x}{a+b \cos x}\right), \quad a>b>0$

$$
\begin{aligned}
& =\frac{1}{\sqrt{a^{2}-b^{2}}} \cdot \sin ^{-1}\left(\frac{\sqrt{a^{2}-b^{2}} \cdot \sin x}{a+b \cos x}\right), a>b>0 \\
& =\frac{1}{\sqrt{a^{2}-b^{2}}} \cdot \tan ^{-1}\left(\frac{\sqrt{a^{2}-b^{2}} \cdot \sin x}{b+a \cos x}\right), a>b>0 \\
& =\frac{1}{\sqrt{b^{2}-a^{2}}} \log _{e}\left(\frac{b+a \cos x+\sqrt{b^{2}-a^{2}} \sin x}{a+b \cos x}\right) \\
& \quad \text { when } b^{2}>a^{2}, a<0
\end{aligned}
$$

117. $\int \sqrt{1-\cos x} d x=-2 \sqrt{2} \cos \frac{x}{2}$

608

## Integral calculus continued

118. $\int \sqrt{(1-\cos x)^{3}} d x=\frac{4 \sqrt{2}}{3}\left(\cos ^{3} \frac{x}{2}-3 \cos \frac{x}{2}\right)$
119. $\int x \sin x d x=\sin x-x \cos x$
120. $\int x^{2} \sin x d x=2 x \sin x+\left(2-x^{2}\right) \cos x$
121. $\int x \cos x d x=\cos x+x \sin x$
122. $\int x^{2} \cos x d x=2 x \cos x+\left(x^{2}-2\right) \sin x$

## Inverse frigonometric infegrals

123. $\int \sin ^{-1} x d x=x \sin ^{-1} x+\sqrt{1-x^{2}}$
124. $\int \cos ^{-1} x d x=x \cos ^{-1} x-\sqrt{1-x^{2}}$
125. $\int \tan ^{-1} x d x=x \tan ^{-1} x-\log _{6} \sqrt{1+x^{2}}$
126. $\int \cot ^{-1} x d x=x \cot ^{-1} x+\log _{6} \sqrt{1+x^{2}}$
127. $\int \sec ^{-1} x d x=x \sec ^{-1} x-\log _{e}\left(x+\sqrt{x^{2}-1}\right)$

$$
=x \sec ^{-1} x-\cosh ^{-1} x
$$

128. $\int \csc ^{-1} x d x=x \csc ^{-1} x+\log _{e}\left(x+\sqrt{x^{2}-1}\right)$

$$
=x \csc ^{-1} x+\cosh ^{-1} x
$$

## Definite integrals

129. $\int_{0}^{\infty} \frac{a d x}{a^{2}+x^{2}}=\frac{\pi}{2}$, if $a>0 ;=0$, if $a=0 ;=-\frac{\pi}{2}$, if $a<0$
130. $\int_{0}^{\infty} x^{n-1} e^{-x} d x=\int_{0}^{1}\left[\log \frac{1}{x}\right]^{n-1} d x \equiv \Gamma(n)$

* $\Gamma(\mathrm{n})=$ gamma function

131. $\int_{0}^{1} x^{m-1}(1-x)^{n-1} d x=\int_{0}^{\infty} \frac{x^{m-1} d x}{(1+x)^{m+n}}=\frac{\Gamma(m) \Gamma(n)}{\Gamma(m+n)}$
132. $\int_{0}^{\frac{\pi}{2}} \sin ^{n} x d x=\int_{0}^{\frac{\pi}{2}} \cos ^{n} x d x=\frac{1}{2} \sqrt{\pi} \frac{\Gamma\left(\frac{n+1}{2}\right)}{\Gamma\left(\frac{n}{2}+1\right)}, n>-1$
133. $\int_{0}^{\infty} \frac{\sin m x d x}{x}=\frac{\pi}{2}$, if $m>0 ;=0$, if $m=0 ;=-\frac{\pi}{2}$, if $m<0$
134. $\int_{0}^{\infty} \frac{\sin x \cdot \cos m x d x}{x}=0$, if $m<-1$ or $m>1$;

$$
=\frac{\pi}{4}, \text { if } m=-1 \text { or } m=1 ;=\frac{\pi}{2}, \text { if }-1<m<1
$$

135. $\int_{0}^{\infty} \frac{\sin ^{2} x d x}{x^{2}}=\frac{\pi}{2}$
136. $\int_{0}^{\infty} \cos \left(x^{2}\right) d x=\int_{0}^{\infty} \sin \left(x^{2}\right) d x=\frac{1}{2} \sqrt{\frac{\pi}{2}}$
137. $\int_{0}^{\infty} \frac{\cos m x d x}{1+x^{2}}=\frac{\pi}{2} \cdot e^{1-m \mid}, \quad m>0$
138. $\int_{0}^{\infty} \frac{\cos x d x}{\sqrt{x}}=\int_{0}^{\infty} \frac{\sin x d x}{\sqrt{x}}=\sqrt{\frac{\pi}{2}}$
139. $\int_{0}^{\infty} e^{-a^{2} x^{2}} d x=\frac{1}{2 a} \sqrt{\pi}=\frac{1}{2 a} \Gamma\left(\frac{1}{2}\right), \quad a>0 \quad$ (*)
140. $\int_{0}^{\infty} x^{2 n} e^{-a x^{2}} d x=\frac{1 \cdot 3 \cdot 5 \cdots(2 n-1)}{2^{n+1} a^{n}} \sqrt{\frac{\pi}{a}}$
141. $\int_{0}^{\infty} e^{-x^{2}-a^{2 / x}} d x=\frac{e^{-2 a} \sqrt{\pi}}{2}, a>0$
142. $\int_{0}^{\infty} e^{-n x \sqrt{x}} d x=\frac{1}{2 n} \sqrt{\frac{\pi}{n}}$
143. $\int_{0}^{\infty} \frac{e^{-n x}}{\sqrt{x}} d x=\sqrt{\frac{\pi}{n}}$

* $\Gamma(n)=$ gamma function

610

## Integral calculus cantinued

144. $\int_{0}^{\infty} e^{-a^{2} x^{2}} \cos b x d x=\frac{\sqrt{\pi} \cdot e^{-b^{2} / 4 a^{2}}}{2 a}, \quad a>0$
145. $\int_{0}^{1} \frac{\log _{e} x}{1-x} d x=-\frac{\pi^{2}}{6}$
146. $\int_{0}^{1} \frac{\log _{e} x}{1+x} d x=-\frac{\pi^{2}}{12}$
147. $\int_{0}^{1} \frac{\log _{e} x}{1-x^{2}} d x=-\frac{\pi^{2}}{8}$
148. $\int_{0}^{1} \log _{e}\left(\frac{1+x}{1-x}\right) \cdot \frac{d x}{x}=\frac{\pi^{2}}{4}$
149. $\int_{0}^{1} \frac{\log _{e} x d x}{\sqrt{1-x^{2}}}=-\frac{\pi}{2} \log _{e} 2$
150. $\int_{0}^{1} \frac{\left(x^{p}-x^{q}\right) d x}{\log _{e} x}=\log _{e} \frac{p+1}{q+1}, p+1>0, q+1>0$
151. $\int_{0}^{1}\left(\log _{e} x\right)^{n} d x=(-1)^{n} \cdot n!$
152. $\int_{0}^{1} \frac{d x}{\sqrt{\log _{e}\left(\frac{1}{x}\right)}}=\sqrt{\pi}$
153. $\int_{0}^{1} x^{m}\left(\log _{e} \frac{1}{x}\right)^{n} d x=\frac{\Gamma(n+1)}{(m+1)^{n+1}}, m+1>0, n+1>0$
154. $\int_{0}^{\infty} \log _{e}\left(\frac{e^{x}+1}{e^{x}-1}\right) d x=\frac{\pi^{2}}{4}$
155. $\int_{0}^{\frac{\pi}{2}} \log _{e} \sin x d x=\int_{0}^{\frac{\pi}{2}} \log _{e} \cos x d x=-\frac{\pi}{2} \log _{e} 2$
156. $\int_{0}^{\pi} x \cdot \log _{e} \sin x d x=-\frac{\pi^{2}}{2} \log _{e} 2$
157. $\int_{0}^{\pi} \log _{e}(a \pm b \cos x) d x=\pi \log _{e}\left(\frac{a+\sqrt{a^{2}-b^{2}}}{2}\right), a \geqslant b$

* $\Gamma(n)=$ gamma function.


## Integral calculus

conlinued
158. $\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \frac{\cos ^{2}\left(\frac{\pi}{2} \sin x\right) d x}{\cos x}=1.22$

## Table of Laplace transforms

## Symbols

Constants are real unless otherwise specified.

$$
\begin{aligned}
R(x) & =\text { "real part of } x " \\
j & =\sqrt{-1} \\
f(t) & =0,1<0 \\
S_{-1}(f) & =\text { unit step } \\
& =0,1<0 \\
& =1,1>0 \\
S_{0}(t) & =\text { unit impulse } \\
& =0,1<0 \\
& =0,1>0 \\
& =\infty, \text { if } t=0, \text { and } \int_{-\infty}^{\infty} S_{0}(t) d t=1
\end{aligned}
$$

Note: Let

$$
\begin{aligned}
f(t) & =0, t<0 \\
& =g(t), 0<t<\delta \quad \quad \lim _{\delta \rightarrow 0} \int_{0}^{\delta} g(t) d t=1 \\
& =0, t>\delta
\end{aligned}
$$

$$
\text { then } S_{0}(t)=\lim _{\delta \rightarrow 0} f(t)
$$

$\omega=2 \pi \times$ frequency
$m, k=$ any positive integers
$\boldsymbol{\gamma}=$ period of a periodic function $(t>0)$
$\Gamma(x)=$ gamma function
$=\int_{0}^{\infty} e^{-u} u^{x-1} d u$
$\Gamma(k)=(k-1)!, k=$ positive integer
$J_{0}(x)=$ Bessel function, first kind, zero order
$J_{k}(x)=$ Bessel function, first kind, kth order

612

## Table of Laplace transforms conlinued



[^64]Table of Laplace transforms
conlinued


614

## Series

## Maclaurin's theorem

$$
f(x)=f(0)+x f^{\prime}(0)+\frac{x^{2}}{1.2} f^{\prime \prime}(0)+\ldots+\frac{x^{n}}{n!} f^{n}(0)+\ldots .
$$

## Toylor's theorem

$$
\begin{aligned}
& f(x)=f\left(x_{0}\right)+f^{\prime}\left(x_{0}\right)\left(x-x_{0}\right)+\frac{f^{\prime \prime}\left(x_{0}\right)}{2!}\left(x-x_{0}\right)^{2}+\ldots \\
& f(x+h)=f(x)+f^{\prime}(x) \cdot h+\frac{f^{\prime \prime}(x)}{2!} h^{2}+\ldots+\frac{f^{n}(x)}{n!} h^{n}+\ldots
\end{aligned}
$$

## Miscellaneous

$$
\begin{aligned}
& \log _{0}(1+x)=x-\frac{x^{2}}{2}+\frac{x^{3}}{3}-\frac{x^{4}}{4}+\ldots,|x|<1 \\
& e^{x}=1+x+\frac{x_{2}}{2!}+\frac{x^{3}}{3!}+\ldots,|x|<\infty \\
& \left.\begin{array}{l}
\sin x=x-\frac{x^{3}}{3!}+\frac{x^{5}}{5!}-\frac{x^{7}}{7!}+\ldots . \\
\cos x=1-\frac{x^{2}}{2!}+\frac{x^{4}}{4!}-\frac{x^{6}}{6!}+\ldots . \\
\sinh x=x+\frac{x^{3}}{3!}+\frac{x^{5}}{5!}+\frac{x^{7}}{7!}+\ldots .<\infty ; x \text { in radians } \\
\cosh x=1+\frac{x^{2}}{2!}+\frac{x^{4}}{4!}+\frac{x^{6}}{6!}+\ldots .
\end{array}\right\}|x|<\infty
\end{aligned}
$$

For $n=0$ or a positive integer, the expansion of the Bessel function of the first kind, $n$th order, is given by the convergent series,

$$
\begin{aligned}
J_{n}(x)=\frac{x^{n}}{2^{n} n!}\left[1-\frac{x^{2}}{2(2 n+2)}\right. & +\frac{x^{4}}{2 \cdot 4(2 n+2)(2 n+4)} \\
& \left.-\frac{x^{6}}{2 \cdot 4 \cdot 6(2 n+2)(2 n+4)(2 n+6)}+\ldots .\right]
\end{aligned}
$$

and
$J_{-n}(x)=(-1)^{n} J_{n}(x)$
Note: 0! $=1$

Series continued

## Binomial series

See "Binomial theorem," p. 583.

$$
\begin{aligned}
\tan x & =x+\frac{x^{3}}{3}+\frac{2 x^{5}}{15}+\frac{17 x^{7}}{315}+\frac{62 x^{9}}{2835}+\ldots,|x|<\frac{\pi}{2} \\
\cot x & =\frac{1}{x}-\frac{x}{3}-\frac{x^{3}}{45}-\frac{2 x^{5}}{945}-\frac{x^{7}}{4725}-\ldots, \quad|x|<\pi \\
\arcsin x & =x+\frac{1}{2} \frac{x^{3}}{3}+\frac{1 \cdot 3}{2 \cdot 4} \frac{x^{5}}{5}+\frac{1 \cdot 3 \cdot 5}{2 \cdot 4 \cdot 6} \frac{x^{7}}{7}+\ldots,|x|<1 \\
\text { arc tan } x & =x-\frac{x^{3}}{3}+\frac{x^{5}}{5}-\frac{x^{7}}{7}+\ldots, \\
\operatorname{arc} \sinh x & =x-\frac{1}{2} \frac{x^{3}}{3}+\frac{1 \cdot 3}{2 \cdot 4} \frac{x^{5}}{5}-\frac{1 \cdot 3 \cdot 5}{2 \cdot 4 \cdot 6} \frac{x^{7}}{7}+\ldots,|x|<1 \\
\text { arc tanh } x & =x+\frac{x^{3}}{3}+\frac{x^{5}}{5}+\frac{x^{7}}{7}+\ldots .
\end{aligned}
$$

## Vector-analysis formulas

## Rectangular coordinates

In the following, vectors are indicated in bold-faced type.
Associative law: For addition
$a+(b+c)=(a+b)+c=a+b+c$
Commutative law: For addition
$a+b=b+a$
where

$$
\begin{aligned}
\mathbf{a} & =\mathbf{a} \mathbf{a}_{1} \\
\mathbf{a} & =\text { magnitude of } \mathbf{a} \\
\mathbf{a}_{1} & =\text { unit vector in direction of } \mathbf{a}
\end{aligned}
$$

Scalar, or "dot" product

$$
\begin{aligned}
\mathbf{a} \cdot \mathbf{b} & =\mathbf{b} \cdot \mathbf{a} \\
& =a b \cos \theta
\end{aligned}
$$

where $\theta=$ angle included by $a$ and $b$.

Vector, or "cross" product
$a \times b=-b \times a$
$=a b \sin \theta \cdot c_{1}$

## where

$\theta=$ angle swept in rotating $\boldsymbol{a}$ into $\boldsymbol{b}$
$c_{1}=$ unit vector perpendicular to plane of $a$ and $b$, and directed in the sense of travel of $a$ right-hand screw rotating from $a$ to $b$ through the angle $\theta$.

Distributive law for scalar multiplication
$\mathbf{a} \cdot(\mathbf{b}+\mathbf{c})=\mathbf{a} \cdot \boldsymbol{b}+\mathbf{a} \cdot \mathbf{c}$
Distributive law for vector multiplication
$a \times(b+c)=a \times b+a \times c$
Scalar triple product
$\mathbf{a} \cdot \boldsymbol{b} \times \mathbf{c}=\mathbf{a} \times \mathbf{b} \cdot \mathbf{c}=\mathbf{c} \cdot \mathbf{a} \times \mathbf{b}=\mathbf{b} \cdot \mathbf{c} \times \mathbf{a}$
Vector triple product

$$
\begin{aligned}
& a \times(b \times c)=(a \cdot c) b-(a \cdot b) c \\
&(a \times b) \cdot(c \times d)=(a \cdot c)(b \cdot d)-(a \cdot d)(b \cdot c) \\
&(a \times b) \times(c \times d)=(a \times b \cdot d) c-(a \times b \cdot c) d \\
& \nabla=\text { operator "del" } \\
& \equiv i \frac{\partial}{\partial x}+i \frac{\partial}{\partial y}+k \frac{\partial}{\partial z}
\end{aligned}
$$

where $i, j, k$ are unit vectors in directions of $x, y, z$ coordinates, respectively.

$$
\operatorname{grad} \phi=\nabla \phi=i \frac{\partial \phi}{\partial x}+i \frac{\partial \phi}{\partial y}+k \frac{\partial \phi}{\partial z}
$$

$\operatorname{grad}(\phi+\psi)=\operatorname{grad} \phi+\operatorname{grad} \psi$

$$
\operatorname{grad}(\phi \psi)=\phi \operatorname{grad} \psi+\psi \operatorname{grad} \phi
$$

$$
\text { curl } \operatorname{grad} \phi=0
$$

$$
\operatorname{div} a=\nabla \cdot a=\frac{\partial \sigma_{x}}{\partial x}+\frac{\partial \sigma_{y}}{\partial y}+\frac{\partial \sigma_{z}}{\partial z}
$$

## Vector-analysis formulas confinued

where $a_{x}, a_{y}, a_{z}$ are the components of $a$ in the directions of the respective coordinate axes.

$$
\begin{aligned}
\operatorname{div}(\mathbf{a}+\boldsymbol{b}) & =\operatorname{div} \boldsymbol{a}+\operatorname{div} \boldsymbol{b} \\
\text { curl } \mathbf{a} & =\nabla \times \mathbf{a} \\
& =\mathbf{i}\left(\frac{\partial a_{z}}{\partial y}-\frac{\partial a_{v}}{\partial z}\right)+j\left(\frac{\partial a_{x}}{\partial z}-\frac{\partial a_{z}}{\partial x}\right)+\boldsymbol{k}\left(\frac{\partial a_{y}}{\partial x}-\frac{\partial a_{x}}{\partial y}\right) \\
& =\left|\begin{array}{lll}
\mathbf{i} & \boldsymbol{j} & \boldsymbol{k} \\
\frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\
a_{x} & a_{y} & a_{z}
\end{array}\right|
\end{aligned}
$$

$\operatorname{curl}(\phi a)=\operatorname{grad} \phi \times a+\phi$ curl $a$
div curl $a=0$
$\operatorname{div}(\mathbf{a} \times \boldsymbol{b})=\boldsymbol{b} \cdot$ curl $\boldsymbol{a}-\mathbf{a} \cdot \operatorname{curl} \boldsymbol{b}$
$\nabla^{2} \equiv$ Laplacian
$\nabla^{2} \phi=\frac{\partial^{2} \phi}{\partial x^{2}}+\frac{\partial^{2} \phi}{\partial y^{2}}+\frac{\partial^{2} \phi}{\partial z^{2}}$
in rectangular coordinates.
curl curl $a=\operatorname{grad} \operatorname{div} a-\left(i \nabla^{2} a_{x}+j \nabla{ }^{2} a_{y}+k \nabla{ }^{2} a_{z} \mid\right.$

In the following formulas $\tau$ is a volume bounded by a closed surface $S$. The unit vector $\boldsymbol{n}$ is normal to the surface $S$ and directed positively outwards.
$\int_{\tau} \nabla \phi \cdot d \tau=\int_{S} \phi n d S$
$\int_{\tau} \nabla \cdot \boldsymbol{a} d \tau=\int_{S} \boldsymbol{a} \cdot \boldsymbol{n} d S \quad$ (Gauss theorem)
$\int_{\tau} \nabla \times a d \tau=\int_{S} n \times a d S$
$\int_{\tau}\left(\psi \nabla^{2} \phi-\phi \nabla^{2} \psi \left\lvert\, d \tau=\int_{S}\left(\psi \frac{\partial \phi}{\partial n}-\phi \frac{\partial \psi}{\partial n}\right) d S\right.\right.$
where $\partial / \partial n$ is the derivative in the direction of the positive normal to $S$ (Green's theorem).

## 618

## Vector-analysis formulas continued

In the two following formulas $S$ is an open surface bounded by a contour $C$, with distance along $C$ represented by s.
$\int_{S} n \times \nabla \phi d S=\int_{c} \phi d s$
$\int_{S} \nabla \times \boldsymbol{a} \cdot \boldsymbol{n} d S=\int_{C} \boldsymbol{a} \cdot d \boldsymbol{d s}$ (Stokes' theorem)
where $s=s s_{1}$, and $s_{1}$ is a unit vector in the direction of $s$.

## Gradient, divergence, curl, and Laplacian in coordinate systems other than rectangular

Cylindrical coordinates: ( $\rho, \phi, z$ ), unit vectors $\rho_{1}, \phi_{1}, k$, respectively,
$\operatorname{grad} \psi=\nabla \psi=\frac{\partial \psi}{\partial \rho} \rho_{1}+\frac{1}{\rho} \frac{\partial \psi}{\partial \phi} \phi_{1}+\frac{\partial \psi}{\partial z} k$
$\operatorname{div} a=\nabla \cdot a=\frac{1}{\rho} \frac{\partial}{\partial \rho}\left(\rho a_{\rho}\right)+\frac{1}{\rho}\left(\frac{\partial \mathrm{a}_{\phi}}{\partial \phi}\right)+\frac{\partial \mathrm{a}_{z}}{\partial z}$
curl $a=\nabla \times a=\left(\frac{1}{\rho} \frac{\partial a_{z}}{\partial \phi}-\frac{\partial \alpha_{\phi}}{\partial z}\right) \rho_{1}+\left(\frac{\partial a_{p}}{\partial z}-\frac{\partial a_{z}}{\partial \rho}\right) \phi_{1}$

$$
+\left[\frac{1}{\rho} \frac{\partial}{\partial \rho}\left(\rho a_{\phi}\right)-\frac{1}{\rho} \frac{\partial a_{p}}{\partial \phi}\right] \boldsymbol{k}
$$

$\nabla^{2} \psi=\frac{1}{\rho} \frac{\partial}{\partial \rho}\left(\rho \frac{\partial \psi}{\partial \rho}\right)+\frac{1}{\rho^{2}} \frac{\partial^{2} \psi}{\partial \phi^{2}}+\frac{\partial^{2} \psi}{\partial z^{2}}$
Spherical coordinates: $(r, \theta, \phi)$, unit vectors $r_{1}, \theta_{1}, \phi_{1}$
$r=$ distance to origin
$\theta=$ polar angle
$\phi=$ azimuthal angle
$\operatorname{grad} \psi=\nabla \psi=\frac{\partial \psi}{\partial r} r_{1}+\frac{1}{r} \frac{\partial \psi}{\partial \theta} \rho_{1}+\frac{1}{r \sin \theta} \frac{\partial \psi}{\partial \phi} \phi_{1}$
$\operatorname{div} a=\nabla \cdot a=\frac{1}{r^{2}} \frac{\partial}{\partial r}\left(r^{2} a_{r}\right)+\frac{1}{r \sin \theta} \frac{\partial}{\partial \theta}\left(a_{\theta} \sin \theta\right)+\frac{1}{r \sin \theta} \frac{\partial a_{\phi}}{\partial \phi}$
curl $a=\nabla \times a=\frac{1}{r \sin \theta}\left[\frac{\partial}{\partial \theta}\left(a_{\phi} \sin \theta\right\rangle-\frac{\partial \alpha_{\theta}}{\partial \phi}\right] \boldsymbol{r}_{1}$
$+\frac{1}{r}\left[\frac{1}{\sin \theta} \frac{\partial a_{r}}{\partial \phi} \frac{\partial}{\partial r}\left(r \sigma_{\phi}\right)\right] \theta_{1}$

$$
+\frac{1}{r}\left[\frac{\partial}{\partial r}\left(r a_{\theta}\right)-\frac{\partial a_{r}}{d \theta}\right] \phi_{1}
$$

Vector-analysis formulas continued
$\nabla^{2} \psi=\frac{1}{r^{2}} \frac{\partial}{\partial r}\left(r^{2} \frac{\partial \psi}{\partial r}\right)+\frac{1}{r^{2} \sin \theta} \frac{\partial}{\partial \theta}\left(\sin \theta \frac{\partial \psi}{\partial \theta}\right)+\frac{1}{r^{2} \sin ^{2} \theta} \frac{\partial^{2} \psi}{\partial \phi^{2}}$

## Orthogonal curvilinear coordinates

Coordinates: $\quad u_{1}, u_{2}, u_{3}$
Metric coefficients: $h_{1}, h_{2}, h_{3}\left(d s^{2}=h_{1}{ }^{2} d u_{1}{ }^{2}+h_{2}{ }^{2} d u_{2}{ }^{2}+h_{3}{ }^{2} d u_{3}{ }^{2}\right)$
Unit vectors:

$$
\left.i_{1}, i_{2}, i_{3} \quad \text { ds }=i_{1} h_{1} d u_{1}+i_{2} h_{2} d u_{2}+i_{3} h_{3} d u_{3}\right)
$$

$\operatorname{grad} \psi=\nabla \psi=\frac{1}{h_{1}} \frac{\partial \psi}{\partial u_{1}} i_{1}+\frac{1}{h_{2}} \frac{\partial \psi}{\partial u_{2}} i_{2}+\frac{1}{h_{3}} \frac{\partial \psi}{\partial u_{3}} i_{3}$
$\operatorname{div} \mathbf{a}=\nabla \cdot \mathbf{a}=\frac{1}{h_{1} h_{2} h_{3}}\left[\frac{\partial}{\partial u_{1}}\left(h_{2} h_{3} a_{1}\right)+\frac{\partial}{\partial u_{2}}\left(h_{3} h_{1} a_{2}\right)+\frac{\partial}{\partial u_{3}}\left(h_{1} h_{2} a_{3}\right)\right]$
curl $\boldsymbol{a}=\nabla \times \mathbf{a}=\frac{1}{h_{2} h_{3}}\left[\frac{\partial}{\partial u_{2}}\left(h_{3} a_{3}\right)-\frac{\partial}{\partial u_{3}}\left(h_{2} a_{2}\right)\right] i_{1}$

$$
+\frac{1}{h_{3} h_{1}}\left[\frac{\partial}{\partial v_{3}}\left(h_{1} a_{1}\right)-\frac{\partial}{\partial u_{1}}\left(h_{3} a_{3}\right)\right] i_{2}
$$

$$
+\frac{1}{h_{1} h_{2}}\left[\frac{\partial}{\partial u_{1}}\left(h_{2} a_{2}\right)-\frac{\partial}{\partial u_{2}}\left(h_{1} a_{1}\right)\right] i_{3}
$$

$$
=\frac{1}{h_{1} h_{2} h_{3}}\left|\begin{array}{ccc}
h_{1} i_{1} & h_{2} i_{2} & h_{3} i_{3} \\
\frac{\partial}{\partial u_{1}} & \frac{\partial}{\partial u_{2}} & \frac{\partial}{\partial u_{3}} \\
h_{1} a_{1} & h_{2} a_{2} & h_{3} a_{3}
\end{array}\right|
$$

$$
\nabla^{2} \psi=\frac{1}{h_{1} h_{2} h_{3}}\left[\frac{\partial}{\partial u_{1}}\left(\frac{h_{2} h_{3}}{h_{1}} \frac{\partial \phi}{\partial u_{1}}\right)+\frac{\cdot \partial}{\partial u_{2}}\left(\frac{h_{3} h_{1}}{h_{2}} \frac{\partial \phi}{\partial u_{2}}\right)+\frac{\partial}{\partial u_{3}}\left(\frac{h_{1} h_{2}}{h_{3}} \frac{\partial \phi}{\partial u_{3}}\right)\right]
$$

## Common logarithms of numbers and proportional parts

											proportional parts								
	0	1	2	3	4	5	6	7	-	0	12	2	31	4	5	6	7	8	9
10	0000	0043	0086	0128	0170	0212	0253	0294	0334	0374	4	8	12	17	21	25	29	33	37
11	0414	0453	0492	0531	0569	0607	0645	0682	0719	0755	4	8	11	15	19	23	26	30	34
12	0792	0828	0864	0899	0934	0969	1004	1038	1072	1106	3	7	10	14	7	21	24	28	31
13	1139	1173	1208	1239	1271	1303	1335	1367	1399	1430	3	6	10	13	6	19	23	26	29
14	1461	1492	1523	1553	1584	1614	1644	1673	1703	1732	3	6	9	12	5	18	21	24	27
15	1781	1790	1818	1847	1875	1903	1931	1959	1987	2014	36	6	8	11	14	17	20	22	23
16	2041	2068	2095	2122	2148	2175	2201	2227	2253	2279	3	5	8	11	13	16	18	21	24
17	2304	2330	2355	2380	2405	2430	2455	2480	2504	2529	2	5	7	10	12	15	17	20	22
18	2553	2577	2601	2625	2648	2672	2695	2718	2742	2765	2	5	7	9	12	14	16	19	21
19	2788	2810	2833	2856	2878	2900	2923	2945	2967	2989	2	4	7	9	11	13	16	18	20
20	3010	3032	3054	3075	3096	3118	3139	3160	3181	3201	2	4	6		11	13	15	17	15
21	3222	3243	3263	3284	3304	3324	3345	3365	3385	3404	2	4	6	8	10	12	14	16	18
22	3424	3444	3464	3483	3502	3522	3541	3560	3579	3598	2	4	6	8	10	12	14	15	17
23	3617	3636	3655	3674	3692	3711	3729	3747	3766	3784	2	4	6	7	9	11	13	15	17
24	3802	3820	3838	3856	3874	3892	3909	3927	3945	3962	2	4	5	7	9	11	12	14	16
25	3979	3997	4014	4031	4048	4065	4082	4099	4116	4133	2	3		7	-	10	12	14	15
26	4150	4166	4183	4200	4216	4232	4249	4265	4281	4298	2	3	5	7	8	10	11	13	15
27	4314	4330	4346	4362	4378	4393	4409	4425	4440	4456	2	3	5	6	8	9	11	13	14
28	4472	4487	4502	4518	4533	4548	4564	4579	4594	4609	2	3	5	6	8	9	11	12	14
29	4624	4639	4654	4669	4683	4698	4713	4728	4742	4757	1	3	4	6	7	9	10	12	13
30	4771	4786	4800	4814	4829	4843	4857	4871	4886	4900	1	3	4	6	7	8	10	11	13
31	4914	4928	4942	4955	4969	4983	4997	5011	5024	5038	1	3	4	6	7	8	10	11	12
32	5051	5065	5079	5092	5105	5119	5132	5145	5159	5172	1		4	5	7	8	9	11	12
33	5185	5198	5211	5224	5237	5250	5263	5276	5289	5302	1	3	4	5	6	8	9	10	12
34	5315	5328	5340	5353	5366	5378	5391	5403	5416	5428	1	3	4	5	6	8	9	10	11
35	5441	5453	5465	5478	5490	5502	5514	5527	5539	5551	,	2	4	5	6	7	9	10	11
36	5563	5575	5587	5599	5611	5623	5635	5647	5658	5670	1	2	4	5	6	7	8	10	11
37	5682	5694	5705	5717	5729	5740	5752	5763	5775	5786	1	2	3	5	6	7	8	9	10
38	5798	5809	5821	5832	5843	5855	5866	5877	5888	5899	1	2	3	5	6	7	8	9	10
39	5911	5922	5933	5944	5955	5966	5977	5988	5999	6010	1	2	3	4	5	7	8	9	10
40	6021	6031	6042	6053	6064	6075	6085	6096	6107	6117	,	2	,	4	5	6	8	9	10
41	6128	6138	6149	8180	6170	6180	6191	6201	6212	6222	1	2	3	4	5	6	7	8	9
42	6232	6243	6253	6263	6274	6284	6294	6304	6314	6325	1	2	3	4	5	6	7	8	9
43	6335	6345	6355	6365	6375	6385	6395	6405	6415	6425	1	2	3	4		6	7	8	9
44	6435	6444	6454	6464	6474	6484	6493	6503	6513	6522	1	2	3	4	5	6	7	8	9
45	6532	6542	6551	6561	6571	6580	6590	6599	6609	6618	1	2	3	4	5	6	7	8	9
46	6628	6637	6646	6856	6665	6675	6684	6693	6702	6712	1	2	3	4	5	6	7	7	8
47	6721	6730	6739	6749	8758	6767	6776	6785	6794	6803	1	2	3	4	5	5	6	7	8
48	6812	6821	6830	6839	6848	6857	6866	6875	6884	6893	1	2	3	4	4	5	6	7	8
49	6902	6911	6920	6928	6937	6946	6955	6964	6972	6981	1	2	3	4	4	5	6	7	8
50	6990	6998	7007	7016	7024	7033	7042	7050	7059	7067	1	2	3	3	4	5	6	7	8
51	7076	7084	7093	7101	7110	7118	7126	7135	7143	7152	1	2	3	,	4	5	6	7	8
52	7160	7168	7177	7185	7193	7202	7210	7218	7226	7235	1	2	2	3	4	5	6	7	7
53	7243	7251	7259	7267	7275	7284	7292	7300	7308	7316	1	2	2	3	,	5	6		7
54	7324	7332	7340	7348	7356	7364	7372	7380	7388	7396	1	2	2	3	4	5	6	6	7

Common logarithms of numbers and proportional parts continued

	0		2	3	4	5	6	7	8	9	proportional parts								
												2	3	4	5	6	7	8	9
55	7404	7412	7419	7427	7435	7443	7451	7459	7466	7474		2	2	3	4	5	5	6	7
56	7482	7490	7497	7505	7513	7520	7528	7536	7543	7551		2	2	3	4	5	5	8	7
57	7559	7566	7574	7582	7589	7597	7604	7612	7619	7627		2	2	3	4	5	5	6	7
58	7634	7642	7649	7657	7664	7672	7679	7686	7694	7701		1	2	3	4	4	5	6	7
59	7709	7716	7723	7731	7738	7745	7752	7760	7767	7774	1	1	2	3	4	4	5	6	7
60	7782	7789	7796	7803	7810	7818	7825	7832	7839	7848		1	2	3	4	4	5	6	6
81	7853	7860	7868	7875	7882	7889	7896	7903	7910	7917	1	1	2	3	4	4	5	6	6
62	7924	7931	7938	7945	7952	7959	7966	7973	7980	7987		1	2	3	3	4	5	6	6
63	7993	8000	8007	8014	8021	8028	8035	8041	8048	8055		1	2	3	3	4	5	5	6
64	8062	8069	8075	8082	8089	8096	8102	8109	8116	8122	1	1	2	3	3	4	5	5	6
65	8129	8136	8142	8149	8156	8162	8169	8176	8182	8189		1	2	3	3	4	5	5	6
66	8195	8202	8209	8215	8222	8228	8235	8241	8248	8254		1	2	3	3	4	5	5	6
87	8261	8267	8274	8280	8287	8293	8299	8306	8312	8319		1	2	3	3	4	5	5	6
88	8325	8331	8338	8344	8351	8357	8363	8370	8376	8382		1	2	3	3	,	4	5	6
69	8388	8395	8401	8407	8414	8420	8426	8432	8439	8445	1	+	2	2	3	4	4	5	6
70	8451	8457	8463	8470	8476	8482	8488	8494	8500	8506			2	2	3	4	4	5	6
71	8513	8519	8525	8531	8537	8543	8549	8555	8561	8567			2	2	3	4	4	5	5
72	8573	8579	8585	8591	8597	8803	8609	8615	8621	8627		1	2	2	3	4	4	5	5
73	8633	8639	8645	8651	8657	8663	8869	8675	8681	8686		1	2		3	4	4	5	5
74	8692	8698	8704	8710	8716	8722	8727	8733	8739	8745	1	1	2	2	3	4	4	5	5
75	8751	8756	8762	8768	8774	8779	8785	8791	8797	8802		1	2	2	3	3	4	5	5
76	8808	8814	8820	8825	8831	8837	8842	8848	8854	8859		1	2	2	3	3	4	5	5
77	8885	8871	8876	8882	8887	8893	8899	8904	8910	8915		1	2	2	3	3	4	4	5
78	8921	8927	8932	8938	8943	8949	8954	8980	8965	8971		1	2	2		3	4	4	5
79	8976	8982	8987	8993	8998	9004	9009	9015	9020	9025	1	1	2	2	3	3	4	4	5
80	9031	9036	9042	9047	9053	9058	9063	9069	9074	9079		1	2	2	3	3	4	4	5
81	9085	9090	9096	9101	9106	9112	9117	9122	9128	9133	,	1	2	2	3	3	4	4	5
82	9138	9143	9149	9154	9159	9165	9170	9175	9180	9186		1	2	2	3	3	4	4	5
83	9191	9196	9201	9206	9212	9217	9222	9227	9232	9238		1	2	2	3	3	4	4	5
84	9243	9248	9253	9258	9263	9269	9274	9279	9284	9289	1	1	2	2	3	3	4	4	5
85	9294	9299	9304	9309	9315	9320	9325	9330	9335	9340		1	2	2	3	3	4	4	5
86	9345	9350	9355	9360	9365	9370	9375	9380	9385	9390		1	2	2	3	3	4	4	5
67	9395	9400	9405	9410	9415	9420	9425	9430	9435	9440		1	1	2	2	3	3	4	4
88	9445	9450	9455	9460	9465	9469	9474	9479	9484	9489	0	1	,	2		3	3	4	4
89	9494	9499	9504	9509	9513	9518	9523	9528	9533	9538	0	1	1	2	2	3	3	4	4
90	9542	9547	9552	9557	9562	9566	9571	9576	9581	9586		1	,	2	2	3	3	4	4
91	9590	9595	9600	9605	9609	9614	9619	9624	9628	9633		,	,		2	3	3	4	4
92	9638	9643	9647	9652	9657	9661	9866	9871	9875	9680		1	1	2	2	3	3	4	4
93	9685	9689	9694	9699	9703	9708	9713	9717	9722	9727		1	,	2	2	3	3	4	4
94	9731	9736	9741	9745	9750	9754	9759	9763	9768	9773	0	1	1	2	2	3	3	4	4
95	9777	9782	9786	9791	9795	9800	9805	9809	9814	9818		,	,		2	3	3	4	4
96	9823	9827	9832	9836	9841	9845	9850	9854	9859	9863	0	1	,	2	2	3		4	4
97	9868	9872	9877	9881	9886	9890	9894	9899	9903	9908		1	1	2	2	3		4	4
98	9912	9917	9921	9926	9930	9934	9939	9943	9948	9952	0	,	1	2	2	3	3	4	4
99	9956	9961	9965	9969	9974	9978	9983	9987	9991	9996	0		1	2	2	3	3	3	4

## Natural trigonometric functions

for decimal fractions of a degree

deg	sin	cos	fan	cot		deg	in	cos	ton	cot	
0.0	. 00000	1.0000	. 00000	$\infty$	90.0	6.0	. 10453	0.9945	. 10510	9.514	84.0
. 1	. 00175	1.0000	. 00175	573.0	. 9	. 1	. 10626	. 9943	. 10687	9.357	- 9
2	. 00349	1.0000	. 00349	286.5	. 8	. 2	. 10800	. 9942	. 10863	9.205	. 8
.3	. 00524	1.0000	. 00524	191.0	. 7	. 3	. 10973	. 9940	. 11040	9.058	. 7
. 4	. 00698	1.0000	. 00698	143.24	. 6	. 4	. 11147	. 9938	. 11217	8.915	. 6
5	. 00873	1.0000	. 00873	114.59	. 5	. 5	. 11320	9936	. 11394	8.777	. 5
.6	. 01047	0.9999	. 01047	95.49	. 4	. 8	. 11494	. 9934	. 11570	8.643	. 4
7	. 01222	. 9999	. 01222	81.85	. 3	. 7	. 11667	. 9932	. 11747	8.513	. 3
. 8	. 01396	. 9999	. 01396	71.62	. 2	. 8	. 11840	. 9930	. 11924	8.326	. 2
. 9	. 01571	. 9999	. 01571	63.66	. 1	. 9	. 12014	. 9928	. 12101	8.264	.1
1.0	. 01745	0.9998	. 01746	57.29	89.0	7.0	. 12187	0.9925	.12278	8.144	83.0
.1	. 01920	. 9998	. 01920	52.08	. 9	. 1	. 12360	. 9923	. 12456	8.028	. 9
. 2	. 02094	. 9998	. 02095	47.74	. 8	.2	. 12533	. 9921	. 12633	7.916	. 8
3	. 02269	. 9997	. 02269	44.07	. 7	.3	. 12706	. 9919	. 12810	7.806	. 7
. 4	. 02443	. 9997	. 02444	40.92	. 6	. 4	. 12880	. 9917	. 12988	7.700	.6
. 5	. 02618	. 9997	. 02619	38.19	. 5	. 5	. 13053	. 9914	. 13165	7.596	. 5
. 6	. 02792	. 9996	. 02793	35.80	.4	. 6	. 13226	. 9912	. 13343	7.495	. 4
. 7	. 02967	. 9996	. 02968	33.69	3	. 7	. 13399	. 9910	. 13521	7.396	. 3
. 8	. 03141	. 9995	. 03143	31.82	. 2	. 8	. 13572	. 9907	. 13698	7.300	. 2
. 9	. 03316	. 9995	.03317	30.14	.1	. 9	. 13744	. 9905	. 13876	7.207	. 1
2.0	. 03490	0.9994	. 03492	28.64	88.0	8.0	.13917	0.9903	. 14054	7.115	82.0
. 1	. 03664	. 9993	. 03667	27.27	. 9	. 1	. 14090	. 9900	. 14232	7.026	. 2.9
. 2	. 03839	. 9993	. 03842	26.03	. 8	. 2	. 14263	. 9898	. 14410	6.940	. 8
. 3	. 04013	. 9992	. 04016	24.90	.7	. 3	. 14436	. 9895	. 14588	6.855	. 7
. 4	. 04188	. 9991	. 04191	23.86	.6	. 4	. 14608	. 9893	. 14767	6.772	. 6
. 5	. 04362	. 9990	. 04366	22.90	. 5	. 5	. 14781	. 9890	. 14945	6.691	. 5
. 6	. 04536	. 9990	. 04541	22.02	.4	. 6	. 14954	. 9888	. 15124	6.612	. 4
. 7	. 04711	. 9989	. 04716	21.20	. 3	. 7	. 15126	. 9885	. 15302	6.535	. 3
. 8	. 04885	. 9988	. 04891	20.45	. 2	. 8	. 15299	. 9882	. 15481	6.460	. 2
. 9	. 05059	. 9987	. 05066	19.74	. 1	. 9	. 15471	. 9880	. 15860	6.386	. 1
3.0	. 05234	0.9986	. 05241	19.081	87.0	9.0	. 15643	0.9877	. 15838	6.314	81.0
. 1	. 05408	. 9985	. 05416	18.464	. 9	. 1	. 15816	. 9874	. 16017	6.243	. 9
. 2	. 05582	. 9984	. 05591	17.886	. 8	. 2	. 15988	. 9871	. 16196	6.174	. 8
. 3	. 05756	. 9983	. 05766	17.343	. 7	. 3	. 16160	. 9869	. 16376	6.107	. 7
. 4	. 05931	. 9982	. 05941	16.832	. 6	. 4	. 16333	. 9866	.16555	6.041	. 6
. 5	. 06105	. 9981	. 06116	16.350	. 5	. 5	. 16505	. 9863	. 16734	5.976	. 5
. 6	. 06279	. 9980	. 06291	15.895	. 4	. 6	. 16877	. 9860	. 16914	5.912	. 4
.7	. 06453	. 9979	. 06467	15.464	. 3	. 7	. 16849	. 9857	. 17093	5.850	. 3
. 8	. 06627	. 9978	. 06642	15.056	. 2	. 8	. 17021	. 9854	. 17273	5.789	. 2
. 9	. 06802	. 9977	. 06817	14.669	. 1	. 9	. 17193	. 9851	. 17453	5.730	. 1
4.0	. 06976	0.9976	. 06993	14.301	86.0	10.0	. 1736	0.9848	. 1763	5.671	80.0
.1	. 07150	. 9974	. 07168	13.951	. 9	. 1	. 1754	. 9845	. 1781	5.614	. 9
2	. 07324	. 9973	. 07344	13.617	. 8	. 2	. 1771	. 9842	. 1799	5.558	. 8
3	. 07498	. 9972	. 07519	13.300	. 7	.3	. 1788	. 9839	. 1817	5.503	. 7
. 4	. 07672	. 9971	. 07695	12.996	. 6	.4	. 1805	. 9836	. 1835	5.449	. 6
. 5	. 07846	. 9969	. 07870	12.706	. 5	. 5	. 1822	. 9833	. 1853	5.396	. 5
. 6	. 08020	. 9968	. 08046	12.429	. 4	.6	. 1840	. 9829	. 1871	5.343	. 4
7	. 08194	. 9966	. 08221	12.163	. 3	. 7	. 1857	. 9826	. 1890	5.292	.3
8	. 08368	. 9965	. 08397	11.909	. 2	. 8	. 1874	. 9823	. 1908	5.242	. 2
9	. 08542	. 9963	. 08573	11.664	. 1	. 9	. 1891	. 9820	. 1928	5.193	. 1
3.0	. 08716	0.9962	. 08749	11.430	85.0	11.6	. 1908	0.9816	. 1944	5.145	79.0
. 1	-08889	. 9960	. 08925	11.205	. 9	. 1	. 1925	. 9813	. 1962	5.097	. 9
. 2	. 09063	. 9959	. 09101	10.988	. 8	. 2	. 1942	. 9810	. 1980	5.050	. 8
3	. 09237	. 9957	. 09277	10.780	. 7	.3	. 1959	. 9806	. 1998	5.005	. 7
. 4	. 09411	. 9956	. 09453	10.579	.6	. 4	. 1977	. 9803	. 2016	4.959	. 6
. 5	. 09585	. 9954	. 09629	10.385	. 5	. 5	. 1994	. 9799	. 2035	4.915	. 5
. 6	. 09758	. 9959	. 098805	10.199	4	.6	. 2011	. 9796	. 2053	4.872	. 4
. 7	. 09932	. 9951	. 09981	10.019	. 3	. 7	. 2028	. 9792	. 2071	4.829	. 3
. 8	.10106 .10279	. 9949	. 10158	9.845 9.677	. 2	. 8	. 2045	. 9789	. 2089	. 4.787	. 2
. 9	. 10279	. 9947	. 10334	9.677	. 1	. 9	. 2062	. 9785	. 2107	- 4.745	. 1
6.0	. 10453	0.9945	. 10510	9.514	84.0	12.0	. 2079	0.9781	. 2126	4.705	78.0
	cos	$\sin$	col	ton	deg		cos	sin	col	fan	deg

## Natural trigonometric functions

for decimal fractions of a degree continued

deg	$\sin$	cos	tan	col		deg	sin	cos	ton	cot	
12.0	0.2079	0.9781	0.2126	4.705	78.0	18.0	0.3090	0.9511	0.3249	3.078	72.0
. 1	. 2096	. 9778	. 2144	4.665	. 9	. 1	. 3107	. 9505	. 3269	3.060	. 9
. 2	. 2113	. 9774	. 2162	4.625	. 8	. 2	. 3123	. 9500	. 3288	3.042	. 8
.3	. 2130	. 9770	. 2180	4.586	. 7	3	. 3140	. 9494	. 3307	3.024	. 7
. 4	. 2147	. 9767	. 2199	4.548	. 6	. 4	. 3156	. 9489	. 3327	3.006	. 6
. 5	. 2164	. 9763	. 2217	4.511	. 5	. 5	. 3173	. 9483	. 3346	2.989	. 5
. 6	. 2181	. 9759	. 2235	4.474	. 4	. 6	. 3190	. 9478	. 3365	2.971	. 4
. 7	. 2198	. 9755	. 2254	4.437	. 3	. 7	. 3206	. 9472	. 3385	2.954	. 3
. 8	. 2215	. 9751	. 2272	4.402	. 2	. 8	. 3223	. 9466	. 3404	2.937	. 2
. 9	. 2233	. 9748	. 2290	4.366	. 1	. 9	.3239	. 9461	. 3424	2.921	. 1
13.0	0.2250	0.9744	0.2309	4.331	77.0	19.0	0.3256	0.9455	0.3443	2.904	71.0
. 1	. 2267	. 9740	. 2327	4.297	. 9	. 1	. 3272	. 9449	. 3463	2.888	. 9
. 2	. 2284	. 9736	. 2345	4.264	. 8	. 2	. 3289	. 9444	.3482	2.872	. 8
. 3	. 2300	. 9732	. 2364	4.230	. 7	. 3	. 3305	. 9438	. 3502	2.856	. 7
. 4	. 2317	. 9728	. 2382	4.198	. 6	. 4	. 3322	. 9432	. 3522	2.840	. 6
. 5	. 2334	. 9724	. 2401	4.165	. 5	. 5	. 3338	. 9426	. 3541	2.824	. 5
. 6	. 2351	. 9720	. 2419	4.134	. 4	. 6	. 3355	. 9421	. 3561	2.808	. 4
. 7	. 2368	. 9715	. 2438	4.102	. 3	. 7	. 3371	. 9415	. 3581	2.793	. 3
. 8	. 2385	. 9711	. 2456	4.071	. 2	. 8	. 3387	. 9409	. 3600	2.778	. 2
. 9	. 2402	. 9707	. 2475	4.041	. 1	. 9	. 3404	. 9403	. 3620	2.762	. 1
14.0	0.2419	0.9703	0.2493	4.011	76.0	20.0	0.3420	0.9397	0.3640	2.747	70.0
. 1	. 2436	. 9699	. 2512	3.981	. 9	. 1	. 3437	. 9391	. 3659	2.733	. 9
. 2	. 2453	. 9694	. 2530	3.952	. 8	. 2	. 3453	. 9385	. 3679	2.718	. 8
. 3	. 2470	. 9690	. 2549	3.923	. 7	.3	. 3469	. 9379	. 3699	2.703	. 7
. 4	. 2487	. 9686	. 2568	3.895	. 6	. 4	. 3486	. 9373	. 3719	2.689	. 6
. 5	. 2504	. 9681	. 2586	3.867	. 5	. 5	. 3502	. 9367	. 3739	2.675	. 5
. 6	. 2521	. 9677	. 2605	3.839	. 4	. 6	. 3518	. 9361	. 3759	2.660	. 4
. 7	. 2538	. 9673	. 2623	3.812	. 3	. 7	. 3535	. 9354	. 3779	2.646	.3
. 8	. 2554	. 9668	. 2642	3.785	. 2	. 8	. 3551	. 9348	. 3799	2.633	. 2
. 9	. 2571	. 9664	. 2661	3.758	. 1	. 9	. 3567	. 9342	. 3819	2.619	. 1
15.0	0.2588	0.9659	0.2679	3.732	75.0	21.0	0.3584	0.9336	0.3839	2.605	69.0
. 1	. 2605	. 9655	. 2698	3.706	. 9	. 1	. 3600	. 93330	. 3859	2.592	. 9
. 2	. 2622	. 9650	. 2717	3.681	- 8	. 2	. 3616	. 9323	. 3879	2.578	. 8
	. 2639	. 9646	. 2736	3.655	. 7	. 3	. 3633	. 9317	. 3899	2.565	. 7
. 4	. 2656	. 9641	. 2754	3.630	. 6	. 4	. 3649	. 9311	. 3919	2.552	. 6
. 5	. 2672	. 9636	. 2773	3.606	. 5	. 5	. 3665	. 9304	. 3939	2.539	. 5
. 8	. 2689	. 9632	. 2792	3.582	. 4	. 6	. 3681	. 9298	. 3959	2.526	. 4
. 7	. 2706	. 9627	. 2811	3.558	. 3	. 7	. 3697	. 9291	. 3979	2.513	. 3
. 8	. 2723	. 9622	. 2830	3.534	. 2	. 8	. 3714	. 9285	. 4000	2.500	. 2
. 9	. 2740	. 9617	. 2849	3.511	. 1	.9	. 3730	. 9278	. 4020	2.488	. 1
16.0	0.2756	0.9613	0.2867	3.487	74.0	22.0	0.3746	0.9272	0.4040	2.475	68.0
. 1	. 2773	. 9608	. 2886	3.465	. 9	. 1	. 3762	. 9265	. 4061	2.463	. 9
. 2	. 2790	. 9603	. 2905	3.442	. 8	. 2	. 3778	. 9259	. 4081	2.450	. 8
. 3	. 2807	. 9598	. 2924	3.420	. 7	. 3	. 3795	. 9252	. 4101	2.438	. 7
. 4	. 2823	. 9593	. 2943	3.398	. 6	. 4	. 3811	. 9245	. 4122	2.426	. 6
. 5	. 2840	. 9588	. 2962	3.376	. 5	. 5	. 3827	. 9239	. 4142	2.414	. 5
. 6	. 2857	. 9583	. 2981	3.354	. 4	. 6	. 3843	. 9232	.4163	2.402	. 4
. 7	. 2874	. 9578	. 3000	3.333	. 3	. 7	. 3859	. 9225	. 4183	2.391	. 3
. 8	. 2890	. 9573	. 3019	3.312	. 2	. 8	. 3875	. 9219	. 4204	2.379	. 2
. 9	. 2907	. 9568	. 3038	3.291	. 1	. 9	. 3891	. 9212	. 4224	2.367	. 1
17.0	0.2924	0.9563	0.3057	3.271	73.0	23.0	0.3907	0.9205	0.4245	2.356	67.0
. 1	. 2940	. 9558	. 3076	3.251	. 9	. 1	. 3923	. 9198	. 4265	2.344	. 9
. 2	. 2957	. 9553	. 3096	3.230	. 8	. 2	. 3939	. 9191	. 4286	2.333	. 8
. 3	. 2974	. 9548	. 3115	3.211	. 7	. 3	. 3955	. 9184	. 4307	2.322	. 7
. 4	. 2990	. 9542	. 3134	3.191	. 6	. 4	. 3971	. 9178	. 4327	2.311	. 6
. 5	. 3007	. 9537	. 3153	3.172	. 5	. 5	. 3987	. 9171	. 4343	2.300	. 5
. 6	. 3024	. 9532	. 3172	3.152	. 4	. 6	. 4003	. 9164	. 4369	2.289	. 4
. 7	. 3040	. 9527	. 3191	3.133	. 3	. 7	. 4019	. 9157	.4390	2.278	. 3
. 8	. 3057	. 9521	.3211	3.115	. 2	8	. 4035	. 9150	. 4411	2.267	. 2
. 9	. 3074	. 9516	. 3230	3.096	. 1	. 9	. 4051	. 9143	. 4431	2.257	. 1
18.0	0.3090	0.9511	0.3249	3.078	72.0	24.0	0.4067	0.9135	0.4452	2.246	66.0
	cos	sin	cot	Ian	deg		cos	sin	cof	Pman	deg

## Natural trigonometric functions

## for decimal fractions of a degree continued

deg	$\sin$	cos	ton	cot		deg	$\sin$	cos	tan	cot	
24.0	0.4067	0.9135	0.4452	2.246	66.0						
. 1	. 4083	. 9128	. 4473	2.236	. 9	. 1	. 50.5015	0.8660 .8652	0.5774 .5797	1.7321	60.0
. 2	. 4099	. 9121	. 4494	2.225	8	. 2	. 5030	. 86843	. .5820	1.7251	. 8
. 3	. 4115	. 9114	. 4515	2.215	. 7	. 3	. 5045	. 8634	. .5844	1.7113	. 8
. 4	. 4131	. 9107	. 4535	2.204	. 6	.	. 5060	. 8625	. 5867	1.7045	. 6
. 5	. 4147	. 9100	. 4557	2.194	. 5	. 5	. 5075	. 8616	. 5890	1.6977	. 6
. 6	. 4163	. 9092	. 4578	2.184	. 4	. 6	. 5090	. 8607	. 5914	1.6909	. 4
.7	. 4179	. 9085	. 4599	2.174	. 3	.7	. 5105	. 8599	. 5938	1.6812	. 3
. 8	. 4195	. 9078	. 4621	2.164	. 2	8	. 5120	. 8590	. 5961	1.6775	. 2
	. 4210	. 9070	. 4642	2.154	. 1	. 9	. 5135	. 8581	. 5985	1.6709	. 1
25.0	0.4226	0.9063	0.4683		65.0						
. 1	. 4242	. 9056	. 4684	2.135	65.0	. 1	O. . .5165	0.8572 .8563	$\begin{array}{r} 0.6009 \\ .6032 \end{array}$	1.6643	59.0
. 2	. 4258	. 9048	. 4706	2.125	. 8		. 5180	. 8554	. 6056	1.6512	. 8
. 3	. 4274	. 9041	. 4727	2.116	7	. 3	. 5195	. 8545	. 6080	1.6447	. 7
4	. 4289	. 9033	. 47488	2.106	. 6	. 4	. 5210	. 85336	. 6104	1.6383	. 6
. 5	. 4305	. 9026	. 4770	2.097	. 5	. 5	. 5225	. 8526	. 6128	1.6319	. 5
${ }^{6}$	. 4321	. 9018	. 4791	2.087	. 4	. 6	. 5240	. 8517	. 6152	1.6255	. 4
8	. 43337	. 9011	. 4813	2.078	.3	. 7	. 5255	. 8508	. 6176	1.6191	. 3
8	. 4352	. 9003	. 4834	2.069	. 2	. 8	. 5270	. 8499	. 6200	1.6128	.2
	. 4368	. 8996	. 4856	2.059	1	. 9	. 5284	. 8490	. 6224	1.6066	. 1
26.0	0.4384	0.8988	0.4877	2.050	64.0	32.0	0.5299	0.8480			
.1	. 4399	. 89880	. 4899	2.041	. 9	.	. 5314	. 8.8471	0.6249 .6273	1.50031	58.0
. 2	. 4415	. 8973	. 4921	2.032	8	. 2	. 3329	. 8462	. 6297	1.5880	. 8
. 3	. 44314	. 8965	. 4942	2.023	7	. 3	. 5344	. 8453	. 6322	1.5818	. 7
. 4	. 4446	. 889579	. 4964	2.014	. 6	. 4	. 5358	. 8443	. 6346	1.5757	. 6
. 6	. 44788	. 89442	. .49808	2.006 1.997	. 5	. 6	. 53373	. 8434	. 6371	1.5697	. 5
. 7	. 4493	. 8934	. 5029	1.988	3	.7	. 54382	. 8425	. 63425	1.5637 1.5577	.$_{3}$
. 8	. 4509	. 8926	. 5051	1.980	. 2	. 8	. 54177	. 8406	. 642445	1.5577 1.5517	. 3
. 9	. 4524	. 8918	. 5073	1.971	. 1	. 9	. 5432	. 8396	. 6469	1.5458	. 2
27.0	0.4540	0.8910	0.5095	1.963	63.0	33.0	0.5446	0.8387	0.6494	1.5399	
. 2	. 45555	. 89892	. 5117	1.954	. 9	. 1	. 5461	. 8337	. 65519	1.5340	37.0
. 3	. 4588	. 88898	. 513161	1.946 1.937	${ }^{8}$	. 2	. 5476	. 83688	. 6544	1.5282	. 8
. 4	. 4602	. 8878	. 5184	1.939	. 6	. 3	. 54980	. 83358	. 65599	1.5224   1.5166	. 7
. 5	. 4617	. 8870	. 5208	1.921	. 5	. 5	. 55519	. 83398	. 65619	1.5166 1.5108	. 6
.6	. 4633	. 8862	. 5228	1.913	. 4	. 6	. 5534	. 8329	. 6644	1.5051	.5
. 7	. 4648	. 8854	. 5250	1.905	. 3	. 7	. 5548	. 8320	. 8669	1.4994	. 3
. 8	. 4664	. 8848	. 5272	1.897	. 2	. 8	. 5563	. 8310	. 86894	1.4938	. 2
. 9	. 4679	. 8838	. 5295	8	. 1	. 9	. 5577	. 8300	. 6720	1.4882	.
28.0	0.4695	0.8829	0.5317	1.881	62.0	34.0	0.5592				
$.1$	. 471726	.8821 .8813	.5340 .5362	1.873	. 8	. 1	. 5606	. 8281	. 6771	1.4770	8. 9
. 3	. 4741	. 88805	. 53362	1.865 1.857	. 8	.2	. 5621	. 8271	. 6796	1.4715	. 8
. 4	. 4756	. 8796	. 5407	1.849	. 6	. 4	.5635 .5650	. 82261	. 6822	1.4659	. 7
. 5	. 4772	. 8788	. 5430	1.842	. 5	. 5	. 56654	. 82241	. 68873	1.4605 1.4550	. 6
. 6	. 4787	. 8780	. 5452	1.834	. 4	. 6	. 5678	. 8231	. 6889	1.4496	. 4
.7	. 4802	. 8771	. 5475	1.827	. 3	. 7	. 56993	. 8221	. 6924	1.4442	. 3
8	. 4818	. 8763	. 5498	1.819	. 2	. 8	. .5707	. 8211	. 6950	1.4388	.
. 9	. 4833	. 8755	. 5520	1.811	,	. 9	. 5721	. 8202	. 6976	1.4335	.
29.0	0.4848	0.8746	0.5543	1.804	61.0	35.0	0.5736				
. 1	. 48689	. 8738	. 5556	1.797	- 9	3	. . .5750	0.8192 .8181	0.7002 .7028	1.4281 1.4229	55.0 .9
. 2	. 4879	. 8729	. 5589	1.789	8	. 2	. 5764	. 8171	. 7054	1.4176	. 8
.3	. 4894	.8721	. 5612	1.782	. 7	. 3	. 5779	. 8161	. 7080	1.4124	7
. 4	. 4909	. 8712	. 5635	1.775	. 6	. 4	. 5793	. 8151	. 7107	1.4071	. 6
. 5	. 4924	. 8704	. 5658	1.767	. 5	. 5	. 5807	. 8141	7133	1.4019	. 5
. 7	. 49395	. 88695	.5681   5704	1.760   1.753	${ }^{4}$	. 8	. 5821	. 8131	. 7159	1.3968	. 4
. 8	. 4970	. 86888	. .5727	1.753 1.746	. 3	. 8	. 58850	.8121	. 7186	1.3916	. 3
. 9	. 4985	. 8669	. 5750	1.739	. 1	. 9	. 58854	. 818100	$\begin{aligned} & .7212 \\ & .7239 \end{aligned}$	$\begin{aligned} & 1.3865 \\ & 1.3814 \end{aligned}$	. 2
30.0	0.5000	0.8660	0.5774	1.732	60.0	36.0	0.5878	0.8090	0.7265	1.3764	54.0
	cos	sin	cot	$\tan 1$	deg		cos	$\sin$	col	ton	

Natural trigonometric functions
for decimal fractions of a degree conlinued

deg	in	ces	ton	cot		deg	$\sin$	cos	fon	cot	
36.0	0.5878	0.8090	0.7265	1.3764	54.0	40.5	0.6494	0.7604	0.8541	1.1708	49.3
. 1	. 5892	. 8080	. 7292	1.3713	. 9	. 6	. 6508	. 7593	. 8571	1.1687	4
. 2	. 5906	. 8070	. 7319	1.3663	. 8	. 7	. 6521	. 7581	. 8601	1.1626	.3
. 3	. 5920	. 8059	. 7346	1.3613	. 7	. 8	. 6534	. 7570	. 8632	1.1585	. 2
. 4	. 5934	. 8049	. 7373	1.3564	. 6	. 9	. 6547	. 7559	. 8662	1.1544	. 1
. 5	. 5948	. 8039	. 7400	1.3514	. 5	41.0	0.6561	0.7547	0.8693	1.1504	49.0
. 6	. 5962	. 8028	. 7427	1.3465	.4	. 1	. 6574	.7536	. 8724	1.1463	9
. 7	. 5976	. 8018	. 7454	1.3416	.3	.2	. 6587	. 7524	. 8754	1.1423	. 8
. 8	. 5990	. 8007	. 7481	1.3367	. 2	.3	. 6600	. 7513	. 8785	1.1383	7
. 9	. 6004	. 7997	. 7508	1.3319	. 1	.4	. 6613	. 7501	. 8816	1.1343	. 6
37.0	0.6018	0.7986	0.7536	1.3270	53.0	. 5	. 6626	. 7490	. 8847	1.1303	. 5
. 1	. 6032	. 7976	. 7563	1.3222	. 9	. 6	. 6639	. 7478	. 8878	1.1263	. 4
. 2	. 6046	. 7965	. 7590	1.3175	8	. 7	. 6652	. 7466	. 8910	1.1224	. 3
. 3	. 6060	. 7955	. 7618	1.3127	. 7	. 8	. 6665	. 7455	. 8941	1.1184	. 2
. 4	. 6074	. 7944	. 7848	1.3079	.6	. 9	. 6678	. 7443	. 8972	1.1145	. 1
. 5	. 6088	. 7934	. 7673	1.3032	. 5	42.0	0.6891	0.7431	0.9004	1.1106	48.0
. 6	. 6101	. 7923	7701	1.2985	.4	.1	. 6704	. 7420	. 9036	1.1067	. 9
. 7	. 6115	. 7912	. 77729	1.2938	. 3	. 2	. 6717	. 7408	. 90067	1.1028	8
. 8	. 6129	. 7902	. 7757	1.2892	.2	.3	. 6730	.7396 7385	. 9089	1.0990	7
. 9	.6143	. 7891	. 7785	1.2846	. 1	.4	. 6743	.7385	. 9131	1.0951	. 6
38.0	0.6157	0.7880	0.7813	1.2799	52.0	. 5	. 6756	. 7373	. 9163	1.0913	. 5
. 1	. 6170	. 7869	. 7841	1.2753	. 9	. 6	. 6769	. 7361	. 9195	1.0875	4
. 2	. 6184	. 7859	. 7869	1.2708	. 8	. 7	. 6782	. 7349	. 9228	1.0837	. 3
. 3	. 6198	. 7848	. 7898	1.2662	. 7	. 8	. 6794	. 7337	. 9260	1.0799	. 2
. 4	. 6211	. 7837	. 7926	1.2617	. 6	. 9	. 6807	. 7325	. 9293	1.0761	. 1
. 5	. 6225	. 7826	. 7954	1.2572	. 5	43.0	0.6820	0.7314	0.9325	1.0724	47.0
. 6	. 6239	.7815	. 7983	1.2527	. 4	. 1	. 6833	. 7302	. 9358	1.0686	. 9
. 7	. 6252	. 7804	. 8012	1.2482	. 3	. 2	. 6845	. 7290	. 9391	1.0649	. 8
. 8	. 6268	. 7793	. 8040	1.2437	. 2	. 3	. 6858	. 7278	. 9424	1.0612	. 7
. 9	. 6280	. 7782	. 8069	1.2393	. 1	. 4	. 6871	. 7266	. 9457	1.0575	. 6
39.0	0.6293	0.7771	0.8098	1.2349	51.0	. 5	. 6884	. 7254	. 9490	1.0538	. 5
. 1	. 6307	. 7760	. 8127	1.2305	. 9	. 6	. 6896	. 7242	. 9523	1.0501	. 4
. 2	. 6320	. 7749	. 8156	1.2261	. 8	. 7	. 6909	. 7230	. 9556	1.0464	. 3
.3	. 6334	.7738	. 8185	1.2218	. 7	. 8	. 6921	. 7218	. 9590	1.0428	. 2
. 4	. 6347	. 7727	. 8214	1.2174	. 6	. 9	. 6934	. 7206	. 9623	1.0392	. 1
. 5	. 6361	. 7716	. 8243	1.2131	. 5	44.0	0.6947	0.7193	0.9657	1.0355	46.0
. 6	. 6374	. 7705	. 8273	1.2088	. 4	. 1	. 6959	. 7181	. 9691	1.0319	. 9
. 7	. 6388	. 7694	. 8302	1.2045	. 3	. 2	. 6972	. 7169	. 9725	1.0283	. 8
. 8	. 6401	. 7683	. 8332	1.2002	. 2	. 3	. 6984	. 7157	. 9759	1.0247	. 7
. 9	. 6414	. 7672	. 8361	1.1980	. 1	. 4	. 6997	. 7145	. 9793	1.0212	. 6
40.0	0.6428	0.7660	0.8391	1.1918	50.0	. 5	. 7009	. 7133	. 9827	1.0176	${ }^{.} 5$
. 1	. 6441	. 7649	. 8421	1.1875	. 9	. 6	. 7022	. 7120	. 9881	1.0141	. 4
. 2	. 6455	. 7638	8451	1.1833	. 8	. 7	. 7034	. 7108	. 9896	1.0105	3
3	. 6468	. 7627	. 8481	1.1792	. 7	. 8	. 7046	. 7096	. 9930	1.0070	. 2
. 4	. 8481	. 7615	. 8511	1.1750	. 6	. 9	. 7059	. 7083	. 9965	1.0035	. 1
40.5	0.6494	0.7604	0.8541	1.1708	49.5	45.0	0.7071	0.7071	1.0000	1.0000	45.0
	$\cos$	sin	cot	tan	deg		cos	$\sin$	col	fon	deg

Logarithms of trigonometric functions

## for decimal fractions of a degree

deg	1 sin	1 cos	1 ton	1 col		deg	1 sin	1 cos	$L$ ton	$L$ coll	
0.0	$-\infty$	0.0000	- $\infty$	$\infty$	90.0	6.0	9.0192	9.9976	9.0216	0.9784	84.0
. 1	7.2419	0.0000	7.2419	2.7581	. 9	. 1	9.0264	9.9975	9.0289	0.9711	. 9
. 2	7.5429	0.0000	7.5429	2.4571	. 8	. 2	9.0334	9.9975	9.0360	0.9640	. 8
. 3	7.7190	0.0000	7.719	2.2810	. 7	. 3	9.0403	9.9974	9.0430	0.9570	.7
. 4	7.8439	0.0000	7.8439	2.1561	. 6	. 4	9.0472	9.9973	9.0499	0.9501	.6
. 5	7.9408	0.0000	7.9409	2.0591	. 5	. 5	9.0539	9.9972	9.0567	0.9433	. 5
. 6	8.0200	0.0000	8.0200	1.9800	. 4	. 6	9.0605	9.9971	9.0633	0.9367	. 4
. 7	8.0870	0.0000	8.0870	1.9130	. 3	. 7	9.0870	9.9970	9.0699	0.9301	. 3
. 8	8.1450	0.0000	8.1450	1.8550	. 2	. 8	9.0734	9.9969	9.0764	0.9236	. 2
. 9	8.1961	9.9999	8.1962	1.8038	. 1	. 9	9.0797	9.9968	9.0828	0.9172	. 1
1.0	8.2419	9.9999	8.2419	1.7581	89.0	7.0	9.0859	9.9968	9.0891	0.9109	83.0
. 1	8.2832	9.9999	8.2833	1.7167	. 9	. 1	9.0920	9.9967	9.0954	0.9046	. 9
. 2	8.3210	9.9999	8.3211	1.6789	. 8	. 2	9.0981	9.9966	9.1015	0.8985	. 8
. 3	8.3558	9.9999	8.3559	1.6441	. 7	. 3	9.1040	9.9965	9.1076	0.8924	. 7
. 4	8.3880	9.9999	8.3881	1.6119	. 6	. 4	9.1099	9.9964	9.1135	0.8865	. 6
. 5	8.4179	9.9999	8.4181	1.5819	. 5	. 5	9.1157	9.9963	9.1194	0.8806	. 5
.6	8.4459	9.9998	8.4461	1.5539	. 4	. 6	9.1214	9.9962	9.1252	0.8748	. 4
. 7	8.4723	9.9998	8.4725	1.5275	. 3	. 7	9.1271	9.9961	9.1310	0.8690	. 3
. 8	8.4971	9.9998	8.4973	1.5027	. 2	. 8	9.1326	9.9960	9.1367	0.8633	. 2
. 9	8.5206	9.9998	8.5208	1.4792	. 1	.9	9.1381	9.9959	9.1423	0.8577	. 1
2.0	8.5428	9.9997	8.5431	1.4569	88.0	8.0	9.1436	9.9958	9.1478	0.8522	82.0
. 1	8.5640	9.9997	8.5643	1.4357	. 9	. 1	9.1489	9.9956	9.1533	0.8467	. 9
. 2	8.5842	9.9997	8.5845	1.4155	. 8	. 2	9.1542	9.9955	9.1587	0.8413	. 8
. 3	8.6035	9.9996	8.6038	1.3962	. 7	. 3	9.1594	9.9954	9.1640	0.8360	. 7
. 4	8.6220	9.9996	8.6223	1.3777	. 6	. 4	9.1646	9.9953	9.1693	0.8307	. 6
5	8.6397	9.9996	8.6401	1.3599	. 5	. 5	9.1697	9.9952	9.1745	0.8255	. 5
. 6	8.6567	9.9996	8.6571	1.3429	.4	. 6	9.1747	9.9951	9.1797	0.8203	. 4
7	8.6731	9.9995	8.6736	1.3264	. 3	. 7	9.1797	9.9950	9.1848	0.8152	. 3
8	8.6889	9.9995	8.8894	1.3106	. 2	. 8	9.1847	9.9949	9.1898	0.8102	. 2
. 9	8.7041	9.9994	8.7046	1.2954	. 1	. 9	9.1895	9.9947	9.1948	0.8052	. 1
3.0	8.7188	9.9994	8.7194	1.2806	87.0	9.0	9.1943	9.9946	9.1997	0.8003	81.0
. 1	8.7330	9.9994	8.7337	1.2663	. 9	. 1	9.1991	9.9945	9.2046	0.7954	. 9
. 2	8.7468	9.9993	8.7475	1.2525	. 8	. 2	9.2038	9.9944	9.2094	0.7906	. 8
3	8.7602	9.9993	8.7609	1.2391	. 7	.3	9.2085	9.9943	9.2142	0.7858	. 7
. 4	8.7731	9.9992	8.7739	1.2261	. 6	. 4	9.2131	9.9941	9.2189	0.7811	. 6
. 5	8.7857	9.9992	8.7865	1.2135	. 5	. 5	9.2176	9.9940	9.2236	0.7764	. 5
. 6	8.7979	9.9991	8.7988	1.2012	. 4	.6	9.2221	9.9939	9.2282	0.7718	. 4
. 7	8.8098	9.9991	8.8107	1.1893	. 3	. 7	9.2266	9.9937	9.2328	0.7672	. 3
8	8.8213	9.9990	8.8223	1.1777	. 2	. 8	9.2310	9.9936	9.2374	0.7626	. 2
. 9	8.8326	9.9990	8.8336	1.1664	. 1	. 9	9.2353	9.9935	9.2419	0.7581	. 1
4.0	8.8436	9.9989	8.8446	1.1554	86.0	10.0	9.2397	9.9934	9.2463	0.7537	80.0
.1	8.8543	9.9989	8.8554	1.1446	. 9	. 1	9.2439	9.9932	9.2507	0.7493	. 9
. 2	8.8647	9.9988	8.8659	1.1341	. 8	. 2	9.2482	9.9931	9.2551	0.7449	. 8
. 3	8.8749	9.9988	8.8762	1.1238	. 7	. 3	9.2524	9.9929	9.2594	0.7406	. 7
. 4	8.8849	9.9987	8.8862	1.1138	. 6	. 4	9.2565	9.9928	9.2637	0.7363	. 6
. 5	8.8946	9.9987	8.8960	1.1040	. 5	. 5	9.2606	9.9927	9.2680	0.7320	. 5
.6	8.9042	9.9986	8.9056	1.0944	. 4	. 6	9.2647	9.9925	9.2722	0.7278	. 4
. 7	8.9135	9.9985	8.9150	1.0850	. 3	. 7	9.2687	9.9924	9.2764	0.7236	. 3
8	8.9226	9.9985	8.9241	1.0759	. 2	. 8	9.2727	9.9922	9.2805	0.7195	. 2
. 9	8.9315	9.9984	8.9331	1.0669	. 1	. 9	9.2767	9.9921	9.2846	0.7154	. 1
5.0	8.9403	9.9983	8.9420	1.0580	85.0	11.0	9.2806	9.9919	9.2887	0.7113	79.0
. 1	8.9489	9.9983	8.9506	1.0494	. 9	. 1	9.2845	9.9918	9.2927	0.7073	. 9
. 2	8.9573	9.9982	8.9591	1.0409	. 8	. 2	9.2883	9.9916	9.2967	0.7033	. 8
. 3	8.9655	9.9981	8.9674	1.0326	. 7	. 3	9.2921	9.9915	9.3006	0.6994	.7
. 4	8.9736	9.9981	8.9756	1.0244	. 6	. 4	9.2959	9.9913	9.3046	0.6954	.6
. 5	8.9816	9.9980	8.9836	1.0164	. 5	. 5	9.2997	9.9912	9.3085	0.6915	. 5
. 6	8.9894	9.9979	8.9915	1.0085	4	. 6	9.3034	9.9910	9.3123	0.6877	. 4
. 7	8.9970	9.9978	8.9992	1.0006	. 3	. 7	9.3070	9.9909	9.3162	0.6838	. 3
8	9.0046	9.9978	9.0068	0.9932	. 2	. 8	9.3107	9.9907	9.3200	0.6800	. 2
. 9	9.0120	9.9977	9.0143	0.9857	. 1	- 9	9.3143	9.9906	9.3237	0.6763	. 1
6.0	9.0192	9.9976	9.0216	0.9784	84.0	12.0	9.3179	9.9904	9.3275	0.6725	78.0
	1 cos	$L \sin$	L cel	Ltan	deg		1 cos	Lsin	1 cot	Lton	deg

# mathematical _tables <br> 627 

Logarithms of trigonometric functions
for decimal fractions of a degree continued

deal	$1 \sin$	1 cos	$L$ tan	1 cot		deg	$\Delta \sin$	$\leq$ cos	1 ton	1 cof	
12.0	9.3179	9.9904	9.3275	0.6725	78.0	18.0	9.4900	9.9782	9.5118	0.4882	72.0
. 1	9.3214	9.9902	9.3312	0.6688	. 9	. 1	9.4923	9.9780	9.5143	0.4857	. 9
. 2	9.3250	9.9901	9.3349	0.6651	. 8	. 2	9.4946	9.9777	9.5169	0.4831	. 8
. 3	9.3284	9.9899	9.3385	0.6615	. 7	. 3	9.4969	9.9775	9.5195	0.4805	. 7
. 4	9.3319	9.9897	9.3422	0.6578	. 6	.4	9.4992	9.9772	9.5220	0.4780	. 6
. 5	9.3353	9.9896	9.3458	0.6542	. 5	. 5	9.5015	9.9770	9.5245	0.4755	. 5
. 6	9.3387	9.9894	9.3493	0.6507	. 4	. 6	9.5037	9.9767	9.5270	0.4730	. 4
. 7	9.3421	9.9892	9.3529	0.6471	. 3	. 7	9.5060	9.9764	9.5295	0.4705	. 3
. 8	9.3455	9.9891	9.3564	0.6436	. 2	. 8	9.5082	9.9762	9.5320	0.4680	. 2
. 9	9.3488	9.9889	9.3599	0.6401	. 1	. 9	9.5104	9.9759	9.5345	0.4655	. 1
13.0	9.3521	9.9887	9.3634	0.6366	77.0	19.0	9.5126	9.9757	9.5370	0.4630	71.0
. 1	9.3554	9.9885	9.3668	0.6332	. 9	. 1	9.5148	9.9754	9.5394	0.4606	. 9
. 2	9.3586	9.9804	9.3702	0.6298	. 8	. 2	9.5170	9.9751	9.5419	0.4581	. 8
. 3	9.3618	9.9882	9.3736	0.6264	. 7	.3	9.5192	9.9749	9.5443	0.4557	. 7
. 4	9.3650	9.9880	9.3770	0.6230	. 6	. 4	9.5213	9.9746	9.5467	0.4533	. 6
. 5	9.3682	9.9878	9.3804	0.6196	. 5	. 5	9.5235	9.9743	9.5491	0.4509	. 5
. 6	9.3713	9.9876	9.3837	0.6163	. 4	. 6	9.5256	9.9741	9.5516	0.4484	. 4
. 7	9.3745	9.9875	9.3870	0.6130	. 3	. 7	9.5278	9.9738	9.5539	0.4461	. 3
. 8	9.3775	9.9873	9.3903	0.6097	. 2	. 8	9.5299	9.9735	9.5563	0.4437	. 2
. 9	9.3806	9.9871	9.3935	0.6085	. 1	. 9	9.5320	9.9733	9.5587	0.4413	. 1
14.0	9.3837	9.9869	9.3968	0.6032	76.0	20.0	9.5341	9.9730	9.5611	0.4389	70.0
. 1	9.3867	9.9867	9.4000	0.6000	. 9	. 1	9.5361	9.9727	95634	0.4366	. 9
. 2	9.3897	9.9865	9.4032	0.5968	8	. 2	9.5382	9.9724	9.5658	0.4342	. 8
. 3	9.3927	9.9863	9.4064	0.5936	. 7	. 3	9.5402	9.9722	9.5681	0.4319	. 7
. 4	9.3957	9.9861	9.4095	0.5905	. 6	. 4	9.5423	9.9719	9.5704	0.4296	. 6
. 5	9.3986	9.9859	9.4127	0.5873	. 5	. 5	9.5443	9.9716	9.5727	0.4273	. 5
. 6	9.4015	9.9857	9.4158	0.5842	. 4 *	. 6	9.5463	9.9713	9.5750	0.4250	. 4
. 7	9.4044	9.9855	9.4189	0.5811	. 3	. 7	9.5484	9.9710	9.5773	0.4227	. 3
. 8	9.4073	9.9853	9.4220	0.5780	. 2	. 8	9.5504	9.9707	9.5796	0.4204	. 2
. 9	9.4102	9.9851	9.4250	0.5750	. 1	. 9	9.5523	9.9704	9.5819	0.4181	. 1
15.0	9.4130	9.9849	9.4281	0.5719	75.0	21.0	9.5543	9.9702	9.5842	0.4158	69.0
. 1	9.4158	9.9847	9.4311	0.5689	. 9	.1	9.5563	9.9699	9.5864	0.4136	. 9
. 2	9.4186	9.9845	9.4341	0.5659	. 8	. 2	9.5583	9.9696	9.5887	0.4113	. 8
. 3	9.4214	9.9843	9.4371	0.5629	. 7	. 3	9.5602	9.9693	9.5909	0.4091	. 7
. 4	9.4242	9.9841	9.4400	0.5600	. 6	. 4	9.5621	9.9690	9.5932	0.4068	. 6
. 5	9.4269	9.9839	9.4430	0.5570	. 5	. 5	9.5641	9.9687	9.5954	0.4046	.5
.6	9.4296	9.9837	9.4459	0.5541	. 4	. 6	9.5660	9.9684	9.5976	0.4024	. 4
. 7	9.4323	9.9835	9.4488	0.5512	. 3	. 7	9.5679	9.9681	9.5998	0.4002	.3
. 8	9.4350	9.9833	9.4517	0.5483	. 2	. 8	9.5698	9.9678	9.6020	0.3980	. 2
. 9	9.4377	9.9831	9.4546	0.5454	. 1	. 9	9.5717	9.9675	9.6042	0.3958	. 1
16.0	9.4403	9.9828	9.4575	0.5425	74.0	22.0	9.5736	9.9672	9.6064	0.3936	68.0
. 1	9.4430	9.9826	9.4603	0.5397	. 9	. 1	9.5754	9.9669	9.6086	0.3914	. 9
. 2	9.4456	9.9824	9.4632	0.5368	. 8	. 2	9.5773	9.9666	9.6108	0.3892	. 8
. 3	9.4482	9.9822	9.4660	0.5340	. 7	. 3	9.5792	9.9662	9.6129	0.3871	. 7
. 4	9.4508	9.9820	9.4688	0.5312	. 6	. 4	9.5810	9.9659	9.6151	0.3849	. 6
. 5	9.4533	9.9817	9.4716	0.5284	. 5	. 5	9.5828	9.9656	9.6172	0.3828	. 5
. 6	9.4559	9.9815	9.4744	0.5256	. 4	. 6	9.5847	9.9653	9.6194	0.3806	. 4
. 7	9.4584	9.9813	9.4771	0.5229	.3	. 7	9.5865	9.9650	9.6215	0.3785	. 3
. 8	9.4609	9.9811	9.4799	0.5201	. 2	. 8	9.5883	9.9647	9.6236	0.3764	. 2
. 9	9.4634	9.9808	9.4826	0.5174	. 1	. 9	9.5901	9.9643	9.6257	0.3743	. 1
17.0	9.4659	9.9806	9.4853	0.5147	73.0	23.0	9.5919	9.9640	9.6279	0.3721	67.0
. 1	9.4684	9.9804	9.4880	0.5120	. 9	. 1	9.5937	9.9837	9.6300	0.3700	. 9
. 2	9.4709	9.9801	9.4907	0.5093	. 8	. 2	9.5954	9.9834	9.6321	0.3679	. 8
. 3	9.4733	9.9799	9.4934	0.5066	. 7	. 3	9.5972	9.9631	9.6341	0.3659	. 7
. 4	9.4757	9.9797	9.4961	0.5039	. 6	. 4	9.5990	9.9627	9.6362	0.3638	6
. 5	9.4781	9.9794	9.4987	0.5013	. 5	. 5	9.6007	9.9624	9.6383	0.3617	. 5
. 6	9.4805	9.9792	9.5014	0.4986	. 4	. 6	9.6024	9.9621	9.6404	0.3596	. 4
. 7	9.4829	9.9789	9.5040	0.4960	.3	. 7	9.6042	9.9617	9.6424	0.3576	. 3
. 8	9.4853	9.9787	9.5066	0.4934	.2	. 8	9.6059	9.9614	9.6445	0.3555	. 2
. 9	9.4876	9.9785	9.5092	0.4908	. 1	. 9	9.6076	9.9611	9.6465	0.3535	. 1
18.0	9.4900	9.9782	9.5118	0.4882	72.0	24.0	9.6093	9.9607	9.6486	0.3514	66.0
	L cos	1 sin	1 cet	Itan	deg		b cos	$1 \sin$	1 cef	1 fan	deg

## Logarithms of trigonometric functions

for decimal fractions of a degree continued

deg	L. sin	$1 . \cos$	1 ton	L cot		deg	1 sin	1. cos	Lian	L cot	
24.0	9.6093	9.9607	9.6486	0.3514	66.0	30.0	9.6990	9.9375	9.7614	0.2386	60.0
. 1	9.6110	9.9604	9.6506	0.3494	. 9	. 1	9.7003	9.9371	9.7632	0.2368	. 9
. 2	9.6127	9.9601	9.6527	0.3473	. 8	. 2	9.7016	9.9367	9.7649	0.2351	. 8
. 3	9.6144	9.9597	9.6547	0.3453	. 7	. 3	9,7029	9.9362	9.7667	0.2333	. 7
. 4	9.6161	9.9594	9.6567	0.3433	. 6	. 4	9.7042	9.9358	9.7684	0.2316	. 6
. 5	9.6177	9.9590	9.6587	0.3413	. 5	. 5	9.7055	9.9353	9.7701	0.2299	. 5
. 6	9.6174	9.9587	9.6607	0.3393	. 4	. 6	9.7068	9.9349	9.7719	0.2281	. 4
. 7	9.6210	9.9583	9.6827	0.3373	. 3	.7	9.7080	9.9344	9.7736	0.2264	. 3
. 8	9.6227	9.9580	9.6647	0.3353	. 2	. 8	9.7093	9.9340	9.7753	0.2247	. 2
. 9	9.6243	9.9576	9.6867	0.3333	. 1	. 9	9.7106	9.9335	9.7771	0.2229	. 1
25.0	9.6259	9.9573	9.6687	0.3313	65.0	31.0	9.7118	9.9331	9.7788	0.2212	59.0
. 1	9.6276	9.9569	9.6706	0.3294	. 9	. 1	9.7131	9.9326	9.7805	0.2195	. 9
. 2	9.6292	9.9566	9.6726	0.3274	. 8	. 2	9.7144	9.9322	9.7822	0.2178	. 8
. 3	9.6308	9.9562	9.6746	0.3254	. 7	. 3	9.7156	9.9317	9.7839	0.2161	. 7
. 4	9.6324	9.9558	9.6765	0.3235	. 6	. 4	9.7168	9.9312	9.7856	0.2144	. 6
. 5	9.6340	9.9555	9.6785	0.3215	. 5	. 5	9.7181	9.9308	9.7873	0.2127	. 5
. 6	9.6356	9.9551	9.6804	0.3196	. 4	. 6	9.7193	9.9303	9.7890	0.2110	. 4
. 7	9.6371	9.9548	9.6824	0.3176	.3	. 7	9.7205	9.9298	9.7907	0.2093	. 3
. 8	9.6387	9.9544	9.6843	0.3157	. 2	. 8	9.7218	9.9294	9.7924	0.2076	. 2
. 9	9.6403	9.9540	9.6863	0.3137	. 1	. 9	9.7230	9.9289	9.7941	0.2059	.1
26.0	9.6418	9.9537	9.6882	0.3118	64.0	32.0	9.7242	9.9284	9.7958	0.2042	58.0
. 1	9.6434	9.9533	9.6901	0.3099	. 9	. 1	9.7254	9.9279	9.7975	0.2025	. 9
. 2	9.6449	9.9529	9.6920	0.3080	. 8	. 2	9.7268	9.9275	9.7992	0.2008	. 8
. 3	9.6465	9.9525	9.6939	0.3061	. 7	. 3	9.7278	9.9270	9.8008	0.1992	. 7
. 4	9.6480	9.9522	9.6958	0.3042	. 6	. 4	9.7290	9.9265	9.8025	0.1975	. 6
. 5	9.6495	9.9518	9.6977	0.3023	. 5	. 5	9.7302	9.9260	9.8042	0.1958	. 5
. 6	9.6510	9.9514	9.6996	0.3004	.4	. 6	9.7314	9.9255	9.8059	0.1941	. 4
7	9.6526	9.9510	9.7015	0.2985	.3	. 7	9.7326	9.9251	9.8075	0.1925	. 3
. 8	9.6541	9.9506	9.7034	0.2966	.2	. 8	9.7338	9.9246	9.8092	0.1908	. 2
. 9	9.6556	9.9503	9.7053	0.2947	. 1	. 9	9.7349	9.9241	9.8109	0.1891	. 1
27.0	9.6570	9.9499	9.7072	0.2928	63.0	33.0	9.7361	9.9236	9.8125	0.1875	57.0
. 1	9.6585	9.9495	9.7090	0.2910	. 9	. 1	9.7373	9.9231	9.8142	0.1858	. 9
. 2	9.6600	9.9491	9.7109	0.2891	. 8	. 2	9.7384	9.9226	9.8158	0.1842	. 8
. 3	9.6615	9.9487	9.7128	0.2872	. 7	. 3	9.7398	9.9221	9.8175	0.1825	. 7
. 4	9.6829	9.9483	9.7146	0.2854	. 6	. 4	9.7407	9.9216	9.8191	0.1809	. 6
. 5	9.6644	9.9479	9.7165	0.2835	. 5	. 5	9.7419	9.9211	9.8208	0.1792	. 5
. 6	9.6659	9.9475	9.7183	0.2817	. 4	. 6	9.7430	9.9206	9.8224	0.1776	. 4
. 7	9.6673	9.9471	9.7202	0.2798	.3	. 7	9.7442	9.9201	9.8241	0.1759	. 3
. 8	9.6687	9.9467	9.7220	0.2780	. 2	. 8	9.7453	9.9196	9.8257	0.1743	. 2
. 9	9.6702	9.9463	9.7238	0.2762	. 1	. 9	9.7464	9.9191	9.8274	0.1726	. 1
28.0	9.6716	9.9459	9.7257	0.2743	62.0	34.0	9.7476	9.9186	9.8290	0.1710	56.0
. 1	9.6730	9.9455	9.7275	0.2725	. 9	. 1	9.7487	9.9181	9.8306	0.1694	. 9
. 2	9.6744	9.9451	9.7293	0.2707	. 8	. 2	9.7498	9.9175	9.8323	0.1677	. 8
. 3	9.6759	9.9447	9.7311	0.2689	. 7	. 3	9.7509	9.9170	9.8339	0.1661	. 7
. 4	9.6773	9.9443	9.7330	0.2670	. 6	. 4	9.7520	9.9165	9.8355	0.1645	. 6
. 5	9.6787	9.9439	9.7348	0.2652	. 5	. 5	9.7531	9.9160	9.8371	0.1629	. 5
. 6	9.6801	9.9435	9.7366	0.2634	. 4	. 6	9.7542	9.9155	9.8388	0.1612	. 4
. 7	9.6814	9.9431	9.7384	0.2616	.3	. 7	9.7553	9.9149	9.8404	0.1596	. 3
. 8	9.6828	9.9427	9.7402	0.2598	. 2	. 8	9.7564	9.9144	9.8420	0.1580	. 2
. 9	9.6842	9.9422	9.7420	0.2580	.1	. 9	9.7575	9.9139	9.8436	0.1564	. 1
29.0	9.6856	9.9418	9.7438	0.2562	61.0	35.0	9.7586	9.9134	9.8452	0.1548	55.0
. 1	9.6869	9.9414	9.7455	0.2545	. 9	. 1	9.7597	9.9128	9.8468	0.1532	. 9
. 2	9.6883	9.9410	9.7473	0.2527	. 8	. 2	9.7607	9.9123	9.8484	0.1516	. 8
. 3	9.6896	9.9406	9.7491	0.2509	. 7	. 3	9.7618	9.9118	9.8501	0.1499	. 7
. 4	9.6910	9.9401	9.7509	0.2491	. 6	. 4	9.7629	9.9112	9.8517	0.1483	. 6
. 5	9.6923	9.9397	9.7526	0.2474	. 5	. 5	9.7640	9.9107	9.8533	0.1467	. 5
. 6	9.6937	9.9393	9.7544	0.2456	.4	. 6	9.7650	9.9101	9.8549	0.1451	. 4
. 7	9.6950	9.9388	9.7562	0.2438	.3	. 7	9.7661	9.9096	9.8565	0.1435	. 3
. 8	9.6963	9.9384	9.7579	0.2421	. 2	. 8	9.7671	9.9091	9.8581	0.1419	. 2
. 9	9.6977	9.9380	9.7597	0.2403	.1	. 9	9.7682	9.9085	9.8597	0.1403	. 1
30.0	9.6990	9.9375	9.7614	0.2386	60.0	36.0	9.7692	9.9080	9.8613	0.1387	54.0
	L cos	$L \sin$	L cot	L ton	deg		L cot	L sin	L cot	L ton	deg

## Logarithms of trigonometric functions

for decimal fractions of a degree continued

deg	L sin	L cos	1 tan	L cot		deg	$L \sin$	L ços	$L$ tan	1 col	
36.0	9.7692	0.9080	9.8613	0.1387	34.0	40.5	9.8125	9.8810	9.9315	0.0885	49.5
. 1	9.7703	9.9074	9.8629	0.1371	. 9	. 6	9.8134	9.8804	9.9330	0.0670	. 4
. 2	9.7713	9.9069	9.8644	0.1356	. 8	. 7	9.8143	9.8797	9.9346	0.0654	.3
3	9.7723	9.9063	9.8660	0.1340	. 7	. 8	9.8152	9.8791	9.9361	0.0639	. 2
. 4	9.7734	9.9057	9.8676	0.1324	.6	. 9	9.8161	9.8784	9.9376	0.0824	. 1
. 5	9.7744	9.9052	9.8692	0.1308	. 5	41.0	9.8169	9.8778	9.9392	0.0608	49.0
. 6	9.7754	9.9046	9.8708	0.1292	. 4	. 1	9.8178	9.8771	9.9407	0.0593	. 9
. 7	9.7764	9.9041	9.8724	0.1276	. 3	. 2	9.8187	9.8765	9.9422	0.0578	8
. 8	9.7774	9.9035	9.8740	0.1260	. 2	. 3	9.8195	9.8758	9.9438	0.0562	. 7
. 9	9.7785	9.9029	9.8755	0.1245	. 1	. 4	9.8204	9.8751	9.9453	0.0547	. 6
37.0	9.7795	9.9023	9.8771	0.1229	53.0	. 5	9.8213	9.8745	9.9468	0.0532	. 5
. 1	9.7805	9.9018	9.8787	0.1213	. 9	. 6	9.8221	9.8738	9.9483	0.0517	. 4
. 2	9.7815	9.9012	9.8803	0.1197	. 8	. 7	9.8230	9.8731	9.9499	0.0501	. 3
. 3	9.7825	9.9006	9.8818	0.1182	. 7	. 8	9.8238	9.8724	9.9514	0.0486	. 2
. 4	9.7835	9.9000	9.8834	0.1166	. 6	. 9	9.8247	9.8718	9.9529	0.0471	. 1
. 5	9.7844	9.8995	9.8850	0.1150	. 5	42.0	9.8255	9.8711	9.9544	0.0456	48.0
. 8	9.7854	9.8989	9.8865	0.1135	. 4	. 1	9.8264	9.8704	9.9560	0.0440	. 9
. 7	9.7864	9.8983	9.8881	0.1119	. 3	. 2	9.8272	9.8697	9.9575	0.0425	. 8
. 8	9.7874	9.8977	9.8897	0.1103	. 2	. 3	9.8280	9.8690	9.9590	0.0410	. 7
. 9	9.7884	9.8971	9.8912	0.1088	. 1	. 4	9.8289	9.8683	9.9605	0.0395	. 6
38.0	9.7893	9.8965	9.8928	0.1072	52.0	. 5	9.8297	9.8676	9.9621	0.0379	. 5
. 1	9.7903	9.8959	9.8944	0.1056	. 9	. 6	9.8305	9.8669	9.9636	0.0364	. 4
. 2	9.7913	9.8953	9.8959	0.1041	. 8	. 7	9.8313	9.8662	9.9651	0.0349	3
. 3	9.7922	9.8947	9.8975	0.1025	. 7	. 8	9.8322	9.8655	9.9866	0.0334	. 2
. 4	9.7932	9.8941	9.8990	0.1010	. 6	. 9	9.8330	9.8648	9.9881	0.0319	. 1
. 5	9.7941	9.8935	9.9006	0.0994	. 5	43.0	9.8338	9.8641	9.9697	0.0303	47.0
. 6	9.7951	9.8929	9.9022	0.0978	. 4	. 1	9.8346	9.8634	9.9712	0.0288	. 9
. 7	9.7960	9.8923	9.9037	0.0963	. 3	. 2	9.8354	9.8627	9.9727	0.0273	8
. 8	9.7970	9.8917	9.9053	0.0947	. 2	. 3	9.8362	9.8620	9.9742	0.0258	. 7
. 9	9.7979	9.8911	9.9068	0.0932	. 1	. 4	9.8370	9.8613	9.9757	0.0243	. 6
39.0	9.7989	9.8905	9.9084	0.0916	51.0	. 5	9.8378	9.8606	9.9772	0.0228	. 5
. 1	9.7998	9.8899	9.9099	0.0901	. 9	. 6	9.8386	9.8598	9.9788	0.0212	. 4
.2	9.8007	9.8893	9.9115	0.0885	. 8	. 7	9.8394	9.8591	9.9803	0.0197	. 3
. 3	9.8017	9.8887	9.9130	0.0870	. 7	8	9.8402	. 9.8584	9,9818	0.0182	. 2
. 4	9.8026	9.8880	9.9146	0.0854	. 6	. 9	9.8410	9.8577	9.9833	0.0167	. 1
. 5	9.8035	9.8874	9.9161	0.0839	. 5	44.0	9.8418	9.8569	9.9848	0.0152	46.0
. 6	9.8044	9.8868	9.9176	0.0824	. 4	.1	9.8426	9.8562	9.9884	0.0136	. 9
. 7	9.8053	9.8862	9.9192	0.0808	. 3	. 2	9.8433	9.8555	9.9879	0.0121	. 8
. 8	9.8063	9.8855	9.9207	0.0793	2	. 3	9.8441	9.8547	9.9894	0.0106	. 7
. 9	9.8072	9.8849	9.9223	0.0777	. 1	. 4	9.8449	9.8540	9.9909	0.0091	. 6
40.0	9.8081	9.8843	9.9238	0.0762	50.0	. 5	9.8457	9.8532	9.9924	0.0076	. 5
. 1	9.8090	9.8836	9.9254	0.0746	. 9	. 6	9.8464	9.8525	9.9939	0.0061	. 4
. 2	9.8099	9.8830	9.9269	0.0731	. 8	7	9.8472	9.8517	9.9955	0.0045	. 3
. 3	9.8108	9.8823	9.9284	0.0716	. 7	. 8	9.8480	9.8510	9.9970	0.0030	. 2
. 4	9.8117	9.8817	9.9300	0.0700	. 6	. 9	9.8487	9.8502	9.9985	0.0015	. 1
40.5	9.8125	9.8810	9.9315	0.0685	49.5	45.0	9.8495	9.8495	0.0000	0.0000	45.0
	L cos	L sin	Leat	L fan	des		L cos	$L \sin$	L cot	L tan	deg

Natural logarithms

											cet								
	0	1	2	3	4	5	6	7	8	-		2	3	4	5	6			
1.0	0.0000	0100	0198	0296	0392	0488	0583	0677	0770	0862	10	19	29	38	48	57	67	76	86
1.1	0.0953	1044	1133	1222	1310	1398	1484	1570	1655	1740	9	17	26	35	44	52	61	70	78
1.2	0.1823	1906	1989	2070	2151	2231	2311	2390	2469	2546	8	16	24	32	40	48	56	64	72
1.3	0.2624	2700	2778	2852	2927	3001	3075	3148	3221	3293	7	15	22	30	37	44	52	59	67
1.4	0.3365	3436	3507	3577	3646	3716	3784	3853	3920	3988	7	14	21	28	35	41	48	55	62
1.3	0.4055	4121	4187	4253	4318	4383	4447	4511	4574	4637	6	13	19	26	32	39	45	52	58
1.6	0.4700	4762	4824	4886	4947	5008	5068	5128	5188	5247	6	12	18	24	30	36	42	48	55
1.7	0.5306	5365	5423	5481	5539	5596	5653	5710	5766	5822	6	11	17	23	29	34	40	46	51
1.8	0.5878	5933	5988	6043	6098	6152	6206	6259	6313	6366	5	11	16	22	27	32	38	43	49
1.9	0.6419	6471	6523	6575	6627	6678	6729	6780	6831	6881	5	10	15	20	26	31	36	41	46
2.0	0.6931	6981	7031	7080	7129	7178	7227	7275	7324	7372	5	10	15	20	24	29	34	39	44
2.1	0.7419	7467	7514	7561	7608	7655	7701	7747	7793	7839	5	9	14	19	23	28	33	37	42
2.2	0.7885	7930	7975	8020	8065	8109	8154	8198	8242	8286	4	9	13	18	22	27	31	36	40
2.3	0.8329	8372	8416	8459	8502	8544	8587	8629	8671	8713	4	9	13	17	21	26	30	34	38
2.4	0.8755	8796	8838	8879	8920	8961	9002	9042	9083	9123	4	8	12	16	20	24	29	33	37
2.5	0.9163	9203	9243	9282	9322	9361	9400	9439	9478	9517	4	-	12	16	20	24	27	31	35
2.6	0.9555	9594	9632	9670	9708	9746	9783	9821	9858	9895	4	8	11	15	19	23	26	30	34
2.7	0.9933	9969	1.0006	0043	0080	0116	0152	0188	0225	0260	4	7	11	15	18	22	25	29	33
2.8	1.0296	0332	0367	0403	0438	0473	0508	0543	0578	0613	4	7	11	14	18	21	25	28	32
2.9	1.0647	0682	0716	0750	0784	0818	0852	0886	0919	0953	3	7	10	14	17	20	24	27	31
3.0	1.0986	1019	1053	1086	1119	1151	1184	1217	1249	1282	3	7	10	13	16	20	23	26	30
3.1	1.1314	1346	1378	1410	1442	1474	1506	1537	1569	1600		6	10	13	16	19	22	25	29
3.2	1.1632	1663	1694	1725	1756	1787	1817	1848	1878	1909		6	9	12	15	18	22	25	28
3.3	1.1939	1969	2000	2030	2060	2090	2119	2149	2179	2208		6	9	12	15	18	21	24	27
3.4	1.2238	2267	2296	2326	2355	2384	2413	2442	2470	2499	3	6	9	12	15	17	20	23	26
3.5	1.2528	2556	2585	2613	2641	2669	2698	2726	2754	2782	3	6		11	14	17	20	23	25
3.6	1.2809	2837	2865	2892	2920	2947	2975	3002	3029	3056	3	5	8	11	14	16	19	22	25
3.7	1.3083	3110	3137	3164	3191	3218	3244	3271	3297	3324	3	5	8	11	13	16	19	21	24
3.8	1.3350	3376	3403	3429	3455	3481	3507	3533	3558	3584	3	5	8	10	13	16	18	21	23
3.9	1.3610	3635	3661	3686	3712	3737	3762	3788	3813	3838	3	5	8	10	13	15	18	20	23
4.0	1.3863	3888	3913	3938	3962	3987	4012	4036	4061	4085	2	5	7	10	12	15	17	20	22
4.1	1.4110	4134	4159	4183	4207	4231	4255	4279	4303	4327	2	5	7	10	12	14	17	19	22
4.2	1.4351	4375	4398	4422	4446	4469	4493	4516	4540	4563	2	5	7	9	12	14	16	19	21
4.3	1.4586	4609	4633	4656	4679	4702	4725	4748	4770	4793	2		7	9	12	14	16	10	21
4.4	1.4816	4839	4861	4884	4907	4929	4951	4974	4996	5019	2	5	7	9	11	14	16	18	20
4.3	1.5041	5063	5085	5107	5129	5151	5173	5195	5217	5239	2	,		9	11	13	15	18	20
4.6	1.5261	5282	5304	5326	5347	5369	5390	5412	5433	5454	2	4	6	9	11	13	15	17	19
4.7	1.5476	5497	5518	5539	5560	5581	5602	5623	5644	5665	2	4	6	8	11	13	15	17	19
4.8	15686	5707	5728	5748	5769	5790	5810	5831	5851	5872	2	4	6	8	10	12	14	16	19
4.9	1.5892	5913	5933	5953	5974	5994	6014	6034	6054	6074	2	4	8	8	10	12	14	16	18
5.0	1.6094	6114	6134	6154	6174	6194	6214	6233	6253	6273	2	4	6	8	10	12	14	16	18
5.1	1.6292	6312	6332	6351	6371	6390	6409	6429	6448	6467	2	4	6	8	10	12	14	16	18
5.2	16487	6506	6525	6544	6563	6582	6601	6620	6639	6658	2	4	6	8	10	11	13	15	17
5.3	16677	6696	6715	6734	6752	6771	6790	6808	6827	6845		4	6	7	9	11	13	15	17
5.4	J. 6864	6882	6901	6919	6938	6956	6974	6993	7011	7029	2	4	5	7	9	11	13	15	17

## Natural logarithms of $10^{+n}$

$n$	1	1	2	1	3	4	5	1	6	1	7


	0	1	2	3	4	5	6	7	8	9	mean differences								
											1	2	3	4	5	61	7	8	9
5.5	1.7047	7066	7084	7102	7120	7138	7156	7174	7192	7210	2	4	5	7	9	11	13		16
5.6	1.7228	7246	7263	7281	7299	7317	7334	7352	7370	7387	2	4	5	7	9	11	12		16
5.7	1.7405	7422	7440	7457	7475	7492	7509	7527	7544	7561	2	3	5	7	9	10	12	14	16
5.8	1.7579	7596	7613	7630	7647	7664	7681	7699	7716	7733	2	3	5	7	9	10	12	14	15
5.9	1.7750	7766	7783	7800	7817	7834	7851	7867	7884	7901	2	3	5	7	8	10	12	13	15
6.0	1.7918	7934	7951	7967	7984	8001	8017	8034	8050	8066	2	3	5	7	8	10	12	13	15
6.1	1.8083	8099	8116	8132	8148	8165	8181	8197	8213	8229	2	3	5	6	8	10	11	13	15
6.2	1.8245	8262	8278	8294	8310	8326	8342	8358	8374	8390	2	3	5	6	8	10	11	13	14
6.3	1.8405	8421	8437	8453	8469	8485	8500	8516	8532	8547	2	3	5	6	8	9	11	13	14
6.4	1.8563	8579	8594	8610	8625	8641	8656	8672	8687	8703	2	3	5	6	8	9	11	12	14
6.5	1.8718	8733	8749	8764	8779	8795	8810	8825	8840	8856	2	3	5	6	8	9	11	12	14
6.6	1.8871	8886	8901	8916	8931	8946	8961	8976	8991	9006	2	3	5	6	8	9	11	12	14
6.7	1.9021	9036	9051	9066	9081	9095	9110	9125	9140	9155	1	3	4	6	7	9	10	12	13
6.8	1.9169	9184	9199	9213	9228	9242	9257	9272	9286	9301	1	3	4	6	7	9	10	12	13
6.9	1.9315	9330	9344	9359	9373	9387	9402	9416	9430	9445	1	3	4	6	7	9	10	12	13
7.0	1.9459	9473	9488	9502	9516	9530	9544	9559	9573	9587	1	3	4	6	7	9	10	11	13
7.1	1.9601	9615	9629	9643	9657	9671	9685	9699	9713	9727	1	3	4	6	7	8	10	11	13
7.2	1.9741	9755	9769	9782	9796	9810	9824	9838	9851	9865	1	3	4	6	7	8	10	11	12
7.3	1.9879	9892	9906	9920	9933	9947	9961	9974	9988	2.0001	1	3	4	5	7	8	10	11	12
7.4	2.0015	0028	0042	0055	0069	0082	0096	0109	0122	0136	1	3	4	5	7	8	9	11	12
7.5	2.0149	0162	0176	0189	0202	0215	0229	0242	0255	0268	1	,	4	5	7	8	9	11	12
7.6	2.0281	0295	0308	0321	0334	0347	0360	0373	0386	0399	1	3	4	5	7	8	9	10	12
7.7	2.0412	0425	0438	0451	0464	0477	0490	0503	0516	0528	1	3	4	5	6	8	9	10	12
7.8	2.0541	0554	0567	0580	0592	0605	0618	0631	0643	0656	1	3	4	5	6	8	9	10	11
7.9	2.0669	0681	0694	0707	0719	0732	0744	0757	0769	0782	1	3	4	5	6	8	9	10	11
8.0	2.0794	0807	0819	0832	0844	0857	0669	0882	0894	0906	1	3	4	5	6	7	9	10	11
8.1	2.0919	0931	0943	0956	0968	0980	0992	1005	1017	1029	1	2	4	5	6	7	9	10	11
8.2	2.1041	1054	1068	1078	1090	1102	1114	1126	1138	1150	1	2	4	5	6	7	9	10	11
8.3	2.1163	1175	1187	1199	1211	1223	1235	1247	1258	1270	,	2	4	5	6		8	10	11
8.4	2.1282	1294	1306	1318	1330	1342	1353	1365	1377	1389	1	2	4	5	6	7	8	9	11
8.5	2.1401	1412	1424	1436	1448	1459	1471	1483	1494	1506	1	2	,	5	6	7	8	9	11
8.6	2.1518	1529	1541	1552	1584	1576	1587	1599	1610	1622	1	2	3	5	6	7	8	9	10
8.7	2.1633	1645	1656	1668	1679	1691	1702	1713	1725	1738	1	2	3	5	6	7	8	9	10
8.8	2.1748	1759	1770	1782	1793	1804	1815	1827	1838	1849	1	2	3	5	6	7	8	9	10
8.9	2.1861	1872	1883	1894	1905	1917	1928	1939	1950	1961	1	2	3	4	6	7	8	9	10
9.0	2.1972	1983	1994	2006	2017	2028	2039	2050	2061	2072	1		3	4	6	7			10
9.1	22083	2094	2105	2116	2127	2138	2148	2159	2170	2181	1	2	3	4	5	7	8	-	10
9.2	2.2192	2203	2214	2225	2235	2246	2257	2268	2279	2289	1	2	3	4	5	6	8		10
9.3	2.2300	2311	2322	2332	2343	2354	2364	2375	2386	2396	1	2	3	4	5	6	7	9	10
9.4	2.2407	2418	2428	2439	2450	2460	2471	2481	2492	2502	1	2	3	4	5	6	7	8	10
9.5	2.2513	2523	2534	2544	2555	2565	2576	2586	2597	2607	I	2	3	4	5	6		8	9
9.6	2.2618	2628	2638	2649	2659	2670	2680	2690	2701	2711	1	2	3	4	5	6	7	8	?
9.7	2.2721	2732	2742	2752	2762	2773	2783	2793	2803	2814	1	2	3	4	5	6	7	8	9
9.8	2.2824	2834	2844	2854	2865	2875	2885	2895	2905	2915	1	2	3	4	5	6	7	8	9
9.9	2.2925	2935	2946	2956	2966	2976	2986	2996	3006	3016	1	,	3	4	5	6	7	8	9
10.0	2.3026																		

Natural logarithms of $10^{-n}$


Hyperbolic sines [sinh $\left.x=1 / 2\left(e^{x}-e^{-x}\right)\right]$

x	0	1	2	3	4	5	6	7	8	9	$\begin{aligned} & \text { avg } \\ & \text { diff } \end{aligned}$
0.0	0.0000	0.0100	0.0200	0.0300	0.0400	0.0500	0.0600	0.0701	0.0801	0.0901	100
. 1	0.1002	0.1102	0.1203	0.1304	0.1405	0.1506	0.1607	0.1708	0.1810	0.1911	101
. 2	0.2013	0.2115	0.2218	0.2320	0.2423	0.2526	0.2629	0.2733	0.2837	0.2941	103
. 3	0.3045	0.3150	0.3255	0.3360	0.3466	0.3572	0.3678	0.3785	0.3892	0.4000	106
. 4	0.4108	0.4216	0.4325	0.4434	0.4543	0.4653	0.4764	0.4875	0.4986	0.5098	110
0.5	0.5211	0.5324	0.5438	0.5552	0.5666	0.5782	0.5897	0.6014	0.6131	0.6248	116
.6	0.6387	0.6485	0.6605	0.6725	0.6846	0.6967	0.7090	0.7213	0.7336	0.7461	122
. 7	0.7588	0.7712	0.7838	0.7966	0.8094	0.8223	0.8353	0.8484	0.8615	0.8748	130
. 8	0.8881	0.9015	0.9150	0.9286	0.9423	0.9561	0.9700	0.9840	0.9981	1.012	138
. 9	1.027	1.041	1.055	1.070	1.085	1.099	1.114	1.129	1.145	1.160	15
1.0	1.175	1.191	1.206	1.222	1.238	1.254	1.270	1.286	1.303	1.319	16
. 1	1.336	1.352	1.369	1.386	1.403	1.421	1.438	1.456	1.474	1.491	17
. 2	1.509	1.528	1.546	1.564	1.583	1.602	1.621	1.640	1.659	1.679	19
. 3	1.698	1.718	1.738	1.758	1.779	1.799	1.820	1.841	1.862	1.883	21
. 4	1.904	1.926	1.948	1.970	1.992	2.014	2.037	2.060	2.083	2.106	22
1.5	2.129	2.153	2.177	2.201	2.225	2.250	2.274	2.299	2.324	2.350	25
. 6	2.376	2.401	2.428	2.454	2.481	2.507	2.535	2.562	2.590	2.617	27
. 7	2.646	2.674	2.703	2.732	2.761	2.790	2.820	2.850	2.881	2.911	30
. 8	2.942	2.973	3.005	3.037	3.069	3.101	3.134	3.167	3.200	3.234	33
. 9	3.268	3.303	3.337	3.372	3.408	3.443	3.479	3.516	3.552	3.589	36
2.0	3.627	3.665	3.703	3.741	3.780	3.820	3.859	3.899	3.940	3.981	39
. 1	4.022	4.064	4.106	4.148	4.191	4.234	4.278	4.322	4.367	4.412	44
. 2	4.457	4.503	4.549	4.596	4.643	4.691	4.739	4.788	4.837	4.887	48
. 3	4.937	4.988	5.039	5.090	5.142	5.195	5.248	5.302	5.356	5.411	53
. 4	5.466	5.522	5.578	5.635	5.693	5.751	5.810	5.869	5.929	5.989	58
2.5	6.050	6.112	6.174	6.237	6.300	6.365	6.429	6.495	6.561	6.627	64
. 6	6.695	6.763	6.831	6.901	6.971	7.042	7.113	7.185	7.258	7.332	71
. 7	7.406	7.481	7.557	7.634	7.711	7.789	7.868	7.948	8.028	8.110	79
. 8	8.192	8.275	8.359	8.443	8.529	8.615	8.702	8.790	8.879	8.969	87
. 9	9.060	9.151	9.244	9.337	9.431	9.527	9.623	9.720	9.819	9.918	96
3.0	10.02	10.12	10.22	10.32	10.43	10.53	10.64	10.75	10.86	10.97	11
. 1	11.08	11.19	11.30	11.42	11.53	11.65	11.76	11.88	12.00	12.12	12
. 2	12.25	12.37	12.49	12.62	12.75	12.88	13.01	13.14	13.27	13.40	13
. 3	13.54	13.67	13.81	13.95	14.09	14.23	14.38	14.52	14.67	14.82	14
. 4	14.97	15.12	15.27	15.42	15.58	15.73	15.89	16.05	16.21	16.38	16
3.5	16.54	16.71	16.88	17.05	17.22	17.39	17.57	17.74	17.92	18.10	17
. 6	18.29	18.47	18.66	18.84	19.03	19.22	19.42	19.61	19.81	20.01	19
. 7	20.21	20.41	20.62	20.83	21.04	21.25	21.46	21.68	21.90	22.12	21
. 8	22.34	22.56	22.79	23.02	23.25	23.49	23.72	23.96	24.20	24.45	24
. 9	24.69	24.94	25.19	25.44	25.70	25.96	26.22	26.48	26.75	27.02	26
4.0	27,29	27.56	27.84	28.12	28.40	28.69	28.98	29.27	29.56	29.86	29
. 1	30.16	30.47	30.77	31.08	31.39	31.71	32.03	32.35	32.68	33.00	32
. 2	33.34	33.67	34.01	34.35	34.70	35.05	35.40	35.75	36.11	36.48	35
. 3	36.84	37.21	37.59	37.97	38.35	38.73	39.12	39.52	39.91	40.31	39
. 4	40.72	41.13	41.54	41.96	42.38	42.81	43.24	43.67	44.11	44.56	43
4.5	45.00	45.46	45.91	46.37	46.84	47.31	47.79	48.27	48.75	49.24	47
. 6	49.74	50.24	50.74	51.25	51.77	52.29	52.81	53.34	53.88	54.42	52
. 7	54.97	55.52	56.08	56.64	57.21	57.79	58.37	58.96	59.55	60.15	58
. 8	60.75	61.36	61.98	62.60	63.23	63.87	64.51	65.16	65.81	66.47	64
. 9	67.14	67.82	68.50	69.19	69.88	70.58	71.29	72.01	72.73	73.46	71
5.0	74.20										

If $x>5, \sinh x=1 / 2\left(0^{2}\right)$ ond $\log _{10} \sinh x=(0.4343) x+0.6990-1$, correct to four significont figures.

Hyperbolic cosines [ $\left.\cosh x=1 / 2\left(e^{x}+e^{-x}\right)\right]$

X	0	1	2	3	4	5	6	7	8	9	$\begin{aligned} & \text { dyg } \\ & \text { diff } \end{aligned}$
			1000	1.000	1.001	1.001	1.002	1.002	1.003	1.004	1
0.0	1.000	1.000	1.007	1.008	1.010	1.011	1.013	1.014	1.016	1.018	2
. 1	1.005	1.006	1.007	1.027	1.029	1.031	1.034	1.037	1.039	1.042	3
. 2	1.020	1.022	1.024 1.052	1.027	1.058	1.062	1.086	1.069	1.073	1.077	4
. 3	1.045	1.048	1.052 1.090	1.055 1.094	1.058	1.103	1.108	1.112	1.117	1.122	5
. 4	1.081	1.085	1.090	1.094							
					1.149	1.155	1.161	1.167	1.173	1.179	$6^{\prime}$
0.5	1.128	1.133	1.138	1.144	1.212	1.219	1.226	1.233	1.240	1.248	7
. 6	1.185	1.192	1.198 1.271	1.205 1.278	1.212 1.287	1.295	1.303	1.311	1.320	1.329	8
. 7	1.255	1.263	1.271 1.355	1.278 1.365	1.287	1.384	1.393	1.403	1.413	1.423	10
. 8	1.337	1.346	1.355 1.454	1.365 1.465	1.374 1.475	1.486	1.497	1.509	1.520	1.531	11
. 9	1.433	1.443	1.454	1.465	1.475	. 68					
		1.555		1.579	1.591	1.604	1.616	1.629	1.642	1.655	13
1.0	1.843	1.558	1.567	1.709	1.723	1.737	1.752	1.766	1.781	1.796	14
.1	1.669 1.811	1.682	1.841	1.857	1.872	1.888	1.905	1.921	1.937	1.954	16
	1.811 1.971	1.828 1.988	2.041	2.023	2.040	2.058	2.076	2.095	2.113	2.132	18
. 4	1.971 2.151	2.170	2.189	2.209	2.229	2.249	2.269	2.290	2.310	2.331	20
				2.417	2.439	2.462	2.484	2.507	2.530	2.554	23
1.5	2.352	2.374	2.395 2.825	2.417	2.675	2.700	2.725	2.750	2.776	2.802	25
. 6	2.577	2.601	2.825	2.650	2.875	2.964	2.992	3.021	3.049	3.078	28
. 7	2.828	2.855	2.882	2.909	2.936 3.228	2.964 3.259	3.290	3.321	3.353	3.385	31
. 8	3.107	3.137	3.167	3.197	3.228	3.259	3.620	3.655	3.690	3.726	34
. 9	3.418	3.451	3.484	3.517	5	3.585					
			3.835	3.873	3.910	3.948	3.987	4.026	4.065	4.104	38
2.0	3.762 4.144	3.799 4.185	4.826	4.267	4.309	4.351	4.393	4.436	4.480	4.524	42
.1	4.144 4.568	4.613	4.2268	4.704	4.750	4.797	4.844	4.891	4.939	4.988	47
. 3	5.037	5.087	5.137	5.188	5.239	5.290	5.343	5.395	5.449	5.503	52
. 4	5.557	5.612	5.667	5.723	5.780	5.837	5.895	5.954	6.013	6.072	5
				6.317	6.379	6.443	6.507	6.571	6.636	6.702	64
2.5	6.132	8.193 6.836	8.255 8.904	6.973	7.042	7.112	7.183	7.255	7.327	7.400	70
. 7	6.769	6.836 7.548	7.923	6.9799	7.776	7.853	7.932	8.011	8.091	8.171	78
8	7.473 8.253	7.546 8.335	8.418	8.502	8.587	8.673	8.759	8.847	8.935	9.024	86
.9	9.115	9.206	9.298	9.391	9.484	9.579	9.675	9.772	9.869	9.968	95.
					10.48	10.58	10.69	10.79	10.90	11.01	11
3.0	10.07	10.17	10.27 11.35	10.37	11.48	11.69	11.81	11.92	12.04	12.16	12
. 1	11.12	11.23	11.35 12.53	11.46 12.66	11.57	12.91	13.04	13.17	13.31	13.44	13
. 2	12.29	12.41	12.53 13.85	12.66 13.99	12.79	14.27	14.41	14.56	14.70	14.85	14
. 3	13.57	13.71 15.15	13.85 15.30	13.99 15.45	15.61	15.77	15.92	16.08	16.25	16.41	16
. 4	15.00	15.15	15.30	15.45							
					17.25	17.42	17.60	17.77	17.95	18.13	17
3.5	16.57	16.74	18.91 18.68	17.08 18.87	19.06	19.25	19.44	19.64	19.84	20.03	19
. 7	18.31	18.50	18.68	18.87 20.85	19.06	21.27	21.49	21.70	21.92	22.14	21
. 7	20.24	20.44	20.64 22.81	23.85	23.27	23.51	23.74	23.98	24.22	24.47	23
8	22.36	22.59 24.96	22.81 25.21	23.04 25.46	25.72	25.98	26.24	26.50	26.77	27.04	26
. 9	24.71	24.96	25.21	25.46							
		27.58	27.86	28.14	28.42	28.71	29.00	29.29	29.58	29.88	29
4.0	27.31	37.48	30.79	31.10	31.41	31.72	32.04	32.37	32.69	33.02	32 35
2	30.18 33.35	30.48 33.69	34.02	34.37	34.71	35.06	35.41	35.77	36.13	36.49	35
$\stackrel{2}{3}$	33.86	37.23	37.60	37.98	38.36	38.75	39.13	39.53	39.93	40.33	39
. 4	40.73	41.14	41.55	41.97	42.39	42.82	43.25	43.68	44.12	44.57	43
						47.32	47.80	48.28	48.76	49.25	47
4.8	45.01	45.47	45.92	46.38	46.85	47.32 52.30	52.82	53.35	53.89	54.43	52
. 6	49.75	50.25	50.75	51.26	51.78 57.2	52.30 57.80	58.38	58.96	59.56	60.15	58
7	54.98	55.53	56.09	56.65	57.22 63.24	67.80 63.87	64.52	65.16	65.82	66.48	64
. 8	60.76	61.37	61.99 68.50	62.61 89.19	63.24 69.89	70.59	71.30	72.02	72.74	73.47	71
. 9	67.15	67.82	68.50	69.19	69.89	70.59					

If $x>5$, $\cosh x=1 / 2\left(0^{x}\right)$, and $\log _{10} \cosh x=10.43431 x+0.6990-1$, correct to four significont figuros.

Hyperbolic fangents [tanh $\left.x=\left(e^{x}-e^{-x}\right) /\left(e^{x}+e^{-x}\right)=\sinh x / \cosh x\right]$

X	0	1	2	3	4	5	6	7	8	9	ave
0.0	. 0000	. 0100	. 0200	. 0300	. 0400	. 0500	. 0599	. 0699	. 0798	. 0898	100
. 1	. 0997	. 1096	. 1194	. 1293	. 1391	. 1489	. 1587	. 1684	. 1781	. 1878	98
. 2	. 1974	. 2070	. 2165	. 2260	. 2355	. 2449	.2543	. 2636	. 2729	. 2821	94
. 3	. 2913	. 3004	. 3095	. 3185	. .3275	. 3364	. 3452	. 3540	.3627	. 3714	89
. 4	. 3800	. 3885	. 3969	. 4053	. 4136	. 4219	. 4301	. 4382	. 4462	. 4542	82
0.5	. 4621	. 4700	. 4777	. 4854	. 4930	. 5005	. 5080	. 5154	. 5227	. 5299	75
. 6	. 5370	. 5441	. 5511	. 5581	. 5649	. 5717	. 5784	. 5850	. 59215	. 5980	67
. 7	. 6044	. 6107	. 6169	. 6231	. 6291	. 6352	. 6411	. 6469	. 6527	. 6584	60
. 8	. 6640	. 6696	.6751	. 6805	. 6858	. 6911	. 6963	. 7014	. 7064	. 7114	52
. 9	. 7163	. 7211	. 7259	. 7306	. 7352	. 7398	. 7443	. 7487	. 7531	. 7574	45
1.0	. 7616	. 7658	. 7699	. 7739	. 7779	. 7818	. 7857	. 7895	. 7932	. 7969	39
.1	. 8005	. 8041	. 8076	. 8110	. 8144	. 8178	. 8210	. 8243	. 8275	. 8306	33
. 2	. 8337	. 8367	. 8397	. 8426	. 8455	. 8483	. 8511	. 8538	. 8585	. 8591	28
.3	. 8617	. 8643	. 8668	. 8693	. 8717	. 8741	. 8764	. 8787	. 8810	. 8832	24
. 4	. 8854	. 8875	. 8896	. 8917	. 8937	. 8957	. 8977	. 8996	. 9015	. 9033	20
1.5	.9052	. 9069	. 9087	. 9104	. 9121	. 9138	. 9154	. 9170	. 9186	. 9202	17
. 6	. 9217	. 9232	. 9246	. 9261	. 9275	. 9289	. 9302	. 9316	. 9329	. 9342	14
7	. 9354	. 9367	. 9379	. 9391	. 9402	. 9414	. 9425	. 9436	. 9447	. 9458	11
. 8	. 9468	. 9478	. 9488	. 9498	. 9508	. 9518	. 9527	. 9536	. 9545	. 9554	9
. 9	. 9562	. 9571	. 9579	. 9587	. 9595	. 9603	. 9611	. 9619	. 9626	. 9633	8
2.0	. 9640	. 9647	. 9654	. 9661	. 9668	. 9674	. 9680	. 9687	. 9693	. 9699	
.1	. 9705	. 9710	. 9716	. 9722	. 9727	. 9732	. 9738	. 9743	. 9748	. 9753	5
. 2	. 9757	. 9762	. 9767	. 9771	. 9776	. 9780	. 9785	. 9789	. 9793	. 9797	4
. 3	. 9801	. 9805	. 9809	. 9812	. 9816	. 9820	. 9823	. 9827	. 9830	. 9834	4
. 4	.9837	. 9840	. 9843	. 9846	. 9849	. 9852	. 9855	. 9858	. 9861	. 9863	3
2.3	. 9866	. 9869	. 9871	. 9874	. 9876	. 9879	. 9881	. 9884	. 9886	. 9888	
. 7	. 9890	. 9892	. 9895	. 9897	. 9899	. 9901	. 9903	. 9905	. 9906	. 9908	2
. 7	. 9910	. 9912	. 9914	. 9915	. 9917	. 9919	. 9920	. 9922	. 9923	. 9925	2
. 8	. 9926	. 9928	. 9929	. 9931	. 9932	. 9933	. 9933	. 9936	. 9937	. 9938	1
. 9	. 9940	. 9941	. 9942	. 9943	. 9944	. 9945	. 9946	. 9947	. 9949	. 9950	1
3.0	. 9951	. 9959	. 9967	. 9973				. 9988			
4.0	. 9999	. 9995	. 9996	. 9996	. 9997	. 9998	. 9998	. 9998	. 9999	. 9999	1

If $x>5$, tanh $x=1.0000$ to four decimal places.
Multiples of $0.4343\left[0.43429448=\log _{10} e\right.$ ]

| $\mathbf{X}$ | $\mathbf{0}$ | $\mathbf{1}$ | $\mathbf{2}$ | $\mathbf{3}$ | $\mathbf{1}$ | $\mathbf{8}$ | $\mathbf{6}$ | $\mathbf{7}$ | $\mathbf{8}$ | $\mathbf{9}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathbf{0 . 0}$ | 0.0000 | 0.0434 | 0.0869 | 0.1303 | 0.1737 | 0.2171 | 0.2606 | 0.3040 | 0.3474 | 0.3909 |
| $\mathbf{1 . 0}$ | 0.4343 | 0.4777 | 0.5212 | 0.5646 | 0.6080 | 0.6514 | 0.6949 | 0.7383 | 0.7817 | 0.8252 |
| $\mathbf{2 . 0}$ | 0.8686 | 0.9120 | 0.9554 | 0.9989 | 1.0423 | 1.0857 | 1.1292 | 1.1726 | 1.2160 | 1.2595 |
| $\mathbf{3 . 0}$ | 1.3029 | 1.3463 | 1.3897 | 1.4332 | 1.4766 | 1.5200 | 1.5635 | 1.6069 | 1.6503 | 1.6937 |
| $\mathbf{4 . 0}$ | 1.7372 | 1.7806 | 1.8240 | 1.8675 | 1.9109 | 1.9543 | 1.9978 | 2.0412 | 2.0846 | 2.1280 |
|  |  |  |  |  |  |  |  |  |  |  |
| $\mathbf{5 . 0}$ | 2.1715 | 2.2149 | 2.2583 | 2.3018 | 2.3452 | 2.3886 | 2.4320 | 2.4755 | 2.5189 | 2.5623 |
| $\mathbf{6 . 0}$ | 2.6058 | 2.6492 | 2.696 | 2.7361 | 2.7795 | 2.8229 | 2.8663 | 2.9098 | 2.9532 | 2.9966 |
| $\mathbf{7 . 0}$ | 3.0401 | 3.0935 | 3.1269 | 3.1703 | 3.2138 | 3.2572 | 3.3006 | 3.3441 | 3.3875 | 3.4309 |
| $\mathbf{8 . 0}$ | 3.4744 | 3.5178 | 3.5612 | 3.6046 | 3.6481 | 3.6915 | 3.7349 | 3.7784 | 3.8218 | 3.8652 |
| $\mathbf{9 . 0}$ | 3.9087 | 3.9521 | 3.9955 | 4.0389 | 4.0824 | 4.1258 | 4.1692 | 4.2127 | 4.2561 | 4.2995 |

Multiples of $2.3026\left[2.3025851=1 / \mathbf{0 . 4 3 4 3}=\log _{e} 10\right]$

| $\mathbf{X}$ | $\mathbf{0}$ | $\mathbf{1}$ | $\mathbf{2}$ | $\mathbf{3}$ | $\mathbf{4}$ | $\mathbf{5}$ | $\mathbf{6}$ | $\mathbf{7}$ | $\mathbf{8}$ | $\mathbf{9}$ |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | 0.0000 | 0.2303 | 0.4605 | 0.6908 | 0.9210 | 1.1513 | 1.3816 | 1.6118 | 1.8421 | 2.0723 |
| $\mathbf{0 . 0}$ | 0.000 |  |  |  |  |  |  |  |  |  |  |
| $\mathbf{1 . 0}$ | 2.3026 | 2.5328 | 2.7631 | 2.9934 | 3.2236 | 3.4539 | 3.6841 | 3.9144 | 4.1447 | 4.3749 |  |
| $\mathbf{2 . 0}$ | 4.6052 | 4.8354 | 5.0657 | 5.2959 | 5.5262 | 5.7565 | 5.9867 | 6.2170 | 6.4472 | 6.6775 |  |
| $\mathbf{3 . 0}$ | 6.9078 | 7.1380 | 7.3683 | 7.5985 | 7.8288 | 8.0590 | 8.2893 | 8.5196 | 8.7498 | 8.9801 |  |
| $\mathbf{4 . 0}$ | 9.2103 | 9.4406 | 9.6709 | 9.9011 | 10.131 | 10.362 | 10.592 | 10.822 | 11.052 | 11.283 |  |
|  |  |  |  |  |  |  |  |  |  |  |  |
| $\mathbf{5 . 0}$ | 11.513 | 11.743 | 11.973 | 12.204 | 12.434 | 12.664 | 12.894 | 13.125 | 13.355 | 13.585 |  |
| $\mathbf{6 . 0}$ | 13.816 | 14.046 | 14.276 | 14.506 | 14.737 | 14.967 | 15.197 | 15.427 | 15.658 | 15.888 |  |
| $\mathbf{7 . 0}$ | 16.118 | 16.348 | 16.579 | 16.809 | 17.039 | 17.269 | 17.500 | 17.730 | 17.960 | 18.190 |  |
| $\mathbf{8 . 0}$ | 18.421 | 18.651 | 18.881 | 19.111 | 19.342 | 19.572 | 19.802 | 20.032 | 20.263 | 20.493 |  |
| $\mathbf{9 . 0}$ | 20.723 | 20.954 | 21.184 | 21.414 | 21.644 | 21.875 | 22.105 | 22.335 | 22.565 | 22.796 |  |

Exponentials [ $e^{n}$ and $e^{-n}$ ]

$n \quad 1$	en diff	$n$	-n diff	$n$	on	n	- - diff	n	$0{ }^{-\infty}$	$n$	$0^{-3}$
0.00	1.00010	0.50	1.64916	1.0	$2.718{ }^{*}$	0.00	$1.000-10$	0.30	. 607	1.0	. $368{ }^{*}$
. 01	1.01010	. 51	1.66517	. 1	3.004	. 01	0.990-10	. 51	. 600	. 1	. 333
. 02	1.02010	. 53	1.68217	- 2	3.320 3.669	. 02	. $9870-10$	. 53	. 5959	$\stackrel{.}{3}$	. 273
. 03	1.030 3.04111	. 53	$\begin{array}{ll}1.699 & 17 \\ 1.716\end{array}$	. 4	3.669 4.055	. 03	$.970-9$ .961	. 54	. .583	.4	. 247
0.05	1.051	0.53	1.73318	1.5	4.482	0.05	. 951	0.33	. 577	1.5	. 223
. 06	1.06211	. 56	1.75117	. 6	4.953	. 08	.942-10	. 56	. 571	. 6	. 202
. 07	1.07310	. 57	1.76818	. 7	5.474	. 07	. $932=9$	. 57	. 566	. 7	. 183
. 08	1.08311	. 58	1.78818	. 8	6.050	. 08	.923-9	. 58	. 565	8	. 165
. 09	1.094 if	. 59	1.80418	. 9	6.686	. 09	.914-9	. 59	. 554	. 9	. 150
0.10	1.105	0.60	1.82218	2.0	7.389	0.10	.905	0.60	. 549	2.0	. 135
. 11	1.116	. 61	1.840	. 1	8.166	. 11	.896-9	. 61	. 543	1	. 122
. 12	1.12712	.82	1.859	${ }^{2}$	9.025	.12	${ }_{878} 887-9$	. 62	. 538	2	. 1111
. 13	1.13911 1.150	. 63	1.87818	. 4	19.974	. 13	.889-9	. 63	. 5.537	. 4	. 0907
. 14	1.150	. 64	1.89620	4		. 14	${ }^{869}-8$				
0.15	1.16212	0.63	1.916	2.3	12.18	0.15	. 861	0.63	. 522	2.5	. 0821
. 16	1.17412	. 66	1.93519	. 6	13.46	. 16	.852-8	. 66	. 517	. 6	. 0743
. 17	1.185	. 67	1.95420	. 7	14.88	. 17	.844-9	. 67	. 512	7	. 0672
. 18	1.19712	. 68	1.97420	8	16.44 18.17	. 18	${ }^{.835}$-8 8	. 68	. 507	. 8	.0608
. 19	1.20912	. 69	1.99420	. 9	18.17	. 19	${ }^{827}$ - 8				
0.20	1.221	0.70	2.01420	3.0	20.09	0.20	.819-8	0.70	. 497	3.0	. 0498
. 21	1.234	. 71	2.03420	. 1	22.20	. 21	.817-8	. 71	. 492	.1	. 0450
. 22	1.24613	. 72	2.05421	2	24.53	. 22	${ }^{.803}$-89	${ }^{72}$	. 487	.2	. 0408
. 23	1.25912	73	${ }_{2} 2.07521$	. 3	27.11 29.96	. 23	$.795-8$ 787	73 74	. 482	. 3	. 0363
24	1.27113	. 74	2.09621	. 4		24	. $787-8$	. 74	. 477	4	. 033
0.25	1.284	0.75	2.117	3.5	33.12	0.23	. 779	0.75	. 472	3.5	. 0302
. 26	1.29713	. 76	2.13882	. 6	36.60	26	.771-8	. 76	. 468	. 6	. 0273
. 27	1.310	.77	2.16022	. 7	40.45	. 27	763-8	. 77	. 463	. 7	. 0247
. 28	1.32313	. 78	2.18122	8	44.70	. 28	.756-8	. 78	. 458	8	. 0224
. 29	1.33614	. 79	$2.203{ }_{23}$	. 9	49.40	. 29	748-7	. 79	. 454	. 9	. 0202
0.30	1.350	0.80	2.226	4.0	54.60	0.30	.741	0.80	. 449	4.0	. 0183
. 31	1.36314	. 81	$2.248{ }^{22}$	. 1	60.34	. 31	.733-	. 81	. 445	. 1	. 0166
. 32	1.377	. 82	$2.270 \quad 23$	. 2	66.69	. 32	.726 -	. 82	. 440	. 2	. 0150
.33	1.39114	83	2.29323	. 3	73.70	. 33	.719-7	. 83	. 436	. 3	. 0136
. 34	1.40514	84	2.31624	. 4	81.45	. 34	712-7	. 84	. 432	4	. 0123
0.35	1.419	0.85	2340	4.5	90.02	0.35	705	0.85	. 427	4.5	. 0111
. 36	1.43315	86	${ }^{2} 3.36323$			. 36	.698-7	. 86	. 423		
. 37	1.448	. 87	$2.387{ }^{24}$	5.0	148.4	. 37	.691-7	. 87	. 419	9.0	. 00674
. 38	1.462 15	. 88	2.41124	6.0	403.4	38	. 684 - 7	. 88	. 415	6.0	. 00248
. 39	1.47715	89	$2.435{ }_{25}^{24}$	7.0	1097.	. 39	. 677 - 7	. 89	. 411	7.0	. 000912
0.40	1.492	0.90	${ }^{2.460}$	8.0	2981.	0.40	. 670 - 6	0.90	. 407	8.0	. 000335
. 41	1.50715	. 91	2.484	9.0	8103.	. 41	.664-7	. 91	. 403	9.0	. 000123
. 42	1.522 15	. 92	2.50926	10.0	22026.	. 42	. $6571-6$	. 92	. 399	10.0	. 000045
. 43	1.53716	. 93	2.53525			. 43	.651-7	. 93	. 393		
. 44	1.55315	. 94	$2.560{ }^{26}$	$\pi / 2$	4.810	. 44	${ }^{.644}$ - 6	. 94	. 391	$\pi / 2$	. 208
				$2 \pi / 2$	23.14					$2 \pi / 2$	. 0432
0.43	1.56816	0.99	2.588	$3 \pi / 2$	111.3	0.45	.638-7	0.95	3387	$3 \pi / 2$	. 00898
. 46	1.58416	. 96	2.61226	$4 \pi / 2$	535.5	. 46	.631-6	. 96	383 379	4 $5 / 2$	. 00187
. 47	$1.600{ }_{16}^{16}$	. 97	$2.638{ }^{26}$	5\%/2	2576.	. 47	. 625 - 6	. 97	379	5m/2	. 000388
. 48	1.616	. 98	2.66427	6\%/2	12392.	. 48	. 619 - 6	. 98	375	6 $7 / 2$	. 000081
. 49	1.63217	. 99	2.69127	$\begin{aligned} & 7 \pi / 2 \\ & 8 \pi / 2 \end{aligned}$	$\begin{array}{r} 59610 . \\ 286751 . \end{array}$	. 49	. 13 - 6	. 99	. 372	$\begin{aligned} & 7 \pi / 2 \\ & 8 \pi / 2 \end{aligned}$	$\text { . } 0000017 .$
0.50	1.649	1.00	2.718			0.50	0.607	1.00	368.		

* Note: Do not inferpolote in this column.

Propertios of e ore listed on p. 583.

Table 1- $d_{0}(z)$

2	-	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9
0	1.0000	0.9975	0.9900	0.9776	0.9604	0.9385				
1	0.7652	0.7196	0.6711	0.6201	0.5669	0.9385	0.9120	0.8812	0.8463	0.8075
2	0.2239	0.1666	0.1104	0.0555	0.5669 0.0025	0.5118 -0.0484	0.4554	0.3980	0.3400	0.2818
3	-0.2601	-0.2921	-0.3202	-0.3443	0.0025 -0.3643	-0.0484 -0.3801	-0.0968 -0.3918	-0.1424	$-0.1850$	-0.2243
						0.3801	-0.3918	-0.3992	-0.4026	-0.4018
4	-0.3971	-0.3887	$-0.3766$	-0.3610	-0.3423	-0.3205				
5	-0.1776	-0.1443	$-0.1103$	-0.0758	-0.0412	-0.3205	-0.2961 +0.0270	-0.2693 0.0599	-0.2404	-0.2097
6	0.1506	0.1773	0.2017	0.2238	-0.0412 0.2433	-0.0068 0.2601	+0.0270 0.2740	0.0599	0.0917	0.1220
7	0.3001	0.2991	0.2951	0.2882	0.2433 0.2786	0.2601 0.2663	0.2740 0.2516	0.2851	0.2931	0.2981
					0.278	0.2663	0.2516	0.2346	0.2154	0.1944
8	0.1717	0.1475	0.1222	0.0960	0.0692	0.0419	0.0146			
9	-0.0903	-0.1142	$-0.1367$	-0.1577	-0.1768	-0.1939	0.0146 -0.2090	-0.0125	-0.0392	-0.0653
10	-0.2459	$-0.2490$	-0.2496	-0.2477	-0.2434		-0.2090	-0.2218	-0.2323	-0.2403
11	-0.1712	-0.1528			-0.2434 -0.0902	-0.2366 -0.0677	-0.2276	-0.2164	-0.2032	$-0.1881$
	-0.1712	-0.1526	-0.133	-0.1121	-0.0902	-0.0677	-0.0446	$-0.0213$	+0.0020	0.0250
12	0.0477	0.0697	0.0908	0.1108	0.1296	0.1469				
13	0.2069	0.2129	0.2167	0.2183	0.2177	0.12150			0.1887	0.1988
14	0.1711	0.1570	0.1414	0.1245	0.1065	0.2150		0.2032	0.1943	0.1836
15	-0.0142	-0.0346	-0.0544	-0.0736		-0.1092	- 0.0679	0.0476	0.0271	0.0064
					-0.0919	-0.1092	-0.1253	-0.1401	-0.1533	$-0.1650$


Table II-J $\mathrm{J}_{1}(\mathrm{z})$								continued Bessel functions		
$=1$	0	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9
0	0.0000	0.0499	0.0995	0.1483	0.1960	0.2423	0.2867	0.3290	0.3688	0.4059
1	0.4401	0.4709	0.4983	0.5220	0.5419	0.5579	0.5699	0.5778	0.5815	0.5812
2	0.5767	0.5683	0.5560	0.5399	0.5202	0.4971	0.4708	0.4416	0.4097	0.3754
3	0.3391	0.3009	0.2613	0.2207	0.1792	0.1374	0.0955	0.0538	0.0128	-0.0272
4	-0.0660	-0.1033	-0.1386	-0.1719	-0.2028	-0.2311	-0.2566	-0.2791	-0.2985	-0.3147
5	-0.3276	-0.3371	-0.3432	-0.3460	-0.3453	-0.3414	-0.3343	-0.3241	-0.3110	-0.2951
6	-0.2767	-0.2559	-0.2329	-0.2081	-0.1816	-0.1538	-0.1250	-0.0953	-0.0652	-0.0349
7	-0.0047	+0.0252	0.0543	0.0826	0.1096	0.1352	0.1592	0.1813	0.2014	0.2192
8	0.2346	0.2476	0.2580	0.2657	0.2708	0.2731	0.2728	0.2697	0.2641	0.2559
9	0.2453	0.2324	0.2174	0.2004	0.1816	0.1613	0.1395	0.1166	0.0928	0.0684
10	0.0435	0.0184	-0.0066	-0.0313	-0.0555	-0.0789	-0.1012	-0.1224	-0.1422	$-0.1603$
11	$-0.1768$	-0.1913	-0.2039	-0.2143	-0.2225	-0.2284	-0.2320	-0.2333	-0.2323	-0.2290
12	-0.2234	-0.2157	-0.2060	-0.1943	-0.1807	-0.1655	-0.1487	-0.1307	-0.1114	-0.0912
13	-0.0703	-0.0489	-0.0271	-0.0052	+0.0166	0.0380	0.0590	0.0791	0.0984	0.1165
14	0.1334	0.1488	0.1626	0.1747	0.1850	0.1934	0.1999	0.2043	0.2066	0.2069
15	0.2051	0.2013	0.1955	0.1879	0.1784	0.1672	0.1544	0.1402	0.1247	0.1080

Table III- $\mathrm{J}_{2}(\mathrm{z})$
continued
Bessel functions

$z$	0	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9
0	0.0000	0.0012	0.0050	0.0112	0.0197	0.0306	0.0437	0.0588	0.0758	0.0946
1	0.1149	0.1366	0.1593	0.1830	0.2074	0.2321	0.2570	0.2817	0.3061	0.3299
2	0.3528	0.3746	0.3951	0.4139	0.4310	0.4461	0.4590	0.4696	0.4777	0.4832
3	0.4861	0.4862	0.4835	0.4780	0.4697	0.4586	0.4448	0.4283	0.4093	0.3879
4	0.3641	0.3383	0.3105	0.2811	0.2501	0.2178	0.1846	0.1506	0.1161	0.0813

## Table IV-J $\mathbf{J}_{3}(\mathrm{z})$

z	0	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9
0	0.0000	0.0000	0.0002	0.0006	0.0013	0.0026	0.0044	0.0069	0.0102	0.0144
1	0.0196	0.0257	0.0329	0.0411	0.0505	0.0610	0.0725	0.0851	0.0988	0.1134
2	0.1289	0.1453	0.1623	0.1800	0.1981	0.2166	0.2353	0.2540	0.2727	0.2911
3	0.3091	0.3264	0.3431	0.3588	0.3734	0.3868	0.3988	0.4092	0.4180	0.4250
4	0.4302	0.4333	0.4344	0.4333	0.4301	0.4247	0.4171	0.4072	0.3952	0.3811

## Table V-J $\mathrm{J}_{4}(\mathrm{z})$

2.	0	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9
0	0.0000	0.0000	0.0000	0.0000	0.0001	0.0002	0.0003	0.0006	0.0010	0.0016
1	0.0025	0.0036	0.0050	0.0068	0.0091	0.0118	0.0150	0.0188	0.0232	0.0283
2	0.0340	0.0405	0.0476	0.0556	0.0643	0.0738	0.0840	0.0950	0.1067	0.1190
3	0.1320	0.1456	0.1597	0.1743	0.1891	0.2044	0.2198	0.2353	0.2507	0.2661
4	0.2811	0.2958	0.3100	0.3236	0.3365	0.3484	0.3594	0.3693	0.3780	0.3853


$p$	Jp(1)	$J_{p}(2)$	Jp(3)	$J_{p}(4)$	Jp(5)	Jp(6)	$J_{p}(7)$	$J_{p}(8)$	Jp(9)	Jp (10)	dp(1)	$J_{p}(12)$	Jp(13)	Jp(14)
$\begin{aligned} & 0 \\ & 0.5 \end{aligned}$	+.7652 +.6714	+.2239 +.5130	-.2601 +.06501	-.3971 -.3019	-.1776 -.3422	$\begin{aligned} & +.1506 \\ & -.09102 \end{aligned}$	+.3001 +.1981	+ 1717 +.2791	$\begin{aligned} & -.09033 \\ & +.1096 \end{aligned}$	-.2459 -.1373	$\begin{aligned} & =.1712 \\ & =.2406 \end{aligned}$	$\begin{aligned} & +.04769 \\ & -.1236 \end{aligned}$	$\begin{aligned} & +.2069 \\ & +.09298 \end{aligned}$	$\begin{aligned} & +.1711 \\ & +.2112 \end{aligned}$
1.0 1.5	+.4401 +.2403	+.5767 +.4913	+.3391 +.4777	-.06604 +.1853	-.3276 -.1697	-.2767 -.3279	-.024683 -.1991	$\begin{aligned} & +.2346 \\ & +.07593 \end{aligned}$	+.2453 +.2545	+.04347 +.1980	-.1768 -.02293	-. 2234	$\begin{aligned} & -.07032 \\ & -.1937 \end{aligned}$	$\begin{aligned} & +.1334 \\ & -.01407 \end{aligned}$
2.0 2.5	+.1149 +.04950	+. 3528 +.2239	+.4861 +.4127	+.3641 +.4409	+.04657 +.2404	-. 2429	-.3014 -.2834	-.1130 -.2506	+.1448 -.02477	+.2546 +.1967	+.1390 +.2343	+   +.08493   +.07242	-.2177 -.1377	$\begin{aligned} & -.1520 \\ & -.2143 \end{aligned}$
3.0 3.5	+.01956 +.087186	+.1289 +.06852	+.3091 +.2101	+.4302 +.3658	+.3648 +.4100	+.1148 +.2671	-.1676 -.043403	-.2911 -.2326	-.1809 -.2683	+.05838 -.09965	+.2273 +.1294	+.1951 +.2348	$\begin{aligned} & +.033320 \\ & +.1407 \end{aligned}$	$\begin{aligned} & -.1768 \\ & -.06245 \end{aligned}$
$\begin{aligned} & 4.0 \\ & 4.5 \end{aligned}$	+.024777 +.02807	+ +.03400 +.01589	+.1320 +.07760	+.2811 +.1993	+.3912 +.3337	+3576 +.3846	+.1578 +.2800	-.1054 +.04712	-.2655 -.1839	-.2196 -.2664	-. 01504	+.1825 +.06457	+.2193 +.2134	$\begin{aligned} & +.07624 \\ & +.1830 \end{aligned}$
$\begin{aligned} & 5.0 \\ & 5.5 \end{aligned}$	+.02498 +.0474	+.087040 +.082973	+.04303 +.02266	+.1321 +.08281	+.2611 +.1906	+3621 +.3098	+.3479 +.3634	+.1858 +.2856	-.05504 .+ .08439	-.2341 -.1401	-.2383 -.2538	$\begin{aligned} & -.07347 \\ & -.1884 \end{aligned}$	$\begin{aligned} & +.1316 \\ & +.077055 \end{aligned}$	$\begin{aligned} & +.2204 \\ & +.1801 \end{aligned}$
$\begin{aligned} & 6.0 \\ & 6.5 \end{aligned}$	$\begin{aligned} & +.042094 \\ & +.04 \end{aligned}$	$\begin{aligned} & +.0^{2} 1202 \\ & +.0^{2} 467 \end{aligned}$	$\begin{aligned} & +.01139 \\ & +.0^{2} 5493 \end{aligned}$	$\begin{array}{r} +.04909 \\ +.02787 \end{array}$	$\begin{aligned} & +.1310 \\ & +.08558 \end{aligned}$	$\begin{aligned} & +.2458 \\ & +.1833 \end{aligned}$	$\begin{aligned} & +.3392 \\ & +.2911 \end{aligned}$	$\begin{aligned} & +.3376 \\ & +.3458 \end{aligned}$	+.2043 +.2870	-.01446 +.1123	-.2016 -.1018	-. 2437	$\begin{aligned} & -.1180 \\ & -.2075 \end{aligned}$	$\begin{array}{r} +.08117 \\ -.04151 \end{array}$
$\begin{aligned} & 7.0 \\ & 7.5 \end{aligned}$	$+.051502$	+.0\$1749	$+.052547$	$+.01518$	$+.05338$	$\begin{aligned} & +.1296 \\ & +.08741 \end{aligned}$	+.2336 +.1772	+.3206 +.2759	a +3275 +.3302	$\begin{aligned} & +.2167 \\ & +.2861 \end{aligned}$	$\begin{aligned} & +.01838 \\ & +.1334 \end{aligned}$	$\begin{aligned} & -.1703 \\ & -.06865 \end{aligned}$	-.2406 -.2145	$\begin{aligned} & -.1508 \\ & -.2187 \end{aligned}$
$\begin{aligned} & 8.0 \\ & 8.5 \end{aligned}$	$\underline{+.079422}$	+.042218 -	$+{ }^{+}$	$+.04029$	+. 01841	$\begin{array}{r} +.05653 \\ +.03520 \end{array}$	$\begin{aligned} & +.1280 \\ & +.08854 \end{aligned}$	$\begin{aligned} & +.2235 \\ & +.1718 \end{aligned}$	$\begin{aligned} & +.3051 \\ & +.2633 \end{aligned}$	$\begin{aligned} & +.3179 \\ & +.3169 \end{aligned}$	$\begin{aligned} & +.2250 \\ & +.2838 \end{aligned}$	$\begin{aligned} & +.04510 \\ & +.1496 \end{aligned}$	$\begin{aligned} & -.1410 \\ & -.04006 \end{aligned}$	$\begin{aligned} & -.2320 \\ & -.1928 \end{aligned}$
$\begin{aligned} & 9.0 \\ & 9.5 \end{aligned}$	$\underline{+.085249}$	$\underline{+.02492}$	+.04840 -	+.049386 -	$+.03550$	$\begin{array}{r} +.02117 \\ +.01232 \end{array}$	$\begin{aligned} & +.05892 \\ & +.03785 \end{aligned}$	$\begin{aligned} & +.1263 \\ & +.00921 \end{aligned}$	$\begin{aligned} & +.2149 \\ & +.1672 \end{aligned}$	$\begin{array}{r} +.2919 \\ +.2526 \end{array}$	$\begin{aligned} & +.3089 \\ & +.3051 \end{aligned}$	$\begin{aligned} & +.2304 \\ & +.2806 \end{aligned}$	$\begin{aligned} & +.06698 \\ & +.1621 \end{aligned}$	$\begin{aligned} & -.1143 \\ & -.01541 \end{aligned}$
10.0	+.02631	$+.002515$	+.041293	+.031950	$+.081468$	+.096964	+.02354	+.06077	$+.1247$	+.2075	$+.2804$	$+.3005$	+. 2338	+.08501

Note: $.0^{27186}=.007186$ ond $.0^{28} 807=.000807$

640

## Factorials

$\boldsymbol{x}$	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$	$\mathbf{9}$	$\mathbf{1 0}$
$\mathbf{x !}$	1	2	6	24	120	720	5040	40,320	362,880	$3,628,880$

For $x>10$, Stirling's formula may be used, with an error not exceeding 1 percent, as follows
$x!=x^{x} e^{-x} \sqrt{2 \pi x}$
If common logarithms are used for computing $x$ !, $\log (x!)=\left(x+\frac{1}{2}\right) \log x-0.43429 x+0.3991$
For example, if $x=10$,
$x+\frac{1}{2}=10.5000$
$\log x=1$
$\log (x!)=10.5000-4.3429+0.3991=6.5562$ $x!=3.599(10)^{6}=3,599,000$

A	
Abbreviations of frequency bands	8
Absorption	
acoustic materials	522
radar	470
unit	522
Acceleration	28
electrode	236
Acoustics, Sound Isee also Electroacoustics, Public address)$509$	
absorption units	522
acoustical	
coefficients	522
mechanical analog	512
analog, acoustical-mechanical	512
bandwidth improvement	527
coefficients, acoustical	522
corrective materials	523
enclosed rooms, sound	519
equal loudness	531
frequency	
musical instruments	526
voices	526
intensity	512
LaGrange equations	517
levels	513
loudness	531
materials	522
mechanical-acoustical analog	512
music	527
musical instruments, range	526
networks	
acoustical	512
analog	512
mechanical	512
open-window units	522
particle	
displacement	509
valocity	509
persons, acoustical coelficients	522
pressure	509
propagation	510
substances	510


Acoustics, Sound continued range	
musical instruments	526
voices	526
reverberation time	519
computation	522
optimum	522
resistance	510
room	
sizes	519
sound in enclosed	519
sizes of rooms	519
sound	
enclosed rooms	519
intensity	512,513
spectrum	526
speech	527
standing waves	519
stress	509
theory	509
time, reverberation	519
computation	522
optimum	522
velocity	28
voices, frequency range	526
waves	
equations	509
standing	519
window, open units	52\%
Address, public	523
Admittance	
slectrode	216, 221
four-ferminal network	93
measurement	175, 176
transmission lines	311
Aeronautical stations	11
AI	471
Air	510
cooling	211
Aircraft	
interception	471
stations	11

musical instruments 526
reverberation time 519
computation 522
optimum 522
resistance 510
room sizes 519
sound in enclosed
enclosed rooms 519
intensity 512,513
spectrum 526
speech 527
509
theory 509
, roverberion 522
computation 522
optimum 522
voices, frequency range 526
waves 509
standing 519
window, open units 522
Admittance
olectrode 216,221
measurement 175, 176
311
Aeronautical stations 11
AI 471
Air 510
cooling 211
interception 471

## Algebraic formulas

Algebraic formulas	582
Allogheny 4750	193, 208
Allocation	
carrier systom frequencios	500
frequency	9
services	9
Alloys, constants	34
Alrok	556
Alternating curront, avorago, offective, rms values	
Altitude-pressure	546
Aluminum, finishes	556
American	
Morso code	508
noise units	505
Standards Association	54
wire gauge	40
Ampere-furns, focusing	236
Amplidyne servo mechanisms	533
Amplification, Amplifiers	240
audio frequency	250, 251
resistance coupled	255
capocitive-differentiation	
difforential equation	262
rectangular input pulso	263
trapezoidal input pulse	262
triangular input pulso	264
capacitive-integration	
circuit equations	265
rectangular input wave	265
biased	266
schematic diagrams	267
triangular input wave	266
cathode-follower	253, 254
classification	240, 252
A	240, 250
$A B$	240, 250, 251
B	240, 249, 251
C	240, 245
design	
general	240
graphical	243, 245
distortion	261
grounded	
cathode	253
grid	253
plato	253
magnetic	207
negative feedback	256
beam-power tube	258
gain reduction	257
radio frequency	245, 249
resistance coupled	255
Amplitude modulation	14, 18, 275
interference	283
AN nomenclature	566
Analytic geometry	
plane	589
solid	594
Angle beam	437

Angle confinued
between lines ..... 590
modulation ..... 278
trigonometric formulas ..... 586
Angstrom unit ..... 8
Anode ..... 215
strop ..... 225
Anodizing ..... 556
Antennas ..... 362-396
area, effective ..... 390
arrays ..... 380
binomial ..... 380
directivity ..... 383
broadside ..... 384
directivity ..... 382, 383, 387
linear ..... 380
current distribution ..... 384
dipole ..... 362, 374, 381
field intonsity ..... 362
directivity arrays ..... 382, 383, 387
dipole ..... 381
loop ..... 381
turnstile ..... 381
effective areas ..... 435
electromagnetic horn ..... 388
fiold intensity ..... 376
dipole ..... 362, 374
free space ..... 373
ground offoct ..... 386
half-wave dipole ..... 374
isotropic ..... 373
received power ..... 374
vertical radiator ..... 368
gain ..... 390
ground, effect on radiation ..... 386
half-wave dipole ..... 362, 374, 381
horns ..... 388
isotropic ..... 373
loop ..... 381
stacked ..... 392
parabolas ..... 388, 390
polarization ..... 365, 484
circular ..... 366
elliptic ..... 366
Eplane ..... 365
horizontal ..... 365
H plane ..... 365
vertical ..... 365
rador ..... 462
radiation (see Antennas, field intensityl
received power ..... 374
reflectors, parabalic ..... 388
rhombic ..... 377
vertical ..... 368
field intensity ..... 368
Anti-TR switch ..... 471
Arbitrary expansion interval ..... 291
Arcback voltago ..... 235
Areaantenna390

Area conlinued	
figures	576
irrogular surface	578
targot, radar	462
units, conversion factors	actors 22
Arithmotic progression	n 582
Armed Sorvicos Electro Standards Agency 54	
Armed Servicos	
nomenclature	566
proferrad fubos	239
standard cablos	334
Army-Navy	
nomenclature	566
proforred tubes	239
standard cablos	334
Aroclor	70
Array (soe Antennas)	
Aspect ratio, television	n 486
Atlantic City Conforonco, 194	nco, 1947
Atmospheric	
data	546
noise	441
Atomic constants	25, 31
Atomic symbols	25
ATR	471
Attenuation, Attonuator	- 153-168
balanced $\mathrm{H}, \mathrm{O}$	158
bridged H, $T$	158, 164
coaxial cables	338
dofinitions	153
orror formulas 160, 162,	160, 162, 164, 165, 167
exchange cable	497
free space	434
H	
bolanced	158
bridgod	158, 164
pads	168
symmetrical	158, 161
impedance, load	156
isotropic antonnas	435
laddor	153
load impodance	156
matching pad	158, 166
minimum loss	158, 166
mismatch	329
pad	
matching	158, 166
H, T	168
pi	
symmotrical	158, 163
unbalancod	158
symbols	160
symmotrical	
H	158, 161
pi	158, 163
$T$	158, 161
0	158, 163
T, bridged	158, 164
telophone lines	492, 494
toil cables	495, 496
$T$ pads	168


Attenuation, Attenuator continued transmission lines	
T, symmetrical	158,161
$T$, unbalanced	158
unbalanced pi	158
$T$	158
wave guides	348, 349
0	
balanced	158
symmetrical	158, 163
Audio frequencies (ses also Acoustics)	19
distortion, tolovision	489
reactor	187
response	
frequency modulation	482
standard broadcasting	475
telovision	489
transformers	187, 197
Aural center frequency, television	485
Auroral zones	412
Autotransformers	186
Avarage value of alternating current	101
Avogadro's number	25
B	
B\&S wire gauge	40
Bands, frequency	8,9
elimination filtor	145
pass filtor	136
stop filter	145
Bandwidth	16
acoustic	526, 527
amplitude modulation	18
broadcasting	18
commercial telephony	18
dotormination	17
facsimile	17
frequency modulation	19
measurement	174
musical instruments	526
pulse	287
modulation	17
selective circuit	114
telography	17
telephony	17
tolovision	17
traveling-wave fubes	233
Base stations	12
Baudat codo	508
Bauds	17, 287
Boacon, Racon	$\backslash 472$
Beam angle	437
Beam-coupling coefficiont	230
Berne Bureau	8
Bessal functions	636
Bidirectional pulses	286
Binomial, Binary	
arrays	380
pulse-code modulation	285

T, symmetrical ..... 161unbalanced
58T
0
balanced158
19distortion, tolovision
responso ..... 187
frequency modulation ..... 482
tolarion brodcasing489
Aural center frequency, television ..... 485
Auraral zonos186
Avarage value of alternating current25
B
Bands, frequency ..... 8. 9136
stop firer16
acoustic18
broadcasting ..... 18
lormal17
focsimile ..... 17
measurement ..... 174pulse287
solective circuit114
olography ..... 17
tolevision ..... 17
Base stations ..... 12
Badot coda 287
Boacon, Racon437
Beam-coupling coefficiont ..... 230
Bessal functions ..... 636
Bidirectional pulses285

Binomial, Binary cantinued	
theorem	583
Birmingham wire gauge	40
Black level, telovision	488
Black-oxide dip	557
Blistor	471
Blocking oscillator	271
Blueing finish	557
Bohr	
electron orbir	25
magneton	25
Boltzmann-Stefan constant	25
Bombing through overcast	471
Boonton Q meter	174
Brass finishes	557
Brazing alloys	37
Breaking load, wire	42
Bridge rectifier	177
Bridged T, H attenuators	164
Bridges (see also Impedance measurements)169-176	
bandwidth, Q	174
capacitance	170, 173
balance	174
direct	173
double-shielded transformer	169
Felici balance	173
Hay	172
hybrid coil	174
inductance balance	173
introduction	169
Maxwell	171
mutual-inductance capacitive bal	nco 174
Owen	171
Q metor	174
resonance	171
Schering	172
substitution method	172
Wagner earth	170
Wheatstone	169
Wien	170
Bright acid dip	557
Brightness characteristic, television	483
British standard wire gauge	40
Broadcasting	473-489
frequency modulation	473, 477
antenna polarization	484
audio frequency	
distortion	482
response	482
center-frequency stability	484
classification	478
coverage	480
modulation	484
noise	484
performonce	481
polarization	484
power output	484
stability, center frequency	484
interference	454

Broadcasting cantinued
international
noise
receiver 447
station 447
standard 473
audio frequency
distortion 775
response 475
carrier stability 476
channels 474
field intensity 474
coverage 474
primary 474
secondary 474
frequency stability 476
modulation 475
noise 476
power 474
service 474
station 474
relovision 473
amplitude characteristic 486
antenna polarization 485
audio frequency
distortion 489
response 489
aspect ratio 486
aural center frequency 485
black level 488
brightness 488
carrier
picture 485
sound 485
center frequency, aural 485
channels 484
width $\quad \$ 85$
classification 484
coverage 485
field frequency 486
frame frequency 486
frequency
field 486
frame 486
response 488
horizontal pulse
repetition stability
reperition stability
timing variation 488
leval
black 488
pedestal 488
white 488
modulation $\quad 485,486,489$
noise 489
pedestal level 488
picture carrier 485
polarization 485
transmission 488
radiation effective 489
lower sideband 488


Capacitance, Capacitors conlinued fixed	
mica	62
paper	67
formulas	90
impregnants	69
measurement	173
mica, molded	62
capacitance	63, 65
color code	64
dielectric strength	5
humidity	5
insulation resistance	3
life	66
Q	
temperature coefficient	63, 65
thermal shock	65
type designation	62
paper	67
ambient temperature	67,68
capacitance	71
impregnants	69,70
insulation resistance	69
life 67, 68,	$67,68,69,71$
power factor	71
resistance, insulation	69
temperature	67
coofficient	71
voltage	67, 68
wavoform	69
parallal plates	90
reactance	76,90
telephone lines	490,494
time constant	102
toll cable	495,496
Capacitive-differentiation amplifiers	fiers 262
Capacitive-integration amplifiers	S 264
Capacitive reactance	90
Carbon dioxide	510
Carbonyl	196
Carrier	
stability, broadcasting	476
systoms	500
coaxial cable	503
Cascaded networks, noise	450
Cathodes (see Electron fubes)	
Covity resonator 2	229,354
characteristics	356
coupling	358
impedance	230
Q	358
tuning	358
Centigrade-Fahrenheit	37
Centimetric waves	8
Central Radio Propagation Laboratory	ratory 19
Ceramics	48
capacitors	59
CGS units	26
Chaff	471
Chonnol width, tolovis	485

fixed ..... 5967
formulas ..... 90measurement17333, 65
color code ..... 64humidity65
sistance66temperature coefficiont3, 65
ther dishock62
per7, 68
capacitance ..... 71insulation resistance69power factor71
rosistanco, insulanon67
coofficient ..... 71
wavoform ..... 69
parallol platos76, 90
hane lines102
Capacitive-differentiation amplifiers ..... 262
Capacilive iagrion aplifors90
Carbon dioxide ..... 510
Carbor
476
systems ..... 500
Cascaded networks, noise ..... 450
Covity resonator ..... 354
coupling ..... 358
Q ..... 358
Centigrade-Fahrenheit ..... 37Central Radio Propagation Laboratory19
oramis59
471
Chonnal width, tolovision ..... 485

## Charge

Charge	
capacitor	102
inductor	104
R-L-C circuir	104
Chemical symbols, elements	31
Chokes (soo Reactance)	
Chromium finish	557
Circlo	577
tangent	590
Circuits lsee Filtor networks, Notworks, Solective circuits, Wave guides)	
Circular	
cylindor resonator	356
polarization	366
wave guides	345
Clearance drill, screw	46
Clipped sawtooth wave analyses	299
Clippor	286
Clutter	471
Coast stations	11
Coaxial cables	
Army-Navy standard	334
attonuation	338, 348
beads	323
capacitanco	334
carrier	503
cutoff wavelength	348
diolectric	323, 334
polyethylone discs	499
wedge	325
dimensions	334
impedance	334
Now York-Philadolphia	499
polyethyione dises	499
resonator	356
shiolding	334
slottod	328
Stevens Point-Minneapolis	499
voltage	334
wedge dielectric	325
weight	334
Code	286
Army-Navy	566
charactor	287
color	54
olement	286
telograph	508
Coherent oscillator	471
Coherent-pulse operation	219
Coho	471
Coils (seo Inductanco)	
Cold-filament curront	209
Collision ionization	213
Color coding	54
capacitors	59, 64, 66
resistors	56, 58
transformers	72
audio frequency	72
intermediate frequency	72
power	72
Combinations and permutations	582

Commercial insulating materials ..... 47
Commercial telophony ..... 18
Common logarithms of numbers ..... 620
Comire Consultalif International Radjo ..... 13
Communication, speoch ..... 530
Community stations, television ..... 484
Comparator, servo-mechanism ..... 533
Complex quantities ..... 583
Components Isee specific component) ..... 54-72
Composite filter ..... 148
Composite transmission ..... 14
Composition resistors (see Resistance)
Compton wavelength ..... 25
Computers, servo-mechanism ..... 533
Condonsers (see Capacitors)
Conductance
oxchange cable ..... 497
telephone line ..... 490, 494
toll cable ..... 495, 496
Conductivity (see Rasistivity) ..... 34
Conductor radiation ..... 376
skin offoct ..... 86
stranded ..... 44
Cone ..... 580
Connection, wave guide ..... 349
Constant-current characteristic ..... 216
Constants, units, conversion factors ..... 22-30
Continental Morse code ..... 508
Continuous-control servo mechanism ..... 533
Control
characteristic ..... 234, 236
grid ..... 215
servo mechanism ..... 533
Convection-current modulation ..... 230
Conversion factors, units, constants ..... 22-30
Coordinate systems ..... 618
Copper
alloy finishes ..... 557
plate ..... 557
wire tables ..... 40
Copperwold
telephone line ..... 491
wire ..... 43
Core materials ..... 193, 196
Corona, transformers ..... 206
Corresponding phases, radar ..... 47
Corrosion, galvanic series ..... 32
Cosines ..... 586
hyperbolic ..... 633
Cosmic noise ..... 443
galaxy ..... 443
solar ..... 443
thermal ..... 443
Counter measures ..... 472Couplingbeam230
cavity ..... 358, 360
coofficiont ..... 96, 114
matching section ..... 332

Coupling continued optimum stagger tuned	96 127
Coverage data	
broadcasting	474
frequency modulation	480
standard-frequency transmission	21
tolovision	485
Creed Morse code	508
Critical grid current	234
C-R-L circuits	
charge	104
circuit transionts	107
discharge	104
Curl	618
Current	
decibels	30
focusing	236
four-terminal network	94
pransmission lines	308
Curvature, differential calculus	597
Cutoff frequency	
exchange cable	497
toll cable	496
wave guides	348
Cutof voltage	236
Cylinder	579
cavity	355
coordinates	618
D	
Damped waves	14
Da8roglie wavelength	25
Decametric waves	8
Decibels iseo also Atrenuation)	30
Decimal-fraction	
degree, trigonometric	622
equivalonts	28
Decimetric waves	8
Definite-correction servo mechanism	533
Definite integrals	608
Deflection	
electrodes	236
alectromagnetic	237
electrostatic	237
factor	236
plates	236
sonsitivity	237
Degrees	
longitude	28
trigonomatric functions	622
Decay time, pulse	286
Deionization time	234
Delia-Y fransformation	97
Density	510
Derivatives, calculus	595
Designation	
A-N nomenclature	566
omissions	14

Delermination of bandwidth ..... 17
Dichromate finish ..... 557
Dialectric
capacitors ..... $59,62,66,67$
coaxial cable ..... 323, 334
beads ..... 323
polyothylene discs ..... 499
wedge ..... 325
constants ..... 47
materials ..... 47
transformer ..... 206
Differential calculus ..... 596
Dimensions
rhombic antenna ..... 377
scraws ..... 46
tronsmission lines ..... 333
Dipole (see also Antennas) ..... 362, 391
half-wove ..... 374
rodiation ..... 381
Direct capacitance measurement ..... 173
Direct-reflected wave interference ..... 430
Directive antennas (seo Antennas)
Disc-insulated cable ..... 498
Dischorge
capacitor ..... 102
inductor ..... 104
R-L-C circuit ..... 104
Dissipation
olectrode ..... 211
factors ..... 47
Distance
between two points ..... 594
flat earth ..... 429
great circle ..... 420
tine of sight ..... 426
point to line ..... 590
Distortion ..... 261
factor metor ..... 261
frequency-modulation broadcasting ..... 482
quantization ..... 287
standard broadcasting ..... 475
Distributed capacitance ..... 73
Disturbances, propagation ..... 19
Divergence ..... 618
Diversity reception ..... 431
Double sideband ..... 14
telephony interference ..... 453
Double-funed circuit
phase shift ..... 120
solectivity ..... 119. 120
Drift space ..... 230
Drill, machine screws ..... 46
Driver transformers ..... 187
Dry-bulb temperature ..... 548
Duct ..... 471
Duplexer ..... 471
Duration, pulso ..... 286
Duty ..... 220
Dykanol ..... 70
Dynamic circuit resistance ..... 91

$E$		Electron tubes continued	
e, properties of	583	Armed Services, preferred	239
E, properties of	406	beam-coupling coefficient	230
E waves 33	339, 345	bunching	230
Ear sensitivity	526	reflex	230
Effective		capacitance, electrode	216
area, antenna	435	emission	209
radiation, television	489	follower	254
value, alternating current	101	heating time	234
Efficiency		materials	209
circuit	216	operation	209
electronic	216	oxide coated	209
klystron	231	pool	235
Electrical		roy	235
analog	512	phosphors	238
conversion foctors	22-30	screens	238
motor selection	558	tantalum	209, 210
power, public address	523	tungston	209, 210
- units, conversion	22	thoriated	209
Electroacoustics, Public address Isee		cavity resonctor	229
also Acoustics)	09-532	impedance	230
bandwidth improvement	527	circuit efficiency	216
electrical power		coefficients	216
indoor	523	collision ionization	213
outdoor	523	conductance, mufual	218
peak factor	527	control	
power required		characteristic	234, 236
indoors	523	grid	215
outdoors	523	constant-current characteristic	216
speech communication	530	convection-current modulation	230
intelligibility	530	critical	
Electrodo (see Electron tubes)		grid current	234
Electromagnetic		grid voltage	234
deflection	237	current	
horn	388	critical grid	234
units	26	diode anode	218
woves	7	focusing	236
Electromotive force	32	†riode anode	218
psophometric	504	cutof volrage	236
Electromotive series	32	deflection	
Electrons (see also Electron tubes)		electrode	236
atomic weight	25	electromagnetic	237
charge	25	electrostatic	237
energy	25	factor	236
mass	25	sensitivity	237
orbit	25	deionization time	234
symbols	25	diode anode current	218
volts	25	direct-current plate resistance	217
Electron tubes	209-239	dissipation, electrode	211
accelerating electrode	236	drift space	230
admittance, electrode	216, 221	duty	220
air cooling	211, 212	officioncy	
alternating-current plate resistance	- 217	circuit	216
mmpere-furns, focusing	236 216.218	electronic	216
amplification factor	216, 218	electrode	
.anode current	215	accelerating	216, 221
diode	218	capacitance	216
triode	218	characteristic	216
strap	225	deflocting	236


Electron fubes cantinued	
dissipation	211
focusing	236
impedance	216
modulating	236
electromagnetic deflection	237
electron	
efficioncy	216
emission	215
inertia	220
transit time	230
electrostatic deflection	237
-mission	209
-lectrode	215
grid	216
secondary	216
thermionic	216
end	
shiolds	225
spaces	225
external Q	225
flicker offect	213
focusing	
ampere-furns	236
current	236
electrode	236
magnetic	238
voltage	236
frequency	
pulling	225
pushing	225
gap	
input	230
interaction	230
magnet	225
output	230
gas	234
ionization voltages	235
grid	
control	215
rectifiers	180
current, eritical	234
emission	216
positive	223
screon	215
space charge	215
suppressor	215
temperature	213
voltage, critical	234
high frequency	219
impedance, electrode	216
induced noise	213
inertia, electron	220
input gap	230
interaction	
gap	230
space	225
ionization voltages	235
klystrons	228
loadod Q	225
low frequency	215-219

Electron fubes cantinued
magnet gap
magnotic focusing 238
magnetrons 223
design 227
materials
cathode 209
elements 212
omissivity 212
medium frequency 215-219
mercury vapor 234
mode
number 225, 230
pi 225
modulation
characteristic 236
$\begin{array}{ll}\text { characteristic } & 236 \\ \text { convection current }\end{array}$
electrode 236
volocity 230
multigrid 219
mutual conductance 218
noise 213,445
collision 213
ficker 213
induced 213
partition 213
shot 213
nomenclature 213
output gap 230
oxide-coated cathodes 209
partition noise 213
performanco, Riako diagram 226
perveance 216
triode 218
phosphors 238
pi mode 225
plate resistance 217
pool cathode 235
positive grid 223
preferred 239
pulling figure 225
pulse 219
dupation 219
operation 219
coherent 219
pushing figuro 225
Q
external 225
loaded 225
unloaded 225
radiation cooling 211
rectifier 234
pool cathode 235
reflector 230
resonator, cavity 229
Rieke diagram 226
scaling factors 221
screon, 238
grid 215
secondary omission 216
sensitivity, deflection 237

Electron tubes continued shot effect space	213
charge grid	215
drift	230
strap, anode	225
supprossor grid	215
symbols, letter	214
tantalum	209
terminology	215
thermionic omission	216
time	
cathode heating	234
deionization	234
tube heating	234
transconductance	217
transfer characteristic	216
transit	
angle	220
time	230
traveling wave	231
triode	
anode current	218
perveance	218
tube-heating time	234
pungsten	209, 210
thoriated	209
unloaded Q	225
variational plate resistance	217
valocity modulation	230
voltage	
critical grid	234
cutoff	236
focusing	236
water cooling	211, 212
wava, traveling	231
Electrostatic	
deflection	237
units	26
Eloments	
atomic number	31
otomic woight	31
electromotive series	32
letter symbols	31
Elimination band (seo Stop band)	
Ellipse	577, 592
Ellipsoid	581, 595
Elliptical polarization	366
Emergency	
cable	498
ship transmitters	11
Emission	
designation	14
electron	215
secondary	216
thermionic	216
Enctosed rooms, sound	519
End shiolds, spaces	225
Energy of electron	25
Equal loudness	531
Equalizers, R-C, R-L, L-C	99

Equator, great-circle chart 413
Equivalont noise input resistance 446
Exponential integrals 604
European noise units 505
Even
functions 292
harmonics 293
Exchange cable 497
Expansion
interval 291
theorem ' 111
Exponentials 635
wave analysis 301
External Q 225
External radio noise 451
Extremely high frequency 8

## F

Fl loyer 406
F2 layer 406
Focsimile 14, 17
interference 453
Factorials 640
Fading at ultra-high frequoncios 433
Fahrenheit-centigrade 37
Faraday's constant 25
Feedback 533
reverse 256
Feod holes 507
Felici balance 173
Ferroxcube 193,196
Fiold frequancy, telovision 486
Field intensity
broadcasting 474
dipole 362
great distance 364
intermediate distance 365
short distance 364
free-space antenna 373
vertical polarization 368
wave guides 342
Figuro, noise 448
Filaments (see Electron tubes, Cathodes)
Filter networks isoe also Networks, Rectifiers and filters, Selective circuits, Wove filters) 98,130-152
band pass 136
attenuation 137
constant-k 136
full section 137
half saction 136
impedance 136
phase 137
band stop 145
attenuation 147
constant-k 146
full section 147
half section 146
impedance 146
m-derived 146


## Fourier analysis

Fourier analysis cantinued series	
complex form	292
real form	291
waveforms, analysis	296
Fraction-decimal equivalents	28
Fractional-sine-wave analysis	303
Frame frequency, television	486
Free-space	
antennas	373
attenuation	434
Frequency data	6-21
allocations	9
Angstrom unit	8
bands, classification	8
bandwidth	16
amplitude modulation	18
frequency modulation	19
carrier systems	500
conversion to wavelength	7
emissions, classification	13
harmonic intonsities	13
international regulations	8
maximum usable	407
micron	8
modulation	14, 19, 278
broadcasting	473, 477, 478
interferance	283
stability	484
multipliers	231
power relations	222
propagation constant	8
pulling and pushing	225
range, musical instruments	526
regulations, international	8
response, television	488
scaling	221
series circuit, resonant	91
services, classification	9
shift telegraphy	19
interference	453
spectrum	6
angle modulation	280
standard transmissions	19
standard intermediate	72
tolerances	11
transmission, classification	14
velocity of propagation	8
wovelength	7
Frequency modulation (see Broadcasting)	
Frequency spectrum	6
Fresnel zone	430
Frying noise	504
Full-wave rectifier	177
Functions	
Bessel	636
even	292
hyparbolic	595
odd	292
periodic	292
trigonometric	622

Functions cantinued logarithms ..... 626
Fundamental quantities, transmission lines ..... 307
Fundamentals of networks (see Net- works) ..... 73-113
Fusing and wiring data ..... 562
GGain
antanna ..... 390, 437
resonance ..... 114
Galaxy noise ..... 443
Galvanic series ..... 32
Gap
input ..... 230
interaction ..... 230
magnetic ..... 225
output ..... 230
Gas
constant per mol ..... 25
ionization voltages ..... 235
tubes ..... 234
oscillator ..... 273
rectifiers ..... 180
phase shiffing ..... 181
volume ..... 25
Gate, time ..... 286
GCA, GCI ..... 471
Generators (see Oscillation)
Geomelry
plane analytic
plane analytic ..... 589 ..... 589
progression ..... 582
solid analytical ..... 594
GL ..... 471
Glass ..... 48, 510
Globe wireless code ..... 508
Gradient ..... 618
Graphical solution, harmonics ..... 294
Great-circle
calculations ..... 419
chart ..... 413
Greek alphabel ..... no
Grid (see Electron fubes, grid)
Ground-controlled approach ..... 471
interception ..... 471
Ground, effect on radiation ..... 386
Gun laying ..... 471
H
Half-sine-wave analysis ..... 300
Half-wave dipole ..... 374
rectifier ..... 177
Hard rubber ..... 510
Harmonics ..... 293
graphical solutions ..... 294
intensity ..... 13

$H$ attenuatars 158, 1	158, 161, 164, 168
Heads, screw	45
Heating time, tube	234
Heaviside expansion thearem	am 111
Hectametric waves	8
Hertz vector	574
High frequency	8
triodes	219
transformers	187
High-pass filter	134
Hiperca	193
Hipernik	193
Hipersil	193
Harizantal timing, 1elovisian	n 488
Horn	391
radiator	388
Horsepower, motor	562
Hot-cathode gas tubes	235
Hay's bridge	172
$H$ pads	168
Hughes code	508
Humidity	
capacitors	65,67
covity funing	358
relative	548
transfarmers	206
H waves	339, 345
Hybrid	
cail measurement	174
junction	352
Hydraulic servo mechanisms	533
Hydragen	510
atomic moss	25
Hymu	196
Hyperbala	593
rovolution	595
Hyperbolic	
casinos	633
functions	595
sines	632
tangents	634
I	
IBM telegraph code	508
IFF	471
Identification, radar	471
Image	
frequency rejoction	455
impedance	131
transfor canstant	131
Impedance	
cavity	230
characteristic	323
olectrode	216
exchange cable	497
formulas	79
four-terminal network	92
image	131
matching 3	330, 331, 332
measurements (see also Bridges)	Bridges) 169-176


Impedance canlinued	
admitrance	175
bandwidth Q	174
Baonton Q metor	174
distribured capacitance	174
General Radio twin-T	176
inductance, true	174
low impedance	175
parallel-T	176
Q	174
meter	174
substitution method	172
iwin-T	176
netwark	79
parallal	79.91
power, two meshes	95
series	79
slotted line	320
standard cables	334
tolephone lines	494
toll cable	495,496
transmission line	311, 322
Impregnants, capacitar	69
Improvement threshold	286
Inch-metric equivalents	28
Inch-millimeter equivalents	28
Independent sidebands	14
Indicatar	
maving target	472
radar	464
serva mechanism	533
Indoar, pawor for public address	523
Induced naise, electran tube	213
Inductance, Inductors	
balanco	173
capacitance, distributed	73, 174
charge and discharge	104
cail	73
distributed capacitance	73
farm factar	75
formulas	90
magnetic materials	196
magnet wire	74,190
reactance	76,90
salenaids	73
telephone lines	490, 494
tall cable	495,496
true	174
Inerteon	70
Inertia, olectran	220
Infinite-mass canstant	25
Input	
admittance, four-terminal netwark	93
gap	230
impedance, four-terminal network	92
pulse	
rectangular	263
trapezaidal	262
triangular	264
resistance, equivalent noise	446
transformers	203


wave			
rectangular	265	Jamming	472
triangular	266	Joining metals	37
fnstantaneous frequency	17	Joint Army-Navy	
Instruments, musical range	526	nomenclature	566
Insulation		specifications	54
capacitors 59,62,	62, 66, 67		
coaxial cable	323, 334		
beads	323	K	
polyothylone discs	499	Keying, frequency shift	19
wodge	325	Kilometric waves	8
materials	47	Klyometric waves Klystrons	8 228
transformer	206	Klys	228
Integral 231			
calculus	598		
dofinito	608		
exponential	604	$L$	
inverse trigonometric	608	LaGrange's equations	517
logarithmic	604	Land stations	11
rational algebraic	598	mobile	12
trigonometric	605	LaPlace	
Intensity		formulas	618
harmonics	13	transforms	108, 611
lovols	513	L-C oqualizers	-99
sound	512	L-C filters	99
Intoraction		L-C-R circuit	
gap	230	charge	104
space	225	discharge	104
Interference		transients	107
direct and reflected waves	430	Leakage, telephone lines	490
offects in systoms	452	Letter symbols	26
rejection, modulation	283	atomic	25
Intermediate-frequency transformers	72, 187	attenuation	160
International		olectronic	25
broadcasting	473	oloments	31
regulations	8	Greok	29
telecommunications conferences	8	modulation	14
International Telecommunication Union	- 8	sorvo mochanisms	534, 536
intorrupted continuous waves	14	transmission	
Interstage		characteristics	14
stagger tuning	127	lines	304, 320
transformers	187	types	14
interval, axpansion	291	Leval	287
Inverse		Lifoboat	11
feedback	256	Light, velocity	28
trigonometric integrals	608	Limiter	286
lonization		Linear units, Conversion factors	22
collision	213	Lines	
gas voltages	235	angle between	590
lonosphere	403	array	380
layors		noiso	504
D	403	normal to circle	591
E	406	of sight distances	426
F1	406	polarization, dipolo	365
F2	406	straight	589,594
trises, resonant	361	to point distances	590
-rregular plane surface, area	578	telephone	490
totropic		transmission	304
antennas, path attenuation	435	10	472
madiator 3	373, 391	Load impedance, attenuator	156


Loaded Q	225
covity	358
Loading	
oxchange cable	497
toll cable	496
Lobes, reflection radar	468
Local oscillator	472
Logarithms	
- integral	604
natural	630
numbers	620
trigonometric functions	626
Long waves, prapagation	400
Longifude	28
Loops	391
radiation	381
stacked	392
Lorentz, retarded potentials	573
Loudness	531
Loudspeakers	509
public address	523
Low frequency olectron tubes	8 215
Low-pass filters	99, 132
Low-power resistors (seo Resistance)	58

## M

Machine	46
nuts	45
screws	614


Maclaurin's theorem	614
Magic T	352
Magnosium, finishes	557

Magnel-wire data 74, 190
Magnetic
amplifiers 207
focusing 238
gap 225
materials
high Q 196
transformers 193
Magneton 25
Magnetrons 223
Man-made noise 443
Marine materials and finishes 556
Mass ratio, proton-to-electron 25
Matching section, quarter-wave 330
Materials
ocoustic absorption 522
properties of 31-53
tropical and marine 556
Mathomatical formulas (seo also
Mathematical tables) $576-619$
algebraic, trigonomatric formulas 582
angles, small 586
arithmetic progression 582
binomial theorem 583
combinations 582
complex quantitios 583

Mathematical iormulas cantinued geomotric progression 582

permutations
582
quadratic ..... 582
small angles ..... 586
trianglas
oblique angled ..... 586
right angled ..... 586
trigonometric identities ..... 584
differential calculus ..... 596
curvature of curve ..... 597
general ..... 596
transcendental functions ..... 596
hyperbolic functions ..... 595
integral calculus ..... 598
definite integrals ..... 608
exponential integrals ..... 604integrals involving
$\sqrt{a x+b}$ ..... 600
$\sqrt{x^{2} \pm a^{2}}, \sqrt{y^{2}-x^{2}}$ ..... 600
$\sqrt{a x^{2}+b x+c}$ ..... 602
irrational integrals ..... 604
logarithmic integrals ..... 604
rational integrals ..... 598
trigonometric integrals ..... 605
inverse ..... 605
Laplacian transforms ..... 611
symbols ..... 611
plane analytic geometry ..... 589
circle ..... 590
allipso ..... 592
hyperbola ..... 593
parabola ..... 591
rectangular coordinates ..... 590
transformation ..... 590
straight line ..... 589
plane figures, areas ..... 576
circle ..... 577
sector ..... 577
segment ..... 577
allipse ..... 578
irregular ..... 578
parabola ..... 577
parallelogram ..... 576
polygon, regular ..... 576
tropezium ..... 578
trapozoid ..... 576
triangle ..... 576
sorios
binomial ..... 615
Maclauron ..... 614
miscellaneous ..... 614
Taylor ..... 614
solid analytical geometry ..... 594
distance batween aoints ..... 594
ellipsoid ..... 595
hyperboloid of revolution ..... 595
oblate spheroid ..... 594
paraboloid of revolution ..... 595

Mathematical formulas canlinued plane, intercept form prolate spheroid straight line	594 594 594
solid figures, areas, volumes	579
cone	580
frustrum	581
cylinder	579
ellipsoid	581
paraboloid	581
pyramid	580
frustrum	580
ring	580
sphere	579
sector	579
segment	579
torus	580
wedge frustrum	581
spherical trigonometry	587
spherical triangles	587
general	587
oblique	587
right	587
vector-analysis formulas coordinates	615
eylindrical	618
orthogonal curvilinear	619
rectangular	615
spherical	618
curl	618
divergence	618
gradient	618
taplacian	618
rectangular coordinates	615
Mathematical tables isee also Mathematical formulas)	620-640
Bessel functions	636
commor logarithms	620
cosines, hyperbolic	633
degree, trigonametric functions	622
exponentials	635
factorials	640
hyperbolic	
cosines	633
sines	632
tangents	634
logarithms	
common	620
notural	630
multiples of	
0.4343	634
2.3026	634
natural	
logarithms	630
trigonometric functions	622
sines, hyperbolic	632
langents, hyperbolic	634
trigonometric functions	622
0.4343 , multiples of	634
2.3026, multiples of	634
Maximum usable frequency	407

Maxwell
bridge ..... 171
equations ..... 570
basic laws ..... 570
derivative form ..... 572
integral form ..... 572
different coordinates ..... 575
Lorentz retarded potentials ..... 573
vectors ..... 574
Hertz ..... 574
Poynting ..... 574
reciprocity theorem ..... 575
retarded potentials ..... 573
superposition theorem ..... 575
Measures, Conversion factors ..... 22
Mechanical
analog ..... 512
network ..... 512
torque, servo mechanisms ..... 533
Medium frequency ..... 8
propogation ..... 400
Madium-frequency electron fubas ..... 215
Molting point
allays ..... 34, 37
ceromics ..... 37
metals ..... 37
Mensuration formulas ..... 576
Mercury ..... 510
vapor tubes ..... 234
Mesh isee Nełworksl
Motals
brazing ..... 37
constants ..... 34
galvanic serios ..... 32
melting point ..... 34
resistivily ..... 34
soldering ..... 37
specific gravity ..... 34
specific heat ..... 34, 36
temperature ..... 37
thermal conductivity ..... 34
welding ..... 37
Metric-inch equivalents ..... 28
Metric waves ..... 8
Metropolitan stations, television ..... 484
Mica capacitors (see Capacitance) ..... 62
Mieron ..... 8
Microphones ..... 509
Millimeter-inch equivalents ..... 28
Millimetric waves ..... 8
Minimum bandwidth changes ..... 527
Minimum-loss attenuators ..... 158, 166
Minneapolis-Stevens Point coaxial cable ..... 499
Mismatch, attenuation ..... 329
Mixer, servo mechanism ..... 533
MKS units ..... 26
Mobile stations ..... 11
Modo number ..... 225, 230
Modulation, Modulators ..... 275-290
amplitude ..... 14, 275

- interference ..... 283

Modulation, Moduletors canti angle	278
frequency	278
spectrum	280
phose	279
sideband distribution	280
bandwidth	16
characteristic	236
convection current	230
damped waves	14
double sideband	14
electrode	236
frequency	14, 17, 278
broadcasting	48
interference	283
noise reduction	284
independent sidebands	14
phase	14,279
pulso	285, 286
amplitude	14, 285
bandwidth	287
code	285
binary	285
n-ary	285
ternary	285
duration	285
frequency	285
methods	285
multiplex	289
phase	14
position	14,285
quantization	289
sampling	287
signal-to-noise ratio	288
amplitude	288
code	288
position	288
torminology	
band	287
bidirectional pulse	286
clipper *	286
code	286
character	287
element	286
gate, time	286
improvement threshold	286
lovel	287
timiter	286
pulse	286
bidirectional	286
decay time	286
duration	286
regeneration	287
rise time	286
unidirectional	286
quantization	286
distortion	287
threshold, improvament	286
time gate	286
transducer	286
unidirectional pulses	286


Modulation, Modulators cantinued time-division multiplex width   single sideband standard broadcasting television transformer velocity	289 14 14 475 485 187 230
Mol, gas constant	25
Molded capacitors (see Capacitance)	-) 62
Molybdenum-permalloy	193, 196
Monimax	193
Morkrum code	508
Motor types wiring	558 560
Moving-targot indicator	472
MTI	472
Multicollector tube noise	446
Multigrid electron fubes	219
Multiples of $0.4343$	634
2.3026	634
Multiplex code	508
lime division	289
Multipliers frequancy volloge	231 177
Multivibrator phantastron	267
Mumeral	196, 208
Murray code	508
Music	527
pitch	20
range of instruments	526
Mutual-inductance balance	173
Myriametric waves	8
$\mathbf{N}$	
National Bureau of Standards Natural logarithms	19 630
trigonometric functions	622
Navy-Army nomenclature preferred tubes standard cables	566 239 334
N-ary pulso-code modulation	286
NBS wire gauge	40
Negative feedback	256
Nepors	30
Networks isee also filter networks, Selective circuits)	73-113
admittance	82
input	93
alternating-cuprent values	101
coupling coofficiont	96
optimum	96

width 14
single sideband 14
standard broadcasting 475
television 485
transformer 187
velocity 230
Mol, gas constant 25
Molded capacitors (seo Capacitance) 62

193
Morkrum code 508
Motor
types 558
wiring 560
Moving-largor indicator 472
Multicollector fube noise 446
Multigrid alectron fubes 219
Multiples of
0.4343
2.3026634

Multiplex code 508
nime division 289
frequency 231
voltoge 177
Mulivibraror 267
Mumetal 196, 208
Murray code 508
527
pitch 20
range of instruments 526
$\begin{array}{lr}\text { Myriametric waves } & 8\end{array}$

## $\mathbf{N}$

National Bureau of Standards 19
Natural
trigonomatric functions 622
Navy-Army
nomenclature
566
preferred tubes 239
standard cables 334
N-ary pulse-code modulation 286
Negative feedback 256
Nepers 30
Networks lsee also filter networks,
Selective circuits) 73-113
mittance 82
alternating-cuprent values 101
coupling
$\begin{array}{ll}\text { coafficiont } & 96 \\ \text { optimum } & 96\end{array}$


Noise canfinued
lovals
line 504
man made 443
bandwidth factor 443
multicollector tubes 446
orks, cascaded
radio, external 451
roduction, frequency modulation 284
shot 445
single-sideband telephony 454
solar 443
sources 441
chart 458
coincidence 455
ago 455
selectivity 456
456
telegraphy 453
frequency shift 453
phony
double sideband 453
single sideband 453
thermal 443, 444
transmittor 504
equivalont input resistance 446
induced 213
muiticollector 446
parinon 213
shot effect 445

Nomenclature, Army-Nayy
Nonlinear transformers 188
Nonsinusoidal generators 267
Normal to circle, line 591
Number, mode 225, 230
Numbers, proferred 55,56
Nuts, machine 46
Nyquist stability criteria 544

Oblate spheroid
594
Oblique spherical triangla 588
Odd functions, harmonics
Open
circuited transmission lines
slub malching soction 331
wire
carrier systems
500
lines 490


Propagation conlinued
forecasts 410
frequencies, maximum usable10
layers
D ..... 403
$E$ ..... 406
F) ..... 406
F2 ..... 406
maximum usable frequencies ..... 408
sunspots ..... 408
ultra-high frequencies ..... 426
angle, beam ..... 437
antennas area ..... 435
beam anglo ..... 437
gain ..... 437
isotropic ..... 435
area of antenna ..... 435
attenuation
froe space ..... 434
isotropic antennas ..... 435
beam angle ..... 437
diroct ray ..... 430
fading ..... 433, 440
field strength ..... 432
flat-earth calculations ..... 429
free space
attonuation ..... 434
transmission ..... 434
Fresnel zone ..... 430
gain, antenna ..... 437
interference, direct, reflected rays ..... 430
isotropic antennas ..... 435
line of sight ..... 427
noise-signa ..... 439
power ..... 439
reflected ray ..... 430
required power ..... 439
signal-noiso ..... 439
space-diversity ..... 431
straight-line diagrams ..... 426
transmission formulas ..... 434
velocity ..... 8, 510
very-long waves ..... 397
warning notices ..... 21
wave guides ..... 340
3-25 mogacyelos ..... 403
60 kilocycles ..... 397
100-300 kilocycles ..... 400
Propertios of e ..... 583
Properties of materials ..... 31-53
Proportional-plus-derivative servo mechanism ..... 541
Proportions, room acoustics ..... 519
Proton mass ..... 25
Psophometric electromotive force ..... 504
Psychrometric chart ..... 549
Public-address ..... 523
Pulling figure and frequency ..... 225

Pulso	219,286
amplitude modulation	14,285
bandwidth	287
code modulation	285
decay time	286
duration	219
modulation	285
length	507
modulation	14,285
phaso	14
position	14, 285
width	14
rectangular input	263
regeneration	287
rise time	286
transformers	187
trapezoidal input	262
triangular input	264
Pulsed-frequency modulation	285
Pushing figure and frequency	225
Pyramid	580
Pyranal	70
Q	
Q factors	225
cavity	358
external	225
loaded	225
magnetic material for high	196
measurement	174
meter	174
single circuit	120
unloaded	225
Quadratic equation	582
Quantitios, complex	583
Quantization	286, 289
distortion	287
Quarter-wave matching section	330
$\mathbf{R}$	
Racon	472
Radar	459-472
absorption	470
antenno	462
areo, targot echoing	462
bands	461
countermeasures	472
echoing area, farget	462
frequency	461
general	459
indicators	464, 465, 466
lobes, reflaction	468
power	461
puise rate	461
range	467
receiver	463
noise figure	463
reflection	
lobes	468

Radar continued
zone
refraction 470
target echoing aroo 462
terminology 471
ATR 471
blistor 471
8 TO 471
chaff 471
clufter 471
coherent 471
coho 471
duct 47 !
duploxer 471
GCA 471
$\mathrm{GCl} \quad 471$
GL 471
IFF 471
jamming 472
LO 472
MTI 472
PPI 472
PPPI 472
P3 472
P4 1 472
racon 472
radome 472
RCM 472
RDF 472
SLC 472
stalo 472
TR switch 472
window 472
transmittor 460
wavalength 461
Radiation
cooling 211
and-fed conductor 376
ground effect 386
pattern, antennas 381
power, free-space antenna 373
rhombic antenna 377
Pelevision 489
Radiator (see Antennas)
Radio
broadcasting 473
counter measures 472
direction finding 472
frequencies 19
cables 334
pulse duration 219
reactor 187
standard 19
transformers 187
location 472
navigation 11
Radio broadcasting (soe Broadcasting) Radio Manufactures Association 54
Radome
471, 472



## S

Sag, transmission lines	563
Salt water	510
Saturable reactor	188,207
Saturation, percentage	548
Sawtooth	187
$\quad$ amplifier, transformers	299,303
$\quad$ analysis	221
Scoling factors	
Scanning, television	486
$\quad$ lines	486
sequence	172
Schering bridge	186
Scott-connection transformers	215
Screen grid	238

Scrows, machine ..... 45
clearance drill ..... 46
dimensions ..... 45, 46
tap drill ..... 46
Searchlight-control radar ..... 472
Secondary emission ..... 216
Sector
circlo ..... 577
sphore ..... 579
Segment
circlo ..... 577
sphere ..... 579
Seloctive circuits ..... 114-129
bandwidth ..... 115
coefficient of coupling ..... 114
coupling ..... 114
double funed ..... 119. 120
equations ..... 456
gain at resonance ..... 114
solectivity
far from resonance ..... 117
near resonance ..... 119
phase shif! ..... 120
Q ..... 120
single tuned ..... 119, 120
stagger tuned ..... 127
triple tuned ..... 125
Self-inductance (see Inductance)
Sensitivity, defiection ..... 237
Sorios ..... 614
binomial ..... 615
circuit, impedance ..... 79
fourier ..... 291
resonant circuit ..... 91
Services, frequency
allocation ..... 9
tolerances ..... 11
Servo mechanisms ..... 533-545
basic elements ..... 533
classification ..... 533
control ..... 533
motive ..... 533
uso ..... 533
definitions ..... 533
elements, basic ..... 533
letter symbols ..... 534, 536
positioning typo ..... 534
comparator ..... 535
linearity ..... 545
load ..... 536
mixer ..... 535
motor ..... 536
performance critoria ..... 543
proportional plus derivative ..... 541
stability criteria ..... 543
viscous damped ..... 540
quantitios ..... 534, 536
symbols534,536
Shielded transformer ..... 169
Shiolds, end ..... 225
Ship-controlled inferception ..... 471

## Ship stations



Symbols, letter cantinued transmission	
lines	304, 320
types	14
Synchronous printor codes	508
System interference effects	452
T	
Tangents	586
hyperbalic	634
to circle	590
Tantalum	209
Tap drill, scrows	46
Target	
echo area	462
indicator	472
$T$ attenuators 158, 16	158, 161, 164, 168
Taylor's theorem	614
Telegraph	
codes	508
frequency shift	19
interference	453
modulation	14
speed	17
Telephony lsee also Carrier, Transmission, etc.)	
Teletype codo	508
Television (seo also Broadcasting)	casting) 14,17
TEM waves	339
Temperatures	552
cavity funing	358
extromes	550
metals	37
scales	37
transformers	206
Tonsile strength, wire	42
Terminology, radar	471
Ternary-pulse-code modulation	ation 286
Test voltage, components	55
Tetrodes (see Electron tubes, Multigrid)	
TE waves	339, 345
Theorem	
binomial	583
Heaviside expansion	111
Maclauren	614
reciprocity	89, 575
superposition	89, 575
Taylor	614
Thevenin	89
Thermal	
conductivity, motals and alloys	alloys 34
noise	443,444
Thermionic emission	216
Thermocouples	33
Thevenin's theorem	89
Thoriated tungsten	209
Threads, screw	46
Threshold, improvement	286
Thyratron rectifiers	180


Time	19
cathode hearing	234
chart	555
constant	98, 102
deionization	234
division multiplex	289
gate	286
pulse	
decay	286
rise	286
reverberation	519
computation	522
optimum	521
signals	20
standards	19
ticks	20
transit	230
fube heating	234
Tin plate	557
Tolerance	54
frequency	11
Toll cable	495,496
$T$, magic	352
TM waves	339, 345
Torque	562
Torus	580
Tower, antenna	369
$T$-pi transformation	97
TR switch	472
Transconductance	217
Transducar	286
Transfor	
characteristic	216
constant, image	131
Transformation	
rectangular coordinates	590
$T$-pi or Y-delta	97
Transformers	
audio frequency	187, 197
driver	187
harmonic distortion	200
input	187, 203
interstage	187
modulation	187
output	187, 201, 203
auto	186
color code	72
core materials	193
corona	206
dielactric	206
filament	186
general	186
high frequency	187
carrier	187
intermodiate frequency	72, 187
power	192
line, carrier	187
pulse	187
radio frequency	187
sawtooth amplifior	187
humidity	206

## Transformers

- 

Transformers conlinued	
insulation	206
leads	72
nonlinear	188
peaking	188
plate	186
power	$186,188,192$
rectifier	186,188
Scott connection	186
shielded	169
temperature	206
vibrator	186
windings	190,205
wire table	190
Transforms, LaPlace	108,611
Transients	101
Transit	
angle	220
time	220,

Transmission, Transmitters lsee also Propagation)
antennas (see Antennas)
bands
bandwidth
amission designation
frequencies 14
tolorances 11
harmonics 13
lines 304-338
admittance 311
attenuation 319
coaxial 338
mismatch
329
balanced inner, outer grounded 328
capacirance, coaxial 324
coaxial cablos
Army-Navy standard 334
attenuation 338, 348
beads 323
capacitance 334
carrior 503
cutoff wavelength 348
diolectric 323, 334
polyothylone dises 499
wodge 325
dimensions 334
impedance 334
New York-Philadelphia 499
polyethylene discs 499
resonator 356
shielding 334
slotted 328
Stevens Point-Minneapolis 499
voltoge 334
wedge dielectric 325
woight 334
currents 308
dato
490
five wire
325
four wire, balanced
324
impedance
311, 320

Transmission, Transmittors continued types   wiro   WWV	14 490 20	Vector analysis Hertz Poynting	$\begin{array}{r} 615 \\ 574 \\ 574 \end{array}$
Transverse waves		Velocity	
electric	339	modulation	230
magnatic	339	propagation	8, 510
Trapezium	578	exchango cable	497
Trapezoid	576	light	25, 28
input pulso	262	telephone lines	494
wave analysis	302	toll cable	496
Traveling-wave tubes	231	wind	552
Triangle	576,586	Vertical radiator	368, 369
input pulse	264	Very-high frequency	8
nput wave	266	Vory-long waves	397
wave analysis	298	Vory-low frequency	8
Trigonometric		Vibrator power supply	186
formulas	582	Viscous-damped servo mechanism	540
functions	622, 626	Voltago	
identitios	584	cut off	236
integrals	605	decibels	30
Trigonometry, spherical	587	focusing	236
Triodes, high frequency	219	four-terminal network	94
Triple-funed circuits	125	multiplier	177
phase shift	125	rating, components	55
selectivity	125	spark-gap breakdown	547
Tropical material and finishes	556	standard cables	334
Tubes (seo Electron tubes)		transmission lines	308
Funed circuits (soe Selective circuits)		Volume	
Tungsten cathodes	209	conversion factors	22
Turnstile antenna	391	perfoct gas	25
radiation	381	resistivity	47
Twin-T measurement	176		
Two-phase servo mechanisms	533	W	
		Wagner earth	170
U		Ward-Leonard servo mechanisms	533
		Woshors	46
Ultra-high frequency fading	433	Water	510
line of sight	426	prossuro	28
links	434	Wavo guides	339-353
power	222	Waro guides	348, 349
propagation	426	beyond cutoff	-349
transmission lines	319	circuit elements	350
Unidirectional pulso	286	circular	345
Unipotential cathodes	218	attenuation	348
Unit		coupling	347
impulse stop	109 110	cutoff wavelength	348
Units, constants, conversion factors	22-30	waves	345
Unloaded Q	225	H	345
Unmodulated transmission	14	TE	345
U.S. Naval Observatory	21	TM	345
		connectors	349
		cutoff wavalength	348
V		hybrid junction	352
Vacuum tubes (see Electron fubes)		magic $T$	352
Valves (see Electron tubes)		propagation	339
Vapor tubes, mercury	234	rectangular	340
Voriotional plate resistance	217	ottenuation ${ }^{\text {c }}$	348


Wave guides cantinued coupling cutof wavelength	344 348
standard	349
TE waves	339
TEM waves	339
TM waves	339
wavolength	
cutaff	349
usable range	349
Wavelength bands	8
DeBroglie	25
exchange cable	497
frequency	7
spectrum	6
telephone lines	494
toll cable	496
Waves (see also fourior analysis)	
analysis	296, 301
equation	509
filter reactor	187, 195
guides	339
cavity	360
horn	388
standard	349
traveling-wave tube	233
plane	510
propagation	397
rectangular input	265
sound	509
spherical	510
triangular input	266
Waxes	52
Weather data	550
Wedge frustrum	581
Weights	
conversion factors	22
standard cables	334
Wolding	37
Wat-bulb temperature	548
Wheatstone bridge	169
White lovel, telovision	488
Wien	
bridge	170
displacement law	25
Wind pressures and velocities	552
Windings	190
wire table	190
transformers	205
Window	471, 472
open, units	523
Wire	
breaking load	42
Copperweld	43
gauges	40
magnet	74
physical propertios	44
solenoid	74
tables	40
tensile strength	42

Wiro cantinued transmission ..... 490
winding table ..... 190
Wire transmission ..... 490-508
cables, exchange ..... 497
aftenuation ..... 497
capacitance ..... 497
characteristic impedance ..... 497
conductance ..... 497
cutoff frequency ..... 497
loading ..... 497
propagation constant ..... 497
velocity ..... 497
wavelength ..... 497
cablos, miscellaneous ..... 498-499
attenuation ..... 498, 499
capacitance ..... 498, 499
characteristic impedance ..... 498, 499
conductance ..... 498, 499
inductance ..... 498, 499
phase shift ..... 498, 499
resistance ..... 498, 499
cables, toll ..... 495
attenuation ..... 495
capacitance ..... 495
characteristic impedance ..... 495
circuits ..... 496
aftenuation ..... 496
capacitance ..... 496
conductance ..... 496
cutoff frequency ..... 496
impedance ..... 496
inductance ..... 496
load coils ..... 496
propagation constant ..... 496
resistance ..... 496
velocity ..... 496
wavelength ..... 496
conductance ..... 495
inductance ..... 495
phase shift ..... 495
resistance ..... 495
carrier systoms ..... 500
coaxial cable ..... 503
rfequency allocations ..... 500
noise ..... 504
American units ..... 505
European units ..... 505
frying ..... 504
levels ..... 505
line ..... 504
psophometric ..... 504
room ..... 504
telegraph ..... 507
codes ..... 508
American Morse ..... 508
automatic transmission ..... 508
Baudot ..... 508
cable Morse ..... 508
continental ..... 508
Creed ..... 508

Wire transmission cantinued	
Globe Wireless	
Hughes	508
IBM	508
Morkrum	508
Morse	508
Murray	508
printer	508
RCA	508
start-stop	508
synchronous printer	508
pulse lengths	508
signaling speeds	507
lelephone-line circuits	507
attenuation	494
capacitance	494
conductance	494
impedance	494
inductance	494
propagation constant	494
resistance	494
velocity	494
wavelength	494
telephone lines, open-wire pairs	490,491
attenuation	492
capocitonce	490,491
Copperweld	491,492
frequency	490,491
inductance	490,491
leakage conductance	490,491
resistance	490,491


Wirewound resistors	58
Wiring and fusing data	562
Wiring diagrams, motor	560
Wood	52
Working voltage	55
World	
temperatures	550
time chart	555
precipitation	551
WWV	19, 20
$\mathbf{Y}$	
Y-delta transformation	97
$\mathbf{Z}$	
Zinc finishos	557
Zones	
auroral	412
radar reflection	470
skip	418
Numerical	
0 attenuators	158, 163
0.4343, multiples of	634
2.3026, multiples of	634
12-channel carrier	500
24 -channel carrier	500

- Nołes


[^0]:    * Based on "U.S. Bureau of Standards Letter Circular LC886," Central Radio Propagation Laboratory, National Bureau of Standards, U.S. Department of Commerce, Washington 25, D.C.; January 30, 1948.

[^1]:    * Extracted from: J. W. M. DuMond and E. R. Cohen, "Our Knowledge of the Atomic Constants F, $N, m$, and $h$ in 1947, and of Other Constants Derivable Therefrom," Reviews of Modern Physics, vol. 20, pp. 82-108; January, 1948.

[^2]:    * By K. H. McPhee. Reprinted by parmission from Electronics, vol. 21, p. 118; December, 1948.

[^3]:    *Courresy of Copperweld Steel Co., Glassport, Po.

[^4]:    * The data listed in these tables have been taken from various sources including "Tablos of Dielectric Materials," vols. I-III, prepared by the Laboratory for Insulation Research of the Massachusetts Institute of Technology, Cambridge, Massachusetts; June, 1948.

[^5]:    * Dielectric constant and dissipation factor are dependent on electrizal field strength.

[^6]:    * Recently revised standords provide an additional chorocteristic (G) with 70-degree-centigrade ombient ollowed of 100 -percent rating.

[^7]:    * Nominal bare diameter plus maximum additions.

[^8]:    * Many formulas for computing capacitance, inductance, and mufual inductance will be found
    in Bureau of Standards Circular No. C74.

[^9]:    * Scope and limitations: The formulas for 4-terminal networks, given in paragraphs 8 to 12 inclusive, are applicable to any such network composed of linear passive elements. The elements may be either lumped or distributsd, or a combination of both kinds.

[^10]:    * See footnote on p. 92.

[^11]:    * See notations on pp 136-137.

[^12]:    * See notations on pp. 136-137.

[^13]:    * See notations on preceding page.

[^14]:    * These circuit factors are equally applicable to tube or metalic-plate rectifying olemente.
    $\dagger$ line power factor $=$ direct-current output watts/line volt-amperes.

[^15]:    * From "Radio Components Handbook," Technical Advartising Associates; Chelrenham, Pa., May, 1948: p. 92.

[^16]:    * $8_{m}$ refors to 29 -gauge silicon stool.

[^17]:    *R. Loo, "Fibrous Glass Insulation in Radio Apparatus," Electronics, vol. 12, pp. 33-34; October, 1939.

[^18]:    * J. Millman, and S. Seely, "Electronics," 1st ed., McGraw-Hill Book Company, New Yopk, Now York; 1941. K. R. Spangenberg, "Vacuum Tubes," lst od., McGraw-Hill Book Company, New York, New York; 1948.

[^19]:    * B. J. Thompson, D. O. North, and W. A. Harris, "Fluctuations in Space-Chargo-Limitad Currents at Maderately High Frequencies," RCA Review: Part I—January, 1940; Part It-July, 1940; Part III-October, 1940; Part IV—January, 1941; Part V—April, 1941.
    $\dagger$ "Standards on Abbreviations, Graphical Symbols, Letter Symbols, and Mathematical Signs," The Institute of Radio Enginears; 1948.

[^20]:    * D. R. Homilton, J. K. Knipp, and J. B. H. Kuper, "Klystrons ond Microwove Triodes," Ist ed., McGrow-Hill Book Compony, Now York, New York; 1948.

[^21]:    * G. B. Collins, "Microwava Magnatrons," v. 6, Radiation Laboratory Series, 1st ad., McGrawHill Book Company, New York, New York; 1948. J. B. Fisk, H. D. Hagstrum, and P. I. Hartman, "The Magnetron as a Generator of Centimeter Waves," Bell System Technical Jaurnal, v. 25, pp. 167-348; April, 1946.

[^22]:    * D. R. Hamilton, J. K. Knipp, and J. B. H. Kuper, "Klystrons and Microwave Triodes," lst od., McGraw-Hill Book Company, Now York, Now York; 1948. J. R. Pierce, and W. G. Shepherd, "Reflox Oscillators," Bell Sysfem Technical Journal, v. 26, pp. 460-681; July, 1947.

[^23]:    * R. Kompfner, "The Traveling-Wave Tube as Amplifier at Microwaves," Proceedings of the I.R.E., v. 35, pp. 124-127; February, 1947. J. R. Pierce, "Theory of the Beam-Type Traveling. Wave Tube," Proceedings of the I.R.E., v. 35, pp. 111-123; February, 1947.

[^24]:    * J. D. Cobinc, "Gaseous Conductors," Ist od., McGraw-Hill Book Company, New York, Now York; 1941

[^25]:    *K. R. Spangenberg, 'Vacuum Tubes," 1st ed., McGraw-Hill Book Company, New York, New York; 1948.

[^26]:    From "Armed Services Preferred Ports lists tEleclronic Components)," Apmed Services Electro Stondards Agency, Forl Monmouth, New Jersey; Aprill 1, 1949.

[^27]:    * In this discussion, the superscript $M$ indicates the use of the maximum or peak value of the varying component, i.e., $M_{i_{b}}=$ maximum or peak value of the alternating component of the plate current.

[^28]:    * The low-frequency stage gain also is affected by the values of the cathode bypass capacitor and the screen bypass capacitor.

[^29]:    * The low-frequency stage gain also is affected by the values of the cathode bypass capacitor and the screan bypass capacitor.

[^30]:    *R. N. Close, and M. T. Lebenbaum, "Design of Phantastron Time-Delay Circuits," Electronics, vol. 21, pp. 100-107; April, 1948.

[^31]:    * Bosed on R. Mesny, "Rodio-Electricité Générole," Etienne Chiron, Poris, France; 1935.

[^32]:    * For information on the effect of some practical current distributions on field intensities see H. E. Gihring and G. H. Brown, "General Considerations of Tower Antennas for Braadcast Uso," Proceedings of the I.R.E., vol. 23, pp. 311-356; April, 1935.
    $\dagger$ A. B. Chamberlain and W. B. Lodge, "The Broadcast Antenna," Proceedings of the I.R.E., vol. 24, pp. 11-35; January, 1936.

[^33]:    * For additional information see G. H. Brown, "A Critical Study of the Characteristics of Broadcast Antennas as Affected by Antenna Current Distribution," Proceedings of the I.R.E., vol. 24, pp. 48-81; January, 1936: and G. H. Brown and J. G. Leitch, "The Fading Characteristics of the Top-Loaded WCAU Antenna," Proceedings of the I.R.E., vol. 25, pp. 583-611; May, 1937.

[^34]:    * Examples of problems involving the use of the antenna-array information presented here are given on pp. 394-396.

[^35]:    *C. L. Dolph, "A Current Distribution for Broadside Arrays Which Optimizes the Relationship Between Beam Width and Side-Lobe Level," Proceedings af the I.R.E., vol. 34, pp. 335-348; June, 1946. See also discussion on subject paper by H. J. Riblet and C L. Dolph, Proceedings of the I.R.E., vol. 35, pp. 489-492; May, 1947.

[^36]:    * The nomograms, Figs. 1 and 2 are due to Mrs. M. Lindeman Phillips of the Central Radio Propagation laboratory, National Bureau of Standards, Washington, D. C.

[^37]:    * For more exact methods of computation see F. E. Terman, "Radio Engineers' Handbook," 1st edition, McGraw-Hill Book Company, Now York, New York, 1943; Section 10. Also, K. A. Norton, "The Calculation of Ground.Wave Field Intensities Over a Finitely Conducting Spherical Earth," Procesdings of the I.R.E., vol. 29, pp. 623-639; December, 1941.

[^38]:    * Committee III-Docket 6,741, "Skywave Signal Range at Medium Frequencies," Federal Communications Commission, Washington, D. C.; 1946.
    $\dagger 1$ kilometer $=0.621$ mile .

[^39]:    $69^{\circ} 32^{\prime} 48^{\prime \prime}=69.547^{\circ}$

[^40]:    * Taken from Bureau of Standards Radio Propagation Prediction Charts.

[^41]:    *"The Propagation of Radio Waves Through the Standard Atmosphere," Summary Technical Report of the Committee on Propagation, vol. 3, National Defense Research Council, Washington, D. C.; 1946.
    $\dagger$ Soe for instance, A. G. Clavier, "Propagation Tests with Micro-Rays," Elecrrical Communicafion, vol. 15, pp. 211-219; January, 1937.

[^42]:    *See "Tropospheric Propagation and Radio Meteorology," Central Radio Propagation Laboratory Report CRPL-T3, National Bureau of Standards, Washington, D. C.; October, 1946. Also, "Meteorological Factors in Radio-Wave Propagation"; roport of 1946 conference with The Royal Mefeorological Sociery, published by The Physical Society, London.

[^43]:    * J. W. M. DuMond and E. R. Cohen, "Our Knowledge of the Alomic Constants F, N, m, and k in 1947, and of Other Constants Derivable Therefram," Reviews of Modern Physics, val. 20, pp. B2-108; January, 1948: p. 107.

[^44]:    *W. A. Harris, "Fluctuations in Space-Charge-Limited Currents at Moderatoly High Froquencies, Part V-Fluctuations in Vacuum-Tube Amplifiers and Input Systems," RCA Review vol. 5, pp. 505-524; April, 1941: and vol. 6, pp. 114-124, July, 1941.

[^45]:    * "Stondords on Rodio Receivers: Methods of Testing Broodcost Rodio Receivers, 1938," published by The Institute of Radio Engineers; 1942.

[^46]:    * for a discussion of noise improvement factor (NIF) in such systoms as frequency modulation and pulse demodulation, see the chapter "Modulation," pp. 288-289.
    $\dagger$ for methods of measuring field strengths and, hence, noise, see "Standards on Radio Wave Propagation: Measuring Methods, 1942," published by The Institute of Radio Engineers. For information on suitable circuits to obtain peak values, particularly with respect to man-made noise, seo C. V. Agger, D. E. Foster, and C. S. Young, 'Instruments and Mothods of Measuring Radio Noiso," Electrical Engineering, vol. 59, pp. 178-192; March, 1940.

[^47]:    *L. N. Ridenour, "Radar System Engineering," v. 1, Radiation Labaratory Series, McGraw-Hill Book Company, Now York, Now York; 1947. Soe pp. 64-68, 78, 80.

[^48]:    *Raceiver noise figures are more complotely discussed in the chapter "Radio noise and interference," p. 448-451.
    $\dagger$ K. A. Norton, and A. C. Omberg, "The Maximum Range of a Radar Sat," Proceedings af the I.R.E., v. 35, pp. 4-24, January, 1947: p. 6.

[^49]:    * A more detailed explanation of international-broadcasting frequency assignments and requirements is given in the chapter "Frequency data," pp. 9-11.
    $\dagger$ See "Standards of Good Engineering Practice Concerning Standard Broadcast Stations August 1, 1939, revised to Oct. 30, 1947," Federal Communications Commission, Washington, D.C.

[^50]:    * See "Federal Communications Commission Rules and Regulations Governing FM Broadcast Services September 20, 1945, revised to January 9, 1946," Federal Communications Commission, Washington, D.C.

[^51]:    * Soe p. 501 for telegraph-band A, B, C, D, frequency allocations.

[^52]:    *Add two units to each character for 2-channel, and one unit to each character for 4 -chonnel operation. These allow for synchranizotion and retardation.

[^53]:    "Lord Rayleigh, "Theory of Sound," vols. I and II, Dover Publications, Now York, Now York; 1945. P. M. Marse, "Vibration and Sound," 2nd edition, McGraw.Hill Book Company, New York, Now York; 1948.

[^54]:    * E. G. Koller, "Mathematics of Modern Engineering," vol. 2, Ist ed., John Wiloy, New York, New York; 1942. Also, H. F. Olson, "Dynamical Analogies," lst ed., D. Von Nostrand, New York, New York; 1943.

[^55]:    *F. R. Watson, "Acoustics of Buildings," 3rd od., John Wiloy and Sons, Now York, Now York; 1941.

[^56]:    * Reprinfod by permission from Architectural Acoustics by V. O. Knudsen, published by John Wiley and Sons, Ine.

[^57]:    *H. F. Olson, "Elements of Acoustical Engineering," 2nd ed., D. Van Nostrand, Now York, Now York; 1941.

[^58]:    Then,
    Humidity $=70$ percent
    Pounds of water/pound of dry air $=0.013$ Air volume $=13.76$ foet $^{3} /$ pound dry air
    Weight of water $/$ foot 2 air $=0.013 / 13.76$

    $$
    =0.00094 \text { pounds }
    $$

[^59]:    * As measured with a cup onemometer, thase being the overage moximum ior a perlod ol five minutes.

[^60]:    * Reprinted by parmission from American Machinist, vol. 87, p. 115; December 9, 1943.

[^61]:    *Reprinted by permission from "Transmission Towers," American Bridge Company, Pittsburgh,
    Pa.; 1923: p. 70.

[^62]:    * Temperature coefficient of linear expansion is given on pp. 44-45.

[^63]:    *Developed from: J. E. Hill, "Maxwell's Four Basic Equations," Westinghouse Engineer, val. 6, p. 135; September, 1946.

[^64]:    * Soe Pair 1.

